Lithogeochemistry of Geological Units in the Normandin Area

The tables below summarize the lithogeochemical characteristics of geological units in the Normandin area. These units are described in the Geological Bulletin covering this territory and in the Quebec Stratigraphic Lexicon. The 134 analyses used here come from samples collected during the Ministère‘s mapping campaign in the summer of 2019. They were selected based on certain criteria, including a sum of major oxides between 98.5% and 101.5% and a loss on ignition (LOI) <3%. These analyses were conducted by the Actlabs laboratory in Ancaster, Ontario.

Analyses were subject to an internal and laboratory quality assurance and control process. Thus, to ensure the accuracy and precision of the values provided by the laboratory, the Bureau de la connaissance géoscientifique du Québec (BCGQ) regularly inserts blanks, standards and duplicates. Reference materials represent ~10% of the analyses.

The majority of samples in the database were analyzed for major oxides, trace elements and metals. Analyses were performed using different techniques depending on elements, such as inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-AES) and neutron activation (INAA). For more information on the analysis and dissolution techniques used, refer to the information available for each sample in SIGÉOM à la carte.

The ICPW standard modified to include biotite and hornblende was calculated according to the method of Hutchison (1974, 1975) in the GeoChemical Data Toolkit software (GCDkit, Janoušek et al., 2006) to produce discriminant diagrams for intrusive rocks. This software was used to produce the geochemical diagrams mentioned in the tables below.

The Lithomodeleur software version 3.60 (Trépanier, 2011) was used to produce the geochemical alteration diagram of Large et al. (2001) mentioned in the table below.

Rare earth elements are normalized according to the values of Palme and O’Neill (2004).

In general, felsic and intermediate rock samples with >10% ferromagnesian minerals (amphibole, pyroxene, biotite) were excluded from geochemical diagrams of stratigraphic units in the mapped area.

 

Felsic to Intermediate Intrusive Rocks

Stratigraphic Unit

Classification

Affinity

Rare Earths Setting

Mimosa Plutonic Suite (mPmim1)

11 samples

Monzonite, quartz monzonite (mangerite), quartz syenite, alkali feldspar granite

(Diagram)

Enriched in K (shoshonitic series type)

(Diagram)

11.12 < (La/Yb)N < 54.18

2.39 < (La/Sm)N < 5.59

15.59 < (Gd/Yb)N < 37.59

0.41 < Eu/Eu* < 1.53

(Diagram)

Mainly anorogenic

(Diagram)

Mailles Batholith (mPmas)

7 samples

Hypersthene monzonite (mangerite), hypersthene quartz monzodiorite (jotunite)

(Diagram)

Variable affinity ranging from calc-alkaline to shoshonitic series type for mangerites and calc-alkaline for jotunite

(Diagram)

11.73 < (La/Yb)N < 20.26

2.22 < (La/Sm)N < 3.51

2.64 < (Gd/Yb)N < 4.61

0.85 < Eu/Eu* < 1.85

(Diagram)

Mostly anorogenic

(Diagram)

Saint-Thomas-Didyme Suite (mPstd)

9 samples

Alkali feldspar granite, quartz syenite, hypersthene monzonite and hypersthene quartz monzonite (mangerites), quartz monzodiorite

(Diagram)

Mostly shoshonitic series type affinity;

Calc-alkaline for quartz diorite

(Diagram)

3.89 < (La/Yb)N < 45.12

2.63 < (La/Sm)N < 6.64

1.10 < (Gd/Yb)N < 3.12

0.46 < Eu/Eu* < 0.97

(Diagram)

Mostly anorogenic

(Diagram)

Saint-Méthode Plutonic Suite (mPstm)

8 samples

Granite (alkali feldspar granite), quartz syenite, hypersthene monzonite and hypersthene quartz monzonite (mangerites)

(Diagram)

Enriched in K (shoshonitic series type)

(Diagram)

3.84 < (La/Yb)N < 4758.70

2.46 < (La/Sm)N < 7.71

1 < (Gd/Yb)N < 3.75

0.34 < Eu/Eu* < 3.98

(Diagram)

Anorogenic

(Diagram)

Sainte-Hedwidge Intrusive Suite (mPshe)

mPshe1

6 samples

mPsh2

16 samples

Granite (alkali feldspar granite), quartz syenite, hypersthene monzonite and hypersthene quartz monzonite (mangerites)

(Diagram)

Calc-alkaline enriched in K to shoshonitic series type

(Diagram)

3.07 < (La/Yb)N < 47.58

2.05 < (La/Sm)N < 7.71

0.91 < (Gd/Yb)N < 3.75

0.34 < Eu/Eu* < 3.98

(Diagram)

Anorogenic

(Diagram)

Lachance Mangerite (mPlhc)

