Documents complémentaires / Additional files

Datations LA-ICPMS d'échantillons recueillis en 2011-2012 par Géologie Québec

Donald W. Davis et Claude Dion

GM 66575

2012

Datations LA-ICPMS d'échantillons recueillis en 2011-2012 par Géologie Québec

Donald W. Davis Jack Satterly Geochronological Laboratory Department of Earth Sciences, University of Toronto Earth Sciences Centre

> Claude Dion Bureau de l'Exploration géologique du Québec

> > 15 septembre 2012

GM 66575

RÉSUMÉ

Ce rapport présente les travaux de datation géochronologique U-Pb par la méthode LA-ICPMS effectués sur 14 échantillons en support aux projets entrepris par les géologues du Bureau de l'Exploration géologique du Québec à l'été 2011. Les échantillons de roches sédimentaires, ignées et métamorphiques proviennent des provinces géologiques du Supérieur (sous-provinces de l'Abitibi et de La Grande), de Churchill et du Grenville.

Quatre échantillons proviennent de la Province de Grenville. L'analyse des zircons du quartzite 2011-TC-5009A a donné un âge de 1875 ±43 Ma pour l'épisode de sédimentation et de 1000 ±6 Ma pour le métamorphisme. Un autre échantillon de quartzite à graphite et grenat, 2011-NT-6112D, montre deux modes détritiques à 1500 Ma et 1850 Ma et un âge métamorphique à 1035 ±10 Ma. Nous avons obtenu un âge de 2780 ±10 Ma pour un échantillon de tonalite gneissique à mobilisat tonalitique à granitique (2011-AM-0001A) qui représente probablement l'âge du protolite. L'échantillon 2011-AM-0017A est une leuconorite de la Suite anorthositique de Tétépisca. L'analyse des surcroissances de zircon indique un âge de 1051 ±8 Ma. Plusieurs analyses de noyaux correspondent à cet âge, mais certaines donnent des âges aussi jeunes que 1352 ±34 Ma.

Quatre échantillons en provenance de la Sous-province de La Grande à la Baie-James ont été analysés. La distribution d'âges des zircons détritiques de l'échantillon de conglomérat polygénique 2011-QD-7509A montre deux modes autour de 2710 Ma et 2735 Ma avec des âges plus anciens jusqu'à 3013 ±24 Ma. La réanalyse d'un autre échantillon de conglomérat polygénique SGNO-2000-05 issu de la Formation d'Ekomiak permet d'obtenir une distribution d'âges avec un mode principal autour de 2735 Ma et des modes secondaires à 2810 Ma et 2855 Ma. Des analyses complémentaires effectuées sur des zircons très altérés de l'échantillon de tuf à lapillis 2011-JG-1187A ont donné un âge imprécis de 2742 ±28 Ma. Des analyses complémentaires d'un échantillon de gneiss (1997-JG-1592 M1), associé à la discordance du Complexe de Langelier et des arénite quartzitique de la Formation d'Apple, indiquent un âge de 3452 ±16 Ma.

Cinq séries d'analyses ont également été réalisées dans le secteur au sud de Kuujjuaq dans la Province de Churchill. L'analyse des zircons provenant du gneiss tonalitique rubané 2011-MS-0106A a permis d'estimer l'âge du protolite à 2803 ±7 Ma et l'âge du métamorphisme à 1813 ±11 Ma. Cette dernière datation est confirmée par les analyses de monazites qui ont donné un âge de 1803 🛛 ±23 Ma. Les analyses de zircons de l'échantillon 2011-IL-3141A, un granite homogène à grain fin, permettent de distinguer deux groupes d'âge, l'un paléoprotérozoïque (1817 ±10 Ma), la meilleure estimation pour la cristallisation de cette roche, et l'autre néoarchéen (2697 ±18 Ma). Les monazites ont donné un âge de 1848 ±13 Ma. Le gneiss tonalitique rubané 2011-HH-4084A a donné un âge moyen de cristallisation de 2723 ±9 Ma et un âge métamorphique de 1864 ±17 Ma. Un âge pour des monazites de 1792 ±8 Ma suggère l'existence d'un second épisode de remobilisation. L'âge du protolite du gneiss rubané tonalitique à dioritique 2011-CL-5255A est estimé à 2739 ±10 Ma, bien que la présence d'un zircon avec un noyau à 3154 ±20 Ma suggère l'existence d'un épisode plus ancien. Un épisode métamorphique à 1786 ±15 Ma est indiqué par l'analyse des surcroissances. Dans le même secteur, des analyses complémentaires d'un échantillon de tonalite blanchâtre (2011-LP-2151A) ont permis d'obtenir des âges de 2663 ±7 Ma et de 1818 ±13 Ma.

À Matagami, dans la Sous-province de l'Abitibi, l'analyse complémentaire d'un seul zircon provenant de l'échantillon de rhyolite massive et fragmentaire 2011-BC-0032 a permis d'obtenir un âge imprécis de 2724 ±20 Ma.

1. INTRODUCTION

Ce rapport fait état des travaux de datation géochronologique effectués en 2011-2012 sur les zircons et les monazites provenant de 14 échantillons d'origine ignée, métamorphique ou sédimentaire en provenance des provinces géologiques du Supérieur (sous-provinces de l'Abitibi et de La Grande), de Churchill et du Grenville. Les analyses ont été effectuées par ablation laser à l'aide d'un spectromètre de masse à quadripôle et à ionisation au plasma (LA-ICPMS). Les analyses LA-ICPMS préliminaires effectuées sur des échantillons qui étaient aussi datés par ID-TIMS sont données dans un autre rapport (Davis et Dion, 2012).

Les échantillons et leur origine sont donnés au tableau 1. La plupart des populations de zircon étudiées sont de nature complexe. Les grains sont d'origine détritique ou peuvent présenter des évidences de croissances multiples. Dans le cas des populations détritiques ne montrant pas de surcroissances métamorphiques, les analyses ont été effectuées sur des grains entiers collés sur du ruban gommé à double-face. Ceci permet de récupérer les grains intéressants afin de mieux préciser leurs âges par des analyses ID-TIMS. Les grains montrant des surcroissances sont montés dans l'époxy et polis afin de permettre l'observation des diverses phases de croissance sur les images en cathodoluminescence (CL) ou en électrons rétrodiffusés (BSE).

Nous avons récupéré de la monazite en plus du zircon dans trois échantillons plutoniques grenatifères. Les échantillons contenant des minéraux alumineux sont typiquement des granites de type S qui résultent de la fusion de roches sédimentaires. Les populations de zircons de ces roches présentent souvent des noyaux d'origine détritique. L'analyse de la monazite représente parfois la meilleure façon de dater l'épisode de cristallisation magmatique.

2. MÉTHODES

Les échantillons (15 kg au plus) sont réduits à l'état de poudre au moyen d'un concasseur à mâchoires suivi d'une étape de pulvérisation à l'aide d'un broyeur à disques. Les minéraux lourds sont séparés par passages multiples sur une table à secousses Wilfley, ramenant l'échantillon traité à une portion de quelques grammes. Les zircons et les monazites sont encore concentrés à l'aide de liqueurs denses (bromoforme et iodure de méthylène). Les minéraux lourds sont séparés en fonction de leur susceptibilité magnétique en utilisant un séparateur isodynamique Frantz. La monazite se retrouve principalement dans la fraction magnétique séparée à 1 A avec pente latérale de 15°. La fraction de zircons la moins paramagnétique et plus fraiche est examinée sous un microscope binoculaire et la sélection finale est effectuée à l'aide de pinceaux en cherchant les cristaux sans fractures ni évidences d'altération.

Les analyses ont été effectuées aux laboratoires du Jack Satterly Geochronological Laboratory à l'Université de Toronto. Les analyses LA-ICPMS sont effectuées à l'aide d'un système composé d'un laser à 213 nm (New Wave) et un spectromètre Plasmaquad ICP-MS (VG Series 2). Les échantillons montrant des populations multiples sont montés dans l'époxy et polis pour obtenir des images en CL et en BSE à l'aide d'un microscope à balayage électronique JEOL JSM6610-Lv. Ces images permettent de choisir les domaines de croissance spécifiques pour l'analyse.

L'ablation des zircons est réalisée avec un faisceau laser d'un diamètre de 20 à 40 µm et une fréquence de 5 à 10 Hz et 65 % de la puissance maximale. Par rapport au zircon, la monazite montre souvent une concentration plus grande en U et beaucoup plus grande en Th (Th/U >100 typiquement). Dans ce cas, nous avons diminué le diamètre du faisceau à 10 µm et réduit la fréquence. De plus, nous n'avons pas mesuré le Th afin de protéger le détecteur. L'échantillon vaporisé par le laser est transporté jusqu'à la torche plasma dans un flux gazeux de He. La portion du minéral ciblé pour l'analyse est d'abord soumise à un nettoyage par balayage du faisceau laser pendant 10 s afin d'enlever l'altération et la contamination superficielles. Après un intervalle de 10 s pour mesurer le bruit de fond, le laser est allumé et les données sont acquises pendant 35 s pour les masses ⁸⁸Sr (10 ms), ²⁰⁶ Pb (30 ms), ²⁰⁷ Pb (70 ms), ²³²Th (10 ms) et ²³⁸U (20 ms). Le laser est ensuite éteint pour une durée de 60 s afin de purger le système. Une analyse représente environ 180 cycles de mesure. Le trou d'ablation a une profondeur d'environ 20 µm, indépendamment du diamètre de celui-ci. Des grains peuvent montrer un signal instable associé à des zonations chimiques des concentrations en U et en Pb. Cette instabilité peut être réduite par le passage du gaz porteur dans une fiole de 75 ml, ce qui permet d'homogénéiser l'analyte sur une plus longue période.

La mise au point et le calcul des données sont effectués à l'aide d'un logiciel VBA conçu par l'auteur (programme UTILLaz). En général, la plupart des données ²⁰⁷Pb/²⁰⁶Pb peuvent être utilisées pour calculer une moyenne. Les rapports ²⁰⁶Pb/²³⁸U ont tendance à augmenter avec la profondeur du trou, mais pour un zircon typique, cette profondeur est à peu près équivalente au diamètre du faisceau. En conséquence, cette variation est mineure et la plupart des mesures ²⁰⁶Pb/²³⁸U sont utilisables. Aucune correction pour le Pb commun n'est effectuée en raison de signaux du ²⁰⁴Pb trop faibles pour être mesurés avec une précision utile et parce que les zircons frais ne présentent généralement pas une quantité significative de Pb commun. Le signal du ⁸⁸Sr est utilisé comme un indice permettant d'identifier les zones d'altération et permet de savoir si le faisceau laser a traversé les grains. Les données associées à des signaux ⁸⁸Sr situés au-dessus du bruit de fond sont éliminées. Le rapport Th/U mesuré est utilisé comme un indicateur de l'origine pétrogénétique des zircons. Un zircon d'origine magmatique montre typiquement des rapports Th/U compris entre 0,1 et 1,0, alors que des rapports inférieurs à 0,1 démontrent typiquement une origine métamorphique.

Les étalons de zircon utilisés pour les analyses par LA-ICPMS ont été préalablement datés par ID-TIMS. Ils comprennent l'échantillon DD85-17, une diorite à quartz de l'Ontario datée à 3002 ±2 Ma (Tomlinson et al., 2002) et l'échantillon DD91-1, une diorite à quartz daté à 2682 ±1 Ma (Davis, 2002). Les étalons de monazite sont aussi datés par ID-TIMS et comprennent l'échantillon DD87-26 du Pluton de Ghost Lake du nord-est de l'Ontario datés à 2690 ±1 Ma (résultat inédit).

Les résultats des analyses LA-ICPMS sont donnés au Tableau 2 (erreurs à 1σ). Les diagrammes concordia et les calculs des âges sont faits en utilisant le programme « Isoplot » de Ludwig (1998, 2003). Les erreurs sur les âges dans le texte et les

diagrammes sont données à un niveau de confiance de 95 %. Les ellipses des erreurs sur les diagrammes sont données à 2σ. Pour les échantillons précambriens, les âges ²⁰⁷Pb/²⁰⁶Pb sont généralement plus précis et exacts que les âges ²⁰⁷Pb/²³⁵U ou ²⁰⁶Pb/²³⁸U. Dans les cas où les données proviennent d'une population montrant deux âges distincts, chacun de ces âges est calculé à partir des intersections de la courbe concordia et d'une ligne de mélange. Lorsque la plupart les données se positionnent sur la courbe concordia, un âge moyen est calculé en prenant la moyenne des âges ²⁰⁷Pb/²⁰⁶Pb (ce qui équivaut à calculer l'intersection de la concordia avec une ligne fixée à l'origine et qui passe par les données).

3. RÉSULTATS

3.1 2011-TC-5009A Quartzite, projet Grenville

Cet échantillon contenait une quantité modérée de zircons sous la forme de grains trapus et de prismes longs et arrondis avec des surcroissances transparentes et des novaux opaques. (figure 1A). Les noyaux contiennent une forte concentration d'inclusions visibles sur les images en BSE (figure 1B). Les analyses des surcroissances des grains entiers et polis s'accordent avec un âge ²⁰⁷Pb/²⁰⁶Pb moyen de 1000 ±6 Ma (figure 1C). Ce résultat représente l'âge des zircons métamorphiques. Les analyses des noyaux sont discordantes, mais elles se distribuent à proximité de la courbe concordia et forme une ligne de mélange. Le calcul de régression de toutes les données permet de déterminer des intersections de 1023 ±21 Ma et 1875 ±43 Ma (figure 1D). L'intersection supérieure (1875 ±43 Ma) représente l'âge de la composante détritique du zircon, laquelle semble être plus ou moins uniforme. La forte concentration

en uranium indique que les zircons détritiques étaient probablement altérés avant le métamorphisme et qu'ils auraient donc subi une perte en Pb radiogénique précoce. La recristallisation de zircon altéré aurait pu par la suite former les inclusions. On remarque également que les noyaux n'ont pas subi une perte de Pb après ce phénomène de recristallisation précoce, ce qui aurait détruit la distribution linéaire des données.

Figure 1A : Zircons sélectionnés du quartzite 2011-TC-5009A.

Figure 1B : Images en BSE (a-e) et en CL (f) des zircons polis du quartzite 2011-TC-5009A montrant des noyaux détritiques pleins d'inclusions et des surcroissances métamorphiques. Les cercles marquent les endroits prévus pour les analyses LA-ICPMS, mais ne correspondent pas exactement aux analyses finales.

Figure 1C : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS pour les surcroissances des zircons entiers et polis du quartzite 2011-TC-5009A.

Figure 1D : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS des zircons polis du quartzite 2011-TC-5009A. L'intersection supérieure de la ligne représente la meilleure estimation de l'âge de la composante détritique.

3.2 2011-NT-6112D Quartzite à graphite et à grenat, projet Grenville

Cet échantillon a fourni une quantité modérée de zircons sous la forme de petits grains arrondis (figure 2A). Les images en CL et BSE montrent des surcroissances minces sur quelques grains (par ex. figure 2B). La plupart des analyses sont quasiconcordantes avec des âges ²⁰⁷Pb/²⁰⁶Pb qui varient entre environ 1000 Ma à 2600 Ma (figure 2C). Les analyses d'âge paléoprotérozoïque et archéen sont plus discordantes, ce qui suggère un mélange entre une composante métamorphique à 1000 Ma et des composantes archéennes. La distribution de probabilité des âges ²⁰⁷Pb/²⁰⁶Pb (figure 2D) montre des modes autour de 1500 Ma et 1850 Ma pour les composantes détritiques. Les dix analyses les plus jeunes s'accordent à proximité de la courbe concordia avec un âge ²⁰⁷Pb/²⁰⁶Pb moyen de 1035 ±10 Ma (MSWD de 1,3, figure 2E). Les rapports Th/U de ces analyses sont bas, ce qui est typique des zircons métamorphiques. Cet âge représente donc la meilleure estimation pour l'épisode de métamorphisme.

Figure 2A : Zircons sélectionnés du quartzite 2011-NT-6112D.

Figure 2B : Images en BSE (a) et en CL (b) d'un zircon poli du quartzite 2011-NT-6112D. On observe des surcroissances métamorphiques minces à forte concentration de U. Un trou creusé par le laser est visible sur le grain.

Figure 2C : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS sur les zircons polis du quartzite 2011-NT-6112D.

Figure 2D : Diagramme de distribution de probabilité des âges ²⁰⁷Pb/²⁰⁶Pb du quartzite 2011-NT-6112D.

Figure 2E : Diagramme concordia des dix données U-Pb les plus jeunes obtenues par la méthode LA-ICPMS sur des zircons polis du quartzite 2011-NT-6112D.

