MB 97-11

Synthèse stratigraphique, paléogéographique et gîtologique : cantons de Vauquelin, Pershing, Haig et parties des cantons de Louvicourt, Pascalis et Denain

Travaux réalisés dans le cadre de l'Entente auxiliaire Canada-Québec sur le développement minéral

Synthèse stratigraphique, paléogéographique et gitologique:

cantons de Vauquelin, Pershing, Haig et parties des cantons de Louvicourt, Pascalis et Denain.

Michel Rocheleau, Réjean Hébert Pierre Lacoste, Pierre St-Julien Marie Racine, Roch Gaudreau Département de géologie, Université Laval

Ce document est une reproduction fidèle du manuscrit soumis par l'auteur sauf pour une mise en page sommaire destinée à assurer une qualité convenable de reproduction. Le manuscrit a cependant fait l'objet d'une lecture critique et de commentaires à l'auteur de la part de James Moorhead avant la remise de la version finale au ministère.

MB 97-11

1997

Gouvernement du Québec Ministère des Ressources naturelles Secteur des mines

TABLE DES MATIERES

	Pages
LISTE DES FIGURES	v
LISTE DES TABLEAUX	ix
LISTE DES CARTES	ix
INTRODUCTION	1
PROBLÉMATIQUE	1
MANDATS	3
LOCALISATION	3
OBJECTIFS	4
Stratigraphie et paléogéographie	4
Structure et métamorphisme	4
Gîtologie	5
TRAVAUX ANTÉRIEURS	5
REMERCIEMENTS	7
GÉOLOGIE RÉGIONALE	9
CADRE STRATIGRAPHIQUE	9
Perspective historique.	9
Stratigraphie du Sillon de La Motte-Vassan	11
CADRE STRUCTURAL ET MÉTAMORPHIQUE	13
CADRE PALÉOGÉOGRAPHIQUE	14
STRATIGRAPHIE	15
DOMAINES LITHOTECTONIQUES DE LA PROVINCE DU SUPERIEUR	15
Le domaine de Val-d'Or	17
Le domaine de Villebon	22
Le domaine de Trivio	24
Le domaine d'Assup	30
Le domaine de Garden Island	32
ROCHES INTRUSIVES DE LA PROVINCE DU SUPÉRIEUR	34
Les intrusions felsiques pré-déformation régionale	35
Les intrusions mafiques pré-déformation régionale	35
Les filons-couches pré-déformation régionale	36

Les intrusions kénoriennes syn- à tardi-cinématiques	37
Les dykes de diabase protérozoïques	37
COMPLEXE GNEISSIQUE DE LA PROVINCE DE GRENVILLE	39
GÉOCHIMIE DES ROCHES VOLCANIQUES	40
MOBILITÉ DES ÉLÉMENTS CHIMIQUES AU COURS DES PROCESSUS	
D'ALTÉRATION ET DE MÉTAMORPHISME	41
ÉCHANTILLONNAGE ET RÉSULTATS ANALYTIQUES	41
GÉOCHIMIE DU DOMAINE DE VAL-D'OR	42
Classification géochimique des laves et des pyroclastites	42
Coefficient MGV de différenciation magmatique	46
Géochimie des éléments traces	48
Spectres élargis d'éléments traces et de terres rares normalisés aux	
basaltes de type MORB: caractérisation de la source.	54
Environnements géodynamiques	57
GÉOCHIMIE DU DOMAINE DE VILLEBON	61
Géochimie des éléments majeurs	61
Géochimie des éléments traces	61
Environnements géodynamiques	61
GÉOCHIMIE DU DOMAINE DE TRIVIO	65
Géochimie des éléments majeurs	65
Géochimie des éléments traces	65
Environnements géodynamiques	67
GÉOCHIMIE DU DOMAINE D'ASSUP	67
Géochimie des éléments majeurs	67
Géochimie des éléments traces	68
Environnements géodynamiques	72
SOMMAIRE	72
CORRÉLATIONS	76
STRUCTURE ET MÉTAMORPHISME	79
INTRODUCTION	79
STRUCTURES D'ENVERGURE RÉGIONALE ET LOCALE	80
ÉTAPES DE LA DÉFORMATION ET ENSEMBLES STRUCTURAUX	83
Étape 1: phase pré-déformation régionale	87
Étape 2: phase de déformation régionale	87

Étape 3: phase post-déformation régionale	90
Étape 4: déformation grenvillienne	94
MÉTAMORPHISME	94
LIMITE SUPÉRIEUR-GRENVILLE	101

GÉOLOGIE ÉCONOMIQUE	103
INCICES MINÉRALISÉS	103
DESCRIPTION SOMMAIRE DES GÎTES	103
CADRE GÉOLOGIQUE ET MINÉRALISATION	103

RÉFÉRENCES

109

ANNEXES

	/	· · · ·	· · · · · · · · · · · · · · · · · · ·	
1 4 1				\sim
(1)				-
				_
X * 7	,			 _

- (2a) BASE DE DONNÉES LITHOCHIMIQUES UTILISÉES POUR LE TRAITEMENT STATISTIQUE ET GRAPHIQUE
- (2 b) TABLEAUX DES TENEURS MOYENNES POUR CHAQUE FACIES EFFUSIF ET PYROCLASTIQUE
- (3 a) RÉSULTATS COMPLETS D'ANALYSES GÉOCHIMIQUES DES DIFFÉRENTES CAMPAGNES DE CARTOGRAPHIE
- (3 b) RÉSULTATS COMPLETS D'ANALYSES GÉOCHIMIQUES DES DIFFÉRENTS GÎTES MINÉRALISÉS
- (4 a) RÉSULTATS D'ANALYSES D'ÉLÉMENTS ÉCONOMIQUES D'AFFLEUREMENTS MINÉRALISÉS
- (4 b) RÉSULTATS D'ANALYSES D'ÉLÉMENTS ÉCONOMIQUES DE DIFFÉRENTS GÎTES MINÉRALISÉS

LISTE DES FIGURES

Figure 1.	Carte de localisation de la région étudiée indiquant les différentes phases du projet.	2
Figure 2.	Carte de localisation des principaux travaux antérieurs dans la région couverte par ce projet et dans les environs.	6
Figure 3.	Corrélation lithostratigraphique schématique des deux flancs de l'anticlinal majeur de La Motte-Vassan (tirée de Imreh 1984).	12
Figure 4.	Compilation géologique de la région étudiée. Localisation des couloirs de déformation et des domaines lithotectoniques.	16
Figure 5.	Coulée bréchique de basalte de la Formation de Dubuisson. Localisation: rang IX, canton de Vauquelin, près du gîte de Bruell, affleurement 287.	19
Figure 6.	Tuf à blocs polymictes de la Formation de Val-d'Or. Localisation: secteur SE du canton de Vauquelin, affleurement 374.	21
Figure 7.	Tuf à lapilli et blocs de la Formation de Val-d'Or. Localisation: rang III, canton de Vauquelin, affleurement 77.	21
Figure 8.	Coulées andésitiques de la Formation de Val-d'Or. Contact entre une coulée coussinée et une coulée massive. Localisation: rang IV, canton de Vauquelin, affleurement 201.	23
Figure 9.	Andésite variolaire de la Formation de Héva. Localisation: route 117, canton de Louvicourt, affleurement 380.	23
Figure 10.	Coulée ultramafique du Groupe de Villebon montrant les facies massif, craquelé et bréchique. Localisation: rang I, canton de Vauquelin, affleurement 341, île du Lac Villebon.	25
Figure 11.	Interstratification de grès fin quartzo-feldspathique et de siltstone du Complexe structural de Trivio. Localisation: canton de Vauquelin, affleurement 1467.	25
Figure 12.	Formation ferrifère à magnétite du Complexe structural de Trivio. Localisation: secteur SE du canton de Vauquelin, affleurement 1467.	27
Figure 13.	Lit granoclassé à laminae parallèles de la formation ferrifère à magnétite du Complexe structural de Trivio. Localisation: secteur SE du canton de Vauquelin, affleurement 1467.	27
Figure 14.	Conglomérat pétromicte du Complexe structural de Trivio.	29
Figure 15.	Andésite coussinée du Complexe structural de Trivio dans la zone tectonique de Cadillac au voisinage de la mine Chimo.	29

Figure 16.	Basalte coussiné du Groupe d'Aurora. Localisation: canton de Pershing, affleurement 2223.	31
Figure 17.	Brèche de coulée andésitique du Groupe d'Assup. Localisation: canton de Pershing, affleurement 2054.	31
Figure 18.	Tuf à cristaux et à lapilli de composition andésitique du Groupe d'Assup. Localisation: canton de Pershing, près du gîte de Croinor, affleurement 86-BP-Croinor.	33
Figure 19.	Grès grossier et conglomératique du Groupe de Garden Island. Localisation: rang IX, canton de Vauquelin, affleurement 306.	33
Figure 20.	Granite à hornblende du batholite de Pershing, contenant une enclave décimétrique de métavolcanite amphibolitisée. Localisation: rang VII, canton de Vauquelin, affleurement 1288.	38
Figure 21.	Diagrammes SiO ₂ -Zr/TiO ₂ de Winchester et Floyd (1977) pour les laves et les pyroclastites des différentes unités stratigraphiques.	44
Figure 22.	Diagrammes de Jensen (1976) illustrant les affinités magmatiques de chacune des unités volcaniques.	45
Figure 23.	Domaine de Val-d'Or. Diagrammes SiO2-MGV, Al2O3-MGV, FeO T-MGV, TiO2-MGV.	47
Figure 24.	Formation de Dubuisson. Diagrammes de variation des éléments traces Ni, Sc, Y et La et du rapport Zr/Y en fonction du Zr.	49
Figure 25.	Formation de Jacola. Diagrammes de variation des éléments traces Ni, Sc, Y, Cr, La et des rapports La/Sm et Zr/Y en fonction du Zr ou du La.	50
Figure 26.	Formation de Val-d'Or. Diagrammes de variation des éléments traces Ni, Sc, Y, Cr, La et des rapport La/Sm et Zr/Y en fonction du Zr ou du La.	5 1
Figure 27.	Formation de Héva. Diagrammes de variation des éléments traces Ni, Sc, Y, Cr, La et des rapport La/Sm et Zr/Y en fonction du Zr ou du La.	52
Figure 28.	Formations de Dubuisson et de Jacola. Spectres élargis d'éléments traces et de terres rares, normalisés aux basaltes de type MORB (mid-ocean ridge basalt).	55
Figure 29.	Formations de Val-d'Or et de Héva. Spectres élargis d'éléments traces et de terres rares, normalisés aux basaltes de type MORB (mid-ocean ridge basalt).	56
Figure 30.	Diagrammes Ti (ppm) - Zr (ppm) de Pearce et Cann (1973) illustrant la caractérisation géochimique des sites géotectoniques de production de magma basaltique.	59

Figure 31.	Diagrammes Ti*10 ⁻² - Zr et Y*3 de Pearce et Cann (1973) illustrant la caractérisation géochimique des sites géotectoniques de production de magma basaltique.	60
Figure 32.	Domaines de Trivio et de Villebon. Diagrammes SiO ₂ -MGV, Al ₂ O ₃ -MGV, FeO T-MGV, TiO ₂ -MGV.	62
Figure 33.	Groupes de Pontiac et de Villebon. Diagrammes de variation des éléments traces Ni, Sc, Y, Cr, La et des rapport La/Sm et Zr/Y en fonction du Zr ou du La.	63
Figure 34.	Groupes de Pontiac, de Villebon et de Trivio. Spectres élargis d'éléments traces et de terres rares, normalisés aux basaltes de type MORB (mid-ocean ridge basalt).	64
Figure 35.	Complexe structural de Trivio. Diagrammes de variation des éléments traces Ni, Sc, Y, Cr, La et des rapport La/Sm et Zr/Y en fonction du Zr ou du La.	66
Figure 36.	Domaine d'Assup. Diagrammes SiO ₂ -MGV, Al ₂ O ₃ -MGV, FeO T- MGV, TiO ₂ -MGV.	69
Figure 37.	Groupe d'Aurora. Diagrammes de variation des éléments traces Ni, Sc, Y, Cr, La et des rapport La/Sm et Zr/Y en fonction du Zr ou du La.	70
Figure 38.	Groupes d'Aurora et d'Assup. Spectres élargis d'éléments traces et de terres rares, normalisés aux basaltes de type MORB (mid- ocean ridge basalt).	71
Figure 39.	Groupe d'Assup. Diagrammes de variation des éléments traces Ni, Sc, Y, Cr, La et des rapport La/Sm et Zr/Y en fonction du Zr ou du La.	73
Figure 40.	Mudstones du Garden Island (GAI) et du Trivio. Spectres élargis d'éléments traces et de terres rares, normalisés aux basaltes de type MORB (mid-ocean ridge basalt).	77
Figure 41.	Exemple de déformation due au cisaillement dans un conglomérat pétromicte du Complexe structural de Trivio.	81
Figure 42.	Carte de localisation des ensembles structuraux.	84
Figure 43.	Canevas de Schmidt des éléments structuraux planaires (S0, S2, S3, Sg) et linéaires (L0/2, L2/3, Lé) pour chaque ensemble structural.	ochette
Figure 44.	Radiographie montrant un pli mineur, relié à la phase pré- déformation régionale dans le faciès de grès fin et de siltstone du Complexe structural de Trivio.	88

vii

Figure 45.	Exemple de plis isoclinaux très serrés associés à la phase de déformation régionale dans le faciès conglomératique du Complexe structural de Trivio.	88
Figure 46.	Cartes structurales du secteur étudié montrant: (a) la trajectoire de la schistosité régionale S_2 et la linéation d'étirement Lé, et (b) la trajectoire des schistosités S_3 et S_g et des linéations L 2-3 et Lg.	89
Figure 47.	Réseau de kinks congugés dans le faciès de grès fin et de siltstone du Complexe structural de Trivio.	91
Figure 48.	Charnière de pli P3 ouvert, relié à la phase post- déformation régionale dans un basalte du Complexe structural de Trivio.	91
Figure 49.	Pli P3 en forme de "M", de direction NE affectant un conglomérat très déformé du Complexe structural de Trivio.	92
Figure 50.	Pli d'interférence P2 - P3 en forme de champignon dans le siltstone et le grès fin du Groupe de Garden Island.	92
Figure 51.	Faille inverse de Direction NE-SW à pendage SE dans des gneiss du Complexe structural de Trivio dans le Canton de Denain.	93
Figure 52.	Image Landsat du secteur étudié. Présence de linéaments NE et localisation de la limite Supérieur-Grenville. Échelle 1:1, 000, 000.	93
Figure 53.	Carte d'une partie de la ceinture de l'Abitibi à l'est de Val-d'Or montrant les limites des différents faciès métamorphiques.	95
Figure 54.	Schiste à staurotide et grenat du faciès métamorphique des cornéennes à amphibole. Le protolithe est le wacke/siltstone du Groupe de Garden Island.	96
Figure 55.	Lave coussinée amphibolitisée du Complexe structural de Trivio à l'est de la mine Chimo qui illustre les effets du métamorphisme hydrothermal dans la zone tectonique de	
Figure 56.	Photomicrographie d'une lave du Complexe structural de Trivio	99
	montrant deux types d'amphiboles dans la zone tectonique de Cadillac.	99
Figure 57.	Photomicrographie d'un schiste à biotite et amphibole dans la zone de bordure de Grenville.	100
Figure 58.	Photomicrographie d'un gneiss à sillimanite et orthopyroxène au faciès élevé (granulite) de la zone du front de Grenville.	100

viii

LISTE DES TABLEAUX

Tableau 1.	Évolution de la nomenclature stratigraphique dans la région étudiée et dans la région adjacente de Val-d'Or.					
Tableau 2.	Résumé de la description des unités stratigraphiques archéennes proposées pour les 5 domaines lithotectoniques de la région située à l'est de Val-d'Or.	18				
Tableau 3.	Répartition des échantillons lithochimiques par unité stratigraphique et par facies.	43				
Tableau 4.	Résumé des caractéristiques géochimiques des différentes unités stratigraphiques regroupées par domaine lithotectonique.	74				
Tableau 5.	Paragenèses essentielles des faciès métamorphiques cartographiés.	97				
Tableau 6.	Tableau synoptique de la description des principaux gîtes répertoriés dans la région étudiée.	104				
	LISTE DES CARTES (EN POCHETTE)					

Carte 1. Carte géologique. Feuillets C32C/3 101-102-201-202 (échelle 1:20 000). Carte géologique. Feuillets 32C/3 103-104-203-204 Carte 2. (échelle 1:20 000). Carte 3. Carte géologique. Feuillets 32C/2 101-102-201-202 (échelle 1:20 000). Carte 4. Carte géologique. Feuillets 31N/14 404 (échelle 1:20 000). Carte géologique. Feuillets 32C/4 304 (partie) 32C/3 301 Carte 5. (partie) (échelle 1:20 000). Carte 6. Compilation géologique de la région étudiée à l'échelle 1:50 000 et localisation des échantillons géochimique. Carte 6a. Compilation géologique de la région étudiée à l'échelle 1:50 000.

INTRODUCTION

PROBLÉMATIQUE

La région de Val-d'Or, bien connue pour sa production aurifère des soixante dernières années, a été l'objet d'une révision cartographique systématique des terrains volcano-sédimentaires. En effet de 1972 à 1990, les travaux de Imreh ont conduit à la publication d'une synthèse volcanologique, lithostratigraphique et gîtologique (Imreh 1976, 1979, 1984) qui a créé un cadre lithostratigraphique et paléogéographique pour la définition de métallotectes (Imreh et Trudel 1990). Cette synthèse a contribué à l'édition d'une carte lithostratigraphique de l'Abitibi (MERQ-OGS 1983) et à la présentation d'une nouvelle perception paléogéographique de la géologie de l'Abitibi méridionale (Dimroth *et al.* 1982, 1983a, 1983b), impliquant des corrélations lithostratigraphiques de part et d'autre des grandes structures régionales.

Durant les années '80, l'apport de données structurales, géochimiques et géochronologiques nouvelles, quoiqu'encore très incomplètes, a entraîné la publication d'une image bien différente de la lithostratigraphie abitibienne. On a ainsi introduit la notion de blocs structuraux et stratigraphiques distincts, de forme losangique, limités par des failles régionales (Hubert *et al.* 1984; Ludden et Hubert 1986; Ludden *et al.* 1986; Hubert et Ludden 1986; Gauthier *et al.* 1988, 1990; Daigneault 1991; Daigneault et Archambault 1990; Hocq 1990). Cette seconde vision remet en question les corrélations lithostratigraphiques de part et d'autre des grandes failles régionales, et exige, à tout le moins, un examen critique des modèles stratigraphiques établis, qui fournissent un cadre essentiel à la compréhension des phénomènes métallogéniques.

Cette information cartographique récente, disponible pour la région de Rouyn-Noranda-Val-d'Or, était très incomplète pour tout le secteur partant d'une vingtaine de kilomètres à l'est de Val-d'Or jusqu'au front de Grenville (figure 1). Les anciennes cartes laissaient beaucoup de problèmes à résoudre tant du point de vue de la volcanologie, de la sédimentologie, de la géochimie, que des corrélations avec les unités volcano-sédimentaires cartographiées à l'ouest, dans la région de Val-d'Or.

MANDATS

Ce mémoire constitue une synthèse des travaux de recherches dans le cadre d'une étude stratigraphique, paléogéographique et gîtologique, entreprise à l'Université Laval en 1985, sous la direction de Michel Rocheleau et la collaboration de Réjean Hébert et de Pierre St-Julien. Le mandat de recherche comprend la révision complète des levés géologiques existants pour les cantons de Vauquelin, Pershing et aussi pour une partie des cantons de Louvicourt, Denain et Haig (figure 1); il implique de plus la définition du contexte stratigraphique, paléogéographique et structural en vue de l'évaluation du potentiel minier et de la reconnaissance des métallotectes.

Les travaux de cartographie et de gîtologie sur le terrain étaient sous la responsabilité de Pierre Lacoste et Roch Gaudreau. Pierre Lacoste compte intégrer les études stratigraphiques et géochimiques et leurs interprétations paléogéographiques à une recherche doctorale en cours à l'Université Laval. Roch Gaudreau a agi comme agent de recherche de l'équipe de mai 1985 à juin 1988, période durant laquelle il a contribué à l'interprétation des données et à la rédaction des rapports reliés aux phases préliminaires et intérimaires du projet; il a aussi consacré une bonne partie de son temps à la recherche gîtologique du projet. La stratigraphie et la structure de la zone tectonique de Cadillac dans le secteur de la mine Chimo constitue le sujet de la thèse de maîtrise présentée par Marie Racine à l'Université Laval (Racine 1989).

LOCALISATION

La région cartographiée couvre une superficie d'environ 900 km², soit la demie sud du feuillet topographique 32C/3, une bonne partie du quart sud-ouest du feuillet 32C/2, une partie de la coupure 304 du feuillet 32C/4 et la coupure 404 du feuillet 31N/14 du découpage SNRC (figure 1). Le levé géologique, effectué à l'échelle 1:15 000 et publié aux échelles 1:20 000 et 1:50 000 (cartes 1 à 6, en pochette), se situe dans le prolongement vers l'est de la synthèse stratigraphique de Imreh (1984).

L'accès à partir de Val-d'Or se fait par la route 117 en direction de Mont Laurier, puis vers l'est, par une route de gravier, partant 3 km au sud du village de Louvicourt, et permettant d'atteindre, par la même occasion, les mines Chimo et Croinor, et trois pourvoiries situées au sud du lac Gueguen, au sud du lac Matchi-Manitou et au nord-est du lac Blanchin (anciennement nommé le lac Garden Island). Plusieurs anciens chemins d'exploitation forestière, de même que de nombreux lacs et rivières, facilitent l'accès à la plupart des zones d'affleurements. Le secteur nord-est peut aussi être atteint à partir de Senneterre par une route de gravier qui passe à l'est du lac Tiblemont et au nord du lac Gueguen.

Par contre, l'extrémité est de la région, difficilement accessible a nécessité le support d'un hélicoptère.

OBJECTIFS

Les objectifs du projet se divisent en trois volets distincts mais interactifs: 1) stratigraphie et paléogéographie, 2) structure et métamorphisme, et 3) gîtologie.

Stratigraphie et paléogéographie

Nous proposons de présenter un cadre stratigraphique en traçant vers l'est certaines unités déjà connues dans la région de Val-d'Or (Imreh 1984), en précisant et en vérifiant leur position stratigraphique et en définissant de nouvelles unités si nécessaire. Cette synthèse, complétée par une analyse géochimique, devrait nous permettre de mieux établir les corrélations lithostratigraphiques entre les centres volcaniques et les bassins sédimentaires, depuis la région de Val-d'Or, vers l'est jusqu'au front de Grenville. Les études paléoenvironnementales permettront la réalisation d'une synthèse de l'évolution paléogéographique.

Structure et métamorphisme

La reconstruction adéquate de la séquence stratigraphique et de l'évolution paléogéographique nécessite l'intégration de l'analyse des paramètres structuraux à la révision du levé géologique. Nous proposons donc de définir: 1) l'attitude des différentes phases de plissement et la géométrie des plis, 2) la localisation des grandes structures cassantes et aussi leur rôle durant les différentes phases de l'évolution paléogéographique et paléotectonique, et enfin 3) les effets de l'orogenèse grenvillienne. Vers l'est, l'orientation générale du grain tectonique et le degré de métamorphisme semblent de plus en plus affectés par la présence du front de Grenville.

Gîtologie

La présentation d'un cadre stratigraphique et structural, combinée avec les données récentes des travaux d'exploration minière, permettront de préciser et de vérifier les modèles gîtologiques. Nous tenterons par l'étude détaillée de certains indices minéralisés et gîtes: 1) de vérifier la relation entre la distribution spatio-temporelle des minéralisations (en particulier de l'or) et les divers stades de l'évolution paléogéographique et tectonique, et 2) d'étudier l'extension des zones propices à la concentration des minéralisations vers l'est jusqu'au front de Grenville.

TRAVAUX ANTÉRIEURS

Les premiers travaux de cartographie dans notre région ont été effectués par les pionniers du Bureau des Mines du Québec (actuel ministère de l'Energie et des Ressources du Québec, MER) (Bell et Bell 1932, 1933; Lowther 1935; Tolman 1938) et de la Commission géologique du Canada (Norman 1947; Norman et Tiphane 1947; Tiphane 1947; Tiphane et Dawson 1950). Depuis, le MER (autrefois ministère des Richesses naturelles) a publié une série de cartes géologiques de canton, à l'échelle 1:12 000 (figure 2); ces cartes sont présentées dans des documents publics accompagnés de rapports géologiques où sont discutés les relations stratigraphiques et les différents indices minéralisés (Sharpe 1968; Germain 1971, 1972a, 1972b, 1973, 1974; Vogel 1972).

Plus récemment, Imreh (1984) a publié une synthèse géologique du sillon de La Motte-Vassan et de son avant-pays méridional; cette étude, combinée aux travaux de cartographie géologique de P. Lacoste durant les étés 1982 et 1983 pour le compte du MER (travaux non publiés) et de Girault (1985), couvrent la région située à la limite ouest de notre secteur. Mentionnons enfin les travaux de tectonique et de stratigraphie au voisinage du pluton de Pershing (Marquis 1983; Marquis et Goulet 1987) et dans le secteur de mine Chimo (Plouffe 1990).

A ce jour, nous avons nous-mêmes réalisés les cartes et rapports suivants, publiés par le MER:

Cartes géologiques préliminaires à l'échelle 1:20 000 - Carte 32C/3, coupure 101-102, 201-202 (Lacoste et Gaudreau 1986, DP 85-32).

- Cartes 32C/3, coupure 103-104, 203-204, et 32C/2, coupure 101-102, 201-202 (Lacoste *et al.* 1987, DP 87-01).

- Carte 31N/14, coupure 404 (Gaudreau et al. 1988, DP 88-06) (figure 1).

Rapports intérimaires et cartes modifiées à l'échelle 1:20 000 (figure 1)

- Phase 1, 1985-86 (Gaudreau et al. 1986, MB 86-67).
- Phase 2, 1986-87 (Rocheleau et al. 1988, MB 87-52).

Rapports gîtologiques

- Chimo-Nordeau (Rocheleau et al. 1988, MB 88-14).
- Croinor (Gaudreau et al. 1988, MB 88-15).
- Sigma-2 (Hébert et al. 1988, MB 88-17).
- Bruell-Aurora (Gaudreau et al. 1988, MB 88-22).
- Brosnor (Gaudreau et al. 1988, MB 88-33).

Un article de synthèse sur la géologie de la Ceinture de l'Abitibi à l'est de Val-d'Or a été publié dans un volume spécial de l'ICM au moment du symposium intitulé: "La Ceinture polymétallique du Nord-Ouest québécois: Synthèse de 60 ans d'exploration minière" (Rocheleau *et al.* 1990). Trois résumés de conférence ont aussi été publiés dans le cadre des réunions annuelles de l'Association géologique du Canada (Hébert *et al.* 1986; Gaudreau *et al.* 1987; Rocheleau *et al.* 1989). Marie Racine a complété une thèse de maîtrise sur la géologie du Complexe structural de Trivio (Racine 1989).

REMERCIEMENTS

Le levé géologique a été facilité grâce au travail de nos géologues séniors, Benoit Perrier, Marie Racine et Sonia Tanguay et aussi de nos assistants juniors, Louis Gariépy, Stéphane Julien, Jean Laforest, Laurent Ouellet, Johanne Pageau, Isabelle Richard, qui se sont acquittés de leur tâche avec beaucoup d'enthousiasme.

Nous tenons à remercier d'une façon particulière Laszlo Imreh du ministère de l'Energie et des Ressources du Québec pour les discussions sur le terrain et en laboratoire et en particulier pour la lecture critique des cartes préliminaires et des rapports intérimaires; ces échanges nous ont permis d'améliorer grandement notre connaissance de la région et la présentation de nos résultats. Nous ne pouvons passer sous silence la

collaboration des géologues des compagnies d'exploration Brosnor, Cambior, Exploration Noranda, Groupe Minier Sullivan, Louvem, Mines Sigma, Mines Vauquelin, Ressources Abitibi et Soquem, qui nous ont donné accès à une documentation essentielle et avec qui nous avons eu des discussions fructueuses.

Certains travaux de pétrographie et de métallographie ont été confiés à des étudiants de l'Université Laval dans le cadre de projets de fin d'étude: Christine Giguère et Benoit Perrier ont travaillé sur Sigma 2, Clermont Ouellet sur Chimo (zone 6), Laurent Ouellet sur Nordeau, François Roy sur Venpar et Peter O'Leary sur le métamorphisme de la zone de bordure du Grenville. Les dessins ont été effectués par Georges Brunel, Marc Dubé et Daniel Labrecque. Pauline Dansereau nous a assisté durant la rédaction finale du manuscrit.

Les travaux de terrain et de laboratoire ont été supportés financièrement par le ministère de l'Energie et des Ressources du Québec. Certains équipements de laboratoire, de même que les bourses d'études graduées de Pierre Lacoste et de Marie Racine, ont été payés par le Fond FCAR (EQ-3107 de l'équipe Rocheleau) et par le CRSNG (subvention A-8480 de Rocheleau).

GÉOLOGIE RÉGIONALE

La région couverte par cette étude se trouve à la limite sud-est de la zone externe de la ceinture d'Abitibi dans la province du Supérieur du Bouclier canadien (Dimroth *et al.* 1982). Plus précisément cette région se situe dans le prolongement vers l'est du sillon de La Motte-Vassan (Imreh 1984) et chevauche en partie le front de Grenville à l'est et le sillon de Villebon au sud (figure 1).

CADRE STRATIGRAPHIQUE

Perspective historique.

Les travaux de reconnaissance géologique, effectués par les pionniers de la commission géologique du Canada et du ministère des Mines du Québec, ont conduit à l'introduction d'un premier cadre stratigraphique pour la région étudiée (Bell et Bell 1932). Ces derniers reconnaissent deux grandes divisions pour le Précambrien inférieur (tableau 1): les roches volcaniques et les formations ferrifères sont regroupées, comme en Ontario, sous le terme de Keewatin, défini par Lawson (1885), alors que les roches sédimentaires sont associées au <u>Témiscamien</u> de Miller (1911). Ces roches sédimentaires sont considérées en discordance au-dessus des roches volcaniques.

Par la suite, Sharpe (1968), dans ses travaux de cartographie du canton de Louvicourt, constate que les roches sédimentaires du <u>Groupe de Garden Island Lake</u> de Bell et Bell (1932) séparent deux assemblages volcaniques dont le plus jeune est mis en corrélation provisoirement avec le <u>Malartic</u>, défini beaucoup plus à l'ouest dans le secteur de Malartic par Gunning et Ambrose (1937) (tableau 1). Les roches sédimentaires situées au-dessus des volcanites sont incluses dans le <u>Groupe de Trivio</u> défini par Sharpe (1968) ou dans le <u>Groupe de Pontiac</u> (Wilson 1910). La limite entre le Pontiac et le Trivio est placée par Sharpe (1968) à l'apparition d'une lentille de volcanites.

Plus tard, Germain (1971, 1972a, 1972b, 1973, 1974) reprend les deux grandes divisions lithostratigraphiques de <u>Pontiac</u> (Wilson 1910) et d'<u>Abitibi</u> (Wilson 1912) pour en faire des supergroupes (tableau 1). <u>Le Supergroupe d'Abitibi</u>, comprend alors les volcanites du <u>Kinojevis</u> (Norman 1944) à la base, surmontées des roches sédimentaires du

	Bell et Bell 1932	Sharpe 1968	Germain 1971, 1972a, b, 1973, 1974	Vogel 1972	Marqui Marquis e 198	s 1983 t Goulet 37		lmreh 1984	
Cénozoïque	Récent Pléistocène	Récent Pléistocène	Récent Pléistocène	Récent Pléistocène	Réc Pléisto	ent ocène		Récent Pléistocène	
	_			Discord	ance				
Protérozoïque	Intrusions pré-Cobalt	Diabase	Diabase et gabbro					Diabase	
				Discord	ance				
	Intrusions pré-Cobalt	Intrusions felsiques et mafiques	Plutons Dykes		Pluto Pers	n de hing	Ro	oches intrusives	
				Contact	intrusif				
					<u>Secteur</u> nord	<u>Secteur</u> sud	<u>Sillon de</u> La Motte-Vassan Nord	<u>Sillon de</u> La Motte-Vassan <u>Sud</u>	<u>Sillon de</u> <u>Villebon</u>
	Témiscamien (Garden Island Lake)	Trivio et Pontiac	Pontiac Trivio Villebon	Trivio et Pontiac	Garden Island	Trivio	Amos	Cadillac Pontiac Kewagama	Trivio et Pontiac
Archéen			Abitibi		~~~~	~~~~	Figuery Landrienne Héva N	Héva S Val-d'Or Jacola	
	Keewatin	R. volcanique (Malartic)	Malartic	Villebon	Malartic	Villebon	Malartic	Malartic	Villebon
		Garden Island Lake	Garden Island				Dubuisson sup. Caste	Dubuisson	
		R. volcanique pré-Garden Island	Kinojevis		Kinojevis		Dubuisson inf. La Motte-Vassa	n La Motte-Vass	an

 Tableau 1. Évolution de la nomenclature stratigraphique dans la région étudiée et dans la région adjacente de Val-d'Or. Il n'y a pas de corrélation lithostratigraphique entre les travaux des différents auteurs.

Garden Island (correspondant au Garden Island Lake de Bell et Bell 1932) et ensuite des roches volcaniques du Malartic. Toujours pour Germain (1971, 1972a, 1972b, 1973, 1974), le <u>Supergroupe de Pontiac</u> situé au-dessus de la séquence, réunit les volcanites du <u>Villebon.</u> défini par Vogel (1972), et l'assemblage volcano-sédimentaire du Trivio. Plus au sud dans le canton de Villebon, Vogel (1972) avait en effet proposé une succession lithostratigraphique qui débutait par le Groupe de Villebon constitué de roches volcaniques mafiques et ultramafiques, surmonté par les unités sédimentaires à grains fins du Groupe de Pontiac et par l'assemblage volcano-sédimentaire du Groupe de Trivio (tableau 1). Même si Germain dans ses différents rapports notait la présence de failles longitudinales au contact entre certaines unités, il ne semblait pas considérer la présence de discontinuité majeure à l'intérieur de la séquence stratigraphique.

Récemment, Marquis (1983) et Marquis et Goulet (1987) ont suggéré à partir d'une analyse structurale, une corrélation entre les Groupes de Trivio et de Garden Island autour d'une structure anticlinale centrée sur le batholite de Pershing. Ces unités en grande partie d'origine sédimentaire sont en contact cisaillé avec les volcanites du Villebon au sud et du Malartic au nord (tableau 1).

Stratigraphie du Sillon de La Motte-Vassan

Imreh (1984) propose pour la région de La Pause-Malartic-Val-d'Or, immédiatement à l'ouest du secteur couvert par cette étude, une succession stratigraphique qui varie du nord vers le sud de l'anticlinal de La Motte-Vassan (figure 3). Cette succession est marquée sur le flanc nord par les laves mafiques et ultramafiques du Groupe de Malartic à la base, qui passent vers le sommet à une séquence de roches volcaniques de plus en plus felsiques (la Formation de Héva et le Groupe de Harricana), et qui est enfin surmontée par une autre unité de laves mafiques et d'intrusions ultramafiques appartenant au Groupe d'Amos (Hébert 1982). Sur le flanc sud de l'anticlinal de La Motte-Vassan, les roches volcaniques du Groupe de Malartic sont recouvertes par des coulées et des brèches de lave des Formations de Jacola, Val-d'Or et Héva. Le sommet de la séquence est sédimentaire (Groupes de Kewagama, Pontiac et Cadillac).

De plus, comme Norman (1944), Imreh (1984) a noté des ressemblances morphologiques et faciologiques entre les volcanites mafiques et ultramafiques au lac Dubuisson et celles observées dans le sillon de Villebon. Ces ressemblances amène Imreh à suggérer une corrélation éventuelle entre les volcanites de la Formation de Dubuisson et celles du Groupe de Villebon de Vogel (1972).

Figure 3. Corrélation lithostratigraphique schématique des deux flancs de l'anticlinal majeur de La Motte-Vassan (tirée de Imreh 1984).

CADRE STRUCTURAL ET MÉTAMORPHIQUE

Il existe maintenant un cadre structural assez bien établi pour la région de Rouyn-Val-d'Or (Dimroth *et al.* 1983a, 1983b). Imreh (1984) en rappelle les grandes lignes en divisant l'évolution tectonique en deux périodes majeures: pré-kénorienne et kénorienne.

L'activité pré-kénorienne semble avoir causé deux catégories de failles: synvolcaniques et syn-sédimentaires. La première catégorie est représentée par de petites failles qui se sont formées au coeur des complexes volcaniques durant la deuxième étape de l'évolution paléogéographique. De grandes failles régionales d'orientation est-ouest se développent durant la troisième étape et constituent la deuxième catégorie.

L'activité kénorienne, celle des déformations souples et polyphasées, a produit les grandes structures qui ont donné à la région son style tectonique définitif. Le patron de plis d'orientation est-ouest est le résultat d'au moins deux phases de plissement. Durant la première phase, des plis d'orientation NE, SE, E et localement N sont moulés sur les composants paléogéographiques. La seconde phase de plissement est caractérisée par des plis d'orientation est-ouest et donne la schistosité régionale observée dans la ceinture d'Abitibi. Les grandes failles syn-volcaniques et syn-sédimentaires ont rejoué comme des failles de chevauchement durant ces deux phases de plissement. Localement, des structures diapiriques d'origine plutonique se superposent à ces patrons de plis surtout dans la partie nord de la ceinture.

Plus vers l'est dans le secteur couvert par cette étude, Marquis (1983) note la présence d'une phase ultérieure de déformation, caractérisée par des plis serrés plongeant vers le NE et déversés vers le NW, qu'il relie aux effets de l'orogenèse grenvillienne. Le front de Grenville serait alors marqué au NE du lac Matchi-Manitou par une zone de failles directionnelles orientées vers le NE.

Dans le secteur du sillon de La Motte-Vassan, Imreh (1976) définit comme structure majeure, l'anticlinal de La Motte-Vassan déversé vers le sud, qui résulte de l'interférence des différentes phases de plissement décrites plus haut. Les failles qui clôturent l'orogenèse kénorienne sont d'extension locale, de directions NE-SW, NNE-SSW et, plus rarement, NW-SE. Dans l'avant-pays sédimentaire du Pontiac (ceinture de Bellecombe dans Dimroth *et al.*, 1982, 1983a), les plis sont de plus en plus déversés et leur fréquence augmente considérablement.

Le métamorphisme dans la partie ouest de la région étudiée est au faciès des schistes verts inférieur sauf près des masses plutoniques où il atteint le faciès amphibolite. Toutefois selon Marquis (1983), lorsqu'on s'approche du front de Grenville, le faciès métamorphique augmente graduellement. Les grauwackes deviennent alors des micaschistes à biotite et/ou à grenat et/ou à staurotide.

CADRE PALÉOGÉOGRAPHIQUE

Les études stratigraphiques, volcanologiques, sédimentologiques et structurales dans la zone externe de la Ceinture d'Abitibi ont conduit à l'identification d'un environnement paléogéographique qui évolue en trois étapes (Dimroth *et al.* 1982: Imreh 1984):

1- Volcanisme fissural sous-marin, de composition mafique et ultramafique, formant une plaine de lave sous-marine de grande étendue de caractères komatiitique et tholéiitique.

2- Volcanisme central, constitué de matériaux tholéiitiques et calco-alcalins, définissant des arcs insulaires qui croissent parfois jusqu'au niveau de la mer.

3- Emergence des centres volcaniques et érosion. Les débris se déposent dans des bassins délimités par des failles syn-sédimentaires.

STRATIGRAPHIE

Présentement, il existe deux visions bien différentes de la stratigraphie abitibienne. Une première proposée par Dimroth *et al.* (1982) utilise les données volcanologiques et sédimentologiques pour définir un cadre stratigraphique et présenter un modèle de l'évolution paléogéographique, impliquant des corrélations lithostratigraphiques de part et d'autre des grandes structures régionales. Une seconde profite de l'apport de données structurales, géochimiques et géochronologiques nouvelles, quoiqu'encore très incomplètes, pour introduire la notion d'accolage tectonique de domaines lithotectoniques distincts, limités par des failles régionales (Hubert *et al.* 1984; Ludden *et al.* 1986; Hubert et Ludden 1986; Gauthier *et al.* 1988, 1990a, b; Daigneault et Archambault 1990; Hocq 1990). Cette seconde vision remet en question les corrélations lithostratigraphiques de part et d'autre des grandes failles régionales, et exige, à tout le moins, un examen critique des modèles stratigraphiques établis.

Notre approche stratigraphique tient compte de ces deux visions de la lithostratigraphie dans la ceinture de l'Abitibi. C'est pourquoi dans une première phase cartographique, nous subdivisons la région en domaines lithotectoniques distincts séparés par des zones de failles E-W d'envergure régionale. Dans une deuxième phase, nous comparons l'environnement lithochimique et paléogéographique de chacun des domaines et nous examinons les possibilités de corrélation lithostratigraphique.

DOMAINES LITHOTECTONIQUES DE LA PROVINCE DU SUPERIEUR

Deux couloirs de déformation séparent la région en cinq domaines lithotectoniques (figure 4). Le premier couloir (domaine de Trivio) se trouve au sud de notre région; il recoupe le Groupe volcanique et sédimentaire de Trivio, défini ici comme un complexe structural au sens du code stratigraphique nord-américain (MER 1986), et il est interprété comme étant l'extension vers l'est de la zone tectonique de Cadillac. Le deuxième couloir (domaine de Garden Island) longe la bordure nord de notre carte pour ensuite bifurquer vers le sud-est à proximité du front de Grenville; il se confond avec le Groupe sédimentaire très déformé de Garden Island dont les contacts avec les volcanites au nord et au sud sont très cisaillés. De part et d'autre de ces couloirs de déformation, on reconnaît trois autres domaines lithotectoniques distincts, que nous nommons: le domaine de Val-d'Or au

<u>-</u>ე

centre, le domaine de Villebon au sud et le domaine d'Assup au nord et au nord-est. Le tableau 2 résume la nomenclature stratigraphique pour chacun des domaines mais il n'implique pas de corrélation stratigraphique d'un domaine à l'autre.

Le domaine de Val-d'Or

Le domaine de Val-d'Or, qui couvre toute la zone centrale de la région étudiée, correspond à l'extension vers l'est d'une partie du flanc sud de l'anticlinal de La Motte - Vassan défini par Imreh (1984) dans la région adjacente de Malartic-Val-d'Or. De la base vers le sommet (du nord vers le sud), nous reconnaissons dans l'ordre la Formation de Dubuisson du Groupe de Malartic, la Formation de Jacola, la Formation de Val-d'Or et la Formation de Héva.

La Formation de Dubuisson, définie par Imreh (1976, p. 17) dans la région du lac De Montigny (appelé aussi lac Dubuisson), constitue l'unité lithostratigraphique supérieure du Groupe de Malartic. Cette formation occupe la partie NW de notre région où elle forme une bande plissée et faillée de 1 à 4 km de largeur, en contact inférieur très cisaillé avec le Groupe de Garden Island plus au nord. Le contact supérieur avec la Formation de Jacola plus au sud n'affleure pas; nous l'avons toutefois reconnu dans une zone de forage, à l'ouest de la route 113 (figure 4) où il correspond à l'apparition de coulées ultramafiques minces, de quelques décimètres d'épaisseur, et peu continues latéralement (Imreh, communication personnelle, 1985). L'épaisseur réelle de cette unité est inconnue dans notre région à cause de la présence d'un contact inférieur faillé avec le Groupe de Garden Island.

Cette formation est constituée d'une suite séquentielle de coulées basaltiques avec de rares épisodes andésitiques. Quelques horizons intercalaires de coulées ultramafiques et de basaltes magnésiens ou picritiques ont aussi été cartographiés. Les faciès dominants sont des brèches de lave (45 %) (figure 5), des laves massives (35 %) des laves coussinées (20 %). La puissance des coulées ne dépasse jamais 1 à 2 m et la continuité latérale est pratiquement impossible à établir à cause de la dimension réduite des affleurements. Les niveaux de volcanoclastites, intercalés entre les volcanites massives et coussinées, sont finement lités et d'une continuité latérale considérable.

En lame mince, la roche est en grande partie recristallisée. Les volcanites présentent une chloritisation et une silicification prononcées; on reconnaît aussi un peu d'épidotisation, de saussuritisation et de carbonatisation. L'assemblage minéralogique type

DOMAINE	DOMAINE	DOMAINE	DOMAINE	DOMAINE
D'ASSUP	DE GARDEN ISLAND	DE VAL-D'OR	DE TRIVIO	VILLEBON
ASSUP: Volcanisme bimodal d'affinités tholéiitique et calco-alcaline. Laves massives, coussinées et bréchiques de composition surtout andésitique. Quelques	GARDEN ISLAND: Séquence sédimentaire gréso-pélitique finement litée (1 à 15 cm) et grano- classée. Formation de fer à magnétite. Horizons len- ticulaires de conglomérat.	HÉVA: Volcanisme tholéiitique de type effusif et de composition andésitique et dacitique. Rares épisodes pyroclastiques. Coulées variolaires. VAL=D'OR: Volcanisme calco-alcalin de type effusif et pyroclastique, et de composition andésitique et basaltique. Dans les laves, souvent vésiculaires, le faciès	TRIVIO: Complexe structural formé de blocs lithotectoniques d'origine sédimentaire et volcanique. Grès fin, siltstone et formation de fer à magnétique et pyrrho- tite. Horizons lenticulaires de conglomérat. Volcanites effusives et pyro- clastiques, d'affinité et de composition variées. <u>CONTACTS FAILLES</u>	PONTIAC: Séquence sédimentaire gréso-pélitique en lits granoclassés. Horizons lenticulaires de conglo- mérat.
horizons lenticulaires pyro- clastiques. AURORA: Volcanisme franchement tholéiitique. Laves massi- ves et coussinées de compo- sition basaltique, interca- lées de quelques coulées picritiques et andésitiques.		bréchique est dominant. JACOLA: Volcanisme effusif d'affinité tholéiitique et komatiitique. Alternance rythmique de ter- mes ultramafique et basaltique minces (< 1,5 m). Laves peu vésiculaires. DUBUISSON: Volcanisme effusif d'affinité tholéiitique et komatiitique. Suite séquentielle de coulées basaltiques, intercalée de cou- lées ultramafiques et de basal- tes magnésiens et picritiques.		VILLEBON: Volcanites d'affinité tholéii- tique et komatiitique, composées de roche ultra- mafique, de basalte picri- tique ou magnésien, de basalte et d'andésite.

 Tableau 2.
 Résumé de la description des unités stratigraphiques archéennes proposées pour des domaines lithotectoniques de la région située à l'est de Val-d'Or. Il n'y a pas de corrélation entre les différents domaines.

Figure 5: Coulée bréchique de basalte de la Formation de Dubuisson; polarité vers le haut de la photo. Échelle: règle de 10 cm. Localisation: rang IX, canton de Vauquelin, près du gîte de Bruell, affleurement 287. est constitué de plagioclase sodique et d'actinote très chloritisée. La chlorite, de couleur brun verdâtre, est omniprésente et peut atteindre des quantités de 35 % à 55 %. La magnétite disséminée et à granulométrie fine peut représenter jusqu'à 8 % du contenu de la roche.

La Formation de Jacola, définie par Imreh (1976, p. 18) dans la ville de Jacola près de Val-d'Or, affleure dans une bande de 1,5 km de largeur au NW de la région. Tel que mentionné plus haut, la base de cette unité est marquée par la diminution d'épaisseur des niveaux ultramafiques et le contact avec la Formation de Dubuisson en-dessous est souvent cisaillé. Vers l'est dans le canton de Vauquelin, cette unité stratigraphique se perd brusquement au contact avec une faille NE. Les affleurements sont peu nombreux et sans la présence d'une zone de forages au voisinage de la route 113, nous n'aurions pu reconnaître cette unité stratigraphique.

Dans l'ensemble, cette formation est caractérisée par la présence de coulées massives et coussinées, de brèches de coulée et d'hyaloclastites. La composition des laves varie généralement d'un basalte magnésien à une andésite et quelques minces niveaux de coulées ultramafiques ont été observés. Sous le microscope, les brèches de coulée se reconnaissent par la présence de fragments chloritisés et épidotisés de lave dans une matrice hyaloclastique, en partie recristallisée, constituée de quartz, plagioclase, chlorite et carbonate.

La Formation de Val-d'Or, définie par Imreh dans Dimroth et al. (1982, p. 1735), constitue l'unité stratigraphique la plus épaisse dans la région étudiée (4 à 6 km). Cette épaisseur est une épaisseur apparente qui pourrait être exagérée par plissement. Les contacts à la base et au sommet de cette unité n'affleurent pas. Toutefois sur les cartes, la limite inférieure a été placée à l'apparition des premiers niveaux de pyroclastite et la limite supérieure à la disparition des niveaux de pyroclastite.

D'une façon globale, cette formation est constituée de trois bandes de pyroclastites intercalées dans des roches volcaniques effusives. La composition des laves et des pyroclastites varie d'un basalte à une andésite trachytique. Dans les roches pyroclastiques, les faciès les plus fréquents sont des tuf polymicte à bloc et à lapilli et quelques horizons de tuf à cristaux de plagioclase (figures 6 et 7). La puissance des lits varie de quelques mètres d'épaisseur dans les tufs grossiers à quelques décimètres dans les tufs à cristaux. Les fragments sont fréquemment aplatis dans les plans de la schistosité régionale. La matrice,

Figure 6: Tuf à blocs polymictes de la Formation de Val-d'Or. Notez la forme angulaire des fragments décimétriques dans une matrice à grains grossiers. Localisation: secteur SE du canton de Vauquelin, affleurement 374.

Figure 7: Tuf à lapilli et blocs de la Formation de Val-d'Or. Notez la forme sub-arrondie des fragments. Localisation: rang III, canton de Vauquelin, affleurement 77.

de composition basaltique à dacitique, constitue 20 % à 60 % de la roche; elle est composée de cristaux de plagioclase, de chlorite, de carbonate, d'épidote et parfois de quartz.

Les laves sont composées d'une alternance cyclique d'unités massives et parfois vésiculaires à la base de la section, surmontées de coulées coussinées (figure 8) et de brèches de coulée à texture lobée dans une matrice hyaloclastique parfois abondante. Le faciès bréchique est dominant. En lame mince, on peut reconnaître la texture microlitique de certaines laves; toutefois la matrice hyaloclastique est généralement remplacée par une pâte recristallisée de chlorite, de carbonate, d'épidote et quartz.

La Formation de Héva a été définie par Imreh (1976, p. 18) dans la localité de Rivière Héva. Elle a été cartographiée dans le centre ouest de notre région dans les cantons de Louvicourt et Vauquelin. Ses contacts avec les autres unités, qui n'affleurent nulle part dans la région étudiée, pourraient être en partie faillés; dans sa partie ouest, le contact nord correspond à un linéament E-W observé sur images LANDSAT, alors que le contact sud suit une des failles subsidiaires de la zone tectonique de Cadillac. Cette unité stratigraphique est interprétée comme étant située au coeur d'une structure synclinale en partie faillée.

La Formation de Héva est caractérisée par la présence d'un volcanisme effusif de compositon intermédiaire à felsique (andésitique et dacitique). Le faciès prépondérant est caractérisé par la présence de varioles (figure 9), dont la dimension varie de quelques millimètres à près de 2 centimètres. Les horizons de lave variolaire contiennent aussi jusqu'à 15 % de magnétite octaédrique bien cristallisée. Les faciès coussinés et bréchiques, bien indentifiés par Imreh (1984) dans le secteur de Malartic-Val-d'Or, sont plus difficiles à reconnaître dans notre région à cause de l'augmentation de la déformation et de la proximité de zones de cisaillement souvent intenses. Une autre caractéristique particulière de cette formation, c'est la présence d'une silicification importante; en lame mince, le quartz domine avec une proportion moyenne au-dessus de 50%, mais qui peut dépasser 80 % dans les horizons silicifiés. Les autres minéraux sont le plagioclase, la chlorite, les carbonates et la magnétite.

Le domaine de Villebon

Le domaine de Villebon, est constitué de deux unités lithostratigraphiques, les Groupes de Villebon et de Pontiac; il est séparé du domaine de Val-d'Or au nord par le Complexe structural de Trivio. Le Groupe de Villebon a été considéré comme étant l'unité

Figure 8: Coulées andésitiques de la Formation de Val-d'Or. Notez le contact entre une coulée coussinée à droite sur la photo et une coulée massive au-dessus à gauche sur la photo. Localisation: rang IV, canton de Vauquelin, affleurement 201.

Figure 9: Andésite variolaire de la Formation de Heva. Notez la taille des varioles aplaties dans les plans de la schistosité régionale. Localisation: route 117, canton de Louvicourt, affleurement 380.

stratigraphique la plus vieille de ce domaine lithotectonique (Vogel 1972; Gaudreau *et al.* 1986); cette déduction a été suggérée par la présence d'une grande structure anticlinale dont le coeur serait représenté par les roches volcaniques du Groupe de Villebon. Toutefois le contact de cette unité avec le Trivio est dans l'ensemble fortement cisaillé, ce qui peut fausser les relations stratigraphiques réelles. Le Groupe de Pontiac est considéré comme étant plus jeune que le Villebon (Vogel 1972); par contre ses relations avec le Trivio sont plus obscures en l'absence de contact connu.

Les différentes unités du domaine de Villebon occupent la partie sud de notre carte. Nous n'avons cartographié nous-mêmes que le nord du Complexe structural de Trivio et quelques rares affleurements des Groupes de Villebon et de Pontiac. C'est pourquoi nous n'avons pu établir les épaisseurs stratigraphiques.

Le Groupe de Villebon, défini par Vogel (1972, p. 6) près du lac Villebon, est constitué de faciès de laves massives, coussinées et bréchiques, qui représentent une grande variation de composition: on y retrouve en effet des ultramafites (figure 10), des basaltes picritiques ou magnésiens, des basaltes et des andésites. Le faciès dominant des basaltes et des andésites est représenté par des coulées bréchiques de 1 à 3 m d'épaisseur, plutôt lenticulaires, accompagnées de quelques coulées coussinées et massives généralement plus minces (maximum 2 m d'épaisseur). Les coussins ont un diamètre inférieur à 30 cm et sont généralement déformés. Dans les roches ultramafiques, le faciès massif et craquelé domine et passe parfois à un faciès bréchique au sommet. En lame mince, ces roches sont très épidotisées et parfois même serpentinisées et/ou amphibolitisées. Les textures primaires sont absentes.

Le *Groupe de Pontiac*, défini par Wilson (1910) au SW de Rouyn-Noranda dans la région du lac Opasatika, n'affleure à peu près pas dans la région cartographiée. Il est composé principalement de roches sédimentaires gréso-pélitiques, montrant du granoclassement, interstratifiées avec de minces niveaux de conglomérat pétromicte.

Le domaine de Trivio

Le domaine de Trivio est constitué d'une seule unité stratigraphique que nous appelons le *Complexe structural de Trivio*, antérieurement défini Groupe de Trivio par Sharpe (1968) dans la région du lac Trivio au SW de Louvicourt. Cette unité stratigraphique est maintenant considéré comme un ensemble de bandes lenticulaires de roches sédimentaires ou de roches volcaniques, en contact cisaillé les unes par rapport aux 24

Figure 10: Coulée ultramafique du Groupe de Villebon montrant les faciès massif, craquelé et bréchique indiquant une polarité vers la droite de la photo. Échelle: crayon de 14 cm. Localisation: rang l, canton de Vauquelin, affleurement 341, île du Lac Villebon.

Figure 11: Interstratification de grès fin quartzo-feldspathique et de siltstone du Complexe structural de Trivio. Échelle: crayon de 14 cm. Localisation: canton de Vauquelin, affleurement 1467. autres, sans qu'il soit possible de les relier stratigraphiquement (Racine 1989). Le Complexe structural de Trivio a été étudié en détail par Racine (1989) à cause de son importance économique et de sa position stratégique par rapport à la zone tectonique de Cadillac. Nous résumons ici les principales descriptions des faciès sédimentaires et volcaniques observés.

Les roches sédimentaires forment une séquence rythmique de turbidites de type proximal, composée de grès fin quartzo-feldspathique et de siltstone interstratifié à l'occasion avec une formation ferrifère à magnétite, de grès grossier feldspathique et de quelques niveaux de conglomérat pétromicte. Des horizons de roches volcanoclastiques et exhalatives s'interdigitent avec les roches sédimentaires, indiquant que le volcanisme est actif lors de la sédimentation. Les roches volcaniques comprennent des coulées basaltiques et andésitiques au faciès massif, coussiné et plus rarement bréchique.

Le faciès sédimentaire le plus fréquent est une séquence rythmique de grès fin quartzo-feldspathique et de siltstone en lits d'épaisseur variable, de 5 à 10 cm en moyenne, montrant souvent du granoclassement normal, alternant avec de minces interlits de shale de 1 à 5 cm d'épaisseur (figure 11). Parfois un mince niveau de laminae parallèles est observé au sommet des lits. En lame mince, ces grès sont constitués de fragments de feldspath et de quartz arrondis. Les fragments de roche sont rarement observés et semblent restreints aux lits plus grossiers. La matrice abondante (30 % à 40 %) est complètement recristallisée en quartz, muscovite, biotite et chlorite.

Une formation ferrifère à magnétite peut être suivie sur les cartes magnétiques du fédéral et dans les forages sur plus de 16 km de distance depuis la mine Chimo jusque dans le secteur du lac Matchi-Manitou (Rocheleau *et al.* 1988). Les lits de magnétite sont interstratifiés avec des lits gréso-pélitiques granoclassés (figures 12 et 13) et forment une bande plissée dont la largeur varie de 3 à 70 m dans les secteurs de Chimo et de Nordeau. Les couches ferrifères sont caractérisées par l'alternance de lamines millimétriques à centimétriques riches en magnétite, de lamines blanches "cherteuses" et de lits verts de silicates de fer avec ou sans magnétite. Sous le microscope, la magnétite est en petits grains irréguliers de 0,05 mm de diamètre ou en grains poeciloblastiques subidiomorphes de 0,3 mm. Le quartz forme une mosaïque de grains de 0,05 mm et doit vraisemblablement être du chert recristallisé (Sauvé *et al.* 1987). Les silicates de fer comprennent la grunérite, la ferrohornblende, la chlorite et un peu de biotite. La présence du grenat almandin

Figure 12: Formation ferrifère à magnétite du Complexe structural de Trivio. Notez l'alternance d'horizons riches en magnétite (noir) et d'horizons silteux (gris). Localisation: secteur SE du canton de Vauquelin, affleurement 1467.

Figure 13: Lit granoclassé à laminae parallèles de la formation ferrifère à magnétite du Complexe structural de Trivio. Notez l'augmentation de la quantité de magnétite (noir) au sommet du lit. Échelle: crayon de 14 cm. Localisation: secteur SE du canton de Vauquelin, affleurement 1467.

légèrement manganésifère a été notée dans le niveau ferrifère sud de la mine Chimo (Sauvé et al. 1987).

Un deuxième faciès gréseux est constitué de grès feldspathique grossier et conglomératique (dm = 2 à 4 mm), chloritisé et pauvre en quartz (< 5 %). En affleurement, les lits ont une épaisseur moyenne de 15 à 30 cm. Les limites entre les lits sont peu marquées. Ces grès sont généralement massifs et sans structure sédimentaire. De minces interlits de shale viennent rompre la monotonie de cette séquence. En lame mince, les grès grossiers sont constitués de fragments de plagioclase (albite) dans une matrice similaire à celle des grès décrits précédemment. La matrice est recristallisée en chlorite, biotite et quartz, en plus de contenir de 3 à 7 % de carbonates (calcite).

Le conglomérat pétromicte à cailloux, galets et blocs, généralement très déformé (figure 14), se présente en lits lenticulaires, d'épaisseur variable, massifs ou granoclassés. Les pourcentages de fragments et de matrice sont particulièrement difficiles à déterminer à cause de la déformation. Toutefois dans les secteurs les moins déformés, la matrice semble suffisamment abondante pour supporter les fragments. Les fragments sont composés en majeure partie de blocs d'origine volcanique, principalement des tufs et des tufs à cristaux felsique, de bloc d'origine intrusive de composition tonalitique, et en plus faible quantité, de cailloux de chert noir et de roche volcaniques felsiques, de roches sédimentaires et de fuchsite. La matrice de ces conglomérats est soit gréseuse, soit silteuse et de même composition que le faciès de grès fin quartzo-feldspathique et de siltstone. Ces niveaux lenticulaires de conglomérat sont interprétés comme étant le remplissage de chenaux sous-marins.

Les laves mafiques et intermédiaires, principalement des basaltes et des andésites, présentent le faciès massif, coussiné et plus rarement bréchique. Les laves massives sont généralement aphanitiques, quoique localement grenues (1 à 2 mm). Les laves coussinées sont parfois vésiculaires et présentent des coussins de dimensions très variables avec très peu de matériel hyaloclastique associé (figure 15). Les laves bréchiques sont peu fréquentes et généralement restreintes à de minces horizons lenticulaires; il s'agit généralement de brèche de coulée à fragments de lave, plus ou moins abondants (0 à 60 %) et de petite dimension (1 à 5 cm), dans une matrice hyaloclastique. Les pyroclastites sont constituées de tufs mafiques, très feldspathiques, à cendre, à cristaux, à lapilli, et à blocs.

Figure14: Conglomérat pétromicte du Complexe structural de Trivio. Notez la déformation intense subie par la roche dans un couloir de déformation de la zone tectonique de Cadillac.

Figure 15: Andésite coussinée du Complexe structural de Trivio dans la zone tectonique de Cadillac au voisinage de la mine Chimo.

On reconnaît au voisinage de la mine Chimo certains niveaux particulièrement riches en graphite.

En lame mince, la minéralogie observée est similaire pour l'ensemble des roches volcaniques. L'assemblage minéralogique et les textures observées sont essentiellement métamorphiques, les roches étant complètement recristallisées. Les constituants majeurs sont le quartz, la chlorite, l'actinote et l'épidote (zoisite et clinozoisite). Il y a une quantité minime de biotite et de minéraux opaques (magnétite, ilménite et pyrite) et des traces de sphène, de leucoxène et de tourmaline.

Le domaine d'Assup

Deux unités lithostratigraphiques, d'origine volcanique, caractérisent le domaine d'Assup: il s'agit des Groupes d'Aurora et d'Assup. Ce domaine est séparé de celui de Val-d'Or au S par le Groupe de Garden Island, que nous incluons dans un domaine lithotectonique différent. Les Groupes d'Aurora et d'Assup ont été définis pour la première fois par Rocheleau *et al.* (1990). Le premier tire son nom d'un gîte aurifère du même nom, situé dans le centre nord de la région, alors que la localité type du second groupe est une rivière située au NE de la région (figure 4 et cartes en pochette). Les roches du Groupe d'Aurora avait été considérées précédemment comme appartenant à la Formation de Dubuisson (Gaudreau *et al.* 1986; Rocheleau *et al.* 1987; et Gaudreau *et al.* 1988c) à cause de ressemblances lithologiques avec cette unité lithostratigraphique; toutefois la présence d'un couloir de déformation majeur entre cette unité et le Dubuisson nous a amené à en faire une unité distincte à la base de la séquence stratigraphique du domaine d'Assup. Les roches volcaniques du Groupe d'Assup, regroupées tentativement dans le Groupe d'Harricana (Rocheleau *et al.* 1987), appartiennent maintenant à une unité lithostratigraphique distincte pour des considérations lithologiques, géochimiques et structurales.

Dans ce domaine, le volcanisme, essentiellement de type effusif à la base, débute par une séquence franchement basaltique, interstratifiée avec quelques coulées picritiques et andésitiques, le *Groupe d'Aurora*. Ce groupe basaltique a été cartographié dans la partie nord du canton de Vauquelin (secteur des gîtes de Bruell et d'Aurora) et dans la partie NE de notre carte (canton de Pershing), où il forme une bande de 1 à 2 km de largeur. Dans ce groupe, les faciès dominants sont des laves coussinées (figure 16) ou massives avec quelques rares horizons de brèches de coulée. En lame mince, ces volcanites présentent à l'occasion une

Figure 16: Basalte coussiné du Groupe d'Aurora. Notez l'étirement des coussins dans les plans de la schistosité régionale. Localisation: canton de Pershing, affleurement 2223.

Figure 17: Brèche de coulée andésitique du Groupe d'Assup. Des coussins isolés de forme amyboïdale baignent dans une matrice hyaloclastique. Localisation: canton de Pershing, affleurement 2054.

texture microlitique où les reliques des lattes de plagioclase (20 % à 35 %) et des cristaux d'actinote/trémolite (60 % à 65 %) sont encore visibles malgré une chloritisation très prononcée. Les autres minéraux présents (10 % à 15 %) sont l'épidote, les carbonates et la magnétite.

Le Groupe d'Aurora est surmonté d'une succession franchement andésitique, intercalée de quelques coulées de basaltes et de basaltes andésitiques, le *Groupe d'Assup*. Ce groupe forme une bande plissée de plus de 4 km de largeur au NE de la région cartographiée. Les faciès effusifs sont dominants. De l'ouest vers l'est, les laves passent de faciès surtout coussinés ou massifs à un faciès plutôt bréchique considéré comme étant un faciès plus distal, par comparaison avec des faciès semblables décrits par Dimroth *et al.* (1978) dans la région de Rouyn. Quelques horizons lenticulaires de tuf à cendres, de tuf à lapilli et de tuf à blocs sont cartographiés dans la séquence andésitique.

Dans les laves, les coulées coussinées sont bien définies et souvent peu déformées; elles montrent des coussins dont la dimension varie de 30 à 50 cm de longueur (axe long) par 15 à 30 cm de hauteur (axe court). Des méga-coussins, dont les dimensions varient de 1,5 à 2,0 m par 30 à 60 cm ont aussi été cartographiés. Les coulées massives forment des unités de lave aphyrique dont l'épaisseur varie en moyenne de 1 à 3 m. Les brèches de coulées sont généralement monogéniques et formées de fragments de coussins (30 % à 70%) dans une matrice hyaloclastique (figure 17). Dans les tufs, la dimension des fragments (plutôt anguleux) vaire de quelques millimètres à près de 20 cm (figure 18). Les lapilli et les blocs ont une composition intermédiaire à felsique (andésitique et dacitique) dans une matrice chloriteuse verdâtre.

Le domaine de Garden Island

Le domaine de Garden Island est formé d'une seule unité lithostratigraphique très déformée, d'origine sédimentaire: le Groupe de Garden Island. La présence d'une déformation intense des roches sédimentaires près des contacts avec les roches volcaniques des deux autres domaines lithotectoniques suggère que les contacts sont en bonne partie faillés.

Le *Groupe de Garden Island* a été défini par Bell et Bell (1932) dans le canton de Pershing dans la région du lac Blanchin (anciennement nommé lac Garden Island). Il occupe la bordure nord de notre carte dans le canton de Vauquelin et dans la partie ouest du canton de

Figure 18: Tuf à cristaux et à lapilli de composition andésitique du Groupe d'Assup. Localisation: canton de Pershing, près du gîte de Croinor, affleurement 86-BP-Croinor.

Figure 19: Grès grossier et conglomératique du Groupe de Garden Island. La roche intensément cisaillée montre un contact entre un grès et un grès conglomératique. Localisation: rang IX, canton de Vauquelin, affleurement 306. Pershing, pour ensuite épouser grossièrement la forme du batholite de Pershing et se buter sur le front de Grenville. L'épaisseur apparente de cette unité sédimentaire varie de 1,0 à 1,6 km. Cette épaisseur apparente est indubitablement exagérée par la présence de plusieurs plis serrés identifiés grâce à des changements de polarités (granoclassements) et à des inversions dans le regard structural des couches (relations litage/schistosité). Plusieurs zones cisaillées et très carbonatisées suggèrent en plus la présence de failles au sein de cette unité.

Le Groupe de Garden Island est composé principalement de grès, de siltstone et de mudstone finement lités (1 à 15 cm d'épaisseur) et granoclassés (figure 19). Nous avons de plus reconnu quelques minces lentilles de conglomérat pétromicte (0,3 à 2 m d'épaiseur) et des horizons centimétriques à décimétriques de formation de fer à magnétite. En lame mince, les grès, les siltstones et les mudstones sont fortement recristallisés, souvent altérés (séricite, chlorite, épidote) et métamorphisés au faciès des cornéennes à amphibole, laissant peu de place à l'observation des textures et de la minéralogie primaire.

Dans les conglomérats, les cailloux, les galets et les blocs sub-arrondis et souvent très aplatis sont composés surtout de fragments volcaniques felsiques à intermédiaires, de quelques fragments volcaniques mafiques et parfois de fragments de roches intrusives felsiques.

La déformation et le métamorphisme de ces roches, transformées en paragneiss au contact avec le batholite de Pershing, ne favorisent pas l'interprétation paléoenvironnementale; toutefois comme le reconnaissaient Marquis et Goulet (1987), il existe des ressemblances lithologiques et faciologiques entre ce groupe et les roches sédimentaires du Trivio, ce qui nous amène à proposer le même type de paléoenvironnement, i.e. milieu marin relativement profond.

ROCHES INTRUSIVES DE LA PROVINCE DU SUPÉRIEUR

Les roches intrusives occupent environ 15 % de la superficie de la région cartographiée. Leur étude systématique n'était pas inclue dans le mandat du contrat de recherche avec le MER. Elles ont toutefois été cartographiées de façon systématique à l'échelle 1:20 000 à cause de leur volume et de leur importance économique. Nous en donnerons une description sommaire après les avoir regroupées selon leur nature et aussi

selon leur relation d'âge par rapport à la déformation régionale E-W et à l'orogenèse kénorienne.

Les intrusions felsiques pré-déformation régionale

Les roches intrusives felsiques sont nombreuses et présentent des compositions et des modes de mise en place variés. Dans notre secteur, le pluton de Bevcon et plusieurs dykes de porphyres feldspathiques et quartzo-feldspathiques, dont nous présentons une brève description ci-dessous, en sont les meilleurs exemples.

Le pluton de Bevcon, d'une dimension de 12 km² environ, affleure au sud de la route 117, dans le rang VII du canton de Louvicourt. De composition granodioritique et/ou dioritique quartzitique, ce pluton est relativement homogène, massif et grenu. La roche fraîche montre des assemblages de quartz, plagioclase, hornblende et biotite dans une matrice quartzo-feldspathique de couleur gris-bleu. Plusieurs zones de cisaillement sont localisées dans la partie nord et ouest de la bordure du pluton. Dans ces zones, la roche est schisteuse et légèrement métasomatisée en chlorite et carbonate. Une zone de granophyre délimitée par sondages dans l'ancienne mine Bevcon, semble associée étroitement à la minéralisation aurifère de ce secteur.

Dans le rang VII du canton de Vauquelin, nous avons rencontré deux petites masses satellites, de composition granodioritique qui pourraient être reliées génétiquement au pluton de Bevcon. L'une d'elles est l'hôte de l'ancienne mine Regcourt.

Plusieurs dykes, de 20 à 30 m d'épaisseur en moyenne, constitués de porphyres à phénocristaux de feldspath ou de quartz-feldspath (2 à 6 mm de diamètre) sont localisés dans la partie nord de notre région, ainsi que dans le secteur à l'est du lac Simon. Ces dykes, de composition granodioritique à tonalitique, recoupent nettement les unités volcaniques.

Les intrusions mafiques pré-déformation régionale

Des lentilles de diorite ou de gabbro de quelques mètres d'épaisseur sont parfois intercalées dans les volcanites effusives et présentent à l'occasion une minéralisation disséminée de pyrite et de pyrrhotite. Cette roche est à grain moyen, de couleur foncé et riche en minéraux ferro-magnésiens.

Les filons-couches pré-déformation régionale Le filon-couche de Vicour

Le filon-couche de Vicour de direction E-W traverse toute la partie centrale du canton de Louvicourt dans les rangs V et VI. Il s'étend sur plus de 7 km avec une puissance apparente variant de 200 à 700 m d'épaisseur. Il recoupe nettement la Formations de Val-d'Or à proximité du contact avec la Formation de Héva.

Une étude pétrographique sur une coupe N-S à la hauteur de la mine Sigma 2, nous a permis de mettre en évidence la présence de quatre faciès lithologiques, soit de la base au sommet (du nord vers le sud): le gabbro, le gabbro à amphibole, la diorite quartzifère et le granophyre tonalitique (Perrier 1986; Hébert *et al.* 1988). Cette séquence indique une polarité vers le sud, en conformité avec les polarités mesurées dans les laves et les pyroclastites en-dessous et au-dessus du filon-couche.

Le faciès gabbroïque présente sur une épaisseur apparente de 45 m une texture primaire de cumulat bien conservée. La phase cumulus représente 45% de la roche et est composée de plagioclases saussuritisés tandis que la phase intercumulus est constituée de clinopyroxènes entièrement pseudomorphosés en chlorite. Les phases accessoires sont la magnétite-titanifère et l'ilménite, en intercroissance, ainsi que des quantités mineures de sphène et de leucoxène.

Le faciès de gabbro à amphibole d'environ 100 m d'épaisseur présente une phase cumulus semblable au faciès grabbroïque commun. Par contre la phase intercumulus est constituée de clinopyroxènes chloritisés qui diminuent rapidement en montant dans la stratigraphie, au profit des amphiboles de type hornblende verte. Ces hornblendes vertes possèdent une texture de corronite issue d'un remplacement périphérique partiel par des amphiboles sodiques bleu vert. Les phases accessoires sont la biotite, le sphène, la magnétite titanifère et l'ilménite. Cette dernière phase semble se concentrer au sommet de ce faciès.

Le faciès de diorite quartzifère, de 35 m d'épaisseur apparente, est le témoin de la sursaturation en silice dans la séquence de différentiation du filon-couche de Vicour. Il est composé à 60% de plagioclases séricitisés et épidotisés, de 20 à 25% de quartz allotriomorphe et d'une quantité mineure d'actinote, magnétite, apatite, chlorite, muscovite et zircon.

Le faciès granophyrique de composition tonalitique possède une épaisseur approximative de 45m. Ce faciès riche en quartz est caractérisé par une intercroissance de grandes plages de quartz et plagioclase présentant une texture granophyrique typique et bien préservée.

Le filon-couche de Croinor

Le filon-couche de Croinor est situé dans la partie nord-est du canton de Pershing. Il est de direction N295° avec un pendage de 50° à 60° vers le nord. Son épaisseur varie de 60 à 120 m sur une longueur approximative de 3 km.

Ce filon-couche est constitué de faciès gabbroique à dioritique en bordures nord et sud puis d'une diorite quartzifère présentant des textures granophyriques vers le centre. Ce dernier faciès est la roche hôte du gisement aurifère de Croinor.

