GM 69922

REPORT ON THE EXPLORATION WORK CONDUCTED DURING THE SUMMER OF 2015 AND THE WINTER OF 2016 ON THE ADAMANTIN PROPERTY

Cette première page a été ajoutée au document et ne fait pas partie du rapport tel que soumis par les auteurs.

Stornoway Diamond Corporation

Adamantin Property

SNRC 32P15, 32P16, 33A01 and 33A02

Report on the exploration work conducted during the summer of 2015 and the winter of 2016 on the Adamantin Property, Québec.

Isabelie Lépine, Geo.

OGQ permit # 415

Stornoway Diamond Corporation

Original: December 9, 2016

Revised: June 28, 2018

Table of Contents

Summ	ary	1
Somm	aire .	2
1.	Intro	oduction3
2.	Prop	perty Location and Access3
3.	Prop	perty Land Status
4.	Geo	logy and Mineralisation4
4.	.1.	Regional Geology4
4.	.2.	Project Geology
4.	.3.	Quaternary Geology
4.	.4.	Mineralisation7
5.	Prev	vious Exploration Work in the Surrounding Area8
6.	201	5 Exploration Work8
6.	.1	2015 Soil Sampling Program Logistics
6.	.2	Till Sampling and Processing10
6.	.3	Prospecting12
6.	.4	2015 Exploration work Results14
7.	2016	5 RC Drilling Campaign14
7.	1	RC Drilling Campaign Logistics
7.	2	RC Chips Logging16
7.	.3	Petrography Work
7.	4	RC Chips Sampling and Processing
7.	.5	2016 RC Drilling Results
8.	Inter	rpretation
8.	1	Discussion of Results
9.	Cond	clusion and Recommendations32
10.	Re	eferences
11.	Ce	ertificates of Qualification
12.	Ap	opendices

List of Figures

Figure 1: Adamantin Project Location Map	5
Figure 2: Regional Geology	6
Figure 3: Adamantin Project Regional Geology	9
Figure 4: Location of Geophysical Anomalies (2015)	13
Figure 5: Cross Section AD-50, AD-51 and AD-52	29
Figure 6: Cross Section AD-60	30

List of Tables

Table 1: Stornoway Personnel for the 2015 Till Sampling Program	10
Table 2: Summary of the Geophysical Anomalies checked during the Summer 2015 Field program	14
Table 3: Stornoway Personnel for the Winter 2016 RC Drill Campaign	15
Table 4: 2016 RC Drill Hole Collar	17
Table 5: List of Samples with Thin sections	19
Table 6: Kimberlite Indicator Mineral Sample List	22
Table 7: Caustic Fusion Sample List	24
Table 8: DMS Sample List	25
Table 9: Intersection with Kimberlite Chips	27
Table 10: Kimberlite Intersection Description Summary	28

List of Appendices

Appendix 1 – Claim List	14 pages
Appendix 2 – 2015 Kimberlite Indicator Mineral (KIM) sampling List	11 pages
Appendix 3 – Microlithics Laboratories Till Sample Processing Flow Sheet	1 page
Appendix 4 – I&M Morrison Geological Ltd Visual Picking Processing Sheet	1 page
Appendix 5 – Ground Geophysics Anomaly Check Detail Notes	36 pages
Appendix 6 – Summer 2015 Till Sampling Visual Picking Results	13 pages
Appendix 7 - Field Logs	398 pages
Review Comments	15 pages
Thin Section Descriptions	39 pages
Appendix 8 – Caustic Fusion Flow Sheet	1 page
Appendix 9 – Dense Media Separation (DMS) Flow Sheet	1 page
Appendix 10 – Kimberlite Indicator Mineral (KIM) Analytical Results	3 pages
Appendix 11 – Caustic Fusion Analytical Results	2 pages
Appendix 12 – Dense Media Separation (DMS) Analytical Results	1 page

Map List

- Map 1 Adamantin Project Claim Map
- Map 2 Sample Location Map
- Map 3 Visual Picking Results Map
- Map 4 Ilmenite and Pyrope Trains Map
- Map 5 RC Drill Hole Location Map

SUMMARY

The Adamantin Property is located in the Otish Mountain region of northern Québec, 100 km south of the Renard Diamond Mine and 250 km north east of Chibougamau. The property is approximately 25 km west of Road 167 and is comprised of 336 contiguous claims that cover 17,790 hectares.

During 2015 Stornoway Diamond Corporation completed a till sampling program and collected 249 samples on the original 166 claim block. Samples were sent to Microlithics Laboratories in Thunder Bay, ON, for preparation of kimberlite indicator concentrate which were visually observed by I&M Morrison Geological Ltd of Delta, BC. The till sampling highlighted an ilmenite and pyrope garnet mineral distribution train. In addition, a diamond was discovered in one of the samples. Based on these results new claims were added.

This prompted a 2016 winter RC drill program that was completed by Northspan Exploration, Kelowna, BC. A total 71 geophysical anomalies were tested in approximately six weeks of work and 11 kimberlite occurrences were discovered. Subsequently, the land package was expanded through the acquisition of a further 51 claims to a total of 336 claims.

The kimberlites were sampled for indicator minerals (KIM), microdiamonds (caustic) and macrodiamonds (DMS) testing. Logging of the chips took place both in the field and in North Vancouver. Thin section of the kimberlitic material were made and observed in North Vancouver by a Stornoway geologist.

The kimberlites are all coherent in nature and can be divided in three groups with distinctive mineralogical and indicator mineral characteristic. Group A can be classified as a carbonate, phlogopite and perovskite kimberlite, where eclogite, pyrope and ilmenite are the main indicator minerals. Group B is classified as a phlogopite, perovskite, spinel and +/- monticellite kimberlite. These kimberlites contain more chromite and chrome diopside, as well as eclogite, pyrope and ilmenites. Finally, Group C is classified as carbonate, phlogopite, perovskite and spinel kimberlite. Only olivine was observed in the concentrate of Group C kimberlites.

Unfortunately the kimberlites proved to be non-diamondiferous, which does not explain the presence of the diamond in the till. Due to poor lake ice conditions, seven geophysical targets were not tested in 2016.

Future work recommended for this property would include the completion of an infilling till sampling program to better define the kimberlite indicators mineral trend. In addition, an airborne geophysical survey should be completed to improve resolution in selected area. Untested geophysical anomalies should be tested with a second RC drill program. Should money become available the known kimberlite occurrence should be tested with diamond drilling to better define the kimberlite bodies.

Sommaire

La propriété Adamantin est située dans la région des Monts Otish, au nord du Québec, à 100 km au sud de la mine de diamants Renard et à 250 km au nord-est de Chibougamau. La propriété se trouve à environ 25 km à l'ouest de la route 167 et se compose de 336 claims contigus qui couvrent 17 790 hectares.

En 2015, Stornoway Diamond Corporation a complété un programme d'échantillonnage de till et a recueilli 249 échantillons sur le bloc de claims Initial de 166 titres miniers. Des échantillons ont été envoyés à Microlithics Laboratories à Thunder Bay, Ontario, pour la préparation de concentré de minéraux indicateur de kimberlite, qui eux ont été observés visuellement par I & M Morrison Geological Ltd de Delta, Colombie-Britanique. L'échantillonnage du till a mis en évidence une trainée de d'ilménite et de pyrope. De plus, un diamant a été découvert dans l'un des échantillons. Sur la base de ces résultats, de nouveaux titres miniers ont été ajoutés.

Cette découverte a entraîné un programme de forage de RC à l'hiver 2016 qui a été complété par Northspan Exploration de Kelowna, Colombie-Britannique. Un total de 71 anomalies géophysiques a été testé dans l'espace de 6 semaines où 11 occurrences de kimberlite ont été découvertes. Par la suite, la propriété a été élargie avec l'acquisition de 51 autres titres miniers, pour un total de 336 claims.

Les kimberlites ont été échantillonnées pour les minéraux indicateurs (KIM), microdiamonds (caustique) et macrodiamonds (DMS). La description des copeaux de forage a eu lieu à la fois sur le terrain et à North Vancouver. Des lames minces des échantillons de kimberlite ont été observées à North Vancouver par un géologue de Stornoway.

Les kimberlites sont toute de nature cohérente et peuvent être divisées en trois groupes avec des caractéristiques pétrologiques et minéralogiques distinctives. Le groupe A se compose de kimberlite à carbonate, phlogopite et perovskite, où l'éclogite, le pyrope et l'ilménite sont les principaux minéraux indicateurs. Le groupe B comprend des kimberlites à phlogopite, pérovskite, spinelle et + / - monticellite. Ces kimberlites contiennent plus de chromite et de diopside de chrome, ainsi que l'eclogite, le pyrope et l'ilménite. Enfin, le groupe C comprends des kimberlites à carbonate, phlogopite, perovskite et spinelle . Seule l'olivine a été observée dans le concentré des kimberlites du groupe C.

Malheureusement, les kimberlites ne contiennent pas de diamants, ce qui n'explique pas la présence du diamant dans le till. En raison de la mauvaise qualité des glaces lacustres, 7 cibles géophysiques n'ont pas été testées en 2016.

Les travaux futurs recommandés pour la propriété Adamantin comprendraient un second programme d'échantillonnage de till afin de mieux définir la dispersion des minéraux indicateurs de kimberlite. De plus, un levé géophysique aéroporté devrait être complété pour améliorer la résolution dans certaines régions de la propriété. Les anomalies géophysiques non testées doivent être forées avec un deuxième programme de forage RC. Si un budget d'exploration devenait disponible, les kimberlites découvertes en 2016 devralent être testées avec le forage au diamant afin de mieux les définir.

1. Introduction

The following report describes work completed within claims of the Adamantin Property (the property) claims located in the Otish Mountain Region of northern Québec. All claims were obtained by map staking during the spring of 2015 and winter of 2016. Stornoway Diamond Corporation (Stornoway) owns 100% of the claims comprising the Adamantin Property, and undertook the work covered by this report.

Between August 2015 and May 2016, till sampling, prospecting and RC drilling were completed within these claims. During that time, a total of 251 surface sediment samples were collected, 78 reverse circulation (RC) drill holes were completed and 12 geophysical anomalies were ground-checked.

2. Property Location and Access

The Adamantin Property is located in the Otlsh Mountain region of northern Quebec, 100 km south of the Renard Diamond Mine and 250 kilometers north-east of Chibougamau. The contiguous claims are covered by NTS map sheet, 32P/15, 32P/16, 33A/01 and 33A/02 (Figure 1). The property is centered at 72°36′53″ W Longitude and 51°56′20″N Latitude.

Road 167, an all-weather road going to the Renard Mine, is located 25 km east of the property. The Cree Community of Mistissini owns a 20 people camp at the 510 kilometer marker along Road 167. From this camp, helicopter support is necessary to access the Adamantin claims.

3. Property Land Status

The Adamantin Property is composed of 336 contiguous claims which cover 17,790 hectares (Map 1). The claims were acquired between the springs of 2015 (n = 166) and 2016 (n = 158) and the exploration expenditures are sufficient for the various upcoming renewal dates. Only work on 183 claims will be discussed.

The Adamantin Property is located within the region of northern Québec governed by *the James Bay and Northern Québec Agreement 1975*, as amended (JBNQA)(CBJNQ), a land claims agreement executed by the Government of Québec, the Government of Canada, the Grand Council of the Cree of Québec (GCC) and the Northern Québec Inuit Association, amongst other.

The JBNQA provides for three categories of land, Categories I to III, each with specifically defined rights. The Adamantin Property lies within Québec public's lands of Category II and III lands in an area in proximity to the community of Mistissini (the Cree Nation of Mistissini, or CNM). On Category II lands, Aboriginal people have exclusive rights for hunting, fishing and trapping and participate in the management of hunting, fishing, trapping as well as the development of outfitting. On Category III lands, Aboriginal and non-aboriginals can hunt and fish. However, Aboriginal people have exclusive rights to exploit certain aquatic species and some fur animals as defined under the JBNQA and participate in the administration and development of the territory.

4. Geology and Mineralisation

4.1. Regional Geology

The Project area is located within the south-eastern portion of the Superior Craton as shown in Figure 2. The Superior Province forms the Archean core of the Canadian Shield, and is an amalgamation of small Meso-Archean continental fragments and Neo-Archean oceanic plates, with a complex history of aggregation between 2.72 Ga and 2.68 Ga. Since about 2.6 Ga, the Province has been tectonically stable (Percival, 2006).

The Superior Province is surrounded by provinces of Paleo-Proterozoic on the west, north and east (Churchill Province), Meso-Proterozoic (Grenville Province) on the southeast and Proterozoic (Labrador Through) to the east. Margins of the Superior Province were affected during Paleo-Proterozoic and Meso-Proterozoic tectonism. Proterozoic and younger activity is limited to rifting of the margins (Mid Continent Rift System), emplacement of numerous mafic dyke swarms, compressional reactivation, largescale rotation at ca. 1.9 Ga, and failed rifting at ca. 1.1 Ga (Percival, 2006).

Quaternary glacial cover in the area was controlled by the New Québec Ice Divide. From the divide, ice flowed north and northeast toward Ungava Bay and west to southwest toward Hudson Bay. Glacial lineaments are well developed and widespread. Eskers and hummocky to discontinuous, unmoulded, ground moraine deposits are also common.

There are five known episodes of kimberlitic volcanism in Québec (Moorhead et al., 2003) as shown in Figure 2 and summarized below from south to north:

- Témiscamingue: six diatreme facies pipes intruding the Pontiac Subprovince. Two age dates, 125
 Ma (Rb–Sr) and 142 Ma (U–Pb) have been obtained. Kimberlites are hosted in the northwest-trending Témiscaming structural zone.
- Desmaraisville: five hypabyssal pipes and numerous dykes located in the central portion of the Abitibi Subprovince. Age date of 1,104 Ma (Rb–Sr from phlogopite). Hosted in the Waswanipi– Saguenay Tectonic Zone; pipes are in close proximity to northeast-trending Proterozolc dykes.
- Otish: at least 12 pipes Intruding the northeast portion of Opatica and Opinaca Subprovinces. Age dates range from 550.0 +/- 3.5 Ma at Beaver Lake (Moorhead et al., 2003) to 640.5 +/- 2.8 Ma at Renard (Fitzgerald et al, 2009). The kimberlite field is associated with the southern end of the Mistassini-Lemoyne structural zone, and northeast-trending Proterozoic diabase dykes.
- Wemindji: kimberlitic sills intruding Archean-age gneisses of La Grande Subprovince, located at the western end of the Wemindji–Caniapiscau structural zone where it intersects the north-easterly projection of the Kapuskasing zone.
- Torngat: diamond-bearing dykes recognized in the Paleo-Proterozoic Rae Province near the Archean Nain Craton. These dykes were classified as carbonatized ultramafic lamprophyres and dated at 550 Ma.

The Adamantin kimberlite intersections are considered to be part of the Otish kimberlitic volcanic event.

Figure 1: Adamantin Project Location Map

Figure 2: Regional Geology

4.2. Project Geology

The Adamantin Property lies within the central Superior Province, largely over the Opatica Subprovince and to a lesser extent the Opinaca Subprovince. These provinces are composed of volcano-plutonic and sedimentary assemblages and are cross-cut by a series of E-W to WNW-ESE and NE-SW-trending shear zones that are metamorphosed from green schist facies in their center and grades to upper amphibolite facies near their margins. These volcanic belts are intruded by a number of granitoids assigned to various plutonic suites (Moukhsil et al., 2007, Houle, 2006).

Not a lot of publically available geological mapping appears to have been undertaken on the property with the exception of the work conducted by Chown (Chown, 1960 and Chown, 1971) and the compliation works completed by the Québec Government (Dubé et al., 1976, Avramtchev, 1983). On these compliation maps, the main geology indicated for the Adamantin Property is composed of rock from the Archean Epervanche Complex. On these compilations maps, the main units observed on the property are composed of gneiss, migmatite, granite, tonalitic gneiss, granodiorite, pegmatite and gneissic granite. The granitoid rocks are cross-cut by diabase and gabbro dyke that are oriented NW-SE. Amphibolite was also observed in some of the RC drill hole chips.

Eleven kimberlite intrusions are found on the Adamantin property (Figure 3). At this point, these rocks are believed to be coherent hypabyssal kimberlite. Only two occurrences (AD-50-51-52 and AD-60) had enough drilling to determine that these dykes are shallowly dipping to the northeast.

4.3. Quaternary Geology

Glacial deposits are found throughout the property, and continuous bedrock exposure is only found on the mountains and in some deep river valleys (Chown, 1971). Till covers most of the property and is composed of clay, slit, sand, gravel, boulders and large blocks. The RC drilling completed in 2016, showed that the overburden thickness is from 1 to 2 meter to at least 30 meters locally and averages 5 to 10 meters.

Till described in the soil samples collected on the property is mainly described as grey to brown in colour and predominantly composed of sand (<1mm) with a mix of granitic clasts ranging in size from boulders to pebbles with a minor component of silt and clay. Clasts represent usually 15-30% of the samples and are angular to sub angular.

4.4. Mineralisation

At the moment there is no known metallic mineralisation on the property. A total of 11 kimberlite occurrences are found within the property. Those kimberlites do not have any diamond (Stornoway Sept. 1, 2016 press release).

5. Previous Exploration Work in the Surrounding Area

Numerous historical exploration programs were completed in the area of the Adamantin Property. Mineral exploration dates back to the 1970's where difference companies were mainly active in uranium exploration. In fact, the kimberlites at Beaver Lake were discovered by Uranerz in 1978, and later revisited by Ditem Exploration in 1998, where extensive drilling and sampling took place to delineate the kimberlite. Several tonnes of bulk samples were extracted and the work confirmed that the rock were from the diatreme root facies and that it was weakly diamond-bearing (Brack, 1998 in GM 56612 and GM 56615).

It is only at the end of the 1990s and beginning of 2000s that mineral exploration focussed on diamond in the area. The major players at the time were BHP-Billiton, Dios Exploration, Ditem Exploration, Majescor Exploration, Soquem/Ashton, and Pure Gold. The work conducted during that period included geological mapping, ground magnetic, IP and EM surveys, surface sediment sampling, lake sediment and stream geochemical surveys, alrborne magnetic and electromagnetic surveys and diamond drilling campaigns.

As mentioned earlier, the Beaver Lake kimberlites were studied in detail in 1998 by Ditem Exploration. The company judged that diamonds were not present in sufficient quantities to justify more exploration (Brack, 2001, in GM59943).

In 2002, Pure Gold and Ditem Explorations confirmed the discovery of the H-1 and H-2 kimberlites (33A/01 NTS Sheet) on their Tichegami River property (Houle, 2003).

In 2003, Dios Exploration discovered the Hotish-1, Hotish-2, and Hotish-3 kimberlites. All kimberlites are believed to be hypabyssal dyke/sill that range in size from tens of centimeters to one to two meters. No diamonds were recovered from these kimberlites. Dios Exploration also reported the discovery in 2004 of Hotish-4, a boulder that is believed to be a melnoite (Villeneuve et all, 2006 in GM 62606).

In 2004, an Ashton/Soquem joint venture discovered a 2.4 meter thick kimberlitic sill on their Tichegami property. This intersection, located in the northern portion of the Adamantin Property (Figure 3), was not diamondiferous and its extent orientation is not known.

6. 2015 Exploration Work

Following an internal desktop compilation study, Stornoway decided to acquire the Adamantin claims in the spring of 2015 in order to follow up unexplained kimberlite indicator minerals. A diamond was found in a sample collected in 2015 and supported drilling geophysical anomalies on the Adamantin Property. This section reviews the soil sampling program completed in the summer of 2015.

6.1 2015 Soll Sampling Program Logistics

Between August 8 and August 25, 2015 a field crew composed of five people (see Table 1) completed a regional till sampling program on the Adamantin Property. The crew was based at camp 510; a site

Figure 3: Adamantin Project Regional Geology

owned and operated by Eskan, a Cree company based in Mistissini. The camp is located on the extension of Road 167 kilometer 510. A Bell Long Ranger chartered from Canadian Helicopters in Septlle, QC used to access the property.

A total of 249 surface sediment samples were collected from the property. In addition to the till sampling, several geophysical anomalies were ground checked in order to confirm the possible presence of kimberlite. Sample locations can be found on Map 2.

Name	Title	Affiliation	Days worked
Joe Kidston	Sampler	Stornoway	18 days
Joey Burgess	Field Assistant	Stornoway	18 days
Curtis Blacksmith	Field Assistant	Stornoway	13 days
Nevin Ramsom	Helicopter Pliot	Canadian Helicopter	17 days
Gabriel Latulippe	Heilcopter Engineer	Canadian Helicopter	17 days

Table 1: Stornoway Personnel for the 2015 Till Sampling Program.

The samples were shipped, to Microlithics Laboratory in Thunder Bay, ON for kimberlite indicator mineral processing,

6.2 Till Sampling and Processing

A total of 249 soil samples were collected in the summer of 2015 on the property. Of this 247 samples were tills and 4 samples were sand from beaches. Six duplicate samples were collected during the 2015 sampling campaign for QA/QC purposes. The sample list is presented in Appendix 2.

Kimberlite Indicator Mineral Sampling Method

Heavy tree cover required the sampling crew to collected 10 kg samples by foot traverses with the support of a Bell 206L helicopter. Surface sediment samples were collected throughout the property at a sample spacing varying from 300m to 1 km. At each site a small excavation varying from 5 cm to 40 cm deep was dug with a shovel in the glacial deposit, and the samples collected from these excavations.

Samples were described and evaluated on a pre-printed sample card. Each till sample is placed into 6 mil poly ore bags (transparent heavy plastic) measuring 24" x 36", and is accompanied by a pre-printed, waterproof tag bearing a unique sample number and bar code. The poly ore bag is sealed with a single-use plastic locking bag tie ('tie wrap' or 'cable tie'), and then placed inside a 24" x 36" woven plastic 'rice bag' which itself is sealed with a second single-use plastic locking bag tie. A transparent 'luggage tag' with a heavy duty metal grommet containing a duplicate pre-printed, waterproof tag bearing the same unique sample number and bar code as enclosed with the sample is attached to the second bag tie. The sample number is also hand written twice on both the inner and outer of bags. Six duplicate samples were also taken during the 2015 sampling program for QA/QC purposes. Sample locations were determined using a handheld GPS. Samples were picked up at the end of the day and moved

approximately 8km south to a cache near a beach on Lake Mantouchiche, 4 km south of the Adamantin Property.

At the end of the program the samples were picked up by Air Roberval, a Québec fixed-wing service provider, and flown to the Témiscamie float-plane based on road 167, where they were later shipped to Microlithics Laboratory in Thunder Bay, ON, for heavy mineral concentrate processing.

Kimberlite Indicator Mineral Processing

Upon arrival at Microlithics Laboratories the 251 samples, including 6 duplicates, we checked in by laboratory staff and sample numbers and weights entered into a database. Sample tags are also checked against the handwritten bag numbers. Any discrepancies or damaged samples are noted. Samples are stored inside when possible. Overflow samples are retained outside in their shipping crates within a locked and secure barbed wire enclosure. Appendix 3 presents Microlithics Laboratories till sample flow sheet, which is described below.

<u>Deslimina</u> - Individual till samples are selected from the checked in/cleared samples and the sample number and other pertinent features recorded in a logbook. A 200-400 gram sub sample is scooped off and retained for possible further geochemical analysis. Contents of the sample bag are poured into a mixer and the bag rinsed thoroughly to recover any adhering grains. The mixer is filled with water and allowed to rotate to remove the 'slimes' or fine grained clays/organics/etc. Remaining materials are flushed carefully into a basin and forwarded to the next step in the process. Process times, general sample appearance and any other anomalous occurrences are recorded.

<u>Wet Screening</u> – Wet materials from the desliming process are run through a series of mesh screens to remove the oversize (+1.0mm) material. All screens are checked for damage and/or contamination during the procedure. Screens are cleaned with a wire brush, liberated grains returned to the appropriate sample fraction and all materials sent to large ovens for drying.

<u>Dry Screening</u> - All stacked screens (coarse, fine and ultrafine) are inspected prior to commencing operations with the dry materials. Samples greater than 1kg in size are split into sub samples to avoid overcharging the screens. Sub samples are recombined and all screens are carefully cleaned following a set pattern after separations are complete. The coarse and ultrafine sample fractions (>0.5mm and <0.25mm) are heat sealed into clear plastic bags and bar coded labels affixed. Fractions are weighted with the mass of the sample bag and label tared out. The fine fraction (0.25 to 0.5mm) is sent to heavy liquids, the other fractions to storage.

Samples are run in their entirety through a first pass 'lower density' heavy liquid at a specific gravity of ~2.8, with repeated stirring to effect separation of the light fraction from the heavy fraction over a timed interval. The sink portion of the sample is captured on a filter paper, washed to remove heavy liquid residue and dried. After drying the sink fraction (S.G. >~2.8) is weighed and entered into the spreadsheet. The float fraction is washed to recover heavy liquid and discarded.

The first pass sink fraction (S.G. >~2.8) is then processed through a 'high density' heavy liquid at a specific gravity of ~3.3. This second heavy liquid is repeatedly stirred over a timed interval, with both the float (S.G. <~3.3) and sink (S.G. >~3.3) fractions captured, washed to remove heavy liquid residue and dried. The float and sink fraction are individually packaged, weighed and entered into the spreadsheet.

Heavy liquid concentrates consisting of the >3.3 SG sinks are packed appropriately and delivered to I. & M. Morrison Geological Services Ltd., Delta, BC where visual picking of indicator mineral results takes place.

Kimberlite Indicator Mineral Visual Picking

Upon arrival at I&M Morisson Geological Services Ltd, samples are checked in against the packing list, with discrepancies or breakage noted, a batch number is assigned and samples entered into computer inventory. Samples are assigned to lab personnel and examined by trained technicians using binocular microscopes (6x to 70x magnification range), quartz halogen fibre optic illuminators and grain conveyors. Magnetite may be manually stripped from the sample if required, and is examined separately.

Potential indicator mineral grains are manually extracted using tweezers and petri dishes, and results entered into the sample record. The grains of interest are placed into sealed vials with the reject portion returned to the original container. Samples are weighted and all vial labels verified by a dedicated data entry person.

Picked grains are examined by a geologist and the sample records revised if necessary. Surface textures and other features of interest are recorded on a grain by grain basis if applicable.

More details on the visual picking laboratory processing sheet are presented in Appendix 4.

6.3 Prospecting

A total of 12 geophysical anomalies were ground checked during the summer 2015 program, with eleven magnetic anomalies and one resistivity anomaly visited. During each site visit photos were taken and notes recorded. Copies of the field notes are included in Appendix 5. Table 2 lists the anomalies visited and Figure 4 presents the location of the geophysical anomalies that were visited.

Figure 4: Location of Geophysical Anomalies (2015)

Anomaly	Anomaly Type	Easting (1)	Northing [1]	Explained	Comments
AD-00	Magnetic Low	662775	5751036	NO	No outcrop, thick moss cover.
AD-01	EM	663449	5753810	NO	Magnetic readings taken on fresh unaltered massive pink granite.
AD-01	Magnetic High	663353	5753877	NO	No evidence of kimberlite intrusion in the area.
AD-02	Magnetic High	662976	5751269	NO	No outcrop, thick moss cover.
AD-03	Magnetic High	665447	5752349	NO	No outcrop, thick moss cover.
AD-06	Magnetic High	663435	5756463	NO	No outcrop, anomaly is on a large mountain side.
AD-10	Magnetic High	666469	5758450	NO	No outcrop right at the anomaly centre. There was some granitic outcrop seen to the SE.
AD-20	Magnetic High	669880	5765345	NO	No outcrop.
AD-28	Low	665840	5752664	NO	No outcrop, thick moss cover.
AD-31	Low	668337	5764752	NO	No outcrop.
AD-39	Magnetic High	665404	5761432	NO	No outcrop, just granitic and gneissic boulders.
AD-41	Magnetic High	665463	5760741	NO	No outcrop.
AD-45	Magnetic High	664710	5757838	NO	No outcrop. The boulders in the area are mainly all pink granite.

Table 2: Summary of the Geophysical Anomalies visited during the Summer 2015 Field program.

Notes: (1) Coordinates are in NAD 83 zone 18.

6.4 2015 Exploration work Results

Visual Indicator Mineral Observation and Picking Results

Of all the samples submitted for indicator mineral picking only 38 did not return indicator minerals. Ilmenite is the most common indicator mineral on the property with up to 295 grains in some samples followed by pyrope (75 counts), chromite (8 counts), eclogitite (53 counts) and olivine (13 counts). No chrome diopside was visually picked. Visual picking results are presented in Appendix 6 and Map 3. Map 4 shows an interpretation of indicator mineral trains for garnet and ilmenite on the Adamantin Property.

Each of the six duplicate samples (43121, 43151, 43231, 43261, 43291 and 43331) returned comparable amounts of indicator mineral grains when compared to the regular samples collected in the area.

Prospecting Results

Of the 12 geophysical anomalies that were prospected during the summer of 2015 none were explained (Table 2). Most of the prospected anomalies were covered by thick moss and outcrop could not be observed. When outcrops were present they were granitic in nature with no indication of kimberlite intrusion in the area.

7. 2016 RC Drilling Campaign

Following the till sampling program of 2015 and the encouraging results, Stornoway highlighted several kimberlite indicator anomalies that warranted follow up and money was allocated for a drilling program.

Re-interpretation of data from the airborne geophysical surveys that were collected in the past by Ashton Mining of Canada was completed in the fall of 2015. This new interpretation, combined with the

new kimberlite indicator mineral data, was used to focus on areas of interest for the RC drilling. A total of 71 geophysical anomalies were selected for drilling.

This section describes work completed during winter 2016.

7.1 RC Drilling Campaign Logistics

Between March 14 and May 6, 2015 a reverse circulation (RC) drill program was completed on Adamantin. As with the till previous sampling program, the crew was based at Camp 510 along Road 167. An A-Star B3 from Helicarrier Helicopter Inc. was used for drill moves. The RC drillers were from Northspan Exploration of Kelowna, BC. Drill and helicopter pads were cut as required by two workers from Eskan, a construction company from Mistissini, QC. Personnel involved in the drilling are listed in Table 3.

Name	Title	Affiliation	Days worked
isabelle Lépine	Resource Geologist – Project Manager	Stornoway	27 days
Ayaka Shiroki	Field Assistant	Stornoway	50 days
Tim Stubley	Field Assistant + Logistics	Stornoway	51 days
Logan Boyce	Field Assistant	Stornoway	50 days
Curtis Blacksmith	Field Assistant	Stornoway	24 days
Keenan Campbell	Drill Foreman	Northspan Exploration	49 days
Joey Tinsley	Driller/Drill Helper	Northspan Exploration	21 days
Brent Thompson	Driller/Drill Helper	Northspan Exploration	21 days
Derek Proke	Driller/Drill Helper	Northspan Exploration	21 days
Devin Vall	Driller/Drill Helper	Northspan Exploration	21 days
Mark Mooney	Driller	Northspan Exploration	28 days
Walter Dodd	Driller	Northspan Exploration	28 days
Isnardo Carreno	Drill Helper	Northspan Exploration	28 days
Myles Dodd	Drill Helper	Northspan Exploration	28 days
Maxime Lavoie	Helicopter Pilot	Helicarrier Helicopter Inc.	28 days
Jeff Kirouac	Helicopter Engineer	Helicarrier Helicopter Inc.	49 days
Fred Carrier	Helicopter Pilot	Helicarrier Helicopter Inc.	8 days
Marie Josée Lacroix	Heilcopter Pilot	Helicarrier Helicopter Inc.	14 days
Elijah Matoush	Slasher/Pad builder	Eskan	21 days
Eli Blacksmith	Slasher/Pad builder	Eskan	21 days

Table 3: Stornoway Personnel for the Winter 2016 RC Drill Campaign.

RC drilling was chosen as a fast and efficient way to test multiple anomalies in a short period of time. Other advantages of the RC drilling are:

- No water is necessary for drilling because the rock chips are transported to surface with air;
- Small footprint of the drill, thus reducing the impact on the environment;
- Light weight of the equipment, making the drill move easy and fast;

- Drill can go to depth of 100 m with one compressor and with two compressors to 200 m;
- Possibility to drill up to 60 m of overburden without trouble;
- Can drill vertical and inclined holes;
- Drill hole diameter of 89 mm which would give enough material for testing;

In the spring of 2016, Stornoway used two RC drills (Hornet drills) to test magnetic and electromagnetic geophysical anomalies. A total of 78 drill holes were completed during this campaign (Map 5). A list of the drill holes is presented in Table 4.

Most of the holes were vertical, with the exception of 9 holes that dip from -50 to -60 degrees at variable azimuths. Collar coordinates were recorded with a hand held GPS. Since the holes were mostly vertical and short, no down hole survey were completed. RC chip samples were collected in rice or mega bags that were sealed and shipped to the Stornoway exploration office in North Vancouver, British Columbia. Once in Vancouver, samples were checked for tampering and integrity. The samples were judge to be adequate.

7.2 RC Chips Logging

During the field program, RC chips were collected in chip trays for each drilling run (every 1.5 meters). In addition to filling chips tray, the assistants on site also collected small Ziploc bags with approximately 500 g of representative chips from each run. These sample bags were identified by drill hole number as well and depth. At the end of the program these bags were shipped to Stornoway's exploration office.

During drilling, a quick description ("log") was prepared at the drilled site and the chips in reviewed greater detail under a binocular microscope setup in the field office.

Chips for 52 drill holes shipped to North Vancouver and reviewed/logged by a Stornoway geologist following the winter program. Chips were logged under a binocular microscope and the revised logs are presented in Appendix 7. All RC holes that encountered kimberlite intersections, mafic rocks and strongly altered rock were re-logged as listed in Table 4.

7.3 Petrography Work

Stornoway also selected a total of 63 chips samples for detail petrology descriptions and sent them to Vancouver Petrographics Ltd, a company based in Langley, BC for preparation. For each sample ten to 20 chips were selected, mounted on an epoxy puck and two thin sections were cut (one regular and a thin wedge). After the thin sections were cut, the epoxy pucks with the remaining kimberlite chips were returned to Stornoway's exploration office where a Stornoway geologist described the thin sections in detail. The list of the thin section samples is found in Table 5.

Table 4: 2016 RC Drill Hole Collar

Hale ID	Easting (NAD 89 zone 18)	Northing (NAD 83 zone 18)	Date Drilled	Target ID	Aximuth	Dip	Total Length (m)	Re-Logged	OVB Depth (m)
AD-00-01	663792	5751047	25-Apr-16	AD-00	0	-90	47.24	Yes	7.62
AD-01A-01	663450	5753812	25-Mar-16	AD-01A	0	-90	35.05	Yes	2.29
AD-018-01	663354	5753879	27-Mar-16	AD-018	0	-90	35.05	Yes	12.19
AD-02-01	662979	5751276	27-Apr-16	AD-02	0	-90	4.57	No	4.57
AD-02-02	662979	5751276	27-Apr-16	AD-02	0	-90	60.2	Yes	3.05
AD-03-01	665449	5752352	22-Mar-16	AD-03	0	-90	13.72	Yes	4.57
AD-05-01	665750	5756366	27-Mar-16	AD-05	0	-90	12.19	No	1.52
AD-06-01	663442	5756459	28-Mar-16	AD-06	0	-90	0.91	No	0.91
AD-06-02	663442	5756459	28-Mar-16	AD-06	0	-90	32	Yes	1.52
AD-07-01	663217	5756550	30-Mar-16	AD-07	0	-90	38.1	Yes	30.5
AD-08-01	662738	5756735	02-Apr-16	AD-08	0	-90	27.43	No	3.05
AD-09-01	665831	5757790	29-Mar-16	AD-09	0	-90	30.48	No	12.19
AD-10-01	666467	5758451	29-Mar-16	AD-10	0	-90	39.62	Yes	1.52
AD-13-01	668816	5762439	09-Apr-16	AD-13	0	-90	10.67	Yes	4.88
AD-14-01	667601	5763758	05-Apr-16	AD-14	0	-90	30.48	Yes	6.10
AD-16-01	668175	5763991	06-Apr-16	AD-16	0	-90	21.34	Yes	4.57
AD-17-01	667263	5764197	04-Apr-16	AD-17	0	-90	60.96	Yes	6.10
AD-20-01	669880	5765345	05-Apr-16	AD-20	0	-90	18.29	Yes	4.57
AD-28-01	665857	5752667	20-Apr-16	AD-28	0	-90	35.05	No	4.57
AD-31-01	668345	5764753	16-Apr-16	AD-31	0	-90	28.96	Yes	12.19
AD-32-01	666792	5764325	03-Apr-16	AD-32	0	-90	30.48	Yes	7.62
AD-37-01	664760	5762126	09-Apr-16	AD-37	0	-90	12.19	Yes	6.10
AD-39-01	665395	5761438	19-Apr-16	AD-39	0	-90	28.96	Yes	15.24
AD-41-01	665438	5760777	09-Apr-16	AD-41	0	-90	10.67	Yes	3.05
AD-42-01	666762	5759646	02-Apr-16	AD-42	0	-90	25.91	No	13.72
AD-44-01	666018	5758415	28-Apr-16	AD-44	0	-90	18.29	No	3.05
AD-45-01	664707	5757843	29-Mar-16	AD-45	0	-90	10.67	Yes	5.18
AD-50-01	664037	5755464	27-Mar-16	AD-50	0	-90	45.72	Yes	9.14
AD-50-02	664037	5755464	13-Apr-16	AD-50	45	-60	48.77	Yes	12.19
AD-51-01	664165	5755378	10-Apr-16	AD-51	0	-90	30.48	Yes	6.10
AD-52-01	664250	5755306	25-Mar-16	AD-52	0	-90	41.15	Yes	1.52
AD-52-02	664251	5755312	11-Apr-16	AD-52	45	-60	35.05	Yes	3.05
AD-52-03	664251	5755306	15-Apr-16	AD-52	225	-60	30.48	Yes	3.05
AD-53-01	664537	5754779	24-Mar-16	AD-53	0	-90	16.76	Yes	3.05
AD-54-01	664744	5754549	24-Mar-16	AD-54	0	-90	16.76	Yes	4.575
AD-56-01	661832	5752250	23-Mar-16	AD-56	0	-90	7.62	No	1.525

Hole ID	Easting (NAD 85 zone 18)	Northing (NAD 83 zone 18)	Date Drilled	Target ID	Azimuth	Dip	Total Length (m)	Re-Logged	OVB Depth (m)
AD-58-01	662361	5752027	22-Mar-16	AD-58	0	-90	10.67	No	7.62
AD-59-01	662218	5752013	21-Apr-16	AD-59	0	-90	42.67	Yes	4.575
AD-60-01	663193	5751750	22-Apr-16	AD-60	0	-90	34.44	Yes	3.965
AD-60-02	663193	5751750	23-Apr-16	AD-60	54	-50	33.53	Yes	6.1
AD-61-01	663182	5751518	21-Mar-16	AD-61	0	-90	10.67	No	1.52
AD-62-01	664048	5750787	28-Apr-16	AD-62	0	-90	36.58	Yes	4.57
AD-63-01	664364	5752460	23-Mar-16	AD-63	0	-90	2.13	No	2.13
AD-63-02	664364	5752460	23-Mar-16	AD-63	0	-90	7.62	Yes	3.05
AD-64-01	665285	5751614	23-Mar-16	AD-64	0	-90	7.62	No	3.05
AD-65-01	665891	5752152	29-Apr-16	AD-65	0	-90	41.15	Yes	4.57
AD-66-01	658778	5756748	29-Mar-16	AD-66	0	-90	13.72	No	4.57
AD-72-01	660199	5753475	24-Mar-16	AD-72	0	-90	6.1	Yes	1.52
AD-78-01	660376	5751128	21-Mar-16	AD-78	0	-90	7.62	Yes	1.52
AD-82-01	659289	5751025	20-Mar-16	AD-82	0	-90	10.67	No	6.10
AD-87-01	660742	5750466	21-Mar-16	AD-87	0	-90	16.76	Yes	3.05
AD-88-01	660567	5749775	19-Mar-16	AD-88	0	-90	4.57	Yes	1.52
AD-89-01	660580	5749643	20-Mar-16	AD-89	0	-90	4.57	Yes	4.57
AD-95-01	663273	5754640	17-Apr-16	AD-95	0	-90	18.29	No	7.62
AD-97-01	664186	5756759	16-Apr-16	AD-97	0	-90	16.76	Yes	6.10
AD-98-01	661985	5757091	03-Apr-16	AD-98	0	-90	9.14	No	9.14
AD-99-01	663287	5757347	05-Apr-16	AD-99	0	-90	41.15	Yes	19.81
AD-100-01	664199	5757294	28-Mar-16	AD-100	0	-90	18.29	No	4.57
AD-102-01	664317	5757601	28-Mar-16	AD-102	0	-90	19.81	Yes	4.57
AD-103-01	664454	5757600	18-Apr-16	AD-103	183	-60	7.62	No	7.62
AD-103-02	664454	5757600	21-Apr-16	AD-103	183	-50	147.83	Yes	7.62
AD-104-01	664670	5757506	24-Apr-16	AD-104	327	-50	112.78	Yes	10.67
AD-111-01	666015	5759370	16-Apr-16	AD-111	0	-90	30.48	Yes	10.67
AD-112-01	664837	5761747	10-Apr-16	AD-112	0	-90	15.24	Yes	1.52
AD-114-01	671522	5761709	07-Apr-16	AD-114	0	-90	16.76	Yes	4.57
AD-115-01	666173	5765520	16-Apr-16	AD-115	0	-90	15.24	No	6.10
AD-116-01	664752	5755501	01-May- 16	AD-116	0	-90	27.43	Yes	27.43
AD-117-01	663266	5755011	29-Apr-16	AD-117	0	-90	30.48	No	6.10
AD-120-01	664693	5755122	30-Apr-16	AD-120	0	-90	21.34	No	10.67
AD-123A-01	663747	5756888	28-Apr-16	AD-123A	0	-90	16.76	Yes	4.57
AD-1238-01	663811	5756787	27-Apr-16	AD-123B	0	-90	7.62	Yes	3.05

Table 4: 2016 RC Drill Hole Collar (continued).

Hole ID	Easting (NAD 85 zone 18)	Northing (NAD 85 zone 18)	Date Drilled	Target ID	Azimuth	Dlp	Total Length (m)	Re-Logged	OVB Depth (m)
AD-129-01	664100	5757716	26-Apr-16	AD-129	0	-90	25.91	No	12.19
AD-130-01	664763	5758295	25-Apr-16	AD-130	0	-90	24.38	Yes	4.57
AD-133-01	664693	5757447	25-Apr-16	AD-133	0	-90	44.2	Yes	10.67
AD-135-01	664579	5758075	13-Apr-16	AD-135	0	-90	19.81	No	6.10
AD-136-01	664468	5758028	15-Apr-16	AD-136	0	-90	39.62	No	10.67
DYK-01-01	664348	5757747	07-Apr-16	DYK-01	120	-55	12.19	No	12.19
DYK-04-01	664465	5758066	11-Apr-16	DYK-04	20	-55	70.1	Yes	16.76

Table 4: 2016 RC Drill Hole Collar (continued).

Table 5: List of Samples with Thin sections

Sample ID	Hole ID	Sample Depth (m)	Sampled by	Data	
42536	AD-00-01	33	i. Lépine	June 20, 2016	
42537	AD-00-01	40	I. Lépine	June 20, 2016	
42538	AD-00-01	43	I. Lépine	June 20, 2016	
42539	AD-01A-01	18	I. Lépine	June 20, 2016	
42540	AD-01A-01	6	I. Lépine	June 20, 2016	
42541	AD-01A-01	13	I. Lépine	June 20, 2016	
42542	AD-01A-01	19	I. Lépine	June 20, 2016	
42543	AD-01A-01	26	I. Lépine	June 20, 2016	
42544	AD-018-01	20	I. Lépine	June 20, 2016	
42545	AD-02-02	37	I. Lépine	June 20, 2016	
42546	AD-02-02	45	I. Lépine	June 20, 2016	
42547	AD-02-02	53	I. Lépine	June 20, 2016	
42548	AD-17-01	20	I. Lépine	June 20, 2016	
42549	AD-31-01	18	I. Lépine	June 20, 2016	
42550	AD-50-01	17	I. Lépine	June 20, 2016	
42551	AD-50-02	22	I. Lépine	June 20, 2016	
42552	AD-50-02	16	I. Lépine	June 20, 2016	
42553	AD-50-02	19	I. Lépine	June 20, 2016	
42554	AD-50-02	18	I. Lépine	June 20, 2016	
42555	AD-50-02	25	I. Lépine	June 20, 2016	
42556	AD-51-01	13	I. Lépine	June 20, 2016	
42557	AD-51-01	7	I. Lépine	June 20, 2016	
42558	AD-51-01	11	I. Lépine	June 20, 2016	
42559	AD-51-01	13	I. Lépine	June 20, 2016	
42560	AD-51-01	28	I. Lépine	June 20, 2016	

Sample ID	Hole ID	Sample Depth (m)	Sampled by	Date
42561	AD-52-01	9	I. Lépine	June 20, 2016
42562	AD-52-01	7	i. Lépine	June 20, 2016
42563	AD-52-01	11	I. Lépine	June 20, 2016
42564	AD-52-02	14	J. Lépine	June 20, 2016
42565	AD-52-02	7	I. Lépine	June 20, 2016
42566	AD-52-02	8	I. Lépine	June 20, 2016
42567	AD-52-02	11	I. Lépine	June 20, 2016
42568	AD-52-02	13	I. Lépine	June 20, 2016
42569	AD-52-02	19	I. Lépine	June 20, 2016
42570	AD-52-03	11	I. Lépine	June 20, 2016
42571	AD-52-03	7	I. Lépine	June 20, 2016
42572	AD-52-03	10	I. Lépine	June 20, 2016
42573	AD-52-03	13	I. Lépine	June 20, 2016
42574	AD-52-03	27	I. Lépine	June 20, 2016
42575	AD-59-01	11	I. Lépine	June 21, 2016
42576	AD-59-01	7	I. Lépine	June 21, 2016
42577	AD-59-01	10	I. Lépine	June 21, 2016
42578	AD-60-01	10	I. Lépine	June 21, 2016
42579	AD-60-01	14	I. Lépine	June 21, 2016
42580	AD-60-01	16	I. Lépine	June 21, 2016
42581	AD-60-02	16	I. Lépine	June 21, 2016
42582	AD-60-02	11	I. Lépine	June 21, 2016
42583	AD-60-02	13	I. Lépine	June 21, 2016
42584	AD-60-02	18	I. Lépine	June 21, 2016
42585	AD-62-01	25	I. Lépine	June 21, 2016
42586	AD-78-01	7	I. Lépine	June 21, 2016
42587	AD-103-02	48	I. Lépine	June 21, 2016
42588	AD-103-02	69	I. Lépine	June 21, 2016
42589	AD-104-01	37	I. Lépine	June 21, 2016
42590	AD-111-01	11	I. Lépine	June 21, 2016
42591	AD-111-01	22	I. Lépine	June 21, 2016
42592	AD-112-01	2	i. Lépine	June 21, 2016
42593	AD-112-01	7	I. Lépine	June 21, 2016
42594	AD-112-01	11	I. Lépine	June 21, 2016
42595	AD-112-01	13	I. Lépine	June 21, 2016
42596	AD-123A-01	6	I. Lépine	June 21, 2016
42597	AD-130-01	9	I. Lépine	June 21, 2016

Table 5: List of Samples with Thin Sections (continued)

7.4 RC Chips Sampling and Processing

Sampling

Sampling completed in 2016 occurred in two phases, the first phase in the field and the second phase at Stornoway's exploration office.

Field Sampling: Kimberlite indicator mineral, caustic fusion and Dense Media Separation (DMS) samples were collected during the RC drilling program. Eighteen kimberlite indicator mineral samples were collected from overburden material and one from a fine grained mafic rock. Three DMS and three caustic samples were also collected in the field. The samples were collected at the drill site directly from the RC cyclone and put in 6 mil poly ore bags. Before sealing the poly ore bag with a single-use plastic tie (tie-wrap) a tag with a unique sample number and bar code was inserted in the bag. The poly ore bag was then placed in a rice bag. Both sample bags were also marked with the sample number, drill hole ID and depth. All samples have a unique sample card with the corresponding sample number where a description of the sample is noted. When the drill hole was completed, samples collected at the drill site were transported by helicopter to Camp 510 where they were stored in the field office. Only the personal working on the project had access to the field office. At the end of the program samples were shipped to North Vancouver, by truck directly from Camp 510.

<u>North Vancouver Samplina</u>: After review of the chips by the geologist in North Vancouver, subsamples from the different kimberlite intersections were selected for either caustic fusion, DMS testing or KIM concentrate. Subsamples selected for caustic fusion were placed in 20 litre plastic pails, subsamples selected for DMS work were placed in large mega bags and subsamples selected for KIM work were placed in poly ore bags. All samples were sealed before shipping and individual samples numbers was allocated to each of them.

Kimberlite samples that were tested by DMS had associated caustic and KIM samples. The samples were sent to Microlithics Laboratories in Thunder Bay, ON where they were later processed. Details are discussed in the following section.

Kimberlite Indicator Mineral Processing and Visual Picking

The same process described in Section 6.2 for indicator mineral processing was followed for these samples. Concentrate was shipped to I & M Morrison Geological Ltd for visual picking following the same protocol as for the till samples. The kimberlite indicator concentration laboratory flowsheet and the visual picking laboratory processing sheet are detailed in Appendix 3 and 4. A detail list of 38 samples sent for indicator mineral processing is presented in Table 6. Of that, 15 were from overburden material collected on site during the drilling and 23 were from rock chips of kimberlite or other type of mafic rocks.

Sample ID	Hole ID	From (m)	To (m)	Date Sampled	Sample Weight (kg)	Sampled By	Sample Type
43351	AD-58-01	6.1	7.62	2016-05-22	21	A. Shiroki	overburden material
43353	AD-72-01	1.52	3.05	2016-05-24	11	A. Shiroki	overburden material
43354	AD-99-01	12.19	13.72	2016-04-04	11	A. Shiroki	overburden material
43355	AD-99-01	13.72	15.24	2016-04-04	12.5	A. Shiroki	overburden material
43356	DYK-01-01	7.62	9.14	2016-04-06	10	A. Shiroki	overburden material
43358	AD-13-01	1.52	4.57	2016-04-09	16.5	T. Stubley	overburden material
43359	DYK-04-01	7.62	9.14	2016-04-09	22.5	A. Shiroki	overburden material
43361	AD-60-01	6.1	7.62	2016-04-22	12.5	A. Shiroki	overburden material
43362	AD-00-01	4.57	6.1	2016-04-24	20.5	A. Shiroki.	overburden material
43364	AD-02-01	1.52	3.05	2016-04-26	20	A. Shiroki	overburden material
43368	AD-82-01	4.57	6.1	2016-04-26	9	A. Shiroki	overburden material
43373	AD-123A-01	4.57	16.76	2016-05-26	0.88	R. Hopkins	mafic rock
43375	AD-10-01	1.52	38.1	2016-05-26	0.73	R. Hopkins	mafic rock
43376	AD-51-01	6.1	21.3	2016-05-28	0.66	R. Hopkins	mix kimberilte and country rock
43378	AD-50-02	15.2	29	2016-05-28	0.59	R. Hopkins	kimberlite
43381	AD-52-02	7.6	24.4	2016-05-28	0.71	R. Hopkins	mix kimberlite and country rock
43384	AD-59-01	6.1	15.2	2016-05-28	0.79	R. Hopkins	kimberiite
43387	AD-60-02	10.7	24.4	2016-05-28	0.79	R. Hopkins	kimberiite
43390	AD-62-01	24.38	25.91	2016-06-01	0.64	R. Hopkins	mix kimberlite and country rock
43391	AD-104-01	35.05	39.62	2016-06-01	0.8	J. Burgess	mix kimberlite and country rock
43392	AD-00-01	32	47.24	2016-06-02	0.85	J. Burgess	mix kimberlite and country rock
43394	AD-31-01	12.19	18.29	2016-06-02	0.85	J. Burgess	mix kimberlite and country rock
43395	AD-17-01	18.29	21.34	2016-06-07	0.64	J. Burgess	mix kimberlite and country rock
43397	AD-02-02	44.2	45.72	2016-06-08	0.68	J. Burgess	mix kimberlite and country rock
43398	AD-01A-01	6.1	7.62	2016-06-08	0.68	J. Burgess	mix kimberlite and country rock
43500	AD-03-01	1.52	4.57	2016-03-22	21.5	T. Stubley	overburden material
43501	AD-53-01	1.52	3.05	2016-03-24	4.5	L. Boyce	overburden material
43502	AD-52-01	0	1.52	2016-03-25	9.5	L. Boyce	overburden material
43508	AD-42-01	12.19	13.72	2016-04-02	10	L. Boyce	overburden material
43519	AD-123A-01	0	4.57	2016-04-28	13	R. Hopkins	overburden material
43521	AD-123B-01	0	1.52	2016-04-28	9.5	L Boyce	overburden material
43523	AD-44-01	0	1.52	2016-04-27	5.5	L. Boyce	overburden material
43525	AD-120-01	0	9.14	2016-04-30	19	A. Shiroki	overburden material
43526	AD-116-01	24.38	27.43	2016-05-01	23	L. Boyce	overburden material
43527	AD-01A-01	12.19	13.72	2016-06-08	0.83	J. Burgess	kimberlite
43529	AD-01A-01	18.29	19.81	2016-06-08	0.76	J. Burgess	mbx kimberlite and country rock
43531	AD-01A-01	24.38	28.96	2016-06-08	0.9	J. Burgess	mix kimberlite and country rock
43533	AD-65-01	30.48	35.05	2016-06-14	1.02	J. Burgess	mix kimberlite and country rock

Table 6: Kimberlite Indicator Mineral Sample List

Microdiamond Sampling and Testing

The caustic fusion process is used to evaluate, characterize and correlate the diamond potential of individual kimberlite lithologies, and to provide data to facilitate the grade estimation process. The objective of this type of test is to extract all diamonds greater than 0.1 mm square mesh in size, through chemical dissolution of the host rock sample. Individual samples may vary in size from a few kilograms to hundreds of kilograms, depending on the available material and the specific purpose of the testing. In this program, kimberlite was collected from RC chips. Individual sample results from comparable kimberlite units may be merged together to provide larger, statistically more representative, samples.

The caustic fusion technique, more properly known as caustic dissolution, utilizes chemical processing to provide total liberation of all diamonds within a given sample in order that an accurate diamond distribution can be determined. Caustic dissolution processes are usually applied to recover microdiamonds from relatively small volume samples (tens to hundreds of kilograms). Rock samples are loaded into large steel pots and caustic soda is added to dissolve the mineral matrix hosting the diamonds. Dissolution takes place over an extended period of time in temperature-controlled kilns. Once the reaction is complete, the residue is cooled and poured through stainless steel wire mesh screens at the required size to avoid loss of small diamonds. Depending on the size of the residue, further standard dissolution may be required. In cases where abundant oxides remain in the residue, a variety of other chemicals may be used to reduce the size of the concentrate, without harming the diamonds. Residues are then observed under microscopes by trained personnel, and the diamonds recovered, counted, sized and weighed.

To assure the integrity of the process, a chain of custody is established between the customer and the laboratory. Customer samples are processed in a controlled environment to ensure that confidentiality is maintained at all times. All samples are handled with due diligence during processing stages, according to previously defined protocols. Quality control grains are added to each aliquot undergoing the caustic dissolution process to monitor recovery.

Once the sample bags from the RC program arrived in North Vancouver, a sub-sample of between 7.3 kg to 37.4 kg were selected and sent for caustic fusion. A total of 18 samples were sent to Microlithics. Most of the samples were from kimberlite intersections with the exception of two samples that were from intriguing mafic rocks as listed in Table 7. Microlithics' caustic fusion flow sheet can be found in Appendix 8. Concentrates for each caustic sample were sent to I & M Morrison Geological Ltd where they were observed for microdiamonds.

Sample iD	· Hole ID	From (m)	To (m)	Date Sampled	Sample Weight (kg)	Sempled By	Sample Type
43370	AD-62-01	24.38	25.91	2016-04-28	18.1	A. Shiroki	mix kimberlite and country rock
43372	AD-123A-01	4.57	16.76	2016-05-26	9.4	R. Hopkins	mafic rock
43374	AD-10-01	1.52	38.1	2016-05-26	7.3	R. Hopkins	mafic rock
43377	AD-51-01	6.1	21.3	2016-05-28	10.3	R. Hopkins	kimberlite
43379	AD-50-02	15.2	29	2016-05-28	8.8	R. Hopkins	kimberlite
43382	AD-52-02	7.6	24.4	2016-05-28	9	R. Hopkins	kimberilte
43385	AD-59-01	6.1	15.2	2016-05-28	11.3	R. Hopkins	kimberiite
43388	AD-60-02	10.7	24.4	2016-05-28	11.2	R. Hopkins	kimberiite
43393	AD-00-01	32	47.24	2016-06-02	13.9	J. Burgess	mix kimberlite and country rock
43396	AD-02-02	44.2	45.72	2016-06-08	8.9	J. Burgess	mix kimberlite and country rock
43399	AD-01A-01	6.1	7.62	2016-06-08	34.1	J. Burgess	mix kimberlite and country rock
43509	AD-17-01	18.29	21.34	2016-04-03	37.4	L. Boyce	mix kimberlite and country rock
43515	AD-104-01	35.05	39.62	2016-04-21	37.5	L. Boyce	mix kimberlite and country rock
43518	AD-31-01	12.19	18.29	2016-06-02	16.3	J. Burgess	mix kimberlite and country rock
43528	AD-01A-01	12.19	13.72	2016-06-08	8	J. Burgess	mix kimberlite and country rock
43530	AD-01A-01	18.29	19.81	2016-06-08	14.7	J. Burgess	mix kimberlite and country rock
43532	AD-01A-01	24.38	28.96	2016-06-08	36.1	J. Burgess	mix kimberlite and country rock
43534	AD-65-01	30.48	35.05	2016-06-14	7.9	J. Burgess	mix kimberlite and country rock

Table 7: Caustic Fusion Sample List

Mini-Bulk Sampling and Testing

Although there is no formal industry-accepted definition of a 'mini-bulk' sample, many companies would agree that the term is generally used to refer to the processing of kimberlite material up to several tens of tonnes. During this program this material was derived from RC chips. Mini-bulk samples are usually processed through Dense Media Separation (DMS) equipment that, depending on specifications and diamond recovery objectives of a particular program, may be configured to recover diamonds of greater than 0.3mm, 0.5 mm, 0.85 mm or 1.18 mm on square-mesh screens. In some cases caustic dissolution or other extraction techniques may be utilized for final diamond recovery. All of Stornoway's mini-bulk samples reported herein were processed through DMS equipment, and the reported diamond content is based upon stones retained on either 0.3 mm square-mesh screens or +1 DTC screens.

Kimberlite chips were collected in either large 1 tonne bulk sample bags or individual rice bags. Bags were clearly identified with a unique numbering system, fastened with tamper-proof seals and transported to Stornoway's North Vancouver exploration office. Once in North Vancouver the samples were observed and subsamples were taken and sent to Microlithics Laboratories to be processed by their 1.5tph DMS plant.

Dense media separation is a standard industry process for the liberation and extraction of macrodiamonds from large volumes of sample material (commonly tens to thousands of tonnes). Rock samples are progressively crushed and the disaggregated material passed over a series of size sorting screens before being mixed with a slurry of ferrosilicon and water. A cyclone is used to split the heavy minerals, including diamonds, from the lighter waste rock. The heavy mineral concentrate is removed from the DMS plant and stored under secure conditions until the diamonds can be extracted. Waste material is recycled through the plant and re-crushed to liberate finer and finer diamonds. The minimum and maximum diamond size that can be recovered by the process is determined by the plant configuration. For the Adamantin Project, the DMS plant targeted stones of +0.3mm square mesh screen size.

Microlithics operates a 1.5 tph Dowding, Reynard and Associates (DRA) DMS plant delivered new in November of 2005. Concentrates from Microlithics were sent to I&M Morrison Geological Ltd for diamond recovery. Microlithics' DMS flow sheet can be found in Appendix 9.

A total of 10 samples were sent to Microlithics, for a total weight of 2.5 tonnes. Table 8 presents the list of samples processed by DMS.

Sample ID	Hole ID	From (m)	To (m)	Date Sampled	Sample Weight (kg)	Sampled By	Sample Type
43363	AD-00-01	32.00	47.24	2016-04-25	131.0	T. Stubley	mb: kimberlite and country rock
43369	AD-02-02	38.10	56.39	2016-04-27	148.0	A. Shiroki	mb: kimberlite and country rock
43371	AD-65-01	30.48	35.05	2016-04-29	25.0	A. Shiroki	possible thin kimberlite dyke
43380	AD-50-01 AD-50-02	12.20 15.20	21.30 29.00	2016-05-28	337.5	R. Hopkins	kimberlite
43383	AD-52-01 AD-52-02 AD-52-03	7.60 7.60 6.90	18.30 24.40 29.00	2016-05-28	337.0	R. Hopkins	kimberlite
43386	AD-59-01	6.10	16.80	2016-05-28	376.0	R. Hopkins	kimberlite
43389	AD-60-01 AD-60-02	9.10 10.70	18.30 24.40	2016-05-28	401.5	R. Hopkins	kimberlite
43507	AD-10-01	1.52	38.10	2016-03-30	506.5	L. Boyce	mafic rock
43510	AD-51-01 AD-51-02	7.62	16.76	2016-04-10	100.0	L. Boyce	kimberlite
43520	AD-123A-01	4.57	16.76	2016-04-28	166.0	L Boyce	mafic rock
Total					2,528.5		

Table 8: DMS Sample List

7.5 2016 RC Drilling Results

Kimberlite Intersections

Of the 78 holes drilled, 17 intersected coherent kimberlites with variable amounts of kimberlite chips. The percentage of kimberlite chips observed in the drill holes is presented in Table 9. Log details are presented in Appendix 7.

Kimberlite Petrographic Descriptions

The following section summarized the petrological observations completed during logging of the kimberlite chips for each kimberlite occurrence. The reader is cautioned that these descriptions are done on small chips, and some information such as contact relationships, olivine percentages and sizes, are not observed at the same level of detail as if the rock came from drill core.

The coherent kimberlite intersections can be divided in three groups:

- Group A: kimberlites located on the northern portion of the property and comprising the intersections observed in drill holes AD-17-01, AD-31-01, AD-01A-01, AD-01B-01 and AD-104-01. They are classified as carbonate, phlogopite and perovskite kimberlite.
- Group B: kimberlites located in the central portion of the property and found in drill hole AD-50-01, AD-50-02, AD-52-01, AD-53-01, AD-53-02 and AD-53-03. These intersections are classified as phlogopite, perovskite, spinel and +/- monticellite kimberlite. Apatite is also commonly observed in the groundmass.
- Group C: kimberlites located in the southern portion of the property and found in drill holes AD-00-01, AD-02-02, AD-59-01, AD-60-01, AD-60-02 and AD-62-01. These kimberlites contain significantly more carbonate in the groundmass then the other kimberlite observed on the property. They were classified as carbonate, phlogopite, perovskite and spinel kimberlite.

Table 10 presents a summary of petrological observations for the different kimberlite groups. Details of petrology logging can be found in Appendix 7.

Kimberlite from Group B was tested with 6 drill holes in order to better understand the strike and dip of the dyke. From the interpretation of the drill section the dyke may strike to the northwest at approximately 10 degrees as noted on Figure 5.

Three drill holes were completed on kimberlites from Group C. Only 2 drill holes in occurrence AD-60 were from the same setup and indicated that the dyke may dip shallowly to the north east (Figure 6).

All the other kimberlite occurrences were tested with only one drill hole and due to the nature of the RC drilling no interpretation of their strike or dip is possible and no sections are warranted.

Table 9: Intersection with Kimberlite Chips

Hole ID	OVB	Kimberlite Intersections		Total Length	Kimberiit e Group	Comments	
	(m)	From (m)	To (m)	(m)			
AD-01A-01		6.1	7.62	1.52		<50% to 5% Kimberlite chips	
		12.19	13.72	1.53		<50% to 5% Kimberlite chips	
	2.29	18.29	19.81	1.52	1	<50% to 5% Kimberlite chips	
		25.91	27.43	1.52	1	>50% Kimberlite chips	
		27.43	28.96	1.53	1	<50% to 5% Kimberlite chips	
AD-01B-01	12.19	18.29	21.34	3.05	A	<5% Kimberlite chips	
AD-17-01	6.096	18,29	21.34	3.05		>50% Kimberlite chips	
AD-31-01	12.19	16.75	19.81	3.05	1	<5% Kimberlite chips	
		35.05	36.58	1.53		<50% to 5% Kimberlite chips	
AD-104	10.67	36.58	38.1	1.52		>50% Kimberlite chips	
		38.1	39.62	1.52		<50% to 5% Kimberlite chips	
		12.19	21.34	9.15		>50% Kimberlite chips	
AD-50-01	9.14	21.34	22.86	1.52		<50% to 5% Kimberlite chips	
		15.24	27.43	12.19		>50% Kimberlite chips	
AD-50-02	12.19	27.43	28.96	1.53	1	<50% to 5% Kimberlite chips	
		1.52	10.67	9.15	1	>50% Kimberlite chip5	
		10.67	12.19	1.52	-	<50% to 5% Kimberlite chips	
AD-51-01	1.52	12.19	13.72	1.53		>50% Kimberlite chips	
		13.72	16.76	3.04		<50% to 5% Kimberlite chips	
	1.52	6.1	15.24	9.14	В	>50% Kimberlite chips	
AD-52-01		15.24	18.29	3.05		<5% Kimberlite chips	
	3.05	4.57	7.62	3.05		<5% Kimberiite chips	
		7.62	9.14	1.52		>50% Kimberlite chips	
AD-52-02		9.14	10.67	1.53		<50% to 5% Kimberlite chips	
		10.67	19.81	9.14		>50% Kimberlite chips	
	2	19.81	21.36	1.55		<50% to 5% Kimberlite chips	
	3.05	6.1	7.62	1.52	1	<50% to 5% Kimberlite chips	
AD-52-03		7.62	15.24	7.62		>50% Kimberlite chips	
		15.24	19.81	4.57		<50% to 5% Kimberlite chips	
	7.62	33.53	35.05	1.52	-	<50% to 5% Kimberlite chips	
		35.05	39.62	4.57		>50% Kimberlite chips	
AD-00-01		39.62	41.15	1.53		<50% to 5% Kimberlite chips	
		41.15	42.67	1.52		<5% Kimberlite chips	
		42.67	45.72	3.05		>50% Kimberlite chips	
	3.05	36.58	44.2	7.62		<50% to 5% Kimberlite chips	
40.03.03		44.2	45.72	1.52		>50% Kimberlite chips	
AD-02-02		45.72	50.29	4.57		<50% to 5% Kimberlite chips	
		51.82	56.39	4.57		<5% Kimberite chips	
AD 50.01	4.57	6.1	15.24	9.14	С	>50% Kimberlite chips	
AD-59-01		15.24	16.76	1.52		<50% to 5% Kimberlite chips	
AD 60.01	3.96	9.14	15.24	6.1		>50% Kimberlite chlos	
ND-00-01		15.24	18.29	3.05		<5% Kimberlite chlps	
	6.1	10.67	12.19	1.52		<50% to 5% Kimberlite chips	
		12.19	13.72	1.53		>50% Kimberlite chips	
AD-60-02		13.72	15.24	1.52		<50% to 5% Kimberlite chips	
		15.24	19.81	4.57		>50% Kimberlite chips	
		19.81	22.86	3.05		<5% Kimberlite chips	
AD-62-01	4.57	24.38	25.91	1.53		>50% Kimberlite chips	

Table 10: Kimberlite Intersection Description Summary

		Group A	Group B	Group C
	Drill Holes	AD-17-01, AD-31-01, AD- 01A-01, AD-01B-01 and AD- 104-01	AD-50-01, AD-50-02, AD-52- 01, AD-53-01, AD-53-02 and AD-53-03	AD-00-01, AD-02-02, AD-59- 01, AD-60-01 and AD-60-02
Rock	Texture	Coherent	Coherent	Coherent
	Classic Texture	нк	НК	нк
	Colour	Light grey to grey-green to light brown	Grey to brown	Grey to brown
	Indicators	limenite	limenite	Not observed in Thin section
	Classification	Carbonate, serpentine, phiogopite and perovskite kimberlite	Carbonate, serpentine phiogopite, perovskite, spinel, apatite, monticellite kimberiite	Carbonate, phiogopite perovskite and kimberiite
Xenoliths	Туре	Granitoids		
	Abundance	<1%		
	Shape	Round		
	Alteration State	Strongly altered		
Olivine	Content	45-50%	30-50%	40-45%
	Size	(f) m-c (vc), quite variable	f-m (c to vc)	f-m (c)
	Macrocrysts	15-30%	15-30%	20-25%
	Phenocrysts	20-30%	15-20%	20%
	Replacement	Partial to complete by serpentine and carbonate	Partly fresh to complete by serpentine	Fresh to complete by serpentine and carbonate
Groundmass /interclast matrix	Primary	Carbonate, serpentine, phiogopite, perovskite and apatite	Carbonate, serpentine, phiogopite, perovskite, spinel and apatite	carbonate, serpentine?, phiogopite perovskite, spinel and possible monticellite
	Secondary	Serpentine and carbonate. Clay and clinopyroxene observed in AD-01A intersections.	Serpentine, carbonate, clay and clinopyroxene.	Serpentine, clay, carbonate and possibly clinopyroxene
Other	Distinguishing Characteristics	Oxides found in the olivine fractures and also on their rim. Red alteration on the olivine. Perovskite is greater than spinel (% and size). Phiogopite present as both macrocrysts and in the groundmass as elongated lath. Phiogopites are zoned.	Oxides are found on the olivine rim and on their fractures. Perovskite is greater than spinel (% and size). One some intersection when the phiogopite in the groundmass is long and polkilitic the phiogopite macrocrysts are not observed. When the phiogopite in the groundmass is small, phiogopite macrocrysts are observed. In both cases, the phiogopite is zone.	Groundmass is characterised by the abundance of carbonate. Oxides are found on the olivine rim and on their fractures. Perovskite is greater than spinel (% and size). Phiogopite in the groundmass is small. Phiogopite macrocrysts are observed. Perovskite is greater than spinel (% and size).