3.3 2011-AM-0001A Tonalite gneissique avec mobilisat tonalitique à granitique, projet Grenville

Cet échantillon a fourni des zircons frais en quantité abondante sous la forme de prismes et de grains trapus arrondis (figure 3A). Les images en CL montrent des zonations oscillatoires et en secteurs avec des surcroissances minces caractérisées par de faibles concentrations en U (figure 3B). Les surcroissances sont trop minces pour être datées sur des grains polis. Les analyses se groupent à proximité de la courbe concordia avec des âges néoarchéens (figure 3C). Le calcul de régression de toutes les données donne un âge pour l'intersection supérieure à 2802 ±21 Ma et de 1256 ±300 Ma pour l'intersection inférieure. Toutefois, les données ne s'accordent pas dans la limite des erreurs (MSWD de 1,9), l'intersection inférieure n'étant définie que par une seule analyse discordante. Les analyses les plus jeunes montrent une distribution uniforme avec un âge moyen de 2780 ±10 Ma (MSWD de 1,7, figure 3C) qui représente peut-être l'âge du protolite. Les trois analyses archéennes les plus tardives s'accordent avec un âge moyen de 2724 ±18 Ma (MSWD de 0,9, figure 3C). Il s'agit peutêtre de l'âge de la migmatisation, mais cette interprétation est hasardeuse en raison de la faible précision

Figure 3A : Zircons sélectionnés de la migmatite 2011-AM-0001A.

Figure 3B : Images en CL des zircons polis de la migmatite 2011-AM-0001A. Les surcroissances minces à faible concentration en U (portion luminescente sur les images en CL) sont probablement d'origine métamorphique. Les cercles marquent les endroits prévus pour les analyses LA- ICPMS, mais ne correspondent pas exactement aux analyses finales.

Figure 3C : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS sur les zircons de la migmatite 2011-AM-0001A montrant les âges moyens de deux groupements de données

3.4 2011-AM-0017A Leuconorite de la Suite anorthositique de Tétépisca, projet Grenville

Les zircons sont abondants dans cet échantillon. Ils se présentent pour la plupart comme des grains transparents, arrondis et équidimensionnels. Des grains brunâtres sont aussi observés (figure 4A). Les noyaux à faible concentration en U sont bien visibles sur les images en BSE et en CL (figure 4B). Les analyses des noyaux donnent des âges relativement peu précis (figure 4C). Les 15 analyses les plus jeunes réalisées sur les surcroissances à plus forte concentration en U s'accordent sur la courbe concordia avec un âge ²⁰⁷Pb/²⁰⁶Pb moyen de 1051 ±8 Ma (MSWD de 1, figure 4D). Plusieurs analyses de noyaux correspondent à cet âge, mais certaines donnent des âges aussi jeunes que 1352 ±34 Ma (figure 4C).

Figure 4A : Zircons sélectionnés de la leuconorite 2011-AM-0017A.

Figure 4B : Images en BSE (en haut à gauche) et en CL (toutes les autres) des zircons polis de la leuconorite 2011-AM-0017A illustrant les noyaux et les surcroissances. Les cercles marquent les endroits prévus pour les analyses LA-ICPMS, mais ne correspondent pas exactement aux analyses finales.

Figure 4C : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS sur les zircons de la leuconorite 2-11-AM-0017A.

Figure 4D : Diagramme concordia des données U-Pb obtenues sur les surcroissances de la leuconorite 2011-AM-0017A.

3.5 2011-QD-7509A Conglomérat polygénique, projet Baie-James

Cet échantillon a donné une petite quantité de zircon. Les grains sont pour la plupart frais, idiomorphes ou subarrondis avec des faces multiples (figure 5A). Les analyses ont été réalisées sur des grains entiers. Toutes les analyses donnent des âges ²⁰⁷Pb/²⁰⁶Pb néoarchéens (figure 5B). La distribution de probabilité des âges ²⁰⁷Pb/²⁰⁶Pb indique l'existence de deux

modes autour de 2710 Ma et 2735 Ma pour les composantes détritiques (figure 5C). Cette distribution des âges est comparable à celle des roches ignées et des populations détritiques de la portion occidentale de la Province du Supérieur. Davis (1998) suggère que les grains détritiques à ±2700 Ma proviendraient de plutons orogéniques mis en place dans les arcs océaniques, ces derniers avant euxmêmes fourni les zircons plus anciens à 2735-2840 Ma. L'âge le plus ancien à 3013 ±24 Ma obtenu pour ce conglomérat est comparable à l'âge des roches les plus vieilles de la partie occidentale de la Province du Supérieur. Une analyse concordante donne un âge nettement plus jeune à 2618 ±22 Ma avec un rapport Th/U bas, typique des zircons métamorphiques. Ce grain pourrait provenir du soulèvement et de l'érosion des roches de la croute profonde, telles celles exposées le long de la Zone de Kapuskasing (Krogh, 1993). Si cette interprétation est correcte, cet âge indiquerait que la déposition de cette roche sédimentaire est plus tardive que celle de toutes les roche sédimentaire connue dans la région (par ex. Davis 1998, 2002). Cet âge devrait être vérifié par une analyse ID-TIMS.

Figure 5A : Zircons sélectionnés du conglomérat 2011-QD-7509A.

Figure 5B : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS sur les zircons détritiques du conglomérat 2011-QD-7509A. Une donnée discordante ne figure pas sur ce graphique.

Figure 5C : Diagramme de distribution de probabilité des âges ²⁰⁷Pb/²⁰⁶Pb du conglomérat 2011-QD-7509A.

3.6 SGNO-2000-05 (2000-JG-1390) Conglomérat polygénique, Formation d'Ekomiak, projet Baie-James

Nous avons procédé à la réanalyse des zircons d'un échantillon de conglomérat polygénique traité en 2000-2001 par la méthode ID-TIMS (Goutier et al. 2002). Cet échantillon a donné de petits zircons trapus, idiomorphes ou subarrondis de qualité diverse (figure 6A). Les analyses de grains entiers ont donné des âges ²⁰⁷Pb/²⁰⁶Pb néoarchéens (figure 6B). La distribution de probabilité des âges ²⁰⁷Pb/²⁰⁶Pb pour les composantes détritiques montre un mode principal autour de 2735 Ma, avec des modes secondaires à 2810 Ma et 2855 Ma (figure 6C). Cette distribution d'âges spécifique suggère que le sédiment provient d'une région restreinte de la Province du Supérieur.

Figure 6A : Zircons sélectionnés du conglomérat SGNO-2000-05.

Figure 6B : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS pour les zircons détritiques du conglomérat SGNO-2000-05.

Figure 6C : Diagramme de distribution de probabilité des âges ²⁰⁷Pb/²⁰⁶Pb des zircons détritiques du conglomérat SGNO-2000-05.

3.7 2011-MS-0106A Gneiss tonalitique rubané, projet Churchill

Cet échantillon a donné une petite quantité de grains de zircon, pour la plupart des prismes très fracturés (figure 7A). Les images en BSE des zircons polis montrent des zones internes caractérisées par une luminescence uniforme entourées de zones oscillatoires endommagées (figure 7B). La plupart des analyses se positionnent autour de la courbe concordia avec des âges ²⁰⁷Pb/²⁰⁶Pb néoarchéens (figure 7C). On reconnait deux modes autour de 2760 Ma et 2860 Ma (figure 7D). Plusieurs analyses donnent des âges paléoprotérozoïques. Les trois analyses les plus jeunes parmi ce groupe montrent des âges ²⁰⁷Pb/²⁰⁶Pb qui s'accordent avec une moyenne de 1813 ±11 Ma (MSWD de 0,1, figure 7E). Ces analyses se signalent par une concentration d'uranium beaucoup plus grande que les autres, ainsi que par des rapports Th/U très bas, suggérant donc qu'elles proviennent probablement de surcroissances métamorphiques. Un groupe de six analyses concordantes (Figure 7F) montre une dispersion moins importante et un âge ²⁰⁷Pb/²⁰⁶Pb moyen de 2803 ±7 Ma (MSWD de 1,1). Ces analyses proviennent de l'intérieur de grains moins endommagés. Cet âge représente la meilleure estimation de l'âge du protolite. Toutefois, il est possible que cette population de zircons comprenne une composante détritique (c'est-à-dire des xénocristaux).

De la monazite fraiche a été trouvée en abondance dans les fractions magnétiques de cet échantillon (figure 7G). Les images en BSE de la monazite ne montrent aucune évidence d'hétérogénéités pouvant indiquer l'existence de plusieurs évènements de cristallisation. Les analyses U-Pb s'accordent sur la courbe concordia avec un âge 207 Pb/ 206 Pb moyen de 1803 ±23 Ma (MSWD de 0,2, figure 7H). Cet âge correspond, dans la marge d'erreur, à celui des zircons métamorphiques.

Figure 7A : Zircons sélectionnés de l'échantillon gneissique 2011-MS-0106A.

Figure 7B : Images en BSE (a, c et d) et en CL (b) des zircons polis du gneiss 2011-MS-0106A montrant les noyaux et les surcroissances. Les cercles marquent les endroits prévus pour les analyses LA-ICPMS, mais ne correspondent pas exactement aux analyses finales.

Figure 7C : Diagramme concordia avec les données U-Pb obtenues par la méthode LA-ICPMS sur les zircons entiers de l'échantillon 2011-MS-0106A.

Figure 7D : Diagramme de la distribution de probabilité des âges ²⁰⁷Pb/²⁰⁶Pb des zircons entiers de l'échantillon 2011-MS-0106A.

Figure 7E : Diagramme concordia avec les âges U-Pb les plus jeunes obtenus par la méthode LA-ICPMS sur les zircons entiers de l'échantillon 2011-MS-0106A. L'âge est calculé à partir des données en rouge.

Figure 7F : Diagramme concordia avec les données U-Pb obtenues par la méthode LA-ICPMS sur les zircons polis de l'échantillon 2011-MS-0106A. L'âge est calculé à partir des données en rouge.

Figure 7G : Monazites de l'échantillon gneissique 2011-MS-0106A.

Figure 7H : Diagramme concordia avec les données U-Pb obtenues par la méthode LA-ICPMS sur les monazites polies de l'échantillon 2011-MS-0106A.

3.8 2011-IL-3141A Granite homogène à grain fin, projet Churchill

Comme pour l'échantillon précédent, cet échantillon n'a fourni qu'une faible quantité de zircons prismatiques fracturés (figure 8A). Les fractions magnétiques contenaient cependant une quantité abondante de monazite fraiche. Les images en BSE des zircons polis sont similaires à ceux de l'échantillon précédent avec des portions intérieures homogènes et des bordures montrant des zonations oscillatoires (figure 8B).

Les analyses de zircons entiers forment deux groupes d'âge paléoprotérozoïque (env. 1,8 Ga) et néoarchéen (env. 2,7 Ma, figure 8C). Le groupement le plus jeune donne un âge 207 Pb/ 206 Pb moyen de 1834 ±23 Ma (MSWD de 2,7), mais il ne s'accorde pas dans la limite des erreurs.

Les analyses de grains polis donnent une distribution similaire (figure 8D). Le groupement archéen donne un âge de 2697 ±18 Ma (MSWD de 3,0) pour neuf données (figure 8E), mais celles-ci ne s'accordent pas tout à fait dans la limite des erreurs. Les données protérozoïques sont plus homogènes avec un âge ²⁰⁷Pb/²⁰⁶Pb moyen de 1817 ±10 Ma (MSWD de 1,1, figure 8F). Les rapports Th/U de ces grains semblent indiquer une origine magmatique. Il n'y a pas de différence évidente sur les images en BSE entre les grains protérozoïques et néoarchéens.

La monazite (figure 8G) ne montre aucune indication d'âges multiples, bien que l'on observe des zones subtiles visibles sur les images en BSE (figure 8H). Les analyses des grains de monazite s'accordent sur la courbe concordia avec un âge ²⁰⁷Pb/²⁰⁶Pb moyen de 1848 ±13 Ma (MSWD de 1,2, figure 8I).

L'âge du plus jeune zircon (1817 ±10 Ma) représente probablement la meilleure estimation pour la cristallisation de cette roche. Le magma provient de la remobilisation de roches néoarchéennes. La monazite est souvent présente dans les granites peralumineux et sa présence pourrait indiquer une composante sédimentaire dans la source.

Figure 8A : Zircons sélectionnés de l'échantillon granitique 2011-IL-3141A.

Figure 8B : Images en BSE des zircons de l'échantillon granitique 2011-IL-3141A. Les cercles marquent les endroits prévus pour les analyses LA-ICPMS, mais ne correspondent pas exactement aux analyses finales.

Figure 8C : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS sur les zircons entiers de l'échantillon granitique 2011-IL-3141A.

données U-Pb obtenues par la méthode LA-ICPMS sur les zircon polis de l'échantillon granitique 2011-IL-3141A.

Figure 8E : Diagramme concordia des données U-Pb montrant les âges archéens obtenus par la méthode LA-ICPMS sur les zircons polis de l'échantillon granitique 2011-IL-3141A.

Figure 8F : Diagramme concordia des données U-Pb montrant les âges protérozoïques obtenues par la méthode LA-ICPMS sur les zircons polis de l'échantillon granitique 2011-IL-3141A.

Figure 8G : Monazites polies de l'échantillon granitique 2011-IL-3141A.

Figure 8H : Image en BSE d'un grain de monazite poli montrant des zones légèrement foncées de l'échantillon granitique 2011-IL-3141A.

Figure 8I : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS sur les monazites polies de l'échantillon granitique 2011-IL-3141A.

3.9 2011-HH-4084A Gneiss tonalitique rubané, projet Churchill

Cet échantillon a donné une quantité abondante de zircons frais sous la forme de grains équidimensionnels brunâtres (figure 9A). Les images en CL des zircons montrent des zonations en secteurs avec des surcroissances minces à faibles teneurs en U, lesquelles sont parfois entourées d'une deuxième surcroissance à forte concentration en U (figure 9B).

Les analyses U-Pb de la partie centrale des zircons polis sont regroupées près de la courbe concordia avec un âge ²⁰⁷Pb/²⁰⁶Pb moyen de 2723 ±9 Ma (MSWD de 2,3, figure 9C). On peut distinguer deux groupes pour lesquels les données s'accordent dans la limite des erreurs avec des âges ²⁰⁷Pb/²⁰⁶Pb moyens de 2715 ±6 Ma (10 données, MSWD de 0,9) et 2741 ±9 Ma (six données, MSWD de 0,9). Toutefois, il se peut que cette distinction n'ait pas de signification géologique.

Des analyses de deux surcroissances à forte concentration en U (grains 14 et 15, Figure 9B) s'accordent dans la limite des erreurs avec un âge ²⁰⁷Pb/²⁰⁶Pb moyen de 1864 ±17 Ma (MSWD de 0,2, figure 9E). Ces analyses montrent des rapports Th/U < 0,1, typiques des zircons d'origine métamorphique.

L'échantillon contenait aussi une quantité abondante de monazite fraiche. Les analyses de monazite polie (figure 9E) s'accordent sur la courbe concordia avec un âge 207 Pb/ 206 Pb moyen de 1792 ±8 Ma (MSWD de 0,6 Ma, figure 9F), nettement plus jeune que les zircons métamorphiques. On peut donc conclure de ces différentes analyses que le protolite de ce gneiss est un pluton néoarchéen qui a été remobilisé au moins deux fois à 1864 ±17 Ma et à 1792 ±8 Ma.

Figure 9A : Zircons sélectionnés de l'échantillon gneissique 2011-HH-4084A.

Figure 9B : Images en CL de zircons polis de l'échantillon gneissique 2011-HH-4084A. Les cercles marquent les endroits prévus pour les analyses LA-ICPMS, mais ne correspondent pas exactement aux analyses finales.

^{11,8} ^{12,2} ^{12,6} ^{13,0} ^{13,4} ^{13,8} ^{14,2} ^{14,6} Figure 9C : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS sur la partie interne des zircons polis de l'échantillon gneissique 2011-HH-4084A.

Figure 9D : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS sur les surcroissances de deux grains de zircon poli de l'échantillon gneissique 2011-HH-4084A.

Figure 9E : Monazites sélectionnées et polies de l'échantillon gneissique 2011-HH-4084A.

Figure 9F : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS sur les monazites polies de l'échantillon gneissique 2011-HH-4084A.

3.10 2011-CL-5255A Gneiss rubané, tonalitique à dioritique, projet Churchill SE

On a récupéré une petite quantité de zircons de couleurs et de morphologies diverses (figure 10A). Les images en BSE montrent plusieurs grains avec de petits noyaux et d'autres avec de minces surcroissances (figure 10B). Les analyses de huit grains polis montrent des groupements d'âges divers (figure 10C). La plupart des données se groupent autour d'un âge imprécis de 2734 ±21 Ma (figure 10D, MSWD de 4,6). Un sous-groupe de six données s'accordent avec un âge ²⁰⁷Pb/²⁰⁶Pb moyen de 2739 ±10 Ma (MSWD de 0,7), qui représente la meilleure estimation de l'âge du protolite. Un noyau a donné une analyse discordante avec un âge ²⁰⁷Pb/²⁰⁶Pb beaucoup plus vieux à 3154 ±20 Ma. Deux analyses de surcroissances montrant un rapport Th/U faible, dont l'une est discordante, présentent un âge ²⁰⁷Pb/²⁰⁶Pb moyen de 1786 ±15 Ma (MSWD de 1,1). La roche provient donc d'un pluton néoarchéen montrant un héritage mésoarchéen qui a été remobilisé au cours de l'Orogène transhudsonienne.

