GM 73111

2022 exploration work program, West-Raglan property

Documents complémentaires

Additional Files

License

2022 Exploration Work Program West-Raglan Property

Nunavik, Quebec Canada (NTS 35G05, 35G06 & 35F08)

Prepared by:

Arnaud Fontaine, géo Membre OGQ #1698 Magneto Investments LP

Table of Contents

S	IGNATU	RE PAGE – ARNAUD FONTAINE	1
C	ERTIFIC	CATE OF QUALFICATION – ARNAUD FONTAINE	2
1	INTRO	ODUCTION	3
2	PROP	ERTY DESCRIPTION AND LOCATION	5
	2.1 Lo	ocation	5
	2.2 C	laim Ownership	6
	2.3 C	laim Status	7
	2.4 A	ccessibility, Climate, Infrastructures and Physiography	7
3	GEOL	OGICAL SETTING1	1
	3.1 Pı	roperty Geology13	3
4	PREV	TOUS WORK	5
5	WEST	T-RAGLAN EXPLORATION PROGRAM 2022	9
	5.1 Ti	ill and Geological Mapping Programs	0
	5.1.1	22WRT-01, 22WRT-02 and Terrace	6
	5.1.2	Frontier and Red	8
	5.1.3	22WRT-04 and 22WRT-05	1
	5.1.4	22WRT-03, Big Potato North and 22WRT-09	3
	5.1.5	22WRT-06, 22WRT-07, 22WRT-08 and CDC	7
	5.1.6	22WRT-12 and 22WRT-13	9
	5.1.7	22WRT-10 and 22WRT-11	1
	5.1.8	Beverly and Boomerang	3
	5.1.9	22WRT-14 and 22WRT-15	6

Orford Mining

5.1.10	22WRT-16, 22WRT-17, 22WRT-18 and 22WRT-19	48
5.1.11	Horseshoe	51
5.2 G	eophysics Survey	53
5.2.1	MaxMin Survey	53
5.2.2	VLF Survey	54
5.2.3	BHEM Survey	54
6 2022 I	DRILLING PROGRAM	56
6.1 D	rilling methodology	58
6.2 L	ogging procedure	58
6.3 20	022 Drilling results	59
6.3.1	Boomerang	60
6.3.2	Beverly	62
6.3.3	Frontier	65
7 DATA	A COLLECTION, SAMPLING, SAMPLE PREPARATION, ANALYSIS A	AND
SECURIT`	Y	68
7.1 D	eata collection	68
7.2 Sa	ampling and chain of custody	68
7.3 A	nalytical methods	69
7.4 Q	Quality assurance and quality control	70
8 CONC	CLUSIONS AND RECOMMENDATIONS	73

List of Figures

Figure 2.1: General Location Map of the West-Raglan Property	5
Figure 2.2: Mineral Titles Map of the West-Raglan Property	6
Figure 2.3: Typical Landscape of the West-Raglan Project	8
Figure 2.4: Photo of Camp Chukotat	9
Figure 3.1: Regional Geology of the West-Raglan Property	12
Figure 3.2: Ni-Cu-PGM Deposits and Significant Occurrences in the Cape Smith Belt	13
Figure 3.3: Typical Stratigraphic Section of the West-Raglan Property	14
Figure 5.1: 2022 Mapping Stations Localisation of the West-Raglan Property	23
Figure 5.2: 2022 Grab Samples Localisation of the West-Raglan Property	24
Figure 5.3: 2022 Till Samples Localisation of the West-Raglan Property	25
Figure 5.4: Mag and EM Anomalies at 22WRT-01, 22WRT-02 and Terrace	27
Figure 5.5: Historical Samples and Satellite Imagery at 22WRT-01, 22WRT-02 and Terrace	27
Figure 5.6: 2022 Field Work at 22WRT-01, 22WRT-02 and Terrace	28
Figure 5.7: Mag and EM Anomalies at Frontier and Red	29
Figure 5.8: Historical Samples and Satellite Imagery at Frontier and Red	30
Figure 5.9: 2022 Field Work at Frontier and Red	30
Figure 5.10: Mag and EM Anomalies at 22WRT-04 and 22WRT-05	32
Figure 5.11: Historical Samples and Satellite Imagery at 22WRT-04 and 22WRT-05	32
Figure 5.12: 2022 Field Work at 22WRT-04 and 22WRT-05	33
Figure 5.13: Mag and EM Anomalies at 22WRT-03, Big Potato North and 22WRT-09	35
Figure 5.14: Historical Samples and Satellite Imagery at 22WRT-03, Big Potato North	h and
22WRT-09	36
Figure 5.15: 2022 Field Work at 22WRT-03, Big Potato North and 22WRT-09	36
Figure 5.16: Mag and EM Anomalies at 22WRT-06, 22WRT-07, 22WRT-08 and CDC	38
Figure 5.17: Historical Samples and Satellite Imagery at 22WRT-06, 22WRT-07, 22WRT-0	8 and
CDC	38
Figure 5.18: 2022 Field Work at 22WRT-06, 22WRT-07, 22WRT-08 and CDC	39
Figure 5.19: Mag and EM Anomalies at 22WRT-12 and 22WRT-13	40

Figure 5.20:	Historical Samples and Satellite Imagery at 22WRT-12 and 22WRT-13	40
Figure 5.21:	2022 Field Work at 22WRT-12 and 22WRT-13	41
Figure 5.22:	Mag and EM Anomalies at 22WRT-10 and 22WRT-11	42
Figure 5.23:	Historical Samples and Satellite Imagery at 22WRT-10 and 22WRT-11	42
Figure 5.24:	2022 Field Work at 22WRT-10 and 22WRT-11	43
Figure 5.25:	Mag and EM Anomalies at Beverly and Boomerang	44
Figure 5.26:	Historical Samples and Satellite Imagery at Beverly and Boomerang	45
Figure 5.27:	2022 Field Work at Beverly and Boomerang	45
Figure 5.28:	Mag and EM Anomalies at 22WRT-14 and 22WRT-15	46
Figure 5.29:	Historical Samples and Satellite Imagery at 22WRT-14 and 22WRT-15	47
Figure 5.30:	2022 Field Work at 22WRT-14 and 22WRT-15	47
Figure 5.31:	Mag and EM Anomalies at 22WRT-16, 22WRT-17, 22WRT-18 and 22WRT-19.	49
Figure 5.32:	Historical Samples and Satellite Imagery at 22WRT-16, 22WRT-17, 22WRT-18	and
22WRT-19.		50
Figure 5.33:	2022 Field Work at 2021WRT-28	50
Figure 5.34:	Mag and EM Anomalies at Horseshoe	52
Figure 5.35:	Historical Samples and Satellite Imagery at Horseshoe	52
Figure 5.36:	2022 Field Work at Horseshoe	53
Figure 5.37:	2022 MaxMin Survey at Big Potato North	55
Figure 5.38:	2022 VLF Survey at Big Potato North	55
Figure 6.1: I	ocation of drill holes over the West-Raglan property	57
Figure 6.2: 2	022 Drilling at Boomerang	60
Figure 6.3: 2	022 Drilling at Beverly	62
Figure 6.4: 2	022 Drilling at Frontier	65

List of Tables

Table 4.1: Summary of Previous Work on the West-Raglan Property	15
Table 5.1: 2022 Anomalous Assay Results for Grab Samples on West-Raglan	22
Table 6.1: Summary of the West Raglan 2022 drilling program	58
Table 6.2: Results Summary of the West-Raglan 2022 drilling program	59
Table 7.1: Summary of QAQC review of 2022 analytical results	72
List of Maps	
Map 1: Mineral Titles Map of the West-Raglan PropertyA	appendix 2
Map 2: Compilation of 2022 SurveysA	ppendix 2

List of Appendices

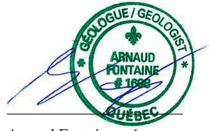
Appendix 1: Claims List

Appendix 2: Maps

Appendix 3: Complementary Reports

Appendix 4: Drill Hole Cross-Sections

Appendix 5: Drill Logs


Appendix 6: Assay Certificates

SIGNATURE PAGE – ARNAUD FONTAINE

2022 Exploration Work Program West-Raglan Property

Signed in Amos, March 22, 2023

Arnaud Fontaine, géo Membre OGQ #1698

CERTIFICATE OF QUALFICATION - ARNAUD FONTAINE

Je soussigné, Arnaud Fontaine, géo, domicilié au 541, 7° Avenue Ouest, Amos, Québec, Canada, J9T 1N4, certifie par la présente que :

- 1. Je suis diplômé de l'Université de Québec à Montréal et détiens un Baccalauréat en Sciences de la Terre et de l'Atmosphère (2012) en concentration Géologie.
- 2. Je pratique ma profession dans le domaine de la géologie et de l'exploration minérale au Canada depuis 2012.
- 3. Je suis membre de l'Ordre des Géologues du Québec depuis 2012, sous le numéro de membre 1608.
- 4. Je travaille pour la compagnie Magneto Investments LP, 42 rue Trudel, Amos, Québec, Canada, J9T 4N1, depuis 2012 à titre de Géologue Stagiaire, puis comme géologue depuis 2017.
- 5. Je reçois d'Orford Mining Corporation, à titre incitatif, des options d'achat d'actions de la compagnie Orford Mining Corporation.
- 6. Je travaille sur le projet West-Raglan depuis 2015, j'ai visité la propriété et j'ai examiné la roche du projet West-Raglan.
- 7. Je suis auteur du rapport intitulé « 2022 Exploration Work Program West-Raglan Property », et j'assume les responsabilités de tous les aspects géologiques de ce rapport.
- 8. Ce rapport est fondé sur mon expérience personnelle de la région, sur des rapports de travaux et sur des cartes disponibles ainsi que sur des travaux que j'y ai effectués.
- 9. En autant que je le sache, il n'y a aucun fait substantiel ou changement significatif en ce qui concerne le sujet du rapport qui ne serait pas reflété dans le rapport mentionné.
- 10. Je consens à l'utilisation de mon nom en regard de ce rapport.

EN FOI DE QUOI, je signe à Amos, ce 22 mars 2023.

Arnaud Fontaine, géo, Géologue d'exploration

Magneto Investments LP

1 INTRODUCTION

The West Raglan property is located approximately 80 kilometers south of the village of Salluit in Nunavik, Quebec and consists of 1719 mining claims totaling 70,683.08 Hectares. The property was first staked in 2002 by Anglo American Exploration Canada Ltd when preliminary geological reconnaissance in the area confirmed the presence of a significant strike length of both the "North (Raglan) Trend" and the "South (Expo) Trend". The stratigraphic horizon that hosts the Xstrata Nickel Raglan deposits outcrops on the northern portion of the property and the stratigraphy that hosts the Jilin Jien Nunavik Mine and Goldbrook deposits outcrops on the southern part of the property. Both the Chukotat and Povungnituk groups are exposed on the West Raglan property and contain a series of ultramafic units hosted within these horizons that have the potential to host significant magmatic nickel deposits.

In 2015, an exploration program consisting of 1,493 meters of diamond drilling, 30 days of mapping along the North (Raglan) trend and airborne and ground EM surveys was undertaken by True North Nickel. The 2015 drilling was focused at Frontier with 3 holes drilled on Beverly. The mapping program concentrated the North (Raglan) trend east of Frontier on Red, CDC, Beverly, Boomerang and Pure. Some of these areas have little to no historical work completed.

In 2016, an exploration program consisting of 7 days of mapping was undertaken by True North Nickel. The mapping program concentrated along the North (Raglan) Trend at Horseshoe, Boomerang and Beverly.

In 2021, an exploration program consisting of 49 days of mapping and till sampling and a ground EM SQUID survey along the North (Raglan) trend was undertaken by Orford Mining Corporation. The mapping program concentrated along the North (Raglan) trend on Beverly, Boomerang, Rain Day, the west part of CDC and Terrace and also concentrated on 11 new target areas generated by Mag and EM anomalies in the middle and south part of the property.

The objective of the 2022 exploration program focused on drill testing Raglan trend targets generated by the previous year's ground Ground EM Squid survey outside of the Frontier Zone. The duration of 2022 exploration program completed by Orford Mining Corporation over the West-Raglan property was approximately 60 days from early-July to early-September. The program consisted of 2,589 meters of diamond drilling over nine drill holes with bore hole EM (BHEM) geophysics. Field work consisted of 1,947 field stations (1,013 mapping stations and 934 till stations)

including 934 till samples and 100 grab samples. Minor ground geophysics work was also undertaken by Orford Mining staff over one area of the property, consisting of a MaxMin survey and a VLF survey covering approximately 1.25 km².

Key Highlights of the 2022 Exploration Program includes:

- Drill hole WR-22-195 that reported two meters at 0.95% Ni, 0.72 g/t Pd, 0.30 g/t Pd and 0.25% Cu, which is the most significant intercept outside of the Frontier Zone on the West Raglan Property.
- Drill hole WR-22-201 that succeeded in showing the extension of the 'West Pipe' lens at Frontier by intersecting 9m at 0.66% Ni, 0.08 g/t Pd, 0.36 g/t Pt and 0.24% Cu.
- The identification of the showing 'Little French Fries' on the Big Potato North zone with four grab samples taken on outcrop with assays returns of >2% Ni.
- The analysis results of 16 grab samples, which represents around 16% of all grab samples taken during the 2022 Exploration Program, returned nickel and/or cobalt, copper, palladium, platinum and gold anomalous results.

2 PROPERTY DESCRIPTION AND LOCATION

2.1 Location

The West-Raglan property is located in the northernmost part of Nunavik, northern Quebec, approximately 80 kilometers south of the Northern Village of Salluit, a regional community on the Coast of the Hudson Straight (Figure 2.1). The West-Raglan property is centred at 75°50' West longitude and 61°20' North latitude, or in UTM coordinates system (Nad 83, Zone 18) at 455,000E and 6,802,000N. The property is bordered to the West by longitude 76°26'20" W, to the East by longitude 75°12'30" W, to the North by latitude 61°27'45" N and to the South by 61°13'25" N.

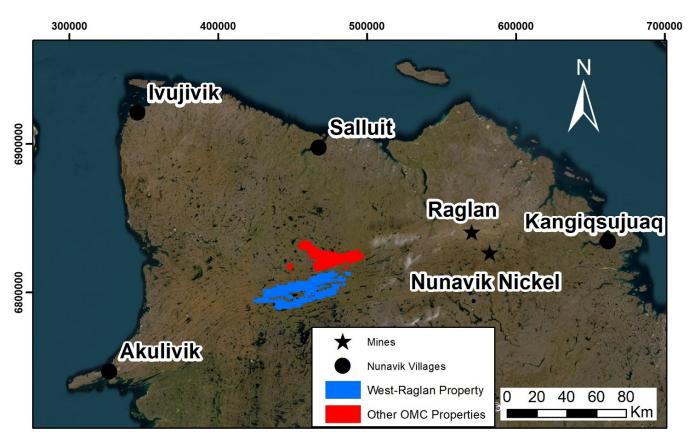


Figure 2.1: General Location Map of the West-Raglan Property

2.2 Claim Ownership

The West-Raglan property comprises 1719 contiguous map designated mineral titles covering an area of 70,683.08 hectares (707 km2) distributed in one main block in the central part of the Cape Smith Belt (Figure 2.2). Map designated cells have by law a pre-established perimeter of 30 seconds of arc longitude by 30 seconds of arc latitude. Therefore, no land surveying or claim patenting are needed and no border conflict can be raised on such.

The claims of the West-Raglan property were mapped designated from open ground between 2002 and 2022 and are 100% held by Orford Mining Corporation. These claims were indicated as free of any royalties, back-in rights, hypothec, grubstake agreements or other encumbrances by Orford Mining Corporation representatives. Claims registered under Orford Mining Corporation are listed in Appendix 1, as extracted from Gestim online registry and are shown in Figure 2.2 and in Map 1 found in Appendix 2.

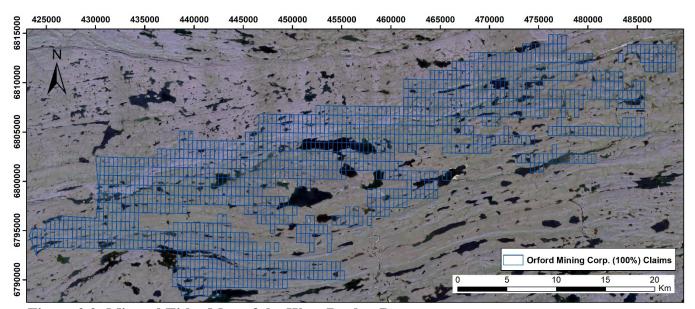


Figure 2.2: Mineral Titles Map of the West-Raglan Property

2.3 Claim Status

The claim list was obtained from the Ministère de l'Énergie et des Ressources Naturelles du Québec on-line registry, on November 11th, 2022. This list is provided in Appendix 1. All the titles are duly registered under the name of Orford Mining Corporation. The claims map is provided in Figure 2.2 and in Map 1 found in Appendix 2.

Exploration titles in Québec are required to be renewed every two years, sixty days prior to their anniversary or up to their anniversary with a penalty. A renewal fee is payable at each renewal. Renewal also requires assessment credits accumulated from exploration expenditures.

2.4 Accessibility, Climate, Infrastructures and Physiography

The West-Raglan project is situated approximately 400 kilometers north of the tree line, at an average altitude of 375 meters above sea level in typical tundra country. The topography of the area consists in North-West / South-East trending rocky ridges and valleys in the western part of the property, to flatter and grass covered tundra with isolated small hills in the eastern part (Figure 2.3).

Exposed rocks were affected by frost action, reducing many outcrops to rubble and angular blocks. Lowland areas are typically covered by till and swampy tundra, with scattered felsenmeer. The entire map area lies in the zone of discontinuous, but widespread permafrost, which can extend to depths of 540 meters (Stewart, 1976).

Vegetation consists of sparse shrubs, dwarf birch, alders, and plants that grow to less than 25 cm in height. Ground cover consists of grass and moss. Lichens partially cover most outcrops. During the summer, arctic wildflowers and berries can be seen.

Wildlife is generally scarce. The most common mammals in the project area are caribous. Other wildlife includes fox, hare, snowy owl, Peregrine falcon, Canada geese, Arctic hare, lemming and voles. Polar Bears have been sighted few times in the area over the last 20 years, but are very rare. Local rivers and lakes contain arctic char and lake trout.

Figure 2.3: Typical Landscape of the West-Raglan Project

The climate in the area is characterized by short, cool summers and long, very cold winters. The average annual temperature in the region is -10°C. Approximately 650 mm of precipitation falls annually (75% as snow). July and August temperatures range between 0° C and 20° C and spring, winter and autumn temperatures range between 0° C and -50° C. The first snow is typically expected in early to mid-September. The area is subject to strong wind conditions and periods of dense fog at any time of year. Sheltered areas often remain snow-covered throughout the year. Ice thickness on the lakes can reach up to two meters in winter.

Field work season is short, spanning through July and August only to be conducted safely. Helicopter work should be avoided during the spring and autumn due to blizzard and harsh weather. Winter field work, including diamond drilling and geophysics, is not recommended with the current camp configuration, the camp not being properly equipped for extremely cold weather, high winds, and heavy snow loads. Insufficient daylight, heavy blizzards and lack of background contrast also hamper movements to and from the camp and work sites in winter.

The Northern Village of Salluit is the closest community to the project area and is situated along the coast approximately 80 kilometers to the north. Puvirnituq, the largest community on the

west side of Nunavik, is located some 180 kilometers to the southwest along the coast of Hudson Bay. Both have airports with daily scheduled flights to Montreal. Heavy cargo is transported to communities by seafaring ship twice per summer.

There is no road access or any other infrastructure on the West-Raglan property and it is only accessible by helicopter. The exploration team accessed the project by helicopter from the camp Chukotat on a daily basis. Camp Chukotat (Figure 2.4) is located on the West Raglan property and is accessible either by helicopter or STOL fixed-wing aircraft. A 256 meters airstrip was constructed 8 kilometers south of the camp Chukotat in 2008 and is still used by Air Inuit's Twin Otter aircraft. The airstrip was inspected and used during the 2022 program and is considered to be in excellent condition.

Figure 2.4: Photo of Camp Chukotat (Looking North)

Cargo for setting up and opening camp are typically shipped by truck from Rouyn-Noranda to LaGrande Airport and then by cargo chartered plane to Purvirnituq. Supplies and personnel are flown from the Abitibi (Rouyn-Noranda Airport) to Puvirnituq by charters and then transported to camp Chukotat airstrip via Air Inuit Twin Otter.

Between 2004 and 2006, an ice road/trail was established and used by the former operator between camp Chukotat and the Northern Village of Salluit for fuel and equipment mobilization during winter months. But this transportation option was abandoned due to safety issues.

Camp Chukotat is located on the West-Raglan property on the east shore of the lake Chukotat. The camp has a maximum permitted capacity of 60 people and it is equipped with a kitchen, nursing station, 3 helipads and a 256 meters airstrip located 8 kilometers to the south. The camp is owned and operated by Orford Mining Corporation and only open during field exploration activities.

As previously mentioned, the West-Raglan project site is located approximately 80 kilometers south of the Northern Village of Salluit and approximately 180 kilometers north-east of Puvirnituq. Both communities are situated along the coast and are Inuit-dominated. Both have airports with daily scheduled flights to Montreal, hotel with self-service kitchen, Northern Store and FCNQ Coop to supply all essential needs for local residents (such as food, furniture, and clothing, but choices and quality can be limited) and healthcare centers with limited services.

3 GEOLOGICAL SETTING

The West Raglan property lies in the west central portion of the Cape Smith Belt, a linear belt of magmatic rocks related to the 1.87 Ga Chukotat Large Igneous Province (LIP). This belt forms a part of the wider Circum-Superior LIP event which rings the Archean Superior Craton and is responsible for ultramafic magmatism hosting nickel sulfide ore bodies at Thompson, Manitoba and in the Labrador Trough, and platinum and nickel sulfide occurrences at Fox River, Manitoba (Jowitt and Ernst, 2012).

The Povungnituk Group is a volcano-sedimentary assemblage that rests unconformably on the Achaean basement of the Ungava Peninsula (Figure 3.1). The Nituk Formation forms the base of this group and is a sedimentary package comprised of siliciclastic conglomerates and sandstones, through to siltstones, with local silicate facies iron formation. The Beauparlant Formation overlies the Nituk Formation and is dominantly comprised of tholeitite basalt and phyllitic units with minor calc-alkaline rhyolite domes and rare volcaniclastics. The Beauparlant and Nituk Formations are, in turn, intruded by a large volume of diabase and gabbro dikes and sills. The Cecilia Formation occurs only in the central portion of the Cape Smith Belt and conformably overlies the Beauparlant Formation and is comprised of alkaline basalt, andesite, and minor rhyolite volcaniclastics, pyroclastics, and flows with a smaller proportion of siliclastic units, cherts, and dolomites. The Nuvilic Formation (marking the top of the Povungnituk Group) is a deep water marine sedimentary sequence comprised of carbonaceous mudstones and siltstones, some with a significant proportion of both disseminated and massive exhalative sulfides, dominantly pyrrhotite. The Nuvilic Formation hosts the vast majority of the Lac Esker Suite ultramafic intrusions responsible for nickel-copper mineralization both on the West Raglan Project and across the Cape Smith Belt.

The overlying Chukotat Group is a volcanic sequence of olivine-phyric, pyroxene-phyric, and plagioclase-phyric komatiitic to tholeiitic basalt flows. It is intruded by, and coeval with, the Lac Esker ultramafic Suite (Lamothe 2007).

The Lac Esker Suite (1.89-1.87 Ga) is comprised of a series of hypabyssal sub-volcanic ultramafic intrusions, dominantly sills, that are wherlitic in composition and grade from dunite to peridotite or olivine pyroxenite central conduits with pyroxenite to gabbro marginal zones. These intrusions host all known nickel sulfide mineralization in the Cape Smith Belt.

Lac Esker intrusive suite mafic and ultramafic sills and dykes intrude the Povungnituk and Chukotat sequences along and adjacent to major northwest trending structures. Magmatic activity was localized along a major linear suture zone forming the main east-west axis of the belt. The northwest trending faults and a set of subordinate northeast trending structures are likely related to original transform faults in the basin subsequently re-activated by basin extension. The Cape Smith Belt was subsequently deformed by east-west trending and north-northwest trending folding during the Hudsonian Orogeny. All of the host rock sequences and stratigraphic groups are interpreted to be bound by thrust faults.

Nickel-copper sulfide ore is currently mined by Xstrata Nickel at their Raglan Mine and is under mine development by Jilin Jien Nickel at their Nunavik Mine (Figure 3.2). Similar nickel mineralization has been discovered across the West Raglan property associated with Lac Esker Suite ultramafic intrusions. Seven key zones have been identified where results from historical drilling have highlighted five key areas with high grade mineralized drill intercepts similar to that of the Raglan Mine operated by Xstrata along strike to the east (Jowitt et al, 2010).

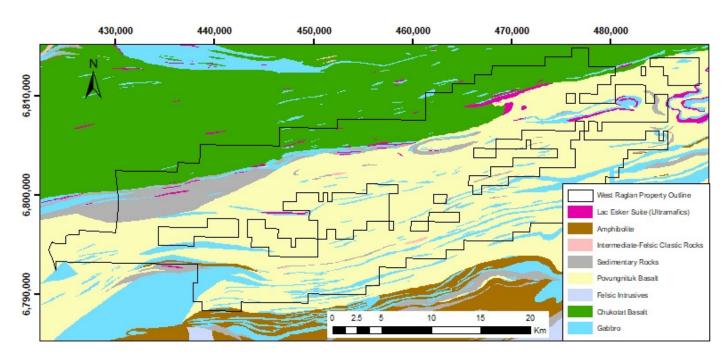


Figure 3.1: Regional Geology of the West-Raglan Property (after Lamothe et al. 2007)

3.1 Property Geology

The geology of the West Raglan property comprises the Chukotat and the Povungnituk Group (Figure 3.1). The Chukotat Group consists of a thick succession of relatively undeformed komatiitic basalt massive flows and plowed flows with numerous minor interflow sedimentary units. The lower part of the Chukotat Group is in transitional contact with the Povungnituk Group sulfide rich (semi-massive to massive pyrite and/or pyrrhotite) mudstones, siltstones and carbonatized volcanic litharenites (Dionne-Foster, 2007). This transitional contact zone is intruded by a series of ultramafic intrusions that vary in composition from dunite to pyroxenite and are dominantly wherlitic (Figure 3.3). Five distinct intrusions are currently interpreted on the basis of minor lithogeochemical variation, field observation and magnetic signatures in the Frontier area, representing the "Raglan Horizon", also host to the ores at Xstrata Nickel's Raglan Mine.

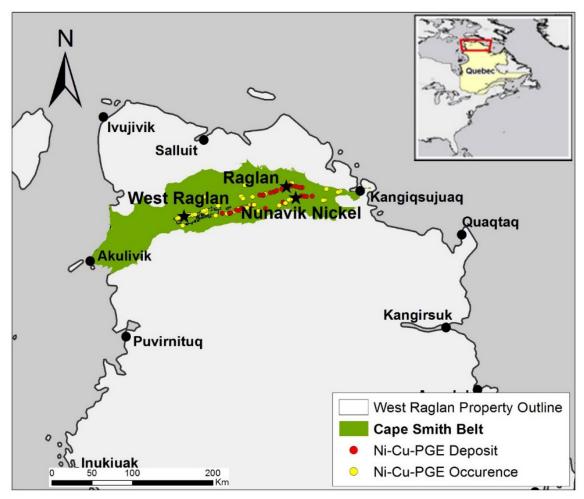


Figure 3.2: Ni-Cu-PGM Deposits and Significant Occurrences in the Cape Smith Belt

Typical Stratigraphy of the West Raglan Property

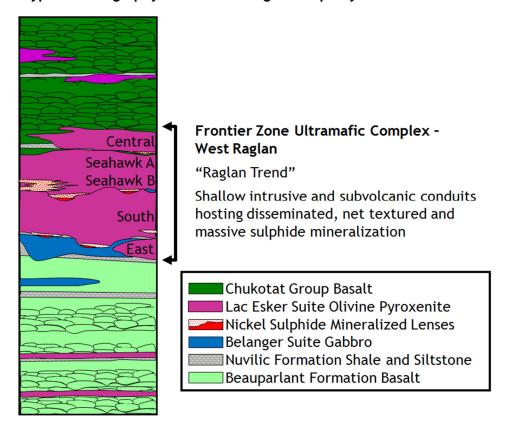


Figure 3.3: Typical Stratigraphic Section of the West-Raglan Property

The southern portion of the West Raglan property is dominated by volcano-sedimentary rocks of the Povungnituk Group. This group consists mainly of highly deformed tholeitic basalts with interflow sediments such as mudstone (some sulfidic), iron formations and calcareous shale. Minor gabbroic and ultramafic intrusions are also present, although exposures are scarce due to extensive glacial till and soil cover. Magnetic responses indicate that numerous ultramafic bodies, magnetic gabbros, and iron formations are present beneath this cover. This geologic setting is host to the mineral resources at Jilin Jien's Nunavik Mine and those of the adjacent Belanger Property (Figure 3.2).

4 PREVIOUS WORK

Exploration work on the project dates back to the early 1900's with the discovery of favorable host rocks in the area for base metal mineralization. Since that time, limited work had been completed in the project area due to its remoteness until renewed interest in the belt following the production decision by Falconbridge Ltd. to put the Katinniq deposit into operation in the early 1990's. Anglo American Exploration Canada Limited staked the project in 2002 and discovered a number of high grade Ni-Cu-PGM lenses in the Frontier Area. This staking and discovery and positive results reported by Canadian Royalties prompted a major claim staking rush in the belt, which through consolidation has eventually resulted in the current property positions. Table 4.1 summarizes the previous work by various exploration companies.

Table 4.1: Summary of Previous Work on the West-Raglan Property

Year	Description of Work						
1902	* Low completed geological investigations of coastal parts of region * Described pillow basalts in the area						
1931-32	* Cape Smith Belt prospected for base metals by various companies and several mineral showings discovered near the coast in the western part of the belt						
1957 (GM 12459)	* Many exploration companies working the belt, described in a report by the Ministere de l'Energie et des Resources du Quebec (MERQ) * MERQ mapping of the western and central portion of the belt						
1970 (GM 26480)	* Amax Exploration completed Aerodat Airborne Radiometric and VLF surveys over parts of project area.						
1985-87	* Moorhead completed 1:50,000 scale mapping in the area around Chukotat Lake						
1987 (GM44931-2), (GM 46937), (GM46931), (GM46938), (GM46930)	* Ateba Mines and Jascan completed 3-frequency Aerodat helicopter based survey * Ground VLF-EM-Magnetic survey follow-up and geological exploration work						
1994 (MB9414)	* Lac Renard area, 1:10,000 scale geological mapping and structural study Budkewitsch (Master's thesis)						
1995 (GM54090)	* 1:20,000 scale geological mapping and Mapping on the eastern half of the property by Falconbridge Ltd. * No Ni-Cu mineralized associated with ultramafic rocks was found * Further work recommended along base of the Chukotat Group						

	* DIGHEM airborne EM/Magnetics/VLF survey flown by Falconbridge					
1996 (GM54768)	Limited					
	* Survey covered 294 line km at north-west limits of the Property					
1997 (TH1773)	* Quaternary Geology report by Daigneault, described glacial history/patterns of Northern Nunavik					
2001 (GM60770)	* Hyperspectral geological follow-up for Noranda Inc. over area of 2250 square km					
2002 (GM60528)	* Anglo American Exploration Canada Ltd. (AAEC) staked the West Raglan project * Reconnaissance mapping confirmed the "Raglan Formation" and "Mesamax Horizon" present on project area					
2003 (GM60977)	* Anglo American SPECTREM airborne survey, identified ~ 100 priority targets * 18 drill holes / 2306.3m * Discovery of high grade Ni-Cu-PGM rich zones at Frontier East, South, and Central					
2004 (GM62288)	* Anglo American AeroTEM survey: 3313.3 line km * Geological mapping and Mapping * Soil and stream sediment/moss mat sampling * Ground geophysical surveying - magnetics, moving loop TDEM and HLEM (GM 62168) * 60 drill holes totaling 7241 meters * New Ni-Cu-PGM mineralized zones discovered					
2005 (GM62602)	* Anglo American winter ground geophysical surveying (TEM and magnetics) * Summer ground geophysical surveying (magnetics, HLEM and borehole EM) (GM62168) * Geological mapping and Mapping * Surface Tills and soil (3341 samples) * 29 drill holes / 4772 meters * 2 new mineralized zones discovered in Frontier area					
2006 (GM63115)	* Anglo American ground geophysics (InfiniTEM and moving loop TDEM) * Ground Magnetics, HLEM and BHEM completed. * Soil and till sampling over southern portion of property. * 22 drill holes / 4303 meters * Significant Ni-Cu-PGM intersected at Century lens in Frontier South					

-						
2007 (GM64273)	* Anglo American detailed mapping at Frontier, Target 36, Beverly, Boomerang and southern part of claim block. * Significant mineral showings discovered at Frontier South and Target 36					
	* 19 drill holes / 5925 meters, 7 holes intersected Ni >1.0%					
2008 (GM64843)	* Anglo American 28 holes / 8313 meters, Frontier and Beverley areas * Seahawk A discovery, 2.66% Ni, 1.10% Cu, 2.0g/t Pd, and 0.54g/t Pt over 36.43 meters					
	* Detailed mapping at Beverley, Boomerang, and CDC areas.					
	* Ground magnetics at Boomerang and CDC areas					
	* Only surface work completed, no drilling					
	* 1203 line km ground magnetic surveying					
	* 322 line km VTEM survey over POV targets (southern part of property)					
2009 (GM 64953)	* 157 line km Ground TEM surveying					
	* Surface Mapping over 35 different areas, limited new mineralization - a sample at MAC-44 returned 0.33% Ni					
	* Multiple new drill targets identified					
	* 79 line km TDEM surveying over Terrace, Green Zone, Boomerang, and several Povungnituk targets					
	* 108.1 line km ground magnetic surveying					
2010 (GM 65859)	* Mapping and Mapping over Povungnituk targets (southern part of property)					
	* No new targets developed from this work					
	* 4998 meters of drilling at Terrace, Green Zone, Rain Day, CDC, and Povungnituk targets failed to return any significant Ni-Cu-PGM mineralization					
2011	* Only camp clean up and demobilization work completed					
2012 (GM 67374)	* TNN 32 Drill Holes / 5540.3 meters, 8 holes intersected Ni >1.0% * 381.74 line km ground magnetic surveying * Photogrammetric survey over Frontier * Surface Mapping at Red, Frontier and Beverly Zones (92 rock samples)					
	best sample with 1% fine disseminated sulphide returned 0.69% Ni, 0.28% Cu, 0.67 g/t Pd, and 0.03 g/t Pt					
2013	* Program of detailed geologic mapping, Mapping and 3D structural studies mainly over the Frontier Area (Equity) * Surface Mapping at Seahawk, Central, Discovery, Century, Frontier, CDC and Beverly Zones – Three samples collected returned 0.3-0.7% Ni and 0.04-1.01 g/t PGM					

	* TNN 10 Drill Holes / 1493 meters, 3 holes intersected Ni >1.0% * Surface Mapping at Frontier, Red, CDC, Beverly, Renard Syncline,					
2015 (CM 60502)	Boomerang and Blue/Pure (148 rock samples and 952 mapping stations)					
2015 (GM 69503)	* 18.12 line-kilometers of Moving Loop Time-Domain Electromagnetics (TDEM) on the Frontier, Beverly and CDC zones.					
	* BHEM completed					
	* Only surface work completed, no drilling					
2016 (GM 70227)	* Surface Mapping at Horseshoe, Boomerang and Beverly (17 rock samples and 99 mapping stations). Two samples collected returned 0.4% Ni					
	* 67.5 line-kilometers of Moving Loop Transiant Electro-Magnetics (MLTEM) surveying utilizing the HT SQUID on the Beverly, Boomerang and Frontier zones.					
2021	* Surface Mapping and till sampling (analyzed by Portable XRF) at Beverly, Big Potato North, Boomerang, CDC, Horseshoe, Rain Day and Terrace and several targets outside the North trend (77 grab samples, 395 mapping stations and 1,804 till samples collected). One grab sample returned 0.84% Ni and one sample returned 5.73% Cu.					

5 WEST-RAGLAN EXPLORATION PROGRAM 2022

The duration of 2022 exploration program completed by Orford Mining Corporation over the West-Raglan property was approximately 60 days from early-July to early-September. The program consisted of drilling with bore hole EM (BHEM) geophysics along with mapping and till sampling. Minor ground geophysics work was also undertaken by Orford Mining staff over one area of the property, consisting of a MaxMin survey and a VLF survey covering approximately 1.25 km². Map 2, found in Appendix 2, shows the compilation of all the surveys undertaken during the 2022 exploration program on the West-Raglan property.

The drilling program consisted of:

• 2,589 meters of diamond drilling over nine drill holes. Description of the drilling campaign can be found in chapter 6 of this report.

The mapping and sampling program consisted of:

- Two to four crews of a geologist and his assistant performing traverses on specific areas of
 the West-Raglan property based on Magnetic and Electro-Magnetic (EM) anomalies on
 under-explored areas and on areas of interest. Each crew was equipped with a portable XRF
 analyzer allowing on-site geochemical analysis.
- A total of 1,947 field stations (1,013 mapping stations and 934 till stations) were recorded on the West-Raglan property.
- 934 till samples and 100 grab samples were collected on the West-Raglan property. Grab samples were analyzed by laboratory geochemical assaying and till samples were analyzed on-site by a portable XRF analyzer.

The geophysical surveys included:

- Eight bore hole EM (BHEM) surveys over the nine drill holes drilled in 2022 using Crone Geophysics Pulse-EM (report in Appendix 3).
- 2.31 line-kilometers MaxMin survey at 25m line spacing at Big Potato North undertaken by Orford Mining staff, generating four conductor anomalies.
- 1.25 km² of VLF survey at Big Potato North undertaken by Orford Mining staff, generating 28 conductor anomalies.

5.1 Till and Geological Mapping Programs

During the 2022 exploration program carried out by Orford Mining Corporation on the West-Raglan property, a geological mapping program and a till program was held over approximately 60 days from early-July to early-September. Two to four teams, each composed of a senior geologist and one assistant, took part in the mapping program and one team of two Orford Mining staff took part in the till program.

The objective of the till program was to provide a grid of samples over potential new mineralized ultramafic unit in under-explored area using the Mag and EM anomalies across the West-Raglan property to discover any Ni anomalies in the till. Since most of the surface south of the North trend is covered by overburden, the till samples can provide useful information on what is under the surface and can be the only surface source of information of the rock formation lying under the overburden. To do so, each sample was analyzed by portable XRF each evening to provide direct information of the area that could justify further investigation. Till samples consisted of approximately 200 grams of till material collected from frost boils, which is a typical and common feature of the permafrost terrain in the area. The objectives of the geological mapping were the verification of potential showings and to find any information related to the bedrock in each area of interest. Further detailed mapping was undertaken in the presence of Ni anomalies in the till samples by the portable XRF.

The till and mapping programs focused on several zones in the North trend: Terrace, Frontier, Red, CDC, Beverly, Boomerang and outside the North trend: Big Potato North, Horseshoe and 19 target zones generated from Magnetic and Electro-Magnetic (EM) anomalies on under-explored area for the 2022 mapping and till program named respectively 22WRT-01 to 22WRT-19.

All data and observations taken during the geological mapping and till programs were directly recorded on the field using numerical tablets with the program GSFNav which were equipped with an internal GPS with an accuracy of three to five meters. A witness sample was kept at the Chukotat camp by Orford Mining for each grab sample collected in the field for reference if necessary.

A total of 1,013 mapping stations, such as outcrops, outcrop areas and boulders, were recorded and described and a total of 100 grab samples were collected among them. Localization of all mapping stations and grab samples are shown in figure 5.1 (mapping stations) and 5.2 (grab samples) and in map 2, that can be found in Appendix 2. All analysis certificates are provided in Appendix 6. The

analysis results of 16 grab samples, which represents around 16% of all grab samples, returned nickel and/or cobalt, copper, palladium, platinum and gold anomalous results (Table 5.1).

A total of 934 till stations were recorded and one till sample was taken at each station. Localization of all till stations and till samples are shown in figure 5.3 and in map 2 that can be found in Appendix 2.

Table 5.1: 2022 Anomalous Assay Results for Grab Samples on West-Raglan

Point Number	Northing	Easting	Zone	Lithology	Rock Description	Sample Number	Ni %	Cu %	Co ppm	Pd ppm	Pt ppm	Au ppm	S %
22JL0007	6803547.00	443642.00	Frontier	Semi-Massive Sulphide	Boulder	E5839762	2.71	0.243	614	1.880	0.886	0.01	>10
22GL0337	6792839.49	445241.14	Big Potato North	Magmatic Massive Sulphide	Outcrop	E5839524	2.63	0.526	2140	0.861	0.694	0.00	>10
22GL0336	6792842.20	445246.01	Big Potato North	Magmatic Massive Sulphide	Outcrop	E5839525	2.59	0.632	1950	1.280	1.080	0.01	>10
22GL0334	6792841.11	445244.38	Big Potato North	Pyroxenite	Outcrop	E5839522	2.39	0.981	1920	1.070	0.848	0.02	>10
22GL0333	6792842.46	445241.54	Big Potato North	Pyroxenite	Outcrop	E5839521	2.24	0.455	1870	0.445	0.437	0.02	>10
22JL0006	6803026.00	443042.00	Frontier	Intrusive Ultramafic Rock	Boulder	E5839761	2.19	0.966	487	2.410	0.819	0.18	9.01
22GL0285	6792842.05	445243.95	Big Potato North	Magmatic Massive Sulphide	Boulder	E5839519	1.69	0.76	1680	0.681	0.788	0.01	21.2
22JL0010	6807684.40	471100.89	Boomerang	Intrusive Ultramafic Rock	Boulder	E5839764	1.3	0.349	623	1.000	0.343	0.01	>10
22JL0009	6807673.43	471093.72	Boomerang	Olivine Pyroxenite	Boulder	E5839763	1.23	0.29	450	0.465	0.175	0.07	9.86
22MD0017	6807668.02	471063.95	Boomerang	Semi-Massive Sulphide	Boulder	E5839550	0.784	0.165	505	0.313	0.130	0.01	>10
22GI0348	6803013.76	442629.70	Frontier	Peridotite	Boulder	E5839759	0.693	0.276	169	0.003	0.003	2.91	1.82
22GI0349	6803013.76	442629.70	Frontier	Peridotite	Boulder	E5839760	0.65	0.199	179	0.001	0.003	0.24	1.71
22GL0407	6809682.37	480730.24	Horseshoe	Pyroxenite	Float	E5839533	0.328	0.348	217	0.213	0.050	0.00	4.01
22GL0335	6792834.50	445240.08	Big Potato North	Gossan	Outcrop	E5839523	0.217	0.269	138	0.242	0.347	0.01	2.51
22GL0145B	6802831.77	446622.33	Red	Gabbro	Subcrop	E5839544	0.042	0.962	253	0.002	0.003	0.05	>10
22GL0145A	6802831.77	446622.33	Red	Gabbro	Subcrop	E5839543	0.005	8	24.8	0.003	0.003	0.01	4

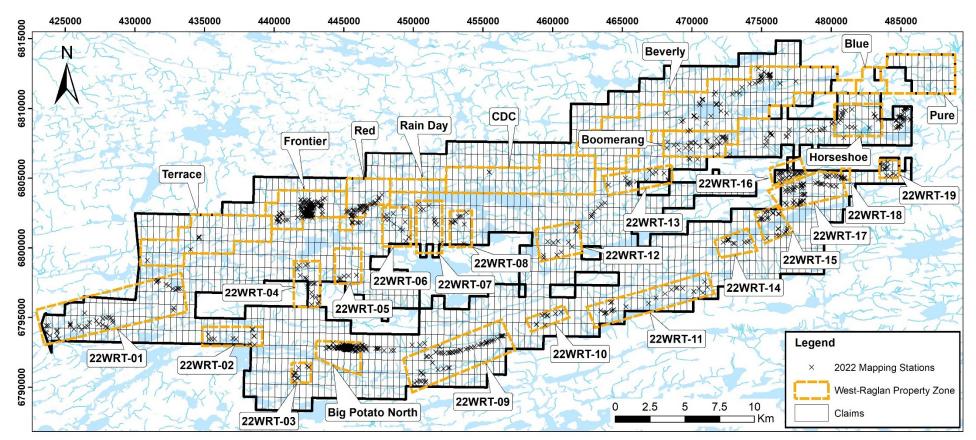


Figure 5.1: 2022 Mapping Stations Localisation of the West-Raglan Property

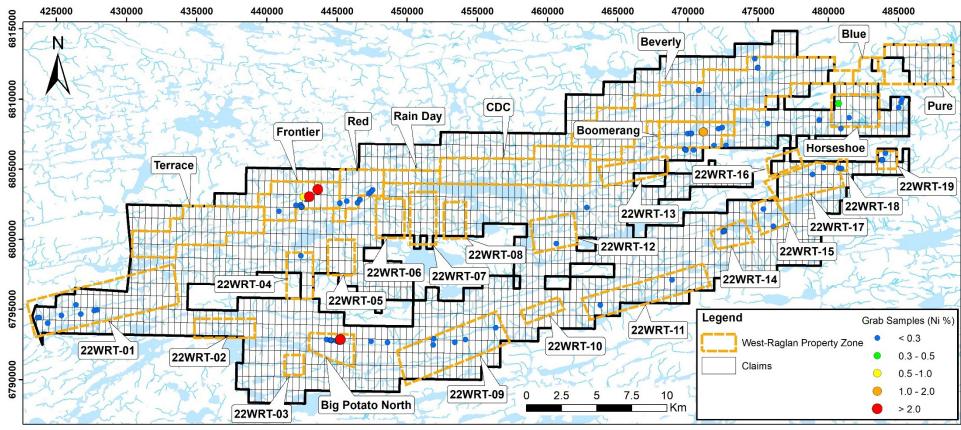


Figure 5.2: 2022 Grab Samples Localisation of the West-Raglan Property

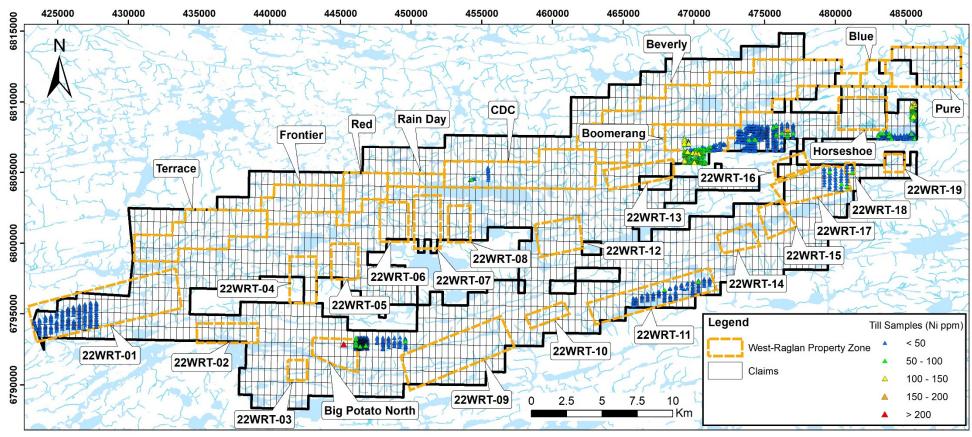


Figure 5.3: 2022 Till Samples Localisation of the West-Raglan Property

5.1.1 22WRT-01, 22WRT-02 and Terrace

The zones 22WRT-01, 22WRT-02 and Terrace are located on the western part of the property (Map 1). Terrace is part of the North Trend and the zones 22WRT-01 and 22WRT-02 were created for the 2022 exploration program based on geophysics anomalies and on historical work.

22WRT-01 shows several East/West magnetic and EM anomalies and minimal historical work was done in this area (Figure 5.4 and 5.5). The till and mapping program objectives were to cover the Mag and EM anomalies with a grid of till samples to discover any new nickel anomalies over 22WRT-01. In total, 153 till samples were collected over 12 North/South lines on the western part of the 22WRT-01, 46 mapping stations were recorded and eight grab samples were collected (Figure 5.6). Assay results of the grab samples and portable XRF results on till samples showed no Ni anomaly. Further work is required as the middle eastern part of 22WRT-01 was not covered during 2022 exploration program.

The zone 22WRT-02 shows an East/West Mag anomaly on the northern part with several trends of East/West EM anomalies (Figure 5.4). Historical work shows two isolated till anomalies of 358 ppm Ni in the western part and 270 ppm in the eastern part of the zone (Figure 5.5). The mapping program objectives were to find any evidence of the source of the isolated till anomalies. In total, 12 mapping stations were recorded over 22WRT-02 (Figure 5.6). The geological mapping showed only gabbro and basalt in outcrop, although one boulder of ultramafic rock was found. The source of the isolated till samples Ni anomalies were not found. No further surface work is recommended at this time, but the zone will benefit from high resolution geophysics to help with further work.

Terrace shows several EM anomalies following the East/West general trend and is part of the main North trend (Figure 5.4). Historical work shows a soil and till grid covering the majority of the zone, but minimal mapping stations on the western part of the zone (Figure 5.5). The mapping program objectives were to cover the western part of the Terrace Zone. In total, five mapping stations were recorded (Figure 5.6). Two ultramafic rocks were discovered in outcrops in the south part of the zone, but no Ni anomaly was found. No further surface work is recommended at this time, but the zone will benefit from high resolution geophysics to help with further work.

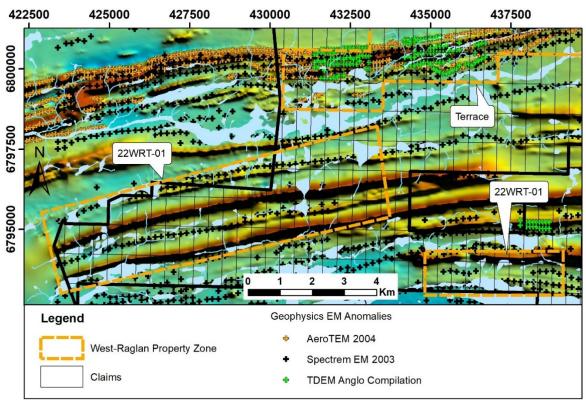


Figure 5.4: Mag and EM Anomalies at 22WRT-01, 22WRT-02 and Terrace

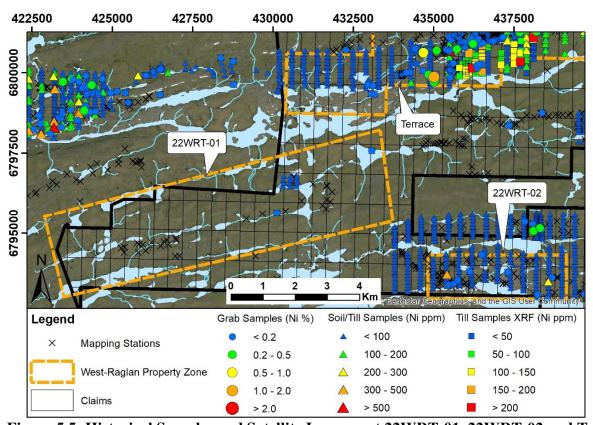


Figure 5.5: Historical Samples and Satellite Imagery at 22WRT-01, 22WRT-02 and Terrace

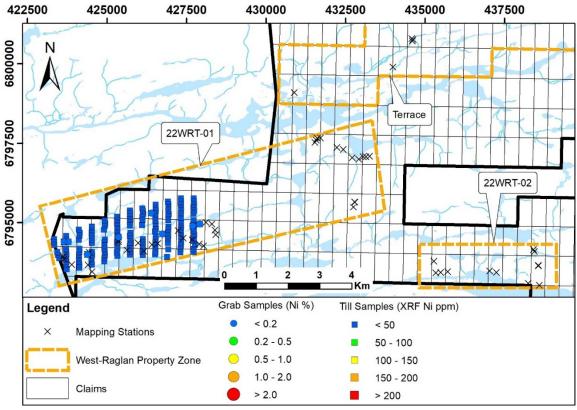


Figure 5.6: 2022 Field Work at 22WRT-01, 22WRT-02 and Terrace

5.1.2 Frontier and Red

The Frontier and Red zones are in the western part of the property between the Terrace and Rain Day zone (Map 1). Both properties follow the high mag and EM anomalies of the North trend (Figure 5.7).

Frontier is the zone with the most surface and drilling work and the area is known to bear several lenses of Ni mineralization. Historical work shows many grab samples with more than 2% Ni (Figure 5.8). The objective of the mapping program in 2022 was to extend the detailed mapping to the west of the till grid. In total, 150 mapping stations were recorded and 12 grab samples were collected. Assay results showed four grab samples with anomalous values in Ni, Cu, Pd, Pt and Au (Table 5.1, Figure 5.9). Samples E5839761 and E5839762 both returned values above 2% Ni associated with Cu, Pd and Pt typical of ultramafic mineralized rock. Those samples were collected in an area of Frontier where many similar mineralization was found from historical work. Samples E5839759 and E5839760 both returned values of 0.6-0.7 % Ni and E5839759 also showed a gold anomaly of 2.91 ppm. Both samples were collected on the western part of the historical till grid

nearby an isolated historical sample that returned 1.8 % Ni that can potentially show an extension to the west of the mineralized unit. No further surface work is recommended at this time, but the zone will benefit from high resolution geophysics to help with further work.

The zone Red is less mineralized than Frontier, but it still shows Ni anomalies in the historical grab samples and till samples. Minor historical work was done over the south part of the Red zone and the satellite imagery shows potential outcrop (Figure 5.8). The objective of the mapping program in 2022 was to cover the south part of Red. In total, 49 mapping stations were recorded and nine grab samples were collected. Assay results showed two grab samples with anomalous values in Cu (Table 5.1, Figure 5.9). Samples E5839543 and E5839544 returned respectively 0.962% Cu and 8.0 % Cu associated to a gabbro subcrop, showing a potential of polymetallic mineralization on the south part of the Red zone. Further work is required to identify the extent of the Cu mineralization.

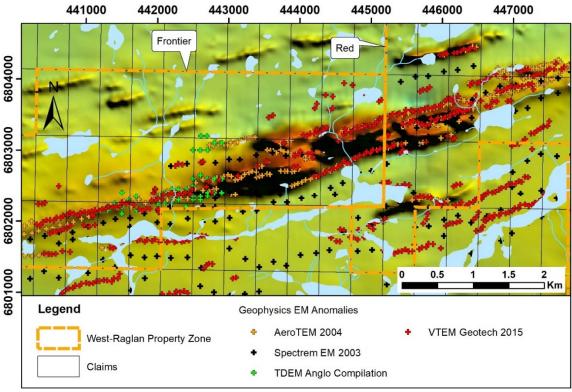


Figure 5.7: Mag and EM Anomalies at Frontier and Red

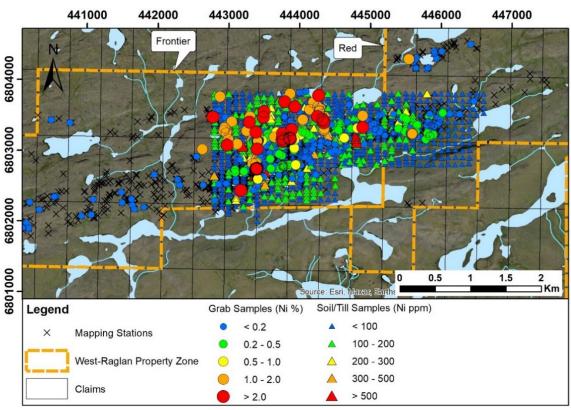


Figure 5.8: Historical Samples and Satellite Imagery at Frontier and Red

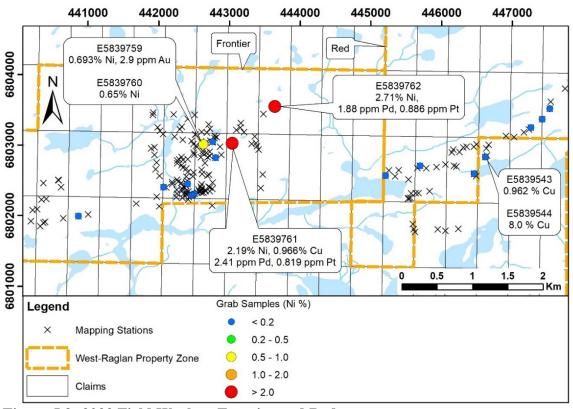


Figure 5.9: 2022 Field Work at Frontier and Red

5.1.3 22WRT-04 and 22WRT-05

22WRT-04 and 22WRT-05 were created in 2022 by looking at the Mag and EM data in under-explored part of the West-Raglan properties. They are located in the middle part of the property under the Red zone (Map 1).

22WRT-04 shows three major East/West magnetic features crossing the zone with the middle section associated with an East/West trend of EM anomalies (Figure 5.10). Historical work is minimal and the satellite imagery shows potential outcrop in the area (Figure 5.11). The objective of the mapping program in 2022 on 22WRT-04 was to find the source of the Mag and EM anomalies. In total, 20 mapping stations were recorded and one grab sample was collected (Figure 5.12). Assay results showed no Ni anomaly in the grab sample. Ultramafic rocks with fine disseminated pyrrhotite were found in boulders and boulder fields around the middle magnetic anomaly associated with EM anomalies, which indicates the potential of mineralized ultramafic rock underground. No further surface work is recommended at this time, but the zone will benefit from high resolution geophysics to help with further work.

22WRT-05 is directly on top of a high Mag anomaly but there are almost no associated EM anomalies associated to the magnetic feature. However, several EM anomalies with an East/West trend cross the southern part of the zone which correspond to a series of lakes (Figure 5.10). The area shows many outcrops on the satellite image and mapping was only done on the northern part of the zone (Figure 5.11). The objective of the mapping program in 2022 on 22WRT-05 was to cover the southern part of the zone to identify the source of the EM anomalies. In total, five mapping stations were recorded (Figure 5.12). Several outcrops were recorded as basalt. No ultramafic rock was found in southern part of 22WRT-05. No further surface work is recommended at this time, but the zone will benefit from high resolution geophysics to help with further work.



Figure 5.10: Mag and EM Anomalies at 22WRT-04 and 22WRT-05

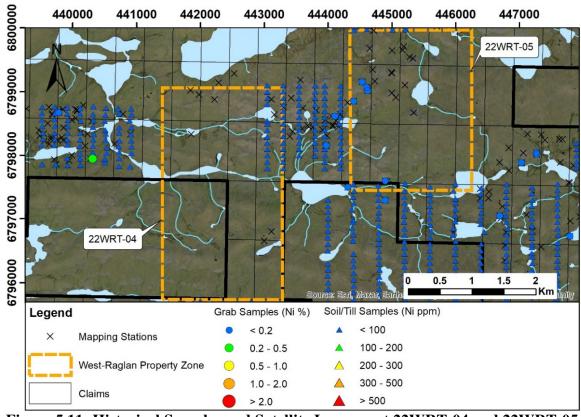


Figure 5.11: Historical Samples and Satellite Imagery at 22WRT-04 and 22WRT-05

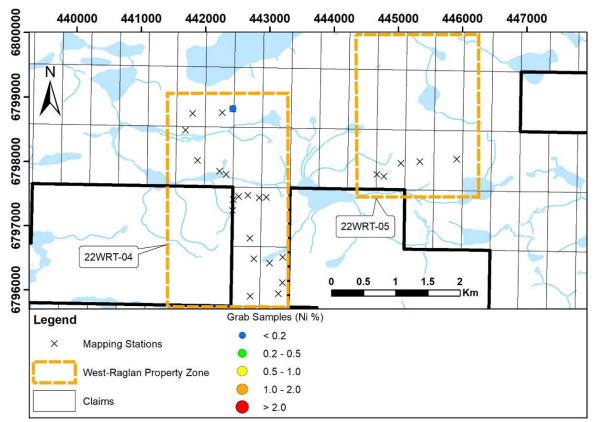


Figure 5.12: 2022 Field Work at 22WRT-04 and 22WRT-05

5.1.4 22WRT-03, Big Potato North and 22WRT-09

The zones 22WRT-03, Big Potato North and 22WRT-09 are located to the southern part of the West-Raglan property (Map 1). 22WRT-03 and 22WRT-09 were created by looking at the Mag and EM data in under-explored part of the West-Raglan properties. Big Potato North is known to host ultramafic rock in outcrops with potentially Ni mineralization.

22WRT-03 shows an isolated circular high mag feature with several EM anomalies (Figure 5.13). Historical work shows many mapping stations in the area with several grab samples taken in outcrop showing Ni anomalies of 0.25 to 0.32 % Ni. The zone was also covered by a till sample grid (Figure 5.14). Most of the historical work was undertaken by Anglo American Exploration in 2007 and 2009. The objective of the mapping program in 2022 on 22WRT-03 was to extend the coverage of the mapping of the zone and to provide new information on the Mag and EM anomalies. In total, 10 mapping stations were recorded (Figure 5.15). No ultramafic rock was found in outcrops and no new information was provided on the Mag and EM anomalies. No further

surface work is recommended at this time, but the zone will benefit from high resolution geophysics to help with further work.

Big Potato North is covered by several EM anomalies following a weak East/West Mag anomaly (Figure 5.13). Historical data show a boulder returning 2.4% Ni near the olivine pyroxenite outcrop and another grab sample west to the olivine pyroxenite returned 1.02 % Cu along with several weak nickel anomalies in the soil samples around it. The zone was also covered by a till grid showing several Ni anomalies by geochemistry and by Portable XRF analysis (Figure 5.14). The objectives of the till and mapping programs in 2022 were to find the source of the Ni anomalies and to cover the east part of the zone with a till grid to see if there was any extension of the ultramafic rock or Ni anomalies to the east. In total, 249 mapping stations were recorded and 21 grab samples were collected (Figure 5.15). Six grab samples returned anomalous assay results of Ni, Cu, Co, Pd and Pt (Table 5.1). Samples E5839521, E5839522, E5839524 and E5839525 were taken on outcrops of massive sulfides in contact with a pyroxenite and showed Ni values over 2%. Following the discovery of the nickel bearing massive sulfide, extensive work was carried over Big Potato North to find the full extension of the unit. A VLF survey and a MaxMin survey was carried by the Orford Mining Staff to try to follow the EM response near the massive sulfide (see chapter 5.2). 11 till samples were taken 25 meters around the showing as an experiment to identify to signature of Ni anomalies around a showing. To results showed that the Ni anomalies can be spread over 15 meters around the anomaly. After the experiment, 123 till samples were collected over 9 North/South lines with a spacing of 100 meters on the eastern part of Big Potato North and 39 till samples were collected over 6 North/South lines with a spacing of 400 meters to the East of Big Potato North. No Ni anomaly was found in the tills by Portable XRF analysis (Figure 5.15). The area of the massive sulfide was extensively mapped and it was described as a 20cm thick layer outcropping over 50cm, making it a showing named Little French Fries. No further surface work is recommended at this time, but the zone will benefit from high resolution geophysics to help with further work.

22WRT-09 is covered by several EM anomalies following a weak East/West Mag anomaly which are the continuation to the East of the zone Big Potato North (Figure 5.13). Historical work is minimal in the zone and the area shows many outcrops on the satellite imagery (Figure 5.14). The objective of the mapping program in 2022 on 22WRT-09 was to find the source of the Mag

and EM anomalies. In total, 58 mapping stations were recorded and five grab samples were collected (Figure 5.15). Assay results showed no Ni anomaly in the grab samples and only one ultramafic rock was found in outcrops. The anomalies were not explained and 22WRT-09 and need more detailed geological mapping. The zone will benefit from high resolution geophysics to help with further work.

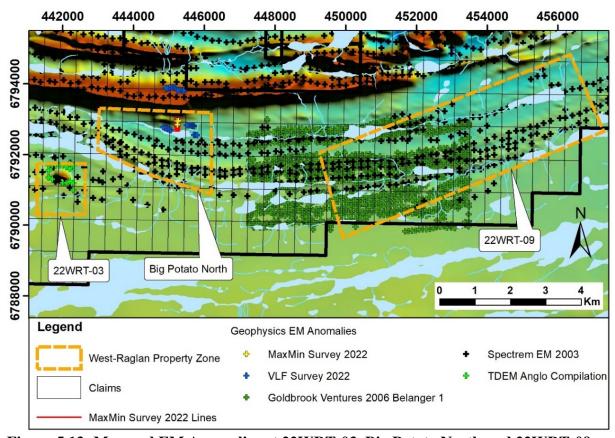


Figure 5.13: Mag and EM Anomalies at 22WRT-03, Big Potato North and 22WRT-09

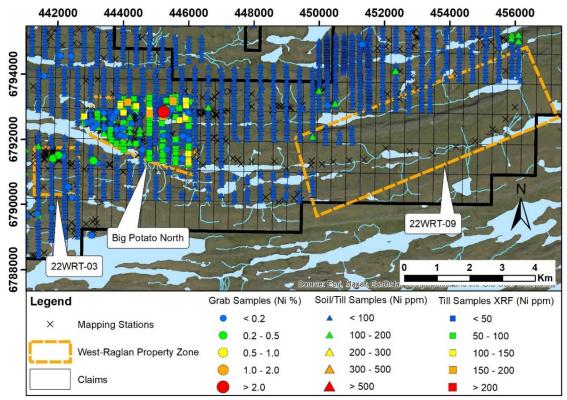


Figure 5.14: Historical Samples and Satellite Imagery at 22WRT-03, Big Potato North and 22WRT-09

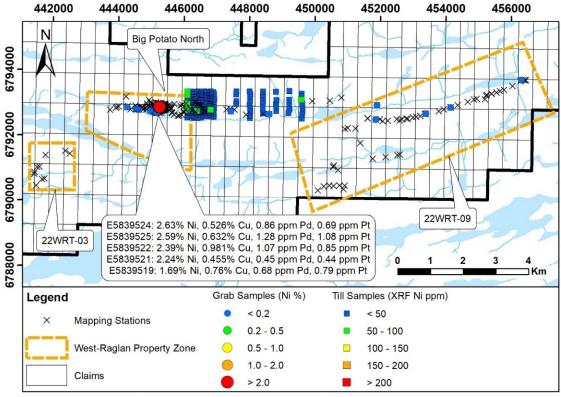


Figure 5.15: 2022 Field Work at 22WRT-03, Big Potato North and 22WRT-09

5.1.5 22WRT-06, 22WRT-07, 22WRT-08 and CDC

22WRT-06, 22WRT-07, 22WRT-08 and CDC are located on the middle north part of the property (Map 1). 22WRT-06, 22WRT-07 and 22WRT-08 were created by looking at the Mag and EM data in under-explored part of the West-Raglan properties. CDC follows the high mag and EM anomalies of the North trend.

22WRT-06, 22WRT-07 and 22WRT-08 show a circular high mag anomaly with features of the East/West general trend of the property. There is a series of EM anomalies following the East/West trend on the north contact of the Mag anomaly (Figure 5.16). Minimal work was done on all those zones with only till sampling analyzed by XRF in 2021 between 22WRT-06 and 22WRT-07 and on the north part of 22WRT-08. Several Ni anomalies were detected by Portable XRF analysis in the till. Geological mapping was only done on the north part of 22WRT-07 and 22WRT-08 (Figure 5.17). The objective of the mapping program in 2022 on 22WRT-06, 22WRT-07 and 22WRT-08 was to find the source of the Mag and EM anomalies along with the till anomalies. A grid of till sampling was also planned on those zones as part of the 2022 till sampling program. In total, 12 mapping stations were recorded on 22WRT-06, nine mapping stations were recorded on 22WRT-08 (Figure 5.18). No ultramafic rock was found in outcrops in the area. The till sampling grid planned was not undertaken during the 2022 exploration program and the area could still benefit from it since many anomalies were found in 2021. The zones will also benefit from high resolution geophysics to help with further work.

CDC shows many EM anomalies associated with the magnetic anomaly of the North Trend (Figure 5.16). There was no objective with the CDC zone during the 2022 exploration program. As part of the on-site training of the geologist at the beginning of the campaign, a few samples were taken on CDC to demonstrate the procedures. The samples were taken where there was no previous historical data and therefore were recorded and analyzed. In total, two mapping stations were recorded and 12 till samples were collected (Figure 5.18). No anomaly was found in the till sampling. CDC is part of the North Trend of the West-Raglan property and remains a highly prospective zone. The zone will also benefit from high resolution geophysics to help with further work.

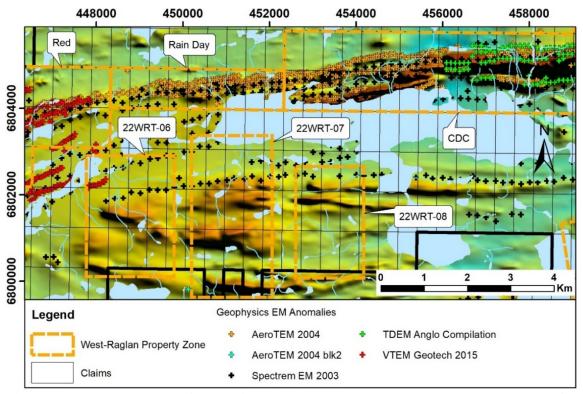


Figure 5.16: Mag and EM Anomalies at 22WRT-06, 22WRT-07, 22WRT-08 and CDC

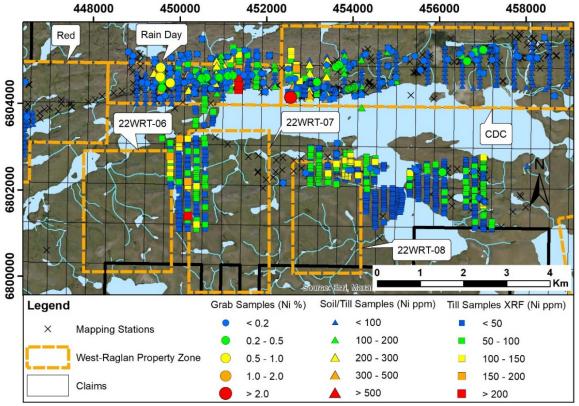


Figure 5.17: Historical Samples and Satellite Imagery at 22WRT-06, 22WRT-07, 22WRT-08 and CDC $\,$

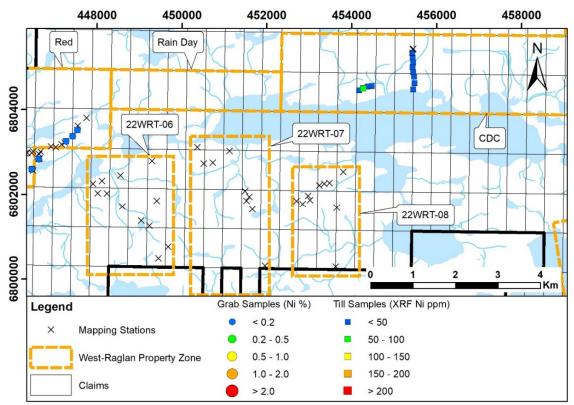


Figure 5.18: 2022 Field Work at 22WRT-06, 22WRT-07, 22WRT-08 and CDC

5.1.6 22WRT-12 and 22WRT-13

22WRT-12 and 22WRT-13 are located in the middle part of the property under the zones CDC and Beverly (Map 1). They were created in 2022 by looking at the Mag and EM data in under-explored part of the West-Raglan properties.

22WRT-12 shows an East/West magnetic feature associated with a series of EM anomalies following the same direction in the southern part of the zone and 22WRT-13 shows several isolated circular high Mag features a series of EM anomalies following an East-West trend (Figure 5.19). There is no historical work done on 22WRT-12 and only one historical mapping station and one till sample on 22WRT-13. Both zones show potential outcrops in the satellite imagery (Figure 5.20). The objective of the mapping program in 2022 on 22WRT-12 and 22WRT-13 was to find the source of the Mag and EM anomalies.

In total, 12 mapping stations were recorded and one grab sample was collected on 22WRT-12, 15 mapping stations were recorded on 22WRT-13 and seven mapping stations were recorded and one grab sample was collected between the two zones (Figure 5.21). Assay results showed no

Ni anomalies and no ultramafic rock was found in the area. No further surface work is recommended at this time, but the zones will benefit from high resolution geophysics to help with further work.

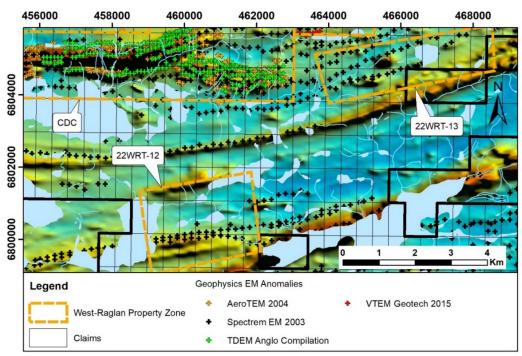


Figure 5.19: Mag and EM Anomalies at 22WRT-12 and 22WRT-13

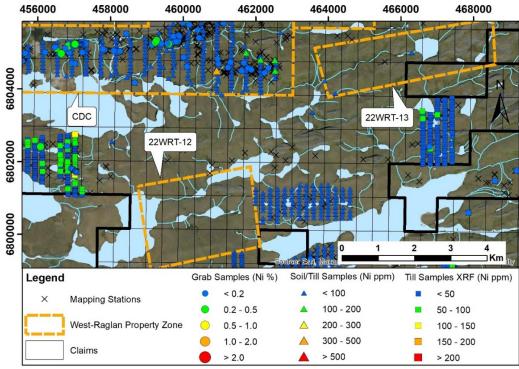


Figure 5.20: Historical Samples and Satellite Imagery at 22WRT-12 and 22WRT-13

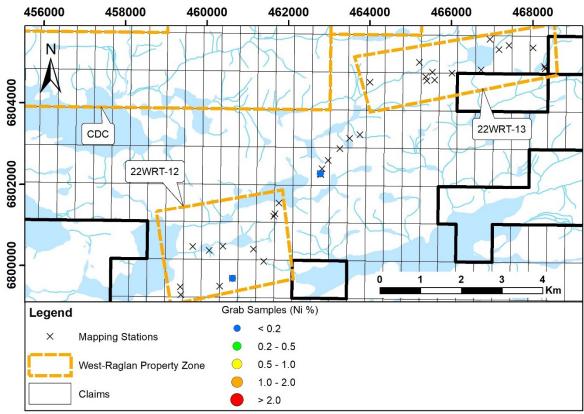


Figure 5.21: 2022 Field Work at 22WRT-12 and 22WRT-13

5.1.7 22WRT-10 and 22WRT-11

22WRT-10 and 22WRT-11 are located in the middle southern part of the property under the zones CDC and Beverly (Map 1). They were created in 2022 by looking at the Mag and EM data in under-explored part of the West-Raglan properties.

22WRT-10 and 22WRT-11 show moderate Mag anomalies following the East/West trend found around the property. EM anomalies are associated with the Mag trend on 22WRT-10 while 22WRT-11 was never covered by an EM survey (Figure 5.22). Historical work was never done on those zones except a small area on the north part of 22WRT-11 and satellite imagery show the potential of outcrops on the zones (Figure 5.23). The objective of the mapping and till program in 2022 on 22WRT-10 and 22WRT-11 was to find the source of the Mag and EM anomalies and to perform a till grid over 22WRT-11 since it was never prospected and covered by an EM survey.

In total, nine mapping stations were recorded on 22WRT-10 and 25 mapping stations were recorded along with two grab samples and 91 till samples collected on 22WRT-11 (Figure 5.24). Assay results showed no Ni anomalies in the grab sample and no nickel anomalies were found in

the Portable XRF analysis of the till samples. A pyroxenite was found on outcrops on the eastern part of 22WRT-11, but no nickel mineralization was found associated to it. Both zones can benefit from a complete till samples grid and from high resolution geophysics to help with further work.

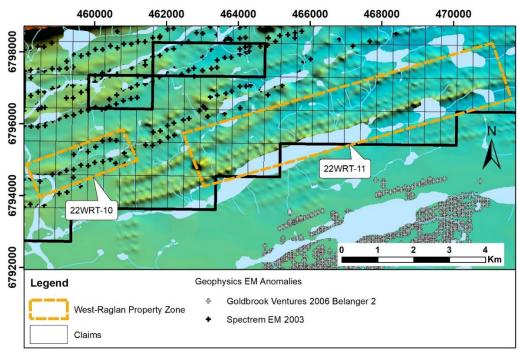


Figure 5.22: Mag and EM Anomalies at 22WRT-10 and 22WRT-11

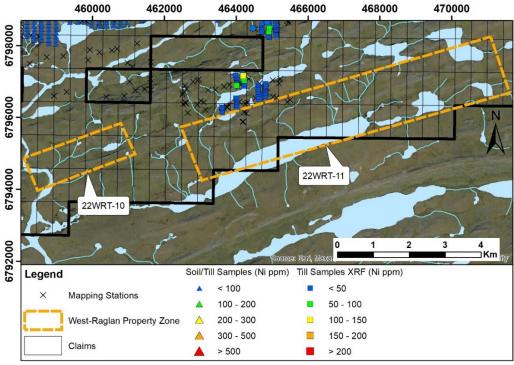


Figure 5.23: Historical Samples and Satellite Imagery at 22WRT-10 and 22WRT-11

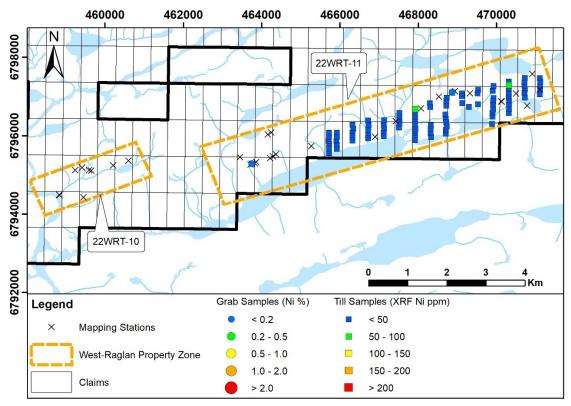


Figure 5.24: 2022 Field Work at 22WRT-10 and 22WRT-11

5.1.8 Beverly and Boomerang

The Beverly and Boomerang areas are located at the east part of the property, following the main North trend (Map 1). Beverly directly follows the North trend of the high East/West Mag anomaly associated with several EM anomalies while Boomerang, located directly under Beverly, follows a low to mid Mag anomaly that have the same general direction as the main trend (Figure 5.25). Historical work at the Beverly area was mainly focused on the North trend where several nickel anomalies were found in grab samples North-East to Boomerang. Historical data at Boomerang showed many nickel anomalies in grab samples regrouped in the center of the area and many nickel anomalies in the till samples south of the Mag anomaly crossing the Boomerang area. In 2021, around 500 till samples were analyzed by Portable XRF to cover the space between the Mag anomalies of the North trend in Beverly and the one at Boomerang and many till anomalies were found (Figure 5.26). The objectives of the mapping program in 2022 at Beverly was to provide detailed mapping east of the mineralized grab samples. The objectives of the till and mapping programs in 2022 at Boomerang were to provide more detailed mapping around the

mineralize grab samples and to cover the area south and east to Boomerang to see if there was any extension of the mineralized ultramafic layers.

In total, 59 mapping stations were recorded and six grab samples were collected on Beverly while 56 mapping stations were recorded and 15 grab samples along with 368 till samples were collected on Boomerang and his surroundings (Figure 5.27). Assay results showed three grab samples with anomalies in nickel, palladium and platinum on Boomerang. Sample E5839763 and E5839764 returned above 1% Ni and sample E5839550 returned 0.78% Ni (Table 5.1). Analysis of the till samples by Portable XRF showed a background Ni anomaly south of Boomerang and one isolated Ni anomaly of 166 ppm to the east of Boomerang, generating new area of interest for further work. Many ultramafic rocks were described in outcrops on both Beverly and Boomerang, but Ni mineralization was only found at Boomerang during the 2022 exploration program. Beverly and Boomerang are both highly prospective zones of the West-Raglan properties and both zones can benefit from high resolution geophysics to help with further work.

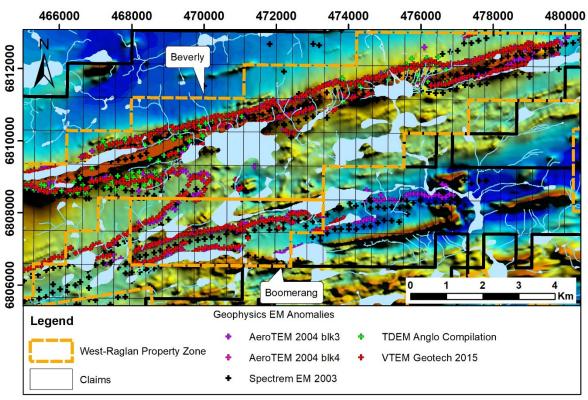


Figure 5.25: Mag and EM Anomalies at Beverly and Boomerang

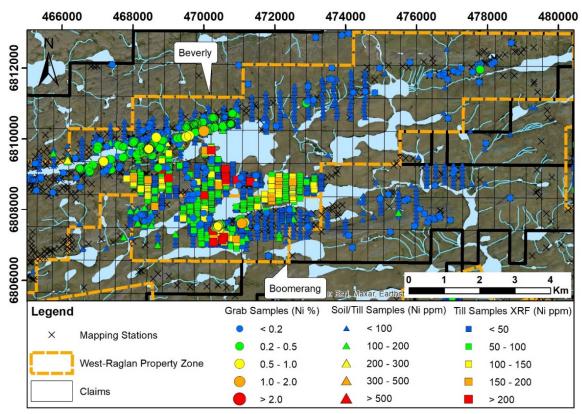


Figure 5.26: Historical Samples and Satellite Imagery at Beverly and Boomerang

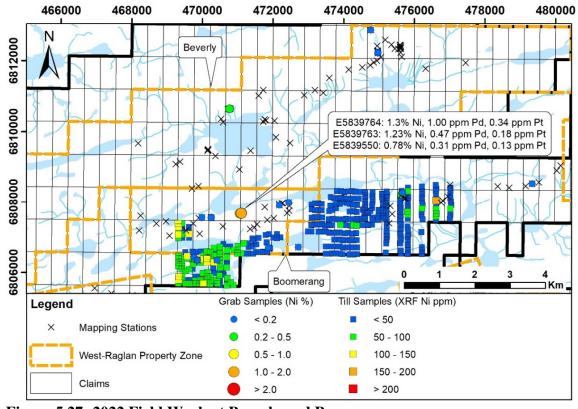


Figure 5.27: 2022 Field Work at Beverly and Boomerang

5.1.9 22WRT-14 and 22WRT-15

22WRT-14 and 22WRT-15 are located in the east-southern part of the property under the zone Boomerang (Map 1). They were created in 2022 by looking at the Mag and EM data in underexplored part of the West-Raglan properties.

22WRT-14 shows weak to moderate mag anomalies with an East/West trend associated with EM anomalies. 22WRT-15 shows the same feature as 22WRT-14 in the southern part of the zone and it also shows a high mag anomaly to the north associated with EM anomalies with an East/West trend (Figure 5.28). Historical work is non-existent on 22WRT-14 and minimal work was carried over 22WRT-15. Satellite Imagery shows potential outcrops on both zones (Figure 5.29). The objective of the mapping program in 2022 on 22WRT-14 and 22WRT-15 was to find the source of the Mag and EM anomalies.

In total, 10 mapping stations were recorded and three grab samples were collected on 22WRT-14 while 30 mapping stations were recorded and two grab samples were collected on 22WRT-15 (Figure 5.30). Assay results showed no anomaly in the grab samples. Ultramafic rock was found on 22WRT-14, but no Ni mineralization was associated. No further surface work is recommended at this time, but the zones will benefit from high resolution geophysics to help with further work.

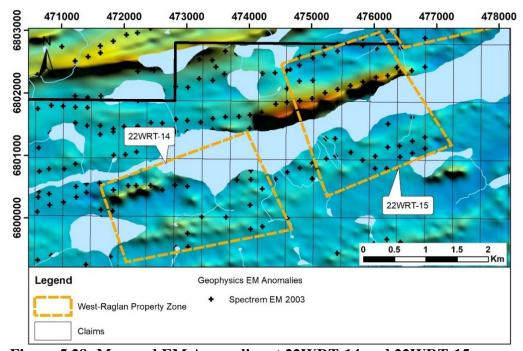


Figure 5.28: Mag and EM Anomalies at 22WRT-14 and 22WRT-15

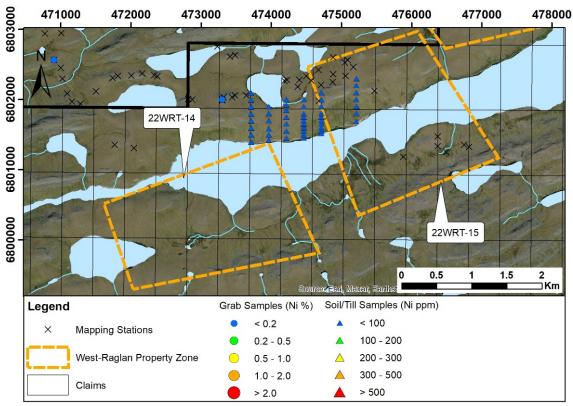


Figure 5.29: Historical Samples and Satellite Imagery at 22WRT-14 and 22WRT-15

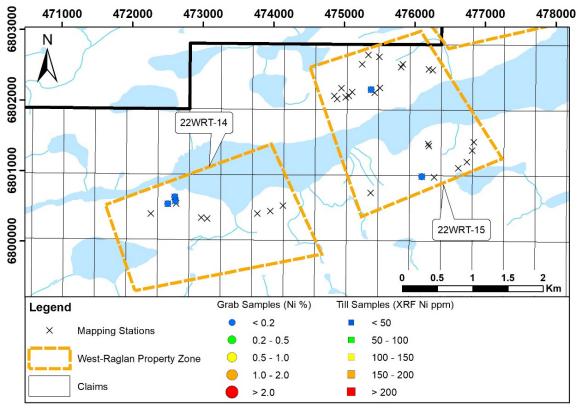


Figure 5.30: 2022 Field Work at 22WRT-14 and 22WRT-15

5.1.10 22WRT-16, 22WRT-17, 22WRT-18 and 22WRT-19

22WRT-16, 22WRT-17, 22WRT-18 and 22WRT-19 are located in the eastern part of the property under the zone Horseshoe (Map 1). They were created in 2022 by looking at the Mag and EM data in under-explored part of the West-Raglan properties.

22WRT-16 shows an isolated EM anomaly associated with a high magnetic feature (Figure 5.31). Historical work shows very weak nickel anomalies in the till and no mapping stations over the EM anomaly (Figure 5.32). The objective of the mapping program in 2022 on 22WRT-16 was to find the source of the Mag and EM anomalies. In total, 26 mapping stations were recorded (Figure 5.33). No ultramafic rock was found and the source of the isolated EM anomaly was not explained. No further surface work is recommended at this time, but the zone will benefit from high resolution geophysics to help with further work.

22WRT-17 shows weak to moderate mag anomalies with an East/West trend associated with EM anomalies (Figure 5.31). Historical work was mostly done on the eastern part of the zone, but the majority of the zone is still under explored. Two historical grab samples showed anomalous Ni values ranging between 0.2 to 0.5%. Satellite imagery shows various outcrop consistent with the Mag and EM anomalies (Figure 5.32). The objectives of the mapping and till program in 2022 on 22WRT-17 were to find the source of the Mag and EM anomalies and to follow up on the grab samples anomalies with a till grid over the zone. In total, 53 mapping stations were recorded and two grab samples were collected over 22WRT-17. Various ultramafic rocks were found in boulder and on outcrops, but no nickel anomalies were found in the grab samples. 36 till samples were collected over five North/South lines spaced by 400 meters over 22WRT-17. Portable XRF analysis shows no significant nickel anomalies across the grid (Figure 5.33). The Mag and EM anomalies were not explained during the 2022 exploration program over 22WRT-17. The till grid needs to be completed in the western part of the zone to cover the geophysics anomalies. 22WRT-17 will benefit from high resolution geophysics to help with further work.

22WRT-18 shows two isolated EM anomalies associated to very low Mag features (Figure 5.31). Historical work shows few mapping stations with no ultramafic rock described and satellite imagery shows potential outcrops in the southern part of the zone (Figure 5.32). The objectives of the mapping and till program in 2022 on 22WRT-18 were to find the source of the EM anomalies with a till grid over the zone. In total, eight mapping stations were recorded and two grab samples

were collected. Various ultramafic rocks were found in boulders, but no nickel anomalies were found in the grab samples. Seven till samples were collected over two North/South lines spaced by 400 meters. Portable XRF analysis shows no significant nickel anomalies across the grid (Figure 5.33). No nickel anomaly was found and the source of the two isolated EM anomalies was not explained. No further surface work is recommended at this time, but the zone will benefit from high resolution geophysics to help with further work.

22WRT-19 shows high Mag anomalies with an East/West trend (Figure 5.31). Historical work is non-existent and satellite imagery shows potential outcrops (Figure 5.32). The objective of the mapping program in 2022 on 22WRT-19 was to find the source of the Mag anomalies. In total, 11 mapping stations were recorded and three grab samples were collected (Figure 5.33). Ultramafic rock was found in outcrops over the high Mag anomaly, but no nickel mineralization was found associated to them. No further surface work is recommended at this time, but the zone will benefit from high resolution geophysics to help with further work.

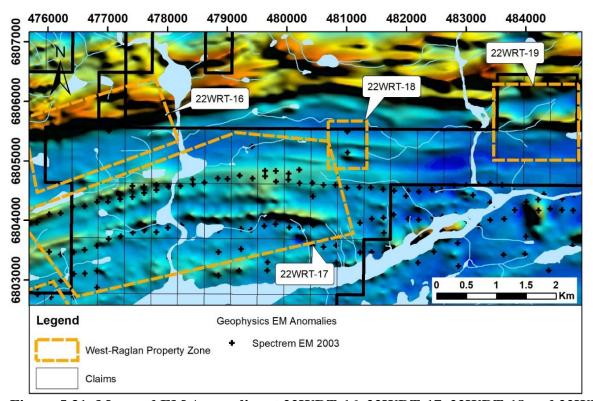


Figure 5.31: Mag and EM Anomalies at 22WRT-16, 22WRT-17, 22WRT-18 and 22WRT-19

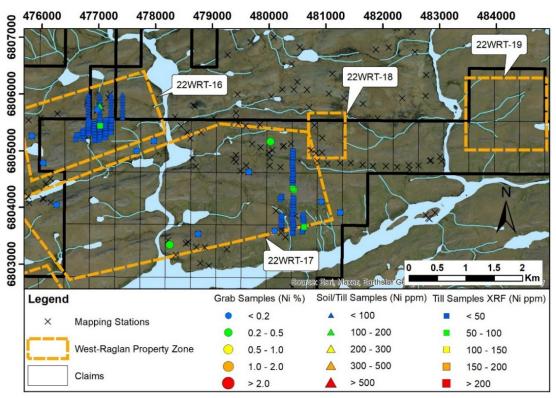


Figure 5.32: Historical Samples and Satellite Imagery at 22WRT-16, 22WRT-17, 22WRT-18 and 22WRT-19

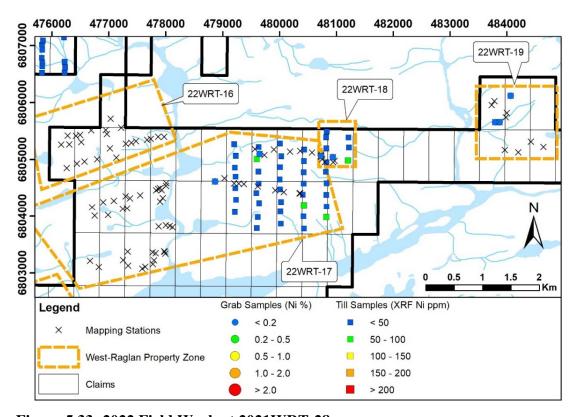


Figure 5.33: 2022 Field Work at 2021WRT-28

5.1.11 Horseshoe

Horseshoe is located at the north-eastern part of the property, under the area named Blue (Map 1). The area was named after a high magnetic anomaly that has the form of a horseshoe and which is associated with several EM anomalies (Figure 5.34). Historical work showed many intrusive ultramafic rocks in outcrop along with mafic volcanic rocks. The zone is covered by a till sampling grid showing several nickel anomalies to the East and the West of the zone and historical sampling show one historical grab sample with 1.86% Cu (Figure 5.35). The high magnetic anomaly of Horseshoe was historically covered by geological mapping and sampling, but several high magnetic anomalies are also present outside the zone and were never covered. The objectives of the till and mapping programs in 2022 over Horseshoe were to find the source of the high magnetic features outside the zone.

In total, 70 mapping stations were recorded and seven grab samples were collected at Horseshoe and the surroundings. 94 till samples were collected to the East and South/East of Horseshoe (Figure 5.36). One grab sample (E5839533) returned a low anomaly of 0.33% Ni related to an ultramafic rock on the western part of Horseshoe. Portable XRF analysis of the till samples showed several moderate anomalies (100 to 150 ppm Ni) in the eastern part of Horseshoe where several ultramafic outcrops were found. Both high magnetic features outside the Horseshoe zone were found and described as ultramafic rock, but no nickel mineralization was associated to them. Horseshoe shows several EM and nickel anomalies in the till and is a good area for more geological mapping. The zone will benefit from high resolution geophysics to help with further work.

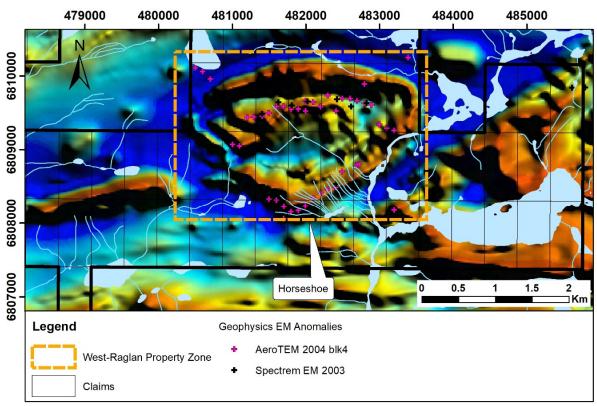


Figure 5.34: Mag and EM Anomalies at Horseshoe

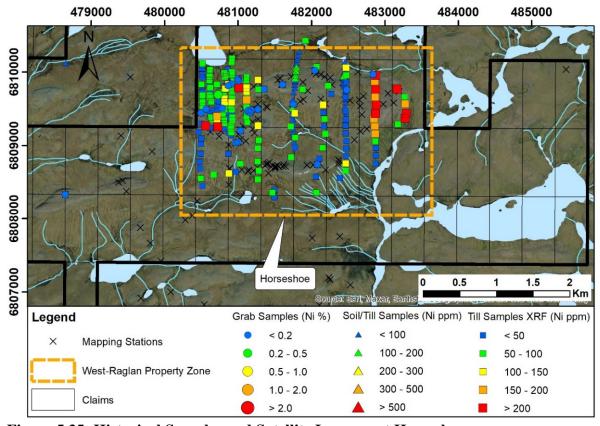


Figure 5.35: Historical Samples and Satellite Imagery at Horseshoe

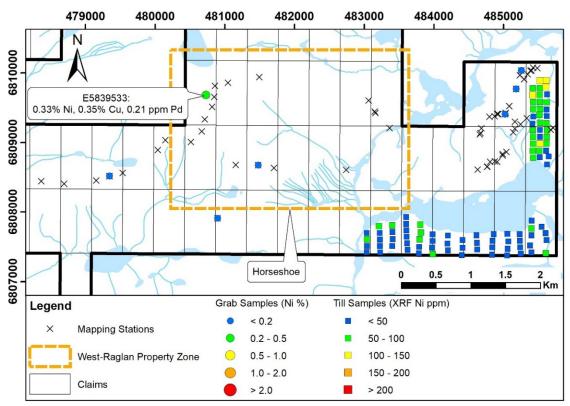


Figure 5.36: 2022 Field Work at Horseshoe

5.2 Geophysics Survey

Three types of geophysics survey were carried out during the 2022 exploration program on the West-Raglan property. A MaxMin survey and a VLF survey were undertaken on the Big Potato North zone by Orford Mining personal staff to help with the mapping and to characterize the extension of the showing Little French Fries. Jointly to the drilling, a bore hole EM (BHEM) survey was carried out by Crone Geophysics and Exploration Ltd utilizing a Time Domain Pulse-EM tool. Eight drill holes were surveyed over the nine drill holes drilled during the 2022 drilling campaign. One hole was left out due to technical issues.

5.2.1 MaxMin Survey

The MaxMin survey was undertaken by Orford Mining personal staff over the Little French Fries showing on the Big Potato North zone to help with the characterization of the extension of the massive sulphide layer under the overburden. In total, 2.31 line-kilometers of MaxMin survey was carried out on six North/South lines at a 25m line spacing (Figure 5.37). The MaxMin survey

generated four EM anomalies on the survey grid. One of the EM anomalies is directly on the Little French Fries Showing and the three other EM anomalies are located 120 meters North to the Little French Fries showing following an East/West Trend over 50 meters. Geological mapping work was carried on the conductors and the source of the EM anomalies generated by the MaxMin survey were observed at surface and were found to be related to a sediment formation.

5.2.2 VLF Survey

The VLF survey was undertaken by Orford Mining personal staff in the vicinity of the Little French Fries showing on the Big Potato North zone to help with the identification of any other occurrence of the massive sulphides unit in the area. In total, a surface area of 1.25 km² was covered by the VLF survey (Figure 5.38). The VLF survey generated four trends of EM anomalies on the survey grid. One series of EM anomalies was found approximately one kilometer north of the Little French Fries showing following an East/West trend over 500 meters. Another series of EM anomalies was found approximately 250 meters to the West/Southwest of the showing following an East/West trend over 250 meters. A third series of EM anomalies was found approximately 350 meters to the East of the showing following an East/West trend over 200 meters. The fourth series of EM anomalies was found approximately 600 meters to the Southeast of the showing following an East/West trend over 100 meters. Geological mapping work was carried on the conductors and the source of the EM anomalies generated by the VLF survey were all observed at surface and were found to be related to sediments formations.

5.2.3 BHEM Survey

After the completion of a drill hole, a borehole electromagnetic survey was carried out by Crone Geophysics and Exploration Ltd in order to generate conductive anomalies in the surroundings of the tested drill holes which would indicate if the SQUID EM plates generated in 2021 was adequately tested and/or to found new conductive anomalies. All specifications and results of the BHEM survey can be found in the report 'Crone Pulse-EM Survey - Orford Mining West Raglan - Geophysical Survey and Logistics Report Summer 2022' in Appendix 3.

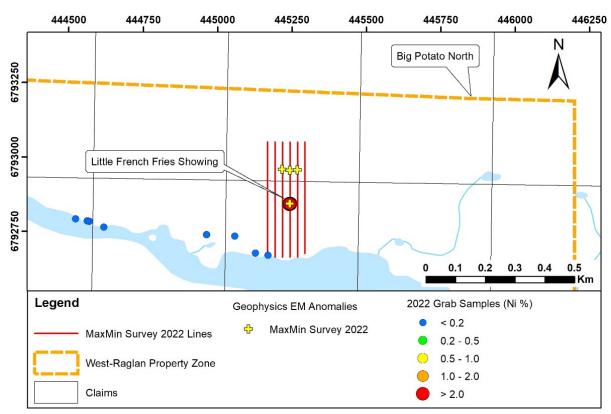


Figure 5.37: 2022 MaxMin Survey at Big Potato North

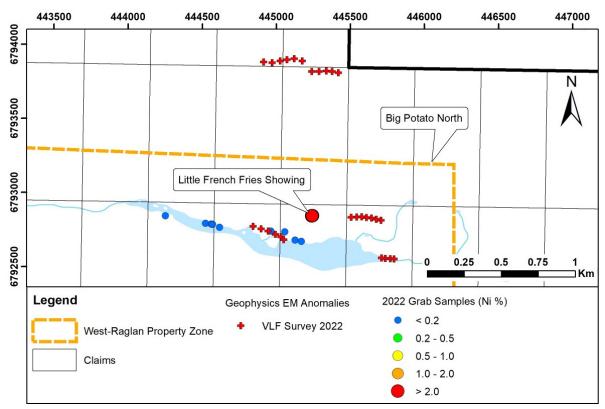


Figure 5.38: 2022 VLF Survey at Big Potato North

6 2022 DRILLING PROGRAM

Historical Drilling

Between 2003 and 2010, Anglo American Exploration Canada Ltd. drilled 197 drill holes on the West-Raglan property targeting primarily the main North Trend for a total of approximately 38,000 meters of drilling. Most of the work was focused on the Frontier area with 143 drill holes where several nickel mineralization lenses were found and defined over the years. Only 54 drill holes were drilled across the rest of the West-Raglan property by Anglo American which makes the majority of the North Trend underexplored.

In 2012 and 2015, True North Nickel (TNN) drilled 42 drill holes on the West-Raglan property with a targeting primarily the Frontier area for a total of approximately 7,050 meters of drilling. Most of the work was focused on continuing the exploration of the nickel lenses previously found by Anglo American. Only three drill holes were drilled on the Beverly area by True North Nickel which makes the majority of the North Trend underexplored.

Orford Mining Drilling

In 2022, Orford Mining Corp. completed a 2,589 meters drilling program in nine drill holes on the West-Raglan property between July and August 2022 (Table 6.1). The drilling program focused on three different areas of the property; 342 meters were drilled on two drill holes at Boomerang, 1,611 meters were drilled on four drill holes at Beverly and 636 meters were drilled on three drill holes at Frontier. The objectives were to test electromagnetic plates generated from ground EM in 2021 and Borehole EM from previous programs (Figure 6.1). Drilling operations were completed using one helicopter-portable drill rigs under contract with G4 Drilling from Val d'Or, Quebec.

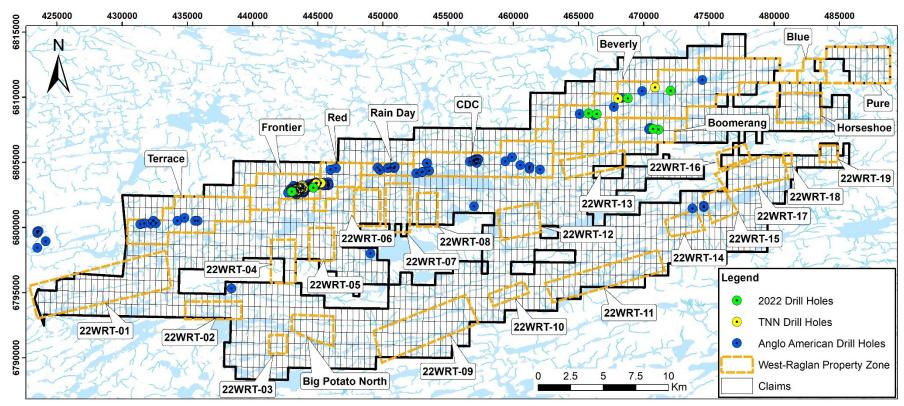


Figure 6.1: Location of drill holes over the West-Raglan property

Table 6.1: Summary of the West Raglan 2022 drilling program

Hole Number	Northing (Meters)	Easting (Meters)	Elevation (Meters)	Azimuth (Degrees)	Dip (Degrees)	Depth (Meters)	Area	Claim Number
WR-22-195	6807500.3	471140.98	376	344.06	-54.76	225	Boomerang	1096737
WR-22-196	6807556.49	470735.19	368	336.01	-59.15	117	Boomerang	1096736
WR-22-197	6808740	465776	418	317.13	-79.13	468	Beverly	1095833
WR-22-198	6808691.99	466409.56	427	339.99	-55.38	414	Beverly	1095834
WR-22-199	6810488.55	472064.31	372	340	-65	333	Beverly	1096775
WR-22-200	6809895.04	468797.38	411	340	-69.61	396	Beverly	1096755
WR-22-201	6802723.45	443020.68	360	180	-60	162	Frontier	1094120
WR-22-202	6802725	443022	357.08	180	-71.29	165	Frontier	1094120
WR-22-203	6803032	444671	302.6	0.24	-58.56	309	Frontier	1094123

6.1 Drilling methodology

Drill holes sites were marked in the field with wood pickets at predetermined locations using a differential GPS and the Mazac Smart Aligner Tool. Survey of collar location and azimuth/dip were measured with the use of differential GPS and the Mazac Smart Aligner Tool once the drill hole was completed. Drill core was oriented in order to collect structural information.

Diamond drilling was carried out on a 24-hour basis. Upon completion of each hole, drill sites were inspected to ensure cleanliness and pictures were taken before and after drilling. Drill holes casings were capped and identified. The core was transported by helicopter to Chukotat Camp, where logging and sampling were conducted. Drill core is currently stored at the Chukotat Camp core yard, stacked on pallets.

6.2 Logging procedure

Logging procedures were conducted according to usual industry practice. Recorded data included core length, RQD, core box numbering and geological information such as lithology, alteration, structure and mineralization. Data, including sampling intervals, were captured in MX Deposit software. Sampling intervals were defined by lithology and abundance of mineralization with a minimum length of 0.3m and a maximum length of 1.5m. Sampling identification tags were left in the boxes. Pictures of complete core were systematically taken and archived.

Once logging was completed, the core boxes were moved to a core rack sorted by the core boxes number and ultimately moved in the core saw room for sampling.

6.3 2022 Drilling results

The 2022 drilling campaign was undertaken in July and August during the 2022 exploration program. In total, 2,589 meters were drilled on three areas of the West-Raglan property: Boomerang, Beverly and Frontier. Cross-sections of each drill hole done by Orford Mining in 2022 are available in Appendix 4 in 11X17 format. Drill logs of each drill hole and analysis certificates are also available in Appendices 5 and 6. Table 6.2 summarizes the results of each drill hole of the 2022 drilling campaign. At the moment of redacting this report, assay results are still outstanding for hole WR-22-202 from 69.0 meters to the end of the hole and for hole WR-22-203 from 3.8 to 6.5 meters and from 238.5 meters to the end of the hole.

Table 6.2: Results Summary of the West-Raglan 2022 drilling program

Hole Name	Area	Targets	Results		
WR-22-195	Boomerang	L17200E Plate 1, 4 and 5 from 2021 SQUID EM Survey	Conductors explained. 0.95% Ni, 0.72 ppm Pd, 0.30 ppm Pd and 0.25% Cu over 2m from 178.8 to 180.8m.		
WR-22-196	Boomerang	L16800E Plate 1, L16900E Plate 1 and L17100E Plate 1 from 2021 SQUID EM Survey	Conductors explained. No notable Ni intervals of interest.		
WR-22-197	Beverly	L12400E Plate 6, L12500E Plate 6, L12600E Plate 6 and L12700E Plate 6 from 2021 SQUID EM Survey	No explanation of the conductor targets.		
WR-22-198	Beverly	L13100E Plate 6 from 2021 SQUID EM Survey	Conductors explained. No notable Ni intervals of interest.		
WR-22-199	Beverly	L19100E Plate 1 from 2021 SQUID EM Survey	No explanation of the conductor target.		
WR-22-200	Beverly	L15700 Plate 10 from 2021 SQUID EM Survey	Conductors explained. No notable Ni intervals of interest.		
WR-22-201	Frontier	BHEM Plate generated from drill hole WR- 06-119	Conductors explained. 0.66% Ni, 0.08 ppm Pd, 0.36 ppm Pt and 0.24% Cu over 9m from 109.5 to 118.5m.		
WR-22-202	Frontier	BHEM Plate generated from drill hole WR- 06-119	Conductors explained. The hole intersected Pyrrhotite, Pentlandite and Chalcopyrite mineralization between 120 and 140m. Assays outstanding from 69m to end of the hole.		
WR-22-203	Frontier	L444700 Plate 1 and 2 from 2021 SQUID EM Survey	Conductors explained. 0.46% Ni, 0.43 ppm Pd, 0.12 ppm Pt over 3.85m from 156 to 159.85m. One anomalous gold value reported 3.21 ppm Au over 1m from 178 to 179m. Assays outstanding from 3.8 to 6.5m and from 238.5m to end of the hole.		

6.3.1 Boomerang

Two holes were drilled at Boomerang during the 2022 drilling program: WR-22-195 and WR-22-195 (Table 6.1, Figure 6.2). The purpose of both drill holes was to target EM plates generated by the 2021 SQUID EM Survey. Both drill holes succeeded in explaining the conductors by intersecting all the modelled plates. WR-22-195 reported two meters at 0.95% Ni, 0.72 g/t Pd, 0.30 g/t Pd and 0.25% Cu from 178.8 to 180.8m. This is the most significant intercept outside of the Frontier Zone on the West Raglan Property.

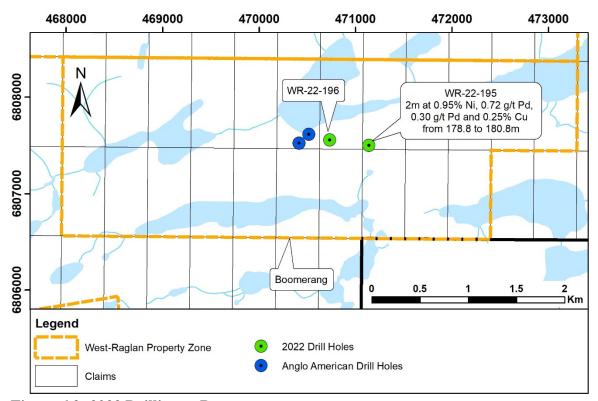


Figure 6.2: 2022 Drilling at Boomerang

6.3.1.1 WR-22-195

Drill hole WR-22-195 was planned to test the plates named 'L17200E Plate 1', 'L17200E Plate 4' and 'L17200E Plate 5' generated by the 2021 SQUID EM survey, which may be related to the nearby surface showings of 1.3% nickel found in 2015. The planned hole length was 200 meters to test the three plates modelled at approximately 108m, 145m, and 193m. The hole intersected all the modelled plates.

The hole started in a peridotite up to 43.15m where a layer of sediments was intersected up to 58.98m followed by a sedimentary massive sulphide up to 59.32m. WR-22-195 continued in a peridotite up to 133.3m with local interstitial pyrrhotite up to 30% from 98.25 to 102.1m. This unit was intercalated by sedimentary massive sulphides from 113.85 to 119.42m and 122.3 to 124.95m. A layer of volcaniclastic rocks were then intersected up to 144.85 and was followed by an intercalation of sediments and sedimentary massive sulphides up to 178.8m. The hole then intersected a peridotite with 45% pyrrhotite and pentlandite up to 180.8 and continued in the same unit with 3 to 10% disseminated pyrrhotite up to the end of the hole at 225m.

Assay results reported 0.95% Ni, 0.72 g/t Pd, 0.30 g/t Pd, 0.25% Cu over two meters from 178.8 to 180.8m. This is the most significant intersection outside of the Frontier Zone. A BHEM survey was undertaken by Crone Geophysics upon completion of the hole. Results of the BHEM can be found in Appendix 3. The cross-section of WR-22-195 can be found in Appendix 4.

6.3.1.2 WR-22-196

Drill hole WR-22-196 was planned to test the plate named 'L17100E Plate 1' and to go through two other proximal plates named 'L16800E Plate 1' and 'L16900E Plate 1', all generated by the 2021 SQUID EM survey. The conductors were found to be pyrrhotite bearing graphitic sediments.

WR-22-196 started in sediments followed by sedimentary massive sulphides from 63.93 to 71.1m which are interpreted to be the source of the conductor anomalies. The hole continued in a peridotite up to the end of the hole at 117m.

Assay results reported no nickel values of interest. A BHEM survey was undertaken by Crone Geophysics upon completion of the hole. Results of the BHEM can be found in Appendix 3. The cross-section of WR-22-196 can be found in Appendix 4.

6.3.2 Beverly

Four holes were drilled at Beverly during the 2022 drilling program: WR-22-197, WR-22-198, WR-22-199 and WR-22-200 (Table 6.1, Figure 6.3). The purpose of all drill holes was to target EM plates generated by the 2021 SQUID EM Survey. Ultramafic rocks were intercepted in three of the four holes, along with some accumulations of sulfides. They did not contain nickel values of interest. Conductors that were explained were found to be associated with sediments outside or in contact with ultramafic rock.

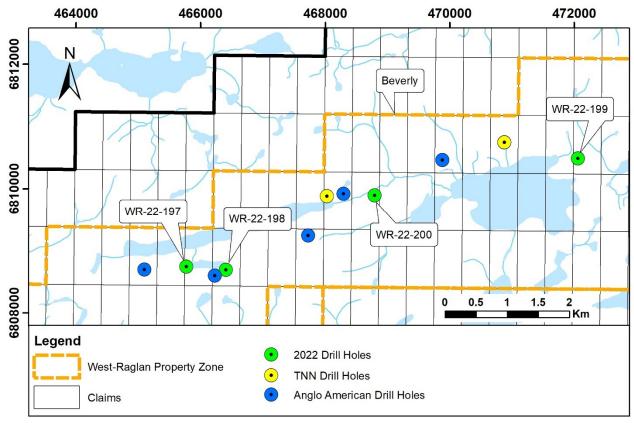


Figure 6.3: 2022 Drilling at Beverly

6.3.2.1 WR-22-197

Drill hole WR-22-197 was planned to test the sequence of plates named respectively 'L12400E Plate 6', 'L12500E Plate 6', 'L12600E Plate 6' and 'L12700E Plate 6' generated by the 2021 SQUID EM survey. There was no explanation for the modelled conductors in the hole and no conductors consistent with the modelled plates were intersected.

WR-22-197 intersected a peridotite from the start to the end of the hole at 411m. No mineralization was found that could explain the conductors, but small and massive magnetite veins which are conductive were intersected higher in the hole.

Assay results reported no nickel values of interest. Due to technical problems with hole stability and an operator shift change, BHEM was performed only on the lower part of the hole (below 290m) by Crone Geophysics upon completion of the hole. Results of the BHEM can be found in Appendix 3. The cross-section of WR-22-197 can be found in Appendix 4.

6.3.2.2 WR-22-198

Drill hole WR-22-198 was planned to test the plate named 'L13100E Plate 6' generated by the 2021 SQUID EM survey. The hole intersected a pyroxenitic flow containing bands of 10 to 20% pyrrhotite consistent with the modeled conductor between 365m to 408m.

WR-22-198 started mafic to ultramafic volcanic rocks up to 82.56m locally intersected by sedimentary massive sulphides from 30.2 to 32.93m and from 51.02 to 68.75m. The hole continued in sediments and interflow sediments up to 125.85 where an olivine pyroxenite was intersected up to 147m followed by a pyroxenite up to 223.6m. WR-22-198 continued in a sequence of semimassive sulphides, sedimentary massive sulphides and sediments up to 237.74m to returned in a peridotite up to 243m followed by volcanic rocks up to 252.4m. The hole intersected then a pyroxenite up to 317.23m followed by and intercalation of intermediate dyke (317.23 to 334.96m and 351.2 to 354.44m) and pyroxenite (334.96 to 351.2m and 354.44 to 364.63m). WR-22-198 continued in ultramafic flow up with up to 20% pyrrhotite to 396m followed by a sequence of sediments breccia with 10% pyrrhotite up to 409.76. The hole ended in ultramafic flows up to 414m.

Assay results reported no nickel values of interest. Borehole EM was not completed due to a technical problem. The cross-section of WR-22-198 can be found in Appendix 4.

6.3.2.3 WR-22-199

Drill hole WR-22-199 was planned to test the plate named 'L19100E Plate 1' generated by the 2021 SQUID EM survey. The target depth was 260m, but no conductor was intersected near that depth. Bands and coarse fragments of pyrite were found between 325m to 327m which could be a source of the conductor.

WR-22-199 intersected volcaniclastics rock up to the end of the hole at 333m except a band of chert between 47.52 to 49.67m and an interval of pyrite and fragmental pyrite between 325.57 to 327.33m.

Assay results reported no nickel values of interest. A BHEM survey was undertaken by Crone Geophysics upon completion of the hole. Results of the BHEM can be found in Appendix 3. The cross-section of WR-22-199 can be found in Appendix 4.

6.3.2.4 WR-22-200

Drill hole WR-22-200 was planned to test the plate named 'L15700E Plate 10' generated by the 2021 SQUID EM survey. The targeted conductors were explained by sediments rich in pyrrhotite.

WR-22-200 started in a peridotite up to 193.3m followed by a gabbro up to 287.6m. The hole continued in interflow sediments up to 370.5m with locally up to 5% pyrrhotite between 345 to 348m, which explained the conductor. The hole ended in sediments up to 396m with a quartz vein from 374.25 to 378.46m.

Assay results reported no nickel values of interest. A BHEM survey was undertaken by Crone Geophysics upon completion of the hole. Results of the BHEM can be found in Appendix 3. The cross-section of WR-22-200 can be found in Appendix 4.

6.3.3 Frontier

Three holes were drilled at Frontier during the 2022 drilling program: WR-22-201, WR-22-202 and WR-22-203 (Table 6.1, Figure 6.4). The purpose of WR-22-201 and WR-22-202 was to test the western extension of the 'West Pipe' lens based on a plate modelled from BHEM data from hole WR-06-119. The purpose of WR-22-203 was to target an EM plate generated by the 2021 SQUID EM Survey. WR-22-201 and WR-22-202 succeeded in showing the extension of the 'West Pipe' lens by intersecting 9m at 0.66% Ni, 0.08 g/t Pd, 0.36 g/t Pt and 0.24% Cu from 109.5 to 118.5m in WR-22-201 and with prospecting mineralization in WR-22-202. At the moment of redacting this report, assay results are still outstanding for hole WR-22-202 from 69.0 meters to the end of the hole. WR-22-203 intersected the modelled plates and reported 3.85m at 0.46% Ni, 0.43 g/t Pd, 0.12 g/t Pt from 156 to 159.85m. At the moment of redacting this report, assay results are still outstanding for hole WR-22-203 from 3.8 to 6.5 meters and from 238.5 meters to the end of the hole.

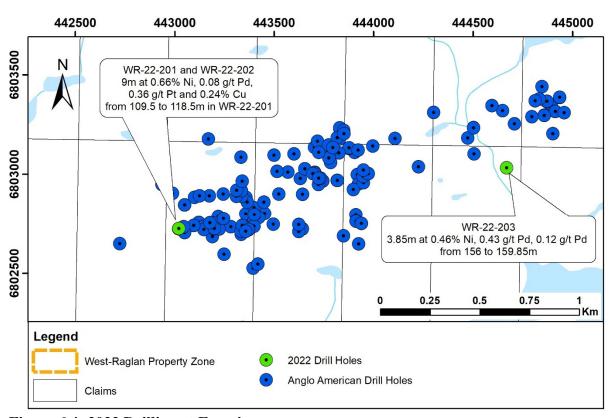


Figure 6.4: 2022 Drilling at Frontier

6.3.3.1 WR-22-201 and WR-22-202

Drill hole WR-22-201 was planned to test the western extension of the 'West Pipe' lens based on a plate modelled from BHEM data of drill hole WR-06-119 and drill hole WR-22-202 was planned on the same collar as WR-22-201 with a steeper dip to test the down dip response of the modelled plate. The targeted conductors were explained by semi-massive pentlandite and pyrrhotite at the basal contact of a peridotite with basalt in WR-22-201 and by the presence of pyrrhotite, pentlandite and chalcopyrite mineralization that was intersected between 120 and 140m in WR-22-202.

WR-22-201 started in a peridotite containing up to 20% pyrrhotite and pentlandite up to 117m followed by a basalt up to the end of the hole at 162m. Semi-massive pentlandite and pyrrhotite was intersected from 111.55 to 111.84m.

WR-22-202 started in a peridotite containing up to 5% pyrrhotite with trace pentlandite up to 127.2m followed by a basalt up to the end of the hole at 165m. Fragmental and vein related chalcopyrite was intersected between 133.8 to 137.1m which could explain a conductor response.

Assay results reported 0.66% Ni, 0.08 g/t Pd, 0.36 g/t Pt and 0.24% Cu over nine meters from 109.5 to 118.5m in WR-22-201. Assay results reported no nickel values of interest in WR-22-202 up to 69m. At the moment of redacting this report, assay results are still outstanding for hole WR-22-202 from 69 meters to the end of the hole. A BHEM survey was undertaken by Crone Geophysics upon completion of each hole. Results of the BHEM can be found in Appendix 3. The cross-section of WR-22-201 and WR-22-202 can be found in Appendix 4.

6.3.3.2 WR-22-203

Drill hole WR-22-203 was planned to test the plates named 'L444700E Plate 1' and 'L444700E Plate 2' generated by the 2021 SQUID EM survey. The first conductor was explained by an unusual zone of fuchsite which had been highly silicified at 150m. The second conductor was explained by 15% pyrrhotite, pentlandite and chalcopyrite mineralization in a peridotite from 261 to 271m.

WR-22-203 started in an olivine pyroxenite up to 40m followed by a peridotite up to 82m and back into an olivine pyroxenite up to 95.3m. The hole then intersected a silicified sediments layer

up to 106.5m to continue into a peridotite up to the end of the hole at 309m. A series of quartz veining systems from 150 to 160m intruding the peridotite brought an unusual transitional sericite to fuchsite alteration halo between 145 to 185m with up to 1.5% pentlandite, pyrite and arsenopyrite mineralization between 156 to 160m, explaining the 'L444700E Plate 1' conductor. Another mineralized zone of 15% pyrrhotite, pentlandite and chalcopyrite from 261 to 271m was intersected in the peridotite, explaining the second conductor 'L444700E Plate 2'.

Assay results reported 0.46% Ni, 0.43 g/t Pd, 0.12 g/t Pt over 3.85m from 156 to 159.85m. At the moment of redacting this report, assay results are still outstanding for hole WR-22-203 from 3.8 to 6.5 meters and from 238.5 meters to the end of the hole. A BHEM survey was undertaken by Crone Geophysics upon completion of the hole. Results of the BHEM can be found in Appendix 3. The cross-section of WR-22-203 can be found in Appendix 4.

7 DATA COLLECTION, SAMPLING, SAMPLE PREPARATION, ANALYSIS AND SECURITY

Three different types of samples were collected by Orford Mining Corporation during the 2022 program: core samples, surface rock grab samples and till samples. All lab certificates for chemical analysis can be found in Appendix 6.

- Core samples consist of half core of NQ size core cut on-site using a core saw.
- Grab samples consisted of pieces of rocks collected with hammers from outcrops or boulders in the field.
- Till samples consist of approximately 100 grams of till material collected from frost boils, which is a common feature in permafrost terrain.

The sampling methodologies, chain of custody and analytical methods used by Orford Mining Corporation were the same of previous years to ensure consistency of the results.

7.1 Data collection

Exploration data collected by Orford Mining Corporation for field programs were incorporated into MX Deposit database which is a web database managed on a cloud server by Seequent. Data collected in the field by the mapping geologists, which include mapping stations, surface rock samples and till samples, were recorded electronically on site with a tablet using the program GFSNav. This application allows the user to record geotagged information interactively with ArcGIS using a tablet equipped with internal GPS. Data collected in the field are exported into ArcGIS database and validated every evening. Data is then exported into CSV files and imported into MX Deposit. This software includes a series of validation tools to prevent entry errors.

7.2 Sampling and chain of custody

Surface rock grab samples were collected by the mapping crews, broken from outcrops or boulders with a sledgehammer. Pieces were placed into a plastic bag with a unique sample tag and the other piece was retained as witness stored at the camp. Most samples were selectively collected on mineralization, so they cannot be considered as representative of any significant volume of rock.

Till samples were collected by the mapping crews along traverses. Till samples were collected from frost-boils, which are a structure created where clay-rich tills are pushed up to the surface by cryoturbation (frost heave) and are thus considered as representative of basal till. Samples were taken with a plastic shovel and put in plastic bags with a unique sample tag.

Drill core was cut in half with a core saw along sampling marks defined by the geologist. Half of the core was placed in a sample bag and the other retained in the core box as a witness. A laboratory tag, with a unique sample ID, was placed in each bag before sealing, as well as tacked in the core box. The sample ID was also marked on the bag with ink marker and sample information recorded into the database.

In preparation for shipment, sample bags were placed in woven polypropylene bags, marked with the list of content and shipping number and photographed for records. No seal was applied. Shipments for core and grab samples were flown by chartered aircraft from Camp Chukotat to Rouyn-Noranda. Logistics contractor (Outland) secured the sample shipments in a storage area at the airport before being delivered by ground transportation to AGAT Laboratories preparation facility in Val-d'Or, Quebec. The samples were recorded in AGAT Laboratories management system and notified Orford Mining upon arrival through an email. A pulp fraction of all the samples was afterward sent to AGAT Laboratories facility in Mississauga, Ontario for the gold and multi-element analysis. Till samples were only analyzed by Portable XRF and were therefor placed in woven polypropylene bags and stored at the Chukotat camp.

7.3 Analytical methods

Sample preparation for core and grab samples were completed at AGAT Laboratories preparation facility in Val-d'Or, Quebec using the conventional preparation method 200-001. The samples were recorded in a tracking system, weighted, dried if needed and crushed at 75% passing 2 mm. A fraction of 250 g is then pulverized at 85% passing 75 microns. A fraction of the pulp was then shipped to AGAT Laboratories facility in Mississauga, Ontario to be analyzed for gold, palladium and platinum by lead oxide collection fire assay with an ICP-OES finish on a 50 g nominal weight (AGAT Laboratories method 202-555). The samples were then analyzed on 43 elements for multi-elements with a 4-acid digestion method with an ICP-OES finish (AGAT Laboratories method 201-070). Elements where the value was assayed above the detection limit

were analyzed with a sodium peroxide fusion method with an ICP-OES finish (AGAT Laboratories method 201-079).

7.4 Quality assurance and quality control

Both preparation and geochemical analysis of Orford Mining samples were completed at AGAT Laboratories facilities. The quality management system of AGAT Laboratories is accredited by the Standard Council of Canada (SCC) and found to comply with the requirements of ISO/IEC 17025:2017.

In order to monitor the analytical quality provided by AGAT Laboratories, Orford Mining implemented an internal QAQC program. This QAQC program consisted in the insertion of different certified reference materials (CRMs), blanks and duplicates at the ratio of 1:10 (10%) for the core samples and 1:20 (5%) for the surface rock samples.

The commercial certified reference materials used by Orford Mining for the core samples and the surface rock samples were CDN-ME-9, CDN-ME-10, CDN-ME-1207, CDN-ME-1208, OREAS 70b and OREAS 523. These certified reference materials were chosen to conform with the lithology and mineralization expected on the West-Raglan property. All certified values and performance gates for these certified reference materials are available on the CDN Ressources Laboratories website (http://www.cdnlabs.com/multi-element-standards-depleted-certificates/) and on the Ore & Research Exploration Pty Ltd website (http://www.oreas.com/).

The internal blank material used comes from a sand pit in the area of the Dumont project in Amos, Quebec, owned by Magneto Investments LP. The same material was used by Magneto Investments LP between 2007 and 2016 and was analyzed over 3,694 samples and showed 95% of results lower than 100 ppm Ni. The commercial certified reference blank material CDN-BL-10 was also used during the 2022 exploration program.

Analyses with less than 3 standard deviations (SD) away from the certified value of the CRM were considered as acceptable. Blank material analyses with less than 0.01 ppm Pd, less than 0.02 ppm Pt and less than 100 ppm for Ni, Cu and Co were considered acceptable.

Core duplicates consist of a quarter core of the given sample interval, and surface rock duplicates were selected from field samples with enough material to be duplicated.

Table 7.1 summarizes the QAQC review for the certified and blank reference material listed by standards and elements of the 2022 exploration program. In total, 35 standards, 34 blanks and 32 duplicates were inserted for the core sampling program. For the grab sampling program, 4 standards and 2 blanks were inserted. Analytical results complied with the quality control for the fire assay analysis with the method 202-555 on palladium and platinum and the multi-element analysis with the method 201-070 on the element arsenic and copper with 0% failure for the core and grab samples. Analytical results complied with the quality control for the multi-element analysis with the method 201-070 on the element cobalt with 3% failure for the core samples and 0% for the grab samples. Analytical results did not complied with the quality control for the multi-element analysis with the method 201-070 on the element nickel with 24% failure for the core samples and 50% for the grab samples.

Over the eight failures of the element nickel on the quality control in the core samples, only one occurred in grades of interest (higher than 0.2% Ni) and all failures of nickel were close to the third standard deviations on the low end of the certified values, which indicate a potential small underestimation of the nickel values in those zones. The failures on the CRM for the grab samples are only indicative as they are not part of any resource calculations and only indicates a possible underestimation of the grab sample anomalies in nickel. The certificates for which this situation occurred were accepted and noted by the qualified person of Orford Mining Corp. and imported into the database.

Table 7.1: Summary of QAQC review of 2022 analytical results (in brackets are failures)

Sample Type	Standard	Ni (201-070)	Pd (202-555)	Pt (202-555)	Co (201-070)	Cu (201-070)	As (201-070)
	OREAS 70b	15 (2)			15 (0)		
	OREAS 523				1 (0)		1 (0)
	CDN-ME-9	7 (2)	7 (0)	7 (0)	7 (0)	7 (0)	
	CDN-ME-10	9 (4)	9 (0)	9 (0)	9 (0)	9 (0)	
CORE	CDN-ME-1207	3 (0)	2 (0)	2 (0)	3 (1)	3 (0)	
	Total Std	34 (8)	18 (0)	18 (0)	35 (1)	19 (0)	1 (0)
	Magneto Blanks	33 (0)	33 (0)	33 (0)	33 (0)	33 (0)	
	CDN-BL-10	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	
	Total Blank	34 (0)	34 (0)	34 (0)	34 (0)	34 (0)	
	OREAS 70b	2(1)			2 (0)		
	CDN-ME-10	1(1)	1 (0)	1 (0)	1 (0)	1 (0)	
CD A D	CDN-ME-1207	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	
GRAB	Total Std	4 (2)	2 (0)	2 (0)	4 (0)	2 (0)	
	Magneto Blanks	2 (0)	2 (0)	2 (0)	2 (0)	2 (0)	
	Total Blank	2 (0)	2 (0)	2 (0)	2 (0)	2 (0)	

8 CONCLUSIONS AND RECOMMENDATIONS

The aim of the West Raglan Project is the delineation of a sustainable standalone mining development of a greater than 10 million tonne resource at grades comparable to other Ni-Cu-PGM resources currently being mined in the Raglan district.

Seven zones of Ni-Cu-PGM sulphide mineralization have been found to date on the West Raglan property. One of these zones, the Frontier zone, includes five high-grade lens clusters that have been identified to date. True North Nickel's exploration model is based on building a resource out of these mineralized lens clusters at Frontier, exploring for additional lenses, and for new lens clusters across the other zones on our property. The neighboring Raglan Mine hosts similar clusters of mineralized lenses in 12 distinct zones, four of which are currently in production and feeding a central mill facility (Lesher, 2007).

Between 2002 and 2008, high grade Ni-Cu-PGM mineralization was discovered in five key zones within the Frontier Area at Frontier South, Frontier East, Frontier Central, Seahawk A, and Seahawk B. In 2012, follow-up drilling of these zones has defined twelve relatively small, but high grade lenses occurring in clusters. These zones remain open to expansion in most cases. Additional targets have been developed in these zones by three-dimensional reinterpretation of geology, magnetic, and electromagnetic modeling. These will be developed into drill targets for 2013.

The high nickel sulphide grades encountered (up to 14% nickel) at Frontier and the potentially minable grade-thickness of some of the drill intercepts in this zone is considered highly encouraging. High quality nickel sulphide deposits are quite rare globally and potentially minable near-surface, high-grade nickel sulphide projects are exceedingly rare. The poly-metallic (copper and PGM) nature of these ores make them particularly attractive (Naldrett 2004).

Work completed on the West Raglan property to date has been mainly focused on a specific 2km stretch the relatively well exposed Raglan Trend (Frontier Zone) in the northern portion of the property which is considered to be the direct stratigraphic equivalent of rock units hosting the deposits at Xstrata Nickel's Raglan Mine. Limited exploration has been completed over the largely overburden covered southern portion of the property, which is interpreted to have high potential to host mineral deposits of the style being developed by Jilin Jien Nickel at Nunavik Mine. Further

exploration is recommended over this South Trend stratigraphy, though this work should remain secondary in focus to the Raglan Trend exploration due to the lower nickel tenor of this mineralization and the higher cost of exploring areas with limited outcrop control.

High Grade Ni-Cu-PGE mineralization has been intercepted in various drillholes at Frontier through the years. Mineralization is hosted in periodotitic and pyroxenic ultramafic units close to the Chukotat-Povungnituk boundary (North/Raglan Trend). Efforts to test drillhole targets in additional zones (outside of Frontier) were unsuccessful. An extensive surface mapping as resulted in high-grade Ni-Cu-PGE mineralization discovered in grab samples at surface along the north trend and soil/till anomalies show elevated values in copper and nickel in some areas of the south trend.

The goal of the 2022 program was to test ground SQUID EM targets generated in 2021 mainly outside of the Frontier zone. This resulted in the discovery of a new Ni-sulfide mineralized system at Boomerang grading two meters at 0.95% Ni, 0.72 g/t Pd, 0.30 g/t Pd and 0.25% Cu from 178.8 to 180.8m (section 6.3.1, WR-22-195). This is the best intercept outside of the Frontier zone and shows the potential of the West Raglan property in addition to and outside of the Frontier zone. It is recommended that the existing SQUID EM grid is extended eastward to measure any potential extension of this intercept (intercept is located on the most easterly line) and to collect high resolution ground magnetic data along the boomerang trend to provide more detailed magnetic inversions to help identify employment features.

The 2003 Airborne Spectrum survey covered the entire property. However, the geometry of the transmitter receiver is not conducive to identifying discrete conductors in proximity to strong formational and sedimentary conductors. In 2004, an AeroTEM II survey was flown on four blocks covering dominantly several north trend zones. This system is conducive to defining discrete targets but has limited depth penetration. The concentric geometry is his greatest strength but it is also his greatest challenge in that it will preferably identify shallow dipping anomalies responses over steeply dipping ones, which may be muted. The property would benefit from a newer HTEM survey with more power and a higher dipole moment such as Geotech's VTEM-plus specifically on the south trend where only Spectrum Data is Available.

Various ground geophysical EM and time-domain EM method were applied over the years. In almost all years, the loop-sizes were commonly far too big given the strength of the proximal formational conductors and the known sizes of "pods" of high grade nickel sulfide occurrence. The end result was a ground surface program which either re-identified airborne targets or energized formational conductors, swamping all other responses. Small moving loop ground TDEM surveys are time and cost intensive, and thus it is understandable to be tempted to use larger loops. However, given the review of historical data from various large loop surveys, it would be recommended to obtain quality data using a small moving loop (200 x 300 meters maximum, out of loop) survey using a fluxgate or squid sensor at 100 msec or more which was accomplished in the 2021 Exploration Program. This approach should be extended to other prospective parts of the property.

Borehole EM has been the most successful EM methods applied on the property with a decent success rate. In the early years with Anglo, sampling frequencies were as low as 16msec which is not optimal for long decaying mid to late channel Ni-sulfide conductors. Upon realization of the situation, the frequency increased to 150 msec in 2012. It is recommended that all BHEM surveys be done at 150 msec. It should also be noted that while this method of survey was successful in resulting in high grade Ni-Cu-PGE intercepts, the ability of the survey was noted to be limited to within 25 to 50 meters of a drillhole. This is likely due to the fact that most high grade Ni-Cu-PGE intercepts are small lenses containing net-textured to semi-massive sulfides containing high tenor Ni sulfides. Given that conductivity is a measure of connectivity of sulfide grains, it would be expected that a BHEM response from a large massive sulfide Ni-Cu-PGE bearing lens may be noted from a distance larger than 50 meters if geometry allows.

The West Raglan Property is a large land package (over 70,000 Ha) covering both the North and South trends of the Cape Smith Belt which host the Raglan and Canadian Royalties Deposits respectively. While historical exploration programs where successful at defining several lenses at Frontier, the 50 km+ strike length of the North/Raglan trend remains open given the several surface expressions (grab samples) of high grade mineralization, the large number of untested targets and all un-verified EM conductors. The south trend remains essentially unexplored even though previous programs consisted of extensive till/soil sampling. Many sources of EM anomalies, magnetic highs and till/soil sampling remain unexplained. This is in part due to the

higher degrees of overburden coverage over the south trend compared to the north trend. The north trend is expected to contain higher Ni-grade and higher Ni/Cu ratios than the south trend (Lesher, 2007). Given the North trend is well exposed, easier to access from Camp Chukotat and is expected to contain more favorable grades in Ni and higher Ni-Cu, it is recommended that a small program of 30 days should focus on mapping on the North Trend. Specifically in priority the area of Frontier, Beverly, Red, Boomerang and CDC. It is recommended that the focus of the 2023 Field Season is to test drill targets outside of the Frontier Zone and ultimately discover deposits outside of the North (Raglan Trend)

9 REFERENCES

Daigneault, R.A. 2008. Geologie du Quaternaire du nord de la péninsule d'Ungava, Québec: Geological Survey of Canada, Bulletin 533. 116 p., 3 maps 1:250,000.

Dionne-Foster, C. 2007: Geologie et Indices de Ni-Cu-EGP de la zone Frontier dans la Ceinture du Cape Smith, Nouveau Quebec : MSc Thesis, University of Quebec at Chicoutimi, 320 p.

Jowitt, S.M., Keays, R.R. and Peck, D.C., 2010, New insights into the geology and mineral potential of the West Raglan Ni-Cu-PGM project, Cape Smith Fold Belt, Quebec. Proceedings of the 11th International Platinum Symposium, Ontario Geological Survey, Misc. Release – Data 269.

Jowitt, S.M. and Ernst, R.E., 2012, Geochemical assessment of the metallogenic potential of Proterozoic LIPs of Canada, Lithos, In Press

Lamothe, D., 2007, Lexique stratigraphique de l'Orogene de l'Ungava, DV 2007-03, Geologie Quebec, 66 p.

Lesher, C.M., 2007. Ni-Cu-(PGM) Deposits in the Raglan Area, Cape Smith Belt, New Quebec, *in* Goodfellow, W.D., ed., Mineral deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geologic Provinces, and Exploration Methods: Special Publication No. 5, Mineral Deposits Division, Geological Association of Canada, p. 351-386.

Naldrett, A.J., 2004. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration, Springer Verlaag, 728 p.

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1	1092770	35G05	41.49	Active	2002-05-28	2023-05-27
2	1092776	35G05	41.48	Active	2002-05-28	2023-05-27
3	1092778	35G05	41.48	Active	2002-05-28	2023-05-27
4	1092810	35G05	41.42	Active	2002-05-28	2023-05-27
5	1092822	35G05	41.4	Active	2002-05-28	2023-05-27
6	1092823	35G05	41.4	Active	2002-05-28	2023-05-27
7	1092830	35G05	41.38	Active	2002-05-28	2023-05-27
8	1092831	35G05	41.38	Active	2002-05-28	2023-05-27
9	1092832	35G05	41.37	Active	2002-05-28	2023-05-27
10	1092837	35G05	41.36	Active	2002-05-28	2023-05-27
11	1092838	35G05	41.36	Active	2002-05-28	2023-05-27
12	1092839	35G05	41.36	Active	2002-05-28	2023-05-27
13	1092840	35G05	41.36	Active	2002-05-28	2023-05-27
14	1092841	35G05	41.36	Active	2002-05-28	2023-05-27
15	1092842	35G05	41.35	Active	2002-05-28	2023-05-27
16	1092843	35G05	41.35	Active	2002-05-28	2023-05-27
17	1092844	35G05	41.35	Active	2002-05-28	2023-05-27
18	1092845	35G05	41.35	Active	2002-05-28	2023-05-27
19	1092846	35G05	41.35	Active	2002-05-28	2023-05-27
20	1092859	35G06	41.38	Active	2002-05-28	2023-05-27
21	1092860	35G06	41.38	Active	2002-05-28	2023-05-27
22	1092861	35G06	41.38	Active	2002-05-28	2023-05-27
23	1092865	35G06	41.37	Active	2002-05-28	2023-05-27
24	1092870	35G06	41.37	Active	2002-05-28	2023-05-27
25	1093555	35F08	41.48	Active	2002-06-19	2023-06-18
26	1093556	35F08	41.48	Active	2002-06-19	2023-06-18
27	1093557	35F08	41.48	Active	2002-06-19	2023-06-18
28	1093558	35F08	41.48	Active	2002-06-19	2023-06-18
29	1093559	35F08	41.47	Active	2002-06-19	2023-06-18
30	1093560	35F08	41.47	Active	2002-06-19	2023-06-18
31	1093561	35F08	41.47	Active	2002-06-19	2023-06-18
32	1093562	35F08	41.47	Active	2002-06-19	2023-06-18
33	1093563	35F08	41.47	Active	2002-06-19	2023-06-18
34	1093564	35F08	41.47	Active	2002-06-19	2023-06-18
35	1093565	35F08	41.47	Active	2002-06-19	2023-06-18
36	1093566	35F08	41.47	Active	2002-06-19	2023-06-18
37	1093567	35F08	41.47	Active	2002-06-19	2023-06-18
38	1093568	35F08	41.47	Active	2002-06-19	2023-06-18
39	1093569	35F08	41.47	Active	2002-06-19	2023-06-18
40	1093573	35F08	41.46	Active	2002-06-19	2023-06-18
41	1093574	35F08	41.46	Active	2002-06-19	2023-06-18
42	1093575	35F08	41.46	Active	2002-06-19	2023-06-18
43	1093576	35F08	41.46	Active	2002-06-19	2023-06-18
44	1093577	35F08	41.46	Active	2002-06-19	2023-06-18

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
45	1093578	35F08	41.46	Active	2002-06-19	2023-06-18
46	1093579	35F08	41.46	Active	2002-06-19	2023-06-18
47	1093580	35F08	41.46	Active	2002-06-19	2023-06-18
48	1093592	35F08	41.44	Active	2002-06-19	2023-06-18
49	1093593	35F08	41.44	Active	2002-06-19	2023-06-18
50	1093595	35F08	41.44	Active	2002-06-19	2023-06-18
51	1093596	35F08	41.44	Active	2002-06-19	2023-06-18
52	1093597	35F08	41.44	Active	2002-06-19	2023-06-18
53	1093598	35F08	41.44	Active	2002-06-19	2023-06-18
54	1093607	35F08	41.43	Active	2002-06-19	2023-06-18
55	1093608	35F08	41.43	Active	2002-06-19	2023-06-18
56	1093609	35F08	41.43	Active	2002-06-19	2023-06-18
57	1093610	35F08	41.43	Active	2002-06-19	2023-06-18
58	1093611	35F08	41.43	Active	2002-06-19	2023-06-18
59	1093612	35F08	41.43	Active	2002-06-19	2023-06-18
60	1093613	35F08	41.43	Active	2002-06-19	2023-06-18
61	1093614	35F08	41.43	Active	2002-06-19	2023-06-18
62	1093615	35F08	41.43	Active	2002-06-19	2023-06-18
63	1093619	35F08	41.42	Active	2002-06-19	2023-06-18
64	1093620	35F08	41.42	Active	2002-06-19	2023-06-18
65	1093621	35F08	41.42	Active	2002-06-19	2023-06-18
66	1093622	35F08	41.42	Active	2002-06-19	2023-06-18
67	1093623	35F08	41.42	Active	2002-06-19	2023-06-18
68	1093625	35F08	41.42	Active	2002-06-19	2023-06-18
69	1093626	35F08	41.42	Active	2002-06-19	2023-06-18
70	1093628	35F08	41.41	Active	2002-06-19	2023-06-18
71	1093629	35F08	41.41	Active	2002-06-19	2023-06-18
72	1093640	35F08	41.4	Active	2002-06-19	2023-06-18
73	1093641	35F08	41.4	Active	2002-06-19	2023-06-18
74	1093642	35F08	41.4	Active	2002-06-19	2023-06-18
75	1093643	35F08	41.4	Active	2002-06-19	2023-06-18
76	1093644	35F08	41.4	Active	2002-06-19	2023-06-18
77	1093645	35F08	41.4	Active	2002-06-19	2023-06-18
78	1093646	35F08	41.4	Active	2002-06-19	2023-06-18
79	1093647	35F08	41.4	Active	2002-06-19	2023-06-18
80	1093652	35F08	41.39	Active	2002-06-19	2023-06-18
81	1093653	35F08	41.39	Active	2002-06-19	2023-06-18
82	1093654	35F08	41.39	Active	2002-06-19	2023-06-18
83	1093655	35F08	41.39	Active	2002-06-19	2023-06-18
84	1093656	35F08	41.39	Active	2002-06-19	2023-06-18
85	1093657	35F08	41.39	Active	2002-06-19	2023-06-18
86	1093658	35F08	41.39	Active	2002-06-19	2023-06-18
87	1093659	35F08	41.39	Active	2002-06-19	2023-06-18
88	1093660	35F08	41.39	Active	2002-06-19	2023-06-18

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
89	1093661	35F08	41.39	Active	2002-06-19	2023-06-18
90	1093662	35F08	41.39	Active	2002-06-19	2023-06-18
91	1093663	35F08	41.39	Active	2002-06-19	2023-06-18
92	1093664	35F08	41.39	Active	2002-06-19	2023-06-18
93	1093673	35F08	41.38	Active	2002-06-19	2023-06-18
94	1093674	35F08	41.38	Active	2002-06-19	2023-06-18
95	1093675	35F08	41.37	Active	2002-06-19	2023-06-18
96	1093676	35F08	41.37	Active	2002-06-19	2023-06-18
97	1093677	35F08	41.37	Active	2002-06-19	2023-06-18
98	1093678	35F08	41.37	Active	2002-06-19	2023-06-18
99	1093679	35F08	41.37	Active	2002-06-19	2023-06-18
100	1093680	35F08	41.37	Active	2002-06-19	2023-06-18
101	1093681	35F08	41.37	Active	2002-06-19	2023-06-18
102	1093686	35F08	41.36	Active	2002-06-19	2023-06-18
103	1093687	35F08	41.36	Active	2002-06-19	2023-06-18
104	1093688	35F08	41.36	Active	2002-06-19	2023-06-18
105	1093689	35F08	41.36	Active	2002-06-19	2023-06-18
106	1093755	35G05	41.38	Active	2002-06-19	2023-06-18
107	1093756	35G05	41.38	Active	2002-06-19	2023-06-18
108	1093757	35G05	41.38	Active	2002-06-19	2023-06-18
109	1093758	35G05	41.38	Active	2002-06-19	2023-06-18
110	1093759	35G05	41.38	Active	2002-06-19	2023-06-18
111	1093760	35G05	41.38	Active	2002-06-19	2023-06-18
112	1093761	35G05	41.38	Active	2002-06-19	2023-06-18
113	1093762	35G05	41.37	Active	2002-06-19	2023-06-18
114	1093763	35G05	41.37	Active	2002-06-19	2023-06-18
115	1093764	35G05	41.37	Active	2002-06-19	2023-06-18
116	1093765	35G05	41.37	Active	2002-06-19	2023-06-18
117	1093766	35G05	41.37	Active	2002-06-19	2023-06-18
118	1093767	35G05	41.37	Active	2002-06-19	2023-06-18
119	1093768	35G05	41.37	Active	2002-06-19	2023-06-18
120	1093769	35G05	41.37	Active	2002-06-19	2023-06-18
121	1093770	35G05	41.37	Active	2002-06-19	2023-06-18
122	1093771	35G05	41.37	Active	2002-06-19	2023-06-18
123	1093772	35G05	41.36	Active	2002-06-19	2023-06-18
124	1093773	35G05	41.36	Active	2002-06-19	2023-06-18
125	1093774	35G05	41.36	Active	2002-06-19	2023-06-18
126	1093775	35G05	41.36	Active	2002-06-19	2023-06-18
127	1093776	35G05	41.36	Active	2002-06-19	2023-06-18
128	1093777	35G05	41.36	Active	2002-06-19	2023-06-18
129	1093778	35G05	41.36	Active	2002-06-19	2023-06-18
130	1093779	35G05	41.36	Active	2002-06-19	2023-06-18
131	1093780	35G05	41.36	Active	2002-06-19	2023-06-18
132	1093781	35G05	41.36	Active	2002-06-19	2023-06-18

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
133	1093782	35G05	41.35	Active	2002-06-19	2023-06-18
134	1093783	35G05	41.35	Active	2002-06-19	2023-06-18
135	1093784	35G05	41.35	Active	2002-06-19	2023-06-18
136	1093785	35G05	41.35	Active	2002-06-19	2023-06-18
137	1093786	35G05	41.35	Active	2002-06-19	2023-06-18
138	1093787	35G05	41.35	Active	2002-06-19	2023-06-18
139	1093788	35G05	41.35	Active	2002-06-19	2023-06-18
140	1093789	35G05	41.35	Active	2002-06-19	2023-06-18
141	1093790	35G05	41.35	Active	2002-06-19	2023-06-18
142	1093791	35G05	41.35	Active	2002-06-19	2023-06-18
143	1093792	35G05	41.34	Active	2002-06-19	2023-06-18
144	1093793	35G05	41.34	Active	2002-06-19	2023-06-18
145	1093794	35G05	41.34	Active	2002-06-19	2023-06-18
146	1093795	35G05	41.34	Active	2002-06-19	2023-06-18
147	1093796	35G05	41.34	Active	2002-06-19	2023-06-18
148	1093797	35G05	41.34	Active	2002-06-19	2023-06-18
149	1093798	35G05	41.34	Active	2002-06-19	2023-06-18
150	1093799	35G05	41.34	Active	2002-06-19	2023-06-18
151	1093800	35G05	41.34	Active	2002-06-19	2023-06-18
152	1093801	35G05	41.34	Active	2002-06-19	2023-06-18
153	1093834	35G05	41.33	Active	2002-06-19	2023-06-18
154	1093901	35G06	41.31	Active	2002-06-19	2023-06-18
155	1093903	35G06	41.31	Active	2002-06-19	2023-06-18
156	1093906	35G06	41.29	Active	2002-06-19	2023-06-18
157	1093907	35G06	41.29	Active	2002-06-19	2023-06-18
158	1093908	35G06	41.29	Active	2002-06-19	2023-06-18
159	1093909	35G06	41.29	Active	2002-06-19	2023-06-18
160	1093910	35G06	41.29	Active	2002-06-19	2023-06-18
161	1093911	35G06	41.29	Active	2002-06-19	2023-06-18
162	1093912	35G06	41.29	Active	2002-06-19	2023-06-18
163	1093916	35G06	41.29	Active	2002-06-19	2023-06-18
164	1093920	35G06	41.28	Active	2002-06-19	2023-06-18
165	1093921	35G06	41.28	Active	2002-06-19	2023-06-18
166	1093922	35G06	41.28	Active	2002-06-19	2023-06-18
167	1093923	35G06	41.28	Active	2002-06-19	2023-06-18
168	1093924	35G06	41.28	Active	2002-06-19	2023-06-18
169	1093925	35G06	41.28	Active	2002-06-19	2023-06-18
170	1093931	35G06	41.28	Active	2002-06-19	2023-06-18
171	1093946	35G06	41.26	Active	2002-06-19	2023-06-18
172	1093947	35G06	41.26	Active	2002-06-19	2023-06-18
173	1093961	35G06	41.25	Active	2002-06-19	2023-06-18
174	1093962	35G06	41.25	Active	2002-06-19	2023-06-18
175	1093963	35G06	41.25	Active	2002-06-19	2023-06-18
176	1094008	35F08	41.49	Active	2002-06-05	2023-06-04

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
177	1094009	35F08	41.48	Active	2002-06-05	2023-06-04
178	1094010	35F08	41.48	Active	2002-06-05	2023-06-04
179	1094011	35F08	41.48	Active	2002-06-05	2023-06-04
180	1094012	35F08	41.48	Active	2002-06-05	2023-06-04
181	1094013	35F08	41.48	Active	2002-06-05	2023-06-04
182	1094014	35F08	41.48	Active	2002-06-05	2023-06-04
183	1094015	35F08	41.48	Active	2002-06-05	2023-06-04
184	1094016	35F08	41.48	Active	2002-06-05	2023-06-04
185	1094017	35F08	41.48	Active	2002-06-05	2023-06-04
186	1094020	35F08	41.47	Active	2002-06-05	2023-06-04
187	1094021	35F08	41.47	Active	2002-06-05	2023-06-04
188	1094022	35F08	41.47	Active	2002-06-05	2023-06-04
189	1094023	35F08	41.47	Active	2002-06-05	2023-06-04
190	1094024	35F08	41.47	Active	2002-06-05	2023-06-04
191	1094025	35F08	41.47	Active	2002-06-05	2023-06-04
192	1094026	35F08	41.47	Active	2002-06-05	2023-06-04
193	1094027	35F08	41.47	Active	2002-06-05	2023-06-04
194	1094028	35F08	41.47	Active	2002-06-05	2023-06-04
195	1094031	35F08	41.46	Active	2002-06-05	2023-06-04
196	1094032	35F08	41.46	Active	2002-06-05	2023-06-04
197	1094033	35F08	41.46	Active	2002-06-05	2023-06-04
198	1094034	35F08	41.46	Active	2002-06-05	2023-06-04
199	1094035	35F08	41.46	Active	2002-06-05	2023-06-04
200	1094064	35F08	41.43	Active	2002-06-05	2023-06-04
201	1094065	35F08	41.43	Active	2002-06-05	2023-06-04
202	1094066	35F08	41.43	Active	2002-06-05	2023-06-04
203	1094067	35F08	41.43	Active	2002-06-05	2023-06-04
204	1094068	35F08	41.43	Active	2002-06-05	2023-06-04
205	1094069	35F08	41.43	Active	2002-06-05	2023-06-04
206	1094070	35F08	41.43	Active	2002-06-05	2023-06-04
207	1094071	35F08	41.43	Active	2002-06-05	2023-06-04
208	1094072	35F08	41.43	Active	2002-06-05	2023-06-04
209	1094077	35F08	41.42	Active	2002-06-05	2023-06-04
210	1094078	35F08	41.42	Active	2002-06-05	2023-06-04
211	1094079	35F08	41.42	Active	2002-06-05	2023-06-04
212	1094080	35F08	41.42	Active	2002-06-05	2023-06-04
213	1094081	35F08	41.42	Active	2002-06-05	2023-06-04
214	1094082	35F08	41.42	Active	2002-06-05	2023-06-04
215	1094083	35F08	41.42	Active	2002-06-05	2023-06-04
216	1094084	35F08	41.42	Active	2002-06-05	2023-06-04
217	1094085	35F08	41.42	Active	2002-06-05	2023-06-04
218	1094091	35F08	41.41	Active	2002-06-05	2023-06-04
219	1094092	35F08	41.41	Active	2002-06-05	2023-06-04
220	1094093	35F08	41.41	Active	2002-06-05	2023-06-04

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
221	1094094	35F08	41.41	Active	2002-06-05	2023-06-04
222	1094095	35F08	41.41	Active	2002-06-05	2023-06-04
223	1094098	35F08	41.4	Active	2002-06-05	2023-06-04
224	1094099	35F08	41.4	Active	2002-06-05	2023-06-04
225	1094100	35F08	41.4	Active	2002-06-05	2023-06-04
226	1094101	35F08	41.4	Active	2002-06-05	2023-06-04
227	1094102	35F08	41.4	Active	2002-06-05	2023-06-04
228	1094103	35F08	41.4	Active	2002-06-05	2023-06-04
229	1094104	35F08	41.4	Active	2002-06-05	2023-06-04
230	1094105	35F08	41.4	Active	2002-06-05	2023-06-04
231	1094106	35F08	41.4	Active	2002-06-05	2023-06-04
232	1094107	35F08	41.4	Active	2002-06-05	2023-06-04
233	1094108	35F08	41.39	Active	2002-06-05	2023-06-04
234	1094109	35F08	41.39	Active	2002-06-05	2023-06-04
235	1094110	35F08	41.39	Active	2002-06-05	2023-06-04
236	1094111	35F08	41.39	Active	2002-06-05	2023-06-04
237	1094112	35F08	41.39	Active	2002-06-05	2023-06-04
238	1094113	35F08	41.39	Active	2002-06-05	2023-06-04
239	1094114	35F08	41.39	Active	2002-06-05	2023-06-04
240	1094115	35F08	41.39	Active	2002-06-05	2023-06-04
241	1094116	35F08	41.39	Active	2002-06-05	2023-06-04
242	1094117	35F08	41.39	Active	2002-06-05	2023-06-04
243	1094118	35F08	41.37	Active	2002-06-05	2023-06-04
244	1094119	35F08	41.37	Active	2002-06-05	2023-06-04
245	1094120	35F08	41.37	Active	2002-06-05	2023-06-04
246	1094121	35F08	41.37	Active	2002-06-05	2023-06-04
247	1094122	35F08	41.37	Active	2002-06-05	2023-06-04
248	1094123	35F08	41.37	Active	2002-06-05	2023-06-04
249	1094124	35F08	41.37	Active	2002-06-05	2023-06-04
250	1094125	35F08	41.37	Active	2002-06-05	2023-06-04
251	1094126	35F08	41.37	Active	2002-06-05	2023-06-04
252	1094127	35F08	41.37	Active	2002-06-05	2023-06-04
253	1094128	35F08	41.36	Active	2002-06-05	2023-06-04
254	1094129	35F08	41.36	Active	2002-06-05	2023-06-04
255	1094130	35F08	41.36	Active	2002-06-05	2023-06-04
256	1094131	35F08	41.36	Active	2002-06-05	2023-06-04
257	1094132	35F08	41.36	Active	2002-06-05	2023-06-04
258	1094133	35F08	41.36	Active	2002-06-05	2023-06-04
259	1094134	35F08	41.36	Active	2002-06-05	2023-06-04
260	1094135	35F08	41.36	Active	2002-06-05	2023-06-04
261	1094136	35F08	41.36	Active	2002-06-05	2023-06-04
262	1094137	35F08	41.36	Active	2002-06-05	2023-06-04
263	1094145	35F08	41.35	Active	2002-06-05	2023-06-04
264	1094146	35F08	41.35	Active	2002-06-05	2023-06-04

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
265	1094147	35F08	41.35	Active	2002-06-05	2023-06-04
266	1094188	35G05	41.39	Active	2002-06-05	2023-06-04
267	1094190	35G05	41.38	Active	2002-06-05	2023-06-04
268	1094191	35G05	41.38	Active	2002-06-05	2023-06-04
269	1094193	35G05	41.38	Active	2002-06-05	2023-06-04
270	1094194	35G05	41.38	Active	2002-06-05	2023-06-04
271	1094195	35G05	41.38	Active	2002-06-05	2023-06-04
272	1094196	35G05	41.38	Active	2002-06-05	2023-06-04
273	1094197	35G05	41.38	Active	2002-06-05	2023-06-04
274	1094202	35G05	41.37	Active	2002-06-05	2023-06-04
275	1094203	35G05	41.37	Active	2002-06-05	2023-06-04
276	1094204	35G05	41.37	Active	2002-06-05	2023-06-04
277	1094215	35G05	41.36	Active	2002-06-05	2023-06-04
278	1094216	35G05	41.36	Active	2002-06-05	2023-06-04
279	1094217	35G05	41.36	Active	2002-06-05	2023-06-04
280	1094218	35G05	41.36	Active	2002-06-05	2023-06-04
281	1094222	35G05	41.36	Active	2002-06-05	2023-06-04
282	1094223	35G05	41.36	Active	2002-06-05	2023-06-04
283	1094224	35G05	41.36	Active	2002-06-05	2023-06-04
284	1094225	35G05	41.36	Active	2002-06-05	2023-06-04
285	1094228	35G05	41.35	Active	2002-06-05	2023-06-04
286	1094229	35G05	41.35	Active	2002-06-05	2023-06-04
287	1094230	35G05	41.35	Active	2002-06-05	2023-06-04
288	1094231	35G05	41.35	Active	2002-06-05	2023-06-04
289	1094232	35G05	41.35	Active	2002-06-05	2023-06-04
290	1094233	35G05	41.35	Active	2002-06-05	2023-06-04
291	1094234	35G05	41.35	Active	2002-06-05	2023-06-04
292	1094235	35G05	41.35	Active	2002-06-05	2023-06-04
293	1094236	35G05	41.35	Active	2002-06-05	2023-06-04
294	1094237	35G05	41.35	Active	2002-06-05	2023-06-04
295	1094238	35G05	41.35	Active	2002-06-05	2023-06-04
296	1094239	35G05	41.35	Active	2002-06-05	2023-06-04
297	1094241	35G05	41.34	Active	2002-06-05	2023-06-04
298	1094242	35G05	41.34	Active	2002-06-05	2023-06-04
299	1094243	35G05	41.34	Active	2002-06-05	2023-06-04
300	1094244	35G05	41.34	Active	2002-06-05	2023-06-04
301	1094245	35G05	41.34	Active	2002-06-05	2023-06-04
302	1094246	35G05	41.34	Active	2002-06-05	2023-06-04
303	1094247	35G05	41.34	Active	2002-06-05	2023-06-04
304	1094248	35G05	41.34	Active	2002-06-05	2023-06-04
305	1094249	35G05	41.34	Active	2002-06-05	2023-06-04
306	1094250	35G05	41.34	Active	2002-06-05	2023-06-04
307	1094251	35G05	41.34	Active	2002-06-05	2023-06-04
308	1094252	35G05	41.34	Active	2002-06-05	2023-06-04

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
309	1094257	35G05	41.33	Active	2002-06-05	2023-06-04
310	1094258	35G05	41.33	Active	2002-06-05	2023-06-04
311	1094259	35G05	41.33	Active	2002-06-05	2023-06-04
312	1094260	35G05	41.33	Active	2002-06-05	2023-06-04
313	1094261	35G05	41.33	Active	2002-06-05	2023-06-04
314	1094262	35G05	41.33	Active	2002-06-05	2023-06-04
315	1094263	35G05	41.33	Active	2002-06-05	2023-06-04
316	1094264	35G05	41.33	Active	2002-06-05	2023-06-04
317	1094265	35G05	41.33	Active	2002-06-05	2023-06-04
318	1094283	35G05	41.32	Active	2002-06-05	2023-06-04
319	1094284	35G05	41.32	Active	2002-06-05	2023-06-04
320	1094285	35G05	41.32	Active	2002-06-05	2023-06-04
321	1094289	35G05	41.31	Active	2002-06-05	2023-06-04
322	1094312	35G05	41.47	Active	2002-06-06	2023-06-05
323	1094313	35G05	41.47	Active	2002-06-06	2023-06-05
324	1094314	35G05	41.47	Active	2002-06-06	2023-06-05
325	1094322	35G05	41.46	Active	2002-06-06	2023-06-05
326	1094323	35G05	41.46	Active	2002-06-06	2023-06-05
327	1094324	35G05	41.46	Active	2002-06-06	2023-06-05
328	1094325	35G05	41.46	Active	2002-06-06	2023-06-05
329	1094331	35G05	41.45	Active	2002-06-06	2023-06-05
330	1094372	35G05	41.4	Active	2002-06-06	2023-06-05
331	1094374	35G05	41.4	Active	2002-06-06	2023-06-05
332	1094375	35G05	41.4	Active	2002-06-06	2023-06-05
333	1094381	35G05	41.38	Active	2002-06-06	2023-06-05
334	1094387	35G05	41.38	Active	2002-06-06	2023-06-05
335	1094388	35G05	41.38	Active	2002-06-06	2023-06-05
336	1094389	35G05	41.38	Active	2002-06-06	2023-06-05
337	1094390	35G05	41.38	Active	2002-06-06	2023-06-05
338	1094396	35G05	41.37	Active	2002-06-06	2023-06-05
339	1094399	35G05	41.37	Active	2002-06-06	2023-06-05
340	1094400	35G05	41.37	Active	2002-06-06	2023-06-05
341	1094401	35G05	41.37	Active	2002-06-06	2023-06-05
342	1094402	35G05	41.37	Active	2002-06-06	2023-06-05
343	1094403	35G05	41.37	Active	2002-06-06	2023-06-05
344	1094404	35G05	41.37	Active	2002-06-06	2023-06-05
345	1094405	35G05	41.37	Active	2002-06-06	2023-06-05
346	1094406	35G05	41.36	Active	2002-06-06	2023-06-05
347	1094407	35G05	41.36	Active	2002-06-06	2023-06-05
348	1094408	35G05	41.36	Active	2002-06-06	2023-06-05
349	1094409	35G05	41.36	Active	2002-06-06	2023-06-05
350	1094410	35G05	41.36	Active	2002-06-06	2023-06-05
351	1094411	35G05	41.36	Active	2002-06-06	2023-06-05
352	1094412	35G05	41.36	Active	2002-06-06	2023-06-05

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
353	1094413	35G05	41.36	Active	2002-06-06	2023-06-05
354	1094414	35G05	41.36	Active	2002-06-06	2023-06-05
355	1094415	35G05	41.36	Active	2002-06-06	2023-06-05
356	1094416	35G05	41.35	Active	2002-06-06	2023-06-05
357	1094417	35G05	41.35	Active	2002-06-06	2023-06-05
358	1094418	35G05	41.35	Active	2002-06-06	2023-06-05
359	1094419	35G05	41.35	Active	2002-06-06	2023-06-05
360	1094420	35G05	41.35	Active	2002-06-06	2023-06-05
361	1094421	35G05	41.35	Active	2002-06-06	2023-06-05
362	1094422	35G05	41.35	Active	2002-06-06	2023-06-05
363	1094423	35G05	41.35	Active	2002-06-06	2023-06-05
364	1094424	35G05	41.35	Active	2002-06-06	2023-06-05
365	1094425	35G05	41.35	Active	2002-06-06	2023-06-05
366	1094434	35G05	41.34	Active	2002-06-06	2023-06-05
367	1094435	35G05	41.34	Active	2002-06-06	2023-06-05
368	1094684	35F08	41.48	Active	2002-06-06	2023-06-05
369	1094685	35F08	41.48	Active	2002-06-06	2023-06-05
370	1094703	35F08	41.47	Active	2002-06-06	2023-06-05
371	1094704	35F08	41.47	Active	2002-06-06	2023-06-05
372	1094748	35F08	41.44	Active	2002-06-06	2023-06-05
373	1094749	35F08	41.44	Active	2002-06-06	2023-06-05
374	1094750	35F08	41.44	Active	2002-06-06	2023-06-05
375	1094755	35F08	41.43	Active	2002-06-06	2023-06-05
376	1094756	35F08	41.43	Active	2002-06-06	2023-06-05
377	1094757	35F08	41.43	Active	2002-06-06	2023-06-05
378	1094758	35F08	41.43	Active	2002-06-06	2023-06-05
379	1094759	35F08	41.43	Active	2002-06-06	2023-06-05
380	1094764	35F08	41.42	Active	2002-06-06	2023-06-05
381	1094765	35F08	41.42	Active	2002-06-06	2023-06-05
382	1094766	35F08	41.42	Active	2002-06-06	2023-06-05
383	1094767	35F08	41.42	Active	2002-06-06	2023-06-05
384	1094768	35F08	41.42	Active	2002-06-06	2023-06-05
385	1094769	35F08	41.42	Active	2002-06-06	2023-06-05
386	1094770	35F08	41.42	Active	2002-06-06	2023-06-05
387	1094777	35F08	41.41	Active	2002-06-06	2023-06-05
388	1094778	35F08	41.41	Active	2002-06-06	2023-06-05
389	1094779	35F08	41.41	Active	2002-06-06	2023-06-05
390	1094780	35F08	41.41	Active	2002-06-06	2023-06-05
391	1094781	35F08	41.41	Active	2002-06-06	2023-06-05
392	1094782	35F08	41.41	Active	2002-06-06	2023-06-05
393	1094783	35F08	41.41	Active	2002-06-06	2023-06-05
394	1094784	35F08	41.41	Active	2002-06-06	2023-06-05
395	1094785	35F08	41.41	Active	2002-06-06	2023-06-05
396	1094786	35F08	41.41	Active	2002-06-06	2023-06-05

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
397	1094787	35F08	41.41	Active	2002-06-06	2023-06-05
398	1094788	35F08	41.41	Active	2002-06-06	2023-06-05
399	1094789	35F08	41.41	Active	2002-06-06	2023-06-05
400	1094797	35F08	41.4	Active	2002-06-06	2023-06-05
401	1094798	35F08	41.4	Active	2002-06-06	2023-06-05
402	1094799	35F08	41.4	Active	2002-06-06	2023-06-05
403	1094800	35F08	41.4	Active	2002-06-06	2023-06-05
404	1094801	35F08	41.4	Active	2002-06-06	2023-06-05
405	1094802	35F08	41.4	Active	2002-06-06	2023-06-05
406	1094803	35F08	41.4	Active	2002-06-06	2023-06-05
407	1094813	35F08	41.39	Active	2002-06-06	2023-06-05
408	1094814	35F08	41.39	Active	2002-06-06	2023-06-05
409	1094815	35F08	41.39	Active	2002-06-06	2023-06-05
410	1094816	35F08	41.39	Active	2002-06-06	2023-06-05
411	1094817	35F08	41.39	Active	2002-06-06	2023-06-05
412	1095551	35G06	41.31	Active	2002-06-06	2023-06-05
413	1095552	35G06	41.31	Active	2002-06-06	2023-06-05
414	1095579	35G06	41.28	Active	2002-06-06	2023-06-05
415	1095580	35G06	41.28	Active	2002-06-06	2023-06-05
416	1095581	35G06	41.28	Active	2002-06-06	2023-06-05
417	1095582	35G06	41.28	Active	2002-06-06	2023-06-05
418	1095583	35G06	41.28	Active	2002-06-06	2023-06-05
419	1095593	35G06	41.27	Active	2002-06-06	2023-06-05
420	1095594	35G06	41.27	Active	2002-06-06	2023-06-05
421	1095595	35G06	41.27	Active	2002-06-06	2023-06-05
422	1095596	35G06	41.27	Active	2002-06-06	2023-06-05
423	1095597	35G06	41.27	Active	2002-06-06	2023-06-05
424	1095598	35G06	41.27	Active	2002-06-06	2023-06-05
425	1095599	35G06	41.27	Active	2002-06-06	2023-06-05
426	1095600	35G06	41.27	Active	2002-06-06	2023-06-05
427	1095601	35G06	41.27	Active	2002-06-06	2023-06-05
428	1095602	35G06	41.27	Active	2002-06-06	2023-06-05
429	1095607	35G06	41.26	Active	2002-06-06	2023-06-05
430	1095608	35G06	41.26	Active	2002-06-06	2023-06-05
431	1095609	35G06	41.26	Active	2002-06-06	2023-06-05
432	1095610	35G06	41.26	Active	2002-06-06	2023-06-05
433	1095611	35G06	41.26	Active	2002-06-06	2023-06-05
434	1095612	35G06	41.26	Active	2002-06-06	2023-06-05
435	1095613	35G06	41.26	Active	2002-06-06	2023-06-05
436	1095614	35G06	41.26	Active	2002-06-06	2023-06-05
437	1095615	35G06	41.26	Active	2002-06-06	2023-06-05
438	1095616	35G06	41.26	Active	2002-06-06	2023-06-05
439	1095617	35G06	41.26	Active	2002-06-06	2023-06-05
440	1095618	35G06	41.26	Active	2002-06-06	2023-06-05

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
441	1095619	35G06	41.26	Active	2002-06-06	2023-06-05
442	1095622	35G06	41.25	Active	2002-06-06	2023-06-05
443	1095623	35G06	41.25	Active	2002-06-06	2023-06-05
444	1095624	35G06	41.25	Active	2002-06-06	2023-06-05
445	1095625	35G06	41.25	Active	2002-06-06	2023-06-05
446	1095626	35G06	41.25	Active	2002-06-06	2023-06-05
447	1095627	35G06	41.25	Active	2002-06-06	2023-06-05
448	1095628	35G06	41.25	Active	2002-06-06	2023-06-05
449	1095629	35G06	41.25	Active	2002-06-06	2023-06-05
450	1095630	35G06	41.25	Active	2002-06-06	2023-06-05
451	1095631	35G06	41.25	Active	2002-06-06	2023-06-05
452	1095632	35G06	41.25	Active	2002-06-06	2023-06-05
453	1095649	35G06	41.23	Active	2002-06-06	2023-06-05
454	1095725	35G05	41.39	Active	2002-06-18	2023-06-17
455	1095726	35G05	41.39	Active	2002-06-18	2023-06-17
456	1095727	35G05	41.39	Active	2002-06-18	2023-06-17
457	1095765	35G05	41.36	Active	2002-06-18	2023-06-17
458	1095766	35G05	41.36	Active	2002-06-18	2023-06-17
459	1095775	35G05	41.35	Active	2002-06-18	2023-06-17
460	1095776	35G05	41.35	Active	2002-06-18	2023-06-17
461	1095777	35G05	41.35	Active	2002-06-18	2023-06-17
462	1095787	35G05	41.34	Active	2002-06-18	2023-06-17
463	1095791	35G05	41.34	Active	2002-06-18	2023-06-17
464	1095792	35G05	41.34	Active	2002-06-18	2023-06-17
465	1095793	35G05	41.34	Active	2002-06-18	2023-06-17
466	1095794	35G05	41.33	Active	2002-06-18	2023-06-17
467	1095795	35G05	41.33	Active	2002-06-18	2023-06-17
468	1095796	35G05	41.33	Active	2002-06-18	2023-06-17
469	1095797	35G05	41.33	Active	2002-06-18	2023-06-17
470	1095798	35G05	41.33	Active	2002-06-18	2023-06-17
471	1095805	35G05	41.32	Active	2002-06-18	2023-06-17
472	1095806	35G05	41.32	Active	2002-06-18	2023-06-17
473	1095807	35G05	41.32	Active	2002-06-18	2023-06-17
474	1095808	35G05	41.32	Active	2002-06-18	2023-06-17
475	1095809	35G05	41.32	Active	2002-06-18	2023-06-17
476	1095810	35G05	41.32	Active	2002-06-18	2023-06-17
477	1095811	35G05	41.32	Active	2002-06-18	2023-06-17
478	1095815	35G05	41.32	Active	2002-06-18	2023-06-17
479	1095816	35G05	41.31	Active	2002-06-18	2023-06-17
480	1095817	35G05	41.31	Active	2002-06-18	2023-06-17
481	1095818	35G05	41.31	Active	2002-06-18	2023-06-17
482	1095819	35G05	41.31	Active	2002-06-18	2023-06-17
483	1095820	35G05	41.31	Active	2002-06-18	2023-06-17
484	1095821	35G05	41.31	Active	2002-06-18	2023-06-17

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
485	1095822	35G05	41.31	Active	2002-06-18	2023-06-17
486	1095823	35G05	41.31	Active	2002-06-18	2023-06-17
487	1095824	35G05	41.31	Active	2002-06-18	2023-06-17
488	1095825	35G05	41.31	Active	2002-06-18	2023-06-17
489	1095826	35G05	41.31	Active	2002-06-18	2023-06-17
490	1095828	35G05	41.3	Active	2002-06-18	2023-06-17
491	1095829	35G05	41.3	Active	2002-06-18	2023-06-17
492	1095830	35G05	41.3	Active	2002-06-18	2023-06-17
493	1095831	35G05	41.3	Active	2002-06-18	2023-06-17
494	1095832	35G05	41.3	Active	2002-06-18	2023-06-17
495	1095833	35G05	41.3	Active	2002-06-18	2023-06-17
496	1095834	35G05	41.3	Active	2002-06-18	2023-06-17
497	1095835	35G05	41.3	Active	2002-06-18	2023-06-17
498	1095836	35G05	41.3	Active	2002-06-18	2023-06-17
499	1095837	35G05	41.3	Active	2002-06-18	2023-06-17
500	1095845	35G05	41.28	Active	2002-06-18	2023-06-17
501	1095846	35G05	41.28	Active	2002-06-18	2023-06-17
502	1095847	35G05	41.28	Active	2002-06-18	2023-06-17
503	1095848	35G05	41.28	Active	2002-06-18	2023-06-17
504	1095855	35G05	41.27	Active	2002-06-18	2023-06-17
505	1095856	35G05	41.27	Active	2002-06-18	2023-06-17
506	1095857	35G05	41.27	Active	2002-06-18	2023-06-17
507	1096673	35G05	41.37	Active	2002-06-18	2023-06-17
508	1096703	35G05	41.34	Active	2002-06-18	2023-06-17
509	1096709	35G05	41.33	Active	2002-06-18	2023-06-17
510	1096710	35G05	41.33	Active	2002-06-18	2023-06-17
511	1096711	35G05	41.33	Active	2002-06-18	2023-06-17
512	1096712	35G05	41.33	Active	2002-06-18	2023-06-17
513	1096718	35G05	41.32	Active	2002-06-18	2023-06-17
514	1096719	35G05	41.32	Active	2002-06-18	2023-06-17
515	1096720	35G05	41.32	Active	2002-06-18	2023-06-17
516	1096721	35G05	41.32	Active	2002-06-18	2023-06-17
517	1096722	35G05	41.32	Active	2002-06-18	2023-06-17
518	1096723	35G05	41.32	Active	2002-06-18	2023-06-17
519	1096724	35G05	41.32	Active	2002-06-18	2023-06-17
520	1096725	35G05	41.32	Active	2002-06-18	2023-06-17
521	1096726	35G05	41.32	Active	2002-06-18	2023-06-17
522	1096727	35G05	41.32	Active	2002-06-18	2023-06-17
523	1096730	35G05	41.31	Active	2002-06-18	2023-06-17
524	1096731	35G05	41.31	Active	2002-06-18	2023-06-17
525	1096732	35G05	41.31	Active	2002-06-18	2023-06-17
526	1096733	35G05	41.31	Active	2002-06-18	2023-06-17
527	1096734	35G05	41.31	Active	2002-06-18	2023-06-17
528	1096735	35G05	41.31	Active	2002-06-18	2023-06-17

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
529	1096736	35G05	41.31	Active	2002-06-18	2023-06-17
530	1096737	35G05	41.31	Active	2002-06-18	2023-06-17
531	1096738	35G05	41.31	Active	2002-06-18	2023-06-17
532	1096739	35G05	41.31	Active	2002-06-18	2023-06-17
533	1096740	35G05	41.31	Active	2002-06-18	2023-06-17
534	1096741	35G05	41.31	Active	2002-06-18	2023-06-17
535	1096742	35G05	41.3	Active	2002-06-18	2023-06-17
536	1096743	35G05	41.3	Active	2002-06-18	2023-06-17
537	1096744	35G05	41.3	Active	2002-06-18	2023-06-17
538	1096745	35G05	41.3	Active	2002-06-18	2023-06-17
539	1096746	35G05	41.3	Active	2002-06-18	2023-06-17
540	1096747	35G05	41.3	Active	2002-06-18	2023-06-17
541	1096748	35G05	41.3	Active	2002-06-18	2023-06-17
542	1096749	35G05	41.3	Active	2002-06-18	2023-06-17
543	1096750	35G05	41.3	Active	2002-06-18	2023-06-17
544	1096751	35G05	41.3	Active	2002-06-18	2023-06-17
545	1096752	35G05	41.3	Active	2002-06-18	2023-06-17
546	1096753	35G05	41.3	Active	2002-06-18	2023-06-17
547	1096754	35G05	41.28	Active	2002-06-18	2023-06-17
548	1096755	35G05	41.28	Active	2002-06-18	2023-06-17
549	1096756	35G05	41.28	Active	2002-06-18	2023-06-17
550	1096757	35G05	41.28	Active	2002-06-18	2023-06-17
551	1096758	35G05	41.28	Active	2002-06-18	2023-06-17
552	1096759	35G05	41.28	Active	2002-06-18	2023-06-17
553	1096760	35G05	41.28	Active	2002-06-18	2023-06-17
554	1096761	35G05	41.28	Active	2002-06-18	2023-06-17
555	1096762	35G05	41.28	Active	2002-06-18	2023-06-17
556	1096763	35G05	41.28	Active	2002-06-18	2023-06-17
557	1096764	35G05	41.28	Active	2002-06-18	2023-06-17
558	1096765	35G05	41.28	Active	2002-06-18	2023-06-17
559	1096766	35G05	41.27	Active	2002-06-18	2023-06-17
560	1096767	35G05	41.27	Active	2002-06-18	2023-06-17
561	1096768	35G05	41.27	Active	2002-06-18	2023-06-17
562	1096769	35G05	41.27	Active	2002-06-18	2023-06-17
563	1096770	35G05	41.27	Active	2002-06-18	2023-06-17
564	1096771	35G05	41.27	Active	2002-06-18	2023-06-17
565	1096772	35G05	41.27	Active	2002-06-18	2023-06-17
566	1096773	35G05	41.27	Active	2002-06-18	2023-06-17
567	1096774	35G05	41.27	Active	2002-06-18	2023-06-17
568	1096775	35G05	41.27	Active	2002-06-18	2023-06-17
569	1096776	35G05	41.27	Active	2002-06-18	2023-06-17
570	1096777	35G05	41.27	Active	2002-06-18	2023-06-17
571	1096782	35G05	41.26	Active	2002-06-18	2023-06-17
572	1096783	35G05	41.26	Active	2002-06-18	2023-06-17

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
573	1096784	35G05	41.26	Active	2002-06-18	2023-06-17
574	1096785	35G05	41.26	Active	2002-06-18	2023-06-17
575	1096786	35G05	41.26	Active	2002-06-18	2023-06-17
576	1096787	35G05	41.26	Active	2002-06-18	2023-06-17
577	1096788	35G05	41.26	Active	2002-06-18	2023-06-17
578	1096789	35G05	41.26	Active	2002-06-18	2023-06-17
579	2359777	35G06	41.25	Active	2012-07-31	2023-07-30
580	2359778	35G06	41.24	Active	2012-07-31	2023-07-30
581	2359779	35G06	41.24	Active	2012-07-31	2023-07-30
582	2359780	35G06	41.24	Active	2012-07-31	2023-07-30
583	2359781	35G06	41.24	Active	2012-07-31	2023-07-30
584	2382335	35G06	41.26	Active	2013-03-13	2024-03-12
585	2382336	35G06	41.26	Active	2013-03-13	2024-03-12
586	2382339	35G06	41.26	Active	2013-03-13	2024-03-12
587	2382340	35G06	41.26	Active	2013-03-13	2024-03-12
588	2382341	35G06	41.26	Active	2013-03-13	2024-03-12
589	2382342	35G06	41.25	Active	2013-03-13	2024-03-12
590	2382343	35G06	41.25	Active	2013-03-13	2024-03-12
591	2382344	35G06	41.25	Active	2013-03-13	2024-03-12
592	2382345	35G06	41.25	Active	2013-03-13	2024-03-12
593	2382346	35G06	41.25	Active	2013-03-13	2024-03-12
594	2408936	35G05	41.32	Active	2014-07-31	2023-07-30
595	2408937	35G05	41.32	Active	2014-07-31	2023-07-30
596	2408997	35G05	41.4	Active	2014-07-31	2023-07-30
597	2408998	35G05	41.4	Active	2014-07-31	2023-07-30
598	2408999	35G05	41.4	Active	2014-07-31	2023-07-30
599	2409000	35G05	41.4	Active	2014-07-31	2023-07-30
600	2409001	35G05	41.4	Active	2014-07-31	2023-07-30
601	2409002	35G05	41.4	Active	2014-07-31	2023-07-30
602	2409003	35G05	41.38	Active	2014-07-31	2023-07-30
603	2409004	35G05	41.38	Active	2014-07-31	2023-07-30
604	2409005	35G05	41.38	Active	2014-07-31	2023-07-30
605	2409006	35G05	41.38	Active	2014-07-31	2023-07-30
606	2409007	35G05	41.38	Active	2014-07-31	2023-07-30
607	2409008	35G05	41.37	Active	2014-07-31	2023-07-30
608	2409009	35G05	41.37	Active	2014-07-31	2023-07-30
609	2409014	35G06	41.3	Active	2014-07-31	2023-07-30
610	2409015	35G06	41.3	Active	2014-07-31	2023-07-30
611	2409016	35G06	41.3	Active	2014-07-31	2023-07-30
612	2409017	35G06	41.3	Active	2014-07-31	2023-07-30
613	2409038	35F08	41.44	Active	2014-07-31	2023-07-30
614	2409039	35F08	41.44	Active	2014-07-31	2023-07-30
615	2409040	35F08	41.44	Active	2014-07-31	2023-07-30
616	2409042	35F08	41.42	Active	2014-07-31	2023-07-30

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
617	2409043	35F08	41.42	Active	2014-07-31	2023-07-30
618	2409044	35F08	41.41	Active	2014-07-31	2023-07-30
619	2409045	35F08	41.41	Active	2014-07-31	2023-07-30
620	2409046	35F08	41.41	Active	2014-07-31	2023-07-30
621	2409047	35F08	41.41	Active	2014-07-31	2023-07-30
622	2409048	35F08	41.41	Active	2014-07-31	2023-07-30
623	2409049	35F08	41.41	Active	2014-07-31	2023-07-30
624	2409050	35F08	41.4	Active	2014-07-31	2023-07-30
625	2409073	35G05	41.41	Active	2014-07-31	2023-07-30
626	2409074	35G05	41.41	Active	2014-07-31	2023-07-30
627	2409075	35G05	41.41	Active	2014-07-31	2023-07-30
628	2409076	35G05	41.41	Active	2014-07-31	2023-07-30
629	2409079	35G05	41.4	Active	2014-07-31	2023-07-30
630	2409080	35G05	41.4	Active	2014-07-31	2023-07-30
631	2409081	35G05	41.4	Active	2014-07-31	2023-07-30
632	2409082	35G05	41.38	Active	2014-07-31	2023-07-30
633	2409083	35G05	41.38	Active	2014-07-31	2023-07-30
634	2409084	35G05	41.38	Active	2014-07-31	2023-07-30
635	2409085	35G05	41.37	Active	2014-07-31	2023-07-30
636	2409086	35G05	41.37	Active	2014-07-31	2023-07-30
637	2409087	35G05	41.37	Active	2014-07-31	2023-07-30
638	2409088	35G05	41.37	Active	2014-07-31	2023-07-30
639	2409101	35F08	41.42	Active	2014-07-31	2023-07-30
640	2409102	35F08	41.41	Active	2014-07-31	2023-07-30
641	2409103	35F08	41.41	Active	2014-07-31	2023-07-30
642	2409104	35F08	41.41	Active	2014-07-31	2023-07-30
643	2409105	35F08	41.41	Active	2014-07-31	2023-07-30
644	2409106	35F08	41.41	Active	2014-07-31	2023-07-30
645	2409107	35F08	41.41	Active	2014-07-31	2023-07-30
646	2409108	35F08	41.41	Active	2014-07-31	2023-07-30
647	2409109	35F08	41.41	Active	2014-07-31	2023-07-30
648	2409110	35F08	41.41	Active	2014-07-31	2023-07-30
649	2409111	35F08	41.41	Active	2014-07-31	2023-07-30
650	2409112	35F08	41.4	Active	2014-07-31	2023-07-30
651	2409113	35F08	41.4	Active	2014-07-31	2023-07-30
652	2409114	35F08	41.4	Active	2014-07-31	2023-07-30
653	2409115	35F08	41.4	Active	2014-07-31	2023-07-30
654	2409149	35G05	41.4	Active	2014-07-31	2023-07-30
655	2409150	35G05	41.4	Active	2014-07-31	2023-07-30
656	2409151	35G05	41.4	Active	2014-07-31	2023-07-30
657	2409152	35G05	41.4	Active	2014-07-31	2023-07-30
658	2409153	35G05	41.4	Active	2014-07-31	2023-07-30
659	2409157	35G05	41.38	Active	2014-07-31	2023-07-30
660	2409158	35G05	41.38	Active	2014-07-31	2023-07-30

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
661	2409159	35G05	41.38	Active	2014-07-31	2023-07-30
662	2409181	35G06	41.31	Active	2014-07-31	2023-07-30
663	2409186	35G06	41.28	Active	2014-07-31	2023-07-30
664	2410175	35G05	41.34	Active	2014-08-22	2023-08-21
665	2410176	35G05	41.34	Active	2014-08-22	2023-08-21
666	2410177	35G05	41.34	Active	2014-08-22	2023-08-21
667	2410178	35G05	41.34	Active	2014-08-22	2023-08-21
668	2410179	35G05	41.34	Active	2014-08-22	2023-08-21
669	2410180	35G05	41.34	Active	2014-08-22	2023-08-21
670	2410181	35G05	41.34	Active	2014-08-22	2023-08-21
671	2410182	35G05	41.34	Active	2014-08-22	2023-08-21
672	2410183	35G05	41.34	Active	2014-08-22	2023-08-21
673	2415349	35G06	41.25	Active	2014-10-30	2023-10-29
674	2427326	35F08	41.42	Active	2015-05-01	2024-04-30
675	2427327	35G05	41.41	Active	2015-05-01	2024-04-30
676	2427328	35G05	41.41	Active	2015-05-01	2024-04-30
677	2427329	35G05	41.4	Active	2015-05-01	2024-04-30
678	2427330	35G06	41.32	Active	2015-05-01	2024-04-30
679	2427331	35G06	41.32	Active	2015-05-01	2024-04-30
680	2431853	35G06	41.26	Active	2015-08-10	2024-08-09
681	2431854	35G06	41.26	Active	2015-08-10	2024-08-09
682	2431855	35G06	41.25	Active	2015-08-10	2024-08-09
683	2431856	35G06	41.25	Active	2015-08-10	2024-08-09
684	2431857	35G06	41.24	Active	2015-08-10	2024-08-09
685	2431858	35G06	41.24	Active	2015-08-10	2024-08-09
686	2431859	35G06	41.24	Active	2015-08-10	2024-08-09
687	2431860	35G06	41.24	Active	2015-08-10	2024-08-09
688	2431861	35G06	41.24	Active	2015-08-10	2024-08-09
689	2431862	35G06	41.24	Active	2015-08-10	2024-08-09
690	2431863	35G06	41.24	Active	2015-08-10	2024-08-09
691	2585781	35F01	41.53	Active	2020-11-02	2023-11-01
692	2585782	35F01	41.53	Active	2020-11-02	2023-11-01
693	2585783	35F01	41.53	Active	2020-11-02	2023-11-01
694	2585784	35F01	41.53	Active	2020-11-02	2023-11-01
695	2585785	35F01	41.53	Active	2020-11-02	2023-11-01
696	2585786	35F01	41.53	Active	2020-11-02	2023-11-01
697	2585787	35F01	41.53	Active	2020-11-02	2023-11-01
698	2585788	35F01	41.53	Active	2020-11-02	2023-11-01
699	2585789	35F01	41.53	Active	2020-11-02	2023-11-01
700	2585790	35F01	41.53	Active	2020-11-02	2023-11-01
701	2585791	35F01	41.53	Active	2020-11-02	2023-11-01
702	2585792	35F01	41.53	Active	2020-11-02	2023-11-01
703	2585793	35F01	41.53	Active	2020-11-02	2023-11-01
704	2585794	35F01	41.53	Active	2020-11-02	2023-11-01

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
705	2585795	35F01	41.53	Active	2020-11-02	2023-11-01
706	2585796	35F01	41.53	Active	2020-11-02	2023-11-01
707	2585797	35F01	41.53	Active	2020-11-02	2023-11-01
708	2585798	35F01	41.53	Active	2020-11-02	2023-11-01
709	2585799	35F01	41.53	Active	2020-11-02	2023-11-01
710	2585800	35F01	41.52	Active	2020-11-02	2023-11-01
711	2585801	35F01	41.52	Active	2020-11-02	2023-11-01
712	2585802	35F01	41.52	Active	2020-11-02	2023-11-01
713	2585803	35F01	41.52	Active	2020-11-02	2023-11-01
714	2585804	35F01	41.52	Active	2020-11-02	2023-11-01
715	2585805	35F01	41.52	Active	2020-11-02	2023-11-01
716	2585806	35F01	41.52	Active	2020-11-02	2023-11-01
717	2585807	35F01	41.52	Active	2020-11-02	2023-11-01
718	2585808	35F01	41.52	Active	2020-11-02	2023-11-01
719	2585809	35F01	41.52	Active	2020-11-02	2023-11-01
720	2585810	35F01	41.52	Active	2020-11-02	2023-11-01
721	2585811	35F01	41.52	Active	2020-11-02	2023-11-01
722	2585812	35F01	41.52	Active	2020-11-02	2023-11-01
723	2585813	35F01	41.52	Active	2020-11-02	2023-11-01
724	2585814	35F01	41.52	Active	2020-11-02	2023-11-01
725	2585815	35F01	41.52	Active	2020-11-02	2023-11-01
726	2585816	35F01	41.52	Active	2020-11-02	2023-11-01
727	2585817	35F01	41.52	Active	2020-11-02	2023-11-01
728	2585818	35F01	41.52	Active	2020-11-02	2023-11-01
729	2585819	35F08	41.51	Active	2020-11-02	2023-11-01
730	2585820	35F08	41.51	Active	2020-11-02	2023-11-01
731	2585821	35F08	41.51	Active	2020-11-02	2023-11-01
732	2585822	35F08	41.51	Active	2020-11-02	2023-11-01
733	2585823	35F08	41.51	Active	2020-11-02	2023-11-01
734	2585824	35F08	41.51	Active	2020-11-02	2023-11-01
735	2585825	35F08	41.51	Active	2020-11-02	2023-11-01
736	2585826	35F08	41.51	Active	2020-11-02	2023-11-01
737	2585827	35F08	41.51	Active	2020-11-02	2023-11-01
738	2585828	35F08	41.51	Active	2020-11-02	2023-11-01
739	2585829	35F08	41.51	Active	2020-11-02	2023-11-01
740	2585830	35F08	41.51	Active	2020-11-02	2023-11-01
741	2585831	35F08	41.51	Active	2020-11-02	2023-11-01
742	2585832	35F08	41.51	Active	2020-11-02	2023-11-01
743	2585833	35F08	41.51	Active	2020-11-02	2023-11-01
744	2585834	35F08	41.51	Active	2020-11-02	2023-11-01
745	2585835	35F08	41.51	Active	2020-11-02	2023-11-01
746	2585836	35F08	41.51	Active	2020-11-02	2023-11-01
747	2585837	35F08	41.5	Active	2020-11-02	2023-11-01
748	2585838	35F08	41.5	Active	2020-11-02	2023-11-01

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
749	2585839	35F08	41.5	Active	2020-11-02	2023-11-01
750	2585840	35F08	41.5	Active	2020-11-02	2023-11-01
751	2585841	35F08	41.5	Active	2020-11-02	2023-11-01
752	2585842	35F08	41.5	Active	2020-11-02	2023-11-01
753	2585843	35F08	41.5	Active	2020-11-02	2023-11-01
754	2585844	35F08	41.49	Active	2020-11-02	2023-11-01
755	2585845	35F08	41.49	Active	2020-11-02	2023-11-01
756	2585846	35F08	41.49	Active	2020-11-02	2023-11-01
757	2585847	35F08	41.49	Active	2020-11-02	2023-11-01
758	2585848	35F08	41.49	Active	2020-11-02	2023-11-01
759	2585849	35F08	41.49	Active	2020-11-02	2023-11-01
760	2585850	35F08	41.49	Active	2020-11-02	2023-11-01
761	2585851	35F08	41.49	Active	2020-11-02	2023-11-01
762	2585852	35F08	41.49	Active	2020-11-02	2023-11-01
763	2585853	35F08	41.49	Active	2020-11-02	2023-11-01
764	2585854	35F08	41.48	Active	2020-11-02	2023-11-01
765	2585855	35F08	41.48	Active	2020-11-02	2023-11-01
766	2585856	35F08	41.48	Active	2020-11-02	2023-11-01
767	2585857	35F08	41.48	Active	2020-11-02	2023-11-01
768	2585858	35F08	41.48	Active	2020-11-02	2023-11-01
769	2585859	35F08	41.48	Active	2020-11-02	2023-11-01
770	2585860	35F08	41.48	Active	2020-11-02	2023-11-01
771	2585861	35F08	41.48	Active	2020-11-02	2023-11-01
772	2585862	35F08	41.48	Active	2020-11-02	2023-11-01
773	2585863	35F08	41.48	Active	2020-11-02	2023-11-01
774	2585864	35G04	41.53	Active	2020-11-02	2023-11-01
775	2585865	35G04	41.53	Active	2020-11-02	2023-11-01
776	2585866	35G04	41.53	Active	2020-11-02	2023-11-01
777	2585867	35G04	41.53	Active	2020-11-02	2023-11-01
778	2585868	35G04	41.53	Active	2020-11-02	2023-11-01
779	2585869	35G04	41.53	Active	2020-11-02	2023-11-01
780	2585870	35G04	41.53	Active	2020-11-02	2023-11-01
781	2585871	35G04	41.52	Active	2020-11-02	2023-11-01
782	2585872	35G04	41.52	Active	2020-11-02	2023-11-01
783	2585873	35G04	41.52	Active	2020-11-02	2023-11-01
784	2585874	35G04	41.52	Active	2020-11-02	2023-11-01
785	2585875	35G04	41.52	Active	2020-11-02	2023-11-01
786	2585876	35G04	41.52	Active	2020-11-02	2023-11-01
787	2585877	35G04	41.52	Active	2020-11-02	2023-11-01
788	2585878	35G04	41.52	Active	2020-11-02	2023-11-01
789	2585879	35G04	41.52	Active	2020-11-02	2023-11-01
790	2585880	35G04	41.52	Active	2020-11-02	2023-11-01
791	2585881	35G04	41.52	Active	2020-11-02	2023-11-01
792	2585882	35G04	41.52	Active	2020-11-02	2023-11-01

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
793	2585883	35G04	41.52	Active	2020-11-02	2023-11-01
794	2585884	35G04	41.52	Active	2020-11-02	2023-11-01
795	2585885	35G04	41.52	Active	2020-11-02	2023-11-01
796	2585886	35G04	41.52	Active	2020-11-02	2023-11-01
797	2585887	35G04	41.52	Active	2020-11-02	2023-11-01
798	2585888	35G04	41.52	Active	2020-11-02	2023-11-01
799	2585889	35G04	41.52	Active	2020-11-02	2023-11-01
800	2585890	35G04	41.52	Active	2020-11-02	2023-11-01
801	2585891	35G05	41.51	Active	2020-11-02	2023-11-01
802	2585892	35G05	41.51	Active	2020-11-02	2023-11-01
803	2585893	35G05	41.51	Active	2020-11-02	2023-11-01
804	2585894	35G05	41.51	Active	2020-11-02	2023-11-01
805	2585895	35G05	41.51	Active	2020-11-02	2023-11-01
806	2585896	35G05	41.51	Active	2020-11-02	2023-11-01
807	2585897	35G05	41.51	Active	2020-11-02	2023-11-01
808	2585898	35G05	41.5	Active	2020-11-02	2023-11-01
809	2585899	35G05	41.51	Active	2020-11-02	2023-11-01
810	2585900	35G05	41.5	Active	2020-11-02	2023-11-01
811	2585901	35G05	41.5	Active	2020-11-02	2023-11-01
812	2585902	35G05	41.5	Active	2020-11-02	2023-11-01
813	2585903	35G05	41.5	Active	2020-11-02	2023-11-01
814	2585904	35G05	41.5	Active	2020-11-02	2023-11-01
815	2585905	35G05	41.5	Active	2020-11-02	2023-11-01
816	2585906	35G05	41.5	Active	2020-11-02	2023-11-01
817	2585907	35G05	41.5	Active	2020-11-02	2023-11-01
818	2585908	35G05	41.5	Active	2020-11-02	2023-11-01
819	2585909	35G05	41.5	Active	2020-11-02	2023-11-01
820	2585910	35G05	41.49	Active	2020-11-02	2023-11-01
821	2585911	35G05	41.49	Active	2020-11-02	2023-11-01
822	2585912	35G05	41.49	Active	2020-11-02	2023-11-01
823	2585913	35G05	41.49	Active	2020-11-02	2023-11-01
824	2585914	35G05	41.49	Active	2020-11-02	2023-11-01
825	2585915	35G05	41.49	Active	2020-11-02	2023-11-01
826	2585916	35G05	41.49	Active	2020-11-02	2023-11-01
827	2585917	35G05	41.49	Active	2020-11-02	2023-11-01
828	2585918	35G05	41.49	Active	2020-11-02	2023-11-01
829	2585919	35G05	41.49	Active	2020-11-02	2023-11-01
830	2585920	35G05	41.49	Active	2020-11-02	2023-11-01
831	2585921	35G05	41.49	Active	2020-11-02	2023-11-01
832	2585922	35G05	41.49	Active	2020-11-02	2023-11-01
833	2585923	35G05	41.49	Active	2020-11-02	2023-11-01
834	2585924	35G05	41.49	Active	2020-11-02	2023-11-01
835	2585925	35G05	41.49	Active	2020-11-02	2023-11-01
836	2585926	35G05	41.49	Active	2020-11-02	2023-11-01

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
837	2585927	35G05	41.49	Active	2020-11-02	2023-11-01
838	2585928	35G05	41.48	Active	2020-11-02	2023-11-01
839	2585929	35G05	41.48	Active	2020-11-02	2023-11-01
840	2585930	35G05	41.48	Active	2020-11-02	2023-11-01
841	2585931	35G05	41.48	Active	2020-11-02	2023-11-01
842	2585932	35G05	41.48	Active	2020-11-02	2023-11-01
843	2585933	35G05	41.48	Active	2020-11-02	2023-11-01
844	2585934	35G05	41.48	Active	2020-11-02	2023-11-01
845	2585935	35G05	41.48	Active	2020-11-02	2023-11-01
846	2585936	35G05	41.48	Active	2020-11-02	2023-11-01
847	2585937	35G05	41.48	Active	2020-11-02	2023-11-01
848	2585938	35G05	41.48	Active	2020-11-02	2023-11-01
849	2585939	35G05	41.48	Active	2020-11-02	2023-11-01
850	2585940	35G05	41.48	Active	2020-11-02	2023-11-01
851	2585941	35G05	41.48	Active	2020-11-02	2023-11-01
852	2585942	35G05	41.48	Active	2020-11-02	2023-11-01
853	2585943	35G05	41.48	Active	2020-11-02	2023-11-01
854	2585944	35G05	41.48	Active	2020-11-02	2023-11-01
855	2585945	35G05	41.48	Active	2020-11-02	2023-11-01
856	2585946	35G05	41.47	Active	2020-11-02	2023-11-01
857	2585947	35G05	41.47	Active	2020-11-02	2023-11-01
858	2585948	35G05	41.47	Active	2020-11-02	2023-11-01
859	2585949	35G05	41.47	Active	2020-11-02	2023-11-01
860	2585950	35G05	41.47	Active	2020-11-02	2023-11-01
861	2585951	35G05	41.47	Active	2020-11-02	2023-11-01
862	2585952	35G05	41.47	Active	2020-11-02	2023-11-01
863	2585953	35G05	41.47	Active	2020-11-02	2023-11-01
864	2585954	35G05	41.47	Active	2020-11-02	2023-11-01
865	2585955	35G05	41.46	Active	2020-11-02	2023-11-01
866	2585956	35G05	41.46	Active	2020-11-02	2023-11-01
867	2585957	35G05	41.46	Active	2020-11-02	2023-11-01
868	2585958	35G05	41.46	Active	2020-11-02	2023-11-01
869	2585959	35G05	41.46	Active	2020-11-02	2023-11-01
870	2585960	35G05	41.46	Active	2020-11-02	2023-11-01
871	2585961	35G05	41.46	Active	2020-11-02	2023-11-01
872	2585962	35G05	41.46	Active	2020-11-02	2023-11-01
873	2585963	35G05	41.46	Active	2020-11-02	2023-11-01
874	2585964	35G05	41.46	Active	2020-11-02	2023-11-01
875	2585965	35G05	41.46	Active	2020-11-02	2023-11-01
876	2585966	35G05	41.46	Active	2020-11-02	2023-11-01
877	2585967	35G05	41.46	Active	2020-11-02	2023-11-01
878	2585968	35G05	41.45	Active	2020-11-02	2023-11-01
879	2585969	35G05	41.45	Active	2020-11-02	2023-11-01
880	2585970	35G05	41.45	Active	2020-11-02	2023-11-01

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
881	2585971	35G05	41.45	Active	2020-11-02	2023-11-01
882	2585972	35G05	41.45	Active	2020-11-02	2023-11-01
883	2585973	35G05	41.45	Active	2020-11-02	2023-11-01
884	2585974	35G05	41.45	Active	2020-11-02	2023-11-01
885	2585975	35G05	41.45	Active	2020-11-02	2023-11-01
886	2585976	35G05	41.45	Active	2020-11-02	2023-11-01
887	2585977	35G05	41.45	Active	2020-11-02	2023-11-01
888	2585978	35G05	41.45	Active	2020-11-02	2023-11-01
889	2585979	35G05	41.45	Active	2020-11-02	2023-11-01
890	2585980	35G05	41.45	Active	2020-11-02	2023-11-01
891	2585981	35G05	41.45	Active	2020-11-02	2023-11-01
892	2585982	35G05	41.45	Active	2020-11-02	2023-11-01
893	2585983	35G05	41.45	Active	2020-11-02	2023-11-01
894	2585984	35G05	41.45	Active	2020-11-02	2023-11-01
895	2585985	35G05	41.44	Active	2020-11-02	2023-11-01
896	2585986	35G05	41.44	Active	2020-11-02	2023-11-01
897	2585987	35G05	41.44	Active	2020-11-02	2023-11-01
898	2585988	35G05	41.44	Active	2020-11-02	2023-11-01
899	2585989	35G05	41.44	Active	2020-11-02	2023-11-01
900	2585990	35G05	41.44	Active	2020-11-02	2023-11-01
901	2585991	35G05	41.44	Active	2020-11-02	2023-11-01
902	2585992	35G05	41.44	Active	2020-11-02	2023-11-01
903	2585993	35G05	41.44	Active	2020-11-02	2023-11-01
904	2585994	35G05	41.44	Active	2020-11-02	2023-11-01
905	2585995	35G05	41.42	Active	2020-11-02	2023-11-01
906	2585996	35G05	41.42	Active	2020-11-02	2023-11-01
907	2585997	35G05	41.41	Active	2020-11-02	2023-11-01
908	2585998	35G05	41.41	Active	2020-11-02	2023-11-01
909	2585999	35G05	41.41	Active	2020-11-02	2023-11-01
910	2586000	35G05	41.41	Active	2020-11-02	2023-11-01
911	2586001	35G05	41.41	Active	2020-11-02	2023-11-01
912	2586002	35G05	41.41	Active	2020-11-02	2023-11-01
913	2586003	35G05	41.41	Active	2020-11-02	2023-11-01
914	2586004	35G05	41.41	Active	2020-11-02	2023-11-01
915	2586005	35G05	41.41	Active	2020-11-02	2023-11-01
916	2586006	35G05	41.4	Active	2020-11-02	2023-11-01
917	2586007	35G05	41.41	Active	2020-11-02	2023-11-01
918	2586008	35G05	41.4	Active	2020-11-02	2023-11-01
919	2586009	35G05	41.4	Active	2020-11-02	2023-11-01
920	2586010	35G05	41.4	Active	2020-11-02	2023-11-01
921	2586011	35G05	41.4	Active	2020-11-02	2023-11-01
922	2586012	35G05	41.4	Active	2020-11-02	2023-11-01
923	2586013	35G05	41.4	Active	2020-11-02	2023-11-01
924	2586014	35G05	41.4	Active	2020-11-02	2023-11-01

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
925	2586015	35G05	41.4	Active	2020-11-02	2023-11-01
926	2586016	35G05	41.39	Active	2020-11-02	2023-11-01
927	2586017	35G05	41.39	Active	2020-11-02	2023-11-01
928	2586018	35G05	41.39	Active	2020-11-02	2023-11-01
929	2586019	35G05	41.39	Active	2020-11-02	2023-11-01
930	2586020	35G05	41.39	Active	2020-11-02	2023-11-01
931	2586021	35G05	41.39	Active	2020-11-02	2023-11-01
932	2586022	35G05	41.39	Active	2020-11-02	2023-11-01
933	2586023	35G05	41.39	Active	2020-11-02	2023-11-01
934	2586024	35G05	41.39	Active	2020-11-02	2023-11-01
935	2586025	35G05	41.39	Active	2020-11-02	2023-11-01
936	2586026	35G05	41.39	Active	2020-11-02	2023-11-01
937	2586027	35G05	41.39	Active	2020-11-02	2023-11-01
938	2586028	35G05	41.39	Active	2020-11-02	2023-11-01
939	2586029	35G05	41.39	Active	2020-11-02	2023-11-01
940	2586030	35G05	41.39	Active	2020-11-02	2023-11-01
941	2586031	35G05	41.38	Active	2020-11-02	2023-11-01
942	2586032	35G05	41.38	Active	2020-11-02	2023-11-01
943	2586033	35G05	41.38	Active	2020-11-02	2023-11-01
944	2586034	35G05	41.38	Active	2020-11-02	2023-11-01
945	2586035	35G05	41.38	Active	2020-11-02	2023-11-01
946	2586036	35G05	41.38	Active	2020-11-02	2023-11-01
947	2586037	35G05	41.38	Active	2020-11-02	2023-11-01
948	2586038	35G05	41.38	Active	2020-11-02	2023-11-01
949	2586039	35G06	41.43	Active	2020-11-02	2023-11-01
950	2586040	35G06	41.43	Active	2020-11-02	2023-11-01
951	2586041	35G06	41.43	Active	2020-11-02	2023-11-01
952	2586042	35G06	41.43	Active	2020-11-02	2023-11-01
953	2586043	35G06	41.43	Active	2020-11-02	2023-11-01
954	2586044	35G06	41.43	Active	2020-11-02	2023-11-01
955	2586045	35G06	41.43	Active	2020-11-02	2023-11-01
956	2586046	35G06	41.42	Active	2020-11-02	2023-11-01
957	2586047	35G06	41.42	Active	2020-11-02	2023-11-01
958	2586048	35G06	41.42	Active	2020-11-02	2023-11-01
959	2586049	35G06	41.42	Active	2020-11-02	2023-11-01
960	2586050	35G06	41.42	Active	2020-11-02	2023-11-01
961	2586051	35G06	41.42	Active	2020-11-02	2023-11-01
962	2586052	35G06	41.42	Active	2020-11-02	2023-11-01
963	2586053	35G06	41.42	Active	2020-11-02	2023-11-01
964	2586054	35G06	41.42	Active	2020-11-02	2023-11-01
965	2586055	35G06	41.42	Active	2020-11-02	2023-11-01
966	2586056	35G06	41.42	Active	2020-11-02	2023-11-01
967	2586057	35G06	41.42	Active	2020-11-02	2023-11-01
968	2586058	35G06	41.42	Active	2020-11-02	2023-11-01

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
969	2586059	35G06	41.42	Active	2020-11-02	2023-11-01
970	2586060	35G06	41.4	Active	2020-11-02	2023-11-01
971	2586061	35G06	41.4	Active	2020-11-02	2023-11-01
972	2586062	35G06	41.4	Active	2020-11-02	2023-11-01
973	2586063	35G06	41.4	Active	2020-11-02	2023-11-01
974	2586064	35G06	41.4	Active	2020-11-02	2023-11-01
975	2586065	35G06	41.4	Active	2020-11-02	2023-11-01
976	2586066	35G06	41.4	Active	2020-11-02	2023-11-01
977	2586067	35G06	41.4	Active	2020-11-02	2023-11-01
978	2586068	35G06	41.4	Active	2020-11-02	2023-11-01
979	2586069	35G06	41.4	Active	2020-11-02	2023-11-01
980	2586070	35G06	41.4	Active	2020-11-02	2023-11-01
981	2586071	35G06	41.4	Active	2020-11-02	2023-11-01
982	2586072	35G06	41.4	Active	2020-11-02	2023-11-01
983	2586073	35G06	41.4	Active	2020-11-02	2023-11-01
984	2586074	35G06	41.39	Active	2020-11-02	2023-11-01
985	2586075	35G06	41.39	Active	2020-11-02	2023-11-01
986	2586076	35G06	41.39	Active	2020-11-02	2023-11-01
987	2586077	35G06	41.39	Active	2020-11-02	2023-11-01
988	2586078	35G06	41.39	Active	2020-11-02	2023-11-01
989	2586079	35G06	41.39	Active	2020-11-02	2023-11-01
990	2586080	35G06	41.39	Active	2020-11-02	2023-11-01
991	2586081	35G06	41.39	Active	2020-11-02	2023-11-01
992	2586082	35G06	41.39	Active	2020-11-02	2023-11-01
993	2586083	35G06	41.39	Active	2020-11-02	2023-11-01
994	2586084	35G06	41.39	Active	2020-11-02	2023-11-01
995	2586085	35G06	41.39	Active	2020-11-02	2023-11-01
996	2586086	35G06	41.39	Active	2020-11-02	2023-11-01
997	2586087	35G06	41.39	Active	2020-11-02	2023-11-01
998	2586088	35G06	41.38	Active	2020-11-02	2023-11-01
999	2586089	35G06	41.38	Active	2020-11-02	2023-11-01
1000	2586090	35G06	41.38	Active	2020-11-02	2023-11-01
1001	2586091	35G06	41.38	Active	2020-11-02	2023-11-01
1002	2586092	35G06	41.38	Active	2020-11-02	2023-11-01
1003	2586093	35G06	41.38	Active	2020-11-02	2023-11-01
1004	2586094	35G06	41.38	Active	2020-11-02	2023-11-01
1005	2586095	35G06	41.38	Active	2020-11-02	2023-11-01
1006		35G06	41.38	Active	2020-11-02	2023-11-01
1007	2586097	35G06	41.38	Active	2020-11-02	2023-11-01
1008		35G06	41.38	Active	2020-11-02	2023-11-01
1009	2586099	35G06	41.37	Active	2020-11-02	2023-11-01
1010	2586100	35G06	41.37	Active	2020-11-02	2023-11-01
1011	2586101	35G06	41.37	Active	2020-11-02	2023-11-01
1012	2586102	35G06	41.37	Active	2020-11-02	2023-11-01

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1013	2586103	35G06	41.37	Active	2020-11-02	2023-11-01
1014	2586104	35G06	41.37	Active	2020-11-02	2023-11-01
1015	2586105	35G06	41.37	Active	2020-11-02	2023-11-01
1016	2586106	35G06	41.37	Active	2020-11-02	2023-11-01
1017	2586107	35G06	41.37	Active	2020-11-02	2023-11-01
1018	2586108	35G06	41.36	Active	2020-11-02	2023-11-01
1019	2586109	35G06	41.36	Active	2020-11-02	2023-11-01
1020	2586110	35G06	41.36	Active	2020-11-02	2023-11-01
1021	2586111	35G06	41.36	Active	2020-11-02	2023-11-01
1022	2586112	35G06	41.36	Active	2020-11-02	2023-11-01
1023	2586113	35G06	41.36	Active	2020-11-02	2023-11-01
1024	2586114	35G06	41.36	Active	2020-11-02	2023-11-01
1025	2586115	35G06	41.36	Active	2020-11-02	2023-11-01
1026	2586116	35G06	41.36	Active	2020-11-02	2023-11-01
1027	2586117	35G06	41.36	Active	2020-11-02	2023-11-01
1028	2586118	35G06	41.36	Active	2020-11-02	2023-11-01
1029	2586119	35G06	41.35	Active	2020-11-02	2023-11-01
1030	2586120	35G06	41.35	Active	2020-11-02	2023-11-01
1031	2586121	35G06	41.35	Active	2020-11-02	2023-11-01
1032	2586122	35G06	41.35	Active	2020-11-02	2023-11-01
1033	2586123	35G06	41.35	Active	2020-11-02	2023-11-01
1034	2586124	35G06	41.35	Active	2020-11-02	2023-11-01
1035	2586125	35G06	41.35	Active	2020-11-02	2023-11-01
1036	2586126	35G06	41.35	Active	2020-11-02	2023-11-01
1037	2586127	35G06	41.35	Active	2020-11-02	2023-11-01
1038	2586128	35G06	41.35	Active	2020-11-02	2023-11-01
1039	2586129	35G06	41.35	Active	2020-11-02	2023-11-01
1040	2586130	35G06	41.35	Active	2020-11-02	2023-11-01
1041	2586131	35G05	41.5	Active	2020-11-02	2023-11-01
1042	2586132	35G05	41.5	Active	2020-11-02	2023-11-01
1043	2586133	35G05	41.5	Active	2020-11-02	2023-11-01
1044	2586134	35G05	41.5	Active	2020-11-02	2023-11-01
1045	2586135	35G05	41.49	Active	2020-11-02	2023-11-01
1046	2586136	35G05	41.49	Active	2020-11-02	2023-11-01
1047	2586137	35G05	41.49	Active	2020-11-02	2023-11-01
1048	2586138	35G05	41.49	Active	2020-11-02	2023-11-01
1049	2586139	35G05	41.48	Active	2020-11-02	2023-11-01
1050	2586140	35G05	41.48	Active	2020-11-02	2023-11-01
1051	2586141	35G05	41.48	Active	2020-11-02	2023-11-01
1052	2586142	35G05	41.48	Active	2020-11-02	2023-11-01
1053	2586143	35G05	41.48	Active	2020-11-02	2023-11-01
1054	2586144	35G05	41.48	Active	2020-11-02	2023-11-01
1055	2586145	35G05	41.48	Active	2020-11-02	2023-11-01
1056	2586146	35G05	41.47	Active	2020-11-02	2023-11-01

