Lithogeochemistry of Geological Units in the Cadieux Lake Area

The tables below summarize the lithogeochemical characteristics of geological units in the Cadieux Lake area. These units are described in the Geological Bulletin covering this territory and in the Quebec Stratigraphic Lexicon. The 223 analyses used here come from samples collected during the Ministère‘s mapping campaign in the summer of 2018.
 
The analyses selected are those of lithological units that were considered relevant for lithogeochemical processing, and whose sum of major element oxides is between 98.5% and 101.5% with a loss on ignition (LOI) of <3% (except for ultramafic rock samples). Analyses were performed by the Actlabs laboratory in Ancaster, Ontario.
 
Most samples were analyzed for major oxides, trace elements and base metals. Analyses were carried out using different techniques depending on the elements, such as inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and neutron activation (INAA).
 
In the tables below, for each geological unit analyzed, rare earth element profiles and ratios of samples, as well as spider diagrams, are mostly represented by envelopes produced from sample profiles between the 25th and 75th percentiles of the total sample population. Such a representation has been chosen to simplify the visualization of profiles. The envelopes and ratios presented are therefore indicative.
 
The ICPW norm was calculated by the software Lithomodeller version 3.6.3 (Trépanier, 2011) and was used to produce normative classification diagrams for mafic and ultramafic rocks (Streckeisen, 1976). Lithomodeller has been used for all geochemical diagrams in the tables below.

 

Gneissic and Intrusive Complex

Stratigraphic or Lithodemic Unit

Classification/Type of Rocks

Affinity Geodynamic Setting

Mg#

Rare Earths

Spider Diagram

Comments

Misasque Complex (Amiq)

15 samples

 

Homogeneous and
gneissic tonalite

 

 

Homogeneous granite

(Diagrams)

 

Homogeneous and
gneissic tonalite(I1D)

Magnesian, generally calcic to calc-alkaline and peraluminous (type I) granitoid;

Homogeneous granite (I1B)

Ferriferous to magnesian, calc-alkaline to alkaline and peraluminous (type I) granitoid

(Diagrams)

 

Volcanic arc granite

(Diagrams)

Homogeneous and
gneissic tonalite (I1D)

17.48-28.12

Homogeneous granite (I1B)

3.57-23.49

Homogeneous and
gneissic tonalite (I1D)

10.58 < (La/Yb)N < 51.98

4.11 < (La/Sm)N < 9.13

1.17 < (Gd/Yb)N < 5.05

0.46 < Eu/Eu* < 2.43

(Diagram)

 

Homogeneous granite(I1B)

12.71 < (La/Yb)N < 61.57

3.43 < (La/Sm)N < 6.52

1.75 < (Gd/Yb)N < 4.54

0.12 < Eu/Eu* < 1.23

(Diagram)

Homogeneous and
gneissic tonalite (I1D)

Negative anomalies in: Nb-Ta, P, Ti (strong), Sm (weak);

Positive anomalies in: La-Ce (strong), Zr-Hf (weak)

(Diagram)

 

Homogeneous granite (I1B)

Negative anomalies in: Nb-Ta, P, Ti (strong), Sm (weak);

Positive anomalies in: La-Ce (strong)

(Diagram)

Tonalitic and granitic rocks of the Misasque Complex have similar spider diagrams. Granitic rocks are more evolved.

 

Granite is more enriched in rare earths than tonalite, and has a negative Eu anomaly.

 
 

Supracrustal Rocks

Stratigraphic or Lithodemic Unit

Classification/Type of Rock

Affinity

Tectonic Setting

Mg#

Rare Earths

Spider Diagram

Comments

Volcanic and Associated Rocks

Dolent Formation (nAdln1)

27 samples

Subalkaline basalt and andesitic basalt

(Diagrams)

Tholeiitic

(Diagrams)

Island arc basalt;

Source: N-MORB that has possibly undergone crustal contamination

(Diagrams)

29.75-57.46

0.57 < (La/Yb)N < 2.77

0.51 < (La/Sm)N < 2.05

0.96 < (Gd/Yb)N < 1.49

0.71 < Eu/Eu* < 1.34

(Diagram)

Slightly negative anomalies in: Nb, Ta, P;

Slightly positive anomalies in: La, Ce

(Diagram)

Relatively flat rare earth pattern that is slightly more enriched than the rare earth profile of unit nAdln2.