Figure 10A : Zircons sélectionnés de l'échantillon gneissique 2011-CL-5255A.

Figure 10B : Images en CL de zircons polis. Les cercles marquent les endroits prévus pour les analyses LA-ICPMS, mais ne correspondent pas exactement aux analyses finales.

Figure 10C : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS sur les zircons polis de l'échantillon gneissique 2011-CL-5255A. Les données paléoprotérozoïques pour des surcroissances caractérisées par un faible rapport Th/U sont encerclées.

Figure 10D : Diagramme concordia des données U-Pb des zircons néoarchéens de l'échantillon gneissique 2011-CL-5255A.

4.0 RÉSULTATS LA-ICPMS COMPLÉ-MENTAIRES

Un certains nombre d'analyses complémentaires par la méthode LA-ICPMS ont été réalisées pour des échantillons qui ont été initialement analysés par ID-TIMS (dilution isotopique et spectrométrie de masse par ionisation thermique). Ces résultats ont été obtenus après le dépôt du rapport de Davis et Dion (2012) et sont donc présentés ici.

4.1 2011-JG-1187A Tuf à lapillis, projet Baie-James

La séparation des minéraux lourds a permis de récupérer de la pyrite et un peu de titanite, mais aucun zircon. Plusieurs petits grains de zircon prismatiques ont été obtenus après dissolution de la pyrite à l'acide nitrique (figure 11A), mais ces grains sont trop petits et trop endommagés pour l'analyse par ID-TIMS. Ils sont également trop petits pour l'analyse LA-ICPMS sur grains polis. Presque toutes les analyses LA-ICPMS de grains entiers montrent des signaux élevés de ⁸⁸Sr et des rapports Th/U élevés, ce qui indique que la plupart des zircons sont altérés. La majorité des données sont discordantes, mais leur distribution indique un âge néoarchéen (figure 11B). Les analyses les plus fiables (grains 5, 14 et 18) sont parmi les plus concordantes. Les grains 14 et 18 montrent des rapports Th/U normaux pour des zircons magmatiques et leurs âges ²⁰⁷Pb/²⁰⁶Pb s'accordent dans la limite des erreurs avec une movenne de 2742 ±28 Ma (MSWD de 0,8). Il est toutefois possible qu'il s'agisse de xénocristaux. Le grain 5 montre un rapport Th/U très bas et un âge quasi-concordant à 2525 ±24 Ma. Cet âge est plus jeune que tous les évènements magmatiques connus dans la Province du Supérieur, mais il pourrait correspondre à un évènement hydrothermal (Jemielita et al., 1990). L'échantillon 2011-FL-6129, en provenance de la région de Chibougamau, a donné un zircon avec un âge similaire (Davis et Dion, 2012). Ce zircon était également en inclusion dans la pyrite.

Figure 11A : Zircons de l'échantillon volcanique 2011-JG-1187A après analyse par LA-ICPMS.

Figure 11B : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS sur les grains entiers de zircon de l'échantillon volcanique 2011-JG-1187A.

4.2 2011-JG-1592 M1 Gneiss, Complexe de Langelier, projet Baie-James

Cet échantillon a donné une quantité abondante de grains de zircon. Ces grains sont toutefois presque tous très altérés avec un blanchissement typiquement associé à la présence d'une discordance (figure 12A). Des grains relativement frais ont été sélectionnés et analysés par LA-ICPMS. Les données montrent un fort étalement autour de la courbe concordia avec des âges ²⁰⁷Pb/²⁰⁶Pb qui varient de 3460 Ma à 2280 Ma (figure 12B). Les analyses ID-TIMS donnent une distribution des données similaire (Davis et Dion, 2012).

Le caractère uniforme du zircon, qui montre une concentration en U exceptionnellement élevée, suggère qu'il s'agit d'une population unique, bien que très perturbée, avec un âge unique de cristallisation. Les images en BSE des grains polis (figure 12C) montrent l'état de dommage de ces grains qui auraient accumulé les dégâts et subi des pertes de Pb significatives durant le Paléoprotérozoïque. Les nouvelles analyses LA-ICPMS de grains polis sont encore plus dispersées avec beaucoup des données situées au dessus de la courbe concordia. Ce phénomène est probablement associé à la faible correspondance entre l'état structural de l'échantillon et de l'étalon (figure 12D). Ceci a toutefois peu d'effets sur les rapports 207 Pb/ 206 Pb et les cinq analyses les plus vieilles s'accordent dans la limite des erreurs avec un âge 207 Pb/ 206 Pb moyen de 3452 ±16 Ma (MSWD = 0,71, figure 12E). Il s'agit de la meilleure estimation de l'âge de cristallisation du zircon.

Figure 12A : Zircons de la fraction non magnétique de l'échantillon gneissique 1997-JG-1592 M1. Le blanchissement visible ici est normalement un indice d'altération associée à la proximité d'une discordance.

données U-Pb obtenues par la méthode LA-ICPMS sur des zircons entiers de l'échantillon gneissique 1997-JG-1592 M1.

Figure 12C : Images en CL des zircons polis de l'échantillon gneissique 2011-JG-1592 M1. Les cercles marquent les endroits prévus pour les analyses LA-ICPMS, mais ne correspondent pas exactement aux analyses finales. Les portions altérées sont plus foncées.

Figure 12D : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS sur des zircons polis de l'échantillon gneissique 2011-JG-1592 M1.

Figure 12E : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS sur des zircons polis les plus vieux de l'échantillon gneissique 2011-JG-1592 M1.

4.3 2011-LP-2151A Tonalite blanchâtre, projet Churchill

Cet échantillon a donné assez peu de zircons avec des cristaux formant des petits prismes dont la plupart sont fracturés (figure 13A). Pour les analyses LA-ICPMS sur les grains entiers, les rapports Pb/U et Th/U augmentent rapidement avec la profondeur des trous faits par le laser, ce qui indique la présence de surcroissances métamorphiques. Les données sont dispersées sur la courbe concordia avec deux groupements autour de 2650 Ma et 1800 Ma (figure 13B). L'analyse la plus jeune donne un âge 207 Pb/ 206 Pb de 1736 ±64 Ma, mais les cinq analyses de ce groupe ne s'accordent pas dans la limite des erreurs. Les neuf analyses les plus vieilles s'accordent avec un âge 207 Pb/ 206 Pb moyen de 2654 ±10 Ma (MSDW de 0,7, figure 13C).

L'échantillon DD91-1 a été utilisé comme étalon secondaire par rapport à l'étalon primaire DD85-17 au cours de ces analyses. Les résultats montrent une légère discordance inverse, avec un âge ²⁰⁷Pb/²⁰⁶Pb moyen de 2678 ±14 Ma (MSDW de 0,6 pour six données, figure 13D). Cet âge s'accorde dans la limite des erreurs avec l'âge ID-TIMS de 2682 ±1 Ma. Des zircons présentant plus des dommages, tel DD91-1, montrent évidemment un peu moins de fractionnement du rapport Pb/U au cours de l'ablation.

Un montage des grains polis a été préparé en complément de ces premières analyses. Dans les images en BSE (figure 13E), on observe beaucoup de grains montrant une partie interne foncée idiomorphes ou arrondie entourée par des zones de teintes variables. Il n'existe cependant pas une bonne correspondance entre les zones ainsi identifiées et les âges obtenus lors de l'analyse. Plusieurs grains montrant des zones de teintes variables montrent des âges archéens en bordure (par ex. grains 1, 4, 7 et 8; figure 13E), alors que l'on retrouve plusieurs grains paléoprotérozoïques associés à des zones uniformes (par ex. grains 15, 17 et 25; figure 13E).

Les analyses de grains polis présentent une distribution d'âges similaire à celles de grains entiers, sauf que les regroupements ainsi obtenus sont mieux circonscrits (figure 13F). Le groupe archéen est bien défini avec un âge moyen de 2663 ±7 Ma (MSWD de 0,9 pour neuf données; figure 13G), alors que le groupement protérozoïque donne un âge moyen de 1818 ±13 Ma (MSWD de 0,03 pour cinq données; figure 13H).

Figure 13A: Zircons sélectionnés de l'échantillon de tonalite 2011-LP-2151A avant traitement.

Figure 13B: Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS pour les zircons entiers de l'échantillon de tonalite 2011-LP-2151A.

Figure 13C: Diagramme concordia des données U-Pb d'âge archéen obtenues par la méthode LA-ICPMS des zircons entiers de l'échantillon de tonalite 2011-LP-2151A.

données U-Pb obtenues par la méthode LA-ICPMS pour les zircons de l'étalon secondaire DD91-1, par rapport à l'étalon primaire DD85-17.

Figure 13E : Images en CL des zircons polis de l'échantillon de tonalite 2011-LP-2151A. Les cercles marquent les endroits prévus pour les analyses LA-ICPMS, mais ne correspondent pas exactement aux analyses finales.

Figure 13F : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS pour les zircons polis de l'échantillon de tonalite 2011-LP-2151A.

Figure 13G : Diagramme concordia des données U-Pb d'âge archéen obtenues par la méthode LA-ICPMS des zircons polis de l'échantillon de tonalite 2011-LP-2151A.

Figure 13H : Diagramme concordia des données U-Pb d'âge protérozoïque obtenues par la méthode LA-ICPMS des zircons entiers de l'échantillon de tonalite 2011-LP-2151A.

4.4 2011-BC-0032 Rhyolite massive et fragmentaire, projet Matagami

Aucun zircon n'est visible dans le concentré de minéraux lourds qui est formé principalement de pyrite et d'un minéral gris, insoluble à l'acide nitrique, qui est peutêtre de la sphalérite. Un seul petit prisme allongé de zircon (prisme court idiomorphe, figure 14A) a été observé après la digestion de la pyrite à l'acide nitrique. En dépit de la faible dimension de ce grain, nous avons pu réaliser quatre analyses LA-ICPMS avec un faisceau laser de diamètre réduit. Les analyses montrent des rapports Th/U élevés et des signaux modérés en ⁸⁸Sr, mais les données sont quasi-concordantes avec un âge ²⁰⁷Pb/²⁰⁶Pb moyen de 2724 ±20 Ma (MSWD = 1,6, figure 14B). Il s'agit de la meilleure estimation de l'âge de cristallisation du grain. Il est toutefois très possible que ce grain soit d'origine xénocristique. Dans ce cas, il représenterait l'âge maximal du volcanisme.

Figure 14A : Fragment de zircon unique obtenu de l'échantillon volcanique 2011-BC-0032 après quatre analyses LA-ICPMS.

Figure 14B : Diagramme concordia des données U-Pb obtenues par la méthode LA-ICPMS sur un fragment de zircon de l'échantillon volcanique 2011-BC-0032.

5. RÉFÉRENCES

Davis, D.W. 2012 et Dion, C. Datations ID-TIMS d'échantillons recueillis en 2011-2012 par Géologie Québec. Ministère des Ressources naturelles, Québec; GM 66443, 41 pages.

Davis, D.W. 2002. U–Pb geochronology of Archean metasedimentary rocks in the Pontiac and Abitibi subprovinces, Quebec, constraints on timing, provenance and regional tectonics. Precambrian Research; vlume 115, pages 97–117.

Davis, D.W., 1996. Provenance and depositional age constraints on sedimentation in the western Superior transect area from U–Pb ages of zircons. Lithoprobe Report 53, pages 18–23.

Davis, D.W. 1998. Speculations on the formation and crustal structure of the Superior province from U–Pb geochronology. In: Harrap, R.M., Helmstaedt, H. (editors.), Western Superior Transect Fourth Annual Workshop. Lithoprobe Report 65, pages 21–28. Goutier, J., Dion, C., Ouellet, M.-C., Davis, D.W., David, J., Parent, M. 2002 – Géologie de la région du lac Guyer (33G/05, 33G/06 et 33G/11). Ministère des Ressources naturelles, Québec; RG 2001-15, 53 pages, 3 plans.

Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., Essling, A.M. 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review; volume 4, pages 1889-1906.

Jemielita, R.A., Davis, D.W. Krogh, T.E. 1990. U-Pb evidence for Abitibi gold mineralization postdating greenstone magmatism and metamorphism. Nature; volume 346, page 831-834.

Krogh, T.E. 1993. High precision U-Pb ages for granulite metamorphism and deformation in the Archean Kapuskasing Structural Zone, Ontario: implications for structure and development of the lower crust. Earth and Planetary Science Letters, volume 119, pages 1-18.

Ludwig, K.R. 2003. User's manual for Isoplot 3.00 a geochronological toolkit for Excel. Berkeley Geochronological Center Special Publication, volume 4, 71 pages.

Ludwig, K.R. 1998. On the treatment of concordant uranium-lead ages. Geochimica et Cosmochimica Acta, volume 62, pages 665-676.

Tomlinson, K.Y., Davis, D.W., Stone, D., Hart, T.R. 2003. U-Pb age and Nd isotopic evidence for crustal recycling and Archean terrane development in the southcentral Wabigoon subprovince, Canada. Contributions to Mineralogy and Petrology; volume 144, pages 684-702.

Tableau 1 : Échantillons pour analyses LA-ICPMS

No	Échantillon	Lithologie	Projet	Feuillet	Zone	Estant	Nordant
1	2011-TC-5009A	Quartzite	Grenville	22N03	19	499309	5650033
2	2011-NT-6112D	Quartzite à graphite et à grenat	Grenville	22K15	19	511320	5677280
3	2011-AM-0001A	Tonalite gneissique avec mobilisat tonalitique à granitique	Grenville	22N03	19	481096	5677280
4	2011-AM-0017A	Leuconorite de La Suite anorthositique de Tétépisca	Grenville	22K14	19	486962	5631719
5	2011-QD-7509A	Conglomérat polygénique	Baie-James	33H12	18	584870	5960922
6	SGNO-2005-05 (2000-JG-1390)	Conglomérat polygénique de la Formation d'Ekomiak	Baie-James	33F06	18	339991	5919330
7	2011-MS-0106A	Gneiss tonalitique rubané	Churchill	24J08	19	594489	6460639
8	2011-IL-3141A	Granite homogène à grain fin	Churchill	24K09	19	530260	6503289
9	2011-HH-4084A	Gneiss tonalitique rubané	Churchill	24K15	19	522871	6530450
10	2011-CL-5255A	Gneiss rubané, tonalitique à dioritique	Churchill	24J05	19	577597	6463601
11	2011-JG-1187A	Tuf à lapillis	Baie-James	33H05	18	571050	5907883
12	2011-JG-1592 M1	Gneiss, Complexe de Langelier	Baie-James	33F03	18	364255	5895106
13	2011-LP-2151A	Tonalite blanchâtre	Churchill	24J07	19	620928	6464967
14	2011-BC-0032	Rhyolite massive et fragmentaire	Matagami	32F13	18	311032	5515574
		a de la companya de l					

-				_									_			
	Analyse	U	Pb ²⁰⁶	Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
										Âge (Ma)		Âge (Ma)		Âge (Ma)		
1	2011-TC-5009	A. Qua	artzite.	proie	et Gren	ville							. 3			
	Zircons polis		,													
1	TC-1 1r	800	133	0.19	1 645	0.021	0 1660	0.0018	0.8135	983	15	988	8	990	10	-1
2	TC-1.2c	1298	269	0.45	2 518	0.028	0 2070	0,0019	0.8245	1387	12	1277	8	1213	10	14
3	TC-2 1	863	142	0.04	1 634	0.023	0 1641	0.0019	0.8000	993	17	984	9	980	10	1
4	TC-3.1c	610	102	0.13	1,650	0.025	0.1675	0.0020	0.7908	971	19	990	10	998	11	-3
5	TC-3.20	470	78	0.15	1.684	0.024	0.1651	0.0017	0.7008	1041	20	1003	9	985	9	6
6	TC-2.2	673	114	0.05	1.715	0.022	0.1688	0.0017	0.7911	1032	16	1014	8	1006	10	3
7	TC-2.3	1353	233	0.03	1.717	0.022	0.1720	0.0018	0.8327	997	14	1015	8	1023	10	-3
8	TC-3.3	707	118	0,13	1,652	0,023	0,1664	0,0019	0,8012	986	17	990	9	992	10	-1
9	TC-2.4	1371	242	0,03	1,752	0,023	0,1763	0,0019	0,8047	988	16	1028	9	1047	10	-6
10	TC5009-1.1	1683	412	0,71	3,370	0,035	0,2449	0,0021	0,8093	1621	11	1498	8	1412	11	14
11	TC5009-1.20	455	78	0,07	1,727	0,020	0,1723	0,0014	0,6818	1005	17	1018	8	1025	8	-2
12	TC5009-2.1	381	108	0,77	4,268	0,046	0,2843	0,0025	0,8024	1781	12	1687	9	1613	12	11
13	TC5009-2.20	668	114	0,14	1,722	0,017	0,1704	0,0012	0,7539	1023	13	1017	6	1014	7	1
14	TC5009-3	807	153	0,28	2,090	0,021	0,1890	0,0016	0,8433	1202	11	1146	7	1116	9	8
15	TC5009-4	585	120	0,52	2,561	0,026	0,2058	0,0017	0,8105	1431	11	1290	7	1206	9	17
16	TC5009-50	1024	176	0,18	1,728	0,019	0,1721	0,0014	0,7697	1009	14	1019	7	1024	8	-2
17	TC5009-60	421	73	0,11	1,702	0,021	0,1728	0,0015	0,6931	969	18	1009	8	1028	8	-6
18	TC5009-7	603	137	0,72	2,961	0,033	0,2271	0,0018	0,7233	1520	15	1398	8	1319	10	15
19	TC5009-8	473	98	0,40	2,556	0,031	0,2082	0,0016	0,6525	1405	17	1288	9	1219	9	14
20	TC5009-10	216	66	0,71	4,627	0,054	0,3074	0,0027	0,7615	1786	14	1754	10	1728	14	4
21	TC5009-11	897	187	0,42	2,554	0,032	0,2088	0,0023	0,8581	1397	12	1287	9	1223	12	14
22	TC5009-12	1230	313	0,53	3,503	0,039	0,2542	0,0024	0,8593	1623	11	1528	9	1460	13	11
23	TC5009-130	1010	174	0,17	1,732	0,023	0,1723	0,0017	0,7349	1011	18	1020	8	1024	9	-1
24	TC5009-15	1697	372	0,36	2,632	0,040	0,2190	0,0029	0,8687	1364	15	1310	11	1276	15	7
25	TC5009-160	661	116	0,29	1,730	0,031	0,1748	0,0021	0,6758	980	27	1020	11	1039	12	-7
26	TC5009-17	2099	575	1,12	4,017	0,055	0,2739	0,0033	0,8769	1738	12	1638	11	1561	16	11
27	TC5009-18	2485	566	0,72	2,927	0,036	0,2276	0,0020	0,7028	1493	17	1389	9	1322	10	13
28	TC5009-19	1993	519	0,87	3,562	0,045	0,2602	0,0027	0,8113	1611	14	1541	10	1491	14	8
29	TC5009-190	2182	377	0,06	1,719	0,021	0,1728	0,0016	0,7620	990	16	1016	8	1028	9	-4
30	ITC5009-20	2994	600	0.27	2 3 18	0.035	0.2003	0.0026	0.8474	1291	16	1218	11	1177	14	10

