

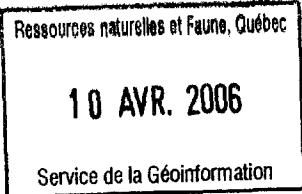
# GM 62096

KIMBERLITE INDICATOR MINERAL CONCENTRATION, SELECTION AND ANALYSIS AND DIAMOND EXTRACTION  
SELECTION AND DESCRIPTION

## Documents complémentaires

*Additional Files*




***Licence***

***License***

Cette première page a été ajoutée  
au document et ne fait pas partie du  
rapport tel que soumis par les auteurs.

**Énergie et Ressources  
naturelles**

**Québec**



## SGS Minerals Services

*An Investigation into*

### KIMBERLITE INDICATOR MINERAL CONCENTRATION, SELECTION AND ANALYSIS AND DIAMOND EXTRACTION SELECTION AND DESCRIPTION

prepared for

**Robert Coté**

8901-486 LIMS#MIMI1001-OCT05, MI1001-NOV05 and MI0008-NOV05

REÇU AU MRN

16 FEV. 2006

CENTRE DE SERVICES DES MINES

**NOTE:**

This report refers to the samples as received.

The practice of this Company in issuing reports of this nature is to require the recipient not to publish the report or any part thereof without the written consent of SGS Minerals Services.

SGS Minerals Services

P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0  
Tel: (705) 652-2000 Fax: (705) 652-6365 [www.sgslakefield.com](http://www.sgslakefield.com) [www.sgs.com](http://www.sgs.com)

Member of SGS SA Group

December 20, 2005

# 589905

## Summary

One sample, identified as Coté-1 was submitted for till sample processing and kimberlite indicator mineral selection. Following indicator mineral selection, the samples were submitted for diamond extraction, selection and description by caustic dissolution. All recovered indicator minerals were submitted for analysis by electron microprobe.

## Method

The sample was wet screened at 20 and 60 mesh. The -60 mesh material was dried and stored. The working fraction, -20+60 mesh, of sample Coté-1 was submitted for heavy liquid separation (Methylene iodide @ 3.1 g/cc). The float fraction was dried, weighed and stored. The sink fraction was submitted for by dry screening (35 mesh) and magnetic separation (hand-magnet and Frantz electromagnetic separator).

The mineral concentrates were observed with a binocular microscope for the selection of diamond indicator mineral species. A generalised flowsheet for this procedure is given in Appendix A.

Following kimberlite indicator mineral selection, the mineral concentrate was recombined with the HLS float material and -60 mesh material and submitted for caustic dissolution. The caustic dissolution residue was collected on a 150 mesh (105  $\mu\text{m}$ ) screen, then submitted for Frantz magnetic separation to isolate the microdiamonds in the non-paramagnetic fraction. A detailed description of the microdiamond extraction process, as well as a generalized processing flow sheet, may be found in Appendix B.

As part of our on-going commitment to providing a high quality service and to monitor the recovery efficiency of sample material in each kiln pot, we put spikes in each sample and recovered these spikes at the end of the process during microdiamond selection. The recovery of coarse, 35 mesh spikes in this group of samples was 100% and the recovery of relatively fine, 80 mesh spikes was also 100%.

16 FEB 2006

SGS MINERALS SERVICES

## Results

The results of kimberlite indicator mineral selection are given in Appendix C. Electron microprobe analysis data is presented in Appendix D. All diamond selection results are reported as a Certificate of Analysis in Appendix E.

A review of the selection results shows 25 olivine grains from the -20+35 mesh fraction and one clinopyroxene grain from the -35+60 mesh fraction of Coté-1 were recovered. No diamonds were observed in this sample.

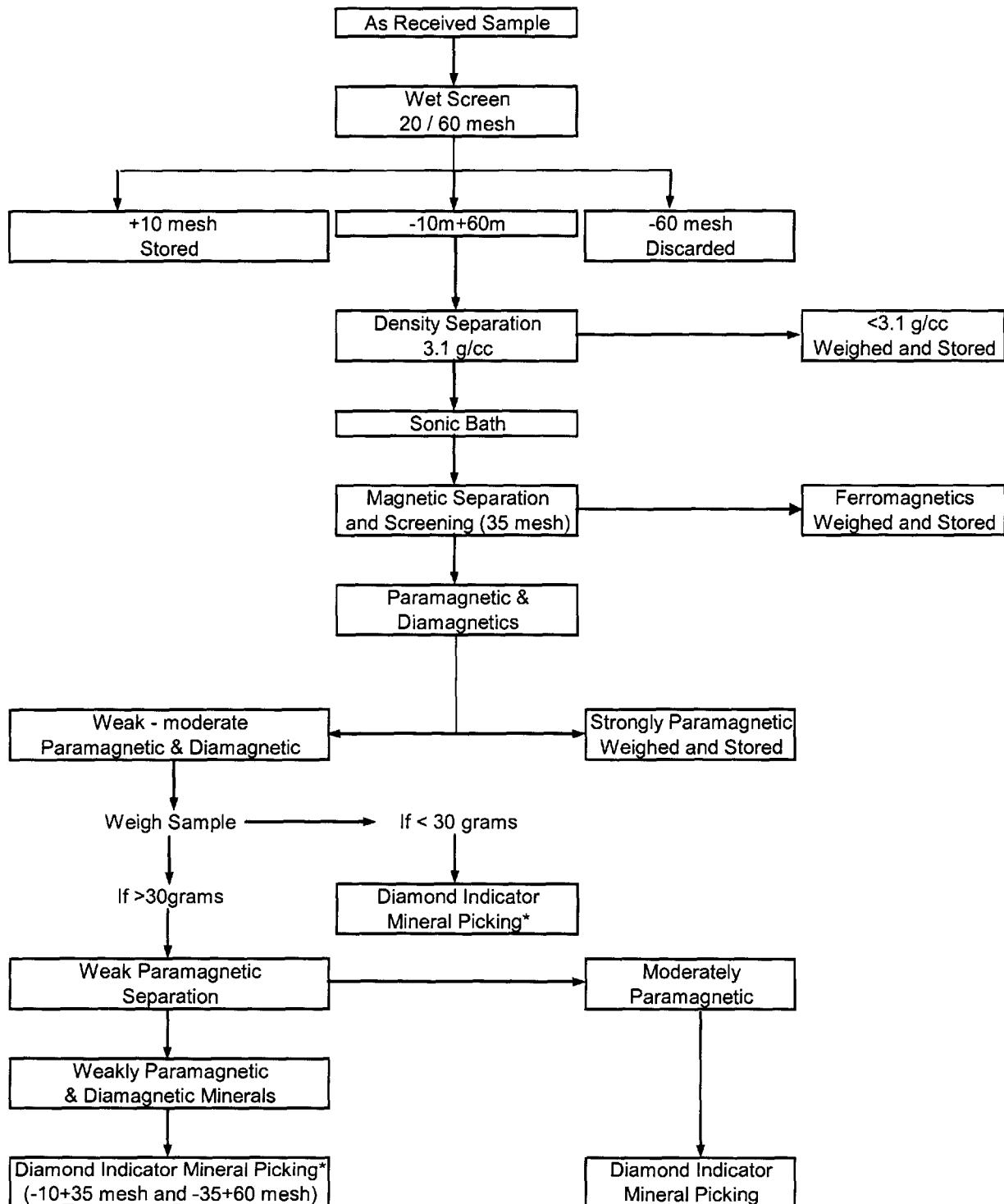
**SGS Minerals Services**  
December 20, 2005