13 samples

Granite (alkali feldspar granite), quartz syenite, hypersthene monzonite and hypersthene quartz monzonite (mangerites)

(Diagram)

Enriched in K (shoshonitic series type)

(Diagram)

5.28 < (La/Yb)N < 51.01

2.25 < (La/Sm)N < 7.29

1.12 < (Gd/Yb)N < 4.80

0.43 < Eu/Eu* < 1.53

(Diagram)

Anorogenic

(Diagram)

Travers Suite (mPtra2)

3 samples

Granite (alkali feldspar granite) and hypersthene quartz monzonite (mangerite)

(Diagram)

Enriched in K (shoshonitic series type)

(Diagram)

 

6.03 < (La/Yb)N < 16.65

2.66 < (La/Sm)N < 4.64

1.45 < (Gd/Yb)N < 2.19

0.46 < Eu/Eu* < 1.15

(Diagram)

Anorogenic

(Diagram)

Léo Plutonic Suite (mPleo)

2 samples

Alkali feldspar granite and hypersthene granite (charnockite)

(Diagram)

Mostly enriched in K (shoshonitic series type)

(Diagram)

 

5.65 < (La/Yb)N < 14.77

2.05 < (La/Sm)N < 4.42

1.46 < (Gd/Yb)N < 1.77

0.66 < Eu/Eu* < 0.72

(Diagram)

Mostly anorogenic

(Diagram)

Allegrin Plutonic Suite (mPalg)

2 samples

Alkali feldspar granite

(Diagram)

Calc-alkaline enriched in K to shoshonitic series

(Diagram)

3.53 < (La/Yb)N < 4.66

1.89 < (La/Sm)N < 2.04

1.25 < (Gd/Yb)N < 1.57

0.63 < Eu/Eu* < 0.71

(Diagram)

Anorogenic

(Diagram)

Patrick Ouest Charnockite (mPick1)

8 samples

Alkali feldspar granite, hypersthene granite (charnockite) and hypersthene monzonite (mangerite) 

(Diagram)

Mostly enriched in K (shoshonitic series type)

(Diagram)

3.53 < (La/Yb)N < 7.39

1.59 < (La/Sm)N < 3.08

1.26 < (Gd/Yb)N < 1.82

0.61 < Eu/Eu* < 1.74

(Diagram)

Mostly anorogenic

(Diagram)

Bardeau Plutonic Suite (mPbad)

5 samples

Granite (alkali feldspar granite, charnockite), quartz diorite and mangerite

(Diagram)

Varying from calc-alkaline series to shoshonitic series

(Diagram)

3.76 < (La/Yb)N < 22.41

1.95 < (La/Sm)N < 5.61

1.40 < (Gd/Yb)N < 3.11

0.44 < Eu/Eu* < 1.20

(Diagram)

Anorogenic

(Diagram A)

and igneous type

(Diagram B)

Metasedimentary Rocks

   
Stratigraphic Unit Classification Protolith and Alteration    

Barrois Complex (mPboi4c)

26 samples

Biotite paragneiss, quartzite, calcosilicate and metasomatic rocks, marble

Sedimentary rocks derived from the upper crust (mostly tonalite and granodiorite); generally, metasedimentary rocks are slightly altered and metasomatic rocks display more significant alteration.

(Diagram)

   

Barrois Complex (mPboi4c)

Marbre

1 sample

Siliceous marble

(Diagram)

Does not apply.    
         

Saint-Onge Supracrustal Sequence (mPong)

5 samples

Biotite paragneiss, calcosilicate rocks, marble

 

Sedimentary rocks derived from the upper crust (tonalite) little altered

(Diagram)

   

Saint-Onge Supracrustal Sequence (mPong3b, mPong2)

3 samples

Calcitic, dolomitic and siliceous marble

(Diagram)

Does not apply.    

Metavolcanic Rocks

Stratigraphic Unit

Classification

Protolith andt Alteration

Barrois Complex (mPboi4c)

Amphibolite and metasomatic rocks (metavolcanic rocks)

6 samples

Mostly basalt (andesite, trachy-andesite)

(Diagram)

Amphibolite apparently unaltered. Potassic alteration for one metasomatic rock sample.

(Diagram)

Mafic Intrusive Rocks

Stratigraphic Unit

Classification

Affinity

Mg#

Rare Earths

Comments

Claire Gabbronorite (mPclr)

8 samples

Gabronorite, Fe-Ti oxides ± P ± V gabbronorite and ultramafic rocks

 

Calc-alkaline to tholeiitic

(Diagram)

23.63-75.81

3.02 < (La/Yb)N < 42.45

1.47< (La/Sm)N < 2.45

1.12 < (Gd/Yb)N < 10.15

0.38 < Eu/Eu* < 1.08

(Diagram)

Samples analyzed are mostly medium to coarse grained and their chemistry does not truly represent the overall composition of the protolith. They are also more or less enriched in sulphides.