Les intrusions kénoriennes syn- à tardi-cinématiques

Le batholite de Pershing, avec une superficie de près de 100 km² dans les rangs III à VIII des cantons de Vauquelin et de Pershing, constitue la masse intrusive la plus importante de la région en superficie. Les affleurements forment souvent de grosses buttes dans le secteur oriental du lac Gueguen; ailleurs les affleurements sont rares mais la masse batholitique ressort très bien sur les cartes aéromagnétiques du fédéral. Plus au sud dans le canton de Denain, la *pegmatite de la Rivière Shamu* constitue probablement une phase pegmatitique du même batholite.

Ces roches intrusives sont de composition granitique et granodioritique à phénocristaux de hornblende; nous avons aussi observé à quelques endroits la présence d'un faciès monzonitique. Des enclaves aplaties de volcanites mafiques et intermédiaires dont les dimensions varient de 4 à 25 cm de longueur (axe long) et de 2 à 15 cm d'épaisseur (axe court), sont présentes surtout près de la bordure du batholite et constitueraient des vestiges de la roche encaissantes (figure 20).

Les dykes de diabase protérozoïques

Les dykes de diabase, d'âge protérozoïque, présentent une épaisseur apparente de 20 à 60 m environ. De direction NE et E-NE, ils recoupent toutes les unités stratigraphiques archéennes, incluant le batholite de Pershing. La texture diabasique, la quantité de minéraux ferro-magnésiens et la granulométrie des minéraux constituants sont très variables d'un site à l'autre.

Figure 20: Granite à hornblende du batholite de Pershing, contenant une enclave décimétrique de métavolcanite amphibolitisée. Localisation: rang VII, canton de Vauquelin, affleurement 1288. La bordure des dykes présente généralement une texture aphanitique ou vitreuse sur une épaisseur de 2 à 5 cm. Cette texture devient plus grenue (granulométrie de 2 à 10 mm) et ophitique vers le centre du dyke. De plus les dykes de diabase sont magnétiques et peuvent être identifiés facilement sur les différentes cartes aéro-magnétiques et électromagnétiques.

COMPLEXE GNEISSIQUE DE LA PROVINCE DE GRENVILLE

Les affleurements de la province de Grenville forment des crêtes isolées et de faible étendue. Les roches sont composées de gneiss à biotite et souvent à grenat, de gneiss à hornblende, d'amphibolites et de migmatites. Au point de vue pétrographique, ces gneiss montrent des textures et des assemblages minéralogiques typiques des roches grenvilliennes, caractérisées par un développement porphyroblastique (quartz, feldspath, biotite, grenat, amphibole); elles sont aussi fortement recristallisées au faciès métamorphique élevé. En lame mince, les minéraux typiques sont la sillimanite, la biotite lamellaire de couleur brun-rouge, les grenats idiomorphes millimétriques à centimétriques à texture poecilitique, riche en inclusions fines de quartz et de feldspath, ainsi que les amphiboles présentant des teintes vert foncé, le plagioclase, l'orthose et le quartz. Aucune texture ou structure des roches volcano-sédimentaires de la province du Supérieur n'a pu être reconnue dans ce secteur.

Nous discuterons plus en détail de la limite Supérieur-Grenville à la suite du chapitre sur la structure et le métamorphisme. Nous décrirons d'abord les caractéristiques géochimiques des roches volcaniques pour ensuite discuter des relations stratigraphiques entre les différents domaines lithotectoniques.

GÉOCHIMIE DES ROCHES VOLCANIQUES

Les travaux géochimiques réalisés dans le cadre cette recherche constituent la première étude approfondie des propriétés chimiques des roches volcaniques du secteur à l'est de Val-d'Or. Seules quelques données dispersées dans diverses études géologiques et dans des travaux d'exploration minière, cités en introduction de ce rapport, étaient disponibles. Nous avions nous-mêmes publié la plupart des résultats d'analyses dans des rapports intérimaires (Gaudreau *et al.* 1986; Rocheleau *et al.* 1988), Toutefois, l'analyse graphique des données et les interprétations n'étaient qu'à un stade préliminaire.

Dans la région adjacente de Malartic - Val-d'Or, et de façon générale dans la ceinture d'Abitibi, les interprétations géochimiques ont grandement contribué à la compréhension de la stratigraphie des unités volcaniques et conduit à la définition d'un cadre paléogéographique et géotectonique pour la mise en place des roches volcaniques (Gélinas *et al.* 1977; Gélinas *et al.* 1982; Ludden *et al.* 1982; Imreh 1984; Thurston *et al.* 1985; Ludden *et al.* 1986; Picard 1986; Picard et Piboule 1986a, 1986b; Card 1990). C'est pourquoi dans le secteur couvert par cette étude, nous proposons d'utiliser l'outil géochimique pour:

- définir les caractères lithochimiques des laves et des pyroclastites des différentes unités stratigraphiques;
- établir l'affinité magmatique des roches volcaniques, de même que la nature de la / ou des sources dont ces liquides magmatiques sont dérivés;
- 3) préciser les processus de différenciation des liquides magmatiques;
- 4) interpréter le cadre géotectonique de mise en place de ces laves; et
- 5) discuter des corrélations lithostratigraphiques entre les différents domaines lithotectoniques.

MOBILITÉ DES ÉLÉMENTS CHIMIQUES AU COURS DES PROCESSUS D'ALTÉRATION ET DE MÉTAMORPHISME

Tel que le discute Picard (1986), l'un des problèmes fondamentaux de toute étude géochimique des roches anciennes est de distinguer les caractères issus des processus magmatiques et ceux résultant du métamorphisme et de l'altération secondaire. Les auteurs qui se sont intéressés à cette question (Winchester et Floyd 1977; Floyd et Winchester 1975, 1978; Pearce et Cann 1973; Pearce et Norry 1979, etc.) s'accordent pour reconnaître que les éléments traces (Zr, Nb, Y, Ti) et les éléments des terres rares (ETR) sont les plus inertes au cours des processus d'altération et de métamorphisme faible. De tels éléments sont d'excellents marqueurs des processus magmatiques. Au contraire, les éléments alcalins (K, Na) et alcalino-terreux (Ca, Ba, Sr) peuvent varier dans de grandes proportions lors du métamorphisme et de l'altération. Ils constituent des marqueurs de ces processus.

Compte tenu des observations ci-dessus, du métasomatisme et du métamorphisme (discuté plus loin) qui affectent d'une façon particulière les grandes zones de cisaillement, la zone de contact du pluton de Pershing et la zone de bordure de la province de Grenville, nous utiliserons dans notre raisonnement géochimique les éléments les plus inertes au cours des processus de transformation des roches. Nous utiliserons également certains oxydes d'éléments majeurs tout en gardant une vision critique des résultats obtenus.

ÉCHANTILLONNAGE ET RÉSULTATS ANALYTIQUES

Sur le terrain, nous avons prélevé des échantillons représentatifs des principales unités volcaniques et intrusives en choisissant les faciès les plus aphyriques, les moins déformés et les moins affectés par le métasomatisme. Les échantillons ont ensuite été préparés selon la méthode décrite à l'annexe 1 et analysés soit au laboratoire Chimitec Ltée (numéros 0 à 4 999), soit au laboratoire du Centre de Recherches minérales (numéros 5 000 et plus ainsi que tous les numéros précédés d'un astérisque). Par la suite, à la réception des résultats analytiques, une sélection des échantillons a été faite selon des critères pétrographiques et géochimiques décrits à l'annexe 1, afin d'éliminer les résultats qui présentaient des signes anomaliques (altération majeure). Au total, 202 échantillons répondant aux critères de sélection de l'annexe 1 sont retenus pour le traitement statistique des résultats dont la liste complète (regroupement par unité stratigraphique) apparaît à l'annexe 2a. Ces analyses ont été normalisées à 100 % sans les éléments volatils. L'annexe 2b résume les teneurs moyennes en éléments majeurs, mineurs et traces des principaux faciès effusifs et pyroclastiques. Un bilan de la répartition des échantillons en fonction des différentes unités stratigraphiques et des faciès effusifs, pyroclastiques et épiclastiques est présenté au tableau 3. Cette répartition reflète une densité très inégale d'échantillonnage à cause des mauvaises conditions d'affleurement dans certains secteurs, mais aussi à cause du degré très prononcé de déformation et d'altération de certains niveaux stratigraphiques. Les annexes 3 et 4 donnent les résultats complets de dosages chimiques des échantillons de cartographie et de gîtologie, tels que fournis par les laboratoires avant la correction pour les éléments volatils. Ces résultats sont classés selon l'ordre numérique des échantillons et localisés sur une carte de compilation à l'échelle 1/50 000 (carte 6, en pochette).

Nous décrirons premièrement les caractéristiques géochimiques des roches volcaniques regroupées selon les domaines lithotectoniques, nous discuterons ensuite des corrélations lithostratigraphiques entre les différents domaines et de l'évolution générale du cadre paléogéographique et géotectonique.

GÉOCHIMIE DU DOMAINE DE VAL-D'OR

Classification géochimique des laves et des pyroclastites

La figure 21 (diagrammes de Winchester et Floyd 1977, Si0₂ vs Zr/TiO₂) nous permet de reconnaître le caractère subalcalin de toutes les lithologies volcaniques. Les basaltes komatiitiques et les péridotites komatiitiques, qui ne peuvent pas être discriminés adéquatement sur ce type de diagramme, seront plutôt classifiées selon leur affinité magmatique sur le diagramme ternaire de Jensen (1976) à la figure 22.

Les résultats géochimiques obtenus confirment une certaine correspondance entre la subdivision lithologique et faciologique en formations d'une part, et la classification pétrochimique et les affinités magmatiques d'autre part (figures 21 et 22). A la base de l'empilement stratigraphique, on observe d'abord une dominance des faciès effusifs

TABLEAU 3

Répartition des échantillons lithochimiques par unité stratigraphique et par facies

	Laves	Pyroclastites	Roches sédimentaires	Total
ASSUP	38	1	-	39
AURORA	21	-	-	21
DUBUISSON	13	-	-	13
GARDEN ISLAND	-	-	4	4
HÉVA	9	-	-	9
JACOLA	6	-	-	6
PONTIAC	1	-	-	· 1
TRIVIO	31	12	9	52
VAL D'OR	10	22	-	32
VILLEBON	3	-	-	3
INTRUSIONS	-	-	-	22

TOTAL

202

Figure 21. Diagrammes SiO₂- Zr/TiO₂ de Winchester et Floyd (1977) pour les laves et les pyroclastites des différentes unités stratigraphiques

Figure 22. Diagrammes de Jensen (1976) illustrant les affinités magmatiques de chacune des unités volcaniques. Les variables sont exprimées en pourcentage cationique. Th: champ tholéiitique; Ca: champ calco-alcalin; Kb: champ des basaltes komatiitiques; Kp: champ des péridotites komatiitiques.

basaltiques et andésitiques des *Formations de Dubuisson et de Jacola*. Au-dessus, la *Formation de Val-d'Or* est marquée par l'apparition d'un volcanisme explosif qui accompagne les éruptions de lave et dont la composition varie de basaltique à rhyodacitique et même rhyolitique. Au sommet, la *Formation de Héva* représente un volcanisme typiquement effusif, constitué de coulées rhyodacitique avec quelques intercalations andésitiques et rhyolitiques.

Les résultats cationiques Fe + Ti, Al, Mg reportés sur le diagramme ternaire de Jensen (1976) nous permettent de préciser l'affinité magmatique des volcanites de chacune des unités lithostratigraphiques (figure 22). Ainsi la séquence volcanique débute par un volcanisme tholéiitique, marqué de quelques pulsations komatiitiques (*Formations de Dubuisson et de Jacola*), surmonté d'un volcanisme calco-alcalin (*Formation de Val-d'Or*), et enfin suivi d'un volcanisme tholéiitique caractérisé par un enrichissement en fer (*Formation de Héva*).

Coefficient MGV de différenciation magmatique

Les diagrammes qui représentent les oxydes SiO₂, Al₂O₃, TiO₂ et FeO t (FeO total) en fonction du coefficient MGV ($Mg^{2+}/(Fe^{2+} + Mg^{2+})$ servent à identifier le degré de différenciation magmatique. Ce coefficient MGV, qui décroît avec l'augmentation du degré de différenciation magmatique, présente généralement une valeur entre 0,75 et 0,68 pour un liquide basaltique primaire (Bender *et al.* 1978). Les diagrammes de la figure 23 nous amènent à constater une augmentation de la différenciation magmatique entre la base et le sommet de l'empilement stratigraphique.

Dans la *Formation de Dubuisson*, les basaltes et les péridotites komatiitiques présentent des valeurs supérieures à 0,75 pour le coefficient MGV, suggérant une accumulation d'olivine, et sont pauvres en oxydes SiO₂, Al₂O₃ et TiO₂ comparativement aux autres roches de cette formation. Les faibles teneurs en Al₂O₃ témoignent de l'absence ou de la faible proportion de plagioclase dans ce type de magma alors que les teneurs relativement élevées en SiO₂ (> 45 %) et FeO t suggèrent que les roches ont probablement subi une certaine silicification, une serpentinisation et/ou une chloritisation. Les laves basaltiques et andésitiques les plus primitives ont un coefficient MGV de 0,65 et présentent les caractéristiques d'une lignée tholéilitique. Elles évoluent selon des tendances de différenciation marquée par la croissance des teneurs en FeO t et en TiO₂ alors que celles de SiO₂ demeurent plus ou moins constantes. La diminution des valeurs de Al₂O₃ en fonction du

Figure 23. Domaine de Val-d'Or. Diagrammes SiO₂- MGV, Al₂O₃ - MGV, FeO T - MGV, TiO₂ - MGV. MGV = Mg²⁺/ (Fe²⁺+ Mg²⁺) pour un rapport Fe₂O₃/ FeO = 0.15

degré de différenciation pourrait s'expliquer par un fractionnement des plagioclases et des clinopyroxènes alumineux.

Malgré le petit nombre d'échantillons analysés, les komatiites et les basaltes de la *Formation de Jacola* présentent des tendances évolutives qui se situent dans la continuité des laves du Dubuisson. Toutefois les teneurs en FeO t et Al₂O₃ pour les basaltes sont légèrement supérieures à celles du Dubuisson et les valeurs du coefficient MGV pour les basaltes primitifs atteignent 0,72.

Pour la *Formation de Val-d'Or*, les tendances de différenciation sont beaucoup moins nettes que pour les formations précédentes. La répartition très étalée des échantillons reflète la diversité des lithologies représentées, i.e. de basaltiques à rhyodacitiques. Les pyroclastites présentent un degré de différenciation semblable à celui de laves alors que l'évolution marquée du FeO t et du TiO₂ indique un faible fractionnement des oxydes. La valeur du coefficient MGV pour les roches les plus primitives est de 0,75.

La Formation de Héva représente l'unité sommitale du domaine de Val-d'Or, mais aussi l'unité volcanique la plus différenciée de ce domaine avec un coefficient MGV dont la valeur varie de 0,1 à 0,42. La tendance de différenciation se situe dans la continuité évolutive des magmas correspondant aux volcanites de la Formation de Val-d'Or. On observe ainsi, en fonction de l'augmentation du degré de différenciation, une augmentation des teneurs en SiO₂, FeO t et TiO₂ et une légère diminution des teneurs en Al₂O₃, suggérant le fractionnement des plagioclases sodiques et un faible fractionnement des minéraux ferrotitanés. Il est possible aussi que l'étalement des points sur les diagrammes, malgré le petit nombre d'échantillons représentés, reflète la présence possible de deux séries magmatiques.

Géochimie des éléments traces

Les figures 24 à 27 présentent des diagrammes de variation chimique de certains éléments traces (Ni, Sc, Y, Cr et La) et des rapports La/Sm et Zr/Y en fonction du Zr ou du La. Ces diagrammes permettent de mettre en évidence l'évolution de certains éléments traces au cours du fractionnement de minéraux comme l'olivine, la chromite, le clinopyroxène et/ou l'amphiboles, dans lesquels les éléments Ni, Sc et Cr sont compatibles alors que les éléments Zr, Y, Sm et La sont incompatibles. Les diagrammes Y vs Zr et La vs

Figure 24. Formation de Dubuisson. Diagrammes de variation des éléments traces Ni, Sc, Y et La et du rapport Zr/Y en fonction du Zr.

Figure 25. Formation de Jacola. Diagrammes de variation des éléments traces Ni, Sc, Y, Cr, La et des rapports La/Sm et Zr/Y en fonction du Zr ou du La.

Figure 26. Formation de Val-d'Or. Diagrammes de variation des éléments traces Ni, Sc, Y, Cr, La et des rapports La/Sm et Zr/Y en fonction du Zr ou du La.

Figure 27. Formation de Héva. Diagrammes de variation des éléments traces Ni, Sc, Y, Cr, La et des rapports La/Sm et Zr/Y en fonction du Zr ou du La.

Zr établissent la corrélation entre des éléments incompatibles et permettent de définir la présence de lignées magmatiques consanguines. Les diagrammes Y/Zr en fonction de Zr et La/Sm en fonction de La illustrent la présence de fractionnement et la nature enrichie ou appauvrie des magmas et de la source dont ils dérivent, par rapport à la chondrite (Ludden *et al.* 1986; Viereck *et al.* 1989). Toutefois le poids de l'interprétation pour chacun des diagrammes est variable considérant la quantité parfois limitée de résultats disponibles pour certains éléments.

Pour la *Formation de Dubuisson* (figure 24), l'évolution du Ni et du Sc en fonction du Zr suggère la présence de deux séquences distinctes de fractionnement impliquant l'olivine, la chromite et le clinopyroxène. La première séquence, marquée par de faibles teneurs en Ni et en Sc pour de faibles valeurs de Zr, impliquerait très peu d'olivine dans le fractionnement et le clinopyroxène deviendrait la phase prédominante. Dans l'autre séquence, les fortes valeurs de Ni soulignent toutefois le fractionnement de l'olivine et possiblement de la chromite. La relation entre les éléments incompatibles (Y vs Zr et La vs Zr) pourrait indiquer aussi l'existence de deux lignées magmatiques consanguines pour la Formation de Dubuisson. Le rapport Zr/Y constant de 2 environ pour des valeurs croissantes de Zr souligne une source appauvrie par rapport à la chondrite (type MORB ?) alors que les valeurs de 3 à 4 environ pour le même rapport Zr/Y pourraient refléter une source enrichie de type arc peu évolué.

Considérant le petit nombre de données disponibles (2 ou 3 échantillons seulement) pour la *Formation de Jacola*, il nous est difficile de tirer des conclusions sur la présence de séquences de fractionnement ou la consanguinité magmatique. Toutefois les teneurs en Ni et en Cr sont élevées suggérant ainsi la cristallisation d'olivine et de chromite accompagnée d'une petite proportion de clinopyroxène, soulignée par de faibles teneurs de Sc. Le rapport Zr/Y varie de 0,5 à 3 environ alors que le rapport La/Sm est de 1,8 environ, indiquant ainsi des sources tantôt appauvries tantôt enrichies par rapport à un modèle chondritique.

La Formation de Val-d'Or présente des résultats en éléments traces qui sont plus difficiles à interpréter à cause de leur distribution d'apparence erratique (figure 26). A première vue, il semble y avoir plusieurs séquences magmatiques dans lesquelles les laves et les pyroclastites seraient toutes les deux représentées. Le comportement des éléments incompatibles durant la cristallisation suggère un fractionnement faible en olivine, moyen en chromite et fort en clinopyroxène. La distribution du Y et du Zr reflète une source

chondritique à tendance MORB (Zr/Y = 2) et une source très enrichie à tendance d'arcs évolués (Zr/Y = 10) en passant par la tendance d'arcs tholéiitiques (Zr/Y = 4-5). Les mêmes tendances se retrouvent dans le comportement des éléments traces La vs Zr avec des rapports Zr/La étalés de 20 (tendances MORB) à 5 (tendances d'arcs évolués). En terme de source, le rapport Zr/Y suggère qu'elle est de nature hétérogène avec une contamination crustale probable. Cette contamination apparaît plus clairement dans le diagramme La/Sm vs Zr où les rapports vont de 1,5 à 4,8, impliquant ainsi une fusion partielle de la croûte continentale (avec des matériaux sédimentaires), typique des arcs calco-alcalins.

Dans le cas de la *Formation de Héva*, les teneurs de Cr pour des valeurs aussi élevées de Zr (300 à près de 750 ppm) sont suspectes et invitent à la prudence dans l'interprétation des séquences de fractionnement. Le comportement des éléments incompatibles Y vs Zr et La vs Zr suggère une tendance de type MORB très semblable à celle observée pour la Formation de Dubuisson. Les rapports Zr/Y avec des valeurs près de 2,5 et les rapports La/Sm d'environ 1,5 confirment cette tendance et suggèrent une source chondritique très légèrement enrichie.

Spectres élargis d'éléments traces et de terres rares normalisés aux basaltes de type MORB: caractérisation de la source.

Les figures 28 et 29 illustrent des spectres élargis d'éléments traces et de terres rares normalisés aux basaltes de type MORB pour les différentes unités stratigraphiques du domaine de Val-d'Or. Ces spectres ont été tracés à partir d'échantillons représentatifs de chacune des formations selon la représentation graphique de Pearce (1982, p. 527), dans laquelle les éléments sont classés selon un degré d'incompatibilité décroissant de gauche à droite. Ce type de diagramme utilise toutefois certains éléments mobiles lors de l'altération et du métamorphisme comme le K, Rb, Ba et Th. Notre interprétation devra donc tenir compte de ces processus et se fier plutôt à l'allure générale des profils.

Les laves des *Formations de Dubuisson* et de *Jacola* présentent des spectres plats qui suggèrent une source de type MORB, MORB appauvrie (roches magnésiennes) ou de tholéiite d'arc (figures 28). Certains profils montrent en effet un enrichissement pour les éléments Rb, Ba, Th, Ce et un appauvrissement pour les éléments Zr, Sm, Ti, Y, Yb. Tel que souligné par White et Schiling (1978) pour des échantillons provenant des Acores et par Wood *et al.* (1979) pour des échantillons provenant de l'Islande, le degré d'enrichissement de chaque

Figure 28. Formations de Dubuisson et de Jacola. Spectres élargis d'éléments traces et de terres rares, normalisés aux basaltes de type MORB (mid-ocean ridge basalt).

Figure 29. Formations de Val-d'Or et de Héva. Spectres élargis d'éléments traces et de terres rares, normalisés aux basaltes de type MORB (mid-ocean ridge basalt).

élément est directement relié à son degré d'incompatibilité. Ainsi les éléments les plus incompatibles (Th, Ba, Ta et Nb) sont les plus enrichis alors que les éléments modérément incompatibles (Zr, Sm, Ti, Y, Yb) sont quelque peu appauvris. Les principales variations en éléments traces d'une courbe à l'autre pourraient être reliées à une source mantellique plutôt hétérogène comme le suggère Pearce (1982) dans une comparaison des basaltes de type MORB.

Les laves de la *Formation de Val-d'Or* montrent des profils avec un patron d'enrichissement pour les éléments Sr à Ce et un patron de type MORB à MORB appauvris pour les éléments Zr à Cr. Les pyroclastites présentent elles aussi le même type d'enrichissement que les laves; toutefois on note un appauvrissement en éléments modérément incompatibles (Zr à Ti) et compatibles par rapport au grenat (Y et Yb) ou par rapport à toutes les phases mafiques (Sc et Cr). Ces profils d'éléments traces et de terres rares, avec tantôt une source quasi-chondritique pour les laves tantôt une source appauvrie pour les pyroclastites, pourraient se comparer à des profils d'arcs plus ou moins évolués (Pearce 1982). Les laves de la *Formation de Héva* sont caractérisées par des profils qui montrent une source enrichie en éléments traces par rapport aux basaltes de type MORB avec une anomalie négative pour le Sr, P, Ti et Sc. La source de ces laves du Héva serait influencée par une contamination crustale dans une phase d'extension caractérisée par la mise en place de magma tholéiitique, comparable au modèle proposé par Crawford *et al.* (1981) pour l'arc des Marianes.

Environnements géodynamiques

Les diagrammes de Pearce et Cann (1973), qui utilisent les éléments Ti, Zr et Y, permettent de déterminer certaines analogies géochimiques entre des roches basaltiques anciennes et des sites géotectoniques modernes ou plus précisément des sources à l'aplomb de ces sites. On postule que la roche ancienne possédant une signature géochimique semblable à une roche moderne donnée est originaire du même environnement. Ce concept cependant est controversé car il implique que la source respective des différents magmas est de composition constante au cours du temps. Pour les roches précambriennes et même d'âge archéen, on ignore dans quelle mesure les concepts de tectonique globale sont transposables. De plus la nature du manteau archéen étant mal connue, il n'est pas certain non plus que les rapports des éléments chimiques aient toujours la même signification. Certains éléments chimiques (AI, Ca, Ti, Zr, Y, Yb, Sc et V) présentent les mêmes proportions dans le manteau

archéen et dans le manteau actuel à l'aplomb des rides océaniques (Sun et Nesbitt 1977, 1978). D'autres éléments plus incompatibles (La, Rb, Ba et K) apparaissent plus abondants dans le manteau archéen (Sun et Nesbitt 1977, 1978).

La détermination de l'environnement de formation basée sur la géochimie doit aussi être évaluée en tenant compte du cadre géologique général des roches étudiées. Des caractéristiques géochimiques typiques des roches volcaniques associées aux zones de subduction pourraient se retrouver ainsi dans des basaltes intra-continentaux contaminés par assimilation de croûte continentale.

Enfin l'utilisation des ces diagrammes est restreinte aux roches volcaniques de composition basaltique. C'est pourquoi afin de permettre une comparaison, nous avons utilisé deux types de diagrammes. Le premier type (figure 30) présente pour chaque unité stratigraphique un diagramme de variation Ti (ppm) vs Zr (ppm), sur lequel nous avons reporté tous les échantillons peu importe leur composition chimique. Le deuxième type (figure 31), c'est un diagramme ternaire Ti*10-2 - Zr - Y*3 sur lequel nous n'avons conservé que les échantillons de nature "basaltique", i.e. les échantillons dont le contenu en SiO₂ variait de 45 à 54 %. Nous discuterons dans les lignes qui vont suivre de certaines analogies chimiques entre les laves et les pyroclastites du domaine de Val-d'Or et les sites géotectoniques modernes.

La grande dispersion des points sur la figure 30, de même que l'observation de plusieurs résultats analytiques qui apparaissent complètement en dehors des champs prédéfinis, s'expliquent du moins en partie par la présence de roches volcaniques de nature "non basaltique" (péridotitique, andésitique, dacitique et rhyodacitique). Le site géotectonique de mise en place de la séquence stratigraphique du domaine de Val-d'Or est difficile à interpréter puisque pratiquement tous les champs sont représentés. Malgré tout dans la *Formation de Val-d'Or*, on observe l'apparition d'une composante calco-alcaline plus évidente, définissant la participation possible d'une phase compressive.

Sur la figure 31, les caractères géochimiques de la base de la séquence stratigraphique (*Formation de Dubuisson*) suggèrent un site de mise en place en milieu de fond océanique en expansion. Par contre, la géochimie de la *Formation de Val-d'Or*, située plus haut dans la stratigraphie, reflète une certaine dualité. On observe en effet l'apparition de basaltes calco-alcalins représentant une phase compressive. Ces basaltes

Figure 30. Diagrammes Ti (ppm) - Zr (ppm) de Pearce et Cann (1973) illustrant la caractérisation géochimique des sites géotectoniques de production de magma basaltique.

Figure 31. Diagrammes Ti*10⁻² - Zr et Y*3 de Pearce et Cann (1973) illustrant la caractérisation géochimique des sites géotectoniques de production de magma basaltique.
s'interstratifient avec des tholéiites hypopotassiques et des tholéiites de fond océanique en expansion suggérant la participation toujours possible d'une phase distensive. Cette dualité serait compatible avec un dispositif d'arc immature à évolué couplé à un bassin d'arrièrearc.

GÉOCHIMIE DU DOMAINE DE VILLEBON

Géochimie des éléments majeurs

Comme nous l'avons mentionné au chapitre précédent, le domaine de Villebon est très peu représenté dans la région cartographiée. Les quelques échantillons analysés montrent les caractéristiques chimiques des basaltes, des basaltes magnésiens et des péridotites d'affinité tholéilitique et komatilitique (figures 21 et 22). Le coefficient de différenciation MGV qui varie de 0,87 à 0,55 (figure 32) indique la présence d'un magma de nature primitive à peu différenciée et une accumulation d'olivine. Les tendances de différenciation, définies avec un très petit nombre d'échantillons, suggèrent l'absence de fractionnement de plagioclase et d'oxydes ferro-titanés (figure 32).

Géochimie des éléments traces

La séquence volcanique pourrait être marquée par un fractionnement important de l'olivine, de la chromite et du clinopyroxène (figure 33). Les rapports Zr/Y de 2 environ indiquent une source appauvrie par rapport à la chondrite à peu près caractéristique des magmas de type MORB. Les rapports La/Sm de 1 à 1,5 et Zr/La de 10 à 25 suggèrent aussi une source très appauvrie. La figure 34 montre des profils d'éléments traces et de terres rares normalisés au MORB. Deux tendances sont observées: soit une tendance MORB avec un rapport roche/MORB au voisinage de 1 pour les éléments modérément incompatibles (P, Zr, Sm, Ti, Y, Yb et Sc), soit un appauvrissement dans les mêmes éléments caractéristique des tholéiites d'arcs immatures. Les éléments fortement incompatibles (K, Rb, Ba, Th, Ta, Nb et Ce) nous fournissent ici peu de renseignement à cause de la faible quantité de résultats disponibles et de la mobilité des éléments.

Environnements géodynamiques

La tendance des tholéiites hypopotassiques de zones distensives (milieux de dorsale ou d'arrière-arc) ou compressives (arc immature) semble la seule qui s'exprime clairement sur les diagrammes de Pearce et Cann (1973) aux figures 30 et 31.

Figure 32. Domaines de Trivio et de Villebon. Diagrammes SiO₂- MGV, Al₂O₃ - MGV, FeO T - MGV, TiO₂ - MGV. MGV = Mg ²⁺/ (Fe²⁺+ Mg²⁺) pour un rapport Fe₃O₂/ FeO = 0.15

Figure 33. Groupes de Pontiac et de Villebon. Diagrammes de variation des éléments traces Ni, Sc, Y, Cr, La et des rapports La/Sm et Zr/Y en fonction du Zr ou du La.

Figure 34. Groupes de Pontiac, de Villebon et de Trivio. Spectres élargis d'éléments traces et de terres rares, normalisés aux basaltes de type MORB (mid-ocean ridge basalt).

GÉOCHIMIE DU DOMAINE DE TRIVIO

Géochimie des éléments majeurs

Les roches volcaniques du complexe structural de Trivio sont surtout composées de laves basaltiques et andésitiques alors que les pyroclastites sont plutôt rhyodacitiques et parfois andésitiques (figure 21). Sur le diagramme de Jensen (1976), les résultats analytiques tombent à la fois dans le champ des basaltes komatiitiques, des tholéiites magnésiennes et des roches calco-alcalines (figure 22). Les basaltes komatiitiques présentent un coefficient de différenciation MGV de 0,75 et 0,81 et de faibles valeurs en SiO₂, Al₂O₃ et TiO₂ (figure 32). Pour les laves basaltiques et andésitiques les plus primitives, on observe un coefficient MGV de 0,66, alors que dans le cas des pyroclastites qui constituent les roches les plus différenciées de cette unité, ce coefficient peut atteindre des valeurs aussi basses que 0,3. Aucune tendance de fractionnement n'est clairement définie sur ces diagrammes de différenciation, les points étant un peu trop dispersés (figure 32). Il est possible que ces résultats reflètent la présence de plusieurs séries magmatiques de nature et d'origine diverses.

Géochimie des éléments traces

Le diagramme Y vs Zr (figure 35) illustre la présence d'au moins deux séquences évolutives, dont l'une présente le rapport Zr/Y de 2,5 (tendance MORB), et l'autre un rapport Zr/Y de 5,5 environ (tendance arcs primitifs à arcs peu évolués). Ces deux tendances s'expriment aussi sur le diagramme La vs Zr où les rapports Zr/La varient de 7 à 21. Pour les quelques rapports disponibles de La/Sm (1,5 - 2,2), seule la tendance MORB est exprimée. Les teneurs élevées en Zr suggèrent une différenciation parfois importante de certains faciès pyroclastiques. Avec des rapports Zr/Y qui varient de 1 à 12, les sources magmatiques présentent des caractéristiques de nature chondritique, tantôt appauvrie (Zr/Y = 1), tantôt très enrichie (Zr/Y = 12). Ceci pourrait impliquer une contamination d'origine crustale de certains faciès. On pourrait suggérer aussi que le domaine de Trivio représente un mélange d'au moins deux séquences volcaniques de nature et d'origine diverses sans lien magmatique évident.

Figure 35. Complexe structural de Trivio. Diagrammes de variation des éléments traces Ni, Sc, Y, Cr, La et des rapports La/Sm et Zr/Y en fonction du Zr ou du La.

Cette dernière suggestion expliquerait la grande disparité des profils d'éléments traces et de terres rares normalisés au MORB (figure 34). Les laves et les pyroclastites semblent indiquer des sources différentes: de type MORB plutôt pour les laves et de type arc transitionnel pour les pyroclastites.

Environnements géodynamiques

Le diagramme ternaire de Pearce et Cann (1973) (figure 31), définit surtout la présence des basaltes de zones d'extension, des tholéiites pauvres en K des milieux de dorsales ou d'arcs tholéiitiques immatures intra-océaniques, avec quelques échantillons de pyroclastites qui tombent dans le champ des laves calco-alcalines. Les deux tendances de milieux distensifs (dorsales ou arrière-arcs) et de milieux compressifs (arcs tholéiitiques ou calco-alcalins) se retrouvent sur ce type de diagramme, même si la signature calco-alcaline est mineure. De toute façon, cette dernière signature est certainement réduite par l'élimination du traitement graphique de tous les échantillons non "basaltiques" afin de respecter l'esprit de Pearce et Cann (1973). Le diagramme Ti vs Zr de la figure 30, sur lequel nous avons conservé toutes les valeurs disponibles peu importe leur nature "basaltique", suggère en effet une composante calco-alcaline plus importante.

Le modèle proposé pour le domaine de Trivio pourrait être illustré par un environnement de dorsale océanique ou d'arrière-arc (milieu en extension) ou d'arc tholéiitique immature intra-océanique (milieu en compression) qui évolue vers un arc insulaire plus évolué avec des laves calco-alcalines peu représentées sur le diagramme ternaire de Pearce et Cann (1973). Une autre possibilité qui correspondrait un peu plus à la description de complexe structural serait que le domaine de Trivio constitue l'accolage tectonique de plusieurs séquences volcaniques de nature et d'origine diverses dans un environnement de prisme d'accrétion.

GÉOCHIMIE DU DOMAINE D'ASSUP

Géochimie des éléments majeurs

A la base de la séquence stratigraphique, le *Groupe d'Aurora* comprend surtout des laves basaltiques avec quelques niveaux andésitiques et rhyodacitiques, alors que le *Groupe d'Assup* au-dessus est constitué des lave andésitiques et de quelques séquences basaltiques et

rhyodacitiques (figure 21). Les pyroclastites du *Groupe d'Assup* sont nettement plus différenciées et se trouvent dans le champ des rhyodacites.

Sur le diagramme de Jensen (1976), les laves du *Groupe d'Aurora* se projettent surtout dans le champ des tholéiites montrant un enrichissement prononcé en fer (figure 22). Une seule analyse se trouve dans le champ des basaltes komatiitiques. Le *Groupe d'Assup* semble nettement de nature bimodale avec deux séquences volcaniques d'affinités magmatiques nettement différentes: des tholéiites magnésiennes peu évoluées d'une part et des volcanites calco-alcalines d'autre part.

Avec un coefficient de différenciation MGV qui varie de 0,7 à 0,28, le *Groupe* d'Aurora est constitué de laves primitives à très différenciées (figure 36). Les tendances évolutives marquées par la dispersion des points sur les diagrammes MGV suggèrent la présence possible de plus d'une série magmatique. On observe en effet plusieurs possibilités dans l'interprétation de l'évolution des oxydes SiO₂, FeO t, et TiO₂ lors de la différenciation. Cette dernière observation pourrait s'expliquer par un fractionnement tantôt important tantôt faible des plagioclases.

Les volcanites du *Groupe d'Assup* montrent un coefficient MGV qui varie de 0,65 à 0,32 indiquant la présence de magmas basaltiques primitifs et de roches volcaniques très différenciées. Deux tendances évolutives sont clairement exprimées sur les diagrammes FeO t vs MGV et TiO₂ vs MGV (figure 36). Ces deux tendances ne ressortent pas sur les diagrammes faisant intervenir le SiO₂ ou le Al₂O₃ en fonction du coefficient MGV.

Géochimie des éléments traces

L'évolution du Ni et du Cr en fonction du Zr dans les laves du *Groupe d'Aurora* indique au moins une et probablement deux séquences distinctes de fractionnement impliquant l'olivine, la chromite et le clinopyroxène (figure 37). Cette probabilité de deux séquences distinctes est un peu mieux identifiée sur le diagramme Y vs Zr où les rapports Zr/Y varient de 2 à 6, suggérant une source tantôt appauvrie par rapport à la chondrite (type MORB), tantôt légèrement enrichie (type arc). Sur les spectres d'éléments traces et de terres rares normalisés au MORB, seule la tendance MORB est clairement exprimée (figure 38).

Figure 36. Dommaine d'Assup. Diagrammes SiO₂- MGV, Al₂O₃- MGV, FeO T - MGV, TiO₂ - MGV. MGV = Mg^{2+/} (Fe²⁺+ Mg²⁺) pour un rapport Fe₂O₃/FeO = 0.15

,

Figure 37. Groupe d'Aurora. Diagrammes de variation des éléments traces Ni, Sc, Y, Cr, La et des rapports La/Sm et Zr/Y en fonction du Zr ou du La.

Figure 38. Groupes d'Aurora et d'Assup. Spectres élargis d'éléments traces et de terres rares, normalisés aux basaltes de type MORB (mid-ocean ridge basalt). Pearce (1982).

Le Groupe d'Assup est marqué par une distribution assez large des valeurs en éléments traces qui rend difficile l'interprétation et reflète probablement la présence de plusieurs séquences de différenciation (figure 39). Ces séquences seraient marquées par un faible fractionnement en olivine et en chromite et un fractionnement modéré en clinopyroxène. Les rapports Zr/Y de 3 à 8 mais généralement supérieurs à 4, de même que des rapports La/Sm de 1,7 à 6 mais généralement supérieurs à 3 reflètent une source enrichie marquée par une contamination crustale typique des environnements d'arcs calco-alcalins. Sur la figure 38, les profils d'éléments traces et de terres rares suggèrent une source MORB enrichie en éléments fortement à modérément incompatibles (Sr à Sm) et légèrement appauvrie en éléments modérément incompatibles et compatibles (Ti, Y, Yb, Sc, Cr).

Environnements géodynamiques

Sur les diagrammes ternaires de Pearce et Cann (1973), la séquence stratigraphique du domaine d'Assup est marquée à la base (*Groupe d'Aurora*) par des basaltes de fond océanique en expansion et des tholéiites pauvres en K (figure 30). Cette séquence est surmontée par un assemblage bimodal de tholéiites et de laves calco-alcalines (*Groupe d'Assup*) (figure 22). Les roches calco-alcalines, qui ne sont que très peu représentées sur le diagramme de Pearce et Cann (1973) (figure 31) à cause de l'élimination des roches non "basaltiques", pourraient former un composant beaucoup plus important comme le suggèrent les figures 22 et 30. Le volcanisme du domaine d'Assup implique un environnement qui évolue dans le temps d'un site distensif à la base (dorsale ou arrière-arc) ou compressif (arc immature intra-océanique) vers un site nettement compressif d'arc plus évolué marqué par des roches calco-alcalines indiquant une contamination crustale. Cette association de magmas tantôt reliés à des zones extensives tantôt reliés à des zones de compression, déjà reconnue pour le domaine de Val-d'Or, pourrait exprimer encore une fois un environnement géodynamique d'arrière-arc.

SOMMAIRE

Nous avons résumé au tableau 4 les principales caractéristiques géochimiques des différentes séquences volcaniques dans chacun des domaines lithotectoniques. Les résultats géochimiques valident d'une certaine façon la subdivision lithostratigraphique basée d'abord

Figure 39. Groupe d'Assup. Diagrammes de variation des éléments traces Ni, Sc, Y, Cr, La et des rapports La/Sm et Zr/Y en fonction du Zr ou du La.

	LITHOSTRATIGRAPHIE	FACIES	COMPOSITION	AFFINITÉ MAGMATIQUE	DIFFÉRENCIATION	FRACTIONNEMENT	SOURCE	ENVIRONNEMENT GÉODYNAMIQUE
DOMAINE DE VAL D'OR	Héva	Effusit	Rhyodacite / andésite / rhyolite	Tholéiite Fe	Très différencié (MGV: 0,41-0,13)	-	Chondritique très légèrement enrichie Zr/Y = 2,5 La/Sm = 1,5	Zone en extension probablement en milieu d'arrière-arc
	Val d'Or	Explosif Effusif	Andésite/ basalte/ rhyodacite/ rhyolíte	Roche calco-alcaline	Basalte primitif à très différencié (MGV: 0,65, - 0,31)	Au moins 2 séquences évolutives	Chondritique appauvrie à très enrichie Zr/Y = 2 - 20 La/Sm = 1,5 - 5 contamination crustale	Zone en compression en milieu d'arc intra-océanique
	Jacola	Effusif	Basaite	Péridotite komatiitique; tholéiite Mg	Komatiite (MGV > 0,75) Basalte primitif (MGV > 0,65)	-	Chondritique enrichie Chondritique appauvrie Zr/Y = 0,5 - 3	Zone en extension en milieu de fond océanique
	Dubuisson	Effusif	Basalte / andésite	Péridotite komatiitique; tholéiite	Komatiite (MGV > 0,75) Basalte primitif à très différencié (MGV: 0,75 - 0,35)	2 séquences évolutives	Chondritique enrichie Zr/Y = 3 - 4 Chondritique appauvrie Zr/Y = 2	
DOMAINE DE VILLEBON	Pontiac et Villebon	Effusif	Basaite / andésite	Komatiite péridotitique; basalte komatiitique; tholéiite Fe	Komatiite MGV > 0,75 Basalte peu différencié (MGV: 0,63 - 0,56)	-	Chondritique appauvrie Zr/Y = 2 La/Sm = 1 - 1,5	Zone en extension (dorsale ou arrière-arc) ou zone en compression (arc immature)
DOMAINE DE TRIVIO	Trivio	Effusif Explosif	Basaite / andésite / rhyodacite	Basalte komatiitique; tholéiite Mg, Fe; roche calco-alcaline	Komatiite (MGV > 0,75) Basalte primitif à très différencié (MGV: 0,64 - 0,33)	Au moins 2 séquences évolutives	Chondritique enrichie Zr/Y = 5,5 Chondritique appauvrie Zr/Y = 2,5 La/Sm = 1,5 - 2,2	Mélange tectonique de kornatiites, tholéiites et roches calco-alcalines (prisme d'accrétion)
DOMAINE D'ASSUP	Assup	Etfusit Explosif	Andésite / rhyodacite / basalte	Tholéiite Mg; roche calco-alcaline	Basalte peu à très différencié (MGV: 0,64 - 0,33)	Au moins 2 séquences évolutives	Chondritique enrichie Zr/Y = 3 - 8 La/Sm = 1,7 - 6 contamination crustale	Zone en compression d'arc immature avec composante extensive (milieu d'arrière-arc)
	Aurora	Effusif	Basalte / andésite / rhyodacite	Tholéiite Fe; basalte komatiitique	Basalte primitif à très différencié (MGV: 0,70 - 0,28)	2 séquences évolutives	Chondritique enrichie Chondritique appauvrie Zr/Y = 2 - 6	Zone en extension (dorsale ou arrière-arc) ou zone en compression (arc immature)

Tableau 4. Résumé des caractéristiques géochimiques des différentes unités stratigraphiques regroupées par domaine lithotectonique.

sur des critères lithologiques et faciologiques. Ces résultats précisent aussi le cadre paléogéographique et géodynamique et amènent une discussion sur les corrélations entre les différents domaines lithotectoniques.

La séquence volcanique du *domaine de Val d'Or* débute par un volcanisme tholéiitique, marqué de quelques pulsations komatiitiques (Formations de Dubuisson et de Jacola), surmonté d'un volcanisme franchement calco-alcalin (Formation de Val d'Or), et enfin suivi d'un volcanisme tholéiitique caractérisé par un enrichissement en fer (Formation de Héva). Un examen des spectres d'éléments traces normalisés aux basaltes de type MORB (Pearce 1982), de même que l'analyse des diagrammes de Pearce et Cann (1973) suggèrent, pour le domaine de Val d'Or, un volcanisme correspondant aux basaltes de fond océanique dans une zone en extension (Dubuisson et Jacola), surmonté d'un volcanisme de type arc (Val d'Or, Héva). L'évolution paléogéographique serait ainsi caractérisée par la construction d'un arc insulaire au-dessus d'une croûte océanique, semblable aux modèles suggérés par Dimroth et al. (1982) pour la région de Rouyn et par Imreh (1984) pour la région de Val d'Or. Le Héva, qui constitue l'unité sommitale, refléterait une phase d'extension caractérisée par la mise en place de magma tholéiitique en milieu d'arrière-arc, comparable au modèle proposé par Crawford *et al.* (1981) pour l'arc des Marianes.

Nos informations sur le *domaine de Villebon* sont beaucoup plus fragmentaires pour tirer des conclusions précises. Toutefois les laves komatilitiques et tholéilitiques, dont la présence a été clairement établie, pourraient représenter des basaltes de dorsales océaniques, d'arrière-arcs et/ou des tholéilites d'arcs immatures.

La compilation des données géochimiques illustre bien l'hétérogénéité des roches volcaniques regroupées dans le *domaine de Trivio*. Des basaltes komatiitiques côtoient en effet des laves et des pyroclastites d'affinité tholéiitique ou calco-alcaline et plusieurs séquences de fractionnement ont pu être reconnues. L'analyse des éléments traces suggère que la majeure partie des volcanites ont été produites en milieu de dorsale océanique ou d'arcs peu évolués. Cette juxtaposition de roches volcaniques de nature et d'origine différente dans le contexte de la zone tectonique de Cadillac pourrait représenter l'accolage tectonique de blocs faillés dans un prisme d'accrétion, comme le proposent Gauthier *et al.* (1990a) pour la région de Rouyn-Beauchastel et Card (1990) dans une discussion sur la province du Supérieur.

Le domaine d'Assup est caractérisé par un volcanisme effusif d'affinité surtout tholéiitique à la base (Groupe d'Aurora), surmonté d'un volcanisme bimodal d'affinité tholéiitique et calco-alcaline (Groupe d'Assup). L'environnement géodynamique, représenté par cette séquence volcanique, est marqué par des tholéiites d'arcs immatures ou des basaltes de dorsale océanique à la base (Groupe d'Aurora) qui évoluent vers le sommet vers un arc mature intra-océanique (Groupe d'Assup).

CORRÉLATIONS

Il n'existe aucune datation radiométrique des roches décrites précédemment et l'on ne connaît pas de niveau repère entre les différents domaines lithotectoniques que nous venons de décrire. Nous ne pouvons que constater certaines ressemblances lithologiques, faciologiques ou lithochimiques entre des unités volcaniques ou sédimentaires de domaines différents.

La Formation de Dubuisson (domaine de Val-d'Or) pourrait être comparée au Groupe de Villebon au S (domaine de Villebon) ou au Groupe d'Aurora au N (domaine d'Assup). Ces trois unités lithostratigraphiques se trouvent à la base de la séquence stratigraphique dans chacun des domaines. Elles sont formées en grande partie de basaltes peu vésiculaires, au faciès massif, coussiné et rarement bréchique, d'affinité tholéiitique et komatiitique, qui sont interprétés comme des laves produites en milieu d'expansion. Toutefois en lithostratigraphie, la reconnaissance de l'identité lithologique et faciologique ne suffit pas pour établir une corrélation; il faut aussi démontrer l'identité dans la succession lithostratigraphique. Or dans chacun des domaines décrits précédemment, les séquences volcaniques évoluent de façon un peu différente: le volcanisme pyroclastique, d'affinité calco-alcaline, qui apparaît au-dessus dans le domaine de Val-d'Or, n'a pas correspondance dans les deux autres domaines lithotectoniques.

Les deux unités sédimentaires du Trivio et du Garden Island, que Marquis et Goulet (1987) avaient mis en corrélation autour d'une structure anticlinale majeure centrée sur le batholite de Pershing, présentent elles-aussi beaucoup de ressemblances lithologiques, lithochimiques, faciologiques et paléoenvironnementales. Même les spectres d'éléments traces normalisés aux basaltes de type MORB sont très semblables pour les roches sédimentaires de ces deux unités stratigraphiques (figure 40). Toutefois la cartographie régionale n'a pas permis de reconnaître une structure anticlinale pour confirmer que ces deux unités stratigraphiques représentent un même bassin sédimentaire plissé.

Sr K Rb Ba Th Ta Nb Ce P Zr Hf Sm Ti Y Yb Sc Cr

Mudstones du Garden Island (GAI) et du Trivio. Spectres élargis d'éléments traces et de terres rares, normalisés aux basaltes de type MORB (mid-ocean

,01

ridge basalt).

Figure 40.

Nos informations pétrographiques et sédimentologiques, quoique très éparses à cause de la faible densité d'affleurement, suggèrent que ces séquences sédimentaires pourraient se former suite à l'érosion de chaînes volcano-plutoniques en soulèvement (type arcs insulaires matures), suivie de la sédimentation dans des bassins limités par des failles actives (Rocheleau 1980; Mueller *et al.* soumis). Nous pourrions ainsi situer dans le temps les roches sédimentaires du Trivio et du Garden Island comme étant postérieures à la phase principale du volcanisme, même si Racine (1989) note une certaine activité pyroclastique durant la sédimentation dans le Trivio. Cette relation d'âge avec les assemblages volcaniques n'implique pas nécessairement que les deux séquences sédimentaires se sont formées dans un même bassin, mais plutôt qu'elles représentent un même épisode de l'évolution paléogéographique.

En conclusion, il n'existe présentement aucune certitude de corrélation lithostratigraphique entre les différents domaines et l'on doit à tout le moins considérer la possibilité que ces domaines puissent représenter l'accolage tectonique de terranes de nature et d'origine différente. En effet dans la partie occidentale de l'Abitibi, un programme de datation radiométrique par la méthode U-Pb sur des zircons confirme l'absence de corrélations lithostratigraphiques de part et d'autre des grandes structures régionales (Marmont et Corfu 1989).

Nous aborderons aux chapitres suivants une discussion plus détaillée du contexte structural et métamorphique, qui sera suivie de la description de la géologie économique. Nous pourrons ainsi à la fin du rapport intégrer les différentes informations dans une conclusion générale sur le cadre paléogéographique, géotectonique et gîtologique.

STRUCTURE ET MÉTAMORPHISME

INTRODUCTION

Notre compréhension de l'évolution structurale de la ceinture de l'Abitibi a beaucoup progressé depuis quelques années à la suite des travaux de Dimroth *et al.* (1982, 1983a, b, 1984, 1985, 1986), Hubert *et al.* (1984), Archambault (1985), Dimroth et Rocheleau (1985), Hubert et Ludden (1986), Hubert et Robert (1986), Ludden *et al.* (1986), Gauthier *et al.* (1988, 1990a, b), Poulsen et Robert (1988), Tourigny *et al.* (1988), Card *et al.* (1989), Robert (1989), Card (1990), Daigneault (1991), Daigneault et Allard (1990), Daigneault et Archambault (1990), Hocq (1990). Ces travaux ont été suscités grâce à la participation et à l'encouragement du ministère de l'Energie et des Ressources du Québec, des compagnies d'exploration minière, de la commission géologique du Canada et des organismes subventionnels (CRSNG et Fonds FCAR).

En dehors de nos travaux, les seules études structurales détaillées dans notre région ont été effectuées par Marquis (1983), Marquis et Goulet (1987) et Plouffe (1990). Ces études ont mis en évidence deux phases de déformation majeure. La première, la plus pénétrative, est caractérisée par des plis isoclinaux E-W, à forte plongée et à vergence sud (Marquis et Goulet 1987). De grands cisaillements E-W sont associés à cette première phase (Marquis et Goulet 1987; Plouffe 1990). La deuxième phase, d'orientation NE, a formé des plis serrés, plongeant vers le NE et à vergence NW. Cette deuxième phase serait reliée, selon Marquis et Goulet (1987), aux effets de l'orogenèse grenvillienne. Marquis (1983) et Marquis et Goulet (1987) reconnaissent en plus, à partir d'observations faites à la mine Chimo, des patrons polyphasés qui suggèrent une phase de déformation antérieure à la phase qui a produit la schistosité régionale E-W.

La localisation de la limite Supérieur-Grenville de même que la définition du front de Grenville constitue un autre problème inhérent à notre région. Certaines données structurales et métamorphiques concernant le front de Grenville à l'est de Val-d'Or ont déjà été publiées par Marquis et Goulet (1987), Indares et Martignole (1989), Ciesielski *et al.* (1990) et Rocheleau *et al.* (1990). D'autres résultats ont aussi été présentés par Ciesielski (1988), Daigneault (1991) et Daigneault et Allard (1990) pour le secteur de Chibougamau, par Davidson (1986a, b) pour l'Ontario et par Owen *et al.* (1986) pour la côte du Labrador.

La plupart de nos données préliminaires sur la structure et le métamorphisme ont déjà été publiées par le ministère de l'Energie et des Ressources du Québec dans deux rapports d'étape (Gaudreau *et al.* 1986; Rocheleau *et al.* 1988), dans des études de gîtes (Gaudreau *et al.* 1988b, c, d; Hébert *et al.* 1988; Rocheleau *et al.* 1988) et par l'ICM au moment d'un symposium à Rouyn-Noranda (Ciesielski *et al.* 1990; Rocheleau *et al.* 1990). Nous proposons donc de décrire dans ce chapitre:

- 1) une synthèse de l'évolution structurale;
- 2) les différents types de métamorphisme et leurs paragenèses;
- 3) une discussion de la limite tectono-métamorphique Supérieur-Grenville.

STRUCTURES D'ENVERGURE RÉGIONALE ET LOCALE

Tel que discuté aux chapitres précédents, nos travaux cartographiques et géochimiques ont défini 5 domaines lithotectoniques (figure 4). Deux de ces domaines, les domaines de Trivio et de Garden Island, constitués de lithologies volcano-sédimentaires, correspondent respectivement à la zone tectonique de Cadillac au sud et à la zone tectonique de Garden Island au nord. Les trois autres domaines, les domaines de Val-d'Or, de Villebon et d'Assup, sont de nature typiquement volcanique. Le comportement structural et l'intensité de la déformation diffèrent d'un domaine à l'autre.

Les domaines de Trivio et de Garden Island forment des discontinuités structurales et représentent des zones de forte déformation qui découpent des terrains de plus faible déformation. Ces deux domaines lithotectoniques sont caractérisés par la présence de couloirs de déformation anastomosés de largeur variable (métrique, décamétrique et même hectométrique), qui limitent des blocs structuraux de dimension hectométrique et kilométrique. Le terme couloir de déformation englobe ici aussi bien des zones de

Figure 41. Exemple de déformation due au cisaillement dans un conglomérat pétromicte du Complexe structural de Trivio. Les blocs sont aplatis et difficilement reconnaissables. La schistosité (S) forme un angle faible avec le plan de cisaillement (C) indiquant un mouvement dextre.

cisaillement que des failles fragiles. L'intensité de la déformation (aplatissement et étirement des matériaux géologiques), relativement faible au centre des blocs structuraux augmente de façon très importante en s'approchant des couloirs de déformation dans lesquels la roche est complètement mylonitisée. Le passage de roches peu déformées à des roches mylonitisées est soit graduel (sur des dizaines de mètres), soit brusque (sur quelques mètres).

Quelle que soit la largeur des couloirs de déformation, tous les éléments structuraux (plis, schistosités, linéations etc.) s'accentuent en intensité dans les zones mylonitiques et se parallélisent, formant dans certains cas un litage tectonique. La roche se transforme alors en schiste à chlorite et carbonates, ou en amphibolite. Les plans de schistosité et de cisaillement, généralement E-W avec un pendage abrupt vers le nord ou vers le sud, sont alors définis par l'alignement de phyllosilicates, principalement biotite et chlorite, et des amphiboles. Comme l'indique Racine (1989) pour la zone tectonique de Cadillac, la schistosité forme parfois un angle faible avec le cisaillement, nous permettant de définir une composante de décrochement dextre en surface (figure 41). La linéation d'étirement est généralement très bien développée et toujours très abrupte, plongeant tantôt vers l'est, tantôt vers l'ouest.

A l'intérieur des blocs structuraux moins déformé de ces zones tectoniques, on reconnaît des plis régionaux E-W suivis sur quelques kilomètres de distance (cartes 1 et 2, en pochette). Ces plis ont été cartographiés dans les roches sédimentaires et les volcanites du complexe structural de Trivio. Nous les avons interprétés aussi dans les formations de fer de la zone tectonique de Garden Island à partir des cartes aéromagnétiques (échelle 1:50 000) de la commission géologique du Canada.

Le domaine volcanique de Val-d'Or, constitué de roches peu déformées relativement aux domaines de Trivio et de Garden Island, est caractérisé, dans l'ensemble, par une séquence homoclinale à sommet vers le sud et par la présence d'une masse plutonique syn- à tardi-cinématique d'une superficie de 100 km² environ (pluton de Pershing). Toutefois des plis locaux d'envergure kilométrique ont été cartographiés. Dans le secteur situé au sud-est du lac Simon, un synclinal E-W, déversé vers le sud, a été interprété à partir d'un horizon repère plissé de pyroclastites grossières de la Formation de Val-d'Or, en l'absence d'une inversion certaine de polarité (figure 4 et carte 1, en pochette). La Formation de Héva se trouve ainsi au coeur d'une structure synclinale et elle est limitée au nord et au sud par la Formation de Val-d'Or. Un deuxième pli d'envergure plus locale encore, a été cartographié dans le secteur de la mine Béliveau (figures 4 et carte 5, en pochette): il s'agit d'un anticlinal WNW-ESE, légèrement ouvert, limité au nord et au sud par des failles E-W. A l'est, le pluton de Pershing limite et tronque les principales unités du domaine de Val d'Or.

Le domaine volcanique de Villebon, pour lequel nous n'avons que très peu de données structurales, présente une intensité de déformation nettement inférieure à celle du domaine adjacent de Trivio.

En ce qui concerne *le domaine volcanique d'Assup*, lui aussi relativement peu déformé, sa principale caractéristique structurale est la présence d'un pli synclinal d'envergure régionale, orienté WNW-ESE, qui peut être suivi sur une quinzaine de kilomètres. Ce pli, associé à la phase principale de déformation régionale, plonge vers l'est de 30° à 60°. Deux autres plis, anticlinal et synclinal, d'envergure plus locale ont été tracés dans le secteur est de ce domaine (carte 3, en pochette).

ÉTAPES DE LA DÉFORMATION ET ENSEMBLES STRUCTURAUX

Les principales caractéristiques structurales de la région sont regroupées dans 4 étapes de déformation dont trois sont archéennes et la quatrième attribuée à l'orogenèse grenvillienne. Les trois étapes archéennes sont formées par une phase principale D_2 , dite régionale, une phase pré-déformation régionale D_1 et une phase post-déformation régionale D_3 . La déformation grenvillienne D_g reprend complètement les différents éléments structuraux kénoriens et affecte d'une façon plus intense la bordure est de la région dans une zone de transition avec la province structurale de Grenville, appelée zone de bordure de Grenville.

Afin de respecter une certaine homogénéité des éléments structuraux, nous avons subdivisé la région en 7 ensembles structuraux selon l'intensité et l'attitude de la linéation d'étirement et aussi selon les trajectoires de la schistosité (figure 42). Les limites de ces ensembles structuraux n'ont rien à voir avec les limites des domaines lithotectoniques définis auparavant. La figure 43, en pochette, illustre la projection sur canevas de Schmidt

des différents éléments planaires (S₀, S₂, S₃ et S_g) et linéaires (L₀₋₂, L₂₋₃ et L₆) pour chacun des ensembles structuraux.

L'ensemble 1 correspond à une bonne partie de la zone tectonique de Cadillac depuis la limite ouest de notre région jusqu'au contact avec la zone d'influence grenvillienne à l'est. Cet ensemble qui présente plusieurs similarités avec l'ensemble 2 en ce qui concerne l'attitude des éléments structuraux (figure 43, en pochette) est toutefois marqué par un taux de déformation nettement plus important. La linéation d'étirement, définie à partir de la déformation des composants géologiques (fragments, coussins, vésicules et minéraux) y est particulièrement intense; cette linéation présente une orientation tantôt vers l'est tantôt vers l'ouest et une plongée toujours abrupte. Les plis d'entraînement et les plis mésoscopiques P₂ et P₃ y sont bien développés. C'est dans cet ensemble structural qu'ont été reconnus des plis précoces P₁, formant des figures d'interférence avec les plis P₂ associés à la phase de déformation régionale (Marquis 1983; Marquis et Goulet 1987; Racine 1989).

L'ensemble 2 définit l'allure régionale des éléments structuraux dans notre région. C'est le plus important en superficie: il regroupe à la fois une bonne partie des domaines lithotectoniques de Val-d'Or, de Garden Island et d'Assup qui avaient auparavant été séparés dans des sous-ensembles structuraux. Une vérification concernant l'homogénéité des éléments structuraux nous a amené à regrouper ces sous-ensembles dans l'ensemble 2. De plus même si on pouvait noter une intensité plus grande de la linéation d'étirement dans la zone tectonique de Garden Island, les données étaient beaucoup trop restreintes et trop dispersées pour permettre de constituer un ensemble séparé. La stratification So et la schistosité S₂ présentent une direction moyenne d'environ N280-N290 et un pendage moyen très abrupt vers le NE. Les linéations L0-2 se distribuent sur un plan moyen correspondant à l'attitude de la schistosité S2 et leurs plongées sont très variables, de quelques degrés à 90° vers l'est ou vers l'ouest. Les linéations d'étirement Lé présentent une plongée variable (de 30° à 60°) généralement vers l'est; localement ces linéations d'étirement plongent vers l'ouest. Cette variation dans la plongée de la linéation d'étirement confirme l'existence d'une phase de déformation postérieure à la déformation régionale. La schistosité, S₃, plutôt subverticale, est orientée en moyenne à N040. La linéation L2-3 plonge généralement vers le NE avec un angle tantôt faible tantôt abrupt.

L'ensemble 3 définit une zone d'influence grenvillienne au nord-est de la région et couvre une partie des domaines d'Assup et de Garden Island dans les cantons de Pershing et de Haig. La schistosité S₂, toujours orientée à N280, y est cependant légèrement redressée par rapport à l'ensemble structural 2 et présente un pendage subvertical. La schistosité S₃ est orientée vers le NE (N030 - N070) avec un pendage abrupt surtout vers le SE.

L'ensemble 4 représente l'extension de la zone tectonique de Cadillac dans la zone d'influence grenvillienne dans le canton de Denain au sud-est de la région. La schistosité S₂ subverticale prend une orientation nettement E-W avec un pendage vers le nord et elle est de plus en plus transposée par une schistosité S₃ subverticale, d'orientation NE. La linéation d'étirement se trouve dans le plan moyen de schistosité S₂ et plonge avec un angle modéré à faible tantôt vers l'est tantôt vers l'ouest, décrivant ainsi de grandes ondulations. La linéation L₂₋₃ plonge avec un angle abrupt vers l'ENE.

L'ensemble 5 définit une zone d'influence en bordure du pluton de Pershing, marquée par un métamorphisme de contact et une déformation des structures au pourtour de l'intrusion. L'attitude de la stratification S₀, de la schistosité régionale S₂, de même que de la linéation L₀₋₂ est très variable et épouse en bonne partie la forme du pluton. La direction de la schistosité S₃ et celle des plans de kink est relativement constante, soit N030 avec un pendage fort vers le SE. Cette dernière information pourrait suggérer que la troisième phase de déformation est postérieure à la mise en place de l'intrusion.

Regroupant un très petit nombre de données seulement, l'*ensemble 6* se situe dans le canton de Vauquelin dans la partie nord du lac Villebon. La stratification $S_{0,}$ tout comme la schistosité $S_{2,}$ a une direction moyenne de N305 avec un pendage fort de 70° à 90° vers le NE. Cette orientation des plans S_0 et S_2 tourne de plus en plus en direction N-S, au sud de notre région.

Situé à l'est du front de Grenville, l'*ensemble 7* rassemble quelques éléments structuraux très épars de la bordure ouest de la province de Grenville. La gneissosité Sg est de direction moyenne N045 à N055 avec un pendage de 60° à 70° environ vers le SE (figure 43). Certains horizons migmatisés montrent des plis grenvilliens intrafoliaux à plans axiaux de direction NE et à forte plongée vers le NE et l'ENE. Les linéations d'étirement présentent une direction préférentielle E ou ESE et plongent de 55° à 80°.

Nous décrirons maintenant les grands traits de l'évolution de la déformation archéenne et nous discuterons par la suite des effets de l'orogenèse grenvillienne.

Étape 1: phase pré-déformation régionale

La phase pré-déformation régionale est caractérisée par des plis précoces, isoclinaux, très localisés, que nous avons rencontrés dans la zone tectonique de Cadillac au voisinage de la mine Chimo (figure 44) et dans la zone tectonique de Garden Island. Il existe aussi une schistosité S₁, difficilement reconnaissable à cause de la nature prépondérante de la déformation régionale D₂. Cette schistosité S₁, identifiée localement seulement dans les roches sédimentaires et les pyroclastites, mais absente dans les laves, forme un angle de 10° à 15° avec la schistosité S₂ qui la reprend (Racine 1989).

Étape 2: phase de déformation régionale

La phase principale D₂, responsable du grain tectonique E-W, des principaux plis P₂ et de la schistosité dominante S₂, interprétée comme une schistosité de flux, représente un événement structural définitivement plus important que les deux autres phases de la déformation archéenne. On rattache à cette phase principale les plis mésoscopiques très serrés, à tendance isoclinale, d'orientation générale E-W avec une plongée variable mais généralement vers le NE, de 30° à 70° (figure 45). Les cisaillements sub-parallèles aux plans axiaux de ces plis mésoscopiques sont aussi considérés comme étant contemporains de cette phase de déformation. La schistosité S₂ est sub-parallèle aux plans axiaux de la plupart des plis mésoscopiques P₂, aux cisaillements E-W et aussi aux plans d'aplatissement des objets géologiques (coussins, vésicules, fragments, cristaux). Microscopiquement, cette foliation résulte de l'alignement préférentiel de toute la minéralogie de la roche, particulièrement des minéraux métamorphiques, comme la chlorite, la séricite, la biotite et certaines amphiboles.

L'attitude moyenne de la surface enveloppante de la schistosité S₂ et de la surface axiale des plis P₂ présente une orientation moyenne de 90° à 100°, avec un pendage abrupt généralement vers le N; cette attitude des structures subit une rupture majeure au contact avec la province de Grenville (figure 46a). L'intrusion de Pershing exerce un contrôle évident sur l'attitude de la schistosité et des plis reliés à la phase régionale (figure 46a); leur direction générale épouse celle de l'interface entre le batholite et les roches

Figure 44. Radiographie montrant un pli mineur, relié à la phase pré-déformation régionale dans le faciès de grès fin et de siltstone du Complexe structural de Trivio. La schistosité S₂ recoupe et transpose les flancs du pli P₁

Figure 45. Exemple de plis isoclinaux très serrés associés à la phase de déformation régionale dans le faciès conglomératique du Complexe structural de Trivio.

Figure 46. Cartes structurales du secteur étudié montrant: (a) la trajectoire de la schistosité régionale S₂ et la linéation d'étirement L_é, et (b) la trajectoire des schistosités S₃ et S_g et des linéations L ₂₋₃ et L_g.

volcaniques et sédimentaires; les pendages de la schistosité, plutôt abrupts en bordures N et S du batholite, prennent une inclinaison variable vers l'E et vers l'W en bordure E du batholite. En s'approchant de la limite Supérieur-Grenville, la schistosité S₂ est réorientée vers l'ENE et inclinée vers le S et vers le SE. De plus, cette foliation ne recoupe jamais la masse intrusive de Pershing. La linéation d'étirement présente une direction et une plongée variable à l'échelle régionale: tantôt vers l'E tantôt vers l'W (figure 46a). Près du front de Grenville au NE de la région, cette linéation d'étirement est réorientée vers l'ENE et les plans axiaux des plis P₂ sont basculés vers le NW, ce qui pourrait suggérer un entraînement senestre de ces éléments structuraux.

Étape 3: phase post-déformation régionale

La phase post-déformation régionale correspond à un réseau conjugué de kinks dextres de direction NE et de kinks senestres de direction NNW (figure 47). Dans les secteurs plus déformés comme dans les zones tectoniques de Cadillac et de Garden Island, de même que dans le secteur du lac Matchi-Manitou, des plis ouverts, de direction NE-SW avec une plongée d'environ 45° vers le NE, sont aussi associés à cette phase (figures 48 et 49). La superposition des plis de deuxième et de troisième phase produit un patron d'interférence en crochet (type 3) ou en champignon (type 2) de Ramsay (1967) (figure 50).

La schistosité S₃, qui recoupe définitivement le batholite de Pershing (figure 46b), est caractérisée dans l'ensemble de la région par un clivage de crénulation espacé, dans lequel on retrouve de fréquentes injections de quartz. En s'approchant de la limite Supérieur-Grenville, le clivage espacé fait place à une schistosité de plus en plus pénétrative et passe graduellement à des plans de cisaillement très serrés qui définissent des couloirs mylonitiques. La direction de ces couloirs mylonitiques correspond à celle d'une famille de dykes de diabase de direction NE-SW et à celle d'un réseau de failles inverses (figure 51) qui présente un mouvement apparent senestre. L'examen des images satellites démontre que ces failles NE constituent un élément important du grain tectonique grenvillien et délimitent en partie la bordure ouest de la province de Grenville suggérant ainsi une relation au moins tardive par rapport à la déformation grenvillienne (figure 52).

Figure 47. Réseau de kinks congugés dans le faciès de grès fin et de siltstone du Complexe structural de Trivio. Kd = kink dextre, ks = kink senestre

Figure 48. Charnière de pli P3 ouvert, relié à la phase post- déformation régionale dans un basalte du Complexe structural de Trivio. Notez la linéation d'intersection L2-3 qui présente une plongée d'environ 45° vers le NE.

Figure 49. Pli P3 en forme de "M", de direction NE affectant un conglomérat très déformé du Complexe structural de Trivio.

Figure 50. Pli d'interférence P₂ - P₃ en forme de champignon dans le siltstone et le grès fin du Groupe de Garden Island. Localisation: canton de Haig à l'est du batholite de Pershing.

Figure 51. Faille inverse de Direction NE-SW à pendage SE dans des gneiss du Complexe structural de Trivio dans le Canton de Denain.

Figure 52. Image Landsat du secteur étudié. Notez la présence de linéaments NE et la localisation de la limite Supérieur-Grenville. Échelle 1:1,000,000. S: province du Supérieur; G: province de Grenville.

Étape 4: déformation grenvillienne

Dans la province de Grenville, la foliation grenvillienne (S_g) , d'orientation NE-SW, présente un pendage abrupt (60° à 70°) vers le SE. Cette attitude est très similaire à celle des failles NE et de la schistosité S_3 qui devient très pénétrative dans la zone de bordure de Grenville.

MÉTAMORPHISME

La présence d'une intrusion batholitique syn- à tardi-cinématique et d'un contact entre deux provinces structurales d'âges différents fait de la région étudiée un secteur particulièrement intéressant du point de vue métamorphisme. Au moins cinq faciès métamorphiques ont pu être reconnus (figure 53): 1) un faciès régional faible de la province du Supérieur, 2) un faciès des cornéennes à amphibole en périphérie du pluton de Pershing, 3) un faciès hydrothermal dans la zone tectonique de Cadillac, 4) un faciès régional moyen dans la zone de bordure de Grenville, et 5) un faciès régional élevé du front de Grenville. A l'aide de déterminations minéralogiques au microscope pétrographique et à la microsonde électronique, nous avons pu identifier les différentes paragenèses métamorphiques essentielles (tableau 5) et déterminer la chimie des minéraux métamorphiques: hornblende, grenat, biotite, chlorite. Ceci nous a permis d'appliquer les méthodes géothermométriques et géobarométriques connues (Indares et Martignole 1985; Chipera et Perkins 1988).

Le métamorphisme régional faible (Winkler 1979) est marqué par les paragenèses suivantes pour les roches volcaniques: chlorite / actinote / albite / épidote / quartz. Dans les roches sédimentaires, les assemblages minéralogiques chlorite / séricite / biotite / \pm épidote / quartz et accessoirement calcite et sphène sont fréquents (tableau 5). Ces paragenèses représentent des températures et des pressions de cristallisation relativement faibles qui caractérisent le métamorphisme régional de l'ensemble de la province du Supérieur.

L'auréole du pluton de Pershing est caractérisée par un métamorphisme de contact au faciès des cornéennes à amphiboles. Nous y reconnaissons les assemblages hornblende / grenat / biotite avec apparition de la staurotide à proximité du pluton (figure 54). La

Figure 53. Carte d'une partie de la ceinture de l'Abitibi à l'est de Val-d'Or montrant les limites des différents faciès métamorphiques.

Figure 54. Schiste à staurotide et grenat du faciès métamorphique des cornéennes à amphibole. Le protolithe est le wacke/siltstone du Groupe de Garden Island.
Paragenèses	essentielles	Températures ° Celcius	Pressions Kb
chlorite actinote albite épidote	chlorite séricite biotite ±épidote	faibles	faibles

METAMORPHISME REGIONAL MOYEN SUP. (AMPHIBOLITE) Zone de bordure de la Province de Grenville

Paragenèses essentielles	Températures ° Celcius	Pressions Kb
Hornblende		
Grenat	625-700	>> 5
Biotite		

METAMORPHISME REGIONAL ELEVE (GRANULITE) Province de Grenville

Paragenèses essentielles	Températures ° Celcius	Pressions Kb
sillimanite orthopyroxène grenat andésine orthose	élevées >700	élevées >>5

METAMORPHISME DE CONTACT (CORNEENNE A AMPHIBOLE) Auréole du pluton de Pershing

Paragenèses	essentielles	Températures ° Celcius	Pressions Kb
staurotide hornblende grenat biotite	hornblende grenat biotite	moyennes 500 - 600	moyennes 5 - 6

METAMORPHISME HYDROTHERMAL Zone tectonique de Cadillac									
Paragenèses essentielles	Températures ° Celcius	Pressions Kb							
hornblende (ferro-tschermakitique) grenat (grossulaire) pyrrhotite, pyrite	élevées >> 500	variables							

 Tableau 5.
 Paragenèses essentielles des faciès métamorphiques cartographiés.

cristallisation de la staurotide nous suggère un métamorphisme de contact avec des températures moyennes de 500° C à 600° C environ et des pressions moyennes de 5 à 6 Kb (Hoscheck 1969).