Dolent Formation(nAdln2)

5 samples

Amphibolite and gabbro

(Diagrams)

Tholeiitic

(Diagrams)

Island arc basalt;

Source: N-MORB that has possibly undergone crustal contamination

(Diagrams)

39.63-52.79

0.47 < (La/Yb)N < 1.29

0.76 < (La/Sm)N < 1.03

0.81 < (Gd/Yb)N < 1.59

0.87 < Eu/Eu* < 1.06

(Diagram)

 

Slightly negative anomalies in: Nb, Ta, P;

Slightly positive anomalies in: La, Ce

(Diagram)

 

Relatively flat rare earth pattern which is slightly more depleted than the rare earth profile of unit nAdln1 (more primitive).

Dolent Formation(nAdln6)

2 samples

Rhyodacite

(Diagrams)

Calc-alkaline

(Diagrams)

Does not apply. 29.30-32.00

10.57 < (La/Yb)N < 13.78

4.87 < (La/Sm)N < 5.02

1.37 < (Gd/Yb)N < 1.50

0.47 < Eu/Eu* < 0.57

(Diagram)

Negative anomalies in: Nb, P, Ti (strong), Ta, Sm (weak);

Strong positive anomalies in:: Th, La, Ce

(Diagram)

High enrichment of light rare earths compared to heavy rare earths. Negative Eu anomaly.

Mabille Complex (nAmbi5)

5 samples

Amphibolite and basalt

(Diagrams)

Tholeiitic

(Diagrams)

Island arc basalt;

Source: N-MORB that has possibly undergone contamination

(Diagrams)

17.51-57.28

0.77 < (La/Yb)N < 1.78

0.89 < (La/Sm)N < 1.57

0.89 < (Gd/Yb)N < 1.33

0.83 < Eu/Eu* < 0.93

(Diagram)

Slight negative anomalies in: Nb, Ta, P;

Slight positive anomalies in: La, Ce

(Diagram)

Relatively flat rare earth pattern

Sedimentary Rocks

Laguiche Complex (nAlgi2a)

16 samples

Paragneiss derived from wacke and metatexite, felsic mobilisate injection of granodioritic to granitic composition

(Diagrams)

Does not apply.

Sedimentary rocks derived from the upper crust (TTG), not recycled and slightly altered;

 

Geotectonic setting: continental arc

(Diagrams)

Paragneiss (M4)

29.43-38.71

 

Felsic injection and mobilisate (I1)

12.10-26.68

Paragneiss (M4)

11.14 < (La/Yb)N < 55.22

4.06 < (La/Sm)N < 5.34

1.66 < (Gd/Yb)N < 4.06

0.71 < Eu/Eu* < 1.15

(Diagram)

 

Felsic injection and mobilisate (I1)

1.60 < (La/Yb)N < 74.28

3.35 < (La/Sm)N < 7.10

0.33 < (Gd/Yb)N < 7.78

0.23 < Eu/Eu* < 3.56

(Diagram)

Paragneiss (M4)

Negative anomalies in: Nb, Ta, P (strong), Sm, Ti (weak);

Positive anomalies in: La, Ce, Nd (strong), Zr, Hf (weak)

(Diagram)

 

Felsic injection and mobilisate (I1)

Negative anomalies in: Nb, Ta, P, Ti (strong), Sm (weak);

Positive anomalies in: La, Ce (strong), Nd, Hf (weak)

(Diagram)

Sedimentary units nAlgi2a, nAlgi2c and nAlgi4b are geochemically inseparable. They consist of paragneisses derived from wacke, which originate from the erosion of a TTG type crust. These units have similar rare earth profiles and spider diagrams.

Laguiche Complex(nAlgi2c)

33 samples

Paragneiss derived from wacke and metatexite, felsic mobilisate injection of granodioritic to granitic composition

(Diagrams)

Does not apply.