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1057	2586147	35G05	41.47	Active	2020-11-02	2023-11-01
1058	2586148	35G05	41.47	Active	2020-11-02	2023-11-01
1059	2586149	35G05	41.47	Active	2020-11-02	2023-11-01
1060	2586150	35G05	41.47	Active	2020-11-02	2023-11-01
1061	2586151	35G05	41.47	Active	2020-11-02	2023-11-01
1062	2586152	35G05	41.47	Active	2020-11-02	2023-11-01
1063	2586153	35G05	41.47	Active	2020-11-02	2023-11-01
1064	2586154	35G05	41.47	Active	2020-11-02	2023-11-01
1065	2586155	35G05	41.47	Active	2020-11-02	2023-11-01
1066	2586156	35G05	41.47	Active	2020-11-02	2023-11-01
1067	2586157	35G05	41.47	Active	2020-11-02	2023-11-01
1068	2586158	35G05	41.47	Active	2020-11-02	2023-11-01
1069	2586159	35G05	41.47	Active	2020-11-02	2023-11-01
1070	2586160	35G05	41.47	Active	2020-11-02	2023-11-01
1071	2586161	35G05	41.46	Active	2020-11-02	2023-11-01
1072	2586162	35G05	41.46	Active	2020-11-02	2023-11-01
1073	2586163	35G05	41.46	Active	2020-11-02	2023-11-01
1074	2586164	35G05	41.46	Active	2020-11-02	2023-11-01
1075	2586165	35G05	41.46	Active	2020-11-02	2023-11-01
1076	2586166	35G05	41.46	Active	2020-11-02	2023-11-01
1077	2586167	35G05	41.46	Active	2020-11-02	2023-11-01
1078	2586168	35G05	41.46	Active	2020-11-02	2023-11-01
1079	2586169	35G05	41.46	Active	2020-11-02	2023-11-01
1080	2586170	35G05	41.46	Active	2020-11-02	2023-11-01
1081	2586171	35G05	41.46	Active	2020-11-02	2023-11-01
1082	2586172	35G05	41.46	Active	2020-11-02	2023-11-01
1083	2586173	35G05	41.46	Active	2020-11-02	2023-11-01
1084	2586174	35G05	41.45	Active	2020-11-02	2023-11-01
1085	2586175	35G05	41.45	Active	2020-11-02	2023-11-01
1086	2586176	35G05	41.45	Active	2020-11-02	2023-11-01
1087	2586177	35G05	41.45	Active	2020-11-02	2023-11-01
1088	2586178	35G05	41.45	Active	2020-11-02	2023-11-01
1089	2586179	35G05	41.45	Active	2020-11-02	2023-11-01
1090	2586180	35G05	41.45	Active	2020-11-02	2023-11-01
1091	2586181	35G05	41.45	Active	2020-11-02	2023-11-01
1092	2586182	35G05	41.45	Active	2020-11-02	2023-11-01
1093	2586183	35G05	41.45	Active	2020-11-02	2023-11-01
1094	2586184	35G05	41.44	Active	2020-11-02	2023-11-01
1095	2586185	35G05	41.44	Active	2020-11-02	2023-11-01
1096	2586186	35G05	41.44	Active	2020-11-02	2023-11-01
1097	2586187	35G05	41.44	Active	2020-11-02	2023-11-01
1098		35G05	41.44	Active	2020-11-02	2023-11-01
1099		35G05	41.44	Active	2020-11-02	2023-11-01
1100	2586190	35G05	41.44	Active	2020-11-02	2023-11-01

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1101	2586191	35G05	41.44	Active	2020-11-02	2023-11-01
1102	2586192	35G05	41.44	Active	2020-11-02	2023-11-01
1103	2586193	35G05	41.44	Active	2020-11-02	2023-11-01
1104	2586194	35G05	41.44	Active	2020-11-02	2023-11-01
1105	2586195	35G05	41.44	Active	2020-11-02	2023-11-01
1106	2586196	35G05	41.44	Active	2020-11-02	2023-11-01
1107	2586197	35G05	41.44	Active	2020-11-02	2023-11-01
1108	2586198	35G05	41.44	Active	2020-11-02	2023-11-01
1109	2586199	35G05	41.44	Active	2020-11-02	2023-11-01
1110	2586200	35G05	41.43	Active	2020-11-02	2023-11-01
1111	2586201	35G05	41.43	Active	2020-11-02	2023-11-01
1112	2586202	35G05	41.43	Active	2020-11-02	2023-11-01
1113	2586203	35G05	41.43	Active	2020-11-02	2023-11-01
1114	2586204	35G05	41.43	Active	2020-11-02	2023-11-01
1115	2586205	35G05	41.43	Active	2020-11-02	2023-11-01
1116	2586206	35G05	41.43	Active	2020-11-02	2023-11-01
1117	2586207	35G05	41.43	Active	2020-11-02	2023-11-01
1118	2586208	35G05	41.43	Active	2020-11-02	2023-11-01
1119	2586209	35G05	41.43	Active	2020-11-02	2023-11-01
1120	2586210	35G05	41.43	Active	2020-11-02	2023-11-01
1121	2586211	35G05	41.43	Active	2020-11-02	2023-11-01
1122	2586212	35G05	41.43	Active	2020-11-02	2023-11-01
1123	2586213	35G05	41.43	Active	2020-11-02	2023-11-01
1124	2586214	35G05	41.43	Active	2020-11-02	2023-11-01
1125	2586215	35G05	41.43	Active	2020-11-02	2023-11-01
1126	2586216	35G05	41.43	Active	2020-11-02	2023-11-01
1127	2586217	35G05	41.43	Active	2020-11-02	2023-11-01
1128	2586218	35G05	41.43	Active	2020-11-02	2023-11-01
1129	2586219	35G05	41.42	Active	2020-11-02	2023-11-01
1130	2586220	35G05	41.42	Active	2020-11-02	2023-11-01
1131	2586221	35G05	41.42	Active	2020-11-02	2023-11-01
1132	2586222	35G05	41.42	Active	2020-11-02	2023-11-01
1133	2586223	35G05	41.42	Active	2020-11-02	2023-11-01
1134	2586224	35G05	41.42	Active	2020-11-02	2023-11-01
1135	2586225	35G05	41.42	Active	2020-11-02	2023-11-01
1136	2586226	35G05	41.42	Active	2020-11-02	2023-11-01
1137	2586227	35G05	41.42	Active	2020-11-02	2023-11-01
1138	2586228	35G05	41.42	Active	2020-11-02	2023-11-01
1139	2586229	35G05	41.42	Active	2020-11-02	2023-11-01
1140	2586230	35G05	41.42	Active	2020-11-02	2023-11-01
1141	2586231	35G05	41.42	Active	2020-11-02	2023-11-01
1142	2586232	35G05	41.42	Active	2020-11-02	2023-11-01
1143	2586233	35G05	41.42	Active	2020-11-02	2023-11-01
1144	2586234	35G05	41.42	Active	2020-11-02	2023-11-01

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1145	2586235	35G05	41.45	Active	2020-11-02	2023-11-01
1146	2586236	35G05	41.42	Active	2020-11-02	2023-11-01
1147	2586332	35G05	41.34	Active	2020-11-02	2023-11-01
1148	2586333	35G05	41.34	Active	2020-11-02	2023-11-01
1149	2586334	35G05	41.33	Active	2020-11-02	2023-11-01
1150	2586335	35G05	41.33	Active	2020-11-02	2023-11-01
1151	2586336	35G05	41.33	Active	2020-11-02	2023-11-01
1152	2586337	35G05	41.33	Active	2020-11-02	2023-11-01
1153	2594532	35G05	41.44	Active	2021-01-08	2024-01-07
1154	2594533	35G05	41.44	Active	2021-01-08	2024-01-07
1155	2594534	35G05	41.44	Active	2021-01-08	2024-01-07
1156	2594535	35G05	41.44	Active	2021-01-08	2024-01-07
1157	2594536	35G05	41.43	Active	2021-01-08	2024-01-07
1158	2594537	35G05	41.43	Active	2021-01-08	2024-01-07
1159	2594538	35G05	41.43	Active	2021-01-08	2024-01-07
1160	2594539	35G05	41.43	Active	2021-01-08	2024-01-07
1161	2594540	35G05	41.43	Active	2021-01-08	2024-01-07
1162	2594541	35G05	41.43	Active	2021-01-08	2024-01-07
1163	2594542	35G05	41.43	Active	2021-01-08	2024-01-07
1164	2594543	35G05	41.43	Active	2021-01-08	2024-01-07
1165	2594544	35G05	41.43	Active	2021-01-08	2024-01-07
1166	2594545	35G05	41.42	Active	2021-01-08	2024-01-07
1167	2594546	35G05	41.42	Active	2021-01-08	2024-01-07
1168	2594547	35G05	41.42	Active	2021-01-08	2024-01-07
1169	2594548	35G05	41.42	Active	2021-01-08	2024-01-07
1170	2594549	35G05	41.42	Active	2021-01-08	2024-01-07
1171	2594550	35G05	41.42	Active	2021-01-08	2024-01-07
1172	2594551	35G05	41.41	Active	2021-01-08	2024-01-07
1173	2594552	35G05	41.41	Active	2021-01-08	2024-01-07
1174	2594553	35G05	41.41	Active	2021-01-08	2024-01-07
1175	2594554	35G05	41.39	Active	2021-01-08	2024-01-07
1176	2594555	35G05	41.39	Active	2021-01-08	2024-01-07
1177	2594556	35G05	41.39	Active	2021-01-08	2024-01-07
1178	2594557	35G05	41.39	Active	2021-01-08	2024-01-07
1179	2594558	35G05	41.39	Active	2021-01-08	2024-01-07
1180		35G05	41.39	Active	2021-01-08	2024-01-07
1181	2594560	35G05	41.39	Active	2021-01-08	2024-01-07
1182		35G05	41.39	Active	2021-01-08	2024-01-07
1183	2594562	35G05	41.39	Active	2021-01-08	2024-01-07
1184	2594563	35G05	41.39	Active	2021-01-08	2024-01-07
1185	2594564	35G05	41.39	Active	2021-01-08	2024-01-07
1186	2594565	35G05	41.39	Active	2021-01-08	2024-01-07
1187	2594566	35G05	41.38	Active	2021-01-08	2024-01-07
1188	2594567	35G05	41.37	Active	2021-01-08	2024-01-07

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1189	2594568	35G05	41.37	Active	2021-01-08	2024-01-07
1190	2594569	35G05	41.37	Active	2021-01-08	2024-01-07
1191	2594570	35G05	41.36	Active	2021-01-08	2024-01-07
1192	2594571	35G05	41.36	Active	2021-01-08	2024-01-07
1193		35G05	41.26	Active	2021-01-08	2024-01-07
1194		35G05	41.26	Active	2021-01-08	2024-01-07
1195		35G05	41.26	Active	2021-01-08	2024-01-07
1196	2594575	35G05	41.26	Active	2021-01-08	2024-01-07
1197		35G05	41.26	Active	2021-01-08	2024-01-07
1198		35G05	41.26	Active	2021-01-08	2024-01-07
1199		35G05	41.26	Active	2021-01-08	2024-01-07
1200	2594579	35G05	41.25	Active	2021-01-08	2024-01-07
1201	2594580	35G05	41.25	Active	2021-01-08	2024-01-07
1202	2594581	35G05	41.25	Active	2021-01-08	2024-01-07
1203	2594582	35G05	41.25	Active	2021-01-08	2024-01-07
1204	2594583	35G05	41.25	Active	2021-01-08	2024-01-07
1205	2594584	35G05	41.25	Active	2021-01-08	2024-01-07
1206	2594585	35G05	41.25	Active	2021-01-08	2024-01-07
1207		35G05	41.25	Active	2021-01-08	2024-01-07
1208		35G05	41.25	Active	2021-01-08	2024-01-07
1209	2594588	35G05	41.25	Active	2021-01-08	2024-01-07
1210	2594589	35G05	41.25	Active	2021-01-08	2024-01-07
1211	2594590	35G05	41.25	Active	2021-01-08	2024-01-07
1212	2594591	35G06	41.28	Active	2021-01-08	2024-01-07
1213	2594592	35G06	41.27	Active	2021-01-08	2024-01-07
1214	2594593	35G06	41.27	Active	2021-01-08	2024-01-07
1215	2594656	35F01	41.54	Active	2021-01-08	2024-01-07
1216	2594657	35F01	41.54	Active	2021-01-08	2024-01-07
1217	2594658	35F01	41.54	Active	2021-01-08	2024-01-07
1218	2594659	35F01	41.54	Active	2021-01-08	2024-01-07
1219	2594660	35F01	41.54	Active	2021-01-08	2024-01-07
1220	2594661	35F01	41.54	Active	2021-01-08	2024-01-07
1221	2594662	35F01	41.54	Active	2021-01-08	2024-01-07
1222	2594663	35F01	41.54	Active	2021-01-08	2024-01-07
1223	2594664	35F01	41.54	Active	2021-01-08	2024-01-07
1224	2594665	35F08	13.71	Active	2021-01-08	2024-01-07
1225	2594666	35F08	7.42	Active	2021-01-08	2024-01-07
1226	2594667	35F08	39.61	Active	2021-01-08	2024-01-07
1227	2594668	35F08	41.49	Active	2021-01-08	2024-01-07
1228		35F08	41.49	Active	2021-01-08	2024-01-07
1229	2594670	35F08	41.49	Active	2021-01-08	2024-01-07
1230	2594671	35F08	41.49	Active	2021-01-08	2024-01-07
1231	2594672	35F08	41.49	Active	2021-01-08	2024-01-07
1232	2594673	35F08	41.49	Active	2021-01-08	2024-01-07

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1233	2594674	35F08	41.49	Active	2021-01-08	2024-01-07
1234	2594675	35F08	41.49	Active	2021-01-08	2024-01-07
1235	2594676	35F08	41.49	Active	2021-01-08	2024-01-07
1236	2594677	35F08	41.49	Active	2021-01-08	2024-01-07
1237	2594678	35F08	41.49	Active	2021-01-08	2024-01-07
1238	2594679	35F08	41.49	Active	2021-01-08	2024-01-07
1239	2594680	35F08	41.49	Active	2021-01-08	2024-01-07
1240	2594681	35F08	41.49	Active	2021-01-08	2024-01-07
1241	2594682	35F08	41.49	Active	2021-01-08	2024-01-07
1242	2594683	35F08	41.49	Active	2021-01-08	2024-01-07
1243	2594684	35F08	41.49	Active	2021-01-08	2024-01-07
1244	2594685	35F08	41.49	Active	2021-01-08	2024-01-07
1245	2594686	35F08	41.49	Active	2021-01-08	2024-01-07
1246	2594687	35F08	41.49	Active	2021-01-08	2024-01-07
1247	2594688	35F08	41.49	Active	2021-01-08	2024-01-07
1248	2594689	35F08	41.49	Active	2021-01-08	2024-01-07
1249	2594690	35F08	41.49	Active	2021-01-08	2024-01-07
1250	2594691	35F08	41.48	Active	2021-01-08	2024-01-07
1251	2594692	35F08	21.8	Active	2021-01-08	2024-01-07
1252	2594693	35F08	41.48	Active	2021-01-08	2024-01-07
1253	2594694	35F08	41.48	Active	2021-01-08	2024-01-07
1254	2594695	35F08	41.48	Active	2021-01-08	2024-01-07
1255	2594696	35F08	41.48	Active	2021-01-08	2024-01-07
1256	2594697	35F08	41.48	Active	2021-01-08	2024-01-07
1257	2594698	35F08	41.48	Active	2021-01-08	2024-01-07
1258	2594699	35F08	41.48	Active	2021-01-08	2024-01-07
1259	2594700	35F08	41.48	Active	2021-01-08	2024-01-07
1260	2594701	35F08	41.48	Active	2021-01-08	2024-01-07
1261	2594702	35F08	41.47	Active	2021-01-08	2024-01-07
1262	2594703	35F08	41.47	Active	2021-01-08	2024-01-07
1263	2594704	35F08	41.47	Active	2021-01-08	2024-01-07
1264	2594705	35F08	41.47	Active	2021-01-08	2024-01-07
1265	2594706	35F08	41.47	Active	2021-01-08	2024-01-07
1266	2594707	35F08	41.47	Active	2021-01-08	2024-01-07
1267	2594708	35F08	41.47	Active	2021-01-08	2024-01-07
1268	2594709	35F08	41.47	Active	2021-01-08	2024-01-07
1269	2594710	35F08	41.47	Active	2021-01-08	2024-01-07
1270		35F08	41.47	Active	2021-01-08	2024-01-07
1271	2594712	35F08	41.47	Active	2021-01-08	2024-01-07
1272	2594713	35F08	41.47	Active	2021-01-08	2024-01-07
1273		35F08	41.47	Active	2021-01-08	2024-01-07
1274	2594715	35F08	41.47	Active	2021-01-08	2024-01-07
1275		35F08	0.75	Active	2021-01-08	2024-01-07
1276	2594717	35F08	37.87	Active	2021-01-08	2024-01-07

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1277	2594718	35F08	41.46	Active	2021-01-08	2024-01-07
1278	2594719	35F08	41.46	Active	2021-01-08	2024-01-07
1279	2594720	35F08	41.46	Active	2021-01-08	2024-01-07
1280	2594721	35F08	41.46	Active	2021-01-08	2024-01-07
1281	2594722	35F08	41.46	Active	2021-01-08	2024-01-07
1282	2594723	35F08	41.46	Active	2021-01-08	2024-01-07
1283	2594724	35F08	41.46	Active	2021-01-08	2024-01-07
1284	2594725	35F08	41.46	Active	2021-01-08	2024-01-07
1285	2594726	35F08	41.46	Active	2021-01-08	2024-01-07
1286	2594727	35F08	41.46	Active	2021-01-08	2024-01-07
1287	2594728	35F08	41.46	Active	2021-01-08	2024-01-07
1288	2594729	35F08	41.46	Active	2021-01-08	2024-01-07
1289	2594730	35F08	41.46	Active	2021-01-08	2024-01-07
1290	2594731	35F08	41.46	Active	2021-01-08	2024-01-07
1291	2594732	35F08	41.46	Active	2021-01-08	2024-01-07
1292	2594733	35F08	41.46	Active	2021-01-08	2024-01-07
1293	2594734	35F08	41.46	Active	2021-01-08	2024-01-07
1294	2594735	35F08	41.46	Active	2021-01-08	2024-01-07
1295	2594736	35F08	41.46	Active	2021-01-08	2024-01-07
1296	2594737	35F08	41.46	Active	2021-01-08	2024-01-07
1297	2594738	35F08	18.78	Active	2021-01-08	2024-01-07
1298	2594739	35F08	17.87	Active	2021-01-08	2024-01-07
1299	2594740	35F08	16.95	Active	2021-01-08	2024-01-07
1300	2594741	35F08	16.04	Active	2021-01-08	2024-01-07
1301	2594742	35F08	15.12	Active	2021-01-08	2024-01-07
1302	2594743	35F08	14.2	Active	2021-01-08	2024-01-07
1303	2594744	35F08	13.27	Active	2021-01-08	2024-01-07
1304	2594745	35F08	12.35	Active	2021-01-08	2024-01-07
1305	2594746	35F08	30.78	Active	2021-01-08	2024-01-07
1306	2594747	35F08	41.45	Active	2021-01-08	2024-01-07
1307	2594748	35F08	41.45	Active	2021-01-08	2024-01-07
1308	2594749	35F08	41.45	Active	2021-01-08	2024-01-07
1309	2594750	35F08	41.45	Active	2021-01-08	2024-01-07
1310	2594751	35F08	41.45	Active	2021-01-08	2024-01-07
1311	2594752	35F08	41.45	Active	2021-01-08	2024-01-07
1312	2594753	35F08	41.45	Active	2021-01-08	2024-01-07
1313	2594754	35F08	41.45	Active	2021-01-08	2024-01-07
1314	2594755	35F08	41.45	Active	2021-01-08	2024-01-07
1315	2594756	35F08	19.97	Active	2021-01-08	2024-01-07
1316		35F08	41.44	Active	2021-01-08	2024-01-07
1317	2594758	35F08	41.44	Active	2021-01-08	2024-01-07
1318	2594759	35F08	41.44	Active	2021-01-08	2024-01-07
1319	2594760	35F08	41.44	Active	2021-01-08	2024-01-07
1320	2594761	35F08	41.44	Active	2021-01-08	2024-01-07

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1321	2594762	35F08	41.44	Active	2021-01-08	2024-01-07
1322	2594763	35F08	41.44	Active	2021-01-08	2024-01-07
1323	2594764	35F08	41.44	Active	2021-01-08	2024-01-07
1324	2594765	35F08	41.44	Active	2021-01-08	2024-01-07
1325	2594766	35F08	41.44	Active	2021-01-08	2024-01-07
1326	2594767	35F08	41.44	Active	2021-01-08	2024-01-07
1327	2594768	35F08	12.3	Active	2021-01-08	2024-01-07
1328	2594769	35F08	41.43	Active	2021-01-08	2024-01-07
1329	2594770	35F08	41.43	Active	2021-01-08	2024-01-07
1330	2594771	35F08	41.43	Active	2021-01-08	2024-01-07
1331	2594772	35F08	41.43	Active	2021-01-08	2024-01-07
1332	2594773	35F08	41.43	Active	2021-01-08	2024-01-07
1333	2594774	35F08	41.43	Active	2021-01-08	2024-01-07
1334	2594775	35F08	41.43	Active	2021-01-08	2024-01-07
1335	2594776	35F08	41.43	Active	2021-01-08	2024-01-07
1336	2594777	35F08	41.43	Active	2021-01-08	2024-01-07
1337	2594778	35F08	41.43	Active	2021-01-08	2024-01-07
1338	2594779	35F08	41.43	Active	2021-01-08	2024-01-07
1339	2594780	35F08	9.53	Active	2021-01-08	2024-01-07
1340	2594781	35F08	41.42	Active	2021-01-08	2024-01-07
1341	2594782	35F08	41.42	Active	2021-01-08	2024-01-07
1342	2594783	35F08	41.42	Active	2021-01-08	2024-01-07
1343	2594784	35F08	41.42	Active	2021-01-08	2024-01-07
1344	2594785	35F08	41.42	Active	2021-01-08	2024-01-07
1345	2594786	35F08	41.42	Active	2021-01-08	2024-01-07
1346	2594787	35F08	41.42	Active	2021-01-08	2024-01-07
1347	2594788	35F08	41.42	Active	2021-01-08	2024-01-07
1348	2594789	35F08	41.42	Active	2021-01-08	2024-01-07
1349	2594790	35F08	28.37	Active	2021-01-08	2024-01-07
1350	2594791	35F08	41.4	Active	2021-01-08	2024-01-07
1351	2594792	35F08	41.4	Active	2021-01-08	2024-01-07
1352	2594793	35F08	41.4	Active	2021-01-08	2024-01-07
1353	2594794	35F08	41.4	Active	2021-01-08	2024-01-07
1354	2594795	35F08	41.4	Active	2021-01-08	2024-01-07
1355	2594796	35F08	41.4	Active	2021-01-08	2024-01-07
1356	2594797	35F08	37.98	Active	2021-01-08	2024-01-07
1357	2594798	35F08	41.39	Active	2021-01-08	2024-01-07
1358	2594799	35F08	41.39	Active	2021-01-08	2024-01-07
1359	2594800	35F08	41.39	Active	2021-01-08	2024-01-07
1360	2594801	35F08	41.39	Active	2021-01-08	2024-01-07
1361	2594802	35F08	41.39	Active	2021-01-08	2024-01-07
1362	2594803	35F08	41.39	Active	2021-01-08	2024-01-07
1363	2594804	35F08	41.39	Active	2021-01-08	2024-01-07
1364	2594805	35F08	41.39	Active	2021-01-08	2024-01-07

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1365	2594806	35F08	41.38	Active	2021-01-08	2024-01-07
1366	2594807	35F08	41.38	Active	2021-01-08	2024-01-07
1367	2594808	35F08	41.38	Active	2021-01-08	2024-01-07
1368	2594809	35F08	41.38	Active	2021-01-08	2024-01-07
1369	2594810	35F08	41.36	Active	2021-01-08	2024-01-07
1370	2594811	35F08	41.36	Active	2021-01-08	2024-01-07
1371	2594812	35F08	41.36	Active	2021-01-08	2024-01-07
1372	2594813	35F08	41.36	Active	2021-01-08	2024-01-07
1373	2594814	35F08	41.35	Active	2021-01-08	2024-01-07
1374	2594815	35F08	41.35	Active	2021-01-08	2024-01-07
1375	2594816	35F08	41.35	Active	2021-01-08	2024-01-07
1376	2594817	35F08	41.35	Active	2021-01-08	2024-01-07
1377	2594818	35F08	41.35	Active	2021-01-08	2024-01-07
1378	2594819	35F08	41.35	Active	2021-01-08	2024-01-07
1379	2594820	35F08	41.35	Active	2021-01-08	2024-01-07
1380	2594821	35F08	41.35	Active	2021-01-08	2024-01-07
1381	2594822	35F08	41.35	Active	2021-01-08	2024-01-07
1382	2594823	35F08	41.35	Active	2021-01-08	2024-01-07
1383	2594824	35F08	41.35	Active	2021-01-08	2024-01-07
1384	2594825	35F08	41.35	Active	2021-01-08	2024-01-07
1385	2594826	35F08	41.35	Active	2021-01-08	2024-01-07
1386	2594827	35F08	41.35	Active	2021-01-08	2024-01-07
1387	2594828	35F08	41.35	Active	2021-01-08	2024-01-07
1388	2594829	35G05	41.38	Active	2021-01-08	2024-01-07
1389	2594830	35G05	41.38	Active	2021-01-08	2024-01-07
1390	2594831	35G05	41.38	Active	2021-01-08	2024-01-07
1391	2594832	35G05	41.38	Active	2021-01-08	2024-01-07
1392	2594833	35G05	41.38	Active	2021-01-08	2024-01-07
1393	2594834	35G05	41.38	Active	2021-01-08	2024-01-07
1394	2594835	35G05	41.38	Active	2021-01-08	2024-01-07
1395	2594836	35G05	41.38	Active	2021-01-08	2024-01-07
1396	2594837	35G05	41.38	Active	2021-01-08	2024-01-07
1397	2594838	35G05	41.38	Active	2021-01-08	2024-01-07
1398	2594839	35G05	41.37	Active	2021-01-08	2024-01-07
1399	2594840	35G05	41.37	Active	2021-01-08	2024-01-07
1400	2594841	35G05	41.37	Active	2021-01-08	2024-01-07
1401	2594842	35G05	41.37	Active	2021-01-08	2024-01-07
1402	2594843	35G05	41.37	Active	2021-01-08	2024-01-07
1403	2594844	35G05	41.37	Active	2021-01-08	2024-01-07
1404	2594845	35G05	41.37	Active	2021-01-08	2024-01-07
1405	2594846	35G05	41.37	Active	2021-01-08	2024-01-07
1406	2594847	35G05	41.37	Active	2021-01-08	2024-01-07
1407	2594848	35G05	41.37	Active	2021-01-08	2024-01-07
1408	2594849	35G05	41.37	Active	2021-01-08	2024-01-07

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1409	2594850	35G05	41.37	Active	2021-01-08	2024-01-07
1410	2594851	35G05	41.37	Active	2021-01-08	2024-01-07
1411	2594852	35G05	41.37	Active	2021-01-08	2024-01-07
1412	2594853	35G05	41.37	Active	2021-01-08	2024-01-07
1413	2594854	35G05	41.37	Active	2021-01-08	2024-01-07
1414		35G05	41.37	Active	2021-01-08	2024-01-07
1415	2594856	35G05	41.36	Active	2021-01-08	2024-01-07
1416	2594857	35G05	41.36	Active	2021-01-08	2024-01-07
1417	2594858	35G05	41.36	Active	2021-01-08	2024-01-07
1418	2594859	35G05	41.36	Active	2021-01-08	2024-01-07
1419		35G05	41.36	Active	2021-01-08	2024-01-07
1420	2594861	35G05	41.36	Active	2021-01-08	2024-01-07
1421	2594862	35G05	41.36	Active	2021-01-08	2024-01-07
1422	2594863	35G05	41.36	Active	2021-01-08	2024-01-07
1423	2594864	35G05	41.36	Active	2021-01-08	2024-01-07
1424	2594865	35G05	41.36	Active	2021-01-08	2024-01-07
1425	2594866	35G05	41.36	Active	2021-01-08	2024-01-07
1426	2594867	35G05	41.36	Active	2021-01-08	2024-01-07
1427	2594868	35G05	41.36	Active	2021-01-08	2024-01-07
1428		35G05	41.36	Active	2021-01-08	2024-01-07
1429	2594870	35G05	41.36	Active	2021-01-08	2024-01-07
1430		35G05	41.36	Active	2021-01-08	2024-01-07
1431	2594872	35G05	41.35	Active	2021-01-08	2024-01-07
1432	2594873	35G05	41.35	Active	2021-01-08	2024-01-07
1433		35G05	41.35	Active	2021-01-08	2024-01-07
1434	2594875	35G05	41.35	Active	2021-01-08	2024-01-07
1435		35G05	41.35	Active	2021-01-08	2024-01-07
1436		35G05	41.35	Active	2021-01-08	2024-01-07
1437	2594878	35G05	41.35	Active	2021-01-08	2024-01-07
1438	2594879	35G05	41.35	Active	2021-01-08	2024-01-07
1439		35G05	41.35	Active	2021-01-08	2024-01-07
1440	2594881	35G05	41.35	Active	2021-01-08	2024-01-07
1441		35G05	41.35	Active	2021-01-08	2024-01-07
1442	2594883	35G05	41.35	Active	2021-01-08	2024-01-07
1443	2594884	35G05	41.35	Active	2021-01-08	2024-01-07
1444	2594885	35G05	41.35	Active	2021-01-08	2024-01-07
1445	2594886	35G05	41.35	Active	2021-01-08	2024-01-07
1446		35G05	41.34	Active	2021-01-08	2024-01-07
1447	2594888	35G05	41.34	Active	2021-01-08	2024-01-07
1448		35G05	41.34	Active	2021-01-08	2024-01-07
1449	2594890	35G05	41.34	Active	2021-01-08	2024-01-07
1450	2594891	35G05	41.34	Active	2021-01-08	2024-01-07
1451	2594892	35G05	41.34	Active	2021-01-08	2024-01-07
1452	2594893	35G05	41.34	Active	2021-01-08	2024-01-07

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1453	2594894	35G05	41.34	Active	2021-01-08	2024-01-07
1454	2594895	35G05	41.34	Active	2021-01-08	2024-01-07
1455	2594896	35G05	41.34	Active	2021-01-08	2024-01-07
1456	2594897	35G05	41.33	Active	2021-01-08	2024-01-07
1457	2594898	35G05	41.33	Active	2021-01-08	2024-01-07
1458	2594899	35G05	41.33	Active	2021-01-08	2024-01-07
1459	2594900	35G05	41.33	Active	2021-01-08	2024-01-07
1460	2594901	35G05	41.33	Active	2021-01-08	2024-01-07
1461	2594902	35G05	41.33	Active	2021-01-08	2024-01-07
1462	2594903	35G05	41.33	Active	2021-01-08	2024-01-07
1463	2594904	35G05	41.33	Active	2021-01-08	2024-01-07
1464	2594905	35G05	41.33	Active	2021-01-08	2024-01-07
1465	2594906	35G05	41.33	Active	2021-01-08	2024-01-07
1466	2594907	35G05	41.33	Active	2021-01-08	2024-01-07
1467	2594908	35G05	41.33	Active	2021-01-08	2024-01-07
1468	2594909	35G05	41.33	Active	2021-01-08	2024-01-07
1469	2594910	35G05	41.33	Active	2021-01-08	2024-01-07
1470	2594911	35G05	41.33	Active	2021-01-08	2024-01-07
1471	2594912	35G05	41.33	Active	2021-01-08	2024-01-07
1472	2594913	35G05	41.33	Active	2021-01-08	2024-01-07
1473	2594914	35G05	41.33	Active	2021-01-08	2024-01-07
1474	2594915	35G05	41.33	Active	2021-01-08	2024-01-07
1475	2594916	35G05	41.33	Active	2021-01-08	2024-01-07
1476	2594917	35G05	41.33	Active	2021-01-08	2024-01-07
1477	2594918	35G05	41.33	Active	2021-01-08	2024-01-07
1478	2594919	35G05	41.33	Active	2021-01-08	2024-01-07
1479	2594920	35G05	41.33	Active	2021-01-08	2024-01-07
1480	2594921	35G05	41.33	Active	2021-01-08	2024-01-07
1481	2594922	35G05	41.33	Active	2021-01-08	2024-01-07
1482	2594923	35G05	41.33	Active	2021-01-08	2024-01-07
1483	2594924	35G05	41.33	Active	2021-01-08	2024-01-07
1484	2594925	35G05	41.33	Active	2021-01-08	2024-01-07
1485	2594926	35G05	41.33	Active	2021-01-08	2024-01-07
1486	2594927	35G05	41.33	Active	2021-01-08	2024-01-07
1487	2594928	35G05	41.33	Active	2021-01-08	2024-01-07
1488	2594929	35G05	41.32	Active	2021-01-08	2024-01-07
1489	2594930	35G05	41.32	Active	2021-01-08	2024-01-07
1490	2594931	35G05	41.32	Active	2021-01-08	2024-01-07
1491	2594932	35G05	41.32	Active	2021-01-08	2024-01-07
1492	2594933	35G05	41.32	Active	2021-01-08	2024-01-07
1493	2594934	35G05	41.32	Active	2021-01-08	2024-01-07
1494	2594935	35G05	41.32	Active	2021-01-08	2024-01-07
1495	2594936	35G05	41.32	Active	2021-01-08	2024-01-07
1496	2594937	35G05	41.32	Active	2021-01-08	2024-01-07

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1497	2594938	35G05	41.32	Active	2021-01-08	2024-01-07
1498	2594939	35G05	41.32	Active	2021-01-08	2024-01-07
1499	2594940	35G05	41.32	Active	2021-01-08	2024-01-07
1500	2594941	35G05	41.32	Active	2021-01-08	2024-01-07
1501	2594942	35G05	41.32	Active	2021-01-08	2024-01-07
1502	2594943	35G05	41.32	Active	2021-01-08	2024-01-07
1503	2594944	35G05	41.32	Active	2021-01-08	2024-01-07
1504	2594945	35G05	41.32	Active	2021-01-08	2024-01-07
1505	2594946	35G05	41.32	Active	2021-01-08	2024-01-07
1506		35G05	41.32	Active	2021-01-08	2024-01-07
1507		35G05	41.32	Active	2021-01-08	2024-01-07
1508		35G05	41.32	Active	2021-01-08	2024-01-07
1509	2594950	35G05	41.32	Active	2021-01-08	2024-01-07
1510	2594951	35G05	41.32	Active	2021-01-08	2024-01-07
1511	2594952	35G05	41.32	Active	2021-01-08	2024-01-07
1512	2594953	35G05	41.31	Active	2021-01-08	2024-01-07
1513	2594954	35G05	41.31	Active	2021-01-08	2024-01-07
1514	2594955	35G05	41.31	Active	2021-01-08	2024-01-07
1515	2594956	35G05	41.3	Active	2021-01-08	2024-01-07
1516	2594957	35G05	41.3	Active	2021-01-08	2024-01-07
1517	2594958	35G05	41.3	Active	2021-01-08	2024-01-07
1518	2594959	35G05	41.3	Active	2021-01-08	2024-01-07
1519	2594960	35G05	41.3	Active	2021-01-08	2024-01-07
1520	2594961	35G05	41.29	Active	2021-01-08	2024-01-07
1521	2594962	35G05	41.29	Active	2021-01-08	2024-01-07
1522	2594963	35G05	41.28	Active	2021-01-08	2024-01-07
1523	2594964	35G05	41.28	Active	2021-01-08	2024-01-07
1524	2594965	35G05	41.28	Active	2021-01-08	2024-01-07
1525	2594966	35G05	41.28	Active	2021-01-08	2024-01-07
1526	2594967	35G05	41.28	Active	2021-01-08	2024-01-07
1527	2594968	35G05	41.28	Active	2021-01-08	2024-01-07
1528	2594969	35G05	41.28	Active	2021-01-08	2024-01-07
1529	2594970	35G05	41.28	Active	2021-01-08	2024-01-07
1530	2594971	35G05	41.28	Active	2021-01-08	2024-01-07
1531	2594972	35G05	41.27	Active	2021-01-08	2024-01-07
1532	2594973	35G05	41.27	Active	2021-01-08	2024-01-07
1533	2594974	35G05	41.27	Active	2021-01-08	2024-01-07
1534	2594975	35G05	41.27	Active	2021-01-08	2024-01-07
1535	2594976	35G05	41.27	Active	2021-01-08	2024-01-07
1536	2594977	35G05	41.27	Active	2021-01-08	2024-01-07
1537	2594978	35G05	41.26	Active	2021-01-08	2024-01-07
1538	2594979	35G06	41.35	Active	2021-01-08	2024-01-07
1539	2594980	35G06	41.35	Active	2021-01-08	2024-01-07
1540	2594981	35G06	41.35	Active	2021-01-08	2024-01-07

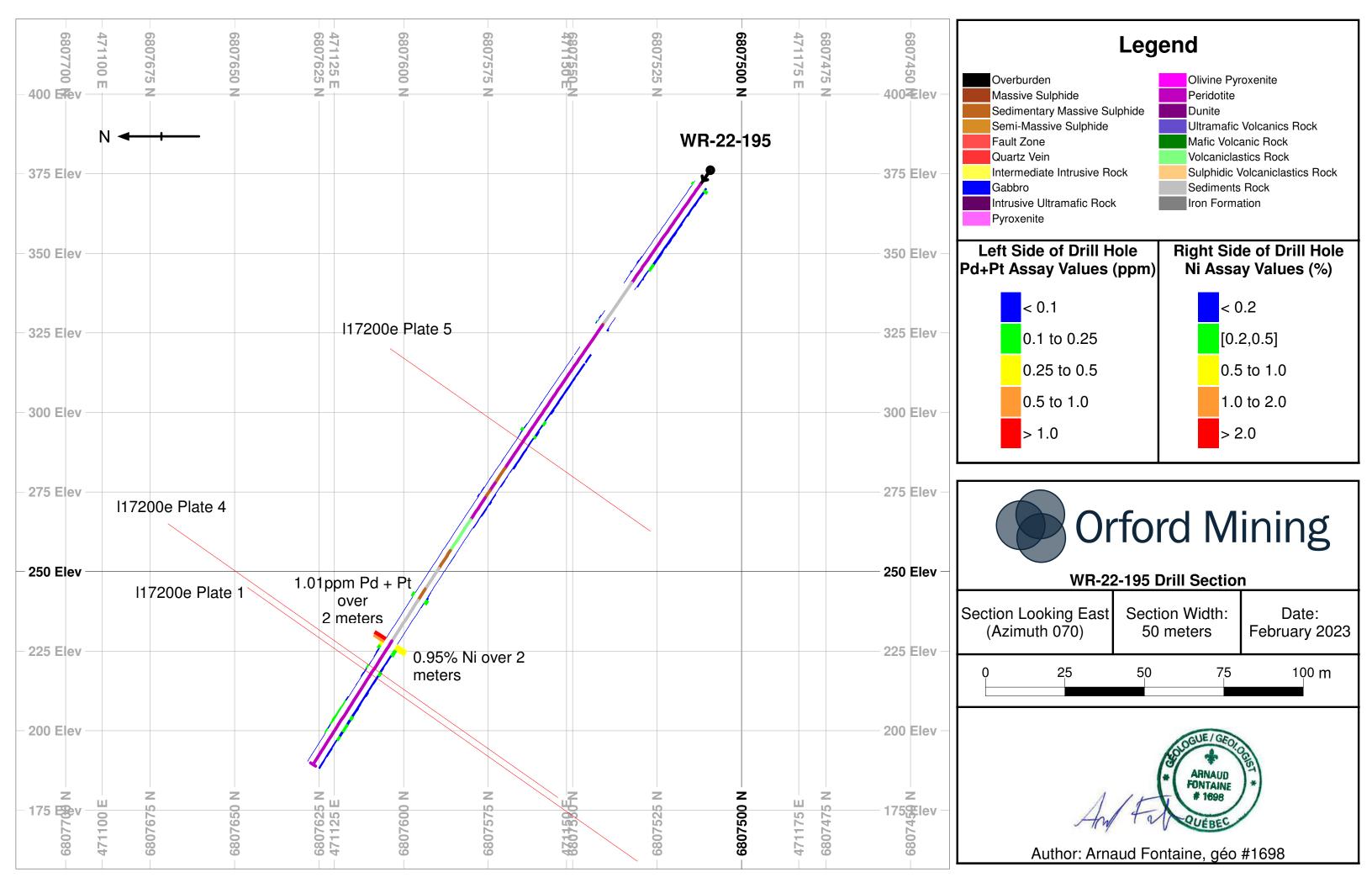
Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

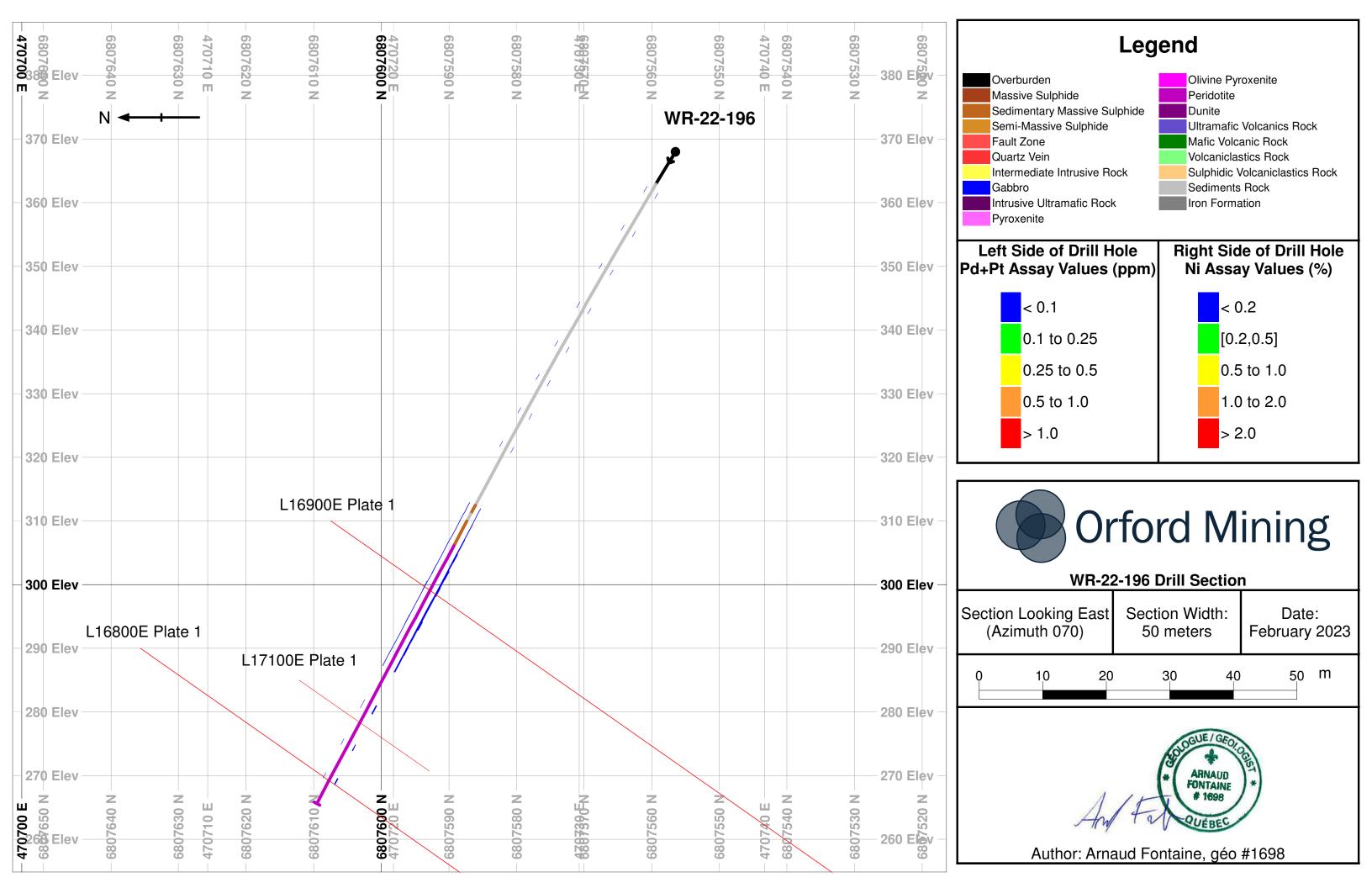
	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1541	2594982	35G06	41.34	Active	2021-01-08	2024-01-07
1542	2594983	35G06	41.34	Active	2021-01-08	2024-01-07
1543	2594984	35G06	41.34	Active	2021-01-08	2024-01-07
1544	2594985	35G06	41.34	Active	2021-01-08	2024-01-07
1545	2594986	35G06	41.34	Active	2021-01-08	2024-01-07
1546		35G06	41.34	Active	2021-01-08	2024-01-07
1547	2594988	35G06	41.34	Active	2021-01-08	2024-01-07
1548	2594989	35G06	41.34	Active	2021-01-08	2024-01-07
1549		35G06	41.34	Active	2021-01-08	2024-01-07
1550	2594991	35G06	41.34	Active	2021-01-08	2024-01-07
1551		35G06	41.34	Active	2021-01-08	2024-01-07
1552		35G06	41.34	Active	2021-01-08	2024-01-07
1553	2594994	35G06	41.34	Active	2021-01-08	2024-01-07
1554		35G06	41.34	Active	2021-01-08	2024-01-07
1555		35G06	41.34	Active	2021-01-08	2024-01-07
1556		35G06	41.34	Active	2021-01-08	2024-01-07
1557	2594998	35G06	41.34	Active	2021-01-08	2024-01-07
1558	2594999	35G06	41.34	Active	2021-01-08	2024-01-07
1559		35G06	41.34	Active	2021-01-08	2024-01-07
1560	2595001	35G06	41.34	Active	2021-01-08	2024-01-07
1561	2595002	35G06	41.34	Active	2021-01-08	2024-01-07
1562	2595003	35G06	41.34	Active	2021-01-08	2024-01-07
1563	2595004	35G06	41.33	Active	2021-01-08	2024-01-07
1564	2595005	35G06	41.33	Active	2021-01-08	2024-01-07
1565	2595006	35G06	41.33	Active	2021-01-08	2024-01-07
1566	2595007	35G06	41.33	Active	2021-01-08	2024-01-07
1567	2595008	35G06	41.27	Active	2021-01-08	2024-01-07
1568	2595009	35G06	41.27	Active	2021-01-08	2024-01-07
1569	2595010	35G06	41.27	Active	2021-01-08	2024-01-07
1570	2595011	35G06	41.27	Active	2021-01-08	2024-01-07
1571	2595012	35G06	41.27	Active	2021-01-08	2024-01-07
1572	2595013	35G06	41.27	Active	2021-01-08	2024-01-07
1573	2595014	35G06	41.27	Active	2021-01-08	2024-01-07
1574	2595015	35G06	41.25	Active	2021-01-08	2024-01-07
1575	2595016	35G06	41.25	Active	2021-01-08	2024-01-07
1576	2595017	35G06	41.24	Active	2021-01-08	2024-01-07
1577	2595018	35G06	41.24	Active	2021-01-08	2024-01-07
1578	2595019	35G06	41.24	Active	2021-01-08	2024-01-07
1579	2595020	35G06	41.24	Active	2021-01-08	2024-01-07
1580	2595021	35G06	41.24	Active	2021-01-08	2024-01-07
1581	2595022	35G06	41.24	Active	2021-01-08	2024-01-07
1582	2595023	35G06	41.24	Active	2021-01-08	2024-01-07
1583	2595024	35G06	41.24	Active	2021-01-08	2024-01-07
1584	2595025	35G06	41.24	Active	2021-01-08	2024-01-07

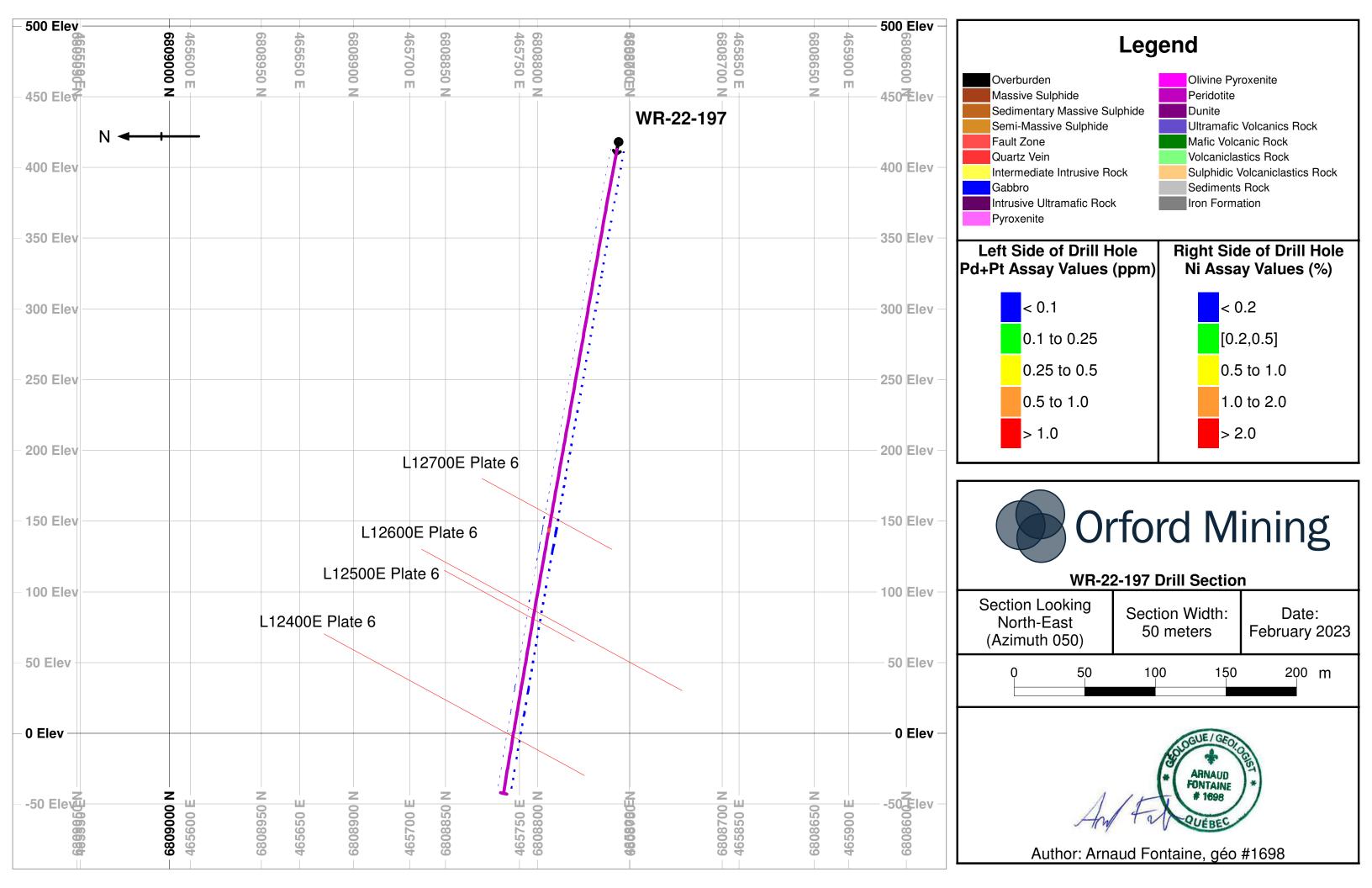
Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

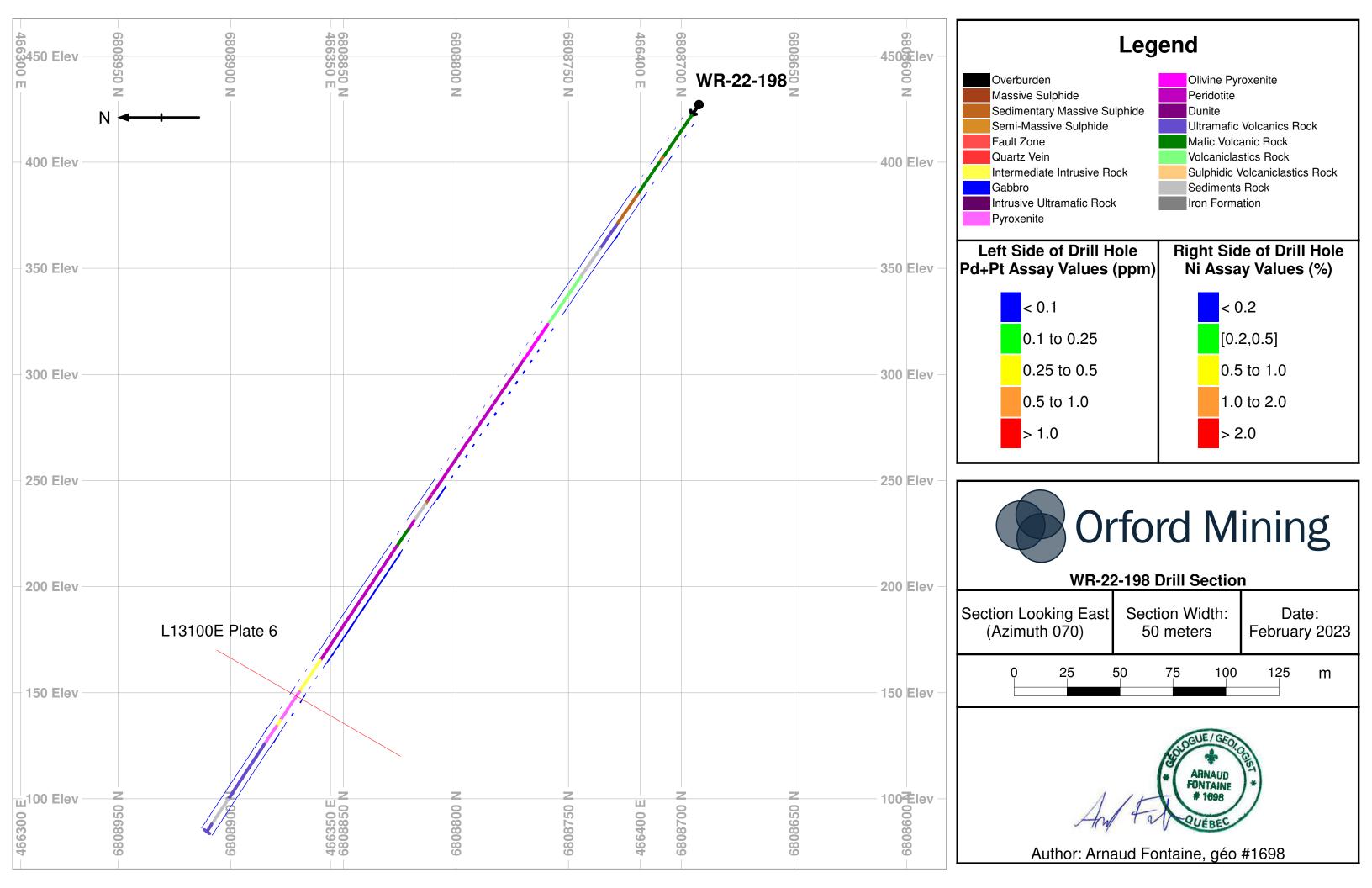
	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1585	2595026	35G06	41.24	Active	2021-01-08	2024-01-07
1586	2595027	35G06	41.23	Active	2021-01-08	2024-01-07
1587	2595028	35G06	41.23	Active	2021-01-08	2024-01-07
1588	2595029	35G06	41.23	Active	2021-01-08	2024-01-07
1589	2595209	35F08	18.68	Active	2021-01-14	2024-01-13
1590	2617541	35F08	41.48	Active	2021-08-23	2024-08-22
1591	2617542	35F08	41.47	Active	2021-08-23	2024-08-22
1592	2617543	35F08	41.47	Active	2021-08-23	2024-08-22
1593	2617544	35F08	41.47	Active	2021-08-23	2024-08-22
1594	2617545	35F08	41.47	Active	2021-08-23	2024-08-22
1595	2617546	35F08	41.45	Active	2021-08-23	2024-08-22
1596	2617547	35F08	41.45	Active	2021-08-23	2024-08-22
1597	2617548	35F08	41.43	Active	2021-08-23	2024-08-22
1598	2617549	35G05	41.48	Active	2021-08-23	2024-08-22
1599	2617550	35G05	41.48	Active	2021-08-23	2024-08-22
1600	2617551	35G05	41.47	Active	2021-08-23	2024-08-22
1601	2617552	35G05	41.47	Active	2021-08-23	2024-08-22
1602	2617553	35G05	41.46	Active	2021-08-23	2024-08-22
1603	2617554	35G05	41.46	Active	2021-08-23	2024-08-22
1604	2617555	35G05	41.46	Active	2021-08-23	2024-08-22
1605	2617556	35G05	41.46	Active	2021-08-23	2024-08-22
1606	2617557	35G05	41.45	Active	2021-08-23	2024-08-22
1607	2617558	35G05	41.45	Active	2021-08-23	2024-08-22
1608	2617559	35G05	41.45	Active	2021-08-23	2024-08-22
1609	2617560	35G05	41.45	Active	2021-08-23	2024-08-22
1610	2617561	35G05	41.45	Active	2021-08-23	2024-08-22
1611	2617562	35G05	41.45	Active	2021-08-23	2024-08-22
1612	2617563	35G05	41.45	Active	2021-08-23	2024-08-22
1613	2617564	35G05	41.45	Active	2021-08-23	2024-08-22
1614	2617565	35G05	41.45	Active	2021-08-23	2024-08-22
1615	2617566	35G05	41.45	Active	2021-08-23	2024-08-22
1616	2617567	35G05	41.45	Active	2021-08-23	2024-08-22
1617	2617568	35G05	41.45	Active	2021-08-23	2024-08-22
1618	2617569	35G05	41.45	Active	2021-08-23	2024-08-22
1619	2617570	35G05	41.45	Active	2021-08-23	2024-08-22
1620	2617571	35G05	41.45	Active	2021-08-23	2024-08-22
1621	2617572	35G05	41.45	Active	2021-08-23	2024-08-22
1622	2617573	35G05	41.45	Active	2021-08-23	2024-08-22
1623	2617574	35G05	41.44	Active	2021-08-23	2024-08-22
1624	2617575	35G05	41.44	Active	2021-08-23	2024-08-22
1625	2617576	35G05	41.44	Active	2021-08-23	2024-08-22
1626	2617577	35G05	41.44	Active	2021-08-23	2024-08-22
1627	2617578	35G05	41.44	Active	2021-08-23	2024-08-22
1628	2617579	35G05	41.44	Active	2021-08-23	2024-08-22

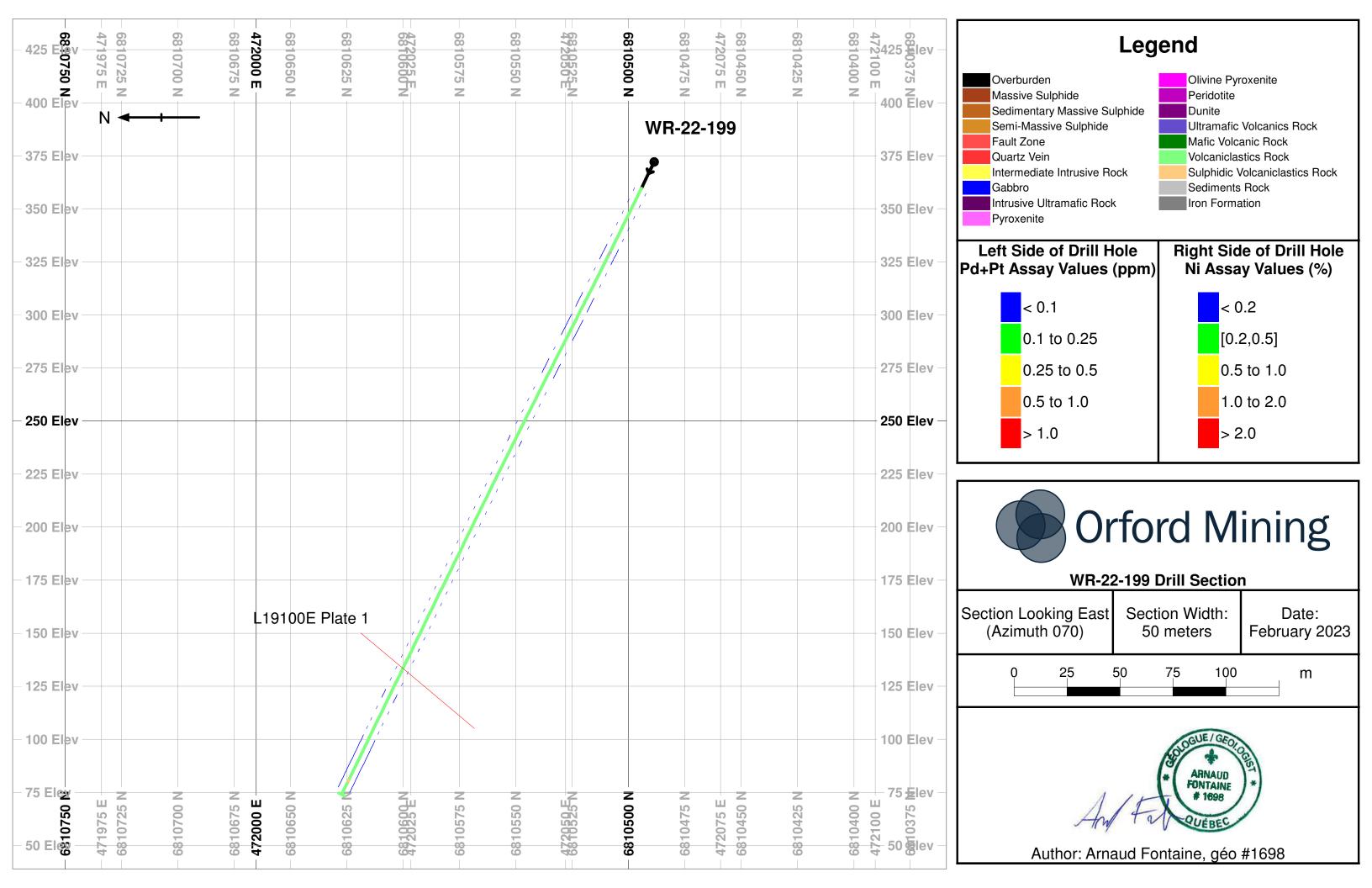
Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

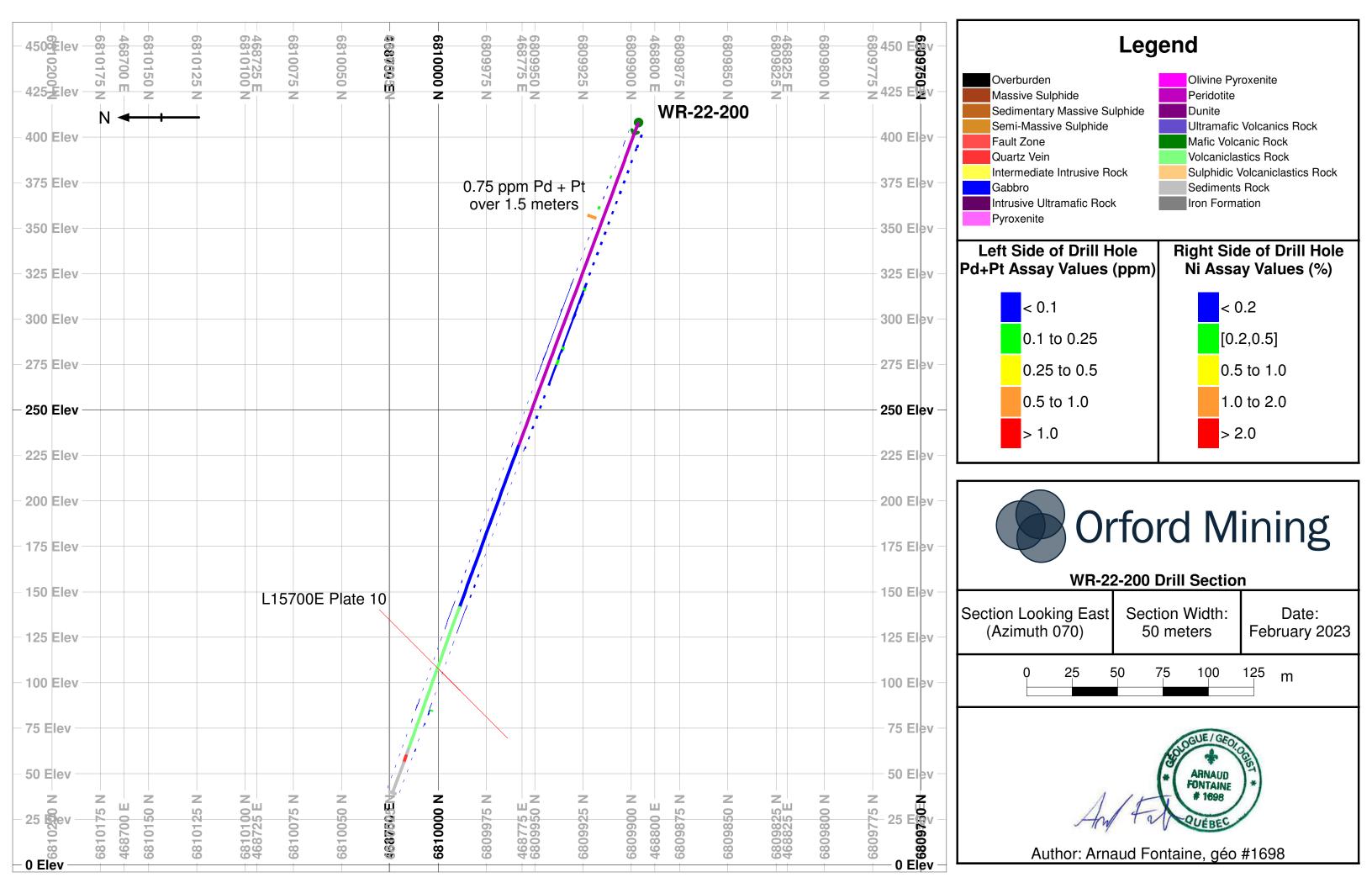

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1629	2617580	35G05	41.44	Active	2021-08-23	2024-08-22
1630	2617581	35G05	41.44	Active	2021-08-23	2024-08-22
1631	2617582	35G05	41.44	Active	2021-08-23	2024-08-22
1632	2617583	35G05	41.43	Active	2021-08-23	2024-08-22
1633	2617584	35G05	41.43	Active	2021-08-23	2024-08-22
1634	2617585	35G05	41.43	Active	2021-08-23	2024-08-22
1635	2617586	35G05	41.43	Active	2021-08-23	2024-08-22
1636	2617587	35G05	41.43	Active	2021-08-23	2024-08-22
1637	2617588	35G05	41.43	Active	2021-08-23	2024-08-22
1638	2617589	35G05	41.42	Active	2021-08-23	2024-08-22
1639	2617590	35G05	41.42	Active	2021-08-23	2024-08-22
1640	2617591	35G05	41.42	Active	2021-08-23	2024-08-22
1641	2617592	35G05	41.42	Active	2021-08-23	2024-08-22
1642	2617593	35G05	41.42	Active	2021-08-23	2024-08-22
1643	2617594	35G05	41.42	Active	2021-08-23	2024-08-22
1644	2617595	35G05	41.42	Active	2021-08-23	2024-08-22
1645	2617596	35G05	41.42	Active	2021-08-23	2024-08-22
1646	2617597	35G05	41.42	Active	2021-08-23	2024-08-22
1647	2617598	35G05	41.42	Active	2021-08-23	2024-08-22
1648	2617599	35G05	41.41	Active	2021-08-23	2024-08-22
1649	2617600	35G06	41.37	Active	2021-08-23	2024-08-22
1650	2617601	35G06	41.37	Active	2021-08-23	2024-08-22
1651	2617602	35G06	41.37	Active	2021-08-23	2024-08-22
1652	2617603	35G06	41.37	Active	2021-08-23	2024-08-22
1653	2617604	35G06	41.37	Active	2021-08-23	2024-08-22
1654	2617605	35G06	41.37	Active	2021-08-23	2024-08-22
1655	2617606	35G06	41.33	Active	2021-08-23	2024-08-22
1656	2617607	35G06	41.32	Active	2021-08-23	2024-08-22
1657	2617608	35G06	41.32	Active	2021-08-23	2024-08-22
1658	2617609	35G06	41.32	Active	2021-08-23	2024-08-22
1659	2617610	35G06	41.32	Active	2021-08-23	2024-08-22
1660	2617611	35G06	41.32	Active	2021-08-23	2024-08-22
1661	2617612	35G06	41.32	Active	2021-08-23	2024-08-22
1662	2617613	35G06	41.31	Active	2021-08-23	2024-08-22
1663	2617614	35G06	41.31	Active	2021-08-23	2024-08-22
1664	2617615	35G06	41.31	Active	2021-08-23	2024-08-22
1665	2617616	35G06	41.31	Active	2021-08-23	2024-08-22
1666	2617617	35G06	41.31	Active	2021-08-23	2024-08-22
1667	2617618	35G06	41.31	Active	2021-08-23	2024-08-22
1668	2617619	35G06	41.31	Active	2021-08-23	2024-08-22
1669	2617620	35G06	41.31	Active	2021-08-23	2024-08-22
1670	2617621	35G06	41.31	Active	2021-08-23	2024-08-22
1671	2617622	35G06	41.31	Active	2021-08-23	2024-08-22
1672	2617623	35G06	41.31	Active	2021-08-23	2024-08-22

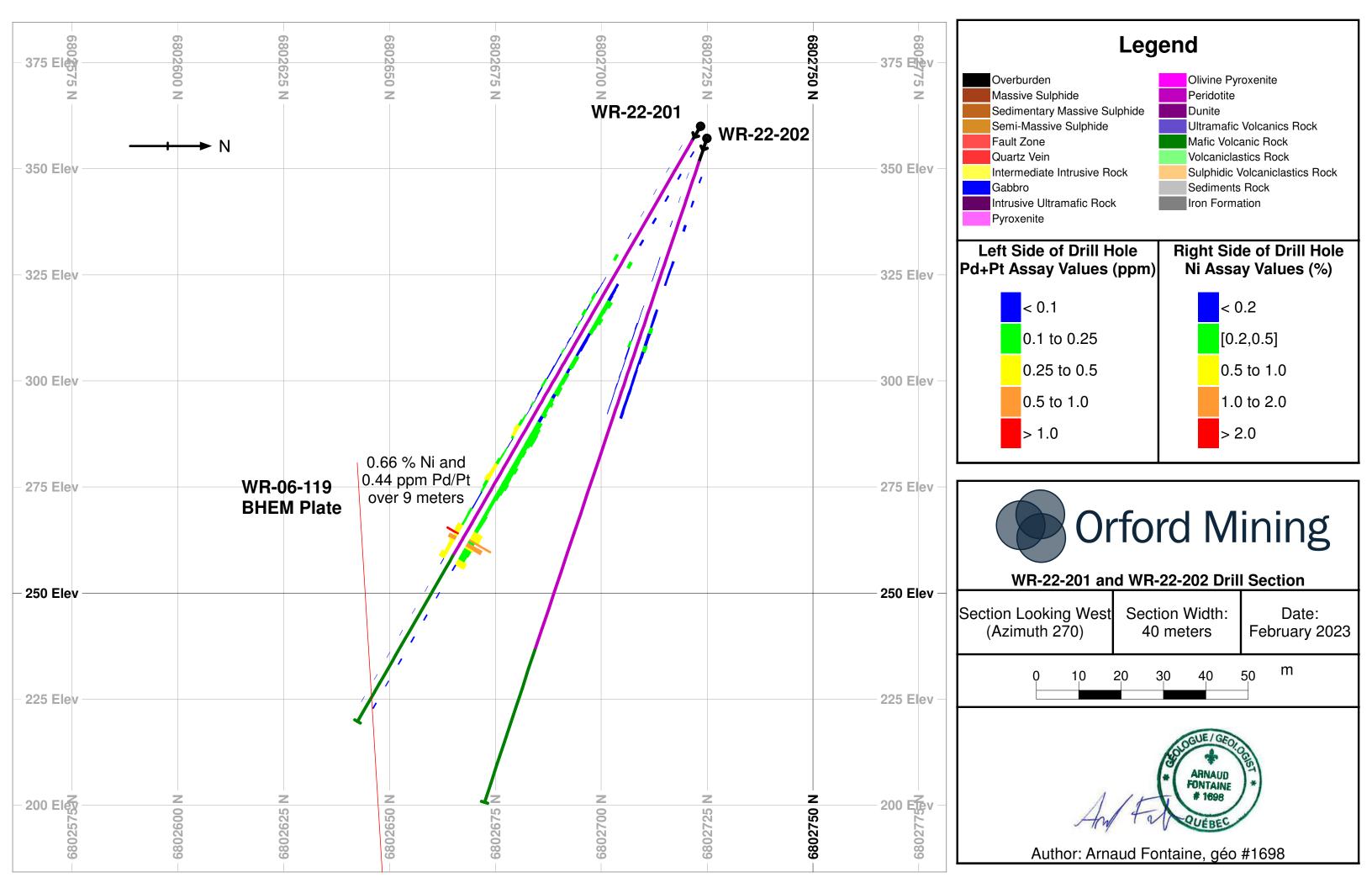

Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)

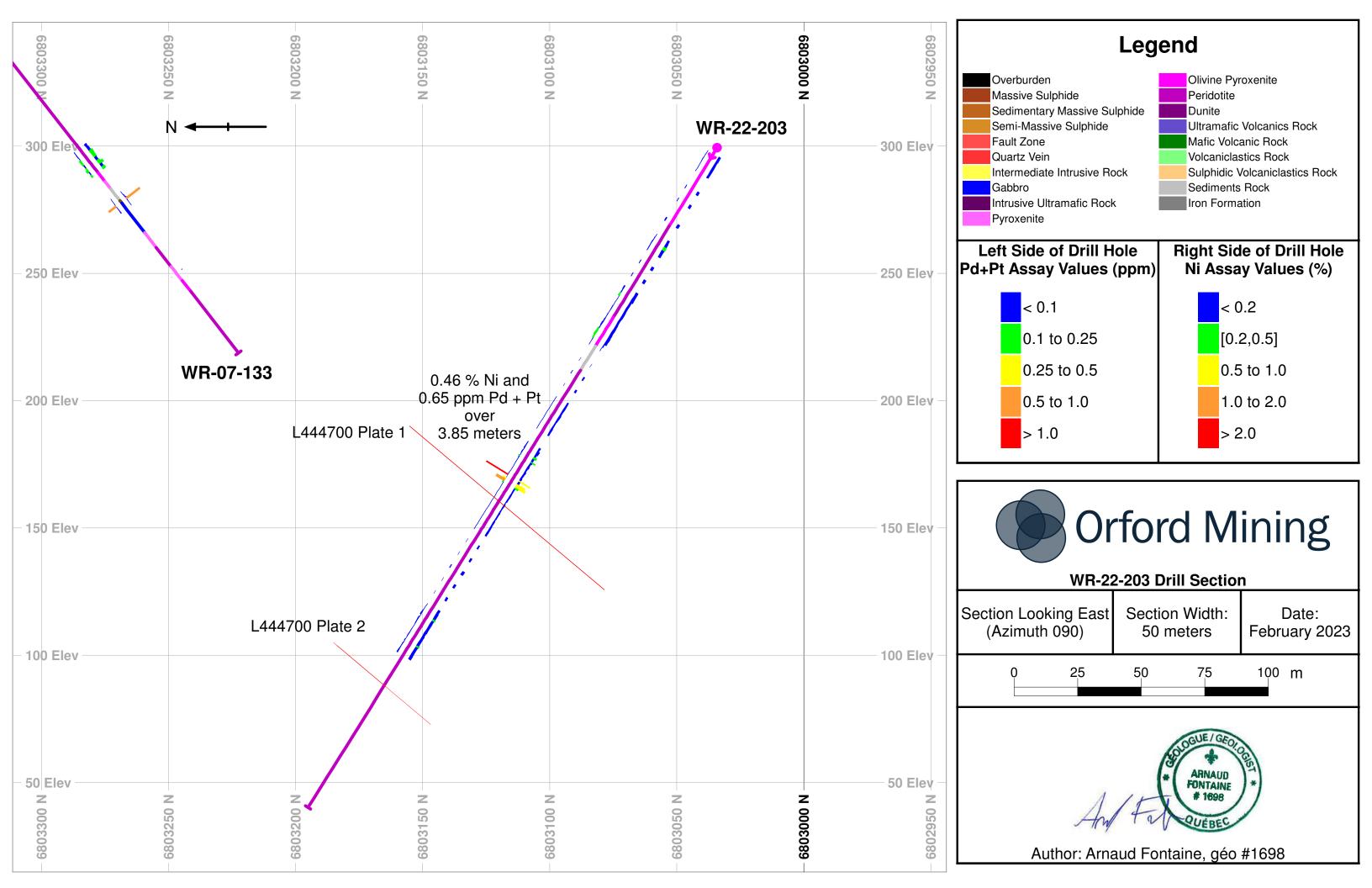

	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1673	2617624	35G06	41.31	Active	2021-08-23	2024-08-22
1674	2617625	35G06	41.31	Active	2021-08-23	2024-08-22
1675	2617626	35G06	41.31	Active	2021-08-23	2024-08-22
1676	2617627	35G06	41.31	Active	2021-08-23	2024-08-22
1677	2617628	35G06	41.3	Active	2021-08-23	2024-08-22
1678	2617629	35G06	41.3	Active	2021-08-23	2024-08-22
1679	2617630	35G06	41.29	Active	2021-08-23	2024-08-22
1680	2617631	35G06	41.3	Active	2021-08-23	2024-08-22
1681	2617632	35G06	41.29	Active	2021-08-23	2024-08-22
1682	2617633	35G06	41.29	Active	2021-08-23	2024-08-22
1683	2617634	35G06	41.29	Active	2021-08-23	2024-08-22
1684	2617635	35G06	41.29	Active	2021-08-23	2024-08-22
1685	2617636	35G06	41.29	Active	2021-08-23	2024-08-22
1686	2617637	35G06	41.29	Active	2021-08-23	2024-08-22
1687	2617638	35G06	41.29	Active	2021-08-23	2024-08-22
1688	2617639	35G06	41.29	Active	2021-08-23	2024-08-22
1689	2617640	35G06	41.29	Active	2021-08-23	2024-08-22
1690	2617641	35G06	41.28	Active	2021-08-23	2024-08-22
1691	2617642	35G06	41.28	Active	2021-08-23	2024-08-22
1692	2620562	35F08	41.44	Active	2021-09-29	2024-09-28
1693	2620563	35F08	41.44	Active	2021-09-29	2024-09-28
1694	2620564	35F08	41.43	Active	2021-09-29	2024-09-28
1695	2620565	35G05	41.45	Active	2021-09-29	2024-09-28
1696	2620566	35G05	41.44	Active	2021-09-29	2024-09-28
1697	2620567	35G05	41.44	Active	2021-09-29	2024-09-28
1698	2620568	35G05	41.43	Active	2021-09-29	2024-09-28
1699	2620569	35G05	41.41	Active	2021-09-29	2024-09-28
1700	2620570	35G05	41.41	Active	2021-09-29	2024-09-28
1701	2620571	35G05	41.41	Active	2021-09-29	2024-09-28
1702	2620572	35G05	41.41	Active	2021-09-29	2024-09-28
1703	2620573	35G05	41.41	Active	2021-09-29	2024-09-28
1704	2620574	35G05	41.41	Active	2021-09-29	2024-09-28
1705	2620575	35G05	41.41	Active	2021-09-29	2024-09-28
1706	2620576	35G05	41.41	Active	2021-09-29	2024-09-28
1707	2620577	35G05	41.41	Active	2021-09-29	2024-09-28
1708	2620578	35G06	41.32	Active	2021-09-29	2024-09-28
1709	2620579	35G06	41.31	Active	2021-09-29	2024-09-28
1710	2620580	35G06	41.31	Active	2021-09-29	2024-09-28
1711	2620581	35G06	41.31	Active	2021-09-29	2024-09-28
1712	2620582	35G06	41.31	Active	2021-09-29	2024-09-28
1713		35G06	41.31	Active	2021-09-29	2024-09-28
1714	2620584	35G06	41.31	Active	2021-09-29	2024-09-28
1715	2620585	35G06	41.31	Active	2021-09-29	2024-09-28
1716	2620586	35G06	41.31	Active	2021-09-29	2024-09-28


Appendix 1 -1
West-Raglan Property – List of claims 100% owned by Orford Mining Corporation (97184)


	Title No	NTS#	Surface Area (Ha)	Status	Registration Date	Expiration Date
1717	2620587	35G06	41.3	Active	2021-09-29	2024-09-28
1718	2620588	35G06	41.3	Active	2021-09-29	2024-09-28
1719	2620589	35G06	41.3	Active	2021-09-29	2024-09-28







WR-22-195

Hole Number:

DRILL LOG REPORT

Resp. Person: Arnaud Fontaine, G

Pr	roject	Drill	ing		Collar			Coordinates
Project Name:	West-Raglan	Hole Type:	DDH	Casing:	NW	Collar Dip:	-54.76	Northing: 6,807,500 UTM Zone: NAD83 / UTM zone 18N
Claim Number:	1096737	Hole Size:	NQ	Casing Status:	Left In Hole	Collar Azi:	344.06	Easting: 471,141
Property:	Boomerang	Drilling Started:	Jul 8, 2022	Oriented:	Υ	Length:	225	Elevation: 376.00
Purpose:	SQUID PLATES (172 plate 1 and 172		Jul 10, 2022	Collar Survey Type:	APS			Logged By
Target:	plate 4, 172 plate 1) 108, 145, 193	Drilling Contractor:	Forage G4	Pulse EM Surveyed:	Υ			Geologist 1: Maxime Dupéré, Géo
Operator:	Orford Mining Corporation	Core Location:	CC	Pulse EM Survey Date:	Jul 11, 2022			Geologist 2:
				Geophysics Contractor:	Crone			Geologist 3:
								Geologist 4:

Comments: This is the ones near the showing, longer hole to test 2nd cond below (172 plate 1 and 172 plate 4, 172 plate 1)

		Detailed Lithology			Mineralizati	on				Alteratio	n	
From	То	Lithology	From	То	Туре	Style	%	From	То	Туре	Style	Intensity
0.0	5.43	OB, Overburden										

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

			Detailed Lithology	У				Mineraliza	ation				Alterat	ion	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
5.43	43.15	I4I, Peridotite Texture	Grain Size	Colour	Colour Tone	6.5	6.55	Pentlandite	Fracture/vein controlled	3	5.43	5.53	Oxidation	Fracture/Vein Controlled	Moderate
		Orthocumulate	Medium Grained	Green	Dark			Magnetite	Interstitial	10			Comments oxdidation in assoc. to Ni()		
			ate, dark green-black rained, no apparent (1.98% Ni. Oxidise to distinguish. Ma		5.53	43.15	Serpentinizat ion Carbonatizati	Pervasive	Moderate
						6.55	30	Pyrrhotite	Disseminated	1			on Comments	Pervasive	Moderate
								Magnetite	Interstitial	10			carbonate alt	n relatade mo	stly to Ca
								Comments Po Dissemina strong,	ated, fine, magne	etic					
						30	38	Pyrrhotite	Blebby	3					
								Magnetite	Interstitial	10					
								ated to blebby an ture filled veinlet ong,							
						38	40.8	Pyrrhotite	Stringer	2					
								Magnetite	Interstitial	10					
								Comments Po fine in stri shows Ni and Ni)	ngers (Pn probal maly (3500ppm	oly) XRF to 2.3%					
43.15	58.98	S, Sediments				56	57	Pyrrhotite	Fracture/vein controlled	1	43.15	58.98	Calcite	Pervasive	Strong
		Texture	Grain Size	Colour	Colour Tone			Comments					Carbonatizati	Pervasive	Moderate
		Laminated	Fine Grained	Grey-Green	Medium				1mmveinlets-stri				on	reivasive	wouerate
		Comments sediments, lamin grade bedding to	ated, grey-green, folo p up at 44.5m, and to	-green, fold structure (45.5m)and evidence of .5m, and top down at 53.6m.			ca.	entary unit, 20-30	ueg to			Comments towards the e may be anker		or (tint),	

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

			Detailed Lithology					Mineraliza	tion				Alterati	on	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
58.98	59.32	F3, Sedimentary	Massive Sulphide			58.98	59.32	Pyrrhotite	Massive	70					
		Texture Bedded Comments sedimentary mas irregulatr, 40 to c	Grain Size Fine Grained sive sulphides, po 60° a.	Colour Brass %, graphitic, cp	Colour Tone y5%, fine, bedded				Interstitial sedimentsary cp, 2%, XRF u						
59.32	98.25		Grain Size Medium Grained ate, dark green-black, to sreong, locally, ma			59.32	98.25	Comments disseminated	Disseminated pyrrotite, up to ntrated alonfg f		59.32	98.25	Serpentinizat ion Carbonatizati on Comments	Pervasive Pervasive	Moderate
98.25	102.1		Grain Size Medium Grained as above, up to 30% p and veinlets (serpentine		Colour Tone Dark seminated and	98.25	102.1	pyrrotite, fine	Interstitial ne as above, up disseminated a veinlets (serpe	nd along	98.25	102.1	Serpentinizat ion Carbonatizati on Comments	Pervasive Pervasive	Moderate
102.1	113.85		Grain Size Medium Grained ate, dark green-black, to sreong, locally, ma								102.1	113.85	Serpentinizat ion Carbonatizati on Comments	Pervasive Pervasive	Moderate

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

			Detailed Lithology					Mineraliza	ition				Alteration	on	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
113.85	119.42	F3, Sedimentar	ry Massive Sulphide			113.85	114.8	Pyrrhotite	Massive	95					
		Texture	Grain Size	Colour	Colour Tone			,							
		Foliated	Very Fine Grained	Brass	Medium			Chalcopyrite	Massive	5					
		Comments						Comments							
		Semi-massive S massive, Po, fin	Sedimentary Syulphides ie-50%-95%. 5% ccp. gi	, , disseminate aphitic	ed foliated to	114.8	116.35	Pyrrhotite	Semi-massiv e	30					
								Chalcopyrite	Semi-massiv	1					
								.,	е	'					
								Comments							
						116.35	119.42	Pyrrhotite	Massive	95					
								Chalcopyrite	Massive	5					
								Comments							
								Comments							
119.42	122.3	I4I, Peridotite													
		Texture	Grain Size	Colour	Colour Tone										
		Foliated	Medium Grained	Green	Dark										
		Comments Peridotite serne	entine altered, strong.												
									0:						
122.3	124.95	F3, Sedimenta	ry Massive Sulphide			122.3	124.95	Pyrrhotite	Semi-massiv e	15					
		Texture	Grain Size	Colour	Colour Tone			Comments							
		Foliated	Very Fine Grained	Brass	Medium			semi massive fine pyrrotite,	sedimenary int	erval,					
		Comments Semi-massive S	Sedimentary Sulphides,	. disseminated	d foliated to massive.			remobilised to	owards the end						
			., 5% ccp. graphitic	,	,			disseminated	and along folia	tion 10%.					
124.95	133.3	I4I, Peridotite				124.95	133.3	Pyrrhotite	Blebby	3	125.6	132.3	Serpentinizat	Pervasive	Moderate
		Texture	Grain Size	Colour	Colour Tone			,	,				ion Talcose (+/-		
		Foliated	Medium Grained	Green	Dark			Pentlandite	Blebby	1			carbonate)	Pervasive	Moderate
		Comments	anda andraa ta da a	atoma d				Comments					Comments		_
		Peridotite, serpe	entine altered, strong.fra	ctured					o, 5%, and pn, veins, and strin 5000 ppm Ni.				pervasive serp talc altn, mode		, pervasive

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

			Detailed Litholog	ıy				Mineraliza	tion				Alterati	on	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
133.3	144.85	V3P3, Mafic La	pilli Tuff			133.3	144.85	Pyrrhotite	Blebby	2					
			Grain Size Fine Grained oliated, po, 3-4% dissoby.crosscut by carb-o					Comments remobilised po	o, 2%, in fractui	res and					
111 95	151.6		ry Massive Sulphide												
144.03	131.0	·	•		Calaus Tana	144.85	151.6	Pyrrhotite	Massive	95					
		Texture	Grain Size Very Fine Grained	Colour Brown	Colour Tone Medium			Pyrite	Stringer	5					
		-,						interval, fine p ccp.,Py remote fracturesnd ve interval. re,mo	(graphitic) sed yrrotite95%, molised towards eins thorough obilisewd and so e beginning and	ay be in ut emi					
151.6	159.4	S, Sediments				151.6	159.4	Pyrrhotite	Blebby	3					
		Texture	Grain Size	Colour	Colour Tone			Comments							
		Comments sediments, lami of remobilized p at 159.3-162.4:	Fine Grained inated, grey-green, e byrrotite stingers (and	Grey vidence of grade b ca-Qtz veinlets at	Medium pedding. presence the beginning and				g as stringers of ong the bedding						
159.4	163.5	F3. Sedimenta	ry Massive Sulphide	<u> </u>		150.4	163.5	Pvrrhotite	Stringer	25	162	163.5	Talcose (+/-	Pervasive	Strong
		Texture	•		Colour Tone	139.4	103.3	,	Stringer	25	102	103.5	carbonate)	reivasive	Silong
		Bedded Comments Semi-massive S Po, fine-25-75%	ture Grain Size Colour Colour Tone Ided Fine Grained Brass					Comments 75-80 deg to olayers of 1 to	core axis, follow 2 cm.	ving it. as			Comments pervasive talo	altn	
163.5	178.8	S, Sediments				163.5	178.8	Pyrrhotite	Disseminated	0.5	176	178.8	Carbonatizati		n Moderate
		Texture	Grain Size	Colour	Colour Tone			,					on Serpentinizat	Controlled	
		Bedded	Fine Grained	Grey-Green	Medium			Chalcopyrite	Disseminated	0.1			ion	Pervasive	Weak
		remobilized pyr	inated, grey-green, ev rotite stingers at the b g at the first 50 cm.	vidence of grade be eginning. talc and	edding. presence of carbonate				fine to very fime some chalcopyr				Comments		

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

			Detailed Lithology					Mineraliza	ntion				Alterat	ion	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
178.8	179.4	green-black, serp	Grain Size Medium Grained atine altered, strong.fra entine moderately alte 67.36-68.55: poikilitio	ered, ca altered							178.8	179.4	Carbonatizati on Serpentinizat ion Comments	Fracture/Vein Controlled Pervasive	Moderate Weak
179.4	180.8	I4I, Peridotite Texture Orthocumulate Comments Highly mineralise Coincide with plat	Grain Size Medium Grained d peridotite, 30-40% F te anomaly	Colour Brass Po fine to mediur	Colour Tone n, interstitial?,	179.4	180.8	Pyrrhotite Chalcopyrite Comments Mineralised z pentlandite 3' 1700 ppm Ni	Interstitial Interstitial Disseminated one, pyrrotite 30%. fine to mediu to 2.2% Ni. interfine, chalcopyrinterval.	m, XRF: rstitial	179.4	180.8	Carbonatizati on Serpentinizat ion Comments	Controlled	Moderate Weak

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

			Detailed Lithology	 			Mineraliza	ition				Alterati	on	
From	То	Lithology			From	То	Туре	Style	%	From	То	Туре	Style	Intensity
180.8	225.0		Grain Size Medium Grained ntine altered, cumulated, ca altered moderate		180.8	189	fine pyrrotite	Blebby to blebby patch dispersed rando Disseminated	omly	180.8	195 218	Carbonatizati I on Serpentinizat ion Comments Carbonatizati I on	Controlled Pervasive	Weak
					191	203	disseminated fine	, concentration	of po,			Serpentinizat ion Comments	Pervasive	Weak
							Comments							
					203	210	Comments po, dissemina interstitial, so	Disseminated ated, fine, may lated, fine, may lated metimes in smagenerally sprea	all					
					210	225	interstitial, so	Disseminated ated, fine, may I metimes in sma generally sprea	all					

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

	Sampling									
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
5.43	6.0	E5840001	Core	0.138	0.007	0.0025	0.00884	92.6	0.36	
6.0	7.0	E5840002	Core	0.374	0.069	0.079	0.0177	138	0.86	
7.0	7.5	E5840003	Core	0.152	0.006	0.005	0.00743	92.4	0.34	
7.5	9.0	E5840004	Core	0.158	0.024	0.014	0.00945	97.9	0.37	
9.0	10.5	E5840005	Core	0.144	0.01	0.005	0.0125	106	0.39	
10.5	12.0	E5840006	Core	0.166	0.008	0.006	0.0105	111	0.41	
12.0	13.5	E5840007	Core	0.143	0.012	0.007	0.00843	104	0.33	
13.5	15.0	E5840008	Core	0.142	0.006	0.0025	0.00481	101	0.27	
15.0	16.0	E5840009	Core	0.158	0.006	0.0025	0.00638	100	0.29	
16.0	17.5	E5840011	Core	0.12	0.002	0.0025	0.00497	85.7	0.19	
17.5	19.0	E5840012	Core	0.129	0.005	0.0025	0.00505	90.9	0.22	
19.0	20.5	E5840013	Core	0.16	0.004	0.0025	0.00649	104	0.3	
20.5	22.0	E5840014	Core	0.168	0.009	0.0025	0.0077	98	0.3	
22.0	23.5	E5840015	Core	0.181	0.013	0.008	0.0106	105	0.35	
23.5	25.0	E5840016	Core	0.17	0.007	0.005	0.01	105	0.31	
25.0	26.5	E5840017	Core	0.191	0.011	0.006	0.0173	114	0.38	
26.5	28.0	E5840018	Core	0.152	0.009	0.007	0.0111	110	0.28	
28.0	29.5	E5840019	Core	0.149	0.012	0.007	0.0133	104	0.32	
29.5	31.0	E5840021	Core	0.175	0.014	0.006	0.0159	120	0.43	
31.0	33.0	E5840022	Core	0.177	0.016	0.008	0.0164	125	0.47	
33.0	34.5	E5840023	Core	0.186	0.014	0.007	0.00961	119	0.6	
34.5	36.0	E5840024	Core	0.202	0.039	0.017	0.0231	134	1.5	
36.0	37.0	E5840025	Core	0.2	0.063	0.025	0.017	136	1.59	
37.0	38.0	E5840026	Core	0.085	0.032	0.016	0.0284	73.8	0.77	
38.0	39.0	E5840027	Core	0.0801	0.008	0.006	0.0139	72.4	0.73	
39.0	40.0	E5840028	Core	0.0943	0.011	0.009	0.00591	81.5	0.87	
40.0	40.5	E5840029	Core	0.134	0.065	0.022	0.0778	86.1	2.67	

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

									Resp. 1 crson. Amada i ontaine, eco	A
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
40.0	40.5	E5840030	Duplicate	0.116	0.054	0.023	0.0449	76.9	2.37	
40.5	42.0	E5840031	Core	0.0916	0.023	0.012	0.00814	72.6	0.43	
42.0	43.15	E5840032	Core	0.12	0.034	0.014	0.00844	93.7	0.33	
43.15	44.5	E5840033	Core	0.00311	0.001	0.0025	0.0112	26	0.005	
55.0	56.0	E5840035	Core	0.0155	0.0005	0.0025	0.00143	49.6	0.08	
56.0	57.0	E5840036	Core	0.00258	0.001	0.0025	0.0364	38.6	0.41	
57.0	58.0	E5840037	Core	0.00355	0.076	0.017	0.00283	27.5	0.09	
58.0	58.98	E5840038	Core	0.0085	0.014	0.0025	0.0295	18	1.23	
58.98	59.5	E5840039	Core	0.0849	0.091	0.02	0.0851	78.8	10	
59.5	60.0	E5840041	Core	0.168	0.047	0.014	0.0108	118	0.16	
69.0	70.5	E5840042	Core	0.127	0.008	0.0025	0.00677	93.3	0.39	
70.5	72.0	E5840043	Core	0.144	0.008	0.0025	0.00603	105	0.18	
72.5	73.5	E5840044	Core	0.141	0.01	0.0025	0.00503	102	0.14	
73.5	75.0	E5840045	Core	0.132	0.009	0.0025	0.00474	95.5	0.12	
75.0	76.5	E5840046	Core	0.128	0.007	0.0025	0.00687	95.1	0.18	
76.5	78.0	E5840047	Core	0.12	0.008	0.0025	0.00937	95.6	0.29	
78.0	79.5	E5840048	Core	0.129	0.008	0.0025	0.0104	94.9	0.19	
79.5	81.0	E5840049	Core	0.139	0.012	0.0025	0.0115	95.6	0.2	
81.0	82.5	E5840051	Core	0.137	0.018	0.0025	0.00866	103	0.27	
82.5	84.0	E5840052	Core	0.14	0.009	0.0025	0.00809	99	0.29	
84.0	85.5	E5840053	Core	0.132	0.004	0.0025	0.0113	102	0.35	
85.5	87.0	E5840054	Core	0.141	0.006	0.0025	0.0121	95.9	0.4	
87.0	88.5	E5840055	Core	0.166	0.01	0.0025	0.0127	115	0.48	
88.5	90.0	E5840056	Core	0.127	0.013	0.0025	0.0123	99.3	0.32	
90.0	91.5	E5840057	Core	0.176	0.033	0.01	0.0136	110	0.38	
91.5	93.0	E5840058	Core	0.107	0.013	0.0025	0.00882	88.1	0.19	
93.0	94.5	E5840059	Core	0.107	0.014	0.007	0.0111	97.3	0.3	
93.0	94.5	E5840060	Duplicate	0.11	0.012	0.0025	0.0118	103	0.31	

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

									Nesp. 1 erson: Amada i ontaine, eeo	AI
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
94.5	96.0	E5840061	Core	0.207	0.004	0.0025	0.0224	135	0.74	
96.0	97.0	E5840062	Core	0.121	0.006	0.0025	0.0155	107	0.46	
97.0	98.25	E5840063	Core	0.121	0.011	0.0025	0.00937	96.2	0.4	
98.25	100.0	E5840064	Core	0.185	0.05	0.006	0.0194	120	0.73	
100.0	101.0	E5840065	Core	0.208	0.158	0.055	0.0516	167	1.65	
101.0	102.1	E5840066	Core	0.119	0.062	0.0025	0.0236	94.2	0.68	
102.1	103.5	E5840067	Core	0.112	0.031	0.0025	0.00764	82.2	0.33	
103.5	105.0	E5840068	Core	0.122	0.009	0.0025	0.00627	82.2	0.22	
105.0	106.5	E5840069	Core	0.145	0.022	0.0025	0.00722	103	0.21	
106.5	108.0	E5840071	Core	0.127	0.009	0.0025	0.00562	105	0.17	
108.0	109.5	E5840072	Core	0.13	0.002	0.0025	0.0047	97.7	0.2	
109.5	111.0	E5840073	Core	0.145	0.003	0.0025	0.00402	97.4	0.23	
111.0	112.5	E5840074	Core	0.152	0.027	0.01	0.00357	98.5	0.58	
112.5	114.0	E5840075	Core	0.0585	0.001	0.0025	0.00519	48	1.15	
114.0	115.5	E5840076	Core	0.0476	0.02	0.0025	0.0637	69.1	10	
115.5	117.0	E5840077	Core	0.0748	0.037	0.0025	0.116	110	10	
117.0	118.0	E5840078	Core	0.0981	0.005	0.0025	0.0981	143	10	
118.0	119.42	E5840079	Core	0.0885	0.035	0.0025	0.193	131	10	
119.42	121.0	E5840081	Core	0.0378	0.016	0.0025	0.00976	38.4	1.75	
121.0	122.3	E5840082	Core	0.0347	0.004	0.0025	0.00333	34.7	0.83	
122.3	124.0	E5840083	Core	0.0751	0.045	0.02	0.0391	115	6.96	
124.0	124.95	E5840084	Core	0.0762	0.042	0.0025	0.0401	140	5.21	
124.95	126.0	E5840085	Core	0.137	0.056	0.025	0.00993	119	1.6	
126.0	127.5	E5840086	Core	0.0968	0.005	0.0025	0.00704	78	0.76	
127.5	129.0	E5840087	Core	0.116	0.005	0.0025	0.00821	99.6	0.82	
129.0	130.5	E5840088	Core	0.11	0.012	0.0025	0.00814	90.6	0.86	
129.0	130.5	E5840089	Duplicate	0.121	0.015	0.0025	0.00873	98.2	0.9	
130.5	132.0	E5840090	Core	0.0725	0.007	0.0025	0.00467	63.9	0.45	
•										

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
132.0	133.3	E5840091	Core	0.0769	0.006	0.0025	0.00603	72.9	0.37	
133.3	135.0	E5840092	Core	0.0843	0.021	0.0025	0.0122	91.1	0.38	
135.0	136.5	E5840093	Core	0.00251	0.0005	0.0025	0.00338	33.1	0.76	
136.5	138.0	E5840094	Core	0.0023	0.0005	0.0025	0.00305	32	1.27	
138.0	139.5	E5840095	Core	0.00198	0.0005	0.0025	0.00258	31.4	1.78	
139.5	141.0	E5840096	Core	0.00136	0.0005	0.0025	0.00884	31	2.21	
141.0	142.5	E5840097	Core	0.0015	0.0005	0.0025	0.00344	26.9	1.9	
142.5	144.0	E5840098	Core	0.00247	0.0005	0.0025	0.00167	30.8	1.65	
144.0	144.85	E5840099	Core	0.00814	0.003	0.0025	0.0117	32.4	1.99	
144.85	146.0	E5840101	Core	0.03	0.001	0.0025	0.0368	43.6	28.4	
146.0	147.0	E5840102	Core	0.0352	0.006	0.0025	0.0342	47.6	31.5	
147.0	148.5	E5840103	Core	0.0358	0.005	0.0025	0.0367	54.3	30.1	
148.5	150.0	E5840104	Core	0.0234	0.008	0.0025	0.0164	28.4	29.9	
150.0	151.0	E5840105	Core	0.0121	0.005	0.0025	0.0162	19.8	20.6	
151.0	151.6	E5840106	Core	0.00913	0.004	0.0025	0.0216	20.2	17.5	
151.6	153.0	E5840107	Core	0.00164	0.0005	0.0025	0.00411	13.7	1.27	
153.0	154.5	E5840108	Core	0.00187	0.0005	0.0025	0.00479	17.9	0.91	
154.5	156.0	E5840109	Core	0.00208	0.0005	0.0025	0.00983	18.7	1.68	
156.0	157.5	E5840111	Core	0.00086	0.0005	0.0025	0.00299	20.7	1.03	
157.5	158.5	E5840112	Core	0.00091	0.0005	0.0025	0.00279	16.4	0.92	
158.5	159.0	E5840113	Core	0.00275	0.0005	0.0025	0.00824	21.7	2.14	
159.0	159.4	E5840114	Core	0.00358	0.0005	0.0025	0.00537	11	2.16	
159.4	160.5	E5840115	Core	0.0364	0.004	0.0025	0.0622	29.8	13.7	
160.5	161.3	E5840116	Core	0.0715	0.011	0.006	0.0322	50.8	6.21	
161.3	162.0	E5840117	Core	0.146	0.004	0.0025	0.0731	75.5	9.54	
162.0	163.5	E5840118	Core	0.292	0.119	0.062	0.132	251	13.6	
163.5	165.0	E5840119	Core	0.0332	0.011	0.0025	0.00754	43.7	1.51	
163.5	165.0	E5840120	Duplicate	0.0329	0.008	0.0025	0.00952	44.7	1.62	

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

From To Sample Number Sample Type Ni (%) Pd (ppm) Pt (ppm) Cu (%) Co (ppm) S (%) 165.0 166.5 E5840121 Core 0.00864 0.0005 0.0025 0.00771 26.3 0.62 166.5 168.0 E5840122 Core 0.00817 0.002 0.0025 0.00733 31.4 0.48 168.0 169.5 E5840123 Core 0.00188 0.0005 0.0025 0.00733 25.7 0.48 168.0 169.5 E5840124 Core 0.00086 0.0005 0.0025 0.00733 25.7 0.48 169.5 171.0 E5840125 Core 0.00086 0.0005 0.0025 0.0092 21.7 0.34 171.0 172.5 E5840125 Core 0.00084 0.001 0.0025 0.0074 21.2 0.48 172.5 174.0 E5840126 Core 0.00084 0.0001 0.0025 0.0014 1.65 0.28 174.0 175.5 E5840127 Core 0.00048 0.0005 0.0025 0.0114 16.5 0.28 177.0 178.0 E5840128 Core 0.00018 0.0005 0.0025 0.0111 17.5 0.16 175.5 177.0 E5840128 Core 0.006105 0.0005 0.0025 0.011 28.9 0.72 177.0 178.0 E5840129 Core 0.00631 0.0005 0.0025 0.00634 27.4 0.45 178.1 180.0 E5840130 Core 0.00671 0.0005 0.0025 0.00634 27.4 0.45 178.8 180.0 E5840131 Core 0.94 0.734 0.312 0.284 355 5.61 180.0 180.8 E5840132 Core 0.0667 0.661 0.025 0.0689 162 2.41 182.0 183.0 E5840135 Core 0.278 0.182 0.076 0.0889 162 2.41 183.0 184.5 E5840136 Core 0.278 0.182 0.066 0.0806 152 1.87 183.1 184.0 E5840137 Core 0.129 0.051 0.011 0.0183 92.2 0.51 189.0 189.5 E5840134 Core 0.28 0.081 0.025 0.044 342 0.77 184.5 188.0 E5840135 Core 0.129 0.032 0.011 0.0183 92.2 0.51 189.0 189.5 E5840144 Core 0.23 0.081 0.025 0.044 3.2 1.05 189.0 189.5 E5840144 Core 0.134 0.004 0.0025 0.044 3.2 1.05 189.0 189.5 E5840144 Core 0.134 0.004 0.005 0.0015 0.011 0.083 189.0 189.5 E5840144 Core 0.134 0.004 0.0025 0.0078 8.8											
166.5 168.0 E5840122 Core 0.00817 0.002 0.0025 0.00433 31.4 0.48 168.0 168.5 E5840123 Care 0.00168 0.0005 0.0025 0.0073 25.7 0.46 169.5 171.0 E5840124 Core 0.00056 0.0005 0.0025 0.0074 21.2 0.46 171.0 172.5 E5840126 Core 0.00038 0.0005 0.0025 0.0014 16.5 0.26 174.0 175.5 E5840127 Core 0.00048 0.0005 0.0025 0.0114 16.5 0.26 177.0 E5840128 Core 0.00048 0.0005 0.0025 0.0151 17.5 0.16 177.0 T58.0 E5840128 Core 0.0063 0.0005 0.0025 0.0141 16.5 0.27 177.0 178.0 E5840130 Core 0.0053 0.001 0.0025 0.00453 29 0.27 178.0	From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
168.0 169.5 E5840123 Core 0.00168 0.0005 0.0025 0.00733 25.7 0.46 169.5 171.0 E5840124 Core 0.00056 0.0005 0.0025 0.0092 21.7 0.34 171.0 172.5 E5840125 Core 0.00054 0.001 0.0025 0.0074 21.2 0.46 172.5 174.0 E5840126 Core 0.00038 0.0005 0.0025 0.0014 16.5 0.26 174.0 175.5 E5840127 Core 0.00048 0.0005 0.0025 0.0114 16.5 0.26 174.0 175.5 E5840128 Core 0.00048 0.0005 0.0025 0.0151 17.5 0.16 175.5 177.0 E5840128 Core 0.00048 0.0005 0.0025 0.011 26.9 0.72 177.0 178.0 E5840129 Core 0.0053 0.001 0.0025 0.0011 26.9 0.72 178.0 178.8 E5840130 Core 0.00571 0.0005 0.0025 0.00453 29 0.27 178.0 178.8 180.0 E5840131 Core 0.94 0.734 0.312 0.284 355 5.61 180.0 180.8 E5840132 Core 0.967 0.691 0.262 0.0053 162 2.41 182.0 183.0 E5840134 Core 0.289 0.192 0.075 0.0889 162 2.41 182.0 183.0 E5840135 Core 0.289 0.192 0.075 0.0889 162 2.41 182.0 183.0 E5840136 Core 0.135 0.066 0.022 0.0246 94.2 0.77 184.5 186.0 E5840138 Core 0.129 0.051 0.061 0.022 0.0246 94.2 0.77 184.5 186.0 E5840138 Core 0.129 0.051 0.061 0.022 0.0246 94.2 0.77 184.5 186.0 E5840139 Core 0.129 0.051 0.061 0.018 0.015 93.8 0.6 186.0 187.5 E5840138 Core 0.114 0.009 0.0025 0.0105 87.1 0.42 187.5 189.0 E5840139 Core 0.114 0.009 0.0025 0.044 132 1.05 189.0 190.5 E5840141 Core 0.23 0.081 0.025 0.044 132 1.05 189.0 189.5 E5840141 Core 0.23 0.081 0.025 0.044 132 1.05 189.0 189.5 E5840141 Core 0.23 0.081 0.025 0.044 132 1.05 189.0 189.5 E5840141 Core 0.16 0.043 0.011 0.068 89.3 0.28 189.0 189.5 E5840144 Core 0.161 0.069 0.019 0.0225 103 0.53 189.0 189.5 E5840144 Core 0.164 0.069 0.019 0.0225 103 0.53 189.0 189.5 E5840145 Core 0.164 0.069 0.019 0.0225 103 0.38 189.0 189.5 E5840146 Core 0.144 0.005 0.0025 0.0047 193 0.38 189.0 189.5 E5840146 Core 0.144 0.005 0.0025 0.0043 89.3 0.28 189.0 189.5 E5840148 Core 0.176 0.044 0.0025 0.0047 193 0.38 189.0 189.5 E5840148 Core 0.176 0.044 0.005 0.0025 0.0043 85.8 0.24 201.0 202.5 E5840148 Core 0.176 0.043 0.005 0.0025 0.0038 85.8 0.24	165.0	166.5	E5840121	Core	0.00854	0.0005	0.0025	0.00771	26.3	0.62	
169.5 171.0 E5840124 Core 0.00056 0.0005 0.0025 0.0092 21.7 0.34 171.0 172.5 E5840125 Core 0.00054 0.001 0.0025 0.0074 21.2 0.46 172.5 174.0 E6840126 Core 0.00038 0.0005 0.0025 0.0114 16.5 0.26 174.0 175.5 E5840127 Core 0.00048 0.0005 0.0025 0.0114 16.5 0.26 174.0 175.5 177.0 E5840128 Core 0.00015 0.0005 0.0025 0.0151 17.5 0.16 175.5 177.0 E5840128 Core 0.00053 0.001 0.0025 0.0015 17.5 0.16 177.0 178.0 E6840129 Core 0.0053 0.001 0.0025 0.0043 29 0.27 178.0 178.8 E5840130 Core 0.00571 0.0005 0.0025 0.00634 27.4 0.45 178.8 180.0 E5840131 Core 0.947 0.691 0.262 0.2 370 5.76 180.0 180.8 E5840132 Core 0.967 0.691 0.262 0.2 370 5.76 180.8 182.0 E5840134 Core 0.289 0.192 0.075 0.0889 162 2.41 182.0 183.0 E5840136 Core 0.135 0.066 0.022 0.0246 94.2 0.77 184.5 186.0 E5840137 Core 0.135 0.066 0.022 0.0246 94.2 0.77 184.5 186.0 E5840138 Core 0.135 0.066 0.022 0.0246 94.2 0.77 184.5 186.0 E5840138 Core 0.129 0.051 0.018 0.0187 93.8 0.6 186.0 187.5 E5840138 Core 0.129 0.051 0.018 0.0187 93.8 0.6 189.0 190.5 E5840141 Core 0.23 0.081 0.025 0.0014 92.2 0.51 189.0 190.5 E5840141 Core 0.23 0.081 0.025 0.0014 92.2 0.51 189.0 190.5 E5840141 Core 0.23 0.081 0.025 0.0044 132 1.05 190.5 192.0 E5840144 Core 0.129 0.032 0.011 0.0163 92.2 0.51 189.0 190.5 E5840141 Core 0.23 0.081 0.025 0.0044 132 1.05 190.5 192.0 E5840144 Core 0.16 0.043 0.014 0.025 101 0.63 192.0 193.5 E5840145 Core 0.161 0.059 0.019 0.022 103 0.53 193.5 195.0 E5840146 Core 0.134 0.024 0.011 0.00826 89.3 0.28 195.0 196.5 E5840146 Core 0.134 0.025 0.0045 0.0117 93.7 0.24 196.5 198.0 E5840148 Core 0.144 0.000 0.0025 0.0025 0.0131 97.1 0.31 199.5 201.0 E5840148 Core 0.144 0.005 0.0025 0.0021 0.019 103 0.49	166.5	168.0	E5840122	Core	0.00817	0.002	0.0025	0.00433	31.4	0.48	
171.0 172.5 E5840125 Core 0.00054 0.001 0.0025 0.0074 21.2 0.46 172.5 174.0 E5840126 Core 0.00038 0.0005 0.0025 0.0114 16.5 0.26 174.0 175.5 E5840127 Core 0.00048 0.0005 0.0025 0.0151 17.5 0.16 175.5 177.0 E5840128 Core 0.0016 0.0005 0.0025 0.0151 17.5 0.16 177.0 178.0 E5840129 Core 0.0053 0.001 0.0025 0.0053 29 0.27 178.0 178.8 E5840130 Core 0.00571 0.0005 0.0025 0.00634 27.4 0.45 178.8 180.0 E5840131 Core 0.94 0.734 0.312 0.284 355 5.61 180.0 180.8 E5840132 Core 0.967 0.691 0.262 0.2 370 5.76 180.8 182.0 E5840134 Core 0.289 0.192 0.075 0.0889 162 2.41 182.0 183.0 E5840136 Core 0.278 0.182 0.066 0.022 0.0246 9.42 0.77 184.5 186.0 E5840137 Core 0.129 0.051 0.018 0.0187 93.8 0.6 186.0 187.5 E5840138 Core 0.129 0.051 0.018 0.0187 93.8 0.6 189.0 E5840139 Core 0.129 0.032 0.011 0.0163 92.2 0.51 189.0 E5840141 Core 0.23 0.081 0.025 0.005 87.1 0.42 187.5 189.0 E5840141 Core 0.23 0.081 0.025 0.0105 87.1 0.42 187.5 189.0 E5840141 Core 0.23 0.081 0.025 0.0105 87.1 0.42 187.5 189.0 E5840141 Core 0.129 0.032 0.011 0.0163 92.2 0.51 189.0 190.5 E5840144 Core 0.161 0.059 0.019 0.022 103 0.53 193.5 195.0 E5840144 Core 0.134 0.024 0.011 0.00826 89.3 0.28 196.0 196.5 E5840146 Core 0.134 0.024 0.011 0.00826 89.3 0.28 196.0 196.5 E5840146 Core 0.134 0.025 0.005 0.0013 97.1 0.31 199.5 201.0 E5840148 Core 0.176 0.004 0.0025 0.0013 97.1 0.31 199.5 201.0 E5840148 Core 0.176 0.004 0.0025 0.0021 103 0.49	168.0	169.5	E5840123	Core	0.00168	0.0005	0.0025	0.00733	25.7	0.46	
172.5 174.0 E5840126 Core 0.00038 0.0005 0.0025 0.0114 16.5 0.26 174.0 175.5 E5840127 Core 0.00048 0.0005 0.0025 0.0151 17.5 0.16 175.5 177.0 E5840128 Core 0.00105 0.0005 0.0025 0.011 26.9 0.72 177.0 178.0 E5840129 Core 0.0053 0.001 0.0025 0.00453 29 0.27 178.0 178.8 E5840130 Core 0.00571 0.0005 0.0025 0.00634 27.4 0.45 180.0 E5840132 Core 0.94 0.734 0.312 0.284 355 5.61 180.8 182.0 E5840132 Core 0.987 0.681 0.262 0.2 370 5.76 180.8 182.0 E5840135 Core 0.278 0.182 0.066 0.0806 152 1.87 182.0 183.0	169.5	171.0	E5840124	Core	0.00056	0.0005	0.0025	0.0092	21.7	0.34	
174.0 175.5 E5840127 Core 0.00048 0.0005 0.0025 0.0151 17.5 0.16 175.5 177.0 E5840128 Core 0.00105 0.0005 0.0025 0.011 26.9 0.72 177.0 178.0 E5840129 Core 0.0053 0.001 0.0025 0.00453 29 0.27 178.0 178.8 E5840130 Core 0.00571 0.0005 0.0025 0.00634 27.4 0.45 178.8 180.0 E5840131 Core 0.94 0.734 0.312 0.224 355 5.61 180.0 180.8 E5840134 Core 0.967 0.691 0.262 0.2 370 5.76 180.0 183.0 E5840135 Core 0.278 0.182 0.066 0.0806 152 1.87 184.5 E5840136 Core 0.135 0.066 0.022 0.0246 94.2 0.77 184.5 186.0	171.0	172.5	E5840125	Core	0.00054	0.001	0.0025	0.0074	21.2	0.46	
175.5 177.0 E5840128 Core 0.00105 0.0005 0.0025 0.011 26.9 0.72 177.0 178.0 E5840129 Core 0.0053 0.001 0.0025 0.00453 29 0.27 178.0 178.8 E5840130 Core 0.00571 0.0005 0.0025 0.00634 27.4 0.45 178.8 180.0 E5840131 Core 0.94 0.734 0.312 0.284 355 5.61 180.0 180.8 E5840132 Core 0.967 0.691 0.262 0.2 370 5.76 180.8 182.0 E5840134 Core 0.289 0.192 0.075 0.0889 162 2.41 182.0 183.0 E5840135 Core 0.278 0.182 0.066 0.0806 152 1.87 184.5 186.0 E5840136 Core 0.129 0.051 0.018 0.0187 93.8 0.6 187.5 1	172.5	174.0	E5840126	Core	0.00038	0.0005	0.0025	0.0114	16.5	0.26	
177.0 178.0 E5840129 Core 0.0053 0.001 0.0025 0.00453 29 0.27 178.0 178.8 E5840130 Core 0.00571 0.0005 0.0025 0.00634 27.4 0.45 178.8 180.0 E5840131 Core 0.94 0.734 0.312 0.284 355 5.61 180.0 180.8 E5840132 Core 0.967 0.691 0.262 0.2 370 5.76 180.8 182.0 E5840134 Core 0.289 0.192 0.075 0.0889 162 2.41 182.0 183.0 E5840135 Core 0.278 0.182 0.066 0.0806 152 1.87 183.0 184.5 E5840136 Core 0.135 0.066 0.022 0.0246 94.2 0.77 184.5 186.0 E5840137 Core 0.129 0.051 0.018 0.0187 93.8 0.6 186.0 187.	174.0	175.5	E5840127	Core	0.00048	0.0005	0.0025	0.0151	17.5	0.16	
178.0 178.8 E5840130 Core 0.00571 0.0005 0.0025 0.00634 27.4 0.45 178.8 180.0 E5840131 Core 0.94 0.734 0.312 0.284 355 5.61 180.0 180.8 E5840132 Core 0.967 0.691 0.262 0.2 370 5.76 180.8 182.0 E5840134 Core 0.289 0.192 0.075 0.0889 162 2.41 182.0 183.0 E5840135 Core 0.278 0.182 0.066 0.0806 152 1.87 183.0 184.5 E5840136 Core 0.135 0.066 0.022 0.0246 94.2 0.77 184.5 186.0 E5840137 Core 0.129 0.051 0.018 0.0187 93.8 0.6 187.5 189.0 E5840138 Core 0.114 0.009 0.0025 0.0105 87.1 0.42 187.5 189.	175.5	177.0	E5840128	Core	0.00105	0.0005	0.0025	0.011	26.9	0.72	
178.8 180.0 E5840131 Core 0.94 0.734 0.312 0.284 355 5.61 180.0 180.8 E5840132 Core 0.967 0.691 0.262 0.2 370 5.76 180.8 182.0 E5840134 Core 0.289 0.192 0.075 0.0889 162 2.41 182.0 183.0 E5840135 Core 0.278 0.182 0.066 0.0806 152 1.87 183.0 184.5 E5840136 Core 0.135 0.066 0.022 0.0246 94.2 0.77 184.5 186.0 E5840137 Core 0.129 0.051 0.018 0.0187 93.8 0.6 186.0 187.5 E5840138 Core 0.114 0.009 0.0025 0.0105 87.1 0.42 187.5 189.0 E5840139 Core 0.129 0.032 0.011 0.0163 92.2 0.51 189.0 190.5 <td>177.0</td> <td>178.0</td> <td>E5840129</td> <td>Core</td> <td>0.0053</td> <td>0.001</td> <td>0.0025</td> <td>0.00453</td> <td>29</td> <td>0.27</td> <td></td>	177.0	178.0	E5840129	Core	0.0053	0.001	0.0025	0.00453	29	0.27	
180.0 180.8 E5840132 Core 0.967 0.691 0.262 0.2 370 5.76 180.8 182.0 E5840134 Core 0.289 0.192 0.075 0.0889 162 2.41 182.0 183.0 E5840135 Core 0.278 0.182 0.066 0.0806 152 1.87 183.0 184.5 E5840136 Core 0.135 0.066 0.022 0.0246 94.2 0.77 184.5 186.0 E5840137 Core 0.129 0.051 0.018 0.0187 93.8 0.6 186.0 187.5 E5840138 Core 0.114 0.009 0.0025 0.0105 87.1 0.42 187.5 189.0 E5840139 Core 0.129 0.032 0.011 0.0163 92.2 0.51 189.0 190.5 E5840141 Core 0.23 0.081 0.025 0.0434 132 1.05 190.5 193.5 <td>178.0</td> <td>178.8</td> <td>E5840130</td> <td>Core</td> <td>0.00571</td> <td>0.0005</td> <td>0.0025</td> <td>0.00634</td> <td>27.4</td> <td>0.45</td> <td></td>	178.0	178.8	E5840130	Core	0.00571	0.0005	0.0025	0.00634	27.4	0.45	
180.8 182.0 E5840134 Core 0.289 0.192 0.075 0.0889 162 2.41 182.0 183.0 E5840135 Core 0.278 0.182 0.066 0.0806 152 1.87 183.0 184.5 E5840136 Core 0.135 0.066 0.022 0.0246 94.2 0.77 184.5 186.0 E5840137 Core 0.129 0.051 0.018 0.0187 93.8 0.6 187.5 E5840138 Core 0.114 0.009 0.0025 0.0105 87.1 0.42 187.5 189.0 E5840139 Core 0.129 0.032 0.011 0.0163 92.2 0.51 189.0 190.5 E5840141 Core 0.23 0.081 0.025 0.0434 132 1.05 192.0 193.5 E5840142 Core 0.161 0.059 0.019 0.0222 103 0.53 193.5 195.0 E5840	178.8	180.0	E5840131	Core	0.94	0.734	0.312	0.284	355	5.61	
182.0 183.0 E5840135 Core 0.278 0.182 0.066 0.0806 152 1.87 183.0 184.5 E5840136 Core 0.135 0.066 0.022 0.0246 94.2 0.77 184.5 186.0 E5840137 Core 0.129 0.051 0.018 0.0187 93.8 0.6 186.0 187.5 E5840138 Core 0.114 0.009 0.0025 0.0105 87.1 0.42 187.5 189.0 E5840139 Core 0.129 0.032 0.011 0.0163 92.2 0.51 189.0 190.5 E5840141 Core 0.23 0.081 0.025 0.0434 132 1.05 190.5 192.0 E5840142 Core 0.16 0.043 0.014 0.025 101 0.63 192.0 193.5 E5840143 Core 0.161 0.059 0.019 0.0222 103 0.53 193.5 195.0 E5840144 Core 0.134 0.024 0.011 0.00826 89.3	180.0	180.8	E5840132	Core	0.967	0.691	0.262	0.2	370	5.76	
183.0 184.5 E5840136 Core 0.135 0.066 0.022 0.0246 94.2 0.77 184.5 186.0 E5840137 Core 0.129 0.051 0.018 0.0187 93.8 0.6 186.0 187.5 E5840138 Core 0.114 0.009 0.0025 0.0105 87.1 0.42 187.5 189.0 E5840139 Core 0.129 0.032 0.011 0.0163 92.2 0.51 189.0 190.5 E5840141 Core 0.23 0.081 0.025 0.0434 132 1.05 190.5 192.0 E5840142 Core 0.16 0.043 0.014 0.025 101 0.63 192.0 193.5 E5840143 Core 0.161 0.059 0.019 0.0222 103 0.53 193.5 195.0 E5840144 Core 0.134 0.024 0.011 0.00826 89.3 0.28 195.0 196.5 E5840146 Core 0.134 0.023 0.008 0.0117 93.7	180.8	182.0	E5840134	Core	0.289	0.192	0.075	0.0889	162	2.41	
184.5 186.0 E5840137 Core 0.129 0.051 0.018 0.0187 93.8 0.6 186.0 187.5 E5840138 Core 0.114 0.009 0.0025 0.0105 87.1 0.42 187.5 189.0 E5840139 Core 0.129 0.032 0.011 0.0163 92.2 0.51 189.0 190.5 E5840141 Core 0.23 0.081 0.025 0.0434 132 1.05 190.5 192.0 E5840142 Core 0.16 0.043 0.014 0.025 101 0.63 192.0 193.5 E5840143 Core 0.161 0.059 0.019 0.0222 103 0.53 193.5 195.0 E5840144 Core 0.134 0.024 0.011 0.00826 89.3 0.28 195.0 196.5 E5840145 Core 0.134 0.023 0.008 0.0117 93.7 0.24 196.5 198.0 E5840146 Core 0.176 0.004 0.0025 0.0247 103	182.0	183.0	E5840135	Core	0.278	0.182	0.066	0.0806	152	1.87	
186.0 187.5 E5840138 Core 0.114 0.009 0.0025 0.0105 87.1 0.42 187.5 189.0 E5840139 Core 0.129 0.032 0.011 0.0163 92.2 0.51 189.0 190.5 E5840141 Core 0.23 0.081 0.025 0.0434 132 1.05 190.5 192.0 E5840142 Core 0.16 0.043 0.014 0.025 101 0.63 192.0 193.5 E5840143 Core 0.161 0.059 0.019 0.0222 103 0.53 193.5 195.0 E5840144 Core 0.134 0.024 0.011 0.00826 89.3 0.28 195.0 196.5 E5840145 Core 0.134 0.023 0.008 0.0117 93.7 0.24 196.5 198.0 E5840146 Core 0.176 0.004 0.0025 0.0247 103 0.38 199.0 199.5 E5840148 Core 0.144 0.005 0.0025 0.0131 97.1 <td>183.0</td> <td>184.5</td> <td>E5840136</td> <td>Core</td> <td>0.135</td> <td>0.066</td> <td>0.022</td> <td>0.0246</td> <td>94.2</td> <td>0.77</td> <td></td>	183.0	184.5	E5840136	Core	0.135	0.066	0.022	0.0246	94.2	0.77	
187.5 189.0 E5840139 Core 0.129 0.032 0.011 0.0163 92.2 0.51 189.0 190.5 E5840141 Core 0.23 0.081 0.025 0.0434 132 1.05 190.5 192.0 E5840142 Core 0.16 0.043 0.014 0.025 101 0.63 192.0 193.5 E5840143 Core 0.161 0.059 0.019 0.0222 103 0.53 193.5 195.0 E5840144 Core 0.134 0.024 0.011 0.00826 89.3 0.28 195.0 196.5 E5840145 Core 0.134 0.023 0.008 0.0117 93.7 0.24 196.5 198.0 E5840146 Core 0.176 0.004 0.0025 0.0247 103 0.38 198.0 199.5 E5840147 Core 0.144 0.005 0.0025 0.0131 97.1 0.31 199.5 201.0 E5840148 Core 0.13 0.007 0.0025 0.00738 85.8 <td>184.5</td> <td>186.0</td> <td>E5840137</td> <td>Core</td> <td>0.129</td> <td>0.051</td> <td>0.018</td> <td>0.0187</td> <td>93.8</td> <td>0.6</td> <td></td>	184.5	186.0	E5840137	Core	0.129	0.051	0.018	0.0187	93.8	0.6	
189.0 190.5 E5840141 Core 0.23 0.081 0.025 0.0434 132 1.05 190.5 192.0 E5840142 Core 0.16 0.043 0.014 0.025 101 0.63 192.0 193.5 E5840143 Core 0.161 0.059 0.019 0.0222 103 0.53 193.5 195.0 E5840144 Core 0.134 0.024 0.011 0.00826 89.3 0.28 195.0 196.5 E5840145 Core 0.134 0.023 0.008 0.0117 93.7 0.24 196.5 198.0 E5840146 Core 0.176 0.004 0.0025 0.0247 103 0.38 198.0 199.5 E5840147 Core 0.144 0.005 0.0025 0.0131 97.1 0.31 199.5 201.0 E5840148 Core 0.13 0.007 0.0025 0.00738 85.8 0.24 201.0 202.5 E5840149 Core 0.172 0.055 0.021 0.0199 103 <td>186.0</td> <td>187.5</td> <td>E5840138</td> <td>Core</td> <td>0.114</td> <td>0.009</td> <td>0.0025</td> <td>0.0105</td> <td>87.1</td> <td>0.42</td> <td></td>	186.0	187.5	E5840138	Core	0.114	0.009	0.0025	0.0105	87.1	0.42	
190.5 192.0 E5840142 Core 0.16 0.043 0.014 0.025 101 0.63 192.0 193.5 E5840143 Core 0.161 0.059 0.019 0.0222 103 0.53 193.5 195.0 E5840144 Core 0.134 0.024 0.011 0.00826 89.3 0.28 195.0 196.5 E5840145 Core 0.134 0.023 0.008 0.0117 93.7 0.24 196.5 198.0 E5840146 Core 0.176 0.004 0.0025 0.0247 103 0.38 198.0 199.5 E5840147 Core 0.144 0.005 0.0025 0.0131 97.1 0.31 199.5 201.0 E5840148 Core 0.13 0.007 0.0025 0.00738 85.8 0.24 201.0 202.5 E5840149 Core 0.172 0.055 0.021 0.0199 103 0.49	187.5	189.0	E5840139	Core	0.129	0.032	0.011	0.0163	92.2	0.51	
192.0 193.5 E5840143 Core 0.161 0.059 0.019 0.0222 103 0.53 193.5 195.0 E5840144 Core 0.134 0.024 0.011 0.00826 89.3 0.28 195.0 196.5 E5840145 Core 0.134 0.023 0.008 0.0117 93.7 0.24 196.5 198.0 E5840146 Core 0.176 0.004 0.0025 0.0247 103 0.38 198.0 199.5 E5840147 Core 0.144 0.005 0.0025 0.0131 97.1 0.31 199.5 201.0 E5840148 Core 0.13 0.007 0.0025 0.00738 85.8 0.24 201.0 202.5 E5840149 Core 0.172 0.055 0.021 0.0199 103 0.49	189.0	190.5	E5840141	Core	0.23	0.081	0.025	0.0434	132	1.05	
193.5 195.0 E5840144 Core 0.134 0.024 0.011 0.00826 89.3 0.28 195.0 196.5 E5840145 Core 0.134 0.023 0.008 0.0117 93.7 0.24 196.5 198.0 E5840146 Core 0.176 0.004 0.0025 0.0247 103 0.38 198.0 199.5 E5840147 Core 0.144 0.005 0.0025 0.0131 97.1 0.31 199.5 201.0 E5840148 Core 0.13 0.007 0.0025 0.00738 85.8 0.24 201.0 202.5 E5840149 Core 0.172 0.055 0.021 0.0199 103 0.49	190.5	192.0	E5840142	Core	0.16	0.043	0.014	0.025	101	0.63	
195.0 196.5 E5840145 Core 0.134 0.023 0.008 0.0117 93.7 0.24 196.5 198.0 E5840146 Core 0.176 0.004 0.0025 0.0247 103 0.38 198.0 199.5 E5840147 Core 0.144 0.005 0.0025 0.0131 97.1 0.31 199.5 201.0 E5840148 Core 0.13 0.007 0.0025 0.00738 85.8 0.24 201.0 202.5 E5840149 Core 0.172 0.055 0.021 0.0199 103 0.49	192.0	193.5	E5840143	Core	0.161	0.059	0.019	0.0222	103	0.53	
196.5 198.0 E5840146 Core 0.176 0.004 0.0025 0.0247 103 0.38 198.0 199.5 E5840147 Core 0.144 0.005 0.0025 0.0131 97.1 0.31 199.5 201.0 E5840148 Core 0.13 0.007 0.0025 0.00738 85.8 0.24 201.0 202.5 E5840149 Core 0.172 0.055 0.021 0.0199 103 0.49	193.5	195.0	E5840144	Core	0.134	0.024	0.011	0.00826	89.3	0.28	
198.0 199.5 E5840147 Core 0.144 0.005 0.0025 0.0131 97.1 0.31 199.5 201.0 E5840148 Core 0.13 0.007 0.0025 0.00738 85.8 0.24 201.0 202.5 E5840149 Core 0.172 0.055 0.021 0.0199 103 0.49	195.0	196.5	E5840145	Core	0.134	0.023	0.008	0.0117	93.7	0.24	
199.5 201.0 E5840148 Core 0.13 0.007 0.0025 0.00738 85.8 0.24 201.0 202.5 E5840149 Core 0.172 0.055 0.021 0.0199 103 0.49	196.5	198.0	E5840146	Core	0.176	0.004	0.0025	0.0247	103	0.38	
201.0 202.5 E5840149 Core 0.172 0.055 0.021 0.0199 103 0.49	198.0	199.5	E5840147	Core	0.144	0.005	0.0025	0.0131	97.1	0.31	
	199.5	201.0	E5840148	Core	0.13	0.007	0.0025	0.00738	85.8	0.24	
201.0 202.5 E5840150 Duplicate 0.17 0.042 0.013 0.0205 101 0.49	201.0	202.5	E5840149	Core	0.172	0.055	0.021	0.0199	103	0.49	
	201.0	202.5	E5840150	Duplicate	0.17	0.042	0.013	0.0205	101	0.49	

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

										2 "
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
202.5	204.0	E5840151	Core	0.187	0.083	0.035	0.0296	111	0.66	
204.0	205.5	E5840152	Core	0.197	0.078	0.025	0.0318	116	0.75	
205.5	207.0	E5840153	Core	0.225	0.093	0.036	0.0333	133	0.98	
207.0	208.5	E5840154	Core	0.177	0.103	0.013	0.0341	112	0.83	
208.5	210.0	E5840155	Core	0.2	0.118	0.044	0.0374	124	1.06	
210.0	211.5	E5840156	Core	0.202	0.08	0.032	0.028	109	0.83	
211.5	213.0	E5840157	Core	0.181	0.06	0.028	0.0223	95.4	0.64	
213.0	214.5	E5840158	Core	0.214	0.082	0.03	0.0445	126	0.93	
214.5	216.0	E5840159	Core	0.122	0.014	0.0025	0.00794	82.9	0.31	
216.0	217.5	E5840161	Core	0.124	0.007	0.0025	0.00722	89	0.25	
217.5	219.0	E5840162	Core	0.138	0.005	0.0025	0.00868	95	0.22	
219.0	220.5	E5840163	Core	0.129	0.004	0.0025	0.00558	90.2	0.15	
220.5	222.0	E5840164	Core	0.112	0.007	0.0025	0.00755	84	0.19	
222.0	223.5	E5840165	Core	0.14	0.009	0.0025	0.00946	103	0.21	
223.5	225.0	E5840166	Core	0.138	0.014	0.006	0.0113	101	0.29	
					Structu	ro				

Structure

From	То	Structure Type Structure Intensity	Comments
30	33.1	Fracturing	faulting
33.2	35	Fracturing	faulting
45.2	45.75	Fold	fold, with opposite grain size grade bedding, top up, and then top down.
68	91	Fracturing	fracturing, moderate
126	132	Fracturing	fracturing, moderate
159.4	163	Foliation	foliation/remobilised beds of pyrrotite

Point Structure

Depth	Structure Type	Structure Intensity	Alpha Angle	Beta Angle	Gamma Angle	Core Angle	Comments
33.1	Calcite vein						
40.05	Stringer	Weak				85	

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

Depth	Structure Type	Structure Intensity	Alpha Angle	Beta Angle	Gamma Angle	Core Angle	Comments
46.4	Bedding	Moderate	40	270			
48.2	Bedding	Moderate	55	280			
56.67	Stringer		30	70			po stringer, 2mm
58.98			70	330			upper contact massive sedimentary Sx
113.85	Contact		55	230			upper conact massive-semi-massive sediemntary sulphides
115.8			40	255			ORIENTATION OF MINERALISATION DISSEMINATED, PO.
119.42			20	300			lower contact sedimentary sediments
135.6			50	170			
176						65	
180.1						35	po-pn stringer 0.5cm

			Ge	otechnical					Mags	us
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							6	24.89	0	MPP-EM2S+
5.56	9	2.9	84.3	0.81	27.93		7	17.04	0	MPP-EM2S+
							8	15.53	0	MPP-EM2S+
							9	23.6	0	MPP-EM2S+
9	12	2.82	94	1.53	54.26		10	31.01	0	MPP-EM2S+
							11	21.43	0	MPP-EM2S+
							12	7.12	0	MPP-EM2S+
12	15	2.98	99.33	1.96	65.77		13	14.74	0	MPP-EM2S+
							14	45.79	0	MPP-EM2S+
							15	18.31	0	MPP-EM2S+
15	18	3.02	100.67	2.38	78.81		16	23.73	0	MPP-EM2S+
							17	17.53	0	MPP-EM2S+

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

											HI
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	·
							18	27.92	0	MPP-EM2S+	
18	21	3	100	2.95	98.33		19	27.23	0	MPP-EM2S+	
							20	11.53	0	MPP-EM2S+	
							21	23.16	0	MPP-EM2S+	
21	24	2.91	97	1.13	38.83		22	30.32	0	MPP-EM2S+	
							23	23.23	0	MPP-EM2S+	
							24	23.12	0	MPP-EM2S+	
24	27	3.08	102.67	1.97	63.96		25	13.54	0	MPP-EM2S+	
							26	9.7	0	MPP-EM2S+	
							27	14.05	0	MPP-EM2S+	
27	30	2.91	97	2.19	75.26		28	1.66	0	MPP-EM2S+	
							29	12.12	0	MPP-EM2S+	
							30	2.67	0	MPP-EM2S+	
30	33	2.83	94.33	2.73	96.47		31	14.91	0	MPP-EM2S+	
							32	2.42	0	MPP-EM2S+	
							33	1.33	0	MPP-EM2S+	
33	36	3.04	101.33	2.28	75		34	3.13	0	MPP-EM2S+	
							35	11.71	0	MPP-EM2S+	
							36	4.83	0	MPP-EM2S+	
36	39	2.64	88	1.11	42.05		37	11.75	0	MPP-EM2S+	
							38	37.51	0	MPP-EM2S+	

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							39	3.19	0	MPP-EM2S+
00	40	0.0	00.07	4.04	05.00		40	1.21	0	MPP-EM2S+
39	42	2.9	96.67	1.91	65.86		40.1	54.98	8839.96	MPP-EM2S+
							41	2.19	0	MPP-EM2S+
							42	1.09	0	MPP-EM2S+
42	45	3.02	100.67	2.14	70.86	=000 <m< td=""><td>43</td><td>2.5</td><td>0</td><td>MPP-EM2S+</td></m<>	43	2.5	0	MPP-EM2S+
							44	0.34	0	MPP-EM2S+
							45	0.68	0	MPP-EM2S+
45	48	2.99	99.67	2.31	77.26	<111 <m< td=""><td>46</td><td>0.57</td><td>0</td><td>MPP-EM2S+</td></m<>	46	0.57	0	MPP-EM2S+
							47	0.35	0	MPP-EM2S+
							48	0.39	0	MPP-EM2S+
48	51	2.98	99.33	2.12	71.14	<111 <m< td=""><td>49</td><td>0.42</td><td>0</td><td>MPP-EM2S+</td></m<>	49	0.42	0	MPP-EM2S+
							50	0.29	0	MPP-EM2S+
							51	0.26	0	MPP-EM2S+
51	54	2.75	91.67	2.19	79.64	<111 <m< td=""><td>52</td><td>0.46</td><td>0</td><td>MPP-EM2S+</td></m<>	52	0.46	0	MPP-EM2S+
							53	0.46	0	MPP-EM2S+
							54	0.33	0	MPP-EM2S+
54	57	3.04	101.33	2.4	78.95	<111 <m< td=""><td>55</td><td>0.88</td><td>0</td><td>MPP-EM2S+</td></m<>	55	0.88	0	MPP-EM2S+
O T	01	0.04	101.00	۷.٦	70.55	STITSWI	56	0.6	0	MPP-EM2S+
							56.8	12.83	1366.49	MPP-EM2S+
							57	0.61	0	MPP-EM2S+
57	60	3.14	104.67	2.12	67.52	<111 <m< td=""><td>58</td><td>0.91</td><td>0</td><td>MPP-EM2S+</td></m<>	58	0.91	0	MPP-EM2S+
							59	38.21	15798.71	MPP-EM2S+

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							60	1.06	0	MPP-EM2S+
60	63	2.96	98.67	2.32	78.38	<111 <m< td=""><td>61</td><td>1.64</td><td>0</td><td>MPP-EM2S+</td></m<>	61	1.64	0	MPP-EM2S+
							62	1.85	0	MPP-EM2S+
							63	2.92	0	MPP-EM2S+
63	66	2.98	99.33	2.08	69.8	<111<	64	5.33	0	MPP-EM2S+
							65	8.65	0	MPP-EM2S+
							66	8.38	0	MPP-EM2S+
66	69	2.97	99	1.69	56.9	M>11.1<	67	8.57	0	MPP-EM2S+
							68	5.52	0	MPP-EM2S+
							69	17.66	0	MPP-EM2S+
69	72	2.84	94.67	1.2	42.25		70	28.77	0	MPP-EM2S+
							71	39.5	0	MPP-EM2S+
							72	37.33	0	MPP-EM2S+
72	75	2.97	99	1.32	44.44		73	39.63	0	MPP-EM2S+
							74	32	0	MPP-EM2S+
							75	42.98	0	MPP-EM2S+
75	78	3	100	1.83	61		76	6.14	0	MPP-EM2S+
							77	26.26	0	MPP-EM2S+
							78	38.71	0	MPP-EM2S+
78	81	2.83	94.33	1.98	69.96		79	28.58	0	MPP-EM2S+
							80	27.8	0	MPP-EM2S+
							81	21.24	0	MPP-EM2S+
81	84	2.93	97.67	1.31	44.71		82	16.69	0	MPP-EM2S+
							83	13.14	0	MPP-EM2S+

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							84	25.73	0	MPP-EM2S+
84	87	3	100	1.71	57		85	31.14	0	MPP-EM2S+
							86	20.48	0	MPP-EM2S+
							87	23.45	0	MPP-EM2S+
87	90	2.83	94.33	0.69	24.38		88	30.29	0	MPP-EM2S+
							89	17.45	0	MPP-EM2S+
							90	23.19	0	MPP-EM2S+
90	93	2.96	98.67	1.81	61.15		91	24.42	0	MPP-EM2S+
							92	5.67	0	MPP-EM2S+
							93	6.02	0	MPP-EM2S+
93	96	3.02	100.67	1.54	50.99		94	13.78	0	MPP-EM2S+
							95	29.52	0	MPP-EM2S+
							96	20.27	0	MPP-EM2S+
96	99	2.94	98	1.53	52.04		97	16.22	0	MPP-EM2S+
							98	15.68	0	MPP-EM2S+
							99	18.88	0	MPP-EM2S+
99	102	3	100	2.43	81		100	27.91	0	MPP-EM2S+
							101	16.27	0	MPP-EM2S+
				<u> </u>			102	25.7	0	MPP-EM2S+
102	105	2.99	99.67	2.11	70.57		103	39.92	0	MPP-EM2S+
							104	14.93	0	MPP-EM2S+
							105	18.98	0	MPP-EM2S+
105	108	2.85	95	2.02	70.88		106	19.88	0	MPP-EM2S+
							107	6.27	0	MPP-EM2S+

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							108	4.43	0	MPP-EM2S+
108	111	3.18	106	2.59	81.45		109	4.61	0	MPP-EM2S+
							110	5.11	0	MPP-EM2S+
							111	4.39	0	MPP-EM2S+
111	114	2.86	95.33	1.73	60.49		112	9.8	0	MPP-EM2S+
							113	141.98	23728.79	MPP-EM2S+
							114	24.2	30204.19	MPP-EM2S+
114	117	2.89	96.33	1.92	66.44		115	63.77	3815.19	MPP-EM2S+
							116	42.77	64864.34	MPP-EM2S+
							117	87.26	43659.86	MPP-EM2S+
117	120	2.9	96.67	1.26	43.45	N<111 <m< td=""><td>118</td><td>114.25</td><td>40887.54</td><td>MPP-EM2S+</td></m<>	118	114.25	40887.54	MPP-EM2S+
							119	7.26	0	MPP-EM2S+
							120	3.87	0	MPP-EM2S+
120	123	3.14	104.67	1.81	57.64	<111 <m< td=""><td>121</td><td>3.05</td><td>0</td><td>MPP-EM2S+</td></m<>	121	3.05	0	MPP-EM2S+
							122	9.17	0	MPP-EM2S+
							123	51.19	8815.93	MPP-EM2S+
123	126	3.04	101.33	1.34	44.08	<111<	124	5.61	0	MPP-EM2S+
							125	5.53	0	MPP-EM2S+
							126	2.07	0	MPP-EM2S+
126	129	2.82	94	1.41	50	M>11.1<	127	3.2	0	MPP-EM2S+
							128	8.02	0	MPP-EM2S+
							129	4.95	0	MPP-EM2S+
129	132	2.83	94.33	0.99	34.98		130	2.68	0	MPP-EM2S+
							131	2.91	0	MPP-EM2S+

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

									p	7a.a.a . oao, 000	211
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							132	5.64	0	MPP-EM2S+	
132	135	2.72	90.67	0.69	25.37	=001 <m hole.<="" of="" td="" top=""><td>133</td><td>3.42</td><td>0</td><td>MPP-EM2S+</td><td></td></m>	133	3.42	0	MPP-EM2S+	
							134	3.88	0	MPP-EM2S+	
							135	9.13	0	MPP-EM2S+	
135	138	3.26	108.67	2.57	78.83	<111< Top of hole.	136	10.57	0	MPP-EM2S+	
							137	7.52	0	MPP-EM2S+	
							138	18.27	0	MPP-EM2S+	
138	141	3	100	2.59	86.33	M>111> Top of hole.	139	40.85	29330.56	MPP-EM2S+	
							140	20.84	0	MPP-EM2S+	
							141	24.68	0	MPP-EM2S+	
141	144	2.98	99.33	2.6	87.25	M>111> Top of hole.	142	28.05	13162.47	MPP-EM2S+	
							143	32.01	0	MPP-EM2S+	
							144	53.53	4856.89	MPP-EM2S+	
144	147	2.8	93.33	1.03	36.79	M>100= Top of hole.	145	1.39	0	MPP-EM2S+	
							146	1.86	0	MPP-EM2S+	
							147	2.11	0	MPP-EM2S+	
147	150	2.35	78.33	0.43	18.3		148	2.45	0	MPP-EM2S+	
							149	2.87	0	MPP-EM2S+	
							150	0.61	0	MPP-EM2S+	
150	153	2.46	82	1.15	46.75		151	1.48	0	MPP-EM2S+	
							152	1.33	0	MPP-EM2S+	
							153	1.05	0	MPP-EM2S+	
153	156	3.16	105.33	3.07	97.15		154	0.07	0	MPP-EM2S+	
							155	1.7	0	MPP-EM2S+	

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							156	3.56	0	MPP-EM2S+
156	159	2.92	97.33	2.74	93.84		157	4.48	0	MPP-EM2S+
							158	0.74	0	MPP-EM2S+
							159	3.59	0	MPP-EM2S+
159	162	3	100	1.87	62.33		160	43.25	1895.57	MPP-EM2S+
							161	1.23	0	MPP-EM2S+
							162	16.72	4235.64	MPP-EM2S+
162	165	2.77	92.33	1.53	55.23		163	51.26	3261.65	MPP-EM2S+
							164	4.12	0	MPP-EM2S+
							165	1.62	0	MPP-EM2S+
165	168	2.87	95.67	2.83	98.61		166	1.31	0	MPP-EM2S+
							167	1.45	0	MPP-EM2S+
							168	1.72	0	MPP-EM2S+
168	171	3.1	103.33	2.88	92.9		169	1.69	0	MPP-EM2S+
							170	1.6	0	MPP-EM2S+
							171	1.22	0	MPP-EM2S+
171	174	2.98	99.33	2.9	97.32		172	2.11	0	MPP-EM2S+
							173	1.49	0	MPP-EM2S+
							174	1.75	0	MPP-EM2S+
174	177	2.9	96.67	2.73	94.14		175	1.15	0	MPP-EM2S+
							176	1.48	0	MPP-EM2S+
							177	4.98	0	MPP-EM2S+
177	180	3.03	101	2.15	70.96	120<11<.1<	178	1.7	0	MPP-EM2S+
							179	3.17	0	MPP-EM2S+

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							180	24.68	0	MPP-EM2S+	
180	183	3.07	102.33	2.7	87.95	M>01<.1<.<	181	67.97	0	MPP-EM2S+	
							182	15.55	0	MPP-EM2S+	
							183	17.15	0	MPP-EM2S+	
183	186	3.07	102.33	2.79	90.88		184	4.78	0	MPP-EM2S+	
							185	6.36	0	MPP-EM2S+	
							186	4.34	0	MPP-EM2S+	
186	189	2.72	90.67	2.69	98.9		187	3.76	0	MPP-EM2S+	
							188	6.37	0	MPP-EM2S+	
							189	11.93	0	MPP-EM2S+	
189	192	3.27	109	3.14	96.02		190	24.86	0	MPP-EM2S+	
							191	29.34	0	MPP-EM2S+	
							192	31.91	0	MPP-EM2S+	
192	195	3.04	101.33	2.96	97.37		193	14.87	0	MPP-EM2S+	
							194	20.61	0	MPP-EM2S+	
							195	7.35	0	MPP-EM2S+	
195	198	3.02	100.67	2.75	91.06		196	22.62	0	MPP-EM2S+	
							197	15.67	0	MPP-EM2S+	
							198	16.37	0	MPP-EM2S+	
198	201	3.1	103.33	2.81	90.65		199	21.61	0	MPP-EM2S+	
							200	17.4	0	MPP-EM2S+	
							201	14.77	0	MPP-EM2S+	
201	204	2.97	99	2.87	96.63		202	18.28	0	MPP-EM2S+	
							203	19.1	0	MPP-EM2S+	

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							204	33.52	0	MPP-EM2S+	
204	207	2.98	99.33	2.87	96.31		205	24.96	0	MPP-EM2S+	
							206	21.41	0	MPP-EM2S+	
							207	35.88	0	MPP-EM2S+	
207	210	2.97	99	2.75	92.59		208	25.39	0	MPP-EM2S+	
							209	28.32	0	MPP-EM2S+	
							210	11.15	0	MPP-EM2S+	
210	213	3.04	101.33	2.79	91.78		211	4.07	0	MPP-EM2S+	
							212	3.39	0	MPP-EM2S+	
							213	26.79	0	MPP-EM2S+	
213	216	2.97	99	2.57	86.53		214	23.68	0	MPP-EM2S+	
							215	1.87	0	MPP-EM2S+	
							216	1.75	0	MPP-EM2S+	
216	219	3.08	102.67	2.44	79.22		217	1.44	0	MPP-EM2S+	
							218	1.6	0	MPP-EM2S+	
							219	2.37	0	MPP-EM2S+	
219	222	3.11	103.67	2.62	84.24		220	4.38	0	MPP-EM2S+	
							221	8.42	0	MPP-EM2S+	
							222	7.52	0	MPP-EM2S+	
222	225	3.03	101	2.64	87.13		223	5.54	0	MPP-EM2S+	
							224	6.94	0	MPP-EM2S+	
						Downhole Survey					
Depth	Survey Typ	ре	Azimuth	Dip							
0	IsGyro		340.06	-54.76							

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo

Obeph Survey Type Azimuth Dip 5 IsGyro 339.81 -54.84 10 IsGyro 339.8 -54.91 15 IsGyro 339.81 -55.01 20 IsGyro 339.81 -55.03 30 IsGyro 339.92 -55.15 40 IsGyro 339.83 -55.22 40 IsGyro 339.73 -55.34 50 IsGyro 339.73 -55.34 60 IsGyro 340.33 -55.4 60 IsGyro 340.33 -55.4 60 IsGyro 340.33 -55.34 60 IsGyro 340.33 -55.34 70 IsGyro 341.32 -55.54 80 IsGyro 342.92 -56.44 80 IsGyro 342.92 -55.62 95 IsGyro 342.92 -55.62 95 IsGyro 344.43 -55.84 110 Is					
10	Depth	Survey Type	Azimuth	Dip	
15 IsGyro 339.78 -54.95 20 IsGyro 339.81 -55.01 25 IsGyro 339.69 -55.03 30 IsGyro 339.82 -55.15 40 IsGyro 339.8 -55.22 45 IsGyro 339.73 -55.34 50 IsGyro 340.33 -55.4 60 IsGyro 340.88 -55.34 65 IsGyro 341.39 -55.34 70 IsGyro 342.09 -55.44 80 IsGyro 342.09 -55.54 85 IsGyro 342.09 -55.54 86 IsGyro 342.09 -55.54 85 IsGyro 342.92 -55.62 95 IsGyro 343.34 -55.63 100 IsGyro 343.34 -55.63 110 IsGyro 343.47 -55.84 111 IsGyro 344.47 -55.84 115 IsG	5	IsGyro	339.81	-54.84	
20	10	IsGyro	339.8	-54.91	
25 IsGyro 339.69 -55.03 30 IsGyro 339.77 -55.03 35 IsGyro 339.92 -55.15 40 IsGyro 339.73 -55.34 50 IsGyro 339.72 -55.38 55 IsGyro 340.33 -55.4 60 IsGyro 340.88 -55.34 65 IsGyro 341.39 -55.34 70 IsGyro 342.99 -55.44 75 IsGyro 342.29 -55.47 80 IsGyro 342.29 -55.62 95 IsGyro 342.99 -55.62 95 IsGyro 343.34 -55.62 95 IsGyro 343.34 -55.63 100 IsGyro 344.13 -55.8 110 IsGyro 344.47 -55.84 115 IsGyro 344.47 -55.84 125 IsGyro 346.65 -56.16 125 Is	15	IsGyro	339.78	-54.95	
30	20	IsGyro	339.81	-55.01	
35 IsGyro 339.92 -55.15 40 IsGyro 339.8 -55.22 45 IsGyro 339.73 -55.34 50 IsGyro 339.72 -55.88 55 IsGyro 340.33 -55.4 60 IsGyro 341.39 -55.34 70 IsGyro 341.72 -55.44 75 IsGyro 342.09 -55.47 80 IsGyro 342.69 -55.59 90 IsGyro 342.92 -55.62 95 IsGyro 343.4 -56.63 100 IsGyro 344.13 -56.8 110 IsGyro 344.47 -55.84 115 IsGyro 345.46 -56.16 125 IsGyro 345.66 -56.16 126 IsGyro 346.9 -56.11 130 IsGyro 346.99 -56.21 130 IsGyro 346.99 -56.21	25	IsGyro	339.69	-55.03	
40 IsGyro 339.8 -56.22 45 IsGyro 339.73 -55.34 50 IsGyro 339.72 -55.38 55 IsGyro 340.33 -55.4 60 IsGyro 340.88 -55.34 70 IsGyro 341.72 -55.44 75 IsGyro 342.09 -55.47 80 IsGyro 342.42 -55.64 85 IsGyro 342.89 -55.59 90 IsGyro 343.34 -55.62 95 IsGyro 343.34 -55.63 100 IsGyro 343.75 -55.72 105 IsGyro 344.13 -55.8 110 IsGyro 344.47 -55.84 115 IsGyro 345.46 -56.16 125 IsGyro 346.05 -56.21 130 IsGyro 346.99 -56.14 135 IsGyro 346.99 -56.14	30	IsGyro	339.77	-55.03	
45 IsGyro 339.73 -55.34 50 IsGyro 339.72 -55.38 55 IsGyro 340.33 -55.4 60 IsGyro 340.88 -55.34 65 IsGyro 341.39 -55.34 70 IsGyro 342.09 -55.47 75 IsGyro 342.09 -55.47 80 IsGyro 342.42 -55.54 85 IsGyro 342.92 -55.62 95 IsGyro 343.34 -55.63 100 IsGyro 343.75 -55.72 105 IsGyro 344.13 -55.8 110 IsGyro 344.47 -55.84 115 IsGyro 344.47 -55.84 120 IsGyro 345.46 -56.16 125 IsGyro 346.05 -56.21 130 IsGyro 346.49 -56.14 135 IsGyro 346.93 -56.29	35	IsGyro	339.92	-55.15	
50 IsGyro 339.72 -55.38 55 IsGyro 340.33 -55.4 60 IsGyro 341.39 -55.34 70 IsGyro 341.72 -55.44 75 IsGyro 342.09 -55.47 80 IsGyro 342.42 -55.54 85 IsGyro 342.89 -55.59 90 IsGyro 342.92 -55.62 95 IsGyro 343.75 -55.72 105 IsGyro 344.13 -55.8 110 IsGyro 344.47 -55.84 115 IsGyro 344.99 -56 120 IsGyro 346.05 -56.16 125 IsGyro 346.05 -56.21 130 IsGyro 346.93 -56.14 135 IsGyro 346.93 -56.14	40	IsGyro	339.8	-55.22	
55 IsGyro 340.33 -55.4 60 IsGyro 340.88 -55.34 65 IsGyro 341.39 -55.34 70 IsGyro 342.09 -55.44 75 IsGyro 342.42 -55.54 80 IsGyro 342.69 -56.59 90 IsGyro 342.92 -55.62 95 IsGyro 343.34 -55.63 100 IsGyro 343.34 -55.81 105 IsGyro 344.13 -55.8 110 IsGyro 344.47 -55.84 115 IsGyro 344.99 -56 120 IsGyro 345.46 -56.16 125 IsGyro 346.49 -56.14 135 IsGyro 346.93 -56.29	45	IsGyro	339.73	-55.34	
60 IsGyro 340.88 -55.34 65 IsGyro 341.39 -55.34 70 IsGyro 341.72 -55.44 75 IsGyro 342.09 -55.54 80 IsGyro 342.42 -55.54 85 IsGyro 342.69 -55.59 90 IsGyro 343.34 -55.62 95 IsGyro 343.34 -55.63 100 IsGyro 343.75 -55.72 105 IsGyro 344.13 -55.8 110 IsGyro 344.47 -55.84 115 IsGyro 345.46 -56.16 125 IsGyro 346.05 -56.16 130 IsGyro 346.99 -56.14 135 IsGyro 346.93 -56.14	50	IsGyro	339.72	-55.38	
66 IsGyro 341.39 -56.34 70 IsGyro 341.72 -55.44 75 IsGyro 342.09 -56.47 80 IsGyro 342.42 -56.54 85 IsGyro 342.69 -55.59 90 IsGyro 343.34 -56.62 95 IsGyro 343.34 -55.63 100 IsGyro 344.13 -55.8 110 IsGyro 344.47 -55.84 115 IsGyro 344.47 -55.84 120 IsGyro 345.46 -56.16 125 IsGyro 346.05 -56.21 130 IsGyro 346.49 -56.14 135 IsGyro 346.93 -56.29	55	IsGyro	340.33	-55.4	
70 IsGyro 341.72 -55.44 75 IsGyro 342.09 -55.47 80 IsGyro 342.42 -55.54 85 IsGyro 342.69 -55.59 90 IsGyro 342.92 -55.62 95 IsGyro 343.34 -55.63 100 IsGyro 343.75 -55.72 105 IsGyro 344.13 -55.8 110 IsGyro 344.47 -55.84 115 IsGyro 345.46 -56.16 125 IsGyro 346.05 -56.21 130 IsGyro 346.99 -56.14 135 IsGyro 346.93 -56.29	60	IsGyro	340.88	-55.34	
75 IsGyro 342.09 -55.47 80 IsGyro 342.42 -55.54 85 IsGyro 342.69 -55.59 90 IsGyro 342.92 -55.62 95 IsGyro 343.34 -55.63 100 IsGyro 344.75 -55.72 105 IsGyro 344.13 -55.8 110 IsGyro 344.47 -55.84 115 IsGyro 345.46 -56.16 120 IsGyro 346.05 -56.21 130 IsGyro 346.49 -56.14 135 IsGyro 346.93 -56.29	65	IsGyro	341.39	-55.34	
80 IsGyro 342.42 -55.54 85 IsGyro 342.69 -55.59 90 IsGyro 342.92 -55.62 95 IsGyro 343.34 -55.63 100 IsGyro 344.13 -55.8 110 IsGyro 344.47 -55.84 115 IsGyro 344.99 -56 120 IsGyro 345.46 -56.16 125 IsGyro 346.95 -56.21 130 IsGyro 346.93 -56.14 135 IsGyro 346.93 -56.29	70	IsGyro	341.72	-55.44	
85 IsGyro 342.69 -55.59 90 IsGyro 342.92 -55.62 95 IsGyro 343.34 -55.63 100 IsGyro 343.75 -55.72 105 IsGyro 344.13 -55.8 110 IsGyro 344.47 -55.84 115 IsGyro 344.99 -56 120 IsGyro 346.46 -56.16 125 IsGyro 346.05 -56.21 130 IsGyro 346.49 -56.14 135 IsGyro 346.93 -56.29	75	IsGyro	342.09	-55.47	
90 IsGyro 342.92 -55.62 95 IsGyro 343.34 -55.63 100 IsGyro 344.13 -55.8 110 IsGyro 344.47 -55.84 111 IsGyro 344.99 -56 120 IsGyro 345.46 -56.16 125 IsGyro 346.05 -56.21 130 IsGyro 346.93 -56.29	80	IsGyro	342.42	-55.54	
95 IsGyro 343.34 -55.63 100 IsGyro 343.75 -55.72 105 IsGyro 344.13 -55.8 110 IsGyro 344.47 -55.84 115 IsGyro 344.99 -56 120 IsGyro 345.46 -56.16 125 IsGyro 346.05 -56.21 130 IsGyro 346.49 -56.14 135 IsGyro 346.93 -56.29	85	IsGyro	342.69	-55.59	
100 IsGyro 343.75 -55.72 105 IsGyro 344.13 -55.8 110 IsGyro 344.47 -55.84 115 IsGyro 344.99 -56 120 IsGyro 345.46 -56.16 125 IsGyro 346.05 -56.21 130 IsGyro 346.49 -56.14 135 IsGyro 346.93 -56.29	90	IsGyro	342.92	-55.62	
105 IsGyro 344.13 -55.8 110 IsGyro 344.47 -55.84 115 IsGyro 344.99 -56 120 IsGyro 345.46 -56.16 125 IsGyro 346.05 -56.21 130 IsGyro 346.49 -56.14 135 IsGyro 346.93 -56.29	95	IsGyro	343.34	-55.63	
110 IsGyro 344.47 -55.84 115 IsGyro 344.99 -56 120 IsGyro 345.46 -56.16 125 IsGyro 346.05 -56.21 130 IsGyro 346.49 -56.14 135 IsGyro 346.93 -56.29	100	IsGyro	343.75	-55.72	
115 IsGyro 344.99 -56 120 IsGyro 345.46 -56.16 125 IsGyro 346.05 -56.21 130 IsGyro 346.49 -56.14 135 IsGyro 346.93 -56.29	105	IsGyro	344.13	-55.8	
120 IsGyro 345.46 -56.16 125 IsGyro 346.05 -56.21 130 IsGyro 346.49 -56.14 135 IsGyro 346.93 -56.29	110	IsGyro	344.47	-55.84	
125 IsGyro 346.05 -56.21 130 IsGyro 346.49 -56.14 135 IsGyro 346.93 -56.29	115	IsGyro	344.99	-56	
130 IsGyro 346.49 -56.14 135 IsGyro 346.93 -56.29	120	IsGyro	345.46	-56.16	
135 IsGyro 346.93 -56.29	125	IsGyro	346.05	-56.21	
	130	IsGyro	346.49	-56.14	
140 IsGyro 347.32 -56.44	135	IsGyro	346.93	-56.29	
	140	IsGyro	347.32	-56.44	

IsGyro

IsGyro

IsGyro

210

215

220

-57.15

-57.21

-57.53

346.01

345.84

345.65

DRILL LOG REPORT

Hole Number: WR-22-195 Resp. Person: Arnaud Fontaine, Géo Azimuth Dip Depth **Survey Type** 145 IsGyro 347.56 -56.6 IsGyro 150 347.76 -56.63 155 IsGyro 347.78 -56.68 160 IsGyro 347.76 -56.81 165 IsGyro 347.63 -56.96 170 IsGyro 347.42 -57.04 175 IsGyro 347.32 -57.09 IsGyro 180 347.2 -57.12 185 IsGyro 347.13 -57.11 IsGyro 347.02 -57.13 190 IsGyro 346.75 -57.15 195 IsGyro 200 346.68 -57.17 IsGyro 346.44 -57.16 205

Hole Number:

WR-22-196

DRILL LOG REPORT

Resp. Person: Arnaud Fontaine, Géo

Pro	ject	Dril	ling		Collar			Coordinates
Project Name:	West-Raglan	Hole Type:	DDH	Casing:	NW	Collar Dip:	-59.15	Northing: 6,807,556 UTM Zone: NAD83 / UTM zone 18N
Claim Number:	1096736	Hole Size:	NQ	Casing Status:	Left In Hole	Collar Azi:	336.01	Easting: 470,735
Property:	Boomerang	Drilling Started:	Jul 13, 2022	Oriented:	Υ	Length:	117	Elevation: 368.00
Purpose:		Drilling Completed:	Jul 14, 2022	Collar Survey Type:	APS			Logged By
Target:	80,101,110	Drilling Contractor:	Forage G4	Pulse EM Surveyed:	Υ			Geologist 1: Maxime Dupéré, Géo
Operator:	Orford Mining Corporation	Core Location:	СС	Pulse EM Survey Date:	Jul 13, 2022			Geologist 2:
				Geophysics Contractor:	Crone			Geologist 3:
								Geologist 4:

Comments:

		Detailed Lithology			Mineraliza	tion				Alterati	on	
From	То	Lithology	From	То	Туре	Style	%	From	То	Туре	Style	Intensity
0.0	6.0	OB, Overburden										
6.0	63.93	S, Sediments Texture Grain Size Colour Colour Tone Bedded Medium Grained Grey Medium Comments Sediments, grey, graded bedding top down mostly,40-65 deg to core axis. no apparent folding., crosscut by ca (0.5cm to 1) venilets 1-3/m.	9	63.93		ded), po as str ling and small	ingers	9	63.93	Carbonatizati on Comments	Pervasive	Strong
63.93	65.45	F3, Sedimentary Massive Sulphide Texture Grain Size Colour Colour Tone Bedded Very Fine Grained Brown Medium Comments sedimentary semi to massive to massive sulphides, brass graphitic, 40 deg to core axis. Not magnetite, graphitic. mostly very fine pyrite. traces -0.5% pyrrotite increasing to 69.6m	63.93	65.45		Bedded sive sulphides, te, mixed with undetermined.						

Hole Number: WR-22-196 Resp. Person: Arnaud Fontaine, Géo

			Detailed Lithology					Mineraliza	ation				Alterati	on	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
65.45	66.75	S, Sediments				65.45	66.75	Pyrite	Bedded	95					
		Texture	Grain Size	Colour	Colour Tone			-							
		Bedded	Medium Grained	Grey	Medium										
			graded bedding top oing., crosscut by ca (0.					magnetic, py	ssive sulphides, i rite, mixed with g undetermined.						
66.75	71.1	F3, Sedimentary	y Massive Sulphide			66.75	71.1	Pyrite	Fracture/vein	2					
		Texture	Grain Size	Colour	Colour Tone			Comments	controlled						
		Bedded	Very Fine Grained	Brown	Medium			Comments							
		40 deg to core as mostly very fine	ni to masive to massive xis. magnetitc towards pyrite. traces -0.5% py % folowing bedding.	the end (pyrro	tite), graphitic.										
71.1	1.1 96.0 I4 (C P a	I4I, Peridotite				71.1	90	Pyrrhotite	Patchy	3	71.1	74.8	Talcose (+/- carbonate)	Pervasive	Strong
		Texture Orthocumulate	Grain Size Medium Grained	Colour Green	Colour Tone Dark			Pentlandite	Fracture/vein controlled	0.5			Serpentinizat ion	Pervasive	Moderate
		Comments Peridotite, cumul and talc, pervasi	ate, dark green-black, ve, medium grained, n	moderately alt	ered in serpentine	Comments fine pyrrotite, magnetic, along fractures and veins and as patcheds randomly through out core length.						Comments pervasive stro serpentine, sil			
		magnetic.						0.5%-1% per	ough out core ler otlandite in fractu s up to 2% Ni (XI	ires as	74.8	96	Serpentinizat ion	Pervasive	Moderate
								1-2mm plates	s up το 2 / σ τ ττ (/ τι	<i>(1)</i>			Comments pervasive ser moderate per		eratio n
96.0	117.0	I4I, Peridotite									96	117	Talcose (+/- carbonate)	Pervasive	Strong
		Texture Orthocumulate	Grain Size Medium Grained	Colour Green	Colour Tone Medium								Serpentinizat ion	Pervasive	Moderate
		Comments Peridotite, cumul	ate, dark green mediu	ım, strongly alte	ered in talc								Serpentinizatl ion	Fracture/Veir Controlled	¹ Moderate
		pervasive, medium grained, no apparent grading, not r			magnetic.								Comments pervasive stro accompanied serpentinite al Additional ser veins and frac	with modera reation perva pentinite alte	te asive.

Hole Number: WR-22-196 Resp. Person: Arnaud Fontaine, Géo

					Samplii	ıy				
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
7.0	8.0	E5840167	Core	0.00035	0.0005	0.0025	0.00829	13.6	0.65	
14.0	15.0	E5840168	Core	0.00258	0.0005	0.0025	0.0175	23.3	1.19	
21.0	22.0	E5840169	Core	0.00045	0.0005	0.0025	0.0216	19.8	0.38	
21.0	22.0	E5840170	Duplicate	0.00047	0.0005	0.0025	0.0231	19	0.37	
28.0	29.0	E5840171	Core	0.00639	0.002	0.0025	0.0198	27	0.47	
35.0	36.0	E5840172	Core	0.00282	0.0005	0.0025	0.0186	26.3	0.6	
41.0	42.0	E5840173	Core	0.00072	0.0005	0.0025	0.0121	20.6	0.46	
47.0	48.0	E5840174	Core	0.00085	0.0005	0.0025	0.00761	14.3	0.62	
53.0	54.0	E5840175	Core	0.00124	0.0005	0.0025	0.0108	14.7	0.58	
63.93	64.45	E5840176	Core	0.00801	0.003	0.0025	0.00819	19.6	10	
64.45	65.9	E5840177	Core	0.002	0.0005	0.0025	0.00291	4.9	4.04	
65.9	66.75	E5840178	Core	0.00648	0.002	0.0025	0.00837	12.3	9.2	
66.75	68.0	E5840179	Core	0.0365	0.006	0.0025	0.0699	53.1	10	
68.0	69.5	E5840181	Core	0.0353	0.008	0.0025	0.0433	63.5	10	
69.5	71.1	E5840182	Core	0.0681	0.017	0.0025	0.101	73.9	10	
71.1	72.0	E5840183	Core	0.0749	0.007	0.0025	0.00655	67.9	1.23	
72.0	73.5	E5840184	Core	0.103	0.009	0.006	0.00953	88.2	1.19	
73.5	75.0	E5840185	Core	0.0892	0.008	0.0025	0.00886	73.4	0.97	
75.0	76.5	E5840186	Core	0.154	0.023	0.0025	0.0127	107	1.23	
76.5	78.0	E5840187	Core	0.127	0.005	0.0025	0.0104	92.7	0.98	
78.0	79.5	E5840188	Core	0.16	0.042	0.009	0.0144	104	1.15	
79.5	81.0	E5840189	Core	0.121	0.013	0.0025	0.00834	95.6	0.82	
81.0	82.5	E5840191	Core	0.105	0.003	0.0025	0.00466	73.7	0.59	
82.5	84.0	E5840192	Core	0.105	0.01	0.0025	0.0122	88.2	0.6	
84.0	85.5	E5840193	Core	0.178	0.029	0.0025	0.021	104	0.95	
85.5	87.0	E5840194	Core	0.122	0.007	0.0025	0.00974	100	0.57	
87.0	88.5	E5840195	Core	0.105	0.016	0.0025	0.00529	82.4	0.36	

Hole Numbe	er: WR	-22-196									Resp. Person:	Arnaud Fontaine, Géo	AF
From	То	Sample Nun	nber Sa	ımple Type	Ni	(%) Po	d (ppm P	t (ppm)	Cu (%)	Co (ppm)	S (%)		
88.5	90.0	E584019	6	Core	0.	128 (0.008	0.0025	0.00644	91.6	0.37		
90.0	91.5	E584019	7	Core	0.	101 (0.003	0.0025	0.00476	76.7	0.24		
91.5	93.0	E584019	8	Core	0.	105 (0.006	0.0025	0.00584	82.1	0.23		
99.0	100.5	E584019	9	Core	0.0	814 (0.007	0.0025	0.00691	73.7	0.03		
106.0	107.0	E584020	1	Core	0.0	666 (0.004	0.0025	0.00215	71	0.05		
112.0	113.0	E584020	2	Core	0.0	823 (0.003	0.0025	0.00447	75.2	0.04		
							Structure						
From	То	Structure Type	e Structur	re Intensity	Comments								
28	38.9	Calcite vein			this is veining	g, multiple ca-c	qtz veins 2-5 cn	n, extensional	I, croscutting	lithology.			
74	92	Calcite vein			this is veining	g, multiple ca-c	qtz veins 2-5 cn	n, extensional	I, croscutting	lithology.			
102	110	Fracturing			fracturing due	e to veining (ca	a) and talc altn.	also some se	erpentinite ve	ining, same d	eg. to core axis.		
						P	oint Structure						
Depth	Structure 1	ype Structur	e Intensity	Alpha Angle	Beta Angle	Gamma Angle	Core Angle	Comments	s				
80.9	Calcite ve	ein		30	360								
80.5	Calcite ve	ein		30	230								
91.8	Serpentine	vein		20	340			serpentinite	e vein accom	panied with ca	alcite veins, breco	ciated.	
				Geotechnica	I						Mags	us	
From	То	Recovery	Recovery %	RQD	RQD %	Comments		,	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
									6	0.83	0	MPP-EM2S+	
0	9	2.95	32.78	2.6	88.14				7	1.3	0	MPP-EM2S+	
									8	0.72	0	MPP-EM2S+	
									9	1.1	0	MPP-EM2S+	
9	12	2.99	99.67	2.59	86.62				10	1.19	0	MPP-EM2S+	
									11	0.93	0	MPP-EM2S+	

Hole Number: WR-22-196 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	AI
							12	0.6	0	MPP-EM2S+	
12	15	2.9	96.67	2.08	71.72		13	0.49	0	MPP-EM2S+	
							14	0.82	0	MPP-EM2S+	
							12 0.6 0 MPP-EM2S+ 13 0.49 0 MPP-EM2S+ 14 0.82 0 MPP-EM2S+ 15 0.53 0 MPP-EM2S+ 16 0.96 0 MPP-EM2S+ 17 0.88 0 MPP-EM2S+ 18 1.08 0 MPP-EM2S+ 19 0.92 0 MPP-EM2S+ 20 0.72 0 MPP-EM2S+ 21 0.85 0 MPP-EM2S+ 22 0.58 0 MPP-EM2S+ 23 0.59 0 MPP-EM2S+ 24 0.67 0 MPP-EM2S+ 25 0.69 0 MPP-EM2S+ 26 0.47 0 MPP-EM2S+ 27 0.61 0 MPP-EM2S+ 28 0.44 0 MPP-EM2S+ 29 0.65 0 MPP-EM2S+ 29 0.65 0 MPP-EM2S+ 29 0.65 0 MPP-EM2S+	MPP-EM2S+			
15	18	2.9	96.67	2.5	86.21		16	0.96	0	MPP-EM2S+	
							17	0.88	0	MPP-EM2S+	
							18	1.08	0	MPP-EM2S+	
18	21	2.83	94.33	2.64	93.29		19	0.92	0	MPP-EM2S+	
							20	0.72	0	MPP-EM2S+	
	21 24						21	0.85	0	MPP-EM2S+	
21		2.92	97.33	2.66	91.1		22	0.58	0	MPP-EM2S+	
							23	0.59	0	MPP-EM2S+	
							24	0.51	0	MPP-EM2S+	
24	27	3.08	102.67	2.83	91.88		24	0.67	0	MPP-EM2S+	
							25	0.69	0	MPP-EM2S+	
							26	0.47	0	MPP-EM2S+	
							27	0.61	0	MPP-EM2S+	
27	27 30	3.06	102	2.46	80.39		28	0.44	0	MPP-EM2S+	
							29	0.65	0	MPP-EM2S+	
						30	0.89	0	MPP-EM2S+		
30	30 33	3.03	101	2.65	87.46		31	0.96	0	MPP-EM2S+	
							32	2	0	MPP-EM2S+	

Hole Number: WR-22-196 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							33	1.28	0	MPP-EM2S+
33	36	2.95	98.33	2.73	92.54		34	0.69	0	MPP-EM2S+
							35	0.74	0	MPP-EM2S+
							36	2.13	0	MPP-EM2S+
36	39	2.98	99.33	2.64	88.59		37	0.85	0	MPP-EM2S+
							38	3.94	0	MPP-EM2S+
							39	1.06	0	MPP-EM2S+
39	42	2.98	99.33	2.86	95.97		40	0.89	0	MPP-EM2S+
							41	0.85	0	MPP-EM2S+
							42	0.8	0	MPP-EM2S+
42	42 45	3.02	100.67	2.9	96.03		43	0.77	0	MPP-EM2S+
							44	1.19	0	MPP-EM2S+
							45	0.81	0	MPP-EM2S+
45	48	2.97	99	2.87	96.63		46	1.18	0	MPP-EM2S+
							47	1.26	0	MPP-EM2S+
							48	0.87	0	MPP-EM2S+
48	51	2.98	99.33	2.93	98.32		49	0.87	0	MPP-EM2S+
							50	1.54	0	MPP-EM2S+
	<u> </u>			<u> </u>			51	0.8	0	MPP-EM2S+
51	54	3.02	100.67	2.81	93.05		52	0.75	0	MPP-EM2S+
							53	1.28	0	MPP-EM2S+
	<u> </u>			<u> </u>			54	0.48	0	MPP-EM2S+
54	57	3.02	100.67	3.02	100		55	0.49	0	MPP-EM2S+
							56	0.44	0	MPP-EM2S+

Hole Number: WR-22-196 Resp. Person: Arnaud Fontaine, Géo

											111
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							57	0.59	0	MPP-EM2S+	
57	60	3	100	2.52	84		58	1.1	0	MPP-EM2S+	
							59	2.33	0	MPP-EM2S+	
							60	2.21	0	MPP-EM2S+	
60	63	2.88	96	2.32	80.56		61	0.77	0	MPP-EM2S+	
							62	0.89	0	MPP-EM2S+	
							63	0.54	0	MPP-EM2S+	
63	66	2.96	98.67	2	67.57	=001<	64	0.62	0	MPP-EM2S+	
							65	0.51	0	MPP-EM2S+	
							66	0.52	0	MPP-EM2S+	
66	69	2.88	96	0.96	33.33	M>100=	67	0.61	0	MPP-EM2S+	
							68	0.52	0	MPP-EM2S+	
							69	0.67	0	MPP-EM2S+	
69	72	2.8	93.33	2.56	91.43		70	55.49	41559.06	MPP-EM2S+	
							71	15.11	0	MPP-EM2S+	
							72	12.96	5625.33	MPP-EM2S+	
72	75	2.58	86	2.28	88.37		73	5.82	0	MPP-EM2S+	
							74	3.67	0	MPP-EM2S+	
							75	4.29	0	MPP-EM2S+	
75	78	2.51	83.67	2.14	85.26		76	5.04	0	MPP-EM2S+	
							77	3.78	0	MPP-EM2S+	
							78	12.49	0	MPP-EM2S+	
78	81	3.14	104.67	2.44	77.71	080 <111<	79	1.68	0	MPP-EM2S+	
							80	2.06	0	MPP-EM2S+	

Hole Number: WR-22-196 Resp. Person: Arnaud Fontaine, Géo

											11
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							81	2.19	0	MPP-EM2S+	
81	84	3	100	2.58	86		82	1.26	0	MPP-EM2S+	
							83	0.7	0	MPP-EM2S+	
							84	2.92	0	MPP-EM2S+	
84	87	2.79	93	2.58	92.47		85	0.76	0	MPP-EM2S+	
							86	1.45	0	MPP-EM2S+	
							87	1.11	0	MPP-EM2S+	
87	90	3	100	2.35	78.33	=00.1<	88	1.39	0	MPP-EM2S+	
							89	0.59	0	MPP-EM2S+	
							90	0.67	0	MPP-EM2S+	
90	93	2.97	99	2.52	84.85	<111<	91	0.62	0	MPP-EM2S+	
							92	1.47	0	MPP-EM2S+	
							93	0.98	0	MPP-EM2S+	
93	96	3.05	101.67	2.55	83.61		94	1.01	0	MPP-EM2S+	
							95	1.27	0	MPP-EM2S+	
							96	1	0	MPP-EM2S+	
96	99	3.14	104.67	3	95.54		97	0.92	0	MPP-EM2S+	
							98	0.92	0	MPP-EM2S+	
							99	1.08	0	MPP-EM2S+	
99	102	2.98	99.33	2.74	91.95		100	0.99	0	MPP-EM2S+	
							101	0.89	0	MPP-EM2S+	
							102	0.87	0	MPP-EM2S+	
102	105	3.09	103	2.6	84.14		103	1.03	0	MPP-EM2S+	
							104	0.74	0	MPP-EM2S+	

Hole Number: WR-22-196 Resp. Person: Arnaud Fontaine, Géo

105 108 3.14 104.67 2.37 75.48 106 2.03 0 MPP-E 107 2.58 0 MPP-E 108 111 2.89 96.33 2.14 74.05 109 3.11 0 MPP-E 110 3.3 0 MPP-E 111 3.21 0 MPP-E	strument
107 2.58 0 MPP-E 108 111 2.89 96.33 2.14 74.05 109 3.11 0 MPP-E 110 3.3 0 MPP-E	M2S+
108 111 2.89 96.33 2.14 74.05 109 3.11 0 MPP-E 110 3.3 0 MPP-E	M2S+
108 111 2.89 96.33 2.14 74.05 109 3.11 0 MPP-E	M2S+
110 3.3 0 MPP-E	M2S+
	M2S+
111 3.21 0 MPP-E	M2S+
	M2S+
111 114 3.05 101.67 2.86 93.77 112 3.96 0 MPP-E	M2S+
113 4.16 0 MPP-E	M2S+
114 4.55 0 MPP-E	M2S+
114 117 2.56 85.33 2.56 100 115 4.57 0 MPP-E	M2S+
116 4.83 0 MPP-E	MOC.

Downhole Survey

Depth	Survey Type	Azimuth	Dip	
0	IsGyro	335.01	-59.15	
5	IsGyro	335.01	-59.04	
10	IsGyro	335.08	-59.28	
15	IsGyro	335.26	-59.6	
20	IsGyro	335.64	-59.8	
25	IsGyro	335.88	-60.06	
30	IsGyro	336.15	-60.27	
35	IsGyro	336.31	-60.41	
40	IsGyro	336.85	-60.84	
45	IsGyro	337.05	-61.16	
50	IsGyro	337.52	-61.39	
55	IsGyro	338	-61.58	

IsGyro

339.39

-62.09

115

DRILL LOG REPORT

Hole Number: WR-22-196 Resp. Person: Arnaud Fontaine, Géo Dip Depth **Survey Type Azimuth** 60 IsGyro 338.38 -61.75 IsGyro 65 338.85 -61.88 IsGyro 70 339.02 -61.9 IsGyro 75 339.17 -61.9 80 IsGyro 339.35 -61.87 IsGyro 85 339.23 -61.93 90 IsGyro 338.96 -61.98 IsGyro 95 338.88 -62.07 100 IsGyro 338.99 -62.08 IsGyro -61.93 105 339.32 110 IsGyro 339.34 -61.75

Hole Number:

WR-22-197

DRILL LOG REPORT

Resp. Person: Arnaud Fontaine, Géo

Pr	oject	Dril	ling		Collar			Coordinates
Project Name:	West-Raglan	Hole Type:	DDH	Casing:	NW	Collar Dip:	-79.13	Northing: 6,808,740 UTM Zone: NAD83 / UTM zone 18N
Claim Number:	1095833	Hole Size:	NQ	Casing Status:	Left In Hole	Collar Azi:	317.13	Easting : 465,776
Property:	Beverly	Drilling Started:	Jul 15, 2022	Oriented:	Υ	Length:	468	Elevation: 418.00
Purpose:		Drilling Completed:	Jul 24, 2022	Collar Survey Type:				Logged By
Target:	270m, 345m,355m, 440m	Drilling Contractor:	Forage G4	Pulse EM Surveyed:	Υ			Geologist 1: Maxime Dupéré, Géo
Operator:	Orford Mining Corporation	Core Location:	СС	Pulse EM Survey Date:	Jul 25, 2022			Geologist 2:
				Geophysics Contractor:	Crone			Geologist 3:
								Geologist 4:

Comments:

Detailed Lithology					Mineralizat	ion		Alteration				
From	rom To Lithology				Туре	Style	%	From	То	Туре	Style	Intensity
0.0	5.65	OB, Overburden										

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

	Detailed Lithology							Mineraliz	ation		Alteration				*
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
5.65	278.3	I4I, Peridotite				5.65	273	Pyrrhotite	Disseminated	0.01	5.65	47	Serpentinizat ion	Pervasive	Moderate
		Texture Orthocumulate	Grain Size Medium Grained	Colour Greenish-Grey	Colour Tone Dark			Comments fine, dissemi	nated to fracture	filled. in			Crysotile	Fracture/Vein Controlled	Weak
		Comments Dark greyish gree	en peridotite, modera	ately fractred, stron	igly magnetic,			traces					Carbonatizati on	Fracture/Vein Controlled	Weak
		veining starting a	seminated pyrrotite,, t 35m. XRF 1600-20	massive, crosscut 000 ppm Ni								fracture filled	*	asive, and	
											47	237	Serpentinizat ion	Pervasive	Strong
													Crysotile	Fracture/Vein Controlled	Strong
													Magnetite	Fracture/Vein Controlled	Strong
													Comments strong magne veinlets. local pervasive alte	ly weak to mo	filled 1mm oderate
											237	249	Serpentinizat ion	Pervasive	Strong
													Magnetite	Fracture/Vein Controlled	Strong
													Carbonatizati on		
													Comments strong magne veinlets. local pervasive alte	ly weak to mo	filled 1mm derate

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

	+
4	+
/ /	1.

		Detailed Lithology					Mineralization						Alteration			
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity	
											249	273	Serpentinizat ion	Pervasive	Strong	
													Crysotile	Fracture/Vein Controlled	1 Strong	
													Magnetite	Fracture/Vein Controlled	Strong	
												Comments strong magne veinlets. local pervasive alte	ly weak to mo	filled 1mm oderate		
											273	278.3	Serpentinizat ion	Pervasive	Strong	
													Magnetite	Patchy	Moderate	
													Carbonatizati on	Fracture/Vein Controlled	Moderate	
													comments strong magne veinlets. local pervasive alte and around m bveinlets, Loc interstitial ro fi	y moderate to ration, chryso agnetite-serp ally carbonate	o strong otile altn in pentinite e alteration	
278.3	281.65	FltZ, Fault Zone									278.3	281.65	Magnetite	Pervasive	Strong	
		Texture	Grain Size Fine Grained	Colour Grey	Colour Tone Dark								Serpentinizat ion	Patchy	Moderate	
		Comments Dark grey fracture	d zone: Fault Zone.	•	-3 M olm.								Carbonatizati on	Pervasive	Moderate	
		. J.,											Comments strong magne veinlets. locall pervasive alte and around m bveinlets, Loc interstitial ro fi	y moderate to ration, chryso agnetite-serp ally carbonate	o strong otile altn in pentinite e alteration	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

	Detailed Lithology	Mineralization							Alteration	on	
From To	Lithology	From	То	Туре	Style	%	From	То	Туре	Style	Intensity
281.65 441.5	I4I, Peridotite	394	394.2	Native copper	Fracture/vein controlled	0.5	281.65	312	Serpentinizat ion	Pervasive	Strong
	Texture Grain Size Colour Colour Tone Orthocumulate Medium Grained Greenish-Grey Dark			Comments fine native cop	per 1-2mm, XR	F			Magnetite	Patchy	Moderate
	Comments Dark greyish green peridotite, moderately fractured, strongly magnetic,				in a fracture with white coating (Carbonatizatif on	racture/Veir Controlled	¹ Moderate
	pervasively altered in serpentine (moderate-strong). massive, crosscut by serpentine-magnetite-crysotile veining decreasinf from 394m. XRF 1600-2000 ppm Ni. Core mixed up from 46m to 49m.	410	411	Native copper	Fracture/vein controlled	0.2			Comments Pervasive ser		
				Pyrrhotite	Fracture/vein controlled	0.2			in facture filled moderate to st alteration, chry	rong pervasi	ve
				Comments fine native cop 5000ppm Cu.	oper 1-2mm, XR in a fracture with	F h fine			magnetite-ser Locally carbor ro fracture-vei	pentinite bve ate alteration	inlets,
				chrysotile(thir	n white coating (Fine pyrrotite in f	thin	312	350	Serpentinizat ion	Patchy	Moderate
				illied with serp	entine.				Magnetite	Patchy	Moderate
									Carbonatizatif on	racture/Veir Controlled	¹ Weak
									Pervasive sery in facture filled mod-strong pealteration, chry magnetite-sery Locally carbor to fracture-veil	I 1mm veinle rvasive mag vsotile altn in pentinite bve late alteration	ts. locally netite and around inlets,
							367.1	394	Serpentinizat ion	Pervasive	Moderate
									Magnetite	Patchy	Moderate
									Serpentinizat ion	Spotted	Moderate
									Comments Pervasive sery fract. filled 1m mod-strong pe alteration, chry magnetite-sery spotted throug weak to mod.	m veinlets. Id rvasive mag vsotile altn in o. veinlets, W hout core, in	netite and around /hite specs termittant.

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

1
11 +
// /_
117
MI

		Detailed Lithology			Mineralizat	ion				Alteration	Alteration	
From	То	Lithology	From	То	Туре	Style	%	From	То	Туре	Style	Intensity
								394	441.5	Serpentinizat ion	Pervasive	
										Magnetite	Patchy	Moderate
										Serpentinizat ion	Spotted	Moderate
										Comments		
										Pervasive serp fract. filled 1m mod-strong per alteration, chry magnetite-serp spotted throug weak to mod.	m veinlets. Idervasive mag ysotile altn in o. veinlets, V phout core, in	ocally gnetite n and around Vhite specs ntermittant.
441.5	468.0	I4I, Peridotite						441.5	468	Serpentinizat ion	Pervasive	
		Texture Grain Size Colour Colour Tone								Magnetite	Patchy	Moderate
		Orthocumulate Medium Grained Greenish-Grey Dark								Magnetite	Paterty	Moderate
		Comments Dark greyish green peridotite, moderately fractured, strongly magnetic,								Serpentinizat ion	Spotted	Moderate
		pervasively altered in serpentine (moderate-strong). massive, crosscut by								Comments		
		serpentine-magnetite-crysotile veining decreasing. poikilitic texture								Pervasive serp fract. filled 1m mod-strong pe alteration, chry magnetite-serp spotted throug weak to mod. 1	m veinlets. Idervasive mag vsotile altn in o. veinlets, V hout core, in	ocally gnetite a and around Vhite specs atermittant.