Kim Gibbs  
Kim Gibbs, H.B.Sc., P.Geo.  
Mineralogist

Hugh DeSouza  
Hugh DeSouza, Ph.D., P.Geo.  
Group Leader - Diamond Exploration Services

### Technical Support:

**Sample Processing:** Rick Wittekoek, Cindy Matthews, Rob Gill, Scott Young, Wade Pogue


**Mineral Selection:** Teresa Mailith, Andrei Filippov, Tracy Gill and Elena Valeyeva

**Electron Microprobe Analysis:** Oleg Valeyev

## APPENDIX A

### **KIMBERLITE INDICATOR MINERAL EXTRACTION FLOWSHEET**

## Kimberlite Indicator Mineral Extraction Flowsheet From Rock



\*Primary diamond indicator mineral fractions

## APPENDIX B

### **EXPLANATION OF MICRODIAMOND EXTRACTION AND SELECTION PROCEDURE AND FLOWSHEET**

## DIAMOND EXTRACTION BY CAUSTIC DISSOLUTION

### Introduction

Caustic dissolution of exploration samples efficiently produces a concentrate from which diamonds can readily be extracted during microscopic examination. The process takes advantage of diamond's property of high resistance to caustic soda (NaOH), eliminating diamond size reduction and loss that often occurs during extraction procedures that rely on crushing and attrition milling.

### Procedure

The samples are processed according to the attached flowsheet. Very few minerals survive the harsh chemical attack, therefore weight reductions commonly exceed 99% of the initial sample weight.

As-received samples are divided into equally sized charges of less than 8 kg. Smaller charge sizes are necessary if the sample contains a high proportion of carbonate minerals, which are vigorously reactive with NaOH (the carbonate content is evaluated by an acid test prior to charge preparation). If a high proportion of the sample is composed of fragments larger than 8 cm, simple breakage, crushing or attrition milling may be required for an effective dissolution, or the length of the dissolution process may be increased. Client consultation and approval is necessary before any size reduction of the sample is initiated.

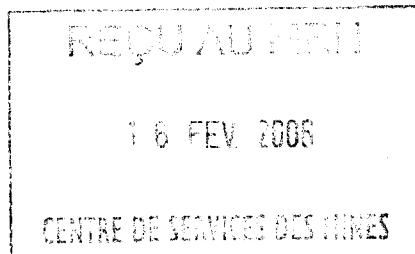
After digestion in molten caustic soda, the sample is poured onto a large-diameter 150 mesh (100  $\mu\text{m}$ ) screen. The + 150 mesh residue is liberated from the NaOH by washing the sample in a series of water and acid leach (HCl) baths. Once all of the NaOH is dissolved and removed, the concentrate is dried and screened on a 6 mesh screen to remove undigested material. The undigested material is examined microscopically by a mineralogist. If a significant amount of +6 mesh remains, or if the material consists of possible diamondiferous rock fragments, further digestion may be required. If the undigested material is of insignificant size or not considered as a possible source of diamonds, the -6 mesh residue is further processed by a two (possibly three if the residue is large) stage magnetic separation procedure utilising a permanent magnet and a Frantz Barrier Magnetic Separator.

The magnetically characterised residue is then submitted for microscopic examination and diamond selection. In addition to diamonds, the residue may contain partially undigested indicator minerals, colourless to opaque spinel, garnet, ilmenite, graphite, moissanite, zircon and kyanite. Each of the magnetic fractions is examined at a magnification of 40x using a binocular microscope. Grains of questionable mineralogy are examined using a scanning electron microscope equipped with an energy dispersive spectral (SEM-EDS) analyser. Although each magnetically characterised fraction is examined, particular emphasis is given to the diamagnetic portion.

