Lithogeochemistry of Geological Units in the Baleine Lithotectonic Domain

The tables below summarize the lithogeochemical characteristics of geological units in the Baleine Lithotectoninc Domain. These units are described in the Geological Bulletin covering this territory and in the Quebec Stratigraphic Lexicon. The 546 analyses used here come from samples collected during the Ministère‘s mapping campaign in the summer of 2019. They were selected based on certain criteria, including a sum of major oxides between 98.5% and 101.5% and a loss on ignition (LOI) <3%. Of the 510 analyses selected from the samples collected by the Ministère, samples collected between 2012 and 2016 were analyzed by the Actlabs laboratory in Ancaster, Ontario, and samples collected between 2009 and 2011 were analyzed by the AcmeLabs laboratory in British Columbia.

The majority of samples in the database were analyzed for major oxides, trace elements and metals. Analyses were performed using different techniques depending on elements, such as inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and neutron activation (INAA). For more information on the analysis and dissolution techniques used, refer to the information available for each sample in SIGÉOM à la carte.

Spider and rare earth element diagrams of several units and subunits are grouped together to form envelopes including analyses between the 25th and 75th percentiles of the population. This procedure was chosen to simplify the visualization of a large number of profiles or when profiles of the same unit are similar. The envelopes thus presented are therefore given as an indication.

 

Archean Gneissic and Intrusive Rocks

 

Lithodemic Unit

Classification

Mg#

Rare Earths

Spider Diagram

Felsic and Intermediate Rocks

Aung2

(21 samples)

Tonalite and granodiorite

(diagrams)

30.5-53.8

Profile with negative slope

15.9 < (La/Yb)N < 74.1

3.9 < (La/Sm)N < 10.6

1.2 < (Gd/Yb)N < 5.1

0.9 < Eu/Eu* < 2.9

(diagram)

Profile with slight negative slope

Negative anomalies in: Ta, Nb, P, Ti, Sm

Positive anomaly in: Lu

(diagram)

Aung2a

(6 samples)

Diorite, quartz diorite and gabbro

(diagrams)

49.9-59.2

Profile with slight negative slope

1.6 < (La/Yb)N < 24.9

1.1 < (La/Sm)N < 3.9

1.1 < (Gd/Yb)N < 3.2

0.8 < Eu/Eu* < 1.2

(diagram)

Profile with slight negative slope

Negative anomalies in: Th,Ta, Nb, P, Zr, Hf

(diagram)

Agkx1

(8 samples)

Tonalite and granodiorite

(diagrams)

36.1-61.7

Profile with negative slope

12.3 < (La/Yb)N < 43.9

4.1 < (La/Sm)N < 7.9

1.7 < (Gd/Yb)N < 3.6

0.7 < Eu/Eu* < 2.3

(diagram)

Profile with slight negative slope

Negative anomalies in: Ta, Nb, P, Ti, Sm

(diagram)

Agkx2

(10 samples)

Gabbro, monzogabbro and quartz diorite

(diagrams)

43.2-70.8

Profile having a negative slope

3.3 < (La/Yb)N < 27.7

2.4 < (La/Sm)N < 3.2

1 < (Gd/Yb)N < 4.5

0.8 < Eu/Eu* < 1.4

(diagram)

Profile with slight negative slope

Negative anomalies in: Th,Ta, Nb, P, Ti

Positive anomalies in: Sm, Eu

(diagram)

nAsaf1

(32 samples)

Granodiorite, quartz monzodiorite, quartz monzonite and granite

(diagrams)

23.7-48.7

Profile with negative slope

10.3 < (La/Yb)N < 61.1

2.7 < (La/Sm)N < 10

1.8 < (Gd/Yb)N < 3.8

0.5 < Eu/Eu* < 2.1

(diagram)

Profile with slight negative slope

Negative anomalies in: Ta, Nb, P, Ti

(diagram)

nAsaf2

(8 samples)

Granite

(diagrams)

11.8-38.4

Profile with negative slope

15.1 < (La/Yb)N < 65.9

6.1< (La/Sm)N < 12

1.2 < (Gd/Yb)N < 3.5

0.4 < Eu/Eu* < 3.4

(diagram)

