De Geer Moraine
Map Symbol: MG
First publication: 21 January 2021
Last modification: 


The De Geer moraines owe their name (Hoppe, 1959) to Baron Gerald Jacob De Geer (1858-1943), a pioneering geologist who was the first to observe these sedimentary structures in Sweden (De Geer, 1889). His work in geomorphology and geochronology had a major impact on the creation of the modern discipline of glacial geology. He is particularly recognized for identifying the importance of varves as a variable in establishing the relative chronology of past climates and environmental changes.


De Geer moraines appear as a series of thin, elongated, parallel ridges that may be symmetrical or asymmetrical in profile (Beaudry and Prichonnet, 1991). Ridges are regularly spaced: the distance between two ridges varies from 25 m to 400 m depending on the region (Norman, 1938; Shaw, 1944; Elson, 1968; Hardy, 1976; Bouchard, 1980; El Amrani, 2017; Lamarche and Dubé-Loubert. 2017; Lamarche et al., 2018). It is possible to observe moraines of this type with an arched morphology towards the downstream glacier (Norman, 1938). A few metres in height, they can be several kilometres in length in the most spectacular cases, although their width is limited to a few dozen metres. The regularity of these moraines makes them an easily identifiable landform which, seen from the air, takes on the appearance of a washboard, which is why they are called washboard moraines (Mawdsley, 1936).

The lithofacies of De Geer moraines is either glacial (till, diamicton) or fluvioglacial (stratified sandy deposits) in nature, or a combination of both (Virkkala, 1963; Beaudry and Prichonnet, 1991; Benn and Evans, 2010). Their nature is typically related to that of their immediate environment. These moraines are generally observed in association with glaciolacustrine or glaciomarine sediments (deep water, littoral, subaqueous outwash sediments). These moraines are generally covered, in whole or in part, by deep-water sediments. Hardy (1976) notes that De Geer moraines preferentially develop by stretching across drumlins, drumlinoids or other streamlined forms.



De Geer moraines are generally considered ridges that reflect a saccadic, annual retreat of a stable ice margin in contact with a water body. The formation of each ridge is thought to be the result of sediment accumulation in association with minor stagnation or recession in winter (Andrews and Smithson, 1966; Barnett and Holdsworth, 1984; Larsen et al., 1991; Blake, 2000; Benn and Evans, 2010). However, other mechanisms could be at the origin of these structures, such as filling of basal crevasses (Hoppe, 1957; Strömberg, 1965; Mickelson and Berkson, 1974; Ziliacus, 1989; Beaudry and Prichonnet, 1991; 1995), calving of icebergs (Holdsworth, 1973; Bennett and Glasser, 2009) or related to areas of high seismicity (Lundqvist, 2000).

The annual character of these structures has been questioned and defended several times in the literature. At first, De Geer (1889) believed that the origin of these moraines was annual. This interpretation was challenged in the second half of the 20th century by invoking alternative modes of formation as illustrated above. Lindén and Möller (2005) argued that although the mode of formation is indeed associated with periods of stagnation in the retreat of an ice margin, these need not be annual. Most publications support the concept of annual cycles for the formation of De Geer moraines (De Geer, 1940; Ignatius, 1958; Prichonnet et al., 1984; Boulton, 1986; Larsen et al., 1991; Bouvier et al., 2015). For these moraines to be preserved, temperature oscillations associated with annual cycles must produce periods of winter stagnation followed by marked summer retreat, otherwise the moraine that formed in the previous winter could vanish. The geomorphic resultant therefore does not unambiguously represent annually formed features, although locally it is possible that ridge series can be used to measure rates of retreat.


Spatial Distribution

In Quebec, De Geer moraines have developed in various glaciolacustrine and glaciomarine basins. The most prominent examples are located in the La Grande River area (Eade et al., 1960; Vincent, 1985a; 1985b; 1985c) and between Kuujjuarapik and Puvirnituq (Allard and Seguin, 1985; Lajeunesse, 2008), although it is possible to observe them in the rest of the Ojibway Lake (Mawdsley, 1936; Norman, 1938, Wilson, 1941; Shaw, 1944, Ignatius, 1956; Hardy, 1976; Prichonnet et al., 1984; Beaudry and Prichonnet, 1991; El Amrani, 2017) and Tyrrell Sea (east of James Bay and Hudson Bay) basin. These moraines have been a primary tool for identifying the maximum extent of glaciolacustrine or glaciomarine water bodies (Norman, 1939; Shaw, 1944; Bouchard, 1980).

