GM 68135

2013 EXPLORATION PROGRAM, MOOSE TRACK (MTK) GOLD PROJECT

Cette première page a été ajoutée au document et ne fait pas partie du rapport tel que soumis par les auteurs.

Fancamp Resources Inc.

Moose Track (MTK) Gold Project

2013 Exploration Program

Canton de Lamark

Chapais Area Québec, Canada NTS: 32G/14

2 1 MARS 2014

D'RECTION DES TITRES MINIERS

Prepared by: M. Leblanc, Géo.

October, 2013

GM 68135

1392459

Ressources naturelles et Faune

0 9 MAI 2014

Dir information géologique

SUMMARY

The 3,863.32 hectare Moose Track (MTK) property is located in north-central Québec, about 25 km west of Chapais. The project is accessible by Highway 113 and by a network of logging gravel roads.

Located in the prolific copper producing Chibougamau-Chapais mining camp situated in the northeast corner of the Matagami-Chibougamau Greenstone Belt, the property is underlain by a Late Archean mafic volcanic and sedimentary sequences consisting of pillowed to massive basalt flows, intermediate pyroclastics, and gabbroic sills.

Five NQ core holes were drilled during the program for a total of 630 metres and 254 samples submitted for analysis at ALS Chemex in Val d'Or.

The drilling program was successful in identifying the nature of the target IP anomalies in holes MTK13-02 - a graphitic argillite unit, MTK13-03 - disseminated coarse grained pyrite, MTK13-04 – Fault gouge material with graphite, MTK13-05 – disseminated pyrite. However hole MTK13-01 did not reach its intended target the Golden Moose gold showing. The mineralized zone intersected in hole MTK13-01, **1.36 g/t Au / 2.0 m** within a wider anomalous gold bearing alteration zone carrying 0.6 g/t over 5.2 metres does not correlate with the Golden Moose surface showing. The mineralized structure intersected from 44.00 to 49.20 metres was intersected at a very low angle to the core axis indicating that the structure is either north-south and/or drilled in a down dip direction. If this is the case the Golden Moose showing was not tested properly and should be drilled from north toward the south.

A data compilation exercise should be completed on the property to define and assess other targets within the property.

TABLE OF CONTENTS

Conte	ents		
1.0 IN	TROE	DUCTION	5
1.1	Lo	cation, Access and Infrastructure	5
1.2	Ph	ysiography and Climate6	3
1.3	Pro	operty Ownership and Disposition	7
2.0	GEO	LOGY 8	3
2.1	Re	gional Geology	3
2.2	Litl	hologies11	I
2.3	Ge	ological Evolution	ł
2.4	Str	uctural Geology15	5
2.5	Pro	operty Geology16	3
2.	.5.1	Lithologies	3
2.	.5.2	Structure	3
2.	.5.3	Alteration	3
3.0	ECO	NOMIC GEOLOGY	3
4.0	PRE	VIOUS EXPLORATION	I
5.0	Inves	stigation by Fancamp Resources21	I
5.1	Line C	Cutting	2
5.2	Total	Field Ground Magnetic Survey22	2
5.3	Dipole	e-Dipole Induced Polarization Survey22	2
5.4.	0	Diamond Drilling	2
5.	.4.1	Core Logging and Sampling Procedures23	3
6.0	SAM	PLE PREPARATION, ANALYSES AND SECURITY24	1
6.1	Та	ble Jamésienne de Concertation Minière (TJCM) Sample Preparation Procedure25	5
6.2	AL	S Laboratory Assay Procedure	5
6.	.2.1	Atomic Absorption Spectroscopy (AAS) (Lab code: AU-AA23)25	5
7.0	RES	ULTS	3
7.1	Dia	amond Drilling	3
7.2	Qu	ality Assurance / Quality Control Procedures	3
Fanoa	mn Do	sources Inc	

Fancamp Resources Inc. Moose Track (MTK) 2013 Exploration Program

8.0	CONCLUSIONS AND RECOMMENDATIONS	34
9.0	REFERENCES	35
10.0	STATEMENT OF QUALIFICATIONS	39

LIST OF TABLES

Table 1:	Summary of Climatic Data by Month - Chapais.
Table 2:	Regional Stratigraphy of the Chapais – Chibougamau Area.
Table 3:	Summary of Matagami-Chibougamau Greenstone Belt Pluton Ages.
Table 4:	Gold Mineralization Deposit Types in the Chibougamau - Chapais District.
Table 5:	MTK 2013 Diamond Drilling Summary.

LIST OF FIGURES

Figure 1: MTK Project Location Map	6
Figure 2: MTK Property Claim Disposition Map	8
Figure 3: Regional Geology of the Abitibi Subprovince	9
Figure 4: Local Geology of the Chibugamau-Chapais Area	10
Figure 5: Diamond Drill Hole Distribution Map	27
Figure 6: MTK13-01 Section	29
Figure 7: MTK13-02 Section	30
Figure 8: MTK13-03 Section	31
Figure 9: MTK13-04 Section	32
Figure 10: MTK13-05 Section	33

LIST OF APPENDICES

Appendix I	: Permis d'Intervention
Appendix II	: List of Claims
Appendix III	: Drill Hole Logs – MTK13_01 to MTK13_05

Appendix IV : Certificates of Analysis

Fancamp Resources Inc. Moose Track (MTK) 2013 Exploration Program

1.0 INTRODUCTION

On January 8th, 2013 Fancamp announced an option agreement to acquire the MTK property by making cash payments, issue shares and fund exploration to acquire an interest in the property.

Previous prospecting efforts on the property had return some high gold assay results however they appeared to be erratic and the limited efforts by previous explorers to define a zone of interest were inconclusive. The MTK property, located in north-central Québec is easily accessed via an existing network of paved and all-weather gravel roads. The project area is located west of the prolific copper-gold producing Chibougamau-Chapais mining camp situated in the northeast corner of the Abitibi Greenstone Belt. The property itself is underlain by a Late Archean mafic volcanic/sedimentary sequence intruded by EW gabbroic sills several hundred meters thick.

This report describes the results of a drilling campaign supported by Fancamp to test the Golden Moose gold showing at depth and test four Induce Polarization (IP) anomalies identified by Géophysique TMC that may be related to gold bearing structures.

1.1 Location, Access and Infrastructure

The Moose Track (MTK) property is located in north-central Québec, about 25 km west of Chapais. The project is accessible by an all-weather gravel road from Provincial Highway 113 which links Chapais-Waswanipi (**Figure 1**). Highway 113 also links Chapais with southern Québec and Val d'Or, 360 km further to the south.

To access the property by vehicle one travels west from Chapais along Provincial Highway 113, 28.5 kms then north along lumber road 7000 for 3.7 kms thence west on lumber road 7020 for 11.0 km to the Golden Moose showing for a total of 43.2 kms.

Figure 1: MTK Project Location Map

Chapais serves as the major service centre for the project. The town of 1,600 inhabitants features a variety of lodging and accommodation, commercial stores and a medical facility. The region is further serviced by a 3, 850 ft asphalt airstrip located 20 km southwest of Chibougamau. A regional air carrier, Air Creebec, operates a scheduled service five days a week from the airport to Montreal and Québec City. A developed railway in the area also connects Chibougamau and Chapais with the national rail network further to the south.

The Chibougamau-Chapais region has a long history of mining activity. Several mining suppliers and contractors are available locally, and the area has supplied most of the work force for past producing mines in the area such as Joe Mann and Copper Rand among others.

Currently there is no developed infrastructure on the MTK property. The MTK claim bloc is well serviced by a network of all-weather gravel roads, some of which are maintained year round by logging companies operating in the region. Logging activity was in progress in 2013 when this report was written.

1.2 Physiography and Climate

The MTK property is located within the Abitibi physiographic region of the Canadian Shield. Given the generally rounded, flat topped hills which characterize the area, the region is an upland only by virtue of its elevation (200-500 m asl) above the Hudson Bay Lowland and the Interior Plains which border the upland to the west. Bedrock relief on the property is on the order of 50-60 m which is further subdued by a thin to moderate mantle of glacial till and lacustrine sediments which drape the bedrock surface. When the drilling program was undertaken, the property was covered by a mature forest dominated by black and white spruce, jack pine and balsam fir. As the most valued commercial species, black spruce is currently harvested locally by Les Chantiers Inc. who manufactures engineered wood products in Chibougamau.

Despite its relatively southern location at 49°30' north latitude, the Chapais-Chibougamau region is characterized by a subarctic climate. Winters are long, cold, and snowy with a January-February lows of −40°C. Summers are warm and mild, though short, with a July high of 35°C. Overall, precipitation is high for a subarctic climate, with an average annual precipitation of 961 millimetres and 302 centimetres of snow each year. Precipitation is received year round, although the period February through April is frequently the driest.

Further climatic data for the region is summarized in Table 1.

J	F	М	Α	М	J	J	Α	S	0	Ν	D
-18.8	-16.6	-9.5	-0.5	7.9	14.0	16.3	14.9	9.3	2.9	-5.4	-14.8
-13.4	-10.6	-3.3	5.0	13.7	20.0	22.2	20.4	13.9	6.6	-2.0	-10.2
-24.2	-22.6	15.6	-5.9	2.1	8.0	10.4	9.4	4.7	-0.8	-8.7	-19.3
8.5	9.0	16.0	28.0	31.5	34.5	35.0	33.3	29.0	24.4	17.8	11.0
-43.3	-42.8	-38.0	-27.2	-16.1	-5.6	-0.6	-2.2	-6.0	-13.3	-30.0	-42.0
2.8	1.7	8.6	28.2	71.9	95.6	120.7	105.3	123.4	66.7	31.7	3.1
58.1	37.0	40.9	27.2	5.6	0.4	0.0	0.0	1.5	22.4	51.7	57.0
60.9	38.7	49.4	55.4	77.5	95.9	120.7	105.3	125.0	89.1	83.4	60.1
	J -13.4 -24.2 8.5 -43.3 2.8 58.1 60.9	J F -18.8 -16.6 -13.4 -10.6 -24.2 -22.6 8.5 9.0 -43.3 -42.8 2.8 1.7 58.1 37.0 60.9 38.7	J F M -18.8 -16.6 -9.5 -13.4 -10.6 -3.3 -24.2 -22.6 15.6 8.5 9.0 16.0 -43.3 -42.8 -38.0 2.8 1.7 8.6 58.1 37.0 40.9 60.9 38.7 49.4	JFMA-18.8-16.6-9.5-0.5-13.4-10.6-3.35.0-24.2-22.615.6-5.98.59.016.028.0-43.3-42.8-38.0-27.22.81.78.628.258.137.040.927.260.938.749.455.4	JFMAM-18.8-16.6-9.5-0.57.9-13.4-10.6-3.35.013.7-24.2-22.615.6-5.92.18.59.016.028.031.5-43.3-42.8-38.0-27.2-16.12.81.78.628.271.958.137.040.927.25.660.938.749.455.477.5	J F M A M J -18.8 -16.6 -9.5 -0.5 7.9 14.0 -13.4 -10.6 -3.3 5.0 13.7 20.0 -24.2 -22.6 15.6 -5.9 2.1 8.0 8.5 9.0 16.0 28.0 31.5 34.5 -43.3 -42.8 -38.0 -27.2 -16.1 -5.6 2.8 1.7 8.6 28.2 71.9 95.6 58.1 37.0 40.9 27.2 5.6 0.4 60.9 38.7 49.4 55.4 77.5 95.9	J F M A M J J -18.8 -16.6 -9.5 -0.5 7.9 14.0 16.3 -13.4 -10.6 -3.3 5.0 13.7 20.0 22.2 -24.2 -22.6 15.6 -5.9 2.1 8.0 10.4 8.5 9.0 16.0 28.0 31.5 34.5 35.0 -43.3 -42.8 -38.0 -27.2 -16.1 -5.6 -0.6 2.8 1.7 8.6 28.2 71.9 95.6 120.7 58.1 37.0 40.9 27.2 5.6 0.4 0.0 60.9 38.7 49.4 55.4 77.5 95.9 120.7	JFMAMJJA-18.8-16.6-9.5-0.57.914.016.314.9-13.4-10.6-3.35.013.720.022.220.4-24.2-22.615.6-5.92.18.010.49.48.59.016.028.031.534.535.033.3-43.3-42.8-38.0-27.2-16.1-5.6-0.6-2.22.81.78.628.271.995.6120.7105.358.137.040.927.25.60.40.00.060.938.749.455.477.595.9120.7105.3	J F M A M J J A S -18.8 -16.6 -9.5 -0.5 7.9 14.0 16.3 14.9 9.3 -13.4 -10.6 -3.3 5.0 13.7 20.0 22.2 20.4 13.9 -24.2 -22.6 15.6 -5.9 2.1 8.0 10.4 9.4 4.7 8.5 9.0 16.0 28.0 31.5 34.5 35.0 33.3 29.0 -43.3 -42.8 -38.0 -27.2 -16.1 -5.6 -0.6 -2.2 -6.0 2.8 1.7 8.6 28.2 71.9 95.6 120.7 105.3 123.4 58.1 37.0 40.9 27.2 5.6 0.4 0.0 0.0 1.5 60.9 38.7 49.4 55.4 77.5 95.9 120.7 105.3 125.0	JFMAMJJASO-18.8-16.6-9.5-0.57.914.016.314.99.32.9-13.4-10.6-3.35.013.720.022.220.413.96.6-24.2-22.615.6-5.92.18.010.49.44.7-0.88.59.016.028.031.534.535.033.329.024.4-43.3-42.8-38.0-27.2-16.1-5.6-0.6-2.2-6.0-13.32.81.78.628.271.995.6120.7105.3123.466.758.137.040.927.25.60.40.00.01.522.460.938.749.455.477.595.9120.7105.3125.089.1	JFMAMJJASON-18.8-16.6-9.5-0.57.914.016.314.99.32.9-5.4-13.4-10.6-3.35.013.720.022.220.413.96.6-2.0-24.2-22.615.6-5.92.18.010.49.44.7-0.8-8.78.59.016.028.031.534.535.033.329.024.417.8-43.3-42.8-38.0-27.2-16.1-5.6-0.6-2.2-6.0-13.3-30.02.81.78.628.271.995.6120.7105.3123.466.731.758.137.040.927.25.60.40.00.01.522.451.760.938.749.455.477.595.9120.7105.3125.089.183.4

Table 1: Summary of Climatic Data by Month - Chapais.

Source: Environment Canada - Canadian Climate Normals, 1971-2000.

1.3 Property Ownership and Disposition

The MTK property consists of a contiguous block of 61 claims within NTS map sheet 32G14 and Lamark township in north-central Québec. The location of the claims is shown in **Figure 2** and summarized in **Appendix II**. Annual assessment expenditures on the claims amount to **\$73,200** per annum.

The property was acquired by FanCamp in 2013 from GL Géoservices Inc. and Marc Bouchard of Chapais, Québec who granted FanCamp an option to acquire a 100% interest in the property.

Figure 2: MTK Property Claim Disposition Map

In order to exercise its option, Fancamp is obligated to pay \$20,000 on signing and issue 100,000 common shares. The balance \$60,000 cash and 450,000 common shares to acquire 100% of the property by December 15, 2015, is optional, and results dependent. A 1.5% NSR Royalty is attached to MTK, 1% of which may be bought back for \$1 million. The option agreement was entered into among arm's length parties.

2.0 GEOLOGY

2.1 Regional Geology

The Chibougamau-Chapais mining camp is located in the northeast corner of the Matagami-Chibougamau Greenstone Belt (MCGB) of the Abitibi Subprovince of the Archean Superior Province (Figure 3). The Matagami-Chibougamau Greenstone Belt is roughly 440 km long and varies from 25 to 100 km in width (Allard *et al.*, 1985). It is bordered either to the north and south by poorly known Archean granite and gneissic terrains. At its western extremity, the MCGB is bounded by the Kapuskasing Structural Zone. To the east, the Abitibi Subprovince is bordered by the Grenville Province, wherein the east-west stratigraphy of the belt is abruptly terminated along the Grenville Front which separates greenschist facies rocks of the MCGB from upper amphibolite facies rocks of the Grenville Province.

Figure 3: Regional Geology of the Abitibi Subprovince

The geology of the Chibougamau-Chapais district (Figure 4) consists of three Archean age mafic to felsic volcanic cycles (Roy Group) unconformably overlain by the Opemisca Group volcano-sedimentary sequence. The volcanics and associated sediments are intruded by a series of large granitoid plutons and septa of probable basement (Racicot *et al.*, 1984) which influence the prevailing tectonic fabric of the district, typified by alternating greenstone belts and aligned granitic plutons. Whereas plutons in the northern portion of the Abitibi Subprovince are made up mostly of tonalitic gneiss and tonalitic to dioritic intrusive rocks that constitute the Opatica Belt (Daigneault *et al.*, 1990), plutons in the southern portion of the subprovince are less abundant, with the internal geology of this belt broken into lozenges or blocks bounded by megashears such as the Cadillac-Larder Lake or Porcupine-Destor breaks (Figure 3).

Figure 4: Local Geology of the Chibugamau-Chapais Area

A few isolated remnants of glacially derived, Proterozoic sedimentary rocks of the Chibougamau Formation occur throughout the district. One such Proterozoic intracratonic basin, the Mistassini Basin north of Chibougamau, is filled with clastic and chemical sediments of Aphebian age (Caty, 1976). Post metamorphic diabase dykes belonging to the Abitibi swarm have intruded all other lithologies and are dated by Allard *et al.*, (1985) at 1230 Ma.

Table 2 Lists the regional bedrock stratigraphy of the Chibougamau-Chapais region.

PLE	ISTOCENE	Glacial till, sand a	and gravel			
	Unconformity					
		Diabase dykes				
PRC	TEROZOIC		Unconformity			
		Chibougamau Fm.	tillite, paratillite, sediments			
_		U	nconformity			
		Haüy Fm	conglomerate, wacke, mudrocks, k-andesites			
	Opemisca Group	Stella Fm	Ila Fm conglomerate, wacke, mudrocks			
	ereup	Daubrée Fm	wacke, arkose, siltstone, felsic volcaniclastics			
		Unconformity				
z	Roy Group	Bordeleau Fm.	volcanogenic sediments			
HEA	(3r° cycle)	Blondeau / Gilman Fm.	mafic volcanics, sediments, volcaniclastics felsic, rhyolite, basalt	IS		
U C C			Lac Savage iron formation			
A	Roy Group	Waconichi Fm.	intermediate to felsic volcaniclastics, rhyolite, felsic intrusions qtz & feld	tic Plu		
		Obatogamau Fm.	mafic volcanics, gabbro			
	Roy Group	Chrissio Em	Upper membre: felsic volcanics			
	(1st cycle)		Lower member: mafic volcanics			
	Unconformity					
		Basement Gneisses				

Table 2: Regiona	I Stratigraphy	of the Cha	pais-Chibougama	au Area.
Tuble E. Regiona	n otratigraphy	or the onu	pulo onnoougunit	a a / 11 o a .

2.2 Lithologies

The Roy Group in the Chibougamau-Chapais district consists of a three to four kilometer thick sequence of volcanic rocks made up of three volcanic cycles (Leclerc et al 2012) the oldest preserved unit the **Chrissie Formation** which consists of a mafic volcanic, lower member and an upper member of felsic volcanic. This cycle is overlain by the second cycle which consists of a 3,000 m unit of massive to pillowed basalt flows and numerous gabbro sills. Individual flows ranging in thickness from 5-60 m are commonly massive and homogenous at the base of individual sequences, and grade upward into pillowed zones topped by a 1-2 m thick pillow breccias and/or scoriaceous flow tops. The flows are commonly porphyritic to glomoroporphyritic with white feldspar crystals or cluster up to two centimetres in diameter. Minor felsic to intermediate tuffs and breccias are also mapped in the formation. The sequence

Fancamp Resources Inc.Moose Track (MTK) 2013 Exploration Program11

of primary structures within flows and the shape of pillows provide frequent way-up indicators. A remarkable feature of the formation is its lateral extent. Hebert (1980) identified the Obatogamau Formation next to the Grenville Front and traced it more than 100 km to the west. Allard *et al.* (1985) have suggested a broad submarine volcanic plain depositional environment.

The conformably overlying **Waconichi Formation** represents the felsic counterpart of the lower Roy Group volcanic cycle. It consists of porphyritic sodic rhyolite flows and domes, felsic tuffs and breccias, several lenses of basaltic flows and hyaloclastites, and the Lac Sauvage Iron Formation (Allard *et al.*, 1985). Although the formation is less than 1,000 m thick, several stratiform Algoma type copper ore lenses have been discovered in the upper part of the formation. These consist of thinly bedded iron carbonate and pyrite with rare chert and bedded oxide facies iron formation ranging from a few metres to more than 60 m in thickness.

The Waconichi Formation is interpreted by Allard *et al.* (1985) to represent a widespread interval of felsic volcanism localized by numerous eruptive centres consisting of small lenses of porphyritic sodic rhyolite surrounded by wedge-like accumulations of coarse fragmental tuff, vitric tuff and chemical sedimentary units.

The **Blondeau / Gilman Formation** forms the lowermost section of the third cycle Roy Group volcanics in the region. It consists of up to 3,600 m of pillowed to massive basalt flows, minor pyroclastics, and numerous differentiated gabbro sills (Allard *et al.*, 1985). The formation has a maximum thickness in the vicinity of Chibougamau and thins in all directions away from the town. This geometry suggests the presence of a central shield volcanic complex to Allard rather than a lava plain morphology as postulated for that of the Obatogamau Formation. Flows up to 70 m thick are mapped in the Gilman Formation, the lower two-thirds of which are commonly coarse grained, massive basalt overlain by well-preserved pillows. The gabbro sills are easily identified by their blastopoikiliitic texture and lack of amygdules. Sills greater than 80 m in thickness commonly also have quartz bearing zones below their tops, providing an excellent polarity indicator.

The volcano-sedimentary **Blondeau Formation** which overlies the Gilman Formation is comprised of variolitic basalt flows, rhyolitic flows, felsic tuffs, graphitic tuffs and argillites, volcanogenic sandstones and stratiform lenses rich in sulphides. The formation is about 1,000 m thick and is best exposed in the axial zone of the Chibougamau Syncline north of Chibougamau, and in and around Chapais. Detailed sedimentological studies cited by Allard *et al.* (1985) indicate that the Blondeau Formation is the result of volcanism in an emerging island arc setting characterized by simultaneous erosion and sedimentation in shallow basins.

As exposed in the Waconichi Syncline north of Chibougamau, the **Bordeleau Formation** consists of volcanogenic sandstones that are transitional with the conformable subjacent Blondeau Formation. The sandstones consist of clasts of devitrified porphyritic glass, feldspar crystals and minor quartz.

The overlying **Opemisca Group** consists of sedimentary rocks and minor potassic andesite flows and pyroclastics units **(Table 2)**. The contact between the Roy and Opemisca groups varies from a transitional conformable contact to an unconformity. The basal **Stella Formation** of the Opemisca Group consists of conglomerate which is overlain by feldspathic sandstones and argillites. The conglomerate unconformably overlies sodic granophyres of the Doré Lake Complex and volcanic rocks of the Waconichi and Gilman formations. The conglomerate is also seen to contain tonalite clasts derived from the Chibougamau pluton which occurs below the

Doré Lake Complex. Allard *et al.* (1985) suggest the Stella Formation represents a fluvial type fan deposit characterized by a fining upward cycle.