Profile with slight negative slope

Negative anomalies in: Th, Ta, Nb, P, Ti

(diagram)

Mafic and Ultramafic Rocks

ApPral1

(65 samples)

Gabbro, diorite and ultramafic rocks

(diagrams)

29.6-74.6

Profile with very slight negative slope

0.7 < (La/Yb)N < 18.5

0.7< (La/Sm)N < 4.8

1 < (Gd/Yb)N < 3.8

0.7 < Eu/Eu* < 1.5

(diagram)

Flat profile

Positive anomalies in: La, Ce, Nd

(diagram)

ApPral2

(8 samples)

Ultramafic rocks

(diagrams)

71.8-83.1

Flat profile

0.4 < (La/Yb)N < 3.8

0.6< (La/Sm)N < 1.4

0.6 < (Gd/Yb)N < 2.3

0.5 < Eu/Eu* < 1.5

(diagram)

Flat profile

Positive anomalies in: Nb, Zr, Ti, Y

(diagram)

Supracrustal Rocks

 

Lithodemic Unit

Classification

Affinity

Tectonic Setting

Mg#

Rare Earths

Spider Diagram

Comments

Volcanic and Associated Rocks

nApPcut1

(59 samples)

Basalt

(diagram)

Tholeiitic to calc-alkaline

(diagram)

(diagram)

Plate margin basalt, N-MORB, E-MORB and calc-alkaline

(diagrams)

32.1-72.4

Flat profile

0.8 < (La/Yb)N < 6.5

1.8 < (La/Sm)N < 2.5

1 < (Gd/Yb)N < 2.6

0.8 < Eu/Eu* < 1.4

(diagram)

Flat profile

Negative anomalies in: Ta,Nb, P, Eu, Y

(diagram)

Typical composition of unaltered basalt

(diagram)

Lithodemic Unit

Classification

Protolith and Alteration

Mg#

Rare Earths

Spider Diagram

Sedimentary Rocks

nApPaki1

(7 samples)

Metawacke

(diagram)

Sedimentary rocks derived from the upper crust (tonalitic to granodioritic), poorly altered and poorly recycled

(diagram)

(diagram)

28.3-44.6

Profile with negative slope

10.6 < (La/Yb)N < 29.7

3.1 < (La/Sm)N < 4.6

1.3 < (Gd/Yb)N < 3.9

0.7 < Eu/Eu* < 0.9

(diagram)

Profile with negative slope

Negative anomalies in: Ta, Nb, P, Zr, Hf, Ti

(diagram)

nApPaki2

(17 samples)

Metawacke and meta-arkose

(diagram)

Sedimentary rocks derived from the upper crust (granodioritic), slightly altered and not recycled

(diagram)

(diagram)

21.7-59.4

Profile with negative slope

4.3 < (La/Yb)N < 36.8

3 < (La/Sm)N < 6.5

0.7 < (Gd/Yb)N < 3.6

0.7 < Eu/Eu* < 1.7

(diagram)

Profile with slight negative slope

Negative anomalies in: Ta, Nb, P, Ti

(diagram)

nApPgy

(23 samples)

Metalitharenite and meta-arkose

(diagram)

Sedimentary rocks derived from the upper crust (granodioritic to granitic), poorly altered and poorly recycled

(diagram)

(diagram)

11.6-68.2

Profile with negative slope

11.2 < (La/Yb)N < 57.9

3.5 < (La/Sm)N < 9.4

1.4 < (Gd/Yb)N < 4.4

0.7 < Eu/Eu* < 2.2

(diagram)

Profile with negative slope

Negative anomalies in: Ta, Nb, P, Nd, Sm, Ti

(diagram)

nApPfas1

(16 samples)

Migmatized paragneiss

Heterogeneous composition

(diagrams)

34-51.8

Profile with slight negative slope

7.4 < (La/Yb)N < 27.1

3 < (La/Sm)N < 6.4

0.9 < (Gd/Yb)N < 2.6

0.7 < Eu/Eu* < 1.4

(diagram)

