GM 69369

RAPPORT D'EXPLORATION ETE 2014, PROPRIETE CHABLIS (1388)

Documents complémentaires

Additional Files

RAPPORT D'EXPLORATION ÉTÉ 2014 PROPRIÉTÉ CHABLIS (1388) FEUILLET SNRC 32K/09

Serge Perreault, géologue senior Philippe D'Amboise, géo. stag. Gabrielle Rochefort, ing. jr Décembre 2014

Ressources naturelies et Faune
1 8 MAI 2016

Dir information géologique

GM 69369

REÇU AU MRNF 12 AVR. 20'8

DIRECTION DES TITRES MINIERS

1559187

Résumé

À la suite de la compilation des travaux antérieurs dans le secteur du SNRC 32K/09, une campagne de reconnaissance géologique avec échantillonnage a été menée à l'été 2014. Les travaux visaient à expliquer les anomalies électromagnétiques (EM) aéroportées, les hauts et/ou les fortes variations du champ magnétique.

La découverte d'un indice de cuivre, nommé « JFO », localisé en bordure d'une anomalie magnétique positive a valorisé l'intérêt pour le secteur du lac de la Bétulaie (lac Milia). L'indice est caractérisé par une minéralisation disséminée en chalcopyrite, dont la teneur peut atteindre 10 %, dans des lambeaux de paragneiss enclavés dans une intrusion granitique. Cent seize (116) titres miniers ont été désignés sur carte afin de poursuivre nos travaux d'exploration.

Un levé aéroporté magnétique et électromagnétique de type (SkyTem ⁵⁰⁸) a été fait dans le secteur de l'indice JFO par la compagnie SkyTEM. Il couvre un bloc de 61,2 km² avec des lignes de vol espacées au 100 mètres. Une partie (surtout dans l'ouest) des cibles électromagnétiques (EM) générées ont été couvertes par une reconnaissance géologique au mois de septembre 2014. Cinq décapages mécaniques ont été faits dont deux reliés à l'indice de cuivre et trois sur des cibles EM proximales. Les meilleurs résultats analytiques obtenus par rainurage sur trois différentes enclaves de paragneiss reliés à l'indice JFO sont :

- 1,12 % Cu sur 6 mètres;
- 1,12 % Cu sur 3 mètres;
- 0,98 % Cu sur 2 mètres.

Sur le décapage de l'indice JFO, le granite contient 20 à 25 % d'enclaves de paragneiss. Seulement le quart de ces enclaves sont minéralisées en cuivre, ce qui rend le potentiel économique de l'indice faible. L'indice JFO n'a aucune signature EM aéroportée, toutefois, nous avons noté la présence d'anomalie EM dans le voisinage. Il est recommandé d'explorer ces cibles EM dans le but de trouver des corps minéralisés significatifs.

Nous recommandons de faire un levé de polarisation provoquée à grande pénétration de 36 km linéaires dans le secteur de l'indice JFO pour préciser la géométrie des cibles EM et de faire des levés MaxMin totalisant 45 km linéaires répartis sur les autres cibles EM de la propriété. Ces travaux devront être suivis d'une cartographie géologique avec échantillonnage, des décapages mécaniques et des forages.

TABLE DES MATIÈRES

Résum	né	i
Table o	des matières	ii
Liste d	es figures	iii
Liste d	es tableaux	iii
Liste d	es photos	iv
Liste d	es annexes	iv
1.0	Introduction	
2.0	Recours à d'autres experts	
3.0	Description et emplacement du terrain	
3.1	Localisation	
3.2	Titres miniers	3
4.0	Accessibilité, géographie physique, climat, infrastructures et ressources locales	
5.0	Historique	
5.1	Historique légal	7
5.2	Travaux antérieurs	7
6.0	Contexte géologique et minéralisation	8
6.1	Géologie régionale	8
6.2	Géologie de la propriété	8
6.3	Géologie économique	12
7.0	Travaux d'exploration	13
7.1	Travaux de compilation et de logistique	13
7.2	Travaux de reconnaissance géologique sur les cibles compilées	14
7.3	Levé aéroporté SkyTEM	16
7.4	Travaux de reconnaissance géologique sur les cibles EM (SkyTEM ⁵⁰⁸) ouest	19
7.5	Travaux de décapage mécanique	28
8.0	Préparation, analyse et sécurité des échantillons	35
8.1	Échantillonnage et analyses	35
8.2	Assurance-qualité et contrôle de la qualité	36
9.0	Interprétation et conclusion	37
9.1	Interprétation	37
9.2	Conclusion	37
10.0	Recommandations	38
Ráfáro	ance	41

LISTE DES FIGURES

Figure 1	Carte de localisation	4
Figure 2	Titres miniers	5
Figure 3	Géologie régionale	9
Figure 4	Géologie de la propriété	10
Figure 5	Feuillet 32K/09 localisation des traverses planifiées	14
Figure 6	Localisation préliminaire des cibles EM aéroportées	18
Figure 7	Localisation des blocs	20
Figure 8	Localisation des échantillons Bloc A	21
Figure 9	Localisation des échantillons Bloc B	22
Figure 10	Localisation des échantillons Bloc C	23
Figure 11	Localisation des échantillons Bloc D.	24
Figure 12	Localisation des échantillons Bloc E	25
Figure 13	Localisation des échantillons de reconnaissance du Bloc F	26
Figure 14	Localisation des échantillons Bloc G.	27
Figure 15	Tranchée mécanique 1388-14-01, localisation des échantillons	30
Figure 16	Tranchée mécanique 1388-14-02, localisation des échantillons	31
Figure 17	Tranchée mécanique 1388-14-03, localisation des échantillons	32
Figure 18	Tranchée mécanique 1388-14-04, localisation des échantillons	33
Figure 19	Tranchée mécanique 1388-14-05, localisation des échantillons	34
Figure 20	Proposition de travaux portion ouest	39
Figure 21	Proposition travaux portion est	39
	LISTE DES TABLEAUX	
Tableau 1	Titres miniers projet Chablis (1388)	3
Tableau 2	Liste du personnel phase I	14
Tableau 3	Liste du personnel phase I	19
Tableau 4	Description des tranchées	28
Tableau 5	Préparation des échantillons	35
Tableau 6	Procédure analytiques (Au + 48 éléments)	35
Tableau 7	Procédure analytiques (Au, Pt et pd + 48 éléments)	36
Tableau 8	Procédure analytiques (Majeur + C, S, Li + 33 éléments)	36

LISTE DES PHOTOS

Photo 1 Enclaves tranchées TR-14-04	11			
Photo 2 Digestion des enclaves TR-14-02	11			
Photo 3 Digestion des enclaves 14DP-044	11			
Photo 4 Aspect pegmatitique 14DP-102	11			
Photo 5 Affleurement 14MQ-514, enclave	11			
Photo 6 Affleurement 14JFG-092, enclave digérée	11			
Photo 7 Localisation des meilleures teneurs sur l'indice JFO en juillet 2014				
Photo 8 CP fine	29			
Photo 9 CP en filon et amas	29			

LISTE DES ANNEXES

Annexe 1 Certificats de qualifications

Annexe 2 Légendes

Annexe 3 Certificats d'analyses

Annexe 4 Protocoles analytiques

Annexe 5 Levé Mag EM SkyTEM

Annexe 6 Descriptions des échantillons

Annexe 7 Plans de localisation des échantillons

Annexe 8 Plans des traverses

Annexe 9 Plans des décapages mécaniques

1.0 Introduction

La propriété Chablis est localisée dans le feuillet 32K/09 et est composée de 116 titres miniers désignés sur carte à la suite de la découverte d'un indice de cuivre « JFO ». Suivant cette découverte, un levé aéroporté magnétique et électromagnétique de type SkyTEM⁵⁰⁸ de 61,2 km² a été réalisé par la firme SkyTEM en juillet 2014. Une reconnaissance géologique s'en est suivie dans la portion ouest de la propriété et une campagne de cinq décapages mécaniques a été faite en septembre 2014.

Ce rapport présente l'ensemble des travaux réalisés en 2014 sur le projet, à l'exception du levé aéroporté SkyTEM⁵⁰⁸ qui fait l'objet d'un rapport indépendant disponible à l'annexe 5. Les travaux de terrain ont été menés sur deux périodes : une reconnaissance géologique en juin et juillet 2014, qui a mené à la découverte de l'indice JFO et une seconde campagne de terrain orientée sur l'exploration des cibles EM localisée dans la portion ouest de la propriété, accompagnée d'une campagne de décapage mécanique à la fin de septembre et au début d'octobre2014. Les travaux de terrain étaient dirigés par Philippe D'Amboise, géologue stagiaire, sous la supervision de Serge Perrault, chef de projet senior et maître de stage, et d'Yvon Trudeau, directeur adjoint.

2.0 Recours à d'autres experts

Monsieur Marc Boivin de la firme MB Geosolutions de Québec, a agi comme expert externe et mandataire dans l'octroi du contrat du levé de géophysique aéroporté de type magnétique et électromagnétique (Mag-EM) et dans le contrôle de qualité des données Mag-EM. La firme MB Geosolutions a également réalisé l'interprétation des données finales du levé SkyTEM et produit un rapport final présentant les résultats de ce levé. La description sommaire du levé est présentée à la section 7.3 et le rapport, à l'annexe 5.

3.0 Description et emplacement du terrain

3.1 Localisation

La propriété est localisée dans le feuillet 32K/09 à -76° 6' longitude et 50° 33' de latitude. Elle couvre une superficie de 62,32 km² (Figure 1)

3.2 Titres miniers

La propriété Chablis est composée de 116 titres miniers contigus couvrant une superficie de 62,32 km² (Figure 2). Ces titres miniers, dont la liste apparaît au tableau 1, ont été acquis par désignation sur carte en 2014. Leur date d'expiration est fixée entre le 28 juillet et le 8 septembre 2016. SOQUEM INC. est le seul détenteur enregistré auprès du MERN. Les claims sont libres de toute charge, restriction, royauté, hypothèque ou réclamation.

TABLEAU 1 TITRES MINIERS PROJET CHABLIS (1388)

SNRC	Numéros des claims	Nombre de claims		
32K/09	2408697 à 2408769	73		
	2408837 à 2408844	8		
	2410307 à 2410334	28		
	2411667 à 2411673	7		
OTAL .	116 claims 6231,92 ha (62,32 km ²			

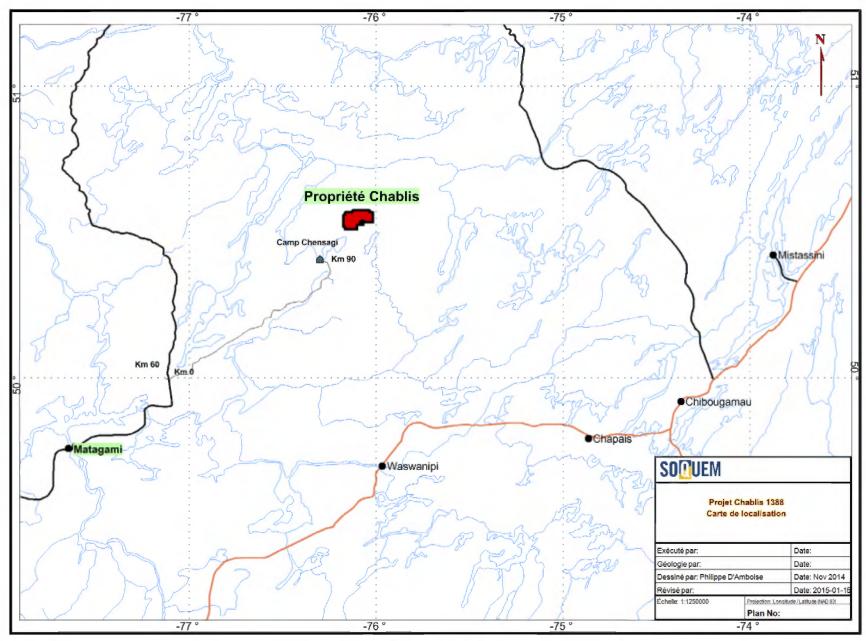


Figure 1 Carte de localisation

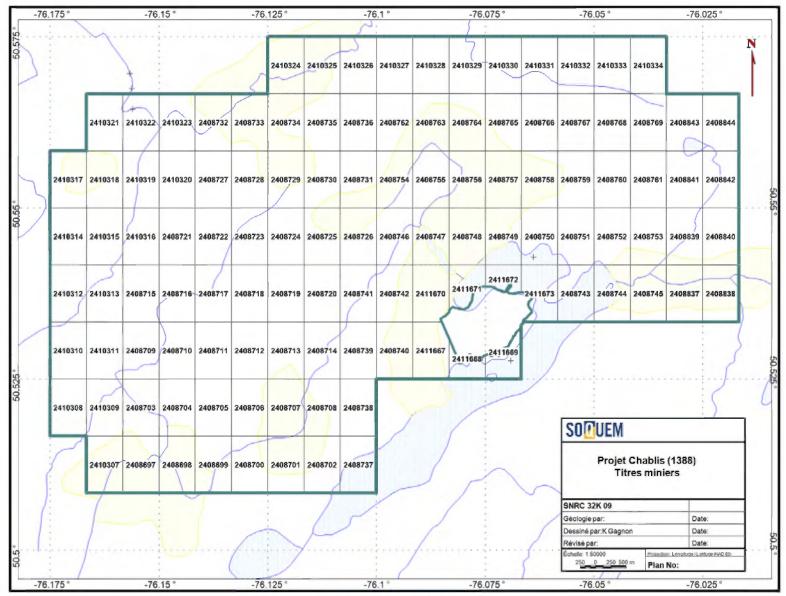


Figure 2 Titres miniers

4.0 Accessibilité, géographie physique, climat, infrastructures et ressources locales

À vol d'oiseau, la propriété est située à 140 km au nord-est de Matagami, 95 km au nord de Waswanipi et à 140 km au nord-ouest de Chibougamau. La propriété est accessible par voie terrestre. À partir de la ville de Matagami, elle est accessible par la route de la Baie-James. À la borne kilométrique 60, il faut emprunter une route forestière vers le nord-est sur 112 km pour se rendre à la propriété. L'ancien camp forestier Chensagi est localisé à la borne kilométrique 90. De la borne kilométrique 112, un réseau de chemins hivernaux pour la coupe forestière traverse la propriété. Les chemins principaux sont carrossables l'été en camion et les chemins d'hiver en véhicule tout-terrain (VTT). Les chemins principaux sont entretenus sporadiquement par les compagnies forestières et les entreprises sylvicoles et sont en assez bon état.

La topographie est légèrement vallonnée avec un dénivelé maximal de 125 mètres. La plus faible élévation est localisée dans la portion ouest de la propriété avec une altitude de 300 mètres au-dessus du niveau de la mer. Le plus haut relief est localisé dans l'extrême nord-est de la propriété avec une altitude de 425 mètres. Le relief est irrégulier avec des alternances de plaines marécageuses d'orientation plus ou moins sud-ouest nord-est entrecoupées de buttes de tills, souvent avec affleurements rocheux. Les cours d'eau ont deux directions préférentielles d'écoulement, soit du nord-est vers le sud-ouest et du sud-est vers le nord-ouest. Le lac de la Bétulaie (lac Milia) de 6,5 km de long couvre une portion au sud de la propriété.

L'épaisseur et les lithologies du mort-terrain sont variables. Les unités les plus épaisses sont composées de tills fins et d'argile dans les vallées. Les unités de faibles épaisseurs, formées de sable et gravier, sont localisées sur les collines, sur lesquelles on y trouve des affleurements rocheux.

La coupe forestière, qui s'est déroulée sur une dizaine d'années, couvre environ 25 % de la superficie de la propriété. Elle occupe les secteurs les plus secs et a été surtout pratiquée en hiver pour faciliter la traversée des zones marécageuses. Le climat est de type continental froid avec des extrêmes allant de 35°C l'été à -40°C l'hiver. La période de gel est habituellement entre octobre et mai.

La ville la plus proche est Matagami, localisée à 140 km au sud-ouest à vol d'oiseau. Elle compte environ 2 000 habitants et offre de nombreux services gouvernementaux comme un centre de santé, des écoles, bureau de poste et autres. Son économie repose surtout sur l'exploitation des ressources naturelles (mine et forêt) et compte de nombreux entrepreneurs et commerces. Les communications cellulaires et Internet y sont disponibles. La vie communautaire est bien développée avec de nombreux organismes qui favorisent la qualité de vie de ses habitants (http://www.matagami.com/).

La propriété est située sur le territoire ancestral de la communauté crie de Waswanipi. La communauté à un doit exclusif de pêche et de chasse faisant partie d'un territoire de catégorie II de la Convention de la Baie-James.

5.0 Historique

5.1 Historique légal

Jalonnement de 81 titres miniers en juillet 2014

Jalonnement de 28 titres miniers en août 2014

Jalonnement de sept titres miniers en septembre 2014

5.2 Travaux antérieurs

Ce sont les secteurs nord et ouest du feuillet 32K/09 qui ont été les plus travaillés par les compagnies d'exploration minérale. Cet intérêt est dû à la présence de roches volcaniques et sédimentaires et de leurs indices minéralisés. La région a connu sa plus grande vague d'exploration à la suite de la découverte du gîte de Ni-Cu du Lac Rocher par Nuinsco Resources Ltd en 1998. Les travaux d'exploration qui ont suivi cette découverte ont été concentrés sur les roches mafiques et ultramafiques, caractérisées par de fortes anomalies magnétiques positives.

Le secteur de la propriété a été très peu travaillé. Un seul document d'exploration, archivé dans les travaux statutaires déposés au ministère de l'Énergie et des Ressources naturelles (MERN), couvre partiellement la propriété dans sa portion nord-ouest. Il s'agit d'un levé aéroporté magnétique et électromagnétique de type VTEM (GM65701). Ce levé a été commandé par la compagnie minière Canadian Royalties Inc. afin de mieux définir une cible magnétique isolée et localisée à l'extérieur de la présente propriété. Un forage y a été fait sans toutefois expliquer la nature de la cible.

Du côté des grands levés géologiques gouvernementaux, les premiers travaux géologiques de détail touchant la propriété ont été publiés dans les années 1970 avec les rapports géologiques DP-060 et DP-265 (Franconi, 1972 et 1974). À la fin des années 1990, le MERN a réalisé une remise à niveau de la cartographie géologique au 1 : 50 000 du feuillet SNRC 32K/09 (Brisson, 1998, RG 98-05)

Deux grands levés géophysiques ont couvert le secteur: un levé magnétique de la Commission géologique du Canada en 1969 (avec des lignes de vol espacées au 800 mètres) et un levé magnétique et électromagnétique, de type INPUT, réalisé par le MERN en 1985 avec des lignes de vol espacées au 200 mètres (MERN, DP-85-13). Ce levé montre des signatures électromagnétiques pour le gîte du lac Rocher et l'indice du lac Scott permettant son utilisation comme outil de ciblage pour la découverte d'autres corps minéralisés d'importance dans la région.

Quelques échantillons de sédiments de ruisseaux ont été prélevés et analysés par le MERN en 1971 (Franconi, 1971, DP 209) et un levé de géochimie de sédiments de fond de lac a été réalisé en 1996 (Beaumier et Kirouac, 1996)

6.0 Contexte géologique et minéralisation

6.1 Géologie régionale

La propriété est localisée au sud de la portion centrale de la ceinture de roches vertes Frotet-Evans. Cette ceinture volcano-sédimentaire archéenne se subdivise en deux groupes, le Groupe d'Evans dominé par des roches volcaniques et le Groupe de Broadback, caractérisé par une dominance de roches sédimentaires (Brisson et Al., 1998).

Cette ceinture est encaissée dans des terrains gneissiques et plutoniques de la Sous-province d'Opatica dont l'âge varie de 2 825 à 2 680 Ma (Davis et Al., 1995). Les différentes intrusions se subdivisent en quatre catégories : les intrusions syn-volcaniques (petits filons-couches de gabbro et petits massifs de diorite), les intrusions dites syn-tectoniques (de composition tonalitique), les intrusions tardi-tectoniques, formées de gabbro, monzonite, granite, dont le massif de Nipukatasi et de pegmatites, et des dykes de diabase du protérozoïque (Brisson et Al., 1998; Figure 3).

Le faciès métamorphique général varie de schiste vert à amphibolite, avec une dominance au schiste vert supérieur.

Le degré de déformation de la roche varie de faible à intense et sept phases de déformation ont été reconnues; les six premières font partie d'un même continuum. La déformation D2 est la principale caractérisée par un étirement des fragments et l'orientation des grains minéraux. Son orientation est variable étant reprise par d'autres déformations plus jeunes (plis D4). Les grandes structures régionales telles les failles Nottaway et Lucky Strike sont associées à la déformation D6 (Brisson et Al., 1998).

6.2 Géologie de la propriété

La propriété est localisée dans la bordure sud du massif plutonique granitique de Nipukatasi. Ce massif est peu exploré et peu documenté. Ses contacts sont mal définis avec une forte auréole d'altération désignée sous l'appellation « Complexe de Rocher ». Ce complexe est défini dans les portions nord et ouest du massif comme une roche sédimentaire ayant subi un fort métamorphisme de contact (Brisson et Al., 1998; Figure 4).

Une reconnaissance géologique faite sur la propriété identifie un ensemble de roches intrusives felsiques (granitiques) qui contiennent des quantités variables d'enclaves (1 à 50 %) de paragneiss dérivées de lithologies sédimentaires et volcaniques.

Figure 3 Géologie régionale

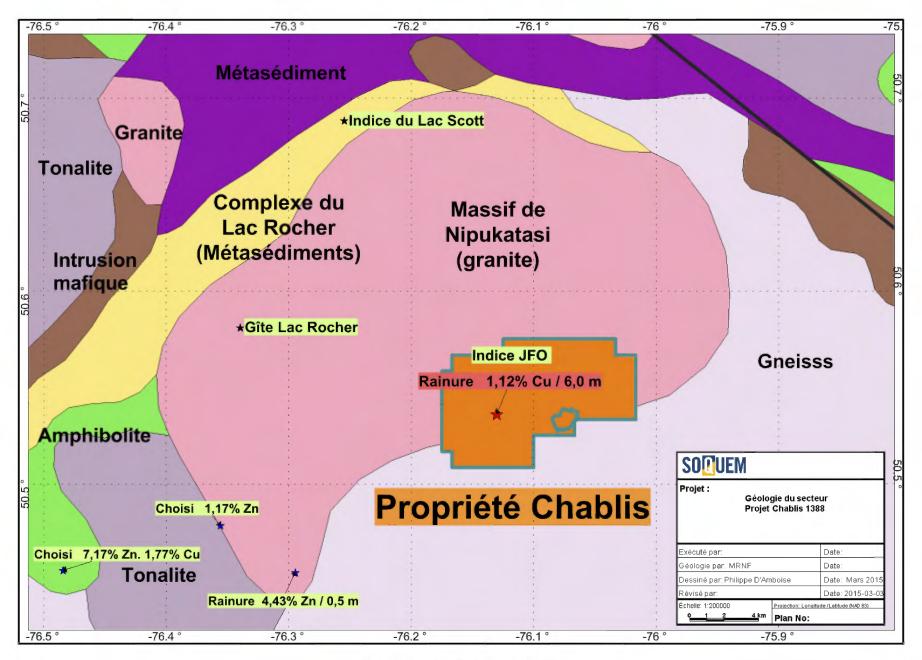


Figure 4 Géologie de la propriété

Une différenciation minéralogique montre des rubanements (pseudo-litage) dans les enclaves qui peuvent aussi représenter le litage primaire des anciennes formations sédimentaires. Les enclaves ont une dimension variable de 0,01 à plus de 10,0 m, de forme souvent tabulaire avec des contacts assez parallèles aux pseudo-litages. Elles sont localement, plus ou moins orientées dans de mêmes directions avec des inclinaisons (des contacts) assez similaires sur un même affleurement cependant, elles peuvent varier beaucoup d'un affleurement à un autre. Les bordures des enclaves sont souvent digérées par le granite encaissant (Photos 1, 2, 3). Ce granite a un aspect pegmatitique avec des proportions modales variables en quartz, plagioclase, feldspath, biotite (Photos 4, 5, 6).

Photo 1 Enclaves tranchées TR-14-04

Photo 3 Digestion des enclaves 14DP-044

Photo 5 Affleurement 14MQ-514, enclave

Photo 2 Digestion des enclaves TR-14-02

Photo 4 Aspect pegmatitique 14DP-102

Photo 6 Affleurement 14JFG-092, enclave digérée

6.3 Géologie économique

La ceinture de roches vertes de Frotet-Evans a été l'hôte de la mine Troilus (production : 71,1 millions de tonnes métriques (M tm) à 1,02 g/t Au et 0,09 % Cu, soit l'équivalent de la production de 2 millions d'onces Troy d'or (2 M oz Au), 2,2 millions d'onces Troy d'argent (2,2 M oz Ag) et 157,2 millions de livres de cuivre (152,7 M lbs de Cu) (Houle, 2011). De nombreux autres indices de moindre importance ont été trouvés dans la ceinture (Cu-Ni, métaux de base, Au, Ag, Cu, Zn, lithium, EGP, etc.). Deux indices d'intérêt ont été trouvés dans le secteur 32K/09, soit : celui du lac Rocher et celui du lac Scott (Figure 3).

Le gîte du lac Rocher a été découvert par Nuinsco Resources Ltd en 1998, avec des ressources mesurées et indiquées de 800 000 tonnes (t) à 1,12 % Ni et des ressources inférées de 440 000 t à 0,65 % Ni (voir le site Internet suivant :

http://www.victorynickel.ca/projects/lac_rocher/). Ce gîte est localisé à 15 km à l'ouest de la propriété. La minéralisation est associée à une intrusion ultramafique à mafique polyphasée.

L'indice Cu-Ag du lac Scott (Osisko Lake Mines Ltd., 1960) est composé d'une minéralisation stratoïde localisée dans une formation de fer sulfuré dans des wackes (Franconi, 1972, DP-060). La zone minéralisée, d'une épaisseur de 6 à 30 m et longue de 1 200 m, contient des sulfures disséminés à massifs (PO-PY-CP). Un échantillon choisi a retourné 5,3 % Cu et la meilleure intersection a été obtenue dans le forage n° 06 avec 1,61 % Cu sur 4,4 m (Brisson, 1998, RG-98-05).

7.0 Travaux d'exploration

À l'hiver 2014, SOQUEM INC. a entrepris un vaste programme de génération de projets dans le secteur sud de la Baie-James couvrant les feuillets SNRC 32K et 32L. Le feuillet 32K/09 a été retenu pour ses accès, la présence d'affleurements, son contexte géologique et la présence de levés aéroportés électromagnétiques.

Des travaux de reconnaissance géologique (prospection) ont été menés de la mi-juin à la fin juillet 2014. Ceux-ci ont permis la découverte d'un indice de cuivre dans une intrusion granitique. À la suite de cette découverte, un levé aéroporté magnétique et électromagnétique (EM) de type SkyTEM⁵⁰⁸ a été réalisé en juillet 2014 par la firme SkyTEM. Plusieurs cibles EM ont été localisées par le levé et une reconnaissance géologique dans le secteur ouest de la propriété a été initiée à la fin septembre. Au début d'octobre 2014, une campagne de cinq décapages mécaniques a été faite sur l'indice et sur quelques cibles à proximité.

7.1 Travaux de compilation et de logistique

Ces travaux se sont déroulés de façon sporadique du début févier à la mi-juin 2014. Ils ont impliqué deux géologues stagiaires, Philippe D'Amboise et Jean-François Desbiens-Lévesque, et une ingénieure junior, Gabrielle Rochefort, sous la supervision de Serge Perreault, géologue.

Ils ont couvert plus spécifiquement les feuillets 32K/01 à 32K/09, 32L/01 et 32L/08. Tous les travaux géoscientifiques et/ou statutaires jugés pertinents y ont été compilés ainsi que les voies d'accès terrestres et les secteurs libres au jalonnement.

À la suite de cette compilation, trente-deux traverses ont été planifiées dans le feuillet 32K/09. Ces traverses visent à expliquer la nature, majoritairement, des cibles EM aéroportées. Sept traverses ont été dirigées vers l'explication de fortes variations du champ magnétique ou de structures interprétées (Figure 5).

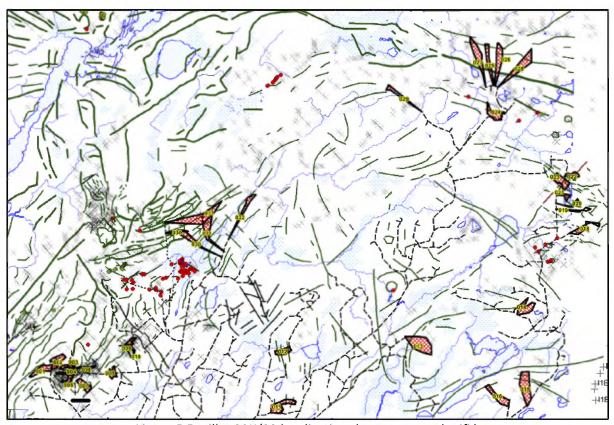


Figure 5 Feuillet 32K/09 localisation des traverses planifiées

7.2 Travaux de reconnaissance géologique sur les cibles compilées

Les travaux de reconnaissance géologique du feuillet 32K/09 sur les cibles de compilation ont débuté le 19 juin pour se terminer le 24 juillet. L'équipe se composait de huit personnes et les travaux de terrain se subdivisaient en équipe de deux personnes. Le tableau 2 présente la liste du personnel affecté au projet et leurs fonctions respectives.

TABLEAU 2 LISTE DU PERSONNEL PHASE I

Nom	Fonction				
Serge Perreault	Géologue et chef de projet senior (supervision)				
Philippe D'Amboise (DP)	Géologue stagiaire responsable des travaux sur le terrain				
Jean-François Desbiens (JFDL)	Géologue stagiaire				
Jean-François Gagnon (JFG)	Ingénieur				
Gabrielle Rochefort (RG)	Ingénieure junior				
Jasmin Lanoix (JL)	Étudiant en géologie				
Olivier Coulombe (OC)	Étudiant en géologie				
Martin Perron	Technicien (préparation, logistique d'hébergement)				

Le personnel de SOQUEM était hébergé sur le site du camp Chensagi localisé au km 90 de la route forestière 8 000. Le camp était sous la gestion de la SOPFEU qui l'a maintenu fonctionnel jusqu'à la mi-août. Il s'agit d'un camp modulaire appartenant à la firme Expedition Camp Services & Logistics de Cochrane en Ontario.

La reconnaissance géologique fut orientée pour expliquer la nature géologique des cibles visitées (anomalie magnétique ou EM) et leur potentiel économique. Les équipes de deux personnes utilisaient un Beep Mat et du matériel d'échantillonnage (masse, ciseau, pelle, etc.). Dans la mesure du possible, chaque affleurement était décrit le long des cheminements et de façon plus systématique dans le secteur de la cible. Tout affleurement présentant des caractéristiques distinctives ou contenant de la minéralisation ou altération furent automatiquement échantillonnés. Les blocs erratiques ont été examinés et échantillonnés lorsque ceux-ci présentaient des altérations ou contenaient des sulfures. Une zone d'un rayon de cinquante mètres autour des cibles EM a été quadrillée au Beep Mat et chaque conducteur détecté fut exposé par tranchée ou décapage manuel. Habituellement, chaque échantillon est accompagné d'un témoin qui est conservé jusqu'au retour des analyses. Dans certains cas ces témoins ont servi pour la préparation de lames minces ou d'analyse pour les éléments majeurs.

Dans cette première phase de travaux de terrain, deux traverses touchaient à la présente propriété Chablis. La traverse 13, qui visait à expliquer une forte variation du champ magnétique dans l'intrusion granitique et la traverse 14, qui voulait expliquer la nature de deux anomalies EM isolées de type INPUT (DP 85-13). Les cibles électromagnétiques n'ont pas été expliquées dû à un mort-terrain épais. Par contre, la cible 13 a révélé la présence de minéralisation cuprifère dans des enclaves dans l'intrusion granitique. Ce nouvel indice, caractérisé par une minéralisation de chalcopyrite, fut agrandi par décapage manuel et de nouvelles traverses ont été faites à proximité afin de répertorier d'autres occurrences minéralisées.

Au total, durant cette phase de travaux de reconnaissance, 55 échantillons ont été prélevés, dont 37 sur des affleurements et 18 sur des blocs erratiques. Vingt de ces échantillons ont été prélevés par rainurage à la scie sur l'indice. Les meilleurs résultats obtenus en analyse sont de 1,68 % de cuivre sur 2 mètres de rainure (Photo 7). Ce nouvel indice fut nommé « JFO » en représentation des deux personnes qui ont fait la découverte (Jean-François et Olivier).

Les données et résultats de cette phase des travaux ont été annexés aux travaux de l'automne et sont présentés à l'annexe 6. Un tableau Excel contient la description de tous les échantillons et leurs résultats d'analyses.

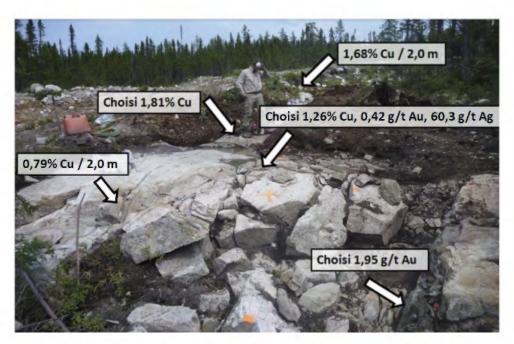


Photo 7 Localisation des meilleures teneurs sur l'indice JFO en juillet 2014

7.3 Levé aéroporté SkyTEM

C'est dans le cadre d'un projet de génération régionale de nouvelles propriétés que SOQUEM INC. avait mandaté la firme SkyTEM Surveys ApS pour exécuter dix blocs de levé aéroporté magnétique et électromagnétique à grande pénétration réparti dans les demi-sud des feuillets SNRC 32K et 32L. À la suite de la découverte d'un indice minéralisé en chalcopyrite « JFO » dans le feuillet 32K/09, un onzième bloc a été ajouté au levé.

Ce levé aéroporté magnétique et électromagnétique (EM) type SkyTem⁵⁰⁸ couvre un bloc de 61,2 km² soit ± 680 km de lignes de vol espacées au 100 mètres de direction moyenne N060°. Ce levé a été fait entre le 10 et le 30 juillet 2014.

Ces données géophysiques font l'objet d'un rapport indépendant (présenté à l'annexe 5), elles seront donc que très brièvement discutées. La firme MB Geosolutions de Québec a, de plus, exercé un rôle d'expert externe dans l'attribution, le suivi du levé et son interprétation.

L'image magnétique obtenue sur le Bloc 11 (Figure 6) montre une importante anomalie magnétique, en forme de croissant, au centre du bloc. Cette signature pourrait s'apparenter à une structure de pli replissé avec une possible charnière dans la partie sud-ouest. Une autre série d'anomalies magnétiques linéaires orientées nord-ouest est visible dans la partie nord-est du Bloc 11.

Les données électromagnétiques du Bloc 11 indiquent la présence de 86 anomalies conductrices et neuf très faibles réponses classées comme anomalies possibles (Figure 6). Les anomalies EM sont bien distribuées sur l'ensemble du bloc. Notons la présence de plusieurs anomalies EM à la limite ouest du bloc, dans un environnement peu magnétique. Un deuxième regroupement d'anomalies EM semble spatialement associé à l'importante anomalie magnétique localisée au centre du Bloc 11. Finalement, un important axe EM est observé dans le secteur est du bloc. Cet axe semble dessiner une forme de plissement serré. Un tableau situé en annexe 5 de ce présent rapport donne le détail de l'interprétation de ces anomalies. L'inversion numérique 1D des données électromagnétiques du Bloc 11 ne localise pas de fosses importantes de mort-terrain conductrices. L'interprétation des données s'est avérée plus difficile dû au faible pendage des roches dans certain secteur.

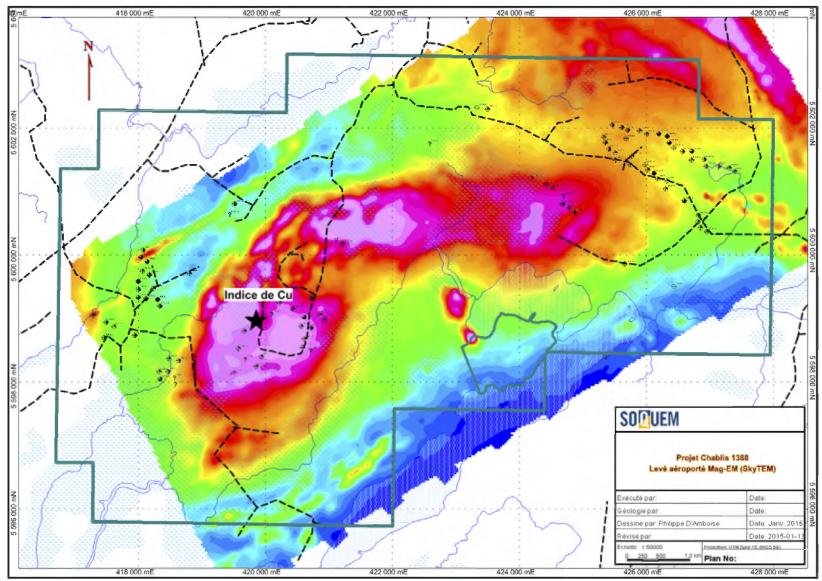


Figure 6 Fond magnétique et anomalies EM aéroportées du Bloc 11

7.4 Travaux de reconnaissance géologique sur les cibles EM (SkyTEM⁵⁰⁸) ouest

La campagne de reconnaissance géologique sur les nouvelles cibles EM (SkyTEM⁵⁰⁸) dans la portion ouest de la propriété s'est déroulée du 23 au 28 septembre 2014. Une équipe de neuf personnes a été affectée au projet. Le tableau 3 donne la liste du personnel et leurs fonctions respectives.

Le personnel de SOQUEM fut hébergé sur le site du camp Chensagi localisé au km 90 de la route forestière 8 000. Le camp était sous la gestion de la firme Expedition Camp Services & Logistics de Cochrane en Ontario.

TABLEAU 3 LISTE DU PERSONNEL PHASE II

Nom	Fonction				
Serge Perreault	Géologue chef de projet senior (supervision)				
Philippe D'Amboise (DP)	Géologue stagiaire responsable des travaux sur le terrain				
Gabrielle Rochefort (RG)	Ingénieure junior				
Gabriel Côté (GC)	Géologue stagiaire				
Benjamin Roméo (BR)	Géologue stagiaire				
Matthias Queffurus (MQ)	Étudiant en géologie				
Mathieu Audet (MA)	Technicien				
Steve Jobin (ST)	Journalier				
Martin Perron	Technicien (demande de permis)				

La reconnaissance géologique fut orientée pour expliquer la nature géologique des cibles visitées (anomalie magnétique ou EM) et leur potentiel économique en similarité avec les travaux décrits à la section 7.2.

Cinquante échantillons dont 35 en affleurement et 15 sur des blocs erratiques ont été amassés durant cette période.

La description des échantillons a été incluse au fichier Excel de l'été 2014 et est présentée à l'annexe 6. Les cartes de localisation sont divisées en différents blocs pour en faciliter la lecture. La figure 7 donne la position des différents blocs.

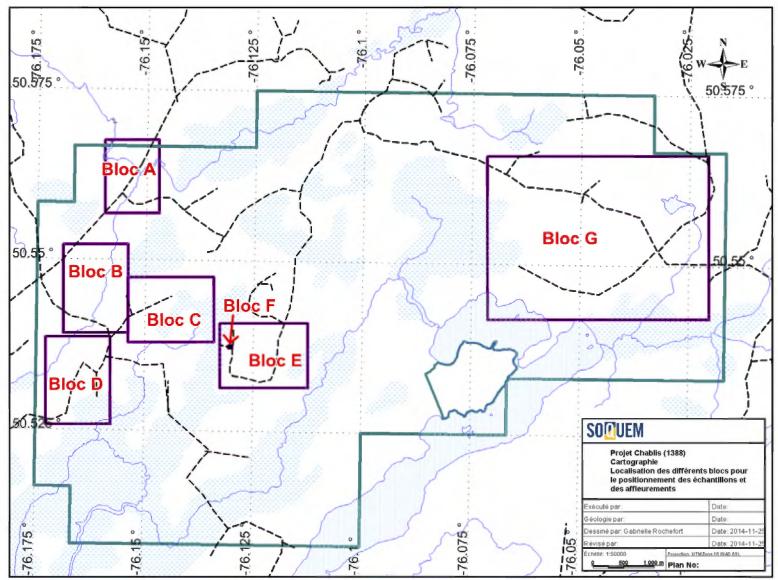


Figure 7 Localisation des blocs

Secteur Bloc A

Dans le secteur du Bloc A, le travail a été une reconnaissance géologique le long de la route forestière principale et d'une route secondaire menant à l'indice de cuivre. Ce secteur, peu affleurant, est caractérisé par un gneiss quartzofeldspathique rubané et une migmatite. Aucune teneur d'intérêt ne fut obtenue en affleurement. Par contre, parmi les blocs erratiques échantillonnés, un bloc arrondi de composition gabbroïque avec 10 % de pyrrhotite a retourné à l'analyse des teneurs anomales en élément du groupe platine (EPG) : 88 ppb Pt, 47 ppb Pd et 2 480 ppm de Cu (échantillon 277858). Une prospection de détail permettrait de déterminer s'il appartient à une traînée ou s'il est un individu isolé (Figure 8).

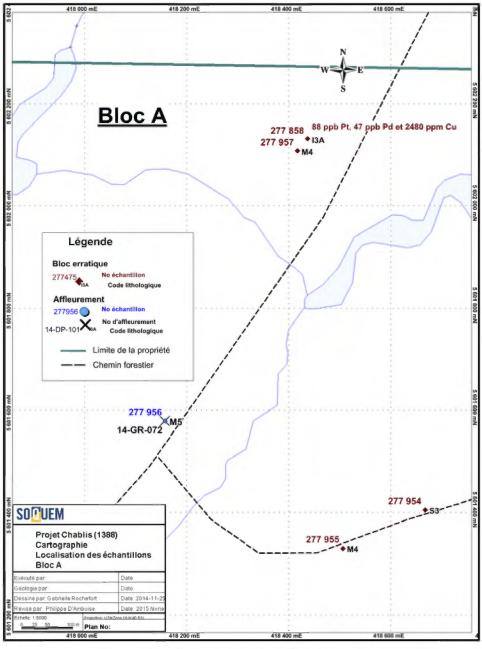


Figure 8 Localisation des échantillons Bloc A

Secteur des Blocs B, C et D

Les travaux sur ces blocs visaient à expliquer les cibles EM et parfaire notre compréhension de la géologie du secteur. Sur le Bloc B une seule cible fut expliquée. Une tranchée manuelle de 5 m de long a été creusée sur un conducteur localisé par Beep Mat. Il s'agit d'un horizon de paragneiss contenant un niveau de ± 1 m d'épaisseur apparente de sulfures semimassifs. Le paragneiss à une composition quartzofeldspathique et est encaissé dans un granite. Aucune teneur d'intérêt ne fut obtenue. Un levé géophysique au sol permettrait de vérifier si l'horizon trouvé correspond bien au conducteur aéroporté ou un horizon subsidiaire (Figure 9).

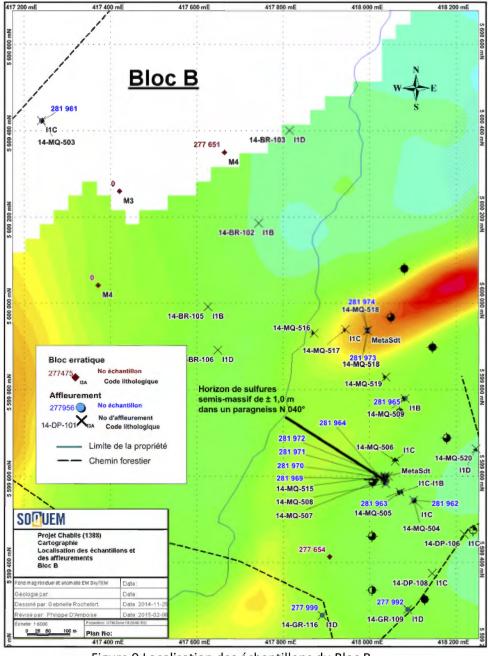


Figure 9 Localisation des échantillons du Bloc B

Sur les Blocs C et D le suivi de terrain n'a pas permis d'expliquer les cibles EM. Aucune teneur d'intérêt ne fut obtenue. La géologie rencontrée est de type granitique avec un faible pourcentage d'enclaves de paragneiss (Figures 10 et 11).

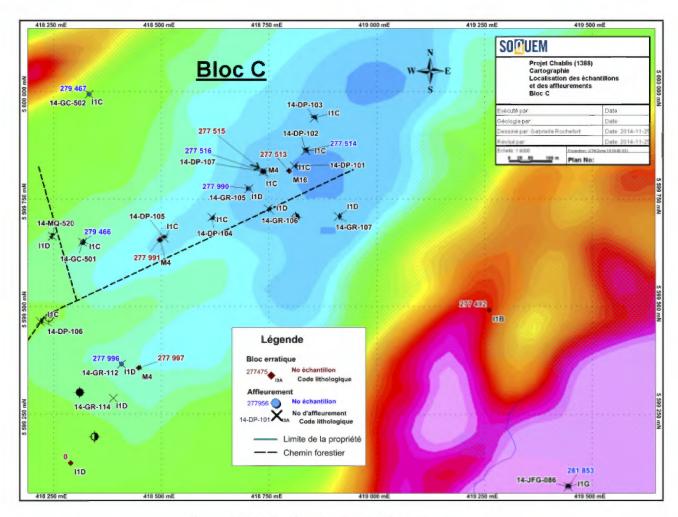


Figure 10 Localisation des échantillons Bloc C

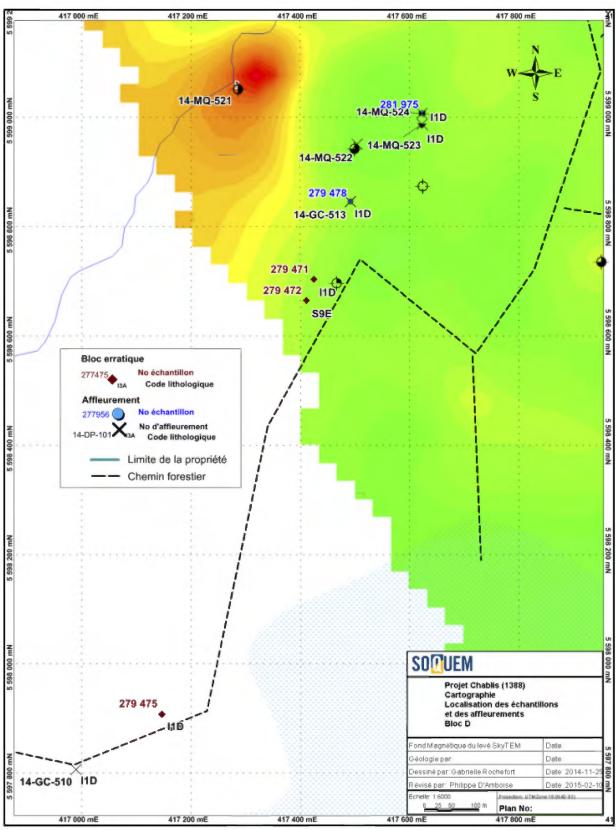


Figure 11 Localisation des échantillons Bloc D

Secteur du Bloc E

La roche dans le secteur de l'indice de cuivre (JFO) correspond à un champ magnétique plus élevé qui n'a pas été expliqué sur le terrain. Localement, on note des traces de magnétite dans le granite, mais en quantité trop faible pour expliquer cette hausse du magnétisme. Le suivi de terrain sur les cibles EM n'a pas permis de les expliquer. La position des cibles est à revoir dû possiblement à un faible pendage des conducteurs. (Figure 12).

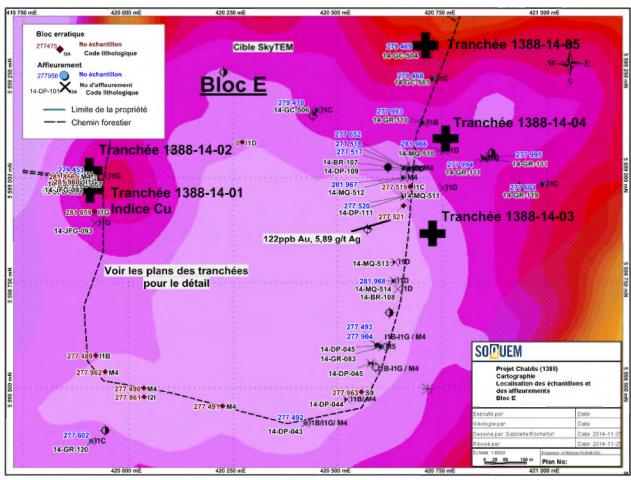


Figure 12 Localisation des échantillons Bloc E

Le pourcentage de lambeaux de paragneiss dans le granite varie de 10 et 50 %. Ils sont essentiellement composés de paragneiss quartzo-feldspathiques avec localement quelques fragments d'apparence plus mafique. La composition des lambeaux est assez similaire sur un même affleurement. Les contacts des fragments peuvent être nets, mais très souvent, ils sont assimilés par l'intrusif qui leur donne un caractère flou. Régulièrement, on note une déformation (fluage) des fragments dans le magma (Photos 1, 2 et 3). La dimension des fragments est variable de centimétrique à décamétrique. En général, sur un même affleurement, la direction et le pendage des contacts des fragments dans le granite sont assez similaires entre eux. L'orientation de l'axe long des fragments correspond aux rubanements qui pourraient aussi représenter le litage d'origine.

Le granite a une granulométrie variable de moyen à grossier et même localement porphyrique. Le pourcentage de composition des minéraux est variable; le quartz varie de 20 à 40 %, les feldspaths alcalins potassiques sont les plus abondants avec de 30 à 60 %, les plagioclases peuvent atteindre 30 % et les minéraux auxiliaires comme les micas et sulfures représentent des traces à 20 %.

Le Bloc F (Figure 13) montre un agrandi dans le secteur de l'indice pour mieux présenter les échantillons de reconnaissance sur et autour de l'indice JFO. L'indice sera décrit plus en détail dans la section portant sur les tranchées mécaniques.

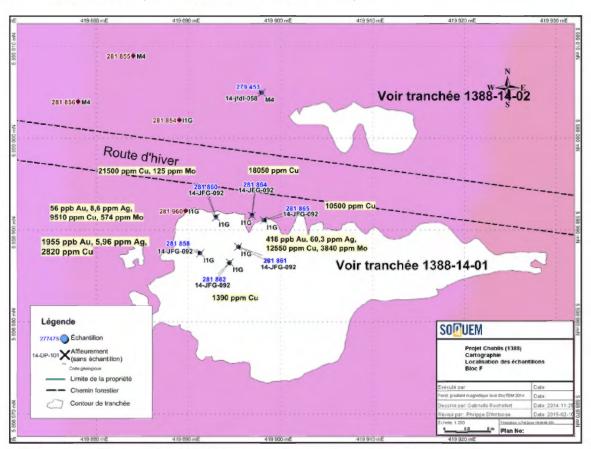


Figure 13 Localisation des échantillons de reconnaissance du Bloc F

Secteur du Bloc G

Ce secteur est localisé dans la portion est de la propriété et a fait l'objet de travaux sommaires. Deux traverses ont été marchées dont une avant d'avoir reçu les résultats du levé aéroporté EM. Les cibles ne sont pas expliquées et les affleurements rencontrés sont de composition granitique. Aucune teneur d'intérêt ne fut obtenue (Figure 14).

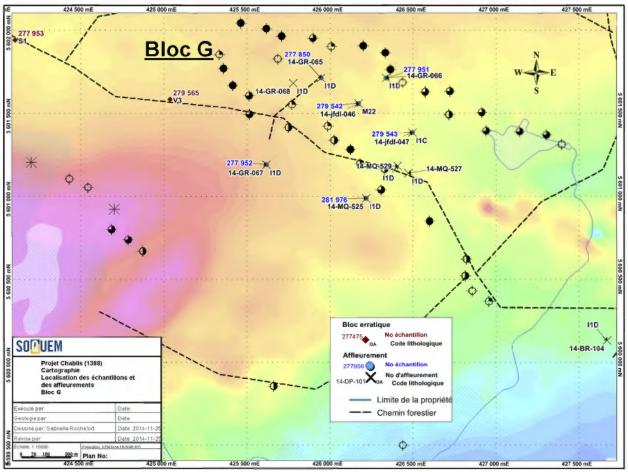


Figure 14 Localisation des échantillons Bloc G.

7.5 Travaux de décapage mécanique

À la suite des résultats obtenus sur l'indice JFO et afin d'améliorer nos connaissances géologiques et du système minéralisateur, cinq décapages mécaniques ont été faits au début du mois d'octobre 2014. Deux décapages (1388-14-01 et 1388-14-02) ont été creusés sur et en bordure de l'indice. Les trois autres décapages visaient des cibles EM à proximité.

La coupe du bois pour les accès et les aires de décapages fut octroyée à l'entreprise R. Picard Géophysique Itée de Barraute. L'excavation du mort-terrain fut octroyée à la firme Nord-Fort inc. de Sainte-Anne-des-Lacs. Le lavage, l'échantillonnage et la cartographie des affleurements ont été réalisés par le personnel de SOQUEM INC. (Tableau 3).

Une superficie totale de 744 m² de roche a été exposée et quatre-vingt-six échantillons totalisant 82,2 mètres de long y ont été prélevés en rainures. La longueur de chacune des rainures varie de 0,5 à 1,0 m. Le tableau 4 présente la description des tranchées mécaniques.

TABLEAU 4 DESCRIPTION DES TRANCHÉES

Tranchée	No titre	Long	Largeur	Superf.	Profond	Nb	Nb	Rainure	Cible et résultat
	minier	max m	moy m	Rock m2	moy m	échant.	rainure	m	
1388-14-01	2408718	46	10	435	0,4	57	57	54,2	Indice de cuivre. 8% de lambeaux de paragneiss minéralisés en CP. 1,12% Cu sur 6,0 m dans un lambeau
1388-14-02	2408718	14	4	46	0,4	14	12	11,5	Extension nord de l'indice de cuivre. Faible présence de lambeaux minéralisés
1388-14-03	2408719	19	3	41	0,8	6	6	5,5	Cible EM SkyTEM Cible non expliquée
1388-14-04	2408719	19	8	128	0,4	5	5		Cible EM SkyTEM Cible non expliquée
1388-14-05	2408719	19	5	94	0,6	6	6	6	Cible EM SkyTEM Cible non expliquée

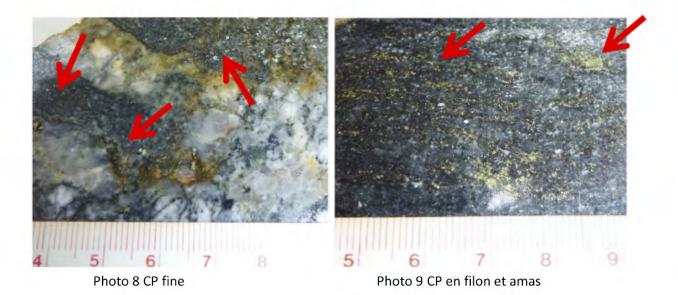
Les certificats d'analyses sont disponibles à l'annexe 3 et la description complète des échantillons est disponible à l'annexe 6, à l'annexe 9 on retrouve les plans des tranchées.

Décapages 1388-14-01 et 1388-14-02 (indice JFO)

Les décapages 1388-14-01 et 1388-14-02 sont localisés de part et d'autre d'un chemin forestier est-ouest. L'indice JFO correspond au décapage 1388-14-01 au sud du chemin. Ces décapages mécaniques ont été creusés au début du mois d'octobre, dans le but d'agrandir l'indice afin de mieux comprendre la géologie et le contexte métallogénique.

L'affleurement de l'indice est constitué d'un granite contenant environ 20 à 25 % d'enclaves de paragneiss. Le granite généralement gris pâle a une composition et une granulométrie variable. Il contient 60 75 % de feldspath K et plagioclase, 15-30 % de quartz et 5-15 % de mica et autres. Localement, lorsque traversé par des réseaux de diaclases est-ouest et/ou nord-sud, le granite prend une teinte rosée à rougeâtre (hématisé) à rose verdâtre (épidotisé). Sa granulométrie est généralement moyenne avec des passages grossiers à

pegmatitique. Le pourcentage de minéraux accessoires (mica gris-vert) est très variable et augmente à proximité des enclaves.


Les enclaves représentent environ de $20 \ and 25 \ black$ de la roche, ils ont une granulométrie plus fine ($\pm 1 \ alpha 3 \ mm$) que le granite avec un aspect lité (rubané). Ils ont une teinte grise moyenne plus foncée que le granite.

La composition des enclaves est quartzofeldspathique avec un pourcentage en mica qui varie de 5 à 40 %. Ce mica est de couleur gris-vert moyen et est aussi présent dans le granite. La dimension des enclaves varie du centimètre à près de 10 mètres de longueur par une épaisseur moindre. Leurs bordures sont souvent floues et digérées par le granite. L'axe long des enclaves est parallèle à l'enlignement du pseudo-litage.

Environ 20 % des enclaves sont minéralisées en chalcopyrite disséminée de 3 à 15 %, mais contiennent peu à pas d'autres sulfures. La granulométrie des sulfures dans les paragneiss est fine (inférieure à un millimètre) (Photo 8). Lorsque la chalcopyrite devient plus abondante, elle a tendance à s'enligner en filon et/ou en amas plus grossier (Photo 9). La chalcopyrite est aussi présente dans le granite, autour des enclaves minéralisées en chalcopyrite, de façon disséminée en amas grossier de moins d'un centimètre.

D'autres enclaves ± 20 % sont minéralisées en pyrite et pyrrhotite disséminées (tr à 15 %) et contiennent peu à pas de chalcopyrite et ont une granulométrie plus fine avec une teinte légèrement plus foncée que les enclaves décrites précédemment.

Lorsque les enclaves ont des contacts plus nets (peu digérés) elles ne s'emboîtent pas, ce qui dénote un certain transport dans le magma plutôt qu'une bréchification « in situ ».

La figure 15 présente la géologie des roches exposées sur la tranchée 1388-14-01 et les principales teneurs obtenues dans l'échantillonnage. Les meilleurs résultats obtenus sur le décapage 1388-14-01 en rainures sont :

- 1,12 % Cu sur 6 mètres;
- 1,12 % Cu sur 3 mètres;
- 0,98 % Cu sur 2 mètres.

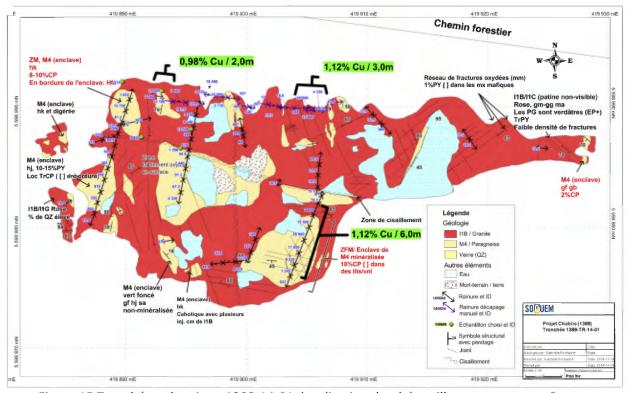


Figure 15 Tranchée mécanique 1388-14-01, localisation des échantillons et teneur en Cu

La géologie de la tranchée 1388-14-02 (Figure 16) est similaire à celle de la tranchée précédente. Elle contient cependant environ 10 % moins d'enclaves et une seule est minéralisée en chalcopyrite.

L'enclave minéralisée contient 5 % de chalcopyrite disséminée, sa dimension est de moins de 0,5 m². Les autres enclaves sont légèrement minéralisées avec 3 à 10 % de pyrite disséminée.

Juste à l'ouest de la tranchée, une série de blocs erratiques anguleux bien minéralisés en pyrite (± 10 %) semble démontrer une source proximale, par leur angulosité, leur nombre et leur étalement restreint à quelques dizaines de mètres. La paragenèse minéralogique de ces blocs diffère des unités lithologiques sous-jacentes par la présence de chlorite comparativement à un environnement métamorphisé au faciès d'amphibolite. Ces blocs erratiques sont très déformés, en cassure fraîche, de couleur vert moyen foncé, la granulométrie est fine et ils contiennent environ 40 % de veinules et boudins de quartz. En lame mince, la chlorite remplace des reliques de biotite et de hornblende. Ceci peut s'expliquer par une altération rétrograde causée par des fluides hydrothermaux tardifs au métamorphisme régional.

Le mort-terrain plus épais et la proximité d'un cours d'eau ne permettent pas de relier ces blocs erratiques à l'affleurement par décapage mécanique.

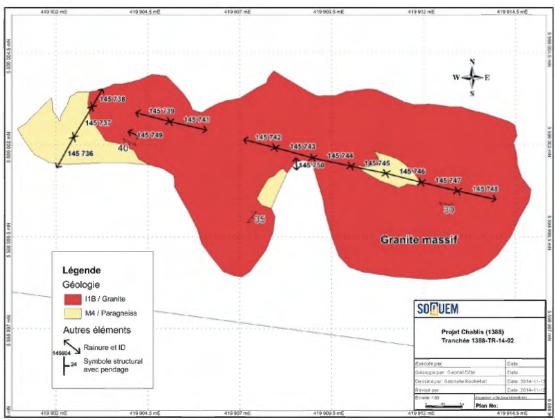


Figure 16 Tranchée mécanique 1388-14-02, localisation des échantillons

La tranchée mécanique 1388-14-03 a été implantée sur l'interprétation préliminaire des cibles EM. La tranchée n'a pas expliqué la cible visée. La roche décapée est un granite pegmatitique contenant 20 % de quartz, 78 % de feldspath et plagioclase et 2 % de mica (biotite). Les enclaves représentent moins de 10 % de la roche et leurs contacts avec le granite sont diffus. Les enclaves sont des paragneiss composés de mica de 60 à 80 % et de quartz, feldspath et plagioclase de 20 à 40 %. Aucune teneur d'intérêt ne fut obtenue dans les six échantillons prélevés en rainures (Figure 17).

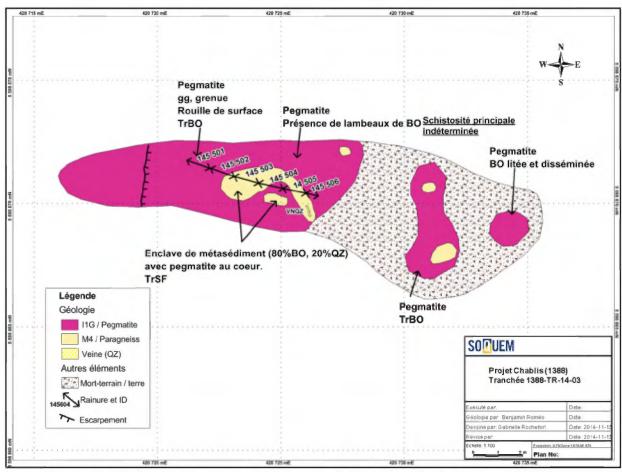


Figure 17 Tranchée mécanique 1388-14-03, localisation des échantillons

La tranchée mécanique 1388-14-04 a été creusée sur l'interprétation préliminaire des cibles aéroportées EM. La tranchée n'a pas expliqué la cible visée. La roche décapée est un granite contenant environ 25 % de quartz, 70 % de feldspath et plagioclase et environ 5 % de biotite. Les enclaves de paragneiss occupent 25 % de la superficie de la roche exposée. Elles ont des contacts diffus et elles sont très déformées. Le paragneiss est composé de quartz, feldspath, plagioclase et mica. Aucune teneur d'intérêt ne fut obtenue dans les cinq échantillons prélevés en rainures sur la tranchée (Figure 18).

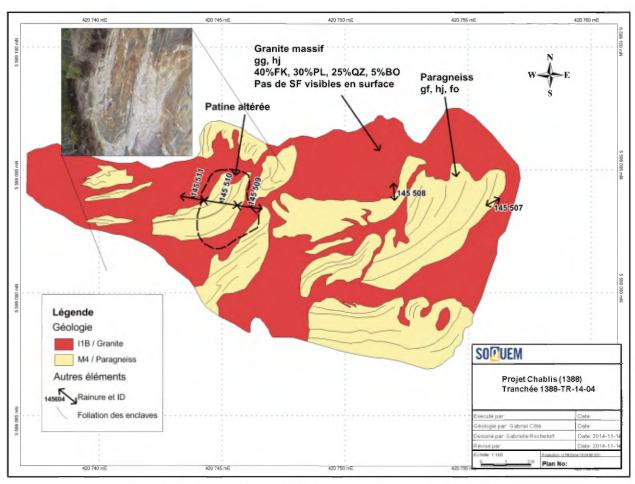


Figure 18 Tranchée mécanique 1388-14-04, localisation des échantillons

La tranchée mécanique 1388-14-05 a été creusée suite à l'interprétation préliminaire des cibles aéroportées EM. La tranchée n'a pas expliqué la cible visée. La roche décapée est un granite contenant environ 30 % de quartz, 30 % de feldspath et plagioclase et environ 40 % d'amphiboles et de mica. Les enclaves, des paragneiss, occupent 5% de la superficie de la roche exposée. Elles ont des contacts flous. Le paragneiss est composé de quartz, feldspath, plagioclase et mica. Aucune teneur d'intérêt ne fut obtenue dans les cinq échantillons prélevés en rainures sur la tranchée (Figure 19).

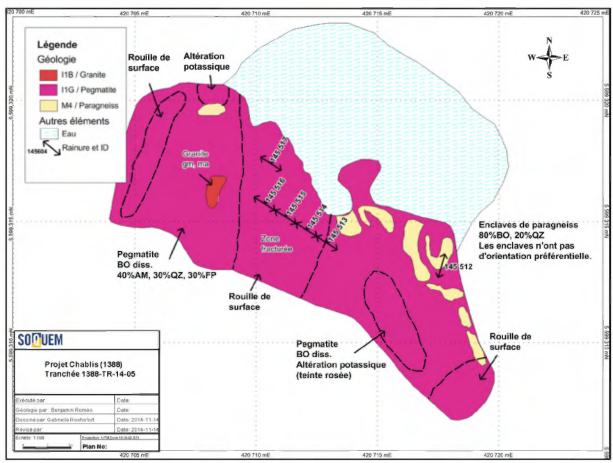


Figure 19 Tranchée mécanique 1388-14-05, localisation des échantillons

8.0 Préparation, analyse et sécurité des échantillons

8.1 Échantillonnage et analyses

Les échantillons ont été envoyés au laboratoire ALS Minerals de Val-d'Or. Le laboratoire prépare et analyse les échantillons pour l'or (pyroanalyse et absorption atomique), mais achemine les pulpes pour les analyses multiéléments (digestion par quatre acides ICP-MS et analyse ICP-OES) à leur laboratoire de Vancouver. À la fin 2014, quelques échantillons ont été analysés pour les éléments majeurs (ME-ICP05).

Les préparations des échantillons au laboratoire sont résumées dans le tableau 6 et les procédures analytiques aux tableaux 7, 8 et 9.

Deux types d'analyses multiéléments ont été demandés soit : Au + 48 éléments et Au, Pt et Pd + 33 éléments. Cette dernière série d'analyses a été demandée lorsque l'échantillon présentait des roches de composition mafique à ultramafique contenant des minéralisations en pyrrhotite.

TABLEAU 5 PRÉPARATION DES ÉCHANTILLONS

	PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION	
WEI- 21	Poids échantillon reçu	
LOG- 22	Entrée échantillon - Reçu sans code barre	
LOG- 24	Entrée pulpe - Reçu sans code barre	
PUL-31d	Pulvériser fractionné - dupliquer	
SPL-21d	Échantillon fractionné - dupliquer	
LOG- 22d	Entrée échantillon - Reçu sans code barr	
CRU- QC	Test concassage QC	
CRU- 31	Granulation - 70 % < 2 mm	
PUL- QC	Test concassage QC	
SPL- 21	Échant, fractionné - div. riffles	
PUL- 31	Pulvérisé à 85 % < 75 um	
WSH- 22	"Nettoyer" pulvérisateurs	

TABLEAU 6 PROCÉDURE ANALYTIQUE AU + 48 ÉLÉMENTS

CODE ALS	DESCRIPTION	INSTRUMENT
ME- OG46	Teneur marchandes éléments - Aqua regia	ICP- AES
Cu- OG46	Teneur marchande Cu - Aqua regia	VARIABLE
Zn- OG46	Teneur marchande Zn - Aqua regia	VARIABLE
Pb- OG46	Teneur marchande Pb - Aqua regia	VARIABLE
Ag- OG46	Teneur marchande Ag - Aqua regia	VARIABLE
Au- AA23	Au 30 g fini FA- AA	AAS
Au- GRA21	Au 30 g fini FA- GRAV	WST-SIM
ME- MS61	ICP- MS 48 éléments, quatre acides	

TABLEAU 7 PROCÉDURE ANALYTIQUE

PROCÉDURES ANALYTIQUES									
CODE ALS	DESCRIPTION	INSTRUMENT							
PGM-ICP23	Pt, Pd et Au 30 g FA ICP	ICP- AES							
ME-ICP61	33 éléments, quatre acides ICP- AES	ICP- AES							

TABLEAU 8 PROCÉDURE ANALYTIQUE AU, PT ET PD + 48 ÉLÉMENTS MAJEUR + C, S, LI + 33 ÉLÉMENTS

	PROCÉDURES ANALYTIQU	ES
CODE ALS	DESCRIPTION	INSTRUMENT
C-IR07	Total carbone (Leco)	LECO
S-1R08	Soufre total (Leco)	LECO
ME- MS81	Fusion Lithium Borate ICP- MS	ICP- MS
ME- MS42	Max. 34 éléments par ICP- MS	ICP- MS
OA- GRA05	Perte par calcination à 1 000 C	WST- SEQ
TOT-ICP06		ICP- AES
ME- 4ACD81	Métaux par digestion de 4 acides	ICP- AES
ME-ICP06	Roche entière - ICP- AES	ICP- AES

Pour le détail des protocoles complets d'analyses, se référer à l'annexe 4.

8.2 Assurance-qualité et contrôle de la qualité

Pour le contrôle de la qualité, les échantillons qui présentaient des teneurs supérieures à 0,5 g/t en Au, Pt ou Pd ont été réanalysés systématiquement à partir de la pulpe et du rejet. La réanalyse de l'or pour ces échantillons est faite par méthode gravimétrique.

Les échantillons qui présentaient des teneurs supérieures à 20,0 g/t en Ag, ont été réanalysés systématiquement à partir de la pulpe et du rejet.

Les échantillons qui présentaient des teneurs supérieures à 0,5 % en Cu, Mo, Zn ou Ni, ont été réanalysés systématiquement à partir de la pulpe et du rejet.

Pour le contrôle de qualité, chaque série de 24 échantillons doit inclure un standard, un blanc de méthode et un échantillon duplicata.

SOQUEM INC. a pour sa part, insérée des blancs de méthode (silice pure) et des standards commerciaux certifiés dans les différents envois au laboratoire. L'examen des résultats des échantillons blancs a démontré qu'il n'y a pas de contamination apparente entre les échantillons. Pour les standards leur nombre restreint rend difficile l'interprétation statistique, mais respectent les écarts acceptables pour l'exploration de reconnaissance.

9.0 Interprétation et conclusion

9.1 Interprétation

L'estimation du potentiel minéral de la propriété repose sur la découverte d'un indice de cuivre dans un secteur vierge à l'exploration minérale et à la présence de plusieurs anomalies électromagnétiques aéroportées non expliquées.

Les travaux d'échantillonnage sur l'indice démontrent des teneurs d'intérêt en cuivre. Par contre, ces teneurs sont associées à des enclaves de paragneiss dans une intrusion granitique, et le volume des enclaves est faible par rapport à l'ensemble de la roche.

Les enclaves représentent environ 20 % de la roche, ce qui pourrait indiquer que le contact entre le granite et les paragneiss soit proximal. Si c'est le cas, en se rapprochant du contact, le volume d'enclaves minéralisées ou la découverte de la source de ces enclaves à l'extérieur du granite permettrait une augmentation significative du volume de la minéralisation en cuivre.

L'indice n'a pas de signature EM aéroportée, probablement expliquée par le faible volume de roches minéralisées. Les cibles EM détectées dans le secteur peuvent donc représenter un volume et/ou une continuité plus importante des minéralisations.

Pour l'instant, l'origine de la minéralisation ne peut-être que spéculative vu le peu de données disponibles. La minéralisation est associée au paragneiss, celui-ci par sa composition riche en quartz et en mica, peut facilement correspondre à des sédiments (grès impurs, wackes siliceux) métamorphisés.

9.2 Conclusion

Les travaux de reconnaissance géologique 2014 ont permis la découverte d'un nouvel indice valorisant ce secteur à l'exploration minérale.

Ce secteur est peu documenté géologiquement par son faible volume de travaux dans les archives. L'interprétation d'un modèle gitologique sur les données disponibles demeure hasardeuse et demande davantage de travaux pour en préciser la nature.

10.0 Recommandations

Le levé EM SkyTEM⁵⁰⁸ a détecté plusieurs cibles électromagnétiques dans le secteur de l'indice et sur le reste de la propriété. Ces cibles sont occasionnées par des masses de sulfures probablement plus volumineuses et/ou plus continues que celles de l'indice de cuivre JFO. Il est donc recommandé de poursuivre les travaux d'exploration en visant ces cibles EM pour déterminer s'il s'agit de sulfures stériles ou de minéralisation économique.

Le levé EM SkyTEM⁵⁰⁸, dû à sa grande pénétration, a révélé des cibles pouvant être profondes. Comme l'effet du pendage joue un rôle important dans le positionnement des masses conductrices dans leur expression de surface, il est recommandé de mieux définir ces cibles par des levés géophysiques au sol.

Un levé MaxMin sur les anomalies EM démontrant de bonnes continuités est proposé. Bien, que la limite de détection d'un levé MaxMin soit plus proche de la surface, cette méthode permettra de travailler les anomalies à un faible coût. Le positionnement des cibles en surface facilite la poursuite des travaux de prospection, de décapage mécanique et de forage afin de faciliter la compréhension du potentiel du système minéralisateur.

Pour le secteur de l'indice, les anomalies EM semblent moins continues et souvent plus profondes, il est recommandé de faire un levé de polarisation provoquée avec 20 séparations pour faciliter la modélisation des corps minéralisés plus en profondeur de ce secteur sans qu'ils aient nécessairement une expression en surface.

Il est donc recommandé de réaliser un levé MaxMin de 40 km de lignes réparties sur six grilles et de 36 km de polarisation provoquée. Ces travaux seront suivis d'une cartographie détaillée des affleurements sur les réseaux de lignes. Il est également proposé de compléter la reconnaissance géologique sur le reste de la propriété. Comme certains secteurs sont peu affleurants, il est proposé d'accompagner ces travaux de quelques lignes test de géochimie de sol (Figures 20 et 21).

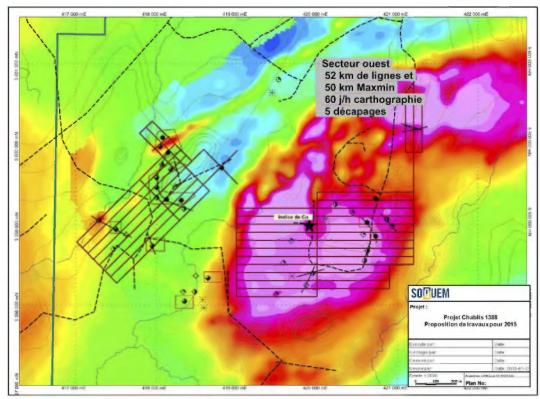


Figure 20 Proposition de travaux portion ouest

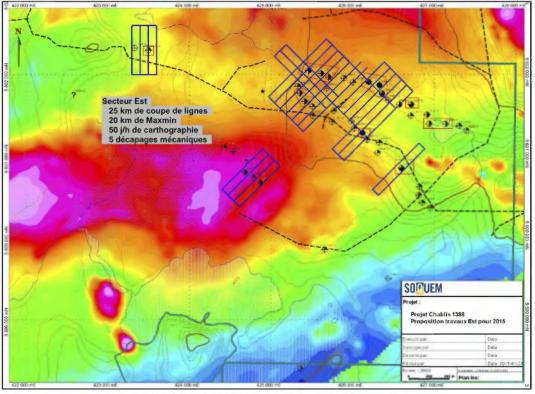


Figure 21 Proposition de travaux portion est

Dans une première phase d'exploration, il est donc recommandé :

- 86 km de coupe de lignes avec un levé MaxMin de 40 km linéraires (câble de 100 m) et un levé P.P. de 36 km linéaires (20 séparations);
- Six semaines de cartographie-prospection à quatre personnes.

Dans une deuxième phase d'exploration :

• Décaper et forer les cibles d'intérêts : 100 heures de pelle mécanique pour du décapage (10 tranchées, trois semaines de travail), 2 000 m de forages.

À Chibougamau, le 24 septembre 2015

Serge Perreault, géo.

Philippe Amboise, géo. stag. Gabrielle Rochefort, ing.jr

Référence

Bandyayera, D, Morin, R. 1999. L'Indice du lac Rocher (découverte de Nuinsco Resources Ltd) et le potentiel en nickel-cuivre de la région de Frotet-Evans. MNRF, 13 pages; Pro 99-03.

Bandyayera, D, Sharma. 2001. Minéralisations en Ni-Cu±egp dans la bande volcano-sédimentaire de Frotet-Evans (SNRC 32K), 74 pages; MB 2001-06.

Beaumier, M, Kirouac, F. 1996. Série de cartes géochimiques couleur. Échantillonnage des sédiments de lac. Région du lac Evans (SRNC 32K). MNRF, 33 pages; MB 96-23.

Boily, M. 1998. Géochimie des assemblages volcaniques de la portion occidentale de la ceinture volcano-sédimentaire de Frotet-Evans (CVFE). MNRF, 70 pages; MB 98-08.

Brisson, H., Gosselin, C., Fallara, F., Gaulin, R., Dion, D.J., 1998. Géologie de la région du lac Rocher (32K/09). Ministère des Ressources naturelles du Québec, 24 pages; RG 98-05.

D'Amours, I, Intissar, R. 2012. Levé magnétique aéroporté dans le secteur du lac Evans, Baie-James. MNRF, 8 pages et autres données numériques; DP 2012-01.

Davis, W.J. Machado, N. Gariépy, C. Sawyer, E.W. Benn, K., 1995. U-Pb geochronology of the Opatica tonalite-gneiss belt and its relationship to the Abitibi greenstone belt, Superior Province, Québec. Journal Canadien des Sciences de la Terre; volume 32, pages 113-127.

Dion, D J, Lefebvre, D L. 1998. Données numériques (profils) des levés géophysiques aéroportés du Québec – 32K, MNRF, données numériques; DP 96-07.

Franconi, A. 1971. Géochimie des sédiments de ruisseaux : Région du lac Rocher, territoire d'Abitibi. Ministère des Richesses naturelles, Québec, rapport préliminaire, 7 pages, 1 carte (1/31 680); DP 209.

Franconi, A. 1972. Géologie de la région du lac Rocher, territoire d'Abitibi. Ministère des Richesses naturelles, Québec, rapport préliminaire, 13 pages, 1 carte (1/31 680); DP 060.

Franconi, A. 1974. Géologie de la moitié ouest de la bande volcano-sédimentaire Frotet-Evans, territoire d'Abitibi. Ministère des Richesses naturelles, Québec, rapport intérimaire, 141 pages, 5 cartes (1/31 680, 1/125 000); DP 265.

Geotech Ltd. 2011. Report on a helicopter-borne versatile time domain electromagnetic (VTEM) and aeromagnetiv survey (Remparts, Wildcats, Huskies and Tgres Blocks). For Canadian Royalties Inc. 111 pages, 26 plans; GM 65701.

Houle,P. 2011. L'odyssée minière du territoire de la Baie-James. Ressources naturelles et Faune, 27 pages.

Jébrak, M. Marcoux, E. 2008. Géologie des ressources minérales. Gouvernement du Québec, Ressources naturelles et Faune, Géologie Québec, 667 p.; MM 2008-01.

Relevés géophysiques Inc. 1985. Levé EM aérien par INPUT MK VI – Région de Quénonisca. Ministère des Richesses naturelles, Québec, 113 pages, 2 cartes/26F (1/20 000); DP 85-13.

Sites Internet

Ville de Matagami, consulté en février 2015.

http://www.victorynickel.ca/projects/lac rocher/lac Rocher, Victory Nickel inc. Consulté en Avril 2015.

http://www.copperone.com/English/news/press-release-details/2014/Copper-One-acquires-past-producing-Troilus-Mine-from-First-Quantum-Minerals/default.aspx CopperOne. Consulté en Avril 2015.

ANNEXE 1 CERTIFICATS DE QUALIFICATION

CERTIFICAT DE QUALIFICATION

La présente est pour certifier que moi, Philippe D'Amboise, domicilié au 125, rue McKenzie, à Chibougamau (Québec) G8P 1G3 :

- Je suis présentement à l'emploi de SOQUEM INC. ayant son siège social au 600 avenue Centrale, Val d'Or (Québec) J9P 1P8 à titre géologue stagiaire et chargé de projet. Je suis à l'emploi de SOQUEM depuis 1978 et mon lieu d'assignation est le bureau régional de Chibougamau au 462, 3^e Rue, Chibougamau (Québec) G8P 1N7.
- Je réside dans la région de Chibougamau depuis 1984.
- Je travaille en exploration minière depuis 1978.
- Je suis diplômé du Cégep de l'Amiante à Thetford Mines (technologie minérale, option géologie).
- J'ai complété un baccalauréat en géologie à l'Université du Québec à Chicoutimi au printemps 2014.
- Je suis membre de l'Ordre des géologues du Québec (OGQ) comme géologue stagiaire # 1874.
- Je suis membre de l'Association de l'exploration minière du Québec (AEMQ).
- En tant que géologue stagiaire et chargé de projets sur le projet Chablis (1388), j'ai été impliqué dans les travaux de bureau et de terrain de janvier 2014 à avril 2015.
- J'ai rendu dans ce rapport toutes les données importantes qui, au meilleur de ma connaissance, peuvent influencer l'évaluation du projet. Ce rapport est basé sur la documentation de SOQUEM INC, les travaux statutaires archivés au ministère des Ressources naturelles du Québec et sur l'expérience que l'auteur a acqui dans la région.
- Je n'ai pas, directement ou indirectement, reçu ou espère recevoir un intérêt, direct ou indirect, dans la propriété.

À Chibougamau Le 27 mai 2015

Philippe D'Ambose

Géologue stagaire No 1874 et chargés de projets

CERTIFICAT DE QUALIFICATION

La présente est pour certifier que moi, Gabrielle Rochefort, domiciliée au 2083, rue Larose, Chibougamau (Québec) G8P 2Y2:

Je suis présentement à l'emploi de SOQUEM INC. ayant son siège social au 600, avenue Centrale, Val-d'Or (Québec) J9P 1P8 à titre d'ingénieure junior. Mon lieu d'assignation est le bureau régional de Chibougamau situé au 462, 3°Rue, Chibougamau (Québec) G8P 1N7, et ce, depuis 2013.

Je travaille à plein temps en exploration minière au Québec, depuis 2013.

Je suis diplômée de l'Université du Québec à Chicoutimi (Bachelière en génie géologique) depuis 2012.

Je suis membre de l'Ordre des ingénieurs du Québec depuis juin 2013 à titre d'ingénieure junior (#5043675).

En tant qu'ingénieure junior, j'ai été impliqué dans le projet Chablis dans les travaux de bureau et de terrain de mars 2014 à mars 2015.

J'ai rendu dans ce rapport toutes les données importantes qui, au meilleur de ma connaissance, peuvent influencer l'évaluation du projet. Ce rapport est basé sur la documentation de SOQUEM INC, les travaux statutaires archivés au ministère des Ressources naturelles du Québec et sur l'expérience que l'auteure a acquise dans la région.

Je n'ai pas, directement ou indirectement, reçu ou espère recevoir un intérêt, direct ou indirect, dans la propriété ou autres intérêts, quels qu'ils soient.

À Chibougamau Le 23 février 2015

Gabrielle Rochefort, ing.

CERTIFICAT DE QUALIFICATION

La présente est pour certifier que moi, Serge Perreault, domicilié au 120, rue des Saules, Val-d'Or, Québec, J9P 4G1 :

- Je suis présentement à l'emploi de SOQUEM INC. ayant son siège social au 600, avenue Centrale, Val-d'Or, Québec, J9P 1P8, à titre de géologue senior et de projet. Je suis à l'emploi de SOQUEM depuis octobre 2008 et mon lieu d'assignation est le bureau de Val-d'Or.
- Je suis diplômé de l'Université de Montréal et j'ai obtenu un baccalauréat en géologie en 1982 et une Maîtrise en sciences en 1987.
- Depuis 1991, je travaille en cartographie géologique et en exploration minière au Québec à plein temps. Avant de joindre SOQUEM en octobre 2008, j'ai travaillé au Ministère de l'Énergie et des Ressources naturelles du Québec à titre de géologue de projet, géologue régional, géologue résident et d'adjoint au directeur général.
- Je suis membre de l'Ordre des géologues du Québec et mon numéro est le # 318.
- Je suis membre de l'Institut canadien des mines et de la métallurgie et du Pétrole, de l'Association de l'exploration minière du Québec, de la Prospectors and Developers Association of Canada et de la Society of Economic Geology (SEG).
- Ce rapport profite de mes années d'expérience en exploration minière et en cartographie géologique et à titre de géologue au Québec.
- En tant que chef de projet senior, j'ai participé à l'élaboration du projet, supervisé la compilation géoscientifique et la planification des travaux de terrain.
- J'ai fait la relecture critique du présent rapport.

À Val-d'Or, le 24 novembre 2015

Serge Perreault, géo Chef de projet senior

Membre OGQ # 318

ANNEXE 2 LÉGENDE GÉOLOGIQUE

Légende géologique

I1B	Granite	V3	Lave mafique	M1	Gneiss
I1C	Granodiorite	S1	Grès	M3	Orthogneiss
I1D	Tonalite	S3	Wackes	M4	Paragneiss
I1G	Pegmatite	S9E	Form. Fer sulfurée	M5	Gneiss quartzofeldspathique
121	Diorite	F1	Sulfure	M16	Amphibolite
I3A	Gabbro	MV	Méta-volcanique	M22	Migmatite
QFP	Quartz-Feldspath	MS	Méta-sédiment		

tr	En trace	diss	Disséminé		AM	Amphibolite	(amphil	politisé)
loc.	Localement	fo	Folié		ВО	Biotite (bioti	sé)	
+	présent	gb	Gloméroblastique		CL	Chlorite (chl	oritisé)	
++	fort	gs	gneissique		EP	Épidote (épi	dotisé)	
+++	très fort	hd	Hypidiomorphe		FK	Feldspath po	tassique	9
		hj	Homogène		HM	Hématite (he	ématisé)	
gf	Grain fin	hk	Hétérogène		Si	Silicifiée		
gm	Grain moyen	id	Idiomorphe ??		SR	Séricite (séri	citisé)	
gg	Grain grossier	ma	Massif					
		pg	Pegmatitique	FP	Felds	oath	CP	Chalcopyrite
mag	Magnétique	ru	Rubanement	GR	Grena	at	MG	Magnétite
		sa	Lité stratifié	MC	Malad	chite	MO	Molybdénite
mx	Minéraux	mm	Monogénique	PG	Plagic	oclase	PO	Pyrrhotite
		sc	Schistosité	QZ	Quart	z	PY	Pyrite
alt	Surface altérée	Vn	Vénulle	GP	Graph	nite	SF	Sulfure
fr	cassure fraiche							

ANNEXE 3 CERTIFICATS D'ANALYSES

ANNEXE III CERTIFICATS D'ANALYSES

Liste des rapports d'analyses

			Ann	exe 3	Certifica	ts d'analy	ses			
Analyses mult	is éléments									
No rapport	No échantil	lons								
	de	à	de	à	de	à	de	à	de	à
VO14105421	281860	281862								
VO14105425	277850	277850	277951	277957	279542	279543	281853	281859		
VO14105426	277858	277858	279565	279565	281960	281960				
VO14113177	277489	277493	277962	277964	281864	281886				
VO14113280	279453	279453								
VO14160281	145590	145649	145736	145750	277990	277999	281961	281976		
VO14160282	145501	145517	277513	277521	277601	277602	277651	277654	279466	279478
Alalyses des	éléments ma	ajeurs								
No rapport	No échantil	lons								
VO14197976	145510	145511	145516	277360 à	277363	279476	279478			
VO14196979	145603	145648								
VO14198691	281960									
	Note: Les ce	ertificats per	uvent conte	nir des ana	lyses n'appa	rtenant pas a	u projet 13	88 Chablis.	Considérer	
	seulement le	es échantillo	ns énumére	és ci-haut.						

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: 604 984 0221
www.alsglobal.com

Télécopieur: 604 984 0218

A: SOQUEM INC. 600 AVENUE CENTRALE VAL-D OR QC J9P 1P8 Page: 1
Nombre total de pages: 2 (A - D)
plus les pages d'annexe
Finalisée date: 16-JUIL-2014

Compte: SOQVAL

CERTIFICAT VO14105421

Projet: 0198

Ce rapport s'applique aux 3 échar

Ce rapport s'applique aux 3 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 10-JUIL-2014.

Les résultats sont transmis à:

PHILIPPE DAMBOISE SERGE PERREAULT

	PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION	
WEI-21	Poids échantillon reçu	
LOG-22	Entrée échantillon - Reçu sans code barre	
CRU-QC	Test concassage QC	
PUL-QC	Test concassage QC	
CRU-31	Granulation - 70 % <2 mm	
SPL-21	Échant. fractionné - div. riffles	
PUL-31	Pulvérisé à 85 % <75 um	
WSH-22	"Nettoyer" pulvérisateurs	

	PROCÉDURES ANALYTIQUES	
CODE ALS	DESCRIPTION	INSTRUMENT
ME-OG46	Teneur marchandes éléments - Aqua regia	ICP-AES
Cu-OG46	Teneur marchande Cu - Aqua regia	VARIABLE
Ag-OG46	Teneur marchande Ag - Aqua regia	VARIABLE
Au-AA23	Au 30 g fini FA-AA	AAS
ME-MS61	ICP-MS 48 éléments, quatre acides	

A: SOQUEM INC.
ATTN: SERGE PERREAULT
600 AVENUE CENTRALE
VAL-D OR QC J9P 1P8

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Commentaire: SOQVAL-1

Signature:

Nacera Amara

Nacera Amara, Laboratory Manager, Val d'Or

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver 8C V7H 0A7

Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - A Nombre total de pages: 2 (A - D) plus les pages d'annexe Finalisée date: 16-JUIL-2014 **Compte: SOQVAL**

CERTIFICAT D'ANALYSE VO14105421

Projet: 0198

Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm	ME-MS61 Cs ppm	ME-MS61 Cu ppm
P281860	L.O.	2.67	<0.005	1.84	7.31	5.5	210	1.78	1.69	0.23	0.03	29.4	22.1	221	2.15	>10000
P281861		1.79	0.418	60.3	7.12	6.1	820	1.66	160.0	0.16	<0.02	29.6	111.0	9	1.45	>10000
P281862		1.36	0.060	1.38	6.69	0.5	270	1.66	13.75	0.07	0.02	110.0	15.7	86	4.77	1390

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218

www.alsglobal.com

À: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - B Nombre total de pages: 2 (A - D) plus les pages d'annexe Finalisée date: 16-JUIL-2014

Compte: SOQVAL

Projet: 0198

Minera	is							Proje	et: 0198							
									(CERTIF	ICAT D	'ANAL	SE V	01410	5421	
Description échantillon	Méthode élément unités L.D.	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10
P281860 P281861 P281862		4.51 3.32 2.48	21.6 19.10 18.80	0.11 0.29 0.21	3.5 2.1 3.6	0.234 0.470 0.073	1.62 4.65 2.23	12.9 9.8 66.8	55.9 83.9 46.7	2.25 2.71 1.69	231 184 125	125.0 3840 32.4	2.83 1.37 2.56	11.0 15.1 5.8	34.7 31.4 31.2	270 500 170

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - C Nombre total de pages: 2 (A - D) plus les pages d'annexe Finalisée date: 16-JUIL-2014 **Compte: SOQVAL**

Projet: 0198

Minera	IS							1195	et. 0196							·····
										CERTIF	ICAT D	'ANAL	/SE V	<u>01410</u>	5421	
Description échantillon	Méthode	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61							
	élément	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	TI	U
	unités	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
	L.D.	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.2	0.005	0.02	0.1
P281860		77.5	83.6	0.005	2.00	0.08	19.2	2	1.4	82.7	0.94	0.29	11.1	0.323	0.46	3.5
P281861		547	134.0	0.173	1.39	0.55	8.6	91	0.6	149.0	0.91	0.07	16.1	0.195	3.19	128.5
P281862		35.4	107.5	0.003	1.06	0.06	9.7	14	0.7	54.6	0.40	0.30	5.6	0.287	0.61	3.6

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H OA7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218

www.alsglobal.com

À: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - D Nombre total de pages: 2 (A - D) plus les pages d'annexe Finalisée date: 16-JUIL-2014 **Compte: SOQVAL**

Projet: 0198

CERTIFICAT D'ANALYSE VO14105421 Cu-OG46 Ag-OG46 ME-MS61 ME-MS61 ME-MS61 ME-MS61 ME-MS61 Méthode Ag W Υ Zn Zr Cu élément % ppm unités ppm ppm ppm ppm ppm Description échantillon L.D. 0.1 0.1 0.5 0.001 155 8.0 6.0 93 126.5 2.15 P281860 P281861 282 0.3 48 69.6 1.255 58 7.4 94 P281862 0.4 5.7 26 139.5

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: Annexe 1 Total # les pages d'annexe: 1 Finalisée date: 16-JUIL-2014

Compte: SOQVAL

Projet: 0198

			CERTIFICAT D'ANAL	YSE VO14105421
		COMMENTAIRE DE C	ERTIFICAT	
		COMMEN	TAIRES ANALYTIQUES	
spplique à la Méthode:	L'analyse des terres rares ME-MS61	peut être partiellement soluble avec o	ette méthode.	
		ADRESS	E DE LABORATOIRE	
	Traité à ALS Val d'Or, 132	24 Rue Turcotte, Val d'Or, QC, Canada.		
pplique à la Méthode:	Au-AA23	CRU-31	CRU-QC	LOG-22
	PUL-31	PUL-QC	SPL-21	WEI-21
	WSH-22			
	Traité à ALS Vancouver. 2	2103 Dollarton Hwy, North Vancouver,	BC. Canada.	
pplique à la Méthode:	Ag-OG46	Cu-OG46	ME-MS61	ME-OG46
		,		
		,		

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7

www.alsglobal.com

Téléphone: 604 984 0221 Télécopieur: 604 984 0218

A: SOQUEM INC. 600 AVENUE CENTRALE VAL-D OR QC J9P 1P8

Page: 1
Nombre total de pages: 6 (A - D)
plus les pages d'annexe
Finalisée date: 29-JUIL-2014
Compte: SOQVAL

CERTIFICAT VO14105425

Projet: 0198

Ce rapport s'applique aux 161 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 10-JUIL-2014.

Les résultats sont transmis à:

PHILIPPE DAMBOISE

SERGE PERREAULT

	PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION	
WEI-21	Poids échantillon reçu	
LOG-22	Entrée échantillon - Reçu sans code barre	ł
LOG-24	Entrée pulpe - Reçu sans code barre	- 1
CRU-QC	Test concassage QC	i
PUL-QC	Test concassage QC	
CRU-31	Granulation - 70 % <2 mm	
SPL-21	Échant. fractionné - div. riffles	
PUL-31	Pulvérisé à 85 % <75 um	
WSH-22	"Nettoyer" pulvérisateurs	

	PROCÉDURES ANALYTIQUES	
CODE ALS	DESCRIPTION	INSTRUMENT
ME-OG46	Teneur marchandes éléments - Aqua regia	ICP-AES
Cu-OG46	Teneur marchande Cu - Aqua regia	VARIABLE
Zn-OG46	Teneur marchande Zn - Aqua regia	VARIABLE
Pb-OG46	Teneur marchande Pb - Aqua regia	VARIABLE
Ag-OG46	Teneur marchande Ag - Aqua regia	VARIABLE
Au-AA23	Au 30 g fini FA-AA	AAS
Au-GRA21	Au 30 g fini FA-GRAV	WST-SIM
ME-MS61	ICP-MS 48 éléments, quatre acides	

A: SOQUEM INC.
ATTN: PHILIPPE DAMBOISE
600 AVENUE CENTRALE
VAL-D OR QC J9P 1P8

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Commentaire: SOQVAL-1

Signature:

Nacera Amara

Nacera Amara, Laboratory Manager, Val d'Or

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - A Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014 **Compte: SOQVAL**

Projet: 0198

Minera								<u>Proj</u>	et: 0198							
c.a									1	CERTIF	ICAT D	'ANAL'	YSE V	01410	5425	
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05
P277431 P277432 P277433 P277434 P277435		1.70 0.95 1.54 1.05 1.51	<0.005 <0.005 <0.005 <0.005 <0.005		0.13 0.09 0.01 0.05 0.11	6.43 7.69 2.29 8.17 8.47	0.8 32.6 <0.2 19.2 0.7	810 300 630 110 890	1.78 0.69 0.34 6.74 1.78	0.25 0.16 0.01 0.43 0.38	1.48 1.66 0.02 3.59 0.81	0.07 0.12 <0.02 0.06 0.06	13.40 50.4 9.00 4.85 50.9	17.0 8.7 0.2 18.7 18.8	121 131 10 135 207	13.75 6.36 1.15 16.60 11.70
P277436 P277437 P277438 P277439 P277440		1.75 2.13 1.85 2.48 2.53	<0.005 0.047 <0.005 <0.005 0.029		0.06 1.62 0.19 0.16 0.54	6.12 1.08 7.18 8.11 4.71	1.7 5.1 1.8 5.7 99.6	240 30 340 390 50	1.61 0.63 1.19 0.96 1.08	4.45 13.80 0.21 0.27 0.84	0.89 0.25 2.47 1.06 0.75	0.04 <0.02 0.14 0.15 3.00	10.70 113.0 51.6 59.5 30.5	1.6 109.0 15.1 31.0 90.5	11 42 107 260 73	8.99 1.60 4.89 3.35 3.13
P277441 P277442 P277443 P277444 P277445		1.66 1.48 2.56 1.64 1.44	0.006 <0.005 <0.005 <0.005 <0.005		0.59 0.20 0.35 0.15 0.16	9.22 7.49 7.87 8.10 8.66	16.9 <0.2 0.5 0.6 0.7	5320 410 540 680 500	3.22 1.02 1.65 1.43 0.74	0.60 0.22 0.25 0.24 0.30	1.40 2.29 1.51 1.45 0.82	0.11 0.19 0.12 0.18 0.23	83.1 49.6 56.3 71.7 60.7	3.8 20.2 16.9 20.4 22.2	17 107 81 96 136	6.36 5.79 6.39 4.75 4.86
P277446 P277447 P277448 P277449 P277450		1.26 1.78 1.48 2.42 1.29	<0.005 <0.005 <0.005 <0.005 <0.005		0.04 0.83 0.01 0.02 0.71	5.83 6.13 0.24 0.82 6.70	0.5 0.9 <0.2 0.8 1.4	80 280 20 220 290	1.60 0.89 0.10 0.14 1.59	0.03 1.51 0.01 0.03 1.31	0.97 2.09 0.01 0.01 0.26	0.02 4.16 <0.02 <0.02 4.04	10.35 35.3 32.4 7.92 18.45	0.6 57.4 0.2 0.3 51.7	8 501 17 16 116	1.47 3.86 <0.05 0.51 3.57
P277451 P277452 P277453 P277454 P277455		1.59 2.35 1.90 1.26 1.91	<0.005 <0.005 <0.005 <0.005 <0.005		0.40 0.12 0.09 0.17 0.15	7.34 7.75 6.58 7.35 7.83	0.3 <0.2 <0.2 0.9 0.4	540 590 1330 380 630	1.39 3.68 2.50 0.67 1.27	0.85 0.06 0.07 0.20 0.19	0.74 1.30 1.37 2.25 1.49	2.54 0.02 0.04 0.13 0.15	52.0 59.8 17.00 51.0 59.5	24.4 9.9 3.0 22.5 17.1	21 85 41 118 78	4.08 8.75 2.29 3.89 10.30
P277456 P277457 P277458 P277459 P277460		0.71 2.17 2.27 1.22 2.07	<0.005 <0.005 0.012 <0.005 <0.005		0.09 0.17 0.24 0.19 0.24	7.43 7.12 6.70 8.22 7.32	41.4 24.4 <0.2 210 0.8	260 150 210 580 340	0.76 0.77 2.12 1.55 2.14	0.33 0.30 35.1 0.45 0.80	2.13 5.65 0.45 1.25 4.22	0.20 0.74 0.07 0.11 0.09	20.7 33.4 31.0 42.6 15.25	33.9 32.1 3.2 29.6 22.2	249 133 10 168 161	2.93 3.53 7.51 50.7 17.30
P277461 P277462 P277463 P277464 P277465		1.15 1.49 2.38 1.89 1.84	<0.005 <0.005 <0.005 <0.005 <0.005		0.31 0.08 0.60 0.08 0.17	6.92 7.35 5.94 6.85 7.40	0.4 <0.2 0.4 <0.2 <0.2	1200 1030 320 640 600	1.36 1.65 1.18 2.17 2.25	0.74 0.20 1.29 0.19 1.08	1.84 1.83 4.27 1.93 1.99	0.81 0.03 0.30 0.14 0.16	27.4 38.2 16.95 27.3 64.5	15.4 13.6 35.3 7.0 17.5	49 175 147 40 121	4.65 7.80 2.73 5.09 10.40
P277466 P277467 P277468 P277469 P277470		3.17 2.16 1.27 2.19 3.98	<0.005 <0.005 <0.005 <0.005 <0.005		0.02 0.09 0.20 0.04 1.09	5.71 8.40 8.57 7.39 7.61	0.2 1.3 1.0 0.3 0.6	110 1020 670 850 480	1.57 1.27 1.30 1.85 1.70	1.03 0.63 0.39 0.03 0.35	0.44 0.75 2.25 0.89 2.01	0.13 0.18 0.14 0.07 0.36	7.96 57.4 90.5 169.0 48.2	0.2 10.6 23.4 6.4 37.1	8 62 150 28 70	3.98 1.48 13.85 2.94 5.13

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd. 2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Telephone: 604 984 0221 Telecopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - B Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014 Compte: SOQVAL

Projet: 0198

									(CERTIF	ICAT D	'ANAL	/SE V	<u>'01410</u>	5425	T
Description échantillon	Méthode élément unités L.D.	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2
P277431		31.6	10.15	17.80	0.12	2.4	0.032	2.11	5.7	216	1.69	504	1.29	1.65	4.5	51.6
P277432		20.6	5.45	20.2	0.17	3.2	0.056	1.43	23.3	122.5	0.95	922	1.60	1.80	5.3	16.2
P277433		1.4	0.25	4.29	0.12	1.1	< 0.005	2.38	4.0	3.7	0.08	18	0.14	0.07	0.9	1.1
P277434		34.5	5.92	30.4	0.14	1.1	0.047	0.40	1.9	130.0	2.91	956	0.30	2.82	19.9	34.2
P277435		31.4	5.15	26.3	0.19	3.6	0.060	3.20	24.1	132.0	1.92	577	2.42	1.35	7.6	54.4
P277436		5.0	0.93	19.95	0.15	2.1	0.017	2.27	4.6	64.0	0.17	218	0.15	2.99	8.5	1.6
P277437	l	37.4	3.34	5.51	0.27	0.7	0.009	0.52	50.3	19.7	0.23	78	91.8	0.02	6.9	20.9
P277438		30.7	3.11	18.70	0.15	1.5	0.029	1.03	25.5	42.6	0.67	575	1.13	2.58	0.5	34.0
P277439		55.1	4.20	23.8	0.22	4.0	0.061	1.85	28.0	30.5	1.43	626	2.01	1.12	7.8	122.0
P277440		154.0	17.35	12.75	0.20	2.2	0.685	1.19	11.8	67.8	0.67	1300	5.48	1.54	1.8	71.0
P277441		9.2	2.08	24.6	0.29	6.1	0.018	4.78	45.1	46.0	0.26	381	0.63	3.69	9.5	3.9
P277442		55.4	3.88	18.85	0.19	1.7	0.031	1.58	23.9	113.5	1.18	579	0.72	2.43	1.7	46.4
P277443		39.5	3.39	21.4	0.20	2.5	0.034	1.97	27.5	47.2	0.85	675	1.30	3.60	6.4	41.7
P277444		41.4	4.79	23.0	0.19	2.7	0.052	2.45	35.0	66.1	1.07	831	2.38	3.35	6.9	52.5
P277445	I	52.0	4.96	22.0	0.21	3.8	0.075	2.48	29.6	70.6	1.11	849	1.95	1.34	5.8	47.4
P277446		1.1	0.61	16.00	0.12	1.6	0.007	1.78	4.6	13.6	0.09	123	0.16	2.95	6.0	0.8
P277447		206	6.62	18.95	0.19	2.8	0.579	2.12	14.2	29.2	1.48	868	3.38	0.96	3.6	287
P277448		1.5	0.26	0.85	0.13	0.4	< 0.005	0.03	12.7	5.9	<0.01	24	0.19	0.01	0.4	1.3
P277449		2.5	0.46	1.76	0.12	0.8	< 0.005	0.80	3.8	3.3	0.04	43	0.18	0.02	0.4	1.5
P277450	1	249	7.73	18.70	0.13	3.6	0.454	1.87	8.3	53.3	1.02	568	6.53	1.49	3.8	88.8
P277451		130.0	4.86	19.45	0.19	3.5	0.430	2.55	25.9	31.7	0.90	390	3.05	1.85	1.6	66.6
P277452		18.5	2.76	24.8	0.22	3.4	0.033	2.63	28.2	60.2	1.04	526	0.27	3.37	12.7	31.7
P277453		12.7	0.96	19.00	0.14	2.8	0.009	2.18	6.7	17.9	0.24	107	0.67	3.05	3.3	5.2
P277454		93.0	4.35	18.95	0.14	2.2	0.021	1.04	24.9	49.6	1.21	475	1.18	2.82	4.6	50.5
P277455	1	37.7	4.12	21.3	0.18	2.4	0.048	2.13	29.0	61.3	0.94	711	1.78	3.27	5.9	42.2
P277456		39.2	6.98	18.50	0.14	2.9	0.100	1.12	9.4	48.2	1.10	1830	2.10	2.28	2.6	57.5
P277457	l	84.2	7.06	17.90	0.13	2.4	0.112	0.73	13.8	70.4	1.65	2410	1.22	0.47	4.0	79.8
P277458	l l	27.4	1.08	19.60	0.23	0.8	0.019	5.22	12.3	26.3	0.13	154	72.7	2.33	12.8	6.1
P277459		66.7	4.40	24.0	0.20	3.3	0.075	2.36	16.8	274	1.33	675	1.62	1.33	2.6	67.5
P277460		40.1	4.22	19.70	0.15	1.2	0.085	1.19	6.5	56.0	2.32	1300	2.45	2.02	5.5	60.7
P277461		63.4	2.79	19.15	0.15	2.4	0.111	2.83	10.9	28.7	0.41	412	5.05	2.17	3.0	36.9
P277462		40.3	3.81	19.10	0.21	3.4	0.032	2.10	16.0	0.88	1.51	516	1.44	2.48	7.6	35.7
P277463		158.0	10.70	16.50	0.13	1.7	0.111	1.51	8.0	22.5	2.17	2370	5.91	0.55	4.0	49.5
P277464		15.3	2.07	25.3	0.15	2.4	0.025	2.20	10.1	46.6	0.56	1070	0.42	2.86	31.5	14.2
P277465		61.1	3.72	23.3	0.20	2.5	0.044	1.34	31.1	57.2	0.87	674	7.84	2.74	12.9	40.4
P277466		0.7	0.62	18.70	0.15	3.5	0.008	3.11	3.9	4.9	0.02	1430	4.25	2.62	6.7	0.7
P277467	İ	13.0	3.26	23.3	0.05	2.5	0.022	1.79	26.4	80.5	1.36	837	3.38	3.86	7.5	33.1
P277468		58.8	4.82	25.2	0.12	3.2	0.053	1.91	43.9	116.5	1.34	865	2.44	3.09	10.3	73.8
P277469		19.4	2.05	20.4	0.16	5.1	0.034	3.89	86.4	39.3	0.64	407	0.27	3.18	8.7	14.3
P277470	l	503	5.34	23.3	0.12	3.0	0.048	1.78	23.6	60.2	1.65	441	1.17	3.61	8.5	56.5

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - C Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014 **Compte: SOQVAL**

Projet: 0198

Minera	IS									CERTIF	ICAT D	'ANAL	/SE V	01410	5425	
Description échantillon	Méthode	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	élément	P	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	TI
	unités	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm
	L.D.	10	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.2	0.005	0.02
P277431		710	12.6	108.5	0.002	0.15	0.06	12.9	<1	0.8	460	0.28	<0.05	3.6	0.271	0.57
P277432		450	8.9	57.7	<0.002	0.30	0.06	14.1	1	1.0	311	0.34	0.10	3.9	0.339	0.96
P277433		60	4.3	73.1	<0.002	<0.01	0.06	0.4	<1	0.2	44.1	0.09	<0.05	1.8	0.020	0.36
P277434		3330	3.5	28.9	<0.002	0.10	0.09	23.8	<1	14.7	111.5	41.5	0.11	0.4	0.433	0.42
P277435		670	15.9	110.5	0.002	0.03	0.05	20.9	1	1.9	233	0.59	0.07	6.9	0.396	0.76
P277436		370	10.9	250	<0.002	0.01	0.07	1.9	<1	3.0	191.5	0.88	<0.05	3.3	0.079	1.57
P277437		890	91.5	59.1	0.267	3.01	0.05	1.6	12	0.7	8.6	0.73	0.46	2.3	0.075	0.25
P277438		450	12.2	40.5	0.002	1.36	0.05	7.8	<1	0.8	650	<0.05	0.06	3.6	0.159	0.54
P277439		770	9.5	61.7	<0.002	0.36	<0.05	16.2	1	1.5	214	0.56	0.06	4.5	0.402	0.71
P277440		240	21.8	55.8	0.033	>10.0	<0.05	14.7	1	1.9	158.0	0.14	0.09	2.7	0.121	1.74
P277441 P277442 P277443 P277444 P277445		360 420 370 630 550	113.0 9.7 28.3 14.4 10.5	131.0 99.7 102.0 78.4 93.8	<0.002 0.002 <0.002 0.002 0.003	0.71 1.12 0.70 0.95 0.99	0.91 0.09 <0.05 <0.05 0.11	1.3 10.4 9.9 12.1 14.6	<1 <1 1 1	0.8 0.5 0.7 1.1 1.3	>10000 522 597 512 240	0.30 0.12 0.65 0.49 0.42	0.15 0.09 0.08 0.13 0.16	5.0 4.0 4.4 6.2 5.1	0.142 0.277 0.277 0.324 0.360	1.44 0.71 0.78 1.00 0.72
P277446		30	22.4	74.6	<0.002	0.01	<0.05	1.2	<1	0.6	121.5	0.67	<0.05	29.1	0.032	0.42
P277447		230	16.1	157.0	0.006	5.35	<0.05	14.6	5	3.3	174.0	0.31	0.18	4.0	0.253	1.70
P277448		20	<0.5	1.5	<0.002	0.02	<0.05	0.1	<1	<0.2	1.1	<0.05	<0.05	2.0	0.019	0.02
P277449		50	6.0	22.7	<0.002	0.01	0.08	0.5	<1	<0.2	14.4	0.05	<0.05	1.3	0.010	0.08
P277450		300	47.8	121.0	0.014	5.06	0.05	13.0	4	2.7	21.4	0.30	0.12	5.0	0.174	1.48
P277451		270	19.8	138.5	0.007	3.06	<0.05	8.8	2	2.6	218	0.12	0.06	5.6	0.097	1.67
P277452		590	19.4	157.5	<0.002	0.08	<0.05	7.8	<1	3.3	530	1.55	0.05	16.2	0.207	0.98
P277453		180	20.1	58.8	<0.002	0.09	0.05	2.1	<1	0.5	643	0.54	<0.05	13.4	0.073	0.29
P277454		450	14.6	31.6	<0.002	1.36	<0.05	10.8	1	0.2	652	0.34	0.11	4.2	0.321	0.31
P277455		540	13.0	87.8	<0.002	0.76	<0.05	10.0	<1	1.1	584	0.38	0.08	4.8	0.292	0.99
P277456 P277457 P277458 P277459 P277460		390 360 150 450 250	5.1 5.1 48.6 9.3 13.8	58.3 49.6 219 148.5 79.0	0.009 0.004 0.002 0.004 0.003	3.55 2.36 0.29 1.23 1.31	0.49 0.06 <0.05 0.09 <0.05	28.9 25.0 3.2 19.4 20.0	3 2 1 1	0.9 1.7 0.6 6.7 2.7	220 190.5 115.0 190.0 716	0.17 0.28 2.32 0.20 1.39	0.63 0.47 0.65 0.35 0.10	2.0 2.7 16.9 3.8 6.7	0.389 0.363 0.049 0.339 0.307	0.75 0.65 1.39 1.34 1.09
P277461		290	19.9	82.6	0.002	1.28	<0.05	5.5	1	1.0	515	0.27	0.10	4.4	0.135	1.07
P277462		600	15.2	112.5	<0.002	0.16	<0.05	10.9	<1	1.3	658	0.55	<0.05	12.8	0.304	0.74
P277463		470	6.6	94.6	0.003	4.32	<0.05	16.2	2	2.3	377	0.28	0.25	2.8	0.288	0.49
P277464		510	15.4	105.5	<0.002	0.25	<0.05	6.9	1	1.1	721	5.20	<0.05	6.0	0.204	0.74
P277465		570	13.6	104.0	<0.002	1.01	<0.05	10.5	<1	1.3	557	6.02	0.09	5.5	0.262	0.84
P277466		40	40.5	221	<0.002	0.01	<0.05	7.3	1	0.9	54.7	1.08	<0.05	17.8	0.005	1.26
P277467		750	35.6	92.5	<0.002	0.47	0.09	9.0	<1	0.9	362	0.60	0.06	6.9	0.319	0.51
P277468		440	12.9	192.5	0.002	0.89	0.05	15.4	1	1.6	746	0.93	0.10	7.7	0.445	1.77
P277469		310	23.5	207	<0.002	0.14	<0.05	6.6	1	2.5	329	0.79	<0.05	29.4	0.153	1.40
P277470		620	21.6	126.0	<0.002	2.23	0.05	13.8	3	2.3	662	0.75	<0.05	4.6	0.345	0.99

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218

www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - D Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014 **Compte: SOQVAL**

Projet: 0198

Minera								··· • <u>·</u> ·· •				
										CERTIF	ICAT D'ANALYSE	VO14105425
Description échantillon	Méthode élément unités L.D.	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Cu-OG46 Cu % 0.001	Zn-OG46 Zn % 0.001	Pb-OG46 Pb % 0.001	Ag-OG46 Ag ppm 1	
P277431 P277432 P277433 P277434		0.9 1.0 0.5 0.6	98 100 2 198	0.4 0.6 0.1 0.7	6.5 7.2 1.8 12.7	63 97 <2 138	85.1 120.5 31.4 19.8	-				
P277435 P277436 P277437 P277438 P277439		2.3 1.1 9.8 0.8 2.1	151 10 9 60 127	2.4 0.3 0.2 0.4 0.7	6.5 2.9 10.0 5.4 6.8	76 27 4 78 109	119.0 63.1 22.3 59.1 141.5					
P277440 P277441 P277442 P277443 P277444		0.9 2.6 1.0 2.1 2.0	83 31 82 76 91	1.8 2.5 0.1 0.2 0.5	9.0 11.5 6.7 7.7 8.4	55 109 93 97	83.8 226 65.0 85.7 96.3					
P277445 P277446 P277447 P277448 P277449 P277450		1.5 2.4 1.3 0.2 0.4 2.1	115 3 84 2 1 72	1.8 0.1 1.2 0.1 0.1 2.5	9.0 2.0 10.7 3.2 1.9 11.9	100 11 1790 2 <2 1420	31.7 90.5 12.1 21.9 122.5					
P277450 P277451 P277452 P277453 P277454 P277455		1.8 3.7 2.7 2.8 1.5	39 53 12 90 79	0.7 0.1 0.6 0.3 0.5	10.2 10.0 6.1 7.0 6.7	1300 86 16 101 90	124.0 98.8 77.7 79.9 86.6		<u> </u>	.		
P277456 P277457 P277458 P277459 P277460		0.6 0.7 13.2 1.1 7.4	199 167 7 145 135	0.4 0.6 0.3 5.0 0.4	18.1 16.6 10.5 7.0 19.9	155 197 31 57 109	103.5 78.6 14.4 113.0 30.7					
P277461 P277462 P277463 P277464 P277465		4.6 4.4 1.5 3.0 1.7	36 90 118 42 79	0.2 0.5 0.8 0.3 0.7	5.4 8.0 8.8 12.4 8.5	264 69 199 50 92	79.4 117.5 58.1 64.7 77.0					
P277466 P277467 P277468 P277469 P277470		8.7 3.4 1.6 1.8 2.5	<1 67 120 37 81	0.2 0.3 0.6 0.6 0.4	32.7 9.5 7.1 15.7 13.7	<2 176 145 76 237	65.5 95.8 114.5 175.0 109.0					

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

600 AVENUE CENTRALE VAL-D OR QC J9P 1P8

Page: 3 - A Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014 **Compte: SOQVAL**

Projet: 0198

A: SOQUEM INC.

iiiiiieia	13								1	CERTIF	ICAT D	'ANAL'	YSE V	01410	5425	
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05
P277471		4.02	<0.005	•	1.95	6.83	0.8	220	1.76	0.90	3.25	0.88	61.2	61.7	44 7	3.42
P277472		1.68	<0.005		0.07	8.43	0.7	2990	4.69	0.11	3.32	0.14	250	10.9	•	0.83
P277473		3.26	<0.005		<0.01	7.10	0.6	250	2.38	0.02	0.67	<0.02	49.2	1.9	9	1.55
P277474		3.60	0.009		1.41	7.33	0.7	470	1.88	1,15	3.33	0.93	75.5	42.4	96	5.92
P277475		1.96	<0.005		0.07	7.26	0.9	590	2.19	0.08	2.73	0.16	59.7	18.7	307	5.12
P277476		3.15	< 0.005		0.29	7.96	0.6	390	2.27	0.17	1.61	0.16	31.2	24.8	102	10.35
P277477		3.46	< 0.005		0.06	8.31	0.8	790	3.02	0.08	1.80	0.08	76.6	10.5	50	5.27
P277478		1.47	< 0.005		0.02	8.23	0.7	2820	3.97	0.07	2.85	0.17	186.0	10.1	11	1.20
P277479		3.13	< 0.005		0.08	7.90	0.9	2310	2.26	0.04	1.68	0.04	62.8	4.1	10	1.90
P277480		3.08	< 0.005		0.48	7.98	1.0	450	2.06	0.30	2.51	0.48	50.3	26.6	131	4.77
P277481		3.42	<0.005		1.33	8.04	0.9	940	2.34	1.09	2.26	1.05	52.7	24.6	73	5.98
P277482		3.38	< 0.005		0.98	9.33	0.7	2010	3.51	0.53	4.57	0.49	167.0	11.1	25	0.85
P277483		3.29	< 0.005		3.58	7.28	8.0	150	2.91	1.77	1.51	0.81	31.6	44.2	14	2.96
P277484		3.62	< 0.005		1.84	6.93	0.8	710	2.49	0.90	2.18	0.44	50.7	23.9	14	2.79
P277485		3.26	< 0.005		0.59	7.04	0.3	800	2.82	0.73	3.10	0.41	45.7	16.2	65	1.76
P277486		3.88	<0.005		0.04	8.03	0.3	1210	3.52	0.10	2.86	0.12	68.4	13.4	88	2.65
P277487		3.12	< 0.005		0.68	7.15	1.2	200	1.28	1.51	2.60	1.42	42.7	38.2	145	8.76
P277488		3.76	< 0.005		0.30	8.05	1.1	110	0.92	0.51	8.02	0.16	9.21	42.9	247	2.54
P277825		1.09	0.006		0.34	1.35	5.5	30	0.59	0.26	2.94	0.08	19.30	22.6	69	0.23
P277826		0.88	<0.005		0.10	7.63	4.2	110	0.52	0.45	6.17	0.15	9.53	28.4	220	3.14
P277827		0.82	<0.005		0.28	8.32	2.2	460	1,33	0.18	1.49	0.15	54.5	6.9	149	36.8
P277828		0.79	< 0.005		0.15	5.49	2.4	140	0.40	0.56	5.43	0.19	17.90	48.8	654	2.65
P277829		1.02	< 0.005		0.27	7.59	53.9	420	4.16	0.46	1.08	0.81	55.1	18.4	70	13.25
P277830		0.67	< 0.005		0.06	7.94	1.8	460	1.37	0.04	2.09	0.03	25.1	4.4	35	5.49
P277831		0.76	<0.005		0.01	7.09	2.5	530	1.63	0.11	1.67	0.03	16.35	2.2	7	11.45
P277832		0.96	<0.005		0.06	7.19	1.5	280	1.37	0.20	2.45	0.10	38.6	11.8	22	8.57
P277833		1.44	0.009		0.08	5.01	195.0	140	0.58	0.14	1.60	0.09	37.3	11.6	109	10.45
P277834		0.70	< 0.005		0.39	3,13	16.7	50	0.28	0.50	1.73	0.22	21.6	12.4	41	36.1
P277835		0.89	< 0.005		0.37	8.54	16.5	670	1.02	0.20	0.93	0.16	70.7	16.8	106	9.49
P277836		1.12	<0.005		0.08	6.68	1.7	60	0.56	0.27	6.96	0.13	16.90	44.5	94	0.66
P277837		0.96	0.006		0.36	3.32	32.4	80	1.12	1.07	2.83	0.18	21.9	10.4	24	13.80
P277838		1.53	< 0.005		0.67	2.55	4.5	20	0.72	0.64	1.71	0.33	16.25	13.3	30	4.17
P277839		1.59	<0.005		0.17	7.23	6.0	320	1.09	0.47	5.59	0.15	11.45	23.9	244	0.61
P277840		2.20	0.009		1.29	4.99	21.8	60	0.77	2.03	2.99	1.10	36.3	67.2	41	1.54
P277841		1.01	<0.005		0.32	5.25	1.5	100	0.83	1.02	1.14	1.92	30.3	31.2	103	2.81
P277842		1.71	<0.005		0.16	7.33	1.1	440	1.10	0.14	1.98	0.19	70.2	22.3	131	3.26
P277843		0.74	< 0.005		0.11	3.36	78.4	160	1.26	0.19	1.36	0.17	20.7	12.3	43	17.15
P277844		1.54	< 0.005		<0.01	5.95	0.8	40	2.76	0.41	0.34	<0.02	12.00	0.2	7	7.94
P277845		1.37	< 0.005		0.57	6.93	1.0	390	1.66	0.95	3.93	0.51	30.7	12.0	127	2.28
P277846		0.90	< 0.005		0.07	8.14	1.0	720	8.48	0.21	2.28	0.06	33.2	10.7	120	10.55
		I														

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221

Télécopieur: 604 984 0218

www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 3 - B Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014 Compte: SOQVAL

Projet: 0198

CERTIFICAT D'ANALYSE VO14105425 ME-MS61 Méthode Cu Fe Ga Ge Hf ln l a 1 i Mg Mn Мо Na Nb Ni élément % % % ppm ppm ppm ppm ppm % unités ppm ppm ppm ppm ppm ppm Description échantillon L.D. 0.2 0.01 0.05 0.05 0.1 0.005 0.01 0.5 0.2 0.01 5 0.05 0.01 0.1 0.2 P277471 1150 8.57 21.3 0.13 3.4 0.146 1.24 30.2 16.3 0.88 601 1.69 3.65 8.1 88.5 P277472 10.3 3.73 27.5 0.29 7.3 0.061 3.44 111.5 11.7 1.17 785 0.18 3.67 14.6 8.6 P277473 4.3 0.92 23.1 0.05 2.6 0.012 4.02 23.6 18.3 0.16 222 0.19 3.10 27.4 2.7 P277474 652 8.68 22.7 0.18 3.1 0.103 1.63 42.1 31.4 1.82 631 2.68 3.37 10.8 102.0 P277475 12.4 2.98 23.5 3.0 0.047 2.03 27.4 60.3 2.72 734 0.11 0.24 3.57 14.3 115.0 P277476 95.2 4.38 22.4 2.58 0.10 3.0 0.051 15.7 69.2 2.07 669 0.74 3.77 13.4 53.9 P277477 21.3 2.36 24.0 0.13 3.6 0.036 1.92 36.8 48.7 1.06 532 0.64 22.0 4.44 13.3 12.8 P277478 3.44 23.3 7.2 0.047 709 3.79 0.27 3.26 80.4 9.6 1.07 0.17 13.6 9.8 P277479 9.0 1.07 20.1 0.09 3.4 0.017 2.11 26.2 38.3 0.34 176 0.26 4.02 3.4 4.8 142.5 P277480 3.30 22.3 0.13 3.6 0.077 1.56 23.6 60.5 1.22 461 3.93 16.10 6.0 68.9 P277481 399 6.66 25.1 0.15 3.9 0.112 2.09 25.7 1120 65.5 0.91 16.35 3.45 14.2 49.2 P277482 197.0 4.02 27.5 0.132 0.25 7.4 1.46 75.4 16.7 0.87 1140 1.34 4.41 14.3 11.0 P277483 1395 8.13 22.2 0.14 3.5 0.049 2.25 32.9 0.35 517 1.51 3.29 16.9 14.8 71.7 P277484 655 5.64 21.1 3.2 0.142 1.62 22.7 36.9 0.70 1120 0.12 0.73 3.22 13.1 35.7 2.21 P277485 216 9.12 25.8 0.15 2.6 0.151 22.5 30.0 1.44 3520 2.93 43.6 1.11 11.7 8.0 3.32 23.5 3.2 P277486 0.09 0.030 2.64 31.9 54.5 1.25 1580 0.25 3.55 10.4 37.0 P277487 172.5 5,56 20.8 0.10 2.6 0.207 1.31 18.9 60.4 1.13 1060 8.21 2.36 6.9 107.5 P277488 71.7 7.21 21.4 0.07 0.6 0.141 0.25 17.9 2200 3.8 3.19 0.95 2.50 4.1 129.0 P277825 190.0 25.4 5.15 0.36 0.9 0.073 0.13 10.7 2.5 2.29 1440 1.01 2.2 0.17 215 P277826 70.5 8.82 20 1 0.07 1.4 0.087 0.26 3.6 20.2 4.53 1620 33.6 2.27 3.8 51.7 P277827 31.9 4.71 21.0 0.12 3.5 0.042 1.61 26.2 221 0.98 964 1.54 6.0 1.91 10.1 P277828 102.0 15.80 14.35 0.21 1.0 0.073 105.0 3.35 3640 0.71 0.44 8.0 1.16 4.5 202 P277829 48.3 6.49 20.0 0.10 4.2 0.137 1.72 26.2 257 0.95 1720 1.98 1.48 1.8 55.6 P277830 4.6 1.61 22.5 < 0.05 2.6 0.013 0.94 9.4 100.0 0.41 190 0.59 3.84 3.1 3.9 P277831 6.1 1.50 19.35 0.05 0.012 1.32 45.1 0.24 256 3.9 8.4 0.20 3.44 6.4 1.7 P277832 19.5 3,28 22.3 0.10 2.3 0.047 1.02 17.9 113.0 0.90 615 0.27 3.11 9.4 15.6 P277833 4.6 14.50 12.40 0.18 2.2 0.013 0.86 19.0 149.5 1.12 1450 0.82 0.03 4.4 46.0 P277834 79.9 8.66 8.99 0.058 1.36 10.6 80.3 2.59 3510 0.09 1.6 1.22 0.13 2.9 29.9 P277835 45.9 4.88 26.5 0.13 3.3 0.046 2.42 34.4 160.0 1.35 755 2.05 1.61 6.8 28.8 P277836 47.8 9.42 20.2 0.11 1.1 0.076 0.55 7.1 17.0 3.24 2310 0.60 2.07 5.8 54.5 37.4 9.00 P277837 9.88 0.09 1.3 0.067 0.50 10.8 85.8 1.67 1680 0.80 0.22 3.3 21.5 P277838 79.9 8.71 9.32 0.05 8.0 0.062 0.35 7.8 39.9 1.16 306 1.96 0.17 1.5 45.7 P277839 99.6 10.75 18.70 0.14 1.2 0.085 1.14 4.6 22.2 3.33 2320 0.79 1.94 3.2 87.1 P277840 774 11.95 2.5 0.271 17.4 0.60 516 15.50 0.19 1.73 5.1 2.41 1.47 1.7 195.5 P277841 158.0 6.09 0.297 16.45 0.09 3.1 1.77 13.9 52.1 0.84 861 3.30 1.61 1.1 93.3 P277842 72.6 3.77 20.1 0.09 2.5 0.046 0.86 34.6 64.3 0.95 532 2.57 5.40 4.9 60.0 P277843 25.5 9.93 9.83 0.08 0.026 10.9 57.6 0.97 1280 0.06 3.1 1.3 0.55 0.93 27.2 P277844 3.4 0.54 22.9 < 0.05 3.8 0.015 4.00 5.4 3.6 0.03 110 0.35 2.77 25.5 1.0 P277845 414 4.66 18.65 0.07 2.7 0.048 1.66 15.5 28.6 1.12 1340 6.61 0.87 5.2 39.1 P277846 25.0 3.48 23.1 0.08 3.0 0.035 1.65 15.9 60.6 1.21 585 4.59 2.94 11.2 25.6