The **Haüy Formation** conformably overlies the Stella Formation, although the contact is frequently gradational and poorly defined. The formation consists of conglomerates, sandstones, argillites and interlayered potassic andesite flows. The conglomerates contain clasts derived from the Roy Group volcanics and tonalitic Chibougamau pluton. The flows are subaerial and probably formed shield volcanoes which were rapidly eroded producing large quantities of detrital feldspar and pyroxene crystals which form the main component of the upper Haüy volcaniclastic sandstone sequence.

Mafic Sills and Layered Complexes

A major difference between the Matagami-Chibougamau Greenstone Belt and the Timmins-Noranda-Val d'Or Belt in the southwestern part of the Abitibi Subprovince is the presence of numerous large, differentiated mafic complexes in the northern portion of the belt.

Each formation of the Roy Group, and especially the thick mafic Obatogamau and Bruneau / Gilman formations, contains a large component of gabbro sills (Figure 4). The sills range from 10 m to more than 300 m in thickness. Mapping indicates the sills are coeval and co-magmatic with the enclosing rocks. Allard (1982) determined that the gabbro sills are chemically indistinguishable from basaltic flows of the upper Obatogamau Formation.

The Doré Lake Complex immediately south of Chibougamau (Figure 3) is a stratiform intrusion similar to the Bushveld and other layered complexes. Historic mine workings and detailed drilling of 17 epigenetic copper-gold deposits in the Chibougamau district have provided a detailed understanding of the geology of the complex.

Therein, the Doré Lake Complex is seen to form a high-level, subvolcanic differentiated sill, 5-7 km thick that occurs on either limb of the Chibougamau Anticline over a strike length of 53 km within the Superior Province, and upwards of 10 km into the adjacent Grenville Province. The great thickness of the complex resulted in slow cooling and facilitated extensive differentiation of the mafic intrusive. The slow cooling coupled with high heat flow also caused local melting of quartz-rich volcanic rocks of the Waconichi Formation resulting in large thicknesses of sodic granophyres (Allard *et al.*, 1985).

The Anorthosite Zone which is the lowermost and thickest zone in the Doré Lake Complex is the host rock for most copper-gold mines in the Chibougamau district. The zone shows cyclic repetition of anorthositic gabbro and gabbro with intercumulus pyroxene.

Elsewhere in the Matagami-Chibougamau Greenstone Belt, the Cummings Complex includes three distinct but genetically related layered sills that intruded part of the Blondeau Formation, each of which are separated by thin volcanogenic sedimentary screens (Figure 4). The complex is mapped on the north limb of the Waconichi Syncline, on either limb of the Chibougamau Syncline, and in the Chapais Syncline near several copper deposits in the Chapais area. The complex has also been mapped west of the Grenville Front for a distance of 160 km. The sills are seen everywhere in the same stratigraphic order: with the Bourbeau sill at the top, the Ventures sill in the centre, and the Roberge sill at the base. Based on detailed petrographic studies, each sill is seen to have a distinct petrology linked to magmatic differentiation processes (Allard *et al.*, 1985).

Granitic Rocks

The Matagami-Chibougamau portion of the Abitibi Subprovince contains a large number of granitic batholiths and stocks. As seen in Figure 3, the MCGB is bordered to the north and south by granitic plutons and granitic orthogneisses, with the age and relationship of the gneisses underlying the Roy Group poorly established.

The majority of plutons in the Matagami-Chibougamau Greenstone Belt occur in the axial zone of anticlines and synclines, and range in composition from melanodiorite to leucogranodiorite, although a few felsic plutons show no spatial relationship to the major tectonic features. Duquette (1970) has further subdivided the plutons into tonalite-diorite and granodiorite suites. The tonalite-diorite plutons which range in age from 2715 Ma to 2722 \pm 3 Ma are weakly foliated and are more or less concordant with the surrounding rocks, whereas granodiorite plutons which date between 2692 and 2698 Ma are smaller, commonly have irregular outlines, and exhibit well defined contact metamorphic aureoles (Guha *et al.*, 1991).

The age of various plutons in the Chibougamau district are further summarized in Table 3.

Pluton	Age (Ma)	Dating Method	Petrographic Suite
Waswanipi	2616 ± 19	Pb-Pb	
Muscocho	> 2698	U-Pb	granodiorite
Franquet	2692 ± 4	U-Pb	
Olga	2693 ± 3	U-Pb	
Renault	2718 ± 12	Pb-Pb	
Renaud	2700 ± 2	U-Pb	tonalite /
Abitibi	2690 ± 4	U-Pb	granodiorite
Palmorelle	2696 ± 1	U-Pb	
Dauversiere	2720 ± 2	U-Pb	
Barlow	2695 ± 3	Pb-Pb	monzodiorito
Opemisca	2695 ± 8	Pb-Pb	monzodionite
Radiore	2715-2721	U-Pb	
Chibougamau	2718 ± 2	U-Pb	tonalita / diarita
Tascherau	2722 ± 3	U-Pb	tonalite / dionte
QFP	2718 ± 2	U-Pb	
Lapparent	2708 ± 12	U-Pb	tonalitic gneiss

Table 3: Summary of Matagami-Chibougamau Greenstone Belt Pluton Ages.

Source: Guha et al., 1991.

2.3 Geological Evolution

During the Archean, an extensional regime within the Matagami-Chibougamau Greenstone Belt initially produced an extensive volcanic submarine pile of pillowed basalts and minor felsic pyroclastics surmounted by large shield volcanoes (Obatogamau Formation), upon which a large number of small intrusive felsic eruptive centres developed (Waconichi Formation). These rocks were broadly folded during an initial phase of deformation (D_1). Broad north-south trending folds formed prior to the regional foliation may have originated at about the same time as juvenile east-west folds. The combination of north-south and east-west fold systems resulted in a regional interference pattern of domes and basins dominated by large east-west synclinal basins (Daigneault, *et al.*, 1990).

Also during this initial extensional regime, early plutons like the Chibougamau Pluton were emplaced giving rise to local domes. Normal faulting produced a series of flanking grabens which were subsequently filled by sediments. The surrounding volcanic highlands and emerging granitic plutons were eroded producing the graben filling sediments of the Opemisca Group. Locally, erosion produced an angular unconformity between these sediments and the underlying volcanics of the Roy Group. North-south horizontal shortening of the belt followed the earlier phase of extensional tectonics and developed the dominant regional east-west foliation in the district. Plutons emplaced both as individual bodies and as linear intrusive bodies intruding along the axes anticlinal ridges, resulted in upturning of the host strata to the vertical position, and created fold interference patterns concomitant with regional north-south horizontal shortening. Contact strain aureoles around the plutons were introduced by synkinematic emplacement in conjunction with the deviation of regional stress fields wherein the plutons acted as competent bodies. The last increment of regional deformation led to the development of large east-west reverse faults and zones of strong shearing. Finally, a late series of north and east trending sinistral faults (e.g. Gwillim Fault) became active during the emplacement of late plutons in the district.

2.4 Structural Geology

Mapping and structural studies by Dimroth *et al.* (1984) and Daigneault *et al.* (1990) indicate four distinct structural events of importance in the Matagami-Chibougamau Greenstone Belt: 1) synvolcanic structures; 2) large east-west regional folds and reverse ductile faults formed during the Kenoran Orogeny; 3) northeast trending sinistral faults of probable Late Archean age reactivated during the Early Proterozoic, and 4) north-northeast trending Grenvillian faults.

Three of these events are Archean, the fourth is Grenvillian in age (1097 Ma) and is limited to a 2-5 km wide zone along the eastern margin of the Matagami-Chibougamau Greenstone Belt near the Grenville Front (Daigneault *et al.*, 1990).

The three Archean events are considered to be phases of deformation associated with the Kenoran Orogeny at around 2700-2695 Ma, corresponding to the Shebandowan event of the orogeny. In the Chibougamau area, the Kenoran Orogeny accounts for large folds and the regional schistosity which was comptemporaneous with, or slightly younger than the emplacement of the Chibougamau Pluton dated at 2718 ±2 Ma. The three phases of Archean deformation includes an initial phase (D₁) responsible for the formation of local north-south folds without schistosity, a second phase of regional deformation (D₂), and a minor late phase of deformation (D₃). The regional D₂ deformation is the most prevalent and consists of two distinct events: folding and ductile faulting, either of which are seen to have evolved progressively over time.

The Chibougamau district is transected by four major fault systems trending northeast, east, northwest and north-northeast. Some faults may have been synvolcanic and controlled by the

location of volcanic eruptive centres which were subsequently reactivated over time. The most evident faults strike northeast to north-northeast and are exemplified regionally by the Mistassini Lake fault, the Taché Lake fault, the Doré Lake faults and the Gwillim Lake fault (Figure 4).

East trending, roughly conformable faults are less evident in the district. From north to south these include: the Waconichi Syncline, the Waconichi Anticline / Waconichi Tectonic Zone (WTZ); the Chibougamau Syncline; the Chibougamau Anticline; the Chapais Syncline; the La Dauversiere Anticline; and the Druillettes Syncline.

The northernmost structure, the Waconichi Syncline is both a structural and sedimentary basin containing rocks of the Opemisca Group which are bordered on either side by major east-west longitudinal faults. Another example of an east-west fault is the Kapunapotagen fault which roughly parallels units in the Chapais Syncline (Figure 4). This fault has been traced for a distance of 80 km, but the nature of the fault and its exact sense of movement are poorly understood. Over much of its length, the fault separates south facing sediments of the Opemisca Group and north facing volcanics of the Roy Group (Daigneault *et al.*, 1990). Similar relationships have been identified by Daigneault and Allard (1983) along the Faribault Fault where south facing sediments of the Bordeleau Formation are in contact with north facing volcaniclastic units and gabbro sills of the Waconichi Formation (Figure 4).

2.5 Property Geology

2.5.1 Lithologies

Six different main lithologies were recognized within the MTK property limits. The following provides a brief macroscopic description of each rock type and alteration.

2.5.3.1 Basalt (V3B)

Basalt is typically described as greenish-grey, aphanitic to fine grained, mostly massive to pillowed, with local flow top breccias. The basalts are typically affected by moderate chloritization with minor associated epidote alteration. The basalts are typically non to weakly magnetic with or without metre wide interflow sediments (argillite, graphitic argillite and/or siltstone).

2.5.3.2 Gabbro (I3A)

Dark greenish-grey, fine to medium grained, equigranular, massive, weakly to nom magnetic and moderately porphyritic with 5-15% mm sized actinolite altered pyroxene phenocrysts occur as sills within the mafic volcanics. These rocks are interpreted as massive volcanic flows that are co-magmatic shallow sill like structures. Most of these gabbro units are characterized by a meso to melanocratic appearance with a salt and pepper texture imparted by 10 to 30% white feldspars crystals recognized in hand sample. The gabbros usually host a few quartz-carbonate veins. Gabbro sill contacts with the mafic volcanic host rocks are often gradational and poorly defined.

The intrusive type gabbro units within the property are medium to coarse grained, melanocratic dark green to black, moderately to strongly magnetic. These gabbro units are intrusive differentiated sills varying from a mesocratic gabbro grading to more mafic units that have a peridotitic affinity. These units are dominant in the northern part of the property.

2.5.3.3 Intermediate Tuff, Lapilli Tuff to blocky Tuff (TU, TX, TL2, TY2)

These rocks are present primarily in the central to southern part of the property. The intermediate lapilli to blocky tuff unit consist of a package of interlayered / bedded tuff, crystal tuff, lapilli tuff and blocky tuff with variable amounts of sediments such as siltstone, argillite and graphitic argillite. Unaltered, the unit has a medium greenish-gray colour with the fin grain bands having a dark grey to black colour. The coarser units are characterized by a high proportion of felsic-intermediate clasts that are frequently transposed along the foliation. Many of the beds are monomict however exotic clasts of sedimentary, mafic volcanic and felsic intrusive origin are also noted occasionally within the coarser beds.

2.5.3.4 Argillite (S6)

Argillites are almost exclusively observed in the Tuff to blocky tuff units where they form discrete beds which vary from metre to decametre in thickness. Argillites are very fine grained and appear as banded, bedded and laminated sedimentary rocks with alternating mm-cm wide, medium and dark gray beds hosting fracture controlled syn-sedimentary pyrite. Short intervals of interflow argillite are also observed between mafic volcanic rock packages demarcating the limit between different mafic volcanic episodes. Millimetre to centimetre size nodular pyrite is also observed locally within graphite rich units. Primary bedding features are usually visible within argillites. Argillites are frequently interlayered with tuffaceous horizons in variable proportions. No significant magnetism is associated with this unit.

2.6.3.5 Siltstone (S6A)

Siltstones are commonly interlayered with tuffaceous rocks. Unaltered varieties are light gray with moderate to poorly developed bedding. Siltstones are typically fine grained, poorly banded and locally interlayered with narrow intervals of argillite. The mineralization content of siltstones is generally weak and consists of fracture and syn-sedimentary bedding controlled pyrite. Siltstone units are often interlayered with lapilli and crystal tuffs in variable proportions, with the contacts between either rock type not always discernible.

2.6.3.6 Graphitic Argillite (S6G)

Observed in the same environment as argillites, graphitic argillites host 10% and greater quantities of graphite. The graphite frequently accounts for many of the airborne INPUT or ground induced polarization (IP) anomalies observed. As with the S6 argillite unit, graphitic argillites are similarly banded, bedded black and dark grey, with moderate fracture controlled and nodular pyrite observed locally. The syn-sedimentary sulphide content tends to be higher in graphitic argillites than that in non-graphitic argillites. Graphitic argillites appear to be resistant to the effects of alteration and remain relatively intact and easy to identify. As with the argillite unit, no significant magnetism is associated with graphitic argillites except where magnetic pyrrhotite occurs. During the current drill program a graphitic unit was intersected in drill hole MTK13-02 where a 9.65 metre interval of graphitic argillite was intersected in the southern part of the area investigated while testing a ground IP anomaly.

2.5.2 Structure

A major ductile E-N-E shear zone along the southern boundary of the property can be observed along the lumber road that access's the property. Some of the outcrops have been referred to as paper schist however along the bush road that follows the structure for several kilometres one can see a transition from schist to a lapilli tuff towards the east. This structure is 100 plus meters wide. It has not been traced systematically across the property but is believed to extend east and west for several tens of kilometres. Other minor structures were observed within the trenched areas.

2.5.3 Alteration

Most of the alteration zones identified on the property to date were trenched and investigated for mineralization. This includes the original Golden Moose discovery and immediate area. The alteration includes ankeritization, seritisation and silicification.

3.0 ECONOMIC GEOLOGY

Although French explorers and traders first arrived in the Chapais-Chibougamau region in the early 17th century, no permanent European settlements were established until late in the 19th century when prospectors arrived in the region.

Gold was first discovered in the district as early as 1903, however no permanent development took place due to the remoteness of the area until 1949 when economic copper deposits were discovered near Chapais. The first copper production was at the Opemisca Copper Mine at Chapais in 1953. Near Chibougamau, production started at the Campbell Chibougamau Mine in 1955 (Allard *et al.*, 1985).

Although having begun as a copper mining camp, the Chibougamau-Chapais district has been a major past producer of gold. Since its beginning, this camp produced some 1,050 mt of gold at an average grade of 1.85 g/t Au (Guha *et al.*, 1988).

The Chibougamau mining district is unique among Archean greenstone belts owing to its copper-gold metal assemblage, although the origin and age of the ores have been much debated and remain uncertain. Proposed mechanisms include: 1) magmatic hydrothermal replacement related to the emplacement of plutons; 2) lateral secretion; and 3) volcanogenic in origin with ore genesis related to either late felsic volcanism of the Roy Group or the Haüy Formation andesites of the Opemisca Group (Allard, 1976).

Gold occurrences in the Chapais-Chibougamau camp may be grouped into the following subtypes:

- 1) gold associated with synvolcanic massive sulphide occurrences (Cu-Zn-Ag);
- 2) gold bearing veins associated with Ag, Zn, Pb, As and Sb;
- 3) Cu-Au and Au-Cu veins with varying amounts of sulphides mainly pyrite, chalcopyrite, pyrrhotite ± arsenopyrite; and
- 4) auriferous quartz veins with minor chalcopyrite.

Gold mineralization based on a geological evolution model which groups gold deposits in the district into categories based on geological environment and structural evolution is summarized in **Table 4**.

Gold Mineralization Episode	Ore Mined- 000 t (No. of Deposits)	Cu – 000 t (grade - %)	Au – kg (grade - g/t)	Ag – kg (grade - g/t)
Syn-volcanic Deposits				
Volcanogenic massive sulphide deposits	757 (1)	39 (4)	3,000	55,000
Sub-volcanic intrusive deposits	600 (2) -		-	-
Syn-Kenoran Deposits				
Deposits related to east-west shear zones	3,147 (4)	12 (0.6)	21,330 (6.78)	22,936 (7.3)
Deposits postdating E-W shear zone defm.	20,707 (3)	505 (2.44)	13,738 (0.66)	2,107 (0.1)
Post-Kenoran Deposits				
Shearing in the Doré Lake Complex	35,400 (9)	590 (1.7)	53,000 (2.0)	136,700 (7.5)

Table 4: Gold Mineralization Deposit Types in the Chibougamau-Chapais District.

As seen in **Table 4** there is a distinct variation in the average gold, silver and copper grades between various types of deposits that occur in the district which is a product of the various ore generating system that have evolved over time.

The four basic deposit types outlined in Table 4 show a variety of structural settings, host rocks, gangue mineralogy and wallrock alteration. Although these factors can make categorization of the various deposit types problematic, if they are considered within the lithological and tectonic evolution of the Chapais-Chibougamau district, a different pattern emerges.

An early synvolcanic period of mineralization comprises both volcanogenic massive sulphide and disseminated mineralization associated with evolving volcanic landforms and syn-volcanic intrusions. The emplacement of Archean lode gold deposits and later Cu-Au deposits of the Chibougamau district coincides with syn-deformation during the Kenoran Orogeny. The spatial relationship between east-west trending shear zones and northeast trending fault systems has been shown by Guha *et al.* (1988) to be a possible mechanism for generating added dilatancy during the gold mineralizing phase. A later, post-Kenoran shear system controlled the emplacement of the last major phase of gold mineralization characterized by stratiform intrusions.

Synvolcanic Mineralization includes a number of volcanogenic sulphide deposits characterized by widespread alteration and disseminated mineralization including sulphidized pillow margins and gold bearing sulphide veinlets. Synvolcanic faulting and the collapse of volcanic edifices gave rise to breccias overlain by pyroclastics debris flows and tuffs as seen in the vicinity of the Gwillim Mine (Guha *et al.*, 1988). Synvolcanic faults channelled fluids from evolving hydrothermal systems which discharged into paleotopographic depressions giving rise to bedded sulphides containing varying amounts of gold associated with copper and zinc. Where the system was long lived, large tonnage deposits such as the Lemoine volcanogenic massive sulphide deposit formed (Guha *et al.*, 1988). Elsewhere, rapid burial of the hydrothermal system by basalts yielded disseminated sulphides with minor gold values such as in the Gwillim Mine area. Sulphide veins containing gold, silver, zinc, lead, arsenic and tin

localized in faults were superimposed on the volcanogenic mineralization. These veins are of limited extent and predate major folding in the region.

With the growth and subsequent uplift of the volcanic edifice as indicated by the deposition of the Blondeau Formation in the regional stratigraphy, porphyry hydrothermal systems developed around subvolcanic felsic intrusions and manifested themselves in the upper part of the volcanic pile as epithermal Au-Ag-Pb-Zn-As-Sb veins. These veins were controlled by structures related to evolving volcanic landforms and intrusion related fault systems. The Berrigan Lake prospect is one such synvolcanic fault system within the Roberge Sill (Guha *et al.*, 1988) where mineralization in the form of veins containing sphalerite, pyrrhotite, galena, arsenopyrite, chalcopyrite, pyrite, gold and silver show characteristic silicification, carbonatization and brecciation occur. A lead isotope date of 2.72 Ga for the Berrigan Lake mineralization is also consistent with a volcanogenic hosted deposit model for this deposit.

Syn-deformational Mineralization

The onset of the Kenoran Orogeny at around 2.7 Ga produced a major series of east-west trending faults and shear zones that acted as a precursor for a major gold mineralizing episode in the Chibougamau district. A number of well-known deposits in the region (Cooke, Norbeau, Gwillim, Joe Mann) are hosted by such east-west structures. These are typically lode gold deposits associated with shear zones showing characteristic advanced argillic carbonate-ankerite-sericite-pyrite and quartz veining alteration with the major gold mineralizing episode occurring late in the deformation sequence. The deposits bear a strong resemblance to other Archean lode gold hosted deposits elsewhere in the Abitibi Subprovince. The veins are mostly auriferous with, or without economic grades of copper. Gold occurs as a visible phase or as microscopic grains associated with pyrite and chalcopyrite. Most of these deposits are hosted within mafic sills.

The close relationship between this style of gold mineralization, shearing, and the development of a characteristic alteration assemblage (ankerite-sericite-pyrite; ankerite-fuchsite-chlorite; ankerite-sericite-chlorite and chlorite-calcite-magnetite) indicates that the correlation between the chemistry of the host rocks and the deposits depends on the rheological behavior of the wallrocks as well as chemical control of the mafic host rocks.

A second group of Kenoran age deposits are related to deformation that postdates the eastwest shear system. The Gwillim Lake shear zone which continued to be active over an extended period of time is seen to host Opemisca copper-gold vein type deposits which postdate east-west shearing in the district.

Shear zones that developed in the post-Kenoran period within the **Doré Lake Complex** are southwest trending, northerly dipping, left lateral oblique dip slip shears, as well as echelon, conjugate, northwest trending, southerly dipping oblique shears. Both sets of shears formed within a north-south stress field similar to that imposed on the Gwillim Lake shear zone. Others, such as the northeast trending, southerly dipping oblique McKenzie-Henderson-Portage shear zone were produced by east-west compressive stress which developed after the north-south stress field of the Kenoran Orogeny (Guha *et al.*, 1988).

The late Kenoran-early Proterozoic shear zones in the Chapais-Chibougamau district are seen to host numerous copper-gold deposits **(Table 4)**. The host rocks are quartz-carbonate-sericite and/or chlorite schist produced by the shearing and alteration of meta-anorthosites. The sulphide minerals are predominantly chalcopyrite, pyrite and pyrrhotite with minor amounts of

sphalerite and galena. Gold occurs mainly as discrete grains associated with pyrite and chalcopyrite in contrast with the free gold that is generally associated with lode gold deposits elsewhere in the district. Deposits in the Doré Lake Complex from synchronously with shearing developed in association with east-west compression, with fluids responsible for the mineralization characterized by CaCl₂ and NaCl-rich brines which co-exist with methane rich fluids (Guha *et al.*, 1988).

4.0 PREVIOUS EXPLORATION

The table below is a partial list of assessment work reports covering the property. It is a representation of the most important assessment work reports recovered from the Ministry of Natural Resources Examine database. From these reports one recognizes that three events triggered active exploration over the property, 1) the completion by MNR of a large airborne geophysical survey **DP829** Airborne Magnetic and INPUT geophysical survey where companies staked INPUT EM anomalies for their base metal potential, 2) The discovery of a massive sulfide boulder which returned 4.4% Cu and 8.4% Zn, and 3) The discovery of the Golden Moose gold showing.