Moraines of this type have been observed in all northern countries that were glaciated during the Quaternary (Finland, Sweden, Norway, USA, Scotland and Canada).



Washboard moraines, annual moraines, submarine moraines, DeGeer moraines, push-moraines, minor moraines, cross-valley moraines, transverse eskers, till ridges.



Publications Available Through SIGÉOM Examine

EL AMRANI, M. 2018. Géologie des dépôts de surface et de glacioprospection dans la région de Chibougamau. MERN. RG 2017-02, 29 pages and 2 plans.

LAMARCHE, O., DUBE-LOUBERT, H. 2018. Géologie des dépôts de surface de la région du lac Evans, Eeyou Istchee Baie-James. MERN. RP 2017-02, 28 pages and 2 plans.

LAMARCHE, O., DAUBOIS, V., DUBÉ-LOUBERT, H. 2018. Géologie des dépôts de surface de la région de Nemaska (SNRC 32N03 portion nord, 32N06, 32N07 et 32N portion nord), Eeyou Istchee Baie-James. MERN. RP 2018-05, 30 pages and 2 plans.


Other Publications

ALLARD, M., SEGUIN, M.K., 1985. La déglaciation d’une partie du versant hudsonien québécois : bassins des rivières Nastapoca, Sheldrake et à l’Eau Claire. Géographie physique et Quaternaire; volume 39, pages 13-24.

ANDREWS, J.T., SMITHSON, B.B., 1966. Till Fabrics of the Cross-Valley Moraines of North-Central Baffin Island, Northwest Territories, Canada. GSA Bulletin; volume 77, pages 271-290.[271:TFOTCM]2.0.CO;2

BARNETT, D.M., HOLDSWORTH, G., 1974. Origin, morphology, and chronology of sublacustrine moraines, Generator Lake Baffin Island, Northwest Territories, Canada. Canadian Journal of Earth Sciences; volume 11, pages 380-408.

BEAUDRY, L.M., PRICHONNET, G., 1991. Late Glacial De Geer moraines with glaciofluvial sediment in the Chapais area, Québec (Canada). Boreas; volume 20, pages 377-394.

BEAUDRY, L.M., PRICHONNET, G., 1995. Formation of De Geer moraines deposited subglacially, central Québec. Géographie physique et Quaternaire; volume 49, pages 337-361.

BENN, D.I., EVANS, D.J.A., 2010. Glaciers and glaciations, second edition. Routledge, Taylor & Francis Group, London and New York, 802 pages.

BENNETT, M.M., GLASSER, N.F., 2009. Glacial geology: ice sheets and landforms. John Wiley & Sons, 400 pages.

BLAKE, K.P., 2000. Common origin for De Geer moraines of variable composition in Raudvassdalen, northern Norway. Journal of Quaternary Science; volume 15, pages 633-644.<633::AID-JQS543>3.0.CO;2-F

BOUCHARD, M.A., 1980. Late Quaternary geology of the Temiscamie area, central Quebec. McGill University; Doctoral thesis, 284 pages. Source

BOULTON, G.S., 1986. Push-moraines and glacier-contact fans in marine and terrestrial environments. Sedimentology; volume 33, pages 677-698.

BOUVIER, V., JOHNSON, M.D.. PÅSSE, T., 2015. Distribution, genesis and annual-origin of De Geer moraines in Sweden: insights revealed by LiDAR. Geologiska Föreningens i Stockholm Förhandlingar; volume 137, pages 319-333.

DE GEER, G., 1940. Geochronologica suecica principles. Kungliga Svenska Vetenskapsakademiens Handlingar; volume 18, 367 pages.

DE GEER, G.F., 1889. Ändmoräner I trakten mellan Spånga och Sundbyberg. Geologiska Föreningens i Stockholm Förhandlingar; volume 11, pages 395-397.

EADE, K.E., HEYWOOD, W.W., LEE, H.A., 1960. Surficial geology, Sakami Lake, Fort George – Great Whale area, New Quebec. Geological Survey of Canada; Map 52-1959, 1 plan.

ELSON J.A., 1968. Glacial lake Agassiz. In Fairbridge, R.W. (Ed), Encyclopedia of Geomorphology; Springer, Berlin.