Commentaire: SOQVAL-1

ALS Canada Ltd. 2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: 604 984 0221
Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 3 - C Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014 **Compte: SOQVAL**

CERTIFICAT D'ANALYSE VO14105425

Projet: 0198

		_								CERTIF		ANAL		01410		
Description échantillon	Méthode élément unités L.D.	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02
P277471		610	22.0	63.8	0.002	5.99	0.06	9.2	6	2.7	876	0.70	0.08	6.2	0.293	0.60
P277472		2910	47.2	123.0	<0.002	0.09	0.06	8.4	1	1.9	1785	0.70	<0.05	23.8	0.233	0.89
P277473		280	29.9	210	<0.002	0.02	<0.05	3.1	1	1.4	179.5	1.34	<0.05	20.8	0.059	1.27
P277474		660	31.7	109.5	0.002	4.82	0.05	15.7	5	2.7	939	1.28	0.05	5.6	0.033	1.00
P277475		1140	21.3	113.5	<0.002	0.19	<0.05	10.1	<1	3.6	742	1.23	<0.05	4.1	0.329	1.13
P277476		500	28.9	239	<0.002	0.92	<0.05	18.7	1	3.4	426	1.44	<0.05	6.6	0.334	2.08
P277477		800	23.7	151.0	<0.002	0.16	0.05	8.1	1	3.2	991	1.40	<0.05	9.3	0.290	1.17
P277478		2390	44.1	109.0	<0.002	0.10	0.06	7.7	1	1.9	2080	0.75	<0.05	22.5	0.230	0.91
P277479		310	28.8	109.5	<0.002	0.09	0.06	2.2	<1	0.9	1615	0.75	<0.05	7.0	0.366	0.80
P277480		620	23.4	117.0	0.002	1.38	0.05	13.1	2	1.9	782	0.62	0.08	7.0 7.7	0.104	0.80
P277481		600	26.3	155.0	0.013	2.99	<0.05	14.7	4	3.4	657	1.38	0.21	9.2	0.294	1.26
P277482		1660	29.5	62.5	0.002	1.77	0.06	8.2	2	3.7	1700	0.74	0.13	16.5	0.334	0.49
P277483		390	35.8	152.5	0.002	5.19	<0.05	6.1	3	2.8	699	4.35	0.20	11.0	0.354	1.04
P277484		630	21.1	112.5	<0.002	2.49	0.05	5.5	2	4.5	922	1.65	0.20	6.4	0.132	0.83
P277485		370	21.6	111.5	<0.002	2.49	0.05	13.7	3	8.1	906	1.03	0.05	6.5	0.229	0.83
P277486		630	23.9	147.0	<0.002	0.04	0.05	12.1	<1	2.6	1015	0.90	<0.05	7.0	0.260	1.06
P277487		470	14.1	76.2	0.002	4.83	<0.05	15.2	4	2.0	508	0.50	0.19	6.1	0.276	1.16
P277488		340	9.3	8.4	<0.002	2.31	0.06	43.3	2	2.3	1345	0.18	0.13	0.4	0.485	0.13
P277825		110	6.4	8.8	0.004	>10.0	0.33	6.2	4	0.8	78.0	0.10	0.51	1.6	0.463	0.13
P277826		440	5.2	8.5	0.009	0.27	0.06	44.7	2	2.3	265	0.23	0.13	0.4	0.715	0.17
P277827		640	5.3	288	<0.002	0.43	0.05	16.7	1	6.4	354	0.44	0.06	4.6	0.353	3.60
P277828		320	2.1	73.2	0.002	8.67	0.18	27.4	1	6.9	83.2	0.28	0.06	0.9	0.400	1.38
P277829	1	590	13.7	109.0	0.004	3.79	<0.05	16.6	2	13.5	242	0.11	0.17	4.9	0.202	1.07
P277830		370	8.7	41.9	<0.002	0.03	0.08	2.1	<1	1.3	546	0.22	<0.05	5.1	0.180	0.35
P277831		210	7.6	73.0	<0.002	0.01	0.19	2.1	<1	1.5	260	0.45	<0.05	2.7	0.098	0.33
P277832		410	6.7	48.6	<0.002	0.02	0.16	12.4	1	1.6	331	0.95	<0.05	4,4	0.288	0.31
P277833		650	1.2	78.0	0.002	0.42	0.08	8.6	, <1	0.5	31.6	0.32	<0.05	4.5	0.202	0.94
P277834	i	680	1.7	134.0	<0.002	4.44	<0.05	6.5	1	2.4	45.8	0.21	0.29	2.7	0.137	1.69
P277835		480	12.0	167.5	<0.002	1.05	0.05	15.5	1	1.5	303	0.44	0.06	8.7	0.401	1.32
P277836		450	3.3	42.1	<0.002	0.03	0.09	41.8	2	2.2	159.5	0.31	<0.05	0.6	0.770	0.22
P277837		800	3.2	172.0	<0.002	4.69	0.05	3.7	1	7.6	67.6	0.28	0.73	2.1	0.100	1.67
P277838		720	3.3	17.7	0.002	5.41	<0.05	4.9	2	1.5	41.7	0.10	0.60	1.4	0.059	0.34
P277839		270	2.6	32.2	<0.002	0.56	0.10	33.1	1	3.1	470	0.15	0.07	0.5	0.403	0.21
P277840		290	31,1	47.0	0.011	>10.0	0.53	8.6	11	3.7	399	0.11	1.55	3.7	0.079	0.83
P277841		280	23.6	56.5	0.008	5.32	0.12	14.5	4	1.7	221	0.07	0.64	4.6	0.098	0.81
P277842		460	13.8	51.9	<0.002	0.90	0.05	12.5	1	1.4	681	0.34	0.07	6.1	0.303	0.40
P277843	l	720	3.2	77.1	<0.002	0.76	0.05	6.7	<1	1.7	53.0	0.27	0.08	2.5	0.118	1.11
P277844	ļ	70	50.5	287	<0.002	0.01	0.05	3.4	<1	1.6	34.8	5.53	<0.05	19.2	0.027	1.70
P277845		640	9.5	102.0	0.004	1.78	0.05	10.1	1	1.0	593	0.40	0.16	6.6	0.218	0.62
P277846		640	16.8	75.0	0.002	0.08	0.05	13.5	1	1.0	748	4.17	0.05	5.9	0.299	0.85

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218

www.alsglobal.com

À: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 3 - D Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014 Compte: SOQVAL

Projet: 0198

IIIInera	15								(CERTIF	ICAT D'ANALYSE	VO14105425
Description échantillon	Méthode élément unités L.D.	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME~MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Cu-OG46 Cu % 0.001	Zn-OG46 Zn % 0.001	Pb-OG46 Pb % 0.001	Ag-OG46 Ag ppm 1	
P277471 P277472 P277473 P277474		2.6 7.4 7.0 4.8	38 62 7 89	0.4 0.4 1.8 1.4	13.6 21.9 17.5 17.1	303 170 32 293	122.0 283 69.6 111.5					
P277475 P277476 P277477		2.1 3.1 3.5	63 110 56	1.8 0.7 1.6	13.0 16.7 13.4	112 115 85	107.0 102.0 137.5 282				1,000,000	
P277478 P277479 P277480 P277481		4.6 1.8 2.4 3.8	57 18 76	0.1 2.1 1.0 2.2	18.9 3.8 9.7	135 45 309 374	128.5 135.0 141.5	W				
P277482 P277483 P277484 P277485		6.1 16.7 2.4 3.0	78 26 41 81	2.2 1.4 1.1 0.7	25.0 21.5 15.2 23.8	237 181 205 254	283 92.1 115.5 94.1					
P277486 P277487 P277488 P277825		2.0 5.2 0.6 0.9	67 83 247 30	0.7 0.6 0.7 0.3	13.3 13.7 18.9 17.5	112 603 190 85	116.5 93.7 10.1 35.1					
P277826 P277827 P277828		0.2 1.1 0.4	311 107 172	0.4 1.5 0.4	25.6 9.8 21.9	124 116 157	43.3 126.0 26.4	·				
P277829 P277830 P277831 P277832		1.3 0.6 0.3	97 27 10 82	10.5 0.6 0.3	15.1 2.3 2.7	156 47 35 83	151.5 97.9 140.5 75.2					
P277833 P277834 P277835 P277836		1.3 0.8 1.7 0.3	62 47 107 314	27.0 0.3 1.0 1.1	10.3 9.5 8.6 29.2	44 141 93 111	72.4 54.9 113.0 19.0					
P277837 P277838 P277839 P277840		0.9 0.5 0.3 1.0	30 29 210 45	0.3 6.5 <0.1 0.9	7.3 6.3 14.1 5.9	107 72 ` 110 438	46.7 29.2 35.4 95.8					
P277841 P277842 P277843 P277844		1.4 1.3 0.7 13.7	70 90 43 1	0.5 0.1 <0.1 <0.1	10.9 8.8 7.5 12.2	830 112 62 5	92.7 48.9 71.6					
P277845 P277846		2.9 1.4	66 91	0.5 0.1	9.1 6.5	174 62	94.5 97.3					

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 4 - A Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014 **Compte: SOQVAL**

Projet: 0198

illinera	15									CERTIF	ICAT D	'ANAL\	/SE V	01410	5425	
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05
P277847 P277848 P277849 P277850		1.47 1.11 1.45 1.69	<0.005 <0.005 <0.005 <0.005		0.12 0.11 0.13 0.08	7.42 7.45 7.76 6.50	0.6 1.2 1.0 0.7	530 490 540 230	1.30 1.38 3.61 2.42	0.17 0.17 0.18 0.07	3.46 2.27 2.89 3.11	0.16 0.13 0.14 0.27	70.3 62.6 62.7 37.7	15.9 14.6 13.0 14.8	127 99 45 158	2.28 5.81 7.08 6.01
P277951 P277952 P277953 P277954		0.56 1.47 1.72 1.40	<0.005 <0.005 0.011 <0.005		0.03 0.01 1.13 0.68	6.20 6.56 4.31 6.44	0.6 0.8 5.6	770 580 40 220	0.87 2.14 0.63 1.39	0.03 0.01 0.97 1.32	0.47 1.42 0.74 1.43	0.02 0.04 0.07 5.63	41.1 39.1 23.5 51.6	5.8 30.3 38.4	45 38 42 95	3.49 0.83 7.42
P277955 P277956 P277957		1.51 1.18 1.66	0.005 <0.005 <0.005		1.73 0.05 1.45	5.88 8.10 6.28	0.7 0.5 0.8	70 1800 300	1.26 1.33 1.57	1.54 0.02 1.01	0.69 1.23 2.18	0.34 0.02 0.77	70.2 11.30 40.8	64.5 5.9 41.4	191 38 221	4.47 3.46 8.73
P277958 P277959 P277960 P277961		1.30 1.48 1.10 1.16	<0.005 <0.005 <0.005 <0.005		0.18 0.33 0.83 0.01	7.09 8.08 7.07 7.19	0.8 3.0 1.0 1.4	170 310 170 460	0.88 1.85 1.97 1.59	0.28 0.69 0.76 0.06	5.89 1.61 1.94 0.11	0.13 0.25 4.08 0.03	9.98 95.5 42.8 34.8	33.0 22.1 38.6 13.1	213 118 149 251	1.58 7.72 7.59 1.99
P279520 P279521 P279522 P279523 P279524		1.01 1.54 0.47 1.12 1.54	<0.005 <0.005 0.006 <0.005 <0.005		0.28 0.24 0.83 <0.01 0.01	7.37 7.53 6.27 7.05 7.07	25.2 5.5 8.0 1.1 1.0	580 220 150 640 930	8.02 0.38 0.60 26.7 1.20	0.32 0.32 1.09 3.24 0.05	1.30 4.63 6.26 1.59 0.63	0.11 0.15 0.44 0.03 0.03	58.4 12.35 12.30 11.05 51.7	13.0 30.1 47.6 4.8 1.3	149 171 164 42 12	33.4 11.00 5.74 15.40 4.27
P279525 P279526 P279527 P279528 P279529		1.23 1.15 1.40 1.84 0.65	<0.005 <0.005 <0.005 <0.005 <0.005		0.05 0.24 0.06 0.01 0.17	7.03 5.17 7.34 6.98 7.45	1.0 1.1 1.7 1.1 2.1	300 10 330 440 790	1.04 1.65 1.33 1.34 1.27	0.03 4.42 0.07 0.02 0.17	2.21 0.04 2.31 1.35 2.52	0.04 <0.02 0.07 0.04 0.15	22.7 0.62 42.6 46.5 70.4	5.0 0.2 7.6 3.9 30.1	16 51 39 13	1.52 18.30 6.28 1.51 11.05
P279530 P279531 P279532 P279533 P279534		0.65 1.06 0.88 2.60 0.80	<0.005 <0.005 <0.005 <0.005 <0.005		0.14 0.01 0.02 0.13 0.08	7.47 6.39 6.07 7.39 7.51	1.1 0.6 1.0 0.7 1.6	630 210 310 520 290	1.73 1.40 0.68 0.89 0.90	0.14 0.08 0.05 0.07 0.17	3.78 0.30 0.13 2.30 1.87	0.10 <0.02 <0.02 <0.02 0.14 0.17	85.4 16.60 11.00 52.1 39.0	17.3 0.4 1.1 19.6 30.4	5 6 36 109 188	2.15 6.54 4.32 3.09 9.77
279535 279536 279537 279538 279539		1.13 1.31 2.19 1.08 1.24	<0.005 <0.005 <0.005 <0.005 <0.005		0.12 0.03 0.32 0.08 0.09	7.76 7.74 7.15 7.56 7.52	1.4 0.9 1.5 0.3 0.7	350 80 350 870 590	2.00 0.56 1.12 0.95 2.23	0.34 0.11 0.30 0.10 1.40	1.07 5.68 2.15 2.11 1.35	0.10 0.14 0.27 0.08 0.06	41.1 17.90 57.9 40.3 78.3	17.6 42.0 15.6 15.9 21.4	154 10 60 131 147	14.70 0.44 8.42 9.72 9.29
P279540 P279541 P279542 P279543 P279544		0.75 1.59 2.22 1.80 1.37	<0.005 <0.005 <0.005 <0.005 <0.005		0.04 0.07 0.01 0.02 0.03	7.98 6.84 7.79 5.54 7.05	0.2 <0.2 1.0 <0.2 1.3	700 290 570 370 890	8.94 2.08 1.64 1.86 0.87	0.18 0.50 0.04 0.02 0.03	1.56 6.38 1.41 0.83 0.59	0.08 0.11 0.05 <0.02 <0.02	62.3 36.1 94.2 3.58 100.5	24.8 46.3 11.2 0.4 1.5	162 310 64 10 33	94.3 4.06 2.70 1.29 1.22

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

www.alsglobal.com

Téléphone: 604 984 0221 Télécopieur: 604 984 0218

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 4 - B Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014 Compte: SOQVAL

Projet: 0198

IIIInera	113									CERTIF	ICAT D	'ANAL	/SE V	01410	5425	
Description échantillon	Méthode	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	élément	Cu	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni
	unités	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm
	L.D.	0.2	0.01	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2
P277847		59.9	2.98	20.4	0.09	2.1	0.045	0.96	30.6	32.1	1.28	682	1.23	2.92	6.1	67.0
P277848		41.8	3.02	20.4	0.10	1.7	0.030	1.24	30.5	74.2	0.83	486	1.55	2.60	3.7	38.3
P277849		38.3	2.77	22.3	0.10	1.6	0.026	1.16	29.1	55.0	0.74	430	2.37	2.57	5.8	28.4
P277850		12.1	4.04	19.80	0.10	2.6	0.099	1.19	15.9	35.5	2.25	962	0.68	2.53	9.4	43.9
P277951 P277952 P277953 P277954 P277955		1.4 5.0 141.0 232 249	0.60 1.49 23.0 7.79 12.70	16.15 18.50 11.05 17.70 22.2	<0.05 0.07 0.35 0.14 0.21	4.9 2.4 3.0 3.1 3.6	0.005 0.019 0.026 0.358 0.063	1.36 1.69 1.14 0.86	21.5 18.0 11.3 25.1 34.3	9.9 23.5 11.8 111.0 23.7	0.11 0.54 0.88 1.03 0.81	76 221 1220 1200 430	0.70 0.56 4.86 2.90 14.05	1.96 3.09 1.27 1.92 2.50	5.3 5.3 1.2 25.5	3.2 19.0 97.1 71.2 129.5
P277956		8.1	1.75	26.6	0.05	2.2	0.026	4.56	4.9	30.9	0.62	251	0.21	2.86	5.4	11.0
P277957		356	8.37	18.25	0.14	3.0	0.141	1.55	19.4	48.2	2.07	801	6.27	1.88	6.2	106.0
P277958		59.6	6.88	18.70	0.09	1.0	0.065	0.84	4.3	24.4	4.01	1280	0.38	2.06	3.7	91.8
P277959		71.4	4.56	24.1	0.15	2.6	0.128	1.03	47.6	113.5	1.27	699	11.85	3.17	5.1	63.7
P277960		162.0	6.41	21.1	0.14	3.7	0.252	2.87	19.2	38.4	1.43	701	4.76	1.87	7.3	108.5
P277961 P279520 P279521 P279522 P279523 P279524		2.4 38.4 128.5 382 7.7 3.4	3.60 6.95 10.70 1.34 0.96	19.55 20.8 21.2 17.25 23.9 25.9	0.07 0.10 0.12 0.12 <0.05 0.06	2.8 3.3 1.3 0.8 1.6 2.5	0.028 0.036 0.128 0.089 0.015 0.035	5.02 1.63 1.40 0.28 2.44 3.11	30.1 4.8 5.3 4.3 23.3	306 134.0 143.5 27.9 35.2	1.30 1.35 5.41 1.72 0.42 0.13	381 643 2250 2060 322 247	0.27 1.97 0.36 0.73 0.53 0.16	2.31 2.35 1.12 0.34 2.95 3.64	8.3 1.4 3.0 14.8 18.7	39.2 41.6 71.9 115.5 12.7 1.5
P279525		6.7	1.91	20.8	0.06	3.8	- 0.019	0.79	12.1	95.2	0.36	294	0.16	3.20	7.3	3.3
P279526		1.0	0.26	21.4	<0.05	0.4	0.028	5.27	<0.5	15.5	0.01	37	0.66	1.28	12.6	1.7
P279527		16.0	2.18	21.5	0.06	3.2	0.022	1.00	17.7	95.1	0.77	419	0.71	3.39	6.7	26.0
P279528		2.9	1.49	23.0	0.06	3.4	0.025	1.35	24.8	70.9	0.29	312	0.16	3.67	8.5	2.8
P279529		86.2	5.31	21.9	0.16	3.1	0.054	1.89	34.1	112.5	1.99	793	10.45	1.86	5.7	90.9
P279530		18.8	6.53	26.1	0.22	2.8	0.052	1.12	30.5	28.2	1.39	790	0.19	3.13	11.9	1.6
P279531		0.8	0.55	16.10	<0.05	1.9	0.005	4.40	6.9	5.6	0.07	85	0.17	2.44	2.2	0.8
P279532		1.2	2.54	15.30	0.07	0.4	0.012	4.00	5.4	3.5	0.02	142	0.56	1.40	1.6	2.0
P279533		45.4	3.85	19.95	0.11	3.3	0.041	1.37	22.9	52.2	1.15	666	2.24	2.29	4.3	57.9
P279534		53.3	7.76	20.3	0.14	2.4	0.062	1.59	17.4	63.3	2.04	990	1.15	1.45	4.8	93.5
P279535		22.8	3.67	22.3	0.16	2.6	0.051	1.99	18.3	73.2	1.09	494	1.53	1.91	5.4	49.1
P279536		7.3	9.94	22.2	0.12	1.7	0.101	0.71	6.8	11.9	1.96	1720	0.96	2.22	4.4	18.7
P279537		44.0	4.04	18.65	0.19	1.9	0.034	0.90	28.2	57.3	0.56	413	0.79	2.76	0.8	37.6
P279538		38.3	3.45	22.0	0.20	2.4	0.029	1.38	17.6	92.5	1.61	493	1.12	2.92	4.8	46.5
P279539		14.7	3.91	22.8	0.17	3.4	0.044	1.84	38.3	148.0	1.96	676	0.64	2.47	11.6	79.6
P279540		13.7	4.57	26.2	0.22	3.2	0.094	1.95	30.4	197.5	1.76	906	3.84	2.78	11.3	88.1
P279541		65.0	6.84	18.15	0.18	1.7	0.074	1.08	15.6	48.0	3.69	1440	0.64	1.72	5.1	164.0
P279542		6.6	2.67	23.9	0.22	3.2	0.032	2.05	45.8	38.5	1.97	428	0.18	3.13	6.7	55.3
P279543		2.1	0.33	14.30	0.16	1.5	0.005	1.81	2.1	6.4	0.04	45	0.21	2.59	1.3	1.5
P279544		1.5	1.04	16.05	0.21	5.1	0.011	4.29	44.1	16.0	0.17	130	0.49	2.44	3.3	1.9

www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 4 - C Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014 Compte: SOQVAL

Projet: 0198

iiiiiici a										CERTIF	ICAT D	'ANAL	YSE V	<u>01410</u>	5425	
Description échantillon	Méthode élément unités L.D.	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-M\$61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02
P277847		850	12.2	25.4	<0.002	0.50	0.05	9.6	1	0.9	1195	0.40	0.05	7.1	0.287	0.27
P277848		460	10.3	45.9	< 0.002	0.62	< 0.05	9.1	1	0.6	628	0.25	< 0.05	4.7	0.249	0.51
P277849		830	9.1	49.4	< 0.002	0.66	0.06	6.4	1	0.8	989	0.83	0.05	4.5	0.238	0.49
P277850		1070	10.0	89.9	< 0.002	0.02	< 0.05	14.2	1	2.0	516	0.60	< 0.05	9.3	0.274	0.92
P277951		70	25.8	148.0	<0.002	0.01	0.05	1.4	<1	0.5	269	0.13	<0.05	30.5	0.045	0.89
P277952		170	22.8	86.7	<0.002	0.01	<0.05	5.4	<1	1.0	412	0.84	<0.05	15.0	0.125	0.58
P277953		520	4.6	99.8	0.006	>10.0	< 0.05	6.4	2	0.5	165.0	0.39	0.46	4.5	0.211	0.66
P277954		460	18.2	92.7	0.012	5.02	< 0.05	17.3	6	1.9	166.0	0.08	1.09	4.8	0.179	1.10
P277955		140	18.4	81.4	0.009	9.62	< 0.05	14.6	6	0.9	246	1.73	0.55	10.9	0.309	0.71
P277956		880	24.3	156.5	<0.002	0.04	<0.05	3.8	<1	1.9	1010	0.28	< 0.05	0.5	0.204	1.01
P277957		660	10.5	159.0	0.007	4.38	<0.05	18.7	3	1.7	443	0.45	0.40	6.0	0.296	1.38
P277958		290	7.6	52.7	< 0.002	0.21	< 0.05	37.5	1	1.4	379	0.30	< 0.05	1.4	0.400	0.41
P277959		670	23.5	92.2	0.002	0.88	0.06	14.8	1	4.6	439	0.32	0.08	8.0	0.365	0.73
P277960		580	23.7	139.0	0.007	3.78	< 0.05	16.4	3	1.5	559	0.53	0.29	6.7	0.297	1.46
P277961		180	7.6	167.0	< 0.002	0.01	<0.05	10.3	<1	1.8	86.4	0.69	<0.05	17.9	0.152	1.26
P279520		1110	17.7	337	<0.002	0.35	0.06	14.6	1	7.6	314	1.13	0.10	9.7	0.284	2.74
P279521		490	5.5	96.7	0.002	1.59	0.06	45.2	2	1.8	150.0	0.09	0.54	0.5	0.274	0.80
P279522		260	4.3	37.8	0.003	5.66	0.24	53.4	2	17.1	110.5	0.19	0.47	0.8	0.448	0.70
P279523		160	11.1	195.5	< 0.002	0.03	0.11	4.9	<1	2.9	314	8.52	< 0.05	3.0	0.125	1.22
P279524		210	14.6	177.5	< 0.002	0.02	0.06	5.0	<1	5.5	501	2.14	< 0.05	7.0	0.067	1.13
P279525		370	5.4	33.2	<0.002	0.01	- 0.06	3.7	<1	0.8	255	0.66	<0.05	2.7	0.177	0.22
P279526		300	31.3	610	<0.002	< 0.01	< 0.05	1.0	<1	7.8	5.9	5.22	< 0.05	0.3	<0.005	4.25
P279527		600	7.2	46.7	<0.002	0.02	0.09	4.9	<1	1.3	375	0.54	<0.05	4.2	0.195	0.32
P279528		400	7.2	41.4	< 0.002	< 0.01	0.05	3.3	<1	1.2	303	0.47	<0.05	3.3	0.170	0.23
P279529		1110	11.8	90.3	0.002	0.70	0.05	18.2	1	1.5	636	0.35	0.10	7.9	0.401	0.85
P279530		5130	10.8	41.3	<0.002	0.11	0.06	9.7	1	1.9	1150	1.05	<0.05	6.0	0.740	0.29
P279531		80	30.2	224	<0.002	<0.01	<0.05	0.8	<1	1.2	92.3	0.58	<0.05	12.2	0.020	1.46
P279532		50	30.8	123.0	<0.002	<0.01	<0.05	0.8	<1	1.4	97.4	0.49	<0.05	14.0	0.037	1.37
P279533		230	17.8	48.5	< 0.002	0.28	0.06	13.8	<1	0.3	684	0.28	0.07	5.6	0.273	0.64
P279534		580	7.6	61.2	0.002	0.35	0.05	19.3	1	1.3	238	0.35	0.09	3.1	0.348	1.30
P279535		660	13.6	95.7	0.002	0.09	0.06	13.1	<1	2.7	261	0.34	<0.05	3.8	0.312	1.68
P279536		570	5.4	18.8	0.003	0.01	0.05	36.9	2	1.8	201	0.27	<0.05	1.2	0.738	0.13
P279537		400	12.2	45.6	<0.002	1.80	0.07	6.7	1	0.8	661	0.06	0.06	3.8	0.126	0.50
P279538		670	12.5	78.3	<0.002	0.13	0.05	12.2	1	0.7	791	0.31	<0.05	3.9	0.320	0.72
P279539		880	13.0	128.5	<0.002	0.03	0.06	14.3	1	1.7	383	1.90	<0.05	10.7	0.320	1.12
P279540		710	14.2	403	0.002	0.04	0.06	17.6	<1	16.2	415	1.71	<0.05	9.8	0.378	3.78
P279541	l	730	4.2	139.0	<0.002	0.04	0.09	34.2	1	2.4	333	0.36	<0.05	1.3	0.534	0.76
P279542		910	7.2	92.0	<0.002	0.04	<0.05	7.0	1	1.5	249	0.44	<0.05	14.5	0.198	0.70
	- 1											U.			000	
P279543	1	50	16.7	58.8	<0.002	0.01	<0.05	0.5	<1	0.3	352	0.40	< 0.05	4.9	0.015	0.33

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 4 - D Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014 **Compte: SOQVAL**

Projet: 0198

IIIInera	13									CERTIF	ICAT D'ANALYSE	VO14105425
Description échantillon	Méthode élément unités L.D.	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Cu-OG46 Cu % 0.001	Zn-OG46 Zn % 0.001	Pb-OG46 Pb % 0.001	Ag-OG46 Ag ppm 1	
P277847 P277848 P277849		1.8 1.1 1.1	65 62 50	<0.1 <0.1 <0.1	10.7 6.2 6.9	67 87 74	76.8 66.3 62.4					
P277849 P277850 P277951		4.2 1.3	89 6	<0.1 <0.1 <0.1	14.2 2.7	79 6	95.2 143.0					
P277952 P277953 P277954 P277955		3.3 1.5 2.2 2.2	31 40 107 157	<0.1 <0.1 0.2 <0.1	6.1 10.6 11.1 13.6	34 50 918 86	74.7 110.5 116.5 129.0					
P277956 P277957		0.5 4.3	39 111	<0.1	5.8 15.9	73 424	79.5 107.5					
P277958 P277959 P277960 P277961		1.2 2.4 6.5 3.6	216 115 92 47	<0.1 0.3 <0.1 <0.1	16.4 11.4 15.7 5.7	98 117 956 55	28.5 96.9 139.0 90.2					
P279520 P279521 P279522 P279523		2.6 0.2 0.6 1.6	92 287 261 27	1.2 1.3 48.9 0.1	9.1 27.8 20.6 5.7	76 174 135 48	115.5 43.7 23.8 30.3					
P279524 P279525 P279526		2.3 0.6 1.0	6 24 <1	<0.1 <0.1 <0.5	6.1 4.6 1.1	26 59 5	70.0 144.0 3.6					
P279527 P279528 P279529		0.8 0.7 1.5	35 20 132	<0.1 <0.1 <0.1	7.0 7.6 13.8	71 55 101	117.0 124.5 119.5					
P279530 P279531 P279532 P279533 P279534		2.8 4.5 1.4 0.9 1.3	85 2 8 92 135	<0.1 <0.1 <0.1 0.3 0.6	22.5 6.6 2.5 8.4 14.9	130 8 28 81 101	104.5 39.7 7.6 115.5 84.5				•	
P279535 P279536 P279537 P279538 P279539		1.3 0.5 1.4 2.1 3.2	103 298 46 89 95	1.1 0.2 0.2 0.4 0.5	8.4 33.3 5.9 9.5 13.3	69 98 89 69 78	94.9 51.1 72.6 89.1 127.0					
P279540 P279541 P279542 P279543 P279544		3.5 0.8 1.5 0.9 4.9	123 232 49 2 13	1.1 0.8 0.4 0.2 0.3	12.4 20.7 9.1 1.4 3.8	103 107 60 5 26	121.0 57.0 113.5 34.3 172.0					

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7
Téléphone: 604 984 0221
www.alsglobal.com
Télécopieur: 604 984 0218

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 5 - A Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014 **Compte: SOQVAL**

Projet: 0198

mmera	13									CERTIF	ICAT D	'ANAL	/SE V	01410	5425	
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-MS61 Ag ppm 0.01	ME-MS61 AI % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05
P279545 P279546		1.65 1.62	<0.005 0.128		0.03 1.58	8.49 5.24	0.4 61.9	320 120	2.04 0.71	0.04 2.94	2.21 1.52	0.06 17.30	61.3 38.2	15.9 150.5	101 81	0.74 2.64
P279547 P279548		1.18 2.19	<0.005 <0.005		0.03 0.09	7.32 7.85	0.9 0.6	710 290	1.21 3.07	0.06 0.67	0.61 6.60	0.03 0.17	60.7 10.15	4.5 48.2	56 225	6.41 1.16
P281851 P281852		1.54	<0.005 <0.005		0.13	7.71 5.41	0.4 22.8	710 160	2.46 0.52	0.38	2.46 10.65	0.11	53.5 16.05	28.1 41.9	245 309	10.20 6.14
P281853 P281854 P281855		2.01 1.78 1.67	<0.005 <0.005 <0.005		0.21 0.39 0.60	7.93 7.47 4.82	0.9 3.2 0.8	90 60 40	0.43 1.43 0.95	0.27 1.11 1.31	6.12 0.74 0.31	0.58 0.09 0.53	10.60 48.0 51.1	39.8 28.2 47.0	333 107 153	1.11 0.78 0.43
P281856 P281857		1.54	<0.005		0.50	6.27	1.4	110	0.91	1.16	0.22	0.13	34.1	36.2	80	0.95
P281858 P281859 P281923		2.15 1.66 1.05	1.930 <0.005 <0.005	1.98	1.27 0.02 0.68	5.96 6.93 8.15	1.7 <0.2 3.1	50 850 470	1.60 0.90 1.06	5.27 0.04 0.63	0.08 1.09 0.88	0.02 0.03 3.98	29.1 70.8 57.1	18.0 2.9 63.5	684 12 112	2.08 1.87 18.50
P281924 P281925 P281926		0.92 0.84 0.96	0.011 <0.005 <0.005		0.47 0.22 0.21	7.64 5.89 7.38	5.2 3.2	370 310 440	0.76 0.97 0.94	0.82 0.29 0.33	3.68 1.21 1.12	0.97 0.56 0.25	34.7 59.7 63.6	59.8 16.3 25.2	189 25 102	22.1 18.10 7.25
P281927 P281928 P281929		1.13 0.87 0.99	<0.005 <0.010 <0.005		0.13 0.31 0.19	8.14 5.40 7.74	1.0 10.7 0.9	1030 180 580	0.73 0.78 0.72	0.23 0.51 0.13	1.45 1.90 2.39	0.22 0.47 0.15	64.9 44.2 52.3	26.0 35.0 19.3	107 96 85	14.70 2.75 2.39
P281930 P281931 P281932		1.44 1.49 1.06	<0.005 <0.005 0.005	***************************************	0.05 0.42 1.16	6.81 2.40 8.36	、 <0.2 711	2630 100 390	1.43 0.57 1.09	0.11 1.02 0.44	4.35 0.46 1.52	0.11 0.11 0.58	89.9 21.0 85.1	6.4 33.4 66.6	37 39 122	1.87 1.07 0.99
P281933 P281934		1.17 1.13	<0.005 <0.005 <0.005		0.35 0.12	5.94 7.78	2.6 14.7 2.5	300 900	1.09 1.06 1.10	1.36 0.17	1.44 2.56	0.04 0.12	11.05 95.0	20.6 12.5	275 68	1.73 3.35
P281935 P281936 P281937 P281938 P281939		2.24 0.93 1.15 0.98 1.31	<0.005 <0.005 <0.005 <0.005 <0.005		0.22 0.02 0.20 0.19 0.24	3.23 6.30 6.25 7.35 7.25	90.6 0.4 1.3 1.4 0.8	20 450 380 540 470	0.14 0.66 1.37 0.75 0.88	0.14 0.03 0.22 0.11 0.21	0.47 0.38 2.31 2.13 2.25	0.07 <0.02 0.14 0.16 0.15	27.2 32.9 46.8 54.9 73.7	7.2 1.0 15.4 14.0 18.6	57 39 112 68 104	8.01 1.83 10.70 2.86 6.44
P281940 P281941 P281942 P281943 P281944		1.03 1.01 1.48 1.03 0.10	<0.005 0.007 0.007 <0.005 0.924	0.95	0.23 0.15 0.83 0.16 67.9	7.48 6.95 2.23 9.62 3.79	5.6 14.2 27.2 1.7 462	2310 350 50 170 120	3.56 2.39 0.29 294 0.68	0.37 0.58 4.18 4.24 26.2	4.08 5.66 0.63 0.95 1.83	0.26 0.05 0.59 0.11 216	470 17.50 14.50 37.5 24.6	12.9 30.2 592 24.0 20.5	21 204 29 74 37	1.90 6.87 5.41 40.3 0.82
P281945 P281946 P281947 P281948 P281949		1.09 1.19 1.83 2.37 1.30	<0.005 <0.005 <0.005 0.007 <0.005		0.66 0.65 0.03 0.28 0.01	7.21 6.44 0.87 7.21 0.21	1.2 1.6 2.1 7.4 1.7	210 270 10 1150 50	8.34 2.31 0.37 2.01 0.49	1.37 1.93 0.05 0.66 0.09	2.43 1.93 0.28 1.92 0.73	6.30 1.34 0.13 0.11 0.03	46.7 31.9 3.82 65.5 7.60	35.5 41.5 11.0 21.4 7.3	143 115 9 150 21	16.55 17.35 0.09 7.24 0.15

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: 604 984 0221
www.alsqlobal.com

Télécopieur: 604 984 0218

À: SOQUEM INC. 600 AVENUE CENTRALE VAL-D OR QC J9P 1P8 Page: 5 - B
Nombre total de pages: 6 (A - D)
plus les pages d'annexe
Finalisée date: 29-JUIL-2014
Compte: SOQVAL

Projet: 0198

CERTIFICAT D'ANALYSE VO14105425 ME-MS61 Méthode Cu Fe Ga Ge Hf к Li Mo Nb Ni In l.a Mg Mn Na élément % % unités ppm ppm ppm ppm ppm % ppm ppm % ppm ppm ppm ppm Description échantillon L.D. 0.2 0.01 0.05 0.05 0.1 0.005 0.01 0.5 0.2 0.01 5 0.05 0.01 0.1 0.2 P279545 6.8 3.95 28.5 0.19 1.3 0.039 1.38 20.7 32.9 2.35 889 0.16 3.69 18.8 72.5 P279546 524 26.8 882 186.5 11.10 21.2 0.16 2.8 1.575 0.80 17.6 0.72 5.48 1.37 4.1 P279547 2.0 1.67 19.40 0.14 2.1 0.022 5.02 27.0 25.5 0.41 273 0.58 2.06 11.1 11.5 P279548 64.5 5.97 16.55 0.7 0.056 1.36 4.4 19.1 3.51 1540 1.36 2.08 2.8 138.5 0.15 P281851 85.0 0.90 795 5.82 23.6 0.18 2.5 0.041 29.8 54.1 2.65 3.64 2.42 10.1 84.1 P281852 77.4 8.05 14.25 0.13 1.3 0.171 0.61 6.6 30.1 4.85 2720 0.32 0.59 3.8 143.5 P281853 248 9.59 1.2 0.75 4.5 20.4 2.46 4440 2.3 137.5 17.40 0.09 0.1580.47 2.05 P281854 125.5 8.52 19.40 0.17 3.7 0.065 0.61 23.3 38.8 1.31 377 7.37 2.90 6.7 79.8 0.43 25.5 40.1 1.59 461 3.9 P281855 289 11.00 14.10 0.15 1.6 0.050 7.94 1.04 91.9 P281856 206 0.059 0.95 15.8 34.6 1.42 399 10.45 1.90 10.05 14.70 0.14 2.6 5.1 84.1 P281857 3.2 0.29 0.83 0.08 1.1 < 0.005 0.12 4.4 2.5 0.04 27 0.99 0.01 0.4 2.7 2820 16.7 112.5 5.05 289 P281858 2.95 17.45 0.29 2.6 0.111 0.40 25.8 1.78 6.5 58.4 P281859 5.0 1.79 16.70 0.18 5.8 0.018 3.80 34.6 17.7 0.25 215 0.34 2.21 5.4 2.3 P281923 499 3.99 3.9 0.576 2.01 28.0 185.5 0.77 455 2.62 2.04 2.4 26.1 0.19 114.5 326 P281924 6.78 19.85 0.13 2.8 0.149 1.54 15.8 198.0 2.04 1620 1.54 0.95 3.7 107.0 P281925 128.0 2.86 16.00 0.16 5.7 0.136 1.19 28.5 154.5 0.69 725 2.04 1.43 4.4 30.4 2.08 102.0 P281926 64.7 6.56 3.3 0.066 31.3 1.30 917 1.38 1.37 5.9 72.3 19.65 0.18 P281927 57.0 4.14 23.5 0.20 2.7 0.062 2.53 31.4 149.0 1.07 856 1.33 2.16 5.2 68.6 P281928 164.0 8.34 2.3 0.133 0.95 21.1 25.4 1.34 2930 2.09 0.90 52.5 14.60 0.16 0.8 0.75 46.5 3.38 1.6 0.032 1.32 24.5 59.4 474 2.70 P281929 19.50 0.19 1.07 1.2 48.2 P281930 7.5 3.27 19.75 0.27 3.6 0.024 4.50 35.3 12.0 0.27 873 0.53 3.32 6.4 14.0 P281931 79.2 23.5 6.40 0.14 1.4 0.089 0.68 10.4 23.6 0.84 1660 4.57 0.40 1.0 74.7 P281932 1000 9.41 23.1 0.17 5.4 0.0641.49 41.2 28.2 1.20 538 6.70 2.82 8.2 162.0 P281933 70.1 7.66 15.85 0.12 1.2 0.124 1.12 6.0 38.0 1.29 1760 2.73 2.52 4.7 28.9 P281934 29.0 2.95 1.5 1.58 37.1 64.0 0.64 406 1.03 3.25 21.8 0.18 0.025 4.6 27.8 P281935 14.0 12,55 8.91 0.10 1.6 0.016 0.30 11.1 41.7 0.97 2000 0.76 0.01 3.1 26.5 P281936 1.4 0.90 0.13 4.3 0.010 4.92 12.4 11.5 0.13 142 0.70 2.06 2.2 16.25 4.8 P281937 54.1 3.63 17.95 0.15 2.0 0.034 1.09 18.8 62.2 0.70 1090 0.75 2.11 5.4 42.5 P281938 40.0 2.83 19.35 0.14 1.6 0.023 1.39 22.6 91.8 0.72 463 0.79 2.82 1.2 33.5 46.2 3.39 516 0.98 P281939 19.80 0.17 2.4 0.036 1.32 29.4 141.0 1.17 2.62 2.4 45.4 P281940 28.2 3.79 24.5 0.62 3.8 0.049 3.97 195.5 16.1 0.32 1140 0.60 3.74 8.3 13.3 P281941 70.2 8.63 16.95 0.14 1.5 0.307 0.92 6.0 114.0 3.67 11200 0.85 1.11 4.4 106.5 P281942 188.5 36.4 5.55 0.19 1.2 0.053 0.65 5.3 14.1 0.31 700 1.13 0.33 1.3 71.8 53.8 3.97 470 1550 P281943 37.8 0.12 2.5 0.023 0.99 14.5 0.84 78.1 1.19 20.1 48.3 510 5150 9.34 2.75 0.71 9.5 12.2 0.87 23.5 1.24 4.8 47.2 P281944 14.65 0.28 1.1 P281945 146.5 7.36 21.8 0.14 3.4 0.436 0.92 18.1 71.4 0.96 901 13.40 2.85 5.5 107.5 P281946 216 0.95 732 6.13 17.15 0.12 2.6 0.180 1.07 12.1 65.6 7.76 2.41 1.3 105.0 2270 P281947 13.8 25.6 2.97 0.12 0.4 0.081 0.01 1.7 1.5 1.53 0.24 0.01 1.1 36.1 P281948 106.5 4.21 2.36 27.6 49.6 1.66 466 2.00 61.4 18.25 0.14 4.6 0.024 1.83 6.7 1.5 19.45 1.37 14450 0.02 P281949 1.69 0.09 0.1 0.006 0.02 2.7 2.4 0.69 0.7 6.8

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: 604 984 0221
www.alsglobal.com

Télécopieur: 604 984 0218

A: SOQUEM INC. 600 AVENUE CENTRALE VAL-D OR QC J9P 1P8 Page: 5 - C Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014 Compte: SOQVAL

Projet: 0198

CERTIFICAT D'ANALYSE VO14105425 ME-MS61 Méthode Pb Rb Re S Sb Sc Se Sn Sr Ta Te Th Ti TI élément % unités ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm ppm ppm Description échantillon 0.2 0.05 0.005 L.D. 10 0.5 0.1 0.002 0.01 0.05 0.1 0.2 0.05 0.2 0.02 P279545 1050 10.8 56.0 < 0.002 0.01 < 0.05 12.3 1 3.3 563 1.22 < 0.05 13.9 0.419 0.50 P279546 0.38 9.23 310 17.7 0.012 7.33 3.83 15.4 16 5.0 114.0 0.202 0.64 38.2 4.7 P279547 330 29.9 180.5 < 0.002 0.01 0.05 4.5 <1 1.9 222 1.09 < 0.05 18.6 0.148 1.54 36.6 P279548 250 1.7 65.6 < 0.002 0.05 < 0.05 1 0.9 246 0.21 < 0.05 0.4 0.401 0.55 P281851 260 15.1 < 0.002 0.28 < 0.05 21.8 <1 0.7 650 4.74 0.06 3.9 0.470 0.46 64.9 P281852 250 4.1 66.0 0.002 2.62 0.13 30.3 2 22.3 117.0 0.27 0.20 0.8 0.386 0.68 P281853 340 5.8 36.5 < 0.002 0.46 < 0.05 37.7 2.1 236 0.13 0.28 0.5 0.426 0.31 P281854 420 40.8 55.6 0.009 3.13 0.05 14.5 3 1.6 119.5 0.43 0.25 5.5 0.297 0.27 650 332 10.2 0.22 0.67 0.33 P281855 38.8 0.003 6.34 0.06 3 0.9 15.2 3.4 0.192 P281856 280 125.0 79.4 0.002 5.55 < 0.05 11.1 3 0.6 39.2 0.32 0.61 3.7 0.216 0.38 P281857 20 3.4 5.4 < 0.002 0.02 0.07 0.3 <1 < 0.2 9.6 < 0.05 < 0.05 2.6 0.009 0.03 180 203 29.9 99 48.3 0.66 0.19 P281858 0.011 0.27 0.05 8.1 0.6 6.1 0.142 0.18 P281859 530 27.0 146.0 < 0.002 0.01 < 0.05 2.8 <1 1.2 246 0.29 < 0.05 37.3 0.116 0.90 P281923 430 35.4 126.5 0.006 3.02 0.08 17.4 6 4.7 175.0 0.19 0.15 5.9 0.192 2.30 27.9 2.4 P281924 380 120.0 0.005 3.72 0.08 77.9 0.28 0.76 1.82 11.6 4 3.9 0.354P281925 240 14.5 76.8 0.003 1.86 < 0.05 8.7 3 3.6 196.5 0.32 0.05 5.3 0.134 1.75 P281926 580 14.8 86.4 < 0.002 1.63 0.05 14.1 1.2 408 0.41 0.15 5.0 0.310 2.06 P281927 400 11,2 91.4 < 0.002 1.09 0.05 16.0 1.7 378 0.30 0.06 5.1 0.359 0.96 P281928 360 10.5 52.5 0.006 6.54 0.41 10.3 4 2.1 206 0.07 0.70 3.4 0.095 1.20 P281929 440 37.6 0.002 0.94 < 0.05 <1 0.07 0.06 11.0 9.3 0.3 651 4.0 0.231 0.43 P281930 490 28.9 108.5 <0.002 0.03 0.45 4.7 <1 0.9 884 0.29 <0.05 6.9 0.2900.88 P281931 140 18.5 28.8 0.007 >10.0 1.85 5.8 5 0.9 84.3 0.08 0.91 2.5 0.054 0.65 P281932 380 5 13.4 72.0 0.012 4.39 0.05 19.6 0.9 272 0.44 0.57 13.3 0.476 0.51 P281933 400 10.8 102.5 0.006 4.15 0.38 24.0 3 3.8 204 0.31 0.45 2.6 0.373 0.79 P281934 590 11.7 37.5 < 0.002 0.68 0.19 6.3 1 1.0 1165 0.23 0.07 6.0 0.290 0.39 320 1.4 6.2 0.4 4.8 0.23 0.14 P281935 19.8 < 0.002 2.33 0.18 2.4 0.153 0.78 P281936 140 37.8 2.3 0.7 155.0 0.17 < 0.05 164.0 < 0.002 0.01 0.05 28.5 0.057 1.00 P281937 510 8.0 64.1 < 0.002 0.99 0.05 14.4 1.5 515 0.53 0.07 3.8 0.292 0.66 P281938 480 17.0 53.1 < 0.002 0.86 0.06 7.8 0.3 668 0.07 0.06 3.8 0.198 0.52 P281939 620 82.0 < 0.002 0.06 10.1 8.0 686 0.15 0.06 0.88 11 0 0.88 1 6.1 0.265 P281940 3480 54.6 98.2 <0.002 0.31 0.62 5.9 2 1.1 2190 0.35 0.08 54.5 0.319 1.03 P281941 410 2.8 268 0.002 4.34 0.18 36.2 2 75.7 121.0 0.28 0.41 0.7 0.501 2.20 120 P281942 11.0 31.8 0.004 >10.0 0.46 4.9 6 2.0 58.3 0.10 0.42 0.075 1.4 0.62 P281943 860 105.0 9.1 5.9 0.005 1.05 < 0.05 2.4 171.5 14.35 0.22 3.2 0.262 1.30 530 P281944 6330 21.8 0.014 9.73 108.5 8.3 88 52.6 162.5 0.23 0.29 2.1 0.178 14.95 470 19.5 558 P281945 104.0 0.015 3.96 0.09 21.1 5 1.8 0.42 0.16 6.7 0.307 1.04 P281946 530 13.6 784 85.4 0.011 4.87 0.11 12.1 4 1.2 0.08 0.16 3.9 0.162 1.48 P281947 260 0.9 0.4 < 0.002 0.16 0.19 2.3 0.9 21.8 0.08 0.05 0.4 0.029 < 0.02 P281948 710 23.8 113.0 < 0.002 0.60 0.05 13.1 1.4 608 0.57 0.10 11.7 0.324 0.67 P281949 210 0.7 <1 < 0.2 0.8 < 0.002 0.01 0.121.1 14.8 < 0.05 0.05 0.3 0.005 0.03

www.alsglobal.com

600 AVENUE CENTRALE VAL-D OR QC J9P 1P8

Page: 5 - D Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014 Compte: SOQVAL

Projet: 0198

A: SOQUEM INC.

mmera	113									CERTIF	ICAT D'ANALYSE	VO14105425
Description échantillon	Méthode élément unités L.D.	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME~MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Cu-OG46 Cu % 0.001	Zn-OG46 Zn % 0.001	Pb-OG46 Pb % 0.001	Ag-OG46 Ag ppm 1	
P279545 P279546 P279547		1.4 1.6 3.1	68 67 23	0.3 2.2 0.5	15.8 14.3 8.0	142 7020 61	35.6 101.0 54.6		0.715			
P279548 P281851		0.1 1.4	213 167	0.3 0.2	16.4 6.3	91 107	17.5 85.6					
P281852 P281853 P281854 P281855 P281856		0.2 0.8 2.1 1.4 1.7	183 220 94 66 68	22.3 0.3 0.1 0.4 0.3	25.3 13.9 7.6 15.9 8.1	121 182 168 206 123	40.0 36.1 135.0 62.2 90.1					
P281857 P281858 P281859 P281923		0.8 6.0 1.2 1.6	2 148 19 97	0.6 0.6 0.1 3.2	2.7 6.7 5.7 11.9	5 68 38 1710	30.2 90.8 196.5 147.0		24100			
P281924 P281925 P281926 P281927 P281928		1.2 1.3 1.4 1.1 1.4	166 32 91 113 63	1.2 2.3 0.7 1.0 0.5	16.9 13.3 12.1 6.4 10.2	129 153 120 141	98.8 208 118.0 95.9 84.4					
P281929 P281930 P281931 P281932		0.9 1.0 1.0 2.1	76 75 29 153	0.2 1.5 1.1 0.5	5.9 9.6 8.1 11.6	87 78 33 171	60.1 128.0 47.6 208	•				
P281933 P281934		8.0 1.7	145 56	1.1 0.5	6.3 6.5	73 67	42.3 60.2					
P281935 P281936 P281937 P281938 P281939		1.0 4.0 0.9 1.6 1.2	44 4 82 56 69	0.1 0.4 0.3 0.1 0.4	7.3 4.8 8.0 6.1 7.6	50 14 67 76 85	57.7 116.0 72.7 62.6 86.3					
P281940 P281941 P281942 P281943 P281944		7.5 0.4 0.4 1.1 2.1	81 223 32 58 72	2.9 3.5 0.5 2.8 1.2	23.5 26.4 3.8 5.8 11.5	154 118 161 55 >10000	135.5 48.8 42.7 86.7 35.6	0.510	3.76	0.603	64	
P281945 P281946 P281947 P281948 P281949		2.4 1.2 0.2 4.2 0.2	102 58 8 91 9	0.7 0.5 0.2 0.4 0.3	14.5 8.6 6.7 12.6 2.3	2140 560 178 77 11	123.0 115.0 15.3 166.5 6.1			***************************************		

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 6 - A Nombre total de pages: 6 (A - D)
plus les pages d'annexe
Finalisée date: 29-JUIL-2014 **Compte: SOQVAL**

Minera								Proj	et: 0198							
ilililei a	13									CERTIF	ICAT D	'ANAL	SE V	01410	5425	
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05
P281950		1.58	<0.005		0.04	4.00	0.3	590	1.48	0.70	4.91	0.19	20.9	70.5	1280	87.6
								•								

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218

www.alsglobal.com

À: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 6 - B Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014

Compte: SOQVAL

Proiet: 0198

Minera	IS							Proj	et: 0198	CERTIF	ICAT D	'ANAL'	YSE V	01410	5425	
Description échantillon	Méthode élément unités L.D.	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2
2281950		33.8	7.07	8.80	0.09	1.0	0.034	3.01	7.1	27.6	12.45	1300	0.19	0.31	2.7	752
										,						
							,									

À: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 6 - C Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014 **Compte: SOQVAL**

CERTIFICAT D'ANALYSE VO14105425

Projet: 0198

	Méthode	ME-MS61														
	élément	₽	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	TI
	unités	ppm	ppm	ppm	ppm	%	ppm	%	ppm							
Description échantillon	L.D.	10	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.2	0.005	0.02
P281950	,,,,	940	2.6	127.0	<0.002	0.38	0.23	28.7	1	1.2	165.0	0.15	<0.05	1.4	0.253	1.17

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7

www.alsglobal.com

Téléphone: 604 984 0221 Télécopieur: 604 984 0218

À: SOQUEM INC. 600 AVENUE CENTRALE VAL-D OR QC J9P 1P8 Page: 6 - D Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 29-JUIL-2014 Compte: SOQVAL

Projet: 0198

CERTIFICAT D'ANALYSE VO14105425 ME-MS61 ME-MS61 ME-MS61 ME-MS61 ME-MS61 ME-MS61 Cu-OG46 Zn-OG46 Pb-OG46 Ag-OG46 Méthode U ٧ W Υ Zn Zr Cu Zn Pb élément Αg % % % unités ppm ppm ppm ppm ppm ppm ppm Description échantillon L.D. 0.1 0.1 0.1 2 0.5 0.001 0.001 0.001 P281950 0.7 143 0.2 85 36.8

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: Annexe 1 Total # les pages d'annexe: 1 Finalisée date: 29-JUIL-2014

Compte: SOQVAL

Projet: 0198

nerais			CERTIFICAT D'ANAI	YSE VO14105425
		COMMENTAIRE DE CI	ERTIFICAT	
		COMMENT	AIRES ANALYTIQUES	
Applique à la Méthode:	L'analyse des terres rare ME-MS61	s peut être partiellement soluble avec c	ette méthode.	
		ADRESSI	E DE LABORATOIRE	
		24 Rue Turcotte, Val d'Or, QC, Canada.		
Applique à la Méthode:	Au-AA23	Au-GRA21	CRŲ-31	CRU-QC
	LOG-22	LOG-24	PUL-31	PUL-QC
1	SPL-21	WEI-21	WSH-22	
	Traité à ALS Vancouver.	2103 Dollarton Hwy, North Vancouver,	BC. Canada.	
Applique à la Méthode:	Ag-OG46	Cu-OG46	ME-MS61	ME-OG46
	Pb-OG46	Zn-OG46		
		,		

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 1 Nombre total de pages: 2 (A - C) plus les pages d'annexe Finalisée date: 25-JUIL-2014

Compte: SOQVAL

CERTIFICAT VO14105426

Projet: 0198

Ce rapport s'applique aux 27 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 10-JUIL-2014.

Les résultats sont transmis à:

PHILIPPE DAMBOISE

SERGE PERREAULT

	PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION	·
WEI-21	Poids échantillon reçu	
LOG-22	Entrée échantillon - Reçu sans code barre	
LOG-24	Entrée pulpe - Reçu sans code barre	
CRU-QC	Test concassage QC	
PUL-QC	Test concassage QC	
CRU-31	Granulation - 70 % <2 mm	
SPL-21	Échant. fractionné - div. riffles	
PUL-31	Pulvérisé à 85 % <75 um	
WSH-22	"Nettoyer" pulvérisateurs	

,	PROCÉDURES ANALYTIQUES	
CODE ALS	DESCRIPTION	INSTRUMENT
Ni-OG46	Teneur Marchande Ni - Agua Regia	VARIABLE
PGM-ICP23	Pt, Pd et Au 30 g FA ICP	ICP-AES
ME-ICP61	33 éléments, quatre acides ICP-AES	ICP-AES
ME-OG46	Teneur marchandes éléments - Aqua regia	ICP-AES
Cu-OG46	Teneur marchande Cu - Aqua regia	VARIABLE

A: SOQUEM INC. ATTN: PHILIPPE DAMBOISE **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Commentaire: SOQVAL-2

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - A Nombre total de pages: 2 (A - C) plus les pages d'annexe Finalisée date: 25-JUIL-2014 Compte: SOQVAL

9510

Projet: 0198

									(CERTIF	ICAT D	'ANAL'	YSE V	01410	5426	
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1
P277756 P277757 P277758 P277759 P277760		2.93 0.87 3.64 1.22 0.85	0.011 0.013 0.006 <0.001 <0.001	0.014 0.016 0.028 0.009 <0.005	0.010 0.005 0.002 0.007 0.001	<0.5 <0.5 0.8 <0.5 <0.5	3.99 4.22 6.28 5.77 6.22	15 13 <5 30 <5	160 200 220 150 110	0.7 0.8 10.1 0.5 1.2	<2 <2 7 <2 <2	4.16 0.60 1.62 8.27 0.78	1.0 1.5 1.5 <0.5 <0.5	3 12 30 42 1	311 69 71 256 7	229 110 255 30 <1
P277761 P277762 P277763 P277764 P277855		1.67 1.40 0.85 2.09 0.68	0.002 0.007 0.004 0.004 <0.001	<0.005 0.014 <0.005 <0.005 <0.005	0.001 0.003 0.002 0.002 0.004	<0.5 1.1 <0.5 <0.5 <0.5	3.08 1.85 5.72 4.95 6.14	<5 22 10 94 <5	30 40 130 60 390	0.8 <0.5 <0.5 0.5 1.1	<2 <2 <2 <2 <2 <2	1.67 0.10 7.36 1.59 5.27	<0.5 <0.5 0.7 0.6 <0.5	10 22 40 16 29	64 146 113 112 701	37 214 135 95 2
P277856 P277857 P277858 P277859 P277860		0.78 1.06 1.76 0.90 0.90	0.001 0.001 0.001 <0.001 <0.001	0.014 0.007 0.088 0.006 <0.005	0.013 0.007 0.047 0.017 0.001	<0.5 <0.5 0.7 <0.5 <0.5	6.99 7.08 4.52 8.50 7.81	<5 <5 <5 <5 <5	160 1840 240 140 370	<0.5 1.7 2.1 2.8 2.7	<2 <2 <2 <2 <2 <2	6.53 5.29 6.97 7.32 1.22	<0.5 <0.5 0.5 <0.5 <0.5	48 37 126 48 37	322 184 387 277 299	60 29 2480 35 3
P279559 P279560 P279561 P279562 P279563		2.14 1.41 1.29 1.13 2.21	0.018 <0.001 <0.001 <0.001 <0.001	<0.005 <0.005 <0.005 0.011 0.005	0.001 0.001 <0.001 0.011 0.004	<0.5 <0.5 <0.5 <0.5 <0.5	5.04 2.77 8.47 1.59 7.17	796 52 5 <5 <11	320 60 1130 270 290	2.0 3.4 1.5 0.6 1.2	<2 <2 <2 <2 <2 <2	1.80 10.30 4.78 11.40 4.31	<0.5 0.6 <0.5 <0.5 <0.5	11 64 15 43 32	212 42 24 1395 281	3 191 92 10 68
P279564 P279565 P279566 P279567 P281958		1.10 1.99 1.45 0.02 1.35	<0.001 0.009 <0.001 0.185 <0.001	<0.005 0.016 0.024 0.278 <0.005	0.001 0.011 0.025 0.307 0.002	<0.5 1.0 <0.5 3.7 <0.5	5.22 4.13 1.97 5.06 6.11	5 25 6 25 <5	410 40 10 330 520	1.5 <0.5 0.6 0.8 1.4	<2 <2 <2 <2 <2 <2	6.95 1.05 8.01 3.04 1.23	<0.5 0.6 <0.5 1.9 <0.5	38 16 36 352 13	396 221 1880 247 126	8 519 71 9430 15
P281959		2.58	0.004	<0.005	0.001	<0.5	5.88	18	10	0.7	<2	1.82	0.6	10	92	62

Commentaire: SOQVAL-2

P281960

2.31

0.056

< 0.005

0.001

8.6

6.81

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - B Nombre total de pages: 2 (A - C) plus les pages d'annexe Finalisée date: 25-JUIL-2014 Compte: SOQVAL

Projet: 0198

mmera	13									CERTIF	ICAT D	'ANAL\	/SE V	01410	5426	
Description échantillon	Méthode	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	élément	Fe	Ga	K	La	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sc	Sr
	unités	%	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm
	L.D.	0.01	10	0.01	10	0.01	5	1	0.01	1	10	2	0.01	5	1	1
P277756 P277757 P277758 P277759 P277760		17.95 13.95 17.05 10.70 0.47	10 10 20 10 20	0.58 0.86 0.96 0.61 2.78	10 10 30 10 <10	1.45 0.70 1.15 3.85 0.08	3690 1230 1335 3090 86	3 3 6 1	0.47 1.94 1.95 0.74 2.79	176 67 83 210 2	290 270 170 410 30	9 7 5 3 36	>10.0 9.36 9.16 0.58 0.02	<5 <5 <5 5 <5	13 11 9 29 1	145 102 296 230 120
P277761		19.65	10	0.05	10	1.34	1030	<1	0.05	30	560	<2	1.22	5	6	9
P277762		40.9	<10	0.39	10	0.44	3820	1	0.46	111	50	<2	>10.0	<5	6	23
P277763		10.60	10	1.09	20	4.71	5730	1	0.34	115	270	3	5.10	<5	65	64
P277764		16.30	10	0.32	10	2.16	2420	<1	0.07	50	450	<2	1.13	5	12	13
P277855		5.33	20	0.81	10	4.46	1040	<1	2.39	154	480	4	0.01	<5	20	480
P277856		7.20	10	0.99	10	5.55	1095	<1	1.39	198	300	<2	0.15	<5	33	171
P277857		6.98	20	2.48	50	4.32	1145	<1	2.36	78	3950	12	0.03	<5	22	1335
P277858		9.33	10	1.07	10	8.07	1255	1	0.62	150	380	2	1.41	<5	43	352
P277859		6.32	20	1.57	<10	4.76	1280	<1	1.40	235	180	6	0.03	<5	20	124
P277860		7.57	30	3.00	10	3.62	1200	<1	2.53	141	570	17	<0.01	5	29	141
P279559		13.80	10	0.67	20	1.50	773	2	0.38	43	570	3	0.66	<5	9	733
P279560		7.82	10	0.32	<10	7.79	1630	<1	0.29	243	140	<2	1.30	<5	54	58
P279561		5.38	20	2.89	20	1.22	934	<1	2.77	13	1790	11	0.34	<5	10	878
P279562		3.92	<10	0.30	10	10.05	1060	<1	0.35	310	470	<2	<0.01	<5	35	191
P279563		9.45	20	1.56	10	1.97	3620	<1	0.86	122	270	<2	1.23	5	33	76
P279564 P279565 P279566 P279567 P281958		5.20 15.70 5.29 17.50 11.15	10 10 <10 10 20	0.77 0.26 0.14 0.77 2.51	20 10 10 20 10	6.98 2.18 12.75 2.43 1.54	997 1970 1020 931 545	<1 3 <1 1	1.79 0.06 0.44 1.30 1.43	242 51 188 >10000 68	740 1400 100 470 1010	7 <2 2 61 11	0.03 2.55 0.33 6.55 0.05	<5 <5 <5 <5 <5	26 9 26 14 13	868 15 360 234 519
P281959		21.4	10	0.03	20	2.52	1080	<1	0.07	30	1000	<2	0.72	<5	16	70
P281960		4.78	20	2.75	20	5.40	506	574	0.46	17	270	156	0.91	<5	8	55

À: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - C Nombre total de pages: 2 (A - C) plus les pages d'annexe Finalisée date: 25-JUIL-2014 **Compte: SOQVAL**

Projet: 0198

iiiinera	13									CERTIFI	CAT D'ANALYSE	VO14105426	
Description échantillon	Méthode élément unités L.D.	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Cu-OG46 Cu % 0.001	Ni-OG46 Ni % 0.001			
P277756 P277757 P277758 P277759 P277760		<20 <20 <20 <20 60	0.18 0.14 0.24 0.37 0.02	<10 <10 <10 <10 <10	<10 <10 <10 <10 10	79 57 82 161 2	<10 <10 <10 10 <10	210 379 380 101 12					
P277761 P277762 P277763 P277764 P277855		<20 <20 <20 <20 <20	0.12 0.05 0.27 0.24 0.32	<10 <10 <10 <10 <10	10 10 <10 <10 10	42 35 266 72 106	<10 <10 <10 <10 <10	50 72 213 67 129			· · · · · · · · · · · · · · · · · · ·	,	
2277856 2277857 2277858 2277859 2277860		<20 20 <20 <20 <20	0.33 0.56 0.47 0.32 0.38	<10 <10 <10 <10 <10	10 10 10 10 <10	200 182 250 151 125	<10 <10 <10 <10 <10	59 122 80 94 134			1 = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
2279559 2279560 2279561 2279562 2279563		<20 <20 <20 <20 <20	0.21 0.35 0.54 0.15 0.46	<10 <10 <10 <10 <10	10 10 10 <10 <10	67 220 180 89 188	<10 <10 <10 <10 <10	56 103 89 53 94	444			***************************************	
2279564 2279565 2279566 2279567 2281958		<20 <20 <20 <20 <20	0.43 0.15 0.12 0.29 0.25	<10 <10 <10 <10 <10	10 10 <10 10 <10	136 53 84	<10 <10 <10 <10 <10	70 90 52 171 60	0.876	1.155	***************************************		
P281959 P281960		<20 <20	0.22 0.03	<10 <10	<10 70	72 312	<10 <10	89 120	0.883				

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: Annexe 1 Total # les pages d'annexe: 1 Finalisée date: 25-JUIL-2014 **Compte: SOQVAL**

Projet: 0198

illelai2			CERTIFICAT D'ANALYSE VO14105426									
	COMMENTAIRE DE CERTIFICAT											
		ADRESS	E DE LABORATOIRE									
Applique à la Méthode:	Traité à ALS Val d'Or, 1324 Rue CRU-31 PUL-31 WSH-22	e Turcotte, Val d'Or, QC, Canada. CRU-QC PUL-QC	LOG-22 SPL-21	LOG-24 WEI-21								
Applique à la Méthode:	Traité à ALS Vancouver, 2103 [Cu-OG46 PGM-ICP23	Dollarton Hwy, North Vancouver, ME-ICP61	BC, Canada. ME-OG46	Ni-OG46								
		,										
				i								

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H OA7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218

www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 1 Nombre total de pages: 2 (A - D) plus les pages d'annexe Finalisée date: 11-AOUT-2014 **Compte: SOQVAL**

CERTIFICAT VO14113177

Projet: CHABLIS

Ce rapport s'applique aux 32 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 24-JUIL-2014.

Les résultats sont transmis à:

PHILIPPE DAMBOISE

SERGE PERREAULT

	PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION	
WEI-21	Poids échantillon reçu	
LOG-22	Entrée échantillon - Reçu sans code barre	
LOG-24	Entrée pulpe - Reçu sans code barre	
CRU-QC	Test concassage QC	
PUL-QC	Test concassage QC	
CRU-31	Granulation - 70 % <2 mm	
SPL-21	Échant. fractionné - div. riffles	
PUL-31	Pulvérisé à 85 % <75 um	
WSH-22	"Nettoyer" pulvérisateurs	

PROCÉDURES ANALYTIQUES									
CODE ALS	DESCRIPTION	INSTRUMENT							
ME-OG46	Teneur marchandes éléments - Aqua regia	ICP-AES							
Cu-OG46	Teneur marchande Cu - Aqua regia	VARIABLE							
Zn-OG46	Teneur marchande Zn - Aqua regia	VARIABLE							
Pb-OG46	Teneur marchande Pb - Aqua regia	VARIABLE							
Aq-OG46	Teneur marchande Ag - Aqua regia	VARIABLE							
Au-AA23	Au 30 g fini FA-AA	AAS							
Au-GRA21	Au 30 g fini FA-GRAV	WST-SIM							
ME-MS61	ICP-MS 48 éléments, quatre acides								

A: SOQUEM INC. **ATTN: PHILIPPE DAMBOISE 600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Commentaire: SOQVAL-1

Signature:

Nacera Amara, Laboratory Manager, Val d'Or

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Téléphone: 604 984 0221 Télécopieur: 604 984 0218

www.alsglobal.com

À: SOQUEM INC. 600 AVENUE CENTRALE VAL-D OR QC J9P 1P8 Page: 2 - A
Nombre total de pages: 2 (A - D)
plus les pages d'annexe
Finalisée date:
11-AOUT-2014
Compte: SOQVAL

Projet: CHABLIS

imieid	CERTIFICAT D'ANALYSE VO14113											3177				
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05
P277489 P277490 P277491 P277492 P277493		1.41 3.03 1.85 1.34 1.88	<0.005 <0.005 0.032 <0.005 <0.005		0.29 1.05 0.72 0.12 0.08	6.26 6.76 6.87 6.70 6.71	0.3 <0.2 <0.2 0.2 <0.2	550 90 1350 400 850	1.40 1.32 1.60 1.70 1.17	0.28 0.90 0.41 0.11 0.07	0.87 4.64 5.00 2.76 0.82	0.08 0.93 0.42 0.41 0.02	18.85 15.20 186.0 34.6 19.35	11.5 24.7 43.6 26.9 3.2	35 192 217 358 19	2.28 2.81 2.91 5.00 1.79
P277962 P277963 P277964 P281863 P281864		0.98 0.62 1.30 1.16 2.04	<0.005 0.010 <0.005 <0.005 <0.005		0.31 1.43 0.04 <0.01 2.28	8.24 7.56 7.02 0.21 8.44	1.0 0.6 0.3 <0.2 18.0	840 310 750 20 210	1.05 1.73 1.15 0.10 2.03	0.18 0.97 0.05 0.01 1.38	1.23 1.24 1.02 0.01 0.52	0.06 1.10 0.02 <0.02 0.20	58.2 32.9 15.05 25.1 82.4	17.9 23.2 7.1 0.2 74.8	51 75 79 12 129	1.95 1.19 3.66 0.05 1.61
P281865 P281866 P281867 P281868 P281869		2.37 3.83 3.15 2.93 2.86	<0.005 <0.005 <0.005 <0.005 <0.005		2.23 0.79 0.69 0.24 0.09	5.78 7.28 7.38 6.86 4.65	20.5 5.2 9.7 7.4 2.9	70 380 250 310 230	1.32 1.54 1.85 1.46 1.11	0.21 0.36 1.00 0.61 0.11	0.18 0.66 0.72 0.26 0.28	0.20 0.14 0.18 0.06 0.06	15.80 46.7 52.6 26.6 5.69	20.8 23.8 67.4 27.0 3.6	17 80 121 127 11	0.96 1.38 1.88 1.79 1.54
P281870 P281871 P281872 P281873 P281874		2.33 2.47 2.50 2.34 1.21	0.016 0.010 <0.005 <0.005 <0.005		3.47 5.27 3.46 0.14 0.20	5.65 7.59 6.55 6.81 7.44	4.4 15.1 2.5 0.5 1.6	240 500 640 700 580	1.60 2.14 1.05 1.19 1.21	8.09 1.22 6.53 0.24 0.46	0.16 0.25 0.13 0.36 0.30	<0.02 <0.02 <0.02 0.03 0.13	71.0 40.9 62.9 74.7 52.9	31.9 31.6 6.7 8.2 21.3	52 141 32 26 39	1.49 2.44 1.69 1.31 1.64
P281875 P281876 P281877 P281878 P281879		1.15 2.61 1.98 1.70 2.62	<0.005 <0.005 <0.005 <0.005 <0.005		0.27 0.09 0.11 0.09 0.04	6.20 6.90 6.78 6.77 6.99	2.2 1.5 1.5 1.9	740 830 810 670 970	0.86 1.45 2.33 1.56 0.93	0.12 0.07 0.48 0.15 0.07	0.36 0.32 0.24 0.49 0.41	<0.02 0.03 <0.02 0.02 0.02	21.8 19.95 15.50 17.00 12.50	9.2 3.0 2.0 6.1 2.5	14 10 11 17 11	4.40 1.58 4.89 1.63 1.65
P281880 P281881 P281882 P281883 P281884		2.87 3.59 0.11 1.71 3.12	<0.005 0.007 0.915 0.013 <0.005	0.98	0.54 1.59 66.6 1.27 0.05	6.66 5.40 3.74 8.39 7.07	1.4 10.7 477 6.1 0.4	760 290 170 390 680	0.94 1.12 0.51 1.63 1.28	1.70 1.74 25.4 0.66 0.04	0.26 0.30 1.76 1.03 1.04	0.03 0.17 212 0.06 0.05	11.95 20.6 23.9 46.6 41.5	5.1 23.4 17.9 36.8 4.3	14 45 35 110 13	1.38 1.91 0.80 5.85 1.49
P281886 P281885		1.45 3.25	<0.005 <0.005		0.38 3.87	5.65 6.05	2.3 12.1	390 180	1.00 1.38	0.31 5.15	0.29 0.37	<0.02 0.17	16.65 25.3	11.8 37.1	23 136	1.36 2.37

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

www.alsglobal.com

Téléphone: 604 984 0221 Télécopieur: 604 984 0218

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - B Nombre total de pages: 2 (A - D) plus les pages d'annexe Finalisée date: 11-AOUT-2014 **Compte: SOQVAL**

Projet: CHABLIS

mmera	13								(CERTIF	ICAT D	'ANAL	/SE V	01411	3177	
Description échantillon	Méthode	ME-MS61														
	élément	Cu	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni
	unités	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm
	L.D.	0.2	0.01	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2
P277489		52.4	1.94	15.00	0.18	7.4	0.017	3.46	9.1	14.3	0.20	169	11.40	2.41	7.4	15.7
P277490		404	12.10	19.00	0.16	2.0	0.669	1.25	5.9	12.5	2.75	3250	1.63	1.96	7.9	71.2
P277491		187.5	8.22	18.95	0.31	3.5	0.134	1.38	90.1	14.5	3.79	1590	4.84	2.16	5.3	177.5
P277492		47.4	4.34	18.10	0.21	4.3	0.079	2.41	17.1	50.3	4.43	899	1.37	2.23	7.7	276
P277493		13.8	1.17	16.00	0.20	9.7	0.015	4.36	9.4	9.9	0.23	139	5.81	2.45	7.2	9.9
P277962		48.6	3.87	21.7	0.23	6.0	0.048	3.65	29.6	38.3	0.89	381	2.85	2.97	6.5	42.6
P277963		235	7.46	20.9	0.19	4.1	0.043	1.59	15.0	20.3	1.04	420	3.38	2.76	10.0	50.8
P277964		7.3	2.89	19.70	0.17	3.2	0.034	4.53	6.7	23.5	0.91	344	1.99	2.11	16.2	20.6
P281863		1.7	0.41	0.78	0.13	0.4	<0.005	0.04	11.5	5.6	0.01	43	0.21	0.01	0.4	1.2
P281864		>10000	7.66	20.2	0.24	5.9	0.206	1.59	40.9	52.9	1.89	236	8.15	3.82	11.5	94.2
P281865		>10000	1.72	13.30	0.11	4.8	0.063	0.90	8.0	9.3	0.29	81	76.9	3.50	2.1	9.6
P281866		3230	4.22	19.00	0.16	2.9	0.045	2.04	22.9	33.9	1.14	202	25.4	3.05	5.4	46.7
P281867		2770	7.09	21.1	0.19	4.4	0.075	1.85	24.9	40.7	1.45	212	13.75	2.98	11.5	104.5
P281868		437	4.21	18.05	0.15	7.5	0.028	2.16	13.2	32.9	1.06	158	8.13	2.83	10.1	50.8
P281869		38.8	1.74	12.05	0.13	7.0	0.012	1.76	2.8	19.3	0.47	168	154.0	1.86	9.4	4.3
P281870		7540	1.74	14.00	0.22	7.7	0.079	1.65	34.0	35.0	1.06	118	377	2.85	6.9	15.1
P281871		>10000	3.37	20.9	0.16	4.0	0.143	3.43	20.7	43.9	1.57	176	1240	2.91	13.2	27.5
P281872		1460	1.17	17.05	0.19	3.7	0.038	5.17	33.9	17.7	0.59	91	490	2.03	5.0	6.5
P281873		181.5	2.14	15.95	0.21	5.1	0.014	3.80	40.6	16.2	0.53	122	32.0	2.45	6.3	17.7
P281874		127.5	3.59	18.20	0.23	3.0	0.022	4.46	25.4	16.5	0.46	112	8.29	2.47	6.7	48.4
P281875		530	3.56	18.90	0.20	2.3	0.045	4.73	9.0	48.2	1.22	397	481	1.39	33.1	6.5
P281876		207	0.97	14.60	0.18	4.7	0.016	4.96	9.6	12.0	0.35	82	11.55	2.27	5.6	3.5
P281877		15.0	1.03	16.10	0.15	4.7	0.006	4.68	8.1	12.6	0.40	98	6.50	2.14	9.9	3.8
P281878		27.3	1.69	15.40	0.14	3.5	0.016	3.65	9.1	16.1	0.50	120	13.20	2.41	8.5	8.1
P281878		10.8	1.30	15.15	0.13	3.0	0.010	5.29	5.7	14.0	0.45	106	16.70	1.91	10.0	4.0
P281880		248	1.36	15.35	0.16	3.9	0.017	4.31	5.8	28.0	0.92	102	90.4	2.05	11.9	8.0
P281881		>10000	3.46	13.45	0.13	4.6	0.135	1.88	9.7	30.9	1.28	176	173.5	2.02	9.2	16.0
P281882		5310	8.95	13.90	0.33	1.1	2.86	0.70	11.2	10.5	0.85	506	22.7	1.21	4.3	45.3
P281883		8830	6.87	22.9	0.13	4.2	0.069	2.76	21.5	53.2	1.40	516	5.22	3.07	14.1	62.8
P281884		47.6	1.47	17.75	0.12	4.6	0.021	3.00	21.9	18.5	0.63	151	15.50	2.70	6.5	7.6
P281886		4330	2.34	15.85	0.13	9.9	0.095	2.45	8.4	38.5	1.44	153	247	1.93	17.8	8.9
P281885		>10000	4.10	15.30	0.12	2.6	0.156	1.39	11.6	38.5	1.59	193	211	2.59	7.2	25.8

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - C Nombre total de pages: 2 (A - D) plus les pages d'annexe Finalisée date: 11-AOUT-2014 **Compte: SOQVAL**

Projet: CHABLIS

mmera	13									CERTIF	ICAT D	'ANAL\	/SE V	01411	3177	
Description échantillon	Méthode élément unités L.D.	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02
P277489 P277490 P277491 P277492 P277493 P277962 P277964 P281863 P281864 P281865 P281866 P281867		50 400 1900 1040 130 290 340 680 10 220 50 390 1880	24.9 5.9 17.3 11.5 30.6 35.8 168.0 26.8 0.6 328 44.8 123.0 68.5	130.0 103.5 71.0 156.5 155.0 128.5 123.0 184.0 2.4 71.7 54.9 87.7 86.0	<0.002 <0.002 0.007 <0.002 <0.002 0.003 <0.002 <0.002 0.004 0.002 0.007 0.008	0.58 2.63 2.70 0.12 0.07 0.67 3.78 0.04 <0.01 5.62 1.26 1.92 5.25	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.07	2.9 34.9 22.7 12.1 2.6 12.0 13.1 8.3 0.2 15.2 0.9 10.0 12.1	1 1 3 <1 <1 1 2 1 <1 5	0.8 12.5 1.1 0.9 0.5 0.3 1.1 0.8 <0.2 1.4 <0.2 0.6 1.3	199.0 141.0 910 383 262 368 333 287 3.0 187.5 85.7 188.0 126.0	0.57 0.38 0.31 0.57 0.40 0.53 0.88 1.00 <0.05 0.66 0.38 0.55 1.00	0.09 0.09 0.28 <0.05 <0.05 0.26 0.21 <0.05 <0.05 0.49 0.12 0.19 0.40	12.6 1.0 25.4 7.0 8.7 14.5 8.1 7.6 1.8 10.8 8.2 9.4 9.7	0.083 0.476 0.402 0.242 0.072 0.367 0.337 0.237 0.017 0.370 0.031 0.221 0.233	0.85 0.76 0.58 1.36 0.95 0.83 0.90 1.21 <0.02 0.53 0.30 0.51
P281868 P281869 P281870 P281871 P281872 P281873 P281874		100 40 220 190 90 170 180	69.7 51.2 48.6 167.0 176.0 46.1 59.6	89.4 79.3 61.8 124.0 169.0 124.0 153.0	0.004 <0.002 0.018 0.019 0.073 0.003 0.002	2.22 0.27 0.79 1.25 0.16 0.70 1.84	0.05 <0.05 0.09 0.62 0.07 <0.05 <0.05	11.8 3.7 6.2 13.1 3.4 4.3 6.0	2 <1 6 1 <1 <1 3	0.6 0.4 0.4 1.0 0.4 0.4 0.5	118.5 98.4 58.2 136.5 144.0 181.5 200	0.99 0.71 0.53 1.12 0.43 0.75 1.28	0.18 0.06 0.21 0.24 <0.05 0.07 0.23	6.1 9.1 40.5 13.7 25.8 34.3 16.1	0.193 0.108 0.135 0.246 0.085 0.119 0.133	0.45 0.47 0.53 1.01 1.38 0.74 0.85
P281875 P281876 P281877 P281878 P281879 P281880 P281881 P281882 P281882 P281883		1190 410 120 180 830 280 220 510 260	48.8 34.9 33.1 42.5 48.2 88.4 85.8 6190 25.3	199.5 172.5 227 131.5 164.0 142.0 84.7 21.5 176.5	<0.002 <0.002 <0.002 <0.002 0.002 0.002 0.050 0.016 0.003	0.29 0.15 0.08 0.40 0.09 0.16 1.63 9.76 2.83	<0.05 <0.05 0.07 0.06 0.05 0.06 0.07 109.0 0.07	11.4 2.1 3.1 3.2 3.1 3.7 5.7 7.4 15.9	<1 <1 1 1 1 1 2 85	1.4 0.4 1.3 0.6 0.6 0.7 0.9 50.6 2.2	137.0 180.0 183.5 182.5 198.5 158.0 107.0 162.0 228	2.50 0.78 2.63 0.63 0.87 0.83 0.68 0.20 0.86	0.06 <0.05 0.13 0.07 0.06 0.08 0.17 0.27 0.36	24.6 17.4 8.4 19.1 7.7 90.7 9.1 2.3	0.341 0.058 0.069 0.099 0.102 0.124 0.161 0.176	1.35 1.00 1.21 0.72 1.05 0.81 0.62 13.65
P281884 P281886 P281885		410 450 300	28.6 35.2 215	117.5 86.3 80.3	<0.003 <0.002 0.002 0.088	0.06 0.54 2.16	0.08 0.07 0.08	3.2 6.3 7.2	2 <1 1 2	0.4	392 106.0 106.0	0.47 1.07 0.59	0.36 0.05 0.11 0.30	6.2 9.0 21.0 8.2	0.376 0.163 0.221 0.162	1.50 0.66 0.47 0.64

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

www.alsglobal.com

Téléphone: 604 984 0221 Télécopieur: 604 984 0218

À: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - D Nombre total de pages: 2 (A - D) plus les pages d'annexe Finalisée date: 11-AOUT-2014 **Compte: SOQVAL**

Projet: CHABLIS

Minerals									CERTIFICAT D'ANALYSE VO14113177						
Description échantillon	Méthode élément unités L.D.	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Cu-OG46 Cu % 0.001	Zn-OG46 Zn % 0.001	Pb-OG46 Pb % 0.001	Ag-OG46 Ag ppm 1				
P277489 P277490 P277491 P277492 P277493 P277962 P277963 P277964		3.6 1.2 4.2 2.4 2.7 1.7 2.3 0.7	15 215 157 78 14 119 78 51	0.1 0.8 0.2 0.1 0.2 0.5 0.1	2.2 21.7 20.5 8.9 3.0 7.5 10.2 7.9	22 238 203 96 14 153 193 63	220 63.8 134.0 136.0 304 220 141.0 97.9								
P281863 P281864 P281865 P281866 P281867 P281868 P281869		0.2 5.3 6.6 5.3 5.8 3.7 5.9	2 133 10 75 90 78 16	0.2 3.2 0.2 0.7 1.5 1.8 1.2	3.1 11.4 2.8 8.6 12.6 5.4 2.2	<2 99 25 70 80 44 47	13.0 205 143.5 93.9 142.0 240 208	1.805	<u>,</u>						
P281870 P281871 P281872 P281873 P281874 P281875		49.1 4.3 14.7 2.8 4.4	82 117 44 29 41	0.6 0.7 1.3 1.0 0.4	8.2 5.5 3.8 5.6 8.5	17 30 23 23 27	232 133.0 110.5 163.0 93.8 69.4	0.723 1.210							
P281876 P281877 P281878 P281879		2.7 2.3 3.4 2.5	9 11 17 16	0.4 0.3 0.3 0.4	7.4 3.4 3.3 12.0	9 9 , 17 14	150.5 149.0 116.0 94.7				·				
P281880 P281881 P281882 P281883 P281884		14.4 3.9 2.1 1.7 2.0	22 42 73 113 26	0.5 0.3 1.2 0.4 0.2	5.5 4.9 11.2 5.4 4.0	27 68 >10000 95 43	124.0 153.0 36.6 150.0 162.5	1.500 0.523 0.891	3.73	0.600	65				
P281886 P281885		5.4 5.3	37 57	0.7 0.7	7.7 6.4	38 76	320 87.5	2.05							

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: 604 984 0221
www.alsglobal.com

Télécopieur: 604 984 0218

A: SOQUEM INC. 600 AVENUE CENTRALE VAL-D OR QC J9P 1P8 Page: Annexe 1
Total # les pages d'annexe: 1
Finalisée date:
11-AOUT-2014
Compte: SOQVAL

Projet: CHABLIS

El 812			CERTIFICAT D'ANAL	YSE VO14113177									
		COMMENTAIRE DE CI	ERTIFICAT										
		COMMENT	AIRES ANALYTIQUES										
Applique à la Méthode:	L'analyse des terres rares peut être partiellement soluble avec cette méthode. ME-MS61												
		ADRESS	E DE LABORATOIRE										
	Traité à ALS Val d'Or. 13	24 Rue Turcotte, Val d'Or, QC, Canada.											
Applique à la Méthode:	Au-AA23	Au-GRA21	CRU-31	CRU-QC									
'	LOG-22	LOG-24	PUL-31	PUL-QC									
	SPL-21	WEI-21	WSH-22	·									
	Traité à ALS Vancouver	2103 Dollarton Hwy, North Vancouver,	BC, Canada.										
Applique à la Méthode:	Ag-OG46	Cu-OG46	ME-MS61	ME-OG46									
''' '	Pb-OG46	Zn-OG46		2									
		,											

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

À: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 1 Nombre total de pages: 4 (A - D) plus les pages d'annexe Finalisée date: 12-AOUT-2014 **Compte: SOQVAL**

CERTIFICAT VO14113280

Projet: 0198

Ce rapport s'applique aux 81 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 24-JUIL-2014.

Les résultats sont transmis à:

PHILIPPE DAMBOISE

SERGE PERREAULT

	PRÉPARATION ÉCHANTILLONS
CODE ALS	DESCRIPTION
WEI-21	Poids échantillon reçu
LOG-22	Entrée échantillon - Reçu sans code barre
LOG-24	Entrée pulpe - Reçu sans code barre
CRU-QC	Test concassage QC
PUL-QC	Test concassage QC
CRU-31	Granulation - 70 % <2 mm
SPL-21	Échant. fractionné - div. riffles
PUL-31	Pulvérisé à 85 % <75 um
WSH-22	"Nettoyer" pulvérisateurs

PROCÉDURES ANALYTIQUES									
CODE ALS	DESCRIPTION	INSTRUMENT							
ME-OG46	Teneur marchandes éléments - Aqua regia	ICP-AES							
Cu-OG46	Teneur marchande Cu - Aqua regia	VARIABLE							
Zn-OG46	Teneur marchande Zn - Aqua regia	VARIABLE							
Pb-OG46	Teneur marchande Pb - Aqua regia	VARIABLE							
Ag-OG46	Teneur marchande Ag - Aqua regia	VARIABLE							
Au-AA23	Au 30 g fini FA-AA	AAS							
Au-GRA21	Au 30 g fini FA-GRAV	WST-SIM							
ME-MS61	ICP-MS 48 éléments, quatre acides								

A: SOQUEM INC. **ATTN: PHILIPPE DAMBOISE 600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Commentaire: SOQVAL-1

Signature:

Nacera Amara, Laboratory Manager, Val d'Or

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - A Nombre total de pages: 4 (A - D) plus les pages d'annexe Finalisée date: 12-AOUT-2014 **Compte: SOQVAL**

Projet: 0198

Minera	IIS									CERTIF	ICAT D	'ANAL	YSE V	01411	3280	
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05
P277301 P277302 P277303 P277304 P277305		1.56 1.41 1.50 1.55 0.95	<0.005 <0.005 <0.005 <0.005 <0.005		0.25 0.11 0.55 0.03 0.01	7.07 5.58 7.54 3.54 2.84	0.6 3.6 0.7 0.9 0.7	400 690 500 120 90	1.45 0.88 1.45 1.56 1.22	0.46 0.35 0.49 0.19 0.05	2.78 1.61 3.00 0.27 0.12	0.19 0.14 0.35 0.02 0.02	16.40 68.1 55.4 184.0 3.40	3.9 6.4 21.5 11.4 5.6	62 20 37 2290 2300	8.89 2.24 3.16 2.10 1.62
P277306 P277494 P277495 P277496 P277497		1.46 2.00 1.69 1.87 1.73	<0.005 <0.005 <0.005 <0.005 <0.005		0.01 1.50 0.57 0.23 0.03	7.02 4.42 7.19 4.77 0.30	0.3 0.8 0.5 6.9 0.6	300 140 310 170 10	2.64 2.43 1.58 0.61 0.11	0.02 2.64 2.02 0.56 0.03	0.02 6.46 2.19 3.02 0.08	<0.02 1.03 1.13 0.89 <0.02	52.9 17.85 48.2 26.7 7.15	1.2 476 40.0 7.9 0.3	9 487 175 291 4	4.97 1.39 9.04 1.90 0.11
P277498 P277499 P277500 P277501 P277502		2.39 1.42 1.13 4.68 4.06	<0.005 <0.005 <0.005 <0.005 <0.005		1.22 0.44 0.14 1.47 1.68	6.35 7.40 7.34 4.35 3.98	0.8 0.4 0.7 0.8 0.7	410 160 470 130 200	9.38 0.48 1.78 0.42 0.47	0.71 0.45 0.11 2.90 2.60	6.06 7.25 2.50 3.52 2.80	1.41 0.26 0.12 8.28 6.09	47.6 8.51 38.1 31.7 24.5	105.0 68.2 4.8 68.5 74.8	55 188 41 81 57	0.86 0.69 4.81 1.01 1.21
P277503 P277504 P277505 P277506 P277507		6.51 4.11 6.24 5.39 5.66	<0.005 <0.005 0.005 <0.005 <0.005		1.20 0.40 1.87 0.62 1.63	5.64 6.73 4.32 5.67 4.51	0.8 0.4 0.8 0.5 0.6	230 310 190 240 130	0.38 0.75 1.01 1.00 1.17	1.70 0.93 1.16 0.63 0.74	4.17 4.65 2.13 3.28 3.48	0.72 2.34 0.73 0.31 5.47	23.1 27.7 26.5 40.0 19.65	234 35.9 36.8 20.4 28.2	164 203 51 174 103	2.93 4.74 2.90 2.65 2.32
P277508 P277509 P277510 P277511 P277512		2.01 1.40 1.35 1.09 2.60	<0.005 <0.005 <0.005 <0.005 <0.005		1.43 0.13 0.04 0.16 0.46	5.00 3.33 6.28 8.52 5.74	0.2 88.4 0.5 1.7 1.1	140 90 250 620 260	0.91 0.39 1.17 1.32 0.87	1.11 0.37 0.04 0.13 1.29	1.16 1.84 0.72 1.39 1.58	0.31 0.81 0.04 0.15 1.94	24.7 16.05 4.35 77.7 38.3	36.0 104.5 1.1 28.1 52.8	30 69 42 156 122	3.72 2.37 8.36 6.01 5.09
P277551 P277965 P277966 P277967 P277968		1.09 1.29 1.61 1.70 2.80	<0.005 <0.005 <0.005 <0.005 <0.005		0.09 0.10 0.14 0.04 0.40	6.74 8.59 6.17 7.21 7.13	<0.2 0.5 0.8 0.3 0.3	150 2180 170 1220 560	0.32 9.29 0.69 1.34 0.75	0.25 0.24 1.53 0.06 0.80	6.80 4.56 10.25 0.99 1.62	0.14 0.09 0.16 0.02 0.30	9.45 57.4 55.8 75.4 52.7	33.0 5.9 49.3 3.0 42.6	155 18 317 33 64	0.57 1.48 2.70 4.79 4.27
P277969 P277970 P277971 P277972 P277973		2.00 1.33 1.68 1.50 0.94	<0.005 <0.005 <0.005 <0.005 <0.005		0.65 0.10 0.91 0.75 0.52	7.13 7.06 8.45 3.35 6.22	0.2 0.4 0.6 <0.2 0.5	450 280 600 150 140	1.58 1.13 1.06 0.57 0.65	1.18 0.18 0.20 0.95 0.52	5.42 3.88 0.90 8.24 5.78	32.1 0.13 0.27 0.38 0.37	55.5 10.90 178.5 10.60 15.20	68.7 20.6 28.5 56.2 28.0	73 101 19 135 245	6.57 2.04 1.88 0.57 0.73
P277974 P277975 P277976 P277977 P277978		1.35 1.63 2.29 2.34 1.46	<0.005 <0.005 <0.005 <0.005 <0.005		0.18 1.09 0.23 0.07 0.05	6.42 1.45 6.40 6.04 7.81	<0.2 <0.2 <0.2 <0.2 <0.2	150 80 190 170 1400	3.53 1.15 1.44 0.72 1.68	0.22 0.97 0.40 0.18 0.46	2.72 2.13 4.83 0.05 1.04	0.09 0.46 0.32 <0.02 0.02	6.87 7.37 15.45 16.55 163.0	6.2 25.0 25.6 0.4 11.9	105 14 201 40 18	4.08 0.22 4.65 2.71 5.81

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - B Nombre total de pages: 4 (A - D) plus les pages d'annexe Finalisée date: 12-AOUT-2014 **Compte: SOQVAL**

Projet: 0198

										CERTIF	ICAT D	'ANAL	/SE V	01411	3280	
Description échantillon	Méthode élément unités L.D.	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2
P277301		28.6	12.65	16.20	0.09	2.0	0.026	0.82	9.2	50.1	0.84	9460	1,24	1.07	4.8	7.5
P277301 P277302		5.7	11.95	13.10	0.09	2.0	0.028	1.99	35.7	26.4	0.86	6360	0.84	0.17	7.8	13.8
P277303		103.0	3.30	19.05	0.12	1.9	0.123	2.14	24.2	29.2	1.52	958	2.26	2.49	4.9	44.9
P277304		3.1	1.00	15.30	0.18	1.8	0.023	1.96	88.7	16.4	0.39	83	0.95	0.02	8.5	25.1
P277305		2.3	1.07	11.30	0.05	1.0	0.019	1.47	1.7	15.4	0.40	119	0.90	0.03	5.2	28.4
P277306		2.5	0.69	20.2	0.13	2.8	0.015	3.73	21.6	6.9	0.39	54	0.18	0.04	1.6	2.5
P277494		1365	18.95	14.30	0.19	0.8	0.250	0.45	8.4	21.7	1.16	1580	4.86	0.32	2.8	696
P277495		183.0	6.22	18.55	0.09	2.7	0.117	2.30	22.5	76.1	1.44	688	12.90	1.89	5.1	160.0
P277496		187.5	15.70	12.35	0.10	1.6	0.190	0.58	11.4	10.6	1.47	4480	2.76	1.30	3.6	246
P277497		2.7	0.36	0.70	<0.05	0.9	<0.005	0.13	3.7	1.9	0.04	49	0.38	0.01	0.3	2.1
P277498		781	9.84	20.7	0.11	2.8	0.389	0.81	22.3	23.7	2.52	2130	1.81	2.24	11.7	114.5
P277499		408	8.81	17.20	0.07	8.0	0.068	0.54	3.3	40.5	2.59	1380	0.61	2.66	1.8	181.0
P277500		23.5	1.94	20.1	0.09	2.1	0.040	1.85	17.7	51.0	0.67	390	2.55	2.00	4.2	9.0
P277501		996	19.70	16.70	0.13	0.7	0.770	0.37	14.4	28.1	0.92	1370	2.77	0.66	4.4	123.0
P277502		663	21.0	13.65	0.11	8.0	0.503	0.55	11.3	25.9	0.78	1140	3.34	0.80	3.5	135.0
P277503		686	13.85	13.20	0.08	0.7	0.354	1.11	10.1	10.3	1.55	1620	18.20	1.25	3.1	95.7
P277504		252	10.15	18.25	0.08	1.4	0.309	0.90	11.9	37.8	1.84	1800	5.83	1.52	4.5	94.1
P277505		476	17.75	13.15	0.09	2.2	0.074	1.05	12.0	18.8	1.79	7550	18.75	0.99	17.0	79.8
P277506		103.0	9.65	14.65	0.09	2.4	0.058	0.98	17.8	22.5	1.80	2410	6.74	1.73	14.7	59.6
P277507		216	16.85	14.05	0.07	2.3	0.109	1.04	8.9	19.1	2.47	5400	12.60	1.07	16.1	85.7
P277508		297	17.10	12.20	0.10	2.0	0.016	0.96	11.0	18.8	0.50	536	9.19	1.69	3.4	97.0
P277509		87.2	25.8	8.27	0.09	1.3	0.021	0.80	6.8	11.8	0.67	597	1.37	0.25	2.2	29.9
P277510		2.3	0.91	14.20	< 0.05	0.2	0.018	3.18	2.4	24.9	0.10	192	0.65	2.61	5.8	1.7
P277511		72.9	4.97	22.0	0.10	3.0 ′	0.054	2.15	35.8	54.9	1.40	844	1.65	1.44	5.3	75.8
P277512		246	8.13	14.95	0.08	2.0	0.319	1.20	15.9	46.5	0.94	1030	3.02	1.93	3.5	149.0
P277551		66.3	7.20	15.85	0.06	1.0	0.070	0.40	3.6	18.8	2.80	1380	1.60	1.56	2.8	70.4
P277965		61.4	2.19	26.8	0.09	3.9	0.052	1.42	22.5	12.2	0.41	499	0.60	3.54	14.9	8.5
P277966		267	7.68	16.10	0.09	1.3	0.077	0.27	25.5	35.2	3.44	1880	0.88	1.33	4.8	165.5
P277967		19.5	1.59	18.45	0.10	8.5	0.017	4.58	41.7	29.2	0.28	268	1.02	2.44	10.2	3.9
P277968		261	4.50	20.6	0.09	2.9	0.089	1.67	25.3	65.4	1.74	420	5.15	2.68	4.5	72.1
P277969		444	7.74	21.9	0.11	2.5	2.41	1.09	26.6	29.6	1.11	639	40.7	1.14	6.9	100.5
P277970		21.1	4.49	17.20	0.06	1.5	0.044	1.43	4.3	33.7	2.05	873	0.28	2.57	6.0	53.3
P277971		58.8	5.05	18.15	0.32	3.2	0.011	4.39	64.6	9.2	0.20	190	3.56	2.19	13.0	7.1
P277972		372	17.25	9.50	0.05	1.1	0.062	0.39	5.0	15.6	3.93	6450	4.10	0.54	2.4	108.0
P277973		65.3	15.40	14.60	0.09	2.3	0.081	0.49	5.8	24.1	3.58	10450	2.46	1.02	4.3	61.4
P277974		23.0	4.08	16.75	0.08	3.5	0.037	0.64	3.0	11.9	0.85	1670	419	2.34	4.6	18.7
P277975		221	15.85	4.76	0.06	0.7	0.117	0.19	3.5	2.9	1.44	4000	38.0	0.28	2.3	75.1
P277976		24.9	9.53	16.45	0.06	2.5	0.095	0.92	6.1	18.5	2.94	3590	207	1.68	5.4	68.6
P277977		32.9	0.69	13.40	0.12	4.5	0.012	4.28	7.2	2.8	0.12	41	4.72	2.10	3.1	1.4
P277978	1	10.3	3.88	28.9	0.33	4.7	0.084	5.17	67.8	31.4	1.93	379	3.95	0.28	11.0	16.8
l -						• • • •									· · · -	

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - C Nombre total de pages: 4 (A - D) plus les pages d'annexe Finalisée date: 12-AOUT-2014 **Compte: SOQVAL**

Projet: 0198

Minera								Proj	et: 0198						·	-
e.a										CERTIF	ICAT D	'ANAL'	YSE V	01411	3280	
Description échantillon	Méthode élément unités L.D.	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME-MS61 Ti % 0.005	ME-MS61 Ti ppm 0.02
									1		457	0.39	0.34	3.4	0.154	0.46
P277301		150	8.5	62.3	0.002	1.29	0.08 0.10	3.1 3.0	1	1.2 1.5	457 138.0	0.39	0.34	5.4 6.3	0.154	0.46
P277302 P277303		190 920	7.0 28.9	92.4 81.1	<0.002 0.002	2.40 2.28	0.10	3.0 11.6	2	2.4	593	0.01	0.08	5.2	0.233	1.19
P277304		560	4.4	137.5	<0.002	0.07	0.16	6.5	<1	1.2	11.7	0.84	< 0.05	4.5	0.373	0.67
P277305		180	2.3	95.7	<0.002	0.01	0.16	3.8	1	0.6	10.4	0.46	<0.05	2.5	0.138	0.43
P277306		30	4.0	248	<0.002	0.02	0.11	1.1	<1	0.6	6.1	0.26	<0.05	119.0	0.010	1.44
P277494		160	10.1	34.0	0.006	>10.0	0.16	14.8	28	9.2	193.5	0.20	1.90	2.7	0.189	0.27
P277495		480	25.8	115.5	<0.002	3.86	0.12	15.4	3	1.5	554	0.38	0.19	5.2	0.296	1.11
P277496		260	10.8	31.4	0.007	>10.0	0.57	18.4	4	3.2	91.1	0.25	0.54	2.7	0.279	1.00
P277497		<10	1.7	4.8	<0.002	0.09	0.13	0.3	<1	<0.2	8.6	< 0.05	<0.05	2.3	0.009	0.04
P277498		440	13.3	82.7	<0.002	4.78	0.13	12.9	7	10.5	277	1.50	0.49	5.7	0.291	0.46
P277499		300	12.9	12.7	< 0.002	3.04	80.0	46.8	2	1.1	255	0.12	80.0	0.5	0.488	0.16
P277500		730	13.0	156.0	<0.002	0.17	0.06	5.5	1	0.9	282	0.35	<0.05	3.8	0.178	1.42
P277501		360	29.8	19.1	0.003	9.33	0.10	11.3	6	6.7	128.5	0.30	0.71	2.3	0.344	0.26
P277502		300	20.8	22.9	0.003	>10.0	0.07	8.4	7	4.2	105.0	0.25	0.88	1.9	0.273	0.32
P277503		350	14.5	38.0	0.006	>10.0	0.09	19.4	4	4.4	165.5	0.23	0.47	1.7	0.307	0.29
P277504		540	10.6	50.1	0.004	4.82	0.09	20.2	3	3.1	206	0.40	0.22	2.5	0.430	0.49
P277505		270	18.9	92.3	0.004	8.32	0.07	10.3	2	1.6	72.6	1.32	0.68	11.2	0.200	0.73
P277506		330	17.6	95.3	<0.002	4.26	0.05	12.9	2	1.1	123.5	0.87	0.18	12.1	0.265	0.79
P277507		200	2550	88.1	0.002	7.90	0.06	13.8	3	2.9	100.5	1.03	0.48	11.7	0.281	0.66
P277508		250	14.3	101.0	<0.002	>10.0	0.06	5.2	2	0.6	166.0	0.29	0.58	2.8	0.177	0.92
P277509		200	4.8	52.0	0.005	>10.0	0.15	9.6	4	0.4	84.9	0.18	0.23	1.5	0.227	0.71
P277510		<10	35.8	146.0	<0.002	0.09	, 0.05	1.8	<1	1.5	155.5	0.49	<0.05	4.6	0.052	0.97
P277511		550	14.4	84.0	0.002	0.90	0.07	18.7	1	0.6	497	0.34	0.10	6.6	0.439	1.06
P277512		350	13.9	77.0	0.007	6.97	0.05	12.8	5	2.5	329	0.29	0.19	4.1	0.237	1.25
P277551		480	13.9	17.7	<0.002	0.32	0.07	40.6	1	0.7	151.0	0.18	<0.05	0.7	0.604	0.15
P277965		910	18.5	47.2	<0.002	0.17	0.06	3.3	1	4.7	2050	2.24	< 0.05	3.9	0.205	0.47
P277966		800	11.7	12.4	<0.002	0.57	0.12	30.3	2	1.2	452	0.29	<0.05	4.6	0.526	0.12
P277967		480	40.0	206	<0.002	0.02	0.05	4.2	1	1.4	233	0.57	<0.05	37.4	0.195	1.24
P277968		490	24.7	56.0	0.004	2.08	0.05	14.0	3	1.7	236	0.36	0.60	5.8	0.293	0.86
P277969		660	17.2	77.3	0.026	4.93	0.07	13.9	9	7.6	286	0.50	0.66	5.5	0.301	0.81
P277970		180	16.7	74.0	<0.002	0.06	<0.05	21.4	1	1.6	314	0.66	<0.05	5.8	0.268	0.53
P277971		1960	24.9	99.5	0.002	3.28	<0.05	2.5	3	1.3	2740	1.01	0.36	10.6	0.266	1.21
P277972		360	4.1	28.1	0.002	5.12	< 0.05	13.5	3	1.6	55.2	0.29	0.54	0.8	0.256	0.24
P277973		260	2.4	25.4	<0.002	1.19	<0.05	28.9	1	1.9	68.7	0.38	0.15	1.0	0.571	0.21
P277974		100	13.2	68.4	0.028	0.67	<0.05	8.0	1	0.8	191.0	1.14	0.07	7.9	0.162	0.40
P277975	l	150	2.2	8.0	0.003	8.51	<0.05	1.3	1	3.5	33.1	0.34	0.35	1.2	0.039	0.10
P277976		350	6.5	88.2	0.010	1.04	<0.05	24.5	2	2.2	122.5	0.58	0.08	2.0	0.498	0.57
P277977		40	17.1	224	<0.002	0.27	<0.05	0.8	1	1.0	61.2	0.42	<0.05	21.8	0.017	1.31
P277978		4740	13.7	299	<0.002	0.60	<0.05	16.4	2	5.6	327	1.25	<0.05	13.5	0.372	1.90

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - D Nombre total de pages: 4 (A - D) plus les pages d'annexe Finalisée date: 12-AOUT-2014 **Compte: SOQVAL**

Projet: 0198

	11-3									CERTIF	ICAT D'ANALYSE	VO14113280
Description échantillon	Méthode élément unités L.D.	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Cu-OG46 Cu % 0.001	Zn-OG46 Zn % 0.001	Pb-OG46 Pb % 0.001	Ag-OG46 Ag ppm 1	
P277301		1.0	29	0.6	8.2	29	79.5					
P277302		1.8	24	1.5	9.9	54	78.1					
P277303		1.6	89	0.5	11.5	174	72.6					
P277304		4.9	71	1.4	5.3	6	55.8					
P277305		2.2	51	0.6	2.2	7	39.8					
P277306		8.7	5	0.2	3.9	13	68.4					
P277494		1.0	110	0.7	11.9	540	22.2					
P277495		1.7	93	1.0	11.4	429	98.2					
P277496		0.8	113	0.9	15.5	371	59.5					
P277497		0.8	2	0.1	2.0	5	26.7					
P277498		2.5	78	0.7	20.4	588	100.0					
P277499		0.3	284	0.1	18.8	117	14.7					
P277500		1.3	38	0.5	5.8	54	74.0					
P277501		0.8	76	1.0	11.2	2460	19.3					
P277502		0.7	66	0.7	8.0	1800	24.0					
P277503		0.5	122	1.2	9.9	340	18.2		***************************************			
P277504		0.7	153	1.3	13.2	794	45.8					
P277505		15.0	57	1.7	21.0	92	64.4					
P277506		11.6	77	0.8	17.6	93	73.9					
P277507		25.3	86	1.4	17.7	3160	63.3					
P277508		1.4	36	1.0	5.4	52	72.5					
P277509		0.8	66	0.9	7.7	194	45.1					
P277510		0.6	3	0.4	1.1	36						
P277511		2.1	141	0.4	8.0	125	103.0					
P277512		1.3	77	0.4	11.4	790	69.9					
P277551		0.4	291	0.5	21.2	89	19.5					
P277965		2.3	47	0.8	8.2	53	147.0					
P277966		1.1	195	0.6	26.0	88	31.0					
P277967		2.7	21	0.3	10.5	29	321					
P277968		1.4	88	0.3	10.3	275	106.5					
P277969		2.0	87	2.8	15.0	>10000	84.8		1,165			
P277970	- 1	1.7	132	0.2	11.4	86	39.9		1.103			
P277971		1.7	34	0.2	28.5	43	127.0					
P277972	l	1.3	100	0.7	18.0	43 111	38.5					
P277973		0.6	215	0.7	25.4	89	81.5					
P277974		8.5	54	0.7	19.8	51	57.7					
P277975		1.5	13	0.7	6.4	92	19.6					
P277976		3.2	191	0.4	26.6	122	69.4					
P277977		4.6	4	0.4	9.8	5	84.6					
P277978		3.9	129	0.3	23.4	78	177.0					
1						, -						

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd. 2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: 604 984 0221
Télécopieur: 604 984 0218

www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 3 - A Nombre total de pages: 4 (A - D) plus les pages d'annexe Finalisée date: 12-AOUT-2014 **Compte: SOQVAL**

Projet: 0198

Minera	115									CERTIF	ICAT D	'ANAL	/SE V	01411	3280	
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05
P277979 P277980 P277981 P277982 P277983		2.19 1.12 3.24 2.42 2.65	<0.005 <0.005 <0.005 <0.005 0.013		0.01 0.04 0.02 1.01 3.80	2.51 6.77 4.65 4.89 0.82	<0.2 <0.2 <0.2 <0.2 <0.2	180 440 550 140 30	1.01 1.23 0.64 2.38 0.60	0.07 0.04 0.03 0.75 2.41	0.21 0.65 0.13 1.06 3.26	<0.02 0.02 <0.02 0.53 0.62	41.8 58.9 10.80 21.0 8.01	4.5 0.8 1.5 12.6 59.4	66 8 16 59 5	1.46 1.26 1.12 2.69 0.24
P277984 P277985 P277986 P277987 P277988		4.31 1.93 3.43 1.70 1.43	0.006 <0.005 <0.005 <0.005 <0.005		3.08 0.05 0.65 0.01 0.01	1.21 6.68 6.36 0.23 6.53	<0.2 <0.2 0.2 <0.2 <0.2	80 940 500 10 320	0.69 1.55 1.42 0.10 2.04	2.93 0.02 0.79 0.02 0.01	1.88 1.27 1.19 0.01 0.35	0.43 0.03 0.84 <0.02 <0.02	8.56 22.6 38.1 28.6 41.3	86.4 2.9 23.7 0.3 1.1	9 47 118 15 7	0.34 1.90 3.18 <0.05 1.41
P279549 P279550 P279451 P279452 P279453		1.35 1.10 1.64 1.05 2.29	<0.005 <0.005 <0.005 0.005 <0.005		0.20 0.02 3.51 2.49 1.04	7.94 6.94 5.44 7.11 9.78	3.2 1.0 1.0 <0.2 1.2	1470 690 100 250 430	1.94 1.31 0.26 2.02 1.82	0.15 0.04 4.43 2.41 0.90	3.54 0.65 3.05 4.46 1.26	0.10 <0.02 2.48 7.09 0.29	100.5 87.8 26.8 44.9 65.5	31.8 1.6 308 250 44.3	271 7 87 45 163	6.01 2.62 0.83 1.72 4.60
P279454 P279455 P279456 P279457 P279458		0.99 1.60 1.52 0.78 1.36	<0.005 <0.005 <0.005 <0.005 <0.005		0.10 0.05 0.06 0.08 0.96	8.49 8.45 6.98 6.73 4.87	0.8 1.0 0.8 0.5 0.8	420 210 660 190 240	1.49 1.12 0.99 1.18 1.09	0.28 0.09 0.16 0.15 1.27	3.19 1.38 1.60 2.35 2.70	0.10 0.10 0.07 0.11 0.34	29.9 59.2 9.88 35.8 27.5	14.7 3.8 4.0 5.6 18.7	45 20 23 85 19	2.63 4.80 4.25 8.46 3.20
P279459 P279460 P279461 P279462 P279463		1.72 1.24 1.56 1.21 1.52	<0.005 <0.005 <0.005 <0.005 <0.005		0.10 0.74 0.43 0.31 0.24	8.83 6.59 8.88 8.41 5.26	<0.2 0.6 <0.2 <0.2 <0.2	550 80 260 580 60	1.09 0.74 1.07 1.79 0.14	0.20 0.60 0.46 0.84 0.32	1.44 4.11 1.15 2.30 1.07	0.06 0.42 0.23 0.18 0.84	62.5 29.2 91.8 58.5 20.0	6.3 40.2 49.6 27.7 14.0	85 123 315 204 157	2.86 1.95 11.50 9.10 4.56
P279464 P279465 P281887 P281888 P281889		0.65 0.14 0.98 0.83 1.18	0.014 0.976 <0.005 <0.005 <0.005	1.18	0.86 63.2 0.10 0.10 0.14	6.84 3.56 7.27 7.32 7.21	3.6 438 0.6 <0.2 0.9	500 120 890 820 650	1.68 0.53 0.78 1.50 0.95	0.63 22.1 0.10 0.11 0.17	3.69 1.74 1.45 1.46 2.29	0.29 209 0.17 0.07 0.15	98.0 22.7 65.2 50.5 42.1	55.5 17.0 20.1 10.5 12.9	100 34 192 110 53	17.35 0.76 5.81 7.81 1.44
P281890 P281891 P281892 P281893 P281894		1.61 1.33 1.84 1.39 2.00	<0.005 <0.005 <0.005 <0.005 <0.005		0.04 0.04 0.06 <0.01 0.10	8.49 8.38 5.72 8.49 7.19	<0.2 1.1 1.0 0.8 <0.2	3810 1390 880 3240 310	1.32 1.69 1.03 1.25 1.00	0.05 0.06 0.04 0.05 0.60	1.57 1.91 3.92 1.88 8.40	0.05 0.10 0.12 0.06 0.13	203 430 126.5 203 9.73	6.8 3.3 33.2 6.7 46.6	13 5 367 15 163	0.89 0.48 0.91 1.19 0.58
P281895 P281896 P281897 P281898 P281899		1.93 1.53 1.48 1.60 1.07	<0.005 <0.005 <0.005 <0.005 <0.005		0.02 0.53 0.22 0.16 0.07	7.37 7.99 8.09 8.59 7.49	0.8 0.4 0.2 0.4 0.8	690 430 1260 240 690	1.38 1.93 1.82 0.77 1.85	0.01 1.14 0.07 0.12 0.09	0.19 2.14 1.83 0.94 1.88	0.02 0.14 0.06 0.19 0.07	43.4 17.75 92.3 64.6 27.0	1.6 57.9 10.7 35.5 14.0	7 248 19 206 185	1.37 22.1 7.02 5.85 8.57

www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 3 - B Nombre total de pages: 4 (A - D) plus les pages d'annexe Finalisée date: 12-AOUT-2014 **Compte: SOQVAL**

Projet: 0198

mmicia									(CERTIF	ICAT D	'ANAL	/SE V	01411	3280	
Description échantillon	Méthode élément unités L.D.	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2
P277979		11.7	1.54	12.60	0.11	1.1	0.026	0.95	17.6	23.4	1.07	184	0.88	0.26	3.2	6.4
P277980		1.7	0.92	16.85	0.13	3.4	0.017	4.40	26.9	16.8	0.10	131	0.20	2.49	4.1	1.2
P277981		3.1	0.83	10.50	0.12	0.9	0.007	3.03	5.7	12.3	0.17	123	0.26	1.83	4.3	2.4
P277982		89.9	8.39	13.20	0.11	1.2	0.021	1.24	10.1	11.6	0.61	12100	334	1.41	15.0	37.0
P277983		598	31.8	5.50	0.09	0.5	0.147	0.09	3.9	2.4	2.55	3070	29.3	0.14	1.4	174.5
P277984		719	28.3	6.71	0.10	0.7	0.138	0.18	4.2	3.1	1.26	4460	6.87	0.14	1.9	161.0
P277985		6.0	1.67	17.30	0.14	2.3	0.016	2.22	11.3	19.2	0.24	299	1.67	2.89	6.8	3.2
P277986		99.0	4.31	16.30	0.12	3.1	0.134	1.89	16.2	65.7	0.87	538	3.07	2.29	3.8	66.7
P277987		2.0	0.42	0.80	0.05	0.4	<0.005	0.02	12.6	5.7	<0.01	45	0.22	0.01	0.3	1.2
P277988		1.4	0.64	22.3	0.10	2.6	0.011	2.91	9.6	7.6	0.32	111	0.20	3.30	1.3	1.7
P279549		45.6	6.14	20.7	0.24	4.6	0.061	3.89	44.8	121.0	3.07	1130	6.33	1.68	9.1	84.4
P279550		2.1	1.15	17.05	0.18	5.6	0.007	4.39	38.6	15.9	0.18	185	0.20	2.52	4.3	2.2
P279451		839	11.70	16.90	0.12	0.7	0.261	0.44	10.6	50.7	1.55	438	6.01	1.21	3.3	336
P279452		2130	10.10	22.8	0.12	2.7	0.457	1.00	20.1	38.8	1.34	438	33.3	1.98	10.7	219
P279453		278	11.10	25.8	0.19	5.0	0.111	2.84	32.3	70.3	1.07	1030	4.72	2.06	13.7	79.2
P279454		41.2	4.83	23.1	0.14	1.4	0.058	1.60	11.3	44.2	1.15	955	0.92	3.15	7.9	15.1
P279455		11.8	1.62	25.5	0.17	2.7	0.030	1.23	31.3	70.9	0.46	206	1.29	2.52	2.4	4.8
P279456		23.5	2.54	19.45	0.17	2.7	0.030	2.24	5.2	44.5	0.40	364	1.24	2.65	5.1	5.9
P279457		16.8	7.87	18.40	0.14	2.7	0.019	1.43	18.2	112.5	0.27	4620	1.90	0.85	5.7	8.3
P279458		166.5	17.20	13.00	0.08	1.9	0.018	0.63	13.2	21.7	0.83	2960	3.35	1.35	5.7 4.4	6.3 39.4
		22.6	3.33								0.74	345				
P279459				24.7	0.19	2.9	0.048	2.63	32.1	78.0			1.56	3.62	2.7	13.4
P279460		226	11.65	13.50	0.11	1.8	0.081	1.46	13.5	14.1	1.95	738	8.90	0.18	2.5	93.7
P279461		179.5	8.85	23.6	0.21	4.9	0.083	2.51	45.9	142.0	1.97	881	1.42	3.07	10.4	137.5
P279462		206	7.37	19.80	0.18	3.1	0.053	2.33	29.2	47.0	1.46	1260	2.23	2.08	7.7	72.7
P279463		86.9	14.80	8.27	0.07	2.1	0.063	0.89	10.8	28.2	1.87	1860	1.30	0.04	3.2	37.5
P279464		1010	10.05	17.05	0.15	4.9	0.064	1.43	48.6	166.5	1.98	1200	7.84	2.04	8.6	113.5
P279465		5130	8.76	13.05	0.25	1.0	2.67	0.67	10.0	10.4	0.83	482	20.8	1.15	4.0	43.2
P281887		31.9	4.54	19.15	0.19	2.6	0.040	2.22	33.8	113.5	1.91	490	4.14	2.33	6.4	76.7
P281888		15.2	3.32	18.80	0.18	3.9	0.028	2.15	26.4	71.5	1.24	481	2.13	2.84	6.6	27.9
P281889		34.6	3.20	18.60	0.15	1.8	0.028	1.39	19.1	46.3	0.59	414	0.80	2.72	1.1	29.8
P281890		6.2	3.62	18.05	0.36	2.6	0.041	4.92	88.6	9.2	0.57	738	2.74	2.48	7.3	3.1
P281891		5.2	5.15	24.9	0.66	9.7	0.056	5.13	151.5	6.8	0.46	1020	0.83	3.40	29.5	2.5
P281892		57.9	4.25	15.45	0.22	2.4	0.047	2.07	64.9	15.5	4.36	983	0.44	2.04	8.9	143.0
P281893		5.6	3.85	18.30	0.37	2.4	0.041	5.06	82.3	6.2	0.71	753	0.94	2.55	6.4	3.6
P281894		310	7.20	15.90	0.08	0.9	0.058	1.40	4.2	36.6	3.25	1460	0.64	2.05	2.5	114.5
P281895		10.1	0.95	22.4	0.17	1.9	0.005	3.76	18.5	9.4	0.31	122	0.14	3.46	1.5	2.6
P281896	1	691	12.60	19.20	0.09	2.1	0.021	4.02	7.9	51.2	3.08	307	4.45	0.63	4.7	131.0
P281897	1	34.9	4.43	24.6	0.24	5.5	0.053	4.45	39.5	85.8	1.16	823	0.25	2.64	21.4	11.6
P281898		55.8	7.92	21.7	0.12	3.8	0.041	1.46	33.2	146.0	1.64	1080	1.24	0.86	8.7	97.7
P281899	1	19.3	4.03	18.85	0.11	2.4	0.045	1.86	13.2	41.8	1.69	587	1.77	2.66	5.6	47.2

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

www.alsglobal.com

600 AVENUE CENTRALE VAL-D OR QC J9P 1P8

Page: 3 - C Nombre total de pages: 4 (A - D) plus les pages d'annexe Finalisée date: 12-AOUT-2014 **Compte: SOQVAL**

CERTIFICAT D'ANALYSE VO14113280

Projet: 0198

A: SOQUEM INC.