Report Num Date		Company	Activity
GM33358	1977-03-01	Patino	Drilling
GM39032	1978-10-01	Shell Canada	Drilling
GM45493	1987-05-12	Explorateur-Innovateur	Drilling
GM49364	1989-11-01	Minova	Mapping
GM50063	1990-10-01	Minova	Mapping
GM65672	2011-05-01	Ressources Sirios inc.	Prospecting

5.0 Investigation by Fancamp Resources

Exploration activities undertaken during the reporting period are summarized in the following table:

Table 7: Summary of work carried out for the 2013 drilling program

Line Cutting GL Geoservices, Rouyn Qc	11.0 kilometres
Mag Survey GL Geoservices, Rouyn Qc	9.7 kilometres
I.P. Survey GEOSIG Inc. Québec, QC	11.0 kilometres
Diamond Drilling: Forage Rouillier, Amos Qc	5 DDHs: 630 m

Fancamp Resources Inc.Moose Track (MTK) 2013 Exploration Program21

Sample preparation TJCM, Chibougamau Qc

254 crushing & splitting

Assaying:

ALS Canada Ltd., Val d'Or, QC

254 fire assays

5.1 Line Cutting

A grid with a total of 11.0 km of line cutting was established centred over the Golden Moose showing. Lines were cut at an azimuth of 007° spaced 100 metres apart on either side of Line 0+00 then 200 metres apart. Line 0+00 was established over the Golden Moose showing and grid lines were numbered 7+00W to 5+00E and extend 500 metres north and 500 metres south. Because some structures appeared to be oriented North-South 3 lines were cut East-West, one south of the base line and two north of the baseline at 100 metre spacing. All lines were picketed at 25 metre intervals.

5.2 Total Field Ground Magnetic Survey

A total of 9.7 kilometres of total field magnetic data was collected by GL Géoservice using two GSM-19 proton precession total-field magnetometers. A base station was established to correct for diurnal variations and reading were taken at 12.5 meter intervals along all N-S lines. The data was subsequently processed and interpreted by a GEOSIG geophysicist. See report by Simon Tshimbalanga 2013-04-26.

5.3 Dipole-Dipole Induced Polarization Survey

Eleven kilometres of dipole-dipole Induced Polarization data was collected by a GEOSIG field crew and interpreted by their geophysicist. A 25 metre Dipole separation was used and readings were taken for n=1 to 6. See report by Simon Tshimbalanga 2013-04-26.

5.4.0 Diamond Drilling

Forage Rouillier of Amos, Québec was contracted to provide contract diamond drilling services for the spring drilling program at MTK. One skid mounted, hydraulic LF-70 diamond drill was mobilized to the field in early March to complete the NQ core hole drilling program. A total of 5 drill-holes (MTK13-01 to MTK13-05) were completed during the drill program. The UTM collar locations, start/end date and final depth of the drill holes are listed in **Table 5**. The distribution of the drill-hole collars is shown in Figure 8. A total of 630 metres was drilled from March 04th to 09th, 2013.

Property	Hole No	UTM East	UTM North	Grid E	Grid N	Start	Finish	AZ	Dip	Length_m
МТК	MTK13_01	485007	5526948	L0+00	St 0+75S	04-Mar	05-Mar	7	-50	126
МТК	MTK13_02	484878	5526721	L1+00W	St 3+25S	05-Mar	06-Mar	7	-50	126
МТК	MTK13_03	584532	5527078	L4+90W	St 0+11S	06-Mar	07-Mar	7	-50	135
МТК	MTK13_04	485305	5526890	L3+00E	St 1+255	07-Mar	08-Mar	7	-50	117
МТК	MTK13_05	484899	5526886	L1+00W	St 1+50S	08-Mar	09-Mar	7	-50	126
Total =										630

Table 5: MTK Diamond Drilling Summary

The fully hydrostatic LF-70 diamond drill employed by Forage Rouillier has a turbocharged, four cylinder, air cooled Deutz diesel motor rated with a continuous output of 65 kW @ 2,500 rpm which is capable of NQ coring to depths of up to 1,000 m. The light weight unitized, modular design of the LF-70 diamond drill makes it ideal for moving between sites using a bulldozer. Rouillier supplied one Caterpillar DH-6 bulldozers during the drill program to tow the skid mounted drill from site to site.

Drill hole collars were spotted with a Garmin model 60 CSx hand-held GPS unit with accuracy on the order of \pm 3 m. The foresights for each drill hole collar was established using a Sylva compass set to the local magnetic declination (16° west).

Within each core hole, variations in the track (azimuth) and inclination of the hole, was monitored by the drill contractor at successive 50 m intervals down hole utilizing an electronic Reflex EZ-Shot single shot reading. At the end of every hole, a multi shot survey was completed where readings are taken every 3 metres as the rods are being pulled.

5.4.1 Core Logging and Sampling Procedures

At the end of each shift the core obtained by the drill contractor is transported and delivered to Northern Superior's core shack located in Chapais where a geologist and/or a geological technician receives the core. The drillers and geologist discuss the progress of the hole during the preceding shift and any problems encountered by the drillers (e.g. intervals of lost core, core tube miss latches, lost circulation and/or fault zones in the hole, mechanical breakdowns or the occurrence of any uncontrolled spills). The drillers are also required to pass along any borehole surveys completed during the shift to the geologist so that any unacceptable deviations in the drill-hole path can be detected and corrected early on. The geologist or technician on site will then begin a preliminary review of the core as it is laid out on the core shack work tables. The core is examined for any missing or out of place core run markers.

The core is then logged in detail, with descriptions of the lithology, contacts, structure, alteration and mineralogy noted and entered in an Excel database.

Appendix III contains the drill logs for the holes completed during the period. Assay Certificates are included in **Appendix IV**.

Samples submitted for split core assay are then marked off on the core based on the following criteria: 1) lithology, 2) mineralization, 3) alteration, and 4) structure. Samples of interest in the core are clearly marked by a line perpendicular to the core axis utilizing a red wax marker, with the corresponding sample number written on the core at the end of each sample interval. The minimum sampling interval is 0.30 m. The maximum sample interval is 1.5 m with care taken by the geologists not to extend sample intervals across lithological, structural or alteration boundaries in the drill core.

For each sample interval, a sample tag is filled out indicating the drill hole number, sample "from" and "to" depths, and alteration assemblage encountered in each sample. The detachable portion of the numbered sample tag is then stapled in place at the end of sample interval in the core box, with the sample numbers and intervals entered into an Excel sample database. Once the sample intervals have been marked on the drill core, digital photograph of wet core were taken of each box of core. The core is then placed in the core storage rack prior to cutting.

Thereafter, technicians responsible for cutting the core take the core from the storage rack to the core cutting room on a trolley cart capable of handling up to 18 boxes of core at a time.

The core is then cut in half along the line scribed on the drill core by the geologist in a wellventilated sound proofed room where two 3½ hp rock saws are set up. After the core has been cut, half of the core is placed in a poly ore bag with a number on the outside corresponding to the sample tag on the core box. After cutting, the other half of the core is returned to the core tray with care taken to maintain the integrity of the core such that the geology of the half-core remains as intact as possible. A tear-off portion of the sample tag is placed in sample bag.

Groups of eight samples are then placed in jute sacks, which are secured with one time use teflon tie-wraps. The samples are kept in the core shack under lock and key until a courier delivers the samples to TJCM preparation lab.

6.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

Fancamp Resources Inc. contracted La Table Jamésienne de Concertation Minière (TJCM) in Chibougamau, Québec to crush and prepare the samples for fire assay. Since the processing facility was located relatively close to Fancamp operations base in Chapais, the total weight of samples required to be shipped to the assay laboratory was reduced by 80-90%.

All split core samples (254) generated during the 2013 core drilling program was analyzed by ALS Laboratory in Val d'Or, Québec. ALS is an internationally recognized laboratory and is certified by the International Standards Organization (ISO) for a laboratory facility 17025:2005.

6.1 Table Jamésienne de Concertation Minière (TJCM) Sample Preparation Procedure

Split core samples were delivered on weekly basis to TJCM in Chibougamau from Fancamp core logging facility in Chapais. Upon arrival at the lab, the samples were checked for completeness against the sample manifest and were then dried (if required) prior to crushing at -2.0 mm. Internal quality control checks were completed by the lab at regular intervals in order to ensure a uniform product with greater than 70% passing -2.0 mm was maintained. Thereafter, a 300 gram sub-sample of the crushed material was pulverized in a ring and puck mill so that 85% of the sample passes through a 200 mesh (75 um) screen. After each sample was pulverized, a silica-rich sample was pulverized in the ring mill to clean the mill and prevent cross-over contamination from one sample to the next. The silica sample was then discarded and the ring mill bowl was cleaned with compressed air before another sample is pulverized. Quality controls were also established at regular intervals to ensure the uniformity of the pulps produced by the lab.

TJCM introduced control samples both blanks and standards following their own internal procedures. Once a consignment of assay sample pulps was prepared, they were dispatched to the assay lab in Val d'Or by courier.

6.2 ALS Laboratory Assay Procedure

The ALS Chemex assay method as summarized from its published procedure is as follows: For the determination of gold, ALS completes a series of controlled steps involving weighing, fluxing, fusion and cupellation.

6.2.1 Atomic Absorption Spectroscopy (AAS) (Lab code: AU-AA23)

Initially, homogeneous samples are fired in the fire assay lab. This procedure involves mixing the sample with a lead based flux which is fused for an appropriate length of time. The fusing process results in a lead button which is placed in a cupelling furnace where all of the lead is absorbed by the cupel. A silver bead which contains gold, platinum and palladium, is left in the cupel. The cupel is removed from the furnace and allowed to cool. Once the cupel has cooled sufficiently, the silver bead is placed in an appropriately labelled small test tube and digested using a 1:3 ratio of nitric acid to hydrochloric acid. Samples are then bulked up with 1.0 mls of distilled deionized water and 1.0 mls of 1% digested lanthanum solution to a total volume is 3.0 mls.

Upon cooling, samples are vortexed and allowed to settle. Once the samples have settled they are analyzed for gold, platinum and palladium using atomic absorption spectroscopy (AAS). The atomic absorption spectroscopy unit is calibrated for each element using the appropriate ISO 9002 certified standards in an air-acetylene flame.

Gold analyses are completed using a standard fire assay with an Atomic Absorption (AA) finish (ALS Lab code: Au-AA23) to an accuracy of 0.005 ppm gold,

for samples assaying less than 3.0 g/t gold. Samples assaying greater than 3.0 g/t gold are routinely re-assayed from the remaining pulp using a fire assay method with a gravimetric finish (ALS Lab code: Au-GRA21). Assay lab certificates of analysis are shown in **Appendix V**.

The results of analyses are checked by a lab technician and are then forwarded to lab's data manager for data entry by means of electronic transfer. After checking the data for completeness, a certificate is produced. The Laboratory Manager checks the data once again and validates that it is error free. The results are then forwarded to Fancamp resources representatives via email, and a hardcopy of the assay certificate authorized by the Laboratory Manager is mailed to GL Geoservices office for archival storage.

7.0 RESULTS

7.1 Diamond Drilling

Appendix III presents descriptive logs and assays for each of the holes completed during the program. The location of the drill holes is shown in plan view **Figure 5** while the drill sections are presented in **Figures 6 to 10**. Sections were plotted looking west.

The best gold value encountered during the drill program was intersected in drill hole MTK13-01 with a weighted average of **1.36 g/t Au / 2.0 m** within a wider anomalous gold bearing alteration zone carrying 0.6 g/t over 5.2 metres.

Diamond drill hole MTK13_01 was designed to test a strong I.P. anomaly associated with the Golden Moose showing located along the edge of a local forestry road. The hole was collared on the following coordinate 485007mE / 5526948mN, NAD83, UTM zone 18, on an Azimuth of 007° dipping at -50°. The hole intersected a sequence dominated by medium grained porphyritic gabbro with a mesocratic aspect affected by a moderate-strong chloritization and overprinted variably by hematization and silicification from the collar to a depth of 82.0 metres. The gabbro is usually moderately to strongly magnetic.

The top of the hole collared into a mineralized gabbroic zone. The zone of interest (estimated to be a decametric quartz vein) was intersected at a low core angle.

The I.P. anomaly was explained by a moderate-strong disseminated Py found at the top of the hole to a depth of 82.00 metres. Typically 2 to 20% disseminated, fracture and vein controlled pyrite associated with variable silicification and hematization confirmed the local anomaly. Local fracture and vein controlled specularite hematite and trace of Cpy were noted along this hole which ended at 126 metres in an unmineralized mesocratic gabbro.

The best gold values were intersected between 46.0 and 48.0 metres depth returning 1.36 g/t Au over 2.0 metres within a wider anomalous gold bearing alteration zone carrying 0.6 g/t over 5.2 metres.

This gold intersection is associated with a silicified and mineralized section characterized by the presence of a 3-5 cm wide quartz veins intersected in what appears to be a down dip or sub parallel to the core axis with 5 to 7% disseminated pyrite along the vein margins. The target Golden Moose showing may not have been tested if it is confirmed that the mineralized structures dip North. A hole should be drilled from North towards the South to test the Golden Moose showing at depth properly.

Drill hole MTK_02 was collared about 250 metres SSW of MTK13_01 on UTM coordinate 484878E / 5526721N. Hole MTK13_02 was designed to test a strong EW I.P. anomaly varying in intensity from east to west. The hole was oriented on an azimuth of 007° with a dip of -50°. From the collar to a depth of 49.15 metres, it intersected a chloritized and epidotized basaltic sequence consisting of at least 3 separate flows starting with a massive, medium grained basal unit overlain by a metric wide pillowed or flow top beccia. From 49.15 to 63.40 metres, the basaltic rock is interrupted by a sedimentary unit varying from graphitic argillite to siltstone down to 58.8 metres where it changes to an argillite with moderate graphitic content associated with 1-2% disseminated and bedding controlled pyritic zone. This graphitic and pyritic units clearly explains the nature of the I.P. anomaly. From 63.4 to 68.9 metres a basaltic unit similar to the unit above was intersected. From 68.9 to the end of this hole a weakly altered and well preserved lapilli tuff sequence of intermediate composition was encountered. These tuffaceous rocks contain abundant centimetric to decimetric size pumice clasts with amygdule's filled by chlorite and/or calcite material. Hole MTK13_02 was terminated at a depth of 126 metres into the lapilli tuff unit.

The nature of the target IP anomaly was explained by the graphitic and pyritic zones encountered however no significant gold values were returned from the samples submitted for assay.

Figure 7: MTK13-02 Section

Collared on UTM (NAD 83) 484532E/5527078N, this hole was designed to explain a moderate I.P. anomaly suspected as a possible western extension of the mineralization found in drill hole MTK13_01, 500m to the East. The hole was oriented at N007° with a dip of -50°. From the collar to the end of the hole it passed through a gabbroic sequence varying from mesocratic to melanocratic composition with local leucoxene content. From start up to 103.30 metres the gabbro are characterized by presence of 3 to 5% of disseminated Mt giving a salt and pepper like texture to the rock. From 103.03 to 130 metres, 3 to 7% of disseminated coarse pyrite could explain the moderate IP anomaly. The hole was ended at 135 metres into a melanocratic gabbro. Only one anomalous gold value of 241 ppb was intersected between 30.0 and 31.0 metres into a strongly magnetic mesogabbro containing 1 to 4% disseminated pyrite.

The nature of the taget IP anomaly was explained satisfactorily by the pyritic zone encountered in the hole.

Figure 8: MTK13-03 Section

Collared on UTM (NAD 83) 485305E/5526890N, this hole was designed to explain a moderate IP anomaly suspected as a possible eastern extension of the mineralization observed 300 metres west in drill hole MTK13_01. Hole four was oriented at N007° with a dip of -50°. From the collar to the end of the hole, MTK13_04 pass through a gabbroic sequence varying in composition from mesocratic to melanocratic with porphyritic noritic gabbro noted as a melanocratic unit. A metric wide faulted zone with graphitic gouge associated intersected between 85 and 89 metres could explain the nature of the target IP anomaly. This hole was ended at 117 metres into a mesocratic gabbro. Hole MTK13_04 returned no significant gold value.

Figure 9: MTK13-04 Section

DDH MTK13_05 was designed to test possible extension of mineralization 100 metres southwest of hole MTK13_01 where a low mag is matching with a moderate IP anomaly. In hole MTK13_01, it was noted that the best mineralized zone was associated with strong silicification which correlated with a sharp decrease in magnetism. The local magnetic low associated with a moderate IP anomaly indicated a possible mineralized and silicified zone similar to hole MTK13_01. DDH MTK13_05 was collared 100 metres west on UTM (Nad 83) 484899E/5526886N, dipped at -50° and oriented N007°. From the collar to 43.10m this hole intersected an intermediate lapilli tuff followed by gabbroic rock from 43.10 to 102.00 metres then back into an intermediate tuffaceous sequence to the end of the hole at 126.0 metres. The IP anomaly was explained by the zone carrying 3 to 5% of disseminated and fracture controlled pyrite hosted by a mesocratic gabbro with 3-4% disseminated Magnetite. Only isolated anomalous gold values were returned from this drill hole (MTK13_05).

Figure 10: MTK13-05 Section

7.2 Quality Assurance / Quality Control Procedures

Because of the early stage (grass root) nature of the MTK project it was decided to not perform extensive quality control procedures. Therefore the field geologist did not insert blank or standard samples in the sequence. However TJCM inserted blanks and standards samples at regular intervals following their own standard laboratory procedures.

International Standards Organization (ISO, 17001) and Canmet accredited laboratories such as ALS Canada routinely insert up to six internal quality control samples into each batch of 84 samples, which include two certified or in-house standards, three pulp duplicates (10th, 30th, 50th samples) and one blank sample. This is considered sufficient at this stage in an effort to reduce costs.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The drilling program was successful in identifying the nature of the target IP anomalies in holes MTK13-02 - a graphitic argillite unit, MTK13-03 - disseminated coarse grained pyrite, MTK13-04 – Fault gouge material with graphite, MTK13-05 – disseminated pyrite. However hole MTK13-01 did not reach its intended target the Golden Moose showing. The mineralized zone intersected in hole MTK13-01, **1.36 g/t Au / 2.0 m** within a wider anomalous gold bearing alteration zone carrying 0.6 g/t over 5.2 metres does not correlate with the Golden Moose surface showing. The mineralized structure from 44.00 to 49.20 metres was intersected at a very low angle to the core axis indicating that the structure is either north-south and/or drilled in a down dip direction. If this is the case the Golden Moose showing was not tested and should be drilled from north toward the south.

A data compilation exercise should be completed on the property to define and assess other targets within the property.

Michel Leblanc, géo O.G.Q. n°613

DATED at Chibougamau, Québec This 16 day of October, 2013.

REÇU	AU	WRNF	
21	MARS	2014	
DIRECTION	deş Ti	RES MINIERS	

13924

Fancamp Resources Inc. Moose Track (MTK) 2013 Exploration Program

34

9.0 **REFERENCES**

Allard, G.O., 1976:

The Doré Lake Complex and its Importance to Chibougamau Geology and Metallogeny, Ministère des Richesses nauturelles, Québec; DP 368, 446 p.

Allard, G.O., 1982:

Géologie du quart nord-ouest du Canton de Haüy, Ministère de l'Énergie et des Ressources du Québec, DPV-928, 57 p.

Allard, G.O., Caty, J.L. and Gobeil, A., 1985:

The Archean Supracrustal Rocks of the Chibougamau Area <u>in</u> L.D. Ayers, P.C. Thurston, K.D. Card and W. Weber eds.; *Evolution of Archean Supracrustal Sequences*; Geological Association of Canada Special Paper 28, pp. 55-63.

Archibald, G.M., 1960:

Quart sud-ouest du canton de Lévy. Ministère des Mines, Québec; RP 419, 12 p.

Beullac, R., 1987:

Géologie de la demie nord du canton de Barlow région de Chibougamau, Ministère des Richesses Naturelles du Québec, ET 87-05, 44 p.

Bostock, H.S., 1970:

Physiographic Subdivisions of Canada <u>in</u> R.J.W. Douglas ed., *Geology and Economic Minerals* of Canada – Part A, Geological Survey of Canada, pp. 10-30.

Bouchard, M.A., 1989:

Subglacial Landforms and Deposits in Central and Northern Québec, Canada with Emphasis on Rogen Moraines, *Sedimentary Geology*, Vol. 62, pp. 293-308.

Bouchard, M.A. and Martineau, G., 1985:

Southeastward Ice Flow in Central Québec and its Paleogeographic Significance, *Canadian Journal of Earth Sciences*, Vol. 22, pp. 1536-1541.

Bouchard, M.A. and Salonen, V., 1989:

Glacial Dispersal of Boulders in the James Bay Lowlands of Québec, Canada, *Boreas*, Vol. 18, pp. 189-199.

Caty, J.L., 1976:

Région du Las Mistassini, Québec, Stratigraphie et Sédimentologie de la Formation de Papaskwasati, Ministère des Richesses Naturelles du Québec, DPV-423, 270 p.

Charbonneau, J.M., Picard, C. and Dupuis-Hébert, L., 1991:

Synthèse géologique de la région de Chapais-Branssat (Abitibi), Ministère de l'Énergie et de Ressources, Québec; MM 88-01, 200 p.

Daigneault, R. and Allard, G.O., 1983:
Stratigraphie et Structure de la Région de Chibougamau, <u>in</u> Stratigraphie des Ensembles Volcano-Sédimentaries Archéens de l'Abitibi, Ministère de l'Énergie et des Ressources du Québec, DV 83-11, pp. 1-17.

Daigneault, R., St.-Julien, P. and Allard, G.O., 1990:

Tectonic Evolution of the Northeast Portion of the Archean Abitibi Greenstone Belt, Chibougamau Area, Quebec; *Canadian Journal of Earth Sciences*, Vol. 27, pp. 1714-1736.

DiLabio, R.N.W., 1981:

Glacial Dispersion of Rocks and Minerals at the South End of Lac Mistassini, Quebec, with Special Reference to the Icon Dispersal Train, *Geological Survey of Canada Bulletin* 323, 46 p.

Dimroth, E., Archambault, G., Goulet, N., Guha, J. and Mueller W., 1984:

A Mechanical Analysis of the Late Archean Gwillim Lake Shear Belt, Chibougamau Area, Quebec; *Canadian Journal of Earth Sciences*, Vol. 21, pp. 963-968.

Dumont, R. and Potvin, J., 2006:

Levé magnétique et élec-tromagnétique Mégatem II dans la region de Chibougamau-Chapais, Québec, Ministère des Ressources nauturelles et de la Faune, Québec, ES-008, 25 p.

Duquette, G., 1970:

Stratigraphie de l'Archéen et relations métallogéniques dans la region de Chibougamau, Ministère des Richesses nauturelles, Québec, DP 357, 126 p.

Gobeil, A., 1977:

Quart nord-est du canton de Lévy, Ministère des Richesses nauturelles, Québec, DPV 503, 34 p.

Guha, J., Dubé, B., Pilote, P., Chown, E.H., Archambault, G. and Bouchard, M.A., 1988: Gold Mineralization Patterns in Relation to the Lithologic and Tectonic Evolution of the Chibougamau Mining District, Québec, Canada; *Mineralium Deposita*, Vol. 23, pp. 293-298.

Guha, J., Chown, E.H. and Daigneault, R., 1991:

Lithotectonic Framework and Associated Mineralization of the Eastern Extremity of the Abitibi Greenstone Belt, *Geological Survey of Canada Open File 2158*, 141 p.

Hébert, C., 1980:

La Dauversière (SW) et Rohault (NW), Ministère des Richesses Naturelles du Québec, DPV-653, 9 p.

Leclerc, F. and Houle, P., 2010a:

Géologie de la région du Lac Barlow (32G15-200-0202), RP 2010-07, 17 p.

Leclerc, F., Houle, P. and Russel, R., 2010b :

Géologie de la région de Chapais (32G15-200-0101) RP 2010-09, 19 p.

Ludden, J.N., Hubert, C. and Gariépy, C., 1986 :

The Tectonic Evolution of the Abitibi Greenstone Belt of Canada, *Geological Magazine*, Vol. 123, pp. 153-166.