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

					Samplii	ng				
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
6.0	7.0	E5840203	Core	0.143	0.0005	0.0025	0.00413	101	0.07	
12.0	13.0	E5840204	Core	0.149	0.0005	0.0025	0.00234	104	0.05	
18.0	19.0	E5840205	Core	0.15	0.001	0.0025	0.00237	106	0.05	
24.0	25.0	E5840206	Core	0.11	0.0005	0.0025	0.00215	108	0.05	
30.0	31.0	E5840207	Core	0.159	0.002	0.0025	0.00153	115	0.04	
36.0	37.0	E5840208	Core	0.165	0.002	0.0025	0.00107	111	0.07	
42.0	43.0	E5840209	Core	0.129	0.003	0.0025	0.00278	106	0.05	
48.0	49.0	E5840211	Core	0.117	0.003	0.0025	0.00087	102	0.04	
56.0	57.0	E5840212	Core	0.159	0.004	0.0025	0.00077	104	0.06	
62.0	63.0	E5840213	Core	0.162	0.038	0.008	0.00265	120	0.06	
68.0	69.0	E5840214	Core	0.14	0.003	0.0025	0.00293	107	0.05	
74.0	75.0	E5840215	Core	0.171	0.003	0.0025	0.0028	105	0.07	
80.0	81.0	E5840216	Core	0.146	0.004	0.0025	0.0114	148	0.06	
86.0	87.0	E5840217	Core	0.155	0.003	0.0025	0.00178	108	0.05	
92.0	93.0	E5840218	Core	0.171	0.003	0.0025	0.00065	103	0.06	
96.0	97.0	E5840219	Core	0.168	0.002	0.0025	0.00118	110	0.06	
96.0	97.0	E5840220	Duplicate	0.16	0.003	0.0025	0.00113	109	0.05	
102.0	103.0	E5840221	Core	0.151	0.001	0.0025	0.00186	105	0.06	
108.0	109.0	E5840222	Core	0.154	0.002	0.0025	0.00082	102	0.06	
114.0	115.0	E5840223	Core	0.175	0.005	0.005	0.00481	106	0.06	
120.0	121.0	E5840224	Core	0.18	0.0005	0.0025	0.0029	111	0.07	
126.0	127.0	E5840225	Core	0.147	0.001	0.0025	0.00332	113	0.05	
132.0	133.0	E5840226	Core	0.166	0.001	0.0025	0.00107	111	0.04	
138.0	139.0	E5840227	Core	0.159	0.003	0.0025	0.00148	114	0.05	
144.0	145.0	E5840228	Core	0.161	0.003	0.0025	0.00514	113	0.05	
150.0	151.0	E5840229	Core	0.167	0.004	0.0025	0.00156	110	0.02	
156.0	157.0	E5840231	Core	0.148	0.004	0.0025	0.00095	90.9	0.04	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

									respire second randad remaine, ess	711
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
162.0	163.0	E5840232	Core	0.159	0.003	0.0025	0.00562	126	0.05	
168.0	169.0	E5840233	Core	0.169	0.005	0.0025	0.00227	111	0.04	
174.0	175.0	E5840234	Core	0.164	0.006	0.0025	0.00146	111	0.03	
180.0	181.0	E5840235	Core	0.16	0.008	0.0025	0.00493	109	0.05	
186.0	187.0	E5840236	Core	0.163	0.007	0.0025	0.00286	108	0.05	
192.0	193.5	E5840237	Core	0.152	0.003	0.0025	0.00354	112	0.05	
198.0	199.5	E5840238	Core	0.146	0.007	0.006	0.00534	113	0.04	
204.0	205.5	E5840239	Core	0.142	0.006	0.0025	0.00564	112	0.05	
210.0	211.5	E5840241	Core	0.107	0.003	0.0025	0.00134	113	0.01	
216.0	217.5	E5840242	Core	0.169	0.013	0.0025	0.00156	119	0.03	
222.0	223.5	E5840243	Core	0.163	0.01	0.0025	0.00148	116	0.05	
228.0	229.5	E5840244	Core	0.12	0.002	0.0025	0.00187	127	0.02	
234.0	235.5	E5840245	Core	0.114	0.005	0.0025	0.00115	119	0.02	
240.0	241.5	E5840246	Core	0.157	0.006	0.005	0.0007	109	0.05	
246.0	247.5	E5840247	Core	0.167	0.01	0.0025	0.00131	114	0.04	
252.0	253.5	E5840248	Core	0.166	0.008	0.0025	0.00188	125	0.04	
258.0	259.5	E5840249	Core	0.138	0.047	0.0025	0.00725	110	0.03	
258.0	259.5	E5840250	Duplicate	0.13	0.089	0.0025	0.0106	115	0.04	
264.0	265.5	E5840251	Core	0.135	0.02	0.0025	0.00333	112	0.04	
270.0	271.5	E5840252	Core	0.152	0.083	0.01	0.00417	138	0.05	
276.0	277.5	E5840253	Core	0.189	0.042	0.0025	0.017	122	0.06	
277.5	278.3	E5840254	Core	0.187	0.001	0.0025	0.0187	108	0.06	
278.3	279.7	E5840255	Core	0.185	0.001	0.0025	0.0113	127	0.06	
279.7	281.0	E5840256	Core	0.198	0.0005	0.0025	0.0141	121	0.07	
281.0	281.65	E5840257	Core	0.16	0.006	0.0025	0.023	149	0.05	
281.65	283.0	E5840258	Core	0.171	0.018	0.0025	0.00184	119	0.01	
288.0	289.5	E5840259	Core	0.193	0.002	0.0025	0.00488	117	0.06	
289.5	295.5	E5840261	Core	0.167	0.016	0.0025	0.00282	108	0.04	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
300.0	301.5	E5840262	Core	0.169	0.04	0.0025	0.00289	114	0.03	
306.0	307.5	E5840263	Core	0.169	0.0005	0.0025	0.0088	103	0.05	
312.0	312.5	E5840264	Core	0.129	0.018	0.0025	0.0115	119	0.03	
318.0	319.5	E5840265	Core	0.164	0.013	0.0025	0.00727	101	0.04	
324.0	325.5	E5840266	Core	0.163	0.004	0.0025	0.00457	106	0.02	
330.0	331.5	E5840267	Core	0.162	0.06	0.017	0.00346	104	0.02	
336.0	337.5	E5840268	Core	0.174	0.0005	0.0025	0.0157	101	0.05	
342.0	343.5	E5840269	Core	0.156	0.0005	0.0025	0.00434	108	0.02	
348.0	349.5	E5840271	Core	0.155	0.0005	0.0025	0.00543	107	0.01	
354.0	355.5	E5840272	Core	0.149	0.0005	0.0025	0.00496	103	0.01	
360.0	361.5	E5840273	Core	0.16	0.001	0.0025	0.0121	105	0.04	
366.0	367.5	E5840274	Core	0.14	0.004	0.0025	0.00621	109	0.02	
372.0	373.5	E5840275	Core	0.154	0.0005	0.0025	0.00628	102	0.04	
378.0	379.5	E5840276	Core	0.155	0.0005	0.0025	0.00524	109	0.04	
384.0	385.5	E5840277	Core	0.156	0.0005	0.0025	0.00644	109	0.05	
390.0	391.5	E5840278	Core	0.145	0.0005	0.0025	0.00437	108	0.03	
391.5	393.0	E5840279	Core	0.161	0.0005	0.0025	0.00533	104	0.05	
391.5	393.0	E5840280	Duplicate	0.159	0.0005	0.0025	0.00471	103	0.05	
393.0	394.0	E5840281	Core	0.154	0.029	0.0025	0.00419	111	0.03	
394.0	395.0	E5840282	Core	0.164	0.003	0.0025	0.00318	119	0.03	
395.0	396.0	E5840283	Core	0.165	0.0005	0.0025	0.00236	118	0.03	
402.0	403.5	E5840284	Core	0.168	0.0005	0.0025	0.00291	116	0.04	
408.0	409.0	E5840285	Core	0.171	0.0005	0.0025	0.00554	96.1	0.07	
409.0	410.0	E5840286	Core	0.157	0.0005	0.0025	0.00904	106	0.06	
410.0	411.0	E5840287	Core	0.166	0.0005	0.0025	0.00747	109	0.06	
411.0	412.0	E5840288	Core	0.167	0.0005	0.0025	0.00413	113	0.03	
417.0	418.5	E5840289	Core	0.149	0.0005	0.0025	0.00163	106	0.02	
423.0	424.5	E5840291	Core	0.146	0.0005	0.0025	0.00235	105	0.05	
1										

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

// , -	
11 +	
11 -1	
11-4-	
4	
/ 1 1	

From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
429.0	430.5	E5840292	Core	0.138	0.0005	0.0025	0.0023	106	0.03	
435.0	436.5	E5840293	Core	0.133	0.0005	0.0025	0.00247	104	0.04	
441.0	442.5	E5840294	Core	0.143	0.0005	0.0025	0.00205	105	0.04	
450.0	451.5	E5840295	Core	0.145	0.0005	0.0025	0.00125	105	0.06	
456.0	457.5	E5840296	Core	0.149	0.0005	0.0025	0.00165	105	0.03	
462.0	463.5	E5840297	Core	0.144	0.0005	0.0025	0.00153	109	0.03	

Structure

From	То	Structure Type	Structure Intensity	Comments
5.65	38	Fracturing		weak-moderate fracturing, 50 deg. to core axis, filled with serpentinite. 1mm to 3mm, up to 1 cm. 30-50 deg. to core axis.
57	63	Fracturing		
63	92	Serpentine vein		
108	111	Fracturing		fractures filled with fine magnetite and asbestos. in relationships with fine veining 1/m.
111	138	Fracturing		fractures filled with fine magnetite and asbestos. in relationships with fine veining 1/m to 3/m. anastomosis of veins.
206.4	206.5	Fault		
218	222	Fracturing		fractures filled with fine magnetite and asbestos. in relationships with fine veining 1/m to 3/m. anastomosis of veins.
226	227.75	Fault		
232.1	232.12	Gouge (fault)		mud filled fault gauge
269	269.75	Fracturing		fractures filled with fine magnetite and chrysotile
318.5	319.8	Fracturing		fracturing, following serpentine-magnetite-crysotile-carbonate 1 veining (1-3cm), 5 deg to c.a.
323.8	324	Fracturing		fracturing, following serpentine-crysotile-carbonate veining (1-3cm), 5-20 deg to c.a.
335.4	340.9	Fracturing		fracturing and ondulating veining following serpentine-crysotile-carbonate veining (1-3cm), 5-20 deg to c.a.
350.17	350.8	Fracturing		ondulating serpentine veinlet 1-2cm, 5 deg. to c.a. thin orange needle plating mineral, no nickel
379	388	Fracturing		fracturing and ondulating veining following serpentine-crysotile-carbonate veining (1-3cm), 5-20 to 40 deg. TCA.
398.25	403.35	Fracturing		
453.2	455.5	Fracturing		low angle fracturing 5-10 TCA. but good recovery. light blue to light grey filling (1-2 mm) and coating in fractures. Probably also crysotile Lower amount of fractures at 50 TCA.
				Point Structure

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

Depth	Structure Type	Structure Intensity	Alpha Angle	Beta Angle	Gamma Angle	Core Angle	Comment	s			2 1
11.06	Serpentine vein	Moderate	35	120							
11.08	Serpentine vein	Moderate	50	255							
27.35	Serpentine vein	Weak to Moderate	30	20							
32.5	Serpentine vein	Moderate to Strong	55	280							
142	Serpentine vein	Moderate to Strong	45	140			0.5cm vein	nlet with fine m	agnetite and	asbestos perpen	dicular shards to core axis.
142.85	Stringer	Weak to Moderate	45	170			magnetite	,0.2 cm veins	. filling cracks	and joints	
145	Serpentine vein	Strong	60	215			5 cm serpe	entine veinlet v	vith minor ask	oestos intermixed	in interval
146.25	Serpentine vein	Strong	5	270			serpentine	(and asbestos	s in the middle	e) veinlet,2cm. lo	cally with magnetite boudinaged blebs
152	Serpentine vein		10	230							
179	Serpentine vein		35	300			serpentine of asbesto	and magnetites. 1 cm	e vein. filling		
182	Serpentine vein		30	0			serpentine of asbesto	and magnetites. 1 cm	e vein. filling		
192.35	Fault					30					
195.8	Serpentine vein	Moderate	20	136							
197	Serpentine vein	Moderate	14	300							
197.9	Serpentine vein	Moderate	30	325							
205.9	Serpentine vein	Moderate	35	270							
206.2	Serpentine vein	Moderate	65	30							
207.3	Serpentine vein	Moderate	40	70							
208.65	Fault		40	30							
209.7	Serpentine vein	Moderate	20	20							
		Ge	otechnical							Mags	us
From	To R	ecovery Recovery %	RQD	RQD %	Comments			Depth	Mag Sus	Conductivity	Mag Sus Instrument
								6	117.08	0	MPP-EM2S+
6	9	2.68 89.33	2.06	76.87				7	213.92	0	MPP-EM2S+
								8	148.7	0	MPP-EM2S+

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

									•	, in add : on an o, coo	AI
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	•
							9	131.23	0	MPP-EM2S+	
9	12	2.77	92.33	2.46	88.81		10	127.55	0	MPP-EM2S+	
							11	127.08	0	MPP-EM2S+	
							12	126.42	0	MPP-EM2S+	
12	15	2.93	97.67	2.61	89.08		13	125.63	0	MPP-EM2S+	
							14	128.21	0	MPP-EM2S+	
							15	118.77	0	MPP-EM2S+	
15	18	3.01	100.33	2.9	96.35		16	209.91	0	MPP-EM2S+	
							17	147.39	0	MPP-EM2S+	
							18	112.37	0	MPP-EM2S+	
18	21	3.11	103.67	2.6	83.6		19	121.97	0	MPP-EM2S+	
							20	83.57	0	MPP-EM2S+	
							21	170.24	0	MPP-EM2S+	
21	24	2.99	99.67	2.39	79.93		22	128.48	0	MPP-EM2S+	
							23	88.19	0	MPP-EM2S+	
							24	77.81	0	MPP-EM2S+	
24	27	2.98	99.33	2.61	87.58		25	123.51	0	MPP-EM2S+	
							26	118.41	0	MPP-EM2S+	
							27	110.46	0	MPP-EM2S+	
27	30	3.1	103.33	2.6	83.87		28	162.37	0	MPP-EM2S+	
							29	95.3	0	MPP-EM2S+	
							30	109.46	0	MPP-EM2S+	
30	33	2.95	98.33	2.59	87.8		31	230.75	0	MPP-EM2S+	
							32	415.86	0	MPP-EM2S+	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

											AI			
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	,			
							33	100.6	0	MPP-EM2S+				
33	36	2.86	95.33	2.2	76.92		34	76.79	0	MPP-EM2S+				
							35	163.53	0	MPP-EM2S+				
							36	273.96	0	MPP-EM2S+				
36	39	2.86	95.33	2.04	71.33		37	66.32	0	MPP-EM2S+				
							38	148.49	0	MPP-EM2S+				
							39	150.09	0	MPP-EM2S+				
39	42	2.87	95.67	1.7	59.23		40	214.76	0	MPP-EM2S+				
							41	115.49	0	MPP-EM2S+				
									42	63.38	0	MPP-EM2S+		
42	45	2.75	91.67	1.36	49.45		43	91.54	0	MPP-EM2S+				
							44	160.34	0	MPP-EM2S+				
										45	301.8	0	MPP-EM2S+	
45	48	1.8	60	0.6	33.33		46	358.47	0	MPP-EM2S+				
							47	171.89	0	MPP-EM2S+				
							48	34.05	0	MPP-EM2S+				
48	51	2.99	99.67	2.34	78.26		49	72.69	0	MPP-EM2S+				
							50	55.06	0	MPP-EM2S+				
							51	84.1	0	MPP-EM2S+				
51	54	2.42	80.67	1.12	46.28		52	111.58	0	MPP-EM2S+				
							53	238.56	0	MPP-EM2S+				
							54	47.75	0	MPP-EM2S+				
54	57	3.12	104	2.14	68.59		55	178.95	0	MPP-EM2S+				
							56	503.06	0	MPP-EM2S+				

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

											711		
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument			
							57	180.26	0	MPP-EM2S+			
57	60	3.08	102.67	2.95	95.78		58	228.6	0	MPP-EM2S+			
							59	158.79	0	MPP-EM2S+			
							60	119.42	0	MPP-EM2S+			
60	63	2.86	95.33	1.28	44.76		61	99.73	0	MPP-EM2S+			
							62	76.86	0	MPP-EM2S+			
						63	99.26	0	MPP-EM2S+				
63	66	2.96	98.67	2.27	76.69		64	131.58	0	MPP-EM2S+			
							65	96.96	0	MPP-EM2S+			
									66	24.09	0	MPP-EM2S+	
66	69	2.96	98.67	1.94	65.54		67	63.04	0	MPP-EM2S+			
							68	110.26	0	MPP-EM2S+			
		2.55					69	306.51	0	MPP-EM2S+			
69	72		2.55	85	1.88	73.73		70	167.32	0	MPP-EM2S+		
							71	342.34	0	MPP-EM2S+			
							72	106.17	0	MPP-EM2S+			
72	75	2.7	90	0.88	32.59		73	169.8	0	MPP-EM2S+			
							74	114.89	0	MPP-EM2S+			
							75	38.49	0	MPP-EM2S+			
75	78	2.89	96.33	1.51	52.25		76	13.24	0	MPP-EM2S+			
							77	297.15	0	MPP-EM2S+			
							78	115.93	0	MPP-EM2S+			
78	81	2.6	86.67	1.5	57.69		79	92.16	0	MPP-EM2S+			
							80	107.47	0	MPP-EM2S+			

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

										•	11
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							81	54.7	0	MPP-EM2S+	
81	84	3.04	101.33	2.61	85.86		82	28.46	0	MPP-EM2S+	
							83	40.19	0	MPP-EM2S+	
							84	262.05	0	MPP-EM2S+	
84	87	3.09	103	2.59	83.82		85	69.41	0	MPP-EM2S+	
							86	556.46	0	MPP-EM2S+	
							87	73.63	0	MPP-EM2S+	
87	90	2.8	93.33	1.53	54.64		88	56.48	0	MPP-EM2S+	
							89	285.03	0	MPP-EM2S+	
							90	229.1	0	MPP-EM2S+	
90	93	2.76	92	2.32	84.06		91	74.11	0	MPP-EM2S+	
							92	33.09	0	MPP-EM2S+	
							93	20.47	0	MPP-EM2S+	
93	96	3.15	105	1.84	58.41		94	48.01	0	MPP-EM2S+	
							95	77.1	0	MPP-EM2S+	
							96	47.35	0	MPP-EM2S+	
96	99	2.96	98.67	2.42	81.76		97	666.78	0	MPP-EM2S+	
							98	184.68	0	MPP-EM2S+	
							99	59.81	0	MPP-EM2S+	
99	102	2.94	98	1.81	61.56		100	65.71	0	MPP-EM2S+	
							101	82.25	0	MPP-EM2S+	
							102	41.05	0	MPP-EM2S+	
102	105	2.88	96	2.54	88.19		103	31.85	0	MPP-EM2S+	
							104	162.2	0	MPP-EM2S+	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							105	58.53	0	MPP-EM2S+
105	108	2.95	98.33	1.63	55.25		106	42.14	0	MPP-EM2S+
							107	68.09	0	MPP-EM2S+
							108	100.52	0	MPP-EM2S+
108	111	3.3	110	1.49	45.15		109	279.02	0	MPP-EM2S+
							110	266.65	0	MPP-EM2S+
							111	118.22	0	MPP-EM2S+
111	114	2.8	93.33	1.96	70		112	105.9	0	MPP-EM2S+
							113	97.26	0	MPP-EM2S+
							114	101.6	0	MPP-EM2S+
114	117	2.93	97.67	2.38	81.23		115	56.17	0	MPP-EM2S+
							116	80.95	0	MPP-EM2S+
							117	70.63	0	MPP-EM2S+
117	120	3.2	106.67	1.45	45.31		118	91	0	MPP-EM2S+
							119	252.52	0	MPP-EM2S+
							120	125.49	0	MPP-EM2S+
120	123	2.83	94.33	2.1	74.2		121	83.78	0	MPP-EM2S+
							122	417.82	0	MPP-EM2S+
							123	35.47	0	MPP-EM2S+
123	126	2.88	96	2.14	74.31		124	105.46	0	MPP-EM2S+
							125	58.76	0	MPP-EM2S+
							126	36.05	0	MPP-EM2S+
126	129	2.93	97.67	1.3	44.37		127	133.86	0	MPP-EM2S+
							128	136.73	0	MPP-EM2S+

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

1+	_
117	_
147	

											H
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							129	188.83	0	MPP-EM2S+	
129	132	3.15	105	2.53	80.32		130	235.85	0	MPP-EM2S+	
							131	44.06	0	MPP-EM2S+	
							132	111.45	0	MPP-EM2S+	
132	135	3	100	2.47	82.33		133	35.18	0	MPP-EM2S+	
							134	32.17	0	MPP-EM2S+	
							135	38.1	0	MPP-EM2S+	
135	138	3.05	101.67	2.27	74.43		136	152.82	0	MPP-EM2S+	
							137	45.27	0	MPP-EM2S+	
							138	74.4	0	MPP-EM2S+	
138	141	2.82	94	1.87	66.31		139	2.05	0	MPP-EM2S+	
							140	36.62	0	MPP-EM2S+	
							141	77.37	0	MPP-EM2S+	
141	144	2.98	99.33	2.28	76.51	=.111 <m< td=""><td>142</td><td>75.35</td><td>0</td><td>MPP-EM2S+</td><td></td></m<>	142	75.35	0	MPP-EM2S+	
							143	62.05	0	MPP-EM2S+	
							144	362.04	0	MPP-EM2S+	
144	147	2.97	99	2.62	88.22	<111 <m< td=""><td>145</td><td>529</td><td>0</td><td>MPP-EM2S+</td><td></td></m<>	145	529	0	MPP-EM2S+	
							146	35.47	0	MPP-EM2S+	
							147	101.16	0	MPP-EM2S+	
147	150	2.89	96.33	2.22	76.82	>11.1 <m< td=""><td>148</td><td>200.85</td><td>0</td><td>MPP-EM2S+</td><td></td></m<>	148	200.85	0	MPP-EM2S+	
							149	91.82	0	MPP-EM2S+	
							150	88.1	0	MPP-EM2S+	
150	153	3	100	2.83	94.33	>111>M	151	199.28	0	MPP-EM2S+	
							152	39.11	0	MPP-EM2S+	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity		71
							153	202.24	0	MPP-EM2S+	
153	156	2.87	95.67	1.73	60.28	M>000>=	154	120.06	0	MPP-EM2S+	
							155	167.31	0	MPP-EM2S+	
							156	424.99	0	MPP-EM2S+	
156	159	3	100	2.64	88	M<111<	157	108.24	0	MPP-EM2S+	
							158	325.34	0	MPP-EM2S+	
							159	42.56	0	MPP-EM2S+	
159	162	2.95	98.33	1.87	63.39	>111>M	160	24.07	0	MPP-EM2S+	
							161	192.66	0	MPP-EM2S+	
							162	37.57	0	MPP-EM2S+	
162	165	2.85	95	1.64	57.54	>1.10=	163	124.77	0	MPP-EM2S+	
							164	74.35	0	MPP-EM2S+	
							165	281.09	0	MPP-EM2S+	
165	168	2.91	97	1.92	65.98		166	30.43	0	MPP-EM2S+	
							167	220.61	0	MPP-EM2S+	
							168	46.9	0	MPP-EM2S+	
168	171	2.91	97	2.47	84.88		169	143.55	0	MPP-EM2S+	
							170	93.53	0	MPP-EM2S+	
							171	39.5	0	MPP-EM2S+	
171	174	2.85	95	1.7	59.65		172	55.74	0	MPP-EM2S+	
							173	42.04	0	MPP-EM2S+	
							174	64.61	0	MPP-EM2S+	
174	177	2.86	95.33	2.34	81.82	M<111<	175	33.35	0	MPP-EM2S+	
							176	73.61	0	MPP-EM2S+	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

									•	7aaa : omao, ooo	111
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							177	189.86	0	MPP-EM2S+	
177	180	3.14	104.67	2.51	79.94	N<1.11<	178	482.15	0	MPP-EM2S+	
							179	443.69	0	MPP-EM2S+	
							180	140.43	0	MPP-EM2S+	
180	183	2.96	98.67	2.31	78.04	>101 <m< td=""><td>181</td><td>171.77</td><td>0</td><td>MPP-EM2S+</td><td></td></m<>	181	171.77	0	MPP-EM2S+	
							182	87.5	0	MPP-EM2S+	
							183	88.89	0	MPP-EM2S+	
183	186	2.06	68.67	1.7	82.52	>110>M	184	137.76	0	MPP-EM2S+	
							185	169.84	0	MPP-EM2S+	
							186	116.83	0	MPP-EM2S+	
186	189	2.73	91	2.23	81.68		187	212.63	0	MPP-EM2S+	
							188	80.52	0	MPP-EM2S+	
							189	60.07	0	MPP-EM2S+	
189	192	3.04	101.33	2.6	85.53		190	92.43	0	MPP-EM2S+	
							191	41.02	0	MPP-EM2S+	
							192	129.79	0	MPP-EM2S+	
192	195	3.29	109.67	2.62	79.64		193	61.69	0	MPP-EM2S+	
							194	47.67	0	MPP-EM2S+	
							195	56.13	0	MPP-EM2S+	
195	198	2.82	94	2.8	99.29		196	101.46	0	MPP-EM2S+	
							197	96.97	0	MPP-EM2S+	
							198	62.93	0	MPP-EM2S+	
198	201	2.65	88.33	2.56	96.6		199	88.17	0	MPP-EM2S+	
							200	109.28	0	MPP-EM2S+	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

											11
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							201	144.21	0	MPP-EM2S+	
201	204	3.15	105	2.7	85.71		202	112.01	0	MPP-EM2S+	
							203	104.53	0	MPP-EM2S+	
							204	95.61	0	MPP-EM2S+	
204	207	2.86	95.33	1.93	67.48		205	722.02	0	MPP-EM2S+	
							206	77.57	0	MPP-EM2S+	
							207	57.18	0	MPP-EM2S+	
207	210	3.06	102	2.87	93.79		208	140.7	0	MPP-EM2S+	
							209	63.88	0	MPP-EM2S+	
							210	243.03	0	MPP-EM2S+	
210	213	2.8	93.33	1.66	59.29		211	56.8	0	MPP-EM2S+	
							212	51.41	0	MPP-EM2S+	
							213	80.71	0	MPP-EM2S+	
213	216	3.16	105.33	1.57	49.68		214	131.27	0	MPP-EM2S+	
							215	91.59	0	MPP-EM2S+	
							216	97.31	0	MPP-EM2S+	
216	219	2.82	94	0.71	25.18		217	84.06	0	MPP-EM2S+	
							218	153.62	0	MPP-EM2S+	
							219	67.6	0	MPP-EM2S+	
219	222	2.64	88	2.62	99.24		220	93.57	0	MPP-EM2S+	
							221	35.31	0	MPP-EM2S+	
							222	43.25	0	MPP-EM2S+	
222	225	2.77	92.33	1.97	71.12		223	48.46	0	MPP-EM2S+	
							224	111.63	0	MPP-EM2S+	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	71'
							225	62.28	0	MPP-EM2S+	
225	228	2.65	88.33	1.2	45.28		226	251.77	0	MPP-EM2S+	
							227	164.74	0	MPP-EM2S+	
							228	137.53	0	MPP-EM2S+	
228	231	2.99	99.67	2.79	93.31		229	43.42	0	MPP-EM2S+	
							230	111.91	0	MPP-EM2S+	
							231	201.2	0	MPP-EM2S+	
231	234	2.96	98.67	2.76	93.24		232	52.65	0	MPP-EM2S+	
							233	85.78	0	MPP-EM2S+	
							234	90.79	0	MPP-EM2S+	
234	237	2.86	95.33	2.2	76.92		235	85.6	0	MPP-EM2S+	
							236	107.2	0	MPP-EM2S+	
							237	96.68	0	MPP-EM2S+	
237	240	2.99	99.67	1.3	43.48		238	298.99	0	MPP-EM2S+	
							239	154.99	0	MPP-EM2S+	
							240	123.69	0	MPP-EM2S+	
240	243	2.85	95	1.9	66.67		241	398.87	0	MPP-EM2S+	
							242	109.94	0	MPP-EM2S+	
							243	44.33	0	MPP-EM2S+	
243	246	3.09	103	2.1	67.96		244	106.8	0	MPP-EM2S+	
							245	83.44	0	MPP-EM2S+	
							246	66.67	0	MPP-EM2S+	
246	249	3.02	100.67	1.35	44.7		247	245.6	0	MPP-EM2S+	
							248	64.69	0	MPP-EM2S+	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

											111
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							249	167.61	0	MPP-EM2S+	
249	252	2.72	90.67	1.62	59.56		250	51.02	0	MPP-EM2S+	
							251	144.23	0	MPP-EM2S+	
							252	66.77	0	MPP-EM2S+	
252	255	2.88	96	2	69.44		253	252.26	0	MPP-EM2S+	
							254	38.21	0	MPP-EM2S+	
							255	25.84	0	MPP-EM2S+	
255	258	3.06	102	2.75	89.87		256	42.02	0	MPP-EM2S+	
							257	47.07	0	MPP-EM2S+	
							258	77.92	0	MPP-EM2S+	
258	261	2.95	98.33	2.3	77.97		259	24.91	0	MPP-EM2S+	
							260	50.83	0	MPP-EM2S+	
							261	41.34	0	MPP-EM2S+	
261	264	3.04	101.33	2.3	75.66		262	326.55	0	MPP-EM2S+	
							263	119.06	0	MPP-EM2S+	
							264	77.7	0	MPP-EM2S+	
264	267	3.1	103.33	2.7	87.1		265	90.3	0	MPP-EM2S+	
							266	342.51	0	MPP-EM2S+	
							267	121.47	0	MPP-EM2S+	
267	270	2.75	91.67	2.27	82.55		268	133.56	0	MPP-EM2S+	
							269	213.66	0	MPP-EM2S+	
							270	116.41	0	MPP-EM2S+	
270	273	3.25	108.33	1.89	58.15		271	101.93	0	MPP-EM2S+	
							272	126.19	0	MPP-EM2S+	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	71'
							273	149.04	0	MPP-EM2S+	
273	276	2.4	80	1.4	58.33		274	179.96	0	MPP-EM2S+	
							275	465.28	0	MPP-EM2S+	
							276	100.73	0	MPP-EM2S+	
276	279	2.82	94	1.88	66.67		277	249.14	0	MPP-EM2S+	
							278	48.93	0	MPP-EM2S+	
							279	126.73	0	MPP-EM2S+	
279	282	2.83	94.33	0.28	9.89		280	99.69	0	MPP-EM2S+	
							281	176.06	0	MPP-EM2S+	
							282	210.4	0	MPP-EM2S+	
282	285	3.02	100.67	1.3	43.05		283	159.94	0	MPP-EM2S+	
							284	111.61	0	MPP-EM2S+	
							285	106.49	0	MPP-EM2S+	
285	288	2.86	95.33	2.16	75.52		286	74.36	0	MPP-EM2S+	
							287	51.22	0	MPP-EM2S+	
							288	81.81	0	MPP-EM2S+	
288	291	3.05	101.67	2.33	76.39		289	78.06	0	MPP-EM2S+	
							290	174.09	0	MPP-EM2S+	
							291	74.11	0	MPP-EM2S+	
291	294	3.1	103.33	0.91	29.35		292	58.79	0	MPP-EM2S+	
							293	122.12	0	MPP-EM2S+	
							294	46.56	0	MPP-EM2S+	
294	297	3	100	0.79	26.33		295	73.3	0	MPP-EM2S+	
							296	62.11	0	MPP-EM2S+	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

ioio italiibori										Amada i omame, oco	21
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							297	39.49	0	MPP-EM2S+	
297	300	2.83	94.33	2.36	83.39		298	98.56	0	MPP-EM2S+	
							299	119.09	0	MPP-EM2S+	
							300	71.54	0	MPP-EM2S+	
300	303	2.74	91.33	1.77	64.6		301	157.14	0	MPP-EM2S+	
							302	61.67	0	MPP-EM2S+	
							303	194.81	0	MPP-EM2S+	
303	306	3	100	1.41	47		304	71.46	0	MPP-EM2S+	
							305	73.9	0	MPP-EM2S+	
							306	76.27	0	MPP-EM2S+	
306	309	2.52	84	0.8	31.75		307	110.61	0	MPP-EM2S+	
							308	64.11	0	MPP-EM2S+	
							309	62.34	0	MPP-EM2S+	
309	312	2.94	98	2.05	69.73		310	92.42	0	MPP-EM2S+	
							311	80.68	0	MPP-EM2S+	
							312	75.24	0	MPP-EM2S+	
312	315	3	100	1.7	56.67		313	105.83	0	MPP-EM2S+	
							314	53.32	0	MPP-EM2S+	
							315	99.44	0	MPP-EM2S+	
315	318	3.02	100.67	2.3	76.16		316	43.08	0	MPP-EM2S+	
							317	128.52	0	MPP-EM2S+	
							318	63.23	0	MPP-EM2S+	
318	321	2.7	90	0.78	28.89		319	98.57	0	MPP-EM2S+	
							320	107.63	0	MPP-EM2S+	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

											211
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							321	57.74	0	MPP-EM2S+	
321	324	2.9	96.67	1.13	38.97		322	79.98	0	MPP-EM2S+	
							323	564.17	0	MPP-EM2S+	
							324	129.26	0	MPP-EM2S+	
324	327	3.05	101.67	2.15	70.49		325	122.08	0	MPP-EM2S+	
							326	58.81	0	MPP-EM2S+	
							327	67.72	0	MPP-EM2S+	
327	330	3.22	107.33	1.9	59.01		328	829.18	0	MPP-EM2S+	
							329	102.33	0	MPP-EM2S+	
							330	159.81	0	MPP-EM2S+	
330	333	2.73	91	0.6	21.98		331	239.91	0	MPP-EM2S+	
							332	65.2	0	MPP-EM2S+	
							333	92.04	0	MPP-EM2S+	
333	336	2.67	89	0.59	22.1		334	117.48	0	MPP-EM2S+	
							335	113.88	0	MPP-EM2S+	
							336	89.27	0	MPP-EM2S+	
336	339	2.72	90.67	0.48	17.65		337	109.73	0	MPP-EM2S+	
							338	221.32	0	MPP-EM2S+	
	<u> </u>						339	173.77	0	MPP-EM2S+	
339	342	2.54	84.67	0.39	15.35		340	111.94	0	MPP-EM2S+	
							341	70.65	0	MPP-EM2S+	
							342	82.57	0	MPP-EM2S+	
342	345	2.93	97.67	2.26	77.13		343	100.54	0	MPP-EM2S+	
							344	111.59	0	MPP-EM2S+	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	7 1
							345	135.06	0	MPP-EM2S+	
345	348	2.99	99.67	2.96	99		346	111.23	0	MPP-EM2S+	
							347	99.86	0	MPP-EM2S+	
							348	287.74	0	MPP-EM2S+	
348	351	2.86	95.33	1.96	68.53		349	276.07	0	MPP-EM2S+	
							350	113.48	0	MPP-EM2S+	
							351	84.43	0	MPP-EM2S+	
351	354	2.97	99	1.8	60.61		352	28.72	0	MPP-EM2S+	
							353	112.19	0	MPP-EM2S+	
							354	91.1	0	MPP-EM2S+	
354	357	2.85	95	2.21	77.54		355	321.33	0	MPP-EM2S+	
							356	58.33	0	MPP-EM2S+	
							357	111.26	0	MPP-EM2S+	
357	360	2.79	93	1.54	55.2		358	93.19	0	MPP-EM2S+	
							359	43.15	0	MPP-EM2S+	
							360	189.02	0	MPP-EM2S+	
360	363	2.64	88	1.05	39.77		361	71	0	MPP-EM2S+	
							362	225.27	0	MPP-EM2S+	
							363	82.81	0	MPP-EM2S+	
363	366	3.03	101	2.42	79.87		364	132.49	0	MPP-EM2S+	
							365	120.27	0	MPP-EM2S+	
							366	118.55	0	MPP-EM2S+	
366	369	3.04	101.33	2.18	71.71		367	231.3	0	MPP-EM2S+	
							368	108.38	0	MPP-EM2S+	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	7 1 6
							369	182.49	0	MPP-EM2S+	
369	372	2.66	88.67	0.74	27.82		370	162.52	0	MPP-EM2S+	
							371	75.22	0	MPP-EM2S+	
							372	120.73	0	MPP-EM2S+	
372	375	3.08	102.67	2.46	79.87		373	136.94	0	MPP-EM2S+	
							374	267.52	0	MPP-EM2S+	
							375	63.29	0	MPP-EM2S+	
375	378	3.02	100.67	1.34	44.37		376	129.39	0	MPP-EM2S+	
							377	103.74	0	MPP-EM2S+	
							378	82.02	0	MPP-EM2S+	
378	381	2.8	93.33	0.45	16.07		379	137.7	0	MPP-EM2S+	
							380	133.28	0	MPP-EM2S+	
							381	79.86	0	MPP-EM2S+	
381	384	2.82	94	0.9	31.91		382	154.69	0	MPP-EM2S+	
							383	94.42	0	MPP-EM2S+	
							384	247.58	0	MPP-EM2S+	
384	387	2.56	85.33	1.28	50		385	67.19	0	MPP-EM2S+	
							386	61.29	0	MPP-EM2S+	
							387	171.75	0	MPP-EM2S+	
387	390	2.96	98.67	1.75	59.12		388	111.81	0	MPP-EM2S+	
							389	317.21	0	MPP-EM2S+	
							390	103.32	0	MPP-EM2S+	
390	393	2.79	93	1.41	50.54		391	75.76	0	MPP-EM2S+	
							392	241.01	0	MPP-EM2S+	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	71"
							393	119.01	0	MPP-EM2S+	
393	396	3.05	101.67	2.31	75.74		394	77.01	0	MPP-EM2S+	
							395	144.97	0	MPP-EM2S+	
							396	277.44	0	MPP-EM2S+	
396	399	2.86	95.33	1.74	60.84		397	82.73	0	MPP-EM2S+	
							398	152.52	0	MPP-EM2S+	
							399	117.92	0	MPP-EM2S+	
399	402	2.4	80	0.9	37.5		400	167.61	0	MPP-EM2S+	
							401	116.69	0	MPP-EM2S+	
							402	76.62	0	MPP-EM2S+	
402	405	2.51	83.67	1.76	70.12		403	109.84	0	MPP-EM2S+	
							404	129.96	0	MPP-EM2S+	
							405	135.86	0	MPP-EM2S+	
405	408	2.93	97.67	2.6	88.74		406	105.29	0	MPP-EM2S+	
							407	149.11	0	MPP-EM2S+	
							408	217.72	0	MPP-EM2S+	
408	411	2.69	89.67	1.51	56.13		409	285.05	0	MPP-EM2S+	
							410	146.9	0	MPP-EM2S+	
							411	293.9	0	MPP-EM2S+	
411	414	2.85	95	2.34	82.11		412	96.13	0	MPP-EM2S+	
							413	92.78	0	MPP-EM2S+	
							414	103.59	0	MPP-EM2S+	
414	417	2.9	96.67	1.91	65.86		415	117.05	0	MPP-EM2S+	
							416	154.71	0	MPP-EM2S+	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

											11
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							417	134.87	0	MPP-EM2S+	
417	420	2.75	91.67	2.49	90.55		418	161.73	0	MPP-EM2S+	
							419	209.17	0	MPP-EM2S+	
							420	142.69	0	MPP-EM2S+	
420	423	3.13	104.33	2.39	76.36		421	132.66	0	MPP-EM2S+	
							422	208.97	0	MPP-EM2S+	
							423	215.98	0	MPP-EM2S+	
423	426	2.9	96.67	2.52	86.9		424	283.83	0	MPP-EM2S+	
							425	336.85	0	MPP-EM2S+	
							426	180.28	0	MPP-EM2S+	
426	429	2.67	89	1.7	63.67		427	117.75	0	MPP-EM2S+	
							428	210.32	0	MPP-EM2S+	
							429	143.51	0	MPP-EM2S+	
429	432	3	100	2.19	73		430	120.07	0	MPP-EM2S+	
							431	129.46	0	MPP-EM2S+	
							432	264.39	0	MPP-EM2S+	
432	435	2.67	89	2.13	79.78		433	103.44	0	MPP-EM2S+	
							434	204	0	MPP-EM2S+	
							435	262.65	0	MPP-EM2S+	
435	438	3.03	101	2.6	85.81		436	325.97	0	MPP-EM2S+	
							437	125.35	0	MPP-EM2S+	
							438	154.05	0	MPP-EM2S+	
438	441	2.86	95.33	2.36	82.52		439	84.97	0	MPP-EM2S+	
							440	139.98	0	MPP-EM2S+	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							441	143.87	0	MPP-EM2S+
441	444	3.08	102.67	2.9	94.16		442	72.69	0	MPP-EM2S+
							443	120.18	0	MPP-EM2S+
							444	242.66	0	MPP-EM2S+
444	447	2.96	98.67	2.45	82.77		445	132.73	0	MPP-EM2S+
							446	162.77	0	MPP-EM2S+
						Mixed core with extra. Core box	447	78.23	0	MPP-EM2S+
447	450	3.41	113.67	2.06	60.41	Mixed core with extra. Core box dropped on the floor and fell under the drill. Pieces brought back in the boxes with extra pieces. No mineralization and close to EOH so accepted.	448	151.86	0	MPP-EM2S+
						and close to EOH so accepted.	449	169.8	0	MPP-EM2S+
						Mixed core with extra. Core box	450	166.25	0	MPP-EM2S+
450	453	3.4	113.33	2.45	72.06	Mixed core with extra. Core box dropped on the floor and fell under the drill. Pieces brought back in the boxes with extra pieces. No mineralization and close to EOH so accepted.	451	154.17	0	MPP-EM2S+
						and close to EOH so accepted.	452	145.24	0	MPP-EM2S+
							453	120.21	0	MPP-EM2S+
453	456	2.7	90	0.55	20.37		454	181.14	0	MPP-EM2S+
							455	113.23	0	MPP-EM2S+
							456	129.74	0	MPP-EM2S+
456	459	3.04	101.33	2.7	88.82		457	82.44	0	MPP-EM2S+
							458	274.72	0	MPP-EM2S+
							459	237.09	0	MPP-EM2S+
459	462	2.96	98.67	2.39	80.74		460	107.49	0	MPP-EM2S+
							461	155.56	0	MPP-EM2S+
							462	127.2	0	MPP-EM2S+
462	465	2.97	99	2.74	92.26	92.26	463	145.86	0	MPP-EM2S+
							464	129.79	0	MPP-EM2S+

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
					71.86		465	146.42	0	MPP-EM2S+	
465	468	2.95	98.33	2.12			466	148.54	0	MPP-EM2S+	
							467	333.74	0	MPP-EM2S+	

Downhole Survey

Depth	Survey Type	Azimuth	Dip
0	IsGyro	315.13	-79.13
5	IsGyro	314.7	-79.16
10	IsGyro	314.66	-79.21
15	IsGyro	314.31	-79.28
20	IsGyro	314.4	-79.33
25	IsGyro	315	-79.36
30	IsGyro	314.59	-79.38
35	IsGyro	314.55	-79.5
40	IsGyro	314.85	-79.64
45	IsGyro	315.15	-79.65
50	IsGyro	315.21	-79.64
55	IsGyro	315.25	-79.71
60	IsGyro	315.18	-79.73
65	IsGyro	314.79	-79.8
70	IsGyro	313.69	-79.85
75	IsGyro	313.89	-79.89
80	IsGyro	313.83	-79.92
85	IsGyro	313.88	-79.75
90	IsGyro	313.97	-79.88
95	IsGyro	314.17	-79.93
100	IsGyro	314.44	-79.96
105	IsGyro	314	-79.94

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

				211
Depth	Survey Type	Azimuth	Dip	
110	IsGyro	313.88	-79.89	
115	IsGyro	313.49	-79.89	
120	IsGyro	312.7	-79.93	
125	IsGyro	312.42	-79.96	
130	IsGyro	312.27	-79.95	
135	IsGyro	312.87	-79.89	
140	IsGyro	313.22	-79.87	
145	IsGyro	313.75	-79.81	
150	IsGyro	314.04	-79.85	
155	IsGyro	314.69	-79.89	
160	IsGyro	314.02	-79.9	
165	IsGyro	313.87	-79.8	
170	IsGyro	313.68	-79.86	
175	IsGyro	313.79	-79.89	
180	IsGyro	313.23	-79.82	
185	IsGyro	313.14	-79.8	
190	IsGyro	313.65	-79.8	
195	IsGyro	313.56	-79.74	
200	IsGyro	313.13	-79.74	
205	IsGyro	313.38	-79.75	
210	IsGyro	312.82	-79.78	
215	IsGyro	312.61	-79.79	
220	IsGyro	311.45	-79.77	
225	IsGyro	311.2	-79.68	
230	IsGyro	311.61	-79.69	
235	IsGyro	311.64	-79.62	
240	IsGyro	311.85	-79.65	
245	IsGyro	311.82	-79.71	

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo

//	
11 1	
11 1	
41	

				· A
Depth	Survey Type	Azimuth	Dip	
250	IsGyro	311.37	-79.74	
255	IsGyro	311.58	-79.76	
260	IsGyro	311.28	-79.74	
265	IsGyro	310.94	-79.77	
270	IsGyro	310.82	-79.83	
275	IsGyro	310.63	-79.8	
280	IsGyro	310.33	-79.78	
285	IsGyro	309.61	-79.74	
290	IsGyro	309.35	-79.65	
295	IsGyro	309.24	-79.64	
300	IsGyro	309.04	-79.65	
305	IsGyro	308.51	-79.63	
310	IsGyro	308.64	-79.62	
315	IsGyro	308.6	-79.66	
320	IsGyro	308.37	-79.63	
325	IsGyro	307.69	-79.6	
330	IsGyro	308.28	-79.67	
335	IsGyro	308.32	-80.05	
340	IsGyro	308.74	-80	
345	IsGyro	308.3	-80.06	
350	IsGyro	307.95	-80.09	
355	IsGyro	308.15	-80.08	
360	IsGyro	307.96	-80.07	
365	IsGyro	308.48	-80.12	
370	IsGyro	309.08	-80.08	
375	IsGyro	309.6	-80.1	
380	IsGyro	310.34	-80.13	
385	IsGyro	310.93	-80.18	

IsGyro

IsGyro

IsGyro

IsGyro

IsGyro

309.82

309.62

309.67

310.49

307.85

-80.32

-80.29

-80.32

-80.58

-80.59

445

450

455

460

465

DRILL LOG REPORT

Hole Number: WR-22-197 Resp. Person: Arnaud Fontaine, Géo **Azimuth** Dip Depth **Survey Type** 390 IsGyro 310.41 -80.18 IsGyro 395 310 -80.2 IsGyro 400 310.14 -80.18 IsGyro 405 310.49 -80.18 410 IsGyro 310.53 -80.14 IsGyro 415 310.43 -80.17 420 IsGyro 310.36 -80.14 IsGyro 425 310.07 -80.24 430 IsGyro 310 -80.24 IsGyro -80.24 435 310.3 440 IsGyro 310.38 -80.3

Hole Number:

WR-22-198

DRILL LOG REPORT

Resp. Person: Arnaud Fontaine, Géo

Pro	ject	Dril	ling		Collar			Coordinates
Project Name:	West-Raglan	Hole Type:	DDH	Casing:	NW	Collar Dip:	-55.38	Northing: 6,808,692 UTM Zone: NAD83 / UTM zone 18N
Claim Number:	1095834	Hole Size:	NQ	Casing Status:	Left In Hole	Collar Azi:	339.99	Easting: 466,410
Property:	Beverly	Drilling Started:	Jul 26, 2022	Oriented:	Υ	Length:	414	Elevation: 427.00
Purpose:		Drilling Completed:	Aug 5, 2022	Collar Survey Type:	APS			Logged By
Target:	340m	Drilling Contractor:	Forage G4	Pulse EM Surveyed:	N			Geologist 1: Maxime Dupéré, Géo
Operator:	Orford Mining Corporation	Core Location:	CC	Pulse EM Survey Date:				Geologist 2:
				Geophysics Contractor:				Geologist 3:
								Geologist 4:

Comments:

			Detailed Litholog				Mineraliz	ation			Alteration				
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
0.0	6.2	OB, Overburden	1												
6.2	30.2	Texture Pillowed Comments High Magnesium, along fractures. p		Colour Greenish-Grey d, py tr-1%, fine di and chlorite in frac	tures and as specs	6.2	30.2		Disseminated eminated and sor ein cpontrolled	0.05 metimes	6.2	30.2	Chloritization	Pervasive Spotted Fracture/Vein Controlled	Weak Moderate Weak
	along fractures. perv. altn in sericite and chlorite in fractures and as specs (interstitial)evenly distributed in core. qtz-carb vnlts (<1/m)50 TCA. augmenting mineralisation starting 27m to 1-3%.												perv. altn in s fractures and altn in cracks	as specs (int	
30.2	32.93	F3, Sedimentary	Massive Sulphide	1		30.2	32.93	Pyrrhotite	Semi-massiv	65					
		Texture Grain Size Colour Colour Tone Bedded Very Fine Grained Brass Medium Comments sedimentary massive sulphides, po not magnetic, 65%, po magnetic, 1-5%, py fine in fractures and along bedding, 10%, graphitic, 20%. bedding: 60 TCA.						not magnetic 1-5%, py fine	Fracture/vein controlled Massive massive sulphid, 65%, po magne in fractures and graphitic, 20%	etic, along					

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

			Detailed Litholog	У				Mineraliz	ation				Alterat	ion	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
32.93	51.02	V3F, Magnesian I	Basalt (>9% MgO)			32.93	51.02	Pyrite	Disseminated	0.05	32.93	51.02	Sericitization	Pervasive	Weak
		along fractures. pe	Grain Size Fine Grained UM basalt, pillowererv. altn in sericite a distributed in core	and chlorite in frac	tures and as specs				eminated and sor ein cpontrolled	netimes			Calcite Comments perv. altn in s fractures and altn in cracks	as specs (in	llorite in
51.02	68.75	F3, Sedimentary	Massive Sulphide	•		51.02	68.75	Pyrrhotite	Semi-massiv	50					
68.75	82.56	Comments sedimentary mass 1-5%, py fine in fre bedding: 60 TCA. boudinage and bre V4A, Komatiite (> Texture Foliated Comments komatiitic basalt, h TiO2/Zr= UM), light 67.1-81.9: interval with pyrrotite and	>18%MgO) Grain Size Very Fine Grained	Colour Greenish-Grey entine and talc. Overted and sheared is laminated-bedder foliation, 0-50 TCA	Colour Tone Medium verXRF: 20% MGO, 0-5 TCA. From d sediments(shale)	68.75	82.56	not magnetic 1-5%, py fine bedding, 10% bedding: 60 ** Pyrrhotite Pyrite Comments elongated fin pyrite (fine) c	Fracture/vein controlled Massive massive sulphide, 65%, po magne in fractures and 6, graphitic, 20% TCA. Blebby Blebby e blebs of pyrrotilisperestd throug on fractures and on fractures and on fractures and successful througon in fractures and on fractures and the following of the factures and the following of the factures and the factures	etic, along	68.75	82.56	Serpentinizat ion Talcose (+/-carbonate) Comments perv. altn in s in cracks, wea		Strong Moderate
82.56	98.76	Texture Bedded Comments graphitic black sha	Shale (Created for Grain Size Very Fine Grained ale with fine py and of qtz-carb veining	Colour Black po, 2-5% oin large	Colour Tone Dark e blebs and along	82.56	98.76	veinlets of py disperesed th	Fracture/vein controlled Fracture/vein controlled and as 1cm blebby crrotite and pyrite proughout core a ssoc.to qtz-carb	(fine) nd also					

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

			Detailed Lithology	•				Mineraliz	ation				Alterati	on	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
98.76	125.85	veinlets up to 2 of	Grain Size Very Fine Grained Int. presence of beddir Cm. and fracture filled nostly cubic pyrite ass	by Qtz-carb from	108.33-109.25.	98.76	125.85		Fracture/vein controlled um pyrite assoc. to d veinlets but also dding.		105.8	125.85	Silicification Comments perv. altn stroi qtz-carb vnlets		
125.85	147.0	on. Massive, not	Grain Size Fine Grained I-black ol.pyrox. low M t mag. tr of very fine p ere is presence of tr-0	yrite diseminated	. in the top altered	125.85	147	Pyrite Comments fine pyrite d core	Disseminated isseminated throu	0.1	125.85	131.4	Talcose (+/- carbonate) Serpentinizat ion Carbonatizati on Comments perv. talcose- Presence of tr brown biotite a	serp-calcite a	isseminated
147.0	183.33	poikilitic, mod. m	Grain Size Medium Grained k peridotite, high Mg(nagnetic . tr of very fin- 8m), there is presence	e pyrite disemina	ted. in the top										

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

			Detailed Litholog	У				Mineraliza	ation				Alterati	on	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
183.33	223.6	I4I, Peridotite				219	223.6	Pyrrhotite	Fracture/vein controlled	1	183.33	187.62	Talcose (+/- carbonate)	Pervasive	Strong
		Texture Massive	Grain Size Medium Grained	Colour Grey-Green	Colour Tone Dark			Pentlandite	Fracture/vein controlled	0.01			Serpentinizat ion	Pervasive	Moderate
		magnetic . tr of v	c peridotite, high Mg ery fine pyrite disemi sence of tr-0.5% fine	inated. in the top a	altered portion (pentlandite, t remodilization	surrounding son r-1%, . Evidence n from filing of fra inlets -ca-serp.	of			Carbonatizati on Comments perv. talcose-s Presence of tr	serp-calcite a	Moderate altn strong. sseminated
													reddish garne fractures.Shar Decreasing gr	p beginning	70 TCA.
											206.5	209.5	Talcose (+/- carbonate)	Pervasive	Moderate
													Serpentinizat ion	Pervasive	Moderate
													Carbonatizatil on	Fracture/Veir Controlled	¹ Weak
													Comments perv. talcose-s Presence of tr brown biotite a	-0.5% fine di	sseminated
223.6	224.06	F2, Semi-Massiv	ve Sulphide			223.6	224.06	Pyrrhotite	Banded	35					
		Texture Foliated	Grain Size Fine Grained	Colour Brass	Colour Tone Medium			Pyrite		5					
		Comments	ni-massive sulphides					Comments fine po, fine p po), banded, frpom bottom	by(could be refle probably remob a sediments	ects of lized					
224.06	226.89	I4I, Peridotite				224.06	226.89	Pyrrhotite	Fracture/vein controlled	5	224.06	226.89	Talcose (+/- carbonate)	Pervasive	Moderate
		Texture Massive	Grain Size Fine Grained	Colour Grey-Green	Colour Tone Medium			Comments fine po 1-5%	in fractures and	small			Serpentinizat ion	Pervasive	Moderate
			rey peridotite, mediu ractures). in the top	um Mg(XRF:6%).∣	Massive , mod.				nlets, remobilise				Carbonatizatil on Comments perv. talcose-s pervasive	Controlled	vveak

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

			Detailed Lithology	<u> </u>				Mineraliza	ation				Alterati	on	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
226.89	228.42	F3, Sedimenta	ry Massive Sulphide			226.89	228.42	Pyrrhotite	Semi-massiv e	55					
		Texture	Grain Size	Colour	Colour Tone			,	Fracture/vein						
		Bedded	Very Fine Grained	Brown	Medium			Pyrite	controlled	10					
		Comments						Comments							
			mi-massive sulphides, , irregulatr 80 TCA. no		ГСА, Bottom			massive sedi mm-cm qtz-c	5.89-227.76) to some imentary Sx. some earb veinlets folloding) of 70-80 To	ne wing					
228.42	237.74	S, Sediments													
		Texture	Grain Size	Colour	Colour Tone										
		Bedded	Very Fine Grained	Grey-Brown	Medium										
		Comments													
		sediments, 75-8 pyrrotite in term 1-2%).	30 TCA, gradded bedd ittantly along core. (1-3	ing with top up. c 3% locally). Po al	ome fine bedded long fractures also (
237.74	243.0	I4I, Peridotite									237.74	240	Talcose (+/- carbonate)	Pervasive	Moderate
		Texture	Grain Size	Colour	Colour Tone								Serpentinizat		
		Massive	Medium Grained	Greenish-Grey	Medium								ion	Pervasive	Moderate
		Comments		M (VDE 00()									Carbonatizati		Weak
		magnetic (tr po	grey peridotite, mediu (py) diss.).Flow bandir	m Mg(XRF:6%). I ng evidence at 23	Massive, Not 39.3								on Comments	Controlled	
			,										perv. talcose- moderate. per	serp-calcite a vasive	ltn
243.0	247.0	V3F, Magnesia	n Basalt (>9% MgO)												
		Texture	Grain Size	Colour	Colour Tone										
		Massive	Fine Grained	Grey-Green	Medium										
		Comments Basalt with MgC differentiate.	D around 8-9%. Transi	tional contact and	d are to										
247.0	249.0	V3B, Basalt													
		Texture	Grain Size	Colour	Colour Tone										
		Massive	Fine Grained	Grey-Green	Medium										
		Comments Basalt massive.	. 2-3% MgO on XRF. T	ransitional conta	ct.										

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

- //	
- //	4
- //	7
71	1
11	4
1-1	/
/ (1

			Detailed Litholog	у				Mineraliza	ation				Alterat	ion	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
249.0	252.4	V3F, Magnesian	Basalt (>9% MgO)												
		Texture	Grain Size	Colour	Colour Tone										
		Flow Banded	Fine Grained	Grey-Green	Medium										
			MgO on XRF. Prese ize to almost pyrox		ng feature with										
252.4	317.23	I4I, Peridotite				254	289	Pyrrhotite	Disseminated	1	252.4	313	Talcose (+/- carbonate)	Pervasive	Weak to Moderate
		Texture	Grain Size	Colour	Colour Tone			•	Fracture/vein				Serpentinizat		
		Massive	Fine Grained	Grey-Green	Dark			Pentlandite	controlled	0.01			ion	Pervasive	Moderate
		Comments						Comments					Calcite	Fracture/Vein	
			by serpentine, carb irbonate/talcose vei						eminated in the p naly in Ni detect				Comments	Controlled	Moderate
		cooked by previou	is unit up to 253.3,	making top directi	on up hole. 1% curs and come back			Pentlandite for	ound smeared in eins and fracture	isolated			Interval soft a	and affected by	alteration.
		at 291 to 309m. P	o FV after up to cor	ntact. Trace of sm	eared Pn in			•					MgO lower w peridotite.	ith XRF than a	standard
		fractures/serpenting	ne veins.			291	309	Pyrrhotite	Disseminated	1		- · -	Tologoo ()/	_	
								Pentlandite	Fracture/vein controlled	0.01	313	317.23	carbonate)	Pervasive	Moderate
								Comments	controlled				Serpentinizat ion	Pervasive	Moderate
								Fine Po disse No XRF anor	eminated in the p maly in Ni detect ound smeared in	ed.				Fracture/Vein Controlled	
									eins and fracture				Comments		
						309	313	Pyrrhotite	Fracture/vein controlled	0.25				altered increa ntermediate in	
								intermediate in the more a	es. Decrease tow intrusion and dis Itered part of the ar the contact.	appear					
317.23	334.96	I2, Intrusive Inter	mediate Rock			317.23	334 96	Pyrrhotite	Fracture/vein	0.05					
		Texture	Grain Size	Colour	Colour Tone	317.20	304.00	i yiiiloute	controlled						
		Plagioclase Phyric	Very Fine Grained	Grey	Medium			Arsenopyrite	Fracture/vein controlled	0.01					
		Comments						Comments							
		bottom contact wit Silice smell on free (Zr from 150 to 25 a alcaline/calco-al	agioclase phenocrysh a 5cm shearing of shearing of sheak. TiO2/Zr ro Oppm and TiO2 fro caline type (150-25 ontact. Trace of Po	on the pyroxenite s atio give an interm m 0.3-0.4%) and t 0 Zr and 10-20 Y)	side. Diorite Dyke? nediate composition the Zr/Y ratio shows . 2% of 1 to 3cm			of the quartz	and euhedral As vein in the interr to 0.5% locally.	in some nediate					
						-									

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

			Detailed Litholog	y				Mineraliza	ition				Alterati	ion	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
334.96	351.2	I4B, Pyroxenite									334.96	351.2	Calcite	Pervasive	Moderate
		Texture	Grain Size	Colour	Colour Tone								Talcose (+/-		Weak to
		Massive	Fine Grained	Red-Brown	Medium								carbonate)	Pervasive	Moderate
		massive. Interstit darker look as we calcite/carbonate	ite giving the color rial material replace be get closer to the infection extensional veins. Sult in the middle. Sor arent min.	by calcite. Seems ermediate intrusion -10cm calcite veir	more altered with a ons. 1-2% of 1-2cm ning around 337 to								Comments Pervasive cale material. Talc increasing tov	making the r	
351.2	354.44	I2, Intrusive Inte	rmediate Rock			351.2	354.44	Pyrrhotite	Fracture/vein controlled	0.5					
		Texture	Grain Size	Colour	Colour Tone			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Fracture/vein						
		Massive	Very Fine Grained	Grey	Medium			Arsenopyrite	controlled	0.1					
		contacts. Colour contamination by TiO2/Zr and Zr/Y related to fracture	7.23 to 334.96, but v gets sometimes redi the pyroxenite since ratio as previous I2. ss and veins. 2% of uhedral As FV in so	sh. Diorite Dyke we the unit is smalled Presence of serion to 3cm VqtzCal	vith possible er? Same XRF cite and chlorite with sharp contact.			Po and euhed VqtzCal in I2.	dral As associat	ed to					
354.44	364.63	I4B, Pyroxenite				357	361.5	Pyrrhotite	Patchy	1	354.44	364.63	Calcite	Pervasive	Moderate
		Texture	Grain Size	Colour	Colour Tone			Chalcopyrite	Trace	0.01			Talcose (+/-	Pervasive	Weak to
		Massive	Fine Grained	Grey-Brown	Medium			Chalcopyfile	Trace	0.01			carbonate)	i civasive	Moderate
			ite giving the color re					Pentlandite	Trace	0.01			Comments Pervasive cal		
		darker look as we disseminate Po w	al material replace to get closer to the indivith trace of Ccp and Po from 364.25m to	ermediate intrusion Pn from 358 to 30	on. 1% spotted 62m. 1%			Comments Patches of dis of Ccp and Pr	sseminated Po n.	with trace			material. Talc increasing tov	making the r vards the I2.	ock soft,
						364.25	364.63	Pyrrhotite	Disseminated	1					
								Comments Disseminated V4	Po as we get o	closer to					

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

			Detailed Lithology					Mineraliza	ntion				Alterat	ion	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
364.63	396.0	V4, Volcanic Ultra	mafic/Ultrabasic R	lock		364.63	365.64	Pyrrhotite	Disseminated	2	364.63	366.25	Calcite	Pervasive	Moderate
		with 2% diss. Po. L hides the protolith. Conductive) that se	grain Size panded ultramafic lavayers afterward are Bands of remob Potents to be concordaration. Cubic grains	highly altered to up to semi-mass ant with base of fl	calcite which ive (Magnetic and lows, but hard to	366.27	368.32 370.15 370.32 388	Comments Disseminated pyroxenite flop part (Top) Pyrrhotite Comments Bands of rem V4 flow that s the bottom of cubic shape verplacement of the pyrrhotite Comments Bands of rem Pyrrhotite Comments Bottom of a flooncentration which suggest by Po? Pyrrhotite Comments Bands of rem and deformed Pyrrhotite Comments	Banded ob Po in several eems to correspond the flow. Some five point of the Py by Po. Banded ob Po in altered Banded ow with higher of Po. Some cults a replacement Banded ob Po in highly at 1 V4. Banded Banded Banded	roxenitic 15 altered ond to Po in 2 V4. 20 bic Po t of Py 10 ltered 10 2 0.01		396	Talcose (+/- carbonate) Comments First flow (pyr altered than to pyroxenite un calcification o Calcite Chloritization Comments V4 highly alte bands of chlo Chukotat V4.	Pervasive oxenitic) of V ne rest, more it before. Per f the interstiti Pervasive Banded red to calcite	Weak to Moderate (4 less like the vasive al material. Moderate to Strong Moderate with local

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

		Detailed Lithology			Mineralizat	tion				Alterati	ion	
From	То	Lithology	From	То	Туре	Style	%	From	То	Туре	Style	Intensity
396.0	409.76	S5, Breccia	396	408	Pyrrhotite	Banded	10	396	400.22	Calcite	Pervasive	Moderate
		Comments Unit with breccia fragments of chert and altered fragments. Unit is itself highly altered and deformed. The matrix of the breccia is greenish and			Pyrite	Banded	2			Silicification	Fracture/Vein Controlled	Moderate
		hard (chloritized and silicified?). Bands of Po/Py remob magnetic and conductive.			Chalcopyrite	Trace	0.01			Chloritization	Spotted	Moderate
					Comments Bands of remo and deformed Py up to 60%.	breccia with s	ometimes			Comments Vqtz in V4 see the interval. H deformed whi	lighly altered a	and
								400.22	400.4	Hematization	Fracture/Vein Controlled	Moderate
										Silicification	Fracture/Vein Controlled	Moderate
										Chloritization	Spotted	Moderate
										Comments Hematization V4 seems brir interval. Highl which hides th	ng silicificatior y altered and	to the
								400.4	409.76	Calcite	Pervasive	Moderate
										Silicification	Fracture/Vein Controlled	Moderate
										Chloritization	Spotted	Moderate
										Comments Vqtz in V4 see the interval. H deformed whi	lighly altered a	and
409.76	414.0	V4, Volcanic Ultramafic/Ultrabasic Rock	409.76	414	Pyrrhotite	Disseminated	2	409.76	414	Bleached/Ble aching	Pervasive	
		Texture Grain Size Colour Colour Tone Flow Banded			Pyrrhotite	Fracture/vein controlled	0.5			Comments Interval seems		rval to
		Comments Volcanics altered with 2% disseminated Po. Seems cooked			Comments Disseminated (replacement of	po vfg to mg s of Py?) and in	sub-cubic fractures.			small to give a	a good idea.	

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

					Samplii	ng				
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
9.0	10.5	E5840298	Core	0.0402	0.007	0.0025	0.0098	58.3	0.04	
15.0	16.5	E5840299	Core	0.0366	0.007	0.0025	0.01	56.3	0.06	
21.0	22.5	E5840301	Core	0.0436	0.007	0.0025	0.00943	63.2	0.15	
27.0	28.5	E5840302	Core	0.0382	0.008	0.0025	0.00939	56.8	0.75	
28.5	29.0	E5840303	Core	0.0401	0.008	0.0025	0.00896	60.6	1.46	
29.0	30.2	E5840304	Core	0.0371	0.009	0.0025	0.00975	50.9	1.29	
30.2	31.5	E5840305	Core	0.0308	0.008	0.0025	0.0516	54.6	10	
31.5	32.93	E5840306	Core	0.0269	0.005	0.0025	0.0579	52.4	10	
32.93	34.0	E5840307	Core	0.0303	0.006	0.0025	0.0132	42.8	1.12	
34.0	35.0	E5840308	Core	0.0362	0.008	0.0025	0.00778	53	0.68	
35.0	36.0	E5840309	Core	0.0385	0.007	0.0025	0.00817	56.1	0.4	
35.0	36.0	E5840310	Duplicate	0.037	0.007	0.0025	0.00868	55.5	0.41	
42.0	43.5	E5840311	Core	0.0416	0.008	0.0025	0.00818	57.9	0.07	
48.0	49.5	E5840312	Core	0.0373	0.008	0.0025	0.00813	55.7	0.5	
49.5	50.0	E5840313	Core	0.0414	0.008	0.0025	0.0102	57.1	0.88	
50.0	51.02	E5840314	Core	0.0378	0.008	0.0025	0.00876	55.1	1.01	
51.02	52.5	E5840315	Core	0.025	0.005	0.0025	0.0517	37.8	10	
52.5	54.0	E5840316	Core	0.0251	0.007	0.0025	0.0413	44.4	10	
54.0	55.5	E5840317	Core	0.023	0.006	0.0025	0.0466	39.2	10	
55.5	57.0	E5840318	Core	0.024	0.006	0.0025	0.0511	43.7	10	
57.0	58.5	E5840319	Core	0.0219	0.01	0.0025	0.0284	27.3	10	
58.5	60.0	E5840321	Core	0.017	0.003	0.0025	0.017	21.1	10	
60.0	61.5	E5840322	Core	0.0183	0.011	0.0025	0.0113	22.1	10	
61.5	63.0	E5840323	Core	0.00928	0.005	0.0025	0.00781	13.3	10	
63.0	64.5	E5840324	Core	0.0141	0.008	0.0025	0.00965	19.9	10	
64.5	66.0	E5840325	Core	0.0182	0.01	0.0025	0.0105	21.7	10	
66.0	67.5	E5840326	Core	0.0181	0.005	0.0025	0.00985	20.8	10	

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

										211
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
67.5	68.75	E5840327	Core	0.0175	0.007	0.0025	0.0119	22.6	10	
68.75	70.0	E5840328	Core	0.0469	0.009	0.0025	0.00653	67.9	0.77	
70.0	71.0	E5840329	Core	0.0521	0.008	0.0025	0.00185	52	0.36	
71.0	72.0	E5840331	Core	0.0963	0.009	0.0025	0.00514	79.8	0.95	
72.0	73.0	E5840332	Core	0.0834	0.007	0.0025	0.00437	73	0.88	
73.0	73.82	E5840333	Core	0.114	0.011	0.0025	0.00679	113	1.29	
73.82	75.0	E5840334	Core	0.0775	0.016	0.0025	0.00856	75.2	1.48	
75.0	76.5	E5840335	Core	0.0552	0.014	0.0025	0.00855	58.3	1.34	
76.5	78.0	E5840336	Core	0.0607	0.007	0.0025	0.00606	55.6	1.93	
78.0	79.0	E5840337	Core	0.0675	0.008	0.0025	0.0129	65.3	3	
79.0	80.07	E5840338	Core	0.0794	0.01	0.0025	0.0166	75.6	1.79	
80.07	81.25	E5840339	Core	0.04	0.013	0.0025	0.0262	38.3	5	
80.07	81.25	E5840340	Duplicate	0.033	0.009	0.0025	0.0185	28.6	3.87	
81.25	82.56	E5840341	Core	0.0382	0.007	0.0025	0.0159	36.1	3.56	
82.56	84.0	E5840342	Core	0.0493	0.008	0.0025	0.0154	49.5	3.34	
84.0	85.5	E5840343	Core	0.0322	0.007	0.0025	0.00315	36.8	1.01	
85.5	87.0	E5840344	Core	0.00605	0.005	0.0025	0.00707	11.1	1.68	
87.0	88.5	E5840345	Core	0.00451	0.002	0.0025	0.00559	12.6	1.85	
88.5	90.0	E5840346	Core	0.00555	0.003	0.0025	0.00578	9.3	1.4	
90.0	91.5	E5840347	Core	0.00564	0.002	0.0025	0.00519	11.2	2.31	
91.5	93.0	E5840348	Core	0.00657	0.004	0.0025	0.00569	9	2.29	
93.0	94.5	E5840349	Core	0.00567	0.004	0.0025	0.0146	15.7	2.54	
94.5	96.0	E5840351	Core	0.00677	0.003	0.0025	0.00979	13.3	1.9	
96.0	97.5	E5840352	Core	0.00614	0.003	0.0025	0.0131	10.7	1.99	
97.5	98.77	E5840353	Core	0.00621	0.003	0.0025	0.00973	16	2.88	
98.77	100.0	E5840354	Core	0.00417	0.002	0.0025	0.00369	13.4	1.31	
100.0	101.0	E5840355	Core	0.00505	0.002	0.0025	0.00798	16.9	0.81	
101.0	102.0	E5840356	Core	0.00461	0.002	0.0025	0.00302	12.7	0.59	

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

										210
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
102.0	103.5	E5840357	Core	0.00568	0.002	0.0025	0.00206	14.1	1.27	
103.5	105.0	E5840358	Core	0.00445	0.002	0.0025	0.00487	10.6	0.12	
105.0	106.5	E5840359	Core	0.00499	0.002	0.0025	0.00165	4.9	0.02	
106.5	108.0	E5840361	Core	0.00357	0.001	0.0025	0.0035	5.9	0.02	
108.0	109.0	E5840362	Core	0.00445	0.002	0.0025	0.00259	9.7	2.65	
109.0	109.55	E5840363	Core	0.00216	0.0005	0.0025	0.00028	5	0.1	
109.55	111.0	E5840364	Core	0.00395	0.002	0.0025	0.00566	14.2	0.36	
111.0	112.5	E5840365	Core	0.00368	0.002	0.0025	0.00026	5.8	0.14	
112.5	114.0	E5840366	Core	0.00506	0.002	0.0025	0.00319	12	0.2	
114.0	115.1	E5840367	Core	0.027	0.002	0.0025	0.0115	22.4	1.17	
115.1	116.0	E5840368	Core	0.0326	0.004	0.0025	0.00885	27.3	0.4	
116.0	117.0	E5840369	Core	0.0462	0.013	0.0025	0.000025	10.5	0.09	
116.0	117.0	E5840370	Duplicate	0.0593	0.011	0.0025	0.0003	13.1	0.11	
117.0	118.5	E5840371	Core	0.00141	0.001	0.0025	0.000025	3	0.005	
126.0	127.5	E5840372	Core	0.0725	0.008	0.005	0.000025	63.5	0.02	
132.0	133.5	E5840373	Core	0.0971	0.007	0.0025	0.00649	87.6	0.03	
138.0	139.5	E5840374	Core	0.0913	0.006	0.0025	0.000025	80.6	0.03	
144.0	145.5	E5840375	Core	0.101	0.007	0.0025	0.0038	89.3	0.07	
150.0	151.5	E5840376	Core	0.104	0.006	0.005	0.00047	85.4	0.06	
156.0	157.5	E5840377	Core	0.112	0.006	0.0025	0.0004	89.8	0.05	
162.0	163.5	E5840378	Core	0.119	0.005	0.0025	0.00437	98.3	0.05	
168.0	169.5	E5840379	Core	0.121	0.005	0.0025	0.0036	98.9	0.05	
174.0	175.5	E5840381	Core	0.126	0.017	0.0025	0.00552	100	0.07	
180.0	181.5	E5840382	Core	0.116	0.005	0.0025	0.00147	97.2	0.07	
186.0	187.5	E5840383	Core	0.0719	0.008	0.006	0.00504	74.6	0.05	
192.0	193.5	E5840384	Core	0.09	0.005	0.0025	0.00059	79.9	0.18	
198.0	199.5	E5840385	Core	0.104	0.005	0.0025	0.00083	89.4	0.13	
204.0	205.5	E5840386	Core	0.0999	0.003	0.0025	0.00127	85.8	0.08	
1										

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo From To Sample Number Sample Type Ni (%) Pd (ppm Pt (ppm) Cu (%) Co (ppm) S (%) 210.0 211.5 E5840387 Core 0.0863 0.003 0.0025 0.00182 81.3 0.04 216.0 217.5 E5840388 Core 0.108 0.003 0.0025 0.00562 95.2 0.15 217.5 219.0 E5840389 Core 0.106 0.01 0.0025 0.00192 95.7 0.19 219.0 220.5 E5840391 Core 0.111 0.006 0.0025 0.00206 97.1 0.58 220.5 222.0 E5840392 Core 0.109 0.006 0.0025 0.00355 89.6 1.82 222.0 222.75 E5840393 Core 0.106 0.014 0.006 0.00468 94.1 2.41 222.75 223.6 E5840394 Core 0.113 0.005 0.0025 0.00454 94.3 2.36 223.6 224.06 E5840395 Core 0.0346 0.0005 0.0025 0.078 37.4 10 224.06 225.5 E5840396 Core 0.0239 0.0078 43 2.09 0.003 0.0025 225.5 226.89 E5840397 Core 0.0269 0.008 0.007 0.0108 49.9 1.59 226.89 227.76 E5840398 Core 0.0167 0.006 0.0025 0.0104 27.5 10 227.76 228.42 E5840399 Core 0.00627 0.005 0.0025 0.00772 12.9 10 227.76 228.42 E5840400 **Duplicate** 0.00802 12.6 0.00609 0.003 0.0025 10 228.42 229.5 E5840401 Core 0.0052 0.0025 0.00812 12.6 10 0.001 229.5 231.0 E5840402 Core 0.00155 0.0005 0.0025 0.0205 18.1 2.07 231.0 232.5 E5840403 Core 0.00244 0.0005 0.0025 0.0192 19.5 1.88 232.5 234.0 E5840404 Core 0.00186 0.0005 0.0025 0.0205 22.4 2.28 234.0 235.5 E5840405 Core 0.0319 0.004 0.0025 0.0117 48.8 0.61 235.5 237.0 E5840406 Core 0.0005 23.2 0.00123 0.0025 0.0164 1.81 237.0 237.74 E5840407 Core 0.00337 0.0005 0.0025 0.0195 24.3 1.11 237.74 239.28 E5840408 Core 0.0371 0.004 0.0025 0.0066 57.8 0.36 246.0 247.5 E5840409 Core 0.00579 0.0005 0.0025 0.00639 38.9 0.21 252.0 253.5 E5840411 Core 0.0355 0.003 0.0025 0.00496 55 0.03 253.5 255.0 E5840412 Core 0.0898 0.004 0.0025 0.00316 76.6 0.08 255.0 256.5 E5840413 Core 0.104 0.001 0.0025 0.00287 89.1 0.21 256.5 258.0 E5840414 Core 0.104 0.006 0.0025 0.00461 91.5 0.25 258.0 259.5 E5840415 Core 0.103 0.003 0.0025 0.00444 87.6 0.15 259.5 261.0 E5840416 Core 0.103 0.003 0.0025 0.00225 90 0.12

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo From To Sample Number Sample Type Ni (%) Pd (ppm Pt (ppm) Cu (%) Co (ppm) S (%) 261.0 262.5 E5840417 Core 0.107 0.004 0.0025 0.00059 92.1 0.11 262.5 264.0 E5840418 Core 0.106 0.005 0.0025 0.00163 86.3 0.2 265.5 264.0 E5840419 Core 0.0973 0.003 0.0025 0.00203 82.3 0.27 265.5 267.0 E5840421 Core 0.006 0.103 0.005 0.00429 86.1 0.23 267.0 268.5 E5840422 Core 0.109 0.005 0.0025 0.00503 90.7 0.28 268.5 270.0 E5840423 Core 0.107 0.006 0.005 0.00485 87.8 0.17 270.0 271.5 E5840424 Core 0.099 0.004 0.0025 0.00275 77.4 0.16 271.5 273.0 E5840425 Core 0.117 0.005 0.005 0.00435 96.4 0.26 273.0 274.5 E5840426 Core 0.007 0.0051 93.1 0.32 0.109 0.011 274.5 276.0 E5840427 Core 0.1 0.004 0.0025 0.00634 88.1 0.23 276.0 277.5 E5840428 Core 0.107 0.002 0.0025 0.00331 86 0.22 277.5 279.0 E5840429 Core 0.117 0.015 0.012 0.00467 87.1 0.32 277.5 279.0 E5840430 **Duplicate** 0.00514 0.118 0.014 0.011 88.3 0.34 279.0 280.5 E5840431 Core 0.003 0.0025 0.00333 80 0.33 0.102 280.5 282.0 E5840432 Core 0.00362 86.8 0.113 0.003 0.0025 0.34 282.0 283.5 E5840433 Core 0.107 0.004 0.0025 0.00219 79.8 0.26 283.5 285.0 E5840434 Core 0.109 0.0025 0.00292 82.8 0.32 0.004 285.0 286.5 E5840435 Core 0.108 0.003 0.0025 0.00288 87.1 0.42 286.5 288.0 E5840436 Core 91.5 0.58 0.119 0.004 0.005 0.00261 288.0 289.5 E5840437 Core 0.0907 0.004 0.0025 0.00127 79.1 0.36 289.5 291.0 E5840438 Core 0.0918 0.003 0.0025 0.00057 66.8 0.2 291.0 292.5 E5840439 Core 0.119 0.011 0.008 0.00076 87.7 0.21 292.5 294.0 E5840441 Core 0.118 0.016 0.009 0.00257 89 0.36 294.0 295.5 E5840442 Core 0.006 0.0025 0.0015 0.121 89.1 0.3 295.5 297.0 E5840443 Core 0.128 0.005 0.0025 0.00252 99.9 0.39 297.0 298.5 E5840444 Core 0.104 0.009 0.0025 0.00354 82 0.36 298.5 300.0 E5840445 Core 0.104 0.004 0.0025 0.00484 83.6 0.31 300.0 301.5 E5840446 Core 0.109 0.003 0.0025 0.00635 85.2 0.38

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo From To Sample Number Sample Type Ni (%) Pd (ppm Pt (ppm) Cu (%) Co (ppm) S (%) 301.5 303.0 E5840447 Core 0.0886 0.003 0.0025 0.00392 71.6 0.3 303.0 304.5 E5840448 Core 0.004 0.106 0.004 0.0025 84.8 0.46 304.5 306.0 E5840449 Core 0.0832 0.003 0.0025 0.00293 73.4 0.44 306.0 307.5 E5840451 Core 0.12 0.006 0.0025 0.00447 99.3 0.69 307.5 309.0 E5840452 Core 0.0993 0.004 0.0025 0.00374 80.7 0.51 309.0 310.5 E5840453 Core 0.0737 0.005 0.0025 0.00242 64.6 0.33 310.5 312.0 E5840454 Core 0.108 0.005 0.005 0.00353 83.9 0.3 312.0 313.5 E5840455 Core 0.0843 0.006 0.0025 0.00675 80.1 0.11 313.5 315.0 E5840456 Core 0.08 0.005 68.6 0.03 0.0025 0.00508 315.0 316.5 E5840457 Core 0.0808 0.003 0.0025 0.00406 73.2 0.03 316.5 317.23 E5840458 Core 0.0569 0.009 0.0025 0.00889 74 0.02 316.5 317.23 E5840459 **Duplicate** 0.0544 0.009 0.0025 0.00926 69.3 0.03 317.23 318.0 E5840460 Core 0.0121 0.005 0.0025 0.00352 16.8 0.07 318.0 319.5 E5840461 Core 0.00466 0.003 0.0025 0.00069 5.6 0.06 324.0 325.5 E5840462 Core 0.00222 0.0005 0.001 0.0025 2.2 0.05 330.0 331.5 E5840463 Core 0.003 0.002 0.0025 0.00048 5.4 0.02 334.0 334.96 E5840464 Core 0.00261 0.0005 0.0025 0.00077 7.1 0.11 334.96 336.5 E5840465 Core 0.0575 0.007 0.0025 0.00777 63.8 0.12 336.5 338.0 E5840466 Core 72.6 0.07 0.007 0.0025 0.00464 0.09 338.0 339.0 E5840467 Core 0.0815 0.006 0.0025 0.00733 77.4 0.13 345.0 346.5 E5840468 Core 87.2 0.0873 0.008 0.0025 0.00886 0.04 350.0 351.18 E5840469 Core 0.00957 0.01 0.006 0.00734 43.3 0.13 351.18 353.0 E5840471 Core 20.1 0.00324 0.002 0.0025 0.00865 0.26 353.0 354.41 E5840472 Core 0.00398 0.003 0.0025 19.2 0.08 0.00383 355.5 354.41 E5840473 Core 0.00812 0.006 0.006 0.00722 42.2 0.18 355.5 356.9 E5840474 Core 0.0127 0.008 0.0025 0.00641 37 0.11 356.9 357.57 E5840475 Core 0.0591 0.014 0.008 0.00701 67.8 0.13 359.0 357.57 E5840476 Core 0.0741 0.026 0.0025 0.025 92.4 0.4

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
359.0	360.34	E5840477	Core	0.0692	0.022	0.01	0.0247	86.6	0.58	
360.34	361.58	E5840478	Core	0.0574	0.014	0.006	0.0144	71.3	0.15	
361.58	363.0	E5840480	Core	0.0342	0.013	0.006	0.015	55.1	0.1	
363.0	364.25	E5840481	Core	0.0439	0.008	0.005	0.0064	60.1	0.14	
364.25	365.6	E5840482	Core	0.0361	0.007	0.0025	0.00869	56.5	0.31	
365.6	366.24	E5840483	Core	0.0369	0.007	0.0025	0.00203	63.8	0.04	
366.24	367.4	E5840484	Core	0.0083	0.002	0.0025	0.0165	31.5	3.57	
367.4	368.33	E5840485	Core	0.00973	0.0005	0.0025	0.0153	32	4.12	
368.33	369.0	E5840486	Core	0.00061	0.0005	0.0025	0.00275	2.5	0.56	
369.0	370.4	E5840487	Core	0.00273	0.0005	0.0025	0.0067	11.3	2.04	
370.4	371.78	E5840488	Core	0.00143	0.0005	0.0025	0.00232	5.2	0.9	
371.78	373.23	E5840489	Core	0.00071	0.0005	0.0025	0.00118	5.1	0.62	
373.23	374.75	E5840490	Core	0.00475	0.0005	0.0025	0.00682	19.1	1.76	
373.23	374.75	E5840491	Duplicate	0.0046	0.0005	0.0025	0.00836	19	1.92	
374.75	375.75	E5840492	Core	0.00301	0.0005	0.0025	0.00513	14.7	1.64	
375.75	376.9	E5840493	Core	0.00201	0.0005	0.0025	0.0112	8.8	1.45	
376.9	378.0	E5840494	Core	0.00419	0.0005	0.0025	0.00811	16.2	3.31	
378.0	379.5	E5840495	Core	0.0036	0.0005	0.0025	0.00167	12.4	1.82	
379.5	381.0	E5840496	Core	0.00278	0.0005	0.0025	0.0028	11.1	3.35	
381.0	382.5	E5840497	Core	0.00218	0.0005	0.0025	0.00178	10.7	2.77	
382.5	384.0	E5840498	Core	0.00312	0.0005	0.0025	0.00176	12.4	1.75	
384.0	385.5	E5840499	Core	0.00315	0.0005	0.0025	0.00452	9.5	2.42	
385.5	387.0	E5840501	Core	0.00349	0.0005	0.0025	0.00444	11.4	2.49	
387.0	388.5	E5840502	Core	0.00552	0.0005	0.0025	0.00462	19.4	4.71	
388.5	390.0	E5840503	Core	0.00217	0.0005	0.0025	0.00838	11.3	3.12	
390.0	391.5	E5840504	Core	0.00307	0.0005	0.0025	0.00358	12.1	3.12	
391.5	393.0	E5840505	Core	0.0025	0.0005	0.0025	0.00443	11	3.31	
393.0	394.39	E5840506	Core	0.00329	0.0005	0.0025	0.00239	10.7	0.99	

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

										710
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
394.39	395.18	E5840507	Core	0.00131	0.0005	0.0025	0.00098	7.1	0.71	
395.18	396.0	E5840508	Core	0.00376	0.0005	0.0025	0.018	14.4	6.4	
396.0	397.0	E5840510	Core	0.00144	0.0005	0.0025	0.00202	3.7	0.84	
397.0	397.91	E5840511	Core	0.00341	0.0005	0.0025	0.0148	17	3.48	
397.91	398.5	E5840512	Core	0.00142	0.0005	0.0025	0.00167	7	0.67	
398.5	400.0	E5840513	Core	0.00149	0.0005	0.0025	0.00444	5.6	0.74	
400.0	401.0	E5840514	Core	0.00239	0.0005	0.0025	0.0099	11.6	1.11	
401.0	402.0	E5840515	Core	0.00574	0.0005	0.0025	0.0257	27	5.99	
402.0	402.5	E5840516	Core	0.0037	0.0005	0.0025	0.0205	22.3	4.7	
402.5	404.0	E5840517	Core	0.00201	0.0005	0.0025	0.0104	17.3	2.16	
404.0	405.0	E5840518	Core	0.00184	0.0005	0.0025	0.00704	10.8	2.98	
405.0	406.0	E5840519	Core	0.00186	0.0005	0.0025	0.00348	9.7	3.34	
405.0	406.0	E5840520	Duplicate	0.00188	0.0005	0.0025	0.00221	8.7	2.36	
406.0	407.0	E5840521	Core	0.00287	0.0005	0.0025	0.00321	9.2	4.17	
407.0	408.0	E5840522	Core	0.00145	0.0005	0.0025	0.00071	4.7	0.78	
408.0	409.0	E5840523	Core	0.00115	0.0005	0.0025	0.00168	4.8	0.7	
409.0	409.76	E5840524	Core	0.00231	0.0005	0.0025	0.00024	5.1	0.36	
409.76	411.0	E5840526	Core	0.0012	0.001	0.0025	0.00653	4.8	0.39	
411.0	412.5	E5840525	Core	0.00319	0.0005	0.0025	0.00211	9.9	0.31	
412.5	414.0	E5840527	Core	0.00144	0.001	0.0025	0.00368	6.6	0.34	

Structure

From	То	Structure Type	Structure Intensity	Comments
9.6	10.26	Fracturing		oxidised fracure (fault?)
11.85	12.1	Fracturing		oxidised fracure (fault?) and qtz-carb in fractures
30	30.2	Fracturing		oxidised fracure (fault?) and qtz-carb in fractures
38.45	44.55	Fracturing		oxidised fracure (fault?) and qtz-carb in fractures, rubble
70	78	Fracturing		fracturing, in higjly altered komatiitic basalt, sheared. very low angle 0-5-10 TCA

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

AF

From	То	Structure Type	Structure Intensity	Comments
122.8	123	Gouge (fault)		fault gauge filled with mud.30 TCA.
136	147.2	Fracturing		fracturing, in higjly altered hi mg olivine pyroxenite, fault zone? very low angle 0-5-10 TCA assoc. wih serpentinenad talc altn in veinlets(2mm up to 1cm) and fractures.(1-3/m.
160	180	Fracturing		fracturing, in highly altered hi Mg peridotitre, fault zone? low angle 20-30-10 TCA assoc. wih serpentine (loclly talc) altn in veinlets(2mm) and fractures.(1-3/m).
223.6	224.06	Foliation		foliation within semi massive sulphides, remobilised
231	237	Graded Bedding		gradded bedding of sediments, top is up hole.
289	291	Fault		Serpentine/Talc/Carbonate vein of 3-4 cm with weak gouge locally. Low angle TCA make the core broken. Seems to affect the mineralization.
295.07	295.2	Gouge (fault)		Gouge in a serpentine and talc vein.
296.25	296.45	Gouge (fault)		Gouge in a serpentine and talc vein.
305.54	305.86	Serpentine vein		Thick serpentine/talc vein with deformed calcite veining inside.
337.09	337.72	Fault		Fault with weak gouge in pyroxenite.
337.72	338.5	Calcite vein		30% of 2-15cm calcite vein with 30 TCA.

Point Structure

Depth	Structure Type	Structure Intensity	Alpha Angle	Beta Angle	Gamma Angle	Core Angle	Comments
21.1	Fault	Weak				45	oxidiesd fracture/fault
51.02	Contact		60			60	top contact of sedimentary massive sulphides, irregilar to ondulating.
52	Bedding		50			50	bedding within massice sulphides
64	Bedding	Strong	10			10	bedding within massice sulphides, boudinage
72	Shearing	Strong	10			10	searing within komatiitic basalt, uneven, may be folding as well, hard to determine.
80.5	Fold	Strong	50			50	folding, uneven, within sequence of graphic shale, with mineralisation (py) along folding.
82.4	Quartz vein		60			60	fractured qtz-carb vein, py at borders 5-7% over 2 cm.
90.5	Quartz vein		80			80	bedding-along foliation ca vnlets, sheared and boudinaged
90.6	Quartz vein		35			35	cross cutting qtz-ca veinlet, 1 cm. mineralised py, fine at contact
98.2	Quartz vein		40			40	bedding-along foliation ca vnlets, sheared and boudinaged
112.5	Quartz vein		40			40	cross cutting qtz-ca veinlet, 1 cm. mineralised py, fine at contact
115.8	Bedding		50			50	bedding-along foliation ca vnlets, sheared and boudinaged
226.89	Contact					50	top contact of sedimentary massive-semi-massive contact.

Depth	Structure Type	Structure Intensity	Alpha Angle	Beta Angle	Gamma Angle	Core Angle	Comments	s
228.42	Contact					80	bottom cor	ntact gradual
239.28	Contact		60	140			flow bandir at 252m.	ng contact. bottom contact(?). chill margin of 5 cm. bottom of flow banding possibly
262.87	Serpentine vein					30	Serpentine	h/talc vein of 3cm true thickness
278.86	Calcite vein					20	Calcite veir similar to the	n with serpentine and talc. 2cm true thickness. Few veins with this orientation and he fault section at 289 to 291
288.35	Calcite vein					10	Vein with lo	ow angle similar to fault 289 to 291m
317.23	Contact		45	310			Contact sh	parp between peridotite and the intermediate intrusion.
334.96	Shearing	Moderate to Strong				70	Sheared co	ontact between I2 and Pyroxenite
351.2	Contact					25	Contact be	etween pyroxenite and I2. Contrast is low.
354.44	Contact					60	Lower conf	tact of the I2 with pyroxenite. Calcite veining on the contact.
367.23	Flow banding					30	Flow bandi	ing contact of altered V4.
		Ge	eotechnical					Magsus

	Geotechnical							Magsus				
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument		
6.2	9	2.8	100	2.5	89.29		7	0.86	0	MPP-EM2S+		
0.2	Ŭ	2.0	100	2.0	00.20		8	0.88	0	MPP-EM2S+		
							9	1.03	0	MPP-EM2S+		
9	12	2.7	90	1.18	43.7		10	1.27	0	MPP-EM2S+		
							11	1.04	0	MPP-EM2S+		
							12	0.88	0	MPP-EM2S+		
12	15	3.05	101.67	2.12	69.51		13	1.37	0	MPP-EM2S+		
							14	1.45	0	MPP-EM2S+		
							15	1.49	0	MPP-EM2S+		
15	15 18 2.7		90	1.86	68.89		16	1.46	0	MPP-EM2S+		
							17	1.02	0	MPP-EM2S+		

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							18	1.46	0	MPP-EM2S+
18	21	3	100	1.62	54		19	1.27	0	MPP-EM2S+
							20	1.73	0	MPP-EM2S+
							21	1.21	0	MPP-EM2S+
21	24	2.98	99.33	1.94	65.1		22	1.52	0	MPP-EM2S+
							23	1.52	0	MPP-EM2S+
							24	2.32	0	MPP-EM2S+
24	27	3.03	101	1.75	57.76		25	1.65	0	MPP-EM2S+
							26	2.77	0	MPP-EM2S+
							27	3.28	0	MPP-EM2S+
27	30	2.92	97.33	1.9	65.07		28	6.37	0	MPP-EM2S+
							29	3.35	0	MPP-EM2S+
							30	5.28	0	MPP-EM2S+
30	33	2.25	75	0	0		31	0.86	0	MPP-EM2S+
							32	1.27	0	MPP-EM2S+
							33	11.34	0	MPP-EM2S+
33	36	3.1	103.33	1.8	58.06		34	7.94	0	MPP-EM2S+
							35	6.32	0	MPP-EM2S+
							36	3.01	0	MPP-EM2S+
36	39	2.85	95	1.76	61.75		37	0.73	0	MPP-EM2S+
							38	1.8	0	MPP-EM2S+
							39	1.1	0	MPP-EM2S+
39	42	2.75	91.67	1.03	37.45		40	1.25	0	MPP-EM2S+
							41	1.36	0	MPP-EM2S+

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							42	0.94	0	MPP-EM2S+
42	45	2.82	94	1.38	48.94		43	0.92	0	MPP-EM2S+
							44	1.2	0	MPP-EM2S+
							45	1.12	0	MPP-EM2S+
45	48	3	100	1.8	60		46	1.48	0	MPP-EM2S+
							47	2.29	0	MPP-EM2S+
							48	2.5	0	MPP-EM2S+
48	51	3.04	101.33	2.41	79.28		49	5.28	0	MPP-EM2S+
							50	10.4	0	MPP-EM2S+
							51	13.8	0	MPP-EM2S+
51	54	3	100	1.76	58.67		52	1.22	0	MPP-EM2S+
							53	2.09	0	MPP-EM2S+
							54	0.51	0	MPP-EM2S+
54	57	2.9	96.67	2.5	86.21		55	0.43	0	MPP-EM2S+
							56	1.02	0	MPP-EM2S+
							57	0.83	0	MPP-EM2S+
57	60	3.06	102	2.98	97.39		58	0.67	0	MPP-EM2S+
							59	0.5	0	MPP-EM2S+
							60	0.49	0	MPP-EM2S+
60	63	3.02	100.67	2.32	76.82		61	0.95	0	MPP-EM2S+
							62	0.96	0	MPP-EM2S+
							63	0.92	0	MPP-EM2S+
63	66	3.03	101	2.73	90.1		64	1	0	MPP-EM2S+
							65	0.83	0	MPP-EM2S+

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

											AI
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							66	0.84	0	MPP-EM2S+	
66	69	2.9	96.67	2.35	81.03		67	1.01	0	MPP-EM2S+	
							68	7.15	0	MPP-EM2S+	
							69	2.05	0	MPP-EM2S+	
69	72	3	100	2.55	85		70	5.37	0	MPP-EM2S+	
							71	5.83	0	MPP-EM2S+	
							72	3.15	0	MPP-EM2S+	
72	75	2.86	95.33	2.13	74.48		73	3	0	MPP-EM2S+	
							74	1.36	0	MPP-EM2S+	
							75	1.08	0	MPP-EM2S+	
75	78	3	100	1.6	53.33		76	3.87	0	MPP-EM2S+	
							77	4.46	0	MPP-EM2S+	
							78	7.27	0	MPP-EM2S+	
78	81	3.07	102.33	2.6	84.69		79	2.01	0	MPP-EM2S+	
							80	11.81	0	MPP-EM2S+	
							81	26.39	1741.16	MPP-EM2S+	
81	84	3	100	2.5	83.33		82	23.53	0	MPP-EM2S+	
							83	10.99	0	MPP-EM2S+	
							84	6.61	0	MPP-EM2S+	
84	87	3.05	101.67	2.9	95.08		85	15.18	0	MPP-EM2S+	
							86	6.25	0	MPP-EM2S+	
							87	25.05	12528.28	MPP-EM2S+	
87	90	3.05	101.67	2.85	93.44		88.5	43.49	1507.69	MPP-EM2S+	
							89	3.78	0	MPP-EM2S+	

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							90	3.85	0	MPP-EM2S+
90	93	2.97	99	2.5	84.18		91	8.79	2235.23	MPP-EM2S+
							92	44.42	2650.86	MPP-EM2S+
							93.5	10.53	2091.13	MPP-EM2S+
93	96	2.9	96.67	2.7	93.1		94	5.41	0	MPP-EM2S+
		2.0	00.01		00		94.5	3.38	836.75	MPP-EM2S+
							95	24.02	1763.33	MPP-EM2S+
							96	21.21	1616.6	MPP-EM2S+
96	99	3.06	102	2.4	78.43		97	3.12	0	MPP-EM2S+
							98	11.66	0	MPP-EM2S+
							99	3.64	0	MPP-EM2S+
99	102	2.96	98.67	2.68	90.54		100	4.8	1939.68	MPP-EM2S+
							101	0.85	0	MPP-EM2S+
							102	0.51	0	MPP-EM2S+
102	105	2.96	98.67	2.4	81.08		103	0.7	0	MPP-EM2S+
							104	8.0	0	MPP-EM2S+
							105	0.61	0	MPP-EM2S+
105	108	3.03	101	2.67	88.12		106	0.79	0	MPP-EM2S+
							107	0.99	0	MPP-EM2S+
							108	1.13	0	MPP-EM2S+
108	108 111	2.94	98	1.89 6	64.29	64.29	109	0.31	0	MPP-EM2S+
							110	0.44	0	MPP-EM2S+

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							111	0.53	0	MPP-EM2S+
111	114	3.02	100.67	2.43	80.46		112	0.65	0	MPP-EM2S+
							113	0.64	0	MPP-EM2S+
							114	0.89	0	MPP-EM2S+
114	117	2.94	98	1.97	67.01		115	0.82	0	MPP-EM2S+
							116	1.45	0	MPP-EM2S+
							117	1.02	0	MPP-EM2S+
117	120	2.9	96.67	1.17	40.34		118	1.12	0	MPP-EM2S+
							119	0.4	0	MPP-EM2S+
							120	0.5	0	MPP-EM2S+
120	123	2.65	88.33	0.87	32.83		121	0.51	0	MPP-EM2S+
							122	0.59	0	MPP-EM2S+
							123	1.1	0	MPP-EM2S+
123	126	2.97	99	1.13	38.05		124	1.2	0	MPP-EM2S+
							125	1.12	0	MPP-EM2S+
							126	1.34	0	MPP-EM2S+
126	129	3.13	104.33	2.81	89.78		127	1.49	0	MPP-EM2S+
							128	1.36	0	MPP-EM2S+
							129	0.98	0	MPP-EM2S+
129	132	3.03	101	2.71	89.44		130	1.18	0	MPP-EM2S+
							131	1.2	0	MPP-EM2S+
							132	1.83	0	MPP-EM2S+
132	135	3.1	103.33	2.37	76.45		133	1.5	0	MPP-EM2S+
							134	1.62	0	MPP-EM2S+

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							135	1.52	0	MPP-EM2S+
135	138	2.6	86.67	0.54	20.77		136	1.41	0	MPP-EM2S+
							137	1.65	0	MPP-EM2S+
							138	1.24	0	MPP-EM2S+
138	141	2.74	91.33	1.15	41.97		139	1.4	0	MPP-EM2S+
							140	1.13	0	MPP-EM2S+
							141	1.89	0	MPP-EM2S+
141	144	3.03	101	0.5	16.5		142	1.38	0	MPP-EM2S+
							143	1.29	0	MPP-EM2S+
							144	1.67	0	MPP-EM2S+
144	147	2.9	96.67	0.3	10.34		145	1.48	0	MPP-EM2S+
							146	1.42	0	MPP-EM2S+
							147	1.4	0	MPP-EM2S+
147	150	2.89	96.33	8.0	27.68		148	2.42	0	MPP-EM2S+
							149	2.43	0	MPP-EM2S+
							150	2.19	0	MPP-EM2S+
150	153	3.05	101.67	1.5	49.18		151	2.18	0	MPP-EM2S+
							152	3.34	0	MPP-EM2S+
							153	3.6	0	MPP-EM2S+
153	156	3.01	100.33	2.9	96.35		154	4.71	0	MPP-EM2S+
							155	11.76	0	MPP-EM2S+
							156	6.77	0	MPP-EM2S+
156	159	3	100	1.4	46.67		157	9.04	0	MPP-EM2S+
							158	10.94	0	MPP-EM2S+

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							159	6.85	0	MPP-EM2S+	
159	162	2.9	96.67	1.7	58.62		160	6.16	0	MPP-EM2S+	
							161	16.82	0	MPP-EM2S+	
							162	17.84	0	MPP-EM2S+	
162	165	3	100	1.26	42		163	14.5	0	MPP-EM2S+	
							164	38.85	0	MPP-EM2S+	
							165	32.87	0	MPP-EM2S+	
165	168	3.05	101.67	0.37	12.13		166	33.21	0	MPP-EM2S+	
							167	36.4	0	MPP-EM2S+	
							168	23.81	0	MPP-EM2S+	
168	171	2.9	96.67	0.5	17.24		169	17.22	0	MPP-EM2S+	
							170	20.25	0	MPP-EM2S+	
							171	12.15	0	MPP-EM2S+	
171	174	3	100	1.4	46.67		172	11.28	0	MPP-EM2S+	
							173	8.9	0	MPP-EM2S+	
							174	14.21	0	MPP-EM2S+	
174	177	3	100	1.4	46.67		175	8.39	0	MPP-EM2S+	
							176	3	0	MPP-EM2S+	
							177	3.41	0	MPP-EM2S+	
177	180	2.75	91.67	0.38	13.82		178	1.36	0	MPP-EM2S+	
							179	2.76	0	MPP-EM2S+	
							180	7.85	0	MPP-EM2S+	
180	183	3.03	101	0.58	19.14		181	9.42	0	MPP-EM2S+	
							182	7.41	0	MPP-EM2S+	

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	711
							183	2.39	0	MPP-EM2S+	
183	186	2.94	98	0.65	22.11		184	1.57	0	MPP-EM2S+	
							185	2.04	0	MPP-EM2S+	
							186	2.03	0	MPP-EM2S+	
186	189	2.98	99.33	1.03	34.56		187	1.86	0	MPP-EM2S+	
							188	1.07	0	MPP-EM2S+	
							189	1.6	0	MPP-EM2S+	
189	192	2.92	97.33	0.5	17.12		190	1.59	0	MPP-EM2S+	
							191	2	0	MPP-EM2S+	
							192	2.04	0	MPP-EM2S+	
192	195	3.03	101	1.17	38.61		193	1.5	0	MPP-EM2S+	
							194	2.07	0	MPP-EM2S+	
							195	1.85	0	MPP-EM2S+	
195	198	2.94	98	1.43	48.64		196	2.3	0	MPP-EM2S+	
							197	1.87	0	MPP-EM2S+	
							198	1.97	0	MPP-EM2S+	
198	201	3.09	103	2.73	88.35		199	1.86	0	MPP-EM2S+	
							200	2.69	0	MPP-EM2S+	
							201	2.36	0	MPP-EM2S+	
201	204	3	100	2.02	67.33		202	1.7	0	MPP-EM2S+	
							203	1.35	0	MPP-EM2S+	
							204	1.76	0	MPP-EM2S+	
204	207	3.03	101	2.26	74.59		205	1.72	0	MPP-EM2S+	
							206	2	0	MPP-EM2S+	

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

										Amada i omamo, oco	AT
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							207	0.95	0	MPP-EM2S+	
207	210	2.95	98.33	2.5	84.75		208	0.68	0	MPP-EM2S+	
							209	0.98	0	MPP-EM2S+	
							210	0.91	0	MPP-EM2S+	
210	213	2.98	99.33	2.71	90.94		211	0.81	0	MPP-EM2S+	
							212	0.77	0	MPP-EM2S+	
							213	0.53	0	MPP-EM2S+	
213	216	2.96	98.67	2.26	76.35		214	0.77	0	MPP-EM2S+	
							215	1.87	0	MPP-EM2S+	
							216	2.27	0	MPP-EM2S+	
216	219	2.98	99.33	2.63	88.26		217	1.73	0	MPP-EM2S+	
							218	3.13	0	MPP-EM2S+	
							219	1.46	0	MPP-EM2S+	
219	222	2.96	98.67	2.49	84.12		220	1.54	0	MPP-EM2S+	
							221	5.82	0	MPP-EM2S+	
							222	5.86	0	MPP-EM2S+	
222	225	2.82	94	2.48	87.94		223	1.91	0	MPP-EM2S+	
							224	44.61	28559.29	MPP-EM2S+	
							225	34.05	1116.41	MPP-EM2S+	
225	228	3.01	100.33	2.46	81.73		226	5.73	0	MPP-EM2S+	
							227	1.36	0	MPP-EM2S+	
							228	0.19	0	MPP-EM2S+	
228	231	3	100	2.68	89.33		229	0.22	0	MPP-EM2S+	
							230	2.85	0	MPP-EM2S+	

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

											AI
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							231	6.5	0	MPP-EM2S+	
231	234	2.92	97.33	2.72	93.15		232	13.1	0	MPP-EM2S+	
							233	5.53	0	MPP-EM2S+	
							234	1.92	0	MPP-EM2S+	
234	237	3	100	2.38	79.33		235.5	23.79	1636.88	MPP-EM2S+	
							236	9.52	0	MPP-EM2S+	
							237	3.73	0	MPP-EM2S+	
237	240	2.87	95.67	2.2	76.66	<111<	238	2.82	0	MPP-EM2S+	
							239	1.38	0	MPP-EM2S+	
							240	0.59	0	MPP-EM2S+	
240	243	3.04	101.33	2.94	96.71	-35<111<	241	0.69	0	MPP-EM2S+	
							242	0.6	0	MPP-EM2S+	
							243	1.1	0	MPP-EM2S+	
243	246	3.03	101	2.81	92.74		244	1.2	0	MPP-EM2S+	
							245	2.14	0	MPP-EM2S+	
							246	1.85	0	MPP-EM2S+	
246	249	2.98	99.33	2.83	94.97		247	0.63	0	MPP-EM2S+	
							248	0.35	0	MPP-EM2S+	
							249	0.46	0	MPP-EM2S+	
249	252	3.1	103.33	2.93	94.52		250	0.51	0	MPP-EM2S+	
							251	0.96	0	MPP-EM2S+	
							252	0.8	0	MPP-EM2S+	
252	255	2.91	97	2.23	76.63		253	0.95	0	MPP-EM2S+	
							254	1.14	0	MPP-EM2S+	

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							255	2.99	0	MPP-EM2S+
255	258	3.07	102.33	2.25	73.29		256	2.28	0	MPP-EM2S+
							257	3.07	0	MPP-EM2S+
							258	3.33	0	MPP-EM2S+
258	261	3.04	101.33	2.94	96.71		259	5.08	0	MPP-EM2S+
							260	4.04	0	MPP-EM2S+
							261	3.75	0	MPP-EM2S+
261	264	3.05	101.67	2.76	90.49		262	2.45	0	MPP-EM2S+
							263	2.88	0	MPP-EM2S+
							264	3.1	0	MPP-EM2S+
264	267	2.99	99.67	2.79	93.31		265	1.13	0	MPP-EM2S+
							266	3.23	0	MPP-EM2S+
							267	2.9	0	MPP-EM2S+
267	270	3.05	101.67	3.05	100		268	2.71	0	MPP-EM2S+
							269	2.83	0	MPP-EM2S+
							270	3.14	0	MPP-EM2S+
270	273	3	100	2.61	87		271	3.13	0	MPP-EM2S+
							272	2.11	0	MPP-EM2S+
							273	3.21	0	MPP-EM2S+
273	276	3.03	101	2.94	97.03		274	2.82	0	MPP-EM2S+
							275	2.48	0	MPP-EM2S+
							276	2.45	0	MPP-EM2S+
276	279	2.99	99.67	2.85	95.32		277	2.31	0	MPP-EM2S+
							278	2.31	0	MPP-EM2S+

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							279	2.92	0	MPP-EM2S+
279	282	2.99	99.67	2.94	98.33		280	2.87	0	MPP-EM2S+
							281	2.1	0	MPP-EM2S+
							282	1.97	0	MPP-EM2S+
282	285	3.03	101	2.93	96.7		283	1.83	0	MPP-EM2S+
							284	2.04	0	MPP-EM2S+
							285	1.68	0	MPP-EM2S+
285	288	3.04	101.33	3.04	100		286	1.7	0	MPP-EM2S+
							287	1.95	0	MPP-EM2S+
							288	2.35	0	MPP-EM2S+
288	291	3.08	102.67	2.4	77.92		289	1.58	0	MPP-EM2S+
							290	2.06	0	MPP-EM2S+
							291	0.95	0	MPP-EM2S+
291	294	2.96	98.67	2.72	91.89		292	1.16	0	MPP-EM2S+
							293	1.4	0	MPP-EM2S+
							294	1.04	0	MPP-EM2S+
294	297	3.07	102.33	1.54	50.16		295	1.06	0	MPP-EM2S+
							296	0.93	0	MPP-EM2S+
							297	2.13	0	MPP-EM2S+
297	300	3.18	106	2.37	74.53		298	2	0	MPP-EM2S+
							299	1.86	0	MPP-EM2S+
							300	1.46	0	MPP-EM2S+
300	303	3	100	2.79	93		301	1.5	0	MPP-EM2S+
							302	1.37	0	MPP-EM2S+

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	715
							303	1.2	0	MPP-EM2S+	
303	306	3.05	101.67	2.75	90.16		304	1.43	0	MPP-EM2S+	
							305	1.73	0	MPP-EM2S+	
							306	1.33	0	MPP-EM2S+	
306	309	3.08	102.67	2.59	84.09		307	1.55	0	MPP-EM2S+	
							308	1.67	0	MPP-EM2S+	
							309	0.98	0	MPP-EM2S+	
309	312	2.99	99.67	2.33	77.93		310	1.23	0	MPP-EM2S+	
							311	1.47	0	MPP-EM2S+	
							312	1.28	0	MPP-EM2S+	
312	315	3.04	101.33	2.52	82.89	0<111<	313	1.04	0	MPP-EM2S+	
							314	1.62	0	MPP-EM2S+	
							315	1.48	0	MPP-EM2S+	
315	318	3.02	100.67	2.28	75.5	-30<111<	316	2.12	0	MPP-EM2S+	
							317	1.95	0	MPP-EM2S+	
							318	1.51	0	MPP-EM2S+	
318	321	3	100	1.99	66.33		319	1.8	0	MPP-EM2S+	
							320	1.27	0	MPP-EM2S+	
							321	1.45	0	MPP-EM2S+	
321	324	2.9	96.67	2.65	91.38		322	1.68	0	MPP-EM2S+	
							323	1.42	0	MPP-EM2S+	
							324	0.69	0	MPP-EM2S+	
324	327	2.87	95.67	2.13	74.22		325	0.45	0	MPP-EM2S+	
							326	0.63	0	MPP-EM2S+	

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

											711
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							327	0.88	0	MPP-EM2S+	
327	330	2.98	99.33	2.43	81.54		328	0.48	0	MPP-EM2S+	
							329	0.56	0	MPP-EM2S+	
							330	0.33	0	MPP-EM2S+	
330	333	2.97	99	1.76	59.26		331	0.41	0	MPP-EM2S+	
							332	0.41	0	MPP-EM2S+	
							333	0.61	0	MPP-EM2S+	
333	336	3.03	101	2.46	81.19		334	0.81	0	MPP-EM2S+	
							335	1.05	0	MPP-EM2S+	
							336	1.99	0	MPP-EM2S+	
336	339	3.18	106	2.38	74.84		337	2.26	0	MPP-EM2S+	
							338	1.26	0	MPP-EM2S+	
							339	1.94	0	MPP-EM2S+	
339	342	2.97	99	2.76	92.93		340	1.7	0	MPP-EM2S+	
							341	2.15	0	MPP-EM2S+	
							342	2.12	0	MPP-EM2S+	
342	345	2.95	98.33	2.21	74.92		343	1.87	0	MPP-EM2S+	
							344	1.27	0	MPP-EM2S+	
							345	1.89	0	MPP-EM2S+	
345	348	3.04	101.33	2.6	85.53		346	1.49	0	MPP-EM2S+	
							347	1.2	0	MPP-EM2S+	
							348	1.15	0	MPP-EM2S+	
348	351	2.95	98.33	2.78	94.24		349	1.51	0	MPP-EM2S+	
							350	1.84	0	MPP-EM2S+	

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

											11
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							351	1.84	0	MPP-EM2S+	
351	354	2.98	99.33	2.49	83.56		352	3.26	0	MPP-EM2S+	
							353	2.23	0	MPP-EM2S+	
							354	1.57	0	MPP-EM2S+	
354	357	3.1	103.33	1.75	56.45		355	2.2	0	MPP-EM2S+	
							356	1.9	0	MPP-EM2S+	
							357	1.84	0	MPP-EM2S+	
357	360	2.91	97	2.18	74.91		358	3.2	0	MPP-EM2S+	
							359	2.73	0	MPP-EM2S+	
							360	2.76	0	MPP-EM2S+	
360	363	3.27	109	3.02	92.35		361	1.31	0	MPP-EM2S+	
							362	1.59	0	MPP-EM2S+	
							363	1.7	0	MPP-EM2S+	
363	366	3.06	102	3.06	100		364	1.74	0	MPP-EM2S+	
							365	1.38	0	MPP-EM2S+	
							366	1.7	0	MPP-EM2S+	
366	369	3.06	102	2.69	87.91		367	42.73	2242.54	MPP-EM2S+	
							368	64.73	25997.03	MPP-EM2S+	
							369	8	8385.62	MPP-EM2S+	
369	372	3.01	100.33	2.71	90.03		370	22.65	871.01	MPP-EM2S+	
							371	2.49	0	MPP-EM2S+	
							372	1.05	0	MPP-EM2S+	
372	375	3.11	103.67	2.46	79.1		373	1.95	0	MPP-EM2S+	
							374	47.57	2163.48	MPP-EM2S+	

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

						-					211
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							375	2.09	0	MPP-EM2S+	
375	378	3.05	101.67	2.88	94.43		376	2.17	0	MPP-EM2S+	
							377	1.61	0	MPP-EM2S+	
							378	27.89	1091.56	MPP-EM2S+	
378	381	2.93	97.67	2.85	97.27		379	5.39	0	MPP-EM2S+	
							380	13.81	906.17	MPP-EM2S+	
							381	7.2	0	MPP-EM2S+	
381	384	3.08	102.67	2.81	91.23		382	5.36	0	MPP-EM2S+	
							383	5.12	0	MPP-EM2S+	
							384	3.15	0	MPP-EM2S+	
384	387	3	100	2.87	95.67		385	2.39	0	MPP-EM2S+	
							386	2.17	0	MPP-EM2S+	
							387	18.01	4655.6	MPP-EM2S+	
387	390	3	100	2.94	98		388	26.97	4169.58	MPP-EM2S+	
							389	44.99	1419.43	MPP-EM2S+	
							390	7.05	0	MPP-EM2S+	
390	393	2.88	96	2.88	100		391	9.47	2010.21	MPP-EM2S+	
							392	27.01	1383.07	MPP-EM2S+	
							393	16.45	1515.11	MPP-EM2S+	
393	396	3.01	100.33	2.99	99.34		394	3.18	0	MPP-EM2S+	
							395	8.13	0	MPP-EM2S+	
							396	69.63	1554.52	MPP-EM2S+	
396	399	3	100	3	100		397	7.05	0	MPP-EM2S+	
							398	56.31	1766.07	MPP-EM2S+	

Hole Number: WR-22-198 Resp. Person: Arnaud Fontaine, Géo

//	
//	
11 7	
// /	
11-4-	
1	
/ 1 1	

											AI
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							399	1.79	0	MPP-EM2S+	
399	402	2.96	98.67	2.91	98.31		400	2.48	0	MPP-EM2S+	
							401	44.28	13592.47	MPP-EM2S+	
							402	90.23	16981.75	MPP-EM2S+	
402	405	3.07	102.33	2.88	93.81		403	37.11	2766.89	MPP-EM2S+	
							404	29.06	1370.8	MPP-EM2S+	
							405	0.46	0	MPP-EM2S+	
405	408	3	100	2.8	93.33		406	16.4	1087.72	MPP-EM2S+	
							407	5.78	0	MPP-EM2S+	
							408	3.44	0	MPP-EM2S+	
408	411	3	100	2.85	95		409	0.97	0	MPP-EM2S+	
							410	1.07	0	MPP-EM2S+	
							411	0.86	0	MPP-EM2S+	
411	414	2.92	97.33	2.68	91.78		412	2.89	0	MPP-EM2S+	
							413	1.94	0	MPP-EM2S+	

Downhole Survey

Depth	Survey Type	Azimuth	Dip
0	IsGyro	339.99	-55.38
5	IsGyro	339.64	-55.45
10	IsGyro	339.65	-55.47
15	IsGyro	339.62	-55.5
20	IsGyro	339.73	-55.44
25	IsGyro	339.77	-55.53
30	IsGyro	339.73	-55.49
35	IsGyro	339.77	-55.51

//
11 1
// /_
117
MI

				211
Depth	Survey Type	Azimuth	Dip	
40	IsGyro	339.87	-55.52	
45	IsGyro	339.93	-55.51	
50	IsGyro	339.89	-55.61	
55	IsGyro	339.97	-55.56	
60	IsGyro	339.62	-55.28	
65	IsGyro	339.61	-55.12	
70	IsGyro	339.7	-55.22	
75	IsGyro	339.62	-55.21	
80	IsGyro	339.75	-55.21	
85	IsGyro	339.79	-55.29	
90	IsGyro	339.88	-55.35	
95	IsGyro	340.02	-55.37	
100	IsGyro	340.2	-55.4	
105	IsGyro	340.08	-55.42	
110	IsGyro	340.17	-55.37	
115	IsGyro	340.23	-55.39	
120	IsGyro	340.09	-55.51	
125	IsGyro	340.18	-55.55	
130	IsGyro	340.31	-55.56	
135	IsGyro	340.28	-55.57	
140	IsGyro	340.43	-55.58	
145	IsGyro	340.43	-55.62	
150	IsGyro	340.46	-55.59	
155	IsGyro	340.47	-55.55	
160	IsGyro	340.61	-55.56	
165	IsGyro	340.68	-55.57	
170	IsGyro	340.76	-55.54	
175	IsGyro	340.81	-55.53	

Λ	
11-1	
11-1-	
HI	

				 	 	 /
Depth	Survey Type	Azimuth	Dip			
180	IsGyro	340.79	-55.57			
185	IsGyro	340.69	-55.65			
190	IsGyro	340.74	-55.65			
195	IsGyro	340.69	-55.66			
200	IsGyro	340.81	-55.69			
205	IsGyro	340.8	-55.68			
210	IsGyro	340.77	-55.78			
215	IsGyro	340.65	-55.73			
220	IsGyro	340.67	-55.76			
225	IsGyro	340.81	-55.81			
230	IsGyro	340.79	-55.8			
235	IsGyro	340.73	-55.81			
240	IsGyro	340.91	-55.85			
245	IsGyro	340.85	-55.91			
250	IsGyro	340.86	-55.88			
255	IsGyro	340.75	-55.87			
260	IsGyro	340.76	-55.91			
265	IsGyro	340.87	-55.88			
270	IsGyro	341	-55.95			
275	IsGyro	340.92	-55.97			
280	IsGyro	340.78	-55.95			
285	IsGyro	340.71	-56.13			
290	IsGyro	340.77	-56.25			
295	IsGyro	340.84	-56.23			
300	IsGyro	340.84	-56.25			
305	IsGyro	340.74	-56.29			
310	IsGyro	340.76	-56.29			
315	IsGyro	340.79	-56.26			

// 1 —	
11 +	
11 1	
11 1	
41	
/1/	
~ .	

				,	AI
Depth	Survey Type	Azimuth	Dip		
320	IsGyro	340.77	-56.2		
325	IsGyro	340.81	-56.12		
330	IsGyro	341.1	-56.16		
335	IsGyro	340.96	-56.21		
340	IsGyro	341.03	-56.25		
345	IsGyro	341.07	-56.29		
350	IsGyro	341.04	-56.32		
355	IsGyro	341.17	-56.35		
360	IsGyro	340.98	-56.39		
365	IsGyro	341.18	-56.42		
370	IsGyro	341.21	-56.43		
375	IsGyro	341.41	-56.52		
380	IsGyro	341.41	-56.52		
385	IsGyro	341.49	-56.6		
390	IsGyro	341.58	-56.76		
395	IsGyro	341.61	-56.7		
400	IsGyro	341.64	-56.69		
405	IsGyro	341.91	-56.37		

Hole Number:

WR-22-199

DRILL LOG REPORT

Resp. Person: Arnaud Fontaine, Geo

Pro	ject	Dril	ling		Collar			Coordinates
Project Name:	West-Raglan	Hole Type:	DDH	Casing:	NW	Collar Dip:	-65	Northing: 6,810,489 UTM Zone: NAD83 / UTM zone 18N
Claim Number:	1096775	Hole Size:	NQ	Casing Status:	Left In Hole	Collar Azi:	340	Easting: 472,064
Property:	Beverly	Drilling Started:	Aug 6, 2022	Oriented:	Υ	Length:	333	Elevation: 372.00
Purpose:		Drilling Completed:	Aug 11, 2022	Collar Survey Type:	APS			Logged By
Target:		Drilling Contractor:	Forage G4	Pulse EM Surveyed:	Υ			Geologist 1: Arnaud Fontaine, Géo
Operator:	Orford Mining Corporation	Core Location:	CC	Pulse EM Survey Date:	Aug 11, 2022			Geologist 2:
				Geophysics Contractor:	Crone			Geologist 3:
								Geologist 4:

Comments:

		Detailed Lithology				Mineraliz	ation		Alteration					
From	То	Lithology		From	То	Туре	Style	%	From	То	Туре	Style	Intensity	
0.0	13.85	OB, Overburden												
13.85	47.52	V3P3, Mafic Lapilli Tuff							13.85	44.5	Calcite	Along Foliation	Moderate to Strong	
		Texture Grain Size Colour	Colour Tone									Along		
		Foliated Medium Grained Grey-Gree	n Light								Sericitization	Foliation	Weak	
		Comments Lapilli tuff medium grained strongly foliated with mo calcification lapillis and weak sericitization and chlorologiving more a white-brownish colour to the unit. Ca	oritization of other,								Comments In foliated lapi sericitization of		ication and	
		and stronger sericitization take over at 44.5m, incre Oxydation due to surface weathering up to 23m. No	asing toward the chert.						44.5	47.52	Sericitization	Along Foliation	Moderate	
		,									Comments Sericite increation.	se towards	the chert	
47.52	49.67	S10, Chert		47.52	49.67	Pyrite	Disseminated	0.5	47.52	49.67	Sericitization	Along Foliation	Moderate to Strong	
		TextureGrain SizeColourBoudinedVery Fine GrainedGrey	Colour Tone Light				in the chert band	ds up to			Calcite	Fracture/Vei Controlled	n Weak	
		Comments				5% in some I	bands.				Comments			
		Intercalation of grey chert bands weakly to moderal sericitized and strongly foliated lapilli tuff. Chert bar and 45cm. vfg to mg pyrite sub-cubic in the chert a tuff between the chert bands. Vqtz or VCal of 2-5cr of the chert bands and some sheared.	nds varying between 5 and some in the lapilli								Bands of lapill strongly serici bands. Some by calcite veir	tized betwee cherts band	en the chert	

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

			Detailed Litholog	У				Mineraliza	ation		Alteration					
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity	
49.67	111.0	V3P3, Mafic Lap				89.8	91.3	Pyrite	Fracture/vein controlled	0.1	49.67	51.44	Sericitization	Along Foliation	Moderate	
		Texture Foliated Comments	Grain Size Medium Grained	Colour Greenish-Grey	Colour Tone Light			Comments Fg py in vqtz	interval up to 1%	6 locally.			Comments Sericite increation.	ase towards	the chert	
		sericitization. Ca	ongly foliated with Malcification appear and	d less sericitization	at 55m,	95.4	95.5	Pyrite	Disseminated	0.5	51.44	55	Sericitization	Along Foliation	Weak to Moderate	
			from the chert. Small Cal with up to 1% Py m 73m in V3P3.					Comments Cg patche of	Py isolated.				Calcite	Along Foliation	Weak to Moderate	
		ŭ				110.25	110.5	Pyrite	Fracture/vein controlled	0.5			Comments In foliated lap sericitization of		ication and	
									ubc Py in a calcit	e and	55	72.5	Calcite	Along Foliation	Moderate to Strong	
								quartz vein.					Sericitization	Along Foliation	Weak	
													Comments In foliated lap sericitization of	lli tuff. Calcit of the lapilli.	ication and	
											72.5	76	Sericitization	Along Foliation	Moderate to Strong	
													Calcite	Fracture/Vei Controlled		
													Comments Sericitization interval.	nigher in a V	'qtzCal	
											76	83	Calcite	Along Foliation	Moderate to Strong	
													Sericitization	Along Foliation	Weak	
														Comments In foliated lap sericitization of		ication and
											83	86	Sericitization	Along Foliation	Moderate to Strong	
													Calcite	Fracture/Vei Controlled	n Moderate	
													Comments Sericitization interval.	nigher in a V	'qtzCal	

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

		Detailed Lithology			Mineralizatio	on				Alterati	on	·
From	То	Lithology	From	То	Туре	Style	%	From	То	Туре	Style	Intensity
								86	89.5	Calcite	Along Foliation	Moderate to Strong
										Sericitization	Along Foliation	Weak
										Comments In foliated lapi sericitization of	lli tuff. Calcit of the lapilli.	fication and
								89.5	91.4	Sericitization	Along Foliation	Moderate
										Calcite ^I	racture/Vei Controlled	n Moderate
										Comments Sericitization Interval.	nigher in a V	′qtzCal
								91.4	111	Calcite	Along Foliation	Moderate to Strong
										Sericitization	Along Foliation	Weak
										Comments In foliated lapi sericitization of	lli tuff. Calcii of the lapilli.	fication and

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

		Detailed Lithology			Mineraliza	ation				Alterati	on	
From	То	Lithology	From	То	Туре	Style	%	From	То	Туре	Style	Intensity
111.0	282.0	V3P3, Mafic Lapilli Tuff	118.6	118.8	Pyrite	Fracture/vein controlled	0.5	111	120	Calcite	Along Foliation	Moderate
		Texture Grain Size Colour Colour Tone Amygdaloidal/Vesi Very Fine Grained Greenish-Grey Medium				ubic Py related to				Sericitization	Along Foliation	Weak to Moderate
		Comments Lapilli tuff mg weakly foliated with amygdoidal calcite intervals in majority.	120.06	120.1	Chalcopyrite	nterval with calci Fracture/vein controlled	te veins.			Comments In foliated lapi sericitization of		
		intercalated with more massive/bedded intervals. Passage of Cal with up to 1% Py locally and Jasper. Patches of Py locally up to 1%. and up to 1% in FV. Jasper bands appear at 123.1m, from 159m to 165m and from 189			Pyrite	Fracture/vein controlled	0.25			interval chang calcite and se	es the frequ	
		to 272m, locally more cherty then jaspery.			Comments Related to a			120	171	Calcite	Along Foliation	Weak to Moderate
										Sericitization	Spotted	Weak
			127.11	127.21	Pyrite Comments Sub-cubic fg lapilli tuff	Banded pyrite in bands ir	5 nside the			Comments Calcification d veining freque 143.5 and loca jasper materia	nce increase ally contamir I. Sericitizati	e starting at nated by on is more
			130.68	:	Pyrite	Banded	10			spotted on spe of chloritization		Background
					Comments Sub-cubic fg	pyrite in bands ir	nside the	184	276	Calcite	Spotted	Weak to Moderate
			147 09	147.32	lapilli tuff Pyrite	Fracture/vein	2			Sencilization	Fracture/Veir Controlled	¹ Weak
					Comments Fg to Mg sub	controlled -cubic Py grains contaminated by	in a			Comments Intervals with weak sericitization Vcal.		
			156	169	Pyrite	Fracture/vein controlled	0.05	276	282	Calcite	Spotted	Weak to Moderate
					Comments	aukia Du anaina				Sericitization	Pervasive	Weak
					various calcit	e-cubic Py grains e veins sometime d by jasper. Py is unit.	es			Comments Intervals with a very weak ser		
			169	186	Pyrite	Disseminated	0.01			pervasive?		
					Comments Disseminated	d fg Py in V3P3.						
						5 7						
Datailad				4 - (0								M00, 0000

		Detailed Lithology	Mineralization						Alteration				
From	То	Lithology	From	То	Туре	Style	%	From	То	Туре	Style	Intensity	
			186	211	Pyrite	Fracture/vein controlled	0.1						
					Pyrite	Patchy	0.01						
					calcite/jaspe	nedral/sub-euhed r vein. Also prese y up to 2cm wide	ence of						
			211	282	Pyrite	Patchy	0.5						
					Pyrite	Fracture/vein controlled	0.1						
					Comments Py patches ι Py in FV calc	up to 2cm in V3P cite/jasper vein.	3. Same						

//	1
- //	1_
4	1
1	1.

			Detailed Litholog	ıy				Mineraliz	ation				Alterat	ion	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
282.0	322.66	V3P2, Mafic Bom				282	284	Pyrite	Fracture/vein controlled	1	282	322.66	Calcite	Fracture/Vein Controlled	Weak to Moderate
		brecciated by calc rare sulfidic fragm and bring primary less perturbated a euhedral/sub-euhe	ents. The interval is deformation in the nd show amygdoid edral some dissem	ragments are pum s perturbed by the lapilli tuff bedding lal calcite. Py fg-n inated and more ir	akly to moderately bumice, Jasper, and the bomb fragments ling. Some intervals are fg-mg		303.3 303.3	cálcite veins Pyrite Comments Py fg to cg st Pyrite Comments One fragmen Pyrite Comments	ub-euhedral reala and jsaper fragm Disseminated ub-euhedral. Patchy at of Py of 7cm. Disseminated	o.5 5 2			breccia and a volcaniclastic	Spotted	Moderate te veins cite in n in some
						309	313.5	Pyrite Comments Vfg to Cg py to 4cm). Grains	grains and fragm ub-euhedral. Disseminated grains and fragmins are sub-euhed cherts/jasper ba	5 nents (up dral and					
						316.5	322.66	Pyrite Comments Disseminated cg euhedral.	Disseminated	5 rite fg to					
322.66	325.57	Texture Comments	Grain Size Fine Grained ed by calcification a t brecciated by calc by 15% of 1-5 cm	cite véinina from 3	23.43 to 323.85.	322.66 323.85	323.85	Pyrite Comments	Disseminated vfg py in lapilli tu ed. Local band of Patchy tured fragments	Py fg. 5	322.66		Comments Pervasive cal and calcite ve	Pervasive Fracture/Vein Controlled cification in the lins breccia are fragments interpretation.	Moderate e lapilli tuff ound the

		Detailed Lithology		Mineralization					Alteration				
From	То	Lithology		From	То	Туре	Style	%	From	То	Туре	Style	Intensity
325.57	327.33	PF, Sulphidic Pyroclastic		325.57	326.3	Pyrite	Patchy	10	325.57	326.9	Calcite	Pervasive	Moderate
		Texture Grain Size Comments	Colour Colour Tone Grey-Brown Medium			Comments fg to cg Py def disseminated interval.					Comments Calcification of	f lapilli tuff la	yers.
		Interval composed of 30% beds of fg to lapilli tuff and chert. The beds are pertu by either calcite veins and the differenti Moderate sericitization in the bottom of	rbed and locally strongly deformed ation between the fragment size.	326.65	327.33	Pyrite Comments	Banded	15	326.9	327.33	Calcite Sericitization	Pervasive Banded	Moderate Moderate
						fg to cg Py up bands or as fra					Comments Calcification of bands around		
327.33	333.0	V3P4, Mafic Ash Tuff		327.33	333	Pyrite	Patchy	0.5	327.33	333	Sericitization	Banded	Weak to Moderate
		Texture Grain Size Bedded Very Fine Grained Comments Interval of ash tuff with few lapilli with sebands. 1% of Py fragments fg to cg.	Colour Colour Tone Grey-Brown Light ericitization intercalated in the			Comments Py fragments to beds. Few in F	up to 2cm in as V.	sh tuff			Comments Bands of serio	citzation in as	

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

					Samplin	ng				·
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
15.0	16.5	E5840528	Core	0.00378	0.001	0.0025	0.00342	15.9	0.005	
21.0	22.5	E5840529	Core	0.00477	0.001	0.0025	0.00888	39.9	0.005	
27.0	28.5	E5840531	Core	0.00422	0.001	0.0025	0.0055	13.1	0.005	
33.0	34.5	E5840532	Core	0.0056	0.001	0.0025	0.00828	14.2	0.005	
39.0	40.5	E5840533	Core	0.00465	0.002	0.0025	0.00271	13.7	0.005	
44.48	45.5	E5840534	Core	0.00916	0.001	0.0025	0.00782	26.1	0.005	
45.5	46.48	E5840535	Core	0.00668	0.001	0.0025	0.00783	13.1	0.005	
46.48	47.54	E5840536	Core	0.00628	0.001	0.0025	0.00939	11	0.13	
47.54	48.66	E5840537	Core	0.00483	0.001	0.0025	0.0051	11.4	0.62	
48.66	49.82	E5840538	Core	0.00693	0.001	0.0025	0.00205	8.8	0.63	
49.82	51.0	E5840540	Core	0.0132	0.001	0.0025	0.0132	30	0.08	
51.0	52.5	E5840541	Core	0.0125	0.001	0.0025	0.0132	27.5	0.005	
57.0	58.5	E5840542	Core	0.00462	0.001	0.0025	0.00378	15.4	0.005	
63.0	64.5	E5840543	Core	0.00298	0.0005	0.0025	0.00341	13.2	0.005	
70.0	71.5	E5840544	Core	0.00331	0.001	0.0025	0.00582	15.5	0.02	
71.5	73.0	E5840545	Core	0.00343	0.001	0.0025	0.00406	14.5	0.1	
73.0	74.5	E5840546	Core	0.00411	0.001	0.0025	0.0047	16.5	0.1	
74.5	76.0	E5840547	Core	0.00381	0.001	0.0025	0.00494	16.1	0.15	
76.0	77.5	E5840548	Core	0.00316	0.001	0.0025	0.00516	15.4	0.03	
81.5	83.0	E5840549	Core	0.0029	0.001	0.0025	0.00749	14.3	0.02	
81.5	83.0	E5840550	Duplicate	0.00286	0.0005	0.0025	0.00775	15.2	0.03	
83.0	84.26	E5840551	Core	0.00302	0.0005	0.0025	0.00133	15.1	0.07	
84.26	85.58	E5840552	Core	0.00352	0.001	0.0025	0.00347	17.9	0.005	
85.58	86.9	E5840553	Core	0.00316	0.001	0.0025	0.00655	16.5	0.005	
86.9	88.4	E5840554	Core	0.00388	0.0005	0.0025	0.00267	19.2	0.005	
88.4	89.82	E5840555	Core	0.00355	0.001	0.0025	0.000025	15.3	0.04	
89.82	91.3	E5840556	Core	0.00381	0.001	0.0025	0.000025	17	0.16	

	1
//	1
11	1
14	/
-	F:

									,	AI
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
91.3	92.5	E5840557	Core	0.00275	0.0005	0.0025	0.00463	14.9	0.01	
99.0	100.5	E5840558	Core	0.00567	0.001	0.0025	0.00348	24.8	0.005	
105.0	106.5	E5840560	Core	0.00343	0.001	0.0025	0.00261	13.7	0.02	
106.5	108.0	E5840561	Core	0.00343	0.001	0.0025	0.00294	15.8	0.005	
108.0	109.5	E5840562	Core	0.00434	0.0005	0.0025	0.00285	19.7	0.03	
109.5	111.0	E5840563	Core	0.00308	0.0005	0.0025	0.00336	10.6	0.11	
111.0	112.5	E5840564	Core	0.00303	0.001	0.0025	0.0103	15	0.12	
120.0	121.5	E5840565	Core	0.00279	0.001	0.0025	0.0182	7.8	0.07	
126.0	127.5	E5840566	Core	0.00488	0.001	0.0025	0.00547	23.4	0.22	
132.0	133.5	E5840567	Core	0.00829	0.001	0.0025	0.0053	31.6	0.15	
138.0	139.5	E5840568	Core	0.00595	0.001	0.0025	0.00557	28.9	0.1	
145.5	147.0	E5840569	Core	0.00703	0.001	0.0025	0.00656	30.3	0.1	
147.0	147.42	E5840570	Core	0.00463	0.002	0.0025	0.00342	19.3	0.47	
147.42	148.5	E5840572	Core	0.00721	0.001	0.0025	0.00465	28.2	0.11	
153.0	154.2	E5840573	Core	0.0062	0.001	0.0025	0.00622	29.7	0.11	
159.0	160.5	E5840574	Core	0.00571	0.001	0.0025	0.00503	25.2	0.39	
165.0	166.5	E5840575	Core	0.00578	0.001	0.0025	0.0089	25.5	0.13	
171.0	172.5	E5840576	Core	0.00822	0.001	0.0025	0.00564	33.7	0.07	
177.0	178.5	E5840577	Core	0.00868	0.001	0.0025	0.00518	32.6	0.05	
183.0	184.5	E5840578	Core	0.00843	0.001	0.0025	0.00644	35.1	0.18	
189.0	190.5	E5840579	Core	0.00548	0.001	0.0025	0.00466	22.6	0.23	
189.0	190.5	E5840580	Duplicate	0.00593	0.001	0.0025	0.00306	22.1	0.14	
195.0	196.5	E5840581	Core	0.00755	0.001	0.0025	0.004	29	0.08	
201.0	202.5	E5840582	Core	0.00557	0.0005	0.0025	0.00384	22.3	0.1	
207.0	208.5	E5840583	Core	0.00856	0.0005	0.0025	0.00483	30.3	0.13	
213.0	214.5	E5840584	Core	0.00755	0.001	0.0025	0.00563	28.3	0.26	
219.0	220.5	E5840585	Core	0.00819	0.001	0.0025	0.00487	30.2	0.15	
225.0	226.5	E5840586	Core	0.00956	0.0005	0.0025	0.00423	33.8	0.08	

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo From To Sample Number Sample Type Ni (%) Pd (ppm Pt (ppm) Cu (%) Co (ppm) S (%) 231.0 232.5 E5840587 Core 0.00741 0.001 0.0025 0.00505 26.4 0.18 237.0 238.5 E5840588 Core 0.00497 0.0005 0.0025 0.00479 18.8 0.26 243.0 244.5 E5840589 Core 0.00723 0.001 0.0025 0.0124 34 0.68 249.0 250.5 E5840591 Core 0.00182 0.001 0.0025 0.00332 10.1 0.18 255.0 256.5 E5840592 Core 0.00192 0.001 0.0025 0.00014 14.9 0.11 261.0 262.5 E5840593 Core 0.00294 0.0005 0.0025 0.0001 15.3 0.1 267.0 268.5 E5840594 Core 0.00185 0.0005 0.0025 0.00091 10.7 0.12 273.0 274.5 E5840595 Core 0.00419 0.001 0.0025 0.00469 22 0.23 279.0 280.5 E5840596 Core 0.0074 34 0.17 0.001 0.0025 0.0128 282.0 280.5 E5840597 Core 0.00699 0.001 0.0025 0.00199 32.5 0.32 283.5 282.0 E5840598 Core 0.00293 0.0005 0.0025 0.00131 9.8 0.14 288.0 289.5 E5840599 Core 0.0028 0.001 0.0025 0.00172 16.1 0.19 294.0 295.5 E5840601 Core 0.00308 0.0005 0.0025 0.00021 12.6 0.17 298.5 300.0 E5840602 Core 0.00308 0.0025 0.0043 15.6 0.14 0.0005 303.0 304.5 E5840603 Core 0.00201 0.0005 0.0025 0.00115 9.8 0.48 304.5 306.0 E5840604 Core 0.00212 0.0005 0.0025 0.00436 10.5 0.8 306.0 307.5 E5840605 Core 0.0015 0.0005 0.0025 0.0113 5.2 0.38 307.5 309.0 E5840606 Core 0.0019 0.0005 0.0025 0.00553 6.7 0.2 309.0 310.5 E5840607 Core 0.00122 0.0005 0.0025 0.00659 4.8 1.02 310.5 312.0 E5840608 Core 0.0014 0.0005 0.0025 0.00088 3.9 0.96 312.0 313.5 E5840609 Core 0.00149 0.0005 0.0025 0.00186 7.6 3.62 312.0 313.5 E5840610 **Duplicate** 0.00137 0.0005 0.0025 0.00165 5.6 2.52 313.5 315.0 E5840611 Core 7 0.00133 0.0005 0.0025 0.00217 0.81 315.0 316.5 E5840612 Core 0.0005 0.0013 0.0025 0.00207 7.7 0.99 316.5 318.0 E5840613 Core 0.0014 0.0005 0.0025 0.00355 7.8 1.22 318.0 319.5 E5840614 Core 0.00173 0.0005 0.0025 0.00065 4.6 1.41 319.5 321.0 E5840615 Core 0.00139 0.0005 0.0025 0.00089 3.9 1.24 321.0 322.5 E5840616 Core 0.00151 0.0005 0.0025 0.00129 9.5 2.59

Hole Numb	er: WR-2	22-199							Resp. Person: Arnaud Fontaine, Géo	AF
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	*
322.5	323.76	E5840617	Core	0.00154	0.0005	0.0025	0.00157	6.3	0.39	
323.76	325.18	E5840618	Core	0.00074	0.0005	0.0025	0.0013	3	2.82	
325.18	326.5	E5840619	Core	0.0013	0.0005	0.0025	0.00091	6.3	7.84	
326.5	327.5	E5840621	Core	0.0027	0.0005	0.0025	0.00186	15.1	7.97	
327.5	329.0	E5840622	Core	0.00284	0.0005	0.0025	0.00267	13.8	1.44	
329.0	330.5	E5840623	Core	0.00266	0.001	0.0025	0.00312	10.3	0.28	
					Struc	ture				
From	То	Structure Type S	Structure Intensity	Comments						
13.85	73.22	Foliation		Strong foliation with	h many feature o	of schistosity in	apilli tuff.			
73.22	75.84	Quartz vein		Interval of 15% Vq	tzCal with higher	r sericitization a	nd more deforma	tion in the lapill	li tuff with up to 1% Py sub-cubic fg.	
75.84	84	Foliation		Strong foliation with	h many feature o	of schistosity in	apilli tuff.			
84	85.6	Quartz vein		Interval of 15% Vq	tzCal with higher	r sericitization a	nd more deforma	tion in the lapill	li tuff with up to 1% Py sub-cubic fg.	
85.6	89.81	Foliation		Strong foliation with	h many feature o	of schistosity in	apilli tuff.			
89.81	91.24	Quartz vein		Interval of 15% Vq	tzCal with higher	r sericitization a	nd more deforma	tion in the lapill	li tuff with up to 1% Py sub-cubic fg.	
91.24	105.46	Foliation		Strong foliation with	h many feature o	of schistosity in	apilli tuff.			
105.46	106.15	Calcite vein		Calcite vein breccia	а.					
109.55	110.76	Calcite vein		Calcite vein breccia	a. With also Vqtz	Z.				
160	167	Calcite vein		Interval with 10% C	Calcite veining co	ontaminated by	Jasper giving a re	edish tinge		
186	284	Calcite vein		Interval with 10% C	Calcite veining co	ontaminated by	Jasper giving a r	edish tinge and	l actual jasper.	
					Point St	ructure				
Depth	Structure Ty	ype Structure Inte	ensity Alpha Angle	Beta Ga Angle A	amma Core	Angle Com	nents			
49.13	Quartz vei	n				85 White	quartz vein on ex	ktremity of a ch	ert band	
84.5	Quartz vei	n			(65 Gene	al TCA of the Vq	tzCal in the are).	
143.5	Foliation				8	85 Foliat	on in V3P3.			
330	Bedding		40	335		Beds	of ash tuff.			

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
			Ge	eotechnical					Mags	us
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
13.85	15	1.15	100	0.39	33.91		14	0.17	0	MPP-EM2S+
							15	0.61	0	MPP-EM2S+
15	18	2.86	95.33	1.76	61.54		16	0.81	0	MPP-EM2S+
							17	1.47	0	MPP-EM2S+
							18	1.65	0	MPP-EM2S+
18	21	3.09	103	2.32	75.08		19	1.04	0	MPP-EM2S+
							20	1.17	0	MPP-EM2S+
							21	1.39	0	MPP-EM2S+
21	24	2.9	96.67	2.4	82.76		22	1.82	0	MPP-EM2S+
							23	1.73	0	MPP-EM2S+
							24	1.61	0	MPP-EM2S+
24	27	2.96	98.67	2.08	70.27		25	1.89	0	MPP-EM2S+
							26	1.66	0	MPP-EM2S+
							27	2.44	0	MPP-EM2S+
27	30	2.91	97	2.62	90.03		28	0.65	0	MPP-EM2S+
							29	0.89	0	MPP-EM2S+
							30	1.03	0	MPP-EM2S+
30	33	3.15	105	2.88	91.43		31	1.23	0	MPP-EM2S+
							32	0.77	0	MPP-EM2S+
							33	1.08	0	MPP-EM2S+
33	36	2.98	99.33	2.77	92.95		34	1.3	0	MPP-EM2S+
							35	1.39	0	MPP-EM2S+

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

											111
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							36	1.37	0	MPP-EM2S+	
36	39	2.99	99.67	2.38	79.6		37	1.27	0	MPP-EM2S+	
							38	1.9	0	MPP-EM2S+	
							39	1.93	0	MPP-EM2S+	
39	42	3.05	101.67	2.16	70.82		40	1.54	0	MPP-EM2S+	
							41	1.91	0	MPP-EM2S+	
							42	2.29	0	MPP-EM2S+	
42	45	2.98	99.33	2.51	84.23		43	2.31	0	MPP-EM2S+	
							44	1.91	0	MPP-EM2S+	
							45	2.73	0	MPP-EM2S+	
45	48	2.92	97.33	2.45	83.9		46	2.44	0	MPP-EM2S+	
							47	0.54	0	MPP-EM2S+	
							48	0.58	0	MPP-EM2S+	
48	51	3.08	102.67	2.16	70.13		49	0.88	0	MPP-EM2S+	
							50	1.37	0	MPP-EM2S+	
							51	1.44	0	MPP-EM2S+	
51	54	2.96	98.67	2.23	75.34		52	2.14	0	MPP-EM2S+	
							53	0.94	0	MPP-EM2S+	
							54	0.72	0	MPP-EM2S+	
54	57	3	100	2.62	87.33		55	0.94	0	MPP-EM2S+	
							56	0.91	0	MPP-EM2S+	
	<u> </u>						57	0.79	0	MPP-EM2S+	
57	60	3.05	101.67	1.72	56.39		58	0.61	0	MPP-EM2S+	
							59	0.92	0	MPP-EM2S+	

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

_		_	_								7 1.
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							60	1.09	0	MPP-EM2S+	
60	63	3.03	101	1.72	56.77		61	0.67	0	MPP-EM2S+	
							62	0.72	0	MPP-EM2S+	
							63	1.13	0	MPP-EM2S+	
63	66	2.94	98	2.18	74.15		64	0.69	0	MPP-EM2S+	
							65	0.92	0	MPP-EM2S+	
							66	0.69	0	MPP-EM2S+	
66	69	3.04	101.33	2.77	91.12		67	0.66	0	MPP-EM2S+	
							68	0.64	0	MPP-EM2S+	
							69	0.78	0	MPP-EM2S+	
69	72	3.02	100.67	2.49	82.45		70	0.84	0	MPP-EM2S+	
							71	1.21	0	MPP-EM2S+	
							72	1.01	0	MPP-EM2S+	
72	75	2.83	94.33	1.6	56.54		73	1.01	0	MPP-EM2S+	
							74	0.9	0	MPP-EM2S+	
							75	1.07	0	MPP-EM2S+	
75	78	2.96	98.67	2.58	87.16		76	1.12	0	MPP-EM2S+	
							77	0.95	0	MPP-EM2S+	
							78	1.01	0	MPP-EM2S+	
78	81	3.08	102.67	2.58	83.77		79	1.15	0	MPP-EM2S+	
							80	1.09	0	MPP-EM2S+	
							81	1.17	0	MPP-EM2S+	
81	84	3.02	100.67	2.32	76.82		82	1.42	0	MPP-EM2S+	
							83	1.13	0	MPP-EM2S+	

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							84	1.42	0	MPP-EM2S+
84	87	3.02	100.67	2.38	78.81		85	1.37	0	MPP-EM2S+
							86	1.03	0	MPP-EM2S+
							87	1.47	0	MPP-EM2S+
87	90	3.09	103	2.55	82.52		88	1.91	0	MPP-EM2S+
							89	1.8	0	MPP-EM2S+
							90	1.97	0	MPP-EM2S+
90	93	3.03	101	1.94	64.03		91	0.69	0	MPP-EM2S+
							92	0.51	0	MPP-EM2S+
							93	0.47	0	MPP-EM2S+
93	96	2.97	99	2.67	89.9		94	0.66	0	MPP-EM2S+
							95	0.69	0	MPP-EM2S+
							96	0.61	0	MPP-EM2S+
96	99	2.89	96.33	2.58	89.27		97	0.79	0	MPP-EM2S+
							98	0.92	0	MPP-EM2S+
							99	1.02	0	MPP-EM2S+
99	102	3.08	102.67	2.94	95.45		100	1	0	MPP-EM2S+
							101	0.7	0	MPP-EM2S+
							102	0.76	0	MPP-EM2S+
102	105	3.07	102.33	2.91	94.79		103	1.06	0	MPP-EM2S+
							104	1	0	MPP-EM2S+
							105	1.04	0	MPP-EM2S+
105	108	3.01	100.33	2.67	88.7		106	0.96	0	MPP-EM2S+
							107	1.01	0	MPP-EM2S+

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	AT
							108	1.03	0	MPP-EM2S+	
108	111	2.95	98.33	2.69	91.19		109	0.98	0	MPP-EM2S+	
							110	1.2	0	MPP-EM2S+	
							111	0.52	0	MPP-EM2S+	
111	114	3.07	102.33	2.85	92.83		112	0.83	0	MPP-EM2S+	
							113	0.92	0	MPP-EM2S+	
							114	1.2	0	MPP-EM2S+	
114	117	2.91	97	2.59	89		115	0.86	0	MPP-EM2S+	
							116	0.98	0	MPP-EM2S+	
							117	0.85	0	MPP-EM2S+	
117	120	2.94	98	0.52	17.69	1.5m drilled in BQ in that run.	118	0.77	0	MPP-EM2S+	
							119	0.57	0	MPP-EM2S+	
							120	0.68	0	MPP-EM2S+	
120	123	2.67	89	1.51	56.55		121	0.82	0	MPP-EM2S+	
							122	0.72	0	MPP-EM2S+	
							123	1.01	0	MPP-EM2S+	
123	126	2.96	98.67	2.7	91.22		124	1.36	0	MPP-EM2S+	
							125	1.05	0	MPP-EM2S+	
							126	1.12	0	MPP-EM2S+	
126	129	2.98	99.33	2.84	95.3		127	1.12	0	MPP-EM2S+	
							128	1.19	0	MPP-EM2S+	
							129	0.7	0	MPP-EM2S+	
129	132	3.04	101.33	2.79	91.78		130	0.67	0	MPP-EM2S+	
							131	0.86	0	MPP-EM2S+	

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	211
							132	0.87	0	MPP-EM2S+	
132	135	3.04	101.33	2.84	93.42		133	1.08	0	MPP-EM2S+	
							134	0.72	0	MPP-EM2S+	
							135	0.74	0	MPP-EM2S+	
135	138	2.94	98	2.85	96.94		136	1.1	0	MPP-EM2S+	
							137	0.87	0	MPP-EM2S+	
							138	1.19	0	MPP-EM2S+	
138	141	3.04	101.33	2.95	97.04		139	0.53	0	MPP-EM2S+	
							140	0.55	0	MPP-EM2S+	
							141	0.7	0	MPP-EM2S+	
141	144	3.01	100.33	2.87	95.35		142	0.84	0	MPP-EM2S+	
							143	0.98	0	MPP-EM2S+	
							144	0.63	0	MPP-EM2S+	
144	147	3.1	103.33	2.97	95.81		145	0.72	0	MPP-EM2S+	
							146	0.86	0	MPP-EM2S+	
							147	0.71	0	MPP-EM2S+	
147	150	2.84	94.67	2.81	98.94		148	0.84	0	MPP-EM2S+	
							149	0.93	0	MPP-EM2S+	
							150	0.9	0	MPP-EM2S+	
150	153	3	100	2.72	90.67		151	0.59	0	MPP-EM2S+	
							152	0.55	0	MPP-EM2S+	
							153	0.6	0	MPP-EM2S+	
153	156	3.12	104	3.01	96.47		154	0.83	0	MPP-EM2S+	
							155	0.81	0	MPP-EM2S+	

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

Géo AF

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	711
							156	0.93	0	MPP-EM2S+	
156	159	3.04	101.33	2.97	97.7		157	1.19	0	MPP-EM2S+	
							158	1.01	0	MPP-EM2S+	
							159	0.71	0	MPP-EM2S+	
159	162	2.97	99	2.72	91.58		160	0.61	0	MPP-EM2S+	
							161	0.58	0	MPP-EM2S+	
							162	0.88	0	MPP-EM2S+	
162	165	2.96	98.67	2.8	94.59		163	0.7	0	MPP-EM2S+	
							164	0.52	0	MPP-EM2S+	
							165	0.6	0	MPP-EM2S+	
165	168	2.94	98	2.59	88.1		166	0.5	0	MPP-EM2S+	
							167	0.87	0	MPP-EM2S+	
							168	0.82	0	MPP-EM2S+	
168	171	3.04	101.33	2.6	85.53		169	0.66	0	MPP-EM2S+	
							170	0.95	0	MPP-EM2S+	
							171	1.03	0	MPP-EM2S+	
171	174	3.05	101.67	2.82	92.46		172	0.93	0	MPP-EM2S+	
							173	1.15	0	MPP-EM2S+	
							174	1.51	0	MPP-EM2S+	
174	177	2.99	99.67	2.94	98.33		175	1.58	0	MPP-EM2S+	
							176	1.45	0	MPP-EM2S+	
							177	1.56	0	MPP-EM2S+	
177	180	2.99	99.67	2.89	96.66		178	1.57	0	MPP-EM2S+	
							179	1.35	0	MPP-EM2S+	

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							180	1.26	0	MPP-EM2S+	
180	183	2.98	99.33	2.79	93.62		181	1.66	0	MPP-EM2S+	
							182	1.42	0	MPP-EM2S+	
							183	1.74	0	MPP-EM2S+	
183	186	3.03	101	2.85	94.06		184	1.98	0	MPP-EM2S+	
							185	1.47	0	MPP-EM2S+	
							186	0.96	0	MPP-EM2S+	
186	189	2.95	98.33	2.84	96.27		187	1.02	0	MPP-EM2S+	
							188	1.27	0	MPP-EM2S+	
							189	1.05	0	MPP-EM2S+	
189	192	2.94	98	2.91	98.98		190	0.89	0	MPP-EM2S+	
							191	1.5	0	MPP-EM2S+	
							192	2.2	0	MPP-EM2S+	
192	195	3.07	102.33	2.9	94.46		193	1.79	0	MPP-EM2S+	
							194	1.46	0	MPP-EM2S+	
							195	1.51	0	MPP-EM2S+	
195	198	3	100	2.92	97.33		196	0.53	0	MPP-EM2S+	
							197	4.14	0	MPP-EM2S+	
							198	1.13	0	MPP-EM2S+	
198	201	2.92	97.33	2.64	90.41		199	0.9	0	MPP-EM2S+	
							200	1.25	0	MPP-EM2S+	
							201	1.57	0	MPP-EM2S+	
201	204	2.94	98	2.8	95.24		202	1.18	0	MPP-EM2S+	
							203	1.45	0	MPP-EM2S+	

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							204	1.02	0	MPP-EM2S+
204	207	3.14	104.67	2.99	95.22		205	0.82	0	MPP-EM2S+
							206	1.09	0	MPP-EM2S+
							207	2.51	0	MPP-EM2S+
207	210	2.89	96.33	2.79	96.54		208	1.07	0	MPP-EM2S+
							209	1.02	0	MPP-EM2S+
							210	1.35	0	MPP-EM2S+
210	213	3.14	104.67	3.06	97.45		211	1.32	0	MPP-EM2S+
							212	1.76	0	MPP-EM2S+
							213	1.57	0	MPP-EM2S+
213	216	2.97	99	2.94	98.99		214	1.05	0	MPP-EM2S+
							215	0.84	0	MPP-EM2S+
							216	1.37	0	MPP-EM2S+
216	219	3.01	100.33	2.87	95.35		217	0.98	0	MPP-EM2S+
							218	0.9	0	MPP-EM2S+
							219	0.79	0	MPP-EM2S+
219	222	3	100	2.94	98		220	0.65	0	MPP-EM2S+
							221	0.8	0	MPP-EM2S+
							222	0.77	0	MPP-EM2S+
222	225	3.05	101.67	3.01	98.69		223	1.03	0	MPP-EM2S+
							224	0.71	0	MPP-EM2S+
							225	0.66	0	MPP-EM2S+
225	228	3.09	103	3	97.09		226	1.1	0	MPP-EM2S+
							227	1.04	0	MPP-EM2S+

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	7(1
							228	1.1	0	MPP-EM2S+	
228	231	2.87	95.67	2.6	90.59		229	1.2	0	MPP-EM2S+	
							230	0.98	0	MPP-EM2S+	
							231	0.96	0	MPP-EM2S+	
231	234	2.95	98.33	2.79	94.58		232	1.17	0	MPP-EM2S+	
							233	0.65	0	MPP-EM2S+	
							234	0.86	0	MPP-EM2S+	
234	237	3.02	100.67	2.87	95.03		235	1.12	0	MPP-EM2S+	
							236	0.69	0	MPP-EM2S+	
							237	0.68	0	MPP-EM2S+	
237	240	2.99	99.67	2.97	99.33		238	1.23	0	MPP-EM2S+	
							239	0.71	0	MPP-EM2S+	
							240	0.86	0	MPP-EM2S+	
240	243	3	100	2.87	95.67		241	0.62	0	MPP-EM2S+	
							242	0.67	0	MPP-EM2S+	
							243	0.54	0	MPP-EM2S+	
243	246	2.97	99	2.77	93.27		244	0.47	0	MPP-EM2S+	
							245	0.4	0	MPP-EM2S+	
							246	0.81	0	MPP-EM2S+	
246	249	2.82	94	2.76	97.87		247	0.83	0	MPP-EM2S+	
							248	0.57	0	MPP-EM2S+	
							249	0.69	0	MPP-EM2S+	
249	252	3.04	101.33	2.64	86.84		250	0.3	0	MPP-EM2S+	
							251	0.35	0	MPP-EM2S+	

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	711
							252	0.41	0	MPP-EM2S+	
252	255	2.99	99.67	2.83	94.65		253	0.5	0	MPP-EM2S+	
							254	0.54	0	MPP-EM2S+	
							255	0.38	0	MPP-EM2S+	
255	258	3	100	2.87	95.67		256	0.32	0	MPP-EM2S+	
							257	0.92	0	MPP-EM2S+	
							258	0.72	0	MPP-EM2S+	
258	261	2.99	99.67	2.97	99.33		259	0.51	0	MPP-EM2S+	
							260	0.6	0	MPP-EM2S+	
							261	0.55	0	MPP-EM2S+	
261	264	2.91	97	2.89	99.31		262	0.33	0	MPP-EM2S+	
							263	0.44	0	MPP-EM2S+	
							264	0.76	0	MPP-EM2S+	
264	267	3.12	104	2.97	95.19		265	0.75	0	MPP-EM2S+	
							266	0.26	0	MPP-EM2S+	
							267	0.65	0	MPP-EM2S+	
267	270	2.9	96.67	2.74	94.48		268	0.61	0	MPP-EM2S+	
							269	0.71	0	MPP-EM2S+	
							270	0.6	0	MPP-EM2S+	
270	273	3.1	103.33	3.01	97.1		271	0.5	0	MPP-EM2S+	
							272	0.34	0	MPP-EM2S+	
							273	1.05	0	MPP-EM2S+	
273	276	2.97	99	2.82	94.95		274	0.78	0	MPP-EM2S+	
							275	0.94	0	MPP-EM2S+	

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							276	1.54	0	MPP-EM2S+
276	279	2.93	97.67	2.72	92.83		277	0.83	0	MPP-EM2S+
							278	0.82	0	MPP-EM2S+
							279	1.05	0	MPP-EM2S+
279	282	2.91	97	2.84	97.59		280	1.14	0	MPP-EM2S+
							281	0.85	0	MPP-EM2S+
							282	1.56	0	MPP-EM2S+
282	285	3.09	103	2.77	89.64		283	4.01	0	MPP-EM2S+
							284	1.47	0	MPP-EM2S+
							285	0.85	0	MPP-EM2S+
285	288	2.96	98.67	2.92	98.65		286	0.71	0	MPP-EM2S+
							287	1.08	0	MPP-EM2S+
							288	11.54	0	MPP-EM2S+
288	291	2.94	98	2.79	94.9		289	8.75	0	MPP-EM2S+
							290	13.48	0	MPP-EM2S+
							291	2.23	0	MPP-EM2S+
291	294	2.98	99.33	2.78	93.29		292	0.93	0	MPP-EM2S+
							293	1.72	0	MPP-EM2S+
							294	1.62	0	MPP-EM2S+
294	297	3.01	100.33	2.91	96.68		295	1.25	0	MPP-EM2S+
							296	1.55	0	MPP-EM2S+
							297	1.74	0	MPP-EM2S+
297	300	2.81	93.67	2.75	97.86		298	1.44	0	MPP-EM2S+
							299	3.01	0	MPP-EM2S+

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							300	1.95	0	MPP-EM2S+
300	303	3.03	101	2.79	92.08		301	2.21	0	MPP-EM2S+
							302	2.02	0	MPP-EM2S+
							303	1.82	0	MPP-EM2S+
303	306	3.04	101.33	2.89	95.07		304	0.84	0	MPP-EM2S+
							305	1.12	0	MPP-EM2S+
							306	25.13	0	MPP-EM2S+
306	309	3	100	2.98	99.33		307	0.65	0	MPP-EM2S+
							308	0.65	0	MPP-EM2S+
							309	0.87	0	MPP-EM2S+
309	312	2.97	99	2.97	100		310	105.67	0	MPP-EM2S+
							311	1.3	0	MPP-EM2S+
							312	1.07	0	MPP-EM2S+
312	315	2.9	96.67	2.85	98.28		313	1.18	0	MPP-EM2S+
							314	0.68	0	MPP-EM2S+
							315	1.02	0	MPP-EM2S+
315	318	3.08	102.67	3.03	98.38		316	1.22	0	MPP-EM2S+
							317	1.61	0	MPP-EM2S+
							318	1.02	0	MPP-EM2S+
318	321	3.16	105.33	3.05	96.52	<111 <m. line<="" ori="" td="" top=""><td>319</td><td>1.49</td><td>0</td><td>MPP-EM2S+</td></m.>	319	1.49	0	MPP-EM2S+
							320	1.56	0	MPP-EM2S+
							321	1.41	0	MPP-EM2S+
321	324	3.09	103	3.02	97.73	<111 <m< td=""><td>322</td><td>1.64</td><td>0</td><td>MPP-EM2S+</td></m<>	322	1.64	0	MPP-EM2S+
							323	1.25	0	MPP-EM2S+

Hole Number: WR-22-199

Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							324	0.21	0	MPP-EM2S+
324	327	3.04	101.33	2.92	96.05	<111 <m< td=""><td>325</td><td>0</td><td>0</td><td>MPP-EM2S+</td></m<>	325	0	0	MPP-EM2S+
							326	0.78	0	MPP-EM2S+
							327	0.13	0	MPP-EM2S+
327	330	2.8	93.33	2.42	86.43	<111<	328	0.56	0	MPP-EM2S+
							329	0.23	0	MPP-EM2S+
							330	0.32	0	MPP-EM2S+
330	333	3.37	112.33	3.2	94.96		331	0.03	0	MPP-EM2S+
							332	0.17	0	MPP-EM2S+

Downhole Survey

Depth	Survey Type	Azimuth	Dip	
0	IsGyro	339.9	-64.08	
5	IsGyro	340.57	-64.06	
10	IsGyro	340.72	-64.21	
15	IsGyro	340.91	-64.15	
20	IsGyro	341.1	-63.92	
25	IsGyro	341.34	-63.83	
30	IsGyro	341.73	-63.76	
35	IsGyro	341.82	-63.78	
40	IsGyro	341.83	-63.87	
45	IsGyro	342.09	-63.84	
50	IsGyro	342.06	-63.59	
55	IsGyro	342.33	-63.31	
60	IsGyro	342.43	-63.14	
65	IsGyro	342.47	-62.96	
70	IsGyro	342.51	-62.85	

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo

// /_
11 7
// / _
124
17
211

				 	 	MI
Depth	Survey Type	Azimuth	Dip			
75	IsGyro	342.46	-62.91			
80	IsGyro	342.55	-62.95			
85	IsGyro	342.82	-62.95			
90	IsGyro	342.97	-62.92			
95	IsGyro	343.16	-62.96			
100	IsGyro	343.32	-62.93			
105	IsGyro	343.3	-62.89			
110	IsGyro	343.45	-62.95			
115	IsGyro	343.63	-63.02			
120	IsGyro	344.1	-63.04			
125	IsGyro	344.47	-63.09			
130	IsGyro	344.63	-63.18			
135	IsGyro	344.93	-63.13			
140	IsGyro	345	-63.23			
145	IsGyro	345.03	-63.26			
150	IsGyro	345.4	-63.28			
155	IsGyro	345.38	-63.35			
160	IsGyro	345.43	-63.4			
165	IsGyro	345.53	-63.46			
170	IsGyro	345.75	-63.47			
175	IsGyro	345.91	-63.53			
180	IsGyro	346.13	-63.55			
185	IsGyro	346.27	-63.55			
190	IsGyro	346.53	-63.62			
195	IsGyro	346.88	-63.67			
200	IsGyro	347.24	-63.69			
205	IsGyro	347.03	-63.72			
210	IsGyro	347.24	-63.72			

Hole Number: WR-22-199 Resp. Person: Arnaud Fontaine, Géo Dip Depth **Survey Type Azimuth** 215 IsGyro 347.54 -63.67 IsGyro 220 347.63 -63.72 225 IsGyro 347.92 -63.72 230 IsGyro 347.85 -63.65 235 IsGyro 347.8 -63.7 240 IsGyro 347.91 -63.72 245 IsGyro 347.88 -63.74 IsGyro 250 347.99 -63.73 255 IsGyro 348.18 -63.74 IsGyro 348.06 -63.84 260 IsGyro -63.84 265 348.2 IsGyro 270 348.23 -63.81 IsGyro 348.18 -63.81 275 IsGyro -63.76 280 348.36 IsGyro -63.77 285 348.41 290 IsGyro 348.48 -63.82 IsGyro -63.84 295 348.59 IsGyro 300 348.51 -63.92 IsGyro -63.92 305 348.71 310 IsGyro 348.38 -63.91 IsGyro 348.54 -63.72 315

Hole Number:

DRILL LOG REPORT

Resp. Person: Arnaud Fontaine,

Pro	ject	Dril	ling		Collar			Coordinates
Project Name:	West-Raglan	Hole Type:	DDH	Casing:	NW	Collar Dip:	-69.61	Northing: 6,809,895 UTM Zone: NAD83 / UTM zone 18N
Claim Number:	1096755	Hole Size:	NQ	Casing Status:	Left In Hole	Collar Azi:	340	Easting: 468,797
Property:	Beverly	Drilling Started:	Aug 12, 2022	Oriented:	Υ	Length:	396	Elevation: 411.00
Purpose:		Drilling Completed:	Aug 18, 2022	Collar Survey Type:	APS			Logged By
Target:		Drilling Contractor:	Forage G4	Pulse EM Surveyed:	Υ			Geologist 1: Arnaud Fontaine, Géo
Operator:	Orford Mining Corporation	Core Location:	СС	Pulse EM Survey Date:	Aug 18, 2022			Geologist 2:
	·			Geophysics Contractor:	Crone			Geologist 3:
								Geologist 4:

Comments: only out of hole survey worked

WR-22-200

		Detailed Lithology			Mineralizat	ion				Alterat	ion	
From	То	Lithology	From	То	Туре	Style	%	From	То	Туре	Style	Intensity
0.0	3.23	OB, Overburden										
3.23	3.84	V3B, Basalt										
		TextureGrain SizeColourColour ToneMassiveVery Fine GrainedGrey-GreenMediumCommentsBasalt on top of hole. Could be a boulder as the contact is not visible due to broken piece.										

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

			Detailed Litholog	У				Mineraliza	ation				Alterati	on	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
3.84	193.3	I4I, Peridotite		•		50	96	Pentlandite	Disseminated	0.01	16.51	17.07	Bleached/Ble aching	Pervasive	Moderate
		Texture Poikilitic	Grain Size Medium Grained	Colour Greenish-Grey	Colour Tone Dark			Comments					Comments Basalt enclave	e? Cooked. h	ard. purple
		Comments Massive polikilitio	peridotite with 20-30	no/ creamy nyrove	una Moderata	96	140	Pentlandite	Disseminated	0.1			halo inside of	the enclave.	a. a, pa.p.c
		serpentinization sulfides near sor	(background) with lo	cal chrysotile FV. I to 50m. Vfg Pn tr	Magnetic. Rare vfg ace disseminated			Pyrrhotite	Disseminated	0.05					
		50m to 96m, 0.1 disseminated an	% Pn +/- Po vfg-fg 90 d Trace Po in FV fro	6 to 140m and 0.29 m 140 to 155m. Ba	% vfg-fg Pn + Po asalt enclave? from			Comments							
		16.51 to 17.07 h enclave.	ighly altered and see	ems cooked, altera	tion halo inside the	140	155	Pentlandite	Disseminated	0.1					
								Pyrrhotite	Disseminated	0.1					
								Pyrrhotite	Fracture/vein controlled	0.01					
								Comments							
						155	193.3	Pentlandite	Disseminated	0.01					
								Comments							
193.3	224.42	I3A, Gabbro									193.7	194	Fuchsite	Along Foliation	Moderate
		Texture	Grain Size	Colour	Colour Tone								Comments		
		Massive Comments	Coarse Grained	Greenish-Grey	Medium								apple green, a fracturing. stee intestitial.		
			natitic leucogabbro, a -194 m). traces of fin- chlorite altn								194	201	Silicification	Pervasive	Moderate to Strong
		,	,										Comments		Ollong
													mod-strong sil minor pervasiv		
224.42	264.42	I3A, Gabbro				224.42	264.42	Pyrrhotite	Disseminated	0.2	239	264.42	Calcite	Pervasive	Weak to Moderate
		Texture Massive	Grain Size Coarse Grained	Colour Grey-Green	Colour Tone Medium			Pyrite	Disseminated	0.2			Comments weak-moderate	e calcite alta	nervasivo
		Comments		•				Pyrrhotite	Fracture/vein	0.01			assoc. with ca		
		disseminated su	similar to previous a lphides: py-po: 2-3%	 locally magnetic(weak-moderate)			Comments	controlled						
		semi-pervasive of evenly spread un	chlorite altn and along ntill 259.62m, 5%(po al calcite altn from 23	g fractures., Coars orphyritic texture of	se leucoxene			Comments							

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

			Detailed Lithology					Mineraliza	ation				Alterat	ion	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
264.42	287.6	Comments Massive gabbro, si and medium-fine g and long fractures. and along fractures	Grain Size Medium Grained imilar to previous alterained, fine traces of locally magnetic (ws., locally. Graphite (?) around 279m, dis	of disseminated so reak) semi-pervas coating in fracture	ulphides: po:(tr) sive chlorite altn	264.42	287.6	Pyrrhotite Pyrite Pyrrhotite Comments	Disseminated Disseminated Fracture/vein controlled	0.2 0.2 0.01	264.42	266.5	assoc. with c Talcose (+/- carbonate)	Pervasive ate calcite altn a veining 2-3/r Fracture/Vein Controlled Fracture/Vein Controlled	n 0.5cm Weak
287.6	347.95	P8, Interflow Sedi	iments			287.6	303	Pyrrhotite	Stringer	0.5	287.6	303	weak talc and . Sometimes qtz.	d chlorite. altn assoc with cal Fracture/Vein	cite and Weak to
201.0		Texture Bedded Comments fine-medium graine fine Po in fractures qtz-ca veinlets not	Grain Size Medium Grained ed dark gery sedime and as stringers, 1 necessarily assoc. N nger, 0-5 TCA. Interv	with po. 345.89-3	46.7m: 1-2cm	303	345	Comments	n Ni, stringers, u		207.0	303	Comments	Controlled tz-ca veinlets	Moderate 1-2/m 40-60
		т о ору (рпт.) зушт	igor, o o roz. interv	al would be 3/61	C.	345	347.95	unevenly spti TCA Pyrrhotite Chalcopyrite	Ni, Po stringers, read. 1-5mm wic Stringer Stringer						
								Comments XRF: 1-1.5% surrounded b	Ni, chalcopyrite y po.						

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

			Detailed Litholog	У				Mineraliz	ation				Alterat	ion	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensit
347.95	370.5	P8, Interflow Se				347.95	370.5	Pyrrhotite	Stringer	1	347.95	354.79	Talcose (+/- carbonate)	Pervasive	Modera
		Texture Bedded	Grain Size Medium Grained	Colour Greenish-Grey	Colour Tone Medium			Comments					Calcite	Pervasive	Weak t
		Not magnetic, p	nt, fine-medium graine ervasive moderate ta	Ic and moderate p	ervasive calcite								Comments pervasive tale	c and calcite a	
		length. traces of	.79 and 360.34-361.3 fine Po disseminate	d. Biotite(?)	throughout core						360.34	361.35	Talcose (+/- carbonate)	Pervasive	Modera
													Calcite	Pervasive	Weak Modera
													Comments pervasive tale	c and calcite a	altn
											369.6	370.5	Talcose (+/- carbonate)	Pervasive	Modera
													Calcite	Pervasive	Weak Modera
													Comments pervasive tale	c and calcite	altn
370.5	374.25	S, Sediments				370.5	374.25	Pyrrhotite	Stringer	1					
		Texture	Grain Size	Colour	Colour Tone			Comments	3						
		Bedded	Fine Grained	Grey	Dark			Comments							
		Comments Sediment, beddefractures (5 TCA	ed (20 TCA) and evid A, but some times 80	lence of folding, 1 TCA) 1-2 mm.	-3%po fine in										
374.25	378.46	I1N, Quartz Vei	n			374.25	378.46	Pyrite	Fracture/vein controlled	0.01					
		Texture	Grain Size	Colour	Colour Tone			Comments	CONTRIONICA						
		Massive	Medium Grained	White				2 3							
		Comments White massive of contact 50 TCA.	quartz vn, tr of coarse Bottom Contact 20 T	py, blebs and alc	ong fractures,										

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

			Detailed Lithology		Mineralization							Alterati	on		
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
378.46	396.0	S, Sediments				378.46	381	Pyrrhotite	Fracture/vein controlled	3					
		Texture Bedded	Grain Size Fine Grained	Colour Grey	Colour Tone Dark			Pyrite	Fracture/vein controlled	0.5					
		Comments		(00 TOA)				Comments							
			as previous, bedded actures (5 TCA) 1-2 m			381	388	Pyrrhotite	Fracture/vein controlled	2					
								Comments							
						388	396	Pyrrhotite	Fracture/vein controlled	3					
								Comments 3-5% in fract stringers, 5-1	. 0-5 TCA, 1-3mn 0/m.	n					

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

					Samplir	ng				<i>)</i> (
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
9.0	10.5	E5840624	Core	0.152	0.008	0.007	0.0033	113	0.06	
15.0	16.5	E5840625	Core	0.154	0.008	0.008	0.0815	116	0.1	
16.5	17.07	E5840626	Core	0.0136	0.009	0.011	0.0138	35	0.11	
17.07	18.5	E5840627	Core	0.136	0.001	0.0025	0.0205	108	0.06	
24.0	25.5	E5840628	Core	0.138	0.005	0.0025	0.0311	110	0.08	
30.0	31.5	E5840629	Core	0.153	0.006	0.0025	0.0329	113	0.08	
36.0	37.5	E5840631	Core	0.164	0.079	0.026	0.00919	107	0.07	
42.0	43.5	E5840632	Core	0.152	0.05	0.011	0.00226	111	0.06	
48.0	49.5	E5840633	Core	0.132	0.013	0.028	0.00319	108	0.06	
54.0	55.5	E5840634	Core	0.135	0.068	0.092	0.00215	109	0.06	
60.0	61.5	E5840635	Core	0.141	0.679	0.067	0.00533	108	0.06	
66.0	67.5	E5840636	Core	0.158	0.042	0.005	0.00955	112	0.07	
72.0	73.5	E5840637	Core	0.154	0.019	0.012	0.0138	110	0.07	
78.0	79.5	E5840638	Core	0.153	0.0005	0.0025	0.0117	111	0.06	
84.0	85.5	E5840639	Core	0.144	0.003	0.0025	0.0148	105	0.06	
84.0	85.5	E5840640	Duplicate	0.141	0.003	0.0025	0.0151	102	0.07	
90.0	91.5	E5840641	Core	0.147	0.013	0.008	0.0281	110	0.07	
96.0	97.5	E5840642	Core	0.151	0.006	0.012	0.0349	111	0.07	
97.5	99.0	E5840643	Core	0.17	0.01	0.006	0.0553	110	0.09	
99.0	100.5	E5840644	Core	0.209	0.022	0.01	0.17	135	0.14	
100.5	102.0	E5840645	Core	0.147	0.007	0.0025	0.0404	109	0.08	
102.0	103.5	E5840646	Core	0.177	0.011	0.0025	0.0945	108	0.13	
103.5	105.0	E5840647	Core	0.152	0.008	0.0025	0.0687	111	0.09	
105.0	106.5	E5840648	Core	0.153	0.007	0.0025	0.0636	113	0.11	
106.5	108.0	E5840649	Core	0.154	0.01	0.0025	0.0472	121	0.13	
108.0	109.5	E5840651	Core	0.114	0.016	0.007	0.0206	119	0.11	
109.5	111.0	E5840652	Core	0.143	0.012	0.007	0.108	123	0.16	

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

									Resp. 1 erson. Amada i ontaine, oco	AI
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
111.0	112.5	E5840653	Core	0.144	0.01	0.0025	0.0362	118	0.09	
112.5	114.0	E5840654	Core	0.149	0.009	0.0025	0.0524	110	0.1	
114.0	115.5	E5840655	Core	0.185	0.044	0.009	0.0976	124	0.14	
115.5	117.0	E5840656	Core	0.151	0.021	0.006	0.0622	114	0.1	
117.0	118.5	E5840657	Core	0.139	0.007	0.0025	0.0202	113	0.06	
118.5	120.0	E5840658	Core	0.132	0.005	0.005	0.0358	114	0.08	
120.0	121.5	E5840659	Core	0.133	0.007	0.005	0.0429	117	0.1	
121.5	123.0	E5840661	Core	0.132	0.004	0.0025	0.0375	114	0.1	
123.0	124.5	E5840662	Core	0.142	0.01	0.0025	0.0385	123	0.11	
124.5	126.0	E5840663	Core	0.142	0.003	0.0025	0.028	125	0.1	
126.0	127.5	E5840664	Core	0.13	0.001	0.0025	0.0158	116	0.09	
127.5	129.0	E5840665	Core	0.141	0.011	0.0025	0.00862	118	0.08	
129.0	130.5	E5840666	Core	0.149	0.013	0.0025	0.00892	124	0.09	
130.5	132.0	E5840667	Core	0.144	0.009	0.0025	0.0093	117	0.07	
132.0	133.5	E5840668	Core	0.155	0.011	0.0025	0.0179	127	0.1	
133.5	135.0	E5840669	Core	0.244	0.026	0.0025	0.079	133	0.28	
133.5	135.0	E5840670	Duplicate	0.249	0.073	0.014	0.0747	134	0.3	
135.0	136.5	E5840671	Core	0.183	0.039	0.009	0.0388	126	0.19	
136.5	138.0	E5840672	Core	0.134	0.001	0.0025	0.0121	120	0.09	
138.0	139.5	E5840673	Core	0.148	0.01	0.0025	0.00738	119	0.09	
139.5	141.0	E5840674	Core	0.15	0.035	0.011	0.0118	105	0.13	
141.0	142.5	E5840675	Core	0.213	0.033	0.011	0.0239	116	0.21	
142.5	144.0	E5840676	Core	0.2	0.049	0.014	0.0176	113	0.19	
144.0	145.5	E5840677	Core	0.164	0.019	0.0025	0.00652	111	0.15	
145.5	147.0	E5840678	Core	0.15	0.01	0.0025	0.0097	105	0.13	
147.0	148.5	E5840679	Core	0.134	0.027	0.007	0.0152	106	0.13	
148.5	150.0	E5840681	Core	0.142	0.018	0.005	0.0189	107	0.17	
150.0	151.5	E5840682	Core	0.129	0.011	0.0025	0.0165	106	0.15	

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

									•	
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
151.5	153.0	E5840683	Core	0.139	0.026	0.008	0.0159	104	0.16	
153.0	154.5	E5840684	Core	0.149	0.005	0.0025	0.00485	107	0.11	
154.5	156.0	E5840685	Core	0.16	0.027	0.011	0.00591	112	0.11	
162.0	163.5	E5840686	Core	0.144	0.0005	0.0025	0.00484	104	0.08	
168.0	169.5	E5840687	Core	0.139	0.008	0.0025	0.00431	102	0.08	
174.0	175.5	E5840688	Core	0.158	0.011	0.009	0.0202	112	0.15	
180.0	181.5	E5840689	Core	0.126	0.003	0.0025	0.0139	105	0.11	
186.0	187.5	E5840691	Core	0.111	0.014	0.007	0.0244	112	0.1	
192.0	193.3	E5840692	Core	0.121	0.004	0.0025	0.0223	110	0.39	
193.3	194.8	E5840693	Core	0.0372	0.002	0.0025	0.0173	46.8	0.03	
201.0	202.5	E5840694	Core	0.019	0.001	0.0025	0.00881	35.4	0.01	
207.0	208.5	E5840695	Core	0.0113	0.0005	0.0025	0.00921	33.9	0.01	
213.0	214.5	E5840696	Core	0.00655	0.0005	0.0025	0.00791	40.6	0.01	
219.0	220.5	E5840697	Core	0.00424	0.0005	0.0025	0.00848	36.9	0.08	
224.42	225.42	E5840698	Core	0.00183	0.0005	0.0025	0.00673	39.3	0.99	
225.42	226.5	E5840699	Core	0.00318	0.0005	0.0025	0.00435	52.9	0.17	
225.42	226.5	E5840700	Duplicate	0.00314	0.0005	0.0025	0.00404	53.5	0.18	
231.0	232.5	E5840701	Core	0.00288	0.0005	0.0025	0.00381	49.8	0.25	
237.0	238.5	E5840702	Core	0.00258	0.0005	0.0025	0.00416	49.6	0.2	
243.0	244.5	E5840703	Core	0.00285	0.0005	0.0025	0.00436	43.9	0.27	
249.0	250.5	E5840704	Core	0.00291	0.0005	0.0025	0.00191	45.5	0.04	
255.0	256.5	E5840705	Core	0.00345	0.001	0.0025	0.00353	36.8	0.1	
261.0	262.5	E5840706	Core	0.00373	0.001	0.0025	0.00645	41.7	0.28	
267.0	268.5	E5840707	Core	0.0976	0.019	0.008	0.0218	82.2	0.04	
273.0	274.5	E5840708	Core	0.107	0.037	0.018	0.0113	93.6	0.1	
279.0	280.5	E5840709	Core	0.0782	0.004	0.0025	0.0109	81.5	0.06	
285.0	286.5	E5840711	Core	0.0619	0.007	0.006	0.00734	73.5	0.01	
286.5	287.6	E5840712	Core	0.0719	0.004	0.0025	0.00725	77.2	0.01	

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

										<u> </u>	MI
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)		
287.6	289.0	E5840713	Core	0.0108	0.005	0.005	0.00775	21.2	0.11		
289.0	290.0	E5840714	Core	0.0217	0.001	0.0025	0.0101	40	0.2		
290.0	291.0	E5840715	Core	0.00677	0.001	0.0025	0.00698	35.2	0.33		
291.0	292.5	E5840716	Core	0.00593	0.006	0.0025	0.011	11.9	0.95		
292.5	294.0	E5840717	Core	0.00561	0.005	0.0025	0.00728	11	0.4		
294.0	295.5	E5840718	Core	0.00609	0.005	0.0025	0.0111	14.4	0.94		
295.5	297.0	E5840719	Core	0.00625	0.006	0.0025	0.00608	9.6	0.36		
297.0	298.5	E5840721	Core	0.00488	0.006	0.0025	0.00312	9.8	0.28		
298.5	300.0	E5840722	Core	0.00507	0.005	0.0025	0.0115	13.5	1.3		
300.0	301.5	E5840723	Core	0.00485	0.005	0.0025	0.00805	12.7	0.99		
306.0	308.5	E5840724	Core	0.00489	0.003	0.0025	0.00105	9.4	0.14		
312.0	313.5	E5840725	Core	0.00404	0.004	0.0025	0.0043	11	0.59		
318.0	319.5	E5840726	Core	0.00577	0.005	0.0025	0.00659	16.8	0.64		
324.0	325.5	E5840727	Core	0.00646	0.004	0.0025	0.0054	14.2	0.63		
330.0	331.5	E5840728	Core	0.00443	0.004	0.0025	0.00821	16.3	1.29		
336.0	337.5	E5840729	Core	0.00364	0.003	0.0025	0.00501	13.2	1.16		
336.0	337.5	E5840730	Duplicate	0.00377	0.003	0.0025	0.00626	13.5	1.31		
342.0	343.5	E5840731	Core	0.00808	0.011	0.005	0.00169	12.8	0.12		
343.5	345.0	E5840732	Core	0.00881	0.009	0.005	0.00268	13.6	0.16		
345.0	345.89	E5840733	Core	0.00987	0.008	0.0025	0.00102	13.2	0.21		
345.89	346.5	E5840734	Core	0.305	0.048	0.015	0.124	305	5.21		
346.5	347.95	E5840735	Core	0.0768	0.02	0.013	0.0157	80.9	0.04		
347.95	349.0	E5840736	Core	0.101	0.031	0.015	0.0294	101	0.1		
354.0	354.79	E5840737	Core	0.0851	0.032	0.008	0.0171	70.6	0.14		
354.79	356.0	E5840738	Core	0.0126	0.006	0.0025	0.0089	20	0.69		
363.0	364.5	E5840739	Core	0.00434	0.004	0.0025	0.00312	9	0.29		
369.0	370.5	E5840741	Core	0.0646	0.008	0.006	0.00491	72.4	0.09		
374.25	375.75	E5840742	Core	0.00169	0.0005	0.0025	0.00139	2.3	0.05		

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

	Λ			
	Π	7	_	
1	L	+	_	
/-	Τ	1		

381.0 382.5 E5840743 Core 0.00558 0.003 0.0025 0.0235 12.3 1.67 387.0 388.5 E5840744 Core 0.00502 0.002 0.0025 0.0153 11.5 1.51 393.0 394.5 E5840745 Core 0.0055 0.002 0.0025 0.0132 12.3 1.12	From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
	381.0	382.5	E5840743	Core	0.00558	0.003	0.0025	0.0235	12.3	1.67	
393.0 394.5 E5840745 Core 0.0055 0.002 0.0025 0.0132 12.3 1.12	387.0	388.5	E5840744	Core	0.00502	0.002	0.0025	0.0153	11.5	1.51	
	393.0	394.5	E5840745	Core	0.0055	0.002	0.0025	0.0132	12.3	1.12	

Structure

From	То	Structure Type	Structure Intensity	Comments
306.9	307.2	Fracturing		
313	318	Fracturing		also assoc. with qtz-ca veinlets
329	333	Fracturing		assoc with low angle fracture. no filling.
369	372.3	Fracturing		fracturing, 50 to 80 TCA., strong
372.3	373.4	Fold		fold, uneven.
373.4	386	Fracturing		fracturing, 50 to 80 TCA., strong
395.9	395.92	Gouge (fault)		2cm fault gouge, filled with sediment pbroken mmetric material.

Point Structure

Depth	Structure Type	Structure Intensity	Alpha Angle	Beta Angle	Gamma Angle	Core Angle	Comments
152.57	Serpentine vein					40	12cm Serpentine vein + Talcose.
193.8	Fracturing					45	
227	Fracturing					5	weakly dipping fracture along core over 1m. Sx fine in fractures as coating.0.1%
239	Calcite vein					60	increase of calcite-chlorite veining 2-3/m, 0.5cm
264.5	Fracturing					5	low angle fracture over 1.5m
274.35	Fracturing					15	low angle fracture
362.75	Bedding					15	
369.8	Foliation					40	assoc. with talc altn
372.25	Bedding					20	
374.25	Upper contact					50	qtz vn
378.46	Lower contact					20	qtz vn
386.8	Bedding					5	
386.9	Stringer					5	fracture filled with po.

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

5		.		Alnha	Beta	Gamma	• • •					<i>y</i>
Depth	Structure Typ	e Structi	ure Intensity	Alpha Angle	Beta Angle	Angle	Core Angle	Comments				
395.1	Bedding						5					
357.3	Stringer						80	fracture fillre	d stringers in	regular, filled v	with po-ca, 1-5mr	m
			Ge	eotechnical							Mags	us
From	То	Recovery	Recovery %	RQD	RQD %	Comments			Depth	Mag Sus	Conductivity	Mag Sus Instrument
3.23	6	2.77	100	1.32	47.65				4	200.91	0	MPP-EM2S+
3.23	O	2.11	100	1.52	47.03				5	124.51	0	MPP-EM2S+
									6	142.8	0	MPP-EM2S+
6	9	2.97	99	1.91	64.31				7	119.78	0	MPP-EM2S+
									8	134.78	0	MPP-EM2S+
									9	138.81	0	MPP-EM2S+
9	12	3.03	101	1.31	43.23				10	173.43	0	MPP-EM2S+
									11	131.38	0	MPP-EM2S+
									12	141.67	0	MPP-EM2S+
12	15	2.94	98	1.43	48.64				13	84.65	0	MPP-EM2S+
									14	120.55	0	MPP-EM2S+
									15	198.22	0	MPP-EM2S+
15	18	3.08	102.67	2.47	80.19				16	121.23	0	MPP-EM2S+
									17	2.05	0	MPP-EM2S+
									18	181.73	0	MPP-EM2S+
18	21	2.95	98.33	2.77	93.9				19	143.51	0	MPP-EM2S+
									20	169.89	0	MPP-EM2S+
									21	158.04	0	MPP-EM2S+
21	24	2.99	99.67	2.56	85.62				22	161.69	0	MPP-EM2S+
									23	173.03	0	MPP-EM2S+

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

		-22-200								Amadu Fontaine, Geo	Al
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							24	127.19	0	MPP-EM2S+	
24	27	3.06	102	2.03	66.34		25	116.77	0	MPP-EM2S+	
							26	112.41	0	MPP-EM2S+	
							27	122.7	0	MPP-EM2S+	
27	30	3	100	2.6	86.67		28	140.36	0	MPP-EM2S+	
							29	155.36	0	MPP-EM2S+	
							30	69.34	0	MPP-EM2S+	
30	33	3.09	103	1.34	43.37		31	122.95	0	MPP-EM2S+	
							32	134.65	0	MPP-EM2S+	
							33	109.33	0	MPP-EM2S+	
33	36	2.96	98.67	1.52	51.35		34	218.02	0	MPP-EM2S+	
							35	139.06	0	MPP-EM2S+	
							36	146.93	0	MPP-EM2S+	
36	39	3.09	103	2.67	86.41		37	151.97	0	MPP-EM2S+	
							38	167.57	0	MPP-EM2S+	
							39	190.54	0	MPP-EM2S+	
39	42	2.9	96.67	2.58	88.97		40	166.04	0	MPP-EM2S+	
							41	201.99	0	MPP-EM2S+	
							42	253.89	0	MPP-EM2S+	
42	45	3.07	102.33	2.81	91.53		43	151.88	0	MPP-EM2S+	
							44	159.71	0	MPP-EM2S+	
							45	182.4	0	MPP-EM2S+	
45	48	2.98	99.33	2.62	87.92		46	144.58	0	MPP-EM2S+	
							47	151.95	0	MPP-EM2S+	

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							48	172.85	0	MPP-EM2S+
48	51	2.94	98	2.31	78.57		49	151.18	0	MPP-EM2S+
							50	144.23	0	MPP-EM2S+
							51	141.93	0	MPP-EM2S+
51	54	3.1	103.33	2.96	95.48		52	145.84	0	MPP-EM2S+
							53	111.22	0	MPP-EM2S+
							54	174.88	0	MPP-EM2S+
54	57	2.95	98.33	2.6	88.14		55	237.26	0	MPP-EM2S+
							56	149.71	0	MPP-EM2S+
							57	116.27	0	MPP-EM2S+
57	60	3	100	2.21	73.67		58	132.86	0	MPP-EM2S+
							59	138.76	0	MPP-EM2S+
							60	201.51	0	MPP-EM2S+
60	63	2.96	98.67	2.55	86.15		61	234.7	0	MPP-EM2S+
							62	144.91	0	MPP-EM2S+
							63	134.49	0	MPP-EM2S+
63	66	2.96	98.67	2.34	79.05		64	89.76	0	MPP-EM2S+
							65	127.66	0	MPP-EM2S+
							66	112.09	0	MPP-EM2S+
66	69	2.94	98	2.63	89.46		67	138.53	0	MPP-EM2S+
							68	184.99	0	MPP-EM2S+
							69	135.86	0	MPP-EM2S+
69	72	3	100	2.63	87.67		70	138.73	0	MPP-EM2S+
							71	139.06	0	MPP-EM2S+

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	Al
							72	151.78	0	MPP-EM2S+	
72	75	3.03	101	2.88	95.05		73	201.03	0	MPP-EM2S+	
							74	151.33	0	MPP-EM2S+	
							75	179.9	0	MPP-EM2S+	
75	78	3.12	104	2.73	87.5		76	191.37	0	MPP-EM2S+	
							77	155.71	0	MPP-EM2S+	
							78	147.33	0	MPP-EM2S+	
78	81	2.9	96.67	2.63	90.69		79	126.17	0	MPP-EM2S+	
							80	158.87	0	MPP-EM2S+	
							81	189.23	0	MPP-EM2S+	
81	84	3.01	100.33	2.51	83.39		82	144.07	0	MPP-EM2S+	
							83	131.2	0	MPP-EM2S+	
							84	284.85	0	MPP-EM2S+	
84	87	3.06	102	2.36	77.12		85	164.04	0	MPP-EM2S+	
							86	166	0	MPP-EM2S+	
							87	118.27	0	MPP-EM2S+	
87	90	2.95	98.33	2.69	91.19		88	182.74	0	MPP-EM2S+	
							89	191.78	0	MPP-EM2S+	
							90	168.11	0	MPP-EM2S+	
90	93	3.08	102.67	2.65	86.04		91	111.88	0	MPP-EM2S+	
							92	175.07	0	MPP-EM2S+	
							93	169.14	0	MPP-EM2S+	
93	96	2.99	99.67	2.68	89.63		94	140.38	0	MPP-EM2S+	
							95	149.77	0	MPP-EM2S+	

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

											211
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							96	133.17	0	MPP-EM2S+	
96	99	2.98	99.33	2.64	88.59		97	148.62	0	MPP-EM2S+	
							98	178.65	0	MPP-EM2S+	
							99	205.5	0	MPP-EM2S+	
99	102	2.92	97.33	2.44	83.56		100	131.06	0	MPP-EM2S+	
							101	149.94	0	MPP-EM2S+	
							102	208.92	0	MPP-EM2S+	
102	105	2.92	97.33	2.85	97.6		103	177.53	0	MPP-EM2S+	
							104	144.59	0	MPP-EM2S+	
							105	156.66	0	MPP-EM2S+	
105	108	2.98	99.33	2.83	94.97		106	242.14	0	MPP-EM2S+	
							107	188.9	0	MPP-EM2S+	
							108	127.75	0	MPP-EM2S+	
108	111	3.01	100.33	2.93	97.34		109	183.39	0	MPP-EM2S+	
							110	148.39	0	MPP-EM2S+	
							111	172.5	0	MPP-EM2S+	
111	114	3.14	104.67	2.87	91.4		112	157.74	0	MPP-EM2S+	
							113	205.12	0	MPP-EM2S+	
							114	137.41	0	MPP-EM2S+	
114	117	2.9	96.67	2.6	89.66		115	154.4	0	MPP-EM2S+	
							116	176.33	0	MPP-EM2S+	
							117	143.44	0	MPP-EM2S+	
117	120	3.09	103	2.27	73.46		118	168.21	0	MPP-EM2S+	
							119	165.09	0	MPP-EM2S+	

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

AF

											11
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							120	157.81	0	MPP-EM2S+	
120	123	2.87	95.67	2.21	77		121	136.53	0	MPP-EM2S+	
							122	182.1	0	MPP-EM2S+	
							123	154.6	0	MPP-EM2S+	
123	126	2.9	96.67	2.08	71.72		124	145.89	0	MPP-EM2S+	
							125	162.57	0	MPP-EM2S+	
							126	167.52	0	MPP-EM2S+	
126	129	2.97	99	2.67	89.9		127	170.3	0	MPP-EM2S+	
							128	190.47	0	MPP-EM2S+	
							129	214.68	0	MPP-EM2S+	
129	132	3	100	1.95	65		130	184.87	0	MPP-EM2S+	
							131	210.5	0	MPP-EM2S+	
							132	156.2	0	MPP-EM2S+	
132	135	2.99	99.67	2.9	96.99		133	144.33	0	MPP-EM2S+	
							134	229.85	0	MPP-EM2S+	
							135	204.84	0	MPP-EM2S+	
135	138	2.95	98.33	2.72	92.2		136	163.93	0	MPP-EM2S+	
							137	210.82	0	MPP-EM2S+	
							138	167.91	0	MPP-EM2S+	
138	141	3	100	2.45	81.67		139	161.11	0	MPP-EM2S+	
							140	130.36	0	MPP-EM2S+	
							141	191.09	0	MPP-EM2S+	
141	144	3	100	2.9	96.67		142	129.04	0	MPP-EM2S+	
							143	153.95	0	MPP-EM2S+	

Page 16 of 30

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

noie Number.	****	-22-200							resp. r erson.	Amadu Fontaine, Geo	41
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							144	174.9	0	MPP-EM2S+	
144	147	2.98	99.33	2.52	84.56		145	140.43	0	MPP-EM2S+	
							146	143.67	0	MPP-EM2S+	
							147	166.57	0	MPP-EM2S+	
147	150	2.89	96.33	2.81	97.23		148	171.19	0	MPP-EM2S+	
							149	166.26	0	MPP-EM2S+	
							150	171.89	0	MPP-EM2S+	
150	153	2.98	99.33	2.54	85.23		151	160.92	0	MPP-EM2S+	
							152	171.64	0	MPP-EM2S+	
							153	146.83	0	MPP-EM2S+	
153	156	3.11	103.67	2.37	76.21		154	147.09	0	MPP-EM2S+	
							155	178.66	0	MPP-EM2S+	
							156	137.15	0	MPP-EM2S+	
156	159	2.88	96	2.52	87.5		157	167.74	0	MPP-EM2S+	
							158	148.93	0	MPP-EM2S+	
							159	149.41	0	MPP-EM2S+	
159	162	3.1	103.33	2.9	93.55		160	134.43	0	MPP-EM2S+	
							161	135.76	0	MPP-EM2S+	
							162	92.41	0	MPP-EM2S+	
162	165	2.9	96.67	2.66	91.72		163	89.94	0	MPP-EM2S+	
							164	133.02	0	MPP-EM2S+	
							165	134.36	0	MPP-EM2S+	
165	168	2.89	96.33	2.52	87.2		166	85.19	0	MPP-EM2S+	
							167	125.95	0	MPP-EM2S+	

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	J 1
							168	125.5	0	MPP-EM2S+	
168	171	3.02	100.67	2.62	86.75		169	101.17	0	MPP-EM2S+	
							170	99.07	0	MPP-EM2S+	
						171	80.99	0	MPP-EM2S+		
171	174	3.06	102	2.08	67.97		172	48.58	0	MPP-EM2S+	
							173	56.14	0	MPP-EM2S+	
						174	134	0	MPP-EM2S+		
174	177	2.97	99	2.42	81.48		175	71.52	0	MPP-EM2S+	
							176	109.91	0	MPP-EM2S+	
							177	89.58	0	MPP-EM2S+	
177	180	2.96	98.67	2.82	95.27		178	134.01	0	MPP-EM2S+	
						179	63.68	0	MPP-EM2S+		
							180	113.34	0	MPP-EM2S+	
180	183	3.02	100.67	2.84	94.04		181	122.67	0	MPP-EM2S+	
							182	135.13	0	MPP-EM2S+	
							183	80.91	0	MPP-EM2S+	
183	186	2.96	98.67	2.75	92.91		184	133	0	MPP-EM2S+	
							185	61.1	0	MPP-EM2S+	
				<u> </u>			186	114.6	0	MPP-EM2S+	
186	189	2.93	97.67	2.2	75.09		187	146.98	0	MPP-EM2S+	
							188	91.9	0	MPP-EM2S+	
				<u> </u>			189	95.56	0	MPP-EM2S+	
189	192	2.93	97.67	2.74	93.52		190	64.06	0	MPP-EM2S+	
							191	52.8	0	MPP-EM2S+	

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							192	37.05	0	MPP-EM2S+
192	195	2.84	94.67	2.74	96.48		193	2.16	0	MPP-EM2S+
							194	1.07	0	MPP-EM2S+
							195	1.06	0	MPP-EM2S+
195	198	3	100	2.76	92		196	0.99	0	MPP-EM2S+
							197	1.17	0	MPP-EM2S+
							198	1	0	MPP-EM2S+
198	201	3.07	102.33	2.82	91.86		199	0.66	0	MPP-EM2S+
							200	0.72	0	MPP-EM2S+
			97.33				201	1.26	0	MPP-EM2S+
201	204	2.92		2.85	97.6		202	1.2	0	MPP-EM2S+
							203	1.14	0	MPP-EM2S+
							204	1.5	0	MPP-EM2S+
204	207	3	100	2.96	98.67		205	0.78	0	MPP-EM2S+
							206	0.73	0	MPP-EM2S+
					89.27		207	0.68	0	MPP-EM2S+
207	210	2.89	96.33	2.58			208	0.64	0	MPP-EM2S+
							209	0.74	0	MPP-EM2S+
							210	0.84	0	MPP-EM2S+
210	213	2.98	99.33	2.82	94.63		211	0.81	0	MPP-EM2S+
							212	0.58	0	MPP-EM2S+
				<u> </u>			213	1.04	0	MPP-EM2S+
213	216	3	100	2.88	96		214	0.85	0	MPP-EM2S+
							215	1.06	0	MPP-EM2S+

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity		/ L				
		•	•				216	0.84	0	MPP-EM2S+					
216 219 2.95	2.95	98.33	2.4	81.36		217	0.82	0	MPP-EM2S+						
						218	0.63	0	MPP-EM2S+						
							219	0.68	0	MPP-EM2S+					
219	222	3.03	101	2.84	93.73		220	0.83	0	MPP-EM2S+					
							221	0.61	0	MPP-EM2S+					
						222	0.62	0	MPP-EM2S+						
222	225	2.9	96.67	2.48	85.52		223	0.6	0	MPP-EM2S+					
						224	0.57	0	MPP-EM2S+						
											225	1.32	0	MPP-EM2S+	
225	228	2.9	96.67	2.57	88.62		226	1.3	0	MPP-EM2S+					
							227	1.34	0	MPP-EM2S+					
		2.87			88.15		228	1.27	0	MPP-EM2S+					
228	231		95.67	2.53			229	1.38	0	MPP-EM2S+					
							230	2.74	0	MPP-EM2S+					
							231	3.77	0	MPP-EM2S+					
231	234	3.14	3.14	3.14	3.14	104.67	2.97	94.59		232	2.99	0	MPP-EM2S+		
							233	1.88	0	MPP-EM2S+					
							234	3.05	0	MPP-EM2S+					
234	237	2.89	96.33	2.72	94.12		235	2.8	0	MPP-EM2S+					
							236	3.11	0	MPP-EM2S+					
							237	2.34	0	MPP-EM2S+					
237	240	3.14	104.67	2.94	93.63		238	1.44	0	MPP-EM2S+					
							239	1.22	0	MPP-EM2S+					

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument						
							240	1.3	0	MPP-EM2S+						
240	243	2.97	99	2.79	93.94		241	2.85	0	MPP-EM2S+						
							242	1.04	0	MPP-EM2S+						
							243	0.93	0	MPP-EM2S+						
243	246	2.84	94.67	2.8	98.59		244	1.21	0	MPP-EM2S+						
							245	0.93	0	MPP-EM2S+						
						246	1.19	0	MPP-EM2S+							
246	249	3.01	100.33	2.79	92.69		247	1.2	0	MPP-EM2S+						
							248	2.44	0	MPP-EM2S+						
												249	1.16	0	MPP-EM2S+	
249	252	3.01	100.33	2.82	93.69		250	1.46	0	MPP-EM2S+						
							251	1.19	0	MPP-EM2S+						
		2.95	98.33						252	1.42	0	MPP-EM2S+				
252	255			2.84	96.27		253	1.01	0	MPP-EM2S+						
							254	0.83	0	MPP-EM2S+						
							255	1.16	0	MPP-EM2S+						
255	258	2.97	2.97	2.97	2.97	2.97	2.97	99	2.7	90.91		256	1.08	0	MPP-EM2S+	
							257	1.17	0	MPP-EM2S+						
							258	1.22	0	MPP-EM2S+						
258	261	3	100	2.95	98.33		259	1.53	0	MPP-EM2S+						
							260	1.08	0	MPP-EM2S+						
							261	1.13	0	MPP-EM2S+						
261	264	2.95	98.33	2.83	95.93		262	1.33	0	MPP-EM2S+						
							263	1.21	0	MPP-EM2S+						

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument							
							264	1.29	0	MPP-EM2S+							
264	267	3.02	100.67	2.85	94.37		265	1.26	0	MPP-EM2S+							
							266	1.42	0	MPP-EM2S+							
							267	1.26	0	MPP-EM2S+							
267	270	3	100	2.6	86.67		268	1.59	0	MPP-EM2S+							
							269	1.37	0	MPP-EM2S+							
						270	0	0	MPP-EM2S+								
270	273	3.01	100.33	3.01	100		271	1.2	0	MPP-EM2S+							
							272	1.04	0	MPP-EM2S+							
													273	1.13	0	MPP-EM2S+	
273	276	2.94	98	2.64	89.8		274	1.26	0	MPP-EM2S+							
							275	1.26	0	MPP-EM2S+							
		3					276	1.49	0	MPP-EM2S+							
276	279		3	100	2.65	88.33		277	1.28	0	MPP-EM2S+						
							278	1.45	0	MPP-EM2S+							
							279	1.63	0	MPP-EM2S+							
279	282	3.02	3.02	3.02	3.02	3.02	100.67	2.82	93.38		280	1.66	0	MPP-EM2S+			
							281	1.48	0	MPP-EM2S+							
							282	1.57	0	MPP-EM2S+							
282	285	2.99	99.67	2.99	100		283	1.02	0	MPP-EM2S+							
							284	0.93	0	MPP-EM2S+							
							285	0.85	0	MPP-EM2S+							
285	288	3	100	2.65	88.33		286	1.12	0	MPP-EM2S+							
							287	1.33	0	MPP-EM2S+							

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	7(1
							288	0.85	0	MPP-EM2S+	
288	291	2.98	99.33	2.69	90.27		289	1.14	0	MPP-EM2S+	
							290	1.6	0	MPP-EM2S+	
							291	2.08	0	MPP-EM2S+	
291 294	294	3	100	2.44	81.33		292	3.15	0	MPP-EM2S+	
							293	1.47	0	MPP-EM2S+	
							294	1.78	0	MPP-EM2S+	
294 297 3.0	297	3.07	102.33	2.85	92.83		295	2.34	0	MPP-EM2S+	
						296	0.76	0	MPP-EM2S+		
297 300					96.26		297	0.68	0	MPP-EM2S+	
	300	2.94	98	2.83			298	0.77	0	MPP-EM2S+	
							299	0.76	0	MPP-EM2S+	
					2.9 95.71		300	1.17	0	MPP-EM2S+	
300	303	3.03	101	2.9			301	0.64	0	MPP-EM2S+	
							302	0.62	0	MPP-EM2S+	
							303	0.68	0	MPP-EM2S+	
303	306	3	100	2.19	73		304	0.69	0	MPP-EM2S+	
							305	0.73	0	MPP-EM2S+	
							306	0.67	0	MPP-EM2S+	
306	309	2.9	96.67	0.95	32.76		307	0.88	0	MPP-EM2S+	
							308	1.65	0	MPP-EM2S+	
							309	6.31	0	MPP-EM2S+	
309	312	2.94	98	1.49	50.68		310	2.94	0	MPP-EM2S+	
							311	2.08	0	MPP-EM2S+	

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							312	1.71	0	MPP-EM2S+
312	315	2.9	96.67	1.64	56.55		313	2.47	0	MPP-EM2S+
							314	2.71	0	MPP-EM2S+
							315	2.45	0	MPP-EM2S+
315	318	2.74	91.33	0.43	15.69		316	2.05	0	MPP-EM2S+
						317	1.2	0	MPP-EM2S+	
							318	1.26	0	MPP-EM2S+
318	321	2.88	96	2.29	79.51		319	4.29	0	MPP-EM2S+
					320	1.41	0	MPP-EM2S+		
							321	3.7	0	MPP-EM2S+
321	324	2.98	99.33	2.83	94.97		322	1.54	0	MPP-EM2S+
							323	1.26	0	MPP-EM2S+
							324	0.48	0	MPP-EM2S+
324	327	2.97	99	2.7 9	90.91	İ	325	0.87	0	MPP-EM2S+
							326	1.21	0	MPP-EM2S+
							327	1.48	0	MPP-EM2S+
327	330	2.93	97.67	1.55	52.9		328	4.43	0	MPP-EM2S+
							329	1.66	0	MPP-EM2S+
							330	4.21	0	MPP-EM2S+
330	333	2.82	94	1.3	46.1		331	5.99	0	MPP-EM2S+
							332	0.86	0	MPP-EM2S+
							333	0.98	0	MPP-EM2S+
333	336	3.1	103.33	1.53	49.35		334	1.17	0	MPP-EM2S+
							335	1.03	0	MPP-EM2S+

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

											MI
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							336	1.46	0	MPP-EM2S+	
336	339	3.01	100.33	2.61	86.71		337	3.09	0	MPP-EM2S+	
							338	1.71	0	MPP-EM2S+	
							339	4.3	0	MPP-EM2S+	
339	342	2.95	98.33	2.01	68.14		340	0.58	0	MPP-EM2S+	
							341	1.07	0	MPP-EM2S+	
							342	0.77	0	MPP-EM2S+	
342 345	2.97	99	2.51	1 84.51		343	1.16	0	MPP-EM2S+		
						344	0.74	0	MPP-EM2S+		
					85.67		345	1.49	0	MPP-EM2S+	
345	348	3	100	2.57			346	2.18	7739.75	MPP-EM2S+	
							347	0.96	0	MPP-EM2S+	
							348	1.01	0	MPP-EM2S+	
348	351	3	100	2.49	83		349	1.1	0	MPP-EM2S+	
							350	1.13	0	MPP-EM2S+	
							351	1	0	MPP-EM2S+	
351	354	2.87	95.67	2.43	84.67		352	1.15	0	MPP-EM2S+	
							353	1.21	0	MPP-EM2S+	
							354	1.13	0	MPP-EM2S+	
354	357						355	0.92	0	MPP-EM2S+	
							356	1.89	0	MPP-EM2S+	

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments		Depth	Mag Sus	Conductivity	Mag Sus Instrument	7(1
								357	13.25	2039.05	MPP-EM2S+	
357	360							358	5.16	0	MPP-EM2S+	
007	000							358.5	8.1	1592.13	MPP-EM2S+	
								359	4.93	0	MPP-EM2S+	
								360	5.83	0	MPP-EM2S+	
360	363							361	0.83	0	MPP-EM2S+	
							362	1.17	0	MPP-EM2S+		
								363	0.73	0	MPP-EM2S+	<u> </u>
363	366							364	0.74	0	MPP-EM2S+	
								365	0.61	0	MPP-EM2S+	
								366	2.42	0	MPP-EM2S+	
366	369				367	0.83	0	MPP-EM2S+				
								368	1.36	0	MPP-EM2S+	
								369	0.72	0	MPP-EM2S+	
369	372							370	1.62	0	MPP-EM2S+	
								371	7.25	0	MPP-EM2S+	
								372	3.95	0	MPP-EM2S+	
372	375							373	0.67	0	MPP-EM2S+	
								374	5.59	0	MPP-EM2S+	
								375	0.25	0	MPP-EM2S+	
375	378							376	0.21	0	MPP-EM2S+	
								377	0.26	0	MPP-EM2S+	

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments		Depth	Mag Sus	Conductivity	Mag Sus Instrument
								378	0.39	0	MPP-EM2S+
378	381							379	8.8	0	MPP-EM2S+
								380	4.95	0	MPP-EM2S+
								381	3.59	0	MPP-EM2S+
381	384							382	7.52	0	MPP-EM2S+
								383	0	0	MPP-EM2S+
								384	2.06	0	MPP-EM2S+
384	387							385	5.47	0	MPP-EM2S+
								386	5.52	0	MPP-EM2S+
								387	5.98	0	MPP-EM2S+
387	390					388	2.4	0	MPP-EM2S+		
								389	1.43	0	MPP-EM2S+
								390	3.61	0	MPP-EM2S+
390	393							391	5.18	0	MPP-EM2S+
								392	3.39	0	MPP-EM2S+
								393	4.1	0	MPP-EM2S+
393	396							394	1.47	0	MPP-EM2S+
								395	0.93	0	MPP-EM2S+
						Downhole Survey					
Depth	Survey T	уре	Azimuth	Dip							

Depth	Survey Type	Azimuth	Dip
0	IsGyro	340	-69.61
5	IsGyro	339.89	-69.42
10	IsGyro	339.75	-69.46
15	IsGyro	339.64	-69.53
20	IsGyro	339.67	-69.57

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

Λ	
11-1	
11-1-	
HI	

Openh Suvey Type Azimuth Dip 25 16 Syro 339-33 -69.57 30 18 Syro 339-34 -69.54 40 18 Syro 339-32 -69.13 45 18 Gyro 339-32 -69.48 50 18 Gyro 339.39 -69.51 60 18 Gyro 339.34 -69.5 60 18 Gyro 339.34 -69.5 70 18 Gyro 339.53 -69.6 80 18 Gyro 339.74 -69.52 95 18 Gyro 339.73 -69.58 100 18 Gyro 339.73 -69.58 110 18 Gyro 340.16 -69.52 115 18 Gyro 340.28 -69.61 115 18 Gyro 340.31 -69.62 122 </th <th></th> <th></th> <th></th> <th></th> <th>111</th>					111
1	Depth	Survey Type	Azimuth	Dip	
35	25	IsGyro	339.53	-69.57	
40	30	IsGyro	339.49	-69.52	
45	35	IsGyro	339.34	-69.54	
50	40	IsGyro	339.52	-69.53	
55 IsGyro 339.39 -69.51 60 IsGyro 339.41 -69.5 65 IsGyro 339.56 -69.51 70 IsGyro 339.53 -69.6 80 IsGyro 339.74 -69.52 85 IsGyro 339.83 -69.54 90 IsGyro 339.73 -69.58 95 IsGyro 339.77 -69.52 105 IsGyro 339.93 -69.54 110 IsGyro 340.16 -69.55 115 IsGyro 340.28 -69.61 120 IsGyro 340.27 -69.62 125 IsGyro 340.37 -69.62 135 IsGyro 340.37 -69.62 140 IsGyro 340.36 -69.68 140 IsGyro 340.36 -69.68 145 IsGyro 340.44 -69.66 145 IsGyro 340.65 -69.67 155	45	IsGyro	339.32	-69.48	
60 IsGyro 339.41 -69.5 65 IsGyro 339.34 -69.51 70 IsGyro 339.56 -69.55 75 IsGyro 339.53 -69.6 80 IsGyro 339.74 -69.52 85 IsGyro 339.6 -69.58 90 IsGyro 339.73 -69.58 95 IsGyro 339.73 -69.52 105 IsGyro 339.93 -69.54 110 IsGyro 340.16 -69.55 115 IsGyro 340.28 -69.61 120 IsGyro 340.27 -69.62 125 IsGyro 340.37 -69.62 136 IsGyro 340.37 -69.62 135 IsGyro 340.37 -69.68 140 IsGyro 340.36 -69.68 145 IsGyro 340.66 -69.66 155 IsGyro 340.66 -69.67 155 <	50	IsGyro	339.28	-69.52	
66 IsGyro 339.34 -69.51 70 IsGyro 339.56 -69.55 75 IsGyro 339.53 -69.6 80 IsGyro 339.74 -69.52 85 IsGyro 339.83 -69.54 90 IsGyro 339.73 -69.58 95 IsGyro 339.77 -69.52 100 IsGyro 339.93 -69.54 110 IsGyro 340.16 -69.55 115 IsGyro 340.28 -69.61 120 IsGyro 340.27 -69.62 125 IsGyro 340.37 -69.61 130 IsGyro 340.34 -69.62 135 IsGyro 340.37 -69.68 145 IsGyro 340.36 -69.68 145 IsGyro 340.65 -69.67 155 IsGyro 340.65 -69.67	55	IsGyro	339.39	-69.51	
70 IsGyro 339.56 -69.55 75 IsGyro 339.53 -69.6 80 IsGyro 339.74 -69.52 85 IsGyro 339.83 -69.54 90 IsGyro 339.73 -69.58 100 IsGyro 339.77 -69.52 105 IsGyro 339.93 -69.54 110 IsGyro 340.16 -69.55 115 IsGyro 340.28 -69.61 120 IsGyro 340.37 -69.62 125 IsGyro 340.37 -69.62 135 IsGyro 340.37 -69.68 140 IsGyro 340.36 -69.68 145 IsGyro 340.44 -69.66 150 IsGyro 340.65 -69.67 155 IsGyro 340.7 -69.67	60	IsGyro	339.41	-69.5	
75 IsGyro 339.53 -69.6 80 IsGyro 339.74 -69.52 85 IsGyro 339.83 -69.54 90 IsGyro 339.73 -69.58 100 IsGyro 339.77 -69.52 105 IsGyro 339.93 -69.54 110 IsGyro 340.16 -69.55 115 IsGyro 340.28 -69.61 120 IsGyro 340.37 -69.62 130 IsGyro 340.34 -69.62 135 IsGyro 340.34 -69.62 140 IsGyro 340.36 -69.68 145 IsGyro 340.44 -69.66 150 IsGyro 340.65 -69.67 155 IsGyro 340.7 -69.67	65	IsGyro	339.34	-69.51	
80 IsGyro 339.74 -69.52 85 IsGyro 339.83 -69.54 90 IsGyro 339.6 -69.58 95 IsGyro 339.73 -69.52 100 IsGyro 339.93 -69.54 110 IsGyro 340.16 -69.55 115 IsGyro 340.28 -69.61 120 IsGyro 340.37 -69.62 125 IsGyro 340.34 -69.62 130 IsGyro 340.34 -69.62 135 IsGyro 340.34 -69.68 140 IsGyro 340.36 -69.68 145 IsGyro 340.44 -69.66 150 IsGyro 340.65 -69.67 155 IsGyro 340.7 -69.67	70	IsGyro	339.56	-69.55	
85 IsGyro 339.83 -69.54 90 IsGyro 339.6 -69.58 95 IsGyro 339.73 -69.58 100 IsGyro 339.77 -69.52 105 IsGyro 340.16 -69.55 115 IsGyro 340.28 -69.61 120 IsGyro 340.27 -69.62 125 IsGyro 340.37 -69.61 130 IsGyro 340.34 -69.62 135 IsGyro 340.34 -69.62 140 IsGyro 340.36 -69.68 145 IsGyro 340.44 -69.66 150 IsGyro 340.65 -69.67 155 IsGyro 340.7 -69.67	75	IsGyro	339.53	-69.6	
90 IsGyro 339.6 -69.58 95 IsGyro 339.73 -69.58 100 IsGyro 339.77 -69.52 105 IsGyro 339.93 -69.54 110 IsGyro 340.16 -69.55 115 IsGyro 340.28 -69.61 120 IsGyro 340.37 -69.62 125 IsGyro 340.37 -69.61 130 IsGyro 340.34 -69.62 135 IsGyro 340.37 -69.68 140 IsGyro 340.36 -69.68 145 IsGyro 340.65 -69.67 155 IsGyro 340.7 -69.67	80	IsGyro	339.74	-69.52	
95 IsGyro 339.73 -69.58 100 IsGyro 339.77 -69.52 105 IsGyro 339.93 -69.54 110 IsGyro 340.16 -69.55 115 IsGyro 340.28 -69.61 120 IsGyro 340.37 -69.62 130 IsGyro 340.34 -69.62 135 IsGyro 340.37 -69.68 140 IsGyro 340.36 -69.68 145 IsGyro 340.44 -69.66 150 IsGyro 340.65 -69.67 155 IsGyro 340.7 -69.67	85	IsGyro	339.83	-69.54	
100 IsGyro 339.77 -69.52 105 IsGyro 339.93 -69.54 110 IsGyro 340.16 -69.55 115 IsGyro 340.28 -69.61 120 IsGyro 340.37 -69.62 125 IsGyro 340.34 -69.62 130 IsGyro 340.34 -69.62 135 IsGyro 340.37 -69.68 140 IsGyro 340.36 -69.68 145 IsGyro 340.44 -69.66 150 IsGyro 340.65 -69.67 155 IsGyro 340.7 -69.67	90	IsGyro	339.6	-69.58	
105 IsGyro 339.93 -69.54 110 IsGyro 340.16 -69.55 115 IsGyro 340.28 -69.61 120 IsGyro 340.37 -69.62 125 IsGyro 340.34 -69.61 130 IsGyro 340.34 -69.62 135 IsGyro 340.37 -69.68 140 IsGyro 340.36 -69.68 145 IsGyro 340.44 -69.66 150 IsGyro 340.65 -69.67 155 IsGyro 340.7 -69.67	95	IsGyro	339.73	-69.58	
110 IsGyro 340.16 -69.55 115 IsGyro 340.28 -69.61 120 IsGyro 340.27 -69.62 125 IsGyro 340.37 -69.61 130 IsGyro 340.34 -69.62 135 IsGyro 340.37 -69.68 140 IsGyro 340.36 -69.68 145 IsGyro 340.44 -69.66 150 IsGyro 340.65 -69.67 155 IsGyro 340.7 -69.67	100	IsGyro	339.77	-69.52	
115 IsGyro 340.28 -69.61 120 IsGyro 340.27 -69.62 125 IsGyro 340.37 -69.61 130 IsGyro 340.34 -69.62 135 IsGyro 340.37 -69.68 140 IsGyro 340.36 -69.68 145 IsGyro 340.44 -69.66 150 IsGyro 340.65 -69.67 155 IsGyro 340.7 -69.67	105	IsGyro	339.93	-69.54	
120 IsGyro 340.27 -69.62 125 IsGyro 340.37 -69.61 130 IsGyro 340.34 -69.62 135 IsGyro 340.37 -69.68 140 IsGyro 340.36 -69.68 145 IsGyro 340.44 -69.66 150 IsGyro 340.65 -69.67 155 IsGyro 340.7 -69.67	110	IsGyro	340.16	-69.55	
125 IsGyro 340.37 -69.61 130 IsGyro 340.34 -69.62 135 IsGyro 340.37 -69.68 140 IsGyro 340.36 -69.68 145 IsGyro 340.44 -69.66 150 IsGyro 340.65 -69.67 155 IsGyro 340.7 -69.67	115	IsGyro	340.28	-69.61	
130 IsGyro 340.34 -69.62 135 IsGyro 340.37 -69.68 140 IsGyro 340.36 -69.68 145 IsGyro 340.44 -69.66 150 IsGyro 340.65 -69.67 155 IsGyro 340.7 -69.67	120	IsGyro	340.27	-69.62	
135 IsGyro 340.37 -69.68 140 IsGyro 340.36 -69.68 145 IsGyro 340.44 -69.66 150 IsGyro 340.65 -69.67 155 IsGyro 340.7 -69.67	125	IsGyro	340.37	-69.61	
140 IsGyro 340.36 -69.68 145 IsGyro 340.44 -69.66 150 IsGyro 340.65 -69.67 155 IsGyro 340.7 -69.67	130	IsGyro	340.34	-69.62	
145 IsGyro 340.44 -69.66 150 IsGyro 340.65 -69.67 155 IsGyro 340.7 -69.67	135	IsGyro	340.37	-69.68	
150 IsGyro 340.65 -69.67 155 IsGyro 340.7 -69.67	140	IsGyro	340.36	-69.68	
155 IsGyro 340.7 -69.67	145	IsGyro	340.44	-69.66	
	150	IsGyro	340.65	-69.67	
160 IsGyro 340.77 -69.69	155	IsGyro	340.7	-69.67	
	160	IsGyro	340.77	-69.69	

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

1
11+
4+

				211
Depth	Survey Type	Azimuth	Dip	
165	IsGyro	340.8	-69.67	
170	IsGyro	340.94	-69.71	
175	IsGyro	341.1	-69.75	
180	IsGyro	341.11	-69.73	
185	IsGyro	341.27	-69.76	
190	IsGyro	341.23	-69.81	
195	IsGyro	341.09	-69.71	
200	IsGyro	341.28	-69.64	
205	IsGyro	341.33	-69.67	
210	IsGyro	341.56	-69.69	
215	IsGyro	341.7	-69.68	
220	IsGyro	341.83	-69.74	
225	IsGyro	341.97	-69.78	
230	IsGyro	341.78	-69.76	
235	IsGyro	341.91	-69.78	
240	IsGyro	342.02	-69.86	
245	IsGyro	341.79	-69.9	
250	IsGyro	341.84	-69.93	
255	IsGyro	342.01	-69.95	
260	IsGyro	341.78	-69.89	
265	IsGyro	341.83	-69.93	
270	IsGyro	341.94	-69.89	
275	IsGyro	341.97	-69.99	
280	IsGyro	342.14	-69.95	
285	IsGyro	342.24	-69.93	
290	IsGyro	342.01	-69.96	
295	IsGyro	341.92	-69.94	
300	IsGyro	342.18	-69.99	
•				

Hole Number: WR-22-200 Resp. Person: Arnaud Fontaine, Géo

Λ
11+
4+
1

				71
Depth	Survey Type	Azimuth	Dip	
305	IsGyro	342.29	-70.15	
310	IsGyro	342.28	-70.2	
315	IsGyro	342.13	-70.22	
320	IsGyro	342.27	-70.23	
325	IsGyro	342.19	-70.23	
330	IsGyro	342.5	-70.28	
335	IsGyro	342.21	-70.33	
340	IsGyro	342.56	-70.3	
345	IsGyro	342.81	-70.34	
350	IsGyro	342.88	-70.28	
355	IsGyro	342.91	-70.3	
360	IsGyro	343.12	-70.24	
365	IsGyro	343.01	-70.16	
370	IsGyro	343.09	-70.12	
375	IsGyro	343.15	-70.04	
380	IsGyro	343.02	-69.91	
385	IsGyro	343.21	-69.93	
390	IsGyro	343.27	-69.74	

Hole Number:

DRILL LOG REPORT

Resp. Person: Arnaud Fontaine, Géo

Pro	ject	Dril	lling		Collar			Coordinates
Project Name:	West-Raglan	Hole Type:	DDH	Casing:	NW	Collar Dip:	-60	Northing: 6,802,723 UTM Zone: NAD83 / UTM zone 18N
Claim Number:	1094120	Hole Size:	NQ	Casing Status:	Left In Hole	Collar Azi:	180	Easting: 443,021
Property:	Frontier	Drilling Started:	Aug 19, 2022	Oriented:	Υ	Length:	162	Elevation: 360.00
Purpose:		Drilling Completed:	Aug 22, 2022	Collar Survey Type:	APS			Logged By
Target:		Drilling Contractor:	Forage G4	Pulse EM Surveyed:	Υ			Geologist 1: Maxime Dupéré, Géo
Operator:	Orford Mining Corporation	Core Location:	CC	Pulse EM Survey Date:	Aug 22, 2022			Geologist 2:
				Geophysics Contractor:	Crone			Geologist 3:
								Geologist 4:

Comments: No Gyro data available

WR-22-201

		I	Detailed Lithology	•				Mineralizat	ion				Alterati	on	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
0.0	4.0	OB, Overburden													
4.0	12.0	I4I, Peridotite Texture Poikilitic Comments	Grain Size	Colour	Colour Tone						4	12	Serpentinizat ion Carbonatizati I on Comments	Pervasive Fracture/Vein Controlled	Moderate Weak
													Weak FV carr modeartew se		

Hole Number: WR-22-201 Resp. Person: Arnaud Fontaine, Géo

			Detailed Lithology	1				Mineraliza	ation				Alteration	on	
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
12.0	117.0	I4I, Peridotite Texture	Grain Size	Colour	Colour Tone	18.3	45	Pyrrhotite Comments	Fracture/vein controlled	0.01	12	117	Serpentinizat ion Carbonatizati F	Pervasive Fracture/Vein	Moderate Weak
		Orthocumulate Comments Grevish black fo-	Medium Grained mg massive ultramafi	Grey-Green	Dark Rock is strongly			tr of fine po. o					on Comments Weak FV carn	Controlled alto startinf	
		magnetic except paler grey-mediu	for the first 13 meters m).	s where rock is we	eathered/altered (45	53		Disseminated	5			modeartew se	rp. altn throu	ghout.
		FV starting from	eralisation oin the firs 45m. Moderate fractu k) 1/m, 20-60 TCA.	ring, ca(mm) ve	o pn/po/cpy diss & inlets throughout			·	Disseminated Fracture/vein	0.5					
			né diss. from77-85.42	m. Conductor from	m 111.56-111.83m			Chalcopyrite Comments	Fracture/vein controlled	2					
						53	54.79	Pentlandite	Disseminated	10					
								Pyrrhotite	Disseminated	10					
								Pyrrhotite	Fracture/vein controlled	3					
								Comments							
						54.79	66.18	Pentlandite	Disseminated	5					
								Pyrrhotite	Disseminated	0.5					
								Chalcopyrite	Fracture/vein controlled	0.1					
								Comments							
						66.18	69.8	Pentlandite	Disseminated	10					
								Pyrrhotite	Disseminated	10					
								Chalcopyrite	Fracture/vein controlled	0.1					
								Comments							
						69.8	74	Pentlandite	Disseminated	2					
								Pyrrhotite	Disseminated	2					
								Comments							

Hole Number: WR-22-201 Resp. Person: Arnaud Fontaine, Géo

		Detailed Lithology			Mineraliza	tion				Alteration	on	2 1 6
From	То	Lithology	From	То	Туре	Style	%	From	То	Туре	Style	Intensity
			74	77	Pentlandite	Disseminated	5					
					Pyrrhotite	Disseminated	0.5					
					Chalcopyrite	Fracture/vein controlled	0.1					
					Comments							
			77	85.42	Pentlandite	Disseminated	15					
					Pyrrhotite	Fracture/vein controlled	5					
					Chalcopyrite		0.5					
					Comments							
			85.42	99	Pentlandite	Disseminated	7					
					Pyrrhotite	Disseminated	0.5					
					Chalcopyrite	Fracture/vein controlled	0.1					
					Comments							
			99	104.4	Pentlandite	Disseminated	1					
					Pyrrhotite	Disseminated	0.5					
					Comments							
			104.4	111.55	Pentlandite	Disseminated	1.5					
					Pyrrhotite	Disseminated	1.5					
					Comments fine pn and po 5000ppm to 1	o, diss. ans also .7%.	FV.					
			111.55	111.84	Pentlandite	Semi-massiv e	20					
					Pyrrhotite	Semi-massiv e	10					
					Comments Conductor, se po and pn 40	emi-massive, and	d foliated					

Hole Number: WR-22-201 Resp. Person: Arnaud Fontaine, Géo

		Detailed Lithology			Mineraliza	ation				Alterat	ion	
From	То	Lithology	From	То	Туре	Style	%	From	То	Туре	Style	Intensity
			111.84	112.79	Pentlandite	Disseminated	1.5					
					Pyrrhotite	Disseminated	1.5					
					Comments fine pn and po 5000ppm to 1	o, diss. ans also l.7%.	FV.					
			112.79	113.15	Pentlandite	Stringer	5					
					Pyrrhotite	Stringer	2.5					
					Comments pn-po in mm- irregular.	1cm, stringers, 5	50 TCA,					
			113.15	117	Pentlandite	Disseminated	1.5					
					Pyrrhotite	Disseminated	0.5					
					Comments mostly fine pr mm-1cm, strii irregular.	n-po diss. and m ngers, 50-90 TC.	inor A,					
117.0	162.0	V3B, Basalt	117	120	Pentlandite	Disseminated	1.5					
		TextureGrain SizeColourColour ToneMassiveMedium GrainedGreenish-GreyMedium			Pyrrhotite	Disseminated	0.5					
		Comments Cr rich basalt(transition zone?), MG, massive.Moderate Magnetic Tr of py, diss. Black mm thick fractures filled with chlorite. Qtz-carb vein: 159.94-160.40 50 TCA.				n-po diss. and m ngers, 50-90 TC						
			120	162	Pyrrhotite	Fracture/vein controlled	0.25					
					Pyrrhotite	Disseminated	0.25					
					Comments fine pyrotite, i disseminated	n FV. also minor	r					

Hole Number: WR-22-201 Resp. Person: Arnaud Fontaine, Géo

					Samplii	ng				
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
6.0	7.5	E5840746	Core	0.0967	0.009	0.008	0.0133	85.5	0.07	
12.1	13.5	E5840747	Core	0.101	0.004	0.0025	0.00468	86	0.08	
18.0	19.5	E5840748	Core	0.111	0.005	0.0025	0.00461	93	0.06	
24.0	25.5	E5840749	Core	0.127	0.007	0.006	0.00336	93.4	0.05	
30.0	31.5	E5840817	Core	0.13	0.019	0.007	0.00247	94.4	0.07	
36.0	37.5	E5840818	Core	0.201	0.169	0.047	0.0216	104	0.16	
42.0	43.5	E5840819	Core	0.141	0.001	0.0025	0.0114	92.7	0.11	
42.0	43.5	E5840820	Duplicate	0.158	0.019	0.013	0.00761	105	0.14	
43.5	45.0	E5840821	Core	0.179	0.022	0.01	0.0254	105	0.18	
45.0	46.5	E5840822	Core	0.187	0.063	0.018	0.0704	105	0.31	
46.5	48.0	E5840751	Core	0.393	0.149	0.04	0.128	140	0.85	
48.0	49.5	E5840752	Core	0.268	0.087	0.025	0.0601	120	0.44	
49.5	51.0	E5840753	Core	0.245	0.062	0.018	0.048	110	0.31	
51.0	52.5	E5840754	Core	0.394	0.172	0.045	0.114	137	1.02	
52.5	54.0	E5840755	Core	0.267	0.035	0.011	0.0532	114	0.4	
54.0	55.5	E5840756	Core	0.247	0.084	0.025	0.0536	117	0.42	
55.5	57.0	E5840757	Core	0.178	0.037	0.015	0.0257	106	0.24	
57.0	58.5	E5840758	Core	0.181	0.021	0.0025	0.0189	109	0.21	
58.5	60.0	E5840759	Core	0.181	0.059	0.018	0.0271	110	0.3	
58.5	60.0	E5840760	Duplicate	0.275	0.058	0.018	0.0236	127	0.79	
60.0	61.5	E5840761	Core	0.156	0.014	0.0025	0.0262	101	0.25	
61.5	63.0	E5840762	Core	0.264	0.087	0.023	0.058	121	0.37	
63.0	64.5	E5840763	Core	0.268	0.076	0.021	0.0555	111	0.33	
64.5	65.0	E5840764	Core	0.224	0.041	0.018	0.0201	113	0.21	
65.0	66.18	E5840765	Core	0.163	0.043	0.014	0.0213	114	0.19	
66.18	67.5	E5840766	Core	0.278	0.064	0.018	0.0633	111	0.51	
67.5	69.0	E5840767	Core	0.275	0.073	0.022	0.0687	123	0.44	

Hole Number: WR-22-201 Resp. Person: Arnaud Fontaine, Géo

									•	$\mathcal{M}_{\mathcal{I}}$
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
69.0	69.8	E5840768	Core	0.2	0.065	0.018	0.0395	114	0.29	
69.8	72.0	E5840769	Core	0.33	0.122	0.031	0.0785	128	0.62	
72.0	73.0	E5840771	Core	0.184	0.07	0.023	0.0412	112	0.27	
73.0	74.0	E5840772	Core	0.223	0.074	0.021	0.0665	120	0.33	
74.0	75.0	E5840773	Core	0.338	0.037	0.012	0.104	126	0.41	
75.0	76.0	E5840774	Core	0.209	0.014	0.007	0.0456	119	0.29	
76.0	77.0	E5840775	Core	0.227	0.078	0.022	0.0519	122	0.34	
77.0	78.0	E5840776	Core	0.312	0.05	0.013	0.0797	123	0.5	
78.0	79.5	E5840777	Core	0.187	0.016	0.005	0.0391	110	0.26	
79.5	81.0	E5840778	Core	0.347	0.119	0.03	0.096	135	0.59	
81.0	82.5	E5840779	Core	0.444	0.174	0.048	0.138	159	0.91	
82.5	84.0	E5840781	Core	0.491	0.269	0.07	0.187	165	1.4	
84.0	85.42	E5840782	Core	0.483	0.223	0.046	0.141	158	1.01	
85.42	86.0	E5840783	Core	0.379	0.155	0.037	0.119	154	0.72	
86.0	87.0	E5840784	Core	0.293	0.035	0.007	0.0764	119	0.48	
87.0	88.5	E5840785	Core	0.36	0.04	0.01	0.1	136	0.76	
88.5	90.0	E5840786	Core	0.314	0.08	0.023	0.0744	129	0.52	
90.0	91.5	E5840787	Core	0.322	0.115	0.033	0.0836	130	0.54	
91.5	93.0	E5840788	Core	0.44	0.189	0.046	0.149	153	1.15	
93.0	94.5	E5840789	Core	0.36	0.228	0.053	0.134	146	1	
94.5	96.0	E5840790	Core	0.384	0.254	0.048	0.143	153	1.15	
96.0	97.5	E5840791	Core	0.456	0.31	0.068	0.194	171	1.32	
97.5	99.0	E5840792	Core	0.347	0.199	0.039	0.105	136	0.74	
97.5	99.0	E5840793	Duplicate	0.369	0.207	0.045	0.121	147	0.81	
99.0	100.5	E5840794	Core	0.28	0.132	0.021	0.0778	127	0.74	
100.5	102.0	E5840795	Core	0.219	0.081	0.0025	0.0507	110	0.38	
102.0	103.5	E5840796	Core	0.201	0.078	0.0025	0.0482	109	0.35	
103.5	105.0	E5840797	Core	0.204	0.087	0.0025	0.056	114	0.42	

Hole Numb	oer: WR	R-22-201							Resp. Person: Arnaud Fontaine, Géo	AF
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	•
105.0	106.5	E5840798	Core	0.295	0.168	0.026	0.12	138	0.77	
106.5	108.0	E5840799	Core	0.26	0.124	0.028	0.0744	124	0.48	
108.0	109.5	E5840801	Core	0.248	0.13	0.021	0.0794	122	0.55	
109.5	111.0	E5840802	Core	0.629	0.388	0.08	0.223	191	2	
111.0	111.55	E5840803	Core	0.678	0.338	0.063	0.204	179	1.68	
111.55	112.0	E5840804	Core	1.56	0.71	0.316	0.274	358	4.98	
112.0	112.5	E5840805	Core	0.439	0.225	0.049	0.242	136	1.27	
112.5	113.5	E5840806	Core	1.07	0.488	0.112	0.444	273	3.11	
113.5	114.0	E5840808	Core	0.575	0.372	0.077	0.215	170	1.49	
114.0	115.5	E5840809	Core	0.483	0.262	0.054	0.158	150	1.42	
115.5	117.0	E5840811	Core	0.42	0.249	0.034	0.207	133	1.27	
117.0	118.5	E5840812	Core	0.636	0.403	0.095	0.236	174	1.66	
118.5	120.0	E5840813	Core	0.0977	0.024	0.0025	0.0325	71.2	0.15	
126.0	127.5	E5840814	Core	0.0557	0.008	0.0025	0.0125	63.2	0.15	
132.0	133.5	E5840815	Core	0.0801	0.007	0.0025	0.00898	76.5	0.58	
138.0	139.5	E5840816	Core	0.0616	0.008	0.0025	0.00842	67.1	0.4	
144.0	145.5	E5840823	Core	0.0682	0.008	0.0025	0.00831	71.5	0.17	
150.0	151.5	E5840824	Core	0.0582	0.008	0.0025	0.00912	66.6	0.13	
156.0	157.5	E5840825	Core	0.0805	0.006	0.0025	0.00806	78.2	0.34	
					Structu	ire				
From	То	Structure Type S	tructure Intensity	Comments						
50.5	61	Fracturing								
65.6	72	Fracturing		general 60 TCA frac	cturing but also 0-	-20TCA, filled wi	th carb (mm) v	einlets, up to 1	cm.	
119	119.16	Calcite vein		ca-serp venlet, 40 T	CA					
					Point Stru	cture				
Depth	Structure '	Type Structure Inte	ensity Alpha Angle	Beta Ga Angle Ai	mma Core A	angle Comme	nts			
109	Stringe	er			40) pentland	ite stringer			

Hole Number: WR-22-201 Resp. Person: Arnaud Fontaine, Géo

Depth	Structure Typ	e Structu	ure Intensity	Alpha Angle	Beta Angle	Gamma Angle	Core Angle	Comments	S			711
159.94	Calcite vein						50	Qtz-carb vi	n, unmineralis	sed		
			Ge	otechnical							Mags	us
From	То	Recovery	Recovery %	RQD	RQD %	Comments			Depth	Mag Sus	Conductivity	Mag Sus Instrument
4.35	6	1.65	100	0.39	23.64				5	0.81	0	MPP-EM2S+
									6	0.88	0	MPP-EM2S+
6	9	2.98	99.33	2.24	75.17				7	0.91	0	MPP-EM2S+
									8	0.97	0	MPP-EM2S+
									9	0.9	0	MPP-EM2S+
9	12	2.87	95.67	2.37	82.58				10	0.87	0	MPP-EM2S+
									11	0.94	0	MPP-EM2S+
									12	0.75	0	MPP-EM2S+
12	15	3.01	100.33	2.49	82.72				13	1.11	0	MPP-EM2S+
									14	2.6	0	MPP-EM2S+
									15	2.26	0	MPP-EM2S+
15	18	2.7	90	1.8	66.67				16	3.19	0	MPP-EM2S+
									17	3.38	0	MPP-EM2S+
									18	16.24	0	MPP-EM2S+
18	21	2.35	78.33	1.33	56.6				19	23.18	0	MPP-EM2S+
									20	30.7	0	MPP-EM2S+
									21	21.96	0	MPP-EM2S+
21	24	2.9	96.67	0.98	33.79				22	29.44	0	MPP-EM2S+
									23	47.66	0	MPP-EM2S+

Hole Number: WR-22-201 Resp. Person: Arnaud Fontaine, Géo

											AI
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							24	41.27	0	MPP-EM2S+	
24	27	2.88	96	1.09	37.85		25	34.9	0	MPP-EM2S+	
							26	56.54	0	MPP-EM2S+	
							27	28.53	0	MPP-EM2S+	
27	30	3.43	114.33	1.28	37.32		28	28.35	0	MPP-EM2S+	
							29	26.53	0	MPP-EM2S+	
							30	34.4	0	MPP-EM2S+	
30	33	2.67	89	0.58	21.72		31	37.49	0	MPP-EM2S+	
							32	50.85	0	MPP-EM2S+	
							33	47.31	0	MPP-EM2S+	
33	33 36	2.85	95	0.88	30.88		34	40.39	0	MPP-EM2S+	
							35	55.77	0	MPP-EM2S+	
							36	40.3	0	MPP-EM2S+	
36	39	3.14	104.67	0	0		37	2.64	0	MPP-EM2S+	
							38	67.74	0	MPP-EM2S+	
							39	68.86	0	MPP-EM2S+	
39	42	2.57	85.67	0.87	33.85		40	59.14	0	MPP-EM2S+	
							41	68.27	0	MPP-EM2S+	
							42	44.3	0	MPP-EM2S+	
42	45	2.9	96.67	0.47	16.21		43	36.83	0	MPP-EM2S+	
							44	63.03	0	MPP-EM2S+	
							45	4.44	0	MPP-EM2S+	
45	48	3.1	103.33	1.59	51.29		46	23.24	0	MPP-EM2S+	
							47	49.46	0	MPP-EM2S+	

Hole Number: WR-22-201 Resp. Person: Arnaud Fontaine, Géo

									<u> </u>	7.11.1000 7.11.01.10, 000	AI
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							48	36.56	0	MPP-EM2S+	
48	51	3.02	100.67	1.6	52.98		49	44.7	0	MPP-EM2S+	
							50	65.25	0	MPP-EM2S+	
							51	57.66	0	MPP-EM2S+	
51	54	2.84	94.67	0.66	23.24		52	51.43	0	MPP-EM2S+	
							53	46.76	0	MPP-EM2S+	
							54	58.92	0	MPP-EM2S+	
54	57	2.4	80	0.44	18.33		55	59.08	0	MPP-EM2S+	
							56	41.25	0	MPP-EM2S+	
							57	67.9	0	MPP-EM2S+	
57	60	2.7	90	0.23	8.52		58	56.75	0	MPP-EM2S+	
	37 00						59	50.43	0	MPP-EM2S+	
							60	37.54	0	MPP-EM2S+	
60	63	2.85	95	1.25	43.86		61	90.27	0	MPP-EM2S+	
							62	63.87	0	MPP-EM2S+	
							63	80.65	0	MPP-EM2S+	
63	66	2.9	96.67	1.4	48.28		64	70.83	0	MPP-EM2S+	
							65	37.81	0	MPP-EM2S+	
							66	14.39	0	MPP-EM2S+	
66	69	2.95	98.33	1.93	65.42		67	51.53	0	MPP-EM2S+	
							68	45.02	0	MPP-EM2S+	
							69	69.91	0	MPP-EM2S+	
69	72	2.85	95	2.49	87.37		70	104.19	0	MPP-EM2S+	
							71	121.59	0	MPP-EM2S+	

Hole Number: WR-22-201 Resp. Person: Arnaud Fontaine, Géo

											AI
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							72	98.99	0	MPP-EM2S+	
72	75	2.95	98.33	2.1	71.19		73	115.97	0	MPP-EM2S+	
							74	108.59	0	MPP-EM2S+	
							75	94.1	0	MPP-EM2S+	
75	78	3	100	1.9	63.33		76	114.57	0	MPP-EM2S+	
							77	125.61	0	MPP-EM2S+	
							78	50.32	0	MPP-EM2S+	
78	81	2.86	95.33	1.39	48.6		79	105.14	0	MPP-EM2S+	
							80	80.37	0	MPP-EM2S+	
							81	119.96	0	MPP-EM2S+	
81	81 84	2.98	99.33	2.46	82.55		82	96.05	0	MPP-EM2S+	
							83	70.82	0	MPP-EM2S+	
							84	100.95	0	MPP-EM2S+	
84	87	2.97	99	1.86	62.63		85	53.47	0	MPP-EM2S+	
							86	78.61	0	MPP-EM2S+	
							87	66.54	0	MPP-EM2S+	
87	90	2.94	98	1.4	47.62		88	25.94	0	MPP-EM2S+	
							89	44.52	0	MPP-EM2S+	
							90	54.94	0	MPP-EM2S+	
90	93	2.82	94	1.2	42.55		91	74.36	0	MPP-EM2S+	
							92	53.23	0	MPP-EM2S+	
							93	86.65	0	MPP-EM2S+	
93	96	2.81	93.67	1.84	65.48		94	77.08	0	MPP-EM2S+	
							95	60.06	0	MPP-EM2S+	

Hole Number: WR-22-201 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	1 1
							96	72.28	0	MPP-EM2S+	
96	99	3.37	112.33	2.09	62.02		97	56.77	0	MPP-EM2S+	
							98	87.39	0	MPP-EM2S+	
							99	80.44	0	MPP-EM2S+	
99	102	2.98	99.33	2.32	77.85		100	20.93	0	MPP-EM2S+	
							101	7.92	0	MPP-EM2S+	
							102	37.66	0	MPP-EM2S+	
102	105	2.99	99.67	1.52	50.84		103	30.84	0	MPP-EM2S+	
							104	48.2	0	MPP-EM2S+	
							105	43.7	0	MPP-EM2S+	
105	108	2.6	86.67	1.56	60		106	36.15	0	MPP-EM2S+	
							107	25.81	0	MPP-EM2S+	
							108	34.07	0	MPP-EM2S+	
108	111	3.27	109	2.11	64.53		109	9.91	0	MPP-EM2S+	
							110	13.56	0	MPP-EM2S+	
							111	6.07	0	MPP-EM2S+	
111	114	2.92	97.33	2.37	81.16		112	5.11	0	MPP-EM2S+	
							113	114.68	9154.45	MPP-EM2S+	
							114	5.22	0	MPP-EM2S+	
114	117	2.96	98.67	2.7	91.22		115	9.52	0	MPP-EM2S+	
							116	7.22	0	MPP-EM2S+	
							117	7.13	0	MPP-EM2S+	
117	120	2.88	96	2.68	93.06		118	1.8	0	MPP-EM2S+	
							119	0.33	0	MPP-EM2S+	

Hole Number: WR-22-201 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							120	0.73	0	MPP-EM2S+
120	123	2.98	99.33	2.67	89.6		121	1.01	0	MPP-EM2S+
							122	0.92	0	MPP-EM2S+
							123	1.61	0	MPP-EM2S+
123	126	3.01	100.33	2.64	87.71		124	3.13	0	MPP-EM2S+
							125	2.15	0	MPP-EM2S+
							126	1.31	0	MPP-EM2S+
126	129	2.93	97.67	2.87	97.95		127	1.17	0	MPP-EM2S+
							128	1.62	0	MPP-EM2S+
							129	2.21	0	MPP-EM2S+
129	132	3	100	1.34	44.67		130	2	0	MPP-EM2S+
							131	2.32	0	MPP-EM2S+
							132	2.56	0	MPP-EM2S+
132	135	2.9	96.67	2.87	98.97		133	2.36	0	MPP-EM2S+
							134	2.38	0	MPP-EM2S+
							135	1.58	0	MPP-EM2S+
135	138	2.92	97.33	2.12	72.6		136	1.54	0	MPP-EM2S+
							137	1.4	0	MPP-EM2S+
							138	1.98	0	MPP-EM2S+
138	141	3.02	100.67	2.42	80.13		139	2.12	0	MPP-EM2S+
							140	1.7	0	MPP-EM2S+
							141	1.04	0	MPP-EM2S+
141	144	3.06	102	3.03	99.02		142	1.62	0	MPP-EM2S+
							143	1.6	0	MPP-EM2S+

Hole Number: WR-22-201 Resp. Person: Arnaud Fontaine, Géo

	_		
	л		
	//		
	//	7	
- /	7	1_	
/	1-	1	
1-		/	
' 1		f.	