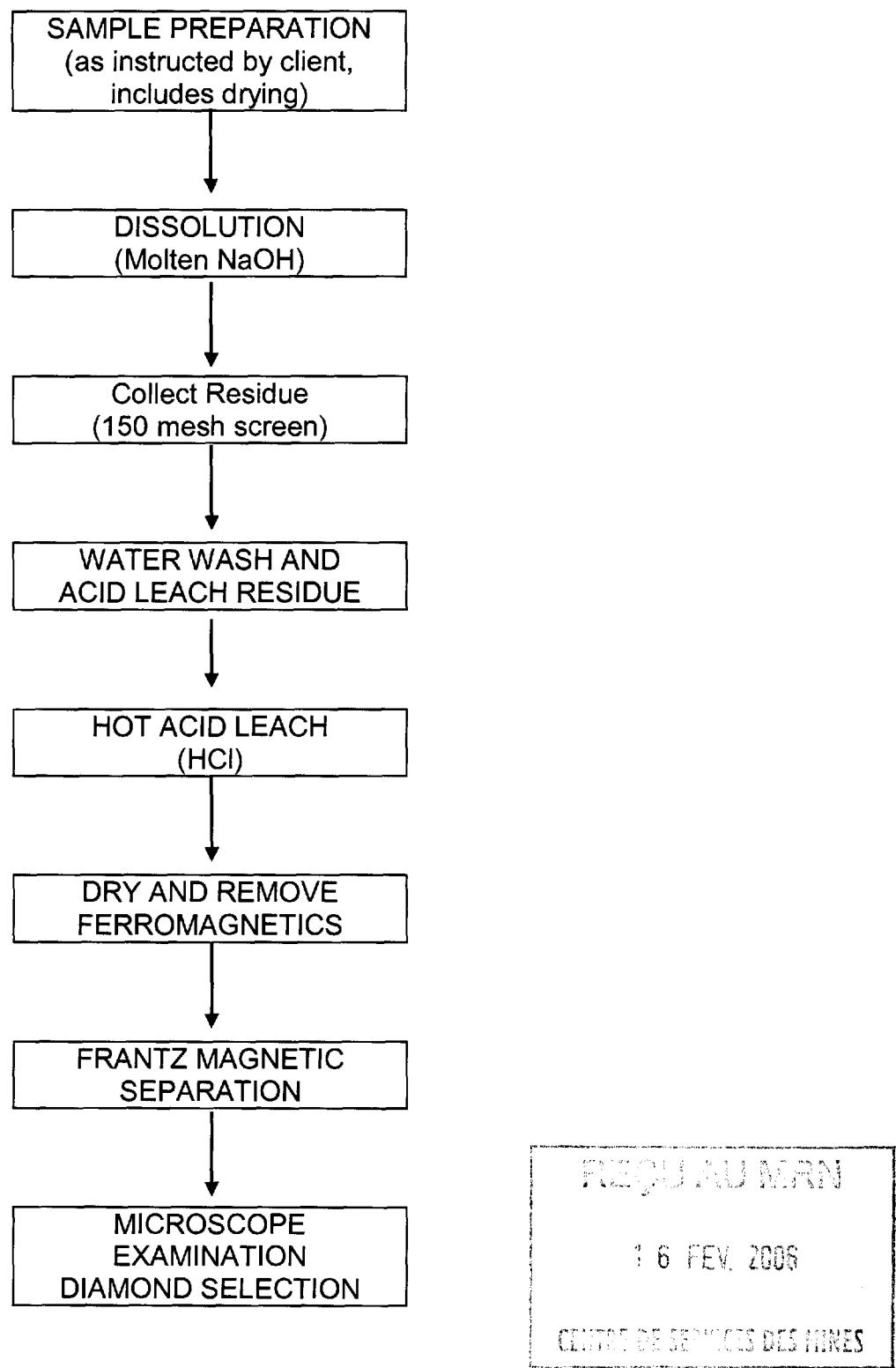
The X, Y and Z dimensions of selected microdiamonds are measured in millimetres. Macrodiamonds are weighed individually while microdiamonds are weighed in groups of 20 or 30, with the milligram weight, in each case, converted to carats. The colour, clarity and morphology of each diamond are determined and all observations reported in a Certificate of Analysis. Synthetic diamonds released into a sample by diamond drill bits are selected and reported as "syndites" on the diamond description sheet.

## Quality Control

Routine quality control tests are utilized to evaluate the efficiency of the caustic dissolution processing technique, by spiking client samples with two sizes (35 mesh and 80 mesh) of synthetic diamonds (easily identifiable, colour treated diamond fragments. Recovery of the diamond spikes typically ranges from 97 to 100%, and for 2004 was 91.3%. Further, 2002 statistics showed that an average of 1.18 indicator mineral grains (73% of which were oxides, 27% silicates) were carried over into the caustic soda blanks run between different client's samples.

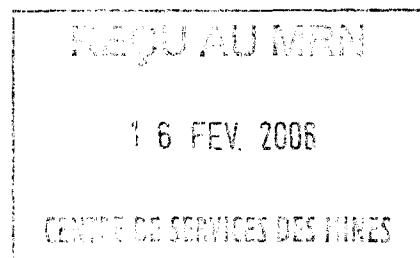

Each caustic dissolution residue is picked twice by separate diamond pickers. Questionable grains are examined by SEM-EDS for verification.

Every effort is made at each stage of sample handling during caustic dissolution, residue preparation and diamond picking to eliminate the possibility of contamination. These steps include:


- A rigorous sample tracking procedure.
- Dedicated screens and equipment for each sample during sample processing.
- Replacement of screens between each sample after pouring caustic soda.
- Thorough washing and scrubbing of all sample containers.
- Thorough cleaning of equipment used to prepare caustic residues between each processed sample.
- Sandblasting of each kiln pot between clients projects to ensure the removal of any microdiamonds or indicator minerals.

Customized flowsheets for sample processing utilising caustic dissolution and other sample preparation techniques (magnetic, gravity, flotation, acid leaching, etc.) can be developed, in consultation with the client, to meet specialised requirements.

SGS Lakefield Research Limited is not responsible for the determination of the origin, quality or valuation of any diamonds recovered unless otherwise instructed by the client.




## Caustic Dissolution for Microdiamond Recovery



## APPENDIX C

### RESULTS OF KIMBERLITE INDICATOR MINERAL SELECTION





**SGS Minerals Services**  
 P.O. Box 4300, 185 Concession Street,  
 Lakefield, Ontario K0L 2H0  
 Phone: 705-652-2112 Fax: 705-652-3123

## CERTIFICATE OF ANALYSIS

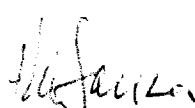
Project: 8901-486

Client: Robert Côté

Date: October 27, 2005

LIMS No: MI1001-OCT05

| Size Fraction |           |                 | KIMBERLITE INDICATOR MINERALS |         |        |         |        |         |        |         |        |         | INITIALS |         |        |         |      |
|---------------|-----------|-----------------|-------------------------------|---------|--------|---------|--------|---------|--------|---------|--------|---------|----------|---------|--------|---------|------|
| -20 +35 mesh  |           |                 | PRP                           |         | ECL    |         | CPX    |         | ILM    |         | CHR    |         | OPX      |         | OLI    |         |      |
| No.           | Sample ID | Sink Weight (g) | Pick 1                        | QC Pick | Pick 1 | QC Pick | Pick 1 | QC Pick | Pick 1 | QC Pick | Pick 1 | QC Pick | Pick 1   | QC Pick | Pick 1 | QC Pick |      |
| 1             | Cote-1    | 4.32            | 0                             | -       | 0      | -       | 0      | -       | 0      | -       | 0      | -       | 0        | -       | 25+    | -       | AF - |
| 2             | Cote-1 QC | 0.01            | 0                             | -       | 0      | -       | 0      | -       | 0      | -       | 0      | -       | 0        | -       | 0      | -       | AF - |


| Size Fraction |           |                 | KIMBERLITE INDICATOR MINERALS |         |        |         |        |         |        |         |        |         | INITIALS |         |        |         |      |
|---------------|-----------|-----------------|-------------------------------|---------|--------|---------|--------|---------|--------|---------|--------|---------|----------|---------|--------|---------|------|
| -35 +60 mesh  |           |                 | PRP                           |         | ECL    |         | CPX    |         | ILM    |         | CHR    |         | OPX      |         | OLI    |         |      |
| No.           | Sample ID | Sink Weight (g) | Pick 1                        | QC Pick | Pick 1 | QC Pick | Pick 1 | QC Pick | Pick 1 | QC Pick | Pick 1 | QC Pick | Pick 1   | QC Pick | Pick 1 | QC Pick |      |
| 1             | Cote-1    | 11.16           | 0                             | -       | 0      | -       | 1      | -       | 0      | -       | 0      | -       | 0        | -       | -      | -       | AF - |
| 2             | Cote-1 QC | 0.13            | 0                             | -       | 0      | -       | 0      | -       | 0      | -       | 0      | -       | 0        | -       | 0      | -       | AF - |

Note: The selected grains must be chemically analysed to classify the minerals as diamond indicators.