Figure 5: Cross Section AD-50, AD-51 and AD-52

Figure 6: Cross Section AD-60

Visual Indicator Mineral Observation and Picking Results

Size fractions between 0.25 and 0.5 mm, for both the overburden and the rock samples, were observed for indicator mineral by I&M Morison Geological Services Ltd.

Of the 20 overburden samples sent for KIM testing, 19 returned indicator minerals. Ilmenite is the most common indicator mineral with up to 213 counts, followed by pyrope garnets with up to 46 counts, eclogite garnets with up to 41 counts, chromite with up to 9 counts, and olivine with up to 11 counts. No chrome diopside or diamonds were observed in the overburden samples in the drill holes. Sample 43521 is the sample with the most kimberlite indicator minerals. Sample 43508 did not return any indicator minerals. Appendix 10 shows results of the indicator mineral for each sample collected in the overburden.

Of the 12 rock samples sent for KIM testing, 9 returned indicator minerals. Ilmenite is the most common indicator mineral with up to 360 counts, followed by pyrope garnets with up to 60 counts, eclogite garnets with up to 57 counts, chrome diopside with up to 41 counts, olivine with up to 23 counts and chromite with up to 12 counts. No diamonds were observed. Kimberlites from the central and northern part of the property are marked by the presence of pyrope and or eclogite garnets, as well as ilmenite. However, kimberlite from AD-50, AD-51 and AD-52 (or from Group B) occurrence have noticeably more chromite and chrome diopside compared to the other occurrences on the north side of the property. Kimberlite from the southern part of the property (or from Group C) are characterised by iow counts of garnets and ilmenites, and seem to be different then kimberlite from the central and north portion of the property. Appendix 10 is presents the KIM indicator results during the RC drilling.

Microdiamond Sampling Results

Of the 18 samples sent for caustic fusion, no samples came back with diamonds. Laboratory results are presented in Appendix 11.

One sample of RC chips (43374) from a gabbro was spiked with natural stones as part of Stornoway's internal QA/QC procedures for the caustic fusion processing. As expected, only the spikes that were inserted in the samples were recovered from this sample, which helps to demonstrate the quality of the laboratories.

DMS Sampling Results

No diamonds were observed in the 10 samples that were sent for DMS testing. Laboratory results are presented in Appendix 12.

Two non-kimberlitic RC chip samples (43507 and 43520) were chosen and spiked with synthetic diamonds for quality control purposes. All the diamonds in the size fraction above 0.5mm were recovered, demonstrating that the DMS plant was efficient in recovering diamonds, and supporting the interpretation that the Adamantin kimberlites are not diamond bearing.

8. Interpretation

8.1 Discussion of Results

Kimberlites found on the Adamantin Property can be divided in three main groups based on kimberlite indicator mineralogy and petrographic characteristics.

- Group A can be classified as a carbonate, phlogopite and perovskite kimberlite. Eclogite and pyrope garnets and ilmenite are the main indicator minerals in these kimberlites.
- Group B is classified as a phlogopite, perovskite, spinel and +/- monticellite kimberlite. These
 kimberlites contain more chromite and chrome diopside, as well as eclogite and pyrope garnets
 and ilmenites.
- Group C: carbonate, phlogopite, perovskite and spinel kimberlite. Only olivine was observed in the concentrate of these kimberlites.

Kimberlites found during the winter 2016 drill program are non-diamondiferous. This is a disappointing outcome, especially since one till sample from 2015 contained a diamond.

Thin lake ice during the winter of 2016 prevented Stornoway from drilling several targets. A total of seven lake targets could not be tested.

9. Conclusion and Recommendations

Positive indicator mineral results from the 2015 till sampling program were followed up during the winter 2016 with RC drilling. This drill program was successful in identifying 11 kimberlite occurrences on the Adamantin property.

The kimberlite from Group B could in part explain some of the surface indicator mineral trains, but do not explain the presence of the diamond in the till.

Future work on the Adamantin Property would involve an infill till sampling program in areas where the indicator trains are not well defined.

Some of the anomalies drilled during the winter were not well explained by the geology or more detail on the kimberlite shape was needed. Detail ground geophysical surveys could be completed on selected targets to better define the shape of these anomalies and determine if more drilling is required.

Only government geophysical survey data was available for portions of the Adamantin Property. New geophysical airborne surveys should be completed to add more detail and find new targets for drilling.

Should the money be available, additional RC drilling is recommended to test the remaining targets under the lakes. Core drilling is also recommended to test known occurrence in an effort to get better details on the kimberlite geology and their relation to country rock.

10. References

Avramtchev, L., 1983. Catalogue des Gites Mineraux du Québec : Région de la Baie James. Gouvernement du Québec, Ministère de l'Énergie et des Ressources, Service de la GéoInformation. DPV 940.

Brack, W., 1998 (GM 56612) Report on the Otish, Diamond Prospect. Report for Ditem Exploration Inc and Exploration & Mines Uranerz L.

Brack, W., 1999 (GM 56615) Report on the Diamond Drilling Activities in 1998, Otish Mountains Project. Report for Ditem Exploration Inc. and Exploration & Mines Uranerz L.

Chown, E.H., 1960. Preliminary Report on the Papachouésati River Area, Mistassini Territory. Province of Quebec, Department of Mines, Geological Survey Branch. RP 415.

Chown, E.H., 1971. Tichégami Area Geological Report 144. Province of Québec, Department of Natural Resources, Mines Branch, Geological Exploration Service. RG 144.

Dubé C., Franconi, A., Hocq, M., Remick, J.H., Sharma, K.N.M., Avramtchev, L. and Ducrot, C., 1976,. Compilation géologique de territoire de la baie James. Ministère des Richesse Naturelles, Québec. Services de la documentation Technique. DP 358.

Fitzgerald, C.E., Hetman, C.M., Lépine, I., Skelton, D.S. and McCandless, T.M., 2009. The internal geology and emplacement history of the Renard 2 kimberlite, Superior Province, Québec, Canada. Lithos, 112, Supplement 1. Proceedings of the 9th International Kimberlite Conference, pp. 513-528.

Houle, P. 2003. James Bay Region Central Part of the Superior Province (Opatica, Opinaca, Nemiscau, and La Grande Subprovinces) in Report on mineral exploration activities in Québec

Houle, P., 2006. James Bay Region, Central Superior Province (Opatica, Opinaca, Nemiscau, and La Grande Subprovinces): Report on exploration activity, accessed 31 July 2008, posted to Government of Québec Resources Naturelles et Faune website,

Moorhead J., Beaumier, M., Girard, R., and Heaman, L. 2003. Distribution, structural controls and ages of kimberlite fields in the Superior Province of Québec. Extended Abstract, Programme and Abstracts of the 8th International Kimberlite Conference, Victoria, British Columbia, Canada.

Moukhsil A., Legault, M., Boily, M., Doyon, J., Sawyer, E., Davis, D.W., 2007. Geological and metallogenic synthesis of the Middle and Lower Eastmain greenstone belt (Bale-James). ET 2007-01.

Percival, J.A., 2006. Mineral deposits of Canada: geology and metallogeny of the Superior Province, Canada. Geological Survey of Canada and the Mineral Deposits Division of the Geological Association of Canada

Stornoway September 1, 2016 press release

Villeneuve, P. and Girard, G., 2006 (GM 62606) Diamond Exploration in Otish and Papaskwasati Proterozoic Basin Area Summer and Fall 2005 Campaigns Hotish Project: Field Work and Synthesis Report. Presented to Vaaldiam Resource, ltd.

11. Certificates of Qualification

- I, Isabelle Lépine, Geo. (QC and BC) of Port Moody, British Columbia, Canada do hereby certify that:
- I am a Geologist for Stornoway Diamond Corporation (118-980 West 1st Street, North Vancouver, British Columbia, V7P 3N4, Canada) and author of this report dated December 9, 2016 and prepare for Stornoway Diamond Corporation, Vancouver, British Columbia, V7J 3M4, Canada.
- 2) I graduated from Université de Montréal, Montréal, Québec (M.Sc. Metamorphic Geology 1998) and (B.Sc. (Hons) 1994) and have practiced my profession continuously since graduation.
- 3) I am a member in good standing of the Ordre des Géologues du Québec (OGQ permit # 415). I am also a member in good standing of Association of Professional Engineers and Geoscientists of British Columbia (APEG BC license # 30109).
- 4) I have been employed by Stornoway Diamond Corporation since 2007 and have worked in the diamond exploration industry since 2003.
- 5) I supervised the work related to this report and have visited the Property subject to this report twice in 2016.

"Signed and sealed", dated this 9th day of December 2016, at North Vancouver, British Columbia, Canada. Revised June 28, 2018.

Isabelle Lépine, Geo. (QC, BC).OGC permit #415

12. Appendices

Appendix 1 – Claim List

.

Appendix 2 – 2015 Kimberlite Indicator Mineral (KIM) sampling List

Appendix 3 – Microlithics Laboratories Till Sample Processing Flow Sheet

Appendix 4 – I&M Morrison Geological Ltd Visual Picking Processing Sheet

Appendix 5 – Ground Geophysics Anomaly Check Detail Notes

Appendix 6 – Summer 2015 Till Sampling Visual Picking Results

Appendix 7 - Field Logs, Review Comments and Thin Section Descriptions

Field Logs

Appendix 7 - Field Logs, Review Comments and Thin Section Descriptions

Review Comments

Appendix 7 - Field Logs, Review Comments and Thin Section Descriptions

Thin Section Descriptions

Appendix 8 – Caustic Fusion Flow Sheet

Appendix 9 – Dense Media Separation (DMS) Flow Sheet

Appendix 10 – Kimberlite Indicator Mineral (KIM) Analytical Results

Appendix 11 – Caustic Fusion Analytical Results

Appendix 12 – Dense Media Separation (DMS) Analytical Results

Appendix 2 – 2015 Kimberlite Indicator Mineral (KIM) sampling List

SAMPLE	DATE	DATUM	ZONE	EASTING	NORTHING	DEPTH (m)	COLOUR	SIZE (kg)	SAMPLER	TYPE	QUALITY	TERRAIN COMMENTS
43100	Aug 17, 2015	NAD83	18	663183	5754044	0.1	grey	10	Joe	till	2.5	till veneer on granite outcrop, essentially no till in area, mostly just moss on outcrop, very hard to find a sample
43101	Aug 17, 2015	NAD83	18	663415	5754016	0.3	brown	10	Joe	till	4	till blanket in forest
43102	Aug 17, 2015	NAD83	18	663666	5754024	0.2	grey	10	Joe	till	4	till blanket on mountain top
43103	Aug 17, 2015	NAD83	18	664011	5754031	0.25	brown	10	Joe	till	2.5	till pocket on mountain slope, cliffy area, sandy till, possibly re-worked?
43104	Aug 17, 2015	NAD83	18	665462	5754734	0.4	grey	10	Joe	till	3.5	till pocket in swampy / boggy area
43105	Aug 17, 2015	NAD83	18	665262	5754691	0.3	grey	10	Joe	till	4	till pocket in forest, very mossy area
43106	Aug 17, 2015	NAD83	18	664976	5754722	0.3	grey	10	Joe	till	3.5	till pocket in forest, mossy area
43107	Aug 17, 2015	NAD83	18	664752	5754744	0.4	grey / red-brown	10	Joe	till	3.5	till pocket in forest, very mossy area, top grey, bottom red-brown
43108	Aug 17, 2015	NAD83	18	664522	5754667	0.2	grey	10	Joe	till	4	till blanket in forest, very mossy area
43109	Aug 17, 2015	NAD83	18	664339	5754758	0.2	grey	10	Joe	till	3.5	till pocket in forest, very mossy area, difficult to find sample
43110	Aug 18, 2015	NAD83	18	663802	5754859	0.2	grey	10	Joe	till	4.5	till blanket on hill 80 m from lake
43111	Aug 18, 2015	NAD83	18	663570	5754819	0.3	dark brown	10	Joe	till	3	till pocket beside boulder field
43112	Aug 18, 2015	NAD83	18	663245	5754816	0.3	grey	10	Joe	till	4	till blanket on small hill
43113	Aug 18, 2015	NAD83	18	662208	5754955	0.2	grey	10	Joe	till	3.5	till blanket on small hill
43114	Aug 18, 2015	NAD83	18	662532	5754959	0.35	grey / brown	10	Joe	till	4	till blanket on small hill, top grey, bottom brown
43115	Aug 18, 2015	NAD83	18	663038	5755157	0.2	grey	10	Joe	till	4.5	till blanket on small hill
43116	Aug 18, 2015	NAD83	18	663246	5755274	0.3	grey	10	Joe	till	4	till blanket on hill top
43117	Aug 18, 2015	NAD83	18	663533	5755325	0.2	grey	10	Joe	till	4	till blanket on bouldery hill top
43118	Aug 18, 2015	NAD83	18	662964	5755552	0.15	grey / brown	10	Joe	till	4	till blanket on slope, top grey, bottom brown
43119	Aug 18, 2015	NAD83	18	666052	5755522	0.2	brown	10	Joe	till	4	till blanket on small hill
43120	Aug 18, 2015	NAD83	18	665715	5755478	0.35	grey	10	Joe	till	3.5	till blanket 50 m from swamp
43121	Aug 18, 2015	NAD83	18	665715	5755478	0.35	grey	10	Joe	till	3.5	till blanket 50 m from swamp
43122	Aug 18, 2015	NAD83	18	665185	5755469	0.3	dark brown	10	Joe	till	3	till blanket in area without trees
43123	Aug 18, 2015	NAD83	18	664861	5755605	0.2	grey	10	Joe	till	4.5	till blanket at base of small slope
43124	Aug 18, 2015	NAD83	18	664037	5755876	0.4	grey / dark brown	10	Joe	till	3.5	till blanket in forest, top grey, bottom dark brown
43125	Aug 18, 2015	NAD83	18	664521	5755734	0.2	grey	10	Joe	till	3	till sample in woods
43126	Aug 18, 2015	NAD83	18	664260	5755824	0.2	grey	10	Joe	till	4	till blanket on hill top

Appendix 2: Adamantin 2015 Kimberlite Indicator Mineral Sample List

SAMPLE	DATE	DATUM	ZONE	EASTING	NORTHING	DEPTH (m)	COLOUR	SIZE (kg)	SAMPLER	ТҮРЕ	QUALITY	TERRAIN COMMENTS
43127	Aug 18, 2015	NAD83	18	662628	5755993	0.2	grey	10	Joe	till	4	till blanket on small hill
43128	Aug 18, 2015	NAD83	18	662205	5756947	0.4	grey	10	Joe	till	3	till blanket 10 m from highest elevation on mountain
43129	Aug 18, 2015	NAD83	18	664693	5756599	0.35	grey	10	Joe	till	2.5	till blanket half-way up mountain, sandy till, possibly re-worked?
43130	Aug 19, 2015	NAD83	18	663751	5755883	0.3	grey	10	Joe	till	3.5	till blanket in woods
43131	Aug 19, 2015	NAD83	18	663384	5755858	0.3	brown	10	Joe	till	3.5	till sample on small hill top next to boulder field
43132	Aug 19, 2015	NAD83	18	663201	5756045	0.3	grey	10	Joe	till	3	till blanket in woods
43133	Aug 19, 2015	NAD83	18	663262	5756133	0.3	red-brown	10	Joe	till	3.5	till blanket near rocky cliff in high- elevated area, very hard to find till in area
43134	Aug 19, 2015	NAD83	18	663531	5756256	0.3	grey	10	Joe	till	4	till blanket on hill top
43135	Aug 19, 2015	NAD83	18	663104	5756342	0.2	grey	10	Joe	till	2.5	till blanket next to large outcrop of granite boulders, very hard to find till in area
43136	Aug 19, 2015	NAD83	18	664372	5756617	0.2	brown	10	Joe	till	3	till blanket three-quarters the way down mountain on a slight slope
43137	Aug 19, 2015	NAD83	18	664122	5756656	0.3	brown	10	Joe	till	3.5	till blanket on small hill
43138	Aug 19, 2015	NAD83	18	665047	5756560	0.3	grey	10	Joe	till	3	till blanket on small hill with few trees
43139	Aug 19, 2015	NAD83	18	665458	5756551	0.3	brown	10	Joe	till	3	till blanket in flat bouldery area
43140	Aug 19, 2015	NAD83	18	665767	5756534	0.3	grey	10	Joe	till	4	till blanket in flat clear bouldery area
43141	Aug 19, 2015	NAD83	18	666130	5756460	0.2	red-brown	10	Joe	till	4	no comments (forgot)
43142	Aug 19, 2015	NAD83	18	664903	5756986	0.3	grey	10	Joe	till	3	sandy till, possibly reworked 30 m from river
43143	Aug 19, 2015	NAD83	18	665236	5757011	0.3	brown	10	Joe	sand	1.5	completely sorted sand on top of hill, no pebbles or clasts
43144	Aug 19, 2015	NAD83	18	665754	5757216	0.2	brown	10	Joe	till	2.5	till blanket on hill top clear of trees
43145	Aug 19, 2015	NAD83	18	666819	5756432	0.3	grey	10	Joe	till	4	till blanket on small slope in clear area
43146	Aug 19, 2015	NAD83	18	666518	5756407	0.3	grey	10	Joe	till	2.5	till veneer on outcrop on slope
43147	Aug 20, 2015	NAD83	18	663552	5756726	0.2	grey	10	Joe	till	4	till blanket in forest
43148	Aug 20, 2015	NAD83	18	663226	5756781	0.2	grey / red-brown	10	Joe	till	3.5	till blanket in forest, top grey, bottom red-brown
43149	Aug 20, 2015	NAD83	18	662913	5756742	0.2	grey	10	Joe	till	4	till blanket on hill

SAMPLE	DATE	DATUM	ZONE	EASTING	NORTHING	DEPTH (m)	COLOUR	SIZE (kg)	SAMPLER	TYPE	QUALITY	TERRAIN COMMENTS
43150	Aug 20, 2015	NAD83	18	663839	5756679	0.2	brown	10	Joe	till	3.5	till pocket on mountain slope, bouldery area
43151	Aug 20, 2015	NAD83	18	663839	5756679	0.2	brown	10	Joe	till	3.5	till pocket on mountain slope, bouldery area
43152	Aug 20, 2015	NAD83	18	663746	5757882	0.3	grey / orange- brown	10	Joe	till	3	till blanket on hill, top grey, bottom orange-brown
43153	Aug 20, 2015	NAD83	18	663424	5757858	0.3	grey / red-brown	10	Joe	till	3	till blanket in forest on hill, top grey, bottom red-brown
43154	Aug 20, 2015	NAD83	18	663999	5757954	0.2	grey	10	Joe	till	4	till blanket on hill
43155	Aug 20, 2015	NAD83	18	664267	5757977	0.2	grey	10	Joe	till	4	till blanket on hill
43156	Aug 20, 2015	NAD83	18	664646	5758000	0.2	grey	10	Joe	till	3.5	till pocket on very bouldery hill side
43157	Aug 20, 2015	NAD83	18	664867	5757961	0.2	grey / orange- brown	10	Joe	till	3.5	till blanket on small hill, top grey, bottom orange-brown
43158	Aug 21, 2015	NAD83	18	662230	5757951	0.3	grey	10	Joe	till	4.5	till blanket half-way up steep slope
43159	Aug 21, 2015	NAD83	18	662566	5757907	0.2	brown	10	Joe	till	4	till blanket on small hill
43160	Aug 21, 2015	NAD83	18	662894	5757909	0.2	brown	10	Joe	till	3.5	till blanket on small gradual hill
43161	Aug 21, 2015	NAD83	18	663126	5757901	0.2	grey	10	Joe	till	4	till blanket on bouldery hill
43162	Aug 21, 2015	NAD83	18	665128	5757616	0.3	grey	10	Joe	till	3.5	till blanket on top of ridge
43163	Aug 21, 2015	NAD83	18	665363	5757643	0.3	grey / brown	10	Joe	till	3.5	till blanket on small hill clear of trees, top grey, bottom brown
43164	Aug 21, 2015	NAD83	18	665644	5757657	0.2	grey / brown	10	Joe	till	4.5	till blanket on small hill clear of trees, top grey, bottom brown
43165	Aug 21, 2015	NAD83	18	665918	5757628	0.2	grey / brown	10	Joe	till	3	till blanket at base of gradual slope by border of tree area, top grey, bottom brown
43166	Aug 21, 2015	NAD83	18	666247	5757509	0.35	grey / red-brown	10	Joe	till	3.5	till blanket on bouldery hill top clear of trees, top grey, bottom red-brown
43167	Aug 21, 2015	NAD83	18	666583	5757379	0.2	grey / red-brown	10	Joe	till	3.5	till blanket half-way down hill on flat section, top grey, bottom red-brown
43168	Aug 21, 2015	NAD83	18	666833	5757558	0.3	grey / red-brown	10	Joe	sand	2	sand from small hill clear of trees, top grey, bottom red-brown
43169	Aug 21, 2015	NAD83	18	667202	5757543	0.3	grey	10	Joe	till	4	till blanket on hill top beside tree line
43170	Aug 21, 2015	NAD83	18	666332	5758846	0.2	brown	10	Joe	till	4	till blanket 50 m from swamp

SAMPLE	DATE	DATUM	ZONE	EASTING	NORTHING	DEPTH (m)	COLOUR	SIZE (kg)	SAMPLER	ТҮРЕ	QUALITY	TERRAIN COMMENTS
43171	Aug 21, 2015	NAD83	18	662087	5758676	0.35	grey / red-brown	10	Joe	till	4.5	till blanket on hill top, top grey, bottom red-brown
43172	Aug 21, 2015	NAD83	18	662464	5758896	0.3	grey	10	Joe	till	3.5	till blanket in woods
43173	Aug 21, 2015	NAD83	18	663871	5758906	0.2	brown	10	Joe	till	4	till blanket half-way down small hill
43174	Aug 21, 2015	NAD83	18	664392	5758929	0.25	grey	10	Joe	till	4	till blanket 10 m down from highest elevation on hill
43175	Aug 21, 2015	NAD83	18	665219	5758800	0.3	red-brown	10	Joe	till	3.5	till blanket on hill top
43176	Aug 21, 2015	NAD83	18	665593	5758885	0.2	grey / red-brown	10	Joe	till	3.5	till blanket on small clear hill, top grey, bottom red-brown
43177	Aug 21, 2015	NAD83	18	667051	5758748	0.3	red-brown	10	Joe	till	4.5	till blanket on small hill top in clear area
43178	Aug 22, 2015	NAD83	18	663398	5758917	0.4	brown	10	Joe	till	4	till blanket on steep mountain slope
43179	Aug 22, 2015	NAD83	18	662972	5758873	0.5	brown	10	Joe	till	4	till blanket in forest
43180	Aug 22, 2015	NAD83	18	662199	5759335	0.25	grey / orange- brown	10	Joe	till	3	till blanket in forest on mountain top, top grey, bottom orange-brown
43181	Aug 22, 2015	NAD83	18	662623	5759724	0.1	grey	10	Joe	till	3.5	till veneer in forest on mountain slope
43182	Aug 22, 2015	NAD83	18	663239	5760072	0.25	grey	10	Joe	till	3.5	till blanket on hill
43183	Aug 22, 2015	NAD83	18	664088	5759669	0.3	orange-brown	10	Joe	till	3.5	till blanket on hill top
43184	Aug 22, 2015	NAD83	18	663854	5759316	0.25	brown	10	Joe	till	3.5	till trap on summit of mountain
43185	Aug 22, 2015	NAD83	18	664353	5759313	0.3	grey / orange- brown	10	Joe	till	4	till blanket on shelf adjacent to mountain, top grey, bottom orange- brown
43186	Aug 22, 2015	NAD83	18	664541	5759202	0.25	grey / brown	10	Joe	till	3.5	till pocket / veneer near summit of mountain, top grey, bottom brown
43187	Aug 22, 2015	NAD83	18	664828	5759108	0.3	grey / orange- brown	10	Joe	till	4	till blanket on hill, top grey, bottom orange-brown
43188	Aug 22, 2015	NAD83	18	665186	5759443	0.35	brown / red- brown	10	Joe	till	4	till blanket on hill slope, top brown, bottom red-brown
43189	Aug 22, 2015	NAD83	18	666022	5759259	0.1	brown	10	Joe	till	4	till blanket on hill
43190	Aug 22, 2015	NAD83	18	667508	5759262	0.2	grey	10	Joe	till	4	till blanket
43191	Aug 22, 2015	NAD83	18	668588	5759286	0.1	brown	10	Joe	till	4	till blanket
43192	Aug 22, 2015	NAD83	18	669089	5759339	0.1	grey	10	Joe	till	3.5	till blanket on hill

SAMPLE	DATE	DATUM	ZONE	EASTING	NORTHING	DEPTH (m)	COLOUR	SIZE (kg)	SAMPLER	ТҮРЕ	QUALITY	TERRAIN COMMENTS
43193	Aug 22, 2015	NAD83	18	669916	5759352	0.15	grey / orange- brown	10	Joe	till	3	sandy till blanket, possibly reworked?, top grey, bottom orange- brown
43195	Aug 22, 2015	NAD83	18	671626	5759450	0.3	brown	10	Joe	till	2.5	sandy till, possibly reworked
43196	Aug 22, 2015	NAD83	18	671327	5760542	0.3	orange-brown	10	Joe	till	3.5	till blanket
43197	Aug 22, 2015	NAD83	18	671442	5761337	0.25	orange-brown	10	Joe	till	4	till blanket
43198	Aug 22, 2015	NAD83	18	671109	5761989	0.25	grey / orange- brown	10	Joe	till	4	till blanket on top of bouldery hill, top grey, bottom orange-brown
43199	Aug 22, 2015	NAD83	18	670467	5760993	0.2	grey / orange- brown	10	Joe	till	4	till blanket on small hill top, top grey, bottom orange-brown
43200	Aug 10, 2015	NAD83	18	662741	5750879	0.4	grey	10	Joe	till	4.5	till veneer on small hill
43201	Aug 10, 2015	NAD83	18	662950	5751159	0.3	brown	10	Joe	till	3.5	till veneer on small hill
43202	Aug 10, 2015	NAD83	18	665446	5752280	0.15	tan	10	Joe	till	2.5	difficult to find good material, probably reworked till
43203	Aug 10, 2015	NAD83	18	665817	5752543	0.3	tan	10	Joe	till	3	till veneer on top of hill
43204	Aug 10, 2015	NAD83	18	663432	5753630	0.3	brown	10	Joe	till	3	reworked till on small ledge at base of small cliff
43205	Aug 10, 2015	NAD83	18	664508	5757182	0.5	brown	10	Joe	till	3.5	till blanket on hill
43206	Aug 10, 2015	NAD83	18	664721	5757026	0.5	brown	10	Joe	till	3.5	till blanket on hill
43207	Aug 11, 2015	NAD83	18	669857	5765220	0.2	orange-brown	10	Joe	till	4	till blanket on small local high in low- lying area
43208	Aug 11, 2015	NAD83	18	668323	5764665	0.3	red-brown	10	Joe	till	3.5	till from base of large hill
43209	Aug 11, 2015	NAD83	18	665370	5761239	0.3	orange-brown	10	Joe	till	4	till shelf or pocket in otherwise very bouldery area
43210	Aug 11, 2015	NAD83	18	665434	5760571	0.3	grey / red-brown	10	Joe	till	3.5	till pocket in otherwise bouldery area. Till grey on top, red-brown at bottom (i.e. maybe 2 layers?)
43211	Aug 11, 2015	NAD83	18	666403	5758151	0.2	grey	10	Joe	till	3.5	till blanket on hill top
43212	Aug 11, 2015	NAD83	18	661401	5752101	0.25	grey	10	Joe	till	4	till blanket in trees 40 m from swamp
43213	Aug 12, 2015	NAD83	18	663420	5756372	0.3	grey / brown	10	Joe	till	4	till blanket on top of hill, top grey, bottom brown
43214	Aug 12, 2015	NAD83	18	662385	5750753	0.3	grey	10	Joe	till	4	till blanket
43215	Aug 12, 2015	NAD83	18	662621	5750698	0.25	grey	10	Joe	till	3.5	till veneer in very mossy area
43216	Aug 12, 2015	NAD83	18	662848	5750771	0.3	orange-brown	10	Joe	till	4	till sample 10 m from swamp

SAMPLE	DATE	DATUM	ZONE	EASTING	NORTHING	DEPTH (m)	COLOUR	SIZE (kg)	SAMPLER	ТҮРЕ	QUALITY	TERRAIN COMMENTS
43217	Aug 12, 2015	NAD83	18	663177	5750757	0.25	grey-tan	10	Joe	till	3	till blanket in rocky area
43218	Aug 12, 2015	NAD83	18	663400	5750764	0.45	grey	10	Joe	till	4.5	till blanket on ridge
43219	Aug 12, 2015	NAD83	18	663652	5750776	0.55	red-brown	10	Joe	till	3.5	till blanket
43220	Aug 12, 2015	NAD83	18	663994	5750586	0.25	grey	10	Joe	till	3	bouldery area, difficult to find good till
43221	Aug 12, 2015	NAD83	18	664133	5750665	0.2	grey	10	Joe	till	3.5	till blanket on small hill 10 m from lake
43222	Aug 12, 2015	NAD83	18	664382	5750642	0.2	grey	10	Joe	till	4	till blanket on small hill 20 m from swamp
43223	Aug 12, 2015	NAD83	18	664695	5750809	0.15	grey	10	Joe	till	4	till blanket on slope
43224	Aug 12, 2015	NAD83	18	664965	5750857	0.15	grey	10	Joe	till	4	till veneer in rocky area
43225	Aug 12, 2015	NAD83	18	665266	5750809	0.15	grey	10	Joe	till	3.5	till blanket on top of hill
43226	Aug 12, 2015	NAD83	18	665603	5750830	0.25	grey	10	Joe	till	4	till blanket on small hill
43227	Aug 12, 2015	NAD83	18	665620	5751175	0.3	grey / red-brown	10	Joe	till	3.5	till blanket on bouldery hill, top grey, bottom red-brown
43228	Aug 12, 2015	NAD83	18	665187	5751453	0.3	grey / red-brown	10	Joe	till	3.5	till blanket 15 m from swamp, top grey, bottom red-brown
43229	Aug 12, 2015	NAD83	18	665348	5751683	0.2	grey	10	Joe	till	3.5	till blanket on hill top
43230	Aug 12, 2015	NAD83	18	665932	5751775	0.2	grey	10	Joe	till	3.5	till blanket on bouldery hill top
43231	Aug 12, 2015	NAD83	18	665932	5751775	0.2	grey	10	Joe	till	3.5	till blanket on bouldery hill top
43232	Aug 12, 2015	NAD83	18	660884	5751639	0.3	grey	10	Joe	till	4	till blanket on hill
43233	Aug 13, 2015	NAD83	18	665772	5751796	0.25	grey	10	Joe	till	3	till blanket on top of hill
43234	Aug 13, 2015	NAD83	18	665913	5752415	0.3	grey	10	Joe	till	3	till blanket on hill
43235	Aug 13, 2015	NAD83	18	665635	5752225	0.25	grey	10	Joe	till	2.5	till blanket on bouldery hill top
43236	Aug 13, 2015	NAD83	18	665368	5751889	0.3	grey	10	Joe	till	3	till blanket on hill
43237	Aug 13, 2015	NAD83	18	665218	5751948	0.3	grey	10	Joe	till	3	till blanket on slope
43238	Aug 13, 2015	NAD83	18	665026	5752312	0.3	grey	10	Joe	till	4	till blanket on hill top
43239	Aug 13, 2015	NAD83	18	664751	5752256	0.2	grey	10	Joe	till	2.5	till blanket on hill
43240	Aug 13, 2015	NAD83	18	664490	5751700	0.3	grey	10	Joe	till	3.5	till sample in boggy low-lying area
43241	Aug 13, 2015	NAD83	18	664387	5752252	0.3	grey	10	Joe	till	2.5	till pocket in mossy area
43242	Aug 13, 2015	NAD83	18	664129	5752286	0.3	grey	10	Joe	till	4	till blanket on top of hill

SAMPLE	DATE	DATUM	ZONE	EASTING	NORTHING	DEPTH (m)	COLOUR	SIZE (kg)	SAMPLER	TYPE	QUALITY	TERRAIN COMMENTS
43243	Aug 13, 2015	NAD83	18	663832	5751863	0.3	grey	10	Joe	till	4	till veneer on bouldery hill top
43244	Aug 13, 2015	NAD83	18	663371	5751907	0.25	grey	10	Joe	till	4.5	till blanket on high hill top
43245	Aug 13, 2015	NAD83	18	663530	5752385	0.2	grey	10	Joe	till	3.5	till veneer on top of hill
43246	Aug 13, 2015	NAD83	18	663512	5751587	0.3	grey	10	Joe	till	4.5	till blanket on small hill
43247	Aug 13, 2015	NAD83	18	663177	5751628	0.3	grey	10	Joe	till	3.5	till blanket on hill top
43248	Aug 13, 2015	NAD83	18	662787	5751410	0.2	grey	10	Joe	till	4	till blanket on slope
43249	Aug 13, 2015	NAD83	18	662413	5751296	0.3	grey	10	Joe	till	4	till blanket on top of hill
43250	Aug 13, 2015	NAD83	18	662155	5751652	0.3	grey	10	Joe	till	2.5	till blanket on bouldery hill top
43251	Aug 13, 2015	NAD83	18	661868	5751510	0.3	grey	10	Joe	till	4	till blanket on hill
43252	Aug 13, 2015	NAD83	18	661770	5751649	0.2	grey	10	Joe	till	3	till blanket on top of hill
43253	Aug 13, 2015	NAD83	18	661789	5752140	0.3	grey	10	Joe	till	4	till blanket on bouldery hill top
43254	Aug 14, 2015	NAD83	18	660578	5751925	0.35	grey	10	Joe	till	3	till blanket on hill
43255	Aug 14, 2015	NAD83	18	660258	5752304	0.3	grey	10	Joe	till	3.5	till blanket on mountain top
43256	Aug 14, 2015	NAD83	18	661977	5752502	0.4	dark brown	10	Joe	till	3	till pocket in forest
43257	Aug 14, 2015	NAD83	18	666102	5753198	0.3	grey	10	Joe	till	4	till pocket / veneer on hill top
43258	Aug 15, 2015	NAD83	18	662306	5752474	0.3	dark brown	10	Joe	till	4	till blanket in mossy area
43259	Aug 15, 2015	NAD83	18	662596	5752482	0.2	grey	10	Joe	till	4.5	till blanket on small hill top
43260	Aug 15, 2015	NAD83	18	662929	5752485	0.3	grey	10	Joe	till	4.5	till blanket 20 m from swamp
43261	Aug 15, 2015	NAD83	18	662929	5752485	0.3	grey	10	Joe	till	4.5	till blanket 20 m from swamp
43262	Aug 15, 2015	NAD83	18	663164	5752487	0.5	brown	10	Joe	till	4	till blanket on slope
43263	Aug 15, 2015	NAD83	18	663740	5752494	0.2	grey	10	Joe	till	3.5	till pocket on top of mountain
43264	Aug 15, 2015	NAD83	18	666158	5752743	0.2	dark brown	10	Joe	till	4	till pocket on bouldery hill top
43265	Aug 15, 2015	NAD83	18	665562	5752750	0.1	grey	10	Joe	till	3.5	till blanket on bouldery slope
43266	Aug 15, 2015	NAD83	18	665950	5752744	0.3	brown	10	Joe	till	4.5	till blanket on bouldery hill top
43267	Aug 15, 2015	NAD83	18	665756	5752734	0.25	brown	10	Joe	till	4.5	till blanket on hill top 10 m from lake
43268	Aug 15, 2015	NAD83	18	662318	5753166	0.3	grey	10	Joe	till	4	till blanket on hill top
43269	Aug 15, 2015	NAD83	18	662569	5753157	0.5	dark brown / red- brown	10	Joe	till	3.5	till sample in forest, top dark brown, bottom red-brown

SAMPLE	DATE	DATUM	ZONE	EASTING	NORTHING	DEPTH (m)	COLOUR	SIZE (kg)	SAMPLER	ТҮРЕ	QUALITY	TERRAIN COMMENTS
43270	Aug 15, 2015	NAD83	18	662915	5753080	0.3	grey	10	Joe	till	3.5	till pocket on bouldery mountain slope
43271	Aug 15, 2015	NAD83	18	663113	5753078	0.2	grey	10	Joe	till	4.5	till trap on granite mountain top
43272	Aug 15, 2015	NAD83	18	663536	5753055	0.2	grey	10	Joe	till	4	till blanket in forest
43273	Aug 15, 2015	NAD83	18	663349	5753107	0.3	grey	10	Joe	till	3.5	till sample at base of granite cliff
43274	Aug 15, 2015	NAD83	18	662853	5752809	0.2	grey	10	Joe	till	4.5	till blanket on tall hill top
43275	Aug 15, 2015	NAD83	18	663842	5753010	0.3	brown	10	Joe	till	3	till veneer on ridge
43276	Aug 15, 2015	NAD83	18	664089	5752992	0.3	grey / brown	10	Joe	till	3.5	till blanket at base of hill, top grey, bottom brown
43277	Aug 15, 2015	NAD83	18	665941	5753477	0.2	grey	10	Joe	till	4	till pocket on island!
43278	Aug 16, 2015	NAD83	18	664361	5753021	0.3	dark brown	10	Joe	till	3.5	till blanket on top of slope 70 m away from river
43279	Aug 16, 2015	NAD83	18	664614	5753021	0.3	grey	10	Joe	till	4	till blanket on slope
43280	Aug 16, 2015	NAD83	18	664845	5752942	0.3	grey	10	Joe	till	4.5	till blanket on slope
43281	Aug 16, 2015	NAD83	18	665106	5752977	0.3	grey	10	Joe	till	3.5	till blanket on slope
43282	Aug 16, 2015	NAD83	18	661482	5753633	0.3	grey	10	Joe	till	4	till blanket on small bouldery hill top
43283	Aug 16, 2015	NAD83	18	661849	5753921	0.3	grey	10	Joe	till	3.5	till blanket near the top of bouldery slope
43284	Aug 16, 2015	NAD83	18	663344	5753556	0.2	grey / black	10	Joe	till	2.5	till veneer on granite mountain top, grey on top, black on bottom
43285	Aug 16, 2015	NAD83	18	663052	5753450	0.3	grey	10	Joe	till	4	till blanket on mountain top
43286	Aug 16, 2015	NAD83	18	663236	5753692	0.3	brown	10	Joe	till	3	till blanket on hill side
43287	Aug 16, 2015	NAD83	18	663442	5753310	0.2	grey	10	Joe	till	3.5	till blanket 80 m from overlooking cliff in elevated area
43288	Aug 16, 2015	NAD83	18	662764	5753495	0.2	grey	10	Joe	till	3.5	till pocket 70 m from base of large cliff, extremely hard to find good material
43289	Aug 16, 2015	NAD83	18	662309	5754223	0.3	grey	10	Joe	till	3.5	till blanket in forest
43290	Aug 16, 2015	NAD83	18	662515	5754297	0.2	grey	10	Joe	till	3	till blanket in a moderately bouldery area
43291	Aug 16, 2015	NAD83	18	662515	5754297	0.2	grey	10	Joe	till	3	till blanket in a moderately bouldery area
43292	Aug 16, 2015	NAD83	18	662723	5754190	0.2	brown	10	Joe	till	3.5	till blanket 50 m from swamp
43293	Aug 17, 2015	NAD83	18	666151	5754212	0.2	grey	10	Joe	till	4	till blanket 30 m from lake

SAMPLE	DATE	DATUM	ZONE	EASTING	NORTHING	DEPTH (m)	COLOUR	SIZE (kg)	SAMPLER	ТҮРЕ	QUALITY	TERRAIN COMMENTS
43294	Aug 17, 2015	NAD83	18	665812	5754181	0.3	grey / red-brown	10	Joe	till	4	till blanket 10 m from swamp, top grev, bottom red-brown
43295	Aug 17, 2015	NAD83	18	665505	5754215	0.3	brown	10	Joe	till	4	till pocket in swampy area
43296	Aug 17, 2015	NAD83	18	665124	5754114	0.35	grey	10	Joe	till	4	till blanket in woods
43297	Aug 17, 2015	NAD83	18	664858	5754020	0.3	brown	10	Joe	till	4.5	till blanket in forest, bouldery area
43298	Aug 17, 2015	NAD83	18	664335	5754009	0.45	brown	10	Joe	till	2.5	till veneer in rocky / bouldery area, difficult to find till
43299	Aug 17, 2015	NAD83	18	662885	5754184	0.3	grey	10	Joe	till	4.5	till veneer 10 m from swamp
43300	Aug 23, 2015	NAD83	18	670064	5761737	0.3	grey	10	Joe	till	4	till blanket on rocky hill top
43301	Aug 23, 2015	NAD83	18	669867	5762906	0.2	grey / red-brown	10	Joe	till	3.5	till blanket in bouldery area, top grey, bottom red-brown
43302	Aug 23, 2015	NAD83	18	668653	5762111	0.3	grey / red-brown	10	Joe	till	3	till blanket on gradual slope, top grey, bottom red-brown
43303	Aug 23, 2015	NAD83	18	668924	5761368	0.2	red-brown	10	Joe	till	4.5	till blanket
43304	Aug 23, 2015	NAD83	18	669493	5761324	0.2	red-brown	10	Joe	till	3.5	till blanket on small hill
43305	Aug 23, 2015	NAD83	18	669515	5760582	0.2	dark brown	10	Joe	till	3	till blanket
43306	Aug 23, 2015	NAD83	18	668706	5760306	0.3	grey / red-brown	10	Joe	till	3.5	till blanket on small bouldery hill, top grey, bottom red-brown
43307	Aug 23, 2015	NAD83	18	668094	5760900	0.2	grey / red-brown	10	Joe	till	4	till blanket, top grey, bottom red- brown
43308	Aug 23, 2015	NAD83	18	667499	5760329	0.1	grey / red-brown	10	Joe	till	4	till blanket on small hill, top grey, bottom red-brown
43309	Aug 23, 2015	NAD83	18	667678	5762003	0.25	grey / red-brown	10	Joe	till	3.5	till blanket on hill top, top grey, bottom red-brown
43310	Aug 23, 2015	NAD83	18	667341	5761167	0.15	grey / red-brown	10	Joe	till	3.5	till blanket on bouldery hill top, top grey, bottom red-brown
43311	Aug 23, 2015	NAD83	18	666373	5760767	0.2	grey / red-brown	10	Joe	till	3.5	till blanket in bouldery area, top grey, bottom red-brown
43312	Aug 23, 2015	NAD83	18	665756	5761315	0.15	grey	10	Joe	till	4	till blanket on top of hill
43313	Aug 23, 2015	NAD83	18	665500	5760504	0.3	grey / dark brown	10	Joe	till	3.5	till blanket in blueberry field, top grey, bottom dark brown
43314	Aug 23, 2015	NAD83	18	664905	5760522	0.3	grey / red-brown	10	Joe	till	3.5	till blanket on top of hill, top grey, bottom red-brown
43315	Aug 23, 2015	NAD83	18	665125	5761268	0.15	grey / red-brown	10	Joe	till	4	till blanket in bouldery area, top grey, bottom red-brown
43316	Aug 23, 2015	NAD83	18	664567	5761018	0.35	red-brown	10	Joe	till	4	till blanket on small hill top

SAMPLE	DATE	DATUM	ZONE	EASTING	NORTHING	DEPTH (m)	COLOUR	SIZE (kg)	SAMPLER	ТҮРЕ	QUALITY	TERRAIN COMMENTS
43317	Aug 23, 2015	NAD83	18	664152	5760748	0.2	red-brown	10	Joe	till	4	till blanket on small hill
43318	Aug 23, 2015	NAD83	18	663836	5761426	0.3	grey	10	Joe	till	4.5	till blanket on hill top
43319	Aug 23, 2015	NAD83	18	664213	5762243	0.2	grey / red-brown	10	Joe	till	3	till blanket, top grey, bottom red- brown
43320	Aug 23, 2015	NAD83	18	663138	5761355	0.35	grey / red-brown / tan	10	Joe	till	4	till blanket on hill top, top grey, middle red-brown, bottom tan
43321	Aug 23, 2015	NAD83	18	663397	5762187	0.2	grey / red-brown	10	Joe	till	3.5	till blanket on bouldery hill top, top grey, bottom red-brown
43322	Aug 23, 2015	NAD83	18	663173	5763807	0.25	grey / red-brown	10	Joe	till	3	till blanket on small hill, top grey, bottom red-brown
43323	Aug 23, 2015	NAD83	18	664226	5764916	0.2	grey / red-brown	10	Joe	till	3.5	till blanket on rocky hill top, top grey, bottom red-brown
43324	Aug 23, 2015	NAD83	18	663712	5765492	0.3	red-brown	10	Joe	till	3.5	till blanket on small hill top
43325	Aug 23, 2015	NAD83	18	665012	5763916	0.25	grey / red-brown	10	Joe	till	3.5	till blanket in bouldery area, top grey, bottom red-brown
43326	Aug 23, 2015	NAD83	18	665088	5764746	0.2	grey / red-brown	10	Joe	sand	2.5	sand from rocky hill top, possibly reworked till?, top grey, bottom red- brown
43327	Aug 23, 2015	NAD83	18	665560	5765600	0.2	red-brown	10	Joe	till	3	till blanket on small hill top
43328	Aug 23, 2015	NAD83	18	666409	5765505	0.3	grey / red-brown	10	Joe	till	4	till blanket on small hill top, top grey, bottom red-brown
43329	Aug 23, 2015	NAD83	18	666357	5764948	0.2	grey / red-brown	10	Joe	till	4	till blanket on hill top, top grey, bottom red-brown
43330	Aug 24, 2015	NAD83	18	666651	5763769	0.15	orange-brown	10	Joe	till	4	till blanket on bouldery hill
43331	Aug 24, 2015	NAD83	18	666651	5763769	0.15	orange-brown	10	Joe	till	4	till blanket on bouldery hill
43332	Aug 24, 2015	NAD83	18	667311	5763974	0.3	orange-brown	10	Joe	till	4	till blanket
43333	Aug 24, 2015	NAD83	18	667035	5764735	0.25	grey / orange- brown	10	Joe	till	3.5	till blanket on bouldery hill, top grey, bottom orange-brown
43334	Aug 24, 2015	NAD83	18	667673	5765558	0.2	grey / orange- brown	10	Joe	till	4	till blanket on top of hill, top grey, bottom orange-brown
43335	Aug 24, 2015	NAD83	18	668358	5764993	0.3	brown / orange- brown	10	Joe	till	3.5	till blanket on hill top, top brown, bottom orange-brown
43336	Aug 24, 2015	NAD83	18	668790	5765587	0.25	orange-brown	10	Joe	till	4	till blanket
43337	Aug 24, 2015	NAD83	18	668323	5764251	0.15	grey / orange- brown	10	Joe	till	3.5	till blanket on bouldery hill top, top grey, bottom orange-brown
43338	Aug 24, 2015	NAD83	18	668666	5763612	0.2	grey	10	Joe	till	4	till blanket on bouldery hill top

SAMPLE	DATE	DATUM	ZONE	EASTING	NORTHING	DEPTH (m)	COLOUR	SIZE (kg)	SAMPLER	TYPE	QUALITY	TERRAIN COMMENTS
43339	Aug 24, 2015	NAD83	18	669723	5763717	0.2	orange-brown	10	Joe	till	4	till blanket on hill top
43340	Aug 24, 2015	NAD83	18	669589	5764014	0.1	grey / orange- brown	10	Joe	till	3.5	till sample from small hill 10 m from swamp, top grey, bottom orange- brown
43341	Aug 24, 2015	NAD83	18	669368	5764059	0.2	brown	10	Joe	till	4	till pocket from bouldery area
43342	Aug 24, 2015	NAD83	18	669714	5764518	0.25	orange-brown	10	Joe	till	3	till blanket, sandy, a few clasts seen so looks like real till
43343	Aug 24, 2015	NAD83	18	669358	5764829	0.2	grey / orange- brown	10	Joe	till	4	till blanket on hill top, top grey, bottom orange-brown
43344	Aug 24, 2015	NAD83	18	670115	5765138	0.2	brown / orange- brown	10	Joe	till	4	till blanket on bouldery hill, top brown, bottom orange-brown
43345	Aug 24, 2015	NAD83	18	670524	5765433	0.2	orange-brown	10	Joe	till	3.5	till blanket on hill
43346	Aug 24, 2015	NAD83	18	671390	5765411	0.3	orange-brown	10	Joe	till	4	till blanket on bouldery hill
43347	Aug 24, 2015	NAD83	18	662190	5755900	0.45	grey / orange- brown	10	Joe	till	4	till blanket in woods on mountain ridge, top grey, bottom orange- brown
43348	Aug 24, 2015	NAD83	18	662354	5756282	0.35	grey / brown	10	Joe	till	3.5	till blanket on mountain ridge, top grey, bottom brown
43349	Aug 24, 2015	NAD83	18	662525	5756788	0.2	brown	10	Joe	till	4.5	Joe's last till sample ever, on top of mountain

Appendix 3 – Microlithics Laboratories Till Sample Processing Flow Sheet

Appendix 4 – I&M Morrison Geological Ltd Visual Picking Processing Sheet

<u>I&M Morrison Geological Ltd.</u> Indicator Mineral Selection Process

Samples are checked in against the packing list, with discrepancies or breakage noted, a batch number is assigned and samples entered into computer inventory. Samples are assigned to lab personnel and examined by trained technicians using binocular microscopes (6x to 70x magnification range), quartz halogen fibre optic illuminators and grain conveyors. Magnetite may be manually stripped from the sample if required, and is examined separately.

Potential indicator mineral grains are manually extracted using tweezers and petri dishes, and results entered into the sample record. The grains of interest are placed into sealed vials with the reject portion returned to the original container. Samples are weighted and all vial labels verified by a dedicated data entry person.

Picked grains are examined by a geologist and the sample records revised if necessary. Surface textures and other features of interest are recorded on a grain by grain basis.

QA/QC procedures include:

- client instructions posted at each personal workstation
- a requirement for all technicians to review reference materials each Monday morning after the weekend break
- a prohibition against a single technician picking sequential samples (thereby getting different opinions on theoretically adjacent samples)
- thorough cleaning in and around workstations between each sample
- blind testing of results through re-picking of samples by other technicians and supervisors
- label verification with a second person
- sonic cleaning of clay coated grains
- no manual overwriting of numbers all numeric changes must be accompanied by notations as to why changes were required

Appendix 5 – Ground Geophysics Anomaly Check Detail Notes

Anomaly AD00

ANOMALY ID:	00	DATE:		August 10, 2015	
GEOLOGIST /FIE	LD ASSISTANTS:	Joe K. / Joey B / Curtis B.			
APPROXIMATE ANOMLA	Y COORDINATES (NAD 83,	662775	mE	8751037	mN
ZON	E 18)				
ANY EVIDENCE C	F PAST DRILILNG		N	0	
ANY ISSUES THAT WOU	D PREVENT DRILLING IN		N	0	
SUMMER	/ WINTER?				
GENERAL LAY	OF THE LAND	Fairly thick three	cover,	had to land about 2	220m
		away. Mossy. Small hills.			
POTENTAIL W	Several nice lakes nearby within a couple hundred				
		metres of the anomaly. The pond coincident			it with
		the anomaly looks deep enough for drilling water			
			to	0.	
ANAY ISSUES THAT WOL	JLD PREVENT A GROUND	NO, But would nee	ed line-c	utting probably for	r HLEM
GEOPHYS SURVEY IN	SUMMER / WINTER?		(may	/be)	
LINE CUTTIN REQUIRED	FOR GROUND GEOPHYS	Maybe, not	for mag	g, maybe for HLEM	
GR	ID?				
PHOTOS	TAKEN?		YE	S	
SAMPLES C	OLLECTED?	YES, one till samp	les abo	ut 160m down ice	(SSW)
		sa	mple ID	# 43200	
MAG SUSC READIN	GS FROM THE AREA	NO, No outcrop seen. Thick moss cover!			r!

ADAMANTIN ANOMALY 00 - GENERAL AREA LOOKING SOUTHEAST

ANOMALY ID:	01	DATE:		August 10, 2015		
GEOLOGIST /FIE	LD ASSISTANTS:	Joe K. / Joey B / Curtis B.				
APPROXIMATE ANOMLA ZON	Y COORDINATES (NAD 83, E 18)	663449	mE	8753811	mN	
ANY EVIDENCE C	F PAST DRILILNG		N	10		
ANY ISSUES THAT WOU	D PREVENT DRILLING IN	YES. Difficult c	liffy / u	neven area but at t	the	
SUMMER	/ WINTER?	anomaly itself teri	rain is fl	lat and mossy. Still	would	
		need bl	ocking	but fairly level.		
GENERAL LAY	OF THE LAND	Very thick three	cover a	and large rocky hills	s and	
		cliffs. Large cliff c	lirectly	to east. Smaller cli	ffs SW	
		of anomaly.	No pro:	specting due to thic	ck	
		v	egetati	on/moss.		
POTENTAIL W	No water in the ar	ea exce	ept for one large lak	ke (nice		
		and deep) 700	m to th	e N and one small	lake	
		(probably deep enough for the pump) about 800 m				
		to the N.				
ANAY ISSUES THAT WOU	JLD PREVENT A GROUND	Yes, Difficult terrain (very cliffy / uneven/hilly) and				
GEOPHYS SURVEY IN	SUMMER / WINTER?	very thick three cover.				
LINE CUTTIN REQUIRED	FOR GROUND GEOPHYS	Maybe, maybe not for mag, maybe for HLEM.				
GR	ID?	(Difficult terrain might negate need for HLEM				
The second s	VCMAX v adML commanText		anyv	vays)		
PHOTOS	TAKEN?		Y	ES		
SAMPLES C	OLLECTED?	c	Y	ES	327 5 524	
MAG SUSC READIN	GS FROM THE AREA	YES, 9 readings to	aken fro	om large cliff (25 m	high)	
		75m due E of and	omaly c	entre. All readings	taken	
		on fresh looking, u	naltere	d, massive pink gra	inite (in	
		the rain). No evi	dence o	of a nearby hot exp	losive	
		intrusive no alte	ration	seen in granite, no	pitting	
		or corrosion eith	ner (0.0	3, 0.47, 0.10, 0.13,	0.14,	
		0.16, 1.13, 3.25, 0.13)				

ANOMALY ID:	02	DATE:		August 10, 2015	
GEOLOGIST /FIE	LD ASSISTANTS:	Joe K	. / Joey	B / Curtis B.	
APPROXIMATE ANOMLA	COORDINATES (NAD 83,	662976	mE	5751270	mE
ZON	E 18)				
ANY EVIDENCE O	F PAST DRILILNG		N	0	
ANY ISSUES THAT WOUL	D PREVENT DRILLING IN	Maybe. Uneven	would	be tricky to set a dı	rill up
SUMMER	/ WINTER?		he	re.	
GENERAL LAY	OF THE LAND	Thick tree cover.	Boulder	ry. Anomaly falls or	n small
		uneven local hill (topo hi	gh). Very uneven, v	would
		be tric	ky to se	et a drill here.	
POTENTAIL W	ATER SOURCES	Not really, there are lakes within about 300m but			
		nothing right by anomaly. Creek bed essentially			
			dr	ïy.	
ANAY ISSUES THAT WOL	ILD PREVENT A GROUND	Maybe. Thick tr	ees. Ma	ag would be fine, H	LEM
GEOPHYS SURVEY IN	SUMMER / WINTER?	Ň	vould b	e tricky.	
LINE CUTTIN REQUIRED	FOR GROUND GEOPHYS	Maybe, Not	for ma	g, maybe for HLEM	l
GR	ID?				
РНОТОЗ	TAKEN?		YE	ES	
SAMPLES C	OLLECTED?	YES. One till samp	ole take	at approximately	115 m
		down ice of ano	maly (S	SW) Sample ID # 43	3201
MAG SUSC READIN	GS FROM THE AREA	NO, No outcrop seen, thick moss cover!			-!

ANOMALY ID:	03	DATE:		August 10, 20)15
GEOLOGIST /FIE	LD ASSISTANTS:	Joe K. / Joey B / Curtis B.			
APPROXIMATE ANOMLAY COORDINATES (NAD 83,		665447	mE	5752350	mE
ZON	E 18)				
ANY EVIDENCE C	F PAST DRILILNG		N	0	
ANY ISSUES THAT WOU	D PREVENT DRILLING IN	Maybe. Anom	aly falls	s on small hill which	ı is
SUMMER	/ WINTER?	probably flat e	nough	for drill rig but is fai	irly
		uneven. T	ress wo	uld need clearing.	
GENERAL LAY	OF THE LAND	Thick tree cover,	mossy	. Anomaly falls on s	small
		local high (smal	ll hill). L	arge lake to the no	rth,
		smaller lakes nea	rby. Co	uld anomaly be the	hill؟
POTENTAIL W	ATER SOURCES	Lots of deep lak	es neai	by within about 50	0m,
		probably easiest option is large lake to the north.			north.
		Small pond 70m NE of anomaly too small for drill			or drill
			wa	ter.	
ANAY ISSUES THAT WOL	JLD PREVENT A GROUND	Maybe	. Thick	tress in places.	
GEOPHYS SURVEY IN	SUMMER / WINTER?				
LINE CUTTIN REQUIRED	FOR GROUND GEOPHYS	Maybe. Not f	or mag	but maybe for HLEI	M.
GR	ID?		*2**38A		
PHOTOS	TAKEN?		YI	ES	
SAMPLES C	OLLECTED?	YES. One till samp	le appr	oximately 70m S (S	ample
		ID # 43202) (not a	quite do	own-ice by as clase	as we
		could get giver	n the la	ck of material here)	of
			anor	maly.	
MAG SUSC READIN	GS FROM THE AREA	Thick mos	s cover,	no outcrop seen.	

ADAMANTIN ANOMALY 03 - GENERAL AREA LOOKING SOUTHEAST

ANOMALY ID:	06	DATE:		August 12, 2015	
GEOLOGIST /FIE	LD ASSISTANTS:	Joe K	. / Joey	B / Curtis B.	
APPROXIMATE ANOMLA	COORDINATES (NAD 83,	663435	mE	57566464	mE
ZON	E 18)				
ANY EVIDENCE O	F PAST DRILILNG		N	0	
ANY ISSUES THAT WOUL	D PREVENT DRILLING IN	Yes. Trees woul	d need	clearing. Flat enoug	gh at
SUMMER	/ WINTER?	anomal	y to set	up rig though.	
GENERAL LAY	OF THE LAND	Thick tree cover	and "m	nountainous". Ano	maly
		itself coincides v	vith larg	ge steep bank abou	t 7m
		high could the m	ag ano	maly be an "edge e	ffect"?
		Mossy + bushy area.			
POTENTAIL W	ATER SOURCES	None seen nearby.	. Anom	aly is on a large mo	ountain
		side, no creeks or lakes seen nearby.			
ANAY ISSUES THAT WOL	ILD PREVENT A GROUND	NO			
GEOPHYS SURVEY IN	SUMMER / WINTER?				
LINE CUTTIN REQUIRED	FOR GROUND GEOPHYS	NO. Lots of trees b	ut oper	n enough for mag +	HLEM.
GR	ID?				
PHOTOS		YI	ES		
SAMPLES C	OLLECTED?	YES. One till samp	le colle	cted approx. 90m o	down-
		ice (SSW) of a	inomaly	 Sample ID # 4322 	13
MAG SUSC READIN	GS FROM THE AREA	No. no outcrop seen.			

ANOMALY ID:	10	DATE:		August 11, 20)15
GEOLOGIST /FIE	LD ASSISTANTS:	Joe K. / Joey B / Curtis B.			
APPROXIMATE ANOMLA	Y COORDINATES (NAD 83,	666469	mE	5758451	mE
ZONE 18)					
ANY EVIDENCE C	F PAST DRILILNG		N	0	
ANY ISSUES THAT WOUL	D PREVENT DRILLING IN	YES. Thick tree	cover a	it anomaly would n	eed
SUMMER	/ WINTER?	cleari	ng to fi	t the drill rig.	
GENERAL LAY	OF THE LAND	Anomaly falls in	treed b	oggy area adjacent	to a
		ridge of granite b	oulders	 No mafic dykes se 	een in
		the area corresponding to geophysics. The ride		dge of	
		granite boulders t	rends r	nore WNW-ESE (an	d also
		doesn't	match	the geophysics).	
POTENTAIL W	ATER SOURCES	No water sources	seen cl	ose by, except for a	deep-
		looking creek a	bout 7	00m to the northwest.	
ANAY ISSUES THAT WOL	JLD PREVENT A GROUND	NO			
GEOPHYS SURVEY IN	SUMMER / WINTER?				
LINE CUTTIN REQUIRED	FOR GROUND GEOPHYS	NO. Thick tree cover at anomaly but probably OK			
GR	ID?	for	both m	ag + HLEM.	
РНОТОЗ	TAKEN?		Y	ES	
SAMPLES C	OLLECTED?	YES. One till sam	ple tak	en about 300m dow	vn-ice
		(SSW) of an	omaly.	Sample ID # 43211	
MAG SUSC READIN	GS FROM THE AREA	No outcrop right	at ano	maly centre. There	e was
		some granitic ou	tcrop s	een to the SE (whic	h we
		could have mag su	ısc'd) b	ut we were unable	to due
		to tim	e & fue	el constraints.	

ADAMANTIN ANOMALY 10 - GENERAL AREA LOOKING NORTHEAST

ANOMALY ID:	20	DATE:		August 11, 2015		
GEOLOGIST /FIE	LD ASSISTANTS:	Joe K. / Joey B / Curtis B.				
APPROXIMATE ANOMLA	COORDINATES (NAD 83,	669880	mE	5765347	mE	
ZON	E 18)					
ANY EVIDENCE O	F PAST DRILILNG		N	0		
ANY ISSUES THAT WOUL	D PREVENT DRILLING IN	NO. Flat and op	en and	very swampy. Prob	ably	
SUMMER	/ WINTER?	better in the wir	nter wh	en the ground is fro	ozen.	
GENERAL LAY	OF THE LAND	Flat, open, thin	patchy	tree cover. Easy to	find	
		landing spot for he	elicopte	r right at anomaly o	coords.	
		Ground very wet	and sw	/ampy. Large river a	about	
			400m to	o the N.		
POTENTAIL W	ATER SOURCES	Large river about 400m to the N. Nice big deep				
		creek about 200m to the S even closer. No problem				
		fir	nding w	ater here.		
ANAY ISSUES THAT WOL	JLD PREVENT A GROUND	NO. F	lat and	open terrain.		
GEOPHYS SURVEY IN	SUMMER / WINTER?					
LINE CUTTIN REQUIRED	FOR GROUND GEOPHYS	NO. Open e	nough	for mag and HLEM.		
GR	ID?			~		
PHOTOS	TAKEN?		YE	ES		
SAMPLES C	OLLECTED?	YES, One till sar	nple co	llected down-ice (S	SW)	
		about 120m fro	om ano	maly. Sample # 432	207.	
MAG SUSC READIN	GS FROM THE AREA	NO	. No ou	tcrop seen.		

ADAMANTIN ANOMALY 20 - STANDING AT CENTRE

ANOMALY ID:	28	DATE:		August 10, 2015	
GEOLOGIST /FIE	LD ASSISTANTS:	Joe K. / Joey B / Curtis B.			
APPROXIMATE ANOMLA	Y COORDINATES (NAD 83,	665840	mE	5752665	mE
ZON	E 18)				
ANY EVIDENCE C	F PAST DRILILNG		N	0	
ANY ISSUES THAT WOU	D PREVENT DRILLING IN	Maybe. Uneven h	ill/bank	on eastern shore c	of lake.
SUMMER	/ WINTER?	Not any flat gro	und. Pe	erhaps winter would	d be
		easier and drill	could c	inch up close to sho	ore.
GENERAL LAY	OF THE LAND	Thick tree cover.	Small hi	ills. Large lake just	to the
		north. Anomaly half in lake, half on land (land			land
		portion r	nodera	tely steep slope)	
POTENTAIL W	ATER SOURCES	Not a problem.	Lots of	water nearby. Ano	maly
		itself is on a dee	p lake c	leep enough for dri	lling.
ANAY ISSUES THAT WOL	JLD PREVENT A GROUND	May	oe. Thic	k tree cover.	
GEOPHYS SURVEY IN	SUMMER / WINTER?				
LINE CUTTIN REQUIRED	FOR GROUND GEOPHYS	Maybe. Not	for ma	g, maybe for HLEM	
GR	ID?				
PHOTOS	TAKEN?		YI	ES	
SAMPLES C	OLLECTED?	YES, one sample (#43203) collected approx.	125m
		down-i	ice (SSV	V) of anomaly.	
MAG SUSC READIN	GS FROM THE AREA	NO. No outcrop seen. Thick moss cover.			r.

ADAMANTIN ANOMALY 28 - GENERAL AREA LOOKING SOUTHEAST

ANOMALY ID:	31	DATE:		August 11, 20)15
GEOLOGIST /FIE	LD ASSISTANTS:	Joe K	. / Joey	B / Curtis B.	
APPROXIMATE ANOMLA	Y COORDINATES (NAD 83,	668336	mE	5764754	mE
ZON	E 18)				
ANY EVIDENCE C	F PAST DRILILNG		N	0	
ANY ISSUES THAT WOU	D PREVENT DRILLING IN	NO. Flat enough	and lev	ve3l for summer dri	illing.
SUMMER	/ WINTER?	Would wo	rk fine	in the winter too.	
GENERAL LAY	OF THE LAND	Slightly hilly, or	oen gro	und. Nice and dry,	not
		swampy. Thin p	atchy tr	ee cover. Nice and	l flat
		along S shore of lake. Big hill about 50m S of			
		a	inomaly	/ center.	
POTENTAIL W	ATER SOURCES	Not a problem	n. Lots c	of deep water nearl	oy.
		Anomaly itself in on a nice deep lake.			
ANAY ISSUES THAT WOL	JLD PREVENT A GROUND	YES. Would need	the lake	e to be frozen if you	u want
GEOPHYS SURVEY IN	SUMMER / WINTER?	to grid the anomaly.			
LINE CUTTIN REQUIRED	FOR GROUND GEOPHYS	NO. Clear e	nough	for mag and HLEM	
GR	ID?				
PHOTOS	TAKEN?		YE	ES	
SAMPLES C	OLLECTED?	YES. One till sar	nple co	llected down-ice (S	SW)
		about 90m fro	m anor	maly. Sample # 432	08
MAG SUSC READIN	GS FROM THE AREA	NO. No outcrop seen.			