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							144	0.99	0	MPP-EM2S+
144	147	2.94	98	2.86	97.28		145	1.63	0	MPP-EM2S+
							146	1.85	0	MPP-EM2S+
							147	1.63	0	MPP-EM2S+
147	150	2.93	97.67	2.65	90.44		148	1.67	0	MPP-EM2S+
							149	2.21	0	MPP-EM2S+
							150	2.23	0	MPP-EM2S+
150	153	3	100	3	100		151	1.66	0	MPP-EM2S+
							152	2.05	0	MPP-EM2S+
							153	1.85	0	MPP-EM2S+
153	156	3.01	100.33	2.62	87.04		154	1.55	0	MPP-EM2S+
							155	2.03	0	MPP-EM2S+
							156	2.58	0	MPP-EM2S+
156	159	3.01	100.33	1.22	40.53		157	2.26	0	MPP-EM2S+
							158	1.8	0	MPP-EM2S+
							159	2.4	0	MPP-EM2S+
159	162	2.95	98.33	1.12	37.97		160	1.3	0	MPP-EM2S+
							161	2.18	0	MPP-EM2S+
						Downhole Survey				
Depth	Survey Ty	уре	Azimuth	Dip						

Hole Number:

WR-22-202

DRILL LOG REPORT

Resp. Person: Arnaud Fontaine, Geo.

Pro	ject	Dril	ling		Collar			Coordinates
Project Name:	West-Raglan	Hole Type:	DDH	Casing:	HW	Collar Dip:	-71.29	Northing: 6,802,725 UTM Zone: NAD83 / UTM zone 18N
Claim Number:	1094120	Hole Size:	NQ	Casing Status:	Left In Hole	Collar Azi:	180	Easting: 443,022
Property:	Frontier	Drilling Started:	Aug 23, 2022	Oriented:	Υ	Length:	165	Elevation: 357.08
Purpose:		Drilling Completed:	Aug 25, 2022	Collar Survey Type:				Logged By
Target:	70-110, 150m	Drilling Contractor:	Forage G4	Pulse EM Surveyed:	Υ			Geologist 1: Maxime Dupéré, Géo
Operator:	Orford Mining Corporation	Core Location:	CC	Pulse EM Survey Date:	Aug 25, 2022			Geologist 2:
	,			Geophysics Contractor:	Crone			Geologist 3:
								Geologist 4:

Comments:

		Detailed Lithology			Mineraliza	tion			Alteration				
From	То	Lithology	From	То	Туре	Style	%	From	То	Туре	Style	Intensity	
0.0	5.8	OB, Overburden											
5.8	14.5	I4I, Peridotite Texture Grain Size Colour Colour Tone Massive Medium Grained Grey Medium Comments weathered ultramafic rock., peridotite grey, massive to poikilitic, Rock is strongly magnetic except for the first 14.5 meters where rock is weathered/altered (paler grey-medium). No apparent mineralisation oin the first 15 meters.											

Hole Number: WR-22-202 Resp. Person: Arnaud Fontaine, Géo

1	
11 +	
11-1-	
17	

		1	Detailed Lithology			Mineralization							Alteration				
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity		
14.5	127.2	I4I, Peridotite Texture Orthocumulate	Grain Size Medium Grained	Colour	Colour Tone Dark	30	34	Chalcopyrite Comments	controlled	0.1	53.5	53.75	carbonate) Serpentiniza	t Fracture/Vein	Woderate		
		Comments Greyish to black fg- serpentisation, per- the first 14.5 meter- grey-medium).	-mg massive ultram vasive, moderate, R 's where rock is wea eralisation on the fire	ock is strongly ma thered/altered (pa	e. Backgtround agnetic except for aler	45	52		Disseminated Fracture/vein controlled	0.5 0.01	71	71.4	Comments Calcite Comments	Controlled Fracture/Vein Controlled	Moderate to Strong		
		0.1-0.2% cpy(ccp) %-Moderate fracture	along FV, Mineralis ring increasing at % 1/m, 20-60 TCA. O	ation starting arou pn-po. ca(mm) v	nd 46m einlets throughout			fine as belbs	controlled fine cp		98	127.2	ca stockwork unmineralise Serpentiniza ion Comments		Strong		
						52	74.75	Pyrrhotite Comments fine po, disserracture/vein of	Fracture/vein controlled minatted and in controlled	0.5							
						74.75	81	Pentlandite Pyrrhotite Comments	Patchy Fracture/vein controlled	3 0.1							
						81	93.5	Pentlandite Pyrrhotite Comments	Patchy Fracture/vein controlled	1 0.5							
						93.5	97	Pentlandite Pyrrhotite Comments	Patchy Fracture/vein controlled	3 0.1							
						97	111	Pyrrhotite Pentlandite Chalcopyrite	Patchy Patchy Fracture/vein controlled	1 0.5 0.5							
								Comments Cpy centers in fracture fills fin	n Po blebs. Cpy ne fractures	also							

Hole Number: WR-22-202 Resp. Person: Arnaud Fontaine, Géo

- //	
//	1
//	7
//	1_
/1-	4
1	/
/ /	1.

	Detailed Lithology						Mineralization						Alteration				
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity		
						111	127.2	Pyrrhotite	Disseminated	5							
								Pentlandite	Disseminated	0.5							
								Chalcopyrite	Fracture/vein controlled	0.5							
								Comments									
127.2	165.0	V3, Volcanic Ma				133.8	133.9	Chalcopyrite	Fracture/vein controlled	5							
		Texture Massive	Grain Size Medium Grained	Colour Greenish-Grey	Colour Tone Medium			Comments									
		Comments		G. G		136.8	137.1	Chalcopyrite	Fragmental	10							
		Mafic volcanic						Comments									

Hole Number: WR-22-202 Resp. Person: Arnaud Fontaine, Géo

					Sampli	ng				
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
9.0	10.5	E5840826	Core	0.0834	0.006	0.0025	0.00512	76.4	0.11	
15.0	16.5	E5840827	Core	0.101	0.006	0.0025	0.00851	80.9	0.13	
21.0	22.5	E5840828	Core	0.141	0.026	0.0025	0.00722	96	0.11	
30.0	31.5	E5840829	Core	0.141	0.025	0.0025	0.0069	98.6	0.1	
31.5	33.0	E5840831	Core	0.12	0.006	0.0025	0.0107	86.2	0.11	
33.0	34.5	E5840832	Core	0.134	0.013	0.0025	0.00355	95.8	0.11	
34.5	36.0	E5840833	Core	0.135	0.01	0.0025	0.00326	95.9	0.12	
42.0	43.5	E5840834	Core	0.141	0.017	0.0025	0.00242	95.7	0.13	
43.5	45.0	E5840835	Core	0.149	0.008	0.0025	0.00148	105	0.14	
45.0	46.5	E5840836	Core	0.142	0.013	0.0025	0.0024	98.7	0.15	
46.5	48.0	E5840837	Core	0.224	0.076	0.009	0.0335	112	0.24	
48.0	49.5	E5840838	Core	0.197	0.063	0.007	0.0269	103	0.21	
49.5	51.0	E5840839	Core	0.185	0.055	0.0025	0.018	103	0.19	
51.0	52.5	E5840841	Core	0.244	0.159	0.025	0.0554	125	0.45	
52.5	54.0	E5840842	Core	0.18	0.077	0.0025	0.0528	105	0.39	
54.0	55.5	E5840843	Core	0.167	0.069	0.008	0.0324	106	0.34	
55.5	57.0	E5840844	Core	0.114	0.034	0.0025	0.0177	85	0.19	
57.0	58.5	E5840845	Core	0.141	0.033	0.0025	0.017	98.7	0.18	
58.5	60.0	E5840846	Core	0.152	0.043	0.012	0.0242	98.5	0.22	
60.0	61.5	E5840847	Core	0.159	0.043	0.0025	0.0214	98.3	0.21	
61.5	63.0	E5840848	Core	0.162	0.049	0.0025	0.0198	106	0.2	
63.0	64.5	E5840849	Core	0.144	0.036	0.0025	0.016	98.7	0.2	
63.0	64.5	E5840850	Duplicate	0.138	0.032	0.0025	0.0217	95.4	0.2	
64.5	66.0	E5840851	Core	0.155	0.038	0.008	0.0168	106	0.19	
66.0	67.5	E5840852	Core	0.153	0.036	0.0025	0.0208	97.9	0.19	
67.5	69.0	E5840853	Core	0.168	0.045	0.0025	0.0209	107	0.2	
69.0	70.5	E5840854	Core							

Hole Number: WR-22-202 Resp. Person: Arnaud Fontaine, Géo

- 4	
//	
// ~	7
1/4	
MI	

										211
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
70.5	72.0	E5840855	Core							
72.0	73.0	E5840856	Core							
73.0	73.66	E5840857	Core							
73.66	75.0	E5840858	Core							
75.0	76.5	E5840859	Core							
76.5	78.0	E5840861	Core							
78.0	79.5	E5840862	Core							
79.5	81.0	E5840863	Core							
81.0	82.5	E5840864	Core							
82.5	84.0	E5840865	Core							
84.0	85.5	E5840866	Core							
85.5	87.0	E5840867	Core							
87.0	88.5	E5840868	Core							
88.5	90.0	E5840869	Core							
90.0	91.5	E5840871	Core							
91.5	93.0	E5840872	Core							
93.0	93.47	E5840873	Core							
93.47	94.0	E5840874	Core							
94.0	95.0	E5840875	Core							
95.0	96.0	E5840876	Core							
96.0	97.5	E5840877	Core							
97.5	99.0	E5840878	Core							
99.0	100.5	E5840879	Core							
99.0	100.5	E5840880	Duplicate							
100.5	102.0	E5840881	Core							
102.0	103.5	E5840882	Core							
103.5	105.0	E5840883	Core							
105.0	106.5	E5840884	Core							
•										

Hole Number: WR-22-202 Resp. Person: Arnaud Fontaine, Géo

From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)
106.5	108.0	E5840885	Core						
108.0	109.5	E5840886	Core						
109.5	111.0	E5840887	Core						
111.0	112.5	E5840888	Core						
112.5	114.0	E5840889	Core						
114.0	115.0	E5840891	Core						
115.0	117.0	E5840892	Core						
117.0	119.5	E5840893	Core						
119.5	120.0	E5840894	Core						
120.0	121.5	E5840895	Core						
121.5	123.0	E5840896	Core						
123.0	124.5	E5840897	Core						
124.5	126.0	E5840898	Core						
126.0	127.2	E5840899	Core						
127.2	128.5	E5840901	Core						
128.5	130.0	E5840902	Core						
135.0	136.5	E5840903	Core						
136.5	138.0	E5840904	Core						
138.0	139.0	E5840905	Core						
144.0	145.5	E5840906	Core						
150.0	151.5	E5840907	Core						
155.0	156.5	E5840908	Core						
160.0	161.5	E5840909	Core						
160.0	161.5	E5840910	Duplicate						
					Structu	ire			
From	То	Structure Type	Structure Intensity	Comments					
24	39	Fracturing		Fracturing, moderate,	various TCA, (20-80)			

lole Numb	er: WR-2	22-202									Resp. Person:	Arnaud Fontaine, Géo	AT
From	То	Structure Typ	pe Structure	Intensity	Comments								
39	53	Fracturing			Fracturing, m	noderate-STRC	NG, various TO	CA, (20-80)					
120.9	121.2	Serpentine ve	ein		filled also wit	h cpy and po							
						Р	oint Structure						
Depth	Structure Ty	ype Structu	ure Intensity	Alpha Angle	Beta Angle	Gamma Angle	Core Angle	Comment	s				
16.68	Serpentine v	vein Modera	ate to Strong		-		40	vein (shea	ar) serp-ca. 40	TCA, un min	eralised		
71	Upper conta	act M	oderate				20	Upper con	tact of ca stoc	kwork, 25 cm			
			Ge	eotechnica	il						Mags	us	
From	То	Recovery	Recovery %	RQD	RQD %	Comments			Depth	Mag Sus	Conductivity	Mag Sus Instrument	
6	9	2.46	82	1.3	52.85				7	1.23	0	MPP-EM2S+	
0	9	2.40	02	1.3	52.65				8	1.16	0	MPP-EM2S+	
									9	1.2	0	MPP-EM2S+	
9	12	2.87	95.67	2.7	94.08				10	1.61	0	MPP-EM2S+	
									11	1.16	0	MPP-EM2S+	
									12	2.4	0	MPP-EM2S+	
12	15	2.8	93.33	2.14	76.43				13	2.24	0	MPP-EM2S+	
									14	1.49	0	MPP-EM2S+	
									15	1.34	0	MPP-EM2S+	
15	18	2.89	96.33	1.4	48.44				16	1.24	0	MPP-EM2S+	
									17	3.54	0	MPP-EM2S+	
									18	8.74	0	MPP-EM2S+	
18	21	3.02	100.67	1.9	62.91				19	13.13	0	MPP-EM2S+	
									20	14.48	0	MPP-EM2S+	

Hole Number: WR-22-202 Resp. Person: Arnaud Fontaine, Géo

											/
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							21	19.58	0	MPP-EM2S+	
21	24	3	100	1.6	53.33		22	10.09	0	MPP-EM2S+	
							23	35.49	0	MPP-EM2S+	
							24	15.19	0	MPP-EM2S+	
24	27	3.15	105	1.68	53.33		25	30.21	0	MPP-EM2S+	
							26	12.97	0	MPP-EM2S+	
							27	33.77	0	MPP-EM2S+	
27	30	2.79	93	1.94	69.53		28	27.24	0	MPP-EM2S+	
							29	24.02	0	MPP-EM2S+	
							30	24.79	0	MPP-EM2S+	
30	33	2.97	99	1.46	49.16		31	10.91	0	MPP-EM2S+	
							32	23.61	0	MPP-EM2S+	
							33	25.47	0	MPP-EM2S+	
33	36	2.93	97.67	1.36	46.42		34	38.02	0	MPP-EM2S+	
							35	31.16	0	MPP-EM2S+	
							36	41.05	0	MPP-EM2S+	
36	39	2.97	99	1.17	39.39		37	49.13	0	MPP-EM2S+	
							38	36.89	0	MPP-EM2S+	
							39	29.08	0	MPP-EM2S+	
39	42	2.5	83.33	0.62	24.8		40	61.34	0	MPP-EM2S+	
							41	31.76	0	MPP-EM2S+	
							42	33.07	0	MPP-EM2S+	
42	45	2.69	89.67	0.42	15.61		43	26.53	0	MPP-EM2S+	
							44	47.94	0	MPP-EM2S+	

Hole Number: WR-22-202 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	<u></u>
							45	62.4	0	MPP-EM2S+	
45	48	2.6	86.67	0.83	31.92		46	45.1	0	MPP-EM2S+	
							47	52.68	0	MPP-EM2S+	
							48	43.49	0	MPP-EM2S+	
48	51	2.5	83.33	0.29	11.6		49	54.28	0	MPP-EM2S+	
							50	1.11	0	MPP-EM2S+	
							51	30.67	0	MPP-EM2S+	
51	54	3.1	103.33	0.69	22.26		52	36.73	0	MPP-EM2S+	
							53	16.53	0	MPP-EM2S+	
							54	4.09	0	MPP-EM2S+	
54	57	2.79	93	1.21	43.37		55	18.92	0	MPP-EM2S+	
							56	2	0	MPP-EM2S+	
							57	14.59	0	MPP-EM2S+	
57	60	3	100	1.34	44.67		58	14.28	0	MPP-EM2S+	
							59	7.68	0	MPP-EM2S+	
							60	2.16	0	MPP-EM2S+	
60	63	2.94	98	1.96	66.67		61	4.05	0	MPP-EM2S+	
							62	25.81	0	MPP-EM2S+	
							63	27.27	0	MPP-EM2S+	
63	66	2.85	95	1.18	41.4		64	17.11	0	MPP-EM2S+	
							65	20.01	0	MPP-EM2S+	
							66	32.65	0	MPP-EM2S+	
66	69	2.95	98.33	1.96	66.44		67	10.86	0	MPP-EM2S+	
							68	48.72	0	MPP-EM2S+	

Hole Number: WR-22-202 Resp. Person: Arnaud Fontaine, Géo

											11
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							69	23.9	0	MPP-EM2S+	
69	72	2.94	98	1.12	38.1		70	20.95	0	MPP-EM2S+	
							71	23.35	0	MPP-EM2S+	
							72	20.32	0	MPP-EM2S+	
72	75	2.99	99.67	1.94	64.88		73	49.66	0	MPP-EM2S+	
							74	50.79	0	MPP-EM2S+	
							75	69.71	0	MPP-EM2S+	
75	78	3.1	103.33	2.63	84.84		76	18.97	0	MPP-EM2S+	
							77	12.71	0	MPP-EM2S+	
							78	20.6	0	MPP-EM2S+	
78	81	3	100	2.82	94		79	51.51	0	MPP-EM2S+	
							80	48.56	0	MPP-EM2S+	
							81	87.72	0	MPP-EM2S+	
81	84	2.9	96.67	2.4	82.76		82	99.42	0	MPP-EM2S+	
							83	124.57	0	MPP-EM2S+	
							84	137.45	0	MPP-EM2S+	
84	87	2.9	96.67	2.4	82.76		85	145.94	0	MPP-EM2S+	
							86	110.75	0	MPP-EM2S+	
							87	108.38	0	MPP-EM2S+	
87	90	2.95	98.33	1.9	64.41		88	130.59	0	MPP-EM2S+	
							89	114.35	0	MPP-EM2S+	
							90	102.95	0	MPP-EM2S+	
90	93	2.85	95	1.3	45.61		91	109.3	0	MPP-EM2S+	
							92	53.11	0	MPP-EM2S+	

Hole Number: WR-22-202 Resp. Person: Arnaud Fontaine, Géo

										7a.a.a . oao, 000	211
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							93	101.46	0	MPP-EM2S+	
93	96	2.96	98.67	2.56	86.49		94	66.17	0	MPP-EM2S+	
							95	75.86	0	MPP-EM2S+	
							96	86.91	0	MPP-EM2S+	
96	99	2.97	99	2.47	83.16		97	98.04	0	MPP-EM2S+	
							98	30.23	0	MPP-EM2S+	
							99	108.17	0	MPP-EM2S+	
99	102	3.07	102.33	2.96	96.42		100	68.95	0	MPP-EM2S+	
							101	177.54	0	MPP-EM2S+	
							102	115.59	0	MPP-EM2S+	
102	105	3	100	2.65	88.33		103	161.78	0	MPP-EM2S+	
							104	99.87	0	MPP-EM2S+	
							105	134.64	0	MPP-EM2S+	
105	108	2.98	99.33	2.33	78.19		106	321.66	1706.92	MPP-EM2S+	
							107	144.49	0	MPP-EM2S+	
							108	147.72	0	MPP-EM2S+	
108	111	3.06	102	2.47	80.72		109	100.71	0	MPP-EM2S+	
							110	98.88	0	MPP-EM2S+	
							111	86.46	0	MPP-EM2S+	
111	114	2.95	98.33	2.3	77.97		112	70.71	0	MPP-EM2S+	
							113	51.56	0	MPP-EM2S+	
							114	50.87	0	MPP-EM2S+	
114	117	2.79	93	2.24	80.29		115	8.99	0	MPP-EM2S+	
							116	33.92	3994.54	MPP-EM2S+	

Hole Number: WR-22-202 Resp. Person: Arnaud Fontaine, Géo

											7
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							117	12.25	0	MPP-EM2S+	
117	120	2.9	96.67	1.83	63.1		118	22.14	0	MPP-EM2S+	
							119	49.63	0	MPP-EM2S+	
							120	19.08	0	MPP-EM2S+	
120	123	2.9	96.67	1.95	67.24		121	41.72	3219.89	MPP-EM2S+	
							122	26.59	1487.74	MPP-EM2S+	
							123	31.25	0	MPP-EM2S+	
123	126	3.02	100.67	2.64	87.42		123.5	19.71	2813.67	MPP-EM2S+	
123	120	3.02	100.07	2.04	07.42		124	24.75	0	MPP-EM2S+	
							125	3.5	0	MPP-EM2S+	
							126	2.6	0	MPP-EM2S+	
126	129	2.98	99.33	2.45	82.21		127	2.42	0	MPP-EM2S+	
							128	1.24	0	MPP-EM2S+	
							129	1.08	0	MPP-EM2S+	
129	132	3.25	108.33	2.64	81.23		130	0.91	0	MPP-EM2S+	
							131	1.29	0	MPP-EM2S+	
							132	1.01	0	MPP-EM2S+	
132	135	2.96	98.67	2.34	79.05		133	1.09	0	MPP-EM2S+	
							134	1.09	0	MPP-EM2S+	
							135	1.33	0	MPP-EM2S+	
135	138	2.99	99.67	2.6	86.96		136	0.85	0	MPP-EM2S+	
							137	1.07	877.55	MPP-EM2S+	

Hole Number: WR-22-202 Resp. Person: Arnaud Fontaine, Géo

											211
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							138	1.12	0	MPP-EM2S+	
138	141	2.9	96.67	2.5	86.21		139	0.94	0	MPP-EM2S+	
							140	1.13	0	MPP-EM2S+	
							141	1.52	0	MPP-EM2S+	
141	144	3.1	103.33	2.66	85.81		142	1.69	0	MPP-EM2S+	
							143	1.41	0	MPP-EM2S+	
							144	1.18	0	MPP-EM2S+	
144	147	2.62	87.33	1.53	58.4		145	1.74	0	MPP-EM2S+	
							146	1.35	0	MPP-EM2S+	
							147	1.77	0	MPP-EM2S+	
147	150	3.14	104.67	2.82	89.81		148	1.24	0	MPP-EM2S+	
							149	1.38	0	MPP-EM2S+	
							150	1.2	0	MPP-EM2S+	
150	153	3	100	2.52	84		151	1.24	0	MPP-EM2S+	
							152	1.28	0	MPP-EM2S+	
							153	1.43	0	MPP-EM2S+	
153	156	3.02	100.67	2.82	93.38		154	1.38	0	MPP-EM2S+	
							155	1.31	0	MPP-EM2S+	
							156	1.4	0	MPP-EM2S+	
156	159	3.01	100.33	2.72	90.37		157	1.81	0	MPP-EM2S+	
							158	1.18	0	MPP-EM2S+	
							159	1.09	0	MPP-EM2S+	
159	162	3	100	3	100		160	1.25	0	MPP-EM2S+	
							161	1.17	0	MPP-EM2S+	

Hole Number: WR-22-202 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD % Comments	De	epth Mag S	us Cond	uctivity	Mag Sus Instrument	
						1	162 36.3		0	MPP-EM2S+	
162	165	3.03	101	2.75	90.76	1	163 8.93		0	MPP-EM2S+	
						1	164 0.54		0	MPP-EM2S+	

Downhole Survey

Depth	Survey Type	Azimuth	Dip
0	IsGyro	180	-71.29
5	IsGyro	179.98	-71.42
10	IsGyro	180.13	-71.26
15	IsGyro	179.95	-71.31
20	IsGyro	180.3	-71.28
25	IsGyro	180.25	-71.3
30	IsGyro	180.14	-71.36
35	IsGyro	180.03	-71.33
40	IsGyro	180.15	-71.33
45	IsGyro	179.96	-71.3
50	IsGyro	179.94	-71.36
55	IsGyro	179.89	-71.36
60	IsGyro	179.84	-71.4
65	IsGyro	179.95	-71.37
70	IsGyro	180.35	-71.4
75	IsGyro	180.55	-71.47
80	IsGyro	180.86	-71.38
85	IsGyro	180.86	-71.39
90	IsGyro	181.55	-71.37
95	IsGyro	181.53	-71.35
100	IsGyro	181.56	-71.35
105	IsGyro	181.4	-71.4

Hole Number: WR-22-202 Resp. Person: Arnaud Fontaine, Géo

Depth	Survey Type	Azimuth	Dip	
110	IsGyro	181.06	-71.41	
115	IsGyro	181.09	-71.49	
120	IsGyro	181.11	-71.42	
125	IsGyro	181.14	-71.48	
130	IsGyro	181.29	-71.56	
135	IsGyro	181.37	-71.61	
140	IsGyro	181.39	-71.65	
145	IsGyro	181.76	-71.68	
150	IsGyro	181.45	-71.73	
155	IsGyro	181.36	-71.74	
160	IsGyro	181.97	-71.79	

Hole Number:

WR-22-203

DRILL LOG REPORT

Resp. Person: Arnaud Fontaine, Géo

Pro	ject	Dril	lling		Collar			Coordinates					
Project Name:	West-Raglan	Hole Type:	DDH	Casing:	NW	Collar Dip:	-58.56	Northing: 6,803,032 UTM Zone: NAD83 / UTM zone 18N					
Claim Number:	1094123	Hole Size:	NQ	Casing Status:	Left In Hole	Collar Azi:	0.24	Easting: 444,671					
Property:	Frontier	Drilling Started:	Aug 26, 2022	Oriented:	Υ	Length:	309	Elevation: 302.60					
Purpose:		Drilling Completed:	Sep 3, 2022	Collar Survey Type:				Logged By					
Target:	7-Front_E	Drilling Contractor:	Forage G4	Pulse EM Surveyed:	Υ			Geologist 1: Maxime Dupéré, Géo					
Operator:	Orford Mining Corporation	Core Location:	СС	Pulse EM Survey Date:	Sep 3, 2022			Geologist 2:					
				Geophysics Contractor:	Crone			Geologist 3:					
								Geologist 4:					

Comments:

		Detailed Lithology	Mineralization						Alteration				
From	То	Lithology	From	То	Туре	Style	%	From	То	Туре	Style	Intensity	
0.0	3.8	OB, Overburden											
3.8	40.0	I4BO, Olivine Pyroxenite	3.8	15	Pentlandite	Patchy	0.25	3.8	40	Serpentinizat ion	Pervasive	Moderate	
		Texture Grain Size Colour Colour Tone Mesocumulate Medium Grained Greenish-Grey Dark			Pyrrhotite	Patchy	0.25			Comments			
					Comments								
			15	40	Pyrrhotite	Trace							
					Comments								

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

//
11 T
11-1
MI

			Detailed Litholog	ЭУ				Mineralizat	ion		Alteration					
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity	
40.0	82.0	I4I, Peridotite				44	53	Pentlandite	Patchy	0.25	40	82	Serpentinizat ion	Pervasive	Moderate	
		Texture	Grain Size	Colour	Colour Tone			Pyrrhotite	Patchy	0.25			Comments			
		Mesocumulate	Fine Grained	Greenish-Grey	Dark			•	1 atony	0.20						
								Comments								
						73.3	82	Pentlandite	Patchy	0.5						
								Pyrrhotite	Patchy	0.5						
								Comments								
								increase of pat blebs (1-2%) o fine patchy (an 84.5-93.3.	ver 10cm. 0.1	I-1% pn						
82.0	95.3	I4BO, Olivine Py	roxenite			82	94.3	Pentlandite	Patchy	0.5	82	95.3	Serpentinizat ion	Pervasive	Moderate	
		Texture	Grain Size	Colour	Colour Tone								Comments			
		Poikilitic	Medium Grained	Greenish-Grey	Dark			Pyrrhotite	Patchy	0.5			Comments			
		Comments						Comments								
		(1-2%) over 10cn	e, medium graines, res and veins incr n(XRF: 2.7% Ni). 0 84.5m: in Fracture:	.1-1% pn fine diss	and in fractures.			increase of path blebs (1-2%) of fine patchy (an 84.5-93.3.	ver 10cm. 0.1	I-1% pn						
95.3	106.5	S, Sediments														
		Texture	Grain Size	Colour	Colour Tone											
		Bedded	Fine Grained	Grey	Medium											
		Comments Silicified bedded	sediments, grey, tr	of py, fine, dissem	inated.											

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

			Detailed Litholog	у				Mineraliza	ation			Alteration					
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity		
106.5	202.75	I4I, Peridotite				125	141	Pentlandite	Patchy	0.25	106.5	115.2	Calcite	Pervasive	Strong		
		Texture Poikilitic	Grain Size Medium Grained	Colour Greenish-Grey	Colour Tone Dark			Pyrrhotite	Patchy	0.5			Talcose (+/- carbonate)	Pervasive	Moderate		
		fracturing around disseminated as	te, talc and serpentine d 135-136m. 0.25% f blebs. 06.5-114m assoc. wi	fine pn, 0.25% fine	po not mag.			pn around 12 sulphides wit 50 TCA.(as b	isseminated to 6.2 m, remobili hin catalc 2cr debs (2-3%) ov 26% Ni) and in	zed n vnlet, er	145.05	151.61	Serpentinization Comments Sericitization	Controlled	Moderate Moderate		
								with XRF ave (&4000)ppm	rages of 1500-	1900			Talcose (+/- carbonate)	Fracture/Veir Controlled	¹ Moderate		
						147	150.1	Pyrite	Patchy	0.5			Serpentinizat ion	Pervasive	Moderate to Strong		
							156.1	Pyrite Comments fine py+pn m qtz-ca veining	Patchy y+pn assoc. to g, >2/m, brecci Fracture/vein controlled ostly assoc. to g, >2/m, brecci	0.2 0.1-0.5cm ated.	151.61	156.35	ruchsile	1-0.5m) prese 1), 156-158.25 2/m), 163.85- occurence: 0. stly unmineral 0.5%,20cm) Fracture/Veir Controlled	ent in fract. 5m (1-5cm, -165.65m 5/m), lised except		
								Pyrite	Disseminated Disseminated	0.25			Calcite Comments Strong Fusc. (10cm). 60 T0				
								Comments fine py+pn. u and near qtz- mineralisation unevenly spre 157.8m-159n assoc. with p	nevenly spread ca veinlets. Ni n assoc. to pn be ead in fuschite n: 0.25-2.3% Ni n. Sharp decre 0.1-0.2% Ni (X	around olebs altn. From (XRF) ase		158.2	Sericitization Talcose (+/- carbonate) Serpentinizat ion Comments Mod-strong p altn. oxidation (0. @151.5(0.2m occurence: 1- (0.1cm-2cm, oxidation mos at 156m (py 0	Fracture/Veir Controlled Pervasive erv. brown se 1-0.5m) prese 1), 156-158.25 2/m), 163.85 coccurence: 0. stly unmineral	Moderate to Strong er+talc+serp ent in fract. 5m (1-5cm, -165.65m 5/m),		

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

		Detailed Lithology			Mineraliza	ation		Alteration				
From	То	Lithology	From	То	Туре	Style	%	From	То	Туре	Style	Intensity
			157.8	158.25	Pentlandite	Patchy	1	158.2	159.85	Fuchsite	Pervasive	Strong
					Pyrite	Patchy	0.5			Calcite	Fracture/Vein Controlled	Strong
			158.25	159.9	Comments Concentration surrounding of seam to be u throughout fur Pentlandite Pyrite Comments fine py+pn in 0.1-0.5cm qtz brecciate(qtz poorly minera	n of pn-py as ble ptz vnlets. Althou nevenly spread chite altn Disseminated Disseminated fuchsite. altn an t-ca veining, >2/ vn unmineralise alised).	bs ugh blebs 0.25 0.25 d near m, d to	159.85		Comments Strong pervariance TCA. and sulface (+/- carbonate) Sericitization Talcose (+/- carbonate) Serpentinization Comments Mod-strong paltn. oxidation (0. @ 151.5(0.2n occurence: 1 (0.1cm-2cm, oxidation motal 156m (py 6) Fuchsite Calcite Comments w-m Fusc. al (0.5cm-10cm)	Controlled sive Fusc altn. 9.1-159.25m: phides (0.2% Pervasive Fracture/Vein Controlled t Pervasive 1-0.5m) prese n), 156-158.25 -2/m), 163.85- occurence: 0.9 styly unminerali 0.5%,20cm) Fracture/Vein Controlled Fracture/Vein Controlled tn assoc. to qt. 1), 30-40, 80 To	assoc. to 15cm). 60 , diss.) Moderate Moderate to Strong r+talc+serp nt in fract. m (1-5cm, 165.65m 5/m), sed except Weak to Moderate Weak z-ca vns
										sulphides (tr) At 163.9(5cm 165.8 (at 166		f Sulph.), at

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

	1 +-
1	11
1	F7

			Detailed Litholog	У				Mineralizat	ion		Alteration					
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity	
											166	185.71	Sericitization	Pervasive	Moderate	
													Talcose (+/- I carbonate)	Fracture/Veir Controlled	¹ Moderate	
													Serpentinizat ion	Pervasive	Moderate to Strong	
													Comments Mod-strong pealtn. oxidation (0.1 @ 151.5(0.2m) occurence: 1 (0.1cm-2cm, coxidation mos at 156m (py 0	-0.5m) prese), 156-158.25 2/m), 163.85 occurence: 0. tly unmineral	ent in fract. 5m (1-5cm, -165.65m 5/m),	
											185.71	202.75	Talcose (+/- carbonate)	Pervasive	Weak to Moderate	
202.75	210.0	I4I, Peridotite											Carbonatizati on	Pervasive	Weak to Moderate	
		Texture	Grain Size	Colour	Colour Tone								Serpentinizat ion	Pervasive	Moderate	
		Poikilitic	Medium Grained	Greenish-Grey	Dark								Comments			
		Comments unaltered poikilit	ic peridotite, grading	to cumulate textur	e around 210.								Mod-strong per fizz weakly ald abruptly at 202	onfg fractures	altn. s. Stops	

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

		Detailed Lithology						Mineralizat	ion		Alteration				
From	То	Lithology				From	То	Туре	Style	%	From	То	Туре	Style	Intensity
210.0	309.0	I4I, Peridotite	Ouella Olea	0.1	Oalassa Tana	220.2	224	Pentlandite	Patchy	0.25	232	282	Serpentiniza ion	t Fracture/Vein Controlled	Moderate
		Texture Adcumulate	Grain Size Medium Grained	Colour Greenish-Grey	Colour Tone Dark			Pyrrhotite	Patchy	0.1			Crysotile	Fracture/Vein Controlled	
		Comments unaltered poikiliti moderate-strong TCA.	ic peridotite, grading magnetic, crosscut	to cumulate textur by serp. 1-2cm vei	e around 210. ns, <1/m, 5-50			Comments uneven fine pa concentrations pn also followir every meter.	of dissemina	ted fine			with traces of 0.1-0.3 cm in	o vnlets, <1/m s f fine pn. Prese regular chryso throughout co	ence of tile vnlets
						228	232.4	Pentlandite	Patchy	0.25					
								Pyrrhotite	Patchy	0.1					
								Comments uneven fine pa concentrations pn also followir every meter. X Ni	of dissemina	ted fine					
						232.4	253.5	Pentlandite	Patchy	0.25					
								Pyrrhotite	Patchy	0.25					
								Comments uneven fine pa 25cm wide con disseminated fi some foliation around 2800pp	centrations of the ph also foonce 50cm. X	f llowing					
						253.5	261.5	Pentlandite	Patchy	1					
								Pyrrhotite	Patchy	1					
								Chalcopyrite	Fracture/vein controlled	1					
								Comments uneven fine pa pn. also follow XRF: around 3	tchy to disser	ation.					

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

	I
H	1

Detailed Lithology			Mineraliza	tion		Alteration					
From To Lithology	From	То	Туре	Style	%	From	То	Туре	Style	Intensity	
	261.5	270.5	Pentlandite	Patchy	10						
			Pyrrhotite		5						
			Chalcopyrite	Fracture/vein controlled	1						
			Comments fine dissemina in fracturesA 263.65-267m	ated pn and po, Ilmost net textur	fine cpy e from						
	270.5	285.25	Pyrrhotite	Disseminated	3						
			Pentlandite		0.5						
			Chalcopyrite	Fracture/vein controlled	0.1						
			700-4000ppm	ated po and pn (n Ni), few spots o es and serp. vei	of fine						

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

					Samplin	ng				
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
3.8	5.0	E5840911	Core							
5.0	6.5	E5840912	Core							
6.5	8.0	E5840913	Core	0.146	0.017	0.0025	0.00957	107	0.13	
8.0	9.0	E5840914	Core	0.154	0.026	0.008	0.0071	109	0.13	
9.0	10.0	E5840915	Core	0.139	0.014	0.0025	0.00591	100	0.12	
10.0	11.5	E5840916	Core	0.142	0.023	0.0025	0.00675	104	0.1	
11.5	13.0	E5840917	Core	0.145	0.015	0.0025	0.00539	103	0.12	
13.0	14.5	E5840918	Core	0.148	0.015	0.0025	0.00852	104	0.12	
14.5	16.0	E5840919	Core	0.145	0.019	0.005	0.00795	105	0.1	
22.5	24.0	E5840921	Core	0.141	0.018	0.012	0.00125	98.1	0.07	
28.5	30.0	E5840922	Core	0.15	0.029	0.01	0.00361	103	0.06	
37.5	39.0	E5840923	Core	0.161	0.057	0.019	0.00378	106	0.07	
45.0	46.5	E5840924	Core	0.149	0.012	0.0025	0.00907	111	0.09	
46.5	48.0	E5840925	Core	0.168	0.023	0.007	0.026	113	0.1	
48.0	49.5	E5840926	Core	0.213	0.04	0.017	0.0583	137	0.17	
49.5	51.0	E5840927	Core	0.162	0.02	0.006	0.0186	113	0.11	
51.0	52.5	E5840928	Core	0.175	0.025	0.012	0.0332	118	0.13	
57.0	58.5	E5840929	Core	0.17	0.019	0.008	0.02	117	0.11	
63.0	64.5	E5840931	Core	0.168	0.025	0.01	0.023	116	0.12	
69.0	70.5	E5840932	Core	0.199	0.054	0.023	0.034	120	0.16	
70.5	72.0	E5840933	Core	0.18	0.052	0.017	0.0152	113	0.14	
72.0	73.5	E5840934	Core	0.192	0.074	0.028	0.012	121	0.16	
73.5	75.0	E5840935	Core	0.136	0.01	0.0025	0.0134	106	0.12	
75.0	76.5	E5840936	Core	0.125	0.003	0.0025	0.0062	99.4	0.1	
76.5	78.0	E5840937	Core	0.123	0.009	0.0025	0.00437	97	0.11	
78.0	79.5	E5840938	Core	0.14	0.032	0.007	0.0185	98.9	0.13	
79.5	81.0	E5840939	Core	0.148	0.031	0.008	0.00891	102	0.12	

142.5

144.0

144.0

145.05

E5840968

E5840969

Core

Core

DRILL LOG REPORT

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo From To Sample Number Sample Type Ni (%) Pd (ppm Pt (ppm) Cu (%) Co (ppm) S (%) 79.5 81.0 E5840940 **Duplicate** 0.139 0.02 0.0025 0.00825 98.4 0.11 81.0 82.5 E5840941 Core 0.012 0.127 0.036 0.0107 94.5 0.11 82.5 84.0 E5840942 Core 0.124 0.029 0.0025 0.0209 92.9 0.15 84.0 85.5 E5840943 Core 0.151 0.072 0.0025 0.0574 102 0.43 85.5 87.0 E5840944 Core 0.164 0.089 0.007 0.0476 102 0.4 87.0 88.5 E5840945 Core 0.151 0.066 0.0025 0.0287 96 0.38 88.5 90.0 E5840946 Core 0.17 0.117 0.016 0.0783 100 0.5 90.0 91.5 E5840947 Core 0.191 0.132 0.02 0.086 104 0.56 91.5 93.0 E5840948 Core 0.026 0.0656 98.7 0.36 0.173 0.096 94.3 93.0 E5840949 Core 0.0728 0.022 0.006 0.0216 70.7 0.05 94.3 95.0 E5840951 Core 0.00605 0.0005 0.0025 0.00619 16.6 0.08 95.0 96.0 E5840952 Core 0.0133 0.006 0.0025 0.0107 10.3 0.07 102.0 103.5 E5840953 Core 6.9 0.00998 0.001 0.0025 0.0096 0.03 108.0 109.5 E5840954 Core 0.0898 0.0025 0.00955 78.8 0.05 0.026 114.0 115.2 E5840955 Core 0.00402 82.4 0.101 0.013 0.006 0.25 120.0 121.5 E5840956 Core 0.102 0.006 0.0025 0.00364 85 0.13 121.5 123.0 E5840957 Core 0.102 0.0025 0.00483 0.005 86.8 0.19 123.0 124.5 E5840958 Core 0.106 0.005 0.0025 0.0132 90.5 0.1 124.5 126.0 E5840959 Core 86.2 0.102 0.005 0.0025 0.0034 0.11 126.0 127.5 E5840961 Core 89.9 0.121 0.006 0.0025 0.00291 0.1 127.5 129.0 E5840962 Core 88.5 0.103 0.005 0.0025 0.00538 0.09 129.0 130.5 E5840963 Core 0.0938 0.006 0.0025 0.0134 80.2 0.07 130.5 132.0 E5840964 Core 0.0983 0.005 0.0025 0.00409 85.6 0.07 132.0 133.5 E5840965 Core 0.103 0.006 0.0025 81.5 0.09 0.00148 133.5 135.0 E5840966 Core 0.106 0.007 0.0025 0.00542 84.2 0.07 141.0 142.5 E5840967 Core 0.11 0.054 0.0025 0.00925 82.9 0.23

0.019

0.0025

0.0739

0.0228

112

83.7

0.41

0.12

0.08

0.029

0.193

0.12

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

//
// 1
11-4-
41
216

									Resp. r erson. Amada r ontaine, oco	A
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
144.0	145.05	E5840970	Duplicate	0.133	0.036	0.0025	0.0261	91.9	0.12	
145.05	146.0	E5840971	Core	0.223	0.069	0.015	0.069	123	0.33	
146.0	147.25	E5840972	Core	0.131	0.027	0.008	0.0137	93.9	0.07	
147.25	147.75	E5840973	Core	0.354	0.109	0.025	0.0381	158	1.39	
147.75	148.25	E5840974	Core	0.141	0.048	0.009	0.0495	90.6	0.23	
148.25	149.75	E5840975	Core	0.115	0.025	0.0025	0.0191	94.8	0.11	
149.75	150.3	E5840976	Core	0.125	0.037	0.0025	0.0139	101	0.79	
150.3	151.0	E5840977	Core	0.0919	0.003	0.0025	0.00748	76	0.07	
151.0	152.0	E5840978	Core	0.0883	0.01	0.0025	0.00364	70.3	0.31	
152.0	153.0	E5840979	Core	0.125	0.014	0.0025	0.00113	88.8	0.33	
153.0	154.0	E5840981	Core	0.107	0.015	0.0025	0.00522	91.2	0.19	
154.0	155.0	E5840982	Core	0.0995	0.007	0.0025	0.00279	87.6	0.14	
155.0	156.0	E5840983	Core	0.129	0.036	0.0025	0.00524	82.5	0.15	
156.0	156.5	E5840984	Core	0.826	1.672	0.461	0.0579	290	3.67	
156.5	157.65	E5840985	Core	0.125	0.003	0.0025	0.00351	100	0.23	
157.65	158.25	E5840986	Core	0.615	0.23	0.06	0.124	187	2.17	
158.25	159.25	E5840990	Core	0.7	0.604	0.171	0.0385	151	0.84	
159.25	159.85	E5840991	Core	0.264	0.084	0.024	0.0309	119	0.44	
159.85	161.0	E5840992	Core	0.0953	0.011	0.0025	0.00224	78.9	0.06	
161.0	162.0	E5840993	Core	0.0963	0.005	0.0025	0.00124	79.1	0.05	
162.0	163.0	E5840994	Core	0.0882	0.005	0.0025	0.00092	71.2	0.05	
163.0	164.0	E5840995	Core	0.092	0.004	0.0025	0.00244	77.4	0.07	
164.0	165.0	E5840996	Core	0.0878	0.003	0.0025	0.00367	78.5	0.04	
165.0	166.0	E5840997	Core	0.0893	0.004	0.0025	0.00242	77.7	0.04	
166.0	167.0	E5840998	Core	0.0515	0.006	0.005	0.00319	51.8	0.05	
167.0	167.75	E5840999	Core	0.0868	0.006	0.0025	0.0113	72.2	0.04	
167.0	167.75	E5841000	Duplicate	0.0735	0.008	0.005	0.0126	77.5	0.03	
167.75	168.25	E5841001	Core	0.0646	0.006	0.006	0.0077	62.9	0.05	

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

//
11
11 1
// /_
11-4
1-1
211

From	_	_			NII (0/)		·	- (a/)		2 (0.1)	-
169.5 171.0 E5841003 Core 0.0713 0.008 0.0026 67 0.03 171.0 172.5 E5841004 Core 0.0823 0.004 0.007 0.00852 79.3 0.03 172.5 174.0 E5841005 Core 0.0885 0.006 0.0025 0.00933 84.1 0.03 174.0 174.75 E5841006 Core 0.0755 0.004 0.0025 0.00139 81.7 0.06 174.0 175.5 E5841007 Core 0.0926 0.005 0.0025 0.00139 81.7 0.06 175.5 177.0 E5841008 Core 0.0972 0.005 0.0025 0.00243 83.8 0.07 177.0 178.0 E584109 Core 0.103 0.009 0.006 0.00751 88.8 0.05 179.0 179.0 E5841011 Core 0.101 0.012 0.0025 0.00572 88.1 0.03 179.0 180.0 E5841012 Core 0.108 0.007 0.008 0.0016 92.7 0.03 180.0 181.5 E5841013 Core 0.108 0.007 0.008 0.0058 0.0058 98.2 0.06 180.0 181.5 E5841014 Core 0.118 0.003 0.0025 0.00394 90.3 0.12 189.0 189.5 E5841015 Core 0.116 0.003 0.0025 0.00394 90.3 0.12 189.0 189.5 E5841016 Core 0.168 0.003 0.0025 0.00394 90.3 0.12 189.0 199.5 E5841016 Core 0.168 0.004 0.005 0.00394 90.3 0.12 199.0 199.5 E5841016 Core 0.132 0.016 0.007 0.0147 108 0.12 199.0 199.5 E5841016 Core 0.132 0.016 0.007 0.0147 108 0.12 199.0 199.5 E5841017 Core 0.132 0.016 0.007 0.0147 108 0.12 199.0 199.5 E5841019 Core 0.143 0.002 0.0025 0.00166 103 0.06 199.1 E5841019 Core 0.163 0.014 0.0025 0.00166 103 0.06 199.1 E584102 Core 0.163 0.004 0.0025 0.00166 103 0.06 199.1 E584102 Core 0.163 0.004 0.0025 0.00166 103 0.06 199.1 E584102 Core 0.163 0.004 0.0025 0.00166 110 0.06 199.1 E584102 Core 0.168 0.004 0.0025 0.00166 110 0.06 199.1 E584102 Core 0.168 0.004 0.005 0.0044 112 0.15 199.1 E584102 Core 0.177 0.038 0.026 0.0044 115 0.16 199.1	From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
171.0 172.5 E5841004 Core 0.0823 0.004 0.007 0.00852 79.3 0.03 172.5 174.0 E5841005 Core 0.0885 0.006 0.0025 0.00373 84.1 0.03 174.0 174.75 E5841006 Core 0.0755 0.004 0.0025 0.00118 62.6 0.04 174.75 175.5 E5841008 Core 0.097 0.005 0.0025 0.00243 83.8 0.07 177.0 178.0 E5841009 Core 0.103 0.009 0.006 0.00751 88.8 0.05 178.0 179.0 E5841011 Core 0.101 0.012 0.0025 0.00572 88.1 0.03 178.0 179.0 E5841012 Core 0.101 0.012 0.0025 0.00572 88.1 0.03 179.0 180.0 E5841014 Core 0.108 0.007 0.008 0.00572 88.1 0.03 180.0								0.00727			
172.5 174.0 E5841005 Core 0.0885 0.006 0.025 0.00373 84.1 0.03 174.0 174.75 E5841006 Core 0.0755 0.004 0.0025 0.00118 62.6 0.04 174.75 175.5 E5841007 Core 0.0926 0.005 0.0028 0.00139 81.7 0.06 177.0 178.0 E5841009 Core 0.033 0.009 0.006 0.00751 88.8 0.05 178.0 178.0 E5841011 Core 0.101 0.012 0.025 0.00572 88.1 0.03 178.0 180.0 E5841012 Core 0.108 0.007 0.008 0.00572 88.1 0.03 180.0 181.5 E5841013 Core 0.108 0.007 0.008 0.00577 9.05 0.03 180.0 187.5 E5841014 Core 0.00873 0.003 0.0025 0.00597 98.2 0.05 192.0	169.5	171.0	E5841003	Core	0.0713	0.008	0.008	0.00226	67	0.03	
174.0 174.75 E5841006 Core 0.0755 0.004 0.0025 0.00118 62.6 0.04 174.75 175.5 E5841007 Core 0.0928 0.005 0.0025 0.00139 81.7 0.06 175.5 177.0 E5841008 Core 0.0972 0.005 0.0025 0.00243 83.8 0.07 177.0 178.0 E5841019 Core 0.103 0.009 0.006 0.00751 88.8 0.05 178.0 179.0 E5841011 Core 0.101 0.012 0.0052 0.00572 88.1 0.03 179.0 180.0 E5841012 Core 0.108 0.007 0.008 0.0016 92.7 0.03 180.0 181.5 E5841013 Core 0.108 0.007 0.008 0.00587 90.5 0.06 180.0 187.5 E5841014 Core 0.1937 0.003 0.0025 0.00589 98.2 0.05 192.0	171.0	172.5	E5841004	Core	0.0823	0.004	0.007	0.00852	79.3	0.03	
174.75 175.5 E5841007 Core 0.0926 0.005 0.0025 0.00139 81.7 0.06 176.5 177.0 E5841008 Core 0.0972 0.005 0.0025 0.00243 83.8 0.07 177.0 178.0 E5841011 Core 0.103 0.009 0.006 0.00751 88.8 0.05 178.0 179.0 E5841011 Core 0.108 0.007 0.008 0.00752 88.1 0.03 179.0 181.5 E5841012 Core 0.108 0.008 0.0025 0.00587 90.5 0.06 180.0 181.5 E5841014 Core 0.0973 0.003 0.0025 0.00587 90.5 0.06 180.0 187.5 E5841016 Core 0.116 0.003 0.005 0.0034 90.3 0.12 192.0 193.5 E5841016 Core 0.169 0.048 0.016 0.0251 105 0.11 200.0	172.5	174.0	E5841005	Core	0.0885	0.006	0.0025	0.00373	84.1	0.03	
175.5 177.0 E5841008 Core 0.0972 0.005 0.0025 0.00243 83.8 0.07 177.0 178.0 E5841009 Core 0.103 0.009 0.006 0.00751 88.8 0.05 178.0 178.0 E5841011 Core 0.101 0.012 0.0025 0.00672 88.1 0.03 179.0 180.0 E5841012 Core 0.108 0.007 0.008 0.0016 92.7 0.03 180.0 181.5 E5841013 Core 0.108 0.008 0.0025 0.00687 90.5 0.06 192.0 193.5 E5841015 Core 0.116 0.003 0.005 0.0084 90.3 0.12 198.0 199.5 E5841016 Core 0.169 0.048 0.016 0.0251 105 0.11 200.0 251.5 E5841018 Core 0.132 0.016 0.007 0.0147 108 0.12 210.0	174.0	174.75	E5841006	Core	0.0755	0.004	0.0025	0.00118	62.6	0.04	
177.0 178.0 E5841009 Core 0.103 0.009 0.006 0.00751 88.8 0.05 178.0 179.0 E5841011 Core 0.101 0.012 0.0025 0.00572 88.1 0.03 180.0 180.0 E5841013 Core 0.108 0.008 0.0025 0.00587 90.5 0.06 186.0 187.5 E5841014 Core 0.0973 0.003 0.0025 0.0059 98.2 0.05 192.0 193.5 E5841016 Core 0.116 0.003 0.005 0.00304 90.3 0.12 198.0 199.5 E5841016 Core 0.169 0.048 0.016 0.00304 90.3 0.12 204.0 205.5 E5841017 Core 0.132 0.016 0.007 0.0147 108 0.12 210.0 211.5 E5841018 Core 0.131 0.002 0.0025 0.00245 109 0.06 217.5	174.75	175.5	E5841007	Core	0.0926	0.005	0.0025	0.00139	81.7	0.06	
178.0 179.0 E5841011 Core 0.101 0.012 0.0025 0.00572 88.1 0.03 179.0 180.0 E5841012 Core 0.108 0.007 0.008 0.0016 92.7 0.03 180.0 181.5 E5841013 Core 0.108 0.008 0.0025 0.00587 90.5 0.06 186.0 187.5 E5841014 Core 0.0973 0.003 0.0025 0.0059 98.2 0.05 192.0 193.5 E5841015 Core 0.116 0.003 0.005 0.0034 90.3 0.12 198.0 199.5 E5841016 Core 0.169 0.048 0.016 0.0251 105 0.11 204.0 205.5 E5841017 Core 0.132 0.016 0.007 0.0147 108 0.12 210.0 211.5 E5841019 Core 0.131 0.002 0.00245 109 0.06 217.5 E5841021	175.5	177.0	E5841008	Core	0.0972	0.005	0.0025	0.00243	83.8	0.07	
179.0 180.0 E5841012 Core 0.108 0.007 0.008 0.0016 92.7 0.03 180.0 181.5 E5841013 Core 0.108 0.008 0.0025 0.00587 90.5 0.06 186.0 187.5 E5841014 Core 0.0973 0.003 0.005 0.0059 98.2 0.05 192.0 193.5 E5841015 Core 0.116 0.003 0.005 0.00304 90.3 0.12 198.0 199.5 E5841016 Core 0.169 0.048 0.016 0.0251 105 0.11 204.0 205.5 E5841017 Core 0.132 0.016 0.007 0.0147 108 0.12 210.0 211.5 E5841018 Core 0.131 0.002 0.0025 0.00166 103 0.06 217.5 E5841021 Core 0.145 0.001 0.0025 0.00245 109 0.06 217.5 219.0	177.0	178.0	E5841009	Core	0.103	0.009	0.006	0.00751	88.8	0.05	
180.0 181.5 E5841013 Core 0.108 0.008 0.0025 0.00587 90.5 0.06 186.0 187.5 E5841014 Core 0.0973 0.003 0.0025 0.0059 98.2 0.05 192.0 193.5 E5841015 Core 0.116 0.003 0.005 0.00304 90.3 0.12 198.0 199.5 E5841016 Core 0.169 0.048 0.016 0.0251 105 0.11 204.0 205.5 E5841017 Core 0.132 0.016 0.007 0.0147 108 0.12 210.0 211.5 E5841018 Core 0.131 0.002 0.0025 0.00166 103 0.06 217.5 E5841021 Core 0.145 0.001 0.0025 0.00245 109 0.06 217.5 219.0 E5841021 Core 0.167 0.022 0.013 0.0122 112 0.1 219.0 E5841022	178.0	179.0	E5841011	Core	0.101	0.012	0.0025	0.00572	88.1	0.03	
186.0 187.5 E5841014 Core 0.0973 0.003 0.0025 0.0059 98.2 0.05 192.0 193.5 E5841015 Core 0.116 0.003 0.005 0.00304 90.3 0.12 198.0 199.5 E5841016 Core 0.169 0.048 0.016 0.0251 105 0.11 204.0 205.5 E5841017 Core 0.132 0.016 0.007 0.0147 108 0.12 210.0 211.5 E5841018 Core 0.131 0.002 0.0025 0.00166 103 0.06 216.0 217.5 E5841019 Core 0.145 0.001 0.0025 0.00245 109 0.06 217.5 219.0 E5841021 Core 0.167 0.022 0.013 0.0122 112 0.1 219.0 220.2 E5841023 Core 0.163 0.046 0.033 0.00146 112 0.07 221.0 <td< td=""><td>179.0</td><td>180.0</td><td>E5841012</td><td>Core</td><td>0.108</td><td>0.007</td><td>0.008</td><td>0.0016</td><td>92.7</td><td>0.03</td><td></td></td<>	179.0	180.0	E5841012	Core	0.108	0.007	0.008	0.0016	92.7	0.03	
192.0 193.5 E5841015 Core 0.116 0.003 0.005 0.00304 90.3 0.12 198.0 199.5 E5841016 Core 0.169 0.048 0.016 0.0251 105 0.11 204.0 205.5 E5841017 Core 0.132 0.016 0.007 0.0147 108 0.12 210.0 211.5 E5841018 Core 0.131 0.002 0.0025 0.00166 103 0.06 216.0 217.5 E5841019 Core 0.145 0.001 0.0025 0.00245 109 0.06 217.5 219.0 E5841021 Core 0.167 0.022 0.013 0.0122 112 0.1 219.0 220.2 E5841022 Core 0.163 0.046 0.033 0.00146 112 0.07 221.0 222.0 E5841023 Core 0.156 0.01 0.005 0.0665 110 0.08 222.0 223	180.0	181.5	E5841013	Core	0.108	0.008	0.0025	0.00587	90.5	0.06	
198.0 199.5 E5841016 Core 0.169 0.048 0.016 0.0251 105 0.11 204.0 205.5 E5841017 Core 0.132 0.016 0.007 0.0147 108 0.12 210.0 211.5 E5841018 Core 0.131 0.002 0.0025 0.00166 103 0.06 216.0 217.5 E5841019 Core 0.145 0.001 0.0025 0.00245 109 0.06 217.5 219.0 E5841021 Core 0.167 0.022 0.013 0.0122 112 0.1 219.0 220.2 E5841022 Core 0.163 0.046 0.033 0.00146 112 0.07 220.2 221.0 E5841023 Core 0.205 0.062 0.031 0.0502 126 0.17 221.0 222.0 E5841024 Core 0.156 0.01 0.005 0.00665 110 0.08 222.0 223.	186.0	187.5	E5841014	Core	0.0973	0.003	0.0025	0.0059	98.2	0.05	
204.0 205.5 E5841017 Core 0.132 0.016 0.007 0.0147 108 0.12 210.0 211.5 E5841018 Core 0.131 0.002 0.0025 0.00166 103 0.06 216.0 217.5 E5841019 Core 0.145 0.001 0.0025 0.00245 109 0.06 217.5 219.0 E5841021 Core 0.167 0.022 0.013 0.0122 112 0.1 219.0 220.2 E5841022 Core 0.163 0.046 0.033 0.00146 112 0.07 220.2 221.0 E5841023 Core 0.205 0.062 0.031 0.0502 126 0.17 221.0 222.0 E5841024 Core 0.156 0.01 0.005 0.00665 110 0.08 222.0 223.5 E5841025 Core 0.175 0.052 0.027 0.0108 115 0.14 223.5 225.	192.0	193.5	E5841015	Core	0.116	0.003	0.005	0.00304	90.3	0.12	
210.0 211.5 E5841018 Core 0.131 0.002 0.0025 0.00166 103 0.06 216.0 217.5 E5841019 Core 0.145 0.001 0.0025 0.00245 109 0.06 217.5 219.0 E5841021 Core 0.167 0.022 0.013 0.0122 112 0.1 219.0 220.2 E5841022 Core 0.163 0.046 0.033 0.00146 112 0.07 220.2 221.0 E5841023 Core 0.205 0.062 0.031 0.0502 126 0.17 221.0 222.0 E5841024 Core 0.156 0.01 0.005 0.00665 110 0.08 222.0 223.5 E5841025 Core 0.175 0.052 0.027 0.0108 115 0.14 223.5 225.0 E5841026 Core 0.177 0.038 0.026 0.0041 112 0.15 226.5 228.	198.0	199.5	E5841016	Core	0.169	0.048	0.016	0.0251	105	0.11	
216.0 217.5 E5841019 Core 0.145 0.001 0.0025 0.00245 109 0.06 217.5 219.0 E5841021 Core 0.167 0.022 0.013 0.0122 112 0.1 219.0 220.2 E5841022 Core 0.163 0.046 0.033 0.00146 112 0.07 220.2 221.0 E5841023 Core 0.205 0.062 0.031 0.0502 126 0.17 221.0 222.0 E5841024 Core 0.156 0.01 0.005 0.00665 110 0.08 222.0 223.5 E5841025 Core 0.175 0.052 0.027 0.0108 115 0.14 223.5 225.0 E5841026 Core 0.177 0.038 0.026 0.00441 112 0.15 225.0 226.5 E5841027 Core 0.174 0.029 0.015 0.0141 116 0.15 228.0 228.0	204.0	205.5	E5841017	Core	0.132	0.016	0.007	0.0147	108	0.12	
217.5 219.0 E5841021 Core 0.167 0.022 0.013 0.0122 112 0.1 219.0 220.2 E5841022 Core 0.163 0.046 0.033 0.00146 112 0.07 220.2 221.0 E5841023 Core 0.205 0.062 0.031 0.0502 126 0.17 221.0 222.0 E5841024 Core 0.156 0.01 0.005 0.00665 110 0.08 222.0 223.5 E5841025 Core 0.175 0.052 0.027 0.0108 115 0.14 223.5 225.0 E5841026 Core 0.177 0.038 0.026 0.00441 112 0.15 225.0 226.5 E5841027 Core 0.174 0.029 0.015 0.0141 116 0.15 228.0 228.0 E5841028 Core 0.145 0.02 0.011 0.00505 110 0.12 228.0 229.5 E5841030 Duplicate 0.154 0.022 0.007 0.011 114 <td>210.0</td> <td>211.5</td> <td>E5841018</td> <td>Core</td> <td>0.131</td> <td>0.002</td> <td>0.0025</td> <td>0.00166</td> <td>103</td> <td>0.06</td> <td></td>	210.0	211.5	E5841018	Core	0.131	0.002	0.0025	0.00166	103	0.06	
219.0 220.2 E5841022 Core 0.163 0.046 0.033 0.00146 112 0.07 220.2 221.0 E5841023 Core 0.205 0.062 0.031 0.0502 126 0.17 221.0 222.0 E5841024 Core 0.156 0.01 0.005 0.00665 110 0.08 222.0 223.5 E5841025 Core 0.175 0.052 0.027 0.0108 115 0.14 223.5 225.0 E5841026 Core 0.177 0.038 0.026 0.00441 112 0.15 225.0 226.5 E5841027 Core 0.174 0.029 0.015 0.0141 116 0.15 226.5 228.0 E5841028 Core 0.145 0.02 0.011 0.00505 110 0.12 228.0 229.5 E5841029 Core 0.16 0.021 0.011 0.00944 118 0.15 228.0 229.5 E5841030 Duplicate 0.154 0.022 0.007 0.011 114 <td>216.0</td> <td>217.5</td> <td>E5841019</td> <td>Core</td> <td>0.145</td> <td>0.001</td> <td>0.0025</td> <td>0.00245</td> <td>109</td> <td>0.06</td> <td></td>	216.0	217.5	E5841019	Core	0.145	0.001	0.0025	0.00245	109	0.06	
220.2 221.0 E5841023 Core 0.205 0.062 0.031 0.0502 126 0.17 221.0 222.0 E5841024 Core 0.156 0.01 0.005 0.00665 110 0.08 222.0 223.5 E5841025 Core 0.175 0.052 0.027 0.0108 115 0.14 223.5 225.0 E5841026 Core 0.177 0.038 0.026 0.00441 112 0.15 225.0 226.5 E5841027 Core 0.174 0.029 0.015 0.0141 116 0.15 226.5 228.0 E5841028 Core 0.145 0.02 0.011 0.00505 110 0.12 228.0 229.5 E5841029 Core 0.16 0.021 0.011 0.00944 118 0.15 228.0 229.5 E5841030 Duplicate 0.154 0.022 0.007 0.011 114 0.15	217.5	219.0	E5841021	Core	0.167	0.022	0.013	0.0122	112	0.1	
221.0 222.0 E5841024 Core 0.156 0.01 0.005 0.00665 110 0.08 222.0 223.5 E5841025 Core 0.175 0.052 0.027 0.0108 115 0.14 223.5 225.0 E5841026 Core 0.177 0.038 0.026 0.00441 112 0.15 225.0 226.5 E5841027 Core 0.174 0.029 0.015 0.0141 116 0.15 226.5 228.0 E5841028 Core 0.145 0.02 0.011 0.00505 110 0.12 228.0 229.5 E5841029 Core 0.16 0.021 0.011 0.00944 118 0.15 228.0 229.5 E5841030 Duplicate 0.154 0.022 0.007 0.011 114 0.15	219.0	220.2	E5841022	Core	0.163	0.046	0.033	0.00146	112	0.07	
222.0 223.5 E5841025 Core 0.175 0.052 0.027 0.0108 115 0.14 223.5 225.0 E5841026 Core 0.177 0.038 0.026 0.00441 112 0.15 225.0 226.5 E5841027 Core 0.174 0.029 0.015 0.0141 116 0.15 226.5 228.0 E5841028 Core 0.145 0.02 0.011 0.00505 110 0.12 228.0 229.5 E5841029 Core 0.16 0.021 0.011 0.00944 118 0.15 228.0 229.5 E5841030 Duplicate 0.154 0.022 0.007 0.011 114 0.15	220.2	221.0	E5841023	Core	0.205	0.062	0.031	0.0502	126	0.17	
223.5 225.0 E5841026 Core 0.177 0.038 0.026 0.00441 112 0.15 225.0 226.5 E5841027 Core 0.174 0.029 0.015 0.0141 116 0.15 226.5 228.0 E5841028 Core 0.145 0.02 0.011 0.00505 110 0.12 228.0 229.5 E5841029 Core 0.16 0.021 0.011 0.00944 118 0.15 228.0 229.5 E5841030 Duplicate 0.154 0.022 0.007 0.011 114 0.15	221.0	222.0	E5841024	Core	0.156	0.01	0.005	0.00665	110	0.08	
225.0 226.5 E5841027 Core 0.174 0.029 0.015 0.0141 116 0.15 226.5 228.0 E5841028 Core 0.145 0.02 0.011 0.00505 110 0.12 228.0 229.5 E5841029 Core 0.16 0.021 0.011 0.00944 118 0.15 228.0 229.5 E5841030 Duplicate 0.154 0.022 0.007 0.011 114 0.15	222.0	223.5	E5841025	Core	0.175	0.052	0.027	0.0108	115	0.14	
226.5 228.0 E5841028 Core 0.145 0.02 0.011 0.00505 110 0.12 228.0 229.5 E5841029 Core 0.16 0.021 0.011 0.00944 118 0.15 228.0 229.5 E5841030 Duplicate 0.154 0.022 0.007 0.011 114 0.15	223.5	225.0	E5841026	Core	0.177	0.038	0.026	0.00441	112	0.15	
228.0 229.5 E5841029 Core 0.16 0.021 0.011 0.00944 118 0.15 228.0 229.5 E5841030 Duplicate 0.154 0.022 0.007 0.011 114 0.15	225.0	226.5	E5841027	Core	0.174	0.029	0.015	0.0141	116	0.15	
228.0 229.5 E5841030 Duplicate 0.154 0.022 0.007 0.011 114 0.15	226.5	228.0	E5841028	Core	0.145	0.02	0.011	0.00505	110	0.12	
	228.0	229.5	E5841029	Core	0.16	0.021	0.011	0.00944	118	0.15	
229.5 231.0 E5841031 Core 0.163 0.045 0.02 0.012 106 0.16	228.0	229.5	E5841030	Duplicate	0.154	0.022	0.007	0.011	114	0.15	
	229.5	231.0	E5841031	Core	0.163	0.045	0.02	0.012	106	0.16	

Hole Numbe	r: WR	R-22-203							Resp. Person: Arnaud Fontaine, Géo	AF
From	То	Sample Number	Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
231.0	232.4	E5841032	Core	0.168	0.029	0.01	0.0143	117	0.14	
232.4	233.0	E5841033	Core	0.226	0.057	0.017	0.0417	131	0.33	
233.0	234.0	E5841034	Core	0.16	0.024	0.008	0.0106	112	0.17	
234.0	235.5	E5841035	Core	0.165	0.04	0.013	0.0203	118	0.19	
235.5	237.0	E5841036	Core	0.174	0.053	0.012	0.0371	128	0.22	
237.0	238.5	E5841037	Core	0.186	0.058	0.017	0.0375	131	0.23	
238.5	240.0	E5841038	Core							
240.0	241.5	E5841039	Core							
241.5	243.0	E5841041	Core							
243.0	244.5	E5841042	Core							
244.5	246.0	E5841043	Core							
246.0	247.5	E5841044	Core							
247.5	249.0	E5841045	Core							
249.0	250.5	E5841046	Core							
250.5	252.0	E5841047	Core							
252.0	253.5	E5841048	Core							
253.5	255.0	E5841049	Core							
255.0	256.5	E5841051	Core							
256.5	258.0	E5841052	Core							
258.0	259.5	E5841053	Core							
259.5	261.0	E5841054	Core							
261.0	261.5	E5841055	Core							
261.5	262.5	E5841056	Core							
262.5	264.0	E5841057	Core							
264.0	265.5	E5841058	Core							
265.5	267.0	E5841059	Core							
265.5	267.0	E5841060	Duplicate							
267.0	268.5	E5841062	Core							

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

From	То	Sample Numbe	r Sample Type	Ni (%)	Pd (ppm	Pt (ppm)	Cu (%)	Co (ppm)	S (%)	
268.5	270.0	E5841063	Core							
270.0	271.0	E5841064	Core							
271.0	272.0	E5841065	Core							
272.0	273.0	E5841066	Core							
273.0	274.5	E5841067	Core							
274.5	276.0	E5841068	Core							
276.0	277.5	E5841069	Core							
277.5	279.0	E5841071	Core							
279.0	280.5	E5841072	Core							
280.5	282.0	E5841073	Core							
282.0	283.0	E5841074	Core							
283.0	284.0	E5841075	Core							
284.0	285.25	E5841076	Core							
285.25	286.75	E5841077	Core							
286.75	288.0	E5841078	Core							
288.0	289.5	E5841079	Core							
294.0	295.5	E5841081	Core							
300.0	301.5	E5841082	Core							
306.0	307.5	E5841083	Core							
					Structur	е				
From	То	Structure Type	Structure Intensity	Comments						
17.8	17.9	Serpentine vein								
32.1	32.2	Serpentine vein								
59.5	60	Serpentine vein								

136

158.71

158.83

134.5

140

158.71

Fracturing

Quartz vein

Calcite vein

series of 1-5 cm veins 40-80 TCA, irregular, sometimes py bearing, mostly at the contacts.

oxidised fracturing, moderate to strong.

rose calcite veinlet unmineralised, 40 TCA

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

From	То	Structure Type	Structure Intensity	Comments
158.83	159	Quartz vein		series of 1-5 cm veinns
159	159.25	Quartz vein		looks like serp vein,
159.25	160	Quartz vein		series of 1-5 cm veinns
178	178.75	Gouge (fault)		fault gouge, clay filled. unmineralised
178.75	192.4	Calcite vein		carbonate-serpentinite veining, 0.5cm-1cm, 3-5/m, unmineralised, 40-50,60 TCA.
192.4	200.9	Calcite vein		Veining, <1/m, 3-4cm, shear veinlets, unmineralised. Ca-serp-talc sharp contacts
200.9	201.15	Calcite vein		shear vein, unmineralised. Ca-serp-talc sharp contacts
201.15	202.75	Calcite vein		carbonate-serpentinite veining, 0.5cm-1cm, 3-5/m, unmineralised, 40-50,60 TCA.
202.75	205.4	Calcite vein		Veining, <1/m, 3-4cm, shear veinlets, unmineralised. Ca-serp-talc sharp contacts
240	270	Serpentine vein		Veining, 1-2cm thick, <1/m, low angle 5-15 TCA.
290.8	291.5	Fracturing		fracturing, moderate, due to serp. veins, 0-5 TCA and 50 TCA.

Point Structure

Depth	Structure Type	Structure Intensity	Alpha Angle	Beta Angle	Gamma Angle	Core Angle	Comments
201.15	Upper contact		40				
222.3	Serpentine vein		5				serp vein with slickenslide. No ori., pn in traces on fracture face.
234.7	Serpentine vein		30				serp vein with slickenslide. No ori., unmineralised

	Geotechnical From To Recovery Recovery % RQD RQD % Comments 3.8 6 2.18 99.09 1.43 65.6 6 9 2.88 96 2.01 69.79					Magsus				
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
3.8	6	2.18	99.09	1.43	65.6		4	95.53	0	MPP-EM2S+
0.0		2.10	00.00	1.10	00.0		5	99.49	0	MPP-EM2S+
							6	119.95	0	MPP-EM2S+
6	9	2.88	96	2.01	69.79		7	100	0	MPP-EM2S+
							8	137.39	0	MPP-EM2S+

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	71
							9	80.84	0	MPP-EM2S+	
9	12	3.1	103.33	2.41	77.74		10	125.08	0	MPP-EM2S+	
							11	130.3	0	MPP-EM2S+	
							12	127.32	0	MPP-EM2S+	
12	15	3.07	102.33	2.29	74.59		13	104.41	0	MPP-EM2S+	
							14	112.24	0	MPP-EM2S+	
							15	114.98	0	MPP-EM2S+	
15	18	2.99	99.67	1.73	57.86		16	107.99	0	MPP-EM2S+	
							17	66.81	0	MPP-EM2S+	
							18	23.87	0	MPP-EM2S+	
18	21	2.89	96.33	2.47	85.47		19	136.08	0	MPP-EM2S+	
							20	97.02	0	MPP-EM2S+	
							21	118.97	0	MPP-EM2S+	
21	24	2.86	95.33	1.89	66.08		22	110.94	0	MPP-EM2S+	
							23	113.97	0	MPP-EM2S+	
							24	112.43	0	MPP-EM2S+	
24	27	3.07	102.33	1.91	62.21		25	127.53	0	MPP-EM2S+	
							26	155.33	0	MPP-EM2S+	
							27	113.57	0	MPP-EM2S+	
27	30	3	100	2.39	79.67		28	151.44	0	MPP-EM2S+	
							29	162.52	0	MPP-EM2S+	
							30	134.95	0	MPP-EM2S+	
30	33	2.97	99	1.5	50.51		31	127.19	0	MPP-EM2S+	
							32	89.49	0	MPP-EM2S+	

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

											2 6
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							33	170.76	0	MPP-EM2S+	
33	36	3	100	2.1	70		34	130.65	0	MPP-EM2S+	
							35	116.87	0	MPP-EM2S+	
							36	160.62	0	MPP-EM2S+	
36	39	3.06	102	1.86	60.78		37	155.54	0	MPP-EM2S+	
							38	135.45	0	MPP-EM2S+	
							39	118.46	0	MPP-EM2S+	
39	42	3	100	1.45	48.33		40	137.96	0	MPP-EM2S+	
							41	166.12	0	MPP-EM2S+	
							42	163.26	0	MPP-EM2S+	
42	45	2.92	97.33	1.53	52.4		43	189.69	0	MPP-EM2S+	
							44	186.5	0	MPP-EM2S+	
							45	164.36	0	MPP-EM2S+	
45	48	2.92	97.33	1.97	67.47		46	268	0	MPP-EM2S+	
							47	165.01	0	MPP-EM2S+	
							48	148.75	0	MPP-EM2S+	
48	51	3.01	100.33	2.18	72.43		49	174.02	0	MPP-EM2S+	
							50	163.39	0	MPP-EM2S+	
							51	155.05	0	MPP-EM2S+	
51	54	3.09	103	2.17	70.23		52	130.97	0	MPP-EM2S+	
							53	173.35	0	MPP-EM2S+	
							54	146.34	0	MPP-EM2S+	
54	57	2.97	99	1.57	52.86		55	166.77	0	MPP-EM2S+	
							56	182.8	0	MPP-EM2S+	

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	2 (1
							57	165.94	0	MPP-EM2S+	
57	60	2.98	99.33	1.44	48.32		58	156.28	0	MPP-EM2S+	
							59	230.11	0	MPP-EM2S+	
							60	158.92	0	MPP-EM2S+	
60	63	3	100	1.73	57.67		61	157.06	0	MPP-EM2S+	
							62	175.04	0	MPP-EM2S+	
							63	151.13	0	MPP-EM2S+	
63	66	2.95	98.33	2.7	91.53		64	158.89	0	MPP-EM2S+	
							65	156.23	0	MPP-EM2S+	
							66	164.26	0	MPP-EM2S+	
66	69	2.76	92	1.72	62.32		67	158.16	0	MPP-EM2S+	
							68	156.57	0	MPP-EM2S+	
							69	204.91	0	MPP-EM2S+	
69	72	2.91	97	2.12	72.85		70	113.42	0	MPP-EM2S+	
							71	87.2	0	MPP-EM2S+	
							72	159.29	0	MPP-EM2S+	
72	75	2.97	99	1.57	52.86		73	141.88	0	MPP-EM2S+	
							74	123.14	0	MPP-EM2S+	
							75	109.2	0	MPP-EM2S+	
75	78	3	100	2.16	72		76	88.64	0	MPP-EM2S+	
							77	31.53	0	MPP-EM2S+	
							78	92.5	0	MPP-EM2S+	
78	81	3.09	103	2.08	67.31		79	70.31	0	MPP-EM2S+	
							80	50.25	0	MPP-EM2S+	

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							81	42.29	0	MPP-EM2S+
81	84	2.86	95.33	1.49	52.1		82	27.9	0	MPP-EM2S+
							83	21.91	0	MPP-EM2S+
							84	1.93	0	MPP-EM2S+
84	87	2.92	97.33	2.06	70.55		85	2.76	0	MPP-EM2S+
							86	2.06	0	MPP-EM2S+
							87	2.14	0	MPP-EM2S+
87	90	3.13	104.33	2.93	93.61		88	3.41	0	MPP-EM2S+
							89	4.97	0	MPP-EM2S+
							90	2.58	0	MPP-EM2S+
90	93	3.03	101	2.46	81.19		91	2.22	0	MPP-EM2S+
							92	1.88	0	MPP-EM2S+
							93	1.07	0	MPP-EM2S+
93	96	2.95	98.33	2.05	69.49		94	1.01	0	MPP-EM2S+
							95	0.62	0	MPP-EM2S+
							96	0.29	0	MPP-EM2S+
96	99	2.68	89.33	1.9	70.9	CRN - Grinding 60cm	97	0.51	0	MPP-EM2S+
							98	0.07	0	MPP-EM2S+
							99	0.47	0	MPP-EM2S+
99	102	2.34	78	2.1	89.74	CRN - Grinding 60cm	100	0	0	MPP-EM2S+
							101	0.44	0	MPP-EM2S+
							102	0.18	0	MPP-EM2S+
102	105	2.9	96.67	2.3	79.31		103	0.37	0	MPP-EM2S+
							104	0.52	0	MPP-EM2S+

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							105	0.48	0	MPP-EM2S+	
105	108	3.07	102.33	2.46	80.13		106	0.94	0	MPP-EM2S+	
							107	1.56	0	MPP-EM2S+	
							108	1.46	0	MPP-EM2S+	
108	111	3	100	2.62	87.33		109	1.84	0	MPP-EM2S+	
							110	1.27	0	MPP-EM2S+	
							111	1.57	0	MPP-EM2S+	
111	114	2.81	93.67	1.9	67.62		112	0.94	0	MPP-EM2S+	
							113	1.83	0	MPP-EM2S+	
							114	2.66	0	MPP-EM2S+	
114	117	2.95	98.33	2.9	98.31		115	2.36	0	MPP-EM2S+	
							116	1.75	0	MPP-EM2S+	
							117	2.31	0	MPP-EM2S+	
117	120	3.13	104.33	2.95	94.25		118	2.45	0	MPP-EM2S+	
							119	2.75	0	MPP-EM2S+	
							120	1.99	0	MPP-EM2S+	
120	123	2.93	97.67	2.72	92.83		121	2.28	0	MPP-EM2S+	
							122	2.1	0	MPP-EM2S+	
							123	2.31	0	MPP-EM2S+	
123	126	2.97	99	2.73	91.92		124	4.44	0	MPP-EM2S+	
							125	2.07	0	MPP-EM2S+	
							126	2.05	0	MPP-EM2S+	
126	129	3.04	101.33	2.69	88.49		127	1.88	0	MPP-EM2S+	
							128	2.06	0	MPP-EM2S+	

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

											1
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							129	1.43	0	MPP-EM2S+	
129	132	2.95	98.33	1.8	61.02		130	1.28	0	MPP-EM2S+	
							131	1.77	0	MPP-EM2S+	
							132	1.22	0	MPP-EM2S+	
132	135	2.9	96.67	1.97	67.93		133	1.64	0	MPP-EM2S+	
							134	1.91	0	MPP-EM2S+	
							135	2.91	0	MPP-EM2S+	
135	138	2.76	92	1.5	54.35		136	2.06	0	MPP-EM2S+	
							137	2.51	0	MPP-EM2S+	
							138	2.8	0	MPP-EM2S+	
138	141	2.99	99.67	2.9	96.99		139	2.46	0	MPP-EM2S+	
							140	2.78	0	MPP-EM2S+	
							141	2.65	0	MPP-EM2S+	
141	144	3	100	2.78	92.67		142	1.16	0	MPP-EM2S+	
							143	2.76	0	MPP-EM2S+	
							144	2.86	0	MPP-EM2S+	
144	147	2.9	96.67	2.78	95.86		145	1.88	0	MPP-EM2S+	
							146	2.31	0	MPP-EM2S+	
							147	1.9	0	MPP-EM2S+	
147	150	2.8	93.33	2.31	82.5		148	1.41	0	MPP-EM2S+	
							149	1.83	0	MPP-EM2S+	
							150	1.03	0	MPP-EM2S+	
150	153	3	100	2.21	73.67		151	1.29	0	MPP-EM2S+	
							152	0.79	0	MPP-EM2S+	

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

											HI
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							153	1.04	0	MPP-EM2S+	
153	156	3.3	110	3.2	96.97		154	1.86	0	MPP-EM2S+	
							155	1.33	0	MPP-EM2S+	
							156	1.6	0	MPP-EM2S+	
156	159	2.9	96.67	2.39	82.41		157	1.81	0	MPP-EM2S+	
							158	1.65	0	MPP-EM2S+	
							159	1.86	0	MPP-EM2S+	
159	162	3.01	100.33	2.82	93.69		160	1.47	0	MPP-EM2S+	
							161	1.49	0	MPP-EM2S+	
							162	1.75	0	MPP-EM2S+	
162	165	2.89	96.33	2.81	97.23		163	1.05	0	MPP-EM2S+	
							164	1.1	0	MPP-EM2S+	
							165	1.38	0	MPP-EM2S+	
165	168	2.96	98.67	2.79	94.26		166	1.38	0	MPP-EM2S+	
							167	1.3	0	MPP-EM2S+	
							168	1.4	0	MPP-EM2S+	
168	171	2.94	98	2.88	97.96		169	1.64	0	MPP-EM2S+	
							170	1.05	0	MPP-EM2S+	
							171	1.76	0	MPP-EM2S+	
171	174	3.07	102.33	2.94	95.77		172	2.29	0	MPP-EM2S+	
							173	1.33	0	MPP-EM2S+	
							174	1.37	0	MPP-EM2S+	
174	177	2.86	95.33	2.8	97.9		175	1.99	0	MPP-EM2S+	
							176	4.09	0	MPP-EM2S+	

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

											21
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							177	2.72	0	MPP-EM2S+	
177	180	3	100	2.13	71		178	2.96	0	MPP-EM2S+	
							179	2.49	0	MPP-EM2S+	
							180	3.91	0	MPP-EM2S+	
180	183	3	100	2.56	85.33		181	6.24	0	MPP-EM2S+	
							182	5.82	0	MPP-EM2S+	
							183	6.66	0	MPP-EM2S+	
183	186	3.02	100.67	2.56	84.77		184	7.77	0	MPP-EM2S+	
							185	6	0	MPP-EM2S+	
							186	6.15	0	MPP-EM2S+	
186	189	3.11	103.67	3.11	100		187	8.72	0	MPP-EM2S+	
							188	9.41	0	MPP-EM2S+	
							189	8.6	0	MPP-EM2S+	
189	192	3.01	100.33	2.85	94.68		190	8.85	0	MPP-EM2S+	
							191	10.14	0	MPP-EM2S+	
							192	10.02	0	MPP-EM2S+	
192	195	3	100	2.74	91.33		193	9.71	0	MPP-EM2S+	
							194	8.37	0	MPP-EM2S+	
							195	9.42	0	MPP-EM2S+	
195	198	2.9	96.67	2.9	100		196	8.99	0	MPP-EM2S+	
							197	15.43	0	MPP-EM2S+	
							198	13	0	MPP-EM2S+	
198	201	2.94	98	2.94	100		199	14.93	0	MPP-EM2S+	
							200	8.64	0	MPP-EM2S+	

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

											711
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							201	1.68	0	MPP-EM2S+	
201	204	3	100	2.69	89.67		202	32.35	0	MPP-EM2S+	
							203	31.75	0	MPP-EM2S+	
							204	88.18	0	MPP-EM2S+	
204	207	3.01	100.33	2.72	90.37		205	50.51	0	MPP-EM2S+	
							206	74.8	0	MPP-EM2S+	
							207	165.48	0	MPP-EM2S+	
207	210	3.03	101	2.85	94.06		208	215.64	0	MPP-EM2S+	
							209	133.55	0	MPP-EM2S+	
							210	154.7	0	MPP-EM2S+	
210	213	3.01	100.33	2.54	84.39		211	89.11	0	MPP-EM2S+	
							212	150.99	0	MPP-EM2S+	
							213	150.24	0	MPP-EM2S+	
213	216	3	100	2.53	84.33		214	140.73	0	MPP-EM2S+	
							215	155.11	0	MPP-EM2S+	
							216	151.2	0	MPP-EM2S+	
216	219	3.05	101.67	2.86	93.77		217	188.72	0	MPP-EM2S+	
							218	149.65	0	MPP-EM2S+	
							219	149.56	0	MPP-EM2S+	
219	222	3	100	2.7	90		220	93.32	0	MPP-EM2S+	
							221	173.1	0	MPP-EM2S+	
							222	137.11	0	MPP-EM2S+	
222	225	3	100	1.63	54.33		223	132.55	0	MPP-EM2S+	
							224	120.23	0	MPP-EM2S+	

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

											AI
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							225	128.29	0	MPP-EM2S+	
225	228	2.98	99.33	2.43	81.54		226	96.75	0	MPP-EM2S+	
							227	65.57	0	MPP-EM2S+	
							228	77.68	0	MPP-EM2S+	
228	231	2.92	97.33	2.35	80.48		229	115.96	0	MPP-EM2S+	
							230	68.41	0	MPP-EM2S+	
							231	213.28	0	MPP-EM2S+	
231	234	3.06	102	2.83	92.48		232	121.97	0	MPP-EM2S+	
							233	226.84	0	MPP-EM2S+	
							234	133.83	0	MPP-EM2S+	
234	237	3	100	1.99	66.33		235	105.77	0	MPP-EM2S+	
							236	192.83	0	MPP-EM2S+	
							237	77.35	0	MPP-EM2S+	
237	240	2.9	96.67	2	68.97		238	69.26	0	MPP-EM2S+	
							239	63.62	0	MPP-EM2S+	
							240	269.18	0	MPP-EM2S+	
240	243	2.91	97	2.74	94.16		241	132.33	0	MPP-EM2S+	
							242	288.07	0	MPP-EM2S+	
							243	75.24	0	MPP-EM2S+	
243	246	3.2	106.67	3.01	94.06		244	126.39	0	MPP-EM2S+	
							245	152.36	0	MPP-EM2S+	
							246	139.31	0	MPP-EM2S+	
246	249	3	100	2.15	71.67		247	88.07	0	MPP-EM2S+	
							248	115.21	0	MPP-EM2S+	

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

											AI
From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument	
							249	106.65	0	MPP-EM2S+	
249	252	3.05	101.67	2.48	81.31		250	132.15	0	MPP-EM2S+	
							251	86.97	0	MPP-EM2S+	
							252	118.78	0	MPP-EM2S+	
252	255	2.97	99	1.98	66.67		253	241.49	0	MPP-EM2S+	
							254	180.76	0	MPP-EM2S+	
							255	63.74	0	MPP-EM2S+	
255	258	3.01	100.33	2.48	82.39		256	41.82	0	MPP-EM2S+	
							257	79.63	0	MPP-EM2S+	
							258	54.46	0	MPP-EM2S+	
258	261	3.03	101	2.21	72.94		259	110.5	0	MPP-EM2S+	
							260	429.61	0	MPP-EM2S+	
							261	100.36	0	MPP-EM2S+	
261	264	3	100	2.08	69.33		262	106.11	0	MPP-EM2S+	
							263	75.2	0	MPP-EM2S+	
							264	122.7	0	MPP-EM2S+	
264	267	2.97	99	2.51	84.51		265	153.13	0	MPP-EM2S+	
							266	156.18	0	MPP-EM2S+	
							267	93.24	0	MPP-EM2S+	
267	270	3.01	100.33	1.62	53.82		268	173.07	0	MPP-EM2S+	
							269	169.55	0	MPP-EM2S+	
							270	217.71	0	MPP-EM2S+	
270	273	2.95	98.33	2.63	89.15		271	122.76	0	MPP-EM2S+	
							272	119.91	0	MPP-EM2S+	

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							273	109.08	0	MPP-EM2S+
273	276	2.9	96.67	0.71	24.48		274	161.63	0	MPP-EM2S+
							275	93.37	0	MPP-EM2S+
							276	83.14	0	MPP-EM2S+
276	279	3.06	102	2.54	83.01		277	90.92	0	MPP-EM2S+
							278	57.69	0	MPP-EM2S+
							279	44.14	0	MPP-EM2S+
279	282	3	100	2.46	82		280	158.58	0	MPP-EM2S+
							281	87.93	0	MPP-EM2S+
							282	262.52	0	MPP-EM2S+
282	285	3.02	100.67	2.92	96.69		283	58.81	0	MPP-EM2S+
							284	72.86	0	MPP-EM2S+
							285	192.78	0	MPP-EM2S+
285	288	2.99	99.67	2.73	91.3		286	139.28	0	MPP-EM2S+
							287	10.32	0	MPP-EM2S+
							288	2.85	0	MPP-EM2S+
288	291	3	100	2.22	74		289	12.59	0	MPP-EM2S+
							290	156.54	0	MPP-EM2S+
							291	287.75	0	MPP-EM2S+
291	294	2.89	96.33	1.65	57.09		292	200.55	0	MPP-EM2S+
							293	135.38	0	MPP-EM2S+
							294	143.13	0	MPP-EM2S+
294	297	2.95	98.33	1.89	64.07		295	190.9	0	MPP-EM2S+
							296	76.09	0	MPP-EM2S+

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

From	То	Recovery	Recovery %	RQD	RQD %	Comments	Depth	Mag Sus	Conductivity	Mag Sus Instrument
							297	75.38	0	MPP-EM2S+
297	300	2.65	88.33	1.2	45.28		298	122.21	0	MPP-EM2S+
							299	140.43	0	MPP-EM2S+
							300	166.44	0	MPP-EM2S+
300	303	2.85	95	2.49	87.37		301	95.94	0	MPP-EM2S+
							302	143.27	0	MPP-EM2S+
							303	67.15	0	MPP-EM2S+
303	306	3.1	103.33	2.65	85.48		304	132.85	0	MPP-EM2S+
							305	230.25	0	MPP-EM2S+
							306	102.33	0	MPP-EM2S+
306	309	3.06	102	2.59	84.64		307	113.1	0	MPP-EM2S+
							308	64.22	0	MPP-EM2S+

Downhole Survey

Depth	Survey Type	Azimuth	Dip	
0	IsGyro	0.24	-58.56	
5	IsGyro	359.84	-58.61	
10	IsGyro	359.66	-58.61	
15	IsGyro	359.91	-58.51	
20	IsGyro	0.06	-58.56	
25	IsGyro	359.99	-58.58	
30	IsGyro	0.24	-58.58	
35	IsGyro	0.48	-58.53	
40	IsGyro	0.57	-58.53	
45	IsGyro	0.94	-58.44	
50	IsGyro	1.02	-58.55	
55	IsGyro	1.06	-58.53	

Detailed Drill Log Report Page 27 of 29 Mar 20, 2023

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo

				2 (1
Depth	Survey Type	Azimuth	Dip	
60	IsGyro	0.98	-58.21	
65	IsGyro	1.07	-58.48	
70	IsGyro	1.06	-58.44	
75	IsGyro	1.13	-58.41	
80	IsGyro	1.13	-58.38	
85	IsGyro	1.22	-58.32	
90	IsGyro	1.61	-58.09	
95	IsGyro	1.46	-57.93	
100	IsGyro	1.67	-57.93	
105	IsGyro	1.66	-57.9	
110	IsGyro	1.86	-57.88	
115	IsGyro	2.13	-57.74	
120	IsGyro	2.21	-58.02	
125	IsGyro	2.2	-58.06	
130	IsGyro	2.27	-57.96	
135	IsGyro	2.56	-58.13	
140	IsGyro	2.7	-58.15	
145	IsGyro	2.96	-58.1	
150	IsGyro	2.89	-58.11	
155	IsGyro	2.83	-58.12	
160	IsGyro	2.73	-58.14	
165	IsGyro	2.64	-57.73	
170	IsGyro	2.43	-57.95	
175	IsGyro	2.36	-58.01	
180	IsGyro	2.5	-57.98	
185	IsGyro	2.58	-57.66	
190	IsGyro	2.67	-58.03	
195	IsGyro	2.69	-57.93	

Hole Number: WR-22-203 Resp. Person: Arnaud Fontaine, Géo Dip Depth **Survey Type Azimuth** 200 IsGyro 2.81 -57.94 IsGyro 205 2.79 -58.05 IsGyro 210 2.94 -58.06 215 IsGyro 2.93 -58.08 220 IsGyro 2.94 -58.11 IsGyro 225 2.91 -58.07 230 IsGyro 2.97 -58.09 IsGyro 235 3.15 -58.08 240 IsGyro 3.23 -58.06 IsGyro -58.08 245 3.35 250 IsGyro 3.33 -58.23 IsGyro 255 3.5 -58.19 IsGyro 3.72 -58.04 260 IsGyro -58.02 265 3.69 270 IsGyro 3.78 -58.03 275 IsGyro 3.67 -57.98 IsGyro -57.89 280 3.86 IsGyro 285 3.82 -57.98 IsGyro 290 4.32 -57.87 295 IsGyro 4.07 -57.77 IsGyro 300 4.35 -57.66 IsGyro 305 4.34 -57.69

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR

TORONTO, ON M4V 1L5

416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-CORE-01

AGAT WORK ORDER: 220920234

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Aug 10, 2022

PAGES (INCLUDING COVER): 21

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 senires
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 21

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

CLIENT NAME: ORFORD MINING CORP

Certificate of Analysis

AGAT WORK ORDER: 22O920234

PROJECT: WR-22-CORE-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	(200-) Sample Login Weight								
DATE SAMPLED: Jul 13, 2022			DATE RECEIVED: Jul 14, 2022	DATE REPORTED: Aug 10, 2022	SAMPLE TYPE: Drill Core							
	Analyte:	Sample Login Weight										
	Unit:	kg										
Sample ID (AGAT ID)	RDL:	0.005										
E5840001 (4088723)		1.170										
E5840002 (4088724)		2.090										
E5840003 (4088725)		1.140										
E5840004 (4088726)		3.050										
E5840005 (4088727)		2.830										
E5840006 (4088728)		3.480										
E5840007 (4088729)		3.050										
E5840008 (4088730)		3.290										
E5840009 (4088731)		2.300										
E5840010 (4088732)		0.070										
E5840011 (4088733)		3.370										
E5840012 (4088734)		3.530										
E5840013 (4088735)		3.230										
E5840014 (4088736)		3.540										
E5840015 (4088737)		3.370										
E5840016 (4088738)		3.280										
E5840017 (4088739)		3.420										
E5840018 (4088740)		3.330										
E5840019 (4088741)		3.590										
E5840020 (4088742)		0.250										
E5840021 (4088743)		3.310										
E5840022 (4088744)		4.420										
E5840023 (4088745)		3.270										
E5840024 (4088746)		4.040										
E5840025 (4088747)		2.400										
E5840026 (4088748)		1.000										
E5840027 (4088749)		2.460										
E5840028 (4088750)		2.600										
E5840029 (4088751)		0.530										
E5840030 (4088752)		0.600										
E5840031 (4088753)		3.340										

Certified By:

Sherin Houssey

Certificate of Analysis

AGAT WORK ORDER: 22O920234

PROJECT: WR-22-CORE-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(200-) Sample Login Weight										
DATE SAMPLED: Jul	13, 2022		DATE RECEIVED: Jul 14, 2022	DATE REPORTED: Aug 10, 2022	SAMPLE TYPE: Drill Core					
	Analyte:	Sample Login Weight								
	Unit:	kg								
Sample ID (AGAT ID)	RDL:	0.005								
E5840032 (4088754)		2.430								
E5840033 (4088755)		3.160								

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

CLIENT NAME: ORFORD MINING CORP

Certificate of Analysis

AGAT WORK ORDER: 22O920234

PROJECT: WR-22-CORE-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	OND WINNING		(2	01-070)	4 Acid D	iaest - M	latals Pa	ickana li	CP-OES	finish					
DATE SAMPLED: Jul	ictais i a		REPORTED	2414	SAMPLE TYPE: Drill Core										
DATE SAMPLED. Jul	·				EIVED: Jul										
	Analyte:	Ag	Al	As	Ва	Ве	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840001 (4088723)		<0.5	2.14	<1	9	<0.5	<1	1.69	<0.5	3	92.6	2540	88.4	7.47	<5
E5840002 (4088724)		<0.5	2.05	<1	11	<0.5	<1	1.66	<0.5	4	138	2560	177	7.40	<5
E5840003 (4088725)		<0.5	2.09	<1	8	<0.5	<1	1.65	<0.5	4	92.4	2810	74.3	7.56	<5
E5840004 (4088726)		<0.5	2.19	<1	8	<0.5	<1	1.79	<0.5	4	97.9	2520	94.5	7.52	<5
E5840005 (4088727)		<0.5	2.00	<1	11	<0.5	<1	1.50	<0.5	3	106	2490	125	7.30	<5
E5840006 (4088728)		<0.5	2.04	<1	9	<0.5	<1	1.61	<0.5	3	111	2540	105	7.35	<5
E5840007 (4088729)		<0.5	1.96	<1	9	<0.5	<1	2.01	<0.5	2	104	2490	84.3	6.98	<5
E5840008 (4088730)		<0.5	1.96	<1	8	<0.5	<1	1.36	<0.5	3	101	2500	48.1	7.05	<5
E5840009 (4088731)		<0.5	2.05	<1	9	<0.5	<1	1.88	<0.5	3	100	2530	63.8	7.25	<5
E5840010 (4088732)		1.6	6.87	<1	222	1.0	<1	4.43	<0.5	25	104	182	4520	13.6	10
E5840011 (4088733)		<0.5	1.97	<1	9	<0.5	<1	1.40	<0.5	3	85.7	2830	49.7	6.94	<5
E5840012 (4088734)		<0.5	2.02	<1	8	<0.5	<1	1.49	<0.5	3	90.9	2800	50.5	7.01	<5
E5840013 (4088735)		<0.5	2.03	<1	8	<0.5	<1	1.89	<0.5	3	104	2860	64.9	7.13	<5
E5840014 (4088736)		<0.5	2.04	<1	7	<0.5	<1	1.70	<0.5	3	98.0	2890	77.0	7.17	<5
E5840015 (4088737)		<0.5	2.04	<1	8	<0.5	<1	1.10	<0.5	3	105	2840	106	7.27	<5
E5840016 (4088738)		<0.5	1.99	<1	6	<0.5	<1	1.45	<0.5	3	105	2800	100	7.08	<5
E5840017 (4088739)		<0.5	1.92	<1	7	<0.5	<1	1.30	<0.5	3	114	2700	173	7.04	<5
E5840018 (4088740)		<0.5	1.95	4	7	<0.5	<1	1.21	<0.5	3	110	2770	111	6.96	<5
E5840019 (4088741)		<0.5	1.98	<1	7	0.6	<1	0.97	<0.5	3	104	2550	133	7.22	<5
E5840020 (4088742)		<0.5	6.36	<1	412	1.1	<1	1.77	<0.5	19	5.6	29.3	6.7	1.43	16
E5840021 (4088743)		<0.5	2.16	<1	7	0.7	<1	0.50	<0.5	4	120	2920	159	7.93	<5
E5840022 (4088744)		<0.5	2.09	16	5	0.7	<1	0.90	<0.5	4	125	2770	164	7.58	<5
E5840023 (4088745)		<0.5	2.16	<1	4	0.6	<1	2.17	<0.5	4	119	2690	96.1	7.64	<5
E5840024 (4088746)		<0.5	3.29	<1	3	<0.5	<1	3.11	<0.5	5	134	2280	231	8.75	<5
E5840025 (4088747)		<0.5	2.84	<1	2	<0.5	<1	4.17	<0.5	4	136	2200	170	8.73	<5
E5840026 (4088748)		<0.5	3.26	<1	3	0.9	<1	4.89	<0.5	89	73.8	1250	284	7.78	7
E5840027 (4088749)		<0.5	4.03	<1	2	<0.5	<1	3.98	<0.5	5	72.4	1480	139	8.05	8
E5840028 (4088750)		<0.5	4.40	<1	3	0.9	<1	4.11	<0.5	23	81.5	1770	59.1	9.10	6
E5840029 (4088751)		<0.5	3.81	<1	3	1.4	<1	5.97	0.6	18	86.1	1780	778	12.4	10
E5840030 (4088752)		<0.5	3.78	<1	3	1.4	<1	6.04	<0.5	13	76.9	1630	449	11.8	11
E5840031 (4088753)		<0.5	4.61	<1	9	1.4	<1	7.24	<0.5	7	72.6	1180	81.4	8.46	11
E5840031 (4088754)		<0.5	4.19	<1	3	2.0	<1	4.82	<0.5	8	93.7	1730	84.4	8.51	10

Certified By:

Sherin Moussey

Certificate of Analysis

AGAT WORK ORDER: 22O920234

PROJECT: WR-22-CORE-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish															
DATE SAMPLED: Jul	l 13, 2022	[DATE RECE	EIVED: Jul	14, 2022		DATE REPORTED: Aug 10, 2022				SAMPLE TYPE: Drill Core				
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840033 (4088755)		<0.5	2.57	<1	141	1.0	<1	28.6	<0.5	247	26.0	20.8	112	2.43	14

Certified By:

CLIENT NAME: ORFORD MINING CORP

Certificate of Analysis

AGAT WORK ORDER: 22O920234

PROJECT: WR-22-CORE-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - N	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Jul 13, 2022 DATE RECEIVED: Jul 14, 20						14, 2022		DATE	REPORTED): Aug 10, 2	022	SAMPLE TYPE: Drill Core			
	Analyte:	In	К	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840001 (4088723)		<1	0.02	<2	5	18.9	1180	<0.5	0.01	1380	122	<1	<10	0.36	5
E5840002 (4088724)		<1	0.01	<2	5	18.0	1110	<0.5	<0.01	3740	61	<1	<10	0.86	<1
E5840003 (4088725)		<1	0.02	<2	5	18.4	1130	<0.5	<0.01	1520	<10	<1	<10	0.34	4
E5840004 (4088726)		<1	0.02	<2	6	18.7	1160	<0.5	<0.01	1580	50	<1	<10	0.37	<1
E5840005 (4088727)		<1	0.02	<2	5	18.4	1060	<0.5	<0.01	1440	113	<1	<10	0.39	2
E5840006 (4088728)		<1	0.01	<2	5	19.1	1110	<0.5	<0.01	1660	37	<1	<10	0.41	6
E5840007 (4088729)		<1	0.01	<2	5	18.5	1120	<0.5	<0.01	1430	56	<1	<10	0.33	<1
E5840008 (4088730)		<1	0.02	<2	5	18.6	1120	<0.5	<0.01	1420	185	<1	<10	0.27	5
E5840009 (4088731)		<1	0.02	<2	5	18.9	1190	<0.5	<0.01	1580	31	<1	<10	0.29	4
E5840010 (4088732)		<1	0.57	10	15	4.03	1480	4.4	1.69	3580	605	<1	<10	1.53	2
E5840011 (4088733)		<1	0.02	<2	5	18.6	1130	<0.5	<0.01	1200	<10	<1	<10	0.19	4
E5840012 (4088734)		<1	0.02	<2	5	18.5	1130	<0.5	<0.01	1290	103	<1	<10	0.22	1
E5840013 (4088735)		<1	0.02	<2	5	18.7	1180	<0.5	<0.01	1600	<10	<1	<10	0.30	5
E5840014 (4088736)		<1	0.02	<2	5	19.0	1140	<0.5	<0.01	1680	76	<1	<10	0.30	7
E5840015 (4088737)		<1	0.01	<2	5	18.4	1090	<0.5	<0.01	1810	68	<1	<10	0.35	10
E5840016 (4088738)		<1	0.01	<2	5	19.1	1140	<0.5	<0.01	1700	79	<1	<10	0.31	2
E5840017 (4088739)		<1	0.01	<2	5	18.4	1150	<0.5	<0.01	1910	71	<1	<10	0.38	4
E5840018 (4088740)		<1	0.01	<2	5	18.4	1180	<0.5	<0.01	1520	81	<1	<10	0.28	1
E5840019 (4088741)		<1	0.01	<2	5	18.9	1190	<0.5	<0.01	1490	161	<1	<10	0.32	4
E5840020 (4088742)		<1	1.36	8	9	0.54	266	<0.5	2.87	18.6	253	<1	<10	<0.01	2
E5840021 (4088743)		<1	0.02	<2	6	19.1	1260	<0.5	<0.01	1750	85	<1	<10	0.43	5
E5840022 (4088744)		<1	0.01	<2	7	18.8	1220	<0.5	< 0.01	1770	30	<1	<10	0.47	<1
E5840023 (4088745)		<1	0.01	<2	8	17.6	1190	<0.5	<0.01	1860	102	<1	<10	0.60	3
E5840024 (4088746)		<1	0.01	<2	20	15.8	1060	<0.5	0.02	2020	204	<1	<10	1.50	2
E5840025 (4088747)		<1	0.01	<2	18	15.6	1050	<0.5	<0.01	2000	135	<1	<10	1.59	9
E5840026 (4088748)		<1	< 0.01	58	7	13.8	1690	<0.5	0.01	850	1650	7	<10	0.77	<1
E5840027 (4088749)		<1	0.01	<2	9	14.7	1250	<0.5	0.02	801	151	<1	<10	0.73	2
E5840028 (4088750)		<1	0.01	11	6	14.2	1660	2.1	0.02	943	439	<1	<10	0.87	2
E5840029 (4088751)		<1	<0.01	8	6	12.0	1860	3.4	0.02	1340	182	<1	<10	2.67	3
E5840030 (4088752)		<1	<0.01	6	6	11.9	1840	3.6	0.02	1160	161	<1	<10	2.37	7
E5840031 (4088753)		<1	0.01	2	9	12.8	1840	<0.5	0.02	916	255	<1	<10	0.43	6
E5840032 (4088754)		<1	0.02	<2	5	13.5	1750	1.4	0.05	1200	235	<1	<10	0.33	1

Certified By:

Sherin Houssey

Certificate of Analysis

AGAT WORK ORDER: 220920234

PROJECT: WR-22-CORE-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - N	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Ju	I 13, 2022		[DATE RECE	EIVED: Jul 1	14, 2022		DATE	REPORTED): Aug 10, 2	022	SAM	IPLE TYPE	: Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840033 (4088755)		<1	0.04	167	23	1.70	1210	0.5	<0.01	31.1	2520	19	<10	<0.01	<1

Certificate of Analysis

AGAT WORK ORDER: 22O920234

PROJECT: WR-22-CORE-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Jul	13, 2022		[DATE RECE	EIVED: Jul 1	14, 2022		DATE F	REPORTED	: Aug 10, 2	022	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840001 (4088723)		14	<10	<5	22	<10	<10	<5	0.13	<5	<5	88.7	<1	5	88.3
E5840002 (4088724)		14	<10	<5	22	<10	<10	<5	0.17	<5	<5	94.7	3	5	83.0
E5840003 (4088725)		15	<10	<5	25	<10	<10	<5	0.13	<5	<5	98.9	<1	5	82.9
E5840004 (4088726)		15	<10	<5	25	<10	<10	<5	0.15	<5	<5	97.7	<1	5	83.7
E5840005 (4088727)		14	<10	<5	24	<10	<10	<5	0.13	<5	<5	87.6	<1	5	79.3
E5840006 (4088728)		14	<10	<5	27	<10	<10	<5	0.14	<5	<5	86.8	<1	5	86.2
E5840007 (4088729)		14	<10	<5	29	<10	<10	<5	0.12	<5	<5	83.5	<1	5	81.7
E5840008 (4088730)		14	<10	<5	25	<10	<10	<5	0.12	<5	<5	91.1	<1	4	82.6
E5840009 (4088731)		14	<10	<5	30	<10	<10	<5	0.13	<5	<5	88.3	<1	5	84.8
E5840010 (4088732)		12	<10	<5	253	<10	<10	<5	0.76	<5	<5	118	2	13	108
E5840011 (4088733)		14	<10	<5	25	<10	<10	<5	0.12	<5	<5	84.7	<1	4	83.5
E5840012 (4088734)		14	<10	<5	27	<10	<10	<5	0.13	<5	<5	88.6	<1	5	81.6
E5840013 (4088735)		14	<10	<5	33	<10	<10	<5	0.13	<5	<5	86.4	<1	5	84.4
E5840014 (4088736)		14	<10	<5	28	<10	<10	<5	0.13	<5	<5	85.7	<1	5	84.8
E5840015 (4088737)		15	<10	<5	22	<10	<10	<5	0.13	<5	<5	90.5	<1	5	85.2
E5840016 (4088738)		14	<10	<5	26	<10	<10	<5	0.13	<5	<5	90.0	<1	5	86.6
E5840017 (4088739)		14	<10	<5	24	<10	<10	<5	0.13	<5	<5	86.3	1	5	83.2
E5840018 (4088740)		14	<10	<5	24	<10	<10	<5	0.14	<5	<5	86.2	<1	5	84.1
E5840019 (4088741)		13	<10	<5	20	<10	<10	<5	0.13	<5	<5	85.6	<1	5	82.7
E5840020 (4088742)		6	<10	<5	376	<10	<10	<5	0.16	<5	<5	42.6	4	6	21.6
E5840021 (4088743)		15	<10	<5	17	<10	<10	<5	0.14	<5	<5	99.9	2	5	95.3
E5840022 (4088744)		14	<10	<5	17	<10	<10	<5	0.13	<5	<5	96.1	<1	5	89.8
E5840023 (4088745)		15	<10	<5	15	<10	<10	<5	0.14	<5	<5	101	2	6	112
E5840024 (4088746)		21	<10	<5	17	<10	<10	<5	0.23	<5	<5	146	<1	7	106
E5840025 (4088747)		20	<10	<5	15	<10	<10	<5	0.19	<5	<5	136	<1	6	132
E5840026 (4088748)		21	<10	<5	18	<10	<10	<5	0.64	<5	<5	157	2	22	121
E5840027 (4088749)		22	<10	<5	10	<10	<10	<5	0.22	<5	<5	153	<1	8	121
E5840028 (4088750)		28	<10	<5	11	<10	<10	<5	0.34	<5	<5	200	<1	12	137
E5840029 (4088751)		23	<10	<5	32	<10	<10	<5	0.29	<5	<5	216	<1	11	187
E5840030 (4088752)		23	<10	<5	32	<10	<10	<5	0.26	<5	<5	209	<1	10	170
E5840031 (4088753)		22	<10	<5	83	<10	<10	<5	0.26	<5	<5	184	<1	10	150
E5840032 (4088754)		24	<10	<5	8	<10	<10	<5	0.29	<5	<5	184	<1	9	139

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 220920234

PROJECT: WR-22-CORE-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
ATE SAMPLED: Jul 13, 2022 DATE RECEIVED: Jul 14, 2022 DATE REPORTED: Aug 10, 2022 SAMPLE TYPE: Drill Core														
Analyte: Sc Se Sn Sr Ta Te Th Ti TI U V W Y Zn														
Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
	24	<10	<5	773	<10	<10	<5	1.12	<5	<5	286	<1	43	55.7
	Analyte: Unit:	Analyte: Sc Unit: ppm RDL: 1	13, 2022 E Analyte: Sc Se Unit: ppm ppm RDL: 1 10	13, 2022 DATE RECE Analyte: Sc Se Sn Unit: ppm ppm ppm RDL: 1 10 5	13, 2022 DATE RECEIVED: Jul 3 Analyte: Sc Se Sn Sr Unit: ppm ppm ppm ppm RDL: 1 10 5 1	13, 2022 DATE RECEIVED: Jul 14, 2022 Analyte: Sc Se Sn Sr Ta Unit: ppm ppm ppm ppm ppm RDL: 1 10 5 1 10	13, 2022 DATE RECEIVED: Jul 14, 2022 Analyte: Sc Se Sn Sr Ta Te Unit: ppm ppm ppm ppm ppm ppm RDL: 1 10 5 1 10 10	13, 2022 DATE RECEIVED: Jul 14, 2022 DATE RECEIVED: Training for the policy of the po	13, 2022 DATE RECEIVED: Jul 14, 2022 DATE REPORTED Analyte: Sc Se Sn Sr Ta Te Th Ti Unit: ppm ppm ppm ppm ppm ppm ppm ppm % RDL: 1 10 5 1 10 10 5 0.01	Analyte: Sc Se Sn Sr Ta Te Th Ti Tl Unit: ppm ppm ppm ppm ppm ppm ppm RDL: 1 10 5 1 10 10 5 0.01 5	13, 2022 DATE RECEIVED: Jul 14, 2022 DATE REPORTED: Aug 10, 2022 Analyte: Sc Se Sn Sr Ta Te Th Ti TI U Unit: ppm RDL: 1 10 5 1 10 10 5 0.01 5 5	13, 2022 DATE RECEIVED: Jul 14, 2022 DATE REPORTED: Aug 10, 2022 SAM Analyte: Sc Se Sn Sr Ta Te Th Ti TI U V Unit: ppm ppm <td>13, 2022 DATE RECEIVED: Jul 14, 2022 DATE REPORTED: Aug 10, 2022 SAMPLE TYPE: Analyte: Sc Se Sn Sr Ta Te Th Ti TI U V W Unit: ppm <td< td=""><td>13, 2022 DATE RECEIVED: Jul 14, 2022 DATE REPORTED: Aug 10, 2022 SAMPLE TYPE: Drill Core Analyte: Sc Se Sn Sr Ta Te Th Ti TI U V W Y Unit: ppm ppm</td></td<></td>	13, 2022 DATE RECEIVED: Jul 14, 2022 DATE REPORTED: Aug 10, 2022 SAMPLE TYPE: Analyte: Sc Se Sn Sr Ta Te Th Ti TI U V W Unit: ppm ppm <td< td=""><td>13, 2022 DATE RECEIVED: Jul 14, 2022 DATE REPORTED: Aug 10, 2022 SAMPLE TYPE: Drill Core Analyte: Sc Se Sn Sr Ta Te Th Ti TI U V W Y Unit: ppm ppm</td></td<>	13, 2022 DATE RECEIVED: Jul 14, 2022 DATE REPORTED: Aug 10, 2022 SAMPLE TYPE: Drill Core Analyte: Sc Se Sn Sr Ta Te Th Ti TI U V W Y Unit: ppm ppm

Certificate of Analysis

AGAT WORK ORDER: 22O920234

PROJECT: WR-22-CORE-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Jul	13, 2022		DATE RECEIVED: Jul 14, 2022	DATE REPORTED: Aug 10, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840001 (4088723)		12			
E5840002 (4088724)		18			
E5840003 (4088725)		11			
E5840004 (4088726)		15			
E5840005 (4088727)		12			
E5840006 (4088728)		11			
E5840007 (4088729)		11			
E5840008 (4088730)		11			
E5840009 (4088731)		12			
E5840010 (4088732)		55			
E5840011 (4088733)		11			
E5840012 (4088734)		13			
E5840013 (4088735)		11			
E5840014 (4088736)		11			
E5840015 (4088737)		11			
E5840016 (4088738)		11			
E5840017 (4088739)		11			
E5840018 (4088740)		12			
E5840019 (4088741)		11			
E5840020 (4088742)		59			
E5840021 (4088743)		13			
E5840022 (4088744)		11			
E5840023 (4088745)		10			
E5840024 (4088746)		22			
E5840025 (4088747)		19			
E5840026 (4088748)		132			
E5840027 (4088749)		23			
E5840028 (4088750)		40			
E5840029 (4088751)		31			
E5840030 (4088752)		28			
E5840031 (4088753)		30			
E5840032 (4088754)		32			

Certified By:

AGAT WORK ORDER: 220920234

PROJECT: WR-22-CORE-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metal:	s Package, ICP-OES finish	
DATE SAMPLED: Jul	13, 2022		DATE RECEIVED: Jul 14, 2022	DATE REPORTED: Aug 10, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840033 (4088755)		98			

Comments: RDL - Reported Detection Limit

4088723-4088755 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O920234

PROJECT: WR-22-CORE-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

		(2	02-555)	Fire Assay - Au, Pt	, Pd Trace Lev	els, ICP-OES finish (50g charge)	
DATE SAMPLED: Jul	13, 2022			DATE RECEIVED: Jul 14	1, 2022	DATE REPORTED: Aug 10, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt			
	Unit:	ppm	ppm	ppm			
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005			
E5840001 (4088723)		<0.001	0.007	<0.005			
E5840002 (4088724)		0.001	0.069	0.079			
E5840003 (4088725)		<0.001	0.006	0.005			
E5840004 (4088726)		< 0.001	0.024	0.014			
E5840005 (4088727)		<0.001	0.010	0.005			
E5840006 (4088728)		< 0.001	0.008	0.006			
E5840007 (4088729)		< 0.001	0.012	0.007			
E5840008 (4088730)		< 0.001	0.006	<0.005			
E5840009 (4088731)		< 0.001	0.006	<0.005			
E5840010 (4088732)		0.084	0.612	0.297			
E5840011 (4088733)		< 0.001	0.002	<0.005			
E5840012 (4088734)		< 0.001	0.005	<0.005			
E5840013 (4088735)		< 0.001	0.004	<0.005			
E5840014 (4088736)		< 0.001	0.009	<0.005			
E5840015 (4088737)		< 0.001	0.013	0.008			
E5840016 (4088738)		< 0.001	0.007	0.005			
E5840017 (4088739)		< 0.001	0.011	0.006			
E5840018 (4088740)		< 0.001	0.009	0.007			
E5840019 (4088741)		< 0.001	0.012	0.007			
E5840020 (4088742)		< 0.001	<0.001	<0.005			
E5840021 (4088743)		< 0.001	0.014	0.006			
E5840022 (4088744)		< 0.001	0.016	0.008			
E5840023 (4088745)		< 0.001	0.014	0.007			
E5840024 (4088746)		0.004	0.039	0.017			
E5840025 (4088747)		0.005	0.063	0.025			
E5840026 (4088748)		0.001	0.032	0.016			
E5840027 (4088749)		< 0.001	0.008	0.006			
E5840028 (4088750)		<0.001	0.011	0.009			
E5840029 (4088751)		0.002	0.065	0.022			
E5840030 (4088752)		0.002	0.054	0.023			
E5840031 (4088753)		0.004	0.023	0.012			
E5840032 (4088754)		0.026	0.034	0.014			

Certified By:

AGAT WORK ORDER: 220920234

PROJECT: WR-22-CORE-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(20	02-555)	Fire Assa	y - Au, Pt, Pd Trace	Levels, ICP-OES finish (50g charge)									
DATE SAMPLED: Jul	DATE SAMPLED: Jul 13, 2022 DATE RECEIVED: Jul 14, 2022 DATE REPORTED: Aug 10, 2022 SAMPLE TYPE: Drill Core														
	Analyte:	Au	Pd	Pt											
	Unit:	ppm	ppm	ppm											
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005											
E5840033 (4088755)		0.003	0.001	<0.005											

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O920234

PROJECT: WR-22-CORE-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passir	ng (Crushing)											
DATE SAMPLED: Jul	DATE SAMPLED: Jul 13, 2022 DATE RECEIVED: Jul 14, 2022 DATE REPORTED: Aug 10, 2022 SAMPLE TYPE: Drill Core														
	Analyte: C	rush-Pass %													
	Unit:	%													
Sample ID (AGAT ID)	RDL:	0.01													
E5840001 (4088723)		85.69													
E5840021 (4088743)		80.50													

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O920234

PROJECT: WR-22-CORE-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passin	g (Pulverizing)											
DATE SAMPLED: Jul	DATE SAMPLED: Jul 13, 2022 DATE RECEIVED: Jul 14, 2022 DATE REPORTED: Aug 10, 2022 SAMPLE TYPE: Drill Core														
	Analyte: P	ul-Pass %													
	Unit:	%													
Sample ID (AGAT ID)	RDL:	0.01													
E5840001 (4088723)		88.86													
E5840019 (4088741)		85.29													

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220920234 PROJECT: WR-22-CORE-01 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(201	1-070) 4	Acid Di	gest - N	1etals F	Package,	ICP-O	ES finis	h		
		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3			
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD		
Ag	4088723	< 0.5	< 0.5	0.0%	4088737	< 0.5	< 0.5	0.0%	4088748	< 0.5	< 0.5	0.0%		
Al	4088723	2.14	2.14	0.0%	4088737	2.04	2.09	2.4%	4088748	3.26	3.30	1.2%		
As	4088723	< 1	< 1	0.0%	4088737	< 1	< 1	0.0%	4088748	< 1	< 1	0.0%		
Ва	4088723	9	9	0.0%	4088737	8	8	0.0%	4088748	3	3	0.0%		
Ве	4088723	< 0.5	< 0.5	0.0%	4088737	< 0.5	< 0.5	0.0%	4088748	0.9	0.9	0.0%		
Bi	4088723	< 1	< 1	0.0%	4088737	< 1	< 1	0.0%	4088748	< 1	< 1	0.0%		
Ca	4088723	1.69	1.70	0.6%	4088737	1.10	1.12	1.8%	4088748	4.89	4.79	2.1%		
Cd	4088723	< 0.5	< 0.5	0.0%	4088737	< 0.5	< 0.5	0.0%	4088748	< 0.5	< 0.5	0.0%		
Ce	4088723	3	3	0.0%	4088737	3	4	28.6%	4088748	89	91	2.2%		
Co	4088723	92.6	92.6	0.0%	4088737	105	107	1.9%	4088748	73.8	81.9	10.4%		
Cr	4088723	2540	2710	6.5%	4088737	2840	2940	3.5%	4088748	1250	1310	4.7%		
Cu	4088723	88.4	89.1	0.8%	4088737	106	110	3.7%	4088748	284	328	14.4%		
Fe	4088723	7.47	7.36	1.5%	4088737	7.27	7.41	1.9%	4088748	7.78	8.01	2.9%		
Ga	4088723	< 5	< 5	0.0%	4088737	< 5	< 5	0.0%	4088748	7	7	0.0%		
In	4088723	< 1	< 1	0.0%	4088737	< 1	< 1	0.0%	4088748	< 1	< 1	0.0%		
K	4088723	0.02	0.02	0.0%	4088737	0.01	0.01	0.0%	4088748	< 0.01	< 0.01	0.0%		
La	4088723	< 2	< 2	0.0%	4088737	< 2	< 2	0.0%	4088748	58	58	0.0%		
Li	4088723	5	5	0.0%	4088737	5	5	0.0%	4088748	7	7	0.0%		
Mg	4088723	18.9	18.5	2.1%	4088737	18.4	18.7	1.6%	4088748	13.8	13.8	0.0%		
Mn	4088723	1180	1170	0.9%	4088737	1090	1120	2.7%	4088748	1690	1690	0.0%		
Мо	4088723	< 0.5	< 0.5	0.0%	4088737	< 0.5	< 0.5	0.0%	4088748	< 0.5	< 0.5	0.0%		
Na	4088723	0.01	0.01	0.0%	4088737	< 0.01	< 0.01	0.0%	4088748	0.01	0.01	0.0%		
Ni	4088723	1380	1360	1.5%	4088737	1810	1860	2.7%	4088748	850	973	13.5%		
Р	4088723	122	141	14.4%	4088737	68	49		4088748	1650	1590	3.7%		
Pb	4088723	< 1	< 1	0.0%	4088737	< 1	< 1	0.0%	4088748	7	2			
Rb	4088723	< 10	< 10	0.0%	4088737	< 10	< 10	0.0%	4088748	< 10	< 10	0.0%		
S	4088723	0.36	0.35	2.8%	4088737	0.348	0.355	2.0%	4088748	0.77	0.93	18.8%		
Sb	4088723	5	3		4088737	10	5		4088748	< 1	< 1	0.0%		
Sc	4088723	14	15	6.9%	4088737	15	15	0.0%	4088748	21	22	4.7%		
Se	4088723	< 10	< 10	0.0%	4088737	< 10	< 10	0.0%	4088748	< 10	< 10	0.0%		
Sn	4088723	< 5	< 5	0.0%	4088737	< 5	< 5	0.0%	4088748	< 5	< 5	0.0%		

Quality Assurance - Replicate AGAT WORK ORDER: 220920234 PROJECT: WR-22-CORE-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAM	IE: ORFORI	O MINING	CORP							ATTE	NTION TO	: Arnaud	Fontaine		
Sr	4088723	22	23	4.4%	4088737	22	23	4.4%	4088748	18	18	0.0%			
Та	4088723	< 10	< 10	0.0%	4088737	< 10	< 10	0.0%	4088748	< 10	< 10	0.0%			
Те	4088723	< 10	< 10	0.0%	4088737	< 10	< 10	0.0%	4088748	< 10	< 10	0.0%			
Th	4088723	< 5	< 5	0.0%	4088737	< 5	< 5	0.0%	4088748	< 5	< 5	0.0%			
Ti	4088723	0.13	0.13	0.0%	4088737	0.13	0.13	0.0%	4088748	0.64	0.64	0.0%			
TI	4088723	< 5	< 5	0.0%	4088737	< 5	< 5	0.0%	4088748	< 5	< 5	0.0%			
U	4088723	< 5	< 5	0.0%	4088737	< 5	< 5	0.0%	4088748	< 5	< 5	0.0%			
V	4088723	88.7	95.0	6.9%	4088737	90.5	95.6	5.5%	4088748	157	162	3.1%			
W	4088723	< 1	2		4088737	< 1	< 1	0.0%	4088748	2	< 1				
Y	4088723	5	5	0.0%	4088737	5	5	0.0%	4088748	22	22	0.0%			
Zn	4088723	88.3	88.7	0.5%	4088737	85.2	86.4	1.4%	4088748	121	128	5.6%			
Zr	4088723	12	13	8.0%	4088737	11	12	8.7%	4088748	132	130	1.5%			

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)

		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3			
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD		
Au	4088723	< 0.001	< 0.001	0.0%	4088737	< 0.001	< 0.001	0.0%	4088748	0.001	0.001	0.0%		
Pd	4088723	0.007	0.009	25.0%	4088737	0.0129	0.0111	15.0%	4088748	0.032	0.038	17.1%		
Pt	4088723	< 0.005	< 0.005	0.0%	4088737	0.008	0.009	11.8%	4088748	0.0164	0.0183	11.0%		

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220920234 PROJECT: WR-22-CORE-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

LIENT NAW				(20	1-070) 4	Acid [Digest -	Metals I	Packag				u rontaine		
		CRM #1	(ref.Till-2)	`	,		(ref.GTS-2a)								
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits							
Al	8.47	8.26	97%		6.96	6.92	99%								
As	26	25	96%		124	120	97%								
Ва	540	532	99%		186	190	102%								
Be	4.0	3.4	86%												
Ca	0.907	0.894	99%		4.01	4.09	102%								
Ce	98	98	100%		24	22	91%								
Со	15	14	90%		22.1	20.2	91%								
Cr	60.3	63.5	105%												
Cu	150	155	104%		88.6	90.4	102%								
Fe	3.77	3.6	96%		7.56	7.18	95%								
K					2.021	2.109	104%								
La	44	43	97%												
Li	47	47	99%												
Mg	1.10	1.07	98%		2.412	2.446	101%								
Mn	780	768	98%		1510	1497	99%								
Мо	14	12	89%												
Na	1.624	1.724	106%		0.617	0.628	102%								
Ni	32	33	103%		77.1	72.1	93%								
Р	750	684	91%		892	870	97%								
Pb	31	25	79%												
S					0.348	0.339	97%								
Sc	12	12	101%												
Sr	144	150	104%		92.8	87.7	95%								
Ti	0.53	0.47	89%												
V	77	80	104%												
W	5	6	122%												
Zn	130	129	99%		208	228	110%								
			(202	-555) Fir	e Assay	/ - Au,	Pt, Pd 7	Trace Le	vels, IC	P-OES	finish	(50g ch	arge)	 	
		CRM #1 (ref.PGMS30)		CRM #2 (ref.PGMS30)							
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits							
Au	1.897	1.815	96%		1.897	1.742	92%								

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220920234

PROJECT: WR-22-CORE-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

Pd	1.660	1.641	99%	1.660	1.649	99%					
Pt	0.223	0.237	106%	0.223	0.229	103%					

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-01

SAMPLING SITE:

AGAT WORK ORDER: 220920234
ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Geochem v. i	ICF/OLS
Ві	MIN-200-12034	Geochem v.1	ICF/OLS
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Geochem v.1	ICF/OLS
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Geochem v.1	ICP/OES
La	MIN-200-12034	Geochem v.1	ICP/OES
Li	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mg	MIN-200-12034	Geochem V.1	ICP/UES
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Na	MIN-200-12034	Geochem V. i	ICP/OES
Ni	MIN-200-12034	Geochem V.1	ICF/OL3
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-01

SAMPLING SITE:

AGAT WORK ORDER: 220920234 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

SAMPLING SITE.		SAMPLED BT.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
ті	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-12006, MIN-12004		ICP/OES
Pd	MIN-12006, MIN-12004		ICP/OES
Pt	MIN-12006, MIN-12004		ICP/OES
Crush-Pass %			BALANCE
Pul-Pass %			BALANCE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-CORE-02

AGAT WORK ORDER: 220923065

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Oct 25, 2022

PAGES (INCLUDING COVER): 25

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

Notes Control of the	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 25

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Certificate of Analysis

AGAT WORK ORDER: 220923065

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Ju	l 19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Oct 25, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840034 (4114947)		0.240			
E5840035 (4114948)		2.420			
E5840036 (4114949)		2.490			
E5840037 (4114950)		2.550			
E5840038 (4114951)		2.380			
E5840039 (4114952)		1.430			
E5840040 (4114953)		0.070			
E5840041 (4114954)		1.680			
E5840042 (4114955)		3.390			
E5840043 (4114956)		3.000			
E5840044 (4114957)		3.100			
E5840045 (4114958)		3.430			
E5840046 (4114959)		3.210			
E5840047 (4114960)		3.350			
E5840048 (4114961)		3.500			
E5840049 (4114962)		2.720			
E5840050 (4114963)		0.240			
E5840051 (4114964)		3.570			
E5840052 (4114965)		2.850			
E5840053 (4114966)		3.200			
E5840054 (4114967)		3.210			
E5840055 (4114968)		3.440			
E5840056 (4114969)		2.630			
E5840057 (4114970)		3.190			
E5840058 (4114971)		3.000			
E5840059 (4114972)		1.440			
E5840060 (4114973)		1.630			
E5840061 (4114974)		3.370			
E5840062 (4114975)		2.340			
E5840063 (4114976)		2.820			
E5840064 (4114977)		3.690			

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 220923065

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Jul	19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Oct 25, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840065 (4114978)		2.180			
E5840066 (4114979)		2.590			
E5840067 (4114980)		3.030			
E5840068 (4114981)		3.500			
E5840069 (4114982)		3.620			
E5840070 (4114983)		0.010			
E5840071 (4114984)		2.870			
E5840072 (4114985)		3.530			
E5840073 (4114986)		3.590			
E5840074 (4114987)		3.430			
E5840075 (4114988)		3.240			
E5840076 (4114989)		4.360			
E5840077 (4114990)		3.960			
E5840078 (4114991)		3.070			
E5840079 (4114992)		4.300			
E5840080 (4114993)		0.240			
E5840081 (4114994)		3.310			
E5840082 (4114995)		2.850			
E5840083 (4114996)		3.800			
E5840084 (4114997)		2.670			
E5840085 (4114998)		2.370			
E5840086 (4114999)		3.650			
E5840087 (4115000)		3.000			
E5840088 (4115001)		1.650			
E5840089 (4115002)		1.840			
E5840090 (4115003)		2.910			
E5840091 (4115004)		3.390			
E5840092 (4115005)		3.290			
E5840093 (4115006)		3.450			
E5840094 (4115007)		3.790			
E5840095 (4115008)		3.430			

Certified By:

AGAT WORK ORDER: 220923065

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Jul	19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Oct 25, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840096 (4115009)		3.440			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 22O923065

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Ju	I 19, 2022		С	DATE RECE	EIVED: Jul 2	20, 2022		DATE I	REPORTED	SAMPLE TYPE: Drill Core					
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840034 (4114947)		<0.5	6.57	3	378	1.0	<1	1.69	<0.5	15	5.0	64.1	7.2	1.42	15
E5840035 (4114948)		<0.5	4.34	15	15	7.9	<1	18.5	1.0	269	49.6	168	14.3	6.93	27
E5840036 (4114949)		<0.5	2.88	11	38	15.5	<1	23.6	0.8	352	38.6	30.6	364	4.57	14
E5840037 (4114950)		<0.5	4.81	38	28	7.6	<1	22.7	<0.5	303	27.5	84.4	28.3	3.84	12
E5840038 (4114951)		<0.5	6.73	16	21	10.3	<1	18.8	<0.5	206	18.0	55.3	295	6.92	20
E5840039 (4114952)		<0.5	3.11	<1	15	1.0	1	3.85	8.2	199	78.8	161	851	29.0	46
E5840040 (4114953)		4.0	7.14	<1	269	0.9	<1	4.29	1.0	24	166	224	6380	13.3	5
E5840041 (4114954)		<0.5	4.25	14	5	1.3	<1	5.90	<0.5	3	118	1590	108	9.57	18
E5840042 (4114955)		<0.5	2.91	4	8	<0.5	<1	2.58	<0.5	3	93.3	1660	67.7	7.31	8
E5840043 (4114956)		<0.5	2.67	3	9	<0.5	<1	2.29	<0.5	3	105	1800	60.3	7.31	7
E5840044 (4114957)		<0.5	2.51	7	11	<0.5	<1	2.24	<0.5	3	102	1950	50.3	7.38	8
E5840045 (4114958)		<0.5	2.41	<1	12	<0.5	<1	1.63	<0.5	3	95.5	1930	47.4	7.52	7
E5840046 (4114959)		<0.5	2.85	<1	9	<0.5	<1	3.40	<0.5	2	95.1	1940	68.7	7.51	8
E5840047 (4114960)		<0.5	3.45	4	8	<0.5	<1	3.66	<0.5	3	95.6	1780	93.7	7.73	10
E5840048 (4114961)		<0.5	2.82	3	11	<0.5	<1	3.56	<0.5	3	94.9	1800	104	7.42	7
E5840049 (4114962)		<0.5	2.65	6	9	<0.5	<1	3.22	<0.5	2	95.6	1660	115	7.32	8
E5840050 (4114963)		<0.5	6.65	5	379	1.1	<1	1.72	<0.5	15	5.2	72.4	8.3	1.42	15
E5840051 (4114964)		<0.5	2.65	<1	11	<0.5	<1	3.42	<0.5	2	103	1850	86.6	7.79	8
E5840052 (4114965)		<0.5	2.57	1	13	<0.5	<1	1.59	<0.5	3	99.0	1790	80.9	7.59	7
E5840053 (4114966)		<0.5	2.40	11	13	<0.5	<1	2.09	<0.5	3	102	1840	113	7.61	7
E5840054 (4114967)		<0.5	2.33	2	13	<0.5	<1	2.36	<0.5	3	95.9	1880	121	7.61	7
E5840055 (4114968)		<0.5	2.34	1	14	<0.5	<1	1.36	<0.5	3	115	1850	127	7.93	6
E5840056 (4114969)		<0.5	2.38	6	12	<0.5	<1	1.97	<0.5	3	99.3	1840	123	7.64	8
E5840057 (4114970)		<0.5	2.36	2	12	<0.5	<1	1.90	<0.5	3	110	1700	136	7.60	5
E5840058 (4114971)		<0.5	2.30	18	12	<0.5	<1	2.27	<0.5	2	88.1	1980	88.2	7.18	8
E5840059 (4114972)		<0.5	2.18	30	10	<0.5	<1	3.41	<0.5	2	97.3	1770	111	6.98	7
E5840060 (4114973)		<0.5	2.23	35	10	<0.5	<1	3.35	<0.5	2	103	1810	118	7.14	8
E5840061 (4114974)		<0.5	2.39	5	12	<0.5	<1	1.52	<0.5	3	135	1920	224	8.17	5
E5840062 (4114975)		<0.5	2.32	17	11	<0.5	<1	3.08	<0.5	2	107	1940	155	7.65	6
E5840063 (4114976)		<0.5	2.33	19	10	<0.5	<1	2.69	<0.5	2	96.2	1910	93.7	7.41	8
E5840064 (4114977)		<0.5	2.20	<1	10	<0.5	<1	1.58	<0.5	3	120	1790	194	7.78	6
E5840065 (4114978)		<0.5	2.13	<1	9	<0.5	<1	1.14	0.7	3	167	1900	516	10.1	7

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O923065

PROJECT: WR-22-CORE-02

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Jul	l 19, 2022			ATE RECE	EIVED: Jul 2	20, 2022		DATE I	REPORTED	SAMPLE TYPE: Drill Core					
	Analyte:	Ag	Al	As	Ва	Ве	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	G
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppr
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	
E5840066 (4114979)		<0.5	2.13	2	9	<0.5	<1	1.74	<0.5	3	94.2	1850	236	8.29	
E5840067 (4114980)		<0.5	2.17	<1	9	<0.5	<1	2.86	<0.5	2	82.2	1930	76.4	7.58	
E5840068 (4114981)		<0.5	2.31	<1	9	<0.5	<1	2.29	<0.5	2	82.2	1860	62.7	7.72	
E5840069 (4114982)		<0.5	2.26	<1	9	<0.5	<1	1.32	<0.5	3	103	1900	72.2	7.78	
E5840070 (4114983)		<0.5	4.21	146	203	1.0	<1	3.19	<0.5	25	76.0	709	51.4	5.41	
E5840071 (4114984)		<0.5	2.27	4	8	<0.5	<1	1.25	<0.5	3	105	1980	56.2	7.85	
E5840072 (4114985)		<0.5	2.29	7	6	<0.5	<1	0.87	<0.5	3	97.7	1750	47.0	7.68	
E5840073 (4114986)		<0.5	2.29	9	4	0.5	<1	0.93	<0.5	3	97.4	1950	40.2	7.50	
E5840074 (4114987)		<0.5	2.46	7	4	<0.5	<1	3.84	<0.5	3	98.5	1900	35.7	7.52	
E5840075 (4114988)		<0.5	5.29	2	2	0.6	<1	2.95	<0.5	7	48.0	1380	51.9	10.7	2
E5840076 (4114989)		<0.5	2.46	<1	5	<0.5	5	2.20	4.5	43	69.1	683	637	37.1	5
E5840077 (4114990)		0.6	1.52	<1	3	<0.5	4	1.85	5.0	7	110	522	1160	37.8	5
E5840078 (4114991)		<0.5	0.50	<1	7	<0.5	5	1.00	<0.5	9	143	14.4	981	48.4	6
E5840079 (4114992)		1.0	1.12	<1	6	<0.5	<1	1.31	2.3	7	131	39.8	1930	43.5	6
E5840080 (4114993)		<0.5	6.60	3	378	1.0	<1	1.71	<0.5	15	5.1	71.1	9.7	1.51	1
E5840081 (4114994)		<0.5	6.04	<1	2	<0.5	1	2.74	0.7	7	38.4	982	97.6	15.4	3
E5840082 (4114995)		<0.5	6.25	<1	3	<0.5	<1	3.10	<0.5	8	34.7	985	33.3	14.0	3
E5840083 (4114996)		<0.5	3.62	<1	2	<0.5	1	2.55	1.4	8	115	798	391	24.6	4
E5840084 (4114997)		<0.5	3.07	<1	1	<0.5	2	4.11	1.7	3	140	1500	401	18.9	2
E5840085 (4114998)		<0.5	4.41	<1	2	0.6	<1	4.00	<0.5	5	119	1370	99.3	11.3	1
E5840086 (4114999)		<0.5	3.23	2	2	0.6	<1	3.88	<0.5	4	78.0	1580	70.4	7.75	1.
E5840087 (4115000)		<0.5	3.55	18	2	<0.5	<1	2.64	<0.5	2	99.6	1930	82.1	7.66	1
E5840088 (4115001)		<0.5	3.72	2	2	<0.5	<1	2.27	<0.5	3	90.6	1890	81.4	7.91	1.
E5840089 (4115002)		<0.5	3.62	1	2	0.5	<1	2.41	<0.5	4	98.2	1910	87.3	7.95	1.
E5840090 (4115003)		<0.5	2.84	<1	2	0.7	<1	5.28	<0.5	1	63.9	1190	46.7	6.86	1
E5840091 (4115004)		<0.5	3.76	28	2	0.8	<1	5.85	<0.5	2	72.9	1280	60.3	7.66	1.
E5840092 (4115005)		<0.5	6.18	37	16	8.0	<1	4.09	<0.5	13	91.1	1360	122	11.0	2
E5840093 (4115006)		<0.5	7.79	4	1130	1.3	<1	2.08	<0.5	53	33.1	83.1	33.8	10.4	3
E5840094 (4115007)		<0.5	7.57	<1	913	1.7	3	2.64	0.7	47	32.0	94.1	30.5	10.1	3
E5840095 (4115008)		<0.5	7.12	<1	927	1.8	<1	2.43	0.7	45	31.4	75.8	25.8	9.89	3
E5840096 (4115009)		<0.5	7.19	<1	1150	2.9	<1	3.37	0.5	49	31.0	92.8	88.4	10.5	3

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 220923065

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	TOND WIINING		(2	01 070)	4 A oid D	igost N	Actolo Do	okogo li	CD OES	finiah	,					
-			•			Acid Digest - Metals Package, ICP-OES finish VED: Jul 20, 2022 DATE REPORTED: Oct 25, 2022 SAMPLE TYP										
DATE SAMPLED: Jul	19, 2022			DATE RECE	EIVED: Jul 2	20, 2022		DATE F	REPORTED): Oct 25, 20	022	SAMPLE TYPE: Drill Core				
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb	
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1	
E5840034 (4114947)		<1	1.31	7	8	0.54	248	<0.5	2.84	18.1	193	6	<10	<0.01	<1	
E5840035 (4114948)		<1	0.02	190	31	6.54	3530	<0.5	0.03	155	3360	29	<10	0.08	2	
E5840036 (4114949)		<1	0.01	266	13	3.38	4230	<0.5	0.07	25.8	4120	24	<10	0.41	<1	
E5840037 (4114950)		<1	<0.01	217	6	2.32	3110	1.2	0.05	35.5	3140	48	<10	0.09	1	
E5840038 (4114951)		<1	<0.01	161	4	1.55	4140	4.0	0.01	85.0	3550	56	<10	1.23	2	
E5840039 (4114952)		<1	0.01	159	11	4.26	1480	26.8	0.02	849	821	169	<10	>10	3	
E5840040 (4114953)		<1	0.66	12	12	3.84	1260	3.6	1.88	9600	567	69	<10	2.83	2	
E5840041 (4114954)		<1	0.02	6	13	11.5	1900	<0.5	0.03	1680	150	21	<10	0.16	4	
E5840042 (4114955)		<1	0.03	5	15	15.9	1240	<0.5	0.01	1270	116	16	<10	0.39	5	
E5840043 (4114956)		<1	0.03	5	13	17.1	1280	<0.5	0.01	1440	106	16	<10	0.18	7	
E5840044 (4114957)		<1	0.03	5	11	17.0	1300	<0.5	0.01	1410	101	15	<10	0.14	7	
E5840045 (4114958)		<1	0.03	5	8	17.5	1330	<0.5	0.01	1320	94	15	<10	0.12	9	
E5840046 (4114959)		<1	0.02	5	12	16.7	1340	<0.5	0.01	1280	113	15	<10	0.18	7	
E5840047 (4114960)		<1	0.03	5	21	15.7	1300	<0.5	0.02	1200	117	16	<10	0.29	6	
E5840048 (4114961)		<1	0.03	5	10	15.9	1390	<0.5	0.02	1290	121	16	<10	0.19	6	
E5840049 (4114962)		<1	0.02	5	9	16.9	1300	<0.5	0.02	1390	117	14	<10	0.20	5	
E5840050 (4114963)		<1	1.32	7	8	0.59	255	<0.5	2.86	22.6	184	6	<10	<0.01	<1	
E5840051 (4114964)		<1	0.02	5	8	17.2	1330	<0.5	0.02	1370	113	16	<10	0.27	7	
E5840052 (4114965)		<1	0.03	5	8	17.2	1280	<0.5	0.02	1400	101	17	<10	0.29	7	
E5840053 (4114966)		<1	0.03	5	7	17.0	1290	<0.5	0.01	1320	93	16	<10	0.35	6	
E5840054 (4114967)		<1	0.02	5	8	17.0	1260	<0.5	0.01	1410	95	18	<10	0.40	8	
E5840055 (4114968)		<1	0.03	5	7	17.2	1250	<0.5	0.01	1660	88	15	<10	0.48	8	
E5840056 (4114969)		<1	0.03	5	7	17.3	1280	<0.5	0.01	1270	104	19	<10	0.32	9	
E5840057 (4114970)		<1	0.03	5	6	17.5	1230	<0.5	0.01	1760	104	18	<10	0.38	7	
E5840058 (4114971)		<1	0.03	5	5	17.0	1240	<0.5	0.01	1070	95	15	<10	0.19	8	
E5840059 (4114972)		<1	0.02	5	8	16.6	1200	<0.5	0.01	1070	90	15	<10	0.30	3	
E5840060 (4114973)		<1	0.02	5	9	16.8	1260	<0.5	0.01	1100	96	15	<10	0.31	7	
E5840061 (4114974)		<1	0.03	5	6	17.3	1230	<0.5	0.01	2070	96	19	<10	0.74	5	
E5840062 (4114975)		<1	0.02	5	5	16.9	1260	<0.5	0.01	1210	94	19	<10	0.46	9	
E5840063 (4114976)		<1	0.02	5	6	17.3	1260	<0.5	0.01	1210	100	17	<10	0.40	8	
E5840064 (4114977)		<1	0.02	5	4	16.8	1210	<0.5	0.01	1850	98	18	<10	0.73	7	
E5840065 (4114978)		<1	0.02	5	4	16.6	1170	<0.5	0.01	2080	89	23	<10	1.65	8	

Certified By:

AGAT WORK ORDER: 22O923065

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORI		ATTENTION TO: Arnaud Fontaine													
			(2	01-070) 4	4 Acid D	igest - M	letals Pa	ckage, l	CP-OES	finish					
DATE SAMPLED: Jul	19, 2022		[DATE RECE	IVED: Jul 2	20, 2022		DATE F	REPORTED): Oct 25, 20	, 2022 SAMPLE TYPE: Dril				
	Analyte:	In	К	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sh
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840066 (4114979)		<1	0.02	5	4	16.5	1180	<0.5	0.01	1190	97	19	<10	0.68	E
E5840067 (4114980)		<1	0.02	5	4	17.4	1300	<0.5	0.01	1120	103	17	<10	0.33	7
E5840068 (4114981)		<1	0.02	5	4	17.9	1340	<0.5	0.01	1220	102	16	<10	0.22	E
E5840069 (4114982)		<1	0.02	5	4	17.4	1260	<0.5	0.01	1450	108	16	<10	0.21	F
E5840070 (4114983)		<1	0.68	15	36	13.2	1270	1.5	0.84	1880	226	21	<10	0.31	2
E5840071 (4114984)		<1	0.02	5	4	17.4	1260	<0.5	0.01	1270	97	18	<10	0.17	7
E5840072 (4114985)		<1	0.02	5	4	17.4	1250	<0.5	0.01	1300	100	15	<10	0.20	E
E5840073 (4114986)		<1	0.02	5	8	17.5	1250	<0.5	0.01	1450	90	16	<10	0.23	5
E5840074 (4114987)		<1	0.01	5	14	15.7	1170	<0.5	0.01	1520	98	15	<10	0.58	6
E5840075 (4114988)		<1	0.02	5	7	13.3	1220	1.6	0.03	585	213	21	<10	1.15	4
E5840076 (4114989)		<1	0.01	19	3	4.66	980	41.7	0.01	476	153	79	<10	>10	1
E5840077 (4114990)		<1	0.01	3	2	3.91	402	28.6	0.02	748	97	88	<10	>10	1
E5840078 (4114991)		<1	<0.01	3	1	1.15	325	31.9	0.01	981	82	106	<10	>10	<1
E5840079 (4114992)		<1	<0.01	<2	1	2.49	250	26.7	0.01	885	64	99	<10	>10	<1
E5840080 (4114993)		<1	1.32	7	8	0.56	256	<0.5	2.89	20.8	180	3	<10	0.06	<1
E5840081 (4114994)		<1	0.02	5	9	10.9	1260	0.6	0.03	378	196	30	<10	1.75	<1
E5840082 (4114995)		<1	0.02	5	7	10.8	1380	<0.5	0.03	347	235	24	<10	0.83	:
E5840083 (4114996)		<1	0.01	4	4	7.68	865	13.5	0.02	751	151	52	<10	6.96	2
E5840084 (4114997)		<1	0.01	4	4	9.53	1060	3.0	0.03	762	101	37	<10	5.21	f
E5840085 (4114998)		<1	0.01	4	6	12.4	1230	<0.5	0.03	1370	179	21	<10	1.60	3
E5840086 (4114999)		<1	0.01	4	18	13.8	987	<0.5	0.02	968	120	16	<10	0.76	7
E5840087 (4115000)		<1	0.01	5	15	14.8	838	<0.5	0.02	1160	135	16	<10	0.82	Ę
E5840088 (4115001)		<1	0.01	5	22	14.7	869	<0.5	0.02	1100	147	15	<10	0.86	Ę
E5840089 (4115002)		<1	0.01	6	21	14.7	856	<0.5	0.02	1210	149	16	<10	0.90	8
E5840090 (4115003)		<1	0.01	3	12	14.3	1240	<0.5	0.02	725	110	13	<10	0.45	Ę
E5840091 (4115004)		<1	<0.01	4	7	13.2	1590	<0.5	0.02	769	141	16	<10	0.37	4
E5840092 (4115005)		<1	0.02	7	37	11.5	2070	0.6	0.03	843	419	19	<10	0.38	<1
E5840093 (4115006)		<1	0.79	22	55	3.46	1760	<0.5	2.20	25.1	955	20	<10	0.76	2
E5840094 (4115007)		<1	0.79	20	43	2.95	1560	1.4	2.48	23.0	897	19	<10	1.27	<1
E5840095 (4115008)		<1	0.82	18	36	2.55	1380	0.7	2.70	19.8	862	18	<10	1.78	<1
E5840096 (4115009)		<1	0.98	20	35	2.37	1470	0.6	2.85	13.6	962	21	<10	2.21	2

Certificate of Analysis

AGAT WORK ORDER: 22O923065

PROJECT: WR-22-CORE-02

MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

5623 McADAM ROAD

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Jul	19, 2022		С	ATE RECE	EIVED: Jul 2	20, 2022		DATE REPORTED: Oct 25, 2022 SAMPLE TYPE: Dril							
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840034 (4114947)		5	<10	<5	349	<10	<10	<5	0.13	<5	<5	36.0	<1	6	19.1
E5840035 (4114948)		23	<10	<5	180	<10	21	9	1.26	<5	<5	356	1	45	397
E5840036 (4114949)		28	<10	<5	391	<10	17	8	0.97	<5	<5	359	2	61	226
E5840037 (4114950)		23	<10	<5	283	<10	18	9	1.37	<5	<5	285	<1	45	238
E5840038 (4114951)		18	<10	<5	214	<10	21	5	1.02	<5	<5	395	<1	40	357
E5840039 (4114952)		8	<10	<5	75	<10	37	<5	0.22	<5	33	206	<1	17	1190
E5840040 (4114953)		11	<10	<5	279	<10	21	<5	0.56	<5	9	109	1	11	117
E5840041 (4114954)		21	<10	<5	14	<10	23	<5	0.20	<5	6	152	<1	7	137
E5840042 (4114955)		18	<10	<5	18	<10	19	<5	0.17	<5	5	118	<1	6	66.1
E5840043 (4114956)		17	<10	<5	21	<10	19	<5	0.16	<5	<5	109	<1	6	67.6
E5840044 (4114957)		17	<10	<5	26	<10	22	<5	0.15	<5	<5	106	<1	6	71.0
E5840045 (4114958)		16	<10	<5	24	<10	22	<5	0.15	<5	5	101	<1	5	65.2
E5840046 (4114959)		18	<10	<5	29	<10	19	<5	0.17	<5	5	114	<1	6	67.1
E5840047 (4114960)		21	<10	<5	26	<10	20	<5	0.20	<5	5	135	<1	7	79.3
E5840048 (4114961)		17	<10	<5	28	<10	19	<5	0.19	<5	<5	119	<1	7	71.0
E5840049 (4114962)		16	<10	<5	26	<10	22	<5	0.17	<5	5	110	<1	6	67.1
E5840050 (4114963)		5	<10	<5	350	<10	<10	<5	0.14	<5	<5	37.1	<1	6	22.4
E5840051 (4114964)		17	<10	<5	32	<10	17	<5	0.17	<5	5	109	<1	6	68.8
E5840052 (4114965)		17	<10	<5	25	<10	20	<5	0.17	<5	5	111	<1	6	69.1
E5840053 (4114966)		16	<10	<5	30	<10	17	<5	0.15	<5	5	104	<1	5	70.0
E5840054 (4114967)		15	<10	<5	36	<10	20	<5	0.14	<5	5	99.4	<1	5	71.4
E5840055 (4114968)		16	<10	<5	30	<10	19	<5	0.15	<5	5	101	1	5	70.0
E5840056 (4114969)		16	<10	<5	31	<10	22	<5	0.15	<5	5	103	<1	5	73.9
E5840057 (4114970)		15	<10	<5	31	<10	21	<5	0.14	<5	5	99.5	<1	5	68.9
E5840058 (4114971)		15	<10	<5	37	<10	24	<5	0.14	<5	5	97.5	<1	5	68.6
E5840059 (4114972)		14	<10	<5	39	<10	20	<5	0.13	<5	<5	93.2	<1	4	62.9
E5840060 (4114973)		14	<10	<5	41	<10	19	<5	0.13	<5	5	95.0	<1	5	69.2
E5840061 (4114974)		16	<10	<5	30	<10	20	<5	0.15	<5	6	102	1	5	70.9
E5840062 (4114975)		16	<10	<5	43	<10	21	<5	0.15	<5	5	99.8	<1	5	71.1
E5840063 (4114976)		15	<10	<5	38	<10	16	<5	0.14	<5	5	98.2	<1	5	71.5
E5840064 (4114977)		15	<10	<5	27	<10	23	<5	0.14	<5	5	96.2	1	5	65.3
E5840065 (4114978)		15	<10	<5	24	<10	21	<5	0.14	<5	7	102	<1	5	70.3

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O923065

PROJECT: WR-22-CORE-02

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAIVIE. ON	OND MININ	3 00111							/\\	ITION TO.	/ (IIIaaa I C	mamo			
			(2	01-070)	4 Acid D	igest - M	letals Pa	ickage, I	CP-OES	finish					
DATE SAMPLED: Jul	19, 2022		Γ	DATE RECE	EIVED: Jul 2	20, 2022		DATE I	REPORTED): Oct 25, 20)22	SAM	PLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Y	Zr
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840066 (4114979)		15	<10	<5	29	<10	24	<5	0.13	<5	6	97.4	<1	5	66.9
E5840067 (4114980)		15	<10	<5	38	<10	23	<5	0.13	<5	5	95.6	<1	5	71.3
E5840068 (4114981)		15	<10	<5	33	<10	21	<5	0.14	<5	5	101	<1	5	70.9
E5840069 (4114982)		16	<10	<5	23	<10	20	<5	0.14	<5	5	103	<1	5	78.5
E5840070 (4114983)		12	<10	<5	72	<10	<10	5	0.18	<5	<5	70.0	5	9	106
E5840071 (4114984)		16	<10	<5	20	<10	20	<5	0.14	<5	6	102	<1	5	83.4
E5840072 (4114985)		16	<10	<5	16	<10	19	<5	0.14	<5	5	101	<1	5	82.5
E5840073 (4114986)		16	<10	<5	16	<10	19	<5	0.15	<5	5	97.0	<1	5	81.1
E5840074 (4114987)		16	<10	<5	50	<10	19	<5	0.15	<5	5	107	<1	6	90.9
E5840075 (4114988)		32	<10	<5	8	<10	25	<5	0.34	<5	8	223	<1	10	172
E5840076 (4114989)		18	<10	5	20	<10	73	<5	0.45	<5	37	292	<1	14	1170
E5840077 (4114990)		11	<10	9	5	<10	76	<5	0.12	<5	37	203	<1	7	1260
E5840078 (4114991)		6	<10	11	8	<10	56	<5	0.05	<5	46	154	<1	7	169
E5840079 (4114992)		7	<10	6	3	<10	57	<5	0.08	<5	42	143	<1	7	678
E5840080 (4114993)		5	<10	<5	355	<10	<10	<5	0.13	<5	<5	35.7	<1	6	20.7
E5840081 (4114994)		29	<10	<5	8	<10	29	<5	0.31	<5	12	219	<1	13	284
E5840082 (4114995)		35	<10	<5	9	<10	31	<5	0.39	<5	11	241	<1	15	211
E5840083 (4114996)		21	<10	<5	6	<10	36	<5	0.24	<5	22	208	<1	11	340
E5840084 (4114997)		17	<10	<5	8	<10	35	<5	0.19	<5	15	160	<1	7	249
E5840085 (4114998)		29	<10	<5	8	<10	24	<5	0.31	<5	8	188	<1	12	151
E5840086 (4114999)		20	<10	<5	8	<10	18	<5	0.21	<5	6	136	<1	9	99.4
E5840087 (4115000)		22	<10	<5	5	<10	18	<5	0.22	<5	6	146	<1	6	89.8
E5840088 (4115001)		22	<10	<5	5	<10	19	<5	0.24	<5	6	150	<1	8	80.7
E5840089 (4115002)		23	<10	<5	5	<10	18	<5	0.24	<5	6	149	<1	7	81.5
E5840090 (4115003)		18	<10	<5	8	<10	19	<5	0.17	<5	<5	116	<1	7	67.2
E5840091 (4115004)		21	<10	<5	10	<10	18	<5	0.22	<5	5	141	<1	8	86.3
E5840092 (4115005)		35	<10	<5	9	<10	25	<5	0.54	<5	8	238	<1	23	121
E5840093 (4115006)		38	<10	<5	62	<10	26	<5	1.02	<5	7	265	1	47	115
E5840094 (4115007)		35	<10	<5	84	<10	19	<5	0.97	<5	6	249	<1	44	144
E5840095 (4115008)		34	<10	<5	76	<10	18	<5	0.93	<5	6	237	1	42	141
E5840096 (4115009)		36	<10	<5	128	<10	24	<5	1.05	<5	7	247	1	46	154
, ,															

Certified By:

Sherin Mousson

AGAT WORK ORDER: 22O923065

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

OLIEITI IVAIVIE. OITI			(201 070) 4 Apid Digost Motol	Dockers ICD OES finish	
			(201-070) 4 Acid Digest - Metal:	•	
DATE SAMPLED: Jul	19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Oct 25, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840034 (4114947)		37			
E5840035 (4114948)		110			
E5840036 (4114949)		108			
E5840037 (4114950)		158			
E5840038 (4114951)		228			
E5840039 (4114952)		61			
E5840040 (4114953)		57			
E5840041 (4114954)		25			
E5840042 (4114955)		19			
E5840043 (4114956)		18			
E5840044 (4114957)		18			
E5840045 (4114958)		17			
E5840046 (4114959)		19			
E5840047 (4114960)		21			
E5840048 (4114961)		22			
E5840049 (4114962)		19			
E5840050 (4114963)		39			
E5840051 (4114964)		18			
E5840052 (4114965)		19			
E5840053 (4114966)		17			
E5840054 (4114967)		17			
E5840055 (4114968)		18			
E5840056 (4114969)		16			
E5840057 (4114970)		15			
E5840058 (4114971)		14			
E5840059 (4114972)		13			
E5840060 (4114973)		13			
E5840061 (4114974)		15			
E5840062 (4114975)		16			
E5840063 (4114976)		15			
E5840064 (4114977)		15			
E5840065 (4114978)		17			

Certificate of Analysis

AGAT WORK ORDER: 22O923065

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metal	s Package, ICP-OES finish	
DATE SAMPLED: Jul	19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Oct 25, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840066 (4114979)		15			
E5840067 (4114980)		13			
E5840068 (4114981)		14			
E5840069 (4114982)		14			
E5840070 (4114983)		66			
E5840071 (4114984)		14			
E5840072 (4114985)		13			
E5840073 (4114986)		12			
E5840074 (4114987)		16			
E5840075 (4114988)		44			
E5840076 (4114989)		76			
5840077 (4114990)		40			
E5840078 (4114991)		40			
5840079 (4114992)		45			
E5840080 (4114993)		40			
E5840081 (4114994)		43			
E5840082 (4114995)		51			
E5840083 (4114996)		45			
E5840084 (4114997)		30			
E5840085 (4114998)		39			
E5840086 (4114999)		28			
E5840087 (4115000)		26			
E5840088 (4115001)		29			
E5840089 (4115002)		30			
E5840090 (4115003)		22			
E5840091 (4115004)		29			
E5840092 (4115005)		94			
E5840093 (4115006)		215			
E5840094 (4115007)		200			
E5840095 (4115008)		195			
E5840096 (4115009)		215			

Certified By:

AGAT WORK ORDER: 220923065

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish

DATE SAMPLED: Jul 19, 2022 DATE RECEIVED: Jul 20, 2022 DATE REPORTED: Oct 25, 2022 SAMPLE TYPE: Drill Core

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

4114947-4115009 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O923065

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	(02-555)	Fire Assay - Au, Pt, Pd Trace	Levels, ICP-OES finish (50g charge)	
DATE SAMPLED: Jul	19, 2022			DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Oct 25, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840034 (4114947)		0.001	<0.001	<0.005		
E5840035 (4114948)		0.002	<0.001	<0.005		
E5840036 (4114949)		0.001	0.001	<0.005		
E5840037 (4114950)		<0.001	0.076	0.017		
E5840038 (4114951)		0.001	0.014	<0.005		
E5840039 (4114952)		0.013	0.091	0.020		
E5840040 (4114953)		0.169	1.28	0.654		
E5840041 (4114954)		< 0.001	0.047	0.014		
E5840042 (4114955)		< 0.001	0.008	<0.005		
E5840043 (4114956)		< 0.001	0.008	<0.005		
E5840044 (4114957)		< 0.001	0.010	<0.005		
E5840045 (4114958)		< 0.001	0.009	<0.005		
E5840046 (4114959)		< 0.001	0.007	<0.005		
E5840047 (4114960)		0.001	0.008	<0.005		
E5840048 (4114961)		0.001	0.008	<0.005		
E5840049 (4114962)		0.001	0.012	<0.005		
E5840050 (4114963)		< 0.001	< 0.001	<0.005		
E5840051 (4114964)		0.002	0.018	<0.005		
E5840052 (4114965)		0.001	0.009	<0.005		
E5840053 (4114966)		< 0.001	0.004	<0.005		
E5840054 (4114967)		< 0.001	0.006	<0.005		
E5840055 (4114968)		< 0.001	0.010	<0.005		
E5840056 (4114969)		0.001	0.013	<0.005		
E5840057 (4114970)		0.007	0.033	0.010		
E5840058 (4114971)		0.022	0.013	<0.005		
E5840059 (4114972)		0.092	0.014	0.007		
E5840060 (4114973)		0.019	0.012	<0.005		
E5840061 (4114974)		<0.001	0.004	<0.005		
E5840062 (4114975)		0.003	0.006	<0.005		
E5840063 (4114976)		<0.001	0.011	<0.005		
E5840064 (4114977)		0.019	0.050	0.006		
E5840065 (4114978)		0.023	0.158	0.055		

Certified By:

AGAT WORK ORDER: 22O923065

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				Fire Assay - Au, Pt, Pd Trace I	, , ,	
DATE SAMPLED: Jul	19, 2022			DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Oct 25, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840066 (4114979)		0.009	0.062	<0.005		
E5840067 (4114980)		0.005	0.031	<0.005		
E5840068 (4114981)		<0.001	0.009	<0.005		
E5840069 (4114982)		<0.001	0.022	<0.005		
E5840071 (4114984)		<0.001	0.009	<0.005		
E5840072 (4114985)		<0.001	0.002	<0.005		
E5840073 (4114986)		<0.001	0.003	<0.005		
E5840074 (4114987)		0.004	0.027	0.010		
E5840075 (4114988)		<0.001	0.001	<0.005		
E5840076 (4114989)		0.040	0.020	<0.005		
E5840077 (4114990)		0.019	0.037	<0.005		
E5840078 (4114991)		0.012	0.005	<0.005		
E5840079 (4114992)		0.011	0.035	<0.005		
E5840080 (4114993)		0.002	< 0.001	<0.005		
E5840081 (4114994)		<0.001	0.016	<0.005		
E5840082 (4114995)		<0.001	0.004	<0.005		
E5840083 (4114996)		0.004	0.045	0.020		
E5840084 (4114997)		0.001	0.042	<0.005		
E5840085 (4114998)		0.005	0.056	0.025		
E5840086 (4114999)		<0.001	0.005	<0.005		
E5840087 (4115000)		<0.001	0.005	<0.005		
E5840088 (4115001)		0.005	0.012	<0.005		
E5840089 (4115002)		0.005	0.015	<0.005		
E5840090 (4115003)		<0.001	0.007	<0.005		
E5840091 (4115004)		<0.001	0.006	<0.005		
E5840092 (4115005)		0.004	0.021	<0.005		
E5840093 (4115006)		<0.001	<0.001	<0.005		
E5840094 (4115007)		<0.001	<0.001	<0.005		
E5840095 (4115008)		<0.001	< 0.001	<0.005		
E5840096 (4115009)		< 0.001	< 0.001	<0.005		

Certified By:

AGAT WORK ORDER: 22O923065

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)

DATE SAMPLED: Jul 19, 2022 DATE RECEIVED: Jul 20, 2022 DATE REPORTED: Oct 25, 2022 SAMPLE TYPE: Drill Core

RDL - Reported Detection Limit Comments:

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received: SNR

AGAT WORK ORDER: 22O923065

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Crushing)												
DATE SAMPLED: Jul	19, 2022		DATE RECEIVED: Jul 20, 2022	SAMPLE TYPE: Drill Core									
	Analyte: Cr	rush-Pass %											
	Unit:	%											
Sample ID (AGAT ID)	RDL:	0.01											
E5840035 (4114948)		85.82											
E5840053 (4114966)		83.07											
E5840073 (4114986)		84.22											
E5840093 (4115006)		78.70											

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O923065

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Pulverizing)												
DATE SAMPLED: Jul 1	9, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Oct 25, 2022	SAMPLE TYPE: Drill Core								
	Analyte: P	ul-Pass %											
	Unit:	%											
Sample ID (AGAT ID)	RDL:	0.005											
E5840034 (4114947)		89.850											
E5840052 (4114965)		87.000											
E5840071 (4114984)		87.090											
E5840089 (4115002)		89.770											

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220923065 PROJECT: WR-22-CORE-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(201	1-070) 4	Acid Di	gest - N	letals F	Package	ICP-O	ES finis	h				
		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3		REPLICATE #4			
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Ag	4114948	< 0.5	< 0.5	0.0%	4114961	< 0.5	< 0.5	0.0%	4114972	< 0.5	< 0.5	0.0%	4114987	< 0.5	< 0.5	0.0%
Al	4114948	4.34	4.38	0.9%	4114961	2.82	2.83	0.4%	4114972	2.18	2.34	7.1%	4114987	2.46	2.41	2.1%
As	4114948	15	8		4114961	3	3	0.0%	4114972	30	28	6.9%	4114987	7	8	13.3%
Ва	4114948	15	16	6.5%	4114961	11	11	0.0%	4114972	10	11	9.5%	4114987	4	4	0.0%
Be	4114948	7.87	7.82	0.6%	4114961	< 0.5	< 0.5	0.0%	4114972	< 0.5	< 0.5	0.0%	4114987	< 0.5	< 0.5	0.0%
Bi	4114948	< 1	< 1	0.0%	4114961	< 1	< 1	0.0%	4114972	< 1	< 1	0.0%	4114987	< 1	< 1	0.0%
Ca	4114948	18.5	18.8	1.6%	4114961	3.56	3.55	0.3%	4114972	3.41	3.59	5.1%	4114987	3.84	3.74	2.6%
Cd	4114948	1.0	1.3	26.1%	4114961	< 0.5	< 0.5	0.0%	4114972	< 0.5	< 0.5	0.0%	4114987	< 0.5	< 0.5	0.0%
Ce	4114948	269	283	5.1%	4114961	3	3	0.0%	4114972	2	2	0.0%	4114987	3	3	0.0%
Co	4114948	49.6	47.6	4.1%	4114961	94.9	94.7	0.2%	4114972	97.3	105	7.6%	4114987	98.5	97.9	0.6%
Cr	4114948	168	97.6		4114961	1800	1880	4.3%	4114972	1770	1850	4.4%	4114987	1900	1780	6.5%
Cu	4114948	14.3	9.4		4114961	104	103	1.0%	4114972	111	120	7.8%	4114987	35.7	38.4	7.3%
Fe	4114948	6.93	6.48	6.7%	4114961	7.42	7.41	0.1%	4114972	6.98	7.46	6.6%	4114987	7.52	7.35	2.3%
Ga	4114948	27	25	7.7%	4114961	7	9	25.0%	4114972	7	7	0.0%	4114987	8	7	13.3%
In	4114948	< 1	< 1	0.0%	4114961	< 1	< 1	0.0%	4114972	< 1	< 1	0.0%	4114987	< 1	< 1	0.0%
K	4114948	0.02	0.02	0.0%	4114961	0.03	0.03	0.0%	4114972	0.02	0.02	0.0%	4114987	0.01	0.01	0.0%
La	4114948	190	206	8.1%	4114961	5	5	0.0%	4114972	5	5	0.0%	4114987	5	5	0.0%
Li	4114948	31	34	9.2%	4114961	10	10	0.0%	4114972	8	9	11.8%	4114987	14	13	7.4%
Mg	4114948	6.54	6.66	1.8%	4114961	15.9	15.8	0.6%	4114972	16.6	17.6	5.8%	4114987	15.7	15.4	1.9%
Mn	4114948	3530	3510	0.6%	4114961	1390	1400	0.7%	4114972	1200	1290	7.2%	4114987	1170	1120	4.4%
Мо	4114948	< 0.5	< 0.5	0.0%	4114961	< 0.5	< 0.5	0.0%	4114972	< 0.5	< 0.5	0.0%	4114987	< 0.5	< 0.5	0.0%
Na	4114948	0.03	0.03	0.0%	4114961	0.02	0.02	0.0%	4114972	0.01	0.01	0.0%	4114987	0.01	0.01	0.0%
Ni	4114948	155	130	17.5%	4114961	1290	1310	1.5%	4114972	1070	1180	9.8%	4114987	1520	1500	1.3%
Р	4114948	3360	3180	5.5%	4114961	121	127	4.8%	4114972	90	102	12.5%	4114987	98	92	6.3%
Pb	4114948	29	30	3.4%	4114961	16	17	6.1%	4114972	15	16	6.5%	4114987	15	16	6.5%
Rb	4114948	< 10	< 10	0.0%	4114961	< 10	< 10	0.0%	4114972	< 10	< 10	0.0%	4114987	< 10	< 10	0.0%
S	4114948	0.08	0.07	13.3%	4114961	0.19	0.19	0.0%	4114972	0.302	0.341	12.1%	4114987	0.58	0.56	3.5%
Sb	4114948	2	< 1		4114961	6	6	0.0%	4114972	3	7		4114987	6	6	0.0%
Sc	4114948	23	23	0.0%	4114961	17	17	0.0%	4114972	14	15	6.9%	4114987	16	15	6.5%
Se	4114948	< 10	< 10	0.0%	4114961	< 10	< 10	0.0%	4114972	< 10	< 10	0.0%	4114987	< 10	< 10	0.0%
Sn	4114948	< 5	< 5	0.0%	4114961	< 5	< 5	0.0%	4114972	< 5	< 5	0.0%	4114987	< 5	< 5	0.0%

Quality Assurance - Replicate AGAT WORK ORDER: 220923065 PROJECT: WR-22-CORE-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

CLIENT NAM	IE: ORFORI	D MINING	CORP							ATTE	NTION TO	: Arnaud	Fontaine			
Sr	4114948	180	191	5.9%	4114961	28	28	0.0%	4114972	39	42	7.4%	4114987	50	49	2.0%
Та	4114948	< 10	< 10	0.0%	4114961	< 10	< 10	0.0%	4114972	< 10	< 10	0.0%	4114987	< 10	< 10	0.0%
Te	4114948	21	20	4.9%	4114961	19	21	10.0%	4114972	20	18	10.5%	4114987	19	23	19.0%
Th	4114948	9	8	11.8%	4114961	< 5	< 5	0.0%	4114972	< 5	< 5	0.0%	4114987	< 5	< 5	0.0%
Ti	4114948	1.26	1.26	0.0%	4114961	0.19	0.19	0.0%	4114972	0.130	0.138	6.0%	4114987	0.146	0.142	2.8%
TI	4114948	< 5	< 5	0.0%	4114961	< 5	< 5	0.0%	4114972	< 5	< 5	0.0%	4114987	< 5	< 5	0.0%
U	4114948	< 5	< 5	0.0%	4114961	< 5	< 5	0.0%	4114972	5	5	0.0%	4114987	5	5	0.0%
V	4114948	356	352	1.1%	4114961	119	120	0.8%	4114972	93.2	98.4	5.4%	4114987	107	105	1.9%
W	4114948	1	< 1		4114961	< 1	< 1	0.0%	4114972	< 1	< 1	0.0%	4114987	< 1	< 1	0.0%
Υ	4114948	45	49	8.5%	4114961	7	7	0.0%	4114972	4	5	22.2%	4114987	6	6	0.0%
Zn	4114948	397	380	4.4%	4114961	71.0	73.1	2.9%	4114972	62.9	67.3	6.8%	4114987	90.9	89.6	1.4%
Zr	4114948	110	88	22.2%	4114961	22	22	0.0%	4114972	13	14	7.4%	4114987	16	15	6.5%
		REPLIC	ATE #5					1								
Parameter	Sample ID	Original	Replicate	RPD												
Ag	4114997	< 0.5	< 0.5	0.0%												
Al	4114997	3.07	2.98	3.0%												
As	4114997	< 1	2													
Ва	4114997	1	1	0.0%												
Ве	4114997	< 0.5	< 0.5	0.0%												
Bi	4114997	2	1													
Ca	4114997	4.11	3.95	4.0%												
Cd	4114997	1.7	3.1													
Се	4114997	3	3	0.0%												
Со	4114997	140	151	7.6%												
Cr	4114997	1500	1490	0.7%												
Cu	4114997	401	485	19.0%												
Fe	4114997	18.9	19.7	4.1%												
Ga	4114997	28	29	3.5%												
In	4114997	< 1	< 1	0.0%												
K	4114997	0.01	0.01	0.0%												
La	4114997	4	4	0.0%												
Li	4114997	4	4	0.0%												
Mg	4114997	9.53	9.23	3.2%												
Mn	4114997	1060	1040	1.9%												

Quality Assurance - Replicate AGAT WORK ORDER: 220923065 PROJECT: WR-22-CORE-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine CLIENT NAME: ORFORD MINING CORP 4114997 3.0 23.5% Na 4114997 0.03 0.03 0.0% Ni 4114997 762 827 8.2% Р 4114997 101 105 3.9% Pb 4114997 37 40 7.8% Rb 4114997 < 10 0.0% < 10 S 4114997 5.21 5.40 3.6% 3 Sb 4114997 6 4114997 17 Sc 17 0.0% Se 4114997 < 10 < 10 0.0% Sn 4114997 < 5 < 5 0.0% Sr 4114997 8 7 13.3% 4114997 0.0% Ta < 10 < 10 Te 4114997 35 35 0.0% Th < 5 0.0% 4114997 < 5 Τi 4114997 0.19 0.19 0.0% ΤI 4114997 < 5 < 5 0.0% U 4114997 15 15 0.0% V 4114997 160 160 0.0% W 4114997 < 1 < 1 0.0% Υ 7 7 4114997 0.0% Zn 4114997 249 300 18.6% Zr 4114997 30 0.0% (202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge) REPLICATE #1 REPLICATE #2 REPLICATE #3 Sample ID Original Replicate RPD Sample ID Original Replicate RPD Sample ID Original Replicate **RPD** Parameter 4114972 0.092 0.017 4114961 0.001 0.001 0.0% 4114997 0.001 0.002 0.042 Pd 4114948 < 0.001 < 0.001 0.0% 4114961 0.0080 0.0105 27.0% 4114997 0.045 6.9%

4114948

< 0.005

< 0.005

0.0%

4114961

< 0.005

< 0.005

Pt

0.0%

4114997

< 0.005

0.024

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220923065 PROJECT: WR-22-CORE-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				`	,		J.9001	Metals I	aonage	٠, ٠٠٠ ٠		· · ·				
		CRM #1	(ref.Till-2)			CRM #2	(ref.GTS-2a)			CRM #3 (ref.CGL-015))		CRM #4	(ref.Till-2)	
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Al	8.47	8.91	105%		6.96	7.16	102%		13.0	13.2	101%		8.47	9.22	108%	
As	26	30	115%		124	141	113%						26	30	115%	
Ва	540	518	95%		186	179	96%		1305	1219	93%		540	536	99%	
Be	4.0	3.4	85%										4.0	3.8	95%	
Ca	0.907	0.926	102%		4.01	4.04	100%		1.42	1.4	98%		0.907	0.948	104%	
Ce	98	97	98%		24	22	91%		58.24	55.36	95%		98	101	103%	
Co	15	12	80%		22.1	19.8	89%						15	13	86%	
Cr	60.3	59.3	98%										60.3	53.5	88%	
Cu	150	159	106%		88.6	87.8	99%						150	164	109%	
Fe	3.77	3.77	100%		7.56	7.19	95%		3.27	3.11	95%		3.77	3.87	102%	
K					2.021	2.119	104%		3.69	3.9	105%					
La	44	42	95%						27.48	25.61	93%		44	44	100%	
Li	47	49	104%						64.95	68.73	105%		47	51	108%	
Mg	1.10	1.09	99%		2.412	2.344	97%		0.223	0.226	101%		1.10	1.13	102%	
Mn	780	789	101%		1510	1555	102%						780	815	104%	
Мо	14	12	85%										14	13	92%	
Na	1.624	1.736	106%		0.617	0.64	103%		7.24	7.31	100%		1.624	1.821	112%	
Ni	32	30	93%		77.1	72.9	94%						32	32	100%	
Р	750	696	92%		892	884	99%		610	587	96%		750	716	95%	
Pb	31	28	90%						7.00	6.38	91%		31	29	93%	
S					0.348	0.344	98%									
Sb	0.8	0.6	75%													
Sc	12	12	100%						2.76	2.16	78%		12	12	100%	
Sr	144	148	102%		92.8	86.2	92%		312	293	93%		144	153	106%	
Th	18.4	16.4	89%										18.4	17.2	93%	
Ti	0.53	0.47	88%						0.222	0.21	94%		0.53	0.48	90%	
U	5.7	5.1	89%										5.7	5.2	91%	
V	77	80	103%										77	81	105%	
W	5	5	100%										5	5	100%	
Y									25.32	24.53	96%					
Zn	130	122	93%		208	208	100%		75.42	75.35	99%		130	123	94%	

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220923065

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

	(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)																
	CRM #1 (ref.PGMS30)					CRM #2 (ref.PGMS30)				CRM #3 (ref.PGMS30)				CRM #4 (ref.PGMS30)			
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	
Au	1.897	1.857	98%		1.897	1.729	91%		1.897	1.929	102%		1.897	1.849	97%		
Pd	1.660	1.679	101%		1.660	1.591	96%		1.660	1.621	98%		1.660	1.598	96%		
Pt	0.223	0.212	95%		0.223	0.207	93%		0.223	0.224	100%		0.223	0.206	92%		

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-02

SAMPLING SITE:

AGAT WORK ORDER: 22O923065 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Bi	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
La	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Li	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mg	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Na	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ni	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OL3
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OLS
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OLS
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-02

SAMPLING SITE:

AGAT WORK ORDER: 220923065
ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

C/ ((()) E (() C) (() E ()		J 220 D 11	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
ті	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
w	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-12006, MIN-12004		ICP/OES
Pd	MIN-12006, MIN-12004		ICP/OES
Pt	MIN-12006, MIN-12004		ICP/OES
Crush-Pass %			BALANCE
Pul-Pass %			BALANCE

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-CORE-02

AGAT WORK ORDER: 220923066

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Oct 06, 2022

PAGES (INCLUDING COVER): 25

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 25

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

AGAT WORK ORDER: 22O923066

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

CEIEITI IVIVIE. OR			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Ju	1 19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Oct 06, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840097 (4115035)		3.080			
E5840098 (4115036)		3.460			
E5840099 (4115037)		1.590			
E5840100 (4115038)		0.070			
E5840101 (4115039)		3.430			
E5840102 (4115040)		2.550			
E5840103 (4115041)		5.350			
E5840104 (4115042)		2.960			
E5840105 (4115043)		2.980			
E5840106 (4115044)		1.560			
E5840107 (4115045)		1.800			
E5840108 (4115046)		3.180			
E5840109 (4115047)		3.760			
E5840110 (4115048)		0.240			
E5840111 (4115049)		3.540			
E5840112 (4115050)		2.330			
E5840113 (4115051)		0.420			
E5840114 (4115052)		0.810			
E5840115 (4115053)		2.370			
E5840116 (4115054)		1.720			
E5840117 (4115055)		2.280			
E5840118 (4115056)		3.520			
E5840119 (4115057)		1.600			
E5840120 (4115058)		1.550			
E5840121 (4115059)		3.140			
E5840122 (4115060)		3.380			
E5840123 (4115061)		3.500			
E5840124 (4115062)		3.380			
E5840125 (4115063)		3.190			
E5840126 (4115064)		3.360			
E5840127 (4115065)		3.210			

Certificate of Analysis

AGAT WORK ORDER: 220923066

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Ju	l 19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Oct 06, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840128 (4115066)		3.130			
E5840129 (4115067)		2.190			
E5840130 (4115068)		1.750			
E5840131 (4115069)		2.720			
E5840132 (4115070)		2.120			
E5840133 (4115071)		0.080			
E5840134 (4115072)		2.460			
E5840135 (4115073)		2.090			
E5840136 (4115074)		3.490			
E5840137 (4115075)		3.380			
E5840138 (4115076)		3.390			
E5840139 (4115077)		2.700			
E5840140 (4115078)		0.250			
E5840141 (4115079)		3.400			
E5840142 (4115080)		3.930			
E5840143 (4115081)		3.320			
E5840144 (4115082)		3.360			
E5840145 (4115083)		3.260			
E5840146 (4115084)		2.720			
E5840147 (4115085)		3.720			
E5840148 (4115086)		3.310			
E5840149 (4115087)		1.600			
E5840150 (4115088)		1.380			
E5840151 (4115089)		3.210			
E5840152 (4115090)		3.330			
E5840153 (4115091)		3.220			
E5840154 (4115092)		3.340			
E5840155 (4115093)		3.190			
E5840156 (4115094)		3.350			
E5840157 (4115095)		3.280			
E5840158 (4115096)		3.570			

Certified By:

Sherin Mousson

AGAT WORK ORDER: 22O923066

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Jul	19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Oct 06, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840159 (4115097)		3.080			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 22O923066

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

CLIENT NAIME. ORFORD MINING CORF								ATTENTION TO. ATTIAUU FOIRIAITE									
			(2	01-070)	4 Acid D	igest - M	letals Pa	ickage, I	CP-OES	finish							
DATE SAMPLED: Jul	19, 2022		Г	DATE RECE	EIVED: Jul 2	20, 2022		DATE I	REPORTED	SAMPLE TYPE: Drill Core							
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Се	Со	Cr	Cu	Fe	Ga		
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm		
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5		
E5840097 (4115035)		<0.5	6.52	<1	918	2.5	<1	2.26	< 0.5	52	26.9	76.4	34.4	9.34	31		
E5840098 (4115036)		<0.5	6.24	3	605	2.2	<1	2.61	< 0.5	46	30.8	79.3	16.7	9.15	28		
E5840099 (4115037)		<0.5	6.21	<1	516	1.3	<1	5.94	< 0.5	22	32.4	223	117	7.92	28		
E5840100 (4115038)		1.9	6.56	<1	210	0.8	<1	4.05	< 0.5	31	101	180	4420	13.2	25		
E5840101 (4115039)		<0.5	0.62	183	133	0.6	<1	7.87	< 0.5	20	43.6	85.5	368	28.0	21		
E5840102 (4115040)		<0.5	0.74	249	128	0.6	<1	0.76	<0.5	26	47.6	77.8	342	33.6	26		
E5840103 (4115041)		<0.5	0.74	232	118	0.7	<1	2.50	< 0.5	28	54.3	137	367	31.4	24		
E5840104 (4115042)		<0.5	1.43	229	118	1.2	<1	0.73	<0.5	33	28.4	90.4	164	30.2	26		
E5840105 (4115043)		<0.5	1.38	138	184	5.7	<1	11.1	<0.5	394	19.8	93.9	162	19.2	21		
E5840106 (4115044)		<0.5	1.65	97	145	2.8	<1	11.9	< 0.5	309	20.2	82.5	216	17.1	21		
E5840107 (4115045)		<0.5	1.65	12	237	2.8	<1	23.0	<0.5	407	13.7	35.5	41.1	3.19	10		
E5840108 (4115046)		<0.5	1.98	8	366	2.2	<1	22.2	<0.5	246	17.9	41.2	47.9	2.37	11		
E5840109 (4115047)		<0.5	2.12	6	427	2.3	<1	21.0	<0.5	207	18.7	28.7	98.3	3.50	13		
E5840110 (4115048)		<0.5	5.91	1	371	0.9	<1	1.55	<0.5	19	4.6	23.2	2.0	1.29	19		
E5840111 (4115049)		0.7	3.22	<1	503	3.0	<1	18.4	<0.5	198	20.7	13.8	29.9	4.13	22		
E5840112 (4115050)		0.7	2.42	<1	499	1.9	<1	21.0	< 0.5	179	16.4	19.3	27.9	2.54	13		
E5840113 (4115051)		<0.5	2.97	9	949	1.6	<1	18.6	0.6	287	21.7	48.1	82.4	3.87	13		
E5840114 (4115052)		<0.5	1.40	9	157	1.8	<1	20.4	< 0.5	292	11.0	45.7	53.7	4.08	11		
E5840115 (4115053)		<0.5	1.71	29	93	2.8	<1	11.2	<0.5	291	29.8	75.4	622	18.4	23		
E5840116 (4115054)		<0.5	2.77	13	133	3.0	<1	11.0	<0.5	229	50.8	870	322	11.0	19		
E5840117 (4115055)		<0.5	1.86	9	379	2.4	<1	13.8	<0.5	343	75.5	65.4	731	15.8	14		
E5840118 (4115056)		<0.5	0.94	<1	12	0.5	<1	5.22	<0.5	49	251	558	1320	22.9	20		
E5840119 (4115057)		0.8	3.30	10	181	2.9	5	17.7	0.8	224	43.7	434	75.4	6.35	17		
E5840120 (4115058)		<0.5	3.21	14	218	3.2	5	19.4	0.8	245	44.7	358	95.2	6.31	17		
E5840121 (4115059)		<0.5	2.97	7	599	5.4	3	22.1	1.3	353	26.3	116	77.1	4.13	18		
E5840122 (4115060)		<0.5	2.55	11	1130	4.6	11	19.4	1.1	373	31.4	152	43.3	7.24	17		
E5840123 (4115061)		0.7	3.95	1	1480	2.4	10	18.3	1.1	217	25.7	19.9	73.3	7.20	23		
E5840124 (4115062)		0.7	5.07	<1	1460	5.5	3	16.8	1.0	153	21.7	7.3	92.0	4.70	24		
E5840125 (4115063)		0.6	4.56	<1	1230	7.3	5	19.1	<0.5	132	21.2	6.7	74.0	4.15	19		
E5840126 (4115064)		1.0	3.85	<1	2170	4.2	<1	14.9	< 0.5	132	16.5	5.2	114	4.46	20		
E5840127 (4115065)		0.8	4.45	1	1480	2.8	<1	14.7	<0.5	104	17.5	5.7	151	3.61	23		
E5840128 (4115066)		<0.5	3.94	2	1870	2.8	8	18.4	0.8	224	26.9	10.6	110	6.71	22		

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O923066

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

CLIENT NAME. ORFORD MINING CORF								ATTEN	ITION TO.	Alliauu F	Jiilaille				
			(2	201-070)	4 Acid D	igest - M	letals Pa	ickage, I	CP-OES	finish					
DATE SAMPLED: Jul	19, 2022		[DATE REC	EIVED: Jul	20, 2022		DATE	REPORTED	SAMPLE TYPE: Drill Core					
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840129 (4115067)		<0.5	2.86	4	1050	5.1	8	23.2	0.8	293	29.0	86.2	45.3	4.91	16
E5840130 (4115068)		< 0.5	2.16	8	398	1.7	5	25.5	1.0	391	27.4	87.9	63.4	5.24	16
E5840131 (4115069)		1.5	2.48	<1	7	1.2	4	2.64	0.9	26	355	1020	2840	16.9	<5
E5840132 (4115070)		1.4	1.53	<1	23	0.7	5	1.06	1.3	57	370	1630	2000	18.4	<5
E5840133 (4115071)		2.1	1.51	<1	21	<0.5	4	0.95	<0.5	3	324	2390	4260	16.3	<5
E5840134 (4115072)		1.4	2.51	<1	34	0.6	6	2.18	0.7	108	162	1500	889	12.2	<5
E5840135 (4115073)		< 0.5	2.49	<1	4	< 0.5	<1	2.28	< 0.5	9	152	1740	806	9.45	7
E5840136 (4115074)		<0.5	3.36	<1	6	0.5	<1	2.87	<0.5	9	94.2	1690	246	8.26	10
E5840137 (4115075)		<0.5	3.21	<1	5	<0.5	<1	2.94	<0.5	9	93.8	1770	187	7.54	3
E5840138 (4115076)		<0.5	3.04	<1	5	0.5	<1	3.00	<0.5	9	87.1	1690	105	7.24	10
E5840139 (4115077)		<0.5	2.98	3	5	<0.5	<1	2.81	<0.5	8	92.2	1750	163	7.41	ć
E5840140 (4115078)		<0.5	6.19	<1	380	0.9	<1	1.61	<0.5	20	4.9	27.3	2.1	1.34	19
E5840141 (4115079)		<0.5	2.65	<1	5	<0.5	<1	2.17	<0.5	9	132	1780	434	8.42	7
E5840142 (4115080)		<0.5	2.65	<1	5	<0.5	<1	2.60	<0.5	9	101	1760	250	7.45	7
E5840143 (4115081)		<0.5	2.62	<1	5	<0.5	<1	2.16	<0.5	9	103	1860	222	7.53	10
E5840144 (4115082)		<0.5	2.56	8	7	<0.5	<1	2.27	<0.5	8	89.3	1950	82.6	7.01	<5
E5840145 (4115083)		<0.5	2.53	18	7	<0.5	<1	2.02	<0.5	8	93.7	1840	117	7.00	6
E5840146 (4115084)		<0.5	2.31	1	8	<0.5	<1	2.62	<0.5	8	103	1830	247	6.97	6
E5840147 (4115085)		<0.5	2.31	18	8	<0.5	<1	1.84	<0.5	7	97.1	2000	131	6.99	6
E5840148 (4115086)		< 0.5	2.43	4	9	< 0.5	<1	2.09	< 0.5	6	85.8	2040	73.8	6.79	<5
E5840149 (4115087)		< 0.5	2.30	<1	8	< 0.5	<1	2.47	< 0.5	7	103	1880	199	7.07	8
E5840150 (4115088)		<0.5	2.37	<1	8	<0.5	<1	2.47	<0.5	7	101	1940	205	7.22	7
E5840151 (4115089)		<0.5	2.27	<1	8	<0.5	<1	2.12	<0.5	7	111	1730	296	7.46	<5
E5840152 (4115090)		<0.5	2.30	<1	8	<0.5	<1	1.90	<0.5	7	116	1920	318	7.76	7
E5840153 (4115091)		<0.5	2.35	<1	8	<0.5	<1	1.29	<0.5	7	133	1980	333	8.34	7
E5840154 (4115092)		<0.5	2.24	<1	8	<0.5	<1	1.74	<0.5	7	112	1980	341	7.94	7
E5840155 (4115093)		<0.5	2.12	<1	9	<0.5	<1	2.74	<0.5	7	124	1950	374	8.45	5
E5840156 (4115094)		<0.5	2.19	<1	9	<0.5	<1	2.28	<0.5	6	109	1900	280	7.43	6
E5840157 (4115095)		<0.5	2.22	<1	8	<0.5	<1	2.18	<0.5	7	95.4	1730	223	7.27	3
E5840158 (4115096)		<0.5	2.42	<1	7	<0.5	<1	1.57	<0.5	7	126	2150	445	8.43	6
E5840159 (4115097)		<0.5	2.34	<1	8	<0.5	<1	4.51	<0.5	6	82.9	1880	79.4	6.32	5

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O923066

PROJECT: WR-22-CORE-02

MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

5623 McADAM ROAD

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - N	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Jul	19, 2022		•	DATE RECEIVED: Jul 20, 2022					REPORTED)22	SAMPLE TYPE: Drill Core			
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840097 (4115035)		<1	0.68	20	35	2.27	1370	1.3	2.71	15.0	999	<1	34	1.90	<1
E5840098 (4115036)		<1	0.53	18	37	2.40	1250	<0.5	2.38	24.7	869	<1	28	1.65	<1
E5840099 (4115037)		<1	0.59	7	42	2.82	1080	0.8	2.77	81.4	439	<1	44	1.99	<1
E5840100 (4115038)		<1	0.55	10	15	3.72	1380	2.3	1.62	4310	655	16	57	1.43	<1
E5840101 (4115039)		<1	0.17	<2	8	0.41	311	24.9	0.13	300	76	78	60	28.4	12
E5840102 (4115040)		<1	0.38	<2	8	0.28	87	35.4	0.19	352	56	72	65	31.5	15
E5840103 (4115041)		<1	0.35	4	7	0.29	161	40.0	0.17	358	146	90	64	30.1	12
E5840104 (4115042)		<1	0.74	8	12	0.57	211	49.9	0.31	234	99	100	67	29.9	9
E5840105 (4115043)		<1	0.37	360	31	1.53	1630	37.3	0.04	121	3260	80	88	20.6	3
E5840106 (4115044)		<1	0.32	256	35	1.98	1960	29.0	0.01	91.3	2750	69	85	17.5	1
E5840107 (4115045)		<1	0.86	353	63	2.29	2960	17.5	0.02	16.4	5710	20	194	1.27	<1
E5840108 (4115046)		<1	0.49	199	37	1.34	2060	6.0	0.80	18.7	5800	17	106	0.91	<1
E5840109 (4115047)		<1	0.47	175	28	1.09	2160	4.5	1.00	20.8	5630	18	94	1.68	<1
E5840110 (4115048)		<1	1.19	8	8	0.49	241	< 0.5	2.58	17.7	199	<1	93	0.01	<1
E5840111 (4115049)		<1	0.46	138	36	2.03	1680	1.9	1.10	8.6	3320	11	68	1.03	<1
E5840112 (4115050)		<1	0.45	138	24	1.10	1920	2.3	1.14	9.1	4100	16	76	0.92	<1
E5840113 (4115051)		<1	0.65	254	21	1.10	2280	6.1	1.42	27.5	7580	28	70	2.14	<1
E5840114 (4115052)		<1	0.09	243	23	1.54	2040	13.9	0.10	35.8	5850	11	45	2.16	<1
E5840115 (4115053)		<1	0.51	250	30	1.75	1740	27.9	0.04	364	2440	54	87	13.7	<1
E5840116 (4115054)		<1	0.40	184	52	5.14	1610	19.7	0.01	715	3060	32	94	6.21	<1
E5840117 (4115055)		<1	0.45	267	25	1.61	1890	19.1	0.35	1460	4920	49	77	9.54	<1
E5840118 (4115056)		<1	0.02	29	11	5.06	911	4.5	<0.01	2920	350	34	47	13.6	6
E5840119 (4115057)		<1	0.17	126	33	5.16	1750	1.8	0.23	332	4020	24	<10	1.51	2
E5840120 (4115058)		<1	0.18	137	32	4.52	1760	1.6	0.30	329	4100	30	<10	1.62	6
E5840121 (4115059)		<1	0.68	198	34	2.43	1470	0.8	0.81	85.4	4850	25	<10	0.62	6
E5840122 (4115060)		<1	0.96	188	34	3.19	1700	<0.5	0.26	81.7	3160	36	<10	0.48	6
E5840123 (4115061)		<1	0.92	131	23	2.73	1690	<0.5	1.15	16.8	2800	23	<10	0.46	5
E5840124 (4115062)		<1	0.97	100	17	2.02	1220	<0.5	2.30	5.6	2140	18	<10	0.34	3
E5840125 (4115063)		<1	0.83	84	14	1.62	1280	0.8	2.24	5.4	1960	14	<10	0.46	4
E5840126 (4115064)		<1	1.08	91	13	1.70	1200	<0.5	1.53	3.8	2180	10	88	0.26	<1
E5840127 (4115065)		<1	0.91	83	14	1.55	1040	<0.5	2.22	4.8	2490	9	74	0.16	<1
E5840128 (4115066)		<1	1.04	128	18	2.40	1530	<0.5	1.15	10.5	2100	23	<10	0.72	4

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O923066

PROJECT: WR-22-CORE-02

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

DATE SAMPLED: Jul	19, 2022		[DATE RECE	EIVED: Jul 2	20, 2022		DATE I	REPORTE	D: Oct 06, 20)22	SAM	PLE TYPE	: Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840129 (4115067)		<1	0.47	172	20	2.21	1600	<0.5	0.40	53.0	3130	25	<10	0.27	6
E5840130 (4115068)		<1	0.23	219	10	2.47	1850	<0.5	0.06	57.1	3050	30	<10	0.45	4
E5840131 (4115069)		<1	0.01	15	5	11.1	1020	<0.5	0.02	9400	564	38	<10	5.61	8
E5840132 (4115070)		<1	0.02	28	13	11.2	907	<0.5	0.02	9670	1210	43	<10	5.76	11
E5840133 (4115071)		<1	0.02	5	1	13.9	1000	<0.5	0.13	16200	58	47	<10	6.16	12
E5840134 (4115072)		<1	0.02	48	23	13.0	1260	<0.5	0.01	2890	2140	28	<10	2.41	9
E5840135 (4115073)		<1	0.01	<2	16	13.2	836	<0.5	0.02	2780	99	<1	17	1.87	21
E5840136 (4115074)		<1	0.02	<2	18	13.4	1050	<0.5	0.04	1350	152	<1	17	0.77	16
E5840137 (4115075)		<1	0.02	<2	13	13.5	1030	<0.5	0.03	1290	148	<1	16	0.60	17
E5840138 (4115076)		<1	0.02	<2	13	14.2	1060	<0.5	0.02	1140	180	<1	17	0.42	19
E5840139 (4115077)		<1	0.02	<2	12	14.4	1050	<0.5	0.02	1290	140	<1	16	0.51	19
E5840140 (4115078)		<1	1.24	9	8	0.51	270	<0.5	2.66	19.8	219	<1	92	<0.01	<1
E5840141 (4115079)		<1	0.02	<2	11	14.4	935	<0.5	0.02	2300	142	<1	18	1.05	19
E5840142 (4115080)		<1	0.02	<2	11	14.2	1090	<0.5	0.01	1600	156	<1	16	0.63	16
E5840143 (4115081)		<1	0.02	<2	10	14.5	992	<0.5	0.01	1610	156	<1	15	0.53	18
E5840144 (4115082)		<1	0.02	<2	9	15.1	1020	<0.5	0.01	1340	163	<1	14	0.28	20
E5840145 (4115083)		<1	0.02	<2	10	15.6	979	<0.5	0.01	1340	144	<1	16	0.24	21
E5840146 (4115084)		<1	0.02	<2	8	15.4	1280	<0.5	0.01	1760	117	<1	16	0.38	22
E5840147 (4115085)		<1	0.02	<2	9	15.8	1030	<0.5	0.01	1440	103	<1	16	0.31	22
E5840148 (4115086)		<1	0.02	<2	9	15.9	1010	<0.5	0.01	1300	144	<1	16	0.24	21
E5840149 (4115087)		<1	0.02	<2	10	15.5	1070	<0.5	0.01	1720	109	<1	16	0.49	20
E5840150 (4115088)		<1	0.02	<2	10	16.0	1120	<0.5	0.01	1700	103	<1	17	0.49	23
E5840151 (4115089)		<1	0.01	<2	9	15.4	1040	<0.5	0.01	1870	100	<1	16	0.66	20
E5840152 (4115090)		<1	0.02	<2	9	15.9	1040	<0.5	0.01	1970	111	1	16	0.75	22
E5840153 (4115091)		<1	0.02	<2	7	16.0	937	<0.5	0.01	2250	98	<1	16	0.98	24
E5840154 (4115092)		<1	0.01	<2	7	15.4	1050	<0.5	0.01	1770	97	<1	15	0.83	21
E5840155 (4115093)		<1	0.01	<2	9	15.5	1190	<0.5	0.01	2000	91	<1	18	1.06	24
E5840156 (4115094)		<1	0.01	<2	12	15.5	1080	<0.5	0.01	2020	73	<1	16	0.83	21
E5840157 (4115095)		<1	0.01	<2	12	15.3	1100	<0.5	0.01	1810	76	2	17	0.64	19
E5840158 (4115096)		<1	0.02	<2	16	15.5	855	<0.5	0.01	2140	96	<1	17	0.93	28
E5840159 (4115097)		<1	0.01	<2	19	14.9	1250	< 0.5	0.01	1220	91	<1	17	0.31	23