### MINERALS

PRP PYROPE GARNET  
 ECL ECLOGITIC GARNET  
 CPX CLINOPYROXENE  
 ILM ILMENITE

CHR CHROMITE  
 OPX ORTHOPYROXENE  
 OLI OLIVINE

  
 Hugh DeSouza, Ph.D, P.Geo.  
 Group Leader - Diamond Exploration Services

**APPENDIX D**  
**ELECTRON MICROPROBE**  
**ANALYSES**

REÇU AU MRAI

16 FEV 2006

CENTRE DE SERVICES DES MINES

## Electron Microprobe Operating Conditions Used for Kimberlite Indicator Mineral Analysis

**Date:** Nov 12, 2005  
**Instrument:** JEOL 733 Superprobe  
**Conditions:**  
Accelerating voltage - 15 kV  
Cup electron beam - 20 nA  
Measuring time for each standard - 20 seconds  
Measuring time for each analyzed element - 20 seconds  
Peak and background intensities were measured for each element

**Phases Studied:** 26 Kimberlite Indicator Minerals (KIM) on a single polished section

### Standard Reference Materials:

The following natural and synthetic mineral standards from the Smithsonian Institute, SPI Supplies and Institute of Experimental Mineralogy were used for microprobe calibration: magnetite (Fe K $\alpha$  measured with the LiF crystal); rutile (Ti K $\alpha$  measured with the PET crystal); chromite (Cr K $\alpha$  measured with the PET crystal); diopside (Ca K $\alpha$  measured with the PET crystal, Si K $\alpha$  measured with the TAP crystal); rhodonite (Mn K $\alpha$  measured with the PET crystal); pyrope (Mg K $\alpha$  measured with the TAP crystal, Al K $\alpha$  measured with the TAP crystal); willemite (Zn L $\alpha$  measured with the TAP crystal), sanidine (K K $\alpha$  measured with the PET crystal); jadeite (Na K $\alpha$  measured with the TAP crystal), and synthetic NiFe<sub>2</sub>O<sub>4</sub> (Ni K $\alpha$  measured with the LiF crystal) and metallic Nb (Nb L $\alpha$  measured with the PET crystal).

### QC Schedule:

The following natural and synthetic mineral standards from the Smithsonian Institute and SPI Supplies were used to QC check the microprobe calibration at the beginning, the end and in the course of the KIM analysis. The following standards were checked between the silicate (olivine and clinopyroxene) analyses:

|             |                                                     |
|-------------|-----------------------------------------------------|
| > Magnetite | > Rhodonite                                         |
| > Pyrope    | > Williamite                                        |
| > Chromite  | > Rutile                                            |
| > Diopside  | > Synthetic NiFe <sub>2</sub> O <sub>4</sub> Spinel |

### QA Schedule:

For each silicate KIM grain: Fe, Cr, Mn and Ca compositions were verified with two different WD spectrometers and WD crystals. A comparative analysis was performed using the conventional Excel X-Y-Scattering charts. The average values of element compositions were reported for each DIM grain analysis if no calibration error was revealed for those values during the QA procedure.