Profile with slight negative slope

Negative anomalies in: Ta, Nb, P, Zr, Ti

(diagram)

pPwii1

(23 samples)

Metatexite

Heterogeneous composition

(diagrams)

26.5-47.9

Profile with slight negative slope

2.3 < (La/Yb)N < 33.9

1.5 < (La/Sm)N < 5.3

1.1 < (Gd/Yb)N < 4.2

0.6 < Eu/Eu* < 1.6

(diagram)

Profile with slight negative slope

Negative anomalies in: Ta, Nb, P, Ti, Yb

(diagram)

pPwii2

(4 samples)

Diatexite

Heterogeneous composition

(diagrams)

48.3-55.9

Profile with negative slope

14.1 < (La/Yb)N < 140

4.2 < (La/Sm)N < 8.5

1.8 < (Gd/Yb)N < 6.9

0.8 < Eu/Eu* < 1.6

(diagram)

Profile with negative slope

Negative anomalies in: Ta, Nb, P, Ti

(diagram)

The major oxide diagrams inspired by Sawyer (2008) illustrate the heterogeneity in the composition of paragneiss and associated diatexites of the False and Winnie suites. The geochemical variability highlighted by these diagrams can be explained by many processes, including heterogeneity in the composition of protoliths, accumulation or extraction of melting products in some samples and contamination by partial melting residues.

 

Proterozoic Intrusive Rocks

Lithodemic Unit

Classification

Affinity

Tectonic Setting

Mg#

Rare Earths

Spider Diagram

Felsic and Intermediate Intrusive Rocks

pPchm1

(16 samples)

Granodiorite, quartz monzonite and granite

(diagrams)

Magnesian granitoid, calc-alkaline to alkaline-calcic, type I and metaluminous to hyperaluminous

(diagrams)

Volcanic arc granite

(diagram)

(diagrams)

27.7-50.2

Profile with negative slope

14.3 < (La/Yb)N < 48.3

3.2 < (La/Sm)N < 8.2

1.7 < (Gd/Yb)N < 5

0.5 < Eu/Eu* < 1.6

(diagram)

Profile with negative slope

Negative anomalies in: Ta, Nb, P, Ti

(diagram)

pPchm2

(7 samples)

Granite

(diagrams)

Magnesian to ferriferous granitoid, calc-alkaline to alkaline-calcic, type I and metaluminous to hyperaluminous

(diagrams)

Volcanic arc granite

(diagram)

(diagrams)

6.2-46.5

Profile with negative slope

3.8 < (La/Yb)N < 52.4

2.9 < (La/Sm)N < 6.5

1.1 < (Gd/Yb)N < 4

0.6 < Eu/Eu* < 1.2

(diagram)

 

Profile with negative slope

Negative anomalies in: P, Ti

Positive anomaly in: Th

(diagram)

pPavn1

(32 samples)

 

Tonalite, granodiorite and granite

(diagrams)

Magnesian to ferriferous granitoid, calcic to alkaline-calcic, type I and hyperaluminous

(diagrams)

Volcanic arc granite

(diagram)

(diagrams)

13.1-43.9

Profile with negative slope

1.4 < (La/Yb)N < 145.7

1.8 < (La/Sm)N < 9.8

0.6 < (Gd/Yb)N < 7.8

0.1 < Eu/Eu* < 14.1

(diagram)

Profile with negative slope

Negative anomalies in: Ta, Nb, P, Ti

(diagram)

pPavn1a

(8 samples)

Tonalite and granodiorite

(diagrams)

Magnesian granitoid, calcic, type I and hyperaluminous

(diagrams)

Volcanic arc granite

(diagram)

(diagrams)

33.6-48.7

Profile with negative slope

13.9 < (La/Yb)N < 351.9

5.8 < (La/Sm)N < 10.8

1.6 < (Gd/Yb)N < 12.2

0.5 < Eu/Eu* < 7.2

(diagram)

Profile with negative slope

Negative anomalies in: Ta, Nb, P, Ti

(diagram)

pPdac1

(4 samples)

Granite et granodiorite

(diagrams)