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O923066

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - N	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Jul	19, 2022		С	ATE RECE	EIVED: Jul 2	20, 2022		DATE F	REPORTED): Oct 06, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840097 (4115035)		35	<10	<5	87	<10	<10	<5	1.00	<5	<5	231	1	45	127
E5840098 (4115036)		34	<10	<5	84	<10	<10	<5	0.90	<5	<5	224	3	40	138
E5840099 (4115037)		36	<10	<5	150	<10	<10	<5	0.56	<5	<5	253	1	23	210
E5840100 (4115038)		13	<10	<5	250	<10	<10	<5	0.71	<5	<5	114	5	14	90.3
E5840101 (4115039)		9	<10	<5	212	<10	14	<5	0.08	<5	<5	108	<1	8	1140
E5840102 (4115040)		5	<10	<5	29	<10	18	<5	0.09	<5	<5	122	<1	8	1240
E5840103 (4115041)		8	<10	<5	74	<10	18	<5	0.12	<5	<5	141	<1	10	1240
E5840104 (4115042)		8	<10	<5	26	<10	14	<5	0.15	<5	<5	190	3	17	539
E5840105 (4115043)		8	<10	<5	665	<10	12	<5	0.28	<5	35	275	2	60	290
E5840106 (4115044)		10	<10	<5	740	<10	11	<5	0.37	<5	27	272	2	42	256
E5840107 (4115045)		14	<10	<5	1550	<10	<10	11	0.87	<5	84	381	<1	55	206
E5840108 (4115046)		15	<10	<5	1520	<10	<10	10	0.88	<5	60	309	<1	44	108
E5840109 (4115047)		15	<10	<5	1230	<10	<10	6	0.86	<5	48	302	<1	41	136
E5840110 (4115048)		6	<10	<5	344	<10	<10	<5	0.15	<5	7	37.8	<1	7	17.0
E5840111 (4115049)		19	<10	<5	941	<10	12	6	1.28	<5	48	291	<1	36	119
E5840112 (4115050)		16	<10	<5	1060	<10	<10	8	1.03	<5	47	258	<1	39	123
E5840113 (4115051)		20	<10	<5	1170	<10	<10	5	1.22	<5	62	364	<1	62	254
E5840114 (4115052)		11	<10	<5	1080	<10	11	6	0.80	<5	59	268	<1	40	145
E5840115 (4115053)		8	<10	<5	695	<10	13	<5	0.25	<5	22	224	2	38	271
E5840116 (4115054)		17	<10	<5	748	<10	11	<5	0.52	<5	28	273	1	34	210
E5840117 (4115055)		13	<10	<5	828	<10	11	<5	0.75	<5	37	239	2	47	246
E5840118 (4115056)		8	<10	<5	221	<10	18	<5	0.11	<5	<5	79.8	4	8	270
E5840119 (4115057)		18	<10	<5	633	<10	20	7	1.11	<5	5	323	<1	35	140
E5840120 (4115058)		18	<10	<5	643	<10	22	6	1.15	<5	5	340	<1	39	145
E5840121 (4115059)		16	<10	<5	841	<10	24	11	1.50	6	<5	272	<1	44	133
E5840122 (4115060)		27	<10	<5	728	<10	32	17	2.32	5	5	253	2	34	113
E5840123 (4115061)		17	<10	<5	606	<10	26	5	1.54	<5	5	300	<1	38	115
E5840124 (4115062)		14	<10	<5	461	<10	20	<5	1.25	<5	<5	277	<1	33	100
E5840125 (4115063)		12	<10	<5	487	<10	18	<5	1.13	<5	<5	246	<1	28	89.9
E5840126 (4115064)		10	<10	<5	431	<10	<10	<5	1.04	<5	29	239	<1	35	89.9
E5840127 (4115065)		9	<10	<5	425	<10	<10	<5	0.94	<5	27	255	<1	32	88.8
E5840128 (4115066)		20	<10	<5	510	<10	25	7	1.41	6	<5	313	<1	38	106

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O923066

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

DATE SAMPLED: Jul	19, 2022		[DATE RECE	IVED: Jul 2	20, 2022		DATE F	REPORTED	: Oct 06, 20	22	SAM	PLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zr
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840129 (4115067)		21	<10	<5	622	<10	24	9	1.52	5	<5	281	<1	36	109
E5840130 (4115068)		23	<10	<5	754	<10	24	13	1.66	<5	5	253	<1	39	85.5
E5840131 (4115069)		14	<10	<5	35	<10	49	<5	0.27	<5	6	138	<1	7	87.7
E5840132 (4115070)		11	<10	<5	67	<10	53	<5	0.37	<5	7	131	<1	10	112
E5840133 (4115071)		10	<10	<5	7	<10	42	<5	0.10	<5	5	83.2	1	4	92.4
E5840134 (4115072)		17	<10	<5	165	<10	34	8	0.69	<5	<5	152	<1	16	94.8
E5840135 (4115073)		17	<10	<5	23	<10	<10	<5	0.16	<5	<5	113	1	7	75.5
E5840136 (4115074)		22	<10	<5	20	<10	11	<5	0.23	<5	<5	145	<1	8	81.9
E5840137 (4115075)		21	<10	<5	27	<10	<10	<5	0.21	<5	<5	131	1	8	80.2
E5840138 (4115076)		20	<10	<5	26	<10	<10	<5	0.23	<5	<5	128	<1	8	69.6
E5840139 (4115077)		19	<10	<5	32	<10	10	<5	0.22	<5	<5	126	1	7	77.7
E5840140 (4115078)		6	<10	<5	357	<10	<10	<5	0.15	<5	11	38.0	<1	7	18.2
E5840141 (4115079)		18	<10	<5	21	<10	<10	<5	0.20	<5	<5	122	1	7	73.4
E5840142 (4115080)		18	<10	<5	30	<10	<10	<5	0.20	<5	<5	117	1	7	75.0
E5840143 (4115081)		18	<10	<5	25	<10	<10	<5	0.20	<5	<5	118	2	7	75.4
E5840144 (4115082)		18	<10	<5	32	<10	<10	<5	0.20	<5	<5	120	1	7	75.7
E5840145 (4115083)		17	<10	<5	33	<10	<10	<5	0.18	<5	<5	114	2	7	70.7
E5840146 (4115084)		16	<10	<5	43	<10	<10	<5	0.16	<5	<5	103	<1	6	72.3
E5840147 (4115085)		16	<10	<5	35	<10	<10	<5	0.16	<5	<5	104	1	6	70.2
E5840148 (4115086)		16	<10	<5	40	<10	<10	<5	0.16	<5	<5	108	2	6	65.7
E5840149 (4115087)		16	<10	<5	41	<10	<10	<5	0.17	<5	<5	106	<1	6	67.9
E5840150 (4115088)		16	<10	<5	41	<10	<10	<5	0.17	<5	<5	108	2	6	68.1
E5840151 (4115089)		15	<10	<5	38	<10	<10	<5	0.15	<5	<5	103	<1	6	66.2
E5840152 (4115090)		16	<10	<5	36	<10	<10	<5	0.16	<5	<5	105	1	6	68.9
E5840153 (4115091)		16	<10	<5	28	<10	<10	<5	0.16	<5	<5	107	2	6	71.7
E5840154 (4115092)		16	<10	<5	36	<10	<10	<5	0.14	<5	<5	105	2	6	72.7
E5840155 (4115093)		15	<10	<5	50	<10	<10	<5	0.14	<5	<5	96.0	1	5	69.2
E5840156 (4115094)		15	<10	<5	46	<10	<10	<5	0.14	<5	<5	99.3	2	5	70.9
E5840157 (4115095)		15	<10	<5	42	<10	<10	<5	0.13	<5	<5	104	2	5	66.1
E5840158 (4115096)		17	<10	<5	28	<10	<10	<5	0.16	<5	<5	111	<1	6	79.9
E5840159 (4115097)		15	<10	<5	85	<10	<10	<5	0.16	<5	<5	103	1	5	59.2

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 220923066

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Jul	19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Oct 06, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840097 (4115035)		199			
E5840098 (4115036)		173			
E5840099 (4115037)		90			
E5840100 (4115038)		58			
E5840101 (4115039)		19			
E5840102 (4115040)		23			
E5840103 (4115041)		29			
E5840104 (4115042)		39			
E5840105 (4115043)		77			
E5840106 (4115044)		80			
E5840107 (4115045)		103			
E5840108 (4115046)		103			
E5840109 (4115047)		93			
E5840110 (4115048)		51			
E5840111 (4115049)		238			
E5840112 (4115050)		146			
E5840113 (4115051)		210			
E5840114 (4115052)		60			
E5840115 (4115053)		60			
E5840116 (4115054)		101			
E5840117 (4115055)		151			
E5840118 (4115056)		19			
E5840119 (4115057)		302			
E5840120 (4115058)		323			
E5840121 (4115059)		259			
E5840122 (4115060)		327			
E5840123 (4115061)		272			
E5840124 (4115062)		213			
E5840125 (4115063)		191			
E5840126 (4115064)		240			
E5840127 (4115065)		217			
E5840128 (4115066)		219			

Certificate of Analysis

AGAT WORK ORDER: 22O923066

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metal	s Package, ICP-OES finish	
DATE SAMPLED: Jul	19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Oct 06, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840129 (4115067)		124			
E5840130 (4115068)		126			
E5840131 (4115069)		63			
E5840132 (4115070)		126			
E5840133 (4115071)		15			
E5840134 (4115072)		228			
E5840135 (4115073)		15			
E5840136 (4115074)		25			
E5840137 (4115075)		23			
E5840138 (4115076)		25			
E5840139 (4115077)		21			
E5840140 (4115078)		37			
E5840141 (4115079)		21			
E5840142 (4115080)		21			
E5840143 (4115081)		20			
E5840144 (4115082)		19			
E5840145 (4115083)		16			
E5840146 (4115084)		12			
E5840147 (4115085)		10			
E5840148 (4115086)		10			
E5840149 (4115087)		11			
E5840150 (4115088)		11			
E5840151 (4115089)		9			
E5840152 (4115090)		10			
E5840153 (4115091)		10			
E5840154 (4115092)		9			
E5840155 (4115093)		8			
E5840156 (4115094)		13			
E5840157 (4115095)		10			
E5840158 (4115096)		10			
E5840159 (4115097)		14			

AGAT WORK ORDER: 220923066

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish

DATE SAMPLED: Jul 19, 2022 DATE RECEIVED: Jul 20, 2022 DATE REPORTED: Oct 06, 2022 SAMPLE TYPE: Drill Core

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

4115035-4115097 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 22O923066

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	202-555)	Fire Assay - Au, Pt, Pd Trace	Levels, ICP-OES finish (50g charge)	
DATE SAMPLED: Jul	19, 2022			DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Oct 06, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840097 (4115035)		<0.001	<0.001	<0.005		
E5840098 (4115036)		<0.001	<0.001	<0.005		
E5840099 (4115037)		0.001	0.003	<0.005		
E5840100 (4115038)		0.072	0.627	0.293		
E5840101 (4115039)		0.009	0.001	<0.005		
E5840102 (4115040)		0.037	0.006	<0.005		
E5840103 (4115041)		0.040	0.005	<0.005		
E5840104 (4115042)		0.027	0.008	<0.005		
E5840105 (4115043)		0.019	0.005	<0.005		
E5840106 (4115044)		0.014	0.004	<0.005		
E5840107 (4115045)		0.002	< 0.001	<0.005		
E5840108 (4115046)		< 0.001	< 0.001	<0.005		
E5840109 (4115047)		< 0.001	< 0.001	<0.005		
E5840110 (4115048)		0.001	< 0.001	<0.005		
E5840111 (4115049)		< 0.001	< 0.001	<0.005		
E5840112 (4115050)		0.001	< 0.001	<0.005		
E5840113 (4115051)		0.002	<0.001	<0.005		
E5840114 (4115052)		0.003	< 0.001	<0.005		
E5840115 (4115053)		0.008	0.004	<0.005		
E5840116 (4115054)		0.005	0.011	0.006		
E5840117 (4115055)		0.004	0.004	<0.005		
E5840118 (4115056)		0.004	0.119	0.062		
E5840119 (4115057)		<0.001	0.011	<0.005		
E5840120 (4115058)		< 0.001	0.008	<0.005		
E5840121 (4115059)		<0.001	<0.001	<0.005		
E5840122 (4115060)		<0.001	0.002	<0.005		
E5840123 (4115061)		0.001	<0.001	<0.005		
E5840124 (4115062)		<0.001	<0.001	<0.005		
E5840125 (4115063)		0.003	0.001	<0.005		
E5840126 (4115064)		<0.001	<0.001	<0.005		
E5840127 (4115065)		<0.001	<0.001	<0.005		
E5840128 (4115066)		0.003	<0.001	<0.005		

Certified By:

AGAT WORK ORDER: 22O923066

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

DATE SAMPLED: Jul	19, 2022			DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Oct 06, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Únit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840129 (4115067)		<0.001	0.001	<0.005		
E5840130 (4115068)		0.001	< 0.001	<0.005		
E5840131 (4115069)		0.006	0.734	0.312		
E5840132 (4115070)		0.012	0.691	0.262		
E5840133 (4115071)		0.036	0.879	0.494		
E5840134 (4115072)		0.008	0.192	0.075		
E5840135 (4115073)		0.015	0.182	0.066		
E5840136 (4115074)		< 0.001	0.066	0.022		
E5840137 (4115075)		<0.001	0.051	0.018		
E5840138 (4115076)		< 0.001	0.009	<0.005		
E5840139 (4115077)		0.013	0.032	0.011		
E5840140 (4115078)		< 0.001	< 0.001	<0.005		
E5840141 (4115079)		0.006	0.081	0.025		
E5840142 (4115080)		0.005	0.043	0.014		
E5840143 (4115081)		0.009	0.059	0.019		
E5840144 (4115082)		0.004	0.024	0.011		
E5840145 (4115083)		0.003	0.023	0.008		
E5840146 (4115084)		< 0.001	0.004	<0.005		
E5840147 (4115085)		<0.001	0.005	<0.005		
E5840148 (4115086)		< 0.001	0.007	<0.005		
E5840149 (4115087)		0.003	0.055	0.021		
E5840150 (4115088)		0.002	0.042	0.013		
E5840151 (4115089)		0.002	0.083	0.035		
E5840152 (4115090)		0.002	0.078	0.025		
E5840153 (4115091)		0.003	0.093	0.036		
E5840154 (4115092)		0.004	0.103	0.013		
E5840155 (4115093)		0.004	0.118	0.044		
E5840156 (4115094)		0.001	0.080	0.032		
E5840157 (4115095)		0.001	0.060	0.028		
E5840158 (4115096)		0.003	0.082	0.030		
E5840159 (4115097)		<0.001	0.014	<0.005		

Certified By:

AGAT WORK ORDER: 220923066

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)

DATE SAMPLED: Jul 19, 2022 DATE RECEIVED: Jul 20, 2022 DATE REPORTED: Oct 06, 2022 SAMPLE TYPE: Drill Core

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

sherin Houssay

AGAT WORK ORDER: 220923066

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passir	ng (Crushing)	
DATE SAMPLED: Ju	l 19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Oct 06, 2022	SAMPLE TYPE: Drill Core
	Analyte: C	rush-Pass %			
	Unit:	%			
Sample ID (AGAT ID)	RDL:	0.01			
E5840097 (4115035)		79.43			
E5840116 (4115054)		79.94			
E5840136 (4115074)		79.74			
E5840156 (4115094)		78.62			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O923066

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passin	g (Pulverizing)	
DATE SAMPLED: Jul	19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Oct 06, 2022	SAMPLE TYPE: Drill Core
	Analyte: P	ul-Pass %			
	Unit:	%			
Sample ID (AGAT ID)	RDL:	0.01			
E5840097 (4115035)		89.45			
E5840125 (4115063)		87.92			
E5840152 (4115090)		89.07			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220923066 PROJECT: WR-22-CORE-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(201	1-070) 4	Acid Di	gest - N	/letals F	Package,	ICP-O	ES finis	h				
		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3		REPLICATE #4			
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Ag	4115035	< 0.5	< 0.5	0.0%	4115049	0.7	0.9	25.0%	4115060	< 0.5	< 0.5	0.0%	4115075	< 0.5	< 0.5	0.0%
Al	4115035	6.52	6.22	4.7%	4115049	3.22	3.25	0.9%	4115060	2.55	2.58	1.2%	4115075	3.21	3.26	1.5%
As	4115035	< 1	< 1	0.0%	4115049	< 1	8		4115060	11	7		4115075	< 1	< 1	0.0%
Ва	4115035	918	875	4.8%	4115049	503	507	0.8%	4115060	1130	1100	2.7%	4115075	5	5	0.0%
Be	4115035	2.5	2.4	4.1%	4115049	3.0	2.4	22.2%	4115060	4.6	4.6	0.0%	4115075	0.5	0.5	0.0%
Bi	4115035	< 1	< 1	0.0%	4115049	< 1	< 1	0.0%	4115060	11	13	16.7%	4115075	< 1	< 1	0.0%
Ca	4115035	2.26	2.12	6.4%	4115049	18.4	18.9	2.7%	4115060	19.4	19.6	1.0%	4115075	2.94	3.06	4.0%
Cd	4115035	< 0.5	< 0.5	0.0%	4115049	< 0.5	< 0.5	0.0%	4115060	1.1	1.3	16.7%	4115075	< 0.5	< 0.5	0.0%
Ce	4115035	52	52	0.0%	4115049	198	199	0.5%	4115060	373	368	1.3%	4115075	9	9	0.0%
Co	4115035	26.9	27.8	3.3%	4115049	20.7	22.4	7.9%	4115060	31.4	31.6	0.6%	4115075	93.8	97.4	3.8%
Cr	4115035	76.4	54.7		4115049	13.8	16.1	15.4%	4115060	152	151	0.7%	4115075	1770	1860	5.0%
Cu	4115035	34.4	32.5	5.7%	4115049	29.9	32.0	6.8%	4115060	43.3	42.3	2.3%	4115075	187	196	4.7%
Fe	4115035	9.34	8.89	4.9%	4115049	4.13	4.20	1.7%	4115060	7.24	6.99	3.5%	4115075	7.54	7.77	3.0%
Ga	4115035	31	28	10.2%	4115049	22	23	4.4%	4115060	17	18	5.7%	4115075	8	5	
In	4115035	< 1	< 1	0.0%	4115049	< 1	< 1	0.0%	4115060	< 1	< 1	0.0%	4115075	< 1	< 1	0.0%
K	4115035	0.68	0.65	4.5%	4115049	0.46	0.46	0.0%	4115060	0.961	0.969	0.8%	4115075	0.02	0.02	0.0%
La	4115035	20	20	0.0%	4115049	138	137	0.7%	4115060	188	187	0.5%	4115075	< 2	< 2	0.0%
Li	4115035	35	32	9.0%	4115049	36	37	2.7%	4115060	34	35	2.9%	4115075	13	14	7.4%
Mg	4115035	2.27	2.13	6.4%	4115049	2.03	2.05	1.0%	4115060	3.19	3.15	1.3%	4115075	13.5	13.9	2.9%
Mn	4115035	1370	1300	5.2%	4115049	1680	1700	1.2%	4115060	1700	1670	1.8%	4115075	1030	1060	2.9%
Мо	4115035	1.3	0.8		4115049	1.9	2.1	10.0%	4115060	< 0.5	< 0.5	0.0%	4115075	< 0.5	< 0.5	0.0%
Na	4115035	2.71	2.58	4.9%	4115049	1.10	1.10	0.0%	4115060	0.259	0.296	13.3%	4115075	0.03	0.03	0.0%
Ni	4115035	15.0	11.7	24.7%	4115049	8.6	8.6	0.0%	4115060	81.7	79.9	2.2%	4115075	1290	1340	3.8%
Р	4115035	999	976	2.3%	4115049	3320	3390	2.1%	4115060	3160	3340	5.5%	4115075	148	153	3.3%
Pb	4115035	< 1	< 1	0.0%	4115049	11	11	0.0%	4115060	36	34	5.7%	4115075	< 1	< 1	0.0%
Rb	4115035	34	34	0.0%	4115049	68	70	2.9%	4115060	< 10	< 10	0.0%	4115075	16	17	6.1%
S	4115035	1.90	1.83	3.8%	4115049	1.03	1.02	1.0%	4115060	0.476	0.470	1.3%	4115075	0.599	0.628	4.7%
Sb	4115035	< 1	< 1	0.0%	4115049	< 1	< 1	0.0%	4115060	6	9		4115075	17	17	0.0%
Sc	4115035	35	35	0.0%	4115049	19	20	5.1%	4115060	27	26	3.8%	4115075	21	22	4.7%
Se	4115035	< 10	< 10	0.0%	4115049	< 10	< 10	0.0%	4115060	< 10	< 10	0.0%	4115075	< 10	< 10	0.0%
Sn	4115035	< 5	< 5	0.0%	4115049	< 5	< 5	0.0%	4115060	< 5	< 5	0.0%	4115075	< 5	< 5	0.0%

Quality Assurance - Replicate AGAT WORK ORDER: 220923066 PROJECT: WR-22-CORE-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO:	Arnaud Fontaine
---------------	-----------------

CLIENT NAM	E: ORFORI	J MIINING	CORP							AIIEI	NIION IC	: Arnaud	Fontaine			
Sr	4115035	87	82	5.9%	4115049	941	964	2.4%	4115060	728	739	1.5%	4115075	27	28	3.6%
Та	4115035	< 10	< 10	0.0%	4115049	< 10	< 10	0.0%	4115060	< 10	< 10	0.0%	4115075	< 10	< 10	0.0%
Te	4115035	< 10	< 10	0.0%	4115049	12	12	0.0%	4115060	32	33	3.1%	4115075	< 10	< 10	0.0%
Th	4115035	< 5	< 5	0.0%	4115049	6	7	15.4%	4115060	17	16	6.1%	4115075	< 5	< 5	0.0%
Ti	4115035	0.998	0.949	5.0%	4115049	1.28	1.29	0.8%	4115060	2.32	2.29	1.3%	4115075	0.214	0.221	3.2%
TI	4115035	< 5	< 5	0.0%	4115049	< 5	< 5	0.0%	4115060	5	14		4115075	< 5	< 5	0.0%
U	4115035	< 5	< 5	0.0%	4115049	48	45	6.5%	4115060	5	6	18.2%	4115075	< 5	< 5	0.0%
V	4115035	231	231	0.0%	4115049	291	298	2.4%	4115060	253	257	1.6%	4115075	131	137	4.5%
W	4115035	1	2		4115049	< 1	< 1	0.0%	4115060	2	2	0.0%	4115075	1	1	0.0%
Υ	4115035	45	45	0.0%	4115049	36	37	2.7%	4115060	34	35	2.9%	4115075	8	8	0.0%
Zn	4115035	127	125	1.6%	4115049	119	124	4.1%	4115060	113	100	12.2%	4115075	80.2	80.8	0.7%
Zr	4115035	199	200	0.5%	4115049	238	229	3.9%	4115060	327	330	0.9%	4115075	23	23	0.0%
		REPLIC	ATE #5													
Parameter	Sample ID	Original	Replicate	RPD												
Ag	4115085	< 0.5	< 0.5	0.0%												
Al	4115085	2.31	2.32	0.4%												
As	4115085	18	17	5.7%												
Ва	4115085	8	8	0.0%												
Be	4115085	< 0.5	< 0.5	0.0%												
Bi	4115085	< 1	< 1	0.0%												
Ca	4115085	1.84	1.84	0.0%												
Cd	4115085	< 0.5	< 0.5	0.0%												
Ce	4115085	7	7	0.0%												
Co	4115085	97.1	94.9	2.3%												
Cr	4115085	2000	1900	5.1%												
Cu	4115085	131	130	0.8%												
Fe	4115085	6.99	6.93	0.9%												
Ga	4115085	6	5	18.2%												
In	4115085	< 1	< 1	0.0%												
K	4115085	0.02	0.02	0.0%												
La	4115085	< 2	< 2	0.0%												
Li	4115085	9	9	0.0%												
Mg	4115085	15.8	15.8	0.0%												
Mn	4115085	1030	1030	0.0%												

Quality Assurance - Replicate AGAT WORK ORDER: 220923066 PROJECT: WR-22-CORE-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP ATTENTION TO: Arnaud Fontaine 4115085 < 0.5 < 0.5 0.0% Na 4115085 0.015 0.015 0.0% Ni 4115085 1440 1430 0.7% Р 4115085 103 103 0.0% Pb 4115085 0.0% < 1 < 1 Rb 4115085 16 16 0.0% S 4115085 0.31 0.31 0.0% Sb 4115085 22 20 9.5% 4115085 Sc 16 16 0.0% Se 4115085 < 10 < 10 0.0% 4115085 < 5 < 5 0.0% Sn Sr 4115085 35 35 0.0% 4115085 Ta < 10 < 10 0.0% < 10 Te 4115085 < 10 0.0% Th < 5 4115085 < 5 0.0% Τi 4115085 0.16 0.16 0.0% ΤI 4115085 < 5 < 5 0.0% U 4115085 < 5 < 5 0.0% V 4115085 104 104 0.0% W 4115085 1 < 1 Υ 6 6 4115085 0.0% Zn 4115085 70.2 68.3 2.7% Zr 4115085 10 0.0% (202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge) REPLICATE #1 REPLICATE #2 REPLICATE #3 REPLICATE #4 Sample ID Original Replicate RPD Sample ID Original Replicate RPD Sample ID Original Replicate **RPD** Sample ID Original Replicate **RPD** Parameter 4115035 < 0.001 < 0.001 0.0% 4115049 < 0.001 0.001 4115060 < 0.001 < 0.001 0.0% 4115075 < 0.001 0.001 Pd 4115035 < 0.001 < 0.001 0.0% 4115049 < 0.001 < 0.001 0.0% 4115060 0.002 0.001 4115075 0.051 0.051 0.0% Pt 4115035 < 0.005 < 0.005 0.0% 4115049 < 0.005 < 0.005 0.0% 4115060 < 0.005 < 0.005 0.0% 4115075 0.0176 0.0173 1.7% REPLICATE #5 Sample ID Original Replicate RPD Parameter Au 4115085 < 0.001 < 0.001 0.0% Pd 4115085 0.005 0.025 Pt 4115085 < 0.005 0.010

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220923066 PROJECT: WR-22-CORE-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

		CRM #1	(ref.Till-2)	•	1-070) 4 ⊤		(ref.GTS-2a)			CRM #3	(ref.Till-2)			CRM #/	l (ref.Till-2)	
Danamatan	F.un a at			Limita	F.un a at			Lincita	Fun and		1	I insite	- France	1		Lincita
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Al	8.47	7.94	94%		6.96	6.64	95%		8.47	8.85	104%		8.47	8.1	96%	
As	26	23	87%		124	125	101%		26	28	106%		26	22	83%	
Ba	540	500	93%		186	179	96%		540	532	99%		540	503	93%	
Be	4.0	3.2	80%						4.0	3.5	86%		4.0	3.2	79%	
Ca	0.907	0.827	91%		4.01	3.51	87%		0.907	0.945	104%		0.907	0.835	92%	
Се	98	95	97%		24	25	105%		98	100	102%		98	94	96%	
Со	15	12	79%		22.1	20.4	92%		15	12	81%		15	12	78%	
Cr	60.3	63.4	105%						60.3	56.2	93%		60.3	64.6	107%	
Cu	150	149	99%		88.6	84.4	95%		150	158	105%		150	148	99%	
Fe	3.77	3.57	95%		7.56	6.96	92%		3.77	3.85	102%		3.77	3.6	96%	
K					2.021	1.937	96%									
La	44	43	99%						44	43	99%		44	44	99%	
Li	47	46	98%						47	47	101%		47	46	98%	
Mg	1.10	1.01	91%		2.412	2.212	92%		1.10	1.08	98%		1.10	1.02	93%	
Mn	780	726	93%		1510	1385	92%		780	787	101%		780	733	94%	
Мо	14	12	88%						14	12	87%		14	11	78%	
Na	1.624	1.621	100%		0.617	0.6	97%		1.624	1.751	108%		1.624	1.639	101%	
Ni	32	32	99%		77.1	70.8	92%		32	31	98%		32	38	118%	
Р	750	717	96%		892	881	99%		750	746	99%		750	713	95%	
Pb	31	23	75%						31	30	97%		31	23	75%	
S					0.348	0.325	93%									
Sc	12	12	100%						12	12	100%		12	12	99%	
Sr	144	144	100%		92.8	86.1	93%		144	153	107%		144	146	101%	
Th	18.4	17.6	95%						18.4	15.2	82%		18.4	16.2	88%	
Ti	0.53	0.45	84%						0.53	0.47	89%		0.53	0.44	84%	
U									5.7	4.4	77%					
V	77	79	102%						77	80	104%		77	76	98%	
W	5	5	100%						1				5	5	93%	
Zn	130	115	88%		208	193	93%		130	125	96%		130	114	88%	

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220923066

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

	CRM #1 (ref.PGMS30)					CRM #2 (r	ef.PGMS30)		CRM #3 (r	ef.PGMS30)	CRM #4 (ref.PGMS30)			
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Au	1.897	2.031	107%		1.897	1.857	98%		1.897	1.987	105%		1.897	2.103	111%	
Pd	1.660	1.669	101%		1.660	1.75	105%		1.660	1.731	104%		1.660	1.85	111%	
Pt	0.223	0.227	102%		0.223	0.215	97%		0.223	0.228	102%		0.223	0.237	106%	

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-02

SAMPLING SITE:

AGAT WORK ORDER: 22O923066 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Bi	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Geochem v. i	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
La	MIN-200-12034	Geochem v. i	ICP/OES
Li	MIN-200-12034	Geochem v.1	ICP/OES
Mg	MIN-200-12034	Geochem V.1	ICP/OES
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Na	MIN-200-12034	Geochem v. i	ICF/OE3
Ni	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

AGAT WORK ORDER: 220923066

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-02 ATTENTION TO: Arnaud Fontaine

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.		SAMPLED B1.						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1						
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
ті	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3					
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1						
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES					
Au	MIN-12006, MIN-12004		ICP/OES					
Pd	MIN-12006, MIN-12004		ICP/OES					
Pt	MIN-12006, MIN-12004		ICP/OES					
Crush-Pass %	·		BALANCE					
Pul-Pass %			BALANCE					

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-CORE-02

AGAT WORK ORDER: 22O923068

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Sep 27, 2022

PAGES (INCLUDING COVER): 25

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 25

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

AGAT WORK ORDER: 220923068

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

CLIENT NAIVIE. OKI	OND WINNIN	O OOKI		ATTENTION TO. ATTIAUU F	ontaine
			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Jul	19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Sep 27, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840160 (4115122)		0.230			
E5840161 (4115123)		3.150			
E5840162 (4115124)		3.190			
E5840163 (4115125)		3.130			
E5840164 (4115126)		3.220			
E5840165 (4115127)		3.220			
E5840166 (4115128)		3.190			
E5840167 (4115129)		1.960			
E5840168 (4115130)		1.720			
E5840169 (4115131)		1.100			
E5840170 (4115132)		1.140			
E5840171 (4115133)		2.420			
E5840172 (4115134)		2.190			
E5840173 (4115135)		2.160			
E5840174 (4115136)		2.160			
E5840175 (4115137)		2.250			
E5840176 (4115138)		3.790			
E5840177 (4115139)		3.060			
E5840178 (4115140)		1.900			
E5840179 (4115141)		3.810			
E5840180 (4115142)		0.070			
E5840181 (4115143)		3.950			
E5840182 (4115144)		4.430			
E5840183 (4115145)		1.940			
E5840184 (4115146)		2.910			
E5840185 (4115147)		3.220			
E5840186 (4115148)		3.400			
E5840187 (4115149)		2.390			
E5840188 (4115150)		3.270			
E5840189 (4115151)		3.630			
E5840190 (4115152)		0.240			

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 220923068

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Ju	l 19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Sep 27, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840191 (4115153)		3.200			
E5840192 (4115154)		3.420			
E5840193 (4115155)		3.010			
E5840194 (4115156)		3.740			
E5840195 (4115157)		3.300			
E5840196 (4115158)		3.190			
E5840197 (4115159)		2.910			
E5840198 (4115160)		3.110			
E5840199 (4115161)		3.310			
E5840200 (4115162)		0.010			
E5840201 (4115163)		2.450			
E5840202 (4115164)		2.310			
E5840203 (4115165)		1.670			
E5840204 (4115166)		2.250			
E5840205 (4115167)		2.560			
E5840206 (4115168)		1.950			
E5840207 (4115169)		2.310			
E5840208 (4115170)		1.920			
E5840209 (4115171)		2.240			
E5840210 (4115172)		0.260			
E5840211 (4115173)		2.130			
E5840212 (4115174)		2.170			
E5840213 (4115175)		1.830			
E5840214 (4115176)		2.260			
E5840215 (4115177)		1.660			
E5840216 (4115178)		1.460			
E5840217 (4115179)		2.490			
E5840218 (4115180)		2.850			
E5840219 (4115181)		0.930			
E5840220 (4115182)		0.850			
E5840221 (4115183)		2.130			

Certified By:

AGAT WORK ORDER: 22O923068

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Jul	19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Sep 27, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840222 (4115184)		1.920			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 22O923068

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - N	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Jul	19, 2022		С	ATE REC	EIVED: Jul 2	20, 2022		DATE I	REPORTED	: Sep 27, 20	SAMPLE TYPE: Drill Core				
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840160 (4115122)		<0.5	6.24	<1	380	1.1	<1	1.60	<0.5	14	5.3	94.6	6.8	1.50	20
E5840161 (4115123)		<0.5	2.34	11	14	0.5	<1	3.52	<0.5	2	89.0	1880	72.2	6.75	5
E5840162 (4115124)		<0.5	2.47	10	9	0.6	<1	1.68	<0.5	2	95.0	1990	86.8	7.34	9
E5840163 (4115125)		<0.5	2.33	12	10	0.6	<1	1.63	<0.5	3	90.2	2000	55.8	6.76	10
E5840164 (4115126)		<0.5	2.38	4	20	8.0	<1	2.73	<0.5	46	84.0	1820	75.5	7.56	9
E5840165 (4115127)		<0.5	2.40	7	12	0.6	<1	1.38	<0.5	3	103	2010	94.6	7.59	7
E5840166 (4115128)		<0.5	2.23	9	13	0.5	<1	2.31	<0.5	2	101	1940	113	7.40	8
E5840167 (4115129)		<0.5	3.48	1	2550	3.0	<1	20.1	<0.5	96	13.6	28.0	82.9	4.17	31
E5840168 (4115130)		<0.5	3.14	10	641	5.5	<1	20.7	<0.5	276	23.3	18.0	175	2.38	20
E5840169 (4115131)		0.7	3.43	<1	927	5.1	<1	20.5	<0.5	149	19.8	8.2	216	2.56	22
E5840170 (4115132)		8.0	3.47	4	976	5.2	<1	20.9	<0.5	150	19.0	13.9	231	2.53	21
E5840171 (4115133)		<0.5	2.95	9	566	6.9	<1	20.7	<0.5	271	27.0	110	198	2.74	19
E5840172 (4115134)		<0.5	2.66	4	488	7.4	<1	19.1	<0.5	247	26.3	62.9	186	5.29	24
E5840173 (4115135)		<0.5	2.51	<1	1230	4.5	<1	19.9	<0.5	168	20.6	22.3	121	4.90	23
E5840174 (4115136)		<0.5	2.27	<1	415	4.1	<1	23.1	<0.5	192	14.3	10.5	76.1	2.37	16
E5840175 (4115137)		<0.5	2.07	3	794	3.8	<1	24.3	<0.5	156	14.7	22.9	108	2.07	14
E5840176 (4115138)		<0.5	1.27	110	86	3.5	<1	3.50	<0.5	156	19.6	139	81.9	18.5	22
E5840177 (4115139)		<0.5	0.57	32	113	4.9	<1	26.3	<0.5	362	4.9	51.0	29.1	4.03	6
E5840178 (4115140)		<0.5	0.97	71	83	6.5	<1	20.6	<0.5	559	12.3	159	83.7	8.34	11
E5840179 (4115141)		0.5	1.46	216	24	2.8	<1	1.42	<0.5	154	53.1	159	699	30.7	23
E5840180 (4115142)		3.2	6.82	<1	280	1.4	<1	3.88	<0.5	21	155	250	6490	13.3	13
E5840181 (4115143)		1.1	0.52	211	50	0.5	<1	3.80	<0.5	16	63.5	144	433	32.7	25
E5840182 (4115144)		<0.5	0.77	59	25	<0.5	<1	7.58	<0.5	14	73.9	138	1010	31.3	26
E5840183 (4115145)		<0.5	4.66	<1	3	1.9	<1	3.68	<0.5	5	67.9	1490	65.5	9.12	13
E5840184 (4115146)		<0.5	4.06	<1	2	1.0	<1	2.97	<0.5	4	88.2	1690	95.3	8.67	17
E5840185 (4115147)		<0.5	3.16	<1	2	0.6	<1	5.08	<0.5	3	73.4	1480	88.6	7.27	9
E5840186 (4115148)		<0.5	3.11	<1	4	0.6	<1	1.81	<0.5	2	107	1890	127	8.07	9
E5840187 (4115149)		<0.5	2.91	<1	2	0.5	<1	1.45	<0.5	3	92.7	1880	104	7.54	9
E5840188 (4115150)		<0.5	2.85	<1	4	0.6	<1	2.40	<0.5	2	104	2000	144	7.69	9
E5840189 (4115151)		<0.5	2.94	5	5	0.7	<1	3.00	<0.5	2	95.6	1810	83.4	7.39	9
E5840190 (4115152)		<0.5	6.32	<1	396	1.1	<1	1.67	<0.5	14	5.0	86.7	8.3	1.56	20
E5840191 (4115153)		<0.5	2.76	6	5	0.6	<1	4.64	<0.5	2	73.7	1710	46.6	6.48	9

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O923068

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070) 4	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Ju	l 19, 2022		Г	ATE RECE	EIVED: Jul 2	20, 2022		DATE F	REPORTED	: Sep 27, 20	SAMPLE TYPE: Drill Core				
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	G
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppr
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	
E5840192 (4115154)		<0.5	3.14	1	6	0.8	<1	3.10	<0.5	3	88.2	1980	122	7.76	
E5840193 (4115155)		<0.5	2.81	<1	6	0.6	<1	3.74	<0.5	2	104	1820	210	7.67	
E5840194 (4115156)		<0.5	3.21	11	7	0.7	<1	3.43	<0.5	3	100	1960	97.4	7.70	
E5840195 (4115157)		<0.5	3.35	8	6	0.7	<1	2.61	<0.5	2	82.4	2000	52.9	7.46	
E5840196 (4115158)		<0.5	3.26	5	6	0.6	<1	3.76	<0.5	2	91.6	1700	64.4	7.53	1
E5840197 (4115159)		<0.5	3.46	<1	6	0.6	<1	3.16	<0.5	2	76.7	1750	47.6	7.54	
E5840198 (4115160)		<0.5	3.70	6	6	0.7	<1	3.34	<0.5	3	82.1	1790	58.4	7.71	
E5840199 (4115161)		<0.5	3.86	12	5	0.6	<1	5.06	<0.5	3	73.7	1340	69.1	7.50	1.
E5840200 (4115162)		<0.5	3.87	136	205	1.1	<1	2.87	<0.5	20	69.2	770	48.3	5.41	1
E5840201 (4115163)		<0.5	5.13	<1	22	1.5	<1	8.65	<0.5	6	71.0	1240	21.5	7.90	1
E5840202 (4115164)		<0.5	4.28	2	5	1.4	<1	5.01	<0.5	3	75.2	1400	44.7	7.63	1
E5840203 (4115165)		<0.5	1.85	<1	9	<0.5	<1	1.74	<0.5	2	101	1880	41.3	7.15	<
E5840204 (4115166)		<0.5	1.84	<1	7	<0.5	<1	2.29	<0.5	2	104	1670	23.4	7.56	<
E5840205 (4115167)		<0.5	1.57	<1	5	<0.5	<1	1.62	<0.5	1	106	1150	23.7	7.20	<
E5840206 (4115168)		<0.5	1.69	<1	5	<0.5	<1	1.48	<0.5	1	108	1350	21.5	6.56	<
E5840207 (4115169)		<0.5	1.47	<1	5	<0.5	<1	1.88	<0.5	2	115	1770	15.3	6.88	<
E5840208 (4115170)		<0.5	1.41	<1	5	<0.5	<1	1.07	<0.5	2	111	2520	10.7	8.30	<
E5840209 (4115171)		<0.5	1.39	2	5	<0.5	<1	1.10	<0.5	2	106	1670	27.8	7.34	<
E5840210 (4115172)		<0.5	6.21	2	397	1.0	<1	1.57	<0.5	16	5.3	82.0	6.2	1.49	2
E5840211 (4115173)		<0.5	1.47	<1	6	<0.5	<1	1.62	<0.5	1	102	1310	8.7	7.45	<
E5840212 (4115174)		<0.5	1.60	<1	7	<0.5	<1	1.35	<0.5	2	104	1820	7.7	5.36	<
E5840213 (4115175)		<0.5	1.53	1	6	<0.5	<1	1.29	<0.5	2	120	1860	26.5	6.15	<
E5840214 (4115176)		<0.5	1.33	<1	5	<0.5	<1	0.85	<0.5	2	107	1890	29.3	7.89	<
E5840215 (4115177)		<0.5	1.44	<1	3	<0.5	<1	1.10	<0.5	2	105	2500	28.0	7.03	<
E5840216 (4115178)		<0.5	1.19	<1	2	<0.5	<1	0.86	<0.5	2	148	2580	114	10.0	<
E5840217 (4115179)		<0.5	1.39	<1	4	<0.5	<1	1.10	<0.5	2	108	1820	17.8	7.92	<
E5840218 (4115180)		<0.5	1.39	<1	6	<0.5	<1	1.41	<0.5	2	103	1750	6.5	4.95	<
E5840219 (4115181)		<0.5	1.34	<1	4	<0.5	<1	1.09	<0.5	2	110	1740	11.8	6.47	<
E5840220 (4115182)		<0.5	1.28	<1	4	<0.5	<1	1.12	<0.5	1	109	1600	11.3	5.81	<
E5840221 (4115183)		<0.5	1.34	<1	4	<0.5	<1	1.13	<0.5	2	105	1950	18.6	6.80	<
E5840222 (4115184)		<0.5	1.20	<1	3	<0.5	<1	0.95	<0.5	2	102	2020	8.2	7.65	

Certified By:

Sherin Houssay

Certificate of Analysis

AGAT WORK ORDER: 22O923068

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	OND WIIN		(2	01-070)	4 Acid D	iaest - M	/letals Pa	ickage I	CP-OFS	finish	71111444 1 6	, ritairio			
DATE SAMPLED: Jul	19, 2022		•	•	EIVED: Jul 2				REPORTED		022	SAMPLE TYPE: Drill Core			
	Analyte:	In	K	La	Li	Mg	Mn	Mo	Na	Ni	P	Pb	Rb	S	Sb
	Únit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840160 (4115122)		<1	1.24	8	8	0.53	246	<0.5	2.69	20.1	193	1	<10	0.01	<1
E5840161 (4115123)		<1	0.02	<2	24	16.0	1010	<0.5	0.02	1240	94	<1	<10	0.25	24
E5840162 (4115124)		<1	0.03	<2	16	17.1	1010	<0.5	0.02	1380	94	<1	<10	0.22	26
E5840163 (4115125)		<1	0.02	<2	17	16.4	1030	<0.5	0.02	1290	84	<1	<10	0.15	26
E5840164 (4115126)		<1	0.03	21	17	16.2	1130	<0.5	0.02	1120	1140	<1	<10	0.19	18
E5840165 (4115127)		<1	0.03	<2	14	17.9	982	<0.5	0.02	1400	90	<1	<10	0.21	27
E5840166 (4115128)		<1	0.02	<2	13	17.4	1140	<0.5	0.02	1380	84	<1	<10	0.29	28
E5840167 (4115129)		<1	1.37	86	29	1.53	1090	<0.5	0.85	3.5	2820	<1	<10	0.65	<1
E5840168 (4115130)		<1	0.74	223	49	1.01	1010	5.9	1.83	25.8	4590	16	<10	1.19	<1
E5840169 (4115131)		<1	0.84	123	39	1.21	1110	0.9	1.60	4.5	3130	8	<10	0.38	<1
E5840170 (4115132)		<1	0.85	122	38	1.19	1100	0.8	1.65	4.7	3590	9	<10	0.37	<1
E5840171 (4115133)		<1	1.01	190	65	1.67	1170	1.1	1.28	63.9	3860	9	<10	0.47	<1
E5840172 (4115134)		<1	0.56	170	44	2.05	1460	<0.5	0.43	28.2	3190	9	<10	0.60	<1
E5840173 (4115135)		<1	0.90	135	35	1.55	1480	<0.5	0.79	7.2	3630	8	<10	0.46	<1
E5840174 (4115136)		<1	0.47	162	25	0.93	1350	0.9	1.21	8.5	4450	11	<10	0.62	<1
E5840175 (4115137)		<1	0.89	144	31	0.93	1570	2.3	0.94	12.4	4110	15	<10	0.58	<1
E5840176 (4115138)		<1	0.84	142	53	1.72	641	22.1	0.04	80.1	659	77	<10	>10	5
E5840177 (4115139)		<1	0.29	378	24	1.59	2320	7.4	0.01	20.0	4490	43	<10	4.04	<1
E5840178 (4115140)		<1	<0.01	614	10	1.42	2120	13.7	<0.01	64.8	5060	66	<10	9.20	<1
E5840179 (4115141)		<1	0.28	99	16	1.24	228	32.6	0.22	365	920	73	<10	>10	<1
E5840180 (4115142)		<1	0.63	11	13	3.91	1150	1.8	1.84	9330	573	31	<10	2.81	<1
E5840181 (4115143)		<1	0.15	7	6	0.42	191	27.7	0.03	353	98	73	<10	>10	7
E5840182 (4115144)		<1	<0.01	6	8	1.13	807	20.2	< 0.01	681	73	68	<10	>10	1
E5840183 (4115145)		<1	<0.01	<2	13	13.2	1340	<0.5	0.04	749	186	<1	<10	1.23	13
E5840184 (4115146)		<1	<0.01	<2	9	14.6	1180	<0.5	0.02	1030	176	<1	<10	1.19	17
E5840185 (4115147)		<1	<0.01	<2	9	14.0	1150	<0.5	0.01	892	126	<1	<10	0.97	18
E5840186 (4115148)		<1	<0.01	<2	16	15.3	902	<0.5	0.01	1540	119	<1	<10	1.23	21
E5840187 (4115149)		<1	<0.01	<2	17	15.8	844	<0.5	0.01	1270	107	<1	<10	0.98	23
E5840188 (4115150)		<1	0.02	<2	26	15.0	936	<0.5	0.01	1600	108	<1	<10	1.15	21
E5840189 (4115151)		<1	0.02	<2	37	14.7	1090	<0.5	0.01	1210	114	<1	<10	0.82	21
E5840190 (4115152)		<1	1.30	8	8	0.54	248	<0.5	2.78	23.7	183	<1	<10	0.02	<1
E5840191 (4115153)		<1	0.02	<2	25	13.6	1200	<0.5	0.01	1050	104	<1	<10	0.59	22

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O923068

PROJECT: WR-22-CORE-02

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(2	(01-070)	4 Acid D	igest - N	1etals Pa	ckage, I	CP-OES	finish						
DATE SAMPLED: Ju	I 19, 2022		[DATE RECE	EIVED: Jul 2	20, 2022		DATE F	REPORTED): Sep 27, 20	022	SAMPLE TYPE: Drill Core				
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb	
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1	
E5840192 (4115154)		<1	0.05	<2	29	15.4	1160	<0.5	0.01	1050	115	<1	<10	0.60	24	
E5840193 (4115155)		<1	0.03	<2	27	14.7	1150	<0.5	0.01	1780	112	<1	<10	0.95	23	
E5840194 (4115156)		<1	0.04	<2	29	14.9	1160	<0.5	0.02	1220	114	<1	<10	0.57	22	
E5840195 (4115157)		<1	0.04	<2	36	15.0	1120	<0.5	0.02	1050	128	<1	<10	0.36	23	
E5840196 (4115158)		<1	0.02	<2	29	14.9	1160	<0.5	0.02	1280	126	<1	<10	0.37	21	
E5840197 (4115159)		<1	0.02	<2	34	15.0	1130	<0.5	0.02	1010	126	<1	<10	0.24	20	
E5840198 (4115160)		<1	0.02	<2	31	14.6	1200	<0.5	0.02	1050	137	<1	<10	0.23	22	
E5840199 (4115161)		<1	0.02	<2	8	12.9	1170	<0.5	0.03	814	147	<1	<10	0.03	16	
E5840200 (4115162)		<1	0.62	12	36	13.3	1120	1.2	0.80	1860	212	8	<10	0.30	8	
E5840201 (4115163)		<1	0.02	<2	41	10.4	1500	<0.5	0.03	666	177	<1	<10	0.05	10	
E5840202 (4115164)		<1	0.02	<2	33	12.8	1260	<0.5	0.04	823	146	<1	<10	0.04	14	
E5840203 (4115165)		<1	0.02	<2	2	18.4	1180	<0.5	0.02	1430	73	<1	<10	0.07	22	
E5840204 (4115166)		<1	0.02	<2	2	18.9	1190	<0.5	0.03	1490	72	<1	<10	0.05	19	
E5840205 (4115167)		<1	0.01	<2	2	19.4	1130	<0.5	0.02	1500	85	<1	<10	0.05	14	
E5840206 (4115168)		<1	0.01	<2	2	19.2	1230	<0.5	0.02	1100	90	<1	<10	0.05	16	
E5840207 (4115169)		<1	0.01	<2	1	18.9	1070	<0.5	0.02	1590	58	<1	<10	0.04	19	
E5840208 (4115170)		<1	0.01	<2	1	18.8	1130	<0.5	0.01	1650	49	<1	<10	0.07	29	
E5840209 (4115171)		<1	0.01	<2	1	19.0	1110	<0.5	0.01	1290	68	<1	<10	0.05	20	
E5840210 (4115172)		<1	1.26	8	8	0.60	249	<0.5	2.80	24.3	181	<1	<10	0.01	<1	
E5840211 (4115173)		<1	0.02	<2	1	19.8	1060	<0.5	0.02	1170	62	<1	<10	0.04	16	
E5840212 (4115174)		<1	0.02	<2	1	19.9	1120	<0.5	0.02	1590	65	<1	<10	0.06	22	
E5840213 (4115175)		<1	0.02	<2	1	19.7	1080	<0.5	0.02	1620	72	<1	<10	0.06	24	
E5840214 (4115176)		<1	0.01	<2	<1	19.0	1050	<0.5	0.01	1400	61	<1	<10	0.05	22	
E5840215 (4115177)		<1	0.01	<2	1	20.0	1260	<0.5	0.01	1710	63	<1	<10	0.07	30	
E5840216 (4115178)		<1	<0.01	<2	1	18.2	1210	<0.5	0.01	1460	59	1	<10	0.06	31	
E5840217 (4115179)		<1	0.01	<2	<1	19.1	1120	<0.5	0.01	1550	60	<1	<10	0.05	22	
E5840218 (4115180)		<1	0.02	<2	<1	20.1	1190	<0.5	0.01	1710	73	<1	<10	0.06	21	
E5840219 (4115181)		<1	0.02	<2	<1	20.5	1090	<0.5	0.01	1680	62	<1	<10	0.06	23	
E5840220 (4115182)		<1	0.01	<2	<1	19.9	1050	<0.5	0.01	1600	54	<1	<10	0.05	20	
E5840221 (4115183)		<1	0.01	<2	1	19.5	1080	<0.5	0.02	1510	73	<1	<10	0.06	24	
E5840222 (4115184)		<1	0.01	<2	<1	20.0	1080	<0.5	0.01	1540	47	<1	<10	0.06	28	

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O923068

PROJECT: WR-22-CORE-02

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(2	01-070)	4 Acid D	igest - N	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Ju	I 19, 2022		Г	DATE RECI	EIVED: Jul 2	20, 2022		DATE I	REPORTED): Sep 27, 20	022	SAM	PLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840160 (4115122)		5	<10	<5	340	<10	<10	<5	0.14	<5	10	39.0	<1	6	21.1
E5840161 (4115123)		15	<10	<5	68	<10	<10	<5	0.15	<5	<5	109	<1	5	73.1
E5840162 (4115124)		16	<10	<5	43	<10	<10	<5	0.16	<5	<5	115	1	5	77.3
E5840163 (4115125)		15	<10	<5	41	<10	<10	5	0.15	<5	<5	113	2	5	82.1
E5840164 (4115126)		17	<10	<5	102	<10	<10	5	0.39	<5	<5	136	<1	10	72.3
E5840165 (4115127)		16	<10	<5	45	<10	<10	<5	0.16	<5	<5	115	1	5	75.8
E5840166 (4115128)		15	<10	<5	60	<10	<10	<5	0.15	<5	<5	107	1	5	74.3
E5840167 (4115129)		4	<10	<5	375	<10	<10	<5	0.46	<5	<5	201	<1	28	71.9
E5840168 (4115130)		17	<10	<5	527	<10	10	10	1.11	<5	<5	324	<1	55	113
E5840169 (4115131)		16	<10	<5	527	<10	<10	8	0.93	<5	<5	249	<1	34	112
E5840170 (4115132)		17	<10	<5	531	<10	<10	8	1.07	<5	<5	261	<1	35	106
E5840171 (4115133)		24	<10	<5	656	<10	11	19	1.26	<5	<5	279	<1	38	75.7
E5840172 (4115134)		24	<10	<5	792	<10	<10	15	1.23	<5	<5	296	<1	37	92.8
E5840173 (4115135)		14	<10	<5	821	<10	11	6	0.90	<5	<5	265	<1	37	102
E5840174 (4115136)		10	<10	<5	922	<10	<10	8	0.72	<5	<5	292	<1	41	118
E5840175 (4115137)		11	<10	<5	1050	<10	<10	8	0.63	<5	<5	268	<1	34	107
E5840176 (4115138)		6	<10	<5	178	<10	<10	<5	0.14	<5	<5	170	3	20	162
E5840177 (4115139)		3	<10	<5	1100	<10	<10	<5	0.20	<5	<5	128	<1	48	224
E5840178 (4115140)		8	<10	<5	1120	<10	12	<5	0.44	<5	<5	217	2	88	209
E5840179 (4115141)		15	<10	<5	42	<10	16	<5	0.77	<5	<5	258	<1	24	1530
E5840180 (4115142)		12	<10	<5	278	<10	<10	<5	0.56	<5	<5	116	3	11	107
E5840181 (4115143)		7	<10	<5	80	<10	22	<5	0.11	<5	<5	146	<1	7	2020
E5840182 (4115144)		7	<10	<5	141	<10	20	<5	0.13	<5	<5	140	<1	7	1310
E5840183 (4115145)		29	<10	<5	10	<10	<10	<5	0.33	<5	<5	221	<1	11	110
E5840184 (4115146)		24	<10	<5	9	<10	<10	<5	0.28	<5	<5	178	1	10	104
E5840185 (4115147)		19	<10	<5	40	<10	<10	<5	0.21	<5	<5	138	<1	8	74.4
E5840186 (4115148)		20	<10	<5	14	<10	<10	<5	0.20	<5	<5	142	1	5	76.5
E5840187 (4115149)		18	<10	<5	14	<10	<10	<5	0.19	<5	<5	137	1	6	74.7
E5840188 (4115150)		17	<10	<5	49	<10	<10	<5	0.18	<5	<5	128	<1	8	71.3
E5840189 (4115151)		18	<10	<5	48	<10	<10	<5	0.19	<5	<5	134	<1	7	68.5
E5840190 (4115152)		5	<10	<5	359	<10	<10	<5	0.14	<5	<5	38.5	<1	6	18.6
E5840191 (4115153)		17	<10	<5	82	<10	<10	<5	0.17	<5	<5	127	1	7	69.7

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O923068

PROJECT: WR-22-CORE-02

MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

5623 McADAM ROAD

ATTENTION TO: Arnaud Fontaine

			(2	01-070) 4	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Jul	19, 2022		С	DATE RECE	EIVED: Jul 2	20, 2022		DATE F	REPORTED	: Sep 27, 20	022	SAM	PLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zr
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840192 (4115154)		20	<10	<5	39	<10	<10	<5	0.21	<5	<5	142	1	7	74.7
E5840193 (4115155)		17	<10	<5	76	<10	<10	<5	0.18	<5	<5	128	1	6	71.3
E5840194 (4115156)		20	<10	<5	44	<10	<10	<5	0.22	<5	<5	141	<1	7	74.6
E5840195 (4115157)		21	<10	<5	28	<10	<10	<5	0.23	<5	<5	149	1	8	70.1
E5840196 (4115158)		19	<10	<5	49	<10	<10	<5	0.21	<5	<5	141	<1	7	71.9
E5840197 (4115159)		21	<10	<5	38	<10	<10	<5	0.23	<5	<5	153	<1	8	74.8
E5840198 (4115160)		22	<10	<5	44	<10	<10	<5	0.25	<5	<5	160	<1	9	76.0
E5840199 (4115161)		23	<10	<5	22	<10	<10	<5	0.25	<5	<5	164	<1	9	68.4
E5840200 (4115162)		11	<10	<5	70	<10	<10	12	0.17	<5	<5	72.8	4	9	105
E5840201 (4115163)		29	<10	<5	168	<10	<10	<5	0.32	<5	<5	205	<1	12	79.3
E5840202 (4115164)		24	<10	<5	19	<10	<10	<5	0.27	<5	<5	176	<1	9	72.8
E5840203 (4115165)		14	<10	<5	6	<10	<10	5	0.11	<5	<5	73.0	2	4	64.5
E5840204 (4115166)		14	<10	<5	7	<10	<10	<5	0.11	<5	<5	70.1	<1	4	58.0
E5840205 (4115167)		12	<10	<5	5	<10	<10	<5	0.10	<5	<5	64.0	<1	4	52.2
E5840206 (4115168)		13	<10	<5	4	<10	<10	6	0.10	<5	<5	65.5	<1	4	60.0
E5840207 (4115169)		13	<10	<5	4	<10	<10	<5	0.08	<5	<5	64.1	1	4	56.1
E5840208 (4115170)		13	<10	<5	1	<10	<10	<5	0.08	<5	<5	71.1	1	3	71.5
E5840209 (4115171)		11	<10	<5	2	<10	<10	<5	0.07	<5	<5	60.8	1	3	63.2
E5840210 (4115172)		5	<10	<5	357	<10	<10	<5	0.13	<5	16	37.7	<1	5	20.1
E5840211 (4115173)		11	<10	<5	3	<10	<10	<5	0.08	<5	<5	53.7	<1	3	52.7
E5840212 (4115174)		13	<10	<5	2	<10	<10	6	0.08	<5	<5	61.3	1	3	60.8
E5840213 (4115175)		12	<10	<5	2	<10	<10	6	0.08	<5	<5	62.1	2	3	61.9
E5840214 (4115176)		11	<10	<5	1	<10	<10	<5	0.08	<5	<5	60.0	3	3	56.1
E5840215 (4115177)		11	<10	<5	1	<10	<10	<5	0.09	<5	<5	67.5	3	3	77.2
E5840216 (4115178)		10	<10	<5	1	<10	<10	<5	0.08	<5	<5	68.5	2	3	84.5
E5840217 (4115179)		11	<10	<5	2	<10	<10	<5	0.08	<5	<5	62.7	2	3	61.8
E5840218 (4115180)		11	<10	<5	3	<10	<10	9	0.08	<5	<5	57.2	2	3	65.0
E5840219 (4115181)		11	<10	<5	2	<10	<10	7	0.07	<5	<5	54.8	2	3	60.9
E5840220 (4115182)		11	<10	<5	2	<10	<10	10	0.07	<5	<5	51.5	2	3	58.0
E5840221 (4115183)		11	<10	<5	3	<10	<10	<5	0.10	<5	<5	62.3	3	3	60.8
E5840222 (4115184)		11	<10	<5	2	<10	<10	<5	0.07	<5	<5	54.9	3	3	59.9

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O923068

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

CLIENT NAME. ORF	OND MIMIN	JOON		ATTENTION TO. ATTIAUU F	Untaine
			(201-070) 4 Acid Digest - Metal:	s Package, ICP-OES finish	
DATE SAMPLED: Jul	19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Sep 27, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840160 (4115122)		38			
E5840161 (4115123)		12			
E5840162 (4115124)		10			
E5840163 (4115125)		10			
E5840164 (4115126)		86			
E5840165 (4115127)		10			
E5840166 (4115128)		9			
E5840167 (4115129)		35			
E5840168 (4115130)		135			
E5840169 (4115131)		170			
E5840170 (4115132)		168			
E5840171 (4115133)		93			
E5840172 (4115134)		101			
E5840173 (4115135)		50			
E5840174 (4115136)		72			
E5840175 (4115137)		64			
E5840176 (4115138)		39			
E5840177 (4115139)		34			
E5840178 (4115140)		67			
E5840179 (4115141)		119			
E5840180 (4115142)		53			
E5840181 (4115143)		22			
E5840182 (4115144)		24			
E5840183 (4115145)		36			
E5840184 (4115146)		31			
E5840185 (4115147)		21			
E5840186 (4115148)		20			
E5840187 (4115149)		19			
E5840188 (4115150)		17			
E5840189 (4115151)		18			
E5840190 (4115152)		40			
E5840191 (4115153)		18			

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 220923068

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

OLILIVI W.W.L. OK			(201-070) 4 Acid Digest - Metal:	s Package ICP-OFS finish	
DATE SAMPLED: Jul	19 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Sep 27, 2022	SAMPLE TYPE: Drill Core
57112 671WH 225. 041	Analyte:	Zr	5,112 112021125. 001 20, 2022	DATE NET ORTED. COP 27, 2022	0, IIII 22 1 11 2. D1III 0010
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840192 (4115154)		20			
E5840193 (4115155)		16			
E5840194 (4115156)		21			
E5840195 (4115157)		22			
E5840196 (4115158)		20			
E5840197 (4115159)		24			
E5840198 (4115160)		25			
E5840199 (4115161)		26			
E5840200 (4115162)		58			
E5840201 (4115163)		33			
E5840202 (4115164)		28			
E5840203 (4115165)		11			
E5840204 (4115166)		11			
E5840205 (4115167)		10			
E5840206 (4115168)		10			
E5840207 (4115169)		9			
E5840208 (4115170)		8			
E5840209 (4115171)		9			
E5840210 (4115172)		36			
E5840211 (4115173)		8			
E5840212 (4115174)		9			
E5840213 (4115175)		10			
E5840214 (4115176)		9			
E5840215 (4115177)		9			
5840216 (4115178)		9			
E5840217 (4115179)		10			
E5840218 (4115180)		11			
5840219 (4115181)		8			
E5840220 (4115182)		8			
E5840221 (4115183)		10			
E5840222 (4115184)		8			

AGAT WORK ORDER: 22O923068

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish

DATE SAMPLED: Jul 19, 2022 DATE RECEIVED: Jul 20, 2022 DATE REPORTED: Sep 27, 2022 SAMPLE TYPE: Drill Core

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

4115122-4115184 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 220923068

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	202-555)	Fire Assay - Au, Pt, Pd Trace	Levels, ICP-OES finish (50g charge)	
DATE SAMPLED: Jul	19, 2022			DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Sep 27, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840160 (4115122)		0.001	<0.001	<0.005		
E5840161 (4115123)		<0.001	0.007	<0.005		
E5840162 (4115124)		<0.001	0.005	<0.005		
E5840163 (4115125)		< 0.001	0.004	<0.005		
E5840164 (4115126)		0.003	0.007	<0.005		
E5840165 (4115127)		0.001	0.009	<0.005		
E5840166 (4115128)		< 0.001	0.014	0.006		
E5840167 (4115129)		< 0.001	< 0.001	<0.005		
E5840168 (4115130)		0.002	< 0.001	<0.005		
E5840169 (4115131)		< 0.001	< 0.001	<0.005		
E5840170 (4115132)		<0.001	< 0.001	<0.005		
E5840171 (4115133)		0.001	0.002	<0.005		
E5840172 (4115134)		<0.001	< 0.001	<0.005		
E5840173 (4115135)		< 0.001	< 0.001	<0.005		
E5840174 (4115136)		0.001	< 0.001	<0.005		
E5840175 (4115137)		0.002	< 0.001	<0.005		
E5840176 (4115138)		0.026	0.003	<0.005		
E5840177 (4115139)		0.004	< 0.001	<0.005		
E5840178 (4115140)		0.009	0.002	<0.005		
E5840179 (4115141)		0.044	0.006	<0.005		
E5840180 (4115142)		0.145	1.34	0.683		
E5840181 (4115143)		0.045	0.008	<0.005		
E5840182 (4115144)		0.022	0.017	<0.005		
E5840183 (4115145)		< 0.001	0.007	<0.005		
E5840184 (4115146)		< 0.001	0.009	0.006		
E5840185 (4115147)		< 0.001	0.008	<0.005		
E5840186 (4115148)		<0.001	0.023	<0.005		
E5840187 (4115149)		< 0.001	0.005	<0.005		
E5840188 (4115150)		<0.001	0.042	0.009		
E5840189 (4115151)		< 0.001	0.013	<0.005		
E5840190 (4115152)		<0.001	<0.001	<0.005		
E5840191 (4115153)		0.005	0.003	<0.005		

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 220923068

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	(02-555)	Fire Assay - Au, Pt, Pd Trace	Levels, ICP-OES finish (50g charge)	
DATE SAMPLED: Jul	19, 2022			DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Sep 27, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840192 (4115154)		0.003	0.010	<0.005		
E5840193 (4115155)		0.028	0.029	<0.005		
E5840194 (4115156)		0.008	0.007	<0.005		
E5840195 (4115157)		<0.001	0.016	<0.005		
E5840196 (4115158)		<0.001	0.008	<0.005		
E5840197 (4115159)		<0.001	0.003	<0.005		
E5840198 (4115160)		<0.001	0.006	<0.005		
E5840199 (4115161)		<0.001	0.007	<0.005		
E5840200 (4115162)		IS	IS	IS		
E5840201 (4115163)		< 0.001	0.004	<0.005		
E5840202 (4115164)		<0.001	0.003	<0.005		
E5840203 (4115165)		<0.001	<0.001	<0.005		
E5840204 (4115166)		< 0.001	<0.001	<0.005		
E5840205 (4115167)		<0.001	0.001	<0.005		
E5840206 (4115168)		<0.001	<0.001	<0.005		
E5840207 (4115169)		0.001	0.002	<0.005		
E5840208 (4115170)		<0.001	0.002	<0.005		
E5840209 (4115171)		< 0.001	0.003	<0.005		
E5840210 (4115172)		0.003	<0.001	<0.005		
E5840211 (4115173)		<0.001	0.003	<0.005		
E5840212 (4115174)		0.001	0.004	<0.005		
E5840213 (4115175)		0.004	0.038	0.008		
E5840214 (4115176)		<0.001	0.003	<0.005		
E5840215 (4115177)		<0.001	0.003	<0.005		
E5840216 (4115178)		0.003	0.004	<0.005		
E5840217 (4115179)		< 0.001	0.003	<0.005		
E5840218 (4115180)		< 0.001	0.003	<0.005		
E5840219 (4115181)		<0.001	0.002	<0.005		
E5840220 (4115182)		<0.001	0.003	<0.005		
E5840221 (4115183)		<0.001	0.001	<0.005		
E5840222 (4115184)		<0.001	0.002	<0.005		

Certified By:

AGAT WORK ORDER: 220923068

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)

DATE SAMPLED: Jul 19, 2022 DATE RECEIVED: Jul 20, 2022 DATE REPORTED: Sep 27, 2022 SAMPLE TYPE: Drill Core

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

Sherin Houss of

AGAT WORK ORDER: 220923068

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Crushing)												
DATE SAMPLED: Jul	19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Sep 27, 2022	SAMPLE TYPE: Drill Core								
	Analyte: Cr	rush-Pass %											
	Unit:	%											
Sample ID (AGAT ID)	RDL:	0.01											
E5840161 (4115123)		88.39											
E5840179 (4115141)		75.15											
E5840199 (4115161)		75.31											
E5840219 (4115181)		80.62											

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 220923068

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Pulverizing)													
DATE SAMPLED: Jul	19, 2022		DATE RECEIVED: Jul 20, 2022	DATE REPORTED: Sep 27, 2022	SAMPLE TYPE: Drill Core									
	Analyte: Pu	ul-Pass %												
	Unit:	%												
Sample ID (AGAT ID)	RDL:	0.01												
E5840161 (4115123)		85.99												
E5840178 (4115140)		89.88												
E5840215 (4115177)		85.70												

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220923068 PROJECT: WR-22-CORE-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish																
		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3			REPLIC	ATE #4	
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Ag	4115123	< 0.5	< 0.5	0.0%	4115136	< 0.5	< 0.5	0.0%	4115147	< 0.5	< 0.5	0.0%	4115163	< 0.5	< 0.5	0.0%
Al	4115123	2.34	2.24	4.4%	4115136	2.27	2.36	3.9%	4115147	3.16	3.04	3.9%	4115163	5.13	5.31	3.4%
As	4115123	11	6		4115136	< 1	2		4115147	< 1	< 1	0.0%	4115163	< 1	< 1	0.0%
Ва	4115123	14	13	7.4%	4115136	415	423	1.9%	4115147	2	2	0.0%	4115163	22	22	0.0%
Be	4115123	0.5	0.5	0.0%	4115136	4.08	4.25	4.1%	4115147	0.6	0.6	0.0%	4115163	1.45	1.45	0.0%
Bi	4115123	< 1	< 1	0.0%	4115136	< 1	< 1	0.0%	4115147	< 1	< 1	0.0%	4115163	< 1	< 1	0.0%
Ca	4115123	3.52	3.51	0.3%	4115136	23.1	23.8	3.0%	4115147	5.08	4.76	6.5%	4115163	8.65	8.66	0.1%
Cd	4115123	< 0.5	< 0.5	0.0%	4115136	< 0.5	< 0.5	0.0%	4115147	< 0.5	< 0.5	0.0%	4115163	< 0.5	< 0.5	0.0%
Се	4115123	2	2	0.0%	4115136	192	197	2.6%	4115147	3	3	0.0%	4115163	6	6	0.0%
Co	4115123	89.0	82.9	7.1%	4115136	14.3	14.4	0.7%	4115147	73.4	72.6	1.1%	4115163	71.0	71.4	0.6%
Cr	4115123	1880	1800	4.3%	4115136	10.5	10.8	2.8%	4115147	1480	1510	2.0%	4115163	1240	1250	0.8%
Cu	4115123	72.2	70.1	3.0%	4115136	76.1	81.6	7.0%	4115147	88.6	83.8	5.6%	4115163	21.5	21.3	0.9%
Fe	4115123	6.75	6.70	0.7%	4115136	2.37	2.42	2.1%	4115147	7.27	6.83	6.2%	4115163	7.90	7.84	0.8%
Ga	4115123	5	8		4115136	16	17	6.1%	4115147	9	10	10.5%	4115163	13	19	
In	4115123	< 1	< 1	0.0%	4115136	< 1	< 1	0.0%	4115147	< 1	< 1	0.0%	4115163	< 1	< 1	0.0%
K	4115123	0.017	0.014	19.4%	4115136	0.472	0.480	1.7%	4115147	< 0.01	< 0.01	0.0%	4115163	0.02	0.02	0.0%
La	4115123	< 2	< 2	0.0%	4115136	162	166	2.4%	4115147	< 2	< 2	0.0%	4115163	< 2	< 2	0.0%
Li	4115123	24	23	4.3%	4115136	25	25	0.0%	4115147	9	9	0.0%	4115163	41	42	2.4%
Mg	4115123	16.0	15.8	1.3%	4115136	0.93	0.96	3.2%	4115147	14.0	13.2	5.9%	4115163	10.4	10.5	1.0%
Mn	4115123	1010	996	1.4%	4115136	1350	1370	1.5%	4115147	1150	1080	6.3%	4115163	1500	1530	2.0%
Мо	4115123	< 0.5	< 0.5	0.0%	4115136	0.88	0.81	8.3%	4115147	< 0.5	< 0.5	0.0%	4115163	< 0.5	< 0.5	0.0%
Na	4115123	0.02	0.02	0.0%	4115136	1.21	1.23	1.6%	4115147	0.01	0.01	0.0%	4115163	0.03	0.03	0.0%
Ni	4115123	1240	1190	4.1%	4115136	8.53	9.17	7.2%	4115147	892	884	0.9%	4115163	666	675	1.3%
Р	4115123	94	100	6.2%	4115136	4450	4560	2.4%	4115147	126	127	0.8%	4115163	177	190	7.1%
Pb	4115123	< 1	< 1	0.0%	4115136	11	10	9.5%	4115147	< 1	< 1	0.0%	4115163	< 1	< 1	0.0%
Rb	4115123	< 10	< 10	0.0%	4115136	< 10	< 10	0.0%	4115147	< 10	< 10	0.0%	4115163	< 10	< 10	0.0%
S	4115123	0.25	0.25	0.0%	4115136	0.62	0.65	4.7%	4115147	0.97	0.89	8.6%	4115163	0.05	0.05	0.0%
Sb	4115123	24	21	13.3%	4115136	< 1	< 1	0.0%	4115147	18	19	5.4%	4115163	10	10	0.0%
Sc	4115123	15	14	6.9%	4115136	10	10	0.0%	4115147	19	18	5.4%	4115163	29	29	0.0%
Se	4115123	< 10	< 10	0.0%	4115136	< 10	< 10	0.0%	4115147	< 10	< 10	0.0%	4115163	< 10	< 10	0.0%
Sn	4115123	< 5	< 5	0.0%	4115136	< 5	< 5	0.0%	4115147	< 5	< 5	0.0%	4115163	< 5	< 5	0.0%

Quality Assurance - Replicate AGAT WORK ORDER: 220923068 PROJECT: WR-22-CORE-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO:	Arnaud Fontaine
---------------	-----------------

CLIENT NAM	E: ORFORI	J MIINING	CORP							AIIE	NIION IC	: Arnaud	Fontaine			
Sr	4115123	68	67	1.5%	4115136	922	943	2.3%	4115147	40	37	7.8%	4115163	168	167	0.6%
Та	4115123	< 10	< 10	0.0%	4115136	< 10	< 10	0.0%	4115147	< 10	< 10	0.0%	4115163	< 10	< 10	0.0%
Te	4115123	< 10	< 10	0.0%	4115136	< 10	< 10	0.0%	4115147	< 10	< 10	0.0%	4115163	< 10	< 10	0.0%
Th	4115123	< 5	< 5	0.0%	4115136	8	7	13.3%	4115147	< 5	< 5	0.0%	4115163	< 5	< 5	0.0%
Ti	4115123	0.15	0.15	0.0%	4115136	0.722	0.742	2.7%	4115147	0.208	0.194	7.0%	4115163	0.32	0.32	0.0%
TI	4115123	< 5	< 5	0.0%	4115136	< 5	< 5	0.0%	4115147	< 5	< 5	0.0%	4115163	< 5	< 5	0.0%
U	4115123	< 5	< 5	0.0%	4115136	< 5	< 5	0.0%	4115147	< 5	< 5	0.0%	4115163	< 5	< 5	0.0%
V	4115123	109	103	5.7%	4115136	292	299	2.4%	4115147	138	133	3.7%	4115163	205	207	1.0%
W	4115123	< 1	1		4115136	< 1	< 1	0.0%	4115147	< 1	< 1	0.0%	4115163	< 1	< 1	0.0%
Υ	4115123	5	5	0.0%	4115136	41	42	2.4%	4115147	8	8	0.0%	4115163	12	12	0.0%
Zn	4115123	73.1	69.2	5.5%	4115136	118	124	5.0%	4115147	74.4	74.1	0.4%	4115163	79.3	81.7	3.0%
Zr	4115123	12	10	18.2%	4115136	72	48		4115147	21	21	0.0%	4115163	33	34	3.0%
		REPLIC	ATE #5													
Parameter	Sample ID	Original	Replicate	RPD												
Ag	4115173	< 0.5	< 0.5	0.0%												
Al	4115173	1.47	1.48	0.7%												
As	4115173	< 1	1													
Ва	4115173	6	6	0.0%												
Ве	4115173	< 0.5	< 0.5	0.0%												
Bi	4115173	< 1	< 1	0.0%												
Ca	4115173	1.62	1.63	0.6%												
Cd	4115173	< 0.5	< 0.5	0.0%												
Ce	4115173	1	2													
Co	4115173	102	103	1.0%												
Cr	4115173	1310	1300	0.8%												
Cu	4115173	8.65	7.41	15.4%												
Fe	4115173	7.45	7.25	2.7%												
Ga	4115173	< 5	< 5	0.0%												
In	4115173	< 1	< 1	0.0%												
K	4115173	0.02	0.02	0.0%												
La	4115173	< 2	< 2	0.0%												
Li	4115173	1	1	0.0%												
Mg	4115173	19.8	19.3	2.6%												
Mn	4115173	1060	1070	0.9%												

Quality Assurance - Replicate AGAT WORK ORDER: 220923068 PROJECT: WR-22-CORE-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

http://www.agatlabs.com CLIENT NAME: ORFORD MINING CORP ATTENTION TO: Arnaud Fontaine 4115173 < 0.5 < 0.5 0.0% Na 4115173 0.02 0.02 0.0% Ni 4115173 1170 1180 0.9% Р 4115173 62 70 12.1% Pb 4115173 0.0% < 1 < 1 Rb 4115173 < 10 < 10 0.0% S 4115173 0.037 0.035 5.6% Sb 4115173 16 14 13.3% 4115173 Sc 11 11 0.0% Se 4115173 < 10 < 10 0.0% 4115173 < 5 < 5 0.0% Sn Sr 4115173 3 3 0.0% 4115173 Ta < 10 < 10 0.0% < 10 Te 4115173 < 10 0.0% Th < 5 4115173 < 5 0.0% Τi 4115173 0.08 0.08 0.0% ΤI 4115173 < 5 < 5 0.0% U 4115173 < 5 < 5 0.0% V 4115173 53.7 53.9 0.4% W 4115173 < 1 < 1 0.0% Υ 3 3 4115173 0.0% Zn 4115173 52.7 52.7 0.0% Zr 4115173 8 11.8% (202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge) REPLICATE #1 REPLICATE #2 REPLICATE #3 REPLICATE #4 Sample ID Original Replicate RPD Sample ID Original Replicate RPD Sample ID Original Replicate **RPD** Sample ID Original Replicate **RPD** Parameter 4115123 < 0.001 < 0.001 0.0% 4115136 0.001 0.001 0.0% 4115147 < 0.001 < 0.001 0.0% 4115163 < 0.001 < 0.001 0.0% 0.004 Pd 4115123 0.007 0.008 13.3% 4115136 < 0.001 < 0.001 0.0% 4115147 0.008 0.005 4115163 0.004 0.0% Pt 4115123 < 0.005 < 0.005 0.0% 4115136 < 0.005 < 0.005 0.0% 4115147 < 0.005 < 0.005 0.0% 4115163 < 0.005 < 0.005 0.0% REPLICATE #5 Sample ID Original Replicate RPD Parameter 4115173 < 0.001 0.001 Pd 4115173 0.003 0.003 0.0%

4115173

< 0.005

< 0.005

0.0%

Pt

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220923068

PROJECT: WR-22-CORE-02

MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

5623 McADAM ROAD

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

		CRM #1 (ref.CGL-015)			CRM #2	2 (ref.Till-2)			CRM #3	(ref.GTS-2a)			CRM #	4 (ref.Till-2)	
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Al	13.0	12.9	99%		8.47	8.05	95%		6.96	7	101%		8.47	7.8	92%	
As					26	21	82%		124	125	101%		26	24	93%	
Ва	1305	1296	99%		540	513	95%		186	184	99%		540	523	97%	
Ве					4.0	3.7	94%						4.0	3.6	90%	
Ca	1.42	1.36	96%		0.907	0.846	93%		4.01	3.63	90%		0.907	0.819	90%	
Ce	58.24	49.11	84%		98	80	82%		24	17	73%		98	91	93%	
Со					15	12	78%		22.1	19.9	90%		15	12	82%	
Cr					60.3	64.2	107%						60.3	58.4	97%	
Cu					150	148	98%		88.6	84.3	95%		150	144	96%	
Fe	3.27	3.26	100%		3.77	3.67	97%		7.56	7.2	95%		3.77	3.57	95%	
Ga	22.63	27.57	122%													
K	3.69	3.78	102%						2.021	1.957	97%					
La	27.48	26.98	98%		44	42	96%						44	43	98%	
Li	64.95	69.64	107%		47	48	101%						47	46	99%	
Mg	0.223	0.231	103%		1.10	1.04	94%		2.412	2.32	96%		1.10	1	91%	
Mn					780	732	94%		1510	1441	95%		780	716	92%	
Мо					14	11	80%						14	13	94%	
Na	7.24	7	97%		1.624	1.627	100%		0.617	0.622	101%		1.624	1.636	101%	
Ni					32	31	97%		77.1	70.2	91%		32	32	99%	
Р	610	613	101%		750	719	96%		892	833	93%		750	687	92%	
Pb					31	22	71%						31	22	72%	
S									0.348	0.336	97%					
Sc	2.76	2.26	82%		12	11	96%						12	11	95%	
Sr	312	302	97%		144	140	98%		92.8	84.6	91%		144	142	99%	
Th					18.4	18	98%						18.4	17.3	94%	
Ti	0.222	0.209	94%		0.53	0.44	83%						0.53	0.43	82%	
V					77	79	103%						77	79	102%	
W					5	4	73%						5	5	99%	
Υ	25.32	24.45	97%													
Zn	75.42	78.26	104%		130	117	90%		208	205	99%		130	114	87%	

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220923068

PROJECT: WR-22-CORE-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

		CRM #1 (ı	ref.PGMS30)		CRM #2 (r	ef.PGMS30)		CRM #3 (r	ef.PGMS30)	CRM #4 (ref.PGMS30)			
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Au	1.897	1.856	98%		1.897	1.881	99%		1.897	1.89	100%		1.897	1.8	95%	
Pd	1.660	1.694	102%		1.660	1.661	100%		1.660	1.704	103%		1.660	1.667	100%	
Pt	0.223	0.223	100%		0.223	0.221	99%		0.223	0.206	93%		0.223	0.207	93%	

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-02

SAMPLING SITE:

AGAT WORK ORDER: 22O923068 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Bi	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
La	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Li	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mg	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Na	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ni	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OL3
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OLS
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OLS
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: ORFORD MINING CORP

AGAT WORK ORDER: 220923068 PROJECT: WR-22-CORE-02 ATTENTION TO: Arnaud Fontaine

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.		SAMPLED B1.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
ΤΙ	MIN-200-12034	Geochem v.1	ICF/OE3
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-12006, MIN-12004		ICP/OES
Pd	MIN-12006, MIN-12004		ICP/OES
Pt	MIN-12006, MIN-12004		ICP/OES
Crush-Pass %			BALANCE
Pul-Pass %			BALANCE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-CORE-04

AGAT WORK ORDER: 220927099

SOLID ANALYSIS REVIEWED BY: Xiaomeng Yu, Report Writer

DATE REPORTED: Sep 02, 2022

PAGES (INCLUDING COVER): 21

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 21

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

AGAT WORK ORDER: 220927099

PROJECT: WR-22-CORE-04

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Jul	1 28, 2022		DATE RECEIVED: Jul 29, 2022	DATE REPORTED: Sep 02, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.01			
E5840260 (4150303)		0.07			
E5840261 (4150304)		2.74			
E5840262 (4150305)		3.06			
E5840263 (4150306)		2.52			
E5840264 (4150307)		2.43			
E5840265 (4150308)		3.11			
E5840266 (4150309)		3.03			
E5840267 (4150310)		3.07			
E5840268 (4150311)		3.29			
E5840269 (4150312)		3.02			
E5840270 (4150313)		0.18			
E5840271 (4150314)		2.91			
E5840272 (4150315)		3.15			
E5840273 (4150316)		3.21			
E5840274 (4150317)		3.12			
E5840275 (4150318)		3.26			
E5840276 (4150319)		3.09			
E5840277 (4150320)		3.51			
E5840278 (4150321)		3.75			
E5840279 (4150322)		1.10			
E5840280 (4150323)		1.08			
E5840281 (4150324)		2.11			
E5840282 (4150325)		2.33			
E5840283 (4150326)		2.03			
E5840284 (4150327)		3.98			
E5840285 (4150328)		2.28			
E5840286 (4150329)		1.58			
E5840287 (4150330)		2.07			
E5840288 (4150331)		2.12			
E5840289 (4150332)		3.45			
E5840290 (4150333)		0.07			

AGAT WORK ORDER: 22O927099

PROJECT: WR-22-CORE-04

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Ju	I 28, 2022		DATE RECEIVED: Jul 29, 2022	DATE REPORTED: Sep 02, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.01			
E5840291 (4150334)		3.27			
E5840292 (4150335)		3.09			
E5840293 (4150336)		3.02			
E5840294 (4150337)		2.99			
E5840295 (4150338)		3.26			
E5840296 (4150339)		3.07			
E5840297 (4150340)		3.35			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O927099

PROJECT: WR-22-CORE-04

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - N	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Jul	28, 2022		С	ATE RECE	EIVED: Jul 2	29, 2022		DATE I	REPORTED	: Sep 02, 20	022	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840260 (4150303)		4.3	7.26	<1	299	1.3	<1	4.12	<0.5	23	151	228	6710	13.7	11
E5840261 (4150304)		<0.5	1.19	<1	3	<0.5	<1	1.09	<0.5	2	108	1640	28.2	7.35	<5
E5840262 (4150305)		<0.5	1.12	<1	3	<0.5	<1	1.43	<0.5	1	114	1560	28.9	7.84	<5
E5840263 (4150306)		<0.5	1.21	<1	2	<0.5	<1	1.06	<0.5	<1	103	1710	88.0	6.17	<5
E5840264 (4150307)		<0.5	0.95	<1	2	<0.5	<1	0.76	<0.5	1	119	1610	115	12.4	<5
E5840265 (4150308)		<0.5	1.19	<1	2	<0.5	<1	0.86	<0.5	1	101	1950	72.7	7.09	<5
E5840266 (4150309)		<0.5	1.17	<1	3	<0.5	<1	1.54	<0.5	1	106	1370	45.7	7.35	<5
E5840267 (4150310)		<0.5	1.21	<1	3	<0.5	<1	1.16	<0.5	<1	104	1330	34.6	7.08	<5
E5840268 (4150311)		<0.5	1.29	<1	2	<0.5	<1	1.22	<0.5	<1	101	1860	157	6.39	<5
E5840269 (4150312)		<0.5	1.34	<1	3	<0.5	<1	1.67	<0.5	<1	108	1410	43.4	6.76	<5
E5840270 (4150313)		<0.5	6.38	2	395	1.1	<1	1.62	<0.5	14	5.9	89.1	7.0	1.51	20
E5840271 (4150314)		<0.5	1.35	<1	3	<0.5	<1	1.65	<0.5	1	107	1390	54.3	6.85	<5
E5840272 (4150315)		<0.5	1.33	<1	3	<0.5	<1	1.99	<0.5	1	103	1370	49.6	6.27	<5
E5840273 (4150316)		<0.5	1.42	1	2	<0.5	<1	1.44	<0.5	1	105	1980	121	6.11	<5
E5840274 (4150317)		<0.5	1.37	<1	3	<0.5	<1	1.28	<0.5	<1	109	1420	62.1	7.66	<5
E5840275 (4150318)		<0.5	1.49	<1	3	<0.5	<1	1.98	<0.5	<1	102	1670	62.8	6.18	<5
E5840276 (4150319)		<0.5	1.49	2	3	<0.5	<1	1.91	<0.5	2	109	1720	52.4	6.31	<5
E5840277 (4150320)		<0.5	1.54	<1	3	<0.5	<1	1.58	<0.5	2	109	1690	64.4	6.84	<5
E5840278 (4150321)		<0.5	1.49	<1	3	<0.5	<1	1.77	<0.5	2	108	1510	43.7	7.31	<5
E5840279 (4150322)		<0.5	1.54	<1	3	<0.5	<1	1.72	<0.5	2	104	1970	53.3	7.09	<5
E5840280 (4150323)		<0.5	1.53	<1	3	<0.5	<1	1.45	<0.5	2	103	1800	47.1	7.22	<5
E5840281 (4150324)		<0.5	1.52	<1	3	<0.5	<1	1.79	<0.5	2	111	1580	41.9	6.70	<5
E5840282 (4150325)		<0.5	1.37	<1	4	<0.5	<1	2.02	<0.5	2	119	1580	31.8	7.28	<5
E5840283 (4150326)		<0.5	0.96	<1	5	<0.5	<1	1.90	<0.5	4	118	1560	23.6	8.49	<5
E5840284 (4150327)		<0.5	1.48	<1	4	<0.5	<1	1.77	<0.5	2	116	1490	29.1	7.53	<5
E5840285 (4150328)		<0.5	1.50	<1	4	<0.5	<1	1.74	<0.5	3	96.1	2060	55.4	7.62	<5
E5840286 (4150329)		<0.5	1.74	10	4	<0.5	<1	1.79	<0.5	5	106	2100	90.4	10.2	7
E5840287 (4150330)		<0.5	1.48	<1	4	<0.5	<1	1.88	<0.5	2	109	2130	74.7	7.78	<5
E5840288 (4150331)		<0.5	1.47	<1	3	<0.5	<1	1.84	<0.5	2	113	1430	41.3	6.63	<5
E5840289 (4150332)		<0.5	1.51	<1	2	<0.5	<1	2.27	<0.5	2	106	1690	16.3	6.79	<5
E5840290 (4150333)		2.1	7.16	<1	211	1.6	<1	4.47	<0.5	24	96.9	166	4560	13.9	15
E5840291 (4150334)		<0.5	1.57	2	3	<0.5	<1	2.22	<0.5	2	105	1970	23.5	7.49	<5

Certified By:

Kuyki

Certificate of Analysis

AGAT WORK ORDER: 22O927099

PROJECT: WR-22-CORE-04

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Jul	28, 2022		[DATE RECE	EIVED: Jul 2	29, 2022		DATE I	REPORTED	: Sep 02, 20	022	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840292 (4150335)		<0.5	1.56	<1	3	<0.5	<1	2.27	<0.5	2	106	1720	23.0	6.79	<5
E5840293 (4150336)		<0.5	1.45	<1	3	<0.5	<1	1.87	<0.5	2	104	1650	24.7	7.64	<5
E5840294 (4150337)		<0.5	1.51	<1	3	<0.5	<1	2.06	<0.5	1	105	1660	20.5	7.37	<5
E5840295 (4150338)		<0.5	1.64	<1	2	<0.5	<1	2.15	<0.5	1	105	2000	12.5	7.44	<5
E5840296 (4150339)		<0.5	1.77	2	3	<0.5	<1	2.46	<0.5	1	105	1660	16.5	7.08	<5
E5840297 (4150340)		<0.5	1.80	<1	3	<0.5	<1	2.40	<0.5	1	109	1810	15.3	7.29	<5

Certificate of Analysis

AGAT WORK ORDER: 22O927099

PROJECT: WR-22-CORE-04

CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

5623 McADAM ROAD

MISSISSAUGA, ONTARIO

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	1etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Ju	1 28, 2022		Γ	DATE RECE	EIVED: Jul 2	29, 2022		DATE	REPORTED): Sep 02, 20)22	SAM	PLE TYPE:	Drill Core	
	Analyte:	In	К	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840260 (4150303)		<1	0.72	11	14	4.12	1160	1.7	2.07	7450	614	28	<10	3.06	<1
E5840261 (4150304)		<1	0.01	<2	<1	20.5	1260	<0.5	0.01	1670	73	<1	<10	0.04	15
E5840262 (4150305)		<1	0.01	<2	<1	20.8	1290	<0.5	0.03	1690	53	<1	<10	0.03	20
E5840263 (4150306)		<1	<0.01	<2	1	21.3	1280	<0.5	0.01	1690	50	<1	<10	0.05	21
E5840264 (4150307)		<1	<0.01	<2	<1	19.1	1160	<0.5	0.01	1290	42	1	<10	0.03	15
E5840265 (4150308)		<1	<0.01	<2	<1	21.0	1230	<0.5	<0.01	1640	69	<1	<10	0.04	22
E5840266 (4150309)		<1	0.01	<2	1	21.5	1130	<0.5	0.02	1630	49	<1	<10	0.02	15
E5840267 (4150310)		<1	0.01	<2	<1	20.6	1100	<0.5	0.01	1620	55	<1	<10	0.02	14
E5840268 (4150311)		<1	<0.01	<2	1	20.8	1200	<0.5	0.01	1740	66	<1	<10	0.05	21
E5840269 (4150312)		<1	0.01	<2	1	20.3	979	<0.5	0.02	1560	59	<1	<10	0.02	14
E5840270 (4150313)		<1	1.30	8	9	0.71	249	<0.5	2.93	31.6	196	<1	<10	<0.01	<1
E5840271 (4150314)		<1	0.01	<2	1	20.5	961	<0.5	0.02	1550	51	<1	<10	0.01	20
E5840272 (4150315)		<1	0.02	<2	1	19.9	948	<0.5	0.02	1490	62	<1	<10	0.01	14
E5840273 (4150316)		<1	<0.01	<2	1	20.2	1060	<0.5	0.02	1600	53	<1	<10	0.04	21
E5840274 (4150317)		<1	0.01	<2	1	19.5	965	<0.5	0.01	1400	54	<1	<10	0.02	13
E5840275 (4150318)		<1	0.01	<2	2	19.9	1110	<0.5	0.02	1540	67	<1	<10	0.04	19
E5840276 (4150319)		<1	0.02	<2	2	20.2	1060	< 0.5	0.02	1550	85	<1	<10	0.04	20
E5840277 (4150320)		<1	0.01	<2	1	20.2	1090	< 0.5	0.03	1560	78	<1	<10	0.05	17
E5840278 (4150321)		<1	0.01	<2	1	20.3	1060	<0.5	0.02	1450	76	<1	<10	0.03	18
E5840279 (4150322)		<1	<0.01	<2	1	20.3	1100	< 0.5	0.02	1610	60	<1	<10	0.05	23
E5840280 (4150323)		<1	<0.01	<2	1	19.9	1100	<0.5	0.02	1590	62	<1	<10	0.05	19
E5840281 (4150324)		<1	0.01	<2	1	20.3	1080	<0.5	0.02	1540	64	<1	<10	0.03	20
E5840282 (4150325)		<1	0.02	<2	2	20.6	1050	<0.5	0.03	1640	88	2	<10	0.03	20
E5840283 (4150326)		<1	0.03	<2	2	21.3	1240	<0.5	0.03	1650	146	2	<10	0.03	17
E5840284 (4150327)		<1	0.02	<2	2	21.1	1100	<0.5	0.02	1680	72	<1	<10	0.04	17
E5840285 (4150328)		<1	0.02	<2	2	20.2	1200	<0.5	0.02	1710	101	<1	<10	0.07	24
E5840286 (4150329)		<1	0.01	<2	2	19.7	1310	<0.5	0.02	1570	261	<1	<10	0.06	25
E5840287 (4150330)		<1	0.02	<2	3	19.9	1200	<0.5	0.02	1660	88	<1	<10	0.06	24
E5840288 (4150331)		<1	0.02	<2	2	21.3	1050	<0.5	0.02	1670	75	<1	<10	0.03	13
E5840289 (4150332)		<1	0.02	<2	1	20.1	1150	<0.5	0.02	1490	80	<1	<10	0.02	21
E5840290 (4150333)		<1	0.63	9	16	4.06	1420	2.0	1.77	3530	630	15	<10	1.60	<1
E5840291 (4150334)		<1	0.01	<2	2	20.6	1180	<0.5	0.02	1460	67	<1	<10	0.05	23

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O927099

PROJECT: WR-22-CORE-04

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	201-070)	4 Acid D	igest - N	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Ju	l 28, 2022		[DATE RECE	EIVED: Jul 2	29, 2022		DATE I	REPORTED	: Sep 02, 20	022	SAM	PLE TYPE:	Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840292 (4150335)		<1	0.01	<2	2	20.2	1100	<0.5	0.02	1380	80	<1	<10	0.03	19
E5840293 (4150336)		<1	0.01	<2	1	19.8	1100	<0.5	0.02	1330	60	<1	<10	0.04	21
E5840294 (4150337)		<1	0.01	<2	2	19.3	1030	<0.5	0.02	1430	76	<1	<10	0.04	17
E5840295 (4150338)		<1	< 0.01	<2	2	20.1	1180	<0.5	0.02	1450	68	<1	<10	0.06	24
E5840296 (4150339)		<1	0.01	<2	2	21.1	1180	<0.5	0.02	1490	49	<1	<10	0.03	17
E5840297 (4150340)		<1	0.01	<2	2	21.2	1150	<0.5	0.02	1440	70	<1	<10	0.03	20

Certificate of Analysis

AGAT WORK ORDER: 22O927099

PROJECT: WR-22-CORE-04

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Jul	28, 2022		[DATE RECE	EIVED: Jul 2	29, 2022		DATE F	REPORTED): Sep 02, 20	022	SAM	PLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840260 (4150303)		13	<10	<5	300	<10	16	<5	0.58	<5	<5	99.6	4	12	118
E5840261 (4150304)		11	<10	<5	3	<10	14	<5	0.07	<5	<5	42.1	1	3	58.3
E5840262 (4150305)		11	<10	<5	4	<10	17	<5	0.06	<5	<5	39.3	1	3	60.5
E5840263 (4150306)		12	<10	<5	3	<10	11	<5	0.06	<5	<5	43.5	<1	3	63.5
E5840264 (4150307)		9	<10	<5	3	<10	20	<5	0.05	<5	<5	33.6	3	3	53.7
E5840265 (4150308)		12	<10	<5	3	<10	14	<5	0.07	<5	<5	43.8	2	3	66.5
E5840266 (4150309)		11	<10	<5	4	<10	13	<5	0.06	<5	<5	36.2	<1	3	58.6
E5840267 (4150310)		11	<10	<5	3	<10	14	<5	0.06	<5	<5	39.0	<1	3	57.2
E5840268 (4150311)		12	<10	<5	3	<10	<10	<5	0.07	<5	<5	48.3	1	3	62.0
E5840269 (4150312)		12	<10	<5	4	<10	14	<5	0.07	<5	<5	41.7	2	3	49.7
E5840270 (4150313)		6	<10	<5	359	<10	<10	<5	0.14	<5	<5	37.0	<1	6	15.3
E5840271 (4150314)		12	<10	<5	4	<10	11	<5	0.08	<5	<5	43.8	1	3	47.2
E5840272 (4150315)		12	<10	<5	5	<10	13	<5	0.07	<5	<5	38.4	<1	3	47.8
E5840273 (4150316)		13	<10	<5	3	<10	11	<5	0.08	<5	<5	52.9	1	3	60.1
E5840274 (4150317)		11	<10	<5	3	<10	12	<5	0.08	<5	<5	38.6	2	3	49.9
E5840275 (4150318)		13	<10	<5	5	<10	11	<5	0.09	<5	<5	48.5	<1	3	61.0
E5840276 (4150319)		13	<10	<5	5	<10	11	<5	0.10	<5	<5	49.8	1	4	64.0
E5840277 (4150320)		12	<10	<5	4	<10	11	<5	0.09	<5	<5	48.8	2	4	65.1
E5840278 (4150321)		12	<10	<5	4	<10	13	<5	0.10	<5	<5	42.4	1	4	55.8
E5840279 (4150322)		14	<10	<5	4	<10	12	<5	0.09	<5	<5	49.6	2	3	63.8
E5840280 (4150323)		13	<10	<5	4	<10	11	<5	0.09	<5	<5	46.3	2	4	62.7
E5840281 (4150324)		13	<10	<5	5	<10	12	<5	0.09	<5	<5	42.0	1	4	59.1
E5840282 (4150325)		14	<10	<5	6	<10	<10	<5	0.09	<5	<5	54.9	<1	4	57.9
E5840283 (4150326)		13	<10	<5	7	<10	<10	<5	0.12	<5	<5	50.2	1	6	60.3
E5840284 (4150327)		13	<10	<5	6	<10	<10	<5	0.11	<5	<5	56.1	<1	4	60.0
E5840285 (4150328)		14	<10	<5	5	<10	<10	8	0.11	<5	<5	65.2	1	5	63.0
E5840286 (4150329)		14	<10	<5	7	<10	<10	<5	0.21	<5	<5	81.1	3	8	65.1
E5840287 (4150330)		15	<10	<5	4	<10	<10	<5	0.11	<5	<5	69.7	1	5	65.0
E5840288 (4150331)		14	<10	<5	5	<10	<10	9	0.09	<5	<5	53.8	<1	4	55.9
E5840289 (4150332)		15	<10	<5	6	<10	12	<5	0.09	<5	<5	52.3	1	4	57.2
E5840290 (4150333)		13	<10	<5	253	<10	14	<5	0.75	<5	<5	111	6	13	94.0
E5840291 (4150334)		16	<10	<5	4	<10	13	<5	0.11	<5	<5	52.6	1	4	63.8

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O927099

PROJECT: WR-22-CORE-04

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Ju	l 28, 2022		[DATE RECE	EIVED: Jul 2	29, 2022		DATE I	REPORTED	: Sep 02, 20	022	SAM	PLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840292 (4150335)		16	<10	<5	5	<10	11	<5	0.11	<5	<5	58.3	1	4	58.8
E5840293 (4150336)		15	<10	<5	4	<10	13	<5	0.09	<5	<5	50.6	2	3	60.9
E5840294 (4150337)		17	<10	<5	4	<10	13	<5	0.08	<5	<5	55.2	2	4	58.3
E5840295 (4150338)		15	<10	<5	4	<10	12	<5	0.10	<5	<5	62.5	2	4	67.9
E5840296 (4150339)		14	<10	<5	5	<10	13	<5	0.09	<5	<5	58.7	2	4	57.2
E5840297 (4150340)		15	<10	<5	5	<10	13	<5	0.10	<5	<5	62.6	1	4	60.0

Certified By:

AGAT WORK ORDER: 220927099

PROJECT: WR-22-CORE-04

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

OLIENT WANE. OR			(201 070) / Acid Digost Motol	s Backago ICB OES finish	
			(201-070) 4 Acid Digest - Metal	<u> </u>	
DATE SAMPLED: Jul	28, 2022		DATE RECEIVED: Jul 29, 2022	DATE REPORTED: Sep 02, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840260 (4150303)		49			
E5840261 (4150304)		9			
E5840262 (4150305)		7			
E5840263 (4150306)		7			
E5840264 (4150307)		6			
E5840265 (4150308)		7			
E5840266 (4150309)		7			
E5840267 (4150310)		7			
E5840268 (4150311)		8			
E5840269 (4150312)		8			
E5840270 (4150313)		45			
E5840271 (4150314)		9			
E5840272 (4150315)		8			
E5840273 (4150316)		9			
E5840274 (4150317)		8			
E5840275 (4150318)		10			
E5840276 (4150319)		11			
E5840277 (4150320)		10			
E5840278 (4150321)		11			
E5840279 (4150322)		9			
E5840280 (4150323)		10			
E5840281 (4150324)		11			
E5840282 (4150325)		11			
E5840283 (4150326)		20			
E5840284 (4150327)		10			
E5840285 (4150328)		15			
E5840286 (4150329)		23			
E5840287 (4150330)		14			
E5840288 (4150331)		11			
E5840289 (4150332)		10			
E5840290 (4150333)		58			
E5840291 (4150334)		10			

AGAT WORK ORDER: 22O927099

PROJECT: WR-22-CORE-04

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metal:	s Package, ICP-OES finish	
DATE SAMPLED: Jul	I 28, 2022		DATE RECEIVED: Jul 29, 2022	DATE REPORTED: Sep 02, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840292 (4150335)		11			
E5840293 (4150336)		9			
E5840294 (4150337)		10			
E5840295 (4150338)		9			
E5840296 (4150339)		9			
E5840297 (4150340)		10			

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

Kuyki

⁴¹⁵⁰³⁰³⁻⁴¹⁵⁰³⁴⁰ As, Sb values may be low due to digestion losses.

AGAT WORK ORDER: 22O927099

PROJECT: WR-22-CORE-04

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP ATTENTION TO: Arnaud Fontaine

		(2	02-555)	Fire Assay - Au, Pt, Pd Trace I	_evels, ICP-OES finish (50g charge)	
DATE SAMPLED: Jul	28, 2022			DATE RECEIVED: Jul 29, 2022	DATE REPORTED: Sep 02, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840260 (4150303)		0.168	1.34	0.715		
E5840261 (4150304)		0.006	0.016	<0.005		
E5840262 (4150305)		0.005	0.040	<0.005		
E5840263 (4150306)		0.003	< 0.001	<0.005		
E5840264 (4150307)		0.008	0.018	<0.005		
E5840265 (4150308)		0.005	0.013	<0.005		
E5840266 (4150309)		0.004	0.004	<0.005		
E5840267 (4150310)		0.004	0.060	0.017		
E5840268 (4150311)		0.003	< 0.001	<0.005		
E5840269 (4150312)		0.003	< 0.001	<0.005		
E5840270 (4150313)		0.003	< 0.001	<0.005		
E5840271 (4150314)		0.003	< 0.001	<0.005		
E5840272 (4150315)		0.003	< 0.001	<0.005		
E5840273 (4150316)		0.003	0.001	<0.005		
E5840274 (4150317)		0.003	0.004	<0.005		
E5840275 (4150318)		0.003	< 0.001	<0.005		
E5840276 (4150319)		0.003	< 0.001	<0.005		
E5840277 (4150320)		0.005	< 0.001	<0.005		
E5840278 (4150321)		0.003	< 0.001	<0.005		
E5840279 (4150322)		0.004	< 0.001	<0.005		
E5840280 (4150323)		0.003	<0.001	<0.005		
E5840281 (4150324)		0.009	0.029	<0.005		
E5840282 (4150325)		0.003	0.003	<0.005		
E5840283 (4150326)		0.003	< 0.001	<0.005		
E5840284 (4150327)		0.003	<0.001	<0.005		
E5840285 (4150328)		0.003	< 0.001	<0.005		
E5840286 (4150329)		0.003	<0.001	<0.005		
E5840287 (4150330)		0.003	< 0.001	<0.005		
E5840288 (4150331)		0.003	<0.001	<0.005		
E5840289 (4150332)		0.002	< 0.001	<0.005		
E5840290 (4150333)		0.086	0.611	0.297		
E5840291 (4150334)		0.002	<0.001	<0.005		

AGAT WORK ORDER: 22O927099

PROJECT: WR-22-CORE-04

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)											
DATE SAMPLED: Jul	28, 2022			DATE RECEIVE	ED: Jul 29, 2022	DATE REPORTED: Sep 02, 2022	SAMPLE TYPE: Drill Core				
	Analyte:	Au	Pd	Pt							
	Unit:	ppm	ppm	ppm							
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005							
E5840292 (4150335)		0.003	< 0.001	<0.005							
E5840293 (4150336)		0.003	< 0.001	< 0.005							
E5840294 (4150337)		0.003	<0.001	<0.005							
E5840295 (4150338)		0.003	< 0.001	< 0.005							
E5840296 (4150339)		0.003	< 0.001	< 0.005							
E5840297 (4150340)		0.003	< 0.001	<0.005							

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

AGAT WORK ORDER: 22O927099

PROJECT: WR-22-CORE-04

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passi	ng (Crushing)	
DATE SAMPLED: Jul	*		DATE RECEIVED: Jul 29, 2022	DATE REPORTED: Sep 02, 2022	SAMPLE TYPE: Drill Core
	Analyte: C	rush-Pass %			
	Unit:	%			
Sample ID (AGAT ID)	RDL:	0.01			
E5840261 (4150304)		79.40			
E5840279 (4150322)		83.67			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

AGAT WORK ORDER: 22O927099

PROJECT: WR-22-CORE-04

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passing	g (Pulverizing)	
DATE SAMPLED: Jul	28, 2022		DATE RECEIVED: Jul 29, 2022	DATE REPORTED: Sep 02, 2022	SAMPLE TYPE: Drill Core
	Analyte: Pu	ıl-Pass %			
	Unit:	%			
Sample ID (AGAT ID)	RDL:	0.01			
E5840261 (4150304)		87.27			
E5840278 (4150321)		85.14			
E5840297 (4150340)		85.48			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

Quality Assurance - Replicate AGAT WORK ORDER: 220927099 PROJECT: WR-22-CORE-04 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(201	1-070) 4	Acid Di	gest - N	/letals F	Package	ICP-O	ES finis	h		
		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3			
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD		
Ag	4150304	< 0.5	< 0.5	0.0%	4150317	< 0.5	< 0.5	0.0%	4150328	< 0.5	< 0.5	0.0%		
Al	4150304	1.19	1.25	4.9%	4150317	1.37	1.42	3.6%	4150328	1.50	1.56	3.9%		
As	4150304	< 1	< 1	0.0%	4150317	< 1	< 1	0.0%	4150328	< 1	< 1	0.0%		
Ва	4150304	3	3	0.0%	4150317	3	3	0.0%	4150328	4	4	0.0%		
Be	4150304	< 0.5	< 0.5	0.0%	4150317	< 0.5	< 0.5	0.0%	4150328	< 0.5	< 0.5	0.0%		
Bi	4150304	< 1	< 1	0.0%	4150317	< 1	< 1	0.0%	4150328	< 1	< 1	0.0%		
Ca	4150304	1.09	1.23	12.1%	4150317	1.28	1.34	4.6%	4150328	1.74	1.86	6.7%		
Cd	4150304	< 0.5	< 0.5	0.0%	4150317	< 0.5	< 0.5	0.0%	4150328	< 0.5	< 0.5	0.0%		
Ce	4150304	2	2	0.0%	4150317	< 1	< 1	0.0%	4150328	3	3	0.0%		
Co	4150304	108	106	1.9%	4150317	109	109	0.0%	4150328	96.1	93.1	3.2%		
Cr	4150304	1640	1580	3.7%	4150317	1420	1590	11.3%	4150328	2060	2050	0.5%		
Cu	4150304	28.2	29.9	5.9%	4150317	62.1	52.7	16.4%	4150328	55.4	169			
Fe	4150304	7.35	6.97	5.3%	4150317	7.66	8.13	6.0%	4150328	7.62	8.11	6.2%		
Ga	4150304	< 5	< 5	0.0%	4150317	4	5	22.2%	4150328	< 5	< 5	0.0%		
ln	4150304	< 1	< 1	0.0%	4150317	< 1	< 1	0.0%	4150328	< 1	< 1	0.0%		
K	4150304	0.01	0.01	0.0%	4150317	0.01	0.01	0.0%	4150328	0.02	0.02	0.0%		
La	4150304	< 2	< 2	0.0%	4150317	< 2	< 2	0.0%	4150328	< 2	< 2	0.0%		
Li	4150304	< 1	< 1	0.0%	4150317	1	1	0.0%	4150328	2	2	0.0%		
Mg	4150304	20.5	21.0	2.4%	4150317	19.5	20.3	4.0%	4150328	20.2	21.2	4.8%		
Mn	4150304	1260	1310	3.9%	4150317	965	992	2.8%	4150328	1200	1250	4.1%		
Мо	4150304	< 0.5	< 0.5	0.0%	4150317	< 0.5	< 0.5	0.0%	4150328	< 0.5	< 0.5	0.0%		
Na	4150304	0.01	0.01	0.0%	4150317	0.01	0.01	0.0%	4150328	0.02	0.02	0.0%		
Ni	4150304	1670	1690	1.2%	4150317	1400	1400	0.0%	4150328	1710	1690	1.2%		
Р	4150304	73	71	2.8%	4150317	54	51	5.7%	4150328	101	97	4.0%		
Pb	4150304	< 1	< 1	0.0%	4150317	< 1	< 1	0.0%	4150328	< 1	2			
Rb	4150304	< 10	< 10	0.0%	4150317	< 10	< 10	0.0%	4150328	< 10	< 10	0.0%		
S	4150304	0.04	0.04	0.0%	4150317	0.024	0.026	8.0%	4150328	0.07	0.07	0.0%		
Sb	4150304	15	22		4150317	13	16	20.7%	4150328	24	22	8.7%		
Sc	4150304	11	11	0.0%	4150317	11	11	0.0%	4150328	14	14	0.0%		
Se	4150304	< 10	< 10	0.0%	4150317	< 10	< 10	0.0%	4150328	< 10	< 10	0.0%		
Sn	4150304	< 5	< 5	0.0%	4150317	< 5	< 5	0.0%	4150328	< 5	< 5	0.0%		

Quality Assurance - Replicate AGAT WORK ORDER: 220927099 PROJECT: WR-22-CORE-04 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

Sr	4150304	3	3	0.0%	4150317	3	4	28.6%	4150328	5	5	0.0%		
Та	4150304	< 10	< 10	0.0%	4150317	< 10	< 10	0.0%	4150328	< 10	< 10	0.0%		
Te	4150304	14	12	15.4%	4150317	12	15	22.2%	4150328	< 10	< 10	0.0%		
Th	4150304	< 5	< 5	0.0%	4150317	< 5	< 5	0.0%	4150328	8	< 5			
Ti	4150304	0.067	0.075	11.3%	4150317	0.08	0.08	0.0%	4150328	0.11	0.11	0.0%		
TI	4150304	< 5	< 5	0.0%	4150317	< 5	< 5	0.0%	4150328	< 5	< 5	0.0%		
U	4150304	< 5	< 5	0.0%	4150317	< 5	< 5	0.0%	4150328	< 5	< 5	0.0%		
V	4150304	42.1	43.6	3.5%	4150317	38.6	41.2	6.5%	4150328	65.2	64.4	1.2%		
W	4150304	1	2		4150317	2	1		4150328	1	1	0.0%		
Υ	4150304	3	3	0.0%	4150317	3	3	0.0%	4150328	5	5	0.0%		
Zn	4150304	58.3	59.7	2.4%	4150317	49.9	52.2	4.5%	4150328	63.0	65.0	3.1%		
Zr	4150304	9	9	0.0%	4150317	8	8	0.0%	4150328	15	15	0.0%		

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)

		REPLIC	ATE #1		REPLICATE #2					REPLIC	ATE #3			
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD		
Au	4150304	0.006	0.006	0.0%	4150317	0.003	0.003	0.0%	4150328	0.003	0.003	0.0%		
Pd	4150304	0.016	0.023		4150317	0.004	0.004	0.0%	4150328	< 0.001	< 0.001	0.0%		
Pt	4150304	< 0.005	< 0.005	0.0%	4150317	< 0.005	0.006		4150328	< 0.005	< 0.005	0.0%		

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220927099 PROJECT: WR-22-CORE-04 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(20	1-070) 4	Acid [Digest -	Metals F	Package	e, ICP-0	DES fin	ish			
		CRM #1	(ref.GTS-2a)			CRM #2	2 (ref.Till-2)			CRM #3 (ref.PGMS30)			
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits			
Al	6.96	7.21			8.47	8.92									
As	124	111			26	29									
Ва	186	194			540	528									
Ве					4.0	3.9									
Ca	4.01	3.84			0.907	0.94									
Ce	24	19			98	102									
Со	22.1	20.5			15	12									
Cr					60.3	60.1									
Cu	88.6	97.6			150	170									
Fe	7.56	7.47			3.77	3.82									
K	2.021	2.204													
La					44	45									
Li					47	51									
Mg	2.412	2.415			1.10	1.13									
Mn	1510	1418			780	778									
Мо					14	13									
Na	0.617	0.69			1.624	1.817									
Ni	77.1	70.9			32	33									
Р	892	924			750	732									
Pb					31	25									
S	0.348	0.355													
Sc					12	12									
Sr	92.8	91.3			144	153									
Th					18.4	13.4									
Ti					0.53	0.48									
V					77	80									
W					5	5									
Zn	208	200			130	124									
			(202	-555) Fir	e Assay	/ - Au,	Pt, Pd 7	race Le	vels, IC	P-OES	finish	(50g cha	rge)		
		CRM #1 (ref.PGMS30)		CRM #2 ((ref.PGMS30))		CRM #3 (ref.PGMS30)			
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits			

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220927099

PROJECT: WR-22-CORE-04

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTI	DN TO: Arnaud	Fontaine
---------	---------------	----------

Au	1.897	1.892		1.897	1.848		1.897	1.763			
Pd	1.660	1.762		1.660	1.65		1.660	1.697			
Pt	0.223	0.219		0.223	0.221		0.223	0.205			

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-04

SAMPLING SITE:

AGAT WORK ORDER: 22O927099 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Bi	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Geochem v. i	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
La	MIN-200-12034	Geochem v. i	ICP/OES
Li	MIN-200-12034	Geochem v.1	ICP/OES
Mg	MIN-200-12034	Geochem V.1	ICP/OES
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Na	MIN-200-12034	Geochem v. i	ICF/OE3
Ni	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

Method Summary

CLIENT NAME: ORFORD MINING CORP

AGAT WORK ORDER: 22O927099 PROJECT: WR-22-CORE-04 ATTENTION TO: Arnaud Fontaine

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.		SAMPLED B1.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
П	MIN-200-12034	Geochem v.1	ICF/OE3
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-12006, MIN-12004		ICP/OES
Pd	MIN-12006, MIN-12004		ICP/OES
Pt	MIN-12006, MIN-12004		ICP/OES
Crush-Pass %			BALANCE
Pul-Pass %			BALANCE

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-CORE-03

AGAT WORK ORDER: 220927972

SOLID ANALYSIS REVIEWED BY: Jeffrey Xiong, Lab Team Lead

DATE REPORTED: Sep 28, 2022

PAGES (INCLUDING COVER): 21

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 21

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

AGAT WORK ORDER: 220927972

PROJECT: WR-22-CORE-03

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

CLIENT NAME. ON	OILD MINN	10 001(1		ATTENTION TO. ATTIAUU F	Ontaine
			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Au	g 01, 2022		DATE RECEIVED: Aug 02, 2022	DATE REPORTED: Sep 28, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840223 (4158104)		2.060			
E5840224 (4158105)		1.600			
E5840225 (4158106)		1.870			
E5840226 (4158107)		2.010			
E5840227 (4158108)		2.360			
E5840228 (4158109)		2.170			
E5840229 (4158110)		2.290			
E5840230 (4158111)		0.070			
E5840231 (4158112)		2.140			
E5840232 (4158113)		2.030			
E5840233 (4158114)		2.120			
E5840234 (4158115)		1.910			
E5840235 (4158116)		2.030			
E5840236 (4158117)		2.130			
E5840237 (4158118)		3.000			
E5840238 (4158119)		3.160			
E5840239 (4158120)		2.880			
E5840240 (4158121)		0.200			
E5840241 (4158122)		3.200			
E5840242 (4158123)		3.120			
E5840243 (4158124)		3.100			
E5840244 (4158125)		3.070			
E5840245 (4158126)		3.010			
E5840246 (4158127)		2.950			
E5840247 (4158128)		2.790			
E5840248 (4158129)		3.260			
E5840249 (4158130)		1.180			
E5840250 (4158131)		1.340			
E5840251 (4158132)		3.310			
E5840252 (4158133)		2.920			
E5840253 (4158134)		2.350			

AGAT WORK ORDER: 220927972

PROJECT: WR-22-CORE-03

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(200-) Sample Login Weight												
DATE SAMPLED: Au	g 01, 2022		DATE RECEIVED: Aug 02, 2022	DATE REPORTED: Sep 28, 2022	SAMPLE TYPE: Drill Core							
	Analyte:	Sample Login Weight										
	Unit:	kg										
Sample ID (AGAT ID)	RDL:	0.005										
E5840254 (4158135)		1.860										
E5840255 (4158136)		2.300										
E5840256 (4158137)		2.480										
E5840257 (4158138)		1.410										
E5840258 (4158139)		2.580										
E5840259 (4158140)		3.070										

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 22O927972

PROJECT: WR-22-CORE-03

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 01, 2022			DATE RECE	EIVED: Aug	02, 2022		DATE I	REPORTED	: Sep 28, 20)22	SAMPLE TYPE: Drill Core			
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840223 (4158104)		<0.5	1.33	<1	4	<0.5	<1	1.18	<0.5	2	106	2640	48.1	6.25	<5
E5840224 (4158105)		<0.5	1.44	3	3	<0.5	<1	0.87	<0.5	3	111	3080	29.0	6.34	<5
E5840225 (4158106)		<0.5	1.53	<1	2	<0.5	<1	0.87	<0.5	5	113	2840	33.2	8.80	5
E5840226 (4158107)		<0.5	1.24	<1	3	<0.5	<1	1.15	<0.5	1	111	2470	10.7	6.71	<5
E5840227 (4158108)		<0.5	1.18	<1	3	<0.5	<1	0.83	<0.5	2	114	2300	14.8	8.91	<5
E5840228 (4158109)		<0.5	1.34	<1	2	<0.5	<1	0.86	<0.5	3	113	2400	51.4	6.54	<5
E5840229 (4158110)		<0.5	1.16	<1	3	<0.5	<1	1.56	<0.5	2	110	2200	15.6	7.09	<5
E5840230 (4158111)		1.9	6.77	<1	196	1.6	<1	3.57	<0.5	24	102	165	4420	12.2	21
E5840231 (4158112)		<0.5	1.05	<1	3	<0.5	<1	1.08	<0.5	1	90.9	1510	9.5	4.70	<5
E5840232 (4158113)		<0.5	1.44	1	2	<0.5	<1	0.97	<0.5	6	126	2800	56.2	8.75	10
E5840233 (4158114)		<0.5	1.28	<1	3	<0.5	<1	1.10	<0.5	1	111	1970	22.7	6.49	<5
E5840234 (4158115)		<0.5	1.25	<1	3	<0.5	<1	1.57	<0.5	2	111	1910	14.6	7.45	<5
E5840235 (4158116)		<0.5	1.38	<1	1	<0.5	<1	1.23	<0.5	2	109	1630	49.3	6.34	<5
E5840236 (4158117)		<0.5	1.55	<1	2	<0.5	<1	1.93	<0.5	1	108	1340	28.6	5.82	<5
E5840237 (4158118)		<0.5	1.52	2	28	<0.5	<1	1.37	<0.5	1	112	1440	35.4	5.76	<5
E5840238 (4158119)		<0.5	1.50	<1	2	<0.5	<1	1.51	<0.5	2	113	1540	53.4	8.66	<5
E5840239 (4158120)		<0.5	1.62	3	1	<0.5	<1	1.40	<0.5	3	112	1950	56.4	7.30	7
E5840240 (4158121)		<0.5	6.56	2	404	1.1	<1	1.69	<0.5	20	5.3	22.1	6.9	1.38	21
E5840241 (4158122)		<0.5	1.11	<1	2	<0.5	<1	1.35	<0.5	1	113	2050	13.4	6.45	<5
E5840242 (4158123)		<0.5	1.29	1	4	<0.5	<1	1.54	<0.5	1	119	2040	15.6	5.96	<5
E5840243 (4158124)		<0.5	1.61	<1	3	<0.5	<1	1.54	<0.5	1	116	4560	14.8	5.98	<5
E5840244 (4158125)		<0.5	1.13	<1	2	<0.5	<1	1.16	<0.5	1	127	2150	18.7	6.26	<5
E5840245 (4158126)		<0.5	1.11	<1	2	<0.5	<1	1.01	<0.5	1	119	2430	11.5	8.54	<5
E5840246 (4158127)		<0.5	1.21	<1	2	<0.5	<1	1.01	<0.5	1	109	2620	7.0	7.17	<5
E5840247 (4158128)		<0.5	1.22	<1	2	<0.5	<1	0.84	<0.5	1	114	2950	13.1	8.26	<5
E5840248 (4158129)		<0.5	1.29	<1	2	<0.5	<1	1.44	<0.5	1	125	2170	18.8	7.90	<5
E5840249 (4158130)		<0.5	1.25	<1	2	<0.5	<1	1.18	<0.5	2	110	2070	72.5	6.77	<5
E5840250 (4158131)		<0.5	1.15	<1	1	<0.5	<1	1.07	<0.5	1	115	2350	106	7.85	<5
E5840251 (4158132)		<0.5	1.19	<1	2	<0.5	<1	1.24	<0.5	1	112	2280	33.3	7.01	<5
E5840252 (4158133)		<0.5	0.93	<1	1	<0.5	<1	0.51	<0.5	1	138	3270	41.7	9.06	<5
E5840253 (4158134)		<0.5	0.89	<1	1	<0.5	<1	0.66	<0.5	2	122	3100	170	6.09	<5
E5840254 (4158135)		<0.5	1.00	<1	1	<0.5	<1	0.79	<0.5	1	108	3290	187	5.96	<5

Certificate of Analysis

AGAT WORK ORDER: 22O927972

PROJECT: WR-22-CORE-03

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	(201-070) 4 Acid Digest - Metals Package, ICP-OES finish														
DATE SAMPLED: Aug 01, 2022 DATE RECEIVED: Aug 02, 2022 DATE REPORTED: Sep 28, 2022 SAMPLE TYPE:												Drill Core			
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840255 (4158136)		<0.5	1.11	<1	2	<0.5	<1	0.87	<0.5	1	127	3240	113	6.52	<5
E5840256 (4158137)		<0.5	1.04	<1	1	<0.5	<1	0.77	<0.5	1	121	3440	141	7.31	<5
E5840257 (4158138)		<0.5	0.93	<1	1	<0.5	<1	0.59	<0.5	1	149	3280	230	11.2	<5
E5840258 (4158139)		<0.5	1.09	<1	3	<0.5	<1	1.58	<0.5	1	119	2080	18.4	7.28	<5
E5840259 (4158140)		<0.5	1.03	<1	2	<0.5	<1	0.65	<0.5	1	117	3010	48.8	6.55	<5

Certificate of Analysis

AGAT WORK ORDER: 22O927972

PROJECT: WR-22-CORE-03

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - N	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 01, 2022		С	ATE RECE	EIVED: Aug	02, 2022		DATE	REPORTED): Sep 28, 20)22	SAMPLE TYPE: Drill Core			
	Analyte:	In	К	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840223 (4158104)		<1	0.02	<2	1	19.3	1240	<0.5	0.02	1750	60	<1	<10	0.06	36
E5840224 (4158105)		<1	<0.01	<2	<1	19.8	1210	<0.5	<0.01	1800	87	<1	<10	0.07	45
E5840225 (4158106)		<1	<0.01	<2	1	19.3	1320	<0.5	0.01	1470	164	1	<10	0.05	35
E5840226 (4158107)		<1	0.01	<2	<1	20.4	1130	<0.5	0.01	1660	57	<1	<10	0.04	34
E5840227 (4158108)		<1	0.01	<2	<1	19.8	1160	<0.5	0.01	1590	54	<1	<10	0.05	32
E5840228 (4158109)		<1	0.01	<2	<1	19.1	1220	<0.5	0.01	1610	87	<1	<10	0.05	33
E5840229 (4158110)		<1	0.01	<2	1	20.0	1170	<0.5	0.02	1670	45	<1	<10	0.02	29
E5840230 (4158111)		<1	0.47	10	13	3.50	1380	2.3	1.60	4280	611	17	<10	1.37	<1
E5840231 (4158112)		<1	0.01	<2	<1	17.1	894	< 0.5	0.01	1480	44	<1	<10	0.04	21
E5840232 (4158113)		<1	<0.01	<2	1	18.5	1200	< 0.5	<0.01	1590	124	<1	<10	0.05	39
E5840233 (4158114)		<1	0.01	<2	<1	20.6	1090	< 0.5	0.01	1690	59	<1	<10	0.04	26
E5840234 (4158115)		<1	0.01	<2	<1	20.8	1060	<0.5	0.01	1640	44	<1	<10	0.03	27
E5840235 (4158116)		<1	<0.01	<2	<1	19.9	1080	<0.5	0.01	1600	72	<1	<10	0.05	20
E5840236 (4158117)		<1	0.01	<2	1	19.7	1070	< 0.5	0.02	1630	85	<1	<10	0.05	20
E5840237 (4158118)		<1	<0.01	<2	1	18.0	1120	< 0.5	0.02	1520	70	<1	<10	0.05	18
E5840238 (4158119)		<1	<0.01	<2	1	18.9	1120	< 0.5	0.02	1460	74	<1	<10	0.04	18
E5840239 (4158120)		<1	< 0.01	<2	1	19.0	1190	<0.5	0.01	1420	110	<1	<10	0.05	23
E5840240 (4158121)		<1	1.30	10	8	0.56	280	<0.5	2.88	21.3	221	<1	<10	< 0.01	<1
E5840241 (4158122)		<1	0.01	<2	<1	20.8	1060	<0.5	0.01	1070	40	<1	<10	0.01	26
E5840242 (4158123)		<1	0.01	<2	<1	19.3	1050	<0.5	0.02	1690	55	<1	<10	0.03	30
E5840243 (4158124)		<1	0.01	<2	3	19.5	1190	<0.5	0.02	1630	59	<1	<10	0.05	66
E5840244 (4158125)		<1	< 0.01	<2	1	19.5	1060	<0.5	0.01	1200	46	<1	<10	0.02	28
E5840245 (4158126)		<1	<0.01	<2	<1	20.8	1130	<0.5	0.01	1140	47	1	<10	0.02	35
E5840246 (4158127)		<1	<0.01	<2	<1	20.7	1250	< 0.5	0.01	1570	38	<1	<10	0.05	36
E5840247 (4158128)		<1	<0.01	<2	<1	20.7	1230	<0.5	<0.01	1670	57	<1	<10	0.04	42
E5840248 (4158129)		<1	<0.01	<2	2	19.7	1250	< 0.5	0.01	1660	64	<1	<10	0.04	31
E5840249 (4158130)		<1	<0.01	<2	<1	21.4	1220	<0.5	0.01	1380	50	<1	<10	0.03	27
E5840250 (4158131)		<1	<0.01	<2	<1	19.6	1160	<0.5	0.01	1300	43	<1	<10	0.04	32
E5840251 (4158132)		<1	<0.01	<2	1	19.8	1230	<0.5	0.01	1350	53	<1	<10	0.04	31
E5840252 (4158133)		<1	<0.01	<2	<1	20.4	1230	<0.5	<0.01	1520	41	1	<10	0.05	45
E5840253 (4158134)		<1	<0.01	<2	<1	21.0	1360	<0.5	<0.01	1890	28	<1	<10	0.06	39
E5840254 (4158135)		<1	<0.01	<2	<1	20.8	1220	<0.5	< 0.01	1870	45	<1	<10	0.06	45

Certificate of Analysis

AGAT WORK ORDER: 22O927972

PROJECT: WR-22-CORE-03

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 01, 2022		[DATE RECE	EIVED: Aug	02, 2022		DATE REPORTED: Sep 28, 2022				SAM	PLE TYPE:	Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840255 (4158136)		<1	<0.01	<2	1	19.9	1320	<0.5	0.01	1850	41	1	<10	0.06	47
E5840256 (4158137)		<1	<0.01	<2	<1	20.3	1270	<0.5	<0.01	1980	44	<1	<10	0.07	51
E5840257 (4158138)		<1	<0.01	<2	<1	19.3	1300	<0.5	<0.01	1600	27	3	<10	0.05	41
E5840258 (4158139)		<1	0.01	<2	1	19.8	1220	<0.5	0.01	1710	44	<1	<10	0.01	28
E5840259 (4158140)		<1	<0.01	<2	<1	20.9	1290	<0.5	<0.01	1930	39	<1	<10	0.06	43

Certificate of Analysis

AGAT WORK ORDER: 22O927972

PROJECT: WR-22-CORE-03

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Aug	g 01, 2022		[DATE RECE	EIVED: Aug	02, 2022		DATE F	REPORTED	: Sep 28, 20	022	SAMPLE TYPE: Drill Core			
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840223 (4158104)		12	<10	<5	3	<10	<10	8	0.08	<5	<5	66.6	2	3	71.2
E5840224 (4158105)		12	<10	<5	2	<10	<10	11	0.10	<5	<5	77.2	3	4	75.2
E5840225 (4158106)		12	<10	<5	2	<10	<10	<5	0.15	<5	<5	91.5	3	6	68.9
E5840226 (4158107)		11	<10	<5	4	<10	<10	7	0.07	<5	<5	66.1	1	3	67.2
E5840227 (4158108)		10	<10	<5	2	<10	<10	<5	0.07	<5	<5	61.2	1	3	75.1
E5840228 (4158109)		10	<10	<5	2	<10	<10	9	0.09	<5	<5	68.4	2	4	67.5
E5840229 (4158110)		11	<10	<5	6	<10	<10	<5	0.07	<5	<5	58.2	<1	3	61.8
E5840230 (4158111)		13	<10	<5	230	<10	<10	<5	0.68	<5	<5	126	5	14	81.5
E5840231 (4158112)		9	<10	<5	3	<10	<10	12	0.06	<5	<5	47.0	1	2	51.1
E5840232 (4158113)		11	<10	<5	2	<10	<10	<5	0.13	<5	<5	82.8	6	6	71.1
E5840233 (4158114)		11	<10	<5	3	<10	<10	7	0.07	<5	<5	58.8	2	3	60.7
E5840234 (4158115)		11	<10	<5	4	<10	<10	<5	0.07	<5	<5	59.7	<1	3	58.3
E5840235 (4158116)		12	<10	<5	2	<10	<10	8	0.09	<5	<5	66.2	1	3	57.2
E5840236 (4158117)		13	<10	<5	4	<10	<10	10	0.10	<5	<5	69.4	1	4	53.1
E5840237 (4158118)		13	<10	<5	3	<10	<10	15	0.09	<5	<5	74.7	1	4	52.7
E5840238 (4158119)		12	<10	<5	3	<10	<10	<5	0.10	<5	<5	71.0	2	4	58.7
E5840239 (4158120)		12	<10	<5	3	<10	<10	6	0.13	<5	<5	78.7	2	5	61.9
E5840240 (4158121)		6	<10	<5	385	<10	<10	5	0.14	<5	11	41.9	<1	7	18.9
E5840241 (4158122)		11	<10	<5	4	<10	<10	7	0.06	<5	<5	55.8	1	3	58.8
E5840242 (4158123)		12	<10	<5	4	<10	<10	7	0.07	<5	<5	64.5	<1	3	59.6
E5840243 (4158124)		13	<10	<5	3	<10	<10	<5	0.09	<5	<5	92.1	1	3	90.7
E5840244 (4158125)		11	<10	<5	3	<10	<10	10	0.06	<5	<5	60.6	1	3	61.5
E5840245 (4158126)		10	<10	<5	3	<10	<10	<5	0.06	<5	<5	60.6	1	3	62.4
E5840246 (4158127)		11	<10	<5	3	<10	<10	10	0.07	<5	<5	66.6	1	3	71.7
E5840247 (4158128)		12	<10	<5	2	<10	<10	<5	0.07	<5	<5	70.5	2	3	72.1
E5840248 (4158129)		12	<10	<5	4	<10	<10	<5	0.08	<5	<5	69.6	1	3	67.8
E5840249 (4158130)		11	<10	<5	3	<10	<10	8	0.07	<5	<5	62.8	<1	3	62.2
E5840250 (4158131)		10	<10	<5	3	<10	<10	8	0.07	<5	<5	65.8	1	3	60.4
E5840251 (4158132)		11	<10	<5	3	<10	<10	6	0.07	<5	<5	62.9	1	3	63.0
E5840252 (4158133)		10	<10	<5	2	<10	<10	5	0.05	<5	<5	63.4	2	2	76.2
E5840253 (4158134)		10	<10	<5	2	<10	<10	7	0.04	<5	<5	59.5	1	2	71.9
E5840254 (4158135)		10	<10	<5	2	<10	<10	7	0.06	<5	<5	67.8	<1	3	78.8

Certificate of Analysis

AGAT WORK ORDER: 22O927972

PROJECT: WR-22-CORE-03

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Aug 01, 2022 DATE RECEIVED: Aug 02, 2022 DATE REPORTED: Sep 28, 2022 SAMPLE TYPE: Drill Core														
Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
	10	<10	<5	3	<10	<10	5	0.06	<5	<5	71.6	1	3	77.4
	10	<10	<5	2	<10	<10	<5	0.07	<5	<5	72.8	1	3	79.0
	9	<10	<5	2	<10	<10	<5	0.06	<5	<5	71.0	2	2	74.7
	11	<10	<5	5	<10	<10	6	0.06	<5	<5	56.2	2	3	61.7
	10	<10	<5	2	<10	<10	<5	0.06	<5	<5	64.7	1	2	77.1
	Analyte: Unit:	Analyte: Sc Unit: ppm RDL: 1 10 10 9 11	Analyte: Sc Se Unit: ppm ppm RDL: 1 10 10 <10 10 <10 9 <10 11 <10	DATE RECE Analyte: Sc Se Sn Unit: ppm ppm ppm RDL: 1 10 5 10 <10 <5 10 <10 <5 9 <10 <5 11 <10 <5	DATE RECEIVED: Aug Analyte: Sc Se Sn Sr Unit: ppm ppm ppm ppm RDL: 1 10 5 1 10 <10 <5 3 10 <10 <5 2 9 <10 <5 5 11 <10 <5 5	DATE RECEIVED: Aug 02, 2022 Analyte: Sc Se Sn Sr Ta Unit: ppm ppm ppm ppm ppm ppm RDL: 1 10 5 1 10 10 <10 <5 3 <10 10 <10 <5 2 <10 9 <10 <5 5 <10	DATE RECEIVED: Aug 02, 2022 Analyte: Sc Se Sn Sr Ta Te Unit: ppm ppm ppm ppm ppm ppm ppm RDL: 1 10 5 1 10 10 10 <10 <5 3 <10 <10 10 <10 <5 2 <10 <10 9 <10 <5 2 <10 <10 11 <10 <5 5 <10 <10	Analyte: Sc Se Sn Sr Ta Te Th Unit: ppm ppm ppm ppm ppm ppm ppm ppm RDL: 1 10 5 1 10 10 5 10 <10 <5 3 <10 <10 <5 10 <10 <5 10 <10 <5 2 <10 <10 <5 11 <10 <5 11 <10 <5 3 <10 <10 <5 40 <5 40 <10 <5 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40 <6 40	DATE RECEIVED: Aug 02, 2022 DATE REPORTED	Analyte: Sc Se Sn Sr Ta Te Th Ti Tl Unit: ppm ppm	DATE RECEIVED: Aug 02, 2022 DATE REPORTED: Sep 28, 2022	DATE RECEIVED: Aug 02, 2022 DATE REPORTED: Sep 28, 2022 SAM	DATE RECEIVED: Aug 02, 2022 DATE REPORTED: Sep 28, 2022 SAMPLE TYPE:	DATE RECEIVED: Aug 02, 2022 DATE REPORTED: Sep 28, 2022 SAMPLE TYPE: Drill Core

Certificate of Analysis

AGAT WORK ORDER: 220927972

PROJECT: WR-22-CORE-03

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	Package, ICP-OES finish	
DATE SAMPLED: Aug	g 01, 2022		DATE RECEIVED: Aug 02, 2022	DATE REPORTED: Sep 28, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840223 (4158104)		8			
E5840224 (4158105)		10			
E5840225 (4158106)		23			
E5840226 (4158107)		8			
E5840227 (4158108)		8			
E5840228 (4158109)		9			
E5840229 (4158110)		7			
E5840230 (4158111)		61			
E5840231 (4158112)		6			
E5840232 (4158113)		19			
E5840233 (4158114)		8			
E5840234 (4158115)		8			
E5840235 (4158116)		9			
E5840236 (4158117)		10			
E5840237 (4158118)		10			
E5840238 (4158119)		9			
E5840239 (4158120)		12			
E5840240 (4158121)		34			
E5840241 (4158122)		7			
E5840242 (4158123)		8			
E5840243 (4158124)		9			
E5840244 (4158125)		7			
E5840245 (4158126)		7			
E5840246 (4158127)		7			
E5840247 (4158128)		7			
E5840248 (4158129)		8			
E5840249 (4158130)		7			
E5840250 (4158131)		7			
E5840251 (4158132)		7			
E5840252 (4158133)		6			
E5840253 (4158134)		5			
E5840254 (4158135)		7			

AGAT WORK ORDER: 220927972

PROJECT: WR-22-CORE-03

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish										
DATE SAMPLED: Aug 01, 2022 DATE RECEIVED: Aug 02, 2022 DATE REPORTED: Sep 28, 2022 SAMPLE TYPE: Drill 0										
	Analyte:	Zr								
	Unit:	ppm								
Sample ID (AGAT ID)	RDL:	5								
E5840255 (4158136)		6								
E5840256 (4158137)		7								
E5840257 (4158138)		6								
E5840258 (4158139)		7								
E5840259 (4158140)		6								

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

4158104-4158140 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 220927972

PROJECT: WR-22-CORE-03

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	202-555)	Fire Assay - Au, Pt, Pd Trace I	evels, ICP-OES finish (50g charge)	
DATE SAMPLED: Au	g 01, 2022			DATE RECEIVED: Aug 02, 2022	DATE REPORTED: Sep 28, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840223 (4158104)		0.003	0.005	0.005		
E5840224 (4158105)		<0.001	<0.001	<0.005		
E5840225 (4158106)		<0.001	0.001	<0.005		
E5840226 (4158107)		<0.001	0.001	<0.005		
E5840227 (4158108)		<0.001	0.003	<0.005		
E5840228 (4158109)		0.001	0.003	<0.005		
E5840229 (4158110)		<0.001	0.004	<0.005		
E5840230 (4158111)		0.067	0.619	0.305		
E5840231 (4158112)		0.001	0.004	<0.005		
E5840232 (4158113)		<0.001	0.003	<0.005		
E5840233 (4158114)		< 0.001	0.005	<0.005		
E5840234 (4158115)		0.002	0.006	<0.005		
E5840235 (4158116)		0.003	0.008	<0.005		
E5840236 (4158117)		0.001	0.007	<0.005		
E5840237 (4158118)		< 0.001	0.003	<0.005		
E5840238 (4158119)		<0.001	0.007	0.006		
E5840239 (4158120)		0.002	0.006	<0.005		
E5840240 (4158121)		0.002	< 0.001	<0.005		
E5840241 (4158122)		< 0.001	0.003	<0.005		
E5840242 (4158123)		0.003	0.013	<0.005		
E5840243 (4158124)		0.002	0.010	<0.005		
E5840244 (4158125)		< 0.001	0.002	<0.005		
E5840245 (4158126)		< 0.001	0.005	<0.005		
E5840246 (4158127)		0.003	0.006	0.005		
E5840247 (4158128)		0.003	0.010	<0.005		
E5840248 (4158129)		<0.001	0.008	<0.005		
E5840249 (4158130)		0.004	0.047	<0.005		
E5840250 (4158131)		0.007	0.089	<0.005		
E5840251 (4158132)		< 0.001	0.020	<0.005		
E5840252 (4158133)		0.003	0.083	0.010		
E5840253 (4158134)		0.028	0.042	<0.005		
E5840254 (4158135)		0.004	0.001	<0.005		

Certified By:

fillson

AGAT WORK ORDER: 220927972

PROJECT: WR-22-CORE-03

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)											
DATE SAMPLED: Au	g 01, 2022			DATE RECE	IVED: Aug 02, 2022	DATE REPORTED: Sep 28, 2022	SAMPLE TYPE: Drill Core				
	Analyte:	Au	Pd	Pt							
	Unit:	ppm	ppm	ppm							
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005							
E5840255 (4158136)		0.002	0.001	< 0.005							
E5840256 (4158137)		0.002	< 0.001	< 0.005							
E5840257 (4158138)		0.003	0.006	< 0.005							
E5840258 (4158139)		< 0.001	0.018	< 0.005							
E5840259 (4158140)		0.002	0.002	< 0.005							

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O927972

PROJECT: WR-22-CORE-03

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

DATE SAMPLED: Aug 01, 2022		Sieving - % Passing (Crushing)										
DATE SAMPLED: Aug 01, 2022 DATE RECEIVED: Aug 02, 2022 DATE REPORTED: Sep 28, 2022 SAMPLE TYPE: Drill Core												
Analyte: Crush-	Pass %											
Unit:	%											
Sample ID (AGAT ID) RDL:	0.01											
E5840223 (4158104)	33.89											
E5840242 (4158123)	30.75											

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 220927972

PROJECT: WR-22-CORE-03

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

Sieving - % Passing (Pulverizing)											
DATE SAMPLED: Aug 01, 2022 DATE RECEIVED: Aug 02, 2022 DATE REPORTED: Sep 28, 2022 SAMPLE TYPE: Drill Core											
	Analyte: F	Pul-Pass %									
	Unit:	%									
Sample ID (AGAT ID)	RDL:	0.01									
E5840223 (4158104)		87.77									
E5840242 (4158123)		85.43									

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220927972 PROJECT: WR-22-CORE-03 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

REPLICATE #1 Replicate RPD Sample ID Original Replicate RPD RPD Replicate RPD RPD REPlicate RPD RPD RPD REPlicate RPD RP	
Ag 4158104 < 0.5 < 0.5 < 0.0% 4158118 < 0.5 < 0.5 < 0.0% 4158118 < 0.5 < 0.5 < 0.0% 4158118 < 0.5 < 0.5 < 0.0% 4158118 < 0.5 < 0.5 < 0.0% 4158118 < 0.5 < 0.5 < 0.0% 4158118 < 0.5 < 0.5 < 0.0% 4158118 < 0.5 < 0.5 < 0.0% 4158118 < 0.5 < 0.5 < 0.0% 4158118 < 0.5 < 0.5 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158129 < 0.0% 4158129 < 0.0% < 0.0% 4158118 < 0.0% 4158118 < 0.0% 4158129 < 0.0% 4158129 < 0.0% 4158129 < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0% < 0.0%	
AI 4158104 1.33 1.29 3.1% 4158118 1.52 1.54 1.3% 4158129 1.29 1.31 1.5% As 4158104 <1 <1 0.0% 4158118 2 <1 <1 <1 0.0% 4158118 2 <1 <1 <1 0.0% 4158118 2 <1 <1 <1 0.0% 4158118 2 <1 <1 <1 0.0% 4158118 2 <2 <1 <1 <1 <1 0.0% 4158129 <1 <1 <1 <1 0.0% 4158139 2 2 0.0% Be 4158104 4 4 0.0% 4158118 28 29 3.5% 4158129 2 2 0.0% Be 4158104 <1 <1 <1 0.0% 4158118 <0.5 <0.5 0.0% 4158129 <1 <1 <1 0.0% 0.0% Bi 4158104 <1 <1 <1 0.0% 4158118 <1 <1 <1 0.0% 4158129 <1 <1 <1 0.0% Ca 4158104 1.18 1.11 6.1% 4158118 <1.37 1.58 14.2% 4158129 <1 <1 0.0% Cd 4158104 2 1	
As 4158104 < 1 < 1 < 1 0.0% 4158118 2 < 1	
Ba 4158104 4 4 0.0% 4158118 28 29 3.5% 4158129 2 2 0.0% 1 Be 4158104 < 0.5	
Be 4158104 < 0.5 < 0.5 0.0% 4158118 < 0.5 < 0.5 0.0% 4158129 < 0.5 < 0.5 0.0% 0.0% BI Bi 4158104 < 1	
Bi	
Ca 4158104 1.18 1.11 6.1% 4158118 1.37 1.58 14.2% 4158129 1.44 1.37 5.0% Cd 4158104 < 0.5 < 0.5 0.0% 4158118	
Cd 4158104 < 0.5 < 0.5 0.0% 4158118 < 0.5 < 0.5 0.0% 4158129 < 0.5 < 0.5 0.0% Ce 4158104 2 1 4158118 1 2 4158129 1 2 -	
Ce 4158104 2 1 4158118 1 2 4158129 1 2	
Co 4158104 106 106 0.0% 4158118 112 112 0.0% 4158129 125 128 2.4% Cr 4158104 2640 2760 4.4% 4158118 1440 1370 5.0% 4158129 2170 2330 7.1% Cu 4158104 48.1 47.4 1.5% 4158118 35.4 40.5 13.4% 4158129 18.8 19.9 5.7% Fe 4158104 6.25 6.30 0.8% 4158118 5.76 6.52 12.4% 4158129 7.90 7.68 2.8% Ga 4158104 <5	
Cr 4158104 2640 2760 4.4% 4158118 1440 1370 5.0% 4158129 2170 2330 7.1% Cu 4158104 48.1 47.4 1.5% 4158118 35.4 40.5 13.4% 4158129 18.8 19.9 5.7% Fe 4158104 6.25 6.30 0.8% 4158118 5.76 6.52 12.4% 4158129 7.90 7.68 2.8% Ga 4158104 <5	
Cu 4158104 48.1 47.4 1.5% 4158118 35.4 40.5 13.4% 4158129 18.8 19.9 5.7% Fe 4158104 6.25 6.30 0.8% 4158118 5.76 6.52 12.4% 4158129 7.90 7.68 2.8% Ga 4158104 < 5	
Fe 4158104 6.25 6.30 0.8% 4158118 5.76 6.52 12.4% 4158129 7.90 7.68 2.8% Ga 4158104 < 5	
Ga 4158104 < 5 < 5 0.0% 4158118 < 5 6 4158129 < 5 < 5 0.0% In 4158104 < 1 < 1 0.0% 4158118 < 1 < 1 0.0% 4158129 < 1 < 1 0.0% K 4158104 0.016 0.013 20.7% 4158118 < 0.01 < 0.01 0.0% 4158129 < 0.01 < 0.01 0.0% La 4158104 < 2 < 2 0.0% 4158118 < 2 < 2 0.0% 4158129 < 2 < 2 0.0% Li 4158104 1 < 1 1 0.0% 4158128 1 1 0.0% 4158129 2 1 Mg 4158104 19.3 19.4 0.5% 4158118 18.0 19.7 9.0% 4158129 19.7 19.5 1.0% Mn 4158104 1240 1230 0.8% 4158118 1120 1160 3.5% 4158129 1250 1220 2.4% Mo 4158104 0.02 0.05 0.0% 4158118 0.02 0.02 0.0% 4158129 0.01 0.01 0.0% Na 4158104 1750 1700 2.9% 4158118 1520 1550 2.0% 4158129 1660 1670 0.6% P 4158104 60 56 6.9% 4158118 70 82 15.8% 4158129 64 70 9.0%	
In 4158104 <1 <1 0.0% 4158118 <1 <1 0.0% 4158129 <1 <1 0.0% K 4158104 0.016 0.013 20.7% 4158118 <0.01	
K 4158104 0.016 0.013 20.7% 4158118 < 0.01 < 0.01 0.0% 4158129 < 0.01 < 0.01 0.0% La 4158104 <2	
La 4158104 <2 <2 0.0% 4158118 <2 <2 0.0% 4158129 <2 <2 0.0% Li 4158104 1 <1	
Li 4158104 1 <1 4158118 1 1 0.0% 4158129 2 1 1 1 1 0.0% 4158129 2 1 1 1 1 0.0% 4158129 2 1 1 1 1 0.0% 4158129 2 1 1 1 0.0% 4158129 1 1 1 0.0% 4158129 1 1 1 0.0% 4158129 1 1 1 0.0% 4158129 1 1 1 0.0% 4158129 1 1 1 0.0% 1 0.0% 1 0.0% 1 0.0% 1 0.0% 1 0.0% 1 0.0% 1 0.0% 1 0.0% 1 0.0% 1 0.0% 1 0.0% 1 0.0% 0.0% 1 0.0% 1 0.0% 0.0% 1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.	
Mg 4158104 19.3 19.4 0.5% 4158118 18.0 19.7 9.0% 4158129 19.7 19.5 1.0% Mn 4158104 1240 1230 0.8% 4158118 1120 1160 3.5% 4158129 1250 1220 2.4% Mo 4158104 <0.5	
Mn 4158104 1240 1230 0.8% 4158118 1120 1160 3.5% 4158129 1250 1220 2.4% Mo 4158104 < 0.5	
Mo 4158104 < 0.5 < 0.5 0.0% 4158118 < 0.5 < 0.5 0.0% 4158129 < 0.5 < 0.5 0.0% Na 4158104 0.02 0.02 0.0% 4158118 0.02 0.02 0.0% 4158129 0.01 0.01 0.0% Ni 4158104 1750 1700 2.9% 4158118 1520 1550 2.0% 4158129 1660 1670 0.6% P 4158104 60 56 6.9% 4158118 70 82 15.8% 4158129 64 70 9.0%	
Na 4158104 0.02 0.02 0.0% 4158118 0.02 0.02 0.0% 4158129 0.01 0.01 0.0% Ni 4158104 1750 1700 2.9% 4158118 1520 1550 2.0% 4158129 1660 1670 0.6% P 4158104 60 56 6.9% 4158118 70 82 15.8% 4158129 64 70 9.0%	
Ni 4158104 1750 1700 2.9% 4158118 1520 1550 2.0% 4158129 1660 1670 0.6% P 4158104 60 56 6.9% 4158118 70 82 15.8% 4158129 64 70 9.0%	
P 4158104 60 56 6.9% 4158118 70 82 15.8% 4158129 64 70 9.0%	
FI 45040 4 4 0.00 45040 4 4 0.00 45040	
Pb 4158104 <1 <1 0.0% 4158118 <1 <1 0.0% 4158129 <1 <1 0.0%	
Rb 4158104 < 10 < 10 0.0% 4158118 < 10 < 10 0.0% 4158129 < 10 < 10 0.0%	
S 4158104 0.06 0.06 0.0% 4158118 0.05 0.05 0.0% 4158129 0.045 0.048 6.5%	
Sb 4158104 36 38 5.4% 4158118 18 19 5.4% 4158129 31 34 9.2%	
Sc 4158104 12 11 8.7% 4158118 13 13 0.0% 4158129 12 12 0.0%	
Se 4158104 < 10 < 10 0.0% 4158118 < 10 < 10 0.0% 4158129 < 10 < 10 0.0%	
Sn 4158104 <5 <5 0.0% 4158118 <5 <5 0.0% 4158129 <5 <5 0.0%	

Quality Assurance - Replicate AGAT WORK ORDER: 220927972 PROJECT: WR-22-CORE-03 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAM	E: ORFORI	O MINING	CORP							ATTE	NTION TO	: Arnaud	Fontaine	nup://www.	ayallabs.coi
Sr	4158104	3	3	0.0%	4158118	3	3	0.0%	4158129	4	4	0.0%			
Та	4158104	< 10	< 10	0.0%	4158118	< 10	< 10	0.0%	4158129	< 10	< 10	0.0%			
Te	4158104	< 10	< 10	0.0%	4158118	< 10	< 10	0.0%	4158129	< 10	< 10	0.0%			
Th	4158104	8	6	28.6%	4158118	15	12	22.2%	4158129	< 5	< 5	0.0%			
Ti	4158104	0.075	0.075	0.0%	4158118	0.092	0.098	6.3%	4158129	0.08	0.08	0.0%			
TI	4158104	< 5	< 5	0.0%	4158118	< 5	< 5	0.0%	4158129	< 5	< 5	0.0%			
U	4158104	< 5	< 5	0.0%	4158118	< 5	< 5	0.0%	4158129	< 5	< 5	0.0%			
V	4158104	66.6	66.1	0.8%	4158118	74.7	73.6	1.5%	4158129	69.6	71.4	2.6%			
W	4158104	2	2	0.0%	4158118	1	< 1		4158129	1	< 1				
Υ	4158104	3	3	0.0%	4158118	4	4	0.0%	4158129	3	3	0.0%			
Zn	4158104	71.2	72.4	1.7%	4158118	52.7	56.5	7.0%	4158129	67.8	67.9	0.1%			
Zr	4158104	8	8	0.0%	4158118	10	10	0.0%	4158129	8	8	0.0%			
			(202-5	555) Fir	e Assay	- Au, P	t, Pd Tr	ace Le	vels, ICF	OES f	inish (5	0g cha	rge)		
		REPLIC	ATE #1												
Parameter	Sample ID	Original	Replicate	RPD											
Au	4158104	0.003	0.003	0.0%											
Pd	4158104	0.0048	0.0042	13.3%											

4158118

< 0.005

< 0.005

0.0%

Pt

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220927972 PROJECT: WR-22-CORE-03

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

LIENT NAW				(20	1-070) 4	Acid [Digest -	Metals F	Packag			ish	<u> </u>		
		CRM #1	(ref.Till-2)	•			(ref.GTS-2a)								
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits							
Al	8.47	8.36	99%		6.96	7.15	103%								
As	26	23	88%		124	124	100%								
Ва	540	515	95%		186	187	100%								
Be	4.0	3.8	95%												
Ca	0.907	0.83	91%		4.01	3.73	93%								
Ce	98	92	94%		24	23	97%								
Со	15	12	82%		22.1	21.6	98%								
Cr	60.3	62.8	104%												
Cu	150	152	101%		88.6	87.7	99%								
Fe	3.77	3.63	96%		7.56	7.48	99%								
K					2.021	2.074	103%								
La	44	42	96%												
Li	47	47	100%												
Mg	1.10	1.05	96%		2.412	2.372	98%								
Mn	780	742	95%		1510	1466	97%								
Мо	14	12	84%												
Na	1.624	1.678	103%		0.617	0.639	104%								
Ni	32	32	100%		77.1	75.2	98%								
Р	750	699	93%		892	871	98%								
Pb	31	23	75%												
S					0.348	0.337	97%								
Sc	12	12	101%												
Sr	144	149	104%		92.8	92.1	99%								
Th	18.4	20.2	110%												
Ti	0.53	0.45	85%												
V	77	81	105%												
W	5	4	84%												
Zn	130	119	92%		208	201	96%								
			(202	2-555) Fir	e Assay	y - Au,	Pt, Pd T	race Le	vels, IC	P-OES	finish	(50g ch	arge)		
CRM #1 (ref.PGMS30)					CRM #2 (ref.PGMS30)						_				
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits							

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220927972

PROJECT: WR-22-CORE-03

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

	Au	1.897	1.893	100%	1.897	1.830	96%					
	Pd	1.660	1.736	105%	1.660	1.731	104%					
Ī	Pt	0.223	0.239	107%	0.223	0.229	102%					

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-03

AGAT WORK ORDER: 220927972 ATTENTION TO: Arnaud Fontaine

SAMPLING SITE: SAMPLED BY:

		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis	MINI 40000		DALANCE
Sample Login Weight	MIN-12009	Fletcher, WK:Handbook of Exploration	BALANCE
Ag	MIN-200-12034	Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Geochem v.1	ICP/OES
Ві	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ca	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
La	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Li	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mg	MIN-200-12034	Geochem V.1	IOF/OLS
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Na	MIN-200-12034	Geochem v. i	ICF/OE3
Ni	MIN-200-12034	Geochem v.i	ICF/OL3
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
s	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

Method Summary

CLIENT NAME: ORFORD MINING CORP

AGAT WORK ORDER: 220927972 PROJECT: WR-22-CORE-03 ATTENTION TO: Arnaud Fontaine

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.		SAMPLED B1.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
П	MIN-200-12034	Geochem v.1	ICF/OE3
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-12006, MIN-12004		ICP/OES
Pd	MIN-12006, MIN-12004		ICP/OES
Pt	MIN-12006, MIN-12004		ICP/OES
Crush-Pass %			BALANCE
Pul-Pass %			BALANCE

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-CORE-05

AGAT WORK ORDER: 22O928304

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Oct 05, 2022

PAGES (INCLUDING COVER): 28

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 28

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Certificate of Analysis

AGAT WORK ORDER: 220928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Au	g 02, 2022		DATE RECEIVED: Aug 03, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840298 (4162008)		2.120			
E5840299 (4162009)		3.380			
E5840300 (4162010)		0.120			
E5840301 (4162011)		3.660			
E5840302 (4162012)		3.540			
E5840303 (4162013)		1.130			
E5840304 (4162014)		2.440			
E5840305 (4162015)		1.980			
E5840306 (4162016)		4.770			
E5840307 (4162017)		2.440			
E5840308 (4162018)		2.370			
E5840309 (4162019)		1.260			
E5840310 (4162020)		1.140			
E5840311 (4162021)		3.460			
E5840312 (4162022)		3.490			
E5840313 (4162023)		1.060			
E5840314 (4162024)		2.390			
E5840315 (4162025)		4.550			
E5840316 (4162026)		4.550			
E5840317 (4162027)		4.630			
E5840318 (4162028)		4.920			
E5840319 (4162029)		4.530			
E5840320 (4162030)		0.030			
E5840321 (4162031)		4.500			
E5840322 (4162032)		4.670			
E5840323 (4162033)		3.070			
E5840324 (4162034)		4.290			
E5840325 (4162035)		4.350			
E5840326 (4162036)		4.510			
E5840327 (4162037)		2.750			
E5840328 (4162038)		2.780			

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 220928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	gin Weight	
DATE SAMPLED: Au	g 02, 2022		DATE RECEIVED: Aug 03, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840329 (4162039)		2.540			
E5840330 (4162040)		0.110			
E5840331 (4162041)		2.380			
E5840332 (4162042)		2.560			
E5840333 (4162043)		1.590			
E5840334 (4162044)		2.110			
E5840335 (4162045)		3.100			
E5840336 (4162046)		3.290			
E5840337 (4162047)		2.040			
E5840338 (4162048)		2.440			
E5840339 (4162049)		1.060			
E5840340 (4162050)		1.060			
E5840341 (4162051)		2.740			
E5840342 (4162052)		2.970			
E5840343 (4162053)		3.020			
E5840344 (4162054)		3.420			
E5840345 (4162055)		3.280			
E5840346 (4162056)		3.180			
E5840347 (4162057)		3.080			
E5840348 (4162058)		3.110			
E5840349 (4162059)		3.310			
E5840350 (4162060)		0.010			
E5840351 (4162061)		2.850			
E5840352 (4162062)		3.280			
E5840353 (4162063)		2.990			
E5840354 (4162064)		2.450			
E5840355 (4162065)		2.110			
E5840356 (4162066)		2.130			
E5840357 (4162067)		3.180			
E5840358 (4162068)		3.040			
E5840359 (4162069)		2.970			

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	gin Weight	
DATE SAMPLED: Au	g 02, 2022		DATE RECEIVED: Aug 03, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840360 (4162070)		0.110			
E5840361 (4162071)		3.090			
E5840362 (4162072)		2.130			
E5840363 (4162073)		1.430			
E5840364 (4162074)		2.810			
E5840365 (4162075)		3.110			
E5840366 (4162076)		3.330			
E5840367 (4162077)		2.200			
E5840368 (4162078)		1.800			
E5840369 (4162079)		0.930			
E5840370 (4162080)		0.920			
E5840371 (4162081)		3.030			
E5840372 (4162082)		3.390			
E5840373 (4162083)		3.090			
E5840374 (4162084)		3.810			

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 02, 2022		С	ATE RECI	EIVED: Aug	03, 2022		DATE I	REPORTED): Oct 05, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840298 (4162008)		0.5	6.10	<1	138	<0.5	<1	6.83	<0.5	5	58.3	922	98.0	7.72	18
E5840299 (4162009)		<0.5	6.10	<1	117	<0.5	<1	5.82	<0.5	4	56.3	828	100	7.17	18
E5840300 (4162010)		<0.5	6.46	<1	382	0.9	<1	1.74	<0.5	18	5.1	27.3	15.5	1.36	16
E5840301 (4162011)		<0.5	6.19	<1	109	<0.5	<1	5.34	0.9	5	63.2	925	94.3	7.73	17
E5840302 (4162012)		<0.5	5.65	26	1510	<0.5	<1	6.56	<0.5	4	56.8	895	93.9	7.10	16
E5840303 (4162013)		<0.5	5.94	26	1140	<0.5	<1	5.24	<0.5	7	60.6	895	89.6	7.34	18
E5840304 (4162014)		<0.5	6.46	22	1050	<0.5	<1	3.22	<0.5	7	50.9	966	97.5	7.56	21
E5840305 (4162015)		3.3	1.32	291	98	<0.5	8	2.67	3.2	17	54.6	195	516	31.8	39
E5840306 (4162016)		3.3	0.93	376	79	<0.5	8	0.22	11.5	12	52.4	232	579	36.5	43
E5840307 (4162017)		<0.5	4.68	17	356	0.5	<1	7.32	<0.5	3	42.8	824	132	7.10	18
E5840308 (4162018)		<0.5	5.45	14	197	<0.5	<1	7.39	<0.5	3	53.0	891	77.8	7.05	16
E5840309 (4162019)		<0.5	5.49	17	156	<0.5	<1	7.16	<0.5	3	56.1	844	81.7	6.91	16
E5840310 (4162020)		<0.5	5.52	21	165	<0.5	<1	7.17	<0.5	3	55.5	929	86.8	6.99	16
E5840311 (4162021)		<0.5	5.82	<1	267	<0.5	<1	5.11	<0.5	4	57.9	961	81.8	7.36	18
E5840312 (4162022)		<0.5	5.68	40	1450	0.6	<1	5.72	<0.5	3	55.7	870	81.3	6.99	17
E5840313 (4162023)		<0.5	6.10	43	1580	0.9	<1	5.22	<0.5	5	57.1	906	102	7.64	20
E5840314 (4162024)		<0.5	6.22	50	1200	0.7	<1	4.61	<0.5	4	55.1	970	87.6	7.47	20
E5840315 (4162025)		1.0	1.56	277	142	0.7	5	5.37	8.5	41	37.8	209	517	26.6	35
E5840316 (4162026)		1.7	0.83	216	97	0.9	8	2.48	1.9	66	44.4	306	413	31.2	39
E5840317 (4162027)		1.6	1.25	212	62	1.7	3	3.05	1.3	126	39.2	308	466	29.5	37
E5840318 (4162028)		1.5	0.82	213	70	0.8	7	1.46	1.5	46	43.7	352	511	32.4	39
E5840319 (4162029)		1.0	1.12	188	116	1.6	7	2.85	<0.5	73	27.3	259	284	29.7	35
E5840320 (4162030)		4.6	6.95	6	279	0.7	<1	3.79	1.3	26	174	258	6600	12.0	<5
E5840321 (4162031)		1.0	1.04	195	82	2.5	6	3.64	<0.5	123	21.1	245	170	30.4	35
E5840322 (4162032)		0.9	1.09	206	92	2.1	6	1.58	<0.5	150	22.1	315	113	33.1	38
E5840323 (4162033)		<0.5	0.89	118	37	8.1	<1	14.7	1.7	507	13.3	206	78.1	17.7	24
E5840324 (4162034)		<0.5	1.28	183	92	5.2	5	4.71	<0.5	398	19.9	254	96.5	30.0	36
E5840325 (4162035)		1.4	1.14	202	126	1.8	8	1.91	<0.5	38	21.7	268	105	31.2	35
E5840326 (4162036)		1.4	1.15	203	98	2.0	6	2.53	<0.5	29	20.8	284	98.5	32.5	36
E5840327 (4162037)		0.9	1.05	143	92	3.3	2	3.73	<0.5	185	22.6	237	119	26.1	30
E5840328 (4162038)		<0.5	6.19	40	339	1.4	<1	3.17	<0.5	5	67.9	966	65.3	8.86	21
E5840329 (4162039)		<0.5	3.37	44	12	2.1	<1	11.3	<0.5	4	52.0	1300	18.5	6.03	12

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, l	CP-OES	finish					
DATE SAMPLED: Au	g 02, 2022		С	ATE RECE	EIVED: Aug	03, 2022		DATE F	REPORTED	: Oct 05, 20	122	SAM	PLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840330 (4162040)		<0.5	6.41	2	391	1.0	<1	1.62	<0.5	15	5.5	24.4	<0.5	1.32	17
E5840331 (4162041)		<0.5	2.64	53	1	2.6	<1	6.06	<0.5	<1	79.8	2180	51.4	6.90	9
E5840332 (4162042)		<0.5	2.73	54	1	2.5	<1	6.41	<0.5	4	73.0	2250	43.7	6.63	10
E5840333 (4162043)		<0.5	6.24	90	1	1.4	<1	3.05	<0.5	5	113	2800	67.9	9.86	24
E5840334 (4162044)		0.6	6.36	34	2	1.0	<1	3.28	<0.5	36	75.2	1900	85.6	9.58	24
E5840335 (4162045)		0.6	7.75	28	325	8.0	<1	1.71	<0.5	57	58.3	1550	85.5	10.1	27
E5840336 (4162046)		0.6	4.78	19	11	1.6	<1	4.37	0.5	43	55.6	1390	60.6	9.75	17
E5840337 (4162047)		0.7	4.77	<1	9	1.3	<1	3.90	2.6	25	65.3	1670	129	10.5	20
E5840338 (4162048)		<0.5	4.74	41	1	1.8	<1	4.28	<0.5	13	75.6	2110	166	9.25	20
E5840339 (4162049)		0.8	7.75	<1	164	0.9	<1	1.09	5.1	56	38.3	677	262	10.9	26
E5840340 (4162050)		8.0	7.59	3	1460	1.0	<1	1.61	5.4	53	28.6	803	185	9.60	25
E5840341 (4162051)		0.7	5.25	3	737	1.0	<1	6.66	3.5	59	36.1	779	159	9.44	19
E5840342 (4162052)		0.9	5.81	3	50	1.5	<1	3.51	2.5	116	49.5	1320	154	11.8	28
E5840343 (4162053)		0.6	6.31	21	76	1.4	<1	1.77	<0.5	80	36.8	843	31.5	8.27	27
E5840344 (4162054)		0.7	8.64	4	1120	2.1	<1	0.36	<0.5	82	11.1	141	70.7	3.76	29
E5840345 (4162055)		0.6	8.99	8	1370	2.0	<1	0.40	<0.5	85	12.6	150	55.9	4.15	28
E5840346 (4162056)		<0.5	8.15	7	2130	3.0	<1	0.41	<0.5	74	9.3	188	57.8	2.84	27
E5840347 (4162057)		0.6	8.15	15	1650	3.0	<1	1.38	<0.5	74	11.2	244	51.9	4.13	27
E5840348 (4162058)		0.7	9.09	16	1700	2.5	<1	0.99	<0.5	92	9.0	174	56.9	4.27	31
E5840349 (4162059)		0.6	9.24	15	1120	2.3	<1	0.40	<0.5	99	15.7	232	146	5.20	29
E5840350 (4162060)		<0.5	3.91	150	212	0.9	<1	2.95	<0.5	25	77.3	873	30.2	5.32	<5
E5840351 (4162061)		<0.5	7.98	21	1430	2.2	<1	0.32	<0.5	85	13.3	316	97.9	4.79	25
E5840352 (4162062)		0.6	8.71	28	1660	2.9	<1	0.69	<0.5	88	10.7	194	131	4.17	29
E5840353 (4162063)		0.5	7.66	31	1270	2.8	<1	1.71	<0.5	84	16.0	243	97.3	4.84	27
E5840354 (4162064)		0.5	7.07	19	823	1.9	<1	4.34	<0.5	73	13.4	121	36.9	3.81	23
E5840355 (4162065)		8.0	7.51	20	787	1.5	<1	2.81	<0.5	74	16.9	175	79.8	4.44	25
E5840356 (4162066)		0.6	8.61	14	1080	2.6	<1	0.65	<0.5	93	12.7	88.5	30.2	3.26	28
E5840357 (4162067)		0.6	8.15	16	995	2.2	<1	0.62	<0.5	88	14.1	106	20.6	3.36	23
E5840358 (4162068)		0.6	9.03	14	663	1.9	<1	0.23	<0.5	78	10.6	116	48.7	2.04	24
E5840359 (4162069)		0.6	8.42	10	224	1.2	<1	0.57	<0.5	81	4.9	135	16.5	1.06	24
E5840360 (4162070)		<0.5	6.71	1	423	1.1	<1	1.79	<0.5	18	5.2	25.4	<0.5	1.44	17
E5840361 (4162071)		0.6	8.73	12	196	1.3	<1	0.65	<0.5	74	5.9	112	35.0	0.91	24

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, l	CP-OES	finish					
DATE SAMPLED: Au	g 02, 2022		Г	DATE RECE	EIVED: Aug	03, 2022		DATE F	REPORTED	: Oct 05, 20)22	SAM	PLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840362 (4162072)		0.6	5.77	27	134	0.8	<1	0.31	<0.5	61	9.7	415	25.9	3.32	17
E5840363 (4162073)		<0.5	4.34	9	121	0.6	<1	0.18	<0.5	38	5.0	140	2.8	0.93	11
E5840364 (4162074)		0.6	8.60	19	487	1.7	<1	0.28	<0.5	86	14.2	121	56.6	2.06	22
E5840365 (4162075)		0.5	8.87	9	230	1.3	<1	0.40	<0.5	81	5.8	81.8	2.6	0.87	23
E5840366 (4162076)		0.7	8.39	20	172	0.9	<1	0.46	<0.5	24	12.0	107	31.9	1.25	21
E5840367 (4162077)		0.7	6.55	51	160	0.7	<1	0.27	<0.5	20	22.4	178	115	1.83	15
E5840368 (4162078)		0.6	8.45	45	178	0.8	<1	0.38	<0.5	45	27.3	122	88.5	1.76	23
E5840369 (4162079)		0.7	9.00	20	183	1.0	<1	0.30	<0.5	45	10.5	111	<0.5	1.27	23
E5840370 (4162080)		0.8	9.03	23	183	0.9	<1	0.31	<0.5	46	13.1	116	3.0	1.38	23
E5840371 (4162081)		0.9	9.90	1	209	1.1	<1	0.44	<0.5	20	3.0	84.1	<0.5	1.56	33
E5840372 (4162082)		<0.5	4.65	6	7	<0.5	<1	5.67	<0.5	3	63.5	1760	<0.5	7.42	14
E5840373 (4162083)		<0.5	3.64	<1	9	<0.5	<1	3.20	<0.5	3	87.6	2160	64.9	7.58	10
E5840374 (4162084)		<0.5	3.84	<1	6	<0.5	<1	3.66	<0.5	3	80.6	2200	<0.5	7.36	10

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 02, 2022		Г	DATE RECE	EIVED: Aug	03, 2022		DATE F	REPORTED): Oct 05, 20)22	SAM	PLE TYPE	: Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840298 (4162008)		<1	0.30	4	34	7.94	1400	<0.5	1.26	402	225	7	<10	0.04	3
E5840299 (4162009)		<1	0.28	3	30	7.90	1280	<0.5	1.58	366	212	5	<10	0.06	4
E5840300 (4162010)		<1	1.28	9	8	0.53	258	1.1	2.77	18.0	237	2	<10	<0.01	<1
E5840301 (4162011)		<1	0.16	4	33	8.44	1330	<0.5	1.57	436	215	7	<10	0.15	3
E5840302 (4162012)		<1	1.68	3	35	7.47	1180	<0.5	0.32	382	188	3	<10	0.75	2
E5840303 (4162013)		<1	1.91	5	35	7.28	1100	<0.5	0.28	401	223	6	<10	1.46	2
E5840304 (4162014)		<1	1.55	4	42	8.32	1130	<0.5	0.25	371	227	5	<10	1.29	3
E5840305 (4162015)		<1	0.24	10	4	0.46	203	8.7	0.57	308	123	164	<10	>10	12
E5840306 (4162016)		<1	0.24	5	3	0.26	103	4.7	0.35	269	70	202	<10	>10	15
E5840307 (4162017)		<1	1.29	4	25	6.84	1090	<0.5	0.65	303	171	8	<10	1.12	1
E5840308 (4162018)		<1	0.51	4	35	7.86	1340	<0.5	1.15	362	192	9	<10	0.68	5
E5840309 (4162019)		<1	0.33	3	33	7.65	1320	<0.5	1.40	385	191	5	<10	0.40	4
E5840310 (4162020)		<1	0.34	3	34	7.79	1340	<0.5	1.39	370	195	4	<10	0.41	1
E5840311 (4162021)		<1	0.35	3	36	7.94	1290	<0.5	1.44	416	215	8	<10	0.07	4
E5840312 (4162022)		<1	1.33	3	36	7.62	1170	<0.5	1.10	373	206	7	<10	0.50	2
E5840313 (4162023)		<1	1.53	4	48	7.48	1160	<0.5	0.37	414	211	7	<10	0.88	4
E5840314 (4162024)		<1	1.04	3	52	7.88	1080	<0.5	0.26	378	202	7	<10	1.01	2
E5840315 (4162025)		<1	0.34	25	10	0.98	415	7.9	0.40	250	191	162	<10	>10	21
E5840316 (4162026)		<1	0.33	53	5	0.38	275	12.3	0.17	251	354	125	<10	>10	28
E5840317 (4162027)		<1	0.43	102	8	0.57	421	13.1	0.30	230	1350	110	<10	>10	23
E5840318 (4162028)		<1	0.33	35	6	0.41	307	13.5	0.13	240	229	113	<10	>10	23
E5840319 (4162029)		<1	0.21	57	10	0.78	579	32.7	0.20	219	286	108	<10	>10	20
E5840320 (4162030)		<1	0.65	13	13	3.76	1170	<0.5	1.86	9300	586	67	<10	2.52	<1
E5840321 (4162031)		<1	0.16	96	11	0.86	716	33.9	0.15	170	314	125	<10	>10	20
E5840322 (4162032)		<1	0.21	124	11	0.87	561	36.2	0.21	183	381	127	<10	>10	19
E5840323 (4162033)		<1	0.15	481	12	1.09	1850	21.5	0.04	92.8	3240	87	<10	>10	13
E5840324 (4162034)		<1	0.21	311	13	1.22	967	32.7	0.14	141	1040	125	<10	>10	17
E5840325 (4162035)		<1	0.23	30	9	0.69	502	34.5	0.35	182	193	123	<10	>10	18
E5840326 (4162036)		<1	0.26	20	10	0.72	549	35.0	0.27	181	78	160	<10	>10	29
E5840327 (4162037)		<1	0.17	156	12	1.20	1590	25.7	0.08	175	1020	146	<10	>10	21
E5840328 (4162038)		<1	0.63	3	55	9.22	1380	<0.5	0.82	469	226	9	<10	0.77	4
E5840329 (4162039)		<1	0.03	8	32	9.80	1210	<0.5	0.04	521	137	7	<10	0.36	4

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 02, 2022		С	DATE RECE	EIVED: Aug	03, 2022		DATE I	REPORTED): Oct 05, 20)22	SAM	PLE TYPE	: Drill Core	
	Analyte:	In	К	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840330 (4162040)		<1	1.27	7	8	0.54	240	1.7	2.83	21.7	175	1	<10	<0.01	<1
E5840331 (4162041)		<1	0.01	5	19	12.2	1060	<0.5	0.03	963	101	9	<10	0.95	10
E5840332 (4162042)		<1	0.01	7	21	11.6	1110	<0.5	0.03	834	106	9	<10	0.88	12
E5840333 (4162043)		<1	<0.01	7	37	12.8	1260	<0.5	0.02	1140	240	10	<10	1.29	14
E5840334 (4162044)		<1	<0.01	24	45	11.9	1300	2.5	0.02	775	430	12	<10	1.48	7
E5840335 (4162045)		<1	0.68	33	61	11.4	1350	4.4	0.17	552	339	17	<10	1.34	3
E5840336 (4162046)		<1	0.05	28	38	11.3	1410	3.7	0.04	607	835	15	<10	1.93	4
E5840337 (4162047)		<1	0.04	17	35	11.0	1280	12.5	0.04	675	492	20	<10	3.00	9
E5840338 (4162048)		<1	0.01	12	37	11.6	1200	<0.5	0.03	794	230	16	<10	1.79	12
E5840339 (4162049)		<1	3.43	30	42	4.75	613	21.6	1.33	400	548	21	<10	5.00	2
E5840340 (4162050)		<1	3.12	27	42	5.17	653	20.9	1.22	330	701	17	<10	3.87	<1
E5840341 (4162051)		<1	1.63	34	34	4.97	715	10.0	0.99	382	918	23	<10	3.56	<1
E5840342 (4162052)		<1	0.18	79	56	8.96	1040	6.0	0.02	493	2300	27	<10	3.34	4
E5840343 (4162053)		<1	0.22	49	54	9.42	1070	2.3	0.14	322	1150	19	<10	1.01	3
E5840344 (4162054)		<1	2.95	44	19	1.03	173	6.4	3.97	60.5	261	6	<10	1.68	<1
E5840345 (4162055)		<1	3.25	45	20	1.26	213	2.4	3.91	45.1	314	10	<10	1.85	4
E5840346 (4162056)		<1	5.17	40	29	0.82	115	6.0	1.40	55.5	273	9	<10	1.40	3
E5840347 (4162057)		<1	5.22	41	28	0.97	223	4.0	1.51	56.4	339	14	<10	2.31	2
E5840348 (4162058)		<1	4.37	50	21	1.05	217	6.4	3.29	65.7	301	9	<10	2.29	<1
E5840349 (4162059)		<1	2.74	54	17	1.22	183	1.9	4.48	56.7	273	15	<10	2.54	<1
E5840350 (4162060)		<1	0.62	15	35	12.7	1180	4.8	0.79	1940	228	17	<10	0.32	3
E5840351 (4162061)		<1	3.02	48	19	1.03	151	4.0	3.32	67.7	225	16	<10	1.90	<1
E5840352 (4162062)		<1	3.99	49	27	1.20	192	5.0	2.56	61.4	350	10	<10	1.99	<1
E5840353 (4162063)		<1	3.73	44	24	1.21	255	4.4	2.21	62.1	863	14	<10	2.88	3
E5840354 (4162064)		<1	2.22	40	23	1.31	586	2.3	2.67	41.7	269	7	<10	1.31	<1
E5840355 (4162065)		<1	2.09	40	27	1.84	500	1.3	2.73	50.5	421	10	<10	0.81	<1
E5840356 (4162066)		<1	3.17	50	30	1.49	220	3.0	2.60	46.1	305	5	<10	0.59	<1
E5840357 (4162067)		<1	2.51	48	22	1.38	158	4.1	3.25	56.8	272	4	<10	1.27	<1
E5840358 (4162068)		<1	1.62	42	19	1.26	126	2.5	5.02	44.5	277	<1	<10	0.12	<1
E5840359 (4162069)		<1	0.42	43	10	0.90	95	2.8	6.23	49.9	230	<1	<10	0.02	<1
E5840360 (4162070)		<1	1.37	8	8	0.53	281	1.2	2.94	18.0	220	4	<10	<0.01	<1
E5840361 (4162071)		<1	0.30	39	10	0.89	93	1.5	6.61	35.7	229	<1	<10	0.02	<1

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ickage, I	CP-OES	finish					
DATE SAMPLED: Au	g 02, 2022		[DATE RECE	EIVED: Aug	03, 2022		DATE	REPORTED	D: Oct 05, 20)22	SAM	IPLE TYPE	: Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840362 (4162072)		<1	0.22	34	7	0.60	99	4.1	4.28	44.5	179	10	<10	2.65	<1
E5840363 (4162073)		<1	0.21	20	6	0.51	63	2.3	3.18	21.6	127	<1	<10	0.10	<1
E5840364 (4162074)		<1	0.80	47	15	1.24	118	3.1	5.73	39.5	246	<1	<10	0.36	<1
E5840365 (4162075)		<1	0.31	43	9	0.71	70	3.9	6.82	36.8	251	<1	<10	0.14	<1
E5840366 (4162076)		<1	0.26	11	11	0.91	95	3.9	6.34	50.6	283	<1	<10	0.20	<1
E5840367 (4162077)		<1	0.25	8	7	0.48	54	4.8	5.08	270	420	4	<10	1.17	<1
E5840368 (4162078)		<1	0.33	24	17	1.24	111	8.8	6.17	326	682	<1	<10	0.40	<1
E5840369 (4162079)		<1	0.32	23	14	1.09	98	3.9	6.76	462	278	<1	<10	0.09	<1
E5840370 (4162080)		<1	0.32	23	15	1.14	102	4.2	6.78	593	317	<1	<10	0.11	<1
E5840371 (4162081)		<1	0.39	10	19	1.64	161	3.0	7.00	14.1	63	<1	<10	<0.01	<1
E5840372 (4162082)		<1	0.09	4	33	12.8	1370	<0.5	0.08	725	71	6	<10	0.02	7
E5840373 (4162083)		<1	0.10	5	18	13.6	1260	<0.5	0.09	971	140	12	<10	0.03	9
E5840374 (4162084)		<1	0.06	5	23	13.3	1220	<0.5	0.09	913	112	9	<10	0.03	9
E5840374 (4162084)		<1	0.06	5	23	13.3	1220	<0.5	0.09	913	112	9	<10	0.03	

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 02, 2022		[DATE RECE	EIVED: Aug	03, 2022		DATE F	REPORTED	: Oct 05, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840298 (4162008)		34	<10	<5	130	<10	19	<5	0.39	<5	<5	233	<1	14	82.4
E5840299 (4162009)		37	<10	<5	95	<10	22	<5	0.39	<5	<5	245	<1	14	69.6
E5840300 (4162010)		6	<10	<5	361	<10	<10	<5	0.15	<5	<5	42.4	<1	7	15.3
E5840301 (4162011)		37	<10	<5	81	<10	20	<5	0.41	<5	<5	248	<1	15	74.3
E5840302 (4162012)		33	<10	<5	136	<10	11	<5	0.37	<5	<5	224	<1	13	74.2
E5840303 (4162013)		35	<10	<5	93	<10	13	<5	0.38	<5	<5	237	<1	14	72.9
E5840304 (4162014)		39	<10	<5	47	<10	11	<5	0.43	<5	<5	259	<1	15	153
E5840305 (4162015)		6	<10	9	72	<10	54	<5	0.09	<5	24	171	<1	9	2450
E5840306 (4162016)		4	<10	15	13	<10	52	<5	0.08	<5	24	138	<1	8	4680
E5840307 (4162017)		30	<10	<5	113	<10	14	<5	0.31	<5	<5	200	<1	11	149
E5840308 (4162018)		35	<10	<5	137	<10	14	<5	0.36	<5	<5	231	<1	14	73.1
E5840309 (4162019)		34	<10	<5	128	<10	19	<5	0.36	<5	<5	225	<1	13	67.4
E5840310 (4162020)		34	<10	<5	128	<10	15	<5	0.36	<5	<5	226	<1	13	69.7
E5840311 (4162021)		37	<10	<5	99	<10	17	<5	0.38	<5	<5	244	<1	14	82.4
E5840312 (4162022)		35	<10	<5	162	<10	15	<5	0.37	<5	<5	235	<1	14	69.2
E5840313 (4162023)		37	<10	<5	141	<10	15	<5	0.39	<5	<5	244	<1	14	73.6
E5840314 (4162024)		37	<10	<5	137	<10	13	<5	0.39	<5	<5	243	<1	14	80.0
E5840315 (4162025)		5	<10	12	181	<10	35	8	0.11	<5	22	145	<1	11	3700
E5840316 (4162026)		4	<10	8	119	<10	49	<5	0.09	<5	23	154	<1	12	1230
E5840317 (4162027)		6	<10	6	129	<10	40	<5	0.21	<5	23	213	<1	23	1060
E5840318 (4162028)		4	<10	6	59	<10	58	<5	0.08	<5	25	152	<1	11	1190
E5840319 (4162029)		4	<10	<5	107	<10	44	<5	0.10	<5	24	204	<1	16	451
E5840320 (4162030)		12	<10	<5	284	<10	21	<5	0.55	<5	7	121	<1	12	109
E5840321 (4162031)		4	<10	<5	133	<10	45	<5	0.06	<5	24	230	<1	22	175
E5840322 (4162032)		4	<10	<5	67	<10	44	<5	0.07	<5	25	246	<1	22	224
E5840323 (4162033)		3	<10	<5	517	<10	34	<5	0.12	<5	16	226	<1	58	773
E5840324 (4162034)		4	<10	<5	179	<10	40	<5	0.09	<5	24	266	<1	40	258
E5840325 (4162035)		4	<10	<5	82	<10	44	<5	0.07	<5	26	195	<1	16	199
E5840326 (4162036)		3	<10	<5	111	<10	41	<5	0.06	<5	25	210	<1	17	177
E5840327 (4162037)		5	<10	<5	144	<10	38	<5	0.09	<5	21	227	<1	28	285
E5840328 (4162038)		39	<10	<5	39	<10	18	<5	0.40	<5	<5	269	<1	16	112
E5840329 (4162039)		19	<10	<5	418	<10	14	<5	0.19	<5	<5	131	<1	8	87.3

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, l	CP-OES	finish						
DATE SAMPLED: Aug 02, 2022				DATE RECEIVED: Aug 03, 2022					DATE REPORTED: Oct 05, 2022				SAMPLE TYPE: Drill Core			
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Y	Zn	
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5	
E5840330 (4162040)		6	<10	<5	353	<10	<10	<5	0.14	<5	<5	41.9	<1	6	18.6	
E5840331 (4162041)		14	<10	<5	25	<10	19	<5	0.13	<5	<5	104	<1	5	88.4	
E5840332 (4162042)		13	<10	<5	64	<10	20	<5	0.13	<5	<5	111	<1	5	95.4	
E5840333 (4162043)		20	<10	<5	23	<10	26	<5	0.21	<5	<5	186	<1	8	135	
E5840334 (4162044)		20	<10	<5	60	<10	26	6	0.32	<5	7	227	1	17	148	
E5840335 (4162045)		17	<10	<5	29	<10	19	11	0.35	<5	7	227	<1	21	165	
E5840336 (4162046)		25	<10	<5	24	<10	20	<5	0.41	<5	8	270	<1	18	164	
E5840337 (4162047)		21	<10	<5	17	<10	26	<5	0.38	<5	11	323	<1	17	291	
E5840338 (4162048)		19	<10	<5	31	<10	21	<5	0.22	<5	6	207	<1	9	178	
E5840339 (4162049)		15	<10	<5	96	<10	22	8	0.52	<5	17	414	<1	20	722	
E5840340 (4162050)		17	<10	<5	115	<10	21	9	0.55	<5	17	421	<1	22	770	
E5840341 (4162051)		16	<10	<5	329	<10	13	<5	0.63	<5	12	274	<1	18	523	
E5840342 (4162052)		18	<10	<5	153	<10	20	<5	0.75	<5	12	309	1	28	392	
E5840343 (4162053)		16	<10	<5	41	<10	16	8	0.43	<5	6	171	<1	22	140	
E5840344 (4162054)		12	<10	<5	86	<10	<10	15	0.33	<5	<5	106	<1	24	52.4	
E5840345 (4162055)		12	<10	<5	100	<10	<10	17	0.35	<5	<5	79.7	<1	22	60.3	
E5840346 (4162056)		11	<10	<5	79	<10	<10	16	0.32	<5	<5	91.0	<1	21	91.0	
E5840347 (4162057)		12	<10	<5	133	<10	<10	14	0.32	<5	<5	93.7	3	23	77.2	
E5840348 (4162058)		13	<10	<5	135	<10	<10	17	0.36	<5	5	106	2	21	59.0	
E5840349 (4162059)		13	<10	<5	103	<10	<10	18	0.38	<5	5	87.5	2	19	48.2	
E5840350 (4162060)		13	<10	<5	71	<10	13	5	0.17	<5	<5	74.3	5	10	109	
E5840351 (4162061)		11	<10	<5	82	<10	<10	15	0.33	<5	5	83.3	2	20	37.8	
E5840352 (4162062)		13	<10	<5	99	<10	<10	16	0.35	<5	5	103	4	17	34.5	
E5840353 (4162063)		15	<10	<5	153	<10	<10	14	0.40	<5	5	111	2	21	76.8	
E5840354 (4162064)		13	<10	<5	153	<10	<10	14	0.29	<5	<5	82.3	3	15	44.0	
E5840355 (4162065)		12	<10	<5	132	<10	<10	15	0.29	<5	<5	85.9	3	13	68.6	
E5840356 (4162066)		14	<10	<5	57	<10	<10	18	0.28	<5	<5	92.3	3	17	40.1	
E5840357 (4162067)		12	<10	<5	66	<10	<10	16	0.24	<5	<5	99.2	2	16	28.3	
E5840358 (4162068)		10	<10	<5	79	<10	<10	15	0.26	<5	<5	70.1	2	19	20.3	
E5840359 (4162069)		9	<10	<5	112	<10	<10	14	0.23	<5	<5	60.7	2	18	12.1	
E5840360 (4162070)		6	<10	<5	379	<10	<10	<5	0.15	<5	<5	41.9	<1	7	18.8	
E5840361 (4162071)		9	<10	<5	125	<10	<10	14	0.24	<5	<5	61.5	1	15	14.6	

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 02, 2022		DATE RECEIVED: Aug 03, 2022					DATE REPORTED: Oct 05, 2022				SAMPLE TYPE: Drill Core			
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840362 (4162072)		5	<10	<5	63	<10	<10	10	0.18	<5	<5	54.8	1	13	30.0
E5840363 (4162073)		4	<10	<5	47	<10	<10	7	0.13	<5	<5	31.9	<1	9	12.8
E5840364 (4162074)		10	<10	<5	78	<10	<10	15	0.26	<5	<5	67.4	2	17	18.5
E5840365 (4162075)		9	<10	<5	93	<10	<10	14	0.23	<5	<5	62.6	1	18	9.5
E5840366 (4162076)		7	<10	<5	76	<10	<10	15	0.24	<5	<5	56.8	2	9	9.7
E5840367 (4162077)		4	<10	<5	53	<10	<10	11	0.19	<5	<5	46.2	1	8	14.2
E5840368 (4162078)		9	<10	<5	59	<10	<10	15	0.27	<5	<5	80.1	2	13	19.7
E5840369 (4162079)		8	<10	<5	68	<10	<10	19	0.29	<5	<5	59.0	3	11	19.3
E5840370 (4162080)		9	<10	<5	67	<10	<10	18	0.29	<5	<5	60.7	2	12	17.9
E5840371 (4162081)		11	<10	<5	87	<10	<10	16	0.30	<5	<5	63.4	<1	7	21.8
E5840372 (4162082)		29	<10	<5	68	<10	15	<5	0.29	<5	<5	184	<1	14	79.1
E5840373 (4162083)		24	<10	<5	44	<10	20	<5	0.23	<5	<5	158	<1	9	81.8
E5840374 (4162084)		26	<10	<5	47	<10	20	<5	0.25	<5	<5	167	<1	11	75.6

Certified By:

Sherin Houssey

Certificate of Analysis

AGAT WORK ORDER: 22O928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Au	g 02, 2022		DATE RECEIVED: Aug 03, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840298 (4162008)		46			
E5840299 (4162009)		45			
E5840300 (4162010)		42			
E5840301 (4162011)		45			
E5840302 (4162012)		38			
E5840303 (4162013)		53			
E5840304 (4162014)		49			
E5840305 (4162015)		40			
E5840306 (4162016)		48			
E5840307 (4162017)		40			
E5840308 (4162018)		39			
E5840309 (4162019)		37			
E5840310 (4162020)		39			
E5840311 (4162021)		42			
E5840312 (4162022)		41			
E5840313 (4162023)		47			
E5840314 (4162024)		49			
E5840315 (4162025)		51			
E5840316 (4162026)		49			
E5840317 (4162027)		90			
E5840318 (4162028)		42			
E5840319 (4162029)		44			
E5840320 (4162030)		59			
E5840321 (4162031)		50			
E5840322 (4162032)		47			
E5840323 (4162033)		47			
E5840324 (4162034)		50			
E5840325 (4162035)		43			
E5840326 (4162036)		56			
E5840327 (4162037)		59			
E5840328 (4162038)		53			
E5840329 (4162039)		26			

Certificate of Analysis

AGAT WORK ORDER: 22O928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	Package, ICP-OES finish	
DATE SAMPLED: Au	g 02, 2022		DATE RECEIVED: Aug 03, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840330 (4162040)		34			
E5840331 (4162041)		24			
E5840332 (4162042)		26			
E5840333 (4162043)		37			
E5840334 (4162044)		104			
E5840335 (4162045)		142			
E5840336 (4162046)		100			
E5840337 (4162047)		94			
E5840338 (4162048)		44			
E5840339 (4162049)		141			
E5840340 (4162050)		145			
E5840341 (4162051)		134			
E5840342 (4162052)		213			
E5840343 (4162053)		150			
E5840344 (4162054)		183			
E5840345 (4162055)		185			
E5840346 (4162056)		162			
E5840347 (4162057)		155			
E5840348 (4162058)		187			
E5840349 (4162059)		187			
E5840350 (4162060)		69			
E5840351 (4162061)		155			
E5840352 (4162062)		177			
E5840353 (4162063)		166			
E5840354 (4162064)		154			
E5840355 (4162065)		167			
E5840356 (4162066)		205			
E5840357 (4162067)		198			
E5840358 (4162068)		201			
E5840359 (4162069)		187			
E5840360 (4162070)		69			
E5840361 (4162071)		175			

Certified By:

Sherin Houssey

AGAT WORK ORDER: 220928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	Package, ICP-OES finish	
DATE SAMPLED: Aug	g 02, 2022		DATE RECEIVED: Aug 03, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840362 (4162072)		127			
E5840363 (4162073)		93			
E5840364 (4162074)		194			
E5840365 (4162075)		190			
E5840366 (4162076)		165			
E5840367 (4162077)		129			
E5840368 (4162078)		168			
E5840369 (4162079)		179			
E5840370 (4162080)		181			
E5840371 (4162081)		194			
E5840372 (4162082)		34			
E5840373 (4162083)		27			
E5840374 (4162084)		28			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

4162008-4162084 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 220928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	02-555)	Fire Assay - Au, Pt, P	d Trace Lev	els, ICP-OES finish (50g cha	rge)
DATE SAMPLED: Aug	g 02, 2022			DATE RECEIVED: Aug 03, 2	2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt			
	Unit:	ppm	ppm	ppm			
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005			
E5840298 (4162008)		0.002	0.007	<0.005			
E5840299 (4162009)		0.003	0.007	<0.005			
E5840300 (4162010)		<0.001	<0.001	<0.005			
E5840301 (4162011)		0.001	0.007	<0.005			
E5840302 (4162012)		0.004	0.008	<0.005			
E5840303 (4162013)		0.001	0.008	<0.005			
E5840304 (4162014)		<0.001	0.009	<0.005			
E5840305 (4162015)		0.071	0.008	<0.005			
E5840306 (4162016)		0.075	0.005	<0.005			
E5840307 (4162017)		<0.001	0.006	<0.005			
E5840308 (4162018)		0.001	0.008	<0.005			
E5840309 (4162019)		0.001	0.007	<0.005			
E5840310 (4162020)		< 0.001	0.007	<0.005			
E5840311 (4162021)		0.001	0.008	<0.005			
E5840312 (4162022)		0.001	0.008	<0.005			
E5840313 (4162023)		< 0.001	0.008	<0.005			
E5840314 (4162024)		< 0.001	0.008	<0.005			
E5840315 (4162025)		0.043	0.005	<0.005			
E5840316 (4162026)		0.081	0.007	<0.005			
E5840317 (4162027)		0.075	0.006	<0.005			
E5840318 (4162028)		0.072	0.006	<0.005			
E5840319 (4162029)		0.055	0.010	<0.005			
E5840320 (4162030)		0.191	1.34	0.700			
E5840321 (4162031)		0.014	0.003	<0.005			
E5840322 (4162032)		0.066	0.011	<0.005			
E5840323 (4162033)		0.032	0.005	<0.005			
E5840324 (4162034)		0.058	0.008	<0.005			
E5840325 (4162035)		0.070	0.010	<0.005			
E5840326 (4162036)		0.031	0.005	<0.005			
E5840327 (4162037)		0.042	0.007	<0.005			
E5840328 (4162038)		<0.001	0.009	<0.005			
E5840329 (4162039)		< 0.001	0.008	<0.005			

Certified By:

Sherin Moussay

Certificate of Analysis

AGAT WORK ORDER: 220928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	02-555)	Fire Assay - Au, Pt, Pd Trace	Levels, ICP-OES finish (50g charge)	
DATE SAMPLED: Aug	g 02, 2022			DATE RECEIVED: Aug 03, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840330 (4162040)		0.020	0.003	<0.005		
E5840331 (4162041)		< 0.001	0.009	<0.005		
E5840332 (4162042)		< 0.001	0.007	<0.005		
E5840333 (4162043)		0.001	0.011	<0.005		
E5840334 (4162044)		0.003	0.016	<0.005		
E5840335 (4162045)		0.003	0.014	<0.005		
E5840336 (4162046)		0.003	0.007	<0.005		
E5840337 (4162047)		0.006	0.008	<0.005		
E5840338 (4162048)		0.002	0.010	<0.005		
E5840339 (4162049)		0.011	0.013	<0.005		
E5840340 (4162050)		0.010	0.009	<0.005		
E5840341 (4162051)		0.006	0.007	<0.005		
E5840342 (4162052)		0.005	0.008	<0.005		
E5840343 (4162053)		0.002	0.007	<0.005		
E5840344 (4162054)		0.003	0.005	<0.005		
E5840345 (4162055)		0.009	0.002	<0.005		
E5840346 (4162056)		0.003	0.003	<0.005		
E5840347 (4162057)		0.005	0.002	<0.005		
E5840348 (4162058)		0.004	0.004	<0.005		
E5840349 (4162059)		0.004	0.004	<0.005		
E5840350 (4162060)		IS	IS	IS		
E5840351 (4162061)		0.004	0.003	<0.005		
E5840352 (4162062)		0.004	0.003	<0.005		
E5840353 (4162063)		0.005	0.003	<0.005		
E5840354 (4162064)		0.002	0.002	<0.005		
E5840355 (4162065)		0.001	0.002	<0.005		
E5840356 (4162066)		0.002	0.002	<0.005		
E5840357 (4162067)		0.002	0.002	<0.005		
E5840358 (4162068)		<0.001	0.002	<0.005		
E5840359 (4162069)		0.002	0.002	<0.005		
E5840360 (4162070)		0.001	<0.001	<0.005		
E5840361 (4162071)		0.002	0.001	<0.005		

Certified By:

Sherin Houssey

AGAT WORK ORDER: 22O928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	02-555) I	Fire Assay	- Au, Pt, Pd Trace I	Levels, ICP-OES finish (50g charge	e)
DATE SAMPLED: Au	g 02, 2022			DATE RECEIV	'ED: Aug 03, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt			
	Unit:	ppm	ppm	ppm			
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005			
E5840362 (4162072)		0.008	0.002	<0.005			
E5840363 (4162073)		< 0.001	< 0.001	< 0.005			
E5840364 (4162074)		0.002	0.002	< 0.005			
E5840365 (4162075)		0.001	0.002	<0.005			
E5840366 (4162076)		0.002	0.002	<0.005			
E5840367 (4162077)		< 0.001	0.002	< 0.005			
E5840368 (4162078)		0.001	0.004	<0.005			
E5840369 (4162079)		0.002	0.013	< 0.005			
E5840370 (4162080)		0.001	0.011	<0.005			
E5840371 (4162081)		0.001	0.001	< 0.005			
E5840372 (4162082)		0.002	0.008	0.005			
E5840373 (4162083)		0.001	0.007	< 0.005			
E5840374 (4162084)		0.002	0.006	<0.005			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

Sherin Moussay

AGAT WORK ORDER: 22O928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Crushing)											
DATE SAMPLED: Au	g 02, 2022		DATE RECEIVED: Aug 03, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core							
	Analyte: Cr	rush-Pass %										
	Unit:	%										
Sample ID (AGAT ID)	RDL:	0.01										
E5840298 (4162008)		76.36										
E5840317 (4162027)		83.37										
E5840337 (4162047)		78.02										
E5840357 (4162067)		80.06										

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 220928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Pulverizing)											
DATE SAMPLED: Aug	g 02, 2022		DATE RECEIVED: Aug 03, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core							
	Analyte: Pu	ıl-Pass %										
	Unit:	%										
Sample ID (AGAT ID)	RDL:	0.01										
E5840298 (4162008)		86.50										
E5840317 (4162027)		89.62										
E5840337 (4162047)		89.90										
E5840357 (4162067)		88.19										

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220928304 PROJECT: WR-22-CORE-05 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(20	1-070) 4	Acid Di	gest - N	/letals F	Package	ICP-O	ES finis	h				
		REPLIC	ATE #1			REPLIC	ATE #2		REPLICATE #3				REPLICATE #4			
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Ag	4162008	0.5	0.5	0.0%	4162022	< 0.5	< 0.5	0.0%	4162033	< 0.5	< 0.5	0.0%	4162048	< 0.5	< 0.5	0.0%
Al	4162008	6.10	5.72	6.4%	4162022	5.68	5.75	1.2%	4162033	0.89	0.91	2.2%	4162048	4.74	4.80	1.3%
As	4162008	< 1	< 1	0.0%	4162022	40	40	0.0%	4162033	118	128	8.1%	4162048	41	45	9.3%
Ва	4162008	138	134	2.9%	4162022	1450	1430	1.4%	4162033	37	38	2.7%	4162048	1	1	0.0%
Ве	4162008	< 0.5	< 0.5	0.0%	4162022	0.6	0.6	0.0%	4162033	8.1	8.0	1.2%	4162048	1.8	1.8	0.0%
Bi	4162008	< 1	< 1	0.0%	4162022	< 1	< 1	0.0%	4162033	< 1	< 1	0.0%	4162048	< 1	< 1	0.0%
Ca	4162008	6.83	6.59	3.6%	4162022	5.72	5.67	0.9%	4162033	14.7	14.3	2.8%	4162048	4.28	4.30	0.5%
Cd	4162008	< 0.5	< 0.5	0.0%	4162022	< 0.5	< 0.5	0.0%	4162033	1.7	1.3	26.7%	4162048	< 0.5	0.5	
Ce	4162008	5	4	22.2%	4162022	3	4	28.6%	4162033	507	509	0.4%	4162048	13	13	0.0%
Co	4162008	58.3	57.8	0.9%	4162022	55.7	56.5	1.4%	4162033	13.3	14.2	6.5%	4162048	75.6	75.7	0.1%
Cr	4162008	922	860	7.0%	4162022	870	862	0.9%	4162033	206	171	18.6%	4162048	2110	2560	19.3%
Cu	4162008	98.0	91.1	7.3%	4162022	81.3	79.1	2.7%	4162033	78.1	78.7	0.8%	4162048	166	171	3.0%
Fe	4162008	7.72	7.21	6.8%	4162022	6.99	7.05	0.9%	4162033	17.7	18.2	2.8%	4162048	9.25	9.26	0.1%
Ga	4162008	18	17	5.7%	4162022	17	17	0.0%	4162033	24	23	4.3%	4162048	20	21	4.9%
In	4162008	< 1	< 1	0.0%	4162022	< 1	< 1	0.0%	4162033	< 1	< 1	0.0%	4162048	< 1	< 1	0.0%
K	4162008	0.296	0.284	4.1%	4162022	1.33	1.35	1.5%	4162033	0.15	0.15	0.0%	4162048	0.01	0.01	0.0%
La	4162008	4	4	0.0%	4162022	3	3	0.0%	4162033	481	483	0.4%	4162048	12	12	0.0%
Li	4162008	34	31	9.2%	4162022	36	36	0.0%	4162033	12	13	8.0%	4162048	37	38	2.7%
Mg	4162008	7.94	7.53	5.3%	4162022	7.62	7.68	0.8%	4162033	1.09	1.11	1.8%	4162048	11.6	11.7	0.9%
Mn	4162008	1400	1330	5.1%	4162022	1170	1190	1.7%	4162033	1850	1830	1.1%	4162048	1200	1210	0.8%
Мо	4162008	< 0.5	< 0.5	0.0%	4162022	< 0.5	< 0.5	0.0%	4162033	21.5	22.0	2.3%	4162048	< 0.5	1.0	<u> </u>
Na	4162008	1.26	1.23	2.4%	4162022	1.10	1.09	0.9%	4162033	0.04	0.04	0.0%	4162048	0.03	0.03	0.0%
Ni	4162008	402	392	2.5%	4162022	373	376	0.8%	4162033	92.8	96.5	3.9%	4162048	794	808	1.7%
Р	4162008	225	223	0.9%	4162022	206	205	0.5%	4162033	3240	3300	1.8%	4162048	230	239	3.8%
Pb	4162008	7	7	0.0%	4162022	7	7	0.0%	4162033	87	90	3.4%	4162048	16	14	13.3%
Rb	4162008	< 10	< 10	0.0%	4162022	< 10	< 10	0.0%	4162033	< 10	< 10	0.0%	4162048	< 10	< 10	0.0%
S	4162008	0.04	0.04	0.0%	4162022	0.498	0.516	3.6%	4162033	19.7	19.9	1.0%	4162048	1.79	1.73	3.4%
Sb	4162008	3	4	28.6%	4162022	2	3		4162033	13	13	0.0%	4162048	12	12	0.0%
Sc	4162008	34	34	0.0%	4162022	35	35	0.0%	4162033	3	3	0.0%	4162048	19	19	0.0%
Se	4162008	< 10	< 10	0.0%	4162022	< 10	< 10	0.0%	4162033	< 10	< 10	0.0%	4162048	< 10	< 10	0.0%
Sn	4162008	< 5	< 5	0.0%	4162022	< 5	< 5	0.0%	4162033	< 5	< 5	0.0%	4162048	< 5	< 5	0.0%

Quality Assurance - Replicate AGAT WORK ORDER: 22O928304 PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTE	OT NOITN	: Arnaud	Fontaine
F47	E40	0.00/	4400040

CLIENT NAM	E: ORFORI	D MINING	CORP							ATTE	NTION TO	: Arnaud	Fontaine			
Sr	4162008	130	124	4.7%	4162022	162	160	1.2%	4162033	517	518	0.2%	4162048	31	31	0.0%
Та	4162008	< 10	< 10	0.0%	4162022	< 10	< 10	0.0%	4162033	< 10	< 10	0.0%	4162048	< 10	< 10	0.0%
Te	4162008	19	17	11.1%	4162022	15	15	0.0%	4162033	34	34	0.0%	4162048	21	22	4.7%
Th	4162008	< 5	< 5	0.0%	4162022	< 5	< 5	0.0%	4162033	< 5	< 5	0.0%	4162048	< 5	< 5	0.0%
Ti	4162008	0.391	0.371	5.2%	4162022	0.37	0.37	0.0%	4162033	0.12	0.12	0.0%	4162048	0.225	0.229	1.8%
TI	4162008	< 5	< 5	0.0%	4162022	< 5	< 5	0.0%	4162033	< 5	< 5	0.0%	4162048	< 5	< 5	0.0%
U	4162008	< 5	< 5	0.0%	4162022	< 5	< 5	0.0%	4162033	16	18	11.8%	4162048	6	6	0.0%
V	4162008	233	230	1.3%	4162022	235	237	0.8%	4162033	226	229	1.3%	4162048	207	209	1.0%
W	4162008	< 1	< 1	0.0%	4162022	< 1	< 1	0.0%	4162033	< 1	< 1	0.0%	4162048	< 1	< 1	0.0%
Υ	4162008	14	14	0.0%	4162022	14	14	0.0%	4162033	58	59	1.7%	4162048	9	9	0.0%
Zn	4162008	82.4	79.3	3.8%	4162022	69.2	68.3	1.3%	4162033	773	724	6.5%	4162048	178	182	2.2%
Zr	4162008	46	44	4.4%	4162022	41	41	0.0%	4162033	47	49	4.2%	4162048	44	45	2.2%
		REPLIC	ATE #5			REPLIC	ATE #6			REPLIC	ATE #7					
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD				
Ag	4162058	0.67	0.58	14.4%	4162073	< 0.5	< 0.5	0.0%	4162083	< 0.5	< 0.5	0.0%				
Al	4162058	9.09	9.11	0.2%	4162073	4.34	4.46	2.7%	4162083	3.64	3.64	0.0%				
As	4162058	16	9		4162073	9	8	11.8%	4162083	< 1	< 1	0.0%				
Ва	4162058	1700	1670	1.8%	4162073	121	125	3.3%	4162083	9	9	0.0%				
Ве	4162058	2.5	2.5	0.0%	4162073	0.6	0.6	0.0%	4162083	< 0.5	< 0.5	0.0%				
Bi	4162058	< 1	< 1	0.0%	4162073	< 1	< 1	0.0%	4162083	< 1	< 1	0.0%				
Ca	4162058	0.994	1.34	29.6%	4162073	0.18	0.18	0.0%	4162083	3.20	3.21	0.3%				
Cd	4162058	< 0.5	< 0.5	0.0%	4162073	< 0.5	< 0.5	0.0%	4162083	< 0.5	< 0.5	0.0%				
Се	4162058	92	85	7.9%	4162073	38	37	2.7%	4162083	3	3	0.0%				
Со	4162058	9.0	8.3	8.1%	4162073	5.00	4.72	5.8%	4162083	87.6	88.4	0.9%				
Cr	4162058	174	164	5.9%	4162073	140	132	5.9%	4162083	2160	2260	4.5%				
Cu	4162058	56.9	56.5	0.7%	4162073	2.83	3.09	8.8%	4162083	64.9	63.2	2.7%				
Fe	4162058	4.27	4.01	6.3%	4162073	0.934	0.959	2.6%	4162083	7.58	7.56	0.3%				
Ga	4162058	31	30	3.3%	4162073	11	11	0.0%	4162083	10	9	10.5%				
In	4162058	< 1	< 1	0.0%	4162073	< 1	< 1	0.0%	4162083	< 1	< 1	0.0%				
К	4162058	4.37	4.33	0.9%	4162073	0.21	0.21	0.0%	4162083	0.10	0.10	0.0%				
La	4162058	50	48	4.1%	4162073	20	20	0.0%	4162083	5	5	0.0%				
Li	4162058	21	21	0.0%	4162073	6	6	0.0%	4162083	18	18	0.0%				
Mg	4162058	1.05	1.05	0.0%	4162073	0.51	0.52	1.9%	4162083	13.6	13.6	0.0%				
Mn	4162058	217	224	3.2%	4162073	63	64	1.6%	4162083	1260	1260	0.0%				

Quality Assurance - Replicate AGAT WORK ORDER: 220928304 PROJECT: WR-22-CORE-05 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

JEIEINI 14/ (IVI			00							, _ .		. / tillauu	· omamo		
Мо	4162058	6.4	6.9	7.5%	4162073	2.3	1.0		4162083	< 0.5	< 0.5	0.0%			
Na	4162058	3.29	3.34	1.5%	4162073	3.18	3.35	5.2%	4162083	0.09	0.09	0.0%			
Ni	4162058	65.7	61.4	6.8%	4162073	21.6	20.6	4.7%	4162083	971	983	1.2%			
Р	4162058	301	301	0.0%	4162073	127	128	0.8%	4162083	140	142	1.4%			
Pb	4162058	9	6		4162073	< 1	< 1	0.0%	4162083	12	9	28.6%			
Rb	4162058	< 10	< 10	0.0%	4162073	< 10	< 10	0.0%	4162083	< 10	< 10	0.0%			
S	4162058	2.29	2.08	9.6%	4162073	0.10	0.10	0.0%	4162083	0.03	0.06				
Sb	4162058	< 1	< 1	0.0%	4162073	< 1	< 1	0.0%	4162083	9	13				
Sc	4162058	13	12	8.0%	4162073	4	4	0.0%	4162083	24	24	0.0%			
Se	4162058	< 10	< 10	0.0%	4162073	< 10	< 10	0.0%	4162083	< 10	< 10	0.0%			
Sn	4162058	< 5	< 5	0.0%	4162073	< 5	< 5	0.0%	4162083	< 5	< 5	0.0%			
Sr	4162058	135	155	13.8%	4162073	47	49	4.2%	4162083	44	43	2.3%			
Ta	4162058	< 10	< 10	0.0%	4162073	< 10	< 10	0.0%	4162083	< 10	< 10	0.0%			
Te	4162058	< 10	< 10	0.0%	4162073	< 10	< 10	0.0%	4162083	20	20	0.0%			
Th	4162058	17	16	6.1%	4162073	7	7	0.0%	4162083	< 5	< 5	0.0%			
Ti	4162058	0.36	0.36	0.0%	4162073	0.133	0.138	3.7%	4162083	0.23	0.23	0.0%			
TI	4162058	< 5	< 5	0.0%	4162073	< 5	< 5	0.0%	4162083	< 5	< 5	0.0%			
U	4162058	5	5	0.0%	4162073	< 5	< 5	0.0%	4162083	< 5	< 5	0.0%			
V	4162058	106	103	2.9%	4162073	31.9	30.9	3.2%	4162083	158	160	1.3%			
W	4162058	2	< 1		4162073	< 1	1		4162083	< 1	< 1	0.0%			
Υ	4162058	21	21	0.0%	4162073	9	8	11.8%	4162083	9	9	0.0%			
Zn	4162058	59.0	53.8	9.2%	4162073	12.8	14.3	11.1%	4162083	81.8	80.9	1.1%			
Zr	4162058	187	173	7.8%	4162073	93	92	1.1%	4162083	27	26	3.8%			

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)

		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3			REPLIC	ATE #4	
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Au	4162083	0.001	0.001	0.0%	4162022	0.001	< 0.001		4162033	0.0321	0.0349	8.4%	4162048	0.002	0.006	
Pd	4162083	0.007	0.007	0.0%	4162022	0.0075	0.0073	2.7%	4162033	0.005	0.006	18.2%	4162048	0.0104	0.0112	7.4%
Pt	4162083	< 0.005	< 0.005	0.0%	4162022	< 0.005	< 0.005	0.0%	4162033	< 0.005	< 0.005	0.0%	4162048	< 0.005	< 0.005	0.0%
	REPLICATE #5					REPLIC	ATE #6									
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD								
Au	4162058	0.004	0.002		4162073	< 0.001	0.002									
Pd	4162058	0.004	0.003	28.6%	4162073	< 0.001	0.001									
Pt	4162058	< 0.005	< 0.005	0.0%	4162073 < 0.005 < 0.005 0.0%											

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

		CRM #1	ref.GTS-2a)			CRM #2	2 (ref.Till-2)			CRM #3	(ref.GTS-2a)			CRM #4 (ref.CGL-015)	
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Al	6.96	7.2	103%		8.47	8.39	99%		6.96	7.01	101%		13.0	12.4	96%	
As	124	127	103%		26	25	96%		124	127	102%					
Ва	186	192	103%		540	543	101%		186	192	103%		1305	1299	100%	
Be					4.0	3.4	85%									
Ca	4.01	3.81	95%		0.907	0.873	96%		4.01	3.88	97%		1.42	1.3	92%	
Ce	24	22	91%		98	102	104%		24	22	92%		58.24	52.6	90%	
Со	22.1	19.5	88%		15	13	86%		22.1	19.4	88%					
Cr					60.3	65.9	109%									
Cu	88.6	96.4	109%		150	152	102%		88.6	85.5	96%					
Fe	7.56	7	93%		3.77	3.75	99%		7.56	7.42	98%		3.27	3	92%	
K	2.021	2.131	105%						2.021	2.059	102%		3.69	3.75	102%	
La					44	44	101%						27.48	24.12	88%	
Li					47	48	103%						64.95	67.87	104%	
Mg	2.412	2.329	97%		1.10	1.03	94%		2.412	2.309	96%		0.223	0.204	91%	
Mn	1510	1489	99%		780	792	102%		1510	1512	100%					
Мо					14	14	100%									
Na	0.617	0.654	106%		1.624	1.683	104%		0.617	0.63	102%		7.24	7.14	99%	
Ni	77.1	71.6	93%		32	30	95%		77.1	71	92%					
Р	892	882	99%		750	728	97%		892	886	99%		610	596	98%	
Pb					31	24	78%									
S	0.348	0.314	90%						0.348	0.354	102%					
Sc					12	12	104%						2.76	2.18	79%	
Sr	92.8	91.7	99%		144	149	103%		92.8	88.5	95%		312	296	95%	
Th					18.4	16.2	88%									
Ti					0.53	0.45	85%						0.222	0.202	91%	
U					5.7	5	89%									
V					77	82	106%									
W					5	5	98%									
Υ													25.32	24.06	95%	
Zn	208	196	94%		130	119	91%		208	207	99%		75.42	72.55	96%	

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220928304

PROJECT: WR-22-CORE-05

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

		CRM #1 (r	ef.PGMS30)		CRM #2 (r	ef.PGMS30)	CRM #3 (ref.PGMS30)				CRM #4 (ref.PGMS30)			
Parameter	Expect	1			Expect	Actual	Recovery	ry Limits Expect Actual Recovery Limits Expec					Expect	Actual	Recovery	Limits
Au	1.897	2.045	108%		1.897	1.894	100%		1.897	2.047	108%		1.897	1.974	104%	
Pd	1.660	1.824	110%		1.660	1.892	114%		1.660	1.742	105%		1.660	1.78	107%	
Pt	0.223	0.232	104%		0.223	0.223	100%		0.223	0.249	111%		0.223	0.23	103%	

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-05

SAMPLING SITE:

AGAT WORK ORDER: 22O928304 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Bi	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
La	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Li	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mg	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Na	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Ni	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: ORFORD MINING CORP

AGAT WORK ORDER: 22O928304 PROJECT: WR-22-CORE-05 ATTENTION TO: Arnaud Fontaine

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.		SAMPLED BT.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
ті	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-12006, MIN-12004		ICP/OES
Pd	MIN-12006, MIN-12004		ICP/OES
Pt	MIN-12006, MIN-12004		ICP/OES
Crush-Pass %			BALANCE
Pul-Pass %			BALANCE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-CORE-06

AGAT WORK ORDER: 220931354

SOLID ANALYSIS REVIEWED BY: Jing Xiao, Data Reviewer

DATE REPORTED: Sep 21, 2022

PAGES (INCLUDING COVER): 22

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

<u>*Notes</u>		

Disclaimer:

...