Morin, R., 1989:

Fancamp Resources Inc.Moose Track (MTK) 2013 Exploration Program36

Géologie du secteur de Lévy dans la région de Chapais, Ministère des Ressources naturelles et de la Faune, Québec, MM 91-02, 56 p.

MRNF, 2012:

Mining Production of the Chibougamau District, www.mrnf.gouv.qc.ca/.../mines/.../ chibougamau-tableau1.pd.

Norman, G.W.H., 1937:

East Half Opemiska Map-Area Québec, Canada Department of Mine and Resources, Geological Survey, Paper 37-11, 27 p.

Norman, G.H.W., 1941a:

East Half Opemiska, Geological Survey of Canada Map 401-A,

Norman, G.H.W., 1941b:

West Half Opemiska, Geological Survey of Canada Map 602-A,

Occhietti, S., Parent, M., Lajeunesse, P., Robert, F. and Govare, E., 2011:

Late Pleistocene-Early Holocene Decay of the Laurentide Ice Sheet in Québec-Labrador, *Developments in Quaternary Science*, Vol. 15, pp. 601-630.

Otis, M., 1980:

Demie nord du canton de Daubrée, Ministère de l'Énergie et de Ressources, Québec, DP 294.

Otis, M., 1983:

Géologie de la demie nord du canton de Daubrée, Ministère de l'Énergie et de Ressources, Québec, ET 83-06, 57 p.

Prest, V.K., Grant, D.R. and Rampton, V.N., 1968:

Glacial Map of Canada, 1:5,000,000 scale, Geological Survey of Canada Map 1253A.

Racicot, D., Chown, E. and Hamel, T., 1984:

Plutons of Chibougamau-Desmaraisville Belt: a Preliminary Survey <u>in</u> J. Guha and E. Chown, eds., *Chibougamau Stratigraphy and Mineralization*, The Canadian Institute of Mining and Metallurgy, Special Volume 34, pp. 178-197.

Robert, J.L., Masterman, P. and Marchand, J., 1983:

Carte de Compilation Géoscientifique, Ministere de Terres et Foréts du Québec, Carte 32G/15-0404, 1:10,000 scale.

Smee, B. W., 2009:

Quality Control in Mineral Exploration, *power point presentation*, Smee and Associates Consulting Ltd., 44 p.

Smith, D.M., 1955:

A Comparison of Two Methods for Determining the Specific Gravity of Small Samples of Second-Growth Douglas-Fir, Report 2033, US Department of Agriculture Forest Products Laboratory, Madison Wisconsin, September 1955, 22 p.

Veillette, J.J, 1986:

Former Southwesterly Ice Flows in the Abitibi-Timiskaming Region: Implications for the Configuration of the Late Wisconsinan Ice Sheet, *Canadian Journal of Earth Sciences*, Vol. 23, pp. 1724-1741.

Vincent, J.S., 1989:

Quaternary Geology of the Southeastern Canadian Shield <u>in</u> R.J. Fulton, ed., *Quaternary Geology of Canada and Greenland*; Geology of Canada, No. 1, Geological Survey of Canada, pp. 249-275.

Wolhuter, L.E., 1960:

Rapport préliminaire sur le quart sud-est du canton de Lévy, comté d'Abitibi-Est, Ministère des Ressources nauturelles Québec, RP-434, 11 p.

Wolhuter, L.E., 1962:

Rapport préliminaire sur le quart sud-est du canton de Daubrée, comté d'Abitibi-Est, Ministère des Richesses nauturelles Québec, RP-474, 17 p.

Wolhuter, L.E., 1963:

Geological report on the Northwest quarter of Lévy Township, Abitibi East electoral district, Ministère des Richesses nauturelles Québec, DP-014, 97 p.

Wolhuter, L.E., 1971:

Le Pluton d'Opémisca, Ministère des Richesses nauturelles Québec, ES-006, 122 p.

Wolhuter, L.E., 1984:

Géologie des quarts NW, SW et SE du canton de Lévy et du quart SE du canton de Daubrée, Ministère de l'Énergie et des Ressources, Québec, MB 84-05, 217 p.

10.0 STATEMENT OF QUALIFICATIONS

MICHEL LEBLANC

1051, Route Raymond

Canton-Tremblay, (Saguenay), QC

I, Michel Leblanc, of the Town of Chicoutimi, Province of Québec do hereby certify that:

- 1. I am a professional geologist residing at 1051 Route Raymond, Canton-Tremblay, Québec. G7G 0C4
- 2. I am a graduate of the University du Québec à Chicoutimi with a Bachelors Degree in Geological Sciences (1991).
- 3. I am a professional Geologist registered with the Ordre des Géologues du Québec (OGQ, reg, no. 613)
- I have practiced my profession as a geologist for over 20 years. I have prepared reports, conducted, supervised and managed programs for a number of major and junior companies.
 I have been operating as a consulting geologist since 2002.
- 5. As author, I am familiar with the material covered in this report having been directly involved in all aspects of drilling programs conducted on the MTK Property in 2013.
- 6. I do not own shares or options of FanCamp Resources, a publicly traded company on the Vancouver Stock Exchange.
- 7. Permission is granted for use of this report, in whole or in part, for assessment and assignment requirements, but not for advertising purposes.

Michel Leblanc, géo O.G.Q. n°613

DATED at Chibougamau, Québec This 16 day of October, 2013.

Fancamp Resources Inc. Moose Track (MTK) 2013 Exploration Program REGU AU MIRINF 21 MARS 2014 DIRECTION DES TITRES MINIERS

39

Appendix I Permis d'Intervention Pages(s) retirée(s) - Information non pertinente Irrelevant page(s) have been withdrawn Appendix II List of Claims

Fancamp Resources Inc. Moose Track (MTK) 2013 Exploration Program 41

SeqNum	TIT_NO	LOCA	TIT_DAT_EM	TIT_DAT_EX	TIT_SUPRF	TIT_TR_REQ
1	2208961	32G14 X 0018 0035 0	10/03/2010	09/03/2014	55.45	1200.00
2	2210957	32G14 X 0019 0034 0	24/03/2010	23/03/2014	55.44	1200.00
3	2210958	32G14 X 0019 0035 0	24/03/2010	23/03/2014	55.44	1200.00
4	2210961	32G14 X 0020 0034 0	24/03/2010	23/03/2014	55.44	1200.00
5	2211230	32G14 X 0018 0033 0	25/03/2010	24/03/2014	55.45	1200.00
6	2211231	32G14 X 0018 0034 0	25/03/2010	24/03/2014	55.45	1200.00
7	2214035	32G14 X 0019 0033 0	15/04/2010	14/04/2014	55.44	1200.00
8	2214036	32G14 X 0020 0033 0	15/04/2010	14/04/2014	55.44	1200.00
9	2229741	32G14 X 0020 0035 0	06/05/2010	05/05/2014	55.44	1200.00
10	2347578	32G14 X 0018 0036 0	30/05/2012	29/05/2014	55.45	1200.00
11	2356872	32G14 X 0016 0027 0	24/07/2012	23/07/2014	55.47	1200.00
12	2356873	32G14 X 0016 0028 0	24/07/2012	23/07/2014	55.47	1200.00
13	2356874	32G14 X 0016 0029 0	24/07/2012	23/07/2014	55.47	1200.00
14	2356875	32G14 X 0016 0030 0	24/07/2012	23/07/2014	55.47	1200.00
15	2356876	32G14 X 0017 0027 0	24/07/2012	23/07/2014	55.46	1200.00
16	2356877	32G14 X 0017 0028 0	24/07/2012	23/07/2014	55.46	1200.00
17	2356878	32G14 X 0017 0029 0	24/07/2012	23/07/2014	55.46	1200.00
18	2356879	32G14 X 0017 0030 0	24/07/2012	23/07/2014	55.46	1200.00
19	2356880	32G14 X 0017 0035 0	24/07/2012	23/07/2014	55.46	1200.00
20	2356881	32G14 X 0017 0036 0	24/07/2012	23/07/2014	55.46	1200.00
21	2356882	32G14 X 0017 0037 0	24/07/2012	23/07/2014	55.46	1200.00
22	2356883	32G14 X 0017 0038 0	24/07/2012	23/07/2014	55.46	1200.00
23	2356884	32G14 X 0017 0039 0	24/07/2012	23/07/2014	55.46	1200.00
24	2356885	32G14 X 0018 0027 0	24/07/2012	23/07/2014	55.45	1200.00
25	2356886	32G14 X 0018 0028 0	24/07/2012	23/07/2014	55.45	1200.00
26	2356887	32G14 X 0018 0029 0	24/07/2012	23/07/2014	55.45	1200.00
27	2356888	32G14 X 0018 0030 0	24/07/2012	23/07/2014	55.45	1200.00
28	2356889	32G14 X 0018 0031 0	24/07/2012	23/07/2014	55.45	1200.00
29	2356890	32G14 X 0018 0032 0	24/07/2012	23/07/2014	55.45	1200.00
30	2356891	32G14 X 0018 0037 0	24/07/2012	23/07/2014	55.45	1200.00
31	2356892	32G14 X 0018 0038 0	24/07/2012	23/07/2014	55.45	1200.00
32	2356893	32G14 X 0018 0039 0	24/07/2012	23/07/2014	55.45	1200.00

SeqNum	TIT_NO	LOCA	TIT_DAT_EM	TIT_DAT_EX	TIT_SUPRF	TIT_TR_REQ
33	2356894	32G14 X 0019 0036 0	24/07/2012	23/07/2014	55.44	1200.00
34	2356895	32G14 X 0019 0037 0	24/07/2012	23/07/2014	55.44	1200.00
35	2370766	32G14 X 0017 0031 0	21/11/2012	20/11/2014	55.46	1200.00
36	2370767	32G14 X 0017 0032 0	21/11/2012	20/11/2014	55.46	1200.00
37	2370768	32G14 X 0017 0033 0	21/11/2012	20/11/2014	55.46	1200.00
38	2370769	32G14 X 0017 0034 0	21/11/2012	20/11/2014	55.46	1200.00
39	2370770	32G14 X 0019 0032 0	21/11/2012	20/11/2014	55.44	1200.00
40	2370771	32G14 X 0020 0032 0	21/11/2012	20/11/2014	55.44	1200.00
41	2370772	32G14 X 0020 0036 0	21/11/2012	20/11/2014	55.44	1200.00
42	2370773	32G14 X 0020 0037 0	21/11/2012	20/11/2014	55.44	1200.00
43	2370774	32G14 X 0020 0038 0	21/11/2012	20/11/2014	55.44	1200.00
44	2370775	32G14 X 0020 0039 0	21/11/2012	20/11/2014	55.44	1200.00
45	2370776	32G14 X 0021 0032 0	21/11/2012	20/11/2014	55.43	1200.00
46	2370777	32G14 X 0021 0033 0	21/11/2012	20/11/2014	55.43	1200.00
47	2370778	32G14 X 0021 0036 0	21/11/2012	20/11/2014	55.43	1200.00
48	2370779	32G14 X 0021 0037 0	21/11/2012	20/11/2014	55.43	1200.00
49	2371787	32G14 X 0021 0038 0	03/12/2012	02/12/2014	55.43	1200.00
50	2371788	32G14 X 0022 0035 0	03/12/2012	02/12/2014	55.42	1200.00
51	2371789	32G14 X 0022 0036 0	03/12/2012	02/12/2014	55.42	1200.00
52	2371790	32G14 X 0022 0038 0	03/12/2012	02/12/2014	55.42	1200.00
53	2372251	32G14 X 0022 0037 0	05/12/2012	04/12/2014	55.42	1200.00
54	2376902	32G14 X 0021 0039 1	24/01/2013	23/01/2015	52.96	1200.00
55	2376903	32G14 X 0022 0039 1	24/01/2013	23/01/2015	43.88	1200.00
56	2386260	32G14 X 0016 0039 0	10/06/2013	09/06/2015	55.47	1200.00
57	2386261	32G14 X 0016 0040 0	10/06/2013	09/06/2015	55.47	1200.00
58	2386262	32G14 X 0016 0041 0	10/06/2013	09/06/2015	55.47	1200.00
59	2386263	32G14 X 0017 0040 0	10/06/2013	09/06/2015	55.46	1200.00
60	2386264	32G14 X 0017 0041 0	10/06/2013	09/06/2015	55.46	1200.00
61	2386265	32G14 X 0018 0040 0	10/06/2013	09/06/2015	55.45	1200.00
				Surface Area =	3,368.32	ha

Total amount of exploration expenditures per year = \$73,200.00

SeqNum	TIT_NO	DET_LIST
1	2208961	Marc Bouchard (3671) 50 % (responsable); G.L. Geoservice inc. (5214) 50 %
2	2210957	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
3	2210958	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
4	2210961	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
5	2211230	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
6	2211231	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
7	2214035	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
8	2214036	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
9	2229741	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
10	2347578	Élisabeth de France (13374) 100 % (responsable)
11	2356872	Natives Exploration Services (1844) 100 % (responsable)
12	2356873	Natives Exploration Services (1844) 100 % (responsable)
13	2356874	Natives Exploration Services (1844) 100 % (responsable)
14	2356875	Natives Exploration Services (1844) 100 % (responsable)
15	2356876	Natives Exploration Services (1844) 100 % (responsable)
16	2356877	Natives Exploration Services (1844) 100 % (responsable)
17	2356878	Natives Exploration Services (1844) 100 % (responsable)
18	2356879	Natives Exploration Services (1844) 100 % (responsable)
19	2356880	Natives Exploration Services (1844) 100 % (responsable)
20	2356881	Natives Exploration Services (1844) 100 % (responsable)
21	2356882	Natives Exploration Services (1844) 100 % (responsable)
22	2356883	Natives Exploration Services (1844) 100 % (responsable)
23	2356884	Natives Exploration Services (1844) 100 % (responsable)
24	2356885	Natives Exploration Services (1844) 100 % (responsable)
25	2356886	Natives Exploration Services (1844) 100 % (responsable)
26	2356887	Natives Exploration Services (1844) 100 % (responsable)
27	2356888	Natives Exploration Services (1844) 100 % (responsable)
28	2356889	Natives Exploration Services (1844) 100 % (responsable)
29	2356890	Natives Exploration Services (1844) 100 % (responsable)
30	2356891	Natives Exploration Services (1844) 100 % (responsable)
31	2356892	Natives Exploration Services (1844) 100 % (responsable)
32	2356893	Natives Exploration Services (1844) 100 % (responsable)

SeqNum	TIT_NO	DET_LIST
33	2356894	Natives Exploration Services (1844) 100 % (responsable)
34	2356895	Natives Exploration Services (1844) 100 % (responsable)
35	2370766	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
36	2370767	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
37	2370768	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
38	2370769	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
39	2370770	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
40	2370771	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
41	2370772	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
42	2370773	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
43	2370774	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
44	2370775	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
45	2370776	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
46	2370777	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
47	2370778	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
48	2370779	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
49	2371787	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
50	2371788	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
51	2371789	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
52	2371790	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
53	2372251	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
54	2376902	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
55	2376903	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
56	2386260	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
57	2386261	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
58	2386262	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
59	2386263	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
60	2386264	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)
61	2386265	Marc Bouchard (3671) 50 %; G.L. Geoservice inc. (5214) 50 % (responsable)

Appendix III Drill Logs

		PROPERTY: MTK	HOLE NUMBER MTK13_01						
Province:	Québec	DATE LOGGED: 5-6 March, 2013	Grid East: L0+00	Method	Depth	Az	Dip		
Township	Lamack	LOGGED BY: Michel Leblanc	Grid North: St 0+75S	reflex	Collar	7	-50.0		
Started:	4/03/2013	DRILLED BY: Forage Rouillier	UTM East: 485007E	reflex	15	9.2	-49.4		
Completed:	5/03/2014	UNITS: Metres	UTM North: 5526948N						
CORE SIZE:	NQ	CORE LOCATION: Chapais	ELEV: 361 m.						
			LENGTH: 126.0 m.						
					-				
PURPOSE:	Testing stror	ng I.P. anomaly below of MTK showing							

Summary:

DDH MTK13_01 was designed to test a strong I.P. anomaly associated with a gold bearing surface showing located along the edge of a local forestry road. For that purpose, this hole was collared on UTM (NAD 83) 485007E/5526948N, dipped at -50 degres and oriented at N007. Hole MTK13_01 collared into a mineralized gabbroic unit into a low core angle decimetric wide quartz vein. Hole MTK13_01 intersected a sequence dominated by medium grained to porphyritic gabbro of mesocratic aspect affected by a moderate-strong chloritization locally overprinted by variable degre of hematization and silicification from the collar up to 82.0 metres. These gabbro are usually moderately to strongly magnetic and are locally of melanocratic aspect were chloritization and hematization are presents together. The local I.P. anomaly was explained by a moderate-strong disseminated Py presence up to 82 metres along hole. Typically 2 to 20% of disseminated, fracture and vein controlled Py associated with variable silicification and hematization confirmed the local anomaly. Local fracture and vein controlled specularite hematite and trace of Cpy were noted along this hole which was ended at 126 metres into an unmineralized mesogabbro. Only anomalous to low grade gold values returned from MTK13_01. The best gold intersection sits between 46.0 and 48.0 metres along hole with an intersection of 1.36 g/t Au over 2.0 metres. This gold intersection is associated to a silicified and mineralized section characterized by presence of a 3-5 cm wide QZV intersected down dip along core axis with 5 to 7% of disseminated Py along margin.

SUMMARY	LOG	MTK13_01								
From	From To	Lithology	Assay Highligh(s)							
0.00	1.50	CSG								
1.50	54.00	13G	46.0	48.0	1.36 g/t Au	2.0 m.				
54.00	84.00	I3G por								
84.00	126.00	13G								
	126.00	E.O.H.								

Michel Leblanc, géo O.G.Q. n°613

				DESCRIPTION (Hole no MTK13_01)											
	Major		Mi	inor					_						
From (m)	То (m)	Litho code			Description	Sample Number	From	То	Lgth						
0.00	1.50	CSG			Overburden										
1.50	54.00	130			Medium grained gabbre: Back color varying from greenich gray to dark green, mess to melanocrate	63501	1.50	2.50	1.00						
1.50	54.00	130			aspect, medium grained, locally porphyritic, massive to slightly foliated mafic gabbroic rock affected by a	63502	2.50	3.40	0.90						
			1		moderate pervasive chloritization locally overprinted by a moderate pervasive hematization witht/rwithout	63503	3.40	4.00	0.60						
					silicification associated. Gabbroic facies varying throughout unit from medium to fine grained with	63504	4.00	5.00	1.00						
					porphyritic metric wide section. Characterized by a strong magnetism decreasing strongly into silicified	63505	5.00	6.00	1.00						
					area, wostry massive rock with poony developed foliation at 35-40 tca. Moderate QZV content with commonly observed	63506	6.00	6.80	0.80						
					throughout unit intervale. Some area of this gabbroic unit present 3-5% of disseminated leucoxene.	63508	0.80	9.00	1.20						
					Pyritic presence usually moderate to strong along unit varying between 2 and 20%. There is a close	63509	9.00	10.00	1.00						
					spatial correlation between Py, silicification and qz veining which are often strongly chloritized in along	63510	10.00	11.00	1.00						
					margins. Diffuse lower ctc.	63511	11.00	12.00	1.00						
			4.50	0.50		63512	12.00	13.00	1.00						
			1.50	2.50	Low core angle qz vein intersected at 10 tca. 2-3 % of fracture controlled Py associated.	03513	13.00	14.00	1.00						
			2 50	4.00	Moderate pervasive silicification with 30% of OZV intersected at 15 tca. 3.4% diss. Pv	63515	14.00	16.00	1.00						
			2.00	4.00		63516	16.00	17 10	1.00						
			6.80	10.50	Overprinted by a moderate spotted hematization overprinting a strong pervasive chloritization.	63517	17.10	17.70	0.60						
						63518	17.70	18.40	0.70						
			17.10	17.70	Moderately silicified and injected by 25% of QZV intected at 20 tca. 10% of diss. Py along margins and	63519	18.40	19.20	0.80						
			10.00	04.40	between veins.	63520	19.20	20.00	0.80						
			19.20	21.40	Affected by a moderate-strong pervasive silicification with a weak pervasive nematization associated, 5- 10% of cm wide dzy, and with 4 to 7% of disseminated Py	63521	20.00	20.70	0.70						
			21.40	22.60	Very strong pervasive silicifiation associated with a moderate hematization turning rock color to ninkish	63522	20.70	21.40	0.70						
					15-20% of heavy disseminated Py into a gz flooded host rock.	63524	22.00	22.60	0.60						
			22.60	23.20	Silicification level turning to very strong with rock color turning to smoky gray (smoky Qz aspect. 5%	63525	22.60	23.20	0.60						
					diss. Py associated.	63526	23.20	24.00	0.80						
			23.20	25.40	Silicification becoming moderate with 4-6% diss. Py along local cm wide qzv margins.	63527	24.00	24.70	0.70						
						63528	24.70	25.40	0.70						
						63530	26.25	20.25	0.65						
						63531	27.00	28.00	1.00						
						63532	28.00	29.00	1.00						
						63533	29.00	30.00	1.00						
						63534	30.00	31.00	1.00						
						63535	31.00	31.75	0.75						
						63536	31.75	32.30	0.55						
						63537	32.30	33.00	0.70						
						63538	33.00	34.00	1.00						
						63540	35.00	35.00	0.55						
						63541	35.55	35.90	0.35						
						63542	35.90	36.80	0.90						
						63543	36.80	37.80	1.00						
						63544	37.80	38.75	0.95						
						63545	38.75	39.70	0.95						
						63546	39.70	40.70	1.00						
				<u> </u>		03047	40.70	41.75	1.05						
						63549	42.50	43.25	0.75						
			1	İ		63550	43.25	44.00	0.75						
I															