Magnesian granitoid, alkaline-calcic, type I and hyperaluminous

(diagrams)

Volcanic arc granite

(diagram)

(diagrams)

23.8-32.4

Profile with negative slope

39.1 < (La/Yb)N < 153.4

4 < (La/Sm)N < 7.4

3.5 < (Gd/Yb)N < 8.8

0.1 < Eu/Eu* < 1.1

(diagram)

Profile with negative slope

Negative anomalies in: Ta, Nb, P, Zr, Ti,

 

(diagram)

pPdac2

(17 samples)

Granite and granodiorite

(diagrams)

Magnesian granitoid, alkaline-calcic, type I and hyperaluminous

(diagrams)

Volcanic arc granite

(diagram)

(diagrams)

9.5-36.8

Profile with negative slope

2 < (La/Yb)N < 121.4

1.5 < (La/Sm)N < 8.6

0.8 < (Gd/Yb)N < 7.7

0.3 < Eu/Eu* < 3.8

(diagram)

Profile with negative slope

Negative anomalies in: Ta, Nb, P, Zr, Ti

(diagram)

pPdac3

(16 samples)

Granite and granodiorite

(diagrams)

Magnesian granitoid, alkaline-calcic, type I and hyperaluminous

(diagrams)

Volcanic arc granite

(diagram)

(diagrams)

8.8-31.4

Profile with steep negative slope

2.3 < (La/Yb)N < 68.7

1.7 < (La/Sm)N < 8.7

0.9 < (Gd/Yb)N < 7

0.2 < Eu/Eu* < 5.4

(diagram)

Profile with steep negative slope

Negative anomalies in: Ta, Nb, P, Zr, Ti

(diagram)

Lithodemic Unit

Classification

Affinity

Tectonic Setting

Mg#

Rare Earths

Spider Diagram

Intermediate, Mafic and Ultramafic Intrusive Rocks

pPlnd1

(10 samples)

Monzodiorite, diorite and monzogabbro

(diagram)

Magnesian granitoid, alkaline-calcic to calc-alkaline, type I and metaluminous

(diagrams)

Volcanic arc granite

(diagram)

(diagrams)

44.6-46.9

Profile with negative slope

13.8 < (La/Yb)N < 31.6

2.8 < (La/Sm)N < 3.8

2.2 < (Gd/Yb)N < 4.8

0.9 < Eu/Eu* < 1.2

(diagram)

Profile with slight negative slope

Negative anomalies in: Th, Ta, Nb, P, Zr, Hf, Ti

(diagram)

pPlnd2a

(5 samples)

Gabbro, monzogabbro and gabbro-diorite

(diagram)

Calc-alkaline

(diagram)

(diagram)

 

43.8-52.1

Profile with negative slope

11.9 < (La/Yb)N < 29

3 < (La/Sm)N < 3.4

2.3 < (Gd/Yb)N < 4.4

0.8 < Eu/Eu* < 1

(diagram)

Profile with very slight negative slope

Negative anomalies in: Th, Nb, Zr, Hf

(diagram)

pPlnd2b

(6 samples)

Ultramafic rocks

(diagram)

Tholeiitic

(diagram)

(diagram)

 

73.4-77.3

6.9 < (La/Yb)N < 10.5

1 < (La/Sm)N < 2.5

1.1 < (Gd/Yb)N < 5.4

0.5 < Eu/Eu* < 1

(diagram)

Relatively flat profile

Negative anomalies in: Th, Ta, Nb, P, Zr, Hf, Ti

(diagram)

pPkaa1

(25 samples)

Diorite, tonalite, quartz diorite and granodiorite

(diagram)

Magnesian granitoid, calc-alkaline to calcic, type I and metaluminous to hyperaluminous

(diagrams)

Volcanic arc granite

(diagram)

(diagrams)

31.4-47.6

Profile with negative slope

5.3 < (La/Yb)N < 40

2.8 < (La/Sm)N < 3.8

2.7 < (Gd/Yb)N < 7.1

0.8 < Eu/Eu* < 2.5

(diagram)