	Analyse	U	Pb ²⁰⁶	<u>Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
										Âge (Ma)	k	Âge (Ma)		Âge (Ma)		
1	2011-TC-5009	A, Qua	artzite,	proje	et Gren	ville							1			
	Zircons entiers	S														
31	TC-5clr	751	129	0,12	1,726	0,020	0,1722	0,0014	0,7364	1005	16	1018	7	1024	8	-2
32	TC-60	284	47	0,24	1,651	0,021	0,1657	0,0014	0,6507	994	19	990	8	988	8	1
33	TC-70	1431	240	0,01	1,668	0,018	0,1674	0,0014	0,7881	993	14	996	7	998	8	0
34	TC-80	781	134	0,12	1,715	0,019	0,1711	0,0014	0,7332	1005	15	1014	7	1018	8	-1
35	TC-90	1327	215	0,02	1,632	0,019	0,1619	0,0013	0,7343	1017	16	983	7	968	7	5
36	TC-100	1421	244	0,12	1,704	0,023	0,1714	0,0020	0,8647	989	14	1010	9	1020	11	-3
37	TC-110	1587	300	0,07	1,889	0,021	0,1893	0,0017	0,8048	996	13	1077	7	1118	9	-13
38	TC-12clr	740	129	0,08	1,740	0,019	0,1742	0,0013	0,7184	998	15	1023	7	1035	7	-4
39	TC-130	982	160	0,10	1,646	0,019	0,1628	0,0014	0,7494	1023	15	988	7	973	8	5
40	TC-13clrcore	864	144	0,06	1,673	0,018	0,1663	0,0014	0,7368	1013	15	998	7	992	7	2
41	TC-140	1875	349	0,12	1,854	0,022	0,1860	0,0018	0,8183	994	14	1065	8	1100	10	-12
42	TC-150	1790	307	0,12	1,692	0,019	0,1713	0,0014	0,7328	976	16	1006	7	1019	8	-5
43	TC-160	1240	208	0,21	1,664	0,020	0,1680	0,0014	0,7171	981	17	995	8	1001	8	-2
44	TC-17clrcore	150	26	0,60	1,694	0,027	0,1721	0,0018	0,6546	969	25	1006	10	1024	10	-6
45	TC-20o	937	157	0,22	1,666	0,020	0,1673	0,0015	0,7510	993	16	996	8	997	8	0
46	TC-21clr	523	89	0,21	1,704	0,021	0,1707	0,0015	0,7211	997	18	1010	8	1016	9	-2
47	TC-230	759	132	0,10	1,750	0,020	0,1737	0,0014	0,7310	1017	16	1027	7	1032	8	-2
48	TC-24clr	598	105	0,38	1,774	0,027	0,1754	0,0019	0,7282	1024	21	1036	10	1042	11	-2

|--|

	Analyse	U	Pb ²⁰⁶	Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
	<i></i>									Âge (Ma)		Âge (Ma)		Âge (Ma)		
2	2011-NT-6112	D, Qua	artzite a	à gra	phite e	t à gre	enat, pro	ojet Gr	enville						_	
	Zircons polis															
1	NT-55.20	1859	329	0,09	1,768	0,024	0,1768	0,0020	0,8293	1000	16	1034	9	1050	11	-5
2	NT-55.1c	584	98	0,09	1,683	0,028	0,1678	0,0022	0,7704	1006	22	1002	11	1000	12	1
3	NT-20.2	2809	516	0,02	1,862	0,030	0,1837	0,0025	0,8497	1028	17	1068	11	1087	14	-6
4	NT-10	781	141	0,14	1,839	0,029	0,1811	0,0023	0,8181	1032	18	1059	10	1073	13	-4
5	NT-26.2	2549	453	0,08	1,805	0,025	0,1776	0,0020	0,8147	1033	16	1047	9	1054	11	-2
6	NT-24	865	158	0,04	1,862	0,030	0,1829	0,0024	0,8193	1037	18	1068	10	1083	13	-5
7	NT-26.1	1175	205	0,23	1,774	0,024	0,1741	0,0017	0,7401	1039	18	1036	9	1034	9	0
8	11NT6112-1	1974	364	0,08	1,891	0,027	0,1846	0,0022	0,8668	1049	14	1078	9	1092	12	-4
9	NT-8	433	74	0,13	1,757	0,030	0,1714	0,0023	0,7761	1051	22	1030	11	1020	12	3
10	NT-2	2418	451	0,01	1,920	0,026	0,1866	0,0022	0,8663	1059	14	1088	9	1103	12	-4
11	NT-12	955	168	0,16	1,827	0,028	0,1761	0,0022	0,8132	1075	18	1055	10	1046	12	3
12	NT-16	677	122	0,08	1,902	0,032	0,1804	0,0024	0,7819	1108	21	1082	11	1069	13	4
13	NT-6	449	81	0,12	1,895	0,032	0,1795	0,0024	0,7711	1111	22	1079	11	1064	13	5
14	NT-42	1144	217	0,01	2,124	0,055	0,1892	0,0039	0,7982	1231	30	1157	18	1117	21	10
15	NT-41	452	104	0,42	2,764	0,052	0,2309	0,0033	0,7550	1356	23	1346	14	1339	17	1
16	NT-29	1615	347	0,21	2,607	0,036	0,2149	0,0022	0,7291	1382	18	1303	10	1255	12	10
17	NT-22	107	26	0,40	2,959	0,079	0,2383	0,0037	0,5817	1427	41	1397	20	1378	19	4
18	NT-39	1209	308	0,07	3,174	0,045	0,2552	0,0030	0,8332	1430	15	1451	11	1465	16	-3
19	NT-48	814	190	0,38	2,924	0,044	0,2331	0,0027	0,7581	1446	19	1388	11	1351	14	7
20	NT-19	311	74	0,31	3,003	0,054	0,2371	0,0033	0,7672	1465	22	1408	14	1371	17	7
21	NT-20.1	957	235	0,21	3,115	0,045	0,2457	0,0029	0,8228	1466	15	1436	11	1416	15	4
22	NT-68	252	57	0,27	2,919	0,049	0,2264	0,0031	0,8291	1498	18	1387	13	1315	17	13
23	NT-7	363	88	0,77	3,146	0,050	0,2429	0,0030	0,7897	1506	18	1444	12	1402	16	8
24	NT-30	900	245	0,38	3,524	0,051	0,2718	0,0029	0,7352	1509	18	1533	11	1550	15	-3
25	NT-61	598	149	0,26	3,263	0,047	0,2501	0,0028	0,7806	1520	17	1472	11	1439	15	6
26	NT-35	218	57	0,37	3,457	0,071	0,2638	0,0041	0,7619	1529	25	1517	16	1509	21	1
27	NT-3	1096	263	0,07	3,164	0,045	0,2402	0,0028	0,8191	1539	15	1449	11	1388	15	11
28	NT-31	446	116	0,34	3,471	0,063	0,2605	0,0036	0,7589	1560	22	1521	14	1492	18	5
29	NT-5	377	99	0,28	3,498	0,057	0,2622	0,0036	0,8428	1562	16	1527	13	1501	18	4
30	NT-54	660	171	0,15	3,529	0,079	0,2587	0,0041	0,7125	1604	29	1534	18	1483	21	8
31	NT-4	116	30	0,61	3,564	0,076	0,2597	0,0039	0,6937	1615	29	1542	17	1488	20	9

Tableau 2 · Analyses I A-ICPMS sur zircon et monazite des roches i	précambriennes du Québec
Tablead 2. Analyses EATOT We sur zhour of monazite des roches	orecumbrichines du Quebee.

	Analyse	U	Pb ²⁰⁶	Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
	<i></i>									Âge (Ma)		Âge (Ma)		Âge (Ma)		
2	2011-NT-6112	2D, Qua	artzite a	à gra	phite e	t à gre	enat, pro	ojet Gr	enville		í					
	Zircons polis															
32	NT-25	47	12	0,51	3,557	0,117	0,2564	0,0051	0,6061	1635	48	1540	26	1472	26	11
33	NT-18	271	77	0,29	3,998	0,094	0,2845	0,0043	0,6323	1660	34	1634	19	1614	21	3
34	NT-50	536	158	0,94	4,151	0,075	0,2941	0,0043	0,8104	1667	19	1664	15	1662	21	0
35	NT-56	427	126	0,58	4,259	0,059	0,2956	0,0033	0,8076	1705	15	1685	11	1670	17	2
36	NT-11	469	135	0,33	4,188	0,061	0,2872	0,0034	0,8143	1728	15	1672	12	1628	17	7
37	NT-14	477	135	0,33	4,192	0,066	0,2838	0,0037	0,8363	1751	16	1672	13	1611	19	9
38	NT-46	1187	399	0,24	4,969	0,072	0,3358	0,0041	0,8319	1754	15	1814	12	1867	20	-7
39	NT-13	104	30	0,89	4,394	0,092	0,2905	0,0045	0,7452	1795	25	1711	17	1644	23	10
40	NT-51	361	116	0,44	4,856	0,091	0,3202	0,0048	0,7913	1799	21	1795	16	1791	23	1
41	NT-34	137	41	0,38	4,535	0,109	0,2987	0,0055	0,7651	1801	28	1737	20	1685	27	7
42	NT-15	700	218	0,23	4,797	0,072	0,3115	0,0039	0,8371	1827	15	1784	13	1748	19	5
43	NT-40	1503	477	0,66	4,925	0,072	0,3173	0,0038	0,8186	1841	15	1807	12	1777	19	4
44	NT-57	167	51	0,32	4,793	0,081	0,3073	0,0040	0,7625	1850	20	1784	14	1728	20	8
45	NT-60	276	91	0,27	5,215	0,079	0,3299	0,0039	0,7840	1874	17	1855	13	1838	19	2
46	NT-21	435	139	0,59	5,073	0,098	0,3194	0,0051	0,8270	1883	19	1832	16	1787	25	6
47	NT-59	492	164	0,55	5,316	0,073	0,3329	0,0038	0,8235	1893	14	1871	12	1852	18	2
48	NT-17	675	229	0,41	5,436	0,086	0,3394	0,0046	0,8481	1898	15	1891	14	1884	22	1
49	NT-9	287	98	0,39	5,487	0,083	0,3406	0,0041	0,8056	1908	16	1899	13	1890	20	1
50	NT-28	1355	454	0,51	5,492	0,084	0,3353	0,0044	0,8481	1939	15	1899	13	1864	21	4
51	NT-67.1c	920	282	0,08	5,280	0,078	0,3063	0,0039	0,8586	2029	13	1866	13	1722	19	17
52	NT-36	1823	530	0,12	5,126	0,066	0,2904	0,0031	0,8268	2071	13	1840	11	1644	16	23
53	NT-64	218	75	0,47	6,307	0,100	0,3468	0,0046	0,8420	2123	15	2019	14	1919	22	11
54	NT-32.1	103	37	0,48	7,261	0,180	0,3552	0,0065	0,7386	2326	28	2144	22	1959	31	18
55	NT-32.20	546	242	0,42	9,426	0,137	0,4433	0,0055	0,8515	2393	13	2380	13	2365	24	1
56	NT-67.20	709	294	0,13	8,976	0,140	0,4142	0,0057	0,8762	2426	13	2336	14	2234	26	9
57	NT-33	355	155	0,73	9,643	0,172	0,4355	0,0066	0,8541	2462	16	2401	16	2330	30	6
58	NT-53	192	73	0,83	8,380	0,135	0,3782	0,0047	0,7739	2463	17	2273	15	2068	22	19
59	NT-27	811	380	0,46	11,156	0,143	0,4687	0,0049	0,8182	2583	12	2536	12	2478	22	5
60	NT-52	433	194	0,29	10,722	0,160	0,4478	0,0055	0,8260	2593	14	2499	14	2386	25	10

Tableau 2 : Analyses LA-ICPMS sur	ur zircon et monazite des roches	précambriennes du Québec.
-----------------------------------	----------------------------------	---------------------------

	Analyse	U	Pb ²⁰⁶	Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
	<i></i>		6.							Âge (Ma)		Âge (Ma)		Âge (Ma)		
3	2011-AM-000	1A, Toi	nalite g	neis	sique a	vec m	obilisa	t tonali	tique à g	granitiqu	e, pro	ojet Gren	ville			
	Zircons entiers	5														
1	AM011-9.1c	45	19	0,64	10,604	0,176	0,4310	0,0054	0,7534	2638	18	2489	15	2310	24	15
2	11AM011-1	59	29	0,94	12,714	0,180	0,4953	0,0054	0,7758	2709	15	2659	13	2594	23	5
3	AM011-3	50	26	0,72	13,343	0,199	0,5125	0,0058	0,7645	2732	16	2704	14	2667	25	3
4	AM011-18	52	25	1,00	12,680	0,202	0,4858	0,0057	0,7376	2736	18	2656	15	2553	25	8
5	AM011-5	48	25	0,77	13,848	0,199	0,5246	0,0060	0,7906	2755	14	2739	14	2719	25	2
6	AM011-10	71	37	0,92	13,982	0,205	0,5291	0,0063	0,8129	2756	14	2748	14	2738	27	1
7	AM011-19	38	20	1,00	13,996	0,233	0,5292	0,0071	0,8112	2758	16	2749	16	2738	30	1
8	AM011-15	64	33	0,92	13,585	0,209	0,5119	0,0061	0,7796	2763	16	2721	15	2665	26	4
9	AM011-6.1	62	31	0,85	13,396	0,194	0,5041	0,0057	0,7779	2766	15	2708	14	2631	24	6
10	AM011-17.1c	56	30	1,05	14,215	0,203	0,5344	0,0060	0,7901	2767	14	2764	14	2760	25	0
11	AM011-2	50	27	0,74	14,517	0,218	0,5446	0,0067	0,8163	2771	14	2784	14	2803	28	-1
12	AM011-4.1	35	18	0,51	13,871	0,222	0,5191	0,0065	0,7870	2775	16	2741	15	2695	28	3
13	AM011-9.2t	73	37	0,65	13,738	0,198	0,5133	0,0060	0,8069	2777	14	2732	14	2671	25	5
14	AM011-12.1	44	22	0,58	13,531	0,208	0,5046	0,0061	0,7817	2780	16	2717	14	2634	26	6
15	AM011-7	65	34	0,93	14,238	0,216	0,5287	0,0061	0,7647	2788	16	2766	14	2736	26	2
16	AM011-16	69	37	1,07	14,468	0,218	0,5363	0,0066	0,8145	2790	14	2781	14	2768	28	1
17	AM011-8	69	37	0,96	14,241	0,220	0,5279	0,0066	0,8063	2790	15	2766	15	2732	28	3
18	AM011-11	61	32	0,60	14,130	0,194	0,5221	0,0053	0,7447	2795	15	2758	13	2708	23	4
19	AM011-20	39	20	1,06	14,172	0,231	0,5219	0,0071	0,8392	2801	14	2761	15	2707	30	4
20	AM011-14	65	35	0,65	14,600	0,220	0,5330	0,0066	0,8170	2815	14	2790	14	2754	28	3
21	AM011-13	62	33	0,77	14,474	0,222	0,5274	0,0064	0,7861	2818	15	2781	15	2731	27	4