La minéralogie des roches volcaniques et sédimentaires du complexe structural de Trivio au sud du Pluton de Pershing représente un métamorphisme hydrothermal ferrifère et calcique (figures 55 et 56). On reconnaît les assemblages suivants: hornblende ferrotschermakitique / grenat (molécule grossulaire > 20 %) / sulfures (Rocheleau *et al.* 1988). Les hornblendes ferro-tschermakitiques supposent des températures moyennes très supérieures à 500° C, alors que le grenat avec une composante grossulaire peut être stable dans diverses conditions selon la pression de CO₂ du fluide (Oba 1978; Gilbert *et al.* 1982). Cette paragenèse peu répandue suggère que la recristallisation des roches s'est effectuée dans le domaine haute température d'un système hydrothermal à fort gradient géothermique.

Dans l'autochtone de la province du Supérieur, il existe une zone de transition avec la province de Grenville, appelée zone de bordure de Grenville, qui correspond à la zone des failles NE, de la foliation très pénétrative NE et des couloirs mylonitiques d'orientation NE (figure 53). Cette zone de transition est marquée par un métamorphisme moyen à moyensupérieur dont les paragenèses essentielles sont définies par les minéraux métamorphiques hornblende / grenat / biotite (figure 57). Les rapports Fe/Mg pour les couples biotite / grenat (méthode de Chipera et Perkins 1988) nous suggèrent des températures de cristallisation de 625° C à 700° C. Des pressions supérieures à 5 Kb sont nécessaires pour expliquer la présence de grenat avec une composante pyrope de 25 % à 35 % (Hsu et Burnham 1969; Schreyer 1968).

En bordure E de notre région, les orthogneiss de la province de Grenville sont marqués par le métamorphisme élevé des granulites, défini par les assemblages sillimanite / orthopyroxène / grenat / andésine / orthose (figure 58). Cette paragenèse suggère des températures et des pressions de cristallisation élevées, supérieures à 700° C et à 5 Kb (Mueller et Saxena 1977; Turner 1981).

Figure 55. Lave coussinée amphibolitisée du Complexe structural de Trivio à l'est de la mine Chimo qui illustre les effets du métamorphisme hydrothermal dans la zone tectonique de Cadillac.

Figure 56. Photomicrographie d'une lave du Complexe structural de Trivio montrant deux types d'amphiboles dans la zone tectonique de Cadillac. Les actinotes (AC) sont orientées le long des plans S₂, alors que les hornblendes ferro-tchermakitiques (HB) présentent une orientation plus aléatoire.

Figure 57. Photomicrographie d'un schiste à biotite et amphibole dans la zone de bordure de Grenville. Les amphiboles alignées dans les plans S₂ semblent entraînées de façon senestre le long des plans S₃. Le protolithe est une lave du Complexe structural de Trivio maintenant au faciès métamorphique moyen-supérieur.

Figure 58. Photomicrographie d'un gneiss à sillimanite et orthopyroxène au faciès élevé (granulite) de la zone du front de Grenville. Notez la présence de sillimanite (SI) grossière et aussi de sillimanite à grains fins dans la matrice. On remarque en plus un gros cristal d'orthopyroxène (OPX) au centre de la photo.

LIMITE SUPÉRIEUR-GRENVILLE

La limite Supérieur-Grenville est identifiée à une rupture majeure correspondant à la bordure NW du front de Grenville. La problématique du front de Grenville a été discutée par Davidson (1986a, b) et Ciesielski (1988). Selon le contexte géologique des régions cartographiées et les informations disponibles, la limite Supérieur-Grenville correspond soit à une rupture lithotectonique, soit à une rupture tectonométamorphique, ou soit à une rupture lithologique, structurale et géochronologique.

Dans la région que nous venons de décrire, la limite Supérieur-Grenville est définie comme une rupture tectonométamorphique caractérisée: 1) par la disparition du grain tectonique E-W kénorien, qui est très pénétratif dans le Supérieur, et 2) par l'apparition des gneiss au faciès des granulites (faciès métamorphique éjevé). On reconnaît toutefois, dans l'autochtone du Supérieur en bordure du Grenville, une zone de transition où le grain tectonique E-W est graduellement transposé vers le NE et où le métamorphisme atteint le faciès moyen-supérieur indiquant un niveau structural plus profond. Cette zone de transition est très étroite au NE de la région cartographiée (< 1 km) et plus large au SE. Dans la région du lac Matchi-Manitou au SE, la transition entre les deux provinces est quelque peu obscurcie par la présence d'un métamorphisme de contact près de la pegmatite de la rivière Shamus et d'un métamorphisme hydrothermal dans la zone tectonique de Cadillac (figure 53).

Le front de Grenville est ainsi déplacé de quelques kilomètres vers le SE par rapport à sa position antérieure (Germain 1971, 1974; Marquis et Goulet 1987). Cette nouvelle limite correspond à une anomalie linéaire d'orientation NE-SW, sur les cartes magnétiques du gouvernement fédéral (Commission géologique du Canada 1984).

En résumé, le contact entre les deux provinces est interprété comme une remontée du Grenville sur le Supérieur, en partie accentué le long de failles inverses NE-SW, qui présentent une composante apparente senestre. Cette remontée aurait entraîné l'érosion de niveaux métamorphiques profonds et la transposition vers le NE des structures linéaires et planaires. Ces accidents tectoniques seraient de même nature que la faille de Mistassini qui longe la limite est de la ceinture de l'Abitibi dans la région de Chibougamau. Cette conclusion est suggérée par: 1) le réalignement vers le NE des schistosités S₂, 2) le basculement vers le NW des plans S₂ et des plans axiaux des plis P₂, 3) la présence d'une schistosité S₃, NE-SW et de pendage SE, très pénétrative dans la zone de bordure de Grenville, 4) la présence d'un couloir mylonitique d'orientation NE et de pendage SE dans la zone de bordure, et 5) la définition d'une zone de bordure au faciès métamorphique moyensupérieur.

GÉOLOGIE ÉCONOMIQUE

INCICES MINÉRALISÉS

DESCRIPTION SOMMAIRE DES GITES

CADRE GÉOLOGIQUE ET MINÉRALISATION

La cartographie de la ceinture de l'Abitibi à l'est de Val d'Or nous a permis de préciser le contexte stratigraphique, métamorphique et structural de la région. Une trentaine d'indices minéralisés, un gîte de sulfures massifs (Ressources Aur-Louvem) et une quinzaine de gîtes aurifères dont trois mines en production (Béliveau, Sigma 2 et Chimo) ont été répertoriés dans la région étudiée (figure 4). Le tableau 6 résume les principales caractéristiques de ces gîtes, dont la description détaillée est déjà publiée (Gaudreau *et al.* 1986, 1988b, 1988c, 1988d; Hébert *et al.* 1988, Soumis; Rocheleau *et al.* 1987, 1988, Rocheleau *et al.* 1990). Nous nous contenterons ici de mettre en lumière les principaux métallotectes qui font de la région cartographiée un site favorable pour l'exploration minière.

La Formation de Val-d'Or, dont les horizons pyroclastiques se prolongent vers l'est jusqu'au sud du contact avec le pluton de Pershing (figure 4), est considérée ici comme l'unité stratigraphique principale à prospecter pour les minéralisations de Cu-Zn-Ag-Au. En 1989, la découverte par la compagnie Ressources Aur d'un dépôt majeur de sulfures massifs dans cette formation vient s'ajouter aux anciennes mines de Cu-Zn du camp minier de Val-d'Or (East Sullivan, Golden Manitou, Dunraine et Louvem) et à une dizaine d'indices minéralisés et de gîtes de métaux de base. Plus précisément le gîte de Ressources Aur-Louvem se trouve dans un horizon de tuf felsique, cherteux, finement laminé et fortement métasomatisé (chloritisé et séricitisé); cet horizon est en contact à la base et au sommet avec des coulées de laves intermédiaires (Bubar *et al.* 1989). Le modèle proposé par Bubar et al. (1989) est classique pour les dépôts de sulfures massifs et relance l'idée de mieux définir les cycles de volcanisme, la présence de dépôts exhalatifs, la localisation des centres

			STRUC	TURES			
GITES	UNITES STRATIGRAPHIQUES ENCAISSANTES	ROCHES HOTES	NATURE	ORIENTATIONS	METASOMATISME	MINERALISATIONS PRINCIPALES	
Aurora Bruell	Groupe d'Aurora Pluton de Brueli	basalte diorite	veines de quartz, carbonate et tourmaline, zone de cisaillement	N070 à N120 / 65 S à 90	carbonatisation silicification épidotisation séritisation	Ац , ру, сру, mag	
Béliveau (New Pascalis)	Dykes N-S de composition intermédiaire	diorite	veines de quartz, tourmaline et carbonates, veinules parallèles au clivage	sub-horizontales, E-W / sub-verticales, N080 / 40 S	carbonatisation chloritisation séricitisation	Аш, ру, сру, ро	
Bevcon Buffadison	Pluton de Bevcon Dykes de porphyre	diorite quartzifère granodiorite porphyre quartzo-feldspathique	veines de quartz, carbonate et tourmaline E-W / 30 N E-W / 35 S sub-horizontales		silicification carbonatisation tourmalinisation séricitisation	Au, Ag, py, cpy	
Brosnor Monique	Formation de Jacola Dykes de porphyre	basalte porphyre feldspathique	veines de quartz, carbonate et tourmaline, zone de cisaillement, brèche tectonique	N110 à N130 / 25 à 55 SW N285 / 70 N	carbonatisation silicification séricitisation	Au, Ag, py, mag, cpy, po	
Busmac	Formation d'Aurora Dykes de porphyre	basalte porphyre quartzo-feldspathique	veines de quartz E-W à N120 e		silicification	Au, py	
Chimo Nordeau	Complexe structural de Trivio	formation de fer tuf graphitique basalte, andésite pyroclastite	zone de cisaillement injectée de veines de quartz, dissémination dans formation de fer		carbonatisation, chloritisation et séricitisation dans volcanites silicification, chloritisation et biotitisation dans sédiments	Ац , ару, ру, ро	
Croinor	Filon-couche de Croinor	diorite diorite quartzifère	zone de cisaillement, brèches tectoniques failles inverses veines sub-horizontales	N275 / 45 N N315 / 45 NE	carbonatisation séricitisation silicification	Ац, ру, сру, ро	
Forsan	Formation de Val d'Or Dykes de porphyre	tuf à blocs et à lapilli porphyre quartzo-feldspathique	veines de quartz zone de cisaillement	sub-horizontales E-W / sub-verticales	silicification	Ац, Сц, ару, ру, ро	
Leclerc	Complexe structural de Trivio Dykes de porphyre	pyroclastite ? porphyre quartzo-feldspathique	veines de quartz zone de cisaillement	N010 / 90 N050 / 65 N140 /90	silicification séricitisation	Си, Ад, А и, ру, сру, ро	
Regcourt	Stock de granodiorite (Bevcon)	granodiorite	veines de quariz zone de cisaillement	?	silicification carbonatisation tourmalinisation	Ац, ру	
Ressources Aur- Louvem	Formation de Val d'Or	pyroclastite felsique	lentille de sulfures massifs	E-W / 70 N	séricitisation chloritisation	Cu, Zn, Ag, Au	
Sigma 2	Filon-couche de Vicour	intrusion différenciée granophyre	veines de quartz, carbonate et tourmaline, zone de cisaillement	sub-horizontales NE et NNW conjuguées / sub-verticales E-W / sub-verticales	silicification chloritisation séricitisation	Au, apy, po	
Venpar	Complexe structural de Trivio Dykes de porphyre	brèche pyroclastique mudstone porphyre quartzo-feldspathique	veines de quartz, tourmaline, zone de cisaillement	N020 / 65 E E-W / sub-verticale	silicification séricitisation carbonatisation	А и, Ад, Си , ру, сру, ро,ару	

Tableau 6. Tableau synoptique de la description des principaux gîtes répertoriés dans la région étudiée. Pour la localisation des gîtes voir figure 4.

d'éruption et les altérations hydrothermales. Nos travaux de cartographie et de géochimie ont permis de préciser le contexte paléogéographique de cette formation et de reconnaître quelques indices minéralisés avec des teneurs économiques et sub-économiques de Cu-Zn-Ag-Au (Gaudreau *et al.* 1986, 1988a; Rocheleau *et al.* 1987).

Les gîtes aurifères présentent un certain nombre de paramètres communs: il s'agit de minéralisations de type épigénétique, contrôlées en bonne partie par les éléments structuraux, le comportement physique et chimique de la roche hôte affectée par un métasomatisme plus ou moins étendu (tableau 6). Même si toutes les unités stratigraphiques de la région sont porteuses de minéralisation aurifère, on note une association fréquente avec les intrusions syn-volcaniques ou du moins pré-orogéniques (porphyre quartzo-feldspathique, filons-couches et dykes dioritiques, pluton granodioritique de Bevcon).

Le paramètre qui semble commun à tous les gîtes est le paramètre structural. Les zones minéralisées sont associées à des cisaillements, des failles, des fractures de tension et/ou des brèches tectoniques. Les déformations ductiles-fragiles et fragiles semblent des facteurs de contrôle dominants des minéralisations aurifères, comme c'est le cas pour bien d'autres gisements de la ceinture de l'Abitibi (Colvine *et al.* 1988).

Or la région étudiée présente un contexte structural particulier à cause de la présence de couloirs de déformation, de l'augmentation du métamorphisme et de la proximité du front de Grenville. Deux des couloirs de déformation E-W, dont l'un correspond à l'extension vers l'est de la zone tectonique de Cadillac, séparent les roches de la province du Supérieur en 5 domaines lithotectoniques. Un troisième couloir, d'orientation NE-SW, définit une zone de transition entre les provinces structurales du Supérieur et de Grenville.

Le potentiel aurifère des zones de cisaillement E-W métasomatisées a été clairement établi dans la région (Gaudreau *et al.* 1986; Rocheleau *et al.* 1987). Ces zones de cisaillement, en plus d'agir comme conduit pour les solutions hydrothermales, sont au contact entre des roches de compétence et de composition différentes, favorisant ainsi la fracturation de la roche et la précipitation de l'or. La minéralisation associée est généralement présente dans des veines et des lentilles de quartz ou de quartz-carbonate de direction E-W, généralement sub-parallèles à la schistosité régionale S₂ et aux zones de cisaillement. Les épontes des zones de cisaillement sont dans certains cas fracturées et transformées en brèches tectoniques minéralisées. Par endroits, des fractures de tension (riedels) se développent à un angle de 15° à 75° avec les plans C des cisaillements et sont ensuite remplies par des veines minéralisées sub-verticales. On remarque aussi un autre type de veines décimétriques minéralisées dans des fractures de tension généralement subhorizontales ou faiblement inclinées.

Les structures NE-SW grenvilliennes, qui se développent de plus en plus vers l'est, peuvent modifier grandement la géométrie des zones minéralisées. Nous avons en effet établi que les principaux effets de l'orogenèse grenvillienne ont été la transposition vers le NE des structures kénoriennes, le basculement des plans axiaux des plis P₂ et des cisaillements associés vers le nord et le NW, et enfin le développement d'une schistosité S₃ NE-SW très pénétrative. Ces structures devraient faire l'objet de travaux particuliers d'exploration minière, en particulier dans les secteurs où elles intersectent des cisaillements E-W kénoriens; elles pourraient constituer des sites importants de remobilisation des minéralisations.

Un métamorphisme hydrothermal a été clairement reconnu dans le secteur de la mine Chimo et du gîte de Nordeau dans la zone tectonique de Cadillac. Ces données viennent préciser les conditions physico-chimiques de formation de certains gîtes épigénétiques, où les fluides minéralisateurs circulent dans des milieux à gradient géothermique élevé.

Enfin dans le SE de la région, le déplacement vers l'est de la limite Supérieur-Grenville, suite à la cartographie des structures kénoriennes dans les groupes volcanosédimentaires de Trivio et de Garden Island, définit un nouveau territoire où le contexte lithologique et structural est favorable à la minéralisation. Ces séquences sédimentaires contiennent des formations de fer qui sont considérées comme un métallotecte aurifère important. La composition chimique et la minéralogie de ces lithologies métasédimentaires et métavolcaniques seront influencées par trois types de métamorphisme qui viennent se superposer dans cette région: le métamorphisme hydrothermal de la zone tectonique de Cadillac, un métamorphisme de contact et un métamorphisme régional moyen de la zone de bordure de Grenville.

En résumé, la région étudiée est l'hôte d'un gîte majeur de sulfures massifs et de plusieurs gîtes et indices aurifères, et présente plusieurs cibles favorables pour

l'exploration minière dans le contexte tectonométamorphique de l'influence de l'orogenèse grenvillienne.

RÉFÉRENCES

- ARCHAMBAULT, A., 1985 Archean wrench fault tectonics and structural evolution of the Blake River Group, Abitibi Belt: Discussion, Journal Canadien des Sciences de la Terre; volume 22, pages 943-945.
- BELL, L.V. BELL, A.M., 1932 Région des sources de la rivière Bell avec détails des gîtes aurifères de Pascalis et de Louvicourt. Service des Mines du Québec, Québec; rapport annuel, 1931, partie B, pages 69-144.
- BELL, L.V. BELL, A.M., 1933 Terrains miniers de la région de Pascalis-Louvicourt. Service des Mines du Québec, Québec; Rapport annuel 1932, partie B, pages 3-69.
- BENDER, J.F., HODGES, F. N., BENCE, A.E., 1978 Petrogenesis of basalts from the Project Famous area: Experimental study from 0 to 15 kbars. Earth and Planetary. Science. Letters, volume 41, pages 277-302.
- BUBAR, D.S. GILL, J.W. MANNARD, G.N. STOCKFORD, H.R., 1989. La nouvelle découverte de Ressources Aur à Val d'Or: un important dépôt de sulfure massif dans un camp minier sous-estimé pour son potentiel en métaux de base. *In* Nouveaux horizons pour l'exploration. Ministère de l'Énergie et des Ressources du Québec, DV 89-07, pages 36-37.
- CARD, K.D., 1990 A review of the Superior Province of the Canadian Shield, a product of Archean accretion. Precambrian Research, volume 48, pages 99-156.
- CARD, K.D. POULSEN, K.H. ROBERT, F., 1989 The Archean Superior Province of the Canadian Shield and its lode gold deposits. *In* The Geology of Gold deposits: The perspective in 1988, Éditeurs: R. Keays, R. Ramsay et D. Groves, Economic Geology Monograph, volume 6, pages 11-28.
- CHIPERA, S.J. PERKINS, D., 1988. Evaluation of biotite-garnet geothermometers: application to the English River subprovince, Ontario. Contributions to Mineralogy and Petrology, volume 98, pages 40-48.
- CIESIELSKI, A., 1988. Geological and structural context of the Grenville Front, southeast of Chibougamau, Québec. *In* Current Research, Part C. Commission géologique du Canada, Étude 88-1C, pages 353-366.
- CIESIELSKI, A. POULIOT, G. ROCHELEAU, M., 1990. The Grenville Front SE of Vald'Or, a multi-disciplinary analysis. La Ceinture Polymétallique du Nord-Ouest Québecois: Synthèse de 60 ans d'exploration minière, ICM volume des posters, pages 56-57.
- COLVINE, A.C. FYON, J.A. HEATHER, K.B. MARMONT, S. SMITH, P.M. TROOP, D.G., 1988. Archean lode gold deposits in Ontario. Ontario Geological Survey, Miscellaneous paper 139, 136 pages.
- CRAWFORD, A.J. BECCALUVA, L. SERRI, G., 1981. Tectono-magmatic evolution of the West Philippine-Mariana region and the origin of boninites. Earth and Planetary Science Letters, volume 54, pages 346-356.

- DAIGNEAULT, R. 1991. Évolution structurale du segment de Roches Vertes de Chibougamau, Sous-province archéenne de l'Abitibi, Québec. Thèse de Ph.D., Université Laval.
- DAIGNEAULT, R. ALLARD, G.O., 1990 Le Complexe du Lac Doré et son environnement géologique. Région de Chibougamau sous-province de l'Abitibi. Ministère de l'Énergie et des Ressources du Québec, Québec; MM 89-03, 275 pages.
- DAIGNEAULT, R. ARCHAMBAULT, G., 1990 Les couloirs de déformation de la Sous-Province de l'Abitibi. La Ceinture Polymétallique du Nord-Ouest Québecois: Synthèse de 60 ans d'exploration minière, Éditeurs: M. Rive, P. Verpaelst, Y. Gagnon, J.M. Lulin, G. Riverin et A. Simard, ICM Special Volume 43: 43-64.
- DAVIDSON, A., 1986a New interpretations in the southwestern Grenville province. *In* The Grenville Province. Éditeurs: J.M. Moore, A. Davidson, et A.J. Baer. Association géologique du Canada, Special Paper 31, pages 61-74.
- DAVIDSON, A., 1986b A new look at the Grenville Front in Ontario. Association géologique du Canada, Réunion annuelle, Ottawa 86, Livret guide excursion #15, 31 pages.
- DIMROTH, E. COUSINEAU, P. LEDUC, M. SANSCHAGRIN, Y., 1978 Structure and organization of Archean subaqueous basalt flows, Rouyn-Noranda area, Québec, Canada. Journal Canadien des Sciences de la Terre; volume 15, pages 902-918.
- DIMROTH, E. IMREH, L. ROCHELEAU, M. GOULET, N., 1982 Evolution of the southcentral part of the Archean Abitibi Belt, Québec. Part I: Stratigraphy and paleogeographic model, Journal Canadien des Sciences de la Terre; volume 19, pages 1729-1758.
- DIMROTH, E. IMREH, L. GOULET, N. ROCHELEAU, M., 1983a Evolution of the southcentral part of the Abitibi Belt, Québec. Part II: Tectonic evolution and geomechanical model. Journal Canadien des Sciences de la Terre, volume 20, pages 1355-1373.
- DIMROTH, E. IMREH, L. GOULET, N. ROCHELEAU, M., 1983b Evolution of the southcentral part of the Abitibi Belt, Québec. Part III: Plutonic and metamorphic evolution and geotectonic model. Journal Canadien des Sciences de la Terre; volume 20, pages 1374-1388.
- DIMROTH, E. ROCHELEAU, M. MUELLER, W., 1984 Paleogeography, isostasy and crustal evolution of the Archean Abitibi Belt: a comparison between the Rouyn-Noranda and Chibougamau-Chapais areas. *In* Chibougamau-Stratigraphy and Mineralization. Éditeurs: J. Guha et E.H. Chown, ICM, Special Volume 34, pages 73-91.
- DIMROTH, E. ROCHELEAU, M., 1985 Archean wrench fault tectonics and structural evolution of the Blake River Group, Québec: Discussion. Journal Canadien des Sciences de la Terre; volume 22, pages 941-943.
- DIMROTH, E. MUELLER, W. DAIGNEAULT, R. BRISSON, H. POITRAS, A. -ROCHELEAU, M., 1986 - Diapirism during regional compression: The structural pattern in the Chibougamau region of the Archean Abitibi belt, Québec. Geologische Rundschau, volume 75, pages 715-736.
- FLOYD, P.A. WINCHESTER, J.A., 1975 Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary Science Letters, volume 27, pages 211-218

- FLOYD, P.A. WINCHESTER, J.A., 1978 Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chemical Geology, volume 21, pages 291-306.
- GAUDREAU, R. LACOSTE, P. ROCHELEAU, M., 1986 Géologie et gîtologie du secteur de Louvicourt - Vauquelin, Abitibi, Ministère de l'Énergie et des Ressources du Québec, Québec; MB 86-67, 124 pages.
- GAUDREAU, R. ROCHELEAU, M. TANGUAY, S., 1988a Géologie du Quart Nord-Ouest du Canton de Denain, Région de Val-d'Or. Ministère de l'Énergie et des Ressources du Québec; DP 88-06, Carte annotée.
- GAUDREAU, R. ROCHELEAU, M. PERRIER, B., 1988b Géologie du gisement aurifère de Coinor, Région de Val-d'Or. Ministère de l'Énergie et des Ressources du Québec; MB 88-15, 25 pages.
- GAUDREAU, R. ROCHELEAU, M. PERRIER, B., 1988c Géologie des gisements aurifères de Bruell et d'Aurora. Région de Val-d'Or. Ministère de l'Énergie et des Ressources du Québec; MB 88-22, 22 pages.
- GAUDREAU, R. ROCHELEAU, M. PERRIER, B., 1988d Géologie du gisement aurifère de Brosnor, Région de Val-d'Or. Ministère de l'Énergie et des Ressources du Québec; MB 88-33, 19 pages.
- GAUDREAU, R. PERRIER, B. ROCHELEAU, M. HÉBERT, R. ST-JULIEN, P. LACOSTE, P., 1987 - The Croinor deposit; A highly ductil gold-bearing structure (résumé). AGC-AMC Programme et Résumés, Saskatoon, 1987, p. 44.
- GAUTHIER, N. ROCHELEAU, M. ST-JULIEN, P., 1988 The Cadillac-Larder Lake Fault Zone, Abitibi Belt, Canada: An example of an Archean accretionary prism hosting gold deposits. Bicentennial, Gold 88, Extended abstracts poster programme, volume 1, Geological Society of Australia Inc., résumé # 23, pages 13-15.
- GAUTHIER, N. ROCHELEAU, M. KELLY, D. GAGNON, Y., 1990a Controls on the distribution of gold mineralization within the Cadillac Tectonic Zone. Rouyn-Beauchastel Segment, Abitibi Belt, Québec. La Ceinture Polymétallique du Nord-Ouest Québécois: Synthèse de 60 ans d'exploration minière, Éditeurs: M. Rive, P. Verpaelst, Y. Gagnon, J.M. Lulin, G. Riverin et A. Simard, ICM, Spécial Volume 43, pages 185-198.
- GAUTHIER, N. LACROIX, S. PILOTE, P. HUBERT, C., 1990b- Géologie structurale: les grandes structures du Nord-Ouest québécois. Symposium La Ceinture polymétallique du Nord-Ouest Québécois. ICM, Session III, Séminaire S7.
- GÉLINAS, L. BROOKS, C. PERRAULT, G. CARIGNAN, J. TRUDEL, P. GRASSO, F., 1977 - Chemo-stratigraphic divisions within the Abitibi Volcanic Belt, Rouyn-Noranda district, Québec. *In* Volcanic regimes in Canada, Éditeurs: W.R.A. Baragar, L.C. Coleman et J.M. Hall, Association géologique du Canada; Special Paper 16, pages 265-295.
- GÉLINAS, L. MELLINGER, M. TRUDEL, P., 1982 Archean mafic metavolcanics from the Rouyn-Noranda district, Abitibi Greenstone Belt, Québec. 1. Mobility of the major elements. Journal Canadien des Sciences de la Terre; volume 19, pages 2258-2275.

- GERMAIN, M., 1971 Géologie du quart nord-ouest du canton de Denain, comté d'Abitibi-Est. Ministère des Richesses naturelles du Québec, Québec; DP 105, 20 pages.
- GERMAIN, M., 1972a Géologie du canton de Vauquelin, comté d'Abitibi-Est. Ministère des Richesses naturelles du Québec, Québec; DP 108, 56 pages.
- GERMAIN, M., 1972b Géologie de la demie-ouest du canton de Pershing, comté d'Abitibi-Est, Québec. Ministère des Richesses naturelles du Québec, Québec; DP 109, 12 pages.
- GERMAIN, M., 1973 Géologie du quart nord-est du canton de Pershing, comté d'Abitibi-Est, Québec. Ministère des Richesses naturelles du Québec, Québec; DP 198, 22 pages.
- GERMAIN, M., 1974 Géologie du quart sud-est du canton de Pershing, comté d'Abitibi-Est, Québec. Ministère des Richesses naturelles du Québec, Québec; DP 266, 18 pages.
- GILBERT, M.C. HELZ, R.T. POPP, R.K. SPEAR, F.S., 1982. Experimental studies of amphibole stability. *In* Amphiboles: petrology and experimental phase relations. Éditeurs: D.R. Veblen et P.H. Ribbe. Mineralogical Society of America, Washington, Reviews in mineralogy, 9B, pages 229-353.
- GIRAULT, M., 1985 Volcanoclastites de la zone Manitou-Louvem. Ministère de l'Énergie et des Ressources du Québec, Québec; DP 84-42, 15 pages.
- GUNNING, H.C. AMBROSE J.W., 1937 Cadillac-Malartic Area, Québec. ICM, Trans. 40, pages 341-362.
- HÉBERT, R., 1982 Géologie du complexe de filons-couches d'Amos, Québec; Ministère de l'Énergie et des Ressources du Québec, Québec; DP-786, 28 pages.
- HÉBERT, R. GAUDREAU, R. PERRIER, B. GIGUÈRE, C. ROCHELEAU, M. LACOSTE, P., 1988 - Le gisement aurifère de Sigma 2: Pétrologie et gîtologie d'un filon-couche différencié et minéralisé. Ministère de l'Énergie et des Ressources du Québec; MB 88-17, 23 pages.
- HÉBERT, E. PERRIER, B. GIGUERE, C. ROCHELEAU, M. GAUDREAU, R. LACOSTE, P., 1986 - Gold mineralization related to a differentiated sill in the Abitibi greenstone belt: The case of Sigma-2 project; AGC-AMC, réunion annuelle 1986, Ottawa, programme et résumés, volume 11, page 79.
- HÉBERT, R., ROCHELEAU, M., GIGUÈRE, C., PERRIER, B., GAUDREAU, R., Ms. soumis. Pétrologie et gîtologie d'un filon-couche différencié et minéralisé archéen: le gisement aurifère de Sigma 2, canton de Louvicourt, Québec. Journal Canadien des Sciences de la Terre, accepté pour Étude.
- HOCQ, M., 1990 Carte lithotectonique des sous-provinces de l'Abitibi et du Pontiac. Ministère de l'Énergie et des Ressources du Québec. DV 89-04.
- HOSCHECK, G., 1969. The stability of staurolite and chloritoid and their significance in metamorphism of pelitic rocks. Contributions to Mineralogy and Petrology, volume 22, pages 208-232.

- HSU, L.C. BURNHAM, C.W., 1969. Phase relations in the system Fe₃Al₂Si₃O₁₂ Mg₃Al₂Si₃O12 H₂O at 2.0 kilobars. Geological Society of America Bulletin, volume 80, pages 2393 -2408.
- HUBERT, C. LUDDEN, J.N., 1986 Archean Wrench-Fault Tectonics in the Abitibi Greenstone Belt of Canada. *In* Workshop on the tectonic evolution of greenstone belts: Lunar and Planetary Institute Contribution 284, pages 59-61.
- HUBERT, C. TRUDEL, P. GELINAS L., 1984 Archean wrench fault tectonics and structural evolution of the Blake River Group Abitibi Belt, Québec. Journal Canadien des Sciences de la Terre; volume 21, pages 1024-1032.
- HUBERT. C. ROBERT, F., 1986 Structure et or, de Rouyn à Val d'Or, Québec, excursion 14: livret-guide, AGC-AMC, Ottawa, 73 pages.
- IMREH, L., 1976 Nouvelle lithostratigraphie à l'ouest de Val-d'Or et son incidence gîtologique. Ministère des Richesses naturelles, Québec, Québec; DPV-349, 73 pages.
- IMREH, L., 1979 Lithostratigraphie et roches ultramafiques du secteur de Val d'Or-Amos. Association géologique du Canada, Livret-guide, Excursion A-4, Université Laval, Québec, pages 1-40.
- IMREH, L., 1984 Sillon de La Motte-Vassan et son avant-pays méridional: Synthèse volcanologique, lithostratigraphique et gîtologique; Ministère de l'Énergie et des Ressources du Québec, Québec; MM 82-04, 72 pages.
- IMREH, L. TRUDEL, P., 1990 Évolution géologique et ses vecteurs métallogéniques. Les gisements aurifères de Val-d'Or. La Ceinture Polymétallique du Nord-Ouest Québecois: Synthèse de 60 ans d'exploration minière, ICM volume des posters, pages 24-27.
- INDARES, A. MARTIGNOLE, J., 1985. Biotite-garnet geothermometry in the granulite facies: the influence of Ti and Al in biotite. American Mineralogist, volume 70, pages 272-278.
- INDARES, A. MARTIGNOLE, J., 1989. The Grenville Front south of Val-d'Or, Québec. Tectonophysics, volume 157, pages 221-239.
- JENSEN, L.S., 1976 A new cation plot for classifying subalkalic volcanic rocks. Ministry of Natural Ressources, Ontario, Division of Mines, Miscellaneous paper 66, 30 pages.
- JENSEN, L.S., 1980 Archean gold mineralization in the Kirkland Lake Larder Lake area; *In*: Genesis of Archean, Volcanic-Hosted Gold deposits. Éditeur: R.G. Roberts, Ontario Geological Survey, Open File Report 5293, pages 280-302.
- LACOSTE, P., 1982 Géologique de la demi-ouest du canton de Louvicourt, document interne non puplié, Ministère de l'Énergie et des Ressources du Québec, Québec.
- LACOSTE, P. GAUDREAU, R., 1986 Cantons de Vauquelin et de Pershing, Abitibi-Est. Ministère de l'Énergie et des Ressources du Québec, Québec; carte annotée, DP 85-32.
- LACOSTE, P. GAUDREAU, R., ROCHELEAU, M., 1987 Géologie des Cantons de Pershing et de Haig, Abitibi-Est. Ministère de l'Énergie et des Ressources du Québec, Québec; carte annotée, DP 87-01.

- LAWSON, A.C., 1885 Rapport sur la géologie de la région du lac des Bois, ayant spécialement trait à la zone de roches archéennes du Keewatin (Huronien?). Can. Geol. Nat. Hist. Surv. Report., CC, pages 1-152.
- LOWTHER, G. K., 1935 Villebon-Denain Area, Abitibi, Temiscamingue and Pontiac counties. Service des Mines du Québec, Québec; rapport annuel, 1935, partie C, pages 39-53.
- LUDDEN, J. TRUDEL, P., 1982 Archean metavolcanics from the Rouyn-Noranda district, Abitibi Greenstone Belt, Québec. 2. Mobility of trace elements and petrogenetic constraints Journal Canadien des Sciences de la Terre; volume 19, pages 2276-2287.
- LUDDEN, J. HUBERT, C. GARIEPY, C., 1986 The tectonic evolution of the Abitibi Greenstone Belt of Canada. Geological Magazine, volume 123, pages 153-166.
- MARMONT, S. CORFU, F., 1989. Timing of Gold introduction in the Late Archean Tectonic Framework of the Canadian Shield: Evidence from U-Pb Zircon geochronology of the Abitibi Subprovince. *In* The Geology of Gold Deposits: The perspective in 1988. Editeurs: R. Keays, R. Ramsay, D. Groves. Economic Geology Monograph, volume 6, pages 101-111.
- MARQUIS, R., 1983 Étude tectono-stratigraphique à l'est de Val-d'Or: Essai de corrélation structurale entre les roches métasédimentaires des Groupes de Trivio et de Garden Island et application à l'exploration aurifère. Mémoire de Maîtrise, Université du Québec à Montréal, Montréal, 174 pages.
- MARQUIS, R., GOULET, N., 1987. Essai de corrélation stratigraphique et structurale à l'est de Val-d'Or: implication pour la prospection aurifère du secteur. Journal Canadien des Sciences de la Terre, volume 24, pages 2412-2421.
- MINISTERE DE L'ÉNERGIE ET DES RESSOURCES DU QUÉBEC, 1986 Code stratigraphique nord-américain. Ministère de l'Énergie et des Ressources du Québec, DV 86-02, 58 pages.
- MUELLER, W. ROCHELEAU, M. DUFRESNE, D. DONALDSON, J.A., Ms. soumis, Tectonically-controlled sedimentation in a late Archean pull-apart basin, Duparquet, Québec, Canada. Journal Canadien des Sciences de la Terre, manuscrit soumis.
- MUELLER, R.F SAXENA, S.K., 1977 Chemical Petrology. Springer-Verlag. New York, 394 pages.
- NORMAN, G.W.H., 1944 Région de La Motte, comté d'Abitibi, Québec. Commission géologique du Canada, paper 44-9, 15 pages.
- NORMAN, G.W.H., 1947 Vauquelin, Pershing and Haig Township, Abitibi County, Québec, Commission géologique du Canada, paper 47-12 et 47-6.
- NORMAN, G.W.H. TIPHANE, M., 1947 Pershing, Abitibi County, Québec, Preliminary map, Commission géologique du Canada, paper 47-7.
- OBA, T., 1978. Phase relationship of Ca2Mg3Al2Si6Al2O22(OH)2 Ca2Mg3(Fe³⁺)2 Si6Al2O22(OH)2 join at high temperature and high pressure - the stability of tchermakite. Journal of Faculty of Science of Hokkaido, University Series 4, volume 18, pages 339-350.

- OWEN, J.V. RIVERS, T. GOWER, C.F. 1986 The Grenville Front on the Labrador coast. In The Grenville Province; Éditeurs: J.M., Moore, A. Davidson et A.J. Baer, Association géologique du Canada, Special Paper 31, pages 95-106.
- PEARCE, J. A., 1982 Trace element characteristics of lavas from destructive plate boundaries. *In* Andesite: Orogenic andesites and related rocks; Éditeurs: R. S., Thorpe, J. Wiley & Sons, pages 525-548.
- PEARCE, J.A. CANN. J.R., 1973 Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planetary Science Letters, volume 19, pages 290 300.
- PEARCE, J.A. NORRY, M.J., 1979 Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rock. Contributions to Mineralogy and Petrology, volume 69, pages 33-47.
- PERRIER, B., 1986 Pétrographie et géochimie du filon-couche de Vicour à la mine Sigma-2, Louvicourt, Abitibi. Projet de fin d'études, Département de géologie, Université Laval, 61 pages.
- PICARD, C., 1986 Pétrographie et géochimie des roches vertes archéennes de la partie occidentale du synclinal de Chapais (Abitibi est, Québec). Ministère de l'Énergie et des Ressources du Québec; MM 85-01, 97 pages.
- PICARD, C. PIBOULE, M., 1986a Pétrologie des roches volcaniques du sillon de roches vertes archéennes de Matagami Chibougamau à l'ouest de Chapais (Abitibi est, Québec).
 1. Le groupe basal de Roy. Journal Canadien des Sciences de la Terre, volume 23, pages 561-578.
- PICARD, C. PIBOULE, M., 1986b Pétrologie des roches volcaniques du sillon de roches vertes archéennes de Matagami Chibougamau à l'ouest de Chapais (Abitibi est, Québec).
 2. Le groupe hautement potassique d'Opémisca. Journal Canadien des Sciences de la Terre, volume 23, pages 1169-1189.
- PLOUFFE, C., 1990 Analyse structurale et contrôles de la minéralisation aurifère de la Mine Chimo, Canton de Vauquelin, Abitibi, Québec. Mémoire de M.Sc., Université du Québec à Montréal, Montréal, 152 pages.
- POULSEN, K.H. ROBERT, F., 1988. A comparison of structural style and gold districts, Superior province, Canada. Bicentennial Gold 88, Extended abstracts poster programme, volume 1, Geological Society of Australia Inc., résumé #23, pages 36-38.
- RACINE, M., 1989 La Zone Tectonique de Cadillac à l'est de Val d'Or: exemple du complexe structural de Trivio, canton de Vauquelin. Mémoire de maîtrise. Université Laval, Québec. 77 pages.

RAMSAY, J.G., 1967. Folding and fracturing of rocks. Mc Graw-Hill, New York, 568 pages.

- ROBERT, F., 1989 Internal structure of the Cadillac tectonic zone southeast of Val-d'Or, Abitibi greenstone belt, Québec. Journal Canadien des Sciences de la Terre, volume 26, pages 2661-2675.
- ROCHELEAU, M., 1980. Stratigraphie et sédimentologie de l'Archéen dans la région de Rouyn, Abitibi, Québec. Thèse de doctorat, Université de Montréal, Montréal. 313 pages.

- ROCHELEAU, M. GAUDREAU, R. LACOSTE, P. HÉBERT, R. ST-JULIEN, P. PERRIER,
 B. RACINE, M., 1987 Synthèse stratigraphique, paléogéographique et gîtologique du secteur de Vauquelin, de Pershing et de Haig Rapport intérimaire. Ministère de l'Énergie et des Ressources du Québec; MB 87-52, 153 pages.
- ROCHELEAU, M. GAUDREAU, R. SAUVÉ, P. PERRIER, B., 1988 Géologie des gisements aurifères de Chimo et de Nordeau, région de Val d'Or. Ministère de l'Énergie et des Ressources du Québec; MB 88-14, 52 pages.
- ROCHELEAU, M. HÉBERT, R. ST-JULIEN, P. GAUDREAU, R. -O'LEARY, P. LACOSTE, P., 1989 - Empreintes structurales et métamorphiques grenvilliennes sur la partie sudest de la ceinture d'Abitibi (résumé). AGC-AMC, Programme et Résumés, Montréal 1989: A 109.
- ROCHELEAU, M. HÉBERT, R. ST-JULIEN, P. RACINE, M., LACOSTE, P., 1990 La Ceinture de l'Abitibi à l'Est de Val-d'Or: un secteur économiquement méconnu, affecté par la tectonique et le métamorphisme grenvillien. La Ceinture Polymétallique du Nord-Ouest Québecois: Synthèse de 60 ans d'exploration minière, Éditeurs: M. Rive, P. Verpaelst, Y. Gagnon, J.M. Lulin, G. Riverin et A. Simard, ICM Special Volume, 43: 269-283.
- SAUVÉ, P. BLANCHET, P. BLOUIN J-Y. TRUDEL, P. CHAMPAGNE, M. LECLERC, A., - 1987 - Géologie de la mine d'or de Chimo, région de Val d'Or, Ministère de l'Énergie et des Ressources du Québec, Québec; MB 87-05, 75 pages.
- SCHREYER, W., 1968. A reconnaissance study of the system MgO Al₂O₃ -SiO₂ H₂O at pressures between 10 and 20 Kb. Carnegie Instution Geophysical Laboratory Yb, 1967-1968, pages 380-392.
- SHARPE, J.I., 1968 Canton de Louvicourt, comté d'Abitibi-est. Ministère des Richesses naturelles du Québec, Québec; R.G. 135, 59 pages.
- SUN, S.S. NESBITT, R.W., 1977 Chemical heterogeneity of the Archean mantle, composition of the Earth and mantle evolution. Earth and Planetary Science Letters, volume 35, pages 429-448.
- SUN, S.S. NESBITT, R.W., 1978 Petrogenesis of Archean ultrabasic and basic volcanics: evidence from rare earth elements. Contributions to Mineralogy and Petrology, volume 65, pages 301-325.
- THURSTON, P.C. AYRES, L.D. GÉLINAS, L. LUDDEN, J.N. VERPAELST, P., 1985 -Archean bimodal volcanism. *In*: Evolution of Archean Supracrustal Sequences. Éditeurs: L.D. Ayres, P.C. Thurston, K.D. Card et W. Weber, Association géologique du Canada, Special Paper 28, pages 7-21.
- TIPHANE, M., 1947 Shamus, Abitibi and Pontiac Counties. Preliminary map and descriptive notes. Commission géologique du Canada, paper 47-27.
- TIPHANE, M. DAWSON, K.R., 1950 Villebon, Québec, carte 998-A. Commission géologique du Canada, paper 48-1.
- TOLMAN, C., 1938 Partie ouest de Vauquelin, Service des Mines du Québec, Québec; R.G. 6, 30 pages.

- TOURIGNY, G. HUBERT, C. BROWN, A.C. CRÉPEAU, R., 1988 Structural geology of the Blake River Group at the Bousquet Mine, Abitibi, Québec. Journal Canadien des Sciences de la Terre, volume 25, pages 581-592.
- TURNER, F.J., 1981 Metamorphic petrology, mineralogical, field and tectonic aspects. McGraw-Hill, 2ième édition, New-York, 524 pages.
- VIERECK, L. G. FLOWER, M.F.J. HERTOGEN, J. SCHMINCKE, H.U. JENNER, G.A., 1989 - The genesis and significance of N-MORB sub types. Contributions to Mineralogy and Petrology, volume 102, pages 112-126.
- VOGEL, D.E., 1972 Geology of Villebon township, Abitibi-East county, and the north part of Freville township, Pontiac county. Ministère des Richesses naturelles du Québec, Québec; DP-80; 90 pages.

WHITE, W.M. - SCHILLING, J.G., 1978 - Nature and origin of geochemical variation in Mid-Atlantic Ridge basalts from Central North-Atlantic, Geochimica cosmochimica Acta, volume 42, pages 1501-1516.

- WILSON, M.E., 1910 Larder Lake and eastward. Commission géologique du Canada, Summary Report. 1909, A, pages 173-180.
- WILSON, M.E., 1912 Kewagama Lake map-area, Pontiac and Abitibi, Québec. Geological Survey of Canada, Summary Report. 1911, pages 273-279.
- WINCHESTER, J.A. FLOYD, P.A., 1977 Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology., volume 20, pages 325-343.
- WINKLER, H.G.F., 1979 Petrogenesis of metamorphic rocks. Fifth edition. Springer-Verlag New-York Inc., 348 pages.
- WOOD, D.A. TARNEY, J. VARET, J. SAUNDERS, A.D. BOUGAULT, H. JORON, J.L. -TREUIL, M. - CANN, J.R., 1979 - Geochemistry of basalt drilled in the North Atlantic by IPOD Leg 49: Implications for mantle heterogeneity. Earth and Planetary Science Letters, volume 42, pages 77-97.

.

ANNEXE 1

GÉOCHIMIE MÉTHODE DE PRÉPARATION DES ÉCHANTILLONS

LISTE DES ÉLÉMENTS ANALYSÉS méthode, précision et limite de détection

TRAITEMENT ANALYTIQUE

MÉTHODE DE PRÉPARATION DES ÉCHANTILLONS

Afin d'éviter la contamination et d'obtenir des échantillons représentatifs de la roche fraîche pour les analyses lithochimiques, nous avons utilisé la procédure suivante dans la préparation des échantillons:

1- Fabrication de "biscuits" à partir de l'échantillon pour la préparation d'une lame mince et chimie.

2- Elimination des bordures d'altération et des veines de quartz et de carbonate à l'aide d'une scie au diamant.

3- Concassage et pulvérisation dans un broyeur en acier pour toutes les analyses sauf pour les analyses des oligo-éléments où une partie de l'échantillon a été pulvérisé dans un broyeur en céramique afin de réduire la contamination en Cr et en Fe.

LISTE DES ÉLÉMENTS ANALYSÉS

LITHOCHIMIE

<u>Spectrométrie d'émission au plasma.</u> (Précision du labo = 2 %) SiO2, Al2O3, Fe total exprimé en Fe2O3, MgO, CaO, Na2O, K2O, TiO2, P2O5, MnO et P.A.F.

<u>Méthode volumétrique et titrage.</u> (Précision du labo = 10 %) FeO et ensuite Fe2O3 calculé par différence (Fe total, FeO)

<u>Méthode gravimétrique.</u> (Précision du labo = 10 %) H2O+, CO2

<u>Méthode de fluorescence X.</u> (Limite de détection entre parenthèse) S (100 ppm), Rb (1 ppm), Sr (1 ppm), Y (1 ppm), Zr (1 ppm)

20 oligo-éléments par spectrométrie d'émission au plasma (digestion multi-acide). (Limite de détection entre parenthèse) Ag (0.5 ppm) Cd, Cr, Co, Cu, Mn, Mo, Fe, Ni, Zn, V (1 ppm) Bi (2 ppm) As, Se, Pb, Sb (5 ppm) Te, W, U, Sn (10 ppm)

<u>Analyse par activation neutronique</u> (Limite de détection entre parenthèse) Au (1 ppb)

ANALYSES DES ÉCHANTILLONS MINÉRALISÉS

20 oligo-éléments par spectrométrie d'émission au plasma (digestion multi-acide). (Limite de détection entre parenthèse) Ag (0.5 ppm) Cd, Cr, Co, Cu, Mn, Mo, Fe, Ni, Zn, V (1 ppm) Bi (2 ppm) As, Se, Pb, Sb (5 ppm) Te, W, U, Sn (10 ppm)

Analyse par activation neutronique (Limite de détection entre parenthèse) Au (1 ppb)

TRAITEMENT ANALYTIQUE

Afin d'éliminer du traitement statistique les échantillons qui présentaient des signes d'altération, nous avons utilisé la procédure suivante après avoir contrôlé la composition minéralogique en lame mince:

1- Comme Gélinas *et al.* (1977), nous avons éliminé tous les échantillons qui contenaient plus de 3,8% d'éléments volatils dans les résultats de perte au feu, sauf pour les échantillons de komatiites, de picrites et de basaltes magnésiens; les échantillons de komatiites pourraient contenir jusqu'à 13% d'eau.

2- Lorsque les valeurs de S étaient plus grandes que 0,35%, une correction a été effectuée sur le FeO pour l'équivalent en pyrite si celle-ci avait été décelée dans les descriptions pétrographiques.

3- Lorsque les valeurs de CO2 étaient plus grandes que 0,30%, une correction supplémentaire a été effectuée sur le CaO pour l'équivalent en calcite.

4- Tous les résultats des analyses chimiques pour les éléments majeurs sont normalisés à 100% sans les éléments volatils (CO2, S, PAF). Ces résultats sont présentés à l'annexe 2a.

ANNEXE 2a

BASE DE DONNÉES LITHOCHIMIQUES UTILISÉES POUR LE TRAITEMENT STATISTIQUE ET GRAPHIQUE

Éléments majeurs et mineurs normalisés à 100 % sans les éléments volatils

Éléments traces

Regroupement par unité stratigraphique

LÉGENDE

LEGENDE

#Echant. :	Numéro de l'échantillon de terrain
UTM/ N/ E :	Coordonnées UTM nord et est
Fm./ Gr. :	Formation ou Groupe
	AUR Aurora, DUB Dubuisson, GAI Garden Island, GRE Grenville, ASS Assup, HEV Héva, JAC Jacola, PON Pontiac, TRI Trivio, VAD Val d'Or, VIB Villebon.
Lith. :	Lithologie
	INT intrusion, LAV lave, PYR pyroclastite, SED sédiment.
Fac. :	Faciès
	I1 roches intrusives felsiques, I1B granite, I1F aplite, I2 roches intrusives intermédiaires, I2I diorite quartzifère, I2J diorite, I3A gabbro, I3B norite, I3J diabase, I1FPQZ roche intrusive felsique à phénocristaux de feldspath et de quartz, M4 schiste, M8 amphibole, S sédiments, S1 grès, S2 arénite, S2B arénite feldspathique, S2D arénite arkosique, S3 wacke, S3D wacke arkosique, S4 conglomérats, S4E conglomérat polygénique "clast-supported", S4F conglomérat polygénique "matrix-supported", S6 mudrock, S6A siltstone, S7E mudstone, S9B formation de fer oxidée, S9E formation de fer sulfurée, V1B rhyolite, V1C rhyodacite, V1D dacite, V2 roche volcanique intermédiaire, V2B trachyte à feldspath alcalin, V2J andésite, V3A basalte andésitique, V3B basalte, V3F basalte magnésien, V3G picrite, V4 roches volcaniques ultramafiques.
SFa. :	Sous-faciès
	AMY amygdalaire, b blocs, B brèchique, C coussinée, CE cendre, Ci cisaillée, F fracturée, l lapilli, Li litée, OE oeillée, M massive, MA massive sans structure, PORP porphyrique, R lithique, VA variolaire, VE vésiculaire, VQZ veine de quartz, x cristaux, YQZ yeux de quartz.
Alt.:	Altération et minéralisation
	AM amphibole, AS arsénopyrite, AK ankérite, BO biotite, CB carbonate, CC calcite, CL chlorite, CP chalcopyrite, EP épidote, FC fuchsite, GP graphite, GR grenat, HB hornblende, LM limonite, MG magnétite, PO pyrrhotite, PY pyrite, QZ quartz, SR séricite, SU sulfure, TL tourmaline.
Divers :	Fe ₂ O ₃ c (calculé), Fe ₂ O ₃ a (analysé), Fe ₂ O ₃ t (total), MGV Mg ⁺² /(Mg ⁺² + Fe ⁺²).
N.B.:	Les analyses des séries 5 000, 6 000, 7 000 et celles précédées d'un astérisque ont été effectuées par le laboratoire du CRM.
	Les autres analyses ont été effectuées par le laboratoire Chimitec Ltée.

GROUPE D'ASSUP

Fm.	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS
#Echant.	2020	2022	2023	2028	2056	2061	2077	2082	2089	2091	2092	2095	2097
UTM/N	5330600	5331525	5331925	5330050	5330725	5331000	5331950	5330425	5330900	5331150	5331325	5331375	5331450
UTM/E	347650	347375	347925	348500	350125	350350	346350	349600	349625	349700	349950	350500	350625
Lith.		LAV	LAV	LAV		LAV	LAV		LAV	LAV	LAV	LAV	LAV
Sous-facide	V 3B	V2J BC	V2J RM	V Z J M	¥3A C	V2J CB	V3A CB	V 3 A	V JA C B	V2J	CM	V 3 A	V3B
Altération	CBMG	5,0	Dyn	MG	MG	0,0	CB	Ē	0,0	Ŭ	CB	IAI	CB
													Ű
El. majeurs (%)												
SiO2	51,85	65,93	61,17	58,05	63,23	61,94	63,75	60,77	55,53	54,05	57,74	50,45	54,06
TIO2	1,57	0,76	0,69	1,05	1,40	0,52	0,68	0,78	1,20	0,77	0,77	1,66	1,49
A1203	13,74	15,07	16,35	16,26	14,76	16,34	13,78	15,24	17,88	19,15	16,71	15,58	14,23
Fe2O3 c	2 33	4,38	4,14	0,40	0,08	2,70	2,04	1,69	4,51	5,42	4,30	10,09	/,4/
MnO	0,22	0,11	0,09	0,15	0,13	0,08	0,13	0.09	0,13	0.14	0.12	0.19	0.17
MgO	5,56	4,16	4,20	5,31	4,00	3,43	2,91	2,55	3,97	5,82	4,40	6,90	5,72
CaO c	9,87	2,94	6,67	4,54	2,92	8,31	11,83	14,09	8,94	8,50	11,04	9,90	12,10
Na2O	2,47	4,32	3,18	5,16	4,08	3,51	0,37	0,02	3,81	3,65	2,08	2,12	1,24
P205	0.85	0.24	0.33	0.37	0,30	0,30	0,01	0,01	0,18	0,07	0,13	0,20	0,02
TOTAL	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100.00	100,00	100.00	100.00	100.00
0.0.5			0.45				0.05						
CO2	0,10	3,00 N RR	2,15	3,55 1 27	2,15 0 91	1,05	2,65 1 5 P	1,55	1,70	3,05	2,10	2,25	2,55
s	0,02	0,17	0,01	0,01	0.02	0.01	0.01	0.01	0.38	0.01	0.01	0.03	0,01
Fe2O3 1	14,50	6,53	6,33	8,93	8,91	5,43	6,19	6,10	8,20	7,80	6,98	13,10	10,90
FeO t	12,91	5,81	5,63	7,95	7,93	4,83	5,51	5,43	7,30	6,94	6,21	11,66	9,70
MGV	0,46	0,59	0,60	0,57	0,50	0,58	0,51	0,48	0,52	0,62	0,58	0,54	0,54
El. traces (p	pm)												
Rb	17	2	43	3	12	10	4	<1	5	4	6	5	2
Pb	58	125	29	32	37	47	30	90	63	66	190	182	224
Ba					-	-	-	-					40
Zr	85	107	131	131	137	114	84	96	140	121	119	96	79
Y	26	19	27	28	30	16	17	20	28	20	24	27	26
SC		:	-	25,7	-	-	19,1	-	-	•	-	•	34,8
Ce			-	35			20	-		-		-	8,5
Pr	.	-	-	-	•	-		•	-	•	-	-	-
Nd		-	-	15	•	-	10	•	-	-	•	•	14
Sm	-	•	•	4,1	•	-	2,4	•	•	-	-	•	3,6
ть				-1			<1			-		-	1
Dy	- 1	-		-		-		-		-		-	
Ho		•	-	<1	•	•	<1		-	-			<1
Tm		•	-	<1	-	•	<1	•	-	•	•	-	0,9
10		-	•	2,9	-	-	1,7	-	-	-	•	•	3,1
Th		-	-	1,1			<0.5	-		-	•	•	0,6
U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
V	333	127	106	149	232	110	124	154	210	58	113	175	200
ND 1 i	-	•	-	•		-	-	•	•	-	•	-	-
Be		-	-	-				-			-	•	-
Cr	140	70	80	67	23	83	65	97	179	46	114	232	249
Mn	2117	871	854	1273	1174	856	1057	934	1214	435	1047	1539	1590
Co	54	25	15	28	44	19	15	29	39	9	21	29	35
	258	74	54	62	57	20	48	73	82	27	104	62	85
Zn	144	81	64	65	121	55	61	65	107	48	70	105	68
Ga	-	-	-	-	•	-	-			-			
As	<5	<5	<5	<5	6	<5	<5	24	<5	<5	<5	<5	<5
Se	<5	<5	<5	<5	6	<5	<5	<5	<5	6	<5	<5	<5
Ag	<0.5	1	<0.5	<0.5	<1	0	<1 <0.5	8 1	8 1	2	8 ء ∩ر	4	2
Ca	<1	<1	<1	<1	<1	<1	<1	- <1	<1	<1	<0,5	<1	ا ح1
Sn	<10	<10	<10	<10	<10	<10	10	<10	<10	<10	<10	<10	<10
50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	⊲5	<5	<5
Ta	-	< 10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
w	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	- <10	<10
Au (ppb)	4	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	<1
RI	2	<2	5	2	<2	<2	2	2	<2	<2	<2	2	<2
Zr/TiO2	0.01	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0 02	0.01	0.01
Nb/Y	l	-		•			-,-,				0,02	-	0,01

GROUPE D'ASSUP

Fm.	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS
#Echant.	2163	2178	2183	2196	2212	2258	2334	2355	2356	3025	4082	4086	4101
UTM/N	5330500	5330275	5330225	5328825	5329200	5328575	5327800	5329875	5328900	5331900	5330775	5331925	5331150
UTM/E	353875	352700	352450	362625	361700	322600	356400	359550	359600	349575	351500	352375	352050
Lith.	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV
Faciès	V3B	V2J	V2J	V3A	V2J	VЗA	V2J	V2J	VЗA	V2J	VЗA	V2J	V3A
Sous-faciès	С,М	C,M	M,B	M,B	C,M,B	M,B	М	C,M	М	м	м	С	С
Altération	C8		СВ	CB				QZ,PY,PO					œ
El majoure (<u>هم</u>		<u> </u>										
SiO2	/ 49.90	58.50	59.34	53.63	54.86	52.42	61.03	61.12	51.64	59.85	49.33	62 84	61.55
TiO2	1,82	0,81	0,81	1,33	1,16	1,36	1,11	0,75	1,53	0,94	1.68	0.69	1.11
A12O3	17,17	18,44	18,06	16,25	17,12	15,64	15,49	17,57	14,86	16,21	15,85	14,58	15,52
FeO c	9,22	4,62	4,54	8,72	7,55	9,33	5,15	2,90	10,11	4,33	10,12	2,65	5,12
Fe2O3 c	3,61	1,77	2,88	2,74	3,20	2,79	1,84	3,99	2,88	1,62	2,91	3,18	2,00
MIC	0,21	0,12	0,13	0,16	0,16	0,17	0,21	0,06	0,19	0,11	0,20	0,11	0,14
CaO c	10.74	6.42	8.00	8.73	7 96	8.41	6 59	5,00	799	5,02	10.46	3,34	3,98
Na2O	2,24	4,72	1,29	2.24	2,35	2.75	3.81	2.35	3.13	4.51	1.94	0.23	4,85
K2O	0,05	0,65	1,38	0,10	0,35	0,09	0,14	0,97	0,62	1,14	0,10	0,35	0.41
P2O5	0,21	0,14	0,11	0,17	0,27	0,12	0,47	0,15	0,38	0,01	0,32	0,25	0,36
TOTAL	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
P.A.F.	2,70	2,25	2,95	2,30	2,40	2,65	2,95	3,20	2,45	1,85	3,05	1,45	2,75
s	0.01	0.01	0,10	0.29	0,01	0,08	0,85	0,17	0,09	0,09	0,16	1,12	1,34
Fe2O3 t	13,00	6,51	7.54	11.70	10.90	12.70	7.23	6.78	13.20	6.31	13.40	5,80	7.08
FeO t	11,57	5,79	6,71	10,41	9,70	11,30	6,43	6,03	11,75	5,62	11,93	5,16	6,30
MGV	0,45	0,57	0,51	0,53	0,51	0,55	0,56	0,56	0,53	0,64	0,54	0,58	0,56
Ei. traces (p	pm)								· · · · · · · · · · · · · · · · · · ·				
Ro	2	22	51	3	154	<1	6	30	13	40	3	12	16
Sr Ph	231	183	330	318	305	205	153	183	186	144	186	101	164
Ra			20	50	52	53	30	35	61	33	41	22	23
Zr	91	166	154	106	156	102	139	131	94	139	96	. 92	138
Y	29	29	25	26	32	27	31	22	23	29	31	22	29
Sc	37,2	19,5	-	-	23,4	-	23,4	18,7	32,3	-	-	20,9	22,4
La	8,7	19,5	-	-	18,7	•	13,1	12,8	10,1	-	-	12,3	16,3
	22	37	-	-	41	-	26	29	24	-	-	23	34
Nd	17	19			18		- 20	12	- 16	-	-		-
Sm	4.4	3,9	-	-	5	•	3.8	2.8	3.7	-		28	4.5
Eu	2	1	-	-	1	•	<1	1	1	-	-	<1	1
ТЬ	<1	<1	-	-	<1	-	1	<1	<1	-	-	<1	<1
Dy		:	•	•	:	•	•	•	-	•	-	-	-
Tm		<1	•	•	<1	•	<1	<1	<1	•	•	<1	<1
Yb		3.1		-	29	•	< 2 e	<1	<1	-	-	<1	<1
Lu	0.4	0.5	-	-	0.5	•	0.5	0.2	0.4		-	1,7	2,6
Th	<0,5	2,2	-	-	1,5	-	<0.5	1.7	<0.5	-	-	<0.5	1.3
U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
V	242	123	110	197	147	196	151	142	233	162	308	139	166
NID	-	-	-	•	•	-	-	-	-	•	-	-	
Ba		•	-	-	-	•	•	•	-	-	-	-	-
G	278	72	56	170	122	159	104	113	105	108	-	104	-
Mn	1871	893	1021	1619	1536	1702	2016	553	1889	1152	1970	1025	1256
Co	52	22	30	42	34	47	31	32	45	30	52	20	31
NI	166	44	48	72	77	100	78	44	90	101	107	80	71
Cu	51	30	68	82	78	4	63	237	24	21	20	7	81
Zn Ge	133	100	91	121	119	131	96	47	155	82	130	52	94
As	-5	<5	-5	-5	-5	-5	-6	-5	-E	-			-
Se	<5	<5	5	<5	<5	<5	~5 ~5	ජ	<5	<0	<0	51	10
Мо	<1	<1	1	6	4	4	<1	1	2	<1	<1	2	9 <1
Ag	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0.5
Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
SN SN	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Te	<0 -10	<0 ~10	<0 ~10	<5 ~10	<5 ~10	<5	<5	<5	<5	<5	<5	<5	<5
Ta	-		-	-	<10	<10	<10	< 10	<10	<10	<10	<10	<10
w	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<1∩	<10
Au (ppb)	<1	<1	<1	<1	<1	<1	1	3	1	3	<1	<1	<1
Bi	2	<2	2	4	~2	<2	2	2	<2	<2	2	~2	<2
Zr/TiO2 Nb/Y	0,00	0,02	0.02	0,01	0,01	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,01

GROUPE D'ASSUP

Fm.	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS
#Echant	4107	4119	4158	4199	4201	4202	2062 4	2211 h	2048 h	2101 -	2112 d	Croinor	2040
UTM/N	5330900	5328600	5330575	5330550	5329125	5329850	5330975	5329350	5330725	5328600	5328475	5330250	5220000
UTM/E	352325	362150	351400	355350	351400	359875	350400	361650	349450	355950	365000	349800	349300
Lith.	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	PYR
Faciès	V3A	V2J	V3A	V2J	V3B	V2J	V2J	V3A	V3A	V3A	V2J	V2J	V2J
Sous-faciès	м	С	м	С	м	м	в	M,B	м	M,B	В		x,b
Altération				CZZ			œ		æ	œ	OZ,PY		
El. majeurs (%)					18							
SIO2	52,32	51,30	60,26	57,02	52,31	61,27	61,40	60,06	56,51	50,39	61,54	64,54	64,57
1102	15.01	1,38	1,03	1,18	1,22	16 20	0,67	1,18	1,16	1,33	0,81	1,19	0,79
FeO c	10.13	9,10	4,13	5.68	9.82	3.75	3.24	5.34	5 39	8 42	6 47	10,27	1 56
Fe2O3 c	2,25	1,77	1,95	1,90	3,96	1,97	1,80	1,74	3.32	3.50	1.30	2.72	2.87
MnO	0,17	0,21	0,16	0,13	0,19	0,11	0,10	0,15	0,20	0,19	0,08	0,17	0,06
MgO	7,91	5,44	4,10	5,28	6,49	4,04	4,05	4,07	4,41	6,60	2,37	3,25	0,96
CaO c	8,00	7,22	6,89	6,39	8,07	6,70	8,35	8,50	7,45	10,17	5,32	3,53	4,70
Na2O	2,21	4,16	4,35	4,69	1,87	3,83	3,03	2,90	3,49	2,06	3,84	4,57	3,87
P205	0.04	0,40	0,37	0.05	0,15	0.24	0.80	0,28	0,01	0,34	1,53	0,26	2,33
TOTAL	100.00	100,00	100,00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
		•											
P.A.F.	3,45	2,85	2,10	1,90	3,05	1,95	1,75	1,85	3,65	2,55	1,05	2,55	2,30
s	0,10	0,13	0,46	0,07	0,01	0,15	0,31	0,23	0,80	0,09	0,11	0,14	0,56
Fe2O3 t	12.60	11 10	6 16	8.07	13.90	5.84	5 15	7 27	8 97	12 50	0,01	<0.01	0,01
FeO t	11,21	9,88	5,48	7,18	12.37	5.20	4.58	6.47	7.98	11.13	7.24	6.44	4,33
MGV	0,58	0,52	0,60	0,59	0,51	0,61	0,64	0,55	0,52	0,54	0,39	0,50	0,33
El. traces (p	[pm)												
Rb	2	13	17	3	2	42	21	11	<1	7	48	-	81
Sr	121	159	297	99	298	174	179	204	385	176	349	-	575
Pb	37	31	19	26	44	15	27	38	50	74	26	-	20
Ba 7.	-				-	-	-				-		-
Y	27	34	28	30	19	131	122	143	105	90	175	181	151
Sc		28.5		-	-	-	19.7			- 20	177	37	8.6
La	-	22,4	-	-	•	-	14,4	-	-	-	16,6	-	25,7
Ce	-	46	•	-	•	-	30	-	•	-	33	•	47
Pr			-	•	•	•	•	-	•	-	-	-	•
Na		29	-	-	-	•	10	-	-	•	16	-	23
Fu	[1					∠,∠ 1	-		•	3,8	-	4,2
ть		1	-		-		<1	-	-		<1	-	-1
Dy	-		-	-	-		-		-	-	-	-	
Ho	-	<1	-	-	-	-	<1	•	-	-	<1		<1
Tm	-	0,8	-	-	•	-	<1	-	-	-	<1	-	<0,5
10		3,7	-	•	•	•	2,2	-	-	•	2,5	-	2,4
Th		1.1					2 1	-	•	•	0,4	-	0,3
U	<10	<10	<10	<10	<10	<10	<10	<10	-10	~10	-10	-10	4 ~10
v	227	187	176	160	301	116	108	139	239	207	147	101	114
Nb	-	-	-	•	•	•	-	-		•	-	-	-
	-	•	-	-	•	•	-	-	-	•	-	-	•
Be	102	-		100	100				-		-	-	•
Mn	1554	2000	1419	1231	1742	997	00 808	1401	1970	190	64	17	71
Co	45	38	32	31	33	21	18	27	30	55	27	1249	460
Ni	100	92	78	65	70	62	90	64	53	122	61	11	12
Cu	71	20	59	88	48	27	64	68	68	87	99	35	269
Zn	113	148	78	104	125	74	60	102	99	128	91	92	36
Ga Δ e	12	. 13			- 12	.E	•	•	-	•	-	-	-
Se	<5	12	-5	රෝ	-5	<0 R	<0	3	<0	<5	<5	24	<5
Mo	<1	<1	<1	<1	1	<1	4	4	<1	2	<1	<5	<0
Ag	<0,5	<0,5	<0,5	<0,5	1	1	<0,5	<0,5	<0,5	<0,5	<0,5	<0.5	<0.5
Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1.0	<1,
Sn	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Te	40 10	<5	<5 _10	<5	<5	<5	<5	-6 	<5	<5	5	<5	<5
Ta		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
w	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	- <10	- ∠10	-10
Au (ppb)	<1	<1	<1	<1	<1	4	<1	<1	2	<1	<1	1	6
Bí	~ 2	<2	2	2	<2	<2	2	2	<2	<2	4	~2	<2
Zr/TiO2	0.01	0.01	0.01	0.01	0.00	0 02	0 02	0.01	0.01	0.01	0.02	0.00	
Nb/Y	-,	-	-	-	-	0,02	v, uz -			0,01	0,02	0,02	0,02

GROUPE D'AURORA

Fm.	AUR	AUR	AUR	AUR	AUR	AUR	AUR	AUR	AUR	AUR	AUR	AUR	AUR
#Echant.	308	2010	2012	2220	2224	2226	2338	2342	4139	4225	4226	7084	2324 a
UTM/N	5332350	5331550	5331550	5324200	5324550	5324550	5325725	5325700	5327300	5325475	5325650	5334450	5328650
UTM/E	329050	334500	334450	354975	358850	358825	355950	359500	351950	356175	359900	322950	350150
Lith.	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV
Faciès	V3G	V3A	V3A	V3B	V3B	V3A	V3B	V3B	V3B	V3A	VЗA	V2J	V3F
Sous-faciès	C	CI	C,M	C,B	С	M,B	C,M	В	м	м	м	C,Ci	Ci
Alteration		CIZ,CB					CB	B		AM	AM		
El. maieurs (<u>م</u>		···				······································						
SiO2	49,34	49,95	65,83	51,41	56.05	51.86	52.76	49.92	50.84	61.61	51.71	57.45	48 72
TiO2	1,03	1,56	0,97	0,80	1,01	0,81	1,50	2,19	1.95	2.05	2.31	1.22	0.72
AI2O3	12,94	16,55	14,71	16,09	15,01	15,15	14,81	12,93	12,89	10,85	14,05	15,58	17,19
FeO c	12,44	8,16	6,24	8,95	8,79	8,78	10,98	14,31	12,45	8,52	12,55	7,04	8,70
Fe2O3 c	3,39	4,02	1,18	2,67	2,10	2,19	4,88	3,71	5,14	4,64	5,58	2,77	2,49
MnO	0,24	0,17	0,16	0,19	0,20	0,19	0,22	0,29	0,31	0,20	0,27	0,17	0,20
MgU	16,66	6,11	3,98	6,61	5,22	7,99	5,11	5,25	4,78	2,37	3,92	5,25	11,50
Na2O	2,59	1 71	2,41	10,77	8,62	10,83	7,56	7,88	8,81	7,06	6,36	4,90	7,62
K20	0.12	0.01	0.01	0.15	2,04	0.11	1,09	2,00	2,42	2,14	2,66	5,17	2,64
P205	0.36	0.34	0.35	0.09	0.01	0.12	0,25	0.31	0.20	0,10	0,10	0,17	0,01
TOTAL	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
P.A.F.	6,35	2,60	2,20	1,20	0,85	2,10	3,50	1,65	0,60	1,45	2,25	1,98	4,70
CO2	2,04	0,06	0,01	0,28	0,18	0,90	0,28	0,25	0,15	0,11	0,25	0,36	0,77
5	0,03	0,09	0,01	0,01	0,01	0,01	0,10	0,01	0,01	0,02	0,34	<0.01	0,01
Fe2O3 t	15,70	12,50	7,77	12,00	11,30	11,20	15,80	18,50	18,10	13,40	18,20	10,20	11,10
NGV	0.70	0.52	0,92	10,68	10,06	9,97	14,06	16,47	16,11	11,93	16,20	9,08	9,88
		0,52	0,00			0,01	0,42	0,39	0,37	0,28	0,32	0,53	0,70
El. traces (p)	pm)								_				
HO C.		<1	1	1	<1	2	4	4	2	<1	2	4	<1
Ph	36	201	20	62	100	133	115	36	81	86	86	180	545
Ba		-						90	49	37	47	<12	49
Zr	54	101	115	38	50	48	74	102	99	164	149	150	5.8
Y	17	24	27	17	20	21	22	39	42	62	59	25	14
Sc		-	26,8	48,8	•	•	-	46,7	46,6	39,7		28	-
La	-	-	12,1	2,5	-	•	•	7	6,8	10,6	-	15	-
Ce	•	-	29	8	-	-	-	17	19	31	-	31	-
Nd	-	-		-10	-	-	-	-	-	-	-	2	•
Sm		-	37	1 9		-	-	18	22	31	-	105	•
Eu		-	1	<1	-	-	-	4,5		2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-
ть		-	<1	<1	-	-	-	2	2	<1	-		
Dy		-	-	•	•	-	-		-		-	5	-
Но	•	-	<1	<1	-	-	-	1	<1	1	-	-	-
Tm.	-	-	<1	<1	-	-	-	<1	1,1	1,3	-	•	-
10	-	-	2,9	2,4	-	-	-	4,9	5,1	6,5	•	-	•
15		-	0,6	-0,4 -0,5	-	-	-	0,7	1	1,1	•	-	•
U	< 10	<10	<10	<10	<10	~10	-10	<0,5	<0,5	<0,5	-10	<3	.10
v	153	243	159	272	330	258	376	536	428	189	420	167	<10
Nb	-	-	-	-	-		-	•	-	-		12	-
LI	-	-	-	-	•	•	•	-		•	-	17	
Be	-	•	•	-	-	-	-	-	-		-	3	-]
Cr	3256	243	124	452	249	440	19	71	97	2	69	-	330
Mn	2469	1837	1173	1937	1921	1933	1957	2886	3507	1835	2589	-	1771
Ni	845	142	21	140	49	54	52	62	61	22	54	28	67
Cu	9	76	14	95	3	78	152	40	39	2	36	75	463
Zn	161	124	83	100	101	91	102	199	103	126	100	79	120
Get			•	-	-	-	-	-				15	120
As	< 5	<5	38	<5	171	<5	<5	<5	<5	5	<5	-	<5
Se	< 5	<5	<5	5	<5	<5	⊲5	<5	<5	<5	<5	-	7
Mo	< 1	8	<1	4	4	6	2	<1	3	1	<1	<4	2
49 Cd	< 0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	-	<0,5
Sn	210	<1 -10	<) -10	<1 ~10	<1 ~10	<1	<1 _10	<1	<1	<1	<1	2	<1
Sb	< 5	<5	<10 <5	<10	<10	<10	01> عر	01> مر	<10 ~F	<10	<10	<10	<10
Te	< 10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<0 ∠10	-10	<0 ~10
Ta	-	-	-	-	-	-	•	•		-		<5	
W	< 10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10
Au (ppb)	1	<1	<1	<1	<1	1	9	1	<1	<1	<1	•	<1
01	<2	<2	2	2	<2	<2	2	4	<2	<2	~2	-	<2
Zr/TiO2 Nb/Y	0,01	0,01	0,01	0,00	0,00	0,01	0,00	0,00	0,01	0,01	0,01	0,01 0,48	0,01