 

Pegmatite Dykes Mineralized in Rare Earth Elements

Lithological Unit

Classification

Affinity

Rare Earths

Comments

Pegmatite Dyke

Samples

19-FS-7009-C1

19-FS-7010-B1

19-FS-7016-C1

 

Granite and alkali feldspar granite

(Diagram)

 

Shoshonitic-type calc-alkaline enriched in K

(Diagram A);

Peraluminous and type I granitoids

(Diagrams B)

8.92 < (La/Yb)N < 562

3.47 < (La/Sm)N < 10.85

1.64 < (Gd/Yb)N < 17.48

0.09 < Eu/Eu* < 0.16

(Diagram)

Samples analyzed are coarse grained to pegmatitic and do not reflect the total chemical composition of the rock.

 

References

Publications of the Government of Québec

GERVAIS, R. 1993. RAPPORT GEOLOGIQUE DE LA REGION DU LAC AUX GRANDES POINTES. MRN. MB 93-14, 123 pages.

MOUKHSIL, A., EL BOURKI, M. 2019. Géologie de la région de Normandin, Province de Grenville, région du Saguenay–Lac-Saint-Jean, Québec, Canada. MERN. BG 2020-01, 1 plan.

TREPANIER, S. 2011. GUIDE PRATIQUE D’UTILISATION DE DIFFERENTES METHODES DE TRAITEMENT DE L’ALTERATION DU METASOMATISME. CONSOREM. MB 2011-13, 216 pages.

 

Other Publications

 

DEBON, F., LEFORT, P., 1983. A chemical-mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh, Earth Sciences; volume 73, pages 135-149. doi.org/10.1017/S0263593300010117

DE LA ROCHE, H., LETERRIER, J., GRANDCLAUDE, P., MARCHAL, M., 1980. A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses – its relationships with current nomenclature. Chemical Geology; volume 29, pages 183-210. doi.org/10.1016/0009-2541(80)90020-0

 

HUTCHISON, C.S., 1974. Laboratory Handbook of Petrographic Techniques. John Wiley & Sons, New York, pages 1-527. doi.org/10.1017/S001675680004574X

HUTCHISON, C.S., 1975. The norm, its variations, their calculation and relationships. Schweiz Mineral Petrogr Mitt; volume 55, pages 243-256. Source

IRVINE, T.N., BARAGAR, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences; volume 8, pages 523-548. doi.org/10.1139/e71-055

JANOUŠEK, V., FARROW, C.M., ERBAN, V., 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology; volume 47, pages 1255-1259. doi.org/10.1093/petrology/egl013

LARGE, R.R., GEMMELL, J.B., PAULICK, H., HUSTON, D.L., 2001. The Alteration Box Plot: A Simple Approach to Understanding the Relationship between Alteration Mineralogy and Lithogeochemistry Associated with Volcanic-Hosted Massive Sulfide Deposits. Economic Geology; volume 96, pages 957-971. doi.org/10.2113/gsecongeo.96.5.957

MCDONOUGH, W.F. SUN, S.S., 1995. The composition of the Earth. Chemical Geology; volume 120, pages 223-253. doi.org/10.1016/0009-2541(94)00140-4

MIDDLEMOST, E.A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews; volume 37, pages 215-244. doi.org/10.1016/0012-8252(94)90029-9

NESBITT, H.W., 2003. Petrogenesis of siliciclastic sediments and sedimentary rocks. In Geochemistry of Sediments and Sedimentary Rocks: Evolutionary Consideration to Mineral Deposit-Forming Environments (Lentz, D.R., editor), Geological Association of Canada; volume 4, pages 3951.

PALME, H., O’NEILL, H.S.C., 2004. Cosmochemical estimates of mantle composition. In Treatise on Geochemistry (Holland, H.D. and Turrekian, K.K., editors), Elsevier, Amsterdam, The Netherlands; volume 2, pages 1-38. doi.org/10.1016/B978-0-08-095975-7.00201-1

PECCERILLO, A., TAYLOR, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology; volume 58, pages 63-81. doi.org/10.1007/BF00384745

SHAND, S.J., 1943. The eruptive rocks: 2nd edition, John Wiley, New York, 444 pages.

STOREY, C.C., VOS, M.A., 1981. Industrial Minerals of the Pembroke-Renfrew Area; Part I: Marble. Ontario Geological Survey; Mineral Deposits; Circular 21, 158 pages. Source

WHALEN, J.B., CURRIE, K.L., CHAPPELL, B.W., 1987. A-Type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology; volume 95, pages 407-419. doi.org/10.1007/BF00402202

WINCHESTER, J.A., FLOYD, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology; volume 20, pages 325-343. doi.org/10.1016/0009-2541(77)90057-2

 

 

 

13 janvier 2021