	Analyse	U	Pb ²⁰⁶	Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
										Âge (Ma)		Âge (Ma)		Âge (Ma)		
4	2011-AM-001	7A, Leu	uconor	ite de	e La Su	ite an	orthosi	tique d	e Tétépi	sca, proj	et Gi	renville				
	Zircons entiers	5														
1	11AM017-1.1c	47	8	0,05	2,019	0,069	0,1772	0,0038	0,6384	1261	50	1122	23	1051	21	18
2	11AM017-1.2r	638	113	0,17	1,828	0,028	0,1779	0,0022	0,8168	1056	18	1056	10	1056	12	0
3	AM017-2.1c	98	16	0,06	1,717	0,038	0,1656	0,0024	0,6449	1074	34	1015	14	988	13	9
4	AM017-2.2r	656	113	0,17	1,769	0,031	0,1726	0,0025	0,8346	1051	19	1034	11	1026	14	3
5	AM017-3.1c	56	10	0,11	1,917	0,062	0,1760	0,0035	0,6049	1173	50	1087	22	1045	19	12
6	AM017-3.2r	521	93	0,21	1,853	0,028	0,1782	0,0023	0,8451	1080	16	1065	10	1057	13	2
7	AM017-4.1c	27	4	0,13	1,776	0,080	0,1668	0,0045	0,5973	1128	71	1037	29	994	25	13
8	AM017-4.2r	948	161	0,15	1,728	0,024	0,1700	0,0019	0,8078	1034	17	1019	9	1012	11	2
9	AM017-5.1c	30	5	0,10	1,785	0,078	0,1720	0,0040	0,5280	1075	73	1040	28	1023	22	5
10	AM017-5.2r	213	37	0,69	1,786	0,039	0,1743	0,0030	0,7796	1050	28	1040	14	1036	16	1
11	AM017-6	813	144	0,74	1,817	0,025	0,1773	0,0021	0,8445	1050	15	1052	9	1052	11	0
12	AM017-7	469	81	0,22	1,789	0,027	0,1734	0,0021	0,8109	1063	18	1041	10	1031	12	3
13	AM017-8	2127	404	0,22	1,967	0,024	0,1899	0,0020	0,8656	1072	12	1104	8	1121	11	-5
14	AM017-9	584	105	0,21	1,837	0,026	0,1789	0,0020	0,7835	1054	18	1059	9	1061	11	-1
15	AM017-10.1c	48	10	1,05	2,212	0,075	0,2004	0,0038	0,5664	1199	54	1185	23	1177	21	2
16	AM017-10.2r	1018	169	0,14	1,679	0,021	0,1664	0,0017	0,8129	1019	15	1001	8	992	10	3
17	AM017-11.1c	124	22	4,18	1,823	0,042	0,1772	0,0029	0,7100	1058	33	1054	15	1052	16	1
18	AM017-11.2r	1071	189	0,11	1,795	0,026	0,1761	0,0021	0,8403	1039	16	1044	9	1046	12	-1
19	AM017-12.1c	55	10	0,59	1,797	0,057	0,1752	0,0032	0,5883	1053	51	1045	20	1041	18	1
20	AM017-12.2r	530	91	0,16	1,755	0,024	0,1711	0,0017	0,7403	1052	18	1029	9	1018	9	3
21	AM017-13.1c	64	11	0,46	1,845	0,042	0,1771	0,0024	0,5990	1083	37	1062	15	1051	13	3
22	AM017-13.2r	335	59	0,20	1,872	0,029	0,1776	0,0021	0,7526	1108	20	1071	10	1054	11	5
23	AM017-14c	7	1	0,13	2,049	0,147	0,1840	0,0071	0,5360	1215	115	1132	48	1089	38	11
24	AM017-15	1705	315	0,14	1,904	0,024	0,1850	0,0021	0,8858	1059	12	1082	8	1094	11	-4
25	AM017-16	356	80	0,35	2,673	0,040	0,2238	0,0027	0,8031	1352	17	1321	11	1302	14	4
26	AM017-17	1150	205	0,18	1,836	0,023	0,1785	0,0019	0,8484	1057	13	1058	8	1059	10	0
27	AM017-18	148	26	0,73	1,829	0,036	0,1749	0,0026	0,7449	1091	26	1056	13	1039	14	5
28	AM017-19c	24	4	0,23	1,673	0,073	0,1783	0,0046	0,5863	871	72	998	28	1057	25	-23
29	AM017-20	1860	335	0,13	1,832	0,024	0,1802	0,0021	0,8890	1034	12	1057	9	1068	11	-4

|--|

	Analyse	U	Pb ²⁰⁶	<u>Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
										Âge (Ma)	5	Âge (Ma)		Âge (Ma)		
5	2011-QD-7509	9A, Co	nglomé	érat p	olygén	ique,	projet E	Baie-Ja	mes		ſ					
	Zircons entiers	5														
1	11QD7509-1	23	12	0,79	14,413	0,190	0,5301	0,0056	0,7942	2803	13	2777	12	2742	23	3
2	QD-2	52	30	0,89	14,640	0,155	0,5687	0,0052	0,8576	2713	9	2792	10	2903	21	-9
3	QD-3	5	3	0,69	15,394	0,302	0,5912	0,0086	0,7425	2732	22	2840	19	2994	35	-12
4	QD-4	18	9	0,34	13,689	0,174	0,5259	0,0054	0,8082	2732	12	2728	12	2724	23	0
5	QD-5	102	61	0,52	15,582	0,167	0,5992	0,0055	0,8529	2730	9	2852	10	3027	22	-14
6	QD-6	52	28	0,31	14,367	0,155	0,5503	0,0049	0,8169	2736	10	2774	10	2827	20	-4
7	QD-7	41	24	0,69	15,642	0,186	0,5771	0,0055	0,8058	2798	12	2855	11	2937	23	-6
8	QD-8	79	43	0,28	14,644	0,150	0,5414	0,0046	0,8369	2795	9	2792	10	2789	19	0
9	QD-9	93	53	0,69	14,636	0,153	0,5622	0,0048	0,8259	2732	10	2792	10	2876	20	-7
10	QD-10.1	248	137	0,68	14,083	0,143	0,5523	0,0047	0,8463	2698	9	2755	10	2835	20	-6
11	QD-10.2	161	85	0,70	13,535	0,132	0,5302	0,0044	0,8513	2700	8	2718	9	2742	18	-2
12	QD-11	19	10	0,15	14,484	0,198	0,5441	0,0057	0,7616	2768	14	2782	13	2801	24	-1
13	QD-12	63	34	0,77	14,711	0,160	0,5391	0,0048	0,8132	2809	10	2797	10	2780	20	1
14	QD-13	118	64	0,25	14,111	0,155	0,5380	0,0049	0,8343	2744	10	2757	10	2775	21	-1
15	QD-14	94	50	1,18	13,638	0,128	0,5314	0,0040	0,8041	2708	9	2725	9	2747	17	-2
16	QD-15	23	13	0,87	15,751	0,197	0,5631	0,0057	0,8026	2850	12	2862	12	2879	23	-1
17	QD-16	102	58	0,34	15,424	0,152	0,5705	0,0046	0,8258	2794	9	2842	9	2910	19	-5
18	QD-17.1	148	83	0,73	14,637	0,142	0,5605	0,0046	0,8535	2737	8	2792	9	2869	19	-6
19	QD-17.2	168	92	1,19	14,180	0,145	0,5459	0,0047	0,8461	2728	9	2762	10	2808	20	-4
20	QD-18	193	105	0,01	13,923	0,150	0,5446	0,0051	0,8659	2702	9	2745	10	2803	21	-5
21	QD-19	43	24	0,79	15,167	0,181	0,5646	0,0053	0,7866	2783	12	2826	11	2885	22	-5
22	QD-20	206	118	0,60	14,690	0,139	0,5730	0,0046	0,8572	2706	8	2795	9	2920	19	-10
23	QD-21	355	128	0,07	7,864	0,106	0,3608	0,0041	0,8433	2435	12	2216	12	1986	19	21
24	QD-22	101	62	0,26	18,448	0,229	0,6104	0,0061	0,8106	2975	12	3013	12	3072	25	-4
25	QD-23	392	211	0,17	13,812	0,123	0,5390	0,0040	0,8346	2706	8	2737	8	2779	17	-3
26	QD-24	131	66	0,07	13,175	0,188	0,5080	0,0055	0,7528	2726	15	2692	13	2648	23	3
27	QD-25	292	150	0,02	13,367	0,179	0,5140	0,0055	0,7984	2730	13	2706	13	2674	23	3
28	QD-26	165	94	0,15	15,099	0,142	0,5676	0,0044	0,8282	2767	9	2821	9	2898	18	-6
29	QD-27.1	84	49	0,26	16,213	0,172	0,5815	0,0052	0,8476	2844	9	2889	10	2955	21	-5
30	QD-27.2	37	21	0,27	16,056	0,193	0,5713	0,0054	0,7890	2857	12	2880	12	2913	22	-2
31	QD-28	79	43	0,71	13,816	0,154	0,5429	0,0048	0,7911	2694	11	2737	11	2795	20	-5
32	QD-29	87	46	0,25	13,779	0,143	0,5245	0,0046	0,8365	2747	9	2735	10	2718	19	1

	Analyso	п	Ph ²⁰⁶	Th	²⁰⁷ Ph	1	²⁰⁶ Ph	1	Corról	²⁰⁷ Ph	1	²⁰⁷ Ph	1	²⁰⁶ Ph	1	Diec
	Analyse	(10,000)	10		235	0.1	238	0:	Correr.	206 Dh	1	235	1 C:m	238	Cim	(0/)
		(ppm)	(ppm)	U	0	Sig	0	Sig	Erreurs	PD A	Sig	<u> </u>	Sig	Û Â	Sig	(%)
	S.		·		e					Age (Ma)	<u>6</u>	Age (Ma)		Age (Ma)		
5	2011-QD-750	9A, Co	nglomé	érat p	olygén	ique,	projet E	Baie-Ja	imes (su	ite)	1					
33	QD-30	59	34	0,23	15,530	0,206	0,5846	0,0060	0,7792	2765	14	2848	13	2968	25	-9
34	QD-31	41	22	0,31	13,990	0,159	0,5269	0,0047	0,7888	2764	11	2749	11	2728	20	2
35	QD-32	82	47	0,38	14,934	0,156	0,5785	0,0052	0,8540	2718	9	2811	10	2943	21	-10
36	QD-33	87	45	0,28	13,686	0,139	0,5221	0,0043	0,8112	2743	10	2728	10	2708	18	2
37	QD-34	94	51	0,58	13,741	0,143	0,5403	0,0045	0,7988	2693	10	2732	10	2785	19	-4
38	QD-35	68	37	0,80	15,024	0,160	0,5467	0,0044	0,7603	2821	11	2817	10	2811	18	0
39	QD-36	206	124	0,50	15,428	0,191	0,6024	0,0054	0,7227	2705	14	2842	12	3040	22	-16
40	QD-37	355	191	0,05	14,202	0,144	0,5374	0,0046	0,8341	2757	9	2763	10	2772	19	-1
41	QD-38	70	39	0,23	14,393	0,157	0,5466	0,0047	0,7888	2751	11	2776	10	2811	20	-3
42	QD-39	160	80	0,10	13,004	0,178	0,5001	0,0056	0,8185	2730	13	2680	13	2614	24	5
43	QD-40	44	24	0,34	13,912	0,158	0,5349	0,0048	0,7862	2730	12	2744	11	2762	20	-1
44	QD-41	95	50	0,48	13,776	0,135	0,5278	0,0041	0,7886	2736	10	2734	9	2732	17	0
45	QD-42	87	49	0,28	14,536	0,156	0,5562	0,0047	0,7831	2738	11	2785	10	2851	19	-5
46	QD-43	201	107	0,58	13,588	0,132	0,5308	0,0041	0,7924	2704	10	2721	9	2745	17	-2
47	QD-44	55	32	0,70	16,125	0,175	0,5804	0,0051	0,8049	2838	11	2884	10	2950	21	-5
48	QD-45	218	125	0,28	14,704	0,132	0,5740	0,0041	0,8017	2705	9	2796	9	2924	17	-10
49	QD-46	70	35	0,36	13,135	0,142	0,5027	0,0044	0,8069	2738	10	2689	10	2625	19	5
50	QD-47	132	73	0,63	14,064	0,126	0,5519	0,0040	0,8137	2697	9	2754	9	2833	17	-6
51	QD-48	78	44	0,22	14,756	0,149	0,5613	0,0047	0,8236	2748	9	2800	10	2872	19	-6
52	QD-49.1	155	81	0,40	13,652	0,131	0,5238	0,0041	0,8229	2734	9	2726	9	2715	17	1
53	QD-50.1	29	15	0,23	14,215	0,153	0,5271	0,0041	0,7120	2790	12	2764	10	2729	17	3
54	QD-51	56	28	0,34	14,005	0,145	0,4954	0,0039	0,7699	2867	11	2750	10	2594	17	12
55	QD-52	40	21	0,23	14,402	0,178	0,5361	0,0051	0,7608	2783	13	2777	12	2767	21	1
56	QD-53	63	32	0,62	13,189	0,147	0,5139	0,0047	0,8175	2708	11	2693	11	2673	20	2
57	QD-54.1	256	146	0,15	14,724	0,128	0,5712	0,0041	0,8239	2716	8	2798	8	2913	17	-9
58	QD-54.2	137	74	0,14	13,906	0,158	0,5455	0,0053	0,8484	2697	10	2743	11	2807	22	-5
59	QD-55	113	65	0,30	15,766	0,173	0,5704	0,0053	0,8489	2830	9	2863	10	2909	22	-3
60	QD-56	696	389	0,02	14,330	0,132	0,5586	0,0045	0,8752	2707	7	2772	9	2861	19	-7
61	QD-57	153	93	0,20	16,353	0,163	0,6068	0,0052	0,8573	2789	8	2898	10	3057	21	-12
62	QD-58	100	58	0,57	14,902	0,168	0,5862	0,0056	0,8421	2693	10	2809	11	2974	23	-13
63	QD-59	46	27	0,58	15,979	0,184	0,5787	0,0055	0,8281	2828	10	2876	11	2943	22	-5
64	QD-69	69	38	0,43	14,383	0,168	0,5579	0,0052	0,7916	2716	12	2775	11	2858	21	-6
65	OD-52.2	392	196	0.06	12 155	0 142	0.5002	0 0049	0.8410	2618	11	2616	11	2615	21	Ω

	Analyse	U	Pb ²⁰⁶	Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
										Âge (Ma)	5	Âge (Ma)		Âge (Ma)		
6	SGNO-2005-0	5 (200	0-JG-1	390),	Congle	oméra	t polyg	énique	, Formati	ion d'Eko	omia	k, projet	Baie	-James		
	Zircons entiers	5														
1	SGNO-2000-5-1	203	115	0,65	14,594	0,239	0,5675	0,0072	0,7781	2711	17	2789	16	2898	30	-9
2	SGNO-00-2	110	60	0,28	15,272	0,188	0,5427	0,0054	0,8084	2859	12	2832	12	2795	23	3
3	SGNO-00-3	147	76	0,58	13,377	0,189	0,5144	0,0064	0,8753	2730	11	2707	13	2675	27	2
4	SGNO-00-4	143	73	0,72	13,252	0,164	0,5107	0,0053	0,8374	2727	11	2698	12	2659	23	3
5	SGNO-00-5	629	325	0,87	13,484	0,147	0,5173	0,0047	0,8287	2734	10	2714	10	2688	20	2
6	SGNO-00-6	143	83	0,49	16,543	0,221	0,5842	0,0064	0,8180	2869	12	2909	13	2966	26	-4
7	SGNO-00-7	575	302	0,66	13,737	0,173	0,5255	0,0055	0,8329	2739	11	2732	12	2723	23	1
8	SGNO-00-8	758	406	0,74	13,981	0,155	0,5358	0,0050	0,8326	2736	10	2748	11	2766	21	-1
9	SGNO-00-9	199	112	0,51	15,284	0,186	0,5625	0,0057	0,8336	2802	11	2833	12	2877	24	-3
10	SGNO-00-10	227	125	0,83	14,297	0,176	0,5509	0,0056	0,8239	2727	11	2770	12	2829	23	-5
11	SGNO-00-11	390	213	0,52	14,230	0,150	0,5466	0,0049	0,8528	2732	9	2765	10	2811	21	-4
12	SGNO-00-12	97	65	0,22	18,918	0,210	0,6735	0,0063	0,8423	2856	10	3038	11	3319	24	-21
13	SGNO-00-13	649	355	0,49	14,316	0,145	0,5466	0,0046	0,8341	2742	9	2771	10	2811	19	-3
14	SGNO-00-14	75	41	0,40	14,211	0,164	0,5471	0,0053	0,8361	2728	10	2764	11	2813	22	-4
15	SGNO-00-15	328	184	0,48	14,681	0,176	0,5610	0,0058	0,8679	2740	10	2795	11	2871	24	-6
16	SGNO-00-16	118	64	0,34	15,296	0,189	0,5451	0,0057	0,8525	2855	10	2834	12	2805	24	2
17	SGNO-00-17	185	97	0,50	13,636	0,158	0,5223	0,0052	0,8523	2736	10	2725	11	2709	22	1
18	SGNO-00-18	486	252	0,52	13,501	0,183	0,5187	0,0058	0,8315	2732	12	2715	13	2693	25	2
19	SGNO-00-19	311	162	0,43	13,475	0,167	0,5213	0,0055	0,8439	2720	11	2714	12	2705	23	1
20	SGNO-00-20	244	132	0,49	14,157	0,163	0,5396	0,0053	0,8562	2745	10	2760	11	2782	22	-2
21	SGNO-00-21	205	106	0,69	13,247	0,157	0,5153	0,0052	0,8577	2711	10	2697	11	2679	22	1
22	SGNO-00-22	135	72	0,59	13,634	0,169	0,5325	0,0058	0,8714	2705	10	2725	12	2752	24	-2
23	SGNO-00-23	199	109	1,03	13,938	0,153	0,5456	0,0052	0,8679	2701	9	2745	10	2807	22	-5
24	SGNO-00-24	133	74	0,79	14,194	0,162	0,5537	0,0055	0,8757	2706	9	2763	11	2841	23	-6
25	SGNO-00-25	100	52	0,52	13,458	0,153	0,5226	0,0052	0,8725	2714	9	2712	11	2710	22	0
26	SGNO-00-26	77	44	0,45	16,019	0,184	0,5738	0,0058	0,8753	2846	9	2878	11	2923	24	-3
27	SGNO-00-27	137	70	0,56	13,476	0,165	0,5158	0,0055	0,8740	2738	10	2714	12	2681	23	3
28	SGNO-00-28	120	68	0,81	15,717	0,193	0,5613	0,0060	0,8669	2851	10	2860	12	2872	25	-1
29	SGNO-00-29	262	147	0,62	15,808	0,182	0,5614	0,0058	0,8928	2860	8	2865	11	2872	24	-1
30	SGNO-00-30	157	87	0,84	15,770	0,191	0,5575	0,0060	0,8827	2868	9	2863	12	2856	25	0
31	SGNO-00-31	127	63	0,82	12,949	0,159	0,4987	0,0054	0,8889	2728	9	2676	12	2608	23	5