ANOMALY ID:	39	DATE:		August 11, 20	August 11, 2015	
GEOLOGIST /FIE	LD ASSISTANTS:	Joe K. / Joey B / Curtis B.				
APPROXIMATE ANOMLA	COORDINATES (NAD 83,	665403	mE	5761434	mE	
ZON	E 18)					
ANY EVIDENCE O	F PAST DRILILNG		N	0		
ANY ISSUES THAT WOUL	D PREVENT DRILLING IN	NO. Nice and hig	h and c	dry, flat enough for	a rig.	
SUMMER	/ WINTER?					
GENERAL LAY	OF THE LAND	Hilly, open, thin tr	ee cove	er. Anomaly centre f	falls on	
		top of large bould	ery hill,	and anomaly coord	dinates	
		just happen to c	oincide	with 2 Volkswagen	-size	
		granitic/gneissic boulders on top of hill.				
POTENTAIL W	ATER SOURCES	This looks to be problematic. No lakes, creeks, or				
		rivers seen in the	ivers seen in the area, except for a pond about			
		200m N of anomaly. Looks maybe deep enough but				
		r	not tota	ally sure.		
ANAY ISSUES THAT WOL	ILD PREVENT A GROUND	NO. Anomaly is pr	obably	explained by this h	ill and	
GEOPHYS SURVEY IN	SUMMER / WINTER?		all its be	oulders.		
LINE CUTTIN REQUIRED	FOR GROUND GEOPHYS		N	0.		
GR	ID?					
PHOTOS	TAKEN?		YE	ES.		
SAMPLES C	OLLECTED?	YES. One till samp	le taker	n 200m down-ice (S	SW) of	
		anom	aly. Sar	nple # 43209.		
MAG SUSC READIN	GS FROM THE AREA	NO. No outcrop se	een, jus	t boulders. Nothing	, mafic	
		or ultramafic seen, just granitic/gneissic boulders.			lders.	

ANOMALY ID:	41	DATE:		August 11, 2015		
GEOLOGIST /FIE	LD ASSISTANTS:	Joe K	Joe K. / Joey B / Curtis B.			
APPROXIMATE ANOMLA	Y COORDINATES (NAD 83,	665463	mE	5760742	mE	
ZON	E 18)					
ANY EVIDENCE C	F PAST DRILILNG		N	0		
ANY ISSUES THAT WOU	D PREVENT DRILLING IN	NO. Open and flat	enoug	h. Some trees migh	t need	
SUMMER	/ WINTER?	clearing though, a	nd bou	lders might get in th	ne way	
		a bit. Probably n	eed blo	cking. Might be eas	ier in	
		winter	when	all snowed in.		
GENERAL LAY	Similar to anomaly	39. Fla	t and hilly, open wi	th thin		
		tree cover. Boulde	ery and	rocky. Anomaly itse	elf falls	
		on a bogg	gy flat b	oulder topo low.		
POTENTAIL W	ATER SOURCES	Problematic like	for and	omaly 39. No good l	akes	
		seen nearby. One tiny creek. A few small ponds.				
		But no good-looking deep water sources in the				
			ar	ea.		
ANAY ISSUES THAT WOL	JLD PREVENT A GROUND	NO	Flat op	oen terrain.		
GEOPHYS SURVEY IN	SUMMER / WINTER?					
LINE CUTTIN REQUIRED	FOR GROUND GEOPHYS	NO. Open e	nough [.]	for map and HLEM.		
GR	ID?					
PHOTOS	TAKEN?		YI	ES		
SAMPLES C	OLLECTED?	Yes. One till samp	els app	proximately 175m (d	down-	
		ice) of ano	maly. S	maple ID # 43210.		
MAG SUSC READIN	GS FROM THE AREA	NO. No outcrop seen.				

ANOMALY ID:	45	DATE:		August 10, 2015		
GEOLOGIST /FIE	LD ASSISTANTS:	Joe K. / Joey B / Curtis B.				
APPROXIMATE ANOMLA	Y COORDINATES (NAD 83,	6647110	mE	5757839	mE	
ZON	E 18)					
ANY EVIDENCE O	F PAST DRILILNG		N	10		
ANY ISSUES THAT WOUL	D PREVENT DRILLING IN	Yes. VERY boulder	y and u	neven. The area is	like big	
SUMMER	/ WINTER?	boulder p	oiles eve	erywhere (mostly		
		angular/subangula	ar, not i	rounded). Would b	e hard	
		to set up a	a rig in t	the summer here.		
GENERAL LAY	OF THE LAND	VERY rocky and	boulde	ry. Area is hilly with	high	
		relief and chang	ing top	ography. Very little	tree	
		cover though. B	oulders	s look granitic (pink). No	
		dark mafic boulder seems				
POTENTAIL W	Big lake right next to anomaly (100m to the SW).					
		No problem gettir	for drill. Definitely deep			
			eno	ugh.		
ANAY ISSUES THAT WOL	JLD PREVENT A GROUND	NO. Uneven ground, but nice and relatively open.				
GEOPHYS SURVEY IN	SUMMER / WINTER?					
LINE CUTTIN REQUIRED	FOR GROUND GEOPHYS	NO. Only if the grid	dwere	so big it extended i	nto the	
GR	ID?		tre	es.		
PHOTOS	TAKEN?	~	YE	ES.		
SAMPLES C	OLLECTED?	YES and NO. Yes t	ook till	samples, but not a	n extra	
		one. Wanted	to but e	ended up at previou	ısly	
		proposed sites	(i.e. coi	ncided with origina	l till	
		sample location) so just	t took those. Sampl	e #'s	
		4.	3205 ar	nd 43206.		
MAG SUSC READIN	GS FROM THE AREA	NO. No outcrop se	en. Fro	m a quick scan of th	ne area	
		and walking around all boulders look pink (granitic)				

ADAMANTIN ANOMALY 45 - STANDING AT CENTRE

Appendix 6 – Summer 2015 Till Sampling Visual Picking Results
																						PYR	ECL	N	DN-M	AG IL	MENI	TES		MAG	LM	CHR	CD O	L O	ΓН
SAMPLE	SIZE			INDICA	TOR M	NERAL	S			NS	2 NS 3	B MAG	COMMENTS	NS 1	NS 2	NS 3	ND	MAG	TOTAL	PROJ.	PICK BATCH	SENT	SENT	NO.	10. S	ENT	SENT H	IELD HI	ELD NO	D. SEN	T HELD	SENT S	SENT SE	NT SE	INT
NUMBER	mm	PYR	ECL	ILM	CHR	CD	OL	DIA	SULP		T NOT	ZONE	D	HDLST SINK	HDLST SINK	HDLST SINK	HDLST SINK	g	WT.g	NO.	NUMBER			NZ	z	NZ	z	NZ	z z	2					
43104	0.25-0.5	1	0	3	2	0	0	0	tr			Ν	CHR: 1 resorbed	2.69				0.85	3.54	5835	2015 STORN 062	1		3		3						2			
43106	0.25-0.5	0	1	18	0	0	0	0				N	ECL: ?, ASP; OTH: 1 zoned, unknown	3.47				0.97	4.44	5835	2015 STORN 062		1	11	7	11	7							4	1
43111	0.25-0.5	0	0	15	0	0	0	0				Ν		0.63				0.31	0.94	5835	2015 STORN 062			9	6	9	6								
43112	0.25-0.5	2	3	106	6	0	0	0	tr			N	PYR: 1 orpeel; ECL: 1 ?; ILM: most are fragile, many are likely from 1 or more broken ILM or ZILM; CHR: 3 partially resorbed	2.31				0.75	3.06	5835	2015 STORN 062	2	3	60	46	10	10	50 3	36			6			
43116	0.25-0.5	0	0	102	1	0	0	0				Ν	ILM: all fairly competent; CHR: ?, partially resorbed	1.61				0.60	2.21	5835	2015 STORN 062			45	57	10	10	35 4	47			1			
43118	0.25-0.5	0	0	18	1	0	0	0				Ν	CHR: ?, resorbed	2.70				0.60	3.30	5835	2015 STORN 062			10	8	10	8					1			
43121	0.25-0.5	0	2	8	0	0	0	0	tr			Ν	ECL: ?	2.93				0.52	3.45	5835	2015 STORN 062		2	3	5	3	5								
43127	0.25-0.5	0	2	7	0	0	0	0				Ν		2.99				1.31	4.30	5835	2015 STORN 062		2	6	1	6	1								
43128	0.25-0.5	0	0	0	0	0	0	0				Ν		0.36				0.04	0.40	5835	2015 STORN 062														
43130	0.25-0.5	0	0	16	0	0	0	0				Ν		1.16				0.86	2.02	5835	2015 STORN 062			7	9	7	9								
43134	0.25-0.5	7	4	219	6	0	0	0		ILI	N	N	PYR: 1 possibly ECL; ILM: all fragile, many are likely from 1 or more broken ILM or ZILM; CHR: partially resorbed	0.46	1.15			0.20	1.81	5835	2015 STORN 062	7	4	76 ⁻	43	10	10	66 1	33			6			
43137	0.25-0.5	1	2	23	0	0	0	0				Ν	PYR: ASP; ECL: ASP	3.10				1.26	4.36	5835	2015 STORN 062	1	2	18	5	15	5	3							
43141	0.25-0.5	0	7	14	0	0	0	0				Ν	ECL: 1 ?	3.14				0.25	3.39	5835	2015 STORN 062		7	10	4	10	4								
43144	0.25-0.5	0	1	8	0	0	1	0				Ν	OL: ?	4.20				1.77	5.97	5835	2015 STORN 062		1	5	3	5	3						1	1	
43147	0.25-0.5	0	0	47	0	0	0	0				Ν	Note: Abundent grains - likely Molybdenite	0.64				2.71	3.35	5835	2015 STORN 062			18	29	10	10	8	19						
43149	0.25-0.5	0	1	7	0	0	0	0				Ν	ECL: ?	1.66				0.69	2.35	5835	2015 STORN 062		1	3	4	3	4								
43154	0.25-0.5	0	0	1	0	0	0	0				Ν		0.81				0.81	1.62	5835	2015 STORN 062			1		1									
43155	0.25-0.5	0	2	51	0	0	0	0				Ν	ECL: ?; ILM: most are fragile, many are likely from 1 or more broken ILM or ZILM	2.41				0.68	3.09	5835	2015 STORN 062		2	13	38	10	10	3 2	28						
43156	0.25-0.5	0	0	1	0	0	0	0				N		0.48				0.07	0.55	5835	2015 STORN 062			1		1									
43157	0.25-0.5	1	5	19	0	0	0	0				Ν	ECL: ?	2.52				1.14	3.66	5835	2015 STORN 062	1	5	10	9	10	9								

																						PYR	ECL	N	ION-N	MAGI	MEN	TES		N	IAG ILM	CHR CD	OL O	JTF
SAMPLE	SIZE		I	NDICA	TOR M	INERA	LS			NS 2	NS 3	MA	G COMMENTS	NS 1	NS 2	NS 3	ND	MAG	TOTAL	PROJ.	PICK BATCH	SENT	SENT	NO.	NO.	SENT	SENT H	IELD	HELD	NO.	SENT HE	LD SENT SENT	i sent si	EN
NUMBER	mm	PYR	ECL	ILM	CHR	CD	OL	DIA	SULPH	I PICKE	PICKE		ED M	HDLST SINK	HDLST SINK	HDLST SINK	HDLST SINK	g	WT. g	NO.	NUMBER			NZ	z	NZ	z	NZ	z	z				
43100	0.25-0.5	2	5	201	23	0	0	0		ILM		N	ECL: 2 ASP; CHR: 20 sent, 3 held; tr. Moly	2.66	1.54			0.03	4.23	5835	2015 STORN 063	2	5	65	136	10	10	55	126			20		
43108	0.25-0.5	5	0	27	2	0	0	0				N	PYR: 3?, possibly zircon, 2 ASP	6.22				1.62	7.84	5835	2015 STORN 063	5		15	12	10	10	5	2			2		
43115	0.25-0.5	1	13	265	16	0	0	0		ILM		N	PYR: ASP; ECL: 1?, 4 ASP	4.41	7.15			7.10	18.66	5835	2015 STORN 063	1	13	153	112	10	10	143	102			16		
43123	0.25-0.5	1	2	10	1	0	0	0				N	ECL: 1 ASP; tr. Moly	2.08				0.66	2.74	5835	2015 STORN 063	1	2	8	2	8	2					1		
43131	0.25-0.5	0	0	138	2	0	0	0				N		1.78				0.47	2.25	5835	2015 STORN 063			86	52	10	10	76	42			2		
43136	0.25-0.5	7	16	199	58	0	0	0		ILM		N	PYR: 2?, possibly ECL; ECL: 4?, 1 kely, orpeel, 7 ASP; CHR: 20 sent, 38 held;	1.13	0.63			0.41	2.17	5835	2015 STORN 063	7	16	71	128	10	10	61	118			20		
43138	0.25-0.5	0	2	11	2	0	0	0				N	ECL: 1 orpeel	2.69				1.44	4.13	5835	2015 STORN 063		2	3	8	3	8					2		
43140	0.25-0.5	0	4	30	1	0	0	0				N	ECL: 3 ASP	2.54				0.73	3.27	5835	2015 STORN 063		4	7	23	7	13		10			1		
43142	0.25-0.5	9	3	133	16	0	0	0		ILM		N	PYR: 1 orpeel; ECL: 2?, possibly PYR, 2 ASP	3.41	6.41			2.64	12.46	5835	2015 STORN 063	9	3	56	77	10	10	46	67			16		
43145	0.25-0.5	0	0	0	0	0	0	0				N		3.45				0.66	4.11	5835	2015 STORN 063													
43151	0.25-0.5	75	25	186	46	0	1	0		ILM		Y	PYR: 2?, possibly ECL, 2 kely, orpeel, 5 ASP, 20 sent, 55 held; ECL: 20 sent, 5 held; CHR: 20 sent, 26 held, 4 possibly ZCHR sent	0.22	2.65			0.57	3.44	5835	2015 STORN 063	20	20	125	61	10	10	115	51			20	1	
43153	0.25-0.5	0	0	14	0	0	0	0				N		1.16				0.10	1.26	5835	2015 STORN 063			5	9	5	9							
43158	0.25-0.5	0	0	5	1	0	0	0				N		2.51				0.87	3.38	5835	2015 STORN 063			5		5						1		
43160	0.25-0.5	0	0	2	0	0	1	0				N		3.34				0.99	4.33	5835	2015 STORN 063				2		2						1	
43161	0.25-0.5	0	0	0	0	0	0	0	tr			N		1.18				0.89	2.07	5835	2015 STORN 063													
43165	0.25-0.5	0	0	2	0	0	0	0				N		2.77				0.08	2.85	5835	2015 STORN 063				2		2							
43173	0.25-0.5	0	0	0	0	0	0	0				N		1.95				0.84	2.79	5835	2015 STORN 063													
43181	0.25-0.5	6	2	3	1	0	0	0				N	PYR: 4 kely, orpeel, 3 ASP; tr. Moly	1.83				0.04	1.87	5835	2015 STORN 063	6	2		3		3					1		
43189	0.25-0.5	0	0	3	0	0	0	1				N		0.78				0.35	1.13	5835	2015 STORN 063			1	2	1	2							
43190	0.25-0.5	0	0	1	0	0	0	0				N		1.77				0.67	2.44	5835	2015 STORN 063			1		1								

2015 STORN 063 FINAL JANUARY 8, 2016

PYR	ECL		NON-I	MAG	ILME	NITES	6	M	AG IL	M	CHR	CD	OL	отн	

SAMPLE	SIZE				TOR MI	NERAL	.s		NS 2	NS 3	MAG	COMMENTS	NS 1	NS 2	NS 3	ND	MAG	TOTAL	PROJ.	PICK BATCH	SENT	SENT	NO.	NO.	SENT S	ENT H	IELD H	IELD	NO. SEN	HELD SEM	NT SENT	SENT SENT
NUMBER	mm	PYR	ECL	ILM	CHR	CD	OL	DIA	SULPH PICKE	PICKE	ZONED ILM		HDLST SINK	HDLST SINK	HDLST SINK	HDLST SINK	g	WT. g	NO.	NUMBER			NZ	z	NZ	z	NZ	z	z			
43105	0.25-0.	5 0	0	2	0	0	0	0			N	tr MOLY	2.75				0.61	3.36	5835	2015 STORN 064			1	1	1	1						
43114	0.25-0.	5 2	1	45	1	0	0	0			N	PYR: 1 kely, orpeel; ILM: 1?; ZILM: 8?; CHR: ? ; ILM & ZILM - most are brittle, some possibly from one or more larger, broken grains	3.16				1.38	4.54	5835	2015 STORN 064	2	1	26	19	10	10	16	9		1		
43124	0.25-0.	5 1	2	111	1	0	0	0	ILM /CHR		N	ZILM: 11?; CHR: ?; ILM & ZILM - most are brittle, some possibly from one or more larger, broken grains	2.29	0.79			0.69	3.77	5835	2015 STORN 064	1	2	29	82	10	10	19	72		1		
43126	0.25-0.	5 1	0	85	1	0	0	0			N	ILM & ZILM - most are brittle, some possibly from one or more larger, broken grains	2.29				0.53	2.82	5835	2015 STORN 064	1		44	41	10	10	34	31		1		
43174	0.25-0.	5 0	0	4	0	0	0	0			N		1.36				1.34	2.70	5835	2015 STORN 064			2	2	2	2						
43176	0.25-0.	5 0	1	3	0	0	0	0			N	ECL: ?; ZILM: ?	1.46				3.39	4.85	5835	2015 STORN 064		1	1	2	1	2						
43177	0.25-0.	5 0	1	0	0	0	0	0			N		0.93				0.30	1.23	5835	2015 STORN 064		1										
43191	0.25-0.	5 0	1	2	1	0	0	0			N		3.71				1.94	5.65	5835	2015 STORN 064		1	1	1	1	1				1		
43192	0.25-0.	5 1	1	1	0	0	0	0			N		1.45				0.70	2.15	5835	2015 STORN 064	1	1	1		1							
43198	0.25-0.	5 0	0	0	0	0	0	0			N		0.43				0.52	0.95	5835	2015 STORN 064												
43210	0.25-0.	5 0	0	4	0	0	0	0			N		1.24				1.47	2.71	5835	2015 STORN 064				4		4						
43211	0.25-0.	5 1	0	2	0	0	0	0			N		2.04				0.72	2.76	5835	2015 STORN 064	1		2		2							
43212	0.25-0.	5 1	1	129	6	0	0	0			N	PYR: ASP; ECL: ASP; CHR: 5?	1.90				0.63	2.53	5835	2015 STORN 064	1	1	50	79	10	10	40	69		6		
43222	0.25-0.	5 0	0	0	0	0	0	0			N		1.74				0.74	2.48	5835	2015 STORN 064												
43239	0.25-0.	5 1	0	0	0	0	0	0			N		0.49				0.62	1.11	5835	2015 STORN 064	1											
43245	0.25-0.	5 0	0	11	0	0	0	0			N		0.57				0.28	0.85	5835	2015 STORN 064			7	4	7	4						
43254	0.25-0.	5 1	0	0	0	0	0	0			N	PYR: orpeel	0.79				0.24	1.03	5835	2015 STORN 064	1											
43270	0.25-0.	5 1	3	193	16	0	0	0	ILM		N	PYR: kely, orpeel; ECL: 2 ASP; ILM: 7?, ZILM: 13?; ILM & ZILM - most are brittle, some possibly from one or more larger broken grains	1.06	0.91			0.30	2.27	5835	2015 STORN 064	1	3	97	96	10	10	87	86		16	3	
43278	0.25-0.	5 0	1	6	0	0	0	0	tr		Ν		1.41				0.49	1.90	5835	2015 STORN 064		1	3	3	3	3						
43291	0.25-0.	5 0	1	49	4	0	0	0			N	ECL: ASP; ILM & ZILM - most are brittle, some possibly from one or more larger broken grains	1.52				0.72	2.24	5835	2015 STORN 064		1	14	35	10	10	4	25		4		

																			-				PYR	ECL	N	ION-MA	GILME	INITES	5	MAG	ILM	CHR	CD	OLC	TH
SAMPLE	SIZE			INDICA	TOR M	INERAI	S				NS 2	NS 3	MAG	COMMENTS	NS 1	NS 2	NS 3	ND	MAG	TOTAL	PROJ.	PICK BATCH	SENT	SENT	NO.	NO. SE	NT SEN	T HELD	HELD	NO. SEN	NT HELD	SENT	SENT S	ENT S	ENT
NUMBER	mm	PYR	ECL	ILM	CHR	CD	OL	DI	A S	BULPH	NOT PICKEE	NOT PICKED	ZONED		HDLST SINK	HDLST SINK	HDLST SINK	HDLST SINK	g	WT. g	NO.	NUMBER			NZ	Z N	z z	NZ	z	z					
43139	0.25-0.5	1	0	16	0	0	0	0	(N	PYR: orpeel	2.51				0.75	3.26	5835	2015 STORN 065	1		6	10 6	10								
43146	0.25-0.5	0	0	0	0	0	0	0					Ν		2.30				0.06	2.36	5835	2015 STORN 065													
43152	0.25-0.5	0	0	8	0	0	0	0	6				N		0.84				0.24	1.08	5835	2015 STORN 065			3	5 3	5								
43167	0.25-0.5	0	1	16	2	0	0	0					N	ECL: ?, ASP	7.18				3.26	10.44	5835	2015 STORN 065		1	5	11 5	11					2			
43205	0.25-0.5	0	0	0	0	0	0	0					Ν		0.86				0.49	1.35	5835	2015 STORN 065													
43209	0.25-0.5	0	0	0	0	0	0	0					Ν		0.14				0.15	0.29	5835	2015 STORN 065													
43213	0.25-0.5	2	3	220	0	0	0	0	8		ILM		Ν	PYR: 1 possibly ECL; ECL: 1 kely, orpeel, 1 ASP	0.47	1.39			1.40	3.26	5835	2015 STORN 065	2	3	65	155 1	0 10	55	145						
43217	0.25-0.5	1	0	29	0	0	0	0	0				N		1.40				0.88	2.28	5835	2015 STORN 065	1		19	10 1	0 10	9							
43218	0.25-0.5	0	0	17	0	0	0	0	0				N		1.94				0.96	2.90	5835	2015 STORN 065			11	6 1	16								
43223	0.25-0.5	0	0	5	0	0	0	0		tr			N		2.03				0.86	2.89	5835	2015 STORN 065			4	1 4	1								
43252	0.25-0.5	3	3	75	1	0	0	0	8				Ν	PYR: 1 kely, orpeel, ASP; ECL: 1?, all ASP	1.10				0.33	1.43	5835	2015 STORN 065	3	3	32	43 1	0 10	22	33			1			
43256	0.25-0.5	0	0	32	0	0	0	0	6				Ν		2.17				0.83	3.00	5835	2015 STORN 065			16	16 1	0 10	6	6						
43257	0.25-0.5	0	0	1	0	0	0	0	0				N		2.35				0.60	2.95	5835	2015 STORN 065				1	1								
43262	0.25-0.5	0	0	70	3	0	0	0					N		1.32				0.02	1.34	5835	2015 STORN 065			42	28 1	0 10	32	18			3			
43271	0.25-0.5	1	0	61	0	0	0	0					Ν		1.98				0.99	2.97	5835	2015 STORN 065	1		24	37 1	0 10	14	27						
43276	0.25-0.5	1	0	159	2	0	0	0					Ν	PYR: ASP	1.73				0.26	1.99	5835	2015 STORN 065	1		79	80 1	0 10	69	70			2			
43280	0.25-0.5	0	3	8	0	0	0	0	į.				Ν	ECL: 1?, orpeel	2.43				0.70	3.13	5835	2015 STORN 065		3	4	4 4	4								
43282	0.25-0.5	1	0	7	0	0	0	0	6				N	PYR: kely, orpeel	1.09				0.42	1.51	5835	2015 STORN 065	1		2	5 2	5								
43283	0.25-0.5	0	0	3	0	0	0	0	0				N		0.64				0.28	0.92	5835	2015 STORN 065			1	2 1	2								
43290	0.25-0.5	0	18	87	7	0	0	0					Ν	ECL: 1 orpeel, 6 ASP	1.58				0.75	2.33	5835	2015 STORN 065		18	20	67 1	0 10	10	57			7			

																						PYR ECL	I	NON-	MAG IL	MENI	TES		M	AG ILM CHE	₹ CD	OL OTH
SAMPLE	SIZE		. j	NDICAT	OR MI	NERAL	s			NS 2	2 NS 3	MAG	COMMENTS	NS 1	NS 2	NS 3	ND	MAG	TOTAL	PROJ.	PICK BATCH	SENT SENT	NO.	NO.	SENT S	ENT H	ELD I	HELD I	NO.	SENT HELD SEN	T SENT	SENT SENT
NUMBER	mm	PYR	ECL	ILM	CHR	CD	OL	DIA	SULP		NOT	ZONE		HDLST SINK	HDLST SINK	HDLST SINK	HDLST SINK	g	WT.g	NO.	NUMBER		NZ	z	NZ	z	NZ	z	z			
43101	0.25-0.5	0	1	87	7	0	0	0				N		2.28		10000000		0.50	2.78	5835	2015 STORN 066	1	46	41	10	10	36	31		7		
43102	0.25-0.5	1	2	191	4	0	0	0				N	PYR: ASP; ECL: 1 ASP; CHR: 2?, possibly ZILM?	3.71				0.63	4.34	5835	2015 STORN 066	1 2	50	141	10	10	40	131		4		
43125	0.25-0.5	4	4	14	1	0	0	0				N	PYR: 1 reddish, 1?, kely, orpeel, 1 ASP; ECL: 1 ASP; CHR: ?, ASP	1.59				0.99	2.58	5835	2015 STORN 066	4 4	8	6	8	6				1		
43133	0.25-0.5	1	0	20	2	0	0	0	tr			N	PYR: ?, ASP	1.80				0.59	2.39	5835	2015 STORN 066	1	4	16	4	16				2		
43166	0.25-0.5	0	0	7	0	0	0	0				N	ILM: 3?	1.22				0.14	1.36	5835	2015 STORN 066		7		7							
43196	0.25-0.5	0	0	0	0	0	0	0	tr			N		3.36				0.83	4.19	5835	2015 STORN 066											
43234	0.25-0.5	0	53	2	0	0	0	0				N	ECL: All grains likely from one large, broken grain, ASP, highly altered, 20 sent, 33 held	1.96				0.54	2.50	5835	2015 STORN 066	20		2		2						
43242	0.25-0.5	0	0	14	0	0	0	0				N		2.55				0.93	3.48	5835	2015 STORN 066		10	4	10	4						
43250	0.25-0.5	3	0	295	8	0	0	0				N	PYR: 1 orpeel, all ASP	3.53				0.68	4.21	5835	2015 STORN 066	3	141	154	10	10 1	131	144		8		
43275	0.25-0.5	3	0	146	2	0	0	0				N	PYR: 1 kely, orpeel	3.23				0.47	3.70	5835	2015 STORN 066	3	68	78	10	10	58	68		2		
43286	0.25-0.5	0	1	37	5	0	0	0	tr			N	CHR: 1 ASP	2.51				0.62	3.13	5835	2015 STORN 066	1	20	17	10	10	10	7		5		
43288	0.25-0.5	1	3	201	2	0	0	0		ILM	I	N	PYR: 1 kely, orpeel; ECL: 1?, 2 ASP; CHR: 1 ASP	1.24	2.11			1.36	4.71	5835	2015 STORN 066	1 3	100	101	10	10	90	91		2		
43289	0.25-0.5	6	2	182	5	0	0	0		ILM	l I	N	PYR: 1?, 2 kely, 3 orpeel, 2 ASP; ECL: 1?	4.11	0.93			2.80	7.84	5835	2015 STORN 066	6 2	81	101	10	10	71	91		5		
43292	0.25-0.5	0	0	163	6	0	0	0	tr			N	CHR: 1 ASP	3.72				2.71	6.43	5835	2015 STORN 066		75	88	10	10	65	78		6		
43298	0.25-0.5	0	0	7	0	0	0	0				N		1.85				10.32	12.17	5835	2015 STORN 066		3	4	3	4						
43300	0.25-0.5	0	0	1	0	0	0	0				N		0.57				3.16	3.73	5835	2015 STORN 066			1		1						
43308	0.25-0.5	1	0	3	0	0	0	0				N	PYR: orpeel	2.50				1.25	3.75	5835	2015 STORN 066	1	2	1	2	1						
43310	0.25-0.5	0	0	7	0	0	0	0				N		1.35				0.79	2.14	5835	2015 STORN 066		3	4	3	4						
43320	0.25-0.5	0	0	5	0	0	0	0				N		1.95				0.66	2.61	5835	2015 STORN 066		5		5							
43349	0.25-0.5	2	1	6	0	0	0	0				N	PYR: 1 kely, orpeel; ECL: ASP	1.66				0.42	2.08	5835	2015 STORN 066	2 1	4	2	4	2						

																							PYR	ECL	1	ION-I	AG IL	MEN	ITES		MAG ILM CHR CD OI	OL OTH
SAMPLE	SIZE		j.	NDICAT	OR MI	INERA	LS				NS 2	NS 3	MAG	COMMENTS	NS 1	NS 2	NS 3	ND	MAG	TOTAL	PROJ.	PICK BATCH	SENT	SENT	NO.	NO.	SENT S	SENT I	HELD HI	ELD	NO. SENT HELD SENT SENT SEN	NT SENT
NUMBER	mm	PYR	ECL	ILM	CHR	CD	OL	DI	A S	ULPH	NOT PICKED	NOT PICKED	ZONED		HDLST SINK	HDLST SINK	HDLST SINK	HDLST SINK	g	WT. g	NO.	NUMBER			NZ	z	NZ	z	NZ	z	z	
43159	0.25-0.5	0	1	7	1	0	0	C)				Ν	ECL: ASP	1.25				0.49	1.74	5835	2015 STORN 067		1	2	5	2	5			1	
43164	0.25-0.5	0	3	17	1	0	0	C)	tr			Ν	ECL: all ASP	1.73				0.45	2.18	5835	2015 STORN 067		3	13	4	13	4			1	
43208	0.25-0.5	0	0	5	1	0	0	C)				Ν		1.97				0.73	2.70	5835	2015 STORN 067			4	1	4	1			1	
43214	0.25-0.5	2	3	40	12	0	0	C)	tr			N	PYR: kely, orpeel; ECL: 1?	2.05				0.36	2.41	5835	2015 STORN 067	2	3	18	22	10	10	8	12	12	
43309	0.25-0.5	1	1	13	2	0	0	C)				N	PYR: ?, kely, orpeel	1.77				1.14	2.91	5835	2015 STORN 067	1	1	7	6	7	6			2	
43312	0.25-0.5	0	6	11	0	0	0	С)				N	ECL: 5 ASP	2.89				1.62	4.51	5835	2015 STORN 067		6	4	7	4	7				
43313	0.25-0.5	0	4	19	1	0	0	С)				N	ECL: 1?	3.51				0.63	4.14	5835	2015 STORN 067		4	9	10	9	10			1	
43317	0.25-0.5	0	1	1	0	0	0	C)				N		2.59				1.41	4.00	5835	2015 STORN 067		1	1		1					
43318	0.25-0.5	0	0	1	0	0	0	C)				N		2.18				2.72	4.90	5835	2015 STORN 067			1		1					
43321	0.25-0.5	0	1	1	0	0	0	C)				N	ECL: ?	0.98				1.22	2.20	5835	2015 STORN 067		1	1		1					
43324	0.25-0.5	0	0	0	0	0	0	C)				N		1.34				0.58	1.92	5835	2015 STORN 067										
43326	0.25-0.5	0	0	3	0	0	0	C)				N		1.13				0.41	1.54	5835	2015 STORN 067			3		3					
43333	0.25-0.5	0	0	0	0	0	0	C)				N		1.28				0.96	2.24	5835	2015 STORN 067										
43334	0.25-0.5	1	1	6	0	0	0	C)				N	PYR: ?, teal blue-green	1.50				1.19	2.69	5835	2015 STORN 067	1	1	4	2	4	2				
43338	0.25-0.5	1	1	2	0	0	0	C)				N	PYR: orpeel	1.59				1.37	2.96	5835	2015 STORN 067	1	1	1	1	1	1				
43341	0.25-0.5	0	0	9	0	0	0	C)				N		1.70				1.25	2.95	5835	2015 STORN 067			6	3	6	3				
43346	0.25-0.5	0	0	2	1	0	0	C)				N		1.82				0.42	2.24	5835	2015 STORN 067			2		2				1	
43347	0.25-0.5	0	1	4	0	0	0	С)				N		1.96				0.62	2.58	5835	2015 STORN 067		1	3	1	3	1				

																						PYR	ECL	-	NON-	MAG IL	MENI	TES		MA	GILM CH	R CD	OL	отн
SAMPLE	SIZE			INDICA	TOR MI	INERAL	.s			NS 2	NS 3	MAG	COMMENTS	NS 1	NS 2	NS 3	ND	MAG	TOTAL	PROJ.	PICK BATCH	SENT	SENT	NO.	NO.	SENT S	ENT H	HELD I	IELD	NO.	SENT HELD SEN	IT SENT	SENT	SENT
NUMBER	mm	PYR	ECL	ILM	CHR	CD	OL	DIA	SULPI	NOT PICKE	NOT PICKED	ZONED ILM		HDLST SINK	HDLST SINK	HDLST SINK	HDLST SINK	g	WT. g	NO.	NUMBER			NZ	z	NZ	z	NZ	z	z				
43235	0.25-0.5	0	0	0	0	0	0	0				N		0.22				0.11	0.33	5835	2015 STORN 068													
43237	0.25-0.5	0	0	2	0	0	0	0				N		2.02				0.56	2.58	5835	2015 STORN 068			2		2								
43243	0.25-0.5	0	0	39	1	0	0	0				N		1.89				1.56	3.45	5835	2015 STORN 068			26	13	10	10	16	3		1			
43258	0.25-0.5	3	3	126	7	0	0	0				N	PYR: 2?, possibly ECL, 1 kely, orpeel, ASP; ECL: all ASP	2.70				0.70	3.40	5835	2015 STORN 068	3	3	50	76	10	10	40	66		7			
43264	0.25-0.5	0	0	0	3	0	0	0				N		0.74				0.37	1.11	5835	2015 STORN 068										3	Ģ		
43267	0.25-0.5	0	0	3	1	0	0	0	tr			N		1.94				2.31	4.25	5835	2015 STORN 068			1	2	1	2				1			
43274	0.25-0.5	25	23	263	44	0	0	0		ILM		Ν	PYR: 1?, 4 kely, 6 orpeel, 7 ASP, 20 sent, 5 held; ECL: 6 ASP, 20 sent, 3 held; CHR: 20 sent, 24 held	0.30	2.75			1.86	4.91	5835	2015 STORN 068	20	20	133	130	10	10	123	120		20)		
43277	0.25-0.5	0	0	0	0	0	0	0				N		1.23				0.04	1.27	5835	2015 STORN 068													
43297	0.25-0.5	0	1	8	2	0	0	0				N	ECL: ?, ASP	2.68				0.09	2.77	5835	2015 STORN 068		1	6	2	6	2				2			
43299	0.25-0.5	1	3	127	9	0	0	0	tr			N	ECL: 1 kely, orpeel	2.34				0.85	3.19	5835	2015 STORN 068	1	3	54	73	10	10	44	63		9	0		
43303	0.25-0.5	0	0	1	0	0	0	0				N		1.86				1.39	3.25	5835	2015 STORN 068			1		1								
43304	0.25-0.5	0	0	0	0	0	0	0	tr			N		1.44				0.93	2.37	5835	2015 STORN 068													
43307	0.25-0.5	0	0	2	0	0	0	0				N		2.11				2.90	5.01	5835	2015 STORN 068			1	1	1	1							
43311	0.25-0.5	0	0	14	2	0	0	0				N	CHR: 1 ?	0.59				0.93	1.52	5835	2015 STORN 068			10	4	10	4				2			
43314	0.25-0.5	0	0	0	0	0	0	0	tr			N		2.32				0.65	2.97	5835	2015 STORN 068													
43319	0.25-0.5	0	0	1	0	0	0	0				N	ILM: ?	0.71				1.36	2.07	5835	2015 STORN 068			1		1								
43323	0.25-0.5	0	0	1	0	0	0	0	tr			N		0.26				0.41	0.67	5835	2015 STORN 068			1		1								
43325	0.25-0.5	0	0	0	0	0	0	0	tr			N		2.29				0.93	3.22	5835	2015 STORN 068													
43327	0.25-0.5	0	0	0	0	0	0	0				Ν		0.64				0.19	0.83	5835	2015 STORN 068													
43328	0.25-0.5	0	0	0	0	0	0	0				N		1.06				0.48	1.54	5835	2015 STORN 068													

												-										PYR	ECL	. 1	NON-N	/IAG IL	MENIT	ES		MAG ILM	CHR	CD C	JL OTH
SAMPLE	SIZE			INDICA	TOR MI	NERAL	S			NS 2	2 NS 3	MAG	COMMENTS	NS 1	NS 2	NS 3	ND	MAG	TOTAL	PROJ.	PICK BATCH	SENT	SENT	NO.	NO.	SENT S	ENT HE	LD HI	ELD N	O. SENT HELD	SENT S	ENT SF	ENT SENT
NUMBER	mm	PYR	ECL	ILM	CHR	CD	OL	DIA	SULF		r Not Ed Picked	ZONED		HDLST	HDLST SINK	HDLST SINK	HDLST SINK	g	WT. g	NO.	NUMBER			NZ	z	NZ	Z N	z	z z	z			
43120	0.25-0.5	0	0	1	0	0	0	0	tr			N		2.55				0.31	2.86	5835	2015 STORN 069			1		1							
43132	0.25-0.5	0	0	4	2	0	0	0	tr			N		1.60				0.96	2.56	5835	2015 STORN 069			2	2	2	2				2		
43148	0.25-0.5	0	2	18	0	0	0	0				N	ECL: ?	3.02				1.33	4.35	5835	2015 STORN 069		2	10	8	10	8						
43171	0.25-0.5	0	0	1	0	0	0	0				N		1.94				0.56	2.50	5835	2015 STORN 069			1		1							
43186	0.25-0.5	0	0	20	1	0	0	0	tr			N	ZILM: 1 lost	3.24				0.77	4.01	5835	2015 STORN 069			8	12	8	11				1		
43201	0.25-0.5	0	0	13	0	0	0	0				Ν		1.40				0.87	2.27	5835	2015 STORN 069			5	8	5	8						
43202	0.25-0.5	0	0	2	2	0	0	0	tr			Ν		2.38				0.74	3.12	5835	2015 STORN 069				2		2				2		
43203	0.25-0.5	0	0	0	1	0	0	0	tr			Ν		0.46				0.06	0.52	5835	2015 STORN 069										1		
43215	0.25-0.5	1	0	50	6	0	0	0	tr			Ν		2.36				0.85	3.21	5835	2015 STORN 069	1		22	28	10	10 1	2	18		6		
43220	0.25-0.5	0	0	3	0	0	0	0				Ν		2.18				3.26	5.44	5835	2015 STORN 069			1	2	1	2						
43225	0.25-0.5	0	0	0	3	0	0	0	tr			Ν		1.88				0.98	2.86	5835	2015 STORN 069										3		
43228	0.25-0.5	1	0	1	1	0	0	0	tr			Ν		4.97				3.71	8.68	5835	2015 STORN 069	1		1		1					1		
43233	0.25-0.5	0	0	0	0	0	0	0				N		1.30				0.40	1.70	5835	2015 STORN 069												
43238	0.25-0.5	0	0	0	0	0	0	0	tr			Ν		1.23				0.35	1.58	5835	2015 STORN 069												
43240	0.25-0.5	0	0	5	0	0	0	0				N	Microlithic Spikes: 10 Synthetic Diamonds	1.37				0.72	2.09	5835	2015 STORN 069			2	3	2	3						
43244	0.25-0.5	2	0	23	2	0	0	0	tr			Ν	PYR: 1 orpeel	2.38				0.79	3.17	5835	2015 STORN 069	2		9	14	9	11		3		2		
43329	0.25-0.5	0	0	1	0	0	0	0				N		1.53				1.42	2.95	5835	2015 STORN 069			1		1							
43330	0.25-0.5	0	0	0	0	0	0	0				N		2.77				0.97	3.74	5835	2015 STORN 069												
43331	0.25-0.5	0	1	0	0	0	0	0	tr			N	Microlithic Spikes: 10 Blue Corundums; ECL: ?	2.67				0.83	3.50	5835	2015 STORN 069		1										
43345	0.25-0.5	0	0	1	0	0	0	0	tr			Ν		2.33				0.67	3.00	5835	2015 STORN 069			1		1							

																						PYR	ECL		NON-N	IAG ILN	IENIT	ſES		MAG ILM	CHR	CD	OL OTH
SAMPLE	SIZE			INDICA	TOR M	INERA	S			NS 2	NS	3 MA	G COMMENTS	NS 1	NS 2	NS 3	ND	MAG	TOTAL	PROJ.	PICK BATCH	SENT	SENT	NO.	NO.	SENT SE	NT HE	ELD HI	ELD N	O. SENT HELD	SENT	SENT ?	ENT SENT
NUMBER	mm	PYR	ECL	ILM	CHR	CD	OL	DIA	SULP		D PICK	T ZONI	D	HDLST SINK	HDLST SINK	HDLST SINK	HDLST SINK	g	WT. g	NO.	NUMBER			NZ	z	NZ	z r	NZ	z z	z			
43113	0.25-0.5	0	0	1	0	0	0	0	tr			N		2.62				0.86	3.48	5835	2015 STORN 070			1		1							
43197	0.25-0.5	0	0	0	1	0	0	0	tr			N	Microlithic Spikes: 10 Synthetic Diamonds	0.32				0.05	0.37	5835	2015 STORN 070										1		
43206	0.25-0.5	0	0	2	1	0	0	0				N		1.14				0.38	1.52	5835	2015 STORN 070				2		2				1		
43229	0.25-0.5	1	0	2	0	0	0	0				N	small portion spilled after it was picked, stored in separate bag	2.11				0.75	2.86	5835	2015 STORN 070	1		1	1	1	1						
43246	0.25-0.5	0	0	4	0	0	0	0				N		2.74				0.62	3.36	5835	2015 STORN 070			4		4							
43247	0.25-0.5	3	0	55	3	0	0	0				N	Microlithic Spikes: 9 Blue Corundums (picked 2X)	3.56				1.12	4.68	5835	2015 STORN 070	3		18	37	10 1	0	8 2	27		3		
43248	0.25-0.5	2	1	65	0	0	0	0				N	ECL: ?; Microlithic Spikes: 9 Synthetic Diamonds (picked 2X)	3.51				0.54	4.05	5835	2015 STORN 070	2	1	29	36	10 1	0 1	19 2	26				
43265	0.25-0.5	1	0	6	1	0	0	0	tr			N		2.31				0.83	3.14	5835	2015 STORN 070	1		4	2	4 :	2				1		
43266	0.25-0.5	0	0	0	0	0	0	0	tr			N		3.25				0.61	3.86	5835	2015 STORN 070												
43284	0.25-0.5	3	3	74	7	0	0	0	tr			N	PYR: 1 orpeel	2.39				0.73	3.12	5835	2015 STORN 070	3	3	19	55	10 1	0	9	45		7		
43294	0.25-0.5	0	0	2	0	0	0	0	tr			N		2.24				0.85	3.09	5835	2015 STORN 070			1	1	1	1						
43296	0.25-0.5	0	0	1	0	0	0	0				N		2.50				0.76	3.26	5835	2015 STORN 070			1		1							
43302	0.25-0.5	0	0	2	0	0	0	0				N		2.58				0.69	3.27	5835	2015 STORN 070			2		2							
43305	0.25-0.5	1	0	0	0	0	0	0	tr			N		0.78				0.30	1.08	5835	2015 STORN 070	1											
43316	0.25-0.5	0	0	0	0	0	1	0	tr			N		2.27				1.66	3.93	5835	2015 STORN 070												1
43332	0.25-0.5	2	1	56	1	0	0	0	tr			N		2.06				0.82	2.88	5835	2015 STORN 070	2	1	33	23	10 1	0 2	23	13		1		
43342	0.25-0.5	1	1	14	0	0	0	0	tr			N	PYR: orpeel; Microlithic Spikes: 10 Blue Corundums	0.59				0.14	0.73	5835	2015 STORN 070	1	1	2	12	2 1	2						
43343	0.25-0.5	0	0	0	0	0	0	0				N		2.10				1.74	3.84	5835	2015 STORN 070												
43344	0.25-0.5	0	0	0	0	0	0	0				N		3.48				2.14	5.62	5835	2015 STORN 070												
43348	0.25-0.5	0	0	4	0	0	0	0				N		1.97				0.43	2.40	5835	2015 STORN 070				4		1						

																					PYR EC	L	NON-	MAGI	LMEN	ITES		MAGI	LM	CHR CE	OL OTH
SAMPLE	SIZE		j.	INDICA	TOR MI	NERAL	.s			NS 2	NS 3	MAG COMMENTS	NS 1	NS 2	NS 3	ND	MAG	TOTAL	PROJ.	PICK BATCH	SENT SEN	T NO.	NO.	SENT	SENT	HELD H	ELD N	O. SENT	r HELD	SENT SEN	T SENT SENT
NUMBER	mm	PYR	ECL	ILM	CHR	CD	OL	DIA	SULF	PH NOT PICKED F	NOT PICKED	ZONED ILM	HDLST SINK	HDLST SINK	HDLST SINK	HDLST SINK	g	WT. g	NO.	NUMBER		NZ	z	NZ	z	NZ	z	z			
43110	0.25-0.5	1	2	95	6	0	0	0	tr			N CHR: 1 possibly ILM	4.32				1.16	5.48	5835	2015 STORN 071	1 2	43	52	10	10	33	42			6	
43117	0.25-0.5	0	4	84	1	0	1	0				N ECL: 1 ?	2.76				2.40	5.16	5835	2015 STORN 071	4	29	55	10	10	19	45			1	1
43119	0.25-0.5	0	0	7	0	0	0	0	tr			Ν	3.64				0.48	4.12	5835	2015 STORN 071		3	4	3	4						
43122	0.25-0.5	2	2	22	2	0	0	0	tr			N PYR: 1 orpeel	2.17				0.73	2.90	5835	2015 STORN 071	2 2	8	14	8	12		2			2	
43135	0.25-0.5	3	3	182	6	0	0	0		ILM		N PYR: 1 orpeel	3.84	4.10			3.56	11.50	5835	2015 STORN 071	3 3	81	101	10	10	71	91			6	
43169	0.25-0.5	0	2	17	3	0	0	0				N	11.58				3.69	15.27	5835	2015 STORN 071	2	14	3	14	3					3	
43170	0.25-0.5	0	2	17	0	0	0	0				N	10.95				7.20	18.15	5835	2015 STORN 071	2	7	10	7	10						
43172	0.25-0.5	0	0	0	0	0	0	0				N	5.38				9.54	14.92	5835	2015 STORN 071											
43175	0.25-0.5	0	1	22	0	0	0	0				N	4.14				0.74	4.88	5835	2015 STORN 071	1	13	9	11	9	2					
43178	0.25-0.5	1	1	3	1	0	0	0				N	4.25				0.85	5.10	5835	2015 STORN 071	1 1	2	1	2	1					1	
43221	0.25-0.5	0	0	4	1	0	0	0	tr			N	2.48				0.93	3.41	5835	2015 STORN 071		3	1	3	1					1	
43224	0.25-0.5	0	1	9	0	0	0	0	tr			N	3.12				0.96	4.08	5835	2015 STORN 071	1	2	7	2	7						
43241	0.25-0.5	0	1	55	4	0	0	0	tr			N	3.06				0.63	3.69	5835	2015 STORN 071	1	21	34	10	10	11	24			4	
43249	0.25-0.5	3	0	116	6	0	0	0	tr			N PYR: 1?; CHR: 3?	3.38				1.16	4.54	5835	2015 STORN 071	3	61	55	10	10	51	45			6	
43255	0.25-0.5	0	1	7	0	0	0	0				N	2.03				0.42	2.45	5835	2015 STORN 071	1	1	6	1	6						
43259	0.25-0.5	8	21	197	27	0	0	0		ILM		N PYR: 1 orpeel; ECL: 20 sent, 1 held; CHR: 20 sent, 7 held	0.33	1.64			1.06	3.03	5835	2015 STORN 071	8 20	77	120	10	10	67 1	10			20	
43260	0.25-0.5	9	1	235	33	0	0	0	tr			N PYR: 2 orpeel; CHR: 20 sent, 13 held	2.11				0.20	2.31	5835	2015 STORN 071	9 1	129	106	10	10	119	96			20	
43272	0.25-0.5	2	2	89	48	0	0	0				N CHR: 20 sent, 28 held	1.54				0.30	1.84	5835	2015 STORN 071	2 2	29	60	10	10	19	50			20	
43287	0.25-0.5	1	0	29	6	0	0	0				N PYR: orpeel	2.94				0.52	3.46	5835	2015 STORN 071	1	14	15	10	10	4	5			6	
43293	0.25-0.5	1	0	5	4	0	0	0				N	2.56				0.89	3.45	5835	2015 STORN 071	1	2	3	2	3					4	

																						PYR EC	L	NON-	-MAG	ILMEN	ITES		MAG	GILM	HR CD	OL OTH
SAMPLE	SIZE		IN	DICAT	OR MI	NERAL	S			NS 2	NS 3	MAG	COMMENTS	NS 1	NS 2	NS 3	ND	MAG	TOTAL	PROJ.	PICK BATCH	SENT SEM	NT NO	. NO.	SENT	T SENT	HELD	HELD	NO. SE	ENT HELD	ENT SENT	SENT SENT
NUMBER	mm	PYR E	CL	ILM	CHR	CD	OL	DIA	SULPI		NOT D PICKE	ZONED		HDLST SINK	HDLST SINK	HDLST SINK	HDLST SINK	g	WT. g	NO.	NUMBER		NZ	z	NZ	z	NZ	z	z			
43180	0.25-0.5	0	0	0	0	0	0	0	tr			Ν		2.53				0.96	3.49	5835	2015 STORN 072											
43182	0.25-0.5	0	0	1	0	0	0	0	tr			Ν		3.76				1.32	5.08	5835	2015 STORN 072		1		1							
43184	0.25-0.5	0	0	1	0	0	0	0	tr			Ν		2.64				0.91	3.55	5835	2015 STORN 072			1		1						
43187	0.25-0.5	0	0	28	0	0	0	0				Ν		2.44				1.15	3.59	5835	2015 STORN 072		13	15	10	10	3	5				
43188	0.25-0.5	0	0	3	0	0	0	0	tr			Ν		2.47				0.44	2.91	5835	2015 STORN 072		2	1	2	1						
43199	0.25-0.5	0	0	0	0	0	0	0	tr			Ν		2.09				1.07	3.16	5835	2015 STORN 072											
43200	0.25-0.5	0	0	91	4	0	0	0				N	Microlithic Spikes: 10 Synthetic Diamonds, picked 2X	3.68				1.15	4.83	5835	2015 STORN 072		40	51	10	10	30	41			4	
43204	0.25-0.5	34	17	243	7	0	0	0		ILM		N	PYR: 5 orpeel, 3 ASP, 20 sent, 14 held; ECL: 4? 7 ASP; ILM: very brittle; OTH: zoned ilmenites?, with surface inclusions, more in sample, 5 sent, 14 held; Sample contaminated after picking	0.17	3.93			1.18	5.28	5835	2015 STORN 072	20 17	7 26	217	10	10	16	207			7	5
43226	0.25-0.5	0	0	0	0	0	0	0				Ν		1.42				0.63	2.05	5835	2015 STORN 072											
43227	0.25-0.5	0	0	2	0	0	0	0				Ν		1.83				0.65	2.48	5835	2015 STORN 072		1	1	1	1						
43232	0.25-0.5	0	5	58	3	0	0	0				Ν		4.61				1.18	5.79	5835	2015 STORN 072	5	26	32	10	10	16	22			3	
43251	0.25-0.5	2	1	204	17	0	0	0				Ν	PYR: 1?, possibly ECL	2.64				1.33	3.97	5835	2015 STORN 072	2 1	89	115	10	10	79	105			17	
43253	0.25-0.5	2	2	16	1	0	0	0				Ν	PYR: 1 ASP	5.87				1.41	7.28	5835	2015 STORN 072	2 2	6	10	6	10					1	
43263	0.25-0.5	0	1	79	1	0	0	0				Ν	Many picked as ILM possibly hematite?, or oxidized ILM?	1.85				0.38	2.23	5835	2015 STORN 072	1	14	65	10	10	4	55			1	
43269	0.25-0.5	0	0	83	2	0	0	0	tr			Ν		2.36				0.74	3.10	5835	2015 STORN 072		54	29	10	10	44	19			2	
43273	0.25-0.5	16	4	189	20	0	0	0	tr	ILM		Ν	PYR: 1 kely, 6 orpeel, 1 ASP; ILM: odd grains, some possibly simple ILM?, tabular and/or polycrystalline	0.06	5.68			0.70	6.44	5835	2015 STORN 072	16 4	44	145	10	10	34	135			20	
43279	0.25-0.5	1	1	2	2	0	0	0	tr			Ν	ECL: ?	3.48				0.97	4.45	5835	2015 STORN 072	1 1	2		2						2	
43285	0.25-0.5	0	0	115	7	0	0	0	tr			Ν		5.20				3.56	8.76	5835	2015 STORN 072		51	64	10	10	41	54			7	
43306	0.25-0.5	0	0	0	0	0	0	0				Ν	Microlithic Spikes: 8 Synthetic Diamonds, picked 2X	1.62				2.21	3.83	5835	2015 STORN 072											
43337	0.25-0.5	0	0	0	0	0	0	0	tr			Ν		2.24				8.51	10.75	5835	2015 STORN 072											

																						PYR ECL	. 1	NON-M	AGILM	ENITE	S	MAG ILM	CHR CD	OL OTH
SAMPLE	SIZE			INDICA	TOR M	INERAL	S			NS 2	NS 3	MAG	COMMENTS	NS 1	NS 2	NS 3	ND	MAG	TOTAL	PROJ.	PICK BATCH	SENT SENT	NO.	NO. S	ENT SE	NT HELI	HELD I	NO. SENT HELD	SENT SENT	SENT SENT
NUMBER	mm	PYR	ECL	ILM	CHR	CD	OL	DIA	SULPH	NOT PICKED F	NOT 2 PICKED	ONED ILM		HDLST SINK	HDLST SINK	HDLST SINK	HDLST SINK	g	WT. g	NO.	NUMBER		NZ	z	NZ Z	NZ	z	z		
43103	0.25-0.5	4	0	60	5	0	0	0	tr			N PYR: 1 ASP		6.35				1.49	7.84	5835	2015 STORN 073	4	26	34	10 1	0 16	24		5	
43107	0.25-0.5	2	0	25	0	0	0	0	tr			N		3.63				1.34	4.97	5835	2015 STORN 073	2	14	11	10 1) 4	1			
43109	0.25-0.5	0	2	30	0	0	0	0	tr			Ν		4.43				1.13	5.56	5835	2015 STORN 073	2	13	17	10 1	3	7			
43129	0.25-0.5	0	0	61	5	0	0	0	tr			N		6.02				0.65	6.67	5835	2015 STORN 073	(34	27	10 1	24	17		5	
43143	0.25-0.5	0	0	9	0	0	0	0				N		2.87				0.61	3.48	5835	2015 STORN 073		4	5	4 5					
43162	0.25-0.5	0	1	16	2	0	0	0				Ν		5.11				0.96	6.07	5835	2015 STORN 073	1	9	7	9 7				2	
43163	0.25-0.5	1	0	21	5	0	0	0				N PYR: orpeel		8.49				3.88	12.37	5835	2015 STORN 073	1	7	14	7 1	3	1		5	
43168	0.25-0.5	0	0	3	0	0	0	0				N		5.41				1.42	6.83	5835	2015 STORN 073		2	1	2 1					
43179	0.25-0.5	1	0	0	0	0	0	0				N		4.71				0.13	4.84	5835	2015 STORN 073	1								
43183	0.25-0.5	0	0	0	0	0	0	0				N		2.20				0.63	2.83	5835	2015 STORN 073									
43185	0.25-0.5	0	0	2	0	0	0	0	tr			N		3.91				0.66	4.57	5835	2015 STORN 073		2		2					
43193	0.25-0.5	0	0	0	0	0	0	0				N		4.72				0.81	5.53	5835	2015 STORN 073									
43195	0.25-0.5	1	0	0	0	0	0	0				N		9.99				0.30	10.29	5835	2015 STORN 073	1								
43216	0.25-0.5	2	0	12	3	0	0	0				N		2.65				1.43	4.08	5835	2015 STORN 073	2	3	9	3 9	6			3	
43219	0.25-0.5	0	0	3	0	0	0	0	tr			N		1.94				0.67	2.61	5835	2015 STORN 073			3	3					
43230	0.25-0.5	0	0	1	0	0	0	0				N		0.64				0.15	0.79	5835	2015 STORN 073		1		1					
43231	0.25-0.5	0	0	2	0	0	0	0				N Microlithics Spik	es: 9 Blue Corundum; PICKEI	D 2 X 0.62				0.13	0.75	5835	2015 STORN 073			2	2					
43236	0.25-0.5	0	0	2	0	0	0	0				N		2.82				0.93	3.75	5835	2015 STORN 073		1	1	1 1					
43261	0.25-0.5	11	2	144	14	0	0	0		ILM		N PYR: 6?, possib	ly ECL?	1.64	1.15			0.70	3.49	5835	2015 STORN 073	11 2	77	67	10 1	67	57		14	
43315	0.25-0.5	0	0	0	0	0	0	0	tr			Ν		0.95				0.42	1.37	5835	2015 STORN 073	(

																						PYR I	ECL	N	ON-MA	GILN	IENITE	S	M	AG ILM	CHR	CD	OL OTH
SAMPLE	SIZE			INDICA	TOR M	NERA	LS			NS 2	NS 3	MAG	COMMENTS	NS 1	NS 2	NS 3	ND	MAG	TOTAL	PROJ.	PICK BATCH	SENT S	SENT	NO.	NO. SE	ENT SE	NT HEL	D HELC	NO.	SENT HEL	D SENT	SENT S	SENT SENT
NUMBER	mm	PYR	ECL	ILM	CHR	CD	OL	DIA	SULF		NOT PICKED	ZONED ILM		HDLST SINK	HDLST SINK	HDLST SINK	HDLST SINK	g	WT. g	NO.	NUMBER			NZ	z	NZ Z	Z NZ	z	z				
43207	0.25-0.5	0	2	8	0	0	0	0				Ν		10.13			4.74	7.68	22.55	5835	2015 STORN 074		2	8		8							
43268	0.25-0.5	0	0	14	2	0	0	0				Ν	CHR: 1?	2.25				0.55	2.80	5835	2015 STORN 074			4	10	4 1	0				2		
43281	0.25-0.5	1	0	4	1	0	0	0				Ν		4.08				0.37	4.45	5835	2015 STORN 074	1			4	4	1				1		
43295	0.25-0.5	0	0	10	3	0	0	0	tr			N		4.03				0.33	4.36	5835	2015 STORN 074			3	7	3	7				3		
43301	0.25-0.5	1	0	0	2	0	0	0				N	PYR: ?	3.26				1.04	4.30	5835	2015 STORN 074	1									2		
43322	0.25-0.5	0	0	0	0	0	0	0				Ν		1.49				0.10	1.59	5835	2015 STORN 074												
43335 (1 o	f 0.25-0.5	0	0	1	0	0	0	0				Ν	Part 1 of 2	3.10				0.61	3.71	5835	2015 STORN 074				1		ľ,						
43335 (2 o	f 0.25-0.5	0	0	0	0	0	0	0				Ν	Part 2 of 2 identified by Microlithics as "spill portion"	1.08				0.19	1.27	5835	2015 STORN 074												
43336	0.25-0.5	0	0	0	0	0	0	0				N		5.81				0.62	6.43	5835	2015 STORN 074												
43339	0.25-0.5	0	0	0	0	0	0	0				Ν	Microlithic Spikes: 10 Blue Corundum	1.00				1.86	2.86	5835	2015 STORN 074												
43340	0.25-0.5	0	0	3	0	0	0	0				N		4.02				0.98	5.00	5835	2015 STORN 074			1	2	1 2	2						
43350	0.25-0.5	26	23	168	33	0	13	0		ILM		N	PYR: 4?, posssibly ECL, 1 kely, 4 orpeel, 20 sent, 5 held, 1 lost; ECL: 20 sent, 3 held; CHR: 20 sent, 13 held; OL: 10 sent, 3 held	4.37	8.64			0.07	13.08	5835	2015 STORN 074	20	20	62	106	10 1	0 52	96			20		10

Appendix 7 - Field Logs, Review Comments and Thin Section Descriptions

Field Logs

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	Datum	Till Sample ID	Kimberlite Sample ID
AD-00-01	01/04/2024	01/04/2026	L. Boyce I. Lepine	Hornet 2	662792	5751047	Zone 18, WGS 84	43362	
AD-00-01	01/04/2024	01/04/2026	L. Boyce I. Lepine	Hornet 2	662792	5751047	Zone 18, WGS 84		
AD-00-01	01/04/2024	01/04/2026	L. Boyce I. Lepine	Hornet 2	662792	5751047	Zone 18, WGS 84		
AD-00-01	01/04/2024	01/04/2026	L. Boyce I. Lepine	Hornet 2	662792	5751047	Zone 18, WGS 84		
AD-00-01	01/04/2024	01/04/2026	L. Boyce I. Lepine	Hornet 2	662792	5751047	Zone 18, WGS 84		
AD-00-01	01/04/2024	01/04/2026	L. Boyce I. Lepine	Homet 2	662792	5751047	Zone 18, WGS 84		
AD-00-01	01/04/2024	01/04/2026	L. Boyce I. Lepine	Homet 2	662792	5751047	Zone 18, WGS 84		
AD-00-01	01/04/2024	01/04/2026	L. Boyce I. Lepine	Hornet 2	662792	5751047	Zone 18, WGS 84		
AD-00-01	01/04/2024	01/04/2026	L. Boyce 1. Lepine	Hornet 2	662792	5751047	Zone 18, WGS 84		
AD-00-02	01/04/2024	01/04/2026	L. Boyce I. Lepine	Hornet 3	662792	5751047	Zone 18, WGS 85		
tole Comme .ogge r Name .ogge r Signat	nts: Very comple : Lagen A : ure:	x kimberlite (?), yce	needs more [work. Date: Ap	ul 26 20	51 6	BOVED		

· · ·

AD-00-01						1			1
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	25	OVB	Granite	Gneiss	10	Pink	Grey		Massive
25	105	Granite			4	Pink	Grey		Massive
105	115	Granite	Kimberlite	Gneiss	4	Pink	Black	Grey	Massive
115	125	Kimberlite	Granite		6	Black	Grey	Pink	Porphyritic
125	130	Kimberlite	Granite		6	Black	Grey	Red	Porphyritic
130	135	Granite	Kimberlite		4	Pink	Grey	Brown	Massive
135	140	Granite	Kimberlite		3	Pink	Grey		Massive
140	145	Kimberlite	Granite		5	Black	Grey	Red	Porphyritic
145	150	Kimberlite	Granite		5	Biack	Grey	Pink	Porphyritic
150	155	Granite	Kimberlite		3	Pink	Grey	Black	Massive

AD-00-01			Kim	berlite Minerals in	Decreasing Abund	lance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	25						NIL	NIL
25	105	Strong					Weak	Weak
105	115	Strong	Olivine	Phlogopite	Carbonate		Strong	Strong
115	125	Moderate	Olivine	Phlogopite	Carbonate	Perovskite	Strong	Strong
125	130	Moderate	Olivine	Phiogopite	Carbonate	Perovskite	Strong	Strong
130	135	Strong	Olivine	Phlogopite	Carbonate		Strong	Strong
135	140	Strong	Olivine	Carbonate	Perovskite		Moderate	Moderate
140	145	Moderate	Olivine	Carbonate	Perovskite	Phlogopite	Strong	Strong
145	150	Moderate	Olivine	Carbonate	Perovskite	Phlogopite	Strong	Strong
150	155	Moderate	Olivine	Carbonate	Perovskite		Weak	Weak

×, =

AD-00-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	25	Dominated by granite with trace of gneiss. Sand and gravel.
25	105	K-spar rich granite, patchy calcite with minor mafics.
105	115	Mix interval of Granite (90%) and Kimberlie (10%) chips. The kimberlite looks altered. The red minerals is present exclusively in the kimberlite. Kimberlite is composed of serpentinised olivine macros and phenos. Macro are hard to see. Groundmass is composed carbonate, phiogopite, and perovskite. This is different looking than what we observed the other kimberlite in the area.
115	125	Dark black kimbrelite with serpentinised olivine (macros and phenos). The intensity of the olivine serpentinisation varies from chips to chips. Groundmass is composed of phiogopite, perovskite and carbonate. Red alteration is locally observed. From 120 to 125 feet there is more macros.
125	130	Same as above, but this time more red "brecciated" chips are observed. Country rock breccia??
130	135	Mix interval of Granite (95%) and Kimberlie (5%) chips. The kimberlite looks altered. The red minerals is present exclusively in the kimberlite. Kimberlite is composed of serpentinised olivine macros and phenos. Groundmass is composed carbonate, phlogopite, and perovskite. same as between 105 and 115 feet.
135	140	More of the serpentine alteration on the chips is observed. Similar to the last run with less kimberlie chips (mainly in larger chips). Olivine macros and phenos are mainly serpentinised. Presence of serpentine veins. Traces of sulphides. Groundmass is mainly composed of carbonate, serpenting and perovskite. Possible breccia texture.
140	145	Overall the kimberiite is less serpentinsed than the previous unit above. Trace of suphide cores in the olivine. Some olivine looks like they have reaction rims. Some chips have more perovskite than other. Also some carbonate segregation is observed locally on some chips.
145	150	Kimberlite (90%) and granite (10%). Balck rims around the olivine are still observed. Similar to above run.
150	155	Less than 1% kimberlite. The kimberlite is similar as above. Serpentinisation of the olivines. Kimberlite is more brown in colour than above.

5 % 1

1

AD-00-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	25	i Till sample ID between 15 and 20 feet. Very little return. Granite > gneiss, gravel and sand
25	105	Pink granite, equigranular, medium grained, patchy magnetism and variable mafics content. Very rare chip with reaction to HCI.
105	115	Granite with rare soft patch (Kimberlite?). Black chips reacts to HCI. At 105 increase in kimberlite chips content.
115	125	Kimberlite with rare granite chips. Local visible of phenos and possible perovskite and mica. From 120 to 125 rare opalescent blue mineral that is glassy to transparent.
125	130	same as above, with rust red altered granite chips.
130	135	Altered granite and kimberlite chips, common very large chips < 2cm of altred granite and kimberlite also. Rare black blue aphanitic chips (chill margin ?).
135	140	As above. Possible breccia texture, deep red mineral in granite.
140	145	Dark black rock, harder than previous. Possible visible olivine macrocryst
145	150	Black at top of run, mixed kimberlite and granite. Granite are altered to fresh. Possible country rock breccia. Some very large chips all granite. Run ends in fresh granite.
150	155	95% granite with rare kimberlite chips (might be from previous run?). Rock was very hard, appoximately 50 min to drill. Sampled into mega bag.