					DESCRIPTION (Hole no M	[K13_01)			
	Major		Mi	nor					
From (m)	To (m)	Litho code			Description	Sample Number	From	То	L
			46.00	48.10	Silicified and mineralized section characterized by presence of a 3-5 cm wide QZV intersected down dip	63552	45.00	46.00	
					along core axis. 5 to 7% of diss. Py along vein margin.	63553	46.00	47.00	
			48.00	49.50	Moderate-strong pervasive silicification with 5 to 7% of diss. Py associated.	63554	47.00	48.00	
			49.90	50.40	Fine grained, epidotized, sericitized rock sitting at ctc interface with a fine grained mafic dyke.	63555	48.00	48.95	
						63556	48.95	49.20	
_			50.40	52.80	50.40 to 52.80 m: Greenish gray, fine grained, chloritized mafic dyke intersected at 40 tca. Slightly	63557	49.20	50.40	
					silicified with 2-4% diss. And fracture controlled Py associated. Diffuse lower ctc.	63558	50.40	51.00	
			52.80	54.00	Rock color turming to dark bluish gray with presenxce of a moderate hematization and silicification with 2	63559	51.00	52.00	
					3% of diss. And fracture controlled Py associated.	63560	52.00	53.00	
						63561	53.00	53.50	
						63562	53.50	54.25	
54.00	84.00	I3G por			Porphyritic mesogabbro: Coarse grained, porphyritic, massive with rock color varying from medium	63563	54.25	55.00	
					gray-greenish to dark gray were hematization is developed. Often leucoxenitic. Variably magnetic with	63564	55.00	56.00	_
					strongly magnetic section correlating with hematite content. Poorly developed foliation throughout unit	63565	56.00	57.00	
					observed at 40-45 tca. Mostly chloritized, variably silicified and hematized. Moderate qzv content into the	63566	57.00	58.00	
					most silicified and mineralized area. Bleaching of host rock often noted along vein margins. Py varying	63567	58.00	59.00	
					along unit from 2 to 8% in disseminated, fracture controlled and also along QZV margins. Locally trace of	63568	59.00	60.00	
					Cpy noted into Qz or calcite veinlets. Diffuse lower ctc.	63569	60.00	61.00	
						63570	61.00	62.00	
						63571	62.00	63.00	
						63572	63.00	64.00	
						63573	64.00	65.00	Т
						63574	65.00	66.00	
						63575	66.00	67.00	
						63576	67.00	68.00	
						63577	68.00	69.00	Τ
						63578	69.00	69.80	
						63579	69.80	70.50	
						63580	70.50	71.25	
						63581	71.25	72.00	
						63582	72.00	73.00	+
						63583	73.00	73.75	
						<u>63584</u>	73.75	74.35	+
						63585	74.35	75.00	_
			74.35	82.00	Gabbroic host rock becoming affected by a moderate-strong silicification overprinting the chloritization.	63586	75.00	75.50	_
					Between 3 and 8% of diss. Py is noted along qzv margins. Local trace of Cpy in qz veinlets. Up to 20%	63587	75.50	76.25	_
					of qzv along this intervalle.	63588	76.25	77.00	
						63589	77.00	78.00	
						63590	78.00	79.00	\perp
						63591	79.00	80.00	
						63592	80.00	81.00	
						63593	81.00	82.00	
						63594	82.00	83.00	
						63595	83.00	84.00	
84.00	126.00	13G			Mesogabbro: Greenish gray, medium grained, massive and moderately fractured mesogabbroic rock	63596	84.00	85.00	
					characterized by a moderate chloritization and epidotization. Massive rock without clear foliation	63597	89.00	90.00	T
					developed. Local calcite and/or qz vein inserted. Very strong magnetism noted throughout unit intervale				
					with fracture controlled magnetite observed. Py content varying between 1 and 4% throughout unit				
					mostly in fracture and disseminated form. Calcite-epidote veins and veinlets noted along unit intervale.				
					Lower ctc not reached.				
			04.10	04.00	Colaite enidate unit interested at 05 fee 40/ disc D. constituted				\square
			94.40	94.90	Larcite epidote vein intersected at 35 tca. 4% diss. Py associated.	62500	04.25	04.05	+
			105.00	108.00	Chionuzeu, suongiy leucoxenitic section with 4-5% of disseminated Py.	03098	94.25	94.95	+
				1		00099	34.90	1 90.00	1

					DESCRIPTIO	ON (Hole no MTK13_01)		
Major		Minor							
From (m)	To (m)	Litho code			Description	Sample Number	From	То	Lgth
						63600	98.50	99.35	0.85
	126.00	E.O.H.		End of hole		63601	99.35	100.25	0.90
						63602	100.25	101.00	0.75
						63603	105.00	105.75	0.75
						63604	105.75	106.50	0.75
						63605	106.50	107.25	0.75
						63606	107.25	108.00	0.75
						63607	117.00	118.00	1.00
						63608	120.00	121.00	1.00
						63609	125.00	126.00	1.00

	Maior		Mi	nor				
From (m)	To (m)	Litho code			Sample description	Au g/t	Ag g/t	Cu pp
0.00	1.50	CSG						
1.50	54.00	13G			Ozy 10 tca 3% py	0.005		
1.00	54.00	100			I3G Si30, 30% gzv, 10% Pv	0.016		
					13G Si25, 5% gzv, 5% Pv	0.005		<u> </u>
					I3G mg. Cl30. cb10. 3% Pv	0.008		<u> </u>
					13G mg, Cl30, cb10, Hm5, 3% Pv	-0.005		
					13G mg, Cl30, cb10, Hm5, 3% Py	-0.005		
					I3G mg, Cl25, cb10, Hm20, 2% Py	-0.005		
					I3G mg, Cl25, cb10, Hm20, 3% Py	-0.005		
					I3G mg, Cl25, Si10, Hm15, 5% Py	-0.005		
					I3G mg, Cl25, Si10, Hm15, 2% Py, 5% Qzv	-0.005		
					I3G mg, Cl25, cb10, Hm20, 2% Py	-0.005		
				_	I3G mg, CI30, Cb10, 2% Py	0.014		
			1.50	2.50	I3G mg, CI30, Cb10, 2% Py	-0.005		
					I3G mg, Cl30, Cb10, 2% Py, spec1	-0.005		
			2.50	4.00	I3G CI30, Cb5, 2% Py	0.01		
					I3G CI30, Cb5, Si5, 4% Py	0.005		
_			6.80	10.50	13G lx, Si20, Cl20, 30% Qzv, 7% Py	0.015		
	_				I3G Ix, Si15, Cl20, 30% Qzv, 5% Py	0.071		
			17.10	17.70	13G Ix, Si5, Cl20,15% Qzv, 2% Py	0.01		<u> </u>
			40.00	04.40	13G CI15, Si20, 15% Qzv, 10% Py	0.063		
			19.20	21.40	13G CI15, Si20, 10% Qzv, 10% Py	0.024		
			04.40	00.00	13G CI15, Si20, 10% Qzv, 10% Py	0.023		
			21.40	22.60	SI40, Hm10, Cb15, 5% QZV, 20% Py	0.694		
			22.60	22.20	Si40, Hm10, Cb15, 5% Qzv, 20% Py, Hm spec. 3%	0.413		
			22.00	23.20	Smoky Qzv, Si70, 65 tca, 8% Py, 1% Hm spec.	0.088		
			22.20	25.40	13G Si30, C115, CD15, 7% Py, 5% Q2V	0.061		
			23.20	20.40	13G Si10, Cl13, Cb13, 7% Fy, 5% Q2V	0.016		
					13G Si20, Cl20, CD10, 7% Py, 5% Q2V	-0.005		
					13G Si20, CI40, Cb10, 3% Py, 5% Qzv	-0.005		
					13G Si20, CI40, Cb10, 2% Py, 5% Ozy	-0.005		
			-		130 Si20, CH0, Cb10, 2% Fy, 5% Qzv	-0.005		<u> </u>
					13G Si20, CI40, Cb10, 3% Py, 5% Q2V	-0.005		
					13G Si20, CI40, Cb10, 3% Py, 5% QZV	0.015		
					13G SI20, CI40, CD10, 3% Py, 5% Qzv, nm 5	0.007		<u> </u>
					13G Cl40, 5% Qzv, 3% Py	-0.005		
	-		_	· · · · · · · · · · · · · · · · · · ·	13G CI40, SI10, 5% QZV, 4% Py	-0.005		
					I3G CI40, 5% Py	-0.005		
					13G CI40, 3% Py	-0.005		
					13G CI40, 3% Py	0.006		
					13G CI40, 4% Py	0.039		
					13G Si25, 30% QZV, 6% Py	0.382		
					13G LX, SIT5, UT5, 4% Py	0.11		<u> </u>
					13G Lx, Si10, Cl15, 4% Py	0.007	-	
			+		136 LX, SITU, UT15, 3% Py	0.024		
					13G LX, STIU, UTD, 3% Py 13G CI25, Si40, 3% Py	-0.005		
					130 0/20, 0110, 3% Fy	-0.005		
			+		13G Cl25, SH0, 3% Py	-0.005		
			+		13G Cl25, SH0, 3% Py 13G Cl25, Si10, 1% Py	-0.005	 	
			-		13G CI25, Si10, 4% Pv, 5% Ozv	-0.005		<u> </u>
			+		13G CI20, Si10, 4% Py	0.010	-	<u> </u>

From (m) To (m) Litho code Au g/t Ag g/t Cu py 48:00 48:10 13G Lx, 2% Py 0.749 0.449 48:00 48:00 13G Lx, 2% Py 0.749 0.749 48:00 48:00 0.22 V stop, 580-722 V stop, 7% Py 0.114 48:00 50:00 7% Py 0.114 50:04 52:80 87, Cb, Ep, 1% Py -0.005 62:80 54:00 136 (g, C30, S10, 4% Py -0.005 62:80 54:00 136 (g, C30, S10, 4% Py -0.005 62:80 54:00 136 (g, C30, S10, 4% Py -0.005 103 (g, C30, S10, 4% Py -0.005 -0.005 -0.005 103 (g, C30, S10, 4% Py -0.005 -0.005 -0.005 103 (g, C30, S10, 4% Py -0.005 -0.005 -0.005 103 (g, C30, S10, 4% Py -0.005 -0.005 -0.005 103 (g, C30, S10, 4% Py -0.005 -0.005 -0.005 103 (g, C30, S10, 4% Py -0.005 -0.005 -0.005 103 (G, C40, S		Major		Mi	nor				
46:00 48:00 13G Lx 2% Py 0.048 48:00 49:50 0.27.9 tas, 540, 7% Py 0.749 49:00 50.40 13G Lx, 150, 20% Day, 5% Py 0.114 50.40 52.80 Sr, Ch, Ep, 1% Py 0.338 50.40 52.80 Sr, Ch, Ep, 1% Py 0.005 51.00 Day, 500, 510, 1000, 2% Py 0.005 54.00 B3.00, 035, 1000, 2% Py 0.005 54.00 B4.00 136 pc.00, 035, 1000, 2% Py 0.005 54.00 B4.00 136 pc.00, 035, 1000, 2% Py 0.005 54.00 B4.00 136 pc.00, 035, 1000, 2% Py 0.005 56.00 136 pc.00, 510, 580, Py 0.005 56.00 136 pc.00, 510, 580, Py 0.005 57.00 136 pc.00, 510, 580, Py 0.005 <	From (m)	To (m)	Litho code			Sample description	Au g/t	Ag g/t	Cu pr
Image: Second				46.00	48.10	I3G Lx, 2% Py	0.049		
449.00 449.00 C2V 5 tra, Si40, Phr) 1.197 449.00 50 40 136 Lx, Si30, Hm10, 20% Cax, 3% Py 0.114 50 40 52.80 Sr, Ch, Ep, 1% Py -0.005 52.80 Sr, Ch, Ep, 1% Py -0.005 52.80 Status -0.005 54.00 B4.00 JBG Catus -0.005 54.01 JBG Catus -0.005 -0.005 54.01 JBG Catus -0.005 -0.005 54.01 JBG Catus -0.005 -0.005						I3G Lx, CI15, Si20+QZV 5tca, 7% Py	0.749		
Aug 90 Bould Bould 20, 830, Hmill, 20% Gz, 8% Py 0.134 100 103 LK, 830, Hmill, 20% Gz, 5% Py 0.398 0.005 101 103 LK, 830, Hmill, 20% Gz, 5% Py 0.005 102 103 LK, 830, Hmill, 20% Gz, 5% Py 0.005 103 LK, 2030, S10, 4% Py -0.005 0.005 103 LK, 2040, S110, 1% Py -0.005 0.005 103 C LK, 004, S110, 3% Py -0.005 0.005 103 C LK, 004, S110, 3% Py -0.005 0.005 103 C LK, 2040, S110, 3% Py -0.005 0.005 103 C LK, 2040, S110, 3% Py -0.005 0.005 103 C LK, 2040, S110, 3% Py -0.005 0.005 103 C LK, 2040, S110, 3% Py -0.005 0.005 103 C LK, 2040, S110, 3% Py -0.005 0.005 103 C LK, 2040, S110, 3% Py -0.005 0.005 103 C LK, 2040, S110, 3% Py -0.005 0.005				48.00	49.50	QZV 5 tca, Si40, 7% Py	1.975		
Image: Solution of the second secon				49.90	50.40	13G Lx, Si30, Hm10, 20% Qzv, 8% Py	0.114		<u> </u>
Image: Construct State St				50.40	52.80	Sr Ch En 1% Pv	-0.005		-
52.80 54.00 13G fg. Clao, Si10, 4% Py -0.005 III G fg. Clao, Si10, 4% Py -0.005 -0.005 III G fg. Clao, Si10, Hm20, 7% Py -0.005 III G fg. Clao, Si10, Hm20, 7% Py -0.005 III G fg. Clao, Si10, Hm20, 7% Py -0.005 III G Clao, Si10, Si15, Hm20, 4% Py -0.005 III G Clao, Si10, 7% Py -0.005 III G Lx Clao, Si10, 4% Py, 5% Czv -0.005 III G LX Clao, Si10, 4% Py, 5% Czv -0.005 III G LX Clao, Si10, 4% Py, 5% Czv -0.005 III G LX Clao, Si10, 4% Py, 5% Czv -0.005 III G Por, IX, Clao, Si10, 4% Py, 5% Czv -0.005 III G Por, IX, Clao, Si10, 4% Py, 5% Czv -0.005 III G Por, IX, Clao, Si10, 4% Py, 5% Czv				00.40	02.00	13G fg, Cl30, Si20, 4% Py	-0.005		
Image: Section of the sectio				52.80	54.00	I3G fg, CI30, Si10, 4% Py	-0.005		
St.00 Bit Grg. C130, S130, Hm20, 7% Py -0.005 54.00 Bit Grg. C130, S151, Hm20, 4% Py -0.005 IG Prove IG Proves, St.C, C130, S18, Py 0.005 IG Proves, St.C, C130, S18, Py 0.005 -0.005 IG Proves, St.C, C130, S38, Py -0.005 -0.005 IG Care, St.D, C130, S38, Py -0.005 -0.005 IG Care, St.D, C130, S38, Py -0.005 -0.005 IG Care, St.D, S10, S38, Py -0.005 -0.005 IG Care, C400, S110, 3% Py -0.005 -0.005 IG Care, C400, S110, 3% Py -0.005 -0.005 IG Care, C400, S110, 4% Py, 5% IG2x -0.005 -0.005 IG Gare, C400, S110, 4% Py, 5% IG2x -0.005 -0.005 IG Gare, S125, Hm5, C120, 3% Py -0.005 -0.005 IG Gare, S125, Hm5, C120, 3% Py -0.005 -0.005 IG Gare, S125, Hm5, C120, 3% Py -0.005 -0.005 IG Gare, S125, Hm5, C120, 3% Py -0.005 -0.005 IG Gare, S125, Hm5, C120, 3% Py -0.005 -0.005 IG Gare, S14, Fm5, C120, 3% Py, 10% Qav -0.005 <td></td> <td></td> <td></td> <td></td> <td></td> <td>I3G fg, CI30, Si10, 4% Py</td> <td>-0.005</td> <td></td> <td></td>						I3G fg, CI30, Si10, 4% Py	-0.005		
54.00 13G por 13G by reso, Sir, Ep. 10% dzv, 73% Py -0.005 54.00 13G por 13G by reso, Sir, Ep. 10% dzv, 73% Py -0.005 1 13G por, Si20, C130, 3% Py -0.005 1 13G Por, Si20, C130, 3% Py -0.005 1 13G Cid0, Si10, 3% Py -0.005 1 13G Lx Cid0, Si10, 4% Py, 5% 50 zzv -0.005 1 13G Lx Cid0, Si10, 4% Py, 5% 50 zzv -0.005 1 13G Melano, fg. Cid0, Si10, 2% Py -0.005 1 13G Melano, fg. Cid0, Si10, 2% Py -0.005 1 13G Apr, Si25, Hm5, Ci20, 3% Py, 10% Qzv 0.011 1 13G Por, Lx, Ci20, 2% Py -0.005 1 13G Ci20, Si24, Hm5, Ci20, 3% Py, 10% Qzv 0.0011						13G fg, Cl30, Si30, Hm20, 7% Py	-0.005		
Child Display Display <thdisplay< th=""> <thdisplay< th=""> <thdis< td=""><td>54.00</td><td>84.00</td><td>I3G por</td><td></td><td></td><td>13G Lx meso Sr Ep 10% Qzv 3% Pv</td><td>-0.005</td><td></td><td><u> </u></td></thdis<></thdisplay<></thdisplay<>	54.00	84.00	I3G por			13G Lx meso Sr Ep 10% Qzv 3% Pv	-0.005		<u> </u>
Image: Size C130, 3% Py, 10% Gzv 0.005 IBG C140, S110, 1% Py -0.005 IBG C140, S110, 3% Py -0.005 IBG C140, S110, 3% Py -0.005 IBG Lx C40, S110, 4% Py, 5% I5G2v -0.005 IBG Dist, S120, HID, C120, S110, 2% Py -0.005 IBG Dist, S125, HIBG, C120, 3% Py, 10% Gzv -0.005 IBG Dist, S125, HIBG, C120, 3% Py, 10% Gzv -0.011 IBG Por, S125, HIBG, C120, 3% Py, 10% Gzv -0.025 IBG Por, Lx, C120, 2% Py -0.005 IBG Por, Ix, C120, 2% Py -0.005 IBG C130, Cb5, 3% Py, 5% Gzv -0.005 IBG C130, Cb5, 3% Py -0.005 IBG C130, Cb5, 3% Py, 5% Gzv -0.011 IBG C140, S102, OW Gzv, 4% Py, Tr, Cpy -0.005	04.00	04.00	100 001			I3G Por, Si20, Cl30, 3% Py	-0.005		
Image: CH0, SH0, SH0, SH0, SH0, SH0, SH0, SH0, S						I3G Por, Si20, CI30, 3% Py, 10% Qzv	-0.005		
Image: Construction of the second s						I3G CI40, Si10, 1% Py	-0.005		
13G Lx CH0, Si10, 3% Py -0.005 13G Lx CH0, Si10, 4% Py, 5% Gzv -0.005 13G Lx CH0, Si10, 4% Py, 5% Gzv -0.005 13G Lx CH0, Si10, 4% Py, 5% Gzv -0.005 13G Lx CH0, Si10, 4% Py, 5% Gzv -0.005 13G Melano, fg, CH0, Si10, 3% Py -0.005 13G Melano, fg, CH0, Si10, 3% Py -0.005 13G por, Si25, Hm5, CI20, 4% Py, 10% Qzv 0.014 13G por, Si25, Hm5, CI20, 3% Py, 10% Qzv 0.014 13G por, Si25, Hm5, CI20, 3% Py, 10% Qzv 0.005 13G Por, Lx, CI20, 2% Py -0.005 13G Por, Lx, CI20, 2% Py -0.005 13G Por, Lx, CI20, 2% Py -0.005 13G CI30, Cb5, 1% Py -0.005 13G CI30, Cb5, 5% Py, 5% Qzv 0.006 13G CI30, Cb5, 5% Py, 5% Qzv 0.006 13G CI20, Si40, 20% Qzv 0.005 13G CI20, Si40, 10% Qzv, 4% Py, Tr. Cpy -0.005 13G CI20, Si40, 10% Qzv, 4% Py, Tr. Cpy -0.005 13G CI20, Si40, 10% Qzv, 3% Py, Tr. Cpy -0.005 13G CI20, Si40, 20% Qzv, 3% Py, Tr. Cpy -0.005 13G CI20, Si40, Si10, 3% Qzv -0.005 1						I3G CI40, Si10, 3% Py	-0.005		
136 EX CH0, SH0, 3% PY -0.005 137 EX CH0, SH0, 4% PY, 5% Gav -0.005 138 EX CH0, SH0, 4% PY, 5% Gav -0.005 138 EX CH0, SH0, 4% PY, 5% Gav -0.005 139 EX CH0, SH0, 4% PY, 5% Gav -0.005 139 EX CH0, SH0, 4% PY, 5% Gav -0.005 139 EX CH0, SH0, 4% PY, 5% Gav -0.005 139 EX CH0, SH0, 5% PY, 10% Qav -0.014 139 EX CH0, SH0, 5% PY, 10% Qav -0.014 139 EX CH0, SH0, SH0, 200 -0.025 139 EX CH0, SH0, 200 -0.005 139 EX CH0, 200 EX, 200 EX -0.005 139 EX CH0, 200 EX, 400 EX -0.005 139 EX CH0, 200 EX, 400 EX -0.005 139 EX CH0, SH0, 200 EX -0.005 139 EX CH0, SH0, 200 EX, 4% PY, Tr. CpY -0.005 130 EX CH0, SH0, 200 Ex, 4% PY, Tr. CpY -0.005 130 EX CH0, SH0, 200 Ex, 4% PY, Tr. CpY -0.005 130 EX EX CH0, SH0, 200 EX, 4% PY, Tr. CpY -0.005						I3G Lx Cl40, Si10, 3% Py	-0.005		
100 EX CH0, S10, 4% Py, 5% 15Qzv -0.005 13G Metano, fg, CH0, S110, 2% Py -0.005 13G Metano, fg, CH0, S110, 2% Py -0.005 13G Metano, fg, CH0, S110, 2% Py -0.005 13G por, S125, Hm5, C120, 3% Py, 10% Qzv 0.014 13G por, S125, Hm5, C120, 3% Py, 10% Qzv 0.025 13G por, S15, Hm5, C120, 3% Py, 10% Qzv 0.005 13G por, S15, Hm5, C120, 3% Py, 10% Qzv 0.005 13G Por, Lx, C120, 2% Py 0.006 13G Por, Lx, C120, 2% Py 0.008 13G Por, Lx, C120, 2% Py 0.005 13G C130, Cb5, 1% Py 0.005 13G C130, Cb5, 2% Py 0.005 13G C130, Cb5, 3% Py, 5% Qzv 0.005 13G C130, Cb5, 3% Py, 5% Qzv 0.001 13G C130, Cb5, 3% Py, 5% Qzv 0.011 13G C120, S40, 10% Qzv, 4% Py, Tr. Cpy 0.005 13G C120, S40, 10% Qzv, 4% Py, Tr. Cpy 0.005 13G C120, S40, 10% Qzv, 4% Py, Tr. Cpy 0.005 13G C120, S10, 10% Qzv, 3% Py 0.005 13G C120, S10, 10% Qzv, 3% Py 0.005 13G C120, S10, 10% Qzv, 3% Py 0.005 13G C120, S10, 5						13G LX CI40, SI10, 3% Py 13G LX CI40, Si10, 4% Py, 5% Ozy	-0.005		
13G Melano, fg, Ci40, Ši10, 3% Py -0.005 13G Melano, fg, Ci40, Ši10, 3% Py -0.005 13G por, Si25, Hm5, Ci20, 4% Py, 10% Qzv 0.014 13G por, Si25, Hm5, Ci20, 3% Py, 10% Qzv 0.025 13G por, Si25, Hm5, Ci20, 3% Py, 10% Qzv 0.025 13G por, Si25, Hm5, Ci20, 3% Py, 10% Qzv 0.005 13G Por, Lx, Ci20, 2% Py -0.005 13G Por, Lx, Ci20, 2% Py -0.005 13G Cl30, Cb5, 1% Py -0.005 13G Cl30, Cb5, 3% Py, 20% Qzv 0.006 13G Cl30, Cb5, 3% Py -0.005 13G Cl30, Cb5, 3% Py -0.005 13G Cl30, Cb5, 3% Py, 5% Qzv 0.008 13G Cl20, Si40, Cb5, 3% Py, 5% Qzv 0.001 13G Cl20, Si40, Cb5, 3% Py, 5% Qzv 0.011 13G Cl20, Si40, Cb5, 3% Py, 5% Qzv 0.011 13G Cl20, Si40, Cb6, 3% Py, Tr. Cpy -0.005 13G Cl20, Si40, Cb6, 3% Py, Tr. Cpy -0.005 13G Cl20, Si40, Cl9% Qzv, 3% Py, Tr. Cpy -0.005 13G Cl20, Si40, Cl9% Qzv, 3% Py, Tr. Cpy -0.005 13G Cl20, Si40, Cl9% Qzv, 3% Py, Tr. Cpy -0.005 13G Cl20, Si40, Si40, Si75, 3% Py -0.005 <						I3G Lx Cl40, Si10, 4% Py, 5% 422V	-0.005		
Image: Construct of the second seco						I3G Melano, fg, Cl40, Si10, 3% Py	-0.005		
Image: Size S, Hm5, Ci20, 3% Py, 10% Qzv 0.014 Image: Size S, Hm5, Ci20, 3% Py, 10% Qzv 0.025 Image: Size S, Hm5, Ci20, 3% Py, 10% Qzv 0.011 Image: Size S, Hm5, Ci20, 2% Py -0.005 Image: Size S, Hm5, Ci20, 2% Py, Sixe Qzv -0.011 Image: Size S, Hm5, Ci20, 2% Py, Sixe Qzv -0.011 Image: Size S, Hm5, Ci20, 10% Qzv, 4% Py, Tr. Cpy -0.005 Image: Size S, Hm5, Ci20, 10% Qzv, 4% Py, Tr. Cpy -0.005 Image: Size S, Sixe S, My -0.005 Image: Size S, Sixe S, My -0.005 Image: Size S, Sixe S, My -0.005 Image: Size S, Sixe S, My <td></td> <td></td> <td></td> <td></td> <td></td> <td>I3G Melano, fg, Cl40, Si10, 2% Py</td> <td>-0.005</td> <td></td> <td></td>						I3G Melano, fg, Cl40, Si10, 2% Py	-0.005		
1 13G por, Si25, Hm5, Ci20, 3% Py, 10% Qzv 0.025 13G por, Si25, Hm5, Ci20, 3% Py, 10% Qzv 0.011 13G por, Lx, Ci20, 2% Py -0.005 13G por, Lx, Ci20, 2% Py 0.008 13G por, Lx, Ci20, 2% Py 0.005 13G por, Lx, Ci20, 2% Py 0.005 13G Ci30, Cb5, 1% Py -0.005 13G Ci30, Cb5, 3% Py -0.005 13G Ci30, Cb5, 3% Py -0.005 13G Ci30, Cb5, 3% Py, 5% Qzv 0.008 13G Ci30, Cb5, 3% Py, 5% Qzv 0.011 13G Ci20, Cb5, 3% Py, 5% Qzv 0.011 13G Ci20, Cb5, 3% Py, 5% Qzv 0.011 13G Ci20, Si40, 20% Qzv, 4% Py, Tr. Cpy -0.005 13G Ci20, Si40, 10% Qzv, 4% Py, Tr. Cpy -0.005 13G Ci20, Si20, 10% Qzv, 3% Py -0.005 13G Ci20, Si15, 3% Py -0.005 13G Lx, Ci40, Si20, 3% Py, 10% Qzv						I3G por, Si25, Hm5, Cl20, 4% Py, 10% Qzv	0.014		<u> </u>
Image: Section of the sectio						13G por, Si25, Hm5, Cl20, 3% Py, 10% Qzv	0.025		
Image: Constraint of the constrant of the constraint of the constraint of the constraint of the c						13G Por 1 x Cl20, 3% Py, 10% Q2V	-0.005		
Image: Section of the sectio						13G Por, Lx, Cl20, 2% Py	0.008		
Image: Constraint of the image is a set of		_				I3G Por, Lx, Cl20, 2% Py, 20% Qzv	0.005		
Image: Constraint of the second sec						I3G Cl30, Cb5, 1% Py	-0.005		
100 100 <td></td> <td></td> <td></td> <td></td> <td></td> <td>13G Cl30, Cb5, 2% Py</td> <td>-0.005</td> <td></td> <td><u> </u></td>						13G Cl30, Cb5, 2% Py	-0.005		<u> </u>
Image: Second						I3G CI30, Cb5, 5% Py, 5% Qzv	0.000		
Image: Second						I3G CI40, Si20, Hm10, 3% Py	-0.005		
74.35 82.00 13G Cl20, Si40, 10% Qzv, 4% Py, Tr. Cpy 0.011 I3G Cl20, Si20, 10% Qzv, 3% Py, Tr. Cpy -0.005 <						I3G CI20, Si40, 20% Qzv, 4% Py, Tr. Cpy	-0.005		
Iso Cl20, Si20, 10% Qzv, 3% Py, 17. Cpy -0.005 I3G Cl20, Si20, 10% Qzv, 3% Py -0.005 I3G Cl20, Si20, 10% Qzv, 3% Py -0.005 I3G Cl20, Si15, 10QZV, 2% Py 0.019 I3G Cl20, Si15, 10QZV, 2% Py 0.019 I3G Cl20, Si15, 10QZV, 2% Py 0.013 I3G Lx Cl40, Si15, 3% Py -0.005 I3G Lx Cl40, Si15, 5% Qzv 0.015 I3G Lx, Cl40, Si20, 3% Py, 10% Qzv 0.007 I3G Lx, Cl40, Si20, 3% Py, 10% Qzv 0.007 I3G Lx, Cl40, Si20, 3% Py, 10% Qzv -0.005 I3G Lx, Cl40, Si20, 3% Py, 10% Qzv -0.005 I3G Lx, Cl40, Si20, 3% Py, 10% Qzv -0.005 I3G Lx, Cl40, Si20, 3% Py, 10% Qzv -0.005 I3G Lx, Cl40, Si20, 3% Py, 10% Qzv -0.005 I3G Lx, Cl40, Si20, 3% Py, 10% Qzv -0.005 I3G Lx, Cl40, Si20, 3% Py, 10% Qzv -0.005 I3G Lx I3G Lx, Cl40, Si20, 3% Py, 10% Qzv I3G Lx I3G Lx, Cl40, Si20, 3% Py, 10% Qzv I3G Lx I3G Lx, Cl40, Si20, 3% Py, 10% Qzv I3G Lx I3G Lx I3G Lx I3G Lx I3G Lx I3G Lx				74.35	82.00	I3G Cl20, Si40, 10% Qzv, 4% Py, Tr. Cpy	0.011		
Image: Construction of the start, or in the start,						13G CI20, SI20, 10% QZV, 3% PV, 17. Cpy	-0.005		
Image: Second						13G Cl20, hm5, Si15, 10QZV, 2% Pv	0.003		
I3G Lx Cl40, Si15, 3% Py 0.013 I3G Lx, Cl30, Si10, 5% Qzv 0.015 I3G Lx, Cl30, Si10, 5% Qzv 0.015 I3G Lx, Cl30, Si10, 5% Qzv 0.024 I3G Lx, Cl40, Si20, 3% Py 0.024 I3G Lx, Cl40, Si20, 3% Py, 10% Qzv 0.005 I3G Lx, Cl40, Si20, 3% Py, 10% Qzv -0.005 I3G Lx, Cl40, Si20, 3% Py, 10% Qzv, 7r. Cpy -0.005 I3G Meso, Cl30, Ep10, Hm5, 1% Py -0.005 I3G I I3G Meso, Cl30, Ep10, Hm5, 1% Py I3G I I3G Meso, Cl30, Ep10, Hm5, 1% Py I3G I I3G Meso, Cl30, Ep10, Hm5, 1% Py I3G I I3G Meso, Cl30, Ep10, Hm5, 1% Py I3G I I3G Meso, Cl30, Ep10, Hm5, 1% Py I3G I I3G Meso, Cl30, Ep10, Hm5, 1% Py I3G I I3G Meso, Cl30, Ep10, Hm5, 1% Py I3G I I3G Meso, Cl30, Ep10, Hm5, 1% Py						I3G Cl40, Si15, 3% Py	-0.005		
Image: Instant Sector of Control						I3G Lx CI40, Si15, 3% Py	0.013		
I3G Cl25, Si25, 3% Py 0,024 I3G Lx, Cl40, Si20, 3% Py, 10% Qzv 0.007 I3G Lx, Cl40, Si20, 3% Py, 10% Qzv -0.005 84.00 I3G I3G Lx, Cl40, Si20, 3% Py, 10% Qzv, Tr. Cpy I3G Lx, Cl40, Si20, 3% Py, 10% Qzv, Tr. Cpy -0.005 I3G Lx, Cl40, Si20, 3% Py, 10% Qzv, Tr. Cpy -0.005 I3G Lx, Cl40, Si20, 3% Py, 10% Qzv, Tr. Cpy -0.005 I3G Lx, Cl40, Si20, 3% Py, 10% Qzv, Tr. Cpy -0.005 I3G Meso, Cl30, Ep10, Hm5, 1% Py -0.005 I3G Meso, Cl30, Ep10, Mm5, 1% Py -0.005 I3G Meso, Cl30, Ep10, Hm5, 1% Py -0.005 I3G Meso, Cl30, Ep10, Mm5, 1% Py -0.005						I3G Lx, CI30, Si10, 5% Qzv	0.015		
Image: Second						I3G Cl25, Si25, 3% Py	0.024		<u> </u>
84.00 13G 13G LX, CH4, Si20, 3% Py, 10% Qzv, Tr. Cpy -0.005 I3G LX, CH4, Si20, 3% Py, 10% Qzv, Tr. Cpy -0.005 -0.005 I3G Meso, CI30, Ep10, Hm5, 1% Py -0.005 -0.005 I3G Meso, CI30, Ep10, Hm5, 1% Py -0.005 -0.005 I3G Meso, CI30, Ep10, Hm5, 1% Py -0.005 -0.005 I3G Meso, CI30, Ep10, Hm5, 1% Py -0.005 -0.005 I3G Meso, CI30, Ep10, Hm5, 1% Py -0.005 -0.005 I3G Meso, CI30, Ep10, Hm5, 1% Py -0.005 -0.005 I3G Meso, CI30, Ep10, Hm5, 1% Py -0.005 -0.005 I3G Meso, CI30, Ep10, Hm5, 1% Py -0.005 -0.005 I3G Meso, CI30, Ep10, Hm5, 1% Py -0.005 -0.005 I3G Meso, CI30, Ep10, Hm5, 1% Py -0.005 -0.005						13G LX, CI40, Si20, 3% Py, 10% QZV	0.007		
Could Ist Ist </td <td>84.00</td> <td>126.00</td> <td>13G</td> <td></td> <td></td> <td>13G Lx, Cl40, Si20, 3% Py, 10% Q2V</td> <td>-0.005</td> <td></td> <td><u> </u></td>	84.00	126.00	13G			13G Lx, Cl40, Si20, 3% Py, 10% Q2V	-0.005		<u> </u>
94.40 94.90 94.50 Calcite vn, Ep40, 3% Py -0.005	04.00	120.00	100			I3G Meso, CI30, Ep10, Hm5, 1% Py	-0.005		
94.40 94.90 Calcite vn, Ep40, 3% Py -0.005 105.00 108.00 Calcite vn, Ep40, 3% Py -0.005									
94.40 94.90 105.00 108.00 Calcite vn, Ep40, 3% Py -0.005 105.00 108.00 Calcite vn, Ep40, 3% Py -0.005									
34.40 34.50 105.00 108.00 Calcite vn, Ep40, 3% Py -0.005			_	04.40	04.00				
				105.00	108.00	Calcite vn, Ep40, 3% Pv	-0.005	<u> </u>	
13G GI30, Ep10, 1% PV -0.0051 I				100.00	100.00	13G CI30, Ep10, 1% Pv	-0.005	1	