GROUPE D'AURORA

Fm.	AUR	AUR	AUR	AUR	AUR	AUR	AUR	AUR
#Echant	200 A	205 B	Bruell	Bruell 5006a	Bruell 5007b	Brueli 5007d	BR.A.72	Bruell BB-A-75
UTM/N	5332570	5332425	5332500	5332500	5332500	5332500	5332500	5332500
UTM/E	329500	329350	329400	329400	329400	329400	329400	329400
Lith.	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV
Faciès	V3B	V3A	V38	V3B	V3B	νэв	V2J	V2J
Sous-facies	EPMG	MG						
El. majeurs (%)						
5102	50,48	52,01	50,61	55,59	61,71	38,31	60,49	58,80
A1203	16.15	17.89	15.90	13.79	11.20	13.75	17.69	18.40
FeOc	6,15	6,68	11,18	12,12	7,58		8,62	9,00
Fe2O3 c	5,58	3,36	3,05	3,74	2,36	25,88	2,07	2,01
MnO	0,30	0,16	0,19	0,17	0,21	0,32	0,03	0,04
CaOc	9,46	6.75	8,53	5.36	7.82	13.91	1.22	1.44
Na2O	3,94	4,26	1,82	2,97	1,79	0,14	5,82	6,03
K2O	0,55	0,99	0,28	0,20	0,50	0,40	1,24	0,96
P205	0,30	0,39	0,15	0,34	0,10	0,17	100.00	0,10
	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
P.A.F.	1,70	3,90	2,90	1,85	2,20	1,75	3,55	2,85
CO2	0,05	0,90	<0.01	0,49	<0.01	0,27	<0.01	0,07
5	0,16	0,01	<0.01	0,02	0,01	0,21	1,12	1,51
FeO t	10.95	9.17	12.82	14.33	9.08	22.78	9.79	10.41
MGV	0,50	0,58	0,51	0,33	0,57	0,34		0,34
	L							
EL. traces (p)	pm) 13	28				-	_	
Sr	123	197					-	
Pb	28	26	-	-	-	-	•	
Ba 7-	-		-	•	•	•	-	•
Y	20	23		-	-	-		•
Sc					•	-		
La	-	-	-	-	-	•	•	•
Ce Dr	•	•	•	-	-	-	•	•
Nd	-	-			-			
Sm	-	-	•	•	•	-		
Eu	-	-	-	•	-	-	•	-
		-					:	
Ho		-	-	-	-	-	-	-
Tm	•	•	-	-	-	•	•	
Yb	-	•	-	-	-	-	•	
		•	-	-	-			
U	< 10	< 10	-		-	<10		<10
v	322	202	-	-	•	315	•	53
Nb	-	-	-	-	•	-	-	-
Be								
Cr	333	323	-	-	-	325	•	55
Mn	2881	936	•	•	•	3592	•	244
Co	56	47	•	•	•	45	-	4
Cu	36	103	30	12	- 28	232	:	16
Zn	203	71				111		38
Ga	•	•	•	-	•	-	-	
As	< 5	8	-	-	•	5	•	<5
Mo	< 5 8	< 0		:		28	-	7
Ag	< 0,5	< 0,5	0,6	0,6	<0,5	<0,5	-	<0.5
Cd	< 1	< 1	-	-	•	<1	•	<1
Sn	< 10	< 10	-	•	-	17	-	10
Te	< 10	< 0 < 10		•	-	<5 1.5	•	<5 <10
Та	-	-		•			-	
W Aut (mm b)	< 10	< 10	•	•	•	<10	-	<10
AU (ppb) Bi	<1	<1 20	2	4	6	62	•	9
		ς Ζ	•	-	-	<2	-	~
Zr/TiO2	0,00	0,01	-	-	-	-	-	-
ND/Y	L	<u> </u>	•	-	•	-	-	-

FORMATION DE DUBUISSON

Fm.	DUB	DUB	DUB	DUB	DUB	DUB	DUB	DUB	DUB	DUB	DUB	DUB	DUB
#Echant.	7014	7038	7039	7040	7043	7044	7045	7046	7068	7076	7078	7079	7080
UTM/N	5336200	5336925	5337000	5337025	5337100	5337125	5337150	5336800	5336100	5337550	5337575	5337550	5337450
UTM/E	315100	314150	314175	314200	314175	314180	314175	314400	313125	310450	310450	310460	310150
Lith.					LAV					LAV	LAV	LAV	LAV
Pacies Sous-faciès		v 3 A C	v 2 J M	V 4 M	v 3 A M	v 3 M M	V JA M	V 3 M C	v 3 A M	V 4 M	V4 M	V4 M	V 3A C B
Altération	ca i	Ē	Der.			P••			141	1.	lei	141	0,0
El. majeurs (%)						·····						
SiO2	55,75	60,69	57,82	47,21	51,83	53,47	51,58	62,59	54,62	48,89	47,37	47,22	54,28
TiO2	0,82	0,76	0,93	0,66	0,36	0,52	0,33	0,83	0,85	0,35	0,39	0,46	0,86
FeO c	8.57	13,01	18,08	10.35	17,28	15,87	17,68	12,64	13,89	4,93	5,34	6,01	15,25
Fe2O3 c	4,44	3,26	2,48	2,78	1,93	2.85	1,90	2.83	9,14	3.62	3.53	5.78	2.44
MinO	0,21	0,19	0,10	0,25	0,20	0,21	0,20	0,17	0,18	0,17	0,18	0,17	0,23
MgO	4,82	4,41	4,77	24,23	8,93	7,53	8,79	4,71	3,23	27,88	29,61	25,29	5,71
CaO C	8,60	7,65	5,85	6,95	9,50	9,31	10,23	5,09	13,34	7,04	5,48	7,94	9,09
K20	0.06	0.05	0.39	0.02	0.20	0.02	0.02	2,04	0,14	0.02	0,24	0,21	1,73
P2O5	0,08	0,07	0,22	0,03	0,03	0,04	0,02	0,07	0,07	0,01	0,03	0,03	0,08
TOTAL	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
P.A.F.	3,31	2,09	2,21	7,41	3,41	3,16	3,51	2,89	2,65	6,32	7,50	5,70	3,64
CO2	1,64	<0.05	<0.05	2,54	<0.05	<0.05	<0.05	0,91	0,57	<0.05	0,11	0,63	0,88
S Ee203 +	0,02	0,03	<0.01	<0.01	<0.01	0,04	<0.01	0,01	0,06	0,07	0,07	0,06	< 0.01
FeO t	11.57	10.15	5.86	11.21	9.08	10.68	8,99	10.15	12,00	9.35	9.88	11 04	13,20
MGV	0,45	0,46	0,62		0,66	0,58	0,66	0,48	0,35	0,86	0,86	0,82	0,49
El, traces (pi	[0					
Rb	⊲	<3	7	<3	4	<3	<3	3	<3	<3	<3	<3	<3
Sr	100	77	120	52	96	63	53	55	110	14	23	23	220
Pb	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
Zr	58	50 60	130	4	29	5 4 1	27	147	13	10	18	18	16
Y	36	38	23	10	16	26	16	41	42	- 4	7	27	46
Sc	67	73	40	30	60	69	57	68	70	20	21	26	55
La	3	~2	19	2	<2	2	2	4	<2	~2	2	2	4
Pr		-2	47	<3	-2	-2	6	5	4	<3	3	43	6
Nd	45	50	85	50	<25	40	30	60	70	<25	30	50	60
Sm	<2	<2	2	2	<2	<2	<2	<2	<2	<2	2	2	<2
Eu	3	3	3	Э	2	Э	2	3	4	3	4	4	3
Dv	6	- 6	- 4	2	. 3	-		6	-	•	•	-	-
Ho			-	-	-			-		-	-		-
Tm	-	•	-	-	•	-	-	-	-	-			-
Yb	-	•	•	-	•	-	-	•	•	•	-	-	-
Th		<3	- 3	3	<3	<3			- 3		-		- 3
U	-		-				-				-		-
v	331	368	194	177	189	246	178	346	360	122	131	148	275
Nb	7	8	10	7	6	9	6	7	6	6	7	6	7
Be	2	2	2	<1 1	-1	1	13	2	<1 2	<1	<1	<1	13
Cr	.	-	-		-	-				-	-	-	۲ -
Mn	-	•	-	-	-		•	•	-		-	-	-
Co	36	33	21	89	41	45	43	36	29	104	104	106	35
	147	69 63	6U 52	696 12	111	93	103	58	42	1600	1600	1600	123
Zn	78	88	59	84	47	74	50	88	39	59	84	38 52	27
Ga	14	15	14	8	6	11	8	10	21	4	3	8	14
As	-	•	•	•	•	-	-	•	•	-	-	•	-
Mo	<4	<4				- 4	-4		-		-	•	-
Ag	-	-	-			-			-			-	<4 -
Cd	~	<2	~2	2	<2	<2	2	2	<2	<2	4	2	<2
Sn	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Te	<10	<10	<10	<10	<10	<10	- <10	- <10	- - 10	- 10	~10	-10	-10
Ta	<5	<5	<5	<5	<5	<5	<5	4	<5	<5	<5	<5	<5
W		•	-	•	•	•	-	-	-	•	-	-	-
Au (ppo) Bi		•	•	•	-	-	-	-	-	•	-	-	-
					,	,	-	•	-	-	•	-	-
Zr/TiO2	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
1/0/1	<u> </u>	0,21	0,43	0,70	0,38	0,35	0,38	0,17	0,14	0,75	1,00	0,75	0,15

GROUPE DE GARDEN ISLAND

Fm.	GAI	GAI	GAI	GAI
#Echant.	2242	4136	2281 b	3058 a
UTM/N	5323850	5326050	5322150	5321750
UTM/E	355850	352150	355725	350700
Lith. Faciàe	SED S2/S6	SED	SED	SED
Sous-faciès	LI	Li	Li	Li
Altération				
El. majeurs (%)			
SiO2	65,43	68,13	64,59	53,62
A1203	16 90	15 26	16.88	16.83
FeO c	2,26	2,14	2,21	2,07
Fe2O3 c	4,43	3,20	4,28	17,15
MnO	0,08	0,06	0,06	0,08
MgU CaOr	3,65	3,94	3,42	3,28
Na2O	3,07	3,39	3,62	2,41
K2O	1,71	0,82	2,70	2,77
P205	0,18	0,16	0,07	0,08
IOTAL	100,00	100,00	100,00	100,00
P.A.F.	3.00	2.30	1.30	0.80
CO2	0,20	0,01	0,06	0,03
S	0,01	0,01	0,01	0,01
Fe2O3 t	6,79	5,34	6,62	19,30
MGV	0,04	4,75	0,53	0 27
EL. traces (p	pm) 64	31	91	103
Sr	308	397	360	250
Pb	42	24	36	90
Ba	-		•	
Zr V	144	1/0	129	80
Sc	20.3	13.9	20.5	21
La	13,9	3,9	32,8	30,4
Ce	29	9	60	60
Nd	22	- 10	27	- 28
Sm	2,5	1,1	4,5	4.3
Eu	<1	<1	1	<1
Tb	<1	<1	<1	<1
Ы		-1	.1	-
Tm	<1	<1	<1	0.7
Υь	1,8	1,2	1,7	1,8
Lu	0,2	<0,1	0,3	0,4
in 11	-10	3	7,1	7,2
v	124	90	148	126
Nib	•	-	-	
Li	-	-	-	-
Cr	247	287	- 286	226
Mn	513	474	374	649
Co	11	10	12	17
NI	63	84	55	70
Zn	17	4	34	3
Ga		-		°.'
As	20	8	26	ත්
Se	5	<5	<5	ත්
Аa	<1	1> ∧ ∩ ה	-0 F	<1 -0 s
Cd	<1	<1	<0,3	<1
Sn	<10	<10	<10	<10
Sb	<5 1	<5	<5	<5
re Ta	<10	<10	<10	<10
W	<10	<10	<10	<10
Au (ppb)	2	<1	1	<1
BI	~2	~2	-2	2
Zr/TiO2	0.02	0.02	0.02	0.01
Nb/Y		0,03	0,02	0,01

FORMATION DE HÉVA

Fm.	HEV	HEV	HEV	HEV	HEV	HEV	HEV	HEV	HEV
#Echapt.	28	55	88	376	3084	7051	1070 A	1077 A	3080 h
UTM/N	5323750	5322900	5323000	5325150	5324150	5327875	5322850	5322725	5323950
UTM/E	323800	328550	328700	323325	321900	308000	326200	326475	322300
Lith.	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV
Faciès	V1C/V1D	V1C/V1D	V1C/V1D	V1C/V1D	V2J	V1C/V1D	V2J	V2J	V1C/V1D
Sous-faciès	VA VA	VA	VA	VA	VA ND	M,B	VA	м	VA
Alteration	Ma	MG	Ma		MG				MG
El. majeurs (%)								·····
SIO2	68,88	74,93	65,73	68,02	59,05	77,77	58,30	67,06	66,62
TiO2	0,65	0,47	0,66	0,70	1,27	0,60	1,39	0,91	0,85
A1203	12,22	12,51	15,67	15,59	13,36	13,68	12,82	12,17	14,99
Fe2O3 c	4.86	4 99	3 73	5 33	4 47	0.52	4 80	3.24	2 37
MnO	0,13	0,13	0,12	0,08	0,18	<0.01	0,25	0,11	0,13
MgO	1,66	0,81	0,68	2,67	2,83	0,20	2,19	2,49	2,80
CaO c	2,75	1,43	1,07	1,34	4,92	0,20	6,20	3,42	0,67
Na2O	4,41	1,52	4,92	2,63	5,16	5,69	2,96	4,79	3,60
P205	0,38	0.15	0.14	0,30	0,20	1,12	0,88	0,17	0,73
TOTAL	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
		,	4,44						
P.A.F.	0,35	2,70	2,55	2,90	0,55	1,34	0,40	0,50	3,70
CO2	0,24	1,10	0,93	0,43	0,10	0,62	0,28	0,10	1,82
5	0,03	0,02	0,12	1,74	0,01	0,05	0,25	0,03	0,01
FeO t	7 9 1	5 9 8	9,84	8,40	13,50	0,61	15,60	9,18	9,21
MGV	0,29	0.21	0.13	0.41	0.32		0.24	0,17	0 40
El. traces (p	pm)	~ ~		_				_	
HD Sr	9	36	20	5	3	28	19	2	21
Pb	23	10	18	133	70	<12	40	27	49
Ва			-	-		302		-	
Zr	409	544	743	334	190	300	162	337	401
Y	127	169	266	111	80	25	70	127	162
La	27.7	27.1		14.5	14.6	16		21,3	
Ce	68	74	-	40	37	51		54	
Pr	-	-	•	-		<2	-		.
Nd	41	60	-	34	19	55	-	48	-
Sm Eu	13,8	1/,/	•	9,16	8,8	<2	•	12,7	-
ть	2	2.8		2,2	1			15	
Dy	-	-		•	-	3	-	-	
Ho	3	4,4	-	2,1	2	•	•	2,9	•
Tm	1,7	2	-	2	0,8	•	-	2	-
10	14,5	19	•	11,7	8,8	-	•	13,5	•
Th	1.1	2,3		1.6	1,5			1,7	
U	< 10	< 10	< 10	< 10	<10		< 10	< 10	<10
v	4	2	4	69	57	18	48	49	42
NB	-	•	•	-	-	15	-	•	-
Re		-		•	•	2	-	-	•
Cr .	248	206	308	190	65	2	163	297	238
Mn	1118	497	726	848	1767		2239	882	1084
Co	3	2	3	16	20	20	22	11	1.1
	5	3	3	15	9	37	20	12	5
Zn	101	12	17	313	147	44 55	23	23	15
Ga	-	•		-		13	-	-	
As	< 5	77	< 5	1628	<5	-	20	14	<5
Se	< 5	< 5	< 5	< 5	<5	•	< 5	< 5	<5
Aa	<1 - 0 F	< 1 ~ 0 F	<1	1	<1 _0 =	<4	<1	12	<1
Cd	< 1	< 0,5	< 0,0 < 1	2.3	<v.5 <1</v.5 	-2	< 0,5 _ 1	< 0,5	<0,5
Sn	< 10	< 10	< 10	< 10	<10	<10	< 10	< 10	<10
Sb	< 5	< 5	< 5	< 5	<5	•	< 5	< 5	<5
le Te	< 10	< 10	< 10	< 10	<10	<10	< 10	< 10	<10
w	۔ ح 10	۔ 10 ح	<u>~</u> 10	- 10	-10	5	- 10	- 10	-10
Au (ppb)	1	13	< 1	53	5	-	< 1	< 10	410 A
Bi	< 2	< 2	<2	18	<2	-	<2	<2	<2
7.17100									
Nb/Y	0,06	0,12	0,11	0,05	0,02	0,05	0,01	0,04	0,05

FORMATION DE JACOLA

Fm,	JAC	JAC	JAC	JAC	JAC	JAC							
	Brosnor	Brosnor	Brosnor	Brosnor	Brosnor	Brosnor							
#Echant.	BR 08	BR 12	BR 14	BR-86-06	BR-86-09	BR-86-26							
UTM/N	5331500	5331500	5331500	5331500	5331500	5331500							
UTM/E	321300	321300	321300	321300	321300	321300							
Lith.	LAV	LAV	LAV	LAV	LAV	LAV							
Faciès	V4	V3F	V4	V4	V3B	V3B							
Sous-faciès													
Altération													
FL malaura (L												
CI. INAJARIA		51 16	52 10	50.00	52 79	62.04							
	0.65	0.30	0 32	0.50	0.52	0 47							
A1203	9,16	20.17	5 29	8 76	16.03	15 49							
FeO c	10,40	7.43	6.85	-	8.24	7.34							
Fe2O3 c	6,54	2,15	3,63	14,17	2,14	2.07							
MnO	0,19	0,15	0,18	0,22	0,18	0,20							
MgO	24,63	11,28	27,15	22,69	8,87	8,04							
CaO c	2,38	0,60	4,22	2,68	8,30	10,58							
Na2O	0,01	6,47	0,01	0,01	1,89	1,72							
K2O	0,98	0,06	0,04	0,06	0,02	0,04							
P205	0,11	0,15	0,14	0,01	0,01	0,07							
TOTAL	100,00	100,00	100,00	100,00	100,00	100,00							
PAF	10.05	9 20	0 00	10.16	3 46	4 75							
CO2	2 21	0,2U 9.76	9,8U 1 Q 0	10,15	3,40 0 0 2	4,/0							
s	0.03	0.01	0.01	2,01	-0.03	n ne							
Fe2O3 t	15.50	9,13	9.60	11.80	10.50	9,08							
FeO t	13.80	8,13	8.54	10.50	9.35	8.53							
MGV	0,78	0,73	0,86	0.81	0,65	0.65							
		-	-										
El. traces (p	pm)												
Rb	31	< 1	3	-	-	-							
Sr	94	156	83	-	-	-							
РЬ	47	23	29	-	-	•							
5a 7-				-	-	-							
21 V	28	12	14	-	-	-							
Sc.	324	13	20 4	-	-	-							
La la	13	-	14		-								
Ce	15		·,+		-								
Pr		_			_								
Nd	<7	-	<7	-	-	_ [
Sm	0,76	-	0,73	-	-								
Eu	<,5	-	<,5	-	-	•							
ть	<1	-	<1	-	-	-							
Dy	•	•	-	-	-	-							
Ho	<1	-	<1	-	-	-							
Tm	<1	-	<1	-	-	-							
10	0,8	-	0,7	•	-	1-							
	<,1	-	<,1	•	-	-							
	- 10	~ 10	<0,5	-10	-10	- 10							
v	200	140	95	166	210	196							
Nb		-	-		210								
LI	-	-	-	-	-	-							
Be	-	-	-	-	-								
ଦ	2505	218	1815	3544	331	324							
Mn	1490	904	1375	1659	1607	1697							
Co	119	49	71	102	45	39							
NI	942	180	972	1183	109	98							
	218	4	85	40	80	84							
Zn O-	68	67	61	110	74	58							
Gal An	-			-	-	-							
AB So	< 5	< 5	< 5	<5	<5	18							
Mo	< 5	< 0	< 5	<0	<5	<5							
Aa	~ 0.5	~ 0.5	~ 0.5	~05	-0.5	<1							
Cd	< 1	< 1	< 0,3	<0,0	<0,0	<0,5							
Sn	< 10	< 10	< 10	12	<10 <	-10							
Sb	9	< 5	6	21	<5	<5							
Te	< 10	< 10	< 10	<10	<10	<10							
Ta	-	-	-	-	-	-							
W	< 10	< 10	< 10	<10	<10	<10							
AU (ppb)	2	< 1	< 1	<1	2	<1							
ы	<2	< 2	< 2	8	<2	<2							
Zr/TiO2	0.00	0.00	0.00										
Nb/Y	0,00	0,00	0,00	-	-	·							
					<u>_</u>	· · ·							
Fm.	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI
---------------	------------	----------	------------	---------	-----------	--------------	---------	---------	---------	-----------	-----------	-------------	--------------
#Echant.	105	250	255	273	349	1399	2004	2373	2376	4050	4169	5040	108 B
UTM/N	5320450	5320200	5320225	5320050	5320500	5320100	5319825	5320000	5320000	5319625	5318550	5316625	5320200
UTM/E	329500	334975	335425	336300	338000	336200	339875	336300	336300	341050	343350	343625	329475
Lith.	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV
Faciès	V3A	V3A	AEV	V3B	V3F	V3B	V3B	V3A	V3A	V2J	V3B	V2J	V3A
Sous-racies	M,CI	GNAM		07.07	M Luci		M		- C	GI	C	м	M
Alteration		Circlent	City			ANI, COOP				/wvi			201
El malaura /	<u>ا م</u>												
SiO2	57.75	52.50	54.81	50.19	49.56	48.33	53.23	54 24	53 79	59 24	50 55	57 88	57.85
TiO2	1,07	1,19	1,18	0,94	0.80	0,76	1,72	1.13	1.12	0.79	0.84	0.91	1.24
A12O3	14,52	16,39	15,82	15,75	15,45	16,41	12,97	16,08	16,63	17,50	14,99	17,51	13,65
FeO c	8,84	8,69	8,41	9,91	8,12	7,96	12,45	10,30	9,93	5,30	8,94	5,65	8,82
Fe2O3 c	2,12	3,20	2,35	2,01	2,82	3,07	2,92	1,78	2,22	1,57	2,42	0,80	3,53
MaQ	6.04	6 22	4 67	8.01	10.02	8 47	7 92	5 12	4 27	0,18	7 72	0,14	0,21
CaO c	5,34	9,89	8,78	10,93	10,97	12,94	6.08	8.85	10.38	6.34	11.49	6.54	4,53
Na2O	3,62	1,60	3,50	1,92	1,98	1,66	2,06	2,05	1,21	4,12	2,27	4,95	3,09
K2O	0,31	0,02	0,06	0,07	0,10	0,16	0,15	0,11	0,02	0,55	0,49	0,83	0,16
P205	0,14	0,08	0,20	0,08	0,01	0,04	0,33	0,10	0,09	0,24	0,08	0,11	0,14
TOTAL	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
P.A.F.	2,07	1,15	1,70	0,55	1,15	0,70	1,55	2,10	3,20	0,95	1,40	1,19	1,00
5	0,70	0,80	0,92	0,15	0,13	0,21	0,47	2,13	2,08	0,12	0,09	•	0,62
Fe2O3 t	11.60	12.70	11.30	12.40	11.80	11.90	15.90	12 10	12 20	7 21	11 70	6 8 8	13.10
FeO t	10,32	11,30	10,06	11,04	10,50	10,59	14,15	10,77	10,86	6,42	10.41	6.12	11.66
MGV	0,54	0,52	0,48	0,59	0,65	0,61	0,53	0,48	0,44	0,56	0,59	0,60	0,46
El. traces (p	1 pm)						·						
Rb	<1	1	<1	3	2	3	<1	1	<1	17	22	31	< 1
Sr	90	225	104	122	93	131	61	106	101	148	122	360	144
Ba	-	-				- 20		43	41	20	37	224	26
Zr	85	70	67	33	27	33	65	70	74	141	40	130	97
Y	33	31	29	17	16	18	31	30	32	40	22	25	40
Sc	54,9	•	46,9	-	-	•	•	•	•	28,8	47,1	24	-
	22	•	4,8		•	-	-	•	•	7	3,2	14	-
Pr		-	-	-	-	-		-			-	-3⊺ -∠10	
Nd	12	•	<10	-	-	-	•	•		<10	<10	30	-
Sm	3,7	•	3,1	•	•	•	•	-	•	3,1	2,1	2	-
		-	<1 _1	-	•	•	•	-	-	<1	<1	2	-
Dv		-		-	-	-	-			<1	<	3	
Ho	<1	-	<1	-	•	-	-	-	-	<1	<1	-	-
Tm	0,5	-	<1	•	•	-	-	-	-	<1	0,6	-	-
Yb	4,2	-	3,3	-	•	•	•	•	•	4,2	2,8	•	-
	0,6	•	0,5	-	•	-	-	•	•	0,7	0,6	•	-
U	< 10	<10	<10	<10	< 10	< 10	~10	~10	-10	<0,5	<0,5	0	- 10
v	287	353	354	310	236	308	463	348	363	223	318	137	344
Nb	-	-	-	•	•	-	•	-		-	-	8	
		•	•	•	•	-	-	-	•	-	-	24	-
Gr Cr	111	255	- 278	282	640	630	- 10	262	- 252	-	-	<1	-
Mn	2207	2048	2242	1796	1706	1711	1883	2427	3854	1611	2038	-	104
Co	52	52	53	50	61	63	52	49	51	25	51	32	52
NI	54	124	116	133	221	191	42	101	121	36	117	50	24
	62	123	111	86	185	144	23	84	83	34	116	12	121
Ge					100			100	93	135	101	90	118
As	< 5	<5	<5	<5	< 5	< 5	<5	<5	<5	8	<5	-	< 5
Se	< 5	<5	<5	<5	< 5	< 5	<5	<5	<5	<5	<5	-	< 5
MO	<1	1	1	1	< 1	< 1	<1	1	1	<1	2	<4	< 1
Cd	< 0,5	1 21	<0,5 _1	<0,5	< 0,5	< U,5 - 1	1	<0,5	<0,5	<0,5	<0,5	-	< 0,5
Sn	< 10	<10	<10	<10	< 10	< 10	<10	<10	<10	<10	<10	<2 <10	< 10 < 10
Sb	< 5	<5	<5	<5	< 5	< 5	<5	<5	8	<5	<5	-	< 5
Te	< 10	<10	<10	<10	< 10	< 10	<10	<10	<10	<10	<10	<10	10
Ŵ	< 10	-10	-10	-10	- 10	- 10	-10	-10	-10	-10	-10	<5	۔ مد ر
Au (ppb)	3	2	2	5	2	1	<10	<10	<10	<10 21	<10 -1		< 10
BI	< 2	2	4	a.	< 2	< 2	4	2	<2	<2	4	-	< 2
707102	0.01	0.04	0.01	0.00	0.00	0.00	0.00						
Nb/Y	- 0,01	0,01		0,00	0,00	0,00	0,00	0,01	0,01	0,02	0,00	0,01	0,01

Fm.	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI
#Echant	1100 4	100 0	1400 -	2154 H	2070 F	5040 -	6000 -	6097 -	Nordeau	Nordeau	Nordeau	Nordeau	Nordeau
#ECNANT.	5320100	128 8	1400 a 5320125	2104 D	3070 D	5049 a	5316775	5317500	84-1/N/	84-1954 5210700	84-20S11 5310700	84-2058a	84-30E14
UTM/E	329750	329250	336450	340000	345100	343325	343025	342925	334750	334750	334750	334750	334750
Lith.	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV
Faciès	V3A	V3A	V3A	V3G	V2J	V2J	V2J	VзF	V3A	V2J	V3G	V3B	V2J
Sous-faciès	м	С	C,B	М	CI	В	В	В					
Altération	a a		AM,PO	AM	PY,PO,CP								
El. majeurs (SIO2	%) I 52.89	58.66	48 36	50 42	52 62	53 43	56 69	49 66	54 97	50 10	40.50	51 60	68 76
TIO2	1,12	1.43	1.86	0.60	0.80	0.76	0.93	0.76	1.08	2.02	0.22	1 25	1 08
A12O3	14,62	13,74	16,73	12,90	19,75	17,84	19,61	15,95	18,04	15,20	12,82	18,44	17,24
FeO c	8,05	6,35	11,93	7,98	5,15	4,22	4,65	9,24	5,98	6,66	6,85	8,55	6,37
Fe2O3 c	6,31	2,91	4,00	1,47	1,60	4,51	1,18	1,01	2,65	3,63	1,81	2,79	2,62
Mic	6 77	4 73	0,25	13 42	0,15	0,14	0,10	0,20	0,10	0,17	0,20	0,26	0,15
CaOc	8.64	8.05	8,21	11.37	9,90	11.39	4,23	11 39	7,75	2,00	17,06	4,80	3,55
Na2O	1,05	3,52	1,39	1,32	4,77	3,24	4,99	2,00	2,14	4,51	1.04	1.77	4.04
K2O	0,16	0,16	0,26	0,05	1,21	0,28	0,80	0,14	0,15	1,05	0,25	0,28	0,16
P2O5	0,18	0,27	0,16	0,27	0,19	0,23	0,20	0,04	0,14	0,39	0,25	0,08	0,37
TOTAL	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
P.A.F.	2,30	0,35	2,05	1,80	1,10	1,54	1,44	1,22	2,70	1,25	3,05	0,70	0,10
s s	0,99	0,20	0,55	0,11	0,13	0.0F	-	0,07	0,02	1,56	1,45	<0.01	0,22
Fe2O3 t	14.70	9 72	16 10	9,70	7 20	9 12	6 22	11 10	- 2 97	10 20	<0.01	12.00	-
FeO t	13,08	8,65	14,33	8,71	6.41	8,13	5.54	9.88	7.89	9.17	7 92	10.68	9,40
MGV	0,51	0,52	0,49	0,75	0,54	0,49	0,60	0,66	0,66	0,37	0,81	0,47	0,46
El. traces (p	<u>ا</u> مر												
Rb	<1	< 1	3	4	41	9	37	6	•	-	-	-	-
Sr Ph		143	97	80	349	380	310	76	•	-	-	-	-
Ba	-				43	88	225	<12 44			-	•	•
Zr	65	104	87	50	111	110	140	50	99	-		52	
Y	29	42	29	17	23	22	24	28	19	-		19	
Sc	-	-	•	•	•	19	23	38	-	•	-		•
				-	-	15	9	2	•	•	•	•	-
Pr	-					<10	<10	<10		-		•	
Nd	- 1	•	•	-		30	<25	<25			-		
Sm	-	-	-	•	•	<2	~	<2	•	•	-	-	-
EU Th		•	-	•	•	2	2	2	-	•	•	-	-
Dv						- 1	1			•	•	•	-
Ho	-		•	•	-	-			-			-	
Tm	-	•		-	-				-	-		-	
Yb	-	-	-	•	-	-	•	-	-	-	•	-	-
	-	-	•	-	-	-		-	-	•	-	•	•
U	< 10	- 10	-10	-10	-10	<3	ن ه	<3	•	-	. 10	•	-
v	298	374	414	149	168	142	169	233	-		104		
Nb	-	-	•	•	-	7	8	7	-	•	-	-	
Li	-	-	•	•	-	16	40	11	•	-	•	-	-
Be C2	- 67	- 05	. 07	. 1017	•	<1	<1	<1	•	-		-	-
Mn	1858	1471	2438	1542	1530			-			1580	-	•
Co	53	61	51	48	23	24	21	45		-	57	-	
NI	52	32	65	205	68	67	44	154	-	•	647	-	
Cu	244	106	128	92	3	42	54	28	•	39	7	-	4
20	137	111	246	63	61	46	67	65	-	•	66	-	•
As	6	12	16	-5	<5			14	:	-	580	-	-
Se	< 5	< 5	7	<5	<5				-		<5	-	
Мо	< 1	< 1	2	4	1	<4	<4	<4		-	<1	-	
Ag	< 0,5	< 0,5	<0,5	<0,5	<0,5	•	•	•	-	0,4	<0,5	-	0,4
Sn	< 10	< 10	<1 14	<1	<1	<2	<2	<2	•	-	<1	-	-
Sb	< 5	< 5	۰. حو	<5	<5	<10	<10	<10	-		<10 ~5	•	-
Te	< 10	< 10	<10	<10	<10	<10	<10	<10	-	-	<10		
Ta W	-		•	-	•	<5	<5	<5	-	•	-	•	-
Au (ppb)	× 10 م	< 10	<10	10> ار	<10	•	•	-	-	-	<10	-	-
Bi	< 2	<2	á	~	~2	-	•		-	185	245		33
Zr/TiO2	0.01	0.01	0.00	0.01	0.01	0.01	A 00	0.04			-		
Nb/Y				0,01	0,01	0,01	0,02	0,01	U,U1 -	-	-	0,00	

Fm.	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI
#Coba-+	Chimo	CH ee 47	Chimo	CH. ec. ec	Chimo	0140	1400 -	Venpar	5054 -	Nordeau	Nordeau	Chimo	Chimo
HECHANT.	5319800	5310800	5319900	5319800	5319800	2143	1463 C	5316300	5315675	5310700	84-20S12 5310700	CH 31	CH-86-63
UTM/E	332000	332000	332000	332000	332000	343275	336300	343700	343225	334750	334750	332000	332000
Lith.	LAV	LAV	LAV	LAV	LAV	PYR	PYR	PYR	PYR	PYR	PYR	PYR	PYR
Faciès	V 3A	V2J	V2J	V2J	V2J	V2J	V3A	V2J	V2J	V2J	V2J	V2J	V2J
Sous-faciès						x,1			x				
Alteration							GN, PT, PU						
El. majeurs (%)												
SIO2	54,73	49,05	54,65	51,71	54,10	62,45	55,24	72,90	64,68	52,92	57,45	63,02	53,73
A1203	18.47	22.89	21.27	20.14	22.10	17.21	17.99	14 33	18 17	1,29	1,05	1,48	1,10
FeO c	7,29	6,22	3,97	8,48	5,42	2,73	6,04	1,21	1,42	7,85	6,86	7.88	9.54
Fe2O3 c	2,43	2,92	2,66	2,82	3,12	3,65	2,20	2,21	2,83	2,86	2,68	4,05	2,67
MnO	0,21	0,27	0,22	0,23	0,19	0,09	0,28	0,03	0,02	0,23	0,25	0,19	0,21
CaO c	6.77	11 75	2,95	9.92	2,03	2,97	4,10	1,29	1,08	3,65	1,83	3,42	7,39
Na2O	3,21	2,64	2,60	2,06	4,33	2,81	3,20	2.73	4.01	3.25	2.87	2,62	2,15
K2O	1,38	0,11	0,10	0,21	0,84	4,04	1,15	2,83	1,81	1,13	1,22	0,58	0,21
P205	0,30	0,17	0,01	0,17	0,13	0,01	0,22	0,07	0,07	0,13	0,13	0,28	0,04
TOTAL	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
P.A.F.	2,90	0,80	3,10	1,30	3,40	1,70	1,80	3,30	1,42	1.40	3.40	3.15	0.90
CO2	2,85	0,16	1,99	0,98	4,17	0,21	0,16	<0.01		1,35	3,56	3,26	0,08
S	0,07	0,01	0,02	<0.01	0,50	0,76	0,20	0,98	0,18	0,09	0,05	1,30	0,08
FeO t	9,53	9,63 8.67	6,48 5,77	11,80	8,40	6,37	8,42	3,35	4,34	11,10	9,51	11,50	12,70
MGV	0,49	0,37	0,50	0.36	0,41	0.51	0.52	0.46	0.36	9,00	0,40	0.40	0.56
	I					-,	-,			-, · L	5,50		
El. traces (p)	pm) I as		_	_		105	50		60				
Sr	206		-			117	222		360	-		95	-
РЬ	34	-	-	-	-	26	30	-	<12	-	•	27	-
Ba		-	-	•	-	•	-	-	312	-	•	-	-
21	53	•	-	-	-	99	63	-	83	-	•	262	-
Sc			-				20		6	:		105	-
La	-	-	-	-	-	-	-	•	8			20,2	-
Ce	-	•	-	-	-	-	-	•	12	•	-	57	-
Pr		-	-	-	-	•	-	-	<10	-	•	-	-
Sm	.		-		-	-	-	•	25	-	:	12 3	•
Eu	-		-		-	-	-	-	1	-	-	3,1	-
ТЬ	-	-	-	-	•	-	-	-	•	-	-	1,9	-
Uy Ho	-	-	•	•	•	•	-	-	<1	-	-		-
Tm		-	-	-	-			•			-	2,9	
Yb	- 1	•				-	-	-	-	-	•	12,3	-
Lu	-	-	-	•	•	-	-	-	-	•	-	1,8	-
0	- 10	-10	-10	-10	-10	-10	-10	•	6	- 40	•	1,1	-
v	258	375	293	349	320	72	275	-	46	<10 271	<10	< 10 200	ļ
Nb		•	-	•		•		-	5				
Li	-	-	-	•	-	-	-	-	31	-	•	-	-
Cr	317	430	561	745	200	14	- 016	•	<1	-	-	-	-
Mn	1224	2494	2213	2181	1727	528	2622		-	219	269	101	•
60	48	72	71	53	57	7	53	-	7	38	32	31	
Ni	163	218	338	146	181	5	165	•	6	123	58	23	-
Zn	65	149	120	119	118	47	87	88	109	107	209	57	-
Ga	1 .	•		94	86 -	242	135	-	20	113	75	125	-
As	131	<5	4	<5	>2000	<5	78	-	-	26	10	22	-
Se	< 5	<5	<5	5	<5	5	6	-	-	<5	<5	< 5	
Aa	- 05	<1	<1 -0 5	1> ۲۰۰۶	2 ~0 ¤	<1 -0 F	1 -0 F		<4	<1	<1	< 1	-
Cd	<1	<1	<1	<0,5 <1	<1	1	<0,0	0,0	0	<0,5 <1	<0,5 _1	< 0,5	-
Sn	< 10	<10	<10	18	15	<10	<10	-	<10	10	<10	< 10	
Sb	< 5	<5	ත්	ත්	<5	<5	<5	•	•	<5	<5	< 5	-
Ta	< 10	<10	<10	<10	- 11	<10	<10	•	<10	14	15	< 10	-
w	< 10	<10	<10	<10	<10	<10	<10	-	<d -</d 	<10	<10	< 10	
Au (ppb)	7	48	18	14	707	3	2	11		182	18	2	-
ы	<2	<2	2	2	<2	<2	2	•	•	<2	2	< 2	-
Zr/TiO2	0.00	-	-		-	0 02	0.00	-	0.02			0.00	
Nb/Y		-							0,03	-	-	0,02	-

Fm.	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI
	Chimo	Venpar	Venpar	Venpar						Nordeau	Nordeau	Nordeau	Nordeau
#Echant.	CH-86-64	V-1	V-2b	٧-5	1115	2400	1099 A2	1127 C	258 g 8	4-18N20d	84-30E13	84-30E7	8418N21b
	5319800	5316300	5316300	5316300	5321150	5319800	5321050	5320900	5319900	5319700	5319700	5319700	5319700
UTM/E	332000	343700	343700	343700	329450	332000	329475	329375	335200	334/50	334750	334750	334750
Faciès	V2.	V2.1	V2.	V2.1	S4F	53	S6A	Se	SEA	360	SED	SED	SED
Sous-faciès		120			M	11	11	11	LICI	•	-	-	-
Altération					CB			CB.	21,01				
	1												
El. majeurs (%)												
5102	66,28	60,75	69,79	64,45	51,25	62,90	50,51	50,07	57,73	61,25	51,21	57,68	55,23
A1203	16.60	16 36	14 37	16 01	16 85	17 21	1,23	1,21	17.41	0,42	0,84	0,58	0,99
FeO c	3.17	7,13	2.65	4.95	7,26	2.16	6 27	7 87	6 91	19,11	24,67	21,43	18,54
Fe2O3 c	2,04	2,49	2,24	2,36	1,89	4,29	1,19	2,20	0,98	6.97	10.72	8.85	7.82
MnO	0,12	0,14	0,03	0,09	0,20	0,08	0,14	0,22	0,14	0,04	0,08	0,06	0,14
MgO	1,98	2,49	1,11	2,40	7,73	3,76	2,68	3,64	6,97	1,31	2,56	2,24	3,69
CaO c	5,79	5,62	2,86	1,53	10,96	2,79	8,99	14,78	3,91	5,45	3,79	4,83	9,01
Na2O	2,83	2,92	3,77	3,79	2,90	3,79	5,61	2,85	4,99	3,21	3,80	2,49	4,33
R205	0,54	0,88	2,22	2,40	0,12	2,20	2,40	0,63	0,03	2,07	2,22	1,80	0,09
TOTAL	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	0,16
										. 50,00	100,00	100,00	100,00
P.A.F.	1,50	1,65	2,55	1,90	2,05	1,80	3,60	11,10	2,35	0,20	2,55	2.00	0.80
CO2	0,10	0,13	0,08	0,78	0,33	1,51	3,57	8,11	0,64	1,59	0,46	<0.01	0,40
S		0,17	1,45	0,17	0,04	0,01	1,60	0,06	0,02	0,07	0,11	0,02	-
Fe2O3 t	5,50	9,99	4,91	7,62	9,80	6,65	7,61	9,55	8,21	6,93	10,30	8,72	7,67
NGV	4,90	8,89	4,37	6,78	8,72	5,92	6,77	8,50	7,31	6,17	9,17	7,76	6,83
11011	0,45	0,30	0,33	0,41	0,64	0,56	0,44	0,46	0,65	0,30	0,36	0,36	0,52
El. traces (p	pm)												
Rb	- 1	-	-	-	< 1	50	78	13	<1	-	-		-
Sr	- 1	-	-	•	219	410	832	303	179	-	-		-
Pb		-	-	•	18	36	33	25	28	•	-	•	-
158 17 r	214	•	•	-		-		-	-	•	-	-	-
Y	64	-		:	44	144	189	86	95	-	-	•	95
Sc		-				18.8	15.8	20.3	21				20
La	- 1	-	•	-	-	37,8	60,3	9,5			-		
Ce	-	-	•	•		76	119	22		-	-		-
Pr	•	-	-	-	-	-	-	-	-	•	-	-	-
Nd C-	· ·	-	-	-	•	35	61	10	-	•	-	•	-
Sm Gu	-	-	-	-	-	5,4	11.7	3,18	-	•	-	-	-
ть		-			-	-1	2,4	1,2	-	•	-	-	•
Dy] .	-	-	-	-		-	-	-			-	-
Ho		-	•	-	-	<1	<1	<1		•	-		
Tm	-	-	-	-	-	<1	<1	<1	-		-	-	-
Yb	-	-	•	•	-	1,9	2,8	1,9	-	•	-		-
	-	-	•	-	•	0,3	0,4	0,3	-	•	-	•	-
		•	-10	-10	-	6	8	0,7	-	-	-	-	•
v			<10 77	01> 90	280	<10	< 10	< 10	<10	<10	<10	<10	•
Nb	-	-					201	100	211	04	139	80	-
Li	-	-	•		-	-	-		-	-			
Be	-	-	-	•	•	•	-	-		-			-
Cr	•	-	12	12	538	284	107	261	55	86	135	203	
Mn	-	-	239	702	1321	689	691	1257	1292	337	607	482	-
Ni		-	27	5	4/	28	13	33	21	11	25	16	•
Cu		48	961	708	48	53	25	70	27	37	76	63	-
Zn			55	166	89	93	80	99	96	55	102	< I 60	
Ga	-	-	•	-	•	-	-		-	-		-	
As	· ·	-	⊲5	<5	< 5	44	< 5	52	<5	80	767	16	-
Se	-	-	<5	<5	< 5	<5	< 5	< 5	<5	<5	<5	<5	-
MO A ri	-	.0 5	<1	4	< 1	<1	< 1	< 1	1	<1	4	4	-
A B		<0,5	0,7	<0 √	< 0,5	<0,5	< 0,5	< 0,5	<0,5	<0,5	<0,5	<0,5	-
Sn			<10	14	< 1 ~ 10	<1	< i ~ 10	< 1	<1 ~10	<1 -10	<1	<1	-
Sb	-	-	<5	. අ ර	< 5	<5	< 5	< 10	01> A	<10	10> جر	12	-
Te		•	<10	<10	< 10	<10	< 10	< 10	<10	<10	<10	11	
Ta	-	-	•	-	-	-	-	-	•	-	-	-	
W	-	•	<10	<10	< 10	<10	< 10	< 10	<10	<10	<10	<10	
AU (ppb)	•	162	31	309	3	4	2	1	7	97	1180	3280	-
DI	•	-	2	2	< 2	<2	< 2	< 2	<2	<2	2	2	-
Zr/TiO2	0.04	-	-	_	0.01	0.02	0.02		A A+				
Nb/Y		-	-		0,01	0,02	0.02	0,01	0,01	•	-	-	0,01

FORMATION DE VAL-D'OR

Fm.	VAD	VAD	VAD	VAD	VAD	VAD	VAD	VAD	VAD	VAD	VAD	VAD	VAD
#Echant.	179	215	1012	1022	1029	1370	7071	1264 A	1293 A	206 A	99	140	372
UTM/N	5324350	5324550	5326775	5326700	5326650	5326350	5330800	5323700	5330600	5324350	5322475	5321800	5321350
UTM/E	330700	329550	324225	325000	324900	327650	291250	331700	337700	330100	331375	331150	337925
Lith.	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	PYR	PYR	PYR
Facies Cours feelds	V3B	V3A	V2J	V2J	V2J	VJA	V3A	V 3A	V2J	V3A	V3A	V3A	V2J
Sous-Incies	M	M	м	M	M,CI	G	C C	M	м	м	D	1	1,x,C(
Alteration												нв	
El. majeurs (%)								, , , , , , , , , , , , , , , , , , , 				
SiO2	53,94	56,18	60,40	58,30	70,86	57,36	50,70	56,71	61,77	56,89	51,11	56,34	59,54
TiO2	1,09	0,88	0,94	0,74	0,96	1,21	0,70	1,53	0,58	1,01	0,71	0,94	0,73
A1203	16,11	18,69	17,18	25,97	13.79	16,12	18,80	15,11	17,50	17,10	22,07	19,24	19,41
Fa2O3 c	3.50	4,04	4,31	4,00	2,40	1.59	3,10	2 70	2,90	5,84	6,37	4,27	3,35
MnO	0,18	0.17	0.09	0,16	0,15	0.18	0.11	0.27	0.07	0 15	0.15	4,21	2,52
MgO	5,69	5,67	5,15	1.07	1.05	5,76	7.80	2.18	3.24	5,19	5.05	3.04	4.16
CaOc	9,13	5,32	4,30	3,47	5,53	4,64	7,58	9,14	6,39	7,35	8,29	5,89	5,56
Na2O	2,07	5,20	3,83	4,41	2,18	4,80	3,39	3,18	5,11	2,95	4,28	5,54	3,97
K2O	0,18	0,39	1,32	0,64	0,30	0,39	0,25	0,28	0,31	0,49	0,12	0,19	0,64
P205	0,15	0,30	0,23	0,35	0,25	0,27	0,04	0,25	0,36	0,25	0,05	0,20	0,01
TUTAL	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
P.A.F.	2,00	3,80	3,40	2,15	0,95	2,30	2,00	2,05	0,50	2,35	2,25	3,85	1,25
002	0,32	0,47	0,12	2,21	0,14	0,34	<0.05	1,78	0,32	0,12	0,10	1,89	1,12
5 Fa2O3 +	10,01	U,16	0,01	0,01	0,01	0,01	0,19	0,01	0.01	0,01	0.02	0,03	0,27
FeO t	10 77	6.60	6,00	a,12 4.56	0,1Z 4.56	9,00	0 88	10.50	4,92	9,11	8,54	8,4/	6,11
MGV	0,51	0,63	0,63	0,32	0,31	0.57	0,61	0.29	0.59	0.56	0.57	0.44	0.60
El traces (or	(m)		-							-,	-,		
Rb		6	28	20	2	10	9	2	1	8	3	7	16
Sr	144	210	261	323	185	132	210	129	371	257	220	279	214
РЬ	25	20	25	28	28	27	<12	31	17	22	26	24	27
Ba	-	-	•		-	-	61	•	•	-	-	•	-
Zr	48	98	191	92	230	94	51	82	100	107	53	78	115
50	21	27	30	22	44	34	17	32	11	27	18	21	23
La		13.2	20,9		28.1	17 5	54 ∠2	-	•	39,6	31.4	27,8	•
Ce	-	29	52	-	68	39	3			32	17	0,4	-
Pr	-	-	-	-		-	ã	-		-			
Nd	-	12	29	-	44	25	55	-	•	22	13	<7	-
Sm	-	3,9	7,1	-	9,64	6,06	2	-	•	4,72	2,2	2,38	-
EU Th	-	1	1	-	1,5	1,9	4	-	-	1,1	<1	0,9	-
	•	<1	<1	-	<1	<1	-	-	-	<1	<1	<1	
Ho	-	۔ دا	-1		1.1	-1	2			1	1-	-	-
Tm	-	<1	<1	-	<1	<1	-			<1	0.6	<1	-
ΥЬ	-	2,7	2,7	-	3,2	3	•		-	3,1	1.5	2	
Լս	-	0,5	0,4	-	0,5	0,5	•	-	-	0,5	0.3	0.4	-
Th	-	1,4	3,7	-	4,2	2,1	4	•	-	1,6	1,3	0,7	-
U	< 10	< 10	< 10	< 10	< 10	< 10	•	< 10	< 10	< 10	<10	< 10	< 10
NBA	329	186	187	131	147	353	203	431	94	208	209	189	149
li I		-				-	36	•	•	-	-	•	-
Be	-		-	-	-		2					-	-
Cr	213	229	209	158	326	162	-	267	308	110	140	315	160
Mn	1387	762	476	669	1208	1195	-	2216	384	980	1439	908	493
Co	36	24	22	13	8	26	56	31	16	26	37	30	21
Ni	32	84	79	56	35	19	191	13	56	55	52	58	22
7.	20	137	22	4	19	59	63	167	16	50	31	23	44
Ga	93	/3	09	60	/3		84	119	64	78	32	119	70
As	< 5	21	< 5	< 5	15	< 5	•	- 5	- 18	- 5	-		- 7
Se	< 5	< 5	< 5	< 5	< 5	< 5		< 5	< 5	< 5	<0	23	/ / 5
Mo	< 1	< 1	< 1	< 1	< 1	8	<4	12	10	< 1	1	< 1	8
Ag	< 0,5	< 0,5	< 0,5	< 0,5	1	< 0,5	-	< 0,5	< 0,5	< 0,5	<0,5	< 0,5	< 0,5
Cd	<1	< 1	< 1	< 1	< 1	< 1	2	< 1	< 1	< 1	<1	< 1	< 1
50	< 10	< 10	< 10	< 10	< 10	< 10	<10	< 10	< 10	29	<10	< 10	< 10
Te	< 0 - 10	< ə - 10	< 0	< 5	< 5	< 5	-10	< 5	< 5	< 5	<5	< 5	< 5
Ta		-			< 10 •	< 10 -	<10	< 10	< 10	< 10	<10	< 10	< 10
w I	< 10	< 10	< 10	< 10	< 10	< 10		< 10	< 10	< 10	- <10	- - 10	- 10
Au (ppb)	<1	2	1	< 1	4	2	-	8	< 1	2	<1	2	< 1
BI	< 2	< 2	< 2	< 2	< 2	< 2	-	< 2	< 2	< 2	2	< 2	< 2
Zr/TiO2 Nb/Y	0,00	0,01	0,02	0,01	0,02	0,01	0,01	0,01	0,02	0,01	0,01	0,01	0,02

FORMATION DE VAL-D'OR

Fm.	VAD	VAD	VAD	VAD	VAD	VAD	VAD	VAD	VAD	VAD	VAD	VAD	VAD
#Echant.	1036	1394	1396	1445	7020	7072	*1348 i	*1351	*1383 i	*1385 i	1036 A2	1253 A	1285 C
UTM/N	5322750	5321850	5322925	5321275	5326975	5329850	5328375	5328575	5326325	5326425	5322750	5324025	5330575
UTM/E	325925	332300	332725	334275	322300	307150	326425	325725	331325	331075	325925	331750	337350
Lith.	PYR X40	PYR	PYR	PYR	PYR	PYR	PYR	PYR	PYR	PYR	PYR	PYR	PYR
Facies Cours feallys	V 3A	V2J	V3A	V2J	V2J	V1C/V1D	V2J	V3A	V3A	V3A	V2J	V3B	V2J
Altération	^	x,1,0	0,1	PV	X,1	1,01	X,I	X,I		×,1	x	x	
									00,00				<u>م</u>
El. majeurs ((· · · · · · · · · · · · · · · · · · ·	- 			· · · · · · · · · · · · · · · · · · ·	
SIO2	54,85	60,28	55,49	67,87	64,29	75,72	54,51	53,61	47,38	49,84	58,43	48,35	68,25
T102	0,87	0,70	0,76	0,60	1,00	0,36	0,58	0,71	0,90	0.84	0,38	0,66	0,33
A1203	19,96	18,41	18,81	15,78	15,21	13,10	18,30	21,94	19,55	19,10	20,71	19,60	17,49
Fe2O3 c	2.35	1.45	1.51	1.37	2.56	1 92	0,70	1.81	2 10	3 36	2,90	2,29	1,09
MnO	0.14	0.12	0.12	0.07	0.08	0.04	0,11	0.15	0.27	0.23	0.09	0.24	0.04
MgO	5,10	4,23	5,15	2,26	4,05	1,76	5,07	4,69	6,69	6,37	3,42	3,98	1,05
CaO c	4,52	4,27	6,58	3,59	4,47	0,83	8,03	6,66	11,29	11,13	3,35	16,23	3,62
Na2O	6,01	4,46	3,66	2,68	2,47	4,36	2,40	3,96	2,29	1,91	8,32	0,96	6,01
R20	0,15	0,66	0,65	1,64	2,26	0,24	0,14	0,28	0,77	0,60	0,55	0,19	0,71
TOTAL	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	0,13	0,11	0,14
						,00,00				100,00	100,00	100,00	100,00
P.A.F.	3,25	1,55	2,15	0,95	2,81	1,92	3,04	3,77	2,45	1,22	1,95	0,85	0,85
s	0.01	0,12	0,06	0.36	0,34 ∠0.01	0,38 ∠0.01	0,29	1,08	0,23	n na	0,15	0,35	0,10
Fe2O3 t	8,72	6.97	9.02	5,56	6.05	3.56	11.89	8.02	11.40	10.42	4.81	10.20	2 49
FeO t	7,76	6,20	8,03	4,95	5,38	3,17	10,58	7,14	10,15	9,27	4,28	9,08	2,22
MGV	0,57	0,57	0,56	0,47	0,60	0,52	0,49	0,57	0,57	0,58	0,61	0,46	0,48
El. traces (p	pm)											****	nister -
HD C-	1 107	25	17	49	62	5	3	5	19	12	18	< 1	14
Sr Ph	137	139	155	2/5	180	200	190	290	300	170	124	136	427
Ba					504	151	67	<1Z Q1	340	212	13	28	11
Zr	55	117	73	179	220	260	85	77	55	46	58	25	94
Y	24	28	17	16	30	30	18	19	20	22	14	14	7
Sc		22,7	•	•	29	17	23	27	40	39	15,8	•	4,1
	-	8,7	•	-	24	16	8	8	3	2	4,5	-	5,6
Pr		18		•	51	38	18	18 ~10	9 ~10	<3	10	-	11
Nd		16	-	-	95	35	25	<25	<25	45	10	-	-
Sm	-	3	-	•	<2	~2	2	2	<2	<2	1.3	-	1,16
Eυ		<1	-	-	2	2	2	2	2	1	<1	-	<1
ть	-	<1	•	-	-	•	•	-	-	•	<1	-	<1
Ho	-		-	-	5	4	<1	2	2	<1	-	-	-
Tm	-	<1					-			-	<1	•	<]
Yb	-	2,8		-	-		-	-		-	13		<: 0.5
ւս	-	0,3	•	-	-	•	-	-	-	-	0,3	•	<0.1
Th		0,8	-	-	<3	<3	3	<3	<3	<3	<0,5	-	0,8
U	< 10	<10	<10	<10		•	•	-	•	•	< 10	< 10	< 10
Allh	226	135	98	109	190	23	117	156	184	168	81	167	32
					23	20	21	22	4	3	-	-	•
Be	-	-			3	2	<1	<1	<1	<1	-		
Cr	178	48	28	230	-	-	-	•			102	324	26B
Mn	929	1094	1098	701	-	•	-	-	•	-	773	2125	252
Co	25	24	30	25	22	7	22	27	36	31	17	38	6
	33	39	/6	80	88	4	26	37	59	44	110	79	12
Zn	76	93	101	101	75	18	4J 56	59	30	53	21	10	83
Ga		•	-	-	16	9	14	18	11	13	-	-	42
As	< 5	<5	<5	6	-	-	•	•	-	•	< 5	< 5	< 5
Se	< 5	6	<5	6	-	-	-	•	-	•	< 5	< 5	< 5
MO	10	<1	1	1	<4	<4	<4	<4	<4	<4	< 1	10	12
Cd .	< 0,5	<0,5	<0,5	<0,5	-2		· ^	2	•	•	< 0,5	< 0,5	< 0,5
Sn	< 10	<10	<10	<10	<10	<2 <10	<2 <10	<2 <10	<2 <10	<2 ~10	< 1 - 10	< 1	< 1
Sb	< 5	7	7	6	-	•	-	-	-	•	< 5	< 5	< 5
Te	< 10	<10	<10	<10	<10	<10	<10	<10	<10	<10	< 10	< 10	< 10
l a w	-	-	•	•	<5	<5	⊲5	<5	<5	<5	•	-	-
Au (ppb)	< 10	<10	<10	<10	-	-	-	-	•	•	< 10	< 10	< 10
Bi	22	-2	0	2	•	-	•	•	•	•	1	1	< 1
7./710.2									-	-	< 2	<2	< 2
NB/Y	- 0,01	0,02	0,01	0,03	0,02 0,33	0,07 0,40	0,01 0,28	0,01 0,32	0,01	0,01 0,14	0,02	0,00	0,03

FORMATION DE VAL-D'OR

Fm.	VAD	VAD	VAD	VAD	VAD	VAD
#Eshant	1000 D	10.0	100 4	0218 0	00 A1	272 0
HTM/N	5330575	5322700	5324050	5323200	5322350	5321450
	337650	323950	330550	334850	325575	337850
Lith.	PYB	PYB	PYR	PYR	PYR	PYR
Faciès	V2J	V2J	V3B	V3A	V2J	V2J
Sous-faciès	Li	x	x	I,b	x	1,b
Altération	a a				B	
El. majeura (%)			· · · · ·		
SiO2	59,31	58,44	55,52	49,77	59,69	69,06
TiO2	0,75	0,84	0,82	0,41	0,70	0,34
A12O3	17,88	17,79	17,42	20,96	17,57	16,43
FeO c	3,66	6,29	6,44	4,86	2,43	2,00
Fe2O3 C	2,06	2,41	2,70	1,66	4,63	0,53
MaQ	3.27	5.02	4.85	8,42	3.46	1.93
CaO c	7,82	5,20	7,23	12,07	6,61	4,06
Na2O	4,43	3,19	4,00	1,66	4,28	4,76
K2O	0,41	0,54	0,61	0,08	0,34	0,79
P2O5	0,30	0,19	0,26	0,01	0,20	0,05
IOTAL	100,00	100,00	100,00	100,00	100,00	100,00
P.A.F.	0,60	3,10	1,30	2,25	2,35	0,65
CO2	0,40	0,30	0,16	0,01	0,20	0,03
S	0,01	0,07	0,01	0,01	0,03	0.01
Fe2O3 t	6,16	8,88	9,74	6,84	7,14	2,64
FeU t	5,48	7,90	8,67	6,09	6,35	2,35
WITCH V	0,54	0,56	0,53	0,73	0,52	0,62
El. traces (p	pm)					
Rb	10	18	17	3	10	28
Sr Ph	401	134	133	200	202	259
Ba			- 20		20	
Zr	112	132	44	47	94	116
Y	12	33	21	11	21	6
Sc	13,6	27,9	40,9	26,5	23,5	-
	12,5	10,3	2,8	8,3	7,6	-
Ce pr	28	26	10	20	17	•
Nd	<10	15	10	11	14]
Sm	2,7	3,8	1,68	2,2	2.5	-
Eu	<1	1	0,7	<1	0,8	-
ть	<1	<1	<1	<1	<1	-
Dy		-	-		:	•
Tm		<1	<1	<1	<1	-
Yb	0.7	3.3	2.2	1	2]
Lu	0,2	0,5	0,6	<1	0,3	-
Th	1,1	1	<0,5	<0,5	1	-
U	< 10	< 10	< 10	<10	< 10	<10
V	121	149	230	140	132	45
NO LI			-	•	•	-
Be					-	-
ଦ	239	113	104	73	123	28
Mn	804	633	739	924	453	335
C0	23	26	33	30	7	7
	68	28	37	52	28	6
Zn	74	113	69	69	25	40
Ga	•	•	-			
As	< 5	11	< 5	⊲5	< 5	16
Se	< 5	< 5	< 5	<5	< 5	<5
MO	10	10	<1	<1	< 1	2
C4	< 0,5	< 0,5	< 0,0	<0,5	< 0,5	<0,5
Sn	< 10	< 10	< 10	<10	< 10	-10
Sb	< 5	< 5	< 5	حة	< 5	<5
Te	< 10	< 10	< 10	<10	< 10	<10
iat W		-	•		•	-
Au (pob)	< 10	< 10	< 10	<10	< 10	<10
Bi	<2	<2	<2	4	21 22	3
						~
Zr/TiO2	0,02	0,02	0,01	0,01	0,01	0,03
	-	-	-	•	-	•

GROUPES DE PONTIAC ET DE VILLEBON

Em	PON	VIR	VIR	VIB
rau.	FMI	110	110	115
#Echant.	2314 A	330	341 A	347 B
UTM/N	5322525	5320200	5319300	5318750
UTM/E	318700	325800	325925	326850
Lith.	LAV	LAV	LAV	LAV
Faciès	V4	VзB	V4	V3F
Sous-faciès	Ci	м	м	C
Altération	CB,CL	CL	CL,CB	CB,CL
EL majeurs (%) 52.81	69.99	50.16	52 47
TiO2	0.33	1 35	0 61	1 16
A1203	5,29	15.04	10.14	14.36
FeOc	9.54	9.82	9.63	10.08
Fe2O3 c	0,76	2,44	2.02	2,18
MnO	0,23	0,27	0,17	0,25
MgO	26,11	7,26	18,82	9,45
CaO c	4,02	6,95	7,05	7,18
Na2O	0,05	2,96	1,16	2,58
K2O	0,01	0,39	0,24	0,23
P2O5	0,05	0,29	0,01	0,06
TOTAL	100,00	100,00	100,00	100,00
DAE	10.20	3 60	4 76	2 0.5
CO2	5 50	1 42	4,70	3,90
s	0.01	0.03	0.02	0.01
Fe2O3 t	8.97	12.70	12.10	12.40
FeO t	7.98	11.30	10.77	11.04
MGV	0,87	0,56	0,78	0,63
El. traces (pr	om)		_	
HD C-	2	< 1	5	< 1
57	92	125	12	135
P0 Pa	48	۲ ک	38	21
77	12	66	- 24	4.5
Y	10	30	11	20
Sc	20.9	51.2	27.7	39.1
La	<0.5	4.3	0.7	4
Ce	<5	13	10	11
Pr	-	-		-1
Ndi	<10	9	<7	11
Sm	0,6	2,81	0,67	2,5
Eu	<1	1,1	<1	<1
ть	<1	<1	<1	<1
Dy	-	-	-	
HO T		<1	<1	<1
		<1	<1	0,6
10	0,8	2,7	0,8	
	0,2	0,6	<,1	-0.5
	~10	< 10	- 10	< 10
v	112	325	174	254
Nb				
Li	-	-	-	-
Be	-	-	-	-
Cr	1382	233	4161	254
Mn	1932	2385	1808	2173
Co	102	55	119	57
NI	120	65	1220	96
Cu	36	66	216	32
Zn Co	/4	128	125	117
Δe	5	- 10	- 5	- 5
Se	5	< 5	< 5	25
Mo		د 1	< 1	21
Ag	<0.5	< 0.5	< 0.5	< 0.5
Cd	<1	< 1	< 1	< 1
Sn	<10	< 10	< 10	< 10
Sb	<5	< 5	< 5	< 5
Te	<10	< 10	< 10	< 10
Ta	· ·	-	•	-
W	<10	< 10	< 10	< 10
AU (ppb)	< <u>1</u>	1	5	< 1
81	2	< 2	< 2	< 2
71/1102	0.00	0.00	0.00	
Nb/Y		0,00	0,00	0,00

ROCHES INTRUSIVES

Fm.	-	-	•		-	-	•	•	-	•	Bevcon	Bevcon	Bevcon
#Cohont	1000	6004	1204 0	Bruell	3000 -	5057 -	5056 H	6040 -	6051 6	6000 -	Bevcon	Bevcon	Bevcon
HECHANT.	5327025	5314975	1204 C	5332500	5331450	5315675	5315726	5315650	5316350	5315750	5329650	5320650	BV 10
UTM/E	336075	342725	331300	329400	348900	343125	343025	341175	343350	342660	319700	319700	319700
Lith.	INT	INT	INT	INT	INT	INT	INT	INT	INT	INT	INT	INT	INT
Faciès	I1B	13 A	12	12J	12J	11	- 11	13A	1	11	12 J	12J	12J
Sous-faciès	м	М	M	M	M	PORP	PORP	м	PORP	PORP	M	M	м
Alteration	Granita	Gabbra	Topolito		Diarita	Der CD	Dor CD	Cabbra	Dec 50	Der ED	Boursen	? ₽ Bausan	Bauraa
	Granite	Gabbio	Tonante	Dionita Ciz	Diorne	FUI. FF	FUI. FF	Gauoro	FUI. FF	FUI. FF	Devcon	Devcon	Bevcon
El. majeurs (%)												
SiO2	68,25	50,90	71,66	78,15	57,77	66,36	67,38	47,76	67,29	66,35	71,11	69,36	70,90
TiO2	0,25	0,80	0,19	0,17	0,79	0,43	0,32	0,76	0,35	0,36	0,52	0,37	0,49
A1203	15,57	12,78	16,13	10,87	17,25	17,08	17,71	10,64	17,55	18,01	14,59	16,38	15,39
Fe2O3 c	1.33	2,10	0.48	1.73	1.75	1.51	1.27	1.20	0.84	1,00	1.46	2,40	1.37
MnO	0,06	0,19	0,03	0,02	0,08	0,02	0,03	0,19	0,05	0,05	0,05	0,04	0,04
MgO	1,62	10,98	0,72	1,22	5,04	2,08	1,42	16,37	1,78	1,70	2,04	2,45	1,69
CaO c	2,02	11,00	3,66	0,31	7,35	2,28	3,13	9,86	3,56	5,06	0,19	0,90	0,73
Na2O KaO	5,44	1,89	5,18	3,81	5,12	4,40	6,19	0,67	5,62	5,55	4,77	5,76	4,50
P205	0.20	0.26	0,75	0.06	0.01	0.15	0.13	0.23	0.12	0,43	0 17	0.26	0.17
TOTAL	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100.00	100,00	100,00	100,00	100.00
l		-			-								
P.A.F.	0,45	2,69	0,95	1,20	1,35	1,76	1,12	2,17	1,64	1,05	3,45	3,50	2,25
6	0,44	0,77	0,11	0.03	0,16	0,13		-	0,19	-	1,85	2,10	1,77
Fe2O3 1	2 92	10 30	1 60	3.67	0,01 4 88	3.92	0,20 2 47	12 01	3.10	0,04 2∡0	5.05	0,01 3.29	0,01
FeO t	2.60	9,17	1,42	3,27	4,34	3.49	2,20	10,69	2.76	2.22	4,49	2.92	4,23
MGV	0,55	0,70	0,50	0,43	0,70	0,54	0,56	0,75	0,56	0,60	0,47	0,62	0,44
	l									······	T el		
El. traces (p	pm) 110		20		50	110	76	62	22	24	50		
Sr	1357	620	374	-	111	330	330	170	570	670	122	632	201
РЬ	17	20	11	•	28	<12	<12	<12	<12	<12	12	11	10
Ba	· ·	372	•	•	•	854	391	1000	338	186		-	
Zr	133	95	100	•	123	130	110	58	130	130	193	118	195
Y	16	22	5	-	26	6	4	25	11	3	35	18	42
La	33.2	18		-	-	9	10	11	17	9	20,0		
Ce	61	38		-	-	15	17	25	29	16	49		
Pr	i -	<10	•	•	•	<10	<10	<10	<10	<10	•	-	•
Nd	28	55	-	•	-	<25	<25	35	35	<25	32	-	
Sm	4,49	<2	•	-	•	<2	<2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2	<2	6,16	-	-
ть	<1	-		-	-					-	v,o <1		
Dy	-	3		•	-	<1	<1	3	2	<1	-	-	-
Но	<1	•	-	•	-	-	•	•	-	•	<1	-	•
Tm	<1	-	•	•	•	-	•	-	-	•	<1	-	-
10	1,3	•	-	•	•	•	•	•	-	•	3,4	-	-
Th	7.1	4		-	-	- 7	4	- 6	<3	-3	0,5		
U	< 10	-	< 10	-	<10		-	-		-	< 10	< 10	< 10
v	41	230	15	•	112	69	45	227	55	47	65	52	65
NB	-	5	•	•	-	7	6	5	5	4	-	•	-
Bo		67		•		22	38	65	24	36	-	•	-
à	352		260	-	101						220	143	234
Mn	299	•	193	-	943		-	•	-	-	402	401	401
Co	7	42	3	•	18	16	9	33	8	4	9	11	9
NI	27	163	7	•	79	28	11	354	22	7	16	31	11
70	38	130	20	12	1>	110	129	34	27	30	18	9	5
Ga		17	-	-		12	13	12	18	17	47	-	
As	< 5	-	< 5	-	<5	-	•	-	•	-	< 5	< 5	< 5
Se	< 5	-	< 5	•	<5	•	-	-	•	-	< 5	< 5	< 5
Mo	10	<4	8	•	<1	<4	<4	<4	<4	<4	< 1	< 1	8
Cd	 < 0,5 < 1 	-2	< 0,5 2 1	<0,5	<0,5	-2	· ^	-	~ ~	م	1	< 0,5	< 0,5
Sn	< 10	<10	< 10	•	<10	<10	<10	<10	<10	<2 <10	< 10	< 10	< 10 < 10
Sb	< 5	-	< 5	•	<5	-	•	•	•		< 5	6	< 5
Te	< 10	<10	< 10	-	<10	<10	<10	<10	<10	<10	< 10	< 10	< 10
1 a W		<5		•		<5	<5	<5	<5	<5	•	•	•
Au (ppb)	21	-	< 10	- 7	<10	•	-	•	-	-	< 10	< 10	< 10
Bi	<2	-	<2		~2	-	-		-		< 1	<2	< 1 - 2
			-		-						••	~ *	
Zr/TiO2	0,05	0,01	0,05	-	0,02	0,03	0,03	0,01	0,04	0,04	0,04	0,03	0,04
UNU/ T	· · ·	0,23	•	•	•	1,17	1,50	U,20	0,45	1,33	-	•	- 1