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 22

Certificate of Analysis

AGAT WORK ORDER: 22O931354

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Au	g 09, 2022		DATE RECEIVED: Aug 10, 2022	DATE REPORTED: Sep 21, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840375 (4187516)		3.320			
E5840376 (4187517)		3.290			
E5840377 (4187518)		3.340			
E5840378 (4187519)		3.070			
E5840379 (4187520)		2.710			
E5840380 (4187521)		0.060			
E5840381 (4187522)		3.440			
E5840382 (4187523)		3.080			
E5840383 (4187524)		3.470			
E5840384 (4187525)		3.090			
E5840385 (4187526)		3.450			
E5840386 (4187527)		3.190			
E5840387 (4187528)		3.750			
E5840388 (4187529)		3.580			
E5840389 (4187530)		3.380			
E5840390 (4187531)		0.150			
E5840391 (4187532)		3.510			
E5840392 (4187533)		3.370			
E5840393 (4187534)		1.780			
E5840394 (4187535)		2.300			
E5840395 (4187536)		1.130			
E5840396 (4187537)		2.960			
E5840397 (4187538)		3.100			
E5840398 (4187539)		2.570			
E5840399 (4187540)		0.740			
E5840400 (4187541)		0.750			
E5840401 (4187542)		2.750			
E5840402 (4187543)		3.690			
E5840403 (4187544)		3.580			
E5840404 (4187546)		3.450			
E5840405 (4187547)		3.650			

Certificate of Analysis

AGAT WORK ORDER: 220931354

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	(200-) Sample Login Weight												
DATE SAMPLED: Au	g 09, 2022		DATE RECEIVED: Aug 10, 2022	DATE REPORTED: Sep 21, 2022	SAMPLE TYPE: Drill Core								
	Analyte:	Sample Login Weight											
	Unit:	kg											
Sample ID (AGAT ID)	RDL:	0.005											
E5840406 (4187548)		3.790											
E5840407 (4187549)		1.850											
E5840408 (4187550)		3.840											
E5840409 (4187551)		3.400											
E5840410 (4187552)		0.060											
E5840411 (4187553)		3.530											
E5840412 (4187554)		3.270											
E5840413 (4187555)		3.400											
E5840414 (4187556)		3.520											
E5840415 (4187557)		3.430											
E5840416 (4187558)		3.500											
E5840417 (4187559)		3.420											
E5840418 (4187560)		3.140											
E5840419 (4187561)		3.370											
E5840420 (4187562)		0.140											

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS

Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 22O931354

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 09, 2022			ATE REC	EIVED: Aug	10, 2022		DATE I	REPORTED	e: Sep 21, 20	022	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840375 (4187516)		<0.5	3.71	<1	8	<0.5	3	3.19	<0.5	3	89.3	2100	38.0	8.02	10
E5840376 (4187517)		<0.5	3.05	<1	8	<0.5	1	3.52	<0.5	2	85.4	2110	4.7	7.28	8
E5840377 (4187518)		<0.5	3.04	<1	8	<0.5	3	3.90	<0.5	2	89.8	2300	4.0	7.13	9
E5840378 (4187519)		<0.5	2.91	<1	8	<0.5	3	3.99	<0.5	1	98.3	2480	43.7	7.62	7
E5840379 (4187520)		<0.5	2.83	<1	9	<0.5	2	3.01	0.5	2	98.9	2640	36.0	7.64	7
E5840380 (4187521)		2.9	7.09	5	209	8.0	1	4.46	0.7	24	108	170	4460	13.9	17
E5840381 (4187522)		<0.5	2.92	<1	9	<0.5	1	2.47	<0.5	2	100	2670	55.2	7.82	7
E5840382 (4187523)		<0.5	3.22	<1	10	<0.5	3	3.00	<0.5	2	97.2	2440	14.7	8.04	9
E5840383 (4187524)		<0.5	4.97	4	10	<0.5	2	6.60	<0.5	4	74.6	1560	50.4	8.08	13
E5840384 (4187525)		<0.5	3.89	<1	6	<0.5	2	3.74	<0.5	2	79.9	1980	5.9	7.80	13
E5840385 (4187526)		<0.5	3.61	<1	9	<0.5	3	3.56	<0.5	3	89.4	2140	8.3	7.94	10
E5840386 (4187527)		<0.5	3.62	<1	8	< 0.5	2	3.37	<0.5	3	85.8	2080	12.7	7.93	11
E5840387 (4187528)		<0.5	4.46	2	8	<0.5	2	5.17	<0.5	3	81.3	1860	18.2	8.04	14
E5840388 (4187529)		<0.5	3.07	<1	5	<0.5	2	2.77	0.7	2	95.2	2420	56.2	7.94	10
E5840389 (4187530)		<0.5	2.93	<1	5	<0.5	2	2.40	<0.5	3	95.7	2380	19.2	7.82	9
E5840390 (4187531)		<0.5	6.37	<1	371	1.0	<1	1.68	<0.5	17	5.6	103	8.3	1.48	16
E5840391 (4187532)		<0.5	2.77	22	5	<0.5	2	2.15	<0.5	2	97.1	2130	20.6	7.93	8
E5840392 (4187533)		<0.5	2.73	9	4	<0.5	<1	2.88	<0.5	2	89.6	2330	35.5	7.37	8
E5840393 (4187534)		<0.5	2.74	<1	3	<0.5	2	1.78	<0.5	3	94.1	2030	46.8	7.47	8
E5840394 (4187535)		<0.5	2.94	2	3	0.6	1	2.37	<0.5	3	94.3	2170	45.4	7.74	9
E5840395 (4187536)		0.9	2.09	<1	10	1.3	5	8.59	4.1	136	37.4	474	780	25.7	33
E5840396 (4187537)		<0.5	6.50	23	694	1.2	3	5.10	0.7	69	43.0	866	78.0	8.63	22
E5840397 (4187538)		<0.5	5.51	28	1050	1.8	2	6.11	<0.5	16	49.9	991	108	7.74	19
E5840398 (4187539)		1.3	1.32	177	48	3.9	6	2.79	<0.5	197	27.5	124	104	28.5	36
E5840399 (4187540)		<0.5	1.39	108	113	8.5	3	16.2	1.3	474	12.9	79.4	77.2	14.7	20
E5840400 (4187541)		<0.5	1.29	103	113	7.9	<1	17.0	1.0	484	12.6	82.6	80.2	14.2	19
E5840401 (4187542)		<0.5	1.41	82	172	6.8	3	18.9	<0.5	189	12.6	47.2	81.2	12.3	19
E5840402 (4187543)		<0.5	2.87	16	261	8.7	<1	19.6	1.1	275	18.1	41.6	205	6.71	20
E5840403 (4187544)		<0.5	3.37	15	378	9.7	<1	17.9	1.3	437	19.5	58.1	192	6.80	21
E5840404 (4187546)		<0.5	3.76	11	442	6.7	<1	17.3	1.1	341	22.4	46.1	205	7.00	24
E5840405 (4187547)		0.5	5.63	38	1100	4.7	<1	6.78	1.0	43	48.8	748	117	7.69	22
E5840406 (4187548)		0.9	4.89	3	837	6.6	4	12.3	1.5	238	23.2	35.9	164	7.43	28

Certificate of Analysis

AGAT WORK ORDER: 220931354

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 09, 2022	DATE RECEIVED: Aug 10, 2022						DATE I	REPORTED	: Sep 21, 20	022	SAMPLE TYPE: Drill Core			
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Се	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840407 (4187549)		0.9	5.71	4	692	6.4	<1	9.51	1.3	231	24.3	76.5	195	7.67	28
E5840408 (4187550)		< 0.5	5.55	2	507	1.8	<1	5.74	< 0.5	12	57.8	832	66.0	7.44	19
E5840409 (4187551)		<0.5	7.87	5	751	<0.5	3	4.58	< 0.5	10	38.9	104	63.9	7.88	25
E5840410 (4187552)		4.6	6.87	4	274	0.7	3	4.09	1.2	25	169	233	6580	12.9	<5
E5840411 (4187553)		< 0.5	6.10	3	558	<0.5	1	6.45	0.5	7	55.0	647	49.6	7.81	20
E5840412 (4187554)		<0.5	3.03	4	5	<0.5	2	4.51	<0.5	3	76.6	1660	31.6	6.79	9
E5840413 (4187555)		<0.5	3.08	<1	5	<0.5	1	1.97	< 0.5	4	89.1	2020	28.7	7.51	9
E5840414 (4187556)		<0.5	2.94	3	5	<0.5	2	3.20	<0.5	3	91.5	1950	46.1	7.66	9
E5840415 (4187557)		<0.5	2.71	<1	4	<0.5	<1	2.65	< 0.5	3	87.6	1970	44.4	7.14	9
E5840416 (4187558)		< 0.5	2.67	3	4	<0.5	<1	2.74	< 0.5	3	90.0	1930	22.5	7.21	9
E5840417 (4187559)		< 0.5	2.50	5	3	<0.5	1	2.60	< 0.5	2	92.1	2170	5.9	7.31	8
E5840418 (4187560)		<0.5	2.64	9	3	<0.5	1	2.45	<0.5	2	86.3	1890	16.3	7.15	8
E5840419 (4187561)		<0.5	2.48	8	3	<0.5	1	5.92	<0.5	1	82.3	1710	20.3	6.61	7
E5840420 (4187562)		<0.5	6.38	3	383	1.0	<1	1.68	<0.5	17	5.4	63.8	6.1	1.41	17

Certificate of Analysis

AGAT WORK ORDER: 22O931354

PROJECT: WR-22-CORE-06

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME. OK			ATTEN	111011 10.	Alliauu FC	intaine									
			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Aug	g 09, 2022		I	DATE RECE	EIVED: Aug	10, 2022		DATE I	REPORTED	D: Sep 21, 2	022	SAM	PLE TYPE:	Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840375 (4187516)		<1	0.07	5	24	14.7	1330	<0.5	0.08	1010	171	13	<10	0.07	11
E5840376 (4187517)		<1	0.06	5	16	14.7	1260	<0.5	0.06	1040	133	14	<10	0.06	12
E5840377 (4187518)		<1	0.05	5	16	14.6	1250	<0.5	0.05	1120	153	11	<10	0.05	10
E5840378 (4187519)		<1	0.04	5	12	15.9	1330	<0.5	0.03	1190	123	14	<10	0.05	13
E5840379 (4187520)		<1	0.05	6	10	15.7	1290	<0.5	0.04	1210	125	13	<10	0.05	14
E5840380 (4187521)		<1	0.58	11	15	3.84	1440	4.2	1.69	4350	703	50	<10	1.62	<1
E5840381 (4187522)		<1	0.06	6	9	16.2	1320	<0.5	0.04	1260	154	12	<10	0.07	14
E5840382 (4187523)		<1	0.06	6	16	16.1	1300	<0.5	0.07	1160	169	16	<10	0.07	15
E5840383 (4187524)		<1	0.04	5	56	12.4	1510	<0.5	0.12	719	194	10	<10	0.05	5
E5840384 (4187525)		<1	0.05	4	23	14.0	1390	<0.5	0.09	900	103	13	<10	0.18	9
E5840385 (4187526)		<1	0.07	5	22	14.7	1290	<0.5	0.09	1040	172	14	<10	0.13	12
E5840386 (4187527)		<1	0.06	5	20	14.5	1250	<0.5	0.08	999	131	15	<10	0.08	9
E5840387 (4187528)		<1	0.06	5	16	12.8	1370	<0.5	0.10	863	183	13	<10	0.04	9
E5840388 (4187529)		<1	0.03	5	17	15.3	1250	<0.5	0.04	1080	135	12	<10	0.15	10
E5840389 (4187530)		<1	0.03	5	16	15.5	1250	<0.5	0.03	1060	147	13	<10	0.19	13
E5840390 (4187531)		<1	1.28	8	8	0.58	253	<0.5	2.77	22.6	233	5	<10	0.01	<1
E5840391 (4187532)		<1	0.02	5	15	15.7	1310	<0.5	0.01	1110	101	14	<10	0.58	11
E5840392 (4187533)		<1	0.02	5	19	14.5	1160	<0.5	0.01	1090	127	14	<10	1.82	13
E5840393 (4187534)		<1	0.01	5	19	14.6	858	<0.5	0.01	1060	131	12	<10	2.41	10
E5840394 (4187535)		<1	0.01	5	18	14.2	944	<0.5	0.02	1130	127	10	<10	2.36	10
E5840395 (4187536)		<1	0.01	121	21	4.59	1190	34.2	0.01	346	1070	80	<10	>10	5
E5840396 (4187537)		<1	0.76	54	48	6.98	1390	3.1	2.15	239	589	13	<10	2.09	6
E5840397 (4187538)		<1	1.04	15	54	8.01	1530	1.5	1.13	269	307	11	<10	1.59	5
E5840398 (4187539)		<1	0.76	183	20	0.99	555	52.8	0.23	167	874	127	<10	>10	22
E5840399 (4187540)		<1	1.18	432	47	2.01	2680	25.9	0.09	62.7	3750	95	<10	>10	14
E5840400 (4187541)		<1	1.10	450	45	1.91	2780	24.7	0.07	60.9	3640	91	<10	>10	13
E5840401 (4187542)		<1	0.97	187	48	2.02	2340	18.5	0.08	52.0	4140	77	<10	>10	7
E5840402 (4187543)		<1	1.00	192	56	3.02	1930	2.9	0.22	15.5	5420	28	<10	2.07	4
E5840403 (4187544)		<1	1.41	305	71	3.61	2230	3.2	0.31	24.4	6040	44	<10	1.88	5
E5840404 (4187546)		<1	0.97	247	58	4.03	1830	3.8	0.81	18.6	7530	40	<10	2.28	3
E5840405 (4187547)		<1	1.00	29	74	8.25	1780	<0.5	1.03	319	1220	18	<10	0.61	5
E5840406 (4187548)		<1	0.61	154	55	5.24	1760	1.8	1.11	12.3	5760	37	<10	1.81	2

Certificate of Analysis

AGAT WORK ORDER: 22O931354

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 09, 2022	DATE RECEIVED: Aug 10, 2022						DATE REPORTED: Sep 21, 2022				SAMPLE TYPE: Drill Core			
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840407 (4187549)		<1	0.57	151	55	6.07	1700	2.9	1.40	33.7	5480	16	<10	1.11	5
E5840408 (4187550)		<1	0.51	8	51	7.79	1320	<0.5	1.57	371	383	13	<10	0.36	5
E5840409 (4187551)		<1	0.82	5	37	4.49	1200	<0.5	3.46	57.9	344	9	<10	0.21	<1
E5840410 (4187552)		<1	0.65	12	12	3.76	1140	3.4	1.83	9460	578	67	<10	2.67	2
E5840411 (4187553)		<1	0.37	5	60	9.27	1460	<0.5	1.03	355	297	9	<10	0.03	<1
E5840412 (4187554)		<1	0.02	5	29	13.4	1050	<0.5	0.04	898	155	10	<10	0.08	9
E5840413 (4187555)		<1	0.03	5	26	14.5	1060	<0.5	0.02	1040	155	13	<10	0.21	12
E5840414 (4187556)		<1	0.03	5	23	15.1	1110	<0.5	0.02	1040	112	12	<10	0.25	11
E5840415 (4187557)		<1	0.02	5	21	14.5	1050	<0.5	0.02	1030	125	11	<10	0.15	11
E5840416 (4187558)		<1	0.02	5	19	14.9	1180	<0.5	0.01	1030	116	12	<10	0.12	11
E5840417 (4187559)		<1	0.02	5	17	15.3	1300	<0.5	0.01	1070	108	12	<10	0.11	11
E5840418 (4187560)		<1	0.02	5	21	14.5	935	<0.5	0.01	1060	111	10	<10	0.20	10
E5840419 (4187561)		<1	0.01	4	18	13.7	1050	<0.5	0.01	973	107	9	<10	0.27	10
E5840420 (4187562)		<1	1.28	8	8	0.56	250	<0.5	2.76	21.0	199	3	<10	0.02	<1

Certificate of Analysis

AGAT WORK ORDER: 22O931354

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

CEIEITI IVIIIE: OK		3 00111	(2	(201-070) 4 Acid Digest - Metals Package, ICP-OES finish											
DATE SAMPLED: Au	g 09, 2022		•		EIVED: Aug				REPORTED		022	SAM	PLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840375 (4187516)		23	<10	<5	29	<10	21	<5	0.24	<5	<5	151	<1	9	94.1
E5840376 (4187517)		20	<10	<5	49	<10	22	<5	0.20	<5	<5	130	<1	7	83.2
E5840377 (4187518)		20	<10	<5	35	<10	22	<5	0.21	<5	<5	132	<1	8	83.9
E5840378 (4187519)		19	<10	<5	41	<10	22	<5	0.19	<5	<5	126	<1	6	88.3
E5840379 (4187520)		19	<10	<5	21	<10	19	<5	0.18	<5	<5	123	<1	7	88.1
E5840380 (4187521)		13	<10	<5	253	<10	35	<5	0.74	<5	8	134	3	14	100
E5840381 (4187522)		20	<10	<5	17	<10	21	<5	0.19	<5	<5	128	<1	7	86.3
E5840382 (4187523)		21	<10	<5	17	<10	24	<5	0.20	<5	<5	135	1	7	84.7
E5840383 (4187524)		28	<10	<5	51	<10	20	<5	0.29	<5	<5	187	<1	11	83.2
E5840384 (4187525)		23	<10	<5	25	<10	22	<5	0.32	<5	<5	158	<1	9	91.0
E5840385 (4187526)		23	<10	<5	50	<10	19	<5	0.23	<5	<5	151	<1	8	89.6
E5840386 (4187527)		23	<10	<5	41	<10	21	<5	0.23	<5	<5	148	<1	8	94.7
E5840387 (4187528)		27	<10	<5	59	<10	22	<5	0.27	<5	<5	176	<1	10	89.8
E5840388 (4187529)		20	<10	<5	59	<10	21	<5	0.20	<5	<5	130	<1	7	89.6
E5840389 (4187530)		19	<10	<5	55	<10	24	<5	0.19	<5	<5	126	<1	7	83.3
E5840390 (4187531)		6	<10	<5	355	<10	<10	<5	0.14	<5	<5	41.3	<1	6	19.5
E5840391 (4187532)		18	<10	<5	72	<10	22	<5	0.17	<5	<5	116	<1	6	73.3
E5840392 (4187533)		18	<10	<5	83	<10	21	<5	0.17	<5	<5	117	<1	6	72.2
E5840393 (4187534)		17	<10	<5	45	<10	22	<5	0.17	<5	<5	119	<1	6	77.2
E5840394 (4187535)		20	<10	<5	70	<10	19	<5	0.18	<5	<5	127	<1	7	81.4
E5840395 (4187536)		11	<10	<5	412	<10	39	<5	0.25	<5	23	236	<1	29	830
E5840396 (4187537)		35	<10	<5	222	<10	18	<5	0.41	<5	<5	255	2	19	138
E5840397 (4187538)		36	<10	<5	188	<10	17	<5	0.36	<5	<5	226	<1	16	97.2
E5840398 (4187539)		5	<10	<5	163	<10	30	<5	0.11	<5	26	246	<1	39	481
E5840399 (4187540)		5	<10	<5	1040	<10	19	<5	0.22	<5	15	213	<1	64	416
E5840400 (4187541)		5	<10	<5	1100	<10	20	<5	0.21	<5	14	210	<1	61	413
E5840401 (4187542)		7	<10	<5	1500	<10	21	<5	0.37	<5	14	291	<1	40	184
E5840402 (4187543)		17	<10	<5	1110	<10	20	<5	1.18	<5	7	309	<1	48	140
E5840403 (4187544)		15	<10	<5	898	<10	21	<5	1.23	5	6	309	1	57	175
E5840404 (4187546)		11	<10	<5	779	<10	21	<5	0.98	<5	8	352	<1	63	142
E5840405 (4187547)		30	<10	<5	135	<10	20	<5	0.58	<5	<5	243	<1	21	197
E5840406 (4187548)		12	<10	<5	373	<10	23	<5	1.37	<5	6	302	1	51	184

Certificate of Analysis

AGAT WORK ORDER: 220931354

PROJECT: WR-22-CORE-06

MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

5623 McADAM ROAD

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 09, 2022			DATE RECE	EIVED: Aug	10, 2022		DATE I	REPORTED	: Sep 21, 20	022	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840407 (4187549)		16	<10	<5	290	<10	22	<5	1.36	<5	8	324	<1	50	149
E5840408 (4187550)		32	<10	<5	99	<10	22	<5	0.37	<5	<5	224	<1	14	75.2
E5840409 (4187551)		38	<10	<5	169	<10	16	<5	0.49	<5	<5	281	<1	18	67.3
E5840410 (4187552)		12	<10	<5	286	<10	34	<5	0.55	<5	7	118	3	11	112
E5840411 (4187553)		32	<10	<5	155	<10	19	<5	0.40	<5	<5	241	<1	16	58.6
E5840412 (4187554)		19	<10	<5	71	<10	19	<5	0.19	<5	<5	126	1	7	68.9
E5840413 (4187555)		20	<10	<5	33	<10	20	<5	0.20	<5	<5	132	<1	7	73.5
E5840414 (4187556)		19	<10	<5	59	<10	24	<5	0.18	<5	<5	121	<1	6	93.3
E5840415 (4187557)		18	<10	<5	51	<10	19	<5	0.17	<5	<5	119	<1	6	76.8
E5840416 (4187558)		17	<10	<5	53	<10	19	<5	0.17	<5	<5	116	<1	6	79.9
E5840417 (4187559)		16	<10	<5	45	<10	19	<5	0.15	<5	<5	109	<1	6	74.0
E5840418 (4187560)		18	<10	<5	44	<10	21	<5	0.16	<5	<5	115	2	6	67.3
E5840419 (4187561)		15	<10	<5	69	<10	21	<5	0.15	<5	<5	102	<1	5	62.6
E5840420 (4187562)		6	<10	<5	359	<10	<10	<5	0.14	<5	<5	41.5	<1	6	20.2

AGAT WORK ORDER: 220931354

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

OLILIVI IVANIL. OIA			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ATTENTION TO: ATTICAL	- Cittain G
			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Aug	09, 2022		DATE RECEIVED: Aug 10, 2022	DATE REPORTED: Sep 21, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840375 (4187516)		25			
E5840376 (4187517)		20			
E5840377 (4187518)		23			
E5840378 (4187519)		19			
E5840379 (4187520)		21			
E5840380 (4187521)		66			
E5840381 (4187522)		21			
E5840382 (4187523)		23			
E5840383 (4187524)		34			
E5840384 (4187525)		52			
E5840385 (4187526)		25			
E5840386 (4187527)		22			
E5840387 (4187528)		31			
E5840388 (4187529)		17			
E5840389 (4187530)		17			
E5840390 (4187531)		41			
E5840391 (4187532)		13			
E5840392 (4187533)		19			
E5840393 (4187534)		22			
E5840394 (4187535)		26			
E5840395 (4187536)		76			
E5840396 (4187537)		59			
E5840397 (4187538)		48			
E5840398 (4187539)		50			
E5840399 (4187540)		66			
E5840400 (4187541)		60			
E5840401 (4187542)		98			
E5840402 (4187543)		179			
E5840403 (4187544)		281			
E5840404 (4187546)		305			
E5840405 (4187547)		160			
E5840406 (4187548)		472			

AGAT WORK ORDER: 220931354

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	Package, ICP-OES finish	
DATE SAMPLED: Aug	09, 2022		DATE RECEIVED: Aug 10, 2022	DATE REPORTED: Sep 21, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840407 (4187549)		488			
E5840408 (4187550)		57			
E5840409 (4187551)		61			
E5840410 (4187552)		58			
E5840411 (4187553)		54			
E5840412 (4187554)		26			
E5840413 (4187555)		26			
E5840414 (4187556)		20			
E5840415 (4187557)		21			
E5840416 (4187558)		20			
E5840417 (4187559)		19			
E5840418 (4187560)		19			
E5840419 (4187561)		17			
E5840420 (4187562)		38			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

4187516-4187562 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O931354

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

		(2	02-555)	Fire Assay - Au, Pt, Pd Trace L	evels, ICP-OES finish (50g charge)	
DATE SAMPLED: Au	ıg 09, 2022			DATE RECEIVED: Aug 10, 2022	DATE REPORTED: Sep 21, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840375 (4187516)		<0.001	0.007	<0.005		
E5840376 (4187517)		0.001	0.006	0.005		
E5840377 (4187518)		< 0.001	0.006	<0.005		
E5840378 (4187519)		0.079	0.005	<0.005		
E5840379 (4187520)		< 0.001	0.005	<0.005		
E5840380 (4187521)		0.116	0.601	0.302		
E5840381 (4187522)		0.003	0.017	<0.005		
E5840382 (4187523)		< 0.001	0.005	<0.005		
E5840383 (4187524)		< 0.001	0.008	0.006		
E5840384 (4187525)		< 0.001	0.005	<0.005		
E5840385 (4187526)		< 0.001	0.005	<0.005		
E5840386 (4187527)		< 0.001	0.003	<0.005		
E5840387 (4187528)		< 0.001	0.003	<0.005		
E5840388 (4187529)		< 0.001	0.003	<0.005		
E5840389 (4187530)		< 0.001	0.010	<0.005		
E5840390 (4187531)		< 0.001	< 0.001	<0.005		
E5840391 (4187532)		0.010	0.006	<0.005		
E5840392 (4187533)		< 0.001	0.006	<0.005		
E5840393 (4187534)		< 0.001	0.014	0.006		
E5840394 (4187535)		< 0.001	0.005	<0.005		
E5840395 (4187536)		0.008	< 0.001	<0.005		
E5840396 (4187537)		< 0.001	0.003	<0.005		
E5840397 (4187538)		< 0.001	0.008	0.007		
E5840398 (4187539)		0.042	0.006	<0.005		
E5840399 (4187540)		0.036	0.005	<0.005		
E5840400 (4187541)		0.022	0.003	<0.005		
E5840401 (4187542)		0.008	0.001	<0.005		
E5840402 (4187543)		< 0.001	<0.001	<0.005		
E5840403 (4187544)		0.001	< 0.001	<0.005		
E5840404 (4187546)		< 0.001	<0.001	<0.005		
E5840405 (4187547)		< 0.001	0.004	<0.005		
E5840406 (4187548)		<0.001	<0.001	<0.005		

AGAT WORK ORDER: 22O931354

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	:02-555) I	Fire Assay	/ - Au, Pt, Pd Trace I	_evels, ICP-OES finish (50g charge)	
DATE SAMPLED: Au	g 09, 2022			DATE RECE	VED: Aug 10, 2022	DATE REPORTED: Sep 21, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt			
	Unit:	ppm	ppm	ppm			
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005			
E5840407 (4187549)		< 0.001	<0.001	<0.005			
E5840408 (4187550)		< 0.001	0.004	< 0.005			
E5840409 (4187551)		< 0.001	< 0.001	<0.005			
E5840410 (4187552)		0.156	1.34	0.683			
E5840411 (4187553)		< 0.001	0.003	<0.005			
E5840412 (4187554)		< 0.001	0.004	< 0.005			
E5840413 (4187555)		< 0.001	0.001	< 0.005			
E5840414 (4187556)		0.002	0.006	<0.005			
E5840415 (4187557)		< 0.001	0.003	< 0.005			
E5840416 (4187558)		<0.001	0.003	<0.005			
E5840417 (4187559)		< 0.001	0.004	< 0.005			
E5840418 (4187560)		< 0.001	0.005	< 0.005			
E5840419 (4187561)		0.024	0.003	< 0.005			
E5840420 (4187562)		<0.001	<0.001	<0.005			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 220931354

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passin	ng (Crushing)	
DATE SAMPLED: Au	•		DATE RECEIVED: Aug 10, 2022	DATE REPORTED: Sep 21, 2022	SAMPLE TYPE: Drill Core
	Analyte: C	rush-Pass %			
	Unit:	%			
Sample ID (AGAT ID)	RDL:	0.01			
E5840375 (4187516)		78.77			
E5840394 (4187535)		77.14			
E5840414 (4187556)		79.18			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 220931354

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passing	g (Pulverizing)	
DATE SAMPLED: Aug	g 09, 2022		DATE RECEIVED: Aug 10, 2022	DATE REPORTED: Sep 21, 2022	SAMPLE TYPE: Drill Core
	Analyte: Po	ul-Pass %			
	Unit:	%			
Sample ID (AGAT ID)	RDL:	0.01			
E5840375 (4187516)		85.87			
E5840394 (4187535)		88.84			
E5840412 (4187554)		85.25			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220931354 PROJECT: WR-22-CORE-06 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(201	1-070) 4	Acid Di	gest - N	/letals F	Package,	ICP-O	ES finis	h				
		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3			REPLIC	ATE #4	
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Ag	4187516	< 0.5	< 0.5	0.0%	4187530	< 0.5	< 0.5	0.0%	4187541	< 0.5	< 0.5	0.0%	4187557	< 0.5	< 0.5	0.0%
Al	4187516	3.71	3.63	2.2%	4187530	2.93	2.92	0.3%	4187541	1.29	1.30	0.8%	4187557	2.71	2.81	3.6%
As	4187516	< 1	< 1	0.0%	4187530	< 1	< 1	0.0%	4187541	103	102	1.0%	4187557	< 1	< 1	0.0%
Ва	4187516	8	8	0.0%	4187530	5	5	0.0%	4187541	113	119	5.2%	4187557	4	4	0.0%
Be	4187516	< 0.5	< 0.5	0.0%	4187530	< 0.5	< 0.5	0.0%	4187541	7.9	7.9	0.0%	4187557	< 0.5	< 0.5	0.0%
Bi	4187516	3	4	28.6%	4187530	2	2	0.0%	4187541	< 1	< 1	0.0%	4187557	< 1	2	
Ca	4187516	3.19	3.14	1.6%	4187530	2.40	2.39	0.4%	4187541	17.0	16.2	4.8%	4187557	2.65	2.74	3.3%
Cd	4187516	< 0.5	< 0.5	0.0%	4187530	< 0.5	< 0.5	0.0%	4187541	0.97	0.91	6.4%	4187557	< 0.5	< 0.5	0.0%
Ce	4187516	3	3	0.0%	4187530	3	2		4187541	484	465	4.0%	4187557	3	3	0.0%
Co	4187516	89.3	88.5	0.9%	4187530	95.7	97.3	1.7%	4187541	12.6	12.7	0.8%	4187557	87.6	88.7	1.2%
Cr	4187516	2100	2120	0.9%	4187530	2380	2300	3.4%	4187541	82.6	76.7	7.4%	4187557	1970	2040	3.5%
Cu	4187516	38.0	38.0	0.0%	4187530	19.2	19.2	0.0%	4187541	80.2	73.5	8.7%	4187557	44.4	42.7	3.9%
Fe	4187516	8.02	7.93	1.1%	4187530	7.82	7.78	0.5%	4187541	14.2	13.6	4.3%	4187557	7.14	7.36	3.0%
Ga	4187516	10	11	9.5%	4187530	9	9	0.0%	4187541	19	18	5.4%	4187557	9	8	11.8%
ln	4187516	< 1	< 1	0.0%	4187530	< 1	< 1	0.0%	4187541	< 1	< 1	0.0%	4187557	< 1	< 1	0.0%
K	4187516	0.07	0.07	0.0%	4187530	0.03	0.03	0.0%	4187541	1.10	1.08	1.8%	4187557	0.024	0.025	4.1%
La	4187516	5	5	0.0%	4187530	5	5	0.0%	4187541	450	422	6.4%	4187557	5	5	0.0%
Li	4187516	24	23	4.3%	4187530	16	16	0.0%	4187541	45	43	4.5%	4187557	21	21	0.0%
Mg	4187516	14.7	14.5	1.4%	4187530	15.5	15.4	0.6%	4187541	1.91	1.85	3.2%	4187557	14.5	14.9	2.7%
Mn	4187516	1330	1310	1.5%	4187530	1250	1250	0.0%	4187541	2780	2670	4.0%	4187557	1050	1080	2.8%
Мо	4187516	< 0.5	< 0.5	0.0%	4187530	< 0.5	< 0.5	0.0%	4187541	24.7	23.2	6.3%	4187557	< 0.5	< 0.5	0.0%
Na	4187516	0.076	0.074	2.7%	4187530	0.03	0.03	0.0%	4187541	0.070	0.088	22.8%	4187557	0.02	0.02	0.0%
Ni	4187516	1010	1010	0.0%	4187530	1060	1070	0.9%	4187541	60.9	59.3	2.7%	4187557	1030	1060	2.9%
Р	4187516	171	170	0.6%	4187530	147	125	16.2%	4187541	3640	3400	6.8%	4187557	125	99	23.2%
Pb	4187516	13	13	0.0%	4187530	13	14	7.4%	4187541	91	86	5.6%	4187557	11	9	20.0%
Rb	4187516	< 10	< 10	0.0%	4187530	< 10	< 10	0.0%	4187541	< 10	< 10	0.0%	4187557	< 10	< 10	0.0%
S	4187516	0.07	0.07	0.0%	4187530	0.187	0.174	7.2%	4187541	16.2	15.7	3.1%	4187557	0.152	0.168	10.0%
Sb	4187516	11	13	16.7%	4187530	13	13	0.0%	4187541	13	14	7.4%	4187557	11	13	16.7%
Sc	4187516	23	23	0.0%	4187530	19	19	0.0%	4187541	5	5	0.0%	4187557	18	18	0.0%
Se	4187516	< 10	< 10	0.0%	4187530	< 10	< 10	0.0%	4187541	< 10	< 10	0.0%	4187557	< 10	< 10	0.0%
Sn	4187516	< 5	< 5	0.0%	4187530	< 5	< 5	0.0%	4187541	< 5	< 5	0.0%	4187557	< 5	< 5	0.0%

Quality Assurance - Replicate AGAT WORK ORDER: 220931354 PROJECT: WR-22-CORE-06 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

AT.	TFNI	TION!	TO	Arnaud	Fontaine

CLIENT NAW	IE. UKFUKI	DIVININING	CORP							AIIE	NIION IC	. Amauu	rontaine			
Sr	4187516	29	28	3.5%	4187530	55	55	0.0%	4187541	1100	1040	5.6%	4187557	51	52	1.9%
Та	4187516	< 10	< 10	0.0%	4187530	< 10	< 10	0.0%	4187541	< 10	< 10	0.0%	4187557	< 10	< 10	0.0%
Te	4187516	21	22	4.7%	4187530	24	25	4.1%	4187541	20	19	5.1%	4187557	19	22	14.6%
Th	4187516	< 5	< 5	0.0%	4187530	< 5	< 5	0.0%	4187541	< 5	< 5	0.0%	4187557	< 5	< 5	0.0%
Ti	4187516	0.24	0.24	0.0%	4187530	0.19	0.19	0.0%	4187541	0.211	0.203	3.9%	4187557	0.169	0.177	4.6%
TI	4187516	< 5	< 5	0.0%	4187530	< 5	< 5	0.0%	4187541	< 5	< 5	0.0%	4187557	< 5	< 5	0.0%
U	4187516	< 5	< 5	0.0%	4187530	< 5	< 5	0.0%	4187541	14	13	7.4%	4187557	< 5	< 5	0.0%
V	4187516	151	152	0.7%	4187530	126	125	0.8%	4187541	210	203	3.4%	4187557	119	120	0.8%
W	4187516	< 1	< 1	0.0%	4187530	< 1	< 1	0.0%	4187541	< 1	< 1	0.0%	4187557	< 1	< 1	0.0%
Υ	4187516	9	9	0.0%	4187530	7	7	0.0%	4187541	61	59	3.3%	4187557	6	6	0.0%
Zn	4187516	94.1	92.0	2.3%	4187530	83.3	79.7	4.4%	4187541	413	376	9.4%	4187557	76.8	80.5	4.7%
Zr	4187516	25	25	0.0%	4187530	17	16	6.1%	4187541	60	61	1.7%	4187557	21	21	0.0%
		REPLIC	ATE #5				•	1				•			1	
Parameter	Sample ID	Original	Replicate	RPD												
Ag	4187562	< 0.5	< 0.5	0.0%												
Al	4187562	6.38	6.35	0.5%												
As	4187562	3	1													
Ва	4187562	383	381	0.5%												
Ве	4187562	1.0	1.0	0.0%												
Bi	4187562	< 1	< 1	0.0%												
Ca	4187562	1.68	1.68	0.0%												
Cd	4187562	< 0.5	< 0.5	0.0%												
Се	4187562	17	16	6.1%												
Со	4187562	5.42	5.14	5.3%												
Cr	4187562	63.8	63.3	0.8%												
Cu	4187562	6.1	5.9	3.3%												
Fe	4187562	1.41	1.40	0.7%												
Ga	4187562	17	16	6.1%												
In	4187562	< 1	< 1	0.0%												
K	4187562	1.28	1.27	0.8%												
La	4187562	8	8	0.0%												
Li	4187562	8	8	0.0%												
Mg	4187562	0.56	0.56	0.0%												
Mn	4187562	250	247	1.2%												

Quality Assurance - Replicate AGAT WORK ORDER: 220931354 PROJECT: WR-22-CORE-06 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

CLIENT NAME: ORFORD MINING CORP ATTENTION TO: Arnaud Fontaine 4187562 < 0.5 0.0% < 0.5 Na 4187562 2.76 2.77 0.4% Ni 4187562 21.0 20.6 1.9% Р 4187562 199 212 6.3% Pb 3 4187562 3 0.0% Rb 4187562 < 10 < 10 0.0% S 4187562 0.02 0.02 0.0% Sb 4187562 < 1 < 1 0.0% 4187562 6 6 0.0% Sc Se 4187562 < 10 < 10 0.0% Sn 4187562 < 5 < 5 0.0% Sr 4187562 359 363 1.1% 4187562 0.0% Ta < 10 < 10 < 10 Te 4187562 < 10 0.0% Th 4187562 < 5 < 5 0.0% Τi 4187562 0.14 0.14 0.0% ΤI 4187562 < 5 < 5 0.0% U 4187562 < 5 < 5 0.0% V 4187562 41.5 40.7 1.9% W 4187562 < 1 < 1 0.0% Υ 6 6 4187562 0.0% Zn 4187562 20.2 19.5 3.5% Zr 4187562 38 0.0% (202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge) REPLICATE #1 REPLICATE #2 REPLICATE #3 REPLICATE #4 Sample ID Original Replicate RPD Sample ID Original Replicate RPD Sample ID Original Replicate **RPD** Sample ID Original Replicate **RPD** Parameter 4187516 < 0.001 < 0.001 0.0% 4187530 < 0.001 < 0.001 0.0% 4187541 0.0223 0.0289 25.8% 4187557 < 0.001 < 0.001 0.0% 0.003 Pd 4187516 0.007 0.007 0.0% 4187530 0.0101 0.0118 15.5% 4187541 0.003 0.005 4187557 0.003 0.0%

4187516

< 0.005

< 0.005

0.0%

4187530

< 0.005

< 0.005

Pt

0.0%

0.0%

4187541

< 0.005

< 0.005

0.0%

4187557

< 0.005

< 0.005

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220931354

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

	CRM #1 (ref.CGL-015)				CRM #2 (ref.Till-2)				CRM #3 (ref.GTS-2a)					
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits		
Al	13.0	12.7	98%		8.47	8.46	100%		6.96	7.32	105%			
As					26	28	107%		124	136	110%			
Ва	1305	1204	92%		540	506	94%		186	190	102%			
Be					4.0	3.3	83%							
Ca	1.42	1.37	97%		0.907	0.892	98%		4.01	4.08	102%			
Ce	58.24	54.2	93%		98	99	101%		24	22	93%			
Со					15	12	83%		22.1	19.7	89%			
Cr					60.3	61.7	102%							
Cu					150	160	106%		88.6	91.1	103%			
Fe	3.27	3.07	94%		3.77	3.65	97%		7.56	7.49	99%			
K	3.69	3.81	103%						2.021	2.153	107%			
La	27.48	25.03	91%		44	43	99%							
Li	64.95	65.84	101%		47	46	97%							
Mg	0.223	0.216	97%		1.10	1.05	96%		2.412	2.407	100%			
Mn					780	744	95%		1510	1486	98%			
Мо					14	13	94%							
Na	7.24	7.06	97%		1.624	1.683	104%		0.617	0.656	106%			
Ni					32	32	101%		77.1	72.9	95%			
Р	610	657	108%		750	798	106%		892	905	102%			
Pb					31	34	111%							
S									0.348	0.338	97%			
Sc	2.76	2.15	78%		12	12	101%							
Sr	312	296	95%		144	148	103%		92.8	92.7	100%			
Th					18.4	17.4	95%							
Ti	0.222	0.205	92%		0.53	0.45	86%							
U					5.7	4.6	81%							
V					77	83	108%							
W					5	5	95%							
Υ	25.32	24.61	97%											
Zn	75.42	78.15	104%		130	121	93%		208	216	104%			

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220931354

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

	CRM #1 (ref.PGMS30)			CRM #2 (ref.PGMS30)				CRM #3 (ref.PGMS30)						
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits		
Au	1.897	2.063	109%		1.897	1.915	101%		1.897	1.842	97%			
Pd	1.660	1.745	105%		1.660	1.727	104%		1.660	1.509	91%			
Pt	0.223	0.235	105%		0.223	0.213	96%		0.223	0.231	104%			

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-06

SAMPLING SITE:

AGAT WORK ORDER: 220931354 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Bi	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
La	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Li	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mg	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Na	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Ni	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

Method Summary

CLIENT NAME: ORFORD MINING CORP

AGAT WORK ORDER: 220931354 PROJECT: WR-22-CORE-06 ATTENTION TO: Arnaud Fontaine

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.		SAMPLED BT.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
ті	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-12006, MIN-12004		ICP/OES
Pd	MIN-12006, MIN-12004		ICP/OES
Pt	MIN-12006, MIN-12004		ICP/OES
Crush-Pass %			BALANCE
Pul-Pass %			BALANCE

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-CORE-06

AGAT WORK ORDER: 220931355

SOLID ANALYSIS REVIEWED BY: Jing Xiao, Data Reviewer

DATE REPORTED: Sep 21, 2022

PAGES (INCLUDING COVER): 22

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 22

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

AGAT WORK ORDER: 22O931355

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	gin Weight	
DATE SAMPLED: Au	g 09, 2022		DATE RECEIVED: Aug 10, 2022	DATE REPORTED: Sep 21, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840421 (4187567)		3.360			
E5840422 (4187568)		3.310			
E5840423 (4187569)		3.380			
E5840424 (4187570)		3.450			
E5840425 (4187571)		3.470			
E5840426 (4187572)		3.360			
E5840427 (4187573)		3.270			
E5840428 (4187574)		3.530			
E5840429 (4187575)		1.570			
E5840430 (4187576)		1.470			
E5840431 (4187577)		3.440			
E5840432 (4187578)		3.570			
E5840433 (4187579)		3.380			
E5840434 (4187580)		3.560			
E5840435 (4187581)		3.460			
E5840436 (4187582)		3.630			
E5840437 (4187583)		3.210			
E5840438 (4187584)		3.660			
E5840439 (4187585)		3.430			
E5840440 (4187586)		0.010			
E5840441 (4187587)		3.430			
E5840442 (4187588)		3.470			
E5840443 (4187589)		2.690			
E5840444 (4187590)		3.420			
E5840445 (4187591)		3.600			
E5840446 (4187592)		3.710			
E5840447 (4187593)		3.670			
E5840448 (4187594)		3.420			
E5840449 (4187595)		3.470			
E5840450 (4187596)		0.110			
E5840451 (4187597)		3.190			

Certificate of Analysis

AGAT WORK ORDER: 220931355

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	(200-) Sample Login Weight											
DATE SAMPLED: Au	g 09, 2022		DATE RECEIVED: Aug 10, 2022	DATE REPORTED: Sep 21, 2022	SAMPLE TYPE: Drill Core							
	Analyte:	Sample Login Weight										
	Unit:	kg										
Sample ID (AGAT ID)	RDL:	0.005										
E5840452 (4187598)		3.690										
E5840453 (4187599)		3.370										
E5840454 (4187600)		3.480										
E5840455 (4187601)		3.340										
E5840456 (4187602)		3.230										
E5840457 (4187603)		3.190										
E5840458 (4187604)		0.750										
E5840459 (4187605)		0.850										
E5840460 (4187606)		1.710										
E5840461 (4187607)		3.390										
E5840462 (4187608)		3.200										
E5840463 (4187609)		3.080										
E5840464 (4187610)		2.130										
E5840465 (4187611)		3.540										
E5840466 (4187612)		2.770										
·												

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 220931355

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	(200-052) Barren Wash -Pulverizing												
DATE SAMPLED: Aug 09, 2022 DATE RECEIVED: Aug 10, 2022 DATE REPORTED: Sep 21, 2022 SAMPLE TYPE: Drill Core													
	Analyte:	Barren Wash-Pulv											
	Unit:												
Sample ID (AGAT ID)	RDL:												
E5840421 (4187567)		YES											

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 22O931355

PROJECT: WR-22-CORE-06

CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

5623 McADAM ROAD

MISSISSAUGA, ONTARIO

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ickage, I	CP-OES	finish					
DATE SAMPLED: Au	g 09, 2022		С	DATE RECE	EIVED: Aug	10, 2022		DATE I	REPORTED	: Sep 21, 20	022	SAMPLE TYPE: Drill Core			
	Analyte:	Ag	Al	As	Ва	Ве	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840421 (4187567)		<0.5	2.72	9	3	0.6	<1	3.07	<0.5	3	86.1	1790	42.9	6.93	Ę
E5840422 (4187568)		<0.5	3.00	14	3	0.6	<1	3.28	<0.5	4	90.7	1790	50.3	7.31	7
E5840423 (4187569)		<0.5	3.33	16	3	0.7	<1	3.92	<0.5	5	87.8	1710	48.5	6.76	12
E5840424 (4187570)		<0.5	3.32	9	3	0.7	<1	4.93	<0.5	4	77.4	1870	27.5	7.03	13
E5840425 (4187571)		<0.5	3.11	10	3	0.8	<1	1.90	<0.5	5	96.4	1940	43.5	7.43	ξ
E5840426 (4187572)		<0.5	2.68	13	3	0.7	<1	3.04	<0.5	4	93.1	1830	51.0	6.71	3
E5840427 (4187573)		<0.5	2.44	23	3	0.6	<1	3.77	<0.5	4	88.1	1730	63.4	6.32	ć
E5840428 (4187574)		<0.5	2.44	16	3	0.7	<1	4.00	<0.5	3	86.0	1860	33.1	6.48	6
E5840429 (4187575)		<0.5	2.34	11	3	8.0	<1	3.31	<0.5	3	87.1	1760	46.7	6.53	<5
E5840430 (4187576)		<0.5	2.42	8	3	0.9	<1	2.63	<0.5	4	88.3	1890	51.4	6.50	12
E5840431 (4187577)		<0.5	2.00	9	2	0.7	<1	2.76	<0.5	3	80.0	1660	33.3	5.31	ć
E5840432 (4187578)		<0.5	2.27	8	2	0.7	<1	4.10	<0.5	3	86.8	2030	36.2	6.31	8
E5840433 (4187579)		<0.5	2.16	14	2	0.6	<1	4.55	<0.5	3	79.8	1770	21.9	5.94	5
E5840434 (4187580)		<0.5	2.35	14	2	0.6	<1	3.71	<0.5	3	82.8	1760	29.2	6.14	8
E5840435 (4187581)		<0.5	2.24	35	2	0.5	<1	4.65	<0.5	3	87.1	1800	28.8	5.96	ϵ
E5840436 (4187582)		<0.5	2.41	64	2	0.6	<1	3.82	<0.5	3	91.5	2200	26.1	5.94	7
E5840437 (4187583)		<0.5	2.08	92	2	<0.5	<1	5.76	<0.5	2	79.1	1800	12.7	4.91	10
E5840438 (4187584)		<0.5	2.45	126	1	<0.5	<1	2.87	<0.5	2	66.8	1500	5.7	5.74	E
E5840439 (4187585)		<0.5	3.11	305	1	0.5	<1	0.89	<0.5	3	87.7	1950	7.6	6.46	ξ
E5840440 (4187586)		<0.5	3.83	149	203	1.1	<1	2.89	<0.5	26	74.4	755	49.4	5.26	ξ
E5840441 (4187587)		<0.5	2.75	275	2	0.8	<1	2.51	<0.5	5	89.0	2060	25.7	6.40	8
E5840442 (4187588)		<0.5	2.74	255	1	0.9	<1	1.09	<0.5	4	89.1	2030	15.0	6.56	10
E5840443 (4187589)		<0.5	3.21	164	2	1.1	<1	0.44	<0.5	3	99.9	2180	25.2	7.45	ξ
E5840444 (4187590)		<0.5	3.14	66	2	0.8	<1	1.60	<0.5	4	82.0	1950	35.4	6.99	8
E5840445 (4187591)		<0.5	3.23	58	2	0.7	<1	2.42	<0.5	3	83.6	1900	48.4	7.14	Ę
E5840446 (4187592)		<0.5	3.53	45	3	0.8	<1	1.34	<0.5	5	85.2	2020	63.5	7.91	11
E5840447 (4187593)		<0.5	2.90	39	3	0.7	<1	4.20	<0.5	4	71.6	1620	39.2	6.54	6
E5840448 (4187594)		<0.5	2.81	48	3	0.7	<1	4.74	<0.5	5	84.8	1860	40.0	6.76	8
E5840449 (4187595)		<0.5	2.25	41	3	2.2	<1	3.53	<0.5	3	73.4	1470	29.3	6.07	F
E5840450 (4187596)		<0.5	6.32	1	370	1.1	<1	1.65	<0.5	17	5.3	33.5	7.5	1.38	19
E5840451 (4187597)		<0.5	2.48	58	2	0.8	<1	0.74	<0.5	3	99.3	2450	44.7	6.94	8
E5840452 (4187598)		<0.5	2.12	57	2	0.8	<1	1.32	<0.5	3	80.7	1860	37.4	6.19	<5

Certificate of Analysis

AGAT WORK ORDER: 22O931355

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 09, 2022		Г	DATE RECI	EIVED: Aug	10, 2022		DATE REPORTED: Sep 21, 2022					IPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Се	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840453 (4187599)		<0.5	2.35	57	2	0.6	<1	6.31	<0.5	4	64.6	1400	24.2	5.37	11
E5840454 (4187600)		< 0.5	3.24	105	2	0.7	<1	2.52	<0.5	6	83.9	2130	35.3	6.93	11
E5840455 (4187601)		<0.5	2.81	125	2	0.6	<1	3.40	<0.5	4	80.1	1800	67.5	6.60	8
E5840456 (4187602)		<0.5	3.34	110	3	0.7	<1	3.78	<0.5	5	68.6	1480	50.8	6.96	12
E5840457 (4187603)		< 0.5	3.95	125	4	8.0	<1	5.27	<0.5	7	73.2	1500	40.6	7.06	10
E5840458 (4187604)		< 0.5	6.49	104	6	1.0	<1	4.22	<0.5	9	74.0	1160	88.9	8.76	19
E5840459 (4187605)		<0.5	6.20	99	7	1.0	<1	4.86	<0.5	9	69.3	1120	92.6	8.37	19
E5840460 (4187606)		<0.5	8.22	41	2160	1.2	<1	1.22	<0.5	68	16.8	270	35.2	4.52	30
E5840461 (4187607)		<0.5	8.13	24	2740	1.3	<1	0.26	<0.5	65	5.6	116	6.9	2.93	28
E5840462 (4187608)		< 0.5	8.28	22	2760	3.4	<1	0.22	<0.5	82	2.2	108	5.0	2.24	28
E5840463 (4187609)		<0.5	7.99	110	3360	1.3	<1	0.31	<0.5	74	5.4	110	4.8	2.25	26
E5840464 (4187610)		0.6	6.92	20	777	0.9	<1	3.40	<0.5	65	7.1	79.4	7.7	2.24	24
E5840465 (4187611)		<0.5	4.66	330	58	1.0	<1	4.70	<0.5	9	63.8	1140	77.7	6.91	17
E5840466 (4187612)		<0.5	3.79	185	15	0.6	<1	5.60	<0.5	5	72.6	1330	46.4	6.75	11

Certificate of Analysis

AGAT WORK ORDER: 22O931355

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 09, 2022		С	ATE RECE	EIVED: Aug	10, 2022		DATE	REPORTED): Sep 21, 20)22	SAMPLE TYPE: Drill Core			
	Analyte:	In	К	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840421 (4187567)		<1	0.02	<2	21	15.4	1250	<0.5	0.01	1030	97	<1	<10	0.23	36
E5840422 (4187568)		<1	0.02	<2	23	16.0	1170	<0.5	0.01	1090	93	<1	<10	0.28	39
E5840423 (4187569)		<1	0.02	<2	28	14.5	1010	<0.5	0.01	1070	110	<1	<10	0.17	32
E5840424 (4187570)		<1	0.02	<2	32	15.0	1130	<0.5	0.01	990	101	<1	<10	0.16	38
E5840425 (4187571)		<1	0.02	<2	26	15.8	1100	<0.5	0.01	1170	109	<1	<10	0.26	37
E5840426 (4187572)		<1	0.01	<2	21	15.0	1190	<0.5	0.01	1090	95	<1	<10	0.32	38
E5840427 (4187573)		<1	0.01	<2	19	15.0	1170	<0.5	0.01	1000	83	<1	<10	0.23	34
E5840428 (4187574)		<1	0.01	<2	17	15.2	1220	<0.5	0.01	1070	87	<1	<10	0.22	40
E5840429 (4187575)		<1	0.01	<2	19	15.4	1070	<0.5	0.01	1170	85	<1	<10	0.32	36
E5840430 (4187576)		<1	0.01	<2	20	15.3	880	<0.5	0.01	1180	93	<1	<10	0.34	42
E5840431 (4187577)		<1	0.01	<2	15	12.6	859	<0.5	0.01	1020	72	<1	<10	0.33	31
E5840432 (4187578)		<1	0.01	<2	15	14.7	1100	<0.5	0.01	1130	85	<1	<10	0.34	40
E5840433 (4187579)		<1	<0.01	<2	15	14.6	1130	<0.5	0.01	1070	79	<1	<10	0.26	35
E5840434 (4187580)		<1	0.01	<2	19	15.0	1090	<0.5	0.01	1090	82	<1	<10	0.32	38
E5840435 (4187581)		<1	0.01	<2	17	14.4	1090	<0.5	0.01	1080	84	<1	<10	0.42	40
E5840436 (4187582)		<1	<0.01	<2	14	14.1	739	<0.5	0.01	1190	69	<1	<10	0.58	44
E5840437 (4187583)		<1	<0.01	<2	6	13.1	777	<0.5	<0.01	907	117	<1	<10	0.36	38
E5840438 (4187584)		<1	<0.01	<2	6	15.1	603	<0.5	<0.01	918	<10	<1	<10	0.20	31
E5840439 (4187585)		<1	<0.01	<2	8	15.6	488	<0.5	<0.01	1190	<10	<1	<10	0.21	43
E5840440 (4187586)		<1	0.63	13	34	13.4	1110	1.3	0.80	2010	214	7	<10	0.30	11
E5840441 (4187587)		<1	< 0.01	<2	7	15.0	804	<0.5	0.01	1180	75	<1	<10	0.36	48
E5840442 (4187588)		<1	< 0.01	<2	8	15.5	542	<0.5	0.01	1210	85	<1	<10	0.30	38
E5840443 (4187589)		<1	< 0.01	<2	16	15.9	557	<0.5	0.01	1280	105	<1	<10	0.39	42
E5840444 (4187590)		<1	0.01	<2	26	14.4	721	<0.5	0.01	1040	139	<1	<10	0.36	37
E5840445 (4187591)		<1	< 0.01	<2	31	14.6	848	<0.5	0.01	1040	115	<1	<10	0.31	34
E5840446 (4187592)		<1	0.01	<2	32	15.2	792	<0.5	0.01	1090	150	<1	<10	0.38	40
E5840447 (4187593)		<1	< 0.01	<2	22	13.7	939	<0.5	0.01	886	102	<1	<10	0.30	33
E5840448 (4187594)		<1	<0.01	<2	20	13.5	997	<0.5	0.01	1060	116	<1	<10	0.46	37
E5840449 (4187595)		<1	<0.01	<2	12	14.3	773	<0.5	0.01	832	84	<1	<10	0.44	28
E5840450 (4187596)		<1	1.28	8	8	0.60	251	<0.5	2.80	23.2	187	<1	<10	<0.01	<1
E5840451 (4187597)		<1	<0.01	<2	13	15.3	485	<0.5	0.01	1200	109	<1	<10	0.69	51
E5840452 (4187598)		<1	<0.01	<2	8	15.1	497	<0.5	<0.01	993	70	<1	<10	0.51	38

Certificate of Analysis

AGAT WORK ORDER: 22O931355

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 09, 2022		[DATE RECE	EIVED: Aug	10, 2022		DATE	REPORTED): Sep 21, 20	022	SAM	IPLE TYPE:	Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840453 (4187599)		<1	<0.01	<2	7	11.7	992	<0.5	<0.01	737	103	<1	<10	0.33	30
E5840454 (4187600)		<1	< 0.01	<2	12	13.4	729	< 0.5	< 0.01	1080	154	<1	<10	0.30	43
E5840455 (4187601)		<1	< 0.01	<2	13	13.2	861	< 0.5	< 0.01	843	131	<1	<10	0.11	32
E5840456 (4187602)		<1	< 0.01	<2	19	13.0	1060	<0.5	0.01	800	133	<1	<10	0.03	28
E5840457 (4187603)		<1	0.01	<2	27	12.5	1330	< 0.5	0.01	808	153	<1	<10	0.03	25
E5840458 (4187604)		<1	0.04	<2	47	11.2	1390	< 0.5	< 0.01	569	287	<1	<10	0.02	18
E5840459 (4187605)		<1	0.04	<2	46	10.3	1370	< 0.5	< 0.01	544	293	<1	<10	0.03	14
E5840460 (4187606)		<1	2.77	35	27	2.69	532	<0.5	3.07	121	277	13	<10	0.07	2
E5840461 (4187607)		<1	3.79	33	17	1.13	235	2.2	3.40	46.6	225	3	<10	0.06	<1
E5840462 (4187608)		<1	5.56	43	48	0.98	162	<0.5	1.78	22.2	206	8	<10	0.05	<1
E5840463 (4187609)		<1	4.48	39	17	1.08	146	0.6	3.06	30.0	181	5	<10	0.02	<1
E5840464 (4187610)		<1	1.84	33	15	1.41	387	<0.5	4.01	26.1	221	<1	<10	0.11	<1
E5840465 (4187611)		<1	0.68	<2	57	9.15	1150	<0.5	0.05	575	196	<1	<10	0.12	20
E5840466 (4187612)		<1	0.27	<2	40	11.4	1100	<0.5	0.01	700	149	<1	<10	0.09	31

Certificate of Analysis

AGAT WORK ORDER: 22O931355

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 09, 2022		Г	DATE RECE	EIVED: Aug	10, 2022		DATE F	REPORTED): Sep 21, 20)22	SAMPLE TYPE: Drill Core			
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840421 (4187567)		17	<10	<5	54	<10	<10	10	0.18	<5	<5	124	2	6	69.6
E5840422 (4187568)		19	<10	<5	49	<10	<10	<5	0.18	<5	<5	131	2	6	70.8
E5840423 (4187569)		21	<10	<5	69	<10	<10	13	0.20	<5	<5	146	2	8	66.1
E5840424 (4187570)		20	<10	<5	75	<10	<10	<5	0.20	<5	<5	140	3	7	68.7
E5840425 (4187571)		21	<10	<5	40	<10	<10	9	0.19	<5	<5	144	3	7	71.6
E5840426 (4187572)		17	<10	<5	67	<10	<10	12	0.16	<5	<5	122	2	6	66.5
E5840427 (4187573)		16	<10	<5	77	<10	<10	15	0.15	<5	<5	113	2	6	61.3
E5840428 (4187574)		16	<10	<5	88	<10	<10	11	0.15	<5	<5	110	3	5	64.1
E5840429 (4187575)		15	<10	<5	80	<10	<10	12	0.15	<5	<5	108	2	5	60.0
E5840430 (4187576)		16	<10	<5	66	<10	<10	11	0.15	<5	<5	112	2	5	63.0
E5840431 (4187577)		13	<10	<5	64	<10	<10	13	0.12	<5	<5	95.1	2	5	53.7
E5840432 (4187578)		15	<10	<5	90	<10	<10	13	0.14	<5	<5	108	2	5	63.5
E5840433 (4187579)		14	<10	<5	109	<10	<10	10	0.14	<5	<5	103	2	5	55.8
E5840434 (4187580)		15	<10	<5	91	<10	<10	6	0.16	<5	<5	107	2	5	57.0
E5840435 (4187581)		14	<10	<5	110	<10	<10	9	0.14	<5	<5	102	2	5	54.9
E5840436 (4187582)		15	<10	<5	93	<10	<10	9	0.15	<5	<5	113	1	5	60.7
E5840437 (4187583)		13	<10	<5	217	<10	<10	11	0.13	<5	<5	95.9	2	4	51.2
E5840438 (4187584)		11	<10	<5	92	<10	<10	8	0.09	<5	<5	91.6	<1	3	66.7
E5840439 (4187585)		13	<10	<5	17	<10	<10	5	0.13	<5	<5	113	<1	2	76.8
E5840440 (4187586)		12	<10	<5	73	<10	<10	16	0.17	<5	<5	77.7	6	9	106
E5840441 (4187587)		15	<10	<5	72	<10	<10	6	0.15	<5	<5	115	2	5	72.5
E5840442 (4187588)		15	<10	<5	17	<10	<10	6	0.15	<5	<5	117	2	5	75.9
E5840443 (4187589)		18	<10	<5	9	<10	<10	<5	0.19	<5	<5	142	2	5	79.1
E5840444 (4187590)		20	<10	<5	41	<10	<10	7	0.21	<5	<5	149	2	6	69.9
E5840445 (4187591)		20	<10	<5	56	<10	<10	5	0.22	<5	<5	147	2	5	74.9
E5840446 (4187592)		22	<10	<5	43	<10	<10	7	0.23	<5	<5	164	2	6	84.3
E5840447 (4187593)		17	<10	<5	105	<10	<10	<5	0.17	<5	<5	128	2	6	65.6
E5840448 (4187594)		18	<10	<5	108	<10	<10	5	0.19	<5	6	132	1	6	62.0
E5840449 (4187595)		16	<10	<5	99	<10	<10	8	0.14	<5	9	104	2	6	58.9
E5840450 (4187596)		6	<10	<5	360	<10	<10	<5	0.13	<5	13	40.5	<1	6	19.3
E5840451 (4187597)		17	<10	<5	22	<10	<10	5	0.16	<5	<5	128	2	4	72.1
E5840452 (4187598)		13	<10	<5	36	<10	<10	<5	0.14	<5	5	103	1	4	65.6

Certificate of Analysis

AGAT WORK ORDER: 22O931355

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 09, 2022	DATE RECEIVED: Aug 10, 2022							REPORTED	: Sep 21, 20	022	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	11	0.5
E5840453 (4187599)		14	<10	<5	129	<10	<10	10	0.15	<5	13	111	<1	6	69.5
E5840454 (4187600)		21	<10	<5	97	<10	<10	9	0.20	<5	<5	156	2	7	80.0
E5840455 (4187601)		24	<10	<5	112	<10	<10	9	0.19	<5	<5	149	1	7	67.8
E5840456 (4187602)		21	<10	<5	107	<10	<10	7	0.21	<5	<5	152	<1	8	64.0
E5840457 (4187603)		24	<10	<5	125	<10	<10	6	0.26	<5	<5	172	1	10	69.3
E5840458 (4187604)		35	<10	<5	165	<10	<10	<5	0.45	<5	<5	260	1	15	92.1
E5840459 (4187605)		35	<10	<5	234	<10	<10	<5	0.42	<5	<5	261	2	15	88.3
E5840460 (4187606)		14	<10	<5	77	<10	<10	23	0.29	<5	<5	148	2	16	52.4
E5840461 (4187607)		8	<10	<5	28	<10	<10	20	0.24	<5	<5	103	3	14	35.2
E5840462 (4187608)		9	<10	<5	26	<10	<10	21	0.23	<5	<5	62.5	3	11	21.5
E5840463 (4187609)		8	<10	<5	30	<10	<10	20	0.20	<5	<5	61.8	3	11	32.3
E5840464 (4187610)		7	<10	<5	105	<10	<10	19	0.19	<5	<5	44.8	4	11	48.6
E5840465 (4187611)		26	<10	<5	159	<10	<10	6	0.11	<5	6	192	<1	5	70.8
E5840466 (4187612)		21	<10	<5	93	<10	<10	7	0.06	<5	9	160	2	5	71.3

Certificate of Analysis

AGAT WORK ORDER: 220931355

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	Package, ICP-OES finish	
DATE SAMPLED: Au	g 09, 2022		DATE RECEIVED: Aug 10, 2022	DATE REPORTED: Sep 21, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840421 (4187567)		18			
E5840422 (4187568)		16			
E5840423 (4187569)		20			
E5840424 (4187570)		19			
E5840425 (4187571)		19			
E5840426 (4187572)		17			
E5840427 (4187573)		14			
E5840428 (4187574)		14			
E5840429 (4187575)		13			
E5840430 (4187576)		14			
E5840431 (4187577)		13			
E5840432 (4187578)		14			
E5840433 (4187579)		13			
E5840434 (4187580)		16			
E5840435 (4187581)		14			
E5840436 (4187582)		16			
E5840437 (4187583)		14			
E5840438 (4187584)		13			
E5840439 (4187585)		16			
E5840440 (4187586)		66			
E5840441 (4187587)		16			
E5840442 (4187588)		17			
E5840443 (4187589)		20			
E5840444 (4187590)		24			
E5840445 (4187591)		21			
E5840446 (4187592)		23			
E5840447 (4187593)		17			
E5840448 (4187594)		20			
E5840449 (4187595)		14			
E5840450 (4187596)		33			
E5840451 (4187597)		18			
E5840452 (4187598)		14			

AGAT WORK ORDER: 22O931355

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	Package, ICP-OES finish	
DATE SAMPLED: Aug	09, 2022		DATE RECEIVED: Aug 10, 2022	DATE REPORTED: Sep 21, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840453 (4187599)		18			
E5840454 (4187600)		25			
E5840455 (4187601)		20			
E5840456 (4187602)		23			
E5840457 (4187603)		28			
E5840458 (4187604)		49			
E5840459 (4187605)		50			
E5840460 (4187606)		153			
E5840461 (4187607)		147			
E5840462 (4187608)		151			
E5840463 (4187609)		147			
E5840464 (4187610)		128			
E5840465 (4187611)		34			
E5840466 (4187612)		24			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

4187567-4187612 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

fied By:

Certificate of Analysis

AGAT WORK ORDER: 220931355

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	202-555)	Fire Assay - Au, Pt, Pd Trace L	evels, ICP-OES finish (50g charge)	
DATE SAMPLED: Au	ıg 09, 2022			DATE RECEIVED: Aug 10, 2022	DATE REPORTED: Sep 21, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840421 (4187567)		0.007	0.005	0.006		
E5840422 (4187568)		0.008	0.005	<0.005		
E5840423 (4187569)		0.006	0.006	0.005		
E5840424 (4187570)		0.003	0.004	<0.005		
E5840425 (4187571)		0.086	0.005	0.005		
E5840426 (4187572)		0.017	0.011	0.007		
E5840427 (4187573)		0.019	0.004	<0.005		
E5840428 (4187574)		0.021	0.002	<0.005		
E5840429 (4187575)		0.032	0.015	0.012		
E5840430 (4187576)		0.030	0.014	0.011		
E5840431 (4187577)		0.046	0.003	<0.005		
E5840432 (4187578)		0.014	0.003	<0.005		
E5840433 (4187579)		0.002	0.004	<0.005		
E5840434 (4187580)		0.002	0.004	<0.005		
E5840435 (4187581)		0.007	0.003	<0.005		
E5840436 (4187582)		0.006	0.004	0.005		
E5840437 (4187583)		0.084	0.004	<0.005		
E5840438 (4187584)		0.008	0.003	<0.005		
E5840439 (4187585)		0.005	0.011	0.008		
E5840440 (4187586)		0.005	<0.001	0.021		
E5840441 (4187587)		0.007	0.016	0.009		
E5840442 (4187588)		0.014	0.006	<0.005		
E5840443 (4187589)		0.022	0.005	<0.005		
E5840444 (4187590)		0.057	0.009	<0.005		
E5840445 (4187591)		0.002	0.004	<0.005		
E5840446 (4187592)		0.002	0.003	<0.005		
E5840447 (4187593)		0.011	0.003	<0.005		
E5840448 (4187594)		0.005	0.004	<0.005		
E5840449 (4187595)		0.003	0.003	<0.005		
E5840450 (4187596)		<0.001	<0.001	<0.005		
E5840451 (4187597)		0.003	0.006	<0.005		
E5840452 (4187598)		0.003	0.004	<0.005		

AGAT WORK ORDER: 22O931355

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	02-555) I	Fire Assay - A	u, Pt, Pd Trace I	Levels, ICP-OES finish (50g	charge)
DATE SAMPLED: Aug	g 09, 2022			DATE RECEIVED:	Aug 10, 2022	DATE REPORTED: Sep 21, 2	2022 SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt			
	Unit:	ppm	ppm	ppm			
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005			
E5840453 (4187599)		0.001	0.005	<0.005			
E5840454 (4187600)		0.001	0.005	0.005			
E5840455 (4187601)		0.002	0.006	< 0.005			
E5840456 (4187602)		0.001	0.005	< 0.005			
E5840457 (4187603)		0.001	0.003	< 0.005			
E5840458 (4187604)		0.002	0.009	< 0.005			
E5840459 (4187605)		0.002	0.009	< 0.005			
E5840460 (4187606)		0.002	0.005	< 0.005			
E5840461 (4187607)		0.002	0.003	<0.005			
E5840462 (4187608)		<0.001	0.001	< 0.005			
E5840463 (4187609)		< 0.001	0.002	< 0.005			
E5840464 (4187610)		0.002	<0.001	<0.005			
E5840465 (4187611)		0.002	0.007	<0.005			
E5840466 (4187612)		0.002	0.007	<0.005			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 220931355

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Crushing)											
DATE SAMPLED: Au	•		DATE RECEIVED: Aug 10, 2022	DATE REPORTED: Sep 21, 2022	SAMPLE TYPE: Drill Core							
	Analyte: C	rush-Pass %										
	Unit:	%										
Sample ID (AGAT ID)	RDL:	0.01										
E5840421 (4187567)		75.79										
E5840441 (4187587)		79.82										
E5840460 (4187606)		78.07										

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O931355

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Pulverizing)										
DATE SAMPLED: Aug	09, 2022		DATE RECEIVED: Aug 10, 2022	DATE REPORTED: Sep 21, 2022	SAMPLE TYPE: Drill Core						
	Analyte: Pu	ıl-Pass %									
	Unit:	%									
Sample ID (AGAT ID)	RDL:	0.01									
E5840421 (4187567)		85.69									
E5840439 (4187585)		90.32									
E5840458 (4187604)		88.24									

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220931355 PROJECT: WR-22-CORE-06 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(20	1-070) 4	Acid Di	gest - N	/letals l	Package	, ICP-O	ES finis	h				
		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3			REPLIC	ATE #4	
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Ag	4187567	< 0.5	< 0.5	0.0%	4187581	< 0.5	< 0.5	0.0%	4187592	< 0.5	< 0.5	0.0%	4187607	< 0.5	< 0.5	0.0%
Al	4187567	2.72	2.82	3.6%	4187581	2.24	2.17	3.2%	4187592	3.53	3.47	1.7%	4187607	8.13	8.20	0.9%
As	4187567	9	3		4187581	35	43	20.5%	4187592	45	52	14.4%	4187607	24	23	4.3%
Ва	4187567	3	3	0.0%	4187581	2	2	0.0%	4187592	3	3	0.0%	4187607	2740	2770	1.1%
Be	4187567	0.6	0.6	0.0%	4187581	0.5	0.5	0.0%	4187592	0.8	0.8	0.0%	4187607	1.3	1.3	0.0%
Bi	4187567	< 1	< 1	0.0%	4187581	< 1	< 1	0.0%	4187592	< 1	< 1	0.0%	4187607	< 1	< 1	0.0%
Ca	4187567	3.07	2.80	9.2%	4187581	4.65	4.56	2.0%	4187592	1.34	1.46	8.6%	4187607	0.26	0.26	0.0%
Cd	4187567	< 0.5	< 0.5	0.0%	4187581	< 0.5	< 0.5	0.0%	4187592	< 0.5	< 0.5	0.0%	4187607	< 0.5	< 0.5	0.0%
Ce	4187567	3	5		4187581	3	3	0.0%	4187592	5	5	0.0%	4187607	65	64	1.6%
Co	4187567	86.1	89.4	3.8%	4187581	87.1	87.8	0.8%	4187592	85.2	93.4	9.2%	4187607	5.58	5.49	1.6%
Cr	4187567	1790	1800	0.6%	4187581	1800	1780	1.1%	4187592	2020	2140	5.8%	4187607	116	121	4.2%
Cu	4187567	42.9	46.3	7.6%	4187581	28.8	28.9	0.3%	4187592	63.5	56.8	11.1%	4187607	6.91	6.53	5.7%
Fe	4187567	6.93	6.97	0.6%	4187581	5.96	5.78	3.1%	4187592	7.91	7.66	3.2%	4187607	2.93	3.01	2.7%
Ga	4187567	5	9		4187581	6	8	28.6%	4187592	11	11	0.0%	4187607	28	25	11.3%
ln	4187567	< 1	< 1	0.0%	4187581	< 1	< 1	0.0%	4187592	< 1	< 1	0.0%	4187607	< 1	< 1	0.0%
K	4187567	0.02	0.02	0.0%	4187581	0.01	0.01	0.0%	4187592	0.01	0.01	0.0%	4187607	3.79	4.00	5.4%
La	4187567	< 2	< 2	0.0%	4187581	< 2	< 2	0.0%	4187592	< 2	< 2	0.0%	4187607	33	33	0.0%
Li	4187567	21	22	4.7%	4187581	17	16	6.1%	4187592	32	33	3.1%	4187607	17	18	5.7%
Mg	4187567	15.4	15.3	0.7%	4187581	14.4	14.0	2.8%	4187592	15.2	14.7	3.3%	4187607	1.13	1.14	0.9%
Mn	4187567	1250	1130	10.1%	4187581	1090	1080	0.9%	4187592	792	781	1.4%	4187607	235	239	1.7%
Мо	4187567	< 0.5	< 0.5	0.0%	4187581	< 0.5	< 0.5	0.0%	4187592	< 0.5	< 0.5	0.0%	4187607	2.2	2.2	0.0%
Na	4187567	0.01	0.01	0.0%	4187581	0.01	0.01	0.0%	4187592	0.01	0.01	0.0%	4187607	3.40	3.45	1.5%
Ni	4187567	1030	1090	5.7%	4187581	1080	1080	0.0%	4187592	1090	1090	0.0%	4187607	46.6	46.7	0.2%
Р	4187567	97	95	2.1%	4187581	84	91	8.0%	4187592	150	130	14.3%	4187607	225	218	3.2%
Pb	4187567	< 1	< 1	0.0%	4187581	< 1	< 1	0.0%	4187592	< 1	< 1	0.0%	4187607	3	5	
Rb	4187567	< 10	< 10	0.0%	4187581	< 10	< 10	0.0%	4187592	< 10	< 10	0.0%	4187607	< 10	< 10	0.0%
S	4187567	0.233	0.240	3.0%	4187581	0.42	0.41	2.4%	4187592	0.375	0.351	6.6%	4187607	0.06	0.06	0.0%
Sb	4187567	36	39	8.0%	4187581	40	37	7.8%	4187592	40	43	7.2%	4187607	< 1	< 1	0.0%
Sc	4187567	17	18	5.7%	4187581	14	14	0.0%	4187592	22	22	0.0%	4187607	8	9	11.8%
Se	4187567	< 10	< 10	0.0%	4187581	< 10	< 10	0.0%	4187592	< 10	< 10	0.0%	4187607	< 10	< 10	0.0%
Sn	4187567	< 5	< 5	0.0%	4187581	< 5	< 5	0.0%	4187592	< 5	< 5	0.0%	4187607	< 5	< 5	0.0%

Quality Assurance - Replicate AGAT WORK ORDER: 220931355 PROJECT: WR-22-CORE-06 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

Sr	4187567	54	48	11.8%	4187581	110	109	0.9%	4187592	43	45	4.5%	4187607	28	29	3.5%
Та	4187567	< 10	< 10	0.0%	4187581	< 10	< 10	0.0%	4187592	< 10	< 10	0.0%	4187607	< 10	< 10	0.0%
Te	4187567	< 10	< 10	0.0%	4187581	< 10	< 10	0.0%	4187592	< 10	< 10	0.0%	4187607	< 10	< 10	0.0%
Th	4187567	10	9	10.5%	4187581	9	14		4187592	7	6	15.4%	4187607	20	19	5.1%
Ti	4187567	0.18	0.18	0.0%	4187581	0.135	0.132	2.2%	4187592	0.227	0.218	4.0%	4187607	0.240	0.249	3.7%
TI	4187567	< 5	< 5	0.0%	4187581	< 5	< 5	0.0%	4187592	< 5	< 5	0.0%	4187607	< 5	< 5	0.0%
U	4187567	< 5	< 5	0.0%	4187581	< 5	< 5	0.0%	4187592	< 5	< 5	0.0%	4187607	< 5	< 5	0.0%
V	4187567	124	127	2.4%	4187581	102	102	0.0%	4187592	164	163	0.6%	4187607	103	105	1.9%
W	4187567	2	2	0.0%	4187581	2	2	0.0%	4187592	2	2	0.0%	4187607	3	4	28.6%
Y	4187567	6	6	0.0%	4187581	5	5	0.0%	4187592	6	6	0.0%	4187607	14	15	6.9%
Zn	4187567	69.6	69.7	0.1%	4187581	54.9	52.6	4.3%	4187592	84.3	82.4	2.3%	4187607	35.2	32.8	7.1%
Zr	4187567	18	18	0.0%	4187581	14	14	0.0%	4187592	23	23	0.0%	4187607	147	154	4.7%

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)

	REPLICATE #1				REPLICATE #2				REPLICATE #3				REPLICATE #4			
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Au	4187567	0.0067	0.0053	23.3%	4187581	0.007	0.012		4187592	0.002	0.002	0.0%	4187607	0.002	0.002	0.0%
Pd	4187567	0.005	0.005	0.0%	4187581	0.0032	0.0038	17.1%	4187592	0.0031	0.0036	14.9%	4187607	0.003	0.003	0.0%
Pt	4187567	0.0064	0.0067	4.6%	4187581	< 0.005	< 0.005	0.0%	4187592	< 0.005	< 0.005	0.0%	4187607	< 0.005	< 0.005	0.0%

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220931355

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

		CRM #1	(ref.Till-2)			CRM #2	(ref.GTS-2a)			CRM #3 (ref.CGL-015))			
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits			
Al	8.47	9.03	107%		6.96	7.36	106%		13.0	12.2	93%				
As	26	21	80%		124	126	102%								
Ва	540	551	102%		186	189	101%		1305	1244	95%				
Be	4.0	3.9	97%												
Ca	0.907	0.914	101%		4.01	3.66	91%		1.42	1.3	92%				
Ce	98	120	123%		24	29	120%		58.24	59.9	103%				
Co	15	12	79%		22.1	20.5	93%								
Cr	60.3	62.6	104%												
Cu	150	158	106%		88.6	83.6	94%							1	
Fe	3.77	3.8	101%		7.56	6.91	91%		3.27	3.01	92%			1	
Ga									22.63	27.64	122%				
K					2.021	2.138	106%		3.69	3.77	102%				
La	44	46	105%						27.48	28.21	103%				
Li	47	51	109%						64.95	65.98	102%				
Mg	1.10	1.11	101%		2.412	2.336	97%		0.223	0.227	102%				
Mn	780	759	97%		1510	1401	93%								
Мо	14	13	94%												
Na	1.624	1.827	112%		0.617	0.669	108%		7.24	7.08	98%				
Ni	32	33	102%		77.1	72.7	94%								
Р	750	735	98%		892	867	97%		610	627	103%				
Pb	31	22	72%												
S					0.348	0.32	92%								
Sc	12	12	103%						2.76	2.32	84%				
Sr	144	159	111%		92.8	91.3	98%		312	302	97%				
Th	18.4	19.8	108%												
Ti	0.53	0.5	94%						0.222	0.207	93%				
V	77	84	109%												
W	5	5	109%												
Υ									25.32	24.21	96%				
Zn	130	119	92%		208	193	93%		75.42	76.85	102%				

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220931355

PROJECT: WR-22-CORE-06

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

		CRM #1 (ı	ef.PGMS30)		CRM #2 (r	ef.PGMS30)		CRM #3 (r	ef.PGMS30)		
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits		
Au	1.897	1.977	104%		1.897	2.072	109%		1.897	1.967	104%			
Pd	1.660	1.749	105%		1.660	1.73	104%		1.660	1.759	106%			
Pt	0.223	0.246	110%		0.223	0.224	100%		0.223	0.227	102%			

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-06

SAMPLING SITE:

AGAT WORK ORDER: 220931355 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Barren Wash-Pulv	MIN-12010		N/A
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Geochem v.1	ICP/OES
As	MIN-200-12034	Geochem v.1	ICF/OLS
Ва	MIN-200-12034	Geochem v.1	1017023
Ве	MIN-200-12034	Geochem v. i	ICF/OE3
Ві	MIN-200-12034	Geochem v. i	ICF/OLS
Ca	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Cd	MIN-200-12034	Geochem v. i	ICF/CL3
Се	MIN-200-12034	Geochem V.1	ICP/OES
Со	MIN-200-12034	Geochem v. i	ICF/OE3
Cr	MIN-200-12034	Geochem V.1	ICF/OLS
Cu	MIN-200-12034	Geochem V.1	ICF/CE3
Fe	MIN-200-12034	Geochem v. i	ICF/OLS
Ga	MIN-200-12034	Geochem V.1	1017023
ln .	MIN-200-12034	Geochem v.1	ICF/OE3
K	MIN-200-12034	Geochem v. i	ICF/OLS
La	MIN-200-12034	Geochem v.1	ICF/OLS
Li	MIN-200-12034	Geochem v. i	ICF/OE3
Mg	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Na	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Ni	MIN-200-12034	Geochem v. i	ICF/OE3
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-06

SAMPLING SITE:

AGAT WORK ORDER: 220931355
ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

SAMPLING SITE.		SAIVIPLED BT.				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES			
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES			
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES			
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES			
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES			
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1				
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1				
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3			
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES			
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3			
ті	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES			
υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES			
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES			
w	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES			
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES			
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES			
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES			
Au	MIN-12006, MIN-12004		ICP/OES			
Pd	MIN-12006, MIN-12004		ICP/OES			
Pt	MIN-12006, MIN-12004		ICP/OES			
Crush-Pass %			BALANCE			
Pul-Pass %			BALANCE			

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-CORE-07

AGAT WORK ORDER: 220933964

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Oct 07, 2022

PAGES (INCLUDING COVER): 23

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

Notes Control of the	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 23

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Certificate of Analysis

AGAT WORK ORDER: 220933964

PROJECT: WR-22-CORE-07

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Au	g 16, 2022		DATE RECEIVED: Aug 17, 2022	DATE REPORTED: Oct 07, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840467 (4212527)		2.640			
E5840468 (4212528)		2.820			
E5840469 (4212529)		2.380			
E5840470 (4212530)		0.060			
E5840471 (4212531)		4.010			
E5840472 (4212532)		2.970			
E5840473 (4212533)		2.260			
E5840474 (4212534)		1.980			
E5840475 (4212535)		2.400			
E5840476 (4212536)		2.980			
E5840477 (4212537)		2.740			
E5840478 (4212538)		2.660			
E5840479 (4212539)		0.120			
E5840480 (4212540)		3.660			
E5840481 (4212541)		2.840			
E5840482 (4212542)		3.140			
E5840483 (4212543)		1.380			
E5840484 (4212544)		2.520			
E5840485 (4212545)		2.120			
E5840486 (4212546)		1.580			
E5840487 (4212547)		3.040			
E5840488 (4212548)		2.980			
E5840489 (4212549)		3.090			
E5840490 (4212550)		1.500			
E5840491 (4212551)		1.490			
E5840492 (4212552)		1.950			
E5840493 (4212553)		2.660			
E5840494 (4212554)		2.430			
E5840495 (4212555)		3.300			
E5840496 (4212556)		3.120			
E5840497 (4212557)		3.160			

Certified By:

AGAT WORK ORDER: 220933964

PROJECT: WR-22-CORE-07

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

(200-) Sample Login Weight									
DATE SAMPLED: Au	g 16, 2022		DATE RECEIVED: Aug 17, 2022	DATE REPORTED: Oct 07, 2022	SAMPLE TYPE: Drill Core				
	Analyte:	Sample Login Weight							
	Unit:	kg							
Sample ID (AGAT ID)	RDL:	0.005							
E5840498 (4212558)		3.420							
5840499 (4212559)		3.350							
E5840500 (4212560)		0.060							
E5840501 (4212561)		3.100							
E5840502 (4212562)		3.360							
E5840503 (4212563)		3.100							
E5840504 (4212564)		3.400							
E5840505 (4212565)		3.240							
E5840506 (4212566)		3.060							
5840507 (4212567)		1.870							
E5840508 (4212568)		2.000							
E5840509 (4212569)		0.120							
5840510 (4212570)		2.270							
5840511 (4212571)		2.190							
E5840512 (4212572)		1.400							
E5840513 (4212573)		3.020							
E5840514 (4212574)		2.140							
E5840515 (4212575)		2.170							
E5840516 (4212576)		1.000							
E5840517 (4212577)		2.710							
E5840518 (4212578)		2.250							
E5840519 (4212579)		1.010							
E5840520 (4212580)		1.040							
E5840521 (4212581)		2.230							
E5840522 (4212582)		2.370							
E5840523 (4212583)		2.290							
E5840524 (4212584)		1.490							
E5840525 (4212585)		2.690							

Certified By:

AGAT WORK ORDER: 22O933964

PROJECT: WR-22-CORE-07

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(200-) Sample Login Weight

DATE SAMPLED: Aug 16, 2022 DATE RECEIVED: Aug 17, 2022 DATE REPORTED: Oct 07, 2022 SAMPLE TYPE: Drill Core

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 22O933964

PROJECT: WR-22-CORE-07

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 16, 2022		С	ATE REC	EIVED: Aug	17, 2022		DATE I	REPORTED	: Oct 07, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840467 (4212527)		<0.5	3.80	118	8	<0.5	2	4.85	<0.5	6	77.4	1770	73.3	7.17	<5
E5840468 (4212528)		<0.5	4.05	123	21	<0.5	<1	3.43	<0.5	8	87.2	1700	88.6	7.63	<5
E5840469 (4212529)		<0.5	7.31	75	694	1.6	<1	4.47	<0.5	16	43.3	185	73.4	7.18	30
E5840470 (4212530)		2.7	6.74	<1	206	2.1	<1	4.19	<0.5	31	105	165	4250	13.5	<5
E5840471 (4212531)		<0.5	8.70	216	1640	1.1	<1	1.82	<0.5	66	20.1	60.1	86.5	4.59	32
E5840472 (4212532)		<0.5	8.40	747	1890	0.9	<1	3.18	<0.5	61	19.2	112	38.3	4.42	28
E5840473 (4212533)		<0.5	7.13	108	635	1.3	<1	3.99	<0.5	16	42.2	154	72.2	7.49	35
E5840474 (4212534)		<0.5	5.79	98	722	1.1	<1	6.17	<0.5	10	37.0	282	64.1	6.12	22
E5840475 (4212535)		<0.5	3.79	219	33	0.6	<1	7.03	<0.5	6	67.8	1200	70.1	6.49	8
E5840476 (4212536)		<0.5	4.02	135	16	0.7	<1	5.08	<0.5	8	92.4	1310	250	7.77	<5
E5840477 (4212537)		<0.5	4.16	88	22	0.7	<1	5.40	<0.5	8	86.6	1260	247	8.10	10
E5840478 (4212538)		<0.5	4.48	73	31	0.7	<1	5.17	<0.5	8	71.3	1170	144	7.22	12
E5840479 (4212539)		<0.5	6.25	<1	370	1.1	<1	1.66	<0.5	15	7.0	25.3	7.7	1.39	14
E5840480 (4212540)		<0.5	5.18	12	321	1.0	<1	5.67	<0.5	9	55.1	763	150	6.63	15
E5840481 (4212541)		<0.5	4.79	27	563	1.1	<1	5.43	<0.5	9	60.1	945	64.0	6.70	13
E5840482 (4212542)		<0.5	5.38	53	769	1.4	<1	5.15	<0.5	11	56.5	787	86.9	6.83	17
E5840483 (4212543)		<0.5	6.13	42	19	2.4	<1	3.81	<0.5	13	63.8	787	20.3	7.61	16
E5840484 (4212544)		<0.5	1.41	<1	48	1.0	<1	10.7	1.5	15	31.5	240	165	8.88	23
E5840485 (4212545)		<0.5	1.35	4	63	0.5	<1	12.5	<0.5	6	32.0	259	153	10.4	25
E5840486 (4212546)		<0.5	0.54	<1	563	<0.5	<1	22.2	<0.5	<1	2.5	9.4	27.5	1.25	<5
E5840487 (4212547)		<0.5	0.73	<1	77	<0.5	<1	22.1	<0.5	<1	11.3	41.2	67.0	4.15	<5
E5840488 (4212548)		<0.5	0.60	<1	83	<0.5	<1	25.7	<0.5	<1	5.2	9.5	23.2	1.74	<5
E5840489 (4212549)		<0.5	0.50	<1	39	<0.5	3	23.5	<0.5	<1	5.1	6.9	11.8	1.31	<5
E5840490 (4212550)		<0.5	1.92	<1	48	3.5	<1	16.6	<0.5	12	19.1	63.0	68.2	5.46	12
E5840491 (4212551)		<0.5	1.58	5	40	3.3	<1	17.2	<0.5	11	19.0	54.6	83.6	5.25	9
E5840492 (4212552)		<0.5	2.02	3	48	2.6	3	17.4	<0.5	8	14.7	14.0	51.3	3.91	6
E5840493 (4212553)		<0.5	0.57	2	273	<0.5	4	20.1	<0.5	1	8.8	6.5	112	3.09	<5
E5840494 (4212554)		<0.5	1.46	6	27	1.1	<1	12.5	<0.5	13	16.2	65.9	81.1	7.59	14
E5840495 (4212555)		<0.5	1.33	11	43	2.1	<1	18.1	<0.5	10	12.4	67.9	16.7	4.15	<5
E5840496 (4212556)		<0.5	0.68	5	78	2.1	<1	11.1	<0.5	8	11.1	38.5	28.0	7.17	13
E5840497 (4212557)		<0.5	0.91	5	81	1.5	<1	19.7	<0.5	3	10.7	54.7	17.8	5.33	10
E5840498 (4212558)		<0.5	2.85	10	112	3.8	<1	14.9	<0.5	13	12.4	119	17.6	4.62	11

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O933964

PROJECT: WR-22-CORE-07

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 16, 2022		Г	DATE RECE	EIVED: Aug	17, 2022		DATE I	REPORTED	: Oct 07, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840499 (4212559)		<0.5	0.78	<1	94	1.1	5	16.0	<0.5	7	9.5	39.7	45.2	5.68	10
E5840500 (4212560)		3.9	6.71	<1	267	1.6	<1	3.95	<0.5	32	162	243	6230	12.7	<5
E5840501 (4212561)		<0.5	0.78	<1	140	1.0	<1	17.1	<0.5	3	11.4	42.4	44.4	5.53	9
E5840502 (4212562)		<0.5	0.98	<1	454	2.8	<1	15.6	1.4	9	19.4	46.4	46.2	10.2	25
E5840503 (4212563)		<0.5	1.34	19	108	3.2	<1	16.8	<0.5	9	11.3	67.3	83.8	6.45	11
E5840504 (4212564)		< 0.5	1.15	<1	191	5.0	<1	16.8	<0.5	9	12.1	63.3	35.8	7.15	13
E5840505 (4212565)		< 0.5	1.13	9	310	2.3	<1	19.3	<0.5	8	11.0	41.0	44.3	6.91	14
E5840506 (4212566)		<0.5	2.07	5	853	4.0	<1	14.7	<0.5	18	10.7	60.5	23.9	5.23	8
E5840507 (4212567)		<0.5	1.11	<1	63	5.1	<1	9.64	<0.5	4	7.1	55.6	9.8	4.90	6
E5840508 (4212568)		<0.5	1.02	9	50	3.9	<1	11.2	<0.5	12	14.4	47.2	180	12.1	31
E5840509 (4212569)		<0.5	6.18	8	349	1.2	<1	1.67	<0.5	28	5.8	21.7	6.3	1.30	16
E5840510 (4212570)		<0.5	0.52	4	419	2.1	3	22.8	<0.5	<1	3.7	10.0	20.2	2.44	<5
E5840511 (4212571)		<0.5	1.62	2	480	3.8	<1	8.40	<0.5	14	17.0	73.4	148	11.8	32
E5840512 (4212572)		<0.5	0.50	<1	253	3.2	3	15.1	<0.5	2	7.0	32.6	16.7	5.54	6
E5840513 (4212573)		<0.5	0.25	<1	189	1.6	<1	8.00	<0.5	1	5.6	36.8	44.4	3.97	<5
E5840514 (4212574)		<0.5	0.45	<1	363	2.6	<1	14.2	<0.5	7	11.6	14.3	99.0	7.91	12
E5840515 (4212575)		<0.5	0.45	<1	354	1.5	1	6.29	<0.5	10	27.0	33.1	257	19.2	44
E5840516 (4212576)		<0.5	0.24	<1	251	0.9	<1	6.56	<0.5	12	22.3	178	205	12.0	27
E5840517 (4212577)		<0.5	0.26	<1	235	1.8	5	8.93	<0.5	8	17.3	38.9	104	8.14	16
E5840518 (4212578)		<0.5	0.58	<1	185	1.6	<1	14.8	<0.5	8	10.8	11.0	70.4	9.63	20
E5840519 (4212579)		<0.5	0.96	34	135	1.4	<1	16.7	< 0.5	21	9.7	28.0	34.8	6.63	11
E5840520 (4212580)		<0.5	1.07	42	133	2.0	<1	15.0	<0.5	26	8.7	21.8	22.1	6.29	13
E5840521 (4212581)		<0.5	0.65	49	42	2.2	<1	10.4	<0.5	13	9.2	13.8	32.1	8.81	17
E5840522 (4212582)		<0.5	0.54	177	42	2.5	3	14.2	<0.5	20	4.7	11.7	7.1	4.35	<5
E5840523 (4212583)		< 0.5	0.48	<1	81	2.5	<1	16.9	<0.5	7	4.8	6.8	16.8	4.48	<5
E5840524 (4212584)		<0.5	1.45	13	2080	2.8	<1	18.8	<0.5	17	5.1	24.3	2.4	2.56	<5
E5840525 (4212585)		<0.5	5.11	<1	1740	2.9	<1	5.74	<0.5	74	9.9	52.5	21.1	4.37	17

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O933964

PROJECT: WR-22-CORE-07

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	OND WIINING		(2	01-070)	1 Acid D	igest - M	lotale Da	ckago li		finich	.,				
DATE CAMPLED. A.	- 40, 0000		•	•			ietais Fa				2000	0.444		D=:II O===	
DATE SAMPLED: Aug	g 16, 2022		L	DATE RECE	IVED: Aug	17, 2022		DATE	REPORTED	D: Oct 07, 2	2022	SAIV	PLE TYPE:	Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840467 (4212527)		<1	0.05	<2	35	12.4	1070	<0.5	0.01	815	417	<1	<10	0.13	8
E5840468 (4212528)		<1	0.36	<2	43	12.9	993	<0.5	0.01	873	314	<1	<10	0.04	11
E5840469 (4212529)		<1	1.71	4	45	4.62	1030	<0.5	2.81	95.7	413	<1	<10	0.13	<1
E5840470 (4212530)		<1	0.54	9	15	3.85	1350	1.8	1.66	3560	1620	9	<10	1.53	<1
E5840471 (4212531)		<1	2.62	32	22	2.32	472	<0.5	4.34	32.4	339	<1	<10	0.26	6
E5840472 (4212532)		<1	2.96	29	18	2.52	664	<0.5	4.02	39.8	224	3	<10	0.08	<1
E5840473 (4212533)		<1	1.38	4	50	4.81	978	<0.5	2.47	81.2	476	<1	<10	0.18	<1
E5840474 (4212534)		<1	1.17	3	48	4.84	1030	<0.5	1.56	127	383	<1	<10	0.11	<1
E5840475 (4212535)		<1	0.17	<2	41	9.42	1230	<0.5	0.05	591	221	<1	<10	0.13	12
E5840476 (4212536)		<1	0.17	<2	41	10.1	1060	<0.5	0.01	741	437	<1	<10	0.40	2
E5840477 (4212537)		<1	0.22	<2	45	9.78	1130	<0.5	0.01	692	400	<1	<10	0.58	<1
E5840478 (4212538)		<1	0.27	<2	54	9.69	1100	<0.5	0.02	574	482	<1	<10	0.15	7
E5840479 (4212539)		<1	1.25	6	8	0.54	243	<0.5	2.71	17.8	265	3	<10	0.01	3
E5840480 (4212540)		<1	0.55	<2	61	7.81	1170	<0.5	0.40	342	390	<1	<10	0.10	9
E5840481 (4212541)		<1	0.48	<2	55	8.47	1150	<0.5	0.46	439	336	<1	<10	0.14	1
E5840482 (4212542)		<1	0.35	<2	57	7.91	1570	<0.5	0.71	361	279	<1	<10	0.31	8
E5840483 (4212543)		<1	0.07	<2	82	12.4	2460	<0.5	0.13	369	386	3	<10	0.04	<1
E5840484 (4212544)		<1	<0.01	12	115	9.62	1040	0.9	0.04	83.0	5450	18	<10	3.57	6
E5840485 (4212545)		<1	<0.01	6	41	8.96	1630	0.9	0.02	97.3	2570	2	<10	4.12	17
E5840486 (4212546)		<1	<0.01	7	12	7.78	2250	<0.5	0.01	6.1	1120	<1	<10	0.56	6
E5840487 (4212547)		<1	<0.01	8	23	6.62	1990	1.4	0.01	27.3	3310	<1	<10	2.04	4
E5840488 (4212548)		<1	<0.01	9	43	7.89	1810	<0.5	0.02	14.3	4500	<1	<10	0.90	7
E5840489 (4212549)		<1	<0.01	6	39	6.89	1780	<0.5	0.02	7.1	8730	<1	<10	0.62	12
E5840490 (4212550)		<1	0.02	12	76	9.50	2040	12.1	0.04	47.5	7020	<1	<10	1.76	<1
E5840491 (4212551)		<1	0.02	12	77	9.06	1970	9.7	0.04	46.0	7320	10	<10	1.92	<1
E5840492 (4212552)		<1	0.02	11	69	9.87	2090	1.4	0.04	30.1	5320	10	<10	1.64	3
E5840493 (4212553)		<1	<0.01	11	98	10.0	2520	<0.5	0.04	20.1	>10000	15	<10	1.45	9
E5840494 (4212554)		<1	0.02	14	84	11.5	1510	0.6	0.03	41.9	>10000	10	<10	3.31	10
E5840495 (4212555)		<1	0.03	16	75	9.41	1970	1.9	0.04	36.0	>10000	18	<10	1.82	13
E5840496 (4212556)		<1	<0.01	14	107	11.8	1490	10.8	0.05	27.8	9500	63	<10	3.35	<1
E5840497 (4212557)		<1	0.01	12	29	7.88	2090	1.2	0.02	21.8	5150	4	<10	2.77	<1
E5840498 (4212558)		<1	0.03	17	101	11.4	1530	4.6	0.03	31.2	7270	17	<10	1.75	<1

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O933964

PROJECT: WR-22-CORE-07

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	(01-070)	4 Acid D	igest - M	letals Pa	ickage, l	CP-OES	finish					
DATE SAMPLED: Au	ıg 16, 2022		[DATE RECE	EIVED: Aug	17, 2022		DATE I	REPORTED	0: Oct 07, 2	2022	SAM	PLE TYPE:	Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840499 (4212559)		<1	<0.01	17	52	10.1	1640	<0.5	0.03	31.5	>10000	33	<10	2.42	1
E5840500 (4212560)		<1	0.62	10	12	3.91	1100	<0.5	1.82	7780	1880	28	<10	2.88	<1
E5840501 (4212561)		<1	< 0.01	12	36	10.1	1910	2.5	0.02	34.9	3870	12	<10	2.49	<1
E5840502 (4212562)		<1	0.06	14	48	7.56	1450	6.0	0.03	55.2	9120	19	<10	4.71	<1
E5840503 (4212563)		<1	0.14	11	28	8.05	2070	1.8	0.03	21.7	2710	7	<10	3.12	<1
E5840504 (4212564)		<1	0.03	12	30	8.62	2040	7.3	0.03	30.7	3180	8	<10	3.12	<1
E5840505 (4212565)		<1	0.20	15	42	7.22	2040	1.1	0.03	25.0	5400	7	<10	3.31	17
E5840506 (4212566)		<1	0.61	17	34	9.53	2700	5.1	0.05	32.9	9160	<1	<10	0.99	<1
E5840507 (4212567)		<1	0.60	4	30	12.9	2660	1.3	0.06	13.1	470	<1	<10	0.71	<1
E5840508 (4212568)		<1	0.53	10	29	8.79	1490	1.9	0.04	37.6	6940	14	<10	6.40	5
E5840509 (4212569)		<1	1.20	13	8	0.54	261	<0.5	2.75	16.5	144	2	<10	0.02	<1
E5840510 (4212570)		<1	0.42	10	19	6.13	1520	6.1	0.03	14.4	5910	<1	<10	0.84	5
E5840511 (4212571)		<1	1.46	8	49	8.74	2210	65.0	0.05	34.1	4230	4	<10	3.48	<1
E5840512 (4212572)		<1	0.24	8	11	6.51	3060	9.5	0.07	14.2	2260	5	<10	0.67	<1
E5840513 (4212573)		<1	0.16	4	4	3.12	1600	6.3	0.07	14.9	2250	<1	<10	0.74	2
E5840514 (4212574)		<1	0.29	17	6	5.96	2990	15.6	0.10	23.9	>10000	<1	<10	1.11	6
E5840515 (4212575)		<1	0.30	2	2	4.13	2290	14.4	0.11	57.4	1230	9	<10	5.99	2
E5840516 (4212576)		<1	0.16	11	2	2.18	1470	17.4	0.07	37.0	6710	7	<10	4.70	1
E5840517 (4212577)		<1	0.17	10	2	3.08	1780	13.4	0.07	20.1	3830	<1	<10	2.16	4
E5840518 (4212578)		<1	0.60	15	19	6.34	1890	5.8	0.06	18.4	6460	6	<10	2.98	<1
E5840519 (4212579)		<1	1.15	48	41	7.04	1250	4.3	0.04	18.6	>10000	26	<10	3.34	<1
E5840520 (4212580)		<1	1.26	55	42	8.16	1450	3.3	0.04	18.8	>10000	21	<10	2.36	<1
E5840521 (4212581)		<1	0.79	20	30	9.33	1830	1.9	0.06	28.7	8370	15	<10	4.17	<1
E5840522 (4212582)		<1	0.62	45	45	8.93	2250	4.0	0.06	14.5	>10000	18	<10	0.78	2
E5840523 (4212583)		<1	0.50	14	16	6.86	3390	23.0	0.04	11.5	2140	1	<10	0.70	8
E5840524 (4212584)		<1	1.31	18	14	4.46	2920	12.5	0.19	23.1	440	<1	<10	0.36	4
E5840525 (4212585)		<1	4.08	54	55	5.85	1370	2.5	1.24	31.9	>10000	21	<10	0.31	3

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O933964

PROJECT: WR-22-CORE-07

MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-998 FAX (905)501-0589 http://www.agatlabs.com

5623 McADAM ROAD

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 16, 2022		Г	DATE RECE	EIVED: Aug	17, 2022		DATE I	REPORTED): Oct 07, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840467 (4212527)		23	<10	<5	118	10	<10	<5	0.09	<5	<5	146	<1	7	68.7
E5840468 (4212528)		25	<10	<5	77	13	<10	<5	0.15	<5	<5	153	<1	8	73.9
E5840469 (4212529)		37	<10	<5	134	13	<10	<5	0.43	<5	<5	248	<1	10	67.5
E5840470 (4212530)		12	<10	<5	245	20	15	<5	0.72	<5	<5	114	<1	14	94.1
E5840471 (4212531)		17	<10	<5	96	<10	<10	16	0.29	<5	<5	131	3	15	65.6
E5840472 (4212532)		18	<10	<5	144	<10	<10	13	0.25	<5	<5	113	2	14	53.5
E5840473 (4212533)		39	<10	<5	121	11	11	<5	0.32	<5	<5	254	<1	9	77.1
E5840474 (4212534)		31	<10	<5	135	<10	<10	<5	0.30	<5	<5	202	<1	10	65.6
E5840475 (4212535)		24	<10	<5	141	<10	12	<5	0.19	<5	<5	149	<1	11	66.5
E5840476 (4212536)		25	<10	<5	82	10	<10	<5	0.24	<5	<5	159	<1	10	63.4
E5840477 (4212537)		24	<10	<5	93	16	<10	<5	0.25	<5	<5	159	<1	10	65.8
E5840478 (4212538)		26	<10	<5	86	<10	16	<5	0.24	<5	<5	166	<1	11	67.4
E5840479 (4212539)		6	<10	<5	341	<10	<10	<5	0.14	<5	<5	37.1	<1	6	17.9
E5840480 (4212540)		30	<10	<5	92	10	<10	<5	0.30	<5	<5	182	<1	13	58.7
E5840481 (4212541)		27	<10	<5	75	<10	<10	<5	0.29	<5	<5	180	<1	13	54.6
E5840482 (4212542)		30	<10	<5	75	<10	<10	<5	0.33	<5	<5	202	<1	14	66.0
E5840483 (4212543)		33	<10	<5	30	11	<10	<5	0.40	<5	<5	218	<1	18	113
E5840484 (4212544)		7	<10	<5	178	17	<10	<5	0.13	<5	39	63.0	<1	45	446
E5840485 (4212545)		7	<10	<5	124	15	<10	<5	0.04	<5	10	45.3	<1	22	306
E5840486 (4212546)		1	<10	<5	237	<10	19	<5	<0.01	<5	9	4.1	<1	9	24.5
E5840487 (4212547)		3	<10	<5	227	<10	<10	<5	0.04	<5	16	20.5	<1	21	77.8
E5840488 (4212548)		1	<10	<5	226	<10	<10	<5	<0.01	31	26	12.7	<1	11	70.6
E5840489 (4212549)		1	<10	<5	208	<10	<10	<5	<0.01	10	18	5.8	<1	7	17.1
E5840490 (4212550)		5	<10	<5	165	12	<10	<5	0.21	<5	47	72.1	<1	29	158
E5840491 (4212551)		4	<10	<5	165	<10	21	<5	0.18	<5	53	57.6	<1	28	148
E5840492 (4212552)		2	<10	<5	171	<10	14	<5	0.07	5	34	44.3	<1	23	61.3
E5840493 (4212553)		1	<10	<5	187	<10	<10	<5	0.01	<5	86	24.4	<1	32	50.0
E5840494 (4212554)		4	<10	<5	103	14	<10	<5	0.07	<5	41	53.8	<1	38	47.5
E5840495 (4212555)		5	<10	<5	143	<10	<10	<5	0.08	<5	71	51.6	<1	67	29.8
E5840496 (4212556)		2	<10	<5	145	11	30	<5	0.11	<5	44	47.1	<1	56	110
E5840497 (4212557)		3	<10	<5	189	<10	20	<5	0.13	<5	13	39.3	<1	37	36.0
E5840498 (4212558)		9	<10	<5	151	<10	14	<5	0.45	<5	35	67.6	<1	70	45.7

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O933964

PROJECT: WR-22-CORE-07

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	(01-070)	4 Acid D	igest - M	etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 16, 2022		[DATE RECE	EIVED: Aug	17, 2022		DATE	REPORTED): Oct 07, 20	122	SAM	PLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Y	Zr
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840499 (4212559)		3	<10	<5	142	<10	17	<5	0.04	<5	36	32.6	<1	60	104
E5840500 (4212560)		11	<10	<5	269	25	11	<5	0.55	<5	<5	107	<1	13	120
E5840501 (4212561)		3	<10	<5	128	<10	20	<5	0.04	<5	10	28.8	<1	36	46.7
E5840502 (4212562)		3	<10	<5	152	17	16	<5	0.15	<5	28	47.4	<1	54	171
E5840503 (4212563)		4	<10	<5	149	11	<10	<5	0.20	<5	10	46.5	<1	28	43.3
E5840504 (4212564)		4	<10	<5	170	12	<10	<5	0.19	<5	15	50.0	<1	42	54.3
E5840505 (4212565)		3	<10	<5	187	<10	12	<5	0.11	<5	17	46.6	<1	42	47.6
E5840506 (4212566)		6	<10	<5	120	<10	12	<5	0.26	14	24	67.1	<1	26	67.6
E5840507 (4212567)		4	<10	<5	37	<10	14	<5	0.22	<5	<5	37.2	<1	10	68.2
E5840508 (4212568)		2	<10	<5	77	19	20	<5	0.14	<5	15	50.1	<1	33	55.3
E5840509 (4212569)		6	<10	<5	340	<10	11	<5	0.13	<5	<5	34.7	<1	7	19.0
E5840510 (4212570)		<1	<10	<5	184	<10	<10	<5	0.02	<5	14	6.7	<1	12	25.3
E5840511 (4212571)		4	<10	<5	59	22	24	<5	0.23	<5	12	47.0	<1	28	65.1
E5840512 (4212572)		1	<10	<5	198	<10	<10	<5	0.05	<5	7	36.0	<1	24	61.7
E5840513 (4212573)		<1	<10	<5	83	<10	10	<5	0.01	<5	<5	14.4	<1	11	25.0
E5840514 (4212574)		<1	<10	<5	131	12	<10	<5	0.01	<5	14	27.5	<1	67	56.4
E5840515 (4212575)		<1	<10	<5	61	27	<10	<5	< 0.01	<5	<5	33.1	<1	15	50.3
E5840516 (4212576)		<1	<10	<5	97	17	13	<5	<0.01	7	<5	24.7	<1	45	28.4
E5840517 (4212577)		<1	<10	<5	116	13	11	<5	<0.01	10	<5	26.0	<1	34	45.2
E5840518 (4212578)		<1	<10	<5	144	16	32	<5	0.02	20	16	26.0	<1	59	50.9
E5840519 (4212579)		1	<10	<5	146	<10	<10	<5	0.03	<5	78	46.0	<1	241	70.4
E5840520 (4212580)		2	<10	<5	120	<10	<10	<5	0.04	<5	62	58.6	<1	231	89.3
E5840521 (4212581)		<1	<10	<5	66	10	<10	<5	0.03	<5	17	24.2	<1	68	51.9
E5840522 (4212582)		1	<10	<5	120	<10	20	<5	0.01	<5	85	37.6	<1	222	73.0
E5840523 (4212583)		<1	<10	<5	213	<10	<10	<5	0.01	15	<5	30.0	<1	30	62.5
E5840524 (4212584)		2	<10	<5	349	<10	16	<5	0.07	<5	<5	38.9	<1	33	43.0
E5840525 (4212585)		5	<10	<5	94	<10	<10	7	0.19	<5	64	67.8	<1	112	101

Certified By:

AGAT WORK ORDER: 220933964

PROJECT: WR-22-CORE-07

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

CEIEITI ITANE. OIG			(004,000) 4.4.4.1.00	D 1 100 000 (1 1 1	
			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Au	g 16, 2022		DATE RECEIVED: Aug 17, 2022	DATE REPORTED: Oct 07, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840467 (4212527)		28			
E5840468 (4212528)		26			
E5840469 (4212529)		60			
E5840470 (4212530)		62			
E5840471 (4212531)		184			
E5840472 (4212532)		167			
E5840473 (4212533)		58			
E5840474 (4212534)		44			
E5840475 (4212535)		29			
E5840476 (4212536)		27			
E5840477 (4212537)		30			
E5840478 (4212538)		31			
E5840479 (4212539)		65			
E5840480 (4212540)		37			
E5840481 (4212541)		39			
E5840482 (4212542)		44			
E5840483 (4212543)		51			
E5840484 (4212544)		48			
E5840485 (4212545)		46			
E5840486 (4212546)		15			
E5840487 (4212547)		14			
E5840488 (4212548)		15			
E5840489 (4212549)		8			
E5840490 (4212550)		14			
E5840491 (4212551)		13			
E5840492 (4212552)		16			
E5840493 (4212553)		9			
E5840494 (4212554)		7			
E5840495 (4212555)		<5			
E5840496 (4212556)		14			
E5840497 (4212557)		13			
E5840498 (4212558)		43			

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 220933964

PROJECT: WR-22-CORE-07

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish									
DATE SAMPLED: Au	g 16, 2022		DATE RECEIVED: Aug 17, 2022	DATE REPORTED: Oct 07, 2022	SAMPLE TYPE: Drill Core				
	Analyte:	Zr							
	Unit:	ppm							
Sample ID (AGAT ID)	RDL:	5							
E5840499 (4212559)		6							
E5840500 (4212560)		52							
E5840501 (4212561)		14							
E5840502 (4212562)		17							
E5840503 (4212563)		29							
E5840504 (4212564)		28							
E5840505 (4212565)		15							
E5840506 (4212566)		10							
E5840507 (4212567)		26							
E5840508 (4212568)		38							
E5840509 (4212569)		60							
E5840510 (4212570)		10							
E5840511 (4212571)		50							
E5840512 (4212572)		16							
E5840513 (4212573)		13							
E5840514 (4212574)		9							
E5840515 (4212575)		23							
E5840516 (4212576)		11							
E5840517 (4212577)		13							
E5840518 (4212578)		15							
E5840519 (4212579)		9							
E5840520 (4212580)		12							
E5840521 (4212581)		20							
E5840522 (4212582)		11							
E5840523 (4212583)		15							
E5840524 (4212584)		47							
E5840525 (4212585)		69							

Comments: RDL - Reported Detection Limit

4212527-4212585 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

AGAT WORK ORDER: 220933964

PROJECT: WR-22-CORE-07

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

		(2	(02-555)	Fire Assay - Au, Pt, Pd Trace L	evels, ICP-OES finish (50g charge)	
DATE SAMPLED: Au	ple ID (AGAT ID) RDL: 0. 40467 (4212527) 0. 40468 (4212528) 0. 40469 (4212529) 0. 40470 (4212530) 0. 40471 (4212531) 0. 40472 (4212532) 0. 40473 (4212533) 0. 40474 (4212534) 0. 40475 (4212535) 0. 40477 (4212537) 0. 40477 (4212537) 0. 40479 (4212539) 0. 40478 (4212539) 0. 40479 (4212539) 0. 40480 (4212540) 0. 40481 (4212541) <0. 40482 (4212542) 0. 40483 (4212543) <0. 40488 (4212544) 0. 40488 (4212545) 0. 40488 (4212545) 0. 40489 (4212549) 0. 40489 (4212549) <0. 40489 (4212549) <0. 40489 (4212559) 0. 40490 (4212550) 0. 40491 (4212551) 0. 40493 (4212552) 0. 40493 (4212552) 0. 40493 (4212553) 0.			DATE RECEIVED: Aug 17, 2022	DATE REPORTED: Oct 07, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840467 (4212527)		0.007	0.006	<0.005		
E5840468 (4212528)		0.002	0.008	<0.005		
E5840469 (4212529)		0.001	0.010	0.006		
E5840470 (4212530)		0.104	0.615	0.304		
E5840471 (4212531)		0.002	0.002	<0.005		
E5840472 (4212532)		0.005	0.003	<0.005		
E5840473 (4212533)		0.001	0.006	0.006		
E5840474 (4212534)		0.002	0.008	<0.005		
E5840475 (4212535)		0.005	0.014	0.008		
E5840476 (4212536)		0.003	0.026	<0.005		
E5840477 (4212537)		0.002	0.022	0.010		
E5840478 (4212538)		<0.001	0.014	0.006		
E5840479 (4212539)		0.001	< 0.001	<0.005		
E5840480 (4212540)		0.001	0.013	0.006		
E5840481 (4212541)		< 0.001	0.008	0.005		
E5840482 (4212542)		0.001	0.007	<0.005		
E5840483 (4212543)		< 0.001	0.007	<0.005		
E5840484 (4212544)		0.003	0.002	<0.005		
E5840485 (4212545)		0.004	< 0.001	<0.005		
E5840486 (4212546)		0.001	<0.001	<0.005		
E5840487 (4212547)		0.002	< 0.001	<0.005		
E5840488 (4212548)		0.001	< 0.001	<0.005		
E5840489 (4212549)		< 0.001	< 0.001	<0.005		
E5840490 (4212550)		0.004	< 0.001	<0.005		
E5840491 (4212551)		0.003	<0.001	<0.005		
E5840492 (4212552)		0.002	<0.001	<0.005		
E5840493 (4212553)		0.002	< 0.001	<0.005		
E5840494 (4212554)		0.003	<0.001	<0.005		
E5840495 (4212555)		0.002	< 0.001	<0.005		
E5840496 (4212556)		0.004	<0.001	<0.005		
E5840497 (4212557)		0.001	< 0.001	<0.005		
E5840498 (4212558)		0.002	< 0.001	<0.005		

Certified By:

Sherin Houssey

Certificate of Analysis

AGAT WORK ORDER: 220933964

PROJECT: WR-22-CORE-07

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	.02-355)	rire Assay - Au, Pt, Pd Trace L	evels, ICP-OES finish (50g charge)	
DATE SAMPLED: Au	g 16, 2022			DATE RECEIVED: Aug 17, 2022	DATE REPORTED: Oct 07, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840499 (4212559)		0.002	<0.001	<0.005		
E5840500 (4212560)		0.146	1.28	0.650		
E5840501 (4212561)		0.002	< 0.001	<0.005		
E5840502 (4212562)		0.003	< 0.001	<0.005		
E5840503 (4212563)		0.003	< 0.001	<0.005		
E5840504 (4212564)		0.002	< 0.001	<0.005		
E5840505 (4212565)		0.002	< 0.001	<0.005		
E5840506 (4212566)		0.002	< 0.001	<0.005		
E5840507 (4212567)		0.002	< 0.001	<0.005		
E5840508 (4212568)		0.005	< 0.001	<0.005		
E5840509 (4212569)		< 0.001	< 0.001	<0.005		
E5840510 (4212570)		0.001	< 0.001	<0.005		
E5840511 (4212571)		0.003	< 0.001	<0.005		
E5840512 (4212572)		0.001	< 0.001	<0.005		
E5840513 (4212573)		< 0.001	< 0.001	<0.005		
E5840514 (4212574)		0.003	< 0.001	<0.005		
E5840515 (4212575)		0.003	< 0.001	<0.005		
E5840516 (4212576)		0.003	< 0.001	<0.005		
E5840517 (4212577)		0.002	< 0.001	<0.005		
E5840518 (4212578)		0.002	<0.001	<0.005		
E5840519 (4212579)		0.008	< 0.001	<0.005		
E5840520 (4212580)		0.006	<0.001	<0.005		
E5840521 (4212581)		0.007	< 0.001	<0.005		
E5840522 (4212582)		0.001	<0.001	<0.005		
E5840523 (4212583)		0.001	< 0.001	<0.005		
E5840524 (4212584)		0.002	<0.001	<0.005		
E5840525 (4212585)		0.001	< 0.001	<0.005		

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

Sherin Houssay

AGAT WORK ORDER: 220933964

PROJECT: WR-22-CORE-07

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

Sieving - % Passing (Crushing)												
DATE SAMPLED: Au	ATE SAMPLED: Aug 16, 2022 DATE RECEIVED: Aug 17, 2022 DATE REPORTED: Oct 07, 2022 SAMPLE TYPE: Drill Core											
	Analyte: C	rush-Pass %										
	Unit:	%										
Sample ID (AGAT ID)	RDL:	0.01										
E5840467 (4212527)		77.61										
E5840486 (4212546)		77.78										
E5840506 (4212566)		76.67										

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 220933964

PROJECT: WR-22-CORE-07

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Pulverizing)										
DATE SAMPLED: Aug	DATE SAMPLED: Aug 16, 2022 DATE RECEIVED: Aug 17, 2022 DATE REPORTED: Oct 07, 2022 SAMPLE TYPE: Drill Core										
	Analyte: Po	ul-Pass %									
	Unit:	%									
Sample ID (AGAT ID)	RDL:	0.01									
E5840467 (4212527)		88.31									
E5840485 (4212545)		88.63									
E5840522 (4212582)		88.90									

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220933964 PROJECT: WR-22-CORE-07 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(20	1-070) 4	Acid Di	gest - N	1etals F	Package	, ICP-O	ES finis	h				
		REPLIC	CATE #1			REPLIC	ATE #2			REPLIC	ATE #3			REPLIC	CATE #4	
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Ag	4212527	< 0.5	< 0.5	0.0%	4212541	< 0.5	< 0.5	0.0%	4212552	< 0.5	< 0.5	0.0%	4212567	< 0.5	< 0.5	0.0%
Al	4212527	3.80	3.74	1.6%	4212541	4.79	4.83	0.8%	4212552	2.02	2.03	0.5%	4212567	1.11	1.10	0.9%
As	4212527	118	155	27.1%	4212541	27	26	3.8%	4212552	3	7		4212567	< 1	< 1	0.0%
Ва	4212527	8	8	0.0%	4212541	563	563	0.0%	4212552	48	49	2.1%	4212567	63	63	0.0%
Ве	4212527	< 0.5	< 0.5	0.0%	4212541	1.1	1.1	0.0%	4212552	2.57	2.44	5.2%	4212567	5.09	4.92	3.4%
Bi	4212527	2	5		4212541	< 1	< 1	0.0%	4212552	3	< 1		4212567	< 1	< 1	0.0%
Ca	4212527	4.85	4.85	0.0%	4212541	5.43	5.48	0.9%	4212552	17.4	17.6	1.1%	4212567	9.64	9.54	1.0%
Cd	4212527	< 0.5	< 0.5	0.0%	4212541	< 0.5	< 0.5	0.0%	4212552	< 0.5	< 0.5	0.0%	4212567	< 0.5	< 0.5	0.0%
Ce	4212527	6	7	15.4%	4212541	9	9	0.0%	4212552	8	8	0.0%	4212567	4	4	0.0%
Co	4212527	77.4	77.1	0.4%	4212541	60.1	59.8	0.5%	4212552	14.7	15.2	3.3%	4212567	7.12	7.16	0.6%
Cr	4212527	1770	1590	10.7%	4212541	945	911	3.7%	4212552	14.0	21.9		4212567	55.6	57.7	3.7%
Cu	4212527	73.3	62.5	15.9%	4212541	64.0	61.7	3.7%	4212552	51.3	53.0	3.3%	4212567	9.83	11.7	17.4%
Fe	4212527	7.17	7.07	1.4%	4212541	6.70	6.74	0.6%	4212552	3.91	3.97	1.5%	4212567	4.90	4.84	1.2%
Ga	4212527	< 5	< 5	0.0%	4212541	13	13	0.0%	4212552	6	6	0.0%	4212567	6	6	0.0%
In	4212527	< 1	< 1	0.0%	4212541	< 1	< 1	0.0%	4212552	< 1	< 1	0.0%	4212567	< 1	< 1	0.0%
K	4212527	0.05	0.05	0.0%	4212541	0.48	0.48	0.0%	4212552	0.02	0.02	0.0%	4212567	0.60	0.59	1.7%
La	4212527	< 2	< 2	0.0%	4212541	< 2	< 2	0.0%	4212552	11	11	0.0%	4212567	4	3	28.6%
Li	4212527	35	35	0.0%	4212541	55	56	1.8%	4212552	69	72	4.3%	4212567	30	29	3.4%
Mg	4212527	12.4	12.2	1.6%	4212541	8.47	8.53	0.7%	4212552	9.87	10.1	2.3%	4212567	12.9	12.8	0.8%
Mn	4212527	1070	1060	0.9%	4212541	1150	1170	1.7%	4212552	2090	2120	1.4%	4212567	2660	2640	0.8%
Мо	4212527	< 0.5	< 0.5	0.0%	4212541	< 0.5	< 0.5	0.0%	4212552	1.4	2.7		4212567	1.3	3.9	
Na	4212527	0.01	0.01	0.0%	4212541	0.46	0.46	0.0%	4212552	0.04	0.04	0.0%	4212567	0.06	0.06	0.0%
Ni	4212527	815	781	4.3%	4212541	439	430	2.1%	4212552	30.1	31.7	5.2%	4212567	13.1	16.4	22.4%
Р	4212527	417	377	10.1%	4212541	336	349	3.8%	4212552	5320	5270	0.9%	4212567	470	455	3.2%
Pb	4212527	< 1	< 1	0.0%	4212541	< 1	< 1	0.0%	4212552	10	11	9.5%	4212567	< 1	3	
Rb	4212527	< 10	< 10	0.0%	4212541	< 10	< 10	0.0%	4212552	< 10	< 10	0.0%	4212567	< 10	< 10	0.0%
S	4212527	0.131	0.103	23.9%	4212541	0.14	0.12	15.4%	4212552	1.64	1.70	3.6%	4212567	0.71	0.70	1.4%
Sb	4212527	8	14		4212541	1	2		4212552	3	< 1		4212567	< 1	< 1	0.0%
Sc	4212527	23	22	4.4%	4212541	27	27	0.0%	4212552	2	2	0.0%	4212567	4	4	0.0%
Se	4212527	< 10	< 10	0.0%	4212541	< 10	< 10	0.0%	4212552	< 10	< 10	0.0%	4212567	< 10	< 10	0.0%
Sn	4212527	< 5	< 5	0.0%	4212541	< 5	< 5	0.0%	4212552	< 5	< 5	0.0%	4212567	< 5	< 5	0.0%
		1	1		1				1	1				1	1	

Quality Assurance - Replicate AGAT WORK ORDER: 220933964 PROJECT: WR-22-CORE-07 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO:	Arnaud Fontaine
---------------	-----------------

CLIENT INAW	IE. UKFUKI	DININING	CORP							AIIE	INTION IC). Amauu	rontaine			
Sr	4212527	118	119	0.8%	4212541	75	75	0.0%	4212552	171	173	1.2%	4212567	37	36	2.7%
Та	4212527	10	13	26.1%	4212541	< 10	10		4212552	< 10	< 10	0.0%	4212567	< 10	< 10	0.0%
Te	4212527	< 10	36		4212541	< 10	< 10	0.0%	4212552	14	< 10		4212567	14	< 10	
Th	4212527	< 5	< 5	0.0%	4212541	< 5	< 5	0.0%	4212552	< 5	< 5	0.0%	4212567	< 5	< 5	0.0%
Ti	4212527	0.09	0.09	0.0%	4212541	0.29	0.29	0.0%	4212552	0.07	0.07	0.0%	4212567	0.22	0.22	0.0%
TI	4212527	< 5	< 5	0.0%	4212541	< 5	< 5	0.0%	4212552	5	< 5		4212567	< 5	< 5	0.0%
U	4212527	< 5	< 5	0.0%	4212541	< 5	< 5	0.0%	4212552	34	31	9.2%	4212567	< 5	< 5	0.0%
V	4212527	146	140	4.2%	4212541	180	176	2.2%	4212552	44.3	46.2	4.2%	4212567	37.2	35.0	6.1%
W	4212527	< 1	< 1	0.0%	4212541	< 1	< 1	0.0%	4212552	< 1	< 1	0.0%	4212567	< 1	< 1	0.0%
Y	4212527	7	7	0.0%	4212541	13	13	0.0%	4212552	23	22	4.4%	4212567	10	9	10.5%
Zn	4212527	68.7	68.9	0.3%	4212541	54.6	52.0	4.9%	4212552	61.3	67.4	9.5%	4212567	68.2	65.7	3.7%
Zr	4212527	28	27	3.6%	4212541	39	38	2.6%	4212552	16	20	22.2%	4212567	26	25	3.9%
		REPLIC	ATE #5				•	•							•	
Parameter	Sample ID	Original	Replicate	RPD												
Ag	4212577	< 0.5	< 0.5	0.0%												
Al	4212577	0.26	0.26	0.0%												
As	4212577	< 1	< 1	0.0%												
Ва	4212577	235	236	0.4%												
Ве	4212577	1.84	1.90	3.2%												
Bi	4212577	5	< 1													
Ca	4212577	8.93	8.97	0.4%												
Cd	4212577	< 0.5	< 0.5	0.0%												
Се	4212577	8	7	13.3%												
Со	4212577	17.3	16.9	2.3%												
Cr	4212577	38.9	73.4													
Cu	4212577	104	96.8	7.2%												
Fe	4212577	8.14	8.36	2.7%												
Ga	4212577	16	17	6.1%												
In	4212577	< 1	< 1	0.0%												
K	4212577	0.17	0.17	0.0%												
La	4212577	10	10	0.0%												
Li	4212577	2	2	0.0%												
Mg	4212577	3.08	3.11	1.0%												
Mn	4212577	1780	1790	0.6%												

Quality Assurance - Replicate AGAT WORK ORDER: 220933964 PROJECT: WR-22-CORE-07 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP ATTENTION TO: Arnaud Fontaine 4212577 13.4 13.7 2.2% Na 4212577 0.07 0.07 0.0% Ni 4212577 20.1 20.2 0.5% Р 4212577 3830 3750 2.1% Pb 2 4212577 < 1 Rb 4212577 0.0% < 10 < 10 S 4212577 2.16 2.04 5.7% Sb 4212577 4 12 4212577 Sc < 1 0.0% < 1 Se 4212577 < 10 < 10 0.0% 4212577 < 5 < 5 0.0% Sn Sr 4212577 116 115 0.9% 4212577 Ta 13 < 10 Te 4212577 11 12 8.7% Th 4212577 < 5 < 5 0.0% Τi 4212577 < 0.01 < 0.01 0.0% ΤI 4212577 10 < 5 U 4212577 < 5 < 5 0.0% V 4212577 26.0 26.2 0.8% W 4212577 < 1 < 1 0.0% Υ 34 4212577 34 0.0% Zn 4212577 45.2 49.6 9.3% Zr 4212577 13 0.0% (202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge) REPLICATE #1 REPLICATE #2 REPLICATE #3 REPLICATE #4 Sample ID Original Replicate RPD Sample ID Original Replicate RPD Sample ID Original Replicate **RPD** Sample ID Original Replicate **RPD** Parameter 4212527 0.007 0.007 0.0% 4212541 < 0.001 < 0.001 0.0% 4212552 0.002 0.002 0.0% 4212567 0.002 0.002 0.0% Pd 4212527 0.006 0.006 0.0% 4212541 0.008 0.008 0.0% 4212552 < 0.001 < 0.001 0.0% 4212567 < 0.001 < 0.001 0.0% Pt 4212527 < 0.005 < 0.005 0.0% 4212541 0.005 < 0.005 4212552 < 0.005 < 0.005 0.0% 4212567 < 0.005 < 0.005 0.0% REPLICATE #5 Sample ID Original Replicate RPD Parameter 0.002 4212577 0.002 0.0% Pd 4212577 < 0.001 < 0.001 0.0%

4212577

< 0.005

< 0.005

0.0%

Pt

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220933964

PROJECT: WR-22-CORE-07

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

		CDM	/rof Till O'	•	1-070) 4		(ref CTC 0:\				*** CCL 045		1	CDM "	1 (rof T:!! 0)	
D	F	1	(ref.Till-2)	1.1	F 1		(ref.GTS-2a)	1.1 11	F	· `	ref.CGL-015)		F		(ref.Till-2)	12.2
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Al	8.47	8.38	99%		6.96	6.56	94%		13.0	12.8	99%		8.47	8.24	97%	
As					124	107	87%						26	23	87%	
Ва	540	511	95%		186	172	93%		1305	1261	97%		540	510	94%	
Be	4.0	4.1	101%										4.0	4.1	103%	
Ca	0.907	0.884	97%		4.01	3.7	92%		1.42	1.39	98%		0.907	0.877	97%	
Ce	98	100	102%		24	24	99%		58.24	61.76	106%		98	97	99%	
Со	15	17	114%		22.1	21.4	97%						15	17	117%	
Cr	60.3	64.9	108%										60.3	64.9	108%	
Cu	150	154	103%		88.6	84.5	95%						150	153	102%	
Fe	3.77	3.73	99%		7.56	6.88	91%		3.27	3.07	94%		3.77	3.56	95%	
K					2.021	1.929	95%		3.69	3.7	100%					
La	44	42	94%						27.48	28.57	104%		44	41	93%	
Li	47	48	102%						64.95	66.05	102%		47	46	99%	
Mg	1.10	1.06	96%		2.412	2.26	94%		0.223	0.236	106%		1.10	1.07	97%	
Mn	780	738	95%		1510	1326	88%						780	732	94%	
Мо	14	12	83%										14	11	81%	
Na	1.624	1.688	104%		0.617	0.607	98%		7.24	7.09	98%		1.624	1.67	103%	
Ni	32	29	92%		77.1	69.2	90%						32	32	100%	
Р	750	920	123%		892	913	102%		610	563	92%		750	658	88%	
Pb	31	22	71%										31	23	73%	
S					0.348	0.364	105%									
Sc	12	12	100%						2.76	2.43	88%		12	12	99%	
Sr	144	148	103%		92.8	84.3	91%		312	300	96%		144	142	98%	
Th	18.4	19.5	106%										18.4	19.3	105%	
Ti	0.53	0.45	86%						0.222	0.208	94%		0.53	0.44	83%	
V	77	74	96%										77	73	95%	
Υ									25.32	27.34	108%					
Zn	130	121	93%		208	192	92%		75.42	81.93	109%		130	115	89%	
	1	1	(202	-555) Fir	e Assa	y - Au,	Pt, Pd T	race Le	vels, IC	P-OES	finish (50g cha	rge)			
		CRM #1 (F	REF.PGMS30	0)		CRM #2 (I	REF.PGMS30)		CRM #3 (ref.PGMS30))		CRM #4 (ref.PGMS30)	
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220933964

PROJECT: WR-22-CORE-07

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

Au	1.897	2.026	107%	1.897	1.931	102%	1.897	1.813	96%	1.897	1.882	99%	
Pd	1.660	1.725	104%	1.660	1.649	99%	1.660	1.622	98%	1.660	1.666	100%	
Pt	0.223	0.228	102%	0.223	0.24	108%	0.223	0.238	107%	0.223	0.221	99%	

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-07

SAMPLING SITE:

AGAT WORK ORDER: 220933964 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Geochem v. i	ICF/OLS
Ві	MIN-200-12034	Geochem v.1	ICF/OLS
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Geochem v.1	ICF/OLS
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Geochem v.1	ICP/OES
La	MIN-200-12034	Geochem v.1	ICP/OES
Li	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mg	MIN-200-12034	Geochem V.1	ICP/UES
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Na	MIN-200-12034	Geochem V. i	ICP/OES
Ni	MIN-200-12034	Geochem V.1	ICF/OL3
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

Method Summary

CLIENT NAME: ORFORD MINING CORP

AGAT WORK ORDER: 22O933964 PROJECT: WR-22-CORE-07 ATTENTION TO: Arnaud Fontaine

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/UES
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
ті	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/UES
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-12006, MIN-12004		ICP/OES
Pd	MIN-12006, MIN-12004		ICP/OES
Pt	MIN-12006, MIN-12004		ICP/OES
Crush-Pass %	,		BALANCE
Pul-Pass %			BALANCE

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5

416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-CORE-10 AGAT WORK ORDER: 220942061

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Oct 14, 2022

PAGES (INCLUDING COVER): 22

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 22

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

AGAT WORK ORDER: 220942061 PROJECT: WR-22-CORE-10

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: OR	FORD MININ	IG CORP		ATTENTION TO: Arnaud F	nttp://www.agatlabs.com
			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Sep	06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840684 (4280726)		3.940			
E5840685 (4280727)		4.040			
E5840686 (4280728)		4.190			
E5840687 (4280729)		2.820			
E5840688 (4280730)		2.980			
E5840689 (4280731)		2.910			
E5840690 (4280732)		0.160			
E5840691 (4280733)		2.930			
E5840692 (4280734)		2.580			
E5840693 (4280735)		2.960			
E5840694 (4280736)		3.570			
E5840695 (4280737)		3.500			
E5840696 (4280738)		3.310			
E5840697 (4280739)		3.370			
E5840698 (4280740)		2.100			
E5840699 (4280741)		1.070			
E5840700 (4280742)		0.890			
E5840701 (4280743)		3.210			
E5840702 (4280744)		3.330			
E5840703 (4280745)		2.950			
E5840704 (4280746)		3.050			
E5840705 (4280747)		2.850			
E5840706 (4280748)		2.830			
E5840707 (4280749)		3.210			
E5840708 (4280750)		3.060			
E5840709 (4280751)		3.210			
E5840710 (4280752)		0.060			
E5840711 (4280753)		3.000			
E5840712 (4280754)		2.380			
E5840713 (4280755)		3.090			
E5840714 (4280756)		1.840			

Certificate of Analysis

AGAT WORK ORDER: 220942061

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(200-) Sample Login Weight										
DATE SAMPLED: Se	p 06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core					
	Analyte:	Sample Login Weight								
	Unit:	kg								
Sample ID (AGAT ID)	RDL:	0.005								
E5840715 (4280757)		1.750								
E5840716 (4280758)		2.940								
E5840717 (4280759)		3.240								
E5840718 (4280760)		2.870								
E5840719 (4280761)		3.060								
E5840720 (4280762)		0.160								
E5840721 (4280763)		2.730								
5840722 (4280764)		2.860								
E5840723 (4280765)		2.620								
E5840724 (4280766)		3.000								
E5840725 (4280767)		3.270								
E5840726 (4280768)		3.340								
E5840727 (4280769)		2.810								
E5840728 (4280770)		3.540								
E5840729 (4280771)		1.380								
E5840730 (4280772)		1.280								
E5840731 (4280773)		2.750								
E5840732 (4280774)		2.570								
E5840733 (4280775)		1.540								
E5840734 (4280776)		1.600								
E5840735 (4280777)		3.210								
E5840736 (4280778)		2.340								
E5840737 (4280779)		1.300								
E5840738 (4280780)		2.400								
E5840739 (4280781)		2.720								

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

Sherin Houssay

Certificate of Analysis

AGAT WORK ORDER: 22O942061

PROJECT: WR-22-CORE-10

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CEIENT WINE. OR	01-070)	4 Acid D	iaest - M	etals Pa	ckage. I		finish								
DATE SAMPLED: Se	p 06, 2022		•		EIVED: Sep): Oct 14, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Се	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840684 (4280726)		<0.5	1.81	<1	5	<0.5	<1	2.01	<0.5	2	107	1750	48.5	7.53	<5
E5840685 (4280727)		<0.5	1.91	<1	5	<0.5	<1	2.18	<0.5	2	112	1710	59.1	7.99	<5
E5840686 (4280728)		<0.5	2.04	<1	6	<0.5	<1	2.24	<0.5	3	104	1950	48.4	7.82	<5
E5840687 (4280729)		<0.5	1.99	<1	5	<0.5	<1	2.42	<0.5	3	102	1650	43.1	6.84	<5
E5840688 (4280730)		<0.5	2.33	<1	4	<0.5	<1	2.75	<0.5	3	112	1960	202	7.35	<5
E5840689 (4280731)		<0.5	2.20	<1	4	<0.5	<1	2.64	<0.5	2	105	1640	139	7.04	<5
E5840690 (4280732)		<0.5	7.46	<1	389	1.1	<1	2.04	<0.5	17	9.7	38.2	14.5	2.19	17
E5840691 (4280733)		<0.5	2.29	<1	4	<0.5	<1	2.62	<0.5	3	112	1930	244	7.29	<5
E5840692 (4280734)		<0.5	2.81	<1	6	<0.5	<1	4.73	<0.5	3	110	1820	223	6.79	<5
E5840693 (4280735)		<0.5	5.68	26	63	0.7	<1	12.4	<0.5	2	46.8	757	173	4.46	6
E5840694 (4280736)		<0.5	7.77	<1	258	<0.5	<1	9.78	<0.5	3	35.4	479	88.1	4.35	8
E5840695 (4280737)		<0.5	7.79	<1	232	<0.5	<1	9.66	<0.5	2	33.9	276	92.1	4.37	10
E5840696 (4280738)		<0.5	7.78	<1	164	0.6	<1	7.25	<0.5	5	40.6	306	79.1	6.37	13
E5840697 (4280739)		<0.5	8.65	<1	238	0.7	<1	7.08	<0.5	6	36.9	152	84.8	6.16	15
E5840698 (4280740)		<0.5	7.11	<1	399	1.7	<1	4.23	<0.5	20	39.3	189	67.3	9.47	17
E5840699 (4280741)		<0.5	6.98	<1	138	1.5	<1	5.28	<0.5	11	52.9	105	43.5	9.78	15
E5840700 (4280742)		<0.5	7.07	<1	150	1.6	<1	5.43	<0.5	12	53.5	195	40.4	9.98	17
E5840701 (4280743)		<0.5	7.26	<1	108	1.3	<1	5.58	<0.5	12	49.8	101	38.1	9.73	19
E5840702 (4280744)		<0.5	6.93	<1	237	1.3	<1	5.20	<0.5	12	49.6	160	41.6	9.74	17
E5840703 (4280745)		<0.5	6.77	<1	470	1.4	<1	4.97	<0.5	10	43.9	66.5	43.6	9.07	16
E5840704 (4280746)		<0.5	6.56	<1	320	1.2	<1	5.52	<0.5	9	45.5	95.7	19.1	8.97	17
E5840705 (4280747)		<0.5	6.11	28	112	1.0	<1	7.20	<0.5	11	36.8	109	35.3	7.10	16
E5840706 (4280748)		<0.5	6.99	<1	333	1.2	<1	4.14	<0.5	13	41.7	168	64.5	8.50	15
E5840707 (4280749)		<0.5	3.95	<1	5	0.6	<1	6.02	<0.5	3	82.2	1660	218	7.46	7
E5840708 (4280750)		<0.5	3.58	<1	4	<0.5	<1	6.26	<0.5	3	93.6	1820	113	6.93	<5
E5840709 (4280751)		<0.5	3.90	<1	5	0.6	<1	5.90	<0.5	3	81.5	1600	109	7.08	<5
E5840710 (4280752)		1.8	6.55	<1	197	1.7	<1	4.07	<0.5	24	99.5	167	4330	12.7	<5
E5840711 (4280753)		<0.5	4.82	<1	7	0.9	<1	5.70	<0.5	4	73.5	1210	73.4	7.32	6
E5840712 (4280754)		<0.5	5.06	<1	19	0.9	<1	5.76	<0.5	4	77.2	1420	72.5	7.64	6
E5840713 (4280755)		<0.5	7.85	<1	1060	1.1	<1	1.72	<0.5	56	21.2	248	77.5	5.08	17
E5840714 (4280756)		<0.5	6.96	<1	713	1.3	<1	3.60	<0.5	20	40.0	529	101	7.23	13
E5840715 (4280757)		<0.5	7.68	<1	1200	1.9	<1	2.70	<0.5	23	35.2	188	69.8	8.00	16

Certified By:

Sherin Moussey

Certificate of Analysis

AGAT WORK ORDER: 22O942061

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, l	CP-OES	finish					
DATE SAMPLED: Se	p 06, 2022		Г	DATE RECE	EIVED: Sep	07, 2022		DATE F	REPORTED	: Oct 14, 20	122	SAM	PLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Се	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840716 (4280758)		<0.5	8.87	<1	927	2.2	<1	1.22	<0.5	84	11.9	284	110	4.81	22
E5840717 (4280759)		<0.5	8.91	<1	1080	2.2	<1	0.54	<0.5	88	11.0	157	72.8	3.78	24
E5840718 (4280760)		<0.5	9.22	<1	968	2.3	<1	0.44	<0.5	86	14.4	244	111	4.59	24
E5840719 (4280761)		<0.5	9.19	<1	719	2.0	<1	0.44	<0.5	87	9.6	158	60.8	3.38	22
E5840720 (4280762)		<0.5	7.60	3	386	1.2	<1	2.13	<0.5	19	13.2	52.2	13.3	2.40	17
E5840721 (4280763)		<0.5	9.29	<1	716	1.9	<1	0.45	<0.5	99	9.8	253	31.2	3.77	25
E5840722 (4280764)		<0.5	8.64	<1	682	1.6	<1	0.40	<0.5	77	13.5	201	115	5.62	22
E5840723 (4280765)		<0.5	9.28	<1	883	2.3	<1	0.42	<0.5	82	12.7	261	80.5	5.36	23
E5840724 (4280766)		<0.5	8.86	<1	804	1.9	<1	0.54	<0.5	89	9.4	204	10.5	4.72	22
E5840725 (4280767)		<0.5	8.28	<1	881	1.4	<1	0.90	<0.5	68	11.0	218	43.0	5.14	20
E5840726 (4280768)		<0.5	8.61	3	743	1.6	<1	0.32	<0.5	101	16.8	254	65.9	4.91	21
E5840727 (4280769)		<0.5	8.27	<1	1060	1.6	<1	0.34	<0.5	74	14.2	189	54.0	4.46	20
E5840728 (4280770)		<0.5	8.20	<1	497	2.2	<1	0.38	<0.5	89	16.3	313	82.1	7.29	22
E5840729 (4280771)		<0.5	7.66	<1	615	2.1	<1	0.38	<0.5	77	13.2	257	50.1	6.02	20
E5840730 (4280772)		<0.5	7.76	<1	629	2.1	<1	0.39	<0.5	76	13.5	426	62.6	6.52	20
E5840731 (4280773)		<0.5	8.26	2	557	1.7	<1	0.43	<0.5	76	12.8	259	16.9	5.62	22
E5840732 (4280774)		<0.5	8.05	2	1010	1.9	<1	0.60	<0.5	82	13.6	356	26.8	4.31	21
E5840733 (4280775)		<0.5	8.70	<1	884	1.5	<1	3.15	<0.5	70	13.2	242	10.2	4.34	22
E5840734 (4280776)		<0.5	4.37	<1	29	0.7	<1	3.19	<0.5	21	305	1130	1240	19.9	<5
E5840735 (4280777)		<0.5	4.99	28	3	0.8	<1	4.27	<0.5	7	80.9	1630	157	8.21	<5
E5840736 (4280778)		<0.5	4.87	30	6	0.9	<1	5.09	<0.5	5	101	1700	294	8.43	<5
E5840737 (4280779)		<0.5	3.80	105	4	0.8	<1	9.56	0.5	6	70.6	1420	171	6.20	<5
E5840738 (4280780)		<0.5	9.54	45	1190	1.1	<1	1.60	<0.5	85	20.0	307	89.0	6.11	20
E5840739 (4280781)		<0.5	7.88	6	500	1.0	<1	0.41	<0.5	69	9.0	278	31.2	3.36	17

Certified By:

Sherin Moussay

Certificate of Analysis

AGAT WORK ORDER: 22O942061

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Sep	ATE SAMPLED: Sep 06, 2022 Analyte: In K La Li Mg Unit: ppm % ppm ppm %								REPORTED	0: Oct 14, 20)22	SAM	PLE TYPE	: Drill Core	
	Unit: ample ID (AGAT ID) RDL:			La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840684 (4280726)		<1	0.02	<2	2	18.8	1140	<0.5	0.03	1490	107	<1	<10	0.11	5
E5840685 (4280727)		<1	0.03	<2	2	19.6	1180	<0.5	0.03	1600	101	<1	<10	0.11	5
E5840686 (4280728)		<1	0.03	<2	3	19.1	1250	<0.5	0.03	1440	161	<1	<10	0.08	3
E5840687 (4280729)		<1	0.03	<2	4	18.4	1200	<0.5	0.03	1390	101	<1	<10	0.08	3
E5840688 (4280730)		<1	0.03	<2	4	18.7	1190	<0.5	0.04	1580	140	<1	<10	0.15	5
E5840689 (4280731)		<1	0.03	<2	4	18.7	1190	<0.5	0.03	1260	90	<1	<10	0.11	3
E5840690 (4280732)		<1	1.41	7	13	0.89	357	<0.5	3.15	25.4	216	<1	15	<0.01	2
E5840691 (4280733)		<1	0.03	<2	5	18.8	1180	<0.5	0.03	1110	130	<1	<10	0.10	12
E5840692 (4280734)		<1	0.02	<2	13	14.9	932	<0.5	0.03	1210	130	<1	<10	0.39	4
E5840693 (4280735)		<1	0.14	<2	30	7.85	906	<0.5	0.13	372	138	<1	<10	0.03	18
E5840694 (4280736)		<1	0.41	<2	55	6.22	880	<0.5	1.66	190	164	<1	<10	0.01	4
E5840695 (4280737)		<1	0.36	<2	45	5.64	939	<0.5	1.87	113	109	<1	<10	0.01	3
E5840696 (4280738)		<1	0.28	<2	38	5.40	1170	<0.5	2.61	65.5	210	<1	<10	0.01	2
E5840697 (4280739)		<1	0.49	<2	38	4.46	1130	<0.5	2.79	42.4	280	<1	<10	0.08	3
E5840698 (4280740)		<1	0.84	6	21	2.86	1420	<0.5	3.34	18.3	663	<1	<10	0.99	4
E5840699 (4280741)		<1	0.26	3	28	3.81	1610	<0.5	2.84	31.8	329	<1	<10	0.17	2
E5840700 (4280742)		<1	0.29	3	28	3.77	1620	<0.5	2.83	31.4	356	<1	<10	0.18	4
E5840701 (4280743)		<1	0.16	3	26	3.71	1510	<0.5	3.20	28.8	442	<1	<10	0.25	5
E5840702 (4280744)		<1	0.42	3	18	3.46	1530	<0.5	3.31	25.8	457	<1	<10	0.20	4
E5840703 (4280745)		<1	1.13	3	29	3.55	1410	<0.5	2.38	28.5	348	<1	<10	0.27	4
E5840704 (4280746)		<1	1.01	3	32	3.90	1350	<0.5	1.90	29.1	352	<1	<10	0.04	3
E5840705 (4280747)		<1	0.27	4	46	3.59	1170	<0.5	1.66	34.5	327	<1	<10	0.10	2
E5840706 (4280748)		<1	0.49	4	35	4.07	1360	<0.5	2.57	37.3	432	<1	<10	0.28	3
E5840707 (4280749)		<1	0.03	<2	40	13.0	1410	<0.5	0.13	976	170	<1	<10	0.04	5
E5840708 (4280750)		<1	0.02	<2	26	12.6	1080	<0.5	0.13	1070	172	<1	<10	0.10	5
E5840709 (4280751)		<1	0.03	<2	31	12.5	1100	<0.5	0.17	782	194	<1	<10	0.06	5
E5840710 (4280752)		<1	0.55	10	15	3.85	1370	3.2	1.61	3410	682	<1	<10	1.40	7
E5840711 (4280753)		<1	0.03	<2	78	11.8	1390	<0.5	0.16	619	156	<1	<10	0.01	4
E5840712 (4280754)		<1	0.06	<2	75	11.6	1420	<0.5	0.37	719	139	<1	<10	0.01	4
E5840713 (4280755)		<1	1.52	28	53	3.66	635	1.7	2.91	108	291	5	51	0.11	3
E5840714 (4280756)		<1	1.04	8	54	5.51	1120	0.8	2.10	217	310	<1	12	0.20	4
E5840715 (4280757)		<1	1.29	10	44	4.06	1120	<0.5	2.41	67.7	451	<1	16	0.33	4

Certified By:

Sherin Moussey

Certificate of Analysis

AGAT WORK ORDER: 22O942061

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 06, 2022		Г	DATE RECE	EIVED: Sep	07, 2022		DATE F	REPORTED): Oct 14, 20)22	SAM	PLE TYPE	: Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	St
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840716 (4280758)		<1	2.78	44	36	1.23	263	3.7	3.20	59.3	287	6	82	0.95	5
E5840717 (4280759)		<1	3.05	47	34	1.22	210	3.9	3.37	56.1	280	10	87	0.40	2
E5840718 (4280760)		<1	3.10	46	36	1.13	178	4.1	3.39	60.9	277	4	86	0.94	4
E5840719 (4280761)		<1	2.13	46	27	1.05	179	5.1	4.54	62.5	258	3	89	0.36	5
E5840720 (4280762)		<1	1.28	9	15	1.11	419	<0.5	3.17	41.3	243	<1	17	<0.01	3
E5840721 (4280763)		<1	2.14	52	25	1.12	213	3.8	4.55	48.8	256	9	101	0.28	3
E5840722 (4280764)		<1	2.10	39	23	1.16	206	2.5	4.24	50.7	221	<1	74	1.30	2
E5840723 (4280765)		<1	3.10	41	31	1.14	197	2.0	2.85	48.5	331	<1	83	0.99	4
E5840724 (4280766)		<1	2.62	47	35	1.35	285	3.1	3.54	48.9	236	2	87	0.14	3
E5840725 (4280767)		<1	2.23	33	23	1.26	307	1.7	4.17	40.4	506	3	66	0.59	3
E5840726 (4280768)		<1	2.18	50	26	1.24	261	2.1	4.17	57.7	300	8	101	0.64	3
E5840727 (4280769)		<1	3.14	36	20	1.04	211	4.2	3.67	64.6	489	25	73	0.63	3
E5840728 (4280770)		<1	1.72	44	36	1.41	420	0.9	3.29	44.3	228	7	84	1.29	3
E5840729 (4280771)		<1	2.04	37	32	1.16	348	0.9	3.10	36.4	268	14	73	1.16	3
E5840730 (4280772)		<1	2.05	37	32	1.15	355	1.2	3.19	37.7	276	14	74	1.31	4
E5840731 (4280773)		<1	1.40	38	30	1.44	381	3.2	3.96	80.8	364	5	73	0.12	3
E5840732 (4280774)		<1	2.48	42	28	1.15	275	3.8	3.56	88.1	319	12	80	0.16	2
E5840733 (4280775)		<1	1.95	36	29	1.55	450	7.2	4.52	98.7	270	13	70	0.21	4
E5840734 (4280776)		<1	0.07	7	38	6.98	1040	2.2	0.17	3050	227	<1	<10	5.21	8
E5840735 (4280777)		<1	0.03	<2	54	10.6	1290	<0.5	0.05	768	177	<1	<10	0.04	6
E5840736 (4280778)		<1	0.06	<2	38	12.6	1370	<0.5	0.20	1010	245	<1	<10	0.10	6
E5840737 (4280779)		<1	0.08	<2	31	10.7	1160	<0.5	0.05	851	138	<1	<10	0.14	4
E5840738 (4280780)		<1	2.33	42	48	3.29	569	2.0	4.27	126	383	3	81	0.69	4
E5840739 (4280781)		<1	1.41	35	18	1.30	243	1.8	4.55	43.4	235	2	70	0.29	2

Certified By:

Sherin Mousson

Certificate of Analysis

AGAT WORK ORDER: 22O942061

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 06, 2022		Г	ATE RECE	EIVED: Sep	07, 2022		DATE F	REPORTED): Oct 14, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte: Unit: mple ID (AGAT ID) RDL:		Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840684 (4280726)		14	<10	<5	7	<10	<10	<5	0.10	<5	<5	61.7	<1	4	66.5
E5840685 (4280727)		14	<10	<5	7	<10	<10	<5	0.10	<5	<5	61.5	<1	4	68.2
E5840686 (4280728)		14	<10	<5	13	<10	<10	<5	0.13	<5	<5	72.0	<1	5	67.4
E5840687 (4280729)		15	<10	<5	8	<10	<10	<5	0.12	<5	<5	72.6	<1	5	66.9
E5840688 (4280730)		17	<10	<5	9	<10	<10	<5	0.14	<5	<5	90.9	<1	5	74.2
E5840689 (4280731)		16	<10	<5	9	<10	<10	<5	0.12	<5	<5	72.8	<1	5	66.9
E5840690 (4280732)		9	<10	<5	374	<10	<10	<5	0.16	<5	<5	62.9	<1	6	36.1
E5840691 (4280733)		16	<10	<5	10	<10	<10	<5	0.13	<5	<5	79.1	<1	5	70.7
E5840692 (4280734)		20	<10	<5	6	<10	<10	<5	0.18	<5	<5	115	<1	6	82.2
E5840693 (4280735)		28	<10	<5	81	<10	<10	<5	0.24	<5	<5	153	<1	8	45.0
E5840694 (4280736)		36	<10	<5	221	<10	<10	<5	0.23	<5	<5	157	<1	10	40.6
E5840695 (4280737)		36	<10	<5	281	<10	<10	<5	0.22	<5	<5	159	<1	8	40.8
E5840696 (4280738)		37	<10	<5	262	<10	<10	<5	0.35	<5	<5	214	<1	13	62.1
E5840697 (4280739)		34	<10	<5	359	<10	<10	<5	0.41	<5	<5	224	<1	14	61.4
E5840698 (4280740)		34	<10	<5	86	<10	<10	<5	0.78	<5	<5	275	<1	31	91.3
E5840699 (4280741)		42	<10	<5	87	<10	<10	<5	0.82	<5	<5	493	<1	21	93.3
E5840700 (4280742)		41	<10	<5	85	<10	<10	<5	0.86	<5	<5	499	<1	21	95.8
E5840701 (4280743)		39	<10	<5	81	<10	<10	<5	0.74	<5	<5	422	<1	21	98.6
E5840702 (4280744)		39	<10	<5	85	<10	<10	<5	0.76	<5	<5	408	<1	23	101
E5840703 (4280745)		38	<10	<5	136	<10	<10	<5	0.74	<5	<5	348	<1	18	95.4
E5840704 (4280746)		36	<10	<5	109	<10	<10	<5	0.66	<5	<5	330	<1	17	76.1
E5840705 (4280747)		31	<10	<5	149	<10	<10	<5	0.45	<5	<5	265	<1	16	70.7
E5840706 (4280748)		36	<10	<5	90	<10	<10	<5	0.63	<5	<5	307	<1	20	85.3
E5840707 (4280749)		24	<10	<5	13	<10	<10	<5	0.22	<5	<5	157	<1	10	81.5
E5840708 (4280750)		23	<10	<5	9	<10	<10	<5	0.20	<5	<5	147	<1	8	81.7
E5840709 (4280751)		26	<10	<5	11	<10	<10	<5	0.24	<5	<5	164	<1	10	78.3
E5840710 (4280752)		11	<10	<5	240	<10	<10	<5	0.70	<5	<5	110	4	12	101
E5840711 (4280753)		30	<10	<5	11	<10	<10	<5	0.27	<5	<5	188	<1	11	84.4
E5840712 (4280754)		29	<10	<5	13	<10	<10	<5	0.27	<5	<5	183	<1	10	86.4
E5840713 (4280755)		18	<10	<5	79	<10	<10	6	0.35	<5	<5	159	<1	19	52.0
E5840714 (4280756)		32	<10	<5	59	<10	<10	<5	0.45	<5	<5	251	<1	18	86.3
E5840715 (4280757)		33	<10	<5	68	<10	<10	<5	0.64	<5	<5	309	<1	22	92.2

Certified By:

Sherin Moussey

Certificate of Analysis

AGAT WORK ORDER: 22O942061

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, l	CP-OES	finish					
DATE SAMPLED: Se	p 06, 2022		Г	DATE RECE	EIVED: Sep	07, 2022		DATE F	REPORTED	: Oct 14, 20	122	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840716 (4280758)		11	<10	<5	49	<10	<10	13	0.34	<5	<5	117	<1	22	31.0
E5840717 (4280759)		11	<10	<5	47	<10	<10	17	0.34	<5	<5	119	<1	24	27.7
E5840718 (4280760)		11	<10	<5	42	<10	<10	14	0.36	<5	<5	119	<1	22	26.4
E5840719 (4280761)		11	<10	<5	46	<10	<10	15	0.35	<5	<5	130	<1	22	28.3
E5840720 (4280762)		10	<10	<5	379	<10	<10	<5	0.20	<5	<5	67.0	<1	7	38.3
E5840721 (4280763)		11	<10	<5	47	<10	<10	16	0.36	<5	<5	136	<1	23	28.0
E5840722 (4280764)		10	<10	<5	36	<10	<10	12	0.33	<5	<5	92.1	<1	19	25.0
E5840723 (4280765)		11	<10	<5	35	<10	<10	13	0.35	<5	<5	102	<1	22	29.7
E5840724 (4280766)		10	<10	<5	44	<10	<10	13	0.31	<5	<5	77.8	<1	21	41.5
E5840725 (4280767)		9	<10	<5	76	<10	<10	10	0.26	<5	<5	79.5	<1	21	42.2
E5840726 (4280768)		10	<10	<5	50	<10	<10	13	0.30	<5	<5	91.0	<1	24	58.4
E5840727 (4280769)		10	<10	<5	47	<10	<10	15	0.28	<5	<5	107	<1	23	50.8
E5840728 (4280770)		10	<10	<5	41	<10	<10	9	0.31	<5	<5	75.6	<1	21	75.8
E5840729 (4280771)		9	<10	<5	40	<10	<10	10	0.29	<5	<5	69.8	<1	20	97.1
E5840730 (4280772)		9	<10	<5	41	<10	<10	8	0.29	<5	<5	75.2	<1	21	87.6
E5840731 (4280773)		10	<10	<5	51	<10	<10	11	0.31	<5	<5	89.2	<1	22	57.2
E5840732 (4280774)		10	<10	<5	53	<10	<10	12	0.30	<5	<5	111	<1	20	44.1
E5840733 (4280775)		10	<10	<5	91	<10	<10	13	0.32	<5	<5	111	<1	19	42.7
E5840734 (4280776)		17	<10	<5	24	<10	<10	<5	0.23	<5	<5	147	3	11	90.4
E5840735 (4280777)		27	<10	<5	30	<10	<10	<5	0.26	<5	<5	181	<1	11	89.9
E5840736 (4280778)		28	<10	<5	13	<10	<10	<5	0.27	<5	<5	186	<1	10	98.2
E5840737 (4280779)		21	<10	<5	188	<10	<10	<5	0.22	<5	<5	144	<1	10	77.2
E5840738 (4280780)		12	<10	<5	108	<10	<10	11	0.28	<5	<5	104	2	24	59.5
E5840739 (4280781)		9	<10	<5	62	<10	<10	14	0.27	<5	<5	92.4	5	17	33.2

Certified By:

Sherin Moussay

Certificate of Analysis

AGAT WORK ORDER: 220942061 PROJECT: WR-22-CORE-10

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Sep	06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840684 (4280726)		11			
E5840685 (4280727)		12			
E5840686 (4280728)		19			
E5840687 (4280729)		12			
E5840688 (4280730)		15			
E5840689 (4280731)		13			
E5840690 (4280732)		35			
E5840691 (4280733)		13			
E5840692 (4280734)		17			
E5840693 (4280735)		23			
E5840694 (4280736)		27			
E5840695 (4280737)		20			
E5840696 (4280738)		31			
E5840697 (4280739)		37			
E5840698 (4280740)		102			
E5840699 (4280741)		63			
E5840700 (4280742)		65			
E5840701 (4280743)		62			
E5840702 (4280744)		67			
E5840703 (4280745)		51			
E5840704 (4280746)		43			
E5840705 (4280747)		54			
E5840706 (4280748)		59			
E5840707 (4280749)		24			
E5840708 (4280750)		23			
E5840709 (4280751)		25			
E5840710 (4280752)		53			
E5840711 (4280753)		22			
E5840712 (4280754)		23			
E5840713 (4280755)		123			
E5840714 (4280756)		66			
E5840715 (4280757)		76			

Certified By:

Sherin Moussey

Certificate of Analysis

AGAT WORK ORDER: 220942061

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	Package, ICP-OES finish	
DATE SAMPLED: Se	p 06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840716 (4280758)		150			
E5840717 (4280759)		158			
E5840718 (4280760)		144			
E5840719 (4280761)		152			
E5840720 (4280762)		47			
E5840721 (4280763)		155			
E5840722 (4280764)		138			
E5840723 (4280765)		151			
E5840724 (4280766)		151			
E5840725 (4280767)		161			
E5840726 (4280768)		149			
E5840727 (4280769)		157			
E5840728 (4280770)		138			
E5840729 (4280771)		129			
E5840730 (4280772)		131			
E5840731 (4280773)		139			
E5840732 (4280774)		140			
E5840733 (4280775)		148			
E5840734 (4280776)		51			
E5840735 (4280777)		35			
E5840736 (4280778)		28			
E5840737 (4280779)		21			
E5840738 (4280780)		184			
E5840739 (4280781)		144			

Comments: RDL - Reported Detection Limit

4280726-4280781 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 22O942061 PROJECT: WR-22-CORE-10

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(20	2-555) Fire As	say - Au, Pt, Pd	Trace Levels, ICP-OES finish	
DATE SAMPLED: Sep	06, 2022			DATE RECEIVED	: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt			
	Unit:	ppm	ppm	ppm			
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005			
E5840684 (4280726)		0.001	0.005	<0.005			
E5840685 (4280727)		0.002	0.027	0.011			
E5840686 (4280728)		0.001	<0.001	<0.005			
E5840687 (4280729)		0.001	0.008	<0.005			
E5840688 (4280730)		0.003	0.011	0.009			
E5840689 (4280731)		0.001	0.003	<0.005			
E5840690 (4280732)		0.001	0.001	<0.005			
E5840691 (4280733)		0.007	0.014	0.007			
E5840692 (4280734)		<0.001	0.004	<0.005			
E5840693 (4280735)		0.044	0.002	<0.005			
E5840694 (4280736)		0.001	0.001	<0.005			
E5840695 (4280737)		<0.001	< 0.001	<0.005			
E5840696 (4280738)		<0.001	< 0.001	<0.005			
E5840697 (4280739)		< 0.001	< 0.001	<0.005			
E5840698 (4280740)		0.001	< 0.001	<0.005			
E5840699 (4280741)		<0.001	< 0.001	< 0.005			
E5840700 (4280742)		< 0.001	< 0.001	< 0.005			
E5840701 (4280743)		<0.001	< 0.001	< 0.005			
E5840702 (4280744)		<0.001	< 0.001	< 0.005			
E5840703 (4280745)		<0.001	< 0.001	<0.005			
E5840704 (4280746)		0.001	< 0.001	< 0.005			
E5840705 (4280747)		0.001	0.001	< 0.005			
E5840706 (4280748)		0.001	0.001	< 0.005			
E5840707 (4280749)		0.001	0.019	0.008			
E5840708 (4280750)		0.002	0.037	0.018			
E5840709 (4280751)		0.001	0.004	< 0.005			
E5840710 (4280752)		0.064	0.614	0.318			
E5840711 (4280753)		0.001	0.007	0.006			
E5840712 (4280754)		0.001	0.004	<0.005			
E5840713 (4280755)		0.001	0.005	0.005			
E5840714 (4280756)		0.001	0.001	< 0.005			
E5840715 (4280757)		0.001	0.001	< 0.005			

Certified By:

Sherin Moussey

AGAT WORK ORDER: 220942061 PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORI	FORD MININ	G CORP			ATTENTION TO: Arnaud F	ontaine
			(20	2-555) Fire Assay - Au, Pt, Pd	Trace Levels, ICP-OES finish	
DATE SAMPLED: Sep	06, 2022			DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840716 (4280758)		0.001	0.006	<0.005		
E5840717 (4280759)		0.001	0.005	<0.005		
E5840718 (4280760)		0.001	0.005	<0.005		
E5840719 (4280761)		0.001	0.006	<0.005		
E5840720 (4280762)		<0.001	0.002	<0.005		
E5840721 (4280763)		0.001	0.006	<0.005		
E5840722 (4280764)		0.001	0.005	<0.005		
E5840723 (4280765)		0.001	0.005	<0.005		
E5840724 (4280766)		0.001	0.003	<0.005		
E5840725 (4280767)		0.001	0.004	<0.005		
E5840726 (4280768)		0.001	0.005	<0.005		
E5840727 (4280769)		< 0.001	0.004	<0.005		
E5840728 (4280770)		0.001	0.004	<0.005		
E5840729 (4280771)		< 0.001	0.003	<0.005		
E5840730 (4280772)		0.001	0.003	<0.005		
E5840731 (4280773)		< 0.001	0.011	0.005		
E5840732 (4280774)		0.002	0.009	0.005		
E5840733 (4280775)		< 0.001	0.008	<0.005		
E5840734 (4280776)		0.002	0.048	0.015		
E5840735 (4280777)		0.001	0.020	0.013		
E5840736 (4280778)		0.001	0.031	0.015		
E5840737 (4280779)		0.001	0.032	0.008		
E5840738 (4280780)		<0.001	0.006	<0.005		
E5840739 (4280781)		0.001	0.004	<0.005		

RDL - Reported Detection Limit

Analysis performed at AGAT 1046 Gorham St, Thunder Bay, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O942061

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Crushing)									
DATE SAMPLED: Sep 06, 2022 DATE RECEIVED: Sep 07, 2022 DATE REPORTED: Oct 14, 2022 SAMPLE TYPE: Drill Core										
	Analyte: C	rush-Pass %								
	Unit:	%								
Sample ID (AGAT ID)	RDL:	0.01								
E5840684 (4280726)		85.93								
E5840703 (4280745)		84.74								
E5840723 (4280765)		81.74								

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O942061

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Pulverizing)									
DATE SAMPLED: Sep 06, 2022 DATE RECEIVED: Sep 07, 2022 DATE REPORTED: Oct 14, 2022 SAMPLE TYPE: Drill Core										
	Analyte: Pu	ıl-Pass %								
	Unit:	%								
Sample ID (AGAT ID)	RDL:	0.01								
E5840684 (4280726)		85.57								
E5840703 (4280745)		85.51								
E5840723 (4280765)		93.45								

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220942061 PROJECT: WR-22-CORE-10 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

Ag 4280728 < 0.5					(20	1-070) 4	Acid Di	nest - M	letals F	Package	ICP-O	FS finis	h				
Parameter		<u> </u>	REPLIC	ΔTF #1	(20	T 070) + 7			ictais i	Taokago				REDITCATE #4			
Ag	Parameter	Sample ID			RPD	Sample ID			RPD	Sample ID		1	RPD	Sample ID	1		RPD
A		· ·				•				<u>'</u>				'			0.0%
A8 4280726 < 1 < 1 0.0% 4280740 < 1 < 1 0.0% 4280766 < 1 3 BB 4280726 5 5 0.0% 4280740 399 412 3.2% 4280751 5 5 0.0% 4280766 804 807 0.0 BI 4280726 < 1																	1.7%
Ba																	
Be																	0.4%
Ca 4280726 2.01 1.98 1.5% 4280740 4.23 4.36 3.0% 4280751 5.90 5.79 1.9% 4280766 0.54 0.54 0.04 Cd 4280726 < 0.5		4280726	< 0.5	< 0.5	0.0%	4280740	1.7	1.7			0.6	0.6	0.0%	4280766		1.9	0.0%
Ca 4280726 2.01 1.98 1.5% 4280740 4.23 4.36 3.0% 4280751 5.90 5.79 1.9% 4280766 0.54 0.54 0.54 0.04 Cd 4280726 < 0.5	Bi	4280726	< 1	< 1	0.0%	4280740	< 1	< 1	0.0%	4280751	< 1	< 1	0.0%	4280766	< 1	< 1	0.0%
Ce 4280726 2 2 0.0% 4280740 20 20 0.0% 4280751 3 3 0.0% 4280766 89 88 0.0 Co 4280726 107 107 0.0% 4280740 39.3 39.6 0.8% 4280751 81.5 81.9 0.5% 4280766 9.38 9.67 3.6 Cr 4280726 1750 1930 9.8% 4280740 189 191 1.1% 4280751 1800 1700 6.1% 4280766 204 213 4.4 Cu 4280726 48.5 46.7 3.8% 4280740 67.3 69.5 3.2% 4280751 109 111 1.8% 4280766 10.5 10.3 1.3 Fe 4280726 7.5 7.32 2.8% 4280740 67.3 69.5 3.2% 4280751 7.08 7.16 1.1% 4280766 2.2 2.2 0.0 In 4280726 <td< td=""><td>Ca</td><td>4280726</td><td>2.01</td><td>1.98</td><td>1.5%</td><td>4280740</td><td>4.23</td><td>4.36</td><td>3.0%</td><td>4280751</td><td>5.90</td><td>5.79</td><td>1.9%</td><td>4280766</td><td>0.54</td><td>0.54</td><td>0.0%</td></td<>	Ca	4280726	2.01	1.98	1.5%	4280740	4.23	4.36	3.0%	4280751	5.90	5.79	1.9%	4280766	0.54	0.54	0.0%
Co 4280726 107 107 0.0% 4280740 39.3 39.6 0.8% 4280751 81.5 81.9 0.5% 4280766 9.38 9.67 3.1 Cr 4280726 1750 1930 9.8% 4280740 189 191 1.1% 4280751 1600 1700 6.1% 4280766 204 213 4.3 Cu 4280726 45.5 46.7 3.8% 4280740 67.3 69.5 3.2% 4280751 7.08 7.16 1.1% 4280766 10.5 10.3 1.3 Fe 4280726 7.53 7.32 2.8% 4280740 9.47 9.53 0.6% 4280751 7.08 7.16 1.1% 4280766 1.2 1 4.64 1.1 Ga 4280726 <.5	Cd	4280726	< 0.5	< 0.5	0.0%	4280740	< 0.5	< 0.5	0.0%	4280751	< 0.5	< 0.5	0.0%	4280766	< 0.5	< 0.5	0.0%
Cr 4280726 1750 1930 9.8% 4280740 189 191 1.1% 4280751 1600 1700 6.1% 4280766 204 213 4.3 Cu 4280726 48.5 46.7 3.8% 4280740 67.3 69.5 3.2% 4280751 109 111 1.8% 4280766 10.5 10.3 13 Fe 4280726 7.53 7.32 2.8% 4280740 9.53 0.6% 4280751 7.08 7.16 1.1% 4280766 4.72 4.64 1.1 Ga 4280726 < 5	Ce	4280726	2	2	0.0%	4280740	20	20	0.0%	4280751	3	3	0.0%	4280766	89	89	0.0%
Cu 4280726 48.5 46.7 3.8% 4280740 67.3 69.5 3.2% 4280751 109 111 1.8% 4280766 10.5 10.3 13.5 Fe 4280726 7.53 7.32 2.8% 4280740 9.47 9.53 0.6% 4280751 7.08 7.16 1.1% 4280766 4.72 4.64 1.3 Ga 4280726 <5	Со	4280726	107	107	0.0%	4280740	39.3	39.6	0.8%	4280751	81.5	81.9	0.5%	4280766	9.38	9.67	3.0%
Fe 4280726 7.53 7.32 2.8% 4280740 9.47 9.53 0.6% 4280751 7.08 7.16 1.11% 4280766 4.72 4.64 1.1 Ga 4280726 < 5 < 5 < 0.0% 4280740 17 17 0.0% 4280751 < 5 < 5 < 0.0% 4280766 22 22 0.0	Cr	4280726	1750	1930	9.8%	4280740	189	191	1.1%	4280751	1600	1700	6.1%	4280766	204	213	4.3%
Ga 4280726 < 5 < 5 0.0% 4280740 17 17 0.0% 4280751 < 5 < 5 0.0% 4280766 22 22 0.00 In 4280726 < 1 < 1 0.0% 4280740 < 1 < 1 0.0% 4280751 < 1 < 1 0.0% 4280766 < 1 < 1 0.0% 4280766 K 4280726 0.02 0.02 0.02 0.0% 4280740 0.84 0.84 0.0% 4280751 0.03 0.03 0.0% 4280766 2.62 2.66 11.5 La 4280726 < 2 < 2 0.0% 4280740 6 6 6 0.0% 4280751 < 2 < 2 0.0% 4280766 47 48 2.5 Li 4280726 2 2 0.0% 4280740 2.1 22 4.7% 4280751 31 31 0.0% 4280766 35 34 2.5 Mg 4280726 18.8 18.2 3.2% 4280740 2.86 2.88 0.7% 4280751 12.5 12.5 0.0% 4280766 1.35 1.35 0.0 Mn 4280726 1140 1130 0.9% 4280740 1420 1420 0.0% 4280751 1100 1090 0.9% 4280766 285 285 0.0 Mo 4280726 < 0.5 < 0.5 0.0% 4280740 < 0.5 < 0.5 0.0% 4280751 < 0.5 < 0.5 0.0% 4280766 3.1 2.2 Na 4280726 0.026 0.024 8.0% 4280740 < 0.5 < 0.5 0.0% 4280751 < 0.5 < 0.5 0.0% 4280766 3.5 2.8 Ni 4280726 1490 1500 0.7% 4280740 18.3 17.5 4.5% 4280751 782 791 1.1% 4280766 3.54 3.55 0.3 Ni 4280726 1490 1500 0.7% 4280740 18.3 17.5 4.5% 4280751 782 791 1.1% 4280766 48.9 50.1 2.5 P 4280726 107 130 19.4% 4280740 663 655 12.2% 4280751 < 1 o.171 0.163 4.8% 4280766 236 246 4.9 Pb 4280726 < 10 < 10 0.0% 4280740 < 11 < 1 0.0% 4280751 < 1 < 1 < 1 0.0% 4280766 2 1 Rb 4280726 0.11 0.11 0.0% 4280740 < 10 < 10 0.0% 4280751 < 10 < 10 0.0% 4280766 3 1 4 280766 3 1 4 280766 4 280726 1 14 1 4 0.0% 4280740 < 10 < 10 0.0% 4280751 < 1 < 1 0.0% 4280766 3 1 4 280766 4 280726 1 1 < 1 0.0% 4280740 < 10 < 10 0.0% 4280751 < 1 < 1 0.0% 4280766 4 280726 5 5 5 0.0% 4280740 < 10 < 10 0.0% 4280751 < 1 < 1 0.0% 4280766 5 5 0.0% 4280766 5 5 0.0% 4280740 < 10 < 10 0.0% 4280751 < 1 < 1 < 1 0.0% 4280766 5 1 0.0% 4280766 5 1 0.0% 4280766 5 1 0.0% 4280740 < 10 < 10 0.0% 4280751 < 1 < 1 < 1 0.0% 4280766 5 1 0.0% 4280766 5 1 0.0% 4280766 5 1 0.0% 4280740 < 10 < 10 0.0% 4280751 < 10 < 10 0.0% 4280766 5 1 0.0% 4280766 5 1 0.0% 4280766 5 1 0.0% 4280740 < 10 < 10 0.0% 4280751 < 10 < 10 0.0% 4280766 5 1 0.0% 4280766 5 1 0.0% 4280766 5 1 0.0% 4280766 5 1 0.0%	Cu	4280726	48.5	46.7	3.8%	4280740	67.3	69.5	3.2%	4280751	109	111	1.8%	4280766	10.5	10.3	1.9%
In	Fe	4280726	7.53	7.32	2.8%	4280740	9.47	9.53	0.6%	4280751	7.08	7.16	1.1%	4280766	4.72	4.64	1.7%
K 4280726 0.02 0.02 0.0% 4280740 0.84 0.84 0.0% 4280751 0.03 0.03 0.0% 4280766 2.62 2.66 1.5 La 4280726 <2	Ga	4280726	< 5	< 5	0.0%	4280740	17	17	0.0%	4280751	< 5	< 5	0.0%	4280766	22	22	0.0%
La 4280726 < 2 < 2 0.0% 4280740 6 6 6 0.0% 4280751 < 2 < 2 0.0% 4280766 47 48 2. Li 4280726 2 2 0.0% 4280740 21 22 4.7% 4280751 31 31 0.0% 4280766 35 34 2.9 Mg 4280726 18.8 18.2 3.2% 4280740 2.86 2.88 0.7% 4280751 12.5 12.5 0.0% 4280766 1.35 1.35 0.0 Mn 4280726 1140 1130 0.9% 4280740 1420 1420 0.0% 4280751 1100 1090 0.9% 4280766 285 285 0.0 Mo 4280726 < 0.5 < 0.5 0.0% 4280740 < 0.5 < 0.5 0.0% 4280751 1.100 1090 0.9% 4280766 3.1 2.2 Na 4280726 0.026 0.024 8.0% 4280740 < 0.5 < 0.5 0.0% 4280751 0.171 0.163 4.8% 4280766 3.54 3.55 0.3 Ni 4280726 1490 1500 0.7% 4280740 18.3 17.5 4.5% 4280751 782 791 1.1% 4280766 48.9 50.1 2.4 P 4280726 107 130 19.4% 4280740 663 655 1.2% 4280751 782 791 1.1% 4280766 236 246 4.3 Pb 4280726 < 1 < 1 0.0% 4280740 < 1 < 1 0.0% 4280751 < 1 < 1 0.0% 4280766 2 1 < 1 0.0% 4280760 2 1 Rb 4280726 < 10 < 10 0.0% 4280740 < 10 < 10 0.0% 4280751 5 4 22.2% 4280766 3.1 4 28.8 Sc 4280726 5 5 5 0.0% 4280740 4 3 28.6% 4280751 5 4 22.2% 4280766 10 10 10 0.0 Se 4280726 < 10 < 10 0.0% 4280740 34 34 0.0% 4280751 5 4 22.2% 4280766 10 10 10 0.0 Se 4280726 < 10 < 10 0.0% 4280740 4 3 28.6% 4280751 5 4 22.2% 4280766 10 10 10 0.0 Se 4280726 < 10 < 10 0.0% 4280740 4 3 28.6% 4280751 5 4 22.2% 4280766 10 10 10 0.0 Se 4280726 < 10 < 10 0.0% 4280740 4 3 28.6% 4280751 5 4 22.2% 4280766 10 10 10 0.0 Se 4280726 < 10 < 10 0.0% 4280740 4 3 28.6% 4280751 5 4 22.2% 4280766 10 10 0.0 Se 4280726 < 10 < 10 0.0% 4280740 < 10 < 10 0.0% 4280751 5 4 22.2% 4280766 10 10 0.0 Se 4280726 < 10 < 10 0.0% 4280740 < 10 < 10 0.0% 4280751 5 4 22.2% 4280766 6 10 10 0.0 Se 4280726 < 10 < 10 0.0% 4280740 < 10 < 10 0.0% 4280751 5 4 22.2% 4280766 6 10 10 0.0 Se 4280726 < 10 < 10 0.0% 4280740 < 10 < 10 0.0% 4280751 5 4 22.2% 4280766 6 10 10 0.0 Se 4280726 < 10 < 10 0.0% 4280740 < 10 < 0.0 0.0% 4280751 5 6 24 8.0% 4280766 6 10 10 0.0	In	4280726	< 1	< 1	0.0%	4280740	< 1	< 1	0.0%	4280751	< 1	< 1	0.0%	4280766	< 1	< 1	0.0%
Li 4280726 2 2 0.0% 4280740 21 22 4.7% 4280751 31 31 0.0% 4280766 35 34 2.9 Mg 4280726 18.8 18.2 3.2% 4280740 2.86 2.88 0.7% 4280751 12.5 12.5 0.0% 4280766 1.35 1.35 0.6 Mn 4280726 1140 1130 0.9% 4280740 1420 1420 0.0% 4280751 1100 1090 0.9% 4280766 285 285 0.6 Mo 4280726 < 0.5	K	4280726	0.02	0.02	0.0%	4280740	0.84	0.84	0.0%	4280751	0.03	0.03	0.0%	4280766	2.62	2.66	1.5%
Mg 4280726 18.8 18.2 3.2% 4280740 2.86 2.88 0.7% 4280751 12.5 0.0% 4280766 1.35 1.35 0.0 Mn 4280726 1140 1130 0.9% 4280740 1420 1420 0.0% 4280751 1100 1090 0.9% 4280766 285 285 0.0 Mo 4280726 <0.5	La	4280726	< 2	< 2	0.0%	4280740	6	6	0.0%	4280751	< 2	< 2	0.0%	4280766	47	48	2.1%
Mn 4280726 1140 1130 0.9% 4280740 1420 1420 0.0% 4280751 1100 1090 0.9% 4280766 285 285 0.0 Mo 4280726 < 0.5	Li	4280726	2	2	0.0%	4280740	21	22	4.7%	4280751	31	31	0.0%	4280766	35	34	2.9%
Mo 4280726 < 0.5 < 0.5 0.0% 4280740 < 0.5 < 0.5 0.0% 4280751 < 0.5 < 0.5 0.0% 4280751 < 0.5 < 0.5 0.0% 4280766 3.1 2.2 Na 4280726 0.026 0.024 8.0% 4280740 3.34 3.46 3.5% 4280751 0.171 0.163 4.8% 4280766 3.54 3.55 0.3 Ni 4280726 1490 1500 0.7% 4280740 18.3 17.5 4.5% 4280751 782 791 1.1% 4280766 48.9 50.1 2.4 P 4280726 107 130 19.4% 4280740 663 655 1.2% 4280751 194 156 21.7% 4280766 236 246 4.5 Pb 4280726 <1	Mg	4280726	18.8	18.2	3.2%	4280740	2.86	2.88	0.7%	4280751	12.5	12.5	0.0%	4280766	1.35	1.35	0.0%
Na 4280726 0.026 0.024 8.0% 4280740 3.34 3.46 3.5% 4280751 0.171 0.163 4.8% 4280766 3.54 3.55 0.3 Ni 4280726 1490 1500 0.7% 4280740 18.3 17.5 4.5% 4280751 782 791 1.1% 4280766 48.9 50.1 2.4 P 4280726 107 130 19.4% 4280740 663 655 1.2% 4280751 194 156 21.7% 4280766 236 246 4.9 Pb 4280726 < 1 < 1 0.0% 4280740 < 1 < 1 0.0% 4280740 < 1 < 1 0.0% 4280751 < 1 < 1 0.0% 4280766 2 1 < 1 < 1 0.0% 4280766 2 1 < 1 < 1 0.0% 4280740 < 1 < 1 0.0% 4280751 < 1 < 1 0.0% 4280766 2 1 < 1 < 1 0.0% 4280766 2 1 < 1 < 1 0.0% 4280740 < 1 < 1 0.0% 4280751 < 1 < 1 0.0% 4280766 2 1 < 1 < 1 0.0% 4280766 2 1 < 1 < 1 0.0% 4280740 < 10 < 10 0.0% 4280751 < 1 < 1 0.0% 4280766 87 91 4.5 S 4280726 0.11 0.11 0.0% 4280740 0.99 1.02 3.0% 4280751 0.06 0.06 0.0% 4280766 0.141 0.135 4.5 Sb 4280726 5 5 0.0% 4280740 4 3 28.6% 4280751 5 4 22.2% 4280766 3 4 28.6% 4280726 14 14 0.0% 4280740 34 34 0.0% 4280751 26 24 8.0% 4280766 10 10 0.0% 50 0.06 Se 4280726 < 10 < 10 0.0% 4280740 < 10 < 10 0.0% 4280751 < 10 < 10 0.0% 4280766 < 10 < 10 0.0% 4280766 10 < 10 0.0% 4280766 10 < 10 0.0% 50 0.0	Mn	4280726	1140	1130	0.9%	4280740	1420	1420	0.0%	4280751	1100	1090	0.9%	4280766	285	285	0.0%
Ni 4280726 1490 1500 0.7% 4280740 18.3 17.5 4.5% 4280751 782 791 1.1% 4280766 48.9 50.1 2.4 P 4280726 107 130 19.4% 4280740 663 655 1.2% 4280751 194 156 21.7% 4280766 236 246 4.5 Pb 4280726 < 1 < 1 0.0% 4280740 < 1 < 1 0.0% 4280751 < 1 < 1 0.0% 4280766 2 1 Rb 4280726 < 10 < 10 0.0% 4280740 < 10 < 10 0.0% 4280751 < 1 < 1 0.0% 4280766 87 91 4.5 S 4280726 0.11 0.11 0.0% 4280740 0.99 1.02 3.0% 4280751 0.06 0.06 0.0% 4280766 0.141 0.135 4.5 Sb 4280726 5 5 0.0% 4280740 4 3 28.6% 4280751 5 4 22.2% 4280766 3 4 28.6% Sc 4280726 14 14 0.0% 4280740 34 34 0.0% 4280751 26 24 8.0% 4280766 10 10 0.0% Se 4280726 < 10 < 10 0.0% 4280740 < 10 < 10 0.0% 4280751 < 0 < 10 0.0% 4280766	Мо	4280726	< 0.5	< 0.5	0.0%	4280740	< 0.5	< 0.5	0.0%	4280751	< 0.5	< 0.5	0.0%	4280766	3.1	2.2	
P 4280726 107 130 19.4% 4280740 663 655 1.2% 4280751 194 156 21.7% 4280766 236 246 4. Pb 4280726 <1	Na	4280726	0.026	0.024	8.0%	4280740	3.34	3.46	3.5%	4280751	0.171	0.163	4.8%	4280766	3.54	3.55	0.3%
Pb 4280726 < 1 < 1 0.0% 4280740 < 1 < 1 0.0% 4280751 < 1 < 1 0.0% 4280766 2 1 Rb 4280726 < 10	Ni	4280726	1490	1500	0.7%	4280740	18.3	17.5	4.5%	4280751	782	791	1.1%	4280766	48.9	50.1	2.4%
Rb 4280726 < 10 < 10 0.0% 4280740 < 10 < 10 0.0% 4280751 < 10 < 10 0.0% 4280766 87 91 4.5 S 4280726 0.11 0.11 0.0% 4280740 0.99 1.02 3.0% 4280751 0.06 0.06 0.0% 4280766 0.141 0.135 4.5 Sb 4280726 5 5 0.0% 4280740 4 3 28.6% 4280751 5 4 22.2% 4280766 3 4 28. Sc 4280726 14 14 0.0% 4280740 34 34 0.0% 4280751 26 24 8.0% 4280766 10 10 0.0 Se 4280726 <10	Р	4280726	107	130	19.4%	4280740	663	655	1.2%	4280751	194	156	21.7%	4280766	236	246	4.1%
S 4280726 0.11 0.11 0.0% 4280740 0.99 1.02 3.0% 4280751 0.06 0.06 0.0% 4280766 0.141 0.135 4.3 Sb 4280726 5 5 0.0% 4280740 4 3 28.6% 4280751 5 4 22.2% 4280766 3 4 28. Sc 4280726 14 14 0.0% 4280740 34 34 0.0% 4280751 26 24 8.0% 4280766 10 10 0.0 Se 4280726 <10	Pb	4280726	< 1	< 1	0.0%	4280740	< 1	< 1	0.0%	4280751	< 1	< 1	0.0%	4280766	2	1	
Sb 4280726 5 5 0.0% 4280740 4 3 28.6% 4280751 5 4 22.2% 4280766 3 4 28. Sc 4280726 14 14 0.0% 4280740 34 34 0.0% 4280751 26 24 8.0% 4280766 10 10 0.0 Se 4280726 <10	Rb	4280726	< 10	< 10	0.0%	4280740	< 10	< 10	0.0%	4280751	< 10	< 10	0.0%	4280766	87	91	4.5%
Sc 4280726 14 14 0.0% 4280740 34 34 0.0% 4280751 26 24 8.0% 4280766 10 10 0.0 Se 4280726 < 10	S	4280726	0.11	0.11	0.0%	4280740	0.99	1.02	3.0%	4280751	0.06	0.06	0.0%	4280766	0.141	0.135	4.3%
Se 4280726 < 10 < 10 0.0% 4280740 < 10 < 10 0.0% 4280751 < 10 < 10 0.0% 4280766 < 10 < 10 0.0%	Sb	4280726	5	5	0.0%	4280740	4	3	28.6%	4280751	5	4	22.2%	4280766	3	4	28.6%
	Sc	4280726	14	14	0.0%	4280740	34	34	0.0%	4280751	26	24	8.0%	4280766	10	10	0.0%
Sn 4280726 < 5 < 5 0.0% 4280740 < 5 < 5 0.0% 4280751 < 5 < 5 0.0% 4280766 < 5 < 5 0.0%	Se	4280726	< 10	< 10	0.0%	4280740	< 10	< 10	0.0%	4280751	< 10	< 10	0.0%	4280766	< 10	< 10	0.0%
	Sn	4280726	< 5	< 5	0.0%	4280740	< 5	< 5	0.0%	4280751	< 5	< 5	0.0%	4280766	< 5	< 5	0.0%

Quality Assurance - Replicate AGAT WORK ORDER: 220942061 PROJECT: WR-22-CORE-10 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTF	NTION	TO: Arnaud	Fontaine

CLIENT NAM	IE: ORFORI	D MINING	CORP							AIIEI	NIION IC	: Arnaud	Fontaine			
Sr	4280726	7	6	15.4%	4280740	86	88	2.3%	4280751	11	11	0.0%	4280766	44	46	4.4%
Та	4280726	< 10	< 10	0.0%	4280740	< 10	< 10	0.0%	4280751	< 10	< 10	0.0%	4280766	< 10	< 10	0.0%
Te	4280726	< 10	< 10	0.0%	4280740	< 10	< 10	0.0%	4280751	< 10	< 10	0.0%	4280766	< 10	< 10	0.0%
Th	4280726	< 5	< 5	0.0%	4280740	< 5	< 5	0.0%	4280751	< 5	< 5	0.0%	4280766	13	14	7.4%
Ti	4280726	0.10	0.10	0.0%	4280740	0.78	0.80	2.5%	4280751	0.241	0.233	3.4%	4280766	0.31	0.31	0.0%
TI	4280726	< 5	< 5	0.0%	4280740	< 5	< 5	0.0%	4280751	< 5	< 5	0.0%	4280766	< 5	< 5	0.0%
U	4280726	< 5	< 5	0.0%	4280740	< 5	< 5	0.0%	4280751	< 5	< 5	0.0%	4280766	< 5	< 5	0.0%
V	4280726	61.7	65.6	6.1%	4280740	275	272	1.1%	4280751	164	159	3.1%	4280766	77.8	79.0	1.5%
W	4280726	< 1	< 1	0.0%	4280740	< 1	< 1	0.0%	4280751	< 1	< 1	0.0%	4280766	< 1	< 1	0.0%
Υ	4280726	4	4	0.0%	4280740	31	30	3.3%	4280751	10	9	10.5%	4280766	21	21	0.0%
Zn	4280726	66.5	65.2	2.0%	4280740	91.3	92.8	1.6%	4280751	78.3	77.7	0.8%	4280766	41.5	42.6	2.6%
Zr	4280726	11	11	0.0%	4280740	102	102	0.0%	4280751	25	24	4.1%	4280766	151	152	0.7%
		REPLIC	ATE #5													
Parameter	Sample ID	Original	Replicate	RPD												
Ag	4280776	< 0.5	< 0.5	0.0%												
Al	4280776	4.37	4.25	2.8%												
As	4280776	< 1	< 1	0.0%												
Ва	4280776	29	31	6.7%												
Ве	4280776	0.7	0.7	0.0%												
Bi	4280776	< 1	< 1	0.0%												
Ca	4280776	3.19	3.22	0.9%												
Cd	4280776	< 0.5	< 0.5	0.0%												
Ce	4280776	21	21	0.0%												
Со	4280776	305	300	1.7%												
Cr	4280776	1130	1070	5.5%												
Cu	4280776	1240	1310	5.5%												
Fe	4280776	19.9	19.4	2.5%												
Ga	4280776	< 5	< 5	0.0%												
ln	4280776	< 1	< 1	0.0%												
K	4280776	0.07	0.07	0.0%												
La	4280776	7	7	0.0%												
Li	4280776	38	38	0.0%												
Mg	4280776	6.98	6.54	6.5%												
Mn	4280776	1040	1010	2.9%												

Quality Assurance - Replicate AGAT WORK ORDER: 220942061 PROJECT: WR-22-CORE-10 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

http://www.agatlabs.com CLIENT NAME: ORFORD MINING CORP ATTENTION TO: Arnaud Fontaine 4280776 2.2 1.5 Na 4280776 0.17 0.17 0.0% Ni 4280776 3050 3030 0.7% Р 4280776 227 242 6.4% Pb 4280776 0.0% < 1 < 1 Rb 4280776 < 10 0.0% < 10 S 4280776 5.21 4.77 8.8% 7 Sb 4280776 8 13.3% 4280776 17 Sc 16 6.1% Se 4280776 < 10 < 10 0.0% 4280776 < 5 < 5 0.0% Sn Sr 4280776 24 27 11.8% 4280776 Ta < 10 < 10 0.0% < 10 Te 4280776 < 10 0.0% Th < 5 4280776 < 5 0.0% Τi 4280776 0.23 0.22 4.4% ΤI 4280776 < 5 < 5 0.0% U 4280776 < 5 < 5 0.0% V 4280776 147 143 2.8% W 4280776 3 2 Υ 11 11 4280776 0.0% Zn 4280776 90.4 86.7 4.2% Zr 4280776 51 53 3.8% (202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish REPLICATE #1 REPLICATE #2 REPLICATE #3 REPLICATE #4 Sample ID Original Replicate RPD Sample ID Original Replicate RPD Sample ID Original Replicate **RPD** Sample ID Original Replicate **RPD** Parameter 4280726 0.001 0.001 0.0% 4280740 0.001 < 0.001 0.0% 4280766 0.001 0.001 0.0% 4280776 0.002 0.003 40.0% Pd 4280726 0.005 0.008 46.2% 4280740 < 0.001 <0.001 0.0% 4280766 0.003 0.004 28.6% 4280776 0.048 0.051 6.1% Pt 4280726 < 0.005 < 0.005 0.0% 4280740 < 0.005 < 0.005 0.0% 4280766 < 0.005 < 0.005 0.0% 4280776 0.015 0.023 42.1% REPLICATE #5 Sample ID Original Replicate RPD Parameter Au 4280751 0.001 0.001 0.0% Pd 4280751 0.004 0.003 28.6% Pt 4280751 < 0.005 < 0.005 0.0%

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 22O942061

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(201	1-070) 4	Acid [Digest -	Metals I	Package	e, ICP-0	DES fini	sh				
		CRM #1	(ref.GTS-2a)			CRM #2	2 (ref.Till-2)			CRM #3	(ref.GTS-2a)			CRM #4 (ref.PGMS27)	1
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Al	6.96	6.86	99%		8.47	8.1	96%		6.96	7.25	104%					
As	124	121	98%		26	25	95%		124	127	102%					
Ва	186	178	96%		540	505	94%		186	187	100%					
Be					4.0	3.9	96%									
Ca	4.01	3.81	95%		0.907	0.872	96%		4.01	3.94	98%					
Ce	24	21	88%		98	100	102%		24	23	96%					
Co	22.1	19.8	90%		15	14	93%		22.1	20.9	95%					
Cr					60.3	65.8	109%									
Cu	88.6	87.3	98%		150	148	98%		88.6	87.9	99%					
Fe	7.56	6.94	92%		3.77	3.55	94%		7.56	7.31	97%					
K	2.021	2.13	105%						2.021	2.214	110%					
La					44	43	98%									
Li					47	46	98%									
Mg	2.412	2.383	99%		1.10	1.05	96%		2.412	2.526	105%					
Mn	1510	1428	95%		780	744	95%		1510	1492	99%					
Мо					14	14	97%									
Na	0.617	0.631	102%		1.624	1.682	104%		0.617	0.643	104%					
Ni	77.1	70.1	91%		32	31	98%		77.1	71.7	93%					
Р	892	917	103%		750	773	103%		892	908	102%					
Pb					31	28	91%									
S	0.348	0.329	95%						0.348	0.334	96%					
Sc					12	12	99%									
Sr	92.8	86.6	93%		144	145	101%		92.8	86.9	94%					
Th					18.4	15.6	85%									
Ti					0.53	0.46	86%									
V					77	78	101%									
W					5	4	71%									
Zn	208	207	100%		130	124	95%		208	218	105%					
				(202-5	55) Fire	Assay	/ - Au, F	Pt, Pd Tr	ace Lev	els, IC	P-OES	inish				
	CRM #1 (ref.ME1310)					CRM #2	? (ref.GS48)			CRM #3	(ref.GS1AB)			CRM #4 (ref.PGMS27))
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220942061

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

Au	0.06	0.07		3.46	3.30		1.48	1.40		4.80	4.82	
Pd	0.56	0.52								2.00	1.96	
Pt	0.43	0.41								1.29	1.27	

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-10

SAMPLING SITE:

AGAT WORK ORDER: 22O942061 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Bi	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
La	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Li	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mg	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Na	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Ni	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

Method Summary

CLIENT NAME: ORFORD MINING CORP

AGAT WORK ORDER: 22O942061 PROJECT: WR-22-CORE-10 ATTENTION TO: Arnaud Fontaine

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
TI	MIN-200-12034	Geochem v.1	ICP/UES
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-221-12006	BUGBEE, E; A Textbook of Fire Assay	ICP/OES
Pd	MW-200-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Pt	MW-200-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Crush-Pass %		•	BALANCE
Pul-Pass %			BALANCE

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-CORE-10

AGAT WORK ORDER: 220942064

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Oct 14, 2022

PAGES (INCLUDING COVER): 22

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 22

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

AGAT WORK ORDER: 220942064

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

CLIENT NAME. ON	OND WINN	io oom		ATTENTION TO: ATTIAUU F	ontaine
			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Sep	06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840740 (4280902)		0.010			
E5840741 (4280903)		3.000			
E5840742 (4280904)		2.510			
E5840743 (4280905)		3.240			
E5840744 (4280906)		3.090			
E5840745 (4280907)		3.250			
E5840746 (4280908)		2.920			
E5840747 (4280909)		2.650			
E5840748 (4280910)		2.680			
E5840749 (4280911)		3.100			
E5840750 (4280912)		0.160			
E5840751 (4280913)		3.190			
E5840752 (4280914)		2.790			
E5840753 (4280915)		3.150			
E5840754 (4280916)		2.500			
E5840755 (4280917)		2.510			
E5840756 (4280918)		3.030			
E5840757 (4280919)		3.030			
E5840758 (4280920)		2.550			
E5840759 (4280921)		1.150			
E5840760 (4280922)		1.080			
E5840761 (4280923)		3.490			
E5840762 (4280924)		2.730			
E5840763 (4280925)		2.810			
E5840764 (4280926)		0.840			
E5840765 (4280927)		2.470			
E5840766 (4280928)		2.780			
E5840767 (4280929)		2.580			
E5840768 (4280930)		2.510			
E5840769 (4280931)		2.230			
E5840770 (4280932)		0.070			

Certified By:

Sherin Moussey

Certificate of Analysis

AGAT WORK ORDER: 22O942064

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Se	p 06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840771 (4280933)		2.350			
E5840772 (4280934)		1.860			
E5840773 (4280935)		2.010			
E5840774 (4280936)		1.940			
E5840775 (4280937)		1.830			
E5840776 (4280938)		1.630			
E5840777 (4280939)		3.340			
E5840778 (4280940)		2.870			
E5840779 (4280941)		2.400			
E5840780 (4280942)		0.180			
E5840781 (4280943)		2.890			
E5840782 (4280944)		2.600			
E5840783 (4280945)		1.140			
E5840784 (4280946)		1.700			
E5840785 (4280947)		2.960			
E5840786 (4280948)		2.920			
E5840787 (4280949)		3.070			
E5840788 (4280950)		3.140			
E5840817 (4280951)		2.860			
E5840818 (4280952)		2.690			
E5840819 (4280953)		1.480			
E5840820 (4280954)		1.690			
E5840821 (4280955)		2.520			
E5840822 (4280956)		2.800			

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

Sherin Houssey

Certificate of Analysis

AGAT WORK ORDER: 220942064

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

CEIENT NAME: OR			(2	01-070\	4 Acid D	igost - M	otals Da	ckago li	CP-OES	finich	, iii aaa i c	- Intainio			
DATE CAMPLED O			<u> </u>				etais Fa				200	041	1DL E T/DE	D.::I.O.	
DATE SAMPLED: Sep	06, 2022			DATE RECE	EIVED: Sep	07, 2022		DATE	REPORTED	: Oct 14, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840740 (4280902)		<0.5	3.85	142	194	1.0	<1	2.84	<0.5	24	71.8	670	48.4	5.10	7
E5840741 (4280903)		<0.5	6.85	427	102	1.0	<1	3.82	<0.5	18	72.4	1220	49.1	8.42	27
E5840742 (4280904)		<0.5	0.43	4	92	<0.5	<1	0.67	<0.5	11	2.3	333	13.9	0.92	<5
E5840743 (4280905)		<0.5	9.25	4	1490	1.2	<1	0.58	<0.5	80	12.3	296	235	5.74	24
E5840744 (4280906)		0.8	9.95	<1	1740	2.3	<1	0.52	<0.5	86	11.5	198	153	4.56	32
E5840745 (4280907)		<0.5	9.26	2	2350	1.6	<1	1.58	<0.5	63	12.3	269	132	4.67	28
E5840746 (4280908)		<0.5	4.71	6	3	0.5	<1	5.08	<0.5	5	85.5	1690	133	7.77	8
E5840747 (4280909)		<0.5	3.98	4	2	<0.5	<1	4.22	<0.5	4	86.0	1850	46.8	7.43	6
E5840748 (4280910)		<0.5	3.57	4	4	<0.5	<1	3.73	<0.5	3	93.0	1400	46.1	7.92	<5
E5840749 (4280911)		<0.5	3.32	5	4	<0.5	<1	4.06	<0.5	3	93.4	1830	33.6	7.41	<5
E5840750 (4280912)		<0.5	7.45	7	397	1.2	<1	1.99	<0.5	15	8.8	31.3	13.1	1.93	23
E5840751 (4280913)		<0.5	2.85	5	2	<0.5	<1	2.61	<0.5	3	140	1970	1280	8.01	<5
E5840752 (4280914)		<0.5	2.84	4	3	<0.5	<1	2.88	<0.5	3	120	1800	601	7.62	<5
E5840753 (4280915)		<0.5	2.74	6	2	<0.5	<1	2.57	<0.5	3	110	2170	480	7.48	<5
E5840754 (4280916)		<0.5	2.54	2	2	<0.5	<1	2.41	<0.5	3	137	1860	1140	7.87	<5
E5840755 (4280917)		<0.5	2.73	5	2	<0.5	<1	2.53	<0.5	3	114	2170	532	7.65	<5
E5840756 (4280918)		<0.5	2.68	8	3	<0.5	<1	2.36	<0.5	3	117	2080	536	7.44	<5
E5840757 (4280919)		<0.5	2.74	5	2	<0.5	<1	2.69	<0.5	3	106	2160	257	7.37	<5
E5840758 (4280920)		<0.5	2.76	5	2	<0.5	<1	2.55	<0.5	3	109	2150	189	7.31	<5
E5840759 (4280921)		<0.5	2.74	6	2	<0.5	<1	2.55	<0.5	3	110	1900	271	7.25	<5
E5840760 (4280922)		<0.5	2.69	6	2	<0.5	<1	2.39	<0.5	3	127	1850	236	7.67	<5
E5840761 (4280923)		<0.5	2.68	4	2	<0.5	<1	2.47	<0.5	3	101	1920	262	7.25	<5
E5840762 (4280924)		<0.5	2.62	1	2	<0.5	<1	2.48	<0.5	3	121	1780	580	7.72	<5
E5840763 (4280925)		<0.5	2.63	3	2	<0.5	<1	2.55	<0.5	3	111	1710	555	7.79	<5
E5840764 (4280926)		<0.5	2.66	<1	2	<0.5	<1	2.54	<0.5	3	113	1640	201	7.49	<5
E5840765 (4280927)		<0.5	2.67	5	2	<0.5	<1	2.02	<0.5	3	114	1850	213	7.48	<5
E5840766 (4280928)		<0.5	2.43	3	1	<0.5	<1	2.23	<0.5	2	111	1780	633	7.15	<5
E5840767 (4280929)		<0.5	2.38	3	1	<0.5	<1	2.09	<0.5	3	123	1660	687	6.99	<5
E5840768 (4280930)		<0.5	2.47	5	2	<0.5	<1	2.22	<0.5	3	114	1680	395	7.12	<5
E5840769 (4280931)		<0.5	2.55	3	26	<0.5	<1	2.13	<0.5	4	128	1730	785	7.36	<5
E5840770 (4280932)		2.0	7.12	<1	211	1.5	<1	4.22	<0.5	25	104	166	4250	13.4	14
E5840771 (4280933)		<0.5	2.21	3	1	<0.5	<1	2.05	<0.5	3	112	1560	412	6.59	<5

Certified By:

Sherin Houssey

Certificate of Analysis

AGAT WORK ORDER: 22O942064

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, l	CP-OES	finish					
DATE SAMPLED: Sep	06, 2022			DATE RECE	EIVED: Sep	07, 2022		DATE I	REPORTED	: Oct 14, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840772 (4280934)		<0.5	2.48	4	2	<0.5	<1	2.18	<0.5	3	120	1710	665	7.45	<5
E5840773 (4280935)		<0.5	2.35	8	2	<0.5	<1	1.76	<0.5	3	126	2040	1040	7.34	<5
E5840774 (4280936)		<0.5	2.46	5	2	<0.5	<1	2.15	<0.5	3	119	1820	456	7.26	<5
E5840775 (4280937)		<0.5	2.32	3	2	<0.5	<1	2.09	<0.5	3	122	1730	519	7.20	<5
E5840776 (4280938)		<0.5	2.29	4	2	<0.5	<1	1.80	<0.5	4	123	1910	797	7.41	<5
E5840777 (4280939)		<0.5	2.45	6	1	<0.5	<1	2.34	<0.5	3	110	2170	391	7.24	<5
E5840778 (4280940)		<0.5	2.33	3	2	<0.5	<1	1.84	<0.5	3	135	1990	960	7.74	<5
E5840779 (4280941)		<0.5	2.20	<1	2	<0.5	<1	1.62	<0.5	3	159	1930	1380	7.92	<5
E5840780 (4280942)		<0.5	7.16	2	391	1.4	<1	1.94	<0.5	19	8.3	33.2	10.8	1.93	22
E5840781 (4280943)		<0.5	2.20	<1	2	<0.5	<1	1.70	<0.5	3	165	1760	1870	8.57	<5
E5840782 (4280944)		<0.5	2.20	6	2	<0.5	<1	1.97	<0.5	3	158	1770	1410	7.86	<5
E5840783 (4280945)		<0.5	2.53	6	2	<0.5	<1	1.86	<0.5	3	154	1970	1190	8.46	<5
E5840784 (4280946)		<0.5	2.29	5	2	<0.5	<1	3.22	<0.5	3	119	1870	764	7.38	<5
E5840785 (4280947)		<0.5	2.39	2	3	<0.5	<1	3.38	<0.5	3	136	1950	1000	7.55	<5
E5840786 (4280948)		<0.5	2.39	3	3	<0.5	<1	2.45	<0.5	3	129	1810	744	7.50	<5
E5840787 (4280949)		<0.5	2.40	9	2	<0.5	<1	2.40	<0.5	3	130	1840	836	7.67	<5
E5840788 (4280950)		<0.5	2.33	3	2	<0.5	<1	1.99	<0.5	3	153	1980	1490	8.50	<5
E5840817 (4280951)		<0.5	2.94	3	4	<0.5	<1	3.57	<0.5	3	94.4	1760	24.7	6.73	7
E5840818 (4280952)		<0.5	2.91	4	4	<0.5	<1	2.87	<0.5	3	104	2060	216	7.12	<5
E5840819 (4280953)		<0.5	2.70	5	3	<0.5	<1	2.66	<0.5	3	92.7	1860	114	6.88	<5
E5840820 (4280954)		<0.5	2.92	6	4	<0.5	<1	3.07	<0.5	3	105	2300	76.1	7.00	<5
E5840821 (4280955)		<0.5	2.73	3	2	<0.5	<1	2.42	<0.5	3	105	2070	254	7.02	<5
E5840822 (4280956)		<0.5	2.61	4	1	<0.5	<1	2.37	<0.5	3	105	1660	704	7.17	<5

Certified By:

Sherin Houssey

Certificate of Analysis

AGAT WORK ORDER: 22O942064

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Sep	06, 2022		С	DATE RECE	IVED: Sep	07, 2022		DATE F	REPORTED): Oct 14, 20)22	SAM	IPLE TYPE	: Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840740 (4280902)		<1	0.63	13	34	13.1	1090	1.8	0.80	2150	234	7	<10	0.29	<1
E5840741 (4280903)		<1	0.32	9	62	9.92	1140	<0.5	0.51	646	218	<1	<10	0.09	<1
E5840742 (4280904)		<1	0.21	7	2	0.13	50	2.0	0.15	16.9	22	<1	<10	0.05	<1
E5840743 (4280905)		<1	4.34	42	22	1.48	244	1.5	3.87	55.8	271	19	<10	1.67	<1
E5840744 (4280906)		<1	6.47	46	39	1.44	191	<0.5	2.24	50.2	273	28	<10	1.51	<1
E5840745 (4280907)		<1	5.25	30	29	2.08	220	0.7	2.37	55.0	264	15	<10	1.12	<1
E5840746 (4280908)		<1	0.01	<2	6	13.6	1280	<0.5	0.04	967	184	<1	<10	0.07	<1
E5840747 (4280909)		<1	0.02	2	12	14.5	1140	<0.5	0.03	1010	152	<1	<10	0.08	<1
E5840748 (4280910)		<1	0.07	<2	8	16.7	1280	<0.5	0.05	1110	141	<1	<10	0.06	<1
E5840749 (4280911)		<1	0.03	<2	6	16.4	1180	<0.5	0.05	1270	134	<1	<10	0.05	<1
E5840750 (4280912)		<1	1.37	7	12	0.77	337	<0.5	3.18	26.1	202	<1	<10	< 0.01	<1
E5840751 (4280913)		<1	0.02	<2	4	16.5	1110	<0.5	0.05	3930	108	<1	<10	0.85	<1
E5840752 (4280914)		<1	0.03	<2	5	17.3	1150	<0.5	0.05	2680	106	<1	<10	0.44	<1
E5840753 (4280915)		<1	0.03	<2	5	17.3	1120	<0.5	0.04	2450	111	<1	<10	0.31	<1
E5840754 (4280916)		<1	0.02	<2	4	16.8	1070	<0.5	0.04	3940	99	<1	<10	1.02	<1
E5840755 (4280917)		<1	0.03	<2	5	16.9	1150	<0.5	0.04	2670	110	<1	<10	0.40	<1
E5840756 (4280918)		<1	0.02	<2	4	16.7	1110	<0.5	0.04	2470	109	<1	<10	0.42	<1
E5840757 (4280919)		<1	0.02	<2	5	17.4	1150	<0.5	0.04	1780	110	<1	<10	0.24	<1
E5840758 (4280920)		<1	0.02	<2	5	17.2	1150	<0.5	0.04	1810	106	<1	<10	0.21	<1
E5840759 (4280921)		<1	0.02	<2	5	17.6	1200	<0.5	0.04	1810	107	<1	<10	0.30	<1
E5840760 (4280922)		<1	0.02	<2	5	16.9	1150	<0.5	0.04	2750	104	<1	<10	0.79	<1
E5840761 (4280923)		<1	0.02	<2	4	17.6	1140	<0.5	0.03	1560	113	<1	<10	0.25	<1
E5840762 (4280924)		<1	0.03	<2	4	17.8	1160	<0.5	0.03	2640	113	<1	<10	0.37	<1
E5840763 (4280925)		<1	0.02	<2	5	18.0	1180	<0.5	0.03	2680	109	<1	<10	0.33	<1
E5840764 (4280926)		<1	0.03	<2	5	17.7	1180	<0.5	0.04	2240	108	<1	<10	0.21	<1
E5840765 (4280927)		<1	0.02	<2	5	18.0	1210	<0.5	0.02	1630	105	<1	<10	0.19	<1
E5840766 (4280928)		<1	0.02	<2	4	17.6	1070	<0.5	0.02	2780	92	<1	<10	0.51	<1
E5840767 (4280929)		<1	0.02	<2	5	16.7	1050	<0.5	0.03	2750	98	<1	<10	0.44	<1
E5840768 (4280930)		<1	0.02	<2	5	17.5	1120	<0.5	0.03	2000	104	<1	<10	0.29	<1
E5840769 (4280931)		<1	0.11	2	5	17.6	1090	<0.5	0.05	3300	96	<1	<10	0.62	<1
E5840770 (4280932)		<1	0.59	9	16	3.94	1420	2.1	1.75	4270	670	15	<10	1.47	<1
E5840771 (4280933)		<1	0.02	<2	4	15.7	1010	<0.5	0.03	1840	98	<1	<10	0.27	<1