Sedimentary rocks derived from the upper crust (TTG), not recycled and slightly altered;

 

Geotectonic setting: continental arc

(Diagrams)

Paragneiss (M4)

28.41-38.80

 

Felsic injection and mobilisate (I1)

7.27-26.89

Paragneiss (M4)

12.19 < (La/Yb)N < 24.71

3.70 < (La/Sm)N < 6.15

1.83 < (Gd/Yb)N < 2.56

0.61 < Eu/Eu* < 1.07

(Diagram)

 

Felsic injection and mobilisate (I1)

0.29 < (La/Yb)N < 339.94

1.18 < (La/Sm)N < 11.21

0.09 < (Gd/Yb)N < 19.60

0.09 < Eu/Eu* < 3.72

(Diagram)

Paragneiss (M4)

Negative anomalies in: Nb, Ta, P (strong), Sm, Ti (weak);

Positive anomalies in: La, Ce, Nd (strong), Zr, Hf (weak)

(Diagram)

 

Felsic injection and mobilisate (I1)

Negative anomalies in:Nb, Ta, P, Ti (strong), Zr (weak);

Positive anomalies in: La, Ce (strong), Nd, Hf (weak)

(Diagram)

Laguiche Complex(nAlgi4b)

8 samples

Diatexite, anatectic granite, metatexite and paragneiss derived from wacke; felsic mobilisate injection (granodiodioritic to granitic)

(Diagrams)

Does not apply.

Sedimentary rocks derived from the upper crust (TTG), not recycled and slightly altered;

 

Geotectonic setting: continental arc

(Diagrams)

Paragneiss (M4)

34.48

 

Felsic injection and mobilisate (I1)

22.82-31.78

Paragneiss (M4)

(La/Yb)N = 16.45

(La/Sm)N = 4.85

(Gd/Yb)N = 1.89

Eu/Eu* = 0.81

(Diagram)

 

Felsic injection and mobilisate (I1)

8.40 < (La/Yb)N < 127.51

3.13 < (La/Sm)N < 8.22

0.84 < (Gd/Yb)N < 5.97

0.49 < Eu/Eu* < 5.30

(Diagram)

Paragneiss (M4)

 

Negative anomalies in: Nb, Ta, P (strong), Sm, Ti (weak);

Positive anomalies in: La, Ce, (strong) Nd, Zr, Hf (weak)

(Diagram)

 

Felsic injection and mobilisate (I1)

Negative anomalies in: Nb, Ta, P, Ti (strong), Sm (weak);

Positive anomalies in: La, Ce (strong), Nd, Zr, Hf (weak)

(Diagram)

The injections and mobilisate in unit nAlgi4b are depleted in heavy rare earths.

 

 Intrusive Rocks

Stratigraphic or Lithodemic Unit

Classification/Type of Rock

Affinity

Tectonic Setting

Mg#

Rare Earths

Spider Diagram

Comments

Felsic to Intermediate intrusive Rocks

Digne Pluton (mAdig)

19 samples

Tonalite, granodiorite and granite

(Diagrams)

Magnesian, generally calcic to calc-alkaline and peraluminous (type I and S) granitoid

(Diagrams)

Volcanic arc granite

(Diagrams)

8.38-45.00

4.89 < (La/Yb)N < 58.00

2.98 < (La/Sm)N < 9.90

1.25 < (Gd/Yb)N < 2.85

0.37 < Eu/Eu* < 1.43

(Diagram)

Negative anomalies in: Nb, P (moderate), Sm, Ti (weak);

Positive anomalies in: La, Ce (moderate), Nd, Zr, Hf (weak)

(Diagram)

 

Mabille Complex (nAmbi1)

8 samples

Tonalite

(Diagrams)

Magnesian, generally calcic to calc-alkaline and peraluminous (type I) granitoid

(Diagrams)

Volcanic arc granite

(Diagrams)

17.07-26.83

4.00 < (La/Yb)N < 28.45

2.71 < (La/Sm)N < 5.69

1.13 < (Gd/Yb)N < 3.02

0.25 < Eu/Eu* < 1.07

(Diagram)

Negative anomalies in: Nb, P (moderate), Sm, Ti (weak);

Positive anomalies in: Ta, La, Ce, Nd, Zr, Hf (moderate)