DIM QC-QA Schedule: Oxide Weight Percent

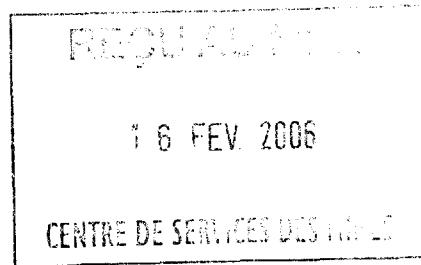
|            | Pt#  | SiO <sub>2</sub> | TiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | Cr <sub>2</sub> O <sub>3</sub> | FeO          | MgO          | MnO          | CaO          | Na <sub>2</sub> O | K <sub>2</sub> O | NiO   | ZnO          | Total         |
|------------|------|------------------|------------------|--------------------------------|--------------------------------|--------------|--------------|--------------|--------------|-------------------|------------------|-------|--------------|---------------|
| Chr-SI3    | SRM  | n/a              | n/a              | <b>9.92</b>                    | <b>60.50</b>                   | <b>13.04</b> | <b>15.20</b> | <b>0.11</b>  | n/a          | n/a               | n/a              | n/a   | n/a          | <b>98.77</b>  |
| Chr-QC     | 9000 | 0.01             | 0.13             | 10.09                          | <b>60.29</b>                   | 13.01        | 15.25        | 0.11         | 0.00         | 0.00              | 0.03             | 0.14  | 0.00         | <b>99.06</b>  |
| Chr-QC     | 9000 | 0.00             | 0.17             | 10.05                          | <b>60.62</b>                   | 12.93        | 15.14        | 0.12         | 0.01         | 0.00              | 0.01             | 0.15  | 0.00         | <b>99.20</b>  |
| Chr-QC     | 9000 | 0.00             | 0.13             | 10.01                          | <b>60.38</b>                   | 13.06        | 15.06        | 0.15         | 0.01         | 0.00              | 0.02             | 0.15  | 0.03         | <b>99.00</b>  |
| Di-SPI     | SRM  | <b>55.37</b>     | <b>0.08</b>      | <b>0.09</b>                    | n/a                            | <b>0.05</b>  | <b>18.62</b> | <b>0.05</b>  | <b>25.73</b> | n/a               | n/a              | n/a   | n/a          | <b>99.99</b>  |
| Di-QC      | 9000 | 55.51            | 0.04             | 0.06                           | <b>0.00</b>                    | 0.12         | 18.28        | 0.07         | 26.53        | 0.01              | 0.03             | 0.00  | 0.03         | <b>100.66</b> |
| Di-QC      | 9002 | 55.22            | 0.06             | 0.08                           | <b>0.05</b>                    | 0.05         | 18.10        | 0.05         | 25.29        | 0.02              | 0.00             | 0.00  | 0.03         | <b>98.95</b>  |
| Di-QC      | 9002 | 55.31            | 0.06             | 0.05                           | <b>0.00</b>                    | 0.04         | 18.17        | 0.04         | 25.44        | 0.00              | 0.01             | 0.04  | 0.03         | <b>99.19</b>  |
| Di-QC      | 9002 | 55.52            | 0.04             | 0.05                           | <b>0.01</b>                    | 0.01         | 18.15        | 0.00         | 25.79        | 0.02              | 0.00             | 0.01  | 0.00         | <b>99.59</b>  |
| Mgt-SPI    | SRM  | n/a              | n/a              | n/a                            | n/a                            | <b>92.89</b> | n/a          | n/a          | n/a          | n/a               | n/a              | n/a   | n/a          | <b>92.89</b>  |
| Mgt-QC     | 9003 | 0.11             | 0.10             | 0.00                           | <b>0.04</b>                    | 93.03        | 0.11         | 0.02         | 0.02         | 0.02              | 0.00             | 0.00  | 0.00         | <b>93.44</b>  |
| Mgt-QC     | 9003 | 0.09             | 0.06             | 0.03                           | <b>0.06</b>                    | 92.81        | 0.10         | 0.02         | 0.00         | 0.00              | 0.01             | 0.04  | 0.05         | <b>93.28</b>  |
| Mgt-QC     | 9003 | 0.14             | 0.09             | 0.01                           | <b>0.04</b>                    | 92.91        | 0.10         | 0.00         | 0.00         | 0.02              | 0.00             | 0.01  | 0.00         | <b>93.32</b>  |
| NiSpn-IEM  | SRM  | n/a              | n/a              | n/a                            | n/a                            | <b>60.99</b> | n/a          | n/a          | n/a          | n/a               | <b>31.86</b>     | n/a   | n/a          | <b>92.85</b>  |
| NiSpn-QC   | 9014 | 0.55             | 0.00             | 0.04                           | 0.01                           | 60.97        | 0.00         | 0.00         | 0.00         | 0.01              | 0.00             | 31.96 | 0.00         | <b>93.54</b>  |
| NiSpn-QC   | 9016 | 0.32             | 0.02             | 0.00                           | 0.00                           | 60.69        | 0.04         | 0.00         | 0.00         | 0.00              | 0.00             | 31.91 | 0.00         | <b>92.97</b>  |
| NiSpn-QC   | 9017 | 0.57             | 0.02             | 0.04                           | 0.00                           | 60.74        | 0.00         | 0.00         | 0.00         | 0.00              | 0.00             | 31.89 | 0.00         | <b>93.26</b>  |
| Prp-SI3    | SRM  | <b>41.46</b>     | <b>0.47</b>      | <b>23.73</b>                   | n/a                            | <b>10.58</b> | <b>18.51</b> | <b>0.28</b>  | <b>5.17</b>  | n/a               | n/a              | n/a   | n/a          | <b>100.20</b> |
| Prp-QC     | 9001 | 41.51            | 0.40             | 23.26                          | <b>0.15</b>                    | 10.21        | 18.56        | 0.38         | 5.21         | 0.00              | 0.01             | 0.01  | 0.02         | <b>99.71</b>  |
| Prp-QC     | 9001 | 41.57            | 0.47             | 23.43                          | <b>0.11</b>                    | 10.73        | 18.64        | 0.35         | 5.08         | 0.00              | 0.01             | 0.04  | 0.00         | <b>100.44</b> |
| Prp-QC     | 9001 | 41.42            | 0.42             | 23.53                          | <b>0.07</b>                    | 10.22        | 18.48        | 0.28         | 5.15         | 0.00              | 0.03             | 0.07  | 0.04         | <b>99.71</b>  |
| Rodon-S    | SRM  | <b>49.98</b>     | n/a              | n/a                            | n/a                            | <b>1.55</b>  | <b>0.87</b>  | <b>37.66</b> | <b>6.40</b>  | n/a               | n/a              | n/a   | <b>7.51</b>  | <b>103.97</b> |
| Rodon-QC   | 9005 | 49.37            | 0.01             | 0.02                           | <b>0.01</b>                    | 1.51         | 0.78         | 37.68        | 6.39         | 0.00              | 0.00             | 0.00  | 7.56         | <b>103.33</b> |
| Rodon-QC   | 9005 | 49.73            | 0.00             | 0.00                           | <b>0.00</b>                    | 1.64         | 0.74         | 37.45        | 6.64         | 0.01              | 0.00             | 0.02  | 7.37         | <b>103.60</b> |
| Rodon-QC   | 9005 | 49.45            | 0.00             | 0.00                           | <b>0.00</b>                    | 1.49         | 0.75         | 37.71        | 6.75         | 0.00              | 0.00             | 0.02  | 7.57         | <b>103.74</b> |
| Rutile-SPI | SRM  | n/a              | <b>100.00</b>    | n/a                            | n/a                            | n/a          | n/a          | n/a          | n/a          | n/a               | n/a              | n/a   | n/a          | <b>100.00</b> |
| Rutile-QC  | 9004 | 0.05             | 100.02           | 0.01                           | <b>0.03</b>                    | 0.00         | 0.00         | 0.00         | 0.00         | 0.00              | 0.01             | 0.05  | 0.00         | <b>100.18</b> |
| Rutile-QC  | 9004 | 0.11             | 99.99            | 0.04                           | <b>0.02</b>                    | 0.00         | 0.00         | 0.00         | 0.00         | 0.00              | 0.00             | 0.00  | 0.00         | <b>100.16</b> |
| Rutile-QC  | 9004 | 0.07             | 99.73            | 0.04                           | <b>0.00</b>                    | 0.01         | 0.00         | 0.01         | 0.00         | 0.00              | 0.00             | 0.00  | 0.00         | <b>99.86</b>  |
| Wilm-S     | SRM  | <b>28.09</b>     | n/a              | n/a                            | n/a                            | n/a          | n/a          | <b>4.82</b>  | n/a          | n/a               | n/a              | n/a   | <b>66.89</b> | <b>99.80</b>  |
| Wilm-QC    | 9006 | 28.12            | 0.00             | 0.01                           | <b>0.00</b>                    | 0.07         | 0.08         | <b>4.87</b>  | 0.01         | 0.00              | 0.00             | 0.00  | 66.63        | <b>99.79</b>  |
| Wilm-QC    | 9006 | 27.94            | 0.00             | 0.02                           | <b>0.00</b>                    | 0.02         | 0.08         | <b>4.79</b>  | 0.00         | 0.01              | 0.00             | 0.02  | 66.31        | <b>99.18</b>  |
| Wilm-QC    | 9006 | 27.98            | 0.00             | 0.03                           | <b>0.00</b>                    | 0.04         | 0.11         | <b>4.98</b>  | 0.02         | 0.00              | 0.00             | 0.03  | 66.44        | <b>99.63</b>  |