										CLKIII		AIVAL		01711		
Description échantillon	Méthode élément unités L.D.	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02
P277979		890	2.1	83.2	<0.002	0.03	<0.05	4.8	1	1,1	34.6	0.42	<0.05	2.9	0.087	0.49
P277980		100	37.8	196.0	<0.002	0.02	<0.05	1.7	1	0.6	170.0	0.18	<0.05	32.2	0.050	1.24
P277981		170	11.9	158.0	<0.002	0.04	< 0.05	1.4	1	0.9	156.0	0.27	<0.05	2.5	0.033	1.00
P277982		70	20.2	84.0	0.017	3.86	< 0.05	8.2	2	0.8	85.0	2.14	0.47	11.9	0.051	0.48
P277983		130	2.7	2.9	0.006	>10.0	<0.05	1.0	4	3.1	37.3	0.16	1.72	1.0	0.029	0.08
P277984		170	18.8	8.9	0.004	>10.0	< 0.05	2.4	2	3.9	38.2	0.22	1.06	1.3	0.037	0.15
P277985		200	14.6	103.5	<0.002	0.10	<0.05	2.3	1	1.8	264	0.66	< 0.05	4.4	0.118	0.66
P277986		260	29.2	76.6	0.005	2.93	0.05	10.1	3	1.3	508	0.36	0.15	5.4	0.196	0.93
P277987		20	0.6	1.4	<0.002	0.03	< 0.05	0.1	1	<0.2	1.6	< 0.05	< 0.05	1.9	0.018	< 0.02
P277988		70	20.8	160.0	<0.002	0.01	<0.05	0.9	1	1.6	167.0	0.11	<0.05	24.7	0.024	0.99
P279549		2410	16.8	166.0	0.002	0.55	0.07	25.1	2	1.1	786	0.50	0.19	8.3	0.504	1.17
P279550		210	44.5	181.5	<0.002	0.01	<0.05	1.9	1	1.1	282	0.40	< 0.05	51.8	0.075	1.05
P279451		430	17.6	42.1	0.007	7.53	<0.05	14.2	14	2.6	130.5	0.26	4.29	3.1	0.283	0.37
P279452		660	12.5	94.7	0.010	6.30	< 0.05	14.3	14	2.9	148.0	1.08	3.29	6.6	0.357	0.80
P279453		230	23.5	280	0.003	3.36	<0.05	19.6	4	4.7	240	1.01	0.42	7.6	0.528	1.66
P279454		920	13.0	146.5	<0.002	0.05	<0.05	11.8	1	2.0	374	0.63	0.06	1.0	0.472	0.94
P279455		440	9.1	89.1	< 0.002	0.04	0.07	5.2	1	8.0	304	0.15	< 0.05	5.6	0.208	0.68
P279456		420	13.3	68.6	< 0.002	0.11	0.07	3.8	<1	0.9	307	0.43	< 0.05	5.2	0.216	0.45
P279457		530	5.8	71.3	< 0.002	0.40	0.05	3.9	1	1.3	243	0.47	0.05	3.9	0.197	0.61
P279458		250	15.6	24.4	<0.002	5.97	<0.05	3.0	1	3.0	215	0.43	0.08	3.6	0.153	0.23
P279459		430	12.0	67.9	<0.002	0.32	<0.05	10.1	1	0.9	304	0.18	0.12	6.4	0.334	0.52
P279460		1910	14.2	104.5	0.004	3.99	<0.05	13.6	3	0.9	173.0	0.23	0.54	3.5	0.209	0.85
P279461	- 1	370	27.6	181.5	0.003	2.23	<0.05	34.7	1	1.6	319	0.71	0.14	11.6	0.767	1.61
P279462		520	16.4	150.0	<0.002	1.19	<0.05	23.2	1	1.3	414	0.60	0.19	7.5	0.487	1.25
P279463		780	301	46.5	<0.002	0.86	<0.05	15.1	2	0.7	6.9	0.28	0.21	4.1	0.272	0.68
P279464		1130	14.8	176.0	0.002	2.99	0.08	16.8	2	4.1	522	0.47	0.23	9.0	0.367	1.29
P279465	l	490	5840	19.9	0.013	9.30	107.0	7.1	76	45.7	153.5	0.19	0.31	2.0	0.174	13.55
P281887		560	19.0	104.5	<0.002	0.15	0.10	15.5	1	1.1	483	0.44	0.06	9.8	0.379	0.84
P281888		500	25.3	138.0	<0.002	0.08	<0.05	10.4	1	0.9	359	0.70	0.06	16.8	0.255	1.02
P281889		450	9.5	31.2	<0.002	1.38	0.05	6.0	<1	0.5	684	0.12	<0.05	3.7	0.143	0.33
P281890		1060	18.0	115.5	<0.002	0.07	<0.05	3.1	1	1.3	3050	0.59	<0.05	4.0	0.394	0.85
P281891		990	26.4	96.2	<0.002	0.04	< 0.05	7.2	2	3.2	1690	2.14	<0.05	13.2	0.635	0.54
P281892	Ì	190	13.9	92.5	<0.002	0.06	<0.05	23.9	1	1.3	339	0.35	<0.05	19.5	0.329	0.41
P281893]	1270	15.7	124.0	<0.002	0.01	0.09	4.1	<1	1.3	2620	0.51	<0.05	4.9	0.325	0.90
P281894		260	6.0	65.9	<0.002	0.49	0.05	37.2	1	0.9	376	0.16	<0.05	0.9	0.452	0.24
P281895		90	13.8	164.5	<0.002	0.01	<0.05	1.0	<1	0.9	222	0.12	<0.05	16.8	0.026	0.98
P281896	i	280	12.0	164.0	0.004	4.77	<0.05	40.1	3	1.0	491	0.27	0.35	2.3	0.418	2.52
P281897		3920	20.0	236	<0.002	0.15	<0.05	8.5	1	7.1	443	1.22	<0.05	7.8	0.557	1.52
P281898		600	7.4	71.9	<0.002	0.65	<0.05	27.4	1	0.9	126.5	0.60	0.06	7.0	0.553	0.77
P281899	l	580	15.6	146.0	<0.002	0.04	<0.05	11.9	<1	2.0	422	0.48	<0.05	6.7	0.301	1.02

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

www.alsglobal.com

Téléphone: 604 984 0221 Télécopieur: 604 984 0218

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 3 - D Nombre total de pages: 4 (A - D) plus les pages d'annexe Finalisée date: 12-AOUT-2014 **Compte: SOQVAL**

Projet: 0198

Methods Meth											CERTIF	ICAT D'ANALYSE	VO14113280
PZ77980	Description échantillon	élément unités	U ppm	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Cu %	Zn %	Pb %	Ag ppm	
PZ77981				51	0.5	5.5	34						
PZ77982													
P277983													
P277986													
PZ77985	P277983			13			119						
P277986 1.4 50 0.6 11.7 379 107.0 P277987 0.2 2.3 2 0.1 18.5 6 55.8 P278580 2.1 180 0.6 20.3 113 170.5 P278510 4.8 10 0.6 20.3 113 170.5 P278451 1.4 94 0.6 12.3 577 19.2 P278452 2.3 94 0.8 16.7 1480 98.7 P278453 1.5 162 0.3 7.5 389 173.0 P278454 1.9 98 0.3 14.5 104 44.7 P278455 1.2 44 0.5 5.6 51 110.5 P278457 0.9 32 0.8 9.8 58 70.2 P279459 1.3 87 0.2 5.7 50 70.6 P279459 1.3 87 0.2 5.1 66 116.0 P279459 1.3 87 0.2 5.1 66 116.0 P279450 1.4 48 1.3 15.7 98 67.7 P279451 6.1 6.1 143 <td< td=""><td>P277984</td><td></td><td>2.4</td><td>14</td><td>0.1</td><td>11.7</td><td>87</td><td>22.2</td><td></td><td></td><td></td><td></td><td></td></td<>	P277984		2.4	14	0.1	11.7	87	22.2					
P277987 0.2 2 0.2 3.3 <2	P277985		0.8	10	0.4	3.6	45						
P277988 2.3 2 0.1 18.5 6 55.8 P278549 2.1 180 0.6 20.3 113 183.5 P279451 1.4 94 0.6 12.3 577 19.2 P279452 2.3 94 0.8 16.7 1480 98.7 P279453 1.5 162 0.3 7.5 389 173.0 P2794545 1.9 98 0.3 14.5 104 44.7 P279455 1.2 44 0.5 5.6 51 110.5 P279457 0.9 32 0.8 9.8 58 78.2 P279458 1.0 25 0.2 6.7 50 70.6 P279459 1.3 87 0.2 5.1 66 116.0 P279460 1.4 84 1.3 15.7 98 67.7 P279462 1.7 156 1.1 16.6 93 117.0 </td <td></td> <td></td> <td></td> <td>50</td> <td>0.6</td> <td></td> <td></td> <td>107.0</td> <td></td> <td></td> <td></td> <td></td> <td></td>				50	0.6			107.0					
P279549		i											
PZ79550	P277988		2.3	2	0.1	18.5	6	55.8					
PZ79550	P279549		2.1	180	0.6	20.3	113	183.5					
PZ79451													
P279453 1.5 162 0.3 7.5 389 173.0 P279454 1.9 98 0.3 14.5 104 44.7 P279455 1.2 44 0.5 5.6 51 110.5 P279456 0.9 36 0.3 2.3 39 107.5 P279458 0.9 32 0.8 9.8 58 78.2 P279459 1.3 87 0.2 5.1 66 116.0 P279460 1.4 84 1.3 15.7 98 67.7 P279461 6.1 243 0.3 16.5 187 192.5 P279462 1.7 156 1.1 16.6 93 117.0 P279463 1.0 91 0.4 14.3 261 78.4 P279462 1.7 156 1.1 16.6 93 117.0 P281867 1.7 116 0.7 9.8 10.6 91.7													
P279454	P279452		2.3	94	0.8	16.7	1480	98.7					
P279455	P279453		1.5	162	0.3	7.5	389	173.0					
P279455	P279454		1.9	98	0.3	14.5	104	44.7					
PZ79456 0.9 36 0.3 2.3 39 107.5 PZ79457 0.9 32 0.8 9.8 58 78.2 PZ79458 1.0 25 0.2 6.7 50 70.6 PZ79459 1.3 87 0.2 5.1 66 116.0 PZ79460 1.4 84 1.3 15.7 98 67.7 PZ79461 6.1 243 0.3 16.5 18.7 192.5 PZ79462 1.7 156 1.1 16.6 93 117.0 PZ79463 1.0 91 0.4 14.3 261 78.4 PZ79465 1.8 69 1.1 10.3 >10000 30.3 0.529 3.77 0.610 65 PZ81887 1.7 116 0.7 9.8 106 96.1 PZ81889 0.9 48 0.1 4.7 78 68.5 PZ81899 0.9 48 0.1 4.7 78 68.5 PZ81891 2.0 126 0.2 55.0 66 469 PZ81893 0.5 104 0.4 21.8 76 80.5 PZ81893 0.5 104 0.4 21.8 76 80.5 PZ81895 1.1 199 0.4 9.9 85 87.7 PZ81896 1.1 199 0.4 9.9 85 87.7 PZ81899 1.5 61 0.1 4.2 12 42.7 PZ81899 1.7 176 1.6 14.8 102 148.5													
P279457													
P279458 1.0 25 0.2 6.7 50 70.6 P279459 1.3 87 0.2 5.1 66 116.0 P279460 1.4 84 1.3 15.7 98 67.7 67.7 67.7 70.6													
P279460	P279458	I					50						
PZ79460	P279459		1.3	87	0.2	5.1	66	116.0					
P279461 6.1 243 0.3 16.5 187 192.5 P279462 1.7 156 1.1 16.6 93 117.0 P279463 1.0 91 0.4 14.3 261 78.4 P279464 2.0 112 0.5 16.2 107 197.5 P279465 1.8 69 1.1 10.3 >10000 30.3 0.529 3.77 0.610 65 P281887 1.7 116 0.7 9.8 106 96.1 P281888 5.1 72 0.2 9.9 59 119.5 P281889 0.9 48 0.1 4.7 78 68.5 P281899 0.5 99 0.9 22.5 77 78.2 P281891 2.0 126 0.2 55.0 66 469 P281892 0.7 80 0.3 21.2 80 78.6 P281893 0.5 104 0.4 21.8 76 80.5 P281894 1.1 213 0.3 17.0 89 18.5 P281895 1.7 6 0.1 8.2 12 42.7 P281896 1.1 199 0.4 9.9 85 87.7 P281897 1.5 61 0.1 41.2 143 260 P281898 1.7 176 1.6 14.8 102 148.5													
P279462 1.7 156 1.1 16.6 93 117.0 P279463 1.0 91 0.4 14.3 261 78.4 P279464 2.0 112 0.5 16.2 107 197.5 P279465 1.8 69 1.1 10.3 >10000 30.3 0.529 3.77 0.610 65 P281887 1.7 116 0.7 9.8 106 96.1 96.1 98.1 99.9 59 119.5 99.8 99.9 59 119.5 99.8 99.9 99.9 119.5 99.9 99.9 99.9 119.5 99.9 99.9 99.9 119.5 99.9 99.9 99.9 119.5 99.9 99.9 119.5 99.9 99.9 119.5 99.9 119.5 99.9 119.5 99.9 119.5 99.9 119.5 99.9 119.5 99.9 119.5 99.9 119.5 99.9 119.5 99.9 119.5 99.9 119.5 99.9 119.5 99.9 119.5 99.9 119.5 99.9 </td <td></td>													
P279463 1.0 91 0.4 14.3 261 78.4 P279464 2.0 112 0.5 16.2 107 197.5 P279465 1.8 69 1.1 10.3 >10000 30.3 0.529 3.77 0.610 65 P281887 1.7 116 0.7 9.8 106 96.1 96.1 96.1 99 59 119.5 99 119.5 99 59 119.5 9281889 99 48 0.1 4.7 78 68.5 66.5													
P279464 2.0 112 0.5 16.2 107 197.5 P279465 1.8 69 1.1 10.3 >10000 30.3 0.529 3.77 0.610 65 P281887 1.7 116 0.7 9.8 106 96.1 P281888 5.1 72 0.2 9.9 59 119.5 P281889 0.9 48 0.1 4.7 78 68.5 P281890 0.5 99 0.9 22.5 77 78.2 P281891 2.0 126 0.2 25.0 66 469 P281892 0.7 80 0.3 21.2 80 78.6 P281893 0.5 104 0.4 21.8 76 80.5 P281894 1.1 213 0.3 17.0 89 18.5 P281895 1.7 6 0.1 8.2 12 42.7 P281896 1.1 199 0.4 9.9 85 87.7 P281898 1.7 176													
P279465 1.8 69 1.1 10.3 >10000 30.3 0.529 3.77 0.610 65 P281887 1.7 116 0.7 9.8 106 96.1 P281888 5.1 72 0.2 9.9 59 119.5 P281889 0.9 48 0.1 4.7 78 68.5 P281890 0.5 99 0.9 22.5 77 78.2 P281891 2.0 126 0.2 55.0 66 469 P281892 0.7 80 0.3 21.2 80 78.6 P281893 0.5 104 0.4 21.8 76 80.5 P281894 1.1 213 0.3 17.0 89 18.5 P281895 1.7 6 0.1 8.2 12 42.7 P281897 1.5 61 0.1 41.2 143 260 P281898 1.7 176 1.6 14.8 102 148.5	P279464		2.0	112	0.5	16.2		197.5					
P281887 1.7 116 0.7 9.8 106 96.1 P281888 5.1 72 0.2 9.9 59 119.5 P281889 0.9 48 0.1 4.7 78 68.5 P281890 0.5 99 0.9 22.5 77 78.2 P281891 2.0 126 0.2 55.0 66 469 P281892 0.7 80 0.3 21.2 80 78.6 P281893 0.5 104 0.4 21.8 76 80.5 P281894 1.1 213 0.3 17.0 89 18.5 P281895 1.7 6 0.1 8.2 12 42.7 P281896 1.1 199 0.4 9.9 85 87.7 P281898 1.7 176 1.6 14.8 102 148.5									0.529	3.77	0.610	65	
P281888 5.1 72 0.2 9.9 59 119.5 P281889 0.9 48 0.1 4.7 78 68.5 P281890 0.5 99 0.9 22.5 77 78.2 P281891 2.0 126 0.2 55.0 66 469 P281892 0.7 80 0.3 21.2 80 78.6 P281893 0.5 104 0.4 21.8 76 80.5 P281894 1.1 213 0.3 17.0 89 18.5 P281895 1.7 6 0.1 8.2 12 42.7 P281896 1.1 199 0.4 9.9 85 87.7 P281897 1.5 61 0.1 41.2 143 260 P281898 1.7 176 1.6 14.8 102 148.5									0.020	• • • • • • • • • • • • • • • • • • • •	0.0.0		
P281889 0.9 48 0.1 4.7 78 68.5 P281890 0.5 99 0.9 22.5 77 78.2 P281891 2.0 126 0.2 55.0 66 469 P281892 0.7 80 0.3 21.2 80 78.6 P281893 0.5 104 0.4 21.8 76 80.5 P281894 1.1 213 0.3 17.0 89 18.5 P281895 1.7 6 0.1 8.2 12 42.7 P281896 1.1 199 0.4 9.9 85 87.7 P281897 1.5 61 0.1 41.2 143 260 P281898 1.7 176 1.6 14.8 102 148.5													
P281891 2.0 126 0.2 55.0 66 469 P281892 0.7 80 0.3 21.2 80 78.6 P281893 0.5 104 0.4 21.8 76 80.5 P281894 1.1 213 0.3 17.0 89 18.5 P281895 1.7 6 0.1 8.2 12 42.7 P281896 1.1 199 0.4 9.9 85 87.7 P281897 1.5 61 0.1 41.2 143 260 P281898 1.7 176 1.6 14.8 102 148.5													
P281891 2.0 126 0.2 55.0 66 469 P281892 0.7 80 0.3 21.2 80 78.6 P281893 0.5 104 0.4 21.8 76 80.5 P281894 1.1 213 0.3 17.0 89 18.5 P281895 1.7 6 0.1 8.2 12 42.7 P281896 1.1 199 0.4 9.9 85 87.7 P281897 1.5 61 0.1 41.2 143 260 P281898 1.7 176 1.6 14.8 102 148.5	P281890		0.5	99	0.9		77	78.2					
P281892 0.7 80 0.3 21.2 80 78.6 P281893 0.5 104 0.4 21.8 76 80.5 P281894 1.1 213 0.3 17.0 89 18.5 P281895 1.7 6 0.1 8.2 12 42.7 P281896 1.1 199 0.4 9.9 85 87.7 P281897 1.5 61 0.1 41.2 143 260 P281898 1.7 176 1.6 14.8 102 148.5		1											
P281893 0.5 104 0.4 21.8 76 80.5 P281894 1.1 213 0.3 17.0 89 18.5 P281895 1.7 6 0.1 8.2 12 42.7 P281896 1.1 199 0.4 9.9 85 87.7 P281897 1.5 61 0.1 41.2 143 260 P281898 1.7 176 1.6 14.8 102 148.5		1											
P281894 1.1 213 0.3 17.0 89 18.5 P281895 1.7 6 0.1 8.2 12 42.7 P281896 1.1 199 0.4 9.9 85 87.7 P281897 1.5 61 0.1 41.2 143 260 P281898 1.7 176 1.6 14.8 102 148.5		1											
P281896 1.1 199 0.4 9.9 85 87.7 P281897 1.5 61 0.1 41.2 143 260 P281898 1.7 176 1.6 14.8 102 148.5													
P281896 1.1 199 0.4 9.9 85 87.7 P281897 1.5 61 0.1 41.2 143 260 P281898 1.7 176 1.6 14.8 102 148.5			1.7	6		8.2	12	42.7					-
P281897 1.5 61 0.1 41.2 143 260 P281898 1.7 176 1.6 14.8 102 148.5		i											
P281898 1.7 176 1.6 14.8 102 148.5		1											
P281899 1.5 88 0.7 9.0 66 83.6		l						83.6					

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Commentaire: SOQVAL-1

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 4 - A Nombre total de pages: 4 (A - D) plus les pages d'annexe Finalisée date: 12-AOUT-2014 Compte: SOQVAL

Projet: 0198

шпега	13									CERTIF	ICAT D	'ANAL	YSE V	01411	3280	
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05
P281900		2.19	<0.005		0.24	8.40	0.7	410	1.52	0.63	5.66	0.17	111.0	35.5	29	1.35
						•										

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7

Téléphone: 604 984 0221 Télécopieur: 604 984 0218

www.alsglobal.com

A: SOQUEM INC. 600 AVENUE CENTRALE VAL-D OR QC J9P 1P8 Page: 4 - B Nombre total de pages: 4 (A - D) plus les pages d'annexe

Finalisée date: 12-AOUT-2014 Compte: SOQVAL

Projet: 0198

CERTIFICAT D'ANALYSE VO14113280 ME-MS61 Méthode Cu Fe Ga Hf In Κ La Li Mg Mn Мо Na Nb Ni élément Ge % ppm % ppm % ppm ppm % ppm ppm unités ppm ppm ppm ppm ppm Description échantillon L.D. 0.005 0.01 0.2 0.01 5 0.05 0.01 0.1 0.2 0.2 0.01 0.05 0.05 0.1 0.5 P281900 0.072 13.5 3.13 2470 1.00 2.28 7.2 14.4 331 7.37 21.2 0.17 3.2 0.81 55.9

Commentaire: SOQVAL-1

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 4 - C Nombre total de pages: 4 (A - D) plus les pages d'annexe Finalisée date: 12-AOUT-2014 **Compte: SOQVAL**

Projet: 0198

Minera	1=							Proj	et: 0198						•	
	113									CERTIF	ICAT D	'ANAL	YSE V	01411	3280	
Description échantillon	Méthode élément unités L.D.	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02
P281900		4050	21.3	44.4	<0.002	1.10	<0.05	20.7	2	1.3	1115	0.43	0.17	9.6	0.594	0.23
							,									

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: 604 984 0221
Télécopieur: 604 984 0218

www.alsglobal.com

À: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 4 - D Nombre total de pages: 4 (A - D) plus les pages d'annexe Finalisée date: 12-AOUT-2014 **Compte: SOQVAL**

Projet: 0198

Minera	IS							1100	et. 0190	CERTIF	ICAT D'ANALYSE	VO14113280
Description échantillon	Méthode élément unités L.D.	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Cu-OG46 Cu % 0.001	Zn-OG46 Zn % 0.001	Pb-OG46 Pb % 0.001	Ag-OG46 Ag ppm 1	
P281900		2.9	198	0.4	36.8	80	127.0					

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

CERTIFICAT D'ANALYSE

Page: Annexe 1 Total # les pages d'annexe: 1 Finalisée date: 12-AOUT-2014 Compte: SOQVAL

VO14113280

Projet: 0198

		COMMEN	TAIRES ANALYTIQUES	
Applique à la Méthode:	L'analyse des terres rare ME-MS61	s peut être partiellement soluble avec o	ette méthode.	
		ADRESS	E DE LABORATOIRE	
	Traité à ALS Val d'Or, 13	24 Rue Turcotte, Val d'Or, QC, Canada.		
Applique à la Méthode:	Au-AA23	Au-GRA21	CRU-31	CRU-QC
	LOG-22	LOG-24	PUL-31	PUL-QC
	SPL-21	WEI-21	WSH-22	
	Traité à ALS Vancouver,	2103 Dollarton Hwy, North Vancouver,	BC, Canada.	
Applique à la Méthode:	Ag-OG46	Cu-OG46	ME-MS61	ME-OG46
	Pb-OG46	Zn-OG46		

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 1 Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 Compte: SOQVAL

CERTIFICAT VO14160281

Projet: 1388/1389

Ce rapport s'applique aux 176 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 15-OCT-2014.

Les résultats sont transmis à:

PHILIPPE D AMBOISE

SERGE PERREAULT

	PREPARATION ECHANTILLONS	
CODE ALS	DESCRIPTION	
WEI-21	Poids échantillon reçu	
LOG-22	Entrée échantillon - Reçu sans code barre	
LOG-24	Entrée pulpe - Reçu sans code barre	
PUL-31d	Pulvériser fractionné - dupliquer	
SPL-21d	Échantillon fractionné - dupliquer	
LOG-22d	Entrée échantillon - Reçu sans code barr	
CRU-QC	Test concassage QC	
CRU-31	Granulation - 70 % <2 mm	
PUL-QC	Test concassage QC	
SPL-21	Échant, fractionné - div. riffles	
PUL-31	Pulvérisé à 85 % <75 um	
WSH-22	"Nettoyer" pulvérisateurs	

DDÉDADATION ÉCHANTILLONS

	PROCÉDURES ANALYTIQUES	
CODE ALS	DESCRIPTION	INSTRUMENT
ME-OG46	Teneur marchandes éléments - Aqua regia	ICP-AES
Cu-OG46	Teneur marchande Cu - Aqua regia	VARIABLE
Zn~OG46	Teneur marchande Zn - Aqua regia	VARIABLE
Pb-OG46	Teneur marchande Pb - Aqua regia	VARIABLE
Ag-OG46	Teneur marchande Ag - Aqua regia	VARIABLE
Au-AA23	Au 30 g fini FA-AA	AAS
Au-GRA21	Au 30 g fini FA-GRAV	WST-SIM
ME-MS61	ICP-MS 48 éléments, quatre acides	

A: SOQUEM INC. ATTN: PHILIPPE D AMBOISE **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ***** Commentaire: SOQVAL-1

Signature:

Nacera Amara, Laboratory Manager, Val d'Or

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - A Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 **Compte: SOQVAL**

Projet: 1388/1389

										CERTIF	ICAT D	'ANAL'	YSE V	01416	0281	
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-MS61 Ag ppm 0.01	ME-MS61 AI % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05
P277989		1.04	<0.005		0.04	7.11	<0.2	110	0.36	0.21	7.08	0.11	6.05	53.1	175	0.64
P277990		2.31	< 0.005		0.03	6.91	0.5	880	1.46	0.04	0.76	0.03	91.8	1.8	9	2.00
P277991		1.29	< 0.005		0.18	8.00	0.2	490	1.41	0.12	2.04	< 0.02	26.1	7.6	79	5.09
P277992		1.68	< 0.005		0.05	7.28	0.4	1440	1.14	0.07	1.39	0.04	361	6.4	11	3.99
P277993		2.06	0.005		2.38	4.57	1.9	30	2.40	1.92	0.35	0.30	16.65	73.4	144	7.90
P277994		0.38	<0.005		0.96	6.73	0.8	770	1.38	0.93	0.91	0.03	35.4	2.9	13	1.49
P277995		0.79	< 0.005		0.32	6.63	0.2	630	1.28	0.27	1.21	0.14	42.9	11.0	29	1.97
P277996		1.41	< 0.005		0.09	6.79	<0.2	740	1.24	0.08	0.99	<0.02	19.90	2.1	38	4.16
P277997		2.23	< 0.005		2.12	2.87	<0.2	170	0.97	1.28	2.88	1.29	23.1	28.8	82	1.18
P277998		0.81	<0.005		0.01	0.21	<0.2	20	0.11	0.02	0.01	<0.02	34.4	0.3	16	<0.05
P277999		0.81	<0.005		0.05	7.57	0.3	520	1.56	0.05	1.74	0.05	46.2	12.7	113	4.65
P278000		0.97	< 0.005		0.03	6.65	0.3	210	0.43	0.03	6.67	0.04	18.30	50.0	362	2.29
P281962		0.58	< 0.005		0.05	7.14	<0.2	1620	3.48	2.16	0.31	<0.02	17.40	1.2	12	6.95
P281963		0.91	<0.005		0.07	4.69	<0.2	380	1.41	0.11	0.73	0.02	26.3	1.1	13	0.90
P281964		0.87	<0.005		0.02	6.30	0.2	1210	0.87	0.03	0.59	0.02	20.7	2.3	13	2.57
P281965		0.72	<0.005		0.10	8.73	0.2	420	15.45	0.52	0.54	0.02	43.9	0.7	4	10.15
P281966		0.59	<0.005		0.02	6.04	0.3	620	1.39	0.06	0.73	0.03	8.73	2.1	21	5.45
P281967		0.51	< 0.005		0.24	7.34	0.2	490	1.04	0.17	3.50	0.15	65.2	15.9	110	2.09
P281968		1.14	<0.005		0.16	6.33	0.4	110	3.93	0.32	1.88	0.08	71.3	14.8	283	1.38
P281969		0.90	<0.005		4.12	2.68	0.9	90	1.14	1.31	0.63	1.06	14.85	68.1	52	1.57
P281970		1.42	0.005		1.41	5.79	0.4	310	6.55	1.78	1.21	0.32	15.40	14.5	15	1.88
P281971		1.93	0.006		1.79	5.75	0.3	320	1.52	1.11	4.64	0.98	26.6	29.1	214	3.48
P281972		1.68	0.006		1.76	4.53	0.4	190	1.06	1.68	5.18	1.05	53.6	43.4	528	3.73
P281973		1.50	<0.005		0.34	6.76	0.2	590	1.10	0.22	2.57	0.14	89.8	14.5	77	5.15
P281974		1.65	0.005		0.28	7.47	0.2	770	1.56	0.15	4.49	0.18	227	31.8	102	7.03
P281975		1.37	<0.005		0.03	6.95	0.3	1280	1.02	0.04	0.80	0.03	58.6	3.0	14	2.46
P281976		1.54	< 0.005		0.03	6.08	<0.2	1160	0.91	0.02	0.41	<0.02	4.22	0.3	6	1.52
R145551		4.50	<0.005		0.09	6.69	0.4	280	1.58	0.27	4.88	0.87	21.9	31.5	59	1.98
R145552		3.70	0.006		0.29	6.66	0.3	220	1.22	0.28	5.60	0.35	18.25	37.4	195	1.19
R145553		6.93	<0.005		0.26	7.07	0.2	190	0.69	0.35	6.65	0.19	22.6	47.0	233	1.14
R145554		8.14	0.039		0.29	6.84	0.4	240	0.72	0.36	6.51	0.18	26.2	37.2	282	1.19
R145555		5.23	<0.005		0.60	5.83	0.3	220	0.58	0.64	5.55	0.34	19.00	43.0	223	3.22
R145556		4.77	<0.005		0.36	6.07	<0.2	150	1.21	0.39	4.64	0.23	15.20	31.6	170	1.83
R145557	j	2.39	0.005		0.29	6.76	<0.2	410	0.60	0.39	5.39	0.28	17.65	26.6	180	2.70
R145558		3.84	<0.005		0.44	6.57	<0.2	380	0.52	0.54	4.60	0.28	20.1	50.2	74	1.08
R145559		2.78	<0.005		0.10	6.29	0.4	130	0.54	0.41	7.36	0.19	24.0	50.8	335	0.66
R145560		5.51	<0.005		0.13	6.51	0.3	180	2.73	0.40	4.91	0.17	20.5	31.6	204	1.94
R145561		4.39	<0.005		0.25	5.74	0.4	170	2.53	0.44	4.59	0.25	16.60	26.3	192	5.43
R145562		5.75	<0.005		0.12	6.64	<0.2	140	0.79	0.40	7.00	0.19	19.25	53.8	344	2.75
R145563		1.92	<0.005		0.03	6.60	<0.2	360	1.64	0.04	0.81	0.02	113.5	1.6	7	1.98

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - B Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 **Compte: SOQVAL**

Projet: 1388/1389

	MF-MS61 MF-MS6									CERTIF	ICAT D	'ANAL	YSE V	<u>01416</u>	0281	
Description échantillon	Méthode élément unités L.D.	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2
P277989		56.0	8.68	15.05	0.09	1.0	0.060	0.55	2.0	20.2	5.46	1530	0.28	1.91	1.8	207
P277990		3.2	1.02	16.00	0.21	5.0	0.013	4.54	40.9	20.8	0.21	194	0.40	2.42	9.4	3.3
P277991		29.3	3.76	20.6	0.14	2.8	0.047	1.80	15.9	59.4	1.02	431	0.96	3.48	6.3	13.2
P277992		10.2	3.32	21.7	0.39	6.2	0.041	3.48	156.5	42.0	0.61	357	0.29	2.48	18.0	5.1
P277993		746	17.90	23.8	0.12	2.0	0.268	0.98	5.2	79.4	2.08	1080	9.07	0.22	15.6	217
P277994		66.7	2.90	16.75	0.14	2.6	0.023	2.67	17.4	5.0	0.14	82	3.77	2.80	6.5	3.0
P277995	j	107.0	3.41	15.55	0.15	4.7	0.047	2.99	19.2	9.7	0.37	222	7.13	2.36	7.8	13.7
P277996	1	17.8	1.95	15.90	0.15	3.6	0.022	3.74	9.6	28.5	0.32	198	2.21	2.36	9.5	4.9
P277997	i	299	13.10	8.98	0.11	0.9	0.301	0.37	8.1	10.8	1.56	2170	1.71	0.91	3.5	55.3
P277998		1.9	0.31	0.70	0.10	0.3	<0.005	0.03	14.4	6.1	<0.01	33	0.17	0.01	0.3	1.4
P277999		12.5	4.04	20.7	0.16	3.2	0.050	2.41	19.1	48.7	1.45	462	2.15	2.76	11.1	42.5
P278000		59.6	7.69	13.90	0.12	1.6	0.048	0.87	6.6	34.3	5.61	1200	0.18	1.28	3.4	199.0
P281962		3.1	0.91	22.7	0.15	3.1	0.018	4.27	7.0	6.0	0.13	114	0.24	1.64	10.2	4.4
P281963	1	11.3	0.65	10.90	0.14	1.4	0.006	1.91	9.1	4.4	0.12	60	0.23	1.82	2.2	5.7
P281964		3.4	1.29	14.55	0.15	4.0	0.016	4.43	9.2	21.5	0.29	141	2.85	1.93	7.3	4.7
P281965		4.5	0.76	31.7	0.18	6.1	0.019	4.18	14.4	14.8	0.11	136	0.24	3.62	20.0	1.1
P281966		4.6	1.22	14.95	0.15	3.5	0.020	3.89	4.1	14.4	0.25	144	2.37	1.84	8.2	10.2
P281967		32.6	3.61	19.10	0.18	2.9	0.042	1.03	25.3	15.4	2.00	598	0.56	3.04	3.9	46.8
P281968		11.4	3.55	17.10	0.18	4.1	0.086	1.30	31.3	33.6	1.80	688	0.35	2.73	7.4	121.0
P281969		694	28.5	6.21	0.13	0.9	0.036	0.76	5.9	9.9	0.43	404	14.95	0.84	2.1	152.5
P281970		141.5	5.75	12.00	0.10	3.9	0.006	1.35	7.1	5.4	0.08	94	32.2	2.64	1.2	34.1
P281971		218	12.95	15.40	0.13	1.6	0.103	0.93	11.1	15.5	1.64	1660	5.35	1.11	6.0	57.1
P281972	i	176.5	13.75	10.55	0.15	1.9	0.149	1.08	21.1	19.1	5.04	2120	2.75	0.64	6.1	229
P281973		34.4	5.67	17.15	0.15	2.7	0.072	1.35	39.8	38.0	1.78	3020	1.56	1.98	4.4	51.8
P281974		22.7	6.47	20.9	0.28	2.9	0.109	1.85	101.5	52.4	3.71	1280	0.86	1.59	4.3	143.0
P281975		5.2	1.44	16.80	0.20	4.3	0.018	5.01	28.0	18.5	0.31	166	0.20	2.06	9.1	5.7
P281976		2.2	0.31	12.55	0.15	3.2	<0.005	4.80	2.2	2.6	0.03	35	0.52	1.85	0.2	1.5
R145551	I	42.1	8.22	19.40	0.12	2.7	0.090	0.73	7.6	28.6	2.23	2990	0.76	1.94	8.5	32.5
R145552		95.3	8.98	17.90	0.11	1.9	0.062	0.81	6.3	22.9	2.98	3120	1.41	1.82	6.9	91.9
R145553		75.2	10.25	18.15	0.13	2.0	0.078	0.79	7.3	28.7	3.68	3060	2.37	1.50	5.6	103.0
R145554		58.8	11.20	17.40	0.13	2.1	0.079	0.79	8.6	22.1	3.64	3500	1,31	1.44	5.0	83.6
R145555	1	111.0	15.35	15.10	0.12	2.1	0.086	0.68	6.1	27.5	3.73	6740	2.68	1.10	4.4	76.7
R145556	1	72.5	11.80	15.90	0.12	1.9	0.063	0.54	6.2	32.8	3.03	5860	2.28	1.37	6.8	58.1
R145557	l	68.4	12.10	17.30	0.12	2.2	0.075	0.83	7.2	36.0	3.77	4140	0.40	1.82	4.4	56.6
R145558		131.0	12.45	17.45	0.12	2.2	0.078	0.96	9.6	21.7	2.83	4620	0.94	1.75	5.0	56.6
R145559		94.8	10.50	16.90	0.13	1.6	0.078	0.59	9.4	16.9	4.43	3460	1.45	1.41	4.5	163.0
R145560	ı	127.5	8.00	18.00	0.11	2.1	0.050	0.81	8.2	19.1	2.51	3570	7.18	2.08	10.7	88.1
R145561	l	174.5	9.92	17.70	0.11	2.1	0.064	0.81	7.1	28.7	2.65	4490	7.91	1.68	12.9	76.7
R145562	l	119.0	8.95	17.85	0.12	1.6	0.087	0.72	7.3	24.8	3.93	3050	2.50	1.67	5.4	169.5
R145563	l	5.2	0.85	18.40	0.19	5.4	0.014	3.68	55.2	15.3	0.15	204	1.29	2.62	8.7	2.3

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - C Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 **Compte: SOQVAL**

Projet: 1388/1389

				CERTIFICAT D'ANALTSE VOT4160281												
Description échantillon	Méthode élément unités L.D.	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02
P277989		210	11.4	12.4	<0.002	0.05	<0.05	40.2	1	0.4	172.0	0.11	<0.05	0.2	0.472	0.11
P277989 P277990		370	34.0	195.0	<0.002	0.03	<0.05	3.0	1	0.4	228	0.11	<0.05	34.4	0.086	1.12
P277991		550	14.1	134.5	<0.002	0.09	<0.05	14.4	1	0.7	361	0.36	0.09	4.4	0.422	1.08
P277992		1220	24.5	167.5	<0.002	0.03	<0.05	5.7	1	0.7	309	0.58	<0.05	22.1	0.572	1.09
P277993		940	26.6	128.5	0.005	7.86	<0.05	24.6	4	5.3	11.9	0.63	0.65	1.8	0.275	1.14
P277994		290	30.5	109.0	<0.002	0.31	<0.05	1.9	1	0.4	279	0.30	0.35	16.3	0.081	0.66
P277995		250	28.3	115.5	<0.002	0.68	<0.05	4.2	1	0.7	265	0.45	0.09	12.1	0.110	0.73
P277996		180	29.7	171.5	< 0.002	0.04	<0.05	3.8	<1	0.7	240	0.52	0.06	16.2	0.129	1.13
P277997		220	4.9	42.9	0.002	7.30	<0.05	7.9	1	5.4	143.0	0.34	0.15	7.2	0.112	0.35
P277998		20	0.8	1.6	<0.002	0.01	0.05	0.1	<1	<0.2	1.6	<0.05	<0.05	1.9	0.018	<0.02
P277999		680	15.5	158.0	<0.002	0.06	<0.05	11.5	<1	1.5	383	0.74	<0.05	14.1	0.308	1.19
P278000		270	4.1	51.8	< 0.002	0.08	< 0.05	35.5	1	0.5	181.5	0.22	< 0.05	1.7	0.366	0.43
P281962		120	36.5	273	<0.002	0.01	< 0.05	2.8	<1	2.3	240	16.55	0.07	4.6	0.054	2.79
P281963		70	17.1	64.7	<0.002	0.02	<0.05	0.9	1	0.3	196.0	0.20	0.06	16.7	0.029	0.35
P281964		100	27.3	161.0	<0.002	0.02	<0.05	3.1	<1	0.7	248	0.43	<0.05	5.1	0.118	0.97
P281965		80	50.1	341	<0.002	<0.01	<0.05	2.4	<1	1.8	95.7	3.34	0.05	41.2	0.070	3.41
P281966		110	29.0	159.0	<0.002	0.01	<0.05	3.0	<1	0.9	205	1.07	< 0.05	3.8	0.092	0.98
P281967		960	13.2	42.7	<0.002	0.44	< 0.05	12.2	1	0.7	661	0.25	0.10	5.0	0.351	0.46
P281968		810	29.3	142.5	<0.002	0.02	<0.05	13.8	1	2.9	207	1.04	0.05	11.3	0.311	0.87
P281969		190	4.6	61.6	0.005	>10.0	<0.05	4.2	3	1.2	156.0	0.12	0.48	1.5	0.105	0.54
P281970		30	27.5	53.7	0.006	4.31	<0.05	0.6	2	<0.2	332	0.28	0.23	5.6	0.014	0.42
P281971		750	5.9	66.7	0.004	6.82	<0.05	21.5	2	3.1	344	0.39	0.29	3.3	0.326	0.72
P281972		810	4.4	74.2	0.002	6.85	, <0.05	16.9	2	3.5	247	0.35	0.33	4.0	0.256	0.84
P281973		770	10.7	72.7	<0.002	1.03	<0.05	12.1	1	0.7	486	0.30	0.12	13.8	0.311	1.33
P281974		1560	13.1	85.3	<0.002	0.98	<0.05	15.8	1	1.3	615	0.27	0.08	30.0	0.389	1.65
P281975		500	35.3	178.0	<0.002	0.01	< 0.05	3.8	1	0.7	284	0.69	<0.05	14.6	0.129	1.08
P281976		60	28.3	134.5	<0.002	0.01	<0.05	0.2	<1	<0.2	336	0.07	<0.05	1.1	0.005	0.78
R145551	1	470	49.2	42.3	<0.002	0.10	<0.05	33.7	1	1.9	155.0	1.16	<0.05	4.1	0.675	0.28
R145552		350	71.2	53.6	<0.002	0.51	<0.05	27.6	1	1.2	166.0	0.69	0.08	3.4	0.476	0.36
R145553		390	6.2	55.1	0.002	0.63	<0.05	35.4	1	1.2	157.5	0.39	0.08	1.8	0.638	0.36
R145554		570	2.7	57.2	0.002	1.20	0.08	36.0	1	1.2	138.5	0.33	0.10	1.3	0.658	0.39
R145555	j	350	3.1	49.5	0.003	2.63	<0.05	33.2	2	1.7	90.0	0.30	0.27	8.0	0.574	0.37
R145556		250	3.7	40.5	0.002	1.39	<0.05	26.2	1	1.6	90.1	0.75	0.15	2.1	0.456	0.29
R145557		380	1.8	65.7	0.002	1.47	<0.05	34.7	1	1.0	149.0	0.30	<0.05	0.6	0.597	0.39
R145558		380	2.2	76.7	0.002	3.30	<0.05	33.7	1	1.0	158.5	0.34	0.05	0.9	0.641	0.39
R145559		490	2.0	34.8	<0.002	0.29	<0.05	34.8	2	1.2	122.5	0.29	<0.05	1.1	0.565	0.20
R145560	I	220	10.9	52.1	0.004	0.54	<0.05	20.9	1	2.0	138.0	2.74	0.05	5.2	0.346	0.28
R145561		220	9.6	68.4	0.002	0.90	<0.05	20.4	1	3.6	88.1	1.35	0.07	4.6	0.352	0.41
R145562		390	3.9	48.7	0.002	0.22	<0.05	35.2	2	1.8	135.5	0.41	<0.05	1.4	0.600	0.30
R145563		130	35.3	192.0	<0.002	0.01	<0.05	2.8	1	0.8	106.5	0.55	<0.05	48.8	0.066	0.98

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221

www.alsglobal.com

Télécopieur: 604 984 0218

A: SOQUEM INC. 600 AVENUE CENTRALE VAL-D OR QC J9P 1P8 Page: 2 - D

Nombre total de pages: 6 (A - D)

plus les pages d'annexe

Finalisée date: 13-NOV-2014

Compte: SOQVAL

Projet: 1388/1389

CERTIFICAT D'ANALYSE VO14160281 Cu-OG46 Ag-OG46 ME-MS61 ME-MS61 ME-MS61 ME-MS61 ME-MS61 ME-MS61 Zn-OG46 Pb-OG46 Méthode ٧ W Zn ZΓ Cu Zn Pb Αg élément % % % ppm ppm unités ppm ppm ppm ppm ppm Description échantillon L.D. 0.1 0.5 0.001 0.001 0.001 1 0.1 0.1 P277989 0.1 243 0.1 17.9 93 31.3 P277990 2.5 8 27 175.5 7.5 1.1 P277991 2.7 114 0.1 3.7 78 120.0 P277992 0.9 60 19.0 76 285 1.0 220 P277993 0.9 142 0.2 30.0 72.6 P277994 1.0 14 1.5 2.7 12 96.2 26 158.5 P277995 1.8 0.2 5.7 34 P277996 1.7 24 0.8 1.7 30 122.5 P277997 2.0 42 0.2 20.2 121 31.8 P277998 0.2 1.4 3.8 <2 11.7 P277999 1.8 82 0.2 7.3 88 124.0 P278000 0.4 213 0.2 67 64.0 16.7 72.2 P281962 0.7 6 0.2 3.2 17 P281963 0.8 0.7 1.8 9 48.7 P281964 0.9 14 1.6 31 148.0 0.1 27 155.5 P281965 4.4 6 0.3 9.5 P281966 1.4 16 0.1 3.9 24 107.5 P281967 1.5 87 0.9 11.9 78 117.5 2.9 91 152 157.5 P281968 0.2 10.3 19 0.6 39 36.7 P281969 1.1 4.9 124.5 P281970 24.0 3 0.1 1.5 P281971 63.0 1.6 111 1.4 23.3 88 129 79.6 P281972 1.6 99 3.7 12.0 P281973 2.6 90 0.6 12.0 114 115.0 P281974 6.1 136 0.5 15.1 138 126.0 17 34 162.5 P281975 1.1 0.8 8.8 0.8 90.9 P281976 1 0.1 1.0 <2 2.6 R145551 256 1.0 32.2 175 91.4 R145552 3.2 177 0.5 24.8 112 66.5 1.0 231 106 70.7 0.8 30.2 R145553 R145554 0.8 242 0.4 30.8 107 76.6 R145555 8.0 204 0.4 27.8 93 79.4 2.0 179 72 66.1 R145556 0.2 23.8 0.4 229 0.3 25.7 74 79.9 R145557 R145558 0.4 233 0.3 29.3 77 78.0 R145559 0.7 224 0.4 25.9 92 50.6 R145560 4.5 134 0.2 24.7 62 56.0 4.0 129 71 57.6 R145561 0.3 18.7 R145562 1.3 232 0.3 25.2 114 43.8 7.4 7 0.4 11.0 17 154.5 R145563

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 3 - A Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 Compte: SOQVAL

Projet: 1388/1389

Minera	IS									CERTIF	ICAT D	'ANAL	/SE V	01416	0281	
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-MS61 Ag ppm 0.01	ME-MS61 AI % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05
R145564 R145565 R145566 R145567 R145568		0.11 2.56 0.81 2.99 5.01	0.822 <0.005 <0.005 <0.005 0.011	1.02	65.1 0.51 0.02 0.14 1.61	3.70 6.32 0.20 7.58 4.65	446 0.4 <0.2 <0.2 <0.2	220 420 10 50 180	0.54 0.57 0.10 0.29 0.41	24.5 0.56 0.02 0.39 4.03	1.78 4.74 0.01 7.31 3.52	208 0.66 0.04 0.18 1.61	22.9 17.30 33.6 7.87 25.0	18.0 31.7 0.2 41.1 62.0	37 160 13 218 47	0.75 1.90 <0.05 1.87 2.35
R145569 R145570 R145571 R145572 R145573		5.43 5.33 5.23 4.24 1.87	0.007 0.008 0.007 <0.005 <0.005		1.35 0.36 0.22 0.15 0.03	3.71 6.91 6.95 7.40 7.87	0.4 0.2 0.4 0.2 0.6	140 130 80 100 150	0.45 1.17 0.67 1.33 1.46	3.02 1.35 0.92 0.75 0.16	3.09 8.04 8.16 6.76 4.95	0.39 2.03 0.44 0.27 0.06	20.5 20.1 18.75 19.55 16.00	66.2 41.8 47.6 42.1 22.4	45 137 160 157 127	1.22 1.21 0.93 1.75 3.59
R145574 R145575 R145576 R145577 R145578		4.31 4.02 5.34 5.66 2.09	0.006 0.006 0.006 <0.005 0.007		0.23 0.72 0.30 0.11 0.16	6.25 7.62 6.99 7.74 6.70	0.4 0.2 <0.2 0.2 0.2 0.3	90 160 120 140 240	1.91 41.5 0.96 0.68 1.76	1.03 2.95 1.12 0.72 0.84	7.99 3.55 7.25 7.30 7.00	0.29 4.21 0.90 0.26 0.18	17.55 23.4 22.0 18.55 18.40	48.8 35.3 33.4 44.3 41.5	132 31 158 182 139	1.01 24.8 2.56 2.13 4.31
R145579 R145580 R145581 R145582 R145583		3.82 8.14 6.19 3.42 3.26	0.005 0.008 0.005 <0.005 <0.005		0.20 0.36 0.09 0.09 0.04	6.34 6.06 7.21 7.39 7.22	<0.2 0.3 0.3 0.2 <0.2	90 170 120 120 60	0.32 0.53 0.55 0.55 0.57	0.58 0.66 0.36 0.36 0.26	8.52 7.42 8.97 8.51 7.70	0.20 0.21 0.20 0.15 0.12	16.60 17.00 19.55 20.6 20.3	43.1 49.7 48.1 53.4 54.1	143 123 157 224 209	0.45 0.71 0.63 0.66 0.71
R145584 R145585 R145586 R145587 R145588		5.29 5.08 5.47 5.48 4.35	<0.005 <0.005 <0.005 <0.005 <0.005		0.08 0.03 0.05 0.02 0.03	7.11 7.75 7.36 7.10 7.56	0.2 <0.2 0.5 <0.2 <0.2	280 290 380 130 210	0.59 0.52 0.49 0.44 0.44	0.29 0.28 0.55 0.47 0.18	8.47 8.53 9.03 8.66 8.54	0.12 0.09 0.10 0.07 0.08	18.90 19.85 18.30 17.30 18.70	51.9 45.8 44.0 45.4 45.7	221 174 139 167 181	1.10 0.57 5.00 1.73 1.95
R145589 R145590 R145591 R145592 R145593		Not Recvd 3.64 4.30 3.01 2.14	<0.005 <0.005 <0.005 <0.005		0.03 0.04 0.02 0.05	7.04 6.35 7.07 7.12	0.3 <0.2 0.2 <0.2	1000 820 1030 920	0.87 0.82 0.73 0.74	0.04 0.17 0.05 0.11	0.30 0.17 0.25 0.23	<0.02 <0.02 <0.02 <0.02	144.0 47.4 45.7 14.65	2.3 2.2 1.8 3.1	8 9 7 7	1.43 1.10 1.28 1.28
R145594 R145595 R145596 R145597 R145598		3.48 4.51 4.69 4.01 1.18	0.006 0.009 0.124 0.022 <0.005		0.13 0.05 0.19 0.38 0.04	5.79 6.77 7.08 7.02 6.79	0.5 <0.2 0.3 <0.2 0.2	540 1050 640 740 540	1.00 0.51 0.95 0.72 1.20	0.16 0.16 0.68 2.46 0.25	0.08 0.15 0.09 0.13 0.09	<0.02 <0.02 <0.02 <0.02 <0.02	15.25 6.15 105.5 201 43.2	2.8 2.9 1.6 1.0 3.4	18 10 37 10 36	1.64 1.27 2.03 1.52 1.57
R145599 R145600 R145601 R145602 R145603		1.74 2.79 3.49 3.95 3.98	0.044 0.029 0.087 0.025 0.023		0.60 0.57 3.16 4.71 10.05	9.24 8.10 5.43 6.67 6.10	0.9 1.1 2.9 3.1 3.9	230 200 460 80 190	2.39 2.31 1.04 1.85 1.77	3.34 5.73 41.8 9.28 13.25	0.15 0.09 0.31 0.21 0.27	<0.02 <0.02 <0.02 <0.02 <0.02	181.0 143.5 82.4 42.1 52.9	8.3 61.4 45.7 33.7 45.6	171 186 11 109 88	4.85 6.04 1.26 2.09 1.56

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 3 - B Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 Compte: SOQVAL

Projet: 1388/1389

IIIIIIEI a	13							CERTIFICAT D'ANALYSE VO14160281								
Description échantillon	Méthode élément unités L.D.	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2
R145564		5270	9.18	13.70	0.28	1.0	2.72	0.69	10.7	11.3	0.85	501	22.1	1.20	4.1	44.8
R145565		118.0	13.70	16.65	0.13	2.1	0.085	0.78	7.2	34.7	3.42	4170	1.57	1.70	4.3	51.4
R145566		2.6	0.26	0.68	0.12	0.3	0.005	0.02	15.7	5.4	0.01	32	0.16	0.01	0.3	1.0
R145567		143.0	5.28	15.70	0.09	0.5	0.133	0.19	3.4	21.4	2.90	1860	0.39	1.36	2.1	60.6
R145568		605	22.7	14.25	0.15	1.3	0.211	0.49	11.7	35.8	1.40	3600	4.04	0.96	3.5	105.0
R145569		553	31.1	11.35	0.15	0.9	0.231	0.38	9.9	18.0	1.33	2520	3.52	1.07	2.8	151.5
R145570		106.5	12.35	18.95	0.08	1.2	0.516	0.57	8.2	26.2	3.64	5630	0.55	1.54	4.4	60.4
R145571		84.7	12.45	18.55	0.09	1.3	0.142	0.52	7.5	25.6	3.89	4480	0.44	1.56	4.1	73.7
R145572		65.4	8.59	19.65	0.08	1.5	0.117	0.62	7.6	27.3	3.08	3180	0.83	2.31	5.9	76.1
R145573		22.0	4.42	21.6	0.11	1.3	0.055	1.84	6.2	25.2	2.02	1540	0.30	2.75	6.5	35.5
R145574		187.0	14.35	17.65	0.10	1.5	0.084	0.51	7.0	36.5	3.98	5350	0.53	1.33	4.2	72.9
R145575		140.0	8.61	50.4	0.08	2.6	0.177	0.85	10.3	53.4	1.19	2560	1.12	3.10	29.8	34.6
R145576		83.4	9.48	18.75	0.10	1.3	0.434	0.48	9.3	25.4	3.35	5760	0.51	1.97	4.5	51.3
R145577		69.1	8.16	19.95	0.09	1.3	0.193	0.43	7.0	22.9	3.22	3350	0.72	2.33	5.1	74.7
R145578		117.0	11.95	17.00	0.08	1.8	0.074	0.42	7.5	42.9	3.33	5120	0.46	1.74	4.0	50.6
R145579		71.2	14.55	16.25	0.10	1.4	0.082	0.62	6.5	21.9	3.71	5580	0.76	1.15	3.8	77.7
R145580		215	15.65	15.25	0.09	1.1	0.063	0.56	7.2	22.6	3.16	4380	1.03	1.57	3.6	82.3
R145581		27.7	10.30	17.60	0.09	1.4	0.069	0.44	7.5	20.4	3.44	4230	0.82	1.74	4.3	89.9
R145582		109.5	9.85	18.50	0.09	1.4	0.081	0.39	8.0	22.4	3.44	3220	0.90	1.66	6.6	124.0
R145583		34.2	8.95	18.70	0.08	1.4	0.078	0.36	7.7	20.8	3.56	2570	0.82	1.77	4.7	119.0
R145584		86.9	9.30	17.15	0.10	1.4	0.073	0.39	7.1	21.5	3.52	2990	1.77	1.69	4.5	112.5
R145585		48.2	8.13	18.60	0.10	1.3	0.073	0.39	7.1	16.9	3.67	2230	0.82	2.00	4.6	78.7
R145586		163.5	9.99	18.00	0.09	1.3	0.068	0.65	6.8	26.8	3.11	3680	1.18			
R145587		49.3	7.74	18.30	0.10	1.2	0.000	0.35	6.3	26.3	3.42	2370	2.58	1.43 1.58	4.5	69.4
R145588		69.5	7.63	18.85	0.08	1.2	0.072	0.39	7.2	18.2	3.42	2260	0.96	1.56	4.3 4.3	71.4 74.5
R145589						7.4-		0.00							1.0	
R145590		18.2	0.94	15.15	0.18	6.8	0.010	5.15	77.4	12.0	0.46	102	1.45	2.07	5.5	3.5
R145591		17.3	0.85	13.65	0.16	11.2	0.009	4.07	27.0	11.0	0.43	88	2.32	2.21	4.0	3.4
R145592		22.9	0.88	14.85	0.16	3.6	0.008	5.35	23.4	11.7	0.46	84	4.69	2.04	6.8	2.9
R145593		32.5	1.04	15.20	0.14	2.9	0.009	5.05	6.8	19.7	0.75	95	5.31	2.35	8.0	5.9
R145594		364	0.81	12.40	0.12	5.0	0.020	3.36	6.4	10.4	0.40	66	19.05	2.06	7.4	4.8
R145595		20.3	0.79	13.50	0.12	2.5	0.006	5.45	3.3	15.2	0.57	71	13.40	1.89	7.0	5.0
R145596	i	21.5	0.60	15.25	0.17	4.7	0.012	4.25	54.7	11.5	0.46	50	35.4	2.55	5.9	4.6
R145597	l	10.2	0.37	13.95	0.19	6.4	0.012	4.85	111.0	5.9	0.40	35	10.65	2.55	3.5	2.9
R145598		15.1	0.89	16.55	0.20	5.7	0.009	3.50	23.4	25.0	1.05	73	0.98	2.42	4.6	11.4
R145599		9.1	1.34	28.9	0.26	4.4	0.030	3.53	96.8	44.3	1.67	109	162.0	4.00	8.2	24.2
R145500		78.2	2.33	22.9	0.20	3.4	0.030	2.80	84.5	17.1	0.68	41	91.4	3.28	5.1	46.0
R145600		1600	1.27	11.25	0.22	5.4 5.3	0.031	3.28	37.0	29.7	1.24	103	990	3.26 1.58	5.1 6.5	1
R145601		>1000	3.77	18.55	0.30	3.1	0.095	0.88	37.0 18.7	29.7 66.1	2.78	170	990 346	3.01	6.5 5.3	11.5
R145602		>10000	4.92	16.70	0.18	2.1	0.176	1.23	25.0	60.0	2.76	165	637	2.31	5.3 5.2	43.2 50.2
11.73000		- 10000	7.02	10.70	0.10	۵.۱	U.E.I.E	1.20	20.0	00.0	2.00	100	007	2.51	U.Z	30.2

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 3 - C Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 **Compte: SOQVAL**

Projet: 1388/1389

Minera	IS								1300/	CERTIF	ICAT D	'ANAL	/SE V	01416	0281	
Description échantillon	Méthode	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	élément	P	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	TI
	unités	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm
	L.D.	10	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.2	0.005	0.02
R145564		490	5950	21.6	0.016	9.46	102.5	7.9	78	46.6	158.5	0.21	0.23	2.2	0.170	13.10
R145565		360	10.7	60.8	0.004	3.27	0.17	31.6	1	1.1	141.5	0.29	0.06	0.6	0.550	0.39
R145566		30	1.9	1.3	<0.002	0.01	<0.05	0.2	<1	0.3	1.1	<0.05	<0.05	2.1	0.017	<0.02
R145567		250	6.1	6.6	<0.002	0.62	0.08	45.4	1	1.6	143.0	0.14	<0.05	0.3	0.443	0.08
R145568		290	7.4	43.1	0.010	9.44	0.05	9.7	4	3.9	89.0	0.29	0.77	2.5	0.196	0.36
R145569		270	5.6	24.8	0.006	>10.0	<0.05	8.2	5	4.6	87.2	0.21	0.69	1.6	0.187	0.22
R145570		430	8.1	23.9	<0.002	2.32	0.11	30.7	1	6.5	196.0	0.34	0.10	1.0	0.549	0.23
R145571		420	9.1	15.6	0.002	1.25	0.11	35.1	1	1.3	155.0	0.26	0.07	0.7	0.638	0.15
R145572		450	12.1	29.7	0.002	0.86	0.11	34.8	1	2.0	169.0	0.61	<0.05	1.2	0.644	0.23
R145573		320	19.9	74.7	<0.002	0.08	0.08	25.1	<1	1.3	113.5	1.19	<0.05	3.0	0.521	0.62
R145574		440	6.8	19.4	0.002	2.80	0.10	30.9	2	1.7	210	0.27	0.11	1.1	0.555	0.18
R145575		670	22.0	97.0	0.002	5.03	0.07	9.2	3	19.9	113.0	3.24	0.33	5.2	0.177	0.79
R145576		490	8.6	33.1	<0.002	1.80	0.09	29.3	2	10.9	183.0	0.32	0.10	1.1	0.587	0.25
R145577		460	8.0	16.4	<0.002	0.69	0.09	37.1	1	3.0	153.0	0.34	0.05	0.7	0.711	0.17
R145578		350	8.5	26.2	<0.002	1.39	0.09	28.1	1	1.5	241	0.31	0.09	1.7	0.534	0.20
R145579 R145580 R145581 R145582 R145583		390 380 470 470 470	6.1 6.2 8.0 7.5 6.0	17.7 19.0 13.5 18.8 12.5	<0.002 0.003 <0.002 <0.002 <0.002	1.58 3.96 0.57 0.44 0.15	0.09 0.08 0.09 0.10 0.09	29.4 25.6 34.6 36.1 37.2	1 2 1 1	1.0 1.2 1.1 1.4 1.1	141.5 193.5 260 218 227	0.25 0.24 0.28 0.38 0.31	0.13 0.36 0.06 0.05 <0.05	0.7 0.9 0.7 0.8 0.8	0.572 0.506 0.664 0.659 0.630	0.21 0.20 0.14 0.15 0.12
R145584 R145585 R145586 R145587 R145588		420 450 460 420 430	11.1 6.3 4.6 4.4 3.3	15.3 8.8 44.9 13.6 17.6	<0.002 <0.002 <0.002 0.002 <0.002	0.22 0.07 0.34 0.09 0.07	0.11 0.08 0.12 0.09 0.08	32.8 38.8 35.4 34.6 36.4	1 1 1 1	1.1 0.9 1.0 0.9 0.9	145.5 178.0 107.5 155.0 137.0	0.30 0.30 0.29 0.28 0.29	<0.05 <0.05 0.05 <0.05 <0.05	0.7 0.8 0.7 0.6 0.7	0.633 0.715 0.701 0.661 0.674	0.14 0.10 0.31 0.12 0.14
R145589 R145590 R145591 R145592 R145593		300 190 530 620	25.7 19.0 34.3 25.0	180.0 157.0 181.0 174.5	<0.002 <0.002 <0.002 <0.002	0.01 0.01 0.02 0.01	<0.05 <0.05 <0.05 <0.05	2.6 2.2 2.4 2.9	<1 <1 <1 <1	0.8 0.6 0.5 0.7	197.5 151.0 182.5 159.5	0.40 0.22 0.49 0.51	<0.05 <0.05 <0.05 <0.05	35.0 13.0 17.9 6.8	0.074 0.056 0.070 0.083	1.01 0.86 1.12 0.97
R145594		70	27.1	129.5	<0.002	0.09	0.05	3.0	2	0.6	100.5	0.56	<0.05	73.3	0.072	0.67
R145595		320	26.2	177.0	<0.002	0.01	<0.05	2.5	<1	0.5	165.5	0.49	<0.05	6.7	0.078	1.02
R145596		170	18.7	157.0	<0.002	0.01	0.05	3.3	1	0.6	111.5	0.48	0.05	5.2	0.056	0.84
R145597		300	28.9	165.5	<0.002	<0.01	0.05	2.5	<1	0.5	120.5	0.33	0.07	7.2	0.040	0.90
R145598		70	15.3	138.0	<0.002	<0.01	0.05	3.4	<1	0.6	116.5	0.45	0.05	21.6	0.071	0.71
R145599		280	17.0	135.5	0.007	0.12	0.06	22.3	3	1.4	58.0	0.89	0.29	8.4	0.299	0.78
R145600		370	18.3	139.5	0.020	1.95	0.07	23.0	7	1.0	27.5	0.43	0.40	4.2	0.324	0.61
R145601		1310	406	108.0	0.242	0.32	0.14	5.6	50	0.6	80.3	1.04	0.36	8.3	0.062	1.99
R145602		530	62.5	42.8	0.051	2.13	0.13	14.0	13	1.1	43.3	0.53	0.22	5.0	0.260	0.48
R145603		760	119.5	53.3	0.066	3.24	0.31	10.2	14	1.4	50.9	0.46	0.37	13.1	0.192	0.86

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221

www.alsglobal.com

Télécopieur: 604 984 0218

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 3 - D Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 Compte: SOQVAL

Projet: 1388/1389

CERTIFICAT D'ANALYSE VO14160281 Ag-OG46 ME-MS61 ME-MS61 ME-MS61 ME-MS61 ME-MS61 ME-M\$61 Cu-OG46 Zn-OG46 Pb-OG46 Méthode ٧ Pb U W Υ Zn Zr Cu Zn Ag élément unités % % % ppm ppm ppm ppm ppm ppm ppm Description échantillon L.D. 0.1 0.1 0.1 2 0.5 0.001 0.001 0.001 1 R145564 2.0 70 >10000 0.538 0.632 67 1.1 10.8 34.3 3.88 R145565 0.4 214 0.2 23.8 134 69.8 R145566 0.2 2 0.6 10 12.0 4.0 R145567 0.1 240 8.0 12.6 176 9.8 R145568 0.9 52 0.3 8.0 557 48.2 0.6 54 0.3 8.2 260 31.8 R145569 R145570 0.6 225 31.3 0.5 26.6 981 R145571 0.3 266 26.9 32.3 0.6 457 R145572 1.3 249 0.7 25.3 264 43.7 R145573 1.7 202 23.2 1.0 18.6 73 R145574 0.7 246 0.5 27.7 147 44.1 R145575 5.3 35 907 64.6 1.6 11.1 R145576 0.5 228 0.5 22.5 636 40.1 R145577 0.3 286 0.9 25.7 358 36.7 R145578 1.5 223 0.5 23.6 113 59.5 R145579 0.3 224 0.5 23.3 154 42.0 R145580 0.4 193 0.4 21.3 119 29.6 R145581 0.3 246 0.6 29.2 104 40.0 R145582 0.3 229 0.8 29.2 111 43.3 R145583 0.2 247 8.0 29.1 96 40.2 239 R145584 0.2 0.8 27.7 98 36.8 R145585 0.2 278 1.0 27.7 103 36.9 R145586 0.2 270 0.7 25.8 86 35.7 0.2 263 R145587 8.0 24.4 90 36.1 0.2 R145588 272 0.6 24.3 90 34.6 R145589 R145590 2.7 12 0.1 6.9 14 237 2.9 R145591 12 4.6 10 367 0.4 1.8 9 R145592 0.3 8.0 9 127.5 R145593 3.1 18 8.0 8.9 12 103.0 11.3 23 R145594 1.0 3.4 162.0 R145595 2.2 20 0.5 4.8 9 80.9 R145596 4.7 48 166.0 0.6 1.9 5 R145597 4.6 31 4.5 2 220 0.6 R145598 1.8 46 13 193.5 0.8 3.9 R145599 6.8 216 11.8 0.6 19 138.5 R145600 6.6 191 132.0 0.7 4.8 8 R145601 176.0 179 0.8 20.4 21 171.5 15.0 141 R145602 0.5 8.0 32 112.5 1.550 R145603 11.1 123 2.89 0.5 10.8 38 79.5

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 4 - A Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 **Compte: SOQVAL**

Projet: 1388/1389

CERTIFICAT D'ANALYSE VO14160281

Methods Meth					-						CERTIF	ICAID	AIVAL	JE V	01416	0261	
R145605	Description échantillon	élément unités	Poids reçu kg	Au ppm	Au ppm	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Ce ppm	Co ppm	Cr ppm	Cs ppm
R145606 2.80	R145604		3.63	0.005		1.99	7.80	6.0	230	2.99	0.84	0.58	0.07	52.2	25.5	98	2.92
R145607	R145605		2.11	<0.005		1.49	7.22	5.7	150	2.13	0.39	0.64	0.03	59.6	35.1	155	1.46
R145608	R145606		2.80	<0.005		0.40	7.17	2.3	500	1.63	0.33	0.59	0.04	44.1	17.4	93	1.40
R145609	R145607		2.81	<0.005		0.30	7.44	4.0	350	1.65	0.62	0.61	0.08	53.7	27.9	129	1.85
R145610	R145608		2.99	<0.005		0.83	7.57	3.8	460	1.40	3.12	0.26	0.03	40.3	25.3	145	1.93
R145611																	
R145612																	
R145613 2.82 0.005 0.07 6.51 0.3 1090 0.60 0.22 0.51 <0.02 14.80 3.7 10 1.21 R145614 3.73 <0.005 0.50 7.57 1.0 510 1.49 0.29 0.46 0.05 51.3 13.2 23 1.53 R145615 1.19 0.013 0.76 5.59 1.2 640 0.66 0.76 0.19 <0.02 30.8 4.1 10 1.11 R145616 2.78 0.093 8.40 6.76 0.9 820 1.16 26.6 0.27 <0.02 26.2 25.0 8 1.21 R145617 2.72 0.033 0.48 7.39 0.8 930 0.70 1.51 0.30 <0.02 49.2 5.5 13 1.39 R145618 1.24 0.049 0.30 5.44 0.4 250 1.03 1.62 0.09 <0.02 56.6 4.7 26 R145619 3.81 0.053 1.44 7.87 0.6 220 1.54 10.65 0.09 0.03 57.5 46.9 238 5.77 R145620 5.40 0.009 0.59 8.49 1.2 450 1.30 5.28 0.06 0.02 72.6 24.3 74 5.06 R145621 3.64 <0.005 0.47 8.90 0.6 440 1.73 2.03 0.07 <0.02 146.5 9.2 65 5.9 R145623 4.89 <0.005 0.18 8.05 0.5 320 1.02 0.21 5.90 0.19 36.9 51.4 336 0.98 R145624 1.93 <0.005 0.25 6.42 <0.2 920 0.69 0.96 0.24 <0.02 177.5 3.2 21 1.52 R145628 1.13 <0.005 0.15 7.07 0.5 510 2.65 1.73 0.20 0.02 26.8 3.6 33 0.90 R145628 1.13 <0.005 0.15 7.07 0.5 510 2.65 1.73 0.20 <0.02 177.5 3.2 21 1.52 R145629 2.04 0.084 13.90 7.45 0.8 170 2.59 63.0 0.15 <0.02 130.0 2.2 9 1.53 R145631 2.67 0.030 2.37 7.28 0.2 60 2.71 12.25 0.32 <0.02 23.8 3.5 35 1.55 R145633 2.17 0.005 0.10 6.73 0.3 780 0.96 0.43 0.12 <0.02 23.8 3.5 35 1.55 R145633 2.17 0.005 0.10 6.73 0.3 780 0.96 0.43 0.12 <0.02 23.8 3.5 35 1.55 R145633 2.17 0.005 0.10 6.73 0.3 780 0.96 0.43 0.12 <0.02 23.8 3.5 35 1.55 R145633 2.17 0.005 0.10 6.73 0.3 780 0.96 0.43 0.12 <0.02 23.8 3.5 35 1.55 R145	1													44.5	10.2	65	1.51
R145614																-	
R145615	R145613		2.82	0.005		0.07	6.51	0.3	1090	0.60	0.22	0.51	<0.02	14.80	3.7	10	1.21
R145616 2.78 0.093 8.40 6.76 0.9 820 1.16 26.6 0.27 <0.02 26.2 25.0 8 1.21 R145617 2.72 0.033 0.48 7.39 0.8 930 0.70 1.51 0.30 <0.02 49.2 5.5 13 1.39 R145618 1.24 0.049 0.30 5.44 0.4 250 1.03 1.62 0.09 <0.02 56.6 4.7 26 1.12 R145619 3.81 0.053 1.44 7.87 0.6 220 1.54 10.65 0.09 0.03 57.5 46.9 238 5.77 R145620 5.40 0.009 0.59 8.49 1.2 450 1.30 5.28 0.06 0.02 72.6 24.3 74 5.06 R145621 3.64 <0.005 0.47 8.90 0.6 440 1.73 2.03 0.07 <0.02 146.5 9.2 65 5.59 R145622 1.70 0.010 2.51 7.42 0.7 190 1.76 6.19 0.08 0.06 243 43.6 57 8.19 R145623 4.69 <0.005 0.18 8.05 0.5 320 1.02 0.21 5.90 0.19 36.9 51.4 336 0.98 R145624 1.93 <0.005 0.25 6.42 <0.2 920 0.69 0.96 0.24 <0.02 \$77.5 3.2 21 1.52 R145625 2.38 0.012 0.54 7.48 0.4 290 2.63 2.18 0.47 <0.02 \$50.0 7.8 34 4.93 R145626 1.13 <0.005 0.16 6.73 0.5 520 1.05 0.14 0.12 <0.02 26.8 3.6 33 0.90 R145629 2.04 0.084 13.90 7.45 0.8 170 2.59 63.0 0.15 <0.02 107.0 47.1 52 1.96 R145631 2.67 0.030 2.37 7.28 0.2 60 2.71 12.25 0.32 <0.02 23.8 3.5 35 1.55 R145633 2.17 0.005 0.10 6.73 0.3 780 0.96 0.43 0.12 <0.02 23.8 3.5 35 1.55 R145633 2.17 0.005 0.10 6.73 0.3 780 0.96 0.43 0.12 <0.02 23.8 3.5 35 1.55 R145633 2.17 0.005 0.10 6.73 0.3 780 0.96 0.43 0.12 <0.02 23.8 3.5 35 1.55 R145633 2.17 0.005 0.10 6.73 0.3 780 0.96 0.43 0.12 <0.02 23.8 3.5 35 1.55 R145633 2.17 0.005 0.10 6.73 0.3 780 0.96 0.43 0.12 <0.02 23.8 3.5 35 1.55 R145633 2.17 0.005 0.10 6.73 0.3 780 0.96 0.43 0.12 <0.02 23.8 3.5 35 1.55	3																
R145617 2.72 0.033 0.48 7.39 0.8 930 0.70 1.51 0.30 <0.02																	
R145618 1.24 0.049 0.30 5.44 0.4 250 1.03 1.62 0.09 <0.02 56.6 4.7 26 1.12 R145619 3.81 0.053 1.44 7.87 0.6 220 1.54 10.65 0.09 0.03 57.5 46.9 238 5.77 R145620 5.40 0.009 0.59 8.49 1.2 450 1.30 5.28 0.06 0.02 72.6 24.3 74 5.06 R145621 3.64 <0.005	1																
R145619																	
R145620 5.40 0.009 0.59 8.49 1.2 450 1.30 5.28 0.06 0.02 72.6 24.3 74 5.06 R145621 3.64 <0.005	R145618		1.24	0.049		0.30	5.44	0.4	250	1.03	1.62	0.09	<0.02	56.6	4.7	26	1.12
R145621 3.64 <0.005	1		1														
R145622 1.70 0.010 2.51 7.42 0.7 190 1.76 6.19 0.08 0.06 243 43.6 57 8.19 R145623 4.69 <0.005	1																
R145623 4.69 <0.005																	
R145624 1.93 <0.005																	
R145625 2.38 0.012 0.54 7.48 0.4 290 2.63 2.18 0.47 <0.02							8.05	0.5	320					36.9			
R145626 1.13 <0.005	N .																
R145627 1.95 <0.005																	
R145628 1.89 0.006 0.04 6.75 <0.2 830 1.26 0.24 0.17 <0.02 130.0 2.2 9 1.53 R145629 2.04 0.084 13.90 7.45 0.8 170 2.59 63.0 0.15 <0.02																	
R145629 2.04 0.084 13.90 7.45 0.8 170 2.59 63.0 0.15 <0.02																	
R145630 0.93 <0.005							6.75	<0.2						130.0	2.2		1.53
R145631 2.67 0.030 2.37 7.28 0.2 60 2.71 12.25 0.32 <0.02	1																
R145632 1.10 0.057 5.01 8.95 0.7 330 3.94 20.3 0.32 <0.02																	
R145633 2.17 0.005 0.10 6.73 0.3 780 0.96 0.43 0.12 <0.02 23.8 3.5 35 1.55																	
	B																
040 000 047 040 000	R145633		2.17	0.005		0.10	6.73	0.3	780	0.96	0.43	0.12	<0.02	23.8	3.5	35	1.55
	R145634		2.12	0.005		0.17	6.18	0.3	790	0.83	1.40	0.18	<0.02	55.4	5.3	14	2.04
R145635 3.13 0.007 0.40 6.70 <0.2 700 1.46 2.07 0.15 <0.02 37.2 9.3 30 3.48	E .																
R145636 2.76 0.014 0.28 7.69 <0.2 600 1.84 3.45 0.18 <0.02 17.65 17.0 46 2.81																	
R145637 2.20 0.010 0.40 8.35 0.4 160 3.41 3.07 0.34 0.03 19.15 42.3 121 10.60		Ì															
R145638 2.46 0.008 0.37 8.47 0.6 160 3.62 3.23 0.35 0.02 22.1 71.9 138 12.55																	12.55
R145639 2.61 0.015 0.71 7.65 0.6 150 2.97 3.74 0.38 <0.02 30.1 45.4 133 9.80																	
R145640 3.16 0.012 0.45 6.99 1.1 330 1.84 3.94 0.16 0.05 60.7 27.4 49 5.27		ı															
R145641 2.67 <0.005 0.04 6.87 <0.2 820 0.98 0.07 0.27 <0.02 19.50 1.7 8 1.62																	
R145642																	
R145643 3.67 <0.005 0.04 7.17 <0.2 960 1.01 0.04 0.59 0.02 173.5 1.6 10 1.62	K145643		3.67	<0.005		0.04	7.17	<0.2	960	1.01	0.04	0.59	0.02	173.5	1.6	10	1.62

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 4 - B Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 **Compte: SOQVAL**

2.5

Projet: 1388/1389

9.3

88.7

0.25

110

5.92

2.04

5.8

Minera		Proje	et: 1388/	1389												
									(CERTIF	ICAT D	'ANAL'	/SE V	O1416	0281	
Description échantillon	Méthode	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	élément	Cu	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni
	unités	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm
	L.D.	0.2	0.01	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2
R145604		>10000	5.23	20.5	0.16	3.4	0.139	1.34	24.4	57.6	2.29	151	12.90	3.13	7.9	66.0
R145605		8530	3.98	20.4	0.17	3.8	0.132	0.71	25.6	96.5	3.53	187	97.1	3.52	4.6	79.0
R145606		1240	3.79	18.15	0.15	2.6	0.033	3.02	21.3	29.4	1.17	123	6.67	2.40	6.5	50.3
R145607		637	6.12	18.85	0.14	3.2	0.053	2.19	25.0	35.2	1.44	163	6.56	2.70	5.7	70.8
R145608		467 26.9	5.17 0.87	20.1	0.14	3.9	0.038	2.76	18.7	32.4	1.28	263	71.8	2.70	10.7	44.1
R145609 R145610 R145611		46.0 4070	0.97 2.25	12.35 15.70 17.45	0.15 0.17 0.17	8.2 7.0 2.7	0.007 0.009 0.116	4.19 4.38 3.13	4.2 4.6 20.9	9.7 15.4 33.7	0.37 0.61 1.20	83 86 122	11.95 4.74 55.9	1.87 2.47 2.81	5.1 9.4 7.0	4.2 4.5 24.5
R145612		35.8	2.22	16.65	0.17	2.6	0.008	5.09	10.6	87.7	2.58	300	96.8	0.63	8.4	11.1
R145613		48.8	1.45	14.05	0.19	2.2	0.007	5.61	5.3	28.8	1.15	172	116.0	1.15	13.9	5.5
R145614		1250	2.79	18.00	0.23	2.2	0.015	3.85	24.5	15.7	0.56	101	6.44	2.60	6.4	30.7
R145615		1340	0.66	10.40	0.20	2.3	0.025	4.31	13.3	8.0	0.26	55	124.0	1.54	1.3	6.3
R145616		398	1.87	16.10	0.25	1.6	0.026	5.20	8.9	49.5	1.99	183	594	1.38	8.7	13.7
R145617		516	1.14	15.80	0.22	2.9	0.041	5.35	25.3	19.0	0.89	106	27.7	1.82	10.5	7.1
R145618 R145619		50.9 2440	4.01	12.85	0.15 0.19	3.2	0.013 0.089	2.16	28.8 26.5	29.2 42.7	1.21	110	7.80	2.32	7.0	14.3 62.6
R145620		91.3	3.46	18.70	0.21	4.4	0.039	3.40	33.6	30.9	1.41	133	125.0	3.13	5.1	31.8
R145621		67.2	3.09	22.4	0.23	4.5	0.055	3.48	71.4	36.1	1.66	150	52.9	3.10	6.1	15.9
R145622		4320	6.17	20.9	0.32	2.8	0.136	2.17	129.5	43.4	1.99	192	93.3	1.67	4.7	66.4
R145623		67.4	6.14	17.65	0.17	1.7	0.084	0.62	17.0	14.4	2.85	1310	3.50	2.67	4.4	190.0
R145624		36.9	0.80	12.75	0.24	1.9	0.009	5.32	93.4	20.6	0.72	95	9.18	1.42	6.0	6.5
R145625		21.0	1.61	21.9	0.53	4.3	0.042	3.00	373	61.0	2.20	201	41.4	2.08	7.3	16.0
R145626		25.7	0.85	13.30	0.18	2.8	0.008	3.29	10.9	30.0	1.09	106	1.21	2.82	5.4	7.9
R145627		53.8	1.70	22.7	0.21	3.7	0.046	4.25	73.3	41.7	1.41	144	7.59	1.21	6.5	15.4
R145628		33.0	0.89	15.60	0.16	4.7	0.019	4.80	75.9	28.2	0.82	96	83.0	2.02	4.7	6.3
R145629		1820	4.29	23.3	0.21	3.8	0.092	1.44	57.8	159.0	5.95	611	1700	1.72	8.8	26.9
R145630		2.5	0.28	0.67	0.09	0.3	<0.005	0.03	12.6	5.5	0.01	30	1.06	0.01	0.2	1.2
R145631		>10000	3.71	23.3	0.20	3.5	0.389	1.10	62.9	100.5	3.84	343	261	3.51	11.5	17.8
R145632		81.2	3.55	37.0	0.52	4.5	0.084	3.99	360	145.0	5.24	451	683	0.31	13.4	29.4
R145633		78.6	0.64	13.65	0.15	3.7	0.013	4.18	12.6	17.5	0.58	68	11.40	2.35	3.7	7.5
R145634		195.5	0.74	11.95	0.19	3.1	0.019	4.52	27.5	9.8	0.30	51	12.05	1.70	5.9	7.2
R145635		50.6	1.62	14.80	0.19	3.5	0.029	4.65	22.7	41.1	1.23	118	105.5	1.41	9.6	14.3
R145636		382	1.84	21.2	0.18	3.8	0.037	4.80	9.0	30.4	1.01	101	79.4	2.11	11.0	24.6
R145637		356	4.51	26.1	0.14	4.0	0.080	2.52	9.1	48.0	1.68	150	43.2	2.47	9.6	61.6
R145638		915	6.99	25.3	0.14	4.1	0.111	3.08	11.4	41.5	1.61	138	5.96	1.65	7.3	87.6
R145639		335	5.80	24.7	0.11	3.6	0.083	3.07	14.7	56.6	2.18	200	262	0.80	9.2	64.6
R145640		885	3.17	17.10	0.13	2.7	0.064	3.23	34.4	39.1	1.36	128	29.2	2.01	7.7	61.0
R145641		14.9	0.79	14.75	0.16	3.2	0.013	4.65	9.8	12.7	0.47	82	19.05	2.10	7.6	2.8
R145642		19.4	0.68	9.39	0.15	2.4	0.015	3.76	6.4	9.9	0.38	64	40.8	1.02	0.4	4.6

4.7

0.013

5.24

Commentaire: SOQVAL-1

R145643

0.89

15.85

0.25

12.2

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 4 - C Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 Compte: SOQVAL

Projet: 1388/1389

mmera	113								İ	CERTIF	ICAT D	'ANAL	/SE V	O1416	0281	
Description échantillon	Méthode élément unités L.D.	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02
R145604		340	27.1	90.8	0.005	3.81	0.08	14.8	3	1.8	135.0	1.09	0.31	5.5	0.276	0.48
R145605		1100	22.6	16.7	0.011	2.10	0.11	14.4	3	1.0	103.0	0.40	0.16	8.2	0.315	0.25
R145606		510	31.8	112.5	0.002	1.59	0.05	10.2	2	8.0	161.0	1.04	0.11	8.4	0.197	0.61
R145607		550	31.8	87.1	0.003	2.86	0.06	12.1	2	1.5	138.0	0.64	0.18	6.0	0.235	0.52
R145608		240	79.1	114.5	0.004	1.82	0.06	12.4	3	8.0	142.0	0.95	0.29	11.5	0.235	0.69
R145609		330	24.7	147.5	<0.002	0.06	0.05	1.9	<1	0.6	153.5	0.38	< 0.05	4.5	0.054	0.80
R145610		150	22.4	154.5	< 0.002	0.02	0.05	3.5	<1	0.8	149.0	0.73	< 0.05	9.7	0.097	0.80
R145611		290	34.3	115.5	0.004	0.93	0.07	7.3	2	0.8	120.0	1.32	0.10	10.1	0.152	0.66
R145612		120	33.2	167.5	<0.002	0.22	0.05	3.3	1	0.7	134.5	1,14	0.06	14.7	0.067	1.29
R145613		1900	49.2	178.0	<0.002	0.15	<0.05	3.7	1	1.3	163.5	1.29	<0.05	25.4	0.122	1.05
R145614		290	51.2	132.5	<0.002	1.29	0.05	4.8	2	0.8	192.0	1.25	0.10	12.3	0.126	0.73
R145615		500	53.5	144.5	<0.002	0.17	0.03	4.6 0.7	1	0.6	129.5	0.24	0.10	19.0	0.126	0.73
R145616		1120							31		130.0	0.24				
1			164.0	151.5	0.092	0.08	0.06	5.4		0.8			<0.05	9.8	0.089	1.48
R145617		1070	35.7	160.0	<0.002	0.06	0.05	4.0	3	1.1	144.0	1.12	0.05	9.8	0.105	1.18
R145618		170	11.4	74.3	<0.002	0.03	<0.05	3.5	1	1.2	57.0	0.72	<0.05	14.4	0.072	0.42
R145619		260	33.6	115.5	0.009	2.46	0.08	14.6	10	1.0	33.3	0.64	0.29	5.3	0.318	0.63
R145620		190	84.3	130.5	0.018	1.56	0.05	11.6	4	1.0	64.6	0.36	0.31	5.4	0.331	0.83
R145621		330	44.2	141.5	0.005	0.52	0.05	13.5	2	1.5	55.7	0.46	0.42	5.1	0.321	0.87
R145622		400	95.9	142.0	0.021	4.05	0.06	14.1	7	1.4	12.8	0.47	0.86	5.8	0.218	0.74
R145623		630	10.6	25.4	0.002	0.43	<0.05	33.5	2	1.6	450	0.23	0.13	2.6	0.436	0.27
R145624		720	27.7	179.0	<0.002	0.01	<0.05	3.5	1	0.5	145.0	0.44	<0.05	9.2	0.072	1.01
R145625		1630	11.5	136.5	0.003	0.01	0.05	9.8	1	1.1	53.1	0.72	0.10	19.6	0.109	0.72
R145626		110	13.3	111.5	< 0.002	< 0.01	<0.05	4.0	<1	0.5	84.0	0.56	0.05	19.8	0.087	0.62
R145627		240	14.9	213	0.003	0.44	´ <0.05	12.1	2	1.3	69.1	0.49	0.15	15.6	0.197	0.98
R145628		280	23.0	177.0	0.016	0.04	< 0.05	2.5	1	0.4	131.0	0.46	< 0.05	29.8	0.062	1.03
R145629		310	180.0	69.9	0.127	0.26	0.09	11,3	25	0.7	38.0	1.43	0.42	15.6	0.177	1.23
R145630		20	0.9	1.8	< 0.002	< 0.01	< 0.05	0.1	<1	<0.2	1.4	< 0.05	< 0.05	1.9	0.012	0.02
R145631		620	49.3	34.2	0.022	1.28	<0.05	13.7	28	1.0	38.6	1.03	0.16	6.3	0.322	0.59
R145632		720	55.8	162.0	0.059	0.07	0.10	20.6	11	1.7	54.1	0.91	0.45	22.6	0.297	1.60
R145633		130	21.0	153.5	<0.002	0.09	0.08	3.6	<1	0.4	124.0	0.33	0.05	16.9	0.064	0.94
R145634	-	460	27.1	155.5	0.005	0.31	0.08	2.6	1	0.4	131.0	0.52	0.07	26.1	0.068	1.10
R145635		210	24.3	193.5	0.004	0.63	0.09	5.0	2	0.8	100.5	0.65	0.16	9.3	0.138	1.25
R145636		110	30.6	199.5	0.004	1.08	0.03	6.1	2	1.0	111.5	1.19	0.10	6.9	0.123	1.23
R145637		390	11.9	219	0.007	3.23	0.12	19.3	5	1.4	19.2	0.77	0.19	5.9	0.123	1.35
R145638		320	13.3	264	0.007	6.30	0.10	18.6	8	1.2	23.0	0.77	0.25	5. 9 5.4	0.351	1.55
R145639		610	14.5	272	0.031	4.54	0.08	16.1	6	1.4	18.1	0.63	0.38	5.9	0.314	1.81
R145640		100	43.6	159.0	0.003	2.24	0.07	6.4	4	0.8	68.3	0.83	0.31	17.6	0.314	0.92
R145641		230	27.0	171.0	<0.003	0.05	0.07	2.6	" <1	0.6	168.5	0.59	<0.05	5.8	0.139	1.06
R145642		40	17.5	143.5	<0.002	0.03	0.09	1.3	<1	0.6	87.9	0.59	<0.05	7.2	0.073	0.88
R145643		350	40.2	181.5	<0.002	0.03	0.09	2.3	1	0.4	226	0.13	<0.05	47.6	0.008	1.15
1143043		330	70.2	101.5	~U.UUZ	0.02	0.09	2.3	1	0.8	220	0.54	~ 0.05	41.0	0.000	1.10

À: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 4 - D Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 **Compte: SOQVAL**

Projet: 1388/1389

malera	13								(CERTIF	ICAT D'ANALYSE	VO14160281
Description échantillon	Méthode élément unités L.D.	ME-MS61 U ppm 0.1	MÉ-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Cu-OG46 Cu % 0.001	Zn-OG46 Zn % 0.001	Pb-OG46 Pb % 0.001	Ag-OG46 Ag ppm 1	
R145604		2.4	86	0.5	8.4	51	130.0	1.155				
R145605		5.2	129	1.1	11.3	65	155.0	0.863				
R145606		3.3	76	0.4	10.9	41	102.0					
R145607		4.4	84	7.6	10.6	57	120.0					
R145608		5.6	103	0.6	6.7	58	135.5					
R145609		2.5	8	0.1	5.9	9	275					
R145610		2.3	27	0.3	3.6	12	237					
R145611		4.1	57	0.1	6.5	28	96.6					
R145612		5.9	23	0.3	4.8	66	79.3					
R145613		7.4	18	0.1	26.8	35	68.2					
R145614		5.0	43	0.3	7.9	24	78.8					
R145615		5.2	9	0.1	7.3	10	68.3					
R145616		75.9	310	0.3	18.7	39	49.5					
R145617		10.1	62	0.1	15.8	16	73.9					
R145618		2.9	65	0.3	3.7	18	101.0					
R145619		3.0	134	0.3	8.7	37	128.0					
R145620		3.5	137	0.7	7.4	29	165.0					
R145621		4.6	180	0.6	7.7	37	169.0					
R145622		10.7	185	0.4	10.2	48	105.5					
R145623		0.8	205	0.4	13.4	112	62.3					
R145624		2.0	63	0.2	7.8	16	67.2	•		_		
R145625		11.5	151	0.1	10.6	47	136.5					
R145626		1.5	29	0.2	3.8	23	96.4					
R145627		7.6	77	0.3	8.0	26	126.5					
R145628		4.7	14	0.2	4.7	19	151.0					
R145629		93.8	326	0.3	7.6	150	125.0					
R145630		0.3	1	0.1	3.2	<2	9.8					
R145631		26.3	207	0.4	8.1	85	119.5	1.370				
R145632		55.0	371	0.3	13.3	114	150.5					
R145633		2.3	23	0.2	3.6	12	121.0					
R145634		4.7	16	0.1	7.6	6	98.6					
R145635		7.6	35	0.3	6.7	25	113.0					
R145636		6.6	36	1.2	6.0	22	105.0					
R145637		5.1	134	0.4	9.4	35	141.0					
R145638		2.6	121	0.3	13.8	31	150.0					
R145639		2.9	138	0.3	15.3	47	126.5					
R145640		5.8	47	0.2	5.1	35	89.8					
R145641		1.3	10	0.4	4.1	13	110.5					
R145642		1.7	7	0.1	1.7	7	76.0					
R145643		2.9	8	0.2	9.5	17	154.5					
		2.0	•	0.2	0.0	• • •						

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 5 - A Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 Compte: SOQVAL

Projet: 1388/1389

										CERTIF	ICAT D	'ANAL'	/SE \	<u>/01416</u>	0281	
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-MS61 Ag ppm 0.01	ME-MS61 AI % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-M\$61 Cr ppm 1	ME-MS61 Cs ppm 0.05
R145644		2.44	0.017		0.37	6.09	<0.2	800	0.49	1.12	0.30	<0.02	26.5	2.5	12	1.30
R145645		2.43	<0.005		0.27	5.64	2.2	620	0.88	0.61	0.17	<0.02	20.0	3.9	10	1.40
R145646		2.16	0.005		3.72	5.46	2.2	510	1.51	0.98	0.36	< 0.02	102.0	10.2	28	1.40
R145647		0.11	0.851	0.85	67.3	3.84	488	50	0.60	25.9	1.85	214	24.9	19.6	37	0.82
R145648		1.89	0.008		0.56	7.41	0.7	550	1.24	2.63	0.28	0.15	>500	3.6	19	3.17
R145649		2.71	0.025		0.97	7.03	<0.2	490	1.39	0.06	0.44	0.02	41.5	4.3	46	5.56
R145701		5.70	<0.005		0.06	8.01	0.5	50	0.32	0.11	8.70	0.16	13.60	45.2	244	1.54
R145702		6.50	<0.005		0.08	8.33	0.2	270	0.53	0.17	6.95	0.14	15.80	49.2	266	5.23
R145703		5.90	<0.005		0.07	8.07	0.2	240	0.37	0.12	7.05	0.16	14.40	46.7	281	2.97
R145704		6.25	<0.005		0.09	8.13	0.2	170	0.29	0.08	5.15	0.24	7.43	49.4	283	1.94
R145705		4.59	<0.005		0.21	8.14	0.3	250	0.35	0.23	5.60	0.13	8.18	45.3	269	2.08
R145706		7.45	0.011		0.59	7.22	0.5	110	0.43	0.93	6.18	0.50	14.45	47.1	243	5.19
R145707		4.20	0.007		0.59	7.91	1.1	400	0.43	0.79	6.48	0.96	12.90	34.0	241	5.63
R145708		3.42	<0.005		0.53	7.33	0.6	420	0.48	0.91	5.21	1.48	16.60	35.2	217	6.11
R145709		2.37	<0.005		0.25	7.91	0.6	190	0.64	0.37	6.50	1.49	22.5	35.9	212	4.98
R145710		3.96	<0.005		0.17	8.13	0.6	210	0.38	0.11	7.61	0.08	12.45	42.7	242	3.35
R145711		5.79	< 0.005		0.58	6.18	0.4	70	0.46	0.96	3.78	1.16	27.6	51.0	149	5.11
R145712		4.62	< 0.005		0.24	8.01	0.5	130	0.23	0.42	8.12	0.09	10.35	37.8	259	5.39
R145713		3.20	<0.005		0.26	8.52	0.4	140	0.44	0.66	8.49	0.10	10.30	17.8	249	2.69
R145714		2.31	<0.005		0.53	7.41	0.3	230	0.54	0.73	6.37	0.64	22.9	37.6	148	4.16
R145715		4.16	0.006		0.07	8.61	0.3	150	0.42	0.09	8.01	0.06	15.70	57.7	273	2.37
R145716		3.71	0.008		0.04	8.36	<0.2	240	0.41	0.12	6.84	0.06	14.50	45.9	263	1.52
R145717		2.51	0.021		0.09	7.01	0.2	90	0.49	0.75	7.59	0.16	8.12	43.5	205	1.41
R145718		2.81	0.010		0.06	7.64	0.2	150	0.40	0.54	7.99	0.17	8.61	45.3	212	1.38
R145719		3.42	0.011		0.05	7.44	0.9	80	0.34	0.40	7.73	0.16	8.64	45.5	196	1.04
R145720		3.06	0.028		0.06	7.51	0.4	130	0.34	0.31	7.20	0.16	8.59	44.9	209	2.85
R145721		<0.02	0.005		0.07	7.20	0.2	130	0.34	0.30	7.16	0.17	8.14	46.1	208	2.60
R145722		1.75	0.011		0.08	7.69	<0.2	160	0.34	0.25	7.20	0.19	11.15	45.5	218	5.76
R145723		3.95	0.010		0.07	7.91	0.3	200	0.26	0.21	6.68	0.14	8.45	42.7	216	3.56
R145724		5.17	0.022		0.07	7.94	0.3	160	0.33	0.23	7.30	0.18	8.65	49.4	232	2.70
R145725		1.08	0.005		0.10	8.36	<0.2	100	0.51	0.35	9.03	0.25	9.37	47.8	239	2.61
R145726		2.84	0.007		0.02	8.38	0.2	90	0.40	0.23	7.36	0.16	8.87	48.5	234	1.36
R145727		1.59	0.005		0.03	8.04	0.6	100	0.46	0.22	7.70	0.14	8.69	43.4	213	2.15
R145728		3.93	0.023		0.07	7.80	0.3	140	0.37	0.28	7.60	0.20	9.52	48.5	217	1.77
R145729		2.70	<0.005		0.05	7.71	<0.2	60	0.25	0.39	8.23	0.15	9.68	43.6	207	1.60
R145730		1.76	0.009		0.06	7.84	<0.2	190	0.45	0.28	7.54	0.21	9.62	47.2	218	2.18
R145731		3.82	0.005		0.52	6.13	0.2	310	0.60	1.54	4.76	2.18	18.55	54.8	143	1.79
R145732		3.67	0.008		0.38	7.04	0.5	280	0.73	1.07	5.38	1.01	69.3	37.8	84	2.13
R145733		2.65	0.012		0.49	6.27	<0.2	380	0.55	1.01	5.48	0.35	27.0	47.3	144	2.56
R145734	l	2.55	0.007		0.05	8.25	<0.2	100	0.44	0.12	7.91	0.08	17.70	51.1	210	1.46

www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 5 - B Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 Compte: SOQVAL

Projet: 1388/1389

	1.3									CERTIF	ICAT D	'ANAL	/SE V	O1416	0281	
Description échantillon	Méthode élément unités L.D.	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2
R145644		120.0	0.67	11.80	0.19	1.4	0.012	4.74	11.5	10.3	0.37	64	129.0	1.61	10.2	6.2
R145645		350	0.93	12.20	0.15	4.8	0.014	3.56	10.6	9.0	0.31	50	56.7	1.87	2.4	10.6
R145646		2730	1.24	13.00	0.20	3.1	0.041	2.08	53.4	21.1	0.75	63	355	2.17	4.1	17.8
R145647		5230	9.33	14.25	0.25	1.1	2.94	0.71	11.8	11.0	0.87	513	23.2	1.22	4.4	46.0
R145648		16.5	0.67	21.7	1.21	2.5	0.018	4.55	580	14.8	0.56	51	30.9	2.78	9.1	6.9
R145649		12.0	4.56	16.80	0.14	4.7	0.026	3.92	21.2	35.1	0.63	419	3.42	2.02	12.4	15.9
R145701		83.4	6.11	16.65	80.0	0.7	0.068	0.18	5.7	29.9	3.40	1550	0.58	0.83	2.3	76.9
R145702		124.0	6.77	17.60	0.07	1.1	0.068	0.93	7.0	98.4	3.82	1420	0.70	1.47	3.9	80.8
R145703		65.4	6.14	16.75	0.07	0.8	0.072	0.52	5.9	58.0	3.84	1390	0.50	1.62	2.5	91.9
R145704		54.7	6.36	17.65	0.06	0.9	0.072	0.34	2.9	77.5	3.73	1380	0.42	2.66	2.0	86.0
R145705		70.8	5.22	17.95	0.07	0.5	0.116	0.50	3.2	59.3	3.59	1620	0.31	2.79	2.0	77.9
R145706		273	13.00	15.65	0.08	0.4	0.206	0.91	6.3	26.9	1.86	1900	1.00	0.98	2.6	101.0
R145707		181.0	7.68	17.80	0.07	0.4	0.254	1.18	5.6	30.7	2.27	2110	0.72	1.48	2.6	68.1
R145708		240	8.11	17.70	0.08	0.6	0.273	1.62	7.4	25.6	2.05	1850	1.43	1.47	3.0	66.1
R145709		121.0	5.64	19.90	0.07	0.8	0.181	0.79	10.1	59.0	2.61	1750	1.72	1.85	4.7	76.3
R145710		139.0	4.84	19.15	0.07	0.7	0.071	0.68	4.9	46.9	2.71	1550	0.55	1.73	3.9	104.5
R145711		397	12.20	16.10	0.08	0.8	0.151	0.77	13.2	52.1	1.44	1210	1.10	1.14	3.9	108.0
R145712		77.6	7.59	16.85	0.06	0.6	0.143	0.49	4.2	54.6	3.30	2800	0.28	0.92	2.2	64.3
R145713		94.0	5.59	20.5	0.06	0.5	0.250	0.34	4.2	83.2	3.16	2860	0.43	1.26	2.4	57.1
R145714		404	7.35	18.40	0.07	0.6	0.154	0.61	10.5	39.9	2.09	1930	0.91	1.45	4.0	87.4
R145715		100.5	5.54	20.2	0.08	0.7	0.077	0.42	6.1	45.2	3.00	1740	0.42	1.87	4.3	203
R145716	i	67.3	4.14	20.4	0.08	0.7	0.081	0.28	5.5	23.9	2.74	1200	0.36	2.59	4.4	106.0
R145717		132.0	11.15	14.60	0.08	0.8	0.063	0.32	3.1	81.7	3.71	4270	4.92	1.18	1.8	72.9
R145718		85.2	10.35	15.15	0.07	0.8	0.072	0.26	3.5	78.2	3.87	3620	0.76	1.40	2.1	74.8
R145719		99.5	8.58	15.90	0.07	0.7	0.061	0.22	3.5	60.3	3.61	2530	0.72	1.38	2.2	74.3
R145720		87.4	8.35	16.20	0.09	0.8	0.057	0.36	3.4	72.3	3.63	2510	3.03	1.66	2.0	73.2
R145721		88.8	8.31	16.25	0.08	0.7	0.061	0.35	3.2	72.0	3.54	2480	2.29	1.66	2.1	72.8
R145722		125.5	7.97	16.75	0.09	0.8	0.058	0.44	4.7	135.0	3.83	2280	0.68	1.49	2.4	75.4
R145723		153.5	5.71	17.65	0.09	0.7	0.062	0.34	3.3	70.5	3.11	1670	0.32	1.73	2.0	69.2
R145724		155.5	6.86	17.75	0.09	0.7	0.067	0.23	3.4	67.5	3.55	1820	7.79	1.80	2.3	76.4
R145725		256	8.27	18.20	0.08	0.7	0.061	0.27	3.9	85.2	3,94	1950	26.9	1.07	2.0	76.4
R145726	i	11.8	5.47	17.85	0.07	0.7	0.070	0.14	3.6	31.2	3.28	1600	1.07	2.33	2.4	77.1
R145727	į	55.5	5.65	17.05	0.07	0.7	0.062	0.17	3.7	55.5	3.09	1610	0.50	1.56	2.2	71.7
R145728	J	121.5	7.58	15.25	0.07	0.7	0.067	0.29	3.9	32.5	3.35	2190	0.81	1.93	2.0	78.0
R145729		137.5	6.11	16.00	0.07	0.6	0.069	0.16	4.3	33.7	2.93	1740	0.40	1.36	2.0	66.5
R145730	<u>-</u>	112.0	7.20	14.75	0.07	0.7	0.062	0.35	4.1	37.3	3.34	2110	0.69	2.10	2.0	74.4
R145731		352	14.90	15.45	0.09	0.6	0.364	0.52	8.7	21.9	2.08	2210	1.98	1.91	2.6	100.5
R145732	ļ	195.5	8.83	19.55	0.12	1.0	0.279	0.68	32.0	78.1	2.47	2560	1.34	2.08	3.9	73.4
R145733	Į	136.0	12.90	15.80	0.08	0.8	0.210	0.73	12.3	50.2	2.53	2380	1.78	1.55	3.4	107.5
R145734		153.5	5.42	19.95	0.09	0.9	0.070	0.23	7.1	28.6	2.82	1420	0.45	1.79	4.2	102.0

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 5 - C Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 **Compte: SOQVAL**

Projet: 1388/1389

IIIInera	115									CERTIF	ICAT D	'ANAL	/SE V	O1416	0281	
Description échantillon	Méthode	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	élément	P	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	TI
	unités	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm
	L.D.	10	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.2	0.005	0.02
R145644		1110	40.5	153.5	0.002	0.04	0.07	3.6	1	1.8	133.0	0.83	0.15	11.8	0.101	1.08
R145645		50	34.2	122.5	0.003	0.36	0.07	1.1	1	0.8	124.0	0.41	0.08	6.5	0.026	0.75
R145646		210	43.9	78.8	0.027	0.59	0.42	2.8	1	0.5	136.0	1.29	0.11	34.2	0.062	0.62
R145647		520	6260	22.1	0.014	9.88	110.0	7.5	86	51.8	161.0	0.22	0.26	2.3	0.177	14.70
R145648		1800	34.6	170.0	<0.002	0.02	0.18	4.8	3	1.2	111.0	1.05	0.10	14.9	0.099	1.06
R145649 R145701 R145702 R145703 R145704		270 310 370 350 290	30.3 2.8 5.7 3.2 3.6	186.0 3.2 23.1 17.2 3.3	<0.002 <0.002 <0.002 <0.002 <0.002	0.05 0.27 0.56 0.30 0.65	0.09 0.16 0.12 0.13 0.09	4.8 43.4 42.6 42.6 42.9	2 1 1 1	1.2 0.6 0.7 0.6 0.7	161.5 221 200 157.5 150.0	0.88 0.16 0.25 0.17 0.14	<0.05 <0.05 0.05 <0.05 <0.05	24.4 0.6 1.0 0.9 0.3	0.121 0.486 0.514 0.465 0.507	1.24 0.07 0.48 0.22 0.19
R145705 R145706 R145707 R145707 R145708 R145709		300 280 310 310 460	10.5 10.1 16.2 16.3 7.9	9.7 47.2 36.5 58.7 26.3	<0.002 0.002 0.002 0.002 0.002 0.002	1.47 6.05 3.70 4.33 1.62	0.09 0.10 0.11 0.09 0.10	42.6 34.8 39.9 33.3 27.9	1 3 2 2	1.1 2.5 3.8 4.6 3.2	117.0 70.6 109.0 109.5 145.5	0.13 0.18 0.18 0.23 0.34	0.09 0.35 0.19 0.16 0.08	0.3 0.9 0.7 1.2 1.5	0.488 0.421 0.483 0.433 0.571	0.40 0.55 0.62 0.80 0.52
R145710		380	6.0	14.8	<0.002	0.42	0.11	31.6	1	0.9	179.5	0.27	0.07	0.5	0.629	0.44
R145711		370	10.9	34.7	0.003	7.60	0.10	19.8	3	2.3	77.1	0.31	0.33	2.3	0.329	0.50
R145712		290	8.5	22.9	<0.002	1.95	0.12	46.2	1	1.1	171.0	0.15	0.10	0.4	0.480	0.28
R145713		290	7.7	10.3	<0.002	1.94	0.12	45.9	2	2.3	136.0	0.16	0.09	0.4	0.497	0.22
R145714		530	10.6	18.1	<0.002	4.00	0.07	21.6	2	2.7	177.5	0.29	0.24	1.8	0.450	0.26
R145715 R145716 R145717 R145718 R145719		420 420 230 240 280	5.9 3.2 2.3 1.9 2.5	10.5 3.4 13.1 11.2 7.3	<0.002 <0.002 0.002 <0.002 <0.002	0.20 0.09 0.23 0.13 0.15	0.11 0.09 0.10 0.08 0.10	36.0 33.1 40.3 42.0 43.6	1 1 1 1 1	1.0 0.9 0.9 0.9 0.7	192.5 189.5 101.5 120.0 115.0	0.29 0.30 0.12 0.14 0.14	<0.05 <0.05 0.05 <0.05 <0.05	0.6 0.6 0.3 0.3	0.677 0.684 0.413 0.453 0.434	0.25 0.12 0.13 0.10 0.13
R145720 R145721 R145722 R145723 R145724		250 230 270 270 270	2.2 2.1 3.3 2.2 2.0	22.8 18.3 33.5 18.0 7.7	0.002 0.002 <0.002 <0.002 0.013	0.13 0.13 0.21 0.26 0.32	0.08 0.08 0.11 0.10 0.09	46.1 41.7 47.7 46.5 48.7	1 1 1 2 1	0.5 0.5 0.6 0.6 0.7	163.5 165.0 188.0 138.0 121.0	0.14 0.13 0.15 0.14 0.15	<0.05 <0.05 <0.05 0.05 <0.05	0.3 0.3 0.5 0.3	0.441 0.437 0.452 0.466 0.470	0.20 0.18 0.29 0.22 0.14
R145725		250	1.8	14.3	0.039	0.62	0.12	51.4	2	0.8	117.0	0.14	0.08	0.4	0.460	0.17
R145726		280	2.5	2.3	0.002	0.01	0.08	47.1	1	0.7	148.5	0.16	<0.05	0.4	0.498	0.08
R145727		260	2.0	4.8	0.003	0.10	0.09	45.7	1	0.6	138.5	0.15	<0.05	0.3	0.459	0.09
R145728		260	4.6	7.3	<0.002	0.54	0.07	44.5	1	0.6	208	0.14	0.06	0.4	0.450	0.08
R145729		250	2.5	5.4	<0.002	0.36	<0.05	41.8	1	0.7	130.5	0.13	0.05	0.4	0.449	0.07
R145730		270	8.6	12.3	<0.002	0.49	0.05	43.2	1	0.6	291	0.13	<0.05	0.3	0.461	0.12
R145731		290	12.3	19.3	0.005	5.67	<0.05	27.3	4	3.6	299	0.19	0.46	1.3	0.328	0.18
R145732		880	17.9	31.6	0.002	3.28	0.10	21.1	2	3.9	405	0.24	0.20	4.7	0.740	0.27
R145733		470	7.3	30.9	0.004	4.64	0.10	24.2	3	2.5	154.0	0.24	0.34	2.0	0.537	0.30
R145734		450	2.8	6.3	0.002	0.20	0.08	37.3	2	0.8	219	0.28	0.05	0.7	0.665	0.05

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 5 - D Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 Compte: SOQVAL

Projet: 1388/1389

mmera										CERTIF	ICAT D'ANALYSE	VO14160281
Description échantillon	Méthode élément unités L.D.	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Cu-OG46 Cu % 0.001	Zn-OG46 Zn % 0.001	Pb-OG46 Pb % 0.001	Ag-OG46 Ag ppm 1	
R145644		42.7	34	0.3	16.0	6	40.4					
R145645		2.2	6	0.3	1.8	12	162.0					
R145646		5.4	25	0.2	4.9	11	108.0					
R145647		2.2	74	1.2	11.5	>10000	33.0	0.530	3.98	0.621	65	
R145648		8.6	82	0.3	14.3	39	73.2					
R145649		4.0	28	0.1	7.0	45	143.5					
R145701		0.2	266	0.7	16.0	103	14.6					
R145702		0.4	274	0.5	15.6	132	37.3					
R145703		0.2	260	0.4	16.2	117	23.2					
R145704		0.1	287	0.2	14.3	156	29.7					
R145705		0.2	283	0.5	14.9	223	12.0				<u></u>	
R145706		0.3	207	8.0	14.1	292	10.6					
R145707		0.3	239	0.8	14.5	469	9.1					
R145708		0.4	194	0.6	13.4	615	14.5					
R145709		0.6	218	0.9	17.2	530	23.2					
R145710		0.2	262	1.4	16.2	62	13.3					
R145711		0.6	116	0.5	11.7	468	24.4					
R145712		0.2	271	8.0	18.8	179	9.1					
R145713		0.3	287	1.4	18.6	121	7.9					
R145714		8.0	170	8.0	15.3	269	13.8					
R145715		0.3	278	1.3	20.2	71	15.1					
R145716		0.2	283	0.9	18.6	70	12.7					
R145717		0.1	234	0.4	17.9	100	21.1					
R145718		0.2	248	0.4	18.0	104	19.5					
R145719		0.2	242	0.7	17.1	100	16.0					
R145720		0.2	246	0.4	17.7	97	17.8	•				
R145721		0.2	244	0.4	17.0	97	15.9					
R145722		0.3	253	0.6	18.3	104	21.3					
R145723		0.1	258	0.4	14.5	79	18.7					
R145724		0.1	272	0.4	16.5	124	18.3					
R145725		0.2	268	0.6	17.7	150	17.5					
R145726	- 1	0.2	275	0.6	14.6	107	18.6					
R145727	- 1	0.2	247	0.8	14.2	98	15.0					
R145728	ļ	0.4	259	0.7	16.6	115	16.4					
R145729		0.3	262	0.6	15.2	106	15.3					
R145730		0.4	246	0.7	16.5	116	16.5					
R145731		0.4	152	0.8	12.8	819	15.6					
R145732	J	1.4	148	2.0	18.9	461	23.2					
R145733	ļ	0.5	190	1.1	17.9	246	23.5					
R145734		0.2	287	1.0	24.6	61	21.5					
						••						

600 AVENUE CENTRALE VAL-D OR QC J9P 1P8

Page: 6 - A Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 **Compte: SOQVAL**

CERTIFICAT D'ANALYSE VO14160281

Projet: 1388/1389

A: SOQUEM INC.

								-								
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05
R145735		1.54	<0.005		0.21	7.13	<0.2	240	0.46	0.63	6.48	0.27	19.80	45.0	188	2.67
R145736		2.89	0.005		0.50	8.37	2.5	400	1.38	0.73	0.66	0.46	56.5	45.2	134	1.16
R145737		2.16	<0.005		0.45	8.10	2.7	510	1.42	0.62	0.59	0.38	49.3	37.4	130	1.16
R145738		1.65	0.007		0.58	7.32	1.3	380	1.43	0.49	0.63	0.54	44.5	34.4	79	1.33
R145739		3.53	<0.005		0.04	6.35	<0.2	890	2.38	0.16	0.57	0.06	146.5	1.7	11	3.63
R145740		0.11	0.879	0.99	65.1	3.73	449	70	0.56	25.4	1.72	211	22.2	19.4	35	0.78
R145741	1	3.08	< 0.005		0.13	6.67	<0.2	970	1.48	0.09	0.67	0.12	41.1	3.7	11	2.57
R145742		2.90	<0.005		0.07	6.69	0.3	1020	0.91	0.06	0.60	0.06	20.2	2.6	9	1.92
R145743		2.55	0.007		0.19	6.60	8.4	1080	0.72	0.06	0.45	0.06	29.6	3.5	9	1.56
R145744		3.66	<0.005		0.04	6.47	0.2	980	0.77	0.03	0.75	0.04	14.20	1.9	9	1.90
R145745		2.63	0.008		0.07	6.54	<0.2	1160	0.45	0.04	0.24	<0.02	12.75	1.5	7	1.59
R145746	1	3.66	0.007		0.82	7.10	0.4	210	1.71	0.89	1.32	0.32	38.0	45.8	93	8.19
R145747		3.20	<0.005		0.05	7.08	0.9	1100	0.53	0.06	0.35	0.05	31.8	2.1	9	1.65
R145748		5.00	< 0.005		0.07	6.79	<0.2	1030	0.66	0.07	0.31	0.09	41.0	3.4	10	1.83
R145749		1.55	<0.005		0.95	5.46	1.8	60	1.78	1.14	0.46	0.53	30.7	42.5	47	0.72
R145750		3.78	0.005		0.79	8.26	1.1	480	1.87	0.78	0.88	0.17	46.4	38.4	118	3.66

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 6 - B Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 Compte: SOQVAL

Projet: 1388/1389

iiiiiiei a	13								(CERTIF	ICAT D	'ANAL	/SE V	O1416	0281	
Description échantillon	Méthode élément unités L.D.	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-M\$61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2
R145735		136.5	9.34	17.70	0.07	0.8	0.125	0.67	8.2	48.4	2.51	2710	11.65	1.29	4.1	93.1
R145736		352	9.16	19.75	0.12	4.0	0.062	1.87	27.5	43.2	1.34	369	7.52	3.03	6.3	97.9
R145737		300	7.65	18.70	0.11	3.7	0.042	2.17	23.7	38.2	1.22	304	6.86	3.03	6.5	90.9
R145738		263	6.63	17.00	0.11	3.3	0.044	1.96	21.6	31.9	0.88	328	19.45	2.44	5.5	76.0
R145739		4.1	0.91	15.25	0.19	3.5	0.013	4.81	76.8	8.6	0.19	175	25.2	1.93	8.5	2.6
R145740		5060	9.24	13.65	0.27	1.0	2.77	0.70	10.6	10.7	0.83	506	21.8	1.19	4.2	45.8
R145741	i	26.4	1.30	14.60	0.12	4.1	0.012	4.99	22.0	9.6	0.21	171	14.20	2.01	7.1	7.1
R145742		18.7	1.04	14.60	0.11	4.1	0.013	5.43	10.0	9.7	0.22	144	48.3	1.90	7.4	8.3
R145743		81.3	1.25	13.85	0.12	3.9	0.016	5.55	14.2	14.0	0.39	158	39.3	1.65	8.7	4.3
R145744		9.0	1.04	13.55	0.13	3.5	0.012	5.13	5.9	12.1	0.22	166	14.75	1.87	8.0	4.5
R145745		8.1	0.84	12.00	0.10	2.1	0.009	4.52	5.4	5.5	0.18	87	41.6	1.42	4.9	3.7
R145746		328	7.72	19.45	0.11	3.2	0.052	2.09	19.8	36.2	1.02	561	5.89	2.70	11.4	67.9
R145747	1	12.6	1.12	14.30	0.14	4.6	0.009	6.07	15.5	13.3	0.44	107	19.35	1.65	9.0	4.0
R145748	l	14.0	1.28	14.35	0.13	5.5	0.012	4.99	21.2	12.7	0.37	122	12.10	1.69	8.8	4.9
R145749		282	9.06	14.65	0.11	1.9	0.073	0.60	15.7	33.7	0.92	404	7.88	1.92	5.4	95.1
R145750		198.5	8.37	24.3	0.14	4.4	0.068	3.43	21.9	54.0	0.82	721	4.81	2.01	17.5	66.7

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 6 - C Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 **Compte: SOQVAL**

Projet: 1388/1389

CERTIFICAT	D'ANALYSE	VO141	60281

Description échantillon	Méthode élément unités L.D.	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02
R145735		410	6.8	22.9	0.010	1.85	0.08	28.7	2	1.5	113.0	0.28	0.12	1.2	0.536	0.21
R145736		490	195.5	99.6	0.007	4.19	< 0.05	17.4	4	0.9	135.0	0.44	0.26	5.9	0.359	0.54
R145737		590	149.0	101.5	0.007	3.66	<0.05	15.8	4	0.8	141.5	0.62	0.21	7.0	0.308	0.54
R145738		330	88.5	109.0	0.008	3.22	< 0.05	11.9	3	0.6	153.5	0.55	0.21	10.5	0.239	0.56
R145739		200	40.9	230	<0.002	0.03	<0.05	3.0	1	0.9	218	2.75	<0.05	41.1	0.068	1.39
R145740		500	5990	21.4	0.015	9.34	99.7	7.5	80	47.1	154.5	0.20	0.27	2.2	0.167	14.25
R145741		310	37.9	198.5	< 0.002	0.23	< 0.05	2.8	1	0.7	232	0.78	< 0.05	12.8	0.079	1.27
R145742		600	44.3	185.5	0.002	0.10	< 0.05	2.6	1	0.5	221	0.62	<0.05	10.0	0.072	1.23
R145743		1060	66.1	179.5	< 0.002	0.07	< 0.05	3.2	1	0.6	210	0.63	< 0.05	17.2	0.095	1.19
R145744		1410	36.8	179.5	<0.002	0.02	0.06	2.6	1	0.9	214	0.56	<0.05	8.1	0.079	1.15
R145745		690	40.3	143.0	<0.002	0.05	<0.05	1.6	1	0.8	198.0	0.46	<0.05	40.2	0.049	1.33
R145746		420	33.5	175.5	0.003	2.93	< 0.05	12.2	2	2.3	186.0	0.69	0.42	7.9	0.284	1.37
R145747		990	63.5	185.0	< 0.002	0.05	< 0.05	2.9	1	0.9	199.5	0.66	< 0.05	13.6	0.087	1.32
R145748		600	57.4	162.5	< 0.002	0.14	< 0.05	3.1	1	0.6	196.0	0.64	< 0.05	21.0	0.087	1.25
R145749		560	172.5	48.1	0.005	4.82	<0.05	7.3	4	0.8	89.1	0.79	0.38	4.8	0.146	0.29
R145750		350	26.1	262	0.002	2.69	<0.05	16.8	2	2.6	184.5	1.08	0.34	8.8	0.372	1.56

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 6 - D Nombre total de pages: 6 (A - D) plus les pages d'annexe Finalisée date: 13-NOV-2014 **Compte: SOQVAL**

Projet: 1388/1389

IIIInera	13									CERTIF	ICAT D'ANALYSE	VO14160281
Description échantillon	Méthode élément unités L.D.	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Cu-OG46 Cu % 0.001	Zn-OG46 Zn % 0.001	Pb-OG46 Pb % 0.001	Ag-OG46 Ag ppm 1	
R145735		0.3	216	1.0	20.3	146	17.0					
R145736		6.0	125	0.4	13.3	225	145.0					
R145737		6.3	107	0.3	13.6	182	135.5					
R145738		3.0	80	0.4	10.2	148	109.5					
R145739		1.7	11	0.1	6.5	33	110.5					
R145740		2.1	71	1.2	11.3	>10000	32.5	0.528	3.93	0.625	64	
R145741	i	1.4	13	0.2	5.5	48	137.0					
R145742		2.3	11	0.1	9.9	36	140.0					
R145743		3.0	14	0.2	14.6	23	133.5					
R145744		2.0	11	0.1	18.2	26	111.5					
R145745		6.7	6	0.1	9.6	9	64.0					
R145746		1.6	81	0.1	8.2	157	107.5					
R145747		1.9	11	0.2	13.5	23	150.0					
R145748		3.4	11	0.1	9.0	35	174.0					
R145749		1.7	45	0.3	12.3	156	68.4					
R145750		2.2	114	0.2	7.9	234	147.0					

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: Annexe 1 Total # les pages d'annexe: 1 Finalisée date: 13-NOV-2014

Compte: SOQVAL

Projet: 1388/1389

			CERTIFICAT D'ANA	LYSE VO14160281
		COMMENTAIRE DE C	ERTIFICAT	
**		COMMEN	TAIRES ANALYTIQUES	
Applique à la Méthode:	L'analyse des terres rares ME-MS61	peut être partiellement soluble avec c	ette méthode.	
		ADRESS	E DE LABORATOIRE	
		4 Rue Turcotte, Val d'Or, QC, Canada.		
Applique à la Méthode:	Au-AA23	Au-GRA21	CRU-31	CRU-QC
	LOG-22	LOG-22d	LOG-24	PUL-31
	PUL-31d WEI-21	PUL-QC WSH-22	SPL-21	SPL-21d
		103 Dollarton Hwy, North Vancouver,	BC, Canada.	
Applique à la Méthode:	Ag-OG46 Pb-OG46	Cu-OG46 Zn-OG46	ME-MS61	ME-OG46
		,		

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 1 Nombre total de pages: 3 (A - D) plus les pages d'annexe Finalisée date: 6-NOV-2014 **Compte: SOQVAL**

CERTIFICAT VO14160282

Projet: 1388/1389

Ce rapport s'applique aux 79 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 15-OCT-2014.