(Diagram)

 

Pisim Pluton (nApsm)

3 samples

Tonalite

(Diagrams)

Magnesian, generally calc-alkaline and peraluminous (type I) granitoid

(Diagrams)

Volcanic arc granite

(Diagrams)

32.07-36.54

12.75 < (La/Yb)N < 30.64

2.97 < (La/Sm)N < 4.93

1.78 < (Gd/Yb)N < 2.98

1.26 < Eu/Eu* < 2.58

(Diagram)

 

Negative anomalies in: Th, Nb, Sm (weak)

Positive anomalies in: La, Zr, Hf (moderate)

(Diagram)

 

 

Martel Suite (nAmrt)

4 samples

Granite

(Diagrams)

Ferriferous, calc-alkaline to alkaline and peraluminous (mostly type S) granitoid

(Diagrams)

Undetermined

(Diagrams)

6.90-10.91

0.82 < (La/Yb)N < 17.34

1.09 < (La/Sm)N < 9.25

0.36 < (Gd/Yb)N < 1.62

0.01 < Eu/Eu* < 2.61

(Diagram)

Negative anomalies in: Nb, Ti (strong), Ce (weak)

Positive anomalies in: Th, P, Hf (strong), La (weak)

(Diagram)

 

MacLeod Batholith (nAmcl)

19 samples

Granodiorite and quartz monzodiorite

(Diagrams)

Magnesian, generally calc-alkaline and metaluminous (type I) granitoid

(Diagrams)

Volcanic arc granite

(Diagrams)

34.94-45.73

17.68 < (La/Yb)N < 42.98

4.13 < (La/Sm)N < 6.87

2.06 < (Gd/Yb)N < 3.36

0.72 < Eu/Eu* < 1.11

(Diagram)

Negative anomalies in: Nb, Ta (strong), P, Ti (moderate)

Positive anomalies in: La, Ce (strong), Nd (moderate)

(Diagram)

The QAP classification diagram is more representative than the PQ and TAS diagrams. Rocks of the MacLeod Batholith are quartz granodiorite and quartz monzodiorite with a quartz content ranging from 15 to 25%.

Cadieux Suite (nAcad)

9 samples

Quartz monzodiorite and granodiorite

(Diagrams)

Magnesian, generally alkaline-calcic and metaluminous (type I) granitoid

(Diagrams)

Volcanic arc granite

(Diagrams)

26.90-32.09

22.44 < (La/Yb)N < 61.33

3.23 < (La/Sm)N < 4.74

3.43 < (Gd/Yb)N < 5.79 

0.92 < Eu/Eu* < 1.02

(Diagram)

Negative anomalies in: Nb, Ta (fortes), P, Ti (moderate)

Positive anomalies in: La, Ce (strong), Nd (moderate)

(Diagram)

Rocks of the Cadieux Suite are less magnesian and slightly more enriched in light rare earths than rocks of the MacLeod Batholith and Lépante Suite.

Lépante Suite

(nAlpn)

5 samples

Quartz monzodiorite, diorite and granodiorite

(Diagrams)

Magnesian, generally calc-alkaline and metaluminous (type I) granitoid

(Diagrams)

Volcanic arc granite

(Diagrams)

41.64-44.90

11.63 < (La/Yb)N < 30.54

2.71 < (La/Sm)N < 5.00

2.37 < (Gd/Yb)N < 2.80

0.74 < Eu/Eu* < 1.00

(Diagram)

 

Negative anomalies in: Nb, Ta (strong), P, Ti (moderate)

Positive anomalies in: La, Ce (strong), Nd (moderate)

(Diagram)

In thin sections and stains, several rocks of the Lépante Suite that fall in the granodiorite field in the PQ and TAS diagrams appear to have a more intermediate composition (quartz monzodiorite).

Rare earth profiles and spider diagrams of rocks of the Lépante Suite and MacLeod Batholith are very similar. There is a slight enrichment of heavy rare earths in the Lépante Suite.

