MB 86-14

GEOLOGIE DE LA REGION DU LAC DASSERAT, ABITIBI (GROUPE DE BLAKE RIVER)

Cette première page a été ajoutée au document et ne fait pas partie du rapport tel que soumis par les auteurs.

.

Gouvernement du Québec Ministère de l'Energie et des Ressources Service de la Géologie

SÉRIE DES MANUSCRITS BRUTS

Géologie de la région du lac Dasserat, Abitibi (Groupe de Blake River)

> M. Leduc (Géomines Ltée)

Ce document est une reproduction fidèle du manuscrit tel que soumis par l'auteur sauf pour une mise en page sommaire destinée à assurer une qualité convenable de reproduction.

TABLE DES MATIÈRES

LIS	fe de	S FIGUR	ES	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1E
LIST	FE DE	S TABLE	AUX	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	1H
1.	INTR	ODUCTIO	N																		
	1 1	Locali	ention																		1
	1.1	Accès	salion	•	•	• •	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	1
	1.3	Cadre	physique	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•		•	3
	1.00	1.3.1	Physiog	rac	hi	е.											•	•		•	3
		1.3.2	Hydrogr	aph	ie			•													3
	1.4	Cadre g	géologiq	ue	ré	gio	na]	L												•	4
	1.5	Travau	x antéri	eur	s	•															6
	1.6	Méthod	e de tra	vai	1					•		•	•			•	•				6
	1.7	Remerc	iements			•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
2.	DESC	RIPTION	S LITHOS	ΓRA	TI	GRAI	PHI	εQι	JES	5											
	2.1	Roches	étudiée	s			•											•		•	9
	ARCH	ÉEN																			
	2.2	Groupe	de Blak	e R	iv	er		•													9
		2.2.1	Général	ité	s		•								•					•	9
		2.2.2	Subdivi	sio	ns			•		•	•		•						•	•	11
		2.2.3	Unités (chi	mi	20-	str	at	ie	gra	apł	nic	Įuε	es	re	enc	201	nti	rée	es	12
		2.2.4	Nomencla	atu	re		•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
		2.2.5	Laves d	e c	omj	pos	iti	lor	n n	ıaí	ii	que	e à	1							
			intermé	lia	ire	e	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16
			2.2.5.1	F	ac	iès	vo	$\mathbf{b}1\mathbf{c}$	an	ii	lne	es	•	•	•	٠	•	•	•	•	16
				G	éné	éra	lit	:és	8	•	•	•	•	•	•	•	•	٠	•	•	16
				0	bse	erva	ati	lor	ıs	•	•	•	•	•	•	•	•	•	•	•	16
			2.2.5.2	D	es	cri	pti	LOT	ı d	les	5 S	séc	lne	enc	ee	3	•	٠	•	•	18
				-	ւլ , "	1 n 1	tě	tŀ	101	.éi	.1t	:10	lne	e o	le						
					Roi	ıyn•	-Nc	ore	ind	a							•	٠	•	•	18
					Ż	20ne	ењ -	KN-	-1		•	•	•	٠	٠	•	٠	٠	•	•	18
					ž	20ne	ек	(N-	-2		•	•	•	•	•	•	٠	•	•	•	20
					і т.І.	Lone	e F	(N-	-3			•	•	•	•	:	•	٠	•	•	20
				_	L l	101	ce	Cr	an	IS I	.[]	lor	ne	et 1	le	de	È				• •
					Dul	prat	□-M - T	ior	100	ra	iy	•	•	•	•	•	•	•	•	•	20
					Ż	Lone	e D	M-	.1		•	•	•	•	•	•	•	•	•	•	20
					4	sone Zoné	≓ L - Γ	ייעי אע	.7 .3		•	•	•	•	•	•	•	•	•	•	22
						20110 70m	= L - T	/11- M.			•	•	•	•	•	•	•	•	•	•	22
						20116 7011/	= L 5 T	ייייי או	.4 .5		•	•	•	•	•	•	•	•	•	•	22 22
						20116	≠ L ∍ r	/₽1= \M	5		•	•	•	•	•	•	٠	•	•	•	23
						20116	= L	1.1	U		٠	•	•	•	•	•	٠	•	•	•	20

	-L'unité calco-alcaline de	
		26
	-L'unité calco-alcaline	
	non divisée	26
	Zone CA-1	26
	Zone CA-2	27
	Zone CA-3	29
	2.2.5.3 Sommaire pétrographique	29
	2.2.6 Laves felsiques à intermédiaires	33
	2.2.6.1 Faciès volcaniques	33
	2.2.6.2 Caractéristiques lithologiques	
	et pétrographiques	33
	2.2.7 Laves felsiques	33
	2.2.7.1 Faciès volcaniques	37
	2.2.7.2 Caractéristiques lithologiques	
	et pétrographiques	37
	Occurrences lithologiques	37
	Sommaire pétrographique	41
	2.2.8 Roches pyroclastiques	43
	2.2.8.1 Généralités	43
	2.2.8.2 Types rencontrés	43
	2.2.8.3 Pétrographie sommaire	45
2.3	Groupe de Témiscamingue	45
	2.3.1 Généralités	45
	2.3.2 Subdivisions	45
	2.3.3 Lithologie et pétrographie	47
	2.3.3.1 Formation de Granada	47
	2.3.3.2 Formation de La Bruère	51
	2.3.3.3 Caractères communs	51
2.4	Roches intrusives	53
	2.4.1 Dykes synvolcaniques	53
	2.4.2 Laccolithe de Powell	53
	2.4.3 Stocks et dykes de gabbro-diorite	55
	2.4.4 Dykes ultramafiques	60
	2.4.5 Monozodiorite	60
	2.4.6 Porphyres feldspathiques	60
	2.4.7 Stocks syénitiques	61
	2.4.7.1 Massif d'Aldermac	61
	2.4.7.2 Massif de la Baie Renault	63
	2.4.7.3 Stock du lac Renaud	63
	2.4.7.4 Autres intrusions syénitiques	63
PROT	EROZOIQUE	
2.5	Groupe de Cobalt	64
	2.5.1 Généralités	64
	2.5.2 Occurrences lithologiques	64
0 (2.5.3 Caractères petrographiques	66
2.6	Roches Intrusives	68
	Dykes de diabase	68
יידד.	OCHIMIE	
	JOHINIT	
3.1	Échantillonnage et analyses	69
3.2	Résultats	69
3.3	Interprétation sommaire	70
3.4	Altérations	70

3.

4. GÉOLOGIE STRUCTURALE

4.1	Interp	rétations	existant	tes .			•			•				78
4.2	Observ	ations de	terrain	•				•			•	•	•	79
	4.2.1	Structur	es souple	es .	•	••	•	•	•	•	•	•	•	79
	4.2.2	Litages (et schist	tosité	s.	•••	•		•	•		•	•	81
	4.2.3	Structure	es cassan	ntes .	•	• •	•	•	•	•		•	•	85
		4.2.3.1	Failles	majeu	res	•		•				•		85
			Système	est-o	uest	t.	•					•	•	85
			Système	nord-	est	-su	d-c	oue	est	2		•	•	87
			Système	nord-	sud			•	•			•	•	88
		4.2.3.2	Cisaille	ements				•		•		•	•	89
		4.2.3.3	Orientat	tion d	e dy	yke	s	•					•	89
		4.2.3.4	Diaclase	es .	•		•	•			•	•	•	89

5. MÉTAMORPHISME

5.1	Métamorphis	sme des emp	bi]	len	ner	nts	5 1	101	.ca	in i	ίqι	ies	5				
	régionaux		•	•				•			•	•	•			•	95
5.2	Phénomènes	observés	•	•	•	•	•	•	•	•	•	•	•	•	•	•	95

6. GÉOLOGIE ÉCONOMIQUE

6.1	Général	lités .		• •	• •	•		•	•	•	•	•	٠	•	•	98
6.2	Ancienr	nes mines	et	indi	ces	coi	nnu	s	•	•		•	•	•	•	98
	6.2.1	Or .	• •		• •	•	• •	•	•		•	•	•	•	•	98
		6.2.1.1	Anc	iens	pro	odu	cte	urs	;				•	•	•	98
		6.2.1.2	Pri	ncip	aux	gîi	tes	•			•	•			•	99
	6.2.2	Cuivre				•										100
		6.2.2.1	Anc	iens	pro	odu	cte	urs	:	•	•		•	•		100
		6.2.2.2	Gît	es p	rind	ip	aux		•					•	•	101
	6.2.3	Nickel					•••		•	•	•		•	•	•	101
		6.2.3.1	Pri	ncip	aux	ind	dic	es		•	•	•		•		101
	6.2.4	Zinc			• •	•	• •	•	•				•	•	•	102
		6.2.4.1	Pri	ncip	aux	ind	dic	es						•	•	102
	6.2.5	Molybdèn	е		• •	•					•	•	•		•	103
		6.2.5.1	Pri	ncip	aux	ind	dic	es		•		•	•		•	103
	6.2.6	Plomb					• •	•	•		•		•	•	•	104
	6.2.7	Argent				•			•		•			•	•	104
6.3	Échanti	illons d'	inté	rêt	écor	iom	iqu	e	•	•			•		•	104
	6.3.1	Échantil	lonn	age	et a	in a	lys	es							•	104
	6.3.2	Résultat	s po	nctu	els	•	•••								•	104
6.4	Minéral	lisation :	renc	ontr	ée				•		•					105
6.5	Princip	ales zon	es d	'int	érêt									•	•	108
	_															

RÉFÉREN	CES	111
ANNEXES 1.	: Caractérisation des échantillons inclus à	
	l'intérieur du groupe des volcanites indifférenciées	120
2.	Données brutes des analyses totales	122
3.	Composition normative et diagrammes de variation d'oxydes pour le groupe des coussins	136
4.	Composition normative et diagrammes de variation d'oxydes pour le groupe des laves	145
5.	Composition normative et diagrammes de variation d'oxydes pour le groupe des intrusions	154
6.	Caractérisation des échantillons d'intérêt économique	161

CARTES:

Feuillet	est	1:20	000
Feuillet	ouest	1:20	000

LISTE DES FIGURES

Figure l:	Localisation de la région levée	2
Figure 2:	Relations stratigraphiques régionales	5
Figure 3:	Carte géologique du Groupe de Blake River dans la région de Rouyn-Noranda	14
Figure 4:	Carte index des coulées basaltiques et intermédiaires	19
Figure 5:	Lave basaltique coussinée variolitique de l'unité chimico-stratigraphique de Rouyn-Noranda	20
Figure 6:	Coussins basaltiques altérés à proximité du dyke de diabase pré-Cobalt	24
Figure 7:	Coulée coussinée de composition andésitique à matrice carbonatisée: Lac Arnoux	25
Figure 8:	Brèche de sommet à coussinets isolés au sommet d'une coulée andésitique: Lac Labyrinthe	28
<u>Figure 9</u> :	Coussin tectonisé, silicifié et séricitisé avec remplacement subséquent de la matrice hyoloclastique en chlorite-séricite: rive est du lac Labyrinthe	28
Figure 10:	Texture micolitique dans une bordure de coussin andésitique	31
Figure 11:	Basalte texture porphyrique	31
Figure 12:	Texture hyalopilitique dans une andésite microlitique	32
Figure 13:	Basalte amygdalaire à texture subophitique	32
Figure 14:	Bordure d'une variole felsique	34
Figure 15:	Carte index de localisation des roches felsiques	35
Figure 16:	Coulée coussinée dacitique: côté ouest du lac Adeline	36
Figure 17:	Lave dacitique amygdalaire à texture microporphyrique	36
Figure 18:	Sommet d'une coulée rhyolitique montrant un début de polygonisation	38
Figure 19:	Lobes rhyolitiques et brèche frontale; nord-est du lac Hélène	38

Figure 20:	Fragment de lobe rubané à l'intérieur d'une brèche de coulée rhyolitique	39
Figure 21:	Unité volcanoclastique rhyolitique	39
Figure 22:	Lave rhyolite à texture porphyrique	44
Figure 23:	Rhyolite massive microporphyrique à matrice granoclastique	44
Figure 24:	Brèche pyroclastique polygénique; rive est du lac Dasserat	46
Figure 25:	Tuf à ponces et cristaux	46
Figure 26:	Carte index de localisation des formations du Groupe de Témiscamingue	48
Figure 27:	Grauwacke feldspathique de la Formation de Granada	49
Figure 28:	Grauwacke schisteuse typique de la Formation de la Bruère	52
Figure 29:	Carte index des diverses intrusions rencontrées	54
Figure 30:	Texture granophyrique: tonalite de Powell	56
Figure 31:	Texture ophitique dans un gabbro à cummingtonite	58
Figure 32:	Texture hypersolvus dans la syénite porphyrique du massif d'Aldermac	62
Figure 33:	Contact entre le conglomérat polygénique et la grauwacke du Groupe de Cobalt	65
Figure 34:	Grauwacke à matrice argileuse typique du Groupe de Cobalt	65
Figure 35:	Diagrammes AFM des analyses chimiques des coussins et des laves diversifiées	71
Figure 36:	Localisation des échantillons analysés (coussins et laves)	72
Figure 37:	Diagramme AFM pour les échantillons de l'unité calco-alcaline non divisée	73
Figure 38:	Diagramme AFM pour les échantillons de l'unité de Duprat-Montbray	74
Figure 39:	Diagramme AFM pour les échantillons de l'unité de Dufault	75

Figure 40:	Diagramme AFM pour les échantillons de l'unité de Rouyn-Noranda	76
Figure 41:	Carte index des principales structures tectoniques	80
Figure 42:	Diagramme de densité des pôles des litages d'unités pyroclastiques du Groupe de Blake River	82
Figure 43:	Diagramme de densité des pôles des schistosités relevées sur le flanc sud du synforme du lac Rouyn	83
<u>Figure 44</u> :	Diagramme de densité des pôles des schistosités relevées sur le flanc nord du synforme du lac Rouyn	83
Figure 45:	Diagramme de densité des pôles des litages relevés: Groupe de Témiscamingue	84
Figure 46:	Diagramme de densités des pôles des schistosités relevées: Groupe de Témiscamingue	84
Figure 47:	Diagramme de densité des pôles des litages relevés: Groupe de Cobalt	86
Figure 48:	Diagramme de densité des pôles des schistosités relevées: Groupe de Cobalt	86
Figure 49:	Diagramme de densité des pôles des cisaillements relevés à l'intérieur des volcanites	90
Figure 50:	Diagramme de densité des pôles de cisaillements relevés à l'intérieur des intrusions	90
Figure 51:	Diagramme de densité des pôles des cisaillements relevés: Groupe de Cobalt	91
Figure 52:	Diagramme de densité des pôles de dykes intermédiaires à mafiques	92
Figure 53:	Diagramme de densité des pôles de dykes felsiques	92
Figure 54:	Diagramme de densité des pôles de dykes syénitiques	93
Figure 55:	Diagramme de densité des pôles de dykes de granitoïde	93
Figure 56:	Carte index des faciès métamorphiques régionaux rencontrés à l'intérieur de la zone d'étude	97
Figure 57:	Localisation des principales zones d'intérêt pour l'or et les métaux de base	109

LISTE DES TABLEAUX

<u>Tableau l</u> :	Principaux rapports géologiques gouvernementaux publiés sur la zone étudiée 10 entre 1940 et 1965	7
<u>Tableau 2</u> :	Tableau stratigraphique du secteur étudié	10
<u>Tableau 3</u> :	Tableau des correspondances des divisions stratigraphiques et chimico-stratigraphiques du Groupe de Blake River	13
<u>Tableau 4</u> :	Types de brèches de coulée rencontrées dans les laves de composition mafiques à intermédiaires	17
<u>Tableau 5</u> :	Minéralogie des laves de composition mafique à intermédiaire	30
<u>Tableau 6</u> :	Analyses chimiques des deux rhyolites des complexes d'Armfield et de Four Corners	42
<u>Tableau 7</u> :	Proportions des constituants minéraux dans des roches du Groupe de Témiscamingue	50
<u>Tableau 8</u> :	Composition minéralogique estimée de quelques massifs intrusifs felsiques et du dyke de diabase pré-Cobalt	57
<u>Tableau 9</u> :	Composition minéralogique estimée de quelques massifs dioritiques et gabbroïques	59
<u>Tableau 10</u> :	Proportions moyennes des constituants minéraux observés dans des roches du Groupe de Cobalt	67
<u>Tableau 11</u> :	Directions et pendages moyens des principales familles de dykes	94
<u>Tableau 12</u> :	Analyses chimiques d'échantillons provenant de la zone minéralisée située au sud de la Baie Renault	107

1. INTRODUCTION

1.1 Localisation

La région levée durant l'été 1984 se situe dans le Nord-Ouest québécois à l'intérieur des comtés de Témiscamingue et d'Abitibi; elle est comprise entre les longitudes 79° 07' 30" et 79° 31' 15" et les latitudes 48° 10' 15" et 48° 18' 15". Cette région est couverte par une partie des feuilles topographiques 32D/3 (Rouyn), 32D/4 (Larder Lake), 32D/5 (Rivière Magusi) et 32D/6 (Rivière Kanasuta) du découpage SNRC à 1:50 000.

Cette zone, d'une superficie de 344 kilomètres carrés, s'étend sur les cantons de Beauchastel, Dasserat, Duprat et Montbray. La limite est du territoire cartographié se situe à environ six kilomètres à l'ouest de la ville de Noranda et correspond à la route de l'Église à Évain (figure l). La limite ouest, située à quelque 35 kilomètres à l'ouest de Noranda, correspond à la frontière Ontario-Québec. La limite sud se situe à environ un kilomètre au sud du contact entre les unités volcaniques du Groupe de Blake River et les unités sédimentaires des groupes de <u>Témiscamingue</u>* et de Cobalt. La limite nord correspond, dans le tiers est, à la latitude de 48° 15', et dans les deux tiers ouest, à la limite nord du rang I des cantons de Duprat et de Montbray.

1.2 Accès

On accède à la région levée par la route 117, qui la traverse d'est en ouest, dans sa partie sud jusqu'à la frontière Ontario-Québec. Exception faite des coins nord-est et nord-ouest du feuillet ouest, l'ensemble de la région est facilement accessible. L'accès se fait à partir de la route 117 par différentes routes de gravier dont: les routes de rang comprises à l'intérieur des limites de la municipalité d'Évain; le chemin de la mine Aldermac; le chemin de "Four Corners" qui débute au village d'Arntfield et qui traverse, en direction nord, la partie est de la région levée; le chemin menant aux lacs Berthemet et Desvaux; le chemin menant au lac Labelle; de même que la route frontalière Ontario-Québec qui ceinture le lac Labyrinthe à l'extrémité ouest du terrain.

Un accès supplémentaire est donné dans la partie centrale de la carte par les lacs Berthemet, Desvaux, Dasserat et Arnoux qui communiquent tous entre eux et qui traversent la région du sud au nord.

* Partout dans le texte et sur les cartes géologiques, le Groupe de Témiscamingue correspond au Groupe de Timiskaming; la traduction en a été proposée dans Imreh (1984).

Figure 1: Localisation de la région levée. La zone hachurée représente les 334 kilomètres carrés couverts durant l'été 1984.

1.3 Cadre physique

1.3.1 Physiographie

Le terrain que nous avons couvert fait partie de la zone argileuse de l'Abitibi, vestige du lac glaciaire Ojibway-Barlow. La surface de cette couverture argileuse est plane, montrant par endroits des ondulations d'où pointent quelques buttes de dépôts glaciaires et bon nombre d'affleurements rocheux. Ces derniers ne forment généralement que de petites dénivellations, sauf dans la partie méridionale de la région où le Mont Kanasuta culmine a près de 500 mètres d'altitude et les collines Kékéko à 477 mètres. Les points culminants sont dus aux roches sédimentaires appartenant au Groupe de Cobalt. Elles forment des escarpements qui marquent la limite entre les unités sédimentaires et volcaniques.

Le feuillet est de la carte renferme quelques terrains cultivés constitués d'argile lacustre. Ils se situent immédiatement au nord des collines Kékéko. Ce territoire est constitué de basses terres dont l'altitude moyenne est de 290 mètres et d'où pointent quelques collines dont celle où se situe l'ancienne mine Aldermac, à l'extrémité ouest du feuillet est. Cette colline atteint une altitude de 380 mètres et correspond à la limite septentrionale des terres cultivées.

Les portions centrale et méridionale du feuillet ouest montrent peu de dénivellation, sauf aux endroits où afleurent les roches sédimentaires du Groupe de Cobalt, soit au sud du lac Dasserat (Mont Kanasuta) et à l'ouest du lac Lusko où la colline s'allonge en direction nord-est-sudouest jusqu'à la limite sud-ouest de la carte. Cette colline pointe à 427 mètres. Quelques collines de moindre importance dont la dénivelée est de l'ordre de 30 mètres se situent entre les lacs Desvaux et Arnoux, de même qu'au sud-est du lac Lusko. Partout ailleurs, l'altitude est de l'ordre de 285 mètres, alors que le niveau des lacs se situe à environ 278 mètres. Les zones marécageuses sont assez rares et de faible étendue. La portion nord du terrain est en général plus accidentée, notamment dans la partie nord-est où le point culminant se situe à plus de 410 mètres. Cette zone forme la continuité nord des collines Aldermac et affleure généreusement.

Dans l'ensemble de la région, les affleurements sont nombreux mais souvent de mauvaise qualité. La météorisation de même que le couvert végétal obscurcissent fréquemment la surface affleurante.

1.3.2 Hydrographie

Le feuillet ouest contient de nombreux lacs et cours d'eau communicants; cependant, dans le feuillet est, le réseau hydrographique est beaucoup moins développé. La partie est est drainée par des affluents de la rivière Pelletier lesquels s'écoulent vers l'est et vers le sud; les lacs Hélène et Adeline se déversent dans ces affluents. Les lacs Wasa, Mud, King of the North, Fortune et Renaud se drainent vers le sud et appartiennent comme les précédents au bassin de l'Outaouais- Saint-Laurent. La ligne de hautes-terres séparant les bassins hydrographiques de l'Outaouais et de la Baie de James a une direction nord-est et recoupe la partie sud du lac Berthemet.

Tous les autres lacs et cours d'eau de la région se drainent dans le bassin de la Baie de James. Le lac Labyrinthe se déverse, par la rivière Dasserat, dans le lac Dasserat qui lui se déverse au nord dans le lac Duparquet par la rivière Kanasuta. A l'est du lac Dasserat, la rivière Arnoux se déverse dans le lac Arnoux lequel reçoit les eaux des lacs Larochelle et Montbray.

1.4 Cadre géologique régional

Les terrains cartographiés sont situés dans le secteur sud de la province du Supérieur; ils appartiennent à la sous-province de l'Abitibi et sont limités, au sud, par les gneiss de Bellecombe (Dimroth et al., 1982).

Les empilements volcano-sédimentaires régionaux peuvent être divisés en huit principales unités lithostratigraphiques. De la base au sommet, les groupes de Malartic, de Kinojévis et de Blake River sont formés de roches volcaniques alors que les roches sédimentaires constituent les formations de Caste et de Kewagama de même que les groupes de Pontiac, de Cadillac, de Témiscamingue et de Duparquet (figure 2). Toutes ces roches sont recoupées par diverses intrusions précinématiques, syncinématiques et postcinématiques. Les roches archéennes sont recouvertes en discordance par des roches sédimentaires huroniennes appartenant au Groupe de Cobalt; des dykes de diabase d'âge protérozoïque inférieur recoupent toutes les unités précédemment citées.

Du point de vue structural, la région présente une tectonique polyphasée. Dans la littérature régionale, quatre schistosités ont été reconnues, étant chacune associée à une phase distincte de plissement (Goulet, 1978 et Gélinas et al., 1984b). Les deux premières phases ont formé de larges plis isoclinaux montrant des plans axiaux subverticaux de direction est, sud-est ou sud-ouest. Une phase tardive indépendante des deux premières a donné les schistosités S3 et S4 représentant un système conjugé de kinkbands.

L'ensemble de la région est sectionné par deux zones de failles majeures séparant les unités volcaniques des unités sédimentaires. Elles correspondent à plusieurs endroits aux limites méridionales et septentrionales du Groupe de Blake River. Ces zones de discontinuité structurale majeure sont: la faille de Porcupine-Destor au nord et la faille de Larder Lake-Cadillac au sud. Elles apparaissent comme des zones de fort cisaillement où les déformations sont intenses et les altérations prononcées.

Le métamorphisme dans la région de Rouyn-Noranda est généralement faible. Il varie du faciès prehnite-pumpellyite au faciès schiste vert; à proximité de certains massifs intrusifs, le faciès

Figure 2: Relations stratigraphiques régionales des segments de Rouyn et de Val d'Or (traduit et modifié de Dimroth et Rocheleau, 1979). amphibolite est atteint (Dimroth et Rocheleau, 1979). Dans l'ensemble de la région, sauf à proximité des failles majeures, les déformations sont faibles et les structures originelles des roches sont assez bien conservées.

1.5 Travaux antérieurs

La région étudiée a été parcourue depuis plus d'un siècle par de nombreux géologues et prospecteurs. Le plus ancien rapport sur la région a été écrit par W. McOuat de la Commission géologique du Canada en 1873. En 1906, la découverte d'or à l'est du lac Fortune a activé l'exploration dans la région. Suite à cette découverte, la région a été sillonnée par bon nombre de prospecteurs et de nombreux levés géologiques ont été effectués par des géologues de la Commission géologique du Canada, notamment W.J. Wilson (1910) et M.E. Wilson (1913). Vers 1923, la découverte de la mine Horne suscita un regain de l'exploration. De nombreux levés géologiques suivirent, comme en témoignent les rapports géologiques écrits par: W.F. James, en 1923, dans la région de Rouyn; H.C. Cooke, W.F. James et J.B. Mawsley, en 1931, dans la région de Rouyn-Harricana; M.E. Wilson, en 1941, dans le district de Noranda et en 1943 dans le district de Rouyn-Beauchastel et J.W. Ambrose en 1944 dans la région étendue de Duparquet-Larder Lake-Rouyn.

Entre 1940 et 1965, l'ensemble de la région que nous avons cartographiée a été levé en quarts de cantons ou en petits secteurs par la Commission géologique du Canada et par le Ministère des Mines du Québec. Le tableau l présente une liste des différents rapports publiés durant cette période.

Plus récemment, de nombreux travaux dont l'énumération serait fastidieuse ont été effectués dans la région pour le compte du Ministère de l'Energie et des Resources notamment par Dimroth et ses étudiants de 1971 à 1976 et par Gélinas et ses étudiants durant la période comprise entre 1975 et 1984. Certains travaux de cartographie ont également été menés par des compagnies minières; ces travaux sont publiés par le MER sous forme de GM.

De plus, le MER, par l'entremise de son bureau régional, a effectué la compilation de l'ensemble des travaux géoscientifiques se rapportant à la région (CL-32D/3 et CL-32D/6).

1.6 Méthode de travail

La mise en carte du territoire s'est effectuée à l'échelle de 1:20 000 à partir de photographies aériennes au 1:15 000 datant de 1983. Les différentes informations recueillies ont été reportées sur deux feuillets comprenant chacun six couches assemblées à l'aide de registres perforés. La transposition des affleurements d'une échelle à l'autre s'est effectuée à l'aide d'un "Artograph DB 300", assurant une distorsion minimale.

Région	Références	Auteur(s), année
Nord-Est du canton de Beauchastel	Paper 41-7 C.G.C.	E.D. Kindle, 1941
Partie du Nord-Ouest de Beauchastel	R.G. 30 M.M.Q.	W.G. Robinson, 1948
Sud-Est du canton de Beauchastel	S. 89 M.M.Q.	J. Dugas, 1965
Western Beauchastel	Paper 45-17 C.G.C.	J.W. Ambrose et S.A. Ferguson, 1945
Nord-Est du canton de Dasserat	Paper 53-8 C.G.C.	W.G.Q. Johnston, 1954
Sud-Est de Dasserat	Paper 49-25 C.G.C.	C.H. Stockwell, 1949b
Nord-Ouest de Dasserat	Paper 50-3 C.G.C.	K.R. Dawson, 1950
Sud-Ouest de Dasserat	Paper 49-23 C.G.C.	C.H. Stockwell, 1949a
Moitié Ouest du canton de Montbray	R.P. 466 M.R.N.	C. Thibault, 1961
Moitié Est du canton de Montbray	R.G. 115 M.R.N.	W.A. Hogg et J. Dugas 1965
Sud-Ouest du canton de Duprat	S. 54 M.R.N.	W.A. Hogg, 1960
Fortune Lake & Wasa Lake map-areas	R.G.5 M.M.Q.	G.S. MacKenzie, 1940
Région du lac Flavrian	R.G.13 M.M.Q.	W.G. Robinson, 1943
Région du lac Desvaux	R.G.27 M.M.Q.	P.E. Auger, 1947

Tableau 1:Principaux rapports géologiques gouvernementaux
publiés sur la zone étudiée entre 1940 et 1965.

Tous les cheminements ont été planifiés de façon à rencontrer le maximum d'affleurements. Nous avons effectué des cheminements de direction nord-sud distancés de 200 mètres et parfois moins dans les zones à forte densité d'affleurements. Dans les zones à plus faible densité d'affleurements, les cheminements se sont effectués d'affleurement en affleurement en respectant le plus possible l'espacement de 200 mètres. La planification de tels cheminements était faite en superposant les résultats obtenus par photo-interprétation avec la localisation des affleurements sur les cartes de compilation géoscientifique. Sur les rives des lacs et des fles, de même que sur les bords des routes, la plupart des affleurements ont été levés.

Les cartes accompagnant ce rapport ne montrent que les affleurements visités durant l'été 1984. Elles diffèrent de celles qui ont été présentées pour le rapport préliminaire (Leduc et Forest, 1985) du fait qu'elles tiennent compte des travaux antérieurs de même que des résultats de 150 analyses pétrographiques et de 100 analyses chimiques totales effectuées suite au levé de terrain.

1.7 Remerciements

Nous tenons à remercier chaque personne ayant participé de près ou de loin à la campagne de terrain. Pour l'exécution de la campagne, nous avons pu compter sur l'aide professionnelle de Claude Breton, Carmen Dupont et Georges Forest, ce dernier agissant comme assistant-chef d'équipe. Nous avons également pu compter sur la compétence et l'extrême motivation de nos assistants-géologues: D. Boulianne, D. Champagne, C. Côté et S. Leroux de même que R. Genest pour les deux dernières semaines de la campagne. C. Bergeron et A. Bastien ont agi à des périodes différentes comme techniciens-dessinateurs.

Nous ne saurions passer sous silence l'excellent travail accompli par notre couple cuisinier N. Tremblay et D. Bergeron, lesquels ont su, même à travers des moments difficiles, faire partager leur bonne humeur à l'ensemble de l'équipe. Nous tenons également à remercier MM. M. Rive et M. Van de Walle du bureau régional du MER à Noranda pour les facilités qu'ils nous ont procurées. MM. L. Imreh et E. Dimroth sont venus nous rendre visite sur le terrain; ils ont su nous faire partager, par d'enrichissantes discussions, leur vaste expérience.

2. DESCRIPTIONS LITHOSTRATIGRAPHIQUES

2.1 Roches étudiées

La plus grande partie des roches que nous avons cartographiées sont d'âge archéen; elles font partie du Groupe de Blake River et du Groupe de Témiscamingue. Les autres sont d'âge protérozoïque et appartiennent au Groupe de Cobalt.

Dans la région étudiée, les roches les plus anciennes sont d'origine volcanique et appartiennent au Groupe de Blake River; ce dernier se situe au-dessus du Groupe de Kinojévis (volcanites) et des sédiments de la Formation de Kewagama selon Dimroth et al., 1979, (figure 2).

Les autres roches archéennes sont constituées par les sédiments du Groupe de Témiscamingue, lequel, selon Goulet (1978) et Rocheleau (1980), repose à l'est de notre région en discordance d'érosion sur les roches du Groupe de Blake River. Nous n'avons cependant pu observer aucun contact entre les roches de ces deux groupes.

Les roches sédimentaires protérozolques du Groupe de Cobalt recouvrent en discordance d'érosion les deux groupes susmentionnés.

Les principales intrusions apparaissant dans la région sont: la tonalite du massif de Powell, dont la mise en place est synvolcanique (Jolly, 1977), les dykes, filons-couches et massifs de gabbro-diorite qui recoupent la séquence volcanique et, enfin, les différents stocks et dykes de syénite porphyrique et de porphyres syénitiques qui recoupent en un endroit les sédiments du Groupe de Témiscamingue. Les deux derniers événements intrusifs d'importance sont représentés par des dykes de diabase pré-Cobalt et post-Cobalt qui recoupent les unités précédemment citées.

Enfin, les unités consolidées sont recouvertes de sédiments pléistocènes constitués de dépôts morainiques, d'argiles lacustres, de sables et de graviers, de même que de dépôts récents à caractère organique formant des marécages.

Le tableau 2 résume la stratigraphie observée dans la région étudiée.

ARCHEEN

2.2 Groupe de Blake River

2.2.1 Généralités

Le Groupe de Blake River forme une lentille est-ouest dont la dimension est de l'ordre de 200 km par 80 km; selon Goodwin (1982), il occupe un synclinorium isoclinal de direction est-ouest plongeant

Période	Groupe	Formation ou Unité	Lithologie					
CénozoTque			Argiles lacustres, sables, graviers, marécages					
Discordance								
	Post-Cobalt		Diabase					
	Contact intrusif							
ProtérozoTque	Cobalt	Formation de Gowganda	Conglomérat polygénique, grès conglomératique, grauwacke, arkose, argilite					
	Discordance							
?	Pré-Cobalt		Diabase à quartz					
	Discordance							
	Post-Témiscamingue		 Lamprophyres Porphyre alcalin Syénite porphyrique Porphyres feldspathiques Monzodiorite Dykes ultramafiques Gabbro-diorite 					
	Contact intrusif							
	Témiscamingue	Formation de la Bruère et de Granada	Conglomérat polygénique, grauwacke, arkose, grês argileux					
Archéen	Discordance							
	Pré-Témiscamingue		 Dykes et stocks de gabbro-diorite Dykes de basalte, andésite et rhyolite 					
	Contact Intrusif							
		Unité calco-alcaline ? non divisée	Principalement andésite, (rhyolite)					
	Blake River	Unité calco-alcaline de Dufault	Principalement rhyollte					
		Unité tholcalco- alcaline de Duprat-Montbray	Principalement andésite amygdalaire, basalte, rhyolite-(tonalite)					
		Unité tholéiitique de Rouyn-Noranda	Basalte et andésite variolitique ou mpn					

Tableau 2: Tableau stratigraphique du secteur étudié.

légèrement vers l'est. Il est limité au nord par la faille de Porcupine-Destor et au sud par la faille de Larder Lake-Cadillac. Il est principalement composé de laves sous-marines dont la composition varie de basaltique à rhyolitique avec une dominance andésitique. D'après Baragar (1968), son épaisseur pourrait atteindre l3 kilomètres.

Des datations U-Pb sur des zircons provenant d'unités volcaniques felsiques du Groupe de Blake River dans le canton de Pontiac en Ontario, ont donné un âge de 2.703 ± 2 Ma. (Nunes and Jensen, 1980). Ce groupe renferme plusieurs des complexes minéralisés de la sous-province d'Abitibi.

Dans l'établissement de la stratigraphie du Groupe de Blake River, de nombreux facteurs rendent les corrélations difficiles, notamment: la rareté des niveaux repères continus pouvant servir de marqueurs stratigraphiques, la nature lenticulaire des différentes unités, les changements brusques de faciès à l'intérieur de ces unités, sans oublier la complexité de la déformation.

2.2.2 Subdivisions

Dans la région de Rouyn-Noranda, le Groupe de Blake River a déjà été subdivisé à partir de données géochimiques et de critères de terrain en 5 unités chimico-stratigraphiques. Ainsi, Gélinas et al. (1977) ont défini, du nord au sud: l'unité tholéiitique de Duparquet-Destor, l'unité calco-alcaline de Reneault, l'unité tholéiitique de Dufresnoy, l'unité calco-alcaline de Dufault et l'unité tholéiitique de Rouyn.

Dimroth et Rocheleau (1979), à partir d'une approche lithostratrigraphique, ont subdivisé le Groupe de Blake River de la façon suivante. L'unité de Duparquet-Destor et la partie inférieure de l'unité de Rouyn de Gélinas et al., (1977) sont regroupées à l'intérieur du sousgroupe de Pelletier. Ce sous-groupe, qui forme une plaine de basalte à la base du Groupe de Blake River, est surmonté par les sous-groupes de Dufault et de Reneault, correspondant aux unités de même nom chez Gélinas et al., (1977). Ces derniers représentent des complexes volcaniques centraux d'affinité calco-alcaline. Ils sont recouverts par le sous-groupe de Dufresnoy, correspondant aux roches tholéiitiques de l'unité de Dufresnoy (Gélinas et al., 1977) et par le sous-groupe de Rouyn lequel englobe la partie supérieure de l'unité de Rouyn (Gélinas et al., 1977). Ces unités ont été définies dans la région immédiate de Rouyn; plus à l'ouest dans notre région, le Groupe de Blake River demeure non subdivisé, exception faite de l'unité variolitique du sous-groupe de Pelletier.

En 1984, Gélinas et al. ont présenté une nouvelle subdivision du Groupe de Blake River basée sur l'étude de 1 300 analyses chimiques de volcanites mafiques. Suivant cette nouvelle chimico-stratigraphie, le Groupe de Blake River a été divisé en 9 unités volcaniques subalcalines d'affinité tholéiitique ou calco-alcaline qui sont, de la base au sommet: l'unité tholéiitique de Rouyn-Noranda, l'unité tholéiitique de Pelletier, l'unité calco-alcaline de Dufault, l'unité tholéiitique de Trémoy, l'unité calco-alcaline de Cléricy, l'unité tholéiitique de Destor, l'unité calco-alcaline de Reneault et l'unité tholéiitique de Dufresnoy. Le tableau 3 met en relation les différentes divisions lithostratigraphiques et chimico-stratigraphiques du Groupe de Blake River que nous avons présentées dans cette section. La figure 3 représente une carte géologique simplifiée du Groupe de Blake River avec la délimitation des unités chimico-stratigraphiques telles que définies dans Gélinas et al. (1984 b).

2.2.3 Unités chimico-stratigraphiques rencontrées

En incluant les diverses intrusions, les roches du Groupe de Blake River apparaissent, d'après notre cartographie, sur plus de 85% de la superficie du territoire, l'autre 15% étant dévolu aux unités sédimentaires. D'après Gélinas et al. (1984b) et tel que présenté à la figure 3, l'unité de Duprat-Montbray (DM) couvre près de 45% de notre terrain. Elle entoure, dans la partie sud-est, l'unité de Dufault (DF) et serait entourée par l'unité de Rouyn-Noranda, dans le sud-ouest du terrain, à proximité de la frontière Québec-Ontario; à cet endroit l'unité de Duprat-Montbray occupe le coeur d'un plissement synclinal (voir cartes géologiques en pochette). Cette unité est formée en majeure partie de volcanites de composition intermédiaire alternant avec des unités à extension latérale plus restreinte de composition mafique ou felsique; la puissance de ces séquences peut atteindre quelques kilomètres. Localement, on rencontre des coulées de composition intermédiaire ou mafique interstratifiées avec des coulées felsiques; ces interstratifications sont cependant peu fréquentes et forment des niveaux de faible importance. L'unité de Duprat-Montbray d'affinité chimique transitionnelle (tholéiitique et calco-alcaline) se situe près de la base du Groupe de Blake River (Gélinas et al., 1984b).

En termes d'importance, la seconde unité est l'unité calco-alcaline non divisée (Gélinas et al., 1984b). Localisée à l'ouest de notre terrain, elle couvre près de 30% de la superficie levée. Elle est formée en majeure partie de volcanites sous-marines de composition intermédiaire. La position stratigraphique de cette unité n'a pu être définie.

L'unité tholéiitique de Rouyn-Noranda (RN) (Gélinas et al., 1984b) n'a pu être reconnue sur le terrain que par la présence de laves variolitiques de composition mafique à intermédiaire. Cette unité est restreinte au sud du terrain étudié, immédiatement au nord des unités sédimentaires; elle ne représente qu'un faible pourcentage du terrain levé. Elle se situe stratigraphiquement à la base du Groupe de Blake River.

Enfin, l'unité calco-alcaline de Dufault (DF) serait représentée par une bande de composition felsique s'allongeant vers l'est à partir du lac Demin, en traversant l'ensemble du canton de Beauchastel (figure 3). Elle représente la base des unités calco-alcalines du Groupe de Blake River et se situerait au-dessus de l'unité transitionnelle de Duprat-Montbray.

Gélinas et al. (1977)	Correspondances	Dimroth et al. (1979)	Correspondances	Gélinas et al. (1984a, b)	
Unité. tholéiitique de Dufresnoy	<>	Sous-Groupe de Dufresnoy		Unité tholéiitique Dufresnoy	
				Unité calco-alcaline Reneault	
		Sous-Groupe de Rouyn		Unité calco-alcaline Destor	
Unité calco-alcaline de Dufault	~	Sous-Groupe de Dufault		Unité calco~alcaline Cléricy	
				Unité tholéiitique Trémoy	
Unité calco-alcaline de Reneault	~~~	Sous-Groupe de Reneault		Unité calco-alcaline Dufault	
				Unité tholéiitique Pelletier	
Unité: tholéiitique. de.Rouyn-Noranda	supérieur ∢ inférieur∢			Unité tholcalco-alcaline Duprat-Montbray	
Unité: tholéiitique: de Duparquet-Destor	<> *	Sous-Groupe de Pelletier		Unité tholéiitique Rouyn-Noranda	

Tableau 3:Tableau de corrélations des divisions stratigraphiqueset chimico-stratigraphiques du Groupe de Blake River.

FIGURE 1 - Carte géologique du Groupe de Blake River dans la région de Rouyn-Noranda. Cette carte, tirée de Gélinas et al., 1984b, présente les limites des unités chimico-stratigraphiques telles que définies par ces auteurs.

Toutes ces unités correspondent à des divisions purement chimiques; nous n'avons pu les reconnaître à partir de critères de terrain. Nous essaierons, dans les sections qui suivent, de caractériser les différents lithotypes rencontrés en termes faciologiques et pétrographiques, et de les situer autant que possible à l'intérieur des unités chimico-stratigraphiques telles que définies dans Gélinas et al. (1984 b).

2.2.4 Nomenclature

La nomenclature des volcanites telle que présentée sur les cartes et dans le présent rapport ne fait appel, dans la plupart des cas, qu'à des critères de terrain comme: l'estimation à la loupe, sur l'échantillon à main, de l'indice de coloration et du pourcentage de quartz; le type et l'aspect de la cassure; la couleur et le type d'altération; de même que l'observation de la morphologie des faciès et de leurs constituants. Sur l'ensemble de la région couverte, dans environ 95% des cas, exception faite des laves silicifiées, nos appellations de terrain ont été ultérieurement confirmées par l'étude pétrographique des lames minces et par l'analyse chimique des éléments majeurs.

Dans le cas des laves de composition mafique à intermédiaire, comme la cassure, l'altération et la morphologie des faciès sont similaires, le critère ultime de classification a été l'indice de coloration (I.C.) bien que celui-ci puisse varier en fonction du métamorphisme. Le terme basalte a ainsi été employé pour qualifier toute roche volcanique mafique, aphanitique ou à grain fin de couleur gris foncé à vert foncé, dont le pourcentage estimé de minéraux foncés est égal ou supérieur à 50%. Le terme basaltique a également été employé dans le cas de laves porphyriques à phénocristaux de plagioclase dont la mésostase semblait mafique (I.C.>50).

Le terme andésite a été employé pour toute roche volcanique, aphanitique ou à grain fin, le plus souvent porphyrique (plagioclases) de couleur gris moyen à vert moyen, dont l'indice de coloration est inférieur ou égal à 40. Le terme lave mafique à intermédiaire (LMI) désigne les laves dont l'indice de coloration est compris entre 45 et 50; il a été employé pour des laves dont l'indice de coloration est compris entre 40 et 45.

Le terme dacite a été employé pour toute roche volcanique de couleur gris-vert contenant des phénocristaux de quartz. Cette classe se situe à mi-chemin entre les roches rhyolitiques et andésitiques. Elle pourrait être définie comme une andésite leucocrate et siliceuse à phénocristaux de quartz. Le terme lave intermédiaire à felsique (LIF) a été employé pour représenter le passage entre l'andésite et la dacite.

Le terme rhyolite a été employé pour toute roche d'origine volcanique, aphanitique, quelquefois porphyrique, de composition acide, montrant un aspect vitreux. Cette classe montre une infinie variété de couleurs, dépendamment de l'altération subie. Elle se distingue des dacites par l'absence du faciès coussiné, par la présence de rubanement dans le faciès massif, et par la dureté et la cassure conchoïdale de la roche.

Le symbole LFI (lave felsique à intermédiaire) a également été employé pour représenter le passage entre la dacite et la rhyolite.

2.2.5 Laves de composition mafique à intermédiaire

Nous avons regroupé à l'intérieur de la même section les volcanites dont la composition varie de mafique à intermédiaire puisqu'elles montrent les mêmes caractéristiques faciologiques et structurales. Cependant dans notre région, les coulées de composition intermédiaire sont beaucoup plus nombreuses que les coulées de composition mafique.

2.2.5.1 Faciès volcaniques

Généralités:

L'organisation des coulées mafiques archéennes de la région de Rouyn-Noranda a été décrite par Dimroth et al. (1978). Ils décrivent une coulée mafique sous-marine complète comme étant formée, de la base au sommet, d'un faciès massif, d'un faciès coussiné, d'un faciès bréchique et occasionnellement d'un hyalotuf stratifié. De la même façon, la coulée évolue latéralement du faciès massif au faciès coussiné, ce dernier représentant un faciès distal par rapport au lieu d'éruption.

Cependant, à l'intérieur de la région cartographiée, les coulées simples sont le plus souvent formées par le faciès massif surmonté d'une épaisseur variable de brèche sommitale de type polygonite, à fragments ou à coussinets, ou par le faciès coussiné, plus rarement recouvert de brèche sommitale; dans ce dernier cas, le type le plus fréquent est le type à fragments (tableau 4.)

Observations

Les coulées massives que nous avons observées ont des épaisseurs variables se situant entre 2 mètres et 150 mètres, avec une moyenne de 20 mètres. L'extension latérale de ces coulées ne dépasse pas un kilomètre.

Le faciès dominant dans l'ensemble de la région est le faciès coussiné lequel est presque invariablement surmonté de niveaux bréchiques. Les coulées individuelles peuvent avoir des épaisseurs de l'ordre de 3 à 25 mètres. En l'absence de brèche sommitale, aucun critère comme le pourcentage de phénocristaux ou de vésicules n'a pu nous permettre, dans la région, de délimiter des coulées individuelles. Il en résulte un amalgame de coulées formant des séquences dont l'épaisseur peut atteindre un kilomètre.

Processus de	livera da Prècha		Subdivisions	Mode de formation		Rácultat		
Fragmentation	1 TAbe	na precua	- SUBULATATOUS	mous uc .	Mode de Totanacion		. Rebuitat	
				Lave massive	Lave coussinée	Lave massive	Lave coussinée	
			Polygonite	fracturation de la croûte solide (contraintes ther- miques)		gròs fragments polygonaux séparés par une mince cou- che d'hyaloclastite.		
Hyaloclastique	BRECHES	sommitale	De fragments	Practuration plus intense Dégagement des fragments (contraintes thermiques)		Pragments de croûtes ou de basalte vésiculé dans une matrice hyaloclastique: (20 à 50%)		
	DE	E	De coussinéts	Par injec- tion de la- ve liquide	Par bourgeon- nement du som- mot de la cou- lée sous-ja- cente	Coussins a- miboldes en- tourés d'une brèche de fragments	Coussinets ar- rondis entou- rés d'une brè- che de frag- ments	
	terminale		Brèche de "sheet flow"	fracturation de la termi- naison de la coulée en feuillet arrivant dans un milieu aqueux confiné (contraintes thermiques)		superposition de fragments allongés montrant une bor- dure de trempe sur deux faces; séparés d'une min- ce couche d'hyaloclastite.		

Tableau 4:Types de brèches de coulée rencontrées dans les laves de
composition mafique à intermédiaire de la région étudiée.
Ce modèle a été développé pour des coulées basaltiques du
Groupe de Kinojévis mais s'applique également aux brèches de
coulée du Groupe de Blake River. Tiré de Leduc, 1981.

Le faciès bréchique, bien que moins fréquent que le faciès coussiné, est omniprésent dans la région. Le tableau 4 présente les différents types de brèche de coulée retrouvés à l'intérieur de coulées mafiques du Groupe de Kinojévis (Leduc, 1981). Nous avons observé les mêmes types de brèche dans les coulées intermédiaires à mafiques du Groupe de Blake River. Le premier type, la polygonite, n'a été observé qu'à de rares endroits, notamment dans le secteur du lac Labyrinthe où elle aurait pu être le résultat d'une fracturation tectonique. Parmi les autres types de brèches, le plus fréquemment rencontré est la brèche de fragments. Elle forme des unités dont l'épaisseur et la continuité sont semblables à celles des laves coussinées. A un endroit, à l'est du lac Arnoux, une séquence de brèche andésitique à fragments qui semble continue atteint une épaisseur de l'ordre de 600 mètres. Les brèches de coussinets forment des horizons peu continus dont l'épaisseur est rarement supérieure à 2 mètres. Enfin, des cas isolés de brèche du type "sheet flow" ont été observés à l'est et au nord-est du lac Arnoux; elles ne forment que de petites lentilles métriques.

2.2.5.2 Description des séquences

De façon à clarifier la description des séquences de laves mafiques à intermédiaires, nous avons utilisé les limites des unités chimico-stratigraphiques de Gélinas et al. (1984b) que nous avons subdivisées de façon à distinguer les séquences de coulées montrant des caractéristiques spécifiques communes. La figure 4 présente ces subdivisions qui sont décrites subséquemment de la base au sommet; les zones contenant des volcanites mafiques ont également été identifiées.

L'unité tholéiitique de Rouyn-Noranda (RN)

Cette unité est localisée au sud de la région et forme une bande est-ouest d'une épaisseur de 500 mètres à 1 kilomètre. Elle renferme des laves gris-vert moyen à foncé, légèrement porphyriques et schisteuses. Nous y avons identifié quelques niveaux de basalte variolitique discontinus qui passent latéralement et verticalement à des laves de composition intermédiaire.

Zone RN-1:

Cette zone inclut le premier niveau variolitique de composition basaltique. Cet horizon, formé de laves coussinées (figure 5), est localisé à la limite sud-est du terrain et s'étend vers l'ouest sur un peu moins de deux kilomètres: son épaisseur maximale est de l'ordre du kilomètre. Plus à l'ouest, un horizon peu important d'andésite variolitique se retrouve immédiatement à l'ouest du lac Wasa. Entre ces deux horizons, la lave, de composition intermédiaire, se présente aux faciès coussiné et massif. La schistosité y est bien développée étant d'une part associée à la faille de Larder Lake-Cadillac et d'autre part à l'anticlinal du lac Adeline.

Figure 4: Carte index de la zone levée, représentant les zones ou sous-unités définies à partir des unités chimico-stratigraphiques de Gélinas et al., 1984b. La légende des unités est présentée à la figure 3. Les traits pleins séparent les groupes de Blake River, de Témiscamingue et de Cobalt; le gros tireté sépare les unités du Groupe de Blake River; et le tireté avec un point présente les subdivisions que nous avons établies à l'intérieur des unités chimico-stratigraphiques. Le figuré représente les zones contenant des coulées de composition basaltique.

Figure 5: Lave basaltique coussinée, à texture variolitique, appartenant à l'unité chimico-stratigraphique de Rouyn-Noranda. Canton de Beauchastel, lot 45, rang IV.

Zone RN-2:

Cette seconde zone s'étend vers l'ouest jusqu'aux roches sédimentaires du Groupe de Cobalt. Aucune lave variolitique n'y a été identifiée; l'andésite est coussinée, cisaillée et fortement altérée en chlorite, carbonates et épidote. L'orientation des coulées est sensiblement est-ouest; des sommets vers le nord ont été identifiés à l'est du lac Fortune.

Zone RN-3:

Cette dernière zone se situe à l'extrémité ouest de la carte, au sud du lac Labyrinthe. A cet endroit, l'unité de Rouyn-Noranda contient des laves intermédiaires leucocrates à mésocrates intercalées avec des niveaux étroits (20 à 70 m) de laves mafiques variolitiques; l'unité se diviserait à cet endroit en deux bandes est-ouest de part et d'autre d'un axe synclinal. Ces bandes ont une extension d'environ 3 kilomètres. L'horizon situé au sud aurait une épaisseur d'environ 2000 mètres alors que celui qui se trouve au nord aurait une épaisseur d'environ 500 mètres. Les coulées à l'intérieur de l'horizon nord présentent une direction est-ouest à est-nord-est et présentent des sommets vers le sud; le faciès dominant est formé de coussins moyens. L'autre horizon, d'attitude similaire, généralement coussiné et amygdalaire, présente une altération généralisée en chlorite et en carbonates. Les coulées semblent indiquer des sommets nord.

L'unité transitionnelle de Duprat-Montbray (DM):

Cette seconde unité chimico-stratigraphique se situe au-dessus de l'unité de Rouyn-Noranda. De façon à clarifier la description, nous avons subdivisé l'unité de Duprat-Montbray en 6 sous- unités informelles correspondant à des zones géographiques à l'intérieur desquelles les différentes coulées et leur agencement montrent des caractéristiques spécifiques nous permettant de les regrouper.

Zone DM-1:

Cette première zone forme une bande est-ouest localisée entre les unités chimico-stratigraphiques de Rouyn-Noranda (RN) et de Dufault (DF). A l'intérieur de ce secteur très complexe, les laves intermédiaires constituent 50% des volcanites. Elles sont généralement très porphyriques (5 à 20%) et également vésiculaires (5 à 10%). Bien que certaines séquences complètes solent observées, les faciès coussiné et bréchique dominent. Cette zone est caractérisée par de grandes variations dans la composition et l'agencement des coulées. Dans la portion ouest de la zone, des niveaux de composition andésitique à basaltique alternent avec des niveaux de composition rhyolitique.

L'ensemble de la zone se situe sur le flanc sud du synforme du lac Rouyn; les coulées montrent des directions est-ouest avec des sommets orientés vers le nord. De nombreux cisaillements de direction ouest-sudouest à sud-ouest affectent l'empilement volcanique.

Zone DM-2:

Cette zone est localisée directement à l'ouest de la zone l. Elle contient des laves gris-vert moyen, microgrenues et légèrement amygdalaires (< 5% de chlorite). Ces laves se retrouvent le plus souvent au faciès coussiné bien que quelques coulées massives et bréchiques aient été reconnues.

A l'extrémité sud-ouest du terrain, l'unité de Duprat-Montbray occupe le coeur d'un plissement synclinal et se trouve limitée au nord et au sud par les volcanites de l'unité de Rouyn-Noranda. Les volcanites, de composition intermédiaire, apparaissent au faciès massif et coussiné et sont invariablement carbonatisées et chloritisées.

Zone DM-3:

La zone 3 se situe à l'extrémité est du terrain levé, immédiatement au nord de l'unité de Dufault; elle enserre la tonalite de Powell. Dans la demie nord de cette zone, les laves de composition andésitique apparaissent en proportion égale au faciès coussiné et bréchique. Elles contiennent quelquefois des phénocristaux de plagioclase (1 à 10%), de même que des proportions variables d'amygdales (1 à 5%) formées de feldspath, chlorite et épidote. Les coulés coussinées, composées de coussins dont la dimension varie de 25 cm à 1 m, peuvent atteindre des épaisseurs de l'ordre de 150 mètres. Les coussins sont allongés dans le sens de la schistosité régionale, laquelle varie de 080° à 100° avec un pendage de l'ordre de 65 degrés. Les critères de polarité indiquent des sommets vers le sud avec des variantes locales vers le sudest et le sud-ouest. Les horizons bréchiques sont composés de 15 à 70% de fragments andésitiques subanguleux dont la dimension varie de 2 mm à 30 cm. L'épaisseur de ces horizons peut atteindre 30 mètres.