Les résultats sont transmis à:

PHILIPPE D AMBOISE

SERGE PERREAULT

	PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION	
WEI-21	Poids échantillon reçu	-
LOG-22	Entrée échantillon - Reçu sans code barre	
LOG-24	Entrée pulpe - Reçu sans code barre	
CRU-QC	Test concassage QC	
PUL-QC	Test concassage QC	
CRU-31	Granulation - 70 % <2 mm	
SPL-21	Échant. fractionné - div. riffles	
PUL-31	Pulvérisé à 85 % <75 um	
WSH-22	"Nettoyer" pulvérisateurs	

	PROCÉDURES ANALYTIQUES	-
CODE ALS	DESCRIPTION	INSTRUMENT
ME-OG46	Teneur marchandes éléments - Aqua regia	ICP-AES
Cu-OG46	Teneur marchande Cu - Aqua regia	VARIABLE
Zn-OG46	Teneur marchande Zn - Aqua regia'	VARIABLE
Pb-OG46	Teneur marchande Pb - Aqua regia	VARIABLE
Ag-OG46	Teneur marchande Ag - Aqua regia	VARIABLE
Au-AA23	Au 30 g fini FA-AA	AAS
Au-GRA21	Au 30 g fini FA-GRAV	WST-SIM
ME-MS61	ICP-MS 48 éléments, quatre acides	

A: SOQUEM INC. **ATTN: PHILIPPE D AMBOISE 600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Commentaire: SOQVAL-1

Signature:

Nacera Amara, Laboratory Manager, Val d'Or

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - A Nombre total de pages: 3 (A - D) plus les pages d'annexe Finalisée date: 6-NOV-2014 **Compte: SOQVAL**

Projet: 1388/1389

Minera	115								1	CERTIF	ICAT D	'ANAL	/SE V	O1416	0282	
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-MS61 Ag ppm 0.01	ME-MS61 AI % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05
P279466 P279467 P279468 P279469 P279470		0.71 0.56 0.69 0.31 0.41	0.005 <0.005 <0.005 <0.005 0.005		0.68 0.05 0.17 0.06 0.03	7.09 6.20 8.33 6.81 6.33	0.6 1.0 0.4 0.4 0.9	240 1170 690 900 680	2.05 0.99 1.32 0.95 0.78	0.55 0.07 0.17 0.08 0.04	2.03 0.84 1.34 0.78 0.59	0.21 0.03 0.02 0.02 0.09	35.6 95.1 26.5 47.8 50.6	19.5 2.6 16.2 4.1 1.9	116 11 124 38 11	5.46 1.94 7.73 3.16 1.59
P279471 P279472 P279473 P279474 P279475		0.73 1.00 0.80 0.73 0.27	0.006 <0.005 0.046 0.005 0.009		0.05 0.74 0.04 0.85 2.81	7.34 4.11 7.01 6.17 5.87	<0.2 0.3 0.6 0.6 0.5	340 100 1170 110 350	1.65 0.71 1.10 3.72 0.92	0.11 0.35 0.05 1.14 1.21	1.64 2.49 0.79 4.55 0.86	0.05 0.43 0.03 0.50 0.27	40.1 13.30 41.7 14.05 45.7	7.7 15.8 7.4 36.7 117.0	67 67 70 3 40	7.16 0.89 3.89 1.72 3.18
P279476 P279477 P279478 P279479 P279480		1.37 1.15 1.07 0.05 2.16	0.011 <0.005 <0.005 0.866 <0.005	1.02	0.16 0.17 1.58 64.9 0.07	7.05 6.58 6.55 3.70 3.37	0.8 <0.2 <0.2 448 0.7	1210 450 700 140 150	1.20 1.70 1.42 0.53 1.09	0.20 0.18 0.32 25.8 0.07	0.69 1.33 1.31 1.81 0.03	0.12 0.15 0.57 209 0.08	134.5 39.3 29.3 21.8 23.9	9.9 12.4 26.0 17.9 1.0	26 36 24 35 11	3.96 3.28 2.14 0.75 2.62
P279481 P279482 P279483 P279484 P279485		1.54 2.56 1.99 3.93 2.32	<0.005 <0.005 <0.005 <0.005 <0.005		0.02 0.03 0.02 0.01 0.01	6.07 7.47 6.66 5.66 3.35	0.6 0.7 0.5 0.4 0.5	280 300 320 310 110	1.84 2.10 2.33 1.69 1.38	0.03 0.04 0.06 0.08 0.06	0.05 0.03 0.08 0.16 0.58	<0.02 <0.02 <0.02 0.04 <0.02	131.0 51.0 51.1 10.60 >500	1.3 2.2 2.8 7.3 14.4	10 7 60 117 1760	4.80 5.97 5.32 3.60 1.90
P279486 P279487 P279488 P279489 P279490		0.85 0.77 1.00 0.54 1.76	<0.005 <0.005 <0.005 <0.005 0.011		0.06 0.18 0.03 0.17 1.59	7.42 6.90 6.93 8.37 1.93	<0.2 1.3 0.5 0.4 0.2	1020 1080 610 240 160	3.14 1.48 1.28 2.36 0.72	0.07 0.95 0.04 0.51 2.58	1.33 0.95 0.42 1.15 3.72	0.10 0.11 0.02 0.09 0.46	61.3 66.2 154.0 75.0 14.65	3.8 4.0 1.7 9.0 16.3	13 12 9 62 116	3.40 1.45 1.70 8.35 0.94
P279491 P277513 P277514 P277515 P277516		0.83 1.04 2.08 2.55 2.51	<0.005 <0.005 <0.005 <0.005 <0.005	4	0.06 0.38 0.02 0.10 <0.01	5.11 6.99 7.13 7.12 8.05	<0.2 0.2 <0.2 <0.2 0.7	120 140 1060 420 810	5.32 1.66 0.91 1.23 1.03	2.37 1.04 0.04 0.05 0.14	14.55 8.36 0.63 3.23 0.62	0.35 0.24 0.03 0.09 0.02	8.94 20.3 58.9 37.8 90.7	71.4 48.8 2.0 10.8 3.2	1360 77 20 51 80	1.89 1.35 2.36 1.89 1.61
P277517 P277518 P277519 P277520 P277521		1.74 2.37 2.85 1.25 3.47	<0.005 0.005 <0.005 <0.005 0.122		1.07 2.10 0.33 0.21 5.89	7.07 5.43 7.32 6.53 1.47	0.6 <0.2 0.4 <0.2 1.1	310 200 520 550 80	1.26 1.19 1.30 1.29 0.44	1.15 1.60 0.21 0.22 5.74	2.10 0.91 1.33 1.56 0.58	0.39 0.17 0.19 0.18 0.20	46.4 39.5 39.1 29.5 5.67	19.3 29.5 8.8 10.9 158.0	105 66 49 122 33	5.71 2.24 2.91 3.18 1.17
P277601 P277602 P277651 P277652 P277653		1.47 2.24 0.80 0.87 2.61	<0.005 <0.005 <0.005 <0.005 0.005		0.03 0.09 0.29 0.66 1.22	6.73 7.75 7.16 7.03 4.97	<0.2 <0.2 0.2 0.3 <0.2	710 1590 40 290 110	1.18 1.17 2.30 1.44 0.69	0.03 0.06 0.69 0.52 0.46	0.76 1.38 6.51 1.90 2.07	0.02 <0.02 0.47 0.34 0.36	19.25 12.20 8.77 47.8 10.20	1.4 9.5 49.2 20.9 21.2	11 108 32 64 38	1.48 5.42 0.98 3.86 2.06

www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - B Nombre total de pages: 3 (A - D) plus les pages d'annexe Finalisée date: 6-NOV-2014 Compte: SOQVAL

Projet: 1388/1389

									(CERTIF	ICAT D	'ANAL	YSE V	01416	0282	
Description échantillon	Méthode élément unités L.D.	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2
P279466		421	4.81	18.95	0.08	3.3	0.051	1.20	19.3	44.0	1.15	415	3.40	2.84	9.5	46.8
P279467		11.5	2.80	16.80	0.15	11.3	0.031	3.28	45.8	16.2	0.34	268	6.65	2.23	14.5	3.4
P279468		70.4	4.30	23.8	0.13	4.9	0.060	4.11	13.3	46.5	1.13	504	3.87	2.87	12.5	32.6
P279469		8.2	2.03	18.45	0.16	4.4	0.039	4.51	22.1	17.8	0.44	212	13.80	2.06	12.5	14.4
P279470		7.7	1.22	14.45	0.14	2.4	0.026	4.76	23.3	15.1	0.19	149	0.28	1.89	6.9	4.0
P279471		13.7	2.79	20.4	0.12	2.9	0.054	2.03	19.3	41.1	0.87	398	2.08	3.01	8.5	24.9
P279472		121.5	7.14	10.40	0.08	1.1	0.190	0.30	6.1	7.1	0.73	1330	0.96	1.28	1.9	29.6
P279473		15.3	2.32	18.90	0.13	3.4	0.039	3.69	20.5	32.6	0.77	282	1.02	2.50	6.6	23.1
P279474		596	10.75	20.7	0.10	2.0	0.141	0.69	5.0	22.5	2.14	1500	0.73	2.06	5.7	5.6
P279475		607	20.6	14.15	0.17	2.5	0.040	2.96	21.8	22.4	0.46	203	4.13	1.95	5.7	245
P279476		56.3	2.36	17.25	0.20	3.5	0.025	5.20	69.1	18.9	0.26	195	2.40	2.09	10.9	16.1
P279477		87.5	2.31	16.70	0.10	7.0	0.032	2.10	19.3	20.5	0.27	197	4.43	2.74	8.0	18.2
P279478		925	3.39	14.90	0.10	4.0	0.030	2.42	14.7	12.7	0.17	145	5.84	2.64	4.8	33.0
P279479		5200	9.08	13.90	0.29	1.1	2.72	0.68	10.5	11.2	0.85	492	22.0	1.19	4.3	45.3
P279480		8.9	0.60	12.20	0.07	8.0	0.016	1.73	10.5	4.2	0.21	55	0.26	0.04	1.7	3.3
P279481		9.5	0.66	20.0	0.19	2.6	0.019	3.15	60.1	5.5	0.35	51	0.22	0.08	3.6	4.9
P279482		8.0	0.80	22.0	0.14	1.3	0.026	3.94	21.0	9.2	0.48	57	0.25	0.05	2.5	4.8
P279483		7.6	0.81	21.8	0.13	1.7	0.034	3.67	22.9	9.2	0.44	59	0.82	0.06	9.9	8.8
P279484		13.7	1.11	16.30	0.13	2.4	0.020	3.86	4.6	16.5	0.60	100	0.28	0.25	11.7	20.2
P279485		19.0	1.13	14.85	0.34	1.5	0.037	1.73	286	13.6	0.39	152	0.61	0.06	4.9	37.5
P279486		7.3	1.65	22.1	0.15	4.5	0.030	2.35	22.4	60.0	0.38	301	0.28	3.71	10.8	5.2
P279487		72.8	1.87	17.20	0.15	4.5	0.027	4.10	37.1	29.1	0.47	240	2.54	1.99	2.5	4.3
P279488	- 1	1.7	1.33	18.20	0.24	6.6	0.026	4.61	71.9	29.3	0.23	136	0.18	2.26	10.4	1.3
P279489	i	35.7	2.30	25.4	0.15	3.0	0.052	1.16	36.8	101.0	0.55	275	1.92	2.26	2.0	24.5
P279490		795	31.8	8.27	0.17	8.0	0.150	0.27	7.1	10.8	2.28	3710	15.00	0.24	1.6	101.0
P279491		10.8	5.69	16.45	0.09	0.9	0.050	0.44	3.9	40.2	5.88	2030	0.82	0.40	6.5	670
P277513		165.5	11.15	27.4	0.10	1.4	0.133	0.57	7.6	16.5	2.43	2210	0.59	1.98	6.7	64.8
P277514		8.3	1.51	17.25	0.14	5.5	0.021	5.80	28.0	15.9	0.24	234	4.34	1.98	12.3	6.0
P277515		38.5	2.78	18.75	0.10	1.9	0.030	0.78	15.9	29.5	1.02	375	0.84	2.80	3.3	23.6
P277516		2.1	3.18	20.9	0.22	5.0	0.044	5.20	55.7	15.5	0.70	249	0.22	3.23	13.4	27.1
P277517		243	10.90	17.90	0.16	3.5	0.124	2.07	20.4	31.9	1.46	744	4.75	2.11	7.5	75.9
P277518	1	242	12.35	15.05	0.11	2.9	0.088	1.14	19.3	16.5	0.64	375	11.95	1.74	6.3	99.1
P277519	1	57.8	3.16	19.40	0.13	3.6	0.037	2.84	18.7	21.6	0.52	320	2.91	2.78	10.4	23.0
P277520	J	51.7	3.07	15.95	0.13	3.3	0.091	4.05	13.1	10.6	1.45	560	6.57	2.12	7.8	38.9
P277521		500	30.7	7.34	0.14	0.5	0.240	1.36	2.5	3.6	0.04	150	19.95	0.04	2.2	169.5
P277601		3.4	0.84	15.75	0.08	2.6	0.010	4.16	9.8	10.9	0.15	131	0.57	2.56	5.9	2.5
P277602	l	20.5	3.44	20.5	0.10	2.8	0.029	3.70	6.1	42.4	1.26	396	2.47	2.60	8.5	32.4
P277651	l	316	8.95	18.95	0.08	1.3	0.097	0.28	3.2	14.9	4.17	1590	0.72	2.11	3.6	51.0
P277652		91.3	5.75	16.50	0.11	3.1	0.034	1.03	22.3	19.6	0.84	436	3.48	2.71	6.4	52.0
P277653	I	110.0	14.85	11.80	0.09	1.3	0.089	0.95	4.7	12.5	0.70	1160	1.16	1.40	1.7	49.3

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - C Nombre total de pages: 3 (A - D) plus les pages d'annexe Finalisée date: 6-NOV-2014 **Compte: SOQVAL**

Projet: 1388/1389

										CERTIF	ICAT D	'ANAL'	YSE V	01416	0282	
Description échantillon	Méthode élément unités L.D.	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 \$ % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02
P279466 P279467		310 750	11.4 23.2	123.0 112.5	<0.002 <0.002	1.40 0.13	0.07 0.08	7.4 3.4	1	1.1 0.5	346 257	0.55 0.47	0.22 <0.05	17.7 17.7	0.258 0.311	1.01 0.73
P279468		490	24.2	246	<0.002	0.25	0.07	12.0	1	2.2	331	0.90	0.06	14.0	0.398	1.89
P279469		330	28.6	190.0	< 0.002	0.09	0.05	4.8	1	1.1	255	0.50	< 0.05	15.6	0.159	1.27
P279470		190	33.0	175.0	<0.002	0.01	0.10	2.6	<1	8.0	198.5	0.42	<0.05	23.9	0.080	1.11
P279471		340	19.2	154.5	<0.002	0.05	0.09	7.0	1	1.3	327	0.55	0.06	9.3	0.226	1.20
P279472		150	3.8	16.1	<0.002	3.82	0.08	5.8	1	1.8	289	0.14	0.05	1.2	0.121	0.22
P279473		210	26.1	148.0	<0.002	0.03	0.06	6.4	1	0.9	448	0.50	<0.05	13.0	0.200	0.91
P279474		540	6.1	56.3	<0.002	2.43	0.08	51.1	4	14.0	223	0.33	0.07	0.8	1.215	0.34
P279475		590	24.1	117.5	0.007	>10.0	0.09	5.0	5	0.6	408	0.41	0.88	9.1	0.121	0.79
P279476		120	40.3	206	<0.002	0.60	0.07	3.6	1	1.1	273	0.94	0.06	42.5	0.119	1.31
P279477		100	25.1	106.0	<0.002	0.61	0.09	3.5	<1	1.1	255	0.65	0.11	11.5	0.124	0.77
P279478		200	24.1	96.7	<0.002	1.97	0.08	2.2	1	0.8	275	0.41	0.14	9.1	0.076	0.66
P279479		500	5970	20.6	0.011	9.49	108.0	7.7	81	48.2	156.0	0.20	0.29	2.1	0.174	14.30
P279480		40	7.2	131.0	<0.002	0.01	0.16	1.0	<1	0.8	7.0	0.25	<0.05	37.7	0.010	0.74
P279481		120	9.1	217	<0.002	0.01	0.10	1.7	1	1.3	11.6	0.60	<0.05	124.0	0.019	1.30
P279482		80	6.2	253	<0.002	0.02	0.08	1.3	1	1.1	7.9	0.41	<0.05	56.7	0.012	1.44
P279483		270	4.4	272	<0.002	0.01	0.09	5.2	<1	2.5	11.5	0.80	<0.05	24.6	0.117	1.59
P279484		210	11.3	204	<0.002	0.02	0.08	5.7	1	3.6	28.5	3.26	<0.05	23.2	0.094	1.14
P279485		610	4.2	118.0	0.002	0.01	0.08	7.9	1	2.9	22.0	0.81	<0.05	6.4	0.196	0.52
P279486		680	26.4	151.0	<0.002	0.01	0.08	3.1	<1	2.7	850	1.04	<0.05	17.0	0.185	1.01
P279487		320	21.2	114.0	<0.002	0.27	0.10	4.3	1	1.6	134.5	0.23	0.47	17.6	0.139	0.50
P279488		310	25.5	268	<0.002	<0.01	0.08	3.3	1	2.2	134.0	0.38	<0.05	41.7	0.129	1.68
P279489		410	12.8	112.0	<0.002	0.53	0.09	9.3	1	1.5	303	0.12	0.15	6.2	0.208	1.01
P279490		210	2.8	11.1	0.005	>10.0	0.09	6.7	2	2.9	77.1	0.18	0.37	0.9	0.096	0.07
P279491		310	3.1	43.0	<0.002	0.02	0.12	18.5	<1	6.5	160.0	0.16	<0.05	0.4	0.238	0.29
P277513		1010	5.7	12.8	<0.002	1.38	0.11	43.9	3	2.6	163.0	0.41	<0.05	0.5	1.290	0.15
P277514		400	40.5	238	0.002	0.04	0.07	3.7	1	1.0	224	0.70	<0.05	26.9	0.111	1.59
P277515		670	10.4	41.6	<0.002	0.12	0.05	6.4	<1	0.5	845	0.22	0.05	3.0	0.269	0.41
P277516		870	16.0	243	<0.002	0.01	0.07	9.1	1	2.1	169.0	0.72	<0.05	24.1	0.296	1.57
P277517		720	11.6	137.0	0.003	5.18	0.07	13.4	3	2.4	341	0.61	0.27	5.0	0.437	1.25
P277518	i	310	15.3	72.9	0.003	7.82	0.08	6.6	2	0.9	157.0	0.70	0.76	8.3	0.153	0.55
P277519		340	23.3	131.5	<0.002	0.44	0.08	5.6	1	0.9	302	0.71	0.10	10.1	0.251	0.96
P277520	i	250	25.4	171.0	<0.002	0.32	<0.05	6.7	1	1.3	216	1.25	0.09	16.9	0.138	1.12
P277521		70	57.8	95.5	0.009	>10.0	<0.05	2.1	12	2.1	171.5	0.10	0.72	1.0	0.055	0.95
P277601		220	30.6	166.5	<0.002	0.03	<0.05	1.7	<1	0.7	285	0.57	<0.05	11.9	0.048	1.05
P277602	1	490	24.0	215	<0.002	0.04	<0.05	10.8	1	0.9	440	0.65	0.06	7.4	0.250	1.61
P277651	1	330	8.2	8.3	<0.002	1.28	0.07	48.6	1	7.9	121.5	0.20	<0.05	0.5	0.622	0.08
P277652		410	10.7	86.4	0.004	2.53	0.06	9.3	1	0.6	484	0.96	0.21	11.7	0.251	0.70
P277653		230	5.7	50.3	<0.002	7.08	0.05	4.0	1	8.0	434	0.11	0.10	0.9	0.134	0.63

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - D Nombre total de pages: 3 (A - D) plus les pages d'annexe Finalisée date: 6-NOV-2014 **Compte: SOQVAL**

Projet: 1388/1389

iiiiiici a										CERTIF	ICAT D'ANALYSE	VO14160282
Description échantillon	Méthode élément unités L.D.	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Cu-OG46 Cu % 0.001	Zn-OG46 Zn % 0.001	Pb-OG46 Pb % 0.001	Ag-OG46 Ag ppm 1	
P279466		4.0	65	0.1	3.3	78	108.5					
P279467		1.8	34	0.2	10.5	35	428					
P279468	1	3.9	108	0.2	5.2	80	169.0					
P279469	1	1.4	27	0.1	4.8	39	143.0					
P279470		0.7	7	0.1	3.5	34	75.9					
P279471		2.6	52	0.2	4.5	80	99.5					
P279472		0.4	43	0.1	6.9	66	37.9					
P279473		1.8	50	0.1	3.7	54	114.0					
P279474		0.5	425	2.5	40.0	131	59.8					
P279475		1.8	34	0.1	7.7	45	79.6					
P279476		3.4	19	0.1	6.4	32	101.0					
P279477		4.4	22	0.1	3.1	41	206					
P279478		2.7	14	0.1	3.3	36	119.0					
P279479		2.0	71	1.3	10.9	>10000	33.7	0.529	3.81	0.621	64	
P279480		4.0	12	0.1	2.2	20	18.2					
279481		10.8	10	0.2	5.7	8	65.2					
P279482		5.1	10	0.2	3.1	9	27.8					
P279483		4.0	31	0.6	3.5	7	52.6					
P279484		4.2	30	0.4	4.1	11	54.9					
P279485		4.1	74	0.7	8.1	9	39.9					
P279486		1.7	22	0.1	9.2	61	155.5				·_	
P279487		3.2	19	0.9	13.7	25	148.0					
P279488		1.5	13	0.1	10.8	23	211					
P279489		1.7	81	0.6	7.7	64	116.0					
P279490		0.7	37	0.1	8.5	129	28.0					
P279491		0.4	159	0.5	13.6	108	23.8					
P277513		0.5	393	0.3	43.2	164	27.1					
P277514	l	2.5	12	0.1	7.1	31	173.0					
P277515		0.7	63	0.1	5.1	61	64.1					
P277516		2.4	57	0.4	11.8	51	176.5					
277517		3.0	94	0.4	12.2	116	122.5					
P277518	ĺ	3.8	51	0.1	5.7	57	92.9					
P277519	I	1.9	45	0.1	3.9	63	121.5					
P277520		3.0	46	0.2	6.5	84	97.3					
P277521		1.3	35	0.4	4.4	6	24.1					
P277601		1.1	6	0.1	3.7	15	81.1					
P277602		5.1	76	0.1	4.9	74	88.3					
P277651	ļ	1.4	295	0.7	21.6	192	50.7					
	l l	4.0	65	0.2	6.3	126	106.5					
P277652												

ALS Canada Ltd. 2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: 604 984 0221
www.alsglobal.com
Télécopieur: 604 984 0218

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 3 - A Nombre total de pages: 3 (A - D) plus les pages d'annexe Finalisée date: 6-NOV-2014 **Compte: SOQVAL**

Projet: 1388/1389

minera	15								(CERTIF	ICAT D	'ANAL	YSE V	01416	0282	
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-M\$61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05
P277654 P277655 P277656 P277657 P277658 R145501		2.21 0.83 1.90 1.13 1.08	0.006 <0.005 <0.005 <0.005 <0.005		1.06 0.19 0.05 0.23 <0.01	3.92 7.47 7.62 9.33 0.23 6.36	0.5 1.9 <0.2 0.2 0.2 -0.2	90 530 830 460 20	0.65 0.92 1.46 2.44 0.10	0.42 0.25 0.07 0.75 0.02	2.47 2.33 1.41 1.20 0.01	0.52 0.10 0.05 0.12 <0.02	12.85 39.6 43.2 95.9 24.2	19.6 11.5 7.1 21.4 0.2	40 55 60 88 11	0.91 3.70 5.81 12.60 <0.05
R145502 R145503 R145504 R145505		4.07 3.75 3.55 4.32	<0.005 <0.005 <0.005 <0.005 <0.005		0.04 0.06 0.05 0.03	6.52 8.25 7.26 7.27	<0.2 <0.2 <0.2 <0.2 <0.2	740 270 570 750	1.14 2.04 1.37 1.32	0.02 0.07 0.04 0.03	0.79 1.62 1.13 1.07	0.03 0.03 0.04 0.03	6.04 48.5 28.9 21.1	1.8 15.3 5.8 4.8	15 124 40 36	1.67 11.55 4.68 3.68
R145507 R145508 R145509 R145510		1.87 2.00 5.27 6.97	<0.005 <0.005 <0.005 <0.005		0.04 0.07 0.04 0.35	7.01 7.43 7.36 7.32	0.2 <0.2 <0.2 <0.2	880 730 840 1180	1.74 1.24 1.17 1.37	0.05 0.05 0.03 0.18	0.72 0.99 0.87 2.61	0.02 0.04 0.03 0.21	42.6 22.5 21.9 66.1	2.8 6.0 4.0 21.8	12 43 34 271	4.50 3.45 2.80 3.98
R145511 R145512 R145513 R145514 R145515		3.85 4.93 4.13 3.16 4.19	<0.005 <0.005 <0.005 <0.005 <0.005		0.05 0.07 0.02 0.04 0.05	6.83 6.94 7.08 7.24 7.05	<0.2 0.2 <0.2 0.2 <0.2	730 400 880 700 450	1.13 1.52 1.03 1.16 1.40	0.03 0.05 0.03 0.04 0.03	1.02 1.24 0.76 1.06 1.28	0.03 <0.02 0.02 0.03 0.04	15.20 31.0 25.9 28.4 15.15	5.5 8.2 4.6 6.2 6.0	39 68 60 54 50	2.89 5.18 2.87 4.28 3.13
R145516 R145517 R145518 R145519 R145520		3.31 3.41 1.09 1.47 4.59	<0.005 <0.005 <0.005 0.014 <0.005		0.13 0.04 0.01 0.97 0.14	7.20 7.05 0.25 5.14 6.93	<0.2 0.4 <0.2 <0.2 <0.2	540 920 20 140 560	1.28 0.89 0.11 1.15 1.90	0.09 0.04 0.01 1.52 0.21	1.19 0.65 0.01 5.77 3.19	0.07 0.03 <0.02 0.74 0.19	35.1 24.1 29.5 16.40 33.7	10.1 3.0 0.2 16.6 18.2	61 23 9 140 137	4.05 2.21 <0.05 0.55 2.92
R145521 R145522 R145523 R145524 R145525		4.28 6.28 6.23 6.12 6.69	<0.005 <0.005 <0.005 <0.005 <0.005		0.40 0.44 0.38 0.21 0.15	6.76 7.12 6.98 6.97 6.77	0.5 0.2 0.2 <0.2 <0.2	260 450 530 460 310	0.76 1.59 0.51 0.52 0.69	0.47 0.45 0.41 0.22 0.18	5.53 1.46 5.58 5.56 5.36	0.30 0.13 0.33 0.27 0.27	16.40 42.1 13.75 14.25 16.50	37.9 13.7 36.4 55.4 64.0	190 100 453 454 389	3.09 7.28 1.53 1.24 1.17
2145526 2145527 2145528 2145529 2145530		8.15 4.54 4.41 3.41 2.90	<0.005 <0.005 <0.005 <0.005 <0.005		0.15 0.09 0.45 0.11 0.71	6.93 5.72 6.22 6.43 5.44	0.3 <0.2 0.7 0.2 0.3	200 140 210 240 220	0.82 2.95 1.10 1.70 1.03	0.19 0.03 0.61 0.12 1.10	5.51 1.57 4.38 1.17 3.11	0.14 0.10 0.37 0.21 0.44	19.80 8.04 14.75 22.5 13.95	46.6 2.2 26.8 3.4 26.6	230 8 168 41 95	0.90 1.93 1.56 2.06 1.00
R145531 R145532 R145533 R145534		3.62 3.82 1.79 1.43	<0.005 <0.005 <0.005 <0.005		1.13 0.41 0.92 0.12	4.60 6.38 6.73 7.72	0.9 <0.2 0.7 0.8	270 490 320 640	0.80 0.71 1.51 1.85	0.80 0.31 0.55 0.10	3.84 4.43 1.16 1.70	0.38 0.37 0.33 0.08	31.1 19.00 95.5 51.0	25.2 53.1 19.7 11.1	98 436 104 98	1.80 1.46 5.62 6.37

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 3 - B Nombre total de pages: 3 (A - D) plus les pages d'annexe Finalisée date: 6-NOV-2014 **Compte: SOQVAL**

Projet: 1388/1389

e. a										CERTIF	ICAT D	'ANAL	YSE V	/01416	0282	
Description échantillon	Méthode élément unités L.D.	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2
P277654		125.0	14.55	10.20	0.09	1.0	0.148	0.52	5.0	5.0	0.87	2770	1.31	0.98	1.8	44.7
P277655		49.3	3.16	18.30	0.11	1.6	0.029	0.95	16.8	57.2	0.68	383	0.82	2.87	3.1	27.1
P277656		12.1	2.42	20.2	0.14	3.1	0.026	2.51	21.7	47.7	0.77	334	1.14	3.10	7.4	24.5
P277657		42.9	3.57	26.7	0.19	4.2	0.058	1.71	44.7	128.0	0.75	330	2.63	2.14	1.7	60.7
P277658		2.3	0.39	0.66	0.07	0.4	<0.005	0.03	10.7	5.1	<0.01	39	0.13	0.01	0.4	0.9
R145501		4.1	0.59	13.20	0.12	3.0	0.005	4.04	2.9	5.9	0.08	82	4.89	2.27	2.7	3.1
R145502		4.9	0.78	13.80	0.13	3.3	0.007	3.74	3.1	8.9	0.14	111	4.57	2.37	3.5	6.2
R145503		14.4	4.51	25.0	0.17	5.1	0.057	2.62	22.5	71.6	1.37	689	3.38	3.16	21.3	59.6
R145504		10.4	2.06	17.80	0.15	5.0	0.023	3.68	12.5	27.2	0.52	315	1.57	2.53	11.2	16.5
R145505		8.3	1.56	16.20	0.15	5.4	0.021	3.78	10.3	23.6	0.42	224	3.17	2.60	6.6	16.6
R145506		8.8	1.42	14.25	0.14	4.3	0.014	4.16	7.2	17.6	0.31	192	9.53	2.15	6.5	12.3
R145507		6.2	1.27	16.00	0.19	4.9	0.025	4.84	20.5	19.0	0.28	190	4.58	2.09	9.7	8.1
R145508		19.9	2.15	17.70	0.18	4.2	0.029	4.53	10.2	24.7	0.54	303	10.05	2.28	15.1	20.1
R145509		12.0	1.67	16.95	0.10	2.0	0.021	4.95	10.0	17.3	0.38	249	3.95	2.20	11.9	13.4
R145510		118.0	4.41	17.20	0.18	2.8	0.057	3.15	30.2	30.1	2.33	833	1.97	2.12	9.2	97.7
R145511		12.9	1.88	16.40	0.13	3.9	0.022	3.72	7.3	20.3	0.50	225	2.87	2.23	10.0	19.7
R145512		15.6	2.64	18.80	0.13	4.2	0.022	2.83	7.3 14.1	39.5	0.73	386	12.15	2.53	13.8	32.0
R145513		3.8	1.73	15.55	0.18	4.2	0.032	4.62	11.9	31.6	0.75	251	15.65	2.17	7.5	27.4
R145514		3.8 11.9	2.57	18.85	0.18	4.4	0.025	3.87	13.3	43.9	0.50	348	9.20	2.17	17.0	27.4
R145514		11.1	2.57	18.00	0.20	7.1	0.032	2.67	7.8	32.8	0.58	290	6.02	2.65	12.3	23.7
												333				
R145516		32.6	2.92	19.25	0.16	4.4	0.037	3.29	17.1	34.7	0.71		6.18	2.50	15.2	35.3
R145517		8.2	1.62	15.40	0.19	3.4	0.015	4.88	11.5	18.9	0.29	189	21.2	2.05	8.1	8.3
R145518		1.3	0.31	0.72	0.10	0.4	<0.005	0.03	12.6	5.4	<0.01	32	0.15	0.01	0.4	0.9
R145519		208	18.90	15.60	0.13	1.8	0.306	0.64	7.1	6.5	3.51	14800	14.15	0.56	4.0	49.1
R145520		33.0	5.89	19.50	0.15	3.1	0.054	2.21	15.9	17.1	1.73	2200	46.9	2.28	10.5	48.0
R145521		116.5	13.50	18.10	0.13	2.1	0.082	0.99	6.5	25.2	3.52	5910	3.07	1.39	7.4	87.9
R145522		99.5	8.04	19.40	0.13	3.2	0.020	2.13	20.2	52.8	1.08	988	26.0	2.23	13.3	58.2
R145523		49.3	9.80	16.95	0.11	1.5	0.068	1.18	5.4	33.7	4.52	3590	1.10	1.27	3.6	122.5
R145524		54.5	8.81	16.90	0.12	1.8	0.059	0.89	5.3	27.0	4.70	2550	1.26	1.56	3.9	212
R145525		69.1	8.10	17.35	0.10	2.0	0.071	0.90	6.6	31.8	4.49	2050	25.9	1.83	5.2	244
R145526		67.0	8.62	19.85	0.13	2.5	0.076	0.71	7.7	20.4	3.61	2930	7.06	2.01	6.1	105.0
R145527		8.0	1.05	17.15	0.07	1.7	0.005	0.57	4.2	12.8	0.15	238	4.98	3.35	7.7	4.3
R145528		74.1	11.85	18.10	0.10	2.2	0.135	1.34	5.7	25.8	3.08	5460	15.10	1.36	10.9	70.2
R145529	ì	12.0	2.64	17.90	0.11	2.7	0.022	3.19	11.2	12.2	0.62	837	22.2	2.31	14.5	10.9
R145530		347	9.42	13.80	0.10	1.9	0.064	0.97	6.7	15.8	1.78	5030	9.51	1.56	7.7	44.4
R145531		171.0	14.95	12.90	0.13	2.7	0.089	0.97	15.1	20.7	2.14	5270	13.25	1.00	12.9	69.7
R145532		42.2	8.75	16.50	0.09	1.9	0.089	1.00	8.2	37.2	4.25	2540	3.14	1.44	4.9	232
R145533		88.6	11.10	21.9	0.19	3.4	0.014	1.39	47.6	41.6	0.87	1110	7.09	2.49	35.9	70.8
R145534		40.9	3.89	19.70	0.13	2.9	0.018	2.27	24.2	58.1	1.00	1040	1.36	2.80	8.8	45.8

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 3 - C Nombre total de pages: 3 (A - D) plus les pages d'annexe Finalisée date: 6-NOV-2014 **Compte: SOQVAL**

Projet: 1388/1389

Minera	IS							Proje	et. 1300/		ICAT D	'ARIAL'	/CF \/	01416	0202	
										CERTIF	ICAID	ANAL	YSE V	01416	0282	
	Méthode	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	élément	Р	Pb	Rb	Re	\$	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	TI
Description échantillon	unités L.D.	ppm 10	ppm 0.5	ppm 0.1	ppm 0.002	% 0.01	ppm 0.05	ppm 0.1	ppm 1	ppm 0.2	ррт 0.2	ppm 0.05	ppm 0.05	ppm 0.2	% 0.005	ppm 0.02
	L.U.	10	0.5	0.1	0.002	0.01	0.05	0.1		0.2	0.2	0.05	0.05	0.2	0.005	0.02
P277654		190	3.9	27.8	<0.002	6.83	0.06	4.3	1	1.4	283	0.12	0.07	0.7	0.122	0.36
P277655		540	10.6	55.4	<0.002	0.84	0.08	6.3	<1	0.6	730	0.20	<0.05	4.2	0.226	0.49
P277656		820	18.6	116.5	<0.002	0.06	0.05	6.2	1	1.2	589	0.44	<0.05	9.5	0.251	0.78
P277657		740	11.3	108.0	0.002	1.58	0.06	9.8	1	1.1	472	0.11	0.13	8.8	0.202	0.87
P277658		20	0.5	1.4	<0.002	0.01	0.06	0.1	<1	<0.2	2.5	<0.05	<0.05	1.6	0.019	0.02
R145501		90	30.2	136.5	<0.002	0.02	<0.05	1.0	<1	0.3	245	0.25	<0.05	3.4	0.032	0.81
R145502		90	28.1	134.0	<0.002	0.03	0.05	1.3	<1	0.4	255	0.35	<0.05	2.7	0.047	0.87
R145503		690	17.6	239	0.002	0.08	0.05	11.5	<1	2.7	257	1.52	<0.05	10.1	0.401	1.81
R145504		520	26.5	171.0	<0.002	0.05	<0.05	4.9	1	1.3	251	0.88	<0.05	8.9	0.170	1.15
R145505		230	29.8	160.0	<0.002	0.04	0.05	4.2	<1	1.0	276	0.58	<0.05	13.5	0.113	1.08
R145506		170	29.9	157.5	<0.002	0.06	0.06	3.0	<1	0.8	250	0.54	<0.05	7.2	0.100	1.02
R145507		440	32.6	233	< 0.002	0.03	0.06	3.3	1	1.4	255	1.25	<0.05	10.6	0.097	1.42
R145508		540	33.3	191.0	<0.002	0.11	0.05	5.6	1	1.2	263	1.08	<0.05	27.0	0.171	1.29
R145509		650	33.6	194.5	<0.002	0.08	0.05	4.2	<1	0.9	253	0.82	<0.05	14.1	0.136	1.31
R145510		820	19.8	155.5	<0.002	0.95	0.05	16.1	1	1.6	469	0.90	<0.05	9.6	0.263	1.12
R145511		250	23.9	156.0	<0.002	0.08	<0.05	4.5	<1	0.8	281	0.52	<0.05	4.0	0.161	1.09
R145512		250	21.4	166.5	< 0.002	0.09	0.05	6.9	<1	1.6	227	0.96	<0.05	11.8	0.225	1.20
R145513		300	27.8	189.0	<0.002	0.03	0.05	3.7	<1	0.9	241	0.58	<0.05	11.2	0.109	1.25
R145514		360	25.4	197.0	< 0.002	0.05	0.05	6.8	<1	1.8	252	0.77	<0.05	8.9	0.219	1.40
R145515		180	20.4	144.5	<0.002	0.06	0.05	5.7	<1	1.4	254	0.66	<0.05	4.5	0.184	1.04
R145516		370	22.8	179.0	<0.002	0.29	0.05	7.2	1	1.4	257	0.67	<0.05	9.7	0.221	1.29
R145517		490	30.3	173.5	<0.002	0.07	0.05	3.0	<1	0.8	234	0.45	<0.05	13.5	0.103	1.07
R145518		30	0.5	1.5	<0.002	<0.01	, <0.05	0.1	<1	0.2	1.6	<0.05	<0.05	2.2	0.019	<0.02
R145519		350	6.0	47.5	0.004	4.77	0.06	19.5	2	9.0	70.2	0.43	0.37	1.2	0.409	0.29
R145520		280	51.8	130.5	0.004	0.38	0.05	16.2	1	2.3	165.0	0.96	<0.05	15.6	0.344	0.82
R145521		510	4.5	83.4	0.002	1.36	0.05	26.5	2	2.0	133.0	0.56	0.14	0.8	0.553	0.55
R145522		440	20.3	183.5	0.003	3.04	0.05	10.9	1	2.3	191.5	1.16	0.22	11.5	0.245	1.45
R145523		320	3.8	120.5	<0.002	1.64	0.05	29.4	1	1.1	122.5	0.22	0.11	0.6	0.488	0.70
R145524		360	42.3	81.2	<0.002	0.68	0.05	28.6	1	1.3	141.0	0.29	<0.05	0.7	0.523	0.49
R145525		350	18.2	78.9	0.002	0.43	0.06	28.4	1	1.2	159.0	0.43	<0.05	1.6	0.514	0.47
R145526		370	3.0	62.7	0.004	0.45	0.07	34.3	1	1.2	162.0	0.54	<0.05	1.0	0.605	0.37
R145527		230	20.8	38.8	<0.002	0.14	0.05	1.4	<1	0.7	267	1.65	<0.05	2.4	0.056	0.32
R145528		310	19.4	105.0	0.002	1.42	0.09	24.1	1	4.3	98.3	1.01	0.09	3.0	0.471	0.64
R145529	į	110	53.0	193.0	<0.002	0.36	0.07	6.6	1	1.2	109.5	1.72	<0.05	25.0	0.125	1.10
R145530		200	238	86.9	0.004	3.45	0.06	12.6	2	1.8	139.0	1.26	0.15	3.4	0.251	0.54
R145531		270	16.5	85.2	0.005	6.16	0.06	14.7	3	2.1	106.5	0.58	0.40	13.6	0.296	0.59
R145532		320	6.9	88.5	0.004	1.24	0.06	24.6	2	1.9	127.0	0.38	0.09	2.4	0.433	0.64
R145533		530	287	178.0	0.005	5.00	0.05	15.2	2	1.0	181.5	1.56	0.30	24.6	0.304	1.21
R145534		550	25.8	181.0	<0.002	0.39	0.06	10.4	1	1.0	199.0	1.06	<0.05	9.6	0.249	1.52

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 3 - D Nombre total de pages: 3 (A - D) plus les pages d'annexe Finalisée date: 6-NOV-2014 **Compte: SOQVAL**

Projet: 1388/1389

Minera	IS								1300/		ICAT D'ANALYSE	VO14160282
Description échantillon	Méthode élément unités L.D.	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Cu-OG46 Cu % 0.001	Zn-OG46 Zn % 0.001	Pb-OG46 Pb % 0.001	Ag-OG46 Ag ppm 1	
P277654 P277655 P277656 P277657 P277658		0.2 3.9 1.2 1.6 0.2	37 54 49 108 2	0.1 0.2 0.2 0.7 0.1	7.2 5.4 8.7 10.0 3.0	82 57 71 104 <2	38.2 62.3 109.0 171.0 14.3		_			
R145501 R145502 R145503 R145504 R145505		2.7 2.4 2.6 2.8 3.9	4 7 96 34 27	0.1 0.1 0.3 0.7 0.8	1.7 2.0 10.2 7.6 3.7	6 11 126 50 36	91.2 101.5 171.5 159.5 167.0					
R145506 R145507 R145508 R145509 R145510		3.2 2.0 5.0 3.0 2.3	20 18 31 22 81	0.7 0.2 0.1 0.1 0.1	3.2 8.1 8.7 8.7 17.8	29 31 50 38 74	134.0 165.0 131.0 62.6 93.1					
R145511 R145512 R145513 R145514 R145515		1.2 3.0 2.3 2.1 2.3	31 49 23 42 37	0.1 0.9 0.1 0.2 0.1	3.2 4.7 4.8 5.1 3.0	43 69 40 72 56	129.0 130.0 128.0 133.5 221					
R145516 R145517 R145518 R145519 R145520		2.1 3.1 0.2 1.2 4.5	45 17 1 162 124	0.1 0.1 0.2 0.3 0.2	5.6 6.3 3.3 22.5 16.2	71 25 <2 187 82	143.5 105.5 , 16.6 66.2 100.5					
R145521 R145522 R145523 R145524 R145525		0.5 7.8 0.3 1.1 0.9	203 69 199 207 200	0.3 0.3 0.5 0.3	23.6 11.1 21.2 22.7 21.9	102 70 95 140 116	72.2 102.5 51.5 61.9 68.9			,		
R145526 R145527 R145528 R145529 R145530		0.9 2.8 3.2 24.2 4.6	233 9 175 34 85	0.3 0.1 0.2 0.3 0.4	27.6 4.0 23.2 13.7 19.6	81 21 124 56 231	88.1 48.4 67.0 63.5 53.9		, , , , , , , , , , , , , , , , , , , ,			
R145531 R145532 R145533 R145534		16.7 4.1 7.4 5.1	85 169 73 72	0.5 0.2 0.3 0.3	18.8 20.5 28.0 12.2	97 130 327 69	84.4 66.8 121.0 99.1					

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: Annexe 1 Total # les pages d'annexe: 1 Finalisée date: 6-NOV-2014 **Compte: SOQVAL**

Projet: 1388/1389

CERTIFICAT	D'ANAI YSF	VO14160282

			ERTIFICAT D'ANALTSE V	014100202
	CON	MENTAIRE DE CERTIFICA	хт	
		COMMENTAIRES AN		
Applique à la Méthode:	L'analyse des terres rares peut être part ME-MS61	iellement soluble avec cette méthod	le.	
		ADRESSE DE LABO	RATOIRE	
	Traité à ALS Val d'Or, 1324 Rue Turcotte	e, Val d'Or, QC, Canada.		
Applique à la Méthode:	Au-AA23	\u-GRA21	CRU-31	CRU-QC
		.OG-24	PUL-31	PUL-QC
	SPL-21 V	VEI-21	WSH-22	
	Traité à ALS Vancouver, 2103 Dollarton	Hwy, North Vancouver, BC, Canada.		
Applique à la Méthode:		Cu-OG46	ME-MS61	ME-OG46
		n-OG46		
		,		

2103 Dollarton Hwy North Vancouver BC V7H 0A7

www.alsglobal.com

Téléphone: 604 984 0221 Télécopieur: 604 984 0218

À: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 1 Nombre total de pages: 2 (A - E) plus les pages d'annexe Finalisée date: 12-JANV-2015

Compte: SOQVAL

CERTIFICAT VO14196979

Projet: 1388 et 1389

Ce rapport s'applique aux 2 échantillons de roche concassée soumis à notre laboratoire de Val d'Or, QC, Canada le 23-DEC-2014.

Les résultats sont transmis à:

PHILIPPE D AMBOISE

SERGE PERREAULT

PRÉPARATION ÉCHANTILLONS								
CODE ALS	DESCRIPTION							
WEI-21	Poids échantillon reçu							
WSH-22	"Nettoyer" pulvérisateurs							
FND-03	Localiser rejet par analyse suppl.							
SPL-21	Échant. fractionné - div. riffles							
PUL-31	Pulvérisé à 85 % <75 um							

PROCÉDURES ANALYTIQUES										
CODE ALS	DESCRIPTION	INSTRUMENT								
S-IRO8	Soufre total (Leco)	LECO								
ME-MS81	Fusion Lithium Borate ICP-MS	ICP-MS								
ME-MS42	Max. 34 éléments par ICP-MS	ICP-MS								
OA-GRA05	Perte par calcination à 1 000 C	WST-SEQ								
TOT-ICP06		ICP-AES								
ME-4ACD81	Métaux par digestion de 4 acides	ICP-AES								
ME-OG62	Teneur marchande éléments - quatre acides	ICP-AES								
Cu-OG62	Teneur marchande Cu - quatre acides	VARIABLE								
ME-ICP06	Roche entière - ICP-AES	ICP-AES								
C-IR07	Total carbone (Leco)	LECO								

A: SOQUEM INC. **ATTN: PHILIPPE D AMBOISE 600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Commentaire: CCP-PKG-01 - Reprise sur le rejet

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - A Nombre total de pages: 2 (A - E) plus les pages d'annexe Finalisée date: 12-JANV-2015 **Compte: SOQVAL**

Projet: 1388 et 1389

Minera	CERTIFICAT D'ANALYSE VO14196979															
										CERTIF	ICAT D	ANALY	/SE V	01419	6979	
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	ME-ICP06 SiO2 % 0.01	ME-ICP06 AI2O3 % 0.01	ME-ICP06 Fe2O3 % 0.01	ME-ICP06 CaO % 0.01	ME-ICP06 MgO % 0.01	ME-ICP06 Na2O % 0.01	ME-ICP06 K2O % 0.01	ME-ICP06 Cr2O3 % 0.01	ME-ICP06 TiO2 % 0.01	ME-ICP06 MnO % 0.01	ME-ICP06 P2O5 % 0.01	ME-ICP06 SrO % 0.01	ME-ICPO6 BaO % 0.01	C-IRO7 C % 0.01
R145603 R145648		3.24 1.60	65.4 73.0	11.45 15.00	6.88 1.12	0.38 0.41	4.69 1.03	3.13 3.89	1.53 5.57	0.02 <0.01	0.34 0.17	0.02 0.01	0.17 0.36	<0.01 0.01	0.02 0.06	0.01 0.01
						,										

Commentaire: CCP-PKG-01 - Reprise sur le rejet

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218

www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - B Nombre total de pages: 2 (A - E) plus les pages d'annexe Finalisée date: 12-JANV-2015

Compte: SOQVAL

Projet: 1388 et 1389

Minera	IS								- 1300 (ICAT D	'ANAL'	YSE V	/01419	6979	
Description échantillon	Méthode élément unités L.D.	S-IRO8 S % 0.01	ME-MS81 Ba ppm 0.5	ME-MS81 Ce ppm 0.5	ME-MS81 Cr ppm 10	ME-MS81 Cs ppm 0.01	ME-MS81 Dy ppm 0.05	ME-MS81 Er ppm 0.03	ME-MS81 Eu ppm 0.03	ME-MS81 Ga ppm 0.1	ME-MS81 Gd ppm 0.05	ME-MS81 Hf ppm 0.2	ME-MS81 Ho ppm 0.01	ME-MS81 La ppm 0.5	ME-MS81 Lu ppm 0.01	ME-MS81 Nb ppm 0.2
R145603 R145648		2.90 0.01	193.0 545	62.8 1395	110 30	1.76 3.11	2.86 5.11	1.44 1.58	0.52 6.51	15.9 20.6	3.94 21.5	2.4 2.5	0.55 0.77	29.3 653	0.19 0.16	5.7 9.4
						,										

Commentaire: CCP-PKG-01 - Reprise sur le rejet

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - C Nombre total de pages: 2 (A - E) plus les pages d'annexe Finalisée date: 12-JANV-2015 **Compte: SOQVAL**

Projet: 1388 et 1389

Minera	IS					CERTIFICAT D'ANALYSE VO141969										
										CERTIF	ICAT D	'ANAL'	YSE V	01419	6979	
Description échantillon	Méthode élément unités L.D.	ME-MS81 Nd ppm 0.1	ME-MS81 Pr ppm 0.03	ME-MS81 Rb ppm 0.2	ME-MS81 Sm ppm 0.03	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 0.1	ME-MS81 Ta ppm 0.1	ME-M\$81 Tb ppm 0.01	ME-MS81 Th ppm 0.05	ME-MS81 Tm ppm 0.01	ME-MS81 U ppm 0.05	ME-MS81 V ppm 5	ME-MS81 W ppm 1	ME-MS81 Y ppm 0.5	ME-MS81 Yb ppm 0.03
R145603 R145648		25.5 542	6.93 148.0	54.9 180.0	4.71 73.5	1	48.2 103.5	0.5 1.0	0.53 1.66	17.20 14.15	0.24 0.20	10.95 8.78	130 90	1	14.2 17.2	1.23 0.95

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: 604 984 0221
Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - D Nombre total de pages: 2 (A - E) plus les pages d'annexe Finalisée date: 12-JANV-2015

Compte: SOQVAL

Proiet: 1388 et 1389

Minerals								CERTIFICAT D'ANALYSE VO1419										
										CERTIF	ICAT D	'ANAL'	YSE \	<u>/01419</u>	6979			
Description échantillon	Méthode élément unités L.D.	ME-MS81 Zr ppm 2	ME-MS42 As ppm 0.1	ME-MS42 Bi ppm 0.01	ME-MS42 Hg ppm 0.005	ME-MS42 Sb ppm 0.05	ME-MS42 Se ppm 0.2	ME-MS42 Te ppm 0.01	ME-MS42 TI ppm 0.02	OA-GRA05 LOI % 0.01	TOT-ICP06 Total % 0.01	ME-4ACD81 Ag ppm 0.5	ME-4ACD81 Cd ppm 0.5	ME-4ACD81 Co ppm 1	ME-4ACD81 Cu ppm 1	ME-4ACD81 Li ppm 10		
R145603 R145648		100 72	2.8 0.5	14.20 2.25	0.011 <0.005	0.21 <0.05	13.7 2.3	0.38 0.10	0.68 0.09	3.60 0.93	97.63 101.56	9.9 0.5	<0.5 <0.5	46 4	>10000 33	60 10		
	:						,											

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: 604 984 0221
Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - E Nombre total de pages: 2 (A - E) plus les pages d'annexe Finalisée date: 12-JANV-2015

Compte: SOQVAL

Projet: 1388 et 1389

								_				
mnera	13								CERTIFICAT	D'ANALYSE	VO14196979	
Description échantillon	Méthode élément unités L.D.	ME-4ACD81 Mo ppm 1	ME-4ACD81 Ni ppm 1	ME-4ACD81 Pb ppm 2	ME-4ACD81 Sc ppm 1	ME-4ACD81 Zn ppm 2	Cu-OG62 Cu % 0.001					
R145603 R145648		642 28	51 21	127 36	11 5	38 7	2.66					
						,						

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: Annexe 1 Total # les pages d'annexe: 1 Finalisée date: 12-JANV-2015

Compte: SOQVAL

Projet: 1388 et 1389

			CERTIFICAT D'ANAL	YSE VO14196979								
		COMMENTAIRE DE C	CERTIFICAT									
	ADRESSE DE LABORATOIRE											
Applique à la Méthode:	Traité à ALS Val d'Or, 1324 FND-03 WSH-22	Rue Turcotte, Val d'Or, QC, Canada PUL-31	sPL-21	WEI-21								
Applique à la Méthode:	Traité à ALS Vancouver, 21 C-IR07 ME-MS42 S-IR08	03 Dollarton Hwy, North Vancouver Cu-OG62 ME-MS81 TOT-ICP06	, BC, Canada. ME-4ACD81 ME-OG62	ME-ICP06 OA-GRA05								
		,										

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

À: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 1 Nombre total de pages: 2 (A - E) plus les pages d'annexe Finalisée date: 12-JANV-2015

Compte: SOQVAL

CERTIFICAT VO14197976

Projet: 1384 0198 1388 1389

Ce rapport s'applique aux 13 échantillons de roche soumis à notre laboratoire de Val d'Or, QC, Canada le 22-DEC-2014.

Les résultats sont transmis à:

JOANIE BÉLAND

PHILIPPE D AMBOISE

LAURY SCHMITT

	PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION	
WEI-21	Poids échantillon reçu	-
LOG-22	Entrée échantillon - Reçu sans code barre	
CRU-31	Granulation - 70 % <2 mm	
CRU-QC	Test concassage QC	
PUL-QC	Test concassage QC	
SPL-21	Échant. fractionné - div. riffles	
PUL-31	Pulvérisé à 85 % <75 um	
WSH-22	"Nettoyer" pulvérisateurs	

PROCÉDURES ANALYTIQUES									
DESCRIPTION	INSTRUMENT								
Fusion Lithium Borate ICP-MS	ICP-MS								
Max. 34 éléments par ICP-MS	ICP-MS								
Perte par calcination à 1 000 C	WST-SEQ								
	ICP-AES								
Métaux par digestion de 4 acides	ICP-AES								
Teneur marchande éléments - quatre acides	ICP-AES								
Teneur marchande Cu - quatre acides	VARIABLE								
Roche entière - ICP-AES	ICP-AES								
Total carbone (Leco)	LECO								
Soufre total (Leco)	LECO								
	DESCRIPTION Fusion Lithium Borate ICP-MS Max. 34 éléments par ICP-MS Perte par calcination à 1 000 C Métaux par digestion de 4 acides Teneur marchande éléments - quatre acides Teneur marchande Cu - quatre acides Roche entière - ICP-AES Total carbone (Leco)								

A: SOQUEM INC. **ATTN: PHILIPPE D AMBOISE 600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Commentaire: CCP-PKG01

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Telephone: 604 984 0221 Telecopieur: 604 984 0218

www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - A Nombre total de pages: 2 (A - E) plus les pages d'annexe Finalisée date: 12-JANV-2015 **Compte: SOQVAL**

VO14197976

Projet: 1384 0198 1388 1389

CERTIFICAT D'ANALYSE

Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	ME-ICP06 SiO2 % 0.01	ME-ICP06 AI2O3 % 0.01	ME-ICP06 Fe2O3 % 0.01	ME-ICPO6 CaO % 0.01	ME-ICPO6 MgO % 0.01	ME-ICP06 Na2O % 0.01	ME-ICP06 K2O % 0.01	ME-ICP06 Cr2O3 % 0.01	ME-ICP06 TiO2 % 0.01	ME-ICP06 MnO % 0.01	ME-ICP06 P2O5 % 0.01	ME-ICP06 SrO % 0.01	ME-ICP06 BaO % 0.01	C-IRO7 C % 0.01
P277355		0.98	97.5	0.20	2.11	0.37	0.19	0.05	0.04	0.01	0.01	0.10	<0.01	<0.01	0.01	0.22
P277356	i	1.26	91.9	1.33	5.19	0.19	0.07	0.20	0.25	<0.01	0.05	0.01	0.01	<0.01	0.01	0.08
P277360		0.46	75.5	10.85	2.71	0.12	0.94	2.24	4.84	<0.01	0.05	0.01	0.02	0.02	0.08	0.01
P277361		0.67	61.6	8.99	17.55	0.32	2.59	1.54	0.63	0.01	0.33	0.06	0.09	<0.01	0.01	0.02
P277362		0.75	58.4	16.55	9.15	0.50	2.84	2.45	3.68	0.02	0.60	0.02	80.0	<0.01	0.02	0.02
P277363		0.99	73.7	13.35	1.51	0.18	0.86	2.90	5.81	<0.01	0.11	0.01	0.04	0.02	0.10	0.01
P277365		0.62	75.4	11.70	6.80	0.38	1.30	0.58	0.74	0.01	0.14	0.07	0.07	0.01	0.02	0.11
P277370		0.50	47.3	6.93	23.6	9.38	5.62	0.53	0.55	0.02	0.56	1.29	0.05	0.01	0.01	0.04
P277371		0.99	40.1	9.84	26.2	9.39	4.59	1.29	1.13	0.01	0.59	0.51	0.09	0.02	0.06	0.02
P277372		0.86	55.6	16.40	7.85	10.95	5.25	2.51	0.13	0.05	0.83	0.24	0.07	0.02	0.01	0.01
P277373		1.32	40.6	11.15	22.9	10.95	5.16	2.08	0.63	0.03	0.84	0.60	0.09	0.02	0.02	0.06
P277374		2.77	48.0	13.75	14.80	11.65	6.37	2.27	0.51	0.04	1.10	0.40	0.10	0.02	0.01	0.02
P277375		0.68	38.3	13.20	29.8	11.15	4.47	0.85	0.64	0.05	0.54	1.84	80.0	0.01	0.01	0.02

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218

www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - B Nombre total de pages: 2 (A - E) plus les pages d'annexe Finalisée date: 12-JANV-2015 **Compte: SOQVAL**

Projet: 1384 0198 1388 1389

mmera	13								(CERTIF	ICAT D	'ANAL	/SE V	01419	7976	
Description échantillon	Méthode	S-IRO8	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81
	élément	S	Ba	Ce	Cr	Cs	Dy	Er	Eu	Ga	Gd	Hf	Ho	La	Lu	Nb
	unités	%	ppm													
	L.D.	0.01	0.5	0.5	10	0.01	0.05	0.03	0.03	0.1	0.05	0.2	0.01	0.5	0.01	0.2
P277355		0.46	47.2	1.0	30	0.17	0.08	0.10	0.09	0.6	0.10	<0.2	0.02	0.5	0.01	0.2
P277356		2.55	89.4	3.0	20	0.52	0.24	0.12	0.08	1.6	0.17	0.4	0.04	1.4	0.02	0.8
P277360		1.13	702	50.2	20	1.23	0.87	0.48	0.53	10.9	1.80	3.1	0.15	26.1	0.07	3.0
P277361		7.73	45.6	23.2	100	0.54	1.36	0.85	0.50	13.1	1.63	2.2	0.29	10.4	0.12	4.0
P277362		5.68	146.0	23.0	130	12.40	2.11	1.19	0.36	23.9	2.09	3.7	0.45	11.0	0.26	7.3
P277363		<0.01	907	96.5	10	1.21	1.18	0.52	0.62	14.1	2.54	7.5	0.21	55.0	0.10	5.4
P277365		0.50	151.5	5.9	60	0.84	1.42	0.82	0.12	13.8	1.21	2.0	0.33	2.1	0.11	1.4
P277370		5.98	109.0	14.8	120	0.66	2.67	1.81	0.51	9.0	2.33	1.3	0.62	7.1	0.28	3.6
P277371		10.60	528	25.5	90	2.69	2.88	1.75	0.83	15.1	2.81	2.5	0.60	11.3	0.24	4.2
P277372		<0.01	95.5	8.6	340	0.83	2.69	1.64	0.68	16.4	2.24	1.4	0.62	3.4	0.22	2.3
P277373		5.26	174.0	16.4	170	0.69	3.54	2.12	0.86	16.8	3.37	1.9	0.77	6.9	0.31	3.8
P277374		0.07	94.7	16.9	300	0.56	4.97	3.06	1.16	19.0	4.32	2.6	1.04	6.4	0.43	4.8
P277375		1.30	44.2	22.0	350	1.62	4.17	2.58	0.71	13.1	3.65	2.4	0.90	9.5	0.39	4.2

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218

www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - C Nombre total de pages: 2 (A - E) plus les pages d'annexe Finalisée date: 12-JANV-2015 **Compte: SOQVAL**

Projet: 1384 0198 1388 1389

CERTIFICAT D'ANALYSE VO14197976

Description échantillon	Méthode élément unités L.D.	ME-MS81 Nd ppm 0.1	ME-MS81 Pr ppm 0.03	ME-MS81 Rb ppm 0.2	ME-MS81 Sm ppm 0.03	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 0.1	ME-MS81 Ta ppm 0.1	ME-MS81 Tb ppm 0.01	ME-MS81 Th ppm 0.05	ME-MS81 Tm ppm 0.01	ME-MS81 U ppm 0.05	ME-MS81 V ppm 5	ME-MS81 W ppm 1	ME-MS81 Y ppm 0.5	ME-MS81 Yb ppm 0.03
P277355		0.4	0.11	0.6	0.10	<1	15.3	<0.1	0.03	0.08	0.01	0.07	<5	<1	0.8	0.05
P277356		1.4	0.32	8.0	0.23	<1	9.0	0.1	0.04	1.06	0.02	0.30	7	1	1.0	0.11
P277360		17.9	5.40	135.0	3.32	<1	124.5	0.5	0.20	19.85	0.06	3.25	17	<1	4.3	0.45
P277361		10.8	2.68	41.5	2.13	1	18.4	0.1	0.24	3.06	0.11	1.24	64	1	7.8	0.62
P277362		10.8	2.70	254	2.22	1	15.7	0.4	0.36	6.07	0.20	3.98	126	1	11.2	1.35
P277363		33.3	10.10	161.0	4.89	1	154.5	0.2	0.28	29.4	0.08	2.74	17	<1	5.3	0.57
P277365		4.2	0.83	14.4	1.10	3	125.5	0.1	0.22	1.03	0.11	0.30	57	2	8.3	0.66
P277370		8.5	1.93	31.0	2.12	2	66.3	0.2	0.40	0.84	0.29	0.85	109	1	18.0	1.81
P277371		13.3	3.10	38.4	3.06	4	143.0	0.2	0.44	2.22	0.27	0.54	138	1	15.6	1.70
P277372		6.3	1.18	2.5	1.82	1	144.0	<0.1	0.41	0.37	0.24	0.13	274	1	13.9	1.54
P277373		10.5	2.14	19.2	3.02	1	177.5	0.1	0.60	0.88	0.33	0.26	206	1	20.3	2.22
P277374		12.7	2.51	12.2	3.82	1	145.0	0.2	0.80	0.74	0.41	0.21	271	1	26.2	2.71
P277375		13.1	2.82	7.9	3.45	2	118.0	0.2	0.63	1.60	0.38	0.40	134	1	23.3	2.62

Description échantillon

P277355

P277356

P277360

P277361

P277362

P277363

P277365

P277370

P277371

P277372

P277373

P277374

P277375

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7

ME-MS81

Zr

ppm

<2

17

105

83

140

268

51

45

90

45

65

88

79

Méthode

élément

unités

L.D.

www.alsglobal.com

ME-MS42

As

ppm

0.1

47.6

24.0

8.5

1.1

0.7

0.2

39.9

0.2

0.4

0.2

0.2

0.2

0.2

ME-MS42

Bi

ppm

0.01

0.03

0.24

0.65

1.39

3.25

0.08

0.36

0.62

1.51

0.05

0.60

0.10

1.58

Téléphone: 604 984 0221 Télécopieur: 604 984 0218

ME-MS42

Hg

ppm

0.005

< 0.005

0.007

0.008

0.010

< 0.005

0.006

0.007

0.008

0.006

< 0.005

0.010

< 0.005

< 0.005

ME-MS42

Sb

ppm

0.05

< 0.05

< 0.05

0.46

< 0.05

< 0.05

<0.05

0.94

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

ME-MS42

Se

ppm

0.2

< 0.2

0.6

1.2

3.6

6.3

0.2

0.4

2.0

4.3

0.2

1.3

0.3

1.3

0.05

0.33

0.53

0.01

0.39

0.02

0.15

0.03

0.08

0.05

< 0.02

0.05

0.03

0.05

A: SOQUEM INC. 600 AVENUE CENTRALE VAL-D OR QC J9P 1P8 Page: 2 - D
Nombre total de pages: 2 (A - E)
plus les pages d'annexe
Finalisée date: 12-JANV-2015
Compte: SOQVAL

15

193

306

4

270

35

104

10

10

30

10

20

20

20

Projet: 1384 0198 1388 1389

1.53

3.93

5.42

0.52

3.00

0.73

0.78

98.75

99.78

99.24

100.43

98.07

99.75

101.72

CERTIFICAT D'ANALYSE VO14197976 TOT-ICP06 ME-4ACD81 ME-4ACD81 ME-4ACD81 ME-4ACD81 ME-MS42 ME-MS42 OA-GRA05 Te TI LOI Total Ag Cd Co Cu % % ppm ppm ppm ppm ppm ppm ppm 0.01 0.02 0.01 0.01 0.5 0.5 10 0.02 < 0.02 0.93 101.52 < 0.5 < 0.5 3 3 <10 0.05 0.12 2.21 101.42 < 0.5 < 0.5 48 19 <10 0.16 0.29 1.22 98.60 3.9 < 0.5 39 >10000 10 6.87 100.59 0.7 < 0.5 0.67 0.16 46 325 30 63 0.30 0.20 5.79 100.10 0.5 < 0.5 995 40 < 0.01 0.05 0.81 99.40 <0.5 < 0.5 2 42 10

0.5

1.3

8.0

< 0.5

0.5

<0.5

0.6

< 0.5

1.3

0.8

< 0.5

0.8

0.7

1.1

16

24

44

46

49

49

37

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218

www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - E Nombre total de pages: 2 (A - E) plus les pages d'annexe Finalisée date: 12-JANV-2015 **Compte: SOQVAL**

Projet: 1384 0198 1388 1389

CERTIFICAT	D'ANALYSE	VO14197976

								CERTIFICAT D'ANALYSE VO14197976
Description échantillon	Méthode élément unités L.D.	ME-4ACD81 Mo ppm 1	ME-4ACD81 Ni ppm 1	ME-4ACD81 Pb ppm 2	ME-4ACD81 Sc ppm 1	ME-4ACD81 Zn ppm 2	Cu-OG62 Cu % 0.001	
P277355 P277356 P277360 P277361 P277362		<1 3 940 10 9	7 139 15 118 80	<2 <2 80 313 22	1 1 1 10 18	24 80 14 144 32	1.095	
P277363 P277365 P277370 P277371 P277372		3 <1 2 2 2	2 11 44 105 80	28 38 9 16 6	2 4 12 17 44	10 77 133 386 73		
P277373 P277374 P277375		<1 <1 1	82 103 256	10 12 4	25 34 23	113 95 84		

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: Annexe 1 Total # les pages d'annexe: 1 Finalisée date: 12-JANV-2015

Compte: SOQVAL

Projet: 1384 0198 1388 1389

inerals		<u> </u>	J	
	**************************************		CERTIFICAT D'ANAL	YSE VO14197976
		COMMENTAIRE DE C	ERTIFICAT	
		ADRESS	E DE LABORATOIRE	
		24 Rue Turcotte, Val d'Or, QC, Canada.		
Applique à la Méthode:	CRU-31	CRU-QC	LOG-22	PUL-31
	PUL-QC	SPL-21	WEI-21	WSH-22
	Traité à ALS Vancouver, 2	2103 Dollarton Hwy, North Vancouver,	BC, Canada.	
Applique à la Méthode:	C-IR07	Cu-OG62	ME-4ACD81	ME-ICP06
	ME-MS42	ME-MS81	ME-OG62	OA-GRA05
	S-IRO8	TOT-ICP06		
		•		
İ				

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

www.alsglobal.com

Téléphone: 604 984 0221 Télécopieur: 604 984 0218

À: SOQUEM INC. 600 AVENUE CENTRALE VAL-D OR QC J9P 1P8

Page: 1
Nombre total de pages: 2 (A - E)
plus les pages d'annexe
Finalisée date: 20-JANV-2015
Compte: SOQVAL

CERTIFICAT VO14198691

Projet: 1388 et 1389

Ce rapport s'applique à 1 échantillon de roche concassée soumis à notre laboratoire de Val d'Or, QC, Canada le 23-DEC-2014.

Les résultats sont transmis à:

PHILIPPE D AMBOISE

SERGE PERREAULT

	PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION	
WEI-21	Poids échantillon reçu	·
WSH-22	"Nettoyer" pulvérisateurs	
PUL-QC	Test concassage QC	
FND-03	Localiser rejet par analyse suppl.	
SPL-21	Échant. fractionné - div. riffles	
PUL-31	Pulvérisé à 85 % <75 um	

	PROCÉDURES ANALYTIQU	ES
CODE ALS	DESCRIPTION	INSTRUMENT
C-IR07	Total carbone (Leco)	LECO
S-IRO8	Soufre total (Leco)	LECO
ME-MS81	Fusion Lithium Borate ICP-MS	ICP-MS
ME-MS42	Max. 34 éléments par ICP-MS	ICP-MS
OA-GRA05	Perte par calcination à 1 000 C	WST-SEQ
TOT-ICP06		ICP-AES
ME-4ACD81	Métaux par digestion de 4 acides	ICP-AES
ME-ICP06	Roche entière - ICP-AES	ICP-AES

A: SOQUEM INC.
ATTN: PHILIPPE D AMBOISE
600 AVENUE CENTRALE
VAL-D OR QC J9P 1P8

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Commentaire: CCP-PKG-01 - Reprise sur le rejet

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218

www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - A Nombre total de pages: 2 (A - E) plus les pages d'annexe Finalisée date: 20-JANV-2015 **Compte: SOQVAL**

Projet: 1388 et 1389

Minera	IS						CERTIFICAT D'ANALYSE VO14198691										
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	ME-ICP06 SiO2 % 0.01	ME-ICP06 Al2O3 % 0.01	ME-ICP06 Fe2O3 % 0.01	ME-ICP06 CaO % 0.01	ME-ICP06 MgO % 0.01	ME-ICP06 Na2O % 0.01	ME-ICP06 K2O % 0.01	ME-ICP06 Cr2O3 % 0.01	ME-ICP06 TiO2 % 0.01	ME-ICP06 MnO % 0.01	ME-ICP06 P2O5 % 0.01	ME-ICP06 SrO % 0.01	ME-ICP06 BaO % 0.01	C-IRO7 C % 0.01	
2281960		1.82	59.7	13.35	7.05	0.13	8.99	0.66	3.40	<0.01	0.06	0.07	0.07	<0.01	0.04	0.09	
						,	•										

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218

www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - B Nombre total de pages: 2 (A - E) plus les pages d'annexe Finalisée date: 20-JANV-2015 **Compte: SOQVAL**

Projet: 1388 et 1389

Minera	IS								1000		ICAT D	'ANAL	/SE V	01419	8691	
Description échantillon	Méthode élément unités L.D.	S-IRO8 S % 0.01	ME-MS81 Ba ppm 0.5	ME-MS81 Ce ppm 0.5	ME-MS81 Cr ppm 10	ME-MS81 Cs ppm 0.01	ME-MS81 Dy ppm 0.05	ME-MS81 Er ppm 0.03	ME-MS81 Eu ppm 0.03	ME-MS81 Ga ppm 0.1	ME-MS81 Gd ppm 0.05	ME-MS81 Hf ppm 0.2	ME-MS81 Ho ppm 0.01	ME-MS81 La ppm 0.5	ME-MS81 Lu ppm 0.01	ME-MS81 Nb ppm 0.2
P281960	L.D.	0.01	0.5 342	0.5 52.3	10	0.01 1.27	1.06	0.03	0.03	23.8	1.47	0.2 10.1	0.01	0.5 28.1	0.01	2.3
								••••								
							,									

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218

www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - C Nombre total de pages: 2 (A - E) plus les pages d'annexe Finalisée date: 20-JANV-2015

CERTIFICAT D'ANALYSE VO14198691

Compte: SOQVAL

Projet: 1388 et 1389

Description échantillon	Méthode élément unités L.D.	ME-MS81 Nd ppm 0.1	ME-MS81 Pr ppm 0.03	ME-MS81 Rb ppm 0.2	ME-MS81 Sm ppm 0.03	ME-MS81 Sn ppm	ME-MSB1 Sr ppm 0.1	ME-MS81 Ta ppm 0.1	ME-MS81 Tb ppm 0.01	ME-MS81 Th ppm 0.05	ME-MS81 Tm ppm 0.01	ME-MS81 U ppm 0.05	ME-MS81 V ppm	ME-MS81 W ppm	ME-MS81 Y ppm 0.5	ME-MS81 Yb ppm 0.03
P281960		19.5	5.52	104.5	2.35	<1	50.3	0.3	0.20	12.00	0.09	77.4	341	<1	5.7	0.64

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218

www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - D Nombre total de pages: 2 (A - E) plus les pages d'annexe Finalisée date: 20-JANV-2015

Compte: SOQVAL

Projet: 1388 et 1389

Minera	IS									CERTIF	ICAT D	'ANAL'	YSE \	/01419	98691	
Description échantillon	Méthode élément unités L.D.	ME-MS81 Zr ppm 2	ME-MS42 As ppm 0.1	ME-MS42 Bi ppm 0.01	ME-MS42 Hg ppm 0.005	ME-MS42 Sb ppm 0.05	ME-MS42 Se ppm 0.2	ME-MS42 Te ppm 0.01	ME-MS42 TI ppm 0.02	OA-GRA05 LOI % 0.01	TOT-ICP06 Total % 0.01	ME-4ACD81 Ag ppm 0.5	ME-4ACD81 Cd ppm 0.5	ME-4ACD81 Co ppm 1	ME-4ACD81 Cu ppm 1	ME-4ACD81 Li ppm 10
P281960	L.D.	319	0.1	0.01 38.6	0.005	<0.05	25.3	0.01	0.02	0.01 5.21	98.73	9.8	0.5 <0.5	22	9610	10
						,										
	l															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: 2 - E Nombre total de pages: 2 (A - E) plus les pages d'annexe Finalisée date: 20-JANV-2015 **Compte: SOQVAL**

Projet: 1388 et 1389

illileia	13						CERTIFICAT D'ANALYSE VO14198691
Description échantillon	Méthode élément unités L.D.	ME-4ACD81 Mo ppm 1	ME-4ACD81 Ni ppm 1	ME-4ACD81 Pb ppm 2	ME-4ACD81 Sc ppm 1	ME-4ACD81 Zn ppm 2	
P281960		612	16	166	9	127	
						,	

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: SOQUEM INC. **600 AVENUE CENTRALE** VAL-D OR QC J9P 1P8

Page: Annexe 1 Total # les pages d'annexe: 1 Finalisée date: 20-JANV-2015

Compte: SOQVAL

Projet: 1388 et 1389

			CERTIFICAT D'ANA	LYSE VO14198691
		COMMENTAIRE DE CER	TIFICAT	
		ADRESSE I	DE LABORATOIRE	
Applique à la Méthode:	Traité à ALS Val d'Or, 132 FND-03 WEI-21	24 Rue Turcotte, Val d'Or, QC, Canada. PUL-31 WSH-22	PUL-QC	SPL-21
Applique à la Méthode:	C-IR07	2103 Dollarton Hwy, North Vancouver, BC ME-4ACD81	ME-ICP06	ME-MS42
	ME-MS81	OA-GRA05	S-IRO8	TOT-ICP06
		,		

ANNEXE 4 PROTOCOLES ANALYTIQUES

TABLEAU PRÉPARATION DES ÉCHANTILLONS

TABLEAU	PROCÉDURE ANALYTIQUES
	AU + 48 ÉLÉMENTS

	PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION	
WEI- 21	Poids échantillon reçu	
LOG- 22	Entrée échantillon - Reçu sans code barre	
LOG- 24	Entrée pulpe - Reçu sans code barre	
PUL-31d	Pulvériser fractionné - dupliquer	
SPL- 21d	Échantillon fractionné - dupliquer	
LOG- 22d	Entrée échantillon - Reçu sans code barr	
CRU-QC	Test concassage QC	
CRU- 31	Granulation - 70 % < 2 mm	
PUL- QC	Test concassage QC	
SPL- 21	Échant, fractionné - div. riffles	
PUL- 31	Pulvérisé à 85 % < 75 um	
WSH- 22	"Nettover" pulvérisateurs	

CODE ALS	DESCRIPTION	INSTRUMENT
ME-OG46	Teneur marchandes éléments - Aqua regia	ICP- AES
Cu- OG46	Teneur marchande Cu - Aqua regia	VARIABLE
Zn-OG46	Teneur marchande Zn - Aqua regia	VARIABLE
Pb- OG46	Teneur marchande Pb - Aqua regia	VARIABLE
Ag-OG46	Teneur marchande Ag - Aqua regia	VARIABLE
Au- AA23	Au 30 g fini FA- AA	AAS
Au-GRA21	Au 30 g fini FA- GRAV	WST-SIM
ME- MS61	ICP- MS 48 éléments, quatre acides	

TABLEAU PROCÉDURE ANALYTIQUES AU, PT ET PD + 48 ÉLÉMENTS

TABLEAU PROCÉDURE ANALYTIQUES MAJEUR + C, S, LI + 33 ÉLÉMENTS

	PROCÉDURES ANALYTIQUE	S
CODE ALS	DESCRIPTION	INSTRUMENT
PGM- ICP23	Pt, Pd et Au 30 g FA ICP	ICP- AES
ME-ICP61	33 éléments, quatre acides ICP- AES	ICP- AES

PROCÉDURES ANALYTIQUES						
CODE ALS	DESCRIPTION	INSTRUMENT				
C-IR07	Total carbone (Leco)	LECO				
S- IR08	Soufre total (Leco)	LECO				
ME- MS81	Fusion Lithium Borate ICP- MS	ICP- MS				
ME-MS42	Max. 34 éléments par ICP- MS	ICP- MS				
OA- GRA05	Perte par calcination à 1 000 C	WST- SEQ				
TOT-ICP06		ICP- AES				
ME- 4ACD81	Métaux par digestion de 4 acides	ICP- AES				
ME-ICP06	Roche entière - ICP- AES	ICP- AES				

Pour plus de renseignement consulter le site de ALS Geochemistry.

http://www.alsglobal.com

Description
 ALS-Geochemistry-Service-Schedule-2015-CAD

/~/media/Files/Divisions/Minerals/Geochemistry/Geochemistry
Resources/Services Schedules/ALS-Geochemistry-Service-Schedule-2015-CAD.pdf

Liste des procédures analytiques décrites

Au-AA23 Au-AA24 Fire Assay - Atomic Absorption Methods.pdf

Au-Ag-GRA21-GRA22 Fire Assay Gravimetric Methods.pdf

* ICP23.PNG

* IR07_IR08.PNG

ISO 17025 Val dOr Canada Certificate.pdf

ME-ICP06 and OA-GRA05 Analysis of Major Oxides by ICP- AES Method.pdf

ME-ICP61 Four Acid Near Total- ICP Multi-element Method.pdf

MEMS61 Four Acid Near Total ICP AES ICPMS Multielement Method.pdf

ME-MS81 Lithium Metaborate fusion-ICP-MS Multi-element Method.pdf

ME-OG46 Aqua Regia Assay Grade Multi-element Method.pdf

MS42_4ACD81.PNG

FIRE ASSAY PROCEDURE

Au-AA23 & Au-AA24

FIRE ASSAY FUSION, AAS FINISH

SAMPLE DECOMPOSITION

Fire Assay Fusion (FA-FUS01 & FA-FUS02)

ANALYTICAL METHOD

Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required, inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested in 0.5 mL dilute nitric acid in the microwave oven, 0.5 mL concentrated hydrochloric acid is then added and the bead is further digested in the microwave at a lower power setting. The digested solution is cooled, diluted to a total volume of 4 mL with de-mineralized water, and analyzed by atomic absorption spectroscopy against matrix-matched standards.

METHOD CODE	ELEMENT	SYMBOL	UNITS	SAMPLE WEIGHT (G)	LOWER LIMIT	UPPER LIMIT	DEFAULT OVERLIMIT METHOD
Au-AA23	Gold	Au	ppm	30	0.005	10.0	Au-GRA21
Au-AA24	Gold	Au	ppm	50	0.005	10.0	Au-GRA21

REVISION 04.00 AUG 17, 2005 WWW.ALSGLOBAL.COM

FIRE ASSAY PROCEDURE

Ag-GRA21, Ag-GRA22, Au-GRA21 and Au-GRA22

PRECIOUS METALS GRAVIMETRIC ANALYSIS METHODS

SAMPLE DECOMPOSITION

Fire Assay Fusion (FA-FUSAG1, FA-FUSAG2, FA-FUSGV1 and FA-FUSGV2)

ANALYTICAL METHOD

Gravimetric

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents in order to produce a lead button. The lead button containing the precious metals is cupelled to remove the lead. The remaining gold and silver bead is parted in dilute nitric acid, annealed and weighed as gold. Silver, if requested, is then determined by the difference in weights.

METHOD CODE	ELEMENT	SYMBOL	UNITS	SAMPLE WEIGHT (G)	DETECTION LIMIT	UPPER LIMIT
Ag-GRA21	Silver	Ag	ppm	30	5	10,000
Ag-GRA22	Silver	Ag	ppm	50	5	10,000
Au-GRA21	Gold	Au	ppm	30	0.05	1,000
Au-GRA22	Gold	Au	ppm	50	0.05	1,000

REVISION 03.01 AUG 17, 2005 WWW.ALSGLOBAL.COM

Platinum, Palladium & Other Precious Metals

Platinum, palladium, rhodium and gold may be determined by standard lead oxide collection fire assay and ICP-MS or ICP-AES finish. For the full list of platinum group elements, nickel sulfide collection fire assay and neutron activation must be used for a quantitative analysis.

ANALYTE	RANGE (ppm)	DESCRIPTION	CODE	PRICE PER SAMPLE (\$)
Trace Level				
P1 Pd Au	0.0001-1 0.0001-1 0.001-1	Super trace Pt. Pd and Au by fire assay and ICP-MS finish. 30g nominal sample weight	PGM-MS23L	23.10
Pt Pd Au	0.0005-1 0.001-1 0.001-1	Pt, Pd and Au by fire assay and ICP-MS finish. 30g nominal sample weight 50g nominal sample weight	PGM-M523 PGM-M524	20.10 23.15
Rh	0.001-1	Rh by fire assay, gold collection and ICP-MS 30g nominal sample weight	Rh-MS25	22.10
Intermedia	ite Level			
Pt Pd Au	0.005-10 0.001-10 0.001-10	Pt, Pd and Au by fire assay and ICP-AES finish. 30g nominal sample weight 50g nominal sample weight	PGM-ICP23 PGM-ICP24	18.90 22.05
Pt Pd Ir Os Rh Ru Au	0.02-10 0.02-10 0.001-10 0.01-10 0.005-10 0.05-10 0.001-10	Pt. Pd. Ir. Os. Rh. Ru and Au by fire assay with nickel sulfide collection and neutron activation analysis. 30g nominal sample weight Note: Au is not quantitative by this method.	PGM-NA AZ6	By Quotation
Ore Grade				
Pt Pd Au	0.03-100 0.03-100 0.03-100	Pt, Pd and Au by fire assay and ICP-AES finish. 30g nominal sample weight	PGM-ICP27	22.90

Sulfur Methods

The wide variety of sulfur compounds present in many deposits can complicate the determination of acid drainage potential or oxygenation requirements for ore processing. Accurate sulfur speciation can be crucial to early identification of recovery and environmental issues on many projects. Variations on the most common speciation methods can be implemented to suit your project's specific mineralogy; please contact client services in your region for more information.

Some ICP-OES methods can report ore grade sulfur content; please see the Ores & Commodities section for information on packaging sulfur determinations with multi-element analyses. When total S and a sulfur speciation method are requested together, a third species may be calculated by difference and reported on the certificate of analysis. Please indicate if a difference calculation should be included on sample submission.

Sulfur Determinations

ANALYTE	RANGE (%)	DESCRIPTION	CODE	PRICE PER SAMPLE (\$)
5 (Total)	0.01%-50%	Total sulfur by Leco furnace.	S-IRO8	14.90
S (Elemental)	0.01%-100%	Solvent leach and gravimetric finish.	5-GRA07	33.45
HCI digestion of	sulfates - little to i	no dissolution of BaSO, and SrSO,		
s (Sulfate)	0.01%-50%	HCI (15%) leach of sulfates, gravimetric finish.	S-GRA06a	27.25
s (sulfide)	0.01%-50%	HCI (25%) leach of sulfates, Leco furnace.	S-IRO6a	19.80
Sodium carbona	te digestion of sull	lates - complete dissolution of BaSO and SrSO		
s (sulfate)	0.01%-40%	NaCO, leach of sulfates, gravimetric finish.	S-GRA06	30.90
s (sulfide)	0.01%-50%	NaCO, leach of sulfates, Leco furnace.	S-IRO7	30.90

Carbon and Sulfur Packages

ANALYTE	RANGE (%)	DESCRIPTION	CODE	PRICE PER SAMPLE (\$)
C (Total) and S (Total)	0.01%-50% 0.01%-50%	Total carbon and sulfur by Leco furnace.	ME-IR08	20:15
C (Organic) and S (Sulfide)†	0.01%-50%	Organic carbon and sulfide sulfur by HCI (25%) leach of carbonates and sulfates, Leco furnace.	ME-IR06a	29.65

Sulfide sulfur may be overstated if BaSO, or SrSO, are present.

Carbon Methods

Carbon has important metallurgical and environmental implications for many types of mineral deposits. Carbonates may consume acid, impacting leach process design and mine waste remediation, while preg robbing by organic carbon can interfere with the cyanidation of gold and silver ores.

When total C and a carbon speciation method are requested together, a third species may be calculated by difference and reported on the certificate of analysis. Please indicate if a difference calculation should be included on sample submission.

Carbon Determinations

ANALYTE	RANGE (%)	DESCRIPTION	CODE	PRICE PER SAMPLE (\$)
C (Total)	0.01%-50%	Total carbon by Leco turnace.	C-1R07	14.90
C (Organic)	0.01%-50%	HCl (25%) leach of carbonates, Leco furnace. Other acid strengths available, please inquire	C-1R06a	19.80
CO, (Carbonate)	0.2%-50%	HClO, digestion and CO, coulometer.	C-GAS05	21.05
C (Graphite)	0.02%-50%	HCl (50%) leach of carbonates, roasting to remove organic carbon, Leco furnace.	C-1R18	33.20
C (Non-Carbonate)	0.02%-100%	Dilute acid digestion follow by combustion furrace,	C-IR17	30.90
C (Carbonate)	0.02%-100%	Carbonate carbon by difference.	C-CAL-15	Requires C-IR07, C-IR17

CERTIFICATE OF ACCREDITATION

CERTIFICAT D'ACCRÉDITATION

ALS Canada Ltd. ALS LABORATORY GROUP - MINERALS DIVISION - ALS MINERALS VAL D'OR

1324 Rue Turcotte, Val D'Or, QC J9P 3X6

having been assessed by the Standards Council of Canada (SCC) and found to conform with the requirements of ISO/IEC 17025:2005 (CAN-P-4E) and the conditions for accreditation established by SCC is hereby recognized as an

ACCREDITED TESTING LABORATORY

for the specific tests or types of tests listed in the scope of accreditation approved by SCC and found on the SCC website at www.scc.ca.

ayant fait l'objet d'une évaluation réalisée par le Conseil canadien des normes (CCN) et été jugé conforme aux exigences énoncées dans ISO/CEI 17025:2005 (CAN-P-4E) et aux conditions liées à l'accréditation établies par le CCN, est de fait reconnu comme étant un

LABORATOIRE D'ESSAIS ACCRÉDITÉ

pour les essais ou types d'essais énumérés dans la portée d'accréditation approuvée par le CCN et figurant dans le site Web du CCN à www.ccn.ca.

Accredited laboratory number.: / Numéro de laboratoire accrédité : 689

Accreditation date: / Date d'accréditation : 2010-07-29

Issued on: / Délivré le : 2010-08-05

Expiry date: / Date d'expiration: 2014-07-29

Chairman (SCC) / Président (CCN)

To verify the validity of this certificate, please see the Directory of Accredited clients on www.scc-con.ca.

Pour vérifier la validité du certificat, veuillez consulter le Répertoire des clients accrédités au www.ccn-scc.ca.

WHOLE ROCK GEOCHEMISTRY

ME- ICP06 and OA- GRA05

ANALYSIS OF MAJOR OXIDES BY ICP- AES

ME-ICP06

SAMPLE DECOMPOSITION

Lithium Metaborate/Lithium Tetraborate (LiBO, /Li2 B, O,) Fusion* (FUS-LI01)

ANALYTICAL METHOD

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES)

A prepared sample (0.200 g) is added to lithium metaborate/lithium tetraborate flux (0.90 g), mixed well and fused in a furnace at 1000°C. The resulting melt is then cooled and dissolved in 100 mL of 4% nitric acid/2% hydrochloric acid. This solution is then analyzed by ICP-AES and the results are corrected for spectral inter-element interferences. Oxide concentration is calculated from the determined elemental concentration and the result is reported in that format.

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT
Aluminum	Al ₂ O ₃	9/0	0.01	100
Barium	BaO	0/0	0.01	100
Calcium	CaO	%	0.01	100
Chromium	Cr ₂ O ₃	%	0.01	100
Iron	Fe ₂ O ₃	%	0.01	100
Magnesium	MgO	0/0	0.01	100
Manganese	MnO	0/0	0.01	100
Phosphorus	P ₂ O ₅	%	0.01	100
Potassium	K ₂ 0	0/0	0.01	100
Silicon	SiO	0/0	0.01	100
Sodium	Na ₂ 0	0/0	0.01	100
Strontium	SrO	0/0	0.01	100
Titanium	TiO ₂	%	0.01	100

^{*}NOTE: For samples that are high in sulphides, we may substitute a peroxide fusion in order to obtain better results.

REVISION 05.00 MAR 06, 2006 WWW.ALSGLOBAL.COM

ME- ICP06 and OA- GRA05

OA- GRA05, ME- GRA05

SAMPLE DECOMPOSITION

Thermal decomposition Furnace or TGA (OA-GRA05 or ME-GRA05)

ANALYTICAL METHOD

Gravimetric

If required, the total oxide content is determined from the ICP analyte concentrations and loss on Ignition (L.O.I.) values. A prepared sample (1.0 g) is placed in an oven at 1000°C for one hour, cooled and then weighed. The percent loss on ignition is calculated from the difference in weight.

METHOD CODE	PARAMETER	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT
OA-GRA05	Loss on Ignition (Furnace)	LOI	%	0.01	100
ME CDAOS	Loss on Ignition (TGA)	Moisture	%	0.01	100
ME-GRA05		LOI	%	0.01	100

REVISION 05.00 MAR 06, 2006 WWW.ALSGLOBAL.COM

GEOCHEMICAL PROCEDURE

ME-ICP61

TRACE LEVEL METHODS USING CONVENTIONAL ICP- AES ANALYSIS

SAMPLE DECOMPOSITION

HNO₃ -HClO₄ -HF-HCl digestion, HCl Leach (GEO-4ACID)

ANALYTICAL METHOD

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)

A prepared sample (0.25 g) is digested with perchloric, nitric, hydrofluoric and hydrochloric acids. The residue is topped up with dilute hydrochloric acid and the resulting solution is analyzed by inductively coupled plasma-atomic emission spectrometry. Results are corrected for spectral interelement interferences.

NOTE: Four acid digestions are able to dissolve most minerals; however, although the term "near- total" is used, depending on the sample matrix, not all elements are quantitatively extracted.

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT	DEFAULT OVER- LIMIT METHOD
Silver	Ag	ppm	0.5	100	Ag-0G62
Aluminum	Al	%	0.01	50	
Arsenic	As	ppm	5	10,000	
Barium	Ва	ppm	10	10,000	
Beryllium	Ве	ppm	0.5	1,000	
Bismuth	Bi	ppm	2	10,000	
Calcium	Ca	%	0.01	50	
Cadmium	Cd	ppm	0.5	500	
Cobalt	Со	ppm	1	10,000	Co-0G62
Chromium	Cr	ppm	1	10,000	
Copper	Cu	ppm	1	10,000	Cu-0G62
Iron	Fe	%	0.01	50	
Gallium	Ga	ppm	10	10,000	
Potassium	K	%	0.01	10	
Lanthanum	La	ppm	10	10,000	
Magnesium	Mg	%	0.01	50	
Manganese	Mn	ppm	5	10,0000	

REVISION 06.02 APR 20, 2009 WWW.ALSGLOBAL.COM

ME-ICP61

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT	DEFAULT OVER- LIMIT METHOD
Molybdenum	Мо	ppm	1	10,000	Mo-0G62
Sodium	Na	%	0.01	10	
Nickel	Ni	ppm	1	10,000	Ni-0G62
Phosphorus	Р	ppm	10	10,000	
Lead	Pb	ppm	2	10,000	Pb-0G62
Sulphur	S	%	0.01	10	
Antimony	Sb	ppm	5	10,000	
Scandium	Sc	ppm	1	10,000	
Strontium	Sr	ppm	1	10,000	
Thorium	Th	ppm	20	10,000	
Titanium	Ti	%	0.01	10	
Thallium	TI	ppm	10	10,000	
Uranium	U	ppm	10	10,000	
Vanadium	V	ppm	1	10,000	
Tungsten	W	ppm	10	10,000	
Zinc	Zn	ppm	2	10,000	Zn-OG62

ELEMENTS LISTED BELOW ARE AVAILABLE UPON REQUEST

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT	DEFAULT OVER- LIMIT METHOD
Lithium	Li	ppm	10	10,000	
Niobium	Nb	ppm	5	2,000	
Rubidium	Rb	ppm	10	10,000	
Selenium	Se	ppm	10	1,000	
Tin	Sn	ppm	10	10,000	
Tantalum	Та	ppm	10	10,000	
Tellurium	Те	ppm	10	10,000	
Yttrium	Υ	ppm	10	10,000	
Zirconium	Zr	ppm	5	500	

REVISION 06.02 APR 20, 2009 WWW.ALSGLOBAL.COM

GEOCHEMICAL PROCEDURE

ME- MS61

ULTRA-TRACE LEVEL METHOD USING ICP-MS AND ICP-AES

SAMPLE DECOMPOSITION

HF-HNO, -HClO, acid digestion, HCl leach (GEO-4A01)

ANALYTICAL METHOD

Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)

A prepared sample (0.25 g) is digested with perchloric, nitric, hydrofluoric and hydrochloric acids. The residue is topped up with dilute hydrochloric acid and analyzed by inductively coupled plasma- atomic emission spectrometry. Following this analysis, the results are reviewed for high concentrations of bismuth, mercury, molybdenum, silver and tungsten and diluted accordingly. Samples meeting this criterion are then analyzed by inductively coupled plasma-mass spectrometry. Results are corrected for spectral interelement interferences.

NOTE: Four acid digestions are able to dissolve most minerals; however, although the term "near- total" is used, depending on the sample matrix, not all elements are quantitatively extracted.

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT	
Silver	ilver Ag		0.01	100	
Aluminum	Al	0/0	0.01	50	
Arsenic	As	ppm	0.2	10,000	
Barium	Ва	ppm	10	10,000 1,000 10,000 50	
Beryllium	Ве	ppm	0.05		
Bismuth	Bi	ppm	0.01		
Calcium	Ca	0/0	0.01		
Cadmium	admium Cd		0.02	1,000	
Cerium	Ce	ppm	0.01	500	
Cobalt Co Chromium Cr		ppm	0.1	10,000	
		ppm	1		
Cesium	Cs	ppm	0.05	500	
Copper	Cu	ppm	0.2	10,000	
Iron	Fe	0/0	0.01	50	
Gallium	Ga	ppm	0.05	10,000	
Germanium	Ge	ppm	0.05	500	
Hafnium	Hf	ppm	0.1	500	

REVISION 04.00 | SEP 26, 2006 WWW.ALSGLOBAL.COM

ME- MS61

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT	
Indium	In	ppm	0.005		
Potassium	K	%	0.01	10	
Lanthanum	La	ppm	0.5	10,000	
Lithium	Li	ppm	0.2	10,000	
Magnesium	Mg	0/0	0.01	50	
Manganese	Mn	ppm	5	100,000	
Molybdenum	Мо	ppm	0.05	10,000	
Sodium	Na	0/0	0.01	10	
Niobium	Nb	ppm	0.1	500	
Nickel	Ni	ppm	0.2	10,000	
Phosphorous	Р	ppm	10	10,000	
Lead	Pb	ppm	0.5	10,000	
Rubidium	Rb	ppm	0.1	10,000	
Rhenium	Re	ppm 0.002		50	
Sulphur	S % 0.01		0.01	10	
Antimony	Sb	ppm 0.05		10,000	
Scandium	Sc	Sc ppm 0.1		10,000	
Selenium	Se	ppm	1	1,000	
Tin	Sn	ppm	0.2	500	
Strontium	Sr	ppm	0.2	10,000	
Tantalum	Та	ppm	0.05	100	
Tellurium	Te	Te ppm 0.05		500	
Thorium	Th	ppm	0.2	10,000	
Titanium	Ti	%	0.005	10	
Thallium	TI	ppm	0.02	10,000	
Uranium	U	ppm	0.1	10,000	
Vanadium	V	ppm	1	10 000	
Tungsten	W	ppm	0.1	10,000	
Yttrium	Υ	ppm	0.1	500	
Zinc	Zn	ppm	2	10,000	
Zirconium	Zr	ppm	0.5	500	

REVISION 04.00 SEP 26, 2006 WWW.ALSGLOBAL.COM

GEOCHEMICAL PROCEDURE

ME- MS81

ULTRA-TRACE LEVEL METHODS

SAMPLE DECOMPOSITION

Lithium Metaborate Fusion (FUS-LI01)

ANALYTICAL METHOD

Inductively Coupled Plasma - Mass Spectroscopy (ICP - MS)

A prepared sample (0.200 g) is added to lithium metaborate flux (0.90 g), mixed well and fused in a furnace at 1000° C. The resulting melt is then cooled and dissolved in 100 mL of $4\% \text{ HNO3} / 2\% \text{ HCl}_{3}$ solution. This solution is then analyzed by inductively coupled plasma - mass spectrometry.

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT	
Silver*	Ag	ppm	1		
Barium	Ва	ppm	0.5	10000	
Cerium	Ce	ppm	0.5	10000	
Cobalt*	Со	ppm	0.5	10000	
Chromium	Cr	ppm	10	10000 10000 10000 1000 1000	
Cesium	Cs	ppm	0.01		
Copper*	Cu	ppm	5		
Dysprosium	Dy	ppm	0.05		
Erbium	Er	ppm	0.03		
uropium Eu		ppm	0.03	1000	
Gallium	Ga	ppm	0.1	1000 1000 10000	
Gadolinium	Gd	ppm	0.05		
Hafnium	Hf	ppm	0.2		
Holmium	Но	ppm	0.01	1000	
Lanthanum	La	ppm	0.5	10000	
Lutetium	Lu	ppm	0.01	1000	
Molybdenum*	Mo	ppm	2	10000	

REVISION 05.00 FEB 26, 2009 WWW.ALSGLOBAL.COM

ME- MS81

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT	
Niobium	Nb	ppm	0.2		
Neodymium	Nd	ppm	0.1	10000	
Nickel*	Ni	ppm	5	10000	
Lead*	Pb	ppm	5	10000	
Praseodymium	Pr	ppm	0.03	1000	
Rubidium	Rb	ppm	0.2	10000 1000 10000 10000 10000 1000 1000	
Samarium	Sm	ppm	0.03		
Tin	Sn	ppm	1		
Strontium	Sr	ppm	0.1		
Tantalum	Та	ppm	0.1		
Terbium	Tb	ppm	0.01		
Thorium	Th	ppm	0.05		
Thallium	ΤΙ	ppm	0.5		
Thulium	Tm	ppm	0.01		
Uranium	U	ppm	0.05		
Vanadium	V	ppm	5		
Tungsten	W	ppm	1	10000	
Yttrium	Υ	ppm	0.5	10000	
Ytterbium	Yb	ppm	0.03	1000	
Zinc*	Zn	ppm	5	10000	
Zirconium	Zr	ppm	2	10000	

^{*}NOTE: Some base metal oxides and sulfides may not be completely decomposed by the lithium borate fusion. Results for Ag, Co, Cu, Mo, Ni, Pb, and Zn will not likely be quantitative by this method.

REVISION 05.00 FEB 26, 2009 WWW.ALSGLOBAL.COM

ME- MS81

Adding Base Metals - ME- AQ81, ME- 4ACD81

SAMPLE DECOMPOSITION

Aqua Regia (GEO-ARO1) or 4-acid (GEO-4ACID)

ANALYTICAL METHOD

Inductively Coupled Plasma - Atomic Emission spectroscopy (ICP - AES)

The lithium metaborate fusion is not the preferred method for the determination of base metals. Many sulfides and some metal oxides are only partially decomposed by the borate fusion and some elements such as cadmium and zinc can be volatilized.

Base metals can be reported with ME-MS81 for either an aqua regia digestion (ME- AQ81) or a four acid digestion (ME- 4ACD81). The four acid digestion is preferred when the targets include more resistive mineralization such as that associated with nickel and cobalt

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT	
Silver	Ag	ppm	0.5		
Arsenic	As	ppm	5	10000 10000 10000	
Cadmium	Cd	ppm	0.5		
Cobalt	Со	ppm	1		
Copper Cu		ppm	1	10000	
Mercury**	Hg	ppm	1	10000 10000 10000	
Molybdenum	Мо	ppm	1		
Nickel	Ni	ppm	1		
Lead	ead Pb		1	10000	
Zinc	Zn	ppm	2	10000	

^{**}Hg is only offered with the aqua regia digestion.

REVISION 05.00 FEB 26, 2009 WWW.ALSGLOBAL.COM

ASSAY PROCEDURE

ME- 0G46

ORE GRADE ELEMENTS BY AQUA REGIA DIGESTION USING CONVENTIONAL ICP- AES ANALYSIS

SAMPLE DECOMPOSITION

HNO, -HCl Digestion (ASY-4R01)

ANALYTICAL METHOD

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)*

Assays for the evaluation of ores and high-grade materials are optimized for accuracy and precision at high concentrations. Ultra high concentration samples (> 15 -20%) may require the use of methods such as titrimetric and gravimetric analysis, in order to achieve maximum accuracy.

A prepared sample is digested in 75% aqua regia for 120 minutes. After cooling, the resulting solution is diluted to volume (100 mL) with de-ionized water, mixed and then analyzed by inductively coupled plasma - atomic emission spectrometry or by atomic absorption spectrometry.

*NOTE: ICP-AES is the default finish technique for ME-OG46. However, under some conditions and at the discretion of the laboratory an AA finish may be substituted. The certificate will clearly reflect which instrument finish was used.

				UPPER LIMIT	
ELEMENT	SYMBOL	UNITS	LOWER LIMIT		
Silver	Ag	ppm	1	1,500	
Arsenic	As	%	0.01	30	
Cadmium	Cd	%	0.001	10	
Cobalt	Со	%	0.001	20 40 100	
Соррег	Cu	%	0.001		
Iron	Fe	0/0	0.01		
Manganese	Mn	0/0	0.01	50	
Molybdenum	Мо	%	0.001	10	
Nickel	Ni	%	0.001	10	
Lead	Pb %		0.001	20	
Zinc	Zn	%	0.001	60	

REVISION 02.02 JAN 22, 2009 WWW.ALSGLOBAL.COM

Lithogeochemistry

Analyses related to lithogeochemistry, alteration minerals, and trace element mobility are important tools for understanding ore-forming geological environments. Managing and interpreting large datasets generated by lithogeochemical techniques, while traditionally challenging, has been greatly simplified thanks to powerful software tools now available to geologists and geochemists.

No single analytical method is able to encompass the full range of elements required for effective lithogeochemical investigation. To this end, ALS Geochemistry offers two analytical packages that are designed to provide comprehensive information for these studies using the most appropriate techniques for every element; essentially, complete rock characterization.

Complete Characterization Package

By combining a number of methods into one cost effective package, a complete sample characterization is obtained. This package combines the whole rock package ME-ICP06 plus carbon and sulfur by combustion furnace (ME-IR08) to quantify the major elements in a sample. Trace elements including the full rare earth element suites are reported from three digestions with either ICP-AES or ICP-MS finish: a lithium borate fusion for the resistive elements (ME-MS81), a four acid digestion for the base metals (ME-4ACD81) and an aqua regia digestion for the volatile gold related trace elements (ME-MS42). Gold is analyzed separately – see page 10 for methods.

This package is suitable only for unmineralized samples. Minimum sample size is 10g.

ANALY	TES AND RAN	GES (ppi	m)					CODE	PRICE PER SAMPLE (\$)			
SiO ₂	0.01-100%	MgO	0.01-100%	TiO ₂	0.01-100%	BaO	0.01-100%					
ALO,	0.01-100%	Na ₂ 0	0.01-100%	MnO	0.01-100%	LOI	0.01-100%	ME-ICP06	145 15005	ME ICDAS		
Fe ₂ O ₃	0.01-100%	K ₂ O	0.01-100%	P205	0.01-100%							
CaQ	0.01-100%	Cr203	0.01-100%	SrO	0.01-100%							
Ва	0.5-10,000	Hf	0.2-10,000	Sn	1-10,000	Y	0.5-10,000	CCP-PKC Includes M E-XRF2				
Ce	0.5-10,000	Но	0.01-1,000	Sr	0.1-10,000	Yb	0.03-1,000					
Cr	10-10,000	ta	0.5-10,000	Ta	0.1-2,500	Zr	2-10,000		Sold only as a			
Cs	0.01-10,000	Lu	0.01-1,000	Tb	0.01-1,000				complete package.			
Dy	0.05-1,000	Nb	0.2-2,500	Th	0.05-1,000				CCP-PKG01			
Er	0.03-1,000	Nd	0.1-10,000	Tm	0.01-1,000				68.10			
Eu	0.03-1,000	Pr	0.03-1,000	U	0.05-1,000				CCP-PKG03			
Ga	0.1-1,000	Rb	0.2-10,000	٧	5-10,000				Includes M E-XRF26 instead of ME-ICP06.			
Gd	0.05-1,000	Sm	0.03-1,000	W	1-10,000				83.10			
Ag	0.5-100	Св	1-10,000	Ni	1-10,000	Zn	2-10,000	ME-4ACD81				
Cd	0.5-1,00-0	Li	10-10,000	Pb	2-10,000							
€0	1-10,000	Mo	1-10,000	Sc	1-10,000							
As	0.1-250	Hg	0.005-25	Se	0.2-250	TI	0.02-1,000	HE HELD				
BI	0.01-250	5b	0.05-250	Te	0.01-250			ME-MS42				
(0.01-50%	5	0.01-50%					ME-IR08				

- Au-AA23 Au-AA24 Fire Assay Atomic Absorption Methods.pdf
- Au-Ag-GRA21-GRA22 Fire Assay Gravimetric Methods.pdf
- * ICP23.PNG
- * IR07_IR08.PNG
- ISO 17025 Val dOr Canada Certificate.pdf
- ME-ICP06 and OA-GRA05 Analysis of Major Oxides by ICP- AES Method.pdf
- ME-ICP61 Four Acid Near Total- ICP Multi-element Method.pdf
- MEMS61 Four Acid Near Total ICP AES ICPMS Multielement Method.pdf
- ME-MS81 Lithium Metaborate fusion-ICP-MS Multi-element Method.pdf
- ME-OG46 Aqua Regia Assay Grade Multi-element Method.pdf
- MS42_4ACD81.PNG

ANNEXE 5 LEVÉ MAG EM SKY TEM

Rapport d'interprétation d'un levé EM/MAG héliporté SKYTEM couvrant la propriété Chablis dans le secteur de la Baie James Québec, Canada

Soumis à

SOQUEM INC 600, avenue Centrale Val-d'Or, QC Canada J9P 1P8

Par Marc Boivin, géo., géophysicien consultant

6A, rue Boilard Fossambault-sur-le-lac Québec, Canada, G3N 1X9 *Tél.*: 418-951-4035

Mars 2015

Table des matières

1.	INTRODUCTION	3
2.	LOCALISATION	3
	DONNÉES GÉOPHYSIQUES	
4.	INTERPRÉTATION	6
	4.1 BLOC 11 (CHABLIS-1388)	21
5.	CONCLUSIONS ET RECOMMANDATIONS	
	PRODUIT LIVRÉS	24
	CERTIFICAT DE QUALIFICATION	25
	ANNEXE A	26

1. INTRODUCTION

Des levés magnétiques et électromagnétiques héliportés dans le domaine du temps (TDEM) ont été effectués sur 11 grilles dans le secteur de la Baie James au Québec. Le présent rapport inclut les blocs 7 et 8 couvrant la propriété Chablis (1388) de SOQUEM de SOQUEM. Ces levés ont été exécutés par la firme SkyTEM Surveys Aps en juillet 2014 avec le système SkyTEM. À la demande de SOQUEM Inc, la firme MB Geosolutions a complété une interprétation géophysique des données issues du levé.

2. LOCALISATION

Le secteur qui a fait l'objet d'un levé MAG/EM héliporté est localisé au nord de la municipalité de Matagami, dans la partie sud de la Baie James (figure 1). Les 11 blocs de levé sont distribués sur une distance est-ouest de 164km. La figure 2 montre la distribution des blocs de levé incluant la position des 4 propriétés de SOQUEM INC, soit Kitchigama (1390), Nottaway (1393), Chensagi (1389) et Chablis (1388).

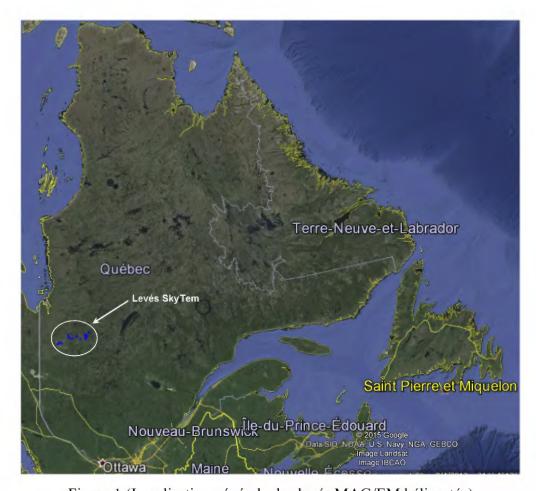


Figure 1 (Localisation générale des levés MAG/EM héliportée)

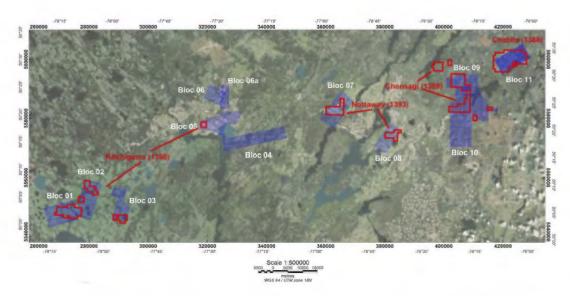


Figure 2 (Localisation détaillée des levés MAG/EM héliportée)

3. DONNÉES GÉOPHYSIQUES

Les données géophysiques utilisées dans le présent rapport proviennent d'un levé héliporté exécuté par la firme SkyTEM Surveys Aps en juillet 2014. Le système utilisé était un SkyTEM 508 (figure 3). Ce système est caractérisé par l'utilisation de deux cycles de transmission d'un champ EM primaire, un cycle ayant un moment faible (~4,900 NIA) et un moment fort (~500,000 NIA). Ces cycles sont nommés LM (low moment) et HM (high moment). Ce principe permet d'acquérir une excellente qualité de données en faible profondeur lors du moment faible et d'obtenir une bonne profondeur d'investigation lors du moment fort. Ainsi, les données acquises lors du moment faible permettent de faire des inversions TDEM 1D et donc de caractériser le mort-terrain alors que les données acquises lors du moment fort permettent de détecter des conducteurs géologiques en surface et en profondeur.

Un rapport logistique, intitulé « SkyTEM Survey: James Bay area, Quebec, Canada, Data report » fourni par la firme SkyTEM Surveys Aps et daté de septembre 2014 couvre tous les aspects techniques des levés, les données numériques et les résultats des inversions TDEM 1D.

Voici un résumé des spécifications techniques du système SkyTEM 508 utilisé par les levés :

Moment faible	
Nombre de tours de fils	1
Surface de la boucle	536,36 m ²
Courant crête	7,1 A
Moment maximum	~4,900 NIA
Fréquence de répetition	270 Hz
Période de transmission active	800μs
Période de transmission coupée	1052μs
Cycle effectif	43%
Type d'onde	Carré

Moment fort	
Nombre de tours de fils	8
Surface de la boucle	536,36 m ²
Courant crête	124,1 A
Moment maximum	~500,000 NIA
Fréquence de répetition	30 Hz
Période de transmission active	4000µs
Période de transmission coupée	12667µs
Cycle effectif	24%
Type d'onde	Carré

Figure 3 (Système SkyTEM)

4. INTERPRÉTATION

4.1 BLOC 11 (CHABLIS-1388)

Le bloc 11 inclut 683 km linéaires de ligne avec une direction moyenne de N60⁰ avec un espacement moyen de lignes de 200m.

L'image magnétique obtenue sur le bloc 11 (figure 4) montre une importante anomalie magnétique, en forme de croissant, au centre du bloc. Cette signature pourrait s'apparenter à une structure de pli replissé avec une possible charnière dans la partie sud-ouest. Une autre série d'anomalies magnétiques linéaires orientées nord-ouest est visible dans la partie nord-est du bloc 11.

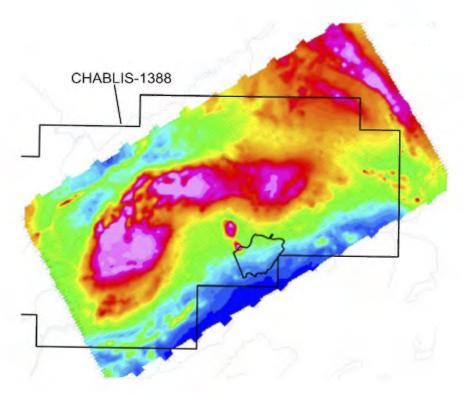


Figure 4 (Image magnétique du bloc 11)

Les données électromagnétiques du bloc 11 indiquent la présence de 86 anomalies conductrices et 9 très faibles réponses classées comme anomalies possibles (figure 5).

Les anomalies EM sont bien distribuées sur l'ensemble du bloc. Notons la présence de plusieurs anomalies EM à la limite ouest du bloc, dans un environnement peu magnétique. Un deuxième regroupement d'anomalies EM semble spatialement associé à l'importante anomalie magnétique localisée au centre du bloc 11. Finalement, un important axe EM est observé dans le secteur est du bloc. Cet axe semble dessiner une forme de plissement serré.

Un tableau situé en annexe 1 de ce présent rapport donne le détail de l'interprétation de ces anomalies.

L'inversion numérique 1D des données électromagnétiques du bloc 11 n'a pas permis de mettre en évidence d'importantes fosses de mort-terrain conductrices. Le secteur ne semble pas affecté par un mort-terrain épais.

Figure 5 (Localisation des anomalies EM sur le bloc 11)

5. CONCLUSIONS ET RECOMMANDATIONS

Suite à mise en œuvre d'un levé électromagnétique et magnétique héliporté exécuté par la firme SkyTEM Surveys Aps en juillet 2014, MB Geosolutions a complété le traitement et l'interprétation géophysiques des données.

À partir des images magnétiques obtenues lors du levé, des environnements lithomagnétiques très variés ont été observés incluant de possibles zones de plissements, d'intrusions et dykes discordants.

Les données électromagnétiques TDEM ont aussi permis de détecter et caractériser la présence de nombreuses anomalies EM sur le bloc 11. Ces données ont fait l'objet d'une interprétation qualitative et quantitative permettant de positionner et caractériser les anomalies.

Des visites de reconnaissance sur les principales anomalies EM sont recommandées. À la lueur d'information géoscientifique (géologie, direction, pendage, ...), une analyse approfondie de certaines réponses magnétiques ou électromagnétiques pourrait être recommandée.

Respectueusement soumis,

Marc Boivin, géo. (#351)

Géophysicien consultant (MB Geosolutions)

Produits livrés

- Rapport d'interprétation (format PDF)
- > Carte d'interprétation des anomalies EM (format PDF)
- ➤ Carte des profils EM Composante Z « high moment » (format PDF)
- ➤ Carte EM couleur du canal #25 Composante Z « high moment » (format PDF)
- > Fichiers Geotifs couvrant les cartes fournies
- > Fichiers « grid » (format Geosoft .grd)
- > Tableaux des anomalies EM interprétées (format EXCEL .xls)

Marc Boivin 6A Boilard Fossambault-sur-le-Lac, QC, Canada G3N 1X9

Téléphone: 418-951-4035 E-mail: mbgeosolutions@gmail.com

Certificat de Qualifications

Je soussigné, Marc Boivin, déclare que:

- 1. Je suis géophysicien consultant et propriétaire de MB Geosolutions.
- 2. J'ai obtenu un baccalauréat en géologie de l'Université du Québec à Montréal en 1983.
- 3. J'ai plus de 30 ans d'expérience dans la pratique de la géophysique appliquée à l'exploration minière depuis ma graduation à l'UQAM.
- 4. Je suis membre en règle de l'Ordre des Géologues du Québec.
- 5. Je ne détiens aucun intérêt dans la compagnie SOQUEM ou dans les propriétés couvertes par ce présent rapport.
- Je suis responsable de l'interprétation et la rédaction du document intitulé Rapport d'interprétation d'un levé EM/MAG héliporté SKYTEM couvrant le projet Chablis (1388), Québec, Canada

En date du 18 mars 2015

OUEBEC SOGUE/GEOLOGICAL SOCIETATION OF THE SOCIETAT

Marc Boivin, géo. #351

NUMÉRIQUE

Page(s) de dimension(s) hors standard numérisée(s) et positionnée(s) à la suite des présentes pages standard

DIGITAL FORMAT

Non-standard size page(s) scanned and placed after these standard pages

ANNEXE 1
Tableaux d'interprétation des anomalies EM

Bloc 11								
LIGNE	E_UTM18N	N_UTM18N	ID	CANAUX	COMMENTAIRES	PROFONDEUR	PENDAGE	TAU
110031	418081	5600082	11031.1	17	Forte réponse	Sub-surface	Faible vers le NE	0.76
110071	418007	5599587	11071.1	25	Très forte	Sub-surface	?	1.40
110041	418049	5599969	110041.1	21	Forte réponse	moyenne à faible	Moyen vers le NE	1.18
110041	419521	5600806	110041.2	17	Pic simple	Profond	,	1.22
110051	418146	5599899	110051.1	22	Forte réponse	Sub-surface	Moyen vers le NE	1.20
110051	419444	5600640	110051.2	0	Possible			
110061	418070	5599749	110061.1	12	Amplitude moyenne	Moyenne	Sub-vertical	1.05
110071	418179	5599690	110071.2	22	Complexe	Sub-surface	?	1.01
110081	417286	5599053	110081.3	12	Incomplète	?	5	
110091	418006	5599337	110091.1	23	Bien définie	Moyenne	Sud-ouest ?	1.26
110091	418239	5599475	110091.2	14	Mal définie	?	3	
110101	418812	5599709	110101.1	12	Simple pics	Moyenne	5	
110101	418128	5599315	110101.2	23	Mal définie	Sub-surface	5	1.09
110101	417499	5598944	110101.3	15	double pics	Faible	Vertical	0.64
110101	423337	5602323	110101.4	8	Faible	?	?	
110111	417624	5598875	110111.1	11	Mal définie	Profond	?	
110111	418311	5599302	110111.2	25	double pics	Sub-surface	Faible vers le nord-est	1.09
110111	423504	5602298	110111.3	11	Simple pics	Sub-surface	?	
110111	422590	5601752	110111.4	0	Possible			
110121	418345	5599199	110121.1	16	double pics	Moyenne	Moyen vers le NE	1.10
110121	417467	5598698	110121.2	12	Incomplète	?	?	
110141	417951	5598737	110141.1	16	Simple pics	Sub-surface	?	0.67
110171	421121	5600232	110171.1	0	Possible			
110181	421220	5600180	110181.1	13	Mal définie	?	5	
110201	418489	5598367	110201.1	11	Simple pics	Profond	5	
110211	418641	5598336	110211.1	16	Simple pics	Sub-surface	5	0.82
110211	418333	5598165	110211.2	13	Faible simple pic	?	5	
110211	420228	5599255	110211.3	12	Réponse large	Moyenne	;	0.59

110221	418350	5598049	110221.1	21	double pics	Sub-surface	Vertical	
110221	419675	5598803	110221.2	11	Faible	Profond	?	
110221	420106	5599068	110221.3	0	Possible			
110231	418574	5598066	110231.1	0	Possible			
110231	420440	5599150	110231.2	12	Simple pics	?	?	
110231	420727	5599321	110231.3	16	Simple pics	Sub-surface	?	0.60
110231	425464	5602048	110231.4	16	Complexe	Sub-surface	?	0.57
110241	419583	5598527	110241.1	13	Simple pics	Moyenne	?	
110241	425334	5601857	110241.2	11	Faible	?	?	
110241	425618	5602014	110241.3	16	Simple pics	Sub-surface	?	0.63
110241	424203	5601206	110241.4	0	Possible			
110241	418590	5597966	110241.5	0	Possible			
110251	420620	5599027	110251.1	22	double pics	Sub-surface	Faible vers le nord-est	0.81
110251	425359	5601773	110251.2	16	Simple pics	Sub-surface	?	0.56
110251	425709	5601969	110251.3	18	Simple pics	Sub-surface	?	0.71
110261	425897	5601957	110261.1	11	Simple pics	Moyenne	?	
110261	425686	5601831	110261.2	8	Faible	Profond	?	
110261	425417	5601672	110261.3	17	Simple pics	Sub-surface	?	0.62
110261	424431	5601109	110261.4	14	Faible	Profond	?	
110261	420868	5599062	110261.5	12	Simple pics	Moyenne	5	0.68
110261	420571	5598879	110261.6	11	Réponse large	Profond	Vertical	
110261	419688	5598358	110261.7	0	Possible			
110271	419490	5598138	110271.1	9	Faible	Profond	?	
110271	419945	5598398	110271.2	13	Simple pics	Moyenne	?	
110271	420727	5598855	110271.3	18	Simple pics	Sub-surface	?	0.86
110271	420934	5598980	110271.4	11	Simple pics	?	?	
110271	424544	5601058	110271.5	8	Faible	Profond	?	
110271	425513	5601610	110271.6	13	Complexe	Moyenne	?	0.53
110271	426009	5601906	110271.7	11	Faible	Profond	Vertical	
110281	419864	5598248	110281.1	11	Faible	Profond	Nord-est	
110281	420624	5598679	110281.2	12	double pics	Moyenne	Nord-est	0.69
110281	425515	5601497	110281.3	14	Complexe	Moyenne	Faible vers le nord-est	

(T			1	1	1	
110281	426201	5601911	110281.4	22	double pics	Sub-surface	Sud-ouest	1.01
110291	420592	5598549	110291.1	7	Très faible	Profond	?	
110291	425772	5601556	110291.2	11	Simple pics	Moyenne	?	
110291	426333	5601870	110291.3	25	Complexe	Sub-surface	?	1.10
110291	424702	5600925	110291.4	0	Possible			
110301	420716	5598497	110301.1	0	Possible			
110301	424684	5600804	110301.2	16	Simple pics	Moyenne	?	0.88
110301	425751	5601419	110301.3	11	Complexe	Moyenne	3	
110301	426365	5601768	110301.4	23	Forte réponse	Sub-surface	Nord-est ?	1.13
110311	424785	5600742	110311.1	14	Simple pics	Moyenne	3	0.83
110311	425988	5601428	110311.2	8	double pics	Profond	Vertical	
110311	426438	5601690	110311.3	9	Très faible	Profond	3	
110321	424873	5600673	110321.1	16	Faible	Moyenne	3	0.86
110321	426025	5601342	110321.2	11	Complexe	Moyenne	?	
110321	426574	5601633	110321.3	16	Complexe	Moyenne	?	
110331	426125	5601287	110331.1	25	Complexe	Sub-surface	?	0.67
110331	426721	5601636	110331.2	22	double pics	Sub-surface	Sud-ouest	1.00
110341	426181	5601201	110341.1	12	Simple pics	Moyenne	?	
110341	426716	5601496	110341.2	13	Complexe	Moyenne	?	1.02
110351	426331	5601168	110351.1	12	Simple pics	Moyenne	3	0.54
110351	426915	5601509	110351.2	16	double pics	Moyenne	Vertical	0.67
110361	426309	5601043	110361.1	13	Simple pics	Moyenne	?	0.44
110361	426941	5601398	110361.2	16	double pics	Sub-surface	Vertical	0.84
110371	427142	5601395	110371.1	16	double pics	Sub-surface	Nord-est	0.80
110381	427306	5601373	110381.1	13	Simple pics	Moyenne	?	0.66
110391	426601	5600854	110391.1	21	Simple pics	Sub-surface	?	0.80
110391	427396	5601316	110391.2	11	Faible	Profond	?	
110421	426822	5600626	110421.1	11	Réponse large	Profond	Sud-ouest ?	
110431	425662	5599860	110431.1	14	Simple pics	Moyenne	?	1.00
110431	426816	5600524	110431.2	14	Simple pics	Moyenne	?	0.73
110441	426857	5600432	110441.1	11	Très faible	Profond	?	
110451	426957	5600370	110451.1	11	Simple pics	Profond	?	0.86
		^						

110501	426440	5599505	110501.1	8	Simple pics	Profond	?	
110541	425366	5598403	110541.1	11	Simple pics	Moyenne	?	0.80
110081	418006	5599462	110871.1	16	Complexe	3	3	0.90
115111	418475	5598166	115111.1	18	Simple pics	Moyenne	?	1.24