Certified By:

Sherin Mousson

Certificate of Analysis

AGAT WORK ORDER: 220942064

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, l	CP-OES	finish					
DATE SAMPLED: Se	p 06, 2022			DATE RECE	IVED: Sep	07, 2022		DATE F	REPORTED): Oct 14, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840772 (4280934)		<1	0.04	<2	5	18.3	1090	<0.5	0.04	2230	105	<1	<10	0.33	<1
E5840773 (4280935)		<1	0.02	<2	5	17.6	1150	<0.5	0.03	3380	103	<1	<10	0.41	<1
E5840774 (4280936)		<1	0.03	<2	5	18.3	1140	<0.5	0.03	2090	94	<1	<10	0.29	<1
E5840775 (4280937)		<1	0.03	<2	5	17.5	1070	<0.5	0.03	2270	89	<1	<10	0.34	<1
E5840776 (4280938)		<1	0.02	2	6	17.6	1050	<0.5	0.03	3120	106	<1	<10	0.50	<1
E5840777 (4280939)		<1	0.02	<2	5	18.1	1160	<0.5	0.03	1870	105	<1	<10	0.26	<1
E5840778 (4280940)		<1	0.02	<2	5	18.1	1140	<0.5	0.03	3470	93	<1	<10	0.59	<1
E5840779 (4280941)		<1	0.02	<2	5	17.4	1060	<0.5	0.03	4440	100	<1	<10	0.91	<1
E5840780 (4280942)		<1	1.32	9	13	0.77	327	<0.5	3.17	29.8	281	<1	<10	0.01	<1
E5840781 (4280943)		<1	0.02	<2	4	17.9	1040	<0.5	0.03	4910	92	<1	<10	1.40	<1
E5840782 (4280944)		<1	0.02	<2	4	17.3	1110	<0.5	0.02	4830	95	<1	<10	1.01	<1
E5840783 (4280945)		<1	0.02	<2	5	18.1	1160	<0.5	0.03	3790	97	<1	<10	0.72	<1
E5840784 (4280946)		<1	0.02	<2	5	17.2	1160	<0.5	0.02	2930	99	<1	<10	0.48	<1
E5840785 (4280947)		<1	0.02	<2	4	16.0	1160	<0.5	0.03	3600	103	<1	<10	0.76	<1
E5840786 (4280948)		<1	0.02	<2	5	17.0	1160	<0.5	0.03	3140	93	<1	<10	0.52	<1
E5840787 (4280949)		<1	0.02	<2	4	17.5	1180	<0.5	0.03	3220	97	<1	<10	0.54	<1
E5840788 (4280950)		<1	0.02	<2	6	17.7	1150	<0.5	0.03	4400	89	<1	<10	1.15	<1
E5840817 (4280951)		<1	0.03	<2	5	16.4	1110	<0.5	0.05	1300	127	<1	<10	0.07	<1
E5840818 (4280952)		<1	0.03	<2	5	16.7	1160	<0.5	0.05	2010	124	<1	<10	0.16	<1
E5840819 (4280953)		<1	0.02	<2	5	17.4	1140	<0.5	0.04	1410	112	<1	<10	0.11	<1
E5840820 (4280954)		<1	0.02	<2	6	17.0	1190	<0.5	0.04	1580	115	<1	<10	0.14	<1
E5840821 (4280955)		<1	0.02	<2	4	17.0	1160	<0.5	0.03	1790	108	<1	<10	0.18	<1
E5840822 (4280956)		<1	0.01	<2	3	17.5	1140	<0.5	0.04	1870	106	<1	<10	0.31	<1

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 220942064

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Sep	06, 2022		[DATE RECE	IVED: Sep	07, 2022		DATE F	REPORTED	: Oct 14, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840740 (4280902)		11	<10	<5	68	<10	<10	5	0.17	<5	<5	68.8	4	8	103
E5840741 (4280903)		26	<10	<5	75	<10	<10	<5	0.31	<5	8	214	3	12	89.7
E5840742 (4280904)		<1	<10	<5	10	<10	<10	<5	0.02	<5	<5	10.0	<1	1	10.0
E5840743 (4280905)		9	<10	<5	107	<10	<10	10	0.34	<5	7	75.5	2	23	42.0
E5840744 (4280906)		12	<10	<5	96	<10	<10	16	0.35	<5	<5	81.1	7	23	47.5
E5840745 (4280907)		10	<10	<5	109	<10	<10	13	0.35	<5	5	70.0	<1	21	86.5
E5840746 (4280908)		26	<10	<5	17	<10	10	<5	0.29	<5	6	187	<1	9	73.6
E5840747 (4280909)		23	<10	<5	17	<10	<10	<5	0.25	<5	8	165	<1	8	72.7
E5840748 (4280910)		20	<10	<5	23	<10	<10	<5	0.23	<5	6	142	<1	7	67.9
E5840749 (4280911)		20	<10	<5	20	<10	<10	<5	0.22	<5	7	139	<1	7	64.8
E5840750 (4280912)		8	<10	<5	354	<10	<10	<5	0.15	<5	<5	53.3	<1	6	26.7
E5840751 (4280913)		18	<10	<5	10	<10	<10	<5	0.19	<5	11	128	<1	6	69.7
E5840752 (4280914)		17	<10	<5	10	<10	<10	<5	0.18	<5	9	120	<1	6	62.2
E5840753 (4280915)		17	<10	<5	8	<10	<10	<5	0.17	<5	8	119	<1	6	67.0
E5840754 (4280916)		16	<10	<5	9	<10	<10	<5	0.17	<5	11	110	<1	5	63.1
E5840755 (4280917)		17	<10	<5	9	<10	<10	<5	0.18	<5	6	123	<1	6	63.7
E5840756 (4280918)		17	<10	<5	8	<10	<10	<5	0.17	<5	10	119	<1	6	63.8
E5840757 (4280919)		18	<10	<5	9	<10	<10	<5	0.18	<5	9	125	<1	6	61.5
E5840758 (4280920)		17	<10	<5	8	<10	<10	<5	0.18	<5	8	124	<1	6	63.0
E5840759 (4280921)		17	<10	<5	7	<10	<10	<5	0.18	<5	8	120	<1	6	62.1
E5840760 (4280922)		16	<10	<5	7	<10	<10	<5	0.18	<5	10	117	<1	5	60.7
E5840761 (4280923)		17	<10	<5	7	<10	<10	<5	0.17	<5	10	121	<1	6	62.4
E5840762 (4280924)		16	<10	<5	7	<10	<10	<5	0.17	<5	10	114	<1	6	61.3
E5840763 (4280925)		16	<10	<5	8	<10	<10	<5	0.17	<5	7	115	<1	6	64.7
E5840764 (4280926)		17	<10	<5	8	<10	<10	<5	0.17	<5	8	115	<1	6	59.0
E5840765 (4280927)		17	<10	<5	8	<10	<10	<5	0.17	<5	7	118	<1	6	62.6
E5840766 (4280928)		15	<10	<5	8	<10	<10	<5	0.16	<5	8	105	<1	5	59.3
E5840767 (4280929)		15	<10	<5	7	<10	<10	<5	0.15	<5	8	106	<1	5	59.9
E5840768 (4280930)		16	<10	<5	7	<10	<10	<5	0.16	<5	8	111	<1	5	60.1
E5840769 (4280931)		15	<10	<5	9	<10	<10	<5	0.16	<5	8	108	<1	5	60.2
E5840770 (4280932)		12	<10	<5	247	<10	<10	<5	0.74	<5	15	124	3	13	89.8
E5840771 (4280933)		14	<10	<5	7	<10	<10	<5	0.14	<5	10	99.7	<1	5	53.8

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 220942064

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 06, 2022			DATE RECE	EIVED: Sep	07, 2022		DATE F	REPORTED): Oct 14, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840772 (4280934)		15	<10	<5	7	<10	<10	<5	0.16	<5	9	107	<1	5	62.4
E5840773 (4280935)		15	<10	<5	7	<10	<10	<5	0.16	<5	9	111	<1	5	65.5
E5840774 (4280936)		15	<10	<5	8	<10	<10	<5	0.16	<5	9	107	<1	5	64.1
E5840775 (4280937)		15	<10	<5	7	<10	<10	<5	0.15	<5	9	105	<1	5	59.9
E5840776 (4280938)		14	<10	<5	7	<10	<10	<5	0.15	<5	10	103	<1	5	62.0
E5840777 (4280939)		15	<10	<5	7	<10	<10	<5	0.16	<5	9	111	<1	5	66.6
E5840778 (4280940)		15	<10	<5	7	<10	<10	<5	0.15	<5	10	104	<1	5	63.4
E5840779 (4280941)		14	<10	<5	8	<10	<10	<5	0.15	<5	9	103	<1	5	65.7
E5840780 (4280942)		7	<10	<5	371	<10	<10	<5	0.21	<5	<5	50.4	<1	8	26.8
E5840781 (4280943)		14	<10	<5	7	<10	<10	<5	0.14	<5	13	99.5	<1	5	68.7
E5840782 (4280944)		14	<10	<5	9	<10	<10	<5	0.14	<5	10	102	<1	5	62.3
E5840783 (4280945)		16	<10	<5	8	<10	<10	<5	0.16	<5	13	113	<1	5	69.6
E5840784 (4280946)		14	<10	<5	15	<10	10	<5	0.15	<5	7	102	<1	5	60.2
E5840785 (4280947)		15	<10	<5	28	<10	11	<5	0.16	<5	8	110	<1	5	63.6
E5840786 (4280948)		15	<10	<5	12	<10	<10	<5	0.16	<5	11	105	<1	5	63.0
E5840787 (4280949)		15	<10	<5	11	<10	<10	<5	0.16	<5	9	108	<1	5	63.9
E5840788 (4280950)		15	<10	<5	10	<10	<10	<5	0.15	<5	10	107	<1	5	69.9
E5840817 (4280951)		18	<10	<5	19	<10	<10	<5	0.19	<5	6	125	<1	6	57.8
E5840818 (4280952)		19	<10	<5	12	<10	<10	<5	0.20	<5	9	128	<1	6	70.4
E5840819 (4280953)		16	<10	<5	12	<10	<10	<5	0.17	<5	6	116	<1	6	61.6
E5840820 (4280954)		19	<10	<5	14	<10	<10	<5	0.21	<5	7	132	<1	6	68.5
E5840821 (4280955)		17	<10	<5	9	<10	<10	<5	0.18	<5	10	121	<1	6	60.8
E5840822 (4280956)		15	<10	<5	8	<10	<10	<5	0.17	<5	7	110	<1	5	63.7

Certified By:

AGAT WORK ORDER: 220942064

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

OLILIAI IA/AME. OIA			(004.070) 4.4. (1.8)	D. J. JOB OFO C	
			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Sep	06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840740 (4280902)		56			
E5840741 (4280903)		52			
E5840742 (4280904)		9			
E5840743 (4280905)		163			
E5840744 (4280906)		182			
E5840745 (4280907)		160			
E5840746 (4280908)		27			
E5840747 (4280909)		17			
E5840748 (4280910)		20			
E5840749 (4280911)		19			
E5840750 (4280912)		50			
E5840751 (4280913)		18			
E5840752 (4280914)		16			
E5840753 (4280915)		15			
E5840754 (4280916)		14			
E5840755 (4280917)		16			
E5840756 (4280918)		15			
E5840757 (4280919)		15			
E5840758 (4280920)		16			
E5840759 (4280921)		16			
E5840760 (4280922)		15			
E5840761 (4280923)		15			
E5840762 (4280924)		15			
E5840763 (4280925)		15			
E5840764 (4280926)		15			
E5840765 (4280927)		15			
E5840766 (4280928)		13			
E5840767 (4280929)		14			
E5840768 (4280930)		15			
E5840769 (4280931)		16			
E5840770 (4280932)		56			
E5840771 (4280933)		13			

Certified By:

AGAT WORK ORDER: 22O942064

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Se	p 06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840772 (4280934)		14			
E5840773 (4280935)		15			
E5840774 (4280936)		14			
E5840775 (4280937)		14			
E5840776 (4280938)		15			
E5840777 (4280939)		13			
E5840778 (4280940)		13			
E5840779 (4280941)		14			
E5840780 (4280942)		36			
E5840781 (4280943)		13			
E5840782 (4280944)		13			
E5840783 (4280945)		15			
E5840784 (4280946)		13			
E5840785 (4280947)		14			
E5840786 (4280948)		14			
E5840787 (4280949)		15			
E5840788 (4280950)		14			
E5840817 (4280951)		17			
E5840818 (4280952)		17			
E5840819 (4280953)		15			
E5840820 (4280954)		18			
E5840821 (4280955)		14			
E5840822 (4280956)		13			

Comments: RDL - Reported Detection Limit

4280902-4280956 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 220942064

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(20	2-555) Fire Assay - Au, Pt, Pd	Trace Levels, ICP-OES finish	
DATE SAMPLED: Sep	06, 2022			DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840741 (4280903)		<0.001	0.008	0.006		
E5840742 (4280904)		<0.001	<0.001	<0.005		
E5840743 (4280905)		<0.001	0.003	<0.005		
E5840744 (4280906)		<0.001	0.002	<0.005		
E5840745 (4280907)		<0.001	0.002	<0.005		
E5840746 (4280908)		<0.001	0.009	0.008		
E5840747 (4280909)		<0.001	0.004	<0.005		
E5840748 (4280910)		< 0.001	0.005	<0.005		
E5840749 (4280911)		0.001	0.007	0.006		
E5840750 (4280912)		< 0.001	< 0.001	<0.005		
E5840751 (4280913)		0.003	0.149	0.040		
E5840752 (4280914)		0.002	0.087	0.025		
E5840753 (4280915)		0.001	0.062	0.018		
E5840754 (4280916)		0.018	0.172	0.045		
E5840755 (4280917)		0.001	0.035	0.011		
E5840756 (4280918)		0.006	0.084	0.025		
E5840757 (4280919)		0.001	0.037	0.015		
E5840758 (4280920)		< 0.001	0.021	<0.005		
E5840759 (4280921)		0.002	0.059	0.018		
E5840760 (4280922)		0.009	0.058	0.018		
E5840761 (4280923)		0.001	0.014	<0.005		
E5840762 (4280924)		0.002	0.087	0.023		
E5840763 (4280925)		0.001	0.076	0.021		
E5840764 (4280926)		< 0.001	0.041	0.018		
E5840765 (4280927)		0.001	0.043	0.014		
E5840766 (4280928)		0.004	0.064	0.018		
E5840767 (4280929)		0.001	0.073	0.022		
E5840768 (4280930)		0.002	0.065	0.018		
E5840769 (4280931)		0.006	0.122	0.031		
E5840770 (4280932)		0.067	0.576	0.296		
E5840771 (4280933)		0.002	0.070	0.023		
E5840772 (4280934)		0.003	0.074	0.021		

Certified By:

Sherin Houssey

Certificate of Analysis

AGAT WORK ORDER: 22O942064

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

DATE SAMPLED: Se	p 06, 2022			DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840773 (4280935)		<0.001	0.037	0.012		
E5840774 (4280936)		0.001	0.014	0.007		
E5840775 (4280937)		0.006	0.078	0.022		
E5840776 (4280938)		0.002	0.050	0.013		
E5840777 (4280939)		0.002	0.016	0.005		
E5840778 (4280940)		0.001	0.119	0.030		
E5840779 (4280941)		0.005	0.174	0.048		
E5840780 (4280942)		< 0.001	0.001	<0.005		
E5840781 (4280943)		0.042	0.269	0.070		
E5840782 (4280944)		0.009	0.223	0.046		
E5840783 (4280945)		0.002	0.155	0.037		
E5840784 (4280946)		< 0.001	0.035	0.007		
E5840785 (4280947)		0.001	0.040	0.010		
E5840786 (4280948)		0.001	0.080	0.023		
E5840787 (4280949)		0.003	0.115	0.033		
E5840788 (4280950)		0.003	0.189	0.046		
E5840817 (4280951)		< 0.001	0.019	0.007		
E5840818 (4280952)		0.010	0.169	0.047		
E5840819 (4280953)		< 0.001	0.001	<0.005		
E5840820 (4280954)		0.001	0.019	0.013		
E5840821 (4280955)		0.001	0.022	0.010		
E5840822 (4280956)		0.010	0.063	0.018		

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1046 Gorham St, Thunder Bay, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 220942064

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passin	ng (Crushing)	
DATE SAMPLED: Sep	p 06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core
	Analyte: C	rush-Pass %			
	Unit:	%			
Sample ID (AGAT ID)	RDL:	0.01			
E5840741 (4280903)		80.25			
E5840759 (4280921)		83.68			
E5840779 (4280941)		81.85			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O942064

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passing	g (Pulverizing)	
DATE SAMPLED: Sep	06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core
	Analyte: Pu	ıl-Pass %			
	Unit:	%			
Sample ID (AGAT ID)	RDL:	0.01			
E5840741 (4280903)		90.53			
E5840759 (4280921)		88.60			
E5840779 (4280941)		85.09			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220942064 PROJECT: WR-22-CORE-10 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish																
		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3		REPLICATE #4			
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Ag	4280903	< 0.5	< 0.5	0.0%	4280916	< 0.5	< 0.5	0.0%	4280927	< 0.5	< 0.5	0.0%	4280943	< 0.5	< 0.5	0.0%
Al	4280903	6.85	6.69	2.4%	4280916	2.54	2.51	1.2%	4280927	2.67	2.56	4.2%	4280943	2.20	2.16	1.8%
As	4280903	427	423	0.9%	4280916	2	2	0.0%	4280927	5	3		4280943	< 1	5	
Ва	4280903	102	111	8.5%	4280916	2	2	0.0%	4280927	2	2	0.0%	4280943	2	2	0.0%
Be	4280903	1.0	1.0	0.0%	4280916	< 0.5	< 0.5	0.0%	4280927	< 0.5	< 0.5	0.0%	4280943	< 0.5	< 0.5	0.0%
Bi	4280903	< 1	< 1	0.0%	4280916	< 1	< 1	0.0%	4280927	< 1	< 1	0.0%	4280943	< 1	< 1	0.0%
Ca	4280903	3.82	3.67	4.0%	4280916	2.41	2.40	0.4%	4280927	2.02	1.94	4.0%	4280943	1.70	1.65	3.0%
Cd	4280903	< 0.5	< 0.5	0.0%	4280916	< 0.5	< 0.5	0.0%	4280927	< 0.5	< 0.5	0.0%	4280943	< 0.5	< 0.5	0.0%
Се	4280903	18	19	5.4%	4280916	3	3	0.0%	4280927	3	3	0.0%	4280943	3	3	0.0%
Со	4280903	72.4	69.3	4.4%	4280916	137	141	2.9%	4280927	114	114	0.0%	4280943	165	164	0.6%
Cr	4280903	1220	1160	5.0%	4280916	1860	1850	0.5%	4280927	1850	2030	9.3%	4280943	1760	1780	1.1%
Cu	4280903	49.1	46.9	4.6%	4280916	1140	1140	0.0%	4280927	213	205	3.8%	4280943	1870	1830	2.2%
Fe	4280903	8.42	8.12	3.6%	4280916	7.87	7.91	0.5%	4280927	7.48	7.36	1.6%	4280943	8.57	8.46	1.3%
Ga	4280903	27	27	0.0%	4280916	< 5	< 5	0.0%	4280927	< 5	7		4280943	< 5	< 5	0.0%
In	4280903	< 1	< 1	0.0%	4280916	< 1	< 1	0.0%	4280927	< 1	< 1	0.0%	4280943	< 1	< 1	0.0%
К	4280903	0.32	0.33	3.1%	4280916	0.02	0.02	0.0%	4280927	0.02	0.02	0.0%	4280943	0.02	0.02	0.0%
La	4280903	9	9	0.0%	4280916	< 2	< 2	0.0%	4280927	< 2	< 2	0.0%	4280943	< 2	< 2	0.0%
Li	4280903	62	60	3.3%	4280916	4	4	0.0%	4280927	5	5	0.0%	4280943	4	4	0.0%
Mg	4280903	9.92	9.59	3.4%	4280916	16.8	16.7	0.6%	4280927	18.0	17.4	3.4%	4280943	17.9	17.5	2.3%
Mn	4280903	1140	1110	2.7%	4280916	1070	1070	0.0%	4280927	1210	1160	4.2%	4280943	1040	1020	1.9%
Мо	4280903	< 0.5	< 0.5	0.0%	4280916	< 0.5	< 0.5	0.0%	4280927	< 0.5	< 0.5	0.0%	4280943	< 0.5	< 0.5	0.0%
Na	4280903	0.51	0.51	0.0%	4280916	0.04	0.04	0.0%	4280927	0.02	0.02	0.0%	4280943	0.03	0.03	0.0%
Ni	4280903	646	648	0.3%	4280916	3940	4110	4.2%	4280927	1630	1600	1.9%	4280943	4910	4880	0.6%
Р	4280903	218	201	8.1%	4280916	99	95	4.1%	4280927	105	104	1.0%	4280943	92	96	4.3%
Pb	4280903	< 1	< 1	0.0%	4280916	< 1	< 1	0.0%	4280927	< 1	< 1	0.0%	4280943	< 1	< 1	0.0%
Rb	4280903	< 10	< 10	0.0%	4280916	< 10	< 10	0.0%	4280927	< 10	< 10	0.0%	4280943	< 10	< 10	0.0%
S	4280903	0.09	0.09	0.0%	4280916	1.02	1.01	1.0%	4280927	0.19	0.18	5.4%	4280943	1.40	1.36	2.9%
Sb	4280903	< 1	< 1	0.0%	4280916	< 1	< 1	0.0%	4280927	< 1	< 1	0.0%	4280943	< 1	< 1	0.0%
Sc	4280903	26	27	3.8%	4280916	16	16	0.0%	4280927	17	17	0.0%	4280943	14	14	0.0%
Se	4280903	< 10	< 10	0.0%	4280916	< 10	< 10	0.0%	4280927	< 10	< 10	0.0%	4280943	< 10	< 10	0.0%
Sn	4280903	< 5	< 5	0.0%	4280916	< 5	< 5	0.0%	4280927	< 5	< 5	0.0%	4280943	< 5	< 5	0.0%

Quality Assurance - Replicate AGAT WORK ORDER: 220942064 PROJECT: WR-22-CORE-10 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

CLIENT NAM	E. UKFUKI	DIMINING	CORP							AIIEI	NTION TO	: Arnaud	Fontaine			
Sr	4280903	75	73	2.7%	4280916	9	9	0.0%	4280927	8	8	0.0%	4280943	7	7	0.0%
Та	4280903	< 10	< 10	0.0%	4280916	< 10	< 10	0.0%	4280927	< 10	< 10	0.0%	4280943	< 10	< 10	0.0%
Te	4280903	< 10	< 10	0.0%	4280916	9	10	10.5%	4280927	< 10	< 10	0.0%	4280943	< 10	< 10	0.0%
Th	4280903	< 5	< 5	0.0%	4280916	< 5	< 5	0.0%	4280927	< 5	< 5	0.0%	4280943	< 5	< 5	0.0%
Ti	4280903	0.31	0.31	0.0%	4280916	0.17	0.17	0.0%	4280927	0.17	0.17	0.0%	4280943	0.14	0.14	0.0%
TI	4280903	< 5	< 5	0.0%	4280916	< 5	< 5	0.0%	4280927	< 5	< 5	0.0%	4280943	< 5	< 5	0.0%
U	4280903	8	9	11.8%	4280916	11	11	0.0%	4280927	7	10		4280943	13	12	8.0%
V	4280903	214	219	2.3%	4280916	110	114	3.6%	4280927	118	118	0.0%	4280943	99.5	101	1.5%
W	4280903	3	4	28.6%	4280916	< 1	< 1	0.0%	4280927	< 1	< 1	0.0%	4280943	< 1	< 1	0.0%
Υ	4280903	12	13	8.0%	4280916	5	5	0.0%	4280927	6	6	0.0%	4280943	5	5	0.0%
Zn	4280903	89.7	86.9	3.2%	4280916	63.1	61.9	1.9%	4280927	62.6	62.3	0.5%	4280943	68.7	67.6	1.6%
Zr	4280903	52	56	7.4%	4280916	14	15	6.9%	4280927	15	15	0.0%	4280943	13	13	0.0%
		REPLIC	ATE #5			REPLIC	ATE #6									
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD								
Ag	4280952	< 0.5	< 0.5	0.0%	4280956	< 0.5	< 0.5	0.0%								
Al	4280952	2.91	2.82	3.1%	4280956	2.61	2.59	0.8%								
As	4280952	4	6		4280956	4	3	28.6%								
Ва	4280952	4	3	28.6%	4280956	1	1	0.0%								
Be	4280952	< 0.5	< 0.5	0.0%	4280956	< 0.5	< 0.5	0.0%								
Bi	4280952	< 1	< 1	0.0%	4280956	< 1	< 1	0.0%								
Ca	4280952	2.87	2.77	3.5%	4280956	2.37	2.37	0.0%								
Cd	4280952	< 0.5	< 0.5	0.0%	4280956	< 0.5	< 0.5	0.0%								
Ce	4280952	3	3	0.0%	4280956	3	3	0.0%								
Co	4280952	104	103	1.0%	4280956	105	108	2.8%								
Cr	4280952	2060	2050	0.5%	4280956	1660	1770	6.4%								
Cu	4280952	216	226	4.5%	4280956	704	717	1.8%								
Fe	4280952	7.12	6.81	4.5%	4280956	7.17	7.20	0.4%								
Ga	4280952	< 5	< 5	0.0%	4280956	< 5	< 5	0.0%								
In	4280952	< 1	< 1	0.0%	4280956	< 1	< 1	0.0%								
K	4280952	0.03	0.03	0.0%	4280956	0.01	0.01	0.0%								
La	4280952	< 2	< 2	0.0%	4280956	< 2	< 2	0.0%								
Li	4280952	5	6	18.2%	4280956	3	3	0.0%								
Mg	4280952	16.7	16.2	3.0%	4280956	17.5	17.3	1.1%								
Mn	4280952	1160	1120	3.5%	4280956	1140	1130	0.9%								

0.0%

4280956

< 0.5

< 0.5

< 0.5

Quality Assurance - Replicate AGAT WORK ORDER: 220942064 PROJECT: WR-22-CORE-10

0.0%

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

4280952

ATTENTION TO: Arnaud Fontaine

Na	4280952	0.047	0.044	6.6%	4280956	0.04	0.04	0.0%								1
Ni	4280952	2010	2020	0.5%	4280956	1870	1920	2.6%								
Р	4280952	124	109	12.9%	4280956	106	100	5.8%								
Pb	4280952	< 1	< 1	0.0%	4280956	< 1	< 1	0.0%								
Rb	4280952	< 10	< 10	0.0%	4280956	< 10	< 10	0.0%								
S	4280952	0.16	0.16	0.0%	4280956	0.31	0.31	0.0%								
Sb	4280952	< 1	< 1	0.0%	4280956	< 1	< 1	0.0%								
Sc	4280952	19	18	5.4%	4280956	15	15	0.0%								
Se	4280952	< 10	< 10	0.0%	4280956	< 10	< 10	0.0%								
Sn	4280952	< 5	< 5	0.0%	4280956	< 5	< 5	0.0%								
Sr	4280952	12	12	0.0%	4280956	8	8	0.0%								
Та	4280952	< 10	< 10	0.0%	4280956	< 10	< 10	0.0%								
Te	4280952	< 10	< 10	0.0%	4280956	< 10	< 10	0.0%								
Th	4280952	< 5	< 5	0.0%	4280956	< 5	< 5	0.0%								
Ti	4280952	0.199	0.190	4.6%	4280956	0.166	0.164	1.2%								
TI	4280952	< 5	< 5	0.0%	4280956	< 5	< 5	0.0%								
U	4280952	9	8	11.8%	4280956	7	8	13.3%								
V	4280952	128	127	0.8%	4280956	110	114	3.6%								
W	4280952	< 1	< 1	0.0%	4280956	< 1	< 1	0.0%								
Υ	4280952	6	6	0.0%	4280956	5	6	18.2%								
Zn	4280952	70.4	68.6	2.6%	4280956	63.7	61.8	3.0%								
Zr	4280952	17	16	6.1%	4280956	13	13	0.0%								
				(202-5	555) Fire	Assay	- Au, Pt	, Pd Tr	ace Leve	els, ICP	-OES fir	nish				
		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3			REPLIC	CATE #4	
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Au	4280916	0.018	0.029	46.8%	4280927	0.001	0.001	0%	4280943	0.042	0.029	36.6%	4280952	0.010	0.011	9.5%
Pd	4280916	0.172	0.160	7.2%	4280927	0.043	0.047	8.9%	4280943	0.269	0.279	3.6%	4280952	0.169	0.104	47.6%
Pt	4280916	0.045	0.046	2.2%	4280927	0.014	0.016	13.3%	4280943	0.070	0.076	8.2%	4280952	0.047	0.025	61.19
		REPLIC	ATE #5	1			1	1		1	1			1		
Parameter	Sample ID	Original	Replicate	RPD												
Au	4280903	<0.001	<0.001	0.0%												
Pd	4280903	0.008	0.009	11.8%												
	+	 			+						_		-		+	

4280903

0.006

0.008

28.6%

Pt

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220942064

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(20	1-070) 4	Acid [Digest -	Metals F	Package	e, ICP-C	DES fin	ish				
		CRM #1	(ref.Till-2)			CRM #2	(ref.GTS-2a)			CRM #3	(ref.Till-2)		CRM #4 (ref.ME1310)			
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Al	8.47	8.41	99%		6.96	7.38	106%		8.47	8.74	103%					
As	26	24	91%		124	133	107%		26	29	111%					
Ва	540	512	95%		186	188	101%		540	530	98%					
Ве	4.0	4	101%						4.0	3.9	97%					
Ca	0.907	0.861	95%		4.01	3.9	97%		0.907	0.897	99%					
Се	98	99	101%		24	23	96%		98	93	95%					
Со	15	14	95%		22.1	22	99%		15	14	93%					
Cr	60.3	63.8	106%						60.3	66.2	110%					
Cu	150	153	102%		88.6	87.4	99%		150	160	107%					
Fe	3.77	3.63	96%		7.56	7.49	99%		3.77	3.73	99%					
K					2.021	2.175	108%									
La	44	43	98%						44	40	92%					
Li	47	48	101%						47	50	107%					
Mg	1.10	1.07	98%		2.412	2.464	102%		1.10	1.12	102%					
Mn	780	752	96%		1510	1476	98%		780	766	98%					
Мо	14	11	80%						14	11	81%					
Na	1.624	1.728	106%		0.617	0.676	110%		1.624	1.802	111%					
Ni	32	32	100%		77.1	73.3	95%		32	34	107%					
Р	750	735	98%		892	921	103%		750	786	105%					
Pb	31	24	77%						31	24	77%					
S					0.348	0.331	95%									
Sc	12	12	97%						12	11	95%					
Sr	144	144	100%		92.8	89.1	96%		144	150	104%					
Th	18.4	15.1	82%						18.4	15.2	82%					
Ti	0.53	0.46	87%						0.53	0.47	89%					
V	77	78	101%						77	78	101%					
W	5	4	76%													
Zn	130	120	92%		208	212	102%		130	119	92%					
	•			(202-5	555) Fire	Assay	/ - Au, F	Pt, Pd Tra	ace Lev	els, IC	P-OES	finish	•			
		CRM #1	(ref.GS48)			CRM #2	(ref.GS1AB)			CRM #3 (ref.PGMS27)		CRM #4	ref.ME1310)	
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220942064

PROJECT: WR-22-CORE-10

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

Au	3.46	3.30		1.48	1.44		4.80	4.53		0.06	0.05	
Pd							2.00	1.97		0.56	0.51	
Pt							1.29	1.28	90% - 110%	0.43	0.40	90% - 110%

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-10

AGAT WORK ORDER: 220942064 ATTENTION TO: Arnaud Fontaine

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis	MINI 40000		DALANOE
Sample Login Weight	MIN-12009	Fletcher, WK:Handbook of Exploration	BALANCE
Ag	MIN-200-12034	Geochem V.1	ICP/OES
Al	MIN-200-12034	Geochem v.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Bi	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Geochem V.1	ICP/OES
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
ln	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
La	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Li	MIN-200-12034	Geochem v. i	ICF/OLS
Mg	MIN-200-12034	Geocnem v.1	ICI /OLG
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Na	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Ni	MIN-200-12034	Geochem v. i	ICF/OLS
P	MIN-200-12034	Geochem V.1	ICF/OLS
Pb	MIN-200-12034	Geochem v. i	ICF/OLS
Rb	MIN-200-12034	Geochem v. i	ICF/OLS
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-10

AGAT WORK ORDER: 22O942064 ATTENTION TO: Arnaud Fontaine

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
TI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-221-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Pd	MW-200-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Pt	MW-200-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Crush-Pass %		·	BALANCE
Pul-Pass %			BALANCE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-CORE-09

AGAT WORK ORDER: 220942070

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Oct 14, 2022

PAGES (INCLUDING COVER): 24

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

Notes Control of the	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 24

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Certificate of Analysis

AGAT WORK ORDER: 22O942070 PROJECT: WR-22-CORE-09

ROJECT: WR-22-CORE-09

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Se	p 06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840563 (4281096)		2.980			
E5840564 (4281097)		2.920			
E5840565 (4281098)		2.890			
E5840566 (4281099)		3.110			
E5840567 (4281100)		3.160			
E5840568 (4281101)		3.410			
E5840569 (4281102)		3.660			
E5840570 (4281103)		1.270			
E5840571 (4281104)		0.130			
E5840572 (4281105)		1.830			
E5840573 (4281106)		3.670			
E5840574 (4281107)		3.580			
E5840575 (4281108)		3.510			
E5840576 (4281109)		3.670			
E5840577 (4281110)		3.650			
E5840578 (4281111)		3.580			
E5840579 (4281112)		1.680			
E5840580 (4281113)		1.480			
E5840581 (4281114)		3.710			
E5840582 (4281115)		3.420			
E5840583 (4281116)		3.630			
E5840584 (4281117)		3.600			
E5840585 (4281118)		3.580			
E5840586 (4281119)		3.340			
E5840587 (4281120)		3.580			
E5840588 (4281121)		2.950			
E5840589 (4281122)		3.140			
E5840590 (4281123)		0.010			
E5840591 (4281124)		2.940			
E5840592 (4281125)		3.310			
E5840593 (4281126)		3.560			

Certified By:

AGAT WORK ORDER: 220942070

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

CLIENT NAME. ON			(200) Complete	ATTENTION TO. ATTAUL	
			(200-) Sample Lo	ogin vveignt	
DATE SAMPLED: Sep	06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840594 (4281127)		3.180			
E5840595 (4281128)		3.230			
E5840596 (4281129)		3.340			
E5840597 (4281130)		3.170			
E5840598 (4281131)		3.290			
E5840599 (4281132)		3.170			
E5840600 (4281133)		0.210			
E5840601 (4281134)		3.240			
E5840602 (4281135)		2.810			
E5840603 (4281136)		3.000			
E5840604 (4281137)		3.230			
E5840605 (4281138)		3.150			
E5840606 (4281139)		2.880			
E5840607 (4281140)		2.550			
E5840608 (4281141)		2.750			
E5840609 (4281142)		1.340			
E5840610 (4281143)		1.480			
E5840611 (4281144)		2.970			
E5840612 (4281145)		3.580			
E5840613 (4281146)		3.900			
E5840614 (4281147)		3.490			
E5840615 (4281148)		4.240			
E5840616 (4281149)		3.330			
E5840617 (4281150)		3.700			
E5840618 (4281151)		3.670			
E5840619 (4281152)		3.620			
E5840620 (4281153)		0.010			
E5840621 (4281154)		2.910			
E5840622 (4281155)		3.450			
E5840623 (4281156)		3.150			

Certified By:

Sherin Mousson

AGAT WORK ORDER: 220942070

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(200-) Sample Login Weight

DATE SAMPLED: Sep 06, 2022 DATE RECEIVED: Sep 07, 2022 DATE REPORTED: Oct 14, 2022 SAMPLE TYPE: Drill Core

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 22O942070

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Sep	06, 2022		Г	DATE RECI	EIVED: Sep	07, 2022		DATE REPORTED: Oct 14, 2022				SAMPLE TYPE: Drill Core			
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840563 (4281096)		<0.5	3.88	3	140	<0.5	<1	14.9	<0.5	22	10.6	133	33.6	4.03	7
E5840564 (4281097)		<0.5	5.50	3	998	1.1	2	15.3	<0.5	43	15.0	154	103	3.46	11
E5840565 (4281098)		<0.5	6.17	<1	1180	1.3	4	9.37	<0.5	58	7.8	159	182	4.53	14
E5840566 (4281099)		<0.5	6.76	<1	990	1.3	4	11.3	<0.5	58	23.4	145	54.7	4.20	16
E5840567 (4281100)		<0.5	7.27	9	270	8.0	4	9.47	<0.5	66	31.6	174	53.0	5.82	17
E5840568 (4281101)		<0.5	7.18	5	435	1.1	4	10.6	<0.5	65	28.9	186	55.7	5.37	17
E5840569 (4281102)		<0.5	6.73	14	1200	1.2	6	11.6	<0.5	58	30.3	185	65.6	4.72	16
E5840570 (4281103)		<0.5	4.68	9	680	0.8	7	18.8	<0.5	36	19.3	126	34.2	3.68	9
E5840571 (4281104)		<0.5	6.28	3	382	1.0	1	1.67	<0.5	15	4.6	19.1	5.3	1.32	12
E5840572 (4281105)		<0.5	6.60	11	752	1.0	8	13.3	<0.5	54	28.2	174	46.5	4.50	15
E5840573 (4281106)		<0.5	6.82	4	848	1.4	11	12.2	<0.5	57	29.7	169	62.2	4.43	15
E5840574 (4281107)		<0.5	6.01	1	539	1.0	7	13.9	0.8	47	25.2	162	50.3	4.23	12
E5840575 (4281108)		<0.5	6.34	2	424	1.0	6	14.7	<0.5	47	25.5	165	89.0	3.76	13
E5840576 (4281109)		<0.5	7.75	2	187	1.3	12	6.94	0.6	76	33.7	202	56.4	6.26	20
E5840577 (4281110)		<0.5	7.31	<1	165	1.4	12	6.40	0.7	67	32.6	206	51.8	6.93	16
E5840578 (4281111)		<0.5	7.89	<1	293	1.6	13	6.33	0.8	70	35.1	207	64.4	7.54	21
E5840579 (4281112)		<0.5	5.41	1	491	0.9	6	17.0	<0.5	43	22.6	143	46.6	3.65	11
E5840580 (4281113)		<0.5	5.78	2	518	1.0	7	16.8	<0.5	46	22.1	158	30.6	3.76	11
E5840581 (4281114)		<0.5	7.13	2	773	1.2	10	12.6	0.7	54	29.0	186	40.0	4.66	14
E5840582 (4281115)		<0.5	5.03	<1	580	1.0	8	12.6	<0.5	42	22.3	163	38.4	3.65	9
E5840583 (4281116)		<0.5	7.23	4	350	1.2	10	10.6	0.5	59	30.3	197	48.3	5.22	15
E5840584 (4281117)		<0.5	5.79	1	181	0.9	8	13.2	0.5	51	28.3	169	56.3	4.59	12
E5840585 (4281118)		<0.5	6.79	2	229	1.1	6	12.6	<0.5	58	30.2	172	48.7	4.81	15
E5840586 (4281119)		<0.5	7.72	4	131	1.0	13	8.26	<0.5	66	33.8	209	42.3	6.41	18
E5840587 (4281120)		<0.5	5.97	4	113	0.9	6	14.4	0.7	52	26.4	160	50.5	4.98	14
E5840588 (4281121)		<0.5	4.06	<1	228	0.8	1	12.6	<0.5	33	18.8	149	47.9	2.69	7
E5840589 (4281122)		<0.5	6.62	<1	855	1.1	8	13.0	0.8	53	34.0	177	124	4.12	13
E5840590 (4281123)		<0.5	3.91	153	208	0.9	3	2.99	<0.5	24	76.2	744	47.6	5.14	<5
E5840591 (4281124)		<0.5	4.13	3	753	0.8	<1	20.4	<0.5	28	10.1	90.5	33.2	2.44	7
E5840592 (4281125)		<0.5	5.28	1	1040	0.9	5	18.7	0.6	42	14.9	106	1.4	3.22	9
E5840593 (4281126)		<0.5	6.17	2	1150	1.1	2	15.6	<0.5	52	15.3	125	1.0	3.90	12
E5840594 (4281127)		<0.5	5.46	<1	989	1.1	7	17.7	<0.5	41	10.7	108	9.1	3.50	10

Certified By:

Sherin Houssey

Certificate of Analysis

AGAT WORK ORDER: 22O942070

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

DATE SAMPLED: Sep	06, 2022		[DATE REC	EIVED: Sep	07, 2022		DATE F	REPORTED	: Oct 14, 20	22	SAMPLE TYPE: Drill Core			
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840595 (4281128)		<0.5	6.52	<1	939	1.0	10	13.1	<0.5	55	22.0	156	46.9	3.69	14
E5840596 (4281129)		0.5	7.16	<1	2190	1.1	8	11.3	0.7	71	34.0	167	128	4.27	17
E5840597 (4281130)		<0.5	7.30	1	3050	1.2	6	10.2	<0.5	59	32.5	184	19.9	5.69	18
E5840598 (4281131)		<0.5	4.86	2	2200	0.8	7	14.2	<0.5	43	9.8	130	13.1	5.30	11
E5840599 (4281132)		<0.5	7.19	2	4890	1.5	13	9.20	0.7	58	16.1	190	17.2	7.44	17
E5840600 (4281133)		<0.5	6.35	1	360	1.0	1	1.62	<0.5	15	4.9	24.2	5.8	1.27	13
E5840601 (4281134)		<0.5	5.18	5	3130	0.9	3	14.1	0.5	52	12.6	131	2.1	5.83	12
E5840602 (4281135)		<0.5	5.69	1	3890	1.0	8	11.5	<0.5	52	15.6	181	43.0	6.51	15
E5840603 (4281136)		<0.5	5.32	<1	5505	1.0	7	14.1	<0.5	50	9.8	144	11.5	5.72	11
E5840604 (4281137)		<0.5	3.97	<1	5340	0.7	5	17.0	<0.5	31	10.5	136	43.6	5.12	ć
E5840605 (4281138)		<0.5	4.82	<1	>10000	1.0	3	15.6	<0.5	43	5.2	128	113	4.92	11
E5840606 (4281139)		2.1	5.37	2	5130	0.9	4	14.5	<0.5	41	6.7	145	55.3	6.01	14
E5840607 (4281140)		<0.5	2.55	<1	1380	<0.5	3	16.5	<0.5	33	4.8	137	65.9	4.49	6
E5840608 (4281141)		<0.5	4.38	3	1110	1.0	1	16.8	<0.5	35	3.9	138	8.8	3.90	8
E5840609 (4281142)		<0.5	2.39	3	148	0.6	2	18.3	<0.5	36	7.6	138	18.6	3.98	<5
E5840610 (4281143)		<0.5	3.51	2	348	1.0	1	17.0	<0.5	35	5.6	156	16.5	3.51	6
E5840611 (4281144)		<0.5	3.97	5	2060	1.2	1	17.9	<0.5	40	7.0	134	21.7	3.06	3
E5840612 (4281145)		<0.5	4.67	6	989	1.6	1	15.6	<0.5	48	7.7	139	20.7	3.46	10
E5840613 (4281146)		<0.5	4.56	6	452	1.3	1	16.4	<0.5	44	7.8	147	35.5	3.72	10
E5840614 (4281147)		<0.5	6.37	4	538	1.8	3	12.3	<0.5	52	4.6	180	6.5	3.95	14
E5840615 (4281148)		<0.5	6.05	6	526	1.7	4	13.3	<0.5	47	3.9	174	8.9	3.86	12
E5840616 (4281149)		<0.5	3.74	8	193	<0.5	1	17.1	<0.5	44	9.5	97.9	12.9	4.47	6
E5840617 (4281150)		<0.5	5.70	4	>10000	1.4	<1	14.5	<0.5	46	6.3	164	15.7	3.20	12
E5840618 (4281151)		<0.5	1.54	8	417	<0.5	<1	22.1	<0.5	25	3.0	69.3	13.0	3.57	<5
E5840619 (4281152)		<0.5	1.30	14	123	<0.5	2	18.6	<0.5	10	6.3	116	9.1	8.13	E
E5840620 (4281153)		<0.5	3.83	148	203	0.9	2	2.93	<0.5	25	75.5	782	49.6	5.29	<5
E5840621 (4281154)		<0.5	5.32	29	68	1.6	3	5.97	<0.5	63	15.1	114	18.6	8.89	18
E5840622 (4281155)		<0.5	8.76	16	1120	2.4	3	0.54	<0.5	89	13.8	96.9	26.7	4.06	24
E5840623 (4281156)		<0.5	9.00	5	4760	2.1	2	0.42	<0.5	87	10.3	68.8	31.2	3.34	23

Certified By:

AGAT WORK ORDER: 220942070

PROJECT: WR-22-CORE-09

MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

5623 McADAM ROAD

CLIENT NAME: OR	LIENT NAME: ORFORD MINING CORP							00.12	ATTEN	ITION TO:	Arnaud Fo	ntaine		nttp://www.aga	itiabs.com
			(2	201-070)	4 Acid D	igest - M	letals Pa	ackage, I	CP-OES	finish					
DATE SAMPLED: Se	ep 06, 2022		ı	DATE RECE	EIVED: Sep	07, 2022		DATE I	REPORTED	D: Oct 14, 20	022	SAM	PLE TYPE:	Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840563 (4281096)		<1	0.20	13	75	5.91	1800	<0.5	0.01	30.8	1130	5	<10	0.11	1
E5840564 (4281097)		<1	2.04	22	51	2.55	851	<0.5	0.02	30.3	1450	3	<10	0.12	6
E5840565 (4281098)		<1	2.49	30	61	3.06	866	<0.5	0.03	27.9	3260	10	<10	0.07	2
E5840566 (4281099)		<1	1.67	29	47	2.43	820	<0.5	1.59	48.8	2050	5	<10	0.22	3
E5840567 (4281100)		<1	0.32	32	44	2.58	1050	<0.5	3.06	82.9	1810	8	<10	0.15	5
E5840568 (4281101)		<1	0.57	31	48	3.01	857	0.6	2.58	59.5	1900	12	<10	0.10	5
E5840569 (4281102)		<1	1.78	28	44	2.58	834	<0.5	1.18	70.3	1590	8	<10	0.10	8
E5840570 (4281103)		<1	0.90	19	29	1.84	897	<0.5	1.22	46.3	1010	4	<10	0.47	5
E5840571 (4281104)		<1	1.30	8	8	0.54	264	<0.5	2.82	17.4	167	4	<10	0.01	<1
E5840572 (4281105)		<1	1.09	29	41	2.66	860	<0.5	1.89	72.1	1530	7	<10	0.11	5
E5840573 (4281106)		<1	1.25	29	43	2.80	914	<0.5	1.89	62.0	1640	7	<10	0.11	8
E5840574 (4281107)		<1	0.73	24	35	2.48	979	<0.5	2.09	57.1	1440	8	<10	0.39	5
E5840575 (4281108)		<1	0.56	24	35	2.62	675	<0.5	2.56	57.8	1880	6	<10	0.13	7
E5840576 (4281109)		<1	0.17	37	59	4.45	919	<0.5	2.76	82.2	1980	11	<10	0.07	9
E5840577 (4281110)		<1	0.19	32	59	4.63	1310	5.0	2.20	86.8	1700	12	<10	0.05	9
E5840578 (4281111)		<1	0.35	34	67	5.31	1020	<0.5	1.95	84.3	1830	15	<10	0.18	11
E5840579 (4281112)		<1	0.89	23	29	2.11	901	<0.5	1.76	54.8	1440	5	<10	0.23	5
E5840580 (4281113)		<1	0.94	24	30	2.22	935	<0.5	1.90	59.3	1580	7	<10	0.14	6
E5840581 (4281114)		<1	1.52	27	36	2.58	938	<0.5	2.00	75.5	1690	7	<10	0.08	9
E5840582 (4281115)		<1	1.10	22	25	1.87	959	<0.5	1.32	55.7	1210	6	<10	0.10	6
E5840583 (4281116)		<1	0.61	28	36	2.78	852	<0.5	2.92	85.6	1780	10	<10	0.13	9
E5840584 (4281117)		<1	0.26	26	30	2.29	879	<0.5	2.47	75.5	1340	8	<10	0.26	4
E5840585 (4281118)		<1	0.38	30	33	2.63	871	<0.5	2.92	81.9	1720	8	<10	0.15	8
E5840586 (4281119)		<1	0.17	32	43	3.65	825	<0.5	3.07	95.6	1740	10	<10	0.08	7
E5840587 (4281120)		<1	0.12	27	36	2.91	1420	<0.5	2.37	74.1	1520	10	<10	0.18	7
E5840588 (4281121)		<1	0.34	18	17	1.29	723	<0.5	1.91	49.7	1090	6	<10	0.26	6
E5840589 (4281122)		<1	1.35	26	25	1.76	888	0.6	2.45	72.3	1590	8	<10	0.68	7
E5840590 (4281123)		<1	0.65	16	35	13.5	1120	1.9	0.83	1940	230	16	<10	0.30	6
E5840591 (4281124)		<1	1.14	16	20	1.31	846	<0.5	1.12	18.2	1160	4	<10	0.18	4
E5840592 (4281125)		<1	1.56	22	26	1.53	1390	<0.5	1.31	19.2	2720	4	<10	0.11	4
E5840593 (4281126)		<1	1.67	27	30	1.78	888	<0.5	1.63	29.4	2000	3	<10	0.10	5
EE0.40E0.4 (400.44.07)			4.40	00	00	4.75	044	0.5	4.05	40.5	0000	_	40	0.40	-

Certified By:

< 0.5

1.35

18.5

1.46

E5840594 (4281127)

0.12

1.75

Certificate of Analysis

AGAT WORK ORDER: 22O942070

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

DATE SAMPLED: Sep	06, 2022		[DATE RECE	IVED: Sep	07, 2022		DATE I	REPORTED): Oct 14, 2	2022	SAMPLE TYPE: Drill Core			
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	S
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppr
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	
E5840595 (4281128)		<1	1.17	26	27	1.80	611	<0.5	2.52	41.9	2230	9	<10	0.23	
E5840596 (4281129)		<1	2.25	36	35	1.84	581	<0.5	1.86	74.0	2100	6	<10	0.17	
E5840597 (4281130)		<1	2.94	29	43	2.03	528	<0.5	0.79	69.9	2180	9	<10	0.32	
E5840598 (4281131)		<1	1.74	22	31	1.85	732	<0.5	0.29	29.3	4530	9	<10	0.14	
E5840599 (4281132)		<1	3.38	28	50	2.22	665	<0.5	0.03	28.0	2810	12	<10	0.19	1
E5840600 (4281133)		<1	1.27	7	11	0.53	222	<0.5	2.84	20.3	177	2	<10	0.01	
E5840601 (4281134)		<1	2.10	27	36	1.86	877	<0.5	0.02	30.8	5160	8	<10	0.17	
E5840602 (4281135)		<1	2.28	26	41	2.31	921	<0.5	0.02	30.8	3350	10	<10	0.14	
E5840603 (4281136)		<1	2.26	26	37	1.72	1480	<0.5	0.02	20.1	7370	7	<10	0.48	
E5840604 (4281137)		<1	1.53	17	26	1.56	663	<0.5	0.02	21.2	5110	5	<10	0.80	
E5840605 (4281138)		<1	1.90	24	34	1.91	771	< 0.5	0.02	15.0	>10000	6	<10	0.38	
E5840606 (4281139)		<1	1.83	23	36	2.72	776	<0.5	0.02	19.0	>10000	8	<10	0.20	
E5840607 (4281140)		<1	0.50	21	14	1.71	644	2.4	0.02	12.2	>10000	10	<10	1.02	
E5840608 (4281141)		<1	1.83	21	33	1.77	1120	0.7	0.03	14.0	>10000	6	<10	0.96	
E5840609 (4281142)		<1	1.25	23	20	0.92	427	3.1	0.03	14.9	>10000	36	<10	3.62	
E5840610 (4281143)		<1	1.87	22	28	1.24	484	2.2	0.03	13.7	>10000	26	<10	2.52	
E5840611 (4281144)		<1	1.72	30	31	1.88	308	2.2	0.04	13.3	>10000	16	<10	0.81	
E5840612 (4281145)		<1	2.30	38	37	1.82	461	<0.5	0.05	13.0	>10000	13	<10	0.99	
E5840613 (4281146)		<1	2.10	49	38	2.05	500	8.0	0.05	14.0	>10000	16	<10	1.22	
E5840614 (4281147)		<1	3.28	39	52	2.38	555	0.5	0.07	17.3	>10000	7	<10	1.41	
E5840615 (4281148)		<1	2.94	39	49	2.48	751	0.6	0.07	13.9	>10000	7	<10	1.24	
E5840616 (4281149)		<1	1.41	41	30	2.89	1220	0.9	0.05	15.1	>10000	25	<10	2.59	
E5840617 (4281150)		<1	2.56	40	40	3.08	623	0.7	0.07	15.4	>10000	7	<10	0.39	
E5840618 (4281151)		<1	0.07	44	23	2.30	1570	1.6	0.01	7.4	>10000	35	<10	2.82	<
E5840619 (4281152)		<1	0.04	17	13	2.02	1710	7.8	<0.01	13.0	3180	37	<10	7.84	
E5840620 (4281153)		<1	0.62	15	34	13.3	1110	2.7	0.79	1960	263	17	<10	0.30	
E5840621 (4281154)		<1	2.70	37	46	1.61	473	9.4	0.03	27.0	>10000	46	<10	7.97	
E5840622 (4281155)		<1	4.54	50	66	2.00	195	2.1	0.15	28.4	1510	10	<10	1.44	
E5840623 (4281156)		<1	4.06	48	63	2.20	247	0.6	0.73	26.6	272	5	<10	0.28	

Certified By:

Sherin Houssey

Certificate of Analysis

AGAT WORK ORDER: 22O942070

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, l	CP-OES	finish					
DATE SAMPLED: Se	06, 2022		С	ATE RECE	IVED: Sep	07, 2022		DATE F	REPORTED): Oct 14, 20)22	SAMPLE TYPE: Drill Core			
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840563 (4281096)		11	<10	<5	533	<10	<10	<5	0.16	<5	7	106	<1	10	38.3
E5840564 (4281097)		18	<10	<5	278	<10	<10	<5	0.38	<5	7	163	<1	15	49.5
E5840565 (4281098)		20	<10	<5	209	<10	13	<5	0.57	<5	13	155	<1	19	41.2
E5840566 (4281099)		21	<10	<5	191	<10	10	<5	0.50	<5	6	175	<1	18	65.7
E5840567 (4281100)		22	<10	<5	332	<10	10	<5	0.52	<5	<5	175	<1	17	70.2
E5840568 (4281101)		23	<10	<5	195	<10	17	<5	0.87	<5	6	191	<1	22	72.3
E5840569 (4281102)		22	<10	<5	160	<10	14	<5	1.05	<5	5	183	<1	19	82.0
E5840570 (4281103)		15	<10	<5	226	<10	11	<5	0.77	<5	7	125	<1	13	46.2
E5840571 (4281104)		6	<10	<5	351	<10	<10	<5	0.13	<5	<5	37.6	<1	6	18.5
E5840572 (4281105)		20	<10	<5	208	<10	15	<5	1.03	<5	5	170	<1	18	60.8
E5840573 (4281106)		21	<10	<5	185	<10	13	<5	1.11	<5	5	173	<1	19	68.9
E5840574 (4281107)		19	<10	<5	207	<10	16	<5	0.97	<5	7	161	<1	18	57.5
E5840575 (4281108)		19	<10	<5	196	<10	13	<5	1.02	<5	9	167	<1	18	62.9
E5840576 (4281109)		24	<10	<5	233	<10	20	<5	1.32	5	<5	206	<1	23	79.2
E5840577 (4281110)		24	<10	<5	244	<10	18	<5	1.24	5	<5	191	<1	21	73.4
E5840578 (4281111)		24	<10	<5	219	<10	18	<5	1.34	<5	5	202	1	22	80.9
E5840579 (4281112)		17	<10	<5	226	<10	14	<5	0.83	<5	6	140	<1	15	51.7
E5840580 (4281113)		18	<10	<5	219	<10	15	<5	0.93	<5	6	145	<1	16	55.1
E5840581 (4281114)		21	<10	<5	158	<10	17	<5	1.20	<5	5	172	<1	19	71.8
E5840582 (4281115)		15	<10	<5	161	<10	13	<5	0.85	<5	5	129	<1	14	51.6
E5840583 (4281116)		22	<10	<5	231	<10	17	<5	1.17	<5	6	185	<1	19	71.0
E5840584 (4281117)		18	<10	<5	274	<10	13	<5	0.95	<5	6	152	<1	17	64.6
E5840585 (4281118)		21	<10	<5	266	<10	15	<5	0.97	<5	7	177	1	19	61.7
E5840586 (4281119)		24	<10	<5	238	<10	17	<5	1.11	<5	5	190	1	20	77.6
E5840587 (4281120)		19	<10	<5	213	<10	15	<5	0.99	<5	6	160	<1	19	63.6
E5840588 (4281121)		13	<10	<5	208	<10	<10	<5	0.59	<5	7	116	<1	13	33.0
E5840589 (4281122)		22	<10	<5	255	<10	17	<5	1.05	<5	<5	176	<1	19	54.4
E5840590 (4281123)		12	<10	<5	72	<10	<10	5	0.18	<5	<5	69.7	4	9	102
E5840591 (4281124)		13	<10	<5	219	<10	<10	<5	0.57	<5	6	116	<1	12	36.1
E5840592 (4281125)		16	<10	<5	189	<10	11	<5	0.64	<5	7	132	<1	16	52.1
E5840593 (4281126)		19	<10	<5	203	<10	12	<5	0.80	<5	6	154	<1	17	53.8
E5840594 (4281127)		16	<10	<5	182	<10	13	<5	0.88	<5	8	135	<1	16	51.4

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O942070

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070) 4	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 06, 2022		С	DATE RECE	IVED: Sep	07, 2022		DATE F	REPORTED): Oct 14, 20	122	SAMPLE TYPE: Drill Core			
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840595 (4281128)		21	<10	<5	163	<10	15	<5	1.05	<5	8	177	<1	19	56.3
E5840596 (4281129)		23	<10	<5	147	<10	16	<5	0.97	<5	8	193	<1	20	76.6
E5840597 (4281130)		23	<10	<5	116	<10	17	<5	0.86	<5	8	196	<1	20	80.0
E5840598 (4281131)		15	<10	<5	184	<10	12	<5	0.70	<5	7	117	1	16	59.0
E5840599 (4281132)		21	<10	<5	122	<10	18	<5	1.22	<5	6	166	2	19	68.2
E5840600 (4281133)		5	<10	<5	341	<10	<10	<5	0.12	<5	<5	35.7	<1	5	24.1
E5840601 (4281134)		16	<10	<5	235	<10	14	<5	0.65	<5	8	124	<1	19	60.3
E5840602 (4281135)		18	<10	<5	204	<10	15	<5	0.77	<5	6	143	1	18	66.0
E5840603 (4281136)		15	<10	<5	177	<10	12	<5	0.53	<5	5	117	<1	18	48.3
E5840604 (4281137)		12	<10	<5	204	<10	<10	<5	0.45	<5	6	91.9	1	12	42.2
E5840605 (4281138)		14	<10	<5	357	<10	<10	<5	0.28	<5	7	113	<1	18	45.3
E5840606 (4281139)		16	<10	<5	263	<10	11	<5	0.38	<5	8	129	3	23	61.7
E5840607 (4281140)		8	<10	<5	294	<10	<10	<5	0.19	<5	9	66.1	<1	22	44.9
E5840608 (4281141)		12	<10	<5	272	<10	<10	<5	0.18	<5	14	96.9	<1	28	48.3
E5840609 (4281142)		8	<10	<5	392	<10	<10	<5	0.28	<5	87	64.2	<1	72	24.0
E5840610 (4281143)		11	<10	<5	391	<10	<10	<5	0.21	<5	71	89.3	<1	66	31.0
E5840611 (4281144)		11	<10	<5	373	<10	<10	<5	0.29	<5	42	100	1	67	42.1
E5840612 (4281145)		13	<10	<5	247	<10	<10	<5	0.18	<5	34	111	<1	88	41.7
E5840613 (4281146)		13	<10	<5	325	<10	<10	<5	0.22	<5	38	110	<1	150	45.4
E5840614 (4281147)		17	<10	<5	208	<10	<10	<5	0.46	<5	16	149	<1	85	49.9
E5840615 (4281148)		16	<10	<5	216	<10	11	<5	0.43	<5	14	142	<1	89	50.9
E5840616 (4281149)		6	<10	<5	324	<10	11	<5	0.26	<5	41	42.4	<1	120	46.5
E5840617 (4281150)		16	<10	<5	246	<10	<10	<5	0.17	<5	23	135	<1	119	57.9
E5840618 (4281151)		2	<10	<5	377	<10	<10	<5	0.07	<5	46	25.2	<1	132	46.7
E5840619 (4281152)		2	<10	<5	321	<10	11	<5	0.05	<5	21	24.3	<1	26	45.6
E5840620 (4281153)		12	<10	<5	71	<10	<10	5	0.17	<5	<5	70.2	4	9	104
E5840621 (4281154)		6	<10	<5	94	<10	16	5	0.16	<5	98	54.1	1	56	38.6
E5840622 (4281155)		10	<10	<5	17	<10	<10	14	0.29	<5	18	62.7	2	18	57.5
E5840623 (4281156)		10	<10	<5	18	<10	<10	15	0.29	<5	<5	61.4	2	11	49.3

Certified By:

AGAT WORK ORDER: 220942070

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Se	p 06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840563 (4281096)		78			
E5840564 (4281097)		106			
E5840565 (4281098)		125			
E5840566 (4281099)		134			
E5840567 (4281100)		144			
E5840568 (4281101)		140			
E5840569 (4281102)		133			
E5840570 (4281103)		84			
E5840571 (4281104)		40			
E5840572 (4281105)		123			
E5840573 (4281106)		128			
E5840574 (4281107)		113			
E5840575 (4281108)		117			
E5840576 (4281109)		155			
E5840577 (4281110)		136			
E5840578 (4281111)		150			
E5840579 (4281112)		103			
E5840580 (4281113)		111			
E5840581 (4281114)		131			
E5840582 (4281115)		97			
E5840583 (4281116)		137			
E5840584 (4281117)		116			
E5840585 (4281118)		130			
E5840586 (4281119)		142			
E5840587 (4281120)		118			
E5840588 (4281121)		75			
E5840589 (4281122)		128			
E5840590 (4281123)		63			
E5840591 (4281124)		80			
E5840592 (4281125)		87			
E5840593 (4281126)		114			
E5840594 (4281127)		98			

Certified By:

AGAT WORK ORDER: 220942070

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	Package, ICP-OES finish	
DATE SAMPLED: Se	p 06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840595 (4281128)		124			
E5840596 (4281129)		146			
E5840597 (4281130)		148			
E5840598 (4281131)		85			
E5840599 (4281132)		132			
E5840600 (4281133)		28			
E5840601 (4281134)		75			
E5840602 (4281135)		112			
E5840603 (4281136)		61			
E5840604 (4281137)		78			
E5840605 (4281138)		33			
E5840606 (4281139)		83			
E5840607 (4281140)		<5			
E5840608 (4281141)		7			
E5840609 (4281142)		<5			
E5840610 (4281143)		10			
E5840611 (4281144)		12			
E5840612 (4281145)		12			
E5840613 (4281146)		13			
E5840614 (4281147)		56			
E5840615 (4281148)		34			
E5840616 (4281149)		6			
E5840617 (4281150)		29			
E5840618 (4281151)		11			
E5840619 (4281152)		38			
E5840620 (4281153)		66			
E5840621 (4281154)		119			
E5840622 (4281155)		149			
E5840623 (4281156)		151			

Certified By:

AGAT WORK ORDER: 220942070

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish

DATE SAMPLED: Sep 06, 2022 DATE RECEIVED: Sep 07, 2022 DATE REPORTED: Oct 14, 2022 SAMPLE TYPE: Drill Core

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

4281096-4281156 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

Sherin Houss of

Certificate of Analysis

AGAT WORK ORDER: 220942070

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish										
DATE SAMPLED: Se	p 06, 2022			DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core				
	Analyte:	Au	Pd	Pt						
	Unit:	ppm	ppm	ppm						
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005						
E5840563 (4281096)		<0.001	<0.001	<0.005						
E5840564 (4281097)		< 0.001	0.001	<0.005						
E5840565 (4281098)		<0.001	0.001	<0.005						
E5840566 (4281099)		<0.001	0.001	<0.005						
E5840567 (4281100)		0.001	0.001	<0.005						
E5840568 (4281101)		<0.001	0.001	<0.005						
E5840569 (4281102)		0.014	0.001	<0.005						
E5840570 (4281103)		0.179	0.002	<0.005						
E5840571 (4281104)		< 0.001	0.001	<0.005						
E5840572 (4281105)		< 0.001	0.001	<0.005						
E5840573 (4281106)		< 0.001	0.001	<0.005						
E5840574 (4281107)		0.003	0.001	<0.005						
E5840575 (4281108)		< 0.001	0.001	<0.005						
E5840576 (4281109)		< 0.001	0.001	<0.005						
E5840577 (4281110)		0.001	0.001	<0.005						
E5840578 (4281111)		0.005	0.001	<0.005						
E5840579 (4281112)		< 0.001	0.001	<0.005						
E5840580 (4281113)		< 0.001	0.001	<0.005						
E5840581 (4281114)		< 0.001	0.001	<0.005						
E5840582 (4281115)		< 0.001	< 0.001	<0.005						
E5840583 (4281116)		0.002	<0.001	<0.005						
E5840584 (4281117)		0.001	0.001	<0.005						
E5840585 (4281118)		0.001	0.001	<0.005						
E5840586 (4281119)		< 0.001	< 0.001	<0.005						
E5840587 (4281120)		<0.001	0.001	<0.005						
E5840588 (4281121)		0.008	<0.001	<0.005						
E5840589 (4281122)		0.002	0.001	<0.005						
E5840591 (4281124)		0.002	0.001	<0.005						
E5840592 (4281125)		0.002	0.001	<0.005						
E5840593 (4281126)		< 0.001	<0.001	<0.005						
E5840594 (4281127)		<0.001	<0.001	<0.005						
E5840595 (4281128)		0.001	0.001	<0.005						

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 220942070

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish											
DATE SAMPLED: Sep	p 06, 2022			DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core					
	Analyte:	Au	Pd	Pt							
	Unit:	ppm	ppm	ppm							
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005							
E5840596 (4281129)		<0.001	0.001	<0.005							
E5840597 (4281130)		0.001	0.001	<0.005							
E5840598 (4281131)		< 0.001	< 0.001	<0.005							
E5840599 (4281132)		0.016	0.001	<0.005							
E5840600 (4281133)		< 0.001	< 0.001	<0.005							
E5840601 (4281134)		0.007	<0.001	<0.005							
E5840602 (4281135)		<0.001	<0.001	<0.005							
E5840603 (4281136)		0.016	< 0.001	<0.005							
E5840604 (4281137)		0.006	< 0.001	<0.005							
E5840605 (4281138)		0.001	< 0.001	<0.005							
E5840606 (4281139)		0.001	< 0.001	<0.005							
E5840607 (4281140)		0.009	< 0.001	<0.005							
E5840608 (4281141)		0.001	< 0.001	<0.005							
E5840609 (4281142)		0.001	< 0.001	<0.005							
E5840610 (4281143)		0.001	< 0.001	<0.005							
E5840611 (4281144)		0.001	<0.001	<0.005							
E5840612 (4281145)		0.398	< 0.001	<0.005							
E5840613 (4281146)		0.002	< 0.001	<0.005							
E5840614 (4281147)		0.001	<0.001	<0.005							
E5840615 (4281148)		0.001	<0.001	<0.005							
E5840616 (4281149)		0.002	<0.001	<0.005							
E5840617 (4281150)		< 0.001	< 0.001	<0.005							
E5840618 (4281151)		0.002	<0.001	<0.005							
E5840619 (4281152)		0.006	< 0.001	<0.005							
E5840621 (4281154)		0.013	<0.001	<0.005							
E5840622 (4281155)		0.003	< 0.001	<0.005							
E5840623 (4281156)		<0.001	0.001	<0.005							

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1046 Gorham St, Thunder Bay, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

AGAT WORK ORDER: 220942070

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Crushing)											
DATE SAMPLED: Se	•		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core							
	Analyte: C	rush-Pass %										
	Unit:	%										
Sample ID (AGAT ID)	RDL:	0.01										
E5840563 (4281096)		77.19										
E5840602 (4281135)		83.79										
E5840622 (4281155)		83.52										

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O942070

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Pulverizing)											
DATE SAMPLED: Sep	06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 14, 2022	SAMPLE TYPE: Drill Core							
	Analyte: Pu	ıl-Pass %										
	Unit:	%										
Sample ID (AGAT ID)	RDL:	0.01										
E5840563 (4281096)		89.91										
E5840602 (4281135)		90.24										
E5840622 (4281155)		89.76										

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220942070 PROJECT: WR-22-CORE-09 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish																
		REPLIC	ATE #1		REPLICATE #2					REPLIC	ATE #3		REPLICATE #4			
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Ag	4281096	< 0.5	< 0.5	0.0%	4281110	< 0.5	< 0.5	0.0%	4281121	< 0.5	< 0.5	0.0%	4281136	< 0.5	< 0.5	0.0%
Al	4281096	3.88	3.92	1.0%	4281110	7.31	7.54	3.1%	4281121	4.06	4.20	3.4%	4281136	5.32	5.17	2.9%
As	4281096	3	1		4281110	< 1	2		4281121	< 1	< 1	0.0%	4281136	< 1	2	
Ва	4281096	140	152	8.2%	4281110	165	166	0.6%	4281121	228	240	5.1%	4281136	5510	5410	1.8%
Be	4281096	< 0.5	< 0.5	0.0%	4281110	1.4	1.4	0.0%	4281121	0.8	0.8	0.0%	4281136	1.0	1.0	0.0%
Bi	4281096	< 1	< 1	0.0%	4281110	12	9	28.6%	4281121	1	3		4281136	7	6	15.4%
Ca	4281096	14.9	14.7	1.4%	4281110	6.40	6.46	0.9%	4281121	12.6	13.4	6.2%	4281136	14.1	14.1	0.0%
Cd	4281096	< 0.5	< 0.5	0.0%	4281110	0.7	0.7	0.0%	4281121	< 0.5	< 0.5	0.0%	4281136	< 0.5	< 0.5	0.0%
Се	4281096	22	20	9.5%	4281110	67	67	0.0%	4281121	33	33	0.0%	4281136	50	50	0.0%
Со	4281096	10.6	10.4	1.9%	4281110	32.6	33.9	3.9%	4281121	18.8	18.6	1.1%	4281136	9.8	9.5	3.1%
Cr	4281096	133	119	11.1%	4281110	206	204	1.0%	4281121	149	151	1.3%	4281136	144	152	5.4%
Cu	4281096	33.6	31.7	5.8%	4281110	51.8	53.6	3.4%	4281121	47.9	44.4	7.6%	4281136	11.5	11.3	1.8%
Fe	4281096	4.03	4.01	0.5%	4281110	6.93	7.00	1.0%	4281121	2.69	2.77	2.9%	4281136	5.72	5.61	1.9%
Ga	4281096	7	7	0.0%	4281110	16	18	11.8%	4281121	7	7	0.0%	4281136	11	10	9.5%
In	4281096	< 1	< 1	0.0%	4281110	< 1	< 1	0.0%	4281121	< 1	< 1	0.0%	4281136	< 1	< 1	0.0%
K	4281096	0.204	0.238	15.4%	4281110	0.187	0.196	4.7%	4281121	0.338	0.356	5.2%	4281136	2.26	2.21	2.2%
La	4281096	13	12	8.0%	4281110	32	33	3.1%	4281121	18	18	0.0%	4281136	26	26	0.0%
Li	4281096	75	75	0.0%	4281110	59	61	3.3%	4281121	17	18	5.7%	4281136	37	36	2.7%
Mg	4281096	5.91	5.95	0.7%	4281110	4.63	4.77	3.0%	4281121	1.29	1.32	2.3%	4281136	1.72	1.68	2.4%
Mn	4281096	1800	1770	1.7%	4281110	1310	1360	3.7%	4281121	723	789	8.7%	4281136	1480	1450	2.0%
Мо	4281096	< 0.5	< 0.5	0.0%	4281110	5.03	5.42	7.5%	4281121	< 0.5	< 0.5	0.0%	4281136	< 0.5	< 0.5	0.0%
Na	4281096	0.01	0.01	0.0%	4281110	2.20	2.21	0.5%	4281121	1.91	1.98	3.6%	4281136	0.02	0.02	0.0%
Ni	4281096	30.8	30.2	2.0%	4281110	86.8	88.1	1.5%	4281121	49.7	48.9	1.6%	4281136	20.1	19.2	4.6%
Р	4281096	1130	1020	10.2%	4281110	1700	1700	0.0%	4281121	1090	1110	1.8%	4281136	7370	7320	0.7%
Pb	4281096	5	4	22.2%	4281110	12	13	8.0%	4281121	6	6	0.0%	4281136	7	8	13.3%
Rb	4281096	< 10	< 10	0.0%	4281110	< 10	< 10	0.0%	4281121	< 10	< 10	0.0%	4281136	< 10	< 10	0.0%
S	4281096	0.112	0.116	3.5%	4281110	0.054	0.056	3.6%	4281121	0.262	0.289	9.8%	4281136	0.479	0.462	3.6%
Sb	4281096	1	3		4281110	9	11	20.0%	4281121	6	4		4281136	2	3	
Sc	4281096	11	11	0.0%	4281110	24	24	0.0%	4281121	13	13	0.0%	4281136	15	15	0.0%
Se	4281096	< 10	< 10	0.0%	4281110	< 10	< 10	0.0%	4281121	< 10	< 10	0.0%	4281136	< 10	< 10	0.0%
Sn	4281096	< 5	< 5	0.0%	4281110	< 5	< 5	0.0%	4281121	< 5	< 5	0.0%	4281136	< 5	< 5	0.0%

Quality Assurance - Replicate AGAT WORK ORDER: 220942070 PROJECT: WR-22-CORE-09 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

JLIEINI INAIVI	E. OKFORI	DIVITIVITIVE	CORP							AIIE	VIION IC	. Amauu	rontaine			
Sr	4281096	533	530	0.6%	4281110	244	245	0.4%	4281121	208	219	5.2%	4281136	177	176	0.6%
Та	4281096	< 10	< 10	0.0%	4281110	< 10	< 10	0.0%	4281121	< 10	< 10	0.0%	4281136	< 10	< 10	0.0%
Te	4281096	< 10	< 10	0.0%	4281110	18	19	5.4%	4281121	< 10	< 10	0.0%	4281136	12	11	8.7%
Th	4281096	< 5	< 5	0.0%	4281110	< 5	< 5	0.0%	4281121	< 5	< 5	0.0%	4281136	< 5	< 5	0.0%
Ti	4281096	0.163	0.173	6.0%	4281110	1.24	1.24	0.0%	4281121	0.59	0.59	0.0%	4281136	0.53	0.56	5.5%
TI	4281096	< 5	< 5	0.0%	4281110	5	5	0.0%	4281121	< 5	< 5	0.0%	4281136	< 5	< 5	0.0%
U	4281096	7	7	0.0%	4281110	< 5	< 5	0.0%	4281121	7	7	0.0%	4281136	5	5	0.0%
V	4281096	106	106	0.0%	4281110	191	193	1.0%	4281121	116	117	0.9%	4281136	117	116	0.9%
W	4281096	< 1	< 1	0.0%	4281110	< 1	< 1	0.0%	4281121	< 1	< 1	0.0%	4281136	< 1	< 1	0.0%
Υ	4281096	10	9	10.5%	4281110	21	21	0.0%	4281121	13	13	0.0%	4281136	18	18	0.0%
Zn	4281096	38.3	41.0	6.8%	4281110	73.4	73.5	0.1%	4281121	33.0	35.3	6.7%	4281136	48.3	47.3	2.1%
Zr	4281096	78	78	0.0%	4281110	136	136	0.0%	4281121	75	73	2.7%	4281136	61	68	10.9%
		REPLIC	ATE #5			REPLIC	ATE #6								1	
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD								
Ag	4281146	< 0.5	< 0.5	0.0%	4281155	< 0.5	< 0.5	0.0%								
Al	4281146	4.56	4.34	4.9%	4281155	8.76	8.09	8.0%								
As	4281146	6	3		4281155	16	12	28.6%								
Ва	4281146	452	537	17.2%	4281155	1120	1460	26.4%								
Ве	4281146	1.33	1.23	7.8%	4281155	2.4	2.3	4.3%								
Bi	4281146	1	< 1		4281155	3	2									
Ca	4281146	16.4	16.4	0.0%	4281155	0.537	0.498	7.5%								
Cd	4281146	< 0.5	< 0.5	0.0%	4281155	< 0.5	< 0.5	0.0%								
Ce	4281146	44	42	4.7%	4281155	89	84	5.8%								
Со	4281146	7.8	7.0	10.8%	4281155	13.8	13.3	3.7%								
Cr	4281146	147	123	17.8%	4281155	96.9	88.4	9.2%								
Cu	4281146	35.5	29.4	18.8%	4281155	26.7	27.1	1.5%								
Fe	4281146	3.72	3.59	3.6%	4281155	4.06	3.78	7.1%								
Ga	4281146	10	9	10.5%	4281155	24	22	8.7%								
In	4281146	< 1	< 1	0.0%	4281155	< 1	< 1	0.0%								
K	4281146	2.10	2.00	4.9%	4281155	4.54	4.20	7.8%								
La	4281146	49	47	4.2%	4281155	50	47	6.2%								
Li	4281146	38	36	5.4%	4281155	66	61	7.9%								
Mg	4281146	2.05	1.95	5.0%	4281155	2.00	1.85	7.8%								
Mn	4281146	500	508	1.6%	4281155	195	180	8.0%								

0.76

CLIENT NAME: ORFORD MINING CORP 4281146

Quality Assurance - Replicate AGAT WORK ORDER: 220942070 PROJECT: WR-22-CORE-09

0.0%

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

0.64

17.1%

4281155

2.1

2.1

7201170	0.70	0.07	17.170	7201100	2.1	2.1	0.070					1	1		1
4281146	0.05	0.05	0.0%	4281155	0.15	0.14	6.9%								
4281146	14.0	12.4	12.1%	4281155	28.4	26.4	7.3%								
4281146	>10000	>10000	0.0%	4281155	1510	1440	4.7%								
4281146	16	16	0.0%	4281155	10	7									
4281146	< 10	< 10	0.0%	4281155	< 10	< 10	0.0%								
4281146	1.22	1.24	1.6%	4281155	1.44	1.37	5.0%								
4281146	4	3	28.6%	4281155	4	3	28.6%								
4281146	13	12	8.0%	4281155	10	9	10.5%								
4281146	< 10	< 10	0.0%	4281155	< 10	< 10	0.0%								
4281146	< 5	< 5	0.0%	4281155	< 5	< 5	0.0%								
4281146	325	311	4.4%	4281155	17	16	6.1%								
4281146	< 10	< 10	0.0%	4281155	< 10	< 10	0.0%								
4281146	< 10	< 10	0.0%	4281155	< 10	< 10	0.0%								
4281146	< 5	< 5	0.0%	4281155	14	14	0.0%								
4281146	0.22	0.21	4.7%	4281155	0.29	0.27	7.1%								
4281146	< 5	< 5	0.0%	4281155	< 5	< 5	0.0%								
4281146	38	36	5.4%	4281155	18	16	11.8%								
4281146	110	102	7.5%	4281155	62.7	59.2	5.7%								
4281146	< 1	< 1	0.0%	4281155	2	2	0.0%								
4281146	150	143	4.8%	4281155	18	17	5.7%								
4281146	45.4	45.1	0.7%	4281155	57.5	50.5	13.0%								
4281146	13	7		4281155	149	141	5.5%								
			(202-5	55) Fire	Assay	- Au, Pt	, Pd Tra	ace Leve	ls, ICP	-OES fir	nish				
	REPLIC	ATE #1	`	, 			•						REPLIC	ATE #4	
Sample ID	1		RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	1		RPD
4281096	<0.001	<0.001	0.0%	4281110	0.001	0.002	66.7%	4281121	0.008	0.005	46.2%	4281136	0.016	0.025	43.9%
4281096	<0.001	<0.001	0.0%	4281110	0.001	0.001	0.0%	4281121	<0.001	<0.001	0.0%	4281136	<0.001	<0.001	0.0%
4281096	<0.005	<0.005	0.0%	4281110	<0.005	<0.005	0.0%	4281121	<0.005	<0.005	0.0%	4281136	<0.005	<0.005	0.0%
	REPLIC	ATE #5				1							1		
Sample ID	Original	Replicate	RPD												
4281146	0.002	0.002	0.0%												
4281146	<0.001	<0.001	0.0%												
												1	1		
	4281146 4281146	4281146 0.05 4281146 14.0 4281146 >10000 4281146 16 4281146 1.22 4281146 1.22 4281146 13 4281146 10 4281146 <10	4281146 0.05 0.05 4281146 14.0 12.4 4281146 >10000 >10000 4281146 16 16 4281146 1.0 < 10	4281146 0.05 0.05 0.0% 4281146 14.0 12.4 12.1% 4281146 >10000 >10000 0.0% 4281146 16 16 0.0% 4281146 <10	4281146 0.05 0.05 0.0% 4281155 4281146 14.0 12.4 12.1% 4281155 4281146 >10000 >10000 0.0% 4281155 4281146 16 16 0.0% 4281155 4281146 <10	4281146 0.05 0.05 0.0% 4281155 0.15 4281146 14.0 12.4 12.1% 4281155 28.4 4281146 >10000 >10000 0.0% 4281155 1510 4281146 16 16 0.0% 4281155 10 4281146 10 < 10	4281146	4281146	4281146	4281146	4281146	4281146	4281146	4281146	4281146 0.05 0.05 0.0% 4281155 0.15 0.14 6.9%

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220942070 PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(20	1-070) 4	Acid [Digest -	Metals I	Package	e, ICP-0	DES fini	sh				
		CRM #1 (ref.CGL-015)		CRM #2	2 (ref.Till-2)			CRM #3	(ref.GTS-2a)			CRM #4	(ref.CM47)	
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Al	13.0	13	100%		8.47	8.09	96%		6.96	7.19	103%					
As					26	28	109%		124	140	113%					
Ва	1305	1293	99%		540	526	97%		186	197	106%					
Ве					4.0	3.3	82%									
Ca	1.42	1.39	98%		0.907	0.873	96%		4.01	4.04	101%					
Ce	58.24	57.89	99%		98	89	91%		24	22	90%					
Co					15	12	80%		22.1	19.9	90%					
Cr					60.3	57.2	95%									
Cu					150	148	98%		88.6	84.8	96%					
Fe	3.27	3.05	93%		3.77	3.53	94%		7.56	7.4	98%					
Ga	22.63	26.42	117%													
K	3.69	3.85	104%						2.021	2.185	108%					
La	27.48	28.45	104%		44	40	92%									
Li	64.95	69.88	108%		47	47	100%									
Mg	0.223	0.221	99%		1.10	1.03	94%		2.412	2.466	102%					
Mn					780	732	94%		1510	1501	99%					
Мо					14	12	85%									
Na	7.24	7.28	101%		1.624	1.705	105%		0.617	0.656	106%					
Ni					32	31	98%		77.1	75.2	98%					
Р	610	584	96%		750	714	95%		892	912	102%					
Pb					31	31	101%									
S									0.348	0.352	101%					
Sc	2.76	2.19	79%		12	12	97%									
Sr	312	309	99%		144	145	101%		92.8	89.7	97%					
Th					18.4	13.9	75%									
Ti	0.222	0.215	97%		0.53	0.45	85%									
U					5.7	4.7	83%									
٧					77	80	104%									
W					5	4	83%									
Υ	25.32	25.23	100%													
Zn	75.42	75.91	101%		130	119	92%		208	219	105%					

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220942070

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

	(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish															
		CRM #1 (ref.GSP5H)			CRM #2	(ref.GS48)		CRM #3 (ref.GS1AB)	1	CRM #4 (ref.CM47)				
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Au	0.50	0.47			3.46	3.30			1.48	1.51			1.13	1.12		

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-09

SAMPLING SITE:

AGAT WORK ORDER: 22O942070 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Bi	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
La	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Li	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mg	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Na	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ni	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OL3
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OLS
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OLS
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

Method Summary

CLIENT NAME: ORFORD MINING CORP

AGAT WORK ORDER: 22O942070 PROJECT: WR-22-CORE-09 ATTENTION TO: Arnaud Fontaine

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.		SAMPLED B1.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
ті	MIN-200-12034	Geochem v.1	ICF/OE3
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-221-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Pd	MW-200-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Pt	MW-200-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Crush-Pass %		·	BALANCE
Pul-Pass %			BALANCE

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5

416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-CORE-09

AGAT WORK ORDER: 220942072

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Oct 19, 2022

PAGES (INCLUDING COVER): 24

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 24

Certificate of Analysis

AGAT WORK ORDER: 220942072

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

CEIENT WINE. OR			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Se	p 06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 19, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840624 (4281185)		3.400			
E5840625 (4281186)		3.690			
E5840626 (4281187)		1.740			
E5840627 (4281188)		3.710			
E5840628 (4281189)		3.680			
E5840629 (4281190)		3.610			
E5840630 (4281191)		0.180			
E5840631 (4281192)		3.700			
E5840632 (4281193)		3.540			
E5840633 (4281194)		3.700			
E5840634 (4281195)		2.660			
E5840635 (4281196)		2.620			
E5840636 (4281197)		2.580			
E5840637 (4281198)		2.480			
E5840638 (4281199)		2.740			
E5840639 (4281200)		1.070			
E5840640 (4281201)		1.520			
E5840641 (4281202)		2.910			
E5840642 (4281203)		2.670			
E5840643 (4281204)		2.760			
E5840644 (4281205)		2.680			
E5840645 (4281206)		2.460			
E5840646 (4281207)		2.820			
E5840647 (4281208)		2.580			
E5840648 (4281209)		2.710			
E5840649 (4281210)		2.760			
E5840650 (4281211)		0.010			
E5840651 (4281212)		2.910			
E5840652 (4281213)		2.930			
E5840653 (4281214)		2.850			
E5840654 (4281215)		2.970			

Certificate of Analysis

AGAT WORK ORDER: 220942072

PROJECT: WR-22-CORE-09
ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Se	p 06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 19, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
5840655 (4281216)		2.810			
E5840656 (4281217)		2.620			
5840657 (4281218)		2.910			
E5840658 (4281219)		2.830			
5840659 (4281220)		2.660			
E5840660 (4281221)		0.200			
E5840661 (4281222)		3.720			
E5840662 (4281223)		4.030			
E5840663 (4281224)		4.010			
E5840664 (4281225)		3.980			
5840665 (4281226)		3.870			
5840666 (4281227)		3.650			
5840667 (4281228)		3.750			
E5840668 (4281229)		4.140			
E5840669 (4281230)		2.050			
5840670 (4281231)		1.550			
E5840671 (4281232)		4.010			
E5840672 (4281233)		3.830			
E5840673 (4281234)		3.830			
E5840674 (4281235)		4.160			
E5840675 (4281236)		3.880			
E5840676 (4281237)		3.900			
E5840677 (4281238)		3.720			
E5840678 (4281239)		3.870			
E5840679 (4281240)		3.960			
E5840680 (4281241)		0.010			
E5840681 (4281242)		3.690			
E5840682 (4281243)		3.980			
E5840683 (4281244)		4.040			

Certified By:

Sherin Moussay

AGAT WORK ORDER: 220942072

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(200-) Sample Login Weight

DATE SAMPLED: Sep 06, 2022 DATE RECEIVED: Sep 07, 2022 DATE REPORTED: Oct 19, 2022 SAMPLE TYPE: Drill Core

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 22O942072

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

CLIENT NAME. OK	OND WINNING	3 00111		ATTENTION TO: Attlaud Folitaine												
			(2	01-070)	4 Acid D	igest - M	letals Pa	ickage, I	CP-OES	finish						
DATE SAMPLED: Sep	06, 2022		[DATE RECE	EIVED: Sep	07, 2022		DATE I	REPORTED	c Oct 19, 20)22	SAMPLE TYPE: Drill Core				
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	Ga	
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5	
E5840624 (4281185)		<0.5	1.57	<1	7	<0.5	4	1.05	<0.5	3	113	1620	33.0	7.44	<5	
E5840625 (4281186)		<0.5	1.68	<1	6	<0.5	2	1.16	<0.5	2	116	1120	815	7.20	<5	
E5840626 (4281187)		<0.5	6.13	<1	2	<0.5	3	17.3	<0.5	<1	35.0	248	138	6.24	10	
E5840627 (4281188)		<0.5	1.73	<1	5	<0.5	2	1.60	<0.5	2	108	1680	205	6.84	<5	
E5840628 (4281189)		<0.5	1.78	<1	6	<0.5	3	1.91	<0.5	2	110	1890	311	6.91	<5	
E5840629 (4281190)		<0.5	1.83	<1	5	<0.5	<1	1.75	< 0.5	2	113	1750	329	7.13	<5	
E5840630 (4281191)		<0.5	6.11	<1	384	1.0	<1	1.60	<0.5	15	4.6	17.1	5.9	1.25	13	
E5840631 (4281192)		<0.5	1.71	<1	5	<0.5	3	1.20	<0.5	2	107	1910	91.9	6.86	<5	
E5840632 (4281193)		<0.5	1.59	<1	5	<0.5	2	1.63	< 0.5	2	111	2160	22.6	6.93	<5	
E5840633 (4281194)		<0.5	1.62	<1	5	<0.5	4	1.56	<0.5	2	108	1810	31.9	7.31	<5	
E5840634 (4281195)		<0.5	1.66	<1	4	<0.5	2	1.56	<0.5	2	109	1870	21.5	7.01	<5	
E5840635 (4281196)		<0.5	1.68	<1	5	<0.5	2	1.70	<0.5	2	108	1830	53.3	7.14	<5	
E5840636 (4281197)		<0.5	1.53	<1	5	<0.5	2	1.44	< 0.5	2	112	1750	95.5	7.05	<5	
E5840637 (4281198)		<0.5	1.73	<1	5	<0.5	2	1.75	<0.5	2	110	1800	138	6.87	<5	
E5840638 (4281199)		<0.5	1.66	<1	4	<0.5	2	1.72	<0.5	2	111	1690	117	6.95	<5	
E5840639 (4281200)		<0.5	1.72	<1	6	<0.5	<1	1.76	<0.5	2	105	1500	148	6.39	<5	
E5840640 (4281201)		<0.5	1.73	<1	22	<0.5	4	2.54	<0.5	2	102	1730	151	6.22	<5	
E5840641 (4281202)		<0.5	1.76	<1	5	<0.5	2	2.05	<0.5	2	110	1720	281	6.97	<5	
E5840642 (4281203)		<0.5	1.87	<1	6	<0.5	3	2.07	<0.5	2	111	1780	349	6.53	<5	
E5840643 (4281204)		<0.5	1.82	<1	7	<0.5	3	2.02	<0.5	3	110	2050	553	7.05	<5	
E5840644 (4281205)		0.8	1.79	<1	6	<0.5	2	1.93	<0.5	3	135	1660	1700	7.06	<5	
E5840645 (4281206)		<0.5	1.73	<1	5	<0.5	2	1.99	<0.5	2	109	1630	404	6.93	<5	
E5840646 (4281207)		0.5	1.81	<1	4	<0.5	4	1.96	<0.5	2	108	2050	945	6.91	<5	
E5840647 (4281208)		<0.5	1.80	<1	4	<0.5	2	1.98	<0.5	2	111	1770	687	6.93	<5	
E5840648 (4281209)		<0.5	1.76	<1	4	<0.5	3	1.98	<0.5	2	113	1480	636	6.71	<5	
E5840649 (4281210)		<0.5	1.77	<1	3	<0.5	2	1.92	<0.5	2	121	1910	472	7.16	<5	
E5840650 (4281211)		0.8	3.91	142	206	0.9	3	2.87	<0.5	25	74.8	706	51.8	4.92	<5	
E5840651 (4281212)		<0.5	1.78	<1	5	<0.5	2	2.09	<0.5	2	119	1840	206	6.84	<5	
E5840652 (4281213)		0.5	1.71	<1	4	<0.5	<1	1.85	<0.5	2	123	1800	1080	6.96	<5	
E5840653 (4281214)		<0.5	1.82	<1	5	<0.5	2	2.00	<0.5	2	118	1810	362	6.87	<5	
E5840654 (4281215)		<0.5	1.74	<1	5	<0.5	2	1.92	<0.5	2	110	2100	524	6.73	<5	
E5840655 (4281216)		<0.5	1.73	<1	4	<0.5	3	1.71	<0.5	1	124	1900	976	7.01	<5	

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 220942072

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, I	CP-OES	finish					ļ
DATE SAMPLED: Se	p 06, 2022		Г	DATE RECE	IVED: Sep	07, 2022		DATE F	REPORTED	c Oct 19, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Се	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840656 (4281217)		<0.5	1.64	<1	4	<0.5	2	1.34	<0.5	1	114	1860	622	7.01	<5
E5840657 (4281218)		<0.5	1.80	<1	3	<0.5	2	1.71	<0.5	2	113	2200	202	7.02	<5
E5840658 (4281219)		<0.5	1.91	<1	5	<0.5	3	1.70	<0.5	3	114	1880	358	7.13	<5
E5840659 (4281220)		<0.5	1.76	<1	4	<0.5	2	1.70	<0.5	2	117	1860	429	6.96	<5
E5840660 (4281221)		<0.5	6.86	2	408	1.1	2	1.88	<0.5	22	7.3	31.1	11.6	1.90	14
E5840661 (4281222)		<0.5	1.72	<1	4	<0.5	2	1.64	<0.5	1	114	2200	375	7.17	<5
E5840662 (4281223)		<0.5	1.77	<1	3	<0.5	2	1.69	<0.5	1	123	1750	385	7.33	<5
E5840663 (4281224)		<0.5	1.87	<1	5	<0.5	4	1.80	<0.5	2	125	1840	280	7.58	<5
E5840664 (4281225)		<0.5	1.69	<1	5	<0.5	3	1.92	<0.5	1	116	1690	158	6.91	<5
E5840665 (4281226)		<0.5	1.69	<1	3	<0.5	4	1.70	<0.5	2	118	2300	86.2	7.09	<5
E5840666 (4281227)		<0.5	1.76	22	4	<0.5	3	1.54	<0.5	1	124	1940	89.2	7.42	<5
E5840667 (4281228)		<0.5	1.67	18	5	<0.5	3	1.20	<0.5	2	117	1950	93.0	7.00	<5
E5840668 (4281229)		<0.5	1.77	<1	5	<0.5	4	1.46	<0.5	2	127	2340	179	7.31	<5
E5840669 (4281230)		0.6	1.68	<1	4	<0.5	3	1.68	<0.5	2	133	2110	790	7.69	<5
E5840670 (4281231)		<0.5	1.68	<1	4	<0.5	3	1.73	<0.5	2	134	1960	747	7.42	<5
E5840671 (4281232)		<0.5	1.70	<1	4	<0.5	2	1.61	<0.5	2	126	1990	388	7.47	<5
E5840672 (4281233)		<0.5	1.73	<1	4	<0.5	2	1.84	<0.5	2	120	2330	121	7.25	<5
E5840673 (4281234)		<0.5	1.74	<1	4	<0.5	3	1.70	<0.5	1	119	1930	73.8	7.32	<5
E5840674 (4281235)		<0.5	1.84	<1	4	<0.5	4	2.25	<0.5	2	105	1590	118	7.28	<5
E5840675 (4281236)		<0.5	1.87	<1	4	<0.5	4	2.01	<0.5	1	116	2200	239	7.49	<5
E5840676 (4281237)		<0.5	1.88	<1	4	<0.5	3	2.16	<0.5	2	113	1920	176	7.23	<5
E5840677 (4281238)		<0.5	1.90	<1	6	<0.5	3	1.95	<0.5	2	111	1930	65.2	6.94	<5
E5840678 (4281239)		<0.5	1.84	<1	7	<0.5	2	1.99	<0.5	2	105	1790	97.0	7.14	<5
E5840679 (4281240)		<0.5	1.93	<1	4	<0.5	2	2.17	<0.5	1	106	2120	152	7.38	<5
E5840680 (4281241)		<0.5	4.06	143	214	1.0	4	2.96	<0.5	25	75.0	702	51.8	5.10	<5
E5840681 (4281242)		<0.5	1.91	<1	4	<0.5	3	1.99	<0.5	2	107	1640	189	7.26	<5
E5840682 (4281243)		<0.5	1.83	<1	5	<0.5	2	2.00	<0.5	1	106	1590	165	7.01	<5
E5840683 (4281244)		<0.5	1.80	<1	10	<0.5	4	2.09	<0.5	1	104	1530	159	6.67	<5

Certified By:

Sherin Moussay

Certificate of Analysis

AGAT WORK ORDER: 22O942072

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Sep	p 06, 2022		[DATE RECE	IVED: Sep	07, 2022		DATE	REPORTED): Oct 19, 20)22	SAM	PLE TYPE:	Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840624 (4281185)		<1	0.03	5	2	20.7	1130	<0.5	0.01	1520	91	12	<10	0.06	12
E5840625 (4281186)		<1	0.01	3	2	19.8	1000	<0.5	0.01	1540	86	13	<10	0.10	10
E5840626 (4281187)		<1	<0.01	2	10	5.81	1360	<0.5	<0.01	136	231	6	<10	0.11	2
E5840627 (4281188)		<1	0.02	4	2	19.6	1110	<0.5	0.02	1360	76	12	<10	0.06	10
E5840628 (4281189)		<1	0.03	5	2	19.6	1260	<0.5	0.02	1380	83	11	<10	0.08	13
E5840629 (4281190)		<1	0.02	4	2	19.9	1230	<0.5	0.02	1530	72	12	<10	0.08	13
E5840630 (4281191)		<1	1.28	7	8	0.51	253	<0.5	2.85	17.3	196	4	<10	0.01	1
E5840631 (4281192)		<1	0.02	5	2	19.9	1280	<0.5	0.01	1640	87	9	<10	0.07	15
E5840632 (4281193)		<1	0.02	5	1	19.6	1180	<0.5	0.02	1520	87	11	<10	0.06	16
E5840633 (4281194)		<1	0.02	5	2	19.7	1150	<0.5	0.02	1320	94	11	<10	0.06	13
E5840634 (4281195)		<1	0.02	5	1	20.1	1140	< 0.5	0.02	1350	89	11	<10	0.06	14
E5840635 (4281196)		<1	0.02	5	1	19.8	1160	<0.5	0.02	1410	76	11	<10	0.06	16
E5840636 (4281197)		<1	0.02	5	1	20.2	1110	< 0.5	0.02	1580	98	10	<10	0.07	13
E5840637 (4281198)		<1	0.03	5	1	20.1	1170	<0.5	0.02	1540	91	10	<10	0.07	12
E5840638 (4281199)		<1	0.02	4	1	19.2	1130	< 0.5	0.02	1530	76	11	<10	0.06	12
E5840639 (4281200)		<1	0.02	4	2	19.1	1120	<0.5	0.02	1440	96	10	<10	0.06	11
E5840640 (4281201)		<1	0.02	5	1	18.8	1120	<0.5	0.01	1410	97	9	<10	0.07	11
E5840641 (4281202)		<1	0.02	5	2	19.5	1160	<0.5	0.02	1470	90	10	<10	0.07	13
E5840642 (4281203)		<1	0.03	5	2	18.9	1160	<0.5	0.02	1510	102	11	<10	0.07	11
E5840643 (4281204)		<1	0.03	5	2	19.5	1210	<0.5	0.02	1700	113	11	<10	0.09	16
E5840644 (4281205)		<1	0.03	5	2	19.1	1220	<0.5	0.02	2090	139	15	<10	0.14	13
E5840645 (4281206)		<1	0.02	4	1	19.5	1120	<0.5	0.02	1470	80	11	<10	0.08	10
E5840646 (4281207)		<1	0.02	5	1	19.6	1140	<0.5	0.02	1770	92	12	<10	0.13	16
E5840647 (4281208)		<1	0.02	4	2	19.3	1160	< 0.5	0.02	1520	83	13	<10	0.09	13
E5840648 (4281209)		<1	0.03	4	1	19.0	1130	<0.5	0.02	1530	89	11	<10	0.11	10
E5840649 (4281210)		<1	0.02	5	1	19.9	1140	<0.5	0.02	1540	77	13	<10	0.13	14
E5840650 (4281211)		<1	0.65	15	36	13.4	1100	2.2	0.84	1920	220	18	<10	0.30	6
E5840651 (4281212)		<1	0.03	5	1	19.5	1130	<0.5	0.02	1140	86	11	<10	0.11	13
E5840652 (4281213)		<1	0.02	5	1	19.6	1140	<0.5	0.02	1430	82	14	<10	0.16	13
E5840653 (4281214)		<1	0.02	4	1	19.5	1150	<0.5	0.02	1440	85	11	<10	0.09	12
E5840654 (4281215)		<1	0.03	5	2	19.0	1100	<0.5	0.02	1490	84	11	<10	0.10	17
E5840655 (4281216)		<1	0.02	5	1	19.8	1120	<0.5	0.02	1850	84	13	<10	0.14	13

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O942072

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 06, 2022		Г	DATE RECE	IVED: Sep	07, 2022		DATE I	REPORTED): Oct 19, 20)22	SAM	PLE TYPE:	Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840656 (4281217)		<1	0.02	4	1	19.5	1100	<0.5	0.02	1510	72	12	<10	0.10	14
E5840657 (4281218)		<1	0.02	5	2	19.5	1120	<0.5	0.02	1390	93	10	<10	0.06	17
E5840658 (4281219)		<1	0.02	5	3	19.0	1120	<0.5	0.02	1320	115	12	<10	0.08	16
E5840659 (4281220)		<1	0.02	5	1	19.2	1090	<0.5	0.02	1330	71	13	<10	0.10	14
E5840660 (4281221)		<1	1.30	10	10	0.73	326	<0.5	3.10	26.0	275	3	<10	0.01	3
E5840661 (4281222)		<1	0.01	5	2	19.2	1150	<0.5	0.02	1320	82	13	<10	0.10	15
E5840662 (4281223)		<1	0.02	4	2	19.5	1090	<0.5	0.02	1420	74	12	<10	0.11	14
E5840663 (4281224)		<1	0.02	5	2	19.7	1210	<0.5	0.02	1420	86	11	<10	0.10	13
E5840664 (4281225)		<1	0.02	4	1	18.9	1100	<0.5	0.02	1300	78	10	<10	0.09	12
E5840665 (4281226)		<1	0.02	5	2	19.6	1100	<0.5	0.02	1410	79	12	<10	0.08	16
E5840666 (4281227)		<1	0.02	5	2	20.2	1200	<0.5	0.01	1490	78	12	<10	0.09	18
E5840667 (4281228)		<1	0.02	5	2	19.3	1270	<0.5	<0.01	1440	76	11	<10	0.07	16
E5840668 (4281229)		<1	0.02	5	3	19.7	1250	<0.5	0.01	1550	105	13	<10	0.10	16
E5840669 (4281230)		<1	0.02	5	2	19.7	1120	<0.5	0.02	2440	67	14	<10	0.28	17
E5840670 (4281231)		<1	0.02	5	1	19.5	1100	<0.5	0.02	2490	78	14	<10	0.30	13
E5840671 (4281232)		<1	0.02	5	1	20.0	1190	<0.5	0.02	1830	85	14	<10	0.19	15
E5840672 (4281233)		<1	0.02	5	1	19.8	1200	<0.5	0.02	1340	84	12	<10	0.09	17
E5840673 (4281234)		<1	0.03	4	2	20.1	1160	<0.5	0.02	1480	83	11	<10	0.09	14
E5840674 (4281235)		<1	0.01	4	2	18.7	1090	<0.5	0.02	1500	86	12	<10	0.13	12
E5840675 (4281236)		<1	0.02	5	2	19.3	1110	<0.5	0.02	2130	77	12	<10	0.21	15
E5840676 (4281237)		<1	0.02	5	2	19.2	1160	<0.5	0.03	2000	85	13	<10	0.19	16
E5840677 (4281238)		<1	0.02	5	2	19.0	1180	<0.5	0.02	1640	91	13	<10	0.15	15
E5840678 (4281239)		<1	0.03	4	3	18.9	1160	<0.5	0.02	1500	84	11	<10	0.13	12
E5840679 (4281240)		<1	0.03	5	2	19.4	1160	<0.5	0.03	1340	81	12	<10	0.13	15
E5840680 (4281241)		<1	0.67	16	38	13.8	1130	1.6	0.87	1930	244	16	<10	0.33	6
E5840681 (4281242)		<1	0.02	4	2	19.1	1150	<0.5	0.03	1420	94	11	<10	0.17	13
E5840682 (4281243)		<1	0.03	4	2	18.7	1140	<0.5	0.02	1290	90	11	<10	0.15	12
E5840683 (4281244)		<1	0.02	4	3	18.6	1200	<0.5	0.02	1390	85	10	<10	0.16	14

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O942072

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - N	letals Pa	ickage, I	CP-OES	finish					
DATE SAMPLED: Se	p 06, 2022		Г	DATE RECE	IVED: Sep	07, 2022		DATE I	REPORTED	: Oct 19, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840624 (4281185)		12	<10	<5	5	<10	19	<5	0.10	<5	<5	52.6	<1	4	48.1
E5840625 (4281186)		12	<10	<5	6	<10	20	<5	0.08	<5	<5	49.6	<1	3	42.7
E5840626 (4281187)		31	<10	<5	47	<10	13	<5	0.39	<5	8	206	<1	12	51.9
E5840627 (4281188)		13	<10	<5	9	<10	16	<5	0.09	<5	5	56.6	<1	4	61.2
E5840628 (4281189)		13	<10	<5	9	<10	18	<5	0.11	<5	<5	69.6	<1	4	68.7
E5840629 (4281190)		14	<10	<5	5	<10	21	<5	0.10	<5	<5	65.2	<1	4	59.8
E5840630 (4281191)		5	<10	<5	359	<10	<10	<5	0.13	<5	<5	39.4	<1	6	16.0
E5840631 (4281192)		13	<10	<5	5	<10	20	<5	0.10	<5	<5	58.9	<1	4	56.3
E5840632 (4281193)		13	<10	<5	5	<10	18	<5	0.10	<5	<5	60.8	<1	4	58.0
E5840633 (4281194)		13	<10	<5	5	<10	21	<5	0.11	<5	<5	58.0	<1	4	55.1
E5840634 (4281195)		12	<10	<5	5	<10	17	<5	0.10	<5	<5	55.6	<1	4	56.4
E5840635 (4281196)		13	<10	<5	5	<10	19	<5	0.10	<5	<5	60.3	<1	4	56.3
E5840636 (4281197)		12	<10	<5	4	<10	18	<5	0.09	<5	5	55.4	<1	3	53.6
E5840637 (4281198)		13	<10	<5	5	<10	19	<5	0.11	<5	<5	60.6	<1	4	54.1
E5840638 (4281199)		13	<10	<5	6	<10	18	<5	0.10	<5	<5	60.6	<1	4	51.0
E5840639 (4281200)		13	<10	<5	7	<10	16	<5	0.10	<5	<5	58.9	<1	4	52.2
E5840640 (4281201)		12	<10	<5	35	<10	19	<5	0.10	<5	<5	63.9	<1	4	52.9
E5840641 (4281202)		14	<10	<5	7	<10	18	<5	0.11	<5	<5	65.2	<1	4	53.9
E5840642 (4281203)		14	<10	<5	8	<10	20	<5	0.11	<5	<5	65.5	<1	4	52.9
E5840643 (4281204)		14	<10	<5	6	<10	16	<5	0.12	<5	<5	68.2	<1	5	63.5
E5840644 (4281205)		13	<10	<5	8	<10	20	<5	0.14	<5	<5	66.4	<1	6	79.2
E5840645 (4281206)		14	<10	<5	8	<10	20	<5	0.10	<5	<5	63.5	<1	4	54.3
E5840646 (4281207)		14	<10	<5	7	<10	16	<5	0.11	<5	<5	70.5	<1	4	59.9
E5840647 (4281208)		14	<10	<5	7	<10	19	<5	0.11	<5	<5	68.8	<1	4	63.1
E5840648 (4281209)		13	<10	<5	6	<10	18	<5	0.11	<5	<5	62.7	<1	4	52.9
E5840649 (4281210)		14	<10	<5	5	<10	17	<5	0.10	<5	<5	66.9	<1	4	57.2
E5840650 (4281211)		12	<10	<5	72	<10	13	5	0.17	<5	<5	68.5	3	9	93.6
E5840651 (4281212)		14	<10	<5	7	<10	20	<5	0.11	<5	<5	69.9	<1	4	51.6
E5840652 (4281213)		14	<10	<5	8	<10	18	<5	0.10	<5	5	64.1	<1	4	57.7
E5840653 (4281214)		14	<10	<5	10	<10	18	<5	0.11	<5	<5	66.9	<1	4	53.8
E5840654 (4281215)		13	<10	<5	6	<10	16	<5	0.11	<5	<5	70.3	1	4	50.9
E5840655 (4281216)		14	<10	<5	7	<10	17	<5	0.10	<5	<5	65.1	<1	4	59.0

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O942072

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, l	CP-OES	finish					
DATE SAMPLED: Se	p 06, 2022		Г	DATE RECE	EIVED: Sep	07, 2022		DATE F	REPORTED	: Oct 19, 20	22	SAM	PLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840656 (4281217)		13	<10	<5	5	<10	23	<5	0.09	<5	<5	61.0	1	4	57.0
E5840657 (4281218)		14	<10	<5	6	<10	19	<5	0.13	<5	<5	72.6	<1	4	49.7
E5840658 (4281219)		14	<10	<5	7	<10	20	<5	0.13	<5	<5	72.0	<1	5	54.5
E5840659 (4281220)		14	<10	<5	6	<10	19	<5	0.10	<5	5	66.3	<1	4	54.0
E5840660 (4281221)		7	<10	<5	390	<10	<10	<5	0.21	<5	<5	55.3	<1	7	29.2
E5840661 (4281222)		14	<10	<5	7	<10	20	<5	0.10	<5	<5	72.4	<1	4	55.8
E5840662 (4281223)		14	<10	<5	6	<10	19	<5	0.10	<5	<5	67.0	<1	4	51.2
E5840663 (4281224)		14	<10	<5	8	<10	20	<5	0.11	<5	<5	69.1	<1	4	55.1
E5840664 (4281225)		14	<10	<5	9	<10	20	<5	0.10	<5	<5	64.8	<1	4	48.4
E5840665 (4281226)		14	<10	<5	6	<10	20	<5	0.10	<5	<5	70.2	<1	4	53.6
E5840666 (4281227)		14	<10	<5	4	<10	20	<5	0.10	<5	<5	64.9	<1	4	51.4
E5840667 (4281228)		14	<10	<5	4	<10	18	<5	0.09	<5	<5	65.3	<1	4	52.3
E5840668 (4281229)		14	<10	<5	5	<10	19	<5	0.12	<5	<5	74.5	<1	5	58.5
E5840669 (4281230)		13	<10	<5	6	<10	21	<5	0.10	<5	5	69.3	<1	4	61.3
E5840670 (4281231)		14	<10	<5	7	<10	22	<5	0.10	<5	<5	67.1	<1	4	58.0
E5840671 (4281232)		13	<10	<5	7	<10	21	<5	0.10	<5	<5	69.5	<1	4	59.3
E5840672 (4281233)		13	<10	<5	6	<10	20	<5	0.10	<5	<5	72.8	<1	4	55.0
E5840673 (4281234)		14	<10	<5	7	<10	20	<5	0.10	<5	<5	67.4	<1	4	51.9
E5840674 (4281235)		14	<10	<5	6	<10	22	<5	0.11	<5	5	64.0	<1	4	53.6
E5840675 (4281236)		15	<10	<5	11	<10	21	<5	0.11	<5	<5	77.2	<1	4	61.5
E5840676 (4281237)		15	<10	<5	10	<10	20	<5	0.11	<5	<5	73.8	<1	4	56.9
E5840677 (4281238)		15	<10	<5	7	<10	22	<5	0.11	<5	5	74.5	<1	4	49.7
E5840678 (4281239)		14	<10	<5	10	<10	20	<5	0.11	<5	<5	68.0	<1	4	53.4
E5840679 (4281240)		15	<10	<5	7	<10	20	<5	0.11	<5	<5	75.2	<1	4	55.6
E5840680 (4281241)		12	<10	<5	75	<10	14	5	0.18	<5	<5	69.6	4	9	103
E5840681 (4281242)		14	<10	<5	7	<10	21	<5	0.11	<5	<5	66.6	<1	4	52.8
E5840682 (4281243)		14	<10	<5	9	<10	20	<5	0.10	<5	<5	62.6	<1	4	47.2
E5840683 (4281244)		13	<10	<5	5	<10	21	<5	0.10	<5	<5	60.5	<1	4	52.4

Certified By:

AGAT WORK ORDER: 220942072

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Se	p 06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 19, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840624 (4281185)		16			
E5840625 (4281186)		13			
E5840626 (4281187)		39			
E5840627 (4281188)		14			
E5840628 (4281189)		14			
E5840629 (4281190)		15			
E5840630 (4281191)		73			
E5840631 (4281192)		16			
E5840632 (4281193)		15			
E5840633 (4281194)		16			
E5840634 (4281195)		15			
E5840635 (4281196)		15			
E5840636 (4281197)		13			
E5840637 (4281198)		15			
E5840638 (4281199)		15			
E5840639 (4281200)		15			
E5840640 (4281201)		15			
E5840641 (4281202)		16			
E5840642 (4281203)		17			
E5840643 (4281204)		19			
E5840644 (4281205)		22			
E5840645 (4281206)		15			
E5840646 (4281207)		15			
E5840647 (4281208)		15			
E5840648 (4281209)		15			
E5840649 (4281210)		14			
E5840650 (4281211)		66			
E5840651 (4281212)		16			
E5840652 (4281213)		14			
E5840653 (4281214)		15			
E5840654 (4281215)		14			
E5840655 (4281216)		14			

AGAT WORK ORDER: 220942072

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	Package, ICP-OES finish	
DATE SAMPLED: Sep	06, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 19, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840656 (4281217)		14			
E5840657 (4281218)		16			
E5840658 (4281219)		21			
E5840659 (4281220)		14			
E5840660 (4281221)		47			
E5840661 (4281222)		14			
E5840662 (4281223)		15			
E5840663 (4281224)		17			
E5840664 (4281225)		14			
E5840665 (4281226)		14			
E5840666 (4281227)		14			
E5840667 (4281228)		13			
E5840668 (4281229)		19			
E5840669 (4281230)		15			
E5840670 (4281231)		15			
E5840671 (4281232)		14			
E5840672 (4281233)		14			
E5840673 (4281234)		14			
E5840674 (4281235)		17			
E5840675 (4281236)		15			
E5840676 (4281237)		15			
E5840677 (4281238)		15			
E5840678 (4281239)		15			
E5840679 (4281240)		15			
E5840680 (4281241)		66			
E5840681 (4281242)		16			
E5840682 (4281243)		15			
E5840683 (4281244)		14			

AGAT WORK ORDER: 22O942072

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish

DATE SAMPLED: Sep 06, 2022 DATE RECEIVED: Sep 07, 2022 DATE REPORTED: Oct 19, 2022 SAMPLE TYPE: Drill Core

Comments: RDL - Reported Detection Limit

4281185-4281244 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

AGAT WORK ORDER: 220942072

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

OLILIAI IA/IME. OIII						
			(20)	2-555) Fire Assay - Au, Pt, Pd ⁻	Trace Levels, ICP-OES finish	
DATE SAMPLED: Sep	06, 2022			DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 19, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840624 (4281185)		0.002	0.008	0.007		
E5840625 (4281186)		0.003	0.008	0.008		
E5840626 (4281187)		0.001	0.009	0.011		
E5840627 (4281188)		0.001	0.001	<0.005		
E5840628 (4281189)		0.002	0.005	<0.005		
E5840629 (4281190)		0.003	0.006	<0.005		
E5840630 (4281191)		< 0.001	< 0.001	<0.005		
E5840631 (4281192)		0.014	0.079	0.026		
E5840632 (4281193)		< 0.001	0.050	0.011		
E5840633 (4281194)		< 0.001	0.013	0.028		
E5840634 (4281195)		< 0.001	0.068	0.092		
E5840635 (4281196)		0.011	0.679	0.067		
E5840636 (4281197)		0.006	0.042	0.005		
E5840637 (4281198)		0.001	0.019	0.012		
E5840638 (4281199)		< 0.001	< 0.001	<0.005		
E5840639 (4281200)		0.001	0.003	<0.005		
E5840640 (4281201)		0.001	0.003	<0.005		
E5840641 (4281202)		0.002	0.013	0.008		
E5840642 (4281203)		0.006	0.006	0.012		
E5840643 (4281204)		0.007	0.010	0.006		
E5840644 (4281205)		0.011	0.022	0.010		
E5840645 (4281206)		0.002	0.007	<0.005		
E5840646 (4281207)		0.003	0.011	<0.005		
E5840647 (4281208)		0.002	0.008	<0.005		
E5840648 (4281209)		0.003	0.007	<0.005		
E5840649 (4281210)		0.002	0.010	<0.005		
E5840651 (4281212)		0.003	0.016	0.007		
E5840652 (4281213)		0.002	0.012	0.007		
E5840653 (4281214)		0.001	0.010	<0.005		
E5840654 (4281215)		0.001	0.009	<0.005		
E5840655 (4281216)		0.003	0.044	0.009		
E5840656 (4281217)		0.001	0.021	0.006		

Certified By:

Sherin Moussay

AGAT WORK ORDER: 220942072

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			(202	2-555) Fire Assay - Au, Pt, Pd	Trace Levels, ICP-OES finish	
DATE SAMPLED: Sep	06, 2022			DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 19, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840657 (4281218)		<0.001	0.007	<0.005		
E5840658 (4281219)		<0.001	0.005	0.005		
E5840659 (4281220)		0.001	0.007	0.005		
E5840660 (4281221)		0.056	0.001	<0.005		
E5840661 (4281222)		<0.001	0.004	<0.005		
E5840662 (4281223)		0.001	0.010	<0.005		
E5840663 (4281224)		0.001	0.003	<0.005		
E5840664 (4281225)		<0.001	0.001	<0.005		
E5840665 (4281226)		< 0.001	0.011	<0.005		
E5840666 (4281227)		0.001	0.013	<0.005		
E5840667 (4281228)		0.001	0.009	<0.005		
E5840668 (4281229)		0.001	0.011	<0.005		
E5840669 (4281230)		0.001	0.026	<0.005		
E5840670 (4281231)		0.006	0.073	0.014		
E5840671 (4281232)		0.003	0.039	0.009		
E5840672 (4281233)		< 0.001	0.001	<0.005		
E5840673 (4281234)		0.001	0.010	<0.005		
E5840674 (4281235)		0.005	0.035	0.011		
E5840675 (4281236)		0.002	0.033	0.011		
E5840676 (4281237)		0.005	0.049	0.014		
E5840677 (4281238)		0.004	0.019	<0.005		
E5840678 (4281239)		<0.001	0.010	<0.005		
E5840679 (4281240)		0.001	0.027	0.007		
E5840681 (4281242)		0.001	0.018	0.005		
E5840682 (4281243)		< 0.001	0.011	<0.005		
E5840683 (4281244)		0.022	0.026	0.008		

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1046 Gorham St, Thunder Bay, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

AGAT WORK ORDER: 22O942072

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Crushing)												
DATE SAMPLED: Sep 06, 2022 DATE RECEIVED: Sep 07, 2022 DATE REPORTED: Oct 19, 2022 SAMPLE TYPE: Drill Core													
	Analyte: Cr	rush-Pass %											
	Unit:	%											
Sample ID (AGAT ID)	RDL:	0.01											
E5840624 (4281185)		81.91											
E5840643 (4281204)		79.99											
E5840663 (4281224)		78.44											
E5840683 (4281244)		84.97											

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O942072

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passing	g (Pulverizing)								
DATE SAMPLED: Sep 06, 2022 DATE RECEIVED: Sep 07, 2022 DATE REPORTED: Oct 19, 2022 SAMPLE TYPE: Drill Core Analyte: Pul-Pass %												
	Analyte: Pu	ıl-Pass %										
	Unit:	%										
Sample ID (AGAT ID)	RDL:	0.01										
E5840624 (4281185)		87.93										
E5840643 (4281204)		88.04										
E5840663 (4281224)		85.91										
E5840683 (4281244)		86.04										

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220942072 PROJECT: WR-22-CORE-09 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(201	1-070) 4	Acid Di	gest - N	letals F	Package,	ICP-O	ES finis	h				
		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3			REPLIC	ATE #4	
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Ag	4281185	< 0.5	< 0.5	0.0%	4281199	< 0.5	< 0.5	0.0%	4281210	< 0.5	< 0.5	0.0%	4281225	< 0.5	< 0.5	0.0%
Al	4281185	1.57	1.51	3.9%	4281199	1.66	1.73	4.1%	4281210	1.77	1.73	2.3%	4281225	1.69	1.65	2.4%
As	4281185	< 1	< 1	0.0%	4281199	< 1	< 1	0.0%	4281210	< 1	< 1	0.0%	4281225	< 1	< 1	0.0%
Ва	4281185	7	6	15.4%	4281199	4	4	0.0%	4281210	3	3	0.0%	4281225	5	5	0.0%
Be	4281185	< 0.5	< 0.5	0.0%	4281199	< 0.5	< 0.5	0.0%	4281210	< 0.5	< 0.5	0.0%	4281225	< 0.5	< 0.5	0.0%
Bi	4281185	4	4	0.0%	4281199	2	3		4281210	2	4		4281225	3	2	
Ca	4281185	1.05	1.00	4.9%	4281199	1.72	1.78	3.4%	4281210	1.92	1.86	3.2%	4281225	1.92	1.88	2.1%
Cd	4281185	< 0.5	< 0.5	0.0%	4281199	< 0.5	< 0.5	0.0%	4281210	< 0.5	< 0.5	0.0%	4281225	< 0.5	< 0.5	0.0%
Ce	4281185	3	3	0.0%	4281199	2	2	0.0%	4281210	2	2	0.0%	4281225	1	1	0.0%
Co	4281185	113	111	1.8%	4281199	111	112	0.9%	4281210	121	124	2.4%	4281225	116	115	0.9%
Cr	4281185	1620	1860	13.8%	4281199	1690	1840	8.5%	4281210	1910	2240	15.9%	4281225	1690	1560	8.0%
Cu	4281185	33.0	31.3	5.3%	4281199	117	120	2.5%	4281210	472	458	3.0%	4281225	158	157	0.6%
Fe	4281185	7.44	7.22	3.0%	4281199	6.95	7.23	3.9%	4281210	7.16	7.11	0.7%	4281225	6.91	6.75	2.3%
Ga	4281185	< 5	< 5	0.0%	4281199	< 5	< 5	0.0%	4281210	< 5	< 5	0.0%	4281225	< 5	< 5	0.0%
In	4281185	< 1	< 1	0.0%	4281199	< 1	< 1	0.0%	4281210	< 1	< 1	0.0%	4281225	< 1	< 1	0.0%
K	4281185	0.03	0.03	0.0%	4281199	0.02	0.02	0.0%	4281210	0.02	0.02	0.0%	4281225	0.02	0.02	0.0%
La	4281185	5	5	0.0%	4281199	4	5	22.2%	4281210	5	5	0.0%	4281225	4	4	0.0%
Li	4281185	2	2	0.0%	4281199	1	1	0.0%	4281210	1	1	0.0%	4281225	1	1	0.0%
Mg	4281185	20.7	19.9	3.9%	4281199	19.2	19.9	3.6%	4281210	19.9	19.6	1.5%	4281225	18.9	18.5	2.1%
Mn	4281185	1130	1090	3.6%	4281199	1130	1170	3.5%	4281210	1140	1110	2.7%	4281225	1100	1070	2.8%
Мо	4281185	< 0.5	< 0.5	0.0%	4281199	< 0.5	< 0.5	0.0%	4281210	< 0.5	< 0.5	0.0%	4281225	< 0.5	< 0.5	0.0%
Na	4281185	0.01	0.01	0.0%	4281199	0.02	0.02	0.0%	4281210	0.02	0.02	0.0%	4281225	0.02	0.02	0.0%
Ni	4281185	1520	1480	2.7%	4281199	1530	1540	0.7%	4281210	1540	1550	0.6%	4281225	1300	1280	1.6%
Р	4281185	91	89	2.2%	4281199	76	90	16.9%	4281210	77	93	18.8%	4281225	78	82	5.0%
Pb	4281185	12	10	18.2%	4281199	11	10	9.5%	4281210	13	12	8.0%	4281225	10	11	9.5%
Rb	4281185	< 10	< 10	0.0%	4281199	< 10	< 10	0.0%	4281210	< 10	< 10	0.0%	4281225	< 10	< 10	0.0%
S	4281185	0.06	0.06	0.0%	4281199	0.063	0.076	18.7%	4281210	0.13	0.13	0.0%	4281225	0.09	0.09	0.0%
Sb	4281185	12	16	28.6%	4281199	12	14	15.4%	4281210	14	16	13.3%	4281225	12	12	0.0%
Sc	4281185	12	11	8.7%	4281199	13	13	0.0%	4281210	14	14	0.0%	4281225	14	13	7.4%
Se	4281185	< 10	< 10	0.0%	4281199	< 10	< 10	0.0%	4281210	< 10	< 10	0.0%	4281225	< 10	< 10	0.0%
Sn	4281185	< 5	< 5	0.0%	4281199	< 5	< 5	0.0%	4281210	< 5	< 5	0.0%	4281225	< 5	< 5	0.0%

Quality Assurance - Replicate AGAT WORK ORDER: 220942072 PROJECT: WR-22-CORE-09 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontai	ne

CLIENT NAM	IE: ORFORI	J MIINING	CORP							AIIEI	NIION IC	r: Arnaud	Fontaine			
Sr	4281185	5	5	0.0%	4281199	6	6	0.0%	4281210	5	5	0.0%	4281225	9	8	11.8%
Та	4281185	< 10	< 10	0.0%	4281199	< 10	< 10	0.0%	4281210	< 10	< 10	0.0%	4281225	< 10	< 10	0.0%
Te	4281185	19	18	5.4%	4281199	18	20	10.5%	4281210	17	19	11.1%	4281225	20	19	5.1%
Th	4281185	< 5	< 5	0.0%	4281199	< 5	< 5	0.0%	4281210	< 5	< 5	0.0%	4281225	< 5	< 5	0.0%
Ti	4281185	0.10	0.10	0.0%	4281199	0.098	0.105	6.9%	4281210	0.10	0.10	0.0%	4281225	0.095	0.092	3.2%
TI	4281185	< 5	< 5	0.0%	4281199	< 5	< 5	0.0%	4281210	< 5	< 5	0.0%	4281225	< 5	< 5	0.0%
U	4281185	< 5	< 5	0.0%	4281199	< 5	< 5	0.0%	4281210	< 5	< 5	0.0%	4281225	< 5	< 5	0.0%
V	4281185	52.6	55.7	5.7%	4281199	60.6	63.2	4.2%	4281210	66.9	72.1	7.5%	4281225	64.8	61.2	5.7%
W	4281185	< 1	< 1	0.0%	4281199	< 1	< 1	0.0%	4281210	< 1	< 1	0.0%	4281225	< 1	< 1	0.0%
Υ	4281185	4	4	0.0%	4281199	4	4	0.0%	4281210	4	4	0.0%	4281225	4	4	0.0%
Zn	4281185	48.1	49.0	1.9%	4281199	51.0	53.0	3.8%	4281210	57.2	57.7	0.9%	4281225	48.4	47.8	1.2%
Zr	4281185	16	15	6.5%	4281199	15	15	0.0%	4281210	14	14	0.0%	4281225	14	14	0.0%
		REPLIC	ATE #5													
Parameter	Sample ID	Original	Replicate	RPD												
Ag	4281235	< 0.5	< 0.5	0.0%												
Al	4281235	1.84	1.84	0.0%												
As	4281235	< 1	< 1	0.0%												
Ва	4281235	4	4	0.0%												
Be	4281235	< 0.5	< 0.5	0.0%												
Bi	4281235	4	3	28.6%												
Ca	4281235	2.25	2.32	3.1%												
Cd	4281235	< 0.5	< 0.5	0.0%												
Ce	4281235	2	1													
Co	4281235	105	104	1.0%												
Cr	4281235	1590	1650	3.7%												
Cu	4281235	118	114	3.4%												
Fe	4281235	7.28	7.36	1.1%												
Ga	4281235	< 5	< 5	0.0%												
In	4281235	< 1	< 1	0.0%												
K	4281235	0.015	0.015	0.0%												
La	4281235	4	4	0.0%												
Li	4281235	2	2	0.0%												
Mg	4281235	18.7	18.6	0.5%												
Mn	4281235	1090	1100	0.9%												

Quality Assurance - Replicate AGAT WORK ORDER: 220942072 PROJECT: WR-22-CORE-09 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP ATTENTION TO: Arnaud Fontaine 4281235 < 0.5 0.0% < 0.5 Na 4281235 0.02 0.02 0.0% Ni 4281235 1500 1500 0.0% Р 4281235 86 88 2.3% Pb 4281235 12 11 8.7% Rb 4281235 < 10 0.0% < 10 S 4281235 0.133 0.140 5.1% Sb 4281235 12 14 15.4% 4281235 7.4% Sc 14 13 Se 4281235 < 10 < 10 0.0% 4281235 < 5 < 5 0.0% Sn Sr 4281235 6 6 0.0% 4281235 Ta < 10 < 10 0.0% 4281235 Te 22 21 4.7% Th 4281235 < 5 < 5 0.0% Τi 4281235 0.11 0.11 0.0% ΤI 4281235 < 5 < 5 0.0% U 4281235 5 6 18.2% V 4281235 64.0 65.9 2.9% W 4281235 < 1 < 1 0.0% Υ 4 4 4281235 0.0% Zn 4281235 53.6 56.2 4.7% Zr 4281235 17 16 6.1% (202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish REPLICATE #1 REPLICATE #2 REPLICATE #3 REPLICATE #4 Sample ID Original Replicate RPD Sample ID Original Replicate RPD Sample ID Original Replicate **RPD** Sample ID Original Replicate **RPD** Parameter 4281185 0.002 < 0.001 0% 4281199 < 0.001 0.0% 4281210 0.002 0.002 0% 4281225 < 0.001 < 0.001 0.0% < 0.001 Pd 4281185 0.008 0.007 13.3% 4281199 < 0.001 <0.001 0.0% 4281210 0.010 0.010 0% 4281225 0.001 0.002 66.7% Pt 4281185 0.007 < 0.005 54.5% 4281199 < 0.005 < 0.005 0.0% 4281210 < 0.005 < 0.005 0% 4281225 < 0.005 < 0.005 0.0% REPLICATE #5 Sample ID Original Replicate RPD Parameter 0.005 Au 4281235 0.003 50% Pd 4281235 0.035 0.031 12.1%

4281235

0.011

0.008

31.6%

Pt

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220942072 PROJECT: WR-22-CORE-09 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(20	1-070) 4	Acid [Digest -	Metals I	Package	e, ICP-0	DES fini	ish				
		CRM #1	(ref.Till-2)			CRM #2	(ref.GTS-2a)			CRM #3 (ref.CGL-015)	CRM #4 (ref.Till-2)			
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Al	8.47	8.37	99%		6.96	7.02	101%		13.0	12.4	96%		8.47	8.54	101%	
As	26	27	106%		124	130	105%						26	29	113%	
Ва	540	517	96%		186	187	101%		1305	1289	99%		540	532	98%	
Be	4.0	3.4	84%										4.0	3.6	89%	
Ca	0.907	0.884	97%		4.01	3.79	94%		1.42	1.28	90%		0.907	0.872	96%	
Ce	98	99	101%		24	23	95%		58.24	56.68	97%		98	101	104%	
Со	15	12	82%		22.1	19.1	86%						15	12	81%	
Cr	60.3	64	106%										60.3	66.5	110%	
Cu	150	151	101%		88.6	85.5	96%						150	154	103%	
Fe	3.77	3.56	94%		7.56	6.89	91%		3.27	2.78	85%		3.77	3.56	94%	
Ga									22.63	27	119%					
K					2.021	2.121	105%		3.69	3.77	102%					
La	44	44	99%						27.48	26.87	98%		44	44	101%	
Li	47	48	101%						64.95	70.42	108%		47	50	107%	,
Mg	1.10	1.08	98%		2.412	2.385	99%		0.223	0.22	99%		1.10	1.1	100%	
Mn	780	753	97%		1510	1417	94%						780	747	96%	
Мо	14	12	83%										14	13	94%	
Na	1.624	1.711	105%		0.617	0.66	107%		7.24	7.44	103%		1.624	1.788	110%	
Ni	32	33	104%		77.1	71.5	93%						32	34	105%	
Р	750	724	97%		892	893	100%		610	614	101%		750	761	101%	
Pb	31	29	95%										31	29	93%	
S					0.348	0.349	100%									
Sc	12	12	98%						2.76	2.19	80%		12	12	99%	
Sr	144	147	102%		92.8	89.2	96%		312	310	99%		144	151	105%	
Th	18.4	16.2	88%										18.4	16.2	88%	
Ti	0.53	0.46	87%						0.222	0.208	93%		0.53	0.47	88%	,
U	5.7	5.3	92%										5.7	5.5	96%	
V	77	80	104%										77	79	103%	
W	5	5	96%										5	4	76%	
Υ									25.32	24.65	97%					,
Zn	130	124	95%		208	196	94%		75.42	68.72	91%		130	118	91%	

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220942072

PROJECT: WR-22-CORE-09

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

	(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish																
		CRM #1 (ref.ME1310)	CRM #2 (ref.GS48)					CRM #3 (ref.GS1AB)				CRM #4 (ref.PGMS27)			
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	
Au	0.06	0.06			3.46	3.46			1.48	1.40			4.80	4.27			
Pd	0.56	0.53											2.00	1.89			
Pt	0.43	0.42		90% - 110%									1.29	1.23		90% - 110%	

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-09

SAMPLING SITE:

AGAT WORK ORDER: 220942072 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Bi	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
La	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Li	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mg	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Na	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ni	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OL3
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
s	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-09

SAMPLING SITE:

AGAT WORK ORDER: 220942072 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

C, IIII 2110 0112:		GANNI EED DA	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
ті	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-221-12006	BUGBEE, E; A Textbook of Fire Assay	ICP/OES
Pd	MW-200-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Pt	MW-200-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Crush-Pass %		,	BALANCE
Pul-Pass %			BALANCE

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-CORE-08

AGAT WORK ORDER: 22O942149

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Oct 05, 2022

PAGES (INCLUDING COVER): 21

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

Notes Notes Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 21

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

AGAT WORK ORDER: 220942149

PROJECT: WR-22-CORE-08

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

CLIENT NAME: ORI	OKD MIININ	IG CORP		ATTENTION TO: Arnaud F	Officialle
			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Sep	07, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840526 (4281706)		2.850			
E5840527 (4281707)		2.850			
E5840528 (4281708)		2.190			
E5840529 (4281709)		2.670			
E5840530 (4281710)		0.010			
E5840531 (4281711)		2.900			
E5840532 (4281712)		3.100			
E5840533 (4281713)		2.800			
E5840534 (4281714)		2.050			
E5840535 (4281715)		1.940			
E5840536 (4281716)		1.780			
E5840537 (4281717)		2.020			
E5840538 (4281718)		1.890			
E5840539 (4281719)		0.120			
E5840540 (4281720)		2.590			
E5840541 (4281721)		3.180			
E5840542 (4281722)		2.940			
E5840543 (4281723)		2.880			
E5840544 (4281724)		3.060			
E5840545 (4281725)		3.040			
E5840546 (4281726)		2.920			
E5840547 (4281727)		2.570			
E5840548 (4281728)		3.070			
E5840549 (4281729)		1.600			
E5840550 (4281730)		1.250			
E5840551 (4281731)		2.500			
E5840552 (4281732)		2.610			
E5840553 (4281733)		2.710			
E5840554 (4281734)		2.900			
E5840555 (4281735)		2.950			
E5840556 (4281736)		2.800			

Certified By:

AGAT WORK ORDER: 220942149

PROJECT: WR-22-CORE-08

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	(200-) Sample Login Weight											
DATE SAMPLED: Se	p 07, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core							
	Analyte:	Sample Login Weight										
	Unit:	kg										
Sample ID (AGAT ID)	RDL:	0.005										
E5840557 (4281737)		2.210										
E5840558 (4281738)		2.820										
E5840559 (4281739)		0.010										
E5840560 (4281740)		2.960										
E5840561 (4281741)		2.960										
E5840562 (4281742)		3.010										

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 22O942149

PROJECT: WR-22-CORE-08

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 07, 2022			DATE RECI	EIVED: Sep	07, 2022		DATE REPORTED: Oct 05, 2022				SAMPLE TYPE: Drill Core			
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Се	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840526 (4281706)		<0.5	7.40	<1	2980	2.3	<1	1.99	<0.5	66	4.8	175	65.3	4.58	27
E5840527 (4281707)		<0.5	7.73	5	1620	2.2	<1	0.83	<0.5	72	6.6	112	36.8	4.03	29
E5840528 (4281708)		<0.5	4.74	<1	395	1.0	<1	19.3	<0.5	31	15.9	201	34.2	3.97	16
E5840529 (4281709)		<0.5	4.83	50	558	1.1	<1	18.7	<0.5	34	39.9	222	88.8	4.11	17
E5840530 (4281710)		<0.5	4.29	148	210	1.2	<1	3.04	<0.5	26	71.8	698	37.6	5.51	10
E5840531 (4281711)		<0.5	5.53	15	687	1.3	<1	15.3	<0.5	41	13.1	252	55.0	4.77	19
E5840532 (4281712)		<0.5	4.93	14	599	1.1	<1	17.3	<0.5	40	14.2	245	82.8	4.21	17
E5840533 (4281713)		<0.5	4.79	22	623	1.1	<1	18.0	<0.5	38	13.7	215	27.1	4.21	17
E5840534 (4281714)		<0.5	9.30	33	1510	2.8	<1	1.67	< 0.5	73	26.1	488	78.2	5.67	29
E5840535 (4281715)		<0.5	9.25	33	1730	3.1	<1	3.36	<0.5	76	13.1	394	78.3	3.40	27
E5840536 (4281716)		<0.5	8.89	25	1710	2.9	<1	5.56	< 0.5	81	11.0	295	93.9	3.08	25
E5840537 (4281717)		<0.5	2.81	13	405	8.0	<1	4.37	< 0.5	23	11.4	376	51.0	4.12	13
E5840538 (4281718)		<0.5	2.25	8	326	0.7	<1	7.34	<0.5	23	8.8	271	20.5	3.37	11
E5840539 (4281719)		<0.5	6.79	<1	389	1.3	<1	1.67	<0.5	15	4.4	16.4	3.1	1.36	20
E5840540 (4281720)		<0.5	8.73	35	1310	2.5	<1	3.82	<0.5	82	30.0	395	132	7.20	26
E5840541 (4281721)		<0.5	7.76	24	855	1.8	<1	4.19	<0.5	71	27.5	357	132	8.71	28
E5840542 (4281722)		<0.5	5.69	23	722	1.6	<1	13.1	<0.5	44	15.4	280	37.8	5.56	19
E5840543 (4281723)		<0.5	4.65	5	551	1.0	<1	20.1	<0.5	32	13.2	204	34.1	3.75	17
E5840544 (4281724)		<0.5	5.65	14	802	1.5	<1	16.7	<0.5	38	15.5	217	58.2	3.83	19
E5840545 (4281725)		<0.5	6.31	6	899	1.7	<1	14.5	<0.5	66	14.5	270	40.6	3.96	18
E5840546 (4281726)		<0.5	7.22	7	1030	1.8	<1	12.0	<0.5	49	16.5	343	47.0	5.04	24
E5840547 (4281727)		<0.5	6.46	16	975	1.8	<1	14.1	<0.5	52	16.1	307	49.4	4.57	19
E5840548 (4281728)		<0.5	5.51	<1	731	1.3	<1	17.6	<0.5	40	15.4	244	51.6	4.15	19
E5840549 (4281729)		<0.5	7.37	<1	956	2.2	<1	9.03	<0.5	58	14.3	241	74.9	5.57	23
E5840550 (4281730)		<0.5	7.15	<1	941	2.2	<1	9.63	<0.5	61	15.2	258	77.5	5.70	23
E5840551 (4281731)		<0.5	7.11	<1	836	2.1	<1	6.90	<0.5	60	15.1	281	13.3	6.84	25
E5840552 (4281732)		<0.5	6.57	5	925	2.2	<1	7.35	<0.5	67	17.9	343	34.7	6.06	23
E5840553 (4281733)		<0.5	4.96	7	739	1.4	<1	16.5	<0.5	38	16.5	232	65.5	4.34	18
E5840554 (4281734)		<0.5	7.21	<1	943	2.2	<1	8.11	<0.5	75	19.2	280	26.7	6.65	26
E5840555 (4281735)		<0.5	5.90	2	861	1.8	<1	11.0	<0.5	47	15.3	264	<0.5	5.19	22
E5840556 (4281736)		<0.5	5.59	<1	866	1.5	<1	14.7	<0.5	38	17.0	318	<0.5	5.24	20
E5840557 (4281737)		<0.5	4.37	6	522	1.0	<1	22.4	<0.5	33	14.9	161	46.3	3.83	17

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O942149

PROJECT: WR-22-CORE-08

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish						
DATE SAMPLED: Se	p 07, 2022		С	DATE RECE	EIVED: Sep	07, 2022		DATE REPORTED: Oct 05, 2022					SAMPLE TYPE: Drill Core			
	Analyte:	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Се	Со	Cr	Cu	Fe	Ga	
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5	
E5840558 (4281738)		<0.5	4.81	7	694	1.2	<1	19.9	<0.5	38	24.8	169	34.8	3.49	19	
E5840559 (4281739)		<0.5	3.95	148	195	1.2	<1	2.92	<0.5	26	74.1	763	36.0	5.17	11	
E5840560 (4281740)		<0.5	4.39	<1	405	1.0	<1	19.8	<0.5	32	13.7	147	26.1	3.64	16	
E5840561 (4281741)		<0.5	5.30	6	864	1.7	<1	18.7	<0.5	41	15.8	192	29.4	3.37	19	
E5840562 (4281742)		<0.5	5.45	4	732	1.6	<1	16.9	<0.5	43	19.7	187	28.5	3.92	20	

Certificate of Analysis

AGAT WORK ORDER: 22O942149

PROJECT: WR-22-CORE-08

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 07, 2022		С	DATE RECE	IVED: Sep	07, 2022		DATE I	REPORTED): Oct 05, 20)22	SAM	PLE TYPE:	: Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840526 (4281706)		<1	5.76	41	23	2.53	847	<0.5	2.39	12.0	252	7	<10	0.39	<1
E5840527 (4281707)		<1	3.37	41	19	2.09	740	1.1	4.29	14.4	232	8	<10	0.34	<1
E5840528 (4281708)		<1	1.16	15	48	3.13	592	<0.5	0.40	37.8	1020	<1	<10	<0.01	<1
E5840529 (4281709)		<1	1.93	17	48	2.41	987	<0.5	0.16	47.7	996	<1	<10	<0.01	<1
E5840530 (4281710)		<1	0.79	15	41	13.6	1110	4.2	0.94	2340	227	7	<10	0.27	<1
E5840531 (4281711)		<1	2.26	20	43	1.82	702	<0.5	0.32	42.2	899	<1	<10	<0.01	<1
E5840532 (4281712)		<1	2.04	20	38	1.55	699	<0.5	0.26	56.0	1070	<1	<10	<0.01	<1
E5840533 (4281713)		<1	2.02	19	41	1.56	737	<0.5	0.02	46.5	1020	<1	<10	<0.01	<1
E5840534 (4281714)		<1	4.75	33	68	2.54	183	<0.5	0.03	91.6	661	<1	<10	<0.01	<1
E5840535 (4281715)		<1	5.59	34	56	1.89	233	<0.5	0.04	66.8	1060	<1	<10	<0.01	<1
E5840536 (4281716)		<1	5.46	38	52	1.76	333	0.6	0.04	62.8	1230	<1	<10	0.13	<1
E5840537 (4281717)		<1	1.24	11	23	1.12	373	3.1	0.01	48.3	203	6	<10	0.62	<1
E5840538 (4281718)		<1	1.02	12	21	1.10	402	5.6	0.02	69.3	150	17	<10	0.63	<1
E5840539 (4281719)		<1	1.53	7	10	0.52	241	<0.5	3.13	16.8	157	<1	<10	< 0.01	<1
E5840540 (4281720)		<1	3.78	38	71	2.84	369	<0.5	0.03	132	783	<1	<10	80.0	<1
E5840541 (4281721)		<1	2.50	32	72	3.11	390	<0.5	0.03	125	978	<1	<10	< 0.01	<1
E5840542 (4281722)		<1	2.11	21	49	1.98	802	<0.5	0.11	46.2	580	<1	<10	< 0.01	<1
E5840543 (4281723)		<1	1.68	15	41	2.17	627	0.7	0.24	29.8	915	<1	<10	< 0.01	<1
E5840544 (4281724)		<1	2.13	18	45	2.50	669	<0.5	0.55	33.1	994	<1	<10	0.02	<1
E5840545 (4281725)		<1	2.42	32	54	2.55	762	<0.5	0.49	34.3	1040	<1	<10	0.10	<1
E5840546 (4281726)		<1	2.81	24	69	3.11	663	3.0	0.24	41.1	1260	<1	<10	0.10	<1
E5840547 (4281727)		<1	2.60	25	58	2.74	918	5.9	0.15	38.1	1100	<1	<10	0.15	<1
E5840548 (4281728)		<1	2.00	20	54	2.65	662	<0.5	0.18	31.6	995	<1	<10	0.03	<1
E5840549 (4281729)		<1	2.35	26	63	2.50	885	<0.5	1.12	29.0	1580	<1	<10	0.02	<1
E5840550 (4281730)		<1	2.12	28	60	2.47	971	<0.5	1.07	28.6	1530	<1	<10	0.03	<1
E5840551 (4281731)		<1	1.86	26	64	2.77	703	<0.5	0.77	30.2	1730	<1	<10	0.07	<1
E5840552 (4281732)		<1	2.03	30	57	2.35	612	0.8	0.57	35.2	2020	<1	<10	<0.01	<1
E5840553 (4281733)		<1	1.68	18	45	1.82	810	<0.5	0.33	31.6	1100	<1	<10	<0.01	<1
E5840554 (4281734)		<1	2.03	34	64	2.80	459	<0.5	0.66	38.8	3020	<1	<10	<0.01	<1
E5840555 (4281735)		<1	1.79	22	52	2.26	575	<0.5	0.45	35.5	1470	<1	<10	0.04	<1
E5840556 (4281736)		<1	1.80	18	54	2.51	651	<0.5	0.13	38.1	1340	<1	<10	0.16	<1
E5840557 (4281737)		<1	1.10	17	49	2.64	528	<0.5	0.13	27.5	918	<1	<10	0.01	<1

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O942149

PROJECT: WR-22-CORE-08

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	1etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 07, 2022		[DATE RECE	EIVED: Sep	07, 2022		DATE	REPORTED	D: Oct 05, 20)22	SAM	PLE TYPE	: Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840558 (4281738)		<1	1.53	18	48	2.42	805	<0.5	0.13	56.7	1150	<1	<10	<0.01	<1
E5840559 (4281739)		<1	0.67	14	37	12.7	1130	1.9	0.84	2350	244	7	<10	0.28	<1
E5840560 (4281740)		<1	0.92	17	68	4.43	1690	1.3	0.01	34.3	1000	<1	<10	0.02	<1
E5840561 (4281741)		<1	2.05	19	47	2.13	811	<0.5	0.02	34.3	1140	<1	<10	<0.01	<1
E5840562 (4281742)		<1	1.70	21	63	3.12	809	<0.5	0.03	43.4	1420	<1	<10	0.03	<1

Certificate of Analysis

AGAT WORK ORDER: 22O942149

PROJECT: WR-22-CORE-08

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, l	CP-OES	finish					
DATE SAMPLED: Sep	07, 2022		Г	DATE RECE	IVED: Sep	07, 2022		DATE F	REPORTED	: Oct 05, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840526 (4281706)		9	<10	<5	46	<10	<10	<5	0.26	<5	<5	77.7	2	14	80.5
E5840527 (4281707)		8	<10	<5	31	<10	<10	6	0.28	<5	<5	74.7	2	14	101
E5840528 (4281708)		15	<10	<5	172	<10	<10	<5	0.26	<5	<5	112	<1	12	40.4
E5840529 (4281709)		16	<10	<5	199	<10	<10	<5	0.26	<5	<5	119	<1	13	39.8
E5840530 (4281710)		12	<10	<5	77	<10	<10	<5	0.18	<5	<5	67.6	4	9	104
E5840531 (4281711)		18	<10	<5	185	<10	<10	<5	0.33	<5	<5	138	<1	14	43.6
E5840532 (4281712)		17	<10	<5	206	<10	<10	<5	0.27	<5	<5	128	1	13	39.0
E5840533 (4281713)		16	<10	<5	181	<10	<10	<5	0.30	<5	<5	118	<1	13	41.2
E5840534 (4281714)		31	<10	<5	45	<10	<10	<5	0.57	<5	7	259	1	15	67.0
E5840535 (4281715)		32	<10	<5	88	<10	<10	<5	0.64	<5	<5	252	<1	17	49.3
E5840536 (4281716)		28	<10	<5	135	<10	<10	<5	0.62	<5	<5	227	2	22	46.4
E5840537 (4281717)		9	<10	<5	86	<10	<10	<5	0.17	<5	6	71.2	<1	7	70.3
E5840538 (4281718)		6	<10	<5	147	<10	<10	<5	0.14	<5	<5	48.6	<1	7	65.1
E5840539 (4281719)		6	<10	<5	379	<10	<10	<5	0.14	<5	<5	38.4	1	6	18.5
E5840540 (4281720)		29	<10	<5	94	<10	12	<5	0.54	<5	9	224	<1	15	74.1
E5840541 (4281721)		26	<10	<5	102	<10	14	<5	0.48	<5	10	178	2	15	74.0
E5840542 (4281722)		19	<10	<5	220	<10	<10	<5	0.37	<5	<5	150	<1	14	50.0
E5840543 (4281723)		15	<10	<5	224	<10	<10	<5	0.25	<5	<5	115	1	13	41.9
E5840544 (4281724)		19	<10	<5	194	<10	<10	<5	0.34	<5	<5	147	<1	14	42.4
E5840545 (4281725)		21	<10	<5	171	<10	<10	<5	0.44	<5	<5	168	<1	15	44.5
E5840546 (4281726)		22	<10	<5	188	<10	<10	<5	0.38	<5	<5	182	<1	15	54.1
E5840547 (4281727)		21	<10	<5	193	<10	<10	<5	0.39	<5	<5	171	<1	16	48.8
E5840548 (4281728)		18	<10	<5	205	<10	<10	<5	0.33	<5	<5	137	<1	14	44.8
E5840549 (4281729)		22	<10	<5	135	<10	<10	<5	0.56	<5	<5	181	<1	18	58.0
E5840550 (4281730)		22	<10	<5	134	<10	<10	<5	0.57	<5	<5	189	2	19	62.9
E5840551 (4281731)		22	<10	<5	109	<10	<10	<5	0.58	<5	<5	180	1	18	69.2
E5840552 (4281732)		21	<10	<5	133	<10	<10	<5	0.50	<5	<5	175	2	18	64.1
E5840553 (4281733)		17	<10	<5	206	<10	<10	<5	0.36	<5	<5	129	<1	15	46.9
E5840554 (4281734)		23	<10	<5	101	<10	<10	<5	0.59	<5	7	179	1	21	66.5
E5840555 (4281735)		20	<10	<5	132	<10	<10	<5	0.42	<5	<5	161	1	16	50.0
E5840556 (4281736)		18	<10	<5	199	<10	<10	<5	0.38	<5	<5	155	<1	15	52.0
E5840557 (4281737)		15	<10	<5	199	<10	<10	<5	0.29	<5	<5	114	<1	12	40.9

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O942149

PROJECT: WR-22-CORE-08

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Sep	p 07, 2022		Г	DATE RECE	EIVED: Sep	07, 2022		DATE I	REPORTED	: Oct 05, 20)22	SAM	PLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840558 (4281738)		16	<10	<5	182	<10	<10	<5	0.27	<5	<5	123	<1	14	44.9
E5840559 (4281739)		12	<10	<5	69	<10	<10	<5	0.17	<5	<5	71.5	4	10	107
E5840560 (4281740)		14	<10	<5	488	<10	<10	<5	0.25	<5	<5	110	<1	12	39.7
E5840561 (4281741)		18	<10	<5	265	<10	<10	<5	0.34	<5	<5	143	<1	15	42.2
E5840562 (4281742)		18	<10	<5	302	<10	<10	<5	0.35	<5	<5	147	<1	15	57.3

AGAT WORK ORDER: 22O942149

PROJECT: WR-22-CORE-08

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

CEILIVI WILL OIG	0112 11111111				
			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Sep	07, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840526 (4281706)		128			
E5840527 (4281707)		137			
E5840528 (4281708)		75			
E5840529 (4281709)		78			
E5840530 (4281710)		64			
E5840531 (4281711)		86			
E5840532 (4281712)		79			
E5840533 (4281713)		77			
E5840534 (4281714)		159			
E5840535 (4281715)		163			
E5840536 (4281716)		181			
E5840537 (4281717)		60			
E5840538 (4281718)		64			
E5840539 (4281719)		34			
E5840540 (4281720)		143			
E5840541 (4281721)		121			
E5840542 (4281722)		93			
E5840543 (4281723)		74			
E5840544 (4281724)		90			
E5840545 (4281725)		111			
E5840546 (4281726)		114			
E5840547 (4281727)		107			
E5840548 (4281728)		92			
E5840549 (4281729)		129			
E5840550 (4281730)		135			
E5840551 (4281731)		139			
E5840552 (4281732)		127			
E5840553 (4281733)		83			
E5840554 (4281734)		136			
E5840555 (4281735)		112			
E5840556 (4281736)		96			
E5840557 (4281737)		74			

AGAT WORK ORDER: 220942149

PROJECT: WR-22-CORE-08

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Sep	p 07, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840558 (4281738)		87			
E5840559 (4281739)		64			
E5840560 (4281740)		84			
E5840561 (4281741)		97			
E5840562 (4281742)		106			

Comments: RDL - Reported Detection Limit

4281706-4281742 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 220942149

PROJECT: WR-22-CORE-08

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(20	2-555) Fire Assay - Au, Pt, Pd	Trace Levels, ICP-OES finish	
DATE SAMPLED: Se	p 07, 2022			DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840526 (4281706)		<0.001	0.001	<0.005		
E5840527 (4281707)		<0.001	0.001	<0.005		
E5840528 (4281708)		<0.001	0.001	<0.005		
E5840529 (4281709)		<0.001	0.001	<0.005		
E5840531 (4281711)		0.010	0.001	<0.005		
E5840532 (4281712)		<0.001	0.001	<0.005		
E5840533 (4281713)		0.002	0.002	<0.005		
E5840534 (4281714)		<0.001	0.001	<0.005		
E5840535 (4281715)		<0.001	0.001	<0.005		
E5840536 (4281716)		0.001	0.001	<0.005		
E5840537 (4281717)		0.008	0.001	<0.005		
E5840538 (4281718)		0.004	0.001	<0.005		
E5840539 (4281719)		< 0.001	0.001	<0.005		
E5840540 (4281720)		< 0.001	0.001	<0.005		
E5840541 (4281721)		<0.001	0.001	<0.005		
E5840542 (4281722)		0.066	0.001	<0.005		
E5840543 (4281723)		< 0.001	<0.001	<0.005		
E5840544 (4281724)		< 0.001	0.001	<0.005		
E5840545 (4281725)		< 0.001	0.001	<0.005		
E5840546 (4281726)		0.002	0.001	<0.005		
E5840547 (4281727)		0.002	0.001	<0.005		
E5840548 (4281728)		< 0.001	0.001	<0.005		
E5840549 (4281729)		0.001	0.001	<0.005		
E5840550 (4281730)		0.001	<0.001	<0.005		
E5840551 (4281731)		<0.001	<0.001	<0.005		
E5840552 (4281732)		<0.001	0.001	<0.005		
E5840553 (4281733)		<0.001	0.001	<0.005		
E5840554 (4281734)		<0.001	< 0.001	<0.005		
E5840555 (4281735)		< 0.001	0.001	<0.005		
E5840556 (4281736)		0.001	0.001	<0.005		
E5840557 (4281737)		<0.001	<0.001	<0.005		
E5840558 (4281738)		< 0.001	0.001	<0.005		

Certified By:

AGAT WORK ORDER: 22O942149

PROJECT: WR-22-CORE-08

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(20	2-555) Fir	e Assay - Au, Pt, Pd	Trace Levels, ICP-OES finish	
DATE SAMPLED: Se	p 07, 2022			DATE RECE	EIVED: Sep 07, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt			
	Unit:	ppm	ppm	ppm			
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005			
E5840560 (4281740)		0.001	0.001	<0.005			
E5840561 (4281741)		0.001	0.001	< 0.005			
E5840562 (4281742)		0.001	<0.001	<0.005			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1046 Gorham St, Thunder Bay, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 220942149

PROJECT: WR-22-CORE-08

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passir	ng (Crushing)	
DATE SAMPLED: Se			DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core
	Analyte: Cı	rush-Pass %			
	Unit:	%			
Sample ID (AGAT ID)	RDL:	0.01			
E5840526 (4281706)		76.97			
E5840545 (4281725)		79.69			

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O942149

PROJECT: WR-22-CORE-08

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passing	g (Pulverizing)	
DATE SAMPLED: Sep	07, 2022		DATE RECEIVED: Sep 07, 2022	DATE REPORTED: Oct 05, 2022	SAMPLE TYPE: Drill Core
	Analyte: P	ul-Pass %			
	Unit:	%			
Sample ID (AGAT ID)	RDL:	0.01			
E5840526 (4281706)		88.59			
E5840545 (4281725)		85.93			

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220942149 PROJECT: WR-22-CORE-08 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(201	I-070) 4 <i>i</i>	Acid Di	gest - N	1etals F	Package,	ICP-O	ES finis	h		
		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3			
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD		
Ag	4281706	< 0.5	< 0.5	0.0%	4281720	< 0.5	< 0.5	0.0%	4281731	< 0.5	< 0.5	0.0%		
Al	4281706	7.40	7.44	0.5%	4281720	8.73	8.67	0.7%	4281731	7.11	7.01	1.4%		
As	4281706	< 1	2		4281720	35	43	20.5%	4281731	< 1	< 1	0.0%		
Ва	4281706	2980	2940	1.4%	4281720	1310	1310	0.0%	4281731	836	865	3.4%		
Be	4281706	2.3	2.3	0.0%	4281720	2.49	2.45	1.6%	4281731	2.1	2.1	0.0%		
Bi	4281706	< 1	< 1	0.0%	4281720	< 1	< 1	0.0%	4281731	< 1	< 1	0.0%		
Ca	4281706	1.99	2.08	4.4%	4281720	3.82	3.79	0.8%	4281731	6.90	7.46	7.8%		
Cd	4281706	< 0.5	< 0.5	0.0%	4281720	< 0.5	< 0.5	0.0%	4281731	< 0.5	< 0.5	0.0%		
Ce	4281706	66	65	1.5%	4281720	82	82	0.0%	4281731	60	64	6.5%		
Co	4281706	4.81	5.50	13.4%	4281720	30.0	30.1	0.3%	4281731	15.1	16.5	8.9%		
Cr	4281706	175	170	2.9%	4281720	395	391	1.0%	4281731	281	287	2.1%		
Cu	4281706	65.3	62.2	4.9%	4281720	132	134	1.5%	4281731	13.3	16.4	20.9%		
Fe	4281706	4.58	4.66	1.7%	4281720	7.20	7.17	0.4%	4281731	6.84	7.04	2.9%		
Ga	4281706	27	27	0.0%	4281720	26	29	10.9%	4281731	25	25	0.0%		
In	4281706	< 1	< 1	0.0%	4281720	< 1	< 1	0.0%	4281731	< 1	< 1	0.0%		
K	4281706	5.76	5.86	1.7%	4281720	3.78	3.79	0.3%	4281731	1.86	1.86	0.0%		
La	4281706	41	40	2.5%	4281720	38	38	0.0%	4281731	26	27	3.8%		
Li	4281706	23	23	0.0%	4281720	71	71	0.0%	4281731	64	64	0.0%		
Mg	4281706	2.53	2.56	1.2%	4281720	2.84	2.82	0.7%	4281731	2.77	2.78	0.4%		
Mn	4281706	847	861	1.6%	4281720	369	364	1.4%	4281731	703	722	2.7%		
Мо	4281706	< 0.5	< 0.5	0.0%	4281720	< 0.5	< 0.5	0.0%	4281731	< 0.5	< 0.5	0.0%		
Na	4281706	2.39	2.32	3.0%	4281720	0.03	0.03	0.0%	4281731	0.77	0.75	2.6%		
Ni	4281706	12.0	11.9	0.8%	4281720	132	133	0.8%	4281731	30.2	30.1	0.3%		
Р	4281706	252	242	4.0%	4281720	783	800	2.1%	4281731	1730	1750	1.1%		
Pb	4281706	7	5		4281720	< 1	< 1	0.0%	4281731	< 1	< 1	0.0%		
Rb	4281706	< 10	< 10	0.0%	4281720	< 10	< 10	0.0%	4281731	< 10	< 10	0.0%		
S	4281706	0.39	0.41	5.0%	4281720	0.08	0.08	0.0%	4281731	0.07	0.13			
Sb	4281706	< 1	< 1	0.0%	4281720	< 1	< 1	0.0%	4281731	< 1	< 1	0.0%		
Sc	4281706	9	9	0.0%	4281720	29	29	0.0%	4281731	22	22	0.0%		
Se	4281706	< 10	< 10	0.0%	4281720	< 10	< 10	0.0%	4281731	< 10	< 10	0.0%		
Sn	4281706	< 5	< 5	0.0%	4281720	< 5	< 5	0.0%	4281731	< 5	< 5	0.0%		

Quality Assurance - Replicate AGAT WORK ORDER: 220942149 PROJECT: WR-22-CORE-08 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

Sr	4281706	46	48	4.3%	4281720	94	93	1.1%	4281731	109	118	7.9%		
Та	4281706	< 10	< 10	0.0%	4281720	< 10	< 10	0.0%	4281731	< 10	< 10	0.0%		
Te	4281706	< 10	< 10	0.0%	4281720	12	11	8.7%	4281731	10	11	9.5%		
Th	4281706	< 5	< 5	0.0%	4281720	< 5	< 5	0.0%	4281731	< 5	< 5	0.0%		
Ti	4281706	0.26	0.26	0.0%	4281720	0.54	0.52	3.8%	4281731	0.577	0.550	4.8%		
TI	4281706	< 5	< 5	0.0%	4281720	< 5	< 5	0.0%	4281731	< 5	< 5	0.0%		
U	4281706	< 5	< 5	0.0%	4281720	9	6		4281731	< 5	< 5	0.0%		
V	4281706	77.7	77.0	0.9%	4281720	224	218	2.7%	4281731	180	181	0.6%		
W	4281706	2	2	0.0%	4281720	< 1	1		4281731	1	2			
Y	4281706	14	14	0.0%	4281720	15	15	0.0%	4281731	18	19	5.4%		
Zn	4281706	80.5	86.4	7.1%	4281720	74.1	73.9	0.3%	4281731	69.2	68.8	0.6%		
Zr	4281706	128	130	1.6%	4281720	143	142	0.7%	4281731	139	140	0.7%		

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish

		REPLIC	ATE #1		REPLICATE #2					REPLIC	ATE #3			
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD		
Au	4281706	<0.001	<0.001	0.0%	4281720	<0.001	<0.001	0%	4281731	<0.001	<0.001	0%		
Pd	4281706	0.001	0.001	0.0%	4281720	0.001	0.001	0%	4281731	<0.001	<0.001	0%		
Pt	4281706	<0.005	<0.005	0.0%	4281720	<0.005	<0.005	0%	4281731	<0.005	<0.005	0%		

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220942149 PROJECT: WR-22-CORE-08 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

LIENT NAW				(20	1-070) 4	Acid [Digest -	Metals I	Package			ish			
		CRM #1	(ref.Till-2)				(ref.GTS-2a)				(ref.GS1AB)	1			
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits			
Al	8.47	8.93	105%		6.96	7.6	109%								
As	26	31	117%		124	124	100%								
Ba	540	522	97%		186	189	102%								
Be	4.0	4.1	102%												
Ca	0.907	0.885	98%		4.01	3.96	99%								
Ce	98	96	98%		24	23	96%								
Со					22.1	19.8	90%								
Cr	60.3	57.2	95%												
Cu	150	155	103%		88.6	83.6	94%								
Fe	3.77	3.81	101%		7.56	7.71	102%								
K					2.021	2.412	119%								
La	44	44	99%												
Li	47	55	117%												
Mg	1.10	1.06	97%		2.412	2.464	102%								
Mn	780	742	95%		1510	1441	95%								
Мо	14	13	90%												
Na	1.624	1.87	115%		0.617	0.728	118%								
Ni	32	31	98%		77.1	70.5	91%								
Р	750	709	95%		892	875	98%								
S					0.348	0.298	86%								
Sc	12	12	99%												
Sr	144	154	107%		92.8	93.5	101%								
Ti	0.53	0.47	88%												
V	77	78	101%												
W	5	5	106%												
Zn	130	115	89%		208	201	97%								
				(202-5	555) Fire	Pt, Pd Tr	ace Lev	els, IC	P-OES	finish					
		CRM #1	ref.ME1310)			CRM #2	2 (ref.GS48)			CRM #3	(ref.GS1AB)			_	
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits			
Au	0.06	0.06			3.46	3.30			1.48	1.37					
Pd	0.56	0.53													

Quality Assurance - Certified Reference materials **AGAT WORK ORDER: 220942149**

PROJECT: WR-22-CORE-08

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME	: ORFOR	D MINING	CORP				ATTE	ENTION	TO: Arnaud	Fontaine	

		Pt	0.43	0.42		90% - 110%												
--	--	----	------	------	--	------------	--	--	--	--	--	--	--	--	--	--	--	--

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-08

SAMPLING SITE:

AGAT WORK ORDER: 22O942149 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Bi	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
La	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Li	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mg	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Na	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Ni	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: ORFORD MINING CORP

AGAT WORK ORDER: 220942149 PROJECT: WR-22-CORE-08 ATTENTION TO: Arnaud Fontaine

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.		SAMPLED B1.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
ті	MIN-200-12034	Geochem v.1	ICF/OE3
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-221-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Pd	MW-200-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Pt	MW-200-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Crush-Pass %		·	BALANCE
Pul-Pass %			BALANCE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-CORE-12

AGAT WORK ORDER: 22O949668

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Nov 14, 2022

PAGES (INCLUDING COVER): 28

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 28

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Certificate of Analysis

AGAT WORK ORDER: 220949668

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Se	p 25, 2022		DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Nov 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840913 (4346440)		4.010			
E5840914 (4346441)		2.380			
E5840915 (4346442)		2.720			
E5840916 (4346443)		4.200			
E5840917 (4346444)		4.170			
E5840918 (4346445)		4.110			
E5840919 (4346446)		4.700			
E5840920 (4346447)		0.070			
E5840921 (4346448)		3.610			
E5840922 (4346449)		4.100			
E5840923 (4346450)		4.070			
E5840924 (4346451)		4.290			
E5840925 (4346452)		3.590			
E5840926 (4346453)		3.790			
E5840927 (4346454)		4.150			
E5840928 (4346455)		4.130			
E5840929 (4346456)		4.420			
E5840930 (4346457)		0.130			
E5840931 (4346458)		4.250			
E5840932 (4346459)		4.030			
E5840933 (4346460)		3.690			
E5840934 (4346461)		3.910			
E5840935 (4346462)		3.800			
E5840936 (4346463)		4.230			
E5840937 (4346464)		3.800			
E5840938 (4346465)		3.760			
E5840939 (4346466)		1.810			
E5840940 (4346467)		1.860			
E5840941 (4346468)		3.870			
E5840942 (4346469)		3.520			
E5840943 (4346470)		4.350			

Certified By:

AGAT WORK ORDER: 220949668

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

CLIENT NAME. OR	TOTAL IVIII VIII	10 00111		ATTENTION TO. ATTIAUU F	ontaine
			(200-) Sample Lo	gin Weight	
DATE SAMPLED: Se	p 25, 2022		DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Nov 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840944 (4346471)		3.710			
E5840945 (4346472)		4.020			
E5840946 (4346473)		4.260			
E5840947 (4346474)		3.990			
E5840948 (4346475)		4.260			
E5840949 (4346476)		3.550			
E5840950 (4346477)		0.060			
E5840951 (4346478)		2.060			
E5840952 (4346479)		1.790			
E5840953 (4346480)		3.960			
E5840954 (4346481)		3.130			
E5840955 (4346482)		2.660			
E5840956 (4346483)		3.170			
E5840957 (4346484)		3.120			
E5840958 (4346485)		3.240			
E5840959 (4346486)		3.300			
E5840960 (4346487)		0.170			
E5840961 (4346488)		3.370			
E5840962 (4346489)		3.420			
E5840963 (4346490)		3.230			
E5840964 (4346491)		3.340			
E5840965 (4346492)		3.270			
E5840966 (4346493)		0.680			
E5840967 (4346494)		3.390			
E5840968 (4346495)		3.210			
E5840969 (4346496)		1.090			
E5840970 (4346497)		1.060			
E5840971 (4346498)		2.150			
E5840972 (4346499)		2.340			
E5840973 (4346500)		1.080			
E5840974 (4346501)		2.180			

Certified By:

AGAT WORK ORDER: 22O949668

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	(200-) Sample Login Weight										
DATE SAMPLED: Se	p 25, 2022		DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Nov 14, 2022	SAMPLE TYPE: Drill Core						
	Analyte:	Sample Login Weight									
	Unit:	kg									
Sample ID (AGAT ID)	RDL:	0.005									
E5840975 (4346502)		2.140									
E5840976 (4346503)		0.980									
E5840977 (4346504)		1.370									
E5840978 (4346505)		2.410									
E5840979 (4346506)		2.190									
E5840980 (4346507)		0.070									
E5840981 (4346508)		2.230									
E5840982 (4346509)		2.280									
E5840983 (4346510)		3.030									

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O949668

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: OR	FORD MINING	G CORP							ATTEN	ITION TO:	Arnaud Fo	ontaine	'	nup.//www.aga	iliabs.com
			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 25, 2022		[DATE RECE	EIVED: Sep	26, 2022		DATE	REPORTED): Nov 14, 2	022	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Се	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840913 (4346440)		<0.5	2.46	<1	7	<0.5	<1	2.41	<0.5	3	107	2150	95.7	7.44	<5
E5840914 (4346441)		<0.5	2.51	<1	6	<0.5	3	2.45	<0.5	3	109	2140	71.0	7.54	<5
E5840915 (4346442)		<0.5	2.37	<1	6	<0.5	3	2.45	<0.5	2	100	2060	59.1	7.01	<5
E5840916 (4346443)		<0.5	2.42	<1	5	<0.5	2	2.45	<0.5	3	104	2170	67.5	7.28	<5
E5840917 (4346444)		<0.5	2.46	<1	6	<0.5	1	2.52	<0.5	3	103	2190	53.9	7.28	<5
E5840918 (4346445)		<0.5	2.42	<1	6	<0.5	2	2.53	<0.5	3	104	2140	85.2	7.29	<5
E5840919 (4346446)		<0.5	2.49	<1	6	<0.5	1	2.80	<0.5	3	105	2320	79.5	7.37	<5
E5840920 (4346447)		<0.5	3.98	151	204	1.0	1	2.92	<0.5	26	76.3	733	35.1	5.18	<5
E5840921 (4346448)		<0.5	2.51	<1	7	<0.5	2	2.94	<0.5	3	98.1	2140	12.5	7.25	<5
E5840922 (4346449)		<0.5	2.44	<1	5	<0.5	1	2.53	<0.5	2	103	2120	36.1	7.33	<5
E5840923 (4346450)		<0.5	2.18	<1	5	<0.5	2	2.40	<0.5	2	106	1990	37.8	7.26	<5
E5840924 (4346451)		<0.5	2.06	<1	6	<0.5	2	1.99	<0.5	2	111	1860	90.7	7.29	<5
E5840925 (4346452)		<0.5	1.96	<1	6	<0.5	1	1.87	<0.5	2	113	1880	260	6.96	<5
E5840926 (4346453)		<0.5	2.02	<1	6	<0.5	<1	1.89	<0.5	3	137	2070	583	7.52	<5
E5840927 (4346454)		<0.5	2.00	<1	6	<0.5	<1	1.82	<0.5	2	113	2060	186	7.24	<5
E5840928 (4346455)		<0.5	1.92	<1	6	<0.5	2	1.92	<0.5	2	118	2330	332	7.27	<5
E5840929 (4346456)		<0.5	2.04	<1	6	<0.5	2	2.04	<0.5	2	117	2260	200	7.22	<5
E5840930 (4346457)		<0.5	6.87	3	395	1.1	2	1.92	<0.5	19	8.9	207	11.7	2.40	13
E5840931 (4346458)		<0.5	1.90	<1	6	<0.5	<1	2.03	<0.5	2	116	2010	230	7.12	<5
E5840932 (4346459)		<0.5	2.07	<1	6	<0.5	2	2.03	<0.5	3	120	2370	340	7.73	<5
E5840933 (4346460)		<0.5	2.11	<1	6	<0.5	2	2.14	<0.5	2	113	2180	152	7.23	<5
E5840934 (4346461)		<0.5	2.25	<1	7	<0.5	1	2.19	<0.5	3	121	2210	120	7.59	<5
E5840935 (4346462)		<0.5	2.63	<1	7	<0.5	2	2.30	<0.5	3	106	2440	134	7.41	5
E5840936 (4346463)		<0.5	2.54	<1	7	<0.5	2	2.75	<0.5	3	99.4	2280	62.0	7.11	<5
E5840937 (4346464)		<0.5	2.75	<1	6	<0.5	3	2.99	<0.5	3	97.0	2410	43.7	7.08	<5
E5840938 (4346465)		<0.5	2.78	<1	8	<0.5	2	2.91	<0.5	3	98.9	2240	185	7.33	6
E5840939 (4346466)		<0.5	2.94	<1	9	<0.5	1	3.16	<0.5	4	102	2290	89.1	7.25	7
E5840940 (4346467)		<0.5	3.00	<1	9	<0.5	3	3.23	<0.5	3	98.4	2270	82.5	7.37	5
E5840941 (4346468)		<0.5	3.18	<1	8	<0.5	2	4.02	<0.5	4	94.5	2180	107	7.29	7
E5840942 (4346469)		<0.5	3.47	<1	8	<0.5	3	3.73	<0.5	4	92.9	2060	209	7.57	7
E5840943 (4346470)		<0.5	3.63	<1	4	<0.5	3	3.67	<0.5	4	102	1860	574	7.79	6
E5840944 (4346471)		<0.5	3.86	<1	4	<0.5	<1	3.49	<0.5	4	102	1850	476	7.83	8

Certificate of Analysis

AGAT WORK ORDER: 22O949668

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ickage, I	CP-OES	finish					
DATE SAMPLED: Se	p 25, 2022		Г	DATE RECE	IVED: Sep	26, 2022		DATE I	REPORTED	: Nov 14, 2	022	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840945 (4346472)		<0.5	3.49	<1	3	<0.5	3	2.12	<0.5	5	96.0	1920	287	7.46	7
E5840946 (4346473)		<0.5	3.87	<1	5	<0.5	1	3.57	<0.5	4	100	1770	783	7.70	7
E5840947 (4346474)		<0.5	3.53	<1	4	<0.5	2	4.45	<0.5	4	104	1700	860	7.75	7
E5840948 (4346475)		<0.5	4.25	<1	6	0.6	<1	4.28	<0.5	5	98.7	1540	656	8.09	9
E5840949 (4346476)		<0.5	5.26	<1	84	0.9	4	4.68	<0.5	6	70.7	1340	216	8.16	11
E5840950 (4346477)		3.0	6.91	2	288	1.0	4	3.96	0.7	23	159	234	6710	12.7	<5
E5840951 (4346478)		<0.5	9.42	6	452	2.0	2	1.44	<0.5	63	16.6	165	61.9	5.06	27
E5840952 (4346479)		<0.5	8.57	1	164	0.8	<1	2.95	<0.5	20	10.3	186	107	2.49	19
E5840953 (4346480)		<0.5	9.51	15	175	8.0	<1	2.09	<0.5	28	6.9	162	96.0	1.36	17
E5840954 (4346481)		<0.5	4.19	<1	7	0.6	<1	4.66	<0.5	4	78.8	1530	95.5	7.16	10
E5840955 (4346482)		<0.5	3.46	<1	6	<0.5	<1	3.69	<0.5	4	82.4	1860	40.2	7.02	8
E5840956 (4346483)		<0.5	3.26	<1	7	<0.5	2	3.14	<0.5	3	85.0	2040	36.4	7.05	9
E5840957 (4346484)		<0.5	3.16	<1	8	<0.5	3	3.68	<0.5	3	86.8	2160	48.3	6.85	7
E5840958 (4346485)		<0.5	3.10	<1	10	<0.5	2	2.29	<0.5	4	90.5	2270	132	6.99	8
E5840959 (4346486)		<0.5	3.01	<1	8	<0.5	2	3.18	<0.5	3	86.2	2170	34.0	6.72	7
E5840960 (4346487)		<0.5	7.14	2	415	1.1	<1	1.95	<0.5	20	9.2	245	12.2	2.47	13
E5840961 (4346488)		<0.5	3.01	<1	9	<0.5	4	2.88	<0.5	3	89.9	2210	29.1	6.94	6
E5840962 (4346489)		<0.5	2.96	<1	8	<0.5	2	3.11	<0.5	3	88.5	2210	53.8	6.78	8
E5840963 (4346490)		<0.5	2.78	<1	8	<0.5	3	3.97	<0.5	3	80.2	2010	134	6.42	6
E5840964 (4346491)		<0.5	2.86	<1	6	<0.5	3	2.81	<0.5	3	85.6	2050	40.9	6.60	7
E5840965 (4346492)		<0.5	2.86	<1	6	<0.5	1	3.50	<0.5	3	81.5	1990	14.8	6.52	6
E5840966 (4346493)		<0.5	2.92	<1	5	<0.5	1	2.95	<0.5	3	84.2	2150	54.2	6.65	7
E5840967 (4346494)		<0.5	2.74	<1	5	<0.5	2	3.24	<0.5	3	82.9	1860	92.5	6.55	5
E5840968 (4346495)		<0.5	2.72	3	5	<0.5	1	2.72	<0.5	3	112	2070	739	7.52	6
E5840969 (4346496)		<0.5	2.59	7	5	<0.5	2	3.10	<0.5	2	83.7	1920	228	6.70	<5
E5840970 (4346497)		<0.5	2.68	6	5	<0.5	<1	3.04	<0.5	3	91.9	1980	261	6.84	6
E5840971 (4346498)		<0.5	2.67	8	3	<0.5	2	2.12	<0.5	3	123	2130	690	7.45	<5
E5840972 (4346499)		<0.5	2.76	4	4	<0.5	1	2.38	<0.5	3	93.9	1970	137	7.28	6
E5840973 (4346500)		<0.5	2.40	28	6	<0.5	<1	4.43	<0.5	2	158	1270	381	7.98	<5
E5840974 (4346501)		<0.5	2.08	15	7	<0.5	<1	4.08	<0.5	2	90.6	1190	495	6.61	<5
E5840975 (4346502)		<0.5	2.11	77	14	<0.5	<1	2.59	<0.5	2	94.8	1420	191	6.64	6
E5840976 (4346503)		<0.5	1.90	161	9	<0.5	<1	4.04	<0.5	2	101	1580	139	6.17	<5

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O949668

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 25, 2022		[DATE RECE	EIVED: Sep	26, 2022		DATE I	REPORTED: Nov 14, 2022 SAMPLE TYPE: Drill Cor					Drill Core	
	Analyte: Ag			As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840977 (4346504)		<0.5	2.62	140	6	<0.5	<1	5.19	<0.5	2	76.0	1940	74.8	6.17	6
E5840978 (4346505)		<0.5	2.59	108	9	0.5	<1	5.16	<0.5	2	70.3	1790	36.4	5.96	<5
E5840979 (4346506)		<0.5	2.85	66	5	0.6	1	3.38	<0.5	3	88.8	2120	11.3	6.45	6
E5840980 (4346507)		<0.5	3.65	138	198	1.0	<1	2.67	<0.5	24	73.0	766	29.8	4.76	<5
E5840981 (4346508)		<0.5	2.90	53	5	0.6	2	3.18	<0.5	4	91.2	2320	52.2	6.67	7
E5840982 (4346509)		<0.5	2.81	56	4	0.6	<1	2.89	<0.5	4	87.6	2150	27.9	6.56	6
E5840983 (4346510)		< 0.5	2.71	62	4	0.7	1	2.01	<0.5	4	82.5	2130	52.4	6.38	7
E5840983 (4346510)		<0.5	2.71	62	4	0.7	1	2.01	<0.5	4	82.5	2130	52.4	6.38	

Certificate of Analysis

AGAT WORK ORDER: 22O949668

PROJECT: WR-22-CORE-12

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 25, 2022		Г	DATE RECE	EIVED: Sep	26, 2022		DATE I	REPORTED): Nov 14, 2	022	SAM	PLE TYPE:	Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840913 (4346440)		<1	0.05	5	7	18.5	1260	<0.5	0.04	1460	100	9	<10	0.13	14
E5840914 (4346441)		<1	0.05	5	9	18.5	1210	<0.5	0.06	1540	94	11	<10	0.13	16
E5840915 (4346442)		<1	0.04	5	7	18.2	1220	<0.5	0.03	1390	87	8	<10	0.12	15
E5840916 (4346443)		<1	0.05	5	7	17.9	1190	<0.5	0.06	1420	92	11	<10	0.10	14
E5840917 (4346444)		<1	0.04	5	8	18.1	1220	<0.5	0.05	1450	94	9	<10	0.12	15
E5840918 (4346445)		<1	0.04	5	6	18.1	1210	<0.5	0.04	1480	100	10	<10	0.12	16
E5840919 (4346446)		<1	0.04	6	8	18.8	1210	<0.5	0.05	1450	82	10	<10	0.10	18
E5840920 (4346447)		<1	0.67	16	36	13.6	1110	3.0	0.82	2000	217	17	<10	0.31	6
E5840921 (4346448)		<1	0.04	6	8	17.9	1230	<0.5	0.03	1410	124	9	<10	0.07	17
E5840922 (4346449)		<1	0.04	5	8	17.9	1200	<0.5	0.04	1500	84	10	<10	0.06	16
E5840923 (4346450)		<1	0.03	5	6	18.3	1170	<0.5	0.03	1610	76	9	<10	0.07	15
E5840924 (4346451)		<1	0.03	5	4	19.9	1130	<0.5	0.02	1490	74	9	<10	0.09	14
E5840925 (4346452)		<1	0.03	5	4	19.0	1110	<0.5	0.02	1680	69	10	<10	0.10	12
E5840926 (4346453)		<1	0.03	5	5	19.2	1220	<0.5	0.02	2130	84	11	<10	0.17	16
E5840927 (4346454)		<1	0.03	5	5	19.5	1160	< 0.5	0.02	1620	64	10	<10	0.11	15
E5840928 (4346455)		<1	0.04	5	4	18.9	1150	<0.5	0.02	1750	74	10	<10	0.13	18
E5840929 (4346456)		<1	0.04	6	5	19.0	1180	<0.5	0.02	1700	72	10	<10	0.11	17
E5840930 (4346457)		<1	1.23	9	12	0.89	402	8.0	2.94	34.9	246	5	<10	0.02	2
E5840931 (4346458)		<1	0.04	5	4	18.0	1160	<0.5	0.03	1680	71	11	<10	0.12	14
E5840932 (4346459)		<1	0.03	6	5	18.1	1270	<0.5	0.03	1990	71	11	<10	0.16	17
E5840933 (4346460)		<1	0.03	5	5	18.3	1220	<0.5	0.02	1800	69	11	<10	0.14	16
E5840934 (4346461)		<1	0.03	6	7	18.0	1210	< 0.5	0.03	1920	94	10	<10	0.16	16
E5840935 (4346462)		<1	0.05	6	12	17.4	1170	<0.5	0.07	1360	89	9	<10	0.12	17
E5840936 (4346463)		<1	0.04	5	10	16.4	1170	<0.5	0.07	1250	93	9	<10	0.10	16
E5840937 (4346464)		<1	0.03	6	11	16.8	1210	<0.5	0.08	1230	91	9	<10	0.11	18
E5840938 (4346465)		<1	0.05	5	12	16.3	1280	< 0.5	0.07	1400	104	9	<10	0.13	16
E5840939 (4346466)		<1	0.06	6	11	16.0	1280	<0.5	0.09	1480	109	10	<10	0.12	16
E5840940 (4346467)		<1	0.06	6	12	16.4	1310	<0.5	0.09	1390	104	10	<10	0.11	16
E5840941 (4346468)		<1	0.05	6	15	15.6	1300	<0.5	0.08	1270	122	10	<10	0.11	15
E5840942 (4346469)		<1	0.04	5	23	15.1	1340	<0.5	0.06	1240	127	9	<10	0.15	13
E5840943 (4346470)		<1	0.02	5	17	14.5	1270	<0.5	0.05	1510	124	10	<10	0.43	11
E5840944 (4346471)		<1	0.02	5	23	14.4	1250	< 0.5	0.06	1640	138	10	<10	0.40	12

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O949668

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, l	CP-OES	finish					
DATE SAMPLED: Se	p 25, 2022		С	ATE RECE	IVED: Sep	26, 2022		DATE F	REPORTED): Nov 14, 2	022	SAM	IPLE TYPE:	Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840945 (4346472)		<1	0.01	5	25	14.3	1010	<0.5	0.06	1510	125	9	<10	0.38	12
E5840946 (4346473)		<1	0.03	5	12	13.4	1210	<0.5	0.12	1700	132	11	<10	0.50	13
E5840947 (4346474)		<1	0.02	5	20	13.6	1230	<0.5	0.07	1910	130	11	<10	0.56	13
E5840948 (4346475)		<1	0.03	5	19	12.7	1330	<0.5	0.15	1730	142	9	<10	0.36	10
E5840949 (4346476)		<1	0.06	5	57	11.9	1590	<0.5	0.36	728	185	8	<10	0.05	8
E5840950 (4346477)		<1	0.67	11	14	3.95	1190	1.0	1.92	9600	515	55	<10	2.51	3
E5840951 (4346478)		<1	0.35	31	39	3.11	438	8.0	5.09	60.5	240	3	<10	0.08	<1
E5840952 (4346479)		<1	0.13	13	12	1.96	212	1.8	6.21	133	60	<1	<10	0.07	2
E5840953 (4346480)		<1	0.13	14	11	1.00	99	1.9	7.39	99.8	53	<1	<10	0.03	<1
E5840954 (4346481)		<1	0.03	4	29	12.5	1290	<0.5	0.13	898	143	7	<10	0.05	10
E5840955 (4346482)		<1	0.03	5	27	13.6	1070	<0.5	0.05	1010	116	8	<10	0.25	13
E5840956 (4346483)		<1	0.04	5	28	14.3	1260	<0.5	0.02	1020	122	10	<10	0.13	13
E5840957 (4346484)		<1	0.03	5	31	14.1	1250	<0.5	0.02	1020	117	9	<10	0.19	16
E5840958 (4346485)		<1	0.06	6	33	14.3	1230	<0.5	0.02	1060	118	10	<10	0.10	15
E5840959 (4346486)		<1	0.03	5	35	14.2	1170	<0.5	0.01	1020	111	8	<10	0.11	16
E5840960 (4346487)		<1	1.29	10	13	0.90	411	1.0	3.11	36.1	251	3	<10	0.01	1
E5840961 (4346488)		<1	0.04	5	39	14.6	1230	<0.5	0.02	1210	109	10	<10	0.10	14
E5840962 (4346489)		<1	0.03	5	42	14.3	1290	<0.5	0.02	1030	116	9	<10	0.09	14
E5840963 (4346490)		<1	0.02	5	47	14.1	1490	<0.5	0.02	938	109	8	<10	0.07	14
E5840964 (4346491)		<1	0.02	5	36	13.7	1150	<0.5	0.02	983	113	11	<10	0.07	11
E5840965 (4346492)		<1	0.02	5	31	13.7	1230	<0.5	0.02	1030	102	10	<10	0.09	11
E5840966 (4346493)		<1	0.02	5	30	13.7	1140	<0.5	0.02	1060	104	9	<10	0.07	15
E5840967 (4346494)		<1	<0.01	5	17	13.6	1150	<0.5	0.02	1100	115	8	<10	0.23	10
E5840968 (4346495)		<1	0.03	5	20	13.9	1270	<0.5	0.03	1930	111	12	<10	0.41	12
E5840969 (4346496)		<1	<0.01	5	17	13.8	1210	<0.5	0.02	1200	80	10	<10	0.12	10
E5840970 (4346497)		<1	<0.01	5	18	14.1	1220	<0.5	0.02	1330	106	10	<10	0.12	13
E5840971 (4346498)		<1	<0.01	5	16	14.0	1220	<0.5	0.02	2230	86	12	<10	0.33	12
E5840972 (4346499)		<1	<0.01	5	16	14.5	1220	<0.5	0.02	1310	103	11	<10	0.07	13
E5840973 (4346500)		<1	<0.01	4	15	13.7	1320	<0.5	0.01	3540	81	12	<10	1.39	19
E5840974 (4346501)		<1	<0.01	4	12	13.7	1190	<0.5	0.01	1410	82	12	<10	0.23	6
E5840975 (4346502)		<1	<0.01	4	14	13.9	1030	<0.5	0.01	1150	85	8	<10	0.11	7
E5840976 (4346503)		<1	<0.01	4	15	13.1	1050	<0.5	0.01	1250	56	9	<10	0.79	10

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O949668

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - N	1etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 25, 2022		[DATE RECE	EIVED: Sep	26, 2022		DATE I	REPORTED): Nov 14, 2	022	SAM	PLE TYPE:	Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840977 (4346504)		<1	<0.01	5	28	13.5	1150	<0.5	0.01	919	50	8	<10	0.07	12
E5840978 (4346505)		<1	0.02	5	29	12.6	1160	<0.5	0.01	883	69	8	<10	0.31	10
E5840979 (4346506)		<1	<0.01	5	26	13.7	1010	<0.5	0.01	1250	95	9	<10	0.33	11
E5840980 (4346507)		<1	0.61	15	37	12.4	1080	2.3	0.78	1860	208	16	<10	0.25	3
E5840981 (4346508)		<1	<0.01	6	26	13.4	1170	<0.5	0.01	1070	108	8	<10	0.19	12
E5840982 (4346509)		<1	< 0.01	5	28	13.3	1120	<0.5	0.01	995	116	8	<10	0.14	12
E5840983 (4346510)		<1	<0.01	5	29	12.7	914	<0.5	0.01	1290	99	8	<10	0.15	13

Certified By:

Sherin Mousson

Certificate of Analysis

AGAT WORK ORDER: 22O949668

PROJECT: WR-22-CORE-12

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Sep	25, 2022		[DATE RECE	EIVED: Sep	26, 2022		DATE F	REPORTED	: Nov 14, 20	022	SAM	PLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840913 (4346440)		17	<10	<5	16	<10	11	<5	0.16	<5	8	96.8	<1	5	65.9
E5840914 (4346441)		18	<10	<5	15	<10	10	<5	0.16	<5	8	98.0	<1	6	66.9
E5840915 (4346442)		17	<10	<5	17	<10	12	<5	0.15	<5	7	93.5	<1	5	63.1
E5840916 (4346443)		17	<10	<5	9	<10	10	<5	0.15	<5	8	99.8	<1	5	62.8
E5840917 (4346444)		17	<10	<5	17	<10	12	<5	0.16	<5	7	102	<1	6	62.2
E5840918 (4346445)		17	<10	<5	17	<10	11	<5	0.15	<5	8	98.6	<1	6	63.7
E5840919 (4346446)		17	<10	<5	14	<10	<10	<5	0.16	<5	8	105	<1	6	63.3
E5840920 (4346447)		12	<10	<5	72	<10	<10	6	0.18	<5	6	72.3	4	9	104
E5840921 (4346448)		17	<10	<5	16	<10	11	<5	0.15	<5	8	111	<1	6	58.8
E5840922 (4346449)		17	<10	<5	12	<10	10	<5	0.14	<5	8	97.3	<1	5	66.0
E5840923 (4346450)		16	<10	<5	13	<10	<10	<5	0.13	<5	8	85.9	<1	5	60.5
E5840924 (4346451)		15	<10	<5	12	<10	11	<5	0.12	<5	8	75.7	<1	4	55.2
E5840925 (4346452)		15	<10	<5	12	<10	11	<5	0.11	<5	8	76.0	<1	4	56.4
E5840926 (4346453)		15	<10	<5	13	<10	11	<5	0.13	<5	8	81.4	<1	5	59.9
E5840927 (4346454)		15	<10	<5	12	<10	<10	<5	0.11	<5	8	80.1	<1	4	60.6
E5840928 (4346455)		15	<10	<5	10	<10	11	<5	0.12	<5	8	84.8	<1	5	58.5
E5840929 (4346456)		15	<10	<5	12	<10	11	<5	0.12	<5	8	82.9	<1	4	61.3
E5840930 (4346457)		8	<10	<5	367	<10	<10	<5	0.19	<5	<5	61.1	<1	7	32.2
E5840931 (4346458)		15	<10	<5	12	<10	<10	<5	0.11	<5	8	78.9	<1	4	57.9
E5840932 (4346459)		15	<10	<5	15	<10	11	<5	0.13	<5	9	92.4	<1	5	61.4
E5840933 (4346460)		15	<10	<5	16	<10	<10	<5	0.13	<5	9	86.5	<1	4	60.1
E5840934 (4346461)		15	<10	<5	15	<10	<10	<5	0.14	<5	8	93.4	<1	5	60.3
E5840935 (4346462)		17	<10	<5	14	<10	<10	<5	0.16	<5	9	109	<1	6	80.9
E5840936 (4346463)		17	<10	<5	16	<10	<10	<5	0.16	<5	8	109	<1	5	65.0
E5840937 (4346464)		18	<10	<5	17	<10	<10	<5	0.18	<5	9	120	<1	6	68.4
E5840938 (4346465)		18	<10	<5	18	<10	<10	<5	0.18	<5	9	120	<1	6	80.4
E5840939 (4346466)		19	<10	<5	18	<10	<10	<5	0.19	<5	8	128	<1	7	65.6
E5840940 (4346467)		19	<10	<5	19	<10	<10	<5	0.20	<5	8	130	<1	7	66.6
E5840941 (4346468)		20	<10	<5	24	<10	<10	<5	0.21	<5	9	136	<1	7	67.2
E5840942 (4346469)		21	<10	<5	24	<10	<10	<5	0.22	<5	9	144	<1	7	67.4
E5840943 (4346470)		21	<10	<5	19	<10	<10	<5	0.23	<5	10	149	<1	8	74.2
E5840944 (4346471)		23	<10	<5	13	<10	<10	<5	0.25	<5	10	159	<1	9	69.9

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O949668

PROJECT: WR-22-CORE-12

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Sep	25, 2022		[DATE RECE	EIVED: Sep	26, 2022		DATE F	REPORTED	: Nov 14, 20	022	SAM	PLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840945 (4346472)		22	<10	<5	10	<10	<10	<5	0.23	<5	9	157	<1	8	69.3
E5840946 (4346473)		24	<10	<5	13	<10	<10	<5	0.25	<5	9	162	<1	8	72.5
E5840947 (4346474)		21	<10	<5	41	<10	<10	<5	0.24	<5	10	150	<1	8	68.7
E5840948 (4346475)		25	<10	<5	12	<10	<10	<5	0.27	<5	10	174	<1	9	74.0
E5840949 (4346476)		29	<10	<5	22	<10	<10	<5	0.31	<5	10	202	<1	11	76.3
E5840950 (4346477)		10	<10	<5	297	<10	<10	<5	0.58	<5	14	106	1	10	111
E5840951 (4346478)		13	<10	<5	144	<10	<10	12	0.35	<5	8	89.6	<1	10	25.2
E5840952 (4346479)		11	<10	<5	267	<10	<10	11	0.13	<5	5	99.2	<1	6	12.1
E5840953 (4346480)		11	<10	<5	219	<10	<10	13	0.19	<5	<5	87.4	<1	8	10.7
E5840954 (4346481)		25	<10	<5	18	<10	<10	<5	0.27	<5	9	169	<1	9	67.1
E5840955 (4346482)		21	<10	<5	63	<10	<10	<5	0.23	<5	8	148	<1	8	61.5
E5840956 (4346483)		20	<10	<5	34	<10	<10	<5	0.22	<5	7	137	<1	7	64.8
E5840957 (4346484)		20	<10	<5	39	<10	<10	<5	0.21	<5	7	138	<1	7	64.3
E5840958 (4346485)		20	<10	<5	25	<10	<10	<5	0.21	<5	7	138	<1	7	68.0
E5840959 (4346486)		19	<10	<5	35	<10	<10	<5	0.20	<5	8	133	<1	6	62.8
E5840960 (4346487)		8	<10	<5	389	<10	<10	<5	0.20	<5	<5	63.5	<1	8	31.4
E5840961 (4346488)		19	<10	<5	34	<10	<10	<5	0.20	<5	7	130	<1	6	59.2
E5840962 (4346489)		19	<10	<5	34	<10	<10	<5	0.20	<5	7	128	<1	5	63.7
E5840963 (4346490)		17	<10	<5	42	<10	<10	<5	0.18	<5	7	117	<1	5	59.2
E5840964 (4346491)		18	<10	<5	31	<10	<10	<5	0.19	<5	7	123	<1	4	63.7
E5840965 (4346492)		18	<10	<5	40	<10	<10	<5	0.19	<5	7	124	<1	4	58.9
E5840966 (4346493)		19	<10	<5	34	<10	<10	<5	0.19	<5	7	130	<1	4	63.1
E5840967 (4346494)		17	<10	<5	59	<10	<10	<5	0.13	<5	6	118	<1	4	58.6
E5840968 (4346495)		18	<10	<5	49	<10	<10	<5	0.18	<5	7	121	<1	4	65.9
E5840969 (4346496)		17	<10	<5	80	<10	<10	<5	0.12	<5	7	109	<1	5	54.7
E5840970 (4346497)		17	<10	<5	71	<10	<10	<5	0.13	<5	6	113	<1	5	57.5
E5840971 (4346498)		17	<10	<5	51	<10	<10	<5	0.07	<5	7	118	<1	3	61.0
E5840972 (4346499)		18	<10	<5	63	<10	<10	<5	0.06	<5	7	118	<1	3	59.5
E5840973 (4346500)		11	<10	<5	136	<10	<10	<5	0.02	<5	9	82.4	<1	4	47.1
E5840974 (4346501)		13	<10	<5	159	<10	<10	<5	0.01	<5	8	85.7	<1	4	50.8
E5840975 (4346502)		14	<10	<5	111	<10	<10	<5	0.01	<5	7	93.7	<1	4	52.3
E5840976 (4346503)		13	<10	<5	183	<10	<10	<5	0.02	<5	7	97.0	<1	3	50.3

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O949668

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, l	CP-OES	finish					
DATE SAMPLED: Se	p 25, 2022		[DATE RECE	EIVED: Sep	26, 2022		DATE F	REPORTED): Nov 14, 20	022	SAM	PLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840977 (4346504)		16	<10	<5	271	<10	<10	<5	0.02	<5	7	112	<1	4	51.4
E5840978 (4346505)		15	<10	<5	243	<10	<10	<5	0.02	<5	6	104	<1	4	57.9
E5840979 (4346506)		17	<10	<5	150	<10	<10	<5	0.02	<5	6	122	<1	4	54.2
E5840980 (4346507)		11	<10	<5	70	<10	<10	5	0.17	<5	5	69.0	4	9	111
E5840981 (4346508)		18	<10	<5	130	<10	<10	<5	0.02	<5	6	126	<1	4	58.6
E5840982 (4346509)		17	<10	<5	117	<10	<10	<5	0.01	<5	7	121	<1	4	58.0
E5840983 (4346510)		17	<10	<5	69	<10	<10	<5	0.01	<5	6	128	<1	3	54.0

Certified By:

AGAT WORK ORDER: 220949668

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

CEIEITI IVANE. ORI		3 3 3 1 11	(204 070) 4 Asid Discott Motols	Postern ICD OFS finish	
			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES linish	
DATE SAMPLED: Sep	25, 2022		DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Nov 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840913 (4346440)		19			
E5840914 (4346441)		19			
E5840915 (4346442)		18			
E5840916 (4346443)		18			
E5840917 (4346444)		20			
E5840918 (4346445)		19			
E5840919 (4346446)		19			
E5840920 (4346447)		69			
E5840921 (4346448)		19			
E5840922 (4346449)		17			
E5840923 (4346450)		17			
E5840924 (4346451)		16			
E5840925 (4346452)		16			
E5840926 (4346453)		17			
E5840927 (4346454)		15			
E5840928 (4346455)		16			
E5840929 (4346456)		15			
E5840930 (4346457)		42			
E5840931 (4346458)		14			
E5840932 (4346459)		16			
E5840933 (4346460)		15			
E5840934 (4346461)		17			
E5840935 (4346462)		18			
E5840936 (4346463)		18			
E5840937 (4346464)		20			
E5840938 (4346465)		20			
E5840939 (4346466)		21			
E5840940 (4346467)		22			
E5840941 (4346468)		25			
E5840942 (4346469)		21			
E5840943 (4346470)		21			
E5840944 (4346471)		26			

Certified By:

AGAT WORK ORDER: 220949668

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Se	p 25, 2022		DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Nov 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840945 (4346472)		23			
E5840946 (4346473)		27			
E5840947 (4346474)		25			
E5840948 (4346475)		30			
E5840949 (4346476)		34			
E5840950 (4346477)		48			
E5840951 (4346478)		109			
E5840952 (4346479)		82			
E5840953 (4346480)		124			
E5840954 (4346481)		28			
E5840955 (4346482)		22			
E5840956 (4346483)		18			
E5840957 (4346484)		16			
E5840958 (4346485)		20			
E5840959 (4346486)		14			
E5840960 (4346487)		45			
E5840961 (4346488)		16			
E5840962 (4346489)		15			
E5840963 (4346490)		12			
E5840964 (4346491)		16			
E5840965 (4346492)		14			
E5840966 (4346493)		17			
E5840967 (4346494)		16			
E5840968 (4346495)		19			
E5840969 (4346496)		16			
E5840970 (4346497)		17			
E5840971 (4346498)		15			
E5840972 (4346499)		15			
E5840973 (4346500)		10			
E5840974 (4346501)		12			
E5840975 (4346502)		13			
E5840976 (4346503)		11			

Certified By:

AGAT WORK ORDER: 22O949668

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish										
DATE SAMPLED: Se	p 25, 2022		DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Nov 14, 2022	SAMPLE TYPE: Drill Core					
	Analyte:	Zr								
	Unit:	ppm								
Sample ID (AGAT ID)	RDL:	5								
E5840977 (4346504)		12								
E5840978 (4346505)		11								
E5840979 (4346506)		12								
E5840980 (4346507)		63								
E5840981 (4346508)		12								
E5840982 (4346509)		11								
E5840983 (4346510)		11								

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

4346440-4346510 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS

Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 220949668

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	02-555)	Fire Assay - A	Nu, Pt, Pd Trace	Levels, ICP-OES finish (50g charge	e)
DATE SAMPLED: Se	p 25, 2022			DATE RECEIVED:	: Sep 26, 2022	DATE REPORTED: Nov 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt			
	Unit:	ppm	ppm	ppm			
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005			
E5840913 (4346440)		0.005	0.017	<0.005			
E5840914 (4346441)		0.004	0.026	0.008			
E5840915 (4346442)		0.004	0.014	<0.005			
E5840916 (4346443)		0.004	0.023	<0.005			
E5840917 (4346444)		0.006	0.015	<0.005			
E5840918 (4346445)		0.005	0.015	<0.005			
E5840919 (4346446)		0.004	0.019	0.005			
E5840921 (4346448)		0.024	0.018	0.012			
E5840922 (4346449)		0.005	0.029	0.010			
E5840923 (4346450)		0.005	0.057	0.019			
E5840924 (4346451)		0.003	0.012	<0.005			
E5840925 (4346452)		0.005	0.023	0.007			
E5840926 (4346453)		0.009	0.040	0.017			
E5840927 (4346454)		0.006	0.020	0.006			
E5840928 (4346455)		0.007	0.025	0.012			
E5840929 (4346456)		0.005	0.019	0.008			
E5840930 (4346457)		0.002	< 0.001	<0.005			
E5840931 (4346458)		0.006	0.025	0.010			
E5840932 (4346459)		0.009	0.054	0.023			
E5840933 (4346460)		0.020	0.052	0.017			
E5840934 (4346461)		0.004	0.074	0.028			
E5840935 (4346462)		0.003	0.010	<0.005			
E5840936 (4346463)		0.002	0.003	<0.005			
E5840937 (4346464)		0.002	0.009	<0.005			
E5840938 (4346465)		0.006	0.032	0.007			
E5840939 (4346466)		0.003	0.031	0.008			
E5840940 (4346467)		0.002	0.020	<0.005			
E5840941 (4346468)		0.004	0.036	0.012			
E5840942 (4346469)		0.012	0.029	< 0.005			
E5840943 (4346470)		0.006	0.072	<0.005			
E5840944 (4346471)		0.004	0.089	0.007			
E5840945 (4346472)		0.003	0.066	<0.005			

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22O949668

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	(02-555)	Fire Assay - Au, Pt, Pd Trace L	evels, ICP-OES finish (50g charge)	
DATE SAMPLED: Se	p 25, 2022			DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Nov 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840946 (4346473)		0.024	0.117	0.016		
E5840947 (4346474)		0.028	0.132	0.020		
E5840948 (4346475)		0.006	0.096	0.026		
E5840949 (4346476)		0.003	0.022	0.006		
E5840950 (4346477)		0.138	1.35	0.698		
E5840951 (4346478)		0.003	< 0.001	<0.005		
E5840952 (4346479)		0.002	0.006	<0.005		
E5840953 (4346480)		0.002	0.001	<0.005		
E5840954 (4346481)		0.002	0.026	<0.005		
E5840955 (4346482)		0.006	0.013	0.006		
E5840956 (4346483)		0.004	0.006	<0.005		
E5840957 (4346484)		0.002	0.005	<0.005		
E5840958 (4346485)		0.003	0.005	<0.005		
E5840959 (4346486)		0.003	0.005	<0.005		
E5840960 (4346487)		0.002	< 0.001	<0.005		
E5840961 (4346488)		0.002	0.006	<0.005		
E5840962 (4346489)		0.004	0.005	<0.005		
E5840963 (4346490)		0.004	0.006	<0.005		
E5840964 (4346491)		0.004	0.005	<0.005		
E5840965 (4346492)		0.003	0.006	<0.005		
E5840966 (4346493)		0.003	0.007	<0.005		
E5840967 (4346494)		0.004	0.054	<0.005		
E5840968 (4346495)		0.004	0.080	0.019		
E5840969 (4346496)		0.002	0.029	<0.005		
E5840970 (4346497)		0.002	0.036	<0.005		
E5840971 (4346498)		0.002	0.069	0.015		
E5840972 (4346499)		0.002	0.027	0.008		
E5840973 (4346500)		0.007	0.109	0.025		
E5840974 (4346501)		0.003	0.048	0.009		
E5840975 (4346502)		0.004	0.025	<0.005		
E5840976 (4346503)		0.009	0.037	<0.005		
E5840977 (4346504)		0.005	0.003	<0.005		

Certified By:

AGAT WORK ORDER: 22O949668

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

-	_									
(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)										
DATE SAMPLED: Sep 25, 2022				DATE RECEIVED: Sep 26, 2022		DATE REPORTED: Nov 14, 2022	SAMPLE TYPE: Drill Core			
	Analyte:	Au	Pd	Pt						
	Unit:	ppm	ppm	ppm						
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005						
E5840978 (4346505)		0.003	0.010	< 0.005						
E5840979 (4346506)		0.002	0.014	< 0.005						
E5840981 (4346508)		0.002	0.015	< 0.005						
E5840982 (4346509)		0.003	0.007	< 0.005						
E5840983 (4346510)		0.002	0.036	< 0.005						

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O949668

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

Sieving - % Passing (Crushing)										
DATE SAMPLED: Se	p 25, 2022		DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Nov 14, 2022	SAMPLE TYPE: Drill Core					
	Analyte: Ci	rush-Pass %								
	Unit:	%								
Sample ID (AGAT ID)	RDL:	0.01								
E5840913 (4346440)		80.61								
E5840932 (4346459)		82.97								
E5840952 (4346479)		77.05								
E5840972 (4346499)		76.68								

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O949668

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

Sieving - % Passing (Pulverizing)												
DATE SAMPLED: Sep 25, 2022 DATE RECEIVED: Sep 26, 2022 DATE REPORTED: Nov 14, 2022 SAMPLE TYPE: Drill Core												
	Analyte: Pu	ıl-Pass %										
	Unit:	%										
Sample ID (AGAT ID)	RDL:	0.01										
E5840913 (4346440)		88.43										
E5840932 (4346459)		86.54										
E5840952 (4346479)		87.00										
E5840972 (4346499)		86.62										

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220949668 PROJECT: WR-22-CORE-12 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish REPLICATE #1 REPLICATE #2 REPLICATE #3 REPLICATE #4																
										REPLIC	ATE #3			REPLIC	ATE #4	
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Ag	4346440	< 0.5	< 0.5	0.0%	4346454	< 0.5	< 0.5	0.0%	4346465	< 0.5	< 0.5	0.0%	4346480	< 0.5	< 0.5	0.0%
Al	4346440	2.46	2.38	3.3%	4346454	2.00	1.99	0.5%	4346465	2.78	2.84	2.1%	4346480	9.51	9.55	0.4%
As	4346440	< 1	< 1	0.0%	4346454	< 1	< 1	0.0%	4346465	< 1	< 1	0.0%	4346480	15	13	14.3%
Ва	4346440	7	7	0.0%	4346454	6	6	0.0%	4346465	8	8	0.0%	4346480	175	175	0.0%
Be	4346440	< 0.5	< 0.5	0.0%	4346454	< 0.5	< 0.5	0.0%	4346465	< 0.5	< 0.5	0.0%	4346480	0.75	0.75	0.0%
Bi	4346440	< 1	2		4346454	< 1	3		4346465	2	2	0.0%	4346480	< 1	< 1	0.0%
Ca	4346440	2.41	2.32	3.8%	4346454	1.82	1.81	0.6%	4346465	2.91	2.91	0.0%	4346480	2.09	2.06	1.4%
Cd	4346440	< 0.5	< 0.5	0.0%	4346454	< 0.5	< 0.5	0.0%	4346465	< 0.5	< 0.5	0.0%	4346480	< 0.5	< 0.5	0.0%
Ce	4346440	3	3	0.0%	4346454	2	2	0.0%	4346465	3	3	0.0%	4346480	28	28	0.0%
Co	4346440	107	107	0.0%	4346454	113	113	0.0%	4346465	98.9	103	4.1%	4346480	6.9	6.7	2.9%
Cr	4346440	2150	2120	1.4%	4346454	2060	2180	5.7%	4346465	2240	2210	1.3%	4346480	162	183	12.2%
Cu	4346440	95.7	112	15.7%	4346454	186	181	2.7%	4346465	185	217	15.9%	4346480	96.0	92.7	3.5%
Fe	4346440	7.44	7.21	3.1%	4346454	7.24	7.21	0.4%	4346465	7.33	7.47	1.9%	4346480	1.36	1.33	2.2%
Ga	4346440	< 5	< 5	0.0%	4346454	< 5	< 5	0.0%	4346465	6	6	0.0%	4346480	17	17	0.0%
In	4346440	< 1	< 1	0.0%	4346454	< 1	< 1	0.0%	4346465	< 1	< 1	0.0%	4346480	< 1	< 1	0.0%
К	4346440	0.05	0.05	0.0%	4346454	0.03	0.03	0.0%	4346465	0.05	0.05	0.0%	4346480	0.13	0.13	0.0%
La	4346440	5	5	0.0%	4346454	5	5	0.0%	4346465	5	6	18.2%	4346480	14	14	0.0%
Li	4346440	7	7	0.0%	4346454	5	5	0.0%	4346465	12	13	8.0%	4346480	11	10	9.5%
Mg	4346440	18.5	17.9	3.3%	4346454	19.5	19.4	0.5%	4346465	16.3	16.6	1.8%	4346480	1.00	0.99	1.0%
Mn	4346440	1260	1210	4.0%	4346454	1160	1160	0.0%	4346465	1280	1300	1.6%	4346480	99	97	2.0%
Мо	4346440	< 0.5	< 0.5	0.0%	4346454	< 0.5	< 0.5	0.0%	4346465	< 0.5	< 0.5	0.0%	4346480	1.9	1.5	23.5%
Na	4346440	0.04	0.04	0.0%	4346454	0.02	0.02	0.0%	4346465	0.07	0.07	0.0%	4346480	7.39	7.41	0.3%
Ni	4346440	1460	1460	0.0%	4346454	1620	1620	0.0%	4346465	1400	1460	4.2%	4346480	99.8	99.7	0.1%
Р	4346440	100	92	8.3%	4346454	64	67	4.6%	4346465	104	105	1.0%	4346480	53	57	7.3%
Pb	4346440	9	9	0.0%	4346454	10	10	0.0%	4346465	9	10	10.5%	4346480	< 1	< 1	0.0%
Rb	4346440	< 10	< 10	0.0%	4346454	< 10	< 10	0.0%	4346465	< 10	< 10	0.0%	4346480	< 10	< 10	0.0%
S	4346440	0.13	0.13	0.0%	4346454	0.11	0.11	0.0%	4346465	0.13	0.13	0.0%	4346480	0.03	0.03	0.0%
Sb	4346440	14	16	13.3%	4346454	15	16	6.5%	4346465	16	16	0.0%	4346480	< 1	< 1	0.0%
Sc	4346440	17	17	0.0%	4346454	15	15	0.0%	4346465	18	18	0.0%	4346480	11	10	9.5%
Se	4346440	< 10	< 10	0.0%	4346454	< 10	< 10	0.0%	4346465	< 10	< 10	0.0%	4346480	< 10	< 10	0.0%
Sn	4346440	< 5	< 5	0.0%	4346454	< 5	< 5	0.0%	4346465	< 5	< 5	0.0%	4346480	< 5	< 5	0.0%