	Major		Minor				
From (m)	To (m)	Litho code		Sample description	Au g/t	Ag g/t	Cu ppm
				I3G CI30, Ep10, 1% Py	-0.005		
	126.00	E.O.H.		I3G Lx, Cl40, 2% Py, 10% cc vn	0.021		
				13G Meso, Cl25, Ep10, F.C. Hm, Tr. Py	0.009		
				I3G CI40, Hm10, 2% Py	0.018		
				I3G CI40, Hm10, 5% Py, cc10	-0.005		
				I3G Cl40, Hm10, 5% Py, cc11	-0.005		
				I3G CI40, Hm10, 3% Py, cc12	-0.005		
				I3G meso, Cl25, Ep10, Tr. Py, Mt+++	-0.005		
				I3G meso, Cl25, Ep10, Tr. Py, Mt+++	-0.005		
				I3G meso, Cl25, Ep10, Tr. Py, Mt+++	-0.005		

VO13051966 - Finalized CLIENT : FANCAM - Fancamp Exploration Ltée # of SAMPLES : 112 DATE RECEIVED : 2013-03-18 PROJECT : MTK CERTIFICATE COMMENTS : PO NUMBER :

	Au-AA23				
SAMPLE	Au				
DESCRIPTION	ppm				
63501	0.005				
63502	0.016				
63503	0.005				
63504	0.008				
63505	-0.005				
63506	-0.005				
63507	-0.005				
63508	-0.005				
63509	-0.005				
63510	-0.005				
63511	-0.005				
63512	0.014				
63513	-0.005				
63514	-0.005				
63515	0.01				
63516	0.005				
63517	0.015				
63518	0.071				
63519	0.01				
63520	0.063				
63521	0.024				
63522	0.023				
63523	0.694				
63524	0.413				
94388	-0.005				
63525	0.088				
63526	0.061				
63527	0.016				
63528	0.078				
63529	-0.005				
63530	-0.005				
63531	-0.005				
63532	-0.005				
63533	0.015				
63534	0.007				
63535	-0.005				
63536	-0.005				
63537	-0.005				
63538	-0.005				
63539	0.006				
63540	0.039				
63541	0.382				
63542	U 11				

SAMPLE	Au
DESCRIPTION	ppm
63543	0.007
63544	0.024
63545	-0.005
63546	-0.005
63547	-0.005
63548	-0.005
94389	-0.005
63549	-0.005
63550	0.016
63551	0.13
63552	0.049
63553	0.749
63554	1.975
63555	0.114
63556	0.398
63557	-0.005
63558	-0.005
63559	-0.005
63560	-0.005
63561	-0.005
63562	-0.005
63563	0.05
63564	-0.005
63565	-0.005
63566	-0.005
63567	-0.005
63568	-0.005
63569	-0.005
63570	-0.005
63571	-0.005
63572	-0.005
63573	-0.005
63574	0.014
63575	0.025
63576	0.011
63577	-0.005
63578	0.008
63579	0.005
63580	-0.005
63581	-0.005
63582	0.008
63583	0.01
63584	-0.005
63585	-0.000
63586	0.000
63587	-0.005
63588	_0.005
63580	0.003
63500	_0.019
63501	-0.005
00091	0.013

	Au-AA23
SAMPLE	Au
DESCRIPTION	ppm
63592	0.015
63593	0.024
63594	0.007
63595	-0.005
94391	-0.005
63596	-0.005
63597	-0.005
63598	-0.005
63599	-0.005
63600	-0.005
63601	0.021
63602	0.009
63603	0.018
63604	-0.005
63605	-0.005
63606	-0.005
63607	-0.005
63608	-0.005
63609	-0.005

Survey	Station	Azimuth	Dip	Mag.Str.	Gravity	East	North	Elevation	LocalA	LocalB	LocalC
Name	Metres	Degrees	Degrees	nT	G	Metres	Metres	Metres	Metres	Metres	Metres
MTK-13-01	0	47.6	-49.5	62089	0.999657	0	0	0	0	0	0
MTK-13-01	3	49.4	-49.5	62561	1.000078	1.46	1.29	-2.28	1.95	0.03	0
MTK-13-01	6	46.1	-49.4	62444	1.000335	2.9	2.6	-4.56	3.9	0.04	0
MTK-13-01	9	25.1	-43.9	60852	0.902828	4.07	4.27	-6.75	5.88	-0.41	0.09
MTK-13-01	12	34.4	-49.5	56579	0.999702	5.08	6.05	-8.94	7.84	-1.04	0.15
MTK-13-01	15	25.9	-49.5	55739	1.000174	6.06	7.74	-11.22	9.69	-1.63	0.08
MTK-13-01	18	19.5	-49.5	56444	1.000087	6.81	9.53	-13.5	11.46	-2.45	-0.07
MTK-13-01	21	22	-49.6	57720	0.999669	7.5	11.35	-15.79	13.19	-3.33	-0.23
MTK-13-01	24	26.5	-49.6	52536	0.999983	8.3	13.12	-18.07	14.98	-4.1	-0.36
MTK-13-01	27	74.5	-62.7	52899	1.499374	9.42	14.2	-20.6	16.53	-4.14	-0.82
MTK-13-01	30	13.2	-49.6	52973	0.999799	10.33	15.37	-23.15	17.99	-4.38	-1.37
MTK-13-01	33	23.3	-49.6	52542	1.000227	10.94	17.21	-25.44	19.68	-5.33	-1.57
MTK-13-01	36	23.9	-49.7	52981	1.000389	11.71	18.99	-27.73	21.45	-6.12	-1.71
MTK-13-01	39	20	-49.7	52805	0.999635	12.44	20.78	-30.02	23.2	-6.96	-1.87
MTK-13-01	42	16.1	-49.8	51115	0.999549	13.04	22.63	-32.31	24.89	-7.92	-2.08
MTK-13-01	45	20.2	-49.8	52276	1.000207	13.64	24.47	-34.6	26.57	-8.87	-2.28
MTK-13-01	48	25.4	-49.7	52737	1.000051	14.39	26.25	-36.89	28.33	-9.68	-2.43
MTK-13-01	51	22	-49.7	52435	0.999855	15.17	28.03	-39.18	30.1	-10.47	-2.57
MTK-13-01	54	21.7	-49.6	55950	1.002528	15.9	29.83	-41.46	31.85	-11.31	-2.73
MTK-13-01	57	27.9	-49.5	55548	1.000058	16.71	31.6	-43.75	33.65	-12.07	-2.85
MTK-13-01	60	25.2	-49.5	51731	1.000221	17.58	33.34	-46.03	35.47	-12.77	-2.95
MTK-13-01	63	27.2	-49.4	54078	0.999857	18.45	35.09	-48.31	37.28	-13.48	-3.05
MTK-13-01	66	23	-49.5	54773	1.000102	19.27	36.86	-50.59	39.08	-14.22	-3.16
MTK-13-01	69	24.2	-49.5	52006	1.000012	20.05	38.64	-52.87	40.86	-15.02	-3.29
MTK-13-01	72	23	-49.4	55423	0.99935	20.83	40.43	-55.15	42.64	-15.81	-3.42
MTK-13-01	75	26.2	-49.4	50124	0.999936	21.64	42.2	-57.43	44.44	-16.57	-3.53
MTK-13-01	78	15.8	-49.5	55346	1.000252	22.34	44.02	-59.71	46.18	-17.44	-3.7
MTK-13-01	81	23.5	-49.5	52413	1.000097	23	45.85	-61.99	47.9	-18.36	-3.87
MTK-13-01	84	13	-49.4	54874	1.000238	23.6	47.7	-64.27	49.59	-19.31	-4.07
MTK-13-01	87	18.5	-49.5	53843	0.99963	24.13	49.57	-66.56	51.24	-20.34	-4.29
MTK-13-01	90	19.2	-49.5	51843	0.999861	24.76	51.41	-68.84	52.95	-21.27	-4.48
MTK-13-01	93	23.9	-49.5	51090	0.999966	25.48	53.22	-71.12	54.7	-22.13	-4.63
MTK-13-01	96	23.3	-49.6	51828	1.000025	26.25	55.01	-73.4	56.48	-22.92	-4.77
MTK-13-01	99	22.2	-49.5	51498	0.999168	27.01	56.8	-75.69	58.24	-23.74	-4.91
MTK-13-01	102	26.3	-49.5	52017	1.00006	27.81	58.58	-77.97	60.03	-24.51	-5.03
MTK-13-01	105	23.1	-49.6	51792	1.000228	28.62	60.35	-80.25	61.82	-25.27	-5.15
MTK-13-01	108	31.6	-49.5	52162	0.99978	29.51	62.07	-82.53	63.65	-25.94	-5.25
MTK-13-01	111	27.8	-49.6	56684	1.000044	30.48	63.76	-84.82	65.5	-26.54	-5.33
MTK-13-01	114	29.3	-49.5	56802	0.999283	31.41	65.47	-87.1	67.34	-27.17	-5.41
MTK-13-01	117	34	-47.6	56301	0.961802	32.45	67.16	-89.35	69.25	-27.72	-5.42
MTK-13-01	120	33.3	-49.6	54492	1.000197	33.55	68.81	-91.6	71.17	-28.2	-5.42
MTK-13-01	123	28	-49.7	53309	1.000665	34.54	70.48	-93.89	73.03	-28.76	-5.49
MTK-13-01	126	22.8	-49.7	57430	1.000118	35.37	72.23	-96.17	74.83	-29.5	-5.61

Survey	Station	Tool°	Trax°	Mag.Dip	Mag.X	Mag.Y	Mag.Z	Roll Angle	Mag.T/face	DLS
Name	Metres	°C	°C	Degrees	nT	nT	nT	Degrees	Degrees	deg./30m
MTK-13-01	0	11	11	82.3	8310	0	61530	121.8	292.1	0
MTK-13-01	3	11	11	82.5	8150	0	62028	121.8	292.1	11.7
MTK-13-01	6	11	11	82.1	8565	0	61853	125.2	295.4	21.2
MTK-13-01	9	11	11	76.5	14207	0	59170	123.8	293.7	154
MTK-13-01	12	11	11	77.6	12186	0	55252	127.1	293.4	84.5
MTK-13-01	15	11	11	74.7	14676	0	53772	129	294.5	54.8
MTK-13-01	18	11	11	73	16491	0	53981	128.3	294.9	41.8
MTK-13-01	21	11	11	73.8	16085	0	55434	123.3	289.5	16.4
MTK-13-01	24	11	11	73.4	15042	0	50337	122.8	286.1	29.2
MTK-13-01	27	11	11	83.7	5825	0	52577	120	286.1	288.9
MTK-13-01	30	12	12	74.1	14537	0	50939	114.2	285.7	349.6
MTK-13-01	33	12	12	74.2	14285	0	50562	110.3	276.4	65.6
MTK-13-01	36	12	12	75.4	13398	0	51258	113	280.1	4.2
MTK-13-01	39	12	12	72.9	15483	0	50485	113.1	279.3	25.4
MTK-13-01	42	12	12	76	12388	0	49591	115.5	287	25.3
MTK-13-01	45	12	12	74.4	14020	0	50361	115.8	283.7	26.2
MTK-13-01	48	12	12	75.3	13385	0	51010	118	284.5	33.6
MTK-13-01	51	12	12	74.1	14368	0	50428	115.5	282	21.6
MTK-13-01	54	12	12	72.3	17028	0	53296	112	276.3	2
MTK-13-01	57	12	12	73.6	15692	0	53285	110.3	273.3	40.3
MTK-13-01	60	12	12	75.3	13097	0	50046	109.1	275.7	17.6
MTK-13-01	63	12	12	74.6	14398	0	52126	105.1	269.9	13.1
MTK-13-01	66	12	12	74.2	14932	0	52698	108.8	275	27.8
MTK-13-01	69	12	12	75.7	12879	0	50386	106.4	273.9	8.1
MTK-13-01	72	12	12	74	15242	0	53285	109.4	275.5	7.7
MTK-13-01	75	12	12	75.3	12722	0	48483	105.2	271.4	20.5
MTK-13-01	78	12	12	74.9	14374	0	53447	99.3	270.1	67.3
MTK-13-01	81	12	12	74.2	14275	0	50432	97	263	49.8
MTK-13-01	84	12	12	73.9	15258	0	52710	95.6	267.1	68.2
MTK-13-01	87	12	12	75.1	13877	0	52024	91.3	260.8	35.7
MTK-13-01	90	12	12	75.6	12933	0	50204	90.2	259.9	5
MTK-13-01	93	12	12	74.5	13679	0	49224	88.7	254.9	29.9
MTK-13-01	96	11	11	75.8	12722	0	50242	83.1	251.2	3.9
MTK-13-01	99	11	11	76.1	12342	0	49997	87.8	256.7	6.8
MTK-13-01	102	11	11	73.7	14623	0	49920	84.3	248.2	26.6
MTK-13-01	105	11	11	72.9	15262	0	49492	82.1	246.5	20.9
MTK-13-01	108	11	11	74.2	14237	0	50182	80.3	242.5	55.2
MTK-13-01	111	11	11	73.7	15881	0	54414	75.7	238.9	24.6
MTK-13-01	114	11	11	73.6	16052	0	54487	73.2	235.6	9.5
MTK-13-01	117	11	11	72.9	16564	0	53809	70.4	230.9	37
MTK-13-01	120	11	11	71.9	16917	0	51800	68.4	226.3	20.7
MTK-13-01	123	11	11	73.5	15130	0	51116	65	227.8	34.5
MTK-13-01	126	11	11	74.9	14993	0	55439	68	235.1	33.1

		PROPERTY: MTK	HOLE NUMBER MTK13_02						
Province:	Québec	DATE LOGGED: 5-6 March, 2013	Grid East: L1+00W	Method	Depth	Az	Dip		
Township	Lamack	LOGGED BY: Michel Leblanc	Grid North: St 3+25S	reflex	Collar	7.0	-50.0		
Started:	5/03/2013	DRILLED BY: Forage Rouillier	UTM East: 484878E	reflex	18	6.0	-49.5		
Completed:	6/03/2014	UNITS: Metres	UTM North: 5526721N	reflex	69	6.1	-48.6		
CORE SIZE:	NQ	CORE LOCATION: Chapais	ELEV : 349 m.						
			LENGTH: 126.0 m.						
PURPOSE:	Testing stro	ng EW I.P. anomaly							

Summary:

Collared about 250 metres SSW of MTK13_01 on UTM coordinate 484878E/5526721N, hole MTK13_02 was designed to test an EW oriented strong I.P. anomaly detected with variable intensity from east to west into the grid. To meet that objective, this hole was dipped at -50 and oriented at N007. From the collar up to 68.90 metres, DDH MTK13_02 intersected a chloritized and epidotized basaltic sequence composed by at least 3 different flows both starting with a massive, medium grained basal flow overlayered by a metric wide pillowed and/or brecciated flow top. From 49.15 to 63.40 m., the basaltic rock is interrupted by sedimentary rock unit varying from argilite to silstone down hole. Up to 58.8 metres, a moderate graphitic content associated with 1-2% of disseminated and bedding controlled Py seem to provided the explaination to the local I.P. anomaly tested. From 68.9 m. up to the end, this hole entered into a weakly altered and well preserved lapillis tuff sequence of apparent intermediate composition. These tuffaceous rocks presents many centimetric to decimetric size pumice clasts with vacuoles filled by chlorite and/or calcite material. Hole MTK13_02 was terminated at 126 metres into this lapillis tuff unit. No significant gold value returned from MTK13_02.