               

Stratigraphic or Lithodemic Unit

Classification

Affinity

Tectonic Setting

Mg#

Rare Eaths

Spider Diagram

Comments

Mafic-Ultramafic Intrusive Rocks and Associated Rocks

Enclaves in the Digne Pluton

(5 samples)

Gabbro, olivine gabbro and pyroxenite (olivine websterite)

(Diagrams)

(Diagrams)

Tholeiitic

(Diagrams)

Does not apply.

Gabbro and olivine gabbro

34.39-55.98

Pyroxenite (olivine websterite)

60.03

Gabbro and olivine gabbro

0.70 < (La/Yb)N < 0.94

0.66 < (La/Sm)N < 0.94

1.00 < (Gd/Yb)N < 1.17

0.85 < Eu/Eu* < 1.02

Pyroxenite (olivine websterite)

(La/Yb)N = 30.54

(La/Sm)N = 1.05

(Gd/Yb)N = 1.58

Eu/Eu* = 0.75

(Diagrams)

Slightly negative anomalies in: Nb, Ta, P;

Slightly positive anomalies in: La, Ce

(Diagrams)

Diagrams of Harker (MgO vs. major elements);

The MgO content is used in the diagrams of Harker as an index of magmatic differentiation. With the exception of C2O5, all major oxides display a negative correlation with MgO; such trends are consistent with evolution through a fractional crystallization process.

Dolent Formation (nAdln3)

(5 samples)

Mainly: pyroxenite (olivine websterite) and olivine gabbro

Some: peridotite (lherzolite)

(Diagrams)

(Diagrams)

Tholeiitic

(Diagrams)

Does not apply.

Pyroxenite (olivine websterite)

51.96-54.37

Olivine gabbro

38.01

Peridotite (lherzolite)

61.07-63. 90

Pyroxenite (olivine websterite)

0.91 < (La/Yb)N < 1.91

0.78 < (La/Sm)N < 1.07

1.18 < (Gd/Yb)N < 1.35

1.01 < Eu/Eu* < 1.12

Olivine gabbro

(La/Yb)N = 0.65

(La/Sm)N = 0.56

(Gd/Yb)N = 1.27

Eu/Eu* = 0.97

Peridotite (lherzolite)

1.22 < (La/Yb)N < 2.02

1.04 < (La/Sm)N < 1.75

1.11 < (Gd/Yb)N < 1.30

0.94 < Eu/Eu* < 1.25

(Diagrams)

Slightly negative anomalies in: Ta, P;

Slightly positive anomalies in: La, Ce

(Diagrams)

Diagrams of Harker (MgO vs. major elements);

Same comment as for the Digne Pluton above.

Dolent Formation (nAdln4)

(9 samples)

Mainly: peridotite (harzburgite) and komatiite;

Some: pyroxenite (websterite and olivine websterite), olivine gabbro

(Diagrams)

(Diagrams)

Tholeiitic

(Diagrams)

Does not apply

Peridotite (harzburgite) and komatiite

72.69-85.66

Pyroxenite (websterite and olivine websterite)

39.94-42.16

Olivine gabbro

39.98

Peridotite (harzburgite) and komatiite

0.20 < (La/Yb)N < 2.50

0.31 < (La/Sm)N < 2.29

0.67 < (Gd/Yb)N < 1.25

0.04 < Eu/Eu* < 0.94

Pyroxenite (websterite and olivine websterite)

0.56 < (La/Yb)N < 0.65

0.60 < (La/Sm)N < 0.61

1.06 < (Gd/Yb)N < 1.08

0.91 < Eu/Eu* < 0.96

Olivine gabbro

(La/Yb)N = 0.75

(La/Sm)N= 0.75

(Gd/Yb)N = 1.05

Eu/Eu* = 0.98

(Diagrams)

Negative anomalies in: Nb,Ta, P (weak), Eu (harzburgite and komatiite);

Slightly positive anomalies in: La, Ce

(Diagrams)

Diagrams of Harker (MgO vs. major elements);

Same comment as for the Digne Pluton above.

All harzburgites of unit nAdln4 are highly altered and serpentinized (LOI between 10.43 and 12.11%).