No_Terrain	Équipe	Date_aaaammjj	Feuillet	Secteur	Estant	Nordant	Fuseau_UT Affleu M 83	Bloc_1sur5_ang _5sur5_rond	Dimension_ en_m	Environnement	Code
14-GR-065	GR-JFDL	2014-07-08	32K09	Trav-14	425948,0	5601714,0		_5sur5_rond	3x1	Bûché	11D
44.60.6==	OD IEE:	2011	22422	T 44	40.000				45.0 (2.2)		140
	GR-JFDL	2014-07-08		Trav-14	426337,0	<u> </u>			15x8 (2x2)	Forêt	I1D
14-GR-067	GR-JFDL	2014-07-08	32K09	Trav-14	425618,0	5601191,0	18 x		Pluri-décam	Bûché	l1D
14-GR-069	GR-JFDL	2014-07-08	32K09	Trav-14	424104,0	5601941,0	18	b 4/5	0,3x0,2x0,2	Bord de chemin	S1
14-jfdl-046	JFDL-GR	2014-07-08	32K09	trav-14	426172,0	5601561,0	18 x		100×100	buché	M22
14-jfdl-047	JFDL-GR	2014-07-08	32K09	trav-14	426497,0	5601386,0	18 x		10x20	buché	IIC
14-jfdl-048	JFDL-GR	2014-07-08	32K09	trav-14	425037,0	5601585,0	18	b 4/5	0.2x0.1x0.1	bord de route	V3
14-JFG-086	JFG-OC	2014-07-08	32KU0	Chablis	419444,0	5599082,0	18 x		30x15	Forêt près de tourbière	IIG
	JFG-OC	2014-07-08		Chablis	419444,0	5599082,0	18 X	b 1/5	1x0.6x0.6	Bord de chemin	IIG IIG
14-JFG-088 14-JFG-089	JFG-OC	2014-07-08		Chablis	419889,0			b 1/5	0.4x0.4x0.3	Bord de chemin	M4
14-JFG-090	JFG-OC	2014-07-08	32K09	Chablis	419878,0	5599004,0	18	b 1/5	1x1x1	Bord de chemin	M4
14-JFG-092	JFG-OC	2014-07-08	32K09	Chablis	419891,3	5598987,5	18 x		5x2	Bord de chemin	IIG
14-JFG-094	JFG-OC	2014-07-08	32K09	Chablis	419919,0	5598920,0	18	b 5/5	1.5x1x1	Bord de chemin	l1G
14-JFG-091	JFG-OC	2014-07-08		Chablis	419889,7	5598992,1	18	b 1/5	0.25x0.3x0.3	Bord de chemin	11G
14-GR-068	GR-JFDL	2014-07-08		Trav-14	425780,0	5601683,0			3x1	Bûché+bord de chemin	l1D
	JFG-OC	2014-07-08		Chablis	419945,0		18 x		3x4	Bord de chemin	l1G
	JFG-OC	2014-07-08		Chablis	419921,0		18 x	1.2/5	15x2	Bord de chemin	I1G
14-GR-074	GR-JL	2014-07-09	32K09	Bord de chemin	418437,0	5602131,0	18	b 3/5	1x0,5x0,3	Bord de chemin	I3A
14-GR-070	GR-JL	2014-07-09	32K09	Bord de chemin	418667,0	5601405,0	18	b 4/5	0,4x0,3x0,2	Remblais	53
14-GR-071	GR-JL	2014-07-09	32K09	Bord de chemin	418506,0	5601330,0	18	b 2/5	0,4x0,3x0,3	Bord de chemin	M4
14-GR-072	GR-JL	2014-07-09	32K09	Bord de chemin	418158,0	5601579,0	18 x		6x3	Bord de chemin	M5
14-GR-073	GR-JL	2014-07-09	32K09	Bord de chemin	418417,0	5602108,0	18	b 3/5	0,7x0,7x0,4	Bord de chemin	M4
14-JFG-092	JFG-DP	2014-07-09	32K09	Chablis	419893,0	5598991,4	18 x		5x7	Bord de chemin, décapage manuel	11G
14-JFG-092	JFG-DP	2014-07-09	32K09	Chablis	419895,4	5598988,2	18 x		5x7	Bord de chemin, décapage manuel	l1G
14-JFG-092	JFG-DP	2014-07-09	32K09	Chablis	419894,5	5598986,5	18 x		5x7	Bord de chemin, décapage manuel	l1G
277489		2014-07-16		Chablis	419922,0			b 2/5			I1B
277490		2014-07-16		Chablis	420036,0			b 1/5	.40x.30x.15		M4
~~~		2014-07-16		Chablis	420225,0		18	b 2/5	.50x.40x.08	Bord de route	M4
277491 14-DP-043	DP-GR	2014-07-16	221/00	Chablis	420423,0	5598414,0	18 x		2x5	Bord de route	I1B/I1G/ M4

No_Terrain	Équipe	Date_aaaammjj	Feuillet	Secteur	Estant	Nordant	Fuseau_UT M_83	Affleur	Bloc_1sur5_ang 5sur5_rond	Dimension_ en_m	Environnement	Code
4-GR-081	GR-DP	2014-07-16	32K09	Bord de chemin	420037,0	5598477,0		3	b 4/5		Bord de chemin	121
4-GR-080	GR-DP	2014-07-16	32K09	Bord de chemin	419944,0	5598537,0	18	3	b 3/5	<u> </u>	Bord de chemin	M4
4-GR-082	GR-DP	2014-07-16	32K09	Bord de chemin	420557,0	5598489,0	18	3	b 3/5	0,7x0,5x0,4	Bord de chemin	S9
14-GR-083	GR-DP	2014-07-16	32K09	Bord de chemin	420606,0	5598597,0	18	3 x		8x2	Bord de chemin	M5
L4-JFG-092	JFG-OC	2014-07-16	32K09	Chablis	419896,9	5598991,6	18	3 x		7x7	Bord de chemin, décapage manuel	l1G
4-JFG-092	JFG-OC	2014-07-16	32К09	Chablis	419898,2	5598991,1	18	3 x		7x7	Bord de chemin, décapage manuel	I1G
277492	DP-GR	2014-07-16	33KU0	Chablis	419260,7	5599491,7	18	2	b 2/6	.30x.30x.11	Bord de route	I1B
14-DP-044	DP-GR	2014-07-16		Chablis	420523,0	5598471,0	18		0 2/0	1.5x2.0	Bord de route	I1B/ M4
14-DP-044 14-DP-045	DP-GR DP-GR	2014-07-16		Chablis	420523,0	5598558,0		3 x		1.5x2.0	Bord de route	11B-I1G / M4
14-jfdl-058	JFDL-JL-JFG-OC	2014-07-16		indice Cu nouvelle propriété soque	419898,0	5599005,0		3 x		2x4	bord de route	M4
14-JFG-092	JFG-OC	2014-07-17		Chablis	419896,9	5598991,0	18	_		1		
14-JFG-092	JFG-OC	2014-07-17		Chablis	419898,0	5598990,9	18	3 r		1		
L4-JFG-092	JFG-OC	2014-07-17		Chablis	419898,9	5598990,7	18	3 r		1		
14-JFG-092	JFG-OC	2014-07-17		Chablis	419899,7	5598990,1	18			1		
14-JFG-092	JFG-JL	2014-07-18	32K09	Chablis	419892,5	5598990,9	18	3 r		1		
14-JFG-092	JFG-JL	2014-07-18	32K09	Chablis	419893,4	5598990,5	18	3 r		1		
14-JFG-092	JFG-JL	2014-07-18	32K09	Chablis	419894,4	5598990,4	18	3 r		1		
14-JFG-092	JFG-JL	2014-07-18	32K09	Chablis	419895,4	5598990,3	18	3 r		1		
14-JFG-092	JFG-JL	2014-07-18		Chablis	419896,2	5598990,3	18			0,5		
14-JFG-092	JFG-JL	2014-07-18		Chablis	419900,4	5598990,0	18	_		0,5		-
L4-JFG-092	JFG-JL	2014-07-18		Chablis	419901,3	5598990,3	18			1		
14-JFG-092	JFG-JL	2014-07-18		Chablis	419902,3	5598990,1	18			1		
L4-JFG-092	JFG-JL	2014-07-18		Chablis	419902,9	5598990,0	18			0,5		
14-JFG-092	JFG-JL	2014-07-18	32K09	Chablis	419903,4	5598989,9	18	3 r		1		
14-JFG-092	JFG-JL	2014-07-18	32K09	Chablis	419904,4	5598989,9	18	3 r		1		
14-JFG-092	JFG-JL	2014-07-18	32К09	Chablis	419905,6		18			1,5		
14-JFG-092	JFG-JL	2014-07-18	32K09	Chablis	419906,7	5598989,9	18	3 r		0,5		
14-JFG-092	JFG-JL	2014-07-18		Chablis	419907,5	5598990,5	18	3 r		1		
14-JFG-092	JFG-JL	2014-07-18		Chablis	419905,2	5598989,9				0,5		
	JFG-JL	2014-07-18		Chablis	419906,0		18			1		
14-MQ-503	MQ-SJ	2014-09-23	32K09	Chablis Ouest	417241,0	5600424,0		3 x		25mx4m	Affleurement de chemin	IIC
	MQ-SJ	2014-09-23		Chablis Ouest	417421,0				b 3/5			M3
14-MQ-501	MQ-SJ	2014-09-23		Chablis Ouest	417372,0				b 3/5			M4
14-BR-101	BR-MA	2014-09-23	32K09	Chablis ouest	417664,0	5600350,0	18	3	b5/5	0.5x0.5	Bûcher	

No_Terrain	Équipe	Date_aaaammjj	Feuillet	Secteur	Estant	Nordant	Fuseau_UT M_83	Affleur	Bloc_1sur5_ang _5sur5_rond	Dimension_ en_m	Environnement	Code
4-BR-102	BR-MA	2014-09-23	32K09	Chablis ouest	417743,0	5600186,0		8 x		20x5	Bûcher	11B
14-BR-103	BR-MA	2014-09-23	32K09	Chablis ouest	417815,0	5600401,0	1	8 x		3x5	Bûcher	I1D
14-BR-104	BR-MA	2014-09-23		Chablis ouest	427668,0			8 x		20x5 20x6	Bûcher	I1D
14-BR-105	BR-MA	2014-09-23	32K09	Chablis ouest	417626,0	5599993,0	1	8 x		5x3	flanc de colline	11B
14-BR-106	BR-MA	2014-09-23	32K09	Chablis ouest	417649,0	5599892,0	1	8 x		20x15	top de colline	I1D
14-MQ-504	MQ-SJ	2014-09-24		Chablis Ouest	418102,0			8 x		2mx1m	Affleurement décapé	I1C
4-MQ-505	MQ-SJ	2014-09-24	32K09	Chablis Ouest	418071,0	5599563,0	1	8 x		20mx7m	Affleurement flanc nord de colline	I1C-I1B
14-MQ-508	MQ-SJ	2014-09-24	32K09	Chablis Ouest	418037,0	5599583,0	1	8 x		5mx2.5m	Affleurement	I1C-I1B
14-MQ-509	MQ-SJ	2014-09-24	32K09	Chablis Ouest	418082,0	5599780,0	1	8 x		10mx10m	Affleurement en 3 boutons de roche	I1B
14-MQ-506	MQ-SJ	2014-09-24		Chablis Ouest	418059,0			8 x		5mx3m	Affleurement	I1C
14-MQ-507	MQ-SJ	2014-09-24	32K09	Chablis Ouest	418044,0	5599600,0	1	8			BEEPMAT kick a 150-200 en surface, on a creuser 1m de MT, kick a 1200, puis terrargileuse gorgée d'eau, très profond, décapage ? Autour du point, kick 30-300, flage autour des zones conductrices, orientation N40E	/
27751	.3 DP-GR-MA	2014-09-24	32K09	Chablis-ouest	418797,0	5599815,0	1	8	b 3/5	0,5x0,4x0,3	Route hiver	M16
14-DP-102	DP-GR-MA	2014-09-24		Chablis-ouest	418835,0			8 x	3/3	30x10	Buton, bûcher	I1C
27751	.5 DP-GR-MA	2014-09-24	32K09	Chablis-ouest	418737,0	5599814,0	1	8	b 2/5	1x0,8xZZ	Bûcher	M4
14-DP-107	DP-GR-MA	2014-09-24		Chablis-ouest	418737,0	5599814,0		8 x	1 - 7,0	4x1	Route d'hiver	I1C
14-GR-105	GR-MA	2014-09-24		Ouest	418703,0			8 x		15mx15m	Bûché	I1D
14-GR-108	GR-MA	2014-09-24	32K09	Ouest	418497,0	5599656,0	1	8	b3/5	1,3mx1mx0, 5m	Bûché	M4
14-GR-109	GR-MA	2014-09-24	32K09	Ouest	418088,0	5599291,0	1	8 x		7mx2,5m	vieux chemin	I1D
14-GC-501	GC-BR	2014-09-24	32K09		418317,0	5599650,0	1	8 x		12 x 6 m	Sommet de colline	I1C
14-GC-502	GC-BR	2014-09-24	32K09		418332,0	5599994,0	1	8 x		200 x 100	Sommet de colline	IIC
4-DP-101	DP-GR-MA	2014-09-24		Chablis-ouest	418808,0	5599827,0		8 x		2x2	Buton, bûcher	I1C
4-DP-103	DP-GR-MA	2014-09-24		Chablis-ouest	418855,0	5599938,0		8 x		5x1	Buton, bûcher	I1C
14-DP-104	DP-GR-MA	2014-09-24		Chablis-ouest	418617,0	5599708,0		8 x		10x4	Buton, bûcher	I1C
14-DP-105	DP-GR-MA	2014-09-24	32K09	Chablis-ouest	418507,0	5599659,0		8 x		30×10	Buton, bûcher	I1C
14-DP-106	DP-GR-MA	2014-09-24	32K09	Chablis-ouest	418219,0	5599466,0	1	8 x		2.5x1.5	Route d'hiver	I1C
4-DP-108	DP-GR-MA	2014-09-24		Chablis-ouest	418145,0	5599375,0	1	8 x		2x2 m	Route d'hiver	I1C
14-GR-106	GR-MA	2014-09-24	32K09	Ouest	418748,0	5599728,0	1	8 x		1mx1m	Bûché	I1D
14-GR-107	GR-MA	2014-09-24	32K09	Ouest	418911,0			8 x		Pluri-décam (10mx10m)	Bûché	I1D
	MQ-BR	2014-09-25	221/00	Indice Chablis	420755,0	5599066,0	1	8 x		15mx15m	Affleurement	I1D

No_Terrain	Equipe	Date_aaaammjj	Feuillet	Secteur	Estant	Nordant	Fuseau_UT / M_83	Affleur	Bloc_1sur5_ang _5sur5_rond	_	Environnement	Code
l4-MQ-512	MQ-BR	2014-09-25	32K09	Indice Chablis	420659,0	5599001,0		(	ssurs_rona	en_m 2mx1m	Poursuite de l'affleurement de Philippe orienté N35E,	M4
		20110012				33333273					BEEPMAT kickait à 60-120, décapage de 2mx1m à 20- 30cm de profondeur	
4-MQ-514	MQ-BR	2014-09-25	32K09	Indice Chablis	420635,0	5598754,0	18 >	(		20mx10m	Affleurement de bord de chemin	I1D
4-MQ-511	MQ-BR	2014-09-25	32K09	Indice Chablis	420751,0	5598977,0	18 ×	(		10mx5m	Affleurement	I1D
l4-MQ-513	MQ-BR	2014-09-25	32K09	Indice Chablis	420638,0	5598799,0	18 >	(		20mx2-3m	Affleurement de bord de chemin avec ruisseau	I1D
4-DP-109	DP-MQ-BR	2014-09-25	32K09	Secteur Cu	420674,0	5599022,0	18 )	C.		TM 1x5	Route d'hiver	I1D
4-DP-109	DP-MQ-BR	2014-09-25	32K09	Secteur Cu	420671,0	5599021,0	18 )	·		TM 1x5	Route d'hiver	I1D
l4-DP-110	DP-MQ-BR	2014-09-25	32K09	Secteur Cu	420674,0	5598980,0	18 )	C	b 1/5 subamplace		Route d'hiver	I1C
14-DP-111	DP-MQ-BR	2014-09-25	32K09	Secteur Cu	420660,0	5598957,0	18 >	C .		5 affl sur + 10 m	Route d'hiver	I1D
14-DP-112	DP-MQ-BR	2014-09-25	32K09	Secteur Cu	420658,0	5598935,0	18		b 1/5 plusieurs	< 0,2x0,2x0,15	Route d'hiver	
14-BR-107	BR-MQ-DP	2014-09-25	32K09	secteur cuivre	420661,0	5599023,0	18 )			3x1	bord de route	I1D, M4
14-GR-110	GR-SJ	2014-09-25	32K09	Ouest	420706,0	5599132,0	18 )	(		25mx25m (25mx8m)	Bord de route	  11B
14-GR-111	GR-SJ	2014-09-25	5 32K09	Ouest	420851,0	5599050,0	18 >	(		10mx10m (2mx2m et 2mx1m)	Forêt	I1C
4-GR-111	GR-SJ	2014-09-25	32K09	Ouest	420852,0	5599046,0	18 >	(		10mx10m (2mx2m et 2mx1m)	Forêt	I1C
4-GC-503	GC-MA	2014-09-25	32K09		420730,0	5599238,0	18 >	(		75 x 4m	Bord de route, 80m de la cible input	I1C
4-GC-504	GC-MA	2014-09-25	32K09		420699,0	5599312,0	18 >	(		1 x 1m	Sous 1m de M.T, 20m de la cible input	I1C
14-GC-506	GC-MA	2014-09-25	32K09		420453,0	5599162,0	18 >	(		1 x 1m	Sous 1m de M.T, à 16m de la cible input	I1C
l4-BR-108	BR-MQ-DP	2014-09-25	32K09	secteur cuivre	420644,0	5598735,0	18 >	(		4x2	bord de route	I1D
14-GC-505	GC-MA	2014-09-25	32K09		420272,0	5599086,0	18		b4/5	1.5 x 1 x 1m	Sous 1m de M.T, 80m de la cible input, problablement morraine	I1D
l4-MQ-515	MQ-DP-SJ	2014-09-26	32K09	Chablis Ouest	418036,0	5599594,0	18 ×	(		6mx1m	Tranchée	РО
4-MQ-515	MQ-DP-SJ	2014-09-26		Chablis Ouest	418036,0	5599596,0				6mx1m	Tranchée	I1C
I4-MQ-515	MQ-DP-SJ	2014-09-26		Chablis Ouest	418036,0	2				6mx1m	Tranchée	MetaSdt
l4-MQ-515	MQ-DP-SJ	2014-09-26		Chablis Ouest	418036,0					6mx1m	Tranchée	MetaSdt
4-MQ-518	MQ-DP-SJ	2014-09-26	32K09	Chablis Ouest	417995,0	5599937,0	18 >	(		2,5mx1m	BEEPMAT kick à 20-30 puis 300max, Tranchée	MetaSdt
4-MQ-518	MQ-DP-SJ	2014-09-26	32K09	Chablis Ouest	417995,0	5599937,0	18 >	(		2,5mx1m	BEEPMAT kick à 20-30 puis 300max, Tranchée	MetaSdt
14-MQ-516	MQ-DP-SJ	2014-09-26	32K09	Chablis Ouest	417872,0	5599931,0					BEEPMAT kick à 20, puis plus rien	
L4-MQ-517	MQ-DP-SJ	2014-09-26		Chablis Ouest	417944,0	5599940,0				5mx3m	Affleurement en bouton	I1C

No_Terrain	Equipe	Date_aaaammjj	Feuillet	Secteur	Estant	Nordant	_	Affleur	Bloc_1sur5_ang	_	Environnement	Code
14 DD 100	DD CD	2014-09-26	22400	Chahlia ayaat	417908,0	5599413,0	M_83		_5sur5_rond b1/5	<b>en_m</b> 2x1	fouch consolina	
14-BR-109	BR-GR	2014-09-26	32KU9	Chablis ouest	41/908,0	5599413,0	18	3	D1/5	ZXI	forêt, sous arbre déraciné	
											deracine	
14-BR-109	BR-GR	2014-09-26	32K09	Chablis ouest	417908,0	5599413,0	18	3	b1/5	2x2	forêt, sous arbre	
											déraciné	
14-GR-112	GR-BR	2014-09-26	32K09	Ouest	418408,0	5599367,0	18	3 ×		15mx10m	Forêt	I1D
	00.00	2011.00.00							10/5	1.2 1 2	5.0	
14-GR-113	GR-BR	2014-09-26	32K09	Ouest	418447,0	5599358,0	18	3	b2/5		Forêt	M4
										8m		
14-GR-116	GR-BR	2014-09-26	32800	Ouest	417890,0	5599278,0	10	3 x	+	20mx3m	Bord de chemin	I1D
T-4-0U-110	Gu-Bu	2014-09-26	32103	Ouest	41/050,0	333378,0	ļ ,	, A		ZUIIIXSIII	Bord de crientin	110
14-GC-507	GC-MA	2014-09-26	32KN9		417425,0	5598704,0	18		b1/5	15 y 1 v 1m	Plateau >1m M.T, 20m de l'input	I1D
17 00 307	JC WA	2014-03-20	JENOS		71/423,0	3336704,0	1.	1	51/3	1,5 ^ 1 ^ 1111	Traceau > IIII Will, Zoni ac i iliput	1.25
14-GC-508	GC-MA	2014-09-26	32K09		417411,0	5598665,0	18	3	b1/5	1,5 x 1 x	Plateau à 80m de l'input	S9E
		201 / 05 20			,,	333333,3		1	10-7,0	0,5m		
14-GR-114	GR-BR	2014-09-26	32K09	Ouest	418389,0	5599288,0	18	3 x		35mx10m	Forêt	I1D
					,	,						
14-GR-115	GR-BR	2014-09-26	32K09	Ouest	418290,0	5599137,0	18	3	b2/5	10mx5m	Champ de blocs	I1D
14-MQ-524	MQ-MA	2014-09-27	32K09	Chablis Ouest	417623,0	5599008,0	18	3 x	M m	7mx3m	Affleurement de flanc de colline	I1D
14-MQ-519	MQ-MA	2014-09-27	32K09	Chablis Ouest	418038,0	5599830,0	18	3 x			Beepmat kick à 30-120, creuser 6 pieds dans la terre	
											argileuse, pas reussi a atteindre le roc	
14-MQ-520	MQ-MA	2014-09-27	32K09	Chablis Ouest	418247,0	5599664,0	18	3 x		3mx4m	Affleurement de flanc de colline	I1D
14-MQ-521	MQ-MA	2014-09-27	32K09	Chablis Ouest	417283,0	5599055,0	18	3 x			Rivière de 15m de large, Bord de la rivière avec aulne,	
											bois, marais, aucun affleurement, aucun kick de	
4440 533	1.40.144	2011 00 2	22400	Clark to Const	447504.0	FF000F4 0	44				beepmat sur l'anomalie ciblée	
14-MQ-522	MQ-MA	2014-09-27		Chablis Ouest	417504,0	5598951,0	18			22	Afficience at the flower describing	110
14-MQ-523 14-GC-511	MQ-MA GC-SJ	2014-09-27 2014-09-27		Chablis Ouest	417623,0 417147,0	5598988,0 5597907,0	18 18		b2/5	3mx2m ,3 x ,3 x ,1m	Affleurement de flanc de colline Bloc sub-anguleux, bord de route	I1D M4
14-GC-511 14-GC-512	GC-SJ	2014-09-27			417147,0	5597907,0	18		b1/5	1,5 x ,75 x ?	Bloc sur le même site que 14GC511	I1D
14-00-312	GC-33	2014-09-27	32103		41/14/,0	0,808/866	"	1	01/3	1,5 X ,/5 X !	Dioc sur le meme site que 14GC311	110
14-GC-510	GC-SJ	2014-09-27	32K09		416990,0	5597807,0	19	3 x	+	6 x 4m	Dans route, flanc de colline	I1D
55 510		2014 03 27			33 30,0	333,307,0	"	Ι'				
14-MQ-525	MQ-MA	2014-09-28	32K09	Nord-est Chablis	426218,0	5600990,0	18	3 x		4mx2m	Affleurement	I1D
					/-							
14-MQ-527	MQ-MA	2014-09-28	32K09	Nord-est Chablis	426473,0	5601142,0	18	3 x		6mx3m		I1D
14-MQ-529	MQ-MA	2014-09-28	32K09	Nord-est Chablis	426408,0	5601184,0	18	3 x		5mx1,5m	Affleurement	I1D
14-GR-119	GR-SJ	2014-09-28	32K09	Ouest	420993,0	5598986,0	18	3 x		Pluridécam	Forêt/mousse	I1C
14-GR-120	GR-SJ	2014-09-28	32K09	Ouest	419911,0	5598371,0	18	×		Champ de	Forêt/mousse	I1C
										blocs + AFF		
14-GC-513	GC-BR	2014-09-28	32K09		417492,0	5598846,0	18	3 ×		12 x 1m	Zone sub-affleurante 30x 6m, colline	I1D
14.00.543	66.65	204 1 22 3	22400		447400	=======================================			_	12 1	Zana sub afflormant 20 C III	110
14-GC-513	GC-BR	2014-09-28	32K09		417492,0	5598846,0	18	3 x		12 x 1m	Zone sub-affleurante 30x 6m, colline	I1D
1,00010												

No_Terrain	Équipe	Date_aaaammjj	Feuillet	Secteur	Estant		Fuseau_UT M_83	Affleur	Bloc_1sur5_ang _5sur5_rond	Dimension_ en_m	Environnement	Code
14-GC-513	GC-BR	2014-09-28	32K09		417492,0	5598846,0		×		12 x 1m	Zone sub-affleurante 30x 6m, colline	I1D
1388-TR-14-01	GR-MQ	2014-10-03	32K09	Indice	419918,8	5598986,9	18	r (1m)			1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
4300 TD 4404	60.110	201110	22400		440040.0	5500007	40	(4.)				140
1388-TR-14-01	GR-IVIQ	2014-10-03	32809	Indice	419918,2	5598987,7	18	r (1m)			1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	11B
1388-TR-14-01	GR-MQ	2014-10-03	32K09	Indice	419910,2	5598989,7	18	r (1m)			Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01	GR-MQ	2014-10-03	32K09	Indice	419910,9	5598989,0	18	r (1m)			1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01	GR-MQ	2014-10-03	32K09	Indice	419911,6	5598988,2	18	r (1m)			1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01	GR-MQ	2014-10-03	32K09	Indice	419906,1	5598985,7	18	r (1m)			1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	11B
1388-TR-14-01	GR-MQ	2014-10-03	32K09	Indice	419906,0	5598984,8	18	r (1m)			1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01	GR-MQ	2014-10-03	32K09	Indice	419905,9	5598983,9	18	r (1m)			1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
								0 -				

No_Terrain	Équipe	Date_aaaammjj Feuillet	Secteur	Estant No		Fuseau_UT Affleur M_83	Bloc_1sur5_ang Dimension_ _5sur5_rond en_m	Environnement	Code
1388-TR-14-01	GR-MQ	2014-10-03 32K09	Indice	419905,9	5598983,1		0,5	Décapage: 48mx(8 à 16m) 0,5-2m de MT	l1B
1388-TR-14-01	GR-MQ	2014-10-03 32K09	Indice	419906,3	5598982,8	18 r (0,5m)	0,5	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01	GR-MQ	2014-10-03 32K09	Indice	419906,1	5598982,3	18 r (0,7m)	0,7	Décapage: 48mx(8 à 16m) 0,5-2m de MT	†1B
1388-TR-14-01	GR-MQ	2014-10-03 32K09	Indice	419905,7	5598981,5	18 r (1m)	1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01	GR-MQ	2014-10-03 32K09	Indice	419905,4	5598980,5	18 r (1m)	1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	11B
1388-TR-14-01	GR-MQ	2014-10-04 32K09	Indice	419905,0	5598979,5	18 r (1m)	1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01	GR-MQ	2014-10-04 32K09	Indice	419904,6	5598978,4	18 r (1m)	1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01	GR-MQ	2014-10-04 32K09	Indice	419904,2	5598977,4	18 r (1m)	1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B

	Équipe	Date_aaaammjj	Feuillet	Secteur	Estant		Fuseau_UT Affleur M_83	Bloc_1sur5_ang Dimension_ _5sur5_rond en_m	Environnement	Code
388-TR-14-01	GR-MQ	2014-10-04	32К09	Indice	419903,8				Décapage: 48mx(8 à 16m) 0,5-2m de MT	l1B
388-TR-14-01	GR-MQ	2014-10-04	32K09	Indice	419903,5	5598975,5	18 r (1m)	1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	IIB
388-TR-14-01	GR-MQ	2014-10-04	32K09	Indice	419899,5	5598988,6	18 r (1m)	1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
388-TR-14-01	GR-MQ	2014-10-04	32K09	Indice	419899,7	5598987,9	18 r (0,5m)	0,5	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
388-TR-14-01	GR-MQ	2014-10-04	32K09	Indice	419899,8	5598987,1	18 r (1m)	1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	l1B
388-TR-14-01	GR-MQ	2014-10-04	32к09	Indice	419899,6	5598977,2	18 r (1m)	1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	l1B
388-TR-14-01	GR-MQ	2014-10-04	32K09	Indice	419898,6	5598977,1	18 r (1m)	1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
388-TR-14-01	GR-MQ	2014-10-04	32K09	Indice	419897,5	5598977,0	18 r (1m)	1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B

No_Terrain	Équipe	Date_aaaammjj Feuillet	Secteur	Estant Nordant		Fuseau_UT / M_83	Affleur	Bloc_1sur5_ang _5sur5_rond	Dimension_ en_m	Environnement	Code
388-TR-14-01	GR-MQ	2014-10-04 32K09	Indice	419895,9	5598989,9		r (1m)			Décapage: 48mx(8 à 16m) 0,5-2m de MT	l1B
388-TR-14-01	GR-MQ	2014-10-04 32K09	Indice	419895,7	5598988,8	18 (	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
388-TR-14-01	GR-MQ	2014-10-04 32К09	Indice	419895,5	5598987,8	18 (	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	f1B
388-TR-14-01	GR-MQ	2014-10-04 32K09	Indice	419895,3	5598986,9	18 (	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
388-TR-14-01	GR-MQ	2014-10-04 32K09	Indice	419895,2	5598986,2	18 (	r (0,5m)		0,5	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
388-TR-14-01	GR-MQ	2014-10-04 32K09	Indice	419895,0	5598985,4	18 (	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	11B
388-TR-14-01	GR-MQ	2014-10-04 32K09	Indice	419894,8	5598984,4	18 (	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
388-TR-14-01	GR-MQ	2014-10-04 32К09	Indice	419894,6	5598983,5	18 ו	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B

Équipe	Date_aaaammjj	Feuillet	Secteur	Estant			Affleur	Bloc_1sur5_ang _5sur5_rond		Environnement	Code
GR-MQ	2014-10-04	32K09	Indice	419894,4			r (1m)			Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
GR-MQ	2014-10-04	32K09	Indice	419893,5	5598978,9	18	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	11B
GR-MQ	2014-10-04	32К09	Indice	419891,5	5598989,0	18	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	11B
GR-MQ	2014-10-04	32К09	Indice	419890,5	5598988,7	18	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
GR-MQ	2014-10-04	32K09	Indice	419889,4	5598988,5	18	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	11B
GR-MQ	2014-10-04	32K09	Indice	419888,6	5598987,4	18	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	11B
GR-MQ	2014-10-04	32К09	Indice	419887,5	5598987,1	18	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	11B
	GR-MQ  GR-MQ  GR-MQ  GR-MQ	GR-MQ 2014-10-04  GR-MQ 2014-10-04  GR-MQ 2014-10-04  GR-MQ 2014-10-04  GR-MQ 2014-10-04	GR-MQ 2014-10-04 32K09  GR-MQ 2014-10-04 32K09  GR-MQ 2014-10-04 32K09  GR-MQ 2014-10-04 32K09  GR-MQ 2014-10-04 32K09	GR-MQ 2014-10-04 32K09 Indice  GR-MQ 2014-10-04 32K09 Indice  GR-MQ 2014-10-04 32K09 Indice  GR-MQ 2014-10-04 32K09 Indice  GR-MQ 2014-10-04 32K09 Indice  GR-MQ 2014-10-04 32K09 Indice	GR-MQ 2014-10-04 32K09 Indice 419894,4  GR-MQ 2014-10-04 32K09 Indice 419891,5  GR-MQ 2014-10-04 32K09 Indice 419890,5  GR-MQ 2014-10-04 32K09 Indice 419890,5  GR-MQ 2014-10-04 32K09 Indice 419889,4	GR-MQ 2014-10-04 32K09 Indice 419894,4 5598982,5  GR-MQ 2014-10-04 32K09 Indice 419893,5 5598988,9  GR-MQ 2014-10-04 32K09 Indice 419891,5 5598989,0  GR-MQ 2014-10-04 32K09 Indice 419890,5 5598988,7  GR-MQ 2014-10-04 32K09 Indice 41989,4 5598988,5  GR-MQ 2014-10-04 32K09 Indice 419889,4 5598988,5	GR-MQ 2014-10-04 32K09 Indice 419894,4 5598982,5 18  GR-MQ 2014-10-04 32K09 Indice 419893,5 5598978,9 18  GR-MQ 2014-10-04 32K09 Indice 419891,5 5598989,0 18  GR-MQ 2014-10-04 32K09 Indice 419890,5 5598988,7 18  GR-MQ 2014-10-04 32K09 Indice 419890,5 5598988,7 18  GR-MQ 2014-10-04 32K09 Indice 419889,4 5598988,5 18  GR-MQ 2014-10-04 32K09 Indice 419889,4 5598988,5 18	GR-MQ 2014-10-04 32K09 Indice 419894,4 5598982,5 18 r (1m)  GR-MQ 2014-10-04 32K09 Indice 419893,5 5598978,9 18 r (1m)  GR-MQ 2014-10-04 32K09 Indice 419891,5 5598989,0 18 r (1m)  GR-MQ 2014-10-04 32K09 Indice 419890,5 5598988,7 18 r (1m)  GR-MQ 2014-10-04 32K09 Indice 419890,5 5598988,7 18 r (1m)  GR-MQ 2014-10-04 32K09 Indice 419889,4 5598988,5 18 r (1m)	GR-MQ 2014-10-04 32K09 Indice 419894,4 5598982,5 18 r (1m)  GR-MQ 2014-10-04 32K09 Indice 419893,5 55989878,9 18 r (1m)  GR-MQ 2014-10-04 32K09 Indice 419891,5 5598989,0 18 r (1m)  GR-MQ 2014-10-04 32K09 Indice 419890,5 5598988,7 18 r (1m)  GR-MQ 2014-10-04 32K09 Indice 419890,5 5598988,7 18 r (1m)  GR-MQ 2014-10-04 32K09 Indice 419889,4 5598988,5 18 r (1m)  GR-MQ 2014-10-04 32K09 Indice 419889,4 5598988,5 18 r (1m)	GR-MQ 2014-10-04 32K09 Indice 419894,4 5598982,5 18 r (1m) 1  GR-MQ 2014-10-04 32K09 Indice 419893,5 5598978,9 18 r (1m) 1  GR-MQ 2014-10-04 32K09 Indice 419891,5 5598989,0 18 r (1m) 1  GR-MQ 2014-10-04 32K09 Indice 419891,5 5598988,7 18 r (1m) 1  GR-MQ 2014-10-04 32K09 Indice 419890,5 5598988,7 18 r (1m) 1  GR-MQ 2014-10-04 32K09 Indice 419890,5 5598988,7 18 r (1m) 1  GR-MQ 2014-10-04 32K09 Indice 419889,4 5598988,5 18 r (1m) 1	RR MQ 2014-10-04 32K09 Indice 419894,4 559898,5 18 r (Im) 1 Décapage: 48mx(8 à 16m) 0,5-2m de MT  GR-MQ 2014-10-04 32K09 Indice 419891,5 559898,7 18 r (Im) 1 Décapage: 48mx(8 à 16m) 0,5-2m de MT  GR-MQ 2014-10-04 32K09 Indice 419891,5 559898,7 18 r (Im) 1 Décapage: 48mx(8 à 16m) 0,5-2m de MT  GR-MQ 2014-10-04 32K09 Indice 419891,5 559898,7 18 r (Im) 1 Décapage: 48mx(8 à 16m) 0,5-2m de MT  GR-MQ 2014-10-04 32K09 Indice 41989,4 559898,7 18 r (Im) 1 Décapage: 48mx(8 à 16m) 0,5-2m de MT  GR-MQ 2014-10-04 32K09 Indice 41989,4 559898,5 18 r (Im) 1 Décapage: 48mx(8 à 16m) 0,5-2m de MT  GR-MQ 2014-10-04 32K09 Indice 41989,4 559898,5 18 r (Im) 1 Décapage: 48mx(8 à 16m) 0,5-2m de MT

No_Terrain Équipe	Date_aaaammjj Feuillet	Secteur	Estant Nordant		useau_UT Affleur M_83	mension_ Environnement ı_m	Code
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419890,4	5598991,1	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419890,1	5598990,2	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	l1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419889,8	5598989,2	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	l1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419889,5	5598988,3	18 r (1m)	1	I1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419889,2	5598987,3	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419888,9	5598986,4	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419888,6	5598985,4	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419888,3	5598984,5	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B

No_Terrain	Équipe	Date_aaaammjj	Feuillet	Secteur	Estant		Fuseau_UT M_83	Affleur	Bloc_1sur5_ang _5sur5_rond	Dimension_ en_m	Environnement	Code
1388-TR-14-01	GR-MQ	2014-10-04	32K09	Indice	419888,1			r (1m)			Décapage: 48mx(8 à 16m) 0,5-2m de MT	1B
1388-TR-14-01	GR-MQ	2014-10-04	32K09	Indice	419887,8	5598982,5	18	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01	GR-MQ	2014-10-04	32K09	Indice	419887,5	5598981,6	18	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01	GR-MQ	2014-10-04	32К09	Indice	419887,2	. 5598980,7	18	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01	GR-MQ	2014-10-04	32K09	Indice	419885,1	5598982,1	18	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	l1B
1388-TR-14-01	GR-MQ	2014-10-04	32K09	Indice	419924,5	5598986,6	18	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B

No_Terrain Équipe	Date_aaaammjj Feuillet	Secteur	Estant Nordant	Fuseau_ M_83	UT Affleur	Bloc_1sur5_ang _5sur5_rond	Dimension_ Environnement en_m	Code
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419900,9	5598979,5	18 r (1m)		1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419900,5	5598978,5	18 r (1m)		1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	  11B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419900,2	5598977,5	18 r (1m)		1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419902,7	5598983,7	18 r (0,5m)		0,5 Décapage: 48mx(8 à 16m) 0,5-2m de MT	l1B
14-GR-110 GR	2014-10-04 32K09	Chablis	420706,0	5599132,0	18 r (1m)		1 Bord de route: 25mx25m (25mx8m)	I1B
1388-TR-14-02 GC	2014-10-04 32K09	Chablis	419902,3	5599001,8	18 Rainure		1 Décapage	M4
1388-TR-14-02 GC	2014-10-04 32K09	Chablis	419902,7	5599002,6	18 Rainure		1 Décapage	M4
1388-TR-14-02 GC	2014-10-04 32K09	Chablis	419903,1	5599003,3	18 Rainure		0,5 Décapage	M4
1388-TR-14-02 GC	2014-10-04 32K09	Chablis	419904,6	5599002,7	18 Rainure		1 Décapage	I1B
1388-TR-14-02 GC	2014-10-04 32K09	Chablis	419905,6	5599002,5	18 Rainure		1 Décapage	11B
1388-TR-14-02 GC	2014-10-04 32K09	Chablis	419907,5	5599002,0	18 Rainure		1 Décapage	I1B
1388-14-TR-02 GC	2014-10-04 32K09	Chablis	419908,5	5599001,8	18 Rainure		1 Décapage	I1B
1388-14-TR-02 GC	2014-10-04 32K09	Chablis	419909,5	5599001,5	18 Rainure		1 Décapage	I1B
1388-14-TR-02 GC	2014-10-04 32K09	Chablis	419910,5	5599001,3	18 Rainure		1 Décapage	I1B
1388-14-TR-02 GC	2014-10-04 32K09	Chablis	419911,5	5599001,1	18 Rainure		1 Décapage	M4
1388-14-TR-02 GC	2014-10-04 32K09	Chablis	419912,4	5599000,9	18 Rainure		1 Décapage	11B

No_Terrain	Équipe	Date_aaaammjj	Feuillet	Secteur	Estant	Nordant	Fuseau_UT	Affleur	Bloc_1sur5_ang	Dimension_	Environnement	Code
							M_83		_5sur5_rond	en_m		
388-14-TR-02	GC	2014-10-04	32K09	Chablis	419913,4	5599000,6	18	Rainure		1	Décapage	11B
388-14-TR-02	GC	2014-10-04	32K09	Chablis	419904,1	5599002,3	18			Grab	Décapage	M4
1388-14-TR-02		2014-10-04		Chablis	419908,5	5599001,5	_	<del></del>		Grab	Décapage	M4
1388-TR-14-04	GC-MA	2014-10-05	32K09	Chablis	420756,0	5599093,7	18	Rainure		1	Décapage	I1B
388-TR-14-04	GC-MA	2014-10-05	32K09	Chablis	420752,0	5599094,1	. 18	Rainure		1	Décapage	I1B
388-TR-14-04	GC-MA	2014-10-05	32K09	Chablis	420746,1	5599093,5	18	Rainure		1	Décapage	I1B
388-TR-14-04	GC-MA	2014-10-05	32K09	Chablis	420744,9	5599093,7	18	Rainure		1	Décapage	M4
388-TR-14-04	GC-MA	2014-10-05	32K09	Chablis	420743,8	5599093,9	18	Rainure		1	Décapage	I1B/M4
388-TR-14-03	BR-Math	2014-10-07	32K09	Chablis	420721,7	5598871,€	18	Rainure			Décapage	I1B
388-TR-14-03	BR-Math	2014-10-07	32K09	Chablis	420722,6	5598871,2	! 18	Rainure		1	Décapage	I1B
1388-TR-14-03		2014-10-07		Chablis	420723,6			Rainure		+	Décapage	M4/I1B
388-TR-14-03	BR-Math	2014-10-07	32K09	Chablis	420724,6	5598870,7	18	Rainure		1	Décapage	I1B/M4
388-TR-14-03	BR-Math	2014-10-07	32K09	Chablis	420725,6	5598870,5	18	Rainure		1	Décapage	
1388-TR-14-03	BR-Math	2014-10-07	32K09	Chablis	420726,3	5598870,3	18	Rainure		0,5	Décapage	
1388-TR-14-05	MQ-BR	2014-10-07	32K09	Chablis	420717,7	5599313,2	. 18	Rainure		1	Décapage	I1B/M4
1388-TR-14-05	MQ-BR	2014-10-07	32K09	Chablis	420712,9	5599314,1	. 18	Rainure		1	Décapage	I1B
1388-TR-14-05	MQ-BR	2014-10-07	32K09	Chablis	420712,1	5599314,7	18	Rainure		1	Décapage	I1B/M4
1388-TR-14-05	MQ-BR	2014-10-07	32K09	Chablis	420711,2	5599315,2	18	Rainure		1	Décapage	   I1B/M4
-200 TD 44 07	140 00	2014 62 22	22/02	Cl. I.I.	420710							40/44
1388-TR-14-05	IMG-RK	2014-10-07	132KU9	Chablis	420710,4	5599315,7		Rainure		1	Décapage	I1B/M4
388-TR-14-05	MQ-BR	2014-10-07	32K09	Chablis	420710,6	5599317,4	18	Rainure		1	Décapage	I1B/M4

No_Terrain	Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
14-GR-065	80% I1D, 20% M4. I1D, couleur alt: gris pâle, fr: gris pâle. On observe un paragneiss qui est localement très rubané, est-ce qu'il s'agit d'enclave ou d'un mélanosome? À proximité la roche semble avoir fusionnée (présence de schliren de BO), le pourcentage de BO est variable dans le paragneiss.	50% QZ. 42% FP, 8% BO	gm, ma				277850
14-GR-066	I1D de coul alt: blanc très légèrement rosé et de couleur fraîche: blanc. Contient 5% BO, non-mag.		gm, ma, hj				277951
14-GR-067	L'affleurement contient 95% de tonalite et on observe 5% de paragneiss. Difficile de déterminer si il s'agit d'enclaves, de mélanosomes ou si la tonalite est le résultat de l'anatexie de ce paragneiss. On observe toutefois des textures de fluage "schlirens" en bordure des enclaves de M4 qui sont à 035/35. On note également la présence de passages pegmatitiques.	55% FP, 45% QZ, 5% BO	gm, ma				277952
14-GR-069	Bloc de couleur altérée rouille et de couleur fraîche gris verdâtre bleuté. Difficile de déterminer le protolithe, peut-être un S1. Mag+++(PO), pas de CB. (Remblais bord de chemin) Photo: 277953		gf, ma	Si++/+++, CL+	20-30% PO à gf en amas reliés ±stockwerk, 1% PY à gf id diss		277953
14-jfdl-046	roche très hétérogène, Migmatite, 70% constitué d'un intrusif tonalitique QZ-PL-BO(10%)+mx beige mm dureté 2-3 pour 1-2% rubanement local bien développé, localement pour 10% de l'aff. Zone Si++ avec sulfure sub-mm, localement pour 10% de l'aff. Zone de MV massive en grains mm, localement pour 10% de l'aff. volcanite mafique PX-PG sub-mm gris foncé bleuté avec Vn mm QZ localement avec EP.	QZ-PG-BO(10%)	rubané	Si++ local, EP+ local,	TrSF Loc		279542
14-jfdl-047	Granodiorite massive à grains pluri-mm, QZ enfumé 30%, PG50%, FK20%, passage pegmatitique local riche en FK	QZ enfumé 30% , PG50% , FK20%	massif				279543
14-jfdl-048	Roche mafique (ultra mafique?) à grains sub-mm, grenats cm pour 30-40% roche schisteuse local, ainsi que localement Si++, minéraux intergrenat sont aciculaire (actinote-trémolite?) pour 15-20%, CP dans les plans de fracture et diss en grains sub-mm pour 0.5%, roche non magnétique	GR	schisteux	Si++	CP dans les plans de fracture et diss en grains sub-mm pour 0.5%		279565
14-JFG-086	11G (11B)		gg, ma, hk				281853
14-JFG-088	I1G avec enclaves de M4		gg, ma, hk				281854
14-JFG-089	M4?	25% BO	gf-gm, hk, ru, gs+	Si++	8% PY en amas et en veinules recoupant la gs	10% vln mm à cm de QZ	281855
14-JFG-090	Amas de blocs rouillés de M4	25% BO	gf, hk, ru, gs+	Si+++	10% PY en amas et en veinules	20% vnl mm à cm de QZ	281856
14-JFG-092	I1G blanche en contact avec M4	BO (M4), 30% PX loc	I1G : gg, ma ; M4 : gf, hk	rouille, HM+, GR++, MC+	TrCP, TrPY		281858
14-JFG-094	I1G/I1B blanc		gm-gg, ma,		2% MG en amas		281859
14-JFG-091	I1G/I1B en contact graduel avec gabbro à QZ ??	30% PX, 15% QZ	gm à gg, ma	rouille	2-5% CP disséminée		281960
14-GR-068	ldem à l'aff précédent sauf que la pourcentage de M4 est supérieur, soit environ 20%. Le M4 est bien rubané et le rubanement est à 030/30 (pas indiqué dans le fichier structure, car peut-être enclave). Photo: GR_068	55% FP, 45% QZ, 5% BO	gm, ma				
14-JFG-087	11G		gg, ma, hj				
14-JFG-093	I1G/I1B blanc		gm-gg, ma			poche dm de QZ	
14-GR-074	Gabbro de couleur alt: rouille et gris-vert, fr: gris foncé verdâtre. Légèrement mag (PO), sc++. Photo: GR_074a&b	75% MF, 15% felsique, 10% SF	gf-gm, sc	CL+, SR+	10% PO à gf diss, TrCP à gf diss ± associée à VNQZ mm		277858
14-GR-070	S3 (peut-être S6 Si++), la roche est de couleur alt: rouille, fr: gris foncé, elle est un peu schisteuse. Elles est aphanitique et foncée et ressemble à un mudstone, mais silicifiée. Non-mag, pas de CB.		ap-gf, sc	Si++	5% PY à gf diss parfois ass. à VNQZ mm		277954
14-GR-071	M4(S1), coul alt: rouille, fr: gris moyen verdâtre, non-mag, pas de CB.	80% QZ-FP, 10% BO, 10% SF	gf, sd, lité	CL+	10% PY à gf concentrées dans des lits mm, TrCP à gf diss.		277955
14-GR-072	Gneiss quartzo-feldspathique, coul alt: gris, fr: gris, rubané avec présence de migmatites. 10% de l1B massif (anatexie?, 10% d'enclaves mafiques à BO.	90% QZ-FP, 10% BO	gf, ru, sd				277956
14-GR-073	50% M4, 50% I1G blanc discordant. La description est faite principalement par rapport au M4. M4: coul alt: rouille, fr: gris moyen.	70% QZ-FP, 20% BO, 10% SF	gf, ru, sd, lité		10% PY à gf diss	la.a.	277957
14-JFG-092	I1G/I1B avec enclaves de M4		I1G : gg, ma ; M4 : gf, hk	rouille localement, micas gris-verts près des zones minéralisées	TrCP, TrPY	Faille, structure ondulante minéralisée en CP	281860
14-JFG-092	I1G/I1B avec enclaves de M4		I1G : gg, ma ; M4 : gf, hk	rouille localement, micas gris-verts près des zones minéralisées	TrCP, TrPY	Faille, structure ondulante minéralisée en CP	281861
14-JFG-092	l1G/l1B avec enclaves de M4		I1G : gg, ma ; M4 : gf, hk		TrCP, TrPY	Faille, structure ondulante minéralisée en CP	281862
277489	Granite avec loc pg (BO+),	5% BO	Moyen-grenus		Tr-3% PO-PY, Tr-CP		277489
	Paragneiss mafique, loc niveau à 3% CP	60% BO, 30% QZ-FP	, , , , , , , , , , , , , , , , , , , ,		10% SF		277490
	1 Paragneiss interm, litage , loc 50% PO < 1cm, BO variable				± 12% PO		277491
14-DP-043	Granite avec pegm / 40% enclaves de paragneiss, loc BO 100%						277492
14-DP-045	Granite et pegm avec <5% d'enclaves de paragneiss	†		1	2% amas de SF	+	277493

No_Terrain	Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
14-GR-081	Diorite quartzifère, coul alt: vert-beige-rouille, alt: vert-rouille, ressemble à un échantillon trouvé sur l'indice de cuivre, non- mag			Si+/++, EP+ en uvn, CL+/++	20% PY à gf-gm intergranulaire		277861
14-GR-080	80% Paragneiss, coul alt: beige, fr: gris moyen, mag++, 20% I1G. On observe 5% PY à gf diss HD dans le paragneiss	10% BO, 5% SF, 85% QZ-FP	gf,sd, ru		5% PY à gf diss id		277962
14-GR-082	Peut-être une formation de fer, car on observe un litage et la minéralisation est concentrée dans des lits. Coul alt: chamois, fr: gris moyen légèrement verdâtre, non-mag, sc++. Photo: 277963	75% QZ-FP, 15% SF, 10% BO	gf, sa		15% PY hd-id à gf [] dans des lits mm		277963
14-GR-083	Gneiss quartzo-feldpathique à BO, coul alt: gris, fr: idem, fortement rubané, avec des leucosomes et des mélanosomes, RU(275/-99), Photo: GR_083				TrPY à gf diss id		277964
14-JFG-092	I1G/I1B avec enclaves de M4		I1G : gg, ma ; M4 : gf, hk	rouille localement, micas gris-verts près des zones minéralisées	TrCP, TrPY	Faille, forte fracturation minéralisée en CP et PY	281864
14-JFG-092	I1G/I1B avec enclaves de M4		I1G : gg, ma ; M4 : gf, hk	rouille localement, micas gris-verts près des zones minéralisées	TrCP, TrPY	Faille, forte fracturation minéralisée en CP et PY	281865
27749	12 Granite avec loc peg(BO+),	5% BO	Moyen-grenus		Tr-3% PO-PY, Tr-CP		283033,6717
14-DP-044	Gradation du granite en digestion des paragneis	376 88	ivioyen grenus		11 3/0 10 11, 11 01		203033,0717
14-DP-045	Granite et pegm avec <5% d'enclave de paragneiss						
14-jfdl-058	affleurement coté nord de la route de l'indice de Cu, décapage fait a la mains 2x4m, L'affleurement est majoritairement constitué de pegmatite (80%) et de clastes Paragneiss? (20%), les clastes de paragneiss QZ-BO finement rubané avec des grains mm, la majorité de la minéralisation est situé dans les claste de paragneiss (soit environs 90%), la minéralisation est constitué de PY pour 5-10% en grains mm diss reprit par le rubanement, échantillon composite de pg et paragneiss.	QZ-BO	rubanée		5-10% PY gf-gm diss repris par le rubanement	difficile à déterminé	279453
14-JFG-092	Indice de cuivre						281866
14-JFG-092	Indice de cuivre						281867
14-JFG-092	Indice de cuivre						281868
14-JFG-092	Indice de cuivre						281869
14-JFG-092	Indice de cuivre						281870
14-JFG-092	Indice de cuivre						281871
14-JFG-092	Indice de cuivre						281872
14-JFG-092	Indice de cuivre						281873
14-JFG-092	Indice de cuivre						281874
14-JFG-092	Indice de cuivre						281875
14-JFG-092	Indice de cuivre						281876
14-JFG-092	Indice de cuivre						281877
14-JFG-092	Indice de cuivre						281878
14-JFG-092	Indice de cuivre						281879
14-JFG-092	Indice de cuivre						281880
14-JFG-092	Indice de cuivre						281881
14-JFG-092	Indice de cuivre						281883
14-JFG-092	Indice de cuivre						281884
14-JFG-092	Indice de cuivre						281885
14-JFG-092	Indice de cuivre						281886
14-MQ-503	I1C: Granodiorite (60% QZ, 10-30% PLG, 10% BO), leucocrate, passage enrichi a 30% BO, heterogeneite dans la distribution minéralogique, litage localement avec bandes riches en BO et bandes riches en QZ, présence d'une enclave de paragneiss noire (2,5mx1,5m) a 90% BO, 10% QZ. Plusieurs autres petites enclaves de paragneiss.	I1C (60% QZ, 10-20% PG, 10% BO)	gm		pas de sulfures		281961
14-MQ-500	Bloc d'orthogneiss (80% QZ), enclave de paragneiss						
14-MQ-501	Bloc de paragneiss (40-50% BO)						
14-BR-101	texture microgrenue avec cristaux de taille mm. Présence de quartz et biotites en très grande partie. Altération de surface avec trace de rouille sur le dessus du bloc. Minéralisation en sulfure disséminé (tr-1%) avec pyrite pyrrhotite. Peut être de la chalcopyrite. roche s'apparentant à un gneiss voir paragneiss vu la forme proportion en biotite.		gf, massif	rouille	tr-1% PY-PO, tr CP		277651

No_Terrain	Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
14-BR-102	roche de couleur blanche à texture grenue avec taille de grain mm à pluri mm présence de quartz et de feldspath-> granitoïde. Présence d'enclave de couleur plus sombre avec quartz et biotite pour la plus grande partie. Présente parfois une foliation avec leucosome et mélanosome. silicification sous forme de vene de quartz. pas d'orientation particulière. présence de veine de quartz dans le granitoïde.	QZ (30% ), FK (20% )	gm, massif	silicification			
14-BR-103	roche grenue à cristaux plurimm. Présence de Qz et plag-> tonalite (?), pas de sulfure apparent. Pas d'enclave.	QZ (40%), PG (50%)	gg, massif				
14-BR-104	roche grenue à cristaux pluri mm. Présence de Qz et plag. Biotite aussi visible en gros cristaux. Zone par endroit semblant milonitisé présence d'un litage qui pourrait être magmatique et minéraux beaucoup plus fine.	QZ (40%), PG(50%)	gg, massif				
14-BR-105	affleurement de roche grenueà cristaux de taille cm. Présence de qtz, FK et plag. Pegmatite pour un om de la roche.présence d'une enclave avec biotite et quartz, forte concentration en biotite-> paragneiss	QZ (30%), PG(30%), FK(40%)	gg, massif				
14-BR-106	roche grenue avec cristaux mm à pluri mm. Présence de Qtz et FK-> granitoïde. Présence de biotite	QZ (40%), PG(50%),	gg, massif				
14-MQ-504	I1C: Granodiorite-tonalite, granulométrie hétérogene, enclaves de paragneiss riche en biotite (>50% BIO, 30% QZ) a gf-gm	I1C (40% QZ, 40% PG, 15% BO)	gm, gg, pg		pas de sulfures		281962
14-MQ-505	I1C-I1B (40% QZ, 40% PLG, 15% BO, 5% FK), nombreuses enclaves de paragneiss bien conservés anguleuses avec digestion sur les bords, passage avec pg QZ-PLG-BIO lamellaire, lits quarzo-feldspathique	I1C-I1B (40% QZ, 40% PG, 15% BO, 5% FK	gm, gg		pas de sulfures		281963
14-MQ-508	I1C-I1B (30-40% QZ, 30% PLG, 20% FK, 10% BO), enclaves de paragneiss	I1C-I1B (30-40% QZ, 30% PG, 20% FK, 10% BO)	gm, gg		tr PO ?		281964
14-MQ-509	I1B: Granite (40% QZ, 30% PLG, 20% FK, 10% BO), passage enrichi en FK, pas de rouille visibles, pas de sulfures	I1B (40% QZ, 30% PG, 20% FK, 10% BO)	lgg		pas de sulfures		281965
14-MQ-506	I1C: Granodiorite (40% QZ, 40% PLG, 10-15% FK, 1-5% BO), peu de BO, pas de rouille visible, belle fesse de roche, pas d'échantillon	I1C: (40% QZ, 40% PG, 10-15% FK, 1-5% BO)	gg, pg		pas de sulfures		
277513 14-DP-102	Amphibolite avec 10% de passé pale (FP-QZ) < 1 cm, Granodiorite, 3% enclaves de paragneiss intermédiaire BO++,	30% QZ, 65% FPFK, 5% BO	gm <1 cm		3% PO Tr	Enclave N030 à N050 /	277513 277514
						subhorizontal	
	Paragneiss, métasédiments interm avec lit milimétrique d'amphibole		Litage		Tr		277515
14-DP-107	Granodiorite, 30% enclaves de paragneiss intermédiaire, hématisation	30% enclaves	ļ.,	Hématisation		Hématisation N40°	277516
14-GR-105	Affleurement de tonalitique avec passages rosés (I1C?), texture loc pegmatitique. On note la présence d'~5% d.enclaves riches en BO (M4?) qui sont généralement orientées à 255/40. L'affleurement est fracturé en blocs métriques. Photo: GR 105	60% FP, 30% QZ, 5% FK, 5% BO	gm à gg, ma				277990
14-GR-108	Bloc de paragneiss de coul alt: rouille, fr: beige et rouille, 1% de VnQZ mm, sc++, pas de minéralisation observée, non-mag	85% QZ-FP, 15% BO	gf, sc, sa				277991
14-GR-109	Affleurement de tonalite contenant environ 50% d'enclaves plus riches en BO. Ces enclaves sont à gf, ma et gb. Elles ne semblent pas avoir d'orientation préférentielle. L'intrusion est de couleur banche et non mag.	70% FP, 25% QZ, 5% BO	gm-gg, ma				277992
14-GC-501	I1C homogène, grains grossier, massif. Quelques enclaves de paragneiss >1m, réagi au beepmat, localement les enclaves montre un plissement	I1C: 35% QZ, 40% PG, 5% BO, 20% FK	gg, massif		tr PY CP?	Enclave 030°, Pli, 160°	279466
14-GC-502	I1C homogène, grains grossier, à pegmatitique loc., massif. Quelques enclaves de paragneiss >1m,	I1C: 35% QZ, 40% PG, 5% BO, 20% FK	gg, pg. massif	Légère rouille			279467
14-DP-101	Granodiorite, pas d'enclave	30% QZ, 67% FP-FK, 3% BO	< .8 cm		nil		
14-DP-103	Granodiorite, pas enclaves,	30% QZ, 67% FP-FK, 3% BO					
14-DP-104	Granodiorite, pas enclaves,	40% QZ, 55% FP-FK, 5% BO	Hétérogène		Tr		
14-DP-105	Granodiorite, 1% enclaves de paragneiss intermédiaire BO++,	40% QZ, 50% FP-FK, 5% BO	Hétérogène, < 1cm		nil		
14-DP-106	Granodiorite, 15% enclaves de paragneiss intermédiaire				tr	Enclave N80-90°	
14-DP-108	Granodiorite, 20% enclaves de paragneiss intermédiaire	20% enclaves					
14-GR-106 14-GR-107	Affleurement de tonalitique avec passages rosés (I1C?), texture loc pegmatitique.  Affleurement de tonalitique avec passages rosés (I1C?), texture loc pegmatitique. (idem à GR-105) Photo: GR_107a & b	60% FP, 30% QZ, 5% FK, 5% BO 60% FP, 30% QZ, 5% FK, 5% BO	gm à gg, ma gm à gg, ma				
14-MQ-510	I1D: Tonalite (50% QZ, 40% PG, 5% BO, <5% FK), très peu ou pas de FK, granulométrie grossière, enclaves de M4, 1 belle enclave de M4 (1.5mx1m) très riche en BO (60-80%) à grain fin-moyen, beaucoup de BO dans la zone de contamination dans I1D (jusqu'à 15%), fluage	I1D: (50% QZ, 40% PG, 5% BO, <5% FK	gg		pas de sulfures		281966

No_Terrain	Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
14-MQ-512	M4: Métasédiment riche en BO (40% QZ, 30% PG, 20% BO, 10% MS)	M4: Métasédiment riche en BO (40% QZ, 30% PG, 20% BO, 10% MS)	gf, gm		tr PY diss		281967
14-MQ-514	I1D: Tonalite (50% QZ, 45% PG, 5% BO), granulométrie grossière, présence d'enclaves de M4 fusionnées et démembrées, fluage important, présence de gros cristaux de QZ en bordure localement	I1D: Tonalite (50% QZ, 45% PG, 5% BO)	gg		tr PY diss		281968
14-MQ-511	I1D: Tonalite (50% QZ, 40% PG, 5% BO, <5% FK), très peu ou pas de FK, granulométrie grossière, enclaves de M4		gg		pas de sulfures		
14-MQ-513	I1D: Tonalite (50% QZ, 45% PG, 5% BO), granulométrie grossière, nombreuses enclaves de M4 (L=50cm-1m; l=10-50cm) avec forme fuselée en ogive, allongées et orientées N110E, 2 enclaves sont fondues et ont fluées (bordure supérieure mixée dans I1D avec BO incorporé dans le magma, augmentation de la taille des grains dans la bordure mixée.	I1D: (50% QZ, 45% PG, 5% BO)	gg		pas de sulfures		
14-DP-109	Tonalite / Paragneiss (mafique) / I1D, Structure possible dans le M4 avec VQZ 3 cm et 20% PY, M4 ± 5% PY-PO	Enclave maf.	Faible schistosité		3-15% PY-PO	SP et VQZ N52/35	277517
14-DP-109	Tonalite / Paragneiss (mafique) / I1D, Structure possible dans le M4 avec VQZ 3 cm et 20% PY, M4 ± 5% PY-PO	Enclave maf.	Faible schistosité		3-15% PY-PO	SP et VQZ N52/35	277518
14-DP-110	Granodiorite avec enclave de métasédiment intermédiaire, tr sulf, rouille, bloc subamplace< 2m	Hétérogène	litage		Tr		277519
14-DP-111	Tonalite avec fragment Paragneiss (mafique) graduellement vers le sud hématisation	Hétérogène		Hématisation	Tr	Vn hém N80-90, enclave N250/40S	277520
14-DP-112	Protolite non identifiable, 40 à 60% PY, hématisation, magnétique			Hématisation +++, EP+	40-60% PY		277521
14-BR-107	roche grenue avec cristaux pluri mm. Composition en quartz et plagioclase en gende majorité -> tonalite. Roche avec contact sub horizontal. Essentiellement composé de biotite et de quartz. Roche litée -> paragneiss. Présence de rouille en surface. Pyrite disséinée (?), présence de veine de quartz massive et stérile à l'oeil nu	50% PG, 40% QZ	gg, massif	rouille	tr PY		277652
14-GR-110	Granite de couleur blanche et loc (côté ouest de la route) de couleur rosé (HM+), 38% PG, 30% FK, 30% QZ, 2% BO )(Les grains de FP sont id). Contient envion 5-10% d'enclaves riches en BO n'ayant pas d'orientation préférentielle. On note quelques passages pegmatitiques rosés. On trouve un zone <1m² sonnant mag au BeepMat et à proximité on échantillonne une enclave d'~ 0,5mx0,3m riche en BO (décrite dans éch.).	68% FP, 30% QZ, 2% BO	gm-gg, ma	Loc HM+	Loc dans une enclave: 15-20% PY hd à gf [] dans des lits mm		277993
14-GR-111	Granodiorite avec localement une zone légèrement orangée faiblement minéralisée en PY à gf id et contenant également une zone contenant une zone qui sonne 550HFR au BeepMat.	65% FP, 30% QZ, 5% BO	gm, ma		TrPY à gf id diss, loc (zone du BM) 10% PO à gf jointifs, 1% PY, TrMO, TrCP	,	277994
14-GR-111	Granodiorite avec localement une zone légèrement orangée faiblement minéralisée en PY à gf id et contenant également une zone contenant une zone qui sonne 550HFR au BeepMat.	65% FP, 30% QZ, 5% BO	gm, ma		TrPY à gf id diss, loc (zone du BM) 10% PO à gf jointifs, 1% PY, TrMO, TrCP	,	277995
14-GC-503	I1C grains moyen avec passage pegmatitique, quelques enclaves de paragneiss possédant une légère rouille locale, plusieurs fractures recoupe la foliation une hématisation est visible en bordure de ces dernière	I1C: 30% BO, 20% QZ, 50% PG	gg, peg. massif	Hématisation	tr PY	Enclave 040, Fracutre 250/80	279468
14-GC-504	I1C massive à grains grossier, homogène quelques gractures présente avec muscovite en bordure	I1C: 15% FK, 30% QZ, 20% BO, 35% PG	gg ma				279469
14-GC-506	Granodiorite massive, faible hématisation, patine légèrement rouillé	5% BO, 20% QZ, 35% FK, 40% PL	ma gg	Légère rouille			279470
14-BR-108	roche à texture grenue. Forte proportion en quartz (40%) et plagioclase (50%) -> tonalite. Présence d'une enclave de roche avec uniquement de la biotite et du quartz -> gneiss. enclave de forme fuselée avec une orientation N110°;15°	QZ (40% ), PG(50% ),	gg, massif				
14-GC-505	Bloc sub arrondi de composition tonalitique	25% QZ, 15% BO, 60% PG	gg				
14-MQ-515	PO semi-massive (30%) et 0.5% CP, horizon semble orienté N40E				PO semi-massive (30%) et 0.5%	N40E	281969
14-MQ-515	I1D: Tonalite (45% QZ, 45% PG, 5% PO, 5% BO)	I1D: Tonalite (45% QZ, 45% PG, 5% PO, 5% BO)	gg		2-3% PO diss, mouchetée		281970
14-MQ-515	Metasdt (30% QZ, 30% PG, 10% BO, 10% MS, 20% AM)	Metasdt (30% QZ, 30% PG, 10% BO, 10% MS, 20% AM)	gf, gm		2-3% PO diss, mouchetée		281971
14-MQ-515	Metasdt (30% QZ, 30% PG, 10% BO, 10% MS, 20% AM)	Metasdt (30% QZ, 30% PG, 10% BO, 10% MS, 20% AM)	gf, gm		2-3% PO diss, mouchetée		281972
14-MQ-518	MetaSdt (40-50% QZ, 20-30% mx noirs, 10% PG, 5% MS, 10% PLG, 3-5% GT, 2-3% PO diss), amphibolite à grenat, faciès amphibolite	MetaSdt (40-50% QZ, 20-30% mx noirs, 10% PG, 5% MS, 10% PG, 3-5% GT, 2-3% PO diss	19		2-3% PO		281973
14-MQ-518	MetaSdt (40-50% QZ, 20-30% mx noirs, 10% PG, 5% MS, 10% PLG, 3-5% GT, 2-3% PO diss), amphibolite à grenat, faciès amphibolite	MetaSdt (40-50% QZ, 20-30% mx noirs, 10% PG, 5% MS, 10% PG, 3-5% GT, 2-3% PO diss	1*		2-3% PO		281974
14-MQ-516							

No_Terrain	Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
14-BR-109	Champ de blocs sub en place. Beep mat bipant jusqu'à 13000 HFR. roche présentant des lits de quartz et de pyrite avec peut être des biotite par endroits. Sulfure magnétique donc présence de magnétite et/ou pyrrhotite. Présence de grenat de taille mm et disséminé. rouille en surface de bloc. Roche semblable à celle décrite au dessus. présence d'une veine de puissance cm. plus forte concentration en grenat. beep mat à 6000 HFR. présence de zincite en plus de la rouille de surface. beep mat réagissant deux mêtres de chaque bord de la zone échantillonnée. Anomalie expliquée.	60% QZ, 30% PY	gg, massif	rouille	30% PY		277653
14-BR-109	Champ de blocs sub en place. Beep mat bipant jusqu'à 13000 HFR. roche présentant des lits de qurtz et de pyrite avec peut être des biotite par endroits. Sulfure magnétique donc présence de magnétite et/ou pyrrhotite. Présence de grenat de taille mm et disséminé. rouille en surface de bloc. Roche semblable à celle décrite au dessus. présence d'une veine de puissance cm. plus forte concentration en grenat. beep mat à 6000 HFR. présence de zincite en plus de la rouille de surface. beep mat réagissant deux mêtres de chaque bord de la zone échantillonnée. anomalie expliquée.		gg, massif	rouille	30% PY		277654
14-GR-112	Tonalite de couleur alt: blanche, contenant 5% d'enclaves de M4 (10% BO). Ces enclaves n'ont pas d'orientation particulière.	63% FP, 35% QZ,2% BO	gm-gg, loc pg, ma				277996
14-GR-113	80% M4 (peut-être S9) 20% I1, BeepMat sonne 5000HFR. Couleur alt: rouille, fr: blanc-noir-rouille, faiblement mag. Contient des bandes riches en QZ et des zones pegmatitiques. Photos: GR_113 et 277997		sa, gb, sc,gf		10-20% SF (PY>PO), à gf [] dans les bandes riches en BO, TrCP à gf diss		277997
14-GR-116	Tonalite de coul. blanche contenant 25% d'enclaves de M4 riches en BO orientées préférentiellement à 020/55. Les enclaves sont rubannées avec des inj. à gm-gg de l1 (refonte des enclaves?).	75% QZ, 20% QZ, 5% BO			0		277999
14-GC-507	3 blocs anguleux possédant une légère rouille de surface, composition tonalitique, recoupé d'un dyke de pegmatite de même composition, quelques enclaves de paragneiss étiré et rouillé	35% BO, 20% QZ, 45% PG	gg, hj	Légère rouille			279471
14-GC-508	Roche sédimentaire compsés de niveau felsique, mafique et sulfuré réagissant au beep mat. Probablement BIF, recoupé par un dyke de pegmatite	70% BO, 30% PO		Rouillé	30% PO		279472
14-GR-114	Tonalite idem à GR-112, les enclaves sont globalement orientées à 100°N. Un endroit sonne conducteur au Beepmat (au milieu de la I1D) pas Tonalite idem à GR-112	63% FP, 35% QZ,2% BO	gm-gg, loc pg, ma				
14-GR-115	Tonalite idem à GR-112, les blocs sont sub en place et sub-anguleux, pluri-dm à pluri-m	63% FP, 35% QZ,2% BO	gm-gg, loc pg, ma,	10.0			
14-MQ-524	I1D: Tonalite/granodiorite avec nombreuses enclaves métriques de M4, digestion magmatique importante avec FP des bordures d'enclaves, lits QFP dans les enclaves, structure de FP imbriquées	I1D: (40% QZ, 40% PG, 10% BO, tr-0.5% PY)	gg		tr-0.5% PY diss, mouchetée		281975
14-MQ-519							
14-MQ-520	I1D, digestion magmatique intense des enclaves, alternance de lits QFP et delits micacés dans M4, présence de plis- microplis des lits de QFP orienté N40E, P=50SE, plis déversés quasiment couchés	I1D: Tonalite				N40E, P=50SE, axe des plis N100E, P=30SE	
14-MQ-521							
14-MQ-522	Aucun kick de Beepmat sur l'anomalie ciblée						
14-MQ-523	I1D: Tonalite (50% QZ, PG50% )				pas de sulfures visibles		
14-GC-511	Roche magnétique contenant 10% de sulfures dissiminé dans la matrice	40% QZ, 50% BO, 10% PO	gf	Rouillé	10% PO	1	279474
14-GC-512	Essentiellement de la tonalite avec des enclaves de paragneiss de plus une enclave très minéralisé est présente	15% BO, 30% QZ, 55% PG	gg	Rouillé	40% PO, 30% GP		279475
14-GC-510	Essentiellement constitué de granodiorite à grains moyen, homogène, massif, la seconde partie est de même composition mais à grains grossiers (pg.) la 3e partie est tonalitique avec 30% BO et recoupé par des veines de QZ+PL	30% QZ, 20% FK, 50% PG	gg, hj, br				
14-MQ-525	I1D: Tonalite (50% QZ, 50% PG)	I1D: Tonalite (50% QZ, 50% PG)	gg		pas de sulfures		281976
14-MQ-527	I1D: Tonalite (50% QZ, 50% PG), une grosse enclave de M4 avec nombreux lits de QFP et lits de BO	I1D: (50% QZ, 50% PG)	gg		pas de sulfures		
14-MQ-529	I1D: Tonalite (50% QZ, 50% PG), nombreuses enclaves avec FP, digestion magmatique, Lits QFP avec lits de BO	I1D: (50% QZ, 50% PG)	gg		pas de sulfures		
14-GR-119	Granodiorite de couleur blanc rosé,contenant <5% de'enclaves de M4 et ayant localement une texture pegmatitique.	67% FP, 30% QZ, 3% BO	gm-gg, loc pg, ma,				277601
14-GR-120	Granodiorite de couleur blanc rosé,contenant <5% de'enclaves de M4 et ayant localement une texture pegmatitique. Non-	67% FP, 30% QZ, 3% BO	gm-gg, loc pg, ma,				277602
14-GC-513	mag  Trouvé au beepMat, La roche est contitué en majeure partie de tonalite, une petite bande de M4 ce rentrouve à l'extrémité de l'affleurement, en rénurage la source du conducteur semble être une enclave de M4 à BO+PO+CP qu'une petite partie à été échantilloné	35% QZ, 45% PG, 20% BO	gg ma	Légère rouille	30% PO, 5% CP		279476
14-GC-513	Trouvé au beepMat, La roche est contitué en majeure partie de tonalite, une petite bande de M4 ce rentrouve à l'extrémité de l'affleurement, en rénurage la source du conducteur semble être une enclave de M4 à BO+PO+CP qu'une petite partie à été échantilloné	35% QZ, 45% PG, 20% BO	gg ma	Légère rouille	30% PO, 5% CP		279477

No_Terrain	Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
14-GC-513	Trouvé au beepMat, La roche est contitué en majeure partie de tonalite, une petite bande de M4 ce rentrouve à l'extrémité de l'affleurement, en rénurage la source du conducteur semble être une enclave de M4 à BO+PO+CP qu'une petite partie à été échantilloné	35% QZ, 45% PG, 20% BO	gg ma	Légère rouille	30% PO, 5% CP		279478
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145590
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145591
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145592
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145593
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145594
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145595
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145596
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145597

No_Terrain	Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145598
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145599
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145600
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145601
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145602
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145603
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145604
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145605

No_Terrain	Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145606
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145607
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145608
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145609
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145610
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145611
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145612
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145613

No_Terrain	Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145614
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145615
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145616
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145617
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145618
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145619
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145620
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145621

No_Terrain	Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145622
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145623
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145624
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145625
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145626
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145627
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145628

No_Terrain	Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145629
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145631
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145632
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145633
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145634
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145635
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145636
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145637

No_Terrain	Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145638
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145639
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145640
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145641
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145642
1388-TR-14-01	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145643

No_Terrain	Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		14564
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		14564
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145646
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145648
	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	5-15% CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4% PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145649
1388-TR-14-02	Métasédiment homogène, folié. La minéralisation est dissiminé dans lamatrice. Une chloritisation pervasive est présente. La patine est altéré	M4: Métasédiment (30% QZ, 23% BO, 40% PG, 7% PY tr PO)	hj, fo, gf	Chloritisation	7% PY tr PO di		145736
1388-TR-14-02	Métasédiment homogène, folié. La minéralisation est dissiminé dans lamatrice. Une chloritisation pervasive est présente.  Vers la fin de l'interval ce trouve le contact avec l'encaissant, une Si et EP est présente à ce contact	M4: Métasédiment (30% QZ, 23% BO, 40% PG, 7% PY tr PO)	hj, fo, gf	Si+, EP+, CL+	7% PY tr PO di		145737
	Métasédiment homogène, folié. La minéralisation est dissiminé dans lamatrice. Une chloritisation pervasive est présente.  Contact avec l'intrusif granitique, une PGus forte BO est présente au contact, de PGs laPY ce retrouve dans cet intrusif dissiminé associé à la BO	M4: Métasédiment (30% QZ, 23% BO, 40% PG, 7% PY tr PO), I1B (40% QZ, 50% PG+FK, 7% BO, 3% PY)	hj, fo, gf	Chloritisation	3% PY		145738
1388-TR-14-02	Granite homogène, massif à gg. La BO est intersticiel, il est possible de voir une chloritisation dans cette dernière	I1B (40% QZ, 50% PG+FK, 7% BO, 3% PY)	hj ma gg	CL+	tr PY		145739
1388-TR-14-02	Granite homogène, massif à gg. La BO est intersticiel, il est possible de voir une chloritisation dans cette dernière	I1B (40% QZ, 50% PG+FK, 7% BO, 3% PY)	hj ma gg	CL+	0.5% PY		145743
1388-TR-14-02	Granite homogène, massif à gg. La BO est intersticiel, il est possible de voir une chloritisation dans cette dernière	I1B (40% QZ, 50% PG+FK, 7% BO, 3% PY)	hj ma gg	CL+, EP+	tr PY		145742
1388-14-TR-02	Granite homogène, massif à gg. La BO est intersticiel, il est possible de voir une chloritisation dans cette dernière	I1B (40% QZ, 50% PG+FK, 7% BO, 3% PY)	hj ma gg	CL+, EP+	tr PY		145743
1388-14-TR-02	Granite homogène, massif à gg. La BO est intersticiel, il est possible de voir une chloritisation dans cette dernière	I1B (40% QZ, 50% PG+FK, 10% BO)	hj ma gg	CL+, EP+			145744
1388-14-TR-02	Granite homogène, massif à gg. La BO est intersticiel, il est possible de voir une chloritisation dans cette dernière	I1B (40% QZ, 50% PG+FK, 10% BO)	hj ma gg	CL+, EP			145745
1388-14-TR-02	Enclave de métasédiment, localement des vn de qz sont présente, en bordure de celle-cice retrouve la PU et les tr de CP	M4 ( 35% BO, 5% PY 25% QZ, 75% PG)	hj gf fo		5% PY tr CP		145746
1388-14-TR-02	Granite homogène, massif à gg. La BO est intersticiel, il est possible de voir une chloritisation dans cette dernière	I1B (40% QZ, 50% PG+FK, 10% BO)	hj ma gg	CL+, EP			145747

No_Terrain	Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
1388-14-TR-02	Granite homogène, massif à gg. La BO est intersticiel, il est possible de voir une chloritisation dans cette dernière	I1B (40% QZ, 50% PG+FK, 10% BO)	hj ma gg	CL+, EP			145748
1200 14 TD 02	Finalesse de MA fente ablantination FD news 100/ DV designin de desale produire	MAA / 359/ DO 59/ DV 359/ OZ 759/ DC)	h: -6 6-	CL+	100/ DV 4:		145749
	Enclave de M4, forte chloritisation, EP perv, 10% PY dssiminé dans la matrice	M4 ( 35% BO, 5% PY 25% QZ, 75% PG)	hj gf fo	CL+	10% PY di		
1388-14-TR-02	Contact entre M4et I1B	M4: Métasédiment (30% QZ, 23% BO, 40%	hj gf fo		5% PY tr MO		145750
		PG, 5% PY di tr MO), I1B (40% QZ, 50% PG+FK, 7% BO, 3% PY)					
1388-TR-14-04	Granite massif, les cristaux sont idiomorphe, le gz est intersticiel, la BO montre localement une faible CL, de plus il est	11B (25% QZ, 5% BO(CL), 40% FK, 30% PL)	hj ma gg	Faible chloritisation	tr PY	+	145507
1300 111 17 01	possible de voir des tr de pY ass avec la BO	125 (25% 62, 5% 55 (62), 16% 11, 56% 12,	11,1114 66	Talore emoritisation			113307
1388-TR-14-04	Contact entre M4 et I1B, il est possible de voir une forte BO, de plus les sulfures sont présents à cet endroit	I1B (25% QZ, 5% BO(CL), 40% FK, 30% PL)	hj ma gg	BO+	0.5% PY		145508
1388-TR-14-04	Granite massif, les cristaux sont idiomorphe, le qz est intersticiel, la BO montre localement une faible CL, de plus il est	I1B (25% QZ, 5% BO(CL), 40% FK, 30% PL)	hj ma gg	BO++			145509
	possible de voir des tr de pY ass avec la BO. De plus des dykes de peg au contact diffus recoupe la zone, forte BO en		-				
	bordure						
	M4 légère chloritisation locale et quelques bandes plus riche en mx mafique,	M4 (55% PL, 20% BO, 20% QZ, 5% PY)	hj fo gf	CL	3-5% Py		145510
1388-TR-14-04							145511
1388-TR-14-03	roche grenue, gros grain, trace de rouille dans la roche avec présence de sulfure au centre. 2% Biotite disséminée	50% plagio, 20% qtz, 30% feldspath	gg	rouille	tr PO		145501
1388-TR-14-03	roche grenue, gros grain, trace de rouille dans la roche avec présence de sulfure au centre. 2% Biotite litée	50% plagio, 20% qtz, 30% feldspath	gg	rouille	tr PO		145502
1388-TR-14-03	métasédiment avec envlave ou veine de granitoïde. Trace de sulfure	I1B Granite/M4 métasédiment (20% QZ,	gf, gg	rouille	tr PO		145503
		60% BO, 10% PG)					
1388-TR-14-03	80% granitoïde, 20% métasédiments. Sulfures disséminés dans M4 trace de rouille dans I1B avec sulfure	I1B Granite/M4 métasédiment (20% QZ, 60% BO. 10% PG)	gf, gg	rouille	tr PO		145504
1388-TR-14-03	80% granitoïde, 20% métasédiments. Sulfures disséminés dans M4	I1B Granite/M4 métasédiment (20% QZ,	gf, gg	rouille	tr PO		145505
		60% BO, 10% PG)	0,00				
1388-TR-14-03	80% granitoïde, 20% métasédiments lités. Sulfures disséminés aussi bien dans M4 que   1B	I1B Granite/M4 métasédiment (20% QZ,	gf, gg	rouille	tr PO		145506
		60% BO, 10% PG)					
1388-TR-14-05	I1B Granite/M4 métasédiment, zone de mélange avec alternance de lits de QFP (50%) et de lits mafiques AMP-BO (50%),	I1B Granite/M4 métasédiment, zone de	gg	altération superficielle	1-2% PY diss		145512
	litage bien développé sur 1m	mélange avec alternance de lits de QFP					
		(50%) et de lits mafiques AMP-BO (50%)					
1300 TD 14 OF	I1B Granite 30% QZ, 30% PG-EP, 30% FK, 5-7% BO, contact avec enclave de M4 à la fin des 90cm	I1B Granite 30% QZ, 30% PG-EP, 30% FK, 5-	99	altération superficielle	1-2% PY diss, 1vnPY (0.2cm)		145513
1500-1K-14-05	in B Grainte 30% QZ, 30% PG-EF, 30% PK, 3-7% BO, contact avec enclave de ivi4 a la fin des 300 m	7% BO	gg	alteration superficielle	avec EP,		145513
1388-TR-14-05	I1B Granite/M4 métasédiment, zone de mélange avec alternance de lits de QFP (50% ) et de lits mafiques AMP-BO (50% )	I1B Granite/M4 métasédiment, zone de	gg	altération superficielle	0.5% PY	+	145514
		mélange avec alternance de lits de QFP	000		0.077		
		(50%) et de lits mafigues AMP-BO (50%)					
1388-TR-14-05	I1B Granite/M4 métasédiment, zone de mélange avec alternance de lits de QFP (50% ) et de lits mafiques AMP-BO (50% ),	I1B Granite/M4 métasédiment, zone de	gg	altération superficielle	0.5% PY		145515
	litage de M4 (1-5cm)	mélange avec alternance de lits de QFP					
		(50%) et de lits mafiques AMP-BO (50%)					
1388-TR-14-05	I1B Granite/M4 métasédiment, zone de mélange avec alternance de lits de QFP (50%) et de lits mafigues AMP-BO (50%),	I1B Granite/M4 métasédiment, zone de	gg	altération superficielle	0.5% PY	1	145516
	litage de M4 (1-5cm)	mélange avec alternance de lits de QFP		,			417323
		(50% ) et de lits mafiques AMP-BO (50% )					
1388-TR-14-05	I1B 80% , quelques bandes de M4	I1B Granite/M4 métasédiment, zone de	gg	altération superficielle	0.5% PY		145517
1500 111-14-05	and development and man	mélange avec alternance de lits de QFP	Pop	alteration supernicielle	1.5/01		143317
		(50%) et de lits mafigues AMP-BO (50%)			(70)		
		(30%) ce de lies manques Alvir -BO (30%)	1				

No_Terrain	Description_Echant	Code_analys No_Rapport	Au	Pt F	Pd A	Ag Al	P	As Ba	E	Be Bi	C	Ca Cd	l	Ce Co	0	Cr Cs	s
14-GR-065	Composite de I1D et M4	1 14105425	-0,005			0,08	6,5	0,7	230	2,42	0,07	3,11	0,27	37,7	14,8	158	6,01
14-GR-066	Représentatif de l'aff.	1 14105425	-0,005			0,03	6,2	0,6	770	0,87	0,03	0,47	0,02	41,1	1.1	45	1,8
14-GR-067	IID+M4	1 14105425				0,01	6,56	0,6	580	2,14	0,01	1,42	0,04	39,1	5,8	38	3,49
14-GR-069	Voir description du bloc	1 14105425	0,011			1,13	4,31	0,8	40	0,63	0,97	0,74	0,07	23,5	30,3	42	0,83
14-jfdl-046		1 14105425	-0,005			0,01	7,79	1	570	1,64	0,04	1,41	0,05	94,2	11,2	64	2,7
14-jfdl-047		1 14105425	-0,005			0,02	5,54	-0,2	370	1,86	0,02	0,83	-0,02	3,58	0,4	10	1,29
14-jfdl-048		2 14105426	0,009	0,016	0,011	1	4,13	25	40 <	<0.5 <2		1,05	0,6		16	221	
14-JFG-086	Enclave de M4, gf, 40% BO, tr PO	1 14105425	-0,005			0,21	7,93	0,9	90	0,43	0,27	6,12	0,58	10,6	39,8	333	1,11
14-JFG-088	Enclave de M4, gm, hk, 20% BO, Si+, rouille, 5% PY	1 14105425	-0,005			0,39	7,47	3,2	60	1,43	1,11	0,74	0,09	48	28,2	107	0,78
14-JFG-089		1 14105425	-0,005			0,6	4,82	0,8	40	0,95	1,31	0,31	0,53	51,1	47	153	0,43
14-JFG-090		1 14105425	-0,005			0,5	6,27	1,4	110	0,91	1,16	0,22	0,13	34,1	36,2	80	0,95
14-JFG-092	30% PX, 2% CP, tr PY, diss	1 14105425	1,955			1,27	5,96	1,7	50	1,6	5,27	0,08	0,02	29,1	18	684	2,08
14-JFG-094		1 14105425	-0,005			0,02	6,93	-0,2	850	0,9	0,04	1,09	0,03	70,8	2,9	12	1,87
14-JFG-091		2 14105426		<0.005	0,001	8,6	6,81 <		330	2	36	0,07 <0		,	19	8	.,
14-GR-068																	
14-JFG-087																	
14-JFG-093																	
14-GR-074	Voir description du bloc	2 14105426	0,001	0,088	0,047	0,7	4,52 <	<5	240	2,1 <2		6,97	0,5		126	387	
14-GR-070	Voir description du bloc	1 14105425	-0,005			0,68	6,44	5,6	220	1,39	1,32	1,43	5,63	51,6	38,4	95	7,42
14-GR-071	Voir description du bloc	1 14105425	0,005			1,73	5,88	0,7	70	1,26	1,54	0,69	0,34	70,2	64,5	191	4,47
14-GR-072	M5	1 14105425	-0,005			0,05	8,1	0,5	1800	1,33	0,02	1,23	0,02	11,3	5,9	38	3,46
14-GR-073	M4 avec 10% de PY diss	1 14105425	-0,005			1,45	6,28	0,8	300	1,57	1,01	2,18	0,77	40,8	41,4	221	8,73
14-JFG-092	90% micas gris-verts, 5-10% CP disséminée, QZ	1 14105421	<0.005			1,84	7,31	5,5	210	1,78	1,69	0,23	0,03	29,4	22,1	221	2,15
14-JFG-092	Facture minéralisée, 20% micas gris-verts, 5% CP, placage de MO	1 14105421	. 0,418			60,3	7,12	6,1	820	1,66	160	0,16 <0	.02	29,6	111	9	1,45
14-JFG-092	M4, rouillé, gf, ru, 15% BO, tr PY	1 14105421	0,06			1,38	6,69	0,5	270	1,66	13,75	0,07	0,02	110	15,7	86	4,77
277489		1 14113177	-0,005		-	0,29	6,26	0,3	550	1,4	0,28	0,87	0,08	18,85	11,5	35	2,28
277490		1 14113177	-0,005			1,05	6,76	-0,2	90	1,32	0,9	4,64	0,93	15,2	24,7	192	2,81
277491		1 14113177	0,032			0,72	6,87	-0,2	1350	1,6	0,41	5	0,42	186	43,6	217	2,91
14-DP-043		1 14113177				0,12	6,7	0,2	400	1,7	0,11	2,76	0,41	34,6	26,9	358	5
14-DP-045		1 14113177	-0,005	(4)		0,08	6,71	-0,2	850	1,17	0,07	0,82	0,02	19,35	3,2	19	1,79

No_Terrain	Description_Echant	Code_analys	No_Rapport	Au	Pt	Pd	Ag	Al A:	s	Ва	Ве	Bi	Ca	Cd	Ce	Со	Cr	Cs	
14-GR-081	Voir description du bloc	2	2																
14-GR-080	Voir description du bloc	1	14113177	-0,005	5		0,31	8,24	1	840	1,05	0,	18 1,	23 0,	06 5	58,2 1	7,9	51	1,95
14-GR-082	Voir description du bloc	1	14113177	0,01			1,43	7,56	0,6	310	1,73	3 0,	97 1,	24	1,1 3	32,9 2	3,2	75	1,19
14-GR-083	M5 représentaif avec TrPY	1	14113177	-0,005	5		0,04	7,02	0,3	750	1,15	5 0,0	05 1,	02 0,	02 15	5,05	7,1	79	3,66
14-JFG-092	M4, rouillé, gf, ru, 15% mica, 1% PY, 2% CP, placage de MO	1	14113177	-0,005	5		2,28	8,44	18	210	2,03	3 1,:	38 0,	52	0,2 8	32,4 7	4,8	129	1,61
14-JFG-092	I1B, gm, fa++, ma, CL++, 5% CP, 1% BN	1	14113177	-0,005	5		2,23	5,78	20,5	70	1,32	2 0,3	21 0,	18 (	0,2 1	5,8 2	0,8	17	0,96
27749	2	1	1																
14-DP-044																			
14-DP-045 14-jfdl-058		1	14113280	-0,005	5		1,0	9,8	1,2	430	1,82	2 0	1,9	26 0,	29 6	65,5	4,3	163	4,6
14-JFG-092	M4, gf, sc+, 20% BO, 15% PY en amas	1	14113177	-0,005	5		0,79	7,28	5,2	380	1,54		36 0,	66 0,	14 4	6,7 2	3,8	80	1,38
14-JFG-092	M4, gf, sc+, 20% BO, 10% PY en amas	1	14113177				0,69	7,38	9,7		1,85		1 0,				7,4	121	1,88
14-JFG-092	I1B, gm, ma, tr PY	1	14113177	-0,005			0,24	6,86	7,4		1,46			26 0,		26,6	27	127	1,79
14-JFG-092	I1B, gm, ma, tr PY	1	14113177	-0,005			0,09	4,65	2,9		1,11						3,6	11	1,54
14-JFG-092	I1B, gg, ma, 5% BO, tr-1% CP / M4, 30% micas gris-verts, 5% CP	, 1	14113177	0,016			3,47	5,65	4,4		1,6				02		1,9	52	1,49
14-JFG-092 14-JFG-092	M4, gm, 30% micas gris-verts, 5% CP, tr BN	1	14113177	0,01 -0,005			5,27 3,46	7,59 6,55	15,1 2,5		2,14			25 -0, 13 -0,			1,6 6,7	141 32	2, <b>44</b> 1,69
14-11-0-092	I1B, 30% micas gris verdâtres, tr CP, rouille dans fracture	1	141131//	-0,000	Ί		3,40	0,33	2,5	040	1,00	0,.	0,	-0,	.02	,2,5	0,7	32	1,09
14-JFG-092	M4, gris-verdâtre, 5-10% PY / I1B, gm	1	14113177				0,14	6,81	0,5		1,19						8,2	26	1,31
14-JFG-092	M4, gm, Si++, 15% micas gris-verts, 5% PY	1	14113177	-0,005			0,2	7,44	1,6		1,21						1,3	39	1,64
14-JFG-092	I1B, gris-beige, gg, gros flocons de BO (20% ), tr PY	1	14113177	-0,005 -0,005			0,27	6,2 6,9	2,2 1,5		0,86			36 -0, 32 0,		21,8 9,95	9,2	14 10	4,4 1,58
14-JFG-092 14-JFG-092	I1B, 10% BO, gris verdâtre, gm   I1B, 10% BO, gm-gg	1	14113177	-0,005		+	0,03	6,78	1,5		2,33			24 -0,		5,5	2	11	4,89
14-JFG-092	11B, 5% BO, 3% PY	1	14113177	-0,005		+	0,09	6,77	1,9		1,56			49 0.			6,1	17	1,63
14-JFG-092	I1B, gg, 15-20% BO, tr PY	1	14113177	-0,005		_	0,04	6,99	1,1		0,93						2,5	11	1,65
14-JFG-092	I1B, gm, 10% BO, tr PY	1	14113177	-0,005	5		0,54	6,66	1,4	760	0,94	1	,7 0,	26 0,	03 11	,95	5,1	14	1,38
14-JFG-092	M4, 20% BO, 10% CP, 2% BN / I1B, 10% BO, tr CP, gg (composite des échantillons 281885 et 281886)	1	14113177	0,007	7		1,59	5,4	10,7	290	1,12	1,	74 (	0,3	.17 2	20,6	3,4	45	1,91
14-JFG-092	M4, gm, 25% BO, 5% PY, 5% CP	1	14113177	0,013	3		1,27	8,39	6,1		1,63		66 1,	03 0,	06 4		6,8	110	5,85
14-JFG-092	I1B, gg, 15% BO / M4, gf, 10% BO	1	14113177				0,05	7,07	0,4		1,28						4,3	13	1,49
	M4, gm, 20% BO, 5-10% CP, tr BN	1	14113177				3,87	6,05	12,1		1,38						7,1	136	2,37
14-JFG-092 14-MQ-503	11B, gg, 5% BO, tr CP   idem	SOQVAL-1	14113177 14160281		<u> </u>		0,38	5,65	2,3	390	1	0,:	31 0,	29 -0,	02 16	5,65 1	1,8	23	1,36
14-MQ-503	idem	SOQVAL-1	14160281																
14-MQ-500																			
14-MQ-501													-						
14-BR-101	paragneiss avec sulfures disséminés	SOQVAL-1	14160282	-0,005			0,29	7,16	0,2	40	2,3	0,0	69 6,	51 0,	.47 8	3,77	9,2	32	0,98

No_Terrain	Description_Echant	Code_analys	No_Rapport	Au	Pt	Pd	Ag Al	As	E	Ba B	e	Bi Ca	9	Cd	Ce	Co	Cr C	İs
14-BR-102																		
																	.	
14-BR-103																		
14-BR-104																		
14-BR-105						+												
14-BR-106			11150001	0.005			0.05	744	0.0	4000	2.40	2.40	0.24	0.00	47.4	4.0	40	0.05
14-MQ-504	idem	SOQVAL-1	14160281	-0,005			0,05	7,14	-0,2	1620	3,48	2,16	0,31	-0,02	17,4	1,2	12	6,95
14-MQ-505	idem	SOQVAL-1	14160281	-0,005		+	0,07	4,69	-0,2	380	1,41	0,11	0,73	0,02	26,3	1,1	13	0,9
14-MQ-508	idem	SOQVAL-1	14160281	-0,005			0,02	6,3	0,2	1210	0,87	0,03	0,59	0,02	20,7	2,3	13	2,57
14-MQ-509	idem	SOQVAL-1	14160281	-0,005		1	0,1	8,73	0,2	420	15,45	0,52	0,54	0,02	43,9	0,7	4	10,15
14-MQ-506																		
14-MQ-507	N40E, N130E																	
277513 14-DP-102	idem	SOQVAL-1 SOQVAL-1	14160282 14160282	-0,005 -0,005			0,38 0,02	6,99 7,13	0,2 -0,2	140 1060	1,66 0,91	1,04 0,04	8,36 0,63		20,3 58,9	48,8	77 20	1,35 2,36
14 01 102	lidelli	JOGVALI	14100202	0,003			0,02	7,13	0,2	1000	0,51	0,04	0,03	0,03	30,5	_	. 20	2,50
277515		SOQVAL-1	14160282	-0,005			0,1	7,12	-0,2	420	1,23	0,05	3,23		37,8	10,8	51	1,89
14-DP-107		SOQVAL-1	14160282	-0,005		1	-0,01	8,05	0,7	810	1,03	0,14	0,62	0,02	90,7	3,2	80	1,61
14-GR-105	Représentatif	SOQVAL-1	14160281	-0,005			0,03	6,91	0,5	880	1,46	0,04	0,76	0,03	91,8	1,8	9	2
14-GR-108	Représentatif	SOQVAL-1	14160281	-0,005			0,18	8	0,2	490	1,41	0,12	2,04	-0,02	26,1	7,6	79	5,09
14-GR-109	Encaissant + enclaves	SOQVAL-1	14160281	-0,005		+	0,05	7,28	0,4	1440	1,14	0,07	1,39	0,04	361	6,4	11	3,99
14-GK-109	Elicaissant + eliciaves	30QVAL-1	14160281	-0,003			0,00	7,20	0,4	1440	1,14	0,07	1,00	0,04	301	0,4		5,55
14-GC-501	Paragneiss sonnant au beepmat	SOQVAL-1	14160282	0,005			0,68	7,09	0,6	240	2,05	0,55	2,03	0,21	35,6	19,5	116	5,46
14-GC-502	Chart have a land Haffle was a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	SOQVAL-1	14160282	-0,005		+	0.05	6.3	1	1170	0.00	0.07	0,84	0.02	05.1	2,6	11	1,94
14-GC-502 14-DP-101	Echant homogène de l'affleurement	SOQVAL-1	14160282	-0,005		+	0,05	6,2	1	1170	0,99	0,07	0,84	0,03	95,1	2,0	11	1,94
14-DP-103																		
14-DP-104																		
14-DP-105																		
14-DP-106						+												
14-DP-108																		
14-GR-106																		
14-GR-107																		
14-MQ-510	idem	SOQVAL-1	14160281	-0,005			0,02	6,04	0,3	620	1,39	0,06	0,73	0,03	8,73	2,1	21	5,45
													- 1					
			1															

No_Terrain	Description_Echant	Code_analys	No_Rapport A	u Pt	Pd	Ag Al	Α	ls Ba	В	e Bi	С	a Cd	C	e Co	Cr	Cs	
14-MQ-512	idem	SOQVAL-1	14160281	-0,005		0,24	7,34	0,2	490	1,04	0,17	3,5	0,15	65,2	15,9	110	2,0
14-MQ-514	M4 avec tr PY diss en cx cubiques	SOQVAL-1	14160281	-0,005		0,16	6,33	0,4	110	3,93	0,32	1,88	0,08	71,3	14,8	283	1,3
14-MQ-511																	
14-MQ-511 14-MQ-513																	
14-DP-109	Portion nord du M4	SOQVAL-1	14160282	-0,005		1,07	7,07	0,6	310	1,26	1,15	2,1	0,39	46,4	19,3	105	5,7
14-DP-109	Portion sud du M4	SOQVAL-1	14160282	0,005		2,1	5,43	-0,2	200	1,19	1,6	0,91	0,17	39,5	29,5	66	2,2
14-DP-110	Idem	SOQVAL-1	14160282	-0,005		0,33	7,32	0,4	520	1,3	0,21	1,33	0,19	39,1	8,8	49	2,9
14-DP-111	ldem	SOQVAL-1	14160282	-0,005		0,21	6,53	-0,2	550	1,29	0,22	1,56	0,18	29,5	10,9	122	3,1
14-DP-112	Idem	SOQVAL-1	14160282	0,122		5,89	1,47	1,1	80	0,44	5,74	0,58	0,2	5,67	158	33	1,1
14-BR-107	paragneiss avec pyrite	SOQVAL-1	14160282	-0,005		0,66	7,03	0,3	290	1,44	0,52	1,9	0,34	47,8	20,9	64	3,8
14-GR-110	Enclave: riche en BO avec des lits mm contenant 20% PY à gf hd et des lits mm riches en QZ (S9? Ou mudstone avec bandes riches en PY)	SOQVAL-1	14160281	0,005		2,38	4,57	1,9	30	2,4	1,92	0,35	0,3	16,65	73,4	144	7,9
14-GR-111	Zone légèrement orangée, 5% BO, TrPY à gf id diss	SOQVAL-1	14160281	-0,005		0,96	6,73	0,8	770	1,38	0,93	0,91	0,03	35,4	2,9	13	1,4
14-GR-111	Dans la zone qui sonne 500 HFR au BeepMat (difficile à échantillonner), la zone est Si+/++ présence d'AM (Enclave I3A?) mag+	SOQVAL-1	14160281	-0,005		0,32	6,63	0,2	630	1,28	0,27	1,21	0,14	42,9	11	29	1,9
14-GC-503	Paragneiss légèrement rouillé	SOQVAL-1	14160282	-0,005		0,17	8,33	0,4	690	1,32	0,17	1,34	0,02	26,5	16,2	124	7,7
14-GC-504	Granodiorite	SOQVAL-1	14160282	-0,005		0,06	6,81	0,4	900	0,95	0,08	0,78	0,02	47,8	4,1	38	3,1
14-GC-506 14-BR-108	Granodiorite	SOQVAL-1	14160282	0,005		0,03	6,33	0,9	680	0,78	0,04	0,59	0,09	50,6	1,9	11	1,5
14-GC-505																	
14-MQ-515	PO semi-massive (30% ) et 0.5% CP	SOQVAL-1	14160281	-0,005		4,12	2,68	0,9	90	1,14	1,31	0,63	1,06	14,85	68,1	52	1,5
14-MQ-515	I1C avec 2-3% PO	SOQVAL-1	14160281	0,005		1,41	5,79	0,4	310	6,55	1,78	1,21	0,32	15,4	14,5	15	1,88
14-MQ-515	Metasdt avec 2-3% PO	SOQVAL-1	14160281	0,006		1,79	5,75	0,3	320	1,52	1,11	4,64	0,98	26,6	29,1	214	3,4
14-MQ-515	Metasdt avec 2-3% PO	SOQVAL-1	14160281	0,006		1,76	4,53	0,4	190	1,06	1,68	5,18	1,05	53,6	43,4	528	3,73
14-MQ-518	Metasdt avec 2-3% PO	SOQVAL-1	14160281	-0,005		0,34	6,76	0,2	590	1,1	0,22	2,57	0,14	89,8	14,5	77	5,1
14-MQ-518	Metasdt avec 2-3% PO	SOQVAL-1	14160281	0,005		0,28	7,47	0,2	770	1,56	0,15	4,49	0,18	227	31,8	102	7,03
14-MQ-516																	
14-MQ-517																	

No_Terrain	Description_Echant	Code_analys	No_Rapport	Au	Pt Pd	Ag Al	,	As Ba	В	e Bi	Ca	Cd	Ce	e Co		Cr C	S
14-BR-109	formation de fer	SOQVAL-1	14160282	0,005		1,22	4,97	-0,2	110	0,69	0,46	2,07	0,36	10,2	21,2	38	2,06
14-BR-109	formation de fer	SOQVAL-1	14160282	0,006		1,06	3,92	0,5	90	0,65	0,42	2,47	0,52	12,85	19,6	40	0,91
					<u> </u>												
14-GR-112	Enclave et tonalite	SOQVAL-1	14160281	-0,005		0,09	6,79	-0,2	740	1,24	0,08	0,99	-0,02	19,9	2,1	38	4,16
14-GR-113	Représentatif	SOQVAL-1	14160281	-0,005		2,12	2,87	-0,2	170	0,97	1,28	2,88	1,29	23,1	28,8	82	1,18
14-GR-116	Enclave et tonalite	SOQVAL-1	14160281	-0,005		0,05	7,57	0,3	520	1,56	0,05	1,74	0,05	46,2	12,7	113	4,65
14-GC-507	Paragneiss rouillé + Encaissant	SOQVAL-1	14160282	0,006		0,05	7,34	-0,2	340	1,65	0,11	1,64	0,05	40,1	7,7	67	7,16
14-GC-508	Zone sulfuré	SOQVAL-1	14160282	-0,005		0,74	4,11	0,3	100	0,71	0,35	2,49	0,43	13,3	15,8	67	0,89
14-GR-114																	
14-GR-115																	
14-MQ-524	idem	SOQVAL-1	14160281	-0,005		0,03	6,95	0,3	1280	1,02	0,04	0,8	0,03	58,6	3	14	2,46
14-MQ-519																	
14-MQ-520																	
14-MQ-521																	
14-MQ-522																	
14-MQ-523		0001111.4	44450000			0.05		2.5	110	2.72	4.44	4.55		44.05	26.7		4.70
14-GC-511 14-GC-512	Paragneiss rouillé Zone riche en PO	SOQVAL-1 SOQVAL-1	14160282 14160282	0,005 0,009		0,85 2,81	6,17 5,87	0,6 0,5	350	3,72 0,92	1,14 1,21	4,55 0,86	0,5 0,27	14,05 45,7	36,7 117	40	1,72 3,18
14-GC-510																	
14-MQ-525	idem	SOQVAL-1	14160281	-0,005		0,03	6,08	-0,2	1160	0,91	0,02	0,41	-0,02	4,22	0,3	6	1,52
14-MQ-527																	
14-MQ-529								4									
14-GR-119	Représentatif	SOQVAL-1	14160282	-0,005		0,03	6,73	-0,2	710	1,18	0,03	0,76	0,02	19,25	1,4	11	1,48
14-GR-120	50% Enclave de M4, 50% I1C	SOQVAL-1	14160282	-0,005		0,09	7,75	-0,2	1590	1,17	0,06	1,38	-0,02	12,2	9,5	108	5,42
14-GC-513	Zone sonnant au beepmat	SOQVAL-1	14160282	0,011		0,16	7,05	0,8	1210	1,2	0,2	0,69	0,12	134,5	9,9	26	3,96
14-GC-513	Zone sonnant au beepmat	SOQVAL-1	14160282	-0,005		0,17	6,58	-0,2	450	1,7	0,18	1,33	0,15	39,3	12,4	36	3,28

No_Terrain	Description_Echant	Code_analys	No_Rapport /	Au F	rt Pd	Ag Al	As	Ва	Ве	Bi	Са	Cd	C	e Co	C	r C	5
14-GC-513	Zone sonnant au beepmat	SOQVAL-1	14160282	-0,005		1,58	6,55	-0,2	700	1,42	0,32	1,31	0,57	29,3	26	24	2,14
1388-TR-14-01	I1B à gg, 30% PG (EP++, SR+) bien cristallisés, 10-20% QZ (rose/vert), 30-40% FK rose, 10% BO. Tr de petits amas de PY/ TrPY diss. Pas de patine d'altération.	SOQVAL-1	VO14160281	-0,005		0,03	7,04	0,3	1000	0,87	0,04	0,3	-0,02	144	2,3	8	1,43
1388-TR-14-01	I1B à gg, 30% PG (EP++, SR+) bien cristallisés, 10-20% QZ (rose/vert), 30-40% FK rose, 10% BO. Tr de petits amas de PY/ TrPY diss. Pas de patine d'altération.	SOQVAL-1	VO14160281	-0,005		0,04	6,35	-0,2	820	0,82	0,17	0,17	-0,02	47,4	2,2	9	1,1
1388-TR-14-01	I1B à gg, 30% PG (EP++, SR+) bien cristallisés, 10-20% QZ (rose/vert), 30-40% FK rose, 10% BO. Tr de petits amas de PY/ TrPY diss, +poches (<0,5mm) et uvn de PY±HM (auréole rouille autour de la PY). Pas de patine d'altération.	SOQVAL-1	VO14160281	-0,005		0,02	7,07	0,2	1030	0,73	0,05	0,25	-0,02	45,7	1,8	7	1,28
1388-TR-14-01	I1B à gg, 30% PG-EP, 10% QZ, 40% FK, 5-10% BO, TrPY diss ±HM, EP verte ++ sur les PG.	SOQVAL-1	VO14160281	-0,005		0,05	7,12	-0,2	920	0,74	0,11	0,23	-0,02	14,65	3,1	7	1,28
1388-TR-14-01	I1B à gg, 30% PG-EP, 10% QZ, 40% FK, 5-10% BO, TrPY diss ±HM, EP verte ++ sur les PG.	SOQVAL-1	VO14160281	0,006		0,13	5,79	0,5	540	1	0,16	0,08	-0,02	15,25	2,8	18	1,64