2

					10 I			1	
Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite
AD-01A-01	25/03/2016	09/04/2016	T. Stubley	Hornet 2	663450	5753812	Zone 18, WGS 84	in semple in	Sample ID
AD-01A-01	25/03/2016	09/04/2016	T. Stubley	Hornet 2	663450	5753812	Zone 18, WGS 84		
AD-01A-01	25/03/2016	09/04/2016	T. Stubley	Hornet 2	663450	5753812	Zone 18, WGS 84		
AD-01A-01	25/03/2016	09/04/2016	T. Stubley	Hornet 2	663450	5753812	Zone 18, WGS 84		43506
AD-01A-01	25/03/2016	09/04/2016	T. Stubley	Hornet 2	663450	5753812	Zone 18, WGS 84		
AD-01A-01	25/03/2016	09/04/2016	T. Stubley	Hornet 2	663450	5753812	Zone 18, WGS 84		43506
AD-01A-01	25/03/2016	09/04/2016	T. Stubley	Hornet 2	663450	5753812	Zone 18, WGS 84		
AD-01A-01	25/03/2016	09/04/2016	T. Stubley	Hornet 2	663450	5753812	Zone 18, WGS 84		43506
AD-01A-01	25/03/2016	09/04/2016	T. Stubley	Hornet 2	663450	5753812	Zone 18, WGS 84		43506
AD-01A-01	25/03/2016	09/04/2016	T. Stubley	Hornet 2	663450	5753812	Zone 18, WGS 84		43506
AD-01A-01	25/03/2016	09/04/2016	T. Stubley	Hornet 2	663450	5753812	Zone 18, WGS 84		
AD-01A-01	25/03/2016	09/04/2016	T. Stubley	Hornet 2	663450	5752012	7000 10 MICC 04		43506

addition to KC bit-race return due to lack of return from sampling bit. Therefore some amount of uphole contamination occurs, as evidenced by subrounded overburden chips within samples between 20 and 45'. Kimberlite intersections were observed at rig as occurring within the recorded depths. Log updated by L.Boyce on April 9, 2016. NEW Format

Logger Name: Logan Boyce	APPROVED
Logger Signature:	
Date: April 9 2016	rung Joko

AD-01A-01						-	1	1	
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate	Color 1	Color 2	Color 2	Texture
0	7.5	OVB			20)		00101 3	ICALUFE
7.5	20	Granite			12	Grey	Pink		Massive
20	25	Kimberlite			8	Grey	Green		Porphyritic
25	40	Granite			10				Massive
40	45	Kimberiite			8	Grev			Pornhyritic
45	60	Granite			5	Pink			Massiva
60	65	Kimberlite			10				
65	80	Granite			10	Dist			Porphyritic
80	85	Kimberlite			8	блеу	Green	Brown	Porphyritic
85	90	Kimberlite			8	Grey	Brown		Porphyritic
90	95	Kimberlite			10	Grey	Brown		Porphyritic
95	115	Granite				Pink			Equigranula

14

1		Kim	berlite Minerals in	Decreasing Abund	ance		
Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism	
7.5						NA	NA
20						NA	NA
25		Olivine	Perovskite			NA	NA
40						YES	NA
45		Olivine	Perovskite			YES	YES
60						NA	NA
65		Perovskite	Illmentite			NA	VEC
80						NA	NA
85		Olivine	Perovskite	Illmenite	Phlogopite	YES	YES
90		Olivine	Perovskite	Phlogopite	Illmenite	YES	YES
95		Olivine	Phlogopite			YES	YES
115						NA	NA
	Depth To (ft) 7.5 20 25 40 45 60 45 60 85 80 85 90 95 115	Depth To (ft)Degree of Alteration7.5-20-21-25-40- <td>Depth To (ft)Degree of AlterationKimberlite Min 17.5202122234040404040404041424344456667686990115415416417418419419411</td> <td>Depth To (ft)Degree of AlterationKimberlite Min 1Kimberlite Min 27.5<!--</td--><td>Degree of Alteration Kimberlite Min 1 Kimberlite Min 2 Kimberlite Min 3 7.5 -</td><td>Degree of Pepth To (h) Degree of Alteration Rimberlite Min 1 Rimberlite Min 2 Rimberlite Min 3 Rimberlite Min 4 7.5 </td><td>Degree of Alteration Mimberlite Min 1 Mimberlite Min 2 Mimberlite Min 3 Mimberlite Min 3 Mimberlite Min 3 Magnetism Response 7.5 Image distance Image distance Image distance NA NA 7.5 Image distance Image distance Image distance NA NA 7.5 Image distance Image distance Image distance NA NA 7.5 Image distance Image distance Image distance Image distance NA 7.5 Image distance Image distance Image distance Image distance NA 7.6 Image distance Image distance Image distance Image distance NA 6 Image distance Image distance Image distance Image distance Image distance NA 6 Image distance Image distance Image distance Image distance Image distance NA 6 Image distance Image distance Image distance Image distance Image distance Image distance Image distance</td></td>	Depth To (ft)Degree of AlterationKimberlite Min 17.5202122234040404040404041424344456667686990115415416417418419419411	Depth To (ft)Degree of AlterationKimberlite Min 1Kimberlite Min 27.5 </td <td>Degree of Alteration Kimberlite Min 1 Kimberlite Min 2 Kimberlite Min 3 7.5 -</td> <td>Degree of Pepth To (h) Degree of Alteration Rimberlite Min 1 Rimberlite Min 2 Rimberlite Min 3 Rimberlite Min 4 7.5 </td> <td>Degree of Alteration Mimberlite Min 1 Mimberlite Min 2 Mimberlite Min 3 Mimberlite Min 3 Mimberlite Min 3 Magnetism Response 7.5 Image distance Image distance Image distance NA NA 7.5 Image distance Image distance Image distance NA NA 7.5 Image distance Image distance Image distance NA NA 7.5 Image distance Image distance Image distance Image distance NA 7.5 Image distance Image distance Image distance Image distance NA 7.6 Image distance Image distance Image distance Image distance NA 6 Image distance Image distance Image distance Image distance Image distance NA 6 Image distance Image distance Image distance Image distance Image distance NA 6 Image distance Image distance Image distance Image distance Image distance Image distance Image distance</td>	Degree of Alteration Kimberlite Min 1 Kimberlite Min 2 Kimberlite Min 3 7.5 -	Degree of Pepth To (h) Degree of Alteration Rimberlite Min 1 Rimberlite Min 2 Rimberlite Min 3 Rimberlite Min 4 7.5	Degree of Alteration Mimberlite Min 1 Mimberlite Min 2 Mimberlite Min 3 Mimberlite Min 3 Mimberlite Min 3 Magnetism Response 7.5 Image distance Image distance Image distance NA NA 7.5 Image distance Image distance Image distance NA NA 7.5 Image distance Image distance Image distance NA NA 7.5 Image distance Image distance Image distance Image distance NA 7.5 Image distance Image distance Image distance Image distance NA 7.6 Image distance Image distance Image distance Image distance NA 6 Image distance Image distance Image distance Image distance Image distance NA 6 Image distance Image distance Image distance Image distance Image distance NA 6 Image distance Image distance Image distance Image distance Image distance Image distance Image distance

.

AD-01A-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	7.5	
7.5	20	Weathered/bleached granite.
20	25	Fine- grained olivine crystal rich kimberlite. Slightly weathered. Strongly reactive to HCI. Common perovskite, common pink-brown amorphous mineral in groundmass of some chips Note: BOP return was sampled due to paucity of return from RC head, some uphole contamination may occur
25	40	Dominated by pink granite. BOP return was sampled, therefore uphole contamination occurs, including rounded OVB chips
40	45	Fine grained olivine crystal rich kimberlite. Ol macrocrysts more abundant (or just more visible) thjan last kimberlie Interval. Common perovskite. Very strongly magnetic, very strong reaction to HCl. Rare red As (?) minerals
45	60	Pink whitish granite, rare chips green grey garnet-amphibolite gneiss
60	65	rare chips exhibit sharp texture change- from fine grained crystal rich kimberlite , to massive to possibly banded green rock. ?Country rock xenolith or chilled margin? Common perovskite with ilmenite core.
65	80	Pink granite, common interstitial carbonate, HCI reaction evident under microscope.
80	85	Very fine grained to fine grained moderately crystal rich kimberlite. Olivine Pheno's are hard to distinguish in vfg perovskite rich 'fuzzy' groundmass. Ol macrocrysts and ilmenite are visible locally. Common phlogopite
85	90	Dull green-greyish translucent olivine phenos. Abundant perovskite in groundmass, no atoll structure and ilmenite cores very rare. Common phlogopite.
90	95	Abundant olivine and less common phlogopite phenocrysts in very fine grained to massive groundmass.
95	115	Medium grained equigranular pink granite

AD-01A-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	7.5	Rounded heterolithic pebbles and fragments.
7.5	20	Hard, white-pink granite. Non mag, no HCL reaction.
20	25	Dark green dyke encountered, driller indicated softer drilling, green color. Strong HCL reaction on mafic chips. Wit white granite.
25	40	Pink-white granite with rare black magnertic chips.
40	45	Soft black-green equigranular chips, variable mag, strong HCL reaction. Some chips mixed
45	60	Pink-white granite non-mag, non-HCL.
60	65	Possibly amph-porph dyke. Black gneiss with amph phenos? <1.5mm, olivine in gneiss? Soft, soapy feel, non mag, mod-strong HCL reaction
65	80	Non mag, pink granite.
80	85	Fine grained equigranular black dyke, strong mag, strong HCL reaction.
85	90	Maybe carbonate altered amphibolite, no visible olivine phenocrysts.
90	95	Granite/ dyke contact. Possible feldspar crystals visible in dyke, strong mag and hel reaction
95	115	Non mag, pink granite.

64

Hole ID Date Drilled Date Logged Logged By Drill # UTM Easting UTM Northing Datum Till Sample ID AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84					1					
AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01	Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and	Till Samala ID	Kimberlite
AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 Hornet 2 663354 5753879 Zon	-018-01	26/03/2016	07/04/2016	A. Shiroki	Hornet 2	663354	5753879	7000 18 W/GS 94	ти запре ю	sample ID
AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 Hornet 2 663354 5753879 Zone 18	-01B-01	26/03/2016	07/04/2016	A. Shiroki	Hornet 2	663354	5753870	Zone 19 WGS 04		
AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Hornet 2 663354 5753879 Zone 18, WGS 84 Hornet 2 663354 5753879 Zone 18,	-01 B -01	26/03/2016	07/04/2016	A. Shiroki	Hornet 2	663354	5753879	Zone 18, WGS 84		
AD-01B-01 26/03/2016 07/04/2016 A. Shiroki Homet 2 663354 5753879 Zone 18, WGS 84 Homet 2 663354 5753879 Zone 18, WGS 84 Hole Comments: Weakly magnetic granite with trace kimberlite chips at 60-70 feet missed during field logging. Anomaly not explained by th magnetic granite. Log updated into new format by LBoyce on April 9, 2016. Logger Name: Logger Signature: Date: Action 9 2016	-018-01	26/03/2016	07/04/2016	A. Shiroki	Hornet 2	662254	5752070	**		
Hole Comments: Weakly magnetic granite with trace kimberlite chips at 60-70 feet missed during field logging. Anomaly not explained by th magnetic granite. Log updated into new format by L.Boyce on April 9, 2016. Logger Name: Logger Signature: Date: Apple 2016	-018-01	26/03/2016	07/04/2016	A Shiroki	Homot 2	003334	5/538/9	Zone 18, WGS 84	1	
Hole Comments: Weakly magnetic granite with trace kimberlite chips at 60-70 feet missed during field logging. Anomaly not explained by the magnetic granite. Log updated into new format by L.Boyce on April 9, 2016. Logger Name: Logger Signature: Date: Approvide			01/01/2020	A JIIION	normet z	003354	5753879	Zone 18, WGS 84		
Hole Comments: Weakly magnetic granite with trace kimberlite chips at 60-70 feet missed during field logging. Anomaly not explained by the magnetic granite. Log updated into new format by L.Boyce on April 9, 2016. Logger Name: Logger Signature: Date: Approve Dock										
Logger Name: Logger Signature: Date: APROVED Morr 2016	e Comments gnetic granite	s: Weakly mag e. Log updated	netic granite wi d into new form	th trace kim at by L.Boyc	berlite chip e on April 9	s at 60-70 feet m 9, 2016.	issed during field	d logging. Anomaly	not explained by t	he weakly
Date: April 9 2016	ger Name:	Logen	Boyce							
Date: April 9 2016 May 2016	ger Signatur	e:				ACE	SU-			
	e: /	foril	9,201	6		May	5 2016			

μ

AD-01B-01						1			
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	40	OVB			12	Pink	Grav	40101.0	TEALUH
40	60	Granite			4	Dink	Ulcy		
									WIDSIVE
60	70	Granite			6	Grey	Green	Pink	Pombyziti
70	95	Granite			4	Pink	Grev	Green	Massivo
32	115	Granite			3	Pink	City	Green	Massive
						T III IA			Massive
						_			
				-					

æ

AD-01B-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberiite Min 1	Kimberiite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Resoonse
0	40						NA	NA
40	60	Weak					YES	NA
60	70	Moderate	Olivine	Perovskite	Spinel		NA	VEC
70	95						MA	TES NA
95	115	Weak					MA	NA
							TES	NA

AD-01B-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	40	Till of mixed lithology (granite and gneiss and other rocks)
40	60	Pink weakly magnetic granite with minor chlorite.
60	70	Grey-green with 30 % pink weakly magnetic granite with up to 1% kimberlite chips. The visible kimberlite components consist of grey fully serpentinized olivine phenocrysts (subhedral), white opaque perovskite with rare spinel cores, grey-brown semi-crystalline groundmass, green chloritized philogopite, and possible "cooked" country rock or olivine macrocryst fragments that are serpentinized khaki-green-brown (no anhedral crystal shapes were observed) and red (likely realgar). The kimberlite chips are not magnetic.
70	95	Pink and grey-green granite with 0.5-1 % red patchy staining (realgar?)
95	115	Pink very weakly magnetic granite with trace epidote and red (realgar) alteration

AD-018-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	40	Till, sand-gravel-clay. Mixed litholgies.
40	60	Pink granite, non-magnetic, no HCL reaction.
60	70	Pink granite, non-magnetic, no HCL reaction. Some chlorite.
70	95	Pink with ~20% snotty green-alteration, black and green alteration, no reaction to HCL non-magnetic
95	115	Mix of granite and green chlorite gneiss, locally magnetic
		, , , , , , , , , , , , , , , , , , ,

AD-02-01

No binocular log available for this RC hole.

July 18, 2016.

-

	1							1		AD-02-02				
Hole ID	Data Drilled	Date Logged	Logged By	Drill #	ITM Faction	ITTHE Monthline	UTM Zone and	Till Sample	Kimberlite	Depth From	Depth To			
D-02-02	26/04/2016	28/04/2016	l lepine	Homet 2	562979	5751276	Zone 18 WGS 84	ID	Sample ID	(ft)	(ft)	Lith 1	Lith 2	나바
AD-02 -02	26/04/2016	28/04/2016	l lepine	Hornet 2	662979	5751276	Zone 18, WGS 84			10	10	Granite		
AD-02-02	26/04/2016	28/04/2016	l lepine	Homet 2	662979	5751276	Zone 18, WGS 84			60	90	Granite	Gneiss	
D-02-02	26/04/2016	28/04/2016	l lepine	Hornet 2	662979	5751276	Zone 18, WGS 84			80	120	Gnelss	Granite	
AD-02-02	26/04/2016	28/04/2016	i lepine.	Hornet 2	662979	5751276	Zone 18, WGS 84			120	125	Gneiss	Kimberlite	
D-02-02	26/04/2016	28/04/2016	l lepine	Homet 2	662979	5751276	Zone 18, WGS 84		43369	125	145			
D-02-02	26/04/2016	28/04/2016	Liepine	Homet 2	662070	5751076	2000 t0 1000 04					Gneiss	Kimberlite	
D-02-02	26/04/2016	28/04/2016	Lienine	Homet 2	662070	5754030	Zone 18, WG5 84		43369	145	150	Kimberlite	Gneiss	
D-02-02	26/04/2016	28/04/2016	Lanks	Hamat 0	002979	3/312/6	Zone 18, WGS 84		43369	150	160	Gneiss	Kimberlite	
		20,04/2010	riepine	nomet z	662979	5751276	Zone 18, WGS 84		43369	160	170	Gneiss	Kimberiite	
D-02-02	26/04/2016	28/04/2016	l lepine	Hornet 2	662979	5751276	Zone 18, WGS 84		4336 9	170	175			
D-02-02	26/04/2016	28/04/2016	i lepine	Hornet 2	662979	5751276	Zone 18, WGS 84		43369	175	185	Gneiss	Kimberlite	-
D-02-02	26/04/2016	28/04/2016	lepine	Hornet 2	662979	5751276	Zone 18, WGS 84			185	197.5	Gneiss	Kimberite	
ole Commen	its: Hole re-atte	mpt after repo	sition the dr	81 ,							1	Gneiss		
ger Name:	-	1 . 11	Í.e.											
Ster Clemate	Sa	scile	Lepr	re			PREOV	ED	1. 					-
Alban Salaran	hal	iell's	VA	E.		l.	AP	5	_					
ate:	1	mart	0-1-			U	10				-			

-

4

6

D-02-02			-					Kim	iberlite Minerals in	Decreasing Abund	lance		
epth From (ft)	Depth To (ft)	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture	Degree of Alteration	Kimberike Min 1	Kimberlite Min 7	Kimbasika Adla 3	Mindreally Bills &	Magnetism	Lind m
0	10	6	i			NIL			PARTONNAL PROF. PRAILS &	Restands while sheller the	NUTICIENTICE MILIT 4	Response	HCI Respons
10	60	6	Pink	Grey		Massive	Fresh					Weak	Weak
60	80		Pink [.]	Grey		Massive	Fresh					Weak	NA
80	120	6	Grey	Pink		Massive	Fresh					Weak	NA
120	125	8	Grey	Brown		Foliated	Fresh					Moderate	Moderate
125	145	8	Grey	Brown		Foliated	Fresh					Moderate	Moderate
145	150		Brown	Grey		Porphyritic	Moderate	Olivine	carbonate	perovskite	phlogopite	Strong	Strong
150	160	8	Grey	Brown		Foliated	Fresh	Olivine	carbonate	Derovskite	nhiceonite	Moderate	Madamta
160	170	8	Grey	Brown		Foliated	Fresh	Olivine	carbonate	perovskite	phlogopite	Weak	Weak
170	175	8	Grey	Brown		Foliated	Fresh	Olivine	carbonate	perovskite	phiogopite	Moderate	Moderate
175	185	8	Grey	Brown		Foliated	Fresh	Olivine	carbonate	perovskite	phlogopite	Weak	Weak
185	197.5	8	Grey			Foliated	Fresh					NA	NA
	_												

Depth To	
10	Granite and upples with sand and around
60	Pink (orange) granite with quarts, feldspar, and biotite. Locally weakly react to HCL Locally is also magnetic. Red alteration is also observed on the feldspar.
80	Mbx zone of orange granite and grey gneiss with the granite content going down the hole. Both unit are fairly fresh with the gneiss locally showing some chlorite alteration.
120	Fine grained, grey gneiss composed of quarts, feldspar, biotite and locally some crustal light pink crustal granite. The rock is not magnetic. No reaction to HCI was observed.
125	Mainly gnelss as describe above moted with kimberlie chips. Kimberlite chips percentage vary from 5% to 50%. Dark brown to grey kimberlite, with mainly olivine phenoscryst (or really small macrocrysts). Olivine are replace by grey serpentine to carbonate in some instance. Groundmass is composed of carbonate, serpentine, spinel and phiogopite. This rock looks different than the HK we got to the north. Some chips show really sharp contact with the fresh granite. Olivine macros are fine with rare medium to coarse. Red alteration is observed in the groundmass.
145	Mainly gneiss as describe above mixed with kimberlie chips. Kimberlite chips percentage vary from 5% to 50%. Dark brown to grey kimberlite, with mainly olivine phenoscryst (or really small macrocrysts). Olivine are replace by grey serpentine to carbonate in some instance. Groundmass is composed of carbonate, serpentine, spinel and philogopite. This rock looks different than the HK we got to the north. Some chips show really sharp contact with the fresh granite. Olivine macros are fine with rare medium to coarse. Red alteration is observed in the groundmass.
150	Same kimberlite abovem, but it dominates in the chip bag (60% kimberlite)
160	same as 12 to 145 feet, but kimberlite chips content is more 25% to 50%.
170	only <5% kimberite chips observed (same as above). GRey, fine grained gneiss composed of granite, feldspar, blotite and rare crustal garnets. Rock is foliated.
175	Mainly gneiss as describe above mixed with kimberile chips. Kimberile chips percentage vary from 20 to 30%. Dar brown to grey kimberilte, with mainly olivine phenoscryst (or really small macrocrysts). Olivine are replace by grey serpentine to carbonate in some instance. Groundmass is composed of carbonate, serpentine, spinel and phiogopite. Posible limenite observed with an alteration rim around.
185	Less than 10% kimberite in allquot taken from the ziploc bag. Gneiss and kimberile are the same as what have been describe above. Some of the chips are showing some carbonate segregation texture.
197.5	Fine grained, grey gneiss composed of quarts, feldspar, biotite and locally some crustal light pink crustal granite. The rock is not magnetic. No reaction to HCI was observed.
	Depth To (ft) 10 60 120 125 145 145 145 160 170 175 185 197.5

the state

9

AD-02-02		
Depth From (ft)	Depth To (ft)	Hald Los Commente
0	10	Sand and gravel mixed with granite, gneiss and mafics. Granite is more aboundant than gneiss
10	60	Dark pink with black mafics granite, medium grained with iess than 1% grey-green fine grained gnelss. Very little returned, had to sample BOP. No reaction to HCI and very little reaction to the pen magnet.
60	80	Mix of granite and gneiss chips. Granite is same as above. Gneiss is dark grey green, is fine grained and locally hapyrite.
80	120	Dark green, fine grained gneiss with trace of pyrite (<1% feldspar granite chips).
120	125	Black grey fine grained gnelss with trace of pyrite. Brown chips that are fine grained with moderate reaction to HCL Polished chips display round serpentinised olivine and groundmass.
125	145	Black grey fine grained gneiss with trace of pyrite. Brown chips that are fine grained with moderate reaction to HCI. Polished chips display round serpentinised olivine and groundmass.
145	150	Dark grey gnelss that is magneitic and react to HCI. Black chips are kimberlite (confirmed with polished chips).
150	160	Gnelss and kimberlite chips. Dark grey fine grained gnelss with pink garnet and kimbrelite
160	170	as above. No kimberlite observed betweem 160 and 170.
170	175	Gneiss and kimberlite chips. Olivine observed. Kimberite chips about 1%.
175	185	Gneiss and kimberlite chips. Olivine observed.
185	197.5	Fault zone between 190-195 represented by larger chips and increase amount of water during drilling. Surface oxidatiob observed. The chips are composed of gneiss.Rock was put in polybag, but not included in the sample.
_		

ţ.

4

ы

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-03-01	22/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	665 44	5752353	Zone 18, WGS 84	43500	
AD-03-01	22/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	- 665450 (665449	5752353 5752362	Zone 18, WGS 84		
					Jabelle,	leffic 20110			
					yney	10 00100.			
Hole Comme	ntes Anomaly av	alained by seco							
Hole Comme	ms: Anomoly ex	plained by mag	netic amphil	olite. Log u	ipdated into new	format by L.Boy	ce on April 9, 2016.		
Logger Name	" Lagon	Bayce	-		-				
Logger Signa	ture:	>			APPR	PVED			
Date:	And	9 2011	*		Man	2011			

AD-03-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	15	OVB			10	Grey	Green	Pink	
15	45	Amphibolite			8	Grey	Green		Fine Grained
AD-03-01			Kim	berlite Minerals in	Decreasing Abund	ance			
-----------------	---------------	----------------------	------------------	---------------------	-------------------------	------------------	-----------------------	--------------	
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response	
0	15						NA	NA	
15	45	Moderate					YES	NA	
								-	

Depth To (ft)	Bino Log Comments
15	Mixed lithologies throughout ovb.
45	Amphibolite showing moderate pervasive epidote alteration. Trace sulphides. Strongly magnetic. Large calcite vein in run 30-35 feet, trace calcite veining from 25-40 feet. 5% granite in run 35-40 feet. Trace arsenic rich minerals (cinnabar) on fracture surfaces.
	Depth To (ft) 15 45

-

AD-03-01								
Depth From (ft)	Depth To (ft)	Field Log Comments						
0	15	fill, sand and fragments. Till sample taken from 5-15ft.						
15	45	Mafic fine-grained, equigranular chips, epidote alteration. Strong mag, no HCL.						

*

-

								1	1
Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Tili Sample ID	Kimberlite Sample ID
AD-05-01	27/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	665750	5756366	Zone 18, WGS 84		Semple ID
AD-05-01	27/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	665750	5756366	Zone 18, WGS 84		
Hele Commo	nter Anomal	1							
noie comme	nts: Anomoly exp	plained by mag	netic granite	. Log updat	ed into new form	nat by L.Boyce or	April 9, 2016.		
Logger Name	Lagan 1	Bayce							
Logger Signat	ture:				PPROVE	5			
Date:	foril 9	2016			May 2016)[]			

н.

5

da.

AD-05-01									1
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	5	OVB			12	Pink	Grey		
5	40	Granite			8	Pink			Massive

AD-05-01			Kim	berlite Minerals in	ance			
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberike Min 3	Kimberiite Min 4	Magnetism Response	HCI Response
0	5						NA	NA
5	40						YES	NA

AD-05-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	5	Mixed litholgies (granite-gneiss) in ovb.
5	40	Weak to moderately magnetic granite. Minor surficial oxidation on some chips from 15-20 feet.

.....

AD-05-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	5	
5	40	Pink granite, weakly magnetic.

Hoie ID	Date Drilled	Date Logged	Logged By	Drili #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-06-01	28/03/2016	31/03/2016	L.Boyce A.Shiroki	Hornet 2	663442	5756459	Zone 18, WGS 84		
Hole Comme	nts: Hole failed in	while casing, r	edrilled as A	D-06-02. La	og updated into	new format by L.	Boyce on April 9, 20	16.	
Logger Name	Lagan	Boyce		Л	DODAVIEI	Ē			
Logger Signat	ture: Ala					D)			
Date:	April 9	2016			May 2016				

AD-06-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	3	OVB			6	i Pink	Grey		
				-					

AD-06-01			Kim					
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	3						NA	NA

AD-06-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	3	Mixed lithologies.

+

AD-06-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	3	Till. Granite, unreactive black chips, strongly magnetic, some smooth chips.

48

3

Hole ID	Date Drilled	Date Logged	Logged By	Driil #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-06-02	28/03/2016	31/03/2016	L.Boyce A.Shiroki	Hornet 2	663442	5756459	Zone 18, WGS 84		-
AD-06-02	28/03/2016	31/03/2016	L.Boyce A.Shiroki	Hornet 2	663442	5756459	Zone 18, WGS 84		
AD-06-02	28/03/2016	31/03/2016	L.Boyce A.Shiroki	Hornet 2	663442	5756459	Zone 18, WGS 84		
AD-06-02	28/03/2016	31/03/2016	L.Boyce A.Shiroki	Hornet 2	663442	5756459	Zone 18, WGS 84		
Hole Comme	ents: Re-drill of fa	iled AD-06-01.	Log updated	into new fo	ormat by L.Boyce	e on April 9, 2016	•		
Logger Name	" Loogen 1	Borce		A	PPROVE	D			
Logger Signa	ture:				May 2016				
Date:	April	9, 2016	5						

Page 1 of 5

.....

AD-06-02									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	5	Ovb	Granite		8	Pink	Grey		
5	90	Granite			7	Pink	Grey		Massive
90	95	Granite	Gneiss		7	Pink	Grey		Massive
95	105	Amphibolite			6	Grey	Black		Foliated

Stornoway Exploration Reverse Circulation Drill Hole Log

AD-06-02			Kim					
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	5						NA	NA
5	90	Weak					YES	NA
90	95						YES	YES
95	105	Moderate					YES	NA

lance within eac
,smoky quartz,

AD-06-02		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	5	Pink and grey gneiss, chlorite, moderately magnetic, non-reaction to HCL, bedrock.
5	90	Dark pink granite local dark grey gneiss. Patchy epidote and chlorite alteration. Variable magnetic response. No HCL reaction.
90	95	Dark pink granite 70%. Black-green, very fine grained gneiss, strongly magnetic, HCL reaction.
95	105	Black-green, very fine grained gneiss, equigranular, strongly magnetic, no HCL reaction.

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Tili Sample ID	Kimberlite Sample ID
AD-07-01	30/03/2016	31/03/2016	L. Boyce A.Shirokl	Homet 2	663217	5756550	Zone 18, WGS 84		
AD-07-01	30/03/2016	31/03/2016	L. Boyce A.Shiroki	Hornet 2	663217	5756550	Zone 18, WGS 84		
Hole Commo	ents: 1st casing si nagnetic gnelss, l	now, water enc	ounter @55 o new forma	-60ft. White It by L.Boyc	e-snotty altered e on April 9, 201	chips returning @ .6.	beginning of 2nd c	asing. Anomoly ex	plained by
Logger Nam	e: Logan	Bayce							
Logger Signa	ature:	-			APP	OVED			
Date:	And	920	16		May	Doll			

.

AD-07-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	100	Gneiss			7	Black	Grey		Foliated
100	125	Granite			7	Pink	Grey		Massive
								-	
								-	

AD-07-01			Kim					
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	100	Weak					YES	YES
100	125						YES	NA

AD-07-01								
Depth From (ft)	Depth To (ft)	Bino Log Comments						
0	100	Weakly chloritized gneiss, with patchy quartz veining throughout. Weak patchy HCL reation, strongly magnetic. Run 10-15ft is pure felsics (pegmatite?)						
100	125	Grading into pink granite from grey green gneiss. Moderate amounts of smoky quartz. Weakly magnetic.						

.

AD-07-01									
Depth From (ft)	Depth To (ft)	Field Log Comments							
0	100	Dark black-grey-green gneiss, very strongly magnetic, weak patchy reaction to hcl, trace red colored alteration.							
100	125	Pink granite with trace yellow colored alteration, non-magnetic, non-reactive to HCL.							

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite
AD-08-01	02/04/2016	07/04/2016	A. Shiroki	Hornet 2	662738	5756733	Zone 18, WGS 84	The sumple is	Jampie ID
AD-08-01	02/04/2016	07/04/2016	A. Shiroki	Hornet 2	662738	5756733	Zone 18, WGS 84		
AD-08-01	02/04/2016	07/04/2016	A. Shiroki	Hornet 2	662738	5756735 5756733 Mebelle Lep	Zone 18, WGS 84		
						Janly 18	-2016		
						1 "			
Hole Comme	nts: Anomaly exp	lained by magr	netic gneiss.	Log update	d into new form	at by L.Boyce on	April 9, 2016.		
Logger Name	Logan 1	Boyce.							
Logger Signa		-		l	- PP	D			
Date:	1.19	12-11			May 20th				

-6

AD-08-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	10	OVB			10	Brown	Orange	Grey	
10	25	Granite			7	Pink	White		Medium-Gra
25	90	Gneiss	Granite		7	Grey	Pink		Foliated
						-			
	P					_			
						-			
							-		

.

- 10

AD-08-01			Kim	ance				
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	10						NA	NA
10	25	Weak					NA	NA
25	90						Yes	NA

ø

AD-08-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	10	Brown soll, subround sand, and chips of mixed lithology (till)
10	25	Medium grained non-magnetic granite with weak chloritized mafics
25	90	Fine-grained grey biotite-quartz-feldspar gneiss with variable amountsof medium-grained pink to white granite (10 % at 25-30 fet, 70 % at 30-40 ft, 100 % at 40-45 ft, 70 % at 50-55 ft, 0 % at 55-60 ft, 15 % at 60-70 ft, 1 % at 70-90 ft). The gneiss is weakly to moderately magnetic at 50-90 ft, and the granite is locally magnetic at 45-50 ft.

AD-08-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	10	Casing- brown sand and granules, mixed lithologies. Small samples.
10	25	Pink and white granite with chloritized grey gneiss, non-magnetic, non reactive to HCL
25	90	Mixed gneiss and granite.

10

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	LiTM Fasting	UTM Northing	UTM Zone and		Kimberlite
AD-09-01	29/03/2016	31/03/2016	L.Boyce A.Shiroki	Hornet 1	665831	5757790	Zone 18, WGS 84	Fill Sample ID	Sample ID
AD-09-01	29/03/2016	31/03/2016	L.Boyce A.Shiroki	Hornet 1	665831	5757790	Zone 18, WGS 84		
Hole Comme	nts: Anomoly ex	plained by mag	netic granite	e. Log updat	ted into new for	nat by L.Boyce o	n April 9, 2016.		
Logger Name	· Louisa	Burg							
Logger Signat	ture:	-			APP	2245D			
Date:	April 9.	2016			N	ng 2016			

÷

ŝ,

AD-09-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	40	Ovb			12	Pink	Grey		
40	100	Granite			4	Pink			Massive

AD-09-01 Kimberlite Minerals in Decreasing Abundance								
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	40						NA	NA
40	100	Weak					YES	NA
					·			
								1

AD-09-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	40	Mixed lithologies in ovb.
40	100	Weakly to moderatly magnetic granite with weak patchy chlorite alteration. Trace pink carbonates.

AD-09-01								
Depth From (ft)	Depth To (ft)	Field Log Comments						
0	40	Casing- sandy-gravel, mixed lithologies.						
40	100	Pale-pink white granite, interstitial magnetite. Potential in cyclone (40-55ft). Minor mafic dyke from 65-70ft.						

*

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Fasting	ITM Northing	UTM Zone and	THE Council of	Kimberlite
AD-10-01	30/03/2016	09/04/2016	L. Boyce	Hornet 1	666467	E7E0AE4		Till Sample ID	Sample ID
		//		nornet 4	000407	5758451	Zone 18, WG5 84		
AD-10-01	30/03/2016	09/04/2016	L. Boyce	Hornet 1	666467	5758451	Zone 18, WGS 84		43507
Hole Comme	nts: In field was i	nterpreted as a	Kimberlite (oipe, later n	nicroscope analy	sis and discussio	n overturned this int	erpretation. Run 1	25ft-130ft
was drilled, n	ot included in bu	ik sample. Anor	naly explain	ed by altere	ed-crystaline ma	fic dyke.			TONE TONE
Logger Name	Logen 1.	Boyce			100				
Logger Signat	Wre:	-			AC	25D			
Date:	1 1	C.	<i>•</i>		Man	2011			

AD-10-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Taytura
0	5	OVB			12	Pink	Grev		TEALUIC
5	130	Mafic Dyke			7	Grey	Green		Fine Grained

AD-10-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	5						NA	NA
5	130	Strong					YES	YES
AD-10-01								
-----------------	---------------	--						
Depth From (ft)	Depth To (ft)	Bino Log Comments						
0	5	Shallow overburden dominated by pink granite and altered mafic Intrusive.						
5	130	Crystaline mafic to ultramafic composition. Strong chlorite alteration of pyroxene, and amphiboles. K-feldspars are preserved. Strongly magnetic and HCI reaction is constitent throughout, with localized areas where HCL reaction is less intense. Trace As-rich minerals (orpiment/realgar)						

AD-10-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	5	Mixed lithologies, gneiss and granite, possible kimberlite green-black ultramafic.
5	130	Drilled soft 10-25ft, noticibly harder after this, gave appearences of Kimberlite in field. From chips is generally homogeneous/ consistent. No major changes observed. HCL acid reacted with most chips, local regions within drill hole were non-reactive.

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Tili Sample ID	Kimberlite Sample iD
AD-13-01	09/04/2016	11/04/2016	T.Stubley	1	668816	5762439	Zone 18, WGS 84	43358	
AD-13-01	09/04/2016	11/04/2016	T.Stubley	1	668816	5762439	Zone 18, WGS 84		
Hole Comme	nts: Anomoly ex	plained by . Log	updated int	o new form	nat by L.Boyce of	April 9, 2016.			
Logger Name	TM	57	TBLE	5	AD				
Logger Signat	ure:	X			ALE				
Date:	Ann	11 20	17		u	Tay 2016.			_

ж.

AD-13-01				1				1	
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	16	OVB	Titl		12	white	grey	green	
16	35	Felsic Gneiss			5	white	green		Foliated
						1			

AD-13-01			Kim	berlite Minerals in				
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	16						NI	Nil
16	35	Weak					Strong	Nil

AD-13-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	16	Dominantly granitic pebbles and fragments
16	35	Felsic gneiss, or dioritic rock. Weakly foliated eqg quartz, plag and amphibole, +- biotite. Visible primary magnetite.

a.

AD-13-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	16	Organic material and sandy soil, very little return over first run, followed by gravelly till to ~16'. Heterolithic angular to subrounded pebbles, abundant sand and minor clay. Sample composited from 5 to 15'.
16	35	Hard rock, slow drilling. Med-coarse grained diorite or gneiss. Equigranular quarta, feldspar and mafics (amphibole/biotite/magnetite

11.1

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Tiil Sample ID	Kimberlite Sampie ID
AD-14-01	05/04/2016	07/04/2016	A. Shiroki	Hornet 1	667601	5763758	Zone 18, WGS 84		
AD-14-01	05/04/2016	07/04/2016	A. Shiroki	Hornet 1	667601	5763758	Zone 18, WGS 84		
Hole Comme	nts: Hole was se	t in a boulder fi	eld. Anomal	y explained	by deep strong	magnetics. Log u	pdated into new for	mat by L.Boyce on	April 9,
Logger Name	· Logen	Borce							
Logger Signa	ture:	-			AG	25D			
Date:	APVI	9 2.	1		M	ay 2016			

AD-14-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	20	OVB			15	Black	Green	Pink	
20	100	Gneiss			8	Black	Grey	Green	Foliated

AD-14-01			Kim	berlite Minerals in	ance			
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	20						NA	NA
20	100	Weak					YES	NA
						0		

AD-14-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	20	Mixed lithology (massive medium to fine-grained chloritized rock, pink granite, salt-and pepper granodiorite, green and grey) till.
20	100	Amphibole-plagioclase gneiss with no to very weak chloritization at 35-70 ft, moderate to strong chloritization at 20- 35 and 70-100 ft, and trace pale blue-green talc-clay alteration at 25-35 ft. The gneiss is weakly to moderately magnetic at 85-100 ft. There are 5-10 % pale white chips of quartz-feldspar chlorite gneiss at 35-60 ft. Trace sulphides from 85-90ft)
	1	

44

8 G

ан. 1911 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 -

AD-14-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	20	Overburden mixed lith, boulders and sand.
20	100	Lost acid bottle, unable to test with HCL. Poly bagged 25-35, distinctly soft and produced peculiar green dust, later HCL test was positive.

4

							UTM Zone and		Kimberlite
Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	Datum	Till Sample ID	Sample ID
AD-16-01	05/04/2016	07/04/2016	A. Shiroki	Hornet 1	668175	5763991	Zone 18, WGS 84		
AD-16-01	05/04/2016	07/04/2016	A. Shiroki	Hornet 1	668175	5763991	Zone 18, WGS 84		
AD-16-01	05/04/2016	07/04/2016	A. Shiroki	Hornet 1	668175	5763991	Zone 18, WGS 84		
									1
Hole Comme	nts: Anomoly ex	plained by mag	netic mafic g	gneiss. Log	updated into new	w format by L.Bo	yce on April 9, 2016.		
Logger Name	Coyen	Bare							
Logger Signai		-			APPR	<u>oven</u>			
Date:	And	9 20	1/		May	20110			

AD-16-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	10	No sample							
10	15	OVB			3	Black	Green		Foliated
15	70	Mafic Gneiss			5	Black	Green		Foliated
I									
			-						

AD-16-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	10						NA	NA
10	15	Moderate					NA	NA
15	70	Weak					YES	NA

AD-16-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	10	No sample
10	15	Mixed lithology till dominated by dark green chloritized rock with minor small granitic chips and lesser black-green chlorite flakes.
15	70	Fine-medium grained amphibole-plagioclase gneiss with very weak chlorite alteration and minor pale feldspar chips. The gneiss is strongly magnetic.

.

+

AD-16-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	10	No sample - Assumed regolith/boulders.
10	15	Overburden/gneiss contact.
15	70	Mafic Gneiss, amph +bt +fsp +qtz. Foliated. Weak to moderate chlorite.

.

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-17-01	03/04/2016	08/04/2016	L.Boyce	Hornet 1	667263	5764197	Zone 18, WGS 84		Gampie ib
AD-17-01	03/04/2016	08/04/2016	L.Boyce	Hornet 1	667263	5764197	Zone 18, WGS 84		
AD-17-01	03/04/2016	08/04/2016	L.Boyce	Hornet 1	667263	5764197	Zone 18, WGS 84		
AD-17-01	03/04/2016	08/04/2016	L.Boyce	Hornet 1	667263	5764197	Zone 18, WGS 84		43509
AD-17-01	03/04/2016	08/04/2016	L.Boyce	Hornet 1	667263	5764197	Zone 18, WGS 84		43509
AD-17-01	03/04/2016	08/04/2016	L.Boyce	Hornet 1	667263	5764197	Zone 18, WGS 84		10003
AD-17-01	03/04/2016	08/04/2016	L.Boyce	Hornet 1	667263	5764197	Zone 18, WGS 84		43509
AD-17-01	03/04/2016	08/04/2016	L.Boyce	Hornet 1	667263	5764197	Zone 18. WGS 84		
AD-17-01	03/04/2016	08/04/2016	L.Boyce	Hornet 1	667263	5764197	Zone 18. WGS 84		
AD-17-01	03/04/2016	08/04/2016	L.Boyce	Hornet 1	667263	5764197	Zone 18, WGS 84		
Hole Comme	nts: 5ft of snow,	, approximately	16ft of OVI	B. Suspecte	d kimberiite enc	ountered.			
Logger Name	Locar &	Boyce.		ABBR					
Logger Signat	ure:	E S		APPE	245D				
Date: A	ril 8,20	016		Way	2016				

AD-17-01							1		
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Tavhire
0	20	OVB	Gneiss	Granite	10	Grev	Brown	Black	I GAUNI C
20	55	Granite			8	Pink	Black	BRICK	Massiva
55	60	Granite	Mafic Intrusive		6	Pink	Black	Green	Massive
60	70	Ultramafic Intusive	Granite		6	Black	Pink	Green	Porphyritic
70	75	Mafic Gneiss			4	Black	Grev		Foliated
75	80	Granite	Mafic Gneiss		8	Pink	Black		Massive
80	85	Mafic Intrusive	Granite		5	Black	Pink	Grev	Fine Graine
85	180	Gniess	Mafic Gneiss	Felsic Gneiss	4	Grev	Black	White	Foliated
180	195	Granite			3	Grev	White	VIIILE	Massiva
195	200	Mafic Gneiss			3	Black	Grev		Foliated
						DRIVER	Grey		rollated

AD-17-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	20						NA	NA
20	55						YES	NA
55	60	Weak					YES	NA
60	70	Moderate	Olivine	Phlogopite	Carbonate		YES	YES
70	75	Weak					YES	YES
75	80	Weak					YES	YES
80	85	Weak					YES	YES
85	180	Weak					YES	YES
180	195						YES	YES
195	200						YES	YES

.

AD-17-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	20	Mixed lithologies, dominated by felsic gneiss.
20	55	K-spar and amphibole rich granite, with trace biotite and magnetite.
55	60	Granite showing weak chlorite alteration and patches of aphenitic mafic intrusive.
60	70	Ultramafic intursive with trace altered granite country rock. Ultramafic has an aphanitic ground mass with phenocrysts (>1mm) of dark mica (phiogopite). Green-grey olivine phenocrysts are visible up to 4mm long.
70	75	Mafic Gneiss with coarse blotite defining a weak foliation with interspersed carbonate and chlorite alteration.
75	80	Granite with mafic gneiss. Weak chlorite alteration and carbonate present throughout.
80	85	Aphanitic mafic intrusive with weak HCL reation mixed with k-spar rich granite. Moderate chlorite alteration throughout.
85	180	Mixed package of felsic and mafic gneiss. Course biotite and weak chlorite alteration are common. Trace patchy sulphides.
180	195	Granite dominated by felsics, trace biotite and carbonate.
195	200	Mafic Gneiss with biotite (up to 1mm) and amphibole, trace carbonate and sulphides.

4

AD-17-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	20	Unconsolidated mixed lith and boulders.
20	55	Felsic gneiss, Qtz +fsp +biotite +minor amphibole. Weak Mag, patchy pegmatite.
55	60	Pegmatite with chloritized mafic gneiss.
60	70	Soft run. Ultra-mafic, mixed with pegmatite? Olivine? HCL reaction.
70	75	Ultramafic soft for first 2ft of run.
75	80	Ultramafic + peg?
80	85	Pale green ultramafics
85	180	Felsic gneiss, Qtz +fsp +biotite +minor amphibole +patchy chlorite alteration. Weak Mag, patchy pegmatite. Trace sulphides.
180	195	Granite, weak alteration, dominated by felsics.
195	200	Granite, weak alteration, dominated by felsics.

ų.

-

Hole iD	Date Drilled	Date Logged	Logged By	Dril! #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample (D	Kimberlite Sample ID
AD-20-01	06/04/2016	08/04/2016	L Boyce	Hornet 1	669880	5765345	Zone 18, WGS 84		warripte its
AD-20-01	06/04/2016	08/04/2016	L. Boyce	Hornet 1	669880	5765345	Zone 18, WGS 84		
AD-20-01	06/04/2016	08/04/2016	L. Boyce	Hornet 1	669880	5765345	Zone 18, WGS 84		
AD-20-01	06/04/2016	08/04/2016	L. Boyce	Hornet 1	669880	5765345	Zone 18, WGS 84		
Hole Comme	nts: 5ft of snow.								
Logger Name	Logan	Boyce		APPE	OVED				
Logger Signat	ure: AG	>		AQ					
Date:	pril 8,	2016		May	2016				

ų.

AD-20-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate	Color 1	Color 2	Color 2	Tenduce
0	15	OVB	Gneiss	Gabbro	10	Grey	Black	White	rexture
15	50	Felsic Gneiss				Grey	Green		Foliated
50	55	Pegmatite			3	Pink	White		Massive
55	60	Felsic Gneiss			3	Grey	Green		Foliated
									Tonatoa
				-					
				_					
					1				

AD-20-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCt Personer
0	15						NA	NA
15	50	Weak					YES	NA
50	55						YES	NA
55	60	Weak					YES	NA
		_						

Depth To (ft) 15	Bino Log Comments
15	Mixed lithologies (grapites and gradies) unclose of the table (the first
	whice intrologies (granites and gnelss), variety of clast sizes/shapes/liths.
50	Felsic gneiss with a weak foliation defined by alignment of biotite grains. Weak patchy chlorite alteration
55	Pink granitoid mixed with trace felsic gneiss.
60	Felsic gneiss with a weak foliation defined by alignment of biotite grains. Weak patchy chlorite alteration.
	50 55 60

AD-20-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	15	Mixed lithologies and boulders, dominated by leuco-granitoid.
15	50	Felsic gneiss with biotite defining foliation, amph +fsp +qtz +bt +mag +epidote alt. Varying amounts of amph and chl throughout the interval.
50	55	Pink granitoid or pegmatite?
55	60	Felsic gneiss with blotite defining foliation, amph +fsp +qtz +bt +mag +epidote alt. Varying amounts of amph and chi throughout the interval.

.

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-28-01	20/04/2016	25/04/2016	A. Shiroki	Hornet 2	665857	5752667	Zone 18, WGS 84		
AD-28-01	20/04/2016	25/04/2016	A. Shiroki	Hornet 2	665857	5752667	Zone 18, WGS 84		
AD-28-01	20/04/2016	25/04/2016	A. Shiroki	Hornet 2	665857	5752667	Zone 18, WGS 84		
							•		
Hole Comme	ents: Low mag ta	rget consisting	mainly of ve	ry weakly n	nagnetic granite.				
Logger Name		HROKI							
Logger Signa	ture:		iki .		APB	BOVED			
Date:		15+ 1may 2 01/05/2	2016 2016	<u>u</u>	May	2014			

4

÷.

AD-28-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture.
o	15	OVB			10	Grey.	Pink		
15	35	Intermediate Gneiss	Granite		6	Grey	Pink		Foliated
35	115	Granite			7	Pink			Massive
									·

8

AD-28-01			Kim					
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberiite Min 4	Magnetism Response	HCI Response
O	15						NA	NA
15	35	Weak					Very Weak	Very Weak
35	115	Weak					Very Weak	NIL

.

.....

AD-28-01								
Depth From (ft)	Depth To (ft)	Bino Log Comments						
0	15	Pink K-feldspar granite + grey felsit to intermediate biotite gneiss. Chips are angular to subround.						
15	35	Fine grained weakly foliated grey quartz feldspar biotite gneiss + 1 % pink K-feldpar granite. Moderate magnet response 15-20 ft, very weak magnet response 20-35 ft. HCl response is localized rare chips.						
35	115	Dark pink medium grained biotite granite with patchy to pervasive red staining, weak chlorite alteration of the mafics, trace local epidote alteration + trace grey foliated quartz feldspar biotite gneiss. Very weak pen magnet response in very small chips (< 1mm).						

. .

AD-28-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
O	15	0-5 ft organics, red-brown sand + minor clay, subround to subang pebbles of mixed lith (granite + mafic gneiss). HCl reaction NIL, some mafics strong pen magnet. Switched out to H2O setup + BOP casing at 10-15 ft. End of casing at 20 ft.
15	35	Grey, hard gneiss, aligned Bt + feldspar + Amph? Pink Fspar chips + Py. BOP samples some up-hole contaminant.
35	115	Red-pink Qtz-Kspar granite Cr (?) Monzonite? Fg-Mg with Fg Bt flakes. Rare mafic gneiss chips. Rusty water 70-105 ft. Very weak pen magnet response 55-80 ft, 85-90 ft, 105-115 ft

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-31-01	15/04/2016	19/04/2016	A. Shiroki	Hornet 2	668345	1	Zone 18, WGS 84		
AD-31-01	15/04/2016	19/04/2016	A. Shiroki	Hornet 2	668345		Zone 18, WGS 84		
AD-31-01	15/04/2016	19/04/2016	A. Shiroki	Hornet 2	668345	5764753 (Jr 945 18)	Zone 18, WGS 84		
AD-31-01	15/04/2016	19/04/2016	A. Shiroki	Hornet 2	668345		Zone 18, WGS 84		
Hole Comme	nts: Low resistiv	ity target hole c	onsists main	ly of matic	gneiss with trace	kimberlitic chip	s at 45-50, 55-60, an	d 65-70 ft.	
Logger Name	: Ayaka Shiroki			0.65	200				
Logger Signa	ture: ASu	DC:		AP	225D				
Date:	PARA 20	16		N	ley 2016.				

AD-31-01										
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture	Degree of Alteration
0	40	OVB			t	Black	White	Pink		
40	45	Mafic Gneiss			4	Green			Folicated	Moderate
45	55	Granite	Mafic Gneiss	Kimberlite	З	Pink	Green		Massive	Moderate
55	95				5	Green	Pink		Folicated	Moderate
		Mafic Gneiss	Granite	Kimberlite						

AD-31-01		Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	40					NA	NA
40	45					Weak	Strong
45	55	Olivine	Carbonate	Perovskite		Weak	Moderate
55	95	Olivine	Carbonate	Perovskite	Phlogopite	Weak	Moderate

....

.

.....

1---

AD-31-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	40	Mixed lithology round sand and subround-subangular gravel predominantly of pink or white feldspars, clear colourless quartz, K-feldapr granite, grey-green gneiss, and black aphanitic chips. 30-35 ft is dominated by clear quartzite with red staining giving purple appearance.
40	45	Dark green chlorite feldspar gneiss with very weak follation, 0.5 % patchy red staining, trace patchy epidote alteration.
45	55	70 % pink K-feldspar granite with trace patchy red staining and epidote alteration. 30 % chlorite feldspar gneiss with trace red patchy staining, epidote alteration, and rare chips with clay-carbonate alteration. One 3 mm dark brown possible kimberlite chip at 45-50 ft (fully serpentinized probable olivine phenocrysts and white opaque perovskite and fully serpentinized black-brown possible interclast matrix).
55	95	Dark green chlorite feldspar gnelss with weak foliation, variable red patchy staining and along fractures. Pale pink K- feldspar granite up to 10 %. HCI response and magnetism response reduces 80-95 ft. Seven chips of porphyritic ultramafic (kimberlite) 3-6 mm recovered from one spoonful of chips at 55-60 ft, and one 2 mm chip from 65-70 ft. They have serpentinized dark brown to grey olivine macrocrysts with local patchy red staining, dark brown fully serpentinized olivine phenocrysts, white opaque perovskite, groundmass carbonate, and rare green chloritized phlogopite with patchy red staining, and probable magnetite giving strong response to magnet.

.
AD-31-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	40	LOON SHITI No chip tray/zip lock sample 0-5 ft, no ziplock sample 0-15, 20-25 ft. Organics, silt and mud with rare chips granite/gneiss + phlogopite <1 mm. Purple granite andg green black mafic 30-40 ft. OVB-bedrock transition 35-40 ft.
40	45	Black-green mafic dyke, weak HCI reaction. Epidote alteration.
45	55	Granite with trace mafic dyke 45-50 ft. Minor mafic component, grey-green chlorite/epidote alteration? + clay 50-55 ft.
55	95	Brown-purple mafic dyke. Fine grained. Black with up to 5 % country rock. Weak HCl reaction on select chips + mag.

÷.

				-			1		
Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-32-01	02/04/2016	08/04/2016	L.Boyce	Hornet 1	666796	5764331	Zone 18, WGS 84		
AD-32-01	02/04/2016	08/04/2016	L.Boyce	Hornet 1	666796	5764331	Zone 18, WGS 84		
AD-32-01	02/04/2016	08/04/2016	L.Boyce	Hornet 1	666796	5764331	Zone 18, WGS 84		
Hole Comme	ents: 5ft of snow	, casing was ad	vanced 10ft	from 30ft 1	to 40ft to try and	l seal aquifer an	d dry out hole, atter	mpt made at 65ft.	
Logger Name	" Logen	Boyce							
Logger Signa	ture: 50	-			APP	BOVED			
Date: 1	nil 8	2016			TIL	ZDU			

.

AD-32-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	25	OVB	Gneiss	Granite	10	Grey	Black	Pink	Massive
25	55	Mafic Gneiss			8	Black			Foliated
55	100	Mafic Gneiss			8	Black			Foliated
							-		
							-		
					_				

*

AD-32-01			Kim	berlite Minerals In	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberiite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	25						NA	NA
25	55	Weak					YES	NA
55	100						YES	NA
		1						
							-	

-

AD-32-01									
Depth From (ft)	Depth To (ft)	Bino Log Comments							
0	25	Overburden, mix of lithologies (gneiss/ granite), grain sizes and clast shapes.							
25	55	Biotite rich mafic gnelss, biotite grains are large (up to 3-5mm) and show trace chlorite alt, phiogopite also present. The biotite defines a weak foliation. Magnetism is weak. Trace quartz veining.							
55	100	Notite-amphibole rich gneiss, weak foliation. Trace chlorite alteration. Trace HCL response associated with arbonate hosted sulphides. Rare chips show an aphanitic, unfoliated mafic intrusive (hosting sulphides?).							

÷

AD-32-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	25	Overburden boulders, mixed lith with soils.
25	55	Bt-amph-gneiss, large biotite crystals with weak chlorite alteration, weak patchy magnetics.
55	100	Amph-bt-gneiss with moderate to strong magnetism. Acid reaction from 65-75 ft gives off sulphur odor, trace sulphides within same interval.

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Tili Sample (D	Kimberlite Sample ID
AD-37-01	09/04/2016	11/04/2016	T.Stubley	1	664760	5762126	Zone 18, WGS 84	in outpre to	Sample its
AD-37-01	09/04/2016	11/04/2016	T.Stubley	1	664760	5762126	Zone 18, WGS 84		
AD-37-01	09/04/2016	11/04/2016	T.Stubley	1	664760	5762126	Zone 18, WGS 84		
Hole Comme	nts: Anomaly ex	plained by stro	ngly magneti	ic gabbro					
Logger Name		1 5	TURLE	57					
Logger Signat	ture:	T			APPE	PVED			
Date:	Ac		011		Mar	2016			

AD-37-01								-	
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Tavtura
0	5	OVB	Organics					00101 3	FEALUTE
5	18	OVB	Sandy gravel						
18 20	20 OVB		Gravel	Gabbro	13	green	white	pink	
	40	Gabbro	Gabbro		5	green	white		Equigranular
							-		

.....

-

AD-37-01			Kim					
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min A	Magnetism	
0	5					KININGTHUG INHE O	Nesponse	nu kesponse
5	18							
18	20						Madamta	A121
20	10						wooerate	NH
20	40						Strong	Nil

AD-37-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	5	
5	18	
18	20	Mixed heterolithic pebbles and fragments, common gabbro chips
20	40	Dark green fine - medium- grained equigranular pyroxene and plagioclase. Trace sulphides locally

AD-37-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	5	
5	18	
18	20	Drilling firmed up ~ 18' but felt 'soft'. Moderately magnetic green chips.
20	40	Chip size small due to extreme cold and wet sample- could not seive to 4mm. Rock beacem much harder to drill. Glass-like fracture to chips, locally. Plag visible with 10x handlens

.....

e.

¥

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Tili Sample ID	Kimberlite Sample (D
AD-39-01	18/04/2016	20/04/2016	L. Boyce	Hornet 2	665395	5761438	Zone 18, WGS 84		outiple (D
AD-39-01	18/04/2016	20/04/2016	L. Boyce	Homet 2	665395	5761438	Zone 18, WGS 84		
Hole Comme	nts: Anomoly ex	plained by mag	netic mafic d	lyke.					
Logger Name	Logan	Boyce							
ogger Signal	ure:	-			APPROV	ED			
Deter	1								

AD-39-01								_	
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate	Color 1	Color 2	0.1	
0	50	OVB	Mafic Gneiss	Granite	12	Grou	COIOF 2	Color 3	Texture
50	95	Mafic Dyke			12	Direl	DIACK	PIRK	
					0	BIACK	Green	Pink	Fine Grained
							1		
							-		

÷

AD-39-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberiite Min A	Magnetism	
0	50					WILLINGTHICE MILL 4	kesponse	HCI Kesponse
50							Na	Na
50	95	Moderate					Moderate	Na

AD-39-01								
Depth From (ft)	Depth To (ft)	Bino Log Comments						
0	50							
50	95	Fine grained mafic volcanic, (near crystaline). Trace patchy pink k-spar. Weak to moderate chlorite and epidote alteration. Trace sulphides.						

ie.

AD-39-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	50	Casing, sand-silt-gravel.
50	95	Dark green, fine grained mafic, very hard, trace sulphide. Weak fizz in dust (not on chips).

ч.

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite
AD-41-01	09/04/2016	11/04/2016	T.Stubley	1	665438	5760777	Zone 18 WGS 84	The sample in	sample ID
AD-41-01	09/04/2016	11/04/2016	T.Stubley	1	665438	5760777	Zone 18 WGS 84		
Hole Comme	nts: Anomoly ex	plained by stror	igly magneti	c gabbro.					
Logger Name	Th -	STUBLE	24						
Logger Signat	ure:	125			APPRO	SD-			
Date:	April	11, 2011			Way 2	orle			

.

AD-41-01						1		1	
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate	Color 1	Color 1	Color 2	
0	7.5	OVB	Clay	Fragments	And age funnty	COIDIII	COIDT 2	Color 3	lexture
7.5	10	OVB	Gabbro						
10	15	Gabbro			10	green	white		Equigranular
15	25	Gabbro			12	green	white		Equigranular
25	35	Gabbro			12	green	white		Equigranular

Stornoway Exploration Reverse Circulation Drill Hole Log

AD-41-01			Kim					
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	
0	7.5						response	noi nesponse
7.5	10						Weak	Nil
10	15						Weak	NI
15	25						Moderate	Nil
25	35						Strong	Nil

.

AD-41-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	7.5	Heterolithic pebbles and fragments
7.5	10	Heterolithic pebbles and fragments, increased gabbroic chips.
10	15	Equigranular fine to medium grained pyroxene and plaglociase. Trace biotite Trace Py. Trace black metallic mineral
15	25	Equigranular fine to medium grained pyroxene and plagioclase. Trace biotite Trace Py. Trace black metallic mineral
25	35	Equigranular fine to medium grained pyroxene and plagioclase. Trace biotite Trace Py. Trace black metallic mineral

秥

AD-41-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	7.5	Heterolithic angular to subangular pebbles+fragments. Very little return
7.5	10	Sample dominated by subangular to rubrounded gabbro chips
10	15	
15	25	Magnetic response increasing w/ depth
25	35	Magnetic response increasing with depth, possible increase pyrite
h		

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and	Till Sample ID	Kimberlite
AU-42-01	02/04/2016	08/04/2016	L.Boyce	Hornet 1	666762	5759646	7000 19 W/CC 04	Thi Sample ID	Sample ID
AD-42-01	02/04/2016	09/04/2016	L.Boyce	Hornet 1	666762	5750646	Zone 18, WG5 84		
AD-42-01	02/04/2016	10/04/2016	L.Boyce	Hornet 1	666762	5750646	Zone 18, WGS 84	43508	
					000702	5759040	20ne 18, WGS 84		
Hole Commo	ndes PSt - C								
	its: or snow,	potential samp	e contami	ation from	previous hole f	rom 0-20ft.			
Logger Name	logan 1	Soyce							
ogger Signat		•		APP	BOVEN				
Date: A	oril 8	2016		Ma	2706				
/ //	7	-010		- 1	0				

AD-42-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate	Colored			
0	40	TIH	Gneiss	Granita	Merage (mm)	Color 1	Color 2	Color 3	Texture
40	45	TIII	Cmalke	Granite	8	Grey	Black	White	
45	95	Casalita	Granice	Gneiss	6	Grey	Pink		
	60	Granice			6	Pink	Grey		Massive
	,								

AD-42-01			Kim	berlite Minerals in	Decreasing Abund	2866		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 2		Magnetism	
0	40				KININGING MIN 3	Numberinte Min 4	Kesponse	HCI Response
40	45	Weak					NA	NA
45	85	Weak					NA	NA
	05	WCGK					YES	NA

Depth To (ft)	Bino Log Comments
40	Mixed lithologies of sub-angular chips
45	Pink granite with smoky quartz and weak epidote alteration
85	Pink granite with smoky quartz blotite and patehy weak existence it
	Brande man showy quartz, blottle and patchy weak epidote alteration.
	Depth To (ft) 40 45 85

AD-42-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	40	Sandy, clav-rich till, variety of clasts/sizes/shapes
40	45	Till/granite contact
45	95	Dink granite should a set-but a set to set a set
	03	Fink granite showing patchy trace epidote alteration and weak to moderate magnetics.

 ${\bf q}_{\rm T}$

\$

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-44-01	28/04/2016	29/04/2016	l Lepine	Hornet 1	666018	5758415	Zone 18, WGS 84	43523	outlipic to
AD-44-01	28/04/2016	29/04/2016	I Lepine	Hornet 1	666018	5758415	Zone 18, WGS 84		
					6				
Hole Commer	nts: Anomoly exp	plained by by m	oderate to s	trong magn	etism of the roc	k.			
Logger Name:	Isabelle Lepine								
Logger Signat	ure: Jul	Ule. Lo	1/						
Date:	An	il 29-	Doile		APPROV	ĘD)			

AD-44-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	10	OVB			4				- eventer - e
10	60	Granite			2				Massive
						_			

TO-HE-OT			Kim	berlite Minerals in	Decreasing Abund	30/0		1
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberiite Min 4	Magnetism Response	HCI Response
0	10						NIL	NIL
10	60	Weak					Moderate	NA

.

э

D-44-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	10	Granite, gneiss and mafic chips. Some pebbles are rounded.
10	60	Mostly compose of granite. At the top of the unit, there are a few chips that looks like AD-123A-01. Most of the chips are k-spar grains. Granite with kspar, quartz and biotite. Does not react to HCl and is locally moderate to strongly magnetic.

AD-44-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	10	Mixed lithologues in till (granite, gneiss and gabbro). Clay sand and gravel. Small sample so got composited. Rounded clast.
10	60	Contact is dominated by granite. Bedrock is pale pink kspar rich granite with manor mafic minerals. Moderately to strongly magnetic. Maybe sone contamination from previous hole (AD-123A-01) between 10 and 15 feet. Small epidotic gabbro chips are observed in the run between 15 and 20 feet (possible gabbro dyke).
		· ·

11.

P

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample 1D	Kimberilte Sample ID
AD-45-01	29/03/2016	31/03/2016	L.Boyce A.Shiroki	Hornet 1	664707	5757843	Zone 18, WGS 84	The Sample ID	Sample ID
AD-45-01	29/03/2016	31/03/2016	L.Boyce A.Shiroki	Hornet 1	664707	5757843	Zone 18, WGS 84		
Hole Comme	nts: Anomoly ex	plained by mag	netic gabbro	. Log updat	ed into new form	nat by L.Boyce o	n April 9, 2016		
Logger Name Logger Signat Date:	Loyen k ure: April 9	Boyce , 2016		AP	PROVED May 2014				

*

10-43-01								1	
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	17	Ovb			10	Pink	Grey		Massive
17	35	Gabrro			6	Black	Grey	Pink	Fine-grained
					n				
									P

AD-45-01			Kim	berlite Minerals in	Decreasing Abund	ance		1
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	17						NA	NA
17	35	Weak					YES	NA
				4				

AD-45-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	17	Mixed lithologies.
17	35	Dominated by gabbro, run 15-20 feet contains up to 20% chloritized gneiss. Up to 25% felsic compositional banding. Strongly magnetic.

s#

AD-45-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	17	Bouldery Till.
17	35	Black-white equigranular (strained), fsp-amph+bt+mag No HCL reaction, local diss pyrite and epidote alteration.

. ⁶
Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Tili Sample ID	Kimberlite Sample ID
27/03/2016	09/04/2016	L.Boyce	Hornet 1	664037	5755464	Zone 18, WGS 84	43504	Sample ID
27/03/2016	09/04/2016	L.Boyce	Hornet 1	664037	5755464	Zone 18. WGS 84		
27/03/2016	09/04/2016	L.Boyce	Hornet 1	664037	5755464	Zone 18, WGS 84		43505
27/03/2016	09/04/2016	L.Boyce	Homet 1	664037	5755464	Zone 18, WGS 84		
27/03/2016	09/04/2016	L.Boyce	Hornet 1	664037	5755464	Zone 18, WGS 84		
rts: Anomoly exp	plained by Kimb	erlite inters	ection. Log	updated into ne	w format by L.Bo	yce on April 9, 2016		
Logen	Bare							
ire: Mtc	-			APPROV				
April	920	16		Mar 20				
	Date Drilled 27/03/2016 27/03/2016 27/03/2016 27/03/2016 27/03/2016 cts: Anomoly exp Cogen ire: Appril (Date Drilled Date Logged 27/03/2016 09/04/2016 27/03/2016 09/04/2016 27/03/2016 09/04/2016 27/03/2016 09/04/2016 27/03/2016 09/04/2016 27/03/2016 09/04/2016 27/03/2016 D9/04/2016 Logen Bages Logen Bages	Date Drilled Date Logged Logged By 27/03/2016 09/04/2016 L.Boyce 4 09/04/2016 L.Boyce	Date DrilledDate LoggedLogged ByDrill #27/03/201609/04/2016L.BoyceHornet 127/03/201609/04/2016L.BoyceHornet 128/0409/04/2016L.BoyceHornet 129/0409/04/2016L.BoyceHornet 129/0409/04/2016L.B	Date Drilled Date Logged Logged By Drill # UTM Easting 27/03/2016 09/04/2016 L.Boyce Hornet 1 664037 27/03/2016 09/04/2016 LBoyce Hornet 1 664037 27/03/2016 09/04/2016 LBoyce Hornet 1 664037 condard	Date Drilled Date Logged Logged By Drill # UTM Easting UTM Northing 27/03/2016 09/04/2016 L.Boyce Hornet 1 664037 5755464 cts: Anomoly explained by Kimberlite intersection. Log updated into	Date Drilled Date Logged Logged By Drill # UTM Easting UTM Northing UTM Zone and Datum 27/03/2016 09/04/2016 LBoyce Hornet 1 664037 5755464 Zone 18, WGS 84 27/03/2016 09/04/2016 LBoyce Hornet 1 664037 5755464 Zone 18, WGS 84 27/03/2016 09/04/2016 LBoyce Hornet 1 664037 5755464 Zone 18, WGS 84 27/03/2016 09/04/2016 LBoyce Hornet 1 664037 5755464 Zone 18, WGS 84 27/03/2016 09/04/2016 LBoyce Hornet 1 664037 5755464 Zone 18, WGS 84 27/03/2016 09/04/2016 LBoyce Hornet 1 664037 5755464 Zone 18, WGS 84 27/03/2016 09/04/2016 LBoyce Hornet 1 664037 5755464 Zone 18, WGS 84 27/03/2016 09/04/2016 LBoyce Hornet 1 664037 5755464 Zone 18, WGS 84 27/03/2016 09/04/2016 LBoyce Interestestestestestestestestestestestesteste	Date Drilled Date Logged Logged By Drill # UTM Easting UTM Northing UTM Zone and Datum Till Sample ID 27/03/2016 09/04/2016 LBoyce Hornet 1 664037 5755464 Zone 18, WGS 84 43504 27/03/2016 09/04/2016 LBoyce Hornet 1 664037 5755464 Zone 18, WGS 84 43504 27/03/2016 09/04/2016 LBoyce Hornet 1 664037 5755464 Zone 18, WGS 84 43504 27/03/2016 09/04/2016 LBoyce Hornet 1 664037 5755464 Zone 18, WGS 84 43504 27/03/2016 09/04/2016 LBoyce Hornet 1 664037 5755464 Zone 18, WGS 84 43504 27/03/2016 09/04/2016 LBoyce Hornet 1 664037 5755464 Zone 18, WGS 84 43504 27/03/2016 09/04/2016 LBoyce Hornet 1 664037 5755464 Zone 18, WGS 84 43504 1 1 1 1 1 1 1 1 1

			1					
Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
30	OVB			12	Pink	Grev	Black	- CAUDIC
40	Granite			6	Grev	White	Green	Massivo
70	Kimberlite			8	Black	Grey	Green	Porphyritie
80	Granite			6	Grey	Green	Black	Massive
150	Granite			8	Pink	White		Massive
	Depth To (ft) 30 40 70 80 150	Depth To (ft) Lith 1 30 OVB 40 Granite 70 Kimberlite 80 Granite 150 Granite	Depth To (ft) Lith 1 Lith 2 30 OVB OVB 400 Granite Image: Comparison of the	Depth To (ft) Lith 1 Lith 2 Lith 3 30 OVB Lith 2 Lith 3 40 Granite	Depth To (ft) Lith 1 Lith 2 Lith 3 Chip Size Estimate Average (mm) 30 OVB ILith 2 Lith 3 Chip Size Estimate Average (mm) 40 Granite III IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Depth To (r) Lith 1 Lith 2 Lith 3 Chlp Size Estimate Average (mm) Color 1 30 OVB ILith 2 Lith 3 Chlp Size Estimate Average (mm) Pink 40 Granite I ILith 3 III (III (IIII (IIIII (IIII (IIIII (IIIII (IIIII (IIIII (IIIII (IIIII (IIIII (IIIIII	Depth To (r) Lith 1 Lith 2 Chip Size Estimate Average (mm) Color 1 Color 2 30 σ /B ILith 3 Chip Size Estimate Average (mm) Pink Group 2 40 Granite Image 1 Image 1 Image 1 Image 1 Image 1 40 Granite Image 1 Image 1 Image 1 Image 1 Image 1 50 Amine Image 1 Image 1 Image 1 Image 1 Image 1 Image 1 6 Granite Image 1 Image 1	Depth To (h) Lith 1 Lith 2 Lith 3 Chip Size Estimate Average (nm) Ion of Color 1 Color 3 Color 3 0vB ovb conte conte conte grave grave

6

n berlite Min 2 Dgopite	Kimberlite Min 3 Carbonate	Kimberiite Min 4	Magnetism Response NA YES	HCI Response NA YES
ogopite	Carbonate		NA YES	NA YES
ogopite	Carbonate		NA YES	NA YES
ogopite	Carbonate		YES	YES
				N-2151
			YES	NA
			YES	NA
				YES

.