Oxide Weight Percent: Silicate Analysis, 15kV, 20 nA, 500μm, 20 sec

| SiO <sub>2</sub> | TiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | Cr <sub>2</sub> O <sub>3</sub> | FeO   | MgO   | MnO   | CaO   | Na <sub>2</sub> O | K <sub>2</sub> O | NiO   | ZnO   |       |
|------------------|------------------|--------------------------------|--------------------------------|-------|-------|-------|-------|-------------------|------------------|-------|-------|-------|
| LOD              | 0.032            | 0.026                          | 0.043                          | 0.028 | 0.050 | 0.024 | 0.056 | 0.026             | 0.022            | 0.032 | 0.058 | 0.080 |

REÇU AU MÉM  
16 FEV 2005  
CENTRE DE SERVICES DES MINES

Robert Côté


8901-486 LIMS#MI1001-OCT05, MI1001-NOV05 and MI0008-NOV05

SGS Minerals Services

| Mineral Type | Number | Size        | Grain Numbers | Oxide Weight Percent: |                  |                                |                                |      |       |      |       |                  |                   |      |      |        |
|--------------|--------|-------------|---------------|-----------------------|------------------|--------------------------------|--------------------------------|------|-------|------|-------|------------------|-------------------|------|------|--------|
|              |        |             |               | SiO <sub>2</sub>      | TiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | Cr <sub>2</sub> O <sub>3</sub> | FeO  | MgO   | MnO  | CaO   | K <sub>2</sub> O | Na <sub>2</sub> O | NiO  | ZnO  | Total  |
| OL           | Cote-1 | -20+35 mesh | 1             | 40.66                 | 0.13             | 0.05                           | 0.13                           | 7.97 | 50.38 | 0.14 | 0.10  | 0.02             | 0.05              | 0.46 | 0.03 | 100.12 |
| OL           | Cote-1 | -20+35 mesh | 2             | 41.10                 | 0.02             | 0.00                           | 0.01                           | 8.04 | 49.72 | 0.11 | 0.03  | 0.00             | 0.01              | 0.45 | 0.03 | 99.52  |
| OL           | Cote-1 | -20+35 mesh | 3             | 41.27                 | 0.02             | 0.00                           | 0.03                           | 7.34 | 50.29 | 0.10 | 0.02  | 0.01             | 0.00              | 0.41 | 0.03 | 99.51  |
| OL           | Cote-1 | -20+35 mesh | 4             | 41.39                 | 0.01             | 0.01                           | 0.04                           | 6.67 | 50.95 | 0.13 | 0.02  | 0.00             | 0.01              | 0.39 | 0.02 | 99.66  |
| OL           | Cote-1 | -20+35 mesh | 5             | 41.02                 | 0.02             | 0.02                           | 0.07                           | 8.72 | 49.18 | 0.09 | 0.08  | 0.00             | 0.01              | 0.40 | 0.01 | 99.61  |
| OL           | Cote-1 | -20+35 mesh | 6             | 41.16                 | 0.06             | 0.04                           | 0.12                           | 8.37 | 50.06 | 0.15 | 0.07  | 0.01             | 0.02              | 0.43 | 0.06 | 100.56 |
| OL           | Cote-1 | -20+35 mesh | 7             | 41.01                 | 0.03             | 0.01                           | 0.08                           | 8.11 | 49.90 | 0.11 | 0.05  | 0.00             | 0.02              | 0.47 | 0.07 | 99.87  |
| OL           | Cote-1 | -20+35 mesh | 8             | 40.76                 | 0.05             | 0.01                           | 0.06                           | 7.76 | 50.70 | 0.13 | 0.04  | 0.02             | 0.04              | 0.42 | 0.06 | 100.04 |
| OL           | Cote-1 | -20+35 mesh | 9             | 40.91                 | 0.03             | 0.06                           | 0.08                           | 8.61 | 50.19 | 0.17 | 0.21  | 0.02             | 0.01              | 0.41 | 0.05 | 100.75 |
| OL           | Cote-1 | -20+35 mesh | 10            | 40.93                 | 0.03             | 0.01                           | 0.02                           | 8.31 | 49.44 | 0.08 | 0.02  | 0.00             | 0.02              | 0.37 | 0.01 | 99.23  |
| OL           | Cote-1 | -20+35 mesh | 11            | 40.80                 | 0.02             | 0.01                           | 0.07                           | 9.07 | 48.48 | 0.13 | 0.05  | 0.00             | 0.02              | 0.35 | 0.02 | 99.02  |
| OL           | Cote-1 | -20+35 mesh | 12            | 40.55                 | 0.02             | 0.04                           | 0.09                           | 9.13 | 48.62 | 0.12 | 0.09  | 0.00             | 0.01              | 0.37 | 0.06 | 99.12  |
| OL           | Cote-1 | -20+35 mesh | 13            | 40.90                 | 0.02             | 0.00                           | 0.02                           | 7.78 | 50.14 | 0.11 | 0.04  | 0.00             | 0.02              | 0.37 | 0.01 | 99.42  |
| OL           | Cote-1 | -20+35 mesh | 14            | 40.92                 | 0.01             | 0.01                           | 0.01                           | 7.91 | 49.85 | 0.11 | 0.02  | 0.01             | 0.00              | 0.39 | 0.01 | 99.24  |
| OL           | Cote-1 | -20+35 mesh | 15            | 40.84                 | 0.01             | 0.01                           | 0.02                           | 8.05 | 49.60 | 0.10 | 0.02  | 0.01             | 0.00              | 0.39 | 0.03 | 99.08  |
| OL           | Cote-1 | -20+35 mesh | 16            | 40.96                 | 0.04             | 0.03                           | 0.09                           | 8.82 | 49.34 | 0.12 | 0.07  | 0.00             | 0.02              | 0.41 | 0.03 | 99.93  |
| OL           | Cote-1 | -20+35 mesh | 17            | 40.78                 | 0.02             | 0.01                           | 0.02                           | 8.09 | 49.76 | 0.11 | 0.02  | 0.00             | 0.00              | 0.37 | 0.03 | 99.22  |
| OL           | Cote-1 | -20+35 mesh | 18            | 41.00                 | 0.04             | 0.02                           | 0.15                           | 8.52 | 49.76 | 0.14 | 0.09  | 0.01             | 0.02              | 0.44 | 0.08 | 100.26 |
| OL           | Cote-1 | -20+35 mesh | 19            | 40.70                 | 0.02             | 0.01                           | 0.09                           | 8.41 | 49.29 | 0.11 | 0.08  | 0.01             | 0.01              | 0.39 | 0.02 | 99.13  |
| OL           | Cote-1 | -20+35 mesh | 20            | 41.11                 | 0.05             | 0.01                           | 0.06                           | 8.02 | 49.94 | 0.11 | 0.04  | 0.02             | 0.03              | 0.46 | 0.05 | 99.90  |
| OL           | Cote-1 | -20+35 mesh | 21            | 40.75                 | 0.03             | 0.01                           | 0.09                           | 7.80 | 49.77 | 0.12 | 0.05  | 0.00             | 0.01              | 0.38 | 0.02 | 99.04  |
| OL           | Cote-1 | -20+35 mesh | 22            | 40.80                 | 0.01             | 0.01                           | 0.05                           | 7.58 | 50.06 | 0.09 | 0.03  | 0.01             | 0.02              | 0.41 | 0.00 | 99.07  |
| OL           | Cote-1 | -20+35 mesh | 23            | 40.90                 | 0.03             | 0.01                           | 0.04                           | 7.59 | 49.91 | 0.09 | 0.03  | 0.00             | 0.02              | 0.40 | 0.01 | 99.02  |
| OL           | Cote-1 | -20+35 mesh | 24            | 41.23                 | 0.06             | 0.02                           | 0.07                           | 7.43 | 50.17 | 0.13 | 0.04  | 0.01             | 0.03              | 0.49 | 0.08 | 99.75  |
| OL           | Cote-1 | -20+35 mesh | 25            | 41.07                 | 0.07             | 0.04                           | 0.07                           | 9.37 | 48.98 | 0.13 | 0.07  | 0.02             | 0.06              | 0.47 | 0.05 | 100.40 |
| CPX          | Cote-1 | -35+60 mesh | 1             | 54.50                 | 0.06             | 0.96                           | 0.69                           | 3.07 | 16.13 | 0.09 | 23.13 | 0.00             | 0.61              | 0.11 | 0.02 | 99.39  |