ROCHES INTRUSIVES

STANDARDS

Chirro Control Signa 2 Signa 2 <thsigna 2<="" th=""> <thsigna 2<="" th=""> <thsi< th=""><th>Fm.</th><th>-</th><th></th><th>Vicour</th><th>Vicour</th><th>Vicour</th><th>Vicour</th><th>Vicour</th><th>Vicour</th><th>Vicour</th><th>Chondrite</th><th>MORB</th><th>P. Mantle</th><th>P. Mantle</th></thsi<></thsigna></thsigna>	Fm.	-		Vicour	Vicour	Vicour	Vicour	Vicour	Vicour	Vicour	Chondrite	MORB	P. Mantle	P. Mantle
Bit Detail Chi III Chi III Chi III Chi III Chi III Chi III Chi IIII Chi IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		Chimo	Croinor	Sigma 2	Sigma 2	Sigma 2	Sigma 2	Sigma 2	Sigma 2	Sigma 2	Haskin	Pearce 82	Sun 1982	Wood et al.
UTRUM S118000 5326800 <th< th=""><th>#Echant.</th><th>CH 16</th><th>CR-48</th><th>GP 2</th><th>GP 2A</th><th>GP 3</th><th>GP 5D</th><th>GP 6A</th><th>GP15</th><th>GP18</th><th>et al. 1968</th><th>p. 527</th><th></th><th>79, p. 334</th></th<>	#Echant.	CH 16	CR-48	GP 2	GP 2A	GP 3	GP 5D	GP 6A	GP15	GP18	et al. 1968	p. 527		79, p. 334
Charle S2000 2 48800 3 16800	UTM/N	5319800	5330250	5326675	5326675	5326650	5326625	5326600	5326600	5326600	•	•	-	-
Lin. M M	UTM/E	332000	349800	316800	316800	316800	316800	316800	316800	316800	-	-	-	-
South etc. Individing Col. Digitize Col. PP File Col. PP Col. PP <thcol. PP Col. PP Col. P</thcol. 	Lith.			191	101	101	101	1011	1011	101				
Artestanto CE B <th< th=""><th>Sous-faciès</th><th>125 M</th><th>12.5 M</th><th>133 M</th><th>, 2 U</th><th>120 M</th><th>12.5 M</th><th>120</th><th>130 M</th><th>12.5 M</th><th></th><th></th><th></th><th></th></th<>	Sous-faciès	125 M	12.5 M	133 M	, 2 U	120 M	12.5 M	120	130 M	12.5 M				
Diarrie Viceur Sino 5.10 5.12 48.35 - - 44.30 - Sino 1.56 1.8.5 12.68 1.0.6 1.8.2 12.28 0.28 0.28 0.22 0.16 0.23 0.11 - 0.14 0.22 0.22 0.20 0.16 0.23 0.11 - 0.14 0.28 0.26 0.16 0.23 0.16 0.23 0.26 0.16 0.23 0.26 0.16 0.23 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26	Altération			EP	EP			141	Ē					
El majeura Visiones V		Diorite	Diorite	Vicour	Vicour	Vicour	Vicour	Vicour	Vicour	Vicour				
B. m. Plane (b) B. m. Pla		L												
Singer Singer<	El. majeurs ((%)			17.00									
1150 153 153 153 153 153 153 154 153 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 155 - - 0.14 - 0.14 - 0.14 - 0.14 - 0.14 - 0.14 - 0.14 - 0.14 - 0.14 - 0.14 - 0.14 - 0.14 - 0.14 - 0.14 0.15 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.13 0.14 </th <th>5102</th> <th>56,89</th> <th>53,32</th> <th>48,35</th> <th>47,32</th> <th>59,10</th> <th>05,48</th> <th>70,75</th> <th>48,28</th> <th>68,50</th> <th>-</th> <th>1 50</th> <th>44,30</th> <th></th>	5102	56,89	53,32	48,35	47,32	59,10	05,48	70,75	48,28	68,50	-	1 50	44,30	
Proc 5.54 10.77 13.87 14.87 14.80 5.84 13.83 5.53 . . 9.00 . MCO 0.22 0.24 0.24 0.27 0.22 0.23 0.11 .	A1203	15.51	15.53	12 56	12 38	12 32	12 26	11 10	13.96	12 09		1,50	4 29	0,25
Fac03 2 2 1 3.45 5.70 5.45 4.42 5.61 4.82 7.77 4.42 .	FeO c	5,54	10,77	13,87	14,37	14,50	8,64	5,84	13,53	5,53	-		9,00	-
MAC 0.22 0.22 0.22 0.23 0.11 0.14 38.00 MAC0 0.44 4.83 4.40 1.83 0.74 0.44 8.14 0.72 38.00 MAC0 0.44 0.14 0.84 0.16 0.38 0.55 0.15 0.030 0.15 0.030 0.05 0.030 0.050 0.030 0.050 0.030 0.050 0.030 0.050 0.000	Fe2O3 c	2,21	3,45	5,70	5,45	4,42	5,51	4,82	7,37	4,42	-	-	•	-
MgO 6.46 4.88 4.80 1.83 0.74 0.14 0.74 0.14 0.74 0.14 0.74 0.75 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.75 0.76 0.77 0.76 0.77 0.76 0.77 0.76 0.77 0.77 0.76 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77	MnO	0,22	0,20	0,25	0,27	0,22	0,20	0,16	0,23	0,11	-	-	0,14	-
Name Description Description <thd< th=""><th>MgO</th><th>6,46</th><th>4,98</th><th>4,63</th><th>4,90</th><th>1,63</th><th>0,74</th><th>0,44</th><th>5,14</th><th>0,72</th><th>-</th><th>-</th><th>38,00</th><th>-</th></thd<>	MgO	6,46	4,98	4,63	4,90	1,63	0,74	0,44	5,14	0,72	-	-	38,00	-
CZO D.0.6 D.0.36 D.0.36 D.0.4 D.0.86 D.0.90 D.0.90 <thd.0.90< th=""> <thd.0.90< th=""></thd.0.90<></thd.0.90<>	Na2O	9,02	2,82	3 37	3.42	2 75	3 30	4 94	1.66	5 58	-		3,51	-
P205 0,14 0,12 0,14 0,84 0,30 0,00 0,00 100,00 <th< th=""><th>K20</th><th>0.04</th><th>0.05</th><th>0.36</th><th>0.37</th><th>0.26</th><th>1.48</th><th>0.38</th><th>0.55</th><th>0.39</th><th></th><th>0.15</th><th>0.03</th><th>0.03</th></th<>	K20	0.04	0.05	0.36	0.37	0.26	1.48	0.38	0.55	0.39		0.15	0.03	0.03
TOTAL 100,00 </th <th>P205</th> <th>0,16</th> <th>0,45</th> <th>0,12</th> <th>0,14</th> <th>0,88</th> <th>0,30</th> <th>0,09</th> <th>0,21</th> <th>0,42</th> <th>-</th> <th>0,12</th> <th>0,02</th> <th>0,02</th>	P205	0,16	0,45	0,12	0,14	0,88	0,30	0,09	0,21	0,42	-	0,12	0,02	0,02
P.A.F. 2.70 3.35 0.35 0.45 3.20 2.85 2.80 3.70 2.75 - 2 2 - - - - - - - - - - - - -	TOTAL	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	•	-	99,86	
r.A. c. i.u s. i.s. u.s.s u.s.s i.e. i.s. i.e. i.s. i.e. i.s. 6202 0203 0.55 0.46 0.44 0.12 2.13 1.10 2.05 0.45 0.10 2.15 Fe201 7.65 1.42 0.16 0.13 0.11 0.09 0.36 0.14 -	DAF			A 44	A 15		0.00	0.00						
s Paragol 1 Fac0	r.A.F.	2,/0	3,35 0∡e	0,35	0,45	3,20	2,85	2,80	3,70	2,/5	-	-	-	-
Facoa 7.55 14.20 20.00 20.50 18.50 13.80	s	0.25	U,+10 -	0,43	0.35	0.13	0.38	2,17	1,05	2,03	-		-	:
FaO.t 6,81 12,84 17,80 18,33 16,47 12,28 9,17 18,42 0,74 0,74 0,74 0,74 0,74 0,75 0,74 0,75 0,74 0,75 0,74 0,75 0,74 11 6 - 11 16 - - - - - - - - - - - - - - 16 - - 2 2 3 3 4 17 0 1 16 - - 2 3 0 33 1 1 1 1 1 <th>Fe2O3 t</th> <th>7.65</th> <th>14,20</th> <th>20,00</th> <th>20,60</th> <th>18,50</th> <th>13,80</th> <th>10.30</th> <th>20,70</th> <th>9.87</th> <th>-</th> <th>-</th> <th></th> <th>-</th>	Fe2O3 t	7.65	14,20	20,00	20,60	18,50	13,80	10.30	20,70	9.87	-	-		-
MGV 0.65 0.44 0.34 0.35 0.11 0.09 0.36 0.11 - 2 0.65 0.43 0.71 0.71 0.71 - 2 0.71 - 2 0.71 - - 2 0.71 - - 2 0.71 - - 2 0.71 - 2 0.71 - 2 0.71 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th>FeO t</th> <th>6,81</th> <th>12,64</th> <th>17,80</th> <th>18,33</th> <th>16,47</th> <th>12,28</th> <th>9,17</th> <th>18,42</th> <th>8,78</th> <th>•</th> <th>-</th> <th>-</th> <th></th>	FeO t	6,81	12,64	17,80	18,33	16,47	12,28	9,17	18,42	8,78	•	-	-	
El. traces (pem) .	MGV	0,65	0,44	0,34	0,35	0,18	0,11	0,09	0,36	0,14	-	-	-	-
Dir Base		L						Work			·····			
Sr 133 . 70 72 56 47 90 73 124 . 120 22 23 23 24 . 120 .	Rb	l <1		3	4	2	29	4	11	6	-	2	0.66	0.86
Pb 22 · 152 148 126 44 142 51 · <	Sr	133	-	70	72	58	47	90	73	124	-	120	22	23
Bit ·<	РЬ	22	-	152	148	126	49	44	126	51	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ba		-		•	-	•	•	-	•	•	20	-	7,56
x z6 z7 z3 x5	Zr	74	143	39	46	107	198	295	33	217	-	90	-	11
Date	Sc	50.0	27	25	25	20	/8	194	24	92	•	30	15.0	4,87
Corr 16 - - 29 - - 65 0,88 10 - 1,9 NM 15 - - 23 - - 10,112 - 1,28 Sm 2,93 - - 7,38 - - 10,3 0,181 3,3 - 0,285 Eu 0.8 - - - 2,6 0,047 - 0,099 Dy - - - - - 2,3 0,07 - - - Ho <1 - - 1,1 - - 1,003 - - 0,017 - - - 0,017 - - - 0,017 - - - 1 0,034 - - 0,017 - - - 0,11 0,034 - - 0,027 0,034 - - 0,027 0,034 - - 0,027 0,027 0,024 0,029 0,023 0,011 0,026 0 0,020	La	6.5		-		10.7	-			25.3	0.33	+0		0.71
Pr 0,112 . <th>Ce</th> <th>16</th> <th>-</th> <th>-</th> <th></th> <th>29</th> <th>-</th> <th>-</th> <th>-</th> <th>65</th> <th>0,88</th> <th>10</th> <th>-</th> <th>1,9</th>	Ce	16	-	-		29	-	-	-	65	0,88	10	-	1,9
Nd 15 - - 23 - - - 44 0.6 - 126 126 128 <t< th=""><th>Pr</th><th>-</th><th>-</th><th>•</th><th>-</th><th>•</th><th>•</th><th>-</th><th>•</th><th></th><th>0,112</th><th>-</th><th>-</th><th>-</th></t<>	Pr	-	-	•	-	•	•	-	•		0,112	-	-	-
Sm 2,93 - - - 7,38 - - 10,3 0,181 3,3 - 0,089 Tb - - - - 2,6 0,009 - - 0,099 Dy - - - - - 2,3 0,007 - - 0,031 Ho - - 1 - - 2,3 0,007 - - - - - - - - - - 0,031 - - - - - - 1,1 - - 1,003 - - - - - - - - - 1,003 -	Nď	15	-	•	-	23	•	•	-	44	0,6	-	1,26	1,29
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sm	2,93	-	•	-	7,38	•	•	-	10,3	0,181	3,3	-	0,385
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ть	V,0				-1	-	:		2,0	0,069	-	-	0 099
Hóp <1	Dv			-	-		-	-		- , -	0.31	-	-	0,035
Tm <1	Ho	<1	-		•	1,7	-		-	2,3	0,07	-	•	-
Yb 2.9 - - - 6.6 - - 10.2 0.2 3.4 - - Th 0.6 - - 1.1 - - 1.5 0.034 - - - 1.6 Th 1.1 - - 1.1 - - 1.8 - 0.2 0.1 0.096 U <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 - - 0.02 0.1 0.096 V 299 351 368 362 3 2 3 866 7 - - - 0.027 3.5 0.022 0.62 Li -<	Tm	<1	-	-	-	1	•	•	•	1	0,03	-	-	-
Lu 0,6 - - 1,1 - - 1,1 - - - 1,8 - 0,034 - - - - 1,6 0,034 - - - - - - 1,0 0,096 - - - - - - 1,1 - - 1,1 - - 1,1 - - 1,1 0,096 - - 1,0,096 - - 0,027 V 299 951 388 362 3 2 3 866 7 - - - 0,027 Nb - - - - - - - - - - 0,027 Ll - <th>Yb</th> <th>2,9</th> <th>•</th> <th>-</th> <th>-</th> <th>6,6</th> <th>-</th> <th>•</th> <th>•</th> <th>10,2</th> <th>0,2</th> <th>3,4</th> <th>-</th> <th>-</th>	Yb	2,9	•	-	-	6,6	-	•	•	10,2	0,2	3,4	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0,6	•	-	•	1,1	-	•	-	1,5	0,034	-		-
V 299 351 368 362 3 2 3 866 7 - <td< th=""><th></th><th>- 10</th><th>-10</th><th>- 10</th><th>- 10</th><th>/ 10</th><th>~ 10</th><th>- 10</th><th>- 10</th><th>1,0 - 10</th><th></th><th>0,2</th><th>0,1</th><th>0,096</th></td<>		- 10	-10	- 10	- 10	/ 10	~ 10	- 10	- 10	1,0 - 10		0,2	0,1	0,096
Nb - - - - - - - - 3,5 0,62 LI -	v	299	351	368	362	3	2	3	866	7		-	-	0,027
Li -	Nb	-	-	-	-	-	-	•	•	-		3,5		0,62
Be .	LI		-	-	-	-	-	-	-	•	-	•	•	-
Gr 68 39 116 19 129 102 235 58 120 - 250 3010 . Mn 17746 1674 3406 3140 2883 1612 1379 2471 1004 - - .	Be	-	-		-			-	-	-	•	-		-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1746	39	2406	2140	129	102	235	58	120	-	250	3010	-
NI 77 30 5 4 2 3 6 45 6 - 2110 . Cu 143 59 398 152 83 10 25 86 31 - - . <th>Co</th> <th>56</th> <th>41</th> <th>75</th> <th>67</th> <th>2005</th> <th>20</th> <th>18</th> <th>89</th> <th>1.8</th> <th></th> <th>-</th> <th></th> <th></th>	Co	56	41	75	67	2005	20	18	89	1.8		-		
Cu 143 59 398 152 83 10 25 86 31 -	NI	77	30	5	4	2	3	. 6	45	6	-	-	2110	-
Zn 77 123 110 128 183 68 49 183 30 -	Cu	143	59	398	152	83	10	25	86	31	-	-	•	-
Ga	Zn	77	123	110	128	183	68	49	183	30	•	-	-	-
As < 5	Ga			-		-	-	-	-	•	-	-	-	-
Mo <1 <1 1 2 2 1 2 2 -	Se	<5 <5	<5	- 5	-5	- 5	509	- 5	3	19	•	-	-	-
Ag < 0.5	Mo	<1	<1	1	1	2	2	1	2	2	_	-		-
Cd <1	Ag	< 0,5	<0,5	1	< 0,5	< 0,5	1	< 0,5	< 0,5	< 0,5	-	-		-
Sin < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	Cd	< 1	<1	<1	< 1	< 1	< 1	< 1	< 1	< 1	-	-	-	-
Sol 0 <0	Sn	< 10	<10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	-	-	-	-
Ta - 0.043 - 0.043 - 0.043 - 0.043 - 0.043 - 0.043 - 0.043 - 0.043 - 0.043 - 0.043 - 0.043 - 0.043 - 0.043 - 0.043 - 0.043 - 0.043 -	30 Ta	6	<5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	-	-	•	-
W <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Та		<10	< 10 -	< 10	< 10	< 10	< 10		< 10		0.19	•	
Au (ppb) <1	w	< 10	<10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		v, io -		0,043
BI <2	Au (ppb)	<1	12	42	4	10	29	41	1	2		-	-	-
Zr/TiO2 0.01 0.01 0.00 0.00 0.01 0.02 0.04 0.00 0.02 - 0.01 - 0.00 Nb/Y 0.12 - 0.12	ві	< 2	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	-	-	-	-
Nb/Y	74/1102	0.04	0.01	~ ~~										
	Nb/Y		0,01	0,00	0,00	0,01	0,02	0,04	0,00	0,02		0,01	•	0.00

.

ANNEXE 2b

TABLEAUX DES TENEURS MOYENNES POUR CHAQUE FACIES EFFUSIF ET PYROCLASTIQUE

Éléments majeurs et mineurs normalisés à 100 % sans les éléments volatils

Éléments traces

Regroupement par unité stratigraphique

GROUPE D'ASSUP

Fm.	[ASS			ASS			ASS		ASS
Lith.		LAV			LAV			LAV		PYR
Faciès		V2J			V3A			V3B		V2J
	MOYENNE	ECART TYPE	NOMBRE D'ANALYSES	MOYENNE	ECART TYPE	NOMBRE D'ANALYSES	MOYENNE	ECART TYPE	NOMBRE D'ANALYSES	
El. majeurs (%)										
SIO2	59,66	3,60	19	56,12	5,06	15	52,03	1,71	4	64,57
TIO2	0,88	0,23	19	1,26	0,29	15	1,53	0,25	4	0,79
AI2O3	16,74	1,23	19	15,81	1,12	15	15,24	1,56	4	18,09
FeO c	4,82	1,67	19	6,79	2,93	15	9,50	1,66	4	1,56
Fe2O3 C	2,32	0,67	19	2,89	0,75	15	3,30	0,70	4	2,87
MnO	0,13	0,04	19	0,16	0,03	15	0,20	0,02	4	0,06
MgO	4,24	0,88	19	5,20	1,72	15	5,65	0,69	4	0,96
CaO c	6,98	2,17	19	8,61	2,66	15	10,19	1,69	4	4,70
Na2O	3,44	1,28	19	2,69	1,36	15	1,96	0,53	4	3,87
K2O	0,56	0,48	19	0,21	0,18	15	0,22	0,29	4	2,33
P2O5	0,23	0,12	19	0,25	0,10	15	0,19	0,07	4	0,19
TOTAL	100,00	0,00	19	100,00	0,00	15	100,00	0,00	4	100,00
MGV	0,56	0,06	19	0,54	0,03	15	0,49	0,04	4	0,33
El. traces (ppm)										
Rb	28,33	35,75	18	8,17	5,36	12	5,75	7,50	4	81
Sr	174,28	77,76	18	187,07	88,42	15	230,75	52,47	4	575
Pb	38,61	24,50	18	42,53	15,01	15	52,50	7,72	4	20
Ba		-	-	- 1	•	-	-	•		-
Zr	139,32	25,12	19	109,73	20,42	15	77,50	15,78	4	151
Y	25,79	5,61	19	26,33	4,17	15	24,75	4,72	4	22
Sc	21,94	3,57	9	24,60	6,87	3	36,00	1,70	2	8,6
La	16,38	3,48	9	12,60	3,27	3	8,60	0,14	2	25,7
Ce	33,33	7,30	9	26,00	7,21	3	22,50	0,71	2	47
Pr	-	-	-	-	-	•	-	-	-	-
Nd	17,38	5,80	8	15,00	4,58	3	15,50	2,12	2	23
Sm	3,93	1,04	9	3,53	1,06	3	4,00	0,57	2	4,2
Eu	1,00	0,00	5	1,00	0,00	2	1,50	0,71	2	1
TP	1,00	0,00	2	- 1	-	-	-	-	-	<1
Dy	-	-	•	-	-	•		-		-
но				-	-	-			-	<1
100	0,75	0,07	2	-	-	-	0,80	0,14	2	<0,5
YD	2,62	0,59	9	2,33	0,55	3	3,05	0,07	2	2,4
	0,41	0,11	9	0,37	0,06	3	0,50	0,14	2	0,3
	1,61	0,43	/	1,30	-	1	-	-	-	4
	-	-	-	-	-	-		-	-	<10
V Alla	129,26	29,06	19	198,87	46,41	15	269,00	59,47	4	114
	-	•	•	-	-	-	- 1	-	-	-
Bo		•	•		-	-		-	-	-
Cr.	80.42	32.26	10	140.00	75 20	1.5	207.50	66 41	-	- 71
Min	1102 50	416.62	18	1500.20	328 76	15	1830.00	222 15	4	495
Co	24 53	7 50	19	37 47	10.03	15	43.50	11 03	4	403
NI	65.89	24 30	19	78.60	21 43	15	43,50	44 75	4	12
Cu	52 74	52 00	19	48.67	29.40	15	106.25	101 55	4	260
7n	81 00	26 13	19	107.33	25,70	15	125 25	19 16	4	209
Ga	01,00	-		107,00			120,20	10,10	-	
As	16.33	6.66	3	11.60	7.40	5	13.00		1	-5
Se	7.40	2,79	5	7.50	2,12	2		-	-	
Mo	3.33	2.40	9	4.75	2.38	8	2.33	1.53	3	 <1
Ag	1,00	0,00	4	1,00	0.00	4	1.00	0.00	2	<0.5
Cd	1 -	-	•		•	-			-	<1
Sn	- 1	-	-	10.00	-	1	- 1		-	<10
Sb	5,00	-	1	-	-	-	-	-	-	<5
Te	-	-	-	- 1	-	-		-		<10
Ta	1 -		-	-	-	-] -		-	-
w	-	-	-	-	•	-	- 1		-	<10
Au (ppb)	2,40	1,34	5	1,33	0,58	3	4,00		1	6
Bi	5,00	-	1	-	-	-	-	-	-	<2
Zr/TiO2	0,02	0,00	19	0,01	0,00	15	0,01	0,00	4	0,02
Nb/Y		-	-	•	-	-	-	-	-	

GROUPE D'AURORA

Fm.		AUR			AUR			AUR	
Lith.		LAV			LAV			LAV	
Faciès		V2J			V3A			V3B	
	MOYENNE	ECART TYPE	NOMBRE D'ANALYSES	MOYENNE	ECART TYPE	NOMBRE D'ANALYSES	MOYENNE	ECART TYPE	NOMBRE D'ANALYSES
El. majeurs (%)									
SIO2	58,91	1,52	3	55,49	6,55	6	51,77	5,98	10
TiO2	0,72	0,43	3	1,49	0,60	6	1,45	0,53	10
AI2O3	17.23	1.46	3	14,87	2,40	6	14,25	1,63	10
FeO c	8.22	1.04	3	8,49	2.24	6	10,28	2.60	9
Fe2O3 c	2 28	0.42	3	3 49	1.61	6	5.91	7.12	10
MbO	0.08	0.08	3	0 19	0.04	6	0.24	0.06	10
NAMO	2.44	1 57	2	5 1 1	2.04	6	5 48	0,00	10
	2.52	2.07	2	7 47	3 30	6	8.97	2 25	10
Naco	5.67	0.45	5	282	1 1 2	6	2.28	1 0 2	10
Nazu Kao	5,67	0,45	3	2,02	0.22	6	2,20	1,02	10
R20	0,79	0,56	3	0,24	0,30	6 6	0,30	0,14	10
P205	0,19	0,12	2	0,34	0,11	6	0,19	0,11	10
TOTAL	100,00	0,00	3	100,00	0,00	6	100,00	0,00	10
MGV	0,44	0,14	2	0,47	0,14	6	0,45	0,09	10
El. traces (ppm)									
Rb	4,00	-	1	8,25	13,18	4	4,80	4,76	5
Sr	180,00	-	1	145,83	69,79	6	93,67	31,68	6
Pb		-	-	42,00	13,56	6	62,00	23,92	6
Ba	54,00	-	1	-	-	-	-	-	-
Zr	150,00	-	1	108,17	44,30	6	69,00	27,06	6
Y	25,00	-	1	36,00	19,10	6	26,67	10,88	6
Sc	28,00	-	1	33,25	9,12	2	47,37	1,24	3
La	15,00	-	1	11,35	1,06	2	5,43	2,54	3
Ce	31.00	-	1	30.00	1.41	2	14.67	5.86	3
Pr		-	-	-	•	-	-	-	
Nd	105.00	-	1	22.00	12.73	2	20.00	2.83	2
Sm		-		5 30	2.26	2	3.63	1.50	3
Eu	3.00	-	1	1 50	0,71	2	1 50	0,71	2
Th	0,00	_	-	1,00	-	-	2,00	0,00	2
Dv	5.00	_	1		-	-	2,00	0,00	-
L y	5,00	_		1.00		1	1 00	-	-
no T	-	-	-	1,00	-	1	1,00	-	1
1 m		-	-	4.70	2 55	2	4.12	1 50	0
TD	-	-	-	4,70	2,00	2	4,13	1,50	3
	-	-	-	0,05	0,35	2	0,70	0,30	3
in	- 1	-	-	0,90	-	1	-	-	-
U	-		-	· · · · · · · · · · · · · · · · · · ·	•	-		-	•
l♥.	110,00	80,61	2	245,17	92,93	6	368,43	88,95	7
Nb	12,00	-	1	-	-	-	-	-	•
Li	17,00	-	1	-	-	-	-	-	•
Be	3,00	•	1	-	-	-	-	-	•
Cr	55,00	-	1	200,17	165,36	6	220,86	161,34	7
Min	244,00	-	1	1717,17	590,13	6	2668,71	735,81	7
Co	16,00	16,97	2	42,83	14,52	6	54,43	6,19	7
Ni	45,50	41,72	2	84,17	67,71	6	86,29	45,92	7
Cu	84,50	7,78	2	60,83	71,08	6	62,90	75,00	10
Zn	46,50	12,02	2	114,33	43,61	6	144,14	50,90	7
Ga	15,00	-	1	- 1	-	-		-	-
As	-	-	-	17.00	18,25	3	88,00	117,38	2
Se	7,00	-	1	-	-	-	5,50	0.71	2
Mo	-	-	-	5.00	3,61	3	8,17	9.93	6
Aa	-	-	-	1 -	-	-	0.60	0.00	2
Cd	-	-				-	-	-	-
Sn	10.00		1	.	-	-	17.00	-	1
Sb	-	-	-			-		-	-
Te	L -	-	-	-	-	-	15.00	-	1
Та	-	-	-	.	-	-		-	-
w		-	-	l -	-	-			_
Au (nnh)	9.00	-	1	1 00		1	14 00	23 69	8
BI	-	-	-		-			20,00	-
	}			1		-	1	-	-
Zr/TiO2	0.01	-	1	0.01	0.00	e	0.00	0.00	6
Nb/Y	0.48	-	, 1	-	-		-	-	

GROUPE D'AURORA (suite)

Em	ALIR	ALIA
1 346		
		Vac
Facies	<u>v</u> .sr	<u>v3G</u>
El maloure (%)		
Sin2	48 72	49.34
TIO2	0.72	1 03
A1203	17 19	12.94
FeO c	8 70	12 44
Fe2O3 c	2,49	3.39
MnO	0.20	0.24
MaQ	11,50	16,66
CaO c	7,62	2,59
Na2O	2,64	0,89
K2O	0,01	0,12
P205	0,21	0,36
TOTAL	100,00	100,00
MGV	0,70	0,70
El. traces (ppm)		
Rb	<1	< 1
Sr	545	9
Pb	49	36
Ba	-	-
Zr	58	54
Y	14	17
Sc	-	-
La	-	-
Ce	-	•
Pr	-	-
Nd	-	-
Sm	- 1	-
Eu	-	-
Tb	-	-
Dy	-	-
Ho	-	-
	-	-
	-	-
	-	-
	-10	- 10
v v		152
Nh	30	155
	1	
Be	<u> </u>	
Cr	330	3256
Mn	1771	2469
Co	67	120
NI	463	845
Cu	65	9
Zn	120	161
Ga	-	-
As	<5	< 5
Se	7	< 5
Mo	2	< 1
Ag	<0,5	< 0,5
Cd	<1	< 1
Sn	<10	< 10
Sb	<5	< 5
Te	<10	< 10
Ta		
W	<10	< 10
Au (ppb)	<1	1
ві	<2	< 2
	İ	
Zr/TIO2	0,01	0,01
Nb/Y	-	- 1

FORMATION DE DUBUISSON

Fm.	DUB	T	DUB			DUB	
Lith.	LAV		LAV			LAV	
Faciàs	V2.I		V3A			V4	
	V L. V	{					
		MOYENNE	ECART TYPE	NOMBRE D'ANALYSES	MOYENNE	ECART TYPE	NOMBRE D'ANALYSES
El. majeurs (%)							
SiO2	57,82	55,60	4,01	8	47,67	0,82	4
TiO2	0,93	0,67	0,23	8	0,47	0,14	4
AI2O3	18,08	15,02	1,86	8	5,95	1,13	4
FeO c	3,85	7,97	1,61	8	7,96	1,65	4
Fe2O3 c	2,48	3,60	2,38	8	3,93	1,29	4
MnO	0,10	0,20	0,02	8	0,19	0,04	4
MgO	4,77	6,02	2,14	8	26,75	2,44	4
CaO c	5,85	9,10	2,33	8	6,85	1,02	4
Na2O	5,52	1,71	0,76	8	0,22	0,02	3
K2O	0,39	0,07	0,07	8	0,03	0,01	4
P2O5	0,22	0,06	0,02	8	0,03	0,01	4
TOTAL	100,00	100,00	0,00	8	100,00	0,00	4
MGV	0,62	0,52	0,11	8	0,84	0,02	3
El. traces (ppm)	_						
HD	7	4,00	-	1	-	-	-
Sr	120	96,75	54,20	8	28,00	16,55	4
Pb	<12		•	•	-		-
Ba	177	38,25	47,85	8	12,50	6,81	4
Zr	130	51,25	16,80	8	28,00	4,83	4
Y	23	32,63	11,80	8	8,25	1,26	4
Sc	40	64,88	6,62	8	24,25	4,65	4
La	19	3,25	0,96	4	-	-	-
Ce	47	6,63	1,77	8	-	-	•
Pr	<2	-	-	-	-	-	-
Nid	85	50,71	13,67	7	43,33	11,55	3
Sm	<2		-	-	-	-	-
Eu	3	2,88	0,64	8	3,50	0,58	4
Tb	-	•	-	•	-	-	-
Dy	4	5,25	1,75	8	2,00	0,00	4
Ho	-	-	-	-	•	-	•
Tm	-	-	-	-	-	-	•
Yb	-	-	-	-	-	-	-
Lu	-	1 .	-	-	-	-	-
Th	<3		-		-	-	-
U			-	-	-	-	-
v	194	286.63	76.17	8	144.50	24.20	4
Nb	10	7.00	1.07	8	6.50	0.58	4
LI	15	10.14	4.02	7		-	
Re	2	1.83	0.41	6	1 00	0.00	4
Cr	-	.,	-	-	-	-	÷
Min	-		-	-	_	-	-
Co	21	37.25	5 37	8	100 75	7 89	Δ
Ni	60	82.50	29.05	8	1374 00	452.00	4
Cu	50	73.25	60.04	A A	25 00	12 00	
7n	52	66.99	10 05	0	69.75	10,80	4
Ga	1/	12 22	10,00	D Q	63,75 575	363	4 A
λ.e	14	12,30	4,09	U	5,75	2,00	-+
~3 5.4	-	I .	-	-	-	-	-
ue la		1	-	-	•	-	-
Λ <u>α</u>	<4		-	-	•	•	-
C4 12		1	-	-	-	-	-
50 60	~~~~	· ·	-	-	-	-	-
on Ch	<10	1	-	-	-	•	-
JU To	-10	1 -	-	•	-	•	-
10 To	-	1 .	-	-	-	-	-
101	<>	-	-	-	-	-	-
		-	-	-	-	-	-
AU (PPD)	-	1 -	-	-	-	-	-
01	•	-	•	-	-	-	-
Zr/TiO2	0.01	0.01	0.00	8	0.01	0.00	4
Nb/Y	0.43	0.25	0.10	8	0.80	0.14	4

FORMATION DE HÉVA

Fm.		HEV			HEV	
Lith.		LAV			LAV	
Faciès		V1C/V1D			V2J	Į
	MOYENNE	ECART TYPE	NOMBRE D'ANALYSES	MOYENNE	ECART TYPE	NOMBRE D'ANALYSES
El majoure (%)						
SiO2	70 32	4 88	e	61 47	4 86	3
102	0.65	0.19	6	1 10	0.25	3
102	0,05	1 50	°	1,13	0,25	
A1203	14,11	1,53	6	12,70	0,59	3
FeU C	3,64	2,55	ь	7,83	2,17	3
Fe2O3 C	3,63	1,87	6	4,17	0,82	3
MINO	0,12	0,02	5	0,18	0,07	3
MgO	1,47	1,09	6	2,50	0,32	3
CaO c	1,24	0,87	6	4,85	1,39	3
Na2O	3,80	1,54	6	4,30	1,18	3
K2O	0,85	0,45	6	0,42	0,40	3
P2O5	0,18	0,06	6	0,31	0,14	3
TOTAL	100,00	0,00	6	100,00	0,00	3
MG¥	0,29	0,12	5	0,31	0,07	3
EI. traces (ppm)	1					
Rb	19,83	11,55	6	8,00	9,54	3
Sr	86,67	44,51	6	106,00	12,12	3
РЪ	46,60	50,46	5	45,67	22,05	3
Ва	302,00	-	1	-	-	-
Zr	455,17	164,05	6	229,67	94,00	3
Y	143,33	79,21	6	92,33	30,44	3
Sc	14,23	4,07	4	26,15	6,86	2
La	22.83	6.11	4	17,15	3,61	2
Ce	58.25	15.59	4	45.50	12.02	2
Pr	-	-		-		-
Nd	47.50	12.07	4	33.50	20.51	2
Sm	13.55	4.28	3	10.75	2.76	2
Fu	2 20	1 07	4	2 50	0.71	2
Th	2 50	0 44	3	1 25	0.35	2
Dv	3.00	-	1	-	-	-
10) 110	3 17	1 16	3	245	0.64	2
Tm	1 00	0.17	2	1 40	0,04	2
V5	15.07	0,17	2	1,40	0,00	2
10	0.17	3,00	5	1.0	3,32	2
	1 70	0,42	3	1,60	0,14	2
110	1,70	0,66	3	1,40	0,57	2
U V		-		-	-	
V Nih	23,17	27,07	D	51,33	4,93	3
	15,00	•	1	•	-	-
	2,00	-	1	-	-	-
Be	2,00	-	1	-		-
Cr	238,00	45,63	5	175,00	116,46	3
IMn	854,60	258,10	5	1629,33	688,90	3
Co	9,17	7,68	6	17,67	5,86	3
NI	11,33	13,35	6	13,67	5,69	3
Cu	36,50	45,83	6	16,00	12,12	3
Zn	123,17	98,28	6	119,67	42,25	3
Ga	13,00	-	1	-	-	-
AS	852,50	1096,72	2	17,00	4,24	2
Mo	1 00		1	12.00	_	1
1.0	1 20	_	1	12,00		· · · · ·
C4	2.30	-		-	-	
Sn	2,30	-	'	-	•	-
50	-	-	•	-	-	-
10		-	-	-	-	-
To	E 00	-	-	-	-	-
	5,00	-	1	-	•	-
Au (mmb)	10.05	-		-	-	
Au (ppb)	18,25	23,68	4	5,00	-	1
PI	18,00	-	1	•	-	-
Zr/TiO2	0.07	0.03	6	0.02	0.01	3
Nb/Y	0.60	-,	1			.

+

FORMATION DE JACOLA

Em		IAC	<u> </u>	IAC	r	IAC	
- m.						UAC .	
Lith.		LAV		LAV		LAV	
Faciès		V3B		V3F		V4	
	MOYENNE	ECART	NOMBRE		MOYENNE	ECART	NOMBRE
		TYPE	D'ANALYSES			TYPE	D'ANALYSES
El. maleurs (%)					i		
SIO2	53.87	0.13	2	51.16	49.34	3.86	3
17102	0.50	0.04	2	0.20	0 40	0 17	2
1102	0,50	0,04	2	0,39	0,48	0,17	5
A1203	15,76	0,38	2	20,17	/,/4	2,13	3
FeOc	7,79	0,63	2	7,43	8,62	2,51	2
Fe2O3 c	2,11	0,05	2	2,15	8,11	5,44	3
MnO	0.19	0.01	2	0.15	0.19	0.02	3
14-0	9.45	0.50	2	11 28	24.82	2 24	
	0,40	0,00	<u>_</u>	0.00	27,02	2,24	
CaOc	9,44	1,01	2	0,60	3,09	0,99	3
Na2O	1,81	0,12	2	6,47	0,01	0,00	3
K2O	0,03	0,02	2	0,06	0,36	0,54	3
P205	0.04	0.05	2	0.15	0.09	0.07	3
TOTAL	100.00	0,00		100.00	100.00	0,00	2
IOTAL	100,00	0,00	2	100,00	100,00	0,00	3
MGV	0.65	0.00	2	0.73	0.82	0.04	3
	0,00	0,00	-	-,,,,,	1 2,02	2,01	ŭ
El. traces (ppm)							
Bh	_	-	-	e 1	17.00	19.80	2
n	-	-	-		00.50	7 70	-
sr	-	-	•	156	00,50	7,70	2
РЬ	-	-	•	23	38,00	12,73	2
Ba	-	-	-	-	-	•	
Zr	-	-	•	12	21.00	9,90	2
v	_	-	_	13	9.50	0.71	-
	-		-		3,00	0,71	5
SC	•	-	•	-	20,40	0,49	2
La	-	-	•	-	1,35	0,07	2
Ce	-	-	•	-	12,00	4,24	2
Pr	-	-	•	-		-	
Nd	-	-	-	-		-	
Sm		_		_	0.75	0.02	2
Sm	-	•	•	-	0,75	0,02	2
Eu	-	•	-	-	- 1	-	- 1
Tb	-	-	-	-	- 1	-	-
Dy	-	-	-	-	· ·	-	
Ho		-	-		I .	_	
		-	-	•	· · · ·		
YD	-	-	-	•	0,75	0,07	2
Lu	-	-	-	-	-	-	-
Th	-	-	-	-	0,70	-	1
lu -		-	-	< 10		-	
v	109.00	16 07	2	140	152.67	E2 E8	2
	190,00	10,97	2	140	103,67	55,50	3
ND	-	•	-	-	-	-	-
LI	-	-	•	•	-	-	-
Be	-	-	-	-	•	-	-
Cr	327.50	4,95	2	218	2621.33	870.35	3
Min	1652.00	63 64	2	904	1508.00	142.85	3
100	40.00	4.04	2	40	07.00	142,00	3
	42,00	4,24	2	49	97,33	24,34	3
INI	103,50	7,78	2	180	1032,33	131,34	3
Cu	82,00	2,83	2	4	114,33	92,55	3
Zn	66.00	11.31	2	67	79.67	26.50	3
Ga		-		_	-		
140	10.00	_	4				
M3 C-	10,00	-	I	< 5	-	-	-
26		-	-	< 5		-	
MO	1,00	-	1	<1	2,00	-	1
Ag	- 1	-	-	< 0,5	-	-	-
Cd	-	-	-	<1	- 1	-	-
Sn	-	-	-	< 10	12.00	-	1
Sh		_	-	- 5	12.00	7 04	'n
Te	-	-	-		12,00	7,94	3
1.0	-	-	-	l < 10	ļ -	-	•
Ta	•	-	-	•	· ·	-	- 1
W	- 1	-	-	< 10		-	-
Au (ppb)	2.00	-	1	< 1 < 1	2.00	-	1
BI		-			8.00	_	
1.		-	-	~ ~ ~	0,00	-	'
-							
Zr/TIO2	-	•	-	0,00	0,00	0,00	2
Nb/Y	- 1	-	-	- 1	-	-	-

Fm.	1	TRI			TRI		· · · · · · · ·	TRI	
Lith.		LAV			LAV			LAV	
Faciès		V2J			V3A			V3B	
	MOYENNE	ECART TYPE	NOMBRE D'ANALYSES	MOYENNE	ECART TYPE	NOMBRE D'ANALYSES	MOYENNE	ECART TYPE	NOMBRE D'ANALYSES
El. majeurs (%)	,					<u> </u>			
SiO2	55,03	3,24	11	54,60	2,90	11	50,79	1,81	5
T102	1,13	0,38	11	1,23	0,23	11	1,10	0,39	5
A12O3	19,19	2,35	11	15,88	1,61	11	15,71	2,00	5
FeO c	5,65	1,27	11	8,60	1,73	11	9,56	1,76	5
Fe2O3 C	2,49	1,11	11	3,05	1,26	11	2,64	0,43	5
MnO M=O	0,18	0,05	11	0,22	0,06	11	0,21	0,03	5
	3,48	0,74	11	3,59	1,20	11	7,38	1,47	5
Na2O	3.84	1.04	11	2 4 0	1,55	11	1 9/	2,50	5
K20	0.56	0.41	11	0.25	0.38	11	0.23	0.16	5
P205	0.20	0.11	11	0,16	0.07	11	0.12	0 12	5
TOTAL	100,00	0,00	11	100,00	0,00	11	100,00	0,00	5
MGV	0,48	0,09	11	0,51	0,06	11	0,56	0,06	5
El. traces (ppm)			_						_
HD	27,00	13,56	5	10,00	15,69	4	9,33	10,97	3
IST IDL	309,40	93,76	5	132,70	47,42	10	109,00	32,28	4
Ba	179.00	78.81	3		5,50	-	40,00		4
Zr	126.40	15,14	5	79.18	16.28	11	44.60	13.79	5
Y	26,80	7,46	5	30,73	6,42	11	21,40	5,68	5
Sc	23,70	4,03	4	50,90	5,66	2	47,10	-	1
La	11,25	3,86	4	6,25	2,05	2	3,20	-	1
Ce	24,25	7,80	4	16,50	7,78	2	6,00	-	1
Pr	-	-	-	•	-	-	-	-	-
Nd	30,00	0,00	2	12,00	-	1	-	-	-
Sm	3,10	-	1	3,40	0,42	2	2,10	-	1
EU	2,00	0,00	3	-	-	-	-	-	-
		1 15		-	-	•	-	-	-
Ho	2,35	1,13			-		-	-	-
Tm	-	-	-	0.50	-	1	0.60	_	1
Yb	4.20	-	1	3,75	0.64	2	2,80	-	1
Lu	0,70	-	1	0,55	0,07	2	0,60	-	1
Th	6,00	-	1	-	-	-	- 1	-	-
U	-	-	-		-	-	-	-	-
V	241,78	93,55	9	339,30	45,82	10	349,75	75,62	4
Nb	7,67	0,58	3	-	-	-	-	-	•
	26,67	12,22	3	-	-	-	-	-	-)
Cr	296.17	202 19	6	182.00	97.61	10	324 75	254.96	
Min	1959.33	389.61	6	2159.70	714.29	10	1857.00	139.61	4
Co	42,00	21,22	9	52.20	3,49	10	54.00	6.06	4
Ni	127,56	102,63	9	85,20	46,06	10	120,75	61,38	4
Cu	63,09	53,32	11	112,70	51,91	10	92,25	51,89	4
Zn	84,44	25,66	9	119,70	47,15	10	92,50	7,51	4
Ga	17,67	3,51	3	-	-	-	-	-	-
As	8,00	-	1	41,25	59,97	4	-	-	
Se	5,00	-	1	7,00	-	1		-	
MO	1,50	0,71	2	2,67	3,61	6	1,50	0,71	2
Ag	0,40	0,00	2	1,00	-	1	1,00	-	1
Sn	16.50	2 1 2	2	14 00	-	-	-	-	-
Sb	-		-	8,00	-	1		-	-
Te	11,00		1	10,00	-	1	-	-	-
Та	-	-	-	- 1	-	-	-	-	- 1
W	-	-	-	-	-	-	-	-	•
Au (ppb) Bi	144,43	255,61	7	3,00	1,85	8	3,00	2,83	2
Zr/TIO2	0,02	0,00	5	0,01	0,00	11	0,00	0,00	5
	a 0.32	0.01	54		-	-	-	-	_

COMPLEXE STRUCTURAL DE TRIVIO (suite)

Fm	r —	TRI			TRI	·····		TRI		TRI
1 14 6								DVO		DVD
Facies	L	V3F			<u></u>			V2J		V3A
	ļ									
	MOYENNE	ECART	NOMBRE	MOYENNE	ECART	NOMBRE	MOYENNE	ECART	NOMBRE	
		TYPE	D'ANALYSES		TYPE	D'ANALYSES		TYPE	D'ANALYSES	
	L									
El. majeurs (%)										
SIO2	49,61	0,07	2	50,00	0,59	2	62,58	6,18	11	55,24
T102	0,78	0,03	2	0,41	0,27	2	0,84	0.37	11	1,28
A1203	15.70	0.35	2	12.86	0.05	2	16.37	1.97	11	17.99
FeO c	8.68	0.80	2	7 42	0.80	2	5.04	2 94	11	6.04
E0203 0	1 01	1 28	2	1.64	0,00	-	2 79	0.62	11	2 20
10200 0	0,10	0.02	2	0,10	0,24	2	0.12	0,02	11	2,20
	0,19	0,02	2	0,19	0,02	2	0,13	0,00	11	0,20
MgO	9,82	0,29	2	15,24	2,57	2	2,69	1,79	11	4,10
CaO c	11,18	0,30	2	10,64	1,04	2	4,76	2,43	11	8,31
Na2O	1,99	0,02	2	1,18	0,20	2	3,07	0,57	11	3,20
K2O	0,12	0,03	2	0,15	0,14	2	1,63	1,17	11	1,15
P205	0.03	0.02	2	0.26	0.01	2	0.15	0.11	11	0.22
TOTAL	100.00	0.00	2	100.00	0.00	2	100.00	0.00	11	100.00
		0,00	-		0,00	-		0,00		,00,00
HOV	0.66	0.00	2	0.78	0.04	2	0.41	0.08	1.1	0.50
	0,00	0,00	4	0,70	0,04	2	0,41	0,00	• •	0,52
EL, LIACES (PPIN)	4		•			-	50.07	47.04	~	
Rb	4,00	2,83	2	4,00	-	1	58,67	47,01	3	53
Sr	84,50	12,02	2	80,00	-	1	190,67	147,06	3	222
Pb	27,00	-	1	44,00	-	1	26,50	0,71	2	30
Ba	44,00	-	1	-	-	-	312,00	-	1	-
Zr	38,50	16.26	2	50,00	-	1	164.50	87.35	4	63
Y	22 00	8 4 9	2	17.00	-	1	47 75	45 73	4	25
50	28,00	0,10	-		_		22 10	22 77	2	20
50	30,00	-			-	-	22,10	22,77	2	-
La	2,00	-	1	-	-	-	14,10	8,63	2	-
Ce	8,00	-	1	-	-	-	34,50	31,82	2	-
Pr	-	-	-	-	-	-	- 1	-	-	-
Nd	-	•	-	-	-	-	32,50	10,61	2	-
Sm	-	-	-		-	-	12.30	-	1	.
Fu	200	-	1		-	-	2.05	1 48	2	. i
Th	2,00	_			_	_	1 00	1,40	4	
Du	4 0 0	-			-	-	1,30	-		-
UY	4,00	-	1	-	-	•	-	-	-	-
но	-	•	-	-	-	-	2,90	-	1	-
Tm		-	•	- 1	-	-	2,00	-	1	-
Yb	-	-	•	· ·	-	-	12,30	-	1	-
Lu	- 1	-	-		-	-	1,80	-	1	-
Th	-	-	-	-	-	-	3,55	3.46	2	-
lu	-	-	-	-	-	-	-			<10
v	234 50	2 1 2	2	126 50	31 82	2	146 71	95 24	7	275
A IL	204,00	2,12	-	120,00	01,02	2	5 00	33,24		215
ND	7,00	•	1		-	•	5,00	-		•
	11,00	-	1	-	-	•	31,00	•	1	-
Be	-	-	-	•	-	•	-	-	-	-
Cr	640,00	-	1	1298,50	398,10	2	104,50	114,44	6	216
Min	1706,00	-	1	1769,50	321,73	2	1218,50	892,12	6	2622
Co	53,00	11,31	2	52,50	6,36	2	21.00	14,11	7	53
NI	187.50	47.38	2	426.00	312.54	2	33.00	43.95	7	165
Cu	106 50	111 02	2	49.50	60 10	- 2	250 22	335 70	, 0	87
7	100,50	04 75	2	43,50	00,10	2	239,33	333,79	8	105
	02,50	24,/5	2	04,50	2,12	2	113,/1	14,22	/	135
Ga	14,00	-	1		-	•	22,00	-	1	-
As	-	-	-	589,00	-	1	19,33	8,33	3	78
Se	-	-	-	-	-	-	5,00	-	1	6
Mo		-	-	4,00	-	1	4,00	-	1	1
Ag		-	-		-	-	0,65	0,07	2	<0,5
Cd	- 1	-	-	· ·	-	-	1,00	-	1	<1
Sn	- 1	-	-	.	-	-	12.00	2.83	2	<10
Sb	-	-	-	-	-			_,	-	-5
Te	ι.	-	-		-	_	14 50	0.74	3	10
17.0	1	-	•	'	•	•	14,50	0,71	۷	<10
	-	-	-	-	-	-	-	-	•	-
W/		-	-		•	•	- 1	-	-	<10
Au (ppb)	2,00	-	1	245,00	-	1	89,75	114,53	8	2
Bi	-	-	-	-	-	-	-	-	- 1	<2
]	1			1			1			
Zr/T102	0.00	0.00	2	0.01		1	0.03	0.01	4	0 00
Nb/Y	0.25	-,	1		-	-	0.71	-,	1	0,00
	0,20	-		· · · · · · · · · · · · · · · · · · ·		-	1. 9,71		•	- 1

FORMATION DE VAL D'OR

Fm.	T	VAD			VAD		VAD	VAD
1 14 b		1 4 1			LAV			
		LAV			LAV		LAV	PTH
Facies		V2J			<u>V3A</u>		<u></u>	V1C/V1D
	MOYENNE	ECART	NOMBRE	MOYENNE	ECART	NOMBRE		
		TYPE	D'ANALYSES		TYPE	D'ANALYSES		
I malaure (9/)								
I. majeurs (%)						-		
5102	62,83	5,54	4	55,57	2,76	5 [53,94	75,72
ri02	0,80	0,18	4	1,07	0,32	5	1,09	0,36
1203	18.61	5 19	4	17.16	1 61	5	16 11	13 10
	0,01	0,10		0.05	1.00	, ,	7.07	10,10
eu c	3,42	0,60	4	6,65	1,69	5	7,87	1,60
e2O3 c	1,84	0,70	4	2,77	0,76	5	3,59	1,92
in0	0,12	0.04	4	0,18	0,06	5	0,18	0.04
60	2.63	1 97	4	5 32	2 02	5	5 69	1 76
	4.00	1 00		6,02	1 00	, i	0,00	1 0 00
	4,92	1,23	*	0,00	1,02	3	8,13	0,03
la20	3,88	1,25	4	3,90	1,03	5	2,07	4,36
20	0,64	0,48	4	0,36	0,10	5	0,18	0,24
205	0.30	0.07	4	0.22	0 10	5	0 15	a0 0
	100.00	0,01		100.00	0,00	Ē	100.00	100.00
OTAL	100,00	0,00	4	100,00	0,00	5	100,00	100,00
	1							1
<i>I</i> GV	0,46	0,17	4	0,53	0,14	5	0,51	0.52
		•					-	1
i trance (nnm)								1
a, caces (ppill)	1				a · -	_		1 _
D	12,75	13,40	4	7,00	3,16	5	< 1	1 5
Sr	285,00	80,45	4	187,60	55,55	5	144	200
ъ	24.50	5 20	4	25,00	4,97	4	25	212
		-,	•	61.00	.,			464
1			•	01,00		1	-	151
r	150,75	66,39	4	86,40	21,73	5	48	260
,	26,75	13,89	4	27,40	6,58	5	21	30
ie.	21 75	5.87	2	46 55	6 98	4	-	1 17
-	05.00	4.00	2	15,00	0,00			
a	25,00	4,30	2	15,00	2,23	3	•	16
e	60,00	11,31	2	33,33	5,13	3	-	38
Pr	-	-	-	-	-	.	-	<2
Ы	26 50	10 61	9	28 50	18 52		_	25
	30,30	10,01	2	20,00	10,52	7	-	35
em -	8,37	1,80	2	4,89	1,09	3	-	≪2
บ	1,25	0,35	2	2,00	1,39	4	-	2
ъ	-	-	-	-	-		-	-
)v	1 .	_	-	2.00	_	1	_	
77 -	1			2,00		'		
10	1,10	-	1	-	-	•	-	· ·
'm	-	-	•	-	-	•	-	- 1
/b	2,95	0,35	2	2,93	0,21	3	-	- 1
u	0 45	0 07	2	0.50	0 00	3	-	1 _
	0,10	0,05	2	4 70	0,00	ž I		•
1 A	3,95	0,35	2	1,70	0,36	3	•	<3
J	-	•	-	-	-	•	< 10	
1	139.75	38.53	4	276.20	109.55	5	329	23
ih		-	_	00.3		1		1 10
	1	-	-		-		-	1 12
.1	1 -	-	-	36,00	-	1	-	20
30	1 -	-	-	2,00	-	1	-	2
r	250.25	80.18	4	192.00	69.80	4	213	· ·
<i>I</i> n	684 25	368 81	Å	1288 25	643 27	Å	1387	
	4 4 75	500,01	7	00,20	10.00	7	1007	
-CU	14,75	5,85	4	32,60	13,33	5	36	1 /
li –	56,50	17,97	4	72,40	72,26	5	32	4
)u	15.25	7.89	4	95,20	53.13	5	20	<1
'n	67 75	4 11	4	93.00	20.65	5	99	1.8
	1			8 00	20,00	i l		
-			-	0,00	-		•	l a
S	16,50	2,12	2	21,00	-	1	< 5	
e	· ·	-	-	-	•	-	< 5	1 -
io	10.00	-	1	10.00	2.83	2	< 1	<4
a	1 00	-	•		_,	- 1	- 0 5	
.д	1,00	-	I	-	-	•	< 0,5	
a	1 -	-	-	- 1	-	-	< 1	<2
n	-	-	•	29,00	-	1	< 10	<10
b	1 -	-	-	- 1	-	.	< 5	I .
۵. ۲	I .	-	_	_	-		- 10	
•	۰ I	-	-	-	-	•	< 10	<10
3	1 -	-	-	-	-	-	-	<5
1	· ·	•	•	-	-	-	< 10	- 1
u (ppb)	2,50	2.12	2	3,50	3,00	4	< 1	I .
			-			i I		1
••	1	-	-	-	-	-	52	1 -
r/TiO2	0,02	0,00	4	0,01	0,00	5	0,00	0.07
√b/Y	1 -	-	-	0.35	-	1	-	0 40
and the second	A							, v,+v

FORMATION DE VAL D'OR (suite)

Fm.	1	VAD			VAD			VAD	
Lith.		PYR			PYR			PYR	
Faciès		V2.1			V3A			VaR	
1 40103		V 2 V			<u> </u>			100	
	MOVENNE	ECART	NOMBRE	MOYENNE	ECART	NOMBRE	MOYENNE	FCART	NOMBRE
		TYPE	D'ANALYSES		TYPE	D'ANALYSES		TYPE	D'ANALYSES
Fl maleurs (%)									
SIO2	61.79	4 81	11	52.30	3.22	8	51.93	5.07	2
5102	0,73	0.21	4.4	0.77	0,22		0.74	0,07	2
1102	47.70	1.50	11	0,77	1.00	0	10.74	0,11	2
A1203	17,73	1,56		20,20	1,29	0	10,51	1,54	2
FeO C	4,10	2,63	11	6,25	1,36	8	5,87	0,82	2
Fe2O3 c	1,86	1,22	11	2,35	0,95	8	3,54	1,19	2
MnO	0,09	0,03	11	0,16	0,06	8	0,19	0,08	2
MgO	3,45	1,27	11	5,56	1,60	8	4,42	0,62	2
CaO c	5.14	1.68	11	8,30	2,85	8	11.73	6.36	2
Na2O	4.27	1.74	11	3,66	1.62	8	2.48	2.15	2
K20	0.79	0.62	11	0.36	0.27	Ř	0.40	0.29	2
DODE	0,15	0,02	4.4	0,00	0,06	8	D 10	0,23	2
P205	0,15	0,08	11	0,00	0,08	0	0,19	0,11	2
TOTAL	100,00	0,00	11	100,00	0,00	8	100,00	0,00	2
MGV	0,55	0,05	11	0,57	0,08	8	0,50	0,04	2
El. traces (ppm)									
Rb	23,00	17,73	11	8,38	6,82	8	17,00	-	1
Sr	231,36	102,36	11	218,88	64,13	8	134,50	2,12	2
Pb	20.67	7.12	9	26.80	4.60	5	26.50	2.12	2
Ba	285 50	309.01	2	226.00	125 82	3	_	-	-
7.	120 18	44 90	11	60.50	13 33	8	34.50	13 44	2
	120,10	44,30		10,00	10,00	0	17.50	13,44	2
T C	10,91	9,03	11	19,00	3,93	8	17,50	4,95	2
SC	19,95	8,31	8	31,95	6,10	6	40,90	-	1
La	10,15	6,13	8	5,73	2,63	6	2,80	-	1
Ce	22,38	13,17	8	15,20	4,55	5	10,00	-	1
Pr	· ·	-	-	-	-	•	-	-	-
Net	26 29	30.74	7	23.00	19.08	3	10.00	-	1
Sm	2 41	1.02	, R	2 26	0.10	3	1.68	_	i l
5	1 45	0.64	4	1 40	0,10		0,70	-	
<u>eu</u>	1,40	0,64	4	1,40	0,01	4	0,70	-	'
TD	-	-	•	-	-	-	-	-	-
Dy	5,00	-	1	2,00	0,00	2	-	-	-
Но	-	-	-	-	-	-	-	-	•
Tm	-	-	•	0,60	-	1	-	-	-
Yb	1.77	1.13	6	1.50	0.50	3	2.20	-	1
1	0.32	0 11	5	0.35	0.07	2	0,60	_	
71	0,52	0,11	5	0,00	0,07	2	0,00	-	1
10	0,94	0,13	5	1,00	0,42	2	-	-	-
U	-	-	•	-	•	-	-	-	-
V	114,55	46,52	11	171,25	40,51	8	198,50	44,55	2
Nb	7,50	3,54	2	4,33	1,53	3	-	-	-
LI	22.00	1.41	2	24.33	9,61	3	-	-	-
Be	3.00	-	1		-	-	-	-	_
Cr	145.67	85.05	, a	146.80	110 59	5	214.00	155 50	5
Man	615.22	262.00	9 0	1050 60	205 75	5	1432.00	080.05	2
	010,33	202,00	9	1039,60	220,/0	5	1432,00	900,05	2
	18,18	7,76	11	30,75	4,06	8	35,50	3,54	2
NI	46,09	34,54	11	51,38	13,67	8	58,00	29,70	2
Cu	51,18	23,24	11	41,75	18,54	8	28,00	25,46	2
Zn	68,64	26,98	11	73,00	26,67	8	85,00	22.63	2
Ga	15.00	1.41	2	14.00	3.61	3	-	-	-
As	10.00	4.55	4	23.00		1	.	-	-
Sa	6.00	0,00	2	6.00	_	4			
140	7 4 7	4 50	6	4,00	E 00	, ,	10.00	-	-
MO	1 7.17	4,58	6	4,00	5,20	Э	10,00	-	1
Ag	· ·	-	•	- 1	-	-	-	-	-
Cd	· ·	-	•	- 1	-	-	-	-	-
Sn	-	-	-		-	-	- 1	-	- 1
Sb	6,50	0.71	2	7.00	-	1	-	-	-
Te					-	-		-	_
Ta	1 -	_	_	Ι.	_	-		-	-
w l	1	-	-	-	-	-		-	-
-			•		-	-		-	-
AU (PPD)	5,80	8,56	5	2,33	1,53	3	1,00	-	1
lei	1 -	-	-	3,00	-	1	- 1	-	-
	1			1					
Zr/TIO2	0,02	0,01	11	0,01	0,00	8	0,00	0.00	2
Nb/Y	0,31	0,04	2	0,22	0,09	3	- 1	-	-

GROUPES DE PONTIAC ET DE VILLEBON

P	0041	VID	VUD	VID
rm.	PON	V18	VIB	VID
Lith.	LAV	LAV	LAV	LAV
Faciès	V4	V3B	V3F	V4
	······			<u> </u>
El maloure (%)				
	50.01	50.00	50.47	50.10
5102	53,61	53,22	52,47	50,16
TiO2	0,33	1,35	1,16	0,61
AI2O3	5,29	15,04	14,36	10,14
FeO c	9 54	9.82	10.08	9.63
5-202 0	0.76	2 4 4	2 1 9	2,02
F0203 C	0,76	2,44	2,10	2,02
MinO	0,23	0,27	0,25	0,17
MgO	26,11	7,26	9,45	18,82
CaO c	4.02	6.95	7.18	7.05
No2O	0.05	2.06	2.58	1.16
14420	0,03	2,30	2,00	1,10
K2O	0,01	0,39	0,23	0,24
P2O5	0,05	0,29	0,06	0,01
	100.00	100.00	100.00	100.00
101.45	100,00	100,00	,	,00,00
MGV	0,87	0,56	U,63	0,78
El. traces (ppm)				
Rh	2	L _1	<u>_1</u>	5
	-	105	105	
51	82	125	135	12
Pb	48	27	27	38
Ba	-	-	•	- 1
71	12	66	45	24
<u>.</u>	10	20	20	4.4
		30	20	
SC	20,9	51,2	39,1	27,7
La	<0,5	4,3	4	0,7
Ce	<5	13	11	10
Dr.				_
		_		-
Nd	<10	9	11	</th
Sm	0,6	2,81	2,5	0,67
Eu	<1	1.1	<1	<1
ТЬ	-1	-1	-1	
	~ 1	~1		
Dy	-	-	-	•
Ho	<1	<1	<1	<1
Tm	<1	<1	0,6	<1
Vh	9.0	27	17	0.8
1.0	0,0			
Lu	0,2	0,6	0,4	<,1
Th	0,9	<0,5	<0,5	1,3
U	<10	< 10	< 10	< 10
lv	112	325	254	174
Nb	_	_		_
	-			
1-1	· ·	· ·		l - I
De la	- 1	-	-	-
Cr	1382	233	254	4161
Min	1932	2385	2173	1808
Co	102	55	57	119
NI	100	65	0.6	1000
	120	00	50	1220
	36	66	32	216
Zn	74	128	117	125
Ga	-	-	-	-
As	-5	10	- 5	-5
5.	, i			
30	<>>	< 5	< 5	< 5
MO	<1	<1	< 1	<1
Ag	<0,5	< 0,5	< 0,5	< 0,5
Cd	<1	<1	<1	<1
Sn	-in	- 10	- 10	1 10
		<u> </u>	< 10	< 10
50	<5	< 5	< 5	< 5
Te	<10	< 10	< 10	< 10
Ta	-	•	•	
lw	<10	< 10	< 10	< 10
Au (nob)	-1	1	- 1	2
ad (ppu)				<u> </u>
01	2	<2	< 2	< 2
Zr/TiO2	0,00	0,00	0,00	0,00
Nb/Y	-		-	l -

ANNEXE 3a

RÉSULTATS COMPLETS D'ANALYSES GÉOCHIMIQUES DES DIFÉRENTES CAMPAGNES DE CARTOGRAPHIE

Eléments majeurs, mineurs et en traces

Classification par ordre numérique

Pour la légende voir l'annexe 2a

#Echant.	18 C	28	36 A1	55	66	79	81	96	99	105	108 B	122 B	128 B
UTM/N	5322700	5323750	5322350	5322900	5323000	5322500	5322700	5322575	5322475	5320450	5320200	5320200	5320250
UTM/E	323950	323800	325575	328550	328700	329050	330400	331175	331375	329500	329475	329150	329250
Fm.	VAD	HEV	VAD	HEV	HEV	VAD	VAD	VAD	VAD	TRI	TRI	TRI	TRI
Lith.	PYR	LAV	PYR	LAV	LAV	PYR	PYR	PYR	PYR	LAV	LAV	LAV	LAV
Faciès	V2J	V1C/V1D	V2J	V1C/V1D	V1C/V1D	V2J	V3A	V3A	V3A	V3A	V3A	V3A	V3A
S⊦ac.	×	VA	×	VA	VA	1,0		b	b	M,Ci	M	М	C
AIT.		Ma	Р	MG	MG		CB,PY				HB	CB	
El. majeu	rs (%)											,	
SIO2	55,20	67,10	58,10	71,90	62,50	53,10	42,60	49,50	49,10	56.10	56.80	51.90	57.20
TiO2	0,79	0,63	0,68	0,45	0,63	0,43	0,49	0,41	0,68	1,04	1,22	1.02	1.39
A12O3	16,80	11,90	17,10	12,00	14,90	17,60	17,70	19,50	21,20	14,10	13,40	13,20	13,40
Fe2O3 c	2,19	4,69	4,47	4,76	3,41	1,62	1,25	1,17	1,72	2,03	3,39	1,28	2,56
FeO a	6,02	3,78	2,40	1,76	5,79	3,86	5,59	6,07	6,14	8,61	8,74	5,26	6,44
MinO	0,10	0,13	0,09	0,12	0,11	0,08	0,22	0,13	0,14	0,23	0,21	0,16	0,18
	4,/4 5.20	1,62	3,37	0,78	0,65	2,65	3,29	3,55	4,85	5,87	4,84	4,54	4,61
Na2O	3,29	2,99	4 17	2,//	2,20	0,27	15,20	3,04	8,09	0,08	7,04	8,45	8,10
K20	0.51	0.37	0.33	1 21	4,00	2,02	1,34	0.20	4,11	3,52	3,03	3,65	3,43
P205	0,18	0.21	0,19	0.14	0.13	0.09	0,11	0.21	0.05	0,00	0,10	0,19	0,10
P.A.F.	3,10	0,35	2,35	2,70	2,55	5,95	9,45	4.65	2.25	2.07	1.00	9.30	0.35
Total	97,93	98,07	99,93	100,05	98,81	97,29	97,67	96,83	98,45	100,09	99,97	99,15	98,08
		~ ~ ·							-				
IS IS	0,30	0,24	0,20	1,10	0,93	2,56	6,76	2,04	0,10	0,70	0,62	6,24	0,20
Fe2O3 t	8.88	8.89	7.14	6.72	9.84	5.91	7.46	7.91	8.54	11 60	13 10	0,07	0,22
	, , 	-,			-,- ·	-,			0,0 .	11,00	10,10	,,,,	5,72
El. traces	(ppm)												
Rb	18	9	10	36	20	43	6	7	Э	< 1	< 1	5	< 1
Sr DL	134	44	202	19	112	159	146	167	220	90	144	111	143
PD	21	23	20	10	18	21	28	29	26	26	26	18	24
Da 7r	132	409	- 94	544	743	- 72		-	53	•	- 07	-	-
Ŷ	33	127	21	169	266	14	13	10	18	22	40	25	4 2
Sc	28	17	24	8		-	-	-	31	55	-	25	42
La	10	28	8	27	-	-	-	-	7	8	-	-	-
Ce	26	68	17	74	•	-	-	-	17	22	-	-	-
Pr	-	-	-	-	-	-	-	-	-	-	-	-	-
Nd	15	41	14	60	-	-	-	-	13	12	-	-	-
Sm	4	14	3	18	•	-	-	-	2	4	-	-	-
ть		2	1	4	-	•	-	-	<1	<1	-	-	-
Dv		<u>د</u>	-	-	-	-	-	-	<1	<1	-	-	-
Ho	1	3	<1	4	-	-		-	- <1	1	-	-	-
Tm	<1	2	<1	2	-		-	-	1	1	-	-	
Yb	3	15	2	19	-	•	-	-	2	4	-	-	-
Lu	1	2	0	3	-	•	-	-	0	1	-	-	-
Th	1	1	1	2	-	-	•	•	1	-	-	-	-
U	< 10	< 10	< 10	< 10	< 10	<10	<10	<10	<10	< 10	< 10	< 10	< 10
V Mb	149	4	132	2	4	86	145	103	209	287	344	270	374
	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	- [
Be	-	-		-	-	-	_		-		-	-	
Cr	113	248	123	206	308	61	47	39	140	111	104	224	95
Mn	633	1118	453	497	726	731	2312	1209	1439	2207	1828	1225	1471
Co	26	3	7	2	3	22	32	24	37	52	52	42	61
NI	28	5	28	3	3	43	54	29	52	54	24	93	32
70	119	0 101	48	12	17	102	65	20	31	62	121	157	106
Ga	-	-				102		54	32	97	118	53	111
As	11	< 5	< 5	77	< 5	<5	<5	<5	-5	- 5	- 5	16	1 2
Se	< 5	< 5	< 5	< 5	< 5	<5	<5	<5	6	< 5	< 5	< 5	< 5
Mo	10	< 1	< 1	< 1	< 1	<1	1	<1	1	< 1	< 1	< 1	< 1
Ag	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	<0,5	<0,5	<0,5	<0,5	< 0,5	< 0,5	< 0,5	< 0,5
Cd	< 1	< 1	< 1	< 1	< 1	<1	<1	<1	<1	< 1	< 1	< 1	< 1
SN Ch	< 10	< 10	< 10	< 10	< 10	<10	<10	14	<10	< 10	< 10	< 10	< 10
30 To	< 5	< 5	< 5	< 5	< 5	<5	<5	<5	<5	< 5	< 5	8	< 5
Ta	< 10	< 10	< 10	< 10	< 10	0 f >	<10	<10	<10	< 10	10	< 10	< 10
w	< 10	< 10	< 10	< 10	< 10	<10	<10	- <10	<10	< 10	- < 10	- < 10	- - 10
Au (ppb)	1	1	21	13	<1	1	2	<1	<1	3	1	10	< 1
Bi	< 2	< 2	< 2	< 2	< 2	<2	<2	<2	<2	< 2	< 2	< 2	< 2
7./7:00	0.047	0.000	0.04.	0.404	0.445								
Nb/Y	0,017	0,065	0,014	0,121	U,118 -	0,017	U,007	0,012	0,008	0,008	0,008	0,006	0,007
						-	-	•	•	-	-	-	- 1

#Echant.	129 B	133	140	161 E2	165 A1	179	189 A	206 A	215	229 B	250	255	258 G
UTM/N	5320350	5320650	5321800	5320850	5323950	5324350	5324050	5324350	5324550	5324450	5320200	5320225	5319900
Em	329250 TRI	329400 TRI	331150 VAD	331600 TRI	330850 VAD	330700	330550	330100	329550	329800	334975	335425	335200
Lith.	LAV	LAV	PYR	LAV	LAV	LAV	PYR	LAV	LAV	PYR			SED
Faciès	V3A	VЗA	VЗА	V3B	V3A	V3B	V3B	V3A	V3A	V3A	V3A	V3A	S6A/S9B
S. Fac.	B,Ci	Ci	1	М	М	м	x	м	м	x,I	С	С	Li,Ci
Alt.	CB	08	HB	MG,CB	CB						GR,AM	GR,AM	
El. majeu	rs (%)						· · · ·						
SiO2	45,90	47,20	53,30	47,40	49,40	52,90	54,80	55,90	54,40	50,10	51,90	53,00	54,70
TIO2	1,39	1,17	0,89	1,48	1,22	1,07	0,81	0,99	0,85	0,69	1,18	1,14	0,76
Fe2O3 c	2.60	1.40	3.95	0.47	4 88	3.51	2.66	10,80	18,10	19,10	16,20	15,30	16,50
FeO a	6,93	7,83	4,07	13,17	5,78	7,73	6,37	5,75	4,09	4,59	8,62	8,14	6.55
MnO	0,25	0,26	0,13	0,14	0,19	0,18	0,13	0,15	0,16	0,15	0,21	0,22	0,13
MgO	3,64	4,34	2,88	5,77	4,21	5,58	4,79	5,10	5,49	6,40	6,15	4,52	6,60
Na2O	2 77	2 17	7,98	1 15	12,10	9,36	7,34	290	5,/5	8,85	10,80	9,66	3,70
K20	0,25	0,28	0,18	1,48	0,20	0,18	0,60	0,48	0,38	0.35	0.02	0.06	0.03
P2O5	0,26	0,20	0,19	0,12	0,19	0,15	0,26	0,25	0,29	0,21	0,08	0,19	0,12
P.A.F.	5,05	11,25	3,85	7,45	5,00	2,00	1,30	2,35	3,80	4,15	1,15	1,70	2,35
Iotai	98,54	100,00	100,85	99,76	100,91	100,49	100,21	100,76	101,23	100,78	101,01	99,57	97,10
CO2	2,27	7,80	1,89	3,79	2,50	0,32	0,16	0,12	0,47	0,52	0,80	0,92	0,64
S	0,10	0,02	0,03	0,13	0,07	0,01	0,01	0,01	0,16	0,01	0,03	0,01	0,02
Fe203 t	10,30	10,10	8,47	15,10	11,30	12,10	9,74	9,11	7,42	8,29	12,70	11,30	8,21
El. traces	(ppm)		- •···. ····										
Rb	5	8	7	28	< 1	< 1	17	8	6	10	1	<1	<1
Sr Ph	183	76	279	55	342	144	133	257	210	225	225	104	179
Ba	-	-	-			- 25	- 25		- 20	- 21	- 41	35	28
Zr	74	86	78	60	64	48	44	107	98	39	70	67	95
Y	27	41	21	24	22	21	21	27	27	15	31	29	21
SC	43	-	28	-	13	•	41	40	42	32	-	47	-
Ce	18	-	12		38		10	32	29	15	-	5	-
Pr	•	-		•	-	-	-	-		-	-	-	
Nd	10	-	<7	•	15	•	10	22	12	<7	-	<7	-
Sm Fu	3	-	2	-	4	-	2	5	4	2	-	3	-
ть	<1	-	<1	-			, <1	<1	<1	، <1	-	<1 <1	-
Dy	-	•	-	-	•	-	-	-	-	-	-	-	
Ho	<1	•	<1	-	<1	•	<1	<1	<1	<1	-	<1	-
Yb	3	-	<1	•	<1		<1 2	<1 3	<1	<1	-	<1	-
Lu	1	-	ō	-	ŏ	-	1	1	1	0	-	1	-
Th	1	-	1	-	2		<,5	2	1	1	-	<0,5	-
U	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<10	<10	<10
Nb	304	2/5	189	470	335	329	230	208	186	175	353	354	211
LI		-	-		-	-	-		-	-		-	-
Be	-	-	-	•	•	•	-	-	-	•	-	-	-
Cr	553	107	315	90	131	213	104	110	229	248	255	278	55
Co	60	2001	30	1250	30	1387	739	980	762	1045	2048	2242	1292
Ni	238	21	58	46	18	32	37	55	84	86	124	116	27
Cu	122	6	23	177	76	20	46	50	137	60	123	111	70
Zn Ga	107	94	119	138	96	93	69	78	73	71	111	107	96
As	< 5	< 5	23	د ج	< 5	- 5	5	- 5	- 21	- 5	-	-	- -
Se	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	<5	<5 <5	<5 <5
Mo	< 1	< 1	< 1	6	< 1	< 1	< 1	< 1	< 1	< 1	1	1	1
Ag	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	1	<0,5	<0,5
Sn	< 10	< 10	< 10	< 10	< 10 < 10	< 1 < 10	< 1 < 10	< 1	< 1	< 1	<1 -10	<1	<1
Sb	< 5	7	< 5	< 5	5	< 5	< 5	< 5	< 5	6	<10	<10	6
Te	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<10	<10	<10
w l	- - 10	- 10	- 10	- 10	- 10	- 10	- 10	- 10	- 10	- 10	.+0		-
Au (ppb)	3	<1	2	6	< 1	< 1	< 1	< 10	< 10	< 10	<10	<10	<10
81	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	<2	<2	<2
71/1102	0.005	0 007	0 000	0.004	0.005	0.004	0.005	A 444	0.040	0 000	0 000		
Nb/Y					0,005	0,004	0,005	0,011	0,012	0,006	0,006 -	U,006 -	0,013