AD-50-01							
Depth From (ft)	Depth To (ft)	Bino Log Comments					
0	30	Mixed lithologies, grain sizes and shapes. Till sample taken from 20-30ft.					
30	40	Bleached granite with minor biotite and chlorite. Feldspars have begun to alter to clave					
40	70	Porphyritic ultramafic. (Kimberlite) Olivine phenocrysts up to 4mm long, phlogopit grains up to 2mm long, localized serpantine and talc alteration. Strong reaction to HCl and strongly magnetic					
70	80	Bleached granite with minor biotite and chlorite. Feldspars have begun to alter to clays. Trace chips of altered kimberlite throughout the bleaching halo.					
80	150	Pink-white granite, varrying amounts of K-spar throughout, localized regions of magnetism. Weak foliation development in the k-spar depleated zones.					

Depth To (ft)	Field Log Comments
30	Mixed lithologies with rounded pebbles and high snad +clay content. Till sample composite from 20-30ft
40	Grey-green gneiss, qtz+fsp+bt, oxidation along fracure surfaces with associated weak clay alteration.
70	Kimberlite, olivine+phlogopite+mangnetite, HCL reaction, magnetic. Local talc and serpentine?
80	Altered gneiss with minor kimberlite.
150	Granite with rare chips of kimberlite. Localized regions of bleaching and epidote alteration.
	Depth To (ft) 30 40 70 80 150

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-50-02	13/04/2016	14/04/2016	A. Shiroki	Hornet 1	664251	3755912	Zone 18, WGS 84		
AD-50-02	1 15/04/2016	14/04/2016	A. Shiroki	Hornet 1	*004251	5755512	Zone 18, WGS 84		
AD-50-02	({ 23/04/2016	14/04/2016	A. Shiroki	Hornet 1	664251	3755312	Zone 18, WGS 84		43512
AD-50-02	()\$/04/2016	14/04/2016	A. Shiroki	Hornet 1	664251	5755312	Zone 18, WGS 84		
AD-50-02	(13/04/2016	14/04/2016	A. Shiroki	Hornet 1	-664251	- 57553 12	Zone 18, WGS 84		
					664037	5755464			1.
					(lh gu	513-7016)			
Hole Comm	ents: Angled hole	azimuth 045, d	ip -60, off of	AD-52 pad	. Black kimberlit	e encountered 5	0-95 ft.		
Logger Nam	e:	4	Yer Su	2.10					
Logger Signa	iture:		I IALAR OF	TEACH I	75	APF	BOVED		
Date:			14 April	2016	Adura	U UCC	Jor		

AD-50-02									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	40	OVB	Regolith		12	Pink	Grey		Accessed on Victory, By
40	50	Granite			7	Grey			Massive
50	95	Kimberlite				Black			Porphyritic
95	115	Granite				Grey			Massive
115	160	Granite				Grey	Pink		Massive

AD-50-02			Kim	berlite Minerals In	Decreasing Abund	ance		1
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	40						NA	NA
40	50	Strong					NIL	Weak
50	95	Strong	Olivine	Phiogopite	Carbonate	Spinel	Strong	Intense
95	115	Strong					NIL	Weak
115	160	Moderate					Weak	NIL
				1				

ND-50-02		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	40	Mixed lithologies of pink granite, grey felsic and intermediate gneiss, and rare mafic ships.
40	50	Grey "discoloured" granite with less than 1 % small green chips that look like fine-grained epidote aggregates.
50	95	Black porphyritic ultramafic (kimberlite) containing anhedral (oval) serpentinized dark brown olivine macrocrysts and subhedral serpentinized dark brown olivine phenocrysts. Groundmass minerals include brown phiogopite, carbonate, and silver-black spinel (magnetite). Phiogopite decreases in abundance down-hole. Less than 1 % bleached pale green country rock 50-90 ft, and approximately 50 % at 90-95 ft.
95	115	Strongly discoloured pale grey-green granite with rare chips that look like apple-green fine-grained epidote aggregates (less than 1 % of the interval).
115	160	Strongl discoloured pale grey-green granite containing green chlorite, black magnetite, and approximately 10 % pink fresh granite chips. Rare patchy red staining on grey-green granite.

epth To (ft) 40 50	Fleid Log Comments 5-7 ft of snow. Clay-soil with mixed lithology rock fragments. Clay-rich 25-40 ft. Over burnden-bedrock contact at 35-40 ft.
40 50	5-7 ft of snow. Clay-soil with mixed lithology rock fragments. Clay-rich 25-40 ft. Over burnden-bedrock contact at 35-40 ft.
50	Strongly obtained granity with more of the state of
	Subright allered granite with rare chips of ultramafics.
95	Bulksample 43512 50-95 ft. Kimberlite, porphyritic ultramafic with visible olivine and phlogopite, trace patchy perovskite. Strong HCI response. Country rock 5 % at 50-55 ft, trace at 55-90 ft. Lower contact with strongly altered granite at approximately 92 ft.
115	Strongly altered granite - pale grey-green, chlorite epidote? Alteration zone.
160	Leuco-granite with sparse bt + mafics. Pale -green to white + chlorite/epidote + Kspar + magnetite.
	95

-

.

ŧ.

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample (D	Kimberlite Sample ID
AD-51-01	10/04/2016	12/04/2016	L.Boyce A.Shiroki	Homet 1	664165	5755378	Zone 18, WGS 84	TH CHIPTE ID	oumpre no
AD-51-01	10/04/2016	12/04/2016	L.Boyce A.Shiroki	Hornet 1	664165	5755378	Zone 18, WGS 84		43510
AD-51-01	10/04/2016	12/04/2016	L.Boyce A.Shiroki	Hornet 1	664165	5755378	Zone 18, WGS 84		
AD-51-01	10/04/2016	12/04/2016	L.Boyce A.Shiroki	Hornet 1	664165	5755378	Zone 18, WGS 84		
AD-51-01	10/04/2016	12/04/2016	LBoyce A.Shiroki	Hornet 1	664165	5755378	Zone 18, WGS 84		
Hole Comme	nts: Anomoly ex	colained by inte	rsection with	Kimberlite					
Logger Name	3:	AIRKA	Sugar		APF	PROVED			
Logger Signa	ture:		(O)	1.	W	07-2016			
Date:			ADIN IZ IZ	er f					

AD-51-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	20	OVB	Granite	Gneiss	12	Pink	Black		
20	45	Kimberlite			8	Black			Porphyritic
45	65	Kimberlite	Granite		8	Black	Green		Porphyritic
65	70	Granite	Kimberlite		Ġ	Grey	Green		Massive
70	100	Granite			8	Pink	Black		Massive
	_								

AD-51-01			Kim	berlite Minerals in				
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberiite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	20	Moderate					NA	NA
20	45		Olivine	Phlogopite	Carbonate		Strong	Strong
45	65	Moderate	Olivine	Phlogopite	Carbonate		Moderate	Strong
65	70	Strong					Weak	Weak
70	100	Weak					NO	Weak

AD-51-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	20	Mixed lithologies, dominated by granite and various gneiss. Run 15-20 shows grey-green alteration of the country rock granite.
20	45	Porphyritic ulatramafic unit, contains distinct olivine and phlogopite pheonocrysts. Reacts strongly to HCL and is strongly magnetic. Contains up to 10% country rock, with localized bleaching.
45	65	Porphyritic ulatramafic unit, contains distinct olivine and phlogopite pheonocrysts. Reacts strongly to HCL and is strongly magnetic. Contains up to 30% country rock, with localized bleaching, and pervasive grey-green alteration.
65	70	Unit is dominated by country rock (bleached granite) showing pervasive grey-green alteration. Kimberlite is rare (<1% total abundance), contains olivine, but trace phlogopite. Weak HCL and magnetic reaction is limited to kimberlite within the interval.
70	100	K-spar rich granite, with weakly chloritized biotite and amphiboles. Up to 5% localized grey-green alteration. Weak HCL reaction from 70-95 feet, associated with proximity to Kimberlite.

AD-51-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	20	Mixed lithologies, small samples as a result of casing.
20	45	Bulk sample (#43510) from 25-55 feet, BOP and sample into bulk sample. In run 35-40ft Dust out of drill truned a distinct brown color (usually black in Kimberlite), may be due to an increase in phiogopite.
45	65	Grading out of Kimberlite.
65	70	Bleached appearance.
70	100	

e

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-52-01	24/03/2016	01/04/2016	A.Shiroki L. Boyce	Hornet 1	664250	5755306	Zone 18, WGS 84	43502	Sattly to
AD-52-01	24/03/2016	01/04/2016	A.Shiroki L. Boyce	Hornet 1	664250	5755306	Zone 18, WGS 84		
AD-52-01	24/03/2016	01/04/2 016	A.Shiroki L. Boyce	Homet 1	664250	5755306	Zone 18, WGS 84		
AD-52-01	24/03/2016	01/04/2016	A.Shiroki L. Boyce	Homet 1	664250	5755306	Zone 18, WGS 84		43503
AD-52-01	24/03/2016	01/04/2016	A.Shiroki L. Boyce	Hornet 1	664250	5755306	Zone 18, WGS 84		
AD-52-01	24/03/2016	01/04/2016	A.Shiroki L. Boyce	Hornet 1	664250	5755306	Zone 18, WGS 84		
Hole Comme	nts: Anomaly exp	lained by stron	gly magnetic	: kimberlite	25-50 feet. Tra	nsition zone betw	veen country rock g	anite and kimberlit	te at 20-25
feet and at 50)-60 feet. Log upo	dated into new	format by L.	Boyce on A	pril 9, 2016.		,		
Logger Name	Logen	Bourse			ADDDAU				
Logger Signat	ture:	5			ACTION	5D)			
Date:	A	19-			May 20	16			
	_ pri	1 1,0	016		000				

AD-52-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	5	Till			12	Tan	Pink	Grey	
5	20	Granite			10	Pink			Massive
20	25	Granite	Kimberlite		8	Pink	Black		Massive
25	50	Kimberlite			7	Black	Pink		Porphyritic
50	60	Granite	Kimberlite		3	Grey	White	Black	Massive
60	135	Granite			6	Pink			

AD-52-01			Kim	berlite Minerals in	Decreasing Abund	lance		1
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	5	•					NA	NA
5	20						YES	NA
20	25	Moderate					YES	YES
25	50	Moderate	Olivine	Phlogopite	Carbonate	Magnetite	YES	YES
50	60	Moderate					YES	YES
60	135	Moderate					YES	NA

a

AD-52-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	5	Till sample taken. Mixed litholiges.
5	20	Weakly magnetic granite.
20	25	Transition between granite country rock to kimberlite. Kimberlite is black in color. Olivine macrocrysts up to Smm i length and are altered to black-brown serpentine and some grains to a grey-black color, and some have sulphide cores. There are black rims visible on some serpentinized grains of olivine macrocrysts. Olivine phenocrysts are on average 0.5 mm, euhedral-subhedral, fully serpentinized dark brown, and have black rims. The identifiable components of the grey groundmass consists of clear colourless carbonate, black oxides (magnetite?), and pale yellow sulphides. Brown anhedral oval phlogopite is up to 4 mm in length. Black ilmenite grain is 4 mm, streaks black.
25	50	Black kimberlite with approximately 1 % pink granite. The kimberlite is strongly magnetic. The olivine macrocrysts in the kimberlite are up to 4 mm, the mode is 2 mm. They are fully serpentinized black-green to black-brown, with sub-mm scale black rims. The olivine phenocrysts are sub-hedral, fully serpentinized black-green-brown, with black rims. The visible components of the groundmass consist of clear colourless carbonate (calcite), black metallic oxide (magnetite), and white opaque perovskite (rare). Black ilmenite grain is 3 mm long, streaks black, and has a sub- mm scale white alteration rim. Oval brown phlogopite is generally 3 mm long. Many granite chips are bleached white to pale blue-green at 30-35 feet.
50	60	Altered granite: bleached to chalky white (clay) and semi-translucent grey. Kimberlitic component is minor, is black and serpentinized olivine macorcrysts, olivine phenocrysts, brown phiogopite, and carboante groundmass are visible in the black chips.
60	135	Moderately magnetic granite with moderately chloritized mafic minerals.

a

AD-52-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	5	Mixed litholiges.
5	20	Pink, k-spar rich granite.
20	25	Kimberlite granite transition.
25	50	Bulk sample taken from 30ft to 50ft.
50	60	Kimberlite granite transition.
60	135	

. .

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-52-02	11/04/2016	12/04/2016	L.Boyce A.Shiroki	Hornet 1	664251	5755312	Zone 18, WGS 84	Thi Sample ID	Sample ID
AD-52-0302	11/04/2016	12/04/2016	L.Boyce A.Shiroki	Hornet 2	664251	5755312	Zone 18, WGS 85		
AD-52-94 02-	11/04/2016	12/04/2016	L.Boyce A.Shiroki	Hornet 3	664251	5755312	Zone 18, WGS 86		43511
AD-52-95 02-	11/04/2016	12/04/2016	L.Boyce A.Shiroki	Hornet 4	664251	5755312	Zone 18, WGS 87		
AD-52-06"	11/04/2016	12/04/2016	L.Boyce A.Shiroki	Hornet 5	664251	5755312	Zone 18, WGS 88		
AD-52-07	11/04/2016	12/04/2016	L.Boyce A.Shiroki	Hornet 6	664251	5755312	Zone 18, WGS 89		
A2									
Hole Commen bilogical mater	ts: Anomoly ex rial before enco	plained by inter untering regolit	section with h. Drilled at	Kimberlite Azimuth 04	. AD-52-02 angle	hole chasing she	eeted kimberlite tag	get. ~10 ft. of snow	/ + surface
Logger Name:			1						
Logger Signatu	Jre:		+YAKA	SHIRU	</td <td>APPF</td> <td>POVED</td> <td></td> <td></td>	APPF	POVED		
Date:				rz.A	Epi12016	May	2016		

ъ

AD-52-02									1
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	10	OVB	Granite	Gneiss	12	Pink	Grey		
10	25	Granite			8	Pink	Grey		
25	65	Kimberlite			6	Black			Porpyritic
65	80	Granite	Kimberlite		4	Grey	Green	Black	
80	95	Granite			4	Grey	Pink	Green	Massive
95	115	Granite			2	Pink			Massive
				_					

AD-52-02			Kim	berlite Minerals in				
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	10						NA	NA
10	25						Weak	Weak
25	65	Weak	Olivine	Phiogopite	Carbonate	Perovskite	Strong	Strong
65	80	Strong	Olivine	Carbonate	Phlogopite		Weak	Weak
80	95	Moderate					Weak	Weak
95	115	Weak					Moderate	Weak

AD-52-02		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	10	Overburden, mixed litholgies (granite, gneiss) pebbles and regolith.
10	25	K-spar rich granite, weakly magnetic. Minor bleaching on the units lower margin. Weak chloritization throughout the interval. Trace strongly altered (dark-green) granite.
25	65	Porphyritc ultramafic, olivine and phlogopite phenocrysts and macrocrysts, with trace perovskite. Rare fresh oliving macrocryst with serpentanized fractures. Exhibits a strong reaction with HCL and is strongly magnetic. 25-30ft is nearly non-magnetic. Up to 1% country rock xenoliths troughout (strongly altered).
65	80	Mix of strongly altered/ bleached granite, and kimberlite as described above. Granite is locally altered to a blue- green color. Local weak epidote alteration. Kimberlite rapidly decreases in abundance down hole (50% to <1%).
80	95	K-spar rich granite transitions from strongly altered and bleached to nearly fresh granite. Alteration observed includes epidote and chlorite. Trace sulphides. Weak local HCL reaction.
95	115	K-spar rich granite, weakly magnetic. Minor bleaching on the units upper margin. Weak chloritization throughout the interval with local increases in chlorite.

-

AD-52-02		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	10	Overburden, granite dominated, minor chlorite altered gneiss.
10	25	
25	65	Bulk sample of Kimberlite (#45311) from 25-65 feet. Drilled harder than previous kimberlites encountered from this program.
65	80	Alteration zone.
80	95	
95	115	
1		

e

•

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and	Till Sample ID	Kimberlite
AD-52-03	13/04/2016	20/04/2016	L. Boyce	Hornet 1	664251	5755306	Zone 18, WGS 84	rin sample in	Sample ID
AD-52-03	13/04/2016	20/04/2016	L Boyce	Hornet 1	664251	5755306	Zone 18, WGS 84		
AD-52-03	13/04/2016	20/04/2016	L. Boyce	Hornet 1	664251	5755306	Zone 18, WGS 84		43513
AD-52-03	13/04/2016	20/04/2016	L. Boyce	Hornet 1	664251	5755306	7000 18 W/CS 94		
AD-52-03	13/04/2016	20/04/2016	L. Boyce	Hornet 1	664251	5755306	Zone 18, WG5 64		
AD-52-03	13/04/2016	20/04/2016	L. Bovce	Homet 1	664251	5755206	Zone 19, WG3 84		1
AD-52-03	13/04/2016	20/04/2016	L. Boyce	Hornet 1	664251	5755306	Zone 18, WGS 84		
Hole Comme	nts: Third hole o	n anomaly AD-5	52. Kimberlit	e dyke con:	strained.				
Logger Name	Logen	Boyce			APPBO	DVED			
Logger Signat	ure:	5			Man				
Date:	April 2	20 2016							

AD-52-03				-	T				
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate	Color 1	Color 2	Color 2	Tautum
0	10	OVB	Granite	Gneiss	12	Grev	Pink	White	rexture
10	22.5	Granite			4	White	Grev	winte	Eine Carlined
22.5	55	Kimberlite			9	Black	White		Porphyritic
55	65	Granite	Kimberlite		5	White	Black		Manaka
65	75	Granite	Kimberlite		4	Grav	Groon	Dink	Massive
75	95	Granite	Kimberlite		4	Dink	Black	PILIK	rine Grained
95	100	Granite			4	Grow	Groop	Dink	Massive
						diey	Green	PHIK	Fine Grained
									·

AD-52-03			Kim	berlite Minerals in	Decreasing Abund	ance	1	
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	10						Na	Na
10	22.5	Strong					Weak	Na
22.5	55	Weak	Olivine	Phlogopite	Perovskite	Carbonate	Strong	Strong
55	65	Strong				1	Moderate	Weak
65	75	Moderate					Moderate	Weak
75	95	Weak					Moderate	Weak
95	100	Moderate					Strong	Weak

ø

AD-52-03		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	10	Mixed lithologies in overburden.
10	22.5	Bleached granite alteration zone. Weak clay alteration of feldspars and chlorite alteration of matics
22.5	55	Porphyritic ultramafic with olivine and phlogopite phenocrysts/megacrysts. Trace perovskite. Strong reaction to HCL and strongly magnetic. Trace bleached country rock throughout the interval (up to 5% in some runs). Patchy serpentine alteration.
55	65	Dominated by bleached white granite with up to 5% kimberlite as above.
65	75	Chlorite/clay altered granite? With up to 5% fresh granite. Trace kimberlite. (veinlets/stringers?)
75	95	Pink, k-spar rich granite with weak clay altertation of feldspars. Trace kimberlite. (veinlets/stringers?)
95	100	Chlorite/clay altered granite? With up to 5% fresh granite. Strongly magnetic.

AD-52-03		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	10	Mixed lithologies and soil, surface oxidation is common.
10	22.5	Weathered/altered granite?
22.5	55	At 22.5' aproximate kimberlite intersection. Black porphyritic ultramafic, phlogopite and olivine phenocrysts, strong HCL reaction, stronbg mag,m up to 5% bleached country rock. Bulk sample 43513 25-55.
55	65	Bleached white granite with trace kimberlite.
65	75	
75	95	
95	100	

nije

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Tili Sample ID	Kimberlite Sample ID
AD-53-01	24/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	664537	5754779	Zone 18, WGS 84		outriple ID
AD-53-01	24/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	664537	5754779	Zone 18, WGS 84	42501	
AD-53-01	24/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	664537	5754779	Zone 18, WGS 84	45501	
AD-53-01	24/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	664537	5754779	Zone 18, WGS 84		
AD-53-01	24/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	664537	5754779	Zone 18, WGS 84		
H ole Comme 2016	nts: Anomoly ex	plained by mag	netic/ condu	ctive sulphi	ide rich granite a	nd gneiss. Log up	dated into new form	nat by L.Boyce on /	April 9,
Logger Name	Loyen 1	Boyce							
Logger Signat	ure: He				APPRO	VED			
Date:	April 9	2016			Mayo	016			

að.

di.

AD-53-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	5	OVB			0	Brown			
5	10	Till			8	Tan	Grey		
10	25	Granite			6	Pink			Massive
25	45	Gneiss			6	Grey	Green		Foliated
45	55	Granite			7	Pink			Massive

Page 2 of 5

Stornoway Exploration Reverse Circulation Drill Hole Log

AD-53-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	5						NA	NA
5	10						NA	NA
10	25						YES	NA
25	45	Weak					YES	NA
45	55						YES	NA

he.

AD-53-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	5	Soil.
5	10	Till, sample taken. Mixed lithologies of rounded and subrounded chips, clays and sand also present,
10	25	Granite with trace magnetite.
25	45	Weakly chloritized gneiss with trace garnets. Up to 3% sulphides and magnetite.
45	55	Granite with trace magnetite and sulphides.
1		

w.

AD-53-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	-5	Soil and minor regolith.
5	10	Mixed clasts, sub-rounded to rounded edges, tan color, sany fines and clays on clastics after wet sieve.
10	25	K-spar rich, large euhedral granite. Weakly magnetic.
25	45	Dominantly gneiss with quartz velning, moderately magnetic grey-blue minerals.
45	55	K-spar rich, large euhedral granite. Weakly magnetic.
	1	

								1	
Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID	
23/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	664744	5754549	Zone 18, WGS 84			
23/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	664744	5754549	Zone 18, WGS 84			
23/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	664744	5754549	Zone 18, WGS 84			
23/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	664744	5754549	Zone 18, WGS 84			
nts: Anomoly ex	plained by mag	netic gneiss.	Log update	ed into new form	at by L.Boyce on	April 9 2016			
ure: April 9	Soyce 1 , 2016			APPE	ROVED BUL				
	Date Drilled 23/03/2016 23/03/2016 23/03/2016 23/03/2016 23/03/2016	Date Drilled Date Logged 23/03/2016 29/03/2016 23/03/2016 29/03/2016 23/03/2016 29/03/2016 23/03/2016 29/03/2016 23/03/2016 29/03/2016 23/03/2016 29/03/2016 ants: Anomoly explained by mages Cay and Bayce ture: April 9, 2016	Date DrilledDate LoggedLogged By23/03/201629/03/2016LBoyce A.Shiroki23/03/201629/03/2016LBoyce A.Shiroki23/03/201629/03/2016LBoyce A.Shiroki23/03/201629/03/2016LBoyce A.Shiroki23/03/201629/03/2016LBoyce A.Shirokiants: Anomoly explained by magnetic gneiss.Curre:Antipart Arge Antipart ArgeApril 9, 2016	Date Drilled Date Logged Logged By Drill # 23/03/2016 29/03/2016 LBoyce A.Shiroki Hornet 1 1 23/03/2016 29/03/2016 LBoyce A.Shiroki Hornet 1 1 23/03/2016 29/03/2016 LBoyce A.Shiroki Hornet 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>Date DrilledDate LoggedLogged ByDrill #UTM Easting23/03/201629/03/2016L.Boyce A.ShirokiHornet 166474423/03/201629/03/2016L.Boyce A.ShirokiHornet 166474423/03/201629/03/2016L.Boyce A.ShirokiHornet 166474423/03/201629/03/2016L.Boyce A.ShirokiHornet 166474423/03/201629/03/2016L.Boyce A.ShirokiHornet 166474423/03/201629/03/2016L.Boyce A.ShirokiHornet 166474411111111111111123/03/201629/03/2016L.Boyce A.ShirokiHornet 11111111111123/03/201629/03/201611123/03/201629/03/201611<t< td=""><td>Date Drilled Date Logged Logged By Drill # UTM Easting UTM Northing 23/03/2016 29/03/2016 LBoyce A.Shiroki Hornet 1 664744 5754549 1 LBoyce A.Shiroki Hornet 1 664744 5754549 1 LBoyce A.Shiroki Hornet 1 664744 5754549 1 LBoyce A.Shiroki Hornet 1 664744 5754549 1 Statiroki Hornet 1 664744 5754549 1 Statiroki Hornet 1</br></br></td></t<><td>Date DrilledDate LoggedLogged ByDrill #UTM EastingUTM NorthingUTM Zone and Datum23/03/201629/03/2016LBoyce A.ShirokiHornet 16647445754549Zone 18, WGS 8423/03/201629/03/2016LBoyce A.ShirokiHornet 16647445754549Zone 18, WGS 84411111111<td< td=""><td>Date Drilled Date Logged Logged By Drill # UTM Easting UTM Northing UTM Zone and Datum Till Sample ID 23/03/2016 29/03/2016 LBoyce A.Shiroki Hornet 1 664744 5754549 Zone 18, WGS 84 Image: Cone 18, WGS 84 Image: C</td></td<></td></td>	Date DrilledDate LoggedLogged ByDrill #UTM Easting23/03/201629/03/2016L.Boyce A.ShirokiHornet 166474423/03/201629/03/2016L.Boyce A.ShirokiHornet 166474423/03/201629/03/2016L.Boyce A.ShirokiHornet 166474423/03/201629/03/2016L.Boyce A.ShirokiHornet 166474423/03/201629/03/2016L.Boyce A.ShirokiHornet 166474423/03/201629/03/2016L.Boyce A.ShirokiHornet 166474411111111111111123/03/201629/03/2016L.Boyce A.ShirokiHornet 11111111111123/03/201629/03/201611123/03/201629/03/201611 <t< td=""><td>Date Drilled Date Logged Logged By Drill # UTM Easting UTM Northing 23/03/2016 29/03/2016 LBoyce A.Shiroki Hornet 1 664744 5754549 1 LBoyce A.Shiroki Hornet 1 664744 5754549 1 LBoyce A.Shiroki Hornet 1 664744 5754549 1 LBoyce A.Shiroki Hornet 1 664744 5754549 1 Statiroki Hornet 1 664744 5754549 1 Statiroki Hornet 1</br></br></td></t<> <td>Date DrilledDate LoggedLogged ByDrill #UTM EastingUTM NorthingUTM Zone and Datum23/03/201629/03/2016LBoyce A.ShirokiHornet 16647445754549Zone 18, WGS 8423/03/201629/03/2016LBoyce A.ShirokiHornet 16647445754549Zone 18, WGS 84411111111<td< td=""><td>Date Drilled Date Logged Logged By Drill # UTM Easting UTM Northing UTM Zone and Datum Till Sample ID 23/03/2016 29/03/2016 LBoyce A.Shiroki Hornet 1 664744 5754549 Zone 18, WGS 84 Image: Cone 18, WGS 84 Image: C</td></td<></td>	Date Drilled Date Logged Logged By Drill # UTM Easting UTM Northing 23/03/2016 29/03/2016 LBoyce A.Shiroki Hornet 1 664744 5754549 1 LBoyce A.Shiroki Hornet 1 664744 5754549 1 LBoyce 	Date DrilledDate LoggedLogged ByDrill #UTM EastingUTM NorthingUTM Zone and Datum23/03/201629/03/2016LBoyce A.ShirokiHornet 16647445754549Zone 18, WGS 8423/03/201629/03/2016LBoyce A.ShirokiHornet 16647445754549Zone 18, WGS 84411111111 <td< td=""><td>Date Drilled Date Logged Logged By Drill # UTM Easting UTM Northing UTM Zone and Datum Till Sample ID 23/03/2016 29/03/2016 LBoyce A.Shiroki Hornet 1 664744 5754549 Zone 18, WGS 84 Image: Cone 18, WGS 84 Image: C</td></td<>	Date Drilled Date Logged Logged By Drill # UTM Easting UTM Northing UTM Zone and Datum Till Sample ID 23/03/2016 29/03/2016 LBoyce A.Shiroki Hornet 1 664744 5754549 Zone 18, WGS 84 Image: Cone 18, WGS 84 Image: C	
AD-54-01						-			
-----------------	---------------	-----------	--------	--------	------------------------------------	---------	---------	---------	----------
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	5	No Sample							
5	15	OVB			8	Grey	Pink		
15	40	Granite			4	Pink			Massive
40	55	Gneiss			6	Grey	White		Foliated

AD-54-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	5						NA	NA
5	15						NA	NA
15	40						Yes	NA
40	55	Weak					Yes	NA
			······					

AD-54-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	5	No Sample (casing).
5	15	Mixed lithologies (granite-gneiss) in ovb.
15	40	Granite, weakly magnetic.
40	55	Very weakly foliated granitoid with moderate, pervasive fine-grained magnetite and sulphides. Minor amounts of pink granite throughout. Patchy fracture controlled oxidation.
1		

<u>_</u>____

AD-54-01		
Depth From (ft)	Depth To (ft)	Fleid Log Comments
0	5	
5	15	
15	40	Pink k-spar rich magnetic granite.
40	55	Dominantly gneiss with local pegmatic granite.
6. C		

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberiite Sample ID
AD-56-01	23/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 2	661832		Zone 18, WGS 84		outripie to
AD-56-02	23/03/2016	29/03/2016	L.Boyce A.Shiroki	Homet 2	661832	5752250 -575225	Zone 18, WGS 84	43352	
						(Ch July 13	9-2016)	•	
Hole Comme	nts: Anomoly ex	plained by mag	netic gneiss.	Log update	ed into new form	at hy I. Sovce on	April 9, 2016		
Logger Name	: Logen	Boyce			APPROV	5D			
Logger Signa	ture h	-			May 2010				
Date:	Port 9	7016							

AD-56-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	5	Ovb				Tan			
5	25	Gneiss			12	Grey	Green		Foliated

AD-56-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite M in 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	5						NA	NA
5	25	Moderate					YES	NA
						1		

AD-56-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	5	Soil/ regolith.
5	25	Fine grained gneiss with moderate patchy fracture-controlled, epidote alteration and weak pervasive chlorite alteration. Weakly magnetic. (Minor granite from 5-10 feet, likely part of the OVB transition to bedrock)

AD-56-01									
Depth From (ft)	Depth To (ft)	Field Log Comments							
0	5	Small recovery during casing.							
5	25	Till sample from 10-16ft.							

AD-58-01 22/03/2016 29/03/2016 LBoyce A.Shiroki Homet 2 662361 5752027 Zone 18, WGS 84 43351 AD-58-01 22/03/2016 29/03/2016 LBoyce A.Shiroki Homet 2 662361 5752027 Zone 18, WGS 84 43351 AD-58-01 22/03/2016 29/03/2016 LBoyce A.Shiroki Homet 2 662361 5752027 Zone 18, WGS 84 43351 AD-58-01 29/03/2016 LBoyce A.Shiroki Homet 2 662361 5752027 Zone 18, WGS 84 43351 AD-58-01 29/03/2016 LBoyce A.Shiroki Homet 2 662361 5752027 Zone 18, WGS 84 43351 AD-58-01 29/03/2016 LBoyce A.Shiroki Homet 2 662361 5752027 Zone 18, WGS 84 43351 AD-58-01 Income Intervention (Income Interventintervention (Income Intervention (Income Intervention (Income Inte	Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-58-01 22/03/2016 LBoyce A.Shiroki Homet 2 662361 5752027 Zone 18, WGS 84 Image: Content of the content of t	AD-58-01	22/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 2	662361	5752027	Zone 18, WGS 84	43351	
Image: Section of the section of th	AD-58-01	22/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 2	662361	5752027	Zone 18, WGS 84		
Hole Comments: Anomoly explained by magnetic granite. Log updated into new format by L.Boyce on April 9. 2016.										
Hole Comments: Anomoly explained by magnetic granite. Log updated into new format by L.Boyce on April 9, 2016.										
Hole Comments: Anomoly explained by magnetic granite. Log updated into new format by L.Boyce on April 9, 2016.										
Hole Comments: Anomoly explained by magnetic granite. Log updated into new format by L.Boyce on April 9, 2016.										
	Hole Comme	nts: Anomoly ex	plained by mag	netic granite	e. Log updat	ted into new for	nat by L.Boyce o	n April 9, 2016.		
	Longon Cieme	Logan	Doyce			APPRON	/ER			
Logan Doyce APPROVED	Logger Signa	ure: Ale	-			ACC	54			
Loger Signature:	Deter	1 1	10			Manon				

AD-5 8-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	25	OVB			12	Pink	Grey	Black	
25	35	Granite			8	Pink			Massive
									-

AD-58-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberiite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	25						NA	NA
25	35						YES	NA
		45						

AD-58-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	25	Mixed lithologies (granite-amphibolite-gneiss).
25	35	Weak to moderately magnetic k-spar rich granite.
-		

AD-58-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
Q	25	Till sample taken 20-25.
25	35	

1 2 2

										AD-59-01						1	
Hole ID	Date Drilled	Dete Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Detum	Till Sample ID	Kimberii te Sample iD	Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate	Color 1	Color 1
AD-59-01	21/04/2016	25/04/2016	A. Shiroki, i. Lepine	Homet 2	663218	5752013	Zone 18, WGS 84			0	15	OVB			romage (mm)	Pink	Gray
AD-59-01	21/04/2016	25/04/2016	A. Shiroki, I. Lepine	Hornet 2	663218	5752013	Zone 18, WGS 84			15	20	Gneiss				Grey	
AD-59-01	21/04/2016	25/04/2016	A. Shiroki, I. Lepine	Hornet 2	663218	5752013	Zone 18, WGS 84			20	50	Kimberlite	Gnelss		7	Black	Grey
AD-59-01	21/04/2016	25/04/2016	A. Shiroki, I. Lepine	Hornet 2	6632 18	5752013	Zone 18, WGS 84			50	55	Gneiss	Kimbertlite	Granite	5	White	Grey
AD-59-01	21/04/2016	25/04/2016	A. Shirold, i. Lepine	Hornet 2	663218	5752013	Zone 18, WGS 84			55	100	Gneiss	Granite		5	Grey	Pink
AD-59-01	21/04/2016	25/04/2016	A. Shiroki, I. Lepine	Hornet 2	663218	5752013	Zone 18, WGS 84			100	140	Gnelss	Granite		7	Grey	White
Hole Comr Gneiss cou Logger Nat	nents: High m ntry. ne: Ayeka Shi	agnetic anoma	ly explained a Lepina	by a strong	ly magneti	c kimberlit	te dyke betw	een 20 and	55 feet.								
Logger Sign Date:	nature: Q	APRIL 2	ijie 25,2	016			PROV	5D									

AD-59-01					King	berika Minerals in	Decreasing Abund	iance		
Depth From (ft)	Depth To (ft)	Color 3	Texture	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	15								NA	NA
15	20		Foliated	Moderate					NIL	Very Weak
20	50		Porphyritic	High	Olivine	Phlogopite	Carbonate	Perovskite	Very Strong	Very Strong
50	55	Green	Foliated	High	Olivine	Phiogopite	Carbonate	Perovskite	Moderate	Strong
55	100		Foliated	Weak					Weak	Weak
100	140		Foliated	Moderate					Very Weak	Very Weak

40.59.01		
10.33.01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
o	15	Predominantly grey gneiss and pink granite with trace of chloritic chips. Larger chips are angular and sand size chips are subround.
15	20	Weakly foliated pale grey quartz feldspar blotte gnelss with trace of black grey velning and serpentine alteration (?). One chip in the chip tray. Trace of pale pink granite.
20	50	Dark brown to dark grey kimberlite with fully serpentinised brown to grey green olivine macrocrysts. Olivine phenocrysts are also fully serpentinised, brown to grey green and up to 30%. Groundmass is composed of carbonate, philogopite, perovskite, and spinel. Philogopite macrocrysts are present. Country rock xenoliths are white, blue green and dark green, bleached and serpentinised with rare red patches. They represent approximatel 10% between 20 and 30 feet. From 30 to 45 feet the country xenoliths content drops to 1%. From 45 to 50 feet the country rock xenolith content goes back up to 10%.
50	55	Olivine macrocryst and phonocrysts are fully serpentinised and dark brown. Groundmass is composed of carbonate, phiogopite, perovsidte and probable spinel. Phiogopopite macrocryst are also present. Probable country xenoliths are strongly altered, blue-green and dark green. Presence of small kimberlite vein (1mm) in a country chip. Country rock host is weakly foliated and composed of quartz, plagloclase, biotite gneiss that has a light grey colour. Presence of weakly altered pale pink granite (10%).
55	100	Grey gnelss consisting of quartz, feldspar, blotite with chlorite alteration. Pale pink granite chips are also present with content varying from 5 to 90%. Trace of epidote and chlorite alteration in the gnelss. Granite has patchy red staining from 85 to 100 feet. From 80 to 85 feet the chips are strongly magnetic.
100	140	Grey green gnelss consisting of quartz, feldspar, blotite, chlorite and clay alteration. Locally magnitic at 120 to 125 feet. Local HCI reaction between 120 and 125 feet and also between 130 and 135 feet. Between 120 and 125 feet i mostly composed of white granite or a bleached zone. Trace of pale white feldspar and quartz chips throughout the interval.

AD-59-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	15	0 to 5 feet, no samples, sand and vegetation. 5-10 feet is composed of mixed lithology and pink granite, grey granodiorite and black aphanitic chips. 10-15 feet is composed of mixed overberden and bedrock. Drillers said that it feels like fractured and soft bedrock.
15	20	Cased becased it is drilling soft and feeling fractured. Grey fine grained gnelss plus rare black chips. Pen magnet response was really weak.
20	50	Black chips with approximately 1% white chips. Rare brown mica. Very fine grained rock. Black round and oval olivines (possible). Water is dark grey, muddy and clay.
50	55	Black (30%), green (10%) and white (60%) chips. Mix zone.
55	100	Black grey very fine grained gneiss, started dritting hard at 55 feet. Trace magnetic and HCL in black chips. Water colour was peachy grey. Locally weak pen magnite and HCI reaction. Polybag samples 55-70 feet, 80-85 feet, 90-95 feet.
100	140	Pale green grey water during drilling. Still drilling hard at 105 feet. Very fine grained gneiss. Locally magnitic at 120 to 125 feet. Trace of sulphite from 125 to 140 feet.

. N a

÷

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and	Till Campio ID	Kimberlite
AD-60-01	22/04/2016	25/04/2016	A. Shiroki, I. Lepine	Hornet 2	663193	5751750	Zone 18, WGS 84	43361	Sample ID
AD-60-01	22/04/2016	25/04/2016	A. Shiroki, I. Lepine	Hornet 2	663193	5751750	Zone 18, WGS 84	-	1356
AD-60-01	22/04/2016	25/04/2016	A. Shiroki, I. Lepine	Hornet 2	663193	5751750	Zone 18, WGS 84		433 č 6
AD-60-01	22/04/2016	25/04/2016	A. Shiroki, I. Lepine	Homet 2	663193	5751750	Zone 18, WGS 84		43366
AD-60-01	22/04/2016	25/04/2016	A. Shiroki, I. Lepine	Hornet 2	663193	5751750	Zone 18, WGS 84		43366
AD-60-01	22/04/2016	25/04/2016	A. Shiroki, I. Lepine	Hornet 2	663193	5751750	Zone 18, WGS 84		43366

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
Hole Comme	nts: High magne	etic anomaly exp	plained by str	ongły mag	netic kimberlite	encountered at 3	0-55 ft in country ro	ock gneiss.	
Logger Signat	ture: balt	the, H.	SHROKI		APPRO	MED			
Date:	April	25-2014	2						

 \mathbf{F}_{i}^{i}

.

AD-60-01									1
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	13	OVB			15	Grey	Brown	Pink	
13	30	Gneiss			7	Grey	White		Foliated
30	40	Gneiss	Kimberlite		7	Grey	Black		Foliated and
40	50	Kimberlite	Gneiss		7	Black	White		Massive
50	55	Gneiss	Kimberlite		7	Black	Grey	White	Foliated
55	60	Gneiss	Kimberlite		7	Błack	Grey	White	Foliated
60	113	Gneiss			7	Black	White		Foliated

Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture

.

AD-60-01			Kim	berlite Minerals in	Decreasing Abund	lance		1
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	13						NA	NA
13	30	Weak					NIL	Weak
30	40	Strong	Olivine	Phlogopite	Carbonate	Perovskite	Strong	Strong
40	50	Strong	Olivine	Phlogopite	Carbonate	Perovskite	Strong	Strong
50	55	Moderate	Olivine	Phlogopite	Carbonate	Perovskite	Moderate	Moderate
55	60	Moderate	Olivine	Phlogopite	Carbonate	Perovskite	Weak	Weak
60	113	Weak					Weak	Weak

Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
	1							

AD-60-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	13	Mix lithology of grey gneiss and pink granite. Crustal pink garnet observbed in the gnelss.
13	30	Mix of fine grained grey quartz, feldspar, biotite/chlorite gneiss and white feldspar, quartz and chlorite gneiss.
30	40	Approximately 50% Gneiss and 50% kimberlite chips. Olivine macrocrysts are fully serpentinised, black green to dark brown. Same with the phenocrysts. Subround phiogopite macrocrysts and angular phenocrysts are observed. Groundmass consits of carbonate, phiogopite, perovskite and probable spinel. There are euhedral brown micas that are probably phenocryst that are the same size of the olivine phenocrysts (local). Country rock is composed of altered blue green gneiss.
40	50	Kimberlite > gneiss chips. Kimberlite is composed of fully serpentinised olivine macrocrysts and rare fresh core. Phlogopite phenocryst comprise 30% of the kimberlite in approximately 30% of the kimberlite chips. Olivine phenocrysts are fully serpentinised. Groundmass is composed of carbonate, phlogopite, perovskite and probable spinel. Country rock are white, medium grained quartz, feldspar and lesser chlorite with local green alteration gneiss.
50	55	Gneiss (70%) > Kimberlite (30%) chips. Kimberlite is composed of fully serpentinised dark brown olivine macroscrysts and phenocrysts. Groundmass is composed of carbonate, phiopgopite, perovskite and probable spinel. Country comprises medium grained, white to pale green/grey biotite gneiss with local grey green alteration.
55	60	Gneiss (99%) and Kimbertlite (1%). Kimberlite is composed of fully serpentinised dark brown olivine phencocryts. Phlogopite is altred to blue fuschite. Groundmass is composed of carbonate, phlogopite, perovskite and probable spinel. Three chips observed in one petri-dish. Country rock is composed of fine grained, quartz, feldspar, biotite gneiss and medium quartz, feldspar, chlorite gneiss. Kimberlite presence maybe possible contamination from kimberlite in the previous run.
60	113	Local reaction to HCI. Chips are composed of fine grained dark grey gneiss with quartz, feldspar and biotite. Presence of actinolite ? (fibrous, radiating green translucent mineral). Trace of epidote. One small carbonate chips observed with possible grey olivine and phlogopite remnenant on it at 60-65 ft. Medium grained green-black biotite- chlorite gneiss and one brown kimberlite chip (probable contamination from above units) consisting of fully serpentinized black-brown olivine phenocrystspale green altered phlogopite phenocrysts, groundmass carbonate, and probable spinel at 70-75 ft. Rare brick-red altered chips at 90-95 ft.

Depth From (ft)	Depth To (ft)	Bino Log Comments

 $|\theta|$

-

-0

AD-60-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	13	Regolith, vegetation, gravel mix lithology granite and gneiss from 0 top 5 feet. Gravel, granite and gneiss from 5 to 13 feet.
13	30	Caving. Grey fined grained gneiss. Pulled rods, reamed casing to the bottom of 15 feet. Bleached light grey felsic gneiss. From 20 to 25 feet fine grained dark grey gneiss with pale fine grained felsic chips. From 25 to 30 feet it is a dark grey gneiss.
30	40	Started drilling soft between 30 and 35 feet. Dark grey, black and brown chips. Local trace of Kimberlite ? Presence of 2 mm mica.
40	50	Still drilling soft. Dark brown, lots of brown mica between 40 and 45 feet. Coal grey cuttings and black chips between 45 and 50 feet.
50	55	Black chips with olivines and grey granite between 50 and 55 feet. Between 55 and 60 feet rare brown magnetic chips (HCI reaction) and dark grey gneiss chips. Water is light brown.
55	60	Dark green black gneiss and 10% granite. Rare brown magnetic HCI chips.
60	113	Presence of brown chips that reacts to HCI between 70 and 75 feet. Between 95 and 100 feet there is traceof red alteration. Trace of sulphides between 100 and 105 feet.

Depth From (ft)	Depth To (ft)	Field Log Comments

Hole ID	Date Drilled	Date Logged	Logged By	Drili #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-60-02	23/04/2016	26/04/2016	L.Boyce I.Lepine	Homet 2	663193	5751750	Zone 18, WGS 84	The outpice is	oumpre no
AD-60-02	23/04/2016	26/04/2016	L.Boyce I.Lepine	Hornet 2	663193	5751750	Zone 18, WGS 84		
AD-60-02	23/04/2016	26/04/2016	L.Boyce I.Lepine	Hornet 2	663193	5751750	Zone 18, WGS 84		
AD-60-02	23/04/2016	26/04/2016	L.Boyce I.Lepine	Hornet 2	663193	5751750	Zone 18, WGS 84		
AD-60-02	23/04/2016	26/04/2016	L.Boyce I.Lepine	Hornet 2	663193	5751750	Zone 18, WGS 84		
AD-60-02	23/04/2016	26/04/2016	L.Boyce 1.Lepine	Hornet 2	663193	5751750	Zone 18, WGS 84		
AD-60-02	23/04/2016	26/04/2016	L.Boyce I.Lepine	Hornet 2	663193	5751750	Zone 18, WGS 84		
AD-60-02	23/04/2016	26/04/2016	L.Boyce I.Lepine	Hornet 2	663193	5751750	Zone 18, WGS 84		
Hoie Comme	nts: Angle hole t	o intercept kim	berlite as ob	served in A	D-60-01, Kimbe	rlite was intercep	ted.		
Logger Name	" Logon Be	eyce		A 66					
Logger Signa	ture: The	/		APP					
Date: /	12/70 2	016		The	2011				

-

AD-60-02									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	20	OVB				Pink	Grey		
20	35	Mafic Gneiss	Granite		8	Black	Pink	White	Foliated
35	40	Mafic Gneiss	Kimberlite		8	Black	Brown		Porphyritic
40	45	Kimberlite	Mafic Gneiss		8	Black	Brown		Porphyritic
45	55	Kimberlite	Mafic Gneiss		8	Black	Brown		Porphyritic
55	65	Kimberlite	Mafic Gneiss		8	Black	Brown		Porphyritic
65	80	Felsic Gneiss	Kimberiite		8	Grey	Biack	Brown	Foliated
80	110	Amphibolite			6	Black	Grey		Foliated

AD-60-02			Kim	berlite Minerals in	Decreasing Abund	ance	1.	1
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberiite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	20						NA	NA
20	35	Weak					Weak	Weak
35	40	Weak	Olivine	Phlogopite	Serpantine	Carbonate	Strong	Strong
40	45	Weak	Olivine	Phlogopite	Carbonate	Perovskite	Strong	Strong
45	55	Weak	Olivine	Phlogopite	Carbonate	Perovskite	Strong	Strong
55	65	Weak	Olivine	Phlogopite	Carbonate	Perovskite	Strong	Strong
65	80	Weak	Olivine	Phiogopite	Carbonate	Perovskite	Strong	Strong
80	110	Weak					Strong	Moderate

AD-60-02		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	20	Overburden domianted by granite.
20	35	Dominated by a foliated fine-grained mafic gneiss foliation defined by biotite). Biotite abundance and alteration (chlorite) intensity increases dowhole. Variable (trace to minor) pink-white granite. Accesory red (arsenic rich?) mineral.
35	40	Dominated by a foliated fine-grained mafic gneiss foliation defined by biotite. Weak alteration of the mafic gneiss (chlorite). Kimberlite accounts for approximately 5% of the sample. Kimberlite is characterized by serpentanization of phenocrysts and macrocrysts, with olivine and phlogopite. Visible alteration rims around olivine.
40	45	Kimberlite accounts for approximately 95% of the sample. Kimberlite is characterized by serpentanization of phenocrysts and macrocrysts, with olivine and phlogopite. Up to 5% foliated fine-grained mafic gneiss foliation defined by biotite. Weak alteration of the mafic gneiss (chlorite).
45	55	Kimberlite accounts for approximately 70% of the sample. Kimberlite is characterized by serpentanization of phenocrysts and macrocrysts, with olivine and phiogopite. Up to 30% foliated fine-grained mafic gneiss foliation defined by biotite. Strong alteration of the mafic gneiss (chlorite).
55	65	Kimberlite accounts for approximately 95% of the sample. Kimberlite is characterized by serpentanization of phenocrysts and macrocrysts, with olivine and phiogopite. Up to 5% foliated fine-grained mafic gnelss foliation defined by biotite. Strong alteration of the mafic gneiss (chlorite).
65	80	Dominated by a foliated fine-grained felsic gneiss foliation defined by (rare) biotite. Weak chlorite alteration of the felsic gneiss. Kimberlite accounts for <5% of the sample. Kimberlite is characterized by serpentanization of phenocrysts and macrocrysts, with olivine and phiogopite. Visible alteration rims around olivine.
80	110	Dark grey, strongly foliated amphibolite with variable biotite and amphibole abundance, trace sulphide minerals. Weak chlorite alteration.

AD-60-02		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	20	Casing, regolith, granite and gneiss boulder and gravel.
20	35	Dark grey gneiss.
35	40	Kimberlité contact from 35-40.
40	45	Dark grey-green and fine grained kimberlite.
45	55	
55	65	
65	80	Kimberlite contact from 65-70.
80	110	

e

Hole ID	Date Drilled	Date Logged	Logged By	Drili #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-61-01	21/03/2016	27/03/2016	L.Boyce A.Shiroki	Hornet 1	663182	5751518	Zone 18, WGS 84		
AD-61-01	21/03/2016	27/03/2016	L.Boyce A.Shiroki	Hornet 1	663182	5751518	Zone 18, WGS 84		
AD-61-01	21/03/2016	27/03/2016	L.Boyce A.Shiroki	Hornet 1	663182	5751518	Zone 18, WGS 84		
Hole Comme	nts: Anomoly ex	plained by mag	netic amphi	holite Logu	undated into new	u format hu I. Do	100 on Andi 0, 2016		
Logger Name	: /	B	incore arriprin	oonte. Log	abouted into new	Violitiat by L.bby	ce on April 9, 2016.		
	Cogen	Doyce	e		APP	BOVED			
Logger Signat	ture:				AC	25U			
Date:	At	6. A	101	2.11	N	ay 2016			

Stornoway Exploration Reverse Circulation Drill Hole Log

AD-61-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	, 5	OVB			12	Grey	Pink		
5	20	Gneiss			7	Black	Grey		Foliated
20	35	Amphibolite			12	Black	Grey		Fine-Grained

AD-61-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	5	Weak					NA	NA
5	20	Weak					NA	NA
20	35	Weak					YES	NA
AD-61-01								
-----------------	---------------	---						
Depth From (ft)	Depth To (ft)	Bino Log Comments						
0	5	Granite-granodiorite-amphibolite mixed lithologies. Weak surface oxidation.						
5	20	Fine grained blotite-gnelss, trace chlorite.						
20	35	Amphibolite, sub-euhedral cyrstals, trace chlorite, sulphides, and carbonate. Magnetic.						

D-61-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	5	Weak mag in mixed overburden (granite and gneiss)
5	20	Bt-rich gneiss, minor quartz
20	35	Bt-rich gneiss (larger biotite grains, minor quartz)

-

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-62-01	28/04/2016	29/04/2016	l Lepine	Hornet 2	664048	5750787	Zone 18, WGS 84		
AD-62-01	28/04/2016	29/04/2016	I Lepine	Hornet 2	664048	5750787	Zone 18, WGS 84		
AD-62-01	28/04/2016	29/04/2016	I Lepine	Hornet 2	664048	5750787	Zone 18, WGS 84		
AD-62-01	28/04/2016	29/04/2016	I Lepine	Hornet 2	664048	5750787	Zone 18, WGS 84		
AD-62-01	28/04/2016	29/04/2016	I Lepine	Hornet 2	664048	5750787	Zone 18, WGS 84		43370
AD-62-01	28/04/2016	29/04/2016	l Lepine	Hornet 2	664048	5750787	Zone 18, WGS 84		
Hole Commo seems to be Logger Nam	ents: Anomaly ex different than wi e: Isabelle Lepine	plained by gran hat we saw in A	iite and kiml D-50 to AD-	berlite that 52.	are both magne	tic. Need to mak	e thin section of kin	nberlite chips. This	; kimberlite
Logger Signa	ture:	bell fej	ne	0.16	APPF	OVED			
		21 -1	27 - 2	2016.					

AD-62-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	15	OVB			10				
15	50	Granite	Gneiss		8	Pink	Grey		Massive
50	60	Gneiss	Granite		8	Grey	Green	Pink	Foliated
60	80	Granite	Gneiss		6	Pink	Grey		Massive
80	85	Kimberlite	Granite		6	Grey	Brown	Pink	Porphyritic
85	120	Granite			5	Pink			Massive
								<u></u>	

a

AD-62-01			Kim	berlite Minerals In	Decreasing Abund	lance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberiite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	15						Weak	NA
15	50	Fresh					Strong	Weak
50	60	Fresh					Strong	Weak
60	80	Fresh					Strong	Weak
80	85	Moderate	Olivine	Carbonate	Perovskite	Phlogopite	Very Strong	Very Strong
85	120	Fresh					Strong	Weak
								· · · · · · · · · · · · · · · · · · ·

AD-62-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	15	Mix of granite and gnelss. Fresh. Granite is salmon pink in colour and the gneiss is dark grey. Chips looks more like fragment than OVB in the chip tray.
15	50	Equigranular, coarse grained, salmon pink granite composed of quarts, K-spar and biotite. The rock look fresh. Some green mineral are observed and might be chlorite. A few grey fine grained gnelss chips are also present. Rock is strongly magnetic and weakly react to HCI.
50	60	Gneiss chips >> granite chips. Granite as describe above. Fine grained, grey gneiss composed of quarts, feldspar, and biotite. Foliation define by biotite. Looks like some chips are coated with carbonate, and possibly some garnet and epidote.
60	80	Mix of granite and gneiss. The gneissic content increases down the hole. Rock description for the granite and the gneiss are the same as above.
80	85	Mix of granite and kimberlite chips. Kimberlite > Granite. Granite as above. Kimberlite is dark grey to locally brown and contains olivine macros and phenos that are serpentinised to a light grey to dark grey colour. Groundmass is composed of carbonate, serpentine, perovskite, phiogopite and possible spinel. The spinels are often showing atoll texture or are surrounding the olivine phenos. Macros are hard to see but they are present. Some chips have red alteration (olivines seem to be more affected).
85	120	Same granite as describe above. Salmon pink, equigranular granite composed of quartz, k-spar, and biotite. Unit is strongly magnetic and weakly reacting to HCI. Between 100 and 105 feet a more gneissic chip is observed with lots of sulphides on it.

AD-62-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	15	Hit bedrock at 13 feet. From 0 to 10 no return, so no sample. Gravel granite >> gneiss. Lots of water. Basement is composed of granite.
15	50	Coarse o medium grained dark pink granite (granite kspar monzonite ?). Big chips are observed and may be because of fracture ground (from 15 to 20 feet). Had to put extra casing down from 20 to 25 feet because the ground felt fractured.
50	60	Pale grey-green foliated fine grained gneiss. Trace of sulphides and 1% pink k-spar with trace of epidote alteration.
60	80	Medium grey foliated fine grained gneiss and pale pink kspar granite. Rare chlorite chips are observed. Traces of sulphides.
80	85	Pink granite and black kimberlite. Sample in polybag.
85	120	

Stornoway Exploration Reverse Circulation Drill Hole Log

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Tili Sample ID	Kimberlite Sample ID
AD-63-01	22/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 2	664364	5752460	Zone 18, WGS 84		
Hole Comme	nts: Hole failed	during casing 2	times. AD-63	3-02 was su	ccessful. Log up	lated into new fo	ormat by L.Boyce on	April 9, 2016.	
Logger Name	"Lagon	Boyce		_	0.000				
Logger Signa	ture:	5			APPROVE	5D			
Date:	April	9,2016			May 2016				

Stornoway Exploration Reverse Circulation Drill Hole Log

AD-63-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	7	OVB			12	Grey	Pink		

Stornoway Exploration Reverse Circulation Drill Hole Log

AD-63-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	7						NA	NA

AD-63-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	7	Ovb dominated by white-grey granitoid.

÷. *

AD-63-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	7	Hole failed, blown out around casing and pad sunk.

÷.

Hole ID	Date Driiled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-63-02	23/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 2	664364	5752460	Zone 18, WGS 84		oumpreno
AD-63-02	23/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 2	664364	5752460	Zone 18, WGS 84		
AD-63-02	23/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 2	664364	5752460	Zone 18, WGS 84		
Hole Comme	nts: Anomoly ex	plained by mag	netic granito	oid/ granite	. Hole failed duri	ing casing 2 times	s. AD-63-02 was succ	essful. Log update	ed into new
format by L.B	oyce on April 9, 1	2016.							
Logger Name	Layon 1	Borce							
Logger Signat	ture: Att	>			APPRO	YED			
Date:	April	9,2016	5		May 2	016			
	V								

AD-63-02									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	10	Ovb			15	Grey	White		
10	20	Gneiss			8	Grey	White		Foliated
20	25	Gneiss	Granite		8	Grey	Pink		Massive

AD-63-02			Kim	1				
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	10						NA	NA
10	20	Weak					YES	NA
20	25	Weak					YES	NA

-

AD-63-02		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	10	Ovb dominated by white-grey gneiss.
10	20	Fine grained granitoid with a weak foliation, weakly magnetic, trace epidote alteration.
20	25	Granitoid contact with pink granite. Moderately magnetic.

AD-63-02		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	10	Loosly consolidated fragments, clay, silt. Fragments are mostly of the gneissic bedrock below.
10	20	Flaky-intergrown qtz+fsp,amph bt +mag. Rare Pyrite.
20	25	

*

				1					
Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-64-01	23/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	665285	5751614	Zone 18, WGS 84		
AD-64-01	23/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	665285	5751614	Zone 18, WGS 84		
AD-64-01	23/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	665285	5751614	Zone 18, WGS 84		
AD-64-01	23/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	665285	5751614	Zone 18, WGS 84		
Hole Comme	ents: Anomoly ex	plained by mag	netic amphi	bolite/ grar	nite. Log updated	l into new format	t by L.Boyce on Apri	9, 2016.	
Logger Name	e: Logan	Boyce							
Logger Signa	ture:	=			APERO	MEIN			
Date:	April 9	7. 2016			2014				
	0	6							

AD-64-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	5	OVB			0	Brown			
5	10	OVB			12	Grey	Green	Pink	
10	15	Amphibolite			8	Grey	Green		Fine-grained
15	25	Granite			6	Pink	Black		Massive
						-			

AD-64-01			Kim	berlite Minerals in	ance			
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	5						NA	NA
5	10						NA	NA
10	15	Moderate					YES	NA
15	25	Weak					YES	NA

a

AD-64-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	5	Soil/ regolith.
5	10	Mixed overburden lithlogies.
10	15	Fined grained, chloritized amphibolite. Moderate epidote alteration associated with trace carbonates. Trace garnets and sulphides. Strongly magnetic.
15	25	Granite (+ minor amphibolite) with weak chlorite alteration and up to 3% sulphide. Moderately magnetic.

AD-64-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	5	
5	10	
10	15	Epidote alteration, fine-grained, fsp+qtz + hbl? +magnetite?+pyrite? Equigranular, flakes like layered gneiss, but no foliation in chips.
15	25	Epidote altered granite. Cubic pyrite <1mm.

ч.

Hole ID	Date Drilled	Date Logged	Logged By	Dri##	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-65-01	29/04/2016	30/04/2016	I Lepine	Hornet 2	665891	5752152	Zone 18, WGS 84	43524	
AD-65-01	29/04/2 016	30/04/2016	i Lepine	Hornet 2	665891	5752152	Zone 18, WGS 84		
AD-65-01	29/04/2016	30/04/2016	I Lepine	Hornet 2	665891	5752152	Zone 18, WGS 84		
AD-65-01	29/04/2016	30/04/2016	} Lepine	Hornet 2	665891	5752152	Zone 18, WGS 84		
AD-65-01	29/04/2016	30/04/2016	l Lepine	Hornet 2	665891	5752152	Zone 18, WGS 84		
AD-65-01	29/04/2016	30/04/2016	I Lepine	Hornet 2	665891	5752152	Zone 18, WGS 84		
AD-65-01	29/04/2016	30/04/2016	I Lepine	Hornet 2	665891	5752152	Zone 18, WGS 84		
Hole Comme	ents: There was a ration. Not too s	a sample collect ure this would i	ed between	100 and 13 berlite, but	5 feet that need more observation	I more look at. In on should be mad	the chips trays and e on this intersection	in the bag it was h	ard to see
Logger Nam	e: Isabelie Lepine								
Logger Signa	iture: hal	all Ly	_0		APP	ROVED			
Date:	A	mil 30	, 201	· ·	0 0				

AD-65-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	15	OVB							NIL
15	40	Granite	Gneiss		8	Pink	Grey		Massive
40	70	Granite	Gneiss		9	Pink	Grey		Massive
70	80	Mafic	Granite		8	Grey	Pink		Massive
80	100	Granite			6	9 Pink	Black		Massive
100	115	Granite	Granite	Mafic	3	Pink	Black		Massive
115	135	Granite			5	6 Pink			Massive
				_					

......

AD-65-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	15						NIL	NIL
15	40						NA .	Weak
40	70						NA	Weak
70	80						NA	Weak
80	100						Weak	Weak
100	115						Weak	Weak
115	135						Weak	Weak

AD-65-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	15	Black organic soil mixed with till and heterolithic pebbles of granite, gneiss and possible sediments.
15	40	Chips are mainly composed of dark salmon pink fragments of granite (quartz, fedspar and biotite). Some gneissic chips are also observed but they make less than 5% of the chips. The units are weakly reaction to HCl and they are non-magnetic.
40	70	Same as above but the content of gneiss is less than 1%. It looks like the gneiss chips are the one that react the most to HCI (still weak thgouh).
70	80	These zone seems to have more mafic chips (50-60%), hard to identify properly. I am not too sure if there are an chlorite alteration on the granite, or a more mafic rock (like an altered gabbro or a more mafic gneiss??). They look like they are a lot of chlorite and biotite. The bottom of the unit has an increase in granitic chips.
80	100	Same granite as describe above. Some of the more mafic chips must be magnetite, making the unit locally weakly magnetic. Locally the rock is reacting weakly to HCI.
100	115	From 100 to 105 the chips are much larger, between 10 and 15 mm. Some of them are dark black and looks like they could be fault gauge or a more mafic unit like a gabbro. Mainly fine grained of mineral from a granite as describe above. However, some of the chips have a blue alteration colour on them (clay? From the fault above or clay from kimberlite). There is still a small amount of the black aphanitic chips, but I do not see any olivines.
115	135	Same granite as describe in the top of the hole. Dark salmon pink, medium grained granite with quartz, k-spar and plagioclase, and biotite. Locally some black chips are observed.

. *

AD-65-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
o	15	Dark rich solid vegetation and mix lithic and sand from 0 to 10 feet. Smooth pebbles are observed betweem 5 to 10 feet. Gravel, sand, silt and clay obseved between 10 anf 15 feet. Pebbles are granite >> gneiss and sediments ?
15	40	Dark pink coarsed gralend granite and grey fine grained gneiss. Trace of orange staining. Very little return, sampled the BOP betweem 20 and 25 feet. Gneiss react locally to HCI. Locally strong reaction to the pen magnet. Weak to no reaction to HCI.
40	70	Dark pink granite and dark green chiorite chips (approx. 1%) that react to HCl but is non-magnetic. Chips are locally weakly magnetic.
70	80	Dark oink granite with chiorite alteration chips (10-45%). Locally weakly magnetic and no reaction to HCI.
80	100	Dark pink granite with local yellow staining. Chlorite chips are still observed, but are less aboundant.
100	115	Between 100 and 105 feet a possible fault has been noted by the drillers (more water). In that run there is more black green chips with no reaction to HCL or the pen magnet. Run has dried up. Same as between 100 and 105 feet, but with black chips that might looks likelt has some olivine (traces). From 110 to 115 feet there is much less black chips.
115	135	Dark pink granite as above. 2 black chips have been observed between 120 and 125 feet, but it is suspected that is due to contamination from the BOP.

р.

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-66-01	29/03/2016	31/03/2016	L.Boyce A.Shiroki	Hornet 2	658778	5756748	Zone 18, WGS 84		
AD-66-01	29/03/2016	31/03/2016	L.Boyce A.Shiroki	Hornet 2	658778	5756748	Zone 18, WGS 84		
Hole Comme	nts: Anomoly ex	plained by mag	netic granite	e . Log upda	ited into new for	mat by L.Boyce c	on April 9, 2016.		
Logger Name	" Loyan	Boyce				<u></u>			
Logger Signa	ture:			A	PPROVE	D			
Date:	1-1	9 2011	p		Manna				

Stornoway Exploration Reverse Circulation Drill Hole Log

AD-66-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	15	Ovb			12	Grey	Pink		
15	45	Granite			4	Pink			Massive

\$

AD-66-01			Kim	1	1			
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	15			1			NA	NA
15	45	Weak					YES	NA
		1						
					4			

ā,

AD-66-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	15	Mixed lithologies (granite-gneiss-amphibolitic gneiss).
15	45	Weakly to moderatly magnetic pink granite, trace epidote aleration.

Stornoway Exploration Reverse Circulation Drill Hole Log

18

....

AD-66-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	15	Smaller samples during casing.
15	45	Pink granite, trace epidote alteration, no hcl response.

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-72-01	24/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 2	660200	5753475	Zone 18, WGS 84		
AD-72-01	24/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 2	660799	5753475	Zone 18, WGS 84	43353	
AD-72-01	24/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 2	660200	5753475	Zone 18, WGS 84		
					(It ful	18-2016)			
Hole Comm	ents: Anomoly ex	plained by mag	gnetic gneiss	. Log updat	ed into new form	nat by L.Boyce on	April 9, 2016.		
Logger Nam	e: Lorgan	Boyce				MED			
Logger Signa	ature:	2			AC	25D			
Date:	n 1	9.20	11		May	2016			

AD-72-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	5						NA	NA
5	10						YES	NA
10	20	Weak					YES	NA

AD-72-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	5	Ovb is dominated by granite (weakly magnetic).
5	10	Overburden contact with gneiss.
10	20	Fine grained gneiss with fabric (weak) defined by biotite and qtz compositional banding. Gneiss is weakly chloritized throughout with trace patchy epidote alteration. Weakly to moderatly magnetic.

W²

.