Profile with slight negative slope

Negative anomalies in: Th, Ta, Nb, P

(diagram)

pPkaa2

(48 samples)

Gabbro and ultramafic rocks

(diagram)

Tholeiitic

(diagram)

(diagram)

  32.3-78.4

Relatively flat profile

0.9 < (La/Yb)N < 14.5

0.4 < (La/Sm)N < 5.1

1.2 < (Gd/Yb)N < 2.9

0.7 < Eu/Eu* < 2.4

(diagram)

Flat profile

Negative anomalies in: Th, Nb, Ta, Zr, Hf

Positive anomalies in: Sm, Ti

(diagram)

pPkaa3a

(30 samples)

Ultramafic rocks and gabbro

(diagram)

Tholeiitic

(diagram)

(diagram)

  37-79.1

Relatively flat profile

2.2 < (La/Yb)N < 10.4

0.9 < (La/Sm)N < 2.8

1.3 < (Gd/Yb)N < 3.8

0.8 < Eu/Eu* < 2.1

(diagram)

Flat profile

Negative anomalies in: Th, Ta, Nb, Zr, Hf

Positive anomaly in: Sm

(diagram)

mPsoi

(13 samples)

Gabbro, diorite and quartz monzodiorite

(diagram)

Tholeiitic to calc-alkaline

(diagram)

(diagram)

  44.5-68.8

Profile with negative slope

3.8 < (La/Yb)N < 14.8

2.1 < (La/Sm)N < 3.9

1.3 < (Gd/Yb)N < 2.2

0.8 < Eu/Eu* < 1.5

(diagram)

Profile with slight negative slope

Negative anomalies in: Th, Ta, Nb, P, Yb

(diagram)

The diagram of Kempton and Harmon (1992), which uses ratios of elements with very low mobility during metamorphism (Guilmette et al., 2009), allows the evolutionary trends of protoliths of metamorphosed mafic rocks to be determined. Samples of the Kaslac Complex and the Lhande and Soisson suites all fall outside the field of primitive basalts. Three trends concerning different units of the Kaslac Complex have been described by Lamirande and Bilodeau (2018): 1) a decrease in magnesium number for the same SiO2/Al2O3 ratio, indicating the accumulation of Fe-Ti oxides; 2) a concomitant decrease in magnesium number and SiO2/Al2O3 ratio, indicating the accumulation of plagioclase or garnet; and 3) a concomitant increase in magnesium number and SiO2/Al2O3 ratio, indicating the accumulation of pyroxene. These results suggest that the majority of rocks in the Kaslac Complex are cumulates rather than differentiated liquids (Lamirande and Bilodeau, 2018).

 

References

Publications of the Government of Québec

GODET, A., VANIER, M.-A., GUILMETTE, C., LABROUSSE, L., CHARETTE, B., LAFRANCE, I. 2018. Chemins PT et style d’exhumation du Complexe de Mistinibi, Province du Churchill Sud-Est, Canada. MERN, UNIVERSITE LAVAL, SORBONNE UNIVERSITE. MB 2018-31, 32 pages.

LAMIRANDE, P H., BILODEAU, C. 2018. Géochimie et pétrogenèse des métabasites du Complexe de Kaslac, Nunavik, Québec. Université Laval, MERN; MB 2018-15, 43 pages.

TRÉPANIER, S. 2011. Guide pratique d’utilisation de différentes méthodes de traitement de l’altération et du métasomatisme. CONSOREM. MB 2011-13, 216 pages.

 

Other Publications

DEBON, F., LEFORT, P., 1983. A chemical-mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh, Earth Sciences; volume 73, pages 135-149. doi.org/10.1017/S0263593300010117

DE LA ROCHE, H., LETERRIER, J., GRANDCLAUDE, P., MARCHAL, M., 1980. A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses – its relationships with current nomenclature. Chemical Geology; volume 29, pages 183-210. doi.org/10.1016/0009-2541(80)90020-0

FROST, B.R., BARNES, C.G., COLLINS, W.J., ARCULUS, R.J., ELLIS, D.J., FROST, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology; volume 12, pages 2033-2048, doi.org/10.1093/petrology/42.11.2033