Sorbier Mafic-Ultramafic Suite (nAsrb)

(16 samples)

Mainly: peridotite (lherzolite), pyroxenite (olivine websterite);

Some: hornblendite, melanogabbro and leucogabbro

(Diagrams)

(Diagrams)

Mafic and ultramafic rocks: Tholeiitic

Leucogabbro: Calc-alkaline

(Diagrams)

Does not apply.

Peridotite (lherzolite)

67.26-76.28

Pyroxenite (olivine websterite)

53.77-74.57

Leucogabbro

51.98

Peridotite (lherzolite)

0.67 < (La/Yb)N < 1.16

0.89 < (La/Sm)N < 1.21

0.79 < (Gd/Yb)N < 1.19

0.59 < Eu/Eu* < 1.21

Pyroxenite (olivine websterite)

0.65 < (La/Yb)N < 6.46

0.72 < (La/Sm)N < 2.50

0.90 < (Gd/Yb)N < 1.97

0.70 < Eu/Eu* < 1.14

Leucogabbro

(La/Yb)N = 80.82

(La/Sm)N= 4.86

(Gd/Yb)N = 5.96

Eu/Eu* = 0.70

(Diagrams)

Mafic and ultramafic rocks

Negative anomalies in: Nb, Ta (strong), P (weak);

Strongly positive anomalies in: La, Ce

Leucogabbro

Negative anomalies in: Nb,Ta, P (strong), Ti (weak);

Positive anomalies in: La, Ce, Nd (strong), Hf, Gd (weak)

(Diagrams)

Diagrams of Harker (MgO vs. major elements);

Same comment as for the Digne Pluton above.

Mabille Complex (nAmbi4)

(2 samples)

Peridotite (lherzolite)

(Diagrams)

(Diagrams)

Tholeiitic

(Diagrams)

Does not apply. 62.95-71.34

0.77 < (La/Yb)N < 0.82

0.76 < (La/Sm)N < 0.77

0.98 < (Gd/Yb)N < 1.04

0.59 < Eu/Eu* < 1.29

(Diagrams)

Relatively flat profile;

Slightly negative anomaly in: P

(Diagrams)

Diagrams of Harker (MgO vs. major elements);

Same comment as for the Digne Pluton above.

Maingault Complex (nAmng2)

(5 samples)

Gabbro and olivine gabbro

(Diagrams)

(Diagrams)

Tholeiitic

(Diagrams)

Does not apply. 27.21-49.55

0.92 < (La/Yb)N < 4.91

0.90 < (La/Sm)N < 2.05

1.02 < (Gd/Yb)N < 1.99

0.82 < Eu/Eu* < 1.09

(Diagrams)

Slightly negative anomaly in: P;

Slightly positive anomalies in: Nb, Ta, La, Ce, Ti

(Diagrams)

Diagrams of Harker (MgO vs. major elements);

Same comment as for the Digne Pluton above.

Maingault Complex (nAmng3)

(3 samples)

Peridotite (lherzolite)

(Diagrams)

(Diagrams)

Tholeiitic

(Diagrams)

Does not apply. 69.32-70.72

0.68 < (La/Yb)N < 1.01

0.81 < (La/Sm)N < 1.28

0.73 < (Gd/Yb)N < 1.00

0.58 < Eu/Eu* < 1.32

(Diagrams)

Relatively flat profile;

Moderately negative anomalies in: Nb, Ta

(Diagrams)

Diagrams of Harker (MgO vs. major elements);

Same comment as for the Digne Pluton above.

Higher K2O contents in ultramafic rocks of the Maingault Complex can be explained by the presence of phlogopite in the mineralogical assemblage (potassic alteration).

 

References

Publications of the Government of Québec

BEAUCHAMP, A.-M., 2019. Géologie et potentiel minéral de la région du lac Cadieux, sous-provinces d’Opatica et d’Opinaca, Eeyou Istchee Baie-James, Canada, MERN; BG 2019-02, 2 plans.

 

Other Publications

BHATIA, M.R., CROOK, A.A.W., 1986. Trace element characteristics of graywakes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology; volume 92, pages 181-193. doi.org/10.1007/BF00375292

COX, K.G., BELL, J.D., PANKHURST, R.J., 1979. The Interpretation of Igneous Rocks. George Allen & Unwin; 450 pages.