	Analyse	U	Pb ²⁰⁶	Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
	<i>C</i> .									Âge (Ma)		Âge (Ma)		Âge (Ma)		
6	SGNO-2005-0	5 (200	0-JG-1	390),	Congle	oméra	t polyge	énique	, Format	ion d'Eko	omia	k, projet	Baie	-James		
32	SGNO-00-32	222	127	0,61	14,896	0,181	0,5731	0,0060	0,8556	2729	10	2809	12	2920	24	-9
33	SGNO-00-33	149	85	0,50	14,750	0,177	0,5710	0,0059	0,8628	2719	10	2799	11	2912	24	-9
34	SGNO-00-34	134	75	0,86	15,633	0,187	0,5563	0,0057	0,8634	2857	10	2855	11	2851	24	0
35	SGNO-00-35	80	43	0,64	15,223	0,183	0,5400	0,0055	0,8491	2862	10	2829	11	2784	23	3
36	SGNO-00-36	77	41	0,83	14,384	0,189	0,5320	0,0059	0,8424	2794	12	2775	12	2750	25	2
37	SGNO00-5-37	497	272	0,34	15,395	0,171	0,5476	0,0052	0,8507	2858	10	2840	11	2815	22	2
38	S-00-5-38	306	173	0,14	15,406	0,171	0,5647	0,0054	0,8595	2809	9	2841	11	2886	22	-3
39	S-00-5-39	92	48	1,09	13,702	0,181	0,5221	0,0059	0,8594	2745	11	2729	12	2708	25	2
40	S-00-5-40	197	94	1,02	12,454	0,162	0,4781	0,0052	0,8365	2733	12	2639	12	2519	23	9
41	S-00-5-41	143	72	1,02	13,074	0,162	0,5044	0,0055	0,8808	2725	10	2685	12	2633	24	4
42	S-00-5-42	204	111	0,60	14,165	0,164	0,5423	0,0055	0,8690	2737	9	2761	11	2793	23	-3
43	S-00-5-43	102	62	0,75	17,033	0,210	0,6064	0,0061	0,8183	2856	12	2937	12	3056	25	-9
44	S-00-5-46	547	291	0,61	15,124	0,163	0,5313	0,0050	0,8745	2878	9	2823	10	2747	21	6
45	S-00-5-48	214	108	0,47	13,745	0,170	0,5052	0,0054	0,8663	2804	10	2732	12	2636	23	7
46	S-00-5-49	199	102	0,74	13,371	0,172	0,5110	0,0057	0,8682	2740	10	2706	12	2661	24	4
47	S-00-5-50	560	280	0,75	12,904	0,147	0,4993	0,0049	0,8709	2720	9	2673	11	2611	21	5
48	S-00-5-51	713	357	0,88	12,911	0,157	0,5012	0,0053	0,8687	2715	10	2673	11	2619	23	4
49	S-00-5-52	183	95	1,16	13,401	0,174	0,5191	0,0057	0,8483	2718	11	2708	12	2696	24	1
50	S-00-5-53	252	126	1,00	12,895	0,153	0,5002	0,0050	0,8415	2716	11	2672	11	2615	21	5
51	S-00-5-54	412	198	1,00	12,421	0,158	0,4806	0,0051	0,8386	2720	11	2637	12	2530	22	8
52	S-00-5-56	351	187	1,43	13,810	0,175	0,5326	0,0056	0,8374	2725	11	2737	12	2752	24	-1
53	S-00-5-57	169	87	1,14	13,236	0,142	0,5130	0,0046	0,8388	2717	10	2697	10	2669	20	2
54	S-00-5-59	139	72	0,79	13,742	0,157	0,5200	0,0047	0,7983	2757	11	2732	11	2699	20	3
55	S-00-5-61	51	29	0,89	14,946	0,186	0,5734	0,0060	0,8388	2734	11	2812	12	2922	25	-9
56	S-00-5-62	38	20	0,68	13,862	0,172	0,5344	0,0054	0,8151	2726	12	2740	12	2760	23	-2
57	S-00-5-63	120	64	0,90	13,840	0,170	0,5318	0,0057	0,8700	2731	10	2739	12	2749	24	-1
58	S-00-5-64	419	215	1,31	13,365	0,153	0,5134	0,0052	0,8880	2732	9	2706	11	2671	22	3
59	S-00-5-65	329	181	1,04	14,255	0,151	0,5520	0,0050	0,8612	2719	9	2767	10	2833	21	-5
60	S-00-5-66	600	320	1,51	13,840	0,158	0,5325	0,0053	0,8643	2729	9	2739	11	2752	22	-1
61	S-00-5-67	192	114	0,67	16,345	0,175	0,5939	0,0052	0,8133	2823	10	2897	10	3005	21	-8
62	S-00-5-69	250	135	0,91	13,990	0,153	0,5401	0,0049	0,8286	2724	10	2749	10	2784	20	-3
63	S-00-5-71	1059	534	1.37	12.829	0.159	0.5044	0.0052	0.8256	2694	12	2667	12	2632	22	3

	Analyse	U	Pb ²⁰⁶	Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
			2 2							Âge (Ma)		Âge (Ma)		Âge (Ma)	ų	
6	SGNO-2005-0	5 (200	0-JG-1	390),	Congle	oméra	t polyg	énique	, Formati	ion d'Eko	omia	k, projet	Baie	-James		
64	S-00-5-73	197	112	1,51	14,610	0,174	0,5655	0,0056	0,8294	2719	11	2790	11	2889	23	-8
65	S-00-5-74	185	103	1,02	14,420	0,186	0,5541	0,0061	0,8518	2731	11	2778	12	2842	25	-5
66	S-00-5-75	235	122	1,07	13,509	0,163	0,5193	0,0052	0,83093	2731	11	2716	11	2696	22	2
7	2011-MS-010	A, Gn	eiss to	naliti	que ru	bané,	projet (Church	il							
	Zircons entiers	5														
1	MS106-1	947	536	1,23	16,131	0,184	0,5664	0,0055	0,8538	2879	10	2885	11	2893	23	-1
2	MS106-2	575	318	0,97	15,629	0,205	0,5526	0,0063	0,8774	2867	10	2854	12	2836	26	1
3	MS106-3	567	326	0,71	15,734	0,180	0,5751	0,0053	0,8063	2813	11	2861	11	2929	22	-5
4	MS106-4tip	2413	865	0,01	5,487	0,059	0,3585	0,0032	0,8403	1816	11	1899	9	1975	15	-10
5	MS106-5tip	966	545	0,55	15,249	0,144	0,5645	0,0043	0,7971	2793	9	2831	9	2885	18	-4
6	MS106-6	998	576	0,76	16,531	0,175	0,5771	0,0046	0,7575	2888	11	2908	10	2937	19	-2
7	MS106-7	469	254	0,54	14,468	0,175	0,5416	0,0055	0,8425	2774	11	2781	11	2790	23	-1
8	MS106-8tip	171	107	0,26	16,015	0,212	0,6264	0,0064	0,7774	2702	14	2878	13	3136	26	-20
9	MS106-9	440	235	0,06	14,725	0,205	0,5350	0,0056	0,7559	2823	15	2798	13	2762	24	3
10	MS106-10	169	95	0,55	16,031	0,250	0,5655	0,0070	0,7903	2871	16	2879	15	2889	29	-1
11	MS106-11	420	248	0,22	15,977	0,191	0,5909	0,0057	0,8039	2794	12	2875	11	2993	23	-9
12	MS106-12	187	106	0,84	15,795	0,207	0,5677	0,0059	0,7974	2841	13	2865	13	2899	24	-3
13	MS106-13	504	284	0,95	15,803	0,194	0,5638	0,0058	0,8374	2853	11	2865	12	2882	24	-1
14	MS106-14	633	284	0,43	12,104	0,135	0,4485	0,0042	0,8364	2791	10	2613	10	2389	19	17
15	MS106-15	185	98	0,58	16,093	0,199	0,5300	0,0053	0,8130	2982	12	2882	12	2742	22	10
16	MS106-16	257	135	0,75	13,998	0,159	0,5244	0,0048	0,8019	2773	11	2750	11	2718	20	2
17	MS106-17	1231	435	0,01	5,391	0,058	0,3531	0,0034	0,8895	1812	9	1883	9	1949	16	-9
18	MS106-18	354	187	0,90	15,482	0,160	0,5273	0,0041	0,7524	2928	11	2845	10	2730	17	8
19	MS106-19	448	281	1,10	19,570	0,224	0,6282	0,0052	0,7177	3023	13	3070	11	3143	20	-5
20	MS106-20	1573	546	0,01	5,303	0,053	0,3473	0,0029	0,8438	1811	10	1869	9	1922	14	-7
21	MS106-21	181	98	0,46	14,257	0,163	0,5437	0,0050	0,8143	2744	11	2767	11	2799	21	-2
22	MS106-22	521	288	0,52	15,664	0,168	0,5525	0,0048	0,8161	2871	10	2857	10	2835	20	2
23	MS106-23	240	128	0,43	15,574	0,184	0,5339	0,0049	0,7744	2917	12	2851	11	2758	21	7
24	MS106-24	176	90	0,50	13,608	0,197	0,5133	0,0060	0,8123	2762	14	2723	14	2671	26	4
25	MS106-25	240	127	0,54	14,180	0,195	0,5298	0,0059	0,8059	2777	13	2762	13	2741	25	2
26	MS106-26	366	189	0,30	13,781	0,126	0,5162	0,0037	0,7763	2773	9	2735	9	2683	16	4
27	MS106-27	565	299	0,55	14,541	0,154	0,5282	0,0045	0,8103	2823	10	2786	10	2734	19	4

	Analyse	U	Pb ²⁰⁶	Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
							2			Âge (Ma)		Âge (Ma)		Âge (Ma)		
7	2011-MS-010	6A, Gn	eiss to	naliti	que ru	bané,	projet (Church	il		ſ					
28	MS106-28tip	304	181	1,73	16,962	0,177	0,5941	0,0049	0,7877	2883	10	2933	10	3006	20	-5
29	MS106-29tip	1428	467	0,01	5,226	0,048	0,3273	0,0023	0,7574	1892	11	1857	8	1825	11	4
30	MS106-30tip	386	229	1,08	16,717	0,164	0,5928	0,0049	0,8370	2863	9	2919	9	3001	20	-6
	Zircons polis															
31	MS106-1	279	138	0,35	14,236	0,134	0,4949	0,0040	0,8497	2895	8	2766	9	2592	17	13
32	MS106-3	439	225	0,38	13,762	0,116	0,5132	0,0038	0,8756	2780	7	2733	8	2670	16	5
33	MS106-4	181	93	0,55	13,844	0,132	0,5151	0,0041	0,8237	2784	9	2739	9	2678	17	5
34	MS106-6	202	104	0,36	13,439	0,139	0,5120	0,0044	0,8243	2745	10	2711	10	2665	19	4
35	MS106-7	229	127	0,48	15,073	0,130	0,5535	0,0040	0,8267	2806	8	2820	8	2840	16	-1
36	MS106-8	575	245	0,27	12,929	0,143	0,4258	0,0034	0,7211	2982	12	2675	10	2287	15	28
37	MS106-9	223	122	0,27	14,795	0,151	0,5456	0,0045	0,8038	2799	10	2802	10	2807	19	0
38	MS106-10	153	85	0,36	15,056	0,172	0,5541	0,0051	0,8126	2802	11	2819	11	2842	21	-2
39	MS106-11	115	67	0,02	16,467	0,215	0,5848	0,0059	0,7660	2860	14	2904	12	2968	24	-5
40	MS106-12c	305	166	0,34	14,635	0,134	0,5425	0,0041	0,8208	2790	9	2792	9	2794	17	0
41	MS106-13c	351	192	0,42	15,025	0,135	0,5486	0,0044	0,8821	2815	7	2817	9	2819	18	0
42	MS106-16	114	62	0,71	14,679	0,131	0,5408	0,0040	0,8311	2800	8	2795	8	2787	17	1
43	MS106-17	233	128	0,44	19,328	0,180	0,5489	0,0035	0,6823	3218	11	3058	9	2821	14	15
44	MS106-18	191	105	0,73	15,574	0,180	0,5495	0,0055	0,8569	2871	10	2851	11	2823	23	2
	Monazites poli	es														
45	MS106A11-1.1r	277	84	I.	4,656	0,119	0,3043	0,0060	0,7656	1815	30	1759	21	1713	30	6
46	MS106-1.2c	627	196		4,710	0,121	0,3119	0,0065	0,8143	1791	27	1769	21	1750	32	3
47	MS106-2.1r	956	298	***	4,733	0,135	0,3119	0,0072	0,8175	1800	30	1773	24	1750	36	3
48	MS106A11-2.2c	932	305	~=	5,026	0,126	0,3278	0,0067	0,8111	1819	27	1824	21	1828	32	-1
49	MS106-3.1r	1067	339	++	4,791	0,122	0,3180	0,0063	0,7836	1787	29	1783	21	1780	31	0
50	MS106-3.1c	833	267		4,885	0,130	0,3207	0,0067	0,7856	1807	30	1800	22	1793	33	1