Les laves andésitiques contenues dans la demie sud de cette zone, bien qu'apparentées à celles de la portion nord, sont plus massives et contiennent des quantités inférieures d'amygdales et de phénocristaux. L'épaisseur des coulées est également inférieure à celles de la portion nord.

Zone DM-4:

Cette zone située au nord-est de la région entoure le stock syénitique d'Aldermac et la zone de "Four Corners"; c'est celle qui affleure le mieux. Les laves intermédiaires contiennent toutes de l à 2% de phénocristaux de feldspath et apparaissent à 65% au faciès coussiné, à 30% au faciès massif et 5% au faciès bréchique. L'épaisseur des coulées est de l'ordre de 50 mètres. Elles sont quelquefois interstratifiées avec d'autres coulées plus mafiques ou avec des coulées rhyolitiques. Des coulées mafiques (basaltes?) affleurent tout autour du stock syénitique d'Aldermac; ces roches sont généralement altérées et leur composition résulte probablement de l'effet combiné du métamorphisme régional et du métasomatisme. Elles sont presque toutes porphyriques et amygdalaires (plagioclases), la taille des phénocristaux peut atteindre 8 mm et le pourcentage combiné des amygdales et des phénocristaux atteint 30%. Ces laves apparaissent le plus souvent au faciès coussiné, bien qu'on les rencontre également aux faciès massif et bréchique.

Un autre niveau de basalte (?), coussiné et bréchique, de faible extension, a été reconnu à l'est du lac Arnoux. Ce niveau renferme de nombreuses zones carbonatisées et silicifiées (figure 6). Ces basaltes se trouvent de part et d'autre du dyke de diabase protérozoïque auquel est parfois associée une amphibolitisation de la roche encaissante.

La direction des coulées varie de nord-est - sud-ouest dans la partie nord, à est-ouest dans les parties est et sud. Les sommets observés donnent une polarité vers le sud-est et le sud-sud-est, sauf dans la portion sud-est de la zone où une polarité nord a été observée sur une coulée coussinée.

Les principales caractéristiques de ces laves de composition intermédiaire à mafique sont: un caractère porphyrique marqué, une altération étendue en chlorite, épidote et séricite, de même que de petites zones diffuses de dalmatianite. Ces dernières ont été observées à l'est et au nord-est de l'ancienne mine d'Aldermac, de même qu'à l'est de la zone de "Four Corners".

Zone DM-5:

A l'intérieur de cette zone située autour du lac Arnoux, la lave est habituellement gris pâle à moyen, aphanitique à microgrenue; elle semble par endroits fortement carbonatisée, silicifiée et albitisée. On y trouve autant de brèches de coulée que de niveaux coussinés. Par endroits, la matrice intercoussin très carbonatisée a été complètement dissoute, laissant très bien voir les formes des coussins (figure 7).

A l'est du lac Arnoux, à la hauteur du rang huit, un horizon presque essentiellement constitué de brèche de coulée a été cartographié; son épaisseur visible est d'environ 600 mètres. La caractéristique principale de cette zone réside dans la forte vésicularité de la lave qui peut atteindre 30% dans certains coussins ou dans les fragments inclus dans les brèches, indiquant une faible profondeur de mise en place ou un début d'émergence de l'empilement volcanique. Les vésicules ont été remplies en remplies en majeure partie par des carbonates et du quartz. Cette zone renferme également de petites unités lenticulaires de tufs à ponces, à cristaux et à lapilli où la vésicularité est souvent supérieure à celle des coussins sous-jacents. Les coulées ont une direction est-ouest avec une polarité vers le sud.

Figure 6: Portion d'une coulée basaltique renfermant des coussins partiellement carbonatisés et silicifiés à proximité du dyke de diabase pré-Cobalt. Canton de Beauchastel, lot 4, rang IX.

Figure 7: Coulée coussinée de composition andésitique dont la matrice carbonatisée a été dissoute. Rive sud du lac Arnoux, canton de Dasserat, lot 48, rang VIII.

A cause de l'altération omniprésente, aucun critère pétrographique ne permet de bien caractériser cette zone.

Zone DM-6:

Cette zone est limitée au sud-ouest par le lac Dasserat et vers le sud-est par la faille du ruisseau Hunter. Elle est composée de lave intermédiaire mésocrate vert moyen à vert sombre apparaissant majoritairement au faciès coussiné, bien que le faciès bréchique y soit également bien représenté. La mauvaise qualité des affleurements ne permet pas de déterminer adéquatement les séquences. Cependant, dans l'ensemble de la zone, la lave est microgrenue et contient beaucoup moins de vésicules (5%) que la zone précédente. Ces vésicules sont remplies de chlorite et de carbonates.

A l'intérieur de la zone, au sud du lac Colnet, deux horizons de basalte microgrenu, de direction est-nord-est dont les dimensions n'excèdent pas 2,5 kilomètres par 0,5 kilomètre, s'intercalent entre des unités d'andésite de couleur sombre. L'horizon situé le plus au nord se retrouve aux faciès coussiné et bréchique; il serait possiblement le résultat du métamorphisme de contact associé à la mise en place du massif granitique du lac Colnet tel que cartographié par Thibault (1961). Le second horizon, plus diffus, est constitué de basalte massif.

Les quelques observations de sommets à l'intérieur de cette zone indiquent une polarité vers le sud.

L'unité calco-alcaline de Dufault (DF):

Cette unité est constituée en majeure partie de laves felsiques qui seront décrites dans les sections 2.2.6 et 2.2.7. Les seules laves de composition intermédiaire à mafique sont localisées au sud de l'ancienne mine Aldermac. Ces coulées sont massives ou coussinées, intercalées avec des laves felsiques et montrent souvent des indices de silicification. L'unité de Dufault, telle que circonscrite par Gélinas et al. (1984b), renfermerait le plan axial du synforme du lac Rouyn.

L'unité calco-alcaline non divisée (CA):

Cette unité constitue environ 30% du terrain couvert. D'après nos critères de terrain, nous l'avons subdivisée en 3 sous-unités:

Zone CA-1:

La première zone se situe au nord du lac Labyrinthe entre le lac Dasserat et la frontière de l'Ontario. La partie nord est constituée par une séquence de coulées andésitiques mésocrates majoritairement coussinées, renfermant par endroits des mégacoussins aux bordures laminées. Ces laves sont légèrement amygdalaires (3%) mais peu porphyriques. Elles forment des alternances de coulées aux faciès massif et coussiné
dont l'épaisseur varie de 30 à 50 mètres et où le faciès bréchique est peu important. L'attitude des couches est grossièrement est-sud-est et sud-est avec des polarités vers le sud et le sud-ouest. Vers le centre de la zone se trouve une séquence de coussins et de mégacoussins porphyriques, qui peuvent contenir jusqu'à 25% de phénocristaux de plagioclase. Cette unité a près d'un kilomètre d'épaisseur et présente une extension latérale de l'ordre de 2 kilomètres. Les sommets pointent vers le sud-est et le sudouest.

Au sud de la zone, on observe une séquence coussinée dont l'épaisseur est d'environ l kilomètre. Elle a comme particularité de ne contenir aucun niveau de brèche continu. Par endroits, chaque coussin est surmonté d'une épaisseur de 4 à 10 centimètres d'hyaloclastite contenant des fragments de coussins subanguleux dont le diamètre peut varier de 2 à 4 cm. Ce phénomène indiquerait un débit très lent de la lave où chaque tube agirait comme une coulée individuelle, formant en son sommet sa propre brèche. Au sud de ce niveau, la séquence se redresse vers l'est et le nord-est. Cette dernière séquence se situe de part et d'autre d'un axe synforme de direction est-sud-est.

Zone CA-2:

Cette deuxième zone se situe au sud de la première. Elle s'étend de la rive ouest du lac Dasserat jusqu'à la limite ouest du terrain et englobe le lac Labyrinthe. Dans la demie nord de cette zone, les laves intermédiaires sont le plus souvent au faciès coussiné. Certaines coulées peuvent contenir jusqu'à 15 à 20% de petites vésicules (l à 2 mm) préférentiellement remplies de calcite. Ces séquences sont moins régulières que dans la zone CA-l mais renferment cependant de belles unités de brèches sommitales à coussins isolés (figure 8) dont les épaiseurs peuvent atteindre 100 mètres. De nombreux cisaillements apparaissent à l'intérieur de ces laves, nous laissant voir des phénomènes tectoniques particuliers commme la fracturation de la bordure et du centre de certains coussins, associée à une silicification et à une séricitisation différentielle des fragments et de la matrice ainsi formée (figure 9).

La partie sud-ouest contient des séquences andésitiques plus leucocrates, de couleur gris pâle à moyen aux faciès coussiné et bréchique. L'analyse pétrographique fait ressortir une intense altération carbonatée très caractéristique de cette zone. La partie sud-est de la zone renferme des laves plus mafiques, chloritisées et épidotisées, en bordure de la Baie Renault.

Sauf dans le nord-ouest de la zone qui contient un pli antiforme de direction nord-est, l'ensemble des coulées offre des sommets vers le sud.

Figure 8: Brèche à coussinets isolés, au sommet d'une coulée andésitique. Rive est du lac Labyrinthe, canton de Dasserat, lot 3, rang VIII.

Figure 9: Coussin tectonisé, silicifié et séricitisé avec remplacement subséquent de la matrice hyaloclastique en chlorite-séricite. Rive est du lac Labyrinthe, canton de Dasserat, lot 3, rang VIII.

Zone CA-3:

Cette zone se situe au centre de notre terrain et touche pratiquement à toutes les autres zones. Dans la demie sud, la lave est gris-vert moyen, microgrenue et légèrement amygdalaire (<5% chlorite).

On la rencontre le plus souvent au faciès coussiné, bien que quelques coulées massives et bréchiques aient été reconnues. Cette zone renferme également quelques niveaux plus leucocrates, notamment à la hauteur de la baie Arnoux. Ces niveaux semblent correspondre à des zones de carbonatisation et de silicification; leur épaisseur peut atteindre 200 mètres. Les coulées ont une orientation est-sud-est et les coussins montrent des polarités vers le sud et le sud-sud-ouest.

2.2.5.3 Sommaire pétrographique

Les laves de nature intermédiaire à mafique sont composées essentiellement de plagioclase sodico-calcique souvent albitisé sous forme de phénocristaux et de microlites; ainsi que de trémolite et d'actinote parfois substitués par la hornblende. On y observe très rarement de l'olivine brisée et corrodée ou de faibles quantités de quartz; le reste est constitué par des minéraux opaques et du verre dévitrifié et chloritisé. Plusieurs minéraux d'altération viennent s'ajouter à ces minéraux, comme: la chlorite, les zéolites, l'épidote, la sécicite et les carbonates. Le tableau 5 présente des analyses modales typiques des andésites et des basaltes.

Nous avons noté deux types d'altération locale. Le premier type consiste en une silicification de la roche. Elle se manifeste par une substitution des microlites et des phénocristaux de feldspath par du quartz microcristallin. Elle peut également se présenter en phase interstitielle aux microlites et aux phénocristaux en remplacement du verre dévitrifié.

Le second type d'altération correspond à une carbonatisation de la roche. Elle se manifeste de la même façon que la silicification, amenant quelquefois la croissance de porphyroblastes xénomorphes de carbonate. Lorsque les deux altérations se superposent, on retrouve le quartz microcristallin en bordure des carbonates.

Au niveau des textures, les laves les mieux conservées contiennent une texture microlitique (figure 10) où l'on retrouve de 30 à 50% de fines baguettes enchevêtrées de plagioclase dans une pâte altérée formée de chlorite, épidote, quartz et de verre palagonitisé et chloritisé. Cette texture microlitique est également dominante dans la mésostase des laves porphyriques (figure 11) et amygdalaires. Avec une proportion de verre dévitrifié plus importante, la texture devient hyalopilitique (figure 12).

Minéraux %	Andésites		Andésites .	Basaltes		
	Porphyrique	Aphyrique	·			
Phénocristaux Plagioclase	10		*	•		
Olivine			<7			
Ferro- magnésiens		<2	10-25	30 à 50		
Plagioclase '	30-40	35-50	30-55	40		
Quartz	<5	5-10	0–5	0-7		
Opaques	3	l	<2	2–10		
Verre dévitrifié	5-20	5-40	0-13	0-4		
Chlorite	10	15-20	8-15	5-15		
Épidote	5-30	7	0-10	0-5		
Séricite	<3 <3		<5	<Б		
Carbonates	<2	<5				
Micas			<1			

Tableau 5:Tableau minéralogique descriptifde laves decomposition mafique à intermédiaire du secteur étudié.L'astérisque indique que le pourcentage de phénocristaux deplagioclase a été compté dans le pourcentage de plagioclases.

Figure 10: Bordure de coussin andésitique, légèrement silicifiée montrant une texture microlitique typique. Canton de Montbray, lot 7, rang I; lumière polarisée, 10x.

Figure 11: Basalte à texture porphyrique contenant des plagioclases en phénocristaux et en microlites, de l'actinote, de l'olivine et de l'épidote. Canton de Beauchastel, lot 24, rang VIII; lumière polarisée, 10x.

Figure 12: Andésite microlitique hypocristalline à verre chloritisé et à épidote montrant une texture hyalopilitique. Canton de Dasserat, lot 3, rang V; lumière polarisée, 10x.

Figure 13: Basalte amygdalaire à texture subophitique contenant des microlites et des prismes trapus de plagioclase enchevêtrés avec des microlites d'actinote. Canton de Beauchastel, lot 8, rang X; lumière polarisée, 10x. A l'intérieur des laves basaltiques, une texture subophitique se développe entre les microlites de plagioclase et les ferro-magnésiens présents (figure 13). Les phénocristaux de plagioclase ou leurs pseudomporphes sont automorphes ou hypidiomorphes; les autres minéraux peuvent montrer occasionnellement des textures porphyroblastiques.

Enfin, la dernière texture observée est la texture variolitique. La figure 14 nous montre la zonation très nette à l'intérieur d'une de ces varioles felsiques dont la dimension peut atteindre 3 cm.

2.2.6 Laves felsiques à intermédiaires

Deux niveaux de lave dacitique ont été identifiés dans la portion sud-est du terrain cartographié. Ces deux unités se situent de part et d'autre du lac Hélène et s'alignent grossièrement est-ouest (figure 15). Ces deux niveaux ont une extension latérale de 3 à 3,5 kilomètres, avec des épaisseurs de 200 à 300 mètres.

2.2.6.2 Faciès volcaniques

Les faciès volcaniques rencontrés à l'intérieur des coulées dacitiques sont à mi-chemin entre les faciès des coulées felsiques et ceux des coulées mafiques. Ces laves, le plus souvent massives, montrent par endroits des caractères fragmentaires. Une brèche de coulée frontale a été observée sur un affleurement au sud de l'ancienne mine Wasamac. Enfin, notons que le faciès coussiné, bien que rare, a été rencontré sur quelques affleurements. Les coussins sont plus ou moins bien développés et ont une dimension de l'ordre d'un mètre; la matrice intercoussins est toujours fortement chloritisée (figure 16).

2.2.6.3 <u>Caractéristiques lithologiques et pétrographiques</u>

Ces laves gris pâle à moyen ont une patine blanche semblable à celle des rhyolites. Elles contiennent de 20 à 30% de phénocristaux de quartz et de plagioclase; par endroits, elles peuvent contenir jusqu'à 5% d'amygdales de carbonates.

L'étude pétrographique de quelques échantillons de dacite nous a montré qu'ils contenaient entre 5% et 15% de phénocristaux de plagioclase, de même que 3 à 10% de phénocristaux de quartz, dans une pâte majoritairement composée de quartz et de plagioclase avec environ 10% de chlorite et un peu de calcite et de séricite. La texture est généralement granoblastique ou microporphyroclastique, parfois amygdalaire (figure 17).

2.2.7 Laves felsiques

La plupart des unités felsiques cartographiées ont été reportées sur la figure 15. Elles se localisent à l'intérieur de l'unité

Figure 14: Bordure d'une variole felsique à l'intérieur d'une andésite basaltique à texture variolitique. Rive nord du lac Dasserat, canton de Dasserat, lot 24, rang X; lumière naturelle, 10x.

Figure 15: Carte index localisant les séquences felsiques à l'intérieur de la zone levée. Les divisions représentent les unités chimico-stratigraphiques qui sont définies à la figure 3. Légende: rhyolite

dacite

Figure 16: Coulée coussinée de composition dacitique. Côté ouest du lac Adeline, canton de Beauchastel, lot 34, rang V.

Figure 17: Lave dacitique amygdalaire à texture microporphyrique. Les amygdales sont surtout constituées de calcite. Canton de Beauchastel, lot 39, rang V; lumière polarisée, 10x. calco-alcaline non divisée (CA), et des unités Duprat-Montbray (DM) et Dufault (DF).

2.2.7.1 Faciès volcanique

Suivant nos observations de terrain, nous avons pu noter que les coulées rhyolitiques ont tendance à s'amonceler en amas massifs peu étendus à partir desquels peuvent se développer et se détacher des lobes dont la dimension peut atteindre 15 mètres par 6 mètres. Le sommet de l'amas massif, de même que le pourtour des lobes est souvent constitué de brèche à fragments rhyolitiques contenus dans une matrice hyaloclastique rhyolitique.

D'après Dimroth et al. (1975a et 1979), le faciès proximal du lieu d'éruption est formé par une lave massive contenant souvent des joints columnaires et presque invariablement couverte par une brèche de sommet. A ce stade, la lave massive commence à se crevasser et la bréchification augmente vers le front. L'étape suivante voit l'apparition des lobes de rhyolite rubanés ou non, entourés de microbrèche. Enfin, le faciès distal se compose de fragments de lobes baignant dans une brèche massive.

Nos observations étant en accord avec le modèle d'organisation des coulées rhyolitiques décrit dans Dimroth et al. (1979), nous avons distingué sur le terrain: le faciès massif, lequel peut contenir à l'occasion des dykes synvolcaniques de rhyolite légèrement porphyrique; le faciès à gros lobes jointifs entourés d'une bordure d'obsidienne séricitisée (Dimroth, communication orale); le faciès à lobes détachés rubanés ou non, entourés de brèche et d'hyaloclastite.

Avec l'avancée et le refroidissement de la lave, le faciès fragmentaire se développe (figure 18). Ce faciès correspond au "cellular rhyolite" de Dimroth et al. (1975a); il est constitué d'une rhyolite polygonisée par bréchification in-situ du sommet ou du front de la rhyolite massive ou des lobes et est formé de fragments de rhyolite entourés de carbonate, séricite ou chlorite. En s'éloignant de la portion massive de la coulée, le faciès bréchique proprement dit se développe. Nous y avons distingué: la brèche de fragments contenant des lobes détachés (figure 19), la brèche à gros fragments de lobes rubanés (figure 20) et, enfin, la brèche de fragments (figure 21).

2.2.7.2 Caractéristiques lithologiques et pétrographiques

Occurrences lithologiques:

Nous avons délimité quatre principaux "complexes" rhyolitiques, de même que plusieurs petits dômes de moindre importance.

Le premier complexe se situe dans la demie nord du feuillet est et correspond à la partie orientale de l'unité de Dufault (figure 15).

Figure 18: Sommet d'une coulée rhyolitique montrant un début de polygonisation, amenant au faciès fragmentaire. Canton de Beauchastel, lot 43, rang VI.

Figure 19: Coulée rhyolitique au faciès bréchique montrant des lobes détachés entourés de micro-brèche et d'hyaloclastite rhyolitique. Ce faciès se développe latéralement à partir de la portion massive de la coulée. Canton de Beauchastel, lot 45, rang VI.

Figure 20:: Fragment de lobe rubané à l'intérieur d'une brèche de coulée rhyolitique. Canton de Beauchastel, lot 43, rang VI.

Figure 21: Unité volcanoclastique rhyolitique. L'absence de ponces, la présence de lobes rhyolitiques (4 m) et le caractère monogénique de cette brèche en font très probablement une brèche de coulée rhyolitique. Canton de Beauchastel, lot 46, rang VI.

Il inclut, dans sa partie est, un des deux horizons dacitiques décrits précédemment. Ce complexe a une extension latérale de plus de 7 kilomètres avec une épaisseur variable pouvant atteindre 1,5 kilomètre. La rhyolite renferme toujours de 3 à 5% de phénocristaux corrodés de quartz dont le diamètre moyen est d'environ 2 mm. Le complexe renferme deux principaux niveaux de brèche volcanoclastique dont le principal, anciennement cartographié comme agglomérat, se poursuit sur plus de 3 kilomètres. De direction est-ouest, ce niveau a une épaisseur d'environ 150 à 200 m. Il est composé de 40 à 60% de fragments dont la dimension moyenne varie de 20 à 30 cm. Ces fragments de composition rhyolitique sont étirés dans la direction de la schistosité régionale (est-ouest) et sont entourés par une matrice schisteuse chloritisée. Les brèches représentent plus de 35% du complexe; le reste est formé de rhyolite aux faciès massif et fragmentaire.

Le second complexe inclut le village d'Arntfield et forme la portion occidentale de l'unité de Dufault (figure 15). Débutant au sud de l'ancienne mine Aldermac, il se poursuit vers l'ouest jusqu'aux lacs Demin au nord et Desvaux au sud. Il englobe un ensemble de coulées de direction est-ouest qui présentent une extension latérale de l'ordre de 7 kilomètres avec une épaisseur maximale de 2,5 km. Ce complexe est recoupé par un cisaillement majeur qui aligne les anciennes mines d'or Francoeur et Arntfield. La portion sud du complexe est composée par une séquence volcanique mixte composée par une alternance et une inter- stratification de coulées rhyolitiques aux faciès massif, fragmentaire et bréchique et de coulées basaltiques ou andésitiques aux faciès massif, coussiné et bréchique, montrant souvent des indices de silicification. Cette interdigitation de coulées de composition différente résulte, dans le faciès bréchique en une brèche de coulée à fragments felsiques dans une matrice mafique. Dans certains cas, des fragments mafiques ont pu être silicifiés et la matrice postérieurement chloritisée; dans d'autres cas, seule la matrice de composition felsique à l'origine semble avoir été chloritisée. Cette zone se retrouve au nord du village d'Arntfield sur plus d'un kilomètre d'épaisseur.

La portion nord du complexe est majoritairement rhyolitique. Ces coulées rhyolitiques se composent essentiellement de deux types de rhyolites. Le premier, massif, se présente en amas et en lobes dont la dimension varie de 10 m^2 à 50 m^2 ; il est habituellement très fracturé. Cette rhyolite est généralement homogène et rarement porphyrique, sauf pour quelques phénocristaux corrodés de quartz (1 mm). Sa couleur en surface fraîche varie énormément dépendamment de l'altération dominante: silicification, épidotisation, hématisation et limonitisation. Sa teinte la plus fréquente est rosâtre à rougeâtre.

Le second type, moins homogène, forme un faciès matriciel; il englobe l'hyaloclastite rhyolitique. Il montre souvent une texture de fluage en bordure de la rhyolite du premier type. Cette rhyolite grisâtre plus foncée est presque invariablement chloritisée et schisteuse. Une schistosité est-ouest correspondant à la schistosité régionale est quelquefois visible. Cette zone inclut également quelques horizons tufacés dont les épaisseurs peuvent atteindre 100 mètres; on y retrouve quelquefois des lobes et des dykes rhyolitiques recoupant ces horizons.

Le troisième complexe est localisé aux environs de "Four Corners, correspondant à la rencontre des lignes des cantons de Dasserat, Montbray, Duprat et Beauchastel (figure 15). Ce complexe rhyolitique s'étend sur 6 kilomètres de long vers l'ouest-sud-ouest: sa largeur est de 3 kilomètres. Trois faciès de rhyolite y ont été observés: rhyolite massive souvent rubanée, rhyolite massive à bréchification in-situ et brèche de coulée rhyolitique. Cette rhyolite est légèrement porphyrique, contenant jusqu'à 5% de phénocristaux de quartz et de plagioclases dont la dimension varie de l à 2 mm. Elle montre partout une coloration rosée dont l'intensité varie avec le degré d'hématisation. A quelques endroits, de l'hématite spéculaire massive apparaît à l'intérieur de veinules discontinues dont la largeur varie de 0,5 à 2 cm. Les coulées rhyolitiques alternent parfois avec des coulées de composition basaltique et sont invariablement recoupées par une multitude de dykes et d'intrusions gabbroïques.

Anticipant sur le chapitre 3, et à titre de comparaison, le tableau 6 présente les données analytiques des échantillons de rhyolite prélevés à l'intérieur des complexes 2 (Arntfield) et 3 (Four Corners).

Le quatrième complexe se situe dans le nord-ouest de la région, de part et d'autre de la rivière Dasserat. Il s'étend sur environ 3,5 kilomètres vers l'est-nord-est et son épaisseur peut atteindre 1,5 kilomètre. Cette rhyolite est légèrement porphyrique, contenant moins de 5% de phénocristaux de plagioclase. Le complexe est surtout composé de rhyolite bréchique et fragmentaire. Il inclut également certaines unités de brèches volcanoclastiques à matrice chloritisée qui pourraient représenter des épisodes pyroclastiques contemporaines aux coulées rhyolitiques. Ce type de brèche est visible sur la rive est du bras nord du lac Labyrinthe.

Deux autres petites zones rhyolitiques affleurent au nord du complexe de la rivière Dasserat. Celle du nord-ouest semble identique aux rhyolites du complexe de la rivière Dasserat, alors que celle qui se situe au nord-est est nettement massive et présente des joints de refroidissement définissant des colonnades.

Enfin, trois autres petites zones rhyolitiques s'alignent de part et d'autre du lac Dasserat, dans sa portion sud. Ces rhyolites sont porphyriques par endroits et se présentent surtout aux faciès fragmentaire et bréchique.

Sommaire pétrographique:

Nous avons effectué l'examen pétrographique d'une vingtaine de lames minces de rhyolite, incluant des rhyolites massives et des hyaloclastites rhyolitiques. La minéralogie de base est apparue très semblable pour les deux faciès. Les rhyolites massives sont constituées

2								
DESIGNATION	95602	95603	95604					
NO.LABORATOIRE	84- 14896	84- 14897	84- 14898					
S102	78,2 %	72,4 X	73,0 X					
A1203	9,53 %	12,2 X	13,0 X					
Fe2031	3,34 %	4,54 X	2,77 X					
Mg0	0,42 %	0,51 X	0,63 X					
Ca0	0,88 %	0,97 X	2,27 X					
Na20	2,74 %	5,90 X	3,32 X					
K20	1,43 %	0,31 X	2,79 X					
T102	0,32 %	0,38 X	0,31 X					
Mm0	0,04 %	0,04 X	0,07 X					
F205	0,04 %	0,06 X	(0,03 X					
S	(0,01 %	(0,01 X	0,04 X					
FAF	1,43 %	1,20 X	3,12 X					
· ·		3	-					
DESIGNATION	95596	95597	95598	95599				
ND.LABORATOIRE	84- 14890	84- 14891	84- 14892	84- 14893				
SI02 Al203 Fe203t Mg0 Ca0 Na20 K20 Ti02 Mn0 F205 S FAF DESIGNATION N0.LAPORATOIRE	75,4 X 11,5 X 3,20 X 0,51 X 2,62 X 6,18 X 0,28 X 0,25 X 0,05 X (0,03 X (0,01 X 0,00 X 95609 B4- 14903	73,1 × 11,3 × 4,77 × 0,59 × 0,68 × 5,65 × 1,06 × 0,28 × 0,07 × (0,03 × (0,03 × (0,01 × 0,15 × 95610 84- 14904	73,6 % 12,6 % 5,57 % 0,96 % 2,51 % 3,89 % 0,86 % 0,08 % 0,06 % 0,07 % 0,06 % 0,07 % 0,27 % 0,62 % 95611 84- 14905	B1,3 % 9,22 % 2,32 % 0,15 % 1,62 % 3,51 % 1,59 % 0,15 % 0,03 % (0,03 % (0,03 % (0,01 % 0,23 %				
Si02	75,5 X	78,2 X	74,8 %					
Al203	11,1 X	11,1 X	11,1 %					
Fe203t	3,52 X	3,14 X	4,22 %					
Mg0	0,51 X	0,33 X	(0,04 %					
Ca0	1,29 X	1,54 X	1,32 %					
Na20	2,14 X	4,79 X	5,85 %					
K20	3,82 X	0,33 X	0,79 %					
Ti02	0,21 X	0,18 X	0,21 %					
Mn0	0,07 X	0,05 X	0,02 %					
F205	(0,03 X	(0,03 X	(0,03 %					
S	(0,01 X	(0,01 X	0,34 %					
FAF	0,66 X	0,55 X	1,14 %					

Tableau 6:Composition chimique des rhyolites du "complexe" d'Arntfield
(2) et du "complexe" de Four Corners (3).

de quartz microcristallin (55 à 75%) ou en phénocristaux à bordures corrodées (1 à 5%), de séricite (2 à 15%), de plagioclase et d'albite (1 à 10%) dont moins de 2% de phénocristaux, de calcite (2 à 5%), de chlorite (1 à 3%), de magnétite et d'hématite (1 à 5%). Certains minéraux accessoires comme la biotite, l'apatite et le sphène peuvent également être présents. L'hyaloclastite est généralement moins riche en quartz, contient plus de chlorite, de séricite et présente une granularité plus fine.

La texture la plus commune est surtout microporphyrique à porphyrique (figure 22) et peut également être granoclastique (figure 23). D'autres textures sont également présentes localement. La texture sphérolitique présente des auréoles polycristallines de quartz contournant des amas aphanitiques siliceux. Une texture de rubanement est également présente en bordure de certains lobes; elle correspond grossièrement à des variations dans la cristallinité des grains de quartz associées à une variation dans la concentration de certains minéraux d'altération. Une dernière texture de recristallisation est produite par une silicification le long de craqueleures perlitiques.

2.2.8 Roches pyroclastiques

2.2.8.1 Généralités:

Nous avons pu relever plusieurs petites unités lenticulaires de roches pyroclastiques dont la composition varie de mafique à felsique. De plus, certaines brèches volcanoclastiques de composition rhyolitique pourraient s'avérer être des brèches pyroclastiques, notamment à l'intérieur des deux premiers complexes rhyolitiques précédemment décrits.

L'épaisseur maximale des différentes unités pyroclastiques est de l'ordre de 200 mètres, bien que l'épaisseur moyenne soit de l'ordre de 2 à 5 mètres.

2.2.8.2 Types rencontrés:

Les termes employés pour définir les horizons pyroclastiques suivent la classification générale de Fisher (1961). Bien que rares à l'intérieur des séquences volcaniques de composition intermédiaire à mafique, nous avons, à l'occasion, observé des horizons lenticulaires de tufs à cristaux et lapilli et de tufs à lapilli et blocs. Le principal horizon de cette catégorie se situe à l'intérieur des lots 31 et 32 du rang VII du canton de Beauchastel; sa composition chimique est celle d'un basalte (échantillon 95571, annexe 2). La base, au nord, est formée d'une brèche volcanoclastique et de tuf à blocs dont les diamètres atteignent 20 centimètres. L'épaisseur de cet horizon est d'environ 160 mètres. Au sommet, vers le sud, l'horizon est constitué de tuf à cristaux et lapilli contenant jusqu'à 30% de cristaux brisés de plagioclase saussuritisés dont le diamètre peut atteindre l cm. Le sommet de cet horizon contient de petits niveaux discontinus de tuf à cendre et cristaux dont les épaisseurs ne dépassent pas 20 cm, ces derniers pouvant être confondus avec de petits dykes felsiques de même apparence.

Figure 22: Lave rhyolitique à texture porphyrique contenant des phénocristaux tabulaires d'albite automorphe et des cristaux xénomorphes corrodés de quartz dans une mésostase de quartz et d'albite. Canton de Dasserat, lot 60, rang X; lumière polarisée, 10x.

Figure 23: Rhyolite massive miocroporphyrique à matrice granoclastique. Canton de Montbray, lot 26, rang I; lumière polarisée, 10x. Un autre tuf basaltique, d'une épaisseur de 3 mètres, a été noté au sommet d'une séquence coussinée dans le lot 6 du rang VIII du canton de Beauchastel. D'autres tufs à cristaux et à lapilli ont été notés sur les rives du lac Dasserat et du lac Arnoux.

Des tufs lithiques felsiques ont été observés au nord d'Arntfield et des tufs à ponces dans la région du lac Arnoux et dans celle du lac Labyrinthe. La mauvaise qualité des affleurements n'a permis l'identification d'aucune structure sédimentaire.

Quelques unités de brèches pyroclastiques de composition felsique ont également été reconnues dans la région d'Arntfield, dans la partie nord du lac Dasserat (figure 24) de même que dans le bras nord du lac Labyrinthe. Ces brèches présentaient une majorité de fragments felsiques anguleux dans une matrice tufacée très siliceuse, contenant des cristaux brisés de plagioclase.

2.2.8.3 Pétrographie sommaire:

Les tufs à cristaux et à lapilli que nous avons étudiés contiennent entre 15 et 40% de cristaux de plagioclase souvent pseudomorphosés en calcite ou en chlorite, séricite et épidote; et entre 0 et 15% de grains de quartz, le tout dans une matrice fragmentaire de verre dévitrifié fortement chloritisée, de quartz, de séricite, d'épidote et accessoirement de pyrite.

Les tufs à ponces (figure 25) peuvent contenir jusqu'à 35% de ponces dont les vésicules sont généralement remplies par de la silice ou par un assemblage de calcite-chlorite-silice où le quartz se retrouve invariablement en bordure des deux premiers constituants.

2.3 Groupe de Témiscamingue

2.3.1 Généralités

Les sédiments du Groupe de Témiscamingue apparaissent en discordance au-dessus du Groupe de Blake River (Goulet, 1978). Ils affleurent très peu sur le terrain que nous avons cartrographié et sont confinés à la portion sud de la carte. Ces sédiments se distinguent des sédiments du Groupe de Cobalt par une déformation beaucoup plus intense, reliée à l'orogénèse kénoréenne.

2.3.2 Subdivisions

Le Groupe de Témiscamingue est situé en bordure d'une des deux grandes failles régionales, à savoir de faille de Larder Lake-Cadillac. Il est caractérisé par l'abondance de conglomérat polygénique, de grès grossier, de grès argileux et de quelques niveaux de pélite et de roches pyroclastiques (Rocheleau, 1980).

Figure 24: Brèche pyroclastique polygénique dont les blocs présentent une zonation d'altération. La matrice est formée par un tuf à crixtaux de plagioclases brisés. Rive est du lac Dasserat, canton de Dasserat, lot 39, rang IX.

Figure 25: Tuf à ponces et cristaux. Canton de Dasserat, lot 14, rang VI; lumière polarisée, 10x.

Dans notre région, Rocheleau (Ibidem) a divisé le Groupe de Témiscamingue en deux formations distinctes possédant les mêmes caractères pétrographiques. Ainsi, la Formation de La Bruère remplace la formation informelle de Granada, telle que présentée par Goulet (1978), et regroupe les roches sédimentaires du Groupe de Témiscamingue situées au nord de la faille de Larder Lake-Cadillac. Pour sa part, la nouvelle Formation de Granada, telle que définie par Wilson (1943), se situe au sud de la faille de Larder Lake-Cadillac.

Selon cette subdivision géographique, notre région renfermerait deux fenêtres constituées de sédiments appartenant à la Formation de Granada et trois autres lentilles faisant partie de la Formation de La Bruère (figure 26).

2.3.3 Lithologie et pétrographie

Dans cette section, comme dans les autres sections de ce rapport se rapportant à des descriptions de roches sédimentaires, la classification des grès suit celle de Pettijohn telle que présentée dans Blatt, Middleton and Murray (1980).

2.3.3.1 Formation de Granada:

La première lentille de sédiments appartenant à cette formation se situe à l'extrémité sud-est du feuillet est. Elle forme une fenêtre de l,2 kilomètre par 300 mètres allongée en direction est-ouest à l'intérieur des sédiments protérozoïques du Groupe de Cobalt. Elle consiste en bancs de grauwacke et d'arkose massifs à laminés d'apparence schisteuse par endroits. Les couches de direction est-ouest montrent des polarités normales vers le nord, avec des pendages variant de 65 à 75 degrés.

La grauwacke est constituée de fragments monominéraliques anguleux à subanguleux de feldspath et de hornblende entourés par une matrice à grain fin de même composition (figure 27); une foliation est souvent visible, marquée par l'alignement général des minéraux. Les proportions des constituants formant les fragments sont présentés au tableau 7.

La seconde fenêtre se situe au sud-est du lac Renaud et couvre une superficie d'environ 600 mètres par 300 mètres. Ces sédiments sont constitués à 95% d'un conglomérat polygénique à matrice schisteuse, cisaillée et chloritisée. Les cailloux, qui constituent jusqu'à 60% du conglomérat sont surtout formés de grauwacke et de granitoïdes. Les cailloux de grauwacke sont souvent allongés dans le sens de la schistosité régionale, tandis que les cailloux de roches granitoïdes sont arrondis à subarrondis; leur diamètre peut atteindre 10 centimètres. Le conglomérat renferme de minces bancs, de quelque l mètre d'épaisseur, de grès subarkosique finement laminé.

Figure 26:Carte de localisation des formations du Groupe de
Témiscamingue. La légende pour les unités strati-
graphiques est la même que celle de la figure 3.
Légende:Légende:Image: Formation de La Bruère
Formation de Granada

Figure 27: Grauwacke feldspathique de la Formation de Granada. Canton de Beauchastel, lot 49, rang IV; lumière polarisée, 10x.

Constituants %	Granada GWA, FF(l)	La Bruère GWA, FF(l)	La Bruère GWA (2)	La Bruère SCH, M U(l)	
Matrice	15-20	15-20	20-40		
Quartz	20	20	35 - 50	20	
Feldspath	45	45	0-20		
Chlorite	4	15	10-15	5	
Muscovite Séricite		2	10-14	40	
Épidote	2	5	0-1		
Carbonates	2	2	20-25	15	
Hornblende	23	10			
Min. d'argile				20	

Tableau 7:Proportions estimatives des constituants minéraux observés
à l'intérieur des lames minces du Groupe de Témiscamingue.
Les symboles lithologiques sont les mêmes que sur les cartes
géologiques: le nombre d'échantillons examinés est inscrit
entre parenthèses. (100% = total des minéraux sans matrice)

Cette unité est recoupée par un stock syénitique synorogénique et par un dyke de diabase post-Cobalt.

2.2.3.2 Formation de la Bruère:

Cette formation est représentée par trois lentilles sédimentaires en contact discordant avec les volcanites de l'unité chimicostratigraphique de Rouyn-Noranda au nord et les sédiments du Groupe de Cobalt au sud (figure 26). La première se situe à l'extrémité sud-est de la zone d'étude et les deux autres à l'extrémité sud-ouest; toutes trois sont localisées au nord de la faille de Larder Lake-Cadillac.

La première lentille s'étend sur 2,2 kilomètres en direction est-ouest avec une épaisseur de l'ordre de 200 mètres. Elle est constituée de conglomérat polygénique, de grès subarkosique gris à grain fin, lité, chloritisé et séricitisé et d'un grès à grain moyen, schisteux et hétérogène, de type grauwacke.

La seconde localité est située de part et d'autre du ruisseau Clinchamp. Ce dernier correspond à une faille nord-sud à mouvement latéral sénestre avec décrochement apparent de l'ordre de 300 mètres. Les deux blocs de sédiments couvrent une superficie de 2,3 km (est-ouest) par 500 à 700 mètres d'épaisseur.

On y rencontre une alternance de niveaux de conglomérats polygéniques et de niveaux de grès subarkosique gris à grain fin, laminés, composés surtout de quartz (carbonates et chlorite), interlités avec des grès à grains grossiers de type grauwacke; ces derniers peuvent avoir l'aspect d'un microconglomérat schisteux et chloriteux. La puissance apparente de ces niveaux est de l'ordre de 10 à 200 mètres.

La troisième lentille sédimentaire se situe dans le coin sudouest du feuillet ouest. Elle est composée de conglomérat polygénique à matrice schisteuse et chloriteuse, de grès et de siltstone. Cette lentille est décrochée sous la couverture de sédiments protérozoiques par la faille de Milky Creek; le déplacement est de l'ordre de 1,5 km suivant un mouvement sénestre.

2.3.3.3 Caractères communs:

Les grauwackes formant ces unités sont des sédiments moyennement classés laminés et métamorphisés de façon variable. Ils sont formés de fragments monominéraliques corrodés ou altérés dans une matrice silicifiée et chloritisée (figure 28); la schistosité régionale est généralement très bien développée et mise en relief par la séricite. De nombreuses variations y apparaissent, tant au niveau granulométrique qu'au niveau compositionnel. Ainsi, avec une diminution de la grosseur de grain, la grauwacke peut passer localement à un siltstone ou à une argilite; une augmentation dans la proportion de quartz en fait un grès quartzitique ou subarkosique et une augmentation dans la quantité de feldspath en fait une

Figure 28: Grauwacke schisteuse typique de la Formation de La Bruère. Canton de Dasserat, lot 15, rang IV; lumière polarisée, 10x. arkose. De plus, une augmentation locale du degré de métamorphisme et de cisaillement amème la grauwacke au niveau des schistes feldspathiques à chlorite, hornblende et séricite. Le tableau 7 donne les proportions estimatives des constituants minéraux de ces différentes variantes lithologiques.

La roche sédimentaire la plus répandue de cette formation est sans doute le conglomérat. Il apparaît en bancs ou en lentilles dont les épaisseurs peuvent atteindre plusieurs dizaines de mètres. Son caractère polygénique varie de place en place. Il est formé de cailloux subanguleux à subarrondis, allongés dans le sens de la schistosité régionale. Ces cailloux de diverses compositions (volcanites, gabbros ou granitoïdes) ont généralement un grand axe inférieur à 30 centimètres. Une autre caractéristique des conglomérats du Groupe de Témiscamingue est qu'ils contiennent de rares cailloux arrondis de jaspe rouge, lesquels n'ont pas été observés dans aucun des conglomérats du Groupe de Cobalt. La matrice est toujours constituée de grauwacke schisteuse, souvent chloritisée.

2.4 Roches intrusives

Nous présentons dans cette section, par ordre chronologique, les différentes roches intrusives d'âge archéen observées à l'intérieur de la région d'étude. Les principales intrusions sont localisées sur la figure 29. Certaines intrusions ont été échantillonnées pour analyse totale; les résultats en sont présentés à l'annexe 5.

2.4.1 Dykes syn-volcaniques

Le premier épisode est représenté par les intrusions reliées génétiquement au volcanisme. Nous incluons dans cette subdivision tous les dykes et filons-couches de composition basaltique à rhyolitique montrant des similitudes avec les laves qu'ils recoupent; ces intrusions sont peu fréquentes et n'apparaissent que sporadiquement dans l'empilement volcanique sauf à l'intérieur de la zone DM-4 (figure 4) où leur fréquence peut atteindre un dyke par 50 mètres.

Ces dykes sont le plus souvent aphyriques, quelquefois porphyriques. Ils recoupent les coulées mais ne peuvent être suivis qu'à l'échelle de l'affleurement. Ils représenteraient les conduits nourriciers des coulées sus-jacentes.

2.4.2 Laccolithe de Powell

L'extrémité sud-ouest du pluton de Powell affleure dans le nordest du feuillet est, formant un massif continu accompagné de trois stocks satellites. Ces derniers montrent une association spatiale avec des intrusions felsiques à granularité plus fine. Les stocks principaux sont formés de tonalite dont la couleur d'altération varie de gris blanchâtre à verdâtre. La grosseur du grain varie énormément d'un endroit à l'autre, passant de 2 à 10 mm.

Figure 29:

Carte index des diverses intrusions rencontrées à l'intérieur de la région cartographiée. La légende pour les unités stratigraphiques est la même que celle de la figure 3. Légende: Tonalite de Powell Gabbros-diorites:; les numéros 1 à 10 correspondent à des massifs indentifiés dans le texte et sur le tableau 9. Synéties porphyriques; les massifs S1 à S5 sont identifiés dans le texte. Dykes de diabase protérozoïque.

54

Ces roches sont généralement leucocrates et essentiellement composées de plagioclase séricitisé et de quartz qui forment par endroits des textures granophyriques (figure 30). Les autres minéraux présents sont l'épidote pistachite, le sphène et très peu de feldspaths alcalins. Comme minéraux accessoires, nous avons pu noter le zircon et l'allanite. Les minéraux d'altération observés sont l'épidote, la séricite, la chlorite et les carbonates. Le tableau 8 présente les pourcentages des différents constituants.

Le pluton de Powell a été daté par la méthode U-Pb sur zircons à 2755 millions d'années (Krogh and Davis, 1971), les stocks de Powell et de Flavrian (plus au nord) seraient des parties d'un seul pluton ayant été mis en place durant la formation des volcanites du Blake River (Goldie, 1973). Selon Jolly (1977), ils doivent être considérés comme une racine de volcans.

2.4.3 Stocks, dykes et filons-couches de gabbro-diorite

Cette catégorie inclut tous les stocks, dykes et filons-couches de gabbro à actinote, de gabbro à hornblende, de diorite à augite, à actinote ou à trémolite, quartzique ou non. Ces roches montrent beaucoup de variations dans leur composition minéralogique, leur texture et leur granulométrie.

Dans la majeure partie des cas, ces intrusions sont subconcordantes aux coulées et présentent souvent des contacts cisaillés. Elles sont à grain moyen à grossier et contiennent souvent des lambeaux irréguliers d'une phase pegmatitique de même composition. Les plus gros stocks sont différenciés et peuvent également contenir des ségrégations riches en magnétite ou en pyrite, formant des lentilles ou des bandes centimétriques discontinues. Règle générale, les minéraux ferromagnésiens sont chloritisés et les feldspaths sont saussuritisés et épidotisés, rendant la détermination de leur composition originelle presque impossible. Les textures ophitiques et hypidiomorphes sont les plus souvent observées (figure 31).

Ces intrusions, qui sont distribuées partout dans la région étudiée, sont localisées sur la figure 29. Le tableau 9 illustre les compositions minérales estimées de différents types lithologiques. Les chiffres entre parenthèses, ci-dessous, réfèrent au tableau 9. Les principales intrusions sont les suivantes.

L'intrusion dioritique qui se situe dans la partie nord du lac Dasserat; de direction est-nord-est, elle s'allonge sur 9,5 kilomètres par 500 mètres (2). Un massif gabbroïque (le Massif Desvaux-Arnoux) occupe une zone de 7,5 kilomètres par 1,5 kilomètre; il s'étend, avec une direction nord-est, du sud du lac Desvaux jusqu'au sud-est du lac Arnoux (8). Dans la région du lac Labyrinthe, on rencontre deux massifs gabbroïques d'importance: le premier, au centre du lac, s'allonge d'est en ouest sur 5 kilomètres par 700 mètres (10); le second (Massif d'El Coco)

Figure 30: Texture granophyrique à l'intérieur de la tonalite de Powell. Canton de Beauchastel, lot 41, rang VIII; lumière polarisée, 10x.

Minéraux	Minéraux Tonalite de Powell		Syénite		Sy	énite de	Diabase		
			S N		Bale Renault			bord	centre
Plagioclase	55	70	10	35	<20	<30	15	15	20
Feldspath K	-	2	70	35	70	60	75	-	-
Quartz	25	25	< 5	30	< 5	< 5	-	< 5	-
Hornblende	~	-	5	-	-	-	-	-	10
Actinote	-	-	tr	-	-		-	20	-
Augite		-	-	-	_	_	-	-	60
Pigeonite	-	-	-	-	-	-	-	60	-
Aegyrine	-	-	10	-	-	-	-	-	-
Épidote	15	alt	-	-	-	-	—	-	-
Apatite	_	-	tr	-	-	tr	< 5	-	-
Opaques	-	tr	-	tr	2	< 3	< 5	10	5
Chlorite	_	alt	tr	-	-	-	-	-	tr
Séricite	alt	alt	-	-	-	-	alt	-	tr
Leucoxène	< 5	3 .	tr	-	-	-	-	-	-
Zircon	tr	-	-	-	-	-	-	- 1	-
Allanite	tr	-	-	-	-	-	-	- 1	-
Carbonates	-	alt	tr	-	5	- 1	alt	- 1	-
Biotite	-	-	tr	-	- 1	-	-	- 1	-
Muscovite	-	-	tr		-	tr	-		– *

Tableau 8:

Composition minéralogique estimée de quelques massifs intrusifs acides et du dyke de diabase pré-Cobalt.

Figure 31: Texture ophitique dans un gabbro à cummingtonite (no. 7, figure 29). Canton de Beauchastel, lot 44, rang VII; lumière polarisée, 10x.

Minéraux %	1	2	3	4	5	6	Sud de Powell 7 Des			svaux-Arnoux 8	
Plagioclase Feldspath K Hornblende Actinote Augite Trémolite Barkévicite Cummingtonite Quartz Apatite Sphène Chlorite Séricite Épidote Opaques	35 - 55 <10 - - - < 5 < 5 - tr - tr -	60 - <10 - 20 < 5 - < 5 - tr - tr - tr < 5	60 - - 30 - - 5 - tr tr tr - tr - - - - -	30 - 60 - - - 5 - tr - tr - tr - tr - 5 5	45 5 40 - - 5 - tr tr 5	35 - 50 - - - < 5 tr - tr tr tr 5 5 5	20 - 50 - 15 < 5 - - - - - 5 - - - - - - - - - - - - -	30 - 50 - 15 - 5 - tr - -	40 - 20 20 - - - tr < 5 - tr - tr - -	35 - 55 - - - - - - - - - - - - - - - -	40 - 50 - - - - - - - - - - - - - - - - -
Carbonates Muscovite	-	tr -	tr -	tr -	- -		tr tr	- tr	-	tr -	tr -

Tableau 9:

Composition minéralogique estimée de quelques massifs dioritiques et gabbroïques:

- 1. Massif d'El Coco
- 2. Massif du lac Dasserat
- 3. Massif du ruisseau Clarice
- 4. Gabbro, lac Arnoux
- 5. Massif à l'est du lac Hélène
- 6. Massif du lac Mackay
- 7. Massif au sud de la Tonalite de Powell
- 8. Massif Desvaux-Arnoux

englobe l'ancienne mine North-Bordulac et s'étend d'est en ouest sur 3 kilomètres par 500 mètres (1). Sur le feuillet est, un massif gabbroïque (le Massif du lac Mackay) s'étend vers l'est, à partir du lac Mackay sur 4,6 kilomètres (6); un second, de 3 kilomètres de long par 800 mètres, s'étend vers l'est, à partir de la terminaison nord de la zone de résidus miniers de l'ancienne mine Aldermac (9). Toutes ces intrusions recoupent la séquence volcanique.

2.4.4 Dykes ultramafiques

De rares dykes de composition ultramafique ont été observés comme recoupant les intrusions gabbroïques. Un dyke de faible épaisseur a été reconnu sur le côté est de la pointe en Y qui s'avance dans le lac Arnoux. Deux autres dykes de pyroxénite ont été distingués comme recoupant le massif gabbroïque de Desvaux-Arnoux.

Cette roche très magnétique montre une altération brun rouille et une surface fraîche vert foncé. Elle contient près de 80% d'hypersthène d'environ 5 mm de diamètre formant une texture de cumulat. On y a également observé près de 10% de hornblende, 10% de magnétite, des traces d'apatite automorphe et de chlorite secondaire.

Une hornblendite a également été observée dans la bordure est du même massif intrusif. Elle serait un faciès métamorphisé de la roche précédente. Son grain varie de l à 4 mm et elle est composée à 50% de hornblende. On y observe également 25% d'actinote, 20% de plagioclase, un peu moins de 5% de quartz formant des textures granophyriques de même qu'une quantité équivalente de minéraux opaques. Des minéraux d'altération comme la chlorite, les carbonates et l'épidote sont également présents dans l'échantillon examiné.

2.4.5 Monzodiorite

A quelques endroits, des dykes de monzodiorite de faible puissance (10 à 20 mètres) ont été reconnus comme recoupant les unités de de diorite.

Ces roches ont une granularité qui varie de 2 à 6 mm et présentent une texture équigranulaire. Elles contiennent environ 50% d'actinote et trémolite, 40% de plagioclase, 10% de feldspaths potassiques et des traces de minéraux opaques et de séricite. L'épidote apparaît en bordure des plagioclases comme résultat de décalcification de ces derniers.

2.4.6 Porphyres feldspathiques

Nous avons relevé quelques dykes de porphyre dont certains atteignent des épaisseurs de 150 mètres, comme c'est le cas au lac Larochelle. Cette roche est constituée par près de 40% de plagioclases saussuritisés formant une texture gloméroporphyrique à l'intérieur d'une matrice constituée de quartz, chlorite, séricite et carbonates. D'autres petits dykes ont été observés, notamment au lac Mud, au lac Lusko sur les rives du lac Dasserat.

2.4.7 Stocks syénitiques

Nous avons pu observer dans notre région au moins 5 stocks de composition syénitique. Ils sont localisés sur la figure 29.

2.4.7.1 Massif d'Aldermac:

Le plus important est le massif d'Aldermac (figure 29, S1). Il occupe une partie des lots 10 à 22 entre les rangs VI et IX du canton de Beauchastel. Il est composé de deux masses irrégulières d'une largeur d'environ 1,5 kilomètre, jointes entre elles par un étranglement d'une largeur d'environ 200 mètres. L'ensemble du massif est allongé dans une direction nord-nord-ouest sur environ 5,5 kilomètres.

Le massif est formé par une série composite d'amas et de dykes mis en place successivement. Leur composition de même que leurs textures sont très variables. Pris globalement, il peut être divisé en deux: une partie sud à texture porphyrique dont la composition moyenne est celle d'une syénite et une partie nord, également porphyrique, dont la composition varie de syénite quartzique à granite alcalin. La nature alcaline de la roche est confirmée par une analyse chimique (annexe 5, échantillon 95623).

La syénite de la partie sud est de couleur rose intense due à l'hématisation des feldspaths alcalins. Elle est essentiellement composée de feldspaths alcalins à texture hypersolvus (figure 32) avec, au plus, 20% de minéraux mafiques incluant l'aegyrine, la hornblende et la biotite. Elle contient moins de 5% de quartz et des traces d'actinote, sphène, apatite, muscovite, carbonates et chlorite.

La roche de la section nord est formée de phénocristaux zonés de microline dont la dimension atteint fréquemment 3 centimètres et de phénocristaux de quartz de l à 5 mm de diamètre pris dans une matrice rose pâle composée de fins cristaux de plagioclase. L'absence presque totale des minéraux mafiques est également une caractéristique de cette roche. Les pourcentages des constituants minéraux de ces deux types de roche sont présentés dans le tableau 8.

Un cortège de dykes est associé à ces stocks de syénite. Il nous a été permis d'établir la chronologie de ces dykes sur quelques affleurements. Ainsi, les dykes les plus anciens sont mafiques, contenant jusqu'à 50% d'augite, d'aegyrine et de hornblende. Les plus récents sont formés de syénite rose finement grenue dont la composition peut atteindre celle d'un granite alcalin, celle d'une syénite porphyrique à biotite dont les phénocristaux de feldspath montrent un arrangement parallèle aux murs des dykes, ou encore celle d'une pegmatite syénitique dans laquelle les cristaux tabulaires de feldspath peuvent atteindre 15 centimètres. Ces

Figure 32: Texture hypersolvus dans la syénite porphyrique du massif d'Aldermac. Canton de Beauchastel, lot 22, rang VI; lumière polarisée, 10x.
derniers sont recoupés par une aplite rouge ayant la composition d'un granite alcalin. Le dernier événement intrusif de cette séquence filonienne semble être formé par une roche dont la composition varie de monzodiorite quartzifère à tonalite.