AD-72-01									
Depth From (ft)	Depth To (ft)	Field Log Comments							
0	5								
5	10	Till Sample from 5-10ft.							
10	20	Fine grained grey-green quartz-amphibole.							
Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
---------------	-----------------	----------------	----------------------	--------------	------------------	-----------------	-----------------------	----------------	-------------------------
AD-78-01	21/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 2	660376	5751128	Zone 18, WGS 84	TH Sumple IS	Sample ID
AD-78-01	21/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 2	660376	5751128	Zone 18, WGS 84		
AD-78-01	21/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 2	660376	5751128	Zone 18, WGS 84		
4									
Hole Comme	nts: Anomoly ex	plained by mag	netic amphil	bolitioc-gne	iss. Log updated	into new format	by L.Boyce on April	9, 2016.	
Logger Name	Logar 1	Boyce							
Logger Signat	ture:	-			APPROV May 20	5D			
Date:	April 9	2016			Of.				
		<u>.</u>							

÷,

AD-78-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	5								
5	10	Granite	Amphibolite		12	Black	Pink		Massive
10	25	Mafic Gneiss			12	Black			Fine-Grained
						1			
								1 200	

AD-78-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	5						NA	NA
5	10						NA	NA
10	25	Weak					YES	NA
			· · · · · · · · · · · · · · · · · · ·					

AD-78-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	5	No recovery.
5	10	Amphibolitic-gneiss and granite. Interpretted as transition from overburden to bed rock.
10	25	Amphibolitic-gneiss, trace chlorite, trace carb. Magnetic. Trace talc from 20-25'.

AD-78-01	1	
Depth From (ft)	Depth To (ft)	Field Log Comments
0	5	Frozen organics, no chips taken.
5	10	Serp on fracture planes, micaceous clusters.
10	25	Top of run 20-25, olive green dust, soft talcose/soapy - possible serp frac? Sampled in separate zip-lock

ø

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Tili Sample ID	Kimberlite Sample ID
AD-82-01	20/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 2	659289	5751025	Zone 18, WGS 84	4-3368	
AD-82-01	20/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 2	659289	5751025	Zone 18, WGS 84	26 jA	xi1,2016
Hole Comme	nts: Anomoly ex	colained by mag	metic granit	a Thick OV	B gravel to ~15f	t with large >5ft :	wide boulders Log (indated into new fr	ormat by
L.Boyce on A	pril 9, 2016.	chance of me	Succe Branne	c. There of	5, BIOVEI (0° 15)	e with large > 5it			, , , , , , , , , , , , , , , , , , ,
Logger Name	E Logen 1	Boyce				2			
Logger Signa	ture:	Ś		AF	PROVE				
Date:	April 9	2016		<u>u</u> _u	Man 2014				

* •

₫,

AD-82-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	20	OVB			6	Pink	Brown	Black	
20	35	Granite			2	Pink			Massive
							1		
							L		
								1	

Stornoway Exploration Reverse Circulation Drill Hole Log

AD-82-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberiite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	20						NA	NA
20	35	Weak					YES	NA

* .

 \mathcal{L}^{h}

AD-82-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	20	Mixed litholgies/sizes/shapes in ovb.
20	35	Moderately magnetic, k-spar rich granite.

AD-82-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	20	Mixed overburden. Sample taken for potential till testing 15-20ft.
20	35	K-spar rich, magnetic granite.

Hole ID	Date Drilled	Date Logged	Logged By	Deili #	LITM Eacting	(ITM Northing	UTM Zone and	Till Samala (D	Kimberlite
AD-87-01	21/03/2016	31/03/2016	L.Boyce A.Shiroki	Hornet 1	660742	5750466	Zone 18, WGS 84	Thi Sample ID	Sample ID
AD-87-01	21/03/2016	31/03/2016	L.Boyce A.Shiroki	Hornet 1	660742	5750466	Zone 18, WGS 84		
AD-87-01	21/03/2016	31/03/2016	L.Boyce A.Shiroki	Hornet 1	660742	5750466	Zone 18, WGS 84		
AD-87-01	21/03/2016	31/03/2016	L.Boyce A.Shiroki	Hornet 1	660742	5750466	Zone 18, WGS 84		
AD-87-01	21/03/2016	31/03/2016	L.Boyce A.Shiroki	Hornet 1	660742	5750466	Zone 18, WGS 84		
Hole Comme	nts: Anomoly ex	plained by mag	netic/ condu	active sulph	ide rich mafic dy	ke and amphibo	litic-gneiss. Log upda	ated into new form	nat by
Logger Name	: Logan	Boyce							
Logger Signa	ture:	5			APPBO	ED			
Date:	April	9,20	16		May 201				

AD-87-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	10	OVB			6	Grey	Brown		
10	30	Granite			4	Pink			Massive
30	45	Gneiss	Granite		5	Grey	Green	Pink	Foliated
45	50	Mafic Gneiss			6	Black			Foliated
50	55	Mafic Gneiss			6	Black	Green	Grey	Foliated

.

ND-97-01			Kim	berlite Minerals in				
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	10						NA	NA
10	30	Weak					NA	NA
30	45	Moderate					NA	NA
45	50	Moderate					YES	NA
50	55	Weak					YES	NA
			-				1	
		-						

-

AD-87-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	10	Sandy/ silty overburden and regolith. Mix of clast lithologies,
10	30	Granite with trace chlorite and sulphides.
30	45	Grey-green gneiss with minor to moderate granite. Gneiss is weakly chloritized. Moderate amounts of fine grained chlorotized bioitite and trace sulphides throughout.
45	50	Amphibolitic-Gneiss with substantial cyrstal growth (3-8mm) and moderate to strong chlorite alteration. Sulphide rich (up to 8%) Strongly magnetic.
50	55	Weakly chloritized amphibolitic-gneiss. Patchy trace sulphides. Moderately magnetic.
·		

.*

AD-87-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	10	
10	30	
30	45	Gneiss (70-80%) of run Granite (20-30%) of run.
45	50	Massive sulphides.
50	55	Massive sulphides.

								1	
Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample (D	Kimberlite
AD-88-01	20/03/2016	27/03/2016	L.Boyce A.Shiroki	Hornet 1	660567	5749775	Zone 18, WGS 84		Sample ID
AD-88-01	20/03/2016	27/03/2016	L.Boyce A.Shiroki	Hornet 1	660567	5749775	Zone 18, WGS 84		
AD-88-01	20/03/2016	27/03/2016	L.Boyce A.Shiroki	Hornet 1	660567	5749775	Zone 18, WGS 84		
Hole Comme	nts: Anomoly ex	plained by mag	netic Amphi	bolite. Log u	updated into new	v format by L.Bo	vce on April 9, 2016		
Logger Name	Logen	Boyce					,,		
Logger Signat	ure: The	>			AP	PROVER			
Date:	April	9, 2011	6		AG	lan 2014			
	r.								

AD-88-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	5	TIII			2-12	Pink	Grey		
5	10	Gneiss			4-12	Black	Grey	Green	Fine-Grained
10	15	Mafic Gneiss			4-12	Black	Green		Fine-Grained
						1			
								h	

AD-88-01			Kim					
Depth From (ft)	Depth To (ft)	Degree of Alteration		L Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	5						NA	NA
5	10	Weak					YES	NA
10	15	Weak					YES	NA

AD-88-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	5	Mixed litholigies. Granite, chloritic gneiss observed.
5	10	Chloritic gneiss, fine-grained, trace epidote, garnets, and sulphides. Magnetic.
10	15	Amphibolitic gneiss, fine-grained, minor biotite, trace epidote, garnets, and sulphides. Magnetic.

Depth To (ft)	Field Log Comments
5	Mix of pink granite, magnetic green mafics.
10	Dark green, competent, hard. Visible (rare) blotite. Possible amphiboles, NO GRANITE Strongly magnetic, fine grained+crystaline
15	Fine grained, sugary texture. As above. Common disseminated pyrite. Strongly magnetic.
	Depth To (ft) 5 10 15

....

. *

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-89-01	20/03/2016	27/03/2016	L.Boyce A.Shiroki	Hornet 1	660580	5749643	Zone 18, WGS 84		
Hole Comme	nts: Anomoly ex pril 9, 2016.	plained by mag	netic amphi	bolite. Sam	e as AD-89-01, p	art of the same o	lyke trend? Log upd	ated into new form	nat by
Logger Name	Logen	Boyce							
Logger Signa	ture:	-			APPROV	ED			
Date:	And	9 7016			FU CF				

-

AD-89-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	15	Amphibolite			8	Black	Green		Fine- Grained
								P	

AD-89-01			Kim	berlite Minerals in				
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	15	Weak					YES	NA

AD-89-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	15	Chloritic-amphibolite, fined grained with sub-euhedral crystal growth, moderate biolitite, trace epidote and sulphides, Magnetic.

Se !

AD-89-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	15	Dark green mafic dyke, moderately magnetic, with minor disseminated/cubic brassy sulphides.

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Tili Sample ID	Kimberlite Sample ID
AD-95-01	17/04/2016	19/04/2016	A. Shiroki	Hornet 2	663273	5754640	Zone 18, WGS 84		
AD-95-01	17/04/2016	19/04/2016	A. Shiroki	Hornet 2	663273	5754640	Zone 18, WGS 84		
			1						
Hole Comm	ents: EM target i	nole consisting (of pink mode	erately†/mag	gnetic granite.				
Logger Nam	e: Ayaka Shiroki				APPROV	En			
Logger Signa	iture:	48	link		Man 2				
Date:	19)	April 2016							

ъ.

AD-95-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
. 0	25	OVB			5	Pink	Grey		
25	60	Granite			4	Pink			Massive

AD-95-01			Kim	berlite Minerals in	ance			
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	25						NA	
25	60	Weak					Moderate	Weak
					·			

AD-95-01									
Depth From (ft)	Depth To (ft)	Bino Log Comments							
0	25	0-5 ft no sample. 5-15 ft grey silt-clay-sand and spilled sample from 15-20 ft into chip tray. 15-25 ft consists mainly of pink K-feldspar granite and rare rusty orange chips and rare grey granodiorite chips.							
25	60	Pink K-feldspar granite with 1 % fine grained amphiboles at 35-45 ft. Trace patchy red staining throughout granite.							

AD-95-01								
Depth From (ft)	Depth To (ft)	Field Log Comments						
0	25	0-5 ft no return. 5-15 ft grey damp clay + silt + organics. 15-20 ft pulled rods and cleaned, pink granite + black aphanitic chips (no HCl/no mag).						
25	60	Pink, wet, black mafics + dark green chips.						

								1	
Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-97-01	15/04/2016	19/04/2016	A. Shiroki	Hornet 2	664186	5756759	Zone 18, WGS 84		
AD-97-01	15/04/2016	19/04/2016	A. Shiroki	Hornet 2	664186	5756759	Zone 18, WGS 84		
AD-97-01	15/04/2016	19/04/2016	A. Shiroki	Hornet 2	664186	5756759	Zone 18, WGS 84		
Hole Comme	nte: Vertical lak	a hole testing to	pographic b	igh Boolsti	a topography a	unlained by make	vois engine. This for		
		e noie testing to	фовіарніс н	iign. Nesisu	we topography e	xhialued by Bapp	FOIC gneiss. This rea	iture was not a voi	cano.
Logger Name	: Ayaka Shiroki				APPRO'	VED			
Logger Signa	ture:	Adam	e Ci		Mais	DU			
Date:	19 A	pril Zol6			00				

-

AD-97-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	10	OVB			NA				
10	20	OVB			5	Black	Grey		
20	55	Gabbro	Granite		7	Black	Grey	Pink	Foliated

AD-97-01			Kim	ance				
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	10						NA	NA
10	20	Weak					Weak	Moderate
20	55	Weak					NIL	Weak

 \mathbf{n}

AD-97-01								
Depth From (ft)	Depth To (ft)	Bino Log Comments No sample						
0	10							
10	20	Mixed lithology predominantly of medium-fine grained black-grey plagiocalse pyroxene gabbro with trace chlorite and trace pink K-feldspar granite.						
		Medium-fine grained folicated plagiocalse pyroxene gabbroic gneiss with trace local chlorite and carbonate						
20	55	alteration. Pink K-feldspar granite with trace epidote and chlorite alteration less than 1 % 20-30 ft, 40-45 ft, approximately 20 % 30-40 ft.						

AD-97-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	10	Ica and water, no sample
10	20	Round mixed lithology sand and lots of black hard chips, most sample returned from BOP.
20	55	Salt and pepper gabbro, fine-grained. 30 % bleached/white and pale pink K-feldspar granite at 30-35 ft, starting to drill soft. 45-50 ft: foliation in gabbro and smoky/snotty/white +pink granite 10 %.

Hole IĐ	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-98-01	03/04/2016	04/04/2016	A.Shiroki	Hornet 2	661985	5757091	Zone 18, WGS 84		
Hole Comme	nts: Hole aband	oned at 30 feet	due to poor	ground co	ndition (snow m	elting/washing a	way from under the	drill). Log updated	into new
format by L.E	lovce on April 9.	2016.		0			nay nom ander the	armit 208 apartee	
Logger Name	. /	0							
	Lagan	Boyce.							
Logger Signa	ture:								
CORECT ORDING	cure.			APP	ROVEN				
Deter	- 10				To U				
Date:	Horil 9	2016		UNG	F C				
	1111			14	AL DOIL				
AD-98-01									
---	---------------	--------	--------	--------	------------------------------------	---------	---------	---------	---------
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	30	OVB				Tan	Grey		
						-			
						-			
						-	-		
· _ · · · · · · · · · · · · · · · · · ·									
		/					-		

 $\overline{\mathbf{x}}$

AD-98-01			Kim	ance				
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	30						NA	NA
			•					
=								

.

AD-98-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	30	Tan-grey silt with minor mud and very fine sand. No sample returned at 5-10 feet.

AD-98-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	30	
	1	
	·	

4

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-99-01	03/04/2016	07/04/2016	A.Shiroki	Hornet 2	663287	5757347	Zone 18, WGS 84	43354, 43355	
AD-99-01	03/04/2016	07/04/2016	A.Shiroki	Hornet 2	663287	5757347	Zone 18, WGS 84		
Hole Comm	ents: Anomaly e	cplained by mag	znetic granit	e. Log upda	ted into new for	mat by L.Boyce o	on April 9, 2016.		
Logger Nam	e: Logor	Boyce							
Logger Signa	ature:	6			AC	5D			
Date:	April 9	, 2016			Mayo	sile			

Depth From (h)Depth To (h)Lith 1Lith 2Lith 3Chip Size Estimate Average (mm)Color 2Color 2Color 3Color 3 </th <th>AD-99-01</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	AD-99-01									
0 65 OVB O	Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
65 135 Granite 10 Pink Massive Image: Second	0	65	OVB			12	Pink	Grey	Green	
Image: series of the series	65	135	Granite			10	Pink			Massive
Image: series of the series										
Image: series of the series										
And a										
Image: series of the series										
Image: series of the series						· · · · · · · · · · · · · · · · · · ·				
Image: select										
Image: Second										
Image: series of the series										
Image: Second										

.

8

AD-99-01			Kim		-			
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kîmberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	65						NA	NA
65	135	Moderate					YES	NA
				m				

.

æ

AD-99-01									
Depth From (ft)	Depth To (ft)	Bino Log Comments							
0	65	Mixed lithology till. Pink granite, grey gneiss, and green very fine-grained rock.							
65	135	Pink granite with moderate grey-green alteration at 90-115 ft, moderate chlorite at 105-115 ft, and minor red (realgar?) and yellow (limonite?) alteration at 105-120 feet. The pink granite is moderately magnetic.							

.

s. #

AD-99-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	65	Till Sample #43354 40-45ft Till Sample #43355 45-50ft
65	135	

19

16

Hole (D	Date Drilled	Date Logged	Logged By	Driil #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-100-01	28/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	664199	5757294	Zone 18, WGS 84		
AD-100-01	28/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	664199	5757294	Zone 18, WGS 84		
Hole Comm	ents: Anomoly e	xplained by mag	gnetic granit	e. Log upda	ted into new for	mat by L.Boyce o	on April 9, 2016.		
Logger Nam	e: Logan	Bayce							
Logger Signa	iture:	2		A	PPROVE)			
Date:	110	7.11			(ez)	J			

-

AD-100-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	15	OVB			12	Pink	Grey		
15	60	Granite			5	Pink			Massive

36

ъ

AD-100-01			Kim	berlite Minerals in				
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	15						NA	NA
15	60						YES	NA

a

AD-100-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	15	Mixed lithologies in OVB (granite-gneiss), moderately magnetic.
15	60	Granite, weak to moderately magnetic.

AD-100-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	15	OVB dominated by granite.
15	60	Pink magnetic granite throughout.

ь.

								1	
Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-102-01	28/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	664317	5757601	Zone 18, WGS 84		
AD-102-01	28/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	664317	5757601	Zone 18, WGS 84		
AD-102-01	28/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	664317	5757601	Zone 18, WGS 84		
AD-102-01	28/03/2016	29/03/2016	L.Boyce A.Shiroki	Hornet 1	664317	5757601	Zone 18, WGS 84		
Hole Comme	nts: Anomoly ex	xplained by mag	netic granit	e. Log upda	ted into new for	mat by L.Boyce o	on April 9, 2016.		
Logger Name	" Logan	Boyce							
Logger Signa Date:		2011			PROVE)	1		
<i>[</i> -	pril 7.	2016			May 2010				

.

6

AD-102-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	15	OVB			12	Pink			
15	45	Granite			8	Pink			Massive
45	50	Granite	Amphibolite		6	Pink	Black		Massive
50	65	Mafic Gneiss.			6	Black	Grey		Foliated
								-	
							-		

AD-102-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
Q	15						NA	NA
15	45						YES	NA
45	50						NA	NA
50	65						NA	NA

.

AD-102-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	15	Mixed lithologies (granite-gneiss) in Ovb.
15	45	Granite with trace sulphides, weak to moderately magnetic.
45	50	Intersection of granite and amphibolitic-gneiss.
50	65	Medium grained amphibolitic gneiss, fresh appearance. Rare pink felsics throughout.

AD-102-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	15	
15	45	Magnetic minerals are represented by interstitial crystals.
45	50	
50	65	Very weak HCL reaction with rock dust.
1-		
· · · · · · · · · · · · · · · · · · ·		

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-103-01	17/04/2016	19/04/2016	A. Shiroki	Hornet 1	664453	5757599	Zone 18, WGS 84		
Hole Comme	ents: Angled hole	e azimuth 183 d	ip -60.						
Logger Name	e: Ayaka Shiroki								
Logger Signa	ture:	.R.	2/1		PROVER)			
Date:	19400	1 2016		<u> </u>	May 2016	IJ.			

.

•

AD-103-01						_			
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	25	OVB			10	Pink	Grey	Black	

		Kim	berlite Minerals in	Decreasing Abund	ance		
Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberiite Min 4	Magnetism Response	HCI Response
25						NA	NA
	Depth To (ft) 25	Degree of Alteration 25 3 4 5 6 6 7	Degree of Alteration Kimberlite Min 1 25	Degree of Alteration Kimberlite Min 1 Kimberlite Min 2 25 - <td>Degree of Alteration Kimberlite Min 1 Kimberlite Min 2 Kimberlite Min 3 25 -</td> <td>Degree of Alteration Kimberlite Min 1 Kimberlite Min 2 Kimberlite Min 3 Kimberlite Min 4 25 ////////////////////////////////////</td> <td>Degree of Alteration Kimberlite Min 1 Kimberlite Min 2 Kimberlite Min 3 Kimberlite Min 4 Magnetism Response 25 </td>	Degree of Alteration Kimberlite Min 1 Kimberlite Min 2 Kimberlite Min 3 25 -	Degree of Alteration Kimberlite Min 1 Kimberlite Min 2 Kimberlite Min 3 Kimberlite Min 4 25 ////////////////////////////////////	Degree of Alteration Kimberlite Min 1 Kimberlite Min 2 Kimberlite Min 3 Kimberlite Min 4 Magnetism Response 25

AD-103-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	25	Mixed lithology pink granite, grey granodiorite, rare black chips. 20-25 ft is dark pink K-feldspar granite with red patchy staining.

AD-103-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	25	Mixed lith in OVB. 15-25 dominated by K-spar rich granite weak mag.

me i

										AD-103-02
Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sampie ID	Depth From (ft)
AD-103-02	21/04/2016	25/04/2016	A. Shiroki	Hornet 1	664453	5757599	Zone 18, WGS 84			0
AD-103-02	21/04/2016	25/04/2016	A. Shiroki	Hornet 1	664453	5757599	Zone 18, WGS 84			25
AD-103-02	21/04/2016	25/04/2016	A. Shiroki	Hornet 1	664453	5757599	Zone 18, WGS 84			135
AD-103-02	21/04/2016	25/04/2016	A. Shiroki	Hornet 1	664453	5757599	Zone 18, WGS 84			140
				100000						
Hole Comn	nents: Azimuth	183, dip -50 ai	ngled hole di	rilled April	18 through Apri	21, 2016. Pink g	granite with strong r	ed staining and b	reccia zone	
at 135 to 14	40 feet.							_		
Logger Nan	ne: Ayaka Shir	oki and Isabelk	e Lepine							

.

ير ه

							UTM Zone and		Kimberlite	
Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	Datum	Tili Sample ID	Sample ID	Depth From (ft)
Logger Sign	ature:	No de			- 8					
	Jober	le ter	~0		ADDDA					
Date:	2				AFFRO					
	25-04-	2016.								

.

AD-103-02									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	25	OVB			10				
25	135	Granite			4	Pink			Massive
135	140	Breccia			15	Pink	Tan		Brecciated
140	485	Granite			3	Pink			Massive
							_		
						-			
			-						

~

Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture

.

AD-103-02			Kim	Kimberlite Minerals in Decreasing Abundance					
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response	
0	25						NA	NA	
25	135	Moderate					Moderate	Weak	
135	140	Strong					NIL	NIL	
140	485	Moderate							

Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberiite Min 4	Magnetism Response	HCI Response

4

AD-103-02		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	25	Dominated by pink granite, minor chlorite schist, trace of black gneiss.
25	135	Dark pink K-feldspar. Chlorite and trace of epidote alteration (altering the mafic minerals), trace patchy red staining. Local smokey quartz. Trace grey green soft round soft chips (up to 2 mm).
135	140	Brecciated bleached granite (?) with tan cement with local red staining. Cement is not reactive to HCI. Subround to angular felsic fragments. Trace of biotite (?)
140	485	Continuation of unit from 25 to 135 feet. Increase red staining from 150 to 180 feet and from 195 to 200 feet, hematite or mercury related. Trace of chalky white alteration (2mm chips). From 445 to 460 feet is a pervasive smokey quartz alteration. Trace of altered light green probable pyroxene.

Depth From (ft)	Depth To (ft)	Bino Log Comments

u.

AD-103-02		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	25	No sample 0-5 ft. Granite boulders mixed with OVB. Regolith + mafics (green).
25	135	Granite, K-spar rich,granite, strong mag + treace blue-green mafics. Minor gneiss with strong foliation at 55-60 ft. No ziplock sample 105-110 ft. Higher mafic content 115-130 ft. 130-135 ft weak clay alt?
135	140	Tripped out, plugged. Strong alteration (fault?) Partial caving last 2 ft of rod. Clays/oxides. BRECCIA. Very large Chipsi
140	485	Granite mod mafics, weak mag trace breccia + clay alteration 140-280 ft. Grey green alteration zone 275-280 ft. 200-250 ft: Pink K-spar rich granite. Weak to moderate clay alteration. Patchy mafics. Trace biotite.250-275 ft: Pink K-spar rich granite. Weak clay alteration. Smoky quartz and mafics. Weak patchy clay. 275-300 ft: Altered granite (clay, chlorite) K-spar rich. 300-315 ft: Pink to ically greenish granite. Wk chl + clay alt, poss DECR alteration. 315-320 ft Weak local HCI reaction on coarse Bt (?) frag. Poss fault zone? Common white clay fragments/bails in return, kind of chalky. Possible rare gneiss chips 330-335 ft. 340-345 ft: Fresh pink granite. 350-485 ft: Pink, possilbe weak Chl altered granite. Slight increase in Chl alteration 380-385 ft. Rare white 'chalky' chips 390-395 ft. Very fine-grained magnetite in fines-cannot get chips to stick to pen magnet. Weak to mod chl +/- clay alteration 420-425 ft. Possible Chl +/- sericite alteration? Feldspars (locally) pale, waxy green 440-445 ft. 445-460 ft: Green (olive-khaki) translucent coloured chips - possibly similar to shoulder alteration? 450-460 ft: Strong Ser(?) alteration possible Serp? Waxy, soft green rock, as well as fresher pink K-spar + Qtz chips. Very weak localized HCI reaction at 455-460 ft. 460-485 ft Less altered - ~75 % pink chips - no fizz noted. K-spar rich trace Bt + clay alt 460-465 ft. NEED TO ASSESS. Trace Bt + clay alt 465-470 ft. Weak chlorite alteration + waxy gneiss 475-485 ft.

Depth From (ft)	Depth To (ft)	Field Log Comments

 $\chi = \Psi$

in the

4

e

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample 1D
AD-104-01	21/04/2106	26/04/2016	L.Boyce	Hornet 1	664453	5757599	Zone 18, WGS 84		
AD-104-01	21/04/2106	26/04/2016	LBoyce	Hornet 1	664453	5757599	Zone 18, WGS 84		
AD-104-01	21/04/2106	26/04/2016	L.Boyce	Hornet 1	- 66445 3	5757599	Zone 18, WGS 84		
AD-104-01	21/04/2106	26/04/2016	L.Boyce	Hornet 1	664453	57575 99	Zone 18, WGS 84		
					664670	5757 526		-	
					(%	July 18-2011	D.		
Hole Comm	ents: Small kimb	erlite intersecte	d.						
Logger Nam	e: Loger h	Sigre							
Logger Signa	iture:				ACE	2VED			
Date:	Apr	1 26,2	016		May	2014			

5

1

AD-104-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	35	OVB	Granite	Gneiss	10	Pink	Grey	Black	Massive
35	115	Granite			4	Pink	Grey		Massive
115	130	Kimberlite	Granite		4	Black	Grey	Pink	Porphyritic
130	370	Granite			4	Pink	Grey		Massive
4									
-									
-									
							-		
								_	
						-	-		
						-			
.

-

AD-104-01	Kimberlite Minerals in Decreasing Abundance									
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberiite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response		
0	35						1			
35	115	Weak					Weak	Weak		
115	130	Weak	Phiogopite	Olivine	Perovskite	Carbonate	Strong	Strong		
130	370	Weak					Weak	Weak		

AD-104-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	35	OVB dominated by pink k-spar rich granite. 25-30 feet dominated by epidote altered gabbro.
35	115	Pink-grey granite, with minor to moderate amounts of mafics. Trace biotite and manganese. Trace intense red accesory mineral (95-100feet). Local clay and chlorite alteration.
115	130	Kimberlite is characterized by serpentanized olivine, perovskite and abundant phiogopite. Pink weakly altered granite country rock accounts for roughly 50% of the interval.
130	370	Pink-grey granite, with minor to moderate amounts of mafics. Trace biotite and manganese. Trace intense red accesory mineral. Local clay and chlorite alteration.

AD-104-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	35	0-5 feet no sample. OVB dominated by pink k-spar rich granite. Bouldery.
35	115	K-spar rich granite, minor mafics, variable HCL and mag.
115	130	Ultramafic (kimberlite) - phenocrysts of olivine + phlogopite. Carbonate HCL reaction, strong mag. + intensely altered granite.
130	370	K-spar rich granite, minor mafics, variable HCL and mag.

Hole ID	Date Drilled	Date Logged	Logged By	Driil #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-111-01	18/04/2016	19/04/2016	A. Shiroki	Hornet 2	666015	5759370	Zone 18, WGS 84	43360	
AD-111-01	18/04/2016	19/04/2016	A. Shiroki	Hornet 2	666015	5759370	Zone 18, WGS 84		
AD-111-01	18/04/2016	19/04/2016	A. Shiroki	Hornet 2	666015	5759370	Zone 18, WGS 84		
					•				
Hole Comme	nts: Hole consis	ts of pink granit	e and green	basalt.	1		ti'		
Logger Name	: Ayaka Shiroki				A Par				
Logger Signa	ture:		Alunk:		AG	25D			
Date:		19 April 2	206		M.	my Jok			

4

dia.

AD-111-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	35	OVB			5	Pink	Grey	Black	
35	70	Granite			2	Pink	Green		Massive
70	100	Basalt			4	Green			Massive
								-	

Page 2 of 5

AD-111-01			Kim	berlite Minerals in				
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	35						NA	NA
35	70	Weak					Weak	Weak
70	100	Weak					Moderate	Moderate
				_				
		J						

n. Ē

4 T

Stornoway Exploration Reverse Circulation Drill Hole Log

AD-111-01									
Depth From (ft)	Depth To (ft)	Bino Log Comments							
0	35	Mixed lithology. Pink granite, salt and pepper granodiorite, dark mafic chips.							
35	70	Pink K-feldspar granite with local patchy red staining. 1 % very fine-grained/aphanitic green chips, up to 30 % at 35-40 ft.							
70	100	Green very fine-grained aphanitic, likely plagioclase and green pyroxenes. Trace sulphides. HCl and magnet response strong 70-85 ft, weak at 85-100 ft.							
11									

Stornoway Exploration Reverse Circulation Drill Hole Log

AD-111-01								
Depth From (ft)	Depth To (ft)	Field Log Comments						
0	35	Sand gravel granite + gnelss. 0-5 ft regolith, veg, sand. Water. Frozen, pulled casing, little return 25-30 ft.						
35	70	Pink granite + very fine grained aphanitic green chips "dyke" material. Rusty red water at 40-45 ft and 60-65 ft.						
70	100	Green water. Black-green aphanitic "dyke" no discernible minerals.						

r									
Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-112-01	10/04/2016	12/04/2016	L.Boyce A.Shiroki	Hornet 1	664837	5761747	Zone 18, WGS 84		
AD-112-01	10/04/2016	12/04/2016	LBoyce A.Shiroki	Hornet 1	664837	5761747	Zone 18, WGS 84		
					5				
Hala Carrier		.1.1 14 1.1							
Hole Comme	nts: Anomoly ex	plained by inte	rsection with	n strongly m	hagnetic altered	mafic volcanics. S	imilar to AD-10-01?		
Logger Name	44 7 0			440	KASILIPUKI				
Logger Signa	ture:				1	and.	APPROL		
Date:					12April Zol	6	May 201		

AD-112-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	5	OVB	Mafic Gneiss	Felsic Gneiss	15	Black	Grey		
5	50	Mafic Volcanics			8	Black			Fine Grained

AD-112-01			Kim					
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimber lite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	5						NA	NA
5	50	Strong					Strong	Strong

AD-112-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	5	Mixed mafic and felsic gneiss.
5	50	Strongly altered mafic volcanics? Strong chlorite, serpentine? and epidote alteration throughout. Trace sulphides. Localized pervasive carbonate. Run 35-40 feet produced one chip of suspected kimberlite. Variable hardness.

a

Depth From (ft) Depth To (ft) Field Log Comments 0 5 50 Poly bag smaples taken (40-45 ft, 45-50 ft). Dust reacts to HCL, chips do not. Drilled soft (like kimberlite). 6 6 6 6 7 6 6 6 7 6 7 6 8 6 8 6 9 6	AD-112-01		
0 5 50 Poly bag smaples taken (40-45 ft, 45-50 ft). Dust reacts to HCL, chips do not. Drilled soft (like kimberlite). 1 1 <	Depth From (ft)	Depth To (ft)	Field Log Comments
50 Poly bag smaples taken (40-45 ft, 45-50 ft). Dust reacts to HCL, chips do not. Drilled soft (like kimberlite). 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 7 6 7 6 8 6 <	0	5	
	5	50	Poly bag smaples taken (40-45 ft, 45-50 ft). Dust reacts to HCL, chips do not. Drilled soft (like kimberlite).
Image: Section of the section of th			
		1	

				-					1
Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-114-01	07/04/2016	08/04/2016	L. Boyce	Hornet 1	671522	5761709	Zone 18, WGS 84		
AD-114-01	07/04/2016	08/04/2016	L. Boyce	Hornet 1	671522	5761709	Zone 18, WGS 84		
		1							
Hole Comme	nts:								
Logger Name	Logan 1.	Sarce							
Logger Signat	ure:				AP	BOVEN			
Date: Ap	1 8,2	016				Tay 2016			

AD-114-01						-	-		
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 2	Testure
0	15	OVB	Granite	Gneiss	,	White	Grow	00101 3	rexture
15	55	Granite				WINUC MARKE	Grey	-	
						wnite	Grey	Pink	
								-	
							_		
			-						
					_				

Depth From (ft) Depth To (ft) Degree of Attenation Kimberlite Min 1 Kimberlite Min 2 Kimberlite Min 3 Kimberlite Min 3 Kimberlite Min 3 Magnetism Response H 0 15 Veak 1 1 NA <t< th=""><th>ICI Response</th></t<>	ICI Response
0 15 Mail NA NA NA 15 55 Weak Mail	
15 55 Weak YES NA	

AD-114-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	15	Mixed granites and gneiss, trace mafic volcanics.
15	55	Biotite-magnetite granite, with trace patchy chlorite alteration. Trace gabbro from 30-35ft.

8

AD-114-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	15	Sub angular chips. Mixed Lithologies (boulders and sand).
15	55	Qtz-fsp-blotite-chlorite granite. Moderately to strongly magnetic.

48

1.1

Ŧ

Hole ID	Date Drilled	Date Logged	Logged By	Driii #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberiite Sample ID
AD-115-01	16/04/2016	19/04/2016	A. Shiroki	Homet 1	666173	5765520	Zone 18, WGS 84		Serripie 10
AD-115-01	16/04/2016	19/04/2016	A. Shiroki	Hornet 1	666173	5765520	Zone 18, WGS 84		
Hole Comme	nts: Vertical hole	testing moder	ate mag and	CPI target	along a river. M	oderately magne	tic hole.		
Logger Name	: Ayaka Shiroki								
Logger Signat	ure:		Articl		A	PPROVE)		
Date:	19,	April Zolb	- uning -			Man 2016	J		

-

AD-115-01									1
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	20	OVB			5	Pink	Grey		Massive
20	50	Granite			4	Pink.	Grey		Massive
						_			

MD-113-01			Kim	berlite Minerals In	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	20						NA	NA
20	50	Moderate					Weak	Moderate

AD-115-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	20	Mixed lithology predominantly of pink K-feldspar granite with weak chlorite alteration of the mafics and subround- round sand.
20	50	Pale pink granite with pervasive snotty appearance from smoky quartz, trace epidote and red staining. Mafics of the granite is chlorite and minor biotite. Follation is visible in larger chips .

.

2

AD-115-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	20	0-5 ft no sample (soil), 5-10 ft regolith dominated by granite.
20	50	Pink granite dominant with minor grey-green mafic gneiss.

1 ^{*}

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Samole ID	Kimberlite Sample ID
AD-116-01	01/05/2016	01/05/2016	L. Boyce, A. Shiroki	Hornet 1	664752	5755501	Zone 18, WGS 84	43526	
	() ()								
Hole comme	nts: Hole ended	in till, casing to	85 ft, hole is	unstable a	t depth. Risk of	losing casing/per	sonelle safety with	pad stability deterio	orating.
Logger Name	· Logon	Boyce							
Logger Signat	ure:	6			APPE	OVED			
Date:	A May	1,20	16		AQ				

76

AD-116-01								1	
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	90	OVB	Granite	Gneiss	10	Black	Grey	Pink	

4

.....

AD-116-01	Depth To (ft)	Degree of Alteration	Kim	berlite Minerals In	Decreasing Abund	ance		1
Depth From (ft)			Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	90	Weak					Strong	NA

AD-116-01								
Depth From (ft)	Depth To (ft)	Bino Log Comments Till mix lithologies, rounded clasts, large range of clastic size, silt to boulders. Magnetism intensity varies throughtout the hole generally weak to moderate with localized intense magnetism.						
0	90							

Depth To (ft)	Field Log Comments
90	Till sand, gravel, clay, mix lithology, rounded clasts.
	Depth To (ft) 90

Hole ID	Date Drilled	Date Logged	Logged By	Driil #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-117-01	29/04/2016	30/04/2016	l Lepine	Hornet 1	663266	5755011	Zone 18, WGS 84		
AD-117-01	29 /04/2 016	30/04/2016	l Lepine	Hornet 1	663266	5755011	Zone 18, WGS 84		
AD-117-01	29/04/2016	30/04/2016	I Lepine	Hornet 1	663266	5755011	Zone 18, WGS 84		
AD-117-01	29/04/2016	30/04/2016	I Lepine	Hornet 1	663266	5755011	Zone 18, WGS 84		
Hole Comme	ents: Anomoly ex	plained by the J	presence of	magnetite	large crystal in th	e upper part of t	he hole.		
Logger Name	e: isabelle Lepine	•	0		0.00000000	PR			
Logger Signa	ture: hal	All Le	ni		APPRO	5D			
Date:	A	mil 30	- 20/1	1	070 500000				

- 6

a

AD-117-01						1			
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	20	OVB							
20	80	Gneiss	Pegmatie		8	Grey	White		
80	90	Pegmatite	Gneiss			Pink	Grey		
90	100	Gneiss	Pegmatie			Grey	Pink		

6

AD-117-01			Kimberlite Minerals in Decreasing Abundance						
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response	
0	20						NIL	NIL	
20	80	Fresh					Strong	Weak	
80	90	Fresh					Weak	Weak	
90	100	Fresh					Weak	NA	
							1		
	11								

AD-117-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	20	Granite and gneiss lithologies. They are fresh to moderately altered.
20	80	Grey fine grained gneiss composed of quartz, bioteite and feldspar. Minor chlorite represented by a light green colour of some of the chips. The chips size are smaller (around 2mm betweem 20-25 feet and betweem 70 and 80 feet). Locally, there is large magnetite crystal observed, especially between 30 and 40 feet. Otherwise the gneiss in not really magnetic. Minor reaction to HCl is observed throughou the unit.
80	90	Mainly large k-feldspar and plagioblase mixed with gneiss chips. Gneiss as describe above. The gneiss is locally magnetitc. Some of the pegmatite are locally slightly reactive to HCl (carbonate). From 85 to 90 feet there is more gneiss in the tray (around 50%), the contact with the surrounding gneiss must be close.
90	100	Same gnelss as describe above. The upper part of the unit is mixed with pegmatite chips (up to 10-15%). The gneiss is composed of quarts, biotite, feldspar and magnetite. The foliation is defined by the biotite.

AD-117-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	20	Gravel, sand and clay mixed lithology dominated by granite and gneiss and biological material. Clast are rounded. From 5-20 feet it is gneiss dominated (bouldery).
20	80	Hit the bedrock between 15 and 20 feet. Weird chips, olivine in silized groundmass?? Grey-green mafic gneiss with chlorite alteration and minor granite (granite injection?). Biotite is defining the foliation in the gneiss. Strong magnetic response. Between 30 and 40 feet there is some pegmatite injection that are carrying massive magnetite (>2cm). There is trace of sulphides between 45 and 50 feet.
80	90	k-spar, quartz, biotite, plagioclase and magnetite pegmatite injection. Coarse crystal > 1cm
90	100	Gneiss withminor granite (pegmatite ?)

2

a.

							Para the second second		
Hole (D	Date Drilled	Date Logged	Logged By	Drili #	UTM Easting	UTM Northing	UTM Zone and	Till Sample ID	Kimberlite
AD-120-01	30/04/2016	01/05/2016	A. Shirokl, L. Boyce	Hornet 2	664693	5755122	Zone 18, WGS 84	43525	Sample ID
AD-120-01	30/04/2016	01/05/2016	A. Shiroki, L. Boyce	Hornet 2	664693	5755122	Zone 18, WGS 84		
	·								
		_							
Hole Comme	te: High magaz								
	no. mga magne	tic target anom	aly explained	i by strongi	y magnetic gneis	55.			
Logger Name	-ty	ASIL			A. 1	5000 PC			
Logger Signat	ure:	- Stiller	Rud	·	A)	,	
Date:	1	MayZal	6	<u> </u>		May 2016			
		1-01	<u> </u>						

10

AD-120-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	35	OVB	Gneiss	Granite	12	Black	White	Pink	
35	70	Felsic Gneiss			8	Grey			Foliated

AD-120-01		ance						
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	35	Weak					Weak	NA
35	70	Weak					Strong	Weak

-
. .

AD-120-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	35	Mix lithologies, rounded clasts, granite, gneiss, gravel.
35	70	Fine grained feisic gneiss foliation defined by biotite, trace sulphides, patchy epidote and weak chlorite alteration. Localized intense alteration from 55-60 ft with red and yellow unidentified minerals. Patchy pegmatic intrusions.
	1	

AD-120-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	35	Gravel sand silt, mix lith granite + gneiss + felsics. Till sample ID assigned in camp. Bedrock encountered at 31 feet
35	70	Intermediat + felsic gneiss bt chkl f grained + tr epidote + py/sulphides + red hematite (?) + 1 % Kspar granite.
		· · · · · · · · · · · · · · · · · · ·

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-123A-01	28/04/2016	29/04/2016	l Lepine	Hornet 1	663747	5756888	Zone 18, WGS 84	43519	annihie in
AD-123A-01	28/04/2016	29/04/2016	ł Lepine	Hornet 1	663747	5756888	Zone 18, WGS 84		43520
Hole Commen rock.	ts: A sample wa	is taken even if	it was not k	imberlite. V	Vould do a thin s	ection on some o	of the chips to get a	better identificatio	n of the
Logger Name:	Isabelle Lepine								
Logger Signatu	ire: Joabd	le Les	i_e		APP	BOVEN			
Date:	April	29- 3	2016.		NE	y 2016			

AD-123A-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	15	OVB			7				
15	55	Mafic			10	Green	Brown		Massive
								1	

*

AD-123A-01			Kim	berlite Minerals in	Decreasing Abund	ance	1	
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	15						NIL	NIL
15	55	Strong					Weak	Strong

AD-123A-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	15	Mix of granite and gneiss in the till.
15	55	Dark green to brown fine grained rock composed of aphanitic black mineral and lath of plagioclase (?) altered to a red colour. The rock seems to have chlorite alteration. Carbonate are present in the rock, sometime disseminated and other as laths. Mafic volcanic or altered gabbro? Thin section on some of the bigger chips should be done on this rock as it is strange.

AD-123A-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	15	Till composed of sand and gravel with mixed lithologies of granite and gneiss. Rounded clasts. Taken a composite sample from 0-15 feet.
15	55	Strongly altered mafic volcanic. Crystalline groundmass with rounded brown phenocryst (olivine?) Alteration makes identification difficult in the field. 1-2 mm pink lath of feldspar ? And trace of granitic. Noticeably higher density than country rock. Hematite?. Drilling was slow as the rock is really hard.

Hole iD	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-123B-01	2016-04-26	2016-04-29	i Lepine	Hornet 1	663811	5756787	Zone 18, WGS 84	43521	
AD-123B-01	2016-04-26	2016-04-29	I Lepine	Hornet 1	663811	5756787	Zone 18, WGS 84		43522
Hole Comme	nts: This hole w	as done by mist	ake. We tho	ught that w	ve wereo on AD-	123A, but realise	d that the drill was s	setup on AD-123B.	One sample
Logger Name	: Isabelle Lepine		ioniary expa	inica by the		Succes			
Logger Signat	ture:	alle Le	2/		APPRO	DVER			
Date:		April 29	, 2016.						

AD-123B-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	10	OVB			10				NIL
10	25	Gabbro			8	Green	Brown		Massive
									-
							II.		
							_		-
									1

AD-123B-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	10						NIL	NIL
10	25	Strong					Strong	Strong
							1	

AD-123B-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
o	10	Mix of gneiss and granite fragments and pebbles. Pebbles are round to suround. Some chips are from the basement and looks like the unit that will be describe below. Field log said the basement was at 7 feet.
10	25	Green, fine grained gabbro that is strongly altered to a green colour (chlorite?). Rock react strongly to CHI. Some of the chips start to looks like the chips that were observed in AD-123A-01 with their brown colour. Rock is trongly magnetic. Some red alteration is observed mainly on the brown chips. Presence of black mineral (metallic), possible magnetite.

Depth To (ft)	Field Log Comments
10	Heterolithic pebbbles and fragments, subrounded to subangular. Till sample collected in from 0 to 5 feet.
25	Gabbro ? Mafic volcanics. Strong alteration. The rock is very hard. Epidote alteration of mafic volcanic obseverd from 10 to 15 feet. Strongly mangnetic and moderate reaction to HCI. Flacky chips. Presence of red bright green minerals form 20 to 25 feet.
	Pepth To (ft) 10 25

۹.,

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Tili Sample ID	Kimberlite Sample ID
AD-129-01	26/04/2016	29/04/2016	I Lepine	Hornet 1	664100	5757716	Zone 18, WGS 84		
AD-129-01	26/04/2016	29/04/2016	J Lepine	Hornet 1	664100	5757716	Zone 18, WGS 84		
AD-129-01	26/04/2016	29/04/2016	l Lepine	Hornet 1	664100	5757716	Zone 18, WGS 84		
1									
Hole Comme	nts:								
Logger Name	: Isabelle Lepine	•							
Logger Signat	ture: b	whele o	lipic		A PPB(OVEirw			
Date:	Ar	ril 29	-201	4.	AC				

 \mathbb{R}^{2}

AD-129-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	40	OVB			15				
40	75	Granite			5				Massive
75	85	Granite			2				Massive

Page 2 of 5

÷.

AD-129-01			Kim	berlite Minerals in	Decreasing Abund	ance		
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	40	NIL					NIL	NIL
40	75	Fresh					Weak	Weak
75	85	Fresh					Weak	Weak
		· · · · · · · · · · · · · · · · · · ·						

-

AD-129-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	40	Mix of granite and gnelss chips and pebbles. Pebbles are round to angualar. They are mainly composed of granite and gnelss (granite is more aboundant).
40	75	Salmon ping, equigranular and modium to fine grained granite that comprises quartz, feldpar (K-spar and plagioclase) and biotite. Locally the rock is weakly mangetic and weakly react to HCI.
75	85	Same as above, but the chips are much smaller.
	_	

AD-129-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	40	Heterolithic pebbles and fragments. Subround to sharply angular. Lost feet of run in rock.
40	75	Pink equigranular, coarse grained granite and dark grey granite. Common chips sticks to magnet, but not all (locally strong). Epidote alteration on fine planes. Same amount of BOP sampled in runs after the casing due to small return of coarse grained chips.
75	85	same as above.

۔ ج -1

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Tili Sample ID	Kimberlite Sample ID
AD-130-01	25/04/2016	26/04/2016	L. Boyce	Hornet 1	664763	5758295	Zone 18, WGS 84		oumpre to
AD-130-01	25/04/2016	26/04/2016	L. Boyce	Hornet 1	664763	5758295	Zone 18, WGS 84		
Hole Comme	nts: Hole encour	ntered intensely	/ altered gra	nite.					
Logger Name	Logon B	oyce			() (F)				
Logger Signat	ure:	an			AC	LOVED)		
Date: A	pr.1 26,	2016			N	lay 2016			

- F

AD-130-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	15	OVB	Granite		10	Pink	Green	Yellow	Massive
15	80	Granite			8	Green	Yellow		Massive

12

۰,

.

AD-130-01			Kim	ance				
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	15	Weak					Mod	NA
15	80	Intense					Weak	NA
					· ····································			

AD-130-01									
Depth From (ft)	Depth To (ft)	Bino Log Comments							
0	15	K-spar rich granite in overburden.							
15	80	Intensely altered granite. Intense bleaching, clay minerals have almost entirely replaced feldspars, trace mafic components remaining. Quartz is preserved.							

pa

AD-130-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	15	Bouldery overburden dominated by pink granite.
15	80	Intensely altered granite, (yellow green). Intense bleaching and clay alteration.

14

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-130-01	25/04/2016	26/04/2016	L. Boyce	Hornet 1	664763	5758295	Zone 18, WGS 84		
AD-130-01	25/04/2016	26/04/2016	L. Boyce	Hornet 1	664763	5758295	Zone 18, WGS 84		
Hole Comme	nts: Hole encou	ntered intensely	/ altered gra	nite.					
Logger Name	"Lager B	oyce			AF	PROVER	No.		
Logger Signa	ture:	-			A)		
Date:	faril 26,	2016			/	103 2016			

AD-130-01						1			
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	15	OVB	Granite		10	Pink	Green	Yellow	Massive
15	80	Granite			. 8	Green	Yellow		Massive
							_		

Page 2 of 5

4 J 2

 $\pi_{ij} \stackrel{\mathrm{de}}{=}$

AD-130-01			Kim	berlite Minerals in				
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	15	Weak					Mod	NA
15	80	Intense					Weak	NA
			11					

æ

۴.,

AD-130-01									
Depth From (ft)	Depth To (ft)	Bino Log Comments							
0	15	K-spar rich granite in overburden.							
15	80	Intensely altered granite. Intense bleaching, clay minerals have almost entirely replaced feldspars, trace matic components remaining. Quartz is preserved.							

.

D-130-01								
Depth From (ft)	Depth To (ft)	Field Log Comments						
0	15	Bouldery overburden dominated by pink granite.						
15	80	Intensely altered granite, (yellow green). Intense bleaching and clay alteration.						

Hole ID	Date Drilled	Date Logged	Logged By	Drill#	LITM Facting	ITM Northing	UTM Zone and	Till Comple ID	Kimberlite
AD-133-01	24/04/2016	26/04/2016	L Boyce	Horpet 1	66/602	5757447	Zono 19 M/CC 94		Sample ID
		-0/04/2020	Liboyou	nomeria	004033	5/5/44/	20110 10, 4403 04	43514	
AD-133-01	24/04/2016	26/04/2016	L.Boyce	Hornet 1	664693	5757447	Zone 18, WGS 84		
Hole Comme successful.	nts: Hole was tal	ken deeper to tr	ry and inters	ect kimberi	ite dyke found in	hole AD-104-01	(assuming a flat lyin	g dyke). This was n	ot
Logger Name	" Lagen B	urce							
Logger Signa	ture:				APPBOVE	D			
Date: A	nil 26,	2016		li	K				

AD-133-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	35	Till	Granite	Gneiss	10	Pink	Grey		Massive
35	14 240	Granite	Gneiss		3	Pink	Grey		Massive
				_					

AD-133-01			Kim	berlite Minerals in				
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	35						Weak	Weak
35	14-5 -140	Weak					Weak	Weak

D-133-01								
Depth From (ft)	Depth To (ft)	Bino Log Comments						
0	35	Overburden till, unsorted granite, gneiss, and other litholgies + sand and gravel.						
35	195 140	K-spar rich granite. With minor mafic components (biotite and manganese). Weakly magnetic and weak HCL reaction. Increase in mafic gneiss from 130-140ft.						

AD-133-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	3.	5 Till sample from 30-35feet.
35	145 14	Pink k-spar rich granite.

-

de la ferrar de la f	1.			***					
Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Tili Sampie ID	Kimberlite Sample ID
AD-135-01	13/04/2016	14/04/2016	A. Shiroki	Hornet 2	604579	5758075	Zone 18, WGS 84		
AD-135-01	13/04/2016	14/04/2016	A. Shiroki	Hornet 2	604579	5758075	Zone 18, WGS 84		
Hole Comme	ents: Drilled topo	pgraphical depr	ession expective to H	ting recessi	ve bedrock but e	encountered com	petent pink granite.	Green fine-grain	ed cholorite
Logger Name	8:			Ayaka S	SHIRDEI				
Logger Signa	iture:				Au	al:	APPROVE	D	
Date:				14 April	12016		May 2016	9	

4

h,

AD-135-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	20	OVB	Granite		10	Pink	Grey		Massive
20	65	Granite			5	Pink	Grey		Massive
							1		

AD-135-01			Kim	berlite Minerals in	ance			
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	20						NA	NA
20	65	Weak					Weak	Weak

AD-135-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	20	Predominantly pink K-feldspar granite with rare grey chips and green chioritic chips.
20	65	Massive pink K-feldsapr granite with weak chlorite alteration of the mafics, and grey smoky quartz alteration. 60- 65ft: 4mm dark green chips (less than 1 % of run) made up of small equigranular chlorite that does not react to HCI and is not magnetic.
.

AD-135-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	20	Wet brown clay and approximately 5 % granite fragments and rare mafic fagments. Very little return and not enough for ziplock samples 0-10 feet.
20	65	Bedrock at approximately 17 feet. BOP sample 30-35 ft, some up-hole contaminant 35-40 ft, sampled some from BOP 40-45 ft (not enough return). Pink granite.

.

83

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
AD-136-01	15/04/2016	19/04/2016	A. Shiroki	Hornet 2	664468	5758208	Zone 18, WGS 84		compte ter
AD-136-01	15/04/2016	19/04/2016	A. Shiroki	Hornet 2	664468	5758208 5758028	Zone 18, WGS 84		
						(lh gul	19-2010		
						v. (ſ	
Hole Comme	nts: South Star g	eographical fea	iture consist	ing of pink	to smoky grey g	anite.			
Logger Name	: Ayaka Shiroki								
Logger Signat	ure:		an.		APPR				
Date:	:01	=17-16	ma						

4

AD-136-01						1			
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	35	OVB			10	Pink	Grey	Black	
35	130	Granite			7	Pink	Grey		Massive

AD-136-01			Kim	berlite Minerals in	ance			
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	35						NA	NA
35	130	Weak					Weak	Weak

....

AD-136-01									
Depth From (ft)	Depth To (ft)	Bino Log Comments							
0	35	Mixed lithology pink K-feldspar granite, salt and pepper granodiorite, gabbro, felsic, and mafic chips.							
35	130	Pink K-feldspar granite with varying amounts of smoky quartz giving the granite a grey appearance. 110-120 ft has 30 % grey-green chips with schistose texture, quartz, chlorite, and opaque cream speckles.							

 $_{i} > 1$

AD-136-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	35	Heterolithic: granite, gabbro, gneiss. Gravel + sand > clay/silt.
35	130	Pink and grey granite with black mafics.

.

¢

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
DYK-01-01	06/04/2016	08/04/2016	L. Boyce	Hornet 2	664348	5757747	Zone 18, WGS 84		
DYK-01-01	06/04/2016	08/04/2016	L. Boyce	Hornet 😭	664348	5757747	Zone 18, WGS 84	43356	
DYK-01-01	06/04/2016	08/04/2016	L. Boyce	Hornet 1	664348	5757747	Zone 18, WGS 84		
				C	+106 200 >				
Hole Comme	ents: Goal to drill	at least 150 fee	t, 1st angled	i hole, 1st c	asing into snow,	birch trees in an	ea.		
Logger Name	" Logan	Boyce.			· · · · · · · · · · · · · · · · · · ·				
Logger Signa	ture: Apart	8,2016	Ste	5	A	PPROVE	2		
Date:	Anil	8 201	16		1		J		

.

6

DYK-01-01									
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture
0	25	Till	Granite	Gneiss		5 Pink	Grev	Green	
25	30	Till	Granite	Gneiss	4	Pink	Grey	Green	
30	40) Till	Granite	Gneiss	(5 Pink	Grey	Green	
						-			
				_					

.

DYK-01-01			Kim	berlite Minerals in	ance			
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberiite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response
0	25						NA	NA
25	30						NA	NA
30	40						NA	NA

DYK-01-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	25	Dominated by granite in till. Till-sand-silt-clay. Mixed lithologies, clast sizes and shapes.
25	30	Till sample taken.
30	40	Dominated by granite in till. Till-sand-silt-clay. Mixed lithologies, clast sizes and shapes.

DYK-01-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	25	Granite and gneiss boulders in till. Till-sand-silt-clay.
25	30	Till sample taken. Granite and gneiss boulders in till. Till-sand-silt-clay.
30	40	Granite and gneiss boulders in till. Till-sand-silt-clay.

er.

Hole ID	Date Drilled	Date Logged	Logged By	Drill #	UTM Easting	UTM Northing	UTM Zone and Datum	Till Sample ID	Kimberlite Sample ID
DYK-04-01	11/04/2016	12/04/2016	L.Boyce A.Shiroki	Homet 2	664465	5758066	Zone 18, WGS 84	43359 43357	
DYK-04-01	11/04/2016	12/04/2016	L.Boyce A.Shiroki	Hornet 2	664465	5758066	Zone 18, WGS 84		
DYK-04-01	11/04/2016	12/04/2016	L.Boyce A.Shiroki	Hornet 2	664465	5758066	Zone 18, WGS 84		
DYK-04-01	11/04/2016	12/04/2016	L.Boyce A.Shiroki	Hornet 2	664465	5758066	Zone 18, WGS 84		
									1
Hole Comme	ents: Anomoly ex	plained by glac	ial surface fe	eature, hole	was targeting to	opographical feat	ure.		
Logger Name	8:								
				AVADA	SHIPOKI			11PD	
Logger Signa	iture:				L'alise		ACZ	5D	
Date:				12AD	1 2016		May 2	210	

.

DYK-04-01										
Depth From (ft)	Depth To (ft)	Lith 1	Lith 2	Lith 3	Chip Size Estimate Average (mm)	Color 1	Color 2	Color 3	Texture	
0	55	OVB	Granite	Gneiss	15	Pink	Grey			
55	70	Granite			3	Grey	Green		Massive	
70	195	Granite			3	Pink			Massive	
195	230	Granite			3	Grey	Green		Massive	
						-				

DYK-04-01			Kim	berlite Minerals in	Decreasing Abund	ance			
Depth From (ft)	Depth To (ft)	Degree of Alteration	Kimberlite Min 1	Kimberlite Min 2	Kimberlite Min 3	Kimberlite Min 4	Magnetism Response	HCI Response	
0	55						NA	NA	
55	70	Moderate					NO	Weak	
70	195	Weak					Weak	Weak	
195	230	Moderate					NO	NO	

*

DYK-04-01		
Depth From (ft)	Depth To (ft)	Bino Log Comments
0	55	Oberburden till dominated by granitic clasts sand and silt.
55	70	Granite, patchy grey-green (chlorite and epidote?) alteration and bleaching, up to 5% fresh pink granite. Weakly reactive to HCL.
70	195	K-spar rich pink granite, rare strong magnetism associated with chloritic chips. Weak HCL reaction throughout. Weak chlorite alteration.
195	230	Granite, patchy grey-green (chlorite and epidote?) alteration and bleaching. Weakly reactive to HCL. Pink granite up to 3% from 195-200 feet.

*

DYK-04-01		
Depth From (ft)	Depth To (ft)	Field Log Comments
0	55	Two till samples taken: (#43357) 30-45 feet composite sample due to small sample return from casing, (#43359) 25- 30 feet large sample.
55	70	
70	195	No observable HCL reaction in the field.
195	230	

Appendix 7 - Field Logs, Review Comments and Thin Section Descriptions

Review Comments

HoleID	From	To	From	To (m)	Review Comments
	(11)	(11)	(11)	(11)	
AD-00-01	25	105	7.62	32	25-30-Salmon pink monzo-granite w/trace of gneissic chips; 35-40- as above, but really small chips weakly magnetic;45-50-as above, all feldspar are salmon pink (almost). Coarse grained; 55-60- chips 1-2mm same as above; 66-70 as above; 75-80 as above; 85-90 as above, but with a little more mafic mins. looks like chlorite is more present. ;95-100 as above; 105-115 fizzed during cleaning monzo-granite as above 40-50% Kimberlite: brown with ~50% olv (serpentinised) macros + pheno. Olv. also have carbonate replacement. groundmass composed of serp. perovskite phlogopite is also present. Red alteration present in the groundmass non-magnetic. *looks a bit different than what I selected btw 115-130', 140-150'. Thin section
AD-00-01	105	115	32	35.05	110-115- monzo granite as above, but it looks a bit more altered. More red small minerals with both the matic and felsic mins.(seem to affect more the matic mins). Rock seems to have a bit more matic min., is it kimberlite fine grained @ contact. Kimb-light brown with olv (serp) macross +phenos. Olv have white/beige rim groundmass have serp, carbonate and perovskite. orange alt. min. not in all chip. GR(85%) >kb(15%)
AD-00-01	115	125	35.05	38.1	115-120- Kimberlite (>95%) + granite (<5%) granite not xenolith. Some blue chips (strongly altered)->CRx in kimberlite black to dark brown kb. ~40-50% olv macros + pheno macros hard to see. Olv are serp. and partly replace by carbonate. They are grey to green some chips have both CRx and KB and in those cases the kb is more brownish in colour. lots of the olv have think beige rim groundmass: serp, perovskite, carbonate and phlogopite, possible spinel. 120-125- same as above. some chips are more white than the other (more carbonate). cannot easily see KIM (same as above run)
AD-00-01	125	130	38.1	39.62	125-130- KB (>95%); strong alt GR (<5%) GR altered to dark orange-red colour. Kimb: same as above
AD-00-01	130	135	39.62	41.15	130-135- mixed run. Kb 10%; GR freshest (80%) GR altered (contact?) (10%) altered granite is serp. To blue colour. Kimb: brown, with ~40-50% serp. Olv macross + phenos. Groundmass composed of serp + carb+phlog+spinel. Matrix colour lighter than at center of unit (dyke).
AD-00-01	135	140	41.15	42.67	Mixed run kimb(~1%); GR fresh (85-90%) Gr strongly altered (~5%) KB as above
AD-00-01	140	145	42.67	44.2	140-145- <1% GR chip. Kimb: black with ~50% olv pheno and macross, range from fresh to serp. with locally carb. Ilmenite observed. Groundmass: carb, serp, phlog, perov. Small olv (serp) have rim (white, brown) perov. Not as visible. Looks like there is more large olv macros carbonate pools. A few brown kb chips present like observed when out of main dyke. Thin Section
AD-00-01	145	150	44.2	45.72	145-150- mixed run. Kimb (95%) GR (5%) -> some are strongly alt. but generally mod. Kb: as above. Some chips have blue clay some CR chips are altered to a blue clay (contact?). Perovskite seems to be easier to spot here.
AD-00-01	150	155	45.72	47.24	150-155 Granite (salmon pink) >95% kb (1%) as above but more brown.
AD-01A-01	7.5	20	2.29	6.1	10-15: altered granite (beige in colour) makes me think about another hole(AD-130-01). 15-20- Same as above . Looks as if it was silicified.
AD-01A-01	20	25	6.1	7.62	20-22.5-Granite(85%)>> kb(15%) granite seems less altered. Kb: light grey with olv macross + phenos (serp) Kim: ilmenite. Groundmass: serp, carb, perovskite. phlogopite macross observed. Red alteration in olv. macross.; 22.5-25- as above . Thin sections.
AD-01A-01	25	40	7.62	12.19	25-30- Salmon pink granite. 30-35- as above , maybe coarser. 35-40 as above
AD-01A-01	40	45	12.19	13.72	40-45- kb (10%), granite (90%) -> as above. Kimb: really fine grained, light grey olv. are serp. macros hard to see but present. Weak reaction to HCI. Groundmass: serp, carbonate, perov. Seems to have less perovskite than above. Thin sections
AD-01A-01	45	60	13.72	18.29	45-50- med. to coarse grained granite (salmon pink) lots of k-spar -> monzo-granite? Fresh to mod. altered. 50-55- as above 55-60- as above 2 chips with black fibrous min.

HoleID	From (ft)	To (ft)	From (m)	To (m)	Review Comments
AD-01A-01	60	65	18.29	19.81	60-65-kb (15-20%), GR (80-85 % as above) Kimb: looks like flow texture are present dark grey to grey kimberlite with ~40-50, serp olv macross + phenos. Groundmass: serp, perov, carbonate (not as mush as previous dyke in hole AD-02-02 thin sections
AD-01A-01	65	80	19.81	24.38	65-70- Granite. 70-75- as above. 75-80- as above
AD-01A-01	80	85	24.38	25.91	80-85- kb (50%)= GR (50%) -> as above. Kimb: light grey, with serp . Olv (macros + pheno) hard to evaluate %. They are serp. to totally replace by carb. Groundmass : serp , carb, perov (way less than other kb.) saw some ilmenite
AD-01A-01	85	90	25.91	27.43	85-90- mainly kb in <5% granite. Granite are fresh to strongly alt. (fresh -> host, strongly alt in kb??) Kimb: grey (dark to med grey) in ~50%. Serp: olv (macross + pheno). Groundmass: serp, phlog, carb, perov. Kim: ilmenite (more abundant than in previous HK. phlogopite macross are common. kb is-similar to run above. 80-90 Thin section
AD-01A-01	90	95	27.43	28.96	90-95- kb (<5%) < GR (>95%) kimb as above
AD-01A-01	95	115	28.96	35.05	95-100- GR as above + kimberlite chips observed. 100-105-as above; 105-110: as above. Finer grained, looks more washed out. 110-115- are possible kb chips (reacts to HCI, fine-grained). Otherwise as above.
AD-01B-01	40	60	12.19	18.29	40-45- fine grained monzo-granite mod to fresh. 50-55- as above. 55-60- as above
AD-01B-01	60	70	18.29	21.34	60-65- as above might be a bit more altered than previous run (greenish alteration of feldspar) A few kimberlite chips (<1%). Kimb light grey, olv are serpentinised(7 chips) perovskite observed; 65-70- run is more granitic (weak foliation) fresh kimberlite present <1% kimberlite: as above * hard to find chips in the bag. thin section
AD-01B-01	70	95	21.34	28.96	70-75- same as above. Not too much monzo-granite chips (trace to 1%); 85-90 monzo granite(mod to fresh)= granite (fresh). No kimberlite chips epidote alteration observed.
AD-01B-01	95	115	28.96	35.05	95-100- back to monzo-granite; 105-110 as above
AD-02-02	10	60	3.05	18.29	10-15- salmon pink granite, med to coarse grained (almost pegmatite);20-25- as above looks like a few chips might be from OVB; 30-35- as above; 40-45: as above; 50-55- as above red mineral (alt) is more present in feldspar;
AD-02-02	60	80	18.29	24.38	60-65- Peg (60%)> granite(40%) GR is smaller grained with more biotite (almost light foliation) GN: light +grey, finer grained, foliation defined by biotite; 70-75-as above Peg(70%) > GR (30%)
AD-02-02	80	120	24.38	36.58	80-85-no more salmon pink colour GR-GN (weakly foliated); 90-95-As above agglomerate, round of pink (light) or garnet(?); 100-105- as above weak reaction to HCI qtz veins. White chips(granite) are observed;105-110- as above, a bit coarser foliation seems stronger and no more pink garnets (or almost no more-more like trace). trace of chlorite; 115-120-As above
AD-02-02	120	125	36.58	38.1	120-125- gneiss as above. GN=Kb Kimb: dark grey-grey to brown olv macross + phenos are serpentinised. Ilmenite(?) present. Groundmass: composed of serp, carbonate, perovskite and in the lighter colour chip (brownish) the olv seem to have a beige rim. Not as obvious for the darker grey chips. Thin sections.
AD-02-02	125	145	38.1	44.2	125-130- mixed interval GN (40-60%)- kb (40-60%) as above. brown chips have red alt. (the same sizes as perovskite). Brown chips= grey chips in abundance; 130-135- as above kimb chips down to 10-15%; 135-140- as above. Kimb chips down to 5% are chip with contact. Gneiss with contact is altered, feldspar are green in colour; 140-145-As above kb % up 30% more chips have contacts brown chips seem to be dominant.
AD-02-02	145	150	44.2	45.72	145-150- kb (80%) > GN (20%) calcite vein observed. phlogopite macros present. Olv macross + phenos serp. With also mild carb. Replacement. We see both fresh and extremely altered gneiss/granite. When kb and granite/gneiss are in contact, the granite gneiss is extremely altered. groundmass matrix dominated by the colour brown. Thin section
AD-02-02	150	160	45.72	48.77	150-155- kb (50%) GN (50%) kb as above; 155-160- as above (kb 30%/ GN 70%) are chip with contact GN/kb and the gneiss is fairly fresh.