	Analyse	U	Pb ²⁰⁶	Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
										Âge (Ma)	5 - y	Âge (Ma)		Âge (Ma)		
8	2011- IL-3141	A, Gra	nite ho	mog	ène à g	rain fi	in, proje	et Chur	chill							
	Zircons entiers	5														
1	IL3141-1tip	1955	668	0,27	5,181	0,068	0,3417	0,0037	0,8322	1799	13	1850	11	1895	18	-6
2	IL3141-2	229	112	0,98	15,590	0,248	0,4899	0,0067	0,8531	3058	13	2852	15	2570	29	19
3	IL3141-3core	843	264	0,20	4,772	0,072	0,3134	0,0036	0,7551	1806	18	1780	13	1758	18	3
4	IL3141-4	1038	337	0,29	5,188	0,113	0,3243	0,0058	0,8143	1896	23	1851	19	1810	28	5
5	IL3141-5	936	287	0,19	4,785	0,064	0,3070	0,0031	0,7500	1849	16	1782	11	1726	15	8
6	IL3141-6rnd	206	103	0,15	12,412	0,219	0,5013	0,0070	0,7893	2649	18	2636	17	2619	30	1
7	IL3141-7	490	242	0,98	12,299	0,178	0,4930	0,0055	0,7672	2662	15	2628	14	2583	24	4
8	IL3141-8	1205	369	0,20	4,737	0,063	0,3066	0,0032	0,7904	1833	15	1774	11	1724	16	7
9	IL3141-10	979	321	0,16	5,098	0,069	0,3277	0,0034	0,7769	1846	15	1836	11	1827	17	1
10	IL3141-12	191	104	0,19	14,071	0,204	0,5435	0,0062	0,7889	2723	15	2754	14	2798	26	-3
11	IL3141-14	1584	533	0,25	5,239	0,070	0,3367	0,0032	0,7177	1846	17	1859	11	1871	16	-2
12	IL3141-15core	98	29	0,68	7,814	0,130	0,2934	0,0034	0,7001	2769	19	2210	15	1659	17	45
13	IL3141-16rnd	125	67	1,15	13,703	0,207	0,5328	0,0059	0,7346	2712	17	2729	14	2753	25	-2
14	IL3141-17rnd	37	19	0,91	13,452	0,275	0,5193	0,0080	0,7569	2724	22	2712	19	2696	34	1
15	IL3141-18	180	83	0,20	10,893	0,161	0,4581	0,0053	0,7836	2582	15	2514	14	2431	24	7
16	IL3141-22	4856	1088	0,14	4,191	0,122	0,2242	0,0060	0,9134	2172	21	1672	24	1304	31	44
17	IL3141-27	499	153	0,22	4,789	0,071	0,3071	0,0032	0,6967	1850	19	1783	12	1726	16	8
	Zircons polis															
18	IL3141-1	190	102	0,45	14,544	0,247	0,5398	0,0072	0,7813	2788	17	2786	16	2783	30	0
19	IL3141-2c	511	254	1,03	12,661	0,174	0,4979	0,0055	0,8110	2693	13	2655	13	2605	24	4
20	IL3141-3	451	228	0,74	15,527	0,217	0,5069	0,0056	0,7959	2996	14	2848	13	2643	24	14
21	IL3141-4c	652	328	0,64	13,127	0,188	0,5039	0,0058	0,8086	2733	14	2689	14	2630	25	5
22	IL3141-5	3052	958	0,32	4,839	0,068	0,3141	0,0036	0,8021	1828	15	1792	12	1761	17	4
23	IL3141-6	1421	453	0,19	4,955	0,083	0,3191	0,0042	0,7896	1842	19	1812	14	1785	21	4
24	IL3141-7	624	310	0,61	12,902	0,218	0,4976	0,0067	0,7985	2725	17	2673	16	2604	29	5
25	IL3141-8	418	210	1,06	12,853	0,182	0,5039	0,0058	0,8087	2698	14	2669	13	2631	25	3
26	IL3141-9	1882	937	0,11	12,600	0,163	0,4979	0,0053	0,8202	2685	12	2650	12	2605	23	4
27	IL3141-10	1040	344	0,02	5,070	0,065	0,3310	0,0035	0,8177	1817	13	1831	11	1843	17	-2
28	IL3141-11	166	87	0,14	14,627	0,190	0,5261	0,0056	0,8127	2839	12	2791	12	2725	24	5
29	IL3141-12	188	75	0,14	8,818	0,164	0,4014	0,0058	0,7699	2449	20	2319	17	2175	26	13
30	IL3141-13	1150	373	0,16	4,918	0,061	0,3244	0,0033	0,8096	1799	13	1805	10	1811	16	-1

	Analyse	U	Pb ²⁰⁶	Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
	~									Âge (Ma)		Âge (Ma)		Âge (Ma)		
8	2011- IL-3141	A, Gra	nite ho	moq	ène à q	rain fi	in, proje	et Chur	chill							
31	IL3141-14	130	69	1,02	13,653	0,204	0,5260	0,0067	0,8487	2727	13	2726	14	2725	28	0
32	IL3141-15	466	232	0,49	12,555	0,148	0,4973	0,0047	0,8111	2681	11	2647	11	2602	20	4
33	IL3141-16	471	148	0,18	4,877	0,063	0,3146	0,0031	0,7751	1839	15	1798	11	1763	15	5
34	IL3141-17	111	58	0,60	13,256	0,215	0,5245	0,0068	0,8057	2683	16	2698	15	2718	29	-2
35	IL3141-20	368	179	0,35	11,761	0,186	0,4856	0,0061	0,7872	2612	16	2586	15	2552	26	3
36	IL3141-21	585	296	0,23	12,631	0,196	0,5064	0,0063	0,8066	2661	15	2652	15	2641	27	1
37	IL3141-22	516	162	0,22	4,775	0,061	0,3145	0,0031	0,7605	1802	15	1781	11	1763	15	2
38	IL3141-23	53	24	0,70	10,717	0,181	0,4559	0,0056	0,7333	2563	19	2499	16	2421	25	7
39	IL3141-24	1488	456	0,31	4,658	0,052	0,3064	0,0027	0,7895	1803	13	1760	9	1723	13	5
40	IL3141-25	487	150	0,15	5,266	0,079	0,3075	0,0032	0,6913	2017	19	1863	13	1728	16	16
41	IL3141-19.1c	324	101	0,15	4,789	0,070	0,3123	0,0036	0,7817	1819	17	1783	12	1752	18	4
42	IL3141-19.20	624	194	0,15	4,786	0,080	0,3116	0,0042	0,8122	1822	18	1782	14	1748	21	5
	Monazites poli	es														
43	IL3141A11-1	138	41	-	4,654	0,117	0,2956	0,0059	0,7913	1867	28	1759	21	1669	29	12
44	IL3141-2.1r	82	25	-	4,799	0,120	0,3023	0,0059	0,7799	1882	28	1785	21	1703	29	11
45	IL3141-2.2c	137	43	1	5,052	0,162	0,3123	0,0085	0,8470	1916	30	1828	27	1752	41	10
46	IL3141-3	275	81	-	4,539	0,123	0,2948	0,0062	0,7716	1827	31	1738	22	1665	31	10
47	IL3141-5.1r	191	59	Ŧ	4,729	0,120	0,3064	0,0058	0,7439	1831	31	1772	21	1723	29	7
48	IL3141-5.1c	105	32	1	4,857	0,126	0,3085	0,0061	0,7601	1867	30	1795	22	1733	30	8
49	IL3141-6.1	67	21		4,742	0,123	0,3110	0,0062	0,7695	1809	30	1775	22	1746	31	4
50	IL3141-6.2c	115	36	1	4,896	0,121	0,3159	0,0062	0,7883	1839	27	1802	21	1769	30	4
51	IL3141-6.3	156	49	1	4,912	0,120	0,3142	0,0058	0,7569	1854	29	1804	21	1761	29	6
52	IL3141-7	193	59		4,841	0,125	0,3037	0,0063	0,8073	1889	27	1792	22	1710	31	11
53	IL3141-8.1c	78	24	Ŧ	4,816	0,123	0,3074	0,0060	0,7619	1858	30	1788	21	1728	29	8
54	IL3141-8.2r	93	29		4,761	0,134	0,3177	0,0069	0,7687	1777	33	1778	23	1779	34	0
55	IL3141-9.1t	68	22	-	5,053	0,147	0,3309	0,0075	0,7837	1812	33	1828	25	1843	36	-2
56	IL3141-9.1c	121	39		5,053	0,133	0,3239	0,0068	0,7958	1850	29	1828	22	1809	33	3
57	IL3141-11	58	18	-	4,844	0,130	0,3102	0,0059	0,7126	1853	34	1793	23	1741	29	7
58	IL3141-10.1r	55	17		4,718	0,124	0,3098	0,0061	0,7513	1807	31	1771	22	1740	30	4
59	IL3141-10.2c	69	22	-	4,997	0,139	0,3152	0,0068	0,7785	1880	31	1819	23	1766	33	7
60	IL3141-12.1r	83	26		4,885	0,130	0,3118	0,0066	0,7964	1858	29	1800	22	1750	32	7
61	IL3141-12.2c	149	46	144	4.773	0.119	0.3108	0.0063	0.8172	1822	26	1780	21	1745	31	5

|--|

	Analyse	U	Pb ²⁰⁶	<u>Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
										Âge (Ma)	5	Âge (Ma)		Âge (Ma)	ų	
9	2011-HH-4084	IA, Gn	eiss to	naliti	que rul	bané,	projet C	hurch	ill							
	Zircons polis															2
1	HH4084-1	160	82	0,48	13,186	0,158	0,5115	0,0052	0,8520	2716	10	2693	11	2663	22	2
2	HH-2	177	90	0,61	13,206	0,160	0,5095	0,0052	0,8341	2725	11	2694	11	2654	22	3
3	HH-3	198	99	0,47	12,823	0,157	0,4985	0,0053	0,8696	2712	10	2667	11	2607	23	5
4	HH-4	244	118	0,41	12,590	0,167	0,4840	0,0054	0,8439	2730	12	2649	12	2545	24	8
5	HH-5	266	131	0,45	12,749	0,151	0,4943	0,0049	0,8350	2716	11	2661	11	2589	21	6
6	HH-6	231	120	0,58	13,582	0,169	0,5185	0,0055	0,8514	2742	11	2721	12	2693	23	2
7	HH-7	238	120	0,76	13,161	0,160	0,5026	0,0051	0,8367	2742	11	2691	11	2625	22	5
8	HH-8	138	69	0,45	12,991	0,162	0,5014	0,0053	0,8533	2724	11	2679	12	2620	23	5
9	HH-9	127	64	0,58	13,053	0,164	0,5018	0,0054	0,8610	2730	11	2683	12	2622	23	5
10	HH-10	107	53	0,47	12,638	0,161	0,4977	0,0055	0,8642	2691	11	2653	12	2604	24	4
11	HH-11	114	56	0,57	12,541	0,153	0,4888	0,0052	0,8690	2708	10	2646	11	2565	22	6
12	HH-12	96	49	0,48	13,432	0,178	0,5109	0,0059	0,8663	2748	11	2710	12	2661	25	4
13	HH-13	85	45	0,74	13,829	0,190	0,5217	0,0058	0,8106	2762	13	2738	13	2706	25	2
14	HH-14.1	112	58	0,59	13,277	0,174	0,5147	0,0060	0,8982	2717	9	2700	12	2676	26	2
15	HH-14.2	202	62	0,03	4,818	0,078	0,3076	0,0041	0,8300	1858	16	1788	14	1729	20	8
16	HH-15.1	174	89	0,79	13,185	0,166	0,5113	0,0057	0,8839	2716	10	2693	12	2662	24	2
17	HH-15.2	453	148	0,03	5,153	0,060	0,3274	0,0034	0,8810	1867	10	1845	10	1826	16	3
18	HH-16	173	88	0,68	13,166	0,154	0,5084	0,0052	0,8672	2723	10	2692	11	2650	22	3
	Monazites poli	es														8
1	HH4084A11-1.1r	103	32	0,00	4,734	0,099	0,3112	0,0049	0,7472	1805	25	1773	18	1746	24	4
2	HH4084-1.2c	124	38	0,00	4,594	0,074	0,3076	0,0039	0,7947	1772	18	1748	13	1729	19	3
3	HH4084-4	184	55	0,00	4,547	0,078	0,2987	0,0042	0,8182	1806	18	1740	14	1685	21	8
4	HH4084-2.1r	84	27	0,00	4,774	0,103	0,3164	0,0055	0,8101	1790	23	1780	18	1772	27	1
5	HH4084-2.2c	96	32	0,00	5,110	0,125	0,3364	0,0075	0,9097	1802	18	1838	21	1869	36	-4
6	HH4084-2.3r	75	27	0,00	5,508	0,178	0,3574	0,0109	0,9437	1829	19	1902	28	1970	52	-9
7	HH4084-2.4c	63	25	0,00	5,852	0,245	0,3910	0,0158	0,9633	1775	20	1954	37	2128	74	-23
8	HH4084-3	78	23	0,00	4,435	0,086	0,2918	0,0044	0,7723	1803	22	1719	16	1650	22	10
9	HH4084-5.1r	203	61	0,00	4,535	0,085	0,2997	0,0045	0,8065	1795	20	1737	16	1690	22	7
10	HH4084-5.1c	132	40	0,00	4,580	0,088	0,3017	0,0046	0,8022	1801	21	1746	16	1700	23	6
11	HH4084-6.1r	117	36	0,00	4,621	0,087	0,3095	0,0046	0,7856	1771	21	1753	16	1738	22	2
12	HH4084-6.2c	152	49	0,00	4,829	0,085	0,3213	0,0043	0,7698	1783	20	1790	15	1796	21	-1

	Analyse	U	Pb ²⁰⁶	Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
										Âge (Ma)		Âge (Ma)		Âge (Ma)		
9	2011-HH-4084	4A, Gne	eiss to	naliti	que rul	bané,	projet C	hurch	ill		í					
	Monazites poli	es														
13	HH4084-7.1r	158	48	0,00	4,607	0,080	0,3038	0,0041	0,7789	1799	20	1751	14	1710	20	6
14	HH4084-7.2c	157	48	0,00	4,636	0,087	0,3082	0,0045	0,7776	1784	21	1756	16	1732	22	3
15	HH4084-8.1r	171	53	0,00	4,627	0,078	0,3099	0,0041	0,7939	1771	19	1754	14	1740	20	2
16	HH4084-8.2c	204	64	0,00	4,696	0,078	0,3120	0,0042	0,8039	1785	18	1766	14	1751	20	2
17	HH4084-12	146	44	0,00	4,539	0,086	0,3019	0,0046	0,8159	1784	20	1738	16	1701	23	5
18	HH4084-9.1r	126	38	0,00	4,655	0,080	0,3049	0,0042	0,8037	1811	19	1759	14	1716	21	6
19	HH4084-9.2c	139	43	0,00	4,676	0,082	0,3075	0,0044	0,8201	1804	18	1763	15	1729	22	5
20	HH4084-10	105	33	0,00	4,697	0,083	0,3106	0,0044	0,7946	1794	20	1767	15	1744	22	3
21	HH4084-11	149	47	0,00	4,712	0,085	0,3139	0,0045	0,7984	1781	20	1769	15	1760	22	1
							3									
10	2011-CL-5255	5A Gne	iss rub	ané,	tonalit	ique à	dioritio	que, pr	ojet Chu	rchill						
1	CL5255-1.1c	313	164	1,09	13,692	0,176	0,5236	0,0055	0,8142	2739	12	2729	12	2714	23	1
2	CL-1.2r	189	100	1,03	14,178	0,172	0,5275	0,0049	0,7633	2784	13	2762	11	2731	21	2
3	CL-2.1c	329	166	1,00	12,886	0,158	0,5057	0,0051	0,8180	2697	12	2671	12	2638	22	3
4	CL-2.2r	252	119	0,61	11,667	0,159	0,4721	0,0053	0,8269	2646	13	2578	13	2493	23	7
5	CL-3	126	64	1,01	12,883	0,188	0,5060	0,0058	0,7881	2695	15	2671	14	2639	25	3
6	CL-4.1c	83	43	1,02	13,386	0,203	0,5111	0,0061	0,7908	2742	15	2707	14	2661	26	4
7	CL4.2r	715	235	0,01	4,985	0,061	0,3293	0,0034	0,8294	1796	12	1817	10	1835	16	-2
8	CL-5.1c	1105	655	0,59	20,056	0,225	0,5933	0,0055	0,8341	3154	10	3094	11	3003	22	6
9	CL-5.1r	7416	1259	0,01	2,548	0,029	0,1698	0,0017	0,8864	1780	10	1286	8	1011	10	47
10	CL-6	151	79	0,84	13,844	0,182	0,5254	0,0058	0,8356	2752	12	2739	12	2722	24	1
11	CL-7.1c	77	40	0,78	13,472	0,225	0,5100	0,0065	0,7617	2756	18	2713	16	2657	28	4
12	CL-7.1r	234	124	0,49	13,675	0,160	0,5268	0,0051	0,8218	2727	11	2727	11	2728	21	0
13	CL-8	186	95	0,96	13,240	0,174	0,5081	0,0057	0,8524	2733	11	2697	12	2648	24	4