Des dykes de lamporphyre à hornblende et biotite recoupent ceux de syénite. Ils sont habituellement de faible épaisseur et sont présents jusqu'à une distance de l,5 kilomètre de la masse intrusive principale.

2.4.7.2 Massif de la Baie Renault:

Ce massif, dont la dimension atteint 2 kilomètres par l kilomètre, est intrusif dans la séquence volcanique de Blake River; il est en partie recouvert par les roches sédimentaires protérozoïques du Groupe de Cobalt. Il se situe sur la rive sud du lac Dasserat(figure 29, S2).

Il est constitué par une leucosyénite altérée dont la composition moyenne est de 75% de feldspath alcalins hématisés, 15% de plagioclases séricitisés et de 10% de minéraux secondaires dont 5% de rhomboèdres de carbonates (tableau 8). Certains cristaux isolés de feldspath présentent des tendances hypersolvus représentées par une texture perthitique. L'ensemble de la roche est recoupé par un réseau de veinules de quartz et carbonates accompagnées parfois de rares sulfures. Comme dans la partie nord du massif d'Aldermac, l'absence de minéraux mafiques suggère une fraction évoluée d'un magma syénitique.

2.4.7.3 Stock du lac Renaud:

Ce stock dont la dimension atteint l kilomètre par 300 mètres, se situe au sud du lac Renaud (figure 29, S3). Il est constitué d'une roche rose contenant des prismes trapus de feldspaths alcalins dans une mésostase à grain fin formée de quartz, feldspath, biotite et chlorite. Cette intrusion contient de nombreux xénolites de roches sédimentaires appartenant au Groupe de Témiscamingue. Sa bordure, très foliée, est constituée par une série de dykes recoupant la même séquence sédimentaire, lui conférant un âge post-Témiscamingue.

2.4.7.4 Autres intrusifs syénitiques:

Deux autres occurrences de roches syénitiques ont pu être observées. La première, située à l'extrémité sud-ouest de la région (figure 29, S4), n'est constituée que d'un affleurement de syénite porphyrique intrusive dans les roches volcaniques du Groupe de Blake River et dans la séquence sédimentaire du Groupe de Témiscamingue.

La dernière occurrence est constituée par quelques affleurements de syénite à augite et hornblende en bordure d'un massif gabbroïque (figure 29, S5). Elle se situe dans le rang 6 du canton de Dasserat, sur la rive sud-est du lac Labyrinthe.

PROTÉROZOÏQUE

2.5 Groupe de Cobalt

2.5.1 Généralités

Selon Johnston (1957), les roches sédimentaires les plus jeunes qui apparaissent dans la région sont d'âge huronien et constituent la partie inférieure de la "Série de Cobalt". L'ensemble de ces roches pourrait être groupé sous le nom de Formation de Gowganda (tableau 2)

Ces sédiments représentent près de 15% de l'ensemble du terrain cartographié; ils en définissent la limite sud. Ces roches postorogéniques montrent de larges ondulations de faible amplitude avec des stratifications généralement subhorizontales. Ces sédiments forment également, dans la partie sud-ouest du canton de Dasserat, une bande d'axe nord-est de 7 km par 1,2 km recouvrant les roches archéennes de l'extrémité sud-ouest du terrain jusqu'au nord-ouest du lac Lusko.

Toutes ces roches sont fraîches, peu déformées et recouvrent, en discordance angulaire, les roches archéennes. Elles forment un dépôt glaciaire consolidé de type tillite (Johnston, 1957).

2.5.2 Occurrences lithologiques

Un conglomérat a pu être cartographié à l'est du territoire sur près de 8 km; il repose en contact discordant sur les roches archéennes. On le retrouve également en bordure de la bande de sédiments à l'ouest du lac Lusko. En tout, il constitue environ 15% des sédiments cartographiés. Ce conglomérat polymictique contient de 20 à 55% de fragments dont le diamètre moyen varie de 4 à 7 cm avec des dimensions maximales pouvant atteindre 1 mètre. Localement, de minces lits d'argilite et de grès sont observés à l'intérieur des séquences conglomératiques. La mesure des plans de ces intercalations est la seule façon de déterminer l'attitude des couches. Ce conglomérat s'apparente au conglomérat de base défini par Johnston (1957), tel que nous avons pu l'observer le long de la route 46, au sud du canton de Beauchastel.

Près de 60% des sédiments de ce groupe sont constitués par des grès massifs dont la classification varie entre grauwacke et arkose. Ces derniers sont interlités avec des lits de grès de type quartzite impur, à grains fins et souvent laminés. Ils peuvent également être interlités avec des niveaux conglomératiques à l'intérieur desquels les fragments ont une dimension moyenne de 3 centimètres (figure 33). Cette unité domine nettement toute la bande de sédiments au sud-ouest du lac Adeline.

On distingue également des lentilles de grès conglomératiques (moins de 5% de fragments) et de conglomérats à cailloux polygéniques, s'intercalant à l'intérieur des bancs de grauwacke massifs. Ces unités dont la superficie peut atteindre l à 4 km par 300 à 600 mètres de large sont principalement localisées au sud des lacs Fortune et Berthemet, de même qu'au sud des lacs Wasa et Adeline.

Figure 33:

Contact entre le conglomérat polygénique et la grauwacke du Groupe de Cobalt. Canton de Beauchastel, lot 21, rang IV.

Figure 34: Grauwacke à matrice argileuse typique du Groupe de Cobalt. Canton de Dasserat, lot 35, rang III; lumière polarisée, 10x.

2.5.3 Caractères pétrographiques

Les 4 types lithologiques le plus souvent rencontrés sont: le grès de type grauwacke ou arkose, le grès conglomératique, le conglomérat polygénique et l'argilite (incluant le siltstone).

La grauwacke est un sédiment modérément classé contenant des fragments de cristaux anguleux à subanguleux, surtout constitués de quartz et de feldspaths; leur dimension atteint 2 mm. Il contient également 2% de fragments de roches volcaniques ou intrusives. Ces fragments sont le plus souvent cimentés par une matrice argileuse (figure 34) qui peut représenter jusqu'à 45% du volume de la roche. Le grès arkosique est un sédiment généralement bien classé renfermant 90% de fragments monominéraliques de quartz et de feldspath cimentés dans une matrice de même composition légèrement chloriteuse ou épidotisée.

Le grès conglomératique est un sédiment mal classé renfermant 90% de fragments arénitiques monominéraliques de quartz et de feldspath dont 50% sont subarrondis et 50% anguleux à subanguleux. La matrice est essentiellement siliceuse. A l'affleurement, le grès conglomératique contient environ 5% de fragments de la taille des rudites.

Le conglomérat est également un sédiment mal classé qui montre des caractères plus facilement discernables sur le terrain. La diversité des fragments varie d'un endroit à l'autre, bien que souvent les roches granitoïdes dominent sur les volcanites, les gabbros et les sédiments. Une des caractéristiques de ce conglomérat est la dimension très variable des cailloux et des blocs qui peuvent atteindre des dimensions de plusieurs mètres. La matrice forme, avec les fragments, un assemblage cohésif très fortement cimenté où les blocs ne peuvent être détachés individuellement. Ce ciment est habituellement constitué de fragments microscopiques et anguleux de quartz et de feldspath avec des grains de séricite et de chlorite de même qu'un peu de minéraux d'argile. Tous les termes de passage graduel entre le conglomérat, le grès conglomératique, le grès et l'argilite ont été observés.

L'argilite est une roche gris-noirâtre, laminée, à granulométrie uniformément très fine. Elle contient environ 70% de minéraux d'argile, 15% de séricite-muscovite, 12% de quartz microcristallin, 3% de minéraux opaques et des traces de carbonates et d'épidote.

Le tableau 10 présente, comme synthèse de cette section, les pourcentages moyens des constituants minéraux des différents types lithologiques précédemment décrits.

Constituants %	GWA (3)	GRE-ARK(3)	ARK(1)	CON pg(4)	ARG:(1)
Matrice	40	12	10	32	
Quartz	33	52	50	42	12
Feldspath	24	40	42	33	
Chlorite	4	3	5	10	
Muscovite Séricite	1			1 1	15
Épidote	1-2	0-10		3	traces
Carbonates			1	0-3	traces
Hornblende				2-3	
Min. d'argiles	37				70

Tableau 10:Proportions moyennes des constituants minéraux observés
à l'intérieur des lames minces du Groupe de Cobalt. Les
symboles lithologiques sont les mêmes que sur les cartes;
le nombre d'échantillons examinés est inscrit entre paren-
thèses. (Les pourcentages de minéraux sont estimés en
excluant le pourcentage de matrice.)

2.6 Roches intrusives

Dykes de diabase

A l'exception des filons de quartz tardifs, les intrusions les plus jeunes sont représentées par deux dykes de diabase d'âge protérozoïque. Le premier, dont la direction change de nord-ouest à nord, recoupe toutes les roches de la région à partir du sud du lac Wasa jusqu'à l'ouest du lac Bourniot; il ne semble cependant pas recouper les unités sédimentaires du Groupe de Cobalt au sud. Sa largeur moyenne est d'environ 25 mètres. Le second, de direction est-nord-est, recoupe les sédiments du Groupe de Cobalt à 1,7 kilomètre au sud d'Arntfield. Il a une largeur d'environ 10 mètres.

Dans le cas de la diabase pré-Cobalt, comme dans le cas de la diabase post-Cobalt, la roche est fortement magnétique et présente un aspect frais qui la différencie des gabbros archéens. Elle est constituée de pigeonite, d'actinote et de plagioclase mais ne présente pas la texture ophitique typique des diabases; leur nom n'est qu'une appellation régionale. Le tableau 8 présente les pourcentages des constituants de cette roche pour un échantillon situé en bordure et pour un échantillon situé au centre du dyke. D'autres petits dykes discontinus montrant les mêmes caractères ont été nommés diabase, notamment dans le secteur du lac Labyrinthe.

3. LITHOCHIMIE

3.1 Echantillonnage et analyse

Dans le but de déterminer la nature chimique des différentes unités lithologiques, nous avons sélectionné cent échantillons de roches pour analyse totale. Ce nombre inclut 6 échantillons de roches sédimentaires dont 4 proviennent d'affleurements du Groupe de Témiscamingue et 2 du Groupe de Cobalt, de même que 20 échantillons provenant d'intrusions de composition gabbroïque, dioritique, syénitique et tonalitique. Les 74 échantillons restants ont été prélevés de façon à avoir un échantillonnage représentatif de l'empilement volcanique. De ce dernier nombre, 36 proviennent de coussins et 38 de laves massives, d'hyaloclastites et d'une pyroclastite de composition felsique à intermédiaire. L'annexe l présente le caractère de chacun des 38 derniers échantillons.

Tous ces échantillons ont été analysés au Centre de Recherche Minérale du Ministère de l'Energie et des Ressources. L'analyse chimique a été effectuée par spectrométrie d'émission atomique au plasma pour les éléments majeurs de même que pour 25 éléments mineurs et terres rares. La précision d'analyse pour les éléments majeurs est équivalente à une variation du total des constituants déterminés comprise entre +2% et -2%.

3.2 Résultats

Les résultats bruts sont présentés à l'annexe 2 par ordre numérique. Tous les lieux de prélèvement d'échantillons analysés sont identifiés sur les cartes géologiques (en pochette) par ces mêmes numéros.

Nous avons effectué un traitement informatique sur 90 des 100 échantillons analysés. Les 6 analyses de roches sédimentaires n'ont pas été traitées, de même que 4 échantillons d'intrusions qui ont été involontairement omis lors de l'entrée des données. Les autres résultats ont été traités en 3 groupes distincts: (l) les échantillons provenant de laves coussinées; (2) les échantillons provenant d'autres volcanites; et (3) les échantillons provenant d'intrusions diverses.

Les résultats de ce traitement informatique sont présentés en annexe pour chacun des trois groupes précédemment définis (annexe 3: coussins, annexe 4: laves et annexe 5: intrusions). Chaque annexe contient: un tableau des résultats avec teneurs normalisées sans les éléments volatils (à noter ici que la perte au feu a été inscrite en H₂O), un tableau de composition minéralogique normative de même qu'une série de 8 graphiques dont un diagramme AFM et 7 diagrammes binaires de variation d'oxydes. Ces derniers sont: SiO₂ vs Na₂O+K₂O, SiO₂ vs Na₂O,SiO₂ vs Ca**ô**, SiO₂ vs Al₂O₃, SiO₂ vs TiO₂, MgO vs FeO et Na₂O+K₂O vs Al₂O₃. Aucun diagramme d'éléments mineurs ou de terres rares n'a été calculé.

3.3 Interprétation sommaire

Nous ne traiterons brièvement ici que des analyses de volcanites (annexes 3 et 4). Ces analyses ont été traitées en bloc: nous ne nous sommes pas penché sur le problème de l'altération des roches (cf. Gélinas et al., 1977). La figure 35 présente les diagrammes AFM des 74 échantillons de volcanites. Leur localisation est donnée sur la figure 36 par rapport aux unités chimico-stratigraphiques définies dans Gélinas et al. (1984b).

Les échantillons appartenant à chacune des unités ont été transposés sur des diagrammes AFM (figures 37-40) en différenciant par des symboles différents le type de volcanite correspondant. Les basaltes ont été représentés par des ronds noirs; ils incluent toutes les volcanites ayant moins de 54% de SiO₂ (teneur normalisée sans les volatils). Les andésites, représentées par des carrés noirs, incluent les volcanites dont le contenu en SiO₂ est compris entre 54 et 62%. Les dacites, représentées par des triangles noirs, correspondent aux volcanites ayant un contenu en SiO₂ établi entre 62 et 70%. Enfin, les rhyolites, représentées par des triangles vides, correspondent aux volcanites ayant plus de 70% de SiO₂. Sur les diagrammes AFM, les champs tholéiitique et calco-alcalin ont été délimités suivant la division proposée par Irvine et Baragar (1971).

La figure 37 représente les échantillons prélevés à l'intérieur de l'unité calco-alcaline non divisée (CA), laquelle se retrouve à l'extrémité ouest de notre région. Ce diagramme, en accord avec les divisions chimico-stratigraphiques de Gélinas et al. (1984b) suggère que cette unité possède une affinité calco-alcaline.

La figure 38 représente les échantillons de l'unité Duprat-Montbray (DM); elle suggère le caractère transitionnel de cette unité.

La figure 39 compte trop peu d'échantillons pour nous permettre de corroborer l'affinité chimique calco-alcaline de l'unité de Dufault (DF) telle que reconnue par Gélinas et al., (1984b).

Enfin, la figure 40 suggère que l'unité de Rouyn Noranda (RN) pourrait être, en partie du moins, calco-alcaline.

3.4 Altérations

L'examen des résultats d'analyse des échantillons prélevés dans la région nous révèle de nombreuses altérations correspondant à des zones discontinues, de faible étendue, réparties à l'intérieur de la séquence volcanique. Les deux altérations les plus répandues sont la silicification et la carbonatisation. En effet, à plusieurs endroits dans la région, des laves de composition intermédiaire à mafique sont silicifiées à proximité de coulées, de dômes ou de dykes rhyolitiques, leur conférant une composition de rhyodacite ou de rhyolite. Ce phénomène est visible à

Figure 35: Diagrammes AFM des analyses chimiques des coussins et des laves diversifiées; la correspondance entre les numéros d'analyses inscrits à l'annexe 2 et sur les cartes géologiques avec les numéros employés sur la figure 36 et aux annexes 3 et 4 est également présentée.

Figure 36: Localisation des échantillons analysés (coussins et laves) en fonction des unités chimico-stratigraphiques définies par Gélinas et al., 1984b. Les triangles noirs indiquent un caractère tholéiitique et un rond noir, un caractère calcoalcalin. La numérotation des échantillons est conforme à celle des annexes 3 et 4. Un chiffre précédé d'un C indique les laves coussinées. Les échantillons encerclés correspondent à des volcanites silicifiées. Le fond de carte géologique est tiré de Gélinas et al., 1984b; la légende apparaît à la figure 3.

Figure 37: Diagramme AFM pour les échantillons de l'unité calco-alcaline non divisée. Les échantillons encerclés ont été silicifiés. Légende: ● basalte, ■ andésite, ▲ dacite, V rhyolite, t = champ tholéiitique, c = champ calco-alcalin.

Figure 38: Diagramme AFM pour les échantillons de l'unité de Duprat-Montbray. Les échantillons encerclés ont été silicifiés. Légende: voir figure 37.

Figure 39: Diagramme AFM pour les échantillons de l'unité de Dufault. Les échantillons encerclés ont été silicifiés. Légende: voir figure 37.

Figure 40: Diagramme AFM pour les échantillons de l'unité de Rouyn-Noranda. L'échantillon encerclé a été silicifié. Légende: voir figure 37. l'intérieur des faciès massif, coussiné et bréchique d'une coulée mafique. Dans le cas du faciès coussiné, les critères faciologiques nous permettent de conclure à une silicification des laves mafiques. Toutefois, dans le cas de coulées à faciès massif, seul le pourcentage de TiO₂ peut nous fournir une indication.

Sur les figures 36 à 40, les échantillons silicifiés ont été encerclés. Pour ce faire, nous avons utilisé le critère de Hunter (dans Hunter et Moore, 1983) qui identifie une roche mafique silicifiée comme ayant un contenu en TiO₂ (de l'ordre de 0,5 à 1,2% poids) supérieur à celui d'une rhyolite (de l'ordre de 0,2 à 0,5% poids) pour un contenu comparable en silice. Les échantillons encerclés sur les figures 37 à 40 sont localisés sur la carte de la figure 36.

La carbonatisation est un phénomène également très répandu. Elle est le plus souvent secondaire mais pourrait résulter dans certains cas d'une altération hydrothermale synvolcanique affectant indifféremment le centre ou la bordure des coussins. Sur un affleurement situé au nordest du lac Arnoux, nous avons échantillonné, à l'intérieur d'une même coulée, le centre d'un coussin peu altéré et le centre d'un coussin très altéré (échantillons 95537 (C4) et 95538 (C5)),les deux coussins étant distants de 2 mètres. Cette altération se résume en un important appauvrissement en MgO, en Na₂O, en K₂O et en TiO₂ avec perte moins importante en Fe₂O₃ et un gain énorme en CaO qui double la teneur en cet élément. La perte importante en MgO fait passer la lave du champ calco-alcalin au champ tholéiitique. Ceci illustre bien que nos interprétations géochimiques doivent être revues, tous les échantillons présentant un signe d'altération devant être exclus ou traités avec prudence.

4. GEOLOGIE STRUCTURALE

La tectonique du Groupe de Blake River a été décrite et discutée dernièrement dans plusieurs publications, notamment: Dimroth et al. (1983a), Gélinas et al. (1984b), Hubert et al. (1984), Dimroth et Rocheleau (1985) et Archambault (1985).

Nous exposerons brièvement dans un premier temps l'interprétation structurale de chacune des deux écoles de pensée; une seconde section sera réservée à nos observations de terrain.

4.1 Interprétations existantes

La première interprétation structurale du Groupe de Blake River a été fournie par Dimroth et al. (1983a). Selon ces auteurs, une première génération de plis Fl aurait été formée par flexure suite à une compression nord-sud des assemblages volcaniques lors de l'orogénèse kénoréenne. Ces plis auraient des directions est, sud-est et localement nord-est ou nord. Cette première phase de plissement est représentée à l'ouest de notre région par le synclinorium de Blake River. Selon Jensen (1975), cette structure de direction est-ouest plongerait vers l'est; elle aurait une longueur d'onde d'environ 64 km à proximité de la limite ouest de la région levée. D'après Dimroth et al. (1983a), les plis de premier ordre de la ceinture d'Abitibi ne présentent habituellement pas de schistosité de plan axial. Un aplatissement subséquent en direction nord-sud aurait donné naissance à des plis F2 de direction est-ouest avec surface axiale subverticale, accompagnés d'une schistosité de plan axial S2. Ces plis contournent des structures complexes en dômes, comme le dôme de Noranda à l'est de notre région. Localement, des clivages de crénulation S3 et S4 se superposent à la schistosité S2; S3 aurait une direction nord-ouest, alors que S4 aurait une direction nord-est. Dans ce modèle, les failles majeures de Porcupine-Destor et de Larder Lake-Cadillac étaient des failles de croissance, initialement normales, formées durant le volcanisme et la sédimentation; elles auraient été transformées en failles inverses lors de l'orogénèse kénoréenne.

De façon à expliquer l'évolution structurale du Groupe de Blake River, Hubert et al (1984) ont proposé un modèle de tectonique de failles de décrochement (wrench faulting) critiqué récemment par Dimroth et Rocheleau (1985) ainsi que Archambault (1985). Suivant leur modèle, le Groupe de Blake River formait, au départ, une zone mobile coincée entre deux plaques convergeant l'une vers l'autre. Cette tectonique de failles de décrochement a amené la formation de plis Dl de direction sud-est lesquels ont été déformés par des plis D2 à plongée subverticale avec plan axial subvertical de direction est, résultant en des configurations en Z selon lesquelles sont distribuées les différentes unités. Cette deuxième déformation serait due à une compression nord-sud, perpendiculaire aux failles de Porcupine-Destor et de Larder Lake-Cadillac. Une phase tardive, indépendante des deux premières, aurait donné les schistosités S3 subverticale, de direction 030, et S4 subverticale, de direction 330, représentant un système conjugué de kinkbands (Gélinas et al., 1984b).

4.2 Observations de terrain

N'ayant pas fait d'étude structurale détaillée, nous nous contenterons dans cette section de décrire nos observations, (cf. figure 41), sans toutefois prendre parti pour une école ou pour une autre.

4.2.1 Structures souples

Nos observations de terrain, basées surtout sur des sommets de coulées volcaniques, nous ont permis de repérer quatre grands plis dont nous avons tracé la trace du plan axial à la figure 41. Ces plis, qui procède d'une seule et même déformation, sont accompagnés par une schistosité de plan axial correspondant à la schistosité régionale.

Dans la zone cartographiée, un synclinal de direction est-ouest est repérable sur une bonne partie du territoire. Cette structure a été définie à l'ouest et nommée synclinal de Dasserat par Cooke (1923). D'après Johnston (1954), cette structure de direction est-ouest aurait une plongée de 45 degrés vers l'ouest. Faute de critères sûrs et à cause des nombreuses failles, nous n'avons pu positionner la trace axiale partout dans le secteur couvert. Ce pli est bien défini plus à l'est où il est appelé synforme du lac Rouyn (SLR). La figure 41 localise, en ligne tireté, la trace de ce synforme tel que définie par Gélinas et al. (1984b).

La trace axiale du synforme de Rouyn n'a été définie dans notre région qu'à partir de quelques sommets provenant de coulées coussinées; elle est représentée en trait plein sur la figure 41. Dans la partie est de la carte, la trace axiale pourrait passer au centre du rang VI du canton de Beauchastel; cependant, à l'exception de quelques mesures de schistosité dont les pendages s'opposent (lots 44 et 45), nous n'avions aucun critère sérieux pour la localiser. Plus à l'ouest, entre les lots 22 et 25, des indications de sommets nous ont incités à placer la trace axiale du pli immédiatement au nord de la limite entre les rangs VI et VII du canton de Beauchastel. Encore plus à l'ouest (sur le feuillet est), la trace axiale passe immédiatement au sud du massif syénitique d'Aldermac. Sur le feuillet ouest, la trace axiale du pli prend une direction ouest-sud-ouest et se poursuit au-delà de notre limite de cartographie.

Dans la partie sud de la région étudiée, les roches volcaniques sont plissées par l'anticlinal du lac Adeline (ALA) suggéré par Gélinas et al. (1984b). La trace axiale de ce pli de direction est-ouest, recoupe l'extrémité sud de ce lac (figure 41). Les stratifications et schistosités que nous avons relevées indiquent un plan axial d'anticlinal incliné vers le nord. La trace axiale de l'anticlinal semble également discontinue jusqu'à l'ouest du lac Berthemet où elle disparaît sous les roches sédimentaires du Groupe de Cobalt. Cet anticlinal passerait également par le lac Saniès (Stockwell, 1949b).

Figure 41:

Carte index des principales structures rencontrées à l'intérieur de la zone d'étude.

Légende: ALA : Anticlinal du lac Adeline

- SLR : Synforme du lac Rouyn
- ALL : Antiforme du lac Labyrinthe
- SLL : Synforme du lac Labyrinthe
- 1 : Faille de Larder Lake-Cadillac
- 2 : Cisaillement Wasa
- 3 : Cisaillement Francoeur-Arntfield
- 4 : Cisaillement du lac Fortune
- 5 : Cisaillement d'El coco
- 6 : Faille de Gan

- 7 : Faille Horne Creek
- 8 : Faille Mackay
- 9 : Faille Beauchastel
- 10 : Faille Desvaux-Arnoux
- 11 : Faille secondaire
- 12 : Faille secondaire
- 13 : Faille secondaire
- 14 : Faille Hunter Creek
- 15 : Faille Milky Creek
- 16 : Faille du lac Labyrinthe

Au nord-ouest du lac Labyrinthe, en bordure de la frontière Ontario-Québec, les sommets de coussins indiquent la présence d'un synclinal. Ce pli est situé dans la partie nord du rang IX du canton de Dasserat, et son plan axial est orienté est-ouest. A environ 1,5 kilomètre au sud, passe un plan axial anticlinal de direction est-nord-est. Ces deux structures ont également été observées en Ontario dans le canton d'Ossian (Jensen, 1975). MacKenzie (1940) avait décrit ces deux structures comme un pli d'entraînement en S avec composante nord et sud plongeant vers l'ouest; le manque de données nous empêche de conclure sur ces plis.

4.2.2 Litages et schistosités

Nous avons représenté sur la figure 42 la concentration des pôles des litages relevés sur des unités pyroclastiques à travers l'empilement volcanique. Ce diagramme de Schmidt fait ressortir la direction presque est-ouest des plans avec un pendage de l'ordre de 75 degrés vers le sud pour les observations faites sur le flanc nord du synforme du lac Rouyn tel que défini sur la figure 41, et vers le nord pour les rares mesures prises sur le flanc sud de cette structure synforme.

Nous n'avons identifié que deux schistosités à l'intérieur des roches volcaniques. La schistosité régionale associée à la seconde déformation telle que décrite par Dimroth et al. (1983a) a été indiquée sur nos cartes géologiques comme des plans S1, bien qu'en réalité elle devrait être représentée par le symbole S2. Comme il semble n'y avoir aucune schistosité associée à la première phase de déformation (plissement par flexure), nous avons désigné comme S1 la plus vieille schistosité observée.

Par endroits, une deuxième schistosité (indiquée comme S2 sur nos cartes) recoupe le plan S1 à un angle qui varie ponctuellement entre 15 et 70 degrés. Cette seconde schistosité n'a été observée que sur le flanc sud du synforme du lac Rouyn, notamment à proximité de la trace axiale de l'anticlinal du lac Adeline dans le secteur du lac Saniès.

La figure 43 représente le regroupement des pôles de schistosités relevées sur le flanc sud du synforme du lac Rouyn. Le plan moyen obtenu serait de l'ordre de 270 degrés avec un pendage de 65 degrés vers le nord.

La figure 44 représente le regroupement des pôles des schistosités relevées sur le flanc nord du synforme du lac Rouyn. Le plan moyen obtenu serait également est-ouest avec des pendages légèrement plus prononcés de l'ordre de 75 degrés vers le sud.

Les figures 45 et 46 représentent respectivement les litages et les schistosités relevés sur les rares affleurements de roches sédimentaires du Groupe de Témiscamingue que nous avons pu observer. Ici encore, les plans S_1 sont parallèles aux plans S_0 .

Figure 42: Diagramme de densité des pôles des litages d'unités pyroclastiques du Groupe de Blake River.

83 ~

levées sur le flanc nord du synclinal du lac Rouyn.

Figure 45: Diagramme de densité des pôles des litages relevés: Groupe de Témiscamingue.

Figure 46: Diagramme de densité des pôles des schistosités relevées: Groupe de Témiscamingue.

Les figures 47 et 48 représentent les litages et les foliations relevés dans les roches sédimentaires du Groupe de Cobalt; l'orientation moyenne des litages est de l'ordre de 80 degrés avec pendage vers le sud d'environ 10 degrés. Le plan moyen des foliations intersecte le plan moyen des litages à un angle d'environ 20 degrés, le pendage moyen étant de l'ordre de 60 degrés. D'après nos observations, cette foliation pourrait correspondre à un laminage dû à des failles post-Cobalt.

Stockwell (1949b) avait noté la possibilité d'un plissement synclinal dans les roches du Groupe de Cobalt, dans la portion sud-est du canton de Dasserat. Par l'attitude des litages nous avons noté qu'une ondulation antiforme apparaît dans les roches du Groupe de Cobalt dans le secteur situé entre les lacs Adeline et Renaud; le plan axial aurait une direction nord-est.

4.2.3 Structures cassantes

4.2.3.1 Failles majeures

De nombreuses failles et cisaillements associés se succèdent du sud au nord avec des directions générales est-ouest, nord-est - sud-ouest et nord-sud. Ces trois directions définissent trois systèmes différents que nous décrivons subséquemment. Toutes ces failles et cisaillements majeurs sont indiqués sur la figure 41.

Système est-ouest:

La faille de Larder Lake-Cadillac est la principale structure est-ouest (figure 41, no. 1). Elle traverse la limite sud de notre terrain, sous les sédiments protérozoïques du Groupe de Cobalt. Cette discontinuité structurale majeure consiste, selon Wilson (1962), en une zone de cisaillement d'une épaisseur pouvant varier de 30 à 160 mètres, constituée d'un schiste à chlorite-talc-ankérite. Le plan de faille, de direction est-ouest, aurait un pendage d'environ 70 degrés vers le nord. La présence de cette faille sous les sédiments du Groupe de Cobalt est indiquée dans l'ouest du canton de Beauchastel par une vallée d'érosion profonde, antérieure à la couverture sédimentaire protérozoïque. Sa présence est également indiquée dans le canton de Dasserat par un mouvement tardif le long de la faille qui apparaît, selon Stockwell (1949b), à l'intérieur des roches du Groupe de Cobalt. Son prolongement ouest a été retracé par des trous de forage.

Dans l'est de la région, à un peu plus de 2 kilomètres au nord de la faille de Larder Lake-Cadillac, un cisaillement est-ouest a été déterminé par forages. Ce cisaillement, connu sous le nom de cisaillement Wasa (figure 41, no. 2), aurait une largeur de 6 à 30 mètres et son plan aurait un pendage d'environ 50 degrés vers le nord.

Figure 48: Diagramme de densité des pôles des foliations relevées: Groupe de Cobalt. 86

Un peu plus à l'ouest, le cisaillement Francoeur-Arntfield (figure 41, no. 4) a pu être retracé. Il présente une direction est-ouest avec pendages de l'ordre de 50 à 60 degrés vers le nord: sa largeur varie de 10 à 90 mètres.

Une autre zone de cisaillement est-ouest apparaît au nord du lac Labyrinthe, dans la diorite d'El Coco (figure 4, no. 5). Comme les trois précédentes, cette zone de cisaillement correspond à des zones d'altération intense en chlorite, carbonate et silice, porteuses de minéralisations de pyrite et d'or.

La dernière structure est-ouest est la faille Gan (figure 41, no. 6) qui se situe dans la partie nord du rang VII du canton de Beauchastel entre les lots 9 et 25. Elle correspond grossièrement à la limite nord d'un intrusif gabbroïque et ne montre aucun déplacement latéral.

Système nord-est - sud-ouest:

Ce système majeur inclut un bon nombre de failles de direction nord-est et est-nord-est identifiées par les numéros 7 à 16 sur la figure 41, qui sont, de l'est à l'ouest: la faille Horne Creek (7), la faille Mackay (8), la faille Beauchastel (9), la faille Desvaux-Arnoux (10), la faille Hunter Creek (14), la faille Milky Creek (15), et la faille du lac Labyrinthe (16); on retrouve également 3 failles de moindre importance entre les failles Desvaux-Arnoux et Hunter Creek. La majeure partie de ces failles est marquée par des zones de broyage et des dépressions topographiques. L'espacement maximum de ces failles est de l'ordre de 6 kilomètres.

La faille Horne Creek (7) traverse la partie sud-est de la région, du sud du massif de Powell jusqu'au coin nord-est du lac Renaud. Elle déplace, par un mouvement dextre, le dyke de diabase protérozoïque sur environ 75 mètres. Selon Ambrose et Ferguson (1945), cette faille traverserait le cisaillement Wasa (12) sans toutefois le déplacer.

La faille Mackay (8) fait une diagonale entre les failles Horne Creek (7) et Beauchastel (9). Selon Ambrose et Ferguson (1945), cette faille déplace le cisaillemment Francoeur-Arntfield (3).

La faille Beauchastel (9) traverse le feuillet est à partir du coin nord-est et se poursuit en direction sud-ouest jusqu'au coin sud-est du lac Fortune. Tout comme la faille Horne Creek, elle déplace le dyke de diabase protérozoïque d'environ 60 mètres. Au sud du lac Mud, elle déplace un dyke de porphyre à feldspaths; le déplacement horizontal apparent est de l'orde de 600 mètres. Dans les deux cas, le mouvement est dextre. La faille Desvaux-Arnoux (10), de direction nord-est, affecte le massif gabbroïque de même direction entre le lac Desvaux et le coin sud-est du lac Arnoux. Cette faille apparaît comme une zone de cisaillement dont le prolongement pourrait coïncider avec la zone broyée injectée de quartz qui traverse les rangs IX et X du canton de Beauchastel entre les lots 8 et 15. Aucun déplacement horizontal ne semble associé à cette faille.

Entre les failles Desvaux-Arnoux (10) et Hunter Creek (7), trois autres failles appartenant au même système ont été observées. La première ayant une direction 050 se situe à 1,5 kilomètre au nord-ouest de la grosse veine de quartz mentionnée précédémment; cette faille (11) décroche le dyke de diabase protérozoïque orienté nord-nord-ouest d'environ 100 mètres. Une deuxième faille (12) située à 600 mètres au nord-ouest de la précédente décroche le même dyke d'environ 40 mètres suivant une direction de 040. Une troisième faille (13) de direction 035 se situe à environ 2,5 kilomètres nord-ouest de la précédente. Cette faille recoupe le lac Larochelle et décroche un massif gabbroïque, un dyke de porphyre à feldspaths et un horizon de brèche de coulée andésitique. Le déplacement horizontal apparent est de l'ordre de 300 mètres. Ces trois failles ont des mouvements dextres.

La faille Hunter Creek (14), de direction 050, suit en partie la branche est du ruisseau Larochelle. Elle forme un linéament sans déplacement apparent.

La faille Milky Creek (15) est recouverte par les unités sédimentaires du Groupe de Cobalt. Elle aurait une direction approximative de 035, parallèle au lac Failly. Selon Stockwell (1949a), cette faille décrocherait le contact entre les groupes de Témiscamingue et de Blake River, la faille de Larder Lake-Cadillac et le plan axial du synclinal de Dasserat. Le décrochement apparent serait de l'ordre de l,3 kilomètre suivant un mouvement sénestre. Aucun indice ne nous permet de supposer que la faille Hunter Creek serait le prolongement de la faille Milky Creek.

Enfin, la faille du lac Labyrinthe (16) a été tracée avec une direction 055 entre le lac Labyrinthe et la rive sud-ouest du lac Dasserat. Cette faille, qui serait le prolongement de la faille du lac Mulven en Ontario (Jensen, 1975), ne laisse voir aucun déplacement apparent.

Système nord-sud:

Un système mineur de direction nord à nord-nord-ouest est présent à travers la région. Ce système apparaît quelques fois comme des zones de broyage remplies de quartz; quand un décrochement est visible, le mouvement est habituellement sénestre. Les unités volcaniques au sud du gisement d'Aldermac sont faillées en blocs suivant ce système. Ce même système est également responsable de la mise en place de nombreux dykes mafiques et felsiques de même que celle du dyke de diabase protérozoïque. Mentionnons enfin que de nombreuses minéralisations en métaux de base semblent associées à ce système de failles.

4.2.3.2 Cisaillements

Des mesures de cisaillements mineurs ont été prises à travers la région dans les volcanites et dans les intrusions syénitiques, dioritiques et gabbroïques. La figure 49 présente le diagramme de contours des pôles des cisaillements mesurés à l'intérieur des roches volcaniques du Groupe de Blake River. Il en ressort l'existence de cisaillements de toutes directions avec forts pendages. Cependant, le plan moyen des cisaillements les plus fréquents donnerait une direction de 88 degrés avec un pendage subvertical. Un second système moins répandu montre un plan moyen ayant une direction de 206 degrés avec un pendage subvertical.

La figure 50 présente le diagramme de contours des pôles des cisaillements mesurés à l'intérieur des roches intrusives. Dans ce cas, la concentration des pôles est plus marquée; le plan moyen aurait une direction de 70 degrés avec un pendage de 80 degrés vers le sud-sud-est.

La figure 51 présente le diagramme de contours des pôles des cisaillements mesurés dans les roches sédimentaires du Groupe de Cobalt. Deux concentrations principales ressortent du faible nombre de mesures, indiquant des plans moyens de 065/80 et de 165/80.

4.2.3.3 Orientation des dykes

Nous avons compilé les directions-pendages des dykes d'après leur composition. Les figures 52 à 55 présentent les diagrammes de contours des pôles des directions et des pendages de ces dykes. Le tableau ll présente les directions et pendages moyens de chacune des principales familles par composition.

4.2.3.4 Diaclases

Les diaclases présentent une distribution multidirectionnelle avec des pendages généralement abrupts. Les systèmes les plus fréquents sont essentiellement les mêmes que pour les failles. Nous retrouvons deux systèmes principaux conjugués orthogonalement de direction nord-sud et est-ouest et nord-est - sud-ouest et nord-ouest - sud-est résultant, comme les failles majeures, de l'application d'un système de contraintes nord-sud (Archambault, 1985).

Figure 49: Diagramme de densité des pôles des cisaillements relevés à l'intérieur des volcanites.

Figure 50: Diagramme de densité des pôles des cisaillements relevés à l'intérieur des intrusions.

Figure 51: Diagramme de densité des pôles des cisaillements relevés à l'intérieur du Groupe de Cobalt.

Figure 52: Diagramme de densité des pôles de dykes intermédiaires à mafiques.

DYKES FELSIQUES

Figure 53: Diagramme de densité des pôles de dykes felsiques.

92

DVIES GRANITOIDES

Figure 55: Diagramme de densité des pôles de dykes de granitoIde.

Type de dykes	Directions et pendages moyens des familles de dykes (par importance décroissante l à 3)			
	1	2	3	
Intermédiaires à mafiques	175/85	240/80	300 85	
Felsiques	310/85	025/85		
Syénite	185/80	125/85	210/85	
Granitoīdes	110/85	180/75		

Tableau 11: Directions et pendages moyens des principales familles de dykes.

5. METAMORPHISME

Les assemblages minéralogiques résultent d'une longue et complexe évolution métamorphique et métasomatique, dont nous discutons brièvement, dans ce chapitre.

5.1 Métamorphisme des empilements volcaniques régionaux

Selon Dimroth et Lichtblau (1979), six phases de métamorphisme auraient affecté les volcanites de la région de Rouyn-Noranda. La première, de basses température et pression, correspond au stade de palagonitisation ou spilitisation associé au métamorphisme ou à l'altération du plancher océanique. La seconde phase de plus haute température correspond à une propylitisation résultant de l'altération hydrothermale locale produite par des solutions ascendantes; elle forme des zones recoupantes d'altération. La troisième phase correspond à un métamorphisme de surcharge. La quatrième phase est due à un métamorphisme thermique associé à la mise en place des stocks et batholites préorogéniques. Ces quatre premières phases sont précinématiques. La cinquième phase correspond au métamorphisme régional; c'est un métamorphisme thermique ou dynamothermique syncinématique. La dernière phase postcinématique correspond au métamorphisme de contact associé à la mise en place des intrusions post-orogéniques. A cette dernière phase, se superpose localement une altération hydrothermale associée aux stades tardifs de la différenciation magmatique de certaines intrusions.

5.2 Phénomènes observés

Une phase de propylitisation des volcanites associée aux sulfures massifs volcanogènes a été observée à quelques endroits dans les environs de l'ancienne mine Aldermac. Des zones d'altération mouchetées en chlorite, séricite ou épidote ont été observées à travers la séquence volcanique adjacente, de même qu'une intense silicification de certains horizons basaltiques. La silicification est confirmée dans certains cas par le haut contenu en TiO_2 de laves mafiques dont l'analyse totale révèle un contenu en silice comparable à celui d'une rhyodacite ou d'une rhyolite.

Selon Dimroth et Lichtblau (1979), le métamorphisme de surcharge a amené la transformation des minéraux d'argile en chlorite, des zéolites en pumpellyite, prehnite et épidote et des plagioclases en albite. L'assemblage albite-actinote-chlorite-séricite-quartz et carbonates est presque invariablement retrouvé à l'intérieur de nos laves intermédiaires à mafiques sises au sud-est de la faille Hunter Creek. De l'autre côté de cette faille, la prehnite s'ajoute à cet assemblage et, avec une carbonatisation presque généralisée, on assiste à l'apparition de porphyroblastes xénomorphes de calcite et de carbonates. La figure 56 présente la carte d'isogrades métamorphiques. A partir des assemblages que nous avons observés, l'isograde métamorphique entre le faciès schiste vert inférieur et le faciès à prehnitepumpellyite est en accord avec les publications de Dimroth et al. (1983b) et Gélinas et al. (1984b). L'isograde traverse la région en direction nord-est, prolongeant la ride nord-est formée par les sédiments du Groupe de Cobalt à l'extrémité sud-ouest de la région. La portion occidentale de l'unité chimico-stratigraphique de Rouyn-Noranda serait également au faciès schiste vert inférieur.

Enfin, un métamorphisme de contact a pu être observé à l'intérieur des volcanites hôtes des massifs syénitiques d'Aldermac et de la Baie Renault. Autour du premier massif, nous avons pu noter, dans quelques échantillons de basalte, la cristallisation de hornblende. Ce phénomène affecte les roches volcaniques jusqu'à une distance de 200 à 300 mètres de l'intrusion. Le même phénomène a été observé à proximité du dyke de diabase protérozoIque.

Dans le cas du massif syénitique situé au sud de la Baie Renault, une phase hydrothermale tardive semble avoir accompagné les solutions minéralisatrices, amenant une carbonatisation, une silicification et une séricitisation intense des bordures du massif et de la roche encaissante.

Figure 56:

Carte index des faciès métamorphiques régionaux rencontrés à l'intérieur de la zone d'étude. Les unités stratigraphiques sont les mêmes que celles définies sur la figure 3. La zone hachurée verticalement représente le faciès à prehnite-pumpellyite et la zone hachurée horizontalement représente le faciès schiste vert inférieur. Cette figure est en accord avec Gélinas et al., 1984b et Dimroth et al., 1983b.

6. GEOLOGIE ECONOMIQUE

6.1 Généralités

Depuis le début du siècle, la région de Rouyn-Noranda est reconnue pour son potentiel minier en cuivre, en zinc et en or. Le cuivre et le zinc forment des dépôts de type "sulfure massif" d'origine exhalative. Ces dépôts se localisent préférentiellement à proximité de failles synvolcaniques et à la base de séquences volcaniques en progradation (Dimroth et al., 1985). De façon générale, les principaux sous-produits des mines de zinc sont le cadmium et l'argent, et ceux des mines de cuivre sont le sélénium, le tellure et l'or (Van de Walle, 1972).

Les dépôts d'or de la région sont de type filonien et sont associés le plus souvent à des zones de cisaillement. Ces zones injectées de filons de quartz sont invariablement carbonatisées et localement pyritisées. Elles sont souvent reliées à la faille de Larder Lake-Cadillac et recoupent la séquence volcanique ou sédimentaire archéenne.

Nous présentons, dans les sections qui suivent, une description sommaire des différents gîtes et indices minéralisés localisés à l'intérieur de la zone d'étude. Ces données ont été compilées à partir des travaux de Avramtchev et Lebel-Drolet (1979a, b et 1981) et de différentes publications du Ministère de l'Energie et des Ressources comme: l'étude spéciale ES-2, les fiches de gîtes, de même que les cartes de compilation géoscientifiques couvrant la zone levée. Nous nous sommes également servi de certains dossiers d'exploration minière (GM) dont la liste est présentée en références.

6.2 Anciennes mines et indices connus

Aucune mine n'est actuellement en production dans la région étudiée; elle renferme cependant plusieurs anciens gisements et gîtes d'or et de cuivre de même que des indices de nickel, de zinc, de molybdène, de plomb et d'argent.

Nous avons pris soin de transposer sur les deux cartes géologiques accompagnant ce rapport toutes les informations ayant trait aux minéralisations répertoriées, de même que tous les forages connus. Tous les anciens producteurs, les gîtes et les indices minéralisés discutés dans cette section sont également localisés et caractérisés sur les cartes géologiques.

6.2.1 Or

6.2.1.1 Anciens producteurs

Au moins quatre mines d'or ont déjà été en production dans la région étudiée. La principale, la mine Wasamac I, a été en production entre 1965 et 1971. Elle se situe dans le lot 30 du rang V du canton de
Beauchastel. La minéralisation d'or se trouve dans une volcanoclastite rhyolitique affectée par le cisaillement Wasa de direction 265/50. Ce cisaillement affecte la roche sur une largeur moyenne de 46 mètres; l'altération associée consiste en une séricitisation, chloritisation, carbonatisation, silicification et pyritisation de la roche affectée. La production totale a été de l 899 159 tonnes de minerai à 5,07 g/t d'or et 0,82 g/t d'argent. Les réserves estimées sont de 398 237 tonnes à 5,05 g/t d'or.

La seconde en importance, l'ancienne mine Francoeur, se situe dans le prolongement ouest de la zone de l'ancienne mine Arntfield, soit au centre du rang V du canton de Beauchastel, à l'intérieur du bloc 27 et des lots 3 et 4. La mine a exploité 3 puits entre 1935 et 1947, le long d'une zone de faille est-ouest recoupant des coulées andésitiques et rhyolitiques. Le principal filon exploité, orienté 280/45, mesurait 40 mètres de long et 39 mètres de large. La production totale des puits l et 2 a été de 527 400 tonnes à 6,60 g/t d'or. Les réserves estimées sont de l'ordre de 272 100 tonnes à 6,7 g/t d'or.

La troisième, la mine Wasamac 2, a été en production entre 1968 et 1971. Elle se situe dans le centre du lot 3 du rang V du canton de Beauchastel. Elle correspond au puits no. 3 de l'ancienne mine Francoeur. Le principal filon exploité était orienté à 270/45. La production totale a été de 385 688 tonnes à 6,24 g/t d'or et 0,55 g/t d'argent. Les réserves sont estimés à 116 523 tonnes à 6,89 g/t d'or.

Enfin, l'ancienne mine Arntfield se situe au nord-ouest du village du même nom, dans le bloc H du rang V du canton de Beauchastel. Elle a été en production entre 1935 et 1942. Elle consistait en 3 puits localisés sur une zone de faille qui recoupe une séquence de tufs et brèches rhyolitiques injectée de veinules de quartz. La production totale a été de 480 700 tonnes à 3,98 g/t d'or et 0,93 g/t d'argent, la plus grande partie du minerai provenant des puits 3 et 2. Plus aucune réserve n'est prouvée.

6.2.1.2 Principaux gîtes

Un des principaux gîtes mis en valeur dans la région se situe dans le rang VIII du canton de Dasserat à l'intérieur de la propriété actuelle d'El Coco. La minéralisation de type filonien est associée à une zone de cisaillement orientée 090/68. Cette zone de cisaillement recoupe une diorite sur une longueur de plus de 1,5 kilomètre; les principales altérations notées sont: la carbonatisation, la chloritisation et la silicification de la roche affectée. Les zones minéralisées contiennent de la pyrite, des traces de scheelite, de chalcopyrite et d'or. Les réserves sont estimées à 1 021 282 tonnes de minerai à une teneur de 9,59 g/t d'or. Au moment du levé de terrain, des travaux étaient en cours sur l'ancien site des installations de North-Bordulac. Un autre gîte d'importance se situe dans le sud du lot 37, rang VI du canton de Beauchastel. Connu sous le nom de Wingait Gold Mines, il se situe à proximité du cisaillement Wasa. Les réserves sont estimées à 175 900 tonnes de minerai à 6,17 g/t d'or. Ces terrains sont actuellement détenus par Wright Hargreaves.

Un autre gîte est localisé dans le bloc A du rang IV de Beauchastel, à l'extrémité est du lac Fortune. Découverte en 1906, cette zone minéralisée constitue la première découverte d'or dans l'ouest du Québec. Elle se situe au contact entre une diorite (au nord) et une lave andésitique coussinée (au sud). Elle consiste en lentilles et filons discontinus de quartz, carbonates et fuchsite minéralisés en pyrite avec un peu de chalcopyrite; l'or se présente à l'état libre ou dans des tellurures. Entre 1934 et 1935, un puits a été creusé jusqu'à une profondeur de 152 mètres. Des sondages à partir de la surface ont intercepté une zone minéralisée de 152 mètres de long par 1,09 mètre de large, ayant une teneur de 17,15 g/t d'or. Aucune réserve suffisante n'avait été estimée. A l'hiver 1984, les Ressources minières Rouyn ont mis de l'avant une campagne de sondages de façon à recouper la zone de broyage du lac Fortune; les travaux de mise en valeur semblaient vouloir se continuer.

Un dernier prospect d'importance se situe dans le rang VI du canton de Dasserat, entre les lacs Dasserat et Lusko. Les lithologies en présence sont formées de laves de composition intermédiaire à mafique et d'une volcanoclastite de composition intermédiaire recoupées par un dyke de porphyre feldspathique. De 1936 à 1937, Monarch Mines effectua sur sa propriété des tranchées, de même qu'un puits de 45,75 m de profondeur avec près de 382 mètres de galeries. Un échantillon sélectionné de 195 kilogrammes, provenant de veines de quartz minéralisées en or, a révélé à l'analyse une teneur de 68,57 g/t d'or; un de ces échantillons contenait 19% d'argent. Malgré ces fortes teneurs, aucune réserve n'a été prouvée.

6.2.2 Cuivre

6.2.2.1 Anciens producteurs

La seule mine ayant produit du cuivre dans notre région est la mine Aldermac, dans le lot 21 du rang VI du canton de Beauchastel. Un premier puits a été foncé en 1927; il s'est par la suite rendu jusqu'à 495 mètres de profondeur. La mine a été en production de 1931 à 1943. Durant cette période, on y a extrait l 878 497 tonnes de minerai à 1,72% de cuivre, 0,24 g/t d'or et 8,54 g/t d'argent. Les réserves actuelles sont estimées à 272 100 tonnes de minerai à 1,85% de cuivre.

Ce gisement est constitué de 3 amas de sulfures massifs stratiformes d'origine volcanogène. Ces lentilles sont spacialement associées à un dôme de rhyolite porphyrique et à des coulées mafiques hydrothermalement silicifiées (Hunter et Moore, 1983). La minéralisation est constituée de pyrite, pyrrhotine, chalcopyrite, sphalérite et magnétite; l'or et l'argent ne sont présents qu'en petites quantités. La minéralisation se retrouve indifféremment à l'intérieur des volcanites mafiques et felsiques, de même qu'à l'interface entre les deux. Ces zones minéralisées se retrouvent immédiatement au sud d'un massif complexe de syénite porphyrique.

Dans l'ensemble, le gisement d'Aldermac est comparable, selon Hunter et Moore (1983), à plusieurs autres gisements de cuivre du camp minier de Rouyn-Noranda, comme: Millenbach, Vauze et Delbridge.

6.2.2.2 Gîtes principaux

Un important gîte mis en valeur est constitué par les zones minéralisées connues sous le nom de Four Corners (Pary et Hutchinson, 1981). Localisé à proximité de la rencontre des lignes des cantons de Duprat, Montbray, Beauchastel et Dasserat, ce gîte est, depuis sa découverte en 1926, activement exploré. Ces terrains sont actuellement détenus par Falconbridge Copper. La zone est constituée d'une séquence de coulées mafiques et felsiques fortement chloritisées, épidotisées, silicifiées et séricitisées. Les volcanites ont été recoupées par des dykes de diorite, de porphyres et de diabase. La zone minéralisée est localisée à proximité d'un dyke de diabase protérozolque, de direction nord-sud, formant un paléolinéament qui aligne la mine Aldermac (au sudest) et le gîte d'Inmont (au nord). La minéralisation est constituée par de la pyrite, de la chalcopyrite, de la sphalérite, de la bornite et de la pyrrhotine. Les oxydes de fer et les sulfures coexistent en disséminations, en veinules et en niveaux d'exhalite. La meilleure intersection de forage a donné 3,9% de cuivre sur 1,22 mètre.

Un autre gîte mis en valeur est constitué par l'ancienne mine Centre-Boischastel. Ce gîte, découvert en 1929, est présentement détenu par Noranda Exploration. Il est localisé dans la partie sud du lot 30, dans le rang VII du canton de Beauchastel. Un puits a été foncé en 1929 sur une zone de broyage dans l'andésite. La minéralisation est constituée par de la pyrite, de la chalcopyrite et des traces d'or. On mentionne qu'un échantillon prélevé dans une tranchée a donné ll,27% de cuivre et 0,27 g/t d'or. Aucune zone à potentiel économique n'a été décelée.

6.2.3 Nickel

6.2.3.1 Principaux indices

Aucune mine n'a produit de nickel dans le secteur. Trois prospects ont cependant donné des teneurs significatives en nickel; dans les trois cas, cette minéralisation est d'origine exhalative et se trouve associée à des minéralisations de cuivre. Ces trois indices se situent à proximité du dyke de diabase protérozoïque qui traverse la région dans une direction nord-nord-ouest. Le premier indice est connu sous le nom de R.M. Nickel. Il est situé dans le lot 7 du rang VIII de canton de Beauchastel. Ce prospect mis en valeur a été découvert par méthode géophysique en 1947. La minéralisation de chalcopyrite, pyrite, pentlandite et pyrrhotine se présente en veinules irrégulières dans la diorite. Une teneur combinée de 0,5% de cuivre et nickel a été obtenue sur une intersection de 9,2 m. Certains travaux prévoyaient des réserves de 90 000 tonnes à 0,74% de cuivre et 0,51% de nickel.

Nous avons pu observer, à proximité de cet indice, une zone de cisaillement nord-sud affectant un gabbro mésocrate. Une minéralisation de pyrite et pyrrhotine s'y trouve associée à cette zone de cisaillement, laquelle a favorisé la venue d'un second gabbro plus leucocrate, à grain grossier, englobant des fragments du premier gabbro. La minéralisation s'y présente sous forme d'amas rouillés de l à 3 mètres de diamètre pouvant contenir jusqu'à 40% de sulfures. Nous avons fait analyser deux échantillons provenant de cette zone. Ils ont donné des teneurs de: - 0,61% de nickel, 1,40% de cuivre et 4,5 g/t d'argent (ML-336-E-84) - 1,69% de nickel, 1,59% de cuivre et 6,9 g/t d'argent (ML-337-E-84).

Le second indice de nickel est contenu dans la zone de Four Corners précédemment mentionnée. Un forage localisé dans le lot 2 du rang X du canton de Beauchastel a donné, sur une intersection de 0,6 m, des teneurs de 1,64% de nickel, 2,39% de cuivre et 8,57 g/t d'or.

Le troisième indice se situe dans le lot 7 du rang VIII du canton de Beauchastel, à environ 800 mètres au nord du premier indice. Un forage a donné des teneurs variant de 0,14% à 3,95% de nickel à l'intérieur d'intersections dont les longueurs variaient de 1,8 à 16,8 mètres. Ces fortes teneurs en nickel sont également associées à des minéralisations en cuivre, à proximité d'un contact andésite-gabbro.

6.2.4 Zinc

6.2.4.1 Principaux indices

Il existe également trois principaux indices de zinc à l'intérieur de la région cartographiée.