#Echant.	273	289 A	295 B	304 B	308	323 A1	330	339 E	341 A	347 B	349	372	373 A
UTM/N	5320050	5332575	5332420	5332100	5332350	5332875	5320200	5319400	5319300	5318750	5320500	5321350	5321450
UTM/E	336300	329500	329350	329450	329050	328500	325800	325925	325925	326850	338000	337925	337850
Fm.	TRI	AUR	AUR	AUR	AUR	AUR	VIB	VIB	VIB	VIB	TRI	VAD	VAD
Enclès					LAV							PYR	PYR
S .Fac	V36 MR	V 3 B R	V J A	V 3 B Ci	v3G	V3B 2	V3B	V3A	V4 M	V3F	V3F	V2J	V2J
Alt.	07 PY	FPMG	MG		U	08	Ω Μ			0	M 100	1, X, CI	1, D
							ű	0400	0,00	OD,OL	пb		
El. majeu	rs (%)												
SIO2	47,80	50,00	49,70	46,90	45,00	50,20	50,60	50,90	47,70	48,60	49,40	58,30	66,40
TiO2	0,90	1,62	1,19	1,96	0,94	1,34	1,28	0,89	0,58	1,07	0,80	0,71	0,33
A1203	15,00	16,00	17,10	12,70	11,80	12,30	14,30	18,90	9,64	13,30	15,40	19,00	15,80
Fe2O3 C	1,90	5,33	3,20	4,56	3,06	4,29	2,29	1,79	1,90	2,01	2,70	2,13	0,50
NHO A	9,40	0,27	0,39	10,66	11,38	7,48	9,37	5,09	9,18	9,35	8,19	3,58	1,93
MhQ	7.63	5 40	5 99	5,20	15 20	0,10	6 00	0,20	47.00	0,23	0,17	0,11	0,04
CaO	10,60	9,43	7,60	6.45	4.96	7.55	8 4 3	7,03	7 62	10.70	5,55	4,07	1,00
Na2O	1,83	3,90	4.07	3.38	0.81	1.87	2.81	2.54	1 10	2 39	1 97	3.89	4 58
к20	0,07	0,54	0,95	0,16	0,11	2,18	0,37	1,63	0,23	0,21	0.10	0.63	0.76
P2O5	0,08	0,30	0,37	0,23	0,33	0,31	0,28	0,16	0,01	0,06	0,01	0.01	0,05
P.A.F.	0,55	1,70	3,90	7,00	6,35	4,75	3,60	5,90	4,75	3,95	1,15	1,25	0,65
Total	95,98	100,79	100,61	99,80	100,16	100,56	100,49	99,98	100,77	100,62	100,98	100,55	96,84
CO2	0.15	0.05	0 00	1 22	2 04	י א ני	1 4 5	0.00	A 74		~ - ~		
s	0.01	0,03	0,90	4,22	2,04	∠,⊃/ 0.01	1,43	∠,89 ∩_∩1	0,72	3,18	0,13	1,12	0,03
Fe2O3 t	12,40	12,30	10,30	16,40	15,70	12,60	12,70	7.45	12.10	12.40	11.80	6.11	2 64
r	· · · · · · · · · · · · · · · · · · ·											-,	2,04
El. traces	(ppm)												
HDD	3	13	28	< 1	< 1	81	< 1	46	5	< 1	2	16	28
Dh	122	123	197	93	9	206	125	141	12	135	93	214	259
Ra		20	20	39	30	29	27	17	38	27	27	27	14
Zr	33	51	72	99	54	68	- 66	52	- 24	- 45	- 27	-	116
Y	17	20	23	38	17	20	30	20	11	20	16	23	6
Sc	-	-	-	47	-	31	51		28	39	-	-	-
La	-	-	-	7	-	6	4	-	1	4	-	-	-
Ce	-	-	-	17	•	15	13	-	10	11	-	-	-
Pr	-	-	-	•	-	-		•	•	-	-	-	-
Sm	-	-	-	13	-	13	9	-	<7	11	-	-	-
Eu	-	-		1		1	1	-	-1	د 1	-	-	-
ть	-	-	-	<1	-	<1	<1	-	<1	<1	-		
Dy	-	-	-	-	-	-	-	-	-	-	-	-	-
Ho	-	-	-	<1	-	<1	<1	-	<1	<1	-	•	-
im ve	-	-	-	<1	-	<1	<1	-	<1	1	-	-	-
u U	-	-	-	5	•	2	3	-	1	2	-	-	-
ТЬ			-	- 5		- 5	1	•	<,1	.0.5	•	-	-
U	<10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	~ 10	~ 10	- 10	- 10	-10
v I	310	322	202	396	153	244	325	269	174	254	236	149	45
Nb	-	-	-	-	-	-	-	-	-	-		-	-
	-	-	-	•	-	-	-	•	-	-	-	-	-
De Cr	-	-	-	-	-	•	-	-	•		-	•	-
Min	1796	333 2881	323	1069	3256	448	233	440	4161	254	640	160	28
Co	50	56	47	51	120	53	2000	101	110	21/3	1/06	493	335
NI	133	101	103	52	845	129	65	201	1220	96	221	21	é l
Cu	86	36	8	105	9	20	66	113	216	32	185	44	16
Zn	84	203	71	159	161	99	128	77	125	117	100	70	40
Ga	-	•	-	•	-	-	-	•	-	-	-	-	-
AS So	<5	< 5	8	< 5	< 5	< 5	10	< 5	< 5	< 5	< 5	7	16
Mo	<5 1	< 3 8	< 0 - 1	< 0	< 5	< 5 1 F	< 5	5	< 5	< 5	< 5	< 5	<5
Ag	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< I 2 0 5	< 1	< 1	< 1 2 M F	8 ۵۰ م	2
Cđ	<1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0,0	<0,0
Sn	<10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<10
Sb	<5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	<5
Te To	<10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<10
rat W	- 10	- 10	- 10	- 10	- 10	- 10	- 10	- 40	-	-	-	•	-
Au (ppb)	5	< 10	< 10	< 10 2 1	< 10	< 10	< 10	< 10	< 10 F	< 10	< 10	< 10	<10
Bi	<2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 1	- 2	< 1 - 2	3
										~ -	~	~ 2	~2
Zr/TiO2	0,004	0,003	0,006	0,005	0,006	0,005	0,005	0,006	0,004	0,004	0,003	0,016	0,035
ND/Y	-	•	-	-	-	-	-	-	-	-	-		-

#Echant.	376	1007 8	1012	1022	1029	1036	1036 A2	1070 A	1077 A	*1077 iv	1099 A2	1115	1127 C
UTM/N	5325150	5329550	5326775	5326700	5326650	5322750	5322750	5322850	5322725	5322725	5321050	5321150	5320900
UTM/E	323325	324400	324225	325000	324900	325925	325925	326200	326475	326475	329475	329450	329375
Fm.	HEV	VAD	VAD	VAD	VAD	VAD	VAD	HEV	HEV	HEV	TRI	TRI	TRI
Lith.	LAV	LAV	LAV	LAV	LAV	PYR	PYR	LAV	LAV	LAV	SED	SED	SED
Faciès	V1C/V1D	V3B	V2J	V2J	V2J	V3A	V2J	V2J	V2J	V2J	S6A	S4E	S6
SFac.	VA	м	М	м	M,Ci	X	X	VA	м	м	Li	М	Li
Alt.		œ									CB	CB	CB
EI. majeu	rs (%)												
5102	65,00	47,00	58,70	55,90	69,90	53,30	57,00	58,20	66,10	66,70	47,10	50,50	43,70
1102	0,67	0,75	0,91	0,71	0,95	0,85	0,37	1,39	0,90	0,91	1,15	0,77	1,06
A1203	14,90	18,00	16,70	24,90	13,60	19,40	20,20	12,80	12,00	12,30	19,10	16,60	14,20
F#203 C	2,93	1,63	2,18	0,84	2,41	2,26	1,44	4,48	3,16	2,40	1,11	1,86	1,92
Heno a	4,90	4,63	4,20	3,85	2,44	5,81	3,03	10,01	5,42	5,61	5,85	7,15	6,87
Mao	2,55	0,17	5.01	1.02	1.04	4.00	0,09	0,25	0,11	0,10	0,13	0,20	0,19
CaO	1.83	11 90	4 33	6 1 4	5.64	4,30	3,34	2,19	2,40	2,22	2,50	7,62	3,18
Na2O	2 51	2 4 2	3 72	4 23	2 15	5.84	9 1 2	0,00	3,30	3,20	8,38	10,80	12,90
K20	0.29	0.87	1 28	0.61	0.30	0.15	0,12	2,90	4,72	4,72	5,23	2,86	2,49
P2O5	0.16	0.05	0.22	0.34	0.25	0.07	0,04	0,00	0,17	0,13	0.46	0,12	0,55
P.A.F.	2.90	9,60	3,40	2.15	0.95	3 25	1.95	0,40	0,17	0,21	3 60	2,05	11 10
Total	98,80	100.67	100.74	100.85	99.78	100.81	99.67	100.56	99.20	99.21	96 84	100 58	08 38
	, -			-,			,-•					,	00,00
CO2	0,43	6,32	0,12	2,21	0,14	0,31	0,15	0,28	0,10	0,02	3.57	0.33	8.11
S	1,74	0,01	0,01	0,01	0,01	0,01	0,11	0,25	0,03	8,90	1,60	0.04	0.06
Fe2O3 t	8,46	7,00	6,85	5,12	5,12	8,72	4,81	15,60	9,18	0,23	7,61	9,80	9,55
El. traces	(ppm)												
RD	5	22	28	20	2	1	18	19	2	87	78	< 1	13
Sr	98	138	261	323	185	137	124	120	99	<12	832	219	303
PD Ro	133	24	25	28	28	22	13	40	27	34	33	18	25
Da 7r	224	- 10	- 101	-			-	-	-	340	-	-	-
v	111	14	20	32	230	20	58	162	337	120	189	44	86
Sc	16	40	26	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	10	24	14	70	127	22	30	23	21
La	15	3	20		28		10	-	21	17	16	-	20
Ce	40	6	52		68		10		54	47	110	-	10
Pr	-	-		-		-	-			40	115	-	~ ~ ~
Nd	34	<7	29	-	44	-	10	-	48	₹25	61		10
Sm	9	1	7	-	10		1	-	13	3	12	-	3
Eu 🛛	2	1	1	-	2	-	<1	-	3		2	-	1
ть	3	<1	<1	-	<1	-	<1		2	16	1	-	<1
Dy	-	-	•	-	•	-	-	-	•	-	-	-	-
Но	2	<1	<1	-	1	•	<1	-	3	-	<1	-	<1
Tm	2	<1	<1	-	<1	-	<1	-	2	-	<1	-	<1
Y10	12	2	3	-	3	-	1	-	14	•	3	•	2
	2	0	0	-	1	•	0	-	2	<3	0	-	0
	2	<0,5	4	-	4	•	<0,5	-	2	•	8	-	1
v	01>	< 10 076	< 10	< 10	< 10	< 10	< 10	< 10	< 10	40	< 10	< 10	< 10
Nib		270	107	131	147	220	81	48	49	16	251	280	180
L							•	•	-	15	•	-	-
Be	-		-	-			-	-	-	<1	-	-	-
Cr	190	267	209	158	326	178	102	163	297	-	107	520	-
Min	848	1124	476	669	1208	929	773	2239	882	- P	601	1201	1257
Co	16	23	22	13	8	25	17	22	11	2	13	47	33
Ni	15	120	79	56	35	33	110	20	12	23	25	178	104
Cu	126	44	22	4	19	65	21	23	23	57	244	48	70
Zn	313	62	69	65	73	76	66	141	71	24	80	89	99
Ga	-	-	-	-	•	-	-	-	-	-	-	-	
As	1628	7	< 5	< 5	15	< 5	< 5	20	14	-	< 5	< 5	52
Se	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	<5	< 5	< 5	< 5
	1	< 1	< 1	<1	< 1	10	< 1	< 1	12	-	< 1	< 1	< 1
A9 Cd	1	< 0,5	< 0,5	< 0,5	1	< 0,5	< 0,5	< 0,5	< 0,5	<0,5	< 0,5	< 0,5	< 0,5
Sn	2 10	< 1	< 1	< 1	<1	< 1	< 1	<1	< 1	<2	< 1	< 1	< 1
Sb	- 5	< 10	< IU , -	U i >	< 10	< 10	< 10	< 10	< 10	-	< 10	< 10	< 10
Te	< 10 <	د ج 10	< 0 - 10	< 0	< 0	< 0	C> ۱۰ ـ	< 5	< 5	<5	< 5	< 5	< 5
Ta	-		< 10 -	< IV -	< IU -	< 10	< 10	< 10	< 10	<10	< 10	< 10	< 10
w	< 10	< 10	< 10	< 10	< 10	r 10	- 10	- 10	- 10	-	- 10	- 10	-
Au (ppb)	53	1	1	<1	4	< 1	1	< 1	21	-	< 10 9	0 i >	< 10
Bi	18	< 2	< 2	< 2	< 2	< 2	< 2	< 2	<2	-	< 2	-2	- 2
Zr/TiO2	0,05	0,002	0,02	0,013	0,024	0,006	0,016	0,012	0,037	0,013	0,016	0,006	0,008
ND/Y	-	•	-	-	-		-	-	-	0.682	-		

#Echant.	1166 A	1198 D	1204 B	1204 C	1253 A	1264 A	1285 C	1292 B	1293 A	1296	1336 B	*1347 i	*1348 i
UTM/N	5320100	5323030	5323350	5323350	5324025	5323700	5330575	5330575	5330600	5327025	5324200	5330400	5328375
UTM/E	329750	331150	331300	331300	3317 50	331700	337350	337650	337700	336075	329150	327350	326425
Fm.	TRI	VAD	VAD	-	VAD	VAD	VAD	VAD	VAD	•	VAD	DUB	VAD
Lith.	LAV	LAV	LAV	INT	PYR	LAV	PYR	PYR	LAV	INT	PYR	LAV	PYR
Faciés	V3A	V2J	V2J	12	νэв	V3A	V2J	V2J	V2J	I18	V3A	V3A	V2J
SFac.	M	м	M	00.07	x	M			м	м		В	x,1
АΠ.	u		UB	UB,UZ		CB	BO	UL.			a.	a.	
El. majeu	rs (%)												
SiO2	51,00	55,30	58,30	71,10	48,10	54,80	68,30	59,70	60.70	66.20	56.00	48.30	54.20
TIO2	1,08	0,73	0,47	0,19	0,66	1,48	0,33	0,75	0,57	0,24	0,68	0.81	0.58
AI2O3	14,10	16,70	12,70	16,00	19,50	14,60	17,50	18,00	17,20	15,10	16,80	14,20	18,20
Fe2O3 c	6,06	1,82	1,79	0,47	4,34	3,57	1,28	2,07	1,74	1,28	0,88	0,68	0,00
FeO a	7,78	3,33	4,02	1,02	5,27	7,41	1,09	3,68	2,86	1,48	5,19	11,00	10,70
MnO	0,21	0,10	0,16	0,03	0,24	0,26	0,04	0,13	0,07	0,06	0,49	0,19	0,11
MgO Caro	6,53	3,14	2,24	0,71	3,96	2,11	1,05	3,29	3,18	1,57	3,44	6,17	5,04
Na2O	5,55	3 74	1 03	5 14	0.00	3 07	3,02	1,07	0,09 6,09	2,52	6,76	5,67	8,35
К20	0,15	0,70	0.60	0.78	0,19	0.27	0,01	0.41	0.30	3,63	1 63	0.40	2,39
P2O5	0,17	0,23	0,19	0,15	0,11	0,24	0,14	0.30	0.35	0,19	0.13	0.07	0,09
P.A.F.	2,30	4,55	6,00	0,95	0,85	2,05	0,85	0,60	0,50	0,45	7,25	9,10	3.04
Total	99,98	97,14	98,70	100,31	100,78	100,96	100,92	101,26	99,18	98,00	100,67	98,19	102,84
000				• • •	a		A	_	- -	_	_	_	
s	0,99	1,97	4,58	0,11	0,35	1,78	0,10	0,40	0,32	0,44	3,43	5,43	0,29
Fe2O3 t	14.70	5.52	6.26	1.60	10.20	11.80	2.49	6 16	4 92	2 92	0,03	12 99	11 80
		-,	-,				-,	0,10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,02	0,00	12,30	11,03
El. traces	(ppm)												
Rb	< 1	24	24	29	< 1	2	14	10	1	119	66	15	3
Sr	111	316	104	374	136	129	427	401	371	1357	55	100	190
PD Ra	34	23	20	11	28	31	11	23	17	17	20	<12	<12
7r	65	97	- 59	1.00	- 25	82	-	112	100	122	-	115	67
Y	29	26	18	5	14	32	7	12	11	16	16	30	00
Sc			-				4	14	-	5	-	67	23
La	-	-	-	•	-	-	6	13	-	33	-	3	- 8
Ce	-	•	-	-	-	-	11	28	-	61	-	7	18
Pr	-	-	•	-	-	•	-	-	•	-	-	<10	<10
Nd	-	-	-	•	-	•	9	<10	-	28	-	<25	25
Sm E.	-	•	-	-	-	-	1	3	•	4	-	<2	<2
	-	-	-	-	-	-	<1	<1	-	1	-	2	2
Dv	_	-	-	-	-		-	<1	-	<1	-	1	-
Но	-		-	-	-	-	<1	<1	-	<1	-	-	
Tm	-	-	•	•	•	-	<1	<1	-	<1	-	-	-
Yb	-	-	-	-	•	•	1	1	-	1	-	-	-
LU Th	•	•	-	•	-	-	<,1	0	-	0	-	-	-
1.10	- 10	-	-		-	-	1	1	•	7	-	7	<3
v	200	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	-	-
Nb	200	105			107	431	32	121	94	41	148	263	11/
LI	•	-	-	-	_	-	-	-	-	-		0 49	21
Be	-	-	-		-		-	-	-	-	_	<1	<1
Cr	57	346	249	260	324	267	268	239	308	352	121	-	-
Min O-	1858	582	1360	193	2125	2216	252	804	384	299	3443	-	-
	53	21	23	3	38	31	6	23	16	7	21	42	22
Q1	244	40	577	5	10	13	12	68	56	2/	31	97	26
Zn	137	102	85	29	101	119	42	74	64	38	111	104	43
Ga	-	-		-	-	-	-		-		1,0	104	14
As	6	< 5	< 5	< 5	< 5	< 5	< 5	< 5	18	< 5	< 5	-	
Se	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	-	-
Mo	<1	14	6	8	10	12	12	10	10	10	8	<4	<4
~9 Cd	< 0,5	< 0,5	1	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	3	-	-
Sn	< 10	< 1∩ ∠ 1∩	< 10 - 10	< 1 - 10	< 1 - 10	< 1	< 1	< 1	< 1	< 1	< 1	<2	<2
Sb	< 5	< 5	< 5	< 5	< 5	< 5	2.5	- 5	~ 10	< 10	< 10	<10	<10
Te	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<10	<10
Ta	•	-	-	-	-	-	-	-	-	-	-	<5	<5
W ALL (marks)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	•	-
Bi	4	1 در	25	1	1	8	< 1	< 1	< 1	< 1	1	•	-
		~ 2	. 2	~ 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	-	-
Zr/TiO2	0,006	0,013	0,013	0,053	0,004	0,006	0,028	0.015	0.018	0.055	0.01	0.007	0.015
Nb/Y	•	-	-	-		-		•	-			0.216	0.278

#Echant.	*1351 i	*1368 i	1370	*1383	*1385 I	1394	1396	1398	1400 A	1434 B	1445	1463 C	2004
UTM/N	5328575	5326325	5326350	5326325	5326425	5321850	5322925	5320100	5320125	5322650	5321275	5318825	5319825
UTM/E	325725	327750	327650	331325	331075	332300	332725	336200	336450	334850	334275	336300	339875
Fm.	VAD	VAD	VAD	VAD	VAD	VAD	VAD	TRI	TRI	VAD	VAD	TRI	TRI
Lith.	PYR	PYR	LAV	PYR	PYR	PYR	PYR	LAV	LAV	PYR	PYR	PYR	LAV
Faciès	V3A	V3A	V3A	V3A	V3A	V2J	V3A	V3B	V3A	VЗA	V2J	V3A	V3B
SFac.	x,1	x,I	Ci	X,I	x,I	x,i,b	b,1	C,M	C,B	b,x	X,I	I,Ci	м
Alt.		CB		CB,CL				AM,PO,CP	AM, PO	CB	PY	GR,PY,PO	
					····		••••••						
El. majeu	rs (%)	40.40											
5102	50,10	48,10	54,80	45,80	48,80	57,30	52,80	48,30	45,10	47,20	65,80	52,20	50,50
1102	0,66	1,05	1,16	0,87	0,82	0,67	0,72	0,76	1,73	0,60	0,58	1,21	1,63
A1203	20,50	15,40	15,40	18,90	18,70	17,50	17,90	16,40	15,60	18,10	15,30	17,00	12,30
Fe2O3 C	5.70	1,00	1,59	1,83	2,94	1,37	1,43	2,93	2,61	3,19	0,88	1,83	2,70
Mo	0.14	0,35	7,20	0,43	0,44	0,04	0,03	8,07	12,14	5,79	4,21	5,93	11,88
MoO	4 38	4 33	5 50	6 4 7	6.24	4 02	4 00	9,20	6 20	2 21	0,07	0,20	0,18
CaO	7 59	11 60	4 86	11 20	10 90	4 21	6 34	13 20	8.35	15 00	2,19	3,67	7,51
Na2O	3.70	2.73	4 59	2 21	1 87	4 24	3 48	1 66	1 30	1 00	2 60	3,03	1 05
К20	0.26	0.29	0.37	0.74	0.59	0.63	0,40	0.16	0.24	1 32	1 59	3,02	0.14
P2O5	0,10	0,16	0.26	0.04	0.06	0.12	0,11	0.04	0.15	0 10	0 20	0.21	0.31
P.A.F.	3,77	7,91	2,30	2,45	1,22	1.55	2.15	0.70	2.05	4,65	0.95	1 80	1.55
Total	98,42	99,79	98,26	99,20	98,81	96,76	97,39	100,88	95,90	100.47	98.18	96.47	97.02
						-	·		• -		-,		,
CO2	1,08	4,80	0,34	0,23	0,00	0,12	0,06	0,21	0,55	3,05	0,26	0,16	0,47
S	-	-	0,01	-	0,02	0,01	0,01	0,11	0,90	0,02	0,36	0,20	0,06
Fe2O3 t	8,02	8,92	9,66	11,40	10,42	6,97	9,02	11,90	16,10	9,62	5,56	8,42	15,90
<u></u>													
EI. traces	(ppm)	~						-	-				
HD C.	200	200	10	19	12	25	17	3	3	33	49	53	<1
31 Dh	290	200	132	300	.10	139	155	131	97	193	275	222	61
Ra	01	164	21	340	212	24	34	28	57	44	33	30	55
77	77	104	- Q.4	55	247	117	- 79		- 07	-		-	-
Y	19	29	34	20		29	17	19	20	41	1/9	63	65
Sc	27	44	51	40	39	23			20	13	10	25	31
La		12	18	3	2		_			_	-	-	-
Ce	18	30	39	9	<3	18	-	-	-	-	-		-
Pr	<10	<10	-	<10	<10	-	-	-	-		-	-	-
Nd	<25	30	25	<25	45	16		-	-	-		-	-
Sm	<2	<2	6	<2	<2	3	-	-	-	-	-	•	-
Eu	2	3	2	2	1	<1	-	-	-	-	-	-	-
ть	-	•	<1	-	-	<1	-	-	•	-	-	-	-
by	2	4	-	2	<1		-	-	-	-	-	-	-
Tm	-	-	<1	•	-	<1	-	-	•	•	-	-	-
Yh		-	< I 2	•	-	<1	•	-	-	-	-	-	-
lu			1	-	-	0	-	-	•	•	-	•	-
ть	-3	6	2		-3	1			•	-	-	-	-
U	-		< 10			-10	-10	- 10	-10	-10	-10	-10	-10
v	156	286	353	184	168	135	98	308	414	187	100	275	462
Nb	6	7	-	4	3				-				400
LI	33	22	-	26	14		-				-	-	-
Be	<1	<1	-	<1	<1	-		-	-	-	•	-	-
Cr	-	-	162	-	-	48	28	630	97	88	230	216	19
Min	-	-	1195	-	•	1094	1098	1711	2438	2180	701	2622	1883
C0	27	17	26	36	31	24	30	63	51	33	25	53	52
NI O	37	13	19	59	44	39	76	191	65	75	80	165	42
	59	122	59	36	63	4/	17	144	128	83	55	87	23
	10	15	111	00	28	93	101	89	246	164	101	135	96
Δe	10	15	- 5	11	13	-	- .E	- . F	-	-	-	-	-
Se	-	-	< 5		-	<0 6	<0 ~5	< 0	7	<0	6	78	<5
Mo	<4	<4	8	<4	-4	-1	1	<1	,	<0 20	1	1	<0
Ag	-	-	< 0.5	-	-	<0.5	<0.5	< 0.5	<0.5	-05	-05	ا ۲۵۶	<1
Că	<2	<2	< 1	<2	<2	<1	<1	< 1	<1	<1	<1	<0,0	
Sn	<10	<10	< 10	<10	<10	<10	<10	< 10	14	10	<10	<10	<10
Sb	-	-	< 5	-	-	7	7	< 5	<5	9	6	<5	<5
Te	<10	<10	< 10	<10	<10	<10	<10	< 10	<10	<10	<10	<10	<10
Ta	<5	<5	•	<5	<5	-	-	-	-	-	-	-	-
W ALL	-	-	< 10	•	•	<10	<10	< 10	<10	<10	<10	<10	<10
AU (PPD)	-	-	2	-	-	3	1	1	2	4	<1	2	<1
5	-	-	< 2	-	-	<2	<2	< 2	<2	<2	<2	<2	<2
Zr/TiO2	0 012	0 000	0 008	0.006	0.006	0.017	A A4	0.004	0.005	0 007	0.004	0 000	
Nb/Y	0,316	0,241		0.2	0.136	0,017		0,004	0,005	0,007	0,031	0,005	0,004
								-	-	-		-	-

#Echant.	2010	2012	2020	2022	2023	2026	2028	2042	2056	2058	2061	2062 4	2072 A
UTM/N	5331550	5331550	5330600	5331525	5331925	5331650	5330050	5330000	5330725	5330925	5331000	5330975	5331825
UTM/E	344500	344450	347650	347375	347925	346900	348500	349300	350125	350175	350350	350400	346225
Em	ALIB	ALIR	ASS	455	ASS	2224	455	222	455	224	220000	330400	340223
l ith		LAV	LAV	1 4 1	IAV			- DVD			1.00	1.00	1.00
Enciès			100	1/21							LAV	LAV	LAV
C Ess	VJA	VSA	V 3 B	¥2J	V 2 J	V3A	V ZJ	V2J	VJA	V23	V2J	V23	V2J
SFac.		C,M	M OD LIG	B,C	B,M	C,B	M	X,D	С 	M	С,В	В	мв
Alt.	പ്പാ		CB,MG			C8	MG		MG	C8		qz	
Et maiou	re /9(.)												
Ci. majeu		62 10	40.90	61 70	50.00	40.60	50.00	co 70	50.40		50.00		
3102	47,70	63,10	49,80	61,70	58,00	49,60	53,20	60,70	59,10	55,20	59,90	58,60	56,60
1102	1,49	0,93	1,51	0,71	0,65	1,36	0,96	0,74	1,31	0,81	0,50	0,64	0,59
A1203	15,80	14,10	13,20	14,10	15,50	15,50	14,90	17,00	13,80	14,90	15,80	15,80	15,10
FezO3 C	3,73	1,11	2,22	1,76	1,95	1,39	2,35	2,69	2,58	1,10	2,45	1,71	1,77
FeO a	7,89	5,99	11,05	4,29	3,94	5,28	5,92	1,48	5,70	4,44	2,68	3,10	4,23
MnO	0,16	0,15	0,21	0,10	0,09	0,14	0,14	0,06	0,12	0,13	0,08	0,10	0,12
MgO	5,83	3,82	5,34	3,89	3,98	2,32	4,87	0,90	3,74	3,90	3,32	3,87	3,73
CaO	11,00	2,32	9,49	3,87	6,51	8,97	5,78	5,13	3,76	6,47	8,52	8,36	6,75
Na2O	1,63	3,99	2,37	4,04	3,02	2,81	4,73	3,64	3,81	3,07	3,39	2,89	4,20
K2O	0,01	0,01	0,62	0,01	1,06	1,22	0,08	2,19	0,34	1,26	0,35	0,57	0,01
P2O5	0,32	0,34	0,24	0,22	0,31	0,26	0,34	0,18	0,24	0,29	0,19	0,19	0,18
P.A.F.	2,60	2,20	0,10	3,00	2,15	7,65	3,55	2,30	2,15	5,65	1,05	1,75	4,60
Total	98,16	98,06	96,15	97,69	97,16	96,50	96,82	97,01	96,65	97,22	98,23	97,58	97,88
000								- -	_	_	_		
CO2	0,06	0,01	0,01	0,88	0,15	4,38	1,27	0,56	0,81	2,25	0,38	0,31	1,60
5	10.09	0,01	0,02	0,17	0,01	0,02	0,01	0,01	0,02	0,01	0,01	0,01	0,01
F#203 (1 12,50	7,77	14,50	6,53	0,33	7,26	8,93	4,33	8,91	6,03	5,43	5,15	6,47
El. traces	(ppm)												
Rb	<1 <1	1	17	2	43	43	3	81	12	36	10	21	-1
Sr	261	112	170	102	143	199	135	575	119	156	115	1 70	196
Pb	53	29	58	125	29	26	32	20	37	30	47	27	36
Ba			-						-				55
Zr	101	115	85	107	131	92	131	151	137	137	114	122	1 0 0
Y	24	27	26	19	27	25	28	22	30	25	16	22	22
Sc		27		-	-		26	9				20	
La	-	12	-	-	-		18	26	-	-		14	
Ce	-	29	-	-	-		35	47	-	-	-	30	
Pr	-	-	-	-	-	-	•	-	-	-	-	-	-
Nd	-	13	-	-	-	-	15	23	-	-	-	10	
Sm	-	4	-	-	-	-	4	4	-	-	-	3	
Eu	-	1	-	-	-		1	1	-	-	-	- 	-
ть	-	<1	-	-	-	-	<1	<1	-	-	-	<1	-
Dy	-	-	-	-	-	-	-	-	-	-	-	-	-
Ho	- 1	<1	-	-	-	-	<1	<1	-	-	-	<1	-
Tm	-	<1	-	-	-	-	<1	<1	-	-	-	<1	-
Yb	-	3	-	-	-	-	3	2	-	-	-	2	-
Lu	-	1	-	-	-	-	0	0	-	-	-	0	-
Th	-	1	-	-	-	-	1	4	-	-	-	2	-
U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
v	243	159	333	127	106	208	149	114	232	143	110	108	139
Nb	-	•	•	•	-	-	-		-	•	-	-	-
Li	-	-	-	-	-	-	-	-	•	-	-	-	-
Be	· ·	•	-	-	-	-	•	-	-	-	•	-	-
Cr	243	124	140	70	80	213	67	71	23	99	83	86	100
Mn	1837	1173	2117	871	854	1244	1273	485	1174	1223	856	896	1033
Co	53	27	54	25	15	41	28	7	44	27	19	18	26
	142	45	77	74	54	83	62	12	57	81	78	90	75
<u> </u>	76	14	258	69	9	75	39	269	51	84	20	64	49
20	124	83	144	81	64	106	65	36	121	88	55	60	76
Ga	-		•	-	-	-	-	-	-	-	-	•	-
AS	<5	38	<5	<5	<5	<5	<5	<5	6	<5	<5	<5	<5
30	<5	<5	<5	<5	<5	<5	<5	<5	6	<5	<5	<5	<5
	8	<1	4	2	<1	_ 4	<1	<1	<1	2	6	4	4
Ag	<0,5	<0,5	<0,5	1	<0,5	<0,5	<0,5	<0,5	1	<0,5	1	<0,5	<0,5
	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
SN CL	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
18.		-	-	-	-	-	•	-	-	-	•	-	-
Au (mmh)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
au (ppo)	<1	<1	4	<1	<1	9	<1	6	<1	2	<1	<1	<1
⁻ '	<2	<2	<2	<2	5	<2	<2	<2	<2	<2	<2	<2	2
Zr/TiO2	0.007	0.012	0 006	0.015	0 0 2	0 007	0.014	0.00	n n+	0.047	0.000		
Nb/Y					0,02	0,007	0,014	0,02	0,01	0,017	0,023	0,019	0,017

#Echant	2077	2080	2082	2084	2089	2091	2092	2095	2097	2111	2143	2154 B	2162
LITM/N	5331950	5330450	5330425	5330650	5330900	5331160	5331325	6221276	5221/60	5229176	5220100	2134 D	2103
UTME	346350	040550	240600	040575	040000	040700	0001020	0501373	0001400	040050	3320100	5520525	5330500
	346350	349550	349600	349575	349625	349700	349950	350500	350625	349950	343275	340000	353875
Fm.	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS	ASS	AUR	TRI	TRI	ASS
Lith.	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	PYR	LAV	LAV
Faciès	V 3 A	V3A	V3A	V3A	V3A	V2J	V2J	V3A	V3B	V3A	V2J	V3G	V3B
S -Fac	CB	м	C	MB	CB	C	СМ	м	CM	B Ci	v 1		CM
A 14			–		0,0	Ŭ	~~~		00 00	0,0,	~,·	141	0,101
A		WK3,CF	D *				Co.		60	CB		AM	CB.
L													
El. majeu	rs (%)												
SiO2	59,20	50,10	57,80	51,60	52,80	50,80	54,60	47,60	50,90	46,80	59,50	47,70	46,80
TiO2	0,63	1,04	0,74	1,42	1,14	0,72	0,73	1.57	1.40	0.54	0.49	0.57	1.71
AI2O3	12.80	15.80	14,50	12.70	17.00	18.00	15 80	14 70	13 40	14 50	16 40	12 20	16 10
Ee203 c	3.46	1 66	4 30	3 50	2 96	2 1 2	2 45	2 40	2,00	4 54	0.54	1 20	0,10
EsQ a	0,40	7.00	4,00	7.01	4,70	5.10	2,40	2,73	3,00	1,31	2,34	1,33	3,38
reo a	2,40	7,90	1,02	7,21	4,72	5,10	4,08	9,55	7,04	6,76	3,45	7,61	8,66
MINO	0,12	0,13	0,09	0,19	0,12	0,13	0,11	0,18	0,16	0,11	0,09	0,17	0,20
MgO	2,70	4,56	2,43	4,74	3,77	5,47	4,16	6,51	5,39	6,09	2,83	12,70	4,51
CaO	13,00	5,18	13,90	9,24	8,63	8,00	10,50	9,47	11,40	8,46	3,61	10,90	10.40
Na2O	0,34	3,96	0.02	1.52	3.62	3.43	1.97	2.00	1.17	2.12	2.68	1 25	2 10
к20	0.01	0.07	0.01	0.07	0 17	0.07	0.12	0 19	0.02	0.04	3,85	0.05	0.05
P205	0.16	0,32	0.21	0.22	0.24	0,14	0,10	0,10	0,01	0,04	0,05	0,00	0,05
P 4 5	0,10	0,32	0,21	0,22	0,24	0,14	0,10	0,22	0,21	0,10	0,01	0,26	0,20
P.A.F.	2,65	6,15	1,55	4,45	1,70	3,05	2,10	2,25	2,55	9,25	1,70	1,80	2,70
IOTAL	97,53	96,93	97,17	96,95	96,87	97,04	96,72	96,73	96,72	96,28	97,15	96,54	96,81
CO2	1,58	2,72	0,39	1,66	0,10	0,01	0,05	0,10	0,01	4,96	0.21	0.11	0.26
S	0.01	0,01	0.01	0.05	0.38	0.01	0.01	0.03	0.01	0.01	0.76	0.05	0 01
Fe2O3 t	6 1 9	10 50	6 10	11 60	8 20	7 80	6 08	13 10	10 00	9,01	6 97	0,00	13 00
		. 0,00	0,.0	,	0,20	7,00	0,00		10,00	0,02	0,37	5,19	13,00
EL trance	(nom)												
El. llaces	(ppm)	•		-	-		-	-		-			
HD	4	2	<1		5	4	6	5	2	2	105	4	2
Sr	110	166	90	174	63	93	190	182	224	355	117	80	231
Pb	30	41	31	54	35	66	34	53	48	36	26	44	60
Ba	-	-	-	-	-	-	-	-	-	-	-	-	-
Zr	84	100	96	86	140	121	119	96	79	64	99	50	91
Y	17	23	20	24	28	20	24	27	26	16	15	17	20
		20	20	24	20	20	24	21	20	10	15	17	29
30	19	-	-	-	-	-	-	-	35	-	-	-	37
La	11	-	-	-	-	-	-	-	9	-	-	-	9
Ce	20	-	-	•	-	-	-	-	23	-	-	-	22
Pr	-	-	-	-	-	-	-	-	-	-	-	-	-
Nd	10	-	-	-	-	-	-	-	14	-	-	•	17
Sm	2	-	-	-	-	-	-	-	4	-	-		
Fu	-1	-	-	-	_	_	-	_					
ть								-		-	-	-	2
D.		-	-	-	-	-	-	-	< I	-	-	-	<1
Uy		-	-	-	-	-	-	-	-	-	-	-	-
но	<1	-	-	-	-	-	-	-	<1	-	-	-	<1
Tmt	<1	-	-	-	-	-	-	-	1	-	-	-	1
Yb	2	-	-	-	-	-	-	-	3	-	-		3
ա	0	-	-	-	-	-	-	-	1	-	-	-	0
Th	<0.7	-	-	-	-	-	-	-	-0.5	-	_	_	-0.5
U I	-10	~10	~10	~10	~10	~10	~10	-10	-10	-10	-10		×0,5
v I	104	200	1 6 4	225	210	50	440	476	<10	<10	<10	< 10	<10
	124	200	1.04	235	210	56	113	175	200	133	72	149	242
1.1	-	-	-	•	-	-	-	-	•	-	•	-	-
	-	-	-	-	•	-	-	-	-	-	-	-	-
56		-	-	-	-	•	•	•	-	•	-	-	-
Cr	65	103	97	182	179	46	114	232	249	294	14	1017	278
Min	1057	1189	934	1899	1214	435	1047	1539	1590	1024	528	1542	1871
Co	15	32	29	39	39	9	21	29	35	36	7	48	52
NI	48	43	73	63	82	27	104	62	85	111		306	160
Q	20	56		50	6 F	10	10	20	20		47	205	100
70	£4	100	2	104	407	12	10	20	00	55	4/	92	51
	01	108	00	131	107	48	70	105	99	85	242	63	133
ua i	-	•	•		-	-	-	-	•	-	-	-	-
AS	<5	<5	24	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Se	<5	<5	<5	7	<5	6	<5	<5	<5	<5	5	<5	<5
Mo	<1	4	8	4	8	2	8	4	2	2	đ	4	21
Ag	<0.5	<0.5	1	<0.5	1	1	<0.5	1	1	-05	-05	~0.5	-0.5
lcă I	-1	-1		-1		-1			ا ا	-0,0	<0,0 4	<0,0	<0,5
Sn	10	-10	-10	-10	-10	-10	-10	-10				<1	<1
Sh			1.0	210	210	<10	< 10	<10	< 10	<10	<10	<10	<10
	<0	<0	<0	<0	<0	<5	<5	<5	<5	<5	<5	<5	<5
10	<10	<10	<10	13	<10	<10	<10	<10	<10	<10	<10	<10	<10
ia	-	-	•	-	-	-	-	•	•	-	-	-	-
w	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Au (ppb)	1	<1	<1	2	<1	<1	<1	<1	<1	<1	3	<1	<1
Bi	<2	<2	<2	<2	<2	<2	<2	<2	<2	0	ð	0	-2
					_	-	-					~L	~r
Zr/TiO2	0.013	0.01	0.012	0.006	0.019	0.017	0.016	0.006	0 000	0.040	ň	0.000	0.000
Nb/Y	-,	-				0,017	0,010	0,000	0,000	0,012	0,02	0,009	0,005

#Echant.	2178	2183	2196	2211 B	2212	2220	2224	2226	2242	2258	2281 B	2307	2314 A
UTM/N	5330275	5330225	5328825	5329350	5329200	5324200	5324550	5324550	5323850	532 8575	5322150	5322575	5322525
UTM/E	352700	352450	362625	361650	361700	354975	358850	358825	355850	362650	355725	331175	318700
Fm.	ASS	ASS	ASS	ASS	ASS	AUR	AUR	AUR	GAI	ASS	GAI	VAD	PON
Lith.	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	SED	LAV	SED	PYR	LAV
Faciès	V2J	V2J	V3A	V2J	V2J	V3B	V3B	V3A	S3/S6	V3A	S3	V2J	V4
S. Fac.	С,М	M,B	м,в	м,в	C,M,B	C,B	Ç	М,В	Li	M,B	Li	×	Ci
AIT.		08	OB OB									a	CB,CL
El. majeu	rs (%)			· · · · · · · · · · · · · · · · · · ·									
SIO2	55,20	56,50	50,50	56,90	51,60	48,90	53,40	48,60	63,90	50.60	63.50	48.30	42.30
TiO2	0,76	0,77	1,25	1,12	1,09	0,76	0,96	0,76	0.71	1,31	0.67	0.41	0.26
A12O3	17,40	17,20	15,30	14,80	16,10	15,30	14,30	14,20	16,50	15,10	16,60	19,50	4,17
Fe2O3 c	1,65	2,56	2,54	1,64	3,00	2,53	1,99	2,04	4,33	2,66	4,21	1,13	0,59
FeO a	4,37	4,48	8,24	5,07	7,11	8,52	8,38	8,24	2,21	9,04	2,17	5,56	7,54
MnO	0,11	0,12	0,15	0,14	0,15	0,18	0,19	0,18	0,08	0,16	0,06	0,12	0,18
MgO C=O	3,61	3,31	5,59	3,86	4,/2	6,29	4,97	7,49	3,56	6,68	3,36	3,13	20,60
Lao	6,24	1,75	8,59	8,34	7,50	10,60	8,44	11,30	1,52	8,20	1,47	8,29	10,28
K20	0 61	1,23	2,11	2,75	2,21	2,10	2,71	0,10	3,00	2,65	3,56	3,57	0,04
P205	0.13	0 10	0,00	0.14	0,35	0,14	0,13	0,10	0.18	0,09	2,05	0,16	0,01
P.A.F.	2.25	2,95	2.30	1.85	2.40	1.20	0.85	2.10	3 00	2 65	1 30	8 10	10,04
Total	96,78	98,28	96,82	96,88	96,46	96,67	96,35	96,97	100,66	99,26	99.62	98.28	96.21
				-	·	-		•		• - •	,	,= ,	,
CO2	0,14	0,10	0,29	0,23	0,01	0,28	0,18	0,90	0,20	0,06	0,06	0,97	5,59
3 Fa202 +	0,01	U,14 7 ⊑4	0,03	0,01	0,01	0,01	0,01	0,01	0,01	0,03	0,01	0.01	0,01
F9203 (0,51	7,54	11,70	1,21	10,90	12,00	11,30	11,20	6,79	12,70	6,62	7,31	8,97
El. traces	(ppm)												
Rb	22	51	3	11	154	1	<1	2	64	<1	91	6	2
Sr	183	330	318	204	305	107	100	133	308	205	360	196	92
Pb	33	26	56	38	52	62	58	60	42	53	36	33	48
Ba	-	-	-	•	-	•	-		-	-	-	-	-
Zr	166	154	106	143	156	38	50	48	144	102	129	71	12
1	29	25	26	33	32	17	20	21	15	27	13	14	10
	20		•	•	23	49	-	-	20	-	21	-	21
Ce	37				41	8	-		29	-	33	-	<0,5
Pr	-		_	-	•		-		20		00	-	<0
Nd	19	-	-	-	18	<10	-		22	_	27		-10
Sm	4	-	-	-	5	2	-	-	3	-	5	-	1
Eu	1	-	-	•	1	<1	-	-	<1	-	1	-	<1
Tb	<1	-	-	•	<1	<1	-	-	<1	•	<1	-	<1
Dy		•	-	-	-	•	•	•	-	-	•	-	-
HO	<1	-	-	•	<1	<1	-	-	<1	-	<1	•	<1
im Vo	1	•	-	-	<1	<1	-	-	<1	-	<1	-	<1
10	1	-	-	-	3	2	•	•	2	-	2	-	1
Th	2	-	-		2	-0.9			0	-	7	-	0
U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-10	-10	~10
v	123	110	197	139	147	272	330	258	124	196	148	84	112
Nb	-	•	-	-	•	•	-	-	-	-	-	-	-
Li	-	-	-	-	-	•	-	•	-	-	-	-	-
Be		•		-	-	-	-	-	-	-	-	-	-
Min	802	1021	1/0	101	122	452	249	440	247	159	266	33	1382
Co	22	30	42	1401	1030	1937	1921	1933	513	1/02	374	1041	1932
Ni	44	48	72	64	77	149	101	177	63	47	12	24	102
Cu	30	68	82	68	78	95	3	78	17	4	34	20	120
Zn	100	91	121	102	119	100	101	91	84	131	80	57	74
Ga	-	-	-	-	-	-	-		•	-	-	-	-
As	<5	<5	<5	<5	<5	<5	171	<5	20	<5	26	<5	<5
Se	<5	5	<5	<5	<5	5	<5	<5	<5	<5	<5	<5	<5
MO .	<1	1	6	4	4	4	4	6	<1	4	1	<1	<1
C4	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Sn	<10 ~10	<1 -10	۱> ۱۰	<1 _10	<1	<1	1> 	<1	<1	<1	<1	<1	<1
Sb	<5	<5	<5	25	~5	<10	<10	01> جر	<10	<10	<10	<10	<10
Тө	<10	<10	<10	<10	<10	<10	<10	<10	<10	<0 ∠10	<0 -10	<0 ~10	<0
Ta	-	•	•	-	•	•	•	-	-	-	-		
W	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Au (ppb)	<1	<1	<1	<1	<1	<1	<1	1	2	<1	1	<1	<1
ы	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	2
71/1102	0 022	0 02	0 009	0.019	0.014	0 005	0.005	0 000	0.00	0.000	0.010		
Nb/Y	0,022	0,02			0,014	0,005	0,005	0,006	0,02	0,008	0,019	0,017	0,005

#Eabant	2219 C	3334 A	2224	2226	2242	2255	2256	0070	0076	2400	0540 A	0540 D	0005
#Echant.	2310 0	2324 M	2334	2330	2342	2335	2350	23/3	2370	2400	2342 A	2342 B	3025
יאיט טוא/א	5323200	5328650	5327800	5325725	5325700	5329875	5328900	5320000	5320000	5319800	5330000	5330000	5331900
UTM/E	334850	350150	356400	355950	359500	359550	359600	336300	336300	332000	349300	349300	349575
Fm.	VAD	AUR	ASS	AUR	AUR	ASS	ASS	TRI	TRI	TBI	ASS	ASS	ASS
Lith	PVR	LAV	IAV	IAV	IAV	IAV	IAV	IAV	IAV	980.	DVB.	DVB	I AV
Easida	VaA	VaE	Val	Van	Vap	Val	Vak	1/2 4	100	60			5.01
Facies	VJA	VJF	V Z J	V36	V36	V 2J	VJA	VJA	VJA	53	V2J	V2J	V2J
SFac.	1,6	Ci	м	C,M	В	C,M	м	С	c	Li	x,b	x,b	M
Alt.				CB	BP	QZ,PY,PO		AM	AM				
El maiau	re (96)		,										
		44.50	50.00	40.00	47.40	67.40	40.00	40.00	10 50				
5102	48,20	44,50	56,30	40,00	47,10	57,40	48,30	49,60	49,50	62,50	61,00	60,40	58,70
TiO2	0,40	0,66	1,06	1,39	2,07	0,70	1,43	1,03	1,03	0,65	0,75	0,75	0,92
A12O3	20,30	15,70	14,80	13,70	12,20	16,50	13,90	14,70	15,30	17,20	16,10	16,30	15,90
Fe2O3 c	1.60	2.26	1.75	4.39	3.49	2.95	2.66	1.60	1 93	4 26	2 89	3 00	1 58
5.0 .	1 72	7.06	1 03	10.27	13.51	2 45	0,00	0.46	0.24	2 15	1 60	1.04	1,00
100 2		7,50	7,33	10,27	10,01	3,43	3,43	9,43	9,24	2,10	1,09	1,04	4,20
MINO	0,09	0,18	0,20	0,20	0,27	0,06	0,18	0,23	0,33	0,08	0,09	0,08	0,11
MgO	8,15	10,50	3,97	4,73	4,95	3,63	6,24	4,68	3,93	3,74	1,09	1,06	4,92
CaO	11.70	7,94	7.37	7.35	7,76	6.12	7.58	10.80	12.20	2.77	5.19	5.17	6.25
Na2O	1 61	2 41	3 64	1 56	2 72	2 21	2 93	1 87	1 11	3 77	3 28	3 25	4 4 2
120		0.01	0,01	0,01	0.00	0.01	0.50	0,10	0,00	0,77	5,20	0,20	7,72
~20 	0,08	0,01	0,13	0,21	0,32	0,91	0,58	0,10	0,02	2,19	2,29	2,27	1,12
P2O5	0,01	0,19	0,45	0,24	0,29	0,14	0,36	0,09	0,08	0,06	0,35	0,35	0,01
P.A.F.	2,25	4,70	2,95	3,50	1,65	3,20	2,45	2,10	3,20	1.80	2.60	2.65	1.85
Total	99.10	97.00	99.55	96.34	96.33	97.27	96.10	96.25	97.87	101.17	97.32	96 92	100 04
	-,			-,	- ,		,·•	,			,	,	,
	0.04	0 77		0.00	0 9F	0 17	0.00	0 4 0	0.00		0.00	4.00	
		0,77	0,65	0,28	0,25	0,17	0,09	2,13	2,08	1,51	0,88	1,38	0,09
3	0,01	0,01	0,01	0,10	0,01	0,65	0,03	0,03	0,09	0,01	0,01	0,01	0,01
Fe2O3 t	6,84	11,10	7,23	15,80	18,50	6,78	13,20	12,10	12,20	6,65	4,77	4,82	6,31
El. traces	(ppm)												
Rb	3	<1	6	4	4	30	13	1	<1	50	82	84	40
Sr	200	545	153	115	36	183	186	106	101	410	501	597	1 4 4
Dh	200	40			00	100	100	100	101	-10	160	502	144
F0	20	49	30		90	35	61	43	41	30	26	25	33
ва	-	-	-	-	•	-	-	-	-	-	-	•	-
Zr	47	58	139	74	102	131	94	70	74	144	143	133	139
Υ	11	14	31	22	39	22	23	30	32	17	23	20	29
Sc	27	-	23	-	47	19	32	-	-	19	-	-	-
ها	A A	-	13	-	7	19	10	_	_	30			
Co	1 20		26		17		10	-	-	38	-	-	-
	20	-	20	-		29	24	-	-	76	-	-	-
Pr	-	-	-	-	-	-	-	•	-	-	•	-	-
Nd	11	-	20	-	18	12	16	-	-	35	-	-	-
Sm	2	-	4	-	5	3	4	-	-	5	-	-	_]
Eu l	<1	-	<1	-	1	1	1	-	-	1	-	_	
Th	-1	_	-									-	-
		-		-	2	•	~ ~ ~	•	-	< 1	-	-	-
Uy		-	-	-	-	-	-	-	-	-	-	-	-
но	<1	-	<1	-	1	<1	<1	-	-	<1	-	-	-
Tm	<1	-	<1	-	<1	<1	<1	-	-	<1	-	-	-
Yb	1	-	3	-	5	2	3	-	-	2	-	-	-
ш	<0.1	-	1	-	1	0	Ő	-	-	ō	_	_	_
ть	-0.5	_	-0.5		-0.5	2	-05					-	-
l			<0,5	-	<0,0	2	<0,5	-	-		-	-	-
	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
lv. I	140	98	151	376	536	142	233	348	363	131	116	121	162
Nb	- 1	•	•	-	-	•	-	-	-	-	-	-	-
LI	- 1	-	-	-	•		-	-	-		-	-	_
Be	-	-	-	-	-	-	-	-	-	-	-	-	
Cr	73	330	104	19	71	112	105	060	262	204			4.00
Min	0.0	1771	2016	1057	0000		190	202	200	204	00	50	108
<u> </u>	324	1771	2010	1957	2000	555	1009	2421	3854	669	736	619	1152
	30	67	31	52	62	32	45	49	51	28	12	10	30
NI	52	463	78	21	46	44	90	101	121	134	19	17	101
Cu	40	65	63	152	9	237	24	84	83	53	273	299	21
Zn	69	120	96	102	199	47	155	100	93	93	49	45	8.2
Ga				-								40	01
A.0	-5	.6	- 5	.5				-	-		-	-	-
	<5 -	<0	<0	<>	<0	<>	<5	<5	<5	44	<5	<5	<5
58	<5	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Mo	<1	2	<1	2	<1	1	2	1	1	<1	<1	<1	<1
Ag	<0,5	<0,5	<0.5	<0,5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	20.5	-0.5
Cd	1	د ا	-، ح1	-1 -	~1	<u>_1</u>	-1				-1	-0,0	
Sn	-10	-10	-10	-10	-10	-10	-10	-10	.10	4.0	<1	< 1	<1
ch		<10	<10	< 10	<10	< 10	< 10	<10	<10	<10	<10	<10	<10
	<5	<5	<5	<5	<5	<5	<5	<5	8	<5	<5	<5	<5
10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
រែង		-	-	-	-	•	•	-	-	•	•	-	-
w	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Au (ppb)	4	<1	1	9	1	3	1	3		4	A	A	
Bi	3	~2	ò	o	ð	-2	_0	-0	-2	-0	ں مر	-0 -0	-0
						-4	-6	~2	~~	~2	< <u>~</u>	<2	<2
ZUTION	0.010	0.000	0.040	0.000	A AAF	0.040	A AA7		A 66-				
	0,012	0,009	0,013	0,005	0,005	0,019	0,007	0,007	0,007	0,022	0,019	0,018	0,015
IND/T	-	-	-	-	-	-	-	-	-	-	-	-	- 1

1
#Echant.	3028 A	3048 B	3058 A	3070 B	3080 B	3084	3089 B	3101 A	3112 D	4022	4050	4082	4086
UTM/N	5331450	5330725	5321750	5319000	5323950	5324150	5329150	5328600	5328475	5330275	5319625	5330775	5331925
UTM/E	348900	349450	350700	345100	322300	321900	351000	355950	365000	350725	341050	351500	352375
Fm.	-	ASS	GAI	TRI	HEV	HEV	ASS	ASS	ASS	ASS	TRI	ASS	ASS
Lith.	INT	LAV	SED	LAV	LAV	LAV	PYR	LAV	LAV	LAV	LAV	LAV	LAV
Faciès	2J	V3A	M4	V2J	V1C/V1D	V2J	V2J	V3A	V2J	V2J	V2J	V3A	V2J
SFac.	м	м	Li	Ci	VA	VA	b	M,B	B	С	Ci	м	c
Alt.	oz.	BP		PY,PO,CP	MG	MG		QZ	QZ,PY	CB	AM		
El. majeu	rs (%)												
SiO2	57,60	54,40	53,20	51,70	60,90	58,80	53,70	49,00	59,00	53,40	57,20	46,70	59,50
TiO2	0,79	1,12	0,55	0,79	0,78	1,26	0,81	1,29	0,78	0,71	0,76	1,59	0,65
A12O3	17,20	17,30	16,70	19,40	13,70	13,30	16,90	16,30	15,90	14,10	16,90	15,00	13,80
Fe2O3 c	1,72	3,19	17,02	1,50	2,15	4,44	2,36	3,19	1,24	1,93	1,51	2,74	3,00
FeOa	2,84	5,20	2,05	5,13	6,35	8,24	5,67	8,38	6,21	4,56	5,13	9,59	2,52
MnO	0,08	0,19	0,08	0,15	0,12	0,18	0,16	0,18	0,08	0,14	0,17	0,19	0,10
MgO	5,03	4,25	3,25	3,78	2,56	2,82	5,02	6,42	2,27	4,04	4,02	6,72	3,35
CaO	7,53	8,19	1,15	9,90	2,93	5,03	5,17	10,00	5,24	9,26	6,27	10,10	12,40
Na2O	5,11	3,36	2,39	4,69	3,29	5,14	4,42	2,00	3,68	3,38	3,98	1,84	0,22
K20	1,99	0,01	2,75	1,19	0,67	0,20	0,08	0,33	1,47	0,35	0,53	0,09	0,33
P205	0,01	0,08	0,08	0,19	0,27	0,30	0,16	0,24	0,15	0,20	0,23	0,30	0,24
P.A.F.	1,35	3,65	0,80	1,10	3,70	0,55	4,00	2,55	1,05	4,90	0,95	3,05	1,45
i o cat	101,25	100,94	100,02	89,52	87,42	100,26	98,45	99,08	97,07	96,97	97,65	97,91	97,56
co2	0.16	0.80	0.02	0 12	1 82	0.10	1 20	0.00	A 11	9 40	0 10	A 4 A	
S	0,10	0,00	0,03	0,13	0.01	0,10	0.01	0,09	0,11	2,48	0,12	0,16	1,12
Fe2O3 1	4.88	8.97	19.30	7.20	9.21	13 60	8 66	12.50	8 1 <i>4</i>	7 00	7 91	13 40	5 201
	,	2,27	,	,,20	0,21		0,00	. 2,00	0,14	7,00	1,21	13,40	5,80
El. traces	(mag)												
Rb	50	<1	103	41	21	3	3	7	48	12	17	3	12
Sr	111	385	250	349	127	99	300	176	349	138	148	186	101
РЬ	28	50	90	43	49	70	52	74	26	25	26	41	22
Ва	-		-	-	-		-	-		-	-		
Zr	123	105	80	111	401	190	109	90	175	118	141	96	92
Y	26	23	13	23	162	80	22	28	23	24	40	31	22
Sc	-	-	21	•	•	31	•	-	18	•	29	-	21
La	-	•	30	-	-	15	-	•	17	-	7	•	12
Ce	-	-	60	-	-	37	•	-	33	-	17	-	23
Pr	-	-	•	-	-	•	•	-	-	-	-	-	-
Nd	-	-	28	-	•	19	-	•	16	•	<10	-	<10
Sm r	-	-	4	•	-	9	-	-	4	-	3	-	3
	-	-	<1	-	•	2	-	-	<1	•	<1	-	<1
		-	< I -			1	-	•	<1	•	<1	-	<1
Но		-	-1		-	2			-1		-	-	-
Tm	-	-	1	-		1		-	-1		-1	-	<1
Yb	-	-	2	-	-	9	-	-	3		4	_	
ա	-	-	ō		-	2	-	-	Ő	-	1		-
Th		-	7		-	1		-	2		<0.5	-	-0.5
U I	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
v i	112	239	126	168	42	57	154	207	147	157	223	308	139
Nb	-	-			-	-	-	-		-			_
LI	-	•	-	-	•	•	-	-	-	-	-	-	-
Be	-	•	-	•	-	•	-	-	-	-	-	-	-
Cr	101	139	226	33	238	65	130	190	64	109	91	269	124
Min	943	1870	649	1530	1084	1767	1471	1905	<1	1459	1611	1970	1025
Co	18	30	17	23	11	20	35	55	27	31	25	52	20
NI	79	53	70	68	5	9	74	122	61	92	36	107	80
	<1	68	3	3	15	2	78	87	99	66	34	20	7
2n Co	36	99	57	61	131	147	103	128	91	84	135	130	52
Δe		- -F	.F	- .e	- .F		-	-	-		-	-	-
Se	C> a_	<0	<0 _F	<0 -F	<0 -F	<0 -F	<0 .F	<5	<5	17	8	<5	12
Mo	21	د» 1	دی _1	<) 1	<0 _1	0> ۱	<0	<0	C> ب	5	<5	<5	6
Ag	<0.5	<0.5	<0.5	20.5	20.5	-0.5	نه ۲ ۵ د	∠ ת ת י	ا> ۲۰۰۶	J _0 F	<1 _0 F	<1 _0 F	2
ca l	<1	<1	<1	<0,0 e1	<0,0 <1	~0,0	-1 -1	<0,0 -1	<0,0 _1	در,5 بر	<0,0 _1	<0,0	<0,5
Sn	<10	<10	<10	<10	<10	<10	<10	<10	<10	-10	-10	-10	-10
Sb	<5	<5	<5	<5	<5	<5	<5	<5	5	-5	-5	~5	د ان اعہ
Те	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Ta	-	•	-	-	-	-	-	-	•		-	-	-
w	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Au (ppb)	2	2	<1	6	6	5	2	<1	<1	<1	<1	<1	<1
BI	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7								_	_				
27/1102	0,016	0,009	0,015	0,014	0,051	0,015	0,013	0,007	0,022	0,017	0,019	0,006	0,014
	•	-	-	-	-	-	-	-	-	-	-	-	_

#Echant.	4089	4101	4107	4118	4136	4139	4156	4169	4189	4201	4203	4225	4226
UTM/N	5331600	5331150	5330900	5328600	5326050	5327300	5330575	5318550	5330550	5329125	5329850	5325475	5325650
UTM/E	352250	352050	352325	362150	352150	351950	351400	343350	355350	351400	359875	356175	359900
Fm.	ASS	ASS	ASS	ASS	GAI	AUR	ASS	TRI	ASS	ASS	ASS	AUR	AUR
Lith.	LAV	LAV	LAV	LAV	SED	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV
Faciès	V3A	V3A	V3A	V2J	S4	V3B	V3A	V3B	V2J	V3B	V2J	V3A	V3A
SFac.	м	C C	м	С	Li	м	М	С	C	м	м	М	м
ΑΠ.		QZ							QZ			AM	AM
El. maieu	rs (%)									····			
SiO2	48.10	56.70	48.80	47.90	65.20	48.50	56.80	47.90	56.00	48.90	58.30	58 50	48 20
TIO2	1,31	1,02	1,41	1,29	0,55	1,86	0.97	0.80	1.16	1.14	0.66	1.95	2.15
A12O3	14,50	14,30	14,00	17,30	14,60	12,30	15,50	14,20	17,00	14,80	15,60	10,30	13,10
Fe2O3 c	2,49	1,82	2,09	1,64	3,06	4,89	1,80	2,24	1,78	3,69	1,86	4,39	4,78
FeO a	8,38	4,73	9,46	8,51	2,05	11,89	3,92	8,51	5,66	9,19	3,58	8,11	12,08
MinO	0,16	0,13	0,16	0,20	0,06	0,30	0,15	0,20	0,13	0,18	0,10	0,19	0,25
MgO	5,83	3,67	7,38	5,08	3,77	4,56	3,86	7,32	5,19	6,07	3,84	2,25	3,65
Nazo	0,03	0,27	2,09	3 00	2,24	0,09	7,08	2.15	0,37	/,55	6,57	6,84	6,25
K20	0.13	0.38	0.04	0.43	0.78	0,20	0.35	0.46	0,01	0.14	3,64	2,03	2,48
P2O5	0.40	0.33	0.41	0.41	0,15	0,19	0.31	0.08	0,00	0,14	0,37	0,15	0,15
P.A.F.	4,35	2,75	3,45	2.85	2,30	0.60	2.10	1.40	1.90	3.05	1,95	1 45	2 25
Total	96,41	96,57	96,85	96,40	98,00	96,19	96,94	96,26	100,19	96,54	97,30	96,54	95,75
									·				
CO2	1,24	1,34	0,10	0,13	0,01	0,15	0,46	0,09	0,07	0,01	0,15	0,11	0,25
5 Fa202 +	11 00	U,U1 7 00	10,01	0,01	0,01	10.01	0,03	0,04	0,07	0,01	0,01	0,02	0,34
1 8203 1	17,00	7,00	12,00	11,10	5,54	10,10	6,10	11,70	8,07	13,90	5,84	13,40	18,20
El. traces	(ppm)			····	-					• • • • • • • • • • • • • • • • • • • •			
Rb	7	16	2	13	31	2	17	22	3	2	42	<1	2
Sr	167	164	121	159	397	81	297	122	99	298	174	86	86
20	37	23	37	31	24	49	19	37	26	44	15	37	47
Ba 7r	-	120			-	-	-	-	-		-	-	-
v	27	130	97	34	170	40	122	40	161	55	131	164	149
Sc		22		29	14	42	20	47	30	18	20	62	29
La		16	-	22	4	7		3	-		-	40	
Ce	-	34	-	46	9	19		6	-	-	-	31	
Pr	-	-	-	-	-	-	-	•	-		-	-	-
Nd	-	19	-	29	<10	22	-	<10	-	•	-	31	-
Sm	-	5	•	6	1	5	-	2	-	•	-	7	-
ТЬ		-1	-	1	<1	2	•	<1 -1	-	-	-	2	-
Dv	-	-	-			-	-				-	<1	-
Ho	-	<1	-	<1	<1	<1	-	<1	-	-	-	1	_
Tm	-	<1	-	1	<1	1	-	1	-	-	-	1	-
Yb	· ·	3	-	4	1	5	-	3	-	•	-	7	-
		0	-	1	<0,1	1	•	1	-	-	-	1	-
10	- 10	-10	- 10	-10	3	<0,5	-	<0,5	-	-	-	<0,5	-
v	250	166	207	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Nb	- 2.50	-				420		310	160	301	116	189	420
LI	-	-	-	-	-	-	-		-		_	_	
Be	-	•	-	-	•	-	-	-	-	-	-	-	-
Cr	207	80	192	147	287	97	9	408	106	163	120	2	69
Mn Or	1554	1256	1554	2000	474	3507	1419	2038	1231	1742	937	1835	2589
	52	31	45	38	10	61	32	51	31	33	21	22	54
Q.	95	81	71	20	4	32	70	116	60	/0	62	2	36
Zn	106	94	113	148	75	193	78	101	104	125	74	126	101
Ga	-	-	-	-	•	-	-	-	-		-	-	
As	6	10	12	13	8	<5	6	<5	<5	13	<5	5	<5
Se	<5	9	<5	12	<5	<5	<5	<5	<5	<5	8	<5	<5
MD An	<1	<1	<1	<1	<1	3	<1	2	<1	1	<1	1	<1
Cd I	<0,5	<∪,5 ار	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	1	1	<0,5	<0,5
Sn	~10	210	-10	-10	-10	<1 _10	<1	1> ۱۰۰	<1	(> ۱۰	1> ^1	<1 	<1
Sb	<5	<5	<5	<5	<5	<5	<5	<iv 25</iv 	-5	01> هر	<10	<10	<10 _s
Te	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	د» 10
Ta	-	-	-	-	-	-	-	•	•	-	-	-	-
W	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
AU (PPD)	<1 _0	<1	<1	<1	<1	<1	<1	<1	<1	<1	4	<1	<1
⁻	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zr/TiO2	0,006	0,014	0,007	0,014	0.031	0.005	0.013	0,005	0.014	0.005	0.02	0 008	0 007
Nb/Y	-	•	· · ·	•	•					-,			

#Echant.	5040	5049 A	5051 C	5052 A	5056 B	5469	5470	6049 c	6051 c	6083 a	6087 a	6094	6098 c
UTM/N	5316625	5315750	5315675	5315675	5315725	5331475	5331475	5315650	5316350	5316775	5317500	5314875	5315750
UTM/E	343625	343325	343225	343125	343025	336350	336350	341175	343350	343025	342925	342725	342650
Fm.	TRI	TRI	TRI	-	-	VAD/GAI	VAD/GAI		-	TRI	TRI	-	-
Lith.	LAV	LAV	PYR	INT	INT	PYR	PYR	INT	INT	LAV	LAV	INT	INT
Faciès	V2J	V2J	V2J	11	11	V2J	V2J	13 A	11	V2J	V3G	13A	11
SFac.	М М	В	x	PORP	PORP	1	1		PORP	В	в		PORP
Alt.													
El. majeu	rs (%)												
SIO2	56,20	53,00	63,70	64,50	65,80	66,80	58,20	45,80	65,20	55,50	48,90	48,20	65,20
TIO2	0,88	0,75	0,28	0,42	0,31	0,29	0,49	0,73	0,34	0,91	0,75	0,76	0,35
AI2O3	17,00	17,70	17,90	16,60	17,30	18,50	19,40	10,20	17,00	19,20	15,70	12,10	17,70
Fe2O3 c	0,70	3,97	2,31	1,25	0,89	0,89	2,89	1,04	0,65	1,05	0,88	1,77	0,84
FeO a	5,49	4,25	1,60	2,28	1,33	1,47	3,61	9,77	2,14	4,55	9,11	7,50	1,40
MnO	0,14	0,14	0,02	0,02	0,03	0,04	0,03	0,18	0,05	0,10	0,20	0,18	0,05
MgO	4,52	3,92	1,06	2,02	1,39	1,05	1,67	15,70	1,72	4,14	9,46	10,40	1,67
CaO	6,35	11,30	5,54	2,39	3,06	4,33	4,86	9,46	3,69	6,47	11,30	11,40	4,97
Na2O	4,81	3,21	3,95	4,28	6,05	5,49	4,75	0,64	5,45	4,89	1,97	1,79	5,45
K2O	0,81	0,28	1,78	3,31	1,24	0,88	0,70	2.05	0,69	0,78	0,14	1,13	0,42
P2O5	0,11	0,23	0,07	0,15	0,13	0,06	0,10	0,22	0,12	0,20	0,04	0,25	0,12
P.A.F.	1,19	1,54	1,42	1,76	1,12	0,62	1,01	2,17	1,64	1,44	1,22	2,69	1,05
fotal	98,20	100,29	99,63	98,98	98,65	100,42	97,71	97,96	98,69	99,23	99,67	98,17	99,22
000									_				
02			-	0,13		•		-	0,19	-	0,07	0,77	-
5	-	0,05	0,18	0,07	0,20	0,06	0,02	-	0,07		0,01	0,02	0,04
re203 t	6,88	9,13	4,34	3,92	2,47	2,62	7,22	12,01	3,10	6,22	11,10	10,30	2,49
CI +	(nn=)												
DI. TRACES	(ppm)	0	60	110	75	10	10						
e.	260	200	260	220	220	10	10	170	23	37	6	44	31
Dh	-12	-12	-12	-12	-10	400	400	.12	570	310	/6	620	670
Ra	224	89	312	854	301	105	142	1000	212	<12	<12	20	<12
7r	130	110	83	130	110	100	110	58	130	140	44 50	3/2	180
Y	25	22	7	6	4	100	5	25	130	240	50	90	130
Sc	24	19	Ŕ	8	4	5	8	47	7	24	20	22	3
la	14	15	8	ă	10	7	8	11	17	23	38	10	5
Ca	31	31	12	15	17	11	22	25	29	18	2	39	16
Pr	<10	<10	<10	<10	<10	-10	~10	~10	-10	~10	-10	-10	-10
Nd	30	30	25	<25	<25	- 25	-25	35	35	~25	<10	< IV 55	<10
Sm	<2	<2	<2	<2	<2	<2	4	<2	<2	-20	-2	-2	~25
Eu	2	2	1	1	<1	<1	<1	2	1	2	2	3	1
ть	-	-		-	-	•	-	-	-	-	-		
Dy	3	1	<1	<1	<1	<1	3	3	2	3	4	3	<1
Ho	-	•	-	-	-	-	•		-		-	-	-
Tm		-	•	-	•		-	•	-		-	•	-
Yb	-	•	-	-	•	-	-		-	-	-	-	-
ա		-	-	-	-	-	-	-	•		-	-	
Th	6	<3	6	7	4	<3	7	6	<3	<3	<3	4	<3
U	-	•	-	•	•	-	-	-	-	-	-	•	-
V	137	142	46	69	45	31	65	227	55	169	233	230	47
ND	8	/	5	7	6	4	5	5	5	8	7	5	4
	24	16	31	22	38	26	32	65	24	40	11	67	36
De	<1	<1	<1	<1	2	<1	<1	<1	<1	<1	<1	<1	<1
Un Nn	l .	-	•	•	-	-	-	•	•	-	-	•	-
Co		-	- 7	-	•	•	-	-	•	•	-	-	-
NI	52	24		10	9		10	33	8	21	45	42	4
0	12	47	100	20	100	0	26	354	22	44	154	163	7
70	00	42	109	20	129	13	21	34	27	54	28	130	30
Ga	14	21	20	10	12	40	00	93	10	67	65	94	22
Δs				12	13	17	25	12	10	18	14	17	17
Se			-	-						-	-	-	-
Mo	<4	c 4	<4	د4	د4	-4	-4	-1	- ^ ^	- ۸ر	-	- - A	
Ag	-	-	-				-					<4	<4
Cd	<2	<2	<2	<2	<2	<2	<2	4	<2	-2	-2	-2	-0
Sn	<10	<10	<10	<10	<10	13	<10	<10	<10	<10	<10	<10	<10
Sb	-	-	-	-	-	-	•	-	-	-	-	-	
Te	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Ta	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
W	•	-	-	-	-	-	-	-	-	-	-	-	
Au (ppb)	•	-	•	-	•	-	-	•	-		-	-	-
Bi	-	•	•	-	-	-	-	-	-	-	-	-	-
7-17-00	0.01-							_					
	0,015	0,015	0,03	0,031	0,035	0,034	0,022	0,008	0,038	0,015	0,007	0,013	0,037
T /D/I	0,32	0,318	<u>0,714</u>	1,167	1,5	<u>1,333</u>	1	0,2	0,455	0,333	0,25	0.227	1.333