HoleID	From	То	From	То	Review Comments
	(ft)	(ft)	(m)	(m)	
	160	170	40.77	E1 00	160 165 $CN(050)$ > kb (250) kb as above CN frach: 165 170 no mare kimberlite. Choice garnet highite grains frach
AD-02-02	100	170	40.77	51.62	100-105- GN (95%) > KD (5%) KD as above GN Hesh, 105-170- NO HIOLE KINDELIKE . GHEISS- galitet- Diotite gheiss hesh.
AD-02-02	170	175	51.82	53.34	170-175-~<5% kb, rest gneiss. Kimb: dark brown is ~40% olv macros + phenos (serpentinised to green colour) Groundmass: serp,
					carbonate, perovskite phlogopite macros observed; thin section
AD-02-02	175	185	53.34	56.39	175-180- as above <3% kb chips. Kb groundmass is more light brown now. See red/orange alteration in matrix on some of the chips; 180- 185- As above 3-5% kb. Kb is brown to grey.
AD-02-02	185	197.5	56.39	60.2	185-190- <1% kb. Gneiss, fresh garnet- biotite, gneiss some chlorite observed; 190-195-GN strongly altered to orange/brown colour.
					Mixed with fresh gneiss. No kimberlite chips; 195-197.5-same as above. This kimberlite is characterized by the abundance of perovskite.
					Locally I saw calcite segregation texture.
AD-03-01	15	45	4.57	13.72	might still have a bit of OVB. Green fine grained mafic gneiss not kimberlite; 20-25- still coarse chips, may be not OVB above. Start to look more like altered gabbro granular texture; 25-30-as above green alteration, chlorite. 30-35- calcite chips ~5% (veins?) pyrite cube present same as above. 35-40-finer grained ~10% salmon pink chips (k-spar) looks more gneissic than above. 40-45-as above. Foliated gabbro. Not a kimberlite
AD-06-02	5	90	1.52	27.43	5-10ft- light salmon pink granite fresh. 15-20ft-GN-GR granite as above fine grained, light grey-green gneiss; 20-25' granite epidote alt; 25- 30ft-darker salmon pink GR epidote alteration * some interesting vogs/brecciation??? on some chips. Might be due to epidote alt. but worth to check it.30-35'- granite epidote alt.; 35-40ft- same as above some smokey quartz. 45-50ft-granite as above, more smokey quartz. chips are more brown in colour. 55-60ft- strange looking perov., granite orange alt. 60-65ft- strange looking perovskite- coarser grained more mafic minerals. See perovskite grain in granite. 65-70ft- back to as 55-60ft mainly pink gr. chips some lighter gneissic chips;75-80- pink granite fresh on top of hole; 85-90' - as above. Thin sec tion
AD-06-02	90	95	27.43	28.96	90-95'-GN>GR fresh
AD-06-02	95	105	28.96	32	95-100'- fine grained, dark grey gneiss with garnet; 100-105'- as above No kimberlite
AD-07-01	0	100	0	30.48	10-15ft- feldspar + quartz med-coarse grained granite fresh some mafic min. few biotite/chlorite observed; 20-25'- gneiss fine grained, dark grey qtz., feldspar, biotite. Some granite chips; 25-30- gneiss as above- hematite often magnetite- sharply magnetic; 35-40'- gneiss as above crustal grt observed. some yellow alt (flds), red alt. after magnetite locally chlorite(green colour): 45-50'- as above, may be a little coarser;55-60 gneiss as above red alt. still present. Can see small magnetite grains;65-70'- Gneiss + peg some pyrite magnetite still present some chlorite also observed; 70-75'- as above magnetite crystal/grains still visible. Sample for Iron 80-85- as above with more peg. Seems to have a bit more hematite (after magnetite) alteration; 90-95'- as above;
AD-07-01	100	125	30.48	38.1	100-105- out of zone with magnetite. GN>GR; 110-115'- GR (peg) > GN fresh. No kimberlite.
AD-10-01	5	130	1.52	39.62	5-10'- mafic rock don't see olv.;15-20'- as above some magnetite (red hematite alt.); 25-30 as above; 35-40'- as above strongly magnetic; 45-50'- carbonate observed as above; 55-60'- as above; 65-70' as above;75-80'-as above:85-90'-as above;95-100'-as above; 105-110'- as above, finer grained chips;115-120' - more mafic, small chips; 125-130'-as 105-110'; metamorphosed mafic rock feldspar/mafic mineral, magnetite 10-15%, red hematite alteration after magnetite carbonate present. No kimberlite.
AD-102-01	15	45	4.57	13.72	15-20'- monzonite-granite some vein rich in chlorite/epidote.; 25-30'- as above with less epidote/Chl. Rich vein.; 35-40'- as above.;
AD-102-01	50	65	15.24	19.81	50-55'- foliated gabbro/mafic gneiss. Similar to AD-97-01, but can clearly see foliation. Almost no quartz. Weak reaction to HCI (calcite), mafics: hornblende/amph. ; 60-65'- as above. No Kimberlite. Too strong foliation ->some mafic gneiss- gabbro protolith?

HoleID	From	То	From	То	Review Comments
	(ft)	(ft)	(m)	(m)	
AD-103-02	25	135	7.62	41.15	25-30'-monzo-granite;35-40'-monzo granite really fine grained chips;45-50'- monzo-granite really fine grained chips.;55-60'-monzogranite some more gneissic chips present, really fine grained chips.;65-70'-as above;70-75'- coarse chips monzogranite- nos suspicious chip as 75-80.;75-80'- one chip with blue-like material suspicious. kim sample. ;80-85'- as 70-75- no suspicious chip as 75-80.; 85-90'- monzo granite; 95-100'- monzo-granite;110-115'-monzo granite;115-120'- more dark-grey quartz, still monzo granite.; 125-130'- as above , chips really small.;
AD-103-02	135	140	41.15	42.67	135-140'- some large chips. Some breccia zone, matrix of bx is beige . No reaction to HCI. Is it related to faulting or kb? (sample).;
AD-103-02	140	485	42.67	147.83	145-150'- Sample; Little clay chips grey complicated run. Red chip , look like matrix or area where before lot's of magnetite and new hematite.; 155-160'- complex red chips as above + beige chip like between 135-140. Clay balls still present. Thin section; 165-170'- similar to above . Tr. of clay balls. not as many red chips. Some carbonate present. 175-180'- as above more red bx chips as well as beige one. When the sample was cleaned it was noted that the chips were fizzing, can't see it!; 185-190'-no clay balls. some red chips Bx present, but less. no reaction to HCI , however when washing it was reacting.; 195-200'- as above no reaction to HCI, however when washing it was reacting.; 205-210'- during washing was reacting to HCI . monzo granite. Out of bx zone. No reaction to HCI ; 215-220'- as above.; 225-230'- as above clay balls back . some grey glassy soft chips-serp? seems to be harder than serp. thin sections.; 235-240'- as above more white feldspar. No reaction to HCI, n. soft grey chips.;245-250'- as above no reaction to HCI.;255-260'-as above , no clay balls; 265-270'-manzo-granite weak reaction to HCI.;275-280'-monzo-granite, dirty look. Looks like feldspar are altered to a dirty green colour. softer than usual. No reaction to HCI.;285-290- As above, feldspar less green.; 295-300'- as above; 305-310'-monzo-granite fairly fresh.;315-320'-white soft balls(not waxy) as above.; 325'-330'- as above otherwise.; 365-370'-as above. a bit more granitic.; 345-350'- as above; 355-360'- react to HCI during cleaning small clay balls (traces) as above otherwise.; 365-370'-as above.; 395-400'- as above.; 405-410'- reacted to HCI during cleaning as above fresh.; 415-420'- as above.; 425-430'- as above.; 435-440'- reacted to HCI during cleaning . No HCI in tray. some feldspar altered to green soft (clay?) otherwise as above.; 445-450'-monzogranite=granite. GR with smokey quartz and greenish feldspar. Coarse chips; 455-460'- as above looks like less k-feldspar. Coarse chips.; 475-480'- Back to small chips. back to man
AD-104-01	35	115	10.67	35.05	100-105'- just granite no blueish chips. Weak reaction to HCI.* In this hole , the size of the chips are so small that it might be impossible or really hard to see preciated zone
AD-104-01	115	130	35.05	39.62	115-120'- mixed run ~15% kb ~85% granite. GR: fresh (50%) to super altered (50%). When kb in contact with CR, CR is extremely altered, no texture preserved. Dark green in colour. Granite react to HCI. Kb: brown with ~ 40% olv(macross + phenos) strongly serp to a brown olive green colour. Olvm m-c groundmass :serp , phlog, perov, calcite. phlog macross are common. thin section.; 125-125'- mixed run (really fine grained). ~ 5-10% strongly altered CR (granite) are 90-95% less. thin section.; 125-130'- mixed run kb(5%) < CR (95%). country rock granite mainly fresh with ~ 5-10% of the chips strongly altered.

HoleID	From (ft)	To (ft)	From (m)	To (m)	Review Comments
AD-104-01	130	370	39.62	112.78	130-135'- granite moderately altered weak reaction to HCI.; 135-140'- Granite much more fresh than above. Chips reacted to HCI during cleanup.; 145-150'- Chips reacted to HCI during clean up fresh granite. Some chips have grey-blue alt. (fairly hard) that react to HCI during clean-up. 165-170'- reacted to HCI during clean-up. More salmon pink granite chips (>95%) than greyish granite.; 175-180'- salmon Pink granite. 185-190'- as above . one possible kb chips (contamination) ; 195-200'- granite salmon pink.205-210'- Granite; 215-220'- Chips reacted to HCI during clean-up granite.; 225-230'- granite; 235-240'-granite; 245-250'- as above; 265-270'- chips reacted to HCI during clean up. Carbonate. Granite as above one possible kb chips (brown, fit under HCI-lightly, can't see olv, possible perov.) -> could be contamination from above.; 275-280'- granite; 285-290'- chips reacted to HCI during clean-up granite. In the granite.; 295-300'- chips reacted to HCI during clean-up granite. In the granite.; 295-300'- chips reacted to HCI during clean-up granite with <1% fine grained foliated mafic chips carbonate present in the granite.; 295-300'- chips reacted to HCI during clean-up granite still a few smokey brown granitic chips; 325-330'- mix of salmon pink fresh granitic chips with smokey brown beige altered granitic chips.; 335-340'- Granite (no smokey brown quarts) feldspar are altered.;345-350'- Dark orange pink chips possible granite or manzogranite alteration of Feldspar in higher (mod to strong) than above. Ugly; 355-360'- as above increase in mafic minerals. ;365-370'- chips reacted to HCi during clean up as above. * in this hole the size of the chips are so small that it might be impossible or really hard to see brecciated zone.
AD-111-01	0	35	0	10.67	5-10'- mix ovb & granite.; 10-15'- still mix sample with granite & ovb.; 15-20'- granite>> gneiss feels like ovb fairly fresh, weakly magnetic.; 20-25'- OVB , no kb pebbles.; 25-30'-OVB , no kb pebbles; 30-35'- mainly granite with logs of k-spar.
AD-111-01	35	70	10.67	21.34	35-40'- dolerite(?)> monzonite . Manzo granite fresh mafic intrusion (dolerite) Light grey -(feldspar(white fine laths), quartz, mafic minerals .;40-45'- As above start to see dolorite (?) chips; 45-50'- as above, but <5% mafic intrusive chips.; 55-60'-monzo granite clay chips again (only a few in tray)-> Laminae on it.; 65-70'- chips reacted to HCI during clean-up + more mafic mineral -> coarser grained not lot's of quartz diorite?? maybe local variation.
AD-111-01	70	100	21.34	30.48	70-75'- Chip react to HCI during clean-up weakly in dish. Black- to dark green phanitic rock. Fin-grained. Strongly magnetic mafic volcanic? Don't see Olv. Thin section; 75-80'- as above but more manzo granite chips (5%) Carbonate in granitoid chips. Chips are hard to mod. soft not like Kb.; 80-85'- same as above trace of granitoids. Strongly magnetic . presence of carbonate rich chips (calcite); 85-90'- sulphide observed (pyrite) some chips are lighter, green and local have mini enclave of the darker chips. Plagioclase/qx(4.5x) phenocrystal as above in general, but weakly mag.; 90-95'-as above. ; 95-100'- ~5% chips mainly feldspar . mafic chips seen coarser . non-magnetic. small sulphide veins (chalco) rare. Can't see olv. macros or pheno. Rock (mafic one) does not react to HCI . (logged from middle of the hole first., now will do top to middle.
AD-112-01	5	50	1.52	15.24	5-10'- really coarse chips. Strongly magnetic. Feldspar + mafic mineral. Really fine grained (volcanic??) 10-15'- as above can't see olv. React to HCI, concentration of pinkish calcite.; 15-20'- lot's of calcite in chips still magnetic; 20-25'- Soft just as a check don't think it's kb more mafic volc.; 40-45'- (rice bags) mafic rock as before as above no kimb chips. looks like it could be gabbro? but feldspar are making roses . rock really soft ; 45-50'- As above still strongly magnetic. Can't find chips similar to the one that was mark as possible kb. Took a few TS sample. rock is really soft (possible olv?) in some chips sometime see plagio really well. Need to look at sample bag. might be the only chip-> T.S. of that chip might say it's not kb.
AD-114-01	15	55	4.57	16.76	15-20'- granite, white to light pink some ovb as possible (gabbro) present.;20-25'-as above;25-30'- k-spar still present as regional granite (manzo granite) pyrite, biotite, magnetic; granite as above; 30-35'- mainly clay in the bag once cleaned=>granite as above. Some mafic chips (<1%) epidote observed. 35-40'- magnetite native visible as above.; 40-45'- almost no more k-spar. could this be more like a granodinite. So fresh, coarser grained;; 45-50'- really fine grained chips. on chip with blue alt. don't think it is kimberlite related though. Rock has a little more salmon pink colouring (more k-spar?); 50-55'- back to "granodiorite" really white and fresh.

HoleID	From	To	From	То	Review Comments
	(π)	(ft)	(m)	(m)	
AD-116-01	0	90	0	27.43	0-20'- +4mm common abbraded (weathered) pebbles, cobbles, broken, fragmented, with fresh broken surfaces. +2-4mm- similar nature, as +4mm more angrelosity, fresh is surfaces2mm- small frags, gridded(by RC?); 20-90'- +4mm- common affraded(weathered) pebbles, cobbles, broken with fresh broken surfaces12-4mm similar as is +4mm. June 29, 2016 ~ 50% observed VZ; nothing new >1000g2m alot of grains -small frags form larger particles broken by RC?. Very uncertain quality of OB/till as breakage fragmentation significant. RC recovery (strongly) impacts observation.
AD-123A-01	15	55	4.57	16.76	15-20'- Fizz during clean up mafic rock. Big lath of plagio. Carbonate present. Thin section.;20-25'- as above red altered calcite rich veins. Chlorite alteration also observed. Small mineral altered to a beige colour sometimes core seems fresh-> I don't know what it is.; 25-30'- as above.; 30-35'- as above laths harder to see . red alteration might be a bit stranger in this run.; 35-40'- plagio laths still present, but they are not altered.40-45'-as above are green chips fine grained chlorized look similar. ; 45-50'- as above more green (chlorite)alteration of the chips. ; 50-55'- as above. Whole rock? Thin section from 15-25-> to properly identify not looking like dyke with high mag. We would do a whole rock
AD-123B-01	10	25	3.05	7.62	10-15'- fizz during cleaning small beige mineral are fresher here and core are magnetite -> less altered version of what is in AD-123A-01. Mostly green chips, mafic (gabbro?) some red chips like 123A present.; 15-20'- as above.; 20-25'-more red chips as 123A as above. No Kimberlite.
AD-130-01	15	80	4.57	24.38	15-20'- orange granite altered. K-spar, plagio greenish not magnetic; 20-25'- beige chip can't see texture, really fine granitoid. Some biotite observe. Some chips (<5%) of granite. As above but smaller chips in bag that was all clay. Thin section.; 25-30'-as above could that be just feldspar(?) thin section; 35-40'- as above quartz chip thin section; 20-40 feet strange rock?? (thin section?.; 45-50'- strongly altered; 55-60'- as above.; 65-70'- as above; 75-80'- as above. No Kimberlite.; The whole time I looked at this hole, I had in mind sediment!! locally soft-> maybe it's a strongly altered granite or pegmatite?? weird?? (RFW)
AD-13-01	0	16	0	4.88	0-5: OVB; 5-10: OVB; 10-15: OVB
AD-13-01	16	35	4.88	10.67	15-20: big chips gneiss with epidote alt. magnetic; 20-25: coarse gneiss qtz, amph, biotite, magnetic, weak foliation; 25-30: gneiss, much more felsic than above. Magnetite still visible. 30-35: as above chlorite observed/epidote as well. No kimberlite. coarser grained than other gneiss observed.
AD-133-01	35	145	10.67	44.2	35-40'- salmon pink granite. (k-spar) mod. Altered feldspar have a greenish colour. Mod. magnetic to strongly magnetic weak reaction to HCI observed in some feldspar.; 45-50'- as above, but less magnetic increase in mafic minerals. Rock has a dirty look (due to alteration?), feldspar are still greenish in colour, when they are not k-spar (salmon pink) weak reaction to HCI.; 55-60'- back to cleaner salmon pink granite (less altered) Weak reaction to HCI (mainly in felds). Green-yellowish alteration of feldspar still present non-magnetic;65-70'-as above, but strongly magnetic no reaction to HCI.; 75-80'- really small chips as above feldspar still altered. weakly react to HCI.; 85-90'- really small chips as above. Weak to mod. magnetic weakly react to HCI.; 95-100'-as above no reaction to HCI. 105-110'- Really small chips (still) similar to above, but the feldspar seems to be whiter in colour(less altered). on suspicious black chips (super small) that could be kimberlite->white spec. => contamination.; 115-120'- same as above.125-130'- chips so small as a above. a few clay balls. magnetic (mod.) increase in mafic chips (still <1%) . overally moderately altered to fresh in some chips.; 135-140'- back to ugly altered salmon pink granite more mafic minerals are present (biotite). Weakly magnetic. Weakly reacting to HCI. Locally the qtz have a smokey appearance.
AD-14-01	0	20	0	6.1	10-15'- OVB material still present. Mafic gneiss
AD-14-01	20	100	6.1	30.48	20-25'- same as above; 30-35'- Mafic gneiss; 40-45'-gabbro(gabbro/norite), almost granular texture; 45-50'- all amphibole some sulphides (pyrite). Fol. defined by amph.;50-55'-increase in felsic chips.(qtz + feldspar);60-65'-garnet present, same chlorite as 45-50'.;65-70'-similar to 50-55', in less felsic.;75-80'- less black mafic (amphibole?) more green-pyroxene? metamorphic rock.;85-90'-mafic intrusive, looks less metamorphase magnetic;95-100'- mafic, strongly magnetic trace of sulphides. Not Kimberlite.
AD-16-01	15	70	4.57	21.34	15-20: mafic gneiss (gabbro); 25-30: as above;35-40: as above; 45-50- As above magnetic;55-60-altered mafic intrusive; 60-65- mafic gneiss (gabbro) weak foliation of mafic minerals pyrite.; 65-70: as above, but more felsic. Granulated texture. No kimberlite

HoleID	From	To (ft)	From (m)	To (m)	Review Comments
	(11)	(11)	(11)	(11)	
AD-17-01	20	55	6.1	16.76	20-25'- grey granite-gneiss with possible pegmatite vein (coarse grained) magnetic.;30-35'- granite Felds. are locally more rust in colour; 40-45'- as above coarse weakly react to HCI; 50-55' as above
AD-17-01	55	60	16.76	18.29	55-60'- more mafic than previous run . Rust colour alteration; 60-65- Kimb (60-70%) GR/GN (30-40%) kimb: dark grey to black. Olv are serp to fresh. (macros + pheno's) groundmass: serp; carb; + perov phlogopite macross common. Typical HK. phlog has a blue-green colour;
AD-17-01	60	70	18.29	21.34	60-65- Kimb (60-70%) GR/GN (30-40%) kimb: dark grey to black. Olv are serp to fresh. (macros + pheno's) groundmass: serp; carb; + perov phlogopite macross common. Typical HK. phlog has a blue-green colour; 65-70'- as above with 40-60% kb ilmenite is observed. Thin section.
AD-17-01	70	75	21.34	22.86	70-75'- mafic gneiss(95%)> granite(5%) black foliated mainly composed of amphibole and biotite. Some chlorite also observed
AD-17-01	75	80	22.86	24.38	75-80'- granite (60-70%) > mafic gneiss (30-40%) + coarse grained, contain lots of k-spar fresh to mod. altered.
AD-17-01	80	85	24.38	25.91	80-85'- back to mafic gneiss, trace of felsic chips
AD-17-01	85	180	25.91	54.86	90-95'- really small chips (2mm) trace of sulphides(pyrite)mafic gneiss?: 100-105'- finer grained mafic gneiss epidote alteration.; 110-115'- small chips mafic gneiss? Hard to tell chips broken really small, only see grains; 125-130'-still mafic gneiss, but less mafic veins. 135-140'- Sample assay base metal- meta-gabbro coarse grained 10% sulphide.;145-150-Sample assay base metal. strongly magnetic. mafic-gneiss + amphibolite (?) mostly mafic minerals. chlorite alteration. 10% sulphide (chalco?); 155-160'- small chips could be from a granite. or a more felsic gneiss. no more sulphides.; 165-170'- mafic gneiss; 175-180'- gneiss, more felsic, light grey trace of sulphides.
AD-17-01	180	195	54.86	59.44	185-190'- granite(?) all small chips, only see broken minerals could be from granite or peg.
AD-17-01	195	200	59.44	60.96	195-200'- as above more chips with amalgamation of biotite trace of sulphide
AD-20-01	15	50	4.57	15.24	15-20'- felsic gneiss (coarser chips); 25-30'- as above, pyrite v. magnetite; 35-40'-as above more biotite. Trace of chlorite alt.; 45-50'- as above but with crustal garnet less biotite than form 35-40';
AD-20-01	55	60	16.76	18.29	55-60'- coarse native magnetite grains observed as above. No kimberlite
AD-31-01	0	40	0	12.19	10-15' - Silt >95% SiO2 OVB *no mud , no organics. 15-20'- silt >95% SiO2 ~1% sand size OVB. * no mud, no organics. 25'-30'- broken/hammered GR?GN fresh. A , sizes 0.1-20mm OVB (?) GR>GN as some weaker surfaces to. 30'-35'- broken/hammered GR/GN fresh, A, sizes0.1-25mm OVB (?) weathered to in GR/GN. 35'-40'- broken/hammered GR/GN as above and black-green mafic particles ~15% cryst g-mass (HCI reaction moderate)
AD-31-01	40	45	12.19	13.72	40-45'- mafic gneiss , like what's in the bag. 40-45'-+3.5mm no kimberlite in this fraction.
AD-31-01	45	55	13.72	16.76	45-50'- as above a few kimberlite chips; 50-55'- mix mafic gneiss & granitoids chips fresh.;
AD-31-01	55	95	16.76	28.96	55-60'- +3.5mm no kimberlite found in this fraction. mainly mafic gneiss chips some have hematite alteration otherwise fresh ~1% chips are kimberlitic. Kimberlite: light grey with serpentinized olv. macross + phenos. macross have hematite (red colour) alteration groundmass: spinel + carb. phlogopite ugly kimberlite. Thin Section.; 60-65'-mainly mafic gneiss with(4 chips) <1% kb chips as above; 65-70'- mainly mafic gneiss only one chip 1mm; 70-75'- Fizzed during cleaning. mafic gneiss, dark grey to green fairly fresh. Qtz, feldspar, biotite, mafic min, some pragmetitite (weak reaction) could not see reaction to HCI.;75-80'-same as above. Chlorite (green tint) alteration. Little veins of metallic mineral altered to a red colour (not magnetic).; 80-85'-mafic gneiss(85%) > granite (15%). Mafic GN as above. Granite does not have lots of k-spar as what is observed regionally.; 85-90'- as above; 90-95'- as above; EOH; Notes: kimberlite seems to be different than in the south . Left kimberlite that was picked out in small bag in the ziploc bag. Also collected sample for T.S. Took photo of kb chips with smart phone. Not to sure of the quality.

HoleID	From (ft)	To (ft)	From (m)	To (m)	Review Comments
		· ·			
AD-32-02	25	55	7.62	16.76	25-30'- lots of mica's, gneiss, pyrite.; 35-40'- gneiss mafic, qtz, fels, amphibole, biotite.: 45-50'-amphibole, biotite.;
AD-32-03	55	100	16.76	30.48	55-60'- as above in trace sulphides (<1%); 60-65'- amphibolite, as above.; 65-70'- as above; 75-80'-as above; 85-90'- seen more felsic than above. Amphibole - rich gneiss. 95-100'- as above, pyrite still present. No kimberlite.
AD-37-01	20	40	6.1	12.19	20-25'-gabbro metamorphosed magnetic present.; 25-30'-gabbro; 30-35'-as above; 35-40'-gabbro; no kimberlite
AD-39-01	50	95	15.24	28.96	50-55'-dark green, black mafic rock fine grained to aphanitic magnetic.;60-65'-same as above, but more k-spar rich chips not magnetic.70- 75'- as above, but magnetic. No kimberlite. 75-80'- coarser grained- gabbro lots of magnetite.; 80-85'- as above, with also pyrite. ; 90-95'- ASK Vlad- as above but look like some brecciate area, alignment.
AD-41-01	10	15	3.05	4.57	10-15'- gabbro, same rust alteration, magnetite.;
AD-41-01	15	25	4.57	7.62	15-20'- as above, a bit of sulphide(pyrite); 20-25'-as above;
AD-41-01	25	35	7.62	10.67	25-30'- a bit more felsic minerals in this run. 30-35'- as above. No kimberlite
AD-45-01	0	17	0	5.18	15-20'- pink granite coarse grained.
AD-45-01	17	35	5.18	10.67	20-25'- magnetite/sulphide (chalcopyrite, pyrrotite?) More gneissic chips than the gabbro-norite chips. ; 25-30'-magnetic mainly gabbro norite. Med. Grained almost sugary texture.; 30-35'- gabbro-norite(dominating) gneiss, pegmatite, some crustal garnet observed in a crustal chip. a few sulphide (pyrite).
AD-50-01	30	40	9.14	12.19	30-35'- mainly white granite. Some felds are orangey-yellow mod. Alteration; 35-40' - weak reaction to HCI. Mainly white granite felds are orangey-yellow to grey-green. Mod. alteration weakly magnetic.
AD-50-01	40	70	12.19	21.34	40-45'- mainly kimberlite chips (>95%) and the remaining is gneiss (<5%) (fresh) Kimberlite: dark grey to grey ~40-50%, serp. Olv (macross+ phenos) grey to olivine brown in colour. Groundmass: serp, carb, phlogopite ilmenite observed. phlogopite macros present. carbonate segregation observed. 45-50'- as above; 50-55'- as above olv macross can be up to 0.5cm.; 55-60' as above. (VC) coarser macros seems to be more abundant. some fresh olv were observed locally. 60-65'- as above, but increase in GN chips. some are strongly altered and some (look mod. altered). They are mostly strongly altered. possible garnet (strongly replaced by kelyphite observed.; 65-70'- big garnet observed (5mm) and its broken. kb as above.
AD-50-01	70	80	21.34	24.38	70-75'- granite (80-90%) > kb (10-20% granite strongly altered kimb as above.; 75-80'- granite less altered than above. Still some kb chips present. One with a chrome diopside.
AD-50-01	80	150	24.38	45.72	95-100'- white to orange pink granite fairly fresh epidote alt. native magnetite present.; 105-110- as above mainly orange-pink granite mainly fresh.; 115-120'-as above smaller chips; 125-130'- as above but less chip with orange-pink colour. White=fresh orange pink= light alteration ?; 135-140'- 50% white GR 50% orange pink GR orange pink granite has no micas.; 145-150'- as above more 70% white GR (slight foliation). Kimberlite notes: this kimberlite does not have perovskite readily observable as what has been observed in previous hole. It looks more fresh (or should I say darker colour of the groundmass). Olv macross were very coarse, especially in the center of the dyke. I suspect there will be lots of phlogopite in the groundmass.
AD-50-02	40	50	12.19	15.24	40-45'- altered granite, beige colour; 45-50'- as above;

HoleID	From (ft)	To (ft)	From (m)	To (m)	Review Comments
AD-50-02	50	95	15.24	28.96	50-55'- kb>95%, GR <5% (strongly alt.) Kimb: black to dark grey ~40-50% olv(macross + phenos) generally serpentinized to light grey- brown colour groundmass: serp, carb, phlogopite (chips are hard to clean) carbonate vein observed. phlogopite macross observed; 55-60'- kimb. black to dark brown to dark grey OL are serp to fresh (macross + pheno) ilmenite observed, they have a rim. phlogopite macross are common. There might be 2 type of HK 1) brown with fresher core in olv. 2) dark grey-green with serp. olv.;60-65'- kimb olvm are getting vc, more serp. phlog macross are absent.; 65-70'- kimb as above.; 70-75'- as above VC olv macross (serp) still present looks like what we saw in the till. ;75-80'- as above possible grt in an olv.(totally kelphitized) ilmenite present. ; 80-85'- phlogopite is back in the groundmass (or at least more obvious). Olvm are still very coarse. groundmass seems to have more serp and carbonate than above. Thin section.;85- 90'- Kimb ilmenite present (common) with rim phlogopite macross observed, commonly. ; 90-95'- GR (50-60%) > kb (40-50%) GR-> beige white to light green altered. Kimb: as above. phlog. macros present. locally fresh olivine observed.
AD-50-02	95	115	28.96	35.05	95-100'- granite altered chlorite/epidote observed. ; 100-105'- granite whiter chlorite present. 105-110' - as above epidote rich chips observed.; 110-115'- as above carbonate present (weak reaction) few chips are salmon pink.
AD-50-02	115	160	35.05	48.77	120-125'- as above increase in salmon pink alteration.; 130-135'- as above; 140-145'- ~15% salmon pink chips (mainly a feldspar).; 150- 155'- as above. Kimberlite notes: Not sure if several dykes, but there is definitely a variation in phlogopite content both in groundmass and as macross thin sections taken to reflect this variation.
AD-51-01	20	45	6.1	13.72	20-25'- mix run kb (90%) > GR (10%) granite is white and strongly altered kimb: dark grey to grey, for grey-green, olv (macross + pheno) replaced by serp and locally by carbonate. Groundmass : serp, carb, spinel (metallic-black) phlog olvm are c to VC. Olv total ~40%. Local carbonate pools observed.; 25-30'- kb only. as above. Some carbonate veins observed. phlogopite macross locally observed.; 30-35'- Kb as above ilmenite present, they have a rim a few chips are more brownish in colour, they are associated in really strongly altered CR. (don't think it's another unit).; 35-40'- mix run. kb as above 50% and ~40% more brown kimberlite and 10% strongly altered granite. Brown kimberlite has less olv macros, not sure if other unit or due to proximity of CR wall or xenos. Phlog. macros still present. TS- brown kb not to sure what it is. 40-45'- Brown to dark grey brown seems to be different than top of unit. more phlog pheno. Carb veining observed olv are serp., olv macros VC to C. Groundmass really fine grained olv. phenos hard to see. Thin section.
AD-51-01	45	65	13.72	19.81	45-50'- Mix run 45-60% or > 40-55% kb. Kb as above Cr strongly altered, greens in colour.; 50-55'- as above 85-90%, > 10-15% kb. CR strongly altered. Kb as above. Some "fresher" CR are observed. 55-60'- Mainly strongly altered granite/gneiss granitic. Kb chips observed but represent <3% host is greenish in colour. Kb as above; 60-65'- as above (<1-3% kb) gneiss is less altered, darker green in colour. kb as above.
AD-51-01	65	70	19.81	21.34	65-70'- Granite with weak foliation (or gneiss granitic). Getting even less altered than above. Getting more white in colour and less and less green.
AD-51-01	70	100	21.34	30.48	70-75'- Mainly granite 50% (white grey) 50% (pinkish) trace of black kb chips observed. ; 85-90'- want to see core! This is a strange intersection. Looks like it could be brecciated or is it some strong alteration of the granite. Thin section; 95-100'- similar to above. Thin section.; Between 85-90, it looks like the rock could be brecciated. Not too sure if related to kb above or something else. Think it is worth to do TS to check if breccia and if there could be sign of kimberlite.
AD-52-01	5	20	1.52	6.1	10-15'- salmon pink granite (monzo-granite?) moderately altered; 15-20'-as above bt's of alteration (yellow in colour?) possible epidote vein.
AD-52-01	20	25	6.1	7.62	20-25'- mixed run kb (80-85%), GR (15-20%) Thin Section. Kb: dark grey to brown , ~40-50% olv phenos + macross, macross M. , serp to locally fresh groundmass: serp, carb, phlog +/- perov, +/- spinel. Phlog macros comm.

HoleID	From (ft)	To (ft)	From (m)	To (m)	Review Comments
AD-52-01	25	50	7.62	15.24	25-30'- kimberlite (hk) really fine chips as above; 30-35'- as above more carbonate. Ilmenite observed (with rim- looks almost fibrous) contain up to 5% strongly altered CR. And a few chips <1% of host CR (pink-orange); 35-40'- kimberlite and GR (<5%).kimberlite dark grey, olv (40-50%) macross & phenos are serpentinized. Groundmass is composed of serp, perov, spinel, carb, and phlog. Ilmenite present to common phlog macros are rare; 40-45'- kb as above slight increase in CR content (pink like host rock) to 3% calcite vein observed. VC olv macross present, have freshen olv. preserved in them ilmenite comm. ; 45-50'-seems like phlogopite macross are more common. Ilmenite still present: sometime rims of lighter grey. ilmenite is obvious, other time not as much.
AD-52-01	50	60	15.24	18.29	50-55'- GR (>95%) kb (<5%) kb as above. GR is strongly altered. Almost like it's been washed out really white (bleached); 55-60'- GR (>95%) kb (<5%) kb is more brown in colour phlogopite macross still present. GR seems less altered,Qtz is easily observed.;
AD-52-01	60	135	18.29	41.15	60-65'-<1% kb rest salmon pink granite. Moderately altered, not bleached like @50-55'. ; 65-70'- as above no more kimberlite; 70-80' - as above; 85-90'-as above; 95-100'- as above; 105-110'-as above; 115-120'- as above with ~<2% chips rich in epidote. 120-125'- as above; 130-135'-as above, no more epidote rich chips.
AD-52-02	10	25	3.05	7.62	10-15'- granite, orange pink fresh to mod altered logs of k-spar. 15-20'-Granite (>99%) > kb (<1%) granite is less orange pink and feldspar looks more altered. ; 20-25'- As above with (Bx <5%) a few chips looks like they could be brecciate. Thin section.
AD-52-02	25	65	7.62	19.81	25-30'- Kb (>95%) GR (<5%) GR varies from moderately altered to strongly/extremely altered. In mod-alt . you can still see the qtz is strongly altered they are light blue-greening colour and have no original igneous or metamorphic texture. Kb: light brown to brown to grey olv macros + pheno make ~40-50% of chips. macross are c to locally vc. Olv are serp to brown and green colour phlog macross are common. Groundmass: serp, phlog carb possible perov. + spinel. 30-35'- kb (25%) GR (75%) kb as above GR: 1) mod to fresh, light grey can still see quartz. 2) strongly altered all dark green 'mo' original texture are the strongly alt. are CRx or CR @ the contact with HK?; 35-40'- kb (>90%) ; GR (<10%) GR, not as altered as previous run. Kb: dark grey, to 40% olv phenos + macross. Olv macross serp to fresh (locally) magnetic pheno are mostly serp. groundmass: serp, carb, perov, phlog. phlog macross seem absent (strongly magnetic)possible chrome diopside. Groundmass: serp, carb, perovskite (not as previous unit run). 45-50': as above kb is more greenish. olv are more olv. green in colour. Ilmenite common (with core), 9 in size of olv macross. ilmenite are really coarse.; 50-55'- as above, but more dark grey some olv have fresher parts. groundmass: serp, carb, perov., phlog. Perovskite is back to as 35-40' level. NO obvious phlog macros. ; 55-60'- back to the brownish to dark grey HK with lots of phlogopite. Ilmenite with core (fresh) still present, and common. Some olv. macros & have fresh core. ; 60-65'- As above.
AD-52-02	65	80	19.81	24.38	65-70'- mixed interval ~15% kb ~85% GR. Kb as above. Granite white as if bleached. Some chips are blueish (serp?).70-75'- Mainly granite, white. Granite much fresher than in the previous run. Still altered still have a greenish + tint (chlorite) an kb chip observed. ; 75-80'- white-greenish granite mod./hard altered as above.;
AD-52-02	80	95	24.38	28.96	80-85'- as above with few fresher chips and start to see salmon pink granite to epidote alt. ; 85-90'- 40% white-green GR (altered) 60% light pink granite (fresh).
AD-52-02	95	115	28.96	35.05	95-100'- pink granite epidote vein. 1 kb chip (contamination??) ; 105-110'- as above no kimberlite chips. ; 110-115'- As above
AD-52-03	0	10	0	3.05	0-10': OVB
AD-52-03	10	22.5	3.05	6.86	10-15'- still some ovb chips, otherwise granitic chips.; 15-20': granite, pink (light) to light grey- green moderately to strongly alt. Tr. Of kb chip.

HoleID	From	To (ft)	From (m)	To (m)	Review Comments
	(10)	(11)	(11)		
AD-52-03	22.5	55	6.86	16.76	20-25'- mixed interval. Kb (5-10%), GR (90-95%). Granite 1) white mod. To str. Alt. 2) grey to green -> strongly 1>2 altered. Kb: brown to darker brown. Olv (macros + phenos) serp. To olive brown colour. macros m-c to vc. Ilmenite present coarse grained . Groundmass: serp, carb, possible perov. pholg macross common. not magnetic. Thin section.; 25-30' - Kb (>98%) GR (<2%) granite slightly alt. Magnetic kb (>98%) GR (<2%) granite slightly alt. Mb: brown to green. serp olv (macros + pheno) ~40-50%. Brown to light green in colour. Ilmenite common. phlog macros comm: C-vc. Groundmass: serp, carb, phog;30-35'- mixed interval Kb (60-70%) > GR (30-40%) Granite strongly altered , white , felds green. Kb: ilmenite with rim observed, c to vc, common. phlog macross common to brown to locally blueish. Olv serp (macross + pheno). macros m-c to vc. groundmass: serp, carb, phlog, possible perov + spinel. carbonate pooling observed on some chips magnetic. :35-40'- mixed run kb(>95%) GR <5% as above chips are smaller . brown to grey kb. sharp contact (CRX or host?). phog macross comm. ilmenite present. magnetic. ; 40-45'- only kb. Dark grey green kb, with 40-50% . Serp olv (macross + pheno) groundmass: serp, carb, spinel, phlog. phlog macross absent to rare . ilmenite present. Carbonate veins observed . strongly magnetic.; 45-50'- mixed run 10% CR 90% kb. CR: 1) white strongly altered 2) green strongly altered (CRX?) back to green-brown grey kb. lots of phlog macross. olv. srp (macros+ pheno) 40-50%. Similar to what was observed between 25-40' . lots of phlog in groundmass . perovskite. Some fresh olv are present. ; 50-55'- mixed run 50% kb/ 50% CR . Cr strongly altered to white (40%) and green (10%) . kb as above . ilmenite with rim observed.
AD-52-03	55	65	16.76	19.81	55-60'- mixed run kb (5%) CR (95%) CR mod. Altered to fresher kb as above. 60-65'- <1% kb chips, as above. CR-> green->mod alt. <5%, remaining fresher white with start of light pink feldspar.
AD-52-03	65	75	19.81	22.86	65-70'- <1% kb chips, as above foliated granite light grey-green fresh to mod-altered; 70-75'- ~1% kb chips as above. Rest mixed of foliated granite(grey-green and salmon pinkish granite).
AD-52-03	75	95	22.86	28.96	75-80'- 1-2% kb as above (hk) salmon pink granite, fairly fresh; 80-85'-as above ~1% kb (HK); 85-90'- as above, thin section; 90-95'- as above <1% kb chips.
AD-52-03	95	100	28.96	30.48	95-100'- grey granite (90%-95%) smokey brown quartz. ~5-10% salmon pink granite chips.
AD-53-01	10	25	3.05	7.62	10-15'- Coarse to med. Grained salmon pink granite increase % k-spar. Magnetite present. Strongly magnetic fairly fresh. Some reaction to HCI. Some epidote alteration observed. 20-25'- as above;
AD-53-01	25	45	7.62	13.72	25-30'- mixed run granite as above with lots of magnetite (60%) and white weakly foliated gneiss> the pinkish granite has a strong dark red alt. Strongly magnetic due to magnetite; sometime it almost looks like it could be brecciated as the magnetite seems to replace mins around quartz; 30-35'-mixed run, strongly magnetic. 10-15% salmon pink granite with 85-90% white to light green gneiss, weakly foliated. Chips rich in magnetite one still present; 35-40'- as above;40-45'- run dominated by light grey-green gneiss with <5% pink granite chips. still strongly magnetic. fresh sulphide present (possibly pyrite).
AD-53-01	45	55	13.72	16.76	50-55'- back to salmon pink granite. Some chips looks like there could have been some brecciation going on. It represents ~2% of the chips> dark grey green crystalline (really fine grained matrix. No reaction to Hci. Don't think its kimberlite.
AD-54-01	15	40	4.57	12.19	15-20'- salmon pink granite, fine to med. Grained. Fresh to med. Altered. Some yellow-brown alteration present? Weakly to mod magnetic. A few strongly foliated gneiss present. Weakly react to HCI. Near the feldspar (replacement?)25-30'- magnetite grains present. as above.; 35-40'-salmon pink granite. weakly to mod. magnetic. Moderately altered. epidote/calcite vein. moderately react to HCI.
AD-54-01	40	55	12.19	16.76	Strongly foliated dark grey to white gneiss pyrite observed in more felsic mafic part of the gneiss. A few k-spar rich chips observed (from above). Magnetic (strongly). Rock is fairly fresh. Carbonate present (yellowish colour). Epidote associated with carbonate?; 45-50'- strongly magnetic. mainly grey gneiss with ~20% white beige altered chips (granite?) Carbonate present. Some of the chips are reddish with lots of magnetite. Similar (same) as what was observed in AD-53-01; 50-55'- strongly magnetic. Carbonate present in crack in feldspar. Pyrite present. (possibly chalco?) Gneiss with ~10% salmon pink granite. Magnetic associated mainly with gneiss.
AD-59-01	15	20	4.57	6.1	15-20'-Weakly foliated granite white to beige moderately to weakly alt.;

HoleID	From (ft)	To (ft)	From (m)	To (m)	Review Comments
AD-59-01	20	50	6.1	15.24	20-25'- kb (99%) GR 1% . GR: strongly altered, host or CRx? Kb: dark brown to brown to grey-green 40-50% olv (macros + phenos), they are serp.(green to olv. green-grey) magnetic. To locally fresh. Olvm m-c. phlog. macross are commonly observed. Some olv macross have thin white rim. Groundmass: serp, carb, phlog, perov. ;25-30'- mixed run kb (90-95%) > GR (5-10%) granite moderately to strongly altered. kb as above magnetic calcite veins. olvm can be locally fresh.; 30-35'- trace of CR. KImb: olv have a black rim. olv ~40-50% (macross and phenos) olvm are usually serp but fresh one are commonly observed. m-c . magnetic groundmass: serp, carb, phlog, perov(+/-) phlog macross are common. *seems to be a bit different than above HK.; 35-40'- kb, magnetic, as above dark grey green to lighter grey. When chip lighter, olv have white-beige rim compare to black rim in darker chips. Seems to have more fresh olv.; 40-45'- As above maybe a little lighter grey in colour and with a lesser amount of fresh olv.; 45-50'-mixed run kb(90-95%) > GR (5-10%) GR + mixed of fresh gneiss and altered CR (strongly altered). We might be close to contact some really large chips present. otherwise kb as above lots of calcite vein.
AD-59-01	50	55	15.24	16.76	50-55'- mixed run 30-40% kb < 60-70% CR. Kb as above more brownish in colour. CR: mix of strongly altered (green-serp) to mod. To fresh GR chips.;
AD-59-01	55	100	16.76	30.48	55-60'- Trace of kb (as above) mix of grey-green gneiss (>90%) with coarse feldspar chips. Gneiss is fresh to mod. Alt.; 60-65'- as above look fresh now.; 65-70'- As above some epidote veins.; 75-80'- as above. Some carbonate observed on one. Chips-> looks like kb contact observed above. Sulphides observed(chalco)-> <1% mostly disseminated, but sometime in veins. rock is fresh to mod. altered ->chlorite?; 85-90'- as above. a bit more granitic/peg chips (up to 25%) GR still have sulphides in it. Some gneiss chips are rusted orange in colour (not after sulphides).; 95-100'- mainly granitic chips. White to light salmon pink. Some mafic chips observed(fine-grained to aphanitic) Some chips looks like there might be brecciated. presence of orange-yellow alteration. **ask vlad**
AD-59-01	100	140	30.48	42.67	105-110'- mixed interval. GN (40%) < fine grained to aphanitic light green rock (60%). Light green rock might be finer band in the gneiss that's altered in chlorite. ; 115-120'- back to lightly foliated gneiss with chlorite alteration observed. 4 chips, brown ->kb->tiny dyke? **could this be a small dyke or some contamination? kept sample in their respective bags (small baggies); 125-130'- Back to light grey-green gneiss a few kb chips observed. Crustal garnet present. 5 brown kimberlite chips observed.; 130-135'-Only gneiss, grey,-green with pyrite/chalco.; 135-140'- as above
AD-60-01	13	30	3.96	9.14	15-20'-mixed run gneiss (25%) granite(75%) fairly fresh (both) gneiss is grey with sulphides.; 20-25'- same as above with different proportion gneiss (50%) Granite (50%). Chlorite locally observed in both type of rock. ;25-30'- As above but mainly gneiss. Gneiss looks a bit more altered. 2 brown kb chips (in separate bag left in ziploc bag)
AD-60-01	30	40	9.14	12.19	30-35'- mixed run 95% (kb) > GN (5%) GN: Strongly altered, green coloured. Kimb: brown to dark grey-green ~40-45% olv (macross + pheno). Serp magnetic olive green to grey. macros m-c. Phlog macross present. 1 possible mantle xeno chip (T.S). Brown + green kb seen on same chips. No hard contact. Groundmass: serp, carb, phlog, perov.; 35-40'- mixed run ~10% gneiss and ~90% kb. gneiss is mostly strongly alt. but same fresher one observed. When altered is more greenish in colour. kb: as above.
AD-60-01	40	50	12.19	15.24	40-45'- ~ 10% gneiss/gneiss mod. Alt to simple altered. 90% kb. Kimb: dark grey-brown with 40-45% olv magnetic (macross + phenos) serp to locally fresh . Groundmass : serp, carb, phlog, perov. Phlog macros common. ; 45-50'-<5% granite as above >95% kb . Kb above. about ~10% light grey chips. carbonate veins present. ;
AD-60-01	50	55	15.24	16.76	50-55'- mix run ~10% kb. ~90% granite and gneiss moderately altered. chlorite present. kb: light brown olv. serp (green-brown) (macros + pheno ~40%). olvm m. groundmass: serp, carb, perov. looks like there is less phlog . both in groundmass and in phenos.
AD-60-01	55	60	16.76	18.29	55-60'- GR/GN > 95%, kb <5% grey gneiss and white granite/peg mod. To weakly altered. Kb is brown as above.

HoleID	From (ft)	To (ft)	From (m)	To (m)	Review Comments
AD-60-01	60	113	18.29	34.44	60-65'- mafic gneiss with <5% felsic gneiss. Fresh trace of sulphides . Sulphide seem to be associated more with felsic gneiss.; 65-70'- gneiss=granite. Gneiss is more felsic. Granite is light salmon pink in colour. Sulphides still present. ; 75-80'- light grey weakly foliated granite/gneiss some mafic chips observed (rich in amphibole) . greenish colour in feldspar mod. altered rock. 85-90'- mixed run altered (mod) rock. Gneiss grey-green, medium to fine grained and coarse grained light salmon pink granite. Some of the more mafic gneiss chips are darker green, making me think we are close to something that was not (kb?); 95-100'- as above but with less mafic chips. Mafic gneiss contains lots of amphibole/biotite.; 100-105: gneiss has no kb.; 105-110'- coarse grained gneiss are kb chips -> chip left in ziploc bag in an individual bag.;110-113'- mainly gneiss mod. altered no kimberlite. Could the chip(kb) seen between 95-100' be contamination from above? Notes: *59 an 60=> did not seem to have ilmenite-> not easily observed (or observed at all for that matter) compare to 50-51 and 52.
AD-60-02	20	35	6.1	10.67	20-25'- GN fresh (85%) GR (15%) mod. Alt. (reddish colour).; 25-30'- grey gneiss, fairly fresh.; 30-35'- as above ~5% granite chips.
AD-60-02	35	40	10.67	12.19	35-40'-mix run ~ 5-10% kb, rest gneiss as above. Some of the CR chips are strongly altered(maybe closer to contact). Kb: dark brown, ~40% olv. (macross + phenos) that are serp, carb, phlog, perov., phlog macross common. thin section.
AD-60-02	40	45	12.19	13.72	40-45'-~<5% granitic/gneissic chips (mod. Altered) Kb: dark brown to dark grey green with ~40-50% serp. Olv phenos+ macros. macros are m-c. But still present phlog macros not easily observed as before. Groundmass: serp, carb, phlog, perov (I).
AD-60-02	45	55	13.72	16.76	45-50'- mixed run 20% kb <80% GN. GN: mod to strongly altered. Kb: brown to dark brown to dark grey green ~40% olv (macross + phenos) serpentinized to a brown grey colour. Olvm up to C (m-c) groundmass: serp, carb, phlog, perov.: phlog macross observed. ; 50-55'-mixed run kb (90%) > GN (10%) . GN as above strongly altered Kb: as above phlog macros easily observable now (%increase) fresh olv are more present. Carbonate vein observed.
AD-60-02	55	65	16.76	19.81	55-60'- kb (hk) dark grey to dark brown ~45% . Olv (phenos + macross) serp. To brown green colour, olvm ~m-c phlogopite is abundant (both macros and groundmass) groundmass: serp, carb , phlog , perov. 60-65'- kb (>90%) GN (<10%) kb as above gneiss mod. altered.
AD-60-02	65	80	19.81	24.38	65-70'- GN >95% Kb <5%. GN: light grey- green, mod-altered to strongly altered. Kb as above. When chips have both kb and GN the GN is strongly altered. Kb is more brown in colour. Some kb chips seems to have a lot of carbonate. 70-75'- GN >98% kb <2% GN seems to be more fresh (fresh to mod altered) getting more white in colour. Kb as above. ; 75-80'- as above <1% kb (as above).
AD-60-02	80	110	24.38	33.53	80-85'- mafic gneiss/amphibolite -> dark grey with greenish colour. Carbonate present in unit. lots of amph/biotite, feldspar strongly magnetic. presence of sulphides (chalco?). ; 85-90'- same as above. ; 95-100'- as above one chip of kb present (contamination)?); 105-110'- as above no kb. Some really dark (black) aphanitic chips (no reaction to HCi) don't think they are kimberlite, can't see olv. (not the right texture for kb).
AD-62-01	15	50	4.57	15.24	15-20'- extremely large chips- salmon pink- fresher; 25-30'- chips are more normal size granite as above. Moderately magnetic;;35-40: as above; 40-45'- as above, but more biotite in the rock, giving ita darker colour. There is also an increase in mafic chips (darker gneiss).; 45-50'- as above, but more granitic (as 25-30). Still magnetic.;
AD-62-01	50	60	15.24	18.29	50-55'- GN (95%) > GR (5%) granite as above. Gneiss, light grey-green finely grained, chlorite present, mod. To weakly altered.; 50-60'- mixed run coarse grained grey-green gneiss (50%) with salmon pink granite/peg. Gneiss contain trace of diss. sulphides (chalco?). Some chips seem to have been altered by epidote.
AD-62-01	60	80	18.29	24.38	60-65'- salmon pink granite/peg (90%). Coarse grained mafic gneiss (10%) magnetic + chalco still present. Fairly fresh. ; 65-70'- mainly granite/peg as above a few mafic chips are still present with sulphides.; 70-75'- weakly foliated granite (gneiss). light grey ~70% . 30% salmon pink granite (less biotite) both magnetic fairly fresh.; 75-80'- mostly salmon pink granite seems to be weakly foliated with a few chip more mafic (with sulphides)

HoleID	From (ft)	To (ft)	From (m)	To (m)	Review Comments					
	(14)	(10)	(11)	(,						
AD-62-01	80	85	24.38	25.91	80-85'- mixed run. 10-20% salmon pink granite 80-90% kb. Magnetic kb: light grey to darker grey HK, olv (macross + phenos) make ~ 25-					
					35%. They are serp. To a black colour. F-m. Groundmass: serp, carbonate, spinel, oxide. Red alteration in olv. Is observed, spinel are					
AD 62.01	00	120	25.01	26 59	abundant (white heads). Carbonate pods observed, makes me think of Hk in the horth.					
AD-02-01	65	120	25.91	50.56	above.					
AD-63-02	10	20	3.05	6.1	10-15'- light grey gneiss weakly foliated (defined by biotite) fresh. ; 15-20'- as above some yellow/orange alt (?) magnetite present.					
AD-63-02	20	25	6.1	7.62	20-25'- GN 50% - monzonite 50% (salmon pink colour). Qtz a bit more smokey. No kimberlite.					
AD-65-01	15	40	4.57	12.19	15-20'- coarse chips, some might still be the ovb, otherwise same as below. **No Kb observed in this hole**; 20-25-granite less orange					
					alt. or kspar alteration; 25-30'- same as above. Equigranular dark chip, react to HCI but I don't think its kimb, can't see oly pheno or					
AD-65-01	40	70	12 19	21.34	40.45, same as below: 45.50 , fresh same as below GR>>GN: 50.60 , mainly granite as below: 60.65 , GR>GN as below fresh : 65.70 .					
AD-03-01	40	/0	12.15	21.34	GR>GN as below.					
AD-65-01	70	80	21.34	24.38	70-75'-GN> granite. lots of amphibole in gneiss; 75-80'- as below but with more gneissic chips					
AD-65-01	80	100	24.38	30.48	80-85'- as below with few gneissic chips (dark grey); 85-90'- same as below.; 90-95'- same as below black material in chips -ask Vlad's					
	100	115	20.40	25.05	opinion; 95-100'- same granite as below.					
AD-65-01	100	115	30.48	35.05	100-105 -chips are really large. Lot's of black appanlitic, to strongly follated chips. Fault arear; 105-110 -granite as below no alt, observed.					
					110-113 - smail mane, aphaintic thips (no reaction to her) sometimes toating granite thip. Not kind.					
AD-65-01	115	135	35.05	41.15	115-120'- as below red alt.;120-125'- same as below; 125-130'- salmon pink, granite? Med-coarse grained fresh-mod. Alt. K-spar mainly					
					yellow and orange red alt?;130-135'- med. Grained salmon pink granite or chip coated with black material when zoomed it, had					
10 70 01	-	10	1.52	2.05	impression it there was some spinel, react to HCI. **ask Vlad**					
AD-72-01	5	10	1.52	3.05	5-10'-mainly granitic (salmon pink) and gneissic chips. Granite is fresh . Some material from OVB still present.					
AD-72-01	10	20	3.05	6.1	10-15'- gneiss, light green chlorite. Red alt. after magnetite -> strongly magnetic not as much as the next run. No Kimb.;15-20'- light green					
					fine grained gneiss chlorite/epidote alt . Fresh. Dark red alteration (?) sometime in veins -> possibly due to magnetite? Orange alteration.					
AD-78-01	5	10	1 52	3.05	5-10'- still ovh in sample. Amphiholite rich gneiss/amphihole, less chlorite alt					
//0/01			1.52	5.05						
AD-78-01	10	25	3.05	7.62	10-15'- more amphibolitic. No sulphides; 15-20'-as above; 20-25'- amphibolite> top of run: soft fine grained (aphanitic) black rock. Serp.					
					Chips. Don't think it's kb, but just want to make sure . It's so aphanitic. Thin section.					
AD-87-01	10	30	3.05	9.14	10-15'- White to light pink med. Grained , equigranular . Qz < Fd rock, biotite. Chlorite alteration fresh.; 20-25'- Qtz locally more smokey					
					otherwise as above;					
AD-87-01	30	45	9.14	13.72	30-35'- GN> GR light green colour to the gneiss, possible chlorite.; 40-45'- GN> GR some pyrite. ~1-2% dark chips, not kb, no reaction to					
	45		10.70	15.04	HCI, no olv. Might be amphibolite.					
AD-87-01	45	50	13.72	15.24	45-50'- gabbro (?) lot's of sulphide. Pyrite/chalco(?) lots of the chips are strongly rusted. Sample					
AD-87-01	50	55	15.24	16.76	50-55'- same as above less sulphide. No kimberlite					
AD-88-01	5	10	1.52	3.05	5-10'- fine-grained mafic gneiss carbonate veins (white) epidote alt/chlorite alt.					
AD-88-01	10	15	3.05	4.57	0-15'- Chlorite alt. more amphibole in the rock, almost like amphibolite-> amphibole rich gneiss no kimb.					

HoleID	From	То	From	То	Review Comments
	(ft)	(ft)	(m)	(m)	
10.00.01		45		4.57	
AD-89-01	0	15	0	4.57	5-10- disseminated chalco/pyrrotite? Some small sultur veinlets. Chlorite alt. Coarse grained amph. Gneiss.; 10-15- same as above. NO
					kmb.
AD-97-01	20	55	6.1	16.76	20-25'- Gabbro equigranular texture. Mafic minerals seem to be amph? Different than dyke. 25-30'- as above. Some feldspar have a
					greenish colour.; 30-35'- mix of monzonite (20%) and gabbro chips. ; 35-40'- less monzonite. Maybe mafic veins are a mix of both
					amph/pyroxene. I can't clearly see cleavages, some are squarish (px) and some seems elongated (amph); 40-45'- As above;45-50'- some
					white felsic chips mainly feldspar could be close to contact with gneiss. These chips seem altered.;50-55'- as above, but not altered white
					chips. This rock is similar to what was observed at AD-14-01; Ad-45-01(?) No kimberlite.
AD-99-01	65	135	19.81	41.15	65-70'- Granite, k-spar rich, biotite med grained magnetite.; 75-80'- really small chips; 85-90'- as above; 95-100'- less k-spar start to see
		24-12-12-12-19			seem gneiss magnetite present.: 105-110'- mix of granite chips with more gneissic(?) - mafic gneiss. Hard to see chips are small. On more
					gneissic chips, there is a light red sugary min. (alt.?) non-mag pyrite pervasive.: 115-120- mainly granitic chip, with few chips as
					above(same characteristic). feldspar have an orangev colour (alt.) chips almost like sand : 125-130'- as above, no more gneissic chips just
					granite.; 130-135'- as above some stronger grey clay balls /lath. IND sample
DYK-04-01	55	70	16.76	21.34	55-60'- white granite; 65-70'- as above small chips;
		105			
DYK-04-01	70	195	21.34	59.44	75-80'- get pink now more k-spar (more K-monzonite); 85-90'- as above; 95-100'- as above more mica (muscovite) in addition to biotite.;
					105-110'- as above rose magnetite present.; 115-120'- as above; 125-130'- as above; 135-140'- as above; 145-150'- as above; 155-160'- as
					above; 165-170'- as above;175-180'-as above; 185-190'-as above;
DYK-04-01	195	230	59.44	70.1	195-200'- Similar white granite at 50-60 but green olive alteration on feldspar.; 205-210'- same as above; 215-220'- as above; 225-230'-as
					above No kimberlite.

Appendix 7 - Field Logs, Review Comments and Thin Section Descriptions

Thin Section Descriptions

OLIVINE (TS)

TEXTURAL
CLASS.SIZE CLASS.% TOTAL
OLV (VE)%OLVm
(VE)%OLVp
(VE)

OLV

Degree

OLV

Type

Replacement Replacement

BODY : Stornoway GEOLOGIST:	Adamantin Kimberlites I. Lépine	DATE: O SAMPLE REVIEW	ctober 2016 TYPE: TS ER: NA		
SAMPLE ID / LOCATION	DRILL HOLE	DEPTH (m)	KIMB MINERAL PRESERVATION	COLOUR (HANDSAMPLE)	ICM OR GRD
42545	AD-02-02	37	5	dark brown to grey	GRD

						1				· · · · · · · · · · · · · · · · · · ·		
42545	AD-02-02	37	5	dark brown to grey	GRD	НК	f-m (c to vc)	45	25	20	complete	serp + carb
42546	AD-02-02	45	5	dark brown to grey	GRD	ΗK	f-m	40	30	10	complete	serp + carb
42547	AD-02-02	53	4 to 5	dark brown to brown	GRD	нк	f-m (c to vc)	50	30	20	partial	serp + clay?
42536	AD-00-01	33	5	dark grey to brown	GRD	НК	f-m	50	35	15	complete	serp + carb
42537	AD-00-01	40	5	light grey to brown	GRD	ΗK	m (c)	45	30	15	complete	serp + carb

BODY : Stornoway GEOLOGIST:

			MINERALOGY	к	IM ABU (SLAE	INDANC 3 + TS)	E				
SAMPLE ID / LOCATION	PRIMARY GROUNDMASS MINERALOGY	LATE STAGE MINERALOGY	CPX Locality	CPX Habit	Serpentine Locality	Carbonate Locality	GNT	ILM	СРХ	CHR	CRX LITHOLOGY
42545	carb + phlog + per + sp +ap	serp + clay + cpx?	groundmass	elongated	olivine + groundmass	olivine + groundmass	na	na	na	na	na
42546	carb + phlog + sp + per +ap?	serp + clay +cpx?	groundmass	elongated needles	olivine + groundmass	olivine + groundmass	na	na	na	na	na
42547	serp/clay + carb + phlog + sp +per	serp + clay	na	na	olivine + groundmass	groundmass	na	na	na	na	na
42536	carbonate + serp + phlog +oxides	serp + clay	na	na	olivine + groundmass	olivine + groundmass	na	na	na	na	na
42537	carbonate + serp + phlog + per +sp + ap	serp + clay + cpx?	groundmass	needles	olivine + groundmass	olivine + groundmass	na	na	na	na	na

BODY : Stornoway GEOLOGIST:

SAMPLE ID / LOCATION	CRX ALTERTION	MINERALOGICAL CLASSIFICATION	Unit_Code	Unit_Code_Comment	COMMENTS							
42545	na	carbonate, phlogopite, perovskite kimberlite	HK1	hypabyssal sheet	The rock is characterised by the large amount of per and sp in the groundmass. Olv are also surrounded by oxide mineral, sometime they are partly replace by oxide. On several chips the olv are surrounded by a light green to brown phlog? No big phlog macros observed. Phlog seems to be in cluster on some chips. Some of the phlog seem to be zone, with the edge darker brown and the center light green to colourless. I think perov > sp. Atoll sp observed.							
42546	na	carbonate, phlogopite, spinel kimberlite	HK2	hypabyssal sheet	This rock differ from rock above by the presence of large phlog macrocrysts (this was also observed in the logging of the chips). Oxide rims around the olv are not as well develop as the sample above. Some of the phlog still exhibit a zonation where the edge are darker than the center. It looks like this time sp > per. Atoll texture in sp seems to be more abundant. There could be a mixture of chip where the per > sp as what observed above and some other chips where the opposite is observed, but in general it looks like sp > per. It would be really nice to have core instead of chips to see the contact relationship better.							
42547	na	carbonate, phlogopite, spinel kimberlite	HK2	hypabyssal sheet	Large phlog macro still observed. Small phlog lath in the groundmass, easier to see on thinner thin section. Olv surrounded by oxide. Sp > per. Atoll texture still observed.							
42536	na	carbonate, phlogopite, per? kimberlite	HK1	hypabyssal sheet	This rock seems to be strongly altered. Olivine are abundant and totally replace by calcite or serp. Oxide are found on the rims. Phlog macros are present. Groundmass phlog is found around the olivine. Carbonate is the main groundmass mineral. Phlog macros are exhibiting zonation colour, darker brown on the edge and sometime in the center as well. Oxides content is elevated (7%). I think per > sp.							
42537	na	carbonate, phlogopite, perovskite, spinel kimberlite	HK2	hypabyssal sheet	Poikilitic texture of phlog with oxide. Olivine marked by oxide rim and also dark brown- green mineral (phlog?). Rock marked by presence of large phlog lath in the groundmass as well as some rounder macrocrysts. Some phlog show some colour zonation, with darker brown on the outside. Phlog are not oriented preferentially. per > sp. Perovskite is larger than the spinel.							
BODY : Stornoway GEOLOGIST:	Adamantin Kimberlites I. Lépine	DATE: O SAMPLE REVIEW	october 2016 E TYPE: TS ER: NA									
-----------------------------------	---------------------------------------	-----------------------------	--------------------------------------	---------------------------	---------------	--------------------	-------------	---------------------	---------------	---------------	------------------------------	----------------------------
					OLIVINE (TS)							
SAMPLE ID / LOCATION	DRILL HOLE	DEPTH (m)	KIMB MINERAL PRESERVATION	COLOUR (HANDSAMPLE)	ICM OR GRD	TEXTURAL CLASS.	SIZE CLASS.	% TOTAL OLV (VE)	%OLVm (VE)	%OLVp (VE)	OLV Replacement Degree	OLV Replacement Type
42538	AD-00-01	43	4 to 5	light grey to light brown	GRD	НК	f-m (c)	45	30	15	partial to complete	serp (?) and carb
42539	AD-01A-01	18	5	light grey to grey green	GRD	НК	f-m (c)	40	15	25	complete	serp and carb
42540	AD-01A-01	6	4 to 5	light grey to green	GRD	НК	f-m (c)	40	20	20	complete	serp and carb

			MINERALOGY		KIM ABUNDANCE (SLAB + TS)						
SAMPLE ID / LOCATION	PRIMARY GROUNDMASS MINERALOGY	LATE STAGE MINERALOGY	CPX Locality	CPX Habit	Serpentine Locality	Carbonate Locality	GNT	ILM	СРХ	CHR	CRX LITHOLOGY
42538	serp + carb + phlog + per + sp + ap?	serp + clay	na	na	olivine + groundmass	olivine + groundmass	na	na	na	na	na
42539	serp + carb + phlog + per + sp + ap?	serp + clay	na	na	olivine + groundmass	olivine + groundmass	na	na	na	na	granitic
42540	serp + carb + phlog + per + sp?	serp + clay + cpx	groundmass	elongated	olivine + groundmass	olivine + groundmass	na	na	na	na	na

SAMPLE ID / LOCATION	CRX ALTERTION	MINERALOGICAL CLASSIFICATION	Unit_Code	Unit_Code_Comment	COMMENTS
42538	na	serpentine, carbonate, phlogopite, perovskite, spinel kimberlite	нк	hypabyssal sheet	This rock is strongly altered. In general the olivine are totally replace by a light green mineral (serp ?), only their shape is recognisable. However some fresh olivine macros are observed on some of the chips. Phlog is present in the matrix as large well developed laths, and also as round macrocrysts. However, laths are not as large as above. Most of are brown in colour with some greenish tint. Several of them exhibit zonation patterns. Perovskite is large and more abundant than spinel. Perovskite is uniformly distributed. On some of the chips oxide minerals are observed around the olivine, it seems associated with the olivines that are a bit more fresh. It is not observed on the strongly altered olivines (same observed on the puck). Overall this sample looks similar to the one above.
42539	strongly altered, clay over the feldspar	serpentine, carbonate, phlogopite, perovskite, spinel kimberlite	нк	hypabyssal sheet	This sample is a composite of all the kimberlite chips found in AD-01A-01. Mix of chips, some with lot of oxides (10-15%) and other with less than 5%. Olivine is mostly altered in all the chips. Phlogopites is also present as small laths in some chips and larger laths in other. Olivine are surrounded by brown minerals one some chips and on other by oxides. Both perovskite and spinel are observed.
42540	na	serpentine, carbonate, phlogopite, perovskite kimberlite	HK1	hypabyssal sheet	This sample is quite altered, there is a lot of brown grungy material over most mineral (clay), which makes it hard. Olivine are totally replace by serpentine (clay) and carbonate, however some fresher core are observed locally. Carbonate seems to be found on the outside rims. Small phlogopite laths are observed, but they are less abundant than in the previous samples. They are also really small. Phlogopite macros are commonly observed. Phlogopite in the matrix exhibit zonation patterns and are light green in colours, while the phlogopite macros are brown and also show zonation. Dark mineral (brownish) are observed around the olivines. Oxides are also found around the olivine in some cases, but they do not seems to be forming a rims as what was observed in the other samples. Perovskite are larger than the spinel and seems to be more abundant.