Le principal indice minéralisé en zinc se situe au sud-est du lac Colnet, soit dans le lot 40a du rang I du canton de Montbray. La zone minéralisée se trouve à l'intérieur d'une lave altérée de composition intermédiaire à mafique, à proximité d'un contact avec une rhyolite porphyrique intrusive. La minéralisation consiste en sphalérite, pyrite et chalcopyrite. Des analyses d'un échantillon choisi provenant de cet indice ont donné 13,56% de zinc, 1,20% de cuivre, 4,94 g/t d'argent et 0,15 g/t d'or. Un échantillon prélevé sur cet indice lors du levé de terrain a titré à 1,65% de cuivre, 4,3 g/t d'argent, 1,5 g/t d'or et seulement 310 ppm de zinc. Cet indice est reconnu comme non économique. Le second indice de zinc est contenu dans la zone de Four Corners précédemment décrite. Un horizon minéralisé de tuf cherteux a donné des teneurs de 2,15% zinc sur 45 cm, 0,9% zinc sur 36 cm et 2,12% sur 10 cm; ces teneurs en zinc étaient toutes associées à des minéralisations en cuivre.

Le troisième indice de zinc se situe sur la rive nord-ouest du lac Arnoux, dans le lot 48 du rang VIII du canton de Dasserat. La zone minéralisée se trouve dans l'andésite coussinée à proximité d'un horizon tufacé de composition intermédiaire. L'analyse d'un échantillon provenant de cet indice aurait donné des teneurs de 0,44% de zinc et 0,03% de cuivre sur une largeur de 6,1 mètres.

6.2.5 Molybdène

6.2.5.1 Principaux indices

Quelques indices de molybdène ont été reconnus à travers la région cartographiée.

Le premier indice se situe à l'intérieur du bloc C, dans le rang IV du canton de Dasserat. La molybdénite se retrouve dans des veines de quartz, avec de la pyrite, de l'hématite, de la chalcopyrite et de la malachite. Ces filons minéralisés, agencés en stockwerk, recoupent une felsite carbonatisée en bordure sud d'un massif de syénite dont ils représenteraient une phase tardive. Un échantillon en vrac prélevé dans une tranchée a donné: 0,49% de MoS₂, 0,36% de cuivre, 5,83 g/t d'argent et 0,7 g/t d'or. Un échantillon prélevé lors de notre levé géologique a donné à l'analyse: 1,35% de MoS₂, 0,16% de cuivre, 2,5 g/t d'argent et 1,2 g/t d'or (ML-4486-B1-84).

Un second indice se situe au sud du bloc A, dans le rang IV du canton de Dasserat, à environ 1,2 kilomètre à l'ouest-sud-ouest du précédent indice. Cet indice est également constitué par un stockwerk de filons de quartz minéralisés recoupant une felsite carbonatisée intrusive dans une séquence andésitique, à proximité du contact avec les roches sédimentaires du Groupe de Cobalt. Un échantillon choisi prélevé lors de notre levé a donné 1,06% de MoS₂, 3,3 g/t d'argent et 1,1 g/t d'or (ML-4507-B1-84).

Un troisième indice est associé à une zone de cisaillement comblée par un filon de quartz dont la largeur peut atteindre 40 mètres. Ce filon, de direction sud-ouest, correspondrait au prolongement de la faille Quesabe. Il est visible dans les rangs IX et X du canton de Beauchastel entre les lots 6 et 15. La molybdénite apparaît associée à la pyrite et rarement à la chalcopyrite le long de fractures dans le quartz. Un sondage, localisé immédiatement à l'est de notre limite est, soit dans le lot 16 du rang I du canton de Duprat, a révélé une intersection contenant plus de 0,2% de molybdénite sur 20 mètres. Un dernier indice est mentionné dans le ES-2 (MRN, 1967) à l'intérieur du rang IV du canton de Dasserat dans les zones situées entre les lacs Saniès et Fortune et à l'ouest du lac Saniès. On y trouve de la molybdénite en association avec la pyrite et la chalcopyrite à l'intérieur de zones de cisaillement remplies de quartz et carbonates. Un échantillon que nous avons prélevé dans la zone située à l'ouest du lac Saniès a titré: l6,6% de cuivre, 2,16% de zinc et 2,9 g/t d'or; cet échantillon n'a pas été analysé pour le molybdène (ML-4279-A1-84).

6.2.6 Plomb

Bien que la galène soit quelquefois rencontrée comme minéral secondaire à l'intérieur d'autres indices, le seul indice connu en plomb dans la région se situe au nord du lot 7, rang VIII du canton de Beauchastel. Cette zone, au contact entre un massif gabbroique et une lave intermédiaire, se situe sur le prolongement d'une zone de cisaillement nord-sud reliant deux indices de nickel. Un sondage a recoupé une intersection de 30 centimètres contenant: 7,1% de plomb, 0,05% de cuivre, 2,19 g/t d'argent et 1,13 g/t d'or.

6.2.7 Argent

L'argent est associé, dans la région, à tous les gîtes et indices. Cependant, un seul indice sans autre association a été répertorié dans un sondage localisé en bordure de la tonalite de Powell, dans le lot 43 du rang VIII du canton de Beauchastel. Une intersection de 30 centimètres a donné 12,3 g/t d'argent.

6.3 Echantillons d'intérêt économique

6.3.1 Echantillonnage et analyses

Tout au long de la campagne de levé, nous avons échantillonné pour analyse, la plupart des indices minéralisés connus, de même que toutes les roches nous permettant de supposer la présence de minéralisations. 155 échantillons ont ainsi été envoyés au Centre de Recherche Minérale pour être analysés par spectrométrie d'émission atomique au plasma pour les éléments suivants: Cr, Cu, Ni, Pb, Sr, V, Zn. L'or et l'argent ont été analysés au moyen d'une méthode combinant la pyroanalyse et l'absorption atomique: les limites de détection sont de 15 ppb pour l'or et de 250 ppb pour l'argent. Les 27 derniers échantillons ont été analysés pour 25 éléments dont ceux mentionnés précédemment.

Ces échantillons sont localisés sur les deux cartes géologiques accompagnant ce rapport et sont identifiés par leur désignation de terrain. Les résultats d'analyse sont présentés à l'annexe 6.

6.3.2 Résultats ponctuels

De cet échantillonnage, ressortent quatre teneurs relativement élevées en or:

72,0 g/t	Ech. 4300-Cl
31,3 g/t	Ech. 1149-E1
25,9 g/t	Ech. 7009-B1
4,0 g/t	Ech. 4481-B1

Le premier échantillon est constitué par une felsite silicifiée et pyritisée à l'intérieur d'une séquence cisaillée de lobes et de brèches volcanoclastiques rhyolitiques. L'affleurement se situe à environ 700 mètres au nord du lac Saniès, entre deux zones de failles majeures représentant le prolongement de la zone de cisaillement de l'ancienne mine Francœur. Cette zone a été forée de longue date; les claims sont présentement détenus par Atlas Yellowknife. L'analyse a également révélé une teneur de 236 g/t d'argent à l'intérieur du même échantillon.

Les deux échantillons suivants (1149-E1 et 7009-B1) ont été prélevés sur les terrains détenus par El Coco dans la portion nord-est du lac Labyrinthe. Ces deux échantillons sont alignés dans une direction est-ouest et distants de 600 mètres. Ils proviennent tous deux d''une zone de cisaillement dans le gabbro-diorite, injectée par une felsite à quartz pyritisée. L'analyse a également révélé des teneurs respectives en argent de 2,8 g/t et de 2,9 g/t pour ces deux échantillons.

Une section polie a été effectuée sur l'échantillon 7009-Bl. La roche consiste en un schiste à séricite, quartz et chlorite contenant jusqu'à 50% de minéraux opaques dont 90% de pyrite subautomorphe et 10% de sphalérite en fragments dans la matrice, formant des bandes discontinues. L'or (en traces) est visible et se retrouve en petits fragments soit associé à la chlorite dans la gangue, soit à la pyrite dans les interstices et les fractures; la dimension des grains est de l'ordre de 0,1 mm.

L'échantillon 4481-Bl est constitué de quartz filonien minéralisé en pyrite, malachite, hématite et chalcopyrite. La minéralisation est accompagnée de chlorite et d'ankérite. Ces filons recoupent la syénite au sud-est de la Baie Renault. Cet échantillon a été prélevé dans une tranchée qui correspond à un indice connu contenant 10% de pyrite et 5,83 g/t d'or. Outre la teneur relativement élevée en or, notre échantillon contient également des teneurs de 19,3 g/t d'argent et de 1,31% de cuivre.

6.4 Minéralisation rencontrée

Lors du levé géologique, de nombreuses zones minéralisées ont été visitées; cependant, elles avaient toutes déjà fait l'objet de tranchées, de sondages, de puits ou d'autres travaux d'exploration. Quelques petits indices nouveaux ont été reconnus et notés sur les cartes géologiques; aucun n'était d'importance économique.

Nous avons pu constater que les volcanites de composition intermédiaire à mafique de la région levée contiennent toujours une certaine quantité de pyrite sous forme de fines disséminations. Nous avons observé, à l'intérieur de la séquence volcanique, quelques zones minéralisées en pyrite et en chalcopyrite, avec quelquefois de la bornite ou de la pyrrhotine, à proximité de contacts intrusifs rhyolite-andésite. Ce type de minéralisation se rencontre au nord-ouest des villages d'Evain et d'Arntfield. La minéralisation forme de petits horizons ou amas dont l'extension est généralement inférieure à l mètre, contenant de 10 à 20% de sulfures dans une gangue silicifiée.

L'association pyrite-pyrrhotine-chalcopyrite apparaît également en disséminations reliées à des zones de cisaillement intense de direction nord à nord-nord-ouest. Ces zones de cisaillement sont souvent accompagnées de brèches tectoniques et invariablement remplies de quartz et de carbonates. Toutes les volcanites affectées par ces cisaillements sont chloritisées, carbonatisées et quelquefois épidotisées. Ce type d'association a été observé à proximité du dyke de diabase protérozoïque de direction nord-nord-ouest, dans le secteur localisé au sud-ouest de la la mine Aldermac, à proximité de l'ancien gîte Centre-Boischastel, de même qu'au sud-est du lac Colnet.

Les volcanites felsiques renferment fréquemment des zones sulfurées rectilignes et stratiformes dont l'extension latérale peut atteindre 50 mètres. Le plus souvent, ces zones correspondent à de faibles cisaillements ayant profité des niveaux de faiblesse tels que les hyaloclastites, les tufs et les différents types de brèche. La roche affectée est toujours silicifiée et hématisée et quelques fois séricitisée. Ces zones minéralisées ne contiennent habituellement que de la pyrite, magnétite et hématite en faible quantité. Dans la zone de Four Corners, ces minéralisations sont plus importantes et enrichies de cuivre et de zinc.

Un autre type fréquent de minéralisation dans les rhyolites massives est formé par de petits filons centimétriques généralement peu continus formés d'hématite spéculaire.

Différentes minéralisations sont spacialement reliées aux stocks syénitiques de la région, notamment la mine Aldermac mentionnée précédemment. Dans ce cas, la minéralisation consiste en lentilles de sulfures massifs accompagnés par une intense silicification des volcanites mafiques et felsiques. On y remarque également une altération en chlorite, séricite, épidote et calcite.

Au sud du lac Dasserat, plusieurs filons de quartz minéralisés formant des stockwerks ont été observés à l'intérieur et en bordure d'un stock syénitique fortement cisaillé et propylitisé. En bordure, la roche est davantage silicifiée, séricitisée et carbonatisée. Les minéralisations observées sont constituées en proportions diverses de pyrite, de molybdénite, de chalcopyrite avec traces de bornite, de malachite et d'hématite spéculaire. A l'analyse, on constate que ces filons contiennent également des teneurs intéressantes en or. Les analyses provenant de cette zone sont présentées au tableau 12.

					1
DESIGNATION	ML-4387-81 -84	HL-4481-81 -84	ML-4486-81 -84	ML-4495-A1 -84 HL-4507-81 -84	HL-4522-A2 -84
ND.LAFORATOIRE	B4- 8011	84- 8021	84- 8036	84- 8037	84- 80 36
A 0	900 pet	19.3 9/1	2.5 g/t	7,7 9/1 3,3 a/t	4.3 4/1
Au	75 PPb	4.0 9/1	1,2 9/1	240 PPb 1.1 g/t	1,3 1/1
Cr	5 PPA	8 ppm	7 ppm	66 PPM 5 PPM	22 PPM
Cu	0,10 X	1,31 X	0,16 X	52 PPM 510 PPM	0,14 X
Mo			0,81 X	- 0,64 %	13 ppm
NI	3 ppm	16 PPM	6 PPm	220 ppm 5 ppm	19 ppm
PD 5-	10 PPM 730 PPM	14 000	350 PP0	310 PPm 23 PPm	340 ppm
U	230 PP	6 PPS	78 ppm	110 PPm 16 PPm	120
Zn	77 ppm	13 ppe	43 ppm	150 PPm 18 PPm	160 ppm
NESIGNATION	ML-4814-A2-84	HL-4823-A3-84	ML-4833-81-84		
NO.LAFORATOIRE	84- 12115	84- 12116	84-12117		
A	(250 ppb	000 000	900 oph		
Ag	20 eeb	490 ppb	320 225		
Cr	9 ppm	6 PPS	260 ppm	1	
Cu	180 ppm	760 PPm	150 ppm	1	
Ni	5 ppm	56 PP#	130 ppm		
Fʻb	30 ррм	57 ppm	58 ppm	1	
Sr	160 PPM	110 pp=	190 ppm		
v v	94 ppm 74 ppm	230 pp	270 PP#		
2n	5-1 PP	60 PP	V F F H	1	
TESTONATION	95622	95608			
NO.LAPORATOIRE	84- 14916	84- 14702			
5102	60,6 X	62,4 ×			
A1203	5.17 %	14,7 X			
Fe2031	1.62 %	4,28 X			
	2,80 X	2.17 ×			
Na20	2,37 X	4.24 X			
K20	5,32 %	4,19 X			
T102	0,57 X	0,56 X			
MnD	0,06 %	0,04 X			
P205	0.13 X	0.01 x			
PAF	5.08 ×	4.01 X			
ва	0,32 X	0,18 X			
Be	3 PPM	4 ppm			
Cd	8 PP#	(1 ppm			
	14 ppm	10 PPM			
Cr	4 ppm	25 PPM	1		
Cu	621 ppm	233 PPM			
Dy	2 ppm	6 PPM	1		
Eu	3 PPM	3 ppm			
	63 PP#	77 PPM			
Ho	(4 PPm	64 PPM			
Nd	60 PPm	80 ppm			
Ni	13 рря	(1 PPm			
Pb	12 PPM	16 ppm	1		
Pr	12 PPM	(2 PPM			
Sc	Y PPM	12 PPM	1		
5m Sr	830 PPM	13 PPM	1		
1 Th	B PPM	10 PPm			
V V	182 ppm	109 PPM			
Y	21 ppm	46 ppm]		
Zn	54 ppm	56 ppm	1		
	1.2	780			
A	70 886	270 800	1		
1					
L	4		J		

Tableau 12:Analyses chimiques d'échantillons provenant de la zone
minéralisée (no. 4, figure 57) située au sud de la Baie
Renault, rangs IV et V du canton de Dasserat.

Une dernière catégorie inclut toutes les minéralisations associées à des cisaillements de direction est-ouest, c'est-à-dire les minéralisations d'or. Tous ces cisaillements sont accompagnés d'une altération de la roche affectée, consistant en une séricitisation, chloritisation, carbonatisation et silicification. Deux types d'association peuvent être observés dans ces cisaillements. Le premier type de minéralisation consiste en pyrite avec traces de chalcopyrite, de sphalérite et même de scheelite qui accompagnent l'or. Le second type, moins visible à l'affleurement, consiste en une volcanite cisaillée devenue un schiste à séricite, carbonate, quartz avec fuchsite accessoire. Ce type, observé autour des lacs Fortune, Mud et King of the North a été échantillonné et nous a donné les résultats suivants: 3,3 g/t d'or, 1,0 g/t d'argent et 0,03% Cr, ce dernier provenant de la fuchsite (ML-2309-B1-84).

En ce qui concerne les roches sédimentaires de la région, elles sont presque toutes dépourvues de minéralisation, à l'exception de quelques filons de quartz renfermant au plus 2% de pyrite avec quelque- fois des traces de chalcopyrite.

6.5 Principales zones d'intérêt

Des sections précédentes nous retenons 4 zones principales d'intérêt dont deux pour l'or, une pour les métaux de base et une mixte de moindre importance (figure 57).

La zone l pour les métaux de base suit le dyke de diabase protérozoïque de direction nord-nord-ouest jusqu'à une distance d'un peu moins de un kilomètre du côté est; elle inclut la portion sud de la syénite d'Aldermac de même que les unités volcaniques jusqu'à la faille Mackay.

La zone 2, principalement propice pour les minéralisations d'or suit une direction ouest-nord-ouest à partir des rives est des lacs Berthemet et Desvaux jusqu'au lac Hélène, sa limite nord coïncide avec la faille Mackay et le cisaillement Francoeur.

La zone 3, propice pour l'or, entoure la zone d'El Coco, dans la portion nord-est du lac Labyrinthe.

Enfin, la zone 4 contenant des minéralisations mixtes se situe au sud du lac Dasserat et entoure le massif syénitique défini précédemment. Une étude plus approfondie de cette zone pourait faire ressortir une zonation dans l'altération et préciser le potentiel de ce métallotecte.

Les zones 1, 2 et 4 sont supportées par des anomalies polymétalliques en cuivre, zinc et molybdène, provenant de l'échantillonnage de sédiments de ruisseau du Minitère de l'Energie et des Ressources (Lalonde et Cockburn, 1977). Ces zones contiennent de nombreux échantillons dont les teneurs se situent dans l'intervalle du pourcentage cumulatif compris entre 98% et 100%.

Figure 57: Localisation des principales zones d'intérêt pour l'or (hachurés) et pour les métaux de base (pointillées). Le fond de carte géologique est modifié de Gélinas et al., 1984b; la légende apparaît à la figure 3.

En complément, notons que le levé électromagnétique de type input dans la région de Rouyn-Noranda (MER, DPV-762) n'a fait ressortir qu'une zone anomalique de 2 à 4 canaux avec anomalie magnétique coïncidante à l'ouest du lac Maron (au sud du lac Labyrinthe). Cette anomalie s'étend sur un peu plus d'un kilomètre est-ouest par environ 200 mètres nord-sud. Aucune observation de terrain ni aucun forage ne nous permettent de conclure sur la présence de minéralisation dans cette zone.

RÉFÉRENCES

Ambrose, J.W., 1944. Preliminary map. Geological Survey of Canada, Paper 44-29.

Ambrose, J.W. and Ferguson, S.A., 1945.

Geology and mining properties of part of the west half of Beauchastel Township, Témiscamingue County, Quebec. Geological Survey of Canada, Paper 45-17, 28 p.

Archambault, G., 1985.

Archean wrench fault tectonics and structural evolution of the Blake River Group, Abitibi Belt: Discussion, Can.J.Earth Sci., Vol. 22, No. 6, pp. 943-945.

Auger, P.-E., 1947.

Région du lac Desvaux, canton de Dasserat, comté de Rouyn-Noranda. Ministère des Mines du Québec, RG-27, 26 p.

Avramtchev, L. et Lebel-Drolet, S., 1979a.

Inventaire des gisements minéraux du Québec au 30 septembre 1979. Ministère de l'Énergie et des Ressources, DPV-707, 26 p.

Avramtchev, L. et Lebel-Drolet, S., 1979b.

Production minérale au Québec au lier janvier 1979. Ministère de l'Énergie et des Ressources, DPV-727, 31 p.

Avramtchev, L. et Lebel-Drolet, S., 1981.

Catalogue des gîtes minéraux du Québec, région de l'Abitibi. Ministère de l'Énergie et des Ressources, DPV-744, 98 p.

Blatt, H., Middleton, G. and Murray, R., 1980.

Origin of Sedimentary Rocks. Prentice-Hall, 782 p.

Cooke, H.C., 1923.

Opasatika Map-area, Timiskaming county, Quebec. Commission Géologique du Canada, Rapport sommaire 1922, partie D, pp. 1-62. Cooke, H.C., James, W.F. et Mawdsley, J.B., 1931.

Géologie et gisements minéraux de la région de Rouyn-Harricanaw. Com.géol.can., Mém. 166. Dawson, K.R., 1950.

Northwest Dasserat Towsnhip, Temiscamingue County, Quebec. Geological Survey of Canada, Paper 50-3, 27 p.

Dimroth, E., Côté, R., Provost, G., Rocheleau, M., Tassé, N. and Trudel, P., 1975a.

> Third progress report of the stratigraphy, volcanology, sedimentology and structure of Rouyn-Noranda area, Counties of Rouyn-Noranda, Abitibi west and Temiscamingue. Ministère des Richesses Naturelles, DP-300, 64 p.

Dimroth, E., Cousineau, P., Leduc, M. and Sanschagrin, Y., 1978.

Structure and organization of Archean subaqueous basalt flows, Rouyn-Noranda area, Quebec, Canada. Can.J.Earth Sci., Vol. 15, pp. 902-918.

Dimroth, E., Cousineau, P., Leduc, M., Sanschagrin, Y. and Provost, G., 1979.

Flow mechanism of subaqueous basalt and rhyolite flows. Geological Survey of Canada, Paper 79-1A, pp. 207-211.

Dimroth, E., Gélinas, L., Rocheleau, M., Provost, G. and Tassé, N., 1975b.

Guidebook. Field trip and field conference on the volcanology and sedimentology of Rouyn-Noranda area, Aug. 4-7, 1975. Bureau du géologue résident, Ministère des Richesses Naturelles, Rouyn, Québec, 76 p.

Dimroth, E., Imreh, L., Cousineau, P., Leduc, M.J. and Sanschagrin, Y., 1985.

Paleographic analysis of mafic submarine flows and its use in the exploration for massive sulfide deposits, in: Evolution of Archean Supracrustal Sequences, G.A.C. Special Paper 28, pp. 203-222.

Dimroth, E., Imreh, L., Rocheleau, M. et Goulet, N., 1982.

Evolution of the south-central part of the Archean Abitibi Belt, Quebec. Part I: Stratigraphy and Paleogeographic model. Can.J.Earth Sci., vol. 19, pp. 1729-1758. Dimroth, E., Imreh, L., Goulet, N. and Rocheleau, M., 1983a.

Evolution of the south-central segment of the Archean Abitibi Belt, Quebec. Part II: Tectonic evolution and geomechanical model. Can.J.Earth Sci., vol. 20, no. 9, pp. 1355-1373.

Dimroth, E., Imreh, L., Goulet, N. and Rocheleau, M., 1983b.

Evolution of the south-central segment of the Archean Abitibi Belt, Quebec. Part III: Plutonic and metamorphic evolution and geotectonic model. Can.J.Earth Sci., vol. 20, no. 9, pp. 1374-1388.

Dimroth, E., Larouche, C., Provost, G., Rocheleau, M., Tassé, N. and Trudel, P., 1976.

Fourth progress report on the stratigraphy, volcanology, sedimentology and tectonics of Rouyn-Noranda area, Quebec. Ministère des Richesses Naturelles, DP-353, 38 p. Dimroth, E., Larouche, C. and Trudel, P., 1977.

> Fifth progress report on volcanological and sedimentological work in Rouyn-Noranda area. Ministère des Richesses Naturelles, DP-500.

Dimroth, E. and Lichtblau, A.P., 1979.

Metamorphic evolution of Archean hyaloclastites, Noranda area, Quebec, Canada. Part I: Comparison of Archean and Cenozoic sea-floor metamorphism. Can.J.Earth Sci., vol. 16, no. 7, pp. 1315-1340.

Dimroth, E., Rocheleau, M., Boivin, P., Larouche, M. and Côté, R., 1974.

Preliminary report on stratigraphic and tectonic work in the Rouyn-Noranda area. Quebec Dept. Natural Resources, DP-246.

Dimroth, E. et Rocheleau, M., 1979.

Volcanologie et sédimentologie dans la région de Rouyn-Noranda, Québec. Association Géologique et Association Minéralogique du Canada; réunion annuelle, Québec, mai 1979, excursion Al, 206 p.

Dimroth, E. and Rocheleau, M., 1985.

Archean wrench fault tectonics and structural evolution of the Blake River Group, Abitibi Belt, Quebec. Discussion, Can.J.Earth Sci., vol. 22, no. 6, pp. 941-943. Dimroth, E. and Rocheleau, M., 1985. Archean wrench fault tectonics and structural evolution of the Blake River Group, Abitibi Belt, Quebec. Discussion, Can.J.Earth Sci., vol. 22, no. 6, pp. 941-943. Dugas, J., 1965. Sud-est du canton de Beauchastel. Ministère des Mines du Québec, S-89. Fisher, R.V., 1961. Proposed classification of volcaniclastic sediments and rocks. Geological Survey of America Bull., vol. 72, pp. 1409-1414. Gélinas, L., Brooks, C., Perreault, G., Carignan, J., Trudel, P. et Grasso, F., 1977. Chemo-stratigraphic division within the Abitibi Volcanic Belt, Rouyn-Noranda District, Quebec. In Baragar, W.R.A., Coleman, L.C. and Hall, J.M., eds.: Volcanic regimes in Canada. Geol.Assoc.Can., Spec. Pap. 16, pp. 297-310. Gélinas, L., Mellinger, M. and Trudel, P., 1982. Archean mafic metavolcanics from the Rouyn-Noranda District, Abitibi Greenstone Belt, Quebec. 1. Mobility of the major elements. Can.J.Earth Sci., vol. 19, pp. 2258-2275. Gélinas, L., Trudel, P. et Hubert, C., 1984a. Chemostratigraphic division of the Blake River Group, Rouyn-Noranda area, Abitibi, Quebec. Can.j.Earth Sci., vol. 21, pp. 220-231. Gélinas, L., Trudel, P. et Hubert, C., 1984b. Chimico-stratigraphie et tectonique du Groupe de Blake River. Ministère de l'Energie et des Ressources, MM-83-01, 41 p. Goodwin, A.M., 1982. Archean volcances in southwestern Abitibi Belt, Ontario and Quebec: form, composition and development. Can.J.Earth Sci., vol. 19, pp. 1140-1155. Goldie, R., 1973. The Geology of the Flavrian and Powell Plutons, County of Rouyn-

Noranda. Ministère des Richesses Naturelles du Québec, DP-268,

29 p.

Goulet, N., 1978. Stratigraphy and structural relationships across the Cadillac-Larder Lake Fault, Rouyn-Beauchastel area, Quebec. Ministère de de l'Énergie et des Ressources, DP-692, 141 p. Hogg, W.A. et Dugas, J., 1965. Moitié Est du canton de Montbray, comté de Rouyn-Noranda. Ministère des Richesses Naturelles du Québec, RG-115, 38 p. Hubert, C., Trudel, P. and Gélinas, L., 1984. Archean wrench fault tectonics and structural evolution of the Blake River Group, Abitibi Belt, Quebec. Can.J.Earth Sci., vol. 21, pp. 1024-1032. Hunter, A.D. and Moore, J.M., Jr., 1983. The geologic setting of the Aldermac copper deposit, Noranda, Quebec. C.I.M. Bulletin, vol. 76, no. 851, pp. 128-136. Irvine, T.N. and Baragar, W.R.A., 1971. A guide to the classification of the common volcanic rocks. Can.J.Earth Sci., vol. 8, pp. 523-548. James, W.F., 1923. Rouyn Map area. Geol.Surv.Canada, Sum. Rept. 1923, pt. C, pp. 126-144. Jensen, L.S., 1975. Geology of Pontiac and Ossian Townships, Districts of Cockrane and Timiskaming. Ontario Division of Mines, G.R. 125. Johnston, W.C.Q., 1954. Geology of the northeast quarter of Dasserat Township, Temiscaming County, Quebec. Geological Survey of Canada, Paper 53-8, 17 p. Johnston, W.C.Q., 1957. Geology of the southwest quarter of Beauchastel Township,

Geology of the southwest quarter of Beauchastel Township, Temiscaming County, Quebec. Geological Survey of Canada, Open file. Jolly, W.T., 1977.

Relations between Archean lavas and intrusive bodies of the Abitibi Greenstone Belt, Ontario-Quebec. In Baragar, W.R.A., Coleman, L.C. and Hall, J.M., eds.: Volcanic regimes in Canada. Geol.Ass.Can., Spec.Pap., 16, pp. 311-330.

Kindle, E.D., 1941.

La partie nord-est du canton de Beauchastel, Comté de Témiscamingue, Québec. Commission Géologique du Canada, Brochure 41-7, 6 p.

Krogh, T.E. and Davis, G.L., 1971.

Zircon U-Pb ages of Archean metavolcanic rocks of the Canadian Shield. Cam.Inst.Wash.Geophys.Lab Rept. 1970-1971, pp. 241-242.

Lalonde, J.P. et Cockburn, G.H., 1977.

Atlas géochimique des sédiments de ruisseau, Rouyn-Noranda. Ministère des Richesss Naturelles du Québec, DPV-501, 50 p.

Leduc, M.J., 1981.

Morphologie des faciès volcaniques et structures associées à des coulées basaltiques du Groupe de Kinojévis, canton d'Aiguebelle, Abitibi. Mémoire de maîtrise, Université du Québec à Chicoutimi 169 p.

Leduc, M.J. et Forest, G. (Géomines Ltée), 1985.

Groupe de Blake River, région du lac Dasserat. Ministère de l'Énergie et des Ressources, DP-85-06.

Mackenzie, G.S., 1940.

Fortune Lake and Wasa Lake map areas, Dasserat and Beauchastel Townships. Ministère des Mines du Québec, RG-5, 27 p.

McOuat, W., 1873.

Report on an examination of the country between Lake Timiskaming and Abitibi. Report of Progress. Geological Survey of Canada, pp. 112-135.

Ministère de l'Énergie et des Ressources.

Fiches de gîtes, coupures SNRC 32 D/3, 32 D/4, 32 D/5, 32 D/6.

Ministère de l'Énergie et des Ressources.

Dossiers d'exploration minière: GM-34840, GM-36309, GM-37481, GM-38378, GM-39386, GM-39810, GM-39814, GM-37412, GM-33640.

Ministère de l'Énergie et des Ressources du Québec.

Changements d'échelle des cartes input, région de Rouyn-Noranda, 10 cartes, DPV-762.

Ministère de l'Énergie et des Ressources du Québec, 1979.

Bibliographie géoscientifique CL-32 D/3, D/6 et mise à jour 11 mai 1984. Cartes revisées juin-septembre 1984.

Ministère des Richesses Naturelles du Québec, 1967.

Bibliographie annotée sur la minéralisation métallique dans les régions de Noranda, Matagami, Val d'Or, Chibougamau, 305 p.

Nunes, P.D. and Jensen, L.S., 1980.

Geochronology of the Abitibi metavolcanic belt, Kirkland Lake area - progress report. In Summary of geochronology studies, 1977-1979. Edited by Pye, E.G. Ontario Geological Survey, Miscellaneous Paper, 92, pp. 40-45.

Pary, S. and Hutchinson, R.W., 1981.

Origin of a complex alteration assemblage, Four Corners Cu-Zn Prospect, Quebec, Canada. Econ.Geol., vol. 76, pp. 1186-1261.

Robinson, W.G., 1943.

Région du lac Flavrian, cantons de Beauchastel et Duprat, comtés de Témiscamingue et d'Abitibi. Ministère des Mines du Québec, R.G.-13, 23 p.

Robinson, W.G., 1948.

Partie du quart nord-ouest du canton de Beauchastel, comté de Rouyn-Noranda. Ministère des Mines du Québec, R.G.-30, 22 p.

Rocheleau, M., 1980.

Stratigraphie et sédimentologie de l'Archéen dans la région de Rouyn, Abitibi, Québec. Thèse de doctorat, Université de Montréal, Montréal, Québec, 313 p. Rosen (de)-Spence, A.F., 1976. Stratigraphy, development and petrogenesis of the central Noranda volcanic pile, Noranda, Quebec. Unpub. Ph.D. thesis, University of Toronto. Stockwell, C.H., 1949a. Southwest Dasserat, Temiscamingue County, Quebec, Preliminary map. Geological Survey of Canada, Paper 49-23. Stockwell, C.H., 1949b. Southeast Dasserat, Temiscamingue County, Quebec, Preliminary map. Geological Survey of Canada, Paper 49-25. Thibault, C., 1961. La moitié ouest du canton de Montbray, comté de Rouyn-Noranda. Ministère des Richesses Naturelles du Québec, rapport préliminaire no. 466, 15 p. Van de Walle, M., 1972. La région de Rouyn-Noranda, dans Géologie du Précambrien et Gîtes minéraux de la région de Noranda-Val d'Or et Matagami-Chibougamau, Québec. Congrès géologique international, excursion A41-C41, 107 p. Wilson, M.E., 1913. Kewagama Lake map area, Quebec. Geological Survey, Department of Mines, Canada, Memoir 39, 139 p. Wilson, M.E., 1941. Noranda district, Quebec. G.G.C., Memoir 229, 162 p. Wilson, M.E., 1943. Rouyn-Beauchastel, Temiscaming County, Quebec. C.G.C., Paper 43-7, 3 cartes. Wilson, M.E., 1962. Rouyn-Beauchastel map areas, Quebec. C.G.C., Memoir 315.

Wilson, W.J., 1910.

Geological reconnaissance along the line of the National Transcontinental railway in western Quebec. Memoir no. 4, Geological Survey, Department of Mines, Canada. ANNEXE 1

.

Caractérisation des échantillons inclus à l'intérieur du groupe de volcanites indifférenciées

ANNEXE 1

Caractérisation des échantillons inclus à l'intérieur du groupe des volcanites indifférenciées

Identification

Type de roches

95533	Andésite aphyrique massive
95535	Lave leucocrate coussinée de composition basaltique
95539	Lave massive de composition intermédiaire
95544	Lave massive andésitique
95551	Andésite massive
95558	Andésite porphyrique
95559	Andésite massive
95560	Basalte massif
95561	Basalte massif
95562	Andésite massive
95564	Andésite variolitique massive
95565	Andésite massive
95567	Andésite variolitique massive
95571	Tuf à cristaux et lapilli de composition intermédiaire
95573	Basalte porphyrique massif
95577	Andésite massive
95578	Basalte massif silicifié
95579	Basalte massif
95592	Hyaloclastite felsique
95593	Lave felsique porphyrique massive
95594	Basalte massif silicifié
95595	Rhyolite massive
95596	Rhyolite massive
95597	Rhyolite massive
95598	Rhyolite fragmentaire mouchetée
95599	Rhyolite massive
95600	Rhyolite massive
95601	Rhyolite massive
95602	Rhyolite massive
95603	Hyaloclastite rhyolitique
95604	Rhyolite massive
95605	Rhyolite massive
95606	Rhyolite massive
95607	Lave intermédiaire porphyrique
95609	Rhyolite massive
95610	Rhyolite massive porphyrique
95611	Rhyolite fragmentaire
95612	Rhyolite massive

Note: L'échantillon 95608, bien qu'inclus dans le groupe des laves (Annexes 3 et 4), ne fait pas partie de ce groupe.

GEOMINES LTÉE LTD.

ANNEXE 2

Données brutes des analyses totales de roches

+						RESL	LTA	т-							**** ****		1	RESL	LTA	т۰						
+	DESIGNATION	:	95530			95531			95532			95533			95534			95535		•	95536			95537		
+	NU+LABURATUIRE	Ŧ	84- 14	4824		84- 14	825		84- 14	4826		84- 1	4827		84- 1	4828		84- 14	829		84- 14	830		84- 14	831	
+	Si02	:	76,9	×	:	69,5	x	1	69.3	×	t	60.1	×	:	40.9	¥		50 7			ET -72 -4	•			•	
+	A1203	+	11,5	x	:	12.7	×	:	12.4	×		14.4	× ×		13.7	Ŷ	:	10.7	~	:	3741	*		57,0	X	
+	Fe203t	:	2,68	3 %	:	3.77	' x	İ	6.8	а ²		10.7	Ŷ		7.0	- *	:	10,2	*		13,0	*		17,3	*	:
+	MgO	;	1,09	7 X	:	0.93	x	ż	3.0	2 %		7.5		:	5.7	~ ^ 7 ¥	:	0920 A 40	· *	•	6,17	7.		7,51	*	:
+	CaO	;	2,22	2 %	:	3.81	×	Ť	1.0	7 %		5.0	0 x	:	70	5 A A V	:	4,10	· X		2,21	*	Ŧ	4,19	X	:
.	Na20	:	3,50	> %	:	5.57	*	÷	3.8		:		0 * 0 */	:	7,0	0 4	•	10,4	×		15,3	X	1	7,03	×	:
+	K20	:	0,31	*	1	<0.04	*	ł	<0.0	Δ Υ	:	2,0	0 A	:	3,7	7 A 7 N	•	2,10	· %	-	0,03	X	:	1,,86	×	:
+	Ti02	:	0.25	5 %		0.45	*	÷	0.40	- ~ > +⁄				:	0,1	2 74	-	0,50	*	-	0,06	*	;	0,97	×	:
+	MnO	:	0.02	2 2	÷	0,05	*	-	0,0		:	1+0	3 2	÷	0,0	8 %	Ŧ	1,29	*	-	1,11	X	:	0,94	×	:
+	P205	1	(0.07	5 %		0.04		:	0,00		:	0,1	6 <i>4</i>	•	0,1	0 %	:	0,11	*	:	0,07	*	:	0,09	*	:
+	S	÷	(0.01	*	÷	(0.01	*	:	/0,1.	≤ 74 •<		0,1	9 % • •		0,1	1 %	:	0,10	*	:	0,08	*	:	0,11	×	:
+	FAF	1	1,15	. <u>.</u>	:	7 17	*	:		L 74		(0,0	1 %	•	(0,0	1 %	:	<0,01	*	:	0,04	×	:	0,02	X	:
+		•	1,10		•	3912	~	٠	1 و کم	(%	÷	2,2	6 %	:	1,1	5 %	:	5,16	%	:	4,36	*	;	2,51	*	:
+	Ва	:	204	PPM	:	108	000	1	104	000	•	120			74			4								
+	Be	:	2	PPM	:	2	ppm	÷	22	000		7	PP**	:	10	222		133	PPM		54	P PW		366	PPM	:
+	Cd	:	<1	PPM	:	<1	000	÷	2 T	PP	:		220	:	~	PPm	•	<u>د</u>	₽₽ m	Ŧ	2	PPM	:	2	PPM	:
+	Ce	:	61	PPm		35	6600	÷	79	PPIO	:	~~~	PPm	•	1	PPM		(1	PPM	-	(1	PPM	:	<1	m qq	:
+	Co	:	4	DDW.		(3	rr	÷	12	PPm	:	<u>~</u>	PPW	÷	31	PPM	Ŧ	28	66W	:	13	PPM	:	31	PPM	:
+	Cr		4	000	÷	5	PP4	:	10	PPIN PPIN	:	21	56W	•	34	PPM	•	39	PPM	:	30	PP M	:	30	PPM	:
+	Cu	1	14			12	PPm	:	17	PPW	*	13	PPM		298	PPfil	:	154	PPM	:	11	PPM	:	43	PPM	:
+	Dy	÷	8	000		11	PPm PPm	:	15	PPM	•	/1	bbw	•	30	PPM	:	55	ក្រុក	:	75	PPM	:	53	PPM	:
+	Fu	÷	2	000	:		P P m	*	6	PPM		4	PPM	:	4	PPM	:	4	66W	:	3	PPM	:	4	PPM	:
+	La	÷	30	PP0	:	3	66W	*	~	PPM	Ŧ	3	PPM	:	2	PP m	:	3	ppm	:	2	PPM	:	2	PPM	:
+	1 i	;	30	PPa	:	6	PPM	-	15	PPM		7	PPM	:	12	PPm	:	10	66W	:	4	PPM	:	13	PPM	:
+	Mo	÷		PPM	:	~	66w	÷	11	PPm	:	11	PPM	:	6	PPM	:	29	66W	:	7	PPM	:	31	PPM	:
+	Nd	;	75	658 658	•	14 75	PPM	:	5	PPM	:	6	PPM	:	6	PPm	:	<4	ppm	:	5	PPM	:	5	PPM	:
	Ni	:	33		÷	30	PPM	Ŧ	(25	PPM	:	<25	P PM	:	<25	PPm	:	<25	PP M	:	<25	PPM	:	<25	PPM	:
	Pb	:		PPM	÷	3	PPM	Ŧ	18	PPM	:	10	PPM	:	241	PPm	:	120	PPM	:	92	PPM	:	93	PPM	:
	F 5	:	12	PPM	÷	(12	PPM	•	(12	PPM	:	<12	m 44	:	<12	PPM	:	<12	PPm	:	<12	PPM	:	<12	PPM	:
	F1 ©≓	•	7	P Pm		11	PPM	:	<2	1915 W	+	18	PPM	:	18	PPM	:	25	PPM	:	21	PPM	:	20	DDM	•
	ас С-	÷	10	PPM		29	PPM	:	19	PPM	:	36	PPM	:	21	PPm	:	27	PPM	:	30	20m	:	19	000	
	50	•	ម	PPM	:	10	PPM	:	4	PPM	:	4	PPM	:	4	PPm	:	6	PPM		3	000		4	000	
+	sr		134	PPm	:	94	P P M	:	82	PPM	:	193	PPM	:	87	PPM	:	243	PPM		223	000	•	107	550 m	:
+	In	:	150	PPM	:	160	PPM	:	155	PPM	:	189	PPM	:	161	PPm	:	183	ppm	÷	119	PP-00		117	PPm DDa	:
+	V	:	4	PPM	:	2	PPM	:	18	PPM	:	235	PPM	:	150			236		-	257	PP01	:	100	PP	:
+	Ŷ	:	<1	PPM	:	<1	PPM	:	<1	PPM	:	<1	PPM	Ť	<1	000		<1	PP	-	201	550 550	:	177	PPm	
+	Zn	:	33	PPM	:	41	PPm	:	45	PPM	:	118	000		111	000	:	111	220	:	57	66W	÷	<1 07	PPM	
+	A									••	,		• • • •	•			•	***	66m	•	33	66W	÷	97	₽₽ m	:
+	A9	14	250	PPD	:	<250	ррб	:	<250	ррЬ	:	<250	PPb	: <	250	ррб	:	<250	PPD	:	(250	pph	•	(250	nnh	•
+	HU	: <	15 1	ррр	:	<15	рър	:	<15	ррр	:	<15	ppb	:<	15	PPb	:	<15	ppb	:	(15	pph	•	(15		:
+																	-		1 1 m	•		660	•	110	440	÷
•																										

+ NO+LABORATOIRE + + SiO2 + Al2O3 + Fe2O3+	: 84-	14832	84- 1	4077	70040	,	90041			·	05						
+ SiO2 + AL203 + Es203+	: 55			14833	84- 1	L4834	84- 1	4835	84-	- 14836	84)- 14837	9554 84-	4 14838	95 84	545 - 14839	
+ A1203 + Fe203+		1 %	: 65,1	L X	: 53,3	3 x	: 55.6	×	: 58	3.7 %		5 6. 8 %	• 40	A . W			
+ Fa203+	: 18	1 %	: 11,5	5 🗙	: 16.7	7 X	: 12.1	×	: 13	3.3 %		3.8 %	• ••••	- x	• 6	2,5 %	
1 1 1 1 1 1 1 1 1	: 6	,13 %	: 9,4	15 %	: 7,1	1 %	10.4	x	: 5	96 %		7.01 9	• 10,	0 A 01 V		9,2 %	
+ MgD	: 1,	86 %	: 1,5	50 %	: 5,5	53 X	4.8	0 x		4.63 %	•	2.71 %	• • •		•	5,30 %	Ŧ
+ CaO	1 15	6 %	; 4,4	¥6 %	: 5,0	X 8(: 5.2	2 %	: 4	96 %	•	A. 40 V	• 3,	17 4	¥ .	4,10 %	
+ Na20	: 0,	66 %	: 2,6	38 %	: 4,5	56 X	: 3.2	1 %	: 4	40 %		2.27 V	• • •	17.7		9,27%	:
+ K20	: 0,	09 %	: 0,1	1 %	: 0,1	8 X	: 0.1	4 %	: ‹‹	0.04 %		1.49 %	• •	4∠ A 31 M		3,61 %	:
+ TiO2	; 0,	58 %	: 1,1	5 %	: 0,9	7 %	: 1.2	1 %	: 0	.70 %	•	0.86 %	• • •	21 7),19 %	
+ MnO	: 0,	10 %	: 0,1	.4 %	: 0,1	3 X	: 0.1	7 %	: 0	.07 %		0.08 %	• • •	17 X 10 V),62 %	
+ P205	: 0,	05 %	: 0,3	54 %	: 0,1	2 %	: 0.0	4 %	: 0	.11 %	•	0.11 %	• • •		1),07 %	:
+ 5	: (0,	01 %	: 0,1	.0 %	: <0,0	1 %	: (0.0	1 X	: 0	.10 %		0.01 %		09 %),09 %	:
+ PAF	: 1,	71 %	: 1,5	i6 %	: 4,8	9 %	: 6.1	7 %		.27 %		Q. AQ V		07 X		0,01 %	:
+										,,_, ,,	•	0,47 %	• 11,	(• •	5,12 %	:
+ Ba	: 86	PPM	: 132	PPM	: 161	PPM	: 52	ppm	: 91	PPM	: 47	9 000	1 110		• • • //	•	
+ Be	: 2	PPM	: 2	PPm	: 2	PPM	: 2	PPM	: 2		:	2 000	• 117	PPm	• 10.	2 PPm	
+ Cd	: <1	PPM	: <1	PPm	: <1	PPM	: <1	PPM	: <1	maa	: <	- FPM 1 000		PPm PPm	• •	: PPM	•
+ Ce	: 10	PPM	: 34	PPM	: 25	PPm	: 16	PPM	: 25	i ppm			: 27	PPM	• •	. PPm	
+ Co	: 37	PPM	: 17	PPM	: 33	PPM	: 39	PPM	: 30	maa (1 1	9 000	+ 21	PPM	• 23	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*
+ Cr	: 142	PP m	: 10	PPM	: 157	PPM	: 42	PPm	: 90	nea Naga	: 1	2 000	1 84	PPM	• 4	, क्षेत्र द	•
+ Cu	: 130	PPM	: 21	PPm	: 63	PPM	: 101	PPm	: 60	PPM	: 5	2 000	1 56	PPM	• 70	/ ppm /	÷
+ Dy	: 2	P Pm	: 6	PPM	: 3	PPm	; 7	PPm	; 3	n ag	:	3 000	1 2	PPM	• 7	, hhw	•
+ Eu	: 2	PPM	‡ З	PPM	: 2	PPm	: 3	PPM	: 2	: PP/0	:	2 000	: 2	PP00	• •	n dd c	•
+ La	: 4	PPM	: 13	P Pm	: 11	PPm	: 3	PPm	: 10	Pen (: 1	- FFM 5 DDM	: 12	PPm	+ +		•
+ L1	: 5	PP M	: 8	PPM	: 18	PPM	: 19	PP M	: 19	, bbw	: 1	4 ppm	: 14	- PPm	* 10	mqq c	:
+ Mo	: <4	PPM	: 4	PPm	: <4	PPM	: 5	PPM	: <4	PPM	: <	4 220	: (4	PPm DDm	• • •		•
+ Nd	: <25	6 60	: <25	PPM	: (25	PPM	: <25	PPM	: <25	PPm	: (2	5 ppm	: (25		1 275		:
	: 190	₽₽ <i>m</i>	: 7	PPM	: 74	PPm	: 46	PPM	: 151	PPM	: 2	5 ppm	: 48	 DD0	1 1 25		:
+ Fb	: <12	PPM	: <12	P P M	: <12	PPm	: <12	PPM	: <12	ppm	: <1	2 220	: (12	PP00	* 14.0	, bbu	:
+ FY	: 32	PPM	: 15	mqq	: 14	PPM	: 16	PPM	: 15	ррл	: 1	8 990	: 21	PD0	* 12		:
+ SC	: 18	P P m	: 34	PPM	: 26	PP M	: 47	p p m	: 18	PPM	: 2	0 2 2 2 0	: 25	PPM	• 12 • 17		:
+ 5m	÷ (2	PPm	: 4	PPM	: <2	PPM	: 4	PPM	: <2	PPm	:	a pem	: (2				•
+ 51	: 118	PPM	: 103	PPM	: 266	PPM	: 31	PPM	: 105	PPM	: 10	3 คศต	: 189	PPm DDm	1 100	. PPm	:
* ID	: 92	PPm	: 112	PPM	: 91	PPM	: 90	PPM	: 122	PPM	: 11	7 PPM	: 137	550 550	+ 107	PPm PPm	:
+ V	: 192	PPM	: 73	PPM	: 224	PPm	: 414	PPm	: 146	PPm	: 17	5 PPM	: 218	500	1 1 74		*
r 1 1 77-	+ (1	PPM	: <1	PPM	; <1	PPM	: <1	PPM	; <1	PPm	: <	1. ppm	: (1	200M	+ 104		•
r ∠n F	: 55	66W	: 94	P P W	: 104	PP M	: 137	PPM	: 90	PPM	: 27	B PPM	: 184	PPM	: 84	. 55W	:
⊦ Ag	:<250	ррр	: <250	ррЬ	: <250	PPD	: <250	ppb	:(250	daa	: 0	50 ppb	1 /050		• / 000	<u> </u>	_
⊦ Au	: 17	PPD	: <15	PPb	: <15	РРЬ	: <15	PPb	:(15	Peb	: (1	5 PPU 5 pph	+ 1200	PPD	+ (20	V PPD	•
F										5 F W	÷ (1	- 20 - 20	• 115	PPD	÷ <15	qqq	:

DESIGNATION	1 955	41					055.40						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		6	K E S I	JLTA	ат.						
NO+LABORATOIRE	: 84	14840		90047 84- 14	841		95548	4842		95549 84- 14	4843		95550 B4- 14	844		95551 84- 14	1845		95552 84-14	846		95553 84- 14	847	
S102	: 58	.1 X	:	50.9	*	•	54.7	*	•	50 E	~		F A A	•	•	FA 7	•							
A1203	: 15	7 %	:	17.6	*	÷	14.0	Ŷ	:	45.0	Ŷ	:	1 KC A	~	:	- 100 y 33 - 117 E	*	•	40,6	×	Ŧ	57,1	×	:
Fe203t	: 5	74 %	:	7.80	x x		A.8/	, v	:	10.4	÷.	:	- 1094 - 0 0E	- ×	•	13,0	%		16,0	X		15,7	×	•
MgO	: 4	61 %	:	4.50	*	•	2,53		:	7 45		:	7,70) /4) •/	•	10,0	*	•	10,9	*	Ŧ	9,35	%	÷
CaO	: 6	25 %	:	8.62	×	÷	7.07	, , , ,		() 4 5. 41) A V	•	3,07	. *	•) % \ •/		7,13	X	:	3,66	×	:
Na 20	: 3	84 %	:	4.25	*	÷	3.47	7 2	:	3.10	 	:	4.71	, <u>,</u>	:	1 1 1	· /4	•	14,1	*	•	6,13	*	
K20	: 0	49 %	:	(0.04	*	÷	0.41	*		0.27		:	0.14	· *	:	1,20	, <u>,</u>		1,34	%		4,17	*	:
T102	: 0	61 %	:	0.88	*	÷	0.91	*	:	1 07	,	:	1.00	· *	:	1 0	· ~	*	0,38	*	•	0,53	X	•
MnO	: 0,	09 %	:	0.12	*	÷	0.11	× ×	•	0,17	. /* . */	:	0.12	· · ·	:	- 1,00	• •	•	0,76	×		1,46	*	
F205	: 0,	09 %	:	0.12	%		0.05	,		0.11	,	:	0.07	- /* / */	:	0,10	, , , , , , , , , , , , , , , , , , ,	:	V,10	*	•	0,10	*	•
S	: <0,	01 %	:	0,21	*	:	(0.01	. *	;	(0,01	ž	:	(0.01	ž	;	0,00	· · ·		(0,03	~	• •	10,40	×	
PAF	: 4,	29 %	:	5,53	*	:	8.02	2 %		3.50	× ×		2.95	. <u>%</u>	;	3,74	,	•	1.77	*	•	0,01 0 / 1	*	÷ •
									•			•	2,7U		•	-0,0-	~ ~	•	1,11	A	•	£\$01	~	•
Ba	: 283	PPM	:	55	PPM	:	123	PPM	:	211	PPM	:	64	DDM	:	54	000	•	94		•	210		
Be	: 2	PPM	:	2	PPM	:	1	PPM	:	1	PPM	÷	1	000	-	.3	000	•	1	PPm PPm	•	310	ppm ppm	:
Cd	: <1	PPM	:	<1	PPM	:	<1	66W	:	<1		:	<1	000	:	< 1	5 F F M	:	21	PP'''	:	<u>د</u> . 1	PPM	:
Ce	: 32	PPM	:	28	PPM	:	19	PPM	:	29	PPM	:	17	660 600		18	000		` `	PPm PPm	*	24	PPW PPM	•
Co	: 27	PPm	:	33	PPM	:	27	PPM	:	51	PPM	1	40	DDM	:	34	000		57	PPm DDM	:	22	000 940	:
Cır	: 131	ppm	:	90	PPM	:	55	PPM	:	115	PPM		67	000		15	000		280	PPm	•	75	PPm PPm	:
Cu	: 45	P P m	:	82	PPM	:	52	PPM	:	19	PPM		44	PPM	:	66	660m	÷	63	000	•	46	DDD	:
I IY	: 3	PPM	:	3	PPM	:	<1	PPM	:	3	PPM	:	3	PPM	÷	5	ppm	÷	20	PPW 200	•		PPO	•
Eu	: 2	PPM	:	1	PPM	:	1	PPM	:	2	PPm	:	<1	PPM	÷	2	000		< 1 < 1	66900 10000	÷	2	PPm DDM	•
La	: 55	PPM	:	13	PPM	:	9	PPM	:	11	PPM	:	6	PPM		7	PPm		10	000	÷	11	PPm	•
L 1	: 18	PP M	:	21	PPM	:	61	PPm	:	17	PPM	:	29	PPM	:	23	PPM	i	13	000	÷	15	000	•
Mo	: (4	PPM	;	{4	PPM	:	< 4	PPM	:	<4	PPm	:	< 4	PPm	:	<4	eew.	:	4	000		ζΔ	000	:
Nd	: <25	P P M	:	<25	PPM	:	<25	PPM	:	<25	PPm	:	<25	PPM	:	40	PPM	÷	(25			35	6600 DD0	:
NI	: 158	PPM	:	89	PPM	:	26	PPM	:	148	ppm	:	18	PPM	:	1	PPM	:	198	000		21	00m	•
FD F	: <12	66w	:	<12	PPM	:	<12	PPM	:	<12	ppm	:	<12	PPm	:	<12	PPM		(12	660m	÷	(12	000	
FT :	: 18	66W	:	<2	PPM	:	<2	PPM	:	<2	66W	:	<2	PPM	:	(2	PPM	:	(2	000	•	10	000	•
SC :	17	PPM	:	22	₽PM	;	28	PPM	:	27	P Pm	:	47	PPM	:	51	PPM	:	41	PPM		35	55m	
Sm :	: <2	PPM	:	<2	PPM	:	<2	PPM	:	<2	PPM	:	<2	PPM	:	2	PPM	:	(2	22M	÷	(2	DOM	÷
51 :	: 141	66W	:	238	PPM	;	194	PPM	:	116	PPM	:	43	PPM	:	300	PPM	:	174	00M	:	1.37	000	
	: 83	PPM	:	(5	66W	:	<5	pbw	:	<5	PPM	:	<5	PPM	:	<5	PPM	:	(5	ppm	÷	<5	00m	
÷ ÷	142	PPM	:	203	P P M	:	205	PPM	:	168	ppm	:	248	PPM	:	530	PPM	:	256	DDM		134	המס	
T 3		66W	:	27	PPM	:	9	PPM	:	25	PPM	:	37	PPM	:	50	PPM	;	21	PPM	:	44	PPM	÷
∠n :	: 81	66W	:	94	ppm	:	73	PPM	:	142	PPM	:	91	PPM	:	121	PPM	:	74	PPM	:	99	PPM	:
Ag :	:<250	PPb	:	(250	вър	:	(250	PPb	:	(250	ррр	:<	250	ррб	:	<250	ррђ	:	<250	eeh	:	(250	pph	•
Au	:<15	PPb	:	63	PPb	:	<15	eeb	1	<15	pph		15	ooh	•	/15	 nob		/ 1 5					:

+ DESIGNATION + NO.LABORATOT	: 955 RF : 94-	54 14848	95	5555 N- 149			95556	10FA		95557	4 (D)87 4		95558			95559			95560			95561		
F HOVENDON TOL	N. • 0	17070	84	148	147		84- 14	4820		84- 1	4851		84- 1	4852		84- 14	4853		84- 14	4854		84- 14	855	
+ Si02	: 56	,2 %	: 4	19.3	×	:	46.7	¥	•	58.1	*	•	48.7	*	•	57.5	v	•	A			AO 0	~	•
F A1203	: 11	,5 X	: 1	6.0	×	1	12.3	ž	÷	14.2	v v	:	16.5	Ŷ		10.7	÷.	:	170	Ŷ	:	472 77	~	:
⊦ Fe203t	: 13	,4 %	: 1	4.9	*	÷	12.8	ž	÷	7.3	1 2	:	6.8	8 %		5.8	1 2	•	L 1 # 7	, `	:	10 4	2	:
⊦ MgO	: 2	,13 %	:	6.87	*		5.35	5 %		5.20	- ~ - ~		A. A	7 %		2.1	- ~ - ~	•	7,0	, M 7 W	:	10,0	~	:
⊢ CaO	: 6	,35 %	:	3.12	X		10.1	* * *	÷	2.7	7 %	:	7.3	1 %		7.9	5 4		10,7		:	107	2	:
⊦ Na20	: 3	,84 %	:	3.72	%		2.5	7 %		1.7	7 2		5.5	.		2.9	L 4	:	1 4	, *	:	7 00	~	:
н K20	: 0	,07 %	:	0.80	%	÷	<0.04	1 ¥		2,15	 	•	0.0	5 %		0.7	4 9	:	1,44	6 A 1 W	:	0,02	*	:
⊦ Ti02	: 1	,63 %	:	1.48	%		1.4			0.9	2 8	•	0.7	0 % R %	:		3 4	:			:	0,02	2	:
⊦ MnO	: 0	,17 %	:	0.26	×	÷	0.2	3 2		0,10	5 X	:	0.1	0 %		0.0	- ~ > ~	:	0,00		:	0,02	ž	:
F F205	: 0	,21 %	:	0.11	×		0.08	3 %		0.1	a *		0,0	~ ~ 7 *	:	0.00	/ /i	•	/ O O	. A . V	:	V;14 /0 07	2	:
+ S	: 0	,09 %	:	0.02	×	÷	(0.0)	. <u>x</u>		(0.0)	1 %	:	20.0	1 2	:	0,00	א כ א ל	:		5 A 5 V	•	(0,03	*	•
F PAF	: 5	72 %	:	4.30	%		8.2	1 %		5.7	- ~ - ~		8.7	. v ∧ v	:	7 50	2 A 3 V	:	7 5	* *	:	0,01	~	:
ŀ		-						• •	•	wy ut		•	0,0	~ ~	•	1900		•	3,3	~	•	£,∳0J	~	•
+ Ba	: 51	PPm	: 31	.1	PPM	:	94	000	•	681	000	•	110	000	•	211		•	70		•	4 40		•
+ Be	: 3	PPM	:	3	PPM	:	2	000		2	000	÷	1	000			000	:	1	PPM PPM	:	240	PPm PPm	:
+ Cd	: <1	PPM	; (1	PPM	1	< 1	000		<1 <1			<1	000		< <u>-</u>		:	/1	200	:	<u>~</u>	PPm	:
⊦ Ce	: 27	PPM	: 4	3	PPM		17	000	÷	21	000		22		•	21	PPm DDD	:	12	PPm PPm	:	~1	PPM	:
+ Co	: 28	PPM	: 4	9	PPM	:	37	000		32	000		31	000		70	PPm PPm	:	54	PPM	:	40	PPm 	:
r Cr	; 7	PPM	: 1	0	PPM	:	15	рр м		78	000		40	FFm	:	77	PPM DDD	:	770	 2	:	40 550	ppm 	:
- Cu	; 23	PPM	: 9	0	mag	÷	99	000	÷	79	000	:	10	PP/4	:	27	556 550	:	100	 95W	*	4 7 7	PPm	:
ь Dy	: 8	PPM	:	8	, , ממס	÷	. , 	000		2	000			666 666	:	-0-3	550 570	:	120	PPM	•	137	PPM	
- Eu	: 2	ppm	:	2	ppm	÷	ĩ	PPM		< 1 < 1	000	:	2 I	PPM DDM	:	- 3	25m	:	~	66w	•	2	PPm	•
• La	: 10	PPM	; 1	9	D D M	:	7	000		10			12		:	11	555 1944	:	11	64m	:	1	P P m	:
- Li	: 10	PPM	: 2	1	PPM	:	12		÷	26	550 550		45	PPm DDM	:		PPm DDm	:	10	PPM	•		PPM 	•
- Mo	: <4	PPM	: <	4	 DDM	:	< <u>4</u>	000	÷	ζΔ			200 2 A	PP1#	:	10	PP11	:	14		:	<u>ے</u> دی م	PPm 	:
• Nd	: 35	PPM	: 5	io i	., PPM	÷	35	PP	÷	(25	PP	:	275	PPM PDM	:	7.05	55m	:	19	PPM	*	14 / 75	PPM PPM	•
• Ni	: <1	PPM	: 1	6	PPM		16	000		84	000			000		45	PPm	:	770	PPm PPm	:	107	PPW	:
Рb	: <12	PPM	: (1	2	PPM	÷	(12	 DDM	÷	(12	000		(12	5500		(12)	PPm PPm	:	230	PPm PPm	:	171	ppm	:
• F'r	; (2	PPM	: 0	2	מממ	:	(2	100 m	÷	(7	000		22	000		12		:	12	664 W	:	12	PPI	:
Sc	: 37	PPM	: 5	2	PPM		51	5 F F M	÷	27	000		30	000		20	55 55 55 55 55 55 55 55 55 55 55 55 55	:	74	PPm PPm	:	44	PPm 	:
Sm	: 3	PPM	:	5	ppm		(2	000	÷	12	000		20	500		(2)	PPm DDM	:	27	ppm	:	40	PPm PPm	:
Sr	: 81	PPm	: 6	4	PPM		81			32	000		120	5500	:	247	550 570	:	170	66M	:	12	PPm 	:
Th	: <5	PPM	: (5 1	PPM	:	<5	חממ		<5	000		(5	PPM	•	~~~~	DDD PPW	:	17 /5	664 DDW	*	ora 75	PPM	•
v	: 245	PPM	: 33	8 1	PPM	:	394	mag		190	 		197			202	550 550	•	104	664W	:	5	64m	•
· Y	: 66	PPM	: 7	5 1	PPM	:	56	הבם הממ		32	000	i	13	55 0			220	:	15	66W	÷	∠ 14 つつ	PPM	•
Zn	: 121	PPM	: 18	5 1	PPM	:	107	000	;	320	000		91	50M	•	105	PDW PPW	:	10	рря	:	شد 00	 440	*
						•		66.00	•	~~~ V	b. b. m	•	/1	FF ^{III}	•	ليوتم ه	ЧЧЧ	•	90	66W	÷	99	h bw	÷
- Ag	:<250	ppp	: <2	50	ррЬ	:	(250	pph	•	(250	pph	• /	250	nnh	•	(250	nnh	•	1050		•	1750		
Au	:<15	PPD	: <1	5 1	ppb	:	(15	ppb	÷	(15	pph	: (15	pph		(15	60PP		(2.00	PPP PPU	:	12JV 77	555 570	•
		•••		- 1		•		***	•		PP0	• `			•		44n	•	110	PPD	÷	20	460	•

DESTONATION	+ 06:6			KES	ULTA	і Т .									F	R E S L	JLTA	Т			**			
NO.LABORATOIRE	: 84-	- 14856		90563	4857		95564	4858		95565	4859		95566 84- 1	5		95567	1921		95568	040		95569	0.47	
								1000		04 1			0-7 1	19000		04- 14	1001		84- 14	4862		84-14	863	
Si02	: 59	7,5 X	1	59,4	*	:	68,9	×	:	50,5	×	:	51.2	2 %	:	57.9	*	•	55.0	¥	•	54.4	*	•
AL203	: 15	5,7 %		15,7	×	:	11,6	x	:	11.8	×	1	11.7	7 %		12.9	×		14.7	Ŷ	:	14 7	~	:
Fe2031	: -	7,40 %	:	8,0	5 %	:	5,9	5 %	:	14,3	x		14.4	4 %		8.76	3 %		7.2	5 2	•	4.90	, v	
MgD	+ +	1,73 %	- 1	3,3	в %	:	1,5	7 %	:	3.8	6 %		2.9	76 X		3.40	 		A 70	- ~ ~	:			:
CaO	: 3	8,86 %	:	5,1	6 %	:	3,0	5 %	1	6.2	7 %		9.4	45 %		7.92	. <u>*</u>	:			:	2,72 10 A	: A 	:
Na2O	: 4	1,09 %	:	4,0	9 %	:	1,1;	2 %	1	2.3	o x		2.0	2 %		A.57	. .	:	- L + L +	T /4	:	10,4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	:
K20	: (,81 %	:	1,10	0 %	:	2,6	2 %	:	(0.0	4 %		0.1	1 %		10.00	· *	:		5 A 5 M	:	2,24	- X-	•
Ti02	: (,89 %	:	1,4	1 %	:	0.7	x x		2.0	6 %		2.0)5 %		1.00	Ŷ	:	1 0/			0,48	- X-	•
MnO	: (,08 X	:	0,1	4 %	:	0.0	7 %	i	0.2	0 %	-	0.1	9 %	:	1,100	· /•	:	1,00) % \ \	•	0,60	× ×	Ŧ
P205	: 0	,12 %	:	0,10	5 x	:	0.08	3 %		0.1	5 ¥		0.1	3 %	:	0 00		:	0,10	, <u>,</u>	i i	0,08		•
S	: ‹‹	,01 X	:	0,0	1 %	:	(0,0)	×		0.1	2 %	;	0.0	17 %	;	0.00	*	•	0,10) 74 1 • •	Ŧ	0,06	× ×	Į
F'AF	: 2	2,03 %	:	1,7	2 %	:	2.99	3 %		7.4	- ~ > %	:		× *	:	C + C +		÷	0,0	%	Ŧ	0,01	*	÷
						2			•	1,0	··· ··	•	~***	/ /s	•	3,35	~ ~	:	2,91	X	:	3,59	*	:
Ba	: 546	PPm	:	628	PPM	:	754	DDM	•	62	000	•	57	000	•	144			004					
Be	: 2	PPm	:	2	PPM	:	4	naa	÷	2	600m		20	550 550	:	100	PPm PPm		271	PPM		218	PPW	
Cd	: <1	PPM	:	<1	PPM	:	(1	000		<1	гг. Б.С.Ф		21	PPm DDM	:	21	PPM	:	<u> </u>	ppm		2	PPM	Ŧ
Ce	: 29		:	32	PPM	÷	66	DDM	-	27	00m	:	20	P P M	:	75	PPm	÷	<1 774	PPM		<1	PPM	:
Co	: 28	PPM	:	26	PPM	÷	8	000		AC)	PPm PPm	:	20	PPM	:	20	P P m	•	31	PPM		24	PPM	:
Cr	: 28	PPM	:	4	PPM	÷	3	800		17	PPm	:	್ಷ	PPm	:	47	PPM	÷	27	66W		21	PPM	:
Cu	: 6	PPm	:	59	100m		34	F F 10	:	74	 244	:	07		:	10	PPM	-	96	PPM	Ŧ	31	PPM	:
DУ	: 3	PPm	:	4	 	÷	24	PPm 000	:	30		•	02	m qq		47	PPM		66	PPM	-	30	PPM	:
Eu	: <1	PPM	:	1	000	÷	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	P.P.M	:	3	PPM PPM		с) 4	PPM		ć	PPM	Ŧ	3	P PM	:	2	PPM	:
La	: 13	PPM	:	15	000	÷	24	PPm PPm	:	40	55W	:	10	660 660	•	2	PPM		1	PPM	:	<1	р р м	:
L. i	: 31	PPm	:	20	PDM	÷	~~~ Q	PPm DDM	:	24	PPM PPM	•	1	99m	*	11	PPM	•	14	PPM	;	14	р р ма	:
Mo	: <4	PPM	:	4	50M		í Á	PP#	:	~~~	PP40	:	13	PPm	•	13	PPM		12	PPM	:	18	PPM	:
Nd	: <25	PPM	:	35		÷	70	PPM	:	75	P.P.m.	÷.	14	PPM	•	4	PPM	•	(4	PPM	:	<4	PPM	:
Ni	; 71	PPm	÷	15	рр <i>м</i>		21		:	20	P P M	*	30	PPM		55	PPM	:	(25	PPM	:	<25	P P M	:
Рb	: <12	mag		(12	000	÷	(12	PPm	:	110	PPm 	•	4	PPM	÷	2	PPM	:	67	PPM	;	85	PPm	:
F`۲	: (2	DDm		12	PP 00	:	10	PPm	:	112	Pbw	÷	(12	PPM		(12	PPM	;	(12	PPM	:	(12	ppm	:
Sc	: 23	50m		31	PPm	:	10	ppm	•	<u>ن</u> ک	PP M	-	(2	PPM	-	<2	PPM	;	<2	PPM	:	<2	PPM	:
Sm	: (2	PD m	÷	(2	60 0	:	17	PPm PPm	÷	50	PPM	-	39	PPM	Ŧ	53	PPM	:	25	PPm	:	18	PPM	:
Sr	: 240			140	PPm	:	104	P P M	•	~	PPM	Ŧ	. (2	₽ ₽ ₩	1	5	PPM	:	<2	PPM	:	<2	ppm	:
Th	1 (5	50m		102	250 250 200	:	104	PPM PPM	Ŧ	67	PPM	Ŧ	124	bbw	:	290	PPM	:	103	PPM	:	80	ррл	:
V	: 171	660 m		374	PDW PPW	:	 < 0 < 0 		•	(D)	PPM	÷	<5	PPm	:	<5	PPM	\$	<5	PPM	:	<5	PPM	:
Y	: 31		:	70	554 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	214	PPM	÷	388	PPM	•	237	wqq	:	449	PPm	:	201	PPm	:	139	PP M	:
Zn	: 69	555 556	:	117	55m	•	~10	P.b.w	Ŧ	23	bbw	:	59	PPM	:	63	PPM	:	31	PPm	:	23	PPM	:
		6 F 10	•	112	45W	Ŧ	81	PPM	:	150	PPm	:	92	₽ ₽m	:	98	PPM	:	85	PPM	:	62	PPM	:
Ag	:<250	ppb	:	(250	pph	•	(250	nnh	•	1050		• /	050		•									
Au	:<15	PPD	÷	(15	pph	÷	(15	PPD PPD	:	1200	PPD D-L	÷ (15	PPD	Ŧ	(250	PPD	:	<250	ррр	:	<250	ррЬ	:
			•		666	•	(10)	640	÷	13	PPD	**	10	PPD	:	<15	ppp	:	<15	ррб	:	<15	ppb	:

DESTONATION	· 05570	RESULTAT				RESULTA	η T		
- NO.LABORATOI	RE : 84- 14864	95571 84- 14865	95572 84- 14866	95573 84- 14867	95574 84- 14868	95575 84- 14869	95576 84- 14870	95577 84- 14871	
5i02	: 57,5 %	: 50,3 %	: 57,0 X	: 52.8 %	: 49.4 %	* 44.4 4	• • • • • • •	A	
A1203	: 13,6 %	: 16,9 %	; 15,3 X	: 18.8 X	16.6 %			1 57,4 %	1
Fe203t	: 9,96 %	: 10,2 %	: 9,49 %	\$ 9.93 %	· 9.98 %	11,0 A 1 8.04 V		14,8 X	:
MgO	: 3,62 %	: 5,86 %	: 3,69 %	: 3.32 ×	: 7,50 %		• 14,8 %	: 11,0 %	1
· CaO	: 9,03%	: 11,0 %	: 6,36 X	÷ 8.26 %	9,25 %	• 2,0E V		: 5,07 %	1
Na20	: 3,20 %	: 1,34 %	: 5,12 %	: 4.42 %	1,99 %	• 2,70 A	• 8,14 %	1 5,29 X	1
K20	: 0,07 X	: <0,04 %	: 0,58 %	: 0.27 %	1.09 %	t 0.77 4		1,59 X	
T102	: 1,43 X	: 0,87 %	: 1,11 %	: 0.97 %	1 0.88 X	* 0.90 *	0,26 X	: 1,67 %	1
MnO	: 0,17 %	: 0,17 %	: 0,16 X	: 0.12 %	0.19 %	1 0.06 %		1,48 %	1
P205	: 0,06 %	: 0,08 %	: 0,11 %	: 0.07 %	÷ 0.06 ¥		. 0,19 %	: 0,18 %	:
S	: 0,17 %	: <0,01 %	: 0,05 X	: (0.01 %	: <0.01 %			: 0,14 %	:
F'AF	: 1,95 %	: 2,80 %	: 1,40 X	: 0.79 %	: 2.01 %			: 0,05 %	:
						• •,70 %	• 1,60 %	: 2,73 %	:
Ва	‡ 84 ppm	‡ 25 ppm	: 281 ppm	: 93 ppm	: 220 ppm	1 171			
Be	: 3 PPm	‡ 2 ppm	: 2 PPm	1 2 PPM	÷ 2 ppm	* 101 ppm	i 34∠ PPM	193 ppm	:
Cd	‡ <1 PPM	: <1 ppm	↓ (1 PPm	÷ (1. PPM	1 1 000	: (1 ppm	• • • • • • • • •	1 3 PPM	:
Ce	‡ 17 ppm	: 7 ppm	: 18 ppm	17 PPM	16 ppm	: 20 ppm		1 PPM	;
Co	: 30 ppm	1 33 PPM	: 25 PPM	\$ 37 PPM	1 51 ppm	• 20 ppm	• 06 PPM	1 24 ppm	:
Cr	: 11 PPM	‡540 ppm	: 56 ppm	: 39 PPM	360 ppm	: 11 ppm	• ∠1 PPM	1 36 ppm	:
Cu	:165 ppm	18 PPM	\$ 62 PPm	: 194 PPM	: 23 ppm	* 11 ppm * 55 ppm	• 10 PPM	∔ 32 ppm	:
Dy	: 2 PPM	‡ 3 ppm	‡ 2 ppm	: 2 PPM	÷ 2 ppm	1 00 ppm	• 10 ppm	100 ppm	:
Eu	‡ 1 PPm	‡ <1 ppm	\$ <1 PPm	\$ <1. PPm	1 ppm	• 0 ppm	• ~1 PPM	5 6 PPM	:
La	: 8 PPM	: 4 ppm	* 8 ppm	: 5 PPM	1 8 ppm	* 2 ppm	• 2 PPM	i 1 ppm	:
Li	‡ 6 PPm	: 7 ppm	1 6 PPm	* 9 PPm	1 25 ppm	* 7 ppm	• 21 PPM	1 8 PPM	:
Mo	: (4 PPm	‡ <4 ppm	: <4 ppm	: <4 PPm	: (4 ppm	• 0 ppm	• 16 ppm	: 13 ppm	:
Nd	: 30 PPm	:<25 ppm	: <25 PPm	: <25 PPm	: (25 ppm)	1 29 ppm	• • • • • • • •	¥ (4 ppm	:
Ni	: 18 PPm	‡62 ppm	: 23 ppm	‡ 26 PPm	; 293 ppm	1 27 PPM	• 61 ppm	: 28 ppm	:
РЪ	: <12 PPm	: <12 ppm	: <12 ppm	: <12 PPM	: <12 ppm	• 22 PPm	• 17 PPM	137 ppm	:
Fr	:<2 PPm	:<2 ppm	: (2 ppm	: <2 PPM	÷ <2 ppm	• (12 ppm	• <12 ppm	\$ (12 ppm	:
Sc	3 45 PPm	: 38 ppm	: 41 PPm	: 40 PPm	: 34 ppm	• \2 ppm	• <∠ PPm	* <2 PPm	:
Sm	‡ <2 PPm	: 4 ppm	: <2 ppm	: <2 PPm	÷ <2 ppm	• 40 ppm	• 31 PPM	1 54 ppm	;
Sr	: 89 ppm	:153 ppm	: 108 ppm	: 77 PPM	\$ 200 ppm	120 ppm	• 14 PPm	12 PPM	:
Th	:<5 ppm	‡<5 ppm	: (5 ppm	: <5 PPm	: <5 ppm	+ 12V PPM	• ⊥∠⊐ PPm + /E	120 PPM	:
V	: 667 PPm	‡284 ppm	297 PPM	‡ 297 ppm	: 234 ppm	• \J PPM • 474 pp=	4 (D) PPm	‡ (5 ppm	:
Y	: 27 PPm	÷ 17 ppm	23 ppm	: 20 ppm	\$ 27 ppm	• ••••• ••••	4 171 PPM	1566 ppm	:
Zn	: 82 PPm	: 59 ppm	: 84 ppm	: 69 ppm	1 94 ppm	• •••7 PPM	1202 PPM	1 41 ppm	:
				· · · · · · ·	• • • • • • • • • • • • • • • • • • •	• 77 PPM	¥ 47 PPM	: 113 ppm	:
Ag	\$<250 ppb	: <250 ppb	: <250 ppb	: (250 pph	:(250 pph	1 (250 mmb	1 (050		
Au	‡<15 ppb	: <15 ppb	: <15 ppb	: <15 pph	1(15 pph	• (200 PPD 1 (15 ppb	• (200 ppb	: <250 ppb	:
				· · · ································	1.10 PPD	• /TO 660	∔ <15 ppb	: <15 ppb	:

				~~~~~		
95579	95580	95581	95582	95583	95584	95585
84- 14873	84- 14874	84- 14875	84- 14876	84- 14877	84- 14878	84- 14879
: 58,1 %	: 48,5 X ;	56,1 X	: 54,0 % ;	63,3 %	; 61.7 × ;	47.6 %
: 14,9 %	: 15,7 X :	15,2 X	: 14,9 % :	13,3 X	13.2 %	17.7 %
: 9,07 %	: 15,6 X :	10,0 X	: 11,6 X :	9,02 %	8.68 X 1	9.34 %
: 2,55 %	: 6,17 % :	3,12 %	: 5,14 % :	2,80 %	2.70 %	6.94 %
: 8,92 %	: 7,60 % :	6,20 %	: 7,02 % :	4,31 %	4.18 %	11.4 %
: 2,02 X	: 3,53 X :	6,05 %	: 3,83 × :	3,94 %	3.95 %	2,20 % 1
: 0,70 %	: 0,57 % :	0,53 %	: 0,29 % :	0,86 %	0.86 %	0.80 %
: 1,34 %	: 1,55 % :	1,42 %	: 1,61 % :	1,46 %	1.41 %	0.93 % :
: 0,15 %	: 0,20 % :	0,17 %	: 0,21 % :	0,19 %	0,19 %	0.14 %
: 0,20 %	: 0,05 X :	0,23 %	: 0,09 % :	0,36 %	0.33 % :	0.10 %
: 0,19 %	: 0,81 X :	<0,01 %	: 0,11 % :	0,07 %	(0,01 % :	<0.01 % :
: 1,70 %	: 1,74 % :	0,49 %	: 0,78 % :	1,32 %	2,03 % :	1.83 % :
:208 ppm	:135 ppm :	80 ppm	:111 ppm :	366 ppm 1	156 ppm 🕻	70 ppm :
12 ppm	: 2 ppm :	2 PPM	: 3 ppm :	2 ppm \$	1 ppm :	2 ppm :
: <1 ppm	: <1 ppm :	<1 ppm	: <1 ppm :	<1 PPm \$	(1 PPm :	<1 PPm :
<b>:</b> 17 ppm	: 12 ppm :	26 PPM	: 17 ppm ;	25 ppm 1	17 ppm :	13 PPm :
<b>1</b> 6 ppm	: 45 ppm :	20 ppm	: 32 ppm :	16 ppm :	38 ppm :	25 PPM :
<b>:</b> 9 ppm	47 ppm 🕻	7 ppm	: 17 ppm ;	6 PPm :	130 ppm :	5 PPM :
1 27 PPM	:214 ppm :	20 ppm	:153 ppm :	30 ррл 🕄	19 ppm :	4 PPm :
<b>:</b> 4 ppm	: 3 ppm :	6 PPM	t 3 ppm t	3 PPM 🕻	2 PPm 🕻	4 ppm :
: <1 ppm	: <1 ppm :	1 ppm	: 1 ppm :	1 PPM 🕻	1 PPM :	2 ppm :
1 8 PPM	5 ppm ‡	11 PPM	<b>; 6 ppm ;</b>	11 PPm :	5 ppm \$	5 ppm :
• 9 ppm 3	18 ppm :	5 PPM	: 13 ppm :	13 ppm 🕻	13 ppm :	5 ppm :
CA PPm	: <4 ppm 🚦	<4 ppm	: <4 PPM :	<4 ppm :	<4 ppm ‡	<4 ppm :
1 (25 ppm )	(25 ppm	36 ppm	: 30 ppm :	33 ppm :	<25 ppm :	49 ppm ‡
1 7 PPm 3	58 ppm :	9 ppm	<b>: 36 PPM :</b>	5 PPm :	86 ppm :	9 ppm :
1 (12 ppm 3	(12 ppm )	<12 ppm	: <12 ppm :	<12 PPm :	(12 ppm :	<12 PPM :
: (2 ppm )	(2 ppm :	<2 PPm	: <2 ppm :	<2 ppm :	<2 ppm :	<2 ppm :
135 ppm 3	64 ppm	36 PPm	: 55 ppm :	38 ppm ‡	36 ppm 🕻	51 ppm :
to ppm t	<2 ppm :	4 PPm	: (2 ppm :	<2 ppm :	(2 ppm 🛟	<2 ppm :
106 PPm 3	91 ppm :	158 PPM	:129 ppm :	ዎም ₽₽₩ \$	278 ppm 🕻	224 ppm :
i (D PPm 7	KS PPM :	(D PPM	1 (5 PPm 1	<2 PPm :	(5 ppm ‡	<5 ppm :
189 PPM	468 PPm :	169 ppm	1549 ppm 1	123 PPm :	192 ppm 🕻	117 ppm :
រ ភភ PPm ដ	29 ppm 🕴	58 PPM	: 41 ppm :	42 ppm \$	25 ppm 🕻	42 ppm 🛟
1 Weq 87	114 PPm :	98 PPM	:116 ppm :	181 ppm :	88 PPm :	34 PPm ‡
: (250 ppb :	(250 ppb :	<250 ppb	:<250 ppb :	<250 ppb :	(250 ppb :	(250 ppb ±
:<15 ppb /	: <15 ppb 🛟	<15 ppb	:<15 ppb :	<15 ppb :	<15 ppb :	<15 pph 1
	167 ррт 33 ррт 78 ррт 4250 ррб 415 ррб	167 ррл : 488 ррл : 33 ррл : 29 ррл : 78 ррл : 114 ррл : (250 ррв : (250 ррв : (15 ррв : (15 ррв :	167 ррм : 488 ррм : 169 ррм 33 ррм : 29 ррм : 58 ррм 78 ррм : 114 ррм : 98 ррм : (250 ррв : (250 ррв : (250 ррв : (15 ррв : (15 ррв : (15 ррв	167       ppm       : 468       ppm       : 169       ppm       : 549       ppm       :         : 33       ppm       : 29       ppm       : 58       ppm       : 41       ppm       :         : 78       ppm       : 114       ppm       : 98       ppm       : 116       ppm       :         : (250       ppb       : (250       ppb       : (250       ppb       : (250       ppb       :         : (15       ppb       : (15       ppb       : (15       ppb       : (15       ppb       :	167       ppm       488       ppm       189       ppm       347       ppm       123       ppm       1         33       ppm       29       ppm       58       ppm       41       ppm       42       ppm       1         78       ppm       114       ppm       98       ppm       116       ppm       181       ppm       1         \$       (250       ppb       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$       \$	167       ppm       1488       ppm       169       ppm       547       ppm       123       ppm       192       ppm       1         33       ppm       29       ppm       58       ppm       41       ppm       42       ppm       25       ppm       1         78       ppm       114       ppm       98       ppm       116       ppm       181       ppm       88       ppm       1         (250       ppb       :       (15       ppb       :       :       :       :       :

TIESTONATTON	•			RESL	JLTA	Т									F	<b>Ε 5 ι</b>	JLTA	ат.						···· ···· ··· ·
NO.LABORATOTRE	1 84-	14880		95587	1001	5	25588			95589			95590			95591			95592			95593		
	• 04	1-1000		04- 14	1991	Ł	34- 14	882		84- 1	4883		84- 14	1884		84- 14	4885		84- 14	886		84- 14	887	
S102	: 50	,5 %	:	44,4	*	:	47,8	×	:	52,7	x	:	50.7	*	:	46.4	*	•	74 4	•		74 /	•/	
A1203	: 17	,4 %	:	16,4	×	:	13,7	x	:	16.6	*	:	12.6	×		12.8	×	:	10 4	Ŷ	:	17 0	~	
Fe203t	: 9	,07 %	:	9,62	2 %	:	15,9	*		9.5	6 %	÷	15.9	×		19.6	×	:	10,0	· •		13,0	*	
MgO	: 5	,16 X	:	13,0	*	:	5.01	x	:	7.0	0 %		4.84	× ×		6.00	ν v.	•	~ ~ 77	~	:		*	
CaO	: 8	,19 %	:	10,3	%	:	10.0	%		9.0	6 X	;	8.69			0,00	/ <b>*</b>		0,00		-	1,08	*	
Na20	: 3	,40 %	:	1,18	3 %	:	2.63	x		3.0	3 %		2.80	× ×	•	7 J A		:	4,22		*	0,87	X.	2
К20	: 0	,16 %	:	0,47	· %	÷	(0.04	*		0.1	7 %		(0.0)		:	2, 4. 0 0/	2 A \ \	+	3,10	X		5,65	×	
Ti02	: 0	,79 %	:	0.36	5 %		1.75	×		1.0	· ~	:	1 20	· /•	:	0,20	) % • •	1	0,10	×		0,46	%	1
MnO	: 0	,17 %	:	0.14	× ×	÷	0.17	*		0.1	7 A 7 V	:	A 40	, , , , , , , , , , , , , , , , , , ,	:	<i>4,2</i>	5 %	Ŧ	0,33	×		0,44	%	
P205	: (0	.03 %	:	(0.03	. <u>.</u>	•	0.05	Ŷ	:	~ ~ ~		:	0,17		*	0,25	3 %	Ŧ	0,08	×	:	0,09	*	;
S	: 0	.03 %		0.04	×	•	0.17	Ŷ	:	10,0	7 X 1 V	•	0,01	· ~		<0,03	5 %	:	0,04	*	:	0,08	×	1
PAF	: 4	.71 %		5.01	*	:	1 00	2	:		1 A T N	:	0,01	. <b>%</b>		0,2	<b>%</b>	:	(0,01	%	:	<0,01	*	
			•	3,01		•	1400	<i>A</i>	÷	ت و ک <u>م</u>	5 %	÷	1,80	, X	÷	1,40	5 %	:	3,71	×	:	1,58	*	:
Ba	: 41	PPM	:	49	PPM	:	41	000	•	88	000	•	40	000	•	47			50					
Be	: 2	PPM	:	<1	PPM	:	3	20m	÷	2			7	000	:		99m		27	<b>PP</b> M	1	175	PPM	
Cd	: <1	PPM	:	<1	ppm	: <	1	000		<u>ر</u> ۱		:	Z1	PPM	:		<b>PP</b> m	ě.	<b>(1</b>	<b>PPm</b>	•		<b>PPM</b>	
Ce	: 15	PPM	:	(2	PPM		12	000		14	550 B	:	` <u>1</u> つ	555 555 10 10 10 10 10 10 10 10 10 10 10 10 10	:	10	PPW.	-	(1	PPM		<1	PPM	
Co	: 42	<b>PP</b> m	:	54			52	5500		75		:	50	PP10		10	<b>PPM</b>	Ŧ	45	PPM	1	69	PPM	:
Cr	: 93	PPM	:	300	000	÷	õ	PPM PPM	:	33	PPm PPm	:	00	PPM	•	72	<b>b</b> bw		3	PPM	:	6	PPM	:
Cu	: 224	PPM	:	41	55m		50	~~~	:	100	<b>P</b> Pm	:	~1	mqq	-	<u> ৩</u> ৫	ዮዮሐ	:	<2	PPM	:	6	PPM	:
Бу	: 2	PPM	÷	1	PPM	• •	A	PPW PPM	:	102	66W	÷	ంచ	PPM	-	81	PPm	:	21	PPM	:	20	PPM	:
Eu	: (1	D D M		<1 ⁻	FF	:	- -	<b>PPM</b>	:	~	66W	•		PPM		3	PPM	;	3	PPM	:	6	PPm	:
La	: 8			(2	PPm	:	~	PPM		1	PPM	1	1	PPM	:	1	PPM	:	1	PPM	:	2	PPm	:
Li	: 12		:	10	PPm	:	4	PPM	•	6	ppm	Ŧ	8	PPM	:	3	PPM	:	21	PPm	:	35	PPm	:
Mo	• · · ·		:	/ .	PPM PPM	• •	13	PPM		17	<b>PP</b> M	:	5	P <b>P</b> M	:	7	PPM	:	6	PPM	:	6	PPm	:
Nd	• • •	PPM	:	1.7	<b>b</b> bw	* <	4	PPM	:	<b>{</b> 4	PPM	:	<b>&lt;</b> 4	P P M	:	<4	PPM	:	<4	n 99	:	<4	PPm	:
Ni	+ + 74	PPII	:	120	PPM	-	39	<b>P</b> PM	:	<25	<b>PP</b> M		30	PPM	:	34	PPm	:	28	PPM	:	48	PPm	:
Ph	+ 110	PPM		33Y	ррт		50	ppm	:	128	PPM	:	56	PPM	:	23	PPM	:	3	PPM	:	8	PPM	:
Pr	• \12 • 75	 200	•	(12	PPM	• •	12	PPM	:	<12	PPm	:	<12	PPM	:	<12	PPM	:	<12	PPm	:	(12	meg	:
Sc	+ \<		•	\	PPM	÷ €	2	PPM	:	<2	PPM	:	<2	PPm	:	<2	PPm	:	<2	PPM	:	(2	nag	:
6m	•	66W	•	18	PPM	:	49	PPM	:	38	PPM	:	52	<b>PP</b> M	;	64	PPM	:	13	PPM	:	13	PPm	
0	* 12	P.P.W	÷	<2	PPm	: <	2	PPM	:	<2	PPm	:	8	PPM	:	<2	66W	:	<2	neg	:	9	100m	
31 TL	143	66W	Ŧ	53	PPM	: 1	49	PPM	:	212	PPM	:	151	PPm	:	150	PPM	:	93	DDM	•	76	000	
10	; (5	66W	:	(5	<b>PP</b> M	<b>;</b> (	5	PPM	:	<5	PPm	:	<5	PPM	:	(5	PPM	:	(5	00m	t	(5	66.00 DD0	
Č.	: 240	<b>P</b> P <b>m</b>	:	96	PPM	: 6	61	PPM	:	237	PPM	:	447	PPM	:	768	PPM		18	0040	•	24	P P M	
Y	: 23	PPM	:	8	PPM	:	40	ppm	:	25	PPm	:	64	PPM	:	27	PPM	÷	34	000	•	50	PP#	:
Ζ'n	: 129	PPM	:	62	<b>PPM</b>	:	79	PPM	:	68	PPM	:	116	₽ <b>₽</b> ₩	:	111	PPM	:	65	PPM PPM	:	48	PPM	:
Ag	:<250	PPb	1	(250	oob	• .	250		•	1050			000							-				·
Au	:<15	PPb	i	(15		+ 2	≗JV 15	PPD PPD	•	(200 (15	66D		<b>∠</b> 30	PPD		(250	PPD	:	<250	ррр	:	< 250	PPb	:
			•		r #0	• •	x	660	÷	710	660	- : <	10	ррб	:	<15	ppb	:	<15	pph	1	(15	pph	<b>±</b>

The state of the s			r	E 9 U	ILTA	T -									F	εει	JLTA	Τ·						
DESIGNATION	: 9559	14000	5	75595			95596			95597			95598			95599			95600			95601		
HO + ERECITATIOT RE	• 0-+-	14000	t	54- 14	887		84- 14	1890		84- 1	4891		84- 1	4892		84- 14	4893		84- 14	894		84- 14	1895	
Sí02	: 64,	1 %	:	77,3	*	:	75,4	×	:	73.1	×	:	73.6	×	:	81.3	*	:	78.1	¥	•	47.4	*	•
AL203	: 14,	4 X	:	12,8	×	:	11,5	×	:	11.3	x	1	12.6	×	1	9,23	, <u>x</u>		11.7	Ŷ	:	14.0	Ŷ	:
Fe2O3t	: 6,	83 %	:	0,93	× ×	:	3,20	) ×	÷	4.7	7 %	÷	5.5	7 %		2.30	2 2	÷	0.90	÷.	:	5 04	, ê	:
MgO	: 0,	94 %	:	0,18	×	:	0.5	×	1	0.5	9 %	1	0.9	5 X		0.15	5 <b>x</b>		0,00	ĉ	:	0,04		:
CaO	: 6,	03 %	:	0,75	%	1	2.62	x	i	0.6	R X	÷	2.5	1 2	;	1.40	, * , *	:	V 04	~	+	2017	· *	
Na20	: 2,	45 X	:	5,49	* *	:	6.16	3 %	1	5.6	5 X		3.89	2 2		7.51	- <i>*</i>	:	() <del>, 7 4</del>	~	*	4,43	2	
K20	: 0,	92 %	:	0,72	*	÷.	0.28	1 2	÷	1.0	6 X		0.8	 	:	1 60		:	0,00	74			' X	Ŧ
T i 02	: 0,	91 X	:	0.42	X	1	0,25			0.2	B %		0.49	2 4	:	1,07	· .	+	0,17	7.		1,41	. %	Ŧ
MnO	: 0,	19 %	:	0,02	*	ż	0.05	ī x		0.0	7 %	÷	0.04	( <del>*</del>	:	0,07		÷	0,32	*		1,03	5 X	:
F205	: 0,	26 %	:	0.07	×	•	(0.07	. <u>.</u>		20.0	, A X V	:	0,00	,	:	(0,03	) X	÷	0,02	*	•	0,12	. *	:
S	: 0,	17 %	:	(0.01	*	÷	(0.01	Ŷ		(0,0)	374 192		0,0	7 1/			• <b>*</b>	1	0,06	×	•	0,22	*	:
FAF	: 1.	10 %	:	0.94	*	•	0.00		:	0,11	E V	:	0,20	- A - N	:	(0,01		Ŧ	(0,01	X	:	0,08	*	:
	•			-,,,,	~	•	0,00	~	•	<b>Vj</b> 1.	J /4	•	V, 0.	< <b>A</b>	•	0,23	5 %	:	0,91	*	:	2,00	× ×	:
Ba	: 360	PPM	: 3	92	PPM	:	52	PPM	:	13		:	134		•	149		•	15					
Be	: 3	<b>PP</b> M	:	2	PPM	:	3	naa	÷	- 2	000	÷	27	555 555	:	107	PPm	:	10	PPM		157	PPM	
Cd	: <1	PPm	: <	1	PPM		<1	000		< 1	000		<1 ¹		:	Z 1	PPm PPm	:		<b>PPm</b>	÷		PPM	Ŧ
Ce	: 33	<b>PPM</b>	:	28	ngq	:	44	000	÷	44	000		47		:	77	PPm PPm	*	<b>(1</b>	PPM		( <u>)</u>	PPM	:
Co	: 5	PPM	: <	3	DDm	÷	(3	000		5	PPm DDD	•	40	PPm	:	23	PPm	•	11	PPM	•	Ŷ	PPM	:
Cr	: <2	PPm	: <	2			(2	000		(2 [°]	PP40 PP40	;	7	PPm PPm	:	\ <u>`</u>	n d d	i	3	<b>PPW</b>		4	PPM	:
Cu	: 19	PPM	:	30	000	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PP	:	14	99m	:	3	ppm	+	70	<b>P</b> PM		10	<b>PPW</b>	Ŧ	20	ppm	:
Dy	: 6	PPm	:	4	 DDM	-	7	PPm PPm	:	7	PPm	:	40	666 666 666 666 666 666 666 666 666 66	•	ತ್ವ	PPM		12	66W		21	PPM	;
Eu	: 2		±	1	<b>PPM</b>	:		PP-0	:	/. ¹	Ppm	:	10	66w	+		<b>PPW</b>	-	. (	66W	:	11	<b>PP</b> M	:
La	: 14	PPM	÷	13	<b>PP</b> ^m		21	PPm PPm	:	10	PPm	:	10	<b>PPW</b>	÷	<1 1	<b>P</b> PM		<1	<b>PPW</b>	:	<1	PPM	:
Li	: 12	., PPm	÷	2	FF	•	~1	PPm PPm	•	17	P P m	:	18	PPM	•	15	<b>P</b> PM	•	6	PPM	:	4	PPM	:
Mo	: <4			<u> </u>	<b>PPM</b>	:	/ ^ 3	PPm PPm	:		pbw D		14	PPM	•	2	66W	:	3	<b>bbw</b>	:	13	PPM	:
Nd	: 40	50m		7 27	P P P P	•	<b>`</b> 70	PPm PPm	:	-70	PPM	•	(4	PPM	•	< 4	<b>PPm</b>	;	<b>&lt;</b> 4	PPM	:	10	PPM	:
NI	: <1	50m		1	PPM PPM	:	20	PPm		32	PPM	•	42	PPm		(25	<b>PP</b> M		<25	PPM	:	<25	PPM	:
Fb	1 (12			10	220	:	<10 <1	PPm	:	1	PPM	÷	(1	PPM	:	2	PPM	:	3	PPM	:	10	PPM	:
Pr	: (2	PPM DDm			999 999	:	(12)	PPM		(12	PPM		(12	PPM	:	30	PPM	:	<12	PPM	:	13	ppm	:
Sc	: 29	66. 60.	• •	10	PPm PPm	•	10	<b>PPW</b>	*	12	PPM	•	<u>(2</u>	ppm	:	10	<b>PP</b> M	:	26	ppm	:	46	PPM	:
So	• <u>~</u> /	PPM	• • •	- -	PPM	•	12	PPM		12	PPM		14	PPM	:	4	PPM	:	5	<b>bbw</b>	:	13	ppm	:
Sr	152	PPm	• •	2	PPm	•	< <u>~</u>	<b>PPm</b>	Ŧ	4	<b>PPM</b>		10	PPM	:	16	PPM	:	21	PPM	:	38	PPM	:
Th	+ 1JZ	PPm PPm	+ 1	∡0 ⊑	PPM		46	<b>bb</b> w	Ŧ	54	<b>PPM</b>		47	<b>PPM</b>	:	81	PPM	:	26	PPM	:	81	PPM	:
	• •	P P P		ວ 	PPM	Ŧ	32	ppm		(5	PPM	•	<5	PPM	;	<5	PPM	:	(5	ррл	:	(5	ppm	:
Ŷ	+ 12 + 27	PP4 PP4	*	13	66W	- <b>F</b>	C2	ppm	•	<2	PPM	:	<2	PPM	:	4	PPM	;	8	PPM	:	52	PPM	:
75	+ 03 + 77	66W	•	చె	PPM -	:	66	<b>PP</b> M	:	70	PPM	:	78	PPM	:	49	PPM	:	16	PPM	:	28		
411	• 03	PPM	÷	13	PPM	:	3	PPM	;	23	PPM	:	23	PPM	:	175	PPM -	:	11	PPM	:	34	PPM	÷
Ag	:<250	pph	: /	250	onb	•	1050		•	1050		•											-	
Au	:<15	pph	· · · ·	15	660 660	•	(200 (15	660 660	÷	1450	PPD		250	PPD	:	(250	ppb	:	<250	ррр	:	(250	PPD	:
			• \	10	660	÷	(12	PPD	Ŧ	(15	PPD		15	PPD	:	(15	PPb	:	<15	PPb	:	(15	ppb	:

TIESTONATTON				RES	ULTA	T								F	: E S U	LTA	т						
NO.LABORATOIRE	: 84-	- 14896		95603	4897	95 84	5604 1- 14898		95605	4800		95606	000		95607	0.04		95608			95609		
							110,0		0-1 1			64- 14	700		84- 14	901		84- 14	702		84- 149	903	
Si02	: 78	3,2 %	:	72,4	×	\$ 7	73,0 %	:	76.2	×	:	78.1	¥	•	50.4	v	•	(7.4	•		75 6		
A1203	: 5	,53 %	:	12,2	x	: 1	3,0 %	:	9.5	4 X		10.6	*		17.4	N V	:	1 4 7	*	÷	1010	*	•
Fe2031	: 3	,34 %	:	4,50	5 X	:	2,77 %	:	3.1	0 %	÷	2,91	ž	;	5.95	A V	:	1411	*		11,1	*	
MgD	: 0	42 X	:	0,51	1 %	:	0.63 %	1	0.4	0 %	•	0.13	Ŷ	:	1 04	~	:	4,20	*	÷	್ರಾ ವಿಷ	<b>%</b>	•
CaO	: 0	•88 %	:	0,97	7 %	:	2.27 %		3.2	0 x		1.26	Ŷ		7 77	Ŷ	:	1,01	*		0,01	X	
Na2O	: 2	,74 X	:	5,90	> %	:	3.32 %		1.7	a v	:	F 01	*	•	7,13	74 12	•	2,17	*	•	1,29	*	:
К20	; 1	,43 %	:	0,31	ι χ	:	2.79 %	ż	2.3	1 2		0.17	Ŷ	:	2,70	× ·	•	4,24	X	-	2,14	X	
T102	: 0	,32 %	:	0,38	3 %	:	0.31 %		0.2	4 M	:	0,17	2	:		~	*	4,19	*	•	<u>ل</u> يك ت€و ى	*	•
MnO	: 0	,04 %	:	0,00	5 %	1	0.07 %		0.0	5 A 7 X		0,03	Ŷ	:	0,71	X		0,56	*	÷	0,21	*	•
P205	: 0	,04 %	:	0,06	5 <b>x</b>	÷ <	0.03 %		0.0	1 ~ 1 ~	:	0,03	Ŷ	:	0,13	×	•	0,04	*	•	0,07	<b>%</b>	•
S	: <0	,01 %	:	<0,01	۲ ۲	:	0.04 %	:	(0.0	1 2	;	0,03	Ŷ	:	0,10	*	-	0,26	*	Ŧ	<0,03	%	:
PAF	; 1	,43 %	:	1,20	) %	:	3.12 %	•	1.0	~ ~ 7 %	:	0.77	Ŷ	:	0,04	~	÷	0,01	74 12	Ŧ	(0,01	*	
				-		-	-,	•	±97		•	0,13	~	•	<i>2</i> ,41	~	÷	4,01	*	÷	0,66	%	:
Ba	: 137	<b>P</b> Pm	:	23	PPM	: 10	9 ppm	•	28	000	•	07		•	107						a	••	
Be	: 2	PPM	:	2	PPM	:	3 ppm		20	000 000	•	73	PPM	•	197	PPM	-	0,18	*		0,13	*	:
Cd	: <1	PPM	:	<1	Ppm	: (1	- FFM		Z1	550 B	:		P P M	*		PPM	•	4	PPM	:	3	PPM	:
Ce	: 15	PPM	:	17	PPM	1 1	9 000	•	12	668 668	:	1	PPM	•	(1	PPM	-	<1	PPM	-	<1	<b>PPm</b>	:
Co	: <3	PPM	:	(3	PDM	1 13	· ••••		17	PP:::	:	40	PPM	*	23	<b>bbw</b>	•	146	PPM	:	75	PPM	:
Cr	: 18	PPM	:	18	PPm	: 2	4 00m		100	660	:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<b>PPW</b>	÷	15	PPM	1	10	PPM	:	(3	PPM	:
Cu	: 22	PPM	:	27	PPM	: 4	3 000	:	4.4	554 1	:	12	P P M	÷	(2	<b>PPm</b>	-	25	PPM	:	(2	<b>bbw</b>	:
Гу	: 9	PPM	:	10	PPm	1 1	3 000	:	27 27	PPm		11	PPM	i	95	<b>P</b> PM	-	233	PPM	:	2	PPM	:
Eu	: <1	<b>P</b> PM	:	<1	m m	1 21		:	63 /1	PPm		11	<b>PP</b> M	•	5	66W	÷	6	PPM	:	13	<b>bbw</b>	:
La	: 7	PPM	:	8		1 1	0 555		1	ppm	÷	2	<b>PPM</b>		2	PPM	:	3	PPM	:	1	<b>bb</b> w	:
Li	: 5	PPM	:	9		: 1	0 ppm	:	<u>ن</u> د: م	PPm	•	19	66 W		10	<b>PP</b> W	:	77	PPM	:	31	<b>bbw</b>	:
Mo	: 10	PPM	:	10	F F III	* 1	0 ppm	:	24	PPM	•	2	PPM		22	PPM	:	84	ppm	:	12	PPM	:
ЫЧ	: <25			(25	6600	+ 10	V PPM 5 555	:	60	PPM		<b>4</b>	66W		<4	PPM -	+	<4	PPM	:	<b>{</b> 4	PPM	:
Ni	: 9	Ppm		10	PP/	• \	4	•	(25	<b>PP</b> M	Ŧ	45	<b>PPm</b>	:	34	<b>bbw</b>	:	80	PPm	:	49	PPM	:
Fb	: (12	DDm	÷	14	PPM	• •	-+ PPM	•	107	PPM		<1	PPM	:	<1	PPM	:	<1	PPM	:	<1	PPM	:
Fr	: 52	P P M	:	50	660 660	+ 1	r 66W		23	<b>P</b> PM	:	(12	<b>Pbw</b>	:	<12	66W	:	16	PPM	:	(12	PPM	:
Sc	: 8	PDM		6	250	• 1	o ₽₽₩ ∕	Ŧ	513	PPM	•	<2	<b>bbw</b>	:	<2	PPM -	:	<2	ppm	:	<2	PPM	:
Sm	: 35	60m	÷	τó	65m	• =	D PPM	÷	8	<b>PPm</b>	•	18	PPM	:	25	PPM	:	12	PPM	:	13	PPm	:
Sr	: 18	50m		30	222 222	+ ===	r bbw		272	<b>Pbw</b>	:	4	PPM	:	<2	66W	:	13	PPM	:	13	PPM	:
Th	: <5	60m		25	254 254	+ 30	J ₽₽m 	:	15	PP@	:	103	PPM	:	232	PPM	:	794	PPM	:	146	ppm	:
V	: 15	600	:	17	PPm PPm	+ 15	PPm	•	<5	PPM	:	<5	PPM	:	(5	<b>PP</b> M	:	8	PPM	:	(5	PPM	:
Y	: 20	E P IN	•	10	PPM DDD	+ 20	J PPm	:	100	PPM	•	17	PPM	:	98	<b>P</b> PM	:	109	PPM	:	<2	ppm	:
Zn	1 23	50m	•	17 11	222 PPM	+ 23	2 PPM	:	35	PPM	:	106	PPM	:	39	<b>PPM</b>	:	46	PPM	:	118	<b>P</b> Pm	:
	. 20	P.P.0	•	00	чЬw	+ 28	3 PPM	:	4	PPM	:	20	PPM	:	62	PPM	:	56	<b>P</b> P <b>m</b>	:	51	<b>P</b> PM	:
Ag	:<250	PPb	:	<250	PPD	: (25	50 pph	•	(250	nnh	• /	250		•	1050								
Au	:<15	PPb	:	<15	PPb	: <15	5 pph		(15	PPP	+ + >	15 1	-HD	:	1200 /15	PPD	÷	380	PPD		C250	PPD	:
					· •			•	(10	660	+ `	(10) B	מאי	÷	(12	PPD		270	PPD	;	<15	ppb	:

DESTONATION		· • •		RED	U 1. I I	A 1										RES	υιτι	АТ						
NO+LABORATOIR	i 950 E i 84-	- 14904		95611 84-1	4905		95612 84-14	1904		95613	1907		95614	908		95615	4000		95616	010		95617		
										0.1 1			0, 1			04 1	-707		04- 14	10 IV		84- 1	1711	
Si02	: 76	3,2 %	:	74,8	*	:	71,3	×	:	59,1	%	:	55,9	%	:	41.6	x	:	42.5	×	t	42.8	×	
A1203	: 11	1,1 %	:	11,1	X	:	11,0	x	:	15.3	×	:	11,4	x	:	19.7	×	:	19.3	*		22.0	¥	
Fe203 t	: 3	3,14 %	:	4,2	2 %	:	2,60	> x	1	4,3	7 %	:	15,3	x	:	7.1	4 X	÷	8.63	. <u>x</u>	÷	6.5	i 2	
MgD	; (	),33 %	:	<0,0	4 %	:	0,53	5 X	:	0.14	4 X	:	0,63	s x	:	13.3	×	-	13.9	*		8.7	 	
CaO	: 1	.,54 %	:	1,3	2 %	:	4,43	5 X	:	14,8	*	:	5,61	. <b>X</b>	:	9.7	οx	:	6.19	×		11.7	. X	
Na20	: 4	1,79 %	:	5,8	5 %	:	2,78	3 X	:	0.94	¥ %	:	4,58	8 %	:	0.9	2 %	:	0.66	× ×		1.4	. ~	
K20	: (	),33 %	:	0,7	7 %	:	1,57	7 X	:	(0.04	4 %	:	0,16	*	:	0.8	0 %	i	(0,04	x	-	(0.0	í v	
T102	: (	),18 %	:	0,2	1 X	:	0,22	2 %		0.68	3 %	:	0.95	i X	:	0.1	7 %		0.34	Y	:	0 4	· ·	
MnÖ	: (	),05 %	:	0,0	2 %	:	0,07	7 X	1	0.05	5 %	÷	0.17	*		0.1	0 %		0,10	v.	:	0.00	5 <b>7</b>	
F205	: ‹(	),03 %	:	<0,0	3 %	:	(0.03	s x		(0.03	τ		0.55	: <u>*</u>	•	(0.0	7 4		20.07	~~~	:			
S	: ‹‹	,01 %	:	0,34	4 %	:	(0.01	*	1	(0.01	×	÷	0.02	*		(0,0	1 4	:		· ~	:			
FAF	: 0	),55 %	:	1,14	4 %	:	4.71	×		3.00	) %		3.94	× ×		5.1	5 %	:	4 00	~	:	(0,0)		
				-					•			*	2,,,	~	•	5,1	- 4	•	0,07	~	۲	4,43	. 7	
Ba	: 149	, bbw	:	<del>9</del> 9	PPM	:	290	000	:	48	ppm	•	111	000	•	191		•	75					
Be	: 2	2 PPm	:	2	PPM	:	2	opm	÷	1	000			000		1/1 (1	550 550	:	20	PPM	*	27	PPM	
Cd	: <1	PPM	:	<1	PPM	:	< <u>1</u>	DDM		<b>71</b>	FF		<1 ⁻	000	:	/1		:	11	66w	•		PPM	
Ce	: 77	/ PPM	:	47	PPM	· •	54	000	÷	11	500	•	ΔΔ	PD.	:	12	PP#	:	(1)	PPM	-	(1	PPM	
Co	: (3	PPM	:	(3	ຍຍາກ		(3	000		37	000	:	77 75	PPM	:	12		:	12	PPM		(2	PPM	
Cr	: <2	PPM	:	(2	000		0	5500	•	80	PPm DDM	:	(2	PPM PPM	:	24	PPm 	•		<b>PPW</b>		47	66W	:
Cu	: 9	PPM	:	6	התכם		`~ <u>_</u>	000		54	PPM	:	`~	PPM PPM	:	~1	PPm	•	260	PPM		35	PPM	:
Iу	: 13	maa	÷	7	000		Ĕ	<b>PP0</b>	:	5	PPm PPm	:	10		:	, ⁰	PPm	•	25	PPM		48	PPM	;
Eu	: 2	PPM	:	1	000		1	<b>PPm</b>	:	4	- PPm	:	7	<b>PFM</b>	:	11	<b>Pbw</b>	•	2	₽P <b>m</b>	Ŧ	2	<b>PP</b> M	:
La	: 32	PPM		21	000		24	PPm PPm	:	-	PPM	•	د ۱۰	PPM	•	(1)	<b>P</b> Pm	÷	<1 (1	66W	:	<1	PPM	:
Li	: 5	PPM	1	<1	550 550		27 0	PPM PPM	:	Ś	PPM	•	10	6640	÷	<2 77	PPM		(2	PPM	:	(2	PPM	
Mo	: <4	550	÷	4	PP44	:	1.	PPm PPm	:	1.	PPm 			PPM	•	Sr (A	PPM		38	PPM	:	19	PPM	
Nd	: 48	DD M		70		:	40	P P M		14	66W	÷	14	PPM	•	<b>4</b>	PPm		<b>&lt;</b> 4	<b>PPW</b>	:	<b>&lt;</b> 4	PPM	:
Ni	1 (1	DDM DDM		<b>(1</b> )	PPm DD <b>D</b>	:	74	PPm 	÷	120	PPM	÷	38	PPM		(25	PPM		(25	PPM	:	<25	PPM	:
Ρ'b	: (12			(17)	PPm PPm	:	110	66W	÷	190	<b>P</b> P <b>m</b>	Ŧ	(1)	66W		476	PPM	:	565	PPM	:	277	PPM	:
Fr	: (2	600		(2)	PD <b>D</b>	:	(12)	PPM 		(12	PPM		(12	PPM	Ŧ	(12	PPM	•	(12	<b>PP</b> m	:	(12	PPM	:
Sc	: 10	m 		14	PPM PPM	:	10	66W	*	<2 0/	ppm	Ŧ	<2 0/	PPM		<2	<b>PP</b> M	:	<2	PPM	:	(2	PPM	:
Sm	: 13		;	7	PP#	:	70	664 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	÷.	26	PPM	Ŧ	26	<b>PPW</b>	Ŧ	10	PPM	•	19	<b>PP</b> m	:	17	PPM	:
Sr	: 82		:	41	200 200	:	00		ě.	12	PPM	Ŧ	8	PPM	Ŧ	<u>{2</u>	PPM	:	(2	PPM	:	<2	PPM	:
Th	: (5	PP#	•	71	550 551	•	78	PPM		120	<b>Pbw</b>	Ŧ	187	PPM		140	PPM	:	158	PPM	:	169	PPM	;
V	1 (2	000	:		44m	:	10	hbw	•	(5)	<b>PPM</b>	Ŧ	< <u>5</u>	<b>PPW</b>	:	6	PPM	:	9	PPM	:	18	PPM	:
Ŷ	122	55 55 55 55 55 55 55 55 55 55 55 55 55	:	3∠ ∡7	66W	i.	12 E/	<b>P</b> PM		208	PPM	:	(2	PPM	:	50	PPM	:	105	PPM	:	130	PPM	:
Zn	· · · · · · · ·	PP#	:	11	PPM	÷	30	<b>P</b> P <b>m</b>		21	PPM	:	107	₽₽ <b>m</b>		5	P P M	:	8	PPM	:	11	PPM	:
20	+ 60	664	+	11	66W	÷	63	PPM	;	15	<b>ppm</b>	ŧ,	44	<b>bbw</b>	:	53	66W	:	69	PPM	:	44	<b>P</b> PM	;
Ag	:<250	рър	:	250	PPD	:	<250	ррр	:	(250	ррр	:<	250	PPD	:	(250	eep	:	(250	pph	:	(250	poh	•
Au	:<15	ppp	:	100	PPb	:	<15	ррб	:	<15	ppb	:<	15	ррЬ	:	<15	PPb	:	(15	pph	÷	(15	onb	:

+				RESL	JLTA	Τ				···· · · · · · · · · · · · · · · · · ·						RESU	LTAI	r ——						
+ DESIGNATION	: 956	18		95619			95620			95621			<b>9</b> 5622			95623		9	5624			95625		
+ NO.LABORATOIRE	: 84-	14912		84- 14	913		84- 14	914		84- 14	915		84- 14	4916		84- 14	917	8	4- 149	718		84- 14	919	
+ SiO2	: 44	,6 X	:	50,3	%	:	59,1	×	:	62,5	x	:	60.6	*	:	74.5	*	:	61.4	×	t	58.9	*	:
+ AL203	: 24	,6 X	:	13,2	%	:	16.1	×	:	16,7	×	:	14,8	*	:	15,2	*	:	15.0	x	1	20.1	×	
+ Fe203t	: 5	,70 %	:	15,8	×	:	4,86	5 <b>X</b>	:	4,36	× ×	:	5,1	7 %	:	0,86	×		5.86	×	÷	7.82	× ×	i
+ MgO	: 6	,07 %	:	5,93	5 X	;	2,25	5 <b>X</b>	:	1,11	<b>X</b>	:	1,6	2 %	:	<0.04	×	:	4.87	x	:	3.34	*	:
+ CaO	: 13	,1 %	:	8,63	5 %	:	4,14	* *	:	2,89	× ×	:	2,80	o x	:	0.04	*	:	4.24	x	1	0.40	x	
+ Na20	: 1	,55 %	:	2,22	2 %	:	5,25	5 <b>X</b>	:	4,35	5 %	:	2.3	7 %	:	5.49	*	:	4.55	x	1	1.33	. x	1
+ K20	: <0	,04 X	:	0,93	× ×	:	4,96	s *	:	3,77	· *	:	5,3	2 %	:	3,28	*	:	1.90	×	:	2.68	*	÷
+ TiO2	: 0	,38 %	:	1,83	s %	:	0,48	3 X	:	0,37	' %	:	0,5	7 %	:	0.04	*	:	0.54	×	:	0.73	*	÷
+ MnO	: 0	,08 %	:	0,19	× ×	:	0,07	' X	:	0,09	× ×	:	0,00	5 %	:	(0.01	*	:	0.09	x	:	0.04	X	
+ P205	; (0	,03 %	:	0,16	. *	:	0,31	. *	:	0,22	2 %	:	0.1	7 %	:	<0.03	*	:	0.17	x	:	0.05	×	
+ S	: <0	,01 %	:	0,13	s ×	:	0,06	5 X	:	0,01	*	:	0,13	3 %	:	(0,01	×	:	(0.01	×		<0.01	×	:
+ FAF	: 4	,65 %	:	1,18	* *	:	1,97	, X	:	3,68	3 X	:	5,08	3 %	:	0,20	*	:	1.65	*		4.54	×	
+																					•	.,		•
+ Ba	: 43	PPM	:	365	PPM	:	0,59	× ×	:	0,26	× ×	:	0,33	2 %	:	624	PPA	: 7	04	opm	:	0.10	*	:
+ Be	: <1	PPM	:	з	PPM	:	4	PPm	:	5	ppm	:	3	66W	:	6	PPM	:	3	PPM	:	4	ppm	
+ Cd	: <1	p p m	:	<1	PPM	:	<1	<b>P</b> P <b>m</b>	:	<1	ppm	:	8	PPM	:	< 1	PPM	: 0	1	PPM	:	(1	maa	1
+ Ce	: <2	PPM	:	51	PPM	:	121	PPM	:	73	PPM	:	119	ppm	:	<2	PPM	: :	34	PPm	:	61	000	
+ Co	: 34	PPM	:	59	PPM	:	12	PPm	:	7	₽₽ <b>m</b>	:	14	PPM	:	<3	PPM	: :	23	PPM	:	19	PPm	:
+ Cr	: 62	PPM	:	85	<b>PPM</b>	:	14	PPm	:	(2	PPM	:	4	<b>bb</b> w	:	(2	PPM	: 3	40	PPM	:	360	PPM	:
+ Cu	: 55	<b>P</b> P <b>W</b>	:	57	PPM	:	26	PPM	:	13	<b>P</b> PM	:	621	PPM	:	2	PPM	: :	25	PPM	:	26	PPM	:
+ [iy	: 2	PPM	:	8	PPM	:	4	PPM	:	2	PPM	:	2	PPM	:	<1	PPM	:	1	PPM	:	2	PPM	:
+ Eu	: <1	66W	:	2	PPM	:	3	PPM	:	1	PPM	:	3	<b>P</b> PM	:	<1	PPM	:	1	PPM	:	2	PPM	:
+ La	: <2	PPM	:	28	<b>PPm</b>	:	57	PPM	:	42	6 P P M	:	63	PPM	:	<b>&lt;</b> 2	PPm	:	16	PPM	:	28	PPM	:
+ Li	: 24	66W	:	24	PPM	:	30	PPM	:	27	ppm	:	55	ppm	:	<1	PPM	: :	22	PPM	:	76	PPM	:
+ Mo	: <4	PPM	:	<b>&lt;</b> 4	<b>PP</b> M	:	<b>&lt;</b> 4	PPM	:	<4	PPM	:	<b>&lt;</b> 4	<b>PPM</b>	:	<b>{</b> 4	PPM	: ‹	4	PPM	:	<b>{4</b>	PPM	:
+ Nd	: <25	PPM	:	96	<b>PPM</b>	:	61	PPM	:	33	<b>PP</b> M	;	60	PPM	:	<25	PPM	: (	25	PPM	:	30	PPM	+
+ NI	: 139	PPM	;	40	PPM	:	5	PPM	:	<1	PPM	:	13	PPM	:	<1	PPM	: :	55	PPM	:	82	PPM	:
+ Pb	+ <12	ppm	:	(12	PPM	;	<12	PPM	:	<12	PPM	:	12	PPM	:	(12	PPm	<b>‡</b> <:	12	PPM	:	<12	ррл	:
+ F'Y	: <2	ppm	:	<2	PPM	:	<2	<b>PPM</b>	:	<2	PPM	:	<2	ppm	:	<2	PPM	: 0	2	PPM	:	<2	ppm	:
+ Sc	: 21	PPM	:	48	PPM	;	9	PPM	:	7	ppm	:	9	<b>PP</b> M	:	<1	PPM	:	19	PPM	:	26	PPM	:
+ Sm	: <2	PPM	\$	9	ppm	:	9	PPM	:	<2	РРМ	:	8	PPM	:	<2	<b>PPM</b>	: (3	2	PPM	:	3	PPM	:
+ Sr	: 179	66W	:	280	66w	:	0,19	* *	:	0,11	*	:	830	ppm	:	32	PPm	: 70	65	PPM	:	476	PPM	:
+ Th	: 22	ppm	:	34	PPm	:	<5	PPM	:	10	PPM	:	8	PPM	:	<5	PPM	: <:	5	PPM	:	<5	66W	:
+ V	: 138	PPM	:	351	<b>PP</b> M	:	153	ppm	+	54	PPM	:	182	PPM	:	<2	PPM	: 12	20	PPM	:	143	PPM	:
+ Y	: 7	PPM	:	50	PPM	:	31	PPM	:	30	₽₽M	:	21	ppm	:	1	PPM	: 1	14	PPm	;	16	ppm	:
+ Zn	: 38	<b>P</b> Pm	:	137	PPM	:	58	ppm	:	72	<b>PPM</b>	:	54	<b>PPm</b>	:	17	PPM	: 8	32	PPM	:	125	ppm	:
+																								
+ Ag	:<250	66P	:	<250	ррЬ	:	<250	PPD	:	<250	PPD	:	1,2	g/t	:	<250	ррб	: <3	250	ррЬ	:	(250	ppb	:
+ Au	:<15	66p	:	<15	ррЬ	:	<15	ррб	:	<15	ppb	:	70	ррЬ	:	<15	PPb	: <1	15	PPD	1	<15	ppb	:
+																	-							-
+ DESIGNATION         : 95426         95627         95628         95629         94-14920         84-14921         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14922         84-14923           +         A12D3         : 13,7 X         : 14,7 X         : 11,1 X         : 9,00 X         : 71,8 X         : 71,8 X           +         M2D3         : 1,73 X         : 3,77 X         : 3,67 X         : 3,95 X         : 0,40 X         : 71,8 X           +         Na2D         : 4,37 X         : 3,67 X         : 3,67 X         : 3,67 X         : 0,70 X         : 0,40 X           +         M0D         : 0,04 X         : 0,06 X         : 0,011 X         : 0,06 X         : 0,07 X         : 0,06 X           +         P205         : 0,05 X         : 0,06 X         : 0,07 X         : 0,06 X         : 0,06 X           +         Ba         : 530	+			• •••• •••• <i>••••</i> •••• •••			R E 8	SULT	ΑT															
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------	----------------	-----	----------------------------------	-------	---	------------------	-------	----	-------	--------------	---	-----------------	--------------------	---									
<pre>+ NolLARDKATDIRE : 84- 14920 84- 14921 84- 14922 84- 14923 + + Si02 : 72,0 x : 66,4 x : 64,0 x : 71,8 x + Al203 : 13,2 x : 14,7 x : 11,1 x : 9,00 x + Fe203t : 3,74 x : 5,41 x : 4,81 x : 5,93 x + M90 : 1,53 x : 2,46 x : 2,46 x : 1,89 x + Ca0 : 2,54 x : 2,46 x : 2,46 x : 1,89 x + Ca0 : 1,42 x : 1,81 x : 0,53 x : 1,48 x + Ti02 : 0,46 x : 0,52 x : 0,41 x : 0,35 x + Mn0 : 0,04 x : 0,06 x : 0,11 x : 0,07 x + P205 : 0,05 x : 0,06 x : 0,11 x : 0,07 x + P205 : 0,05 x : 0,06 x : 0,03 x : 0,06 x + PAF : 1,91 x : 2,46 x : 6,39 x : 6,89 x + + Ba : 530 PPM : 768 PPM : 756 PPM : 472 PPM + Be : 2 PPM : 2,46 x : 6,39 x : 6,89 x + + Ba : 530 PPM : 768 PPM : 71 PPM : 14 PPM + Cc : 16 PPM : 41 PPM : 41 PPM : 41 PPM + Cc : 16 PPM : 41 PPM : 41 PPM : 41 PPM + Cc : 16 PPM : 32 PPM : 32 PPM + Ca : 16 PPM : 33 PPM : 22 PPM + Ca : 16 PPM : 33 PPM : 32 PPM : 32 PPM + Ca : 16 PPM : 33 PPM : 33 PPM : 43 PPM + Ca : 16 PPM : 33 PPM : 30 PPM : 43 PPM + Ca : 16 PPM : 33 PPM : 30 PPM : 43 PPM + Ca : 16 PPM : 33 PPM : 22 PPM : 41 PPM + Ca : 16 PPM : 30 PPM : 30 PPM : 41 PPM + Li : 1 PPM : 1 PPM : 1 PPM : 11 PPM + Li : 15 PPM : 38 PPM : 30 PPM : 41 PPM + Li : 15 PPM : 38 PPM : 30 PPM : 41 PPM + Ni : 16 PPM : 41 PPM : 41 PPM : 41 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 16 PPM : 42 PPM : 42 PPM : 42 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : 42 PPM + Ni : 178 PPM + Ni : 16 PPM : 41 PPM : 50 PP</pre>	+	DESIGNATION	;	9562	6		9562	27		95628	3		95629											
+ $Si02$ : $72,0 \times$ : $66,4 \times$ : $64,0 \times$ : $71,8 \times$ + $A1203$ : $13,2 \times$ : $14,7 \times$ : $11,1 \times$ : $9,00 \times$ + $Fe203t$ : $3,74 \times$ : $5,41 \times$ : $4,81 \times$ : $5,93 \times$ + $M90$ : $1,53 \times$ : $2,46 \times$ : $2,46 \times$ : $1,89 \times$ + $Ca0$ : $2,54 \times$ : $2,95 \times$ : $5,51 \times$ : $3,22 \times$ N $a20$ : $4,37 \times$ : $3,67 \times$ : $3,95 \times$ : $0,40 \times$ + $K20$ : $1,42 \times$ : $1,81 \times$ : $0,53 \times$ : $1,48 \times$ + $Ti02$ : $0,44 \times$ : $0,52 \times$ : $0,41 \times$ : $0,35 \times$ + $Mn0$ : $0,04 \times$ : $0,06 \times$ : $0,11 \times$ : $0,07 \times$ + $F205$ : $0,05 \times$ : $0,06 \times$ : $0,011 \times$ : $0,06 \times$ + $F4F$ : $1,91 \times$ : $2,46 \times$ : $0,63 \times$ : $0,06 \times$ + $PAF$ : $1,91 \times$ : $2,46 \times$ : $6,39 \times$ : $6,89 \times$ + $Ba$ : $530 \text{ Ppm}$ : $768 \text{ Ppm}$ : $756 \text{ Ppm}$ : $472 \text{ Ppm}$ + $Ba$ : $530 \text{ Ppm}$ : $768 \text{ Ppm}$ : $754 \text{ Ppm}$ : $472 \text{ Ppm}$ + $Ba$ : $530 \text{ Ppm}$ : $71 \text{ Ppm}$ : $(1 \text{ Ppm}$ : $(1 \text{ Ppm}$ - $Ce$ : $45 \text{ Ppm}$ : $58 \text{ Ppm}$ : $73 \text{ Ppm}$ : $43 \text{ Ppm}$ + $Ce$ : $45 \text{ Ppm}$ : $21 \text{ Ppm}$ : $17 \text{ Ppm}$ : $16 \text{ Ppm}$ - $Ce$ : $16 \text{ Ppm}$ : $21 \text{ Ppm}$ : $17 \text{ Ppm}$ : $16 \text{ Ppm}$ + $Cu$ : $30 \text{ Ppm}$ : $33 \text{ Ppm}$ : $22 \text{ Ppm}$ : $43 \text{ Ppm}$ + $Dy$ : $2 \text{ Ppm}$ : $30 \text{ Ppm}$ : $30 \text{ Ppm}$ : $129 \text{ Ppm}$ : $419 \text{ Ppm}$ + $La$ : $23 \text{ Ppm}$ : $30 \text{ Ppm}$ : $30 \text{ Ppm}$ : $21 \text{ Ppm}$ + $La$ : $23 \text{ Ppm}$ : $30 \text{ Ppm}$ : $30 \text{ Ppm}$ : $419 \text{ Ppm}$ + $Md$ : $(425 \text{ Ppm}$ : $30 \text{ Ppm}$ : $30 \text{ Ppm}$ : $429 \text{ Ppm}$ + $Ni$ : $16 \text{ Ppm}$ : $419 \text{ Ppm}$ : $419 \text{ Ppm}$ : $429 \text{ Ppm}$ + $Ni$ : $16 \text{ Ppm}$ : $419 \text{ Ppm}$ : $429 \text{ Ppm}$ : $429 \text{ Ppm}$ + $Ni$ : $16 \text{ Ppm}$ : $429 \text{ Ppm}$ : $30 \text{ Ppm}$ : $329 \text{ Ppm}$ + $Ni$ : $16 \text{ Ppm}$ : $429 \text{ Ppm}$ : $30 \text{ Ppm}$ : $30 \text{ Ppm}$ : $429 \text{ Ppm}$ + $Ni$ : $16 \text{ Ppm}$ : $429 \text{ Ppm}$ : $30 \text{ Ppm}$ : $30 \text{ Ppm}$ : $29 \text{ Ppm}$ + $71 \text{ Ppm}$ : $429 \text{ Ppm}$ : $429 \text{ Ppm}$ : $30 \text{ Ppm}$	+++++++++++++++++++++++++++++++++++++++	NU+LABORATOIRE	: ‡	84 :	14920		84-	14921		84- 1	14922		84- 14	1923										
<ul> <li>A 1203</li> <li>i 13,2 x</li> <li>i 14,7 x</li> <li>i 11,1 x</li> <li>g,00 x</li> <li>Fe203t</li> <li>3,74 x</li> <li>5,41 x</li> <li>4,81 x</li> <li>5,93 x</li> <li>2,46 x</li> <li>2,46 x</li> <li>1,89 x</li> <li>CaO</li> <li>2,54 x</li> <li>2,95 x</li> <li>5,51 x</li> <li>3,22 x</li> <li>Na20</li> <li>4,37 x</li> <li>3,67 x</li> <li>3,67 x</li> <li>3,95 x</li> <li>0,40 x</li> <li>1,42 x</li> <li>1,81 x</li> <li>0,53 x</li> <li>1,48 x</li> <li>0,53 x</li> <li>1,48 x</li> <li>0,40 x</li> <li>0,40 x</li> <li>0,64 x</li> <li>0,52 x</li> <li>0,41 x</li> <li>0,35 x</li> <li>1,48 x</li> <li>0,06 x</li> <li>0,11 x</li> <li>0,07 x</li> <li>0,06 x</li> <li>0,03 x</li> <li>0,06 x</li> <li>0,07 x</li> <li>0,06 x</li> <li>0,03 x</li> <li>0,06 x</li> <li>0,03 x</li> <li>0,06 x</li> <li>0,03 x</li> <li>0,06 x</li> <li>0,07 x</li> <li>0,06 x</li> <li>0,03 x</li></ul>	+	S102	:	72,0	o x	:	66,	4 X	:	64,0	> x	:	71.8	*	:									
<pre>+ Fe2D3t : 3,74 % : 5,41 % : 4,81 % : 5,93 % + MgD : 1,53 % : 2,46 % : 2,46 % : 1,85 % CaD : 2,54 % : 2,95 % : 5,51 % : 3,22 % + Na2D : 4,37 % : 3,67 % : 3,95 % : 0,40 % + K2D : 1,42 % : 1,81 % : 0,53 % : 1,48 % + TiD2 : 0,46 % : 0,52 % : 0,41 % : 0,35 % + MnD : 0,04 % : 0,06 % : 0,11 % : 0,07 % + F2D5 : 0,05 % : 0,06 % : 0,07 % : 0,06 % + FAF : 1,91 % : 2,46 % : 0,07 % : 0,06 % + FAF : 1,91 % : 2,46 % : 0,07 % : 0,06 % + FAF : 1,91 % : 2,46 % : 6,39 % : 6,89 % + + Be : 2 Ppm : 3 Ppm : 2 Ppm : 2 Ppm + Cd : (1 Ppm : (1 Ppm : (1 Ppm : (1 Ppm + Ca : 145 Ppm : 58 Ppm : 53 Ppm : 32 Ppm + Ca : 16 Ppm : 21 Ppm : 17 Ppm : 16 Ppm + Ca : 16 Ppm : 21 Ppm : 17 Ppm : 16 Ppm + Cu : 30 Ppm : 33 Ppm : 22 Ppm : 43 Ppm + Dy : 2 Ppm : 38 Ppm : (21 Ppm : 17 Ppm : 16 Ppm + La : 23 Ppm : 38 Ppm : 30 Ppm : (31 Ppm + La : 1 Ppm : 38 Ppm : 30 Ppm : 30 Ppm : (41 Ppm + La : 1 Ppm : 38 Ppm : 30 Ppm : 30 Ppm : 16 Ppm + Li : 15 Ppm : 38 Ppm : 30 Ppm : 30 Ppm : 16 Ppm + Ni : 16 Ppm : 38 Ppm : 30 Ppm : 30 Ppm : 22 Ppm + Ni : 16 Ppm : 38 Ppm : 30 Ppm : 30 Ppm : 16 Ppm + Li : 15 Ppm : 38 Ppm : 30 Ppm : 22 Ppm + Ni : 16 Ppm : 44 Ppm : 29 Ppm + Ni : 16 Ppm : 44 Ppm : 29 Ppm + Ni : 16 Ppm : 44 Ppm : 29 Ppm + Ni : 16 Ppm : 44 Ppm : 29 Ppm + Ni : 16 Ppm : 44 Ppm : 29 Ppm + Ni : 16 Ppm : 44 Ppm : 30 Ppm : 30 Ppm : 32 Ppm + Ni : 16 Ppm : 41 Ppm : 17 Ppm + Fb : 43 Ppm : 42 Ppm : 42 Ppm : 44 Ppm + Ni : 16 Ppm : 44 Ppm : 50 Ppm : 42 Ppm + Ni : 16 Ppm : 41 Ppm : 50 Ppm : 22 Ppm + Ni : 16 Ppm : 41 Ppm : 50 Ppm : 22 Ppm + Ni : 16 Ppm : 41 Ppm : 50 Ppm : 22 Ppm + Ni : 16 Ppm : 41 Ppm : 50 Ppm : 22 Ppm + Ni : 16 Ppm : 42 Ppm : 30 Ppm : 57 Ppm + Ni : 16 Ppm : 42 Ppm : 50 Ppm : 50 Ppm : 57 Ppm + V : 778 Ppm : 425 Ppm : 616 Ppm : 178 Ppm + Y : 21 Ppm : 772 Ppm : 57 Ppm : 57 Ppm + Y : 21 Ppm : 72 Ppm : 70 Ppm : 57 Ppm + Y : 21 Ppm : 72 Ppm : 70 Ppm : 57 Ppm + Ag : (250 Ppb : (250 P</pre>	+	A1203	:	13,2	2 🗶	:	14,	7 %	:	11.1	L X	:	9.00	> %	1									
<pre>+ M90 : 1,53 % : 2,46 % : 2,46 % : 1,89 % + Ca0 : 2,54 % : 2,95 % : 5,51 % : 3,22 % Na20 : 4,37 % : 3,67 % : 3,95 % : 0,40 % + K20 : 1,42 % : 1,81 % : 0,53 % : 1,48 % + Ti02 : 0,46 % : 0,52 % : 0,41 % : 0,35 % + Mn0 : 0,04 % : 0,06 % : 0,11 % : 0,07 % + F205 : 0,05 % : 0,06 % : 0,07 % : 0,06 % + FAF : 1,91 % : 2,46 % : 6,39 % : 0,66 % + FAF : 1,91 % : 2,46 % : 6,39 % : 0,66 % + FAF : 1,91 % : 2,46 % : 6,39 % : 0,66 % + Ba : 530 PPm : 768 PPm : 756 PPm : 472 PPm + Be : 2 PPm : 3 PPm : 2 PPm : 2 PPm + Cd : (1 PPm : (1 PPm : (1 PPm : (1 PPm + Ca : 16 PPm : 518 PPm : 53 PPm : 32 PPm + Ca : 16 PPm : 518 PPm : 53 PPm : 32 PPm + Ca : 16 PPm : 21 PPm : 17 PPm : 16 PPm + Ca : 16 PPm : 33 PPm : 22 PPm : 74 PPm + Dy : 2 PPm : 3 PPm : 34 PPm : (1 PPm + La : 23 PPm : 30 PPm : 30 PPm : 34 PPm : (1 PPm + La : 23 PPm : 30 PPm : 30 PPm : 34 PPm : (25 PPm + Ni : 16 PPm : 38 PPm : 34 PPm : (25 PPm + Ni : 16 PPm : (12 PPm : (4 PPm : (4 PPm + K1 = 16 PPm : 41 PPm : (5 PPm : (25 PPm + Ni : 16 PPm : (12 PPm : (22 PPm + Ni : 16 PPm : (12 PPm : (22 PPm + Ni : 16 PPm : (12 PPm : (22 PPm + Ni : 16 PPm : (12 PPm : (22 PPm + Ni : 16 PPm : (12 PPm : (22 PPm + Ni : 16 PPm : (12 PPm : (22 PPm + Ni : 16 PPm : (22 PPm : (22 PPm : (22 PPm + Ni : 16 PPm : (22 PPm : (22 PPm + Ni : 16 PPm : (22 PPm : (22 PPm + Ni : 16 PPm : (22 PPm : (22 PPm + Ni : 16 PPm : (22 PPm : (22 PPm + Ni : 16 PPm : (22 PPm : (22 PPm + Ni : 16 PPm : (22 PPm : (22 PPm + Ni : 16 PPm : (22 PPm : (22 PPm + Ni : 16 PPm : (22 PPm : (22 PPm + Ni : 16 PPm : (22 PPm : (22 PPm + Ni : 16 PPm : 19 PPm : 19 PPm : 17 PPm + Fb : 3379 PPm : 4495 PPm : (44 PPm + Ca : 3379 PPm : 4495 PPm : (45 PPm + Y + 21 PPm : 175 PPm + Y + 21 PPm : 175 PPm + 74 + Ag : (250 PPb : (250 PPb + (250 PPb</pre>	+	Fe2O3t	1	3,	74 %	:	5,	41 %	:	4,8	31 %	1	5.93	5 %										
+ Ca0 : 2,54 x : 2,95 x : 5,51 x : 3,22 x + Na2D : 4,37 x : 3,67 x : 3,95 x : 0,40 x + K2D : 1,42 x : 1,81 x : 0,53 x : 1,48 x + TiD2 : 0,46 x : 0,52 x : 0,41 x : 0,35 x + Mn0 : 0,04 x : 0,06 x : 0,011 x : 0,07 x + F2D5 : 0,05 x : 0,06 x : 0,07 x : 0,06 x + FAF : 1,91 x : 0,09 x : 0,03 x : 0,06 x + PAF : 1,91 x : 2,46 x : 6,39 x : 6,89 x + Ba : 530 PPm : 768 PPm : 756 PPm : 472 PPm + Be : 2 PPm : 3 PPm : 2 PPm : 2 PPm + Cd : (1 PPm : (1 PPm : (1 PPm : (1 PPm + Ce : 45 PPm : 58 PPm : 53 PPm : 32 PPm + Ca : 16 PPm : 21 PPm : 17 PPm : 16 PPm + Cu : 30 PPm : 33 PPm : 22 PPm : 43 PPm + La : 23 PPm : 3 PPm : 1 PPm : (1 PPm + La : 23 PPm : 30 PPm : 30 PPm : (1 PPm + La : 23 PPm : 30 PPm : 30 PPm : 30 PPm : (4 PPm + Nd : (25 PPm : 30 PPm : 30 PPm : (4 PPm + Nd : (25 PPm : 30 PPm : 30 PPm : (4 PPm + Nd : (25 PPm : 30 PPm : 30 PPm : (4 PPm + Nd : (25 PPm : 30 PPm : 30 PPm : (4 PPm + Nd : (25 PPm : 30 PPm : 30 PPm : (4 PPm + Nd : (25 PPm : 30 PPm : 30 PPm : (4 PPm + Ni : 16 PPm : (12 PPm + Ni : 16 PPm + C2 : 16 PPm : (12 PPm + Ni : 16 PPm + C2 : 16 PPm : (22 PPm : (22 PPm : (22 PPm + Ni : 16 PPm + C2 : 16 PPm : 19 PPm : 19 PPm : (12 PPm + Y : 21 PPm : 27 PPm : 16 PPm + C2 : 78 PPm : 27 PPm + C3 : 77 PPm + C4 PPm + Y : 21 PPm : 27 PPm + Ag : (250 PPb : (250 PPb : (250 PPb : (250 PPb + 17 PPm + Ag	+	MgO	:	1,5	53 %	:	2,	46 %	:	2,4	16 X	:	1.89	2 %	1									
+       Na2D       :       4,37 %       :       3,67 %       :       3,95 %       :       0,40 %         +       K2D       :       1,42 %       :       1,81 %       :       0,53 %       :       1,48 %         +       TiD2       :       0,46 %       :       0,52 %       :       0,41 %       :       0,35 %         +       MnD       :       0,04 %       :       0,06 %       :       0,011 %       :       0,06 %         +       P205       :       0,05 %       :       0,06 %       :       0,011 %       :       0,06 %         +       PAF       :       1,91 %       :       2,46 %       :       6,39 %       :       6,89 %         +       Ba       :       530       Ppm       :       756       Ppm       :       472       Ppm         +       Ba       :       530       Ppm       :       4,37 %       :       3,95 %       :       6,89 %         +       Ba       :       530       Ppm       :       472       Ppm         +       Ba       :       530       Ppm       :       472       Ppm	+	CaO	:	2,5	54 %	:	2,	95 %	:	5,5	51 %		3.22	2 %										
<ul> <li>K20</li> <li>1,42 X</li> <li>1,81 X</li> <li>0,53 X</li> <li>1,48 X</li> <li>TiD2</li> <li>0,46 X</li> <li>0,52 X</li> <li>0,41 X</li> <li>0,35 X</li> <li>1,48 X</li> <li>1,53 X</li> <li>1,48 X</li> <li>1,61 X</li> <li>0,66 X</li> <li>0,11 X</li> <li>0,07 X</li> <li>0,06 X</li> <li>0,11 X</li> <li>0,07 X</li> <li>0,06 X</li> <li>0,11 X</li> <li>0,07 X</li> <li>0,06 X</li> <li>0,01 X</li> <li>0,06 X</li> <li>0,03 X</li> <li>0,06 X</li> <li>0,06 X</li> <li>0,03 X</li> <li>0,06 X</li> <li>0,06 X</li> <li>0,03 X</li> <li>0,06 X</li> <li>0,06 X</li> <li>0,06 X</li> <li>0,06 X</li> <li>0,06 X</li> <li>0,07 X</li> <li>0,06 X</li> <li>0,07 X</li> <li>0,06 X</li> <li>0,06 X</li> <li>0,06 X</li> <li>0,06 X</li> <li>0,07 X</li> <li>0,06 X</li> <li>1,06 X</li> <li>1,07 X<td>+</td><td>Na 20</td><td>:</td><td>4,3</td><td>37 %</td><td>:</td><td>З,</td><td>67 %</td><td>:</td><td>3.9</td><td>5 X</td><td>:</td><td>0.40</td><td>) X</td><td></td></li></ul>	+	Na 20	:	4,3	37 %	:	З,	67 %	:	3.9	5 X	:	0.40	) X										
<pre>+ TiO2 : 0,46 x : 0,52 x : 0,41 x : 0,35 x + MnO : 0,04 x : 0,06 x : 0,11 x : 0,07 x F2O5 : 0,05 x : 0,06 x : 0,07 x : 0,06 x + FAF : 1,91 x : 0,09 x : 0,03 x : 0,06 x + PAF : 1,91 x : 2,46 x : 6,39 x : 6,89 x + Ba : 530 PPm : 768 PPm : 756 PPm : 472 PPm + Be : 2 PPm : 3 PPm : 2 PPm : 2 PPm + Cd : (1 PPm : (1 PPm : (1 PPm : (1 PPm + Ce : 445 PPm : 58 PPm : 53 PPm : 32 PPm + Co : 16 PPm : 21 PPm : 17 PPm : 16 PPm + Cr : 70 PPm : 68 PPm : 73 PPm : 43 PPm + Cu : 30 PPm : 33 PPm : 22 PPm : 443 PPm + Dy : 2 PPm : 3 PPm : 17 PPm : 16 PPm + La : 23 PPm : 38 PPm : 30 PPm : (1 PPm + Li : 15 PPm : 38 PPm : 34 PPm : 29 PPm + Ni : 16 PPm : 30 PPm : 30 PPm : 44 PPm : 29 PPm + Ni : 16 PPm : 30 PPm : 30 PPm : 30 PPm : 21 PPm : 12 PPm + Ni : 16 PPm : 30 PPm : 30 PPm : 12 PPm : 21 PPm + Ni : 16 PPm : 30 PPm : 30 PPm : 12 PPm : 21 PPm + Ni : 16 PPm : 30 PPm : 30 PPm : 22 PPm : (2 PPm : (2 PPm + Ni : 16 PPm : 30 PPm : 30 PPm : 16 PPm + Li : 15 PPm : 38 PPm : 34 PPm : 29 PPm + Ni : 16 PPm : 44 PPm : (4 PPm : (4 PPm + Ni : 16 PPm : 41 PPm : 50 PPm : 71 PPm + Fb : 43 PPm : (12 PPm : (12 PPm : (12 PPm + Ni : 16 PPm : 41 PPm : 50 PPm : 71 PPm + Fr : (2 PPm : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sr : 3779 PPm : 19 PPm : 19 PPm : 17 PPm + Th : (5 PPm : 379 PPm : 19 PPm : 178 PPm + Th : (5 PPm : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sr : 3779 PPm : 105 PPm : 99 PPm : 313 PPm + Th : (5 PPm : 105 PPm : 164 PPm : 178 PPm + Th : (55 PPm : 105 PPm : 164 PPm : 178 PPm + Y : 211 PPm : 27 PPm : 164 PPm : 133 PPm + Y : 211 PPm : 27 PPm : 164 PPm : 57 PPm + A9 : (250 PPb : (250 PPb : (250 PPb : (250 PPb : 57 PPm)</pre>	+	K20	:	1,4	42 X	:	1,	81 %	:	0.5	3 %	:	1.48	3 %										
<pre>+ Mn0 : 0,04 x : 0,06 x : 0,11 x : 0,07 x + P205 : 0,05 x : 0,06 x : 0,07 x : 0,06 x + PAF : 1,91 x : 0,09 x : 0,03 x : 0,06 x + PAF : 1,91 x : 2,46 x : 6,39 x : 6,89 x + Ba : 530 PPm : 768 PPm : 756 PPm : 472 PPm + Be : 2 PPm : 3 PPm : 2 PPm : 2 PPm + Cd : (1 PPm : (1 PPm : (1 PPm : (1 PPm + Ca : 45 PPm : 58 PPm : 53 PPm : 32 PPm + Ca : 16 PPm : 21 PPm : 17 PPm : 16 PPm + Cu : 30 PPm : 33 PPm : 73 PPm : 43 PPm + Cu : 30 PPm : 33 PPm : 22 PPm : 44 PPm + Eu : 1 PPm : 1 PPm : (1 PPm : (1 PPm + Li : 15 PPm : 30 PPm : 30 PPm : 30 PPm : (1 PPm + Li : 15 PPm : 38 PPm : 34 PPm : (1 PPm + Nd : (25 PPm : 30 PPm : 30 PPm : (4 PPm : (4 PPm + Nd : (25 PPm : 30 PPm : 30 PPm : 30 PPm : (4 PPm + Ni : 16 PPm : 41 PPm : (12 PPm : (4 PPm : (4 PPm + Ni : 16 PPm : 41 PPm : (22 PPm : (4 PPm : (4 PPm + Ni : 16 PPm : 41 PPm : (22 PPm : (22 PPm + Sn : (2 PPm : (2 PPm : (22 PPm : (22 PPm + Sn : (2 PPm : (2 PPm : (22 PPm : (22 PPm + Sn : (2 PPm : (2 PPm : (22 PPm : (22 PPm + Sn : (2 PPm : (2 PPm : (22 PPm : (22 PPm + Sn : (2 PPm : (2 PPm : (22 PPm : (22 PPm + Sn : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sn : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sn : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sn : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sn : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sn : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sn : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sn : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sn : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sn : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sn : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sn : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sn : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sn : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sn : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sn : (2 PPm : (2 PPm : (2 PPm : (2 PPm + Sn : (2 PPm : (2 PPm : (2 PPm : (5 PPm + Y : 21 PPm : 27 PPm : 16 PPm : 17 PPm + Zn : 175 PPm : 72 PPm : 16 PPm : 57 PPm</pre>	+	T i 02	:	0,4	¥6 %	:	0,	52 %	:	0.4	1 %		0.35	. x										
+ $P205$ : $0,05 \times$ : $0,06 \times$ : $0,07 \times$ : $0,06 \times$ +       S       : $0,11 \times$ : $0,09 \times$ : $0,03 \times$ : $0,06 \times$ +       PAF       : $1,91 \times$ : $2,46 \times$ : $6,39 \times$ : $6,89 \times$ +       Ba       :       530       Ppm       : $756$ Ppm       : $472$ Ppm         +       Be       :       2       Ppm       : $472$ Ppm         +       Be       :       2       Ppm       : $472$ Ppm         +       Be       :       2       Ppm       : $472$ Ppm         +       Co       :       145       Ppm       : $1$ Ppm       : $32$ Ppm         +       Co       :       16       Ppm       : $33$ Ppm       : $322$ Ppm       : $44$ Ppm         +       Eu       :       1       Ppm       : $30$ Ppm	+	MnO	:	0,0	)4 %	:	ο,	06 %	:	0.1	1 X	÷	0.07	, ,, , <u>x</u>										
+ S : 0,11 X : 0,09 X : 0,03 X : 0,06 X + PAF : 1,91 X : 2,46 X : 6,39 X : 6,89 X + Ba : 530 Ppm : 768 Ppm : 756 Ppm : 472 Ppm + Be : 2 Ppm : 3 Ppm : 2 Ppm : 2 Ppm + Cd : (1 Ppm : (1 Ppm : (1 Ppm : (1 Ppm + Ce : 45 Ppm : 58 Ppm : 53 Ppm : 32 Ppm + Co : 16 Ppm : 21 Ppm : 17 Ppm : 16 Ppm + Cu : 30 Ppm : 33 Ppm : 22 Ppm : 43 Ppm + Cu : 30 Ppm : 33 Ppm : 22 Ppm : 44 Ppm + Eu : 1 Ppm : 1 Ppm : (1 Ppm : (1 Ppm + La : 23 Ppm : 30 Ppm : 30 Ppm : 30 Ppm : 16 Ppm + Li : 15 Ppm : 30 Ppm : 30 Ppm : 30 Ppm : 16 Ppm + Nd : (4 Ppm : (4 Ppm : (4 Ppm : (4 Ppm + Nd : (25 Ppm : 30 Ppm : 30 Ppm : 30 Ppm : (25 Ppm + Ni : 16 Ppm : 41 Ppm : (12 Ppm : (22 Ppm + Ni : 16 Ppm : 41 Ppm : (22 Ppm : (22 Ppm + Ni : 16 Ppm : 41 Ppm : (22 Ppm : (22 Ppm + Ni : 16 Ppm : 41 Ppm : (22 Ppm : (22 Ppm + Ni : 16 Ppm : 41 Ppm : 50 Ppm : (12 Ppm + Ni : 16 Ppm : (22 Ppm : (22 Ppm : (22 Ppm + Ni : 16 Ppm : (22 Ppm : (22 Ppm : (22 Ppm + Ni : 16 Ppm : (22 Ppm : (22 Ppm : (22 Ppm + Sc : 16 Ppm : (22 Ppm : (22 Ppm : (22 Ppm + Sr : 3779 Ppm : 475 Ppm : (55 Ppm + Ni : (55 Ppm : 30 Ppm : 618 Ppm : 178 Ppm + V : 78 Ppm : 72 Ppm : (55 Ppm + Ag : (250 Ppb : (250 Ppb : (250 Ppb : (250 Pph	+	P205	:	0,0	)5 %	:	ο,	06 %	:	0.0	7 %	•	0.04	× ×	•									
+PAF:1,91 X:2,46 X: $6,39 X$ : $6,89 X$ +Ba:530 Ppm:768 Ppm:756 Ppm:472 Ppm+Be:2 Ppm:3 Ppm:2 Ppm:2 Ppm+Cd:(1 Ppm:(1 Ppm:(1 Ppm:(1 Ppm+Ce:45 Ppm:58 Ppm:53 Ppm:32 Ppm+Co:16 Ppm:21 Ppm:17 Ppm:16 Ppm+Cu:30 Ppm:33 Ppm:22 Ppm:74 Ppm+Dy:2 Ppm:30 Ppm:30 Ppm:1 Ppm+La:23 Ppm:30 Ppm:34 Ppm:29 Ppm+La::15 Ppm:30 Ppm:30 Ppm:22 Ppm+Mo::::10 Ppm::12 Ppm::25 Ppm+Ni::::::::::::::::::::::::::::::::::::::::::::::::::::::	+	S	:	0,1	1 %	:	ο,	09 %	:	0.0	3 %		0.04	× *										
<pre>+ Ba : 530 PPm : 768 PPm : 756 PPm : 472 PPm Be : 2 PPm : 3 PPm : 2 PPm : 2 PPm Cd : (1 PPm : (1 PPm : (1 PPm : (1 PPm Ce : 45 PPm : 58 PPm : 53 PPm : 32 PPm Co : 16 PPm : 21 PPm : 17 PPm : 16 PPm Cu : 30 PPm : 68 PPm : 73 PPm : 43 PPm Cu : 30 PPm : 33 PPm : 22 PPm : 74 PPm F Dy : 2 PPm : 1 PPm : (1 PPm : (1 PPm La : 23 PPm : 30 PPm : 30 PPm : (1 PPm La : 23 PPm : 38 PPm : 34 PPm : (1 PPm La : 23 PPm : 38 PPm : 34 PPm : 29 PPm Mo : (4 PPm : 44 PPm : (4 PPm Mo : (4 PPm : 41 PPm : 30 PPm : (4 PPm Ni : 16 PPm : 41 PPm : (4 PPm Ni : 16 PPm : 41 PPm : (4 PPm Ni : 16 PPm : 41 PPm : (4 PPm Ni : 16 PPm : 41 PPm : (4 PPm : (4 PPm Ni : 16 PPm : 41 PPm : (4 PPm : (4 PPm Ni : 16 PPm : 41 PPm : (4 PPm : (4 PPm Ni : 16 PPm : 41 PPm : (50 PPm : (22 PPm Ni : 16 PPm : (22 PPm : (22 PPm : (22 PPm Ni : 16 PPm : (22 PPm : (22 PPm : (22 PPm Ni : 16 PPm : 19 PPm : 19 PPm : 17 PPm Sr : 379 PPm : 495 PPm : (42 PPm : (42 PPm Y : 21 PPm : 105 PPm : 65 PPm : 77 PPm Y : 21 PPm : 27 PPm : 164 PPm : 13 PPm Y : 21 PPm : 72 PPm : 77 PPm Y : 21 PPm : 72 PPm : 77 PPm Y : 21 PPm : 72 PPm : 77 PPm Y : 21 PPm : 72 PPm : 77 PPm Y : 21 PPm : 72 PPm : 77 PPm Y : 21 PPm : 72 PPm : 77 PPm Y : 21 PPm : 72 PPm : 77 PPm Y : 21 PPm : 72 PPm : 77 PPm Y : 21 PPm : 72 PPm : 77 PPm : 77 PPm Y : 21 PPm : 72 PPm : 77 PPm</pre>	+	PAF	:	1,9	1 %	:	2,	46 %	:	6.3	9 %	;	6.89	× ×										
<pre>+ Ba : 530 PPm : 768 PPm : 756 PPm : 472 PPm + Be : 2 PPm : 3 PPm : 2 PPm : 2 PPm + Cd : (1 PPm : (1 PPm : (1 PPm : (1 PPm + Ce : 45 PPm : 58 PPm : 53 PPm : 32 PPm + Co : 16 PPm : 21 PPm : 17 PPm : 16 PPm + Cr : 70 PPm : 68 PPm : 73 PPm : 43 PPm + Cu : 30 PPm : 33 PPm : 22 PPm : 74 PPm + Dy : 2 PPm : 1 PPm : (1 PPm : (1 PPm + Eu : 1 PPm : 1 PPm : 1 PPm : (1 PPm + La : 23 PPm : 30 PPm : 30 PPm : 30 PPm : (1 PPm + Li : 15 PPm : 38 PPm : 34 PPm : 29 PPm + Nd : (25 PPm : 30 PPm : 30 PPm : (4 PPm + Ni : 16 PPm : 41 PPm : 30 PPm : (4 PPm + Ni : 16 PPm : 41 PPm : 10 PPm : (4 PPm + Ni : 16 PPm : 41 PPm : 10 PPm : (4 PPm + Ni : 16 PPm : 41 PPm : 10 PPm : (4 PPm + Ni : 16 PPm : 41 PPm : 19 PPm : (42 PPm + Sc : 16 PPm : 42 PPm : (22 PPm : (22 PPm + Sr : 379 PPm : 495 PPm : (22 PPm : (22 PPm + Sr : 379 PPm : 495 PPm : (5 PPm : 178 PPm + Y : 211 PPm : 105 PPm : (5 PPm : 178 PPm + Y : 211 PPm : 105 PPm : (5 PPm : 178 PPm + Y : 211 PPm : 105 PPm : (5 PPm : 178 PPm + Y : 211 PPm : 105 PPm : (5 PPm : 178 PPm + Y : 211 PPm : 105 PPm : (5 PPm : 178 PPm + Y : 211 PPm : 105 PPm : 57 PPm + Y : 211 PPm : 105 PPm : 57 PPm + Ag : (250 PPb : (250 PPb : (250 PPb : (250 PPb ) = 77 PPm + Ag</pre>	+									-,		•	aya,	~	•									
+       Be       : 2       Ppm       : 3       Ppm       : 2       Ppm       : 2       Ppm         +       Cd       : (1       Ppm       : (1       Ppm       : (1       Ppm       : (1       Ppm         +       Ce       : 45       Ppm       : 58       Ppm       : 53       Ppm       : 32       Ppm         +       Co       : 16       Ppm       : 21       Ppm       : 17       Ppm       : 43       Ppm         +       Cr       : 70       Ppm       : 33       Ppm       : 22       Ppm       : 43       Ppm         +       Cu       : 30       Ppm       : 1       Ppm       : 1       Ppm       : 41       Ppm         +       Eu       : 1       Ppm       : 1       Ppm       : 1       Ppm       : 1       Ppm         +       La       : 23       Ppm       : 30       Ppm       : 34       Ppm       : 29       Ppm         +       Li       : 15       Ppm       : 30       Ppm       : 34       Ppm       : 29       Ppm         +       Nd       : (25       Ppm       : 30       Ppm       : 50       P	+	Ba	:	530	PPM	:	768	PPM	:	756	DOM	•	472		•									
+       Cd       : (1       PPm       : (1       PPm       : (1       PPm       : (1       PPm         +       Ce       : 45       PPm       : 58       PPm       : 53       PPm       : 32       PPm         +       Co       : 16       PPm       : 21       PPm       : 17       PPm       : 16       PPm         +       Cu       : 30       PPm       : 48       PPm       : 73       PPm       : 443       Ppm         +       Dy       : 2       PPm       : 33       PPm       : 22       PPm       : 74       PPm         +       Dy       : 2       PPm       : 1       PPm       : 1       PPm       : (1       Ppm         +       Eu       : 1       PPm       : 30       PPm       : 30       PPm       : (1       Ppm         +       La       : 23       PPm       : 30       PPm       : 30       PPm       : (1       Ppm         +       La       : 23       PPm       : 30       PPm       : 30       PPm       : (25       Ppm         +       Mo       : (4       Ppm       : 30       Ppm       : (4	+	Be	;	2	PPm	:	3	PPM		2	PPM	÷	2	80M										
+       Ce       : 45       PPm       : 58       PPm       : 53       PPm       : 32       PPm         +       Co       : 16       PPm       : 21       PPm       : 17       PPm       : 16       PPm         +       Cr       : 70       PPm       : 68       PPm       : 73       PPm       : 43       PPm         +       Cu       : 30       PPm       : 33       PPm       : 22       PPm       : 74       PPm         +       Dy       : 2       PPm       : 43       PPm       : 74       PPm         +       Lu       : 1       PPm       : 2       PPm       : 41       PPm         +       La       : 23       PPm       : 30       PPm       : 41       PPm         +       La       : 15       PPm       : 30       PPm       : 30       PPm       : 29       Ppm         +       Li       : 15       PPm       : 30       PPm       : 30       PPm       : 29       Ppm         +       Mo       : (44       PPm       : (44       Ppm       : (25       Ppm       : (25       Ppm       : (25       Ppm       : (25	+	Cd	:	<1	PPM	:	<1	PPM	:	<1			< 1	000										
+ Co : 16 PPM : 21 PPM : 17 PPM : 16 PPM + Cr : 70 PPM : 68 PPM : 73 PPM : 43 PPM + Cu : 30 PPM : 33 PPM : 22 PPM : 74 PPM + Dy : 2 PPM : 2 PPM : (1 PPM : (1 PPM + La : 23 PPM : 30 PPM : 1 PPM : (1 PPM + La : 23 PPM : 30 PPM : 30 PPM : 16 PPM + Li : 15 PPM : 38 PPM : 34 PPM : 29 PPM + Mo : (4 PPM : (4 PPM : (4 PPM : (4 PPM + Nd : (25 PPM : 30 PPM : 30 PPM : (25 PPM + Ni : 16 PPM : 41 PPM : 50 PPM : (25 PPM + Ni : 16 PPM : (12 PPM : (12 PPM : (12 PPM + Fr : (2 PPM : (2 PPM : (12 PPM : (12 PPM + Sc : 16 PPM : (2 PPM : (2 PPM : (2 PPM + Sm : (2 PPM : (2 PPM : (2 PPM : (2 PPM + Sm : (2 PPM : (2 PPM : (2 PPM : (2 PPM + Sm : (2 PPM : (2 PPM : (2 PPM : (2 PPM + Sm : (2 PPM : (2 PPM : (2 PPM : (2 PPM + Sr : 379 PPM : 495 PPM : 618 PPM : 178 PPM + Th : (5 PPM : 105 PPM : 99 PPM : 13 PPM + Th : (5 PPM : 105 PPM : 99 PPM : 13 PPM + Th : (21 PPM : 27 PPM : 16 PPM : 13 PPM + Zn : 175 PPM : 72 PPM : 71 PPM + Ag : :(250 PPb : (250 PPb : (250 PPb : (250 PPh	+	Ce	:	45	PPM	:	58	PPM		53	Ppm	÷	32	000	;									
+       Cr       : 70       PPm       : 68       PPm       : 73       PPm       : 43       PPm         +       Cu       : 30       PPm       : 33       PPm       : 22       PPm       : 74       PPm         +       Dy       : 2       PPm       : 2       PPm       : (1       PPm       : (1       PPm         +       Eu       : 1       PPm       : 1       PPm       : (1       PPm         +       La       : 23       PPm       : 30       PPm       : 30       PPm       : (1       PPm         +       La       : 23       PPm       : 30       PPm       : 30       PPm       : (1       PPm         +       Li       : 15       PPm       : 38       PPm       : 34       PPm       : 29       PPm         +       Mo       : (4       PPm       : 30       PPm       : 30       PPm       : 29       PPm         +       Mo       : (4       Ppm       : 30       PPm       : 30       PPm       : (25       Ppm         +       Ni       : 16       Ppm       : 30       Ppm       : 30       Ppm       : (25	+	Co	:	16	PPM	:	21	PPM	:	17	Ppm		16	rr	;									
+ Cu : 30 Ppm : 33 Ppm : 22 Ppm : 74 Ppm + Dy : 2 Ppm : 2 Ppm : $\langle 1$ Ppm : $\langle 1$ Ppm + Eu : 1 Ppm : 1 Ppm : 1 Ppm : $\langle 1$ Ppm + La : 23 Ppm : 30 Ppm : 30 Ppm : 16 Ppm + Li : 15 Ppm : 38 Ppm : 34 Ppm : 29 Ppm + Mo : $\langle 4$ Ppm : $\langle 4$ Ppm : $\langle 4$ Ppm : $\langle 4$ Ppm + Nd : $\langle 25$ Ppm : 30 Ppm : 30 Ppm : $\langle 4$ Ppm + Nd : $\langle 25$ Ppm : $\langle 4$ Ppm : $\langle 4$ Ppm : $\langle 4$ Ppm + Ni : 16 Ppm : $\langle 12$ Ppm : $\langle 12$ Ppm : $\langle 12$ Ppm + Fr : $\langle 2$ Ppm : $\langle 12$ Ppm : $\langle 12$ Ppm + Sc : 16 Ppm : $\langle 19$ Ppm : $\langle 29$ Ppm + Sr : $\langle 379$ Ppm : $\langle 19$ Ppm : $\langle 29$ Ppm + Th : $\langle 5$ Ppm : $\langle 5$ Ppm : $\langle 29$ Ppm + Th : $\langle 5$ Ppm : $\langle 5$ Ppm : $\langle 5$ Ppm + Th : $\langle 21$ Ppm : $\langle 5$ Ppm + Th : $\langle 5$ Ppm : $\langle 5$ Ppm + Th : $\langle 5$ Ppm + $\langle 74$ Ppm + $\langle 10$ Ppm + $\langle 10$ Ppm + $\langle 10$ Ppm + $\langle 29$ Ppm + $\langle 12$ Ppm + $\langle 29$ Ppm + $\langle 19$ Ppm + $\langle 178$ Ppm + $\langle 105$ Ppm + $\langle 5$ Ppm + $\langle 16$ Ppm + $\langle 178$ Ppm + $\langle 250$ Ppb + $\langle 250$ Ppb	+	Cr	:	70	PPM	:	68	PPM	:	73	PPM	÷	43	000										
+ $Dy$ : 2 $Ppm$ : 2 $Ppm$ : (1 $Ppm$ : (1 $Ppm$ + $Eu$ : 1 $Ppm$ : 1 $Ppm$ : 1 $Ppm$ : (1 $Ppm$ + $La$ : 23 $Ppm$ : 30 $Ppm$ : 30 $Ppm$ : 16 $Ppm$ + $Li$ : 15 $Ppm$ : 38 $Ppm$ : 30 $Ppm$ : 29 $Ppm$ + $Mo$ : (4 $Ppm$ : (4 $Ppm$ : (4 $Ppm$ : (4 $Ppm$ + $Nd$ : (25 $Ppm$ : 30 $Ppm$ : 30 $Ppm$ : (4 $Ppm$ : (4 $Ppm$ + $Nd$ : (25 $Ppm$ : 30 $Ppm$ : 30 $Ppm$ : (25 $Ppm$ + $Ni$ : 16 $Ppm$ : 41 $Ppm$ : 50 $Ppm$ : (25 $Ppm$ + $Fb$ : 43 $Ppm$ : (12 $Ppm$ : (12 $Ppm$ : (12 $Ppm$ + $Fb$ : 43 $Ppm$ : (2 $Ppm$ : (2 $Ppm$ : (2 $Ppm$ : (2 $Ppm$ + $Fr$ : (2 $Ppm$ : (2 $Ppm$ : (2 $Ppm$ : (2 $Ppm$ : (2 $Ppm$ + $Sr$ : 379 $Ppm$ : 495 $Ppm$ : (2 $Ppm$ : (2 $Ppm$ + $Th$ : (5 $Ppm$ : (5 $Ppm$ : (5 $Ppm$ : (5 $Ppm$ + $Th$ : (5 $Ppm$ : 105 $Ppm$ : 99 $Ppm$ : 178 $Ppm$ + $Th$ : (5 $Ppm$ : 105 $Ppm$ : 99 $Ppm$ : 13 $Ppm$ + $Th$ : (5 $Ppm$ : 105 $Ppm$ : 99 $Ppm$ : 13 $Ppm$ + $Th$ : (5 $Ppm$ : 105 $Ppm$ : 99 $Ppm$ : 13 $Ppm$ + $Th$ : (5 $Ppm$ : 105 $Ppm$ : 164 $Ppm$ : 13 $Ppm$ + $Y$ : 21 $Ppm$ : 27 $Ppm$ : 164 $Ppm$ : 13 $Ppm$ + $Ag$ : $(250 Ppb$ : (250 $Ppb$ : (250 $Ppb$ : (250 $Ppb$ : (250 $Pph$	+	Cu	:	30	PPm	:	33	PPM	:	22	PPM	:	74	000										
+       Eu       :       1       PPm       :       (1       PPm         +       La       :       23       PPm       :       30       PPm       :       30       PPm       :       16       PPm         +       Li       :       15       PPm       :       38       PPm       :       34       PPm       :       29       PPm         +       Mo       :       :       (4       PPm       :       30       PPm       :       30       PPm       :       29       PPm         +       Nd       :       :       :       :       16       PPm       :       30       PPm       :       :       29       Ppm         +       Ni       :       :       16       Ppm       :       11       Ppm       :       12       Ppm         +       Fr       :       :       :       :       :       :       11       Ppm       :       12       Ppm       :       :       :       :       :<	+	Dy	:	2	PPm	:	2	PPM	:	<1	PPM		<b>&lt;</b> 1	000	÷									
+       La       : 23       PPm       : 30       PPm       : 30       PPm       : 16       PPm         +       Li       : 15       PPm       : 38       PPm       : 34       PPm       : 29       PPm         +       Mo       : (4       PPm       : (4       PPm       : 25       PPm         +       Nd       : (25       PPm       : 30       PPm       : (4       PPm       : (4       PPm         +       Nd       : (25       PPm       : 30       PPm       : (4       PPm       : (4       PPm         +       Nd       : (25       PPm       : 30       PPm       : 30       PPm       : (4       PPm         +       Nd       : (25       PPm       : 30       PPm       : (25       PPm         +       Nd       : (25       PPm       : 30       PPm       : (25       PPm         +       Nd       : 16       PPm       : 412       PPm       : (12       Ppm         +       Sc       : 16       PPm       : (12       Ppm       : (2       Ppm         +       Sc       : 16       Ppm       : 17       Ppm <td>+</td> <td>Eu</td> <td>:</td> <td>1</td> <td>PPm</td> <td>:</td> <td>1</td> <td>PPM</td> <td>:</td> <td>1</td> <td>PPM</td> <td></td> <td>&lt;1</td> <td>000</td> <td></td>	+	Eu	:	1	PPm	:	1	PPM	:	1	PPM		<1	000										
+       Li       : 15       PPm       : 38       PPm       : 34       PPm       : 29       PPm         +       Mo       : (4       Ppm       : (25       Ppm       : (25       Ppm       : (25       Ppm       : (25       Ppm       : (12       Ppm       : (2       Ppm       : (2       Ppm       <	+	La	:	23	PPM	:	30	PPM	:	30	PPM	÷	16	000	÷									
+       Mo       : (4       Ppm       : (25       Ppm       : (12       Ppm       : (22       Ppm       : (2	+	Li	:	15	PPm	:	38	PPM	:	34	Ppm		29	000										
+       Nd       : <25	+	Mo	:	<4	PPm	:	<4	PPM	:	<4	PPM	÷	<4	000	÷									
+       Ni       : 16       Ppm       : 41       Ppm       : 50       Ppm       : 71       Ppm         +       Fb       : 43       Ppm       : (12       Ppm       : (17       Ppm       : (178       Ppm       : (178       Ppm       : (170       Ppm       : (	+	Nd	:	<25	PPM	:	30	PPm	:	30	PPM	:	(25	000										
+       Fb       : 43       Ppm       : (12       Ppm       : (2       Ppm       : (2 </td <td>+</td> <td>Ni</td> <td>:</td> <td>16</td> <td>PPM</td> <td>:</td> <td>41</td> <td>PPM</td> <td>:</td> <td>50</td> <td>PPM</td> <td></td> <td>71</td> <td>55m</td> <td>÷</td>	+	Ni	:	16	PPM	:	41	PPM	:	50	PPM		71	55m	÷									
+       Fr       : <2	+	Fb	:	43	PPM	:	<12	PPM	:	<12	PPM	:	(12	המס										
+       Sc       : 16       Ppm       : 19       Ppm       : 19       Ppm       : 17       Ppm         +       Sm       : (2       Ppm       : (2       Ppm       : (2       Ppm       : (2       Ppm         +       Sm       : (2       Ppm       : (2       Ppm       : (2       Ppm       : (2       Ppm         +       Sr       : 379       Ppm       : 495       Ppm       : 618       Ppm       : 178       Ppm         +       Th       : (5       Ppm       : (5       Ppm       : (5       Ppm       : (5       Ppm         +       V       : 78       Ppm       : 105       Ppm       : 99       Ppm       : 70       Ppm         +       Y       : 21       Ppm       : 27       Ppm       : 16       Ppm       : 13       Ppm         +       Zn       : 175       Ppm       : 72       Ppm       : 71       Ppm       : 57       Ppm         +       Ag       : (250       Ppb       : (250 <td>+</td> <td>F'r-</td> <td>:</td> <td>&lt;2</td> <td>PPM</td> <td>:</td> <td>&lt;2</td> <td>PPM</td> <td>:</td> <td>(2</td> <td>PPM</td> <td></td> <td>(2</td> <td>000</td> <td>÷</td>	+	F'r-	:	<2	PPM	:	<2	PPM	:	(2	PPM		(2	000	÷									
+       Sm       : <2	+	Sc	:	16	PPM	:	19	PPm	:	19	PPM	:	17	DDM	÷									
+       Sr       : 379       PPM       : 495       PPM       : 618       PPM       : 178       PPM         +       Th       : <5	+	Sm	:	<2	PPM	:	<2	PPM	:	<2	PPM	÷	(2	000	÷									
+       Th       : <5	+	Sr	;	379	6 PPm	:	495	PPm	:	618	PPM		178	DDM										
+       V       : 78       PPm       : 105       PPm       : 97       PPm       : 70       PPm         +       Y       : 21       PPm       : 27       PPm       : 16       PPm       : 13       PPm         +       Zn       : 175       PPm       : 72       PPm       : 71       PPm       : 57       PPm         +       -       -       : (250       PPb       : (250	÷	Th	:	<5	PPM	:	<5	ppm	:	<5	PPM		(5	555 M										
+       Y       : 21       PPm       : 27       PPm       : 16       PPm       : 13       PPm         +       Zn       : 175       PPm       : 72       PPm       : 71       PPm       : 57       PPm         +       -       :       : 175       PPm       : 72       PPm       : 71       PPm       : 57       PPm         +       -       :       :       : (250       PPb       : (250       :       : (250       :       : (250       :       : (250       :       : (250       :       : (250       :	÷	V	:	78	PPM	:	105	PPn	:	99	PPM	:	70	000										
+ Zn : 175 PPm : 72 PPm : 71 PPm : 57 PPm + + Ag : 1(250 PPb : (250 PPb : (250 Ppb : (250 Ppb	+	Y	:	21	PPM	:	27	PPM	:	16	PPM	ž	13	יייייייי העסמ	•									
+ + Ag \$\cappa \$\capp	+	Zn	:	175	PPM	:	72	PPM	:	71	PPm	÷	57	 DDD										
+ Ag :<250 ppb :<250 ppb :<250 ppb :<250 ppb :<250 ppb	+							••	,			-	~,	5 P. 10	•									
	+	Ag	:<	250	ррЬ	:	<250	Peb	:	(250	pph	:	(250	oob	•									
+ Au \$\15 PPD \$\15 PPD \$\15 PPD \$\15 PPD	+	Au	:+<	15	PPb	:	<15 [°]	PPD	:	<15	Ppb	÷	(15	660 660	•									
+	+							••-	•		r <b>r</b> w	•		440	•									