1388-TR-14-01	l1B à gg, 30% PG-EP, 10% QZ, 40% FK, 5-10% BO, TrPY diss ±HM, EP verte ++ sur les PG. Zonation locale, TrPY diss semble associée à des micro-fractures, TrCP jaune diss et micro-amas.	SOQVAL-1	VO14160281	0,009		0,05	6,77	-0,2	1050	0,51	0,16	0,15	-0,02	6,15	2,9	10	1,27
1388-TR-14-01	I1B à gg , mais moins pegmatitique, TrPY diss (non-reliée à des fractures), pas de CP, Si++	SOQVAL-1	VO14160281	0,124		0,19	7,08	0,3	640	0,95	0,68	0,09	-0,02	105,5	1,6	37	2,03
1388-TR-14-01	I1B à GG , mais moins pegmatitique, TrPY diss (non-reliée à des fractures), pas de CP, Si++	SOQVAL-1	VO14160281	0,022		0,38	7,02	-0,2	740	0,72	2,46	0,13	-0,02	201	1	10	1,52
																	<u>                                     </u>

isement de 2 fractures, I1B gm-gg, ma, TrPY  tre I1B/enclave, SR++ jaune/beige en feuillet, s  EP+++, SR+(jaune), enclave de M4 (60% PG R, 15-10% BO (amas), 2-3% PY diss, relié, 1vn I0-15% PY).	SOQVAL-1	VO14160281  VO14160281  VO14160281	0,044		0,04	9,24	0,9	230	2,39	0,25 3,34	0,09	-0,02 -0,02	181 143,5	3,4 8,3 61,4	171	1,57 4,85 6,04
EP+++, SR+(jaune), enclave de M4 (60% PG R, 15-10% BO (amas), 2-3% PY diss, relié, 1vn l0-15% PY). P) 30% PG, 40% FK, 10% QZ, 15-20% BO (+ hafiques), Enclave sur les 20 derniers cm: M4	SOQVAL-1	VO14160281	0,029		0,57											
R, 15-10% BO (amas), 2-3% PY diss, relié, 1vn 10-15% PY). P) 30% PG, 40% FK, 10% QZ, 15-20% BO (+ hafiques), Enclave sur les 20 derniers cm: M4						8,1	1,1	200	2,31	5,73	0,09	-0,02	143,5	61,4	186	6,04
afiques), Enclave sur les 20 derniers cm: M4	SOQVAL-1	VO14160281	0,087		0.10			I								
	1				3,16	5,43	2,9	460	1,04	41,8	0,31	-0,02	82,4	45,7	11	1,26
0% mafique (BO-AM), 40% QZ-PG,zfm: 5-7% en unv/vn, 1-2% PY diss	SOQVAL-1	VO14160281	0,025		4,71	6,67	3,1	80	1,85	9,28	0,21	-0,02	42,1	33,7	109	2,09
0% mafique (BO-AM), 40% QZ-PG, zone ninéralisés sur 0,5m: 10-15% CP diss/uvn/vn + , on note la présence d'un dyke/VN de QZ a ZM.		VO14160281	0,023		10,05	6,1	3,9	190	1,77	13,25	0,27	-0,02	52,9	45,6	88	1,56
0% mafique (BO-AM), 40% QZ-PG, 5-7% PY , 1-2% CP amas/uvn/diss ±QZ	SOQVAL-1	VO14160281	0,005		1,99	7,8	6	230	2,99	0,84	0,58	0,07	52,2	25,5	98	2,92
0% mafique (BO-AM), 40% QZ-PG, 1-2% PY,	SOQVAL-1	VO14160281	-0,005		1,49	7,22	5,7	150	2,13	0,39	0,64	0,03	59,6	35,1	155	1,46
0% , 0	éralisés sur 0,5m: 10-15% CP diss/uvn/vn + n note la présence d'un dyke/VN de QZ IM. 5 mafique (BO-AM), 40% QZ-PG, 5-7% PY -2% CP amas/uvn/diss ±QZ	éralisés sur 0,5m: 10-15% CP diss/uvn/vn + n note la présence d'un dyke/VN de QZ ZM.  6 mafique (BO-AM), 40% QZ-PG, 5-7% PY  SOQVAL-1	éralisés sur 0,5m: 10-15% CP diss/uvn/vn + n note la présence d'un dyke/VN de QZ ZM.  S mafique (BO-AM), 40% QZ-PG, 5-7% PY SOQVAL-1 VO14160281 -2% CP amas/uvn/diss ±QZ	éralisés sur 0,5m: 10-15% CP diss/uvn/vn + n note la présence d'un dyke/VN de QZ ZM.  S mafique (BO-AM), 40% QZ-PG, 5-7% PY SOQVAL-1 VO14160281 0,005 -2% CP amas/uvn/diss ±QZ	éralisés sur 0,5m: 10-15% CP diss/uvn/vn + n note la présence d'un dyke/VN de QZ ZM.  S mafique (BO-AM), 40% QZ-PG, 5-7% PY SOQVAL-1 VO14160281 0,005 -2% CP amas/uvn/diss ±QZ	éralisés sur 0,5m: 10-15% CP diss/uvn/vn + n note la présence d'un dyke/VN de QZ (M. S mafique (BO-AM), 40% QZ-PG, 5-7% PY -2% CP amas/uvn/diss ±QZ	éralisés sur 0,5m: 10-15% CP diss/uvn/vn + n note la présence d'un dyke/VN de QZ (M. S mafique (BO-AM), 40% QZ-PG, 5-7% PY -2% CP amas/uvn/diss ±QZ	éralisés sur 0,5m: 10-15% CP diss/uvn/vn + n note la présence d'un dyke/VN de QZ //M.  6 mafique (BO-AM), 40% QZ-PG, 5-7% PY -2% CP amas/uvn/diss ±QZ	éralisés sur 0,5m: 10-15% CP diss/uvn/vn + n note la présence d'un dyke/VN de QZ //M.  6 mafique (BO-AM), 40% QZ-PG, 5-7% PY SOQVAL-1 VO14160281 0,005 1,99 7,8 6 230 -2% CP amas/uvn/diss ±QZ	éralisés sur 0,5m: 10-15% CP diss/uvn/vn + n note la présence d'un dyke/VN de QZ //M.  56 mafique (BO-AM), 40% QZ-PG, 5-7% PY -2% CP amas/uvn/diss ±QZ -2% CP amas/uvn/diss ±QZ -2.89	éralisés sur 0,5m: 10-15% CP diss/uvn/vn + n note la présence d'un dyke/VN de QZ (M. So mafique (BO-AM), 40% QZ-PG, 5-7% PY -2% CP amas/uvn/diss ±QZ	éralisés sur 0,5m: 10-15% CP diss/uvn/vn + n note la présence d'un dyke/VN de QZ //M.  6 mafique (BO-AM), 40% QZ-PG, 5-7% PY SOQVAL-1 VO14160281 0,005 1,99 7,8 6 230 2,99 0,84 0,58 -2% CP amas/uvn/diss ±QZ	éralisés sur 0,5m: 10-15% CP diss/uvn/vn + n note la présence d'un dyke/VN de QZ //M.  56 mafique (BO-AM), 40% QZ-PG, 5-7% PY -2% CP amas/uvn/diss ±QZ	éralisés sur 0,5m: 10-15% CP diss/uvn/vn + n note la présence d'un dyke/VN de QZ (M).  5 mafique (BO-AM), 40% QZ-PG, 5-7% PY SOQVAL-1 VO14160281 0,005 1,99 7,8 6 230 2,99 0,84 0,58 0,07 52,2 -2% CP amas/uvn/diss ±QZ	feralisés sur 0,5m: 10-15% CP diss/uvn/vn + n note la présence d'un dyke/VN de QZ (M).  Somafique (BO-AM), 40% QZ-PG, 5-7% PY SOQVAL-1 VO14160281 0,005 1,99 7.8 6 230 2,99 0,84 0,58 0,07 52,2 25,5 -2% CP amas/uvn/diss ±QZ	eralisés sur 0,5m: 10-15% CP diss/uvn/vn + n note la présence d'un dyke/VN de QZ (M).  5 mafique (BO-AM), 40% QZ-PG, 5-7% PY -2% CP amas/uvn/diss ±QZ

No_Terrain	Description_Echant	Code_analys	No_Rapport	Au Pt	Pd	Ag	As	Ва	Ве	Bi	Са	Cd	Ce	Со	Cr	Cs	
	80% M4 gf-gm, 50% mafique (BO-AM), 40% QZ-PG, 3-4% PY diss / 20% I1B	SOQVAL-1	VO14160281	-0,005		0,4	7,17	2,3	500	1,63	0,33	0,59	0,04	44,1	17,4	93	1,4
1388-TR-14-01	M4, 1-2% PY et I1B	SOQVAL-1	VO14160281	-0,005		0,3	7,44	4	350	1,65	0,62	0,61	0,08	53,7	27,9	129	1,85
	(50 cm) M4 en enclave 50-60% mafique (AM-BO) 30-40% PG-QZ, 5-7% PY diss cubique (pas de CP). / (50 cm) I1B 30% QZ, 20% BO, 20% FK, 30% PG, 1% PY diss, Alt: EP+verte loc, Si+	SOQVAL-1	VO14160281	-0,005		0,83	7,57	3,8	460	1,4	3,12	0,26	0,03	40,3	25,3	145	1,93
1388-TR-14-01	I1B 30-40% QZ, 220-30% FK, 10-20% BO, 10% PG, multiples veinules de CL-QZ mm Tr-1% PY diss-amas.	SOQVAL-1	VO14160281	-0,005		0,05	6,01	-0,2	750	0,75	0,1	0,17	-0,02	9,01	2,7	9	1,41
1388-TR-14-01	I1B, 40% PG-EP, 30% QZ, 10% FK, 10% BO, BO-AM en veinules localement, EP++ verte.	SOQVAL-1	VO14160281	-0,005		0,05	7,18	-0,2	720	1	0,1	0,17	-0,02	9,53	2,4	14	1,62
	M4 (40cm) gf-gm, 5-7% PY diss mouchetée. 50,5-1% CP diss, 60cm de I1B: 60% QZ, 30% PG, 10% BO, EP++, TrCP, 1% PY en amas.	SOQVAL-1	VO14160281	0,005		0,92	7,05	1,7	510	1,48	0,63	0,27	0,02	44,5	10,2	65	1,51
	I1B à gg, plus mafique, 50% mx mafiques (AM-BO), 20% QZ, 20% PG, SR+. 1% PY amas.	SOQVAL-1	VO14160281	-0,005		0,25	7,72	1,3	1030	0,95	0,75	0,08	-0,02	21,2	6,7	8	1,5
	I1B passages mafiques/passages felsiques, 50% PG, 20R% BO, 10% QZ, 10% FK, 1% PY en amas.	SOQVAL-1	VO14160281	0,005		0,07	6,51	0,3	1090	0,6	0,22	0,51	-0,02	14,8	3,7	10	1,21

No_Terrain	Description_Echant	Code_analys	No_Rapport	Au Pt	Pd	Ag Al	As	В	a Be	Bi	Ca	Co	d Ce	e Co	Cr	Cs	
1388-TR-14-01	I1B, +M4, mélange enclaves /magma, 3-4% PY diss- mouchetée en amas, 0,5-1% CP diss -amas.	SOQVAL-1	VO14160281	-0,005		0,5	7,57	1	510	1,49	0,29	0,46	0,05	51,3	13,2	23	1,53
1388-TR-14-01	I1B à gg, Tr-0,5% CP en amas, 1 gros amas de CP (0,5cm), TrPY diss.	SOQVAL-1	VO14160281	0,013		0,76	5,59	1,2	640	0,66	0,76	0,19	-0,02	30,8	4,1	10	1,11
1388-TR-14-01	I1B pegmatitique, 60% mx mafiques (AM-BO), 30% PG, 10% QZ, Tr-0,5% CP diss, HM+ en Vn.	SOQVAL-1	VO14160281	0,093		8,4	6,76	0,9	820	1,16	26,6	0,27	-0,02	26,2	25	8	1,21
1388-TR-14-01	I1B pegmatitique, 40% FK rosé, 20% PG, 20% AM-BO, 10% QZ. Alt: SR+ (beige-jaune), EP+. TrPY	SOQVAL-1	VO14160281	0,033		0,48	7,39	0,8	930	0,7	1,51	0,3	-0,02	49,2	5,5	13	1,39
1388-TR-14-01	Faille, I1B pegmatitique, 40% FK rosé, 20% PG, 20% AM-BO, 10% QZ. Alt: SR+ (beige-jaune), EP+. TrPY	SOQVAL-1	VO14160281	0,049		0,3	5,44	0,4	250	1,03	1,62	0,09	-0,02	56,6	4,7	26	1,12
1388-TR-14-01	M4 à gf-gm, 50% AM-BO, 47% QZ-PG, 2-3% PY cubique diss ou en amas, TrCP. Alt: EP++ dans PG-QZ	SOQVAL-1	VO14160281	0,053		1,44	7,87	0,6	220	1,54	10,65	0,09	0,03	57,5	46,9	238	5,77
1388-TR-14-01	M4 à gf-gm, 50% AM-BO, 45% QZ-PG, 3-4% PY cubique diss, TrCP. Alt: EP++ dans PG-QZ.	SOQVAL-1	VO14160281	0,009		0,59	8,49	1,2	450	1,3	5,28	0,06	0,02	72,6	24,3	74	5,06
1388-TR-14-01	M4 à gf-gm, 50% AM-BO, 49% QZ-PG, Tr-0,5% PY cubique diss, TrCP. Alt: EP++ dans PG-QZ.	SOQVAL-1	VO14160281	-0,005		0,47	8,9	0,6	440	1,73	2,03	0,07	-0,02	146,5	9,2	65	5,59

No_Terrain	Description_Echant	Code_analys	No_Rapport	Au Pt	P	d	Ag	Al	As	Ва	Ве	E	i e	Са	Cd	Се	Со	Cr	Cs	
1388-TR-14-01	M4 à gf-gm, 50% AM-BO, 45% QZ-PG, 5-7% PY cubique diss ou en amas. Alt: EP++ dans PG-QZ	SOQVAL-1	VO14160281	0,01			2,51	7,42	0,	7	190	1,76	6,19	0,08	0,0	6 24	3 43.	6	57	8,19
1388-TR-14-01	Enclave de M4, coulalt et fr: gris foncé verdâtre. Text: gf, sa. 57% QZ-FP, 40% MF (BO), 3% PY. Alt: CL+, 1% VnQZ mm à cm // à S0/S1. La pyrite est à gf diss et répartie de façon hk dans les lits. Non-mag. Litage ondulant, mais généralement sub-H.	SOQVAL-1	VO14160281	-0,005		77	0,18	8,05	0,	5	320	1,02	0,21	5,9	0,1	9 36,	9 51,	4 3.	36	0,98
1388-TR-14-01	90% I1B rose, 20% QZ, 8% BO à 15% BO (le % augmente près de enclave), 65% FP. Text: gm-gg,hd-id. Alt: CL+, loc EP+-SR+. Min: TrPY à gf diss dans les grains de BO-CL. On note que les grains mafiques sont à gm-gg.	SOQVAL-1	VO14160281	-0,005			0,25	6,42	-0,;	2	920	0,69	0,96	0,24	-0,0	2 177,	5 3.	2	21	1,52
1388-TR-14-01	I1 et M4 (enclave), la roche est hk et varie de vert pomme à vert foncé. Les zones felsiques sont vert- pomme (SR+-EP+) à gm, ma. Les zones foncées contiennent 50-60% BO-CL et sont FK+. Min: TrPY à gf diss.	SOQVAL-1	VO14160281	0,012			0,54	7,48	0,	4 :	290	2,63	2,18	0,47	-0,0	2 50	0 7.	8	34	4,93
1388-TR-14-01	20% zone mafique tachetée texture de mélange, 80% I1B à gf-gm, ma. On note que le I1B est HM+ diss/uvn/amas, les PG sont SR+-EP+ . Min: Loc TrPY dans une petit niveau d'enclave de M4.	SOQVAL-1	VO14160281	-0,005			0,06	6,73	0,	5 :	520	1,05	0,14	0,12	-0,0	2 26,	8 3.	6	33	0,9
1388-TR-14-01	50% I1B rose à gg, ma. Le I1B contient de la PY en trace ass à des grains de BO-CL. 20% Enclave de M4 à gf (contenant 5% d'un minéral beige, à gf diss?), 1% PY à gf diss. 30% I1B rose vert à gm, ma, contenant 1% PY dans mx mafiques.	SOQVAL-1	VO14160281	-0,005			0,15	7,07	0,	5	510	2,65	1,73	0,2	-0,0	2 13	0 8.	7 1:	20	3,4
1388-TR-14-01	30% enclave de M4: 50% BO-CL, 50% QZ-FP, TrPY à gf diss. / 70% I1B: rose à légèrement verdâtre,75% FP ( FK+ et PG), 20% QZ, 5% BO. EP+, FK+	SOQVAL-1	VO14160281	0,006			0,04	6,75	-0,;	2 :	830	1,26	0,24	0,17	-0,0	2 13	0 2	2	9	1,53

No_Terrain	Description_Echant	Code_analys	No_Rapport	Au	Pt Pd	Ag A	I A	As B	Ba Be	В	i Ca	C	d Ce	C	Co	Cr I	Cs
1388-TR-14-01	Enclave de M4 et contact. La roche est hk, et contient un pourcentage variable de mx mafiques (50 à 70%). La granulométrie varie de gf (dans l'enclave) à gm-gg dans la bordure. On note la présence d'une VNQZ cm irrégulière en bordule de laquelle la CP est plus concentrées et dans les fractures à l'intérieur de cette dernière. Une altération en HM+ en uvn est notés. Min: 2-3% CP loc en uvn très irrégulière ou [] au pourtour de grains (généralement de QZ). La CP est répartie de façon hk. On note peut-être la présence de CV (minéral bleu irridescent).		VO14160281	0,084		13,9	7,45	0,8	170	2,59	63	0,15	-0,02	107	47,1	52	1,96
1388-TR-14-01	Enclave de M4 de coul alt: gris foncé, fr: gris-vert foncé, litage bien défini. Text: gf, sa. On note la présence de lits riches en QZ. Min: 72% QZ-FP, 20% MF, 8% CP [] dans des lits riches en QZ. La CP semble avoir circulé dans ces lits et a parfois percolé dans les fractures du QZ. Le QZ est légèrement bleuté. La schistosité est sub-horizontale.	SOQVAL-1	VO14160281	0,03		2,37	7,28	0,2	60	2,71	12,25	0,32	-0,02	105	22,9	82	3,64
1388-TR-14-01	Zone fracturée. 50% QZ-FP, 50% MF (BO-AM-CL), gf-gm, ma. Pas de minéralisation observée, présence d'un minéral beige à gf en feuillets (?), *Partie de la rainure manquant en raison de la fracturation/perte)	SOQVAL-1	VO14160281	0,057		5,01	8,95	0,7	330	3,94	20,3	0,32	-0,02	500	28,3	95	8,31
1388-TR-14-01	Pris dans zone de cisaillement, 90% I1B rose avec grains verdâtres ,hk, à granulométrie variable gm-gg (1mm à >1cm) /10% d'enclave de M4 ayant une schistosité subhorizontale, 3% PY à gf hd diss.	SOQVAL-1	VO14160281	0,005		0,1	6,73	0,3	780	0,96	0,43	0,12	-0,02	23,8	3,5	35	1,55
1388-TR-14-01	I1B, rose verdâtre (plus verdâtre à proximité d'un enclave = EP+ SR+), gf-gm, ma. 72% FP, 20% QZ, 5-8% MF (BO-CL), TrPY à gf diss. L'échantillon contient environ 10 cm d'enclave de M4 et on observe dans cette zone des stringers de PY très fins et irréguliers. TrCP à gf au contact enclave/I1B.	SOQVAL-1	VO14160281	0,005		0,17	6,18	0,3	790	0,83	1,4	0,18	-0,02	55,4	5,3	14	2,04
1388-TR-14-01	30% enclave de M4: gf EP+/++ dans bandes cm à pluricm. L'enclave contient 5-8% PY à gf diss et loc [] dans une bande cm avec texture inter-granulaire. / 70% I1B hk, gm-gg, ma, avec pourcentage de mx mafiques très variable (15 à 40%), présence d'un mx beige en bordure des grains mafiques (?). 15% QZ, 15-40% MF, balance=FP	SOQVAL-1	VO14160281	0,007		0,4	6,7	-0,2	700	1,46	2,07	0,15	-0,02	37,2	9,3	30	3,48
1388-TR-14-01	20% M4 contenant 5% PY et loc TrCP / 80% I1 beige verdâtre à gf-gm, ma (perte de texture primaire par altération), SR++, EP++. Loc TrCP et loc Tr MO.	SOQVAL-1	VO14160281	0,014		0,28	7,69	-0,2	600	1,84	3,45	0,18	-0,02	17,65	17	46	2,81
1388-TR-14-01	M4 vert moyen à vert pomme, gf, sa,sc (litage sub- horizontale). 30% mica vert (?), 55% QZ-FP, 5-15% PY à gf-gm diss hd-id. Alt: EP++, SR+	SOQVAL-1	VO14160281	0,01		0,4	8,35	0,4	160	3,41	3,07	0,34	0,03	19,15	42,3	121	10,6

No_Terrain	Description_Echant	Code_analys	No_Rapport	Au Pt	Pd	Ag Al	As	Ва	Ве	Bi	Ca	Cd	Се	Со	Cr	Cs	
	M4 vert moyen à vert pomme, gf, sa,sc (litage sub- horizontale). 30% mica vert (?), 55% QZ-FP, 10-15% PY à gf-gm diss hd-id. Alt: EP++, SR+	SOQVAL-1	VO14160281	0,008		0,37	8,47	0,6	160	3,62	3,23	0,35	0,02	22,1	71,9	138	12,55
	M4 vert moyen à vert pomme, gf, sa,sc (litage sub- horizontale). 30% mica vert (?), 55% QZ-FP, 10-15% PY à gf-gm diss hd-id, contient également un lit cm riche en PY. Alt: EP++, SR+	SOQVAL-1	VO14160281	0,015		0,71	7,65	0,6	150	2,97	3,74	0,38	-0,02	30,1	45,4	133	9,8
	Transition enclave/encaissant. Enclave: M4 vert moyen à vert pomme, gf, sa,sc (litage sub-horizontale). 30% mica vert (?), 55% QZ-FP, 15% PY à gf-loc à gg diss ou en amas, loc TrCP à gf diss. Alt: EP++, SR+, Si+ /l1 (zone de transition): gg à pegmatitique, ma, les PG sont EP++ (vert pomme), zone de 3cm contenant 1% CP à gf diss [] avec les mx mafiques. Globalement l'échantillon contient TrCP.	SOQVAL-1	VO14160281	0,012		0,45	6,99	1,1	330	1,84	3,94	0,16	0,05	60,7	27,4	49	5,27
	I1B beige verdâtre, ma, po (la granulométrie varie de de gf à 20% de phx de PG à gg (1-2cm), 90% QZ-FP, 10% MF (BO-CL), loc TrPY à gf ass aux mx mafiques.	SOQVAL-1	VO14160281	-0,005		0,04	6,87	-0,2	820	0,98	0,07	0,27	-0,02	19,5	1,7	8	1,62
1388-TR-14-01	I1B rose, hj, gm, ma, présence de FK+(altération?), minéralogie: QZ-FP (impossible de distinguer FK et PG). Contient une zone Si++ avec un réseau de fractures bien développé. TrPY dans une petite enclave qui représente 10% de l'éch.	SOQVAL-1	VO14160281	-0,005		0,12	4,81	0,5	520	0,72	0,14	0,04	-0,02	11,45	1,2	8	2,05
	I1B à gg, 30% PG (EP++, SR+) bien cristallisés, 10-20% QZ (rose/vert), 30-40% FK rose, 10% BO. Tr de petits amas de PY/ TrPY diss. Patine d'altération superficielle.	SOQVAL-1	VO14160281	-0,005		0,04	7,17	-0,2	960	1,01	0,04	0,59	0,02	173,5	1,6	10	1,62

No_Terrain	Description_Echant	Code_analy	s No_Rapport	Au Pt	Pd	Ag	As	Ва	Вє	Bi	Ca	Co	d Ce	Co	C	r (	Cs
1388-TR-14-01	I1B rose/vert, 40% FK rose, 40% PG-EP++, 10% QZ, 10% BO	SOQVAL-1	VO14160281	0,017		0,37	6,09	-0,2	800	0,49	1,12	0,3	-0,02	26,5	2,5	12	1,3
1388-TR-14-01	I1B rose/vert, 40% FK rose, 40% PG-EP++, 10% QZ, 10% BO, 0,5% PY diss amas	SOQVAL-1	VO14160281	-0,005		0,27	5,64	2,2	620	0,88	0,61	0,17	-0,02	20	3,9	10	1,4
1388-TR-14-01	Contact I1B/enclave, 1% CP dans I1B et 2-3% CP dans M4.	SOQVAL-1	VO14160281	0,005		3,72	5,46	2,2	510	1,51	0,98	0,36	-0,02	102	10,2	28	1,4
1388-TR-14-01	I1B à faille, SR+, lits QFP-lits mafiques, pas de sulfures.	SOQVAL-1	VO14160281	0,008		0,56	7,41	0,7	550	1,24	2,63	0,28	0,15	500	3,6	19	3,17
14-GR-110	Rainure à 95°N, perpendiculaire à une enclave déjà échantillonnée. On pensait intercepter l'enclave, mais la rainure est juste à côté. I1 avec pourcentage élevé de mx mafiques (~40%), HM++, loc on observe quelques uvn de PY. Gm-gg, ma, FK+, CL++, HM+/++.	SOQVAL-1	VO14160281	0,025		0,97	7,03	-0,2	490	1,39	0,06	0,44	0,02	41,5	4,3	46	5,56
1388-TR-14-02	M4 avec 7% PY di	SOQVAL-1	VO14160281	0,005		0,5	8,37	2,5	400	1,38	0,73	0,66	0,46	56,5	45,2	134	1,16
1388-TR-14-02	M4 avec 7% PY di	SOQVAL-1	VO14160281	-0,005		0,45	8,1	2,7	510	1,42	0,62	0,59	0,38	49,3	37,4	130	1,16
1388-TR-14-02	I1B avec 3% PY	SOQVAL-1	VO14160281	0,007		0,58	7,32	1,3	380	1,43	0,49	0,63	0,54	44,5	34,4	79	1,33
1388-TR-14-02	tr PY	SOQVAL-1	VO14160281	-0,005		0,04	6,35	-0,2	890	2,38	0,16	0,57	0,06	146,5	1,7	11	3,63
1388-TR-14-02	0.5% PY ass avec la BO	SOQVAL-1	VO14160281	-0,005		0,13	6,67	-0,2	970	1,48	0,09	0,67	0,12	41,1	3,7	11	2,57
1388-TR-14-02	tr PY	SOQVAL-1	VO14160281	-0,005		0,07	6,69	0,3	1020	0,91	0,06	0,6	0,06	20,2	2,6	9	1,92
1388-14-TR-02	tr PY	SOQVAL-1	VO14160281	0,007		0,19	6,6	8,4	1080	0,72	0,06	0,45	0,06	29,6	3,5	9	1,56
1388-14-TR-02		SOQVAL-1	VO14160281	-0,005		0,04	6,47	0,2	980	0,77	0,03	0,75	0,04	14,2	1,9	9	1,9
1388-14-TR-02		SOQVAL-1	VO14160281	0,008		0,07	6,54	-0,2	1160	0,45	0,04	0,24	-0,02	12,75	1,5	7	1,59
1388-14-TR-02	5% PY tr CP	SOQVAL-1	VO14160281	0,007		0,82	7,1	0,4	210	1,71	0,89	1,32	0,32	38	45,8	93	8,19
1388-14-TR-02		SOQVAL-1	VO14160281	-0,005		0,05	7,08	0,9	1100	0,53	0,06	0,35	0,05	31,8	2,1	9	1,65

No_Terrain	Description_Echant	Code_analys	No_Rapport	Au Pt	Pd	Ag Al	As	Ва	Ве	Bi	Ca	C	Cd	Ce	Со	Cr	Cs
1388-14-TR-02		SOQVAL-1	VO14160281	-0,005		0,07	6,79	-0,2	1030	0,66	0,07	0,31	0,09	41	3,	4 10	1,8
1388-14-TR-02	10% PY di	SOQVAL-1	VO14160281	-0,005		0,95	5,46	1,8	60	1,78	1,14	0,46	0,53	30,7	42,	5 47	0,73
1388-14-TR-02		SOQVAL-1	VO14160281	0,005		0,79	8,26	1,1	480	1,87	0,78	0,88	0,17		38,		
1388-TR-14-04	tr PY	SOQVAL-1	VO14160282	-0,005		0,04	7,01	0,2	880	1,74	0,05	0,72	0,02	42,6	2,	8 12	4,
1388-TR-14-04	0.5% PY	SOQVAL-1	VO14160282	-0,005		0,07	7,43	-0,2	730	1,24	0,05	0,99	0,04	22,5		6 43	3,4
1388-TR-14-04		SOQVAL-1	VO14160282	-0,005		0,04	7,36	-0,2	840	1,17	0,03	0,87	0,03	21,9		4 34	2,
1388-TR-14-04		SOQVAL-1	VO14160282	-0,005		0,35	7,32	-0,2	1180	1,37	0,18	2,61	0,21		21,		
1388-TR-14-04		SOQVAL-1	VO14160282	-0,005		0,05	6,83	-0,2	730	1,13	0,03	1,02	0,03				
1388-TR-14-03		SOQVAL-1	VO14160282	-0,005		0,03	6,36	-0,2	790	1,02	0,02	0,7	0,02	5,37	1,	1 10	1,19
1388-TR-14-03		SOQVAL-1	VO14160282	-0,005		0,04	6,52	-0,2	740	1,14	0,02	0,79	0,03				
1388-TR-14-03		SOQVAL-1	VO14160282	-0,005		0,06	8,25	-0,2	270	2,04	0,07	1,62	0,03	48,5	15,	3 124	11,5
1388-TR-14-03		SOQVAL-1	VO14160282	-0,005		0,05	7,26	-0,2	570	1,37	0,04	1,13	0,04	28,9	5,	8 40	4,68
1388-TR-14-03		SOQVAL-1	VO14160282	-0,005		0,03	7,27	-0,2	750	1,32	0,03	1,07	0,03	21,1	4,	8 36	3,68
1388-TR-14-03		SOQVAL-1	VO14160282	-0,005		0,06	6,64	0,3	800	1,09	0,03	0,77	0,02	14,45	3,	4 26	2,78
1388-TR-14-05	idem	SOQVAL-1	VO14160282	-0,005		0,07	6,94	0,2	400	1,52	0,05	1,24	-0,02	31	8,:	2 68	5,18
1388-TR-14-05	idem	SOQVAL-1	VO14160282	-0,005		0,02	7,08	-0,2	880	1,03	0,03	0,76	0,02	25,9	4,	6 60	2,8
1388-TR-14-05	idem	SOQVAL-1	VO14160282	-0,005		0,04	7,24	0,2	700	1,16	0,04	1,06	0,03	28,4	6,:	2 54	4,28
1388-TR-14-05	idem	SOQVAL-1	VO14160282	-0,005		0,05	7,05	-0,2	450	1,4	0,03	1,28	0,04	15,15		6 50	3,1
1388-TR-14-05	idem	SOQVAL-1	VO14160282	-0,005		0,13	7,2	-0,2	540	1,28	0,09	1,19	0,07	35,1	10,	1 61	4,0
1388-TR-14-05	idem	SOQVAL-1	VO14160282	-0,005		0,04	7,05	0,4	920	0,89	0,04	0,65	0,03	24,1		3 23	2,2

March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc	No_Terrain	Cu F	e G	Ga Ge	e F	lf	ln K	La	a	Li M	g Mı	1	Mo ſ	Na N	lb I	Ni F	Pl	b	Rb	Re S	9	Sb So	2
Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect	14-GR-065	12,1	4,04	19,8	0,1	2,6	0,099	1,19	15,9	35,5	2,25	962	0,68	2,53	9,4	43,9	1070	10	89,9	-0,002	0,02	-0,05	14,2
Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect	14-GR-066	1.4	0.6	16.15	-0.05	4.9	0.005	4.59	21.5	9.9	0.11	76	0.7	1.96	2.4	3.2	70	25.8	148	-0.002	0.01	0.05	1.4
14   16   16   17   18   18   18   18   18   18   18		5																					
14-96-967 2.1 0.30 14.5 0.10 1.5 0.000 1.8 0.7 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0	14-GR-069	141	23	11,05	0,35	3	0,026	1,69	11,3	11,8	0,88	1220	4,86	1,27	5,3	97,1	520	4,6	99,8	0,006	·10.0	-0,05	6,4
1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4    1-4	14-jfdl-046	6,6	2,67	23,9	0,22	3,2	0,032	2,05	45,8	38,5	1,97	428	0,18	3,13	6,7	55,3	910	7,2	92	-0,002	0,04	-0,05	7
1416-066 340 174 0.00 1.2 0.100 0.02 4.5 23.4 246 4460 0.40 2.00 175 340 0.00 34.5 0.00 0.46 0.00 37/14/16/080 200 175 0.00 174 0.00 1.2 0.00 0.40 0.40 2.00 0.40 175 0.00 175 0.00 0.40 0.40 0.40 175 0.00 0.40 0.40 0.40 0.40 0.40 0.40 0.4	14-jfdl-047	2,1	0,33	14,3	0,16	1,5	0,005	1,81	2,1	6,4	0,04	45	0,21	2,59	1,3	1,5	50	16,7	58,8	-0,002	0,01	-0,05	0,5
Express   128.6   8.52   19.4   6.17   3.7   0.065   6.8   23.3   38.6   1.31   377   7.77   2.6   6.7   70.6   420   420   420   430   55.6   0.069   3.13   0.06   14.5	14-jfdl-048	519	15,7	10				0,26	10		2,18	1970	3	0,06		51	1400 <2	2			2,55 <	<5	9
	14-JFG-086	248	9,59	17,4	0,09	1,2	0,158	0,75	4,5	20,4	2,46	4440	0,47	2,05	2,3	137,5	340	5,8	36,5	-0,002	0,46	-0,05	37,7
14.1FG-090 208 10.05 14.7 0.14 2.0 0.050 0.05 15.0 34.6 1.2 399 10.46 1.9 5.1 84.1 20 122 75.4 0.002 5.55 0.05 11.1 14.1FG-090 209 2.0 0.11 0.4 10.7 112.5 5.0 200 2.0 1.7 6.5 5.4 30 200 2.0 2.0 0.11 0.27 0.05 8.1 12.1 12.1 12.0 12.0 12.0 12.0 12.0 12		125,5	8,52	19,4	0,17	3,7	0,065	0,61	23,3	38,8	1,31	377	7,37	2,9	6,7	79,8	420	40,8	55,6	0,009	3,13	0,05	14,5
14-16-092   2800   2.86   17.46   0.29   2.8   0.111   0.4   16.7   112.6   5.05   280   25.8   1.70   8.5   58.4   160   203   29.9   0.011   0.27   0.05   8.1     14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-093   14-16-0	14-JFG-089	289	11	14,1	0,15	1,6	0,05	0,43	25,5	40,1	1,59	461	7,94	1,04	3,9	91,9	650	332	38,8	0,003	6,34	0,06	10,2
Helfs Gold   5   1.79   16.7   0.18   5.8   0.018   3.8   34.8   17.7   0.28   215   0.34   2.21   5.4   2.3   580   27   146   0.002   0.01   0.05   2.8     14.676.091   0.312   4.78   20	14-JFG-090	206	10,05	14,7	0,14	2,6	0,059	0,95	15,8	34,6	1,42	399	10,45	1,9	5,1	84,1	280	125	79,4	0,002	5,55	-0,05	11,1
14-FG-092	14-JFG-092	2820	2,95	17,45	0,29	2,6	0,111	0,4	16,7	112,5	5,05	289	25,8	1,78	6,5	58,4	180	203	29,9	0,011	0,27	0,05	8,1
14-15-087 14-15-093 14-68-077 12-15-093 14-68-077 12-15-093 14-68-077 12-15-093 14-68-077 12-15-093 14-68-077 12-15-093 14-68-077 12-15-093 14-68-077 12-15-093 14-68-077 12-15-093 14-68-077 12-15-093 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-078 14-68-	14-JFG-094	5	1,79	16,7	0,18	5,8	0,018	3,8	34,6	17,7	0,25	215	0,34	2,21	5,4	2,3	530	27	146	-0,002	0,01	-0,05	2,8
Maybe 087	14-JFG-091	9510	4,78	20				2,75	20		5,4	506	574	0,46		17	270	156			0,91	<5	8
14-GR-074	14-GR-068																						
14-GR-074	14-JFG-087																						
14-GR-070 232 7.79 17.7 0.14 3.1 0.358 1.14 25.1 111 1.03 1200 2.9 1.92 1.2 71.2 460 18.2 92.7 0.012 5.02 -0.05 17.3 14-GR-071 249 12.7 22.2 0.21 3.6 0.063 0.88 34.3 23.7 0.81 430 14.05 2.5 25.5 129.5 140 18.4 81.4 0.009 9.62 -0.05 14.6 14-GR-072 8.1 1.75 26.6 0.05 2.2 0.026 4.56 4.9 30.9 0.62 251 0.21 2.86 5.4 11 880 24.3 156.5 -0.002 0.04 -0.05 3.8 14-GR-073 356 8.37 18.25 0.14 3 0.141 1.55 19.4 48.2 2.07 801 6.27 1.88 6.2 106 680 10.5 159 0.007 4.38 -0.05 18.7 14-JFG-092 2130 4.51 21.6 0.11 3.5 0.234 1.62 12.9 55.9 2.25 231 125 2.83 11 34.7 270 77.5 83.6 0.005 2 0.08 19.2 14-JFG-092 1390 2.48 18.8 0.21 3.6 0.073 2.23 66.8 46.7 1.69 125 32.4 2.56 5.8 31.2 170 35.4 107.5 0.003 1.06 0.06 9.7 2.77490 404 12.1 19 0.16 2.0 669 1.25 0.9 14.3 0.01 1.48 0.1 1.48 0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		2400	0.22	40				4.07	4.0		0.07	4055	4	0.53		450	200				4.44	-	
14-GR-071   249   12.7   22.2   0.21   3.6   0.063   0.86   34.3   23.7   0.81   430   14.05   2.5   25.5   128.5   140   18.4   81.4   0.009   9.62   -0.05   14.6     14-GR-072   8.1   1.75   28.6   0.05   2.2   0.026   4.56   4.9   30.9   0.62   251   0.21   2.86   5.4   11   880   24.3   156.5   -0.002   0.04   -0.05   3.8     14-GR-073   356   8.37   18.25   0.14   3   0.141   1.55   19.4   48.2   2.07   801   6.27   1.88   6.2   106   660   10.5   159   0.007   4.38   -0.05   18.7     14-JFG-092   21560   4.51   21.6   0.11   3.5   0.234   1.62   12.9   55.9   2.25   231   125   2.83   11   34.7   270   77.5   83.6   0.005   2   0.08   19.2     14-JFG-092   1390   2.48   18.8   0.21   3.6   0.073   2.23   66.8   46.7   1.69   125   32.4   2.56   5.8   31.2   170   35.4   107.5   0.003   1.06   0.06   9.7     277489   52.4   1.94   15   0.16   7.4   0.017   3.46   9.1   14.3   0.2   169   11.4   2.41   7.4   15.7   50   24.9   130   -0.002   2.63   -0.06   2.8   2.77   2.79   1.69   12.5   2.77   3.79   1.69   12.5   3.79   1.69   1.65   5.9   1.2.5   3.79   1.69   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79   1.79					0.14	2.4	0.050			444			1		4.0			48.0	00.7	0.040			
14-GR-072 8.1 1.75 26.6 0.05 2.2 0.026 4.56 4.9 30.9 0.62 251 0.21 2.86 5.4 11 880 24.3 156.5 -0.002 0.04 -0.05 3.8 14-GR-073 356 8.37 18.25 0.14 3 0.141 1.55 19.4 48.2 2.07 801 6.27 1.88 6.2 106 660 10.5 159 0.007 4.38 -0.05 18.7 14-JFG-092 21500 4.51 21.6 0.11 3.5 0.234 1.62 12.9 55.9 2.25 231 1.25 2.83 11 34.7 270 77.5 83.6 0.005 2 0.08 19.2 14-JFG-092 1330 2.48 18.8 0.21 3.6 0.073 2.23 66.8 46.7 1.69 125 32.4 2.56 5.8 31.2 170 35.4 107.5 0.003 1.06 0.06 9.7 14-JFG-092 1390 2.48 18.8 0.21 3.6 0.073 3.46 9.1 14.3 0.2 169 11.4 2.41 7.4 15.7 50 24.9 130 -0.002 0.58 -0.05 2.9 2.77490 4.04 12.1 19 0.16 2 0.689 1.25 5.9 12.5 5.9 12.5 2.75 3250 1.63 1.96 7.9 71.2 4.00 5.9 103.5 -0.002 2.63 -0.05 34.9 2.77490 4.04 12.1 19 0.16 2 0.689 1.25 5.9 12.5 5.9 12.5 2.75 3250 1.63 1.96 7.9 71.2 4.00 5.9 103.5 -0.002 2.63 -0.05 34.9 2.77490 4.04 12.1 19 0.16 2 0.689 1.25 5.9 12.5 2.75 3250 1.63 1.96 7.9 71.2 4.00 5.9 103.5 -0.002 2.63 -0.05 34.9 2.77490 4.04 12.1 19 0.16 2 0.689 1.25 5.9 12.5 2.75 3250 1.63 1.96 7.9 71.2 4.00 5.9 103.5 -0.002 2.63 -0.05 34.9 2.77490 4.04 12.1 19 0.16 2 0.689 1.25 5.9 12.5 2.75 3250 1.63 1.96 7.9 71.2 4.00 5.9 103.5 -0.002 2.63 -0.05 34.9 2.77490 4.04 12.1 19 0.16 2 0.689 1.25 5.9 12.5 2.75 3250 1.63 1.96 7.9 71.2 4.00 5.9 103.5 -0.002 2.63 -0.05 34.9 2.77490 4.04 12.1 19 0.16 2 0.689 1.25 5.9 12.5 2.75 3250 1.63 1.96 7.9 71.2 4.00 5.9 103.5 -0.002 2.63 -0.05 34.9 2.77490 4.04 12.1 19 0.16 2 0.689 1.25 5.9 12.5 2.75 3250 1.63 1.96 7.9 71.2 4.00 5.9 103.5 -0.002 2.63 -0.05 34.9 2.77490 4.04 12.1 19 0.16 2 0.689 1.25 5.9 12.5 2.75 3250 1.63 1.96 7.9 71.2 4.00 5.9 103.5 -0.002 2.63 -0.05 34.9 2.77490 4.04 12.1 19 0.16 2 0.689 1.25 5.9 12.5 2.75 3250 1.63 1.96 7.9 71.2 4.00 5.9 103.5 -0.002 2.63 -0.05 34.9 2.77490 4.04 12.1 19 0.16 2 0.689 1.25 5.9 12.5 2.75 3250 1.63 1.96 7.9 71.2 4.00 5.9 103.5 -0.002 2.63 -0.05 34.9 2.77490 4.04 12.1 19 0.16 2 0.05 12.1 14.00 0.07 2.7 0.05 22.7 14.00 0.07 2.7 0.05 22.7 14.00 0.07 2.7 0.05 22.7 14.00 0.07 2.7 0.05 22.7 14.00 0.07 2.7 0.05 22.7 14.00 0.07 2.2 14.	14-GR-070	232	7,79	17,7	0,14	3,1	0,358	1,14	25,1	1111	1,03	1200	2,9	1,92	1,2	/1,2	460	18,2	92,7	0,012	5,02	-0,05	17,3
14-GR-073 356 8.37 18.25 0.14 3 0.141 1.55 19.4 48.2 2.07 801 6.27 1.88 6.2 106 660 10.5 159 0.007 4.38 -0.05 18.7 14.JFG-092 21500 4.51 21.6 0.11 3.5 0.234 1.62 12.9 55.9 2.25 231 125 2.83 11 34.7 270 77.5 83.6 0.005 2 0.08 19.2 14.JFG-092 12550 3.32 19.1 0.29 2.1 0.47 4.65 9.8 83.9 2.71 184 3840 1.37 15.1 31.4 500 547 134 0.173 1.39 0.55 8.6 14.JFG-092 1390 2.48 18.8 0.21 3.6 0.073 2.23 66.8 46.7 1.69 125 32.4 2.56 5.8 31.2 170 35.4 107.5 0.003 1.06 0.06 9.7 14.JFG-092 1390 4.04 12.1 19 0.16 2 0.689 1.25 5.9 12.5 5.9 12.5 2.75 32.50 1.63 1.96 7.9 71.2 400 5.9 103.5 -0.002 2.63 -0.05 34.9 14.DF-0.03 47.4 4.34 18.1 0.21 4.3 0.07 2.41 17.1 50.3 4.43 899 1.37 2.23 7.7 276 1040 11.5 156.5 -0.002 0.12 -0.05 12.7 14.DF-0.03 47.4 4.34 18.1 0.21 4.3 0.07 2.41 17.1 50.3 4.43 899 1.37 2.23 7.7 276 1040 11.5 156.5 -0.002 0.12 -0.05 12.7 14.DF-0.03 47.4 4.34 18.1 0.21 4.3 0.07 2.41 17.1 50.3 4.43 899 1.37 2.23 7.7 276 1040 11.5 156.5 -0.002 0.12 -0.05 12.7 14.DF-0.03 47.4 4.34 18.1 0.21 4.3 0.07 2.41 17.1 50.3 4.43 899 1.37 2.23 7.7 276 1040 11.5 156.5 -0.002 0.12 -0.05 12.7	14-GR-071	249	12,7	22,2	0,21	3,6	0,063	0,86	34,3	23,7	0,81	430	14,05	2,5	25,5	129,5	140	18,4	81,4	0,009	9,62	-0,05	14,6
14-JFG-092	14-GR-072	8,1	1,75	26,6	0,05	2,2	0,026	4,56	4,9	30,9	0,62	251	0,21	2,86	5,4	11	880	24,3	156,5	-0,002	0,04	-0,05	3,8
14-JFG-092 12550 3,32 19,1 0,29 2,1 0,47 4,65 9,8 83,9 2,71 184 3840 1,37 15,1 31,4 500 547 134 0,173 1,39 0,55 8,6  14-JFG-092 1390 2,48 18,8 0,21 3,6 0,073 2,23 66,8 46,7 1,69 125 32,4 2,56 5,8 31,2 170 35,4 107,5 0,003 1,06 0,06 9,7  277489 52,4 1,94 15 0,18 7,4 0,017 3,46 9,1 14,3 0,2 169 11,4 2,41 7,4 15,7 50 24,9 130 -0,002 0,58 -0,05 2,9 277490 404 12,1 19 0,16 2 0,689 1,25 5,9 12,5 2,75 3250 1,63 1,96 7,9 71,2 400 5,9 13,5 0,002 2,63 -0,05 34,9 277491 187,5 8,22 18,95 0,31 3,5 0,134 1,38 90,1 14,5 3,79 1590 4,84 2,16 5,3 177,5 1900 17,3 71 0,007 2,7 -0,05 22,7 14-DP-043 47,4 4,34 18,1 0,21 4,3 0,079 2,41 17,1 50,3 4,43 899 1,37 2,23 7,7 2,76 1040 11,5 156,5 -0,002 0,12 -0,05 12,1	14-GR-073	356	8,37	18,25	0,14	3	0,141	1,55	19,4	48,2	2,07	801	6,27	1,88	6,2	106	660	10,5	159	0,007	4,38	-0,05	18,7
14-JFG-092 1390 2,48 18,8 0,21 3,6 0,073 2,23 66,8 46,7 1,69 125 32,4 2,56 5,8 31,2 170 35,4 107,5 0,003 1,06 0,06 9,7  277489 52,4 1,94 15 0,18 7,4 0,017 3,46 9,1 14,3 0,2 169 11,4 2,41 7,4 15,7 50 24,9 130 -0,002 0,58 -0,05 2,9 277490 404 12,1 19 0,16 2 0,669 1,25 5,9 12,5 2,75 3250 1,63 1,96 7,9 71,2 400 5,9 103,5 -0,002 2,63 -0,05 34,9 277491 187,5 8,22 18,95 0,31 3,5 0,134 1,38 90,1 14,5 3,79 1590 4,84 2,16 5,3 177,5 1900 17,3 71 0,007 2,7 -0,05 22,7 14-DP-043 47,4 4,34 18,1 0,21 4,3 0,079 2,41 17,1 50,3 4,43 899 1,37 2,23 7,7 2,76 1040 11,5 156,5 -0,002 0,12 -0,05 12,1	14-JFG-092	21500	4,51	21,6	0,11	3,5	0,234	1,62	12,9	55,9	2,25	231	125	2,83	11	34,7	270	77,5	83,6	0,005	2	0,08	19,2
277489 52,4 1,94 15 0,18 7,4 0,017 3,46 9,1 14,3 0,2 169 11,4 2,41 7,4 15,7 50 24,9 130 -0,002 0,58 -0,05 2,9 277490 404 12,1 19 0,16 2 0,669 1,25 5,9 12,5 2,75 3250 1,63 1,96 7,9 71,2 400 5,9 103,5 -0,002 2,63 -0,05 34,9 277491 187,5 8,22 18,95 0,31 3,5 0,134 1,38 90,1 14,5 3,79 1590 4,84 2,16 5,3 177,5 1900 17,3 71 0,007 2,7 -0,05 22,7 14-DP-043 47,4 4,34 18,1 0,21 4,3 0,079 2,41 17,1 50,3 4,43 899 1,37 2,23 7,7 276 1040 11,5 156,5 -0,002 0,12 -0,05 12,1	14-JFG-092	12550	3,32	19,1	0,29	2,1	0,47	4,65	9,8	83,9	2,71	184	3840	1,37	15,1	31,4	500	547	134	0,173	1,39	0,55	8,6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14-JFG-092	1390	2,48	18,8	0,21	3,6	0,073	2,23	66,8	46,7	1,69	125	32,4	2,56	5,8	31,2	170	35,4	107,5	0,003	1,06	0,06	9,7
277491 187,5 8,22 18,95 0,31 3,5 0,134 1,38 90,1 14,5 3,79 1590 4,84 2,16 5,3 177,5 1900 17,3 71 0,007 2,7 -0,05 22,7 14-DP-043 47,4 4,34 18,1 0,21 4,3 0,079 2,41 17,1 50,3 4,43 899 1,37 2,23 7,7 276 1040 11,5 156,5 -0,002 0,12 -0,05 12,1	277489					7,4																	
14-DP-043 47,4 4,34 18,1 0,21 4,3 0,079 2,41 17,1 50,3 4,43 899 1,37 2,23 7,7 276 1040 11,5 156,5 -0,002 0,12 -0,05 12,1																							
	14-DP-043 14-DP-045	13,8	1,17	16	0,21	9,7	0,079	4,36	9,4	9,9	0,23	139	5,81	2,23	7,7	9,9	130	30,6		-0,002	0,12	-0,05	2,6

No_Terrain	Cu	-e	Ga	Ge	Hf	ln	K L	a	Li	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb	Rb F	Re S	S	b Sc	
14-GR-081																						
14-GR-080	48,6	3,87	21,7	0,23	6	0,048	3,65	29,6	38,3	0,89	381	2,85	2,97	6,5	5 42,6	290	35,8	128,5	0,002	0,67	-0,05	12
14-GR-082	235	7,46	20,9	0,19	4,1	0,043	1,59	15	20,3	1,04	420	3,38	2,76	10	50,8	340	168	123	0,003	3,78	-0,05	13,1
14-GR-083	7,3	2,89	19,7	0,17	3,2	0,034	4,53	6,7	23,5	0,91	344	1,99	2,11	16,2	2 20,6	680	26,8	184	-0,002	0,04	-0,05	8,3
14-JFG-092	18050	7,66	20,2	0,24	5,9	0,206	1,59	40,9	52,9	1,89	236	8,15	3,82	11,5	5 94,2	220	328	71,7	0,004	5,62	0,07	15,2
14-JFG-092	10500	1,72	13,3	0,11	4,8	0,063	0,9	8	9,3	0,29	81	76,9	3,5	2,3	1 9,6	50	44,8	54,9	0,002	1,26	0,08	0,9
27749	2																					
14-DP-044													11									
14-DP-045	278	11,1	25,8	0,19	5	0,111	2,84	32,3	70,3	1,07	1030	4,72	2,06	13,7	7 79,2	230	23,5	280	0,003	3,36	-0,05	19,6
14-jfdl-058	270	11,1	25,6	0,19	3	0,111	2,04	32,3	70,3	1,07	1030	4,72	. 2,00	13,	7 79,2	230	23,5	200	0,003	3,30	-0,03	19,0
14-JFG-092	3230	4,22	19	0,16	2,9	0,045	2,04	22,9	33,9	1,14	202	25,4	3,05	5,4	4 46,7	390	123	87,7	0.007	1,92	-0,05	10
14-JFG-092	2770	7,09	21,1	0,19	4,4	0,075	1,85	24,9	40,7	1,45		,				1880		86	0,008	5,25	0,05	12,1
14-JFG-092	437	4,21	18,05	0,15	7,5	0,028	2,16	13,2	32,9	1,06		8,13	2,83	10,	1 50,8	100	69,7	89,4	0,004	2,22	0,05	11,8
14-JFG-092	38,8	1,74	12,05		7	0,012	1,76	2,8		0,47	168				_			79,3	-0,002	0,27	-0,05	3,7
14-JFG-092	7540	1,74	14	0,22	7,7	0,079	1,65	34	35	1,06	118	377	2,85	6,9	9 15,1	220	48,6	61,8	0,018	0,79	0,09	6,2
14-JFG-092	12100	3,37	20,9			0,143	3,43	20,7	43,9	1,57	176	1240	2,91	13,2	2 27,5	190		124	0,019	1,25	0,62	13,1
14-JFG-092	1460	1,17	17,05	0,19	3,7	0,038	5,17	33,9	17,7	0,59	91	490	2,03		6,5	90	176	169	0,073	0,16	0,07	3,4
14-JFG-092	181,5	2,14	15,95		5,1	0,014	3,8	40,6	16,2	0,53								124	0,003	0,7	-0,05	4,3
14-JFG-092	127,5	3,59	18,2		3	0,022	4,46	25,4		0,46				-		180		153	0,002	1,84	-0,05	6
14-JFG-092	530 207	3,56 0,97	18,9 14,6		2,3 4,7	0,045 0,016	4,73 4,96	9,6	48,2 12	1,22 0,35					_	1190 410		199,5 172,5	-0,002 -0,002	0,29 0,15	-0,05 -0,05	11,4 2,1
14-JFG-092 14-JFG-092	15	1,03	16,1	0,16		0,016	4,68	8,1										227	-0,002	0,13	0,07	3,1
14-JFG-092	27,3	1,69	15,4				3,65	9,1		0,5						180		131,5	-0,002	0,4	0,06	3,2
14-JFG-092	10,8	1,3	15,15		3	0,01	5,29	5,7		0,45					) 4	830		164	0,002	0,09	0,05	3,1
14-JFG-092 14-JFG-092	248 15000	1,36 3,46	15,35 13,45		3,9 4,6	0,017 0,135	4,31 1,88	5,8 9,7						_		280		142 84,7	0,002	0,16 1,63	0,06 0,07	3,7 5,7
14-JFG-092	8830	6,87	22,9	0,13	4,2	0,069	2,76	21,5	53,2	1,4	516	5,22	3,07	14,	1 62,8	260	25,3	176,5	0,003	2,83	0,07	15,9
14-JFG-092	47,6	1,47	17,75		4,6	0,021	3	21,9		0,63								117,5	-0,002	0,06	0,08	3,2
14-JFG-092	20500	4,1	15,3			0,156		11,6					2,59					80,3	0,088	2,16	0,08	7,2
14-JFG-092	4330	2,34	15,85	0,13	9,9	0,095	2,45	8,4	38,5	1,44	153	247	1,93	17,8	8,9	450	35,2	86,3	0,002	0,54	0,07	6,3
14-MQ-503																						
14-MQ-500								-														
14-MQ-501 14-BR-101	316	8,95	18,95	0,08	1,3	0,097	0,28	3,2	14,9	4,17	1590	0,72	2,11	3,6	5 51	330	8,2	8,3	-0,002	1,28	0,07	48,6
14-DK-1U1	316	6,55	18,95	0,08	1,3	0,097	0,28	3,2	14,9	4,17	1590	0,72	. 2,11	3,0	51	330	8,2	8,3	-0,002	1,28	0,07	48,6

No_Terrain	Cu	Fe	Ga	(	Ge	Hf	In	K	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb	Rb	Re	S	Sb	Sc
14-BR-102																							
14-BR-103 14-BR-104																			+				
14-BR-105																			1				
14 DD 106																							
14-BR-106 14-MQ-504	3,	1 (	0,91	22,7	0,15	3,	1 0,018	4,27	7	' (	0,13	3 114	0,24	1 1,64	1 10,2	2 4,4	120	36,	5 273	-0,002	0,01	-0,05	2,
14-MQ-505	11,3	3	0,65	10,9	0,14	1,	4 0,006	1,91	9,1	4,4	0,12	2 60	0,23	1,82	2 2,2	5,7	70	17,	1 64,7	-0,002	0,02	-0,05	0,
14-MQ-508	3,4	4	1,29	14,55	0,15		4 0,016	4,43	9,2	21,5	0,29	141	2,85	1,9	3 7,3	4,7	100	27,	3 161	-0,002	0,02	-0,05	3,
14-MQ-509	4,	5 (	0,76	31,7	0,18	6,	1 0,019	4,18	3 14,4	14,8	0,1	1 136	0,24	3,62	2 20	1,1	80	50,	1 341	-0,002	-0,01	-0,05	2,
14-MQ-506																							
14-MQ-507																							
														a el									
277513			1,15	27,4	0,1																	0,11	43,
14-DP-102	8,3	3 .	1,51	17,25	0,14	5,	5 0,021	5,8	3 28	15,9	0,2	234	4,34	1,98	12,3		400	40,	5 238	0,002	0,04	0,07	3,
277515			2,78	18,75	0,1						_						_	_				0,05	_
14-DP-107 14-GR-105	2,:		3,18 1,02	20,9 16	0,22 0,21		5 0,044 5 0,013	,				_										0,07 -0,05	9,
14-GK-103	3,,		1,02	10	0,21		0,010	4,5-	40,5	20,0	0,2	134	,	2,74	3,-	5,0	, 370	,	133	-0,002	0,01	-0,03	
14-GR-108	29,	3 :	3,76	20,6	0,14	2,	8 0,047	1,8	3 15,9	59,4	1,02	2 431	0,96	3,48	3 6,3	3 13,2	2 550	14,	1 134,5	-0,002	0,09	-0,05	14,
14-GR-109	10,2	2 :	3,32	21,7	0,39	6,	2 0,041	3,48	3 156,5	5 42	2 0,6	1 357	0,29	2,48	3 18	5,1	1220	24,	5 167,5	-0,002	0,03	-0,05	5,
14-GC-501	42	1 4	4,81	18,95	0,08	3,	3 0,051	1,2	2 19,3	3 44	1,1	5 415	3,4	2,84	4 9,5	46,8	310	0 11,	4 123	-0,002	1,4	0,07	7,
14-GC-502	11,	5	2,8	16,8	0,15	11,	3 0,031	3,28	3 45,8	3 16,2	2 0,34	1 268	6,65	5 2,2	3 14,5	5 3,4	750	23,	2 112,5	-0,002	0,13	0,08	3,
14-DP-101																							
14-DP-103		+													-			_					
14-DP-104 14-DP-105																							
14-DP-106																							
14-DP-108																							
14-GR-106																							
14-GR-107																							
14-MQ-510	4,6	6	1,22	14,95	0,15	3,	5 0,02	3,89	9 4,1	14,4	0,25	5 144	2,37	7 1,84	4 8,2	2 10,2	2 110	0 29	9 159	-0,002	0,01	-0,05	

	32,6	3,61	19,1	0,18	2,9	0,042	1,03	25,3	15,4	g Mi	598	0.56	3,04	3,9	46,8	960	13,2	<b>Rb R</b> 42.7	-0,002	S SI 0,44	-0,05	<b>Sc</b> 12,
14-MQ-512	32,6	3,01	19,1	0,18	2,9	0,042	1,03	25,3	15,4	2	296	0,56	3,04	3,9	40,0	960	13,2	42,7	-0,002	0,44	-0,05	12
14-MQ-514	11,4	3,55	17,1	0,18	4,1	0,086	1,3	31,3	33,6	1,8	688	0,35	2,73	7,4	121	810	29,3	142,5	-0,002	0,02	-0,05	13,
14-MQ-511																						
14-MQ-513					0 4																	
14-DP-109	243	10,9	17,9	0,16	3,5	0,124	2,07	20,4	31,9	1,46	744	4,75	2,11	7,5	75,9	720	11,6	137	0,003	5,18	0,07	13,
14-DP-109	242	12,35	15,05	0,11	2,9	0,088	1,14	19,3	16,5	0,64	375	11,95	1,74	6,3	99,1	310	15,3	72,9	0,003	7,82	0,08	6,
14-DP-110	57,8	3,16	19,4	0,13	3,6	0,037	2,84	18,7	21,6	0,52	320	2,91	2,78	10,4	23	340	23,3	131,5	-0,002	0,44	0,08	5,
14-DP-111	51,7	3,07	15,95	0,13	3,3	0,091	4,05	13,1	10,6	1,45	560	6,57	2,12	7,8	38,9	250	25,4	171	-0,002	0,32	-0,05	6,
14-DP-112	500	30,7	7,34	0,14	0,5	0,24	1,36	2,5	3,6	0,04	150	19,95	0,04	2,2	169,5	70	57,8	95,5	0,009	>10.0	-0,05	2,
14-BR-107	91,3	5,75	16,5	0,11	3,1	0,034	1,03	22,3	19,6	0,84	436	3,48	2,71	6,4	52	410	10,7	86,4	0,004	2,53	0,06	9,
14-GR-110	746	17,9	23,8	0,12	2	0,268	0,98	5,2	79,4	2,08	1080	9,07	0,22	15,6	217	940	26,6	128,5	0,005	7,86	-0,05	24,
14-GR-111	66,7	2,9	16,75	0,14	2,6	0,023	2,67	17,4	5	0,14	82	3,77	2,8	6,5	3	290	30,5	109	-0,002	0,31	-0,05	1,:
14-GR-111	107	3,41	15,55	0,15	4,7	0,047	2,99	19,2	9,7	0,37	222	7,13	2,36	7,8	13,7	250	28,3	115,5	-0,002	0,68	-0,05	4,:
14-GC-503	70,4	4,3	23,8	0,13	4,9	0,06	4,11	13,3	46,5	1,13	504	3,87	2,87	12,5	32,6	490	24,2	246	-0,002	0,25	0,07	1
14-GC-504	8,2	2,03	18,45	0,16	4,4	0,039	4,51	22,1	17,8	0,44	212	13,8	2,06	12,5	14,4	330	28,6	190	-0,002	0,09	0,05	4,
14-GC-506	7,7	1,22	14,45	0,14	2,4	0,026	4,76	23,3	15,1	0,19	149	0,28	1,89	6,9	4	190	33	175	-0,002	0,01	0,1	2,
14-BR-108																						
14-GC-505																						
14-MQ-515	694	28,5	6,21	0,13	0,9	0,036	0,76	5,9	9,9	0,43	404	14,95	0,84	2,1	152,5	190	4,6	61,6	0,005	>10.0	-0,05	4,:
14-MQ-515	141,5	5,75	12	0,1	3,9	0,006	1,35	7,1	5,4	0,08	94	32,2	2,64	1,2	34,1	30	27,5	53,7	0,006	4,31	-0,05	0,0
14-MQ-515	218	12,95	15,4	0,13	1,6	0,103	0,93	11,1	15,5	1,64	1660	5,35	1,11	6	57,1	750	5,9	66,7	0,004	6,82	-0,05	21,
14-MQ-515	176,5	13,75	10,55	0,15	1,9	0,149	1,08	21,1	19,1	5,04	2120	2,75	0,64	6,1	229	810	4,4	74,2	0,002	6,85	-0,05	16,
14-MQ-518	34,4	5,67	17,15	0,15	2,7	0,072	1,35	39,8	38	1,78	3020	1,56	1,98	4,4	51,8	770	10,7	72,7	-0,002	1,03	-0,05	12,
14-MQ-518	22,7	6,47	20,9	0,28	2,9	0,109	1,85	101,5	52,4	3,71	1280	0,86	1,59	4,3	143	1560	13,1	85,3	-0,002	0,98	-0,05	15,
14-MQ-516 14-MQ-517																						

No_Terrain	Cu	Fe	Ga G	е	Hf Ir	n K	L	.a Li	M	lg	Mn	Мо	Na	Nb	Ni	Р	Pb	Rb	Re	S S	ib S	Sc
14-BR-109	110	14,85	11,8	0,09	1,3	0,089	0,95	4,7	12,5	0,7	1160	1,16	1,4	1,	7 49,	3 23	50 5,	7 50	,3 -0,002	7,08	0,05	4
14-BR-109	125	14,55	10,2	0,09	1	0,148	0,52	5	5	0,87	2770	1,31	0,98	1,	8 44,	7 19	3,	9 27	,8 -0,002	6,83	0,06	4,3
14-GR-112	17,8	1,95	15,9	0,15	3,6	0,022	3,74	9,6	28,5	0,32	198	2,21	2,36	9,	5 4,	9 18	0 29,	7 171	,5 -0,002	0,04	-0,05	3,8
14-GR-113	299	13,1	8,98	0,11	0,9	0,301	0,37	8,1	10,8	1,56	2170	1,71	0,91	3,	5 55,	3 22	0 4,	9 42	9 0,002	7,3	-0,05	7,9
14-GR-116	12,5	4,04	20,7	0,16	3,2	0,05	2,41	19,1	48,7	1,45	462	2,15	2,76	11,	1 42,	5 68	0 15,	5 15	68 -0,002	0,06	-0,05	11,5
14-GC-507	13,7	2,79	20,4	0,12	2,9	0,054	2,03	19,3	41,1	0,87	398	2,08	3,01	. 8,	5 24,	9 34	0 19,	2 154	,5 -0,002	0,05	0,09	7
14-GC-508	121,5	7,14	10,4	0,08	1,1	0,19	0,3	6,1	7,1	0,73	1330	0,96	1,28	1,	29,	6 15	3,	8 16	,1 -0,002	3,82	0,08	5,8
14-GR-114																						
14-GR-115		4																				
14-MQ-524	5,2	1,44	16,8	0,2	4,3	0,018	5,01	28	18,5	0,31	166	0,2	2,06	9,	1 5,	7 50	0 35,	3 17	78 -0,002	0,01	-0,05	3,8
14-MQ-519																						
14-MQ-520																						
14-MQ-521																						
14-MQ-522																						
14-MQ-523	-																					
14-GC-511 14-GC-512	596 607	10,75 20,6	20,7 14,15	0,1 0,17		0,141 0,04	0,69 2,96	21,8	22,5 22,4	2,14 0,46	1500 203	0,73 4,13						_		>10.0	0,08	51,1 5
14-GC-510																						
14-MQ-525	2,2	0,31	12,55	0,15	3,2	-0,005	4,8	2,2	2,6	0,03	35	0,52	1,85	0,:	2 1,	5 6	0 28,	3 134	,5 -0,002	0,01	-0,05	0,2
14-MQ-527																						
14-MQ-529																						
14-GR-119	3,4	0,84	15,75	0,08	2,6	0,01	4,16	9,8	10,9	0,15	131	0,57	2,56	5,:	9 2,	5 22	30,	6 166	,5 -0,002	0,03	-0,05	1,7
14-GR-120	20,5	3,44	20,5	0,1	2,8	0,029	3,7	6,1	42,4	1,26	396	2,47	2,6	8,	5 32,	4 49	0 2	4 21	-0,002	0,04	-0,05	10,8
14-GC-513	56,3	2,36	17,25	0,2	3,5	0,025	5,2	69,1	18,9	0,26	195	2,4	2,09	10,	9 16,	1 12	40,	3 20	-0,002	0,6	0,07	3,6
14-GC-513	87,5	2,31	16,7	0,1	7	0,032	2,1	19,3	20,5	0,27	197	4,43	2,74	:	3 18,	2 10	0 25,	1 10	06 -0,002	0,61	0,09	3,5

No_Terrain Cu	Fe	Ga	Ge	Hf	ln	К	La	Li	Mg	Mr	Мо	Na	NI	o Ni	P	Pk	R	tb R	e S	Si	b !	Sc
14-GC-513	925	3,39	14,9	0,1	4	0,03	2,42	14,7	12,7	0,17	145	5,84	2,64	4,8	33	200	24,1	96,7	-0,002	1,97	0,08	2,2
1388-TR-14-01	18,2	0,94	15,15	0,18	6,8	0,01	5,15	77,4	12	0,46	102	1,45	2,07	5,5	3,5	300	25,7	180	-0,002	0,01	-0,05	2,6
1388-TR-14-01	17,3	0,85	13,65	0,16	11,2	0,009	4,07	27	11	0,43	88	2,32	2,21	4	3,4	190	19	157	-0,002	0,01	-0,05	2,2
1388-TR-14-01	22,9	0,88	14,85	0,16	3,6	0,008	5,35	23,4	11,7	0,46	84	4,69	2,04	6,8	2,9	530	34,3	181	-0,002	0,02	-0,05	2,4
1388-TR-14-01	32,5	1,04	15,2	0,14	2,9	0,009	5,05	6,8	19,7	0,75	95	5,31	2,35	8	5,9	620	25	174,5	-0,002	0,01	-0,05	2,9
1388-TR-14-01	364	0,81	12,4	0,12	5	0,02	3,36	6,4	10,4	0,4	66	19,05	2,06	7,4	4,8	70	27,1	129,5	-0,002	0,09	0,05	3
1388-TR-14-01	20,3	0,79	13,5	0,17	2,5	0,006	5,45	3,3	15,2	0,57	71	13,4	1,89	7	5	320	26,2	177	-0,002	0,01	-0,05	2,5
1388-TR-14-01	21,5	0,6	15,25	0,19	4,7	0,012	4,25	54,7	11,5	0,46	50	35,4	2,55	5,9	4,6	170	18,7	157	-0,002	0,01	0,05	3,3
1388-TR-14-01	10,2	0,37	13,95	0,26	6,4	0,009	4,85	111	5,9	0,19	35	10,65	2,42	3,5	2,9	300	28,9	165,5	-0,002	-0,01	0,05	2,5

No_Terrain Cu		Ga			ln		La		Mg							P		Rb R		SI		
.388-TR-14-01	15,1	0,89	16,55	0,16	5,7	0,009	3,5	23,4	25	1,05	73	0,98	2,47	4,6	11,4	70	15,3	138	-0,002	-0,01	0,05	3,
1388-TR-14-01	9,1	1,34	28,9	0,26	4,4	0,03	3,53	96,8	44,3	1,67	109	162	4	8,2	24,2	280	17	135,5	0,007	0,12	0,06	22,
1388-TR-14-01	78,2	2,33	22,9	0,22	3,4	0,031	2,8	84,5	17,1	0,68	41	91,4	3,28	5,1	46	370	18,3	139,5	0,02	1,95	0,07	2:
1388-TR-14-01	1600	1,27	11,25	0,3	5,3	0,095	3,28	37	29,7	1,24	103	990	1,58	6,5	11,5	1310	406	108	0,242	0,32	0,14	5,
1388-TR-14-01	15500	3,77	18,55	0,18	3,1	0,178	0,88	18,7	66,1	2,78	170	346	3,01	5,3	43,2	530	62,5	42,8	0,051	2,13	0,13	1.
1388-TR-14-01	28900	4,92	16,7	0,18	2,1	0,272	1,23	25	60	2,68	165	637	2,31	5,2	50,2	760	119,5	53,3	0,066	3,24	0,31	10,:
1388-TR-14-01	11550	5,23	20,5	0,16	3,4	0,139	1,34	24,4	57,6	2,29	151	12,9	3,13	7,9	66	340	27,1	90,8	0,005	3,81	0,08	14,
1388-TR-14-01	8530	3,98	20,4	0,17	3,8	0,132	0,71	25,6	96,5	3,53	187	97,1	3,52	4,6	79	1100	22,6	16,7	0,011	2,1	0,11	14,

388-TR-14-01	1240	3,79	18,15	0,15	2,6	0,033	3,02	21,3	<b>Mg</b>	1,17	123	6,67	2,4	6,5	50,3	510	31,8	112,5	0,002	1,59	0,05	10,:
388-TR-14-01	637	6,12	18,85	0,14	3,2	0,053	2,19	25	35,2	1,44	163	6,56	2,7	5,7	70,8	550	31,8	87,1	0,003	2,86	0,06	12,
388-TR-14-01	467	5,17	20,1	0,14	3,9	0,038	2,76	18,7	32,4	1,28	263	71,8	2,7	10,7	44,1	240	79,1	114,5	0,004	1,82	0,06	12,-
388-TR-14-01	26,9	0,87	12,35	0,15	8,2	0,007	4,19	4,2	9,7	0,37	83	11,95	1,87	5,1	4,2	330	24,7	147,5	-0,002	0,06	0,05	1,:
388-TR-14-01	46	0,97	15,7	0,17	7	0,009	4,38	4,6	15,4	0,61	86	4,74	2,47	9,4	4,5	150	22,4	154,5	-0,002	0,02	0,05	3,
388-TR-14-01	4070	2,25	17,45	0,17	2,7	0,116	3,13	20,9	33,7	1,2	122	55,9	2,81	7	24,5	290	34,3	115,5	0,004	0,93	0,07	7,
388-TR-14-01	35,8	2,22	16,65	0,17	2,6	0,008	5,09	10,6	87,7	2,58	300	96,8	0,63	8,4	11,1	120	33,2	167,5	-0,002	0,22	0,05	3,
388-TR-14-01	48,8	1,45	14,05	0,19	2,2	0,007	5,61	5,3	28,8	1,15	172	116	1,15	13,9	5,5	1900	49,2	178	-0,002	0,15	-0,05	3,

No_Terrain Cu	100	Ga					La											Rb R		SI		
1388-TR-14-01	1250	2,79	18	0,23	2,2	0,015	3,85	24,5	15,7	0,56	101	6,44	2,6	6,4	30,7	290	51,2	132,5	-0,002	1,29	0,05	4,
1388-TR-14-01	1340	0,66	10,4	0,2	2,3	0,025	4,31	13,3	8	0,26	55	124	1,54	1,3	6,3	500	53,50	144,5	-0,002	0,17	0,07	0,
1388-TR-14-01	398	1,87	16,1	0,25	1,6	0,026	5,2	8,9	49,5	1,99	183	594	1,38	8,7	13,7	1120	164	151,5	0,092	80,0	0,06	5,
1388-TR-14-01	516	1,14	15,8	0,22	2,9	0,041	5,35	25,3	19	0,89	106	27,7	1,82	10,5	7,1	1070	35,7	160	-0,002	0,06	0,05	
1388-TR-14-01	50,9	1,2	12,85	0,15	3,2	0,013	1,87	28,8	29,2	1,21	110	7,8	2,32	7	14,3	170	11,4	74,3	-0,002	0,03	-0,05	3,:
1388-TR-14-01	2440	4,01	20,1	0,19	3,4	0,089	2,16	26,5	42,7	1,78	140	141,5	2,99	7,3	62,6	260	33,6	115,5	0,009	2,46	0,08	14,
1388-TR-14-01	91,3	3,46	18,7	0,21	4,4	0,039	3,4	33,6	30,9	1,41	133	125	3,13	5,1	31,8	190	84,3	130,5	0,018	1,56	0,05	11,
1388-TR-14-01	67,2	3,09	22,4	0,23	4,5	0,055	3,48	71,4	36,1	1,66	150	52,9	3,1	6,1	15,9	330	44,2	141,5	0,005	0,52	0,05	13,

No_Terrain	Cu	Fe	Ga	G	e	Hf	ln	К	La	Li	Mg	Mn I	Мо	Na	Nb	Ni	Р	Pb	Rb	Re	S :	ib	Sc
1388-TR-14-01	4320		6,17	20,9	0,32	2,8	0,136	2,17	129,5	43,4	1,99	192	93,3	1,67	4,7	66,4	400	95,9	142	0,021	4,05	0,06	14,1
1388-TR-14-01	67,4	<b>I</b>	6,14	17,65	0,17	1,7	0,084	0,62	17	14,4	2,85	1310	3,5	2,67	4,4	190	630	10,6	25,4	0,002	0,43	-0,05	33,5
1388-TR-14-01	36,5	)	0,8	12,75	0,24	1,9	0,009	5,32	93,4	20,6	0,72	95	9,18	1,42	6	6,5	720	27,7	179	-0,002	0,01	-0,05	3,5
1388-TR-14-01	2′		1,61	21,9	0,53	4,3	0,042	3	373	61	2,2	201	41,4	2,08	7,3	16	1630	11,5	136,5	0,003	0,01	0,05	9,8
1388-TR-14-01	25,7	7	0,85	13,3	0,18	2,8	0,008	3,29	10,9	30	1,09	106	1,21	2,82	5,4	7,9	110	13,5	111,5	-0,002	-0,01	-0,05	4
1388-TR-14-01	53,8	3	1,7	22,7	0,21	3,7	0,046	4,25	73,3	41,7	1,41	144	7,59	1,21	6,5	15,4	240	14,5	213	0,003	0,44	-0,05	12,1
1388-TR-14-01	33	3	0,89	15,6	0,16	4,7	0,019	4,8	75,9	28,2	0,82	96	83	2,02	4,7	6,3	280	23	177	0,016	0,04	-0,05	2,5

No_Terrain C	u F	e C	Ga Ge	e I	Hf	n K	La	a Li	N	/lg	VIn N	lo	Na ľ	Nb	Ni	Р	Pb	Rb	Re S	SI	Sc Sc	
1388-TR-14-01	1820	4,29	23,3	0,21	3,8	0,092	1,44	57,8	159	5,95	611	1700	1,72	8,8	26,9	310	180	69,9	0,127	0,26	0,09	11,3
1388-TR-14-01	13700	3,71	23,3	0,2	3,5	0,389	1,1	62,9	100,5	3,84	343	261	3,51	11,5	17,8	620	49,3	34,2	0,022	1,28	-0,05	13,7
1388-TR-14-01	81,2	3,55	37	0,52	4,5	0,084	3,99	360	145	5,24	451	683	0,31	13,4	29,4	720	55,8	162	0,059	0,07	0,1	20,6
1388-TR-14-01	78,6	0,64	13,65	0,15	3,7	0,013	4,18	12.6	17,5	0,58	68	11,4	2,35	3,7	7,5	130	21	153,5	-0,002	0,09	0,08	3,6
1388-TR-14-01	195,5	0,74	11,95	0,19	3,1	0,019	4,52	27,5	9,8	0,3	51	12,05	1,7	5,9	7,2	460	27,1	155,5	0,005	0,31	0,08	2,6
1388-TR-14-01	50,6	1,62	14,8	0,19	3,5	0,029	4,65	22,7	41,1	1,23	118	105,5	1,41	9,6	14,3	210	24,3	193,5	0,004	0,63	0,09	5
1388-TR-14-01	382	1,84	21,2	0,18	3,8	0,037	4,8	9	30,4	1,01	101	79,4	2,11	11	24,6	110	30,6	199,5	0,014	1,08	0,12	6,1
1388-TR-14-01	356	4,51	26,1	0,14	4	0,08	2,52	9,1	48	1,68	150	43,2	2,47	9,6	61,6	390	11,9	219	0,007	3,23	0,11	19,3

Cu	Fe	Ga	Ge	н	lf	ln	К	La	Li	Mg	Mn	Мо	Na	N	<b>V</b> b	Ni	Р	Pb		Rb	Re	S	St	0	Sc
915		6,99	25,3	0,14	4,1	0,111	3,08	11,4	41,5	1,6	1 13	8	5,96	1,65	7,3	8	7,6	320	13,3	26	4	0,006	6,3	0,1	18,6
338		5,8	24,7	0,11	3,6	0,083	3,07	14,7	56,6	2,1	3 20	0	262	0,8	9,2	6.	4,6	610	14,5	27	2	0,031	4,54	0,08	16,1
888		3,17	17,1	0,13	2,7	0,064	3,23	34,4	39,1	1,3	5 12	8	29,2	2,01	7,7		61	100	43,6	15	9	0,003	2,24	0,07	6,4
14,5		0,79	14,75	0,16	3,2	0,013	4,65	9,8	12,7	0,4	7 8	2 1	9,05	2,1	7,6		2,8	230	27	17	1 -	0,002	0,05	0,09	2,6
19,4		0,68	9,39	0,15	2,4	0,015	3,76	6,4	9,9	0,3	3	4	40,8	1,02	0,4		4,6	40	17,5	143	5 -	0,002	0,03	0,09	1,3
12,2		0,89	15,85	0,25	4,7	0,013	5,24	88,7	9,3	0,2	5 1	0	5,92	2,04	5,8		2,5	350	40,2	181	5 -	0,002	0,02	0,09	2,3
	915 335 885	915	915 6,99  335 5,8  885 3,17  14,9 0,79	915 6,99 25,3  335 5,8 24,7  885 3,17 17,1  14,9 0,79 14,75	915 6,99 25,3 0,14  335 5,8 24,7 0,11  885 3,17 17,1 0,13  14,9 0,79 14,75 0,16  19,4 0,68 9,39 0,15	915 6,99 25,3 0,14 4,1  335 5,8 24,7 0,11 3,6  885 3,17 17,1 0,13 2,7  14,9 0,79 14,75 0,16 3,2	915 6,99 25,3 0,14 4,1 0,111  335 5,8 24,7 0,11 3,6 0,083  885 3,17 17,1 0,13 2,7 0,064  14,9 0,79 14,75 0,16 3,2 0,013  19,4 0,68 9,39 0,15 2,4 0,015	915 6,99 25,3 0,14 4,1 0,111 3,08  335 5,8 24,7 0,11 3,6 0,083 3,07  885 3,17 17,1 0,13 2,7 0,064 3,23  14,9 0,79 14,75 0,16 3,2 0,013 4,65	915 6.99 25.3 0.14 4.1 0.111 3.08 11.4  335 5.8 24.7 0.11 3.6 0.083 3.07 14.7  885 3.17 17.1 0.13 2.7 0.064 3.23 34.4  14.9 0.79 14.75 0.16 3.2 0.013 4.65 9.8  19.4 0.68 9.39 0.15 2.4 0.015 3.76 6.4	915 6,99 25,3 0,14 4,1 0,111 3,08 11,4 41,5  335 5,8 24,7 0,11 3,6 0,083 3,07 14,7 56,6  885 3,17 17,1 0,13 2,7 0,064 3,23 34,4 39,1  14,9 0,79 14,75 0,16 3,2 0,013 4,65 9,8 12,7  19,4 0,68 9,39 0,15 2,4 0,015 3,76 6,4 9,9	915	915 6,99 25,3 0,14 4,1 0,111 3,08 11,4 41,5 1,61 13  335 5,8 24,7 0,11 3,6 0,083 3,07 14,7 56,6 2,18 20  885 3,17 17,1 0,13 2,7 0,084 3,23 34,4 39,1 1,36 12  14,9 0,79 14,75 0,16 3,2 0,013 4,65 9,8 12,7 0,47 8  19,4 0,68 9,39 0,15 2,4 0,015 3,76 6,4 9,9 0,38 6	915 6.99 25,3 0.14 4,1 0.111 3,08 11,4 41,5 1.61 138 335 5.8 24,7 0.11 3,6 0.083 3.07 14,7 56,6 2,18 200 335 3.17 17,1 0.13 2,7 0.084 3,23 34,4 39,1 1,36 128 3 14,9 0.79 14,75 0.16 3,2 0.013 4,65 9,8 12,7 0.47 82 1 19,4 0.68 9,39 0.15 2,4 0.015 3,76 6,4 9,9 0.38 64	916 6,99 25,3 0,14 4,1 0,111 3,08 11,4 41,5 1,61 138 5,96 336 5,8 24,7 0,11 3,6 0,083 3,07 14,7 56,6 2,18 200 262 368 3,17 17,1 0,13 2,7 0,064 3,23 34,4 39,1 1,36 128 29,2 34,9 0,79 14,75 0,16 3,2 0,013 4,65 9,8 12,7 0,47 82 19,05 19,4 0,68 9,39 0,15 2,4 0,015 3,76 6,4 9,9 0,38 64 40,8	915 6,99 25,3 0,14 4,1 0,111 3,08 11,4 41,5 1,61 138 5,96 1,85  335 5,8 24,7 0,11 3,6 0,083 3,07 14,7 56,6 2,18 200 262 0,8  885 3,17 17,1 0,13 2,7 0,064 3,23 34,4 39,1 1,36 128 29,2 2,01  14,9 0,79 14,75 0,16 3,2 0,013 4,65 9,8 12,7 0,47 82 19,05 2,1  19,4 0,86 9,39 0,15 2,4 0,016 3,76 6,4 9,9 0,36 64 40,8 1,02	915 6,99 25,3 0,14 4,1 0,111 3,08 11,4 41,5 1,61 138 5,96 1,06 7,3  335 5,8 24,7 0,11 3,6 0,083 3,07 14,7 56,6 2,18 200 282 0,8 9,2  685 3,17 17,1 0,13 2,7 0,084 3,23 34,4 39,1 1,36 128 29,2 2,01 7,7  14,9 0,79 14,75 0,16 3,2 0,013 4,85 9,8 12,7 0,47 82 19,08 2,1 7,6  19,4 0,68 9,39 0,15 2,4 0,015 3,76 6,4 9,9 0,38 64 40,8 1,02 0,4	915 6.99 25.3 0.14 4.1 0.111 3.08 11.4 41.5 1.61 138 5.96 1.95 7.3 8  335 5.8 24.7 0.11 3.6 0.083 3.07 14.7 56.6 2.18 200 262 0.8 9.2 6  885 3.17 17.1 0.13 2.7 0.064 3.23 34.4 39.1 1.36 128 29.2 2.01 7.7  14.9 0.79 14.75 0.16 3.2 0.013 4.65 9.8 12.7 0.47 82 19.06 2.1 7.6 :	915	916	916	915	915 6.99 25.3 0.14 4.1 0.111 3.08 11.4 41.5 1.81 138 5.90 1.65 7.3 87.6 320 13.3 284 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	916	915 6.90 25.3 0.14 4.1 0.111 3.00 11.4 41.5 1.61 138 5.96 1.58 7.3 87.6 220 13.3 294 0.008 6.3 358 5.8 24.7 0.11 3.6 0.083 3.07 14.7 56.6 2.18 200 262 0.8 9.2 64.8 610 14.5 272 0.031 4.54 686 3.17 17.1 0.13 2.7 0.064 3.20 34.4 39.1 1.36 128 29.2 2.01 7.7 61 100 43.8 159 0.003 2.24 14.8 0.79 14.75 0.16 3.2 0.013 4.85 9.8 12.7 0.47 82 15.05 2.1 7.8 2.8 2.30 27 177 0.002 0.08 15.4 0.88 9.30 0.15 2.4 0.015 3.76 6.4 9.9 0.38 64 40.8 1.02 0.4 4.6 40 17.5 143.5 0.002 0.03	916 0.80 25,3 0.14 4.1 0.111 3.00 11.4 41.5 1.01 138 5.90 1.05 7.3 87.6 320 13.3 284 0.000 6.3 0.1  338 5.6 24.7 0.11 3.0 0.000 3.57 14-7 56 6 2.10 200 202 0.6 9.2 04.8 610 14.6 272 0.001 4.54 0.00  888 3.17 17.1 0.13 2.7 0.004 3.23 34-4 38.1 1.30 128 26.2 2.01 7.7 61 100 43.8 1589 0.003 2.24 0.07  14.9 0.79 14.70 0.10 3.2 0.013 4.88 9.8 12.7 0.47 62 19.96 2.1 7.0 2.8 230 27 171 4.002 0.00 0.00  16.4 0.30 9.30 0.15 2.4 0.016 3.78 6.4 9.9 0.38 64 40.8 1.02 0.4 4.0 40 17.5 143.5 4.002 0.00 0.00

No_Terrain Cu	ı Fe	Ga	Ge Ge	H	Hf In	K	La	a Li	M	g N	în M	lo I	Na Nb	N	i P	Pl	R	Rb I	Re S	Sb	Sc	
1388-TR-14-01	120	0,67	11,8	0,19	1,4	0,012	4,74	11,5	10,3	0,37	64	129	1,61	10,2	6,2	1110	40,5	153,5	0,002	0,04	0,07	3,6
1388-TR-14-01	350	0,93	12,2	0,15	4,8	0,014	3,56	10,6	9	0,31	50	56,7	1,87	2,4	10,6	50	34,2	122,5	0,003	0,36	0,07	1,1
1388-TR-14-01	2730	1,24	13	0,2	3,1	0,041	2,08	53,4	21,1	0,75	63	355	2,17	4,1	17,8	210	43,9	78,8	0,027	0,59	0,42	2,8
1388-TR-14-01	16,5	0,67	21,7	1,21	2,5	0,018	4,55	580	14,8	0,56	51	30,9	2,78	9,1	6,9	1800	34,6	170	-0,002	0,02	0,18	4,8
14-GR-110	12	4,56	16,8	0,14	4,7	0,026	3,92	21,2	35,1	0,63	419	3,42	2,02	12,4	15,9	270	30,3	186	-0,002	0,05	0,09	4,8
1388-TR-14-02	352	9,16	19,75	0,12	4	0,062	1,87	27,5	43,2	1,34	369	7,52	3,03	6,3	97,9	490	195,5	99,6	0,007	4,19	-0,05	17,4
1388-TR-14-02	300	7,65	18,7	0,11	3,7	0,042	2,17	23,7	38,2	1,22	304	6,86	3,03	6,5	90,9	590	149	101,5	0,007	3,66	-0,05	15,8
1388-TR-14-02	263	6,63	17	0,11	3,3	0,044	1,96	21,6	31,9	0,88	328	19,45	2,44	5,5	76	330	88,5	109	0,008	3,22	-0,05	11,9
1388-TR-14-02	4,1	0,91	15,25	0,19	3,5	0,013	4,81	76,8	8,6	0,19	175	25,2	1,93	8,5	2,6	200	40,9	230	-0,002	0,03	-0,05	3
1388-TR-14-02	26,4	1,3	14,6	0,12	4,1	0,012	4,99	22	9,6	0,21	171	14,2	2,01	7,1	7,1	310	37,9	198,5	-0,002	0,23	-0,05	2,8
1388-TR-14-02	18,7	1,04	14,6	0,11	4,1	0,013	5,43	10	9,7	0,22	144	48,3	1,9	7,4	8,3	600	44,3	185,5	0,002	0,1	-0,05	2,6
1388-14-TR-02	81,3	1,25	13,85	0,12	3,9	0,016	5,55	14,2	14	0,39	158	39,3	1,65	8,7	4,3	1060	66,1	179,5	-0,002	0,07	-0,05	3,2
1388-14-TR-02	9	1,04	13,55	0,13	3,5	0,012	5,13	5,9	12,1	0,22	166	14,75	1,87	8	4,5	1410	36,8	179,5	-0,002	0,02	0,06	2,6
1388-14-TR-02	8,1	0,84	12	0,1	2,1	0,009	4,52	5,4	5,5	0,18	87	41,6	1,42	4,9	3,7	690	40,3	143	-0,002	0,05	-0,05	1,6
1388-14-TR-02	328	7,72	19,45	0,11	3,2	0,052	2,09	19,8	36,2	1,02	561	5,89	2,7	11,4	67,9	420	33,5	175,5	0,003	2,93	-0,05	12,2
1388-14-TR-02	12,6	1,12	14,3	0,14	4,6	0,009	6,07	15,5	13,3	0,44	107	19,35	1,65	9	4	990	63,5	185	-0,002	0,05	-0,05	2,9

No_Terrain	Cu F	e G	G	ie Hf	Ir	K		La Li		Mg	Mn	Мо	Na	Nb	Ni	Р	Pb	Rb	Re	S S	b S	Sc
1388-14-TR-02	14	1,28	14,35	0,13	5,5	0,012	4,99	21,2	12,7	0,37	122	12,1	1,69	8,8	4,9	600	57,4	1 162,5	-0,002	0,14	-0,05	3,1
1388-14-TR-02	282	9,06	14,65	0,11	1,9	0,073	0,6	15,7	33,7	0,92	404	7,88	1,92	5,4	95,1	560	172,	5 48,1	0,005	4,82	-0,05	7,3
1388-14-TR-02	198,5	8,37	24,3	0,14	4,4	0,068	3,43	21,9	54	0,82	721		2,01	17,5	66,7	350			0,002	2,69	-0,05	16,8
1388-TR-14-04	6,2	1,27	16	0,19	4,9	0,025	4,84	20,5	19	0,28	190	4,58	2,09	9,7	8,	440	32,6	5 233	-0,002	0,03	0,06	3,3
1388-TR-14-04	19,9	2,15	17,7	0,18	4,2	0,029	4,53	10,2	24,7	0,54	303	10,05	2,28	15,1	20,1	540	33,0	191	-0,002	0,11	0,05	5,6
1388-TR-14-04	12	1,67	16,95	0,21	2	0,021	4,95	10	17,3	0,38	249	3,95	2,2	11,9	13,4	650	33,6	194,5	-0,002	0,08	0,05	4,2
1388-TR-14-04	118	4,41	17,2	0,18	2,8	0,057	3,15	30,2	30,1	2,33	833	1,97	2,12	9,2	97,7	7 820	19,8	3 155,5	-0,002	0,95	0,05	16,1
1388-TR-14-04	12,9	1,88	16,4	0,13	3,9	0,022	3,72	7,3	20,3	0,5			2,23		,						-0,05	4,5
1388-TR-14-03	4,1	0,59	13,2	0,12	3	0,005	4,04	2,9	5,9	0,08	82	4,89	2,27	2,7	3,1	90	30,2	136,5	-0,002	0,02	-0,05	1
1388-TR-14-03	4,9	0,78	13,8	0,13	3,3	0,007	3,74	3,1	8,9	0,14	111	4,57	2,37	3,5	6,2	90	28,	1 134	-0,002	0,03	0,05	1,3
1388-TR-14-03	14,4	4,51	25	0,17	5,1	0,057	2,62	22,5	71,6	1,37	689	3,38	3,16	21,3	59,6	690	17,€	239	0,002	0,08	0,05	11,5
1388-TR-14-03	10,4	2,06	17,8	0,15	5	0,023	3,68	12,5	27,2	0,52	315	1,57	2,53	11,2	16,5	5 520	26,5	171	-0,002	0,05	-0,05	4,9
1388-TR-14-03	8,3	1,56	16,2	0,15	5,4	0,021	3,78	10,3	23,6	0,42	224	3,17	2,6	6,6	16,6	230	29,8	3 160	-0,002	0,04	0,05	4,2
1388-TR-14-03	8,8	1,42	14,25	0,14	4,3	0,014	4,16	7,2	17,6	0,31	192	9,53	2,15	6,5	12,3	3 170	29,9	157,5	-0,002	0,06	0,06	3
1388-TR-14-05	15,6	2,64	18,8	0,15	4,2	0,032	2,83	14,1	39,5	0,73	386	12,15	2,53	13,8	32	2 250	21,4	1 166,5	-0,002	0,09	0,05	6,9
1388-TR-14-05	3,8	1,73	15,55	0,18	4,2	0,025	4,62	11,9	31,6	0,56	251	15,65	2,17	7,5	27,4	300	27,8	3 189	-0,002	0,03	0,05	3,7
1388-TR-14-05	11,9	2,57	18,85	0,2	4,4	0,032	3,87	13,3	43,9	0,67	348	9,2	2,38	17	25,	360	25,4	1 197	-0,002	0,05	0,05	6,8
1388-TR-14-05	11,1	2,17	18	0,14	7,1	0,028	2,67	7,8	32,8	0,58	290	6,02	2,65	12,3	23,7	7 180	20,4	1 144,5	-0,002	0,06	0,05	5,7
1305 111 17 03						,,,,,			,-	.,			_,	1			,					
1388-TR-14-05	32,6	2,92	19,25	0,16	4,4	0,037	3,29	17,1	34,7	0,71	333	6,18	2,5	15,2	35,0	370	22,8	3 179	-0,002	0,29	0,05	7,2
1388-TR-14-05	8,2	1,62	15,4	0,19	3,4	0,015	4,88	11,5	18,9	0,29	189	21,2	2,05	8,1	8,8	3 490	30,3	3 173,5	-0,002	0,07	0,05	3

No_Terrain	Se	Sn	Sr	Та	Te	9	Th	ті ті		U V	w	Y	Zn	Zr	•				
14-GR-065		1	2	516	0,6	-0,05	9,3	0,274	0,92	4,2	89	-0,1	14,2	79	95,2				
14-GR-066		-1	0,5	269	0,13	-0,05		0,045	0,89	1,3	6	-0,1	2,7	6	143				
14-GR-067		-1		412	0,84	-0,05	15	0,125	0,58	3,3	31	-0,1	6,1	34	74,7				
14-GR-069		2	0,5	165	0,39	0,46	4,5	0,211	0,66	1,5	40	-0,1	10,6	50	110,5				
14-jfdl-046		1	1,5	249	0,44	-0,05	14,5	0,198	0,7	1,5	49	0,4	9,1	60	113,5				
14-jfdl-047		-1	0,3	352	0,4	-0,05	4,9	0,015	0,33	0,9	2	0,2	1,4	5	34,3				
14-Jiui-047			0,5	332	0,4	-0,00	4,5	0,010	0,33	0,0		0,2	1,4	Ĭ	04,0				
14-jfdl-048				15			<20	0,15 <10	)	10	53 <10			90					
14-JFG-086		1	2,1	236	0,13	0,28	0,5	0,426	0,31	0,8	220	0,3	13,9	182	36,1				
14-JFG-088		3	1,6	119,5	0,43	0,25	5,5	0,297	0,27	2,1	94	0,1	7,6	168	135	-			
14-JFG-089		3	0,9	15,2	0,22	0,67	3,4	0,192	0,33	1,4	66	0,4	15,9	206	62,2				
14-JFG-090		3	0,6	39,2	0,32	0,61	3,7	0,216	0,38	1,7	68	0,3	8,1	123	90,1				
14-JFG-092	9	99	0,6	48,3	0,66	0,19	6,1	0,142	0,18	6	148	0,6	6,7	68	90,8				
14-JFG-094		-1	1,2	246	0,29	-0,05	37,3	0,116	0,9	1,2	19	0,1	5,7	38	196,5				
14-JFG-091				55			<20	0,03 <10	)	70	312 <10			120	0,883				
14-GR-068																			
14-JFG-087		+															1		
14-JFG-093														11					
14-GR-074				352			<20	0,47 <10		10	250 <10			80					
14-GR-070		6	1,9	166	0,08	1,09	4,8	0,179	1,1	2,2	107	0,2	11,1	918	116,5				
14-GR-071		6	0,9	246	1,73	0,55	10,9	0,309	0,71	2,2	157	-0,1	13,6	86	129				
14-GR-072		-1	1,9	1010	0,28	-0,05	0,5	0,204	1,01	0,5	39	-0,1	5,8	73	79,5				
14-GR-073		3	1,7	443	0,45	0,4	6	0,296	1,38	4,3	111	-0,1	15,9	424	107,5				
14-JFG-092		2	1,4	82,7	0,94	0,29	11,1	0,323	0,46	3,5	155	0,8	6	93	126,5				
14-JFG-092	Ğ	) <mark>1</mark>	0,6	149	0,91	0,07	16,1	0,195	3,19	128,5	282	0,3	7,4	48	69,6				
14-JFG-092	1	L4	0,7	54,6	0,4	0,3	5,6	0,287	0,61	3,6	94	0,4	5,7	26	139,5				
277489		1	0,8	199	0,57	0,09		0,083	0,85	3,6	15	0,1	2,2	22	220				
277490		3	12,5	910	0,38	0,09		0,476	0,76	1,2	215	0,1	21,7	238	63,8		-		
277491 14-DP-043		-1	1,1 0,9	383	0,31 0,57	0,28 -0,05		0,402 0,242	0,58 1,36	4,2 2,4	157 78	0,8	20,5 8,9	203 96	134 136		+		
14-DI-043		-1	0,5	262	0,37	-0,05		0,072	0,95	2,7	, 0	٠,٧	5,5	00	100			1	

No_Terrain Se	:	Sn	Sr	٦	Га	Ге	Th	Гі	TI	U	V	w	Υ	Zn	Zr		I	1 1	T		
14-GR-081																					
4-GR-080	1	1 (	),3	368	0,53	0,26	14,5	0,367	0,83	1,7	119	0,2	7,5	153	220						
I-GR-082	2	2	,1	333	0,88	0,21	8,1	0,337	0,9	2,3	78	0,5	10,2	193	141						
I-GR-083	1	(	),8	287	1	-0,05	7,6	0,237	1,21	0,7	51	0,1	7,9	63	97,9						
4-JFG-092	5	5	,4	187,5	0,66	0,49	10,8	0,37	0,53	5,3	133	3,2	11,4	99	205						
4-JFG-092	1	-(	0,2	85,7	0,38	0,12	8,2	0,031	0,3	6,6	10	0,2	2,8	25	143,5						
277402																					
277492 I-DP-044			+																	+	-
4-DP-045																				+	1
14-jfdl-058	4	4	1,7	240	1,01	0,42	7,6	0,528	1,66	1,5	162	0,3	7,5	389	173						
4-JFG-092	2		),6	188	0,55	0,19	9,4	0,221	0,51	5,3	75	0,7	8,6	70	93,9						
4-JFG-092	5		,3	126	1	0,10	9,7	0,233	0,56	5,8	90			80				+			+
4-JFG-092	2		),6	118,5	0,99	0,18	6,1	0,193	0,45		78			44							
4-JFG-092	-1		),4	98,4	0,71	0,06	9,1	0,108	0,47	5,9	16	1,2		47	208						
4-JFG-092	6	6 (	0,4	58,2	0,53	0,21	40,5	0,135	0,53	49,1	82	0,6	8,2	17	232						
L4-JFG-092	1		1	136,5	1,12	0,24	13,7	0,246	1,01	4,3	117	0,7	5,5	30							
4-JFG-092	-1	(	),4	144	0,43	-0,05	25,8	0,085	1,38	14,7	44	1,3	3,8	23	110,5						
4-JFG-092	-1		),4	181,5	0,75	0,07	34,3	0,119	0,74	2,8	29		5,6	23							
4-JFG-092	3		),5	200	1,28	0,23	16,1	0,133	0,85	4,4	41	0,4		27							
1-JFG-092	-1 -1		),4	137 180	2,5 0,78	0,06 -0,05	24,6 17,4	0,341 0,058	1,35	7,4 2,7	49	0,9		88							
1-JFG-092 1-JFG-092	- 1		,3	183,5	2,63	0,13	8,4	0,056	1,21	2,7	11	0,4		9				+		+ -	_
1-JFG-092			),6	182,5	0,63	0,07	19,1	0,099	0,72	3,4	17	0,3		17							_
4-JFG-092	1		0,6	198,5	0,87	0,06	7,7	0,102	1,05	2,5	16			14		-					
4-JFG-092	1		),7	158	0,83	0,08	90,7	0,124	0,81	14,4	22	0,5		27							
4-JFG-092	2	2 (	),9	107	0,68	0,17	9,1	0,161	0,62	3,9	42	0,3	4,9	68	153						
I-JFG-092	2		2,2	228	0,86	0,36	6,2	0,376	1,5	1,7	113	0,4	5,4	95	150						
1-JFG-092	-1		),4	392	0,47	0,05	9	0,163	0,66	2	26			43							
4-JFG-092	2		1	106	0,59	0,3		0,162		5,3	57	0,7		76							
4-JFG-092	1	(	),9	106	1,07	0,11	21	0,221	0,47	5,4	37	0,7	7,7	38	320						
4-MQ-503																					
4-MQ-500																					
4-MQ-501																					
14-BR-101	1		7,9	121,5	0,2	-0,05	0,5	0,622	0,08	1,4	295	0,7	21,6	192	50,7						

No_Terrain Se	Sn	Sr	Та	Те	Th	Ti		П		V	w	Υ	Zn	Zr			A 1		
4-BR-102																			
L4-BR-103 L4-BR-104																			
14-BK-104																			
14-BR-105								11,11											
14-BR-106																			
14-MQ-504	-1 2,3		240	16,55	0,07	4,6	0,054	2,79	0,7	6	0,2	3,2	1	7 72,2	2				
14-MQ-505	1 0,3		196	0,2	0,06	16,7	0,029	0,35	0,8		0,7	1,8		9 48,7	1				
												,							
14-MQ-508	-1 0,7		248	0,43	-0,05	5,1	0,118	0,97	0,9	14	0,1	1,6	3	1 148	3				
	-1 1,8		95,7	3,34	0,05	41,2	0,07	3,41	4,4	6	0,3	9,5	2	7 155,5	<u> </u>				
14-MQ-506																			
14-MQ-507																+			
				111															
277513	3 2,6	i	163	0,41	-0,05	0,5	1,29	0,15	0,5	393	0,3	43,2	16	4 27,:					
14-DP-102	1 1		224	0,7	-0,05	26,9	0,111	1,59	2,5	12		7,3							
277515	-1 0,5		845	0.22	0.05	3	0,269	0.41	0.7	63	0.1	E 1	6	1 64,:					
14-DP-107	-1 0,5 1 2,1		169	0,22 0,72	0,05 -0,05	24,1	0,269	0,41 1,57	0,7 2,4	63 57									
14-GR-105	1 0,6		228	0,69	-0,05	34,4	0,086	1,12	2,5	8	1,1		2						
14-GR-108	1 0,7		361	0,36	0,09	4,4	0,422	1,08	2,7	114	0,1	3,7	7	8 120					
14-GR-109	1 0,9	1	309	0,58	-0,05	22,1	0,572	1,09	0,9	60	1	19	7	6 285					
14-GC-501	1 1,1		346	0,55	0,22	17,7	0,258	1,01	4	65	0,1	3,3	7	8 108,5					
L4-GC-502	1 0,5		257	0,47	-0,05	17,7	0,311	0,73	1,8	34	0,2	10,5	3	5 428		+			
L4-DP-101	1 0,5		237	0,47	-0,05	17,7	0,311	0,73	1,0	34	0,2	10,3		420					
14-DP-103																			
14-DP-104																			
14-DP-105																			
14-DP-106																			
14-DP-108																			
14-GR-106																			
14-GR-107																			
	-1 0,9		205	1,07	-0,05	3,8	0,092	0,98	1,4	16	0,1	3,9	2	4 107,5					
.4-MQ-510																			

No_Terrain Se	Sn	Sr	Та		Th	h Ti		U	V	w	Y		n Z				
14-MQ-512	1	0,7	661	0,25	0,1	5	0,351	0,46	1,5	87	0,9	11,9	78	117,5			
14-MQ-514	1	2,9	207	1,04	0,05	11,3	0,311	0,87	2,9	91	0,2	10,3	152	157,5			
14-MQ-511																	+
14-MQ-513																	
14-DP-109	3	2,4	341	0,61	0,27	5	0,437	1,25	3	94	0,4	12,2	116	122,5			
14-DP-109	2	0,9	157	0,7	0,76	8,3	0,153	0,55	3,8	51	0,1	5,7	57	92,9			
14-DP-110	1	0,9	302	0,71	0,1	10,1	0,251	0,96	1,9	45	0,1	3,9	63	121,5			
14-DP-111	1	1,3	216	1,25	0,09	16,9	0,138	1,12	3	46	0,2	6,5	84	97,3			
14-DP-112	12	2,1	171,5	0,1	0,72	1	0,055	0,95	1,3	35	0,4	4,4	6	24,1			
14-BR-107	1	0,6	484	0,96	0,21	11,7	0,251	0,7	4	65	0,2	6,3	126	106,5			
14-GR-110	4	5,3	11,9	0,63	0,65	1,8	0,275	1,14	0,9	142	0,2	30	220	72,6			
14-GR-111	1	0,4	279	0,3	0,35	16,3	0,081	0,66	1	14	1,5	2,7	12	96,2			
14-GR-111	1	0,7	265	0,45	0,09	12,1	0,11	0,73	1,8	26	0,2	5,7	34	158,5			
14-GC-503	1	2,2	331	0,9	0,06	14	0,398	1,89	3,9	108	0,2	5,2	80	169			
14-GC-504	1	1,1	255	0,5	-0,05	15,6	0,159	1,27	1,4	27	0,1	4,8	39	143			
14-GC-506	-1	0,8	198,5	0,42	-0,05	23,9	0,08	1,11	0,7	7	0,1	3,5	34	75,9			
14-BR-108																	
14-GC-505																	
14-MQ-515	3	1,2	156	0,12	0,48	1,5	0,105	0,54	1,1	19	0,6	4,9	39	36,7			
14-MQ-515	2	-0,2	332	0,28	0,23	5,6	0,014	0,42	24	3	0,1	1,5	7	124,5			
14-MQ-515	2	3,1	344	0,39	0,29	3,3	0,326	0,72	1,6	111	1,4	23,3	88	63			
14-MQ-515	2	3,5	247	0,35	0,33	4	0,256	0,84	1,6	99	3,7	12	129	79,6			
14-MQ-518	1	0,7	486	0,3	0,12	13,8	0,311	1,33	2,6	90	0,6	12	114	115			
14-MQ-518	1	1,3	615	0,27	0,08	30	0,389	1,65	6,1	136	0,5	15,1	138	126			
14-MQ-516																	_
14-MQ-517																	

14 66-99	Terrain Se	e	Sn	Sr		Га	Те	Th	ті ті		U \	/ W	ľ	Υ	Zn	Zr					
3-69-112	R-109	1		0,8	434	0,11	0,1	0,9	0,134	0,63	0,3	34	0,1	4,3	72	51,1					
15-GA-112										11											
24-GR-322																					
14-66-132																					
15-GA-112	D 100	1		1.4	202	0.13	0.07	0.7	0.122	0.36	0.2	27	0.1	7.2	92	20.2			-		
14-66-113	K-109	1		1,4	283	0,12	0,07	0,7	0,122	0,36	0,2	3/	0,1	1,2	82	38,2					
14-66-116																					
14-66-113																				A	
14-66-113																			100		
14-66-113	-																				
14-66-307 1 1.5 363 0.74 0.06 14.1 0.300 1.10 1.0 62 0.2 7.5 60 124 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.	R-112	-1		0,7	240	0,52	0,06	16,2	0,129	1,13	1,7	24	0,8	1,7	30	122,5					
14-66-510	R-113	1		5,4	143	0,34	0,15	7,2	0,112	0,35	2	42	0,2	20,2	121	31,8					
1 1,3 327 0,55 0,66 9,3 0,26 1,2 2,6 52 0,2 4,5 80 99,5 1 14-6C-507 1 1,3 327 0,55 0,66 9,3 0,26 1,2 0,12 0,12 0,12 0,12 0,14 0,15 1,2 0,12 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,15 1,2 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14														/ = _ · ·							
1 1,3 327 0,55 0,06 9,3 0,26 1,2 2,6 52 0,2 4,3 80 99,5 1  34-6C-508 1 1,8 289 0,16 0,05 1,2 0,121 0,22 0,4 43 0,1 69 66 37,9 1  34-6C-144 1 1,8 289 0,16 0,05 1,2 0,121 0,22 0,4 43 0,1 69 66 37,9 1  34-6C-151 1 1 0,7 284 0,06 0,05 14,6 0,128 1,08 1,1 1,1 1,7 0,8 8,8 34 192,5 1  34-6C-510 1 1 0,7 285 0,7 0,06 1,1 0,005 0,7 0,8 1,215 0,34 0,5 425 2,5 40 1,3 19,8 1  34-6C-510 1 1 0,7 285 0,7 0,05 1,1 0,005 0,7 0,8 1,2 1 0,09 1,8 36 0,1 7,7 45 79,6 1  34-6C-510 1 1 0,7 285 0,7 0,05 1,1 0,005 0,7 0,8 1,1 0,0 1,1 0,005 0,7 0,8 1,1 0,1 1,1 0,005 0,7 0,8 1,1 0,1 1,1 0,005 0,7 0,8 1,1 0,1 1,1 0,005 0,7 0,8 1,1 0,1 1,1 0,005 0,7 0,8 1,1 0,1 1,1 0,005 0,7 0,8 1,1 0,1 1,1 0,005 0,7 0,8 1,1 0,1 1,1 0,005 0,7 0,8 1,1 0,1 0,1 1,1 0,005 0,7 0,8 1,1 0,1 0,1 1,1 0,005 0,7 0,8 1,1 0,1 0,1 1,1 0,005 0,7 0,8 1,1 0,1 0,1 0,1 0,1 1,1 0,005 0,7 0,8 1,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	D 116	- 1		1.5	202	0.74	0.05	14.1	0.300	1 10	1.0	92	0.2	7.2	00	124			-		
14-6C-508	K-116	-1		1,5	303	0,74	-0,05	14,1	0,306	1,19	1,0	02	0,2	7,3	00	124		+ 9			
14-66-114   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115	C-507	1		1,3	327	0,55	0,06	9,3	0,226	1,2	2,6	52	0,2	4,5	80	99,5					
14-66-114   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115   1-66-115	C 509	-4		1 0	200	0.14	0.05	4.3	0.121	0.22	0.4	43	0.4			37.0			-		
14-MQ-527 1 -0.7 284 0.89 -0.05 14.6 0.128 1.08 1.1 17 0.8 8.8 34 162.5 14-MQ-529 1 -0.05 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	C-508			1,8	289	0,14	0,05	1,2	0,121	0,22	0,4	43	0,1	6,9	66	37,9					
14-MQ-527 1-MQ-527 1-	R-114																				
14-MQ-527	D 115																		-		
14-MQ-519	K-115																				
14-MQ-521	1Q-524	1		0,7	284	0,69	-0,05	14,6	0,129	1,08	1,1	17	0,8	8,8	34	162,5					
14-MQ-521	40.510																	-			
14-MQ-522 14-MQ-523 14-GC-512 14-GC-512 14-MQ-525 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-510 14-GC-	1Q-519														11						
14-MQ-522 1	1Q-520																				
14-MQ-522 1	10 531			+														-			
14-MQ-523	1Q-521																				
14-MQ-523																					
14-GC-511				_														-			
14-GC-512		4		14	223	0.33	0.07	0.8	1,215	0.34	0.5	425	2.5	40	131	59.8		+		-	
14-MQ-525										0,79						79,6					
14-MQ-525	C 540														9.91			-			
14-MQ-527	C-510																				
14-MQ-527																					
14-MQ-529  14-GR-119  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR	1Q-525	-1		-0,2	336	0,07	-0,05	1,1	0,005	0,78	0,8	1	0,1	1	-2	90,9					
14-MQ-529  14-GR-119  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR-120  1-GR	1Q-527			+													+	+	+		
14-GR-119 -1 0,7 285 0,57 -0,05 11,9 0,048 1,05 1,1 6 0,1 3,7 15 81,1 14-GR-120 1 0,9 440 0,65 0,06 7,4 0,25 1,61 5,1 76 0,1 4,9 74 88,3																					
14-GR-120 1 0,9 440 0,65 0,06 7,4 0,25 1,61 5,1 76 0,1 4,9 74 88,3	1Q-529																				
14-GR-120 1 0,9 440 0,65 0,06 7,4 0,25 1,61 5,1 76 0,1 4,9 74 88,3	R-119	-1		0,7	285	0.57	-0.05	11.9	0.048	1.05	1.1	6	0.1	3.7	15	81.1	+	+	+		
14-GC-513 1 1,1 273 0,94 0,06 42,5 0,119 1,31 3,4 19 0,1 6,4 32 101	R-120	1		0,9	440	0,65	0,06	7,4	0,25	1,61	5,1	76	0,1	4,9	74	88,3					
	C-513	1		1,1	273	0.94	0.06	42,5	0.119	1.31	3,4	19	0.1	6.4	32	101	+	+	+		
				-,-	2.3	2,54	2,30	,5	-,	_,	~, .		-,1	-,-							
14.00.512	C 513			1.1	355	0.65		44 -	0.434	2.7-		22	0.6			200		-	-		
14-GC-513 -1 1,1 255 0,65 0,11 11,5 0,124 0,77 4,4 22 0,1 3,1 41 206	C-213	-1		1,1	255	0,65	0,11	11,5	0,124	0,77	4,4	22	0,1	3,1	41	206					
														III							

No_Terrain Se	Sn	Sr	Та	Te	e Th	Ti	ТІ	U	V	w	Υ	Z	n Zr					
14-GC-513	1	0,8	275	0,41	0,14	9,1	0,076	0,66	2,7	14	0,1	3,3	36	119		1		
1388-TR-14-01	-1	0,8	197,5	0,4	-0,05	35	0,074	1,01	2,7	12	0,1	6,9	14	237				
1388-TR-14-01	-1	0,6	151	0,22	-0,05	13	0,056	0,86	2,9	12	0,4	4,6	10	367				
1388-TR-14-01	-1	0,5	182,5	0,49	-0,05	17,9	0,07	1,12	1,8	9	0,3	8	9	127,5	7			
1388-TR-14-01	-1	0,7	159,5	0,51	-0,05	6,8	0,083	0,97	3,1	18	0,8	8,9	12	103				
		0.0	100.5	0.50	0.05	72.0	0.070	0.67	11.2	02		2.4		100				
1388-TR-14-01	2	0,6	100,5	0,56	-0,05	73,3	0,072	0,67	11,3	23	1	3,4	7	162				
1388-TR-14-01	-1	0,5	165,5	0,49	-0,05	6,7	0,078	1,02	2,2	20	0,5	4,8	9	80,9				
1388-TR-14-01	1	0,6	111,5	0,48	0,05	5,2	0,056	0,84	4,7	48	0,6	1,9	5	166				
1388-TR-14-01	-1	0,5	120,5	0,33	0,07	7,2	0,04	0,9	4,6	31	0,6	4,5	2	220				

No_Terrain	Se .	Sn	Sr	Та	Te	Т	h T	i TI	U	V	W	Υ	Zn	Z	r				
1388-TR-14-01	-1		0,6	116,5	0,45	0,05	21,6	0,071	0,71	1,8	46	0,8	3,9	13	193,5				
1388-TR-14-01	3		1,4	58	0,89	0,29	8,4	0,299	0,78	6,8	216	0,6	11,8	19	138,5				
1388-TR-14-01	7		1	27,5	0,43	0,4	4,2	0,324	0,61	6,6	191	0,7	4,8	8	132				
1388-TR-14-01	50		0,6	80,3	1,04	0,36	8,3	0,062	1,99	176	179	0,8	20,4	21	171,5				
1388-TR-14-01	13		1,1	43,3	0,53	0,22	5	0,26	0,48	15	141	0,5	8	32	112,5				
1388-TR-14-01	14		1,4	50,9	0,46	0,37	13,1	0,192	0,86	11,1	123	0,5	10,8	38	79,5				
1388-TR-14-01	3		1,8	135	1,09	0,31	5,5	0,276	0,48	2,4	86	0,5	8,4	51	130				
1388-TR-14-01	3		1	103	0,4	0,16	8,2	0,315	0,25	5,2	129	1,1	11,3	65	155	<u> </u>			

No_Terrain Se	Sn	Sr	Та	Te	Th	Ti	ТІ	U	V	w	Υ	Z	n i	Zr			
1388-TR-14-01	2 0	,8	161	1,04	0,11	8,4	0,197	0,61	3,3	76	0,4	10,9	41	102		P	
1388-TR-14-01	2 1	,5	138	0,64	0,18	6	0,235	0,52	4,4	84	7,6	10,6	57	120			
1388-TR-14-01	3 0	,8	142	0,95	0,29	11,5	0,235	0,69	5,6	103	0,6	6,7	58	135,5			
1388-TR-14-01	-1 0	,6	153,5	0,38	-0,05	4,5	0,054	0,8	2,5	8	0,1	5,9	9	275			- 0
1388-TR-14-01	-1 0	1,8	149	0,73	-0,05	9,7	0,097	0,8	2,3	27	0,3	3,6	12	237			
1388-TR-14-01	2 0	1,8	120	1,32	0,1	10,1	0,152	0,66	4,1	57	0,1	6,5	28	96,6			
1388-TR-14-01	1 0	1,7	134,5	1,14	0,06	14,7	0,067	1,29	5,9	23	0,3	4,8	66	79,3			
1388-TR-14-01	1 1	,3	163,5	1,29	-0,05	25,4	0,122	1,05	7,4	18	0,1	26,8	35	68,2			

No_Terrain	Se	Sn	Sr	Та	Te	1	h T	i II	U	V	W	Υ	Zn	Zr				
1388-TR-14-01	2	C	),8	192	1,25	0,1	12,3	0,126	0,73	5	43	0,3	7,9	24	78,8			
1388-TR-14-01	1	C	0,6	129,5	0,24	0,06	19	0,014	0,83	5,2	9	0,1	7,3	10	68,3			
1388-TR-14-01	31	C	3,8	130	0,79	-0,05	9,8	0,089	1,48	75,9	310	0,3	18,7	39	49,5			
1388-TR-14-01	3	1	J,1	144	1,12	0,05	9,8	0,105	1,18	10,1	62	0,1	15,8	16	73,9			
	1			57	0.72	0.05	14.4	0.072	0.42	20	65	0.2	2.7	10	101			
1388-TR-14-01	1		1,2	57	0,72	-0,05	14,4	0,072	0,42	2,9	65	0,3	3,7	18	101			
1388-TR-14-01	10		1	33,3	0,64	0,29	5,3	0,318	0,63	3	134	0,3	8,7	37	128			
1388-TR-14-01	4		1	64,6	0,36	0,31	5,4	0,331	0,83	3,5	137	0,7	7,4	29	165			
1388-TR-14-01	2	1	1,5	55,7	0,46	0,42	5,1	0,321	0,87	4,6	180	0,6	7,7	37	169			

No_Terrain 5e	Sn	Sr	Та	Те	Th	Ti	TI	U	V	w	Υ	Zn	Zr					
.388-TR-14-01	7	1,4	12,8	0,47	0,86	5,8	0,218	0,74	10,7	185	0,4	10,2	48	105,5				
1388-TR-14-01	2	1,6	450	0,23	0,13	2,6	0,436	0,27	8,0	205	0,4	13,4	112	62,3	-			
1388-TR-14-01	1	0,5	145	0,44	-0,05	9,2	0,072	1,01	2	63	0,2	7,8	16	67,2			- 4	- 0
1388-TR-14-01	1	1,1	53,1	0,72	0,1	19,6	0,109	0,72	11,5	151	0,1	10,6	47	136,5				- (
1388-TR-14-01	-1	0,5	84	0,56	0,05	19,8	0,087	0,62	1,5	29	0,2	3,8	23	96,4				
1388-TR-14-01	2	1,3	69,1	0,49	0,15	15,6	0,197	0,98	7,6	77	0,3	8	26	126,5				
1388-TR-14-01	1	0,4	131	0,46	-0,05	29,8	0,062	1,03	4,7	14	0,2	4,7	19	151				

No_Terrain Se	Sn	Sr	Ta	Te	T	Th T	TI TI		U	v v	V	Υ	Zn	Zr			
1388-TR-14-01	25	0,7	38	1,43	0,42	15,6	0,177	1,23	93,8	326	0,3	7,6	150	125			
						1											
1388-TR-14-01	28	1	38,6	1,03	0,16	6,3	0,322	0,59	26,3	207	0,4	8,1	85	119,5			
1388-TR-14-01	11	1,7	54,1	0,91	0,45	22,6	0,297	1,6	55	371	0,3	13,3	114	150,5			
								'  ě									
1388-TR-14-01	-1	0,4	124	0,33	0,05	16,9	0,064	0,94	2,3	23	0,2	3,6	12	121			
1388-TR-14-01	1	0,4	131	0,52	0,07	26,1	0,068	1,1	4,7	16	0,1	7,6	6	98,6			
										9							
		0.0	100.5	0.65	0.46	0.3	0.420	1.25	7.6	25	0.2	6.7	25	112			
1388-TR-14-01	2	0,8	100,5	0,65	0,16	9,3	0,138	1,25	7,6	35	0,3	6,7	25	113			
1388-TR-14-01	2	1	111,5	1,19	0,19	6,9	0,123	1,21	6,6	36	1,2	6	22	105			
1388-TR-14-01	5	1,4	19,2	0,77	0,29	5,9	0,337	1,35	5,1	134	0,4	9,4	35	141			
													- 0				-
			- 1														

No_Terrain Se	Sn	Sr	Та	Те	Th	Ti	Т	ı U	V		W Y		Zn	Zr				
388-TR-14-01	8	1,2	23	0,54	0,41	5,4	0,351	1,55	2,6	121	0,3	13,8	31	150				
1388-TR-14-01	6	1,4	18,1	0,63	0,38	5,9	0,314	1,81	2,9	138	0,3	15,3	47	7 126,5				
1388-TR-14-01	4	0,8	68,3	0,83	0,31	17,6	0,159	0,92	5,8	47	0,2	5,1	35	5 89,8				
1388-TR-14-01	-1	0,6	168,5	0,59	-0,05	5,8	0,073	1,06	1,3	10	0,4	4,1	13	3 110,5				
1388-TR-14-01	-1	0,4	87,9	0,13	-0,05	7,2	0,006	0,88	1,7	7	0,1	1,7	7	7 76				
388-TR-14-01	1	0,9	226	0,54	-0,05	47,6	0,068	1,15	2,9	8	0,2	9,5	17	7 154,5				
															1 -			

No_Terrain Se	Sn	Sr	Та	Те	Th	Ti	TI	U	V	W	Υ	Zn	Z	r				
1388-TR-14-01	1	1,8	133	0,83	0,15	11,8	0,101	1,08	42,7	34	0,3	16	6	40,4				-
1388-TR-14-01	1	0,8	124	0,41	0,08	6,5	0,026	0,75	2,2	6	0,3	1,8	12	162				
1388-TR-14-01	1	0,5	136	1,29	0,11	34,2	0,062	0,62	5,4	25	0,2	4,9	11	108				
	- / - /																	
1388-TR-14-01	3	1,2	111	1,05	0,1	14,9	0,099	1,06	8,6	82	0,3	14,3	39	73,2	19			
				144									4					
14-GR-110	2	1,2	161,5	0,88	-0,05	24,4	0,121	1,24	4	28	0,1	7	45	143,5				
				04-														
1388-TR-14-02	4	0,9	135	0,44	0,26	5,9	0,359	0,54	6	125	0,4	13,3	225	145				
1388-TR-14-02	4	0,8	141,5	0,62	0,21	7	0,308	0,54	6,3	107	0,3	13,6	182	135,5				
1388-TR-14-02	3	0,6	153,5	0,55	0,21	10,5	0,239	0,56	3	80	0,4	10,2	148	109,5				
1388-TR-14-02	1	0,9	218	2,75	-0,05	41,1	0,068	1,39	1,7	11	0,1	6,5	33	110,5				
1388-TR-14-02	1	0,7	232	0,78	-0,05	12,8	0,079	1,27	1,4	13	0,2	5,5	48	137				
1388-TR-14-02	1	0,5	221	0,62	-0,05	10	0,072	1,23	2,3	11	0,1	9,9	36	140				
1388-14-TR-02	1	0,6	210	0,63	-0,05	17,2	0,095	1,19	3	14	0,2	14,6	23	133,5				
1388-14-TR-02	1	0,9	214	0,56	-0,05	8,1	0,079	1,15	2	11	0,1	18,2	26	111,5				
1388-14-TR-02	1	0,8	198	0,46	-0,05	40,2	0,049	1,33	6,7	6	0,1	9,6	9	64				
1388-14-TR-02	2	2,3	186	0,69	0,42	7,9	0,284	1,37	1,6	81	0,1	8,2	157	107,5				
1388-14-TR-02	1	0,9	199,5	0,66	-0,05	13,6	0,087	1,32	1,9	11	0,2	13,5	23	150				

No_Terrain Se	Sn	Sr	Та	Те	TI	ı Ti		П	V	W	١	Zn	Zı	r		T			T
1388-14-TR-02	1	0,6	196	0,64	-0,05	21	0,087	1,25	3,4	11	0,1	9	35	174					1
1388-14-TR-02	4	0,8	89,1	0,79	0,38	4,8	0,146	0,29	1,7	45	0,3	12,3	156	68,4					+
1388-14-TR-02	2	2,6	184,5	1,08	0,34	8,8	0,372	1,56	2,2	114	0,2	7,9	234	147					
1388-TR-14-04	1	1,4	255	1,25	-0,05	10,6	0,097	1,42	2	18	0,2	8,1	31	165					1
1388-TR-14-04	1	1,2	263	1,08	-0,05	27	0,171	1,29	5	31	0,1	8,7	50	131					
1388-TR-14-04	-1	0,9	253	0,82	-0,05	14,1	0,136	1,31	3	22	0,1	8,7	38	62,6					
1388-TR-14-04	1	1,6	469	0,9	-0,05	9,6	0,263	1,12	2,3	81	0,1	17,8	74	93,1					
1388-TR-14-04	-1	0,8	281	0,52	-0,05	4	0,161	1,09	1,2	31	0,1	3,2	43	129					
1388-TR-14-03	-1	0,3	245	0,25	-0,05	3,4	0,032	0,81	2,7	4	0,1	1,7	6	91,2					
1388-TR-14-03	-1	0,4	255	0,35	-0,05	2,7	0,047	0,87	2,4	7	0,1	2	11	101,5					
1388-TR-14-03	-1	2,7	257	1,52	-0,05	10,1	0,401	1,81	2,6	96	0,3	10,2	126	171,5					
1388-TR-14-03	1	1,3	251	0,88	-0,05	8,9	0,17	1,15	2,8	34	0,7	7,6	50	159,5					
1388-TR-14-03	-1	1	276	0,58	-0,05	13,5	0,113	1,08	3,9	27	0,8	3,7	36	167					
1388-TR-14-03	-1	0,8	250	0,54	-0,05	7,2	0,1	1,02	3,2	20	0,7	3,2	29	134					1
1388-TR-14-05	-1	1,6	227	0,96	-0,05	11,8	0,225	1,2	3	49	0,9	4,7	69	130					
1388-TR-14-05	-1	0,9	241	0,58	-0,05	11,2	0,109	1,25	2,3	23	0,1	4,8	40	128					+
1388-TR-14-05	-1	1,8	252	0,77	-0,05	8,9	0,219	1,4	2,1	42	0,2	5,1	72	133,5					
1388-TR-14-05	-1	1,4	254	0,66	-0,05	4,5	0,184	1,04	2,3	37	0,1	3	56	221		+			+
																		- 4	
1388-TR-14-05	1	1,4	257	0,67	-0,05	9,7	0,221	1,29	2,1	45	0,1	5,6	71	143,5					
														125					
1388-TR-14-05	-1	0,8	234	0,45	-0,05	13,5	0,103	1,07	3,1	17	0,1	6,3	25	105,5					

o_Echant	Secteur	Blanc/standard	Code_analyse	No_Rapport	Au	Pt	Pd	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr
Été																		
277416	Chensagi	Blanc	1	14098459	-0,005			0,01	0,19	0,2	20	0,13	0,02	0,01	0,02	32,8	0,3	20
277448	Hors-claim	Blanc	1	14105425	-0,005			0,01	0,24	-0,2	20	0,1	0,01	0,01	-0,02	32,4	0,2	1
277820	Hors-claim	Blanc	1	14098459	0,007			0,01	0,19	-0,2	10	0,08	0,01	0,02	0,03	24,4	0,4	128
277987	Hors-claim	Blanc	1	14113280	-0,005			0,0	0,2	-0,2	10	0,1	0,02	0,01	-0,02	28,6	0,3	1
279465	Hors-claim	Std: CDN-FCM-7	1	14113280	1,078			63,2	3,6	438	120	0,53	22,1	1,74	209	22,7	17	3
279517	Hors-claim	Blanc	1	14098459	-0,005			0,03	0,19	-0,2	20	0,07	0,02	0,01	0,02	27,9	0,4	2
279567	Hors-claim	Std: Su-1a	2	14105426	0,185	0,278	0,307	3,7	5,06	25	330	0,8	<2	3,04	1,9		352	24
281857	Chablis	Blanc	1	14105425	-0,005			0,04	0,31	0,6	10	0,09	0,03	0,07	-0,02	8,29	0,5	6
281863	Chablis	Blanc	1	14113177	-0,005			-0,01	0,21	-0,2	20	0,1	0,01	0,01	-0,02	25,1	0,2	1
281882	Chablis	Std: CDN-FCM-7	1	14113177	0,9475			66,6	3,74	477	170	0,51	25,4	1,76	212	23,9	17,9	35
281919	Hors-claim	Blanc	1	14098459	-0,005			0,01	0,23	-0,2	10	0,08	0,02	0,03	-0,02	24,8	0,4	13
Automne																		
277998	Chablis	Blanc	1	14160281	-0,005			0,01	0,21	-0,2	20	0,11	0,02	0,01	-0,02	34,4	0,3	1
279479	Chablis	Std: CDN-FCM-7	1	14160282	0,943			64,9	3,7	448	140	0,53	25,8	1,81	209	21,8	17,9	3
277658	Chensagi	Blanc	1	14160282	-0,005			-0,01	0,23	0,2	20	0,1	0,02	0,01	-0,02	24,2	0,2	1

o_Echant	Secteur	Blanc/standard	Code_analyse	No_Rapport	Cs	Cu	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na
Été																		
277416	Chensagi	Blanc	1	14098459	-0,05	2,1	0,23	0,68	0,13	0,3	0,005	0,03	14	4,9	0,01	24	0,24	0,
277448	Hors-claim	Blanc	1	14105425	-0,05	1,5	0,26	0,85	0,13	0,4	-0,005	0,03	12,7	5,9	-0,01	24	0,19	0,
277820	Hors-claim	Blanc	1	14098459	-0,05	2,5	0,24	0,61	0,08	0,3	-0,005	0,02	10,8	4,1	0,01	27	1,62	0,
277987	Hors-claim	Blanc	1	14113280	-0,05	2	0,42	0,8	0,05	0,4	-0,005	0,02	12,6	5,7	-0,01	45	0,22	0,
279465	Hors-claim	Std: CDN-FCM-7	1	14113280	0,76	5130	8,76	13,05	0,25	1	2,67	0,67	10	10,4	0,83	482	20,8	1,
279517	Hors-claim	Blanc	1	14098459	0,05	4,5	0,29	0,62	0,06	0,4	0,006	0,03	12	5,1	-0,01	24	0,21	0,
279567	Hors-claim	Std: Su-1a	2	14105426		9430	17,5	10				0,77	20		2,43	931	1	
281857	Chablis	Blanc	1	14105425	0,11	3,2	0,29	0,83	0,08	1,1	-0,005	0,12	4,4	2,5	0,04	27	0,99	0,
281863	Chablis	Blanc	1	14113177	0,05	1,7	0,41	0,78	0,13	0,4	-0,005	0,04	11,5	5,6	0,01	43	0,21	0,
281882	Chablis	Std: CDN-FCM-7	1	14113177	0,8	5310	8,95	13,9	0,33	1,1	2,86	0,7	11,2	10,5	0,85	506	22,7	1,2
281919	Hors-claim	Blanc	1	14098459	-0,05	2,8	0,27	0,76	0,05	0,4	-0,005	0,02	10,7	4,7	0,01	28	1,53	0,
Automne																		
277998	Chablis	Blanc	1	14160281	-0,05	1,9	0,31	0,7	0,1	0,3	-0,005	0,03	14,4	6,1	-0,01	33	0,17	0,
279479	Chablis	Std: CDN-FCM-7	1	14160282	0,75	5200	9,08	13,9	0,29	1,1	2,72	0,68	10,5	11,2	0,85	492	22	1,
277658	Chensagi	Blanc	1	14160282	-0,05	2,3	0,39	0,66	0,07	0,4	-0,005	0,03	10,7	5,1	-0,01	39	0,13	0,

o_Echant	Secteur	Blanc/standard	Code_analyse	No_Rapport	Nb	Ni	Р	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Te
Été																		
277416	Chensagi	Blanc	1	14098459	0,4	1	20	0,5	1,4	-0,002	0,01	-0,05	0,1	-1	-0,2	3,4	-0,05	-0,0
277448	Hors-claim	Blanc	1	14105425	0,4	1,3	20	-0,5	1,5	-0,002	0,02	-0,05	0,1	-1	-0,2	1,1	-0,05	-0,0
277820	Hors-claim	Blanc	1	14098459	0,3	2,9	10	-0,5	1,1	-0,002	0,01	-0,05	0,2	-1	-0,2	1,1	-0,05	-0,0
277987	Hors-claim	Blanc	1	14113280	0,3	1,2	20	0,6	1,4	-0,002	0,03	-0,05	0,1	1	-0,2	1,6	-0,05	-0,0
279465	Hors-claim	Std: CDN-FCM-7	1	14113280	4	43,2	490	5840	19,9	0,013	9,3	107	7,1	76	45,7	153,5	0,19	0,3
279517	Hors-claim	Blanc	1	14098459	0,3	1,7	20	1,2	1,5	-0,002	0,06	-0,05	0,1	-1	-0,2	1,4	-0,05	-0,0
279567	Hors-claim	Std: Su-1a	2	14105426		>10000	470	61			6,55	<5	14			234		
281857	Chablis	Blanc	1	14105425	0,4	2,7	20	3,4	5,4	-0,002	0,02	0,07	0,3	-1	-0,2	9,6	-0,05	-0,0
281863	Chablis	Blanc	1	14113177	0,4	1,2	10	0,6	2,4	-0,002	-0,01	-0,05	0,2	-1	-0,2	3	-0,05	-0,0
281882	Chablis	Std: CDN-FCM-7	1	14113177	4,3	45,3	510	6190	21,5	0,016	9,76	109	7,4	85	50,6	162	0,2	0,2
281919	Hors-claim	Blanc	1	14098459	0,5	2,7	20	-0,5	1,1	0,002	0,01	0,05	0,3	-1	0,2	1,7	-0,05	-0,0
Automne																		
277998	Chablis	Blanc	1	14160281	0,3	1,4	20	0,8	1,6	-0,002	0,01	0,05	0,1	-1	-0,2	1,6	-0,05	-0,0
279479	Chablis	Std: CDN-FCM-7	1	14160282	4,3	45,3	500	5970	20,6	0,011	9,49	108	7,7	81	48,2	156	0,2	0,2
277658	Chensagi	Blanc	1	14160282	0,4	0,9	20	0,5	1,4	-0,002	0,01	0,06	0,1	-1	-0,2	2,5	-0,05	-0,0

lo_Echant	Secteur	Blanc/standard	Code_analyse	No_Rapport	Th	Ti	TI	U	V	w	Υ	Zn	Zr	Zn	Cu	Pb	Ag	Ni
Été																		
277416	Chensagi	Blanc	1	14098459	2,3	0,018	0,02	0,2	2	0,2	3,1	10	11,2					