BODY : Stornoway GEOLOGIST:	Adamantin Kimberlites I. Lépine	s DATE: October 2016 SAMPLE TYPE: TS REVIEWER: NA		E: October 2016 PLE TYPE: TS EWER: NA												
							OLIVINE (TS)									
SAMPLE ID / LOCATION	DRILL HOLE	DEPTH (m)	KIMB MINERAL PRESERVATION	COLOUR (HANDSAMPLE)	ICM OR GRD	TEXTURAL CLASS.	SIZE CLASS.	% TOTAL OLV (VE)	%OLVm (VE)	%OLVp (VE)	OLV Replacement Degree	OLV Replacement Type				
42541	AD-01A-01	13	5	dark grey green	GRD	H	f-m	45	15	30	complete	serp and carb				
42542	AD-01A-01	19	5	grey green to brown	GRD	HK	f-m (c)	45	15	30	complete	serp				
42543	AD-01B-01	19	5	grey to brown	GRD	НК	f (m)	45	10	35	complete	serp + carb?				
42544	AD-01B-01	20	5	light grey green to brown	GRD	НК	f (m)	45			complete	serp				

			MINERALOGY	_	KIM ABUNDANCE (SLAB + TS)						
SAMPLE ID / LOCATION	PRIMARY GROUNDMASS MINERALOGY	LATE STAGE MINERALOGY	CPX Locality	CPX Habit	Serpentine Locality	Carbonate Locality	GNT	ILM	СРХ	CHR	CRX LITHOLOGY
42541	serp +carb + phlog + per + sp +ap	serp +carb +cpx?	groundmass	small and elongated	olivine + groundmass	olivine + groundmass	na	na	na	na	na
42542	serp +carb + phlog + oxides	serp + carb	na	na	olivine + groundmass	olivine + groundmass	na	na	na	na	na
42543	carb + serp +phlog + per + sp + ap	serp + carb	na	na	olivine + groundmass	olivine + groundmass	na	tr	na	na	na
42544	serp + carb + phlog + oxides	serp + carb	na	na	olivine + groundmass	olivine + groundmass	na	na	na	na	na

SAMPLE ID / LOCATION	CRX ALTERTION	MINERALOGICAL CLASSIFICATION	Unit_Code	Unit_Code_Comment	COMMENTS
42541	na	serpentine, carbonate, phlogopite, perovskite kimberlite	HK2	hypabyssal sheet	This sample is also quite altered but differ from the one above by the increase of small phlogopite lath. Phlogopite are mainly observed in the groundmass and are green to brown in nature and zonation patterns are observed. Phlogopite macros are not observed. Olivine are fine in general, but coarse macros are observed. Might not be representative of the dyke if we were to see core. Olivines are serpentinised and have core composed of carbonate. Oxides are uniformly distributed and mainly composed of perovskite and spinel? Sometime the oxides seems to align themselves around olivine, but this is not the case for all the chips. Perovskite are large compare to the small squarish spinel.
42542	na	serpentine, carbonate, phlogopite kimberlite	НКЗ	hypabyssal sheet	This sample is quite altered, which makes it hard to see the groundmass mineralogy. Olivines are mainly replace by serpentine. Phlogopite is present in the groundmass, but not as abundant as sample above, more like sample 42540. One possible magmaclast ? (round feature with really fine grained mineral, lots of alteration, looks like there could be phlogopite) Not too sure it's a magmaclast. Again some olivine have oxides on the rim, but not observed on all the chips. Perovskite are large and more abundant than the spinel. Olivine also have really fine grained phlogopite around them ?
42543	na	carbonate, serpentine, phlogopite, perovskite kimberlite	HK1	hypabyssal sheet	Only have one thin section for this sample and it a wedge. Since the chips are not all the same shape and size, there is a lot of chips missing on the section. Olivines are mainly serpentinised to locally replace by carbonate. Rim of brownish material observed on some olivine, some oxide also seem to be located around some of the olivine, but not as well develop as what has been observed so far. Oxide are hard to identify properly, their shape suggest that they are most likely mainly perovskite. Phlogopite laths are abundant in the groundmass and exhibit zonation patter, where the edge seem to be darker brown than their core.
42544	na	serpentine, carbonate, phlogopite and oxide kimberlite	HK1?	hypabyssal sheet	Only have one thin section for this sample and it a wedge. Since the chips are not all the same shape and size, there is a lot of chips missing on the section. Olivine seems to be mostly serpentinised and some have carbonate alteration. Small phlogopite laths are observed, smaller than the sample above. Olivine have brown mineral rims around them (serp? or phlog?). Oxides are less abundant and smaller than above, and their shape suggest perovskite.

BODY : Stornoway GEOLOGIST:	Adamantin Kimberlites I. Lépine	DATE: O SAMPLE REVIEW	ctober 2016 TYPE: TS ER: NA									
									OLI	VINE (TS)		
SAMPLE ID / LOCATION	DRILL HOLE	DEPTH (m)	KIMB MINERAL PRESERVATION	COLOUR (HANDSAMPLE)	ICM OR GRD	TEXTURAL CLASS.	SIZE CLASS.	% TOTAL OLV (VE)	%OLVm (VE)	%OLVp (VE)	OLV Replacement Degree	OLV Replacement Type
42548	AD-17-01	20	4 to 5	grey	GRD	НК	m-c	50	30	20	partial to complete	serp + carb
42549	AD-31-01	18	5	light grey to grey to light brown	GRD	НК	(f) - m (c to vc)	45	20	25	partial to complete	serp + carb

			MINERALOGY		KIM ABUNDANCE (SLAB + TS)						
SAMPLE ID / LOCATION	PRIMARY GROUNDMASS MINERALOGY	LATE STAGE MINERALOGY	CPX Locality	CPX Habit	Serpentine Locality	Carbonate Locality	GNT	ILM	СРХ	CHR	CRX LITHOLOGY
42548	carb + serp +phlog + oxides	serp + carb	na	na	olivine + groundmass	olivine + groundmass	na	na	na	na	granitoids?
42549	carb + serp + phlog + per + ap	serp + carb	na	na	olivine + groundmass	olivine + groundmass	na	1	na	na	granitoids

SAMPLE ID / LOCATION	CRX ALTERTION	MINERALOGICAL CLASSIFICATION	Unit_Code	Unit_Code_Comment	COMMENTS
42548	strongly altered	carbonate, serpentine, phlogopite kimberlite	НК	hypabyssal sheet	Macroscopically this rock looks more like a typical HK. Olivine macros can be big. Olivines (macros and phenos) are strongly altered mostly to serpentine and locally to carbonate, some fresher part of the olivine are preserved on the bigger macrocrysts. Locally, oxides are partly replacing some of the olivine macros, they are found mainly in their cracks. Up to 15% oxides are observed in the matrix, it is hard to confidently tell if they are spinel or perovskite. Their shape seems to suggest that perovskite is dominant over spinel. Perovskite is also larger than the spinel. Phlogopite is present as both mineral in the groundmass and as macrocrysts. In the groundmass they are small and elongated and exhibit weak zonation patterns. They are colourless, to green to brown. Phlogopite macros are mostly brown (some greenish tint also observed) and also show some week zonation pattern.
42549	strongly altered	carbonate, serpentine, phlogopite, perovskite kimberlite	НК	hypabyssal sheet	Macroscopically the chips show some size different on the same chips where the coarse olivines are on one side and the fine grained olivine are on the other side. Sorting? Edge of dyke? This is also possibly observed under the petrographic microscope, but I am not totally convinced. Several ilmenite are observed in both the chips samples and under the microscope. Olivines can be coarse to very coarse, but are mainly medium grained. They are altered to serpentine and carbonate, but some fresh portion are still observed on the larger olivines. Some of them are surrounded by oxide and are also infilled by oxides in their cracks. Red mineral alteration is observed on the olivine under the binocular and the petrographic microscope (not too sure what it is). Phlogopite is found in the groundmass as small elongated laths as well as in the matrix as large round macrocrysts. Zonation is observed on the large phlog macros but it is not as obvious for the small laths in the groundmass. Perovskite seem to be dominating over the spinel in both size and abundance. Bob Barnett is suggesting a crater facies here, but I do not see any broken olivines, or other texture suggesting that. I can also see phenocrysts olivines, they are strongly altered and their edge sometime replace by oxide, but I can still see the euhedral shape. However, there are some chips, where all the mineral are extremely fine grained and almost no olivine are observed. This rock is complex.

BODY : Stornoway GEOLOGIST:	Adamantin Kimberlites I. Lépine	DATE: O SAMPLE REVIEW	ctober 2016 TYPE: TS ER: NA										
							OLIVINE (TS)						
SAMPLE ID / LOCATION	DRILL HOLE	DEPTH (m)	KIMB MINERAL PRESERVATION	COLOUR (HANDSAMPLE)	ICM OR GRD	TEXTURAL CLASS.	SIZE CLASS.	% TOTAL OLV (VE)	%OLVm (VE)	%OLVp (VE)	OLV Replacement Degree	OLV Replacement Type	
42550	AD-50-01	17	4	grey to grey green	GRD	НК	m-c (vc)	45	25	20	fresh to complete	serp	
42551	AD-50-02	22	4	grey	GRD	НК	f-m (c)	45	15	30	complete to partly fresh	serp	
42552	AD-50-02	16	4 to 5	grey to dark grey	GRD	нк	f-m (c)	30	15	15	complete to partly fresh	serp	

			MINERALOGY		KIM ABUNDANCE (SLAB + TS)						
SAMPLE ID / LOCATION	PRIMARY GROUNDMASS MINERALOGY	LATE STAGE MINERALOGY	CPX Locality	CPX Habit	Serpentine Locality	Carbonate Locality	GNT	ILM	СРХ	CHR	CRX LITHOLOGY
42550	carb + serp + phlog + per + sp+ mont? + pect	serp + carb?	na	na	olivine + groundmass	groundmass	na	na	na	na	na
42551	carb + serp + phlog + per + sp + ap? + pect	serp + carb	na	na	olivine + groundmass	groundmass	na	na	na	na	na
42552	carb + serp + phlog + per + sp + pect	serp + carb	na	na	olivine + groundmass	groundmass	na	na	na	na	na

SAMPLE ID / LOCATION	CRX ALTERTION	MINERALOGICAL CLASSIFICATION	Unit_Code	Unit_Code_Comment	COMMENTS
42550	na	carbonate, serpentine, phlogopite, perovskite, spinel and monticellite kimberlite	НК	hypabyssal sheet	This is a composite sample of all the chips in this drill hole: Macroscopically the chips looks quite similar, but under the petrographic microscope there is a bit more variations, essentially the olivine alterations, the amount and possible type of oxides and also the abundance of phlogopite, both for the groundmass and macrocrysts. Generally the olv are serpentinised and have some core that are preserved and fresh. Oxides are found in the olivines, around the olivines and sometimes almost totally replacing the olivines (it vary from chips to chips). Phlog in the groundmass are variably large to small and on some chips poikilitic texture are observed. Phlog macrocrysts seems to be present in each chips. Weak zoning of the phlog is observed. Perovskite seems to be in greater abundance than spinel. Round monticellite grains are observed around some olivine, but not in all chips. Pectolite is also observed and is develop in array (rosette).
42551	na	carbonate, serpentine phlogopite, perovskite spinel kimberlite	нк	hypabyssal sheet	This is a composite sample of all the chips in this drill hole: There is a variation of chips in this hole, with some chips containing lots of large phlog and some with smaller phlog in the groundmass. For most chips the olv are altered to serpentine and some have preserved fresh core. Most of the olv have a certain degree of oxide replacement, from only on the rim to disseminated inside to totally replace the olv. Phlog is present in all chips in both the groundmass and as phenocryst. When they are in the groundmass that can be really large with poikilitic texture to fairly small. Most of the time both the phlog in the groundmass and as phenocrysts exhibit zonation pattern. Perovskite seems to be more abundant than spinel and also largest in size. Pectolite is observed and seems to be more abundant the in the previous thin section.
42552	na	carbonate, serpentine phlogopite, perovskite spinel kimberlite	HK1	hypabyssal sheet	What characterised this intersection is the size of the large zoned phlog laths in the groundmass. Another thing to notice is the presence of large lath of pectolite (nice rosettes). They are quite abundant. Olv are either strongly replace by serp or fresh. Large olv seems to be more fresh than the small one. Olivine are also characterised by the presence of oxides on their rims, core or cracks. Some of them are locally strongly replace by oxide. Perovskite is more abundant than spinel and also larger. One calcite vein was also observed.

Stornoway GEOLOGIST:	l. Lépine	SAMPLE REVIEW	ETYPE: TS ER: NA													
							OLIVINE (TS)									
SAMPLE ID / LOCATION	DRILL HOLE	DEPTH (m)	KIMB MINERAL PRESERVATION	COLOUR (HANDSAMPLE)	ICM OR GRD	TEXTURAL CLASS.	SIZE CLASS.	% TOTAL OLV (VE)	%OLVm (VE)	%OLVp (VE)	OLV Replacement Degree	OLV Replacement Type				
42553	AD-50-02	19	4 to 5	grey	GRD	НК	f-m (c to vc)	45	25	20	partly fresh to complete	serp				
42554	AD-50-02	18	4 to 5	dark grey	GRD	нк	f-m (c to vc)	45	25	20	fresh to completely	serp				
42555	AD-50-02	25	4 to 5	dark grey to brown	GRD	НК	c (vc)	40?	25?	15?	partly fresh to completely	serp				
42560	AD-51-01	28	7	light grey	RFW	BRECCIA	na	na	na	na	na	na				
42556	AD-51-01	13	4 to 5	grey	GRD	нк	f-m (c)	45	25	20	complete	serp				

Adamantin

			MINERALOGY		к	IM ABU (SLAE	INDANC 3 + TS)	E			
SAMPLE ID / LOCATION	PRIMARY GROUNDMASS MINERALOGY	LATE STAGE MINERALOGY	CPX Locality	CPX Habit	Serpentine Locality	Carbonate Locality	GNT	ILM	СРХ	CHR	CRX LITHOLOGY
42553	carb + serp + phlog +per + sp +ap? + mont?	serp + carb + cpx?	groundmass	small lath, chubby	olivine + groundmass	groundmass	na	na	na	na	na
42554	carb + serp + phlog +per +sp + pect	serp + carb	na	na	olivine + groundmass	groundmass	na	na	na	na	na
42555	carb + serp +phlog + mont? + apatite? + per + sp	serp + carb	na	na	olivine + groundmass	groundmass	na	na	na	na	na
42560	na	na	na	na	na	na	na	na	na	na	granite
42556	carb + serp? + phlog + per + sp + pect? +mont	serp + carb	na	na	olivine + groundmass	groundmass	na	na	na	na	na

SAMPLE ID / LOCATION	CRX ALTERTION	MINERALOGICAL CLASSIFICATION	Unit_Code	Unit_Code_Comment	COMMENTS					
42553	na	carbonate, serpentine phlogopite, perovskite, spinel apatite? monticellite? kimberlite	HK2	hypabyssal sheet	This rock looks different than in the intersection above, where fresh olivines are more abundant and phlog in the groundmass are quite large and have poikilitic textures. They are hard to see in natural light, but you can see them really easily under polarised light. Large olv macros are easily observed when compare to the TS above. Olv are serpentinised with several of them showing fresh preserved core. Oxides are found by order of abundance within the olv and on their rims. Locally some olv seem to have been almost totally replace by oxide. Zoning pattern around the olv seems to be a bit harder to identify. No phlog macros were observed. Perovskite is >= to spinel, but seem to be larger in size. Spinel is more abundant than in the TS above. There is a high relief minerals present abundantly in the groundmass (apatite and or monticellite). No pectolite observed in the TS.					
42554	na	carbonate, serpentine phlogopite, perovskite, spinel kimberlite	HK1	hypabyssal sheet	similar to sample 42552. Pectolite is present. Phlog macros are present. Fresh olv are abundant. Per are larger and more abundant than sp.					
42555	na	carbonate, serpentine phlogopite, perovskite, spinel apatite? monticellite? kimberlite	HK2	hypabyssal sheet	similar to sample 42553. Lots of high refringence colourless mineral (round) monticellite. Also characterised by large lath of poikilitic phlog. Some chips are more similar than 42554, but overall looks like 42553. This sample is marked by the presence of very large olv macro, which makes it hard to look in the groundmass, as most of the chips are olivines. Monticellite ? seems to be associated with the olivines, they are other around them, but they are also disseminated in the groundmass.					
42560	fresh	Breccia	вх		This is a composite sample of all the chips in this drill hole: This rock is a breccia, with fresh quartz, plagioclase and feldspar set in a matrix of really fine grained material (can't properly identify it) possible chlorite and other mineral. Square oxide (possible pyrite) are observed in the matrix. The fragments in the matrix are angular and vary in size from >6mm to < 1mm. Clearly a breccia, but no olv that could indicate a kimberlitic origin.					
42556	na	carbonate, serpentine? Phlogopite, perovskite, spinel monticellite? kimberlite	НК	hypabyssal sheet	This is a composite sample of all the chips in this drill hole: Not a lot of chips to observed. mix of chips, but the kimberlite with large poikilitic phlog is present as well as the one with smaller phlog. Olivine is mostly altered. Perov > spinel in % and size. The chips are strongly altered. High refringence colourless mineral present and have the same shape as what I called earlier monticellite, but this time it is more altered. Possible pectolite also observed.					

	Adamantin	
BODY :	Kimberlites	DATE: October 2016
Stornoway		SAMPLE TYPE: TS
GEOLOGIST:	I. Lépine	REVIEWER: NA

									OLI	VINE (TS)		
SAMPLE ID / LOCATION	DRILL HOLE	DEPTH (m)	KIMB MINERAL PRESERVATION	COLOUR (HANDSAMPLE)	ICM OR GRD	TEXTURAL CLASS.	SIZE CLASS.	% TOTAL OLV (VE)	%OLVm (VE)	%OLVp (VE)	OLV Replacement Degree	OLV Replacement Type
42557	AD-51-01	7	4 to 5	light grey to grey green	GRD	нк	m (c to vc)	50	30	20	complete	serp + clay?
42558	AD-51-01	11	5	light green to brown	GRD	нк	f (m)	?	?	?	complete	serp +clay
42559	AD-51-01	13	4 to 5	light grey to grey	GRD	нк	f-m (c)	50	30	20	complete	serp + clay?
42561	AD-52-01	9	4 to 5	grey to grey green	GRD	НК	f-m (c)	45	25	20	partly fresh to complete	serp
42562	AD-52-01	7	4 to 5	grey	GRD	НК	f-m (c)	45	30	15	complete	serp

			MINERALOGY	_		к	IM ABU (SLAE	INDANC B + TS)	E		
SAMPLE ID / LOCATION	PRIMARY GROUNDMASS MINERALOGY	LATE STAGE MINERALOGY	CPX Locality	CPX Habit	Serpentine Locality	Carbonate Locality	GNT	ILM	СРХ	CHR	CRX LITHOLOGY
42557	serp + phlog + per +sp +pect	serp +carb +cpx?	na	na	olivine + groundmass	on minerals	na	na	na	na	na
42558	serp + phlog + per + sp	serp +clay	?		olivine + groundmass	?	na	na	na	na	na
42559	carb + serp + phlog + per + sp + ap + pect	serp + clay? + cpx	groundmass	elongated and square	olivine + groundmass	groundmass	na	oresen	na	na	na
42561	carb + serp + phlog + per + sp +mont? + pect?	serp + carb	na	na	olivine + groundmass	groundmass + on some minerals	na	na	na	na	na
42562	carb + serp + phlog + per + sp	serp + cpx	matrix	elongated	olivine + groundmass	groundmass	na	na	na	na	na

SAMPLE ID / LOCATION	CRX ALTERTION	MINERALOGICAL CLASSIFICATION	Unit_Code	Unit_Code_Comment	COMMENTS
42557	na	serpentine, phlogopite, perovskite, spinel kimberlite	HK2	hypabyssal sheet	This rock is different as I cannot seem to find carbonate in the groundmass, not well formed mineral as in previous samples. It was observed but is not abundant when compare to previous sample. Strange?. Only secondary carbonate not primary. Olivine are serpentinised, and are partly replace by oxide in some area. No well develop oxide rims are observed. Phlogopite is abundant in the ground mass, is poikilitic and is similar to what has been observed in other hole (42555), except that the phlog is not as large this time. No large macros are observed. Perovskite > than spinel in percentage and size. Pectolite? is observed
42558	na	serpentine, phlogopite, perovskite, spinel kimberlite	FWR	hypabyssal sheet	These chips are really strongly altered and it is hard to identify the minerals. There is a lot of phlogopite in the rock and they olivine are so altered that they are hard to see, hence to low confidence. Large poikilitic phlog are observed in the groundmass. Olv are serpentinised. Perov > sp. High refringence and birefringence mineral observed, could this be a cpx?
42559	na	carbonate, serpentine, phlogopite, perovskite, spinel kimberlite	HK1	hypabyssal sheet	Olivine are serpentinised and contains oxide inside and in their cracks. Oxide rims around the olivine are present, but not well develop or abundant. Phlog is present in groundmass and as macrocrysts. They are zoned. Phlog macros are abundant. Groundmass phlog are small and elongated, but are no like the poikilitic phlog observed above. Per > Sp both in size and percentage.
42561	na	carbonate, serpentine, phlogopite, perovskite, spinel monticellite kimberlite	НК	hypabyssal sheet	This is a composite sample of all the chips in this drill hole: The degree of alteration on these chips vary from one chip to the other, from fresh to strongly replace by serpentine. Oxides are found in the olivine, on their rim, in their cracks and sometime partly to totally replace them. Phlog is both in the groundmass and has macrocrysts. In the ground mass they vary from small and elongated to poikilitic and elongated. Per > sp in both % and size. Monticellite is more present when the olv are fresh. Similar to what has been observed in AD-50 and AD-51.
42562	na	carbonate, serpentine, phlogopite, perovskite, spinel kimberlite	HK1	hypabyssal sheet	This interval is characterised by the presence of really small phlog in the groundmass, which give a brown appearance of the thin section. The groundmass phlog can be bigger on some chips with a weak poikilitic texture (not as developed as what have been observed in some of the sample above). Phlog is present in both the groundmass and as macrocryst. Both types of phlog are zones. Per > sp in percentage and size. Olv are serpentised and have oxides on their rims, and inside them. On some of the olv the oxides rims are well develop, but this is not a common feature of all the chips.

	Adamantin	
BODY :	Kimberlites	DATE: October 2010
Stornoway		SAMPLE TYPE: TS
GEOLOGIST:	I. Lépine	REVIEWER: NA

									OLI	VINE (TS)		
SAMPLE ID / LOCATION	DRILL HOLE	DEPTH (m)	KIMB MINERAL PRESERVATION	COLOUR (HANDSAMPLE)	ICM OR GRD	TEXTURAL CLASS.	SIZE CLASS.	% TOTAL OLV (VE)	%OLVm (VE)	%OLVp (VE)	OLV Replacement Degree	OLV Replacement Type
42563	AD-52-01	11	4 to 5	grey	GRD	НК	f-m (c)	45	25	20	fresh to complete	serp
42564	AD-52-02	14	4 to 5	grey green to brown	GRD	НК	f-m (c)	45	25	20	fresh to complete	serp + carb
42565	AD-52-02	7	na	light grey	FWR	BRECCIA	na	na	na	na	na	na
42566	AD-52-02	8	4 to 5	grey brown	GRD	НК	f-m (c)	45	25	20	complete	serp
42567	AD-52-02	11	3 to 5	grey	GRD	НК	f-m (c)	45	25	20	fresh to complete	serp

			MINERALOGY		к	IM ABU (SLAE	INDANC 3 + TS)	E			
SAMPLE ID / LOCATION	PRIMARY GROUNDMASS MINERALOGY	LATE STAGE MINERALOGY	CPX Locality	CPX Habit	Serpentine Locality	Carbonate Locality	GNT	ILM	СРХ	CHR	CRX LITHOLOGY
42563	serp + carb + phlog + per + sp	serp + carb? + cpx?	matrix	elongated	olivine + groundmass	groundmass + on some minerals	na	na	na	na	na
42564	carb + serp + phlog + per + sp + mont? + ap + pect?	serp + carb + cpx?	matrix	stubby	olivine + groundmass	olivine + groundmass	na	na	na	na	na
42565	na	na	na	na	na	na	na	na	na	na	na
42566	carb + serp + phlog + oxides	serp + carb	na	na	olivine + groundmass	olivine + groundmass	na	oresen	na	na	na
42567	carb + serp + phlog +per + sp +mont? + ap?	serp	na	na	olivine + groundmass	groundmass	na	oresen	na	na	na

SAMPLE ID / LOCATION	CRX ALTERTION	MINERALOGICAL CLASSIFICATION	Unit_Code	Unit_Code_Comment	COMMENTS
42563	na	serpentine, carbonate, phlogopite perovskite spinel kimberlite	HK2?	hypabyssal sheet	Olivine are mostly serpentinised and possible have some calcite replacement as well (?) but some of the biggest macros are fresh. Oxides are found around olv, in their cracks, and sometime totally replacing them. Phlogopite are mainly found in the groundmass and locally a few possible macrocryst were observed. They are large poikilitic laths with oxides as inclusions. Per >= sp in % and size. Similar to the samples with poikilitic texture above.
42564	na	carbonate, serpentine, phlogopite perovskite spinel monticellite? kimberlite	нк	hypabyssal sheet	This is a composite sample of all the chips in this drill hole: There are two different looking chips on this thin section. The olivine vary from fresh to replace by serpentine and locally by carbonate. They have oxides on their rims, inside them or totally replacing them. Some of the chips have large poikilitic phlog laths in the groundmass while other have small phlog lath in the groundmass. It looks like the phlog macro are only present on the chips where the phlog is small in the matrix. For most of the chips per>sp in both shape and percentage.
42565	na	na	вх	Breccia	This rock is a breccia, with moderately fresh quartz, plagioclase and feldspar set in a matrix of really fine grained material (can't properly identify it) possible chlorite and other mineral. Some calcite alteration is observed on some of the feldspars. The fragments in the matrix are angular and vary in size from >6mm to < 1mm. Clearly a breccia, but no olv that could indicate a kimberlitic origin.
42566	na	carbonate, serpentine, phlogopite kimberlite	HK1	hypabyssal sheet	Olivine are mainly serpentinised and locally some calcite replacement is observed. They are commonly surrounded by oxides (nice thin rim), and locally the oxides starts to replace them totally. Oxide rims are more common. Phlogopite is observed as both macrocrysts and also as groundmass minerals. Both show complex zonation patterns. I have a hard time identifying the main oxides, but the shape suggest it is per>sp.
42567	na	carbonate, serpentine, phlogopite, perovskite, spinel monticellite? Kimberlite	HK2	hypabyssal sheet	Lots of fresh olv, more than I expected after looking at the remaining chips on the puck. Olv are fresh to strongly replace by serpentine. They also have oxides on the their rim, inside their cracks and when more altered almost totally replace by it. This intersection is characterised by large poikilitic phlog laths. Phlog macros are not observed. Per>sp in both % and size.

	Adamantin	
BODY :	Kimberlites	DATE: October 2016
Stornoway		SAMPLE TYPE: TS
GEOLOGIST:	I. Lépine	REVIEWER: NA

				OLIVINE (TS)								
SAMPLE ID / LOCATION	DRILL HOLE	DEPTH (m)	KIMB MINERAL PRESERVATION	COLOUR (HANDSAMPLE)	ICM OR GRD	TEXTURAL CLASS.	SIZE CLASS.	% TOTAL OLV (VE)	%OLVm (VE)	%OLVp (VE)	OLV Replacement Degree	OLV Replacement Type
42568	AD-52-02	13	4 to 5	grey green	GRD	НК	f-m (c)	45	25	20	complete	serp
42569	AD-52-02	19	4 to 5	grey green	GRD	НК	f	40	25	15	complete	serp
42570	AD-52-03	11	4 to 5	grey green to brown	GRD	НК	f-m (c)	45	25	20	complete to partial	serp + carb

			MINERALOGY		KIM ABUNDANCE (SLAB + TS)						
SAMPLE ID / LOCATION	PRIMARY GROUNDMASS MINERALOGY	LATE STAGE MINERALOGY	CPX Locality	CPX Habit	Serpentine Locality	Carbonate Locality	GNT	ILM	СРХ	CHR	CRX LITHOLOGY
42568	carb + serp + phlog + per + sp	serp+ carb?	na	na	olivine + groundmass	groundmass and on some minerals	na	na	na	na	na
42569	carb + serp +phlog + per +sp	serp +cpx	groundmass	elongated	olivine + groundmass	groundmass	na	na	na	na	na
42570	carb +serp + phlog + per + sp + pect? + ap?	serp +carb	na	na	olivine + groundmass	olivine + groundmass	na	na	na	na	na

SAMPLE ID / LOCATION	CRX ALTERTION	MINERALOGICAL CLASSIFICATION	Unit_Code	Unit_Code_Comment	COMMENTS
42568	na	carbonate, serpentine, phlogopite, perovskite, spinel kimberlite	HK2	hypabyssal sheet	strongly altered rock. Olv are totally replace by serp. Some of them are surrounded by tiny oxides minerals, while other have oxides inside or along their cracks. Locally they are mostly replace by oxide. Phlog is elongated to squarish poikilitic and found in the groundmass. Like the TS above, the phlog macros are harder to see, if not totally absent. It looks like per>sp in size, but I am not too sure in abundance here, it might be equal or even slightly less.
42569	na	carbonate, serpentine, phlogopite, perovskite, spinel kimberlite	HK1	hypabyssal sheet	strongly altered chips. Olv are totally replace by serp. Oxides are inside along their cracks and sometime totally replacing them. Some of them are marked by nice little oxides along their rim. Phlog are now really small in the groundmass, no large poikilitic lath like above. Also they are found as macrocryst. They all exhibit nice zonation patter. Are we not seeing the large lath because they are perpendicular to the thin section? Per > sp in both size and percentage. Some pectolite are observed
42570	na	carbonate, serpentine, phlogopite, perovskite spinel kimberlite	нк	hypabyssal sheet	This is a composite sample of all the chips in this drill hole: There are two types of chips in this thin section, on with poikilitic phlogopite and the other with small phlogopite. The one with smaller phlogopite seems to have phlogopite macros that are easier to identify (or see). Olivines are strongly altered to serpentine, some of them might show relict of fresh olivines. Several of them have started to been replace by carbonate. Olivines are marked by the presence of oxides either on the rims, inside them or on their cracks. Some of the smallest olv have been almost totally replace by oxide. Phlog is observed in both the groundmass and as macros. When large they are poikilitic and no macros are observed, when small macros are observed. Most of the time the phlog are showing complex zonation patterns. Per > sp in both size and abundance. Overall these chips look like what has been observed in AD-52 so far.

BODY : Stornoway GEOLOGIST:	Adamantin Kimberlites I. Lépine	DATE: O SAMPLE REVIEW	ctober 2016 TYPE: TS ER: NA									
									OLIV	VINE (TS)		
SAMPLE ID / LOCATION	DRILL HOLE	DEPTH (m)	KIMB MINERAL PRESERVATION	COLOUR (HANDSAMPLE)	ICM OR GRD	TEXTURAL CLASS.	SIZE CLASS.	% TOTAL OLV (VE)	%OLVm (VE)	%OLVp (VE)	OLV Replacement Degree	OLV Replacement Type
42571	AD-52-03	7	4 to 5	grey to brown	GRD	НК	f-m (c)	45	25	20	complete	serp + carb
42572	AD-52-03	10	5	brown	GRD	НК	f (c)	?	?	?	fresh to complete	serp + carb
42573	AD-52-03	13	4 to 5	grey	GRD	НК	f-m	45	25	20	fresh to complete	serp
42574	AD-52-03	27	4 to 5	brown to grey	GRD	НК	f-m?	?	?	?	fresh to complete	serp

		MINERALOGY									
SAMPLE ID / LOCATION	PRIMARY GROUNDMASS MINERALOGY	LATE STAGE MINERALOGY	CPX Locality	CPX Habit	Serpentine Locality	Carbonate Locality	GNT	ILM	СРХ	CHR	CRX LITHOLOGY
42571	carb +serp + phlog + per + sp + pect? + ap?	serp + carb + cpx?	alteration around CR and olv	small elongated needles	olivine + groundmass	olivine + groundmass	na	na	na	na	na
42572	carb? + serp? + phlog + per + sp	serp + carb + cpx?	alteration in the groundmass?	elongated and stubby	olivine + groundmass?	olivine + groundmass?	na	oresen	na	na	na
42573	car + serp + phlog + per + sp + pect?	serp + carb?	na	na	olivine + groundmass	olivine + groundmass	na	na	na	na	na
42574	carb + serp + phlog + per + sp	serp	na	na	olivine + groundmass	groundmass	na	na	na	na	na

SAMPLE ID / LOCATION	CRX ALTERTION	MINERALOGICAL CLASSIFICATION	Unit_Code	Unit_Code_Comment	COMMENTS
42571	na	carbonate, serpentine, phlogopite, perovskite spinel kimberlite	HK1	hypabyssal sheet	What is interesting with this is that most of the chips have small phlog, but one of the chips seems to have a sharp contact where on one side the phlog are really small and on the other side the phlog are getting larger (not as large as the big one with poikilitic texture, but sort of in between). Where the small phlog are observed, it looks like the phlog macros are easier to observed. The two zone are separated by a calcite veins. So is this an indication that it is two phases between the large and small phlog? Other wise the majority of the chips (except 2) all have small phlog. The olv are serpentinised with oxides on their rims. Locally they are also starting to be replace by carbonate. Oxides are also found on their cracks, and sometime almost replacing them entirely. Phlog is fine in the groundmass, and phlog macros are common. Phlog are zoned. Per > sp in both size and percentage.
42572	na	carbonate, serpentine, phlogopite, perovskite spinel kimberlite	HK1?	hypabyssal sheet	Strongly altered chips, hard to see well. Lots of stubby phlogopite, some small some starting to be bigger and getting a poikilitic texture. Olv are strongly altered to serp on most chips, but on a few chips they are fresh. Phlog is present as both macros and in the groundmass. This is a confusing thin section. Per > sp as usual. The groundmass seems to be mostly phlog that are zoned.
42573	na	carbonate, serpentine phlogopite, perovskite spinel kimberlite	HK2	hypabyssal sheet	Were back to the kimberlite where there is large poikilitic phlogopite in the groundmass. Olivine vary from fresh to strongly replace by serp with some locally have carbonate alteration. They are oxides either on their rims or inside or in their cracks. Phlog are poikilitic, elongated and large in the groundmass and phlog macros are not seen. Phlog is also zoned. Per >= sp in both size and abundance.
42574	na	carbonate, serpentine phlogopite perovskite spinel kimberlite	HK2	hypabyssal sheet	Only have one thin section to look at and it is the wedge?? Olivine are fresh to serpentine and oxides in the cracks and sometimes around their rims (not as well develop as what we have seen above). The groundmass has stubby fairly large poikilitic phlog. Not as well develop as the previous thin section. Per > sp as above. Possible lath, radial of pectolite observed.

BODY : Stornoway GEOLOGIST:	Kimberlites I. Lépine	DATE: O SAMPLE REVIEW	ctober 2016 TYPE: TS ER: NA									
									OLIV	VINE (TS)		
SAMPLE ID / LOCATION	DRILL HOLE	DEPTH (m)	KIMB MINERAL PRESERVATION	COLOUR (HANDSAMPLE)	ICM OR GRD	TEXTURAL CLASS.	SIZE CLASS.	% TOTAL OLV (VE)	%OLVm (VE)	%OLVp (VE)	OLV Replacement Degree	OLV Replacement Type
42575	AD-59-01	11	4 to 5	grey	GRD	НК	f-m (c)	45	25	20	complete	serp + carb
42576	AD-59-01	7	5	grey	GRD	НК	f	45	25	20	complete	serp + carb
42577	AD-59-01	10	3 to 5	grey	GRD	НК	f-m	45	25	20	fresh to complete	serp
42578	AD-60-01	10	4 to 5	grey to brown	GRD	НК	f-m	45	25	20	complete	serp +carb
42579	AD-60-01	14	4 to 5	grey	GRD	нк	f-m	45	25	20	fresh to complete	serp + carb

Adamantin

			MINERALOGY	KIM ABUNDANCE (SLAB + TS)							
SAMPLE ID / LOCATION	PRIMARY GROUNDMASS MINERALOGY	LATE STAGE MINERALOGY	CPX Locality	CPX Habit	Serpentine Locality	Carbonate Locality	GNT	ILM	СРХ	CHR	CRX LITHOLOGY
42575	carb + serp + phlog + per + sp	serp +cpx	groundmass	elongated needles	olivine + groundmass	olivine + groundmass	na	na	na	na	na
42576	carb + serp? + phlog + per + sp	serp + carb + cpx?	matrix as alteration	really fined grained (microcrystalli ne?)	olivine + groundmass	olivine + groundmass	na	na	na	na	na
42577	carb + serp + phlog +per + sp + mont?	serp + carb + cpx?	groundmass	large	olivine + groundmass	groundmass	na	na	na	na	na
42578	carb + serp? + phlog + per +sp	serp + carb+ cpx?	groundmass	small needles	olivine + groundmass?	olivine + groundmass	na	na	na	na	na
42579	carb + serp? + phlog + per + sp + ap + mont?	serp +carb + cpx?	groundmass	small needles	olivine + groundmass?	olivine + groundmass	na	na	na	na	na

SAMPLE ID / LOCATION	CRX ALTERTION	MINERALOGICAL CLASSIFICATION	Unit_Code	Unit_Code_Comment	COMMENTS
42575	na	carbonate (serpentine) phlogopite perovskite, spinel kimberlite	НК	hypabyssal sheet	This is a composite sample of all the chips in this drill hole: Variable degree of alteration of the olivines from replace by serpentine to replace by carbonate. Olv are marked by oxides on their rims, or inside filling fractures, sometimes almost replacing them when the olv are smalls. What is different in this intersection is the large pools of carbonate in the groundmass, that was not as define in the AD-50s holes. Phlogopite is present as mostly really small laths in the groundmass, when larger they almost look like they show flow texture (they might be curved around olv). Could the large one be phlog macros? Oxides are hard to identify, but from their shape it looks like they are mostly per with lesser sp. Perovskite atoll texture with center of sp?
42576	na	carbonate (serpentine) phlogopite perovskite, spinel kimberlite	HK1	hypabyssal sheet	Olv are replace by serp and carb, mainly serp. They are surrounded by oxides. Oxides can also replace them partly to totally when they are small. Oxides found on the fractures. Small phlog is observed in the groundmass, they are showing some flow texture? Phlog macros are observed. Phlog are zoned. Hard to identify oxide, but it looks like per > sp. What characterised this rock is the large amount of carb in the groundmass.
42577	na	carbonate (serpentine) phlogopite perovskite, monticellite? spinel kimberlite	HK1	hypabyssal sheet	Lots of carbonate in the groundmass, quite disdainful. Olivine vary from partly fresh to strongly replace by serp. Oxides are often found around them or along their fractures. Phlog are found in the groundmass as small to long laths. Phlog macros are observed. No big poikilitic texture as in AD-50s. Per > sp
42578	na	carbonate (serpentine) phlogopite perovskite, spinel kimberlite	HK1	hypabyssal sheet	Only one thin section available. Marked by the abundance of carbonate in the groundmass. Olv are replace by serpentine and sometime (rare) by carbonate. They are also marked by small oxides on their rim, and along their fractures. Small elongated lath of phlog are found in the matrix. Phlog is also observed as macros. Phlog is usually zoned. Per > sp.
42579	na	carbonate (serpentine) phlogopite monticellite? perovskite, spinel kimberlite	HK1	hypabyssal sheet	similar to above but the phlog might be coarser, but they show the same criss-cross pattern. Olv are altered to serp and locally carbonate. Oxides replace partly to almost totally the kimberlite. Some olv have a brownish to green-brown mineral around them (serp / clay/cpx?? /phlog) Phlog is found in the groundmass and as macros. Per > sp in %, their size seems similar.

	Adamantin	
BODY :	Kimberlites	DATE: October 2010
Stornoway		SAMPLE TYPE: TS
GEOLOGIST:	I. Lépine	REVIEWER: NA

				OLIVINE (TS)								
SAMPLE ID / LOCATION	DRILL HOLE	DEPTH (m)	KIMB MINERAL PRESERVATION	COLOUR (HANDSAMPLE)	ICM OR GRD	TEXTURAL CLASS.	SIZE CLASS.	% TOTAL OLV (VE)	%OLVm (VE)	%OLVp (VE)	OLV Replacement Degree	OLV Replacement Type
42580	AD-60-01	16	4 to 5	brown	GRD	НК	f-m	40	20	20	complete	serp
42581	AD-60-02	16	4 to 5	brown	GRD	НК	f-m (c)	40	20	20	complete with rare fresh remnant	serp + carb
42582	AD-60-02	11	4 to 5	grey to brown	GRD	НК	f-m	?	?	?	complete	serp
42853	AD-60-02	13	4 to 5	grey	GRD	НК	f-m (c)	45	25	20	complete	serp + carb?
42584	AD-60-02	18	3 to 5	no slab	GRD	НК	f-m	40	20	20	fresh to complete	serp

			MINERALOGY		KIM ABUNDANCE (SLAB + TS)						
SAMPLE ID / LOCATION	PRIMARY GROUNDMASS MINERALOGY	LATE STAGE MINERALOGY	CPX Locality	CPX Habit	Serpentine Locality	Carbonate Locality	GNT	ILM	СРХ	CHR	CRX LITHOLOGY
42580	carb + serp + phlog +per + sp	serp +carb + cpx?	groundmass	small needles	olivine + groundmass?	groundmass	na	na	na	na	na
42581	carb + (serp?) + phlog + per + sp + pect?	serp + cpx? + carb?	groundmass	small needles	olivine + groundmass?	olivine? + groundmass	na	na	na	na	na
42582	carb + serp? + phlog + per + sp	serp	na	na	olivine + groundmass?	groundmass	na	na	na	na	na
42853	carb + (serp?) + phlog + per + sp	serp + cpx? + carb?	groundmass	small needles	olivine + groundmass?	olivine? + groundmass	na	na	na	na	na
42584	carb + (serp?) + phlog + per + sp	serp + cpx?	groundmass	small needles	olivine + groundmass?	groundmass	na	na	na	na	na

SAMPLE ID / LOCATION	CRX ALTERTION	MINERALOGICAL CLASSIFICATION	Unit_Code	Unit_Code_Comment	COMMENTS
42580	na	carbonate (serpentine) phlogopite perovskite, spinel kimberlite	HK1	hypabyssal sheet	Abundant carbonate in the groundmass is a characteristic of this kimberlite. Olv are serpentinised, with oxides mainly in their fractures. They are marked by a brown rims of really fine grained minerals (phlog? / cpx? / clay), the brown rims is the same colour as the phlog in the groundmass. Phlog in the groundmass is present as really small lath. Phlog is also observed as macrocrysts. Per >> sp
42581	na	carbonate (serpentine) phlogopite perovskite, spinel kimberlite	нк	hypabyssal sheet	This is a composite sample of all the chips in this drill hole: only one thin section available. Marked by the abundance of carbonate in the groundmass. Olv are replace by serpentine and sometime (rare) by carbonate. In the olv the oxides are mainly observed along their fractures, they are also found on their rim, but not as develop as what observed in other example, except for a few chips. Phlog in the ground mass is either small and in a criss-cross pattern on some chips, while on other they are bigger and stubbier and are also poikilitic. Phlog are also zoned. are these the same unit?? Phlog macros do not seems as obvious. Or is it due to time of cooling. Per > sp.
42582	na	carbonate (serpentine) phlogopite perovskite, spinel kimberlite	HK1	hypabyssal sheet	only one thin section and the chips are too thin to make a good identification. Look similar to what has been observed so far for AD-60-01. Mainly carbonate in the groundmass with phlog in criss-cross pattern.
42853	na	carbonate (serpentine) phlogopite perovskite, spinel kimberlite	HK1	hypabyssal sheet	Only one chips is different from the other on this sample (This chips has large poikilitic phlog), other all the chips have small phlog in the groundmass. Olv are serp to locally possible replace by carb. They are marked by the presence of oxide on their fractures and some also have oxide rims. Some of the olv are almost totally replace by oxides. Phlog is found as small lath in the groundmass with a few possible phlog macro observed. Of note on some chips it looks like the phlog is flowing around the olv. Phlog also have zonation pattern. Per > sp in size and abundance. Atoll texture are also observed.
42584	na	carbonate (serpentine) phlogopite perovskite, spinel kimberlite	HK1	hypabyssal sheet	same as what has been describe so far for AD-60. Olv are fresh to totally serpentinised. They have oxides on their fractures and sometime on their rim. Phlog is found as small lath in the groundmass and exhibit a criss-cross pattern and in some of the chips it almost looks like there is a flow texture? Some phlog macros are observed. Per > sp

BODY : Stornoway GEOLOGIST:	AdamantinKimberlitesDATE: October 2016SAMPLE TYPE: TSI. LépineREVIEWER: NA		ctober 2016 : TYPE: TS ER: NA						OLIN	/INE (TS)		
SAMPLE ID / LOCATION	DRILL HOLE	DEPTH (m)	KIMB MINERAL PRESERVATION	COLOUR (HANDSAMPLE)	ICM OR GRD	TEXTURAL CLASS.	SIZE CLASS.	% TOTAL OLV (VE)	%OLVm (VE)	%OLVp (VE)	OLV Replacement Degree	OLV Replacement Type
42585	AD-62-01	25	4 to 5	grey	GRD	нк	f	40	20	20	complete	serp + carb

		MINERALOGY	KIM ABUNDANCE (SLAB + TS)									
SAMPLE ID / LOCATION	PRIMARY GROUNDMASS MINERALOGY	LATE STAGE MINERALOGY	CPX Locality	CPX Habit	Serpentine Locality	Carbonate Locality	GNT	ILM	СРХ	CHR	CRX LITHOLOGY	
42585	carb + serp +phlog +per +sp	serp + clay + cpx? + carb	groundmass	small needles	olivine + groundmass	olivine + groundmass	na	na	na	na	na	

OLOLOGIOT.												
SAMPLE ID / LOCATION	CRX ALTERTION	MINERALOGICAL CLASSIFICATION	Unit_Code	Unit_Code_Comment	COMMENTS							
42585	na	carbonate, serpentine, phlogopite perovskite, spinel kimberlite	нк	hypabyssal sheet	Strongly altered chips, it is hard to see the groundmass properly. Olv are altered to serp and carb? They are marked by coarse oxide rim and also brown minerals alteration rim. Oxides are also observed along their fractures. Phlog is really fine in the groundmass. Their are long green-brown needles. Phlog is also present as macros. Per > sp. It makes me think of another TS I have seen before (AD-00 and AD-01).							

Appendix 8 – Caustic Fusion Flow Sheet

Sample packaged and forwarded to observation

Appendix 9 – Dense Media Separation (DMS) Flow Sheet

Appendix 10 – Kimberlite Indicator Mineral (KIM) Analytical Results

STORNOWAY DIAMOND CORPORATION

		INDICATOR MINERALS NS 2 NS 3 MAG COMMENTS NS 1 NS 2 NS 3 ND MAG TOTAL PROJ.											PYR	ECL	I	NON-N	IAG IL	MEN	ITES		MAG	6 ILM	CHR CI	ט or	ОТН									
SAMPLE	SIZE		I	NDICATO	OR MI	NERAL	s			NS	S 2 NS 3	MAG	COMMENTS NS 1	()	NS 2	NS 3	ND	MAG	TOTAL	PROJ.	PICK BATCH	SENT	SENT	NO.	NO.	SENT S	BENT H	HELD	HELD	NO. SE	NT HELD	SENT SEP	NT SEN	i sent
NUMBER	mm	PYR E	CL	ILM	CHR	CD	OL	DIA	SULI	PH NC	OT NOT	ZONE	D HDLST SINK	гн	HDLST SINK	HDLST SINK	HDLST SINK	g	WT. g	NO.	NUMBER			NZ	z	NZ	z	NZ	z	z				
43351	0.25-0.5	17	18	163	8	0	11	0	tr	IL	LM	Y	CHR: 4?, possibly ILM; OL: 10 sent, 1 held 1.38	8 .	7.25			1.73	10.36	5835	2016 STORN 115	17	18	111	52	10	10	101	42			8	10	
43353	0.25-0.5	0	0	1	0	0	0	0	tr			N	1.07	8				0.69	1.76	5835	2016 STORN 115			1		1								
43354	0.25-0.5	0	0	6	1	0	0	0	2%	5		N	OTHER : 1 UVA, sent 4.89	ę.				1.06	5.95	5835	2016 STORN 115			4	2	4	2					1		1
43355	0.25-0.5	0	1	10	0	0	0	0	2%	b		N	4.65	e C				1.19	5.84	5835	2016 STORN 115		1	3	7	3	7							
43356	0.25-0.5	1	0	8	0	0	1	0	2%	b		N	OL: ? 1.52	ŝ				0.42	1.94	5835	2016 STORN 115	1		6	2	6	2						1	
43358	0.25-0.5	0	1	6	0	0	1	0	tr			Ν	COR: 1 13.11	1				3.28	16.39	5835	2016 STORN 115		1	1	5	1	5						1	
43359	0.25-0.5	0	0	10	0	0	0	0	tr			N	6.22				7.53	3.80	17.55	5835	2016 STORN 115			6	4	6	4							
43361	0.25-0.5	0	2	18	0	0	0	0	109	6		Ν	1.75	ŝ.				0.43	2.18	5835	2016 STORN 115		2	7	11	7	11							
43362	0.25-0.5	4	0	86	1	0	0	0	tr	IL	LM	N	1.61	3	3.46			0.14	5.21	5835	2016 STORN 115	4		38	48	10	10	28	38			1		
43364	0.25-0.5	2	0	72	0	0	1	0	tr			N	6.83	8				1.84	8.67	5835	2016 STORN 115	2		34	38	10	10	24	28				1	
43368	0.25-0.5	0	0	1	0	0	0	0	1%	b		Ν	10.52	2				0.05	10.57	5835	2016 STORN 115			1		1								
43500	0.25-0.5	0	0	1	0	0	0	0	109	6		N	4.88	i.				0.78	5.66	5835	2016 STORN 115			1		1								
43501	0.25-0.5	0	0	11	0	0	1	0	tr			N	OL: ? 2.05	ŝ				0.44	2.49	5835	2016 STORN 115			5	6	5	6						1	
43502	0.25-0.5	0	0	11	0	0	0	0	1%	0		N	3.27	6				0.75	4.02	5835	2016 STORN 115			7	4	7	4							
43508	0.25-0.5	0	0	0	0	0	0	0	tr			N	1.21					0.86	2.07	5835	2016 STORN 115													
43519	0.25-0.5	5	3	167	1	0	0	0	tr	IL	LM	N	1.56	8 3	5.88			1.92	9.36	5835	2016 STORN 115	5	3	60	107	10	10	50	97			1		
43521	0.25-0.5	46	41	213	9	0	0	0	tr	IL	LM	Y	PYR: 20 sent, 26 held; ECL: 20 sent, 21 held; CHR: 4?, possibly ILM 0.11		6.08			1.82	8.01	5835	2016 STORN 115	20	20	54	159	10	10	44	149			9		
43523	0.25-0.5	1	0	8	0	0	0	0	2%	>		N	0.94					0.09	1.03	5835	2016 STORN 115	1		8		8								
43525	0.25-0.5	3	2	130	0	0	0	0	tr			Y	7.03	6			2.51	2.00	11.54	5835	2016 STORN 115	3	2	66	64	10	10	56	54					
43526	0.25-0.5	2	4	93	4	0	0	0	tr			N	10.55	5			65.14	17.35	93.04	5835	2016 STORN 115	2	4	52	41	10	10	42	31			4		

2016 STORN 115 PRELIMINARY OCTOBER 25, 2016

STORNOWAY DIAMOND CORPORATION

																					PYR	ECL		NON-	IAG I	LMENI	TES		MAG	ILM	CHR	CD O	IL OTH	1
SAMPLE	SIZE		1	NDICA	TOR MI	NERAL	s			NS 2 NS 3	MAG	COMMENTS	NS 1	NS 2	NS 3	ND	MAG	TOTAL	PROJ.	PICK BATCH	SENT	SENT	NO.	NO.	SENT	SENT H	HELD H	IELD N	IO. SEN	IT HELD	SENT S	SENT SE	INT SEN	т
NUMBER	mm	PYR	ECL	ILM	CHR	CD	OL	DIA	SULPH	NOT NOT PICKED PICKED	ZONED ILM		HDLST SINK	HDLST SINK	HDLST SINK	HDLST SINK	g	WT. g	NO.	NUMBER			NZ	z	NZ	z	NZ	z	z					
43373	<0.25											NOT DONE				1.68		1.68	5835	2016 STORN 116														
43373	0.25-0.5	0	0	5	0	0	0	0			Ν		7.87				0.03	7.90	5835	2016 STORN 116			2	3	2	3								
43373	0.5-1.0											NOT DONE				10.04		10.04	5835	2016 STORN 116														
43375	<0.25											NOT DONE				2.24		2.24	5835	2016 STORN 116														
43375	0.25-0.5	0	0	0	0	0	0	0	tr		N		3.30				5.17	8.47	5835	2016 STORN 116														
43375	0.5-1.0											NOT DONE				19.91		19.91	5835	2016 STORN 116														
43376	<0.25											NOT DONE				1.17		1.17	5835	2016 STORN 116														
43376	0.25-0.5	25	24	194	12	3	1	0	tr	ILM	Y	PYR: 19?, possibly ECL, 1 kely, 20 sent, 5 held; ECL: 20 sent, 4 held; CHR: 3?, possibly ILM	0.70	2.13			0.30	3.13	5835	2016 STORN 116	20	20	144	50	10	10	134	40			12	3 1	1	
43376	0.5-1.0											NOT DONE				5.27		5.27	5835	2016 STORN 116														
43378	<0.25											NOT DONE				1.46		1.46	5835	2016 STORN 116														
43378	0.25-0.5	11	5	360	1	13	25	0		ILM	Y	PYR: 5?, possibly ECL, 1 kely; CD: 10 sent, 3 held; OL: 10 sent, 15 held: OTH: 10 UVA, 5 sent, 5 held	2.08	2.60			0.20	4.88	5835	2016 STORN 116	11	5	265	95	10	10	255	85			1	10 1	0 5	
43378	0.5-1.0											NOT DONE				4.94		4.94	5835	2016 STORN 116														
43381	<0.25											NOT DONE				2.78		2.78	5835	2016 STORN 116														
43381	0.25-0.5	23	15	253	0	41	34	0		ILM	Y	PYR: 2?, possibly ECL, 20 sent, 3 held; CD: 10 sent, 31 held; OL: 10 sent, 24 held; OTH: 12 UVA, 5 sent, 7 held	0.87	5.82			0.22	6.91	5835	2016 STORN 116	20	15	190	63	10	10	180	53				10 1	0 5	
43381	0.5-1.0											NOT DONE				13.26		13.26	5835	2016 STORN 116														
43384	<0.25											NOT DONE				1.52		1.52	5835	2016 STORN 116														
43384	0.25-0.5	0	0	1	0	0	33	0			Ν	OL: 10 sent, 23 held	3.59				0.76	4.35	5835	2016 STORN 116			1		1							1	0	
43384	0.5-1.0											NOT DONE				5.50		5.50	5835	2016 STORN 116														
43387	<0.25											NOT DONE				4.87		4.87	5835	2016 STORN 116														
43387	0.25-0.5	0	0	0	0	0	12	0	1%		Ν	OL: 10 sent, 2 held	10.15				1.09	11.24	5835	2016 STORN 116												1	.0	
43387	0.5-1.0											NOT DONE				27.85		27.85	5835	2016 STORN 116														
43390	<0.25											NOT DONE				0.04		0.04	5835	2016 STORN 116														
43390	0.25-0.5	0	0	0	0	0	0	0	tr		Ν		1.00				0.05	1.05	5835	2016 STORN 116														
43390	0.5-1.0											NOT DONE				0.53		0.53	5835	2016 STORN 116														
43391	<0.25											NOT DONE				0.22		0.22	5835	2016 STORN 116														
43391	0.25-0.5	35	57	229	0	14	0	0	tr	ILM	Y	PYR: 10?, possibly ECL, 1 kely, 20 sent, 15 held; ECL: 2 ASP, 20 sent, 37 held; CD: 10 sent, 4 held; OTH: 1 unknown, sent	0.08	0.90			0.18	1.16	5835	2016 STORN 116	20	20	78	151	10	10	68 ⁻	141				10	1	
43391	0.5-1.0											NOT DONE				1.56		1.56	5835	2016 STORN 116														
43392	<0.25											NOT DONE				1.28		1.28	5835	2016 STORN 116														
43392	0.25-0.5	0	0	0	0	0	24	0	tr		Ν	OL: 10 sent, 14 held	5.50				0.07	5.57	5835	2016 STORN 116												1	0	
43392	0.5-1.0											NOT DONE				3.83		3.83	5835	2016 STORN 116														

STORNOWAY DIAMOND CORPORATION

	AMPLE SIZE INDICATOR MINERALS																					PYR EC	L	NON	N-MAG	ILME	NITES		MAG	G ILM	CHR CD	OL OTH
SAMPLE	MPLE SIZE MBER mm PYR 3394 <0.25	I	NDICA	FOR MI	NERAL	.s			NS :	NS	3 MAG	COMMENTS	NS 1	NS 2	NS 3	ND	MAG	TOTAL	PROJ.	PICK BATCH	SENT SEN	IT NO.	. NO	. SENT	SENT	HELD	HELD	NO. SI	ENT HELD	SENT SEN	T SENT SENT	
NUMBER	mm	PYR	ECL	ILM	CHR	CD	OL	DIA	SULF		D PICK	T ZONED		HDLST SINK	HDLST SINK	HDLST SINK	HDLST SINK	g	WT. g	NO.	NUMBER		NZ	z	NZ	z	NZ	z	z			
43394	<0.25												NOT DONE				0.53		0.53	5835	2016 STORN 117											
43394	0.25-0.5	2	0	58	0	0	0	0	tr			Ν		7.84				<0.01	7.84	5835	2016 STORN 117	2	29	29	10	10	19	19				
43394	0.5-1.0												NOT DONE				8.90		8.90	5835	2016 STORN 117											
43395	<0.25												NOT DONE				0.54		0.54	5835	2016 STORN 117											
43395	0.25-0.5	60	11	312	0	0	0	0		ILN	1	N	PYR: 20 sent, 40 held	0.19	1.66			0.18	2.03	5835	2016 STORN 117	20 11	166	5 146	6 10	10	156	136				
43395	0.5-1.0												NOT DONE				2.65		2.65	5835	2016 STORN 117											
43397	<0.25												NOT DONE				0.83		0.83	5835	2016 STORN 117											
43397	0.25-0.5	1	0	1	0	0	0	0	10%	, D		N	PYR: ?	0.90				0.04	0.94	5835	2016 STORN 117	1		1		1						
43397	0.5-1.0												NOT DONE				0.95		0.95	5835	2016 STORN 117											
43398	<0.25												NOT DONE				0.04		0.04	5835	2016 STORN 117											
43398	0.25-0.5	2	5	276	0	0	0	0	tr	ILN	1	N		0.16	0.20			<0.01	0.36	5835	2016 STORN 117	2 5	107	7 169	9 10	10	97	159				
43398	0.5-1.0												NOT DONE				0.47		0.47	5835	2016 STORN 117											
43527	<0.25												NOT DONE				0.04		0.04	5835	2016 STORN 117											
43527	0.25-0.5	1	5	94	0	0	0	0	tr			N	PYR: ?, possibly ECL	0.52				0.03	0.55	5835	2016 STORN 117	1 5	54	40	10	10	44	30				
43527	0.5-1.0												NOT DONE				0.65		0.65	5835	2016 STORN 117											
43529	<0.25												NOT DONE				0.01		0.01	5835	2016 STORN 117											
43529	0.25-0.5	2	0	14	0	1	0	0	tr			N	uncontaminated portion	0.29				0.09	0.38	5835	2016 STORN 117											
43529	5-0.5 CON	1 0	0	7	0	0	0	0					contaminated portion - spilled at I&M	0.17					0.17	5835	2016 STORN 117											
43529	0.25-0.5	2	0	21	0	1	0	0	tr			Ν	PYR: 1?; ILM: 7 from contaminated portion	0.46				0.09	0.55	5835	2016 STORN 117	2	12	9	11	9	1				1	
43529	0.5-1.0												NOT DONE				0.27		0.27	5835	2016 STORN 117											
43531	<0.25												NOT DONE				0.09		0.09	5835	2016 STORN 117											
43531	0.25-0.5	7	7	241	0	1	0	0	tr	ILN	1	Y		0.06	0.42			0.01	0.49	5835	2016 STORN 117	7 7	147	94	10	10	137	84			1	
43531	0.5-1.0												NOT DONE				0.53		0.53	5835	2016 STORN 117											
43533	<0.25												NOT DONE				0.60		0.60	5835	2016 STORN 117											
43533	0.25-0.5	0	0	0	0	0	0	0	tr			N		1.37				<0.01	1.37	5835	2016 STORN 117											
43533	0.5-1.0												NOT DONE				2.69		2.69	5835	2016 STORN 117											

Appendix 11 – Caustic Fusion Analytical Results

STORNOWAY CF #165 BATCH SUMMARY

Sample ID	Batch ID	Proc Date Started	Sample Wt Wet	Sample Wt Dry	Sample Wt Dry Kilograms (kg)	Lower Cut Off Square Mesh	Number of	Number of	Number of Micro	Concentrate Wt	Proc Date	Date Observation	Date Observation	Number of Times Sample	Number of Diamonds			Total # Diamonds
	357650981 D41	5 10300 LUNDED BURNEDER	Kilograms (kg)	Kilograms (kg)	Processed	(mm)	Primary Burns	Secondary Burns	Fusions	(g)	Completed	Started	Completed	Observed	Recovered	Observation Comments	Date Reported	Recovered
																Portions of 43370 & 43393 contaminated at		
																Microlithics. Spike numbers in both samples may		
43370	SWY CF BATCH #165	June 23, 2016	18.450	15.715	15.715	0.1041	3	2 0	3	0.3	July 4, 2016	July 12, 2016	July 12, 2016	2		0 reflect this contamination.	August 22, 2016	٥
43372	SWY CF BATCH #165	June 23, 2016	9.305	9.125	9.125	0.1041	1	2 0	2	0.1	July 4, 2016	July 11, 2016	July 11, 2016	2		0	August 22, 2016	ن (
43374	SWY CF BATCH #165	June 23, 2016	7.255	6.990	6.990	0.1041	1	1 0	1	0.1	June 28, 2016	July 11, 2016	July 11, 2016	2		5	August 22, 2016	ن 0
43377	SWY CF BATCH #165	June 23, 2016	10.110	9.400	9.400	0.1041		3 0	6	5.3	July 4, 2016	July 13, 2016	July 14, 2016	2		0	August 22, 2016	0 ز
43379	SWY CF BATCH #165	June 23, 2016	8.645	8.040	8.040	0.1041		2 0	1	3.2	June 29, 2016	July 8, 2016	July 8, 2016	2		0	August 22, 2016	0 ز
43382	SWY CF BATCH #165	June 23, 2016	8.900	8.200	8.200	0.1041		2 0	3	16.4	July 4, 2016	July 14, 2016	July 18, 2016	2		0	August 22, 2016	0 ز
43385	SWY CF BATCH #165	June 24, 2016	11.230	9.875	9.875	0.1041	1	2 0	2	0.1	July 4, 2016	July 11, 2016	July 11, 2016	2		0	August 22, 2016	0 ز
43388	SWY CF BATCH #165	June 24, 2016	11.175	10.030	10.030	0.1041		2 0	2	0.4	July 7, 2016	July 25, 2016	July 25, 2016	2		0	August 22, 2016	ن 0
																Portions of 43370 & 43393 contaminated at		
																Microlithics. Spike numbers in both samples may		
43393	SWY CF BATCH #165	June 24, 2016	13.365	11.985	11.985	0.1041	6	3 0	2	0.2	July 7, 2016	July 25, 2016	July 25, 2016	2		0 reflect this contamination.	August 22, 2016	ن (
43396	SWY CF BATCH #165	June 24, 2016	8.860	7.920	7.920	0.1041		2 0	2	0.1	July 7, 2016	July 25, 2016	July 25, 2016	2		0	August 22, 2016	٥
43528	SWY CF BATCH #165	June 24, 2016	7.925	7.785	7.785	0.1041		2 0	1	0.1	July 7, 2016	July 25, 2016	July 25, 2016	2		0	August 22, 2016	٥
43534	SWY CF BATCH #165	June 24, 2016	7.805	7.785	7.785	0.1041		2 0	1	0.1	July 7, 2016	July 25, 2016	July 25, 2016	2		0	August 22, 2016	٥

STORNOWAY CF #166 BATCH SUMMARY

5	Sample ID	Batch ID	Proc Date Started	Sample Wt Wet Kilograms (kg)	Sample Wt Dry Kilograms (kg)	Sample Wt Dry Kilograms (kg) Processed	Lower Cut Off Square Mesh (mm)	Number of Primary Burns	Number of Secondary Burns	Number of Micro Fusions	Concentrate Wt (g)	Proc Date Completed	Date Observation Started	Date Observation Completed	Number of Times Sample Observed	Number of Diamonds Recovered	Observation Comments	Date Reported	Total # Diamonds Recovered
	43399 SWY	CF BATCH #166	June 29, 2016	33.8	32.88	32.88	0.1041	5	1	. 1	0.4	July 12, 2016	July 26, 2016	July 27, 2016	2	(0	August 22, 2016	C
	43509 SWY	' CF BATCH #166	June 29, 2016	37.11	34.68	34.68	0.1041	5	1	. 2	36.9	July 19, 2016	August 2, 2016	August 4, 2016	2	(0	August 22, 2016	(
	43515 SWY	CF BATCH #166	June 29, 2016	32.78	32.93	32.93	0.1041	5	1	. 1	6.7	July 13, 2016	July 25, 2016	July 26, 2016	2	(0	August 22, 2016	(
	43518 SWY	' CF BATCH #166	June 28, 2016	16.285	14.95	14.95	0.1041	2	C	2	0.1	July 12, 2016	July 26, 2016	July 27, 2016	2	(0	August 22, 2016	C
	43530 SWY	CF BATCH #166	June 28, 2016	14.595	13.875	13.875	0.1041	2	C	1	0.4	July 7, 2016	July 26, 2016	July 27, 2016	2	(0	August 22, 2016	0
	43532 SWY	CF BATCH #166	June 30, 2016	35.745	34.395	34.395	0.1041	5	1	. 4	5.4	July 19, 2016	August 4, 2016	August 4, 2016	2	(0	August 22, 2016	0

Appendix 12 – Dense Media Separation (DMS) Analytical Results

STORNOWAY DMS #167 BATCH SUMMARY

Sample ID	Batch ID	Proc Date Started	Sample Wt Wet Kilograms (kg)	Sample Wt Dry Kilograms (kg)	Sample Wt Dry Kilograms (kg) Processed	Lower Cut Off Square Mesh (mm)	Number of Primary Burns	Number of Secondary Burns	Concentrate Wt (g)	Process End Date	Date Observation Started	Date Observation Completed	Number of Times Sample Observed	Number of Diamonds Recovered	Observation Comments	Date Reported	Total # Diamonds Recovered
															olivines, pyrope &		
															and ilmonites		
43363	SWY CF BATCH #167	August 3, 2016	119.5	114.09	114.09	0.3x12			1.7	August 9, 2016	August 30, 2016	August 31, 2016	2		0 noted in sample	August 31, 2016	0
															sample looks like		
43369	SWY CF BATCH #167	August 3, 2016	145	128.41	128.41	0.3x12		2 0	0.7	August 9, 2016	August 31, 2016	August 31, 2016	2		0 "kiln recovery"	August 31, 2016	0
43371		July 27, 2016	24	23.07	22.02	0.3×12			0.2	August 9, 2016	August 17, 2016	August 17, 2016	2		n	August 31, 2016	
45571	SWI CI BATCH#107	July 27, 2010	24	23.32	23.52	0.5/12			0.2	August 9, 2010	August 17, 2010	August 17, 2010	2			August 51, 2010	
															sample contains		
															some country rock		
43380	SWY CF BATCH #167	July 27, 2016	324.5	308.26	308.26	0.3x12		L C	254.7	August 9, 2016	August 22, 2016	August 24, 2016	2		0 (granite ~15-20%)	August 31, 2016	0
															comple contains		
															some country rock		
43383	SWY CF BATCH #167	August 3, 2016	323	316.75	316.75	0.3x12		2 0	457.9	August 15, 2016	August 22, 2016	August 25, 2016	2	Ì	0 (granite ~10%)	August 31, 2016	, O
43386	SWY CF BATCH #167	August 4, 2016	361	. 325.77	325.77	0.3x12		L C	5.3	August 15, 2016	August 24, 2016	August 30, 2016	2		0	August 31, 2016	i C
42200			202.5			0.0.40					1			3	lots of country		
43389	SWY CF BATCH #167	August 2, 2016	382.5	357.08	357.08	0.3x12			19.9	August 9, 2016	August 25, 2016	August 30, 2016	2		sample is highly	August 31, 2016	
															magnetic &		
															contains minor		
43507	SWY CF BATCH #167	August 9, 2016	497.5	481.82	481.82	0.3x12	3	з с	47.6	August 15, 2016	August 18, 2016	August 31, 2016	2		0 country rock	August 31, 2016	i 0
43510	SWY CF BATCH #167	August 10, 2016	97.5	94.94	94.94	0.3x12			82.1	August 15, 2016	August 29, 2016	August 31, 2016	2		U	August 31, 2016	
43520	SWY CF BATCH #167	August 10, 2016	163.5	162.96	5 162.96	0.3x12		2 0	1.5	August 15, 2016	August 24, 2016	August 30, 2016	2		ο	August 31, 2016	; o