DEBON, F., LEFORT, P., 1983. A chemical-mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh, Earth Sciences; volume 73, pages 135-149. doi.org/10.1017/S0263593300010117

DE LA ROCHE, H., LETERRIER, J., GRANDCLAUDE, P., MARCHAL, M., 1980. A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses – its relationships with current nomenclature. Chemical Geology; volume 29, pages 183-210, doi.org/10.1016/0009-2541(80)90020-0.

FROST, B.R., BARNES, C.G., COLLINS, W.J., ARCULUS, R.J., ELLIS, D.J., FROST, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology; volume 12, numéro 11, pages 2033-2048. doi.org/10.1093/petrology/42.11.2033.

HERRON, M.M., 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology; volume 58, pages 820-829. doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D

IRVINE, T.N., BARAGAR, W.R.A., 1971. A guide to the chemical classification of common volcanic rocks. Canadian Journal of Earth Sciences; volume 8, pages 523-546. doi.org/10.1139/e71-055

JENSEN, L.S., PYKE, D.R., 1982. Komatiites in the Ontario portion of the Abitibi belt. In Komatiites (Arndt, N.T. and Nesbitt, E.G., editors). Allen and Unwin, London; pages 147-157.

MANIAR, P.D., PICCOLI, P.M., 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin; volume 101, pages 635-643. doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

MCDONOUGH, W.F., SUN, S.S., 1995. The composition of the earth. Chemical Geology; volume 120, pages 223-253. doi.org/10.1016/0009-2541(94)00140-4

MCLENNAN, S.M., HEMMING, S.R., MCDANIEL, D.K., HANSON G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America; Special Paper; volume 284, pages 21–40. doi.org/10.1130/SPE284-p21

MESCHEDE, M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology 56; pages 207-218. doi.org/10.1016/0009-2541(86)90004-5

MIDDLEMOST, E. A. K.1985. Magmas and Magmatic Rocks. An Introduction to Igneous Petrology. Longman, London; 266 pages.

NESBITT, H.W., 2003. Petrogenesis of siliciclastic sediments and sedimentary rocks. In Lentz, D.R., ed., Geochemistry of Sediments and Sedimentary Rocks: Evolutionary Consideration to Mineral Deposit-Forming Environments. Geological Association of Canada; volume 4, pages 39-51.

PALME, H., O’NEILL, H.S.C., 2004. Cosmochemical estimates of mantle composition. In Treatise on Geochemistry. (Holland, H.D. and Turrekian, K.K. editors), Elsevier, Amsterdam, The Netherlands; volume 2, pages 1-38.

PEARCE, J.A., HARRIS, N. B. H., TINDLE, A. G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, volume 25, pages 956-983. doi.org/10.1093/petrology/25.4.956

PEARCE, J.A., 1996. A User’s guide to basalt discrimination diagrams. In Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration (Wyman, D.A., editor). Geological Association of Canada; Short Course Notes, volume 12, pages 79-113.

PEARCE, J.A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100, pages 14-48. doi.org/10.1016/j.lithos.2007.06.016

PEARCE, J.A., NORRY, M.J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology; volume 69, pages 33-47. doi.org/10.1007/BF00375192

PETTIJOHN, F.J., POTTER, P.E., SIEVER, R., 1972. Sand and Sandstones. Springer-Verlag, New York; 618 pages.

ROSS, P.S., BÉDARD, J.H., 2009. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Canadian Journal of Earth Science; volume 46, pages 823-839. doi.org/10.1139/E09-054

STRECKEISEN, A., 1976. To each plutonic rock its proper name. Earth-Science Reviews; volume 12, pages 1-33. doi.org/10.1016/0012-8252(76)90052-0

TRÉPANIER, S., 2011. Guide pratique d’utilisation de différentes méthodes de traitement de l’altération et du métasomatisme. CONSOREM, UQAC; projet 2008-07, 2019 pages.

WINCHESTER, J.A., FLOYD, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology; volume 20, pages 325-343. doi.org/10.1016/0009-2541(77)90057-2

 

 

 

 

 

 

 

 

 

1 mars 2021