277448	Hors-claim	Blanc	1	14105425	2	0,019	0,02	0,2	2	0,1	3,2	2	12,1					
277820	Hors-claim	Blanc	1	14098459	1,6	0,016	-0,02	0,1	3	1,2	2,7	12	12,2					
277987	Hors-claim	Blanc	1	14113280	1,9	0,018	-0,02	0,2	2	0,2	3,3	-2	14,3			-		
279465	Hors-claim	Std: CDN-FCM-7	1	14113280	2	0,174	13,55	1,8	69	1,1	10,3	>10000	30,3	3,77	0,529	0,61	65	
279517	Hors-claim	Blanc	1	14098459	1,7	0,016	0,02	0,2	2	0,1	3,2	9	12,4					
279567	Hors-claim	Std: Su-1a	2	14105426	<20	0,29	<10	10	104	<10	14_2/	171			0,876			1,15
281857	Chablis	Blanc	1	14105425	2,6	0,009	0,03	0,8	2	0,6	2,7	5	30,2					
281863	Chablis	Blanc	1	14113177	1,8	0,017	-0,02	0,2	2	0,2	3,1	-2	13					
281882	Chablis	Std: CDN-FCM-7	1	14113177	2,3	0,176	13,65	2,1	73	1,2	11,2	>10000	36,6					
281919	Hors-claim	Blanc	1	14098459	1,6	0,024	-0,02	0,2	3	1,1	2,9	-2	17,3					
Automne																		
277998	Chablis	Blanc	1	14160281	1,9	0,018	-0,02	0,2	1	1,4	3,8	-2	11,7					
279479	Chablis	Std: CDN-FCM-7	1	14160282	2,1	0,174	14,3	2	71	1,3	10,9	>10000	33,7	3,81	0,529	0,621	64	
277658	Chensagi	Blanc	1	14160282	1,6	0,019	0,02	0,2	2	0,1	3	-2	14,3					

No_Terrain	Équipe	Date_aaaammjj	Feuillet	Secteur	Estant	Nordant	Fuseau_UTM Affleur	Bloc_1s5_ang	Dimension_e	Environnement	Code
							_83	_5s5_rond	n_m		
.4-GR-069	GR-JFDL	2014-07-08	32K09	Trav-14	424104	5601941	. 18	b 4/5	0,3x0,2x0,2	Bord de chemin	S1
4-jfdl-048	JFDL-GR	2014-07-08	32K09	trav-14	425037	5601585	18	b 4/5	0.2x0.1x0.1	bord de route	V3
L4-JFG-088	JFG-OC	2014-07-08	32K09	Chablis	419889	5599002	18	b 1/5	1x0.6x0.6	Bord de chemin	l1G
4-JFG-089	JFG-OC	2014-07-08	32K09	Chablis	419884	5599009	18	b 1/5	0.4x0.4x0.3	Bord de chemin	M4
.4-JFG-090	JFG-OC	2014-07-08	32K09	Chablis	419878	5599004	18	b 1/5	1x1x1	Bord de chemin	M4
L4-JFG-094	JFG-OC	2014-07-08	32K09	Chablis	419919	5598920	18	b 5/5	1.5x1x1	Bord de chemin	I1G
14-JFG-091	JFG-OC	2014-07-08		Chablis	419889,7	5598992,1	18	b 1/5	0.25x0.3x0.3	Bord de chemin	l1G
14-GR-074	GR-JL	2014-07-09	32K09	Bord de chemin	418437	5602131	18	b 3/5	1x0,5x0,3	Bord de chemin	I3A
14-GR-070	GR-JL	2014-07-09	32K09	Bord de chemin	418667	5601405	18	b 4/5	0,4x0,3x0,2	Remblais	S3
14-GR-071	GR-JL	2014-07-09	32K09	Bord de chemin	418506	5601330	18	b 2/5	0,4x0,3x0,3	Bord de chemin	M4
14-GR-073	GR-JL	2014-07-09	32K09	Bord de chemin	418417	5602108	18	b 3/5	0,7x0,7x0,4	Bord de chemin	M4
27748	39 DP-GR	2014-07-16	32K09	Chablis	419922	5598576	18	b 2/5	.30x.30x.10	Bord de route	I1B
	0 DP-GR	2014-07-16		Chablis	420036			b 1/5	.40x.30x.15	Bord de route	M4
27749	DP-GR	2014-07-16	32K09	Chablis	420225	5598455	18	b 2/5	.50x.40x.08	Bord de route	M4
14-GR-081	GR-DP	2014-07-16	32K09	Bord de chemin	420037	5598477	18	b 4/5	0,15x0,15x0, 15	Bord de chemin	121
14-GR-080	GR-DP	2014-07-16	32K09	Bord de chemin	419944	5598537	18	b 3/5	0,4x0,3x0,2	Bord de chemin	M4
14-GR-082	GR-DP	2014-07-16	32K09	Bord de chemin	420557	5598489	18	b 3/5	0,7x0,5x0,4	Bord de chemin	S9
27749	DP-GR	2014-07-16	32K09	Chablis	419260,68	5599491,686	18	b 2/6	.30x.30x.11	Bord de route	I1B
14-MQ-500	MQ-SJ	2014-09-23		Chablis Ouest	417421			b 3/5		L A	M3
14-MQ-501	MQ-SJ	2014-09-23	32K09	Chablis Ouest	417372	5600042	18	b 3/5			M4
14-BR-101	BR-MA	2014-09-23	32K09	Chablis ouest	417664	5600350	18	b5/5	0.5x0.5	Bûcher	
	13 DP-GR-MA	2014-09-24		Chablis-ouest	418797	5599815		b 3/5	, , ,	Route hiver	M16
	L5 DP-GR-MA	2014-09-24		Chablis-ouest	418737	5599814	18	b 2/5		Bûcher	M4
14-GR-108	GR-MA	2014-09-24		Ouest	418497			b3/5	1,3mx1mx0,5 m		M4
14-DP-110	DP-MQ-BR	2014-09-25		Secteur Cu	420674			b 1/5 subamplace		Route d'hiver	I1C
14-DP-112	DP-MQ-BR	2014-09-25	32K09	Secteur Cu	420658	5598935	18	b 1/5 plusieurs	< 0,2x0,2x0,15	Route d'hiver	
14-GC-505	GC-MA	2014-09-25	32K09		420272	5599086	18	b4/5	1.5 x 1 x 1m	Sous 1m de M.T, 80m de la cible input, problablement morraine	I1D

No_Terrain	Équipe	Date_aaaammjj	Feuillet	Secteur	Estant	Nordant	Fuseau_UTM Affleu _83	r Bloc_1s5_ang _5s5_rond	Dimension_e	Environnement	Code
14-BR-109	BR-GR	2014-09-26	32K09	Chablis ouest	417908	5599413		b1/5	2x1	forêt, sous arbre déraciné	
14-BR-109	BR-GR	2014-09-26	32K09	Chablis ouest	417908	5599413	18	b1/5	2x2	forêt, sous arbre déraciné	
14-GR-113	GR-BR	2014-09-26	32K09	Ouest	418447	5599358	18	b2/5	1,2mx1mx0,8 m	Forêt	M4
4-GC-507	GC-MA	2014-09-26	32K09		417425	5598704	18	b1/5	1,5 x 1 x 1m	Plateau >1m M.T, 20m de l'input	IID
4-GC-508	GC-MA	2014-09-26	32K09		417411	5598665	18	b1/5	1,5 x 1 x 0,5m	Plateau à 80m de l'input	S9E
14-GR-115	GR-BR	2014-09-26	32K09	Ouest	418290	5599137	18	b2/5		Champ de blocs	I1D
14-GC-511	GC-SJ	2014-09-27	32K09		417147	5597907	18	b2/5	,3 x ,3 x ,1m	Bloc sub-anguleux, bord de route	M4
14-GC-512	GC-SJ	2014-09-27			417147	5597908	18	b1/5		Bloc sur le même site que 14GC511	I1D

No_Terrain	Équipe	Géologie	Minéralogie	Texture	Altération	Minéralisation
14-GR-069	GR-JFDL	Bloc de couleur altérée rouille et de couleur fraîche gris verdâtre bleuté. Difficile de déterminer le protolithe, peut-être un S1. Mag+++(PO), pas de CB. (Remblais bord de chemin) Photo: 277953		gf, ma	Si++, CL+	20-30%PO à gf en amas reliés ±stockwerk, 1%PY à gf id diss
14-jfdl-048	JFDL-GR	Roche mafique (ultra mafique?) à grains sub-mm, grenats cm pour 30-40% roche schisteuse local, ainsi que localement Si++, minéraux intergrenat sont aciculaire (actinote-trémolite?) pour 15-20%, CP dans les plans de fracture et diss en grains sub-mn pour 0.5%, roche non magnétique		schisteux	Si++	CP dans les plans de fracture et diss en grains sub-mm pour 0.5%
14-JFG-088	JFG-OC	I1G avec enclaves de M4		gg, ma, hk		
14-JFG-089	JFG-OC	M4?	25% BO	gf-gm, hk, ru, gs+	Si++	8% PY en amas et en veinules recoupant la gs
14-JFG-090	JFG-OC	Amas de blocs rouillés de M4	25% BO	gf, hk, ru, gs+	Si+++	10% PY en amas et en veinules
14-JFG-094	JFG-OC	I1G/I1B blanc		gm-gg, ma,		2% MG en amas
14-JFG-091	JFG-OC	I1G/I1B en contact graduel avec gabbro à QZ ???	30% PX, 15% QZ	gm à gg, ma	rouille	2-5%CP disséminée
14-GR-074	GR-JL	Gabbro de couleur alt: rouille et gris-vert, fr: gris foncé verdâtre. Légèrement mag (PO), sc++. Photo: GR_074a&b	75%MF, 15%felsique, 10%SF	gf-gm, sc	CL+, SR+	10%PO à gf diss, TrCP à gf diss d associée à VNQZ mm
14-GR-070	GR-JL	S3 (peut-être S6 Si++), la roche est de couleur alt: rouille, fr: gris foncé, elle est un peu schisteuse. Elles est aphanitique et foncée et ressemble à un mudstone, mais silicifiée. Non-mag, pas de CB.		ap-gf, sc	Si++	5%PY à gf diss parfois ass. à VNQZ mm
14-GR-071	GR-JL	M4(S1), coul alt: rouille, fr: gris moyen verdâtre, non-mag, pas de CB.	80%QZ-FP, 10%BO, 10%SF	gf, sd, lité	CL+	10%PY à gf concentrées dans des lits mm, TrCP à gf diss.
14-GR-073	GR-JL	50%M4, 50%l1G blanc discordant. La description est faite principalement par rapport au M4. M4: coul alt: rouille, fr: gris moyen.	70%QZ-FP, 20%BO, 10%SF	gf, ru, sd, lité		10%PY à gf diss
277489	DP-GR	Granite avec loc peg(BO+),	5% BO	Moyen-grenus		Tr-3% PO-PY, Tr-CP
	DP-GR	Paragneiss mafique, loc niveau à 3% CP	60% BO, 30% QZ-FP	.,		10%SF
277493	1 DP-GR	Paragneiss interm, litage , loc 50% PO < 1cm, BO variable				± 12% PO
14-GR-081	GR-DP	Diorite quartzifère, coul alt: vert-beige-rouille, alt: vert-rouille, ressemble à un échantillon trouvé sur l'indice de cuivre, non-mag			Si+/++, EP+ en uvn, CL+/+	+ 20%PY à gf-gm intergranulaire
14-GR-080	GR-DP	80% Paragneiss, coul alt: beige, fr: gris moyen, mag++, 20% I1G. On observe 5%PY à gf diss HD dans le paragneiss	10%BO, 5%SF, 85%QZ-FP	gf,sd, ru		5%PY à gf diss id
14-GR-082	GR-DP	Peut-être une formation de fer, car on observe un litage et la minéralisation est concentrée dans des lits. Coul alt: chamois, fr: gris moyen légèrement verdâtre, non-mag, sc++. Photo: 277963	75%QZ-FP, 15%SF, 10%BO	gf, sa		15%PY hd-id à gf [] dans des lits
277/191	2 DP-GR	Granite avec loc pg(BO+),	5% BO	Moyen-grenus		Tr-3% PO-PY, Tr-CP
14-MQ-500	MQ-SJ	Bloc d'orthogneiss (80%QZ), enclave de paragneiss	370 80	Woyen grends		11 3/01 3 1 1, 11 6
14-MQ-501	MQ-SJ	Bloc de paragneiss (40-50%BO)				
14-BR-101	BR-MA	texture microgrenue avec cristaux de taille mm. Présence de quartz et biotites en très grande partie. Altération de surface avec trace de rouille sur le dessus du bloc. Minéralisation en sulfure disséminé (tr-1%) avec pyrite pyrrhotite. Peut être de la chalcopyrite. roche s'apparentant à un gneiss voir paragneiss vu la forme proportion en biotite.		gf, massif	rouille	tr-1% PY-PO, tr CP
	B DP-GR-MA	Amphibolite avec 10% de passé pale (FP-QZ) < 1 cm,		gm		3%PO
277515	DP-GR-MA	Paragneiss, métasédiments interm avec lit milimétrique d'amphibole		Litage		Tr
14-GR-108	GR-MA	Bloc de paragneiss de coul alt: rouille, fr: beige et rouille, 1% de VNQZ mm, sc++, pas de minéralisation observée, non-mag	85%QZ-FP, 15%BO	gf, sc, sa		
14-DP-110	DP-MQ-BR	Granodiorite avec enclave de métasédiment intermédiaire, tr sulf, rouille, bloc subamplace< 2m	Hétérogène	litage		Tr
14-DP-112	DP-MQ-BR	Protolite non identifiable, 40 à 60% PY, hématisation, magnétique			Hématisation +++, EP+	40-60% PY
14-GC-505	GC-MA	Bloc sub arrondi de composition tonalitique	25% QZ, 15% BO, 60% PG	gg		

No_Terrain	Équipe	Géologie	Minéralogie	Texture	Altération	Minéralisation
14-BR-109	BR-GR	champ de blocs sub en place. Beep mat bipant jusqu'à 13000 HFR. roche présentant des lits de quartz et de pyrite avec peut être des biotite par endroits. Sulfure magnétique donc présence de magnétite et/ou pyrrhotite. Présence de grenat de taille mm et disséminé. rouille en surface de bloc. Roche semblable à celle décrite au dessus. présence d'une veine de puissance cm. plus forte concentration en grenat. beep mat à 6000 HFR. présence de zincite en plus de la rouille de surface. beep mat réagissant deux mêtres de chaque bord de la zone échantillonnée. Anomalie expliquée.	60%QZ, 30%PY	gg, massif	rouille	30%PY
14-BR-109	BR-GR	champ de blocs sub en place. Beep mat bipant jusqu'à 13000 HFR. roche présentant des lits de qurtz et de pyrite avec peut être des biotite par endroits. Sulfure magnétique donc présence de magnétite et/ou pyrrhotite. Présence de grenat de taille mm et disséminé. rouille en surface de bloc. Roche semblable à celle décrite au dessus. présence d'une veine de puissance cm. plus forte concentration en grenat. beep mat à 6000 HFR. présence de zincite en plus de la rouille de surface. beep mat réagissant deux mêtres de chaque bord de la zone échantillonnée. anomalie expliquée.		gg, massif	rouille	30%PY
14-GR-113	GR-BR	80%M4 (peut-être S9) 20%l1, BeepMat sonne 5000HFR. Couleur alt: rouille, fr: blanc-noir-rouille, faiblement mag. Contient des bandes riches en QZ et des zones pegmatitiques. Photos: GR_113 et 277997		sa, gb, sc,gf		10-20%SF (PY>PO), à gf [] dans les bandes riches en BO, TrCP a gf diss
14-GC-507	GC-MA	3 blocs anguleux possédant une légère rouille de surface, composition tonalitique, recoupé d'un dyke de pegmatite de même composition, quelques enclaves de paragneiss étiré et rouillé	35% BO, 20%QZ, 45%PG	gg, hj	Légère rouille	
14-GC-508	GC-MA	Roche sédimentaire compsés de niveau felsique, mafique et sulfuré réagissant au beep mat. Probablement BIF, recoupé par un dyke de pegmatite	70%BO, 30%PO		Rouillé	30% PO
14-GR-115	GR-BR	Tonalite idem à GR-112, les blocs sont sub en place et sub-anguleux, pluri-dm à pluri-m	63%FP, 35%QZ,2%BO	gm-gg, loc pg, ma, hj		
14-GC-511	GC-SJ	Roche magnétique contenant 10% de sulfures dissiminé dans la matrice	40%QZ, 50%BO, 10%PO	gf	Rouillé	10%PO
14-GC-512	GC-SJ	Essentiellement de la tonalite avec des enclaves de paragneiss de plus une enclave très minéralisé est présente	15%BO, 30%QZ, 55%PG	gg	Rouillé	40%PO, 30%GP

No_Terrain	Équipe	Orientation	No_Echant	Description_Echant	Code_analys	No_Rapport A	u	Pt	Pd	Ag Al	As	Ва	В	le
14-GR-069	GR-JFDL		277953	Voir description du bloc	1	. 14105425	0,011			1,13	4,31	0,8	40	0,60
14-jfdl-048	JFDL-GR		279565		2	14105426	0,009	0,016	0,011	1	4,13	25	40 <	0.5
										2.22				
14-JFG-088 14-JFG-089	JFG-OC JFG-OC	10% vln mm à cm de QZ	281854 281855	Enclave de M4, gm, hk, 20% BO, Si+, rouille, 5% PY	1 1	14105425 14105425	-0,005 -0,005			0,39 0,6	7,47 4,82	3,2 0,8	60 40	1,43 0,95
14-JFG-090	JFG-OC	20% vnl mm à cm de QZ	281856		1	14105425	-0,005			0,5	6,27	1,4	110	0,9
14-JFG-094	JFG-OC		281859		1	14105425	-0,005			0,02	6,93	-0,2	850	0,9
14-JFG-091	JFG-OC		281960		2	14105426		<0.005	0,001	8,6	6,81 <5		330	
14-GR-074	GR-JL		277858	Voir description du bloc	2	14105426	0,001	0,088	0,047	0,7	4,52 <5		240	2,1
14-GR-070	GR-JL		277954	Voir description du bloc	1	14105425	-0,005			0,68	6,44	5,6	220	1,39
14-GR-071	GR-JL		277955	Voir description du bloc	1	14105425	0,005			1,73	5,88	0,7	70	1,26
14-GR-073	GR-JL		277957	M4 avec 10% de PY diss	1	14105425	-0,005			1,45	6,28	0,8	300	1,57
277489	9 DP-GR		277489		1	14113177	-0,005			0,29	6,26	0,3	550	1,4
	DP-GR		277490		1	14113177	-0,005			1,05	6,76	-0,2	90	1,32
27749:	1 DP-GR		277491		1	14113177	0,032			0,72	6,87	-0,2	1350	1,6
14-GR-081	GR-DP		277861	Voir description du bloc	2									
14-GR-080	GR-DP		277962	Voir description du bloc	1	14113177	-0,005			0,31	8,24	1	840	1,05
14-GR-082	GR-DP		277963	Voir description du bloc	1	14113177	0,01			1,43	7,56	0,6	310	1,73
277492	2 DP-GR		283033,6717		1									
14-MQ-500	MQ-SJ													
14-MQ-501	MQ-SJ													
14-BR-101	BR-MA		277651	paragneiss avec sulfures disséminés	SOQVAL-1	14160282	-0,005			0,29	7,16	0,2	40	2,3
	3 DP-GR-MA		277513		SOQVAL-1	14160282	-0,005			0,38	6,99	0,2	140	1,66
277515	5 DP-GR-MA		277515		SOQVAL-1	14160282	-0,005			0,1	7,12	-0,2	420	1,23
14-GR-108	GR-MA		277991	Représentatif	SOQVAL-1	14160281	-0,005			0,18	8	0,2	490	1,4
14-DP-110	DP-MQ-BR		277519	ldem	SOQVAL-1	14160282	-0,005			0,33	7,32	0,4	520	1,3
14-DP-112	DP-MQ-BR		277521	ldem	SOQVAL-1	14160282	0,122			5,89	1,47	1,1	80	0,44
14-GC-505	GC-MA													

No_Terrain	Équipe	Orientation	No_Echant	Description_Echant	Code_analys	No_Rapport	Au	Pt	Pd	Ag	Al	As	Ва	Ве
14-BR-109	BR-GR		277	7653 formation de fer	SOQVAL-1	14160282	0,005	5		1,22	4,97	-0,2	110	0,69
14-BR-109	BR-GR		277	<b>7654</b> formation de fer	SOQVAL-1	14160282	0,00€	5		1,06	3,92	0,5	90	0,65
14-GR-113	GR-BR		277	<b>7997</b> Représentatif	SOQVAL-1	14160281	-0,005	5		2,12	2,87	-0,2	170	0,97
14-GC-507	GC-MA		279	Paragneiss rouillé + Encaissant	SOQVAL-1	14160282	0,006	5		0,05	7,34	-0,2	340	1,65
14-GC-508	GC-MA		279	<b>7472</b> Zone sulfuré	SOQVAL-1	14160282	-0,005	5		0,74	4,11	0,3	100	0,71
14-GR-115	GR-BR													
14-GC-511	GC-SJ		279	9474 Paragneiss rouillé	SOQVAL-1	14160282	0,005	;		0,85	6,17	0,6	110	3,72
14-GC-512	GC-SJ			<b>P475</b> Zone riche en PO	SOQVAL-1	14160282	0,009			2,81		0,5	350	

No_Terrain	Équipe	Bi	Ca	Cd		Се	Со	Cr C	s	Cu Fe	G	a Ge	Hf	In	K	La	Li	Mg	Mr	
14-GR-069	GR-JFDL		0,97	0,74	0,07	23,5	30,3	42	0,83	141	23	11,05	0,35	3	0,026	1,69	11,3	11,8	0,88	1220
14-jfdl-048	JFDL-GR	<2		1,05	0,6		16	221		519	15,7	10				0,26	10		2,18	1970
14-JFG-088	JFG-OC		1,11	0,74	0,09	48	28,2	107	0,78	125,5	8,52	19,4	0,17	3,7	0,065	0,61	23,3	38,8	1,31	377
14-JFG-089	JFG-OC		1,31	0,31	0,53	51,1			0,43	289	11	14,1	0,15	1,6	0,05	0,43	25,5	40,1	1,59	461
14-JFG-090	JFG-OC		1,16	0,22	0,13	34,1	36,2	80	0,95	206	10,05	14,7	0,14	2,6	0,059	0,95	15,8	34,6	1,42	399
14-JFG-094	JFG-OC		0,04	1,09	0,03	70,8	2,9	12	1,87	5	1,79	16,7	0,18	5,8	0,018	3,8	34,6	17,7	0,25	215
14-JFG-091	JFG-OC		36	0,07 <0.			19		1,62	9510	4,78	20	5,1.5	3,0	3,510	2,75	20	,.	5,4	506
14-GR-074	GR-JL	<2		6,97	0,5		126	387		2480	9,33	10				1,07	10		8,07	1255
14-GR-070	GR-JL		1,32	1,43	5,63	51,6	38,4	95	7,42	232	7,79	17,7	0,14	3,1	0,358	1,14	25,1	111	1,03	1200
14-GR-071	GR-JL		1,54	0,69	0,34	70,2	64,5	191	4,47	249	12,7	22,2	0,21	3,6	0,063	0,86	34,3	23,7	0,81	430
14-GR-073	GR-JL		1,01	2,18	0,77	40,8	41,4	221	8,73	356	8,37	18,25	0,14	3	0,141	1,55	19,4	48,2	2,07	801
27740	0.00.00		0,28	0.07	0.00	10.05	11.5	35	2.20	52.4	1.04	15	0.10	7.4	0.017	2.46	0.1	14.2	0.0	169
	9 DP-GR 0 DP-GR		0,28	0,87 4,64	0,08	18,85 15,2			2,28 2,81	52,4 404	1,94 12,1	19	0,18 0,16	7,4	0,017 0,669	3,46 1,25	9,1 5,9	14,3 12,5	0,2 2,75	3250
	1 DP-GR		0,41	5	0,42	186			2,91	187,5	8,22	18,95	0,31	3,5	0,134	1,38	90,1	14,5	3,79	1590
14-GR-081	GR-DP		0,		0,12		, , , ,		2,01	.0.,0	5,22	.0,00	0,07	3,0	0,101	.,,,,	33,1	,	9,70	- 1000
14-GR-080	GR-DP		0,18	1,23	0,06	58,2	17,9	51	1,95	48,6	3,87	21,7	0,23	6	0,048	3,65	29,6	38,3	0,89	381
14-GR-082	GR-DP		0,97	1,24	1,1	32,9	23,2	75	1,19	235	7,46	20,9	0,19	4,1	0,043	1,59	15	20,3	1,04	420
27749	2 DP-GR		-	-					-			_		-						
14-MQ-500	MQ-SJ																			
14-MQ-501	MQ-SJ																			
14-BR-101	BR-MA		0,69	6,51	0,47	8,77	49,2	32	0,98	316	8,95	18,95	0,08	1,3	0,097	0,28	3,2	14,9	4,17	1590
27751	.3 DP-GR-MA		1,04	8,36	0,24	20,3	48,8	77	1,35	165,5	11,15	27,4	0,1	1,4	0,133	0,57	7,6	16,5	2,43	2210
27751	5 DP-GR-MA		0,05	3,23	0,09	37,8	10,8		1,89	38,5	2,78	18,75	0,1	1,9	0,03	0,78	15,9	29,5	1,02	375
14-GR-108	GR-MA		0,12	2,04	-0,02	26,1	7,6	79	5,09	29,3	3,76	20,6	0,14	2,8	0,047	1,8	15,9	59,4	1,02	431
14-DP-110	DP-MQ-BR		0,21	1,33	0,19	39,1	8,8	49	2,91	57,8	3,16	19,4	0,13	3,6	0,037	2,84	18,7	21,6	0,52	320
14-DP-112	DP-MQ-BR		5,74	0,58	0,2	5,67	158	33	1,17	500	30,7	7,34	0,14	0,5	0,24	1,36	2,5	3,6	0,04	150
14-GC-505	GC-MA																			

No_Terrain	Équipe	Bi		Ca	Cd	Се	Со	Cr Cs	Cı	J Fe	Ga	Ge	Hf	In	К	La	Li	Mg	M	ln
14-BR-109	BR-GR		0,46	2,07	0,3	5 10,2	21,2	38	2,06	110	14,85	11,8	0,09	1,3	0,089	0,95	4,7	12,5	0,7	1160
14-BR-109	BR-GR		0,42	2,47	0,5.	2 12,85	19,6	40	0,91	125	14,55	10,2	0,09	1	0,148	0,52	5	5	0,87	2770
14-GR-113	GR-BR		1,28	2,88	1,2	9 23,1	28,8	82	1,18	299	13,1	8,98	0,11	0,9	0,301	0,37	8,1	10,8	1,56	2170
14-GC-507	GC-MA		0,11	1,64	0,0	5 40,1	. 7,7	67	7,16	13,7	2,79	20,4	0,12	2,9	0,054	2,03	19,3	41,1	0,87	398
14-GC-508	GC-MA		0,35	2,49	0,4	3 13,3	15,8	67	0,89	121,5	7,14	10,4	0,08	1,1	0,19	0,3	6,1	7,1	0,73	1330
14-GR-115	GR-BR																			
14-GC-511	GC-SJ		1,14	4,55	0,	5 14,05	36,7	3	1,72	596	10,75	20,7	0,1	2	0,141	0,69	5	22,5	2,14	1500 203
14-GC-512	GC-SJ		1,21	0,86	0,2	7 45,7	117	40	3,18	607	20,6	14,15	0,17	2,5	0,04	2,96	21,8	22,4	0,46	203

No_Terrain	Équipe	Mo Na	N	b N	li P	Pb	Rb	Re		S	Sb	Sc	Se	Sn	Sr	Т	a Te		Th	ri .
14-GR-069	GR-JFDL	4,86	1,27	5,3	97,1	520	4,6	99,8	0,006	>10.0	-0,0	5	6,4	2	0,5	165	0,39	0,46	4,5	0,211
14-jfdl-048	JFDL-GR	3	0,06		51	1400 <2				2,55	<5		9			15			<20	0,15
14-JFG-088	JFG-OC	7,37	2,9	6,7	79,8	420	40,8	55,6	0,009	3,13	0,0	5	14,5	3	1,6	119,5	0,43	0,25	5,5	0,297
14-JFG-089	JFG-OC	7,94	1,04	3,9	91,9	650	332	38,8	0,003		0,0		10,2	3	0,9	15,2	0,22	0,67	3,4	0,192
14-JFG-090	JFG-OC	10,45	1,9	5,1	84,1	280	125	79,4	0,002	5,55	-0,0	5	11,1	3	0,6	39,2	0,32	0,61	3,7	0,216
14-JFG-094	JFG-OC	0,34	2,21	5.4	2,3	530	27	146	-0,002	0,01	-0,0	5	2,8	-1	1,2	246	0,29	-0,05	37,3	0,116
14-JFG-091	JFG-OC	574	0,46	0,1	17	270	156	110	0,002	0,91			8		1,2	55	0,20		<20	0,03
14-GR-074	GR-JL	1	0,62		150	380	2			1,41	<5		43			352			<20	0,47
14-GR-070	GR-JL	2,9	1,92	1,2	71,2	460	18,2	92,7	0,012	5,02	-0,0	5	17,3	6	1,9	166	0,08	1,09	4,8	0,179
14-GR-071	GR-JL	14,05	2,5	25,5	129,5	140	18,4	81,4	0,009	9,62	-0,0	5	14,6	6	0,9	246	1,73	0,55	10,9	0,309
14-GR-073	GR-JL	6,27	1,88	6,2	106	660	10,5	159	0,007	4,38	-0,0	5	18,7	3	1,7	443	0,45	0,4	6	0,296
27748	39 DP-GR	11,4	2,41	7,4	15,7	50	24,9	130	-0,002	0,58	-0,0	5	2,9	1	0,8	199	0,57	0,09	12,6	0,083
	O DP-GR	1,63	1,96	7,9	71,2	400	5,9	103,5	-0,002		-0,0		34,9	1	12,5	141	0,38	0,09	12,0	0,476
	1 DP-GR	4,84	2,16	5,3	177,5	1900	17,3	71	0,007		-0,0		22,7	3	1,1	910	0,31	0,28	25,4	0,402
14-GR-081	GR-DP	,,,,,		5,5	,				5,00						.,,,		5,57		22,1	3,1
14-GR-080	GR-DP	2,85	2,97	6,5	42,6	290	35,8	128,5	0,002	0,67	-0,0	5	12	1	0,3	368	0,53	0,26	14,5	0,367
14-GR-082	GR-DP	3,38	2,76	10	50,8	340	168	123	0,003	3,78	-0,0	5	13,1	2	1,1	333	0,88	0,21	8,1	0,337
27749	DP-GR																	-		
14-MQ-500	MQ-SJ																			
14-MQ-501	MQ-SJ																			
14-BR-101	BR-MA	0,72	2,11	3,6	51	330	8,2	8,3	-0,002	1,28	0,0	7	48,6	1	7,9	121,5	0,2	-0,05	0,5	0,622
27751	.3 DP-GR-MA	0,59	1,98	6,7	64,8	1010	5,7	12,8	-0,002	1,38	0,1	1	43,9	3	2,6	163	0,41	-0,05	0,5	1,29
27751	.5 DP-GR-MA	0,84	2,8	3,3	23,6	670	10,4	41,6	-0,002	0,12	0,0		6,4	-1	0,5	845	0,22	0,05	3	0,269
14-GR-108	GR-MA	0,96	3,48	6,3	13,2	550	14,1	134,5	-0,002	0,09	-0,0	5	14,4	1	0,7	361	0,36	0,09	4,4	0,422
14-DP-110	DP-MQ-BR	2,91	2,78	10,4	23	340	23,3	131,5	-0,002	0,44	0,0	8	5,6	1	0,9	302	0,71	0,1	10,1	0,251
14-DP-112	DP-MQ-BR	19,95	0,04	2,2	169,5	70	57,8	95,5	0,009	>10.0	-0,0	5	2,1	12	2,1	171,5	0,1	0,72	1	0,055
14-GC-505	GC-MA																			_

No_Terrain	Équipe	Мо	N	a I	Nb	Ni	P Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	
14-BR-109	BR-GR		1,16	1,4	1,7	49,3	230	5,7	50,3	-0,002	7,08	0,05	4	1	0,8	434	0,11	0,1	0,9	0,134
14-BR-109	BR-GR		1,31	0,98	1,8	44,7	190	3,9	27,8	-0,002	6,83	0,06	4,3	1	1,4	283	0,12	0,07	0,7	0,122
14-GR-113	GR-BR		1,71	0,91	3,5	55,3	220	4,9	42,9	0,002	7,3	-0,05	7,9	1	5,4	143	0,34	0,15	7,2	0,112
14-GC-507	GC-MA		2,08	3,01	8,5	24,9	340	19,2	154,5	-0,002	0,05	0,09	7	1	1,3	327	0,55	0,06	9,3	0,226
14-GC-508	GC-MA		0,96	1,28	1,9	29,6	150	3,8	16,1	-0,002	3,82	0,08	5,8	1	1,8	289	0,14	0,05	1,2	0,121
14-GR-115	GR-BR																			
14-GC-511	GC-SJ		0,73	2,06	5,7	5,6	540	6,1	56,3	-0,002	2,43	0,08	51,1	4	14	223	0,33	0,07	0,8	1,215
14-GC-512	GC-SJ		4,13	1,95	5,7	245	590	24,1	117,5	0,007 >10	0.0	0,09	5	5	0,6	408	0,41	0,88	9,1	0,121

No_Terrain	Équipe	TI	U	V		w	Y	Zn		Zr	Zn	Cu	Pb	Ag	Ni
14-GR-069	GR-JFDL	0,	66	1,5	40	-0	0,1 1	0,6	50	110,5					
14-jfdl-048	JFDL-GR	<10		10	53	<10			90						
14-JFG-088	JFG-OC	0,		2,1	94			7,6	168	135					
14-JFG-089	JFG-OC	0,	33	1,4	66	C	),4 1	5,9	206	62,2					
14-JFG-090	JFG-OC	0,	38	1,7	68	C	),3	8,1	123	90,1					
14-JFG-094	JFG-OC		9,9	1,2	19	C	),1	5,7	38	196,5					
14-JFG-091	JFG-OC	<10		70	312				120	0,883			4	- 0	
14-GR-074	GR-JL	<10		10	250	<10			80						
14-GR-070	GR-JL		,1	2,2	107	С	),2 1	1,1	918	116,5					
14-GR-071	GR-JL	0,	71	2,2	157	-0	),1 1	3,6	86	129					
14-GR-073	GR-JL	1,	38	4,3	111	-0	),1 1	5,9	424	107,5					
277489	DP-GR	0,	85	3,6	15	C	),1	2,2	22	220					
277490			76	1,2	215			1,7	238	63,8					
277491			58	4,2	157			0,5	203	134					
14-GR-081	GR-DP														
14-GR-080	GR-DP	0,	83	1,7	119	C	),2	7,5	153	220					
14-GR-082	GR-DP	(	),9	2,3	78	С	),5 1	0,2	193	141					
277492	DP-GR		-												
14-MQ-500	MQ-SJ														
14-MQ-501	MQ-SJ														
14-BR-101	BR-MA	0,	08	1,4	295	C	),7 2	1,6	192	50,7				0	
277513	DP-GR-MA	0,	15	0,5	393	C	),3 4	3,2	164	27,1					
	DP-GR-MA	0,		0,7	63			5,1	61	64,1					
14-GR-108	GR-MA		08	2,7	114	C		3,7	78	120					
14-DP-110	DP-MQ-BR	0,	96	1,9	45	C	),1	3,9	63	121,5					
14-DP-112	DP-MQ-BR	0,	95	1,3	35	C	),4	4,4	6	24,1					
14-GC-505	GC-MA				7 (								4		

No_Terrain	Équipe	TI	U	V	w	Υ	Zn	Zr		Zn	Cu	Pb	Ag	Ni
14-BR-109	BR-GR		0,63	0,3	34	0,1	4,3	72	51,1					
14-BR-109	BR-GR		0,36	0,2	37	0,1	7,2	82	38,2					
14-GR-113	GR-BR		0,35	2	42	0,2	20,2	121	31,8					
14-GC-507	GC-MA		1,2	2,6	52	0,2	4,5	80	99,5					
14-GC-508	GC-MA		0,22	0,4	43	0,1	6,9	66	37,9					
14-GR-115	GR-BR													
14-GC-511	GC-SJ		0,34	0,5	425	2,5	40	131	59,8					
14-GC-512	GC-SJ		0,79	1,8	34	0,1	7,7	45	79,6					

No_Terrain	Équipe	Date_aaaammjj	Feuillet	Secteur	Estant	Nordant	Fuseau_UTM Aff	leur Bloc_1s5_ang _5s5_rond	Dimension_e	Environnement	Code
14-GR-065	GR-JFDL	2014-07-08	32K09	Trav-14	425948	5601714	18 x		3x1	Bûché	l1D
14-GR-066	GR-JFDL	2014-07-08	32KU9	Trav-14	426337	5601714	18 x		15x8 (2x2)	Forêt	l1D
	GR-JFDL	2014-07-08		Trav-14	425618		18 x		Pluri-décam	Bûché	11D
.4-GN-007	GR-SFDE	2014-07-08	32103	11av-14	423018	3001191	10		Fiuri-decam	buche	
14-jfdl-046	JFDL-GR	2014-07-08	32K09	trav-14	426172	5601561	18 x		100x100	buché	M22
14-jfdl-047	JFDL-GR	2014-07-08	32K09	trav-14	426497	5601386	18 x		10x20	buché	l1C
14 150 000	IFC CC	2014.07.00	22K00	Ch - hi'	440444	FF00000	40		20.45		11.0
14-JFG-086	JFG-OC	2014-07-08		Chablis	419444	5599082	18 x		30x15	Forêt près de tourbière	I1G
14-JFG-092	JFG-OC	2014-07-08	32K09	Chablis	419891,3	5598987,5	18 x		5x2	Bord de chemin	l1G
14-GR-068	GR-JFDL	2014-07-08	32K09	Trav-14	425780	5601683	18 x		3x1	Bûché+bord de chemin	I1D
14-JFG-087	JFG-OC	2014-07-08	32K09	Chablis	419945	5599004	18 x		3x4	Bord de chemin	I1G
	JFG-OC	2014-07-08		Chablis	419921	5598893	18 x		15x2	Bord de chemin	I1G
	GR-JL	2014-07-09		Bord de chemin	418158	5601579	18 x		6x3	Bord de chemin	M5
14-JFG-092	JFG-DP	2014-07-09	32K09	Chablis	419893	5598991,4	18 x		5x7	Bord de chemin, décapage manuel	l1G
14-JFG-092	JFG-DP	2014-07-09	32K09	Chablis	419895,4	5598988,2	18 x		5x7	Bord de chemin, décapage manuel	I1G
14-JFG-092	JFG-DP	2014-07-09	32K09	Chablis	419894,5	5598986,5	18 x		5x7	Bord de chemin, décapage manuel	l1G
14 DD 042	DD CD	2014 07 46	221/00		420422	5500444	40		2.5		148/146/204
	DP-GR	2014-07-16 2014-07-16		Chablis	420423 420594	5598414	18 x		2x5	Bord de route  Bord de route	I1B/I1G/ M4
	DP-GR GR-DP	2014-07-16		Chablis Bord de chemin	420594	5598600 5598597	18 x 18 x		1 x 50 8x2	Bord de chemin	I1B-I1G / M4   M5
14-JFG-092	JFG-OC	2014-07-16	32K09	Chablis	419896,9	5598991,6	18 x		7x7	Bord de chemin, décapage manuel	IIG
14-JFG-092	JFG-OC	2014-07-16	32K09	Chablis	419898,2	5598991,1	18 x		7x7	Bord de chemin, décapage manuel	l1G
	DP-GR	2014-07-16	321/09	Chablis	420523	5598471	18 x		1.5x2.0	Bord de route	I1B/ M4
14-DP-044			3/NI27	ICHADIIS	1 420023	33984/11	TOIX		IT.DXZ.U	rooru ue route	III D/ IVI4

No_Terrain	Équipe	Date_aaaammjj	Feuillet	Secteur	Estant	Nordant	Fuseau_UTM Affleur	Bloc_1s5_ang_	_ Dimension_e	Environnement	Code
14 :fdl 000	IEDI II IEC OC	2014-07-17	23/00	indias Cu	410000	FF0000F	_ <b>83</b>	_5s5_rond	n_m	herd de reute	M4
14-jfdl-058	JFDL-JL-JFG-OC	2014-07-17	32KU9	indice Cu nouvelle	419898	5599005	18 X		2x4	bord de route	IVI4
				propriété soque							
				propriete soque							
14-MQ-503	MQ-SJ	2014-09-23	32K09	Chablis Ouest	417241	5600424	18 x		25mx4m	Affleurement de chemin	I1C
14-BR-102	BR-MA	2014-09-23	32K09	Chablis ouest	417743	5600186	18 x		20x5	Bûcher	I1B
							LA 171				
										<i>→</i> 1	
14-BR-103	BR-MA	2014-09-23	32KU9	Chablis ouest	417815	5600401	18 x		3x5	Bûcher	I1D
14-BR-103	BR-MA	2014-09-23		Chablis ouest	427668	5600133	18 x		20x5	Bûcher	I1D
DN 107				chashs duest	727000	5000133	10/1		20x6		
14-BR-105	BR-MA	2014-09-23	32K09	Chablis ouest	417626	5599993	18 x		5x3	flanc de colline	I1B
14-BR-106	BR-MA	2014-09-23	32K09	Chablis ouest	417649	5599892	18 x		20x15	top de colline	I1D
14-MQ-504	MQ-SJ	2014-09-24	32K09	Chablis Ouest	418102	5599544	18 x		2mx1m	Affleurement décapé	I1C
14-MQ-505	MQ-SJ	2014-09-24	32K09	Chablis Ouest	418071	5599563	18 x	200	20mx7m	Affleurement flanc nord de colline	I1C-I1B
14-MQ-508	MQ-SJ	2014-09-24	32K09	Chablis Ouest	418037	5599583	18 x		5mx2.5m	Affleurement	I1C-I1B
14-MQ-509	MQ-SJ	2014-09-24	32K09	Chablis Ouest	418082	5599780	18 x		10mx10m	Affleurement en 3 boutons de roche	I1B
14-MQ-506	MQ-SJ	2014-09-24		Chablis Ouest	418059	5599635	18 x		5mx3m	Affleurement	I1C
14-MQ-507	MQ-SJ	2014-09-24	32K09	Chablis Ouest	418044	5599600	18			BEEPMAT kick a 150-200 en surface, on a creuser 1m de	/
21,111,000,		2021 03 21	02.1103	0.100.110 0.000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	333300				MT, kick a 1200, puis terrargileuse gorgée d'eau, très	ľ
										profond, décapage ? Autour du point, kick 30-300, flage	
				-						autour des zones conductrices, orientation N40E	
14-DP-102	DP-GR-MA	2014-09-24	32K09	Chablis-ouest	418835	5599863	18 x		30x10	Buton, bûcher	I1C
14-DP-107	DP-GR-MA	2014-09-24		Chablis-ouest	418737	5599814	18 x		4x1	Route d'hiver	I1C
14-GR-105	GR-MA	2014-09-24	32K09	Ouest	418703	5599774	18 x		15mx15m	Bûché	I1D
14-GR-109	GR-MA	2014-09-24	32K09	Ouest	418088	5599291	18 x		7mx2,5m	vieux chemin	I1D
14-GC-501	GC-BR	2014-09-24	32K09		418317	5599650	18 x		12 x 6 m	Sommet de colline	I1C
L4-GC-502	GC-BR	2014-09-24			418332	5599994	18 x	1	200 x 100	Sommet de colline	I1C
14-DP-101	DP-GR-MA	2014-09-24		Chablis-ouest	418808	5599827	18 x		2x2	Buton, bûcher	I1C
14-DP-103	DP-GR-MA	2014-09-24		Chablis-ouest	418855	5599938	18 x		5x1	Buton, bûcher	I1C
14-DP-104	DP-GR-MA	2014-09-24		Chablis-ouest	418617	5599708	18 x		10x4	Buton, bûcher	I1C
14-DP-105	DP-GR-MA	2014-09-24	32K09	Chablis-ouest	418507	5599659	18 x		30x10	Buton, bûcher	I1C

No_Terrain	Équipe	Date_aaaammjj Feuillet	Secteur	Estant	Nordant	Fuseau_UTM Affleur	Bloc_1s5_ang _5s5_rond	Dimension_e	Environnement	Code
14-DP-106	DP-GR-MA	2014-09-24 32K09	Chablis-ouest	418219	5599466			2.5x1.5	Route d'hiver	I1C
14-DP-108	DP-GR-MA	2014-09-24 32K09	Chablis-ouest	418145	5599375			2x2 m	Route d'hiver	I1C
14-GR-106	GR-MA	2014-09-24 32K09	Ouest	418748	5599728	18 x		1mx1m	Bûché	I1D
14-GR-107	GR-MA	2014-09-24 32K09	Ouest	418911	5599710	18 x		Pluri-décam (10mx10m)	Bûché	I1D
14-MQ-510	MQ-BR	2014-09-25 32K09	Indice Chablis	420755	5599066	18 x		15mx15m	Affleurement	I1D
14-MQ-512	MQ-BR	2014-09-25 32K09	Indice Chablis	420659	5599001	. 18 x		2mx1m	Poursuite de l'affleurement de Philippe orienté N35E, BEEPMAT kickait à 60-120, décapage de 2mx1m à 20- 30cm de profondeur	M4
14-MQ-514	MQ-BR	2014-09-25 32К09	Indice Chablis	420635	5598754	18 x		20mx10m	Affleurement de bord de chemin	I1D
14-MQ-511	MQ-BR	2014-09-25 32K09	Indice Chablis	420751	5598977	18 x		10mx5m	Affleurement	I1D
14-MQ-513	MQ-BR	2014-09-25 32K09	Indice Chablis	420638	5598799	18 x		20mx2-3m	Affleurement de bord de chemin avec ruisseau	IID
14-DP-109	DP-MQ-BR	2014-09-25 32K09	Secteur Cu	420674	5599022	18 x		TM 1x5	Route d'hiver	l1D
14-DP-109	DP-MQ-BR	2014-09-25 32K09	Secteur Cu	420671	5599021	18 x		TM 1x5	Route d'hiver	IID
14-DP-111	DP-MQ-BR	2014-09-25 32К09	Secteur Cu	420660	5598957	18 x		5 affl sur + 10	Route d'hiver	I1D
14-BR-107	BR-MQ-DP	2014-09-25 32K09	secteur cuivre	420661	5599023	18 x		3x1	bord de route	I1D, M4
14-GR-110	GR-SJ	2014-09-25 32K09	Ouest	420706	5599132	18 x		25mx25m (25mx8m)	Bord de route	I1B
14-GR-111	GR-SJ	2014-09-25 32K09	Ouest	420851	5599050	18 x		10mx10m (2mx2m et 2mx1m)	Forêt	I1C
14-GR-111	GR-SJ	2014-09-25 32К09	Ouest	420852	5599046	18 x		10mx10m (2mx2m et 2mx1m)	Forêt	IIC
14-GC-503	GC-MA	2014-09-25 32К09		420730	5599238	18 x		75 x 4m	Bord de route, 80m de la cible input	I1C
14-GC-504	GC-MA	2014-09-25 32K09		420699	5599312	18 x		1 x 1m	Sous 1m de M.T, 20m de la cible input	I1C
14-GC-506	GC-MA	2014-09-25 32K09		420453				1 x 1m	Sous 1m de M.T, à 16m de la cible input	I1C
14-BR-108	BR-MQ-DP	2014-09-25 32K09	secteur cuivre	420644				4x2	bord de route	I1D
14-MQ-515	MQ-DP-SJ	2014-09-26 32К09	Chablis Ouest	418036	5599594	18 x		6mx1m	Tranchée	F1
14-MQ-515	MQ-DP-SJ	2014-09-26 32К09	Chablis Ouest	418036	5599596	18 x		6mx1m	Tranchée	I1C

No_Terrain	Équipe	Date_aaaammjj	Feuillet	Secteur	Estant	Nordant	Fuseau_UTM Affleur	Bloc_1s5_ang	_	Environnement	Code
	+						_83	_5s5_rond	n_m		
L4-MQ-515	MQ-DP-SJ	2014-09-26	32K09	Chablis Ouest	418036	5599598	18 x		6mx1m	Tranchée	MetaSdt
4-MQ-515	MQ-DP-SJ	2014-09-26	32K09	Chablis Ouest	418036	5599600	18 x		6mx1m	Tranchée	MetaSdt
4-MQ-518	MQ-DP-SJ	2014-09-26	32K09	Chablis Ouest	417995	5599937	18 x		2,5mx1m	BEEPMAT kick à 20-30 puis 300max, Tranchée	MetaSdt
4-MQ-518	MQ-DP-SJ	2014-09-26	32K09	Chablis Ouest	417995	5599937	18 x		2,5mx1m	BEEPMAT kick à 20-30 puis 300max, Tranchée	MetaSdt
4-MQ-516	MQ-DP-SJ	2014-09-26	32K09	Chablis Ouest	417872	5599931	18 x			BEEPMAT kick à 20, puis plus rien	-
4-MQ-517	MQ-DP-SJ	2014-09-26	32K09	Chablis Ouest	417944	5599940	18 x		5mx3m	Affleurement en bouton	I1C
4-GR-112	GR-BR	2014-09-26		Ouest	418408	5599367	18 x		15mx10m	Forêt	I1D
4-GR-116	GR-BR	2014-09-26	32K09	Ouest	417890	5599278	18 x		20mx3m	Bord de chemin	I1D
4-GR-114	GR-BR	2014-09-26	32K09	Ouest	418389	5599288	18 x		35mx10m	Forêt	I1D
L4-MQ-524	MQ-MA	2014-09-27	32K09	Chablis Ouest	417623	5599008	18 x		7mx3m	Affleurement de flanc de colline	I1D
4-MQ-519	MQ-MA	2014-09-27	32K09	Chablis Ouest	418038	5599830	18 x			Beepmat kick à 30-120, creuser 6 pieds dans la terre	
4-MQ-520	MQ-MA	2014-09-27	32K09	Chablis Ouest	418247	5599664	18 x		3mx4m	argileuse, pas reussi a atteindre le roc Affleurement de flanc de colline	I1D
4-MQ-521	MQ-MA	2014-09-27	32К09	Chablis Ouest	417283	5599055	18 x			Rivière de 15m de large, Bord de la rivière avec aulne, bois, marais, aucun affleurement, aucun kick de beepmat sur l'anomalie ciblée	
4-MQ-522	MQ-MA	2014-09-27	32K09	Chablis Ouest	417504	5598951	18 x				
4-MQ-523	MQ-MA	2014-09-27	32K09	Chablis Ouest	417623	5598988	18 x		3mx2m	Affleurement de flanc de colline	I1D
4-GC-510	GC-SJ	2014-09-27	32K09		416990	5597807	18 x		6 x 4m	Dans route, flanc de colline	I1D
4-MQ-525	MQ-MA	2014-09-28	32K09	Nord-est Chablis	426218	5600990	18 x		4mx2m	Affleurement	I1D
-MQ-527	MQ-MA	2014-09-28	32K09	Nord-est Chablis		5601142	18 x		6mx3m		I1D
1-MQ-529	MQ-MA	2014-09-28	32K09	Nord-est Chablis	426408	5601184	18 x		5mx1,5m	Affleurement	I1D
4-GR-119	GR-SJ	2014-09-28	32K09	Ouest	420993	5598986	18 x		Pluridécam	Forêt/mousse	I1C
4-GR-120	GR-SJ	2014-09-28	32K09	Ouest	419911	5598371	18 x		Champ de blocs + AFF	Forêt/mousse	I1C
<b>1</b> -GC-513	GC-BR	2014-09-28	32K09		417492	5598846	18 x		12 x 1m	Zone sub-affleurante 30x 6m, colline	I1D
1-GC-513	GC-BR	2014-09-28	32K09		417492	5598846	18 x		12 x 1m	Zone sub-affleurante 30x 6m, colline	I1D
4-GC-513	GC-BR	2014-09-28	32K09		417492	5598846	18 x		12 x 1m	Zone sub-affleurante 30x 6m, colline	I1D

No_Terrain	Équipe	Date_aaaammjj Géologie	Minéralogie	Texture	Altération
14-GR-065	GR-JFDL	2014-07-08 80%I1D, 20%M4. I1D, couleur alt: gris pâle, fr: gris pâle. On observe un paragneiss qui est localement très rubané, est-ce de s'agit d'enclave ou d'un mélanosome? À proximité la roche semble avoir fusionnée (présence de schliren de BO), le pourcentage de BO est variable dans le paragneiss.	qu'il 50%QZ. 42%FP, 8%BO	gm, ma	
14-GR-066	GR-JFDL	2014-07-08   11D de coul alt: blanc très légèrement rosé et de couleur fraîche: blanc. Contient 5%BO, non-mag.		gm, ma, hj	
14-GR-067	GR-JFDL	L'affleurement contient 95% de tonalite et on observe 5% de paragneiss. Difficile de déterminer si il s'agit d'enclaves, de mélanosomes ou si la tonalite est le résultat de l'anatexie de ce paragneiss. On observe toutefois des textures de fluage "schlirens" en bordure des enclaves de M4 qui sont à 035/35. On note également la présence de passages pegmatitiques.	55%FP, 45%QZ, 5%BO	gm, ma	
14-jfdl-046	JFDL-GR	2014-07-08 roche très hétérogène, Migmatite, 70% constitué d'un intrusif tonalitique QZ-PG-BO(10%)+mx beige mm dureté 2-3 pour rubanement local bien développé, localement pour 10% de l'aff. Zone Si++ avec sulfure sub-mm, localement pour 10% de Zone de MV massive en grains mm, localement pour 10% de l'aff. volcanite mafique PX-PG sub-mm gris foncé bleuté avec mm QZ localement avec EP.	l'aff.	rubané	Si++ local, EP+ local,
14-jfdl-047	JFDL-GR	2014-07-08 Granodiorite massive à grains pluri-mm, QZ enfumé 30%, PG50%, FK20%, passage pegmatitique local riche en FK,	QZ enfumé 30%, PG50%, FK20%	massif	
14-JFG-086	JFG-OC	2014-07-08   11G (I1B)		gg, ma, hk	
14-JFG-092	JFG-OC	2014-07-08 I1G blanche en contact avec M4	BO (M4), 30% PX loc	I1G : gg, ma ; M4 : gf, hk	rouille, HM+, GR++, MC+
14-GR-068	GR-JFDL	2014-07-08 Idem à l'aff précédent sauf que la pourcentage de M4 est supérieur, soit environ 20%. Le M4 est bien rubané et le rubanement est à 030/30 (pas indiqué dans le fichier structure, car peut-être enclave). Photo: GR_068	55%FP, 45%QZ, 5%BO	gm, ma	
14-JFG-087	JFG-OC	2014-07-08   11G		gg, ma, hj	
14-JFG-093	JFG-OC	2014-07-08   11G/l1B blanc		gm-gg, ma	
14-GR-072	GR-JL	2014-07-09 Gneiss quartzo-feldspathique, coul alt: gris, fr: gris, rubané avec présence de migmatites. 10% de l1B massif (anatexie?, 10 d'enclaves mafiques à BO.	0% 90%QZ-FP, 10%BO	gf, ru, sd	
14-JFG-092	JFG-DP	2014-07-09   11G/I1B avec enclaves de M4		I1G : gg, ma ; M4 : gf, hk	rouille localement, micas gris-verts près des zones minéralisées
14-JFG-092	JFG-DP	2014-07-09   11G/11B avec enclaves de M4		I1G : gg, ma ; M4 : gf, hk	rouille localement, micas gris-verts près des zones minéralisées
14-JFG-092	JFG-DP	2014-07-09 I1G/I1B avec enclaves de M4		l1G : gg, ma ; M4 : gf, hk	rouille localement, micas gris-verts près des zones minéralisées
14-DP-043	DP-GR	2014-07-16 Granite avec pegm / 40% enclaves de paragneiss, loc BO 100%			
14-DP-045	DP-GR	2014-07-16 Granite et pegm avec <5% d'enclaves de paragneiss			
14-GR-083	GR-DP	2014-07-16 Gneiss quartzo-feldpathique à BO, coul alt: gris, fr: idem, fortement rubané, avec des leucosomes et des mélanosomes, RU(275/-99), Photo: GR_083			
14-JFG-092	JFG-OC	2014-07-16 I1G/I1B avec enclaves de M4		I1G : gg, ma ; M4 : gf, hk	rouille localement, micas gris-verts près des zones minéralisées
14-JFG-092	JFG-OC	2014-07-16 I1G/I1B avec enclaves de M4		I1G : gg, ma ; M4 : gf, hk	rouille localement, micas gris-verts près des zones minéralisées
14-DP-044	DP-GR	2014-07-16 Gradation du granite en digestion des paragneis			
14-DP-045	DP-GR	2014-07-16 Granite et pegm avec <5% d'enclave de paragneiss			

No_Terrain	Équipe	Date_aaaammjj	Géologie Géologie	Minéralogie	Texture	Altération
14-jfdl-058	JFDL-JL-JFG-OC	2014-07-17	affleurement coté nord de la route de l'indice de Cu, décapage fait a la mains 2x4m, L'affleurement est majoritairement	QZ-BO	rubanée	
			constitué de pegmatite (80%) et de clastes Paragneiss? (20%), les clastes de paragneiss QZ-BO finement rubané avec des			
			grains mm, la majorité de la minéralisation est situé dans les claste de paragneiss (soit environs 90%), la minéralisation est			
			constitué de PY pour 5-10% en grains mm diss reprit par le rubanement, échantillon composite de peg et paragneiss.			
14-MQ-503	MQ-SJ	2014-09-23	I1C: Granodiorite (60%QZ, 10-30%PG, 10%BO), leucocrate, passage enrichi a 30%BO, heterogeneite dans la distribution	I1C (60%QZ, 10-20%PG, 10%BO)	gm	
			minéralogique, litage localement avec bandes riches en BO et bandes riches en QZ, présence d'une enclave de paragneiss	, == (=================================	5	
			noire (2,5mx1,5m) a 90%BO, 10%QZ. Plusieurs autres petites enclaves de paragneiss.			
14-BR-102	BR-MA			QZ (30%), FK (20%)	gm, massif	silicification
			granitoïde. Présence d'enclave de couleur plus sombre avec quartz et biotite pour la plus grande partie. Présente parfois une		,	
			foliation avec leucosome et mélanosome, silicification sous forme de vene de quartz, pas d'orientation particulière, présence			
			de veine de quartz			
			dans le granitoïde.		.0	
L4-BR-103	BR-MA			QZ (40%), PG (50%)	gg, massif	
14-BR-104	BR-MA	2014-09-23	roche grenue à cristaux PGuri mm. Présence de Qtz et PG. Biotite aussi visible en gros cristaux. Zone par endroit semblant	QZ (40%), PG(50%)	gg, massif	
			milonitisé présence d'un litage qui pourrait être magmatique et minéraux beaucoup PGus fine.			
14-BR-105	BR-MA	2014-09-23	affleurement de roche grenueà cristaux de taille cm. Présence de qtz, FK et PG. Pegmatite pour un om de la roche présence	QZ (30%), PG(30%), FK(40%)	gg, massif	
			d'une enclave avec biotite et quartz, forte concentration en biotite-> paragneiss			
14-BR-106	BR-MA	2014-09-23	roche grenue avec cristaux mm à pluri mm. Présence de Qtz et FK-> granitoïde. Présence de biotite	QZ (40%), PG(50%),	gg, massif	
14-MQ-504	MQ-SJ	2014-09-24	l1C: Granodiorite-tonalite, granulométrie hétérogene, enclaves de paragneiss riche en biotite (>50%BIO, 30%QZ) a gf-gm	I1C (40%QZ, 40%PG, 15%BO)	gm, gg, pg	
14-MQ-505	MQ-SJ	2014-09-24	11C-11B (40%QZ, 40%PG, 15%BO, 5%FK), nombreuses enclaves de paragneiss bien conservés anguleuses avec digestion sur les	I1C-I1B (40%QZ, 40%PG, 15%BO, 5%FK	gm, gg	
			bords, passage avec pg QZ-PG-BIO lamellaire, lits quarzo-feldspathique			
14-MQ-508	MQ-SJ		11C-I1B (30-40%QZ, 30%PG, 20%FK, 10%BO), enclaves de paragneiss	I1C-I1B (30-40%QZ, 30%PG, 20%FK, 10%BO)	gm, gg	
14-MQ-509	MQ-SJ	2014-09-24	I1B: Granite (40%QZ, 30%PG, 20%FK, 10%BO), passage enrichi en FK, pas de rouille visibles, pas de sulfures	I1B (40%QZ, 30%PG, 20%FK, 10%BO)	ρρ	
14-MQ-506	MQ-SJ		I1C: Granodiorite (40%QZ, 40%PG, 10-15%FK, 1-5%BO), peu de BO, pas de rouille visible, belle fesse de roche, pas	I1C: (40%QZ, 40%PG, 10-15%FK, 1-5%BO)	gg, pg	
			d'échantillon		00/1-0	
14-MQ-507	MQ-SJ	2014-09-24				
14-DP-102	DP-GR-MA	2014-09-24	Granodiorite, 3% enclaves de paragneiss intermédiaire BO++,	30%QZ, 65%FPFK, 5%BO	<1 cm	
L4-DP-107	DP-GR-MA	2014-09-24	Granodiorite, 30% enclaves de paragneiss intermédiaire, hématisation	30% enclaves		Hématisation
14-GR-105	GR-MA	2014-09-24	Affleurement de tonalitique avec passages rosés (I1C?), texture loc pegmatitique. On note la présence d'~5% d.enclaves riches	60%FP, 30%QZ, 5%FK, 5%BO	gm à gg, ma	
			en BO (M4?) qui sont généralement orientées à 255/40. L'affleurement est fracturé en blocs métriques. Photo: GR_105			
14-GR-109	GR-MA	2014-09-24	Affleurement de tonalite contenant environ 50% d'enclaves plus riches en BO. Ces enclaves sont à gf, ma et gb. Elles ne	70%FP, 25%QZ, 5%BO	gm-gg, ma	
			semblent pas avoir d'orientation préférentielle. L'intrusion est de couleur banche et non mag.	, ==	8 88,	
14-GC-501	GC-BR	2014-09-24	I1C homogène, grains grossier, massif. Quelques enclaves de paragneiss >1m, réagi au beepmat, localement les enclaves	I1C: 35%QZ, 40% PG, 5% BO, 20% FK	gg, massif	
. 00 301			montre un plissement	10701 07 07 07 07 07 07 07 07 07 07 07 07 07	00) 11103311	
L4-GC-502	GC-BR		I1C homogène, grains grossier, à pegmatitique loc., massif. Quelques enclaves de paragneiss >1m,	I1C: 35%QZ, 40% PG, 5% BO, 20% FK	gg, peg. massif	Légère rouille
14-DP-101	DP-GR-MA	2014-09-24	Granodiorite, pas d'enclave	30%QZ, 67%FP-FK, 3%BO	< .8 cm	
14-DP-103	DP-GR-MA		Granodiorite, pas enclaves,	30%QZ, 67%FP-FK, 3%BO		
14-DP-104	DP-GR-MA		Granodiorite, pas enclaves,	40%QZ, 55%FP-FK, 5%BO	Hétérogène	
14-DP-105	DP-GR-MA		Granodiorite, 1% enclaves de paragneiss intermédiaire BO++,	40%QZ, 50%FP-FK, 5%BO	Hétérogène, < 1cm	
	1				1	

No_Terrain	Équipe	Date_aaaammjj	Géologie	Minéralogie	Texture	Altération
14-DP-106	DP-GR-MA	2014-09-24	Granodiorite, 15% enclaves de paragneiss intermédiaire			
14-DP-108	DP-GR-MA		Granodiorite, 20% enclaves de paragneiss intermédiaire	20% enclaves		
14-GR-106	GR-MA		Affleurement de tonalitique avec passages rosés (I1C?), texture loc pegmatitique.	60%FP, 30%QZ, 5%FK, 5%BO	gm à gg, ma	
14-GR-107	GR-MA		Affleurement de tonalitique avec passages rosés (I1C?), texture loc pegmatitique. (idem à GR-105) Photo: GR_107a & b	60%FP, 30%QZ, 5%FK, 5%BO	gm à gg, ma	
14-MQ-510	MQ-BR	2014-09-25	I1D: Tonalite (50%QZ, 40%PG, 5%BO, <5%FK), très peu ou pas de FK, granulométrie grossière, enclaves de M4, 1 belle enclave de M4 (1.5mx1m) très riche en BO (60-80%) à grain fin-moyen, beaucoup de BO dans la zone de contamination dans I1D (jusqu'à 15%), fluage	I1D: (50%QZ, 40%PG, 5%BO, <5%FK	gg	
14-MQ-512	MQ-BR	2014-09-25	M4: Métasédiment riche en BO (40%QZ, 30%PG, 20%BO, 10%MS)	M4: Métasédiment riche en BO (40%QZ, 30%PG, 20%BO, 10%MS)	gf, gm	
14-MQ-514	MQ-BR	2014-09-25	I1D: Tonalite (50%QZ, 45%PG, 5%BO), granulométrie grossière, présence d'enclaves de M4 fusionnées et démembrées, fluage important, présence de gros cristaux de QZ en bordure localement	I1D: Tonalite (50%QZ, 45%PG, 5%BO)	gg	
14-MQ-511	MQ-BR	2014-09-25	11D: Tonalite (50%QZ, 40%PG, 5%BO, <5%FK), très peu ou pas de FK, granulométrie grossière, enclaves de M4		gg	L.
14-MQ-513	MQ-BR	2014-09-25	I1D: Tonalite (50%QZ, 45%PG, 5%BO), granulométrie grossière, nombreuses enclaves de M4 (L=50cm-1m; l=10-50cm) avec forme fuselée en ogive, allongées et orientées N110E, 2 enclaves sont fondues et ont fluées (bordure supérieure mixée dans I1D avec BO incorporé dans le magma, augmentation de la taille des grains dans la bordure mixée.	I1D: (50%QZ, 45%PG, 5%BO)	gg	
14-DP-109	DP-MQ-BR	2014-09-25	Tonalite / Paragneiss (mafique) / I1D, Structure possible dans le M4 avec VQZ 3 cm et 20% PY, M4 ± 5% PY-PO	Enclave maf.	Faible schistosité	
14-DP-109	DP-MQ-BR	2014-09-25	Tonalite / Paragneiss (mafique) / I1D, Structure possible dans le M4 avec VQZ 3 cm et 20% PY, M4 ± 5% PY-PO	Enclave maf.	Faible schistosité	
14-DP-111	DP-MQ-BR	2014-09-25	Tonalite avec fragment Paragneiss (mafique) graduellement vers le sud hématisation	Hétérogène		Hématisation
14-BR-107	BR-MQ-DP		roche grenue avec cristaux pluri mm. Composition en quartz et plagioclase en gende majorité -> tonalite. Roche avec contact sub horizontal. Essentiellement composé de biotite et de quartz. Roche litée -> paragneiss. Présence de rouille en surface. Pyrite disséinée (?). présence de veine de quartz massive et stérile à l'oeil nu	50%PG, 40%QZ	gg, massif	rouille
14-GR-110	GR-SJ		Granite de couleur blanche et loc (côté ouest de la route) de couleur rosé (HM+), 38%PG, 30%FK, 30%QZ, 2%BO )(Les grains de FP sont ID). Contient envion 5-10% d'enclaves riches en BO n'ayant pas d'orientation préférentielle. On note quelques passages pegmatitiques rosés. On trouve un zone <1m² sonnant mag au BeepMat et à proximité on échantillonne une enclave d'~ 0,5mx0,3m riche en BO (décrite dans éch.).	68%FP, 30%QZ, 2%BO	gm-gg, ma	Loc HM+
14-GR-111	GR-SJ		Granodiorite avec localement une zone légèrement orangée faiblement minéralisée en PY à gf id et contenant également une zone contenant une zone qui sonne 550HFR au BeepMat.	65%FP, 30%QZ, 5%BO	gm, ma	
14-GR-111	GR-SJ	2014-09-25	Granodiorite avec localement une zone légèrement orangée faiblement minéralisée en PY à gf id et contenant également une zone contenant une zone qui sonne 550HFR au BeepMat.	65%FP, 30%QZ, 5%BO	gm, ma	
14-GC-503	GC-MA	2014-09-25	I1C grains moyen avec passage pegmatitique, quelques enclaves de paragneiss possédant une légère rouille locale, plusieurs fractures recoupe la foliation une hématisation est visible en bordure de ces dernière	I1C: 30% BO, 20%QZ, 50% PG	gg, peg. massif	Hématisation
14-GC-504	GC-MA	2014-09-25	I1C massive à grains grossier, homogène quelques gractures présente avec muscovite en bordure	I1C: 15%FK, 30%QZ, 20% BO, 35%PG	gg ma	
14-GC-506	GC-MA		Granodiorite massive, faible hématisation, patine légèrement rouillé	5%BO, 20% QZ, 35% FK, 40%PG	ma gg	Légère rouille
14-BR-108	BR-MQ-DP		roche à texture grenue. Forte proportion en quartz (40%) et plagioclase (50%) -> tonalite. Présence d'une enclave de roche avec uniquement de la biotite et du quartz -> gneiss. enclave de forme fuselée avec une orientation N110°;15°	QZ (40%), PG(50%),	gg, massif	
14-MQ-515	MQ-DP-SJ	2014-09-26	PO semi-massive (30%) et 0.5%CP, horizon semble orienté N40E			
14-MQ-515	MQ-DP-SJ	2014-09-26	I1D: Tonalite (45%QZ, 45%PG, 5%PO, 5%BO)	I1D: Tonalite (45%QZ, 45%PG, 5%PO, 5%BO)	gg	

No_Terrain	Équipe	Date_aaaammjj	Géologie	Minéralogie	Texture	Altération
14-MQ-515	MQ-DP-SJ	2014-09-26	Metasdt (30%QZ, 30%PG, 10%BO, 10%MS, 20%AM)	Metasdt (30%QZ, 30%PG, 10%BO, 10%MS,	gf, gm	
				20%AM)	0.7 0	
14-MQ-515	MQ-DP-SJ	2014-09-26	Metasdt (30%QZ, 30%PG, 10%BO, 10%MS, 20%AM)	Metasdt (30%QZ, 30%PG, 10%BO, 10%MS,	gf, gm	
				20%AM)	0,70	
14-MQ-518	MQ-DP-SJ	2014-09-26	MetaSdt (40-50%QZ, 20-30%mx noirs, 10%PG, 5%MS, 10%PG, 3-5%GT, 2-3%PO diss), amphibolite à grenat, faciès amphibolite	MetaSdt (40-50%QZ, 20-30%mx noirs,	gm	
				10%PG, 5%MS, 10%PG, 3-5%GT, 2-3%PO		
				diss)		
14-MQ-518	MQ-DP-SJ	2014-09-26	MetaSdt (40-50%QZ, 20-30%mx noirs, 10%PG, 5%MS, 10%PG, 3-5%GT, 2-3%PO diss), amphibolite à grenat, faciès amphibolite	MetaSdt (40-50%QZ, 20-30%mx noirs,	gm	
				10%PG, 5%MS, 10%PG, 3-5%GT, 2-3%PO		
				diss)		
14-MQ-516	MQ-DP-SJ	2014-09-26				
14-MQ-517	MQ-DP-SJ	2014-09-26	I1C: Granodiorite (40%QZ, 40%PG, 10%FK, 5%BO)	I1C: (40%QZ, 40%PG, 10%FK, 5%BO)	gg	
14-GR-112	GR-BR	2014-09-26	Tonalite de couleur alt: blanche, contenant 5% d'enclaves de M4 (10%BO). Ces enclaves n'ont pas d'orientation particulière.	63%FP, 35%QZ,2%BO	gm-gg, loc peg, ma	
14-GR-116	GR-BR	2014-09-26	Tonalite de coul. blanche contenant 25% d'enclaves de M4 riches en BO orientées préférentiellement à 020/55. Les enclaves	75%QZ, 20%QZ, 5%BO		
			sont rubannées avec des inj. à gm-gg de l1 (refonte des enclaves?).			
14-GR-114	GR-BR	2014-09-26	Tonalite idem à GR-112, les enclaves sont globalement orientées à 100°N. Un endroit sonne conducteur au Beepmat (au	63%FP, 35%QZ,2%BO	gm-gg, loc peg, ma	
			milieu de la I1D) pas Tonalite idem à GR-112			
14-MQ-524	MQ-MA	2014-09-27	I1D: Tonalite/granodiorite avec nombreuses enclaves métriques de M4, digestion magmatique importante avec FP des	I1D: (40%QZ, 40%PG, 10%BO, tr-0.5%PY)	gg	
			bordures d'enclaves, lits QFP dans les enclaves, structure de FP imbriquées			
14-MQ-519	MQ-MA	2014-09-27			- 0	
14-MQ-520	MQ-MA	2014-09-27	I1D, digestion magmatique intense des enclaves, alternance de lits QFP et delits micacés dans M4, présence de plis-microplis	I1D: Tonalite		
			des lits de QFP orienté N40E, P=50SE, plis déversés quasiment couchés			
14-MQ-521	MQ-MA	2014-09-27				
14-MQ-522	MQ-MA	2014-09-27	Aucun kick de Beepmat sur l'anomalie ciblée			
14-MQ-523	MQ-MA		I1D: Tonalite (50%QZ, PG50%)			
14-GC-510	GC-SJ		Essentiellement constitué de granodiorite à grains moyen, homogène, massif, la seconde partie est de même composition	30% QZ, 20% FK, 50% PG	gg, hj, br	
14 00 010	3		mais à grains grossiers (peg.) la 3e partie est tonalitique avec 30% BO et recoupé par des veines de QZ+PG	30% Q2, 20% 11, 30% 1 0	66, 11, 51	
14-MQ-525	MQ-MA	2014-09-28	I1D: Tonalite (50%QZ, 50%PG)	I1D: Tonalite (50%QZ, 50%PG)	gg	
14-MQ-527	MQ-MA		I1D: Tonalite (50%QZ, 50%PG), une grosse enclave de M4 avec nombreux lits de QFP et lits de BO	I1D: (50%QZ, 50%PG)	gg	
14-MQ-529	MQ-MA	2014-09-28	I1D: Tonalite (50%QZ, 50%PG), nombreuses enclaves avec FP, digestion magmatique, Lits QFP avec lits de BO	I1D: (50%QZ, 50%PG)	gg	
14-GR-119	GR-SJ	2014-09-28	Granodiorite de couleur blanc rosé,contenant <5% de enclaves de M4 et ayant localement une texture pegmatitique.	67%FP, 30%QZ, 3%BO	gm-gg, loc pg, ma,	
14-GR-120	GR-SJ	2014-09-28	Granodiorite de couleur blanc rosé,contenant <5% de enclaves de M4 et ayant localement une texture pegmatitique. Non-	67%FP, 30%QZ, 3%BO	gm-gg, loc pg, ma,	
		_	mag		hj	
14-GC-513	GC-BR		Trouvé au beepMat, La roche est contitué en majeure partie de tonalite, une petite bande de M4 ce rentrouve à l'extrémité de l'affleurement, en rénurage la source du conducteur semble être une enclave de M4 à BO+PO+CP qu'une petite partie à été échantilloné	≥ 35%QZ, 45%PG, 20%BO	gg ma	Légère rouille
14-GC-513	GC-BR	2014-09-28	Trouvé au beepMat, La roche est contitué en majeure partie de tonalite, une petite bande de M4 ce rentrouve à l'extrémité de l'affleurement, en rénurage la source du conducteur semble être une enclave de M4 à BO+PO+CP qu'une petite partie à été échantilloné	235%QZ, 45%PG, 20%BO	gg ma	Légère rouille
14-GC-513	GC-BR	2014-09-28	Trouvé au beepMat, La roche est contitué en majeure partie de tonalite, une petite bande de M4 ce rentrouve à l'extrémité de l'affleurement, en rénurage la source du conducteur semble être une enclave de M4 à BO+PO+CP qu'une petite partie à été échantilloné	e 35%QZ, 45%PG, 20%BO	gg ma	Légère rouille

No_Terrain	Équipe	Date_aaaammjj	Minéralisation	Orientation	No_Echant	Description_Echant	Code_analys	No_Rapport	Au Pt	Pd	Ag
14-GR-065	GR-JFDL	2014-07-08			277850	Composite de I1D et M4	1	14105425	-0,005		0,0
14-GR-066	GR-JFDL	2014-07-08			277951	Représentatif de l'aff.	1	14105425	-0,005		0,0
14-GR-067	GR-JFDL	2014-07-08			277952	I1D+M4	1	14105425	-0,005		0,0
14-jfdl-046	JFDL-GR	2014-07-08	TrSF Loc		279542		1	14105425	-0,005		0,0
14-jfdl-047	JFDL-GR	2014-07-08			279543		1	14105425	-0,005		0,0
		2011.07.00							0.005		
14-JFG-086	JFG-OC	2014-07-08				Enclave de M4, gf, 40% BO, tr PO	1	14105425			0,2
14-JFG-092	JFG-OC	2014-07-08	TrCP, TrPY		281858	30% PX, 2% CP, tr PY, diss	1	14105425	1,955		1,2
14-GR-068	GR-JFDL	2014-07-08									
14-JFG-087	JFG-OC	2014-07-08									
14-JFG-093	JFG-OC	2014-07-08		poche dm de QZ							
14-GR-072	GR-JL	2014-07-09			277956	M5	1	14105425	-0,005		0,0
14-JFG-092	JFG-DP	2014-07-09	TrCP, TrPY	Faille, structure ondulante minéralisée en CP	281860	90% micas gris-verts, 5-10% CP disséminée, QZ	1	14105421	<0.005		1,8
14-JFG-092	JFG-DP	2014-07-09	TrCP, TrPY	Faille, structure ondulante minéralisée en CP		Facture minéralisée, 20% micas gris-verts, 5% CP, placage de MO	1	14105421	0,418		60,
14-JFG-092	JFG-DP	2014-07-09	TrCP, TrPY	Faille, structure ondulante minéralisée en CP	281862	M4, rouillé, gf, ru, 15% BO, tr PY	1	14105421	0,06		1,3
14-DP-043	DP-GR	2014-07-16			277492		1	14113177	-0,005		0,1
14-DP-045	DP-GR	2014-07-16	2% amas de SF		277493		1	14113177			0,0
14-GR-083	GR-DP	2014-07-16	TrPY à gf diss id		277964	M5 représentaif avec TrPY	1	14113177	-0,005		0,0
14-JFG-092	JFG-OC	2014-07-16	TrCP, TrPY	Faille, forte fracturation minéralisée en CP et PY	281864	M4, rouillé, gf, ru, 15% mica, 1% PY, 2% CP, placage de MO	1	14113177	-0,005		2,2
14-JFG-092	JFG-OC	2014-07-16	TrCP, TrPY	Faille, forte fracturation minéralisée en CP et PY	281865	I1B, gm, fa++, ma, CL++, 5% CP, 1% BN	1	14113177	-0,005		2,2
	20.5	6011.05									
14-DP-044	DP-GR	2014-07-16									
14-DP-045	DP-GR	2014-07-16			L						

No_Terrain	Équipe	Date_aaaammjj	Minéralisation	Orientation	No_Echant	Description_Echant	Code_analys	No_Rapport	Au	Pt	Pd	Ag
14-jfdl-058	JFDL-JL-JFG-OC	2014-07-17	5-10%PY gf-gm diss repris par le rubanement	difficile à déterminé	279453		-1	. 14113280	-0,005			1,0
14-MQ-503	MQ-SJ	2014-09-23	pas de sulfures		281961	idem	SOQVAL-1	14160281				
14-BR-102	BR-MA	2014-09-23										
14-BR-103 14-BR-104	BR-MA BR-MA	2014-09-23 2014-09-23										
14-BR-105	BR-MA	2014-09-23										
14-BR-106	BR-MA	2014-09-23										
14-MQ-504	MQ-SJ		pas de sulfures		281962	idem	SOQVAL-1	14160281	-0,005			0,05
14-MQ-505	MQ-SJ	2014-09-24	pas de sulfures		281963	idem	SOQVAL-1	14160281	-0,005			0,07
14-MQ-508	MQ-SJ	2014-09-24	tr PO ?		281964	idem	SOQVAL-1	14160281	-0,005			0,02
14-MQ-509	MQ-SJ	2014-09-24	pas de sulfures		281965	idem	SOQVAL-1	14160281	-0,005			0,1
14-MQ-506	MQ-SJ		pas de sulfures									
14-MQ-507	MQ-SJ	2014-09-24				N40E, N130E						
11.00.100		2011.00.01		5 L NOSS / NOSS /			2001414	14450000				
14-DP-102	DP-GR-MA	2014-09-24		Enclave N030 à N050 / subhorizontal	277514		SOQVAL-1	14160282				0,02
14-DP-107	DP-GR-MA	2014-09-24		Hématisation N40°	277516		SOQVAL-1	14160282	-0,005			-0,01
14-GR-105	GR-MA	2014-09-24			277990	Représentatif	SOQVAL-1	14160281	-0,005			0,03
14-GR-109	GR-MA	2014-09-24			277992	Encaissant + enclaves	SOQVAL-1	14160281	-0,005			0,05
14-GC-501	GC-BR	2014-09-24	tr PY CP?	Enclave 030°, Pli, 160°	279466	Paragneiss sonnant au beepmat	SOQVAL-1	14160282	0,005			0,68
14-GC-502	GC-BR	2014-09-24			279467	Echant homogène de l'affleurement	SOQVAL-1	14160282	-0,005			0,05
14-DP-101	DP-GR-MA	2014-09-24										
14-DP-103	DP-GR-MA	2014-09-24										
14-DP-104 14-DP-105	DP-GR-MA DP-GR-MA	2014-09-24 2014-09-24										

No_Terrain	Équipe	Date_aaaammjj	Minéralisation	Orientation	No_Echant	Description_Echant	Code_analys	No_Rapport	Au	Pt	Pd	Ag
14-DP-106	DP-GR-MA	2014-09-24	<b>.</b>	Frankrus NOO 00°			e					
			tr	Enclave N80-90°			-			-		
14-DP-108	DP-GR-MA	2014-09-24								-		
14-GR-106	GR-MA	2014-09-24										
14-GR-107	GR-MA	2014-09-24										
14-MQ-510	MQ-BR	2014-09-25	pas de sulfures		281966	idem	SOQVAL-1	14160281	-0,008	5		0,02
14-MQ-512	MQ-BR	2014-09-25	tr PY diss		281967	idem	SOQVAL-1	14160281	-0,005	5		0,24
14-MQ-514	MQ-BR	2014-09-25	tr PY diss		281968	M4 avec tr PY diss en cx cubiques	SOQVAL-1	14160281	-0,005	5		0,16
	110.00	224422	1.00									
14-MQ-511	MQ-BR		pas de sulfures							<del>                                     </del>		
14-MQ-513	MQ-BR	2014-09-25	pas de sulfures									
14-DP-109	DP-MQ-BR	2014-09-25	3-15% PY-PO	SP et VQZ N52/35	277517	Portion nord du M4	SOQVAL-1	14160282	-0,005	5		1,07
14-DP-109	DP-MQ-BR	2014-09-25	3-15% PY-PO	SP et VQZ N52/35	277518	Portion sud du M4	SOQVAL-1	14160282	0,005	5		2,:
14-DP-111	DP-MQ-BR	2014-09-25	Tr	Vn hém N80-90, enclave N250/40S	277520	Idem	SOQVAL-1	14160282	-0,005	5		0,23
14-BR-107	BR-MQ-DP	2014-09-25	tr PY		277652	paragneiss avec pyrite	SOQVAL-1	14160282	-0,005	5		0,66
14-GR-110	GR-SJ		Loc dans une enclave: 15-20%PY hd à gf [] dans des lits mm			Enclave: riche en BO avec des lits mm contenant 20%PY à gf hd et des lits mm riches en QZ (S9? Ou mudstone avec bandes riches en PY)	SOQVAL-1	14160281	0,008	5		2,38
14-GR-111	GR-SJ		TrPY à gf id diss, loc (zone du BM) 10%PO à gf jointifs, 1%PY, TrMO, TrCP		277994	Zone légèrement orangée, 5%BO, TrPY à gf id diss	SOQVAL-1	14160281	-0,006	5		0,96
14-GR-111	GR-SJ	2014-09-25	TrPY à gf id diss, loc (zone du BM) 10%PO à gf jointifs, 1%PY, TrMO, TrCP			Dans la zone qui sonne 500 HFR au BeepMat (difficile à échantillonner), la zone est Si+/++ présence d'AM (Enclave I3A?) mag+	SOQVAL-1	14160281	-0,005	5		0,32
14-GC-503	GC-MA	2014-09-25	tr PY	Enclave 040, Fracutre 250/80	279468		SOQVAL-1	14160282	-0,005	5		0,17
14-GC-504	GC-MA	2014-09-25					SOQVAL-1	14160282	-0,005			0,06
14-GC-506	GC-MA	2014-09-25					SOQVAL-1	14160282	0,005			0,03
14-BR-108	BR-MQ-DP	2014-09-25										
14-MQ-515	MQ-DP-SJ		PO semi-massive (30%) et 0.5%CP	N40E	281969	PO semi-massive (30%) et 0.5%CP	SOQVAL-1	14160281	-0,008	5		4,12
14-MQ-515	MQ-DP-SJ		2-3%PO diss, mouchetée		281970	I1C avec 2-3%PO	SOQVAL-1	14160281	0,005	5		1,41

No_Terrain	Équipe	Date_aaaammjj	Minéralisation	Orientation	No_Echant	Description_Echant	Code_analys	No_Rapport	Au Pt	Pd	Ag
14-MQ-515	MQ-DP-SJ	2014-09-26	6 2-3%PO diss, mouchetée		281971	Metasdt avec 2-3%PO	SOQVAL-1	14160281	0,006		1,79
14-MQ-515	MQ-DP-SJ	2014-09-26	6 2-3%PO diss, mouchetée		281972	Metasdt avec 2-3%PO	SOQVAL-1	14160281	0,006		1,76
14-MQ-518	MQ-DP-SJ	2014-09-26	5 2-3%PO		281973	Metasdt avec 2-3%PO	SOQVAL-1	14160281	-0,005		0,34
14-MQ-518	MQ-DP-SJ	2014-09-26	5 2-3%PO		281974	Metasdt avec 2-3%PO	SOQVAL-1	14160281	0,005		0,28
14-MQ-516	MQ-DP-SJ	2014-09-26	6								
14-MQ-517	MQ-DP-SJ	2014-09-26	pas de sulfures								
14-GR-112	GR-BR	2014-09-26	5		277996	Enclave et tonalite	SOQVAL-1	14160281	-0,005		0,09
14-GR-116	GR-BR	2014-09-26	6		277999	Enclave et tonalite	SOQVAL-1	14160281	-0,005		0,05
14-GR-114	GR-BR	2014-09-26	5								
14-MQ-524	MQ-MA	2014-09-27	7 tr-0.5%PY diss, mouchetée		281975	idem	SOQVAL-1	14160281	-0,005		0,03
14-MQ-519	MQ-MA	2014-09-27	7								
14-MQ-520	MQ-MA	2014-09-27	7	N40E, P=50SE, axe des							
				plis N100E, P=30SE							
14-MQ-521	MQ-MA	2014-09-27	7								
14-MQ-522	MQ-MA	2014-09-27	7				-				
14-MQ-523	MQ-MA	2014-09-27	7 pas de sulfures visibles								
14-GC-510	GC-SJ	2014-09-27	7								
14-MQ-525	MQ-MA	2014-09-28	pas de sulfures		281976	idem	SOQVAL-1	14160281	-0,005		0,03
14-MQ-527	MQ-MA		3 pas de sulfures								
14-MQ-529	MQ-MA		pas de sulfures								
14-GR-119	GR-SJ	2014-09-28	3		277601	Représentatif	SOQVAL-1	14160282	-0,005		0,03
14-GR-120	GR-SJ	2014-09-28	3		277602	50%Enclave de M4, 50%I1C	SOQVAL-1	14160282	-0,005		0,09
14-GC-513	GC-BR	2014-09-28	30%PO, 5%CP		279476	Zone sonnant au beepmat	SOQVAL-1	14160282	0,011		0,16
14-GC-513	GC-BR	2014-09-28	30%PO, 5%CP		279477	Zone sonnant au beepmat	SOQVAL-1	14160282	-0,005		0,17
14-GC-513	GC-BR	2014-09-28	30%PO, 5%CP		279478	Zone sonnant au beepmat	SOQVAL-1	14160282	-0,005		1,58

No_Terrain	Équipe	Date_aaaammjj Al	As	Ва	Ве	Bi	Ca	Cd	Се	Со	Cr	Cs	Cu	Fe	Ga	Ge	•	lf
14-GR-065	GR-JFDL	2014-07-08	6,5	0,7	230	2,42	0,07	3,11	0,27	37,7	14,8	158	6,01	12,1	4,04	19,8	0,1	2,6
14-GR-066	GR-JFDL	2014-07-08	6,2	0,6	770	0,87	0,03	0,47	0,02	41,1	1,1	45	1,8	1,4	0,6	16,15	-0,05	4,9
14-GR-067	GR-JFDL	2014-07-08	6,56	0,6	580	2,14	0,01	1,42	0,04	39,1	5,8	38	3,49	5	1,49	18,5	0,07	2,4
14-jfdl-046	JFDL-GR	2014-07-08	7,79	1	570	1,64	0,04	1,41	0,05	94,2	11,2	64	2,7	6,6	2,67	23,9	0,22	3,2
14-jfdl-047	JFDL-GR	2014-07-08	5,54	-0,2	370	1,86	0,02	0,83	-0,02	3,58	0,4	10	1,29	2,1	0,33	14,3	0,16	1,5
14-JFG-086	JFG-OC	2014-07-08	7,93	0,9	90	0,43	0,27	6,12	0,58	10,6	39,8	333	1,11	248	9,59	17,4	0,09	1,2
14-JFG-092	JFG-OC	2014-07-08	5,96	1,7	50	1,6	5,27	0,08	0,02	29,1	18	684	2,08	2820	2,95	17,45	0,29	2,6
14-GR-068	GR-JFDL	2014-07-08																
14-JFG-087	JFG-OC	2014-07-08																
14-JFG-093	JFG-OC	2014-07-08						-										-
14-GR-072	GR-JL	2014-07-09	8,1	0,5	1800	1,33	0,02	1,23	0,02	11,3	5,9	38	3,46	8,1	1,75	26,6	0,05	2,2
14-JFG-092	JFG-DP	2014-07-09	7,31	5,5	210	1,78	1,69	0,23	0,03	29,4	22,1	221	2,15	21500	4,51	21,6	0,11	3,5
14-JFG-092	JFG-DP	2014-07-09	7,12	6,1	820	1,66	160	0,16 <0.03	2	29,6	111	9	1,45	12550	3,32	19,1	0,29	2,1
14-JFG-092	JFG-DP	2014-07-09	6,69	0,5	270	1,66	13,75	0,07	0,02	110	15,7	86	4,77	1390	2,48	18,8	0,21	3,6
14-DP-043	DP-GR	2014-07-16	6,7	0,2	400	1,7	0,11	2,76	0,41	34,6	26,9	358	5	47,4	4,34	18,1	0,21	4,3
14-DP-045	DP-GR	2014-07-16	6,71	-0,2	850	1,17	0,07	0,82	0,02	19,35	3,2	19	1,79	13,8	1,17	16	0,2	9,7
14-GR-083	GR-DP	2014-07-16	7,02	0,3	750	1,15	0,05	1,02	0,02	15,05	7,1	79	3,66	7,3	2,89	19,7	0,17	3,2
14-JFG-092	JFG-OC	2014-07-16	8,44	18	210	2,03	1,38	0,52	0,2	82,4	74,8	129	1,61	18050	7,66	20,2	0,24	5,9
14-JFG-092	JFG-OC	2014-07-16	5,78	20,5	70	1,32	0,21	0,18	0,2	15,8	20,8	17	0,96	10500	1,72	13,3	0,11	4,8
14-DP-044	DP-GR	2014-07-16																
14-DP-045	DP-GR	2014-07-16																

No_Terrain	Équipe	Date_aaaammjj /	Al	As B	a Be	E	Gi Ca	Cd	Ce	•	Co	Cr Cs	C	Cu	Fe	Ga G	e	Hf
14-jfdl-058	JFDL-JL-JFG-OC	2014-07-17	9,8	1,2	430	1,82	0,9	1,26	0,29	65,5	44,3	163	4,6	278	11,1	25,8	0,19	5
14-MQ-503	MQ-SJ	2014-09-23									- 4							
14-BR-102	BR-MA	2014-09-23																
14-BR-103	BR-MA	2014-09-23																
14-BR-104	BR-MA	2014-09-23																
14-BR-105	BR-MA	2014-09-23																
14-BR-106	BR-MA	2014-09-23																
14-MQ-504	MQ-SJ	2014-09-24	7,14	-0,2	1620	3,48	2,16	0,31	-0,02	17,4	1,2	12	6,95	3,1	0,91	22,7	0,15	3,1
14-MQ-505	MQ-SJ	2014-09-24	4,69	-0,2	380	1,41	0,11	0,73	0,02	26,3	1,1	13	0,9	11,3	0,65	10,9	0,14	1,4
14-MQ-508	MQ-SJ	2014-09-24	6,3	0,2	1210	0,87	0,03	0,59	0,02	20,7	2,3	13	2,57	3,4	1,29	14,55	0,15	4
14-MQ-509	MQ-SJ	2014-09-24	8,73	0,2	420	15,45	0,52	0,54	0,02	43,9	0,7	4	10,15	4,5	0,76	31,7	0,18	6,1
14-MQ-506	MQ-SJ	2014-09-24																
14-MQ-507	MQ-SJ	2014-09-24																
14-DP-102	DP-GR-MA	2014-09-24	7,13	-0,2	1060	0,91	0,04	0,63	0,03	58,9	2	20	2,36	8,3	1,51	17,25	0,14	5,5
14-DP-107	DP-GR-MA	2014-09-24	8,05	0,7	810	1,03	0,14	0,62	0,02	90,7	3,2	80	1,61	2,1	3,18	20,9	0,22	5
14-GR-105	GR-MA	2014-09-24	6,91		880	1,46	0,04	0,76	0,03	91,8	1,8	9	2	3,2			0,21	5
14-GR-109	GR-MA	2014-09-24	7,28	0,4	1440	1,14	0,07	1,39	0,04	361	6,4	11	3,99	10,2	3,32	21,7	0,39	6,2
								61	- 40									
14-GC-501	GC-BR	2014-09-24	7,09	0,6	240	2,05	0,55	2,03	0,21	35,6	19,5	116	5,46	421	4,81	18,95	0,08	3,3
14-GC-502	GC-BR	2014-09-24	6,2	1	1170	0,99	0,07	0,84	0,03	95,1	2,6	11	1,94	11,5	2,8	16,8	0,15	11,3
14-DP-101	DP-GR-MA	2014-09-24																
14-DP-103	DP-GR-MA	2014-09-24																
14-DP-104	DP-GR-MA	2014-09-24																
14-DP-105	DP-GR-MA	2014-09-24																

No_Terrain	Équipe	Date_aaaammjj	Al	As	Ва	Ве	Bi	Ca	Cd	Ce	Со	Cr	Cs	Cu	Fe	Ga	Ge	Hf
14-DP-106	DP-GR-MA	2014-09-24																
14-DP-108	DP-GR-MA	2014-09-24																
14-GR-106	GR-MA	2014-09-24																
14-GR-107	GR-MA	2014-09-24																
14-MQ-510	MQ-BR	2014-09-25	6,04	0,	3 62	0 1,39	0,0	6 0,73	0,03	8,73	2,1	1 2	1 5,45	5 4,6	1,22	2 14,95	0,15	3,5
14-MQ-512	MQ-BR	2014-09-25	7,34	0,:	2 49	0 1,04	1 0,1	7 3,5	0,15	65,2	15,9	9 11	0 2,09	32,6	3,6	19,1	0,18	2,9
14-MQ-514	MQ-BR	2014-09-25	6,33	0,	4 11	0 3,9	3 0,3	2 1,88	0,08	71,3	14,8	3 28	3 1,38	3 11,4	3,5	5 17,1	0,18	4,1
14-MQ-511	MQ-BR	2014-09-25																
14-MQ-513	MQ-BR	2014-09-25																
14-DP-109	DP-MQ-BR	2014-09-25	7,07	0,	6 31	0 1,20	5 1,1	5 2,1	0,39	46,4	19,3	3 10	5 5,72	1 243	3 10,9	17,9	0,16	3,5
14-DP-109	DP-MQ-BR	2014-09-25	5,43	-0,	2 20	0 1,19	) 1,	6 0,91	0,17	39,5	29,5	5 6	6 2,24	1 242	12,3	15,05	0,11	2,9
14-DP-111	DP-MQ-BR	2014-09-25	6,53	-0,	2 55	0 1,29	0,2	2 1,56	0,18	29,5	10,9	9 12	2 3,18	51,7	3,0	15,95	0,13	3,3
14-BR-107	BR-MQ-DP	2014-09-25	7,03	0,	3 29	0 1,44	1 0,5	2 1,9	0,34	47,8	20,9	6	4 3,86	5 91,3	5,7	16,5	0,11	3,:
14-GR-110	GR-SJ	2014-09-25	4,57	1,	9 3	0 2,4	1,9	2 0,35	0,3	16,65	73,4	14 14	4 7,9	746	17,9	23,8	0,12	2
14-GR-111	GR-SJ	2014-09-25	6,73	0,	8 77	0 1,38	3 0,9	3 0,91	0,03	35,4	2,9	9 1	3 1,49	9 66,7	2,9	16,75	0,14	2,6
14-GR-111	GR-SJ	2014-09-25	6,63	0,	2 63	0 1,28	3 0,2	7 1,21	0,14	42,9	11	1 2	9 1,97	7 107	3,4	15,55	0,15	4,7
14-GC-503	GC-MA	2014-09-25	8,33	0,	4 69	0 1,33	2 0,1	7 1,34	0,02	26,5	16,2	2 12	4 7,73	3 70,4	4,:	3 23,8	0,13	4,9
14-GC-504	GC-MA	2014-09-25	6,81	0,	4 90	0 0,9	5 0,0	8 0,78	0,02	47,8	3 4,3	1 3	8 3,16	5 8,2	2,0:	18,45	0,16	4,4
14-GC-506	GC-MA	2014-09-25	6,33							50,6							0,14	
14-BR-108	BR-MQ-DP	2014-09-25																
14-MQ-515	MQ-DP-SJ	2014-09-26	2,68	0,:	9 9	0 1,14	1,3	1 0,63	1,06	14,85	68,	1 5	2 1,57	7 694	28,	6,21	0,13	0,0
14-MQ-515	MQ-DP-SJ	2014-09-26	5,79	0,	4 31	0 6,5	5 1,7	8 1,21	0,32	15,4	14,5	5 1:	5 1,88	141,5	5,7	12	0,1	3,9

No_Terrain	Équipe	Date_aaaammjj Al	As	Ва	Ве	Bi	Ca	Cd	Ce	Со	Cr	Cs	Cu	Fe	Ga	Ge	Hf	
14-MQ-515	MQ-DP-SJ	2014-09-26	5,75	0,3	320	1,52	1,11	4,64	0,98	26,6	29,1	214	3,48	218	12,95	15,4	0,13	1,6
14-MQ-515	MQ-DP-SJ	2014-09-26	4,53	0,4	190	1,06	1,68	5,18	1,05	53,6	43,4	528	3,73	176,5	13,75	10,55	0,15	1,9
14-MQ-518	MQ-DP-SJ	2014-09-26	6,76	0,2	590	1,1	0,22	2,57	0,14	89,8	14,5	77	5,15	34,4	5,67	17,15	0,15	2,7
14-MQ-518	MQ-DP-SJ	2014-09-26	7,47	0,2	770	1,56	0,15	4,49	0,18	227	31,8	102	7,03	22,7	6,47	20,9	0,28	2,9
14-MQ-516	MQ-DP-SJ	2014-09-26																
14-MQ-517	MQ-DP-SJ	2014-09-26						71										111
14-GR-112	GR-BR	2014-09-26	6,79	-0,2	740	1,24	0,08	0,99	-0,02	19,9	2,1	38	4,16	17,8	1,95	15,9	0,15	3,6
14-GR-116	GR-BR	2014-09-26	7,57	0,3	520	1,56	0,05	1,74	0,05	46,2	12,7	113	4,65	12,5	4,04	20,7	0,16	3,2
14-GR-114	GR-BR	2014-09-26																
14-MQ-524	MQ-MA	2014-09-27	6,95	0,3	1280	1,02	0,04	0,8	0,03	58,6	3	14	2,46	5,2	1,44	16,8	0,2	4,3
14-MQ-519	MQ-MA	2014-09-27																
14-MQ-520	MQ-MA	2014-09-27																
14-MQ-521	MQ-MA	2014-09-27																
14-MQ-522	MQ-MA	2014-09-27																
14-MQ-523	MQ-MA	2014-09-27																
14-GC-510	GC-SJ	2014-09-27																
14-MQ-525	MQ-MA	2014-09-28	6,08	-0,2	1160	0,91	0,02	0,41	-0,02	4,22	0,3	6	1,52	2,2	0,31	12,55	0,15	3,2
14-MQ-527	MQ-MA	2014-09-28				-		,				- 64	,					
14-MQ-529	MQ-MA	2014-09-28				1,38					-						-	V _V
14-GR-119	GR-SJ	2014-09-28	6,73	-0,2	710	1,18	0,03	0,76	0,02	19,25	1,4	11	1,48	3,4	0,84	15,75	0,08	2,6
14-GR-120	GR-SJ	2014-09-28	7,75	-0,2	1590	1,17	0,06	1,38	-0,02	12,2	9,5	108	5,42	20,5	3,44	20,5	0,1	2,8
14-GC-513	GC-BR	2014-09-28	7,05	0,8	1210	1,2	0,2	0,69	0,12	134,5	9,9	26	3,96	56,3	2,36	17,25	0,2	3,5
14-GC-513	GC-BR	2014-09-28	6,58	-0,2	450	1,7	0,18	1,33	0,15	39,3	12,4	36	3,28	87,5	2,31	16,7	0,1	7
14-GC-513	GC-BR	2014-09-28	6,55	-0,2	700	1,42	0,32	1,31	0,57	29,3	26	24	2,14	925	3,39	14,9	0,1	4

No_Terrain	Équipe	Date_aaaammjj In	K	La	Li	Mg	Mn	Мо	Na	Nb	Ni	P	Pk	Rb	R	e S	Sb	
14-GR-065	GR-JFDL	2014-07-08	0,099	1,19	15,9	35,5	2,25	962	0,68	2,53	9,4	43,9	1070	10	89,9	-0,002	0,02	-0,05
14-GR-066	GR-JFDL	2014-07-08	0,005	4,59	21,5	9,9	0,11	76	0,7	1,96	2,4	3,2	70	25,8	148	-0,002	0,01	0,05
14-GR-067	GR-JFDL	2014-07-08	0,019	1,36	18	23,5	0,54	221	0,56	3,09	5,3	19	170	22,8	86,7	-0,002	0,01	-0,05
14-jfdl-046	JFDL-GR	2014-07-08	0,032	2,05	45,8	38,5	1,97	428	0,18	3,13	6,7	55,3	910	7,2	92	-0,002	0,04	-0,05
14-jfdl-047	JFDL-GR	2014-07-08	0,005	1,81	2,1	6,4	0,04	45	0,21	2,59	1,3	1,5	50	16,7	58,8	-0,002	0,01	-0,05
14-JFG-086	JFG-OC	2014-07-08	0,158	0,75	4,5	20,4	2,46	4440	0,47	2,05	2,3	137,5	340	5,8	36,5	-0,002	0,46	-0,05
14-JFG-092	JFG-OC	2014-07-08	0,111	0,4	16,7	112,5	5,05	289	25,8	1,78	6,5	58,4	180	203	29,9	0,011	0,27	0,05
14-GR-068	GR-JFDL	2014-07-08																
14-JFG-087	JFG-OC	2014-07-08											14					
14-JFG-093	JFG-OC	2014-07-08			-													
14-GR-072	GR-JL	2014-07-09	0,026	4,56	4,9	30,9	0,62	251	0,21	2,86	5,4	11	880	24,3	156,5	-0,002	0,04	-0,05
14-JFG-092	JFG-DP	2014-07-09	0,234	1,62	12,9	55,9	2,25	231	125	2,83	11	34,7	270	77,5	83,6	0,005	2	0,08
14-JFG-092	JFG-DP	2014-07-09	0,47	4,65	9,8	83,9	2,71	184	3840	1,37	15,1	31,4	500	547	134	0,173	1,39	0,55
14-JFG-092	JFG-DP	2014-07-09	0,073	2,23	66,8	46,7	1,69	125	32,4	2,56	5,8	31,2	170	35,4	107,5	0,003	1,06	0,06
14-DP-043	DP-GR	2014-07-16	0,079	2,41	17,1	50,3	4,43	899	1,37	2,23	7,7	276	1040	11,5	156,5	-0,002	0,12	-0,05
14-DP-045	DP-GR	2014-07-16	0,015	4,36	9,4	9,9	0,23	139	5,81	2,45	7,2	9,9	130	30,6	155	-0,002	0,07	-0,05
14-GR-083	GR-DP	2014-07-16	0,034	4,53	6,7	23,5	0,91	344	1,99	2,11	16,2	20,6	680	26,8	184	-0,002	0,04	-0,05
14-JFG-092	JFG-OC	2014-07-16	0,206	1,59	40,9	52,9	1,89	236	8,15	3,82	11,5	94,2	220	328	71,7	0,004	5,62	0,07
14-JFG-092	JFG-OC	2014-07-16	0,063	0,0	8	9,3	0,29	81	76,9	3,5	2,1	9,6	50	44,8	54,9	0,002	1,26	0,08
14-DP-044	DP-GR	2014-07-16																
14-DP-045	DP-GR	2014-07-16						- 1										

No_Terrain	Équipe	Date_aaaammjj	In	K La	Li		Mg	Mn	Мо	Na	N	b	Ni P		Pb	Rb	Re S	S	b
14-jfdl-058	JFDL-JL-JFG-OC	2014-07-17	0,111	2,84	32,3	70,3	1,07	7 103	0	4,72	2,06	13,7	79,2	230	23,5	280	0,003	3,36	-0,05
14-MQ-503	MQ-SJ	2014-09-23											_						
14-BR-102	BR-MA	2014-09-23																	
14 PR 103	BR-MA	2014-09-23																	
14-BR-103 14-BR-104	BR-MA	2014-09-23																	
14-BR-105	BR-MA	2014-09-23																	
14-BR-106	BR-MA	2014-09-23							1										
14-MQ-504	MQ-SJ	2014-09-24	0,018	4,27	7	6	0,13	3 11	4	0,24	1,64	10,2	4,4	120	36,5	273	-0,002	0,01	-0,05
14-MQ-505	MQ-SJ	2014-09-24	0,006	1,91	9,1	4,4	0,12	2 6	0	0,23	1,82	2,2	5,7	70	17,1	64,7	-0,002	0,02	-0,05
14-MQ-508	MQ-SJ	2014-09-24	0,016	4,43	9,2	21,5	0,29	9 14	1	2,85	1,93	7,3	4,7	100	27,3	161	-0,002	0,02	-0,05
14-MQ-509	MQ-SJ	2014-09-24	0,019	4,18	14,4	14,8	0,1	1 13	6	0,24	3,62	20	1,1	80	50,1	341	-0,002	-0,01	-0,05
14-MQ-506	MQ-SJ	2014-09-24																	
14-MQ-507	MQ-SJ	2014-09-24															11		
14-DP-102	DP-GR-MA	2014-09-24	0,021	5,8	28	15,9	0,24	4 23	4	4,34	1,98	12,3	6	400	40,5	238	0,002	0,04	0,07
14-DP-107	DP-GR-MA	2014-09-24	0,044	5,2	55,7	15,5	0,7	7 24	9	0,22	3,23	13,4	27,1	870	16	243	-0,002	0,01	0,07
14-GR-105	GR-MA	2014-09-24	0,013		40,9	20,8				0,4	2,42	9,4	3,3	370	34		-0,002	0,01	-0,05
14-GR-109	GR-MA	2014-09-24	0,041	3,48	156,5	42	0,6	1 35	7	0,29	2,48	18	5,1	1220	24,5	167,5	-0,002	0,03	-0,05
14-GC-501	GC-BR	2014-09-24	0,051	1,2	19,3	44	1,15	5 41	5	3,4	2,84	9,5	46,8	310	11,4	123	-0,002	1,4	0,07
14-GC-502	GC-BR	2014-09-24	0,031	3,28	45,8	16,2	0,34	4 26	8	6,65	2,23	14,5	3,4	750	23,2	112,5	-0,002	0,13	0,08
14-DP-101	DP-GR-MA	2014-09-24																	
14-DP-103	DP-GR-MA	2014-09-24							1 7										
14-DP-104	DP-GR-MA	2014-09-24							1										
14-DP-105	DP-GR-MA	2014-09-24																	

No_Terrain	Équipe	Date_aaaammjj In		К	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb	Rb	Re	S	Sb
14-DP-106	DP-GR-MA	2014-09-24				1												
14-DP-108	DP-GR-MA	2014-09-24																
14-GR-106	GR-MA	2014-09-24																
14-GR-107	GR-MA	2014-09-24																
14-MQ-510	MQ-BR	2014-09-25	0,02	3,89	4,	1 14	,4 0,:	25 144	2,3	7 1,8	34 8	3,2 1	0,2 11	0 29	159	-0,002	0,01	-0,05
14-MQ-512	MQ-BR	2014-09-25	0,042	1,03	25,	3 15	,4	2 598	0,56	3,0	)4	3,9 4	6,8 96	0 13,2	42,7	-0,002	0,44	-0,05
14-MQ-514	MQ-BR	2014-09-25	0,086	1,3	31,	3 33	,6 1	,8 688	0,38	5 2,7	73	7,4		0 29,3	142,5	-0,002	0,02	-0,05
14-MQ-511	MQ-BR	2014-09-25																
14-MQ-513	MQ-BR	2014-09-25								7								
14-DP-109	DP-MQ-BR	2014-09-25	0,124	2,07	20,	4 31	,9 1,	46 744	4,7!	5 2,1	.1	7,5 7	5,9 72	0 11,6	137	0,003	5,18	0,07
14-DP-109	DP-MQ-BR	2014-09-25	0,088	1,14	19,	3 16	,5 0,	64 375	11,9	5 1,7	74 (	5,3 9	9,1 31	0 15,3	72,9	0,003	7,82	0,08
14-DP-111	DP-MQ-BR	2014-09-25	0,091	4,05	13,	1 10	,6 1,	45 560	6,5	2,1	.2	7,8 3	8,9 25	0 25,4	171	-0,002	0,32	-0,05
14-BR-107	BR-MQ-DP	2014-09-25	0,034	1,03	22,	3 19	,6 0,	84 436	3,48	2,7	71 (	5,4	52 41	0 10,7	86,4	0,004	2,53	0,06
14-GR-110	GR-SJ	2014-09-25	0,268	0,98	5,	2 79	,4 2,	08 1080	9,0	7 0,2	22 15	5,6 2	217 94	0 26,6	128,5	0,005	7,86	-0,05
14-GR-111	GR-SJ	2014-09-25	0,023	2,67	17,	4	5 0,	14 82	3,77	7 2	,8	3,5	3 29	0 30,5	109	-0,002	0,31	-0,05
14-GR-111	GR-SJ	2014-09-25	0,047	2,99	19,	2 9	,7 0,	37 222	7,1	3 2,3	36	7,8 1	3,7 25	0 28,3	115,5	-0,002	0,68	-0,05
14-GC-503	GC-MA	2014-09-25	0,06	4,11	13,	3 46	,5 1,	13 504	3,8	7 2,8	37 12	2,5 3	2,6 49	0 24,2	246	-0,002	0,25	0,07
14-GC-504	GC-MA	2014-09-25	0,039	4,51	22,	1 17	,8 0,	44 212	13,8	3 2,0	06 1	2,5 1	4,4 33	0 28,6	190	-0,002	0,09	0,05
14-GC-506	GC-MA	2014-09-25	0,035									5,9	4 19			-0,002		0,03
14-BR-108	BR-MQ-DP	2014-09-25	3,020	.,,,	23,		,		3,2,	1,0					1.3	5,552	3,31	5,1
14-MQ-515	MQ-DP-SJ	2014-09-26	0,036	0,76	5,	9 9	,9 0,	43 404	14,9	5 0,8	34 2	2,1 15	2,5 19	0 4,6	61,6	0,005	>10.0	-0,05
14-MQ-515	MQ-DP-SJ	2014-09-26	0,006	1,35	7,	1 5	,4 0,	08 94	32,2	2,6	64	1,2 3	4,1 3	0 27,5	53,7	0,006	4,31	-0,05

No_Terrain	Équipe	Date_aaaammjj In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P	Pb	Rb	Re	S	Sb	
14-MQ-515	MQ-DP-SJ	2014-09-26	0,103	0,93	11,1	15,5	1,64	1660	5,35	1,11	6	57,1	750	5,9	66,7	0,004	6,82	-0,05
14-MQ-515	MQ-DP-SJ	2014-09-26	0,149	1,08	21,1	19,1	5,04	2120	2,75	0,64	6,1	229	810	4,4	74,2	0,002	6,85	-0,05
14-MQ-518	MQ-DP-SJ	2014-09-26	0,072	1,35	39,8	38	1,78	3020	1,56	1,98	4,4	51,8	770	10,7	72,7	-0,002	1,03	-0,05
14-MQ-518	MQ-DP-SJ	2014-09-26	0,109	1,85	101,5	52,4	3,71	1280	0,86	1,59	4,3	143	1560	13,1	85,3	-0,002	0,98	-0,05
14-MQ-516	MQ-DP-SJ	2014-09-26																
14-MQ-517	MQ-DP-SJ	2014-09-26	11										110					
14-GR-112	GR-BR	2014-09-26	0,022	3,74	9,6	28,5	0,32	198	2,21	2,36	9,5	4,9	180	29,7	171,5	-0,002	0,04	-0,05
14-GR-116	GR-BR	2014-09-26	0,05	2,41	19,1	48,7	1,45	462	2,15	2,76	11,1	42,5	680	15,5	158	-0,002	0,06	-0,05
14-GR-114	GR-BR	2014-09-26																
14-MQ-524	MQ-MA	2014-09-27	0,018	5,01	28	18,5	0,31	166	0,2	2,06	9,1	5,7	500	35,3	178	-0,002	0,01	-0,05
14-MQ-519	MQ-MA	2014-09-27																
14-MQ-520	MQ-MA	2014-09-27																
14-MQ-521	MQ-MA	2014-09-27																
14-MQ-522	MQ-MA	2014-09-27			_													
14-MQ-523	MQ-MA	2014-09-27															-	
14-GC-510	GC-SJ	2014-09-27																
14-MQ-525	MQ-MA	2014-09-28	-0,005	4,8	2,2	2,6	0,03	35	0,52	1,85	0.2	1,5	60	28,3	134,5	-0,002	0,01	-0,05
14-MQ-527	MQ-MA	2014-09-28	0,000	.,,-		=,-	-,,,,,			.,					10.1,0			
14-MQ-529	MQ-MA	2014-09-28																
14-GR-119	GR-SJ	2014-09-28	0,01	4,16	9,8	10,9	0,15	131	0,57	2,56	5,9	2,5	220	30,6	166,5	-0,002	0,03	-0,05
14-GR-120	GR-SJ	2014-09-28	0,029	3,7	6,1	42,4	1,26	396	2,47	2,6	8,5	32,4	490	24	215	-0,002	0,04	-0,05
14-GC-513	GC-BR	2014-09-28	0,025	5,2	69,1	18,9	0,26	195	2,4	2,09	10,9	16,1	120	40,3	206	-0,002	0,6	0,07
14-GC-513	GC-BR	2014-09-28	0,032	2,1	19,3	20,5	0,27	197	4,43	2,74	8	18,2	100	25,1	106	-0,002	0,61	0,09
14-GC-513	GC-BR	2014-09-28	0,03	2,42	14,7	12,7	0,17	145	5,84	2,64	4,8	33	200	24,1	96,7	-0,002	1,97	0,08

No_Terrain	Équipe	Date_aaaammjj Sc	Se	Sn	Sr	Та	Те	Th	Ti	TI	U	V	w	Υ	Zn	Zr	Zn
.4-GR-065	GR-JFDL	2014-07-08	14,2	1	2	516	0,6	-0,05	9,3	0,274	0,92	4,2	89	-0,1	14,2	79	95,2
4-GR-066	GR-JFDL	2014-07-08	1,4	-1	0,5	269	0,13	-0,05	30,5	0,045	0,89	1,3	6	-0,1	2,7	6	143
4-GR-067	GR-JFDL	2014-07-08	5,4	-1	1	412	0,84	-0,05	15	0,125	0,58	3,3	31	-0,1	6,1	34	74,7
4 :5-11 0.4.5	JFDL-GR	2014-07-08	7	1	1,5	249	0,44	-0,05	14,5	0,198	0.7	1,5	49	0,4	9,1	60	113,5
4-jfdl-046	JFDL-GK	2014-07-08	'		1,5	249	0,44	-0,03	14,5	0,198	0,7	1,5	43	0,4	9,1	00	113,3
1-jfdl-047	JFDL-GR	2014-07-08	0,5	-1	0,3	352	0,4	-0,05	4,9	0,015	0,33	0,9	2	0,2	1,4	5	34,3
1-JFG-086	JFG-OC	2014-07-08	37,7	1	2,1	236	0,13	0,28	0,5	0,426	0,31	0,8	220	0,3	13,9	182	36,1
4-JFG-092	JFG-OC	2014-07-08	8,1	99	0,6	48,3	0,66	0,19	6,1	0,142	0,18	6	148	0,6	6,7	68	90,8
4-GR-068	GR-JFDL	2014-07-08				. 1											
-JFG-087	JFG-OC	2014-07-08															
-JFG-093	JFG-OC	2014-07-08															
-GR-072	GR-JL	2014-07-09	3,8	-1	1,9	1010	0,28	-0,05	0,5	0,204	1,01	0,5	39	-0,1	5,8	73	79,5
I-JFG-092	JFG-DP	2014-07-09	19,2	2	1,4	82,7	0,94	0,29	11,1	0,323	0,46	3,5	155	0,8	6	93	126,5
1-JFG-092	JFG-DP	2014-07-09	8,6	91	0,6	149	0,91	0,07	16,1	0,195	3,19	128,5	282	0,3	7,4	48	69,6
4-JFG-092	JFG-DP	2014-07-09	9,7	14	0,7	54,6	0,4	0,3	5,6	0,287	0,61	3,6	94	0,4	5,7	26	139,5
1-DP-043	DP-GR	2014-07-16	12,1	-1	0,9	383	0,57	-0.05	7	0,242	1,36	2,4	78	0,2	8,9	96	136
-DP-045	DP-GR	2014-07-16	2,6	-1	0,5	262	0,4	-0,05	8,7	0,072	0,95	2,7	14	0,1	3	14	304
-GR-083	GR-DP	2014-07-16	8,3	1	0,8	287	1	-0,05	7,6	0,237	1,21	0,7	51	0,1	7,9	63	97,9
1-JFG-092	JFG-OC	2014-07-16	15,2	5	1,4	187,5	0,66	0,49	10,8	0,37	0,53	5,3	133	3,2	11,4	99	205
4-JFG-092	JFG-OC	2014-07-16	0,9	1	-0,2	85,7	0,38	0,12	8,2	0,031	0,3	6,6	10	0,2	2,8	25	143,5
4-DP-044	DP-GR	2014-07-16													0	- 11	
4-DP-044 4-DP-045	DP-GR	2014-07-16															

No_Terrain	Équipe	Date_aaaammjj S	Sc	Se	Sn	Sr	Та	Te Ti	т Т	ï T	ri u	) V	w		Y Zn	Zr	Zn
14-jfdl-058	JFDL-JL-JFG-OC	2014-07-17	19,6	4	4,7	240	1,01	0,42	7,6	0,528	1,66	1,5	162	0,3	7,5	389	173
14-MQ-503	MQ-SJ	2014-09-23															
14-BR-102	BR-MA	2014-09-23															
14-BR-103	BR-MA	2014-09-23															
14-BR-104	BR-MA	2014-09-23										4 -					
14-BR-105	BR-MA	2014-09-23															
14-BR-106	BR-MA	2014-09-23															
14-MQ-504	MQ-SJ	2014-09-24	2,8	-1	2,3	240	16,55	0,07	4,6	0,054	2,79	0,7	6	0,2	3,2	17	72,2
14-MQ-505	MQ-SJ	2014-09-24	0,9	1	0,3	196	0,2	0,06	16,7	0,029	0,35	0,8	4	0,7	1,8	9	48,7
14-MQ-508	MQ-SJ	2014-09-24	3,1	-1	0,7	248	0,43	-0,05	5,1	0,118	0,97	0,9	14	0,1	1,6	31	148
14-MQ-509	MQ-SJ	2014-09-24	2,4	-1	1,8	95,7	3,34	0,05	41,2	0,07	3,41	4,4	6	0,3	9,5	27	155,5
14-MQ-506	MQ-SJ	2014-09-24															
14-MQ-507	MQ-SJ	2014-09-24															
14-DP-102	DP-GR-MA	2014-09-24	3,7	1	1	224	0,7	-0,05	26,9	0,111	1,59	2,5	12	0,1	7,1	31	173
14 DD 107		2014 00 24			2.1								57			F.1	176.5
14-DP-107 14-GR-105	DP-GR-MA GR-MA	2014-09-24 2014-09-24	9,1	1	2,1 0,6	169 228		-0,05 -0,05	24,1 34,4	0,296 0,086	1,57 1,12	2,4 2,5	57 8	0,4 1,1	11,8 7,5	51 27	176,5 175,5
			F 7		0.0	309	0.50	0.05	00.4	0.570	1.00	0.0	20		10	70	005
14-GR-109	GR-MA	2014-09-24	5,7	1	0,9	309	0,58	-0,05	22,1	0,572	1,09	0,9	60	1	19	76	285
14-GC-501	GC-BR	2014-09-24	7,4	1	1,1	346	0,55	0,22	17,7	0,258	1,01	4	65	0,1	3,3	78	108,5
14-GC-502	GC-BR	2014-09-24	3,4	1	0,5	257	0,47	-0,05	17,7	0,311	0,73	1,8	34	0,2	10,5	35	428
14-DP-101	DP-GR-MA	2014-09-24															
14-DP-103	DP-GR-MA	2014-09-24															
14-DP-104 14-DP-105	DP-GR-MA DP-GR-MA	2014-09-24 2014-09-24															

No_Terrain	Équipe	Date_aaaammjj S	Sc	Se	Sn	Sr		Та	Те	Th	T		П	U	V	w	Y	Zn	Zr	Zn
14-DP-106	DP-GR-MA	2014-09-24									_									
14-DP-108	DP-GR-MA	2014-09-24																		
14-GR-106	GR-MA	2014-09-24																		
14-GR-107	GR-MA	2014-09-24																		
14-MQ-510	MQ-BR	2014-09-25	3		-1	0,9	205	1,0	-0,	05	3,8	0,092	0,98	1,	1 10	6 0,	1 3,9	24	107,5	5
14-MQ-512	MQ-BR	2014-09-25	12,2		1	0,7	661	0,2	25 0	,1	5	0,351	0,46	1,:	5 8.	7 0,9	9 11,9	78	117,5	5
14-MQ-514	MQ-BR	2014-09-25	13,8		1	2,9	207	1,0	04 0,	05	11,3	0,311	0,87	2,	9 9	1 0,;	2 10,3	152	157,5	5
14-MQ-511	MQ-BR	2014-09-25			11							j. j.								
14-MQ-513	MQ-BR	2014-09-25										0.0								
14-DP-109	DP-MQ-BR	2014-09-25	13,4		3	2,4	341	0,6	51 0,	27	5	0,437	1,25		3 94	4 0,-	4 12,2	116	122,5	5
14-DP-109	DP-MQ-BR	2014-09-25	6,6		2	0,9	157	0	,7 0,	76	8,3	0,153	0,55	3,	3 5:	1 0,	1 5,7	57	92,9	
14-DP-111	DP-MQ-BR	2014-09-25	6,7		1	1,3	216	1,2	25 0,	09	16,9	0,138	1,12		3 40	6 0,	2 6,5	84	97,3	3
14-BR-107	BR-MQ-DP	2014-09-25	9,3		1	0,6	484	0,9	96 0,	21	11,7	0,251	0,7		4 6	5 0,:	2 6,3	126	106,5	5
14-GR-110	GR-SJ	2014-09-25	24,6		4	5,3	11,9	0,6	63 O,	55	1,8	0,275	1,14	0,:	9 142	2 0,:	2 30	220	72,6	5
14-GR-111	GR-SJ	2014-09-25	1,9		1	0,4	279	0	,3 0,	35	16,3	0,081	0,66		1 14	4 1,:	5 2,7	12	96,2	2
14-GR-111	GR-SJ	2014-09-25	4,2		1	0,7	265	0,4	45 0,	09	12,1	0,11	0,73	1,	3 20	6 0,:	2 5,7	34	158,5	5
14-GC-503	GC-MA	2014-09-25	12		1	2,2	331	0	,9 0,	06	14	0,398	1,89	3,	9 108	8 0,	2 5,2	2 80	169	)
14-GC-504	GC-MA	2014-09-25	4,8		1	1,1	255	n	,5 -0,	25	15,6	0,159	1,27	1,	4 2	7 0,	1 4,8	39	143	
14-GC-506	GC-MA	2014-09-25	2,6			0,8	198,5				23,9	0,08			+	7 0,				
14-BR-108	BR-MQ-DP	2014-09-25	2,0			3,5	220,3	3,-	- 0,		,-	3,30	~, <del>*</del> *	0,		0,	3,5		. 3,5	
14-MQ-515	MQ-DP-SJ	2014-09-26	4,2		3	1,2	156	0,1	12 0,	48	1,5	0,105	0,54	1,	1 19	9,0	6 4,9	39	36,7	<u> </u>
14-MQ-515	MQ-DP-SJ	2014-09-26	0,6		2	-0,2	332	0,2	28 0,	23	5,6	0,014	0,42	2.	4 :	3 0,	1 1,5	7	124,5	5

No_Terrain	Équipe	Date_aaaammjj Sc	Se	Sn	Sr	Та	Те	Th	Ti	П	U	V	W	Υ	Zn	Zr	Zn
14-MQ-515	MQ-DP-SJ	2014-09-26	21,5	2	3,1	344	0,39	0,29	3,3	0,326	0,72	1,6	111	1,4	23,3	88	63
14-MQ-515	MQ-DP-SJ	2014-09-26	16,9	2	3,5	247	0,35	0,33	4	0,256	0,84	1,6	99	3,7	12	129	79,6
14-MQ-518	MQ-DP-SJ	2014-09-26	12,1	1	0,7	486	0,3	0,12	13,8	0,311	1,33	2,6	90	0,6	12	114	115
14-MQ-518	MQ-DP-SJ	2014-09-26	15,8	1	1,3	615	0,27	0,08	30	0,389	1,65	6,1	136	0,5	15,1	138	126
14-MQ-516	MQ-DP-SJ	2014-09-26															
14-MQ-517	MQ-DP-SJ	2014-09-26															
14-GR-112	GR-BR	2014-09-26	3,8	-1	0,7	240	0,52	0,06	16,2	0,129	1,13	1,7	24	0,8	1,7	30	122,5
14-GR-116	GR-BR	2014-09-26	11,5	-1	1,5	383	0,74	-0,05	14,1	0,308	1,19	1,8	82	0,2	7,3	88	124
14-GR-114	GR-BR	2014-09-26							- 1								
14-MQ-524	MQ-MA	2014-09-27	3,8	1	0,7	284	0,69	-0,05	14,6	0,129	1,08	1,1	17	0,8	8,8	34	162,5
14-MQ-519	MQ-MA	2014-09-27															
14-MQ-520	MQ-MA	2014-09-27															
14-MQ-521	MQ-MA	2014-09-27															
14-MQ-522	MQ-MA	2014-09-27				_		_									
14-MQ-523	MQ-MA	2014-09-27															
14-GC-510	GC-SJ	2014-09-27										- 1					
14-MQ-525	MQ-MA	2014-09-28	0,2	-1	-0,2	336	0,07	-0,05	1,1	0,005	0,78	0,8	1	0,1	1	-2	90,9
14-MQ-527	MQ-MA	2014-09-28															
14-MQ-529	MQ-MA	2014-09-28														Lal	
14-GR-119	GR-SJ	2014-09-28	1,7	-1	0,7	285	0,57	-0,05	11,9	0,048	1,05	1,1	6	0,1	3,7	15	81,1
14-GR-120	GR-SJ	2014-09-28	10,8	1	0,9	440	0,65	0,06	7,4	0,25	1,61	5,1	76	0,1	4,9	74	88,3
14-GC-513	GC-BR	2014-09-28	3,6	1	1,1	273	0,94	0,06	42,5	0,119	1,31	3,4	19	0,1	6,4	32	101
14-GC-513	GC-BR	2014-09-28	3,5	-1	1,1	255	0,65	0,11	11,5	0,124	0,77	4,4	22	0,1	3,1	41	206
14-GC-513	GC-BR	2014-09-28	2,2	1	0,8	275	0,41	0,14	9,1	0,076	0,66	2,7	14	0,1	3,3	36	119

No_Terrain	Équipe	Date_aaaammjj	Cu	Pb	Ag	Ni
14-GR-065	GR-JFDL	2014-07-08				
14-GR-066	GR-JFDL	2014-07-08				
14-GR-067	GR-JFDL	2014-07-08				
14-jfdl-046	JFDL-GR	2014-07-08				
14-jfdl-047	JFDL-GR	2014-07-08				
14-JFG-086	JFG-OC	2014-07-08		1		
14-JFG-092	JFG-OC	2014-07-08				
14-GR-068	GR-JFDL	2014-07-08				