ANNEXE 3

Composition normative et diagrammes de variation d'oxydes pour le groupe des coussins

.

#### MAXIME LEDUC (COUSSINS) VIEUS NORMALISEES MINERAUX HORMATIFS (NORME CLI.P.W.) (POURCENTAGE POIDS)

	95532	955	24	95536		95537		95538		
SIL2200 2000 2000 2000 2000 2000 2000 200	**************************************	6177 57 6117 57 6117 57 6117 57 6117 57 6117 57 6117 57 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	618141900		4762263678700 9422586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512586 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$512566 \$5125666 \$512566 \$512566 \$512566 \$512566 \$5125666 \$5125666 \$512566666 \$512566666666666666666666666666666666666	0000093-074-000 0095000999-10000 7777 - 471	8377493171900 0947309091000 5172437111000	516,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,100 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,0000000000	**************************************	STREE CANNOLS
502 50 50 50 50 50 50 50 50 50 50 50 50 50	2.000000 2.0000000 2.000000000 2.00000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		10000400000000000000000000000000000000		2.000 2.000 2.000 2.000 2.000 2.000	000 000 000 000 000 000 000 000 000			SOL S3000000 CR Z0100000+1
TOTAL	~99\$50 1 2	00.00 101	255 100200 4 5	100%03	100.00	99.53	100,00	44,48	100.00	TUTAL
9553: 0, 39;;	2 95534 19 14.92	955 <u>5</u> 6 9 294 <u>64</u>	5537 9553 19:85 20:	8 Q2	FO	95532	95534	95536	•5537	95538
DAANJXANXUBOTENE BB BB BB BB BB BB BB BB BB BB BB BB BB	139000000000000000000000000000000000000	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	41100000000000000000000000000000000000	17 10000000 00000000 0000000 000000 000000 0000	of i for roter cot l	3 1 00000000000000000000000000000000000	3,54,0000,000000000000000000000000000000	3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* VALE	URS NORMA	LISEES SA	NS LES ELE	HENTS VO	DLATILS	(H20+,H	120-,00	2 ET 5)		
1-2 100	H5/05/03	нІ	MAXI NERAUX ADR (PO	ME LEDU URS DORI MATIFS URCENTA	G (COUS Malisee (Norme Ge Poid	SINS) S Cul.P.W. S)	•)		PAGE	2 DE 8
1-2-102 8103	85/05/03 95540 87/170 +	HI 955	MAXI VERAUX HOR (PO 7 41	ME LEDU URS NORI MATIFS URCENTA 95542 584470	G (COUS ALISEE (NORME GE POID	SINS) C.I.P.W. S) 95543 56/ 60	•63:59	95545 62\50	PAGE	2 DE 8
	9     5     3     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <td>HI 5 510 9 511 455 9 747 756 9 454 1 9 74 756 9 455 1 9 74 756 9 745 1 9 74 756 9 756 9 756 1 9 74 756 9 756 9 756 1 9 756 9 756 9 756 1 9 756 9 756 9 756 1 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 75</td> <td>NE         74         10000001-4114700000000000000000000000000</td> <td>LIRA 000000000000000000000000000000000000</td> <td></td> <td>SILS 554 543 554 543 554 543 545 545</td> <td>) + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1</td> <td>9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td> <td></td> <td>2 DE 8 SLEE SLEE NK-NUCZCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC</td>	HI 5 510 9 511 455 9 747 756 9 454 1 9 74 756 9 455 1 9 74 756 9 745 1 9 74 756 9 756 9 756 1 9 74 756 9 756 9 756 1 9 756 9 756 9 756 1 9 756 9 756 9 756 1 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 756 9 75	NE         74         10000001-4114700000000000000000000000000	LIRA 000000000000000000000000000000000000		SILS 554 543 554 543 554 543 545 545	) + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		2 DE 8 SLEE SLEE NK-NUCZCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC
	95/05/03           60         30-100           755         30           71         10           75         10           75         10           75         10           75         10           75         10           75         10           75         10           75         10           75         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10 <td>H 5 511 454 1 9 9 511 454 1 9 9 6 6 7 7 7 7 6 1 9 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>ALEDO         B404445114000000000000000000000000000000</td> <td>JAR     A     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B&lt;</td> <td></td> <td>SDL SDL SDL SDL SDL SDL SDL SDL</td> <td></td> <td></td> <td>*1 01 000000000000000000000000000000000</td> <td>2 DE 8 ODDULUGANOONNAPLES NUMERUS 010422 NUMERUS 010422 C</td>	H 5 511 454 1 9 9 511 454 1 9 9 6 6 7 7 7 7 6 1 9 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ALEDO         B404445114000000000000000000000000000000	JAR     A     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B<		SDL SDL SDL SDL SDL SDL SDL SDL			*1 01 000000000000000000000000000000000	2 DE 8 ODDULUGANOONNAPLES NUMERUS 010422 NUMERUS 010422 C
	9     5     6     0     0       9     5     5     3     0     0       9     5     5     3     0     0       9     5     5     3     0     0       9     5     5     3     0     0       9     5     5     3     0     0       9     5     5     3     0     0       9     5     5     5     0     0       9     5     5     5     0     0       9     5     5     5     0     0       9     5     5     5     0     0       9     5     5     5     0     0       9     5     5     5     0     0       9     5     5     5     0     0       9     5     5     5     0     0       9     5     5     5     0     0       9     5     5     5     0     0       9     5     5     5     0     0       9     5     5     5     0     0    10     5     5     5     <	H 5 510 400 1 0 0000000000000000000000000	ALERO     3-400/44 51-4000000000000000000000000000000000000	Inc. A     0.00000000000000000000000000000000000		W       93       8000757864       8000000000000000000000000000000000000	• • • • • • • • • • • • • • • • •			2 DE 8 APP 7 SLEE 7 TH Z S NIZCOSHAN T C LOSHAN T C LOSHAN T T T T T T T T
SILENGODO CONSULTA SILENGODO CONSULTA SILENGODO CONSULTA SILENGODO CONSULTA SILENGODO CONSULTA SILENGODO CONSULTA SILENGODO SILENGO SILENGODO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SILENGO SI	95/05/03       95/05/03       95/05/03       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100       19/100	HISSING 455 1	NE     74     64040476514000000000000000000000000000000000000	MURAR 9 511 STERAR 9 511 URE A 00000000000000000000000000000000000		Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid		9 61 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	*1 *1 0 0 0 0 0 0 0 0 0 0 0 0 0	2 DE 8 AP NUMERCAS ALCONHON TO CA C LINNE ICAS HOLOGOO AP NUMERCAS ALCONHON TO CA C LINNE TO

* VALEURS NORMALISEES SANS LES ELEMENTS VOLATILS (H20+,H20-,CD2 ET 5)

# MAXIME LEDUC (COUSSINS) VALEURS NORMALISEES MINERAUX NORMATIFS (NORMEC, I.P. W.) (POURCENTAGE POIDS) 95546 95548 95548 95548 95549 95550 BIO2 58610 461607 5960 45860 46670 466 46 52 50 470 457 37 8102

1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	95546 95547 95548 95549 95580	
		DOFT LEFT LEVEL
	-	.00400000000000000000000000000000000000
	95550	
	95549	
	95548	
	95547	30 30 00000000000000000000000000000000
FFMCONTENENT TO TALL	95546 Q 14/12	

YPE"OD A	85/05/03	MINERA	HAXIME LEDUC VALEURS NORM JX NORMATIFS ( (POURCENTAGI	(COUSSINS) ALISEES NORME C.I.P E PDIDS)	·.W.)			
	95557	22 95563	95566	24 9556	8	95569		
SAFFMCSKFARACSCFSCZCESLTH TORNODONOCOCONS O OLS NODOCOCOCOS TO COCOCOCO TALENGA A NAVAZRODL RADOCOCOCO TALENGA A NAVAZRODL RADOCOCOCO TALENGA A NAVAZRODL RADOCOCOCOCO TALENGA A NAVAZRODL RADOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	5 5 6 7 7 7 5 7 4 4 6 7 7 7 5 7 4 4 6 7 7 7 5 7 7 7 5 7 4 4 6 7 7 7 5 7 7 7 5 7 4 4 6 7 7 7 5 7 7 7 5 7 4 4 6 7 7 7 5 7 7 7 5 7 4 4 6 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 7 5 7 7 7 7 5 7 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 7 5 7 7 7 7 5 7 7 7 7 5 7 7 7 7 7 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		5         1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2	51111000000000000000000000000000000000		514 Nov 476 CA 0404804 CO 000001 CO 0000000 O M		ALL Z TH Z C LT T
95557	95563	95566 95568	95569	955	95563	95566	95568	95569
G DOVO DO DO COMO COMO COMO COMO COMO COMO CO	447500000007000400	6 0-1400000000000000000000000000000000000	870750000000000000000000000000000000000	DOST M LO P P J M P P J M P P Z C T L V F C Z T H SP P C A F P Z C T L V F C Z T H SP P C A F P Z C T L V			3 2 0 000000000000000000000000000000000	3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ VALEU	RS NORMAL	ISEES SANS L	ES ELEMENTS VO	LATILS (H2)	0+,H20-,CO	2 ET 8)		
		MINER	NAXIME LEDH VALFURS HOR UX NORMIIFS (PRURCENTA)	COUSSINS ALISES Norme C.1. Ge Poids)	) P.W.)		PAGE	6 DE B
	95570	95572	95574	955	9 75	95576		
SAFFENCENDEDEDENS ILLEBUGAAAAHARZYOOL RIDARINGO ILLEBUGAAAAHARZYOOL RIDARINGO ILLEBUGAAAAHARZYOOL RIDARINGO ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSCIENTE ICONSC	510 50 50 50 50 50 50 50 50 50 50 50 50 50		4 0 000 000 000 000 000 000 000 000 000	*517.7778.00000000000000000000000000000000				APPODDOOMOONNALLSADOODOO+1 L DOOLLIGANNOODOONNALLIGANNOO A SLEU Z PA N S RZ LIII O SLEU Z PA N S LIII O LIII O
95 <u>5</u> 9	0 95572	95574 9557	5 95576	95	70 95 <b>57</b> 2	95574	95575	95576
	496100000000667 7431000000000667 144 144 144 144 144 144 144 144 144 14	15 3 11. 15 3 14. 17 7 14. 17 7 10000 1000000000 7 1000000000 7 1000000000 7 1000000000 7 100000000000 7 1000000000000000 7 1000000000000000000000000000000000000	B0       5       21         71       1       50         1       50       100         00       000       000         00       000       000         000       000       000         000       000       000         000       000       000         000       000       000         000       000       000         000       40028       028         000       4       028	CONTELEDED ZOTER COL		3 1 00000000000000000000000000000000000		0 000000000000000000000000000000000000

+ VALEURS NORHALISEES SANS LES ELEMENTS VOLATILS (H20+,H20+,CO2 ET 5)

THENOD	8570570.	3	MINERAL	HAXIM VALEU IX JORM (PDU	LEDUC S NORI	ALISEE NORME POID	INS) (1. P. W.	, )		PAGE	1 00 0
	95580	9	32 5581		33		34 95583		95586		
33           34           35           36           37           38           39           39           3000           3000           31           32           33           33           34           35           36           37           38           39           3000           3000           3000           3000           31           32           33           34           35           36           37           38           39           3000           3000           3100           3100           3200           3200           3110           3200           3200           3200           3200           3200           3200           3200           3200           3200           3200           3200 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4874557-649</td><td>S-MU Z TO Z T</td></tr<>										4874557-649	S-MU Z TO Z T
9558	0 95581	95582	95583	95586			95580	95581	95582	95583	95586
	6-974000000000000000000000000000000000000					OSTI DEJIERRUUIJ	5 + 67 4 + 430 3 + 000 + 000 + 000 0 + 000 0 + 000 + 000	4	4 500 4 500 5000 5000 0 000 0 0000 0 000 0 0000 0 0000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0		
	36 95613		HINERA	MAXIM VALED UX DORM (POU	E LEDIT RS NDRI ATIFS RCENTA	C (COUS MALISEE (NDRME Ge Poid	\$1N3) Č.I.P.W \$}	•)		PAGE	8 DE 8
SALETCZKIPICOC	5154 14 54 54 54 54 54 54 54 54 54 54 54 54 54	*1 ***********************************		,							ALE Z LP Z S
F CR203 NIO COO BAO SROO LI20+ H20+ H20+ TOTAL		000000 00000 00000 00000 00000 00000 0000					*****				C
956) 956) Q_ 30;	<b>13</b> -44					FD	95613				
DAANUXANKUSDHEEFF 38 4 1 1	- 76000000000000000000000000000000000000					STATE FOR BOARD SCHIZ	3 • 30000000000000000000000000000000000				

· 140

* VALEURS NORMALISEES SANS LES ELEMENTS VOLATILS (H20+, H20+, CO2 ET S)









ANNEXE 4

Composition normative et diagrammes de variation d'oxydes pour le groupe des laves

SYPEHOD 85/05/02

PE400	85/05/04	: ,	HINERAU	MAXIME LEDU VALEURS NORM X NORMATIFS ( (POURCENTAG	C (LAVES) ALISEES NORME C.I.P.W. E POIDSI	.)		F = 0 (	
	95533	99	5535	95539	95544		95551		
51023 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000	6				+67.87 48.40 11.699 5.60 43.3 60 14.65 8.17 3.000 4.20 0.000 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	571         61941020000000000000000000000000000000000			AFF COCOUNDOCASS FOREFACANCONCOCC NAME NAME NAME NAME NAME NAME NAME NAME
95533	95535	95539	95544	95551	95533	95535	95539	4 95544	95551
RYBEEPUSS CHENEA	3.17.60000000077.6000	35       480         185       40000000         0000000000       00000000         10000000000000       1000000000         13000000000000000000000000000000000000	1000 1000 1000 1000 1000 1000 1000 100	14 7442 7442 000 000 000 000 000 000 000 000 000	6064655000040000000 9300000000000000000000000000000	4 2 0 0 0	3 0000 3 0000 0 0000 0 0 0 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 00005000000 0 00000000000000000000000	5 3 00000000000000000000000000000000000
VALEI	JRS NORM	LISEES -	SANS LE	S ELEMENTS VO	DLATILS (H20+,	H20-,C02	ET S)		
ÞEADU	45/05/02	н	IINERAUX	MAXIME LEDU Valeurs norm ( normatifs ( ( pourcentag	C (LAVES) Alisees Norme C.I.P.W. E Poids)	ډ.		PAGE	2 DE 8
	955\$8	95	559	95560	95561		95582		
	4 4 4 7 5 4 6 4 7 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7560773056781000000000000000000000000000000000000	395 272 7 11			+ 1 3304 08 34 14 000 00000000000000000000000000000		+	SLEE N THE RUDS C CICORRACE AL BLEE N THE RUDS C CICORRACE AL C C C C C C C C C C C C C C C C C C C
955\$8	95559	95560	95561	95562	95558	95559	95560	95561	95562
2772 2472 103	030780000000000000000000000000000000000	412 412 412 412 414 414 414 414 414 414	0324 09324 13300000000000000000000000000000000000	155 155 155 155 155 155 155 155	10300000000000000000000000000000000000	3 1 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 1 000000000000000000000000000000000	9 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 0 C

* VALEURS NORMALISEES SANS LES ELEMENTS VOLATILS (H20+,H20+,CO2 ET S)

PAGE 3 DE 8

SYPEHOD 45/05/02

		M		(POURL			10		15		
SAFFTURKTPINUSUFSURUBSLIT ILEUUAARIOSUBOOL RICARTOO CONCOCOODOOL RICARTOO RICARTOODOOL RICARTAN	* * * * * * * * * * * * * * * * * * *			9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9748NB0N4040000000000000000000000000000000	9557 517 50000000000000000000000000000000	*1 *1 *1		*	AL CATALCOCOC CHCARAOO
TOTAL	-98,76 T	13	14 14	100.00 1	00,46	100.00	11	100.00	13	100.00	TOTA 15
0 0 4 5 5 9 0 0 0 0 0 5 0 0 0 0 1 0 0 0 0 0 0 0 0 0	3 6 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					GOLT TOOL TOOL TOOL TOOL		000 5 444 4 330 000 0 000 0 000 0 000 0 000	2 • 000 2 • 000 0 • 000 0 • 000 0 • 000 0 • 000 0 • 000 0 • 000	000 3480 10770 000 000 000 000 000 000 000	0000010000 3 * 00000 * 0000 0 * 0000 0 * 0000
FA 3.5 + VALEU BYPEMOD	85/05/02	6.45 00	SANS LE	5 6 97 5 6 97 6 00 6 5 FLEMEI MAX1ME VA1 FURS	NTS VI	HL Z DLATILS IG (LAVE	22) (H50+*)	420-100 100:	.00 2 Et S)	•00 •00	4 DE 1
FA 35 + VALEU	S NORMA	وتع ۲ وتع ۲ وتع ۲ وتع ۳ و ۳ و ۳ و ۳ و ۳ و ۳ و ۳ و ۳ و ۳ و ۳ و	17 578	S FLEMEI WAXIME VALEURS X NORMAT (POURC	NTS VI LEDI INS I CENTAG 18 5579	HL Z DLATILS IC (LAVE ALISES NORME SE POIDS	5) 1,P.W. 95592	900 120-, CD1	00 00 2 ET S)	.00 .00	4 DE 1
FE 3.50 FA .00 VALEU VALEU SYPE MOD SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALEO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SAL SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALA SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALO SALA SALA SALO SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SALA SA	C3 0 R S N 0 R M A 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 450 450 450 450 450 450 450 450 450 4	A NR LE U P A NR LE U P IN 78 400059310140000000000000000000000000000000000	6         6         970           6         6         970           6         6         970           8         FLEME         MENT           9         7         970           9         7         970           9         7         970           9         7         970           9         7         970           9         7         970           9         7         970           9         7         970           9         7         970           9         7         970           9         9         910           9         9         910           9         9         910           9         9         910           9         9         910           9         9         910           9         9         910           9         9         910           9         9         910           9         9         900           9         9         900           9         9         900	V DR A 9 0070522040500000000000000000000000000000	HL S DL AT IL S LAT IL S	(H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,)) (H20+,) (H20+,)) (H20+,)) (H20+,)) (H20+,)) (H20+,)) (H20+,)) (H20+,)) (H20+,)) (H20+,)) (H20+,)) (H20+,)) (H20+,)) (H20+,))((H20+,)))((H20+,)))((H20+,)))((H20+,)))((H20+,)))((H20+,)))((H20+,)))((H20+,)))(	+20-, CD *10-,	2 E T S) 3 0040875448900000000000000000000000000000000000	CC     CC	4 4 4 4 4 4 4 4 4 4 4 4 4 4
FE 3.5 FA 5.0 + VALEU YPE MOD SYPE MOD SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SALEDO SA	C3 0 R5 NORMA 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5450 5450 5450 5450 5450 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 555 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5551 5	A 000000000000000000000000000000000000		N LNEN 87	HL Z DL ATILS LLEELD. 1100 9 111790780150000000000000000000000000000000000	(H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,) (H20+,)) (H20+,) (H20+,)) (H20+,)) (H20+,)) (H20+,)) (H20+,)) (H20+,)) (H20+,))(H20+,))(H20+,))(H20+,))(H20+,))(H20+,))(H20+,))(H20+,))(H20+,))(H20+,))(H20+,))(H20+,)	*1000000000000000000000000000000000000	2 E T S) 3 6 00 4 00 75 6 4 8 9 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PAGE PAGE PAGE PAGE 9558668900000000000000000000000000000000	4 4 4 4 4 4 4 4 4 4 4 4 4 4

SYPEHOD 85/05/02

PAGE 5 DE 8

1. 5.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	м	INERAUX	MAXIME LED VALEURS NOR NORMATIFS (POURCENTA	UC (LAVE MALISEES (NORME C GE POIDS	5) 5 ^{1,P,W,}	)			
	95594	95	22	95596		95597		95598		
SILESO 0 02000 0 0 0 0	6 4 4 8 00 4 3 5 4 4 8 00 4 3 5 6 9 4 3 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 6 9 7 7 6 9 7 6 9 7 6 9 7 7 6 9 7 7 6 9 7 7 6 9 7 7 7 6 9 7 7 7 7	B         -467449547000000000000000000000000000000000	*1 *1 *1 *1 *1 *1 *1 *1 *1 *1		100         100         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td> <td>7 105 n3 4 00 00 00 00 00 00 00 00 00 00 00 00 00</td> <td></td> <td>SILE CALLES COCOCOLA</td>			7 105 n3 4 00 00 00 00 00 00 00 00 00 00 00 00 00		SILE CALLES COCOCOLA
95590	95595	95596	24 95597	95598		95594	95595	95596	95597	95598
RADENPESS OHEREA	17         41         43           14         43         14           17         47         0000           17         47         0000           17         17         1000           17         17         1000           17         1000         0000           1000         1000         0000           1000         0000         1000           1000         0000         1000           1000         0000         1000           1000         0000         1000           1000         0000         1000           1000         0000         0000           1100         0000         0000           1110         0000         0000           1110         0000         0000           1110         0000         0000           1110         0000         0000           1110         0000         0000           1110         0000         0000           1110         0000         0000           1110         0000         0000           1110         0000         0000           1110	862700000000049000 968700000000049000 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31220 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31200 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 31000 3100000000	33629 4 4 4 4 4 5 4 4 7 5 4 4 7 5 4 4 7 5 4 4 7 5 4 4 7 5 4 4 7 6 0000000000000000000000000000000	35774000000 550000000 550000000 55000000 55000000		3 1 0 0	0000440000070000000 0004400000700000000 00000000	20540800002000000 2 50080000000000000000000000000000000000	20000000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2
	os289	M 95	INERAUX	MARIME LEC VALEURS NOR NORMATIFS (POURCENTA 95601	NIC (LAVE MALISEES (NORME ( NGE POIDS	8) , I . P . W	• •	95603		
SAFFMCOL 1220000255 122000025 122000025 12000025 12000025 120000025 120000025 120000025 120000025 120000025 120000025 120000025 120000025 120000025 12000000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 120000 1200000 1200000 1200000 1200000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000	B 1 2 1 3 1 2 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8       1         1       1         1       1         6       1         6       1         6       1         7       1         1       1         6       1         6       1         7       1         1       1         6       1         7       1         1       1         6       1         7       1         1       1         6       1         6       1         7       1         7       1         1       1         6       1         6       1         7       1         7       1         7       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1	6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6		7 0 3 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*80,853431138334400000000000000000000000000000		*1112 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ALP ICANINGANADA BODODOOLOANIO AND A BODODOOLOANIO AND A BODODOOLOANIO AND A BODODOOLI A AND A A
9558	9 95600	28 95601	29 95602	30 95603		95580	27 95600	28 95601	95602	95603
OCAABEEPPCSS OFF	39.000000000000000000000000000000000000	251 251 251 251 251 251 251 251 251 251	55.873 64.246 23.000 000 000 000 000 000 000	3 4	0917 UPFUAPRCU FCMHISPRUAFPru	00000000000000000000000000000000000000	0000 000144400040004 0000400004 0000400000 000000	3 6000000000000000000000000000000000000	2.000 2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000000	2 00404000050000 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

#### * VALEURS NORMALISEES SANS LES ELEMENTS VOLATILS (H20+,H20+,CO2 ET S)

PEMOD	P5/05/02	MINERAU	MAXIME LEDU VALEURS NOR X NORMATIES (POURCENTA)	IG (LAVES) ALISEES NORME C.I.P.W. E POIDS)	.)	PAGE	1 1/2 0
	31 95604	32 95605	33 95606	34 95607	35 9560	8	
STATES ST	7 3 3 4 7 1 4 7 7 1 4 7 7 9 1 4 7 7 9 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	44       76       20         44       76       20         40       3       100         41       1       20         41       1       20         41       1       20         42       3       100         43       1       20         43       1       20         43       1       20         43       1       20         43       1       20         43       1       20         43       1       20         43       1       20         43       1       20         43       1       20         43       1       20         43       1       20         43       1       20         44       1       20         45       1       20         46       1       20         47       1       20         48       1       20         48       1       20         48       1       20         48       1       20 <td>78 100-103617 15 79 70 70 100 100 100 100 100 100 100 100 1</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>*61.18 62. 18.75 14 18.475 14 18.475 14 18.475 14 19.475 /td> <td></td> <td>ALE HUAKIGACOATOANA LA BACOAROCH 4 ALE HUAKIGACOCOC COL CONSTANT ALE HUAKIGACOCOC COL CONSTANT COL COL COL CONSTANT COL COL COL COL CONSTANT COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL</td>	78 100-103617 15 79 70 70 100 100 100 100 100 100 100 100 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*61.18 62. 18.75 14 18.475 14 18.475 14 18.475 14 19.475		ALE HUAKIGACOATOANA LA BACOAROCH 4 ALE HUAKIGACOCOC COL CONSTANT ALE HUAKIGACOCOC COL CONSTANT COL COL COL CONSTANT COL COL COL COL CONSTANT COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL
9560	4 95605	95606 95607	95608	95604	95605 9560	6 95607	95608
316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 316112 3170110 3170110 3170110 3170110 3170110 3170110 3170110 3170110 317010000000000	0-80,0000000000000000000000000000000000	4 12546000000000000000000000000000000000000	15.7284 38.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .00000 .00000 .00000 .000000	F0 0047 F0ST 2 0000000000000000 HHL SPFUM 00000000000000000 HHL SPFUM 000000000000000000000000000000000000	2 556 1 551 551 000 000 100 0 000 0 000000	00055000000000000000000000000000000000	3 1 • • • • • • • • • • • • • • • • • •
PEMOD	85/05/02	MINERAL 37 95610	MAXIME LEDI VALEURS NORM X NORMATIFS (POURCENTA) 38 95611	IC (LAVES) ALISEES NORME C.J.P.W. GE POIDS) 39 95612	. j	PAGE	6 DE 6
1 2200 00 25 2 33 10 200 00 00 25 2 33 10 200 00 00 25 2 30 10 20 00 00 00 00 00 00 00 00 00 00 00 00	75.00 75.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	77         3         1         1         2         0         0           05         7         8         1         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	74.0000000         74.0000000           75.55         14.0000000           76.0110000000         2010000000           78.0110000000         2010000000           78.0110000000         2010000000           78.0110000000         2000000           78.0000000         20000000           78.0000000         2000000           78.0000000         2000000           78.0000000         2000000           78.0000000         2000000           78.0000000         2000000           78.0000000         2000000           78.000000000         2000000           78.000000000000000000000000000000000000	*76.26 71.30 1.1.2.60 2.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 1.2.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	* 1 1 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		ANDOROGODONISONANJERDAGODOOCH + INNE KAKIATROS RICOGODOOCH + AF Z SIE KAKIATROS RICOGODOOCH + LIT
101*L	37	38 39 05411 95412	<b></b>	98609	37 38 95610 9561	1 95612	
	204 45.15 204 4.61 46 40.73 000 000 000 000	35,50 43,26 43,26 1,73 13,9 50 47 24 00 00 00 00 00 00 00 00 00 00 00 00 00		0009010000000 0400400000000 FCSTIM ISPFU400000000 FCSTIF ISPFU4000000000 FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF FCSTIF		000 2500400 000 2500400 00400 2500400 00400 0000 0000  0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 000000	









ANNEXE 5

Composition normative et diagrammes de variation d'oxydes pour le groupe des intrusions

YPEM	0D 85	/05/02	м	INERAU	MAXIME LEDUC VALEDRS NOR X NORMATIES (POURCENTA	(INTRUS MALISEES (NORME GE POIDS	10NS) (1.P.W.	)		i dut.	1 1/2 3
SAFFICXTLUXCOCTOR NOCOCOCOCON NOCOCOCOCO	95 7 3 1	5 6-14 1401 1400 00000000000000000000000000		1 577098504 00000000000000000000000000000000000	9558 9558 71316 14 18 9 14 18 9 18	6			9 9	0150040539514000000000000000000000000000000000000	ALE Z TA Z C C C C C C C C C C C C C C C C C C
H20+ H20+ T0TA	ק ז	1:15 55.63 TC	0.00	3 12 90 97 98 1	0100 200 0000 799223				5 01 00 100.89		HZD- TOTAL
GOAANJKANKUNDHERF		95531 30.182 9.976 48.700 .000 .000 .000 .000 .000 .000 .000	4 1000000000000000000000000000000000000	955 479 479 479 144630 14630 14630	95557702330000000000000000000000000000000	osti la fiji a rruni l Fui i todruch a zoti n	9530 0048800000000000 2 2 0 0 0 0 0 0	95531 000 00050880 0000000 00000000 00000000 00000000	95584 000 000 000 000 000 000 000 0	95585 3 9066000 3 0060000000 0 000000000000000000	95587 8072000000000 2
* VA Bype**	LEURS	5/05/02	.13EE9 5	INERAU	AXIME LEDU VALEMAN VALEMAN VALEMAN (POURCENT	(INTRUS MALIBEE (NORHE AGE POID	(H2O+,H	20 <b>-</b> ,CO2	e ET S)	PAGE	2 DE 3
ATTICESCONDUCTION CONTRACTION CONTRACTICON CONTRA		55 7							4 9480001-8601-700000000000000000000000000000000000		SLU Z HL Z S LL SMODOOOL SHOSENNU H SLU Z HL Z S LL SMODOOL SHOSENNU H SLU Z S HL Z S LL SMODOOL SHOSENNU H SLU Z S S S S S S S S S S S S S S S S S S
9	5588	95589	95580	95591	95614		95588	95589	95590	95591	95614
Q RABE	1268	4 07	80.J8 51.J			FO	.00 4-79	.00 3.69	4 00	2.06	00. 00 3.62

+ VALEURS NORHALIBEES BANG LES ELEMENTS VOLATILS (H20+,H20-,C02 ET 5)

SYPEHOD 85/05/02

PAGE	3	DE	3
------	---	----	---

37FE-100	03/03/0	2	MINERA	MAXIME VALEUR UX NORM (POUR	LEDUC RS NOR ATIFS CENTA	(INTRU MALISEE (NORME Ge Poid	SIONS) S C ₁ I.P.W Sj	•)		PAGE	3 DE 3
	95615		12 95616		95617		95622		95623		
SAFFNORXTPERCECTORSIER T	0 Current Control Cont	9 186539 68 110000000000000000000000000000000000							715 53 53 53 53 53 55 53 55 55 55 55 55 55	NP 66 Ny Nog 4000000000000000000000000000000000000	
95615	95616	95617	95622	95623			95615	95616	95617	14 95622	95623
	7 4 1 3 3 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			30-11-000000000 11-00000000000 10-11-00000000		ODITE JE LOTE CALL ZUTEN	3 2 900000000000000000000000000000000000		11.050 2.820 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0000 3 000 1 116 0 000 0 0000 0 0000 0 0000 0 000 0 000 0 000 0 000 0 000 0 000	000000000000000000000000000000000000000
* VALEUR	S NORMA	LISEES	SANS LE	S ELEME	NTS VO	LATILS	(H20+,H	20-,002	ET S)		

,









1.60

ANNEXE 6*

### CARACTERISATION DES ECHANTILLONS D'INTERET ECONOMIQUE

 Cette compilation a été réalisée par A. Simard (MER) à partir des descriptions fournies par les géologues de la firme Géomines (carnets de terrain).

Désignation	N° de laboratoire	Nature de la minéra- lisation	Structure minéra- lisée	Encaissant	Remarques
ML-0040-B1-84	84-5699	Ру,Ср	Faille	AND	Minéralisation
ML-0100-A2-84	84-5700	Py (1-3%)		RHY	disséminée Minéralisation disséminée
ML-0119-A1-84	84-5701	Py (1%)	Veinules	BAS	disseminee
ML-0138-D1-84	84-5702	Ру	Filon de quartz	SYE	Minéralisation disséminée
ML-0161-A1-84	84-5703		Filon de guartz	AND	
ML-0245-A3-84 ML-0246-A1-84	84-5704 84-5705	Не Ру	Veinules	RHY RHY	Brèche Brèche Minéralisation disséminée
ML-0248-D1-84	84-5706	Ру		BAS	Minéralisation disséminée
ML-0139-C1-84	84-5679	Py, Mt	Filon de quartz		
ML-0252-A2-84 ML-0262-A1-84 ML-0262-A2-84 ML-0270-B1-84	84-5680 84-5681 84-5682 84-5683	Py Py		RHY RHY RHY BAS	Brèche
ML-0273-D1-84 ML-0296-B5-84 ML-0300-B1-84	84-5684 84-5686 84-5687	Ру		BAS RHY RHY	Tranchée Brèche
ML-0304-D1-84	84-5688		Filon de quartz		Tranchée
ML-4019-D1-84	84-5689	Ру	Filon de quartz		Tranchée
ML-40 <b>33-</b> D1-84	84-5690	Ру	Filon de quartz	RHY	
ML-4260-A1-84	84-5691	Py (5%)		AND	Chloritisée
ML-2231-C1-84	84-5692	Ру,Срх	Filon de quartz	GRE	
ML-2231-C2-84	84-5693	Ру, Срх	Filon de quartz	GRE	
ML-2258-C1-84	84-5694		Filon de quartz	GRE	
ML-0002-B1-84	84-5695	Ру		AND	
ML-0017-A1-84	84-5696			AND	
ML-0017-A2-84	84-5697			AND	
ML-0017-B1-84	84-5698			RHY	
ML-6011-A1-84	84-5669	Ру, Ср, В	0	AND	
ML-6012-A1-84	84-5670	Py (1%),C	Р	AND	

Désignation	N° de laboratoire	Nature de la minéra- lisation	Structure minéra- lisée	Encaissant	Remarques	
ML-6015-42-84	84-5671	Bu Co		DIIV	m	
ML-6017-B1-84	84-5672	гу,ср Ри (19)		KILI	Tranchee	
ML-6098-B1-84	84-5673	ry (1%) Dw (2%)				
ML-6101-B1-84	84-5674	$P_{V}(2\%)$	⁻ <del>-</del>			
ML-6104-A1-84	84-5675	$P_{V}(1\%)$	Sp Voinuloo			
ML = 6161 = B2 = 84	84-5676	$P_{V}(3\%)$	p vernures	DAD		
ML-6164-B1-84	84-5677	$P_{V}(3\%),$	) D			
ML-6166-A1-84	84-5678	$P_{V}(5\%),$	PP	DUV	Tranchée	
	04 3070	$C_{\rm D}$ (1%),		KII L	Tranchee	
ML-0017-C1-84	84-14521	00 (1%)		PHV		
ML-0100-A1-84	84-14522	Pv (2%)		RHV		
ML-0227-A1-84	84-14523	1) (2%)		AND		
ML-0318-B2-84	84-14524	Pv				
ML-0321-A2-84	84-7992	- )		BAS	Tranchée	
ML-0336-E -84	84-7993	Su (75%)		AND	Tranchee	
ML-0337-E -84	84-7994	00 (10%)		GAB		
ML-0352-B2-E-84	84-7995			RHY		
ML-0319-B1-84	84-14525			RHY	Brèche	
ML-0336-A2-84	84-14526			GAB	Dicche	
ML-0457-B1-84	84-14527	Pv (2%)		RHY		
ML-0712-A1-84	84-14528	Py (2%)	Veinules	BAS		
		Cp (1%)				
ML-0042-E1-84	84-12096			CHE		
ML-0651-E1-84	84-12097	Py		BAS	Amas minéralisé	
ML-0651-E2-84	84-12098	Py		BAS	Amas minéralisé	
ML-0718-E1-84	84-12099	-		GAB		
ML-0732-E1-84	84-12100	Py (3%)		AND		
ML-0938-C1-84	84-12101	-	Filon de	GAB		
			quartz			
ML-0954-A3-84	84-12102		-	RHY	Brèche	
ML-1025-E1-84	84-12103					
ML-0402-B1-E-84	84-7996	Ру		BAS	Silicifié	
ML-0446- E-84	84-7997	Ру		GAB		
ML-0586-E -84	84-7998					
ML-2028-B1-84	84-7999	Py (10%)	Zone	RHY		
		Cp (15%)	cisaillée			
ML-0954-A2-84	84-14529	Py (3%)		RHY	Brèche	
ML 1059-A1-84	14530			TON	Altéré	
ML 2309-A1-84	14531			SCH	Altéré	
ML 2309-B1-84	14532		Filon de			
			quartz			
ML 1025-E2-84	12104			AND		
ML 2150-B2-84	12105	Py (5%)	Filon de	DIO		
			quartz			
ML 2169-A2-84	12106	Ру	Zone	AND		
		(5-8%)	cisaillée			

Désignation	N° de laboratoire	Nature de la minéra- lisation	Structure minéra- lisée	Encaissant	Remarques	
MI -2620-B2-84	84-12107	S11		BAS	Fridatisá	
ML-2294-B1-84	84-8000	Su	Zone	AND	Présence de	
	01 0000	54	bréchifiée	Inte	quartz	
ML-2350-B1-84	84-8001		biconili ioc	AND	Brèche	
ML-2359-A1-84	84-8002			RHY		
ML-2361-B1-84	84-8003	He	Zone	RHY	Brèche (forayes)	
			cisaillée			
ML-2367-A1-84	84-8004	Ру	Zone	SCH	Présence de quartz	
		(1-10%)	cisaillée			
ML-2380-E1-84	84-8005	Su		RHY	Tuf	
ML-4262-D1-84	84-8006	Ру		AND		
ML-4263-C1-84	84-8007	Ру	Filon de	AND		
			quartz			
ML-4300-C1-84	84-8008	Py	Filon de	RHY	Tranchées	
MT 4202 D1 94	84-8000	(5%),10	quartz	סווע		
ML-4303-D1-64	04-0009			KH I	Minéralisation disséminée	
ML-4369-A1-84	84-8010	Py (1%)		GAB	Puits d'exploration	
ML-4387-B1-84	84-8011	Ma	Filon de quartz	SYE		
ML-4279-A1-84	84-14533	Ру, Ср Ма	Zone cisaillée	AND	Veines de quartz	
ML-4610-A1-84	84-14534		Zone cisaillée	SCH	Roche sédimentaire	
ML-4438-A1-84	84-8016	Ру		AND	Chloritisée	
ML-4450-A1-84	84-8017	Ру, (10-15%) Ср	Zone cisaillée	SCH		
ML-4450-A3-84	84-8018	Ру (10-15%) Ср	Zone cisaillée	SCH	Silicifi <b>é</b> e	
ML-4457-C1-84	84-8019	Py (5-8%)		RHY	Tranchée	
ML-4414-B2-84	84-8012	Ру	Zone schisteuse	RHY		
ML-4419-A1-84	84-8013	Ру	Filon de calcite	AND	Silicifiée	
ML-4420-A1-84	84-8014	Ру	Filon de quartz calcite	AND	Silicifiée	
ML-4428-A2-84	84-8015	Ру	Lits massifs	RHY	Carbonatisée	

Désignation	N° de laboratoire	Nature de la minéra- lisation	Structure minéra- lisée	Encaissant	Remarques	
ML 4473-B1-84	8020		Filons de	AND		
ML 4481-B1-84	8021	Pv.Ma	carbonates Filon de	SVE		
		Cp	quartz	011		
ML 4489-A1-84	8022	Py	400100	GAB	Minéralisation disséminée	
ML 4489-B1-84	8023	Ру	Zone schisteuse	GAB		
ML 4486-B1-84	8036	Py,Mo Cp	Filon de quartz	RHY	Tranchées	
ML 4507-B1-84	8037	Py, Cp Mo	Filon de quartz	SCH	Puits de mine	
ML 4522-A2-84	8038	Ру, Ма Ср	Zone cisaillée	RHY	Veines de quartz	
ML 2625-D1-84	12108	Mt		GAB		
ML 2652-A1-84	12109		Filon de quartz	GAB	Tranchée Indiae 32 D/6-55)	
ML 2659-A2-84	12110	Ру (15-20%)	400200	BAS	Brèche Indice $32 \text{ D/6-56}$	
ML 2693-B2-84	12111		Filon de quartz	GAB		
ML 2693-C1-84	12112		Filon de quartz	GAB	Tranchée	
ML 2728-D1-84	12113	Su	1	DIA	Forages	
ML 2755-B1-84	12114	Py (2-15%	)	AND	Bréchique	
ML 4814-A2-84	12115			RHY		
ML 4823-A3-84	12116	Py, Ma		RHY	Brèche, forages	
ML 4833-B1-84	12117	Py, Cp		AND		
ML 4838-A1-84	12118	Ру		AND	Fracturé; forages	
ML 4904-B3-84	12119	Ру		RHY	_	
ML 4928-E1-84	12120			RHY		
ML 4929-A1-84	12121	Py, Ma	Zone cisaillée	AND	Chloritisée	
ML 6454-E1-84	12122			RHY	Brèche	
ML 6561-B2-84	12123	Ру		BAS		
ML 4495-A1-84	8024	Ру		SYE	Epidotisée	
ML 6233-A1-84	8025			SYE		
ML 6250-A2-84	8026	Py (5%) Cp (1%)		RHY	Tranchée	
ML 6255-A1-84	8027	Ру	Zone cisaillée	RHY	0xydée	
ML 6259-A1-84	8028	Ру (2%) Ср		RHY	Tranchée	
ML 6262-A2-84	802 <b>9</b>	Py (1%)		RHY	0xvdée	
ML 6263-A2-84	8030	Py (1%)		RHY	0xydée	

Désignation		N° de laboratoire	Nature de la minéra- lisation	Structure minéra- lisée	Encaissant	Remarques
м	()(7 4) 9/	9021	D== (1%)		DUV	
M	6207-AZ-04	8032	Py (1%)		KT I DUV	Chioritisee
MT	6322-A1-84	8032	Py, ne			Troug do forago
MT.	6337-A1-84	8034	He (5%)		RHY	Minéralisation
		0001	Pv (2%)			disséminée
ML	6412-C1-84	8035	Py (10%)		VCL	
ML	6562-A2-84	12124	Ру		RHY	Brèche Minéralisation disséminée
ML	6583 <b>-</b> A1-84	12125	Py (1%)		BAS	
ML	576-C1-84	14279			GAB	Brèche
ML	1047 <b>-</b> E1-84	14280			AND	
ML	10 <b>99-</b> E1-84	14281		Zone	GAB	
1/7	1101 51 0/	1/000		cisaillée	<b>24</b> P	
ML	1121-E1-84	14282		filon de quartz	GAB	
ML	1126-E1-84	14283	Ру		AND	Brèche
ML	1128-E1-84	14284		Filon de quartz	AND	Brèche
ML	1129-E1-84	14285			BIN	
ML	1130-E1-84	14286		Zone cisaillée	GAB	Chloritisé
ML	1140 <b>-</b> E1 <b>-</b> 84	14287	Ру		AND	Brèche Minéralisation disséminée
ML	1143 <b>-</b> E1-84	14288	Ру		AND	Brèche Minéralisation disséminée
ML	1147-E1-84	14289			MON	
ML	1149-E1-84	14290		Zone cisaillée	GAB	Tranchée
ML	1151 <b>-</b> E1-84	14291		Filon de quartz	GAB	
ML	1175-E1-84	142 <b>9</b> 2		Zone cisaillée	AND	Brèche
ML	2775-A1-84	14293	Su		AND	Epidotisation; Forages
ML	2831-D1-84	14294			RHY	Puits d'exploration
ML	2877-A1-84	14295	Ру (2-5%)		RHY	Séricitisation
ML	2910-A1-84	14296	Py		RHY	0xydée
ML	2956-D1-84	14297	-		AND	Altérée
ML	2996-D1-84	14298		Filon de quartz	AND	

Désignation	N° de laboratoire	Nature de la minéra- lisation	Structure minéra- lisée	Encaissant	Remarques		
ML-2999-E1-84	84-14299	Su	Stockwerk	AND			
ML-3006-C1-84	84-14300	Su		AND			
ML-5148-A1-84	84-14301		Zone cisaillée	AND	Carbonates		
ML-6912-A2-84	84-14302			AND	Schisteuse, oxydée		
ML-6996-A1-84	84-14303	Py (1%)		DIO			
ML-7008-A1-84	84-14304	Py		DIO			
ML-7009-B1-84	84-14305	Py (60%)	Zone cisaillée	DIO	Brèche		

-

ANNEXE 7

Données brutes des échantillons d'intéret économique

DÉSIGNATION	ML-0040- B1-84	ML-0100 A2-84	ML-0119 A1-84	ML-0138- D1-84	ML-0161- A1-84	ML-0245- A3-84	ML-0246- A1-84	ML-0248- D1-84		
Nº LABORATOIRE	84 - 5699	84-5700	84-5701	84-5702	84-5703	84-5704	84-5705	84-5706		
DOSAGE	%	%	%	%	%	%	%	%	%	%
Cu	0,11									
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Cr	20	6	39	6	9	3	4	7		
Cu		45	110	6	11	26	46	260		
Ni	6	3	15	3	7	<0,3	<0,3	3		
Pb	2	22	5	120	4	5	11	3	i	
Sr	21	33	150	33	19	360	95	150		
٧	210	44	310	19	44	50	16	19		
Zn	38	300	180	19	34	85	110	100		
	ррь	ppb	ppb	ррЬ	ppb	ррЬ	ppb	ррЪ	ppb	ррь
Ag	800	300	<250		<250	300	<250	<250		
Au	300	<15	<15	45	<15	550	<15	25		
	g/t	g/t	g/t	g/t	g/t	g/t	g/t	g/t	g/t	g/t
Ag				1,1						
	L				1					