#Echant.	7005	7007	7014	7020	7026	7029	7030	7032	7033	7034	7038	7039	7040
UTM/N	5334800	5327175	5336200	5326975	5324750	5323850	5333650	53337 50	5333650	5336425	5336925	5337000	5337025
UTM/E	312450	317050	315100	322200	319350	319025	319200	319150	313500	315150	314150	314175	314200
Fm.	DUB	VAD	DUB	VAD	HEV	HEV	VAD ?	VAD ?	DUB	DUB	DUB	DUB	DUB
Lith.	LAV	PYR	LAV	PYR	LAV	LAV	PYR	PYR	LAV	LAV	LAV	LAV	LAV
Faciès	V3A	V2J	V3A	V2J	V2J	V3A	V2J	V2J	V2J	V3A	V3A	V2J	V4
SFac.	M,C	1	c m	X,I	MC	M,Ci	x ,I	1	C	C		м	м
AIt.	08	CB CB	CB		CB,CL	CB			CB	CB	P		
Fl. maieu	rs (%)												
SiO2	46.90	50.90	51.90	61.70	49.80	47.50	68.00	65 10	51.90	53 40	58.80	56 30	41 30
TIO2	0.47	0,78	0.76	0,96	1,19	1.12	0.91	0.91	0.70	0.58	0.74	0.91	0.58
A12O3	19,00	14,50	13,50	14,60	13,20	15,30	13,60	14,80	17,10	16,60	12,60	17,60	6,57
Fe2O3 c	1,89	1,53	4,01	1,74	2,00	1,42	1,82	1,80	0,94	0,90	3,03	2,00	2,43
FeO a	7,75	5,25	8,00	3,84	8,01	9,24	5,59	2,76	4,55	4,55	7,45	4,08	9,05
MinO	0,18	0,18	0,20	0,08	0,14	0,19	0,13	0,08	0,09	0,17	0,18	0,10	0,22
MgO	6,68	5,80	4,49	3,89	4,02	4,65	3,79	3,13	6,32	7,05	4,27	4,64	21,20
	1 02	8,50	10,10	4,72	7,90	2,51	0,30	4,44	3,89	4,60	7,41	5,70	9,31
K20	0.49	0.02	2,00	2,37	0.70	0,51	0,48	2,03	1 3 8	4,10	2,10	0,37	<0,10
P2O5	0.02	0.22	0.07	0.22	0.25	0.06	0.16	0.19	0.19	0.05	0,00	0,00	0,02
P.A.F.	6,76	8,47	3,31	2,81	9,14	8,18	3,30	2.30	7.68	7.25	2.09	2.21	7.41
Totai	99,10	99,34	98,40	99,10	99,05	98,75	98,78	100,31	98,58	99,49	98,87	99,50	98,12
	_	-		_	_								
CO2	3,23	5,68	1,64	0,34	6,75	5,32	<0,05	0,25	4,66	3,74	<0,05	<0,05	2,54
5 Fe201 +	10.02	<0,01 7 40	13.00	20,01> A 0 A	11 00	11 00	<0,01	0,02	U,06 6 05	<0,01	0,03	< 0,01	<0,01
1. 42.00 1 1	10,00	7,40	10,00	0,00	11,00	11,00	0,10	4,50	0,05	0,01	11,40	0,50	12,00
El. traces	(ppm)												
Rb	11	<3	<3	62	15	8	13	61	41	4	<3	7	<3
Sr	80	230	100	180	140	85	260	260	160	100	77	120	52
Pb	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
13a 7,	100	27	22	504	131	382	384	666	473	58	30	177	4
v	13	20	36	220	290	24	190	230	100	52	60	130	35
Se	52	29	67	29	31	50	35	27	10	13	38	23	10
La	~2	21	3	24	16	2	22	25	11	5	-2	10	-2
Ce	3	51	10	51	44	11	53	51	28	9	8	47	<3
Pr	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Nd	<25	55	45	95	95	80	45	95	35	30	50	85	50
Sm	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	2	3	3	2	4	3	3	2	2	2	3	3	3
Dv	2	- 4	6	- 5	-	- 5				- 2	-	-	-
Ho	-	-	-	-		-	-	-	-	-	-	-	2
Tm	•	-	-	-	-	-	-	-	-	-	-		
Yb	-	-	•	•	-	-	-	-	-	-	-	-	-
	-	:	•	-	-	:	•	•	-	-	-	•	-
	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
lv I	182	167	331	190	102	- 367	185	164	-	-	-	-	-
No	6	9	7	10	14	7	10	10	8	7	300	194	· · · /
LI	35	54	5	23	46	36	43	19	31	30	7	15	-1
Be	<1	1	2	3	3	2	1	3	2	1	2	2	1
Cr	•	-	-	-	-	-	-	-	-	-	-	-	-
Mn	-	-	•	-	-	-	-	-	-	•	-	-	-
	39	30	36	22	18	40	15	14	23	27	33	21	89
a.	71	194	147	94	29	114	40	40	80	101	59	60 50	696
Zn	66	94	78	75	100	83	101	53	62	99	88	50	84
Ga	8	10	14	16	21	18	15	15	10	5	15	14	8
As	-	-		•	•	-	-	-	-	-		-	-
Se	-	•	•	-	-	-	-	-	-	-	-	-	-
Mo	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Cd	2		-2	2	-2	- 22	- 22	۔ ور	۔ در	-	-	-	-
Sn	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<2 <10	<2 ~10	~2
Sb	-	•	-	-	-	-	•		-	-		-	
Te	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
18. W	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Au (nob)	-	-	-	•	•	•	-	-	-	-	-	•	-
Bi	-	-	-	-	-	-	-	-			-	-	
												-	1
Zr/TiQ2	0,007	0,021	0,008	0,023	0,024	0,006	0,021	0,025	0,014	0,009	0,008	0,014	0,006
ND/Y	0,462	0,409	0,194	0,333	0,144	0,292	0,313	0,323	0,533	0,538	0.211	0.435	0.7

UTMME 5337050 5337450 5337450 5334260 <th< th=""><th>#Echant.</th><th>7042</th><th>7043</th><th>7044</th><th>7045</th><th>7046</th><th>7051</th><th>7052</th><th>7055</th><th>7063</th><th>7064</th><th>7065</th><th>7066</th><th>7067</th></th<>	#Echant.	7042	7043	7044	7045	7046	7051	7052	7055	7063	7064	7065	7066	7067
UTIME 114200 114201 114400 1080200 508020 507250 11280	UTM/N	5337050	5337100	5337125	5337150	5336800	5327875	5327800	5327600	5334500	5334350	5334350	5334325	5334650
Fm. DUB DUB <thdub< th=""> <thdub< th=""> <thdub< th=""></thdub<></thdub<></thdub<>	UTM/E	314200	314175	314175	314175	314400	308000	308025	307750	312450	312550	312600	312325	312350
Linh. PFR LAV LAV <thlav< t<="" th=""><th>Fm.</th><th>DUB</th><th>DUB</th><th>DUB</th><th>DUB</th><th>DUB</th><th>HEV</th><th>HEV</th><th>HEV</th><th>DUB</th><th>DUB</th><th>DUB</th><th>DUB</th><th>DUB</th></thlav<>	Fm.	DUB	DUB	DUB	DUB	DUB	HEV	HEV	HEV	DUB	DUB	DUB	DUB	DUB
Faciba V3A	Lith.	PYR	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV
S.r.#ac. X M M M C MB MC, C M C <thc< th=""> <thc< th=""> <thc< th=""> <thc< th=""><th>Faciès</th><th>V3A</th><th>V3A</th><th>V3A</th><th>V3A</th><th>V3A</th><th>V1C/V1D</th><th>V2J</th><th>V2J</th><th>V2J</th><th>V2J</th><th>V3A</th><th>V3A</th><th>V3A</th></thc<></thc<></thc<></thc<>	Faciès	V3A	V3A	V3A	V3A	V3A	V1C/V1D	V2J	V2J	V2J	V2J	V3A	V3A	V3A
Art. L2 C3 C	SFac.	×	м	м	м	C	M,B	M,C,CI	M	C C	C m	C T	C	c
El majoura (%) Sin 20 51,20 49,50 51,20 49,20 59,40 75,60 71,50 59,10 49,80 49,80 43,30 47,50 17,50 7,50 7,50 7,50 7,50 7,50 7,50 7,50	AII.								QZ	CB CB	CB	œ	CB	CB
Since Since <th< th=""><th>El. maieu</th><th>rs (%)</th><th></th><th></th><th></th><th></th><th></th><th>*****</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	El. maieu	rs (%)						*****						
Ticz 0.66 0.54 0.52 0.78 1.34 0.93 0.65 0.62 0.64 0.57 0.35 F4203 2,42 2,07 2,57 2,21 2,58 0,44 0,75 1,44 0,67 1,18 0,74 6,74 6,74 6,74 6,74 6,75 1,44 0,57 1,44 0,67 1,18 0,74 6,75 1,44 0,75 1,44 0,67 0,14 0,75 1,44 0,67 0,14 0,75 1,44 0,67 0,14 0,75 1,44 0,67 0,13 0,14 0,14 0,14 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13	SIO2	51.30	49.50	51.20	49.30	59,40	75.60	71.50	59.10	49.90	49.60	43.30	47 50	47 10
AIZC3 19,40 15,50 15,20 16,90 12,20 13,30 14,70 13,30 16,70 15,30 16,70 15,30 16,70 15,30 16,70 15,30 16,70 15,30 16,70 15,20 5,38 5,38 5,73 7,24 8,39 7,02 7,85 0,15 0,78 4,10 6,23 5,38 3,74 7,46 6,57 1,33 14,40 0,15 0,16 0,04 0,05 0,13 0,18 0,13 0,18 0,13 1,44 0,15 0,13 0,12 0,13 0,12 0,13 1,46 0,15 0,13 0,12 0,12 0,12 0,12 0,12 0,12 0,12 0,12 0,12 0,13 0,13 0,23 0,14 0,14 0,16 0,03	TIO2	0,66	0,34	0,50	0,32	0,79	0,58	1,34	0,93	0,59	0.62	0.84	0.57	0.35
F#Q0a 2,42 2,07 2,57 2,21 2,58 0,44 0,75 1,64 0,67 1,11 1,18 0,76 1,24 MO 0,12 0,19 0,20 0,19 0,18 4,00 1,18 0,19 0,24 0,19 0,24 0,19 0,24 0,19 0,24 0,19 0,24 0,19 0,24 0,13 0,18 0,13 0,18 0,13 0,18 0,13 0,18 0,13 0,18 0,15 0,13 0,14 0,04 0,28 0,15 0,13 0,04 0,04 0,04 0,05 0,05 0,03 0,03 0,04 0,01 0,04 0,01 0,01 0,01 0,01 0,04 0,02 0,07 0,13 0,29 0,32 0,14 0,44 0,44 0,45 0,16 0,13 0,14 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,0	A1203	19,40	16,50	15,20	16,90	12,00	13,30	14,70	13,30	18,70	16,20	18,60	14,90	12,80
FeO a 4.56 7.24 8.39 7.02 7.85 0.15 0.78 4.10 5.23 5.38 5.74 7.46 6.57 MbO 4.82 8.53 7.21 8.40 4.48 0.19 0.24 6.13 6.36 3.79 6.23 7.23 6.31 MbO 0.39 1.39 5.35 1.53 <th1.53< th=""> <th1.53< th=""> <th1.53< th=""></th1.53<></th1.53<></th1.53<>	Fe2O3 c	2,42	2,07	2,57	2,21	2,58	0,44	0,75	1,64	0,67	1,11	1,18	0,75	1,24
MHO 0.12 0.19 0.20 0.19 0.14 0.014 0.064 0.064 0.064 0.07 0.14 0.15 0.13 0.15 0.13 0.15 0.13 0.15 0.13 0.16 0.13 0.16 0.13 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.04 0.02 0.07 0.03 0.02 0.07 0.03 0.02 0.07 0.03 0.02 0.07 0.03 0.02 0.07 0.03 0.02 0.04 0.01 <th0.01< th=""> 0.01 0.01 <</th0.01<>	FeO a	4,56	7,24	8,39	7,02	7,85	0,15	0,78	4,10	5,23	5,38	8,74	7,46	6,57
MpC 4,82 8,33 7,21 8,40 4,47 0,19 0,24 6,13 6,16 5,22 7,23 6,31 CM200 0,31 0,19 0,14 0,04 0,05 0,03 0,14 0,04 0,05 0,03 0,14 0,04 0,01 0,05 0,03 0,014 0,04 0,01 0,04 0,01 0,04 0,01 0,04 0,01 0,01 0,02 0,15 09,47 08,51 09,47 08,51 0,01 <	MinO	0,12	0,19	0,20	0,19	0,16	<0,01	0,04	0,08	0,07	0,14	0,15	0,13	0,19
chardon 6,30 9,07 6,30 9,07 6,30 9,18 1,10 3,10 3,38 9,27 22 5,34 1,10 KO 0.02 1,00 2,315 1,34 1,30 1,34 1	MgO C=O	4,82	8,53	7,21	8,40	4,4/	0,19	0,24	6,13	6,36	3,79	6,23	7,23	6,31
xxxx 0.192 0.193 0.024 0.115 1.002 0.115 1.003 1.74 0.044 0.028 0.114 0.044 0.028 0.014 0.044 0.028 0.014 0.044 0.028 0.014 0.044 0.040 0.020 0.017 0.028 0.014 0.044 0.014 0.040 0.020 0.017 0.028 0.014 0.044 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.028 0.014 0.014 0.028 0.014 0.014 0.014 0.028 0.014 0.014 0.014 0.014 0.028 0.014 0	Na2O	3,01	9,07	1 30	9,70	2,99	0,90	1,01	3,01	3,09	9,52	1,22	5,84	11,80
PROS 0.07 0.03 0.02 0.07 0.13 0.28 0.14 0.04 0.05 0.03 <th< th=""><th>K20</th><th>0.92</th><th>0.19</th><th>0.02</th><th>0.02</th><th>0.15</th><th>1.09</th><th>1.74</th><th>0.04</th><th>0.28</th><th>0.15</th><th>0 15</th><th>2,22</th><th>0.03</th></th<>	K20	0.92	0.19	0.02	0.02	0.15	1.09	1.74	0.04	0.28	0.15	0 15	2,22	0.03
P.A.F. 4/23 3/41 3/51 2/88 1/34 1/92 8/76 9/7 9/8/50	P205	0.07	0.03	0.04	0.02	0.07	0.13	0.29	0.32	0.14	0.04	0.05	0.03	0,03
Total 99,84 98,86 99,79 99,65 99,33 99,15 98,48 99,05 99,47 98,18 99,59 CO2 1,25 <0,05 <0,05 <0,05 <0,06 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01<	P.A.F.	4,23	3,41	3,16	3,51	2,88	1,34	1,93	4,92	8,76	11,00	10,40	12,10	11.70
CO2 1,25 <0,05	Total	99,84	98,86	98,79	99,05	98,85	99,33	99,15	98,48	99,05	99,47	98,51	98,89	99,59
Love 1,4:b eV,Ub eV,Ub <th< th=""><th>000</th><th></th><th>-</th><th></th><th>.</th><th>- -</th><th><u> </u></th><th>_</th><th>_</th><th>_</th><th>-</th><th></th><th></th><th></th></th<>	000		-		.	- -	<u> </u>	_	_	_	-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CO2 S	1,25	<0,05	<0,05	< 0,05	0,91	0,62	0,46	2,13	6,20	7,88	6,34	8,98	8,25
International and the set of the	Fe2O3 1	7 54	10.20	12 00	10 10	11 40	0,05	<0,01 1 63	<0,01 6 25	<0,01 6.55	<0,01 7 1 F	<0,01	<0,01	<0,01
EL trees (ppm) Fb 12 4 <3 3 3 3 28 56 53 6 43 6 33 43 23 28 56 54 2 6 43 54 43 52 412 412 412 412 412 412 412 412 412 41		, ,,•,	,	. 2,00			0,01	1,00	0,20	0,00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11,00	3,15	0,02
Rb 12 4 <3	El. traces	(ppm)												
Sr 310 96 63 53 55 120 110 360 140 170 130 97 65 Ba 270 65 5 8 147 302 464 186 106 48 29 51 20 Y 10 16 26 16 41 25 32 24 13 14 19 14 11 Sc 31 60 69 57 68 16 17 26 43 49 65 49 42 La 3 -2 2 -2 42 20 28 60 24 -3 5 -3 7 Pr -2 <th>Rb</th> <th>12</th> <th>4</th> <th><3</th> <th><3</th> <th><3</th> <th>28</th> <th>56</th> <th><3</th> <th>6</th> <th><3</th> <th><3</th> <th><3</th> <th><3</th>	Rb	12	4	<3	<3	<3	28	56	<3	6	<3	<3	<3	<3
PD <12	Sr	310	96	63	53	55	120	110	360	140	170	130	97	65
base 2/0 63 3 6 147 302 404 186 105 48 29 51 20 Y 10 16 26 16 41 25 32 24 15 14 19 14 11 Sc 31 60 69 57 68 16 17 26 43 49 65 49 42 La 3 42 2 42 42 20 26 43 5 43 7 Pr -2 42 <th>PO</th> <th><12</th> <th><12</th> <th><12</th> <th><12</th> <th><12</th> <th><12</th> <th>12</th> <th><12</th> <th><12</th> <th><12</th> <th><12</th> <th><12</th> <th><12</th>	PO	<12	<12	<12	<12	<12	<12	12	<12	<12	<12	<12	<12	<12
Circle	77	2/0	20	5 /1	27	147	302	404	186	106	48	29	51	20
Sc 31 60 68 57 68 16 17 26 43 49 65 49 42 La 3 -2 2 -2 -4 10 -10 -10 -10 -10 -2	Y	10	16	26	16	41	25	32	210	15	43	10	41	29
La 3 42 2 42 42 42 22 20 26 11 42 2 2 2 2 42 42 Ce 8 6 6 6 6 7 51 50 60 24 43 5 43 7 Pr 42 42 42 42 42 42 42 42 42 42 42 42 42	Sc	31	60	69	57	68	16	17	26	43	49	65	49	42
Ce B 6 6 6 7 51 50 60 24 43 5 43 7 Nd 45 425 40 30 60 55 85 85 45 35 42 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 </th <th>La</th> <th>3</th> <th><2</th> <th>2</th> <th><2</th> <th>4</th> <th>22</th> <th>20</th> <th>26</th> <th>11</th> <th><2</th> <th>2</th> <th>-2</th> <th>-2</th>	La	3	<2	2	<2	4	22	20	26	11	<2	2	-2	-2
Pr -62 -63 -6	Ce	8	6	6	6	7	51	50	60	24	<3	5	<3	7
Nd 45	Pr	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Sm <42	Nd	45	<25	40	30	60	55	85	85	45	35	<25	<25	<25
Li 2 2 3 1 1 2 1 <1	Sm	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Dy 1 3 4 3 6 3 5 5 <1 2 2 1 2 Ho - <th></th> <th>2</th> <th>2</th> <th>3</th> <th>2</th> <th>3</th> <th>1</th> <th>1</th> <th>2</th> <th>1</th> <th><1</th> <th>2</th> <th>1</th> <th><1</th>		2	2	3	2	3	1	1	2	1	<1	2	1	<1
Ho -	DV	1	3	. 4	3	. 6	3	- 5	- 5	- 1		- 2	-	-
Tm -	Но	-	-	•		-	-			-	-	-		-
Yb ·	Tm	-	-	-	-	-	-	-	-	-	-	-	-	-
LLI	Yb	-	-	-	•	•	-	-	-	•	-	-	-	-
III c3 c3 <thc3< th=""> c3 <thc3< th=""> c3 c3 <thc< th=""><th>ш</th><th></th><th>•</th><th>-</th><th>•</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th></thc<></thc3<></thc3<>	ш		•	-	•	-	-	-	-	-	-	-	-	-
V 172 189 246 178 346 18 209 110 152 190 255 185 143 Nb 6 6 9 6 7 15 14 13 8 6 7 6 6 Li 19 15 12 13 6 2 6 53 37 35 51 41 34 Be 2 1 1 1 2 2 3 3 2 1 1 1 1 41 Cr -	U	-	 < 3 - 	<j -</j 	<j -</j 	<3	<3	<3	<3	<3	<3	<3	<3	<3
Nb 6 6 9 6 7 15 14 13 8 6 7 6 6 Li 19 15 12 13 6 2 6 53 37 35 51 41 34 Be 2 <1 1 <1 2 2 3 3 2 1 1 1 1 1 34 Be 2 <1 1 <1 2 2 3 3 2 1 <th>v</th> <th>172</th> <th>189</th> <th>246</th> <th>178</th> <th>346</th> <th>18</th> <th>209</th> <th>110</th> <th>152</th> <th>190</th> <th>255</th> <th>185</th> <th>143</th>	v	172	189	246	178	346	18	209	110	152	190	255	185	143
Li 19 15 12 13 6 2 6 53 37 35 51 41 34 Be 2 41 1 41 2 2 3 3 2 1 1 1 1 4 41 Cr	Nb	6	6	9	6	7	15	14	13	8	6	7	6	6
Be 2 <1	Li	19	15	12	13	6	2	6	53	37	35	51	41	34
Cr -	Be	2	<1	1	<1	2	2	3	3	2	1	1	1	<1
NI 1		-	-	-	•	-	•	-	-	-	•	-	-	-
Ni 35 11 93 103 58 37 3 176 106 48 55 92 129 Cu 76 7 64 5 151 44 109 71 5 42 33 35 40 Zn 74 47 74 50 88 55 27 77 70 55 87 76 63 Ga 16 6 11 8 10 13 16 13 7 4 8 6 5 As -	Co	26	41	45	43	36	20	-	- 27	32	- 20	-	- 20	- 20
Cu 76 7 64 5 151 44 109 71 5 42 33 35 40 Zn 74 47 74 50 88 55 27 77 70 55 87 76 63 Ga 16 6 11 8 10 13 16 13 7 4 8 6 5 As -<	NI	35	111	93	103	58	37	3	176	106	48	55	92	129
Zn 74 47 74 50 88 55 27 77 70 55 87 76 63 Ga 16 6 11 8 10 13 16 13 7 4 8 6 5 As -	Cu	76	7	64	5	151	44	109	71	5	42	33	35	40
Ga 16 6 11 8 10 13 16 13 7 4 8 6 5 As - 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1	Zn	74	47	74	50	88	55	27	77	70	55	87	76	63
As -	Ga	16	6	11	8	10	13	16	13	7	4	8	6	5
Mo <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <td< th=""><th>AS Se</th><th></th><th>-</th><th>-</th><th>-</th><th>•</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>•</th><th>-</th><th>-</th></td<>	AS Se		-	-	-	•	-	-	-	-	-	•	-	-
Ag .	Mo	<4	<4	<4	<4	<4	<4	<4	<4		- 4	-4	-4	-4
Cd <	Ag	-	-		-	-	-	•	-	-	-	-	-	-
Sn <10	Cd	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
SD -	Sn	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Ta <5	SD Te	10	- 10	- 10	- 10			-	-	-	•	-	•	-
W -	Та	<10 <5	<10	<10	<10	<10	<10	<10	10> مر	<10	<10	<10	<10	<10
Au (ppb) -<	w	.	-		-	-	-	-			-	<d -</d 	<d -</d 	<0
Bi Zr/TIO2 0,009 0,009 0,008 0,008 0,008 0,052 0,022 0,023 0,014 0,007 0,006 0,007 0,008 Nb/Y0,6 0,375 0,346 0,375 0,171 0,6 0,438 0.542 0.533 0,429 0,368 0,429 0,545	Au (ppb)	-		-	-		-	-	-	•	-	-	-	
Zr/TIO2 0,009 0,009 0,008 0,008 0,008 0,052 0,022 0,023 0,014 0,007 0,006 0,007 0,008 Nb/Y 0,6 0,375 0,346 0,375 0,171 0,6 0,438 0.542 0,533 0,429 0,368 0,429 0,545	Bi	-	-	-	•	-	-	-	-	-	-	-	-	-
Nb/Y 0,6 0,375 0,346 0,375 0,171 0,6 0,438 0.542 0.533 0.429 0.368 0.429 0.545	71/102	0.000	0 000	0 000	0 000	0 000		0.000	0.000	0.04.4	0.00-	A A A -		
	Nb/Y	0,6	0,375	0,346	0,375	0,171	0,052	0,022 0,43B	0.542	0,014	0.429	0,006	0,007	0,008

#Echant.	7068	7069	7071	7072	7076	7078	7079	7080	7084	7091
UTM/N	5336100	5336275	5330800	5329850	5337550	5337 575	5337550	5337450	5334450	5334375
UTM/E	313125	313175	291250	307150	310450	310450	310450	310150	322950	322900
Fm.	DUB	DUB	VAD	VAD	DUB	DUB	DUB	DUB	AUR	AUR
Lith.	LAV	LAV	LAV	PYR	LAV	LAV	LAV	LAV	LAV	LAV
Faciès	V3A	V3A	V3A	V1C/V1D	V4	V4	V4	V3A	V2J	V2J
SFac.	м	M	С	1,Ci	м	м	м	C,B	C,Ci	C,Ci
Alt.		CB								08
Et maiau	re /9/.)									
SiO2	52 30	49.60	48 80	72 80	45.60	43 20	43 70	51.60	55 30	53.80
TiO2	0.81	0.82	0.67	0.35	0.33	0.36	0 43	0.82	1 17	1 28
A1203	13.30	12.40	18.10	12.60	4,60	4.87	5.56	14.50	15.00	12.10
Fe2O3 c	8,62	1,70	2,10	1,00	3,21	3,04	5,20	4,36	1,75	1,22
FeO a	4,43	9,52	8,01	2,28	6,49	7,17	6,41	7,87	7,52	8,26
MnO	0,17	0,20	0,11	0,04	0,16	0,16	0,16	0,22	0,16	0,26
MgO	3,09	5,00	7,51	1,69	26,00	27,00	23,40	5,43	5,05	0,66
CaO	13,50	8,22	7,30	1,28	6,57	5,14	8,15	9,76	5,18	9,76
Na2O	0,13	2,78	3,26	4,19	0,19	0,22	0,19	1,64	4,98	1,30
K20	0,01	0,04	0,24	0,23	0,02	0,04	0,03	0,03	0,16	1,24
P205	0,07	0,06	0,04	0,06	0,01	0,03	0,03	0,08	0,26	0,44
P.A.F.	2,65	9,03	2,00	1,92	6,32	09 73	5,70	3,64	1,98	8,94
TOTAL	39,00	88,31	80,14	80,44	39,50	80,73	90,90	33,95	80,01	99,20
CO2	0.57	6,16	<0.05	0.38	<0.05	0.11	0.63	0.88	0.36	7.41
s	0,06	<0,01	0,19	<0,01	0,07	0,07	0.06	<0.01	<0.01	< 0.01
Fe2O3 t	13,60	12,40	11,10	3,56	10,50	11,10	12,40	13,20	10,20	10,50
	-									
El. traces	(ppm)			-			_	-		
HD C-	<3	<3	9	5	<3	<3	<3	<3	4	42
Sr Dh	110	41	210	200	14	23	23	220	180	58
FD Ba	13	21	<12 61	151	10	<12	<12	<12	<12	<12
7r	62	57	51	260	24	26	27	73	150	240
Y	42	32	17	30	8	7	8	46	25	85
Sc	70	70	54	17	20	21	26	55	28	39
La	<2	<2	<2	16	<2	<2	<2	4	15	14
Ce	4	<3	<3	38	<3	<3	<3	6	31	36
Pr	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Nd	70	60	55	35	<25	30	50	60	105	125
Sm	<2	<2	<2	<2	<2	<2	<2	<2	<2	3
EU Th	4	3	4	2	3	4	4	3	3	5
	-	-	-		•	-	-	-	-	-
Ho				*	2	2	4	0	5	12
Tm		-		-	-	-				-
Yb	-	-	-			-		-	-	-
Lu 🔰	-	•	-	-	-	-	-	-		-
Th	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
U	-	-	-	-	-	-	-	-	-	-
V	360	327	203	23	122	131	148	275	167	<2
Nb	6	7	6	12	6	7	6	7	12	15
	<1	11	36	20	<1	<1	<1	13	17	33
00	2	2	2	2	1	1	1	2	3	5
Min				-			•	-	-	-
Co	29	38	56	7	104	104	106	35	- 28	- 7
Ni	42	62	191	. 4	1600	1600	1600	123	75	1
Cu	122	58	63	<1	36	14	38	27	79	11
Zn	39	61	84	18	59	84	52	71	55	39
Ga	21	12	8	9	4	3	8	14	15	26
As		-	-	-	•	-	-	-	-	-
58			-	-	-	-	•	-	-	-
MO	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
C4	· .	2	2	2	2	- 2	- 2		-	-
Sn	<10	<10	<10	<u>ح</u> اد	<10 <10	~10	~10	<2	~10	<2
Sb					-	-		-	-	<
Те	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Ta	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
w	-	-	-	-	-	-		-		-
Au (ppb)	-	•	-	-	-	-	-	-	-	-
BI	-	•	-	•	-	-	•	•	-	-
7./1100	0.000	0 007	0 000	n n74	A 647	A AA-	0.000	A		
Nb/Y	0,008	0.219	0.353	0,074	0,007	0,007	0,006	0,009	0,013	0,019

ANNEXE 3b

RÉSULTATS COMPLETS D'ANALYSES GÉOCHIMIQUES DES DIFÉRENTS GÎTES MINÉRALISÉS

Eléments majeurs, mineurs et en traces

Classification selon les gîtes

Pour la légende voir l'annexe 2a

, seriale ,

Gisement	Aurora	Aurora	Bevcon	Bevcon	Bevcon	Bevcon	Brosnor	Brosnor	Brosnor
#Ech.	AU-A-10	AU-B-6	BV 03	BV 06	BV 08	BV 10	BR 08	BR 12	BR 14
UTM/N	5332500	5332500	5329650	5329650	5329650	5329650	5331500	5331500	5331500
UTM/E	329400	329400	319700	319700	319700	319700	321300	321300	321300
Fm.	AUR	AUR	- INIT	-	-	-	JAC	JAC	JAC
Liin.	V2B	VaR	12.1	12.1	12.1	12.1		VaE	
Facies	*38	¥3B	120	120	125	120	•••	•31	**
El. majeurs ((%)								
SIO2	41,90	26,40	65,30	44,10	63,50	65,40	38,50	44,90	44,60
1102	2,33	12 20	12 40	10.20	15.00	14 20	0,56	17 70	0,27
Fa2O3 a	22,00	13,20	1 32	1 25	0.75	1 25	5 57	1.87	3.09
FeQ a	-	-	3,36	6.53	2,28	3.15	8.94	6.53	5,86
MnO	0,08	0,22	0,05	0,18	0,04	0,04	0,16	0,13	0,15
MgO	2,98	4,26	1,87	8,33	2,24	1,56	21,10	9,90	23,20
CaO	1,31	10,20	2,52	9,39	3,49	2,92	6,25	5,30	6,02
Na2O	0,46	0,66	4,38	1,57	5,27	4,15	0.01	5,68	0,01
K20	6,78	3,61	1,34	0,78	1,07	1,21	0,84	0,05	0,03
P205	0,36	0,13	0,16	0,56	0,24	0,16	0,09	0,13	0,12
P.A.F.	6,00	14,70	3,43	14,95	3,50	2,23	00.05	8,20 100 73	9,80
Total	98,20	83,13	\$7,03	80,00	87,72	80,74	88,81	100,73	87,00
CO2	0,44	13,65	1,85	9,51	2,10	1,77	3,31	3,75	1,89
S	5,21	9,30	0,02	0,02	0,01	0,01	0,03	0,01	0,01
Fe2O3 t	14,00	19,00	5,05	8,51	3,28	4,75	15,50	9,13	9,60
El. traces (p									
Rib	-	-	50	20	32	39	31	< 1	3
Sr	-	-	122	253	632	201	94	156	83
PD	-	•	12	30	13	10	47	23	29
Ba 7-	-	-	102	107	- 110	105	- 28	- 10	-
Y		-	35	26	18	42	20	13	10
Sc	-	-	20.6		-		32,4	-	20.4
La		-	20,2	-	-	-	1,3	-	1,4
Ce		-	49	-	-	•	15	-	9
Pr	· ·	-		-	-	•	-	-	-
Nd	-	-	32	-	-	-	<7	-	<7
Sm	-	-	6,16	-	•	-	0,76	-	0,73
	-	-	0,8	-	-	-	<.ə	•	<.:
DV		-	<1	-	-	-		-	-
Ho	-		<1	-	-	-	<1	-	<1
Tm	-	-	<1	-	-	-	<1	-	<1
Yb	-	-	3,4	-	-	•	0,8	-	0,7
lu –	-	-	0,5	-	-	-	<.1	•	<.1
Th	•	-	2	-	•	-	0,7	-	<.5
U	<10	-	< 10	< 10	< 10	< 10	< 10	< 10	< 10
N.	122	-	65	168	52	65	200	140	95
NED I		-	•	-	-	•	-	-	-
Be		-	-	-	-	-	-	-	_
Cr	391		220	821	143	234	2505	218	1815
Min	281	-	402	1833	401	401	1490	904	1375
60	29	-	9	43	11	9	119	49	71
NI	119	-	16	139	31	11	942	180	972
Cu	79	70	18	31	9	5	218	4	85
	31	-	47	115	68	41	68	67	61
Ga	20	-	- 5	- 7	- 5	- 5	- 5		-
Se	<5	-	< 5	< 5	< 5	< 5	< 5	< 5	
Mo	4	-	< 1	< 1	< 1	8	< 1	< 1	< '
Ag	<0,5	1,2	1	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Cd	<1	-	< 1	< 1	< 1	< 1	< 1	< 1	< '
Sn	<10	-	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Sb	<5	-	< 5	8	6	< 5	9	< 5	6
Te Te	13	-	< 10	<10	< 10	< 10	< 10	< 10	< 10
18	1	-	- 10	- 10	- 10	- 10	- 10	- 40	-
	2430	5310	< 10	< 10	< 10	< 10	< 10	< 10	< 11
Pb	20		-	-	-		-	< 1 -	< .
Bi	<2	-	< 2	3	< 2	< 2	< 2	< 2	< :
			-	.					_
Zr/TiO2	-	-	0,040	0,014	0,035	0,043	0,005	0,004	0,005
I NW/ I		-	-	-	-	•	-	-	-

Gisement	Brosnor	Brosnor	Brosnor	Brosnor	Brosnor	Brosnor	Bruell	Bruell	Bruell
#Ech.	BR-86-02	BR-86-06	BR-86-09	BR-86-12	BR-86-26	BR-86-37	5006a	5007b	5007d
UTM/N	5331500	5331500	5331500	5331500	5331500	5331500	5332500	5332500	5332500
UTM/E	321300	321300	321300	321300	321300	321300	329400	329400	329400
Fm.		JAC	JAC	JAC	JAC	JAC	AUH	AUR	AUR
LITA. Faciàs	LAV V3E		VaB	VaF	V3B		V3B	V3B	VaB
1 00103	v31		•36	•01	100	• •	•00	100	•30
El. majeurs (%)					· · · · · · · · · · · · · · · · · · ·			
SiO2	44,20	42,40	50,00	41,70	50,50	46,20	52,00	58,40	37,90
TIO2	0,43	0,42	0,49	0,39	0,44	0,34	2,00	0,73	1,08
A1203	15,30	7,30	14,90	11,90	14,50	4,77	12,90	10,60	13,60
FeO a	-	•	-	-	-	-	-		-
MnO	0,19	0,18	0,17	0,20	0,19	0,08	0,16	0,20	0,32
MgO	8,21	18,90	8,25	8,14	7,52	23,30	3,34	5,65	5,95
CaO	5,90	6,06	7,76	8,28	12,10	2,89	5,63	7,40	14,10
Na2O	2,61	0,01	1,76	2,47	1,61	0,04	2,78	1,69	0,14
P205	0,08	<0.01	<0.01	0,01	0,04	0.06	0.32	0.09	0,40
P.A.F.	11,90	10,15	3,45	14,95	4,75	9,55	1,85	2,20	1,75
Total	100,58	97,27	97,30	98,54	101,30	98,23	97,27	97,63	101,01
		-	-	a ==		·	_ · -	- - ·	
CO2	6,79	3,01	0,03	9,79	1,73	2,95	0,49	<0,01	0,27
5 Fa2O3 t	10.00	<0,01 11.80	<0,01	<0,01 9.69	0,08 0,58	<0,01	16 10	0,01	0,21 25 en
10200	10,30	11,00	10,50	5,05	0,00	11,00	10,10	10,20	20,00
El. traces (p	pm)								
Rb	-	-	-	-	•	-	-	-	-
SI	-	-	-	-	-	-	-	-	-
Ba	.	-	-	-	-	-	-	-	-
Zr	23	-	-	-	-	-	-	-	-
Y	19	-	-	•	-	-	-	•	-
Sc	-	-	-	-	•	-	•	-	-
La	-	-	-	-	-	-	-	-	-
Pr		-	-	-	-	-	-	-	-
Nd	-	-	-	-		-	-	-	-
Sm	-	-	-	-	-	-	-	-	-
Eu	-	-	-	-	-	-	-	-	-
	-	•	-	-	-	-	-	-	-
Ho		-		-		-	-	-	-
Tm	_	-	_	_		-	-	-	_
Yb	-	-	-	-	-	-	-	-	-
Lu	-	-	-	-	-	-	-	-	-
Th	-	-	-	-	-	-	-	-	-
	-	<10	<10	<10	<10	<10	-	-	<10
Nb		-	-	-	-		-	-	
L	-	-	-	-	-	-	-	-	-
Be	-	-	-	-	-	-	-	-	-
Cr	-	3544	331	518	324	2593	-	-	325
MIN CO	-	1659	1607	1964	1697	115	-	-	3592
NI		1183	109	238	98	1390	-	-	127
Cu	-	40	80	71	84	24	12	28	232
Zn	-	110	74	74	58	76	-	-	111
Ga	-	•	-	-	-	-	-	-	-
As	-	<5	<5	<5	18	<5	•	-	5
Mo	-	<0	<5	<0 1	<5	<0	-	-	5 28
Ag	-	<0,5	<0,5	<0,5	<0,5	<0,5	0,6	< 0.5	<0.5
Cd		<1	<1	<1	<1	<1	-	-	<1
Sn	-	12	<10	<10	<10	13	-	-	17
Sb	-	21	<5	6	<5	8	-	-	<5
Ta	-	<10	<10	<10	<10	<10	-	-	15
w	-	<10	<10	<10	<10	<10	-	-	<10
Au (ppb)		<1	2	2	<1	742	4	6	62
Pb	-	22	22	16	15	21	-	-	45
61	-	8	<2	<2	<2	8	-	-	<2
Zr/TiO2	0.005	-	-	-	-		-	-	-
Nb/Y		-	-	-	-	-	-	-	-

Gisement	Brueli	Bruell	Bruell	Bruell	Brueli	Chimo	Chimo	Chimo	Chimo
#Ech.	BR-A-7a	BR-A-7b	3000a	3000b	3001a	CH 09	CH 16	CH 25	CH 31
UTM/N	5332500	5332500	5332500	5332500	5332500	5319800	5319800	5319800	5319800
GTM/E	329400	329400	329400	329400	329400	332000	332000	332000	332000
Lith.	LAV	LAV	LAV	LAV	INT	LAV	INT		
Faciès	V2J	V2J	V3B	V3B	12J	V3A	12J	V3A	V2J
	L								
El. majeurs (%)								
5102	57,10	57,20	42,60	47,10	74,80	47,30	52,10	49,50	56,60
A1203	16 70	1790	14 10	1,34	10,16	13.20	0,97	0,98	1,33
Fe2O3 c	-	-	-			1.03	1 71	2 1 2	2,40
FeO a	-	-	-	-	-	6,62	5,35	6.67	8.53
MnO	0,03	0,04	0,16	0,18	0,02	0,20	0,20	0,19	0,17
MgO	2,22	2,66	6,57	6,37	1,17	5,17	5,92	3,74	3,07
CaO	1,15	1,49	7,04	7,94	0,34	10,40	11,00	9,75	6,55
K20	5,49	5,67	2,80	1,69	3,65	2,25	2,65	2,90	2,35
P205	<0.01	0,10	0.20	0,20	0.06	0.08	0,04	1,25	0,52
P.A.F.	3,55	2,85	8,75	2,90	1,20	11,90	2.70	2.90	3.15
Total	98,86	101,20	97,36	97,12	97,15	99,36	96,99	96,97	96,94
000									
CU2 S	<0,01	0,07	4,73	<0,01	0,03	5,40	2,15	2,85	3,26
Fe2O3 t	11.00	1,51	13 30	14 40	3.67	0,03	0,25	0,07	1,30
		,	10,00	11,10	0,07	0,55	7,05	9,55	11,50
El. traces (pr	om)								
Rb	-	-	•	-	•	9	< 1	35	11
Sr Dh	-	-	-	-	-	105	133	206	95
Ba	-	-	-	-	-	27	22	34	27
Zr	-	-	-	-	-	64	74	- 53	262
Y	-	-	-	-	-	27	26	24	105
Sc	-	-	-	-	-	42,9	50,9	-	38,2
La	-	-	-	•	-	6,2	6,5	-	20,2
Ce Dr	-	-	-	•	-	20	16	-	57
Nd	-	-		-	-	7	- 15	-	-
Sm	-	-	-	-	-	2.84	2.93	-	12.3
Eu	-	-	-	-	-	1,1	0,8	_	3.1
ТЬ	-	-	-	-	-	<1	<1	-	1,9
Dy	-	-	-	-	-	-	-	-	-
Tm	_	-	-	-	-	<1	<1	-	2,9
Yb	-	-	-		-	3	29	-	123
Lu	•	-	-	-		0,4	0,6	-	1.8
Th	-	-	•	-	-	0,7	1,1	-	1,1
U	-	<10	-	-	•	< 10	< 10	< 10	< 10
Nb	-	53	-	-	-	278	299	258	209
L		-	-	-		-	-	-	-
Be	-	-	-	-	-	-	-	-	
Cr	-	55	-	-	-	68	88	317	101
Mn	-	244	•	-	-	1999	1746	1224	1293
Co	-	4	-	-	-	50	56	48	31
	-	16	-	-	-	68	77	163	23
Zn	•	38	-		-	72	77	65	57
Ga	-	-	-	-	-		-	-	125
As	-	<5	-	-	-	66	< 5	131	22
Se	-	7	-	-	-	< 5	< 5	< 5	< 5
MD Ag	-	<1	- 0.7	-	-	< 1	< 1	10	< 1
Cd Cd	-	<0,0		U,B -	<0,5	< 0,5	< 0,5	< 0,5	< 0,5
Sn	-	10	-	-	-	< 10	< 10	< 10	< 1 < 10
Sb	-	<5	•	-	-	< 5	6	< 5	< 5
Te	-	<10	-	-	-	< 10	< 10	< 10	< 10
ia. w	-	-	-	-	-	-	-	-	-
Au (pph)	-	<10	- 10	-		< 10	< 10	< 10	< 10
Pb	-	19	-	-	-	< 1	< 1	/	2
BI	-	<2	-	-	-	< 2	< 2	< 2	< 2
7. (7) 0.5							-		
Zr/T102	-	-	-	-	-	0,007	0,008	0,005	0,020
IND/ I	-	-	-	-	-	•	-		-

<u>Oleanna</u>	Ohima	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo
Gisement	Chano	Chillio	Chillio						
#Ech.	CH 41	CH 43	CH 48	CH-86-14	CH-86-42	CH-86-45	CH-86-47	CH-86-58	CH-86-63
UTM/N	5319800	5319800	5319800	5319800	5319800	5319800	5319800	5319800	5319800
UTM/E	332000	332000	332000	332000	332000	332000	332000	332000	332000
Fm.	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI
lith	ΙΔV	PVR	LAV	PVR	PVB	LAV	LAV	LAV	PYR
	Vaa	1/2 4	1/2 6	1/2.4	V21	101	1/21	1/21	Vail
Facies	VSA	VJA	VSM	VJA	VZJ	¥25	425	¥25	VZJ
							· · · · · · · · · · · · · · · · · · ·		
El. majeurs (%)								
SIO2	45,40	37,50	47,40	49,00	43,90	45,00	48,00	50,10	51,40
TIO2	0,95	1,22	1,17	0,92	1,09	1,31	1,36	0,94	1,05
A12O3	16.40	18.30	12.20	16.90	18,30	19.20	22,40	19.50	13.50
Fe203 c	2 02	5 20	0.84				, .		
F-0 -	4.60	7 20	0 07						
FeO a	4,60	7,30	0,07	-			-	-	
MnO	0,13	0,20	0,23	0,21	0,30	0,18	0,26	0,20	0,20
MgO	2,79	3,63	4,42	2,73	3,13	3,09	2,53	2,70	7,07
CaO	10,40	9,50	7,78	12,20	11,50	11,50	11,70	12,20	8,57
Na2O	4,24	3,31	2,28	1,52	2,43	3,39	2,58	2,38	2,06
K2O	1.75	2.09	1.10	2.00	1.08	0.94	0.11	0.09	0.20
P205	0.32	0.31	0.09	10.03	0.05	0.08	0 17	1 01	0 04
DAE	7.05	0,01	10.05	7 70	5 10	5.90	0,00	2.10	0,04
P.A.F.	7,95	9,00	10,05	7,70	5,10	5,60	0,00	3,10	0,90
Total	96,95	97,64	96,43	100,36	100,18	100,08	99,54	97,69	97,69
CO2	7,33	5,86	7,11	4,88	4,60	4,33	0,16	1,99	0,08
s	2,24	2,68	0,08	-	0,53	0,34	0,01	0,02	0,08
Fe2O3 t	7.13	13.40	10.70	7.18	13.30	9.59	9.63	6.48	12.70
						-,		-,	,
El transa (ni									
	1 67	50							
HD	67	50	37	-	•	•	-	-	-
Sr	142	155	83	•	•	-	•	-	-
Pb	25	33	35	-	-	-	-	-	-
Ba	-	-	-	-	-	-	-	-	•
Zr	80	89	92	55	-	-			-
Y	21	29	39	17	-	-	-	-	-
			-		-	_	-		
				-					_
	- 1	-	-	•	-	-	•	-	-1
Ce	-	-	•	-	-	-	•	-	-
Pr	- 1	-	-	-	-	-	-	-	-
Nd	- 1	-	-	-	-	-	-	-	-
Sm] -	-	-	-	-	-	•	•	-
Eu	-	-	-	-	-	-	-	-	-
ТЬ		-	_	_	_	_	-	_	_
0	-								-
Uy	-	•	-	-	-	-	•	-	-
но	-	-	•	-	-	-	-	•	-
Tm	-	•	-	-	-	-	-	-	•
Yb	- 1	-	•	-	-	-	-	-	-
Lui 🛛 👘	-	-	•	-	-	-	-	-	-
Th	- 1	•	-	-	-	-		-	-
U .	~ 10	~ 10	~ 10	_	~10	~10	~10	~10	_
N N	224	270	221		204	200	375	202	
	224	572	521	-	234	522	575	200	-
	-	•	-	-	-	-	-	-	-
L	· ·	-	-	-	-	-	•	•	•
Be		-	-	-	-	-	-	-	-
Cr	257	267	63	-	289	156	439	561	-
Min	784	1164	1743	-	2815	1782	2494	2213	-
Co	34	42	50	-	53	57	72	71	-
NI	98	112	26	-	185	196	218	338	_
0	86	0.9	118	_	130	102	149	120	
7-	40	00	100		05	112	04	100	-
	40	52	102	-	55	112		100	-
Ga		•	•	-	-	-	•	-	-
AS	426	3000	151	•	164	462	<5	<5	-
Se	< 5	< 5	< 5	•	<5	<5	<5	<5	-
Mo	< 1	< 1	< 1	-	<1	<1	<1	<1	-
Ag	< 0,5	< 0,5	< 0,5	-	<0,5	<0,5	<0,5	<0.5	-
Cd	< 1	< 1	< 1	-	<1	1.8	~ 1	ح1	-
Sn	- 10	- 10	- 10	-	10	11	-10	-10	
Sh.				-		, i .F		-	-
	< 0	< 0	< 5	-	<0	<0	<0	<0	-
1.6	< 10	< 10	< 10	•	<10	<10	<10	<10	-
Ta		•	-	•	-	-	-	-	-
W	< 10	< 10	< 10	-	10	<10	<10	<10	-
Au (ppb)	7	3103	13	-	24	2140	48	18	-
Pb	-	-	-	-	28	19	21	15	-
81	< 2	< 2	< 2	-	<2	2	2	0	
					-		-		1
71/102	0.000	0 007	0 000	0 000					
	0,008	0,007	0,008	0,006	-	-	•	-	-
IND/T	-	-	-	-	-	-	-	-	-

Ginamont	Chima	Chime	<u> </u>	Chima	Cucinar	Oucla or	Cuclear	One lass	
GISALIAUT.						Croinor	Croinor	Croinor	Croinor
#EGA.	011-00-04	01-00-00	00-00-09	01-00-/1	UH-02	GH-19	CH-20	CH-48	CH-49
	5319800	5319800	5319800	5319800	5330250	5330250	5330250	5330250	5330250
UTM/E	332000	332000	332000	332000	349800	349800	349800	349800	349800
Fm.	TRI	TRI	TRI	TRI	-	-	-	-	-
Lith.	PYR	LAV	LAV	LAV	INT	INT	INT	INT	INT
Faciès	V2J	V2J	V2J	V2J	12J	12J	2J	12J	12J
El. majeurs (%)								
SiO2	65,50	49,80	45,50	49,70	49,20	49,70	47,30	49,10	41,70
TiO2	0,52	1,22	1,08	1,37	1,56	1,08	0,77	1.68	0.97
A12O3	16,40	19,40	16.90	20.30	12,90	13.80	19.30	14.30	13 20
Fe2O3 c	-	•	· -	-		· -	•	-	
FeO a	-	-	-	-	-	-	-		_
MnO	0.12	0.22	0.24	0.17	0.18	0.62	0.07	0.18	0.16
MaQ	1.96	2.89	4 4 4	2 4 2	4 36	4 31	4 52	4 59	6,00
CaO	5.85	10,80	11 10	10.50	7 23	6 1 3	3 04		0,00
Na2O	2 80	1 98	2.65	3 98	2 5 3	2 22	3,34	0,07	1.07
K20	0,53	0.20	2,00	0,30	2,00	2,23	3,20	2,60	1,97
R205	0,03	0,20	2,20	0,77	0,02	0,85	1,01	0,05	2,28
	1 60	1 20	0,23	0,12	0,21	0,30	0,12	0,41	0,19
Total	100.00	1,30	3,70	3,40	0,60	9,15	/,45	3,35	12,60
iotai	100,80	88,11	100,64	101,13	87,89	97,58	97,00	97,13	97,43
<u></u>		A 00	E		4.00	A A A	A	• • •	
6	0,10	0,98	5,54	4,17	4,00	3,82	2,82	0,46	10,43
5		<0,01	0,73	0,50		- 	-		-
re203 t	5,50	11,80	10,60	8,40	13,10	9,41	8,46	14,20	10,50
	L								
DL UNCOS (P	,, 								
Sr.		-	-	-	-	-	-	-	-
Dh.	•	•	-	-	-	-	-	-	-
Po Do	-	-	-	•	-	-	-	-	-
Da 7.	-	-	-	•	-	-	-	-	-
Zr V	214	•	-	-	107	125	47	143	50
7	04	-	-	-	25	27	14	27	16
30	-	-	-	-	-	-	-	-	-
La	•	-	-	-	-	-	-	-	-
Ce Da	-	-	-	-	-	-	-	-	-
PT	-	-	-	-	•	-	-	-	-
NO	•	-	-	-	-	-	-	-	-
Sm	-	-	-	-	-	-	-	-	-
ш	-	-	-	•	-	-	-	-	-
Tb	•	-	-	-	-	-	-	-	-
Dy		•	-	•	-	-	•	-	-
Ho	-	-	-	-	-	-	-	-	-1
Tm	-	-	-	-	-	-	•	-	-
Yb	-	•	-	-	-	-	-	-	-
Lu	-	-	-	-	-	-	-	-	-
Th	-	-	-	-	-	-	-	-	-
υ	- 1	<10	<10	<10	-	<10	<10	<10	<10
V	-	349	266	320	-	147	185	351	194
Nb	-	-	-	-	-	-	-	-	
L	-	-	-	-	-	-	-	-	
Be	-	-	-	-	-	-	-	-	_
Cr	-	345	259	308	-	9	554	39	203
Min	-	2181	2097	1727	-	1070	543	1674	1642
Co	- 1	53	39	57	-	33	26	41	4 2
NI	-	146	96	181	-	28	56	30	70
Cu	-	119	128	118	-	41	294	50	12
Zn		94	69	86	-	98	94	100	120
Ga	-	-	-		-	-		120	133
As	-	<5	87	>2000	-	18	-5	-	
Se	-	5	-5	-5	-	~5	-F	<:) _F	<0
Mo		ے ح1	-1	2	-	-1	 <0 <1 	<5 	0
Ag	-	<0.5	<0.5	-05	-	0.7	-0.5	< - C F	<1
сĭ	-	-1	-1		-	-1	<0,0	<0,5	1
Sn		18	<10 <10	15	-	-10	<1 -10	۱> ۱۰	<1
Sb	-	-5	~5	-5	-	<10	<10	< 10	<10
Te	-	-10	-10	11	-	<0 _10	-10	C>	4
Ta	-		< 10 -		-	< 10	<10	<10	<10
w	-	<10	-10	-10	•	- 20	-	- 10	
Au (ppb)	-	14	15	707	-	154	<10	<10	<10
Pb	-	25	20	20,	-	104	54	12	15
BI	-	-2	-9	-0	-	20	26	51	40
	-	12		< <u>c</u>	-	<2	<2	<2	<2
Zr/TiO2	0.041	_	_		0 007	0.010	0 000	0 000	
Nb/Y		-	-	-	0,007	0,012	0,006	0,009	0,005

Gisement	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor	Nordeau
#ECh. LITM/N	CR-50	CR-51	CR-52	CR-55	CR-56	CR-94	CR-97	CR-110	84-17N7
UTM/E	349800	349800	349800	349800	349800	349800	349800	349800	334750
Fm.	-	-	-		•	-	-	ASS	TRI
Lith.	INT	INT	INT	INT	INT	INT	INT	LAV	LAV
Faciès	12J	12J	12J	12J	123	12J	12J	V2J	V2J
El, maieurs ((
SIO2	45,70	45,60	45,50	44,50	57,50	34,20	29,26	63,40	52,40
TiO2	0,98	0,79	0,74	1,25	1,15	2,97	1,32	1,17	1,03
AI203	14,70	16,80	16,00	15,10	14,00	18,90	21,60	15,00	17,20
FeZU3 C	•	-	-	-	-	-	-	-	-
MnO	0,14	0,18	0,17	0,14	0.14	0.14	0.14	0.17	0 10
MgO	5,92	7,61	6,76	5,81	2,06	3,76	5,97	3,19	7,39
CaO	8,07	8,59	9,38	5,50	4,13	6,59	9,78	3,65	6,70
Na2O	3,59	2,17	1,84	3,52	3,70	1,19	1,18	4,49	2,04
P205	0,03	0,01	0,21	0,21	0.47	0.29	0.21	0,26	0,14
P.A.F.	8,25	4,25	6,50	8,75	4,55	13,10	14,70	2,55	2,70
Total	98,11	97,47	97,99	97,75	97,41	98,59	97,12	101,42	98,70
CO2	4 35	0.35	2 21	5 1 5	2 F.P	A 97	0 00	0.14	
s	<0,01		£,£1 -		2,50	6.80	0.61	<0.01	0,02
Fe2O3 1	10,60	11,30	10,80	12,70	7,90	14,40	9,80	7,24	8,87
Rb	-	-	-	-	-	-	_	_	
Sr	-	-	-	-		-	-	-	-
Pb	-	-	-	-	-	-	-	-	-
Ba	-	-	-	-	-	-	-	-	-
Y	25	19	5∠ 18	40	59 18	109	227	181	99
Sc	-	-	-	-	-	-	-	-	
La	-	-	-	-	-	-	-	-	-
Ce	-	-	-	-	-	-	-	-	-
Nd	-	-	-	-	-	-	-		-
Sm	-	-	-	-			-	-	
ស	-	-	-	•	-	-	-	-	-
Tb	-	-	-	-	-	•	-	-	-
Но	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-		-	-	-
Yb	-	-	-	-	-	-		-	-
Lu Th	-	•	-	-	-	-	-	-	-
	-10	-10	-10	-10	- 10		-10	- 10	-
v	226	186	172	203	84	285	243	101	-
Nb	-	-	•	•	•			-	-
L	-	-	-	-	-	-	-	-	-
Be	167	-	-	-	-		-	-	-
Min	1389	1982	1756	1417	1094	1040	443	17	-
Co	45	61	56	50	17	68	38	15	_
NI	56	253	230	96	15	35	82	11	-
	71	86	84	68	149	155	19	35	-
Ga			-	-	109	- 12	86	92	-
As	12	<5	<5	<5	86	24	6	24	
Se	<5	<5	<5	<5	<5	<5	<5	<5	-
Mo	<1	<1	<1	<1	<1	14	<1	<1	•
Cd	<0,5	0,5	<0,5	<0,5	2,5	0,6	<0,5	<0,5	-
Sn	<10	<10	<10	<10	<10	<10	<10	<10	-
Sb	<5	<5	<5	<5	<5	<5	<5	<5	-
Te Te	<10	<10	<10	<10	<10	<10	<10	<10	-
w	- <10	- -10	-10	- 16	-10	- 50	- 20	-	-
Au (ppb)	1	50	<1	29	<1	25400	131	<1	-
Pb	19	42	33	42	27	28	47	11	-
BI	<2	<2	<2	3	<2	<2	<2	<2	-
Zr/TiO2	0,009	0.008	0.007	0.004	0.005	0 004	0.017	0.016	0.010
Nb/Y	-,								0,010

Gisamant	Nordeau	Nordaau	Nordoou	Nordenu	Nordaau	Nordani	Nordeen	Nordoon	
4Eob				94 20040	NUTURAL			NOTGEAU	
WEGH.	64-1014200	04-10HZ10	04-1804 E040700	6010700	5010700	04-20312	04-2058a	04-2058D	84-30E07
	5319700	5319700	5319700	5319/00	5319700	5319700	5319700	5319700	5319700
UTM/E	334750	334750	334750	334750	334750	334750	334750	334750	334750
Fm.	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI
Lith.	SED	SED	LAV	PYR	LAV	PYR	LAV	LAV	SED
Faciès	-	-	V2J	V2J	V3G	V2J	V3B	V3A	-
El. maieurs (%)								
SiO2	60.90	54 20	55 30	50 70	46.80	53.00	50.40	54.20	56 00
TIO2	0,00	0.07	1 90	1.24	-0,00	0.07	1 00	54,50	20,00
1102	10,72	19.00	1,00	1,24	0,21	0,97	1,22	1,17	0,57
A1203	19,00	10,20	14,20	18,40	12,10	17,50	18,00	17,00	21,10
FezU3 C	•	-	-	-	-	-	•	-	-
FeO a	-	-	-	•	•	-	-	-	-
MnO	0,04	0,14	0,16	0,22	0,19	0,23	0,25	0,20	0,06
MgO	1,30	3,62	2,50	3,50	16,10	1,69	4,69	1,97	2.21
CaO	5,42	8,84	6,21	8,89	11.20	10.70	9,90	11.53	4.76
Na2O	3,19	4.25	4.21	3.11	0.98	2.65	1 73	2.26	2 4 5
K20	2.06	0,09	0.98	1 08	0.24	1 13	0.27	1.07	4 77
P205	0.17	0,00	0,00	0.12	0,24	0,10	0,27	1,07	
	0,17	0,10	0,36	0,12	0,24	0,12	0,08	0,18	0,04
F.A.F.	0,20	0,80	1,20	1,40	3,05	3,40	0,70	4,90	2,00
lotai	99,63	98,94	97,36	99,76	100,01	100,90	99,24	98,31	100,48
1	_								
CO2	1,59	0,40	1,56	1,35	1,45	3,56	<0,01	3,95	<0,01
S	0,07	-	-	0,09	<0,01	0,05		-	0.02
Fe2O3 t	6,93	7,67	10,30	11,10	8.90	9.51	12.00	3.73	8.72
	,							•,,,•	0,72
El. traces (p	om)						••••••••••••••••••••••••••••••••••••••		
Rb	-	-	-	-		-	-	-	_
Sr	-	-	-	-	-		-	_	
Ph	_	_	-	-			_		-
R.		-	_	-	-	-	-	•	-
7.	-	-	-	-	-	-		•	-
	-	95	-	-	-	-	52	60	-
Y	-	20	-	•	-	-	19	20	-
Sc	-	•	-	-	-	-	-	-	-
La	-	-	•	-	-	-	-	-	-
Ce	-	-	-	-	-	-	-	-	-
Pr	-	-	-	-	-	-	-	_	_
Nd		-	-			_			_
Sm		_	_		_	-	-	-	-[
E.	-	-	-	-	-	•	•	•	-
	-	-	-	-	-	-	•	-	-
	-	•	-	-	•	•	-	-	-
Dy	•	-	-	•	•	-	-	-	-
Ho	-	-	-	-	-	•	-	-	-
Tm	-	-	-	-	-	-	-	-	-
Yb		-	-		-	-	-	-	-
Lu	-	-	-		-	-	-	_	
Th			-	-	-	_	_		-
u	-10	_	_	-10	-10	-10	-	-	-
V	64	-	-	071	104	< 10	-	•	<10
V	04	-	-	271	104	256	•	-	80
NO	-	•	-	-	-	•	-	-	-
	•	-	-	•	-	-	•	•	-
Be	-	-	-	-	-	-	-	-	-
Cr	86	-	-	219	1580	269	-	-	203
Min	337	-	-	2417	1997	2132	-	-	482
Co	11	-	-	38	57	32	-	-	16
NI	37	-	-	123	647	59	_	-	
	33	_	20	107	7	200	-	-	03
7	65	-	55	107	· · ·	209	-	•	<1
	55	•	-	113	00	/5	•	-	60
GHR A.		-	-	-	-	•	-	-	- [
AS	80	-	•	26	589	10	-	-	16
Se	<5	-	-	<5	<5	<5	-	-	<5
Mo	<1	-	-	<1	<1	<1	-	-	4
Ag	<0,5	-	0.4	<0.5	<0.5	<0.5		-	-0 -
Cd	<1	-	-,.	-1	-1	-1	-	-	<0,5
Sn	-10	-	-	10	-10	.10	-	-	<1
Sh		-	•	10	<10	<10	•	•	12
	<0	-	-	<>	<5	<5	-	-	<5
19	<10	-	-	14	<10	15	-	-	11
18	· -	•	-	-	-	-	-	-	-
W	<10	-	-	<10	<10	<10	-	-	<10
Au (ppb)	97	-	185	182	245	18	-	-	3280
Pb	19	-	-	27	14	20	-	-	27
BI	<2	-	-	<2	<2	<2	-	-	- 21
	-					~**	-	-	~2
Zr/TiO2	-	0.010	-	_			0.004	0.005	
Nb/V	-	0,010	-	-	-	-	0,004	0,005	-
11M/ 1		-	-	-	-	-	-	-	- 1

Gisement	Nordeau	Nordeau	Sigma 2	Sigma 2	Sigma 2	Sigma 2	Sigma 2	Sigma 2	Sigma 2
#Ech.	84-30E13	84-30E14	GP 2	GP 2A	GP 3	GP 5B	GP 5D	GP 6A	GP 9
	5319/00	5319700	5326675	5326675	5326650	5326625	5326625	5326600	5326800
UTM/E Fm.	334750 TRI	334750 TRI	310000	316600	310000	310800	310800	316800	316800
Lith.	SED	LAV	INT	INT	INT	INT	INT	INT	INT
Faciès	-	V2J	13J	12J	12J	12J	12J	12J	13J
El. majeurs (%) ' 40.20	E5 20	45 00	45 50	53.30	00.00	50.00	<u></u>	
SIUZ	49,20	55,30	45,80	45,50	53,30	36,90	28,80	64,40	44,20
A1203	23.70	16.80	11.90	11.90	11.10	11.70	11.20	10 10	13 30
Fe2O3 c			4,68	4,81	3,82	18,40	4,56	4,36	8,23
FeO a	-	-	13,79	14,21	13,21	2,70	8,32	5,35	12,30
MnO	0,08	0,15	0,24	0,26	0,20	0,04	0,18	0,15	0,18
MgO	2,46	3,46	4,39	4,71	1,47	0,20	0,68	0,40	6,52
CaQ	3,04	7,75	7,13	7,28	4,35	U,40 5.15	3,00	3,45	4,01
K20	2.13	0.16	0.34	0.36	0.23	0.77	1 35	4,50	2,57
P205	<0.01	0,36	0,11	0,13	0,79	0,59	0,27	0,08	0.06
P.A.F.	2,55	0,10	0,35	0,45	3,20	19,45	2,85	2,80	4,20
Total	98,52	98,52	95,56	96,72	95,96	97,99	96,15	96,59	97,87
	0.46	0.00	0.40	0.12	2.10	2.04	1 50		
C02	0,40	0,22	0,43	0,12	2,10	0,24	1,59	2,17	1,36
5 Fe2O3 1	10.30	9.45	20.00	20,60	18.50	21.40	13.80	10.30	21 90
					,			,0,00	21,00
El. traces (p	om)								
Rb	-	-	3	4	2	6	29	4	1
Sr Dh	-	-	70	148	58	33	47	90	43
Ra	-	-	-		120		49	44	104
Zr	-	-	39	46	107	129	198	295	21
Y	-	-	25	25	55	60	78	194	17
Sc	-	•	-	-	43,6	-	-	-	59,9
La	-	-	•	-	10,7	-	-	-	2
Ce D-	-	-	-	-	29	-	-	-	19
PT N서		•	-	-	- 23	-		-	-
Sm	-	-	-	-	7.38	-	•	-	1.68
Eu	-	-	-	-	1,7	-	-	-	2
ТЬ	-	-	-	-	<1	-		-	<1
Dy	-	-	-	-	-	-	-		-
Ho	-	-	•	-	1,7	-	-	-	<1
Yh	•	-	-	-	، 66	•	-	-	1
Lui I		-	-	-	1,1	-	_	-	1
Th	-	-	-	-	1,1	-	-	-	<.5
U	<10	-	< 10	< 10	< 10	< 10	< 10	< 10	< 10
<u>v</u>	139	-	368	362	3	6	2	3	1027
Nb	-	-	-	-	-	-	•	-	-
Re	-	-	-	-	-	-	-	•	-
Cr	135	-	116	19	129	147	102	235	- 70
Mn	607	-	3406	3140	2883	208	1612	1379	1812
Co	25	-	75	67	46	231	20	18	86
Ni	76	-	5	4	2	17	3	6	137
	26	4	398	152	83	46	10	25	442
2h Ca	102	-	110	125	183	15	68	49	160
As	767	-	820	- 19	88	3000	- 589	- 107	- 27
Se	<5	-	< 5	< 5	< 5	18	< 5	< 5	< 5
Mo	4	-	1	1	2	2	2	1	2
Ag	<0,5	0,4	1	< 0,5	< 0,5	7	1	< 0,5	< 0,5
Cd	<1	-	< 1	< 1	< 1	< 1	< 1	< 1	< 1
5/1 Ch	<10	•	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Te	<10	-	< 10	< 10	< 10	127	< 0 - 10	< 5 - 10	< 0 1 8
Ta	•	-	• • •			-		< 10 -	-
w	<10	-	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Au (ppb)	1180	33	42	4	10	37611	29	41	12
Pb	25	-	-	-	-	-		-	-
01	<2	-	< 2	< 2	< 2	2	< 2	< 2	< 2
Zr/TIO2	-	-	0.001	0.001	0.006	0.008	0.021	0.045	0.001
Nb/Y							0,021		0,001

Gisement	Sigma 2	Sigma 2	Sigma 2	Vendar	Venpar	Venpar	Venpar	Venpar	Vennar
#Ech.	GP12	GP15	GP18	5012b	5012c	V-1	V-2b	V-3f	V-5
UTM/N	5326600	5326600	5326600	5316300	5316300	5316300	5316300	5316300	5316300
UTM/E	316800	316800	316800	343700	343700	343700	349700	343700	343700
Em	0,0000		0.0000	TDI	TDI	U-3700 TDI	1075700	343700	343700
1 4 5	INIT	-	INIT			וחו			
Enclès	101	1011		210		PTH	PTH	Pirk	PYH
1 40185	135	130	125	V2J	V2J	¥2J	V2J	V2J	V2J
El maisure /	۱ «۱							· · · · · · · · · · · · · · · · · · ·	
ici. majeurs (ເວລ	//////////////////////////////////////	44.00	64.00	60 70	50.00	F 0 00	~~ ~ ·		
3102	42,60	44,60	64,00	68,70	59,80	58,30	66,04	87,60	62,50
1102	2,19	2,09	0,85	0,58	0,78	0,89	0,62	0,17	0,79
A12O3	13,00	12,90	11,30	13,50	16,30	15,70	13,60	3,01	16,40
Fe2O3 c	4,92	6,56	4,11	-	-	-	-	-	-
FeO a	13,66	12,73	5,18	-	-	-	-	-	-
MnO	0,19	0,21	0,10	0,03	0,08	0,13	0,03	0,01	0.09
MgO	4,81	4,75	0,67	1,22	2,67	2,39	1,05	0,16	2.33
CaO	5,30	7,63	3,83	1,68	25,93	5,56	2,81	0.80	2.47
Na2O	3,06	1,53	5.21	2.57	5.25	2.80	3.57	1.21	3.68
K20	0.12	0.51	0.36	2.67	0.68	0.84	2 10	0.18	2 30
P205	0.08	0.19	0.39	0.07	0,20	0,29	0.28	0,09	0.23
P.A.F.	6 55	3 70	2 75	3 30	1 50	1 65	2,55	0,00	1 00
Total		07 40	99.76	0,00	120 22	00 64	2,00	07 00	100.40
	av,40	ar, 40		•1,V1	120,33	30,34	ə/,30	97,09	100,40
C02	3.50	1.05	2 03	-0.01	~0.01	0 12	0.00	-0.01	0.70
9	0,08	1,00	2,03	×0,01	<0,01	0,13	0,08	<0,01	0,78
E-202 •	0,14	0,21	0,01	0,98	0,43	0,17	1,45	1,8/	0,17
F#203 T	20,10	20,70	9,87	3,35	/,14	9,99	4,91	3,76	7,62
El tracce (m									
Rh	, I ₁	11	e						
		11	404	-	-	-	-	-	-
51	40	/3	124	-	-	-	-	-	-
10	^ع (126	51	•	-	-	-	-	-
Da Z.		-	-	-	-	-	-	-	-
21	35	33	217	-	-	-	-	-	-
Y	20	24	92	•	-	-	-	-	-
Sc	-	-	21,1	-	-	-	-	-	-
La	-	-	25,3	-	-	•	-	•	-
Ce	-	-	65	-	-	-	-	-	-
Pr	- 1	-	-		-	-	-	-	-
Nd	-	-	44	-	-	-	-	-	_
Sm	-	-	10.3	-	-	-	-	-	-
Eu		-	2.6		-	-	_	-	-
ть		-	2.6	-	-	•	_	-	-
Dv		-	-	-	-	-	-	-	-
Ho		-	2.3	-	-	-	-	-	-
Tm		-	2,5	-	-	-	•	-	-
Vb.		-	10.2	-	-	•	-	-	-
	-	-	10,∡ ∢ ⊑	-	-	-	-	-	-
	-	-	1,5	-	-	•	-	-	•
			1,8	-	-	-	-	-	-
5	< 10	< 10	< 10	-	-	•	<10	-	<10
<u>v</u>	960	866	7	-	-	•	77	-	96
ND	-	-	-	-	-	-	-	-	
L		-	-	-	-	•	-	-	-
Be	-	-	-	-	-	-	-	-	-
Cr	57	58	120	-	-	-	12	-	12
Mn	1844	2471	1004	-	-		239	-	702
Co	71	89	18	-	-	-	27	-	
Ni	94	45	6	-	-		8	-	e R
Cu	153	86	31	88	68	48	961	8920	70.9
Zn	113	183	30		-		55	-	166
Ga		-	-	-	-	-	-	_	.00
As	10	з	19	-	-	-	-	-	-
Se	- 5	7	- 5	-	-	-	<0 _F	-	<0
Mo	4	, ,		•	-	-	<0	-	<5
Ag	- 05	~ 0.5	- 0.6		-0.5	.n F	<1		4
CH	< 0,0 _ 4	< 0,0	< 0,5	0,0	<0,5	<0,5	0,7	0,7	<5
Sn .		< 1	< 1	-	-	-	<1	-	<1
Ch Ch		< 10	< 10	-	-	-	<10	-	14
30	< 5	< 5	< 5	-	-	-	<5	-	<5
18	< 10	13	< 10	•	-	•	<10	-	<10
18	•	-	-	•	-	-	-	-	-
w	< 10	< 10	< 10	•	-	-	<10	-	<10
Au (ppb)	1	1	2	11	27	162	31	17700	309
Pb	-	-	-	-	-	-	22	-	17
Bi	< 2	< 2	< 2	-	-	-	<2	-	<2
Zr/TiO2	0,002	0,002	0,026	-	-	-	-	-	
Nb/Y		-	-	-	-	-	-	-	_

ANNEXE 4a

RÉSULTATS D'ANALYSES D'ÉLÉMENTS ÉCONOMIQUES D'AFFLEUREMENTS MINÉRALISÉS

Eléments économiques

Classification par ordre numérique

.