14-JFG-087	JFG-OC	2014-07-08				
14-JFG-093	JFG-OC	2014-07-08				
14-GR-072	GR-JL	2014-07-09				
14-JFG-092	JFG-DP	2014-07-09				
14 IEC 002	IEC DD	2014 07 00				
14-JFG-092	JFG-DP	2014-07-09				
14-JFG-092	JFG-DP	2014-07-09				
14-DP-043	DP-GR	2014-07-16		+		_
14-DP-045	DP-GR	2014-07-16		1		
14-GR-083	GR-DP	2014-07-16				
14 150 003	IFC OC	2014.07.16		-		
14-JFG-092	JFG-OC	2014-07-16				
14-JFG-092	JFG-OC	2014-07-16				
14-DP-044	DP-GR	2014-07-16				
14-DP-045	DP-GR	2014-07-16				

No_Terrain	Équipe	Date_aaaammjj	Cu	Pb	Ag	Ni
14-jfdl-058	JFDL-JL-JFG-OC	2014-07-17				
14-MQ-503	MQ-SJ	2014-09-23	1			
14-BR-102	BR-MA	2014-09-23				
14-BR-103	BR-MA	2014-09-23				
14-BR-104	BR-MA	2014-09-23				
14-BR-105	BR-MA	2014-09-23				
14-BR-106	BR-MA	2014-09-23	_			
14-MQ-504	MQ-SJ	2014-09-24				
14-MQ-505	MQ-SJ	2014-09-24				
14-MQ-508	MQ-SJ	2014-09-24				
14-MQ-509	MQ-SJ	2014-09-24				
14-MQ-506	MQ-SJ	2014-09-24				
14 140 507	NO CI	2014 00 24				
14-MQ-507	MQ-SJ	2014-09-24				1 1 2 1
14-DP-102	DP-GR-MA	2014-09-24				
14-DY-10Z	Dr-GR-IVIA	2014-09-24				
14-DP-107	DP-GR-MA	2014-09-24				
14-GR-105	GR-MA	2014-09-24				
14-GR-109	GR-MA	2014-09-24				
14-GC-501	GC-BR	2014-09-24				
14-GC-502	GC-BR	2014-09-24				
14-DP-101	DP-GR-MA	2014-09-24				
14-DP-103	DP-GR-MA	2014-09-24				
14-DP-104	DP-GR-MA	2014-09-24				
14-DP-105	DP-GR-MA	2014-09-24				

No_Terrain	Équipe	Date_aaaammjj	Cu	Pb	Ag	Ni
14-DP-106	DP-GR-MA	2014-09-24				
14-DP-108	DP-GR-MA	2014-09-24		_		-
14-GR-106	GR-MA	2014-09-24				
14-GR-107	GR-MA	2014-09-24				
14 dk 107	GIV WIA	2014 03 24				
14-MQ-510	MQ-BR	2014-09-25				
14-MQ-512	MQ-BR	2014-09-25				
14-MQ-514	MQ-BR	2014-09-25				
14-MQ-511	MQ-BR	2014-09-25				
14-MQ-513	MQ-BR	2014-09-25				
14-DP-109	DP-MQ-BR	2014-09-25				
14-DP-109	DP-MQ-BR	2014-09-25				
14-DP-111	DP-MQ-BR	2014-09-25				
14-BR-107	BR-MQ-DP	2014-09-25				
14-GR-110	GR-SJ	2014-09-25				
14-GR-111	GR-SJ	2014-09-25				
14-GR-111	GR-SJ	2014-09-25				
14-GC-503	GC-MA	2014-09-25				
14-GC-504	GC-MA	2014-09-25				
14-GC-506	GC-MA	2014-09-25				
14-BR-108	BR-MQ-DP	2014-09-25				
14-MQ-515	MQ-DP-SJ	2014-09-26				
14-MQ-515	MQ-DP-SJ	2014-09-26				

No_Terrain	Équipe	Date_aaaammjj	Cu	Pb	Ag	Ni
14-MQ-515	MQ-DP-SJ	2014-09-26				
14-MQ-515	MQ-DP-SJ	2014-09-26				
14-MQ-518	MQ-DP-SJ	2014-09-26				
14-MQ-518	MQ-DP-SJ	2014-09-26				
14-MQ-516	MQ-DP-SJ	2014-09-26				
14-MQ-517	MQ-DP-SJ	2014-09-26				
14-GR-112	GR-BR	2014-09-26				
14-GR-116	GR-BR	2014-09-26				
14-GR-114	GR-BR	2014-09-26				
14-MQ-524	MQ-MA	2014-09-27				
14-MQ-519	MQ-MA	2014-09-27				
14-MQ-520	MQ-MA	2014-09-27				
14-MQ-521	MQ-MA	2014-09-27				
14-MQ-522	MQ-MA	2014-09-27				
14-MQ-523	MQ-MA	2014-09-27				
14-GC-510	GC-SJ	2014-09-27				
14-MQ-525	MQ-MA	2014-09-28				
14-MQ-527	MQ-MA	2014-09-28				
14-MQ-529	MQ-MA	2014-09-28				
14-GR-119	GR-SJ	2014-09-28				
14-GR-120	GR-SJ	2014-09-28			•	
14-GC-513	GC-BR	2014-09-28				
14-GC-513	GC-BR	2014-09-28				
14-GC-513	GC-BR	2014-09-28				

No_Terrain	Équipe	Date_aaaammjj	Feuillet	Secteur	Estant	Nordant	Fuseau_UT M_83	Affleur	Bloc_1s5_ang _5s5_rond	Dimension_ en_m	Environnement	Code
14-JFG-092	JFG-OC	2014-07-17	32K09	Chablis	419896,9	5598991	18	r	_555_16114	1		
14-JFG-092	JFG-OC	2014-07-17		Chablis	419898		18			1		
14-JFG-092	JFG-OC	2014-07-17		Chablis	419898,9		18			1		
14-JFG-092	JFG-OC	2014-07-17		Chablis	419899,7		18			1		
14-JFG-092	JFG-JL	2014-07-18		Chablis	419892,5					1		
14-JFG-092	JFG-JL	2014-07-18	32K09	Chablis	419893,4	5598990,5	18	r		1		
14-JFG-092	JFG-JL	2014-07-18		Chablis	419894,4		18			1		
14-JFG-092	JFG-JL	2014-07-18	22700	Chablis	419895,4	5598990,3	18			1		
14-JFG-092	JFG-JL	2014-07-18		Chablis	419895,4		18			0,5		
14-JFG-092	JFG-JL	2014-07-18		Chablis	419890,4		18			0,5		
14-JFG-092	JFG-JL	2014-07-18		Chablis	419901,3		18			1		
14-JFG-092	JFG-JL	2014-07-18		Chablis	419902,3		18			1		
14-JFG-092	JFG-JL	2014-07-18		Chablis	419902,9					0,5		
14-JFG-092	JFG-JL	2014-07-18		Chablis	419902,9		18			1		
14-JFG-092	JFG-JL			Chablis			18			1		
		2014-07-18			419904,4				-			
14-JFG-092	JFG-JL	2014-07-18		Chablis	419905,6		18			1,5		1
14-JFG-092	JFG-JL	2014-07-18		Chablis	419906,7		18			0,5		
14-JFG-092	JFG-JL	2014-07-18	32K09	Chablis	419907,5	5598990,5	18	r		1		
14-JFG-092	JFG-JL	2014-07-18	32K09	Chablis	419905,2	5598989,9	18	r		0,5		
14-JFG-092	JFG-JL	2014-07-18	32K09	Chablis	419906	5598989,9	18	r		1		
1388-TR-14-01	GR-MQ	2014-10-03	32K09	Indice	419918,784	5598986,922	18	r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01	GR-MQ	2014-10-03	332К09	Indice	419918,232	5598987,742	18	3 r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	l1B
1388-TR-14-01	GR-MQ	2014-10-03	3 32K09	Indice	419910,192	5598989,692	18	3 r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01	GR-MQ	2014-10-03	3 3 3 3 2 K 0 9	Indice	419910,86	5598988,982	18	3 r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01	GR-MQ	2014-10-03	332K09	Indice	419911,594	5598988,192	18	3 r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01	GR-MQ	2014-10-03	3 32КО9	Indice	419906,094	5598985,743	18	3 r (1m)		1	Décapage: 48mx(8 à 16m) 0,5-2m de MT	118

No_Terrain Équipe	Date_aaaammjj Feuillet	Secteur	Estant Nordant	Fuseau M_83		Bloc_1s5_ang Dimension_ Environnement _5s5_rond en_m	Code
1388-TR-14-01 GR-MQ	2014-10-03 32K09	Indice	419905,987	5598984,793	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01 GR-MQ	2014-10-03 32К09	Indice	419905,921	5598983,863	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	1B
1388-TR-14-01 GR-MQ	2014-10-03 32K09	Indice	419905,871	5598983,073	18 r (0,5m)	0,5 Décapage: 48mx(8 à 16m) 0,5-2m de MT	1B
1388-TR-14-01 GR-MQ	2014-10-03 32K09	Indice	419906,259	5598982,813	18 r (0,5m)	0,5 Décapage: 48mx(8 à 16m) 0,5-2m de MT	11B
1388-TR-14-01 GR-MQ	2014-10-03 32K09	Indice	419906,102	5598982,333	18 r (0,7m)	0,7 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01 GR-MQ	2014-10-03 32К09	Indice	419905,74	5598981,524	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
						42/ 42/42/42/42	140
1388-TR-14-01 GR-MQ	2014-10-03 32K09	Indice	419905,352	5598980,524	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419904,981	5598979,494	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419904,569	5598978,414	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118

No_Terrain Équipe	Date_aaaammjj Feuillet	Secteur	Estant Nordant	Fuseau M_83	_UT Affleur	Bloc_1s5_ang Dimension Environnement _5s5_rond en_m	Code
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419904,181	5598977,404	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419903,81	5598976,455	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419903,455	5598975,535	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419899,53	5598988,612	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419899,687	5598987,862	18 r (0,5m)	0,5 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419899,827	5598987,132	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419899,572	5598977,234	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419898,566	5598977,114	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	1B
		-			-5 1 (-111)		
1388-TR-14-01 GR-MQ	2014-10-04 32К09	Indice	419897,527	5598977,014	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	l1B
TOOD-LIV-TA-OT QU-INIQ	2014-10-04 37M03	mane	413037,327	3330377,014	TO 1 (TIII)	± Decapage, 40IIIA(o a 10III) 0,3-2III de IVII	120

No_Terrain Équipe	Date_aaaammjj Feuillet	Secteur	Estant Nordant	Fuseau M_83	UT Affleur	Bloc_1s5_ang_ Dimension_ Environnement _5s5_rond en_m	Code
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419895,943	5598989,922	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	  11B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419895,696	5598988,822	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419895,498	5598987,832	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419895,317	5598986,892	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419895,168	5598986,163	18 r (0,5m)	0,5 Décapage: 48mx{8 à 16m} 0,5-2m de MT	118
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419895,02	5598985,393	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	11B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419894,839	5598984,433	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419894,641	5598983,453	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419894,443	5598982,463	18 r (1m)	1 Décapage: 48mx{8 à 16m} 0,5-2m de MT	118

No_Terrain Équipe	Date_aaaammjj Feuillet	Secteur	Estant Nordant	Fusea M_83	u_UT Affleur	Bloc_1s5_ang Dimension_ Environnement _sss_rond en_m	Code
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419893,453	5598978,884	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	11B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419891,54	5598988,972	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419890,485	5598988,732	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419889,413	5598988,512	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	l1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419888,588	5598987,432	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419887,533	5598987,132	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	I1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419890,419	5598991,072	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	1B
1388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419890,122	5598990,162	18 r (1m)	1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	11B

No_Terrain	Équipe	Date_aaaammjj Feuillet	Secteur	Estant Nordant		seau_UT Affleur	Bloc_1s5_ang Dimension _5s5_rond en_m	Environnement	Code
1388-TR-14-01	GR-MQ	2014-10-04 32K09	Indice	419889,809	5598989,212	18 r (1m)		1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01	. GR-MQ	2014-10-04 32K09	Indice	419889,487	5598988,272	18 r (1m)		1	118
1388-TR-14-01	. GR-MQ	2014-10-04 32K09	Indice	419889,198	5598987,322	18 r (1m)		1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	1 <b>1</b> B
1388-TR-14-01	. GR-MQ	2014-10-04 32K09	Indice	419888,935	5598986,363	18 r (1m)		1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01	. GR-MQ	2014-10-04 32К09	Indice	419888,638	5598985,413	18 r (1m)		1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01	. GR-MQ	2014-10-04 32K09	Indice	419888,349	5598984,453	18 r (1m)		1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	11B
1388-TR-14-01	. GR-MQ	2014-10-04 32К09	Indice	419888,06	5598983,473	18 r (1m)		1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	l <b>1B</b>
1388-TR-14-01	. GR-MQ	2014-10-04 32K09	Indice	419887,764	5598982,523	18 r (1m)		1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	118
1388-TR-14-01	. GR-MQ	2014-10-04 32K09	Indice	419887,491	5598981,603	18 r (1m)		1 Décapage: 48mx(8 à 16m) 0,5-2m de MT	1B

o_Terrain Équipe	Date_aaaammjj Feuillet	Secteur	Estant Nordant	Fuse: M_83	u_UT Affleur	Bloc_1s5_ang Dimension_ Env _5s5_rond en_m	dronnement	Code
388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419887,178	5598980,654	18 r (1m)		capage: 48mx(8 à 16m) 0,5-2m de MT	11B
388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419885,125	5598982,083	18 r (1m)	1 Déc	capage: 48mx(8 à 16m) 0,5-2m de MT	1B
388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419924,507	5598986,602	18 r (1m)	1 Déc	capage: 48mx(8 à 16m) 0,5-2m de MT	1B
388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419900,916	5598979,504	18 r (1m)	1 Dét	capage: 48mx(8 à 16m) 0,5-2m de MT	l1B
388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419900,536	5598978,494	18 r (1m)	1 Déc	capage: 48mx(8 à 16m) 0,5-2m de MT	118
388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419900,223	5598977,534	18 r (1m)	1 Déc	capage: 48mx(8 à 16m) 0,5-2m de MT	1B
388-TR-14-01 GR-MQ	2014-10-04 32K09	Indice	419902,672	5598983,743	18 r (0,5m)	0,5 Déc	capage: 48mx(8 à 16m) 0,5-2m de MT	118
l-GR-110 GR	2014-10-04 32K09	Chablis	420706	5599132	18 r (1m)	1 Bor	rd de route: 25mx25m (25mx8m)	118
388-TR-14-02 GC	2014-10-04 32K09	Chablis	419902,252	5599001,789	18 Rainure	1 Déc	capage	M4
388-TR-14-02 GC	2014-10-04 32K09	Chablis	419902,73	5599002,619	18 Rainure	1 Déc	capage	M4
388-TR-14-02 GC	2014-10-04 32K09	Chablis	419903,117	5599003,269	18 Rainure	0,5 Déc	capage	M4
388-TR-14-02 GC	2014-10-04 32K09	Chablis	419904,635	5599002,749	18 Rainure	1 Déc	capage	118
388-TR-14-02 GC	2014-10-04 32K09	Chablis	419905,599	5599002,509	18 Rainure		capage	I1B

No_Terrain Équipe	Date_aaaammjj Feuillet	Secteur	Estant Nordant	Fuse M. 8	au_UT Affleur	Bloc_1s5_ang Dimension	Environnement	Code
1388-TR-14-02 GC	2014-10-04 32K09	Chablis	419907,537	5599002,029	18 Rainure		1 Décapage	I1B
1388-14-TR-02 GC	2014-10-04 32K09	Chablis	419908,477	5599001,779	18 Rainure		1 Décapage	I1B
1388-14-TR-02 GC	2014-10-04 32K09	Chablis	419909,5	5599001,529	18 Rainure		1 Décapage	I1B
1388-14-TR-02 GC	2014-10-04 32K09	Chablis	419910,497	5599001,319	18 Rainure		1 Décapage	I1B
1388-14-TR-02 GC	2014-10-04 32K09	Chablis	419911,462	5599001,1	18 Rainure		1 Décapage	M4
1388-14-TR-02 GC	2014-10-04 32K09	Chablis	419912,435	5599000,86	18 Rainure		1 Décapage	I1B
1388-14-TR-02 GC	2014-10-04 32K09	Chablis	419913,449	5599000,62	18 Rainure		1 Décapage	I1B
1388-14-TR-02 GC	2014-10-04 32K09	Chablis	419904,14	5599002,289	18 Rainure	Grab	Décapage	M4
1388-14-TR-02 GC	2014-10-04 32K09	Chablis	419908,535	5599001,469	18 Rainure	Grab	Décapage	M4
1388-TR-14-04 GC-MA	2014-10-05 32K09	Chablis	420756,01	5599093,701	18 Rainure		1 Décapage	I1B
1388-TR-14-04 GC-MA	2014-10-05 32K09	Chablis	420751,994	5599094,111	18 Rainure		1 Décapage	IIB
1388-TR-14-04 GC-MA	2014-10-05 32K09	Chablis	420746,123	5599093,491	18 Rainure		1 Décapage	I1B
1388-TR-14-04 GC-MA	2014-10-05 32K09	Chablis	420744,944	5599093,661	18 Rainure		1 Décapage	M4
1388-TR-14-04 GC-MA	2014-10-05 32K09	Chablis	420743,789	5599093,851	18 Rainure		1 Décapage	I1B/M4
1388-TR-14-03 BR-Math	2014-10-07 32K09	Chablis	420721,666	5598871,576	18 Rainure		1 Décapage	I1B
1388-TR-14-03 BR-Math	2014-10-07 32K09	Chablis	420722,639	5598871,246	18 Rainure		1 Décapage	I1B
1388-TR-14-03 BR-Math	2014-10-07 32K09	Chablis	420723,62	5598870,946	18 Rainure		1 Décapage	M4/I1B
1388-TR-14-03 BR-Math	2014-10-07 32K09	Chablis	420724,61	5598870,706	18 Rainure		1 Décapage	I1B/M4
1388-TR-14-03 BR-Math	2014-10-07 32K09	Chablis	420725,566	5598870,496	18 Rainure		1 Décapage	
1388-TR-14-03 BR-Math	2014-10-07 32K09	Chablis	420726,284	5598870,346	18 Rainure	(	),5 Décapage	
1388-TR-14-05 MQ-BR	2014-10-07 32K09	Chablis	420717,65	5599313,176	18 Rainure		1 Décapage	I1B/M4
1388-TR-14-05 MQ-BR	2014-10-07 32K09	Chablis	420712,933	5599314,106	18 Rainure		1 Décapage	11B
1388-TR-14-05 MQ-BR	2014-10-07 32K09	Chablis	420712,076	5599314,656	18 Rainure		1 Décapage	I1B/M4
1388-TR-14-05 MQ-BR	2014-10-07 32K09	Chablis	420711,21	5599315,196	18 Rainure		1 Décapage	I18/M4
1388-TR-14-05 MQ-BR	2014-10-07 32К09	Chablis	420710,353	5599315,735	18 Rainure		1 Décapage	I1B/M4
1388-TR-14-05 MQ-BR	2014-10-07 32K09	Chablis	420710,616	5599317,385	18 Rainure		1 Décapage	I1B/M4

No_Terrain	Équipe	Date_aaaammjj Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
4-JFG-092	JFG-OC	2014-07-17 Indice de cuivre						281866
	JFG-OC	2014-07-17 Indice de cuivre						281867
	JFG-OC	2014-07-17 Indice de cuivre						281868
	JFG-OC	2014-07-17 Indice de cuivre						281869
-JFG-092	JFG-JL	2014-07-18 Indice de cuivre						281870
	JFG-JL	2014-07-18 Indice de cuívre						281871
JFG-092	JFG-JL	2014-07-18 Indice de cuivre						281872
	JFG-JL	2014-07-18 Indice de cuivre						281873
	JFG-JL JFG-JL	2014-07-18 Indice de cuivre 2014-07-18 Indice de cuivre						281874 281875
	JFG-JL	2014-07-18 Indice de cuivre						281876
	JFG-JL	2014-07-18 Indice de cuivre						281877
	JFG-JL	2014-07-18 Indice de cuivre						281878
IFG-092	JFG-JL	2014-07-18 Indice de cuivre						281879
JFG-092	JFG-JL	2014-07-18 Indice de cuivre						281880
-JFG-092	JFG-JL	2014-07-18 Indice de cuivre						281881
-JFG-092	JFG-JL	2014-07-18 Indice de cuivre						281883
-JFG-092	JFG-JL	2014-07-18 Indice de cuivre						281884
I-JFG-092	JFG-JL	2014-07-18 Indice de cuivre						281885
	JFG-JL	2014-07-18 Indice de cuivre						281886
88-TR-14-01	GR-MQ	2014-10-03 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CLEAM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans		145590
		note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.				les enclaves de métased (TrPY dans l'encaissant).		
8-TR-14-01	GR-MQ	2014-10-03 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant),		145591
		Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.				généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).		
88-TR-14-01	GR-MQ	2014-10-03 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145592
388-TR-14-01	GR-MQ	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145593
888-TR-14-01	GR-MQ	2014-10-03 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145594
888-TR-14-01	GR-MQ	2014-10-03 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145595

lo_Terrain Équipe	Date_aaaammjj	Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
388-TR-14-01 GR-MQ	2014-10-03	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dan les enclaves de métased (TrPY dans l'encaissant).	s	14559(
888-TR-14-01 GR-MQ	2014-10-03	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dan les enclaves de métased (TrPY dans l'encaissant).	s	145597
88-TR-14-01 GR-MQ	2014-10-03	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dan les enclaves de métased (TrPY dans l'encaissant).	s	145598
38-TR-14-01 GR-MQ	2014-10-03	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dan les enclaves de métased (TrPY dans l'encaissant).	s	145599
8-TR-14-01 GR-MQ	2014-10-03	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dan les enclaves de métased (TrPY dans l'encaissant).	s	145600
88-TR-14-01 GR-MQ	2014-10-03	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dan les enclaves de métased (TrPY dans l'encaissant).	s	145601
88-TR-14-01 GR-MQ	2014-10-03	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dan les enclaves de métased (TrPY dans l'encaissant).	S	145602
888-TR-14-01 GR-MQ	2014-10-04	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dan les enclaves de métased (TrPY dans l'encaissant).	s	145603
388-TR-14-01 GR-MQ	2014-10-04	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dan les enclaves de métased (TrPY dans l'encaissant).	s	145604

_Terrain Équipe	Date_aaaammjj Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
88-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	s	14560
88-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	S	1456
88-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	S	14560
88-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	s	14560
88-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	S	1456
88-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	S	1456
88-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	S	1456:
38-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	s	1456
88-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	5	1456

o_Terrain Équipe	Date_aaaammjj Géologie	Minéralogie	Texture Altération	Minéralisation Orientation	No_Echant
88-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, EP+, FK+/++, loc HM+ hk	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	14561
88-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, EP+, FK+/++, loc HM+ hk	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	14561
88-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, EP+, FK+/++, loc HM+ hk	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	1456:
38-TR-14-01 GR-MQ	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, EP+, FK+/++, loc HM+ hk	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	1456
88-TR-14-01 GR-MQ	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, EP+, FK+/++, loc HM+ hk	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	1456
38-TR-14-01 GR-MQ	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, EP+, FK+/++, loc HM+ hk	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	1456
38-TR-14-01 GR-MQ	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, EP+, FK+/++, loc HM+ hk	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	1456
38-TR-14-01 GR-MQ	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, EP+, FK+/++, loc HM+ hk	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	1456
88-TR-14-01 GR-MQ	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, EP+, FK+/++, loc HM+ hk	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	1456

lo_Terrain Équipe	Date_aaaammjj Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
388-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).		14562
388-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).		14562
888-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).		14562
388-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).		14562
888-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).		14562
388-TR-14-01 GR-MQ	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).		14562
88-TR-14-01 GR-MQ	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).		14562
388-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).		1456

o_Terrain Équipe	Date_aaaammjj	Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
888-TR-14-01 GR-MQ	2014-10-04	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).		14563;
388-TR-14-01 GR-MQ	2014-10-04	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	;	14563:
388-TR-14-01 GR-MQ	2014-10-04	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	i	145634
388-TR-14-01 GR-MQ	2014-10-04	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	;	14563
988-TR-14-01 GR-MQ	2014-10-04	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BC-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	;	145636
888-TR-14-01 GR-MQ		Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BC-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	;	14563;
888-TR-14-01 GR-MQ		Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	;	145638
388-TR-14-01 GR-MQ	2014-10-04	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	;	145639
388-TR-14-01 GR-MQ	2014-10-04	Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa. Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).		145644

lo_Terrain Équipe	Date_aaaammjj Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
88-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	s	14564
388-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	S	14564
388-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	S	14564
388-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	S	145644
388-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	S	14564
388-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	S	14564
388-TR-14-01 GR-MQ	2014-10-04 Granite massif hétérogène rose à rose vert (EP+), la granulométrie est généralement moyenne (passages grossiers et localement pegmatitiques). Le pourcentage de minéraux mafiques (BO-CL±AM) est très variable. Ce dernier augmente à proximité d'enclaves de métasédiment. Le pourcentage d'enclave est d'environ 15%. Ces dernières sont verdâtres, à gf gb sa Elles sont le plus souvent minéralisée en PY et parfois minéralisées en CP. Les enclaves n'ont pas d'orientation précises. On note dans l'affleurement plusieurs familles de fractures (diaclases) et une fracture (p-ê une zone de cisaillement) orientée à environ 105°N.	variable, voir échantillons	gm-gg loc pg, ma, hk	EP+, FK+/++, loc HM+	HK, 5-15%CP dans quelques enclaves de métased (Tr de CP dans l'encaissant), généralement 2-4%PY diss dans les enclaves de métased (TrPY dans l'encaissant).	S	14564
4-GR-110 GR	2014-10-04 Granite de couleur blanche et loc. (côté ouest de la route) de couleur rosé (HM+), 38%PG, 30%FK, 30%QZ, 2%BO )(Les grains de FP sont ID). Contient envion 5-10% d'enclaves riches en BO n'ayant pas d'orientation préférentielle. On note quelques passages pegmatitiques rosés. On trouve un zone <1m² sonnant mag au BeepMat et à proximité on échantillonne une enclave d'~ 0,5mx0,3m riche en BO (décrite dans éch.).						14564
388-TR-14-02 GC	2014-10-04 Métasédiment homogène, folié. La minéralisation est dissiminé dans lamatrice. Une chloritisation pervasive est présente. La patine est altéré	M4: Métasédiment (30%QZ, 23%BO, 40%PG, 7%PY tr PO)	hj, fo, gf	Chloritisation	7%PY tr PO di		145736
388-TR-14-02 GC	·	M4: Métasédiment (30%QZ, 23%BO, 40%PG, 7%PY tr PO)	hj, fo, gf	Silicification, Epidotisation, Chloritisation	7%PY tr PO di		14573
388-TR-14-02 GC	2014-10-04 Métasédiment homogène, folié. La minéralisation est dissiminé dans lamatrice. Une chloritisation pervasive est présente.  Contact avec l'intrusif granitique, une PGus forte BO est présente au contact, de PGs laPY ce retrouve dans cet intrusif dissiminé associé à la BO	M4: Métasédiment (30%QZ, 23%BO, 40%PG, 7%PY tr PO), I1B (40%QZ, 50%PG+FK, 7%BO, 3%PY)	hj, fo, gf	Chloritisation	3%PY		145738
388-TR-14-02 GC	2014-10-04 Granite homogène, massif à gg. La BO est intersticiel, il est possible de voir une chloritisation dans cette dernière	11B (40%QZ, 50%PG+FK, 7%BO, 3%PY)	hj ma gg	Chloritisation	tr PY		145739
388-TR-14-02 GC	2014-10-04 Granite homogène, massif à gg. La BO est intersticiel, il est possible de voir une chloritisation dans cette dernière	11B (40%QZ, 50%PG+FK, 7%BO, 3%PY)	hj ma gg	Chloritisation	0.5%PY		14574:

No_Terrain Équipe	Date_aaaammjj Géologie	Minéralogie	Texture	Altération	Minéralisation	Orientation	No_Echant
1388-TR-14-02 GC	2014-10-04 Granite homogène, massif à gg. La BO est intersticiel, il est possible de voir une chloritisation dans cette dernière	I1B (40%QZ, 50%PG+FK, 7%BO, 3%PY)	hj ma gg	Chloritisation, Épidotisation	tr PY		145742
1388-14-TR-02 GC	2014-10-04 Granite homogène, massif à gg. La BO est intersticiel, il est possible de voir une chloritisation dans cette dernière	11B (40%QZ, 50%PG+FK, 7%BO, 3%PY)	hj ma gg	Chloritisation, Épidotisation	tr PY		145743
1388-14-TR-02 GC	2014-10-04 Granite homogène, massif à gg. La BO est intersticiel, il est possible de voir une chloritisation dans cette dernière	11B (40%QZ, 50%PG+FK, 10%BO)	hj ma gg	Chloritisation, Épidotisation			145744
1388-14-TR-02 GC	2014-10-04 Granite homogène, massif à gg. La BO est intersticiel, il est possible de voir une chloritisation dans cette dernière	11B (40%QZ, 50%PG+FK, 10%BO)	hj ma gg	Chloritisation, légère hématisation			145745
1388-14-TR-02 GC	2014-10-04 Enclave de métasédiment, localement des vn de qz sont présente, en bordure de celle-cice retrouve la PU et les tr de CP	M4 ( 35%BO, 5%PY 25%QZ, 75%PG)	hj gf fo	Hematisation	5%PY tr CP		145746
1388-14-TR-02 GC	2014-10-04 Granite homogène, massif à gg. La BO est intersticiel, il est possible de voir une chloritisation dans cette dernière	11B (40%QZ, 50%PG+FK, 10%BO)	hj ma gg	Chloritisation, légère hématisation			145747
1388-14-TR-02 GC	2014-10-04 Granite homogène, massif à gg. La BO est intersticiel, il est possible de voir une chloritisation dans cette dernière	11B (40%QZ, 50%PG+FK, 10%BO)	hj ma gg	Chloritisation, légère hématisation			145748
1388-14-TR-02 GC	2014-10-04 Enclave de M4, forte chloritisation, EP perv. 10%PY dssiminé dans la matrice	M4 ( 35%BO, 5%PY 25%QZ, 75%PG)	hj gf fo	Chloritisation	10%PY di		145749
1388-14-TR-02 GC	2014-10-04 Contact entre M4et I1B	M4: Métasédiment (30%QZ, 23%BO, 40%PG, 5%PY di tr MO), I1B (40%QZ, 50%PG+FK, 7%BO, 3%PY)	hj gf fo		5%PY tr MO		145750
1388-TR-14-04 GC-MA	2014-10-05 Granite massif, les cristaux sont idiomorphe, le qz est intersticiel, la BO montre localement une faible CL, de plus ilest possible de voir des tr de pY ass avec la BO	I1B (25%QZ, 5%BO(CL), 40%FK, 30%PL)	hj ma gg	Faible chloritisation	tr PY		145507
1388-TR-14-04 GC-MA	2014-10-05 Contact entre M4 et I1B, il est possible de voir une forte BO, de plus les sulfures sont présents à cet endroit	11B (25%QZ, 5%BO(CL), 40%FK, 30%PL)	hj ma gg	Biotitisation	0.5%PY		145508
1388-TR-14-04 GC-MA	2014-10-05 Granite massif, les cristaux sont idiomorphe, le qz est intersticiel, la BO montre localement une faible CL, de plus ilest possible de voir des tr de PY ass avec la BO. De plus des dykes de peg au contact diffus recoupe la zone, forte BO en bordu	I1B (25%QZ, 5%BO(CL), 40%FK, 30%PL) re	hj ma gg	Forte Biotitisation			145509
1388-TR-14-04 GC-MA 1388-TR-14-04 GC-MA	2014-10-05 M4 légère chloritisation locale et quelques bandes plus riche en mx mafique, 2014-10-05 BO+	M4 (55%PL, 20%BO, 20%QZ, 5%PY)	hj fo gf	Faible chloritisation	3-5%Py		145510 145511
1388-TR-14-03 BR-Math	2014-10-07 roche grenue, gros grain, trace de rouille dans la roche avec présence de sulfure au centre. 2% Biotite disséminée	50% plagio, 20% qtz, 30% feldspath	gg	rouille	tr PO		145501
1388-TR-14-03 BR-Math	2014-10-07 roche grenue, gros grain, trace de rouille dans la roche avec présence de sulfure au centre. 2% Biotite litée	50% plagio, 20% qtz, 30% feldspath	gg	rouille	tr PO		145502
1388-TR-14-03 BR-Math	2014-10-07 métasédiment avec envlave ou veine de granitoïde. Trace de sulfure	I1B Granite/M4 métasédiment (20%QZ, 60%BO, 10%PLG)	gf, gg	rouille	tr PO		145503
1388-TR-14-03 BR-Math	2014-10-07 80% granitoïde, 20% métasédiments. Sulfures disséminés dans M4 trace de rouille dans I1B avec sulfure	I1B Granite/M4 métasédiment (20%QZ, 60%BO, 10%PLG)	gf, gg	rouille	tr PO		145504
1388-TR-14-03 BR-Math	2014-10-07 80% granitoïde, 20% métasédiments. Sulfures disséminés dans M4	I1B Granite/M4 métasédiment (20%QZ, 60%BO, 10%PLG)	gf, gg	rouille	tr PO		145505
1388-TR-14-03 BR-Math	2014-10-07 80% granitoïde, 20% métasédiments lités. Sulfures disséminés aussi bien dans M4 que I1B	I1B Granite/M4 métasédiment (20%QZ, 60%BO, 10%PLG)	gf, gg	rouîlle	tr PO		145506
1388-TR-14-05 MQ-BR	2014-10-07 I1B Granite/M4 métasédiment, zone de mélange avec alternance de lits de QFP (50%) et de lits mafiques AMP-BO (50%), litage bien développé sur 1m	I1B Granite/M4 métasédiment, zone de mélange avec alternance de lits de QFP (50%) et de lits mafiques AMP-BO (50%)	gg	altération superficielle	1-2%PY diss		145512
1388-TR-14-05 MQ-BR	2014-10-07 I1B Granite 30%QZ, 30%PLG-EP, 30%FK, 5-7%BO, contact avec enclave de M4 à la fin des 90cm	I1B Granite 30%QZ, 30%PLG-EP, 30%FK, 5-	gg	altération superficielle	1-2%PY diss, 1vnPY (0.2cm)		145513
1388-TR-14-05 MQ-BR	2014-10-07 I1B Granite/M4 métasédiment, zone de mélange avec alternance de lits de QFP (50%) et de lits mafiques AMP-BO (50%)	7%BO I1B Granite/M4 métasédiment, zone de mélange avec alternance de lits de QFP (50%) et de lits mafiques AMP-BO (50%)	gg	altération superficielle	avec EP, 0.5%PY		145514
1388-TR-14-05 MQ-BR	2014-10-07 I1B Granite/M4 métasédiment, zone de mélange avec alternance de lits de QFP (50%) et de lits mafiques AMP-BO (50%), litage de M4 (1-5cm)	I1B Granite/M4 métasédiment, zone de mélange avec alternance de lits de QFP (50%) et de lits mafiques AMP-BO (50%)	gg	altération superficielle	0.5%PY		145515
1388-TR-14-05 MQ-BR	2014-10-07 I1B Granite/M4 métasédiment, zone de mélange avec alternance de lits de QFP (50%) et de lits mafiques AMP-BO (50%), litage de M4 (1-5cm)	I1B Granite/M4 métasédiment, zone de mélange avec alternance de lits de QFP (50%) et de lits mafiques AMP-BO (50%)	gg	altération superficielle	0.5%PY		145516
1388-TR-14-05 MQ-BR	2014-10-07 I1B 80%, quelques bandes de M4	I1B Granite/M4 métasédiment, zone de mélange avec alternance de lits de QFP (50%) et de lits mafiques AMP-BO (50%)	gg	altération superficielle	0.5%PY		145517

No_Terrain	Équipe	Date_aaaammjj	Description_Echant	Code_analys	No_Rapport A	u Pt	Pd	Ag Al	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe	
14-JFG-092	JFG-OC	2014-07-17	M4, gf, sc+, 20% BO, 15% PY en amas		1 14113177	-0,005		0,79	7,28	5,2	380	1,54	0,36	0,66	0,14	46,7	23,8	80	1,38	3230	4.22
14-JFG-092	JFG-OC		M4, gf, sc+, 20% BO, 10% PY en amas		1 14113177	-0.005		0.69	7,38	9,7	250	1.85	1	0,72	0.18	52,6	67,4	121	1,88	2770	7,09
14-JFG-092	JFG-OC		I1B, gm, ma, tr PY		1 14113177	-0,005		0,24	6,86	7.4	310	1.46	0,61	0,26	0,06	26,6	27	127	1,79	437	4,21
14-JFG-092	JFG-OC		I1B, gm, ma, tr PY		1 14113177	-0,005		0,09	4,65	2,9	230	1,11	0,11	0,28	0,06	5,69	3,6	11	1,54	38.8	1,74
14-JFG-092	JFG-JL		I1B, gg, ma, 5% BO, tr-1% CP / M4, 30% micas gris-verts,		1 14113177	0,016		3,47	5,65	4.4	240	1,6	8,09	0,16	-0,02	71	31,9	52	1,49	7540	1,74
14 31 0 032	3.032	2014 07 10	15% CP		14113177	5,5.5		, , , ,	0,00		2.0	.,,,	0,00	5,75	5,52		0.,0	9-	.,		'''
14-JFG-092	JFG-JL	2014-07-18	M4, gm, 30% micas gris-verts, 5% CP, tr BN		1 14113177	0.01		5,27	7,59	15,1	500	2,14	1,22	0,25	-0.02	40.9	31,6	141	2,44	12100	3,37
14-JFG-092	JFG-JL		I1B, 30% micas gris verdâtres, tr CP, rouille dans fracture		1 14113177	-0,005		3,46	6,55	2.5	640	1.05	6,53	0,13	-0,02	62,9	6.7	32	1,69	1460	1,17
14-31 0-032	31 0 32	2014-07-10	125, 30% micas gris verdacres, it of , rounie dans macture		14115177	0,000		0,10	0,00	-,0	0-10	1,00	0,00	0,10	0,02	02,0	٥,,	02	1,00	1-100	',
14-JFG-092	JFG-JL	2014.07.19	M4, gris-verdâtre, 5-10% PY / I1B, gm	<b>.</b>	1 14113177	-0,005		0,14	6,81	0,5	700	1,19	0,24	0,36	0,03	74.7	8,2	26	1,31	181.5	2,14
	JFG-JL		M4, gm, Si++, 15% micas gris-verts, 5% PY		1 14113177	-0,005		0,14	7,44	1,6	580	1,21	0,46	0,3	0,13	52,9	21,3	39	1,64	127,5	3,59
14-JFG-092						-0,005		0,27	6,2	2,2	740	0.86	0,40	0,36	-0,02	21.8	9,2	14	4.4	530	3,56
14-JFG-092	JFG-JL		I1B, gris-beige, gg, gros flocons de BO (20%), tr PY	-	1 14113177	-0,005		0,27	6,9	1,5	830	1,45	0,12	0,36	0,02	19.95	3	10	1,58	207	0,97
14-JFG-092	JFG-JL		I1B, 10% BO, gris verdâtre, gm		1 14113177	,		,				,			,		2				
14-JFG-092	JFG-JL		I1B, 10% BO, gm-gg		1 14113177	-0,005		0,11	6,78	1,5	810	2,33	0,48	0,24	-0,02	15,5		11	4,89	15	1,03
14-JFG-092	JFG-JL		I1B, 5% BO, 3% PY		1 14113177	-0,005		0,09	6,77	1,9	670	1,56	0,15	0,49	0,02	17	6,1	17	1,63	27,3	1,69
14-JFG-092	JFG-JL		I1B, gg, 15-20% BO, tr PY		1 14113177	-0,005		0,04	6,99	1,1	970	0,93	0,07	0,41	0,02	12,5	2,5	11	1,65	10,8	1,3
14-JFG-092	JFG-JL		I1B, gm, 10% BO, tr PY		1 14113177	-0,005		0,54	6,66	1,4	760	0,94	1,7	0,26	0,03	11,95	5,1	14	1,38	248	1,36
14-JFG-092	JFG-JL	2014-07-18	M4, 20% BO, 10% CP, 2% BN / I1B, 10% BO, tr CP, gg	:	1 14113177	0,007		1,59	5,4	10,7	290	1,12	1,74	0,3	0,17	20,6	23,4	45	1,91	15000	3,46
			(composite des échantillons 281885 et 281886)																		
14-JFG-092	JFG-JL	2014-07-18	M4, gm, 25% BO, 5% PY, 5% CP	:	1 14113177	0,013		1,27	8,39	6,1	390	1,63	0,66	1,03	0,06	46,6	36,8	110	5,85	8830	6,87
14-JFG-092	JFG-JL	2014-07-18	I1B, gg, 15% BO / M4, gf, 10% BO		1 14113177	-0,005		0,05	7,07	0,4	680	1,28	0,04	1,04	0,05	41,5	4,3	13	1,49	47,6	1,47
14-JFG-092	JFG-JL	2014-07-18	M4, gm, 20% BO, 5-10% CP, tr BN		1 14113177	-0,005		3,87	6,05	12,1	180	1,38	5,15	0,37	0,17	25,3	37,1	136	2,37	20500	4,1
14-JFG-092	JFG-JL	2014-07-18	I1B, gg, 5% BO, tr CP		1 14113177	-0,005		0,38	5,65	2,3	390	1	0,31	0,29	-0,02	16,65	11,8	23	1,36	4330	2,34
1388-TR-14-01	GR-MQ		I1B à gg, 30%PG (EP++, SR+) bien cristallisés, 10-20%QZ	SOQVAL-1	VO14160281	-0,005		0,03	7,04	0,3	1000	0,87	0,04	0,3	-0,02	144	2,3	8	1,43	18,2	0,94
1388-TR-14-01	GR-MQ		PY/ TrPY diss. Pas de patine d'altération.  I1B à gg, 30%PG (EP++, SR+) bien cristallisés, 10-20%QZ (rose/vert), 30-40%FK rose, 10%BO. Tr de petits amas de PY/ TrPY diss. Pas de patine d'altération.	SOQVAL-1	VO14160281	-0,005		0,04	6,35	-0,2	820	0,82	0,17	0,17	-0,02	47,4	2,2	9	1,1	17,3	0,85
1388-TR-14-01			I1B à gg, 30%PG (EP++, SR+) bien cristallisés, 10-20%QZ (rose/vert), 30-40%FK rose, 10%BO. Tr de petits amas de PY/ TrPY diss, +poches (<0,5mm) et uvn de PY±HM (auréole rouille autour de la PY). Pas de patine d'altération.			-0,005		0,02	7,07	0,2	1030	0,73	0,05	0,25	-0,02	45,7	1,8	7	1,28	22,9	0,88
1388-TR-14-01	GR-MQ	2014-10-03	I1B à GG, 30%PG-EP, 10%QZ, 40%FK, 5-10%BO, TrPY diss ±HM, EP verte ++ sur les PG.	SOQVAL-1	VO14160281	-0,005		0,05	7,12	-0,2	920	0,74	0,11	0,23	-0,02	14,65	3,1	7	1,28	32,5	1,04
1388-TR-14-01	GR-MQ	2014-10-03	HIB à GG, 30%PG-EP, 10%QZ, 40%FK, 5-10%BO, TrPY diss ±HM, EP verte ++ sur les PG.	SOQVAL-1	VO14160281	0,006		0,13	5,79	0,5	540	1	0,16	0,08	-0,02	15,25	2,8	18	1,64	364	0,81
1388-TR-14-01	GR-MQ	2014-10-03	IIB à GG, 30%PG-EP, 10%QZ, 40%FK, 5-10%BO, TrPY diss ±HM, EP verte ++ sur les PG. Zonation locale, TrPY diss semble associée à des micro-fractures, TrCP jaune diss et micro-amas.	SOQVAL-1	VO14160281	0,009		0,05	6,77	-0,2	1050	0,51	0,16	0,15	-0,02	6,15	2,9	10	1,27	20,3	0,79

No_Terrain I	Équipe	Date_aaaammjj Description_Echant	Code_analy	/s No_Rapport	Au Pt	Pd	Ag Al	As	Ва	Ве	Bi	Ca	Cd	Ce	Со	Cr	Cs	Cu	Fe	
1388-TR-14-01	GR-MQ	2014-10-03 I1B à GG , mais moins pegmatitique, TrPY diss (non à des fractures), pas de CP, Si++	-reliée SOQVAL-1	VO14160281	0,124		0,19	7,08	0,3	640	0,95	0,68	0,09	-0,02	105,5	1,6	37	2,03	21,5	0,6
1388-TR-14-01(	GR-MQ	2014-10-03 I1B à GG , mais moins pegmatitique, TrPY diss (non à des fractures), pas de CP, Si++	-reliée SOQVAL-1	VO14160281	0,022		0,38	7,02	-0,2	740	0,72	2,46	0,13	-0,02	201	1	10	1,52	10,2	0,37
1388-TR-14-01(	GR-MQ	2014-10-03 Point de croisement de 2 fractures, I1B gm-gg, ma, diss.	TrPY SOQVAL-1	VO14160281	-0,005		0,04	6,79	0,2	540	1,2	0,25	0,09	-0,02	43,2	3,4	36	1,57	15,1	0,89
1388-TR-14-01(	GR-MQ	2014-10-03 Mélange entre l1B/enclave, SR++ jaune/beige en fo gm, TrPY diss	euillet, SOQVAL-1	VO14160281	0,044		0,6	9,24	0,9	230	2,39	3,34	0,15	-0,02	181	8,3	171	4,85	9,1	1,34
1388-TR-14-01(	GR-MQ	2014-10-03 Roche verte EP+++, SR+(jaune), enclave de M4 (60' (EP+), 10%SR, 15-10%BO (amas), 2-3%PY diss, relié PY de 1cm (10-15%PY).	%PG SOQVAL-1 , 1vn	VO14160281	0,029		0,57	8,1	1,1	200	2,31	5,73	90,0	-0,02	143,5	61,4	186	6,04	78,2	2,33
1388-TR-14-01(	gr-MQ	2014-10-03 I1B (pas d'EP) 30%PG, 40%FK, 10%QZ, 15-20%BO (- autres mx mafiques), Enclave sur les 20 derniers cr QZ-PG-BO-AM à gm. 2-3%CP, 1%PY diss/amas		VO14160281	0,087		3,16	5,43	2,9	460	1,04	41,8	0,31	-0,02	82,4	45,7	11	1,26	1600	1,27
1388-TR-14-01	GR-MQ	2014-10-03 M4 gf-gm, 50% mafique (BO-AM), 40%QZ-PG,zfm:	5- SOQVAL-1	VO14160281	0,025		4,71	6,67	3,1	80	1,85	9,28	0,21	-0,02	42,1	33,7	109	2,09	15500	3,77
		7%CP diss relié en unv/vn, 1-2%PY diss																		
1388-TR-14-01(	GR-MQ	2014-10-04 M4 gf-gm, 50% mafique (BO-AM), 40%QZ-PG, zone fortement minéralisés sur 0,5m: 10-15%CP diss/uv Tr-0,5%MO, on note la présence d'un dyke/VN de (juste avant la ZM.	n/vn +	VO14160281	0,023		10,05	6,1	3,9	190	1,77	13,25	0,27	-0,02	52,9	45,6	88	1,56	28900	4,92
1388-TR-14-01(	GR-MQ	2014-10-04 M4 gf-gm, 50% mafique (BO-AM), 40%QZ-PG, 5-7% cubique, 1-2%CP amas/uvn/diss ±QZ	SPY diss SOQVAL-1	VO14160281	0,005		1,99	7,8	6	230	2,99	0,84	0,58	0,07	52,2	25,5	98	2,92	11550	5,23

No_Terrain Équipe	Date_aaaammjj Description_Echant	Code_analy	/s No_Rapport A	u Pt Pd	Ag Al	As	Ва	Ве	Bi	Са	Cd	Се	Со	Cr	Cs	Cu	Fe	
1388-TR-14-01 GR-MQ	2014-10-04 M4 gf-gm, 50% mafique (BO-AM), 40%QZ-PG, 1-2%PY, TrCP	SOQVAL-1	VO14160281	-0,005	1,49	7,22	5,7	150	2,13	0,39	0,64	0,03	59,6	35,1	155	1,46	8530	3,98
1388-TR-14-01 GR-MQ	2014-10-04 80% M4 gf-gm, 50% mafique (BO-AM), 40%QZ-PG, 3- 4%PY diss / 20%I1B	SOQVAL-1	VO14160281	-0,005	0,4	7,17	2,3	500	1,63	0,33	0,59	0,04	44,1	17,4	93	1,4	1240	3,79
1388-TR-14-01 GR-MQ	2014-10-04 M4, 1-2%PY et I1B	SOQVAL-1	VO14160281	-0,005	0,3	7, <del>44</del>	4	350	1,65	0,62	0,61	80,0	53,7	27,9	129	1,85	637	6,12
1388-TR-14-01 GR-MQ	2014-10-04 (50 cm) M4 en enclave 50-60%mafique (AM-BO) 30- 40%PG-QZ, 5-7%PY diss cubique (pas de CP). / (50 cm) 30%QZ, 20%BO, 20%FK, 30%PG, 1%PY diss, Alt: EP+ ve loc, Si+	I1B	VO14160281	-0,005	0,83	7,57	3,8	460	1,4	3,12	0,26	0,03	40,3	25,3	145	1,93	467	5,17
1388-TR-14-01 GR-MQ	2014-10-04 I1B 30-40%QZ, 220-30%FK, 10-20%BO, 10%PG, multiple veinules de CL-QZ mm Tr-1%PY diss-amas.	les SOQVAL-1	VO14160281	-0,005	0,05	6,01	-0,2	750	0,75	0,1	0,17	-0,02	9,01	2,7	9	1,41	26,9	0,87
1388-TR-14-01 GR-MQ	2014-10-04 I1B, 40%PG-EP, 30%QZ, 10%FK, 10%BO, BO-AM en veinules localement, EP++ verte.	SOQVAL-1	VO14160281	-0,005	0,05	7,18	-0,2	720	1	0,1	0,17	-0,02	9,53	2,4	14	1,62	46	0,97
1388-TR-14-01 GR-MQ	2014-10-04 M4 (40cm) gf-gm, 5-7%PY diss mouchetée. 50,5-1%CP diss, 60cm de l1B: 60%QZ, 30%PG, 10%BO, EP++, TrCP, 1%PY en amas.		VO14160281	0,005	0,92	7,05	1,7	510	1,48	0,63	0,27	0,02	44,5	10,2	65	1,51	4070	2,25
1388-TR-14-01 GR-MQ	2014-10-04 I1B à gg, plus mafique, 50%mx mafiques (AM-BO), 20%QZ, 20%PG, SR+. 1%PY amas.	SOQVAL-1	VO14160281	-0,005	0,25	7,72	1,3	1030	0,95	0,75	0,08	-0,02	21,2	6,7	8	1,5	35,8	2,22
1388-TR-14-01 GR-MQ	2014-10-04 I1B passages mafiques/passages felsiques, 50%PG, 20R%BO, 10%QZ, 10%FK, 1%PY en amas.	SOQVAL-1	VO14160281	0,005	0,07	6,51	0,3	1090	0,6	0,22	0,51	-0,02	14,8	3,7	10	1,21	48,8	1,45

No_Terrain Équipe	Date_aaaammjj Description_Echant	Code_analy	rs No_Rapport A	u Pt Pd	Ag Al	As	Ва	Ве	Bi	Са	Cd	Се	Со	Cr	Cs	Cu	Fe	
1388-TR-14-01 GR-MQ	2014-10-04   11B, +M4, mélange enclaves /magma, 3-4%PY diss- mouchetée en amas, 0,5-1%CP diss -amas.	SOQVAL-1	VO14160281	-0,005	0,5	7,57	1	510	1,49	0,29	0,46	0,05	51,3	13,2	23	1,53	1250	2,79
1388-TR-14-01 GR-MQ	2014-10-04 I1B à gg, Tr-0,5%CP en amas, 1 gros amas de CP (0,5cr TrPY diss.	n), SOQVAL-1	VO14160281	0,013	0,76	5,59	1,2	640	0,66	0,76	0,19	-0,02	30,8	4,1	10	1,11	1340	0,66
1388-TR-14-01 GR-MQ	2014-10-04   11B pegmatitique, 60% mx mafiques (AM-BO), 30%PG   10%QZ, Tr-0,5%CP diss, HM+ en uvn.	, SOQVAL-1	VO14160281	0,093	8,4	6,76	0,9	820	1,16	26,6	0,27	-0,02	26,2	25	8	1,21	398	1,87
1388-TR-14-01 GR-MQ	2014-10-04   11B pegmatitique, 40%FK rosé, 20%PG, 20%AM-BO, 10%QZ. Alt: SR+ (beige-jaune), EP+. TrPY	SOQVAL-1	VO14160281	0,033	0,48	7,39	0,8	930	0,7	1,51	0,3	-0,02	49,2	5,5	13	1,39	516	1,14
1388-TR-14-01 GR-MQ	2014-10-04 Faille, I1B pegmatitique, 40%FK rosé, 20%PG, 20%AM 10%QZ. Alt: SR+ (beige-jaune), EP+. TrPY	-BO, SOQVAL-1	VO14160281	0,049	0,3	5,44	0,4	250	1,03	1,62	0,09	-0,02	56,6	4,7	26	1,12	50,9	1,2
1388-TR-14-01 GR-MQ	2014-10-04 M4 à gf-gm, 50%AM-BO, 47%QZ-PG, 2-3%PY cubique ou en amas, TrCP. Alt: EP++ dans PG-QZ	diss SOQVAL-1	VO14160281	0,053	1,44	7,87	0,6	220	1,54	10,65	0,09	0,03	57,5	46,9	238	5,77	2440	4,01
1388-TR-14-01 GR-MQ	2014-10-04 M4 à gf-gm, 50%AM-BO, 45%QZ-PG, 3-4%PY cubique TrCP, Alt: EP++ dans PG-QZ.	diss, SOQVAL-1	VO14160281	0,009	0,59	8,49	1,2	450	1,3	5,28	0,06	0,02	72,6	24,3	74	5,06	91,3	3,46
	THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PA																	
1388-TR-14-01 GR-MQ	2014-10-04 M4 à gf-gm, 50%AM-BO, 49%QZ-PG, Tr-0,5%PY cubiq diss, TrCP. Alt: EP++ dans PG-QZ.	ue SOQVAL-1	VO14160281	-0,005	0,47	8,9	0,6	440	1,73	2,03	0,07	-0,02	146,5	9,2	65	5,59	67,2	3,09
	uiss, Her. Al. Er i dalis ro-qe.																	
1388-TR-14-01 GR-MQ	2014-10-04 M4 à gf-gm, 50%AM-BO, 45%QZ-PG, 5-7%PY cubique	diss SOQVAL-1	VO14160281	0,01	2,51	7,42	0,7	190	1,76	6,19	0,08	0,06	243	43,6	57	8,19	4320	6,17
	ou en amas. Alt: EP++ dans PG-QZ																	

No_Terrain Équipe	Date_aaaammjj   Description_Echant	Code_analys No_	Rapport Au	Pt P	d Ag	Al	As B	а Ве	Bi	Ca	Cd	Се	Со	Cr	Cs	Cu	Fe	
1388-TR-14-01 GR-MQ	2014-10-04 Enclave de M4, coulalt et fr: gris foncé verdâtre. Text: sa. 57%QZ-FP, 40%MF (BO), 3%PY. Alt: CL+, 1%VNQZ r à cm // à 50/51. La pyrite est à gf diss et répartie de fa hk dans les lits. Non-mag. Litage ondulant, mais généralement sub-H.	nm	4160281	-0,005	0,1	3 8,05	0,5	320	1,02	0,21	5,9	0,19	36,9	51,4	336	0,98	67,4	6,14
1388-TR-14-01 GR-MQ	2014-10-04 90%I1B rose, 20%QZ, 8%BO à 15%BO (le % augmente près de enclave), 65%FP. Text: gm-gg,hd-id. Alt: CL+, lc EP+-SR+. Min: TrPY à gf diss dans les grains de BO-CL. conte que les grains mafiques sont à gm-gg.	OC	14160281	-0,005	0,2	5 6,42	-0,2	920	0,69	0,96	0,24	-0,02	177,5	3,2	21	1,52	36,9	0,8
1388-TR-14-01 GR-MQ	2014-10-04 l1 et M4 (enclave), la roche est hk et varie de vert pom à vert foncé. Les zones felsiques sont vert-pomme (SR EP+) à gm, ma. Les zones foncées contiennent 50-60% CL et sont FK+. Min: TrPY à gf diss.	+-	14160281	0,012	0,5	4 7,48	0,4	290	2,63	2,18	0,47	-0,02	500	7,8	34	4,93	21	1,61
1388-TR-14-01 GR-MQ	2014-10-04 20% zone mafique tachetée texture de mélange, 80%l à gf-gm, ma. On note que le I1B est HM+ diss/uvn/am. les PG sont SR+-EP+ . Min: Loc TrPY dans une petit niv d'enclave de M4.	as,	14160281	-0,005	0,0	6,73	0,5	520	1,05	0,14	0,12	-0,02	26,8	3,6	33	0,9	25,7	0,85
1388-TR-14-01 GR-MQ	2014-10-04  50%I1B rose à gg, ma. Le I1B contient de la PY en trace ass à des grains de BO-CL. 20%Enclave de M4 à gf (contenant 5% d'un minéral beige, à gf diss?), 1%PY à diss. 30%I1B rose vert à gm, ma, contenant 1%PY dans mafiques.	gf	14160281	-0,005	0,1	5 7,07	0,5	510	2,65	1,73	0,2	-0,02	130	8,7	120	3,4	53,8	1,7
1388-TR-14-01 GR-MQ	2014-10-04 30% enclave de M4: 50%BO-CL, 50%QZ-FP, TrPY à gf d / 70%I1B: rose à légèrement verdâtre,75%FP ( FK+ et F 20%QZ, 5%BO. EP+, FK+		14160281	0,006	0,0	4 6,75	-0,2	830	1,26	0,24	0,17	-0,02	130	2,2	9	1,53	33	0,89
1388-TR-14-01 GR-MQ	2014-10-04 Enclave de M4 et contact. La roche est hk, et contient pourcentage variable de mx mafiques (50 à 70%). La granulométrie varie de gf (dans l'enclave) à gm-gg dan bordure. On note la présence d'une VNQZ cm irréguliè en bordule de laquelle la CP est plus concentrées et de les fractures à l'intérieur de cette dernière. Une altéra en HM+ en uvn est notés. Min: 2-3%CP loc en uvn très irrégulière ou [] au pourtour de grains (généralement.	s la ere ens tion	14160281	0,084	13,	7,45	8,0	170	2,59	63	0,15	-0,02	107	47,1	52	1,96	1820	4,29
1388-TR-14-01 GR-MQ	QZ). La CP est répartie de façon hk. On note peut-être présence de CV (minéral bleu irridescent).  2014-10-04 Enclave de M4 de coul alt: gris foncé, fr: gris-vert fonce	la	14160281	0,03	2,3	7 7,28	0,2	60	2,71	12,25	0,32	-0,02	105	22,9	82	3,64	13700	3,71
1300-IN-14-01 GN-MIQ	litage bien défini. Text: gf, sa. On note la présence de l riches en QZ. Min: 72%QZ-FP, 20%MF, 8%CP [] dans de lits riches en QZ. La CP semble avoir circulé dans ces lit et a parfois percolé dans les fractures du QZ. Le QZ est légèrement bleuté. La schistosité est sub-horizontale.	its es :s	.7100201	0,00	۷,۰	. 1,20	U,£	50	۵,11	بکیکا	0,02	-0,02	100	££,0	02	0,04	13700	0,11

No_Terrain Équipe	Date_aaaammjj Description_Echant	Code_analy	ys No_Rapport	Au	Pt	Pd	Ag	Al	As	Ва	Ве	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe	
1388-TR-14-01 GR-MQ	2014-10-04 Zone fracturée. 50%QZ-FP, 50%MF (BO-AM-CL), gf-gm, ma. Pas de minéralisation observée, présence d'un minéral beige à gf en feuillets (?), *Partie de la rainure manquant en raison de la fracturation/perte}	SOQVAL-1	VO14160281	0,0	057			5,01	8,95	0,7	330	3,94	20,3	0,32	-0,02	500	28,3	95	8,31	81,2	3,55
1388-TR-14-01 GR-MQ	2014-10-04 Pris dans zone de cisaillement, 90% I1B rose avec grains verdâtres ,hk, à granulométrie variable gm-gg (1mm à >1cm) /10% d'enclave de M4 ayant une schistosité subhorizontale, 3%PY à gf hd diss.		VO14160281	0,0	005			0,1	6,73	0,3	780	0,96	0,43	0,12	-0.02	23,8	3,5	35	1,55	78,6	0,64
1388-TR-14-01 GR-MQ	2014-10-04 I1B, rose verdâtre (plus verdâtre à proximité d'un enclar = EP+ SR+), gf-gm, ma. 72%FP, 20%QZ, 5-8%MF (BO-CL), TrPY à gf diss. L'échantillon contient environ 10 cm d'enclave de M4 et on observe dans cette zone des stringers de PY très fins et irréguliers. TrCP à gf au conta	,	VO14160281	0,0	005			0,17	6,18	0,3	790	0,83	1,4	0,18	-0,02	55,4	5,3	14	2,04	195,5	0,74
1388-TR-14-01 GR-MQ	2014-10-04  30% enclave de M4: gf EP+/++ dans bandes cm à pluricm. L'enclave contient 5-8%PY à gf diss et loc [] dans un bande cm avec texture inter-granulaire. / 70%I1B hk, gn gg, ma, avec pourcentage de mx mafiques très variable (15 à 40%), présence d'un mx beige en bordure des grai mafiques (?). 15%QZ, 15-40%MF, balance=FP	e n-	VO14160281	0,0	007			0,4	6,7	-0,2	700	1,46	2,07	0,15	-0,02	37,2	9,3	30	3,48	50,6	1,62
1388-TR-14-01 GR-MQ	2014-10-04 20%M4 contenant 5%PY et loc TrCP / 80%l1 beige verdâtre à gf-gm, ma (perte de texture primaire par altération), SR++, EP++. Loc TrCP et loc TrMO.	SOQVAL-1	VO14160281	0,0	014			0,28	7,69	-0,2	600	1,84	3,45	0,18	-0,02	17,65	17	46	2,81	382	1,84
1388-TR-14-01 GR-MQ	2014-10-04 M4 vert moyen à vert pomme, gf, sa,sc (litage sub- horizontale). 30%mica vert (?), 55%QZ-FP, 5-15%PY à gr gm diss hd-id. Alt: EP++, SR+		VO14160281	0,	,01			0,4	8,35	0,4	160	3,41	3,07	0,34	0,03	19,15	42,3	121	10,6	356	4,51
1388-TR-14-01 GR-MQ	2014-10-04 M4 vert moyen à vert pomme, gf, sa,sc (litage sub- horizontale). 30%mica vert (?), 55%QZ-FP, 10-15%PY à gm diss hd-id. Alt: EP++, SR+		VO14160281	0,0	008			0,37	8,47	0,6	160	3,62	3,23	0,35	0,02	22,1	71,9	138	12,55	915	6,99
1388-TR-14-01 GR-MQ	2014-10-04 M4 vert moyen à vert pomme, gf, sa,sc (litage sub- horizontale). 30%mica vert (?), 55%QZ-FP, 10-15%PY à gm diss hd-id, contient également un lit cm riche en PY. Alt: EP++, SR+	gf-	VO14160281	0,0	15			0,71	7,65	0,6	150	2,97	3,74	0,38	-0,02	30,1	45,4	133	8,8	335	5,8
1388-TR-14-01 GR-MQ	2014-10-04 Transition enclave/encaissant. Enclave: M4 vert moyen vert pomme, gf, sa,sc (litage sub-horizontale). 30%mica vert (?), 55%QZ-FP, 15%PY à gf-loc à gg diss ou en amas loc TrCP à gf diss. Alt: EP++, SR+, SI+ /I1 (zone de transition): gg à pegmatitique, ma, les PG sont EP++ (ve pomme), zone de 3cm contenant 1%CP à gf diss [] avec les mx mafiques. Globalement l'échantillon contient TrC	rt	VO14160281	0,0	012			0,45	6,99	1,1	330	1,84	3,94	0,16	0,05	60,7	27,4	49	5,27	885	3,17

_Terrain Équipe	Date_aaaammjj Description_Echant	Code_analy	s No_Rapport A	u Pt	Pd Ag	Al	As	Ва	Ве	Bi	Ca	Cd	Се	Со	Cr	Cs	Cu	Fe	
88-TR-14-01   GR-MQ	2014-10-04 I1B beige verdâtre, ma, po (la granulométrie varie de de gf à 20% de phx de PG à gg (1-2cm), 90%QZ-FP, 10%MF (BO-CL), loc TrPY à gf ass aux mx mafiques.	SOQVAL-1	VO14160281	-0,005		0,04	6,87	-0,2	820	0,98	0,07	0,27	-0,02	19,5	1,7	8	1,62	14,9	0,79
00 TR 44 04 CR 440	2014 10 04 15 page hi ma ma maiore de FK//ahimatima)	COOVAL 1	VO14150301	0.005		0.12	4,81	0.5	520	0.72	0.14	0.04	-0.02	11.45	1.2	0	2.05	19,4	0,68
8-TR-14-01 GR-MQ	2014-10-04 I1B rose, hj, gm, ma, présence de FK+(altération?), minéralogie: QZ-FP (impossible de distinguer FK et PG). Contient une zone Si++ avec un réseau de fractures bien développé. TrPY dans une petite enclave qui représente 10% de l'éch.	SOQVAL-1	VO14160281	-0,005		0,12	4,61	0,5	520	0,72	0,14	0,04	-0,02	11,45	1,2	8	2,05	19,4	0,68
38-TR-14-01 GR-MQ	2014-10-04 I1B à gg, 30%PG (EP++, SR+) bien cristallisés, 10-20%QZ (rose/vert), 30-40%FK rose, 10%BO. Tr de petits amas de PY/ TrPY diss. Patine d'altération superficielle.		VO14160281	-0,005		0,04	7,17	-0,2	960	1,01	0,04	0,59	0.02	173,5	1,6	10	1,62	12,2	0,89
38-TR-14-01 GR-MQ	2014-10-04 I1B rose/vert, 40%FK rose, 40%PG-EP++, 10%QZ, 10%BO	SOQVAL-1	VO14160281	0,017		0,37	6,09	-0,2	800	0,49	1,12	0,3	-0,02	26,5	2,5	12	1,3	120	0,67
8-TR-14-01 GR-MQ	2014-10-04 I1B rose/vert, 40%FK rose, 40%PG-EP++, 10%QZ, 10%BO, 0,5%PY diss amas	SOQVAL-1	VO14160281	-0,005		0,27	5,64	2,2	620	0,88	0,61	0,17	-0,02	20	3,9	10	1,4	350	0,93
8-TR-14-01 GR-MQ	2014-10-04 Contact I1B/enclave, 1%CP dans I1B et 2-3%CP dans M4.	SOQVAL-1	VO14160281	0,005		3,72	5,46	2,2	510	1,51	0,98	0,36	-0,02	102	10,2	28	1,4	2730	1,24
8-TR-14-01 GR-MQ	2014-10-04 I1B à faille, SR+, lits QFP-lits mafiques, pas de sulfures.	SOQVAL-1	VO14160281	0,008		0,56	7,41	0,7	550	1,24	2,63	0,28	0,15	500	3,6	19	3,17	16,5	0,67
GR-110 GR	2014-10-04 Rainure à 95°N, perpendiculaire à une enclave déjà échantillonnée. On pensait intercepter l'enclave, mais la rainure est juste à côté. I1 avec pourcentage élevé de mx mafiques (~40%), HM++, loc on observe quelques uvn de PY. Gm-gg, ma, FK+, CL++, HM+/++.		VO14160281	0,025		0,97	7,03	-0,2	490	1,39	0,06	0,44	0,02	41,5	4,3	46	5,56	12	4,56
8-TR-14-02 GC	2014-10-04 M4 avec 7%PY di	SOQVAL-1	VO14160281	0,005		0,5	8,37	2,5	400	1,38	0,73	0,66	0,46	56,5	45,2	134	1,16	352	9,16
8-TR-14-02 GC	2014-10-04 M4 avec 7%PY di	SOQVAL-1	VO14160281	-0,005		0,45	8,1	2,7	510	1,42	0,62	0,59	0,38	49,3	37,4	130	1,16	300	7,6
8-TR-14-02 GC	2014-10-04 I1Bavec 3%PY	SOQVAL-1	VO14160281	0,007		0,58	7,32	1,3	380	1,43	0,49	0,63	0,54	44,5	34,4	79	1,33	263	6,6
8-TR-14-02 GC	2014-10-04 tr PY	SOQVAL-1	VO14160281	-0,005		0,04	6,35	-0,2	890	2,38	0,16	0,57	0,06	146,5	1,7	11	3,63	4,1	0,9
8-TR-14-02 GC	2014-10-04 0.5%PY ass avec la BO	SOQVAL-1	VO14160281	-0,005		0,13	6,67	-0,2	970	1,48	0,09	0,67	0,12	41,1	3,7	11	2,57	26,4	1

No_Terrain Équipe	Date_aaaammjj Description_Echant	Code_analys No_Rapport /	Au Pt	Pd A	g Al	As	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe	
388-TR-14-02 GC	2014-10-04 tr PY	SOQVAL-1 VO14160281	-0,005		0,07	6,69	0,3	1020	0,91	0,06	0,6	0,06	20,2	2,6	9	1,92	18,7	1,04
888-14-TR-02 GC	2014-10-04 tr PY	SOQVAL-1 VO14160281	0,007		0,19	6,6	8,4	1080	0,72	0,06	0,45	0,06	29,6	3,5	9	1,56	81,3	1,25
88-14-TR-02 GC	2014-10-04	SOQVAL-1 VO14160281	-0,005		0,04	6,47	0,2	980	0,77	0,03	0,75	0,04	14,2	1,9	9	1,9	9	1,04
88-14-TR-02 GC	2014-10-04	SOQVAL-1 VO14160281	0,008		0,07	6,54	-0,2	1160	0,45	0,04	0,24	-0,02	12,75	1,5	7	1,59	8,1	0,84
88-14-TR-02 GC	2014-10-04 5%PY tr CP	SOQVAL-1 VO14160281	0,007		0,82	7,1	0,4	210	1,71	0,89	1,32	0,32	38	45,8	93	8,19	328	7,72
88-14-TR-02 GC	2014-10-04	SOQVAL-1 VO14160281	-0,005		0,05	7,08	0,9	1100	0,53	0,06	0,35	0,05	31,8	2,1	9	1,65	12,6	1,12
88-14-TR-02 GC	2014-10-04	SOQVAL-1 VO14160281	-0,005		0,07	6,79	-0,2	1030	0,66	0,07	0,31	0,09	41	3,4	10	1,83	14	1,28
88-14-TR-02 GC	2014-10-04 10%PY di	SOQVAL-1 VO14160281	-0,005		0,95	5,46	1,8	60	1,78	1,14	0,46	0,53	30,7	42,5	47	0,72	282	9,06
38-14-TR-02 GC	2014-10-04 5%PY tr MO	SOQVAL-1 VO14160281	0,005		0,79	8,26	1,1	480	1,87	0,78	0,88	0,17	46,4	38,4	118	3,66	198,5	8,37
38-TR-14-04 GC-MA	2014-10-05 tr PY	SOQVAL-1 VO14160282	-0,005		0,04	7,01	0,2	880	1,74	0,05	0,72	0,02	42,6	2,8	12	4,5	6,2	1,27
88-TR-14-04 GC-MA	2014-10-05 0.5%PY	SOQVAL-1 VO14160282	-0,005		0,07	7.43	-0,2	730	1,24	0.05	0,99	0.04	22,5	6	43	3,45	19.9	2,15
8-TR-14-04 GC-MA	2014-10-05	SOQVAL-1 VO14160282	-0,005		0,04	7,36	-0,2	840	1,17	0,03	0,87	0,03	21,9	4	34	2,8	12	1,67
38-TR-14-04 GC-MA	2014-10-05 3-5%Py	SOQVAL-1 VO14160282	-0,005		0,35	7,32	-0,2	1180	1,37	0,18	2,61	0,21	66,1	21,8	271	3,98	118	4,41
88-TR-14-04 GC-MA	2014-10-05 TrPY	SOQVAL-1 VO14160282	-0,005		0,05	6,83	-0,2	730	1,13	0,03	1,02	0,03	15,2	5,5	39	2,89	12,9	1,88
8-TR-14-03 BR-Math	2014-10-07	SOQVAL-1 VO14160282	-0,005		0,03	6,36	-0,2	790	1,02	0,02	0,7	0,02	5,37	1,1	10	1,19	4,1	0,59
38-TR-14-03 BR-Math	2014-10-07	SOQVAL-1 VO14160282	-0,005		0,04	6,52	-0,2	740	1,14	0,02	0,79	0,03	6,04	1,8	15	1,67	4,9	0,78
8-TR-14-03 BR-Math	2014-10-07	SOQVAL-1 VO14160282	-0,005		0,06	8,25	-0,2	270	2,04	0,07	1,62	0,03	48,5	15,3	124	11,55	14,4	4,51
8-TR-14-03 BR-Math	2014-10-07	SOQVAL-1 VO14160282	-0,005		0,05	7,26	-0,2	570	1,37	0,04	1,13	0,04	28,9	5,8	40	4,68	10,4	2,06
8-TR-14-03 BR-Math	2014-10-07	SOQVAL-1 VO14160282	-0,005		0,03	7,27	-0,2	750	1,32	0,03	1,07	0,03	21,1	4,8	36	3,68	8,3	1,56
8-TR-14-03 BR-Math	2014-10-07	SOQVAL-1 VO14160282	-0,005		0,06	6,64	0,3	800	1,09	0,03	0,77	0,02	14,45	3,4	26	2,78	8,8	1,42
38-TR-14-05 MQ-BR	2014-10-07 idem	SOQVAL-1 VO14160282	-0,005		0,07	6,94	0,2	400	1,52	0,05	1,24	-0,02	31	8,2	68	5,18	15,6	2,64
38-TR-14-05 MQ-BR	2014-10-07 idem	SOQVAL-1 VO14160282	-0,005		0,02	7,08	-0,2	880	1,03	0,03	0,76	0,02	25,9	4,6	60	2,87	3,8	1,73
8-TR-14-05 MQ-BR	2014-10-07 idem	SOQVAL-1 VO14160282	-0,005		0,04	7,24	0,2	700	1,16	0,04	1,06	0,03	28,4	6,2	54	4,28	11,9	2,57
8-TR-14-05 MQ-BR	2014-10-07 idem	SOQVAL-1 VO14160282	-0,005		0,05	7,05	-0,2	450	1,4	0,03	1,28	0,04	15,15	6	50	3,13	11,1	2,17
8-TR-14-05 MQ-BR	2014-10-07 idem	SOQVAL-1 VO14160282	-0,005		0,13	7,2	-0,2	540	1,28	0,09	1,19	0,07	35,1	10,1	61	4,05	32,6	2,92
-TR-14-05 MQ-BR	2014-10-07 idem	SOQVAL-1 VO14160282	-0,005		0,04	7,05	0,4	920	0,89	0,04	0,65	0,03	24,1	3	23	2,21	8,2	1,62
																•	,	, , -

No_Terrain	Équipe	Date_aaaammjj	Ga Ge	Hf	In	К	La	u		Mg Mn	Mo	Na	Nb	Ni	P	Pi	
14-JFG-092	JFG-OC	2014-07-17	7 19	0,16	2,9	0,045	2,04	22,9	33,9	1,14	202	25,4	3,05	5,4	46,7	390	123
14-JFG-092	JFG-OC	2014-07-17	7 21,1	0,19	4,4	0,075	1,85	24,9	40,7	1,45	212	13,75	2,98	11,5	104,5	1880	68,5
14-JFG-092	JFG-OC	2014-07-17	18,05	0,15	7,5	0,028	2,16	13,2	32,9	1,06	158	8,13	2,83	10,1	50,8	100	69,7
14-JFG-092	JFG-OC	2014-07-17	12,05	0,13	7	0,012	1,76	2,8	19,3	0,47	168	154	1,86	9,4	4,3	40	51,2
14-JFG-092	JFG-JL	2014-07-18	14	0,22	7,7	0,079	1,65	34	35	1,06	118	377	2,85	6,9	15,1	220	48,6
14-JFG-092	JFG-JL	2014-07-18	20,9	0,16	4	0,143	3,43	20,7	43,9	1,57	176	1240	2,91	13,2	27,5	190	167
14-JFG-092	JFG-JL	2014-07-18	17,05	0,19	3,7	0,038	5,17	33,9	17,7	0,59	91	490	2,03	5	6,5	90	176
14-JFG-092	JFG-JL	2014-07-18	15,95	0,21	5,1	0,014	3,8	40,6	16,2	0,53	122	32	2,45	6,3	17,7	170	46,1
14-JFG-092	JFG-JL	2014-07-18	18,2	0,23	3	0,022	4,46	25,4	16,5	0,46	112	8,29	2,47	6,7	48,4	180	59,6
14-JFG-092	JFG-JL	2014-07-18	18,9	0,2	2,3	0,045	4,73	9	48,2	1,22	397	481	1,39	33,1	6,5	1190	48,8
14-JFG-092	JFG-JL	2014-07-18	14,6	0,18	4,7	0,016	4,96	9,6	12	0,35	82	11,55	2,27	5,6	3,5	410	34,9
14-JFG-092	JFG-JL	2014-07-18	16,1	0,15	4,7	0,006	4,68	8,1	12,6	0,4	98	6,5	2,14	9,9	3,8	120	33,1
14-JFG-092	JFG-JL	2014-07-18		0,14	3,5	0,016	3,65	9,1	16,1	0,5	120	13,2	2,41	8,5	8,1	180	42,5
14-JFG-092	JFG-JL	2014-07-18		0,13	3	0,01	5,29	5,7	14	0,45	106	16,7	1,91	10	4	830	48,2
14-JFG-092	JFG-JL	2014-07-18		0,16	3,9	0,017	4,31	5,8	28	0,92	102	90,4	2,05	11,9	8	280	88,4
14-JFG-092	JFG-JL	2014-07-18	13,45	0,13	4,6	0,135	1,88	9,7	30,9	1,28	176	173,5	2,02	9,2	16	220	85,8
14-JFG-092	JFG-JL	2014-07-18	22,9	0,13	4,2	0,069	2,76	21,5	53,2	1,4	516	5,22	3,07	14,1	62,8	260	25,3
14-JFG-092	JFG-JL	2014-07-18		0,12	4,6	0,021	3	21,9	18,5	0,63	151	15,5	2,7	6,5	7,6	410	28,6
14-JFG-092	JFG-JL	2014-07-18		0,12	2,6	0,156	1,39	11,6	38,5	1,59	193	211	2,59	7,2	25,8	300	215
14-JFG-092 1388-TR-14-01	JFG-JL	2014-07-18 2014-10-03		0,13	9,9 6,8	0,095	2,45 5,15	8,4 77,4	38,5 12	1,44 0,46	153 102	247 1,45	1,93 2,07	17,8 5,5	8,9 3,5	450 300	35,2 25,7
1388-TR-14-01	L CR MO	2014-10-03	3 13,65	0,16	11,2	0,009	4,07	27	11	0,43	88	2,32	2,21	4	3,4	190	19
1300-11-14-01	C GR-IVIQ	2014-10-03	5 13,00	0,10	11,2	0,000	4,07	21		0,73	55	2,02	2,21	•	3,4	190	10
1388-TR-14-01	L GR-MQ	2014-10-03	3 14,85	0,16	3,6	0,008	5,35	23,4	11,7	0,46	84	4,69	2,04	6,8	2,9	530	34,3
1388-TR-14-01	L GR-MQ	2014-10-03	15,2	0,14	2,9	0,009	5,05	6,8	19,7	0,75	95	5,31	2,35	8	5,9	620	25
1388-TR-14-01	l gr-MQ	2014-10-03	12,4	0,12	5	0,02	3,36	6,4	10,4	0,4	66	19,05	2,06	7,4	4,8	70	27,1
1388-TR-14-01	L GR-MQ	2014-10-03	3 13,5	0,17	2,5	0,006	5,45	3,3	15,2	0,57	71	13,4	1,89	7	5	320	26,2

No_Terrain Équipe	Date_aaaammjj Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb	
.388-TR-14-01 GR-MQ	2014-10-03	15,25	0,19	4,7	0,012	4,25	54,7	11,5	0,46	50	35,4	2,55	5,9	4,6	170	18,7
1388-TR-14-01 GR-MQ	2014-10-03	13,95	0,26	6,4	0,009	4,85	111	5,9	0,19	35	10,65	2,42	3,5	2,9	300	28,9
.1388-TR-14-01 GR-MQ	2014-10-03	16,55	0,16	5,7	0,009	3,5	23,4	25	1,05	73	0,98	2,47	4,6	11,4	70	15,3
.388-TR-14-01 GR-MQ	2014-10-03	28,9	0,26	4,4	0,03	3,53	96,8	44,3	1,67	109	162	4	8,2	24,2	280	17
1388-TR-14-01 GR-MQ	2014-10-03	22,9	0,22	3,4	0,031	2,8	84,5	17,1	0,68	41	91,4	3,28	5,1	46	370	18,3
.1388-TR-14-01 GR-MQ	2014-10-03	11,25	0,3	5,3	0,095	3,28	37	29,7	1,24	103	990	1,58	6,5	11,5	1310	406
.388-TR-14-01 GR-MQ	2014-10-03	18,55	0,18	3,1	0,178	0,88	18,7	66,1	2,78	170	346	3,01	5,3	43,2	530	62,5
.1388-TR-14-01 GR-MQ	2014-10-04	16,7	0,18	2,1	0,272	1,23	25	60	2,68	165	637	2,31	5,2	50,2	760	119,5
.388-TR-14-01 GR-MQ	2014-10-04	20,5	0,16	3,4	0,139	1,34	24,4	57,6	2,29	151	12,9	3,13	7,9	66	340	27,1

No_Terrain Équipe	Date_aaaammjj Ga	Ge Ge	Hf	In	K	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb	
1388-TR-14-01 GR-MQ	2014-10-04	20,4	0,17	3,8	0,132	0,71	25,6	96,5	3,53	187	97,1	3,52	4,6	79	1100	22,6
1388-TR-14-01 GR-MQ	2014-10-04	18,15	0,15	2,6	0,033	3,02	21,3	29,4	1,17	123	6,67	2,4	6,5	50,3	510	31,8
1388-TR-14-01 GR-MQ	2014-10-04	18,85	0,14	3,2	0,053	2,19	25	35,2	1,44	163	6,56	2,7	5,7	70,8	550	31,8
1388-TR-14-01 GR-MQ	2014-10-04	20,1	0,14	3,9	0,038	2,76	18,7	32,4	1,28	263	71,8	2,7	10,7	44,1	240	79,1
1388-TR-14-01 GR-MQ	2014-10-04	12,35	0,15	8,2	0,007	4,19	4,2	9,7	0,37	83	11,95	1,87	5,1	4,2	330	24,7
1388-TR-14-01 GR-MQ	2014-10-04	15,7	0,17	7	0,009	4,38	4,6	15,4	0,61	86	4,74	2,47	9,4	4,5	150	22,4
1388-TR-14-01 GR-MQ	2014-10-04	17,45	0,17	2,7	0,116	3,13	20,9	33,7	1,2	122	55,9	2,81	7	24,5	290	34,3
1388-TR-14-01 GR-MQ	2014-10-04	16,65	0,17	2,6	0,008	5,09	10,6	87,7	2,58	300	96,8	0,63	8,4	11,1	120	33,2
1355-111-14-01 GR-WQ	2014-10-04	10,00	0,17	2,0	0,000	0,00	10,0	07,7	2,00	000	0,0	0,00	O,T	,.	120	55,2
1388-TR-14-01 GR-MQ	2014-10-04	14,05	0,19	2,2	0,007	5,61	5,3	28,8	1,15	172	116	1,15	13,9	5,5	1900	49,2

o_Terrain Équipe	Date_aaaammjj Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Мо	Na	Nb	Ni	P	Pb	
38-TR-14-01 GR-MQ	2014-10-04	18	0,23	2,2	0,015	3,85	24,5	15,7	0,56	101	6,44	2,6	6,4	30,7	290	51,2
88-TR-14-01 GR-MQ	2014-10-04	10,4	0,2	2,3	0,025	4,31	13,3	8	0,26	55	124	1,54	1,3	6,3	500	53,5
888-TR-14-01 GR-MQ	2014-10-04	16,1	0,25	1,6	0,026	5,2	8,9	49,5	1,99	183	594	1,38	8,7	13,7	1120	164
388-TR-14-01 GR-MQ	2014-10-04	15,8	0,22	2,9	0,041	5,35	25,3	19	0,89	106	27,7	1,82	10,5	7,1	1070	35,7
388-TR-14-01 GR-MQ	2014-10-04	12,85	0,15	3,2	0,013	1,87	28,8	29,2	1,21	110	7,8	2,32	7	14,3	170	11,4
388-TR-14-01 GR-MQ	2014-10-04	20,1	0,19	3,4	0,089	2,16	26,5	42,7	1,78	140	141,5	2,99	7,3	62,6	260	33,6
300-11-14-01 GR-WIQ	2014-10-04	20,1	0,10	0,4	0,000	2,10	20,0	72,1	1,70	140	141,5	2,00	1,0	02,0	200	33,0
388-TR-14-01 GR-MQ	2014-10-04	18,7	0,21	4,4	0,039	3,4	33,6	30,9	1,41	133	125	3,13	5,1	31,8	190	84,3
388-TR-14-01 GR-MQ	2014-10-04	22,4	0,23	4,5	0,055	3,48	71,4	36,1	1,66	150	52,9	3,1	6,1	15,9	330	44,2
88-TR-14-01 GR-MQ	2014-10-04	20,9	0,32	2,8	0,136	2,17	129,5	43,4	1,99	192	93,3	1,67	4,7	66,4	400	95,9

No_Terrain Équipe	Date_aaaammjj Ga	a Ge	Hf	In	K	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb	
1388-TR-14-01   GR-MQ	2014-10-04	17,65	0,17	1,7	0,084	0,62	17	14,4	2,85	1310	3,5	2,67	4,4	190	630	10,6
1388-TR-14-01 GR-MQ	2014-10-04	12,75	0,24	1,9	0,009	5,32	93,4	20,6	0,72	95	9,18	1,42	6	6,5	720	27,7
1388-TR-14-01 GR-MQ	2014-10-04	21,9	0,53	4,3	0,042	3	373	61	2,2	201	41,4	2,08	7,3	16	1630	11,5
1388-TR-14-01 GR-MQ	2014-10-04	13,3	0,18	2,8	800,0	3,29	10,9	30	1,09	106	1,21	2,82	5,4	7,9	110	13,3
1388-TR-14-01 GR-MQ	2014-10-04	22,7	0,21	3,7	0,046	4,25	73,3	41,7	1,41	144	7,59	1,21	6,5	15,4	240	14,9
1388-TR-14-01 GR-MQ	2014-10-04	15,6	0,16	4,7	0,019	4,8	75,9	28,2	0,82	96	83	2,02	4,7	6,3	280	23
1388-TR-14-01 GR-MQ	2014-10-04	23,3	0,21	3,8	0,092	1,44	57,8	159	5,95	611	1700	1,72	8,8	26,9	310	180
1388-TR-14-01 GR-MQ	2014-10-04	23,3	0,2	3,5	0,389	1,1	62,9	100,5	3,84	343	261	3,51	11,5	17,8	620	49,3

No_Terrain	Équipe	Date_aaaammjj Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Мо	Na	Nb	Ni	P	Pb	
1388-TR-14-01	GR-MQ	2014-10-04	37	0,52	4,5	0,084	3,99	360	145	5,24	451	683	0,31	13,4	29,4	720	55,8
1388-TR-14-01	GR-MQ	2014-10-04	13,65	0,15	3,7	0,013	4,18	12,6	17,5	0,58	68	11,4	2,35	3,7	7,5	130	21
1388-TR-14-01	GR-MQ	2014-10-04	11,95	0,19	3,1	0,019	4,52	27,5	9,8	0,3	51	12,05	1,7	5,9	7,2	460	27,1
1388-TR-14-01	gr-mq	2014-10-04	14,8	0,19	3,5	0,029	4,65	22,7	41,1	1,23	118	105,5	1,41	9,6	14,3	210	24,3
1388-TR-14-01	GR-MQ	2014-10-04	21,2	0,18	3,8	0,037	4,8	9	30,4	1,01	101	79,4	2,11	11	24,6	110	30,6
1388-TR-14-01	gr-MQ	2014-10-04	26,1	0,14	4	0,08	2,52	9,1	48	1,68	150	43,2	2,47	9,6	61,6	390	11,9
1388-TR-14-01	gr-mq	2014-10-04	25,3	0,14	4,1	0,111	3,08	11,4	41,5	1,61	138	5,96	1,65	7,3	87,6	320	13,3
1388-TR-14-01	GR-MQ	2014-10-04	24,7	0,11	3,6	0,083	3,07	14,7	56,6	2,18	200	262	0,8	9,2	64,6	610	14,5
1388-TR-14-01	GR-MQ	2014-10-04	17,1	0,13	2,7	0,064	3,23	34,4	39,1	1,36	128	29,2	2,01	7,7	61	100	43,6

_Terrain Équipe	Date_aaaammjj Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Мо	Na	Nb	Ni	P	Pb	
88-TR-14-01 GR-MQ	2014-10-04	14,75	0,16	3,2	0,013	4,65	9,8	12,7	0,47	82	19,05	2,1	7,6	2,8	230	27
88-TR-14-01 GR-MQ	2014-10-04	9,39	0,15	2,4	0,015	3,76	6,4	9,9	0,38	64	40,8	1,02	0,4	4,6	40	17,5
38-TR-14-01 GR-MQ	2014-10-04	15,85	0,25	4,7	0,013	5,24	88,7	9,3	0,25	110	5,92	2,04	5,8	2,5	350	40,2
88-TR-14-01 GR-MQ	2014-10-04	11,8	0,19	1,4	0,012	4,74	11,5	10,3	0,37	64	129	1,61	10,2	6,2	1110	40,5
88-TR-14-01 GR-MQ	2014-10-04	12,2	0,15	4,8	0,014	3,56	10,6	9	0,31	50	56,7	1,87	2,4	10,6	50	34,2
88-TR-14-01 GR-MQ	2014-10-04	13	0,2	3,1	0,041	2,08	53,4	21,1	0,75	63	355	2,17	4,1	17,8	210	43,9
88-TR-14-01 GR-MQ	2014-10-04	21,7	1,21	2,5	0,018	4,55	580	14,8	0,56	51	30,9	2,78	9,1	6,9	1800	34,6
-GR-110 GR	2014-10-04	16,8	0,14	4,7	0,026	3,92	21,2	35,1	0,63	419	3,42	2,02	12,4	15,9	270	30,3
88-TR-14-02 GC	2014-10-04	19,75	0,12	4	0,062	1,87	27,5	43,2	1,34	369	7,52	3,03	6,3	97,9	490	195,5
88-TR-14-02 GC	2014-10-04	18,7	0,11	3,7	0,042	2,17	23,7	38,2	1,22	304	6,86	3,03	6,5	90,9	590	149
88-TR-14-02 GC	2014-10-04	17	0,11	3,3	0,044	1,96	21,6	31,9	0,88	328	19,45	2,44	5,5	76	330	88,5
88-TR-14-02 GC	2014-10-04	15,25	0,19	3,5	0,013	4,81	76,8	8,6	0,19	175	25,2	1,93	8,5	2,6	200	40,9
88-TR-14-02 GC	2014-10-04	14,6	0,12	4,1	0,012	4,99	22	9,6	0,21	171	14,2	2,01	7,1	7,1	310	37,9

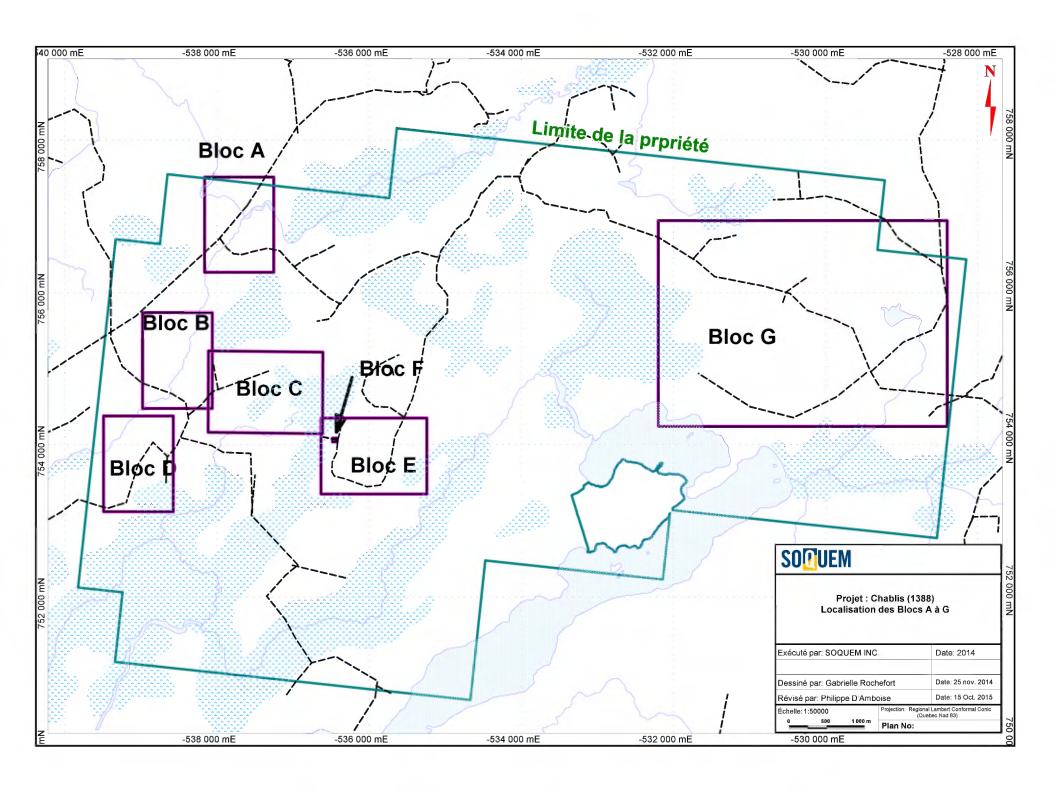
o_Terrain Équipe	Date_aaaammjj Ga	Ge	Hf	In	К	La	ш	Mg	Mn	Mo	Na	Nb	Ni	P	Pb	
388-TR-14-02 GC	2014-10-04	14,6	0,11	4,1	0,013	5,43	10	9,7	0,22	144	48,3	1,9	7,4	8,3	600	44,3
88-14-TR-02 GC	2014-10-04	13,85	0,12	3,9	0,016	5,55	14,2	14	0,39	158	39,3	1,65	8,7	4,3	1060	66,1
88-14-TR-02 GC	2014-10-04	13,55	0,13	3,5	0,012	5,13	5,9	12,1	0,22	166	14,75	1,87	8	4,5	1410	36,8
388-14-TR-02 GC	2014-10-04	12	0,1	2,1	0,009	4,52	5,4	5,5	0,18	87	41,6	1,42	4,9	3,7	690	40,3
888-14-TR-02 GC	2014-10-04	19,45	0,11	3,2	0,052	2,09	19,8	36,2	1,02	561	5,89	2,7	11,4	67,9	420	33,5
88-14-TR-02 GC	2014-10-04	14,3	0,14	4,6	0,009	6,07	15,5	13,3	0,44	107	19,35	1,65	9	4	990	63,5
88-14-TR-02 GC	2014-10-04	14,35	0,13	5,5	0,012	4,99	21,2	12,7	0,37	122	12,1	1,69	8,8	4,9	600	57,4
88-14-TR-02 GC	2014-10-04	14,65	0,11	1,9	0.073	0,6	15,7	33,7	0,92	404	7,88	1,92	5,4	95,1	560	172.5
88-14-TR-02 GC	2014-10-04	24,3	0,14	4,4	0,068	3,43	21,9	54	0,82	721	4,81	2,01	17,5	66,7	350	26,1
888-TR-14-04 GC-MA	2014-10-05	16	0,19	4,9	0,025	4,84	20,5	19	0,28	190	4,58	2,09	9,7	8,1	440	32,6
															2.72	
388-TR-14-04 GC-MA	2014-10-05	17,7	0,18	4,2	0,029	4,53	10,2	24,7	0,54	303	10,05	2,28	15,1	20,1	540	33,3
88-TR-14-04 GC-MA	2014-10-05	16,95	0,21	2	0,021	4,95	10	17,3	0,38	249	3,95	2,2	11,9	13,4	650	33,6
88-TR-14-04 GC-MA	2014-10-05	17,2	0,18	2,8	0,057	3,15	30,2	30,1	2,33	833	1,97	2,12	9,2	97,7	820	19,8
88-TR-14-04 GC-MA	2014-10-05	16,4	0,13	3,9	0,022	3,72	7,3	20,3	0,5	225	2,87	2,23	10	19,7	250	23,9
88-TR-14-03 BR-Math	2014-10-07	13,2	0,12	3	0,005	4,04	2,9	5,9	80,0	82	4,89	2,27	2,7	3,1	90	30,2
88-TR-14-03 BR-Math	2014-10-07	13,8	0,13	3,3	0,007	3,74	3,1	8,9	0,14	111	4,57	2,37	3,5	6,2	90	28,1
88-TR-14-03 BR-Math	2014-10-07	25	0,17	5,1	0,057	2,62	22,5	71,6	1,37	689	3,38	3,16	21,3	59,6	690	17,6
88-TR-14-03 BR-Math	2014-10-07	17,8	0,15	5	0,023	3,68	12,5	27,2	0,52	315	1,57	2,53	11,2	16,5	520	26,5
88-TR-14-03 BR-Math	2014-10-07	16,2	0,15	5,4	0,021	3,78	10,3	23,6	0,42	224	3,17	2,6	6,6	16,6	230	29,8
88-TR-14-03 BR-Math	2014-10-07	14,25	0,14	4,3	0,014	4,16	7,2	17,6	0,31	192	9,53	2,15	6,5	12,3	170	29,9
888-TR-14-05 MQ-BR	2014-10-07	18,8	0,15	4,2	0,032	2,83	14,1	39,5	0,73	386	12,15	2,53	13,8	32	250	21,4
388-TR-14-05 MQ-BR	2014-10-07	15,55	0,18	4,2	0,025	4,62	11,9	31,6	0,56	251	15,65	2,17	7,5	27,4	300	27,8
388-TR-14-05 MQ-BR	2014-10-07	18,85	0,2	4,4	0,032	3,87	13,3	43,9	0,67	348	9,2	2,38	17	25,1	360	25,4
300 TH 14 03 MIQ BH	2024 20 07	. 0,00	<b>V</b> ,=	.,.	0,002	0,07		10,0	0,01		, <u> </u>	_,00		-01.		
88-TR-14-05 MQ-BR	2014-10-07	18	0,14	7,1	0,028	2,67	7,8	32,8	0,58	290	6,02	2,65	12,3	23,7	180	20,4
88-TR-14-05 MQ-BR	2014-10-07	19,25	0,16	4,4	0,037	3,29	17,1	34,7	0,71	333	6,18	2,5	15,2	35,3	370	22,8

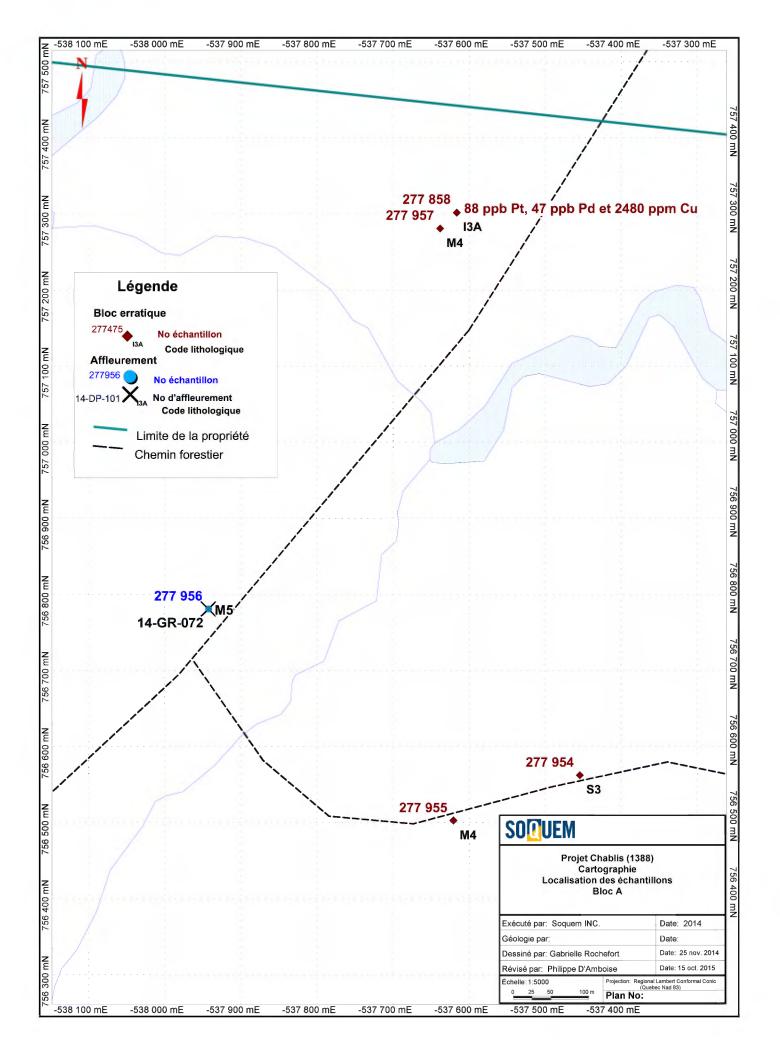
No_Terrain	Équipe	Date_aaaammjj	Rb Re	e 5	Sb	Si	c Se	Sn	s	Та	Te	Th	Ti	ŢĬ	U	v	w	Y	Zn	Zr	Zn	Cu Pb	Ag
14-JFG-092	JFG-OC	2014-07-17	87,7	0,007	1,92	-0,05	10	2	0,6	188	0,55	0,19	9,4	0,221	0.51	5,3	75	0.7	8,6	70	93,9		
14-JFG-092	JFG-OC	2014-07-17	86	0.008	5,25	0,05	12,1	5	1,3	126	1	0,4	9,7	0,233	0,56	5,8	90	1,5	12,6	80	142		
14-JFG-092	JFG-OC	2014-07-17	89,4	0,004	2,22	0,05	11,8	2	0,6	118,5	0,99	0,18	6,1	0,193	0,45	3,7	78	1,8	5,4	44	240		
14-JFG-092	JFG-OC	2014-07-17	79,3	-0,002	0,27	-0,05	3,7	-1	0,4	98,4	0,71	0,06	9,1	0,108	0,47	5,9	16	1,2	2,2	47	208		
14-JFG-092	JFG-JL	2014-07-18	61,8	0,018	0,79	0,09	6,2	6	0,4	58,2	0,53	0,21	40,5	0,135	0,53	49,1	82	0,6	8,2	17	232		
14-JFG-092	JFG-JL	2014-07-18	124	0,019	1,25	0,62	13,1	1	1	136,5	1,12	0,24	13,7	0,246	1,01	4,3	117	0,7	5,5	30	133		
14-JFG-092	JFG-JL	2014-07-18	169	0,073	0,16	0,07	3,4	-1	0,4	144	0,43	-0,05	25,8	0,085	1,38	14,7	44	1,3	3,8	23	110,5		
14-JFG-092	JFG-JL	2014-07-18	124	0,003	0,7	-0,05	4,3	-1	0,4	181,5	0,75	0,07	34,3	0,119	0,74	2,8	29	1	5,6	23	163		
14-JFG-092	JFG-JL	2014-07-18	153	0,002	1,84	-0,05	6	3	0,5	200	1,28	0,23	16,1	0,133	0,85	4,4	41	0,4	8,5	27	93,8		
14-JFG-092	JFG-JL	2014-07-18	199,5	-0,002	0,29	-0,05	11,4	-1	1,4	137	2,5	0,06	24,6	0,341	1,35	7,4	49	0,9	22,9	88	69,4		
14-JFG-092	JFG-JL	2014-07-18	172,5	-0,002	0,15	-0,05	2,1	-1	1,3	180	0,78	-0,05	17,4	0,058	1 1 1	2,7	9	0,4	7,4 3,4	9	150,5 149		
14-JFG-092	JFG-JL JFG-JL	2014-07-18 2014-07-18	227 131,5	-0,002 -0,002	0,08	0,07	3,1 3,2	1	0,6	183,5 182,5	2,63 0,63	0,13	8,4 19,1	0,069	1,21 0,72	2,3 3,4	11	0,3	3,3	17	116		
14-JFG-092 14-JFG-092	JFG-JL	2014-07-18	164	0,002	0,09	0,05	3,1	1	0,6	198,5	0,87	0,07	7,7	0,102	1,05	2,5	16	0,3	12	14	94,7		
14-JFG-092	JFG-JL	2014-07-18	142	0,002	0,16	0,06	3,7	1	0,7	158	0,83	0,08	90,7	0,124	0,81	14,4	22	0,5	5,5	27	124		
14-JFG-092	JFG-JL	2014-07-18	84,7	0,05	1,63	0,07	5,7	2	0,9	107	0,68	0,17	9,1	0,161	0,62	3,9	42	0,3	4,9	68	153		
							1						1			,		·					
14-JFG-092	JFG-JL	2014-07-18	176,5	0,003	2,83	0,07	15,9	2	2,2	228	0,86	0,36	6,2	0,376	1,5	1,7	113	0,4	5,4	95	150		
14-JFG-092	JFG-JL	2014-07-18	117,5	-0,002	0,06	0,08	3,2	-1	0,4	392	0,47	0,05	9	0,163	0,66	2	26	0,2	4	43	162,5	111	
14-JFG-092	JFG-JL	2014-07-18	80,3	0,088	2,16	0,08	7,2	2	1	106	0,59	0,3	8,2	0,162	0,64	5,3	57	0,7	6,4	76	87,5		
14-JFG-092	JFG-JL	2014-07-18	86,3	0,002	0,54	0,07	6,3	1	0,9	106	1,07	0,11	21	0,221	0,47	5,4	37	0,7	7,7	38	320		
1388-TR-14-01	GR-MQ	2014-10-03	180	-0,002	0,01	-0,05	2,6	-1	8,0	197,5	0,4	-0,05	35	0,074	1,01	2,7	12	0,1	6,9	14	237		
1388-TR-14-01 1388-TR-14-01		2014-10-03	157	-0,002	0,01	-0,05	2,2	-1	0,6	151 182,5	0,22	-0,05	13	0,056	1,12	2,9	12	0,4	4,6	10	367		
1388-TR-14-01	. GR-MQ	2014-10-03	174,5	-0,002	0,01	-0,05	2,9	-1	0,7	159,5	0,51	-0,05	6,8	0,083	0,97	3,1	18	0,8	8,9	12	103		
1388-TR-14-01	. GR-MQ	2014-10-03	129,5	-0,002	0,09	0,05	3	2	0,6	100,5	0,56	-0,05	73,3	0,072	0,67	11,3	23	1	3,4	7	162		
1388-TR-14-01	. GR-MQ	2014-10-03	177	-0,002	0,01	-0,05	2,5	-1	0,5	165,5	0,49	-0,05	6,7	0,078	1,02	2,2	20	0,5	4,8	9	80,9		

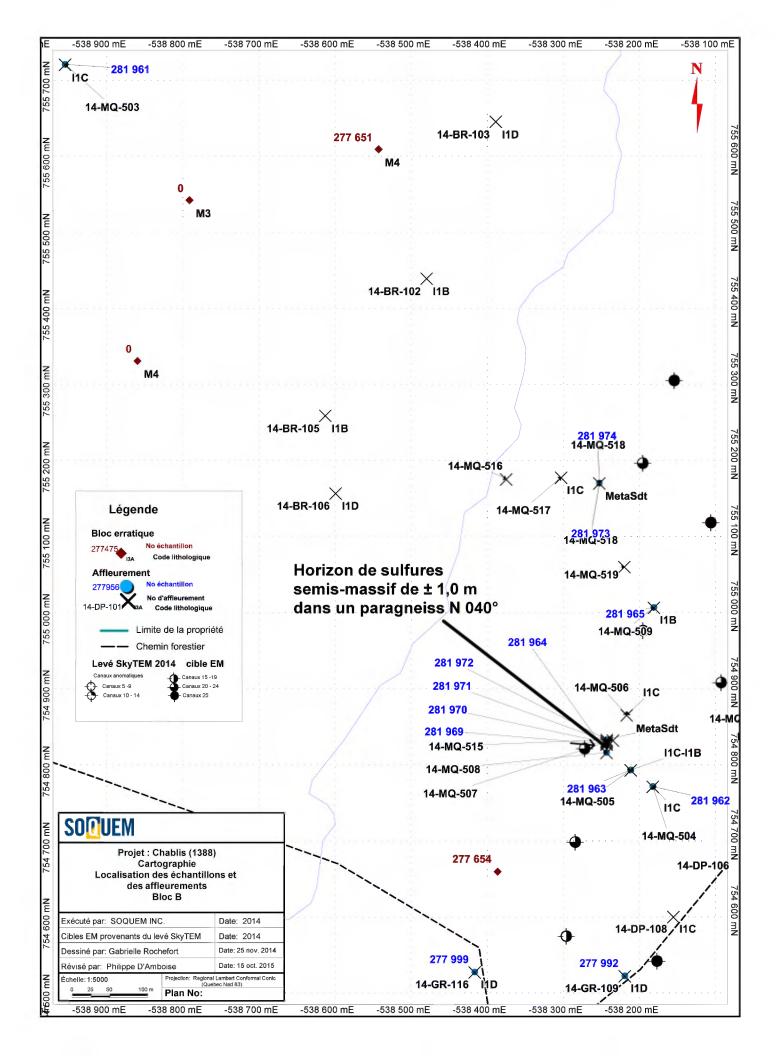
No_Terrain Équipe	Date_aaaammjj Rb	o Re	S	Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	TI	U	V	W	Y	Zn	Zr	Zn	Cu	Pb	Ag	Ni
1388-TR-14-01 GR-MQ	2014-10-03	157	-0,002	0,01	0,05	3,3	1	0,6	111,5	0,48	0,05	5,2	0,056	0,84	4,7	48	0,6	1,9	5	166				
1388-TR-14-01 GR-MQ	2014-10-03	165,5	-0,002	-0,01	0,05	2,5	-1	0,5	120,5	0,33	0,07	7,2	0,04	9,0	4,6	31	0,6	4,5	2	220				
1388-TR-14-01 GR-MQ	2014-10-03	138	-0,002	-0,01	0,05	3,4	-1	0,6	116,5	0.45	0,05	21,6	0,071	0,71	1,8	46	0,8	3,9	13	193,5				
1388-TR-14-01 GR-MQ	2014-10-03	135,5	0,007	0,12	0,06	22,3	3	1,4	58	0,89	0,29	8,4	0,299	0,78	6,8	216	0,6	11,8	19	138,5				
1388-TR-14-01 GR-MQ	2014-10-03	139,5	0,02	1,95	0.07	23	7	1	27,5	0,43	0,4	4,2	0,324	0,61	6,6	191	0,7	4,8	8	132				
1388-TR-14-01 GR-MQ	2014-10-03	108	0,242	0,32	0,14	5,6	50	0,6	80,3	1,04	0,36	8,3	0,062	1,99	176	179	0,8	20,4	21	171,5				
1388-TR-14-01 GR-MQ	2014-10-03	42,8	0,051	2,13	0,13	14	13	1,1	43,3	0,53	0,22	5	0,26	0,48	15	141	0,5	8	32	112,5	1,55			
1388-TR-14-01 GR-MQ	2014-10-04	53,3	0,066	3,24	0,31	10,2	14	1,4	50,9	0,46	0,37	13,1	0,192	0,86	11,1	123	0,5	10,8	38	79,5	2,89			
1388-TR-14-01 GR-MQ	2014-10-04	90,8	0,005	3,81	80,0	14,8	3	1,8	135	1,09	0,31	5,5	0,276	0,48	2,4	86	0,5	8,4	51	130	1,155			

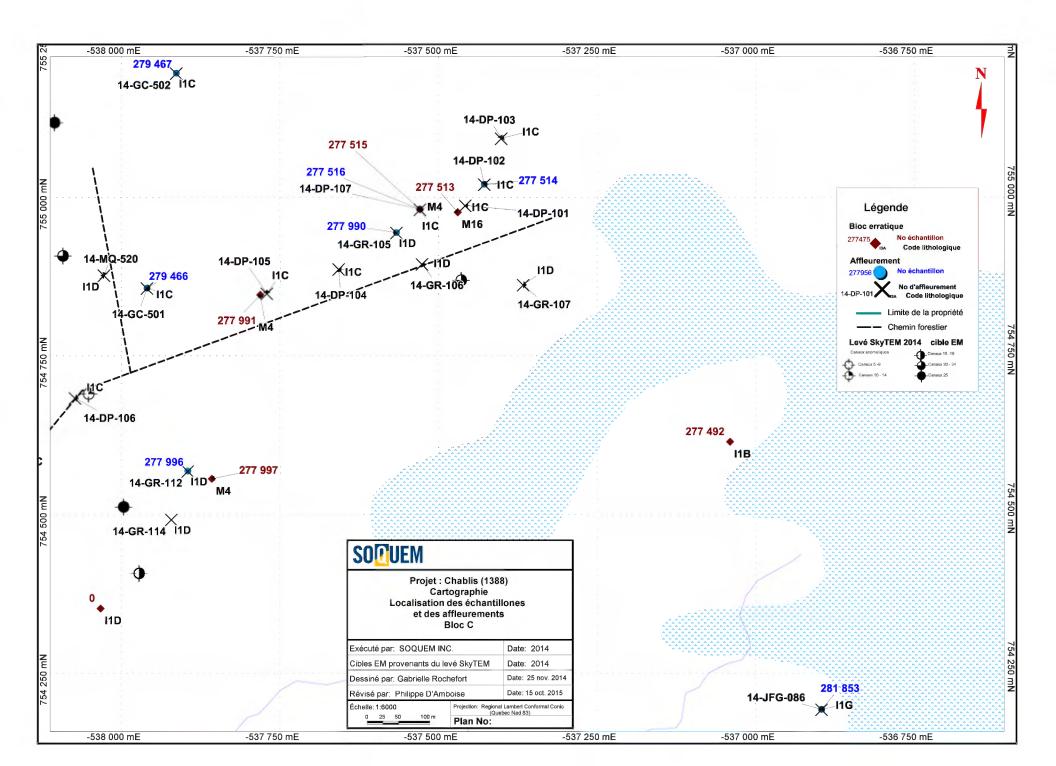
Terrain Équipe	Date_aaaammjj Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	ΤI	U	V	w	Y	Zn	Zr	Zn	Cu	Pb	Ag	Ni
8-TR-14-01 GR-MQ	2014-10-04	16,7	0,011	2,1	0,11	14,4	3	1	103	0,4	0,16	8,2	0,315	0,25	5,2	129	1,1	11,3	65	155	0,863			
8-TR-14-01 GR-MQ	2014-10-04	112,5	0,002	1,59	0,05	10,2	2	0,8	161	1,04	0,11	8,4	0,197	0,61	3,3	76	0,4	10,9	41	102				
8-TR-14-01 GR-MQ	2014-10-04	87,1	0,003	2,86	0,06	12,1		1,5	138	0,64	0,18	6	0,235	0,52	4,4	84	7,6	10,6	57	120				
8-TR-14-01 GR-MQ	2014-10-04	114,5	0,004	1,82	0,06	12,4	3	0,8	142	0,95	0,29	11,5	0,235	0,69	5,6	103	0,6	6,7	58	135,5				
8-TR-14-01 GR-MQ	2014-10-04	147,5	-0,002	0,06	0,05	1,9	-1	0,6	153,5	0,38			0,054	8,0	2,5	8	0,1	5,9	9	275				
8-TR-14-01 GR-MQ	2014-10-04	154,5	-0,002	0,02	0,05	3,5	-1	8,0	149	0,73	-0,05	9,7	0,097	8,0	2,3	27	0,3	3,6	12	237				
8-TR-14-01 GR-MQ	2014-10-04	115,5	0,004	0,93	0,07	7,3	2	8,0	120	1,32	0,1	10,1	0,152	0,66	4,1	57	0,1	6,5	28	96,6				
8-TR-14-01 GR-MQ	2014-10-04	167,5	-0,002	0,22	0,05	3,3	1	0,7	134,5	1,14	0,06	14,7	0,067	1,29	5,9	23	0,3	4,8	66	79,3				
8-TR-14-01 GR-MQ	2014-10-04	178	-0,002	0,15	-0,05	3,7	1	1,3	163,5	1,29	-0,05	25,4	0,122	1,05	7,4	18	0,1	26,8	35	68,2				

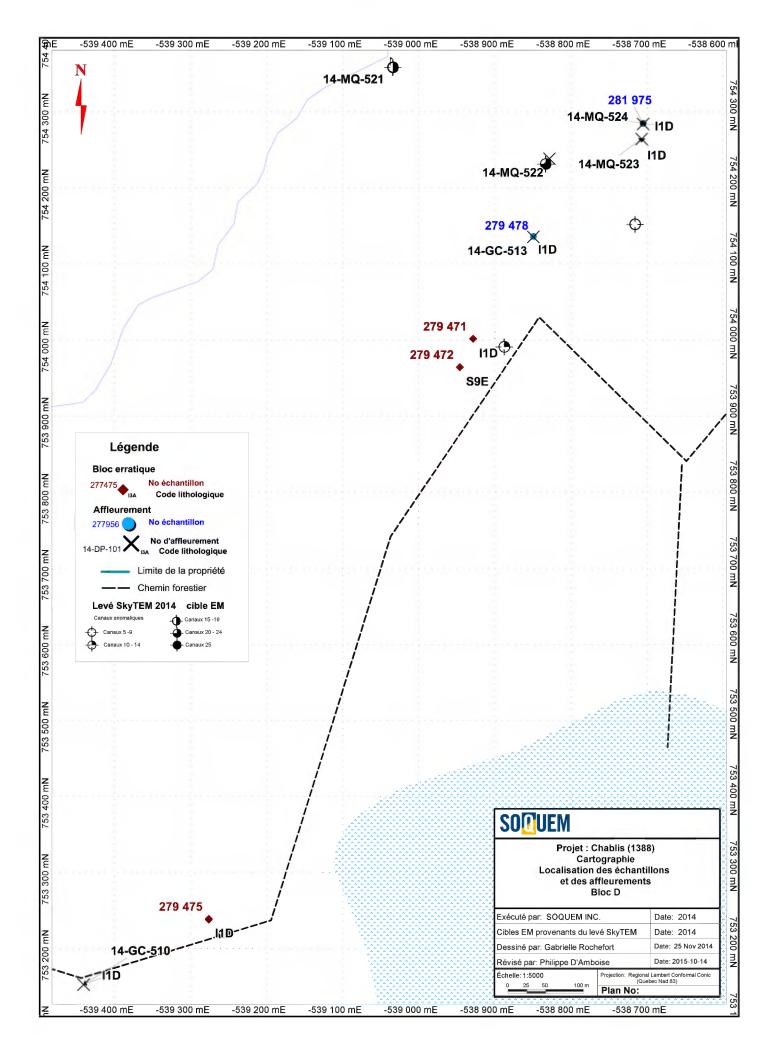
No_Terrain Équipe	Date_aaaammjj Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	TI	U	V	w	Y	Zn	Zr	Zn	Cu	Pb	Ag	Ni
1388-TR-14-01   GR-MQ	2014-10-04	132,5	-0,002	1,29	0,05	4,8	2	0,8	192	1,25	0,1	12,3	0,126	0,73	5	43	0,3	7,9	24	78,8				
1388-TR-14-01 GR-MQ	2014-10-04	144,5	-0,002	0,17	0,07	0,7	1	0,6	129,5	0,24	0,06	19	0,014	0,83	5,2	9	0,1	7,3	10	68,3				
1388-TR-14-01 GR-MQ	2014-10-04	151,5	0,092	0,08	0,06	5,4	31	0,8	130	0,79	-0,05	9,8	0,089	1,48	75,9	310	0,3	18,7	39	49,5				
1388-TR-14-01 GR-MQ	2014-10-04	160	-0,002	0,06	0,05	4	3	1,1	144	1,12	0,05	9,8	0,105	1,18	10,1	62	0,1	15,8	16	73,9				
1388-TR-14-01 GR-MQ	2014-10-04	74,3	-0,002	0,03	-0,05	3,5	1	1,2	57	0,72	-0,05	14,4	0,072	0,42	2,9	65	0,3	3,7	18	101				
1388-TR-14-01 GR-MQ	2014-10-04	115,5	0,009	2,46	80,0	14,6	10	1	33,3	0,64	0,29	5,3	0,318	0,63	3	134	0,3	8,7	37	128				
1388-TR-14-01 GR-MQ	2014-10-04	130,5	0,018	1,56	0,05	11,6	4	1	64,6	0,36	0,31	5,4	0,331	0,83	3,5	137	0,7	7,4	29	165				
1388-TR-14-01 GR-MQ	2014-10-04	141,5	0,005	0,52	0,05	13,5	2	1,5	55,7	0,46	0,42	5,1	0,321	0,87	4,6	180	0,6	7,7	37	169				
1388-TR-14-01 GR-MQ	2014-10-04	142	0,021	4,05							0,86			0,74				10,2	48	105,5				

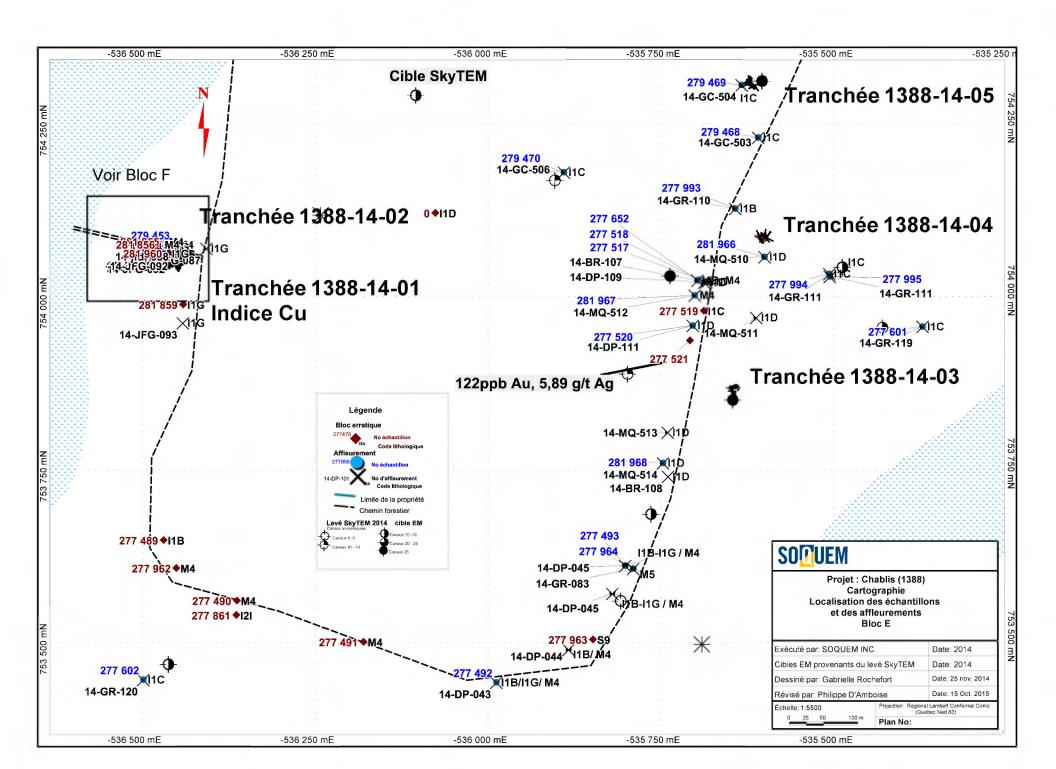

No_Terrain Équipe	Date_aaaammjj Rb			Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	ТІ	U	V	w	Υ	Zn	Zr	Zn	Cu	Pb	Ag	Ni
1388-TR-14-01   GR-MQ	2014-10-04	25,4	0,002	0,43	-0,05	33,5	2	1,6	450	0,23	0,13	2,6	0,436	0,27	0,8	205	0,4	13,4	112	62,3				
1388-TR-14-01 GR-MQ	2014-10-04	179	-0,002	0,01	-0,05	3,5	1	0,5	145	0,44	-0,05	9,2	0,072	1,01	2	63	0,2	7,8	16	67,2				
1388-TR-14-01 GR-MQ	2014-10-04	136,5	0,003	0,01	0,05	9,8			53,1	0,72	0,1	19,6	0,109	0,72	11,5	151	0,1	10,6	47	136,5				
1388-TR-14-01 GR-MQ	2014-10-04	111,5	-0,002	-0,01	-0,05	4	-1	0,5	84	0,56	0,05	19,8	0,087	0,62	1,5	29	0,2	3,8	23	96,4				
1388-TR-14-01 GR-MQ	2014-10-04	213	0,003	0,44	-0,05	12,1		1,3		0,49	0,15		0,197	0,98	7,6	77	0,3	8	26	126,5				
1388-TR-14-01 GR-MQ	2014-10-04	177	0,016	0,04	-0,05	2,5	1	0,4	131	0,46	-0,05	29,8	0,062	1,03	4,7	14	0,2	4,7	19	151				
1388-TR-14-01 GR-MQ	2014-10-04	69,9	0,127	0,26	0,09	11,3	25	0,7	38	1,43	0,42	15,6	0,177	1,23	93,8	326	0,3	7,6	150	125				
1388-TR-14-01 GR-MQ	2014-10-04	34,2	0,022	1,28	-0,05	13,7	28	1	38,6	1,03	0,16	6,3	0,322	0,59	26,3	207	0,4	8,1	85	119,5	1,37			

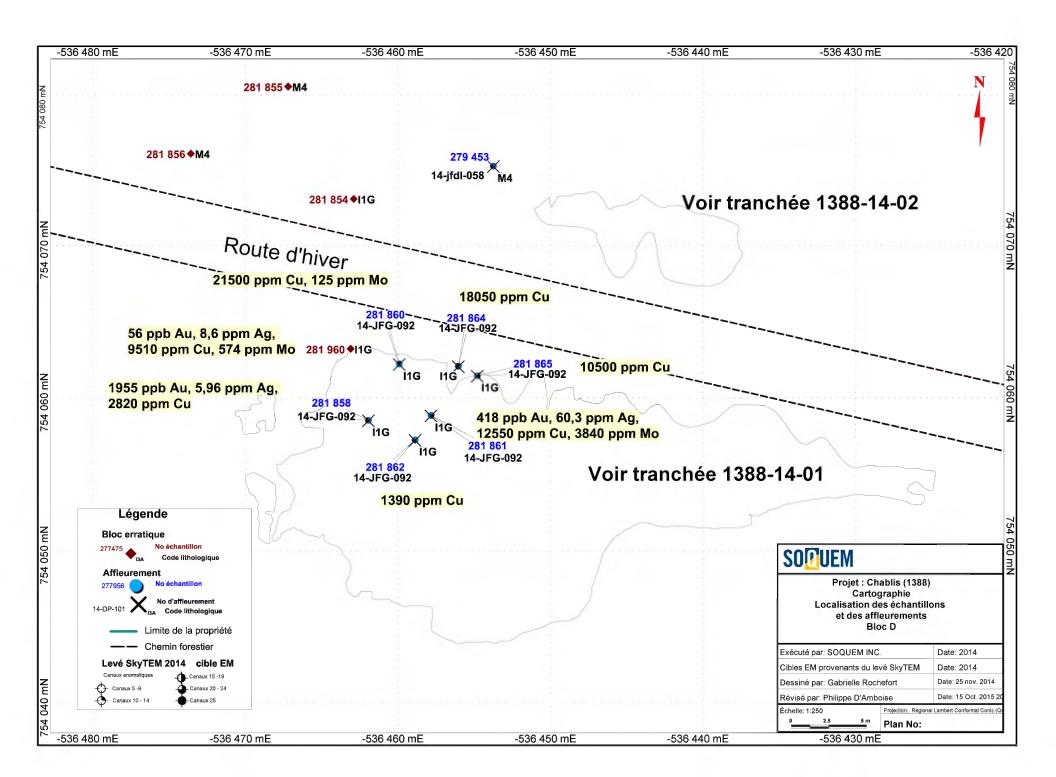

No_Terrain Équipe	Date_aaaammjj Rb		S	Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	TI	U	V	w	Υ	Zn	Zr	Zn	Cu	Pb	Ag	Ni	
1388-TR-14-01 GR-MQ	2014-10-04	162	0,059	0,07	0,1					0,91	0,45	22,6	0,297	1,6	55	371	0,3	13,3	114	150,5			·		
1388-TR-14-01 GR-MQ	2014-10-04	153,5	-0,002	0,09	0,08		-1			0,33	0,05	16,9	0,064	0,94	2,3	23	0,2	3,6	12	121					
1388-TR-14-01 GR-MQ	2014-10-04	155,5	0,005	0,31	0,08		1			0,52	0,07		0,068	1,1	4,7	16	0,1	7,6	6	98,6					
1388-TR-14-01 GR-MQ	2014-10-04	193,5	0,004	0,63	0,09	5	2	0,8	100,5	0,65	0,16	9,3	0,138	1,25	7,6	35	0,3	6,7	25	113					
1388-TR-14-01 GR-MQ	2014-10-04	199,5	0,014	1,08	0,12	6,1	2	1	111,5	1,19	0,19	6,9	0,123	1,21	6,6	36	1,2	6	22	105					
1388-TR-14-01 GR-MQ	2014-10-04	219	0,007	3,23	0,11	19,3	5	1,4	19,2	0,77	0,29	5,9	0,337	1,35	5,1	134	0,4	9,4	35	141					
1388-TR-14-01 GR-MQ	2014-10-04	264	0,006	6,3	0,1	18,6	8	1,2	23	0,54	0,41	5,4	0,351	1,55	2,6	121	0,3	13,8	31	150					
1388-TR-14-01 GR-MQ	2014-10-04	272	0,031	4,54	0,08	16,1	6	1,4	18,1	0,63	0,38	5,9	0,314	1,81	2,9	138	0,3	15,3	47	126,5					
1388-TR-14-01 GR-MQ	2014-10-04	159	0,003	2,24	0,07	6,4	4	0,8	68,3	0,83	0,31	17,6	0,159	0,92	5,8	47	0,2	5,1	35	89,8					

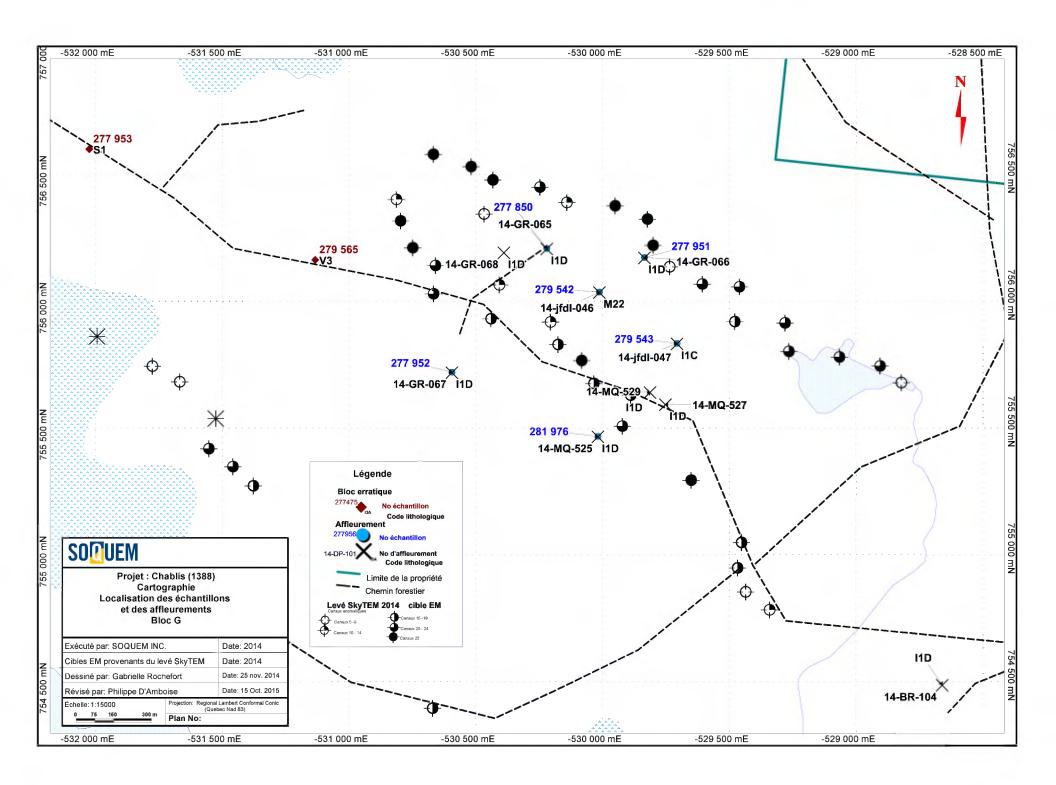

_Terrain Équipe	Date_aaaammjj Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	ΤI	U	V	w	Y	Zn	Zr	Zn
38-TR-14-01 GR-MQ	2014-10-04	171	-0,002	0,05	0,09	2,6	-1	0,6	168,5	0,59	-0,05	5,8	0,073	1,06	1,3	10	0,4	4,1	13	110,5
38-TR-14-01 GR-MQ	2014-10-04	143,5	-0,002	0,03	0,09	1,3	-1	0,4	87,9	0,13	-0,05	7,2	0,006	0,88	1,7	7	0,1	1,7	7	76
		404.5	0.000		0.00	0.0				0.54	0.05	47.0	0.000		0.0		0.0	0.5		lie.e
38-TR-14-01 GR-MQ	2014-10-04	181,5	-0,002	0,02	0,09	2,3	1		226	0,54	-0,05	47,6	0,068	1,15	2,9	8	0,2	9,5	17	154,5
-TR-14-01 GR-MQ	2014-10-04	153,5	0,002	0,04	0,07	3,6	1	1,8	133	0,83	0,15	11,8	0,101	1,08	42,7	34	0,3	16	6	40,4
-TR-14-01 GR-MQ	2014-10-04	122,5	0,003	0,36	0,07	1,1	1	0,8	124	0,41	80,0	6,5	0,026	0,75	2,2	6	0,3	1,8	12	162
R-14-01 GR-MQ	2014-10-04	78,8	0,027	0,59	0,42	2,8	1	0,5	136	1,29	0,11	34,2	0,062	0,62	5,4	25	0,2	4,9	11	108
		4=0			0.40		•							4.00				44.0		
R-14-01 GR-MQ	2014-10-04	170	-0,002	0,02	0,18	4,8	3	1,2	111	1,05	0,1	14,9	0,099	1,06	8,6	82	0,3	14,3	39	73,2
R-110 GR	2014-10-04	186	-0,002	0,05	0,09	4,8	2	1,2	161,5	0,88	-0,05	24,4	0,121	1,24	4	28	0,1	7	45	143,5
			0.00=		0.05								0.050	0.54		405		40.0	205	
3-TR-14-02 GC 3-TR-14-02 GC	2014-10-04 2014-10-04	99,6 101,5	0,007	4,19 3,66	-0,05 -0,05	17,4 15,8	4	0,9	135 141,5	0,44	0,26	5,9 7	0,359	0,54	6 6,3	125 107	0,4	13,3 13,6	225 182	145 135,5
3-TR-14-02 GC	2014-10-04	109	0,008	3,22	-0,05	11,9	3	0,6	153,5	0,55	0,21	10,5	0,239	0,56	3	80	0,4	10,2	148	109,5
111 17 02 00	2014 10 04		0,000	V,==	0,00	, , ,		0,0	.00,0	0,00			0,200	0,00			5,1			
-14-02 GC	2014-10-04	230	-0,002	0,03	-0,05	3	1	0,9	218	2,75	-0,05	41,1	0,068	1,39	1,7	11	0,1	6,5	33	110,5
-14-02 GC	2014-10-04	198,5	-0,002	0,23	-0,05	2,8	1	0,7	232	0,78	-0,05	12,8	0,079	1,27	1,4	13	0,2	5,5	48	137


No_Terrain Équipe	Date_aaaammjj Rb	Re	S	Sb	Sc	5e	Şn	Sr	Та	Те	Th	Ti	п	U	V	w	Y	Zn	Zr	Zn	Cu	Pb	Ag	Ni
388-TR-14-02 GC	2014-10-04	185,5	0,002	0,1	-0,05	2,6	1	0,5	221	0,62	-0,05	10	0,072	1,23	2,3	11	0,1	9,9	36	140				
88-14-TR-02 GC	2014-10-04	179,5	-0,002	0,07	-0,05	3,2	1	0,6	210	0,63	-0,05	17,2	0,095	1,19	3	14	0,2	14,6	23	133,5				
388-14-TR-02 GC	2014-10-04	179,5	-0,002	0,02	0,06	2,6	1	0,9	214	0,56	-0,05	8,1	0,079	1,15	2	11	0,1	18,2	26	111,5				
1388-14-TR-02 GC	2014-10-04	143	-0,002	0,05	-0,05	1,6	1	0,8	198	0,46	-0,05	40,2	0,049	1,33	6,7	6	0,1	9,6	9	64				
.388-14-TR-02 GC	2014-10-04	175,5	0,003	2,93	-0,05	12,2	2	2,3	186	0,69	0,42	7,9	0,284	1,37	1,6	81	0,1	8,2	157	107,5				
.388-14-TR-02 GC	2014-10-04	185	-0,002	0,05	-0,05	2,9	1	0,9	199,5	0,66	-0,05	13,6	0,087	1,32	1,9	11	0,2	13,5	23	150				
.388-14-TR-02 GC	2014-10-04	162,5	-0,002	0,14	-0,05	3,1	1	0,6	196	0,64	-0,05	21	0,087	1,25	3,4	11	0,1	9	35	174				
.388-14-TR-02 GC	2014-10-04	48,1	0,005	4,82	-0,05	7,3	4	0,8	89,1	0,79	0,38	4,8	0,146	0,29	1,7	45	0,3	12,3	156	68,4				
1388-14-TR-02 GC	2014-10-04	262	0,002	2,69	-0,05	16,8	2	2,6	184,5	1,08	0,34	8,8	0,372	1,56	2,2	114	0,2	7,9	234	147				
.388-TR-14-04 GC-MA	2014-10-05	233	-0,002	0,03	0,06	3,3	1	1,4	255	1,25	-0,05	10,6	0,097	1,42	2	18	0,2	8,1	31	165				
L388-TR-14-04 GC-MA	2014-10-05	191	-0,002	0,11	0,05	5,6	1	1,2	263	1,08	-0,05	27	0,171	1,29	5	31	0,1	8,7	50	131				
1388-TR-14-04 GC-MA	2014-10-05	194,5	-0,002	0,08	0,05	4,2	-1	0,9	253	0,82	-0,05	14,1	0,136	1,31	3	22	0,1	8,7	38	62,6				
.388-TR-14-04 GC-MA	2014-10-05	155,5	-0,002	0,95	0,05	16,1	1	1,6	469	0,9	-0,05	9,6	0,263	1,12	2,3	81	0,1	17,8	74	93,1				
1388-TR-14-04 GC-MA	2014-10-05	156	-0,002	0,93	-0,05	4,5	-1	0,8	281	0,52	-0,05	4	0,161	1,09	1,2	31	0,1	3,2	43	129				
.388-TR-14-03 BR-Math	2014-10-07	136,5	-0,002	0,02	-0,05	1	-1	0,3	245	0,25	-0,05	3,4	0,032	0,81	2,7	4	0,1	1,7	6	91,2				
.388-TR-14-03 BR-Math .388-TR-14-03 BR-Math	2014-10-07 2014-10-07	134 239	-0,002 0,002	0,03 0,08	0,05 0,05	1,3 11,5	-1 -1	0,4 2,7	255 257	0,35 1,52	-0,05 -0,05	2,7 10,1	0,047 0,401	0,87 1,81	2,4 2,6	7 96	0,1 0,3	2 10,2	11 126	101,5 171,5				
1388-TR-14-03 BR-Math	2014-10-07	171	-0,002	0,05	-0,05	4,9	1	1,3	251	0,88	-0,05	8,9	0,17	1,15	2,8	34	0,7	7,6	50	159,5				
	2014-10-07	160	-0,002	0,04	0,05	4,2	-1	1	276	0,58	-0,05	13,5	0,113	1,08	3,9	27	0,8	3,7	36	167				
1388-TR-14-03 BR-Math						3		0.0												134				
.388-TR-14-03 BR-Math	2014-10-07	157,5	-0,002	0,06	0,06		-1	8,0	250	0,54	-0,05	7,2	0,1	1,02	3,2	20	0,7	3,2	29					
.388-TR-14-05 MQ-BR	2014-10-07	166,5	-0,002	0,09	0,05	6,9	-1	1,6	227	0,96	-0,05	11,8	0,225	1,2	3	49	0,9	4,7	69	130				
.388-TR-14-05 MQ-BR	2014-10-07	189	-0,002	0,03	0,05	3,7	-1	0,9	241	0,58	-0,05	11,2	0,109	1,25	2,3	23	0,1	4,8	40	128				
1388-TR-14-05 MQ-BR	2014-10-07	197	-0,002	0,05	0,05	6,8	-1	1,8	252	0,77	-0,05	8,9	0,219	1,4	2,1	42	0,2	5,1	72	133,5				
388-TR-14-05 MQ-BR	2014-10-07	144,5	-0,002	0,06	0,05	5,7	-1	1,4	254	0,66	-0,05	4,5	0,184	1,04	2,3	37	0,1	3	56	221				
1388-TR-14-05 MQ-BR	2014-10-07	179	-0,002	0,29	0,05	7,2	1	1,4	257	0,67	-0,05	9,7	0,221	1,29	2,1	45	0,1	5,6	71	143,5				
388-TR-14-05 MQ-BR	2014-10-07	173,5	-0,002	0.07	0,05	3	-1	0,8	234	0,45	-0,05	13,5	0,103	1,07	3,1	17	0.1	6,3	25	105,5				





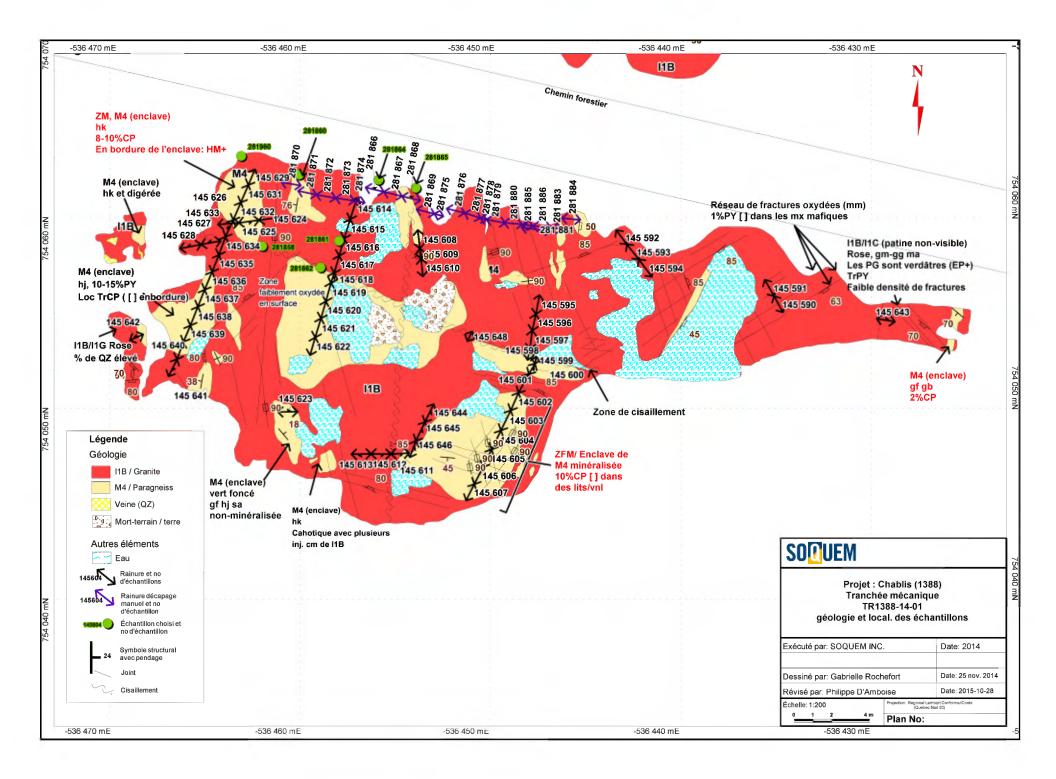


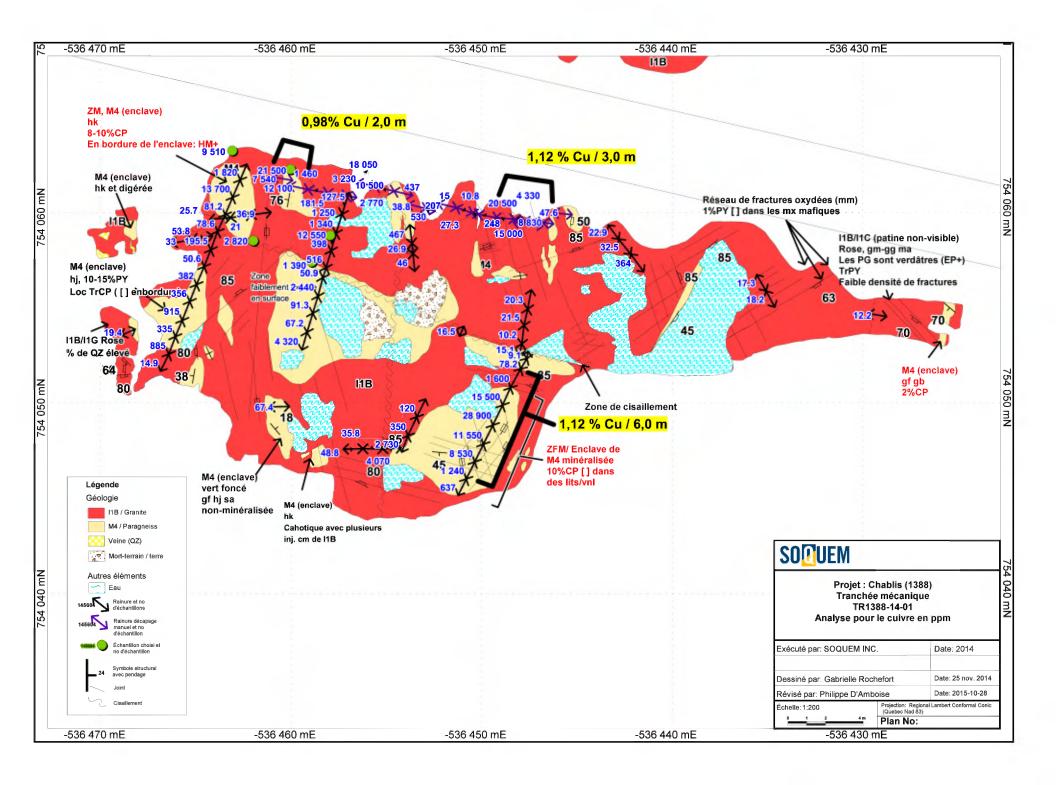


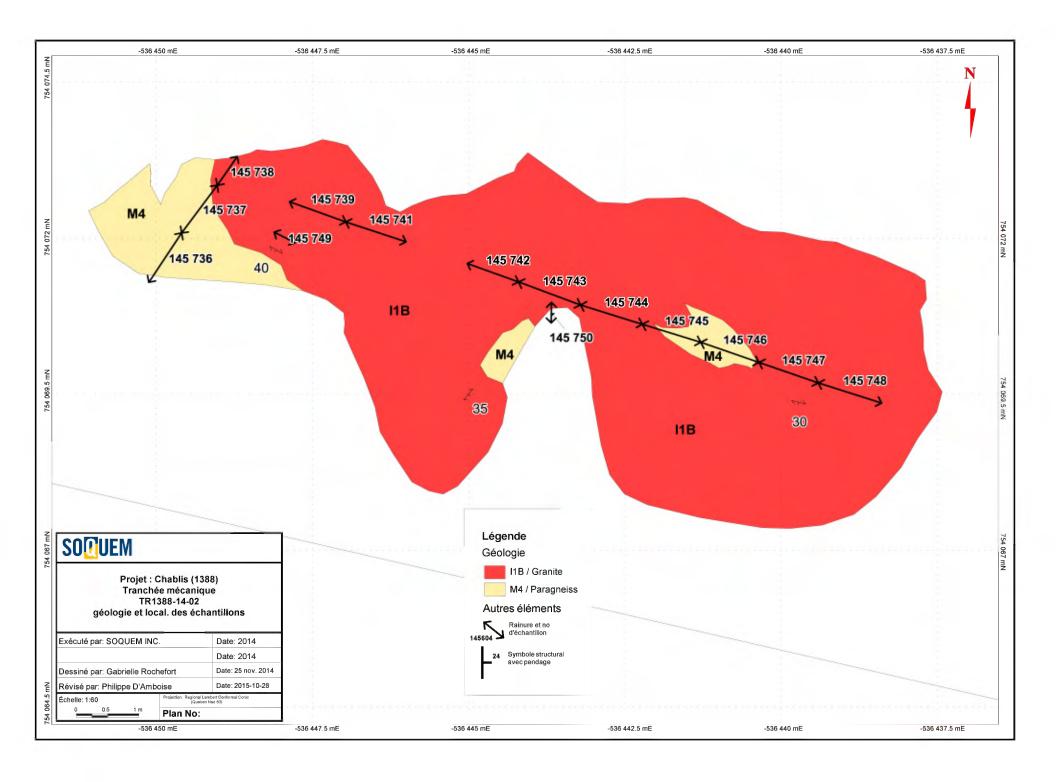


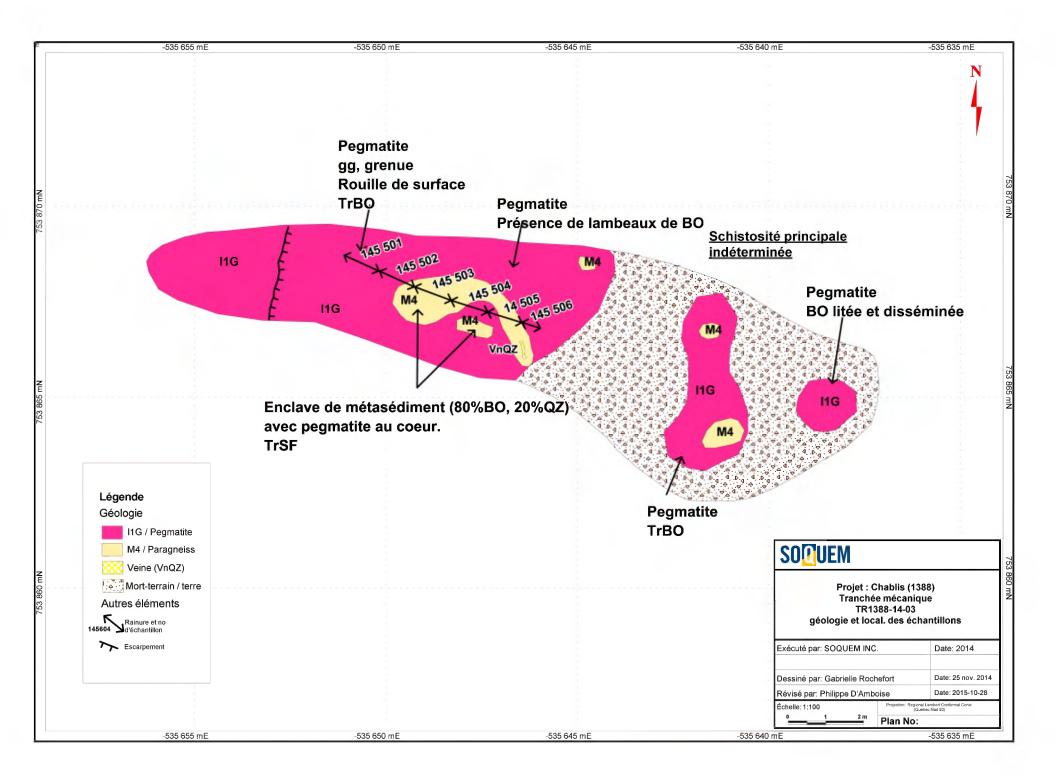



**ANNEXE 8 PLANS DES TRAVERSES** 


## **NUMÉRIQUE**


Page(s) de dimension(s) hors standard numérisée(s) et positionnée(s) à la suite des présentes pages standard


## **DIGITAL FORMAT**


Non-standard size page(s) scanned and placed after these standard pages