DÉSIGNATION	ML-0139- C1-84	ML-0252- A2-84	ML-0262 A1-84	ML-0262- A2-84	ML-0270- B1-84	ML-0273- D1-84	ML-0273- D2-84	ML-0296- B5-84	ML-0300- B1-84	ML-0304- D1-84
Nº LABORATOIRE	84-5679	84-5680	84-5681	84-5682	84-5683	84-5684	84-5685	84-5686	84-5687	84-5688
DOSAGE	%	%	%	%	%	%	%	%	%	%
Pb						0,27				
Zn						0,18	0,20			
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Cr	5	10	7	6	6	<0,3	5	7	10	6
Cu	35	150	160	570	900	110	760	110	340	23
Ni	1	7	8	7	12	<0,3	<0,3	2	15	<0,3
РЬ	4	1	18	100	9		100	12	12	2
Sr	72	80	34	110	6	210	96	100	7	16
V	44	56	100	6	9	380	<3	34	59	6
Zn	18	160	100	98	90			70	130	22
	ррЬ	ррЬ	ррЬ	ррЬ	ррь	ppb	ppb	ppb	ppb	ppb
Ag	<250	500	<250		500			300		300
Au	<15	30	30	<15	<15	<15	30	45	65	30
	g/t	g/t	g/t	g/t	g/t	g/t	g/t	g/t_	g/t	g/t
Ag				0,9		10,0	1,3		2,0	

DÉSIGNATION	ML-4019- D1-84	ML-4033 D1-84	ML-4260 A1-84	-ML-2231- C1-84	ML-2231 C2-84	-ML -2258 C1-84	ML-0002- B1-84	ML-0017- A1-84	-ML-0017 A2-84	ML-0017- B1-84
N° LABORATOIRE	84-5689	84-5690	84-5691	84-5692	84-5693	84-5694	84-5695	84-5696	84-5697	84-5698
DOSAGE	%	%	%	%	%	%	%	%	%	%
Cu				0,33						
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррпп
Cr	6	4	3	6	41	23	4	4	5	4
Cu	6	28	25		490	110	110	15	18	140
Ni	<0,3	<0,3	<0,3	0,3	38	13	<0,3	<0,3	<0,3	<0,3
Pb	5	1	<0,5	11	3	5	4	1	<0,5	<0,5
Sr	34	51	39	14	100	43	120	130	140	60
٧	6	<3	150	6	56	34	230	110	100	72
Zn	31	25	48	9	42	29	38	16	14	19
	ррь	ррБ	ррь	ppb	ррђ	ррь	ррЬ	ррЬ	ррь	ррь
Ag	300	<250	<250	<250	<250	<250	<250	<250	<250	<250
Au	300	<15	<15	<15	<15	25	<15	<15	<15	<15

DÉSIGNATION	ML-6011-	ML-6012-	ML-6015- A2-84	ML-6017- B1-84	ML-6098-	ML-6101- B1-84	ML-6104-	ML-6161-	ML-6164- B1-84	ML-6166-				
Nº LABORATOIRE	84-5669	84-5670	84-5671	84-5672	84-5673	84-5674	84-5675	84-5676	84-5677	84-5678				
DOSAGE	%	%	%	%	%	%	%	%	%	%				
Cu										1,09				
Zn								0,45						
	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт				
Cr	9	5	5	6	4	4	8	4	6	4				
Cu	230	170	10	26	240	330	230	310	26					
Ni	5	<0,3	<0,3	<0,3	<0,3	<0,3	6	<0,3	<0,3	<0,3				
РЬ	7	8	1	1	<0,5	<0,5	5	28	56	25				
Sr	110	130	74	84	85	91	150	<5	15	10				
V	250	170	160	<3	160	190	380	13	13	88				
Zn	110	250	41	18	39	76	100		170	680				
	ррь	ррь	ррь	ррЬ	ppb	ррЬ	ррЬ	ррБ	ррб	ррҌ				
Ag	<250	<250	<250	<250		500	<250							
Au	<15	<15	25	240	<15	<15	<15	25	20	75				
	g/t	g/t	g/t	g/t	g/t	g/t	g/t	g/t	g/t	g/t				
Ag					<0,5			1,7	0,9	5,6				
+					- 1	RESI	JLTA	T ·						
---	----------------	----	-------	-------------	-----	-------	-------	-----	--------	---------------------	---	-------	---------------------	---
+	DESIGNATION	:	ML-0	17-01-84		ML-10	0A184		ML-221	7-A1-84		ML-31	8-82-84	
+	NO+LABORATOIRE	:	84- 3	14521		84- 1	4522		84- 14	4523		84- 1	4524	
+														
+	Ag	:	(250	ррЬ	:	(250	66p	:	(250	eep	:	<250	ppb	:
+	Au	:	(15	PPD	:	<15	PPb	:	<15	<b>P</b> PD	:	<15	PPb	:
+	Cr	:	<0,3	PPM	:	2	PPM	:	76	<b>PPM</b>	;	2	<b>P</b> P <b>M</b>	:
+	Cu	::	110	PPM	:	31	PPM	:	6	PPM	:	83	PPM	:
+	Ni	:	<0,3	<b>PPm</b>	\$	3	PPM	:	51	<b>PPM</b>	:	1	m q q	:
+	۴b	:	6	₽₽ <i>m</i>	:	7	PPM	:	(0,5	<b>PP</b> m	:	12	<b>Pbw</b>	:
+	Sr	:	79	PPM	:	32	PPM	:	160	<b>ዞ</b> ኮ <b>መ</b>	:	140	PPM	:
+	V	:	56	<b>P</b> PM	:	19	PPM	:	130	PPM	:	19	PPM	:
+	Zn	:	16	PPM	:	25	PPM	:	77	PPM	:	150	m q q	:
+														

+						RES	s u	LTA	т						
+	DESIGNATION	:	ML-3	21-A2-	84	ML-3	536-	-E		ML-337-	-E -84		ML-3	52-82-E-	-84
+	NO.LABORATOIRE	:	84-	7992		84-	79	793		84- 79	994		84	7995	
+															
+	Ag	:	2,8	9/t	:	4,	5	g/t	:	6,8	g/t	:	(250	PPD	:
÷	Au	::	240	ppb	:	100		ррб	:	70	ppb	+	25	PPb	:
+	Cr	:	5	<b>N</b> AA	:	27		PPM	:	0,02	x	:	7	PPM	:
+	Cu	:	0,6	6 %	:	1,	40	*	:	1,59	%	:	81	PPM	:
+	Mo	:			:				:			:			:
+	Ni	:	12	<b>PPM</b>	:	0,	61	x	:	1,69	*	:	57	PPM	:
+	FЪ	:	9	<b>PP</b> M	:	11		PPM	:	43	PPM	:	7	ppm	:
+	Sr	::	330	<b>PP</b> M	:	(5		PPM	:	(5	PPM	:	65	PPM	:
÷	v	::	210	· PPm	:	120		PPM	:	190	PPm	1	22	PPM	:
+	Zn	::	210	ppm	:	69		PPM	:	<b>9</b> 9	PPM	:	17	eem	:
÷											•••	-		•••	
+															

+					- 1	RESU	LTA	т						
+	DESIGNATION	:	ML-3	819-B1-84		ML-336-	-A284		ML-45	7-81-84		ML712-	-A1-84	
4	NO+LABORATOIRE	:	84	14525		84- 14	526		84-1-	4527		84- 145	528	
+														
+	Ag	: <	(250	PPb	:	(250	ppb	:	<250	PPD	:	1,8	g/t	:
+	Au	: <	(15	PPD	:	23	ppb	:	<15	PPD	:	40	ррЬ	:
+	Cr	:	6	PPM	\$	0,02	*	:	7	PPM	:	73	PPM	:
+	Cu	:	28	PPM	:	0,22	%	1	220	PPM	1	0,42	x	:
+	Ni	:	15	PPM	:	0,14	%	:	24	PPM	:	140	PPM	:
+	F'b	:	6	PPM	:	2	PPM	:	5	PPM	:	<0,5	PPM	:
4	Sr	:	7	66W	:	150	<b>PPm</b>	:	210	<b>PP</b> M	:	59	PPM	:
+	V	:	9	ዋ ም መ	:	190	PPM	:	<3	PPM	:	160	<b>bbw</b>	:
+	Zn	:2	200	<b>PPM</b>	:	95	PPM	:	29	<b>PPM</b>	:	95	ppm	:
4														
+														

+				- F	RESU	LTA	т.						
+	DESIGNATION	: ML-0	42-E1-84		ML-651	-E1-84		ML65:	L-E2-84		ML-716	3-E1-84	
+	NO.LABORATOIRE	: 84-	12096		84- 12	097		84- 12	2098		84- 12	2099	
+													
+	Ag	:<250	рры	1	3,3	g/t	:	< 250	ррЬ	\$	(250	ppb	:
+	Au	:<15	PPb	:	20	PPb	:	20	PPD	:	(15	ppb	:
+	Cr	:190	PPM	:	20	PPM	:	12	PPM	1	19	12 P M	:
+	Cu	:300	PPM	:	29	PPM	:	18	<b>PPM</b>	:	130	n qq	:
+	Ni	: 39	PPM	:	41	PPM	:	55	PPM	:	67	PPM	:
+	Pb	: <0,5	PPM	:	730	P P M	:	13	<b>PP</b> M	:	11	PPM	:
+	Sr	:150	e e u	:	93	PPM	:	120	PPM	:	23	PPM	:
+	V	:200	<b>PP</b> m	:	97	PPM	:	160	PPM	:	94	ppm	:
4	Zn	: 40	PPM	:	68	PPM	:	89	PPM	:	76	<b>P</b> PM	:
+													
+													

+			• ··•• -·· ·		- 1	RESI	ULTA	τ·						<b>8</b> 944 <b>948</b> 4 <b>944</b> -
+	DESIGNATION	:	ML7	732-E1-84		ML-93	8-C1-84		ML-954	-A3-84		ML10	25-E1-8	4
÷	NO.LABORATOIRE	:	84	12100		84- 1	2101		84- 12	102		84- 13	2103	
+														
+	Ag	:<	250	ррр	:	<250	66p	:	<250	ррЬ	\$	(250	ppb	:
• <b>•</b> •	Au	:<	(15	PPD	:	<15	PPb	:	<15	PPb	\$	<15	PPD	:
÷	Cr	12	240	<b>PPW</b>	:	6	<b>PPM</b>	:	6	<b>PPM</b>	:	42	ыњ w	:
+	Cu	:	16	PP m	:	13	p P W	:	95	PPM	:	81	<b>PPM</b>	:
-1-	NI	:1	1.0 <b>0</b>	ppm	:	1	ppm	:	<0,3	PPM	:	100	66W	:
+	F'Ь	:	з	PPM	:	11	PPM	:	20	pew	:	9	ppm	:
+	Sr	::	40	ppm	:	<3	PPM	;	51	PPM	:	190	PPM	:
+	v	::	29 <b>0</b>	PPM	:	<3	<b>PP</b> M	:	<3	PPM	:	150	P₽M -	:
+	Zn	:	75	66W	:	9	ppm	:	110	PPM	:	160	PPM	:
+														
+														

+					(	RES	ULTAT	T.						
+	DESIGNATION	:	ML-4	02-E1-E		ML-4	146- E-84	4	ML-586-	- 1	E-84	ML20	D28-B1	-84
+	NO+LABORATOIRE	:	84-	7996		84	7997		84- 79	798		84-	7999	
+														
+	Ag	:	(250	ppb	:	500	66p	:	3,0	g/t	:	(250	ppb	:
+	Au	:	15	PPD	:	770	PPD	:	20	ppb	:	<15	ppp	:
+	Cr	:	35	mqq	:	3	<b>PP</b> M	:	6	PPM	:	9	PPM	:
÷	Cu	:	81	m qq	:	76	PPM	:	0,49	×	:	160	₽₽ <b>m</b>	:
+	Mo	:	-		:			;			:			:
+	Ni	;	87	PPM	:	12	PPM	:	34	PPM	:	8	PPm	:
+	F'b	:	11	<b>PP</b> M	:	2	PPM	:	<0,5	PPM	:	1	PPM	:
+	Sr	::	260	PPM	:	25	PPM	:	79	PPM	:	46	PPm	:
÷	V	::	200	ppm	:	450	PPM	:	6	PPM	:	63	ppm	:
+	Zn	:	150	PPM	:	68	PPM	:	120	PPm	:	56	PPM	:
+														
+														

4-	1811 Init Was and				- 1	RES	ULTA	т			•••• •••• •			<b></b>
+	DESIGNATION	:	ML9	54-A2-84		ML-10	59-A1-84		ML-2309	7-A1-84		ML-2309	9-B1-84	•
+	NO+LABORATOIRE	:	84-	14529		84- 1	4530		84- 145	531		84- 145	532	
+														
÷	Ag	:<	250	66p	:	(250	ppb	:	(250	ррЬ	:	1,0	g/t	:
+	Au	:*<	15	PPD	:	(15	dad	:	<15	ppb	:	3,3	g/t	:
+	Cr	:	<0,3	PPM -	:	9	PPM	:	0,05	%	:	0,03	×.	:
+	Cu	:1	40	PPM	:	61	<b>PPW</b>	:	59	PPm	:	200	PPM	:
•••	Ni	:	<0,3	PPM	:	23	PPM	:	78	PPM	:	48	PPM	:
+	Pb	:	7	PPM	:	1	PPM	:	5	PPM	:	4	PPM	:
+	Sr	:1	80	<b>PP</b> M	:	52	PPM	;	220	PPM	:	320	PPM	:
+	V	:	(3	<b>B</b> BW	:	(3	PPM	:	190	PPM	:	94	PPM	:
+	Zn	:3	70	PPM	:	24	PPM	:	55	PPM	:	79	PPM	:
+													• •	

.+.					- F	RESU	LTA	τ						
+	DESIGNATION	:	ML-1	1025-E2-84		ML-215	0-82-84	•	ML-2	169-A2-84		ML-262	20-82-84	,
+	NO.LABORATOIRE	:	84-	12104		84- 12	105		84-	12106		84- 12	2107	
+														
4	Ag	::8	300	ррб	:	<250	ppb	:	500	PPD	:	(250	PPM	:
+	Au	:	20	PPb	:	83	ррЬ	:	630	PPb	;	(15	PPD	:
+	Cr	:	47	PPM	:	6	<b>PPM</b>	:	5	PPM	:	29	PPM	;
+	Cu	:	56	PPM	:	250	PPM	:	20	<b>PP</b> M	:	190	<b>PPm</b>	:
+	Ni	:	83	PPM	:	6	<b>PP</b> M	:	2	PPM	:	42	PPM	:
+	Fb	:	41	PPM	1	(0,5	PPM	:	5	. PPm	:	51	<b>PPM</b>	:
÷	Sr	:2	210	<b>PPM</b>	:	210	66w	:	61	ppm	:	140	PPM	:
+	V	::	110	PPM	:	280	<b>PPm</b>	:	16	<b>P</b> P <b>m</b>	:	530	<b>PPW</b>	:
+	Zn	:1	L 40	PPM	:	76	<b>PPM</b>	:	51	PPM	:	190	PPM	:
+														
+														

+						RES	<b>ULT</b>	ΑT						
4.	DESIGNATION	:	ML-2	294-B1	-84	ML-2	2350-B1	84	ML-23	559-A1	-84	ML-23	61-B1	-84
+	NO+LABORATOIRE	:	84	8000		84-	8001		84-	8002		84-	8003	
+														
÷	Ag	: (	(250	PPb	:	500	PPD	1	(250	PPD	:	2,5	j g∕t	:
4-	Au	;1	110	PPD	:	<15	ррр	:	15	PPD	:	780	ppb	:
+	Cr	:	24	PPM	:	13	e e m	:	9	PPM	:	10	PPM	:
+	Cu	:1	150	PPM	:	53	PPM	:	78	PPM	:	23	PPM	:
+	Mo	:	-		:			:			:	-		:
+	Ni	:	21	66W	:	13	mqq	:	3	PPM	:	3	PPM	:
+-	Fb	:	1	₽PM	:	1	mqq	:	<0,5	i PPM	:	2	PPM	:
÷	Sr	::	130	PPM	:	11	mqq	:	130	PPM	:	25	PPM	:
+	V	:13	320	PPM	:	22	<b>PPm</b>	:	16	PPM	:	16	PPM	:
+	Zn	:	51	PPM	:	63	PPM	:	120	PPm	:	43	PPM	:
+														

+						RE	SULT	A T						
+	DESIGNATION	:	ML	-2367-A1	-84	ML	-2380-E1	-84	ML-4	262-D1	-84	ML42	263-C1	-84
+	NO.LABORATOIRE	:	84	- 8004		84	- 8005		84-	8006		84-	8007	
+														
+	Ag	:5	500	eeb	1	: 50	о выр	:	<250	PPb	:	(250	ppb	:
+	Au	::	230	PPD	:	: 2	5 ррб	:	30	PPD	:	70	PPD	:
+	Cr	:	10	PPM		: 1.	6 ррл	:	0,	01 X	:	9	PPM	:
+	Cu	:	26	PPM		: 90	6 ррм	:	34	PP m	:	17	PPM	:
+	Mo	:				:		:			:	-		:
.+.	Ni	:	5	p p m		: (	B ppm	:	54	<b>PP</b> m	:	(0,	3 PPM	:
÷	Pb	:	6	nnarq		: !	5 ppm	:	<0,	5 PPM	:	(0,5	5 PPM	:
.+.	Sr	:	42	p p m		: 1	8 ppm	:	100	PPM	:	۲5	p p m	:
÷	V	:	16	in ei ei	1	: 4	7 ppm	:	280	PPM	:	9	PPM	:
+	Zn	:	63	PPM	1	: 8:	3 ррм	. :	120	PPM	:	B	PPM	:
+														
4														

+						ŔΕ	6 (	ULT	AT						
+	DESIGNATION	:	ML-4	300-C1	-84	ML-	430	03D1	-84	ML4	369-A1	-84	ML4	387-B1	-84
+	NO.LABORATOIRE	:	84-	8008		84-	. 8	8009		84-	8010		64-	8011	
+															
÷	Ag	:2	236	g/t	:	: 1	,0	g/t	:	<250	PPD	:	800	ppb	:
+	Au	:	72,0	g/t	:	: 1	,6	g/t	:	120	ppb	:	75	ppb	:
+	Cr	:	7	ppm	:	: 13		<b>PPM</b>	:	2	PPM	:	5	PPM	:
+	Cu	::1	150	66W	:	: 21		PPM	:	240	ppm	:	0,	10 %	:
+	Mo	:		-	:	:			:	-		:			:
+	NÍ	:	<0,3	ppm	:	: 4		PPM	:	6	PPM	:	3	ppm	:
+	F'b	:	56	PPm	1	5		PPM	:	8	PPM	:	15	ppm	:
·+·	Sr	:	13	PPM	:	: 30		ppm	:	150	PPM	:	730	PPM	:
+	V	:	13	<b>PP</b> m	1	28		<b>P</b> PM	:	630	PPM	:	230	PPM	:
+	Zn	::5	510	<b>PPm</b>	:	28		PPM	:	88	PPM	:	77	PPM	:
+															

+	و روی دی اور این این این این این این این این این اور این				• 1	R E S	SULTAT	
+	DESIGNATION	:	ML-42	79-A1-84		ML-	4610-A1-84	
÷	NO.LABORATOIRE	:	84- 1	4533		84-	14534	
-4-								
+	Ag	::	(250	PPD	:	800	PPD	:
+	Au	:	2,9	g∕t	:	<15	PPD	:
+	Cr	:	75	PPM	:	70	PPM	:
+	Cu	1	16,6	×	:	530	66W	:
+	Ni	:	79	<b>PPM</b>	:	57	PPM	:
+	Pb	:	34	PPM	:	3	PPM	:
+	Sr	:	<b>K</b> 3	P P m	\$	310	P P m	:
+	V	:	47	P P M	:	78	PPM	:
+	Zn	:	2,16	×	;	100	<b>PPM</b>	:
+								

4	*** *** *** *** *** ***					RES	ULT	A T						u 2194 di Akat <b>612</b> 4
4	DESIGNATION	:	ML-44	138-A1	-84	ML4	450-A1	-84	ML-44	450-A3	84	ML-44	457-C1	-84
<b>.</b>	NO.LABORATOIRE	:	84-	8016		84-	8017		84-	8018		84-	8019	
+														
+	A9	:	(250	PPb	:	< 250	PPD	:	6,0	) g/t	:	500	PPb	:
+	Au	:	30	PPD	:	(15	PPD	:	390	PPD	:	1,7	7 g/t	:
+	Cr	:	0,00	3 X	:	14	<b>PPW</b>	:	3	PPM	:	5	PPM	:
+	Cu	:	80	<b>PP</b> m	:	52	PPM	:	750	PPM	:	150	<b>bbw</b>	:
+	Mo	:		-	:			:	-		:	-		:
+	Ni	:	140	PPM	:	16	PPM	:	60	PPM	:	<0,3	3 ppm	:
+	Рb	:	7	<b>hdd</b>	:	1	ppm	:	37	PPM	:	7	6 P M	:
+	Sr	:	280	PPm	;	130	<b>PP</b> m	:	13	PPM	:	220	<b>PP</b> m	:
÷	V	:	530	ppm	:	430	PPM	:	580	PPM	:	13	p p m	:
+	Zn	:	130	PPm	:	57	PPM	:	130	PPM	:	33	PPm	:
-+-														

·+·						RES	SULT	AT						
+	DESIGNATION	:	ML-4	414-B2	-84	ML4	419-A1	-84	ML-4	420-A1	-84	ML-44	28-A2	-84
+	NO.LABORATOIRE	:	84-	8012		84-	8013		84-	8014		84-	8015	
4														
+	Ag	:	(250	PPD	:	<250	) ppb	:	<250	ppb	:	(250	ppb	:
+	Au	:	30	ppb	:	25	PPD	:	100	PPD	:	20	ppb	:
+	Cr	:	9	<b>PPM</b>	:	0,	02 X	:	10	PPM	:	0,0	2 %	:
+	Cu	:	51	PPM	:	180	ይ ይ ወ	:	240	66W	:	28	PPM	:
+	Mo	:			:			:			:		-	:
+	Ni	:	8	PPM	:	58	PPM	:	48	PPM	:	65	PPM	:
+-	Pb	:	<0,5	i ppm	:	21	PPM	:	22	PPM	:	<b>(0,</b> 5	ppm	:
+	Sr	:	37	meq	:	180	PPM	:	58	<b>PP</b> M	:	270	PPM	:
+	V	:	140	PPM	:	260	PPM	:	100	PPM	: :	220	PPM	:
+	Zn	:	18	PPM	:	80	PPM	:	320	PPM	:	130	PPM	` <b>:</b>
+														

+						RES	ULT	ΑT						
+	DESIGNATION	:	ML-4	473-B1	-84	ML-44	81-F1	-84	ML4	489-A1	-84	ML448	9-B1	84
+	NO.LABORATOIRE	:	84-	8020		84-	8021		84-	8022		84- 8	023	
+														
÷	Ag	:	(250	ppb	:	: 19,3	5 9/t	:	(250	ppb	:	< 250	ppb	:
÷	Au	:	25	ppb	:	4,0	) g/t	:	45	PPb	:	170	ppb	:
+	C1-	:	72	₽P <i>i</i> n	:	8	PPM	:	0,	02 X	:	0,02	*	:
+	Cu	:	17	PPM	:	1,3	51 X	:	100	PPM	:	0,10	×	:
+	Mo	:	-	-	:			:			:	·		:
÷	Ni	:	84	PPM	:	16	<b>PP</b> M	:	140	PPM	:	110	ppm	:
+	Рb	:	<0,5	ppm	:	0,1	0 %	:	1	PPM	:	(0.5	PPM	:
+	Sr	:::	130	PPM	:	14	PPM	:	210	PPM	:	58	PPM	:
+	V	::	220	PPM	:	6	PPM	:	250	PPM	:	290	ppm	:
+	Zn	:	67	PPM	:	13	PPM	:	56	ppm	:	63	PPM	:
+										••				
+														

+					F		JLT	ΑT	•• •• •• •• •• •• •• ••			 
+	DESIGNATION	1	ML-44	86-F1	-84	ML-450	07-B1	-84	ML-452	2-A2	-84	
+	NO.LABORATOIRE	:	84-	8036		84- 6	9037		84- 8	038		
+												
+	Ag	:	2,5	g/t	:	3,3	g/t	:	4,3	g/t	:	
+	Ац	:	1,2	9/t	:	1,1	g/t	:	1,3	g/t	:	
+	Cr	:	7	<b>PPM</b>	:	5	PPM	:	22	PPM	:	
+	Cu	:	0,16	x	:	510	PPM	:	0,14	x	:	
+	Mo	:	0,81	×	:	0,6	4 %	:	13	PPM	:	
+	Ni	:	6	PPM	:	5	PPM	:	19	PPM	:	
+	РЬ	:	35	mqq	:	23	PPM	:	220	PPM	:	
+	Sr	::	350	<b>P</b> PM	:	23	PPM	:	360	PPM	:	
+	V	:	78	PPM	:	16	PPM	:	120	PPM	:	
+	Zn	:	43	PPM	:	18	PPM	:	160	PPM	:	
+												
+												

+					F	RESI	JL TA '	T.						
+	DESIGNATION	: M	L-2	2625-01-84		ML-265	2-A1-84		ML-2659	7-A2-84		ML-269	3-82-8	4
+	NO.LABORATOIRE	: 8	4	12108		84- 12	2109		84- 12:	110		84- 12	111	•
+														
+	Ag	:(2	50	<b>PPD</b>	:	(250	66p	:	4,3	g/t	:	800	ppb	:
+	Au	:<1	5	<b>PP</b> b	:	<15	PPD	:	1,5	g/t	:	(15	ppb	:
+	Cr	: 3	3	<b>P</b> PM	:	16	<b>b</b> bw	:	11	PPM	:	3	PP/N	:
+	Cu	; 4	1	<b>PPm</b>	:	86	PPM	:	1,65	×	:	60	PPM	:
4	Ni	: 3	1	<b>PP</b> M	:	16	PPA	:	45	PPM	:	0,8	PPM	:
+	Рb	: 1	2	<b>PP</b> M	:	(0,5	PPm	:	30	PPM	:	58	PPM	:
+	Sr	: 2	0	<b>PP</b> M	:	28	PPM	:	21	<b>PPM</b>	:	55	PPM	:
+	V	:28	0	PPM	:	140	PPM	:	280	PPM	:	130	PPM	:
+	Zn	: 9	2	PPM	1	110	<b>P</b> PM	:	310	PPM	:	47	PPM	:
+													• •	

+	······································				- 1	RESU	LT	A T	-						
+	DESIGNATION	:	ML-26	93-C1-84		ML-2728	9D1-	-84		HL-27	55-81-84		ML-48	14-62-8	4
+	NO.LABORATOIRE	:	84- 1	.2112		84- 12	113			84- 1	2114		84- 1	2115	
+															
+	Ag	;	1,5	g/t	\$	1,5	g/t		:	500	PPb	:	(250	PPD	:
+	Au	::	210	ррр	:	<15	PPD		:	97	PPb	:	20	ppb	:
+	Cr	;	8	PPM	:	43	ppm		\$	6	PPM	:	9	<b>PPM</b>	:
+	Сц	:	10	<b>PPM</b>	:	0,50	%		:	400	PPM	:	180	PPM	:
+	Ni	:	3	PPM	:	0,54	×		\$	21	PPM	:	5	ppm	:
÷	Рb	::	210	PPM	:	3	PPM	:	:	5	PPM	:	30	PPM	:
+	Sr	:	18	PPM	:	160	ppm	:	:	280	PPM	:	160	PPM	:
+	v	:	44	PPM	:	380	PPM	:	:	120	PPM	:	94		:
+	Zn	;	27	PPM	:	130	ppm	:	:	65	ppm	:	34	הסמ	:
+												•			•
+															

4-					- 14	RES	BULTAT	•						
+	DESIGNATION	:	ML-4	1823-A3-84		MI	4833-81-84		ML-4838	3-A1-84		ML-490	0416318	4
4	NO.LABORATOIRE	:	84-	12116		84-	12117		84- 12:	118		84- 12	2119	
+														
+	Ag	:8	00	<b>P</b> PD	\$	800	ppp	\$	1,0	g/t	:	< 250	ppb	:
+	Au	:4	190	PPb	1	320	PPb	\$	480	ррб	:	43	ppb	:
÷	Cr	:	6	PPM	:	260	PPM	\$	210	PPM	:	47	PPM	:
+	Cu	:7	'60	ppm	:	150	<b>P</b> Pm	:	240	PPM	;	190	PPM	:
+	Ni	:	56	<b>m</b> eta	1	130	PPM	:	50	<b>PPM</b>	:	120	ppm	:
+	F'b	:	57	PPM	:	58	PPM	:	8	PPM	:	9	PPM	:
+	Sr	:1	10	<b>PPM</b>	:	180	PPM	:	300	<b>PPm</b>	1	130	<b>PP</b> M	:
+	V	:2	30	<b>PPM</b>	:	270	PPM	:	250	PPM	:	210	<b>PPM</b>	:
+	Zn	:	66	PPM	:	67	PPM	:	36	PPM	:	79	PPM	:
+														
4														

+					. 1	RESU	LTA.	r.						
4	DESIGNATION	1	ML-4	4928-E1-84		ML-492	9-A1-84		ML-64	54-E1-84		ML-656	1-82-84	
+	NO.LABORATOIRE	:	84	12120		84- 12	121		84- 13	2122		84- 12	123	
4														
+	Ag	::	500	вър	:	500	ррб	:	(250	PPD	:	4.0	q/t	:
+	Au	:	20	<b>PPD</b>	:	(15	PPb	:	(15	PPD	1	170	ppb	:
+	Cr	:	14	PPM	:	15	PPM	:	7	PPM		4	nag	:
+	Cu	<b>‡</b> E	880	PPM	:	28	<b>PPm</b>	:	8	PPM	1	600	mag	1
+	Ni	1	20	PPM	:	51	66W	:	9	PPm	1	(0.3	PPM	
<b>-</b> †·	Fb	:	35	PPM	:	3	PPM	:	1	PPM	:	160	DDM	:
+	Sr	:1	.90	PPm	:	62	<b>PP</b> M	:	16	PPM	1	36		:
+	V	:1	40	<b>PP</b> m	:	120	<b>PPM</b>	:	22	PPM	1	<b>3</b>	ppm	
+	Zn	:	85	PPm	:	40	PP/m	:	31	PPM	1	380	DDM	
+										•••	•		F 1- 10	•
4-														

+					RES	ULT	AT						
+	DESIGNATION	: ML-44	195-A1	-84	ML-62	233-A1	-84	ML-625	0A2	-84	ML-6	255-A1	~84
+	NO.LABORATOIRE	: 84-	8024		84-	8025		84- E	8026		84-	8027	
•••													
•••	Ag	; 7,7	g/t	:	<250	PPD	:	1,0	g/t	:	<250	PPb	:
+	Au	:240	PPb	:	25	PPD	:	90	PPb	:	15	PPb	:
+	Cr	: 66	P P M	:	3	PPM	:	20	PPM	:	100	PPM	:
+	Cu	: 52	PPM	:	50	PPM	:	210	ppm	:	100	PPM	:
+	Mo	:	•	:			:			:			:
+	Ni	: 22	PPM	:	<0,3	i ppm	:	47	ppm	:	56	66W	:
-4-	Fb	:220	<b>P</b> PM	:	2	<b>PP</b> m	:	19	PPm	:	34	PPM	:
+	Sr	:310	թթա	:	940	<b>PP</b> M	:	63	PPM	:	130	PPM	:
-+-	v	:110	mqq	:	390	<b>PP</b> m	:	38	PPM	:	210	PPM	:
+	Zn	:150	PPM	:	79	PPM	:	280	PPM	:	150	PPM	:
4													
+													

+						RES	<b>SULT</b>	ΑT						
+	DESIGNATION	:	ML6	259-A1	-84	ML-é	5262A2	-84	ML-6	263-A2	-84	ML-626	7-A2	-84
+	NO+LABORATOIRE	:	84	8028		84-	8029		84-	8030		64- 8	031	
+														
+	Ag	: •	(250	PPb	:	(250	) ppb	:	<250	ppb	:	500	ppb	:
+	Au	:	(15	PPb	:	35	PPb	:	20	PPD	:	90	PPb	:
+	Cr	:	16	PPM	:	6	PPM	:	5	<b>P</b> P <b>m</b>	:	6	PPM	:
+	Cu	:	69	<b>PPM</b>	:	31	<b>PPm</b>	:	130	ppm	:	190	PPM	:
+	Mo	:		-	:			:	-		:			:
+	Ni	:	29	<b>PP</b> m	:	: (0,	3 PPm	:	<0,:	3 ppm	:	<0,3	<b>PPm</b>	:
+	Рb	:	<0,5	nqq	:	4	p p m	:	11	p p m	:	14	PPM	:
+	Sr	:1	130	<b>P</b> Pm	:	23	PPM	:	23	ррл	:	41	ppm	:
+	V	:4	410	PPM	:	6	<b>P</b> Pm	:	6	PPM	:	6	PPM	:
+	Zn	::	130	PPM	:	55	<b>P</b> P <b>m</b>	:	41	ppm	:	0,12	*	:
+														

+

+

+						RES	ULT	ΑT						
+	DESIGNATION	:	ML6	295-A2	-84	ML-6	322-A1	-84	ML-6	337-A1	-84	ML-6	412-C1	-84
+	NO.LABORATOIRE	1	84-	8032		84-	8033		84	8034		84	8035	
+														
+	Ag	:	(250	ppb	:	< 250	PPD	:	<250	PPD	:	(250	ррЬ	:
+	Au	:	1,5	g/t	:	15	ppb	:	(15	PPD	:	<15	ppb	:
+	Cr	:	6	<b>PP</b> M	:	4	PPM	:	21	ppm	:	13	PPM	:
+	Cu	:	15	<b>PPm</b>	:	28	PPM	:	14	ppm	:	94	PPM	:
+	Mo	:			:			:			:			:
+	Ni	:	<0,3	PPM	:	<0,:	3 ppm	:	20	PPM	:	10	ppm	:
+	F'b	:	5	PPM	:	8	PPM	:	7	ppm	:	19	PPM	:
+	Sr	:	40	<b>P</b> P <b>m</b>	:	58	PPM	:	110	<b>P</b> P <b>m</b>	:	130	PPM	:
+	V	:	9	mqq	:	110	ppm	:	72	PPM	:	170	PPM	:
+	Zn	:	13	PPM	:	260	PPM	:	13	PPM	:	130	PPM	:
+														

+					- 1	RES	ULTAT	
+	DESIGNATION	:	ML656	52-A2-84		ML-65	83-A1-84	
+	NO.LABORATOIRE	\$	84- 12	2124		84- 1	2125	
+								
+	Ag	:	9,5	g/t	:	<250	ррр	:
+	Au	:	80	PPD	1	(15	PPb	:
4	Cr	:	4	PPM	:	4	PPM	:
+	Cu	:	1,16	*	:	88	PPM	:
+	Ni	:	3	nn cị cị	:	(0,3	<b>PP</b> M	:
+	Рb	:	130	PPM	:	3	PPM	:
÷	Sr	:	55	PPM	:	140	PPM	:
+	v	:	<3	PPA	:	270	<b>PPM</b>	:
4	Zn	:	380	PPM	:	110	<b>PPm</b>	:
+								

.

176

-+			**** **** *		-	R E S I	ига	т						
+	DESIGNATION	1	ML-5	76-C1-84		ML-10	47-E1-8	4	ML-10	99-E1-84		ML-11	21-E1-84	1
+	NO.LABORATOIRE	:	84-0	14279		84-01	4280		84-01	4281		84-01	4282	•
+														
+	Ba	:	21	PPM	:	15	₽P <b>m</b>	:	354	PPM	:	18	PPM	:
+	Be	:	<1	<b>PP</b> M	:	2	PPM	:	<1	PPM	:	<1	PPM	÷
+	Cd	:	5	<b>PP</b> M	1	<1	PPM	:	3	PPM	:	<1	PPM	:
+	Ce	:	10	p p m	1	(2	66W	:	7	PPM	:	2	PPM	:
+	Co	:	13	<b>P</b> PM	:	12	PPM	:	10	PPm	:	14	ppm	1
+	Cr	:	218	<b>P</b> PM	:	(2	PPM	:	6	PPM	:	15	PPM	÷
+	Cu	:	40	PPM	:	34	<b>PPM</b>	:	60	PPM	1	46		t
+	Dy	:	3	PPM	:	<1	PPM	:	2	PPM	:	<1	ppm	
+	Eu	:	<1	PPm	:	<1	PPM	:	<1	PPM	1	<b>&lt;</b> 1	PD/M	
+	La	1	4	PPM	:	<2	PPM	:	4	PPM	:	(2		÷
+	Li	:	12	PPM	:	14	PPM	:	18	PPM	1	5	000	1
+	Mo	+	<b>&lt;</b> 4	PPM	:	<4	19 P M	:	<b>{4</b>	PPM	:	<b>&lt;</b> 4	000	
+	Nd	;	<25	PPM	:	<25	PPM	:	<25	PPM	•	(25	PPM	
+	NI	:	146	<b>PPM</b>	:	34	PPM	:	2	PPM	1	33	10 p m	÷
+	Рb	:	<12	PPM	:	26	19 P M	:	(12	PPM	1	(12	000	
+	Pr	:	<2	PPM	:	(2	PPM	:	(2	PPM	:	(2	ppm	
+	Sc	:	8	PPM	;	<1	PPM	:	20	PPM	:	8	המס	
+	Sm	;	<2	PPM	:	<2	PPM	:	(2	PPM	:	<b>(</b> 2	DD/N	
+	Sr	:	29	PPM	:	11	PPM	:	198	PPM	1	7	 DDM	÷
+	Th	:	<5	PPM	:	<5	PPM	:	(5	PPM		(5	000	
+	V	:	94	PPM	:	3	<b>PPm</b>	:	52	PPm	:	55	000	1
+	Y	:	20	<b>PPm</b>	;	1	PPM	:	13	PPM	ż	6	 	•
+	Zn	:	39	PPM	:	95	PPM	:	63	88M	:	15	PD0	-
+										•••	•		F F 11	•
+	Ag	13	380	PPD	:	<250	PPD	:	250	PPD	:	250	nnb	•
+	Au	:+<	(15	PPD	:	<15	PPb	:	(15	PPD		<15	eeb	
+											•		14 14 CA	•
+														

+						RES	ULTA	T						
4.	DESIGNATION	\$	ML1	126-E1-8	4	ML-11	28-E1-8	4	ML-11	29~E1-84		ML-11	30-F1-B	4
+	NO.LABORATOIRE	:	84-0	14283		84-01	4284		84-01	4285		84-01	4286	
+														
+	Ba	:	451	<b>PPM</b>	:	22	PPm	:	18	PPM	:	11	D D M	t
+	Be	:	<1	PPM	:	<1	PPM	:	<1	PPM	1	<1	,, DDM	
+	Cd	:	2	PPM	1	<1	PPM	:	1	PPM	1	2	006	÷
+	Ce	:	18	PPM	:	5	PPM	:	2	PPM	1	(2	000	
+	Co	:	22	PPM	:	5	PPM	:	14	2 PM	÷	14		
+	Cr	\$	90	PPM	:	20	PPM	:	28	DDm.	ŧ	27	 DDM	
÷	Cu	\$	53	PPM	:	2	PPM	:	4	PPM PPM		49	ppm bpm	
+	Dу	:	2	PPM	:	<1	PPM	:	(1	PPM PPM	:	<1	200	
+	Eu	:	1	PPM	:	<1	PPM	:	<1	PPM	1	(1	10 D /h	÷
+	La	:	9	₽₽ <i>m</i>	:	<2	PPM	:	(2	D D D M	1	0	000	-
+	Li	:	7	PPm	:	16	PPM	:	29	PPM	•	`~o	PP0	
+	Mo	:	<b>&lt;4</b>	PPM	:	<4	PPM	:	<4	PPM	÷	< A	500	
+	Nd	\$	(25	PPm	:	<25	PPM	:	(25	PPM	÷	(25	500	
+	Ni	:	67	PPm	:	8	PPM	:	28	PPM	:	45	PPM	÷
+	РЪ	:	<12	PPm	:	(12	PPM	:	(12	PPM	:	(12	DDM	
+	Fr	:	<2	PPM	:	(2	PPM	:	(2	PPM	:	(2	D D D M	
+	Sc	:	26	PPM	:	7	PPM	:	8	PPM		5	200	
+	Sm	:	<2	PPM	:	(2	PPM	:	<2	eem .	1	(2	1 I	
+	Sr	:	184	PPm	:	8	PPM	:	6	PPM	1	27	DD <b>M</b>	÷
÷	Th	:	<5	PPM	:	<5	PPM	:	<5	PPM	1	(5	ppm	÷
+	V	:	227	ppm	:	33	PPM	:	103	PPM	:	40	PPM	÷
+	Y	1	13	<b>PP</b> m	:	6	PPM	:	4	PPM	:	3	000	÷
+	Zn	:	25	<b>P</b> PM	\$	10	PPm	:	24	PPM	:	13	PPM	÷
+														•
+	Ag	15	500	ррЬ	:	< 250	PPb	:	<250	PPD	:	380	pph	:
+	Au	:	23	PPD	:	20	PPb	:	40	PPD	:	27	pph	
+												•	W	•

+	ا میں عمل جون (100 جود خزن 200 میں اور میں اور				-	RES	ULTA	Т						
+	DESIGNATION	1	ML1	140-E1-84		ML-11	43-E1-0	4	ML-114	7-E1-84		ML-114	9-E1-8	4
+	NO.LABORATOIRE	:	84-0	14287		84-01	14288		84-014	289		84-014	290	-
+														
+	Ba	:	103	PPM	\$	322	PPM	1	104	PPM	:	154	PPM	:
+	Be	:	1	PPm	:	<1	PPM	:	<1	PPM	:	<1	PPM	:
+	Cd	:	2	PPM	:	3	<b>PPM</b>	1	2	PPM	1	1	PPM	1
+	Ce	:	12	PPM	:	23	<b>PPM</b>	:	17	PPM	:	4	PPM	1
+	Co	:	20	<b>PP</b> M	:	19	PPM	:	23	PPM	:	48	PPM	:
+	Cr	+	41	PPM	\$	40	PPM	:	7	PPM	:	6	PPM	:
+	Cu	:	20	PPM	\$	35	<b>PP</b> m	:	13	PPm -	:	277	PPm	:
+	Dу	:	2	P P m	:	2	PPM	:	3	PPM	:	1	PPM	:
+	Eu	:	<1	<b>PP</b> m	:	<1	PPM	:	2	<b>PPm</b>	:	1	PPM	:
+	La	:	6	<b>PPm</b>	\$	12	PPm	:	6	PPM	:	<2	PPM	:
+	Li	:	30	PPM	:	23	PPm	:	10	PPM	:	1	PPM	:
+	Mo	:	<4	<b>PPM</b>	:	<b>&lt;</b> 4	PPM	:	<b>&lt;4</b>	PPM	:	<4	PPm	:
+	Nd	:	<25	₽₽ <b>m</b>	:	<25	PPm	:	(25	PPM	:	(25	PPm	:
+	Ni	:	82	<b>PPm</b>	:	87	PPM	:	<1	PPM	:	25	PPM	:
+	Pb	:	<12	<b>PPM</b>	:	18	PPm	:	<12	PPM	:	<12	PPM	:
+	Pr	:	<2	<b>PPM</b>	:	<2	PPM	:	<2	PPM	:	(2	PPM	:
+	Sc	:	17	PPM	:	17	PPM	:	31	PPM	:	31	PPM	:
+	Sm	:	<2	PPM	:	<2	PPM	:	<2	<b>PPM</b>	:	<2	PPM	:
+	Sr	:	68	PPM	:	35	PPM	:	38	66W	:	85	PPM	:
+	Th	:	<5	PPM	:	<5	PPM	:	(5	<b>PP</b> M	:	<5	PPm	:
+	V	:	150	PPM	:	145	PPM	:	9	<b>PP</b> M	:	345	PPM	:
+	Y	:	12	PPM	:	11	PPM	:	20	PPM	:	6	PPM	:
+	Zn	:	92	<b>PPM</b>	:	88	PPM	:	30	PPM	:	41	PPM	:
+														
+	Ag	::	250	PPb	:	750	ррр	:	500	PPD	:	2,8	g/t	:
+	Au	:	20	ррр	:	23	ррр	:	2,8	g/t	:	31,3	g/t	1
+												•	-	
+														

+					+ 1	RESU	LTA	T -						
+	DESIGNATION	:	ML-11	51-E1-84		ML-117	5-E1-8	4	ML-277	5-A1-84		ML~283	51-D1-84	
+	NO.LABORATOIRE	:	84-01	4291		84-014	292		84-014	293		84-014	294	
+														
+	Ba	:	28	PPM	:	0,14	×	:	27	PPM	:	65	PPM	:
+	Be	:	<1	PPM	:	<1	PPM	:	<1	PPM	:	1	PPM	:
+	Cd	1	2	PPM	:	3	PPM	:	<1	PPM	:	<1	PPM	:
+	Ce	:	2	PPM	:	23	PPM	:	<2	PPM	:	45	PPM	:
+	Co	:	17	PPM	\$	21	PPM	:	65	<b>PPM</b>	:	5	PPM	:
+	Cr	:	37	PPM	:	60	PPM	:	79	PPM	:	2	PPM	:
+	Cu	:	6	PPm	:	14	PPM	:	936	ppm	:	11	PPM	:
+	Dу	1	<1	PPM	:	4	PPm	:	2	PPM	:	3	PPM	:
+	Eu	:	<1	PPM	:	1	PPM	:	1	PPM	:	<1	PPM	:
+	La	:	<2	PPM	:	10	PPM	:	(2	PPM	:	22	PPM	:
+	Li	:	2	PPM	:	18	PPM	:	6	ppm	:	<1	PPM	:
+	Mo	:	<4	<b>PP</b> M	:	<4	PPM	:	<4	PPM	:	<4	PPM	:
+	Nd	:	<25	PPM	:	32	PPM	:	< 25	<b>PPM</b>	:	31	<b>PPM</b>	:
+	Ni	:	55	PPM	:	58	PPM	:	218	PPM	:	3	PPM	:
+	Fb	:	(12	<b>P</b> Pm	ŧ	<12	PPM	:	<12	PPM	:	(12	PPM	:
+	F'r	\$	<2	PPm	:	<2	PPM	:	<2	PPM	:	<2	PPM	:
+	Sc	1	6	PPM	:	27	PPM	:	31	<b>PP</b> M	:	4	PPM	:
+	Sm	:	<2	PPM	:	<2	PPM	:	<2	p p m	:	5	ppm	:
+	Sr	:	35	PPM	\$	147	PPM	:	323	P P M	:	11	PPM	:
+	Th	:	(5	PPM	+	<5	PPM	:	<5	PPm	:	<5	PPM	:
+	V	+	54	<b>PP</b> M	:	182	PPM	:	163	<b>PP</b> M	:	24	PPM	:
+	Y	:	2	PPM	\$	27	PPM	:	11	PPM	:	21	PPM	:
+	Zn	:	5	<b>PPM</b>	:	75	PPM	:	51	PPM	:	6	PPM	:
+														
+	Ag	::	250	PPD	:	380	PPb	:	1,4	<b>9/</b> t	:	1,4	9/t	\$
+	Au	:	23	ррб	:	17	PPD	:	27	ppb	:	240	PPb	:
+														
+														

-+	و بهم حدد حدد حدد حدد حدد حدد حدر حدد حدو حدد حدو هد. حدو که حد					O F C		T						
+	DESIGNATION	:	ML-28	377-A1-84		ML-2	710-A1-B4		ML-29	56-01-84		MI -29	94-11-84	
+	NO.LABORATOIRE	:	84-0	14295		84-0	14296		84-01	4297		84-01	4298	
+												0.01		
+	Ba	:	179	PPM	:	360	PPM	:	152	PPM	t	253	50M	:
+	Be	1	<1	PPM	:	1	PPM	:	1	PPM	t	1	DDM	÷
+	Cd	:	2	PPM	:	<1	PPM		2	PPM	i	а ⁻		÷
+	Ce	:	15	PPM	:	30	PPM	:	30	PPM	1	23	000	÷
+	Co	:	17	PPM	:	14	PPM	1	37	 DDM	ł	25	000	-
+	Cr	:	46	PPM	:	10	PPM	÷	9	DD M		13	000	÷
+	Cu	:	7	PPM	:	38	PPM	1	27	 	÷	41		
+	Dу	:	1	PPM	:	3	PPM	÷	9	000	÷	A .	PPM	÷
+	Eu	:	<1	PPM	:	<1	PPM	1	1	000	÷	1	5500	
+	La	:	7	PPM	:	15	PPM	:	11	500	÷	ò	550 550	
+	Li	:	8	PPM	:	12	PPM		6	 	÷	28		÷
+	Mo	:	<4	PPM	:	<4	PPM	÷	<b>{</b> 4		÷	ζΔ		•
+	Nd	:	<25	PPM	:	(25	PPM	÷	46	 	÷	28	PPM	
+	Ni	:	46	PPM	:	8	PPM	÷	.3	PPM	÷	25	PPM DDM	÷
+	Pb	:	<12	PPM	:	13	PPM	÷	(12		÷	(12		
+	Pr	:	<2	PPM	:	(2	P P M	÷	(2	PP//	-	(7)	PP	:
+	Sc	:	25	PPM	:	7	P P M	÷	47		÷	21	PP/	:
+	Sm	:	<2	PPM	1	(2		÷		PP-0	÷	<u>د ۱</u>	PPm DDD	:
+	Sr-	:	154	PPM	÷	28	000	÷	115	PPM	:	204	PPM	:
+	Th	:	<5	PPM	÷	(5	 	-	/5	PP00	:	200	PPm PPm	:
+	V	:	201	PPM	÷	0	500	÷	324	PPM	:	107	222	:
+	Y	:	5	PP/N	÷	24	PPM	•	50	220	:	103		:
+	'Zn	1	47	000	÷	42		:	145	PPm DPm	:	107	PPM	÷
+		-	••	F (* m	•		FEM	•	140	44m	•	123	PPm	÷
+	Aq	::	380	pph	•	750	nnh	•	700			700		
+	Au		(15	poh		(15	PPD	:	215	PP0	+	380	PPD	
+					•		FFD	•	(10	044	÷	(15	660	é

+					-	PEGI		Ŧ						
+	DESIGNATION	:	ML-299	9-E1-84		ML-300	)6-C1-84		ML-514	8-41-84	-	MI - 491	2-42-04	
+++++++++++++++++++++++++++++++++++++++	NO.LABORATOIRE	:	84014	299		84-014	300		84-014	301		84-014	302	
+	Ba	:	0,50	×	:	384	000	t	154	000	•	704		
+	Be	1	<1	PPM		<1	DDM	÷	1	PPM	:	308	PPM	
+	Cd	:	2	PPM	1	5	PPM	•	7	PPM	:	1	P P M	1
+	Ce	:	16	PPM	1	11	PPM	÷	10	PPm PPm	:	12	PPm 	1
+	Co	1	19	PPM	÷	17	50m	÷	- í	PPm	:	12	PPm 	
+	Cr	:	35	PPM	÷	65		-	4	PPm	:	3	66W	-
+	Cu	:	23	1.1	÷	61	PPM DDA	:	10	P P M		8	<b>PPM</b>	Ŧ
+	Ly	:	3	PPM	Ť	3	2000 2000	:	1.2 E	PPM	÷	19	PPM	-
+	Eu	:	1	PPM	ż	<b>71</b>	PP	:	4	PPm mmm	÷	1	PPM	1
+	La	:	6	D D D D	÷	· •	PPM DDA	:	1	PPM	ł	<1	PPM	•
+	Li		11		÷	10	PP0	:	°,	PPM	Ŧ	4	<b>bbw</b>	1
+	Mo		<b>4</b>	50m	÷	<b>7</b>	PPM PPM	:	, <b>n</b>	PPM	1		<b>PPM</b>	1
+	Nd	1	(25	6 6 M	÷	105	PPm PPm	:	<b>14</b>	<b>PPm</b>	-	<b>{4</b>	<b>PPW</b>	:
+	Ni		50	FF"	:	70	PPm	•	20	PPM	1	(25	PPM	:
+	Рb	÷	(12		:	10	mqq	÷	(1	<b>PPM</b>	:	2	PPM	:
+	Pr	•	(2	PP//	:	47	<b>PPW</b>	÷	(12	<b>PPW</b>	;	14	PPM	:
+	Sc	÷	`~o	222	:	\ <u>∠</u>	PPM	-	<2	PPM	;	<b>(</b> 2	PPM	:
+	Sm	-	á	PPm PPm	:	20	PPM	÷	17	PPM	:	8	PPM	:
+	Sr	:	177	PPM	•	6	PPM	:	3	<b>PPW</b>	:	<2	₽₽ <b>m</b>	:
+	Th	;	157	PPm	÷	/ <b>-</b> 0	PPM		68	PPM	:	33	<b>bbw</b>	:
+	U	;	60		÷	107	PPW	1	(5	P P M	:	<5	PPM	:
÷.	Ŷ	:	44	<b>PPW</b>	÷	197	PPW	;	13	PPM	:	13	PPM	:
÷.	7 n	:	57	PPm 	1	12	<b>PPW</b>	:	34	PPM	\$	10	PPM	:
÷	2.11	•	33	PPM	Ŧ	86	PPM	;	136	<b>PPW</b>	:	97	PPM	:
÷	Δ <u>α</u>	• -	200											
÷	ну Ан	- 4 - 4 - 4 - 4		PD	Ŧ	630	PPD	:	250	PPb	:	380	PPD	:
÷		• •	(13) b	PO O	Ŧ	23	PPD	:	<15	PPD	:	23	66p	:

-				— — — — ···· ··· ··· ···		RFR		Τ.			
+	DESIGNATION	:	ML-6	776-A1-B4		ML-70	08-41-8	` ۵	ML - 700	10	
+	NO.LABORATOIRE	:	84-0	14303		84-01	4304		84-014	1305 1305	J"T
+									01 01		
+	Ba	:	35	<b>PP</b> M	:	34	PPM	t	141	DOM	•
+-	Be	:	2	PPm	:	<1	PPM	t	1	000	
+	Cd	:	2	PPm	:	<1	PPM	1	24	000	÷
+	Ce	:	5	PPM	:	18	PPM	1	12	ppm mgg	Ť
+	Co	:	83	₽₽ <b>m</b>	:	49	PPM	1	29	PDM	÷
+	Cr	:	10	PPm	;	11	PPM	:	11	PPM	÷
+	Cu	:	13	PPM	:	61	PPM	:	44	PPM	÷
+	DУ	:	3	PPM	:	5	PPM	:	4	PPM	
+	Eu	:	1	PPM	;	1	PPM	:	3	PPM	:
+	La	:	<2	PPM	:	8	PPM	:	4	PPM	
+	Li	:	115	PPM	;	8	PPM	:	20	PPM	:
+	Mo	:	<4	PPm	:	<4	ppm	:	<4	PPM	1
+	Nd	:	41	PPm	:	74	PPM	:	(25	PPM	
+	NI	:	40	PPM	\$	<1	PPM	:	4	PPm	. i
+	РЬ	:	<12	PPM	:	<12	PPM	:	(12	PPM	:
+	Fr	:	<2	PPm	:	<2	PPM	:	(2	PPM	
+	Sc	:	103	PPM	:	77	PPM	:	34	PPM	
+	Sm	:	<2	PPm	:	3	PPM	:	(2	PPM	:
÷	Sr	:	14	12 P M	:	42	PPM	:	15	PPM	:
+	Th	:	<5	PPm	;	<5	PPM	:	(5	PPM	:
+	V	:	0,1	13 %	:	37	PPM	:	19	PPM	:
+	Y	:	11	PPM	:	29	PPM	:	19	PPM	:
+	Zn	:	177	PPM	:	104	PPM	:	34	PPM	:
+										-	
+	Ag	::	250	ррб	;	380	PPD	:	2,9	g/t	:
+	Au	:	20	PPD	\$	<15	PPD	:	25,9	g/t	:
+											
-											

ŝ.

190