## APPENDIX E

### CERTIFICATE OF ANALYSIS RESULTS OF MICRODIAMOND EXTRACTION, SELECTION AND DESCRIPTION



**Robert Cote**  
Attn : Robert Cote

8331 De L'esperance  
Quebec, QC  
G2K 1S1, Canada

Phone: 418-623-3085  
Fax:

Lakefield Monday, December 19,  
2005

Date Rec. : 03 November 2005  
LR Report : MI0008-NOV05  
Project : 8901-486  
Client Ref : LR2502524

## CERTIFICATE OF ANALYSIS

| Sample ID | *Caustic Wt kg | *Dia # | *Dia (ct) | *Total pours |
|-----------|----------------|--------|-----------|--------------|
| 1: Cote-1 | 6.33           | 0      | 0.000     | 1            |



*Maria Mezei*  
Maria Mezei  
Diamond Selection Specialist

Email: apedneault@sympatico.ca



**SGS Minerals Services**

185 Concession St., Box 4300  
Lakefield, Ontario  
K0L 2H0, CANADA

Tel: (705) 652-2112  
Fax: (705) 652-3123

**DIAMOND RECOVERY BY CAUSTIC DISSOLUTION**

Project: **8901-486**

Date: December 19, 2005

Client: **Robert Coté**

LIMS No. **MI0008-NOV05**

Sample No. **Cote-1**

| Mesh    | Fraction                          | Dissolution Residue Description |
|---------|-----------------------------------|---------------------------------|
| +6      | Ferromagnetic Non-mag             | Not applicable                  |
| -6+20   | Ferromagnetic Non-mag             | Rock fragments and silicates    |
| +150    | Ferromagnetic Mag                 | Oxides and silicates            |
| -20+150 | Ferromagnetic Non-mag (Fus. Res.) | Oxides, silicates, and graphite |
| -20+150 | Paramagnetic Mag (0.3 amp)        | Not applicable                  |
| -20+150 | Diamagnetic Mag (0.5 amp)         | Not applicable                  |
| -20+150 | Diamagnetic Non-mag (0.5 amp)     | Not applicable                  |

**Sample Weight: 6.33 kg**

**Total Weight (carats)\*: 0.000**

**Number of Syndites: 0**

**Number of Diamonds: 0**

\* Total Weight (carats) was calculated from mg weights. All reported mg weights are measured to within 0.002 mg.

Tracy Gill  
Selection and Description

Tracy Gill  
Mineralogy Technician

Elena Valeyeva  
Quality Control

Elena Valeyeva  
Mineralogy Technician

**Note:**

SGS Minerals Services is not responsible for the determination of the origin, quality or value of any diamonds recovered. Each +35 mesh (Tyler sieve; +0.420 mm) stone was individually weighed, and the -35 mesh stones were weighed in groups. Stone dimensions are limited to accuracy of three dimensional measurements of irregular shapes using a petrographic microscope.

*Accredited by the Standards Council of Canada to the ISO/IEC Guide 25 standard for specific registered tests.*

**SGS Minerals Services**

185 Concession St., Box 4300  
 Lakefield, Ontario  
 K0L 2H0, CANADA

Tel: (705) 652-2112  
 Fax: (705) 652-3123

**DIAMOND RECOVERY BY CAUSTIC DISSOLUTION**Project: **8901-486**

Date: December 19, 2005

Client: **Robert Côté**LIMS No. **MI0008-NOV05**Sample No. **Cote-1**

| Diamond Size Fractions                                                   | Number of Stones in Group | Group Weight (mg) | Group Carats (calculated) |
|--------------------------------------------------------------------------|---------------------------|-------------------|---------------------------|
| + 4.75 mm                                                                | 0                         | 0.000             | 0.000                     |
| - 4.75 / + 3.35 mm                                                       | 0                         | 0.000             | 0.000                     |
| - 3.35 / + 2.36 mm                                                       | 0                         | 0.000             | 0.000                     |
| - 2.36 / + 1.70 mm                                                       | 0                         | 0.000             | 0.000                     |
| - 1.70 / + 1.18 mm                                                       | 0                         | 0.000             | 0.000                     |
| - 1.18 / + 0.85 mm                                                       | 0                         | 0.000             | 0.000                     |
| -850 / + 600 $\mu$ m                                                     | 0                         | 0.000             | 0.000                     |
| Stones Described and Weighed Individually / Individually / Group Weighed | -600 / + 425 $\mu$ m      | 0.000             | 0.000                     |
|                                                                          | -425 / + 300 $\mu$ m      | 0.000             | 0.000                     |
|                                                                          | -300 / +212 $\mu$ m       | 0.000             | 0.000                     |
|                                                                          | -212 / +150 $\mu$ m       | 0.000             | 0.000                     |
|                                                                          | -150 / +105 $\mu$ m       | 0.000             | 0.000                     |
| <b>TOTAL</b>                                                             | <b>0</b>                  | <b>0.000</b>      | <b>0.000</b>              |

**Sample Weight: 6.33 kg**  
**Number of Syndites: 0**

**Total Weight (carats)\*: 0.000**  
**Number of Diamonds: 0**

\* Total Weight (carats) was calculated from mg weights. All reported mg weights are weighed to within 0.002 mg.