HARDY, L., 1976. Contribution à l’étude géomorphologique de la portion Québécoise des Basses-terres de la Baie-James. Université McGill; Doctoral thesis, 264 pages. Source 

HOLDSWORTH, G., 1973. Ice calving into the proglacial Generator Lake, Baffin Island, N.W.T., Canada. Journal of Glaciology; volume 12, pages 235-250.

HOPPE, G., 1957. Problems of glacial morphology and the Ice Age. Geografiska Annaler; volume 39, pages 1-18.

HOPPE, G., 1959. Glacial morphology and inland ice recession in Northern Sweden, Geografiska Annaler; volume 41, pages 193-212. Source

IGNATIUS, H.G., 1956. Late-Wisconsin Stratigraphy in North-Central Quebec and Ontario, Canada. Yale University; Doctoral thesis, 76 pages.

IGNATIUS, H.G., 1958. On the Late-Wisconsin deglaciation in Eastern Canada. Part I. Glacial geological observations from North-Central Quebec. Acta geographica; volume 16, pages 2-34.

LAJEUNESSE, P., 2008. Early Holocene deglaciation of the eastern coast of Hudson Bay. Geomorphology; volume 99, pages 341-352.

LARSEN, E., LONGVA, O., FOLLESTAD, B.A., 1991. Formation of De Geer moraines and implications for deglaciation dynamics. Journal of Quaternary Science; volume 6, pages 263-277.

LINDÉN, M., MÖLLER, P., 2005. Marginal formation of De Geer moraines and their implications to the dynamics of grounding-line recession. Journal of Quaternary Science; volume 20, pages 113-133.

LUNDQVIST, J., 2000. Palaeoseismicity and De Geer moraines. Quaternary International; volumes 68-71, pages 175-186.

MAWDSLEY, J.B., 1936. The washboard moraines of the Opawica-Chibougamau area, Quebec. Transactions of the Royal Society of Canada; volume 30, pages 9-12.

MICKELSON, D., BERKSON, J., 1974. Till Ridges Presently Forming above and below Sea Level in Wachusett Inlet, Glacier Bay, Alaska. Geografiska Annaler: Series A, Physical Geography; volume 56, pages 111-119.

NORMAN, G.W.H., 1938. The last Pleistocene ice-front in Chibougamau district, Quebec. Transactions of the Royal Society of Canada; volume 32, pages 69-86.

NORMAN, G.W.H., 1939. The south-eastern limit of glacial Lake Barlow-Ojibway in the Mistassini lake region, Quebec. Transactions of the Royal Society of Canada; volume 33, pages 59-65.

PRICHONNET, G., MARTINEAU, G., BISSON, L., 1984. Les dépôts quaternaires de la région de Chibougamau, Québec. Géographie physique et Quaternaire; volume 38, pages 287-304.

SHAW, G., 1944. Moraines of late Pleistocene ice fronts near James Bay, Quebec. Transactions of the Royal Society of Canada; volume 38, pages 79-85.

STRÖMBERG, B., 1965. Mappings and Geochronological Investigations in Some Moraine Areas of South-Central Sweden. Geografiska Annaler: Series A, Physical Geography; volume 47, pages 73-82.

VINCENT, J.-S., 1985a. Géologie des formations en surface, Chisasibi, Québec. Geological Survey of Canada; Map 1592A.

VINCENT, J.-S., 1985b. Géologie des formations en surface, Radisson, Québec. Geological Survey of Canada; Map 1591A.

VINCENT, J.-S., 1985c. Géologie des formations en surface, Réservoir La Grande 2, Québec. Geological Survey of Canada; Map 1590A.

VIRKKALA, K., 1963. On ice-marginal features in southwestern Finland. Valtioneuvoston kirjapaino; No.210, 76 pages. Source

WILSON, J.T., 1938. Glacial geology of part of north-western Quebec. Transactions of the Royal Society of Canada; volume 32, pages 49-59.

ZILLIACUS, H., 1989. Genesis of De Geer moraines in Finland. Sedimentary Geology; volume 62, pages 309-317.



First publication

Olivier Lamarche, P. Geo., M.Sc. (redaction)

Hugo Dubé-Loubert, P. Geo., Ph.D. (critical review); François Leclerc, P. Geo., Ph.D. (template and content compliance); Johanne Jobidon (vectorization of figures); Céline Dupuis, P. Geo., Ph.D. (English version); Simon Auclair, P. Geo, M.Sc (editing); André Tremblay (HTML editing).

30 mars 2021