SUMMARY I	SUMMARY LOG MTK13_02		Access Highlighta				
From	То	Lithology		Assay nigh	ingin(s)		
0.00	4.00	CSG					· · · · · · · · · · · · · · · · · · ·
4.00	49.15	V3B					
49.15	58.80	S6G gp					
58.80	63.40	S6A	NSV				
63.40	68.90	V3B					
68.90	72.50	TX2					
72.50	126.00	TL2/TB2					
	126.00	E.O.H.					

Michel Leblanc, géo O.G.Q. n°613

DESCRIPTION (Hole no							MTK13_02)							
	Major Minor													
From (m)	To (m)	Litho code			Description	Sample Number	From	То	Lgt					
0.00	4.00	CSG			Overburden									
4.00	49.15	V3B			Basalt									
4.00	40.10				Baom									
					Ligth gray greenish, grain size varying fron aphanitic to fine grained. This unit is composed of 3 different									
					mafic flows characterized by a massive medium grained base overlayered by a fine grained to aphanitic,									
					pillow and slightly amygdulare flow top. All unit present a moderate pervasive chloritization and									
					epidotization with weak vein controlled calcite noted. The medium grained massive sections appears									
					with pseudo-gabbroic texture. Local moderate foliation intersected at 45-50 tca. Weakly magnetic rock.									
					usually with only trace to 1% of fracture and vein controlled Po. Up to 5% vein controlled Po locally									
					observed. Sharp lower ctc intersected at 45 tca.									
			4.00	5.50	Medium grained massive flow									
			5.50	10.30	Fine grained, pillowed flow. Flow top.	63610	8.00	9.00	1.0					
			10.30	25.90	Medium grained, massive flow with pseudo-gabbroic texture developed.									
			28.70	29.50	Moderately foliated section with 10% of cm size calcite veins transposed along foliation. 5% of Po associated.	63611	13.00	14.00	1.0					
			25.90	38.00	Fine grained, pillowed, locally amyodular, flow top.	63612	23.00	24.00	1.0					
			38.00	49.15	Medium grained, massive flow with pseudo-gabbroic texture developed.	63613	25.90	27.00	1.1					
						63614	28,70	29,50	0.8					
						63615	36.00	37.00	1.0					
						63616	42.00	43.00	1.0					
						63617	48.00	49.15	1.1					
								-						
49.15	58.80	S6G gp			Argilite/Graphitic argilite)	-								
					Gray-greenish to blackish gray, fine grained, laminated and bedded sedimentary rock of argilitic aspect.	63618	49.15	50.00	0.8					
					Base of unit becoming moderately graphitic in mm to cm wide beds. Affected by a moderate pervasive	63619	50.00	51.00	1.0					
					chloritization and sericitization. Moderately fractured with strong preferential fracturing along bedding	63620	51.00	51.70	0.7					
					developed at 65 tca. Weak fracture and vein controlled calcite. With presence of 1 to 4% of fracture and	00020	01.00	01.70	0.7					
					bedding controlled Py. Non magnetic rock. Sharp lower ctc intersected at 55 tca. Could explain the local									
					I.P anomaly.	00004	F4 70	50.45	<u> </u>					
					4	63621	51.70	52.15	0.4					
						03022	54.00	00.00	1.0					
			E4 70	Ed OF	Orealise OTM (information) at 45 fees OM/ of 45 its discount in the discount of the discount of the disc	63623	58.00	58.80	0.8					
			51.70	51.95	Smoky Q2 v intersected at 45 tca. 2% of thilly disseminated and fracture controlled Py.									
58.80	63.40	S6A			Silstone	63624	58.80	60.00	1.2					
						63625	60.00	61.00	1.0					
					Medium gray-greenish, fine grained, poorly bedded rock of apparent silstone composition. Affected by a	63626	61.00	62.00	1.0					
					moderate pervasive sericitization and chloritization controlled by a poorly developed bedding intersected	63627	62.00	62.75	0.7					
					at 60-65 tca Non magnetic rock with 3-5% of disseminated and fracture controlled Py. Sharp lower ctc	63628	62.75	63.40	0.6					
					intersected at 65 tca. The sulfide content could explain the local I.P. anomaly.									
63.40	68.90	V3B			Massive basalt									
								L	<u> </u>					
					Medium gray-greenish, fine to medium grained, massive aspect with poorly developed foliation at 60 tca.				<u> </u>					
			1		Moderately chloritized, slightly epidotized with weak-moderate vein controlled calcite. Very weak			1	1					

Major Minor rom (m) To (m) Litho code Description Sample Number From magnetism noted throughout unit. No significant mineralization associated. Sharp lower ctc intersected at 65 tca. — …					DESCRIPTION (Hole no	MTK13_(02)	
rom (m) To (m) Litho code Description Sample Number From magnetism noted throughout unit. No significant mineralization associated. Sharp lower ctc intersected at 65 tca. magnetism noted throughout unit. No significant mineralization associated. Sharp lower ctc intersected at 65 tca. magnetism noted throughout unit. No significant mineralization associated. Sharp lower ctc intersected at 65 tca. magnetism noted throughout unit. No significant mineralization associated. Sharp lower ctc intersected at 65 tca. magnetism noted throughout unit. No significant mineralization associated. Sharp lower ctc intersected at 63629 magnetism noted throughout unit. No significant mineralization associated. Sharp lower ctc intersected at 63629 magnetism noted throughout unit. No significant mineralization associated. Sharp lower ctc. magnetism noted throughout unit. No significant mineralization associated. Sharp lower ctc. magnetism noted throughout unit. No significant mineralization associated. Sharp lower ctc. magnetism noted throughout unit. No significant mineralization associated. Sharp lower ctc. magnetism noted throughout unit. No significant mineralization controlled Py. Non magnetic rock. Diffuse lower ctc. magnetiste to associated to a starp associated along a weak foliation developed at 60 tca. Centimetric to sub-angular clasts supported by a micro-clastic matrix. Many poecilitic lapillis filled by chloritic material are observed along this unit. Clasts are dominated by 63833 magnetist to associate and starp associated along this unit. Clasts are dominated by 63833 magnetiste tormagnetistic tormagnes		Major		Minor				
magnetism noted throughout unit. No significant mineralization associated. Sharp lower ctc intersected intersected at 65 tca. intermediate Crystal / Ash tuff 8.90 72.50 TX2 Intermediate Crystal / Ash tuff 63629 68.90 70.00 77.50 TX2 Intermediate Crystal / Ash tuff 63629 68.90 70.00 77.50 TX2 Intermediate Crystal / Ash tuff 63630 70.00 71 63629 68.90 77.50 TX2 Greenish gray, fine grained, foliated and poorly bedded sericitized unit of apparent intermediate 63631 70.00 71 disseminated, bedded and foliation controlled Py. Non magnetic rock. Diffuse lower ctc. 71 disseminated, bedded and foliation controlled Py. Non magnetic rock. Diffuse lower ctc. 72 Intermediate lapillis and bloc tuff 73 Medium green, strongly clastic tuffaceous unit of apparent intermediate-mafic composition. 74 Characterized by a strong componment in mm to 20 cm clasts slightly elongated along a weak foliation 75 developed at 60 tca. Centimetric to sub-angular clasts supported by a micro-clastic matrix. Many	From (m)	To (m)	Litho code		Description	Sample Number	From	То
8.90 72.50 TX2 Intermediate Crystal / Ash tuff 63629 68.90 70.00 70.00 Image: Second					magnetism noted throughout unit. No significant mineralization associated. Sharp lower ctc intersected at 65 tca.			-
8.90 72.50 TX2 Intermediate Crystal / Ash tuff 63629 68.90 7(.00) Image: Second Secon		-						
36329 68.90 77 36329 68.90 77 36329 68.90 77 36329 68.90 77 36329 68.90 77 36329 68.90 77 36329 68.90 77 36329 68.90 77 36329 63630 70.00 77 36329 63631 70.90 77 36329 disseminated, bedded and foliation controlled Py. Non magnetic rock. Diffuse lower ctc. 63631 70.90 71 36320 126.00 TL2/TB2 Intermediate lapillis and bloc tuff 36331 70 70 36330 71 10	68.90	72.50	TX2		Intermediate Crystal / Ash tuff			
Greenish gray, tine grained, foliated and poorly bedded sericitized unit of apparent intermediate 63630 70.00 70 composition. Moderately chloritized and sericitized, foliated and bedded at 65 tca. Presence of 2-4% of 63631 70.90 70 disseminated, bedded and foliation controlled Py. Non magnetic rock. Diffuse lower ctc. 63631 70.90 7 2.50 126.00 TL2/TB2 Intermediate lapillis and bloc tuff 1 1 2.50 126.00 TL2/TB2 Intermediate lapillis and bloc tuff 1 1 2.50 126.00 TL2/TB2 Intermediate lapillis and bloc tuff 1 1 2.50 126.00 TL2/TB2 Intermediate lapillis and bloc tuff 1 1 2.50 126.00 TL2/TB2 Intermediate lapillis and bloc tuff 1 1 2.50 126.00 TL2/TB2 Intermediate lapillis and bloc tuff 1 1 2.50 126.00 TL2/TB2 Intermediate lapillis and bloc tuff 1 1 2.50 126.00 Characterized by a strong componment in mm to 20 cm clasts slightly elongated along a weak foliation 1 1 2.50 126.10 characte						63629	68.90	70.0
composition. Moderately chloritized and sericitized, foliated and bedded at 65 tca. Presence of 2-4% of 63631 70.90 7 disseminated, bedded and foliation controlled Py. Non magnetic rock. Diffuse lower ctc. 63631 70.90 7 2.50 126.00 TL2/TB2 Intermediate lapillis and bloc tuff 6 6 6 6 2.50 126.00 TL2/TB2 Intermediate lapillis and bloc tuff 6					Greenish gray, the grained, foliated and poorly bedded sericitized unit of apparent intermediate	63630	70.00	70.9
2.50 126.00 TL2/TB2 Intermediate lapillis and bloc tuff					composition. Moderately chloritized and sericitized, foliated and bedded at 65 tca. Presence of 2-4% of disseminated, bedded and foliation controlled Py. Non magnetic rock. Diffuse lower ctc.	63631	70.90	/1.8
2.50 126.00 TL2/TB2 Intermediate lapillis and bloc tuff Intermediate lapillis and bloc tuff Image: Strength of the strengt of the strength of the strengt of the strength of the								
Image: Characterized by a strongly clastic tuffaceous unit of apparent intermediate-mafic composition. Image: Characterized by a strong componment in mm to 20 cm clasts slightly elongated along a weak foliation Image: Characterized by a strong componment in mm to 20 cm clasts slightly elongated along a weak foliation Image: Characterized by a strong componment in mm to 20 cm clasts slightly elongated along a weak foliation Image: Characterized by a strong componment in mm to 20 cm clasts slightly elongated along a weak foliation Image: Characterized by a strong componment in mm to 20 cm clasts supported by a micro-clastic matrix. Many Image: Characterized by clastic tuffaceous unit clasts are dominated by clastic care used foliation Image: Characterized clastic matrix in the clast are addesitic care used foliation Image: Characterized clastic tuffaceous unit clasts are dominated by clastic care used foliation Image: Characterized clastic matrix in the clastic matrix in the clastic care used foliation Image: Characterized clastic tuffaceous unit clasts are dominated by clastic care used foliation Image: Characterized clastic care used to the clastic care used foliation Image: Characterized clastic tuffaceous unit clastic care used to tuffaceous unit clastic	72.50	126.00	TL2/TB2		Intermediate lapillis and bloc tuff			
Medium green, strongly clastic tuffaceous unit of apparent intermediate-mafic composition. Medium green, strongly clastic tuffaceous unit of apparent intermediate-mafic composition. Characterized by a strong componment in mm to 20 cm clasts slightly elongated along a weak foliation developed at 60 tca. Centimetric to sub-angular clasts supported by a micro-clastic matrix. Many poecilitic lapillis filled by chloritic material are observed along this unit. Clasts are dominated by 63632 78.00 79 78.00 79 intermediate to mafic composition most are andesitic some are trachytic or even felsic locally. Propty 63833 87.00 88 87.00 88								
Characterized by a strong componment in mm to 20 cm clasts slightly elongated along a weak foliation developed at 60 tca. Centimetric to sub-angular clasts supported by a micro-clastic matrix. Many poecilitic lapillis filled by chloritic material are observed along this unit. Clasts are dominated by <u>63632 78.00 79 intermediate to matic composition most are andesitic some are trachytic or even faisic locally Pondry 63333 87.00 88 </u>					Medium green, strongly clastic tuffaceous unit of apparent intermediate-mafic composition.			
developed at 60 tca. Centimetric to sub-angular clasts supported by a micro-clastic matrix. Many poecilitic lapillis filled by chloritic material are observed along this unit. Clasts are dominated by 63632 78.00 75 intermediate to matic composition most are and sitic some are trachidic or even faisi locally 63833 87.00 88					Characterized by a strong componment in mm to 20 cm clasts slightly elongated along a weak foliation			
poecilitic lapillis filled by chloritic material are observed along this unit. Clasts are dominated by 63632 78.00 75 intermediate to matic composition most are andesitic some are trachytic ore even felsic locally. Poorly 63633 87.00 88					developed at 60 tca. Centimetric to sub-angular clasts supported by a micro-clastic matrix. Many	-		
I I I I I I I I I I I I I I I I I I I					poecilitic lapillis tilled by chloritic material are observed along this unit. Clasts are dominated by	63632	78.00	79.0
methodate to many composition, most are andeand, some are trade to daily, i out y out of the out of the source of					Intermediate to matic composition, most are andesitic, some are trachytic ore even felsic locally. Poorly	63633	87.00	88.0

	Major	1.00	M	Minor				
(m)	(m)	code			Sample description	Au g/t	Ag g/t	Cu pp
0.00	4.00							
0.00	4.00	V2D						
4.00	49.15	V3B						
								<u> </u>
			4.00	5.50				
			5.50	10.30	V3B Cl20, 1% Py	-0.005		
			28.70	29.50	V3B Mas, Tr. Py	-0.005		
			25.00	28.00	V/2R Mos Tr Dy	-0.005		
			38.00	49.15	V3B Kl, Cb, 1% Py	-0.005		
					V3B CI, Ep, 5% cc vn, 5% Po	-0.005		
					V3B Mas, mg, Cl, Ep, cc10, Tr. Py	-0.005		
					V3B Mas, mg, Cl, Ep, cc10, Tr. Py, Low ctc.	-0.005		
49.15	58.80	S6G gp						
-					S6G Sr, Cl, Cb, 1% Py	-0.005		
					S6G Sr, Cl, Cb, 2% Py	0.009		
					S6G gp, Sr, Cb, 2% Py	0.01		
					S6G CI, Sr, Si+smoky Qzv, 2% Py	-0.005		
					S6G gp, Cb, 1% Py	0.005		
			51.70	51.95	<u>566 gp</u> , 55, 47, 19, 26% 66.	0.007		
50 90	62.40	864	-		S6A CL Sr 4% Dr	0.01		
00.00	63.40	50A			S6A CI, S1, 4% Py S6A CI, Sr, 4% Py	-0.005		
					S6A CI, Sr, 4% Py	0.007		
					S6A CI, Sr, 1% Py S6A CI, Sr, 1% Py, Low ctc	-0.005		
—								

	Major		Minor				
From (m)	To (m)	Litho code		Sample description	Au g/t	Ag g/t	Cu pp
68.90	72.50	TX2					
				S6A Sr, Cl, 3% Py	0.016		
				S6A Sr, CI, 3% Py	0.048		
				S6A Sr, Cl, 3% Py, Low ctc.	0.01		
72.50	126.00	TL2/TB2					
				TL2, CI, tr. Py	0.008		
				TL2, Cl, tr. Py	-0.005		
				TL2, Cl, Cb, 1% Py	-0.005		

VO13053589 - Finalized CLIENT : FANCAM - Fancamp Exploration Ltée # of SAMPLES : 151 DATE RECEIVED : 2013-03-21 PROJECT : MTK CERTIFICATE COMMENTS : 94399 EXTRA SAMPLE PO NUMBER :

	Au-AA23
SAMPLE	Au
DESCRIPTION	ppm
63610	-0.005
63611	-0.005
63612	-0.005
63613	-0.005
63614	-0.005
63615	-0.005
63616	-0.005
63617	-0.005
63618	-0.005
63619	0.009
63620	0.01
63621	-0.005
63622	0.005
63623	0.007
63624	0.01
63625	-0.005
63626	0.007
63627	0.005
63628	-0.005
63629	0.016
63630	0.048
63631	0.01
63632	0.008
94393	-0.005
63633	-0.005
63634	-0.005
63635	-0.005
63636	-0.005
63637	-0.005

		2.1.7					-	2			<u></u>
Survey	Station	Azimuth	Dip	Mag.Str.	Gravity	East	North	Elevation	LocalA	LocalB	LocalC
Name	Metres	Degrees	Degrees	nT	G	Metres	Metres	Metres	Metres	Metres	Metres
MTK-13-02	9	19.4	-49.7	60099	0.99946	1.11	5.68	-6.89	5.78	-0.18	-0.01
MTK-13-02	12	21.4	-49.7	57039	0.99939	1.78	7.49	-9.18	7.7	0.08	-0.01
MTK-13-02	15	21.8	-49.6	56314	0.99964	2.5	9.3	-11.46	9.62	0.38	-0.01
MTK-13-02	18	22	-49.5	56068	0.99994	3.22	11.11	-13.74	11.54	0.69	-0.01
MTK-13-02	21	20.3	-48.8	55832	0.98668	3.93	12.94	-16.01	13.49	0.97	0.01
MTK-13-02	24	22.1	-49.4	55782	1.0005	4.64	14.77	-18.28	15.43	1.26	0.04
MTK-13-02	27	22.4	-49.3	55773	0.99966	5.38	16.58	-20.56	17.36	1.58	0.05
MTK-13-02	30	20.4	-49.2	56094	1.00072	6.1	18.4	-22.83	19.29	1.87	0.07
MTK-13-02	33	21.5	-49.1	55969	1.00069	6.8	20.23	-25.1	21.24	2.15	0.1
MTK-13-02	36	22.4	-48.8	55811	0.998	7.54	22.06	-27.36	23.18	2.47	0.13
MTK-13-02	39	21.9	-49	55702	0.99924	8.28	23.89	-29.62	25.13	2.79	0.16
MTK-13-02	42	24.8	-51.2	55709	1.04897	9.04	25.65	-31.92	27.02	3.14	0.13
MTK-13-02	45	22.1	-48.9	55728	0.99978	9.81	27.42	-34.22	28.91	3.5	0.09
MTK-13-02	48	21.9	-48.9	55705	0.99989	10.55	29.25	-36.49	30.86	3.81	0.13
MTK-13-02	51	21.8	-48.9	55668	0.99986	11.28	31.08	-38.75	32.8	4.12	0.16
MTK-13-02	54	21.7	-48.8	55695	0.99961	12.01	32.91	-41	34.75	4.43	0.2
MTK-13-02	57	20.1	-48.2	55692	1.00407	12.72	34.77	-43.25	36.72	4.71	0.27
MTK-13-02	60	21.3	-48.7	55670	0.99958	13.43	36.63	-45.49	38.69	4.99	0.33
MTK-13-02	63	20.9	-48	55664	0.98356	14.15	38.49	-47.74	40.67	5.27	0.4
MTK-13-02	66	21.5	-48.6	55677	0.99975	14.87	40.35	-49.98	42.64	5.57	0.47
MTK-13-02	69	18.4	-44.2	55654	0.91694	15.57	42.3	-52.15	44.69	5.82	0.64
MTK-13-02	72	21.5	-48.5	55657	0.99933	16.27	44.24	-54.32	46.75	6.08	0.81
MTK-13-02	75	20.9	-47.8	55675	0.98824	17	46.11	-56.55	48.73	6.37	0.89
MTK-13-02	78	21.5	-48.4	55660	0.99946	17.72	47.98	-58.78	50.71	6.66	0.97
MTK-13-02	81	22.2	-47.9	55663	0.99821	18.47	49.84	-61.02	52.69	6.98	1.05
MTK-13-02	84	21.5	-48.2	55672	0.99926	19.22	51.7	-63.25	54.67	7.3	1.13
MTK-13-02	87	21.5	-48.3	55654	0.99875	19.95	53.56	-65.49	56.64	7.6	1.2
MTK-13-02	90	21.5	-48.2	55679	0.99923	20.68	55.42	-67.73	58.62	7.9	1.27
MTK-13-02	93	21.4	-48.1	55668	0.99927	21.41	57.28	-69.96	60.6	8.2	1.34
MTK-13-02	96	21.6	-48.1	55663	0.99944	22.14	59.14	-72.19	62.58	8.5	1.42
MTK-13-02	99	21.4	-48.1	55653	0.99928	22.88	61.01	-74.43	64.56	8.81	1.5
MTK-13-02	102	21.6	-48.1	55662	0.99963	23.61	62.87	-76.66	66.54	9.11	1.58
MTK-13-02	105	21.4	-48	55631	0.99965	24.35	64.74	-78.89	68.52	9.41	1.66
MTK-13-02	108	18.8	-45.8	55623	0.9574	25.05	66.66	-81.08	70.55	9.67	1.8
MTK-13-02	111	21.5	-48	55613	0.99892	25.76	68.59	-83.27	72.59	9.93	1.95
MTK-13-02	114	21.5	-47.9	55611	0.9993	26.49	70.46	-85.5	74.57	10.24	2.04
MTK-13-02	117	21.4	-47.9	55425	0.99908	27.23	72.33	-87.73	76.56	10.54	2.12
MTK-13-02	120	56.5	-59.7	55609	1.32851	28.24	73.7	-90.17	78.12	11.22	1.75
MTK-13-02	123	21.1	-47.9	55582	0.99954	29.24	75.07	-92.61	79.69	11.9	1.37
MTK-13-02	126	21.2	-47.9	55617	0.99912	29.97	76.95	-94.84	81.68	12.19	1.46