Tracy Gill  
 Selection and Description  
 Tracy Gill  
 Mineralogy Technician

Elena Valeyeva  
 Quality Control  
 Elena Valeyeva  
 Mineralogy Technician

**Note:**

SGS Minerals Services is not responsible for the determination of the origin, quality or value of any diamonds recovered. Each +35 mesh (Tyler sieve; +0.420 mm) stone was individually weighed, and the -35 mesh stones were weighed in groups.

*Accredited by the Standards Council of Canada to the ISO/IEC Guide 25 standard for specific registered tests.*

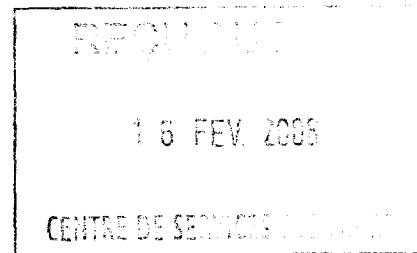
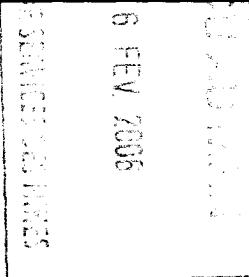
# SGS Minerals Services

P.O. Bag 4300, 185 Concession Street, Lakefield, Ontario K0L 2H0  
Phone: 705-652-2112  
Fax: 705-652-3123

December 19, 2005

## DIAMOND RECOVERY BY CAUSTIC DISSOLUTION

Project: 8901-486



LIMS No. MI0008-NOV05

Client: Robert Côté

Sample No. Cote-1

Sample Weight: 6.33 kg

| No.                               | Stone Dimension, mm |   |   | Weight   |           | Percent<br>Preservation | Stone Description<br>Morphology |
|-----------------------------------|---------------------|---|---|----------|-----------|-------------------------|---------------------------------|
|                                   | X                   | Y | Z | mg       | Carats    |                         |                                 |
| <b>+ 4.75 mm fraction</b>         |                     |   |   |          |           |                         |                                 |
| 0                                 |                     |   |   | 0.000000 |           |                         |                                 |
| 0                                 |                     |   |   | 0.000000 | Sub-Total |                         |                                 |
| <b>-4.75 / + 3.35 mm fraction</b> |                     |   |   |          |           |                         |                                 |
| 0                                 |                     |   |   | 0.000000 |           |                         |                                 |
| 0                                 |                     |   |   | 0.000000 | Sub-Total |                         |                                 |
| <b>-3.35 / + 2.36 mm fraction</b> |                     |   |   |          |           |                         |                                 |
| 0                                 |                     |   |   | 0.000000 |           |                         |                                 |
| 0                                 |                     |   |   | 0.000000 | Sub-Total |                         |                                 |
| <b>-2.36 / + 1.70 mm fraction</b> |                     |   |   |          |           |                         |                                 |
| 0                                 |                     |   |   | 0.000000 |           |                         |                                 |
| 0                                 |                     |   |   | 0.000000 | Sub-Total |                         |                                 |
| <b>-1.70 / + 1.18 mm fraction</b> |                     |   |   |          |           |                         |                                 |
| 0                                 |                     |   |   | 0.000000 |           |                         |                                 |
| 0                                 |                     |   |   | 0.000000 | Sub-Total |                         |                                 |
| <b>-1.18 / + 0.85 mm fraction</b> |                     |   |   |          |           |                         |                                 |
| 0                                 |                     |   |   | 0.000000 |           |                         |                                 |
| 0                                 |                     |   |   | 0.000000 | Sub-Total |                         |                                 |



# SGS Minerals Services

P.O. Bag 4300, 185 Concession Street, Lakefield, Ontario K0L 2H0

Phone: 705-652-2112

Fax: 705-652-3123

December 19, 2005

## DIAMOND RECOVERY BY CAUSTIC DISSOLUTION

Project: 8901-486

LIMS No. MI0008-NOV05

Sample No. Cote-1

Client: Robert Coté

Sample Weight: 6.33 kg

| No.                                                   | Stone Dimension, mm |   |   | Weight   |              | Percent<br>Preservation | Stone Description<br>Morphology |
|-------------------------------------------------------|---------------------|---|---|----------|--------------|-------------------------|---------------------------------|
|                                                       | X                   | Y | Z | mg       | Carats       |                         |                                 |
| <b>-850 / + 600 <math>\mu\text{m}</math> fraction</b> |                     |   |   |          |              |                         |                                 |
| 0                                                     |                     |   |   | 0.000000 |              |                         |                                 |
| 0                                                     |                     |   |   | 0.000000 | Sub-Total    |                         |                                 |
| <b>-600 / + 425 <math>\mu\text{m}</math> fraction</b> |                     |   |   |          |              |                         |                                 |
| 0                                                     |                     |   |   | 0.000000 |              |                         |                                 |
| 0                                                     |                     |   |   | 0.000000 | Sub-Total    |                         |                                 |
| <b>-425 / + 300 <math>\mu\text{m}</math> fraction</b> |                     |   |   |          |              |                         |                                 |
| 0                                                     |                     |   |   | 0.000000 |              |                         |                                 |
| 0                                                     |                     |   |   | 0.000000 | Sub-Total    |                         |                                 |
| <b>-300 / + 212 <math>\mu\text{m}</math> fraction</b> |                     |   |   |          |              |                         |                                 |
| 0                                                     |                     |   |   | 0.000000 |              |                         |                                 |
| 0                                                     |                     |   |   | 0.000000 | Sub-Total    |                         |                                 |
| <b>-212 / + 150 <math>\mu\text{m}</math> fraction</b> |                     |   |   |          |              |                         |                                 |
| 0                                                     |                     |   |   | 0.000000 |              |                         |                                 |
| 0                                                     |                     |   |   | 0.000000 | Sub-Total    |                         |                                 |
| <b>-150 / + 105 <math>\mu\text{m}</math> fraction</b> |                     |   |   |          |              |                         |                                 |
| 0                                                     |                     |   |   | 0.000000 |              |                         |                                 |
| 0                                                     |                     |   |   | 0.000000 | Sub-Total    |                         |                                 |
| 0                                                     |                     |   |   | 0.000000 | <b>TOTAL</b> |                         |                                 |

Note 1: Diamond Fragments - No Crystal Faces - Preservation (Resorption) cannot be estimated.





NAD 83

194 0450323  
UTM 5783146



Reg. 589905