Pour la légende voir l'annexe 2a

# Ech.	2	3b	25b	26d	26e	33	36b	38b	45b	161a	177a1	177a2a
UTM/ N	5325150	5325150	5323750	5323750	5323750	5323250	5322400	5322300	5322500	5320825	5324600	5324600
UTM/E	323325	323325	323750	323750	323750	324025	325575	325475	328400	331650	330700	330700
Fm.	-	VAD	HEV	HEV	HEV	HEV	VAD	VAD	VAD	TRI	VAD	VAD
Lith.	INT	LAV	LAV	LAV	LAV	LAV	PYR	PYR	PYR	SED	LAV	LAV
Fac.	I3J	VЗA	V2J	V2J	V2J	V2J	V3A	V2J	V3A	S4E	V3A	V3A
S-Fa.	x	М	М	М	М	C,VA	1,x	b	b,I	Li	В	В
Alt.	CB,QZ	CB,SU,QZ	QZ, MG	SU, MG	SU, EP	QZ	SU,EP	ຮບ	QZ, CB	SR,QZ,CB	SU	ຮບ
El. traces	(ppm)											
S (%)	-	-	-	-	-	-	-	-	-	-	-	-
v	13	44	<1	<1	2	87	149	107	140	88	345	414
Cr	5	276	<1	1	1	116	59	18	31	166	212	149
Min	1082	888	898	993	1188	721	893	1470	864	765	1043	1078
Fe (%)	6,6	4,8	8,1	4,6	8,6	7,9	6,4	10,8	6,1	3,1	4,8	4,5
Co	17	13	3	8	7	7	23	61	70	11	12	14
Ni	8	9	2	2	3	27	39	26	52	12	15	12
Cu	95	135	4	58	107	50	43	37	70	40	404	172
Zn	176	90	81	38	152	40	38	81	361	63	105	11
As	<5	<5	<5	<5	<5	<5	<5	<5	<5	10	<5	<5
Se	7	<5	6	<5	<5	11	<5	<5	<5	<5	<5	<5
Br	-	-	-	-	-	-	-	-	-	-	-	-
Mo	2	<1	<1	2	4	<1	<1	1	<1	1	<1	<1
Ag	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	0,9	0,5	<0,5	<0,5
Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sn	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Sb	8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Te	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cs	-	-	-	-	-	-	-	-	-	-	-	-
Tm	-	-	+	-	-	-	-	-	-	-	-	-
W	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Au (ppb)	3	7	<1	377	1	3	23	248	64	22	12	3
TI (%)	-	-	-	-	-	-	-	-	-	-	-	-
Pb	27	5	29	20	30	28	26	53	27	29	6	5
Bi	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

<u> </u>			• •									
# Ech.	177a2b	183	185	209	220	220b	240a	244a	250b	251b1	258 f	274
UTM/ N	5324600	5324125	5324075	5324400	5324100	5324100	5332200	5332850	5320150	5320150	5318800	5332775
UTM/E	330700	330650	330625	330100	329425	329425	335500	335100	335000	335150	335150	328350
Fm.	VAD	VAD	VAD	VAD	VAD	VAD	GAI	AUR	TRI	TRI	TRI	AUR
Lith.	LAV	PYR	PYR	PYR	LAV	LAV	SED	LAV	LAV	LAV	SED	LAV
Fac.	V3A	V3A	V3A	V3A	V3A	V3A	S6A	V3B	V3B	V3B	S3D	V3B
S-Fa.	В	x	l,b	1	В	В	Li	М	С	С	Li	В
Alt.	SU	QZ	SU	SU	QZ,CB	QZ,CB	QZ	SU	SU	SU	SR,SU	EP,QZ,SU
El. traces (p											<u></u>	
S (%)	•	-	-	-	-	-	-	-	-	-	-	-
v	385	158	164	205	308	281	144	35	326	50	122	27
Cr	226	227	142	166	168	132	568	286	458	107	211	139
Mn	1677	913	1472	876	2017	1561	321	2955	708	6360	547	381
Fe (%)	6,3	5,4	6,1	7,6	7,6	6,4	4,6	2,7	10,9	13	6,6	6,8
Co	19	15	15	53	42	34	24	9	65	7	18	7
Ni	10	28	13	36	44	38	155	23	195	6	33	9
Cu	441	52	88	453	252	193	8	206	130	15	94	111
Zn	100	37	89	94	113	105	104	32	197	49	81	134
As	<5	<5	<5	<5	18	<5	29	<5	<5	<5	<5	32
Se	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Br	-	-	-	-	-	-	-	-	-	-	-	-
Mo	2	<1	<1	<1	<1	<1	<1	1	<1	1	<1	1
Ag	<0,5	<0,5	<0,5	<0,5	1	1	<0,5	<0,5	<0,5	<0,5	0,5	<0,5
Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sn	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	16
Sb	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Te	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cs	-	-	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
w	<10	<10	<10	<10	<10	<10	<10	<10	<10	160	<10	<10
Au (ppb)	12	4	2	1	3	2	3	26	6	1356	20	12
TI (%)	-	-	-	-	-	-	-	-	-	-	-	-
Pb	26	21	31	45	63	24	20	9	25	52	5	20
Bi	~2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

	r											
# Ech.	275	276a	276c	285d	285 f	304a	305	317a	319a	322b	322d	322e
UTM/ N	5332525	5332550	5332550	5332500	5332500	5331900	5331500	5332300	5332350	5331300	5331300	5331300
UTM/E	329950	329900	329900	329450	329450	329400	328950	326250	326200	325200	325200	325200
Fm.	AUR	AUR	AUR	AUR	AUR	AUR	GAI	GAI	GAI	DUB	DUB	DUB
Lith.	LAV	LAV	LAV	LAV	LAV	LAV	SED	SED	SED	LAV	LAV	LAV
Fac.	V3B	V3B	V3B	V3B	V3B	V3B	S4F	S3	S3	V3A	V3A	V3A
S-Fa.	В	B,M	B,M	В	В	В	Li	Li	Li	М	М	м
Alt.	EP,QZ,SU	QZ,SU,CB	QZ,SU,CB	CB,EP,SU	CB,EP,SU	CB	CB	CB	QZ,SU	CB,SU	CB,SU	SR,CB,SU
El. traces (p	pm)	• · · · · · · · · · · · · · · · · · · ·										
S (%)	-	-	-	-	-	-	-	-	-	-	-	-
V	45	114	273	349	202	327	143	77	84	57	260	69
Cr	178	91	134	294	261	275	534	173	225	549	451	393
Mn	36	1014	878	848	861	1022	426	361	126	679	787	298
Fe (%)	9,9	6,0	14,4	5,9	6,1	8,4	3,9	2,4	2,4	3,8	7,1	2,7
Co	202	28	38	35	46	57	29	13	10	17	39	13
Ni	18	4	3	77	63	97	138	21	31	44	95	24
Cu	51	207	38	67	61	75	72	150	109	293	410	92
Zn	18	26	40	46	53	174	107	86	45	42	91	40
As	126	<5	137	43	36	<5	31	49	60	35	7	20
Se	<5	<5	6	<5	<5	<5	<5	<5	10	<5	<5	<5
Br	-	-	-	-	-	-	-	-	-	-	-	-
Mo	14	3	4	2	2	2	<1	<1	<1	12	<1	5
Ag	8,9	0,7	2,3	<0,5	<0,5	0,5	<0,5	0,6	<0,5	5,4	1,1	0,9
Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sn	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Sb	<5	<5	<5	<5	<5	<5	<5	<5	7	9	6	<5
Te	<10	<10	<10	<10	<10	<10	<10	<10	11	<10	<10	<10
Cs	-	-	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
W	100	<10	28	<10	16	<10	<10	<10	<10	<10	<10	<10
Au (ppb)	32062	1219	10363	1100	727	25	32	104	95	1303	13	228
TI (%)	-	-	-	-	-	-	-	-	-	-	-	-
Pb	20	<5	54	20	<5	39	<5	<5	38	227	76	23
Bi	<2	<2	<2	<2	<2	<2	<2	~2	<2	<2	<2	<2
U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

# Ech.	326	327	348c	348d	369b	372a	372c	372d	372e	376e	380c	380d
UTM/ N	5332850	5332800	5329000	5329000	5321650	5321325	5321325	5321325	5321325	5325140	5323725	5323725
UTM/E	328325	328400	330800	330800	338150	337900	337900	337900	337900	323350	323250	323250
Fm.	AUR	-	-	-	VAD	TRI	VAD	VAD	VAD	HEV	HEV	HEV
Lith.	LAV	INT	INT	INT	PYR	PYR	PYR	PYR	PYR	LAV	LAV	LAV
Fac.	V3B	l1F	11	11	V3B	V3B	V3B	V3B	V3B	V2	V3B	V3A
S-Fa.	M	М	М	М	l, x	x,I	x,I	x,1	x,I	B,VA	M,VA	M,VA
Alt.	ຮບ	SU	SU	SU	SU	QZ,SU	QZ,SU	QZ,SU	QZ,SU	œ	SU	QZ,SU,CB
El. traces (p	pm)											
S (%)	-	-	-	-	-	-	-	-	-	-	-	-
V	22	62	17	23	158	51	46	46	25	15	16	45
Cr	393	272	270	328	315	510	637	579	348	83	2214	362
Mn	151	306	202	144	1275	124	153	194	162	2007	274	907
Fe (%)	3,9	7,8	1,2	1,3	5,9	13,5	23,3	23,9	19,5	9,0	4,1	6,3
Co	8	23	4	4	36	45	63	66	41	39	15	10
Ni	12	25	5	7	44	24	27	24	18	8	35	7
Cu	68	200	16	5	321	97	101	68	31	5140	146	62
Zn	33	43	25	30	88	33	28	40	31	315	65	63
As	16	<5	<5	<5	<5	53	75	79	90	16	17	<5
Se	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Br	-	-	-	-	-	-	-	-	-	-	-	-
Mo	<1	<1	<1	<1	<1	3	<1	<1	2	1	2	5
Ag	<0,5	<0,5	<0,5	<0,5	<0,5	1,3	3,9	1,6	1,5	1,6	<0,5	0,5
Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sn	<10	<10	<10	<10	<10	<10	11	12	10	<10	<10	<10
Sb	6	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Te	<10	<10	<10	<10	<10	<10	19	19	<10	<10	<10	<10
Cs	-	-	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
W	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Au (ppb)	16	10	2	1	5	36	51	48	74	214	28	77
TI (%)	-	-	-	-	-	-	-	-	-	-	-	-
Pb	42	75	27	25	65	74	234	232	123	42	13	29
Bi	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

# Ech.	385b	391	1004a	1010b	1017a	1036a	1041d	1043b	1044b	1047b	1049a	1050b
UTM/ N	5322975	5322875	5330075	5329350	5326750	5322650	5322800	5322875	5322875	5322975	5323000	5323025
UTM/ E	323475	323500	323725	324625	324550	325700	325750	325775	325825	325800	325750	325750
Fm.	VAD	VAD	VAD	-	VAD	VAD	HEV	HEV	HEV	HEV	HEV	HEV
Lith.	PYR	PYR	LAV	INT	LAV	PYR	LAV	LAV	LAV	LAV	LAV	LAV
Fac.	V3A	٧ЗА	V2J	12J	V2J	V1D	V2J	V3J	V2J	V2J	V2J	V2J
S-Fa.	I.b	l.x	M	М	м	x	B,VA	M,VA	B,VA	M,VA	VA	м
Alt.	áz	ġz	qz	CB,SU,QZ	CB,QZ	œ	SU	CL,SU	SU	SU	œ	QZ,EP
El. traces (p	pm)											
S (%)	-	-	-	-	-	-	-	-	-	-	-	-
V	139	175	272	11	152	89	100	60	46	2	40	9
Cr	175	105	453	9	20	52	105	60	32	4	5	6
Mn	2308	1419	1636	12	660	962	930	2002	2830	5347	3328	1769
Fe (%)	8,8	6,1	6,9	31,2	4,0	4,5	9,1	14,2	18,9	11,7	18,2	9,6
Co	45	26	60	360	12	16	25	16	37	4	27	12
Ni	60	18	129	138	37	113	29	5	14	3	3	2
Cu	82	63	126	144	58	18	193	28	242	2	322	118
Zn	80	163	123	72	69	69	48	71	170	246	238	76
As	<5	6	<5	19	<5	<5	<5	<5	<5	<5	9	<5
Se	<5	<5	<5	<5	16	<5	<5	<5	<5	<5	<5	<5
Br	-	-	-	-	-	-	-	•	-	-	-	-]
Mo	6	2	5	21	<1	2	4	3	2	<1	6	5
Ag	<0,5	<0,5	<0,5	1,4	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Cq	<1	<1	3	<1	2	<1	<1	<1	<1	<1	<1	<1
Sn	<10	<10	<10	<10	<10	<10	<10	<10	<10	11	14	<10
Sb	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Те	<10	<10	<10	<10	31	<10	<10	<10	<10	<10	13	<10
Cs	-	-	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
W	<10	<10	<10	<10	<10	<10	<10	16	<10	<10	<10	<10
Au (ppb)	6	10	1	2511	3	1	1	1	2	<1	8	<1
TI (%)	-	-	-	-	-	-	-	-	-	-	-	-
РЬ	36	30	31	161	23	25	38	68	88	68	85	51
Bi	6	~2	<2	7	<2	<2	<2	<2	<2	4	<2	<2
U	<10_	<10	<10	<10	<10	<10	<10	<10	<10_	<10	<10	<10

# Ech.	1051a	1056b	1066b	1089	1099a	1125a	1144b	1175c	1175m	1181	1198a1	1204f
UTM/N	5323075	5323300	5323050	5323075	5321000	5320950	5320850	5321400	5321400	5321700	5323025	5323375
UTM/E	325750	325750	325975	325475	329300	329200	329375	331550	331650	331600	331125	331125
Fm.	HEV	HEV	HEV	HEV	TRI	TRI	TRI	VAD	VAD	VAD	VAD	-
Lith.	LAV	LAV	LAV	LAV	SED	SED	SED	PYR	PYR	PYR	LAV	INT
Fac.	V2J	V2J	V2J	V2J	S6A	S6A	S6A	V3A	V3A	V3A	V3A	12
S-Fa.	М	M,VA	VA	M,VA	Li	Li	Li	l,b	1	b	В	M,YQZ
Alt.	QZ	QZ	SU	SU	QZ	SU, CB	QZ	CB,QZ	CB,QZ	CB,QZ	CB,QZ	CB,QZ
El. traces (pp	om)											
S (%)	-	-	-	-	-	-	-	-	-	-	-	-
V I	51	20	2	3	292	164	146	127	119	161	73	191
Cr	7	1	2	2	57	82	68	152	151	62	219	282
Mn	2332	461	1493	516	1658	482	1778	1615	215	3181	629	5420
Fe (%)	12,4	6,3	7,4	4,2	7,7	2,4	7,3	7,7	5,4	6,6	2,7	7,5
Co	31	1	2	2	13	27	25	29	41	29	15	22
Ni	6	3	3	4	26	70	68	63	157	44	63	82
Cu	162	19	7	60	238	9	25	187	99	206	132	202
Zn	120	60	142	32	88	40	82	130	104	294	69	255
As	<5	<5	<5	<5	<5	>2000	>2000	<5	<5	<5	<5	<5
Se	<5	<5	<5	<5	<5	<5	<5	<5	7	<5	<5	<5
Br	-	-	-	-	-	-	-	-	-	-	-	-
Mo	7	1	2	6	4	<1	1	<1	1	5	7	3
Ag	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	0,7	1,4	0,9	2,3
Cd	<1	<1	<1	<1	<1	<1	<1	<1	2	<1	<1	<1
Sn	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Sb	<5	<5	<5	<5	<5	<5	<5	7	<5	<5	<5	<5
Te	14	<10	<10	32	<10	<10	<10	<10	<10	<10	<10	<10
Cs	-	-	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
w	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Au (ppb)	1	5	1	2	3	1004	125	8	13	10	44	4
TI (%)	-	-	-	-	-	-	-	-	-	-	-	•
РЬ	65	33	46	25	57	27	59	57	45	50	12	27
Bi	<2	<2	<2	<2	<2	<2	<2	4	<2	<2	<2	<2
U	<10	<10	<10	<10	<10	<10_	<10	<10	<10	<10	<10	<10

# Ech.	1204g	1217a	1228	1240b	1259a	1284b	1314	1334a	1334b	1345d	1347c	*1351
UTM/ N	5323375	5323750	5324150	5324650	5323750	5323400	5331800	5324300	5324300	5325350	5330325	5328580
UTM/E	331125	331300	331200	330650	331600	331075	341775	328900	328900	330650	327325	325720
Fm.	VAD	•	-	VAD	-	VAD	GAI	VAD	VAD	VAD	JAC	VAD
Lith.	LAV	INT	INT	PYR	INT	LAV	SED	LAV	LAV	LAV	LAV	PYR
Fac.	V3A	12J	12J	V3A	13 J	V3A	S2D	V3A	VЗA	VЗA	V2J	V3A
S∙Fa.	C	М	YOZ	x	M	С	Li	М	М	М	М	1
Alt.	CB,AK	QZ,CL	SU	₽	QZ	QZ	SU	SU	SU	QZ	AK,QZ,SR	SU,QZ
El. traces (p	pm)											
S (%)	-	-	-	-	-	-	-	-	-	-	-	0,16
V	163	378	42	270	132	60	23	119	109	535	225	-
Cr	236	192	259	164	266	277	491	122	123	272	134	-
Mn	3850	13877	208	507	1035	4500	251	801	1794	1318	2327	-
Fe (%)	8,8	9,0	2,5	4,8	10,6	10,4	1,3	3,8	5,6	5,8	8,1	-
Co	61	37	6	11	135	82	3	20	26	56	52	-
Ni	176	65	14	13	74	107	13	34	43	92	71	-
Cu	300	48	5	38	7750	428	30	55	43	207	75	133
Zn	558	144	33	74	211	473	28	63	87	43	81	98
As	<5	<5	<5	<5	<5	<5	<5	<5	10	<5	<5	19
Se	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<10
Br	-	-	-	-	-	-	-	-	-	-	-	<1
Mo	7	2	<1	1	5	5	<1	1	3	3	2	-
Ag	7,5	<0,5	<0,5	<0,5	6,5	26,4	<0,5	0,8	0,6	<0,5	<0,5	<0,5
Cd	<1	<1	<1	<1	<1	4	<1	<1	<1	<1	<1	-
Sn	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-
Sb	<5	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	0,2
Te	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-
Cs	-	-	-	-	-	-	-	-	-	-	-	<1
Tm	-	-	-	-	-	-	-	-	-	-	-	<2
W	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<1
Au (ppb)	2	14	15	2	598	17	13	<1	<1	2	14	7
TI (%)	-	-	-	-	-	-	-	-	-	-	-	<0,05
Pb	30	26	9	16	38	29	6	15	27	16	28	42
Bi	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	-
U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<0,2

# Ech.	1357b	1359b	1361b	1361c	1364b	1364c	1375b	1377b	1380a	1387b	1387c	1400b
UTM/N	5324600	5323125	5323250	5323250	5323400	5323400	5325175	5325250	5325200	5326850	5326850	5320100
UTM/E	325325	324700	324800	324800	324550	324550	330375	330700	330875	331000	331000	336450
Fm.	-	HEV	-	-	HEV	HEV	VAD	VAD	VAD	VAD	VAD	TRI
Lith.	INT	LAV	INT	INT	LAV	LAV	LAV	LAV	LAV	PYR	PYR	LAV
Fac.	I3B	V2J	13B	13B	V3A	V3A	V2B	V3A	V3A	V3B	V3B	V3A
S-Fa.	M	M	М	м	м	М	М	M,B	В	1	1	В
Alt.	ຮບ	QZ	QZ	QZ	SU	SU	₽	QZ,CB	SU	SU	SU	SU,QZ
El. traces (p) pm)						<u>.</u>	<u>-</u>				
S (%)	-	-	-	-	-		-	-	-	-	-	-
V	514	12	336	336	46	44	403	189	225	187	197	412
Cr	152	148	211	204	106	122	315	367	391	253	217	712
Mn	1164	402	1470	1623	1932	2001	1086	1617	2847	1169	1113	1179
Fe (%)	13,4	3,2	10,9	10,8	12,1	11,9	8,3	7,3	8,1	7,9	8,2	8,4
Co	34	2	74	46	56	41	27	48	37	35	37	10
Ni	27	6	126	100	8	7	24	105	42	77	80	26
Cu	102	58	1710	305	255	212	172	111	502	59	40	2540
Zn	105	31	111	100	160	156	114	132	125	120	99	143
As	<5	6	10	<5	7	<5	<5	6	<5	5	<5	<5
Se	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Br	-	-	-	-	-	-	-	-	-	-	-	-
Mo	3	<1	1	3	3	2	10	<1	8	<1	<1	14
Ag	<0,5	<0,5	1,5	0,5	0,6	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sn	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Sb	<5	<5	<5	<5	<5	<5	7	<5	<5	<5	9	<5
Гe	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	10
Cs	-	-	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
N	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Au (ppb)	1	1	300	40	3	2	6	4	4	2	1	3
FI (%)	-	-	-	-	-	-	-	-	-	-	-	-
Pb	47	12	29	28	33	40	86	67	73	80	71	76
Bi	2	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
J	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

	r ·											
# Ech.	1400c	1445c	1445d	1445e	1446c	1446d	1463e	1463h	1463i	1463k	2011	2051
UTM/N	5320100	5321975	5321975	5321975	5321100	5321100	5318850	5318850	5318850	5318850	5331750	5330350
UTM/E	336450	334350	334350	334350	334300	334300	336275	336275	336275	336275	344375	350100
Fm.	TRI	VAD	VAD	VAD	VAD	VAD	TRI	TRI	TRI	TRI	AUR	ASS
Lith.	LAV	PYR	LAV	LAV								
Fac.	V3A	V2J	V2J	V2J	V2J	V2J	V3A	V3A	V3A	V3A	V3B	V3B
S-Fa.	В	l l	I	1	x,I	x,I	ł	I	1	1	М	В
Alt.	SU,QZ	SU,QZ	SU,QZ	SU,QZ	SU	SU	QZ,CB	QZ,CB	QZ,CB	QZ,CB	QZ,PY	PY
El. traces (p	p m)						· · ·					
S (%)	-	-	-	-	-	-	-	-	-	-	-	-
V	430	88	123	110	134	163	156	176	177	249	185	125
Cr	285	465	249	498	515	728	313	214	400	243	134	54
Mn	2272	539	739	359	486	647	532	567	601	1626	1429	2427
Fe (%)	10,8	19,3	7,8	14,1	19,3	13,8	19,5	16,3	11,4	7,6	9,1	12,3
Co	44	48	27	42	62	57	145	130	56	40	49	34
Ni	56	55	29	51	70	57	113	106	64	69	128	66
Cu	77	39	44	39	28	37	243	298	139	114	88	165
Zn	224	98	158	92	83	104	390	371	69	11600	128	156
As	<5	129	27	112	93	88	168	65	4	20	23	42
Se	<5	<5	<5	<5	<5	11	<5	<5	<5	<5	<5	<5
Br	-	-	-	-	-	-	-	-	-	-	-	-
Мо	<1	<1	<1	<1	<1	14	2	2	2	1	<1	<1
Ag	<0,5	<0,5	<0,5	<0,5	0,7	<0,5	0,9	0,7	0,5	3,9	<0,5	<0,5
Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	36	<1	<1
Sn	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Sb	<5	<5	<5	<5	<5	<5	10	<5	<5	10	<5	<5
Te	<10	11	<10	12	13	<10	<10	<10	<10	<10	<10	<10
Cs	-	-	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
W	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Au (ppb)	2	8	3	13	113	43	24	16	12	67	3	19
TI (%)	-	-	-	-	-	-	-	-	-	-	-	-
Pb	96	227	90	206	228	190	217	155	42	10660	19	30
Bi	<2	<2	<2	<2	<2	<2	6	<2	<2	<2	<2	<2
U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

# Ech.	2103	2106	2112	2122	2142	2143	2177	2179	2265c	2268	2289	2352
UTM/N	5331225	5328475	5328150	5331800	5320175	5320125	5330350	5330225	5319825	5319850	5321675	5329650
UTM/E	350650	349650	350200	342900	343225	343175	352700	352675	342875	343200	355825	359400
Fm.	ASS	AUR	AUR	GAI	TRI	TRI	ASS	ASS	TRI	TRI	GAI	ASS
Lith.	LAV	LAV	LAV	SED	PYR	PYR	LAV	LAV	LAV	LAV	SED	LAV
Fac.	V3A	V3B	M8	S	V3A	V2J	V3B	V2J	M8	M8	S3	V2J
S-Fa.	B	В	-	Li	x	х	M,C	M,C	М	М	Li	M,C
Alt.	PO,PY,GR	PY	PO	œ	PY,QZ	qz	PO,PY	PO,QZ	PY,PO	PY	QZ,PO	PO,PY,QZ
El. traces (p	1 pm)											
S (%)	-	-	-	-	-	-	-	-	-	-	-	
v	148	435	411	327	60	80	22	127	279	278	179	47
Cr	106	205	154	41	19	12	22	134	3	3	119	34
Mn	1016	3296	2650	2333	454	742	525	910	1559	2546	2257	112
Fe (%)	6,3	14,7	12,0	8,0	3,8	5,3	23,2	5,9	16,0	11,7	4,7	22,7
Co	39	68	51	36	90	67	344	17	184	49	60	55
Ni	71	78	42	39	23	14	69	40	25	14	96	26
Cu	27	55	91	58	123	316	47	22	371	94	82	14
Zn	113	230	167	121	51	576	380	66	113	163	262	9
As	6	12	<5	<5	6	<5	5	<5	7	<5	<5	34
Se	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Br	-	-	-	-	-	•	-	-	-	-	-	-
Mo	<1	<1	<1	<1	<1	2	<1	<1	<1	4	<1	<1
Ag	<0,5	<0,5	<0,5	<0,5	<0,5	0,5	1,7	<0,5	<0,5	<0,5	<0,5	0,8
Cd	<1	<1	<1	<1	<1	2	<1	<1	<1	<1	<1	<1
Sn	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Sb	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Te	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cs	-	-	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
W	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Au (ppb)	<1	18	15	122	7	38	9	12	3	2	21	34
TI (%)	-	-	-	-	-	-	-	-	-	-	-	-
Pb	12	39	32	24	11	17	49	16	33	32	14	59
Bi	~2	<2	<2	<2	<2	<2	2	<2	<2	<2	<2	<2
U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

# Ech.	3006b	3006c	3017b	3039a1	3039a2	3039a3	3039a6	3039b1	3049c	3070c	3070d	3070e
UTM/N	5328200	5328200	5331425	5329800	5329800	5329800	5329800	5329800	5330825	5319000	5319000	5319000
UTM/E	348600	348600	349675	350525	350525	350525	350525	350525	349475	345100	345100	345100
Fm.	GAI	GAI	ASS	-	-	-	-	•	ASS	TRI	TRI	TRI
Lith.	SED	SED	LAV	INT	INT	INT	INT	INT	LAV	PYR	PYR	PYR
Fac.	M4	M4	V2J	12J	12J	12J	12J	12J	V3A	V3B,V2J	V3B,V2J	V3B,V2J
S-Fa.	Ci	Ci	C,M,B	М	M	М	М	M	C,M	Ci	Ci	Ci
Alt.	BO,HB,SU	BO,HB,SU	PY	CB,AK,PY	CB,AK,PY	CB,AK,PY	CB,AK,PY	CB,AK,PY	PY,EP	QZ,PY,PO	QZ,PY,PO	QZ,PY,PO
El. traces (p	pm)											
S (%)		-	-	-	-	-	-	-	-	-		-
V	59	5	182	129	256	220	213	317	241	119	101	42
Cr	89	1	149	11	94	50	77	114	162	22	88	88
Min	319	23	2034	1953	44	885	317	1278	1471	876	172	534
Fe (%)	2,7	0,1	13,1	5,4	11,0	7,8	6,5	8,0	12,2	4,6	3,3	5,0
Co	12	3	57	15	97	66	45	61	45	39	27	639
Ni	35	3	35	29	163	99	81	96	71	71	110	158
Cu	2	2	80	87	40	35	49	7	143	405	410	751
Zn	35	19	105	81	20	85	45	133	162	103	134	313
As	<5	12	<5	<5	43	25	<5	<5	28	<5	6	<5
Se	8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Br	-	-	-	-	-	-	-	-	-	-	-	-
Mo	<1	<1	<1	<1	2	<1	4	2	<1	1	10	8
Ag	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	0,9	2,5	4,2
Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sn	16	40	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Sb	8	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Te	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cs	-	-	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-	-	-
W	<10	<10	<10	<10	<10	70	36	90	<10	<10	<10	<10
Au (ppb)	14	13	191	896	8560	2670	2860	109	21	8	4	21
TI (%)	-	-	-	-	-	-	-	-	-	-	-	-
Pb	41	11	38	13	31	20	17	27	28	30	90	122
Bi	2	5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

# Ech.	3070g	3070h	3088b	3090a	3090c	3112e	4029	4109a	4143	4210	4236	5039
UTM/ N	5319000	5319000	5330250	5328700	5328700	5328475	5330200	5328650	5327625	5329500	5329750	5316225
UTM/E	345100	345100	351700	355700	355700	365000	350550	362725	351450	359700	358900	343700
Fm.	TRI	TRI	ASS	ASS	ASS	ASS	-	ASS	AUR	ASS	ASS	TRI
Lith.	PYR	PYR	LAV	LAV	LAV	LAV	INT	LAV	LAV	LAV	LAV	SED
Fac.	V3B,V2J	V3B,V2J	V3A	V2J	V2J	V2J	I1FPQZ	V3A	V3B	V2J	V2J	S2D
S-Fa.	-	Ci	C,M	М	М	В	Ci	C,m	M,Ci	M,Ci	Ci	Ci
Alt.	QZ,PY,PO	QZ,PY,PO	CB	QZ,PO,CP	QZ,PO,CP	QZ,PY	SR,LM	-	PY,CC	QZ,PY	QZ,PO	QZ,BO
El. traces (p	_i opm)											
S (%)	· ·	-	-	-	-	-	-	-	-	-	-	2,24
v	141	111	134	104	104	193	33	197	401	86	40	-
Cr	26	97	84	92	96	109	11	172	118	55	9	-
Mn	462	434	852	1015	1412	2044	127	2648	1742	741	685	-
Fe (%)	4,2	3,7	5,4	5,0	6,0	5,4	1,4	6,7	6,7	4,6	1,0	-
Co	69	26	15	16	9	36	5	13	52	75	25	-
Ni	63	44	45	58	76	96	9	22	81	88	69	-
Cu	605	211	46	<1	1	64	4	61	99	174	94	15500
Zn	75	41	70	64	118	135	37	201	133	79	109	56
As	<5	51	6	<5	<5	<5	<5	<5	<5	31	<5	1
Se	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	10
Br	-	-	-	-	-	-	-	-	-	-	-	2
Mo	<1	6	<1	3	3	<1	<1	<1	1	1	2	-
Ag	<0,5	1	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	19
Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-
Sn	<10	<10	<10	11	<10	<10	<10	<10	<10	<10	<10	-
Sb	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	5	0,1
Te	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-
Cs	-	-	-	-	-	-	-	-	-	-	-	<1
Tm	-	-	-	-	-	-	-	-	-	-	-	<2
w	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	1
Au (ppb)	11	36	<1	<1	1	<1	25	21	1	2	1	27000
TI (%)	-	-	-	-	-	-	-	-	-	-	-	<0,05
Pb	16	60	16	81	20	19	<5	17	22	15	52	13
Bi	<2	<2	<2	<2	<2	<2	~2	<2	<2	<2	<2	-
U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<0,2

# Ech.	5049	5051	5052	5054	5057	6051	6097	6097Å	6098	7006	7035	7037
UTM/ N	5315750	5315675	5315675	5315600	5315700	5316350	5315650	5315650	5315750	5328775	5335750	5335825
UTM/E	343325	343225	343125	343025	343100	343350	342700	342700	342650	317225	313150	313125
Fm.	TRI	TRI	-	TRI	TRI	TRI	-	TRI	-	VAD	VAD ?	VAD ?
Lith.	LAV	LAV	INT	SED	PYR	SED	INT	SED	INT	LAV	LAV	LAV
Fac.	VЗA	VЗA		S2D	V2J	S2D	11	S2D	11	VЗA	V3B	V3B
S-Fa.	М	М	М	Li	I	Li	М	Li	М	м	М	M
Alt.	-	-	-	-	QZ, SU	œ	SU	œ	SU	SU	ຮບ	SU
El. traces (pp	m)											
S (%)	1,12	0,50	0,15	0,33	0,10	1,01	0,07	0,17	0,15	1,17	0,25	0,80
v	-	-	-	-	-	-	-	-	-	-	-	-
Cr	-	-	-	-	-	-	-	-	-	-	-	
Min	-	•	-	-	-	-	-	-	-	-	-	-
Fe (%)	-	-	-	-	-	-	-	-	•	-	-	-
Co	-	-	-	-	-	-	-	-	-	-	-	-
Ni	-	-	-	-	-	-	-	-	-	-	-	-
Cu	3400	460	854	18	68	83	14	5,5	68	7900	116	32
Zn	65	32	25	52	135	150	46	59	44	211	97	43
As	3	3	1	<1	7	750	2	1	2	13	2	7
Se	<10	<10	<10	<10	<10	10	<10	<10	<10	10	<10	<10
Br	1	2	3	<1	<1	<1	2	<,001	<1	<1	2	<1
Mo	-	-	-	-	-	-	-	-	-	-		
Ag	3	<0,5	5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	3	<0,5	<0,5
Cđ	-	-	-	-	-	-	-	-	-	-		
Sn	-		-	•	•	-	•	-		-		
SD	1,1	0,7	0,3	0,2	0,5	3	0,3	<1	0,3	0,4	0,2	0,3
le Co	-	-	-	-	-	-	-	-	-	-		•
	<	5	-0	12	2	6	4	2	4	<	< _^	3
	<2	<2	<2	<2	<2	2	<2	<2	<2	<2	<2	<2
Au (mmh)	1100	ے ج	<1	10	<1	-5 -5	-F	<1	-e	10	10	19
	-0.05	<0.05	43 -0.05	-0.05	<0.05	<0.05	<0.05	-0 05	<0.05	19	18	-0.05
11 (70) Dh	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Ri	41	21	34	31	00 ور	29	20	30	30	30 _2	<1	<1 ~
11	- 0 -	-0.2	-0.2	-	<2	- 17	0.7	- 1 4	-0.2	<2	<2	<2
<u>v</u>	0,6	<0,2	<0,2	<u> </u>	<0,2	<u>_</u>	0,7	1,4	<0,2	0,7	<0,2	<0,2

# Ech.	7070	7095	LV 01	LV 02
UTM/ N	5336500	5318250	5326675	5326675
UTM/E	313125	336250	323150	323150
Fm.	DUB	TRI	VAD	VAD
Lith.	LAV	PYR	PYR	PYR
Fac.	V3B	V3A	V2J	V2J
S-Fa,	M,B	I,b	x	x
Alt.	ຮບ	SU	QZ,SU	QZ,SU
El. traces (p	pm)			
S (%)	17,70	2,68	-	-
V	-	-	117	83
Cr	-	-	133	137
Mn	-	-	709	358
Fe (%)	-	-	6,0	5,0
Co	-	-	16	46
Ni	-	-	31	21
Cu	322	93	1440	2880
Zn	14	97	128	58
As	170	4	17	20
Se	20	<10	<5	<5
Br	4	2	-	-
Mo	<1		4	13
Ag	<0,5	<0,5	0,7	2,2
Cd	<1		<1	<1
Sn	<10		<10	<10
Sb	0,9	0,7	<5	<5
Te	<10		11	<10
Cs	<1	<1	-	-
Tm	<2	<2	-	-
W	<1	<1	<10	<10
Au (ppb)	86	15	18	90
TI (%)	<0,05	<0,05	-	-
РЬ	<1	<1	31	25
Bi	<10	~2	4	<2
U	<0,2	<0,2	<10	<10

ANNEXE 4b

RÉSULTATS D'ANALYSES D'ÉLÉMENTS ÉCONOMIQUES DE DIFFÉRENTS GÎTES MINÉRALISÉS

Eléments économiques

Classification selon les gîtes

Pour la légende voir l'annexe 2a

Gisement	Aurora	Aurora	Aurora	Aurora	Aurora	Aurora	Aurora	Aurora	Aurora	Aurora
# Ech.	AU-A-01	AU-A-03	AU-A-04	AU-A-11	AU-A-12	AU-A-15	AU-A-20	AU-A-21	AU-B-03 a	AU-B-03 b
UTM/N	5332500	5332500	5332500	5332500	5332500	5332500	5332500	5332500	5332500	5332500
UTM/E	329400	329400	329400	329400	329400	329400	329400	329400	329400	329400
Fm.	AUR	AUR	AUR	AUR	AUR	AUR	AUR	AUR	-	-
Lith.	LAV	LAV	LAV	LAV	LAV	LAV	LAV	LAV	INT	INT
Fac.	V3B	V3B	V3B	V3B	V3B	V3B	V3B	V3B	2J	12J
S-Fa.	VQZ	Ci,VQZ	VQZ	VQZ	VQZ	VQZ	Ci	В	Ci	Ci
Alt.	CB,SU,TL	CB,SU,TL	CB,SU,SR,TL	SR,SU,CB	SR,SU,CB	SR,CB,SU,TL	CB,SU	EP,CL	SR,CB,SU	SR,CB,SU
El. traces (p	pm)									
S (%)	-	-	-	-	-	-	-	-	-	-
V	104	93	151	62	180	286	-	-	-	95
Cr	144	129	60	77	160	197	-	-	-	3
Mn	1184	3958	157	1006	947	1878	-	-	-	457
Fe (%)	5,7	7,1	7,5	16,5	8,8	10,1	-	-	-	8,4
Co	22	94	88	256	4 1	81	-	-	-	24
Ni	50	58	48	400	67	120	-	-	-	4
Cu	5	12	10	345	169	19	23	11	58	121
Zn	36	24	13	35	30	53	-	-	-	16
As	<5	<5	40	154	19	24	-	-	-	62
Se	<5	5	7	<5	9	<5	-	-	-	<5
Br	-	-	-	-	-	-	-	-	-	-
Мо	14	6	<1	2	30	6	-	-	-	<1
Ag	<0,5	<0,5	2,1	1,6	1,1	<0,5	<0,5	<0,5	<0,5	2,3
Cd	<1	<1	<1	<1	<1	<1	-	-	-	<1
Sn	<10	<10	<10	<10	<10	<10	-	-	-	<10
Sb	<5	<5	<5	<5	<5	<5	-	-	-	<5
Te	<10	<10	<10	26	<10	<10	-	-	-	12
cs	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-
w	20	900	80	12	28	28	-	-	-	20
Au (ppb)	1170	2710	2640	10100	1350	11400	364	8	6340	6110
TI (%)	-	-	-	-	-	-	-	-	-	-
Pb	29	38	34	88	41	53	-	-	-	40
Bi	<2	<2	<2	<2	<2	<2	-	-	-	<2
U	<10	<10	<10	<10	<10	<10	-	-	-	<10
Gisement	Bevcon	Brosnor	Brosnor	Brosnor	Brosnor	Brosnor	Brosnor	Brosnor	Brosnor	Brosnor
---------------	----------	---------	---------	-------------	----------	----------	----------	----------	----------	------------
# Ech.	BV 01	BR 01	BR 04	BR-86-14	BR-86-15	BR-86-16	BR-86-33	BR-86-34	BR-86-35	BR-86-39
UTM/N	5329650	5331500	5331500	5331500	5331500	5331500	5331500	5331500	5331500	5331500
UTM/E	319700	321300	321300	321300	321300	321300	321300	321300	321300	321300
Fm.	-	JAC	JAC	JAC	JAC	JAC	-	JAC	-	-
Lith.	INT	LAV	LAV	LAV	LAV	LAV	-	LAV	INT	INT ou LAV
Fac.	12J	V4	V4	V3B	V3B	V3B	-	V3B	I1 FP	12J ou V3B
S-Fa.	M	M,P	M,P	M,B,VQZ	M, VQZ	VQZ	VQZ	м	-	M
Alt.	QZ,CB,SR	QZ,CB	QZ,CB	CB,SR,FC,CL	CB,SU	FC,SU	SU	ຮບ	CB,SR,SU	Ð
El. traces (p	pm)									
S (%)	-	-	-	-	-	-	-	-	-	-
V	71	40	95	291	80	24	14	101	23	177
Cr	255	210	2385	562	37	276	50	68	13	171
Mn	1335	1490	1622	2908	1142	965	637	1350	437	1799
Fe (%)	7,2	7,7	7,3	8,4	4,8	7,4	6,5	6,2	1,3	8
Co	16	55	94	50	43	131	104	35	8	42
NI	15	46	1180	294	57	151	106	70	12	103
Cu	18200	30	7	3	16	33	1	12	5	131
Zn	226	33	76	62	48	35	22	28	19	75
As	89	87	161	<5	<5	18	7	<5	<5	<5
Se	<5	7	<5	<5	<5	10	9	<5	<5	<5
Br	-	-	-	-	-	-	-	-	-	-
Мо	18	30	10	32	<1	108	60	4	<1	<1
Ag	1,7	0,8	<0,5	<0,5	1,4	31,3	6,9	4,2	<0,5	<0,5
Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sn	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Sb	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Te	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
cs	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-
W	<10	16	<10	120	36	<10	<10	60	<10	<10
Au (ppb)	2063	2795	10	46	602	258230	11600	2570	2820	44
TI (%)	-	-	-	-	-	-	-	-	-	-
Pb	56	58	49	46	21	66	34	23	9	35
Bi	2	<2	3	<2	<2	<2	<2	<2	<2	<2
U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Gisement	Brosnor	Bruell	Bruell	Bruell	Bruell	Bruell	Bruell	Bruell	Bruell	Bruell
# Ech.	BR-86-46	5005	5006 b	5006 c	5006 d	BR-A-02	BR-A-07	BR-A-08	BR-A-11	BR-B-01
UTM/N	5331500	5332500	5332500	5332500	5332500	5332500	5332500	5332500	5332500	5332500
UTM/E	321300	329400	329400	329400	329400	329400	329400	329400	329400	329400
Fm.	JAC	AUR	-	-	-	AUR	-	AUR	-	AUR
Lith.	LAV	LAV	INT	INT	INT	LAV	INT	LAV	INT	LAV
Fac.	V3B	V3B	12 J	12J	12J	V3B	I1 QZ,FP	V3B	I1 QZ,FP	V3B
S-Fa.	VQZ	Р	-	-	-	Ci	Ci	Ci	Ci	Ci
Alt.	CB,SU	SU	SU	SU	SU	SR,CL	SR,CL	SR,CL	SR,CB	SR,CL,BO
El. traces (p	լ pm)									
S (%)	-	-	-	-	-	-	-	-	-	-
V	46	278	294	400	543	146	53	-	-	-
Cr	34	134	2	2	2	145	55	-	-	-
Mn	2668	1449	1806	1641	2131	1385	244	-	-	-
Fe (%)	6,5	19,8	11,9	9,6	13,1	7,9	7,5	-	-	-
Co	42	189	44	35	19	44	4	-	-	-
NI	68	144	8	14	17	58	16	-	-	-
Cu	154	1390	89	27	66	11	90	26	<1	35
Zn	34	92	74	47	73	33	38	-	-	-
As	<5	633	<5	5	14	<5	<5	-	-	-
Se	6	24	5	<5	<5	13	7	-	-	-
Br	-	-	-	-	-	-	-	-	-	-
Mo	28	6	2	6	18	234	<1	-	-	-
Ag	2	5,7	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Cd	<1	<1	<1	<1	<1	<1	<1	-	-	-
Sn	<10	<10	<10	<10	<10	<10	10	-	-	-
Sb	<5	<5	<5	<5	<5	<5	<5	-	-	-
Te	<10	18	11	<10	11	<10	<10	-	-	-
cs	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-
W	<10	<10	<10	<10	<10	<10	<10	-	-	-
Au (ppb)	55	1040	16	7	10	13	9	1310	5	37
Tł (%)	-	-	-	-	-	-	-	-	-	-
Pb	25	106	60	62	79	38	19	-	-	-
BI	<2	<2	<2	<2	<2	<2	<2	-	-	-
U	<10	<10	<10	<10	<10	<10	<10	-	-	-

Gisement	Bruell	Bruell	Bruell	Bruell	Busmac	Busmac	Chimo	Chimo	Chimo	Chimo
# Ech.	BR-B-02	BR-B-03	BR-B-06	BR-B-11	BUSM-1	BUSM-2	CH 06	CH 17	CH 22	CH 26
UTM/N	5332500	5332500	5332500	5332500	5331700	5331700	5319800	5319800	5319800	5319800
UTM/E	329400	329400	329400	329400	344600	344600	332000	332000	332000	332000
Fm.	AUR	AUR	-	AUR	-	-	TRI	TRI	TRI	TRI
Lith.	LAV	LAV	INT	LAV	-	-	LAV	LAV	LAV	PYR
Fac.	V3B	V3B	12 J	V3B	-	-	V2J	V2J	V2J	V2J
S-Fa.	Ci,VQZ	Ci,VQZ	-	VQZ	VQZ	VQZ	М	M	М	x
Alt.	CB,BO	SR,CB	CB	CB	SU	SU	SU	ຮບ	SU	ຮມ
El. traces (p)	pm)									
S (%)	-	-	-	-	-	-	-	-	-	-
V	172	-	-	259	97	166	232	11	460	154
Cr	97	-	-	178	93	162	493	200	191	414
Mn	508	-	-	1631	572	1363	1592	118	2222	2352
Fe (%)	7,2	-	-	8,8	4,9	7,5	8,5	27,6	8	10,6
Co	43	-	-	45	24	39	38	27	40	41
NI	45	-	-	89	107	140	193	33	28	78
Cu	123	48	680	140	17	51	82	142	136	230
Zn	23	-	-	54	91	91	98	30	196	327
As	27	-	-	54	25	10	569	>2000	>2000	>2000
Se	9	-	-	<5	<5	<5	<5	<5	8	<5
Br	-	-	-	-	-	-	-	-	-	-
Мо	42	-	-	6	<1	<1	7	10	<1	13
Ag	1,2	<0,5	<0,5	2	<0,5	<0,5	<0,5	1,4	<0,5	<0,5
Cd	<1	-	-	<1	<1	<1	<1	<1	<1	<1
Sn	<10	-	-	<10	<10	<10	<10	<10	<10	<10
Sb	<5	-	-	<5	<5	<5	<5	109	10	<5
Те	<10	-	-	<10	<10	<10	<10	23	10	<10
CS	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	+
W	36	-	-	36	<10	<10	<10	90	24	<10
Au (ppb)	623	32	60	6730	3	4	39	10326	2391	180
TI (%)	-	-	-	-	•	-	-	-	•	-
Pb	43	-	-	55	30	40	58	195	102	95
Bi	<2	-	-	<2	<2	<2	<2	21	<2	5
U	<10	-	-	<10	<10	<10	<10	<10	<10	<10

Gisement	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo
# Ech.	CH 28	CH 39	CH 40	CH 42	CH 44	CH 45	CH 47	CH-86-06	CH-86-07	CH-86-09
UTM/N	5319800	5319800	5319800	5319800	5319800	5319800	5319800	5319800	5319800	5319800
UTM/E	332000	332000	332000	332000	332000	332000	332000	332000	332000	332000
Fm.	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI
Lith.	LAV	LAV	LAV	LAV	LAV	LAV	PYR	-	PYR	PYR
Fac.	V2J	V2J	V2J	V2J	V2J	V2J	V3A	M4	V3A	V3A
S-Fa.	М	м	М	M	М	М	x	-	1	x
Alt.	ຣບ	SU	QZ	œ	QZ	œ	QZ	GP,SR	QZ,SR	œ
El. traces (p	ו פָּש)									
S (%)	-	-	-	-	-	-	-	-	-	-
V	22	356	32	275	23	30	222	-	-	-
Cr	2264	225	799	449	811	664	497	-	-	-
Mn	260	1103	175	1397	411	333	1003	-	-	-
Fe (%)	2,1	9,8	1,6	9,3	1,8	1,3	5,1	-	-	-
Co	4	37	5	36	5	6	32	-	-	-
NI	21	37	28	96	18	18	83	-	-	-
Cu	27	40	32	134	22	40	84	9	53	86
Zn	192	177	47	116	38	69	59	-	-	-
As	1378	>2000	519	>2000	>2000	1372	1629	-	-	-
Se	<5	11	9	11	8	21	7	-	-	-
Br	-	-	-	-	-	-	-	-	-	-
Мо	<1	<1	<1	<1	<1	<1	<1	-	-	-
Ag	1	1,4	<0,5	<0,5	<0,5	<0,5	0,5	<0,5	<0,5	<0,5
Cd	<1	<1	<1	<1	<1	<1	<1	-	-	-
Sn	<10	<10	<10	<10	<10	<10	<10	-	-	-
Sb	7	5	<5	<5	<5	<5	<5	-	-	-
Te	<10	<10	<10	17	<10	<10	<10	-	-	-
cs	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-
W	<10	16	<10	40	12	12	85	-	-	-
Au (ppb)	2350	2759	3373	4978	1343	28360	12105	9	7	172
TI (%)	-	-	-	-	-	-	-	-	-	-
Pb	16	85	37	92	25	56	62	-	-	-
Bi	2	7	3	4	<2	8	7	-	-	-
U	<10	<10	<10	<10	<10	<10	<10			-

Gisement	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo
# Ech.	CH-86-18	CH-86-19	CH-86-20	CH-86-22	CH-86-25	CH-86-26	CH-86-27	CH-86-40	CH-86-43	CH-86-44
UTM/N	5319800	5319800	5319800	5319800	5319800	5319800	5319800	5319800	5319800	5319800
UTM/E	332000	332000	332000	332000	332000	332000	332000	332000	332000	332000
Fm.	TRI	TRI	-	TRI						
Lith.	LAV	PYR	-	LAV	PYR	SED	LAV	PYR	LAV	LAV
Fac.	V3A	V3A	-	V3A	V3A	S6A	V3A	VЗА	VЗA	V3A
S-Fa.	Ci	х	VQZ	VQZ	x,Ci	Ci		x,1	VQZ	VQZ
Alt.	QZ,SR	QZBO	CL	CB,QZ	CB,BO	CB,BO	CB,CL	QZ	CB	CB
El. traces (p	<u>. </u>									
S (%)	-	-	-	-	-	-	-	-	-	-
V	-	114	78	310	166	508	-	217	70	195
Cr	-	115	147	288	158	328	-	238	172	237
Mn	-	1507	1007	1446	987	1771	-	751	709	1702
Fe (%)	-	5,7	4,1	6,9	4,7	8,8	-	2,6	2,6	6
Co	-	27	28	62	39	71	-	51	30	37
NI	-	60	93	171	109	252	-	138	95	113
Cu	56	110	16	101	104	219	92	78	43	46
Zn	-	45	36	125	58	143	-	123	39	63
As	-	5	>2000	>2000	58	<5	-	<5	>2000	>2000
Se	-	9	8	<5	6	<5	-	7	5	<5
Br	-	-	-	-	-	-	-	-	-	-
Мо	-	<1	<1	<1	<1	<1	-	<1	<1	<1
Ag	<0,5	0,8	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Cd	-	<1	<1	<1	<1	<1	-	<1	<1	<1
Sn	-	<10	<10	<10	<10	<10	-	<10	<10	<10
Sb	-	<5	<5	<5	6	<5	-	<5	6	11
Te	-	<10	<10	<10	<10	<10	-	<10	<10	<10
CS	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-
W	-	14	20	<10	10	16	-	<10	36	16
Au (ppb)	168	300	1550	1020	2340	513	4	8	708	995
TI (%)	-	-	-	-	-	-	-	-	-	-
Pb	-	36	24	38	30	47	-	39	16	37
BI	-	<2	<2	<2	<2	<2	-	<2	<2	<2
U	-	<10	<10	<10	<10	<10	-	<10	<10	<10

Gisement	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo	Chimo
# Ech.	CH-86-51	CH-86-62	CH-86-70	CH-86-85	CH-86-87	CH-86-88	CH-86-89	CH-86-90	CH-86-92	CH-86-93
UTM/N	5319800	5319800	5319800	5319800	5319800	5319800	5319800	5319800	5319800	5319800
UTM/E	332000	332000	332000	332000	332000	332000	332000	332000	332000	332000
Fm.	TRI	TRI	-	TRI	TRI	TRI	TRI	TRI	TRI	TRI
Lith.	PYR	LAV	-	LAV	LAV	LAV	LAV	LAV	LAV	LAV
Fac.	V3A	V3A	-	V3A	V3A	V3A	VЗA	VЗA	VЗА	VЗA
S-Fa.	1	Ci	B,VQZ	-	VQZ	B,Ci	Ci,VQZ	Ci,VQZ	~	-
Alt.	SU	SR,HB	CB	CB,CL	CB,SU	CB,CL,SU	CB,SU	CB,SU	CB	HB
El. traces (p	pm)		· · · · · · · · · · · · · · · · · · ·			··· · · .				
S (%)	-	-	-	-	-	-	-	-	-	-
V	10	275	43	237	213	287	348	-	299	-
Cr	7	345	165	228	392	488	269	-	361	-
Mn	111	2115	922	22	1821	3787	3456	-	1977	-
Fe (%)	42,8	9,5	5,2	6,6	11,2	13,1	11,3	-	7,2	-
Co	198	119	35	41	4 4	59	4 1	-	60	-
NI	409	208	95	139	214	247	198	-	198	-
Cu	307	1990	5	109	265	180	1041	71	109	82
Zn	69	398	40	97	82	98	97	-	94	-
As	448	18	>2000	144	>2000	>2000	929	-	>2000	-
Se	7	16	<5	7	5	9	<5	-	<5	-
Br	-	-	-	-	-	-	-	•	-	-
Мо	<1	<1	<1	<1	<1	<1	<1	-	<1	-
Ag	<0,5	<0,5	<0,5	<0,5	4,1	<0,5	1,1	<0,5	<0,5	<0,5
Cd	<1	<1	<1	<1	<1	<1	<1	-	<1	-
Sn	<10	<10	<10	<10	<10	<10	<10	-	<10	-
Sb	32	<5	<5	<5	5	<5	<5	-	<5	-
Te	37	10	14	<10	23	15	<10	-	<10	-
cs	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-
W	<10	<10	12	<10	40	<10	28	-	<10	-
Au (ppb)	691	28	1530	8	>30000	>30000	16400	9910	648	61
TI (%)	-	-	-	-	-	-	-	-	-	-
Pb	364	63	35	43	76	95	86	-	45	-
Bí	11	<2	<2	<2	<2	<2	<2	-	<2	-
U	<10	<10	<10	<10	<10	<10	<10	-	<10	-

Gisement	Chimo	Chimo	Chimo	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor
# Ech.	CH-86-94	CH-86-96	CH-86-98	CR-03	CR-04	CR-09	CR-10	CR-11	CR-13	CR-16
UTM/N	5319800	5319800	5319800	5330250	5330250	5330250	5330250	5330250	5330250	5330250
UTM/E	332000	332000	332000	349800	349800	349800	349800	349800	349800	349800
Fm.	TRI	TRI	TRI	-	-	-	-	-	-	-
Lith.	LAV	LAV	SED	INT	INT	-	-	INT	-	INT
Fac.	V3A	VЗA	S9E	121	2	-	-	121	-	121
S-Fa.	Ci	-	М	-	-	VQZ	-	-	-	В
Alt.	СВ	CB	AS	CB,SU	CB,SU	CB,SU,TL	SU	SR,CB,SU	SU	CB,QZ,SU
El. traces (p	pm)									
S (%)	-	-	-	-	-	-	-	-	-	-
v	440	-	42	450	263	361	25	155	25	145
Cr	316	-	69	79	69	4	2	5	1	4
Mn	5139	-	225	257	1037	755	57	1304	33	368
Fe (%)	10,9	-	10,6	8,4	9,6	8,2	35,1	7,1	35,7	4
Co	56	-	13	58	55	82	30	91	252	39
NI	149	-	27	48	39	35	12	21	75	16
Cu	107	70	58	43	352	20	33	914	38	76
Zn	82	-	43	95	114	91	9	66	12	39
As	>2000	-	>2000	<5	<5	33	306	38	252	26
Se	7	-	7	5	<5	<5	12	<5	<5	<5
Br	-	-	-	-	-	-	-	-	-	-
Мо	2	-	<1	<1	<1	<1	<1	<1	<1	<1
Ag	<0,5	<0,5	1,8	0,7	<0,5	1,2	11,1	0,5	4,1	<0,5
Cd	<1	-	<1	<1	<1	<1	<1	<1	<1	<1
Sn	<10	-	<10	<10	<10	<10	<10	<10	<10	<10
Sb	<5	-	44	<5	<5	<5	10	<5	6	<5
Te	<10	-	<10	<10	<10	<10	28	<10	<10	<10
cs	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-
W	<10	-	<10	60	28	50	<10	60	10	50
Au (ppb)	2660	4120	271	260	115	10	>30000	4670	25600	1170
TI (%)	-	-	-	-	-	-	-	-	-	-
Pb	93	-	68	37	43	37	152	33	155	14
Bi	<2	-	<2	<2	<2	<2	<2	<2	<2	<2
U	<10	-	<10	<10	<10	<10	<10	<10	<10	<10

Gisement	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor
# Ech.	CR-17	CR-21	CR-24	CR-27	CR-43	CR-44	CR-45 b	CR-61	CR-62	CR-65
UTM/N	5330250	5330250	5330250	5330250	5330250	5330250	5330250	5330250	5330250	5330250
UTM/E	349800	349800	349800	349800	349800	349800	349800	349800	349800	349800
Fm.	-	-	-	ASS	-	-	ASS	-	-	-
Lith.	INT	INT	INT	PYR	INT	INT	PYR	INT	INT	INT
Fac.	121	2	121	V2J	11 QZ,FP	I1 QZ,FP	V2J	2	121	121
S-Fa.	-	-	-	ł	-	-	1	B,VQZ	-	-
Alt.	SR,CL,FC	SR,FC	SR	SU,CB,SR	SR,CL	SR,CB	CB	CB,SU	SR,CB	CB,SR,SU
El. traces (pp	m)									
S (%)	-	-	-	-	-	-	-	-	-	-
v	119	260	408	128	-	-	-	162	-	152
Cr	298	479	21	44	-	-	-	32	-	27
Mn	347	56	1904	1238	-	-	-	1391	-	1454
Fe (%)	3	3,1	7	5,4	-	-	-	6	-	5,4
Co	35	59	60	37	-	-	-	110	-	86
NI	55	98	48	35	-	-	-	75	-	36
Cu	31	46	162	112	50	45	64	24	88	12
Zn	33	29	90	74	-	-	-	56	-	67
As	8	28	<5	13	-	-	-	58	-	41
Se	<5	<5	<5	<5	-	-	-	<5	-	<5
Br	-	-	-	-	-	-	-	-	-	-
Mo	<1	<1	<1	<1	-	-	-	<1	-	<1
Ag	<0,5	<0,5	0,7	<0,5	1,6	0,5	0,9	2	1,3	<0,5
Cd	<1	<1	<1	<1	-	-	-	<1	-	<1
Sn	<10	12	<10	<10	-	-	-	<10	-	<10
Sb	<5	<5	<5	<5	-	-	-	<5	-	<5
Te	<10	<10	<10	<10	-	-	-	<10	-	<10
cs	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-
w	10	30	16	10	-	-	-	20	-	24
Au (ppb)	28	190	513	351	2	8	12	69800	9	10400
TI (%)	-	-	-	-	-	-	-	-	-	-
Pb	14	30	43	27	-	-	-	31	-	28
Bi	<2	<2	<2	<2	-	-	-	<2	-	<2
U	<10	<10	<10	<10	-	-		<10		<10

Gisement	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor
# Ech.	CR-66	CR-67	CR-68	CR-69	CR-77	CR-78	CR-79	CR-80	CR-81	CR-83
UTM/N	5330250	5330250	5330250	5330250	5330250	5330250	5330250	5330250	5330250	5330250
UTM/E	349800	349800	349800	349800	349800	349800	349800	349800	349800	349800
Fm.	-	-	-	-	-	-	-	-	-	ASS
Lith.	INT	INT	INT	INT	INT	INT	INT	-	INT	PYR
Fac.	2	121	121	21	121	121	121	-	12	V2J
S-Fa.	-	VQZ	-	-	-	-	VQZ	VQZ	-	1
Alt.	SR,SU	SR,FC,TL	CB,SU	CB,SU	CB	CB	CB,SU,TL	CB,FC	CL	SR,CB,CL
El. traces (p										
S (%)	-	-	-	-	-	-	-	-	-	-
V	-	130	-	181	-	175	69	101	-	159
Cr	-	89	-	346	-	163	30	183	-	151
Mn	-	1933	-	1459	-	1722	547	1260	-	2472
Fe (%)	-	8,2	-	7,6	-	8,1	3	5,3	-	7
Co	-	60	-	44	-	54	21	49	-	30
NI	-	68	-	82	-	121	17	147	-	92
Cu	10	11	26	101	107	86	25	26	52	51
Zn	-	68	-	86	-	87	22	28	-	69
As	-	27	-	9	-	20	8	<5	-	22
Se	-	<5	-	<5	-	5	<5	<5	-	<5
Br	-	-	-	-	-	-	-	-	-	-
Mo	-	<1	-	<1	-	<1	<1	<1	-	<1
Ag	1,1	<0,5	1,3	<0,5	1,3	<0,5	1,6	<0,5	1,4	<0,5
Cd	-	<1	-	<1	-	<1	<1	<1	-	<1
Sn	-	<10	-	<10	-	<10	<10	<10	-	<10
Sb	-	<5	-	<5	-	<5	<5	<5	-	<5
Te	-	<10	-	<10	-	<10	<10	<10	-	<10
cs	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-
W	-	16	-	<10	-	10	14	<10	-	24
Au (ppb)	263	8190	6	158	1	30	26500	40	6	320
TI (%)	-	-	-	-	-	-	-	-	-	-
РЪ	-	43	-	36	-	35	19	24	-	34
BI	-	<2	-	<2	-	<2	<2	<2	-	<2
U	-	<10	-	<10	-	<10	<10	<10	-	<10

-

Gisement	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor	Croinor
# Ech.	CR-84	CR-85	CR-86	CR-87	CR-88	CR-89	CR-91	CR-92	CR-93	CR-96
UTM/N	5330250	5330250	5330250	5330250	5330250	5330250	5330250	5330250	5330250	5330250
UTM/E	349800	349800	349800	349800	349800	349800	349800	349800	349800	349800
Fm.	-	-	-	-	-	-	-	-	-	-
Lith.	INT	INT	INT	INT	INT	INT	INT	INT	INT	INT
Fac.	2	121	12	2	121	121	121	2	121	121
S-Fa.	VQZ	-	-	-	-	VQZ	-	-	-	B,VQZ
Alt.	CB,TL	SR,CB	CB	CB,SU	CB,CL,SR	CB	CB	SR,CL,CB	TL,SR,FC	SU,CB
El. traces (p	i pm)									
S (%)	-	-	-	-	-	-	-	-	-	-
V	47	158	-	411	154	74	-	272	178	133
Cr	13	37	-	5	154	6	-	169	271	54
Mn	1606	1511	-	1702	1366	468	-	1474	1347	1410
Fe (%)	4,7	5,4	-	9,7	5,6	2,8	-	8,3	6,6	5,6
Co	14	42	-	63	30	22	-	40	48	31
NI	16	33	-	33	52	10	-	49	55	32
Cu	12	51	44	141	101	35	16	154	123	21
Zn	36	59	-	118	51	17	-	96	66	37
As	16	20	-	19	20	13	-	<5	<5	23
Se	<5	<5	-	6	<5	<5	-	<5	<5	<5
Br	-	-	-	-	-	-	-	-	-	-
Mo	<1	<1	-	<1	<1	<1	-	<1	<1	<1
Ag	0,7	<0,5	1,3	0,7	<0,5	0,5	1,2	<0,5	<0,5	1,5
Cd	<1	<1	-	<1	<1	<1	-	<1	<1	<1
Sn	<10	<10	-	<10	<10	<10	-	<10	<10	<10
Sb	<5	<5	-	<5	<5	<5	-	<5	<5	<5
Te	<10	<10	-	<10	<10	<10	-	<10	<10	<10
cs	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-
w	<10	20	-	28	10	<10	-	<10	<10	12
Au (ppb)	16600	16300	2	5170	39	11300	12	34	24	57260
TI (%)		-	-	-	-	-	-	-	-	-
Pb	23	27	-	49	28	13	-	4 1	33	25
Bi	<2	<2	-	<2	<2	<2	-	<2	<2	<2
U	<10	<10	-	<10	<10	<10	-	<10	<10	<10

Gisement	Forsan	Forsan	Forsan	Lecierc	Leclerc	Leclerc	Leclerc	Leclerc	Leclerc	Lecierc
# Ech.	FR-08	FR-09	FR-10	SH-L-01	SH-L-02	SH-L-03	SH-L-06	SH-L-07	SH-L-08	SH-L-09
UTM/N	5322000	5322000	5322000	5315700	5315700	5315700	5315700	5315700	5315700	5315700
UTM/E	338250	338250	338250	342800	342800	342800	342800	342800	342800	342800
Fm.	VAD	VAD	-	-	TRI	-	TRI	TRI	TRI	TRI
Lith.	PYR	PYR	-	INT	SED	INT	-	-	-	SED
Fac.	V2J	V2J	-	I1 FP	S6A	l1 FP	M4	M4	M4	M4
S-Fa.	x	x	VQZ	YOZ	Ci	-	-	-	-	Ci,B
Alt.	ຮບ	SU	SU	SU	SU	SU	HB,SU,QZ	HB,QZ,SU	HB,QZ,SU	HB,SU
El. traces (p	pm)							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
S (%)	-	-	-	-	-	-	-	-	-	-
V	157	20	-	-	-	52	179	159	100	90
Cr	113	6	-	-	-	31	92	83	46	39
Mn	1264	424	-	-	-	354	1173	799	642	560
Fe (%)	5	1,4	-	-	-	3,6	8,8	11,2	18,2	18,1
Co	14	14	-	-	-	56	131	57	1092	464
NI	20	8	-	-	-	23	76	26	309	389
Cu	167	26	480	7	76	10620	>20000	>20000	18600	8490
Zn	86	20	-	-	-	332	407	1419	370	108
As	<5	<5	-	-	-	38	<5	<5	<5	<5
Se	<5	<5	-	-	-	8	8	25	24	29
Br	-	-	-	-	-	-	-	-	-	-
Mo	<1	<1	-	-	-	<1	<1	<1	<1	2
Ag	6,8	<0,5	4 4	<0,5	<0,5	16,4	9,4	49,4	20,4	16,4
Cd	<1	<1	-	-	-	2,8	2,4	8,4	2,5	<1
Sn	<10	<10	-	-	-	<10	<10	<10	<10	<10
Sb	<5	<5	-	-	-	<5	<5	<5	<5	<5
Te	<10	<10	-	-	-	<10	<10	<10	15	13
cs	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-
W	12	<10	-	-	-	<10	<10	<10	16	36
Au (ppb)	552	22	>30000	34	23	260	258	507	1280	203
TI (%)	-	-	-	-	-	-	-	-	-	-
РЪ	26	8	-	-	-	28	66	89	120	119
Bi	<2	<2	-	-	-	<2	<2	<2	<2	<2
U	<10	<10	-	-	-	<10	<10	<10	<10	<10

Gisement	Leclerc	Leclerc	Leclerc	Nordeau	Nordeau	Nordeau	Nordeau	Nordeau	Nordeau	Nordeau
# Ech.	SH-L-11	SH-L-12	SH-L-15	84-17-N10	84-17-N5 a	84-17-N5 b	84-17-N5 c	84-17-N6	84-17-N8	84-18-N20b
UTM/N	5315700	5315700	5315700	5319700	5319700	5319700	5319700	5319700	5319700	5319700
UTM/E	342800	342800	342800	334750	334750	334750	334750	334750	334750	334750
Fm.	-	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI
Lith.	-	-	-	SED	SED	SED	SED	SED	SED	SED
Fac.	-	M4	M4	S2	S9B	S2	S6A	S6A	S6A	S9B
S-Fa.	VQZ	-	-	В	Li	VQZ	Li	Li	-	-
Alt.	SU	HB,SU,EP	HB,SU	CL,SR,QZ	HB,CL	a.	HB	CL	SR,BO,SU	HB
El. traces (p	.i .pm)	· · · · ·							· · · · ·	
S (%)	-	-	-	-	-	-	-	-	-	-
V	-	-	-	-	81	94	22	-	-	37
Cr	-	-	-	-	115	220	34	-	-	56
Mn	-	-	-	-	566	1905	585	-	-	427
Fe (%)	-	-	-	-	17,8	23,2	28,4	-	-	35,3
Co	-	-	-	-	18	20	6	-	-	9
NI	-	-	-	-	56	97	17	-	-	29
Cu	5810	>20000	4650	40	46	8	<1	48	16	<1
Zn	-	-	-	-	66	128	48	-	-	53
As	-	-	-	-	<5	5	<5	-	-	<5
Se	-	-	-	-	<5	<5	<5	-	-	<5
Br	-	-	-	-	-	-	-	•	-	-
Мо	-	-	-	-	2	<1	<1	-	-	<1
Ag	9	>50	3,4	0,9	<0,5	<0,5	<0,5	0,6	<0,5	<0,5
Cd	-	-	-	-	<1	<1	<1	-	-	<1
Sn	-	-	-	-	<10	<10	<10	-	-	<10
Sb	-	-	-	-	<5	<5	<5	-	-	<5
Te	-	-	-	-	10	11	22	-	-	29
CS	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-
W	-	-	-	-	<10	<10	<10	-	-	<10
Au (ppb)	146	2150	86	6	194	494	24	25	75	18
TI (%)	-	-	-	-	-	-	-	-	-	-
Pb	-	-	-	-	168	234	256	-	-	338
BI	-	-	-	-	4	8	12	-	-	15
U	-	-	-	-	<10	<10	<10	-	-	<10

Gisement	Nordeau	Nordeau	Nordeau	Nordeau	Nordeau	Nordeau	Nordeau	Nordeau	Reacourt	Reacourt
# Ech.	84-18-N20c	84-19-S3 a	84-19-S3b1	84-19-S3b3	84-19-S3 d	84-20-S9	84-30-E10	84-30-E11	RE 01	RE 02
UTM/N	5319700	5319700	5319700	5319700	5319700	5319700	5319700	5319700	5329300	5329300
UTM/E	334750	334750	334750	334750	334750	334750	334750	334750	324500	324500
Fm.	TRI	TRI	TRI	TRI	TRI	TRI	TRI	TRI	-	-
Lith.	SED	SED	SED	LAV	SED ou PYR	LAV	SED	SED	INT	INT
Fac.	S6A	S2	S2	V2J	V2J ou S6A	V2J	S9B	S9B	12J	12J
S-Fa.	Li	-	-	VQZ	Li	М	-	-	М	м
Alt.	ຮບ	HB,CL	HB,CL	CL.	QZBO	HB,SU	HB,QZ	HB,QZ,SU	SR,QZ	SR,QZ
El. traces (p	()		· · · · · · · · · · · · · · · · · · ·	<u>.</u>					<u> </u>	
S (%)	-	-	-	-	-	-	-	-	-	-
v	58	-	-	-	-	50	23	36	12	18
Cr	66	-	-	-	-	135	31	47	450	288
Mn	404	-	-	-	-	938	793	535	82	191
Fe (%)	7,7	-	-	-	-	20,7	36,6	34,2	13,6	9,4
Co	8	-	-	-	-	12	3	7	115	95
NI	26	-	-	-	-	46	13	61	40	46
Cu	43	170	344	6	127	123	<1	102	51	23
Zn	49	-	-	-	-	64	56	61	37	63
As	17	-	-	-	-	<5	<5	<5	10	9
Se	<5	-	-	-	-	<5	<5	<5	<5	<5
Br	-	-	-	-	-	-	-	-	-	-
Мо	<1	-	-	-	-	<1	2	<1	7	2
Ag	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	1,3	1,2	0,6
Cd	<1	-	-	-	-	<1	<1	<1	<1	<1
Sn	<10	-	-	-	-	<10	<10	<10	<10	<10
Sb	<5	-	-	-	-	<5	<5	<5	<5	<5
Te	<10	-	-	-	-	15	21	21	<10	<10
cs	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-
W	<10	-	-	-	-	<10	<10	<10	<10	<10
Au (ppb)	1980	41	91	32	5	4590	2230	3540	4535	768
11 (%)	-	-	-	-	-	-	•	-	•	-
70	68	-	-	-	-	185	309	307	40	34
81	<2	-	-	-	-	2	6	14	9	7
U	<10	-	-	-	-	<10	<10	<10	<10	<10

Gisement	Regcourt	Sigma 2	Venpar	Venpar	Venpar	Venpar				
# Ech.	RE 03	GP 04	GP 06	GP 21	GP 22	GP 23	5010 c	5010 d	5010 e1	5012 a
UTM/N	5329300	5326625	53266OO	5326600	5326600	5326600	5316300	5316300	5316300	5316300
UTM/E	324500	316800	316800	316800	316800	316800	343700	343700	343700	343700
Fm.	-	-	-	-	-	-	-	TRI	-	-
Lith.	INT	INT	INT	INT	INT	INT	-	PYR	-	-
Fac.	12J	12J	12 J	12J	12J	12J	-	V2J	-	-
S-Fa.	м	М	М	М	М	М	VQZ	x,1	VQZ	vaz
Alt.	SR,QZ	œ	QZ	œ	QZ	œ	QZ,SU	QZSU	SU	ຮບ
El. traces (p	L pm)									
S (%)		-	-	-	-	-	-	-	-	-
v	12	3	3	3	2	3	-	-	4	38
Cr	306	176	235	436	194	248	-	-	1	25
Mn	143	97	1379	44	114	176	-	-	8	355
Fe (%)	4,6	16,2	7,2	27,4	38,1	29,2	-	-	1,1	2,8
Co	47	668	18	169	64	99	-	-	3	18
NI	22	54	6	37	39	40	-	-	2	36
Cu	9	315	25	326	180	431	34	708	8440	196
Zn	22	14	49	18	52	50	-	-	72	571
As	6	>2000	107	>2000	>2000	598	-	-	17	30
Se	<5	16	2,5	11	24	22	-	-	5	8
Br	-	-	-	-	-	-	-	-	-	-
Mo	20	2	1	1	2	1	-	-	<1	<1
Ag	1,9	8,3	0,25	2,1	<0,5	0,5	<0,5	<0,5	36,4	<0,5
Cd	<1	<1	0,5	<1	<1	<1	-	-	<1	1,6
Sn	<10	<10	5	<10	<10	<10	-	-	<10	<10
Sb	<5	30	2,5	<5	<5	10	-	-	13	10
Te	<10	<10	5	72	56	24	-	-	18	<10
cs	-	-	-	-	-	-	-	-	-	-
Tm	-	-	-	-	-	-	-	-	-	-
W	<10	<10	5	24	<10	<10	-	-	<10	<10
Au (ppb)	3578	9484	4 1	8220	49	35	142	103	65550	35
TI (%)	-	-	-	-	-	-	-	-	-	-
Pb	22	113	44	144	330	176	-	-	21	50
Bi	<2	17	1	81	40	40	-	-	12	7
U	<10	<10	5	<10	<10	<10			<10	<10

Gisement	Venpar	Venpar	Venpar	Venpar	Venpar	Venpar
# Ech.	V-3b	V-3 g	V-7a	V-75	V-C-6	V-08
UTM/N	5316300	5316300	5316300	5316300	5316300	5316300
UTM/E	343700	343700	343700	343700	343700	343700
Fm.	TRI	TRI	TRI	TRI	TRI	TRI
Lith.	PYR	PYR	PYR	PYR	PYR	PYR
Fac.	V2J	V2J	V2J	V2J	V2J	V2J
S-Fa.	I,VQZ	I,VQZ	I,VQZ	I,VQZ	I,VQZ	I,VQZ
Alt.	ຮມ	SU	SU	SU	SU	SU
El. traces (p	pm)					
S (%)	-	-	-	-	-	-
V	37	19	-	-	7	6
Cr	6	3	-	-	2	2
Mn	125	84	-	-	106	86
Fe (%)	6	6,5	-	-	9	9,4
Co	41	63	-	-	55	64
NI	7	12	-	-	6	7
Cu	>20000	9200	420	3720	>20000	>20000
Zn	575	343	-	-	1550	1394
As	<5	<5	-	-	<5	<5
Se	<5	<5	-	-	<5	<5
Br	-	-	-	-	-	-
Мо	<1	<1	-	-	<1	2
Ag	1,8	1,6	18,4	<0,5	5,8	>100
Cd	1,4	<1	-	-	7,6	7,9
Sn	<10	<10	-	-	<10	<10
Sb	<5	<5	-	-	<5	<5
Te	20	28	-	-	67	44
cs	-	-	-	-	-	-
Tm	-	-	-	-	-	-
W	<10	<10	-	-	<10	<10
Au (ppb)	16100	60890	67540	1000	61440	226490
TI (%)	-	-	-	-	-	-
Pb	43	53	-	-	77	78
Bi	<2	17	-	-	28	5
U	<10	<10	-	-	<10	<10