Quality Assurance - Replicate AGAT WORK ORDER: 220949668 PROJECT: WR-22-CORE-12 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

JLIEINI INAIVI	IL. UNFUNI	DIVININI	CORP							AIIE	VIION IC	. Amauu	rontaine			
Sr	4346440	16	16	0.0%	4346454	12	12	0.0%	4346465	18	18	0.0%	4346480	219	218	0.5%
Та	4346440	< 10	< 10	0.0%	4346454	< 10	< 10	0.0%	4346465	< 10	< 10	0.0%	4346480	< 10	< 10	0.0%
Te	4346440	11	11	0.0%	4346454	9	11	20.0%	4346465	< 10	< 10	0.0%	4346480	< 10	< 10	0.0%
Th	4346440	< 5	< 5	0.0%	4346454	< 5	< 5	0.0%	4346465	< 5	< 5	0.0%	4346480	13	13	0.0%
Ti	4346440	0.156	0.147	5.9%	4346454	0.11	0.11	0.0%	4346465	0.18	0.18	0.0%	4346480	0.19	0.19	0.0%
TI	4346440	< 5	< 5	0.0%	4346454	< 5	< 5	0.0%	4346465	< 5	< 5	0.0%	4346480	< 5	< 5	0.0%
U	4346440	8	9	11.8%	4346454	8	9	11.8%	4346465	9	9	0.0%	4346480	< 5	< 5	0.0%
V	4346440	96.8	95.0	1.9%	4346454	80.1	82.6	3.1%	4346465	120	122	1.7%	4346480	87.4	87.6	0.2%
W	4346440	< 1	< 1	0.0%	4346454	< 1	< 1	0.0%	4346465	< 1	< 1	0.0%	4346480	< 1	< 1	0.0%
Υ	4346440	5	5	0.0%	4346454	4	5	22.2%	4346465	6	6	0.0%	4346480	8	8	0.0%
Zn	4346440	65.9	63.1	4.3%	4346454	60.6	59.4	2.0%	4346465	80.4	77.4	3.8%	4346480	10.7	11.0	2.8%
Zr	4346440	19	18	5.4%	4346454	15	15	0.0%	4346465	20	21	4.9%	4346480	124	123	0.8%
		REPLIC	ATE #5			REPLIC	ATE #6								'	
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD								
Ag	4346490	< 0.5	< 0.5	0.0%	4346505	< 0.5	< 0.5	0.0%								
Al	4346490	2.78	2.65	4.8%	4346505	2.59	2.54	1.9%								
As	4346490	< 1	< 1	0.0%	4346505	108	111	2.7%								
Ва	4346490	8	8	0.0%	4346505	9	9	0.0%								
Be	4346490	< 0.5	< 0.5	0.0%	4346505	0.5	0.5	0.0%								
Bi	4346490	3	2		4346505	< 1	< 1	0.0%								
Ca	4346490	3.97	4.10	3.2%	4346505	5.16	5.20	0.8%								
Cd	4346490	< 0.5	< 0.5	0.0%	4346505	< 0.5	< 0.5	0.0%								
Ce	4346490	3	3	0.0%	4346505	2	2	0.0%								
Со	4346490	80.2	75.0	6.7%	4346505	70.3	71.7	2.0%								
Cr	4346490	2010	1850	8.3%	4346505	1790	1900	6.0%								
Cu	4346490	134	146	8.6%	4346505	36.4	33.1	9.5%								
Fe	4346490	6.42	6.17	4.0%	4346505	5.96	6.03	1.2%								
Ga	4346490	6	5	18.2%	4346505	5	6	18.2%								
In	4346490	< 1	< 1	0.0%	4346505	< 1	< 1	0.0%								
K	4346490	0.02	0.02	0.0%	4346505	0.015	0.015	0.0%								
La	4346490	5	5	0.0%	4346505	5	5	0.0%								
Li	4346490	47	46	2.2%	4346505	29	28	3.5%								
Mg	4346490	14.1	13.7	2.9%	4346505	12.6	12.8	1.6%								
Mn	4346490	1490	1540	3.3%	4346505	1160	1140	1.7%								

< 0.5

4346505

< 0.5

< 0.5

0.0%

Quality Assurance - Replicate AGAT WORK ORDER: 22O949668 PROJECT: WR-22-CORE-12

0.0%

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP 4346490

ATTENTION TO: Arnaud Fontaine

Na	4346490	0.02	0.02	0.0%	4346505	0.01	0.01	0.0%								
Ni	4346490	938	885	5.8%	4346505	883	902	2.1%								
Р	4346490	109	97	11.7%	4346505	69	72	4.3%								
Pb	4346490	8	9	11.8%	4346505	8	8	0.0%								
Rb	4346490	< 10	< 10	0.0%	4346505	< 10	< 10	0.0%								
S	4346490	0.067	0.065	3.0%	4346505	0.31	0.31	0.0%								
Sb	4346490	14	11	24.0%	4346505	10	11	9.5%								
Sc	4346490	17	16	6.1%	4346505	15	15	0.0%								
Se	4346490	< 10	< 10	0.0%	4346505	< 10	< 10	0.0%								
Sn	4346490	< 5	< 5	0.0%	4346505	< 5	< 5	0.0%								
Sr	4346490	42	43	2.4%	4346505	243	245	0.8%								
Та	4346490	< 10	< 10	0.0%	4346505	< 10	< 10	0.0%								
Te	4346490	< 10	< 10	0.0%	4346505	< 10	< 10	0.0%								
Th	4346490	< 5	< 5	0.0%	4346505	< 5	< 5	0.0%								
Ti	4346490	0.18	0.17	5.7%	4346505	0.02	0.02	0.0%								
TI	4346490	< 5	< 5	0.0%	4346505	< 5	< 5	0.0%								
U	4346490	7	6	15.4%	4346505	6	7	15.4%								
V	4346490	117	111	5.3%	4346505	104	106	1.9%								
W	4346490	< 1	< 1	0.0%	4346505	< 1	< 1	0.0%								
Υ	4346490	5	5	0.0%	4346505	4	4	0.0%								
Zn	4346490	59.2	60.7	2.5%	4346505	57.9	58.5	1.0%								
Zr	4346490	12	12	0.0%	4346505	11	10	9.5%								
		•	(202-5	555) Fir	e Assay	- Au, P	t, Pd Tr	ace Le	vels, ICF	P-OES f	inish (5	0g cha	rge)	•		
		REPLIC		-		REPLIC				REPLIC			<u> </u>	REPLIC	CATE #4	-
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPI
Au	4346440	0.005	0.005	0.0%	4346454	0.0056	0.0053	5.5%	4346465	0.006	0.006	0.0%	4346480	0.002	0.002	0.0%
Pd	4346440	0.017	0.016	6.1%	4346454	0.020	0.020	0.0%	4346465	0.0319	0.0312	2.2%	4346480	0.001	0.001	0.09
Pt	4346510	< 0.005	< 0.005	0.0%	4346454	0.006	< 0.005		4346465	0.007	0.006	15.4%	4346480	< 0.005	< 0.005	0.09
		REPLIC	ATE #5			REPLIC	ATE #6	ı		1				ı	4	
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD								
Au	4346490	0.004	0.006		4346505	0.0028	0.0036	25.0%								
Pd	4346490	0.0061	0.0054	12.2%	4346505	0.010	0.012	18.2%								

4346490

< 0.005

< 0.005

0.0%

4346505

< 0.005

Pt

0.0%

< 0.005

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220949668 PROJECT: WR-22-CORE-12 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(20	1-070) 4	Acid [Digest -	Metals I	Package	e, ICP-0	DES fini	ish				
		CRM #1	(ref.Till-2)			CRM #2	(ref.GTS-2a)			CRM #3 (ref.CGL-015)		CRM #4	(ref.Till-2)	
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Al	8.47	8.74	103%		6.96	7	101%		13.0	12.2	94%		8.47	8.1	96%	
As	26	30	114%		124	128	104%						26	28	109%	
Ва	540	527	98%		186	189	101%		1305	1269	97%		540	520	96%	
Be	4.0	3.6	90%										4.0	3.3	84%	
Ca	0.907	0.903	100%		4.01	3.81	95%		1.42	1.3	92%		0.907	0.83	91%	
Ce	98	101	103%		24	22	90%		58.24	53.52	92%		98	94	96%	
Со	15	12	81%		22.1	19.1	86%						15	12	78%	
Cr	60.3	60.9	101%										60.3	54.3	90%	
Cu	150	149	99%		88.6	83.7	94%						150	145	97%	
Fe	3.77	3.71	98%		7.56	7.15	95%		3.27	2.94	90%		3.77	3.46	92%	
Ga									22.63	23.1	102%					
K					2.021	2.105	104%		3.69	3.69	100%					
La	44	46	104%						27.48	25.36	92%		44	43	97%	
Li	47	50	106%						64.95	70.54	109%		47	51	109%	,
Mg	1.10	1.12	102%		2.412	2.38	99%		0.223	0.219	98%		1.10	1.03	94%	
Mn	780	770	99%		1510	1484	98%						780	756	97%	
Мо	14	14	101%										14	12	88%	
Na	1.624	1.728	106%		0.617	0.643	104%		7.24	6.82	94%		1.624	1.669	103%	
Ni	32	32	101%		77.1	73.7	96%						32	31	98%	
Р	750	704	94%		892	845	95%		610	570	93%		750	671	89%	
Pb	31	29	95%										31	27	86%	
S					0.348	0.339	97%									
Sc	12	12	103%						2.76	2.09	76%		12	11	93%	
Sr	144	150	104%		92.8	90.2	97%		312	306	98%		144	148	103%	
Th	18.4	17.4	95%										18.4	15.5	84%	
Ti	0.53	0.47	89%						0.222	0.206	93%		0.53	0.45	86%	
U	5.7	6.3	111%										5.7	5.2	92%	
V	77	83	108%										77	79	102%	
W	5	5	103%										5	5	110%	
Υ									25.32	23.93	95%					
Zn	130	123	94%		208	200	96%		75.42	74.86	99%		130	112	86%	

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220949668

PROJECT: WR-22-CORE-12

MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

5623 McADAM ROAD

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

	(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)																
	CRM #1 (ref.PGMS30) CRM #2 (ref.PGMS30)										CRM #3 (ref.PGMS30) CRM #4 (ref.PGMS30)						
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	
Au	1.897	2.02	107%		1.897	1.952	103%		1.897	2.061	109%		1.897	2.045	107%		
Pd	1.660	1.731	104%		1.660	1.752	106%		1.660	1.773	107%		1.660	1.745	105%		
Pt	0.223	0.241	108%		0.223	0.234	105%		0.223	0.233	104%		0.223	0.234	105%		

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-12

SAMPLING SITE:

AGAT WORK ORDER: 22O949668 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Bi	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
La	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Li	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mg	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Na	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Ni	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-12

SAMPLING SITE:

AGAT WORK ORDER: 22O949668 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

SAMPLING SITE.		SAMPLED BT.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
ті	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-12006, MIN-12004		ICP/OES
Pd	MIN-12006, MIN-12004		ICP/OES
Pt	MIN-12006, MIN-12004		ICP/OES
Crush-Pass %			BALANCE
Pul-Pass %			BALANCE

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-CORE-12

AGAT WORK ORDER: 22O949672

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Oct 28, 2022

PAGES (INCLUDING COVER): 21

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 21

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

AGAT WORK ORDER: 220949672

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP ATTENTION TO: Arnaud Fontaine

CLIENT NAME. OR	I OILD WIIIAII	10 00111		ATTENTION TO. ATTIAUU F	ontaine
			(200-) Sample Lo	gin Weight	
DATE SAMPLED: Se	p 25, 2022		DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Oct 28, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840992 (4346519)		2.650			
E5840993 (4346520)		2.320			
E5840994 (4346521)		2.260			
E5840995 (4346522)		2.250			
E5840996 (4346523)		2.040			
E5840997 (4346524)		2.310			
E5840998 (4346525)		2.380			
E5840999 (4346526)		0.700			
E5841000 (4346527)		0.650			
E5841001 (4346528)		1.520			
E5841002 (4346529)		2.560			
E5841003 (4346530)		3.500			
E5841004 (4346531)		3.170			
E5841005 (4346532)		3.600			
E5841006 (4346533)		1.720			
E5841007 (4346534)		1.630			
E5841008 (4346535)		2.990			
E5841009 (4346536)		2.160			
E5841010 (4346537)		0.01			
E5841011 (4346538)		2.340			
E5841012 (4346539)		2.160			
E5841013 (4346540)		3.400			
E5841014 (4346541)		3.240			
E5841015 (4346542)		3.390			
E5841016 (4346543)		3.350			
E5841017 (4346544)		3.270			
E5841018 (4346545)		3.320			
E5841019 (4346546)		3.530			
E5841020 (4346547)		0.190			
E5841021 (4346548)		3.520			
E5841022 (4346549)		2.770			

Certificate of Analysis

AGAT WORK ORDER: 220949672

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Sep	25, 2022		DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Oct 28, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5841023 (4346550)		1.990			
E5841024 (4346551)		2.250			
E5841025 (4346552)		3.210			
E5841026 (4346553)		3.030			
E5841027 (4346554)		3.570			
E5841028 (4346555)		3.030			
E5841029 (4346556)		1.280			
E5841030 (4346557)		1.500			
E5841031 (4346558)		3.110			
E5841032 (4346559)		3.040			
E5841033 (4346560)		1.330			
E5841034 (4346561)		2.190			
E5841035 (4346562)		3.170			
E5841036 (4346563)		3.340			
E5841037 (4346564)		3.250			

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS

Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 22O949672

PROJECT: WR-22-CORE-12

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 25, 2022]	DATE RECE	EIVED: Sep	26, 2022		DATE I	REPORTED	: Oct 28, 20)22	SAM	PLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840992 (4346519)		<0.5	2.98	100	11	0.6	<1	3.20	<0.5	2	78.9	1890	22.4	6.34	9
E5840993 (4346520)		<0.5	3.21	68	10	0.6	<1	3.47	<0.5	3	79.1	1970	12.4	6.40	8
E5840994 (4346521)		<0.5	3.12	48	10	0.6	<1	3.86	<0.5	3	71.2	1720	9.2	6.43	7
E5840995 (4346522)		<0.5	3.17	52	15	0.6	<1	3.53	<0.5	3	77.4	1970	24.4	6.31	8
E5840996 (4346523)		<0.5	2.98	48	21	0.6	<1	3.35	<0.5	3	78.5	1890	36.7	6.47	9
E5840997 (4346524)		<0.5	3.08	64	34	0.5	<1	4.03	<0.5	3	77.7	1840	24.2	6.32	8
E5840998 (4346525)		<0.5	3.30	58	58	<0.5	<1	7.35	<0.5	2	51.8	969	31.9	5.63	8
E5840999 (4346526)		<0.5	4.07	96	36	<0.5	<1	4.19	<0.5	3	72.2	1470	113	6.86	12
E5841000 (4346527)		<0.5	4.13	104	38	<0.5	<1	4.19	<0.5	3	77.5	1500	126	6.98	11
E5841001 (4346528)		<0.5	3.74	190	171	0.6	<1	6.43	<0.5	2	62.9	1240	77.0	6.06	9
E5841002 (4346529)		<0.5	3.94	54	8	<0.5	<1	5.41	<0.5	2	65.9	1320	72.7	6.31	10
E5841003 (4346530)		<0.5	3.44	23	11	<0.5	<1	5.25	<0.5	2	67.0	1430	22.6	6.18	8
E5841004 (4346531)		<0.5	3.48	4	9	<0.5	<1	3.70	<0.5	3	79.3	1730	85.2	6.79	10
E5841005 (4346532)		<0.5	3.40	33	10	<0.5	<1	3.14	<0.5	3	84.1	1920	37.3	6.94	10
E5841006 (4346533)		<0.5	2.63	67	41	<0.5	<1	6.57	<0.5	<1	62.6	1500	11.8	5.46	5
E5841007 (4346534)		<0.5	2.93	6	5	<0.5	<1	2.48	<0.5	3	81.7	1830	13.9	6.48	8
E5841008 (4346535)		<0.5	3.05	5	6	<0.5	<1	3.22	<0.5	3	83.8	1910	24.3	6.77	8
E5841009 (4346536)		<0.5	3.05	6	6	<0.5	<1	3.11	<0.5	3	88.8	1990	75.1	7.05	9
E5841010 (4346537)		<0.5	3.87	130	202	1.0	<1	2.86	<0.5	26	76.4	750	31.6	5.04	6
E5841011 (4346538)		<0.5	2.94	15	8	<0.5	<1	3.82	<0.5	3	88.1	2130	57.2	6.75	8
E5841012 (4346539)		<0.5	2.86	<1	5	<0.5	<1	3.05	<0.5	3	92.7	2280	16.0	6.96	8
E5841013 (4346540)		<0.5	2.74	<1	5	<0.5	<1	3.23	<0.5	3	90.5	2020	58.7	6.78	7
E5841014 (4346541)		<0.5	2.28	<1	8	<0.5	2	2.25	<0.5	2	98.2	1790	59.0	6.86	6
E5841015 (4346542)		<0.5	2.26	<1	5	<0.5	<1	3.48	<0.5	1	90.3	1950	30.4	6.63	5
E5841016 (4346543)		<0.5	2.18	<1	3	<0.5	<1	2.90	<0.5	2	105	2080	251	6.84	<5
E5841017 (4346544)		<0.5	1.85	<1	8	<0.5	<1	2.83	<0.5	1	108	1770	147	7.36	<5
E5841018 (4346545)		<0.5	1.72	<1	5	<0.5	<1	1.75	<0.5	2	103	1880	16.6	6.78	<5
E5841019 (4346546)		<0.5	1.86	<1	5	<0.5	1	1.79	<0.5	2	109	2000	24.5	7.61	5
E5841020 (4346547)		<0.5	7.20	1	397	1.1	<1	1.95	<0.5	19	9.3	104	14.7	2.29	15
E5841021 (4346548)		<0.5	1.85	<1	4	<0.5	<1	1.83	<0.5	2	112	1790	122	7.60	<5
E5841022 (4346549)		<0.5	1.83	<1	4	<0.5	<1	1.93	<0.5	2	112	2090	14.6	7.36	<5
E5841023 (4346550)		<0.5	1.82	<1	5	<0.5	<1	1.67	<0.5	2	126	1960	502	7.80	<5

Certified By:

Sherin Moussey

Certificate of Analysis

AGAT WORK ORDER: 22O949672

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	25, 2022		Г	DATE RECE	IVED: Sep	26, 2022		DATE I	REPORTED): Oct 28, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5841024 (4346551)		<0.5	1.78	<1	5	<0.5	<1	1.80	<0.5	2	110	1940	66.5	7.18	<5
E5841025 (4346552)		<0.5	1.93	<1	5	<0.5	1	1.89	< 0.5	4	115	1840	108	7.59	<5
E5841026 (4346553)		<0.5	1.81	<1	6	<0.5	<1	1.57	< 0.5	3	112	1730	44.1	7.21	<5
E5841027 (4346554)		<0.5	1.97	<1	5	<0.5	<1	2.25	< 0.5	3	116	1750	141	7.27	<5
E5841028 (4346555)		<0.5	1.82	<1	6	<0.5	1	1.67	< 0.5	2	110	1820	50.5	7.44	<5
E5841029 (4346556)		<0.5	1.70	<1	5	<0.5	<1	1.79	< 0.5	2	118	1650	94.4	7.23	<5
E5841030 (4346557)		<0.5	1.70	<1	5	<0.5	<1	1.75	< 0.5	2	114	1760	110	7.20	<5
E5841031 (4346558)		<0.5	2.06	<1	11	<0.5	1	1.21	< 0.5	8	106	1650	120	6.62	<5
E5841032 (4346559)		<0.5	1.77	<1	8	<0.5	<1	1.79	< 0.5	3	117	1890	143	7.33	<5
E5841033 (4346560)		<0.5	1.75	<1	7	<0.5	<1	2.00	< 0.5	3	131	1430	417	7.39	<5
E5841034 (4346561)		<0.5	1.74	<1	6	<0.5	<1	1.47	< 0.5	2	112	1370	106	7.60	<5
E5841035 (4346562)		<0.5	1.80	<1	5	<0.5	<1	1.45	<0.5	2	118	1350	203	7.53	<5
E5841036 (4346563)		<0.5	1.95	<1	6	<0.5	<1	1.31	0.7	2	128	1860	371	7.52	<5
E5841037 (4346564)		<0.5	1.94	<1	6	<0.5	<1	1.49	<0.5	2	131	1480	375	5.99	<5

Certified By:

Sherin Houssey

Certificate of Analysis

AGAT WORK ORDER: 22O949672

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 25, 2022		Γ	DATE RECE	EIVED: Sep	26, 2022		DATE	REPORTED): Oct 28, 20)22	SAM	PLE TYPE:	Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840992 (4346519)		<1	0.01	4	29	13.0	868	<0.5	0.01	953	73	8	<10	0.06	12
E5840993 (4346520)		<1	<0.01	5	27	13.1	1000	<0.5	0.01	963	90	9	<10	0.05	11
E5840994 (4346521)		<1	0.01	4	26	13.2	1180	<0.5	0.01	882	82	10	<10	0.05	9
E5840995 (4346522)		<1	0.01	5	28	13.0	959	<0.5	0.02	920	106	10	<10	0.07	11
E5840996 (4346523)		<1	0.02	5	26	12.5	908	<0.5	0.01	878	109	8	<10	0.04	11
E5840997 (4346524)		<1	0.03	5	28	12.4	936	<0.5	0.01	893	93	9	<10	0.04	9
E5840998 (4346525)		<1	0.12	4	39	10.0	1300	<0.5	0.01	515	104	8	<10	0.05	4
E5840999 (4346526)		<1	0.12	4	51	10.7	1050	<0.5	<0.01	868	124	9	<10	0.04	7
E5841000 (4346527)		<1	0.14	4	51	10.8	1050	< 0.5	<0.01	735	118	9	<10	0.03	8
E5841001 (4346528)		<1	0.52	4	38	9.73	1170	<0.5	0.03	646	48	10	<10	0.05	7
E5841002 (4346529)		<1	0.01	3	38	10.7	1190	< 0.5	<0.01	686	95	8	<10	0.04	6
E5841003 (4346530)		<1	0.02	4	28	11.1	1220	< 0.5	0.01	713	120	8	<10	0.03	8
E5841004 (4346531)		<1	0.03	5	33	12.3	1060	< 0.5	0.01	823	126	11	<10	0.03	10
E5841005 (4346532)		<1	0.02	5	34	13.0	985	< 0.5	0.01	885	118	8	<10	0.03	11
E5841006 (4346533)		<1	0.18	4	30	11.5	1250	< 0.5	0.05	755	36	8	<10	0.04	8
E5841007 (4346534)		<1	<0.01	4	33	12.9	1010	< 0.5	0.01	926	109	9	<10	0.06	9
E5841008 (4346535)		<1	0.02	5	35	13.9	1200	< 0.5	0.02	972	114	11	<10	0.07	11
E5841009 (4346536)		<1	0.01	5	35	14.4	1190	<0.5	0.02	1030	101	10	<10	0.05	12
E5841010 (4346537)		<1	0.63	16	35	13.2	1100	1.7	0.80	1930	215	17	<10	0.30	4
E5841011 (4346538)		<1	0.01	5	35	14.1	1200	< 0.5	0.01	1010	109	10	<10	0.03	12
E5841012 (4346539)		<1	0.01	5	27	14.8	1120	< 0.5	0.02	1080	118	11	<10	0.03	14
E5841013 (4346540)		<1	0.02	5	21	14.6	1140	<0.5	0.02	1080	112	9	<10	0.06	14
E5841014 (4346541)		<1	0.05	4	20	15.7	1130	<0.5	0.03	973	98	10	<10	0.05	11
E5841015 (4346542)		<1	0.01	5	13	15.6	1170	<0.5	0.03	1160	64	10	<10	0.12	12
E5841016 (4346543)		<1	<0.01	5	9	16.2	1060	< 0.5	0.03	1690	64	12	<10	0.11	12
E5841017 (4346544)		<1	0.04	4	9	17.2	1190	< 0.5	0.02	1320	75	12	<10	0.12	13
E5841018 (4346545)		<1	0.04	4	2	16.8	1170	<0.5	0.03	1310	68	12	<10	0.06	10
E5841019 (4346546)		<1	0.05	5	2	19.2	1300	<0.5	0.03	1450	73	12	<10	0.06	10
E5841020 (4346547)		<1	1.25	9	13	0.97	392	<0.5	3.00	36.9	246	4	<10	0.02	1
E5841021 (4346548)		<1	0.05	5	2	18.9	1250	<0.5	0.03	1670	72	13	<10	0.10	9
E5841022 (4346549)		<1	0.05	5	2	18.8	1200	<0.5	0.03	1630	73	11	<10	0.07	12
E5841023 (4346550)		<1	0.04	5	2	18.9	1220	<0.5	0.03	2050	65	12	<10	0.17	10

Certified By:

Sherin Houssey

Certificate of Analysis

AGAT WORK ORDER: 220949672

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - N	letals Pa	ckage, l	CP-OES	finish					
DATE SAMPLED: Se	p 25, 2022		Γ	DATE RECE	EIVED: Sep	26, 2022		DATE F	REPORTED	: Oct 28, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5841024 (4346551)		<1	0.05	5	2	18.5	1140	<0.5	0.03	1560	77	13	<10	0.08	12
E5841025 (4346552)		<1	0.05	5	3	19.3	1360	<0.5	0.02	1750	156	13	<10	0.14	12
E5841026 (4346553)		<1	0.04	5	3	19.3	1240	<0.5	0.03	1770	113	13	<10	0.15	11
E5841027 (4346554)		<1	0.05	5	2	19.3	1320	<0.5	0.03	1740	105	10	<10	0.15	10
E5841028 (4346555)		<1	0.05	5	2	19.1	1160	<0.5	0.03	1450	78	12	<10	0.12	8
E5841029 (4346556)		<1	0.05	4	2	19.7	1120	<0.5	0.03	1600	86	11	<10	0.15	8
E5841030 (4346557)		<1	0.05	5	2	19.5	1100	<0.5	0.03	1540	89	13	<10	0.15	12
E5841031 (4346558)		<1	0.13	6	6	18.8	1450	<0.5	0.02	1630	286	10	<10	0.16	11
E5841032 (4346559)		<1	0.07	5	2	19.7	1220	<0.5	0.03	1680	100	11	<10	0.14	11
E5841033 (4346560)		<1	0.06	4	2	19.5	1210	<0.5	0.03	2260	95	12	<10	0.33	8
E5841034 (4346561)		<1	0.04	4	2	18.9	1120	<0.5	0.02	1600	67	11	<10	0.17	8
E5841035 (4346562)		<1	0.04	4	2	18.9	1210	<0.5	0.02	1650	82	13	<10	0.19	8
E5841036 (4346563)		<1	0.04	4	2	19.2	1250	<0.5	0.02	1740	65	12	<10	0.22	10
E5841037 (4346564)		<1	0.04	4	2	19.5	1330	<0.5	0.02	1860	83	9	<10	0.23	9

Certificate of Analysis

AGAT WORK ORDER: 220949672

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 25, 2022		Г	ATE RECE	IVED: Sep	26, 2022		DATE F	REPORTED): Oct 28, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840992 (4346519)		19	<10	<5	145	<10	<10	<5	0.02	<5	6	122	<1	4	58.9
E5840993 (4346520)		20	<10	<5	129	<10	<10	<5	0.03	<5	6	134	<1	4	60.4
E5840994 (4346521)		19	<10	<5	136	<10	<10	<5	0.02	<5	6	128	<1	4	60.2
E5840995 (4346522)		19	<10	<5	106	<10	<10	<5	0.02	<5	5	130	<1	4	66.1
E5840996 (4346523)		19	<10	<5	99	<10	<10	<5	0.02	<5	6	130	<1	4	63.5
E5840997 (4346524)		19	<10	<5	124	<10	<10	<5	0.04	<5	6	125	<1	4	61.2
E5840998 (4346525)		19	<10	<5	208	<10	<10	<5	0.08	<5	<5	130	<1	5	53.6
E5840999 (4346526)		25	<10	<5	131	<10	<10	<5	0.02	<5	6	154	<1	4	72.6
E5841000 (4346527)		25	<10	<5	131	<10	11	<5	0.02	<5	7	159	<1	5	74.9
E5841001 (4346528)		22	<10	<5	189	<10	<10	<5	0.07	<5	6	137	<1	5	60.4
E5841002 (4346529)		23	<10	<5	108	<10	<10	<5	0.04	<5	5	135	<1	5	63.7
E5841003 (4346530)		22	<10	<5	86	<10	<10	<5	0.03	<5	5	136	<1	5	63.4
E5841004 (4346531)		22	<10	<5	59	<10	<10	<5	0.02	<5	6	143	<1	4	71.8
E5841005 (4346532)		21	<10	<5	51	<10	10	<5	0.02	<5	6	138	<1	3	72.3
E5841006 (4346533)		16	<10	<5	109	<10	<10	<5	0.05	<5	5	107	<1	3	50.6
E5841007 (4346534)		19	<10	<5	34	<10	13	<5	0.02	<5	6	126	<1	3	64.1
E5841008 (4346535)		20	<10	<5	37	<10	<10	<5	0.02	<5	5	129	<1	4	67.8
E5841009 (4346536)		20	<10	<5	30	<10	12	<5	0.02	<5	6	130	<1	4	74.8
E5841010 (4346537)		12	<10	<5	72	<10	<10	5	0.17	<5	5	70.3	5	9	103
E5841011 (4346538)		18	<10	<5	37	<10	10	<5	0.02	<5	6	119	<1	4	66.4
E5841012 (4346539)		19	<10	<5	27	<10	11	<5	0.02	<5	6	124	<1	4	68.9
E5841013 (4346540)		18	<10	<5	24	<10	12	<5	0.03	<5	6	122	<1	4	67.6
E5841014 (4346541)		16	<10	<5	17	<10	<10	<5	0.15	<5	6	100	<1	4	63.2
E5841015 (4346542)		16	<10	<5	18	<10	11	<5	0.12	<5	6	92.8	<1	4	60.2
E5841016 (4346543)		15	<10	<5	11	<10	<10	<5	0.11	<5	5	88.4	<1	4	55.3
E5841017 (4346544)		14	<10	<5	14	<10	13	<5	0.11	<5	7	75.1	<1	4	56.4
E5841018 (4346545)		13	<10	<5	8	<10	<10	<5	0.10	<5	6	71.7	<1	4	58.0
E5841019 (4346546)		14	<10	<5	9	<10	12	<5	0.11	<5	6	74.8	<1	4	65.6
E5841020 (4346547)		8	<10	<5	368	<10	<10	<5	0.19	<5	<5	62.7	<1	8	32.3
E5841021 (4346548)		14	<10	<5	9	<10	13	<5	0.11	<5	7	69.6	<1	4	61.9
E5841022 (4346549)		15	<10	<5	9	<10	11	<5	0.11	<5	6	75.8	<1	4	61.2
E5841023 (4346550)		14	<10	<5	9	<10	12	<5	0.11	<5	7	73.2	<1	4	63.8

Certified By:

Sherin Moussey

Certificate of Analysis

AGAT WORK ORDER: 220949672

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, l	CP-OES	finish					
DATE SAMPLED: Se	p 25, 2022		Г	DATE RECE	EIVED: Sep	26, 2022		DATE F	REPORTED	: Oct 28, 20)22	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5841024 (4346551)		14	<10	<5	7	<10	11	<5	0.11	<5	6	70.9	<1	4	58.7
E5841025 (4346552)		13	<10	<5	9	<10	14	<5	0.17	<5	6	81.9	<1	8	74.7
E5841026 (4346553)		15	<10	<5	10	<10	13	<5	0.13	<5	6	79.8	<1	6	58.8
E5841027 (4346554)		15	<10	<5	8	<10	14	<5	0.14	<5	6	77.0	<1	5	65.0
E5841028 (4346555)		14	<10	<5	10	<10	13	<5	0.11	<5	6	70.2	<1	4	59.5
E5841029 (4346556)		15	<10	<5	8	<10	13	<5	0.12	<5	6	74.4	<1	5	54.3
E5841030 (4346557)		15	<10	<5	8	<10	15	<5	0.12	<5	6	77.9	<1	5	55.0
E5841031 (4346558)		10	<10	<5	8	<10	<10	<5	0.29	<5	<5	93.1	<1	12	60.3
E5841032 (4346559)		14	<10	<5	8	<10	13	<5	0.13	<5	6	73.0	<1	5	69.6
E5841033 (4346560)		15	<10	<5	9	<10	15	<5	0.14	<5	7	81.9	<1	6	66.4
E5841034 (4346561)		14	<10	<5	11	<10	15	<5	0.11	<5	7	72.0	<1	4	60.3
E5841035 (4346562)		14	<10	<5	11	<10	16	<5	0.12	<5	6	76.0	<1	4	64.3
E5841036 (4346563)		16	<10	<5	10	<10	14	<5	0.12	<5	6	79.9	<1	4	105
E5841037 (4346564)		15	<10	<5	11	<10	11	<5	0.13	<5	<5	73.7	<1	5	93.2

Certificate of Analysis

AGAT WORK ORDER: 220949672

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Se	25, 2022		DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Oct 28, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840992 (4346519)		13			
E5840993 (4346520)		14			
E5840994 (4346521)		14			
E5840995 (4346522)		15			
E5840996 (4346523)		19			
E5840997 (4346524)		19			
E5840998 (4346525)		19			
E5840999 (4346526)		21			
E5841000 (4346527)		21			
E5841001 (4346528)		18			
E5841002 (4346529)		16			
E5841003 (4346530)		16			
E5841004 (4346531)		21			
E5841005 (4346532)		18			
E5841006 (4346533)		12			
E5841007 (4346534)		12			
E5841008 (4346535)		13			
E5841009 (4346536)		16			
E5841010 (4346537)		63			
E5841011 (4346538)		15			
E5841012 (4346539)		13			
E5841013 (4346540)		16			
E5841014 (4346541)		16			
E5841015 (4346542)		11			
E5841016 (4346543)		12			
E5841017 (4346544)		14			
E5841018 (4346545)		14			
E5841019 (4346546)		15			
E5841020 (4346547)		57			
E5841021 (4346548)		15			
E5841022 (4346549)		14			
E5841023 (4346550)		15			

Certified By:

Sherin Houssey

AGAT WORK ORDER: 22O949672

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	Package, ICP-OES finish	
DATE SAMPLED: Sep	25, 2022		DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Oct 28, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5841024 (4346551)		15			
E5841025 (4346552)		32			
E5841026 (4346553)		21			
E5841027 (4346554)		20			
E5841028 (4346555)		15			
E5841029 (4346556)		17			
E5841030 (4346557)		17			
E5841031 (4346558)		69			
E5841032 (4346559)		21			
E5841033 (4346560)		21			
E5841034 (4346561)		15			
E5841035 (4346562)		16			
E5841036 (4346563)		16			
E5841037 (4346564)		19			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

4346519-4346564 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 22O949672 PROJECT: WR-22-CORE-12

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(20	2-555) Fire Assay - Au, Pt, Pd	Гrace Levels, ICP-OES finish	
DATE SAMPLED: Se	p 25, 2022			DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Oct 28, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840992 (4346519)		0.001	0.011	<0.005		
E5840993 (4346520)		0.001	0.005	<0.005		
E5840994 (4346521)		0.001	0.005	<0.005		
E5840995 (4346522)		0.002	0.004	<0.005		
E5840996 (4346523)		0.020	0.003	<0.005		
E5840997 (4346524)		0.001	0.004	<0.005		
E5840998 (4346525)		0.027	0.006	0.005		
E5840999 (4346526)		0.003	0.006	<0.005		
E5841000 (4346527)		0.003	0.008	0.005		
E5841001 (4346528)		0.022	0.006	0.006		
E5841002 (4346529)		0.003	0.009	<0.005		
E5841003 (4346530)		0.002	0.008	0.008		
E5841004 (4346531)		< 0.001	0.004	0.007		
E5841005 (4346532)		0.001	0.006	<0.005		
E5841006 (4346533)		0.001	0.004	<0.005		
E5841007 (4346534)		0.001	0.005	<0.005		
E5841008 (4346535)		0.001	0.005	<0.005		
E5841009 (4346536)		0.002	0.009	0.006		
E5841011 (4346538)		3.16	0.012	<0.005		
E5841012 (4346539)		0.001	0.007	0.008		
E5841013 (4346540)		0.002	0.008	<0.005		
E5841014 (4346541)		0.001	0.003	<0.005		
E5841015 (4346542)		0.003	0.003	0.005		
E5841016 (4346543)		0.006	0.048	0.016		
E5841017 (4346544)		0.001	0.016	0.007		
E5841018 (4346545)		0.001	0.002	<0.005		
E5841019 (4346546)		0.001	0.001	<0.005		
E5841020 (4346547)		<0.001	< 0.001	<0.005		
E5841021 (4346548)		0.002	0.022	0.013		
E5841022 (4346549)		0.002	0.046	0.033		
E5841023 (4346550)		0.004	0.062	0.031		
E5841024 (4346551)		0.002	0.010	0.005		

Certified By:

Sherin Moussey

AGAT WORK ORDER: 220949672

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(202	2-555) Fire Assay - Au, Pt, Pd	Trace Levels, ICP-OES finish	
DATE SAMPLED: Sep	25, 2022			DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Oct 28, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5841025 (4346552)		0.003	0.052	0.027		
E5841026 (4346553)		0.003	0.038	0.026		
E5841027 (4346554)		0.003	0.029	0.015		
E5841028 (4346555)		0.005	0.020	0.011		
E5841029 (4346556)		0.003	0.021	0.011		
E5841030 (4346557)		0.003	0.022	0.007		
E5841031 (4346558)		0.005	0.045	0.020		
E5841032 (4346559)		0.005	0.029	0.010		
E5841033 (4346560)		0.005	0.057	0.017		
E5841034 (4346561)		0.004	0.024	0.008		
E5841035 (4346562)		0.003	0.040	0.013		
E5841036 (4346563)		0.003	0.053	0.012		
E5841037 (4346564)		0.005	0.058	0.017		
·						

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1046 Gorham St, Thunder Bay, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

Sherin Houss of

AGAT WORK ORDER: 22O949672

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passin	ng (Crushing)								
DATE SAMPLED: Sep 25, 2022 DATE RECEIVED: Sep 26, 2022 DATE REPORTED: Oct 28, 2022 SAMPLE TYPE: Drill Core												
	Analyte: C	rush-Pass %										
	Unit:	%										
Sample ID (AGAT ID)	RDL:	0.01										
E5840992 (4346519)		84.51										
E5841011 (4346538)		80.42										
E5841031 (4346558)		78.21										

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O949672

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passing	g (Pulverizing)									
DATE SAMPLED: Sep 25, 2022 DATE RECEIVED: Sep 26, 2022 DATE REPORTED: Oct 28, 2022 SAMPLE TYPE: Drill Core													
	Analyte: Pu	ul-Pass %											
Analyte: Pul-Pass % Unit: %													
Sample ID (AGAT ID)	RDL:	0.01											
E5840992 (4346519)		88.07											
E5841011 (4346538)		88.42											
E5841031 (4346558)		88.26											

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220949672 PROJECT: WR-22-CORE-12 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(201	1-070) 4	Acid Di	gest - N	letals F	Package	ICP-O	ES finis	h				
		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3			REPLIC	ATE #4	
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Ag	4346519	< 0.5	< 0.5	0.0%	4346533	< 0.5	< 0.5	0.0%	4346544	< 0.5	< 0.5	0.0%	4346559	< 0.5	< 0.5	0.0%
Al	4346519	2.98	2.86	4.1%	4346533	2.63	2.61	0.8%	4346544	1.85	1.88	1.6%	4346559	1.77	1.79	1.1%
As	4346519	100	94	6.2%	4346533	67	61	9.4%	4346544	< 1	< 1	0.0%	4346559	< 1	< 1	0.0%
Ва	4346519	11	10	9.5%	4346533	41	41	0.0%	4346544	8	8	0.0%	4346559	8	8	0.0%
Ве	4346519	0.56	0.55	1.8%	4346533	< 0.5	< 0.5	0.0%	4346544	< 0.5	< 0.5	0.0%	4346559	< 0.5	< 0.5	0.0%
Bi	4346519	< 1	< 1	0.0%	4346533	< 1	< 1	0.0%	4346544	< 1	< 1	0.0%	4346559	< 1	< 1	0.0%
Ca	4346519	3.20	3.17	0.9%	4346533	6.57	6.64	1.1%	4346544	2.83	2.86	1.1%	4346559	1.79	1.80	0.6%
Cd	4346519	< 0.5	< 0.5	0.0%	4346533	< 0.5	< 0.5	0.0%	4346544	< 0.5	< 0.5	0.0%	4346559	< 0.5	< 0.5	0.0%
Ce	4346519	2	3		4346533	< 1	1		4346544	1	2		4346559	3	3	0.0%
Со	4346519	78.9	72.8	8.0%	4346533	62.6	61.0	2.6%	4346544	108	108	0.0%	4346559	117	117	0.0%
Cr	4346519	1890	1870	1.1%	4346533	1500	1490	0.7%	4346544	1770	1730	2.3%	4346559	1890	1850	2.1%
Cu	4346519	22.4	11.5		4346533	11.8	10.4	12.6%	4346544	147	163	10.3%	4346559	143	146	2.1%
Fe	4346519	6.34	6.21	2.1%	4346533	5.46	5.40	1.1%	4346544	7.36	7.51	2.0%	4346559	7.33	7.38	0.7%
Ga	4346519	9	8	11.8%	4346533	5	6	18.2%	4346544	< 5	< 5	0.0%	4346559	< 5	< 5	0.0%
In	4346519	< 1	< 1	0.0%	4346533	< 1	< 1	0.0%	4346544	< 1	< 1	0.0%	4346559	< 1	< 1	0.0%
K	4346519	0.01	0.01	0.0%	4346533	0.18	0.18	0.0%	4346544	0.044	0.047	6.6%	4346559	0.07	0.07	0.0%
La	4346519	4	4	0.0%	4346533	4	4	0.0%	4346544	4	4	0.0%	4346559	5	5	0.0%
Li	4346519	29	28	3.5%	4346533	30	29	3.4%	4346544	9	9	0.0%	4346559	2	2	0.0%
Mg	4346519	13.0	12.6	3.1%	4346533	11.5	11.4	0.9%	4346544	17.2	17.5	1.7%	4346559	19.7	19.9	1.0%
Mn	4346519	868	850	2.1%	4346533	1250	1240	0.8%	4346544	1190	1190	0.0%	4346559	1220	1240	1.6%
Мо	4346519	< 0.5	< 0.5	0.0%	4346533	< 0.5	< 0.5	0.0%	4346544	< 0.5	< 0.5	0.0%	4346559	< 0.5	< 0.5	0.0%
Na	4346519	0.01	< 0.01		4346533	0.05	0.05	0.0%	4346544	0.02	0.02	0.0%	4346559	0.03	0.03	0.0%
Ni	4346519	953	934	2.0%	4346533	755	754	0.1%	4346544	1320	1320	0.0%	4346559	1680	1660	1.2%
Р	4346519	73	65	11.6%	4346533	36	29	21.5%	4346544	75	75	0.0%	4346559	100	102	2.0%
Pb	4346519	8	7	13.3%	4346533	8	8	0.0%	4346544	12	13	8.0%	4346559	11	12	8.7%
Rb	4346519	< 10	< 10	0.0%	4346533	< 10	< 10	0.0%	4346544	< 10	< 10	0.0%	4346559	< 10	< 10	0.0%
S	4346519	0.06	0.05	18.2%	4346533	0.04	0.04	0.0%	4346544	0.12	0.12	0.0%	4346559	0.14	0.14	0.0%
Sb	4346519	12	12	0.0%	4346533	8	8	0.0%	4346544	13	13	0.0%	4346559	11	10	9.5%
Sc	4346519	19	18	5.4%	4346533	16	16	0.0%	4346544	14	14	0.0%	4346559	14	14	0.0%
Se	4346519	< 10	< 10	0.0%	4346533	< 10	< 10	0.0%	4346544	< 10	< 10	0.0%	4346559	< 10	< 10	0.0%
Sn	4346519	< 5	< 5	0.0%	4346533	< 5	< 5	0.0%	4346544	< 5	< 5	0.0%	4346559	< 5	< 5	0.0%

Quality Assurance - Replicate AGAT WORK ORDER: 220949672 PROJECT: WR-22-CORE-12

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

		· · · · · · · · · · · · · · · · · · ·	00111							, <u>_</u>		. ,	. omamo			
Sr	4346519	145	142	2.1%	4346533	109	109	0.0%	4346544	14	14	0.0%	4346559	8	9	11.8%
Та	4346519	< 10	< 10	0.0%	4346533	< 10	< 10	0.0%	4346544	< 10	< 10	0.0%	4346559	< 10	< 10	0.0%
Te	4346519	< 10	< 10	0.0%	4346533	< 10	< 10	0.0%	4346544	13	11	16.7%	4346559	13	11	16.7%
Th	4346519	< 5	< 5	0.0%	4346533	< 5	< 5	0.0%	4346544	< 5	< 5	0.0%	4346559	< 5	< 5	0.0%
Ti	4346519	0.02	0.02	0.0%	4346533	0.045	0.044	2.2%	4346544	0.11	0.11	0.0%	4346559	0.13	0.13	0.0%
TI	4346519	< 5	< 5	0.0%	4346533	< 5	< 5	0.0%	4346544	< 5	< 5	0.0%	4346559	< 5	< 5	0.0%
U	4346519	6	6	0.0%	4346533	5	5	0.0%	4346544	7	6	15.4%	4346559	6	6	0.0%
V	4346519	122	120	1.7%	4346533	107	107	0.0%	4346544	75.1	73.7	1.9%	4346559	73.0	73.1	0.1%
W	4346519	< 1	< 1	0.0%	4346533	< 1	< 1	0.0%	4346544	< 1	< 1	0.0%	4346559	< 1	< 1	0.0%
Υ	4346519	4	4	0.0%	4346533	3	3	0.0%	4346544	4	4	0.0%	4346559	5	5	0.0%
Zn	4346519	58.9	56.4	4.3%	4346533	50.6	49.2	2.8%	4346544	56.4	58.2	3.1%	4346559	69.6	68.3	1.9%
Zr	4346519	13	13	0.0%	4346533	12	12	0.0%	4346544	14	15	6.9%	4346559	21	20	4.9%

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish

		REPLIC	ATE #1		REPLICATE #2					REPLICATE #3				REPLICATE #4			
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	
Au	4346519	0.001	0.001	0.0%	4346533	0.001	0.001	0.0%	4346544	0.001	0.001	0.0%	4346559	0.005	0.006	18.2%	
Pd	4346519	0.011	0.007	44.4%	4346533	0.004	0.004	0.0%	4346544	0.016	0.017	6.1%	4346559	0.029	0.034	15.9%	
Pt	4346519	<0.005	0.005	0.0%	4346533	<0.005	<0.005	0.0%	4346544	0.007	0.010	35.3%	4346559	0.010	0.015	40.0%	

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220949672 PROJECT: WR-22-CORE-12 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(20	1-070) 4	Acid [Digest -	Metals I	Package	e, ICP-0	DES fini	sh		
		CRM #1	(ref.Till-2)			CRM #2	(ref.GTS-2a)			CRM #3 (ref.CGL-015)		
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits		
Al	8.47	8.27	98%		6.96	6.97	100%		13.0	12.8	98%			
As	26	26	101%		124	128	103%							
Ва	540	523	97%		186	184	99%		1305	1289	99%			
Ве	4.0	3.4	85%											
Ca	0.907	0.869	96%		4.01	3.76	94%		1.42	1.37	96%			
Ce	98	95	97%		24	22	92%		58.24	57.78	99%			
Со	15	12	79%		22.1	19.4	88%							
Cr	60.3	66.5	110%											
Cu	150	153	102%		88.6	85.4	96%							
Fe	3.77	3.6	95%		7.56	6.99	92%		3.27	3.09	95%			
Ga									22.63	27.02	119%			
K					2.021	2.059	102%		3.69	3.88	105%			
La	44	42	96%						27.48	25.89	94%			
Li	47	48	102%						64.95	69.99	108%			
Mg	1.10	1.06	97%		2.412	2.379	99%		0.223	0.231	104%			
Mn	780	755	97%		1510	1433	95%							
Мо	14	13	92%											
Na	1.624	1.693	104%		0.617	0.632	102%		7.24	7.26	100%			
Ni	32	32	99%		77.1	73.1	95%							
Р	750	698	93%		892	849	95%		610	624	102%			
Pb	31	29	93%											
S					0.348	0.344	99%							
Sc	12	12	98%						2.76	2.15	78%			
Sr	144	150	104%		92.8	88.7	96%		312	311	100%			
Th	18.4	15.8	86%											
Ti	0.53	0.46	87%						0.222	0.214	96%			
U	5.7	5.4	95%											
V	77	81	106%											
W	5	6	110%											
Υ									25.32	24.64	97%			
Zn	130	124	95%		208	201	97%		75.42	77.69	103%			

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220949672

PROJECT: WR-22-CORE-12

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(202-5	55) Fire	Assay	′ - Au, I	Pt, Pd Tra	ace Lev	els, ICI	P-OES	finish		
		CRM #1 (ref.ME2001)		CRM #2 (ref.GS1AB))		CRM #3 (r	ef.PGMS27	')		
Parameter	Expect	Expect Actual Recovery Limits Expect Actual Recovery Limits							Expect	Actual	Recovery	Limits		
Au	1.32	1.45			1.48	1.40			4.80	4.63				
Pd	0.44	0.46							2.0	1.94				
Pt	0.25	0.23							1.29	1.24				

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-CORE-12

SAMPLING SITE:

AGAT WORK ORDER: 220949672 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Bi	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Geochem v. i	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
La	MIN-200-12034	Geochem v. i	ICP/OES
Li	MIN-200-12034	Geochem v.1	ICP/OES
Mg	MIN-200-12034	Geochem V.1	ICP/OES
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Na	MIN-200-12034	Geochem v. i	ICF/OE3
Ni	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

Method Summary

CLIENT NAME: ORFORD MINING CORP

AGAT WORK ORDER: 22O949672 PROJECT: WR-22-CORE-12 ATTENTION TO: Arnaud Fontaine

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
ті	MIN-200-12034	Geochem v.1	ICP/OES
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-221-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Pd	MW-200-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Pt	MW-200-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Crush-Pass %			BALANCE
Pul-Pass %			BALANCE

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: QK-22-CORE-11

AGAT WORK ORDER: 22O949704

SOLID ANALYSIS REVIEWED BY: Jeffrey Xiong, Lab Team Lead

DATE REPORTED: Nov 28, 2022

PAGES (INCLUDING COVER): 23

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 23

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Certificate of Analysis

AGAT WORK ORDER: 22O949704

PROJECT: QK-22-CORE-11

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	gin Weight	
DATE SAMPLED: Sep	p 25, 2022		DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Nov 28, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840789 (4346957)		2.500			
E5840790 (4346958)		1.980			
E5840791 (4346959)		2.890			
E5840792 (4346960)		1.750			
E5840793 (4346961)		1.500			
E5840794 (4346962)		3.650			
E5840795 (4346963)		2.910			
E5840796 (4346964)		3.090			
E5840797 (4346965)		2.730			
E5840798 (4346966)		3.180			
E5840799 (4346967)		2.070			
E5840800 (4346968)		0.010			
E5840801 (4346969)		2.900			
E5840802 (4346970)		3.250			
E5840803 (4346971)		1.130			
E5840804 (4346972)		0.950			
E5840805 (4346973)		1.000			
E5840806 (4346974)		1.680			
E5840807 (4346975)		0.070			
E5840808 (4346976)		1.170			
E5840809 (4346977)		2.920			
E5840810 (4346978)		0.120			
E5840811 (4346979)		2.830			
E5840812 (4346980)		2.990			
E5840813 (4346981)		3.100			
E5840814 (4346982)		2.970			
E5840815 (4346983)		3.140			
E5840816 (4346984)		3.840			
E5840823 (4346985)		3.010			
E5840824 (4346986)		3.210			
E5840825 (4346987)		3.270			

Certified By:

fillson

AGAT WORK ORDER: 22O949704

PROJECT: QK-22-CORE-11

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Se	25, 2022		DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Nov 28, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840826 (4346988)		4.090			
E5840827 (4346989)		3.890			
E5840828 (4346990)		4.190			
E5840829 (4346991)		3.960			
E5840830 (4346992)		0.060			
E5840831 (4346993)		3.810			
E5840832 (4346994)		3.820			
E5840833 (4346995)		3.840			
E5840834 (4346996)		4.130			
E5840835 (4346997)		2.860			
E5840836 (4346998)		3.300			
E5840837 (4346999)		3.370			
E5840838 (4347000)		3.630			
E5840839 (4347001)		2.840			
E5840840 (4347002)		0.400			
E5840841 (4347003)		4.490			
E5840842 (4347004)		3.460			
E5840843 (4347005)		3.610			
E5840844 (4347006)		3.550			
E5840845 (4347007)		4.050			
E5840846 (4347008)		3.610			
E5840847 (4347009)		3.790			
E5840848 (4347010)		4.280			
E5840849 (4347011)		1.850			
E5840850 (4347012)		2.090			
E5840851 (4347013)		3.900			
E5840852 (4347014)		3.980			
E5840853 (4347015)		4.160			

AGAT WORK ORDER: 220949704

PROJECT: QK-22-CORE-11

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(200-) Sample Login Weight

DATE SAMPLED: Sep 25, 2022 DATE RECEIVED: Sep 26, 2022 DATE REPORTED: Nov 28, 2022 SAMPLE TYPE: Drill Core

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

fill-Sea

Certificate of Analysis

AGAT WORK ORDER: 22O949704

PROJECT: QK-22-CORE-11

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	25, 2022		С	DATE RECE	EIVED: Sep	26, 2022		DATE I	REPORTED): Nov 28, 20	022	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Се	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840789 (4346957)		<0.5	2.34	<1	3	<0.5	<1	2.03	<0.5	6	146	1760	1340	7.90	<5
E5840790 (4346958)		<0.5	2.11	<1	2	<0.5	<1	1.79	<0.5	6	153	1640	1430	8.01	<5
E5840791 (4346959)		<0.5	2.15	<1	2	<0.5	<1	1.68	<0.5	6	171	1470	1940	8.65	<5
E5840792 (4346960)		<0.5	2.29	<1	2	<0.5	<1	2.02	<0.5	6	136	1440	1050	7.86	<5
E5840793 (4346961)		<0.5	2.32	<1	2	<0.5	<1	2.05	<0.5	6	147	1570	1210	7.95	<5
E5840794 (4346962)		<0.5	2.35	<1	2	<0.5	<1	2.60	<0.5	5	127	1900	778	7.32	<5
E5840795 (4346963)		<0.5	2.65	<1	2	<0.5	<1	2.85	<0.5	6	110	1830	507	7.26	<5
E5840796 (4346964)		<0.5	2.73	<1	2	<0.5	<1	2.77	<0.5	6	109	1610	482	7.09	<5
E5840797 (4346965)		<0.5	2.94	<1	2	<0.5	<1	3.00	< 0.5	6	114	2040	560	7.85	<5
E5840798 (4346966)		<0.5	2.74	<1	2	<0.5	<1	2.71	<0.5	6	138	2130	1200	7.76	<5
E5840799 (4346967)		<0.5	2.98	<1	2	<0.5	<1	3.33	<0.5	5	124	1950	744	7.58	<5
E5840800 (4346968)		<0.5	3.83	157	203	1.1	<1	2.90	< 0.5	29	73.9	817	52.7	5.08	<5
E5840801 (4346969)		<0.5	3.05	<1	2	<0.5	<1	2.86	<0.5	6	122	2070	794	7.58	<5
E5840802 (4346970)		<0.5	2.85	<1	1	<0.5	<1	2.69	<0.5	7	191	2310	2230	9.43	<5
E5840803 (4346971)		<0.5	3.62	<1	2	<0.5	<1	3.14	<0.5	7	179	2250	2040	9.26	<5
E5840804 (4346972)		<0.5	2.31	4	1	<0.5	<1	3.76	< 0.5	9	358	1130	2740	13.1	<5
E5840805 (4346973)		<0.5	3.05	<1	1	<0.5	<1	3.56	<0.5	6	136	1820	2420	7.62	<5
E5840806 (4346974)		<0.5	2.91	<1	1	<0.5	<1	3.41	<0.5	9	273	1940	4440	11.0	<5
E5840807 (4346975)		<0.5	1.38	<1	20	<0.5	<1	0.87	<0.5	10	296	2350	4240	14.6	<5
E5840808 (4346976)		<0.5	3.68	<1	1	<0.5	<1	2.88	< 0.5	7	170	2120	2150	8.44	<5
E5840809 (4346977)		<0.5	3.98	10	2	0.5	<1	3.84	<0.5	7	150	2030	1580	8.86	<5
E5840810 (4346978)		<0.5	6.80	11	387	1.1	<1	1.92	<0.5	22	10.0	147	21.5	2.30	17
E5840811 (4346979)		<0.5	3.77	<1	2	0.5	<1	4.68	<0.5	7	133	1760	2070	8.23	<5
E5840812 (4346980)		<0.5	3.36	<1	2	<0.5	<1	4.40	<0.5	7	174	1830	2360	8.66	<5
E5840813 (4346981)		<0.5	4.33	<1	2	0.6	<1	6.63	<0.5	8	71.2	1370	325	6.81	<5
E5840814 (4346982)		<0.5	4.82	<1	39	0.7	<1	5.97	<0.5	7	63.2	1050	125	7.24	6
E5840815 (4346983)		<0.5	4.85	28	4	0.8	<1	4.97	<0.5	7	76.5	1450	89.8	7.59	<5
E5840816 (4346984)		<0.5	4.97	<1	120	0.6	<1	5.01	<0.5	8	67.1	1160	84.2	7.19	6
E5840823 (4346985)		<0.5	4.72	<1	55	0.6	<1	5.38	<0.5	7	71.5	1250	83.1	7.04	<5
E5840824 (4346986)		<0.5	5.18	<1	67	0.7	<1	5.66	<0.5	7	66.6	1080	91.2	7.30	7
E5840825 (4346987)		<0.5	4.72	<1	3	0.6	<1	4.67	<0.5	8	78.2	1530	80.6	7.39	<5
E5840826 (4346988)		<0.5	3.62	<1	2	<0.5	<1	4.68	<0.5	6	76.4	1420	51.2	6.75	<5

Certificate of Analysis

AGAT WORK ORDER: 22O949704

PROJECT: QK-22-CORE-11

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Sep	25, 2022		Г	DATE RECE	EIVED: Sep	26, 2022		DATE F	REPORTED	: Nov 28, 20	022	SAM	PLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Се	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5840827 (4346989)		<0.5	3.07	<1	3	<0.5	<1	4.88	<0.5	5	80.9	1790	85.1	6.37	<5
E5840828 (4346990)		<0.5	3.15	<1	3	<0.5	<1	3.49	<0.5	6	96.0	2100	72.2	7.03	<5
E5840829 (4346991)		<0.5	2.80	<1	2	<0.5	<1	2.89	<0.5	5	98.6	2070	69.0	6.74	<5
E5840830 (4346992)		<0.5	6.45	<1	204	1.1	<1	3.98	<0.5	30	102	181	4532	12.6	<5
E5840831 (4346993)		<0.5	2.64	<1	2	<0.5	2	2.97	<0.5	5	86.2	1850	107	6.55	<5
E5840832 (4346994)		<0.5	2.85	<1	3	<0.5	<1	3.07	<0.5	5	95.8	2100	35.5	6.96	<5
E5840833 (4346995)		<0.5	2.68	<1	3	<0.5	<1	3.03	<0.5	5	95.9	2060	32.6	6.59	<5
E5840834 (4346996)		<0.5	2.74	<1	3	<0.5	<1	3.17	<0.5	6	95.7	2010	24.2	6.72	<5
E5840835 (4346997)		<0.5	2.92	<1	3	<0.5	<1	2.96	<0.5	5	105	2210	14.8	7.22	<5
E5840836 (4346998)		<0.5	2.70	<1	3	<0.5	<1	2.96	<0.5	6	98.7	2000	24.0	6.97	<5
E5840837 (4346999)		<0.5	2.63	<1	2	<0.5	<1	2.52	<0.5	6	112	1950	335	7.10	<5
E5840838 (4347000)		<0.5	2.55	<1	2	<0.5	<1	2.48	<0.5	5	103	1950	269	6.90	<5
E5840839 (4347001)		<0.5	2.46	<1	2	<0.5	<1	2.31	<0.5	5	103	2030	180	7.25	<5
E5840840 (4347002)		<0.5	6.84	<1	401	1.2	<1	1.86	<0.5	20	9.3	118	13.2	2.28	17
E5840841 (4347003)		<0.5	2.95	<1	2	<0.5	<1	3.10	<0.5	6	125	2040	554	7.35	<5
E5840842 (4347004)		<0.5	3.21	<1	2	<0.5	<1	3.81	<0.5	5	105	1770	528	7.48	<5
E5840843 (4347005)		<0.5	3.34	<1	2	<0.5	3	4.10	<0.5	6	106	1970	324	7.75	<5
E5840844 (4347006)		<0.5	3.71	16	2	0.5	<1	4.47	<0.5	6	85.0	1500	177	7.22	<5
E5840845 (4347007)		<0.5	3.18	<1	3	<0.5	<1	3.40	<0.5	6	98.7	1750	170	7.52	<5
E5840846 (4347008)		<0.5	3.23	<1	4	<0.5	<1	3.38	<0.5	7	98.5	1910	242	7.33	<5
E5840847 (4347009)		<0.5	3.02	<1	3	<0.5	<1	3.24	<0.5	6	98.3	1850	214	7.03	<5
E5840848 (4347010)		<0.5	2.88	<1	3	<0.5	<1	3.13	<0.5	7	106	2000	198	7.55	<5
E5840849 (4347011)		<0.5	2.78	<1	3	<0.5	<1	3.20	<0.5	6	98.7	2030	160	7.23	<5
E5840850 (4347012)		<0.5	2.84	<1	3	<0.5	<1	3.17	<0.5	5	95.4	1830	217	7.40	<5
E5840851 (4347013)		<0.5	2.76	<1	3	<0.5	<1	2.97	<0.5	6	106	1870	168	7.21	<5
E5840852 (4347014)		<0.5	2.72	<1	3	<0.5	3	2.76	<0.5	5	97.9	1840	208	7.32	<5
E5840853 (4347015)		<0.5	2.82	<1	3	<0.5	2	2.98	<0.5	5	107	2200	209	7.37	<5

Certificate of Analysis

AGAT WORK ORDER: 22O949704

PROJECT: QK-22-CORE-11

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	Sfinish					
DATE SAMPLED: Se	p 25, 2022		С	ATE RECE	IVED: Sep	26, 2022		DATE I	REPORTE	D: Nov 28, 2	022	SAM	IPLE TYPE:	Drill Core	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840789 (4346957)		<1	0.02	<2	6	17.1	1060	<0.5	0.03	3600	162	<1	<10	1.00	23
E5840790 (4346958)		<1	0.02	<2	5	17.8	1100	<0.5	0.03	3840	115	<1	<10	1.15	29
E5840791 (4346959)		<1	0.02	<2	5	18.2	1090	<0.5	0.03	4560	129	<1	<10	1.32	21
E5840792 (4346960)		<1	0.02	<2	5	17.9	1100	8.0	0.03	3470	170	<1	<10	0.74	21
E5840793 (4346961)		<1	0.02	<2	5	18.0	1130	<0.5	0.03	3690	221	<1	<10	0.81	14
E5840794 (4346962)		<1	0.02	<2	5	17.3	1120	<0.5	0.03	2800	54	<1	<10	0.74	15
E5840795 (4346963)		<1	0.01	<2	5	17.9	1200	<0.5	0.02	2190	188	<1	<10	0.38	28
E5840796 (4346964)		<1	0.02	<2	6	17.0	1140	<0.5	0.04	2010	161	<1	<10	0.35	30
E5840797 (4346965)		<1	0.02	<2	6	17.5	1210	0.5	0.04	2040	154	<1	<10	0.42	18
E5840798 (4346966)		<1	0.02	<2	6	16.1	1140	<0.5	0.03	2950	78	<1	<10	0.77	14
E5840799 (4346967)		<1	0.02	<2	7	16.6	1230	<0.5	0.04	2600	196	3	<10	0.48	30
E5840800 (4346968)		<1	0.62	14	35	13.8	1120	2.7	0.80	2060	291	7	<10	0.29	<1
E5840801 (4346969)		<1	0.02	<2	7	15.9	1180	<0.5	0.04	2480	99	<1	<10	0.55	14
E5840802 (4346970)		<1	0.01	<2	7	14.9	1100	8.0	0.04	6290	176	<1	<10	2.00	18
E5840803 (4346971)		<1	0.01	<2	16	15.2	1020	<0.5	0.04	6780	134	<1	<10	1.68	30
E5840804 (4346972)		<1	<0.01	<2	12	11.7	788	<0.5	0.03	>10000	111	2	<10	4.98	29
E5840805 (4346973)		<1	<0.01	<2	16	13.8	819	8.0	0.04	4390	120	<1	<10	1.27	20
E5840806 (4346974)		<1	<0.01	<2	16	13.3	819	<0.5	0.04	10700	171	<1	<10	3.11	28
E5840807 (4346975)		<1	0.02	<2	1	15.3	925	<0.5	0.12	16500	121	<1	<10	5.03	17
E5840808 (4346976)		<1	<0.01	<2	10	14.2	931	1.0	0.05	5750	85	<1	<10	1.49	14
E5840809 (4346977)		<1	0.01	<2	12	14.6	1040	<0.5	0.07	4830	132	<1	<10	1.42	19
E5840810 (4346978)		<1	1.19	10	12	0.90	374	0.7	3.01	38.8	304	6	<10	0.03	<1
E5840811 (4346979)		<1	0.01	<2	13	14.3	1010	0.5	0.12	4200	156	<1	<10	1.27	31
E5840812 (4346980)		<1	<0.01	<2	9	12.9	964	<0.5	0.04	6360	169	<1	<10	1.66	25
E5840813 (4346981)		<1	<0.01	<2	8	12.0	1220	2.1	0.06	977	261	<1	<10	0.15	11
E5840814 (4346982)		<1	0.05	<2	25	10.9	1310	2.1	0.62	557	123	<1	<10	0.15	19
E5840815 (4346983)		<1	0.01	<2	26	12.8	1210	0.7	0.05	801	249	<1	<10	0.58	19
E5840816 (4346984)		<1	0.20	<2	20	10.9	1170	<0.5	0.84	616	311	<1	<10	0.40	15
E5840823 (4346985)		<1	0.10	<2	23	11.1	1310	0.8	0.63	682	335	<1	<10	0.17	<1
E5840824 (4346986)		<1	0.12	<2	23	10.5	1270	<0.5	0.88	582	276	<1	<10	0.13	8
E5840825 (4346987)		<1	0.02	<2	22	12.7	1210	<0.5	0.05	805	248	<1	<10	0.34	21
E5840826 (4346988)		<1	0.01	<2	9	13.4	1100	<0.5	0.03	834	182	<1	<10	0.11	11

Certificate of Analysis

AGAT WORK ORDER: 22O949704

PROJECT: QK-22-CORE-11

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 25, 2022		Г	DATE RECE	EIVED: Sep	26, 2022		DATE REPORTED: Nov 28, 2022				SAMPLE TYPE: Drill Core			
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5840827 (4346989)		<1	0.01	<2	13	15.0	1020	<0.5	0.03	1010	43	<1	<10	0.13	12
E5840828 (4346990)		<1	0.03	<2	6	16.4	1180	<0.5	0.05	1410	163	<1	<10	0.11	20
E5840829 (4346991)		<1	0.02	<2	4	17.5	1140	<0.5	0.05	1410	184	<1	<10	0.10	32
E5840830 (4346992)		<1	0.53	10	15	3.77	1340	3.6	1.62	4600	651	8	<10	1.38	<1
E5840831 (4346993)		<1	0.03	<2	4	16.4	1090	3.1	0.05	1200	161	<1	<10	0.11	35
E5840832 (4346994)		<1	0.04	<2	5	17.4	1170	<0.5	0.05	1340	121	<1	<10	0.11	18
E5840833 (4346995)		<1	0.03	<2	4	16.4	1100	0.7	0.05	1350	224	<1	<10	0.12	24
E5840834 (4346996)		<1	0.03	<2	5	16.4	1150	2.2	0.04	1410	125	<1	<10	0.13	26
E5840835 (4346997)		<1	0.03	<2	6	17.6	1220	<0.5	0.04	1490	50	<1	<10	0.14	26
E5840836 (4346998)		<1	0.03	<2	5	17.0	1150	<0.5	0.04	1420	166	<1	<10	0.15	22
E5840837 (4346999)		<1	0.03	<2	5	17.5	1130	<0.5	0.04	2240	154	<1	<10	0.24	16
E5840838 (4347000)		<1	0.04	<2	4	16.7	1110	<0.5	0.04	1970	212	<1	<10	0.21	15
E5840839 (4347001)		<1	0.02	<2	3	18.3	1220	<0.5	0.04	1850	179	<1	<10	0.19	12
E5840840 (4347002)		<1	1.18	9	12	0.88	372	<0.5	2.93	34.9	251	<1	<10	0.03	<1
E5840841 (4347003)		<1	0.02	<2	6	15.6	1130	<0.5	0.05	2440	140	<1	<10	0.45	17
E5840842 (4347004)		<1	0.02	<2	6	15.6	1160	<0.5	0.05	1800	188	<1	<10	0.39	11
E5840843 (4347005)		<1	0.02	<2	7	16.3	1230	<0.5	0.04	1670	149	<1	<10	0.34	22
E5840844 (4347006)		<1	0.02	<2	7	14.8	1310	0.9	0.04	1140	228	<1	<10	0.19	25
E5840845 (4347007)		<1	0.03	<2	5	16.4	1220	<0.5	0.07	1410	170	<1	<10	0.18	14
E5840846 (4347008)		<1	0.04	<2	7	16.6	1230	<0.5	0.05	1520	187	<1	<10	0.22	28
E5840847 (4347009)		<1	0.04	<2	6	16.0	1190	2.6	0.05	1590	195	<1	<10	0.21	18
E5840848 (4347010)		<1	0.04	<2	6	17.1	1250	<0.5	0.05	1620	196	<1	<10	0.20	21
E5840849 (4347011)		<1	0.03	<2	4	17.1	1190	<0.5	0.04	1440	172	<1	<10	0.20	17
E5840850 (4347012)		<1	0.03	<2	4	17.7	1230	<0.5	0.04	1380	44	1	<10	0.20	17
E5840851 (4347013)		<1	0.03	<2	5	17.0	1130	1.2	0.05	1550	49	<1	<10	0.19	28
E5840852 (4347014)		<1	0.02	<2	4	18.1	1180	0.7	0.04	1530	92	<1	<10	0.19	21
E5840853 (4347015)		<1	0.02	<2	5	17.5	1160	0.6	0.04	1680	142	<1	<10	0.20	25

Certificate of Analysis

AGAT WORK ORDER: 22O949704

PROJECT: QK-22-CORE-11

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 25, 2022				EIVED: Sep): Nov 28, 20	022	SAM	PLE TYPE:	Drill Core	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840789 (4346957)		17	<10	<5	10	20	<10	24	0.16	9	<5	94.0	<1	6	55.3
E5840790 (4346958)		16	<10	<5	9	16	<10	25	0.14	<5	<5	82.2	<1	6	57.8
E5840791 (4346959)		16	<10	<5	9	14	<10	26	0.15	<5	<5	84.6	<1	6	62.1
E5840792 (4346960)		17	<10	<5	10	16	<10	23	0.16	<5	<5	86.7	<1	6	56.4
E5840793 (4346961)		17	<10	<5	10	13	<10	25	0.16	<5	<5	89.0	<1	6	54.4
E5840794 (4346962)		17	<10	<5	11	12	<10	21	0.16	12	<5	90.7	<1	6	58.1
E5840795 (4346963)		19	<10	<5	10	17	<10	19	0.20	<5	<5	102	<1	7	56.2
E5840796 (4346964)		20	<10	<5	11	15	<10	20	0.18	6	<5	101	<1	7	57.9
E5840797 (4346965)		20	<10	<5	13	13	<10	22	0.19	<5	<5	110	<1	7	64.9
E5840798 (4346966)		20	<10	<5	13	17	<10	25	0.19	<5	<5	113	<1	7	60.1
E5840799 (4346967)		21	<10	<5	16	15	<10	22	0.19	<5	<5	111	<1	7	55.6
E5840800 (4346968)		13	<10	<5	73	13	<10	18	0.17	<5	<5	59.7	<1	10	103
E5840801 (4346969)		21	<10	<5	13	14	<10	22	0.18	<5	<5	116	<1	7	64.1
E5840802 (4346970)		20	<10	<5	10	19	<10	31	0.21	<5	<5	129	<1	8	69.7
E5840803 (4346971)		24	<10	<5	11	23	<10	31	0.23	<5	<5	141	<1	9	69.1
E5840804 (4346972)		14	<10	<5	10	24	<10	53	0.17	8	<5	93.4	<1	7	48.4
E5840805 (4346973)		20	<10	<5	11	16	<10	24	0.19	<5	<5	117	<1	8	54.1
E5840806 (4346974)		19	<10	<5	10	27	<10	41	0.20	<5	<5	123	<1	8	80.7
E5840807 (4346975)		10	<10	<5	7	32	<10	60	0.09	<5	<5	71.5	<1	4	81.4
E5840808 (4346976)		25	<10	<5	9	19	14	28	0.23	<5	<5	141	<1	9	66.4
E5840809 (4346977)		26	<10	<5	12	15	<10	26	0.27	<5	<5	150	<1	10	70.6
E5840810 (4346978)		9	<10	<5	367	<10	10	9	0.19	<5	<5	57.2	<1	8	33.6
E5840811 (4346979)		24	<10	<5	13	15	<10	26	0.24	<5	<5	143	<1	9	57.2
E5840812 (4346980)		22	<10	<5	11	17	<10	30	0.23	<5	<5	131	<1	9	57.4
E5840813 (4346981)		29	<10	<5	24	12	<10	19	0.30	<5	<5	176	<1	12	49.0
E5840814 (4346982)		31	<10	<5	40	14	<10	23	0.33	<5	<5	188	<1	12	47.9
E5840815 (4346983)		31	<10	<5	14	21	<10	22	0.33	7	<5	184	<1	12	76.4
E5840816 (4346984)		32	<10	<5	43	13	<10	22	0.34	<5	<5	192	<1	13	67.1
E5840823 (4346985)		31	<10	<5	48	17	<10	22	0.31	6	<5	186	<1	12	68.5
E5840824 (4346986)		34	<10	<5	51	13	<10	23	0.35	<5	<5	202	<1	13	66.9
E5840825 (4346987)		31	<10	<5	16	17	<10	23	0.32	<5	<5	189	<1	12	69.0
E5840826 (4346988)		24	<10	<5	16	17	18	18	0.24	<5	<5	140	<1	9	61.3

Certificate of Analysis

AGAT WORK ORDER: 22O949704

PROJECT: QK-22-CORE-11

MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

5623 McADAM ROAD

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 25, 2022			DATE RECE	IVED: Sep	26, 2022		DATE F	REPORTED): Nov 28, 20	022	SAMPLE TYPE: Drill Core			
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840827 (4346989)		21	<10	<5	23	11	<10	17	0.20	<5	<5	117	<1	8	55.7
E5840828 (4346990)		22	<10	<5	20	16	<10	19	0.22	<5	<5	124	<1	8	59.2
E5840829 (4346991)		20	<10	<5	12	14	<10	18	0.19	<5	<5	109	<1	7	53.1
E5840830 (4346992)		13	<10	<5	244	23	<10	53	0.71	<5	<5	113	<1	14	90.6
E5840831 (4346993)		18	<10	<5	13	15	<10	18	0.17	<5	<5	97.9	<1	6	54.8
E5840832 (4346994)		20	<10	<5	15	12	<10	20	0.19	<5	<5	109	<1	7	59.4
E5840833 (4346995)		20	<10	<5	14	11	<10	18	0.18	<5	<5	107	<1	7	56.1
E5840834 (4346996)		20	<10	<5	13	14	<10	19	0.19	<5	<5	109	<1	7	55.5
E5840835 (4346997)		21	<10	<5	12	15	<10	19	0.20	<5	<5	113	<1	8	63.8
E5840836 (4346998)		19	<10	<5	11	16	14	17	0.18	<5	<5	105	<1	7	55.3
E5840837 (4346999)		19	<10	<5	11	13	<10	19	0.18	<5	<5	104	<1	7	49.5
E5840838 (4347000)		19	<10	<5	10	18	<10	19	0.18	<5	<5	101	<1	7	49.0
E5840839 (4347001)		17	<10	<5	9	15	12	19	0.16	6	<5	92.4	<1	6	57.6
E5840840 (4347002)		9	<10	<5	357	<10	<10	9	0.18	<5	<5	55.1	<1	8	35.2
E5840841 (4347003)		21	<10	<5	11	13	<10	23	0.19	9	<5	120	<1	8	57.1
E5840842 (4347004)		21	<10	<5	11	16	<10	21	0.20	<5	<5	119	<1	7	58.0
E5840843 (4347005)		22	<10	<5	12	11	<10	23	0.22	<5	<5	127	<1	8	64.5
E5840844 (4347006)		24	<10	<5	11	<10	<10	21	0.25	<5	<5	141	<1	9	57.3
E5840845 (4347007)		21	<10	<5	11	11	<10	22	0.21	<5	<5	121	<1	8	64.4
E5840846 (4347008)		22	<10	<5	13	<10	<10	21	0.22	5	<5	126	<1	8	57.8
E5840847 (4347009)		21	<10	<5	14	<10	<10	20	0.21	<5	<5	120	<1	8	65.0
E5840848 (4347010)		20	<10	<5	11	<10	<10	23	0.23	<5	<5	122	<1	8	60.3
E5840849 (4347011)		19	<10	<5	10	14	<10	22	0.18	<5	<5	108	<1	7	59.7
E5840850 (4347012)		19	<10	<5	10	12	<10	19	0.18	<5	<5	106	<1	7	59.6
E5840851 (4347013)		20	<10	<5	10	13	<10	21	0.18	<5	<5	110	<1	7	59.0
E5840852 (4347014)		18	<10	<5	9	12	<10	20	0.18	<5	<5	102	<1	7	58.9
E5840853 (4347015)		20	<10	<5	9	11	<10	22	0.19	12	<5	114	<1	7	63.6

Certificate of Analysis

AGAT WORK ORDER: 22O949704

PROJECT: QK-22-CORE-11

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

OLILIVI IVIIVIL. OIVI	OND WINNING	3 00111		711121111011110.711114441	ontaine
			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Sep	25, 2022		DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Nov 28, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840789 (4346957)		19			
E5840790 (4346958)		18			
E5840791 (4346959)		18			
E5840792 (4346960)		19			
E5840793 (4346961)		19			
E5840794 (4346962)		18			
E5840795 (4346963)		17			
E5840796 (4346964)		19			
E5840797 (4346965)		19			
E5840798 (4346966)		20			
E5840799 (4346967)		20			
E5840800 (4346968)		67			
E5840801 (4346969)		19			
E5840802 (4346970)		19			
E5840803 (4346971)		20			
E5840804 (4346972)		22			
E5840805 (4346973)		18			
E5840806 (4346974)		22			
E5840807 (4346975)		13			
E5840808 (4346976)		20			
E5840809 (4346977)		23			
E5840810 (4346978)		51			
E5840811 (4346979)		26			
E5840812 (4346980)		26			
E5840813 (4346981)		25			
E5840814 (4346982)		34			
E5840815 (4346983)		32			
E5840816 (4346984)		36			
E5840823 (4346985)		34			
E5840824 (4346986)		38			
E5840825 (4346987)		34			
E5840826 (4346988)		23			

Certificate of Analysis

AGAT WORK ORDER: 220949704

PROJECT: QK-22-CORE-11

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Se	p 25, 2022		DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Nov 28, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840827 (4346989)		18			
E5840828 (4346990)		24			
E5840829 (4346991)		18			
E5840830 (4346992)		63			
E5840831 (4346993)		19			
E5840832 (4346994)		22			
E5840833 (4346995)		21			
E5840834 (4346996)		21			
E5840835 (4346997)		21			
E5840836 (4346998)		20			
E5840837 (4346999)		21			
E5840838 (4347000)		20			
E5840839 (4347001)		17			
E5840840 (4347002)		48			
E5840841 (4347003)		22			
E5840842 (4347004)		21			
E5840843 (4347005)		21			
E5840844 (4347006)		24			
E5840845 (4347007)		23			
E5840846 (4347008)		24			
E5840847 (4347009)		23			
E5840848 (4347010)		25			
E5840849 (4347011)		21			
E5840850 (4347012)		19			
E5840851 (4347013)		22			
E5840852 (4347014)		20			
E5840853 (4347015)		20			

Comments: RDL - Reported Detection Limit

4346957-4347015 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

fillson

AGAT WORK ORDER: 22O949704

PROJECT: QK-22-CORE-11

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			(201-079) Sodium Peroxide F	Fusion - ICP-OES finish	
DATE SAMPLED: Sep	25, 2022		DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Nov 28, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Ni			
	Unit:	%			
Sample ID (AGAT ID)	RDL:	0.001			
E5840804 (4346972)		1.56			

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 220949704

PROJECT: QK-22-CORE-11

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	02-555)	Fire Assay - Au, Pt, Pd Trace I	evels, ICP-OES finish (50g charge)	
DATE SAMPLED: Se	p 25, 2022			DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Nov 28, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5840789 (4346957)		0.015	0.228	0.053		
E5840790 (4346958)		0.014	0.254	0.048		
E5840791 (4346959)		0.022	0.310	0.068		
E5840792 (4346960)		0.006	0.199	0.039		
E5840793 (4346961)		0.007	0.207	0.045		
E5840794 (4346962)		0.016	0.132	0.021		
E5840795 (4346963)		0.005	0.081	<0.005		
E5840796 (4346964)		0.007	0.078	<0.005		
E5840797 (4346965)		0.010	0.087	<0.005		
E5840798 (4346966)		0.010	0.168	0.026		
E5840799 (4346967)		0.006	0.124	0.028		
E5840801 (4346969)		0.010	0.130	0.021		
E5840802 (4346970)		0.017	0.388	0.080		
E5840803 (4346971)		0.023	0.338	0.063		
E5840804 (4346972)		0.023	0.710	0.316		
E5840805 (4346973)		0.008	0.225	0.049		
E5840806 (4346974)		0.043	0.488	0.112		
E5840807 (4346975)		IS	IS	IS		
E5840808 (4346976)		0.060	0.372	0.077		
E5840809 (4346977)		0.012	0.262	0.054		
E5840810 (4346978)		0.013	< 0.001	<0.005		
E5840811 (4346979)		0.028	0.249	0.034		
E5840812 (4346980)		0.015	0.403	0.095		
E5840813 (4346981)		0.002	0.024	<0.005		
E5840814 (4346982)		0.001	0.008	<0.005		
E5840815 (4346983)		0.001	0.007	<0.005		
E5840816 (4346984)		<0.001	0.008	<0.005		
E5840823 (4346985)		0.001	0.008	<0.005		
E5840824 (4346986)		<0.001	0.008	<0.005		
E5840825 (4346987)		<0.001	0.006	<0.005		
E5840826 (4346988)		<0.001	0.006	<0.005		
E5840827 (4346989)		0.001	0.006	<0.005		

Certified By:

fillson

Certificate of Analysis

AGAT WORK ORDER: 220949704

PROJECT: QK-22-CORE-11

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

DATE SAMPLED: Se	p 25, 2022			DATE RECEIVED: Sep 26, 2022	DATE REPORTED: Nov 28, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
5840828 (4346990)		0.001	0.026	<0.005		
5840829 (4346991)		0.010	0.025	<0.005		
5840830 (4346992)		0.085	0.609	0.276		
5840831 (4346993)		0.001	0.006	<0.005		
5840832 (4346994)		0.001	0.013	<0.005		
5840833 (4346995)		<0.001	0.010	<0.005		
5840834 (4346996)		< 0.001	0.017	<0.005		
5840835 (4346997)		<0.001	0.008	<0.005		
5840836 (4346998)		0.005	0.013	<0.005		
5840837 (4346999)		0.002	0.076	0.009		
5840838 (4347000)		0.001	0.063	0.007		
5840839 (4347001)		0.001	0.055	<0.005		
5840840 (4347002)		0.001	< 0.001	<0.005		
5840841 (4347003)		0.010	0.159	0.025		
5840842 (4347004)		0.004	0.077	<0.005		
5840843 (4347005)		0.003	0.069	0.008		
5840844 (4347006)		0.002	0.034	<0.005		
5840845 (4347007)		0.001	0.033	<0.005		
5840846 (4347008)		0.019	0.043	0.012		
5840847 (4347009)		0.008	0.043	<0.005		
5840848 (4347010)		0.001	0.049	<0.005		
5840849 (4347011)		0.001	0.036	<0.005		
5840850 (4347012)		0.035	0.032	<0.005		
5840851 (4347013)		0.010	0.038	0.008		
5840852 (4347014)		0.003	0.036	<0.005		
5840853 (4347015)		< 0.001	0.045	<0.005		

Comments: RDL - Reported Detection Limit

4346975 Insufficient sample (IS). Instructed to proceed by client.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 220949704

PROJECT: QK-22-CORE-11

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passir	ng (Crushing)								
DATE SAMPLED: Sep 25, 2022 DATE RECEIVED: Sep 26, 2022 DATE REPORTED: Nov 28, 2022 SAMPLE TYPE: Drill Core												
	Analyte: C	rush-Pass										
	Analyte.	%										
	Unit:	%										
Sample ID (AGAT ID)	RDL:	0.01										
E5840789 (4346957)		77.40										
E5840808 (4346976)		76.44										
E5840834 (4346996)		77.43										

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 220949704

PROJECT: QK-22-CORE-11

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Pulverizing)												
DATE SAMPLED: Sep 25, 2022 DATE RECEIVED: Sep 26, 2022 DATE REPORTED: Nov 28, 2022 SAMPLE TYPE: Drill Core													
	Analyte: Pu	ul-Pass %											
	Unit:	%											
Sample ID (AGAT ID)	RDL:	0.01											
E5840789 (4346957)		86.35											
E5840811 (4346979)		85.56											
E5840835 (4346997)		85.59											

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220949704 PROJECT: QK-22-CORE-11 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

									Metals Package, ICP-OES finish							
		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3		REPLICATE #4			
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Ag	4346957	<0.5	<0.5	0%	4346971	<0.5	<0.5	0.0%	4346982	<0.5	<0.5	0%	4346997	<0.5	<0.5	0%
Al	4346957	2.34	2.47	5.3%	4346971	3.62	3.63	0.3%	4346982	4.82	4.88	1.3%	4346997	2.92	2.76	5.4%
As	4346957	<1	<1	0%	4346971	<1	<1	0.0%	4346982	<1	15	2,590%	4346997	<1	<1	0%
Ва	4346957	3	3	8.9%	4346971	2	2	2.9%	4346982	39	38	1.4%	4346997	3	3	9.1%
Be	4346957	<0.5	<0.5	0%	4346971	<0.5	<0.5	0.0%	4346982	0.7	0.6	5.6%	4346997	<0.5	<0.5	0%
Bi	4346957	<1	<1	0%	4346971	<1	<1	0.0%	4346982	<1	<1	0%	4346997	<1	<1	0%
Ca	4346957	2.03	2.15	5.6%	4346971	3.14	3.10	1.3%	4346982	5.97	6.06	1.6%	4346997	2.96	2.81	5.3%
Cd	4346957	<0.5	<0.5	0%	4346971	<0.5	<0.5	0.0%	4346982	<0.5	<0.5	0%	4346997	<0.5	<0.5	0%
Се	4346957	6	6	4.5%	4346971	7	7	1.7%	4346982	7	7	2%	4346997	5	5	1.3%
Со	4346957	146	147	0.7%	4346971	179	177	1.5%	4346982	63.2	63.8	1%	4346997	105	101	3.3%
Cr	4346957	1760	1690	3.7%	4346971	2250	2280	1.3%	4346982	1050	1050	0.6%	4346997	2210	2340	5.8%
Cu	4346957	1340	1380	2.9%	4346971	2040	2040	0.0%	4346982	125	117	6.2%	4346997	14.8	13.0	12.4%
Fe	4346957	7.90	8.25	4.3%	4346971	9.26	9.24	0.2%	4346982	7.24	7.32	1%	4346997	7.22	6.84	5.3%
Ga	4346957	<5	<5	0%	4346971	<5	<5	0.0%	4346982	6	6	1.2%	4346997	<5	<5	0%
In	4346957	<1	<1	0%	4346971	<1	<1	0.0%	4346982	<1	<1	0%	4346997	<1	<1	0%
К	4346957	0.02	0.02	15.3%	4346971	0.01	0.01	1.1%	4346982	0.05	0.05	3.8%	4346997	0.03	0.03	7.7%
La	4346957	<2	<2	0%	4346971	<2	<2	0.0%	4346982	<2	<2	0%	4346997	<2	<2	0%
Li	4346957	6	6	7.7%	4346971	16	16	1.0%	4346982	25	26	2.9%	4346997	6	5	7.3%
Mg	4346957	17.1	17.8	4.1%	4346971	15.2	15.2	0.3%	4346982	10.9	11.0	0.9%	4346997	17.6	16.7	5.7%
Mn	4346957	1060	1110	4.3%	4346971	1020	1010	0.8%	4346982	1310	1320	1%	4346997	1220	1150	6%
Мо	4346957	<0.5	<0.5	0%	4346971	<0.5	<0.5	0.0%	4346982	2.1	<0.5	0%	4346997	<0.5	<0.5	0%
Na	4346957	0.03	0.03	11.4%	4346971	0.04	0.04	2.2%	4346982	0.62	0.62	0.6%	4346997	0.04	0.04	6%
Ni	4346957	3600	3680	2.2%	4346971	6780	6370	6.2%	4346982	557	562	0.8%	4346997	1490	1470	1.3%
Р	4346957	162	189	15%	4346971	134	167	22.1%	4346982	123	197	46.1%	4346997	50	164	106.6%
Pb	4346957	<1	3	0%	4346971	<1	<1	0.0%	4346982	<1	<1	0%	4346997	<1	<1	0%
Rb	4346957	<10	<10	0%	4346971	<10	<10	0.0%	4346982	<10	<10	0%	4346997	<10	<10	0%
S	4346957	1.00	0.99	1.2%	4346971	1.68	1.72	2.4%	4346982	0.15	0.15	0.7%	4346997	0.14	0.13	7%
Sb	4346957	23	18	22.7%	4346971	30	28	6.3%	4346982	19	9	69.9%	4346997	26	27	5.3%
Sc	4346957	17	18	3.2%	4346971	24	24	1.5%	4346982	31	32	1.8%	4346997	21	21	1.6%
Se	4346957	<10	<10	0%	4346971	<10	<10	0.0%	4346982	<10	<10	0%	4346997	<10	<10	0%
Sn	4346957	<5	<5	0%	4346971	<5	<5	0.0%	4346982	<5	<5	0%	4346997	<5	<5	0%

Quality Assurance - Replicate AGAT WORK ORDER: 220949704 PROJECT: QK-22-CORE-11 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAM	ME: ORFOR	D MINING	CORP							ATTE	NTION TO	: Arnaud	Fontaine		mp.//www.	.agatiabs.coi
Sr	4346957	10	11	6.4%	4346971	11	11	0.6%	4346982	40	42	4.2%	4346997	12	11	5.7%
Та	4346957	20	20	0.9%	4346971	23	21	8.0%	4346982	14	16	13.1%	4346997	15	15	1.3%
Te	4346957	<10	<10	0%	4346971	<10	11	0.0%	4346982	<10	<10	0%	4346997	<10	<10	0%
Th	4346957	24	25	4.1%	4346971	31	30	3.2%	4346982	23	23	0.9%	4346997	19	18	5.5%
Ti	4346957	0.16	0.17	5.4%	4346971	0.23	0.23	1.3%	4346982	0.33	0.33	1.3%	4346997	0.20	0.19	5.6%
TI	4346957	9	<5	0%	4346971	<5	<5	0.0%	4346982	<5	<5	0%	4346997	<5	<5	0%
U	4346957	<5	<5	0%	4346971	<5	<5	0.0%	4346982	<5	<5	0%	4346997	<5	<5	0%
V	4346957	94.0	96.1	2.1%	4346971	141	138	1.9%	4346982	188	193	2.6%	4346997	113	114	0.4%
W	4346957	<1	<1	0%	4346971	<1	<1	0.0%	4346982	<1	<1	0%	4346997	<1	<1	0%
Y	4346957	6	6	2.2%	4346971	9	8	1.4%	4346982	12	13	2.3%	4346997	8	8	2%
Zn	4346957	55.3	56.5	2.2%	4346971	69.1	59.8	14.5%	4346982	47.9	50.1	4.5%	4346997	63.8	61.0	4.4%
Zr	4346957	19	19	2.1%	4346971	20	20	1.2%	4346982	34	35	2.4%	4346997	21	21	2%
		REPLIC	ATE #5			•				•						
Parameter	Sample ID	Original	Replicate	RPD												
Ag	4347007	<0.5	<0.5	0%												
Al	4347007	3.18	3.19	0.4%												
As	4347007	<1	<1	0%												
Ва	4347007	3	3	1.3%												
Ве	4347007	<0.5	<0.5	0%												
Bi	4347007	<1	6	0%												
Ca	4347007	3.40	3.39	0.4%												
Cd	4347007	<0.5	<0.5	0%												
Ce	4347007	6	6	4.3%												
Co	4347007	98.7	99.5	0.7%												
Cr	4347007	1750	1910	9%												
Cu	4347007	170	167	1.5%												
Fe	4347007	7.52	7.54	0.2%												
Ga	4347007	<5	<5	0%												
ln	4347007	<1	<1	0%												
K	4347007	0.03	0.03	0.7%												
La	4347007	<2	<2	0%												
Li	4347007	5	5	3%												
Mg	4347007	16.4	16.4	0.1%												
Mn	4347007	1220	1230	0.3%												

Quality Assurance - Replicate AGAT WORK ORDER: 220949704 PROJECT: QK-22-CORE-11 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

http://www.agatlabs.com CLIENT NAME: ORFORD MINING CORP ATTENTION TO: Arnaud Fontaine 4347007 < 0.5 0% Na 4347007 0.07 0.07 1.1% Ni 4347007 1410 1410 0.1% Р 4347007 170 119 35.7% Pb 4347007 0% <1 <1 Rb 4347007 <10 <10 0% S 4347007 0.18 0.18 2.9% Sb 4347007 14 26 59.6% 4347007 Sc 21 21 0.9% Se 4347007 <10 <10 0% 4347007 <5 <5 0% Sn Sr 4347007 11 11 0.8% 4347007 17 Ta 11 40.7% Te 4347007 <10 <10 0% Th 4347007 22 21 1.9% Τi 4347007 0.21 0.6% 0.21 ΤI 4347007 <5 <5 0% U 4347007 <5 <5 0% V 4347007 121 122 1.3% W 4347007 <1 <1 0% Υ 8 4347007 8 0.8% Zn 4347007 64.4 67.1 4.1% Zr 4347007 23 24 1.5% (201-079) Sodium Peroxide Fusion - ICP-OES finish REPLICATE #1 Sample ID Original Replicate RPD Parameter 4346972 1.56 0.0% (202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge) REPLICATE #1 REPLICATE #2 **REPLICATE #3** Sample ID Original Replicate RPD Sample ID Original Replicate RPD Sample ID Original Replicate **RPD** Parameter Au 4346957 0.0146 0.0109 29.0% 4347007 0.001 0.001 0.0% 4346997 < 0.001 0.001 0.008 4347007 8.7% 4346997 0.008 0.008 Pd 4346982 0.008 0.0% 0.033 0.036 0.0% Pt 4346982 < 0.005 < 0.005 0.0% 4346971 0.0631 0.0679 7.3% 4346997 < 0.005 < 0.005 0.0%

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220949704

PROJECT: QK-22-CORE-11

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

				(20	I-070) 4	Acid D	Digest -	Metals F	Package	e, ICP-C	DES fini	sh				
		CRM #1	(ref.GTS-2a))		CRM #2 (ı	ref.CGL-015)		CRM #3	3 (ref.Till-2)			CRM #4	(ref.GTS-2a)	
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Al	6.96	6.86			13.0	12.7			8.47	8.15			6.96	6.74		
As	124	119							26.0	16.7			124	112		
Ва									540	505						
Be									4.00	3.04						
Ca	4.01	3.75			1.42	1.37			0.908	0.869			4.01	3.58		
Ce	24.0	25.5											24.0	26.1		
Со	22.1	21.5							15.0	13.3			22.1	21.6		
Cr									74.0	59.1						
Cu	88.6	88.1			6.40	6.40			150	150			88.6	86.4		
Fe	7.56	6.99			3.27	3.03			3.77	3.56			7.56	6.99		
K	2.02	2.04			3.69	3.78			2.55	2.50			2.02	1.97		
La					27.5	29.3			44.0	43.3						
Li					65.0	68.9			47.0	47.6						
Mg	2.41	2.37			0.223	0.230			1.10	1.07			2.41	2.34		
Mn	1510	1440							780	741			1510	1390		
Na	0.617	0.633			7.24	7.16			1.62	1.66			0.617	0.610		
Ni	77.1	78.1							32.0	34.2			77.1	77.7		
Р	892	974			0.061	692			750	716			892	942		
Pb									31.0	24.7						
S	0.348	0.344											0.348	0.358		
Sc					2.76	2.44			12.0	12.3						
Sr	92.8	88.9			312	319			144	146			92.8	84.9		
Ti					0.222	0.213			0.530	0.446						
Υ					25.3	27.0										
Zn	208	213			75.4	79.7			130	121			208	207		
	1		(202	2-555) Fir	e Assay	y - Au,	Pt, Pd	Trace Le	vels, IC	P-OES	finish (50g cha	rge)	1	1	
	CRM #1 (ref.PGMS30)))		CRM #2 (ı	ref.PGMS30)		CRM #3 (ref.PGMS30)		CRM #4 ((ref.PGMS30))
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Au	1.897	1.843	97%		1.897	1.956	103%		1.897	1.939	102%		1.897	1.985	105%	
Pd	1.660	1.664	100%		1.660	1.702	103%		1.660	1.711	103%		1.660	1.66	100%	
Pt	0.223	0.209	94%		0.223	0.218	98%		0.223	0.215	96%		0.223	0.213	95%	

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: QK-22-CORE-11

AGAT WORK ORDER: 220949704 ATTENTION TO: Arnaud Fontaine

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis	MINI 40000		DALANOE
Sample Login Weight	MIN-12009	Fletcher, WK:Handbook of Exploration	BALANCE
Ag	MIN-200-12034	Geochem V.1	ICP/OES
Al	MIN-200-12034	Geochem v.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Bi	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Geochem V.1	ICP/OES
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
ln	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
La	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Li	MIN-200-12034	Geochem v. i	ICF/OLS
Mg	MIN-200-12034	Geochem V.1	ICI /OLG
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Na	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Ni	MIN-200-12034	Geochem v. i	ICF/OLS
P	MIN-200-12034	Geochem V.1	ICF/OLS
Pb	MIN-200-12034	Geochem v. i	ICF/OLS
Rb	MIN-200-12034	Geochem v. i	ICF/OLS
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: QK-22-CORE-11

SAMPLING SITE:

AGAT WORK ORDER: 220949704 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

GAINI EING GITE.		O/AWII EED D1.	T.
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/UES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
ті	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
w	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Y	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ni	MIN-200-12001/MIN-200- 12049	Bozic, J et. al. Analyst. 114: 1401-1403; 1989	ICP/OES
Au	MIN-12006, MIN-12004		ICP/OES
Pd	MIN-12006, MIN-12004		ICP/OES
Pt	MIN-12006, MIN-12004		ICP/OES
Crush-Pass %			BALANCE
Pul-Pass %			BALANCE

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine, Michelle Sciortino

PROJECT: WR-22-RUSH-02

AGAT WORK ORDER: 22T940814

SOLID ANALYSIS REVIEWED BY: Jing Xiao, Data Reviewer

DATE REPORTED: Sep 14, 2022

PAGES (INCLUDING COVER): 12

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

Notes Control of the	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 12

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

AGAT WORK ORDER: 22T940814 PROJECT: WR-22-RUSH-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine, Michelle Sciortino

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Sep	p 01, 2022		DATE RECEIVED: Sep 02, 2022	DATE REPORTED: Sep 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5840984 (4268766)		0.780			
E5840985 (4268767)		2.270			
E5840986 (4268768)		1.030			
E5840987 (4268769)		0.150			
E5840988 (4268770)		0.060			
E5840989 (4268771)		0.050			
E5840990 (4268772)		1.630			
E5840991 (4268773)		1.090			

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

春

AGAT WORK ORDER: 22T940814

PROJECT: WR-22-RUSH-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine, Michelle Sciortino

DATE SAMPLED: Se	p 01, 2022			DATE RECE	EIVED: Sep	02, 2022		DATE	REPORTED): Sep 14, 20	022	SAI	MPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga
	Únit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	
E5840984 (4268766)		0.8	2.29	1470	302	0.5	<1	4.01	<0.5	3	290	1830	579	9.16	</td
E5840985 (4268767)		<0.5	2.89	92	6	<0.5	<1	2.20	<0.5	2	100	2080	35.1	7.12	(
E5840986 (4268768)		1.0	2.27	424	48	<0.5	<1	3.32	<0.5	4	187	2020	1240	8.95	</td
E5840987 (4268769)		<0.5	7.17	4	385	1.0	2	2.02	<0.5	21	9.0	105	19.0	2.32	19
E5840988 (4268770)		2.2	1.48	<1	21	<0.5	<1	0.95	<0.5	3	380	2010	4150	16.5	</td
E5840989 (4268771)		4.1	3.26	652	115	0.6	15	3.53	<0.5	169	742	19.1	>10000	28.2	38
E5840990 (4268772)		1.0	2.71	2190	380	<0.5	1	8.73	<0.5	<1	151	1840	385	6.32	</td
E5840991 (4268773)		<0.5	2.59	458	190	<0.5	1	2.44	<0.5	<1	119	1960	309	7.16	</td
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	s	Sk
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppn
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	
E5840984 (4268766)		<1	0.63	5	19	10.0	1090	<0.5	0.01	8260	147	19	<10	3.67	4
E5840985 (4268767)		<1	<0.01	5	34	12.7	900	< 0.5	<0.01	1250	123	11	<10	0.23	į
E5840986 (4268768)		<1	0.11	5	25	11.8	1160	< 0.5	<0.01	6150	201	19	<10	2.17	16
E5840987 (4268769)		<1	1.21	10	12	0.88	386	< 0.5	3.09	36.1	301	5	<10	0.02	,
E5840988 (4268770)		<1	0.02	5	1	14.2	1000	< 0.5	0.12	16400	73	48	<10	6.14	12
E5840989 (4268771)		<1	2.74	213	17	1.01	4730	277	0.26	69.3	857	103	<10	3.73	10
E5840990 (4268772)		<1	1.35	5	17	9.89	1430	< 0.5	0.05	7000	259	30	<10	0.84	47
E5840991 (4268773)		<1	0.78	4	24	11.8	593	<0.5	0.01	2640	65	15	<10	0.44	17
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zr
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppn
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5840984 (4268766)		12	<10	<5	232	<10	25	<5	0.01	<5	<5	126	<1	5	72.1
E5840985 (4268767)		18	<10	<5	76	<10	22	<5	<0.01	<5	<5	121	<1	4	62.8
E5840986 (4268768)		12	<10	<5	117	<10	21	<5	0.02	<5	<5	136	<1	7	65.6
E5840987 (4268769)		9	<10	<5	368	<10	<10	<5	0.19	<5	<5	63.5	<1	8	33.2
E5840988 (4268770)		10	<10	<5	7	<10	41	<5	0.10	<5	7	89.1	<1	4	89.5
E5840989 (4268771)		7	<10	10	240	<10	27	<5	0.27	<5	60	134	146	17	38.3
E5840990 (4268772)		12	<10	<5	344	<10	12	<5	0.05	<5	<5	111	<1	7	64.4
E5840991 (4268773)		16	<10	<5	108	<10	18	<5	0.01	<5	<5	102	<1	3	58.0

AGAT WORK ORDER: 22T940814 PROJECT: WR-22-RUSH-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine, Michelle Sciortino

			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Sep	p 01, 2022		DATE RECEIVED: Sep 02, 2022	DATE REPORTED: Sep 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5840984 (4268766)		17			
E5840985 (4268767)		11			
E5840986 (4268768)		22			
E5840987 (4268769)		54			
E5840988 (4268770)		15			
E5840989 (4268771)		111			
E5840990 (4268772)		21			
E5840991 (4268773)		11			

Comments: RDL - Reported Detection Limit

4268766-4268773 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22T940814 PROJECT: WR-22-RUSH-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine, Michelle Sciortino

			(202	2-555) Fir	e Assay - Au, Pt, Pd	Trace Levels, ICP-OES finish	
DATE SAMPLED: Sep	01, 2022			DATE REC	EIVED: Sep 02, 2022	DATE REPORTED: Sep 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Au	Pd	Pt			
	Unit:	ppm	ppm	ppm			
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005			
E5840984 (4268766)		0.008	1.672	0.461			
E5840985 (4268767)		< 0.001	0.003	< 0.005			
E5840986 (4268768)		0.002	0.230	0.060			
E5840987 (4268769)		0.001	< 0.001	< 0.005			
E5840988 (4268770)		0.047	0.973	0.597			
E5840989 (4268771)		1.041	0.002	< 0.005			
E5840990 (4268772)		0.004	0.604	0.171			
E5840991 (4268773)		0.001	0.084	0.024			

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1046 Gorham St, Thunder Bay, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22T940814 PROJECT: WR-22-RUSH-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine, Michelle Sciortino

			Sieving - % Passir	ng (Crushing)	
DATE SAMPLED: Sep	01, 2022		DATE RECEIVED: Sep 02, 2022	DATE REPORTED: Sep 14, 2022	SAMPLE TYPE: Drill Core
	Analyte:	Crush-Pass %			
	Unit:	%			
Sample ID (AGAT ID)	RDL:	0.01			
E5840984 (4268766)		79.48			

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22T940814 PROJECT: WR-22-RUSH-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine, Michelle Sciortino

Sieving - % Passing	(Pulverizing)	

DATE SAMPLED: Sep 01, 2022 DATE RECEIVED: Sep 02, 2022 DATE REPORTED: Sep 14, 2022 SAMPLE TYPE: Drill Core

Analyte: Pul-Pass %

Sample ID (AGAT ID) RDL: 0.01 E5840984 (4268766) 85.90

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 22T940814 PROJECT: WR-22-RUSH-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine, Michelle Sciortino

		DED: : 0	A.T.F. #4	,_0	. 3.3, 1	 . 500. 1		Package	,				
	_	REPLIC					1		T	ı		ı	1
Parameter	Sample ID	Original	Replicate	RPD									
Ag	4268766	0.8	0.8	3.9%									
Al	4268766	2.29	2.20	4.0%									
As	4268766	1470	1480	0.5%									
Ва	4268766	302	253	17.7%									
Be	4268766	0.5	<0.5	10.3%									
Bi	4268766	<1	<1	0.0%									
Ca	4268766	4.01	3.46	14.7%									
Cd	4268766	<0.5	<0.5	0.0%									
Се	4268766	3	4	13.2%									
Со	4268766	290	233	21.8%									
Cr	4268766	1830	1870	2.0%									
Cu	4268766	579	567	2.0%									
Fe	4268766	9.16	8.62	6.0%									
Ga	4268766	<5	<5	0.0%									
In	4268766	<1	<1	0.0%									
K	4268766	0.63	0.51	21.3%									
La	4268766	5	5	3.7%									
Li	4268766	19	20	3.8%									
Mg	4268766	10.0	9.74	3.1%									
Mn	4268766	1090	957	13.1%									
Мо	4268766	<0.5	<0.5	0.0%									
Na	4268766	0.01	0.01	7.8%									
Ni	4268766	8260	8160	1.2%									
Р	4268766	147	153	4.2%		1							
Pb	4268766	19	16	16.5%		1							
Rb	4268766	<10	<10	0.0%									
S	4268766	3.67	3.22	13.1%									
Sb	4268766	41	30	31.9%									
Sc	4268766	12	12	5.0%									
Se	4268766	<10	<10	0.0%									
Sn	4268766	<5	<5	0.0%		1							

Quality Assurance - Replicate AGAT WORK ORDER: 22T940814 PROJECT: WR-22-RUSH-02 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP ATTENTION TO: Arnaud Fontaine, Michelle Sciortino 4268766 17.1% Ta 4268766 <10 <10 0.0% Te 4268766 25 21 16.8% Th 4268766 <5 <5 0.0% Ti 0.01 4268766 0.01 10.8% ΤI 4268766 <5 <5 0.0% U 4268766 <5 <5 0.0% ٧ 4268766 126 3.6% 121 W 4268766 0.0% <1 <1 Υ 4268766 5 5 2.7% Zn 4268766 72.1 70.2 2.7% Zr 4268766 17 (202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish REPLICATE #1 Parameter Sample ID Original Replicate RPD 22.2% 4268766 800.0 0.010 Au Pd 4268766 1.672 1.404 17.4%

4268766

Pt

0.333

0.461

32.2%

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 22T940814 PROJECT: WR-22-RUSH-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

LIENT NAM	E: ORFOR	13.0 13.0 1.42 1.42 3.27 3.23 3.69 3.79 27.5 26.1 65.0 66.6 0.223 0.218 7.24 7.46 607 643 2.76 2.20 312 303 0.222 0.212 25.3 25.1							ATTENTION TO: Arnaud Fontaine, Michelle Sciortino							
				(20	1-070)	4 Acid I	Digest	- Metals	Packag	e, ICP-0	DES fir	nish				
		CRM #1 (ref.CGL-015))												
Parameter	Expect	Actual	Recovery	Limits												
Al	13.0	13.0														
Ca	1.42	1.42														
Fe	3.27	3.23														
K	3.69	3.79														
La	27.5	26.1														
Li	65.0	66.6														
Mg	0.223	0.218														
Na	7.24	7.46														
Р	607	643														
Sc	2.76	2.20														
Sr	312	303														
Ti	0.222	0.212														
Υ	25.3	25.1														
Zn	75.4	74.5														
	•			(202-5	555) Fi	re Assa	y - Au,	Pt, Pd T	race Le	vels, IC	P-OES	finish		•	•	•
		CRM #1	(ref.ME1310)													
Parameter	Expect	Actual	Recovery	Limits												
Au	0.06	0.05														
Pd	0.56	0.50														
Pt	0.43	0.44														

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-RUSH-02

SAMPLING SITE:

AGAT WORK ORDER: 22T940814

ATTENTION TO: Arnaud Fontaine, Michelle

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ві	MIN-200-12034	Geochem V.1	ICP/OES
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Geochem v. i	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Geochem v.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Geochem V.1	ICP/OES
La	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Li	MIN-200-12034	Geochem V.1	ICF/OLS
Mg	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Na	MIN-200-12034	Geochem v.i	ICP/OES
Ni	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Pb	MIN-200-12034	Geochem v.1	ICF/OLS
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-RUSH-02

SAMPLING SITE:

AGAT WORK ORDER: 22T940814

ATTENTION TO: Arnaud Fontaine, Michelle

SAMPLED BY:

SAMPLING SITE.		SAMPLED BT.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Geochem V.1	ICP/UES
ті	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-221-12006	BUGBEE, E; A Textbook of Fire Assay	ICP/OES
Pd	MW-200-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Pt	MW-200-12006	BUGBEE, E;A Textbook of Fire Assay	ICP/OES
Crush-Pass %		,	BALANCE
Pul-Pass %			BALANCE

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-RUSH-01

AGAT WORK ORDER: 220931343

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Aug 19, 2022

PAGES (INCLUDING COVER): 12

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

Notes Notes Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 12

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

AGAT WORK ORDER: 220931343

PROJECT: WR-22-RUSH-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

	(200-) Sample Login Weight												
DATE SAMPLED: Au	ıg 09, 2022		DATE RECEIVED: Aug 10, 2022	DATE REPORTED: Aug 19, 2022	SAMPLE TYPE: Drill Core								
	Analyte:	Sample Login Weight											
	Unit:	kg											
Sample ID (AGAT ID)	RDL:	0.005											
E5839744 (4187497)		1.380											

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O931343

PROJECT: WR-22-RUSH-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 09, 2022]	DATE RECE	EIVED: Aug	10, 2022		DATE REPORTED: Aug 19, 2022				SAMPLE TYPE: Drill Core			
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5839744 (4187497)		2.7	6.41	6	206	4.7	<1	0.32	<0.5	249	1.3	225	6.3	1.48	37
	Analyte:	In	К	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5839744 (4187497)		<1	4.01	113	3	0.05	101	12.7	2.99	18.8	73	21	247	0.23	<1
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5839744 (4187497)		<1	<10	9	54	<10	<10	18	0.14	<5	33	7.0	1	75	136
	Analyte:	Zr													
	Unit:	ppm													
Sample ID (AGAT ID)	RDL:	5													
E5839744 (4187497)		801													

Comments: RDL - Reported Detection Limit

4187497 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O931343

PROJECT: WR-22-RUSH-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)												
DATE SAMPLED: Au			DATE RECE	IVED: Aug 10, 2022	DATE REPORTED: Aug 19, 2022	SAMPLE TYPE: Drill Core						
	Analyte:	Au	Pd	Pt								
	Unit:	ppm	ppm	ppm								
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005								
E5839744 (4187497)		0.002	<0.001	<0.005								

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 220931343

PROJECT: WR-22-RUSH-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Crushing)												
DATE SAMPLED: Aug	09, 2022		DATE RECEIVED: Aug 10, 2022	DATE REPORTED: Aug 19, 2022	SAMPLE TYPE: Drill Core								
	Analyte: Cr	rush-Pass %											
	Unit:	%											
Sample ID (AGAT ID)	RDL:	0.01											
E5839744 (4187497)		83.23											

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 220931343

PROJECT: WR-22-RUSH-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Pulverizing)												
DATE SAMPLED: Aug	09, 2022		DATE RECEIVED: Aug 10, 2022	DATE REPORTED: Aug 19, 2022	SAMPLE TYPE: Drill Core								
Analyte: Pul-Pass %		ul-Pass %											
	Unit:	%											
Sample ID (AGAT ID)	RDL:	0.01											
E5839744 (4187497)		86.69											

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220931343 PROJECT: WR-22-RUSH-01 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(201	1-070) 4	Acid Di	igest - N	Metals F	Package	, ICP-OI	ES finis	h		
		REPLIC	ATE #1											
Parameter	Sample ID	Original	Replicate	RPD										
Ag	4187497	2.66	2.53	5.0%										
Al	4187497	6.41	6.10	5.0%										
As	4187497	6	4											
Ва	4187497	206	198	4.0%										
Ве	4187497	4.68	4.44	5.3%										
Bi	4187497	< 1	< 1	0.0%										
Ca	4187497	0.32	0.32	0.0%										
Cd	4187497	< 0.5	< 0.5	0.0%										
Се	4187497	249	248	0.4%										
Со	4187497	1.3	1.6	20.7%										
Cr	4187497	225	200	11.8%										
Cu	4187497	6.3	6.7	6.2%										
Fe	4187497	1.48	1.50	1.3%										
Ga	4187497	37	38	2.7%										
In	4187497	< 1	< 1	0.0%										
K	4187497	4.01	3.76	6.4%										
La	4187497	113	112	0.9%										
Li	4187497	3	3	0.0%										
Mg	4187497	0.048	0.043	11.0%										
Mn	4187497	101	106	4.8%										
Мо	4187497	12.7	13.2	3.9%										
Na	4187497	2.99	2.87	4.1%										
Ni	4187497	18.8	20.2	7.2%										
Р	4187497	73	87	17.5%										
Pb	4187497	21	22	4.7%										
Rb	4187497	247	239	3.3%										
S	4187497	0.229	0.236	3.0%										
Sb	4187497	< 1	< 1	0.0%										
Sc	4187497	< 1	< 1	0.0%										
Se	4187497	< 10	< 10	0.0%										
Sn	4187497	9	9	0.0%										

Quality Assurance - Replicate AGAT WORK ORDER: 220931343 PROJECT: WR-22-RUSH-01 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAM	E: ORFOR	MINING	CORP							ATTE	NTION TO	D: Arnaud	d Fontaine		
Sr	4187497	54	52	3.8%											
Та	4187497	< 10	< 10	0.0%											
Te	4187497	< 10	< 10	0.0%											
Th	4187497	18	18	0.0%											
Ti	4187497	0.14	0.14	0.0%											
TI	4187497	< 5	< 5	0.0%											
U	4187497	33	36	8.7%											
V	4187497	7.0	7.0	0.0%											
W	4187497	1	2												
Υ	4187497	75	74	1.3%											
Zn	4187497	136	135	0.7%											
Zr	4187497	801	776	3.2%											
			(202-5	555) Fir	e Assay	- Au, F	Pt, Pd T	race Le	vels, IC	P-OES 1	inish (og cha	arge)	·	
		REPLIC	ATE #1												
Parameter	Sample ID	Original	Replicate	RPD											
Au	4187497	0.002	0.002	0.0%											
Pd	4187497	< 0.001	< 0.001	0.0%											
Pt	4187497	< 0.005	< 0.005	0.0%											

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220931343

PROJECT: WR-22-RUSH-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

LIENT NAM	IE: ORFORD MINING CORP ATTENTION TO: Arnaud Fontaine (201-070) 4 Acid Digest - Metals Package, ICP-OES finish														
				(201	1-070)	4 Acid E	Digest -	Metals I	Package	e, ICP-C	DES fin	ish			
		CRM #1	(ref.Till-2)												
Parameter	Expect	Actual	Recovery	Limits											
Al	8.47	8.19	97%												
As	26	30	116%												
Ва	540	526	97%												
Ве	4.0	3.2	80%												
Ca	0.907	0.848	94%												
Се	98	98	100%												
Со	15	11	73%												
Cr	60.3	50.5	84%												
Cu	150	149	99%												
Fe	3.77	3.65	97%												
La	44	42	95%												
Li	47	46	99%												
Mg	1.10	1.02	93%												
Mn	780	719	92%												
Мо	14	13	90%												
Na	1.624	1.701	105%												
Ni	32	30	94%												
Р	750	727	97%												
Pb	31	22	72%												
Sc	12	12	98%												
Sr	144	145	100%												
Th	18.4	14.4	78%												
Ti	0.53	0.4	76%												
V	77	76	98%												
W	5	4	82%												
Zn	130	113	87%												
			(202	-555) Fir	e Assa	ay - Au,	Pt, Pd	Trace Le	vels, IC	P-OES	finish	(50g cha	rge)		
		CRM #1 (r	ref.PGMS30)												
Parameter	Expect	Actual	Recovery	Limits											
Au	1.897	1.855	98%												
Pd	1.660	1.679	101%												

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220931343

PROJECT: WR-22-RUSH-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

Pt	0.223	0.229	103%							

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-RUSH-01

SAMPLING SITE:

AGAT WORK ORDER: 220931343
ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Bi	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
La	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Li	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mg	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Na	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ni	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OL3
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OLS
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OLS
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-RUSH-01

SAMPLING SITE:

AGAT WORK ORDER: 220931343 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

C/ ((())) E (() () ()		J 220 D 11	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
ті	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
w	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-12006, MIN-12004		ICP/OES
Pd	MIN-12006, MIN-12004		ICP/OES
Pt	MIN-12006, MIN-12004		ICP/OES
Crush-Pass %			BALANCE
Pul-Pass %			BALANCE

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-GRAB-01

AGAT WORK ORDER: 220932952

SOLID ANALYSIS REVIEWED BY: Jing Xiao, Data Reviewer

DATE REPORTED: Sep 27, 2022

PAGES (INCLUDING COVER): 21

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

Notes Control of the	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 21

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

AGAT WORK ORDER: 220932952

PROJECT: WR-22-GRAB-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP ATTENTION TO: Arnaud Fontaine

CLIENT NAME. ON	OND MINI	10 00111		ATTENTION TO. ATTIAUU F	Officiality
			(200-) Sample Lo	gin Weight	
DATE SAMPLED: Au	g 14, 2022		DATE RECEIVED: Aug 15, 2022	DATE REPORTED: Sep 27, 2022	SAMPLE TYPE: Rock
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5839701 (4202708)		0.700			
E5839702 (4202709)		0.770			
E5839703 (4202710)		0.610			
E5839704 (4202711)		0.610			
E5839705 (4202712)		0.710			
E5839706 (4202713)		0.970			
E5839707 (4202714)		0.830			
E5839708 (4202715)		0.940			
E5839709 (4202716)		0.650			
E5839710 (4202717)		0.870			
E5839711 (4202718)		0.720			
E5839712 (4202719)		0.670			
E5839713 (4202720)		0.590			
E5839714 (4202721)		1.120			
E5839715 (4202722)		0.690			
E5839716 (4202723)		1.060			
E5839717 (4202724)		0.670			
E5839718 (4202725)		0.940			
E5839719 (4202726)		0.820			
E5839720 (4202727)		0.060			
E5839721 (4202728)		1.970			
E5839722 (4202729)		1.270			
E5839723 (4202730)		0.780			
E5839724 (4202731)		0.890			
E5839725 (4202732)		0.610			
E5839726 (4202733)		0.970			
E5839727 (4202734)		1.240			
E5839728 (4202735)		1.480			
E5839729 (4202736)		1.130			
E5839730 (4202737)		0.630			
E5839731 (4202738)		1.430			

Certificate of Analysis

AGAT WORK ORDER: 220932952

PROJECT: WR-22-GRAB-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	gin Weight	
DATE SAMPLED: Aug	g 14, 2022		DATE RECEIVED: Aug 15, 2022	DATE REPORTED: Sep 27, 2022	SAMPLE TYPE: Rock
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5839732 (4202739)		1.370			
E5839733 (4202740)		0.920			
E5839734 (4202741)		1.400			
E5839735 (4202742)		0.820			
E5839736 (4202743)		1.520			
E5839737 (4202744)		0.780			
E5839738 (4202745)		0.990			
E5839739 (4202746)		0.730			
E5839740 (4202747)		0.090			
E5839741 (4202748)		1.300			
E5839513 (4202749)		1.000			
E5839515 (4202750)		0.940			
E5839516 (4202751)		1.470			
E5839517 (4202752)		1.310			
E5839518 (4202753)		1.210			
E5839519 (4202754)		1.440			
E5839520 (4202755)		0.010			

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 22O932952

PROJECT: WR-22-GRAB-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	I OND WINNING		(2	01-070)	ckago l	CP-OES	finich	, mada i c	, incairio						
DATE CAMPLED. A	~ 44 2022		<u> </u>				Clais Fa				222	CAN		Doole	
DATE SAMPLED: Aug	g 14, 2022		L	DATE RECE	EIVED: Aug	15, 2022		DATE	REPORTED	: Sep 27, 20	J22	SAIV	IPLE TYPE:	ROCK	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5839701 (4202708)		<0.5	1.42	<1	12	<0.5	<1	1.86	<0.5	3	109	1240	74.8	7.22	<5
E5839702 (4202709)		<0.5	1.38	<1	18	<0.5	2	2.04	<0.5	1	119	2620	16.1	8.79	<5
E5839703 (4202710)		<0.5	6.05	<1	68	<0.5	2	5.95	0.7	2	73.8	1260	66.2	8.71	15
E5839704 (4202711)		<0.5	1.39	<1	13	<0.5	<1	1.95	<0.5	2	117	1240	26.4	8.03	<5
E5839705 (4202712)		1.5	6.64	<1	1260	6.1	2	9.54	1.7	41	37.3	64.1	208	9.28	30
E5839706 (4202713)		<0.5	7.36	5	961	2.0	<1	0.93	<0.5	92	4.5	47.9	2.8	1.37	20
E5839707 (4202714)		<0.5	8.01	1	107	0.8	2	4.69	0.8	33	37.9	55.8	134	9.92	33
E5839708 (4202715)		<0.5	1.78	<1	10	<0.5	<1	1.92	<0.5	2	115	1380	631	7.16	<5
E5839709 (4202716)		<0.5	2.97	<1	108	2.0	8	9.72	<0.5	89	36.5	339	<0.5	21.4	37
E5839710 (4202717)		<0.5	2.76	<1	40	<0.5	3	3.04	<0.5	4	95.2	2080	15.4	7.14	<5
E5839711 (4202718)		<0.5	6.84	<1	169	<0.5	4	5.34	0.8	28	48.8	65.7	179	11.5	32
E5839712 (4202719)		<0.5	7.34	5	12	<0.5	3	2.95	<0.5	70	23.0	82.8	73.7	15.7	37
E5839713 (4202720)		<0.5	8.11	<1	211	0.7	3	6.56	<0.5	39	40.5	136	60.5	8.97	31
E5839714 (4202721)		<0.5	5.44	2	187	0.8	6	3.84	<0.5	48	42.1	81.9	109	10.7	32
E5839715 (4202722)		<0.5	7.19	<1	82	0.7	3	5.13	0.6	22	43.3	75.1	98.9	9.57	28
E5839716 (4202723)		<0.5	8.21	1	164	<0.5	1	6.09	0.6	21	39.2	124	55.0	8.76	25
E5839717 (4202724)		<0.5	7.41	<1	40	0.6	6	5.50	0.9	24	47.7	86.7	71.1	10.5	31
E5839718 (4202725)		<0.5	2.12	<1	38	<0.5	3	2.65	<0.5	17	6.3	63.0	99.0	10.5	18
E5839719 (4202726)		<0.5	7.66	<1	117	0.8	6	8.09	0.6	22	36.3	88.8	95.4	8.78	31
E5839720 (4202727)		2.7	7.01	<1	214	0.9	2	4.43	0.6	25	106	173	4310	13.7	15
E5839721 (4202728)		1.1	0.50	220	14	<0.5	8	0.13	<0.5	12	118	23.0	772	39.9	46
E5839722 (4202729)		<0.5	7.96	2	165	0.6	6	6.81	0.9	25	49.3	46.6	122	11.3	34
E5839723 (4202730)		<0.5	3.32	<1	41	<0.5	<1	5.09	<0.5	1	83.0	1720	78.0	9.85	11
E5839724 (4202731)		<0.5	7.28	<1	236	1.1	4	7.06	0.9	45	42.1	29.5	207	10.9	35
E5839725 (4202732)		<0.5	7.43	1	179	0.8	5	7.11	0.8	24	43.9	89.4	77.1	10.6	33
E5839726 (4202733)		<0.5	3.18	<1	9	<0.5	3	3.08	1.0	7	53.8	2170	129	11.8	15
E5839727 (4202734)		<0.5	7.32	<1	39	<0.5	3	7.57	0.6	23	38.6	140	34.7	8.61	32
E5839728 (4202735)		<0.5	6.93	3	112	<0.5	3	6.36	<0.5	17	47.5	41.2	170	11.9	34
E5839729 (4202736)		<0.5	7.95	2	87	<0.5	4	6.62	<0.5	13	39.2	43.4	68.9	8.70	26
E5839730 (4202737)		<0.5	6.93	<1	47	<0.5	4	6.43	0.8	20	64.7	10.7	213	14.3	37
E5839731 (4202738)		<0.5	6.95	<1	626	0.9	5	4.99	0.9	56	43.9	38.1	39.2	11.4	32
E5839732 (4202739)		7.9	7.02	9	35	5.6	<1	3.83	4.7	509	2.2	29.5	65.2	3.81	56

Certificate of Analysis

AGAT WORK ORDER: 220932952

PROJECT: WR-22-GRAB-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 14, 2022		Г	DATE RECE	EIVED: Aug	15, 2022		DATE I	REPORTED	: Sep 27, 2	022	SAM	PLE TYPE:	Rock	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Се	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5839733 (4202740)		0.8	6.99	<1	96	2.3	<1	4.59	0.7	107	28.3	44.6	39.7	10.6	36
E5839734 (4202741)		<0.5	2.13	13	3	0.6	3	0.90	<0.5	16	105	1050	51.6	9.51	9
E5839735 (4202742)		<0.5	6.64	<1	79	1.5	9	4.51	0.7	144	42.6	15.6	143	12.8	49
E5839736 (4202743)		< 0.5	2.00	16	7	0.6	<1	1.44	< 0.5	14	98.2	1070	45.8	9.17	9
E5839737 (4202744)		<0.5	8.56	<1	533	<0.5	4	2.23	0.8	13	56.7	115	45.2	7.04	29
E5839738 (4202745)		<0.5	2.82	9	13	<0.5	1	3.68	< 0.5	2	88.7	2120	34.1	7.98	8
E5839739 (4202746)		1.0	4.45	<1	30	0.9	2	5.85	1.1	31	84.3	521	1570	12.3	27
E5839740 (4202747)		<0.5	6.38	1	364	1.0	<1	1.71	<0.5	18	4.9	27.3	6.3	1.37	16
E5839741 (4202748)		<0.5	3.86	<1	9	0.6	4	4.52	0.5	18	99.3	768	25.3	13.9	28
E5839513 (4202749)		4.0	9.74	7	223	2.5	2	0.91	27.0	325	5.7	45.2	73.0	3.09	34
E5839515 (4202750)		1.1	6.28	<1	73	1.3	3	2.64	0.5	45	91.5	319	771	10.6	31
E5839516 (4202751)		1.3	6.09	2	70	1.3	4	2.59	<0.5	43	70.1	360	838	10.2	30
E5839517 (4202752)		2.2	5.86	<1	87	1.4	7	2.42	0.6	40	95.0	359	1500	13.4	33
E5839518 (4202753)		<0.5	7.55	2	56	2.4	<1	5.05	1.2	87	38.0	51.0	359	11.1	51
E5839519 (4202754)		4.1	0.32	<1	24	<0.5	3	0.07	1.1	6	1680	329	7600	39.4	<5
E5839520 (4202755)		<0.5	4.01	139	198	0.9	2	3.01	<0.5	25	74.1	761	38.7	5.33	<5

Certificate of Analysis

AGAT WORK ORDER: 22O932952

PROJECT: WR-22-GRAB-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

CEIEITI IVIVIE. OR	. 0112 111111111	3 00111	(2	01-070) 4	4 Acid D	iaest - M	letals Pa	ckage I	CP-OES	finish	71111444 1 6	, ritairio			
DATE SAMPLED: Au	g 14, 2022		•	•	IVED: Aug		1010101		REPORTED		022	SAM	PLE TYPE	: Rock	
	Analyte: Unit: ample ID (AGAT ID) RDL:			La	Li	Mg	Mn	Мо	Na	Ni	P	Pb	Rb	S	Sb
	•	In ppm	K %	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5839701 (4202708)		<1	0.07	4	1	19.7	1190	<0.5	0.02	1720	71	14	<10	0.05	8
E5839702 (4202709)		<1	0.02	5	1	18.0	1420	<0.5	0.02	1420	54	14	<10	0.03	13
E5839703 (4202710)		<1	0.16	3	45	10.3	1460	< 0.5	1.09	584	147	10	<10	0.03	11
E5839704 (4202711)		<1	0.03	4	1	19.7	1420	<0.5	0.02	1660	68	13	<10	0.06	5
E5839705 (4202712)		<1	3.22	28	90	3.45	1890	<0.5	2.40	28.5	4400	23	<10	0.43	6
E5839706 (4202713)		<1	3.90	45	17	0.66	246	3.4	2.66	21.2	483	19	<10	<0.01	<1
E5839707 (4202714)		<1	0.27	14	11	2.69	1560	<0.5	2.20	38.4	677	15	<10	0.20	6
E5839708 (4202715)		<1	0.04	4	1	18.4	1180	<0.5	0.03	2390	72	15	<10	0.21	4
E5839709 (4202716)		<1	0.07	31	2	3.77	1420	< 0.5	0.49	833	1770	37	<10	0.04	5
E5839710 (4202717)		<1	0.15	6	5	15.6	1210	<0.5	0.15	1180	103	14	<10	0.05	10
E5839711 (4202718)		<1	0.38	11	14	3.60	1960	<0.5	2.29	37.7	913	20	<10	0.54	4
E5839712 (4202719)		<1	0.02	37	16	5.92	1730	0.8	0.33	80.0	529	23	<10	0.16	<1
E5839713 (4202720)		<1	0.60	17	11	3.56	1490	<0.5	2.27	49.1	768	15	<10	0.19	5
E5839714 (4202721)		<1	0.34	20	18	2.13	1150	0.7	0.99	34.3	850	27	<10	0.73	3
E5839715 (4202722)		<1	0.19	9	11	3.85	1760	<0.5	3.32	46.0	616	14	<10	0.14	4
E5839716 (4202723)		<1	0.39	8	12	3.93	1670	<0.5	2.92	61.4	607	12	<10	0.14	5
E5839717 (4202724)		<1	0.10	10	19	4.11	1740	<0.5	3.06	45.2	744	20	<10	0.38	6
E5839718 (4202725)		<1	0.07	9	5	2.57	1200	0.5	0.04	10.2	1600	20	<10	0.85	<1
E5839719 (4202726)		<1	0.16	10	14	3.25	1620	<0.5	2.98	37.9	686	13	<10	0.18	4
E5839720 (4202727)		<1	0.59	11	16	3.80	1480	3.8	1.71	3500	618	49	<10	1.44	6
E5839721 (4202728)		<1	0.08	5	2	0.32	154	14.0	< 0.01	150	121	145	<10	30.1	19
E5839722 (4202729)		<1	0.40	12	10	3.35	2060	<0.5	2.32	25.3	644	19	<10	0.22	5
E5839723 (4202730)		<1	0.07	4	2	13.2	1600	<0.5	0.15	690	87	24	<10	0.92	6
E5839724 (4202731)		<1	0.79	18	11	2.98	1840	<0.5	2.00	33.1	740	21	<10	0.11	<1
E5839725 (4202732)		<1	0.70	10	11	3.67	1760	< 0.5	2.20	43.5	634	22	<10	0.52	2
E5839726 (4202733)		<1	0.03	8	6	13.0	1400	3.6	0.08	483	137	22	<10	2.43	13
E5839727 (4202734)		<1	0.08	9	16	2.69	1500	<0.5	1.28	33.0	547	10	<10	0.74	4
E5839728 (4202735)		<1	0.53	8	11	2.87	1750	<0.5	1.47	38.7	431	19	<10	0.40	5
E5839729 (4202736)		<1	0.53	6	22	3.69	1580	<0.5	1.96	30.3	350	10	<10	0.22	2
E5839730 (4202737)		<1	0.17	8	22	2.79	1640	<0.5	1.43	30.8	499	23	<10	2.13	1
E5839731 (4202738)		<1	0.52	23	11	3.26	1810	<0.5	2.43	26.1	1210	18	<10	0.18	4
E5839732 (4202739)		<1	0.23	199	2	1.23	851	7.3	5.65	4.4	79	59	<10	0.37	<1

Certificate of Analysis

AGAT WORK ORDER: 22O932952

PROJECT: WR-22-GRAB-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 14, 2022		Γ	DATE RECE	EIVED: Aug	15, 2022		DATE F	REPORTED): Sep 27, 2	022	SAM	PLE TYPE:	Rock	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5839733 (4202740)		<1	0.22	44	21	3.05	1960	<0.5	2.50	18.1	2810	20	<10	0.18	8
E5839734 (4202741)		<1	<0.01	8	14	14.6	901	<0.5	0.02	1400	369	15	<10	0.11	7
E5839735 (4202742)		<1	0.20	77	31	2.28	1230	<0.5	1.32	16.1	1740	21	<10	0.48	7
E5839736 (4202743)		<1	<0.01	8	11	15.0	1200	<0.5	0.01	1380	335	17	<10	0.09	4
E5839737 (4202744)		<1	0.66	4	30	5.28	1440	0.5	3.90	136	721	11	<10	1.08	4
E5839738 (4202745)		<1	0.05	5	2	14.0	1300	<0.5	0.08	901	119	14	<10	0.05	11
E5839739 (4202746)		<1	0.14	12	25	7.50	1720	<0.5	0.52	888	736	27	<10	0.49	5
E5839740 (4202747)		<1	1.27	8	7	0.54	252	<0.5	2.75	18.8	204	3	<10	< 0.01	<1
E5839741 (4202748)		<1	0.04	9	2	9.82	1670	<0.5	0.04	463	589	24	<10	0.15	4
E5839513 (4202749)		<1	0.69	175	6	0.36	651	6.9	6.69	14.4	140	305	<10	0.79	<1
E5839515 (4202750)		<1	0.74	21	21	3.16	1150	<0.5	1.34	558	829	24	<10	0.17	6
E5839516 (4202751)		<1	0.73	20	20	2.81	1010	<0.5	1.53	403	893	23	<10	0.18	3
E5839517 (4202752)		<1	0.84	18	20	2.85	978	<0.5	1.14	833	792	42	<10	0.91	5
E5839518 (4202753)		<1	0.26	36	19	3.49	1130	0.6	2.54	42.5	1550	20	<10	1.45	6
E5839519 (4202754)		<1	0.06	3	<1	0.16	122	5.4	0.06	16900	78	85	<10	21.2	<1
E5839520 (4202755)		<1	0.64	15	34	12.9	1130	1.5	0.81	1840	236	18	<10	0.30	3

Certificate of Analysis

AGAT WORK ORDER: 22O932952

PROJECT: WR-22-GRAB-01

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(2	01-070)	4 Acid D	igest - N	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Au	g 14, 2022		[DATE RECI	EIVED: Aug	15, 2022		DATE F	REPORTED): Sep 27, 20)22	SAM	PLE TYPE:	Rock	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5839701 (4202708)		11	<10	<5	6	<10	28	<5	0.08	<5	<5	47.8	<1	3	59.8
E5839702 (4202709)		11	<10	<5	8	<10	28	<5	0.06	<5	<5	48.4	1	3	69.5
E5839703 (4202710)		37	<10	<5	59	<10	28	<5	0.29	<5	<5	211	<1	10	79.5
E5839704 (4202711)		12	<10	<5	10	<10	29	<5	0.07	<5	<5	45.6	<1	3	60.5
E5839705 (4202712)		64	<10	<5	1010	<10	33	<5	1.77	<5	7	596	<1	38	82.5
E5839706 (4202713)		1	<10	<5	347	<10	<10	36	0.18	<5	<5	26.5	<1	10	34.1
E5839707 (4202714)		42	<10	<5	109	<10	33	<5	0.89	<5	6	400	<1	32	114
E5839708 (4202715)		12	<10	<5	11	<10	25	<5	0.10	<5	<5	55.9	<1	4	54.4
E5839709 (4202716)		24	<10	<5	286	<10	34	<5	0.76	<5	12	558	<1	16	60.3
E5839710 (4202717)		19	<10	<5	14	<10	23	<5	0.18	<5	<5	111	<1	7	68.2
E5839711 (4202718)		41	<10	<5	97	<10	31	<5	1.16	<5	6	477	<1	34	120
E5839712 (4202719)		10	<10	<5	51	<10	33	17	0.26	<5	12	154	<1	22	139
E5839713 (4202720)		40	<10	<5	223	<10	29	<5	1.03	<5	5	326	<1	30	103
E5839714 (4202721)		30	<10	<5	60	<10	27	<5	1.04	<5	6	419	<1	17	136
E5839715 (4202722)		44	<10	<5	84	<10	28	<5	0.92	<5	5	329	<1	26	116
E5839716 (4202723)		42	<10	<5	78	<10	28	<5	0.87	<5	5	317	<1	21	105
E5839717 (4202724)		45	<10	<5	152	<10	30	<5	1.12	<5	6	360	<1	28	130
E5839718 (4202725)		3	<10	<5	9	<10	32	<5	0.08	<5	6	65.7	<1	13	64.9
E5839719 (4202726)		45	<10	<5	508	<10	25	<5	0.96	<5	5	398	<1	33	90.2
E5839720 (4202727)		13	<10	<5	251	<10	39	<5	0.74	<5	8	129	1	13	101
E5839721 (4202728)		2	<10	7	3	<10	101	<5	0.06	<5	25	76.8	<1	4	697
E5839722 (4202729)		40	<10	<5	390	<10	29	<5	1.02	<5	6	271	<1	19	124
E5839723 (4202730)		28	<10	<5	14	<10	23	<5	0.18	<5	<5	145	<1	6	90.4
E5839724 (4202731)		42	<10	<5	279	<10	30	<5	0.59	<5	6	288	<1	36	133
E5839725 (4202732)		45	<10	<5	402	<10	28	<5	1.10	<5	6	391	1	31	105
E5839726 (4202733)		21	<10	<5	9	<10	36	<5	0.18	<5	6	149	<1	8	477
E5839727 (4202734)		37	<10	<5	65	<10	27	<5	0.72	<5	6	379	<1	27	46.8
E5839728 (4202735)		39	<10	<5	96	<10	29	<5	0.91	<5	7	757	<1	24	114
E5839729 (4202736)		38	<10	<5	142	<10	19	<5	0.52	<5	5	292	<1	20	97.4
E5839730 (4202737)		48	<10	<5	109	<10	36	<5	1.31	<5	8	1100	<1	28	95.5
E5839731 (4202738)		45	<10	<5	504	<10	28	<5	1.11	<5	6	420	<1	28	128
E5839732 (4202739)		<1	<10	5	115	16	12	43	0.14	<5	7	15.9	<1	221	1580

Certificate of Analysis

AGAT WORK ORDER: 22O932952

PROJECT: WR-22-GRAB-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - M	etals Pa	ckage, l	CP-OES	finish					
DATE SAMPLED: Au	g 14, 2022		Г	DATE RECE	EIVED: Aug	15, 2022		DATE F	REPORTED	: Sep 27, 20	022	SAM	PLE TYPE:	Rock	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5839733 (4202740)		32	<10	<5	177	<10	32	<5	1.73	<5	5	263	<1	51	155
E5839734 (4202741)		16	<10	<5	11	<10	30	<5	0.33	<5	<5	94.8	<1	8	114
E5839735 (4202742)		23	<10	<5	79	<10	40	<5	1.84	6	7	293	<1	42	77.6
E5839736 (4202743)		15	<10	<5	10	<10	30	<5	0.35	<5	<5	99.5	<1	8	140
E5839737 (4202744)		45	<10	<5	72	<10	23	<5	0.91	<5	5	372	<1	23	225
E5839738 (4202745)		23	<10	<5	28	<10	24	<5	0.19	<5	<5	138	<1	7	95.0
E5839739 (4202746)		26	<10	<5	77	<10	35	<5	1.17	<5	7	276	<1	20	146
E5839740 (4202747)		6	<10	<5	363	<10	<10	<5	0.15	<5	<5	41.6	2	6	20.1
E5839741 (4202748)		15	<10	<5	47	<10	31	<5	0.57	<5	6	178	<1	9	150
E5839513 (4202749)		1	<10	<5	95	<10	<10	42	0.13	<5	<5	16.9	<1	54	1540
E5839515 (4202750)		28	<10	<5	74	<10	30	<5	0.73	<5	<5	261	<1	28	123
E5839516 (4202751)		26	<10	<5	78	<10	29	<5	0.81	<5	5	270	<1	29	103
E5839517 (4202752)		28	<10	<5	74	<10	37	<5	1.57	<5	7	362	2	27	103
E5839518 (4202753)		30	<10	<5	316	<10	37	<5	2.20	8	6	336	2	38	163
E5839519 (4202754)		<1	<10	9	10	<10	67	<5	0.04	<5	22	91.2	<1	2	31.5
E5839520 (4202755)		12	<10	<5	73	<10	16	5	0.17	<5	<5	69.7	4	9	104

AGAT WORK ORDER: 220932952

PROJECT: WR-22-GRAB-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

OLILIVI WILL ON					
			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Aug	1 4, 2022		DATE RECEIVED: Aug 15, 2022	DATE REPORTED: Sep 27, 2022	SAMPLE TYPE: Rock
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5839701 (4202708)		13			
E5839702 (4202709)		12			
E5839703 (4202710)		24			
E5839704 (4202711)		13			
E5839705 (4202712)		499			
E5839706 (4202713)		165			
E5839707 (4202714)		111			
E5839708 (4202715)		15			
E5839709 (4202716)		140			
E5839710 (4202717)		25			
E5839711 (4202718)		84			
E5839712 (4202719)		152			
E5839713 (4202720)		138			
E5839714 (4202721)		175			
E5839715 (4202722)		60			
E5839716 (4202723)		80			
E5839717 (4202724)		62			
E5839718 (4202725)		41			
E5839719 (4202726)		31			
E5839720 (4202727)		65			
E5839721 (4202728)		35			
E5839722 (4202729)		64			
E5839723 (4202730)		18			
E5839724 (4202731)		130			
E5839725 (4202732)		104			
E5839726 (4202733)		28			
E5839727 (4202734)		95			
E5839728 (4202735)		88			
E5839729 (4202736)		70			
E5839730 (4202737)		99			
E5839731 (4202738)		110			
E5839732 (4202739)		2840			

AGAT WORK ORDER: 22O932952

PROJECT: WR-22-GRAB-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	Package, ICP-OES finish	
DATE SAMPLED: Aug	g 14, 2022		DATE RECEIVED: Aug 15, 2022	DATE REPORTED: Sep 27, 2022	SAMPLE TYPE: Rock
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5839733 (4202740)		350			
E5839734 (4202741)		27			
E5839735 (4202742)		266			
E5839736 (4202743)		25			
E5839737 (4202744)		99			
E5839738 (4202745)		13			
E5839739 (4202746)		126			
E5839740 (4202747)		48			
E5839741 (4202748)		67			
E5839513 (4202749)		967			
E5839515 (4202750)		159			
E5839516 (4202751)		180			
E5839517 (4202752)		165			
E5839518 (4202753)		236			
E5839519 (4202754)		24			
E5839520 (4202755)		66			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

4202708-4202755 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 220932952

PROJECT: WR-22-GRAB-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	202-555)	Fire Assay - Au, Pt, Pd Trace L	evels, ICP-OES finish (50g charge)	
DATE SAMPLED: Au	g 14, 2022	`	•	DATE RECEIVED: Aug 15, 2022	DATE REPORTED: Sep 27, 2022	SAMPLE TYPE: Rock
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5839701 (4202708)		0.003	0.028	0.027		
E5839702 (4202709)		< 0.001	0.003	<0.005		
E5839703 (4202710)		< 0.001	0.004	<0.005		
E5839704 (4202711)		< 0.001	0.003	<0.005		
E5839705 (4202712)		< 0.001	<0.001	<0.005		
E5839706 (4202713)		<0.001	< 0.001	<0.005		
E5839707 (4202714)		< 0.001	< 0.001	<0.005		
E5839708 (4202715)		0.008	0.082	0.016		
E5839709 (4202716)		< 0.001	0.002	<0.005		
E5839710 (4202717)		<0.001	0.007	<0.005		
E5839711 (4202718)		< 0.001	< 0.001	<0.005		
E5839712 (4202719)		< 0.001	0.004	<0.005		
E5839713 (4202720)		< 0.001	< 0.001	<0.005		
E5839714 (4202721)		< 0.001	< 0.001	<0.005		
E5839715 (4202722)		< 0.001	< 0.001	<0.005		
E5839716 (4202723)		<0.001	< 0.001	<0.005		
E5839717 (4202724)		< 0.001	< 0.001	<0.005		
E5839718 (4202725)		< 0.001	< 0.001	<0.005		
E5839719 (4202726)		< 0.001	< 0.001	<0.005		
E5839720 (4202727)		0.110	0.620	0.313		
E5839721 (4202728)		0.039	0.005	<0.005		
E5839722 (4202729)		< 0.001	<0.001	<0.005		
E5839723 (4202730)		0.001	0.003	<0.005		
E5839724 (4202731)		< 0.001	< 0.001	<0.005		
E5839725 (4202732)		< 0.001	< 0.001	<0.005		
E5839726 (4202733)		0.005	0.007	<0.005		
E5839727 (4202734)		<0.001	<0.001	<0.005		
E5839728 (4202735)		<0.001	<0.001	<0.005		
E5839729 (4202736)		< 0.001	< 0.001	<0.005		
E5839730 (4202737)		<0.001	<0.001	<0.005		
E5839731 (4202738)		< 0.001	<0.001	<0.005		
E5839732 (4202739)		0.001	<0.001	<0.005		

AGAT WORK ORDER: 220932952

PROJECT: WR-22-GRAB-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

		(2	.02-555) I	Fire Assay	- Au, Pt, Pd Trace L	evels, ICP-OES finish (50g charge)	
DATE SAMPLED: Aug	g 14, 2022			DATE RECEI	/ED: Aug 15, 2022	DATE REPORTED: Sep 27, 2022	SAMPLE TYPE: Rock
	Analyte:	Au	Pd	Pt			
	Unit:	ppm	ppm	ppm			
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005			
E5839733 (4202740)		<0.001	<0.001	<0.005			
E5839734 (4202741)		< 0.001	0.002	< 0.005			
E5839735 (4202742)		< 0.001	< 0.001	< 0.005			
E5839736 (4202743)		< 0.001	0.002	< 0.005			
E5839737 (4202744)		< 0.001	< 0.001	< 0.005			
E5839738 (4202745)		< 0.001	0.007	< 0.005			
E5839739 (4202746)		0.004	0.018	0.011			
E5839740 (4202747)		0.002	< 0.001	<0.005			
E5839741 (4202748)		< 0.001	< 0.001	< 0.005			
E5839513 (4202749)		< 0.001	< 0.001	<0.005			
E5839515 (4202750)		0.003	0.015	<0.005			
E5839516 (4202751)		0.007	0.030	<0.005			
E5839517 (4202752)		0.015	0.050	0.009			
E5839518 (4202753)		< 0.001	< 0.001	<0.005			
E5839519 (4202754)		0.011	0.681	0.788			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

ed Bv:

AGAT WORK ORDER: 22O932952

PROJECT: WR-22-GRAB-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passin	ng (Crushing)	
DATE SAMPLED: Au	•		DATE RECEIVED: Aug 15, 2022	DATE REPORTED: Sep 27, 2022	SAMPLE TYPE: Rock
	Analyte: C	rush-Pass %			
	Unit:	%			
Sample ID (AGAT ID)	RDL:	0.01			
E5839701 (4202708)		84.47			
E5839721 (4202728)		80.98			
E5839741 (4202748)		79.92			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

AGAT WORK ORDER: 22O932952

PROJECT: WR-22-GRAB-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			Sieving - % Passing	g (Pulverizing)	
DATE SAMPLED: Aug	14, 2022		DATE RECEIVED: Aug 15, 2022	DATE REPORTED: Sep 27, 2022	SAMPLE TYPE: Rock
	Analyte: Pu	ıl-Pass %			
	Unit:	%			
Sample ID (AGAT ID)	RDL:	0.01			
E5839701 (4202708)		85.68			
E5839719 (4202726)		85.61			
E5839738 (4202745)		85.85			

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Quality Assurance - Replicate AGAT WORK ORDER: 220932952 PROJECT: WR-22-GRAB-01 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(20	1-070) 4	Acid Di	gest - N	1etals F	Package,	ICP-O	ES finis	h				
		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3			REPLIC	ATE #4	
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Ag	4202708	< 0.5	< 0.5	0.0%	4202722	< 0.5	< 0.5	0.0%	4202733	< 0.5	< 0.5	0.0%	4202748	< 0.5	< 0.5	0.0%
Al	4202708	1.42	1.46	2.8%	4202722	7.19	7.22	0.4%	4202733	3.18	3.23	1.6%	4202748	3.86	3.72	3.7%
As	4202708	< 1	< 1	0.0%	4202722	< 1	< 1	0.0%	4202733	< 1	< 1	0.0%	4202748	< 1	1	
Ва	4202708	12	12	0.0%	4202722	82	83	1.2%	4202733	9	7	25.0%	4202748	9	9	0.0%
Be	4202708	< 0.5	< 0.5	0.0%	4202722	0.70	0.75	6.9%	4202733	< 0.5	< 0.5	0.0%	4202748	0.6	0.6	0.0%
Bi	4202708	< 1	1		4202722	3	3	0.0%	4202733	3	4	28.6%	4202748	4	3	28.6%
Ca	4202708	1.86	1.91	2.7%	4202722	5.13	5.15	0.4%	4202733	3.08	2.99	3.0%	4202748	4.52	4.35	3.8%
Cd	4202708	< 0.5	< 0.5	0.0%	4202722	0.6	0.7	15.4%	4202733	1.0	1.0	0.0%	4202748	0.5	< 0.5	
Се	4202708	3	2		4202722	22	22	0.0%	4202733	7	7	0.0%	4202748	18	19	5.4%
Со	4202708	109	111	1.8%	4202722	43.3	43.3	0.0%	4202733	53.8	51.3	4.8%	4202748	99.3	105	5.6%
Cr	4202708	1240	1230	0.8%	4202722	75.1	76.6	2.0%	4202733	2170	1980	9.2%	4202748	768	743	3.3%
Cu	4202708	74.8	92	20.6%	4202722	98.9	94.8	4.2%	4202733	129	131	1.5%	4202748	25.3	28.0	10.1%
Fe	4202708	7.22	7.37	2.1%	4202722	9.57	9.59	0.2%	4202733	11.8	12.2	3.3%	4202748	13.9	13.5	2.9%
Ga	4202708	< 5	< 5	0.0%	4202722	28	28	0.0%	4202733	15	14	6.9%	4202748	28	28	0.0%
In	4202708	< 1	< 1	0.0%	4202722	< 1	< 1	0.0%	4202733	< 1	< 1	0.0%	4202748	< 1	< 1	0.0%
К	4202708	0.07	0.07	0.0%	4202722	0.19	0.19	0.0%	4202733	0.031	0.024	25.5%	4202748	0.04	0.04	0.0%
La	4202708	4	4	0.0%	4202722	9	9	0.0%	4202733	8	7	13.3%	4202748	9	10	10.5%
Li	4202708	1	1	0.0%	4202722	11	11	0.0%	4202733	6	6	0.0%	4202748	2	2	0.0%
Mg	4202708	19.7	20.2	2.5%	4202722	3.85	3.88	0.8%	4202733	13.0	13.3	2.3%	4202748	9.82	9.48	3.5%
Mn	4202708	1190	1220	2.5%	4202722	1760	1770	0.6%	4202733	1400	1380	1.4%	4202748	1670	1610	3.7%
Мо	4202708	< 0.5	< 0.5	0.0%	4202722	< 0.5	< 0.5	0.0%	4202733	3.6	3.3	8.7%	4202748	< 0.5	< 0.5	0.0%
Na	4202708	0.02	0.02	0.0%	4202722	3.32	3.34	0.6%	4202733	0.08	0.08	0.0%	4202748	0.04	0.04	0.0%
Ni	4202708	1720	1740	1.2%	4202722	46.0	45.4	1.3%	4202733	483	467	3.4%	4202748	463	464	0.2%
Р	4202708	71	71	0.0%	4202722	616	580	6.0%	4202733	137	168	20.3%	4202748	589	562	4.7%
Pb	4202708	14	15	6.9%	4202722	14	14	0.0%	4202733	22	23	4.4%	4202748	24	23	4.3%
Rb	4202708	< 10	< 10	0.0%	4202722	< 10	< 10	0.0%	4202733	< 10	< 10	0.0%	4202748	< 10	< 10	0.0%
S	4202708	0.05	0.05	0.0%	4202722	0.14	0.13	7.4%	4202733	2.43	2.44	0.4%	4202748	0.15	0.16	6.5%
Sb	4202708	8	4		4202722	4	2		4202733	13	11	16.7%	4202748	4	5	22.2%
Sc	4202708	11	11	0.0%	4202722	44	44	0.0%	4202733	21	20	4.9%	4202748	15	15	0.0%
Se	4202708	< 10	< 10	0.0%	4202722	< 10	< 10	0.0%	4202733	< 10	< 10	0.0%	4202748	< 10	< 10	0.0%
Sn	4202708	< 5	< 5	0.0%	4202722	< 5	< 5	0.0%	4202733	< 5	< 5	0.0%	4202748	< 5	< 5	0.0%

Quality Assurance - Replicate AGAT WORK ORDER: 220932952 PROJECT: WR-22-GRAB-01 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

Sr	4202708	6	6	0.0%	4202722	84	85	1.2%	4202733	9	7	25.0%	4202748	47	45	4.3%
Та	4202708	< 10	< 10	0.0%	4202722	< 10	< 10	0.0%	4202733	< 10	< 10	0.0%	4202748	< 10	< 10	0.0%
Te	4202708	28	24	15.4%	4202722	28	31	10.2%	4202733	36	36	0.0%	4202748	31	34	9.2%
Th	4202708	< 5	< 5	0.0%	4202722	< 5	< 5	0.0%	4202733	< 5	< 5	0.0%	4202748	< 5	< 5	0.0%
Ti	4202708	0.08	0.08	0.0%	4202722	0.922	0.783	16.3%	4202733	0.18	0.18	0.0%	4202748	0.566	0.473	17.9%
TI	4202708	< 5	< 5	0.0%	4202722	< 5	< 5	0.0%	4202733	< 5	< 5	0.0%	4202748	< 5	< 5	0.0%
U	4202708	< 5	< 5	0.0%	4202722	5	5	0.0%	4202733	6	6	0.0%	4202748	6	7	15.4%
V	4202708	47.8	49.0	2.5%	4202722	329	310	5.9%	4202733	149	149	0.0%	4202748	178	159	11.3%
W	4202708	< 1	< 1	0.0%	4202722	< 1	< 1	0.0%	4202733	< 1	< 1	0.0%	4202748	< 1	< 1	0.0%
Υ	4202708	3	3	0.0%	4202722	26	26	0.0%	4202733	8	7	13.3%	4202748	9	9	0.0%
Zn	4202708	59.8	60.5	1.2%	4202722	116	112	3.5%	4202733	477	461	3.4%	4202748	150	150	0.0%
Zr	4202708	13	13	0.0%	4202722	60	60	0.0%	4202733	28	27	3.6%	4202748	67	60	11.0%

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)

		REPLIC	ATE #1			REPLIC	ATE #2		REPLICATE #3				REPLICATE #4			
Parameter	Sample ID Original Replicate RPI				Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Au	4202708 0.0027 0.0021 25.00				5.0% 4202722 < 0.001 < 0.001 0.0% 4					0.0054	0.0068	23.0%	4202748	< 0.001	< 0.001	0.0%
Pd	4202708	0.028	0.028	0.0%	4202722	< 0.001	< 0.001	0.0%	4202733	0.007	0.007	0.0%	4202748	< 0.001	0.001	
Pt	4202708	0.0270	0.0326	18.8%	4202722	< 0.005	< 0.005	0.0%	4202733	< 0.005	< 0.005	0.0%	4202748	< 0.005	< 0.005	0.0%

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220932952

PROJECT: WR-22-GRAB-01

5623 McADAM ROAD

TEL (905)501-9998

FAX (905)501-0589 http://www.agatlabs.com

MISSISSAUGA, ONTARIO CANADA L4Z 1N9

LIENT NAM	E: ORFOR	D MININ	G CORP						ATT	ENTION T	O: Arnaud	Fontaine			
				(20	1-070) 4	Acid [Digest -	Metals I	Package	e, ICP-0	DES fini	sh			
		CRM #1	(ref.Till-2)			CRM #2	(ref.GTS-2a)			CRM #3	(ref.Till-2)				
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits			
Al	8.47	8.33	98%		6.96	7.36	106%		8.47	8.52	101%				
As	26	26	100%		124	131	106%		26	29	112%				
Ва	540	525	97%		186	191	103%		540	515	95%				
Be	4.0	3.6	89%						4.0	3.4	86%				
Ca	0.907	0.879	97%		4.01	4.16	104%		0.907	0.869	96%				
Ce	98	102	104%		24	23	95%		98	101	103%				
Со	15	12	79%		22.1	19.4	88%		15	12	79%				
Cr	60.3	58.6	97%						60.3	63.1	105%				
Cu	150	162	108%		88.6	96.6	109%		150	155	104%				
Fe	3.77	3.57	95%		7.56	7.51	99%		3.77	3.7	98%				
K					2.021	2.253	111%								
La	44	43	97%						44	43	98%				
Li	47	48	101%						47	47	101%				
Mg	1.10	1.03	94%		2.412	2.418	100%		1.10	1.05	96%				
Mn	780	765	98%		1510	1566	104%		780	756	97%				
Мо	14	12	84%						14	12	87%				
Na	1.624	1.713	105%		0.617	0.664	108%		1.624	1.705	105%				
Ni	32	30	94%		77.1	72.3	94%		32	31	98%				
Р	750	693	92%		892	856	96%		750	758	101%				
Pb	31	32	102%						31	29	94%				
S					0.348	0.338	97%								
Sc	12	12	102%						12	12	104%				
Sr	144	149	103%		92.8	91.5	99%		144	151	105%			1	
Th	18.4	17.6	96%		1				18.4	16.7	91%			1	
Ti	0.53	0.46	87%		1				0.53	0.45	85%				
U	5.7	5.1	89%		1				5.7	4.5	80%				
V	77	80	104%		<u> </u>				77	82	107%				
W	5	4	82%						5	5	90%				
Zn	130	122	94%		208	215	103%		130	121	93%				

(202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish (50g charge)

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220932952

PROJECT: WR-22-GRAB-01

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

		CRM #1 (r	ef.PGMS30)		CRM #2 (r	ef.PGMS30)		CRM #3 (r	ef.PGMS30)		
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits		
Au	1.897	1.923	101%		1.897	1.952	103%		1.897	1.872	99%			
Pd	1.660	1.744	105%		1.660	1.719	104%		1.660	1.655	100%			
Pt	0.223	0.235	106%		0.223	0.231	103%		0.223	0.208	93%			

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-GRAB-01

SAMPLING SITE:

AGAT WORK ORDER: 22O932952 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Bi	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ca	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
La	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Li	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mg	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Na	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ni	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
s	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

Method Summary

CLIENT NAME: ORFORD MINING CORP

AGAT WORK ORDER: 220932952 PROJECT: WR-22-GRAB-01 ATTENTION TO: Arnaud Fontaine

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.		SAMPLED BT.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
ті	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICF/OE3
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Au	MIN-12006, MIN-12004		ICP/OES
Pd	MIN-12006, MIN-12004		ICP/OES
Pt	MIN-12006, MIN-12004		ICP/OES
Crush-Pass %			BALANCE
Pul-Pass %			BALANCE

CLIENT NAME: ORFORD MINING CORP 2 ST. CLAIR AVE. W. 18th FLOOR TORONTO, ON M4V 1L5 416-578-0723

ATTENTION TO: Arnaud Fontaine PROJECT: WR-22-GRAB-02

AGAT WORK ORDER: 220944544

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Nov 03, 2022

PAGES (INCLUDING COVER): 25

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 90 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 25

Certificate of Analysis

AGAT WORK ORDER: 22O944544

PROJECT: WR-22-GRAB-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Se	p 12, 2022		DATE RECEIVED: Sep 13, 2022	DATE REPORTED: Nov 03, 2022	SAMPLE TYPE: Rock
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5839742 (4299572)		1.030			
E5839743 (4299573)		1.490			
E5839745 (4299574)		1.100			
E5839746 (4299575)		0.980			
E5839747 (4299576)		1.210			
E5839748 (4299577)		1.400			
E5839749 (4299578)		1.290			
E5839750 (4299579)		1.610			
E5839751 (4299580)		1.550			
E5839752 (4299581)		1.420			
E5839753 (4299582)		1.140			
E5839754 (4299583)		1.460			
E5839755 (4299584)		1.480			
E5839756 (4299585)		2.540			
E5839757 (4299586)		1.600			
E5839758 (4299587)		1.960			
E5839759 (4299588)		1.470			
E5839760 (4299589)		1.300			
E5839761 (4299590)		0.760			
E5839762 (4299591)		0.710			
E5839763 (4299592)		0.900			
E5839764 (4299593)		0.700			
E5839765 (4299594)		1.440			
E5839766 (4299595)		1.750			
E5839767 (4299596)		1.390			
E5839768 (4299597)		0.010			
E5839521 (4299598)		1.140			
E5839522 (4299599)		1.600			
E5839523 (4299600)		1.650			
E5839524 (4299601)		1.250			
E5839525 (4299602)		1.150			

Certified By:

Sherin Moussey

AGAT WORK ORDER: 220944544

PROJECT: WR-22-GRAB-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Se	12, 2022		DATE RECEIVED: Sep 13, 2022	DATE REPORTED: Nov 03, 2022	SAMPLE TYPE: Rock
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.005			
E5839526 (4299603)		0.690			
E5839527 (4299604)		1.060			
E5839528 (4299605)		0.690			
E5839529 (4299606)		0.500			
E5839530 (4299607)		1.710			
E5839531 (4299608)		1.820			
E5839532 (4299609)		0.960			
E5839533 (4299610)		0.540			
E5839534 (4299611)		0.720			
E5839535 (4299612)		0.600			
E5839536 (4299613)		0.720			
E5839537 (4299614)		0.770			
E5839538 (4299615)		1.240			
E5839539 (4299616)		1.050			
E5839540 (4299617)		0.180			
E5839541 (4299618)		1.000			
E5839542 (4299619)		1.170			
E5839543 (4299620)		0.880			
E5839544 (4299621)		1.100			
E5839545 (4299622)		0.840			
E5839546 (4299623)		0.810			
E5839547 (4299624)		0.940			
E5839548 (4299625)		0.670			
E5839549 (4299626)		0.640			
E5839550 (4299627)		0.570			
E5839551 (4299628)		0.060			
E5839901 (4299629)		1.270			
E5839902 (4299630)		1.800			

AGAT WORK ORDER: 220944544

PROJECT: WR-22-GRAB-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(200-) Sample Login Weight

DATE SAMPLED: Sep 12, 2022 DATE RECEIVED: Sep 13, 2022 DATE REPORTED: Nov 03, 2022 SAMPLE TYPE: Rock

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certificate of Analysis

AGAT WORK ORDER: 220944544

PROJECT: WR-22-GRAB-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - N	letals Pa	ckage, I	CP-OES	finish					
DATE SAMPLED: Se	p 12, 2022		С	DATE RECE	EIVED: Sep	13, 2022		DATE REPORTED: Nov 03, 2022				SAMPLE TYPE: Rock			
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Се	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5839742 (4299572)		<0.5	2.62	3	319	2.4	<1	23.4	<0.5	178	18.2	105	39.1	8.43	18
E5839743 (4299573)		0.6	7.82	<1	414	3.6	<1	6.04	<0.5	85	40.5	133	49.2	11.5	26
E5839745 (4299574)		<0.5	1.08	5	300	<0.5	<1	0.15	<0.5	7	1.0	234	2.2	0.46	<5
E5839746 (4299575)		<0.5	2.68	51	11	1.8	<1	2.59	<0.5	3	94.1	2660	7.0	6.81	<5
E5839747 (4299576)		1.4	2.78	18	923	4.8	<1	20.6	<0.5	199	39.6	230	173	4.64	15
E5839748 (4299577)		0.7	2.40	<1	982	2.6	<1	18.9	<0.5	154	32.6	127	206	7.08	19
E5839749 (4299578)		<0.5	3.70	9	17	8.0	<1	3.85	<0.5	14	102	1540	210	9.38	<5
E5839750 (4299579)		<0.5	1.59	12	15	<0.5	<1	1.21	<0.5	3	113	3350	14.8	9.24	<5
E5839751 (4299580)		<0.5	2.20	9	10	<0.5	<1	6.21	<0.5	4	101	2060	275	10.1	<5
E5839752 (4299581)		1.7	7.35	<1	369	3.6	<1	3.15	<0.5	102	37.8	102	35.1	11.2	33
E5839753 (4299582)		<0.5	7.92	<1	208	3.1	<1	3.71	<0.5	56	51.7	137	84.9	13.3	42
E5839754 (4299583)		2.9	5.93	4	491	6.7	<1	0.33	<0.5	113	2.6	267	15.7	2.51	39
E5839755 (4299584)		3.5	6.35	8	595	8.4	<1	0.30	<0.5	218	1.7	477	21.3	3.02	32
E5839756 (4299585)		2.1	5.20	7	730	5.6	<1	0.16	<0.5	237	1.2	228	8.1	1.74	33
E5839757 (4299586)		1.4	6.97	<1	575	9.2	<1	4.28	<0.5	88	65.2	230	60.2	8.52	41
E5839758 (4299587)		<0.5	0.74	2	14	<0.5	<1	0.16	<0.5	21	1.7	189	6.1	1.18	7
E5839759 (4299588)		1.1	3.81	7	2	<0.5	<1	4.71	<0.5	3	169	1740	2760	9.16	<5
E5839760 (4299589)		0.8	3.66	7	2	<0.5	<1	4.46	<0.5	3	179	2170	1990	8.92	<5
E5839761 (4299590)		3.3	1.46	6	2	<0.5	<1	0.07	<0.5	4	487	2620	9660	18.4	<5
E5839762 (4299591)		1.4	1.18	<1	6	<0.5	<1	0.04	<0.5	4	614	1310	2430	21.7	<5
E5839763 (4299592)		1.3	2.23	1	12	<0.5	<1	1.29	<0.5	5	450	1740	2900	19.7	<5
E5839764 (4299593)		1.4	1.76	<1	28	<0.5	<1	0.75	<0.5	5	623	984	3490	29.3	<5
E5839765 (4299594)		<0.5	7.73	<1	28	1.5	<1	6.91	<0.5	19	55.7	302	266	12.1	20
E5839766 (4299595)		0.6	0.44	<1	5	<0.5	<1	0.08	<0.5	14	55.1	36.6	877	44.1	<5
E5839767 (4299596)		2.7	6.15	117	345	3.7	<1	2.48	<0.5	770	95.7	557	634	10.2	27
E5839768 (4299597)		0.6	4.04	158	200	1.0	<1	3.03	<0.5	25	74.3	871	40.9	5.35	8
E5839521 (4299598)		1.6	0.14	15	15	<0.5	<1	0.03	<0.5	6	1870	462	4550	43.2	<5
E5839522 (4299599)		2.3	0.16	17	26	<0.5	<1	0.02	<0.5	4	1920	386	9810	38.8	<5
E5839523 (4299600)		1.6	1.07	46	19	<0.5	<1	0.04	<0.5	7	138	1170	2690	28.5	6
E5839524 (4299601)		1.8	0.03	14	1	<0.5	<1	0.01	<0.5	5	2140	928	5260	48.9	<5
E5839525 (4299602)		2.1	0.15	5	12	<0.5	<1	0.04	<0.5	6	1950	420	6320	40.1	<5
E5839526 (4299603)		<0.5	7.46	<1	465	2.6	<1	5.78	<0.5	47	52.8	197	20.7	13.4	27

Certified By:

Sherin Houssey

Certificate of Analysis

AGAT WORK ORDER: 22O944544

PROJECT: WR-22-GRAB-02

TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

5623 McADAM ROAD

MISSISSAUGA, ONTARIO CANADA L4Z 1N9

ATTENTION TO: Arnaud Fontaine

				01-070) 4		3									
DATE SAMPLED: Se	p 12, 2022		[DATE RECE	IVED: Sep	13, 2022		DATE REPORTED: Nov 03, 2022				SAMPLE TYPE: Rock			
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Се	Co	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5839527 (4299604)		<0.5	5.01	<1	260	4.7	<1	6.01	<0.5	92	74.2	144	462	19.9	15
E5839528 (4299605)		<0.5	2.32	8	13	<0.5	<1	1.98	<0.5	3	170	2140	129	9.20	<5
E5839529 (4299606)		<0.5	3.35	8	34	<0.5	<1	2.49	<0.5	6	136	1980	339	9.73	<5
E5839530 (4299607)		<0.5	4.34	10	4	<0.5	<1	5.71	<0.5	4	85.9	1800	43.9	8.15	7
E5839531 (4299608)		<0.5	9.05	<1	56	0.5	<1	7.07	<0.5	9	50.7	156	130	9.67	22
E5839532 (4299609)		1.3	6.06	35	544	2.6	<1	0.69	<0.5	83	5.9	494	75.2	4.82	19
E5839533 (4299610)		1.3	3.64	3	5	<0.5	<1	4.69	<0.5	3	217	1310	3480	11.4	<5
E5839534 (4299611)		2.0	7.13	<1	219	2.4	<1	3.64	<0.5	128	56.9	149	354	11.9	29
E5839535 (4299612)		<0.5	7.84	<1	176	3.4	<1	6.27	<0.5	14	30.7	409	71.9	7.02	20
E5839536 (4299613)		<0.5	2.00	58	27	1.1	<1	2.15	<0.5	2900	43.1	295	849	24.8	6
E5839537 (4299614)		<0.5	3.37	<1	158	<0.5	<1	0.50	<0.5	23	31.3	94.1	734	23.5	13
E5839538 (4299615)		<0.5	1.54	275	10	0.8	<1	1.64	<0.5	5060	59.8	92.8	656	37.6	<5
E5839539 (4299616)		0.6	3.08	<1	23	<0.5	<1	0.93	<0.5	24	77.8	123	398	32.2	13
E5839540 (4299617)		<0.5	8.14	3	593	1.1	<1	1.98	<0.5	16	10.2	45.8	8.9	2.21	24
E5839541 (4299618)		<0.5	6.07	<1	197	2.9	<1	8.30	<0.5	356	61.9	210	167	11.8	17
E5839542 (4299619)		2.8	5.33	<1	782	2.3	<1	13.3	<0.5	24	33.1	47.5	639	8.80	18
E5839543 (4299620)		40.0	1.26	<1	12	<0.5	24	1.00	2.9	3	24.8	887	>10000	10.5	9
E5839544 (4299621)		10.5	0.30	12	2	<0.5	1	80.0	14.7	2	253	697	9620	25.0	<5
E5839545 (4299622)		<0.5	8.49	<1	635	2.3	<1	7.50	<0.5	80	32.1	371	55.0	8.61	18
E5839546 (4299623)		<0.5	6.87	<1	26	1.7	<1	6.96	<0.5	26	63.7	181	570	11.2	22
E5839547 (4299624)		<0.5	0.04	3	3	<0.5	<1	0.83	<0.5	1	2.9	716	12.9	2.39	<5
E5839548 (4299625)		<0.5	7.15	<1	9	0.9	<1	6.26	<0.5	12	27.6	430	163	8.05	17
E5839549 (4299626)		2.7	8.74	<1	172	2.0	<1	7.59	<0.5	143	25.5	268	126	8.05	42
E5839550 (4299627)		<0.5	0.84	<1	16	1.3	<1	3.33	<0.5	4	505	1990	1650	28.2	<5
E5839551 (4299628)		1.4	1.49	14	20	<0.5	<1	0.93	<0.5	4	303	2610	3980	15.9	<5
E5839901 (4299629)		<0.5	1.82	<1	149	0.5	<1	0.57	<0.5	17	18.7	143	200	31.6	6
E5839902 (4299630)		<0.5	7.98	<1	182	0.6	<1	6.59	<0.5	7	46.2	136	145	8.41	18

Certified By:

Sherin Houssey

Certificate of Analysis

AGAT WORK ORDER: 22O944544

PROJECT: WR-22-GRAB-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	01-070)	4 Acid D	igest - N	letals Pa	ckage, I	CP-OES	6 finish					
DATE SAMPLED: Se	p 12, 2022		Γ	DATE RECE	IVED: Sep	13, 2022		DATE REPORTED: Nov 03, 2022				SAMPLE TYPE: Rock			
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5839742 (4299572)		<1	1.33	119	8	1.59	2150	<0.5	0.22	1.6	8590	15	<10	0.68	<1
E5839743 (4299573)		<1	0.74	35	17	3.42	1760	<0.5	2.40	48.6	2830	3	<10	0.13	<1
E5839745 (4299574)		<1	1.41	3	<1	0.07	41	2.7	0.04	7.3	140	3	<10	0.02	<1
E5839746 (4299575)		<1	0.02	<2	22	16.4	1090	<0.5	<0.01	1250	112	<1	<10	0.22	<1
E5839747 (4299576)		<1	0.68	105	10	1.83	1060	<0.5	1.33	243	2010	1	<10	0.32	<1
E5839748 (4299577)		<1	0.94	83	24	2.86	1280	<0.5	0.28	59.5	2140	1	<10	0.09	<1
E5839749 (4299578)		<1	0.05	6	9	14.7	1380	<0.5	0.21	805	254	<1	<10	0.30	<1
E5839750 (4299579)		<1	0.03	<2	3	18.3	1220	<0.5	0.03	997	93	<1	<10	<0.01	<1
E5839751 (4299580)		<1	0.08	<2	2	12.7	1220	<0.5	0.09	889	105	<1	<10	0.22	<1
E5839752 (4299581)		<1	1.05	37	15	2.33	1790	<0.5	2.55	7.1	2970	3	<10	0.32	<1
E5839753 (4299582)		<1	0.63	20	23	3.33	1520	<0.5	1.83	48.7	1440	<1	<10	0.48	<1
E5839754 (4299583)		<1	3.46	32	18	0.14	101	7.5	2.38	13.8	34	41	<10	0.72	<1
E5839755 (4299584)		<1	6.07	104	10	0.08	117	11.9	1.50	13.2	42	33	<10	1.27	<1
E5839756 (4299585)		<1	5.07	119	8	0.11	155	4.1	1.12	9.2	37	22	<10	0.17	<1
E5839757 (4299586)		<1	3.12	37	25	0.84	1050	0.6	1.79	118	1570	2	<10	1.33	<1
E5839758 (4299587)		<1	0.14	10	2	0.08	121	4.2	0.36	8.2	12	57	<10	0.02	<1
E5839759 (4299588)		<1	0.02	<2	10	14.0	1030	<0.5	0.06	6930	151	<1	<10	1.82	<1
E5839760 (4299589)		<1	0.02	<2	9	14.6	1110	<0.5	0.05	6500	155	<1	<10	1.71	<1
E5839761 (4299590)		<1	<0.01	<2	3	14.5	903	<0.5	<0.01	>10000	66	<1	<10	9.01	<1
E5839762 (4299591)		<1	0.02	<2	3	12.0	694	<0.5	0.03	>10000	29	<1	<10	>10	<1
E5839763 (4299592)		<1	0.01	<2	7	11.1	1080	<0.5	0.03	>10000	126	<1	<10	9.86	<1
E5839764 (4299593)		<1	0.07	<2	8	6.69	705	<0.5	0.09	>10000	94	<1	<10	>10	<1
E5839765 (4299594)		<1	0.23	5	9	2.94	1720	<0.5	3.15	54.5	765	<1	<10	1.32	<1
E5839766 (4299595)		<1	<0.01	<2	4	0.50	187	30.7	<0.01	940	60	39	<10	>10	4
E5839767 (4299596)		<1	1.02	366	39	2.31	92	9.4	2.83	182	4550	75	<10	8.32	<1
E5839768 (4299597)		<1	0.68	14	37	13.5	1130	1.2	0.84	2350	260	7	<10	0.31	<1
E5839521 (4299598)		<1	0.02	<2	<1	0.08	139	<0.5	0.02	>10000	12	<1	<10	>10	3
E5839522 (4299599)		<1	0.05	<2	<1	0.15	169	1.2	0.01	>10000	<10	<1	<10	>10	2
E5839523 (4299600)		<1	0.09	<2	3	1.10	483	0.6	<0.01	2170	44	17	<10	2.51	<1
E5839524 (4299601)		<1	<0.01	<2	<1	0.02	56	<0.5	<0.01	>10000	<10	<1	<10	>10	<1
E5839525 (4299602)		<1	0.02	<2	<1	0.03	65	<0.5	0.04	>10000	15	<1	<10	>10	4
E5839526 (4299603)		<1	1.32	17	25	3.77	1990	<0.5	1.71	63.8	2300	<1	<10	0.17	<1

Certified By:

Sherin Houssey

Certificate of Analysis

AGAT WORK ORDER: 22O944544

PROJECT: WR-22-GRAB-02

ATTENTION TO: Arnaud Fontaine

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(2	201-070)	4 Acid D	igest - M	letals Pa	ckage, I	CP-OES	6 finish					
DATE SAMPLED: Se	p 12, 2022		ı	DATE RECE	EIVED: Sep	13, 2022		DATE	REPORTE	D: Nov 03, 2	022	SAM	PLE TYPE:	Rock	
	Analyte:	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5839527 (4299604)		<1	0.98	59	16	4.27	860	15.9	0.86	199	1470	12	<10	9.65	<1
E5839528 (4299605)		<1	0.07	<2	5	18.2	1250	<0.5	0.05	2250	104	<1	<10	1.17	<1
E5839529 (4299606)		<1	0.05	3	12	15.1	1230	<0.5	0.05	2660	158	<1	<10	1.35	<1
E5839530 (4299607)		<1	0.05	<2	10	14.2	1350	<0.5	0.09	839	180	<1	<10	0.08	<1
E5839531 (4299608)		<1	0.30	2	13	5.26	1260	<0.5	2.48	136	393	<1	<10	0.10	<1
E5839532 (4299609)		<1	3.10	42	46	0.72	770	20.7	0.29	45.2	830	3	<10	1.67	<1
E5839533 (4299610)		<1	0.04	<2	3	12.5	882	<0.5	0.18	3280	122	<1	<10	4.01	<1
E5839534 (4299611)		<1	0.60	54	7	2.05	1680	2.5	3.65	8.5	4320	6	<10	1.78	<1
E5839535 (4299612)		<1	0.21	6	12	4.45	1360	<0.5	3.07	66.7	378	<1	<10	1.12	<1
E5839536 (4299613)		<1	< 0.01	2070	14	2.10	425	32.4	0.02	326	2630	249	<10	>10	<1
E5839537 (4299614)		<1	0.28	12	27	3.17	827	1.0	0.02	274	47	8	<10	>10	<1
E5839538 (4299615)		<1	< 0.01	3770	9	1.24	162	28.7	< 0.01	433	4210	134	<10	>10	3
E5839539 (4299616)		<1	0.03	9	15	2.19	607	34.4	0.01	424	95	34	<10	>10	6
E5839540 (4299617)		<1	1.58	8	16	1.04	359	<0.5	3.40	39.2	300	<1	<10	0.01	<1
E5839541 (4299618)		<1	0.24	172	100	7.34	1470	<0.5	<0.01	176	1890	10	<10	1.97	<1
E5839542 (4299619)		<1	0.32	11	92	6.03	1680	<0.5	0.02	44.7	5240	<1	<10	0.08	<1
E5839543 (4299620)		<1	0.04	<2	10	1.37	287	<0.5	0.06	52.3	98	<1	<10	4.00	<1
E5839544 (4299621)		<1	< 0.01	<2	3	0.28	86	<0.5	0.01	418	14	25	<10	>10	<1
E5839545 (4299622)		<1	0.95	40	14	5.21	1520	<0.5	1.84	85.0	1490	2	<10	0.10	<1
E5839546 (4299623)		<1	0.16	9	11	3.68	1670	<0.5	2.34	32.9	884	<1	<10	1.30	<1
E5839547 (4299624)		<1	<0.01	<2	<1	0.26	769	2.1	< 0.01	11.4	<10	2	<10	0.35	<1
E5839548 (4299625)		<1	0.04	4	11	4.27	1210	<0.5	2.86	36.6	418	<1	<10	0.25	<1
E5839549 (4299626)		<1	0.28	62	3	1.89	933	<0.5	3.11	16.0	1870	15	<10	1.75	<1
E5839550 (4299627)		<1	0.03	<2	3	5.47	729	<0.5	0.04	7840	51	2	<10	>10	<1
E5839551 (4299628)		<1	0.02	<2	1	15.1	979	<0.5	0.13	>10000	52	<1	<10	6.01	<1
E5839901 (4299629)		<1	0.69	4	10	0.65	525	34.0	0.01	357	92	11	<10	>10	4
E5839902 (4299630)		<1	0.66	<2	11	4.65	1340	<0.5	2.92	66.9	339	<1	<10	0.56	<1

Certified By:

Sherin Houssay

Certificate of Analysis

AGAT WORK ORDER: 22O944544

PROJECT: WR-22-GRAB-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(2	201-070)	4 Acid D	igest - M	letals Pa	ickage, I	CP-OES	finish					
DATE SAMPLED: Se	p 12, 2022		I	DATE RECE	EIVED: Sep	13, 2022		DATE	REPORTED	EPORTED: Nov 03, 2022 SAMPLE TYPE: Rock					
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5839742 (4299572)		3	<10	<5	1460	<10	<10	<5	0.62	<5	7	625	<1	65	66.7
E5839743 (4299573)		33	<10	<5	430	<10	25	<5	2.07	<5	<5	310	1	39	132
E5839745 (4299574)		<1	<10	<5	8	<10	<10	8	0.01	<5	<5	6.8	<1	2	2.7
E5839746 (4299575)		16	<10	<5	49	<10	13	<5	0.17	<5	<5	106	<1	5	71.7
E5839747 (4299576)		22	<10	<5	317	<10	13	<5	0.40	<5	<5	181	<1	27	89.5
E5839748 (4299577)		26	<10	<5	405	<10	11	<5	0.56	<5	<5	213	1	18	67.9
E5839749 (4299578)		24	<10	<5	18	<10	16	<5	0.29	<5	6	138	<1	9	80.5
E5839750 (4299579)		13	<10	<5	8	<10	14	<5	0.08	<5	7	69.7	<1	3	77.0
E5839751 (4299580)		18	<10	<5	43	<10	17	<5	0.23	<5	7	168	<1	5	100
E5839752 (4299581)		24	<10	<5	200	<10	30	<5	2.16	<5	<5	296	2	41	138
E5839753 (4299582)		31	<10	<5	163	<10	27	<5	1.89	<5	10	423	2	28	150
E5839754 (4299583)		<1	<10	11	58	<10	<10	6	0.09	<5	<5	6.8	<1	76	196
E5839755 (4299584)		<1	<10	<5	55	<10	<10	5	0.10	<5	<5	5.3	<1	83	199
E5839756 (4299585)		<1	<10	7	46	<10	<10	7	0.10	<5	<5	4.7	<1	63	169
E5839757 (4299586)		16	<10	5	91	<10	39	<5	2.57	<5	<5	288	<1	35	209
E5839758 (4299587)		<1	<10	<5	13	<10	<10	<5	0.01	<5	<5	4.6	<1	7	29.1
E5839759 (4299588)		22	<10	<5	14	<10	17	<5	0.24	<5	7	143	1	8	68.8
E5839760 (4299589)		21	<10	<5	13	<10	16	<5	0.23	<5	6	140	1	8	72.4
E5839761 (4299590)		11	<10	<5	2	<10	21	<5	0.10	<5	18	93.5	3	3	85.2
E5839762 (4299591)		9	<10	<5	3	<10	36	<5	0.07	<5	20	57.6	3	3	42.7
E5839763 (4299592)		13	<10	<5	3	<10	26	<5	0.14	<5	18	101	3	4	123
E5839764 (4299593)		9	<10	<5	8	<10	44	<5	0.15	<5	28	108	6	4	208
E5839765 (4299594)		46	<10	<5	108	<10	20	<5	1.18	<5	5	455	<1	34	68.9
E5839766 (4299595)		7	<10	<5	<1	<10	57	<5	0.07	6	53	83.9	<1	7	1620
E5839767 (4299596)		84	<10	<5	75	<10	28	20	2.98	<5	65	665	<1	86	725
E5839768 (4299597)		12	<10	<5	69	<10	<10	<5	0.18	<5	<5	67.1	3	9	111
E5839521 (4299598)		2	<10	<5	3	<10	67	<5	0.01	<5	46	38.2	8	2	13.0
E5839522 (4299599)		2	<10	<5	2	<10	65	<5	<0.01	<5	42	35.6	7	2	12.6
E5839523 (4299600)		9	<10	<5	5	<10	41	<5	0.05	<5	30	54.2	6	4	22.1
E5839524 (4299601)		2	<10	<5	<1	<10	82	<5	0.01	<5	59	62.5	11	2	26.3
E5839525 (4299602)		2	<10	<5	5	<10	69	<5	0.02	<5	46	39.8	9	2	17.8
E5839526 (4299603)		22	<10	<5	340	<10	18	<5	1.84	<5	7	429	<1	22	144

Certified By:

Sherin Mousson

Certificate of Analysis

AGAT WORK ORDER: 22O944544

PROJECT: WR-22-GRAB-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

DATE SAMPLED: Sep	12, 2022		[DATE RECE	IVED: Sep	13, 2022		DATE REPORTED: Nov 03, 2022				SAM	PLE TYPE:	Rock	
	Analyte:	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	Υ	Zr
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5839527 (4299604)		20	<10	<5	227	<10	14	<5	0.50	<5	21	237	3	24	50.5
E5839528 (4299605)		15	<10	<5	6	<10	14	<5	0.14	<5	5	93.4	1	6	67.1
E5839529 (4299606)		19	<10	<5	7	<10	15	<5	0.21	<5	7	129	<1	7	92.7
E5839530 (4299607)		26	<10	<5	18	<10	15	<5	0.30	<5	<5	173	<1	10	81.5
E5839531 (4299608)		42	<10	<5	195	<10	13	<5	0.65	<5	6	320	<1	21	77.5
E5839532 (4299609)		12	<10	<5	74	<10	<10	<5	0.14	<5	14	377	<1	14	228
E5839533 (4299610)		22	<10	<5	8	<10	16	<5	0.20	<5	9	142	<1	7	78.7
E5839534 (4299611)		16	<10	<5	270	<10	21	<5	1.40	<5	<5	118	2	48	139
E5839535 (4299612)		39	<10	<5	340	<10	<10	<5	0.49	<5	<5	296	1	22	58.1
E5839536 (4299613)		16	<10	<5	212	<10	31	421	0.27	<5	<5	249	4	103	21.6
E5839537 (4299614)		7	<10	<5	4	<10	24	<5	0.18	<5	33	246	3	7	141
E5839538 (4299615)		14	<10	<5	66	<10	83	448	0.28	<5	31.8	171	9	179	71.5
E5839539 (4299616)		6	<10	<5	2	<10	38	<5	0.14	6	46	353	<1	10	752
E5839540 (4299617)		9	<10	<5	407	<10	<10	<5	0.15	<5	<5	57.8	<1	7	35.0
E5839541 (4299618)		57	<10	<5	1210	<10	28	<5	1.98	<5	6	411	2	24	96.3
E5839542 (4299619)		64	<10	<5	1800	<10	22	<5	1.36	<5	9	374	1	18	82.3
E5839543 (4299620)		10	<10	<5	30	<10	<10	<5	0.07	<5	12	51.4	<1	3	236
E5839544 (4299621)		2	<10	<5	3	<10	32	<5	<0.01	<5	26	5.4	<1	1	505
E5839545 (4299622)		30	<10	<5	300	<10	24	<5	1.37	<5	<5	200	1	24	92.0
E5839546 (4299623)		44	<10	<5	129	<10	20	<5	1.50	<5	10	637	<1	43	102
E5839547 (4299624)		<1	<10	<5	14	<10	<10	<5	<0.01	<5	<5	7.1	<1	1	9.0
E5839548 (4299625)		43	<10	<5	78	<10	18	<5	0.80	<5	<5	304	<1	19	123
E5839549 (4299626)		10	<10	<5	434	<10	18	<5	0.72	<5	<5	67.1	<1	55	50.8
E5839550 (4299627)		6	<10	<5	7	<10	42	<5	0.08	<5	30	85.1	3	3	315
E5839551 (4299628)		10	<10	<5	7	<10	25	<5	0.10	<5	15	75.2	2	4	97.0
E5839901 (4299629)		6	<10	<5	3	<10	41	<5	0.13	<5	45	238	8	8	101
E5839902 (4299630)		38	<10	<5	329	<10	14	<5	0.54	<5	<5	291	<1	18	60.9

Certified By:

Sherin Moussay

AGAT WORK ORDER: 22O944544

PROJECT: WR-22-GRAB-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

OLILIVI IVANIL. OIA	J. 12		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7. TENTION TO. AMAGAT	
			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Sep	12, 2022		DATE RECEIVED: Sep 13, 2022	DATE REPORTED: Nov 03, 2022	SAMPLE TYPE: Rock
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5839742 (4299572)		117			
E5839743 (4299573)		196			
E5839745 (4299574)		32			
E5839746 (4299575)		16			
E5839747 (4299576)		327			
E5839748 (4299577)		208			
E5839749 (4299578)		33			
E5839750 (4299579)		12			
E5839751 (4299580)		24			
E5839752 (4299581)		312			
E5839753 (4299582)		114			
E5839754 (4299583)		495			
E5839755 (4299584)		640			
E5839756 (4299585)		447			
E5839757 (4299586)		280			
E5839758 (4299587)		58			
E5839759 (4299588)		22			
E5839760 (4299589)		20			
E5839761 (4299590)		9			
E5839762 (4299591)		8			
E5839763 (4299592)		16			
E5839764 (4299593)		14			
E5839765 (4299594)		99			
E5839766 (4299595)		22			
E5839767 (4299596)		874			
E5839768 (4299597)		60			
E5839521 (4299598)		5			
E5839522 (4299599)		<5			
E5839523 (4299600)		9			
E5839524 (4299601)		<5			
E5839525 (4299602)		6			
E5839526 (4299603)		89			

Certified By:

Sherin Moussey

CLIENT NAME: ORFORD MINING CORP

Certificate of Analysis

AGAT WORK ORDER: 220944544

PROJECT: WR-22-GRAB-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(201-070) 4 Acid Digest - Metals	s Package, ICP-OES finish	
DATE SAMPLED: Se	p 12, 2022		DATE RECEIVED: Sep 13, 2022	DATE REPORTED: Nov 03, 2022	SAMPLE TYPE: Rock
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5839527 (4299604)		109			
E5839528 (4299605)		15			
E5839529 (4299606)		21			
E5839530 (4299607)		25			
E5839531 (4299608)		54			
E5839532 (4299609)		142			
E5839533 (4299610)		19			
E5839534 (4299611)		394			
E5839535 (4299612)		50			
E5839536 (4299613)		125			
E5839537 (4299614)		40			
E5839538 (4299615)		188			
E5839539 (4299616)		33			
E5839540 (4299617)		38			
E5839541 (4299618)		293			
E5839542 (4299619)		433			
E5839543 (4299620)		8			
E5839544 (4299621)		<5			
E5839545 (4299622)		102			
E5839546 (4299623)		63			
E5839547 (4299624)		<5			
E5839548 (4299625)		41			
E5839549 (4299626)		467			
E5839550 (4299627)		11			
E5839551 (4299628)		9			
E5839901 (4299629)		27			
E5839902 (4299630)		45			

Comments: RDL - Reported Detection Limit

4299572-4299630 As, Sb values may be low due to digestion losses.

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

Sherin Houssey

AGAT WORK ORDER: 220944544

PROJECT: WR-22-GRAB-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

(201-079) Sodium Peroxide Fusion - ICP-OES finish												
DATE SAMPLED: Sep	12, 2022			DATE RECEIVED: Sep 13, 2022	DATE REPORTED: Nov 03, 2022	SAMPLE TYPE: Rock						
	Analyte:	Cu	Ni									
	Unit:	%	%									
Sample ID (AGAT ID)	RDL:	0.001	0.001									
E5839761 (4299590)			2.19									
E5839762 (4299591)		-	2.71									
E5839763 (4299592)		-	1.23									
E5839764 (4299593)		-	1.30									
E5839521 (4299598)		-	2.24									
E5839522 (4299599)		-	2.39									
E5839524 (4299601)		-	2.63									
E5839525 (4299602)		-	2.59									
E5839543 (4299620)		8.00	-									
E5839551 (4299628)		-	1.62									

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 5623 McAdam Rd., Mississauga, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

AGAT WORK ORDER: 220944544

PROJECT: WR-22-GRAB-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

			(20	2-555) Fire Assay - Au, Pt, Pd	Frace Levels, ICP-OES finish	
DATE SAMPLED: Se	p 12, 2022			DATE RECEIVED: Sep 13, 2022	DATE REPORTED: Nov 03, 2022	SAMPLE TYPE: Rock
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5839742 (4299572)		0.001	<0.001	<0.005		
E5839743 (4299573)		<0.001	<0.001	<0.005		
E5839745 (4299574)		0.001	<0.001	<0.005		
E5839746 (4299575)		0.001	< 0.001	<0.005		
E5839747 (4299576)		0.001	<0.001	<0.005		
E5839748 (4299577)		< 0.001	0.001	<0.005		
E5839749 (4299578)		0.001	0.016	0.007		
E5839750 (4299579)		0.002	0.006	0.009		
E5839751 (4299580)		0.010	0.004	0.005		
E5839752 (4299581)		0.001	< 0.001	<0.005		
E5839753 (4299582)		0.001	< 0.001	<0.005		
E5839754 (4299583)		0.001	<0.001	<0.005		
E5839755 (4299584)		0.001	< 0.001	<0.005		
E5839756 (4299585)		<0.001	< 0.001	<0.005		
E5839757 (4299586)		0.001	< 0.001	<0.005		
E5839758 (4299587)		<0.001	<0.001	<0.005		
E5839759 (4299588)		2.905	0.003	<0.005		
E5839760 (4299589)		0.244	< 0.001	<0.005		
E5839761 (4299590)		0.178	2.41	0.819		
E5839762 (4299591)		0.008	1.88	0.886		
E5839763 (4299592)		0.066	0.465	0.175		
E5839764 (4299593)		0.011	1.00	0.343		
E5839765 (4299594)		0.002	0.002	<0.005		
E5839766 (4299595)		0.007	0.003	<0.005		
E5839767 (4299596)		0.008	0.002	<0.005		
E5839521 (4299598)		0.020	0.445	0.437		
E5839522 (4299599)		0.018	1.07	0.848		
E5839523 (4299600)		0.010	0.242	0.347		
E5839524 (4299601)		0.004	0.861	0.694		
E5839525 (4299602)		0.010	1.28	1.08		
E5839526 (4299603)		0.001	0.001	<0.005		
E5839527 (4299604)		0.003	0.012	<0.005		

Certified By:

Sherin Houssey

CLIENT NAME: ORFORD MINING CORP

Certificate of Analysis

AGAT WORK ORDER: 220944544

PROJECT: WR-22-GRAB-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

			(202	2-555) Fire Assay - Au, Pt, F	Pd Trace Levels, ICP-OES finish	
DATE SAMPLED: Sep	12, 2022			DATE RECEIVED: Sep 13, 2022	DATE REPORTED: Nov 03, 2022	SAMPLE TYPE: Rock
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
E5839528 (4299605)		<0.001	0.020	0.012		
E5839529 (4299606)		0.002	0.024	0.014		
E5839530 (4299607)		< 0.001	0.006	<0.005		
E5839531 (4299608)		0.001	0.015	0.015		
E5839532 (4299609)		0.002	0.001	<0.005		
E5839533 (4299610)		0.001	0.213	0.050		
E5839534 (4299611)		0.002	< 0.001	<0.005		
E5839535 (4299612)		< 0.001	0.001	<0.005		
E5839536 (4299613)		0.009	0.016	<0.005		
E5839537 (4299614)		0.003	0.004	<0.005		
E5839538 (4299615)		0.022	0.001	<0.005		
E5839539 (4299616)		0.046	0.011	0.005		
E5839540 (4299617)		0.001	0.001	<0.005		
E5839541 (4299618)		0.002	0.005	<0.005		
E5839542 (4299619)		0.001	0.024	<0.005		
E5839543 (4299620)		0.014	0.003	<0.005		
E5839544 (4299621)		0.053	0.002	<0.005		
E5839545 (4299622)		0.001	0.001	<0.005		
E5839546 (4299623)		0.001	< 0.001	<0.005		
E5839547 (4299624)		<0.001	< 0.001	<0.005		
E5839548 (4299625)		< 0.001	0.001	<0.005		
E5839549 (4299626)		< 0.001	<0.001	<0.005		
E5839550 (4299627)		0.006	0.313	0.130		
E5839551 (4299628)		0.036	0.965	0.557		
E5839901 (4299629)		0.003	0.003	0.010		
E5839902 (4299630)		0.001	0.010	0.011		

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1046 Gorham St, Thunder Bay, ON (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

Sherin Housson

AGAT WORK ORDER: 220944544

PROJECT: WR-22-GRAB-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

Sieving - % Passing (Crushing)												
DATE SAMPLED: Se	•		DATE RECEIVED: Sep 13, 2022	DATE REPORTED: Nov 03, 2022	SAMPLE TYPE: Rock							
	Analyte: C	rush-Pass %										
	Unit:	%										
Sample ID (AGAT ID)	RDL:	0.01										
E5839742 (4299572)		83.77										
E5839762 (4299591)		85.84										
E5839534 (4299611)		75.81										

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

AGAT WORK ORDER: 220944544

PROJECT: WR-22-GRAB-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Arnaud Fontaine

	Sieving - % Passing (Pulverizing)												
DATE SAMPLED: Sep	12, 2022		DATE RECEIVED: Sep 13, 2022	DATE REPORTED: Nov 03, 2022	SAMPLE TYPE: Rock								
	Analyte: Po	ul-Pass %											
	Unit:	%											
Sample ID (AGAT ID)	RDL:	0.01											
E5839742 (4299572)		97.58											
E5839762 (4299591)		87.63											
E5839534 (4299611)		97.19											

Comments: RDL - Reported Detection Limit

CLIENT NAME: ORFORD MINING CORP

Analysis performed at AGAT 1740 Chemin Sullivan, Val d'Or, QC or 1185 Rue Des Foreurs, Val d'Or, QC (unless marked by *)

Insufficient Sample : IS Sample Not Received : SNR

Certified By:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish												h				
		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3			REPLIC	ATE #4	
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD
Ag	4299572	< 0.5	< 0.5	0.0%	4299586	1.4	1.0		4299598	1.6	1.7	6.1%	4299612	< 0.5	< 0.5	0.0%
Al	4299572	2.62	2.59	1.2%	4299586	6.97	6.80	2.5%	4299598	0.14	0.14	0.0%	4299612	7.84	7.94	1.3%
As	4299572	3	7		4299586	< 1	< 1	0.0%	4299598	15	12	22.2%	4299612	< 1	< 1	0.0%
Ва	4299572	319	318	0.3%	4299586	575	560	2.6%	4299598	15	15	0.0%	4299612	176	178	1.1%
Ве	4299572	2.41	2.47	2.5%	4299586	9.2	9.0	2.2%	4299598	< 0.5	< 0.5	0.0%	4299612	3.4	3.4	0.0%
Bi	4299572	< 1	< 1	0.0%	4299586	< 1	< 1	0.0%	4299598	< 1	< 1	0.0%	4299612	< 1	< 1	0.0%
Ca	4299572	23.4	23.5	0.4%	4299586	4.28	4.18	2.4%	4299598	0.03	0.03	0.0%	4299612	6.27	6.32	0.8%
Cd	4299572	< 0.5	< 0.5	0.0%	4299586	< 0.5	< 0.5	0.0%	4299598	< 0.5	< 0.5	0.0%	4299612	< 0.5	< 0.5	0.0%
Ce	4299572	178	178	0.0%	4299586	88	85	3.5%	4299598	6	6	0.0%	4299612	14	14	0.0%
Со	4299572	18.2	16.9	7.4%	4299586	65.2	66.5	2.0%	4299598	1870	1830	2.2%	4299612	30.7	32.0	4.1%
Cr	4299572	105	57.6		4299586	230	222	3.5%	4299598	462	589	24.2%	4299612	409	415	1.5%
Cu	4299572	39.1	37.3	4.7%	4299586	60.2	55.4	8.3%	4299598	4550	4690	3.0%	4299612	71.9	70.9	1.4%
Fe	4299572	8.43	8.52	1.1%	4299586	8.52	8.18	4.1%	4299598	43.2	42.3	2.1%	4299612	7.02	7.07	0.7%
Ga	4299572	18	20	10.5%	4299586	41	37	10.3%	4299598	< 5	< 5	0.0%	4299612	20	21	4.9%
In	4299572	< 1	< 1	0.0%	4299586	< 1	< 1	0.0%	4299598	< 1	< 1	0.0%	4299612	< 1	< 1	0.0%
K	4299572	1.33	1.36	2.2%	4299586	3.12	3.03	2.9%	4299598	0.02	0.02	0.0%	4299612	0.21	0.21	0.0%
La	4299572	119	119	0.0%	4299586	37	36	2.7%	4299598	< 2	< 2	0.0%	4299612	6	6	0.0%
Li	4299572	8	8	0.0%	4299586	25	25	0.0%	4299598	< 1	< 1	0.0%	4299612	12	13	8.0%
Mg	4299572	1.59	1.61	1.3%	4299586	0.844	0.824	2.4%	4299598	0.08	0.08	0.0%	4299612	4.45	4.55	2.2%
Mn	4299572	2150	2170	0.9%	4299586	1050	1020	2.9%	4299598	139	138	0.7%	4299612	1360	1390	2.2%
Мо	4299572	< 0.5	< 0.5	0.0%	4299586	0.6	0.5	18.2%	4299598	< 0.5	< 0.5	0.0%	4299612	< 0.5	< 0.5	0.0%
Na	4299572	0.216	0.225	4.1%	4299586	1.79	1.74	2.8%	4299598	0.02	0.02	0.0%	4299612	3.07	3.11	1.3%
Ni	4299572	1.6	0.5		4299586	118	119	0.8%	4299598	>10000	>10000	0.0%	4299612	66.7	68.4	2.5%
Р	4299572	8590	8690	1.2%	4299586	1570	1540	1.9%	4299598	12	< 10		4299612	378	390	3.1%
Pb	4299572	15	10		4299586	2	2	0.0%	4299598	< 1	< 1	0.0%	4299612	< 1	< 1	0.0%
Rb	4299572	< 10	< 10	0.0%	4299586	< 10	< 10	0.0%	4299598	< 10	< 10	0.0%	4299612	< 10	< 10	0.0%
S	4299572	0.679	0.674	0.7%	4299586	1.33	1.34	0.7%	4299598	24.5	23.7	3.3%	4299612	1.12	1.12	0.0%
Sb	4299572	< 1	< 1	0.0%	4299586	< 1	< 1	0.0%	4299598	3	< 1		4299612	< 1	< 1	0.0%
Sc	4299572	3	3	0.0%	4299586	16	15	6.5%	4299598	2	2	0.0%	4299612	39	40	2.5%
Se	4299572	< 10	< 10	0.0%	4299586	< 10	< 10	0.0%	4299598	< 10	< 10	0.0%	4299612	< 10	< 10	0.0%
Sn	4299572	< 5	< 5	0.0%	4299586	5	4	22.2%	4299598	< 5	< 5	0.0%	4299612	< 5	< 5	0.0%

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ΔT	TENT	ION TO)· Arnaud	d Fontaine

CLIENT NAM	IE: ORFORI	J MIINING	CORP							AIIE	ALION IC	: Arnaud	Fontaine			
Sr	4299572	1460	1470	0.7%	4299586	91	89	2.2%	4299598	3	3	0.0%	4299612	340	345	1.5%
Та	4299572	< 10	< 10	0.0%	4299586	< 10	< 10	0.0%	4299598	< 10	< 10	0.0%	4299612	< 10	< 10	0.0%
Te	4299572	< 10	< 10	0.0%	4299586	39	38	2.6%	4299598	67	62	7.8%	4299612	10	12	18.2%
Th	4299572	< 5	< 5	0.0%	4299586	< 5	< 5	0.0%	4299598	< 5	< 5	0.0%	4299612	< 5	< 5	0.0%
Ti	4299572	0.625	0.638	2.1%	4299586	2.57	2.41	6.4%	4299598	0.01	0.01	0.0%	4299612	0.491	0.501	2.0%
TI	4299572	< 5	< 5	0.0%	4299586	< 5	< 5	0.0%	4299598	< 5	< 5	0.0%	4299612	< 5	< 5	0.0%
U	4299572	7	6	15.4%	4299586	5	6	18.2%	4299598	46	47	2.2%	4299612	< 5	< 5	0.0%
V	4299572	625	616	1.5%	4299586	288	276	4.3%	4299598	38.2	45.2	16.8%	4299612	296	304	2.7%
W	4299572	< 1	< 1	0.0%	4299586	< 1	1		4299598	8	9	11.8%	4299612	1	< 1	
Υ	4299572	65	65	0.0%	4299586	35	34	2.9%	4299598	2	2	0.0%	4299612	22	23	4.4%
Zn	4299572	66.7	70.3	5.3%	4299586	209	204	2.4%	4299598	13.0	21.3		4299612	58.1	59.4	2.2%
Zr	4299572	117	70		4299586	280	265	5.5%	4299598	5	5	0.0%	4299612	50	52	3.9%
		REPLIC	ATE #5													
Parameter	Sample ID	Original	Replicate	RPD												
Ag	4299622	< 0.5	< 0.5	0.0%												
Al	4299622	8.49	8.21	3.4%												
As	4299622	< 1	< 1	0.0%												
Ва	4299622	635	605	4.8%												
Be	4299622	2.29	2.20	4.0%												
Bi	4299622	< 1	< 1	0.0%												
Ca	4299622	7.50	7.54	0.5%												
Cd	4299622	< 0.5	< 0.5	0.0%												
Ce	4299622	80	75	6.5%												
Co	4299622	32.1	32.1	0.0%												
Cr	4299622	371	348	6.4%												
Cu	4299622	55.0	66.0	18.2%												
Fe	4299622	8.61	8.56	0.6%												
Ga	4299622	18	19	5.4%												
In	4299622	< 1	< 1	0.0%												
K	4299622	0.947	0.912	3.8%												
La	4299622	40	37	7.8%												
Li	4299622	14	14	0.0%												
Mg	4299622	5.21	5.10	2.1%												
Mn	4299622	1520	1510	0.7%												

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

http://www.agatlabs.com CLIENT NAME: ORFORD MINING CORP ATTENTION TO: Arnaud Fontaine 4299622 < 0.5 < 0.5 0.0% Na 4299622 1.84 1.74 5.6% Ni 4299622 85.0 84.8 0.2% Р 4299622 1490 1440 3.4% Pb 4299622 2 < 1 Rb 4299622 < 10 0.0% < 10 S 4299622 0.097 0.106 8.9% Sb 4299622 < 1 0.0% < 1 4299622 Sc 30 29 3.4% Se 4299622 < 10 < 10 0.0% < 5 4299622 < 5 0.0% Sn Sr 4299622 300 289 3.7% 4299622 Ta < 10 < 10 0.0% Te 4299622 24 27 11.8% Th < 5 4299622 < 5 0.0% Τi 4299622 1.37 1.31 4.5% ΤI 4299622 < 5 < 5 0.0% U 4299622 < 5 < 5 0.0% V 4299622 200 193 3.6% W 4299622 1 1 0.0% Υ 23 4299622 24 4.3% Zn 4299622 92.0 91.4 0.7% Zr 4299622 102 100 2.0% (201-079) Sodium Peroxide Fusion - ICP-OES finish REPLICATE #1 **REPLICATE #2** Sample ID Original Replicate RPD Sample ID Original Replicate RPD Parameter Cu 4299598 4299628 1.62 0.0% Ni 4299598 2.24 2.25 0.4% 4299628 1.62 (202-555) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish **REPLICATE #1 REPLICATE #2 REPLICATE #3 REPLICATE #4** Replicate Parameter Sample ID Original Replicate RPD Sample ID Original Replicate RPD Sample ID Original **RPD** Sample ID Original Replicate **RPD** 0.001 4299586 0.001 0.002 66.7% 4299598 0.020 0.011 58.1% 4299612 < 0.001 < 0.001 0.0% 4299572 0.001 0.0% Au Pd 4299572 < 0.001 < 0.001 0.0% 4299586 < 0.001 < 0.001 0.0% 4299598 0.445 0.813 58.5% 4299612 0.001 < 0.001 0.0% 4299572 < 0.005 < 0.005 0.0% 4299586 < 0.005 < 0.005 0.0% 4299598 0.437 0.781 56.5% 4299612 < 0.005 < 0.005 0.0% Pt

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

		REPLIC	ATE #5										
Parameter	Sample ID	Original	Replicate	RPD									
Au	4299622	0.001	<0.001	0.0%									
Pd	4299622	0.001	<0.001	0.0%									
Pt	4299622	<0.005	<0.005	0.0%									

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220944544

PROJECT: WR-22-GRAB-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP

ATTENTION TO: Arnaud Fontaine

				(20)	1-070) 4	Acid [Digest -	Metals F	Package	e, ICP-0	DES fini	sh				
		CRM #1	(ref.Till-2)			CRM #2	(ref.GTS-2a)		CRM #3 (ref.CGL-015)				CRM #4 (ref.PGMS27)			
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Al	8.47	8.61	102%		6.96	7.61	109%		13.0	14	107%					
As	26	28	109%		124	140	112%									
Ва	540	524	97%		186	193	103%		1305	1333	102%					
Be	4.0	3.8	94%													
Ca	0.907	0.892	98%		4.01	4.11	102%		1.42	1.52	107%					
Се	98	97	99%		24	23	95%		58.24	60.22	103%					
Со	15	13	87%		22.1	22	99%									
Cr	60.3	62.4	103%													
Cu	150	155	103%		88.6	85.9	96%									
Fe	3.77	3.73	99%		7.56	7.75	102%		3.27	3.46	105%					
K					2.021	2.34	115%		3.69	4.38	118%					
La	44	44	99%						27.48	29.84	108%					
Li	47	52	110%						64.95	80.59	124%					
Mg	1.10	1.08	98%		2.412	2.531	104%		0.223	0.247	110%					
Mn	780	754	97%		1510	1516	100%									
Мо	14	12	89%													,
Na	1.624	1.778	109%		0.617	0.696	112%		7.24	7.53	104%					•
Ni	32	31	98%		77.1	78.9	102%									
Р	750	784	104%		892	989	110%		610	668	109%					
S					0.348	0.346	99%									
Sc	12	12	100%						2.76	2.4	86%					
Sr	144	145	101%		92.8	89.9	96%		312	315	100%					
Ti	0.53	0.46	87%						0.222	0.229	103%					
V	77	79	103%													
W	5	5	90%													
Υ									25.32	25.85	102%					
Zn	130	122	94%		208	218	104%		75.42	82.76	109%					
(202-555) Fire Assay - Au, Pt, Pd Trace Levels,										els, IC	P-OES 1	inish	•	•		
	CRM #1 (ref.ME2001) CRM #2 (ref.CM48)							CRM #3 (ref.GS1AB)				CRM #4 (ref.PGMS27)				
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Au	1.32	1.22			3.46	3.37			1.48	1.40			4.80	5.02		

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 220944544

PROJECT: WR-22-GRAB-02

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: ORFORD MINING CORP	ATTENTION TO: Arnaud Fontaine
---------------------------------	-------------------------------

Pd	0.44	0.42						2	2.11	
Pt	0.25	0.25						1.29	1.35	

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-GRAB-02

SAMPLING SITE:

AGAT WORK ORDER: 220944544
ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
AI	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
As	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ва	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ве	MIN-200-12034	Geochem v. i	ICF/OLS
Ві	MIN-200-12034	Geochem v.1	ICF/OLS
Са	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cd	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Се	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Со	MIN-200-12034	Geochem v.1	ICF/OLS
Cr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Fe	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ga	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
In	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
К	MIN-200-12034	Geochem v.1	ICP/OES
La	MIN-200-12034	Geochem v.1	ICP/OES
Li	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Mg	MIN-200-12034	Geochem V.1	ICP/UES
Mn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Мо	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Na	MIN-200-12034	Geochem V. i	ICP/OES
Ni	MIN-200-12034	Geochem V.1	ICF/OL3
P	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Pb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
Rb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	
S	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: ORFORD MINING CORP

PROJECT: WR-22-GRAB-02

SAMPLING SITE:

AGAT WORK ORDER: 220944544 ATTENTION TO: Arnaud Fontaine

SAMPLED BY:

OAIVII EIIVO OITE.		5, tivil 225 5 1.	I
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sb	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sc	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Se	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Sr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Та	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Те	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Th	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Ti	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
ті	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
U	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
V	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
W	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Υ	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zn	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Zr	MIN-200-12034	Fletcher, WK:Handbook of Exploration Geochem V.1	ICP/OES
Cu	MIN-200-12001/MIN-200- 12049	Bozic, J et. al. Analyst. 114: 1401-1403; 1989	ICP/OES
Ni	MIN-200-12001/MIN-200- 12049	Bozic, J et. al. Analyst. 114: 1401-1403; 1989	ICP/OES
Au	MIN-221-12006	BUGBEE, E; A Textbook of Fire Assay	ICP/OES
Pd	MW-200-12006	BUGBEE, E;A Textbook of Fire Assay	
Pt	MW-200-12006	BUGBEE, E;A Textbook of Fire Assay	
Crush-Pass %		, , : :::::: : :::::::::::::::::::::::	BALANCE
Pul-Pass %			BALANCE