GUILMETTE, C., HÉBERT, R., WANG, C., VILLENEUVE, M., 2009. Geochemistry and geochronology of the metamorphic sole underlying the Xigaze ophiolite, Yarlung Zangbo Suture Zone, south Tibet. Lithos; volume 112, pages 149-163. doi.org/10.1016/j.lithos.2009.05.027

HARRIS, N.B.W., PEARCE, J.A., TINDLE, A.G., 1986. Geochemical characteristics of collision-zone magmatism. In Collision tectonics (Coward, M.P. and Reis, A.C., editors.). Geological Society, London; Special Publications, volume 19, pages 67-81. doi.org/10.1144/GSL.SP.1986.019.01.04

IRVINE, T.N., BARAGAR, W.R.A., 1971. A guide to the chemical classification of common volcanic rocks. Canadian Journal of Earth Sciences; volume 8, pages 523-546. doi.org/10.1139/e71-055

LARGE, R.R., GEMMELL, J.B., PAULICK, H., HUSTON D.L., 2001. The alteration box plot: a simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Economic Geology; volume 96, pages 957-971. doi.org/10.2113/gsecongeo.96.5.957

KEMPTON, P., HARMON, R., 1992. Oxygen isotope evidence for large-scale hybridization of the lower crust during magmatic underplating. Geochimica et Cosmochimica Acta; volume 56, pages 971-986. doi.org/10.1016/0016-7037(92)90041-G

MANIAR, P.D., PICCOLI, P.M,. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin; volume 101, pages 635-643. doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

MCDONOUGH, W.F., SUN, S.S., 1995. The composition of the earth. Chemical Geology; volume 120, pages 223-253, doi.org/10.1016/0009-2541(94)00140-4

McLENNAN, S.M., HEMMING, S.R., McDANIEL, D.K., HANSON G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America; Special Paper, volume 284, pages 21-40, doi.org/10.1130/SPE284-p21

NESBITT, H.W., 2003. Petrogenesis of siliciclastic sediments and sedimentary rocks. In Geochemistry of Sediments and Sedimentary Rocks: Evolutionary Consideration to Mineral Deposit-Forming Environments (Lentz, D.R., editor). Geological Association of Canada; volume 4, pages 39-51.

PALME, H., O’NEILL, H.S.C., 2004. Cosmochemical estimates of mantle composition. In Treatise on Geochemistry (Holland, H.D. and Turrekian, K.K. editors). Elsevier; volume 2, pages 1-38. doi.org/10.1016/B978-0-08-095975-7.00201-1

PEARCE, J.A., 1996. A User’s guide to basalt discrimination diagrams. In: Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration (Wyman, D.A., editor). Geological Association of Canada; Short Course Notes, volume 12, pages 79-113.

PEARCE, J.A., GALE, G.H., 1977. Identification of ore-deposition environment from trace element gechemistry of associated igneous host rocks. Geological Society, London; Special Publications, Volume 7, pages 14-24. doi.org/10.1144/GSL.SP.1977.007.01.03

PEARCE, J.A., HARRIS, B.W., TINDLE, A.G., 1984. Trace element discrimination diagram for tectonic interpretation of granitic rocks. Journal of Petrology; volume 25, pages 956-983. doi.org/10.1093/petrology/25.4.956

PETTIJOHN, F.J., POTTER, P.E., SIEVER, R., 1972. Sand and Sandstones. Springer-Verlag; 618 pages.

ROSS, P.S., BÉDARD, J.H., 2009. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Canadian Journal of Earth Science; volume 46, pages 823-839. doi.org/10.1139/E09-054

SAWYER, E.W., 2008. Atlas of migmatites. Research Press and Mineralogical Association of Canada; 371 pages.

WINCHESTER, J.A., FLOYD, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology; volume 20, pages 325-343. doi.org/10.1016/0009-2541(77)90057-2

WOOD, D.A., 1980. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters; volume 50, pages 11-30. doi.org/10.1016/0012-821X(80)90116-8

 

 

 

 

12 février 2021