	Analyse	U	Pb ²⁰⁶	Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
	,	(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
			÷		o					Âge (Ma)	<u>к</u>	Âge (Ma)		Âge (Ma)		
11	2011-JG-1187	'A Tuf	à lapilli	is, pr	ojet Ba	ie-Jar	nes									
1	JG1187-1	385	195	1,47	11,825	0,252	0,5072	0,0097	0,8937	2549	16	2591	20	2645	41	-5
2	JG1187-2	1022	365	1,14	7,709	0,228	0,3574	0,0092	0,8722	2418	24	2198	26	1970	44	21
3	JG1187-3	995	377	1,59	7,922	0,138	0,3793	0,0058	0,8862	2363	14	2222	16	2073	27	14
4	JG1187-4	1676	497	1,79	5,965	0,106	0,2966	0,0047	0,8984	2298	13	1971	15	1674	24	31
5	JG1187-5	773	354	0,04	10,532	0,159	0,4582	0,0061	0,8722	2525	12	2483	14	2432	27	4
6	JG1187-6	464	200	0,46	9,986	0,212	0,4310	0,0083	0,9059	2538	15	2434	20	2310	37	11
7	JG1187-7	2046	612	3,08	6,036	0,095	0,2993	0,0041	0,8560	2303	14	1981	14	1688	20	30
8	JG1187-8	1051	340	0,36	6,395	0,129	0,3239	0,0058	0,8940	2266	15	2032	18	1809	28	23
9	JG1187-9	1372	596	2,63	11,110	0,370	0,4341	0,0130	0,9021	2704	24	2532	31	2324	58	17
10	JG1187-10	1679	775	2,68	10,365	0,196	0,4615	0,0079	0,9064	2486	13	2468	17	2446	35	2
11	JG1187-11	1540	531	1,90	6,920	0,124	0,3446	0,0054	0,8820	2295	14	2101	16	1909	26	19
12	JG1187-12	1688	766	2,57	10,281	0,190	0,4536	0,0065	0,7747	2501	20	2460	17	2411	29	4
13	JG1187-13	1704	670	2,14	8,060	0,201	0,3934	0,0093	0,9492	2330	13	2238	22	2139	43	10
14	JG1187-14	44	23	0,66	14,015	0,395	0,5272	0,0108	0,7266	2766	31	2751	27	2730	45	2
15	JG1187-16	1367	410	2,50	6,271	0,179	0,3000	0,0081	0,9478	2364	16	2014	25	1691	40	32
16	JG1187-17	3431	1201	1,70	7,510	0,173	0,3499	0,0075	0,9273	2409	15	2174	21	1934	36	23
17	JG1187-18	190	98	0,80	13,437	0,247	0,5152	0,0079	0,8394	2735	16	2711	17	2679	34	3
18	JG1187-19	919	360	1,28	8,720	0,155	0,3911	0,0056	0,8048	2474	18	2309	16	2128	26	16
19	JG1187-20	759	299	1,24	8,827	0,135	0,3945	0,0052	0,8587	2480	13	2320	14	2144	24	16
20	JG1187-21	2023	542	2,03	5,634	0,110	0,2678	0,0047	0,9013	2375	14	1921	17	1530	24	40
21	JG1187-22	2651	867	3,08	6,309	0,153	0,3272	0,0074	0,9377	2225	15	2020	21	1825	36	21
22	JG1187-23	2109	744	2,63	6,748	0,141	0,3526	0,0069	0,9277	2212	14	2079	18	1947	33	14
23	JG1187-24	1159	381	2,33	6,088	0,100	0,3285	0,0047	0,8685	2156	14	1988	14	1831	23	17

	Analyse	U	Pb ²⁰⁶	<u>Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
										Âge (Ma)	s	Âge (Ma)		Âge (Ma)		
12	2011-JG-1592	M1 G	neiss, (Comp	olexe d	e Lang	gelier, p	orojet E	Baie-Jam	es						
	Zircons entiers	5	4													
1	11JG1592-1.1	922	675	0,07	29,125	0,383	0,7320	0,0078	0,8131	3410	12	3458	13	3541	29	-5
2	JG1592-2.1	733	500	0,04	27,989	0,408	0,6825	0,0085	0,8584	3457	12	3419	14	3354	33	4
3	JG1592-3.1	1223	883	0,04	28,001	0,376	0,7217	0,0083	0,8581	3371	11	3419	13	3502	31	-5
4	JG1592-4.1	817	617	0,03	30,677	0,395	0,7556	0,0084	0,8628	3441	10	3509	13	3628	31	-7
5	JG1592-5.1	985	682	0,05	25,190	0,331	0,6928	0,0077	0,8454	3269	11	3316	13	3393	29	-5
6	JG1592-6.1	3899	1751	0,15	11,227	0,150	0,4490	0,0050	0,8349	2665	12	2542	12	2391	22	12
7	JG1592-7.1	1378	972	0,06	24,196	0,316	0,7054	0,0069	0,7492	3177	14	3276	13	3441	26	-11
8	JG1592-8.1	6445	2669	0,27	8,841	0,107	0,4142	0,0043	0,8649	2400	10	2322	11	2234	20	8
9	JG1592-9.1	4487	1593	0,14	7,079	0,085	0,3551	0,0035	0,8151	2283	12	2121	11	1959	16	16
10	JG1592-10.1	4084	2177	0,19	13,720	0,173	0,5331	0,0057	0,8519	2713	11	2731	12	2754	24	-2
11	JG1592-12.1	1631	1007	0,09	20,622	0,238	0,6177	0,0060	0,8502	3134	10	3121	11	3101	24	1
12	JG1592-13.1	5502	2608	0,08	11,888	0,168	0,4739	0,0056	0,8356	2671	13	2596	13	2501	24	8
13	JG1592-14.1	2470	1609	0,06	20,065	0,296	0,6515	0,0079	0,8212	3005	14	3095	14	3234	31	-10
14	JG1592-16.1	898	553	0,04	23,757	0,311	0,6159	0,0069	0,8610	3361	10	3258	13	3094	28	10
15	JG1592-18.1	5446	1602	0,06	5,696	0,081	0,2941	0,0033	0,7892	2233	15	1931	12	1662	16	29
	Zircons polis															1
16	JG1592-1.1	1782	1303	0,06	26,606	0,397	0,7309	0,0094	0,8625	3271	12	3369	15	3537	35	-11
17	JG1592-1.2	871	580	0,06	27,111	0,632	0,6658	0,0132	0,8493	3446	19	3387	23	3290	51	6
18	JG1592-2	963	823	0,06	35,418	0,705	0,8545	0,0144	0,8472	3473	16	3650	20	3982	50	-20
19	JG1592-3	5833	2540	0,16	9,397	0,173	0,4355	0,0070	0,8669	2418	16	2378	17	2331	31	4
20	JG1592-4.1	782	536	0,05	23,263	0,399	0,6850	0,0102	0,8659	3161	14	3238	17	3364	39	-8
21	JG1592-4.2	4458	1724	0,22	8,300	0,126	0,3867	0,0050	0,8561	2409	13	2264	14	2108	23	15
22	JG1592-8	1763	1136	0,05	22,863	0,390	0,6441	0,0098	0,8878	3231	12	3221	17	3205	38	1
23	JG1592-9.1	1203	821	0,07	25,376	0,523	0,6826	0,0126	0,8952	3304	14	3323	20	3354	48	-2
24	JG1592-9.2	618	443	0,04	29,131	0,580	0,7172	0,0112	0,7865	3442	19	3458	19	3486	42	-2
25	JG1592-10	758	566	0,05	30,435	0,494	0,7460	0,0108	0,8962	3449	11	3501	16	3593	40	-5
26	JG1592-11	1036	662	0,06	23,489	0,601	0,6392	0,0140	0,8536	3286	21	3247	25	3186	55	4
27	JG1592-16	2867	1837	0,06	20,978	0,368	0,6408	0,0098	0,8680	3103	14	3138	17	3192	38	-4
28	JG1592-27.1	1871	1292	0,05	22,004	0,398	0,6903	0,0105	0,8429	3060	16	3184	18	3384	40	-14
29	JG1592-27.2	1799	1276	0,07	25,947	0,413	0,7095	0,0099	0,8732	3278	12	3345	16	3457	37	-7
30	JG1592-30	1316	717	0,22	17,562	0,292	0,5448	0,0077	0,8538	3078	14	2966	16	2803	32	11

	Analyse	U	Pb ²⁰⁶	Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
										Âge (Ma)		Âge (Ma)		Âge (Ma)		
12	2011-JG-1592	2 M1 G	neiss, (Com	olexe d	e Lan	gelier, p	orojet E	Baie-Jam	es			. 3			
	Zircons polis															
31	JG1592-31	3362	1112	0,17	6,347	0,087	0,3307	0,0038	0,8333	2217	13	2025	12	1842	18	19
32	JG1592-33.1	1242	966	0,09	27,569	0,376	0,7780	0,0089	0,8384	3229	12	3404	13	3710	32	-20
33	JG1592-33.2	1834	1473	0,05	30,588	0,507	0,8029	0,0117	0,8824	3342	12	3506	16	3800	42	-18
<u>13</u>	2011-LP-2151	A Tona	alite bla	anch	âtre, pr	ojet C	hurchil									
	Zircons entiers	5														
1	LP2151-3	120	62	0,56	12,857	0,174	0,5154	0,0052	0,7454	2661	15	2669	13	2680	22	-1
2	LP2151-4c	949	459	0,05	11,209	0,160	0,4837	0,0055	0,7999	2539	14	2541	13	2543	24	0
3	LP2151-5c	257	136	0,07	13,316	0,154	0,5311	0,0043	0,7019	2670	14	2702	11	2746	18	-4
4	LP2151-6c	751	388	0,12	12,856	0,170	0,5171	0,0050	0,7311	2656	15	2669	12	2687	21	-1
5	LP2151-7c	372	190	0,27	12,407	0,174	0,5100	0,0052	0,7328	2620	16	2636	13	2656	22	-2
6	LP2151-8c	900	481	0,37	13,123	0,159	0,5343	0,0048	0,7472	2636	13	2689	11	2760	20	-6
7	LP2151-9.1c	1499	494	0,03	4,830	0,139	0,3297	0,0075	0,7855	1736	32	1790	24	1837	36	-7
8	LP2151-9.2r	175	102	1,03	14,531	0,194	0,5793	0,0053	0,6862	2670	16	2785	13	2946	22	-13
9	LP2151-10c	1416	611	0,04	8,532	0,183	0,4314	0,0066	0,7065	2269	26	2289	19	2312	29	-2
10	LP2151-12	189	102	0,15	13,477	0,202	0,5425	0,0054	0,6597	2654	19	2714	14	2794	22	-6
11	LP2151-14	596	242	0,06	7,546	0,132	0,4052	0,0048	0,6834	2165	22	2178	16	2193	22	-2
12	LP2151-15	155	83	0,40	13,216	0,183	0,5369	0,0050	0,6661	2639	17	2695	13	2771	21	-6
13	LP2151-16	602	306	0,25	12,659	0,175	0,5082	0,0045	0,6430	2659	18	2655	13	2649	19	0
14	LP2151-17	304	100	0,10	5,229	0,118	0,3294	0,0048	0,6472	1882	31	1857	19	1835	23	3
15	LP2151-22	172	95	0,34	13,223	0,199	0,5495	0,0058	0,6957	2602	18	2696	14	2823	24	-11
16	LP2151-23c	514	265	0,33	12,704	0,177	0,5155	0,0049	0,6797	2641	17	2658	13	2680	21	-2
17	LP2151-24	193	62	0,59	5,012	0,076	0,3222	0,0030	0,6097	1845	22	1821	13	1800	15	3
18	LP2151-32	223	115	0,66	12,214	0,156	0,5150	0,0042	0,6359	2577	16	2621	12	2678	18	-5
19	LP2151-34	241	80	0,42	5,297	0,079	0,3300	0,0031	0,6292	1902	21	1868	13	1838	15	4
20	LP2151-35	537	270	0,14	12,186	0,175	0,5023	0,0050	0,6987	2615	17	2619	13	2624	22	0
21	LP2151-36	311	107	0,29	5,186	0,068	0,3434	0,0029	0,6425	1791	18	1850	11	1903	14	-7

_						_					_		-			
	Analyse	U	Pb ²⁰⁶	<u>Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
										Âge (Ma)		Âge (Ma)		Âge (Ma)		
13	2011-LP-2151	A Ton	alite bla	anch	âtre, pr	oiet C	hurchil	1					. 3			
<u> </u>	Zircons polis							-	1							
22	LP2151-1.1c	18	9	0.45	13,174	0.266	0.5251	0.0089	0.8355	2671	18	2692	19	2721	37	-2
23	LP2151-1.20	155	75	0,07	12.003	0,101	0,4827	0.0035	0,8507	2656	7	2605	8	2539	15	5
24	LP2151-3c	28	15	0,51	13,973	0,182	0,5516	0,0055	0,7607	2687	14	2748	12	2832	23	-7
25	LP2151-4.1o	102	59	0,10	14,398	0,120	0,5764	0,0039	0,8166	2664	8	2776	8	2934	16	-13
26	LP2151-4.2c	50	23	0,43	11,087	0,163	0,4537	0,0045	0,6840	2627	18	2530	14	2412	20	10
27	LP2151-7.1c	24	12	0,71	12,715	0,169	0,5074	0,0057	0,8497	2669	12	2659	12	2646	24	1
28	LP2151-7.20	135	65	0,20	12,153	0,116	0,4853	0,0040	0,8659	2668	8	2616	9	2551	17	5
29	LP2151-8.1c	75	32	0,54	9,989	0,139	0,4282	0,0048	0,8004	2549	14	2434	13	2298	21	12
30	LP2151-8.20	140	72	0,05	12,832	0,124	0,5165	0,0043	0,8593	2655	8	2667	9	2684	18	-1
31	LP2151-9c	53	25	0,26	11,174	0,169	0,4755	0,0058	0,8098	2562	15	2538	14	2508	25	3
32	LP2151-10c	88	44	0,72	12,433	0,163	0,4964	0,0049	0,7551	2668	14	2638	12	2598	21	3
33	LP2151-130	294	116	0,34	8,273	0,135	0,3952	0,0045	0,6989	2366	20	2261	15	2147	21	11
34	LP2151-14	132	61	0,47	10,869	0,209	0,4676	0,0073	0,8139	2544	19	2512	18	2473	32	3
35	LP2151-15	292	94	0,40	4,949	0,070	0,3228	0,0034	0,7452	1819	17	1811	12	1804	17	1
36	LP2151-17	482	152	0,32	4,821	0,056	0,3152	0,0027	0,7351	1815	14	1789	10	1766	13	3
37	LP2151-18c	187	91	0,03	11,695	0,151	0,4883	0,0045	0,7108	2594	15	2580	12	2563	19	1
38	LP2151-19c	102	49	0,42	11,893	0,202	0,4829	0,0057	0,6889	2640	20	2596	16	2540	25	5
39	LP2151-190	515	256	0,06	12,045	0,123	0,4976	0,0041	0,7982	2611	10	2608	10	2603	18	0
40	LP2151-20	618	199	0,27	4,936	0,057	0,3221	0,0028	0,7415	1818	14	1808	10	1800	13	1
41	LP2151-23c	99	50	0,47	12,367	0,189	0,5048	0,0054	0,6994	2631	18	2633	14	2634	23	0
42	LP2151-230	271	88	0,33	5,014	0,072	0,3265	0,0034	0,7176	1822	18	1822	12	1821	16	0
43	LP2151-25	465	179	0,24	5,900	0,065	0,3851	0,0032	0,7526	1818	13	1961	10	2100	15	-18
44	LP2151-24c	80	43	0,40	13,175	0,254	0,5395	0,0083	0,7988	2626	19	2692	18	2781	35	-7
45	LP2151-240	421	134	0,28	5,232	0,076	0,3192	0,0035	0,7405	1939	18	1858	12	1786	17	9
	DD91-1 Étalon s	econdai	re - 268	2 ±1 N	la (âge T	IMS) pa	ar rappor	t à l'étal	on princip	al DD85-1	7 - 300)2 ±1 Ma (â	ae Tl	MS)		
1	DD91-1-2.6	189	102	0.65	13.582	0.193	0.5406	0.0049	0.6313	2673	18	2721	13	2786	20	-5
2	DD91-1-2.3	268	145	1,07	13,504	0,179	0,5400	0,0049	0,6853	2665	16	2716	13	2784	21	-5
3	DD91-1-2.4	170	90	1,00	13,204	0,194	0,5250	0,0050	0,6518	2675	18	2694	14	2720	21	-2
4	DD91-1-2.5	168	89	0,52	13,367	0,199	0,5302	0,0051	0,6440	2679	19	2706	14	2742	21	-3
5	DD91-1-2.6	189	102	0,65	13,582	0,193	0,5406	0,0049	0,6313	2673	18	2721	13	2786	20	-5
6	DD91-1-27	133	66	0.76	12 825	0 188	0.5005	0.0047	0.6418	2706	19	2667	14	2616	20	4

	Analyse	U	Pb ²⁰⁶	<u>Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Corrél.	²⁰⁷ Pb	1	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Disc.
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Erreurs	²⁰⁶ Pb	Sig	²³⁵ U	Sig	²³⁸ U	Sig	(%)
	56									Âge (Ma)	l	Âge (Ma)		Âge (Ma)		
14	2011-BC-0032	2, Rhyo	lite ma	assiv	e et fra	gmen	taire (1	grain),	projet N	latagami	í					
1	BC-11-32-1.1	223	122	1,75	14,408	0,311	0,5475	0,0094	0,7961	2750	21	2777	20	2815	39	-3
2	BC-11-32-1.2	172	100	1,72	15,253	0,317	0,5820	0,0099	0,8174	2743	20	2831	20	2957	40	-10
3	BC-11-32-1.3	253	134	2,77	13,560	0,301	0,5295	0,0097	0,8211	2705	21	2719	21	2739	41	-2
4	BC-11-32-1.4	276	146	3,01	13,469	0,290	0,5282	0,0092	0,8041	2698	21	2713	20	2734	39	-2

c - noyau, r - bord du grain, o - surcroissance, t - pointe du grain, clr - transparent et sans couleur, d - foncé, z - avec zones,

uz - sans zones, m - milieu du grain

Corrél. Erreurs - Coefficient de la corrélation des erreurs pour les coordonnées de la courbe concordia

Disc. - Discordance

Rapport entre âges et coordonnées de concordia: Y = 206Pb/238U = EXP(L238*(206-238Age)) - 1;

X = 207Pb/235U = EXP(L235*(207-235Age)) - 1

207Pb/206Pb = 137.88*X/Y; Constantes de désintegration de uranium (L238 & L235) de Jaffey et al. (1971).