Survey	Station	Tool°	Trax°	Mag.Dip	Mag.X	Mag.Y	Mag.Z	Roll Angle	Mag.T/face	DLS
Name	Metres	°C	°C	Degrees	nT	nT	nT	Degrees	Degrees	deg./30m
MTK-13-02	9	15	15	73.1	17460	0	57506	16	182.8	97.4
MTK-13-02	12	16	16	73.1	16570	0	54579	7.4	173	13.2
MTK-13-02	15	16	16	73	16497	0	53844	10.4	175.6	2.4
MTK-13-02	18	16	16	72.8	16536	0	53574	5.8	170.8	1.8
MTK-13-02	21	16	16	72.7	16642	0	53294	5.5	171.6	13
MTK-13-02	24	16	16	72.9	16439	0	53304	8.4	173.4	13
MTK-13-02	27	16	16	72.9	16389	0	53310	9.9	174.8	2.8
MTK-13-02	30	16	16	74	15435	0	53928	10.4	177.9	13.2
MTK-13-02	33	16	16	72.8	16595	0	53452	10.6	176	7
MTK-13-02	36	17	17	72.3	16931	0	53181	12.7	177.2	6.8
MTK-13-02	39	17	17	72.8	16455	0	53216	10.7	176	3.9
MTK-13-02	42	17	17	74.9	14490	0	53791	11.3	176.8	29
MTK-13-02	45	17	17	72.8	16477	0	53237	13	178.2	28.8
MTK-13-02	48	17	17	72.8	16436	0	53225	13.9	179.2	0.9
MTK-13-02	51	17	17	72.8	16459	0	53179	16.7	182.1	1.1
MTK-13-02	54	18	18	72.8	16500	0	53194	12.1	177.5	1
MTK-13-02	57	18	18	72.6	16644	0	53147	10.8	177.3	12.6
MTK-13-02	60	18	18	72.9	16361	0	53211	11.1	177	10.1
MTK-13-02	63	18	18	72.2	17046	0	52990	13.3	178.9	8.3
MTK-13-02	66	18	18	72.9	16415	0	53202	11.7	177.5	7.4
MTK-13-02	69	18	18	68.6	20322	0	51811	11.3	176.1	48.5
MTK-13-02	72	18	18	72.9	16409	0	53183	3.7	169.5	47.7
MTK-13-02	75	18	18	72.2	17016	0	53011	4	169.7	8.4
MTK-13-02	78	18	18	72.9	16391	0	53192	4.8	170.7	7
MTK-13-02	81	19	19	72.2	16991	0	53006	5.7	170.6	6.8
MTK-13-02	84	19	19	72.8	16421	0	53195	2.5	168.5	6.3
MTK-13-02	87	19	19	72.9	16337	0	53202	4	170	0.6
MTK-13-02	90	19	19	72.8	16427	0	53200	359.2	165.2	1.4
MTK-13-02	93	19	19	72.8	16428	0	53189	352.4	158.4	0.5
MTK-13-02	96	19	19	72.9	16406	0	53190	343.3	149.3	0.9
MTK-13-02	99	19	19	72.9	16382	0	53187	345.3	151.4	1.4
MTK-13-02	102	19	19	72.9	16394	0	53193	343.5	149.5	1.3
MTK-13-02	105	19	19	72.8	16413	0	53154	29	195	1
MTK-13-02	108	19	19	70.8	18310	0	52523	33.2	199.5	29
MTK-13-02	111	19	19	72.9	16392	0	53142	37.6	203.7	28.7
MTK-13-02	114	19	19	72.9	16396	0	53140	37.7	203.8	0.6
MTK-13-02	117	19	19	73.3	15891	0	53098	43.8	210.5	0.6
MTK-13-02	120	20	20	82.6	7150	0	55148	47.5	213.8	234.1
MTK-13-02	123	20	20	73.1	16203	0	53168	45.9	212.5	236.3
MTK-13-02	126	20	20	73	16263	0	53186	45.9	212.4	1.1

		PROPERTY: MTK	HOLE NUMBER MTK13_03						
Province:	Québec	DATE LOGGED: 5-6 March, 2013	Grid East: L5+00W	Method	Depth	Az	Dip		
Township	Lamack	LOGGED BY: Michel Leblanc	Grid North:	reflex	Collar	7.0	-50.0		
Started:	5/03/2013	DRILLED BY: Forage Rouillier	UTM East: 484532E	reflex	72	5.7	-48.9		
Completed:	6/03/2014	UNITS: Metres	UTM North: 5527078N						
CORE SIZE:	NQ	CORE LOCATION: Chapais	ELEV : 348 m.						
			LENGTH: 135 m.						
PURPOSE: Testing a moderate I.P. anomaly located 300 metres east of MTK showing.									

Summary:

Collared on UTM (NAD 83) 484532E/5527078N, this hole was designed to explain a moderate I.P. anomaly suspected as possible western extension of the mineralization observed 500 metres east into previous MTK13_01. For that purposed, this hole was dipped at -50 degres and oriented at N007. From the collar up to the end, MTK13_03 pass through a gabbroic sequence varying from mesocrate to melanocrate composition with local leucoxenitic content associated. From start up to 103.30 metres the gabbro are chracterized by presence of 3 to 5% of disseminated Mt giving a perper like texture to the host rock. From 103 to 130 metres, 3 to 7% of coarse Py in dissemination could explain the local moderate I.P. This hole was ended at 135 metres into a melanocrate gabbro. Only one anomalous gold value of 241 ppb was intersected between 30.0 and 31.0 metres into a strongly magnetic mesogabbro containing 4% disseminated Py and 1% Py.

SUMMARY L	_OG	MTK13_03	Assay Highligth(s)							
From	То	Lithology								
0.00	4.00	CSG								
4.00	68.75	13G		30.0	31.0	241 ppb	over	1.0 m.		
68.75	75.00	I3G Lx								
75.00	103.30	13G								
103.30	135.00	I3G mela								
	135.00	E.O.H.								

Michel Leblanc, géo O.G.Q. n°613

Major Minor			M	linor							
From	To	Litho			Description	Sample	From	То	Lgth		
(m)	(m)	code				Number					
0.00	4.00	CSG			Overburden		-				
4.00	68 75	13G			Mesonabhro						
4.00	00.75	130									
_					Dark greenish gray, medium to coarse grained, massive to slightly foliated mafic gabbroic rock	63638	11.00	12.00	1.00		
					characterized by a moderate chloritization overprinted by a weak-moderate pervasive and vein	63639	21.00	22.00	1.00		
					controlled calcite. All unit presents a very strong magnetism level with presence of 3 to 5% of	63640	30.00	31.00	1.00		
					disseminated Mt evenly distributed along unit intervale. Homogenous unit, Mostly massive with local weak foliation noted at 40.45 toa. Becoming slightly epidetized toward the base of unit. Trace to 1% of	63641	42.00	43.00	1.00		
					coarse Py observed throughout unit in local dissemination, vein and fracture controlled. Weak moderate	63642	50.00	51.00	1.00		
					calcite vein content. Local cm wide qzv. Diffuse lower ctc defined by appearance of coarse white	63643	60.00	61.00	1.00		
			<u> </u>		leucoxene.	03044 63645	72.00	73.00	1.00		
						63646	73.00	74.00	1.00		
68.75	75.00	I3G Lx			Leucoxenitic gabbro	63647	74.00	75.00	1.00		
						63648	75.00	76.00	1.00		
					Dark gray greenish, fine grained, chloritized mafic rock characterized by moderate leucoxenitic content.	63649	80.00	81.00	1.00		
					Moderately chloritized, variably magnetic rock. Melanocrate aspect. Trace to 1% of disseminated Py	63650	81.00	82.00	1.00		
	associated. Diffuse lower ctc.	63651	92.20	93.00	0.80						
						63652	98.00	99.00	1.00		
75.00	103 30	13G			Mesogahbro	63654	103.30	104.00	1.00		
. 0.00	103.30	130				63655	105.00	106.00	1.00		
					Similar as previous 4.0 to 68.75 m. Dark greenish gray, massive to slightly foliated gabbro. Moderate	63656	106.00	106.90	0.90		
				pervasive chloritization with weak pervasive and vein controlled calcite noted. Very strong magnetism	63657	106.90	107.25	0.35			
			le	level noted throughout unit with 3-4% of thinly disseminated Mt noted throughout unit intervale. Local cm	63658	107.25	108.00	0.75			
					wide QZV with mineralized margins intersected. Small gougy fault noted. Trace to 2% of disseminate	63659	108.00	109.00	1.00		
					Py concentrated along local cm wide QZV margins. Diffuse lower ctc.	63660	109.00	110.00	1.00		
						63661	110.00	111.00	1.00		
						63662	111.00	112.00	1.00		
			80.00	80.30	With 2 cm wide OZV intersected at 45 toa 5% diss. Pv along their margins	63664	113.00	114.00	1.00		
			90.10	90.20	Gougy fault intersected at 70 tca. 1% diss. Py into chloritized gouge.	63665	114.00	115.00	1.00		
						63666	115.00	116.00	1.00		
103.30	135.00	I3G mela			Melanocrate gabbro	63667	116.00	117.00	1.00		
						63668	117.00	118.00	1.00		
					Dark greenish gray, medium grained, massive to foliated gabbroic rock of melanocrate aspect. Affected	63669	118.00	119.00	1.00		
					by a strong pervasive chloritization with weak-moderate vein controlled calcite. Local weak foliation	63670	119.00	120.00	1.00		
					developed at 45-50 tca. Weak pervasive and vein controlled hematization with possible weak	63671	120.00	121.00	1.00		
					silicitication associated. Strong pyritic content varying along unit from 3 to 7% Py in coarse	63672	121.00	122.00	1.00		
					Mineralization is continuous from 103.30 to 119.0 metres along hole and become discontinuous and less	63673	122.00	123.00	1.00		
					abundant toward the end of hole. There is an inverse correlation observed between Pv and magnetism	63674	123.00	123.70	0.70		
					level throughout unit. Lower ctc not reached.	63675	123.70	124.60	0.90		
				63676	124.60	125.60	1.00				
			440.50	Other and the excitent mention from 0 to 70/ mention in the interval of the first state in the interval	63677	125.60	126.30	0.70			
			103.30	119.50	Strong pyritic content varying from 3 to 7% mostly in coarse dissemination, fractures and calcite veins.	63678	126.30	127.00	0.70		
			400.00	407.05	Appaining todar t.r., anothery.	63679	127.00	128.00	1.00		
			106.90	107.25	Area injected by 25-30% of Qz-calcite vein with 5% Py associated.	63680	128.00	128.70	0.70		
			125.60	130.10	4-5% of coarse sub-euhedral. Pv disseminated over that intervalle	63682	129.30	130.10	0.80		
			130.10	135.00	gradationnalt decrease of Py content from 3% to trace in coarse euhedral form.	63683	130.10	131.00	0.90		
						63684	131.00	132.00	1.00		
								-			

			-					
	Major		M	inor				
From (m)	To (m)	Litho code			Sample description	Au g/t	Ag g/t	Cu pp
0.00	4.00	CSG			-			
		-	-					
4.00	68.75	I3G						<u> </u>
					100 01 49/ Dr. 49/ MA			<u> </u>
					13G CI, 1% Py, 4% Mt	-0.005		
					13G CI, 1% Py, 4% Mt	-0.005		
					I3G CI, 1% Py, 4% Mt	0.241		
					100 01, 1% Pr. 4% Mt	0.012		<u> </u>
					13G CI, 1% Py, 4% Mt	-0.005	<u> </u>	
					13G Ly Cl30 Cb5 2% Py	-0.003		
					13G Lx, Cl40. Cb5. 1% Pv	-0.005		
					I3G Lx, Cl40, Cb5, 1% Py	0.008		
68.75	75.00	I3G Lx			I3G Lx, CI40, Cb5, 2% Py	0.007		İ
					13G, CI40, 2% Py	0.007		1
					I3G, CI40, 3% Py, 5% Qzv	0.006		
					I3G CI30, Cb10, 1% Py	-0.005		
					I3G CI30, Cb10, 5% Py	0.016		
					I3G CI40, 2% Py	0.005		
					I3G melano, 5% Py	-0.005		
75.00	103.30	I3G			I3G melano, 5% Py, 5% Qzv	0.008		
					I3G melano, 5% Py, 5% Qzv	0.009		
_				J	I3G melano, 5% Py	-0.005		
					I3G melano, 6% Py, 25% Qzv	0.008		
					I3G CI40, Cb10, Hm5, 5% Py	0.006		
				1	I3G CI40, Cb10, Hm5, 5% Py	0.005		
					I3G CI40, Cb10, Hm5, 5% Py	-0.005		<u> </u>
					I3G Cl40, Cb10, Hm10, 5% Py	-0.005		
					13G CI40, Cb10, Hm10, 7% Py	-0.005	<u> </u>	
			80.00	80.20	13G CI40, CD10, Hm10, 4% Py	-0.005		
			90.00	90.20	13G CI40, Cb10, Hinto, 5% Py, 5% Qzv	-0.005		
			00.10	00.20	13G Cl40, Cb10, Hm5, 7% Pv	0.005		
103 30	135.00	I3G male			13G CI40, Cb10, Hm5, 5% Pv	-0.005	-	-
103.30	133.00	150 meia			130 0140, 0510, 11113, 370 T y	0.005		
					130 CH40, Cb10, FIII0, 4% Fy	-0.005		
					13G CI40, CDTU, Hm5, 3% Py, fract.	-0.005		
					I3G CI40, 1% Py	-0.005		
					13G CI40, 3% Py	-0.005		-
					13G CI40, 3% Py	-0.005		
					13G CI40, 2% Py	0.005		
					13G mela, Cl40, 1% Py	-0.005		
					13G mela, Cl40, 4% Py	-0.005		
					13G mela, Cl40, tr. Py	-0.005		
			102.20	110.50	13G mela, Cl40, 5% Py	-0.005	<u> </u>	<u> </u>
			103.30	119.50	13G mela, 0140, 5% Py	-0.005		
			100.05	107.05	13G mela, CI40, 4% Py	-0.005		<u> </u>
			106.90	107.25	I3G mela, Cl40, 3% Py	-0.005		<u> </u>
			119.50	123.70	13G mela, Cl40, 1% Py	-0.005		
			120.00	130.10	100 Lx, 0140, 7% Py	0.009		<u> </u>
			130.10	135.00	13G LX, 0140, Hm10, 3% Py	-0.005		
			L		13G LX, U140, HM10, 3% PY	-0.005	L	L

VO13053589 - Finalized CLIENT : FANCAM - Fancamp Exploration Ltée # of SAMPLES : 151 DATE RECEIVED : 2013-03-21 PROJECT : MTK CERTIFICATE COMMENTS : 94399 EXTRA SAMPLE PO NUMBER :

	Au-AA23					
SAMPLE	Au					
DESCRIPTION	ppm					
63638	-0.005					
63639	-0.005					
63640	0.241					
63641	0.012					
63642	-0.005					
63643	-0.005					
63644	0.007					
63645	-0.005					
63646	0.008					
63647	0.007					
63648	0.007					
63649	0.006					
63650	-0.005					
63651	0.016					
63652	0.005					
63653	-0.005					
63654	0.008					
63655	0.009					
94394	0.588					
63656	-0.005					
63657	0.008					
63658	0.006					
63659	0.005					
63660	-0.005					
63661	-0.005					
63662	-0.005					
63663	-0.005					
63664	-0.005					
63665	-0.005					
63666	-0.005					
63667	0.005					
63668	-0.005					
63669	-0.005					
63670	-0.005					
63671	-0.005					
63672	-0.005					
63673	0.005					
63674	-0.005					
63675	-0.005					
63676	-0.005					
63677	-0.005					
63678	-0.005					
94395						
	Au-AA23					
-------------	---------					
SAMPLE	Au					
DESCRIPTION	ppm					
63679	-0.005					
63680	-0.005					
63681	-0.005					
63682	0.009					
63683	-0.005					
63684	-0.005					
63685	-0.005					

Survey name	Station	Azimuth	Dip	Mag.Str.	Gravity	East	North
*	Metres	Degrees	Degrees	nT	G	Metres	Metres
MTK-13-03	3	25.2	-49	53950	0.999956	0	0
MTK-13-03	6	25.2	-49	53907	1.000066	0.84	1.78
MTK-13-03	9	24.2	-49	54200	1.000787	1.66	3.57
MTK-13-03	12	25	-49	54165	1.000183	2.48	5.36
MTK-13-03	15	27.6	-49	53231	1.000447	3.35	7.12
MTK-13-03	18	20.1	-49	54292	1.000339	4.15	8.92
MTK-13-03	21	19.6	-49	53108	1.000482	4.82	10.77
MTK-13-03	24	20.1	-49	53324	1.000516	5.49	12.62
MTK-13-03	27	18.5	-49	54539	1.001019	6.14	14.48
MTK-13-03	30	17.1	-49	53417	1.000338	6.74	16.35
MTK-13-03	33	19.3	-49	52860	1.000256	7.35	18.22
MTK-13-03	36	21.4	-49	53106	0.99994	8.04	20.06
MTK-13-03	39	18.2	-49	53876	1.000905	8.7	21.91
MTK-13-03	42	15.4	-49	53645	1.000381	9.27	23.8
MTK-13-03	45	13.7	-48.9	54069	1.000266	9.77	25.7
MTK-13-03	48	16.4	-48.9	52528	1.00033	10.28	27.61
MTK-13-03	51	22.7	-48.9	53340	1.000616	10.94	29.46
MTK-13-03	54	22.7	-48.9	53049	1.000312	11.7	31.28
MTK-13-03	57	20.3	-48.9	54727	1.000699	12.42	33.11
MTK-13-03	60	20.8	-49	53916	1.000558	13.11	34.96
MTK-13-03	63	21.6	-49	54052	1.000288	13.82	36.79
MTK-13-03	66	24.6	-48.9	54935	1.000545	14.6	38.6
MTK-13-03	69	14.1	-48.9	55689	1.000205	15.25	40.46
MTK-13-03	72	17.7	-48.8	56378	0.999981	15.79	42.35
MTK-13-03	75	25.6	-48.8	52610	1.000432	16.52	44.19
MTK-13-03	78	27.6	-48.8	52887	1.000549	17.4	45.95
MTK-13-03	81	22.1	-48.8	52108	1.000613	18.23	47.75
MTK-13-03	84	17.5	-48.7	55746	1.000756	18.9	49.61
MTK-13-03	87	20.7	-48.6	53496	1.000639	19.55	51.48
MTK-13-03	90	23.6	-48.6	57886	1.00064	20.3	53.32
MTK-13-03	93	27.2	-48.5	55096	1.000462	21.15	55.11
MTK-13-03	96	21.9	-48.5	53112	1.000454	21.98	56.92
MTK-13-03	99	25.3	-48.4	51029	1.000539	22.77	58.74
MTK-13-03	102	23	-48.4	53074	1.000269	23.59	60.56
MTK-13-03	105	27.9	-48.4	53321	1.000308	24.44	62.35
MTK-13-03	108	25	-48.4	55827	1.000585	25.33	64.14
MTK-13-03	111	24.1	-48.4	55331	1.000275	26.16	65.95
MTK-13-03	114	25.1	-48.4	54902	1.00032	26.98	67.76
MTK-13-03	117	24.1	-48.4	54947	0.999897	27.81	69.57
MTK-13-03	120	24.8	-48.4	54818	1.000345	28.64	71.38
MTK-13-03	123	26.5	-48.5	54666	0.999027	29.5	73.18
MTK-13-03	126	27.9	-48.4	54887	1.000156	30.41	74.94
MTK-13-03	129	27.9	-48.4	54893	1.00072	31.34	76.7
MTK-13-03	132	25.4	-48.4	55889	1.000239	32.23	78.48
MTK-13-03	135	25.2	-48.4	55115	1.000265	33.08	80.28

Survey name	Station	Elevation	LocalA	LocalB	LocalC	Tool°	Trax°
*	Metres	Metres	Metres	Metres	Metres	Centigrade	Centigrade
MTK-13-03	3	0	0	0	0	9	9
MTK-13-03	6	-2.26	1.97	0	0	9	9
MTK-13-03	9	-4.53	3.94	-0.02	0	9	9
MTK-13-03	12	-6.79	5.9	-0.04	0	9	9
MTK-13-03	15	-9.06	7.87	0	0	9	9
MTK-13-03	18	-11.32	9.83	-0.05	0	9	9
MTK-13-03	21	-13.59	11.79	-0.24	-0.01	9	9
MTK-13-03	24	-15.85	13.75	-0.42	-0.02	9	9
MTK-13-03	27	-18.12	15.71	-0.63	-0.02	9	9
MTK-13-03	30	-20.38	17.66	-0.88	-0.04	9	9
MTK-13-03	33	-22.65	19.61	-1.12	-0.05	9	9
MTK-13-03	36	-24.91	21.57	-1.29	-0.05	9	9
MTK-13-03	39	-27.18	23.53	-1.48	-0.06	9	9
MTK-13-03	42	-29.44	25.48	-1.77	-0.08	9	9
MTK-13-03	45	-31.7	27.41	-2.13	-0.1	9	9
MTK-13-03	48	-33.97	29.35	-2.48	-0.12	9	9
MTK-13-03	51	-36.23	31.31	-2.67	-0.13	9	9
MTK-13-03	54	-38.49	33.28	-2.76	-0.12	9	9
MTK-13-03	57	-40.75	35.25	-2.89	-0.12	9	9
MTK-13-03	60	-43.02	37.21	-3.05	-0.13	9	9
MTK-13-03	63	-45.28	39.17	-3.19	-0.13	9	9
MTK-13-03	66	-47.54	41.14	-3.26	-0.13	9	9
MTK-13-03	69	-49.81	43.09	-3.47	-0.14	9	9
MTK-13-03	72	-52.07	45.04	-3.79	-0.15	9	9
MTK-13-03	75	-54.33	47.01	-3.91	-0.15	10	10
MTK-13-03	78	-56.58	48.99	-3.86	-0.14	10	10
MTK-13-03	81	-58.84	50.96	-3.88	-0.13	10	10
MTK-13-03	84	-61.09	52.93	-4.06	-0.12	10	10
MTK-13-03	87	-63.35	54.9	-4.28	-0.11	10	10
MTK-13-03	90	-65.6	56.88	-4.38	-0.09	10	10
MTK-13-03	93	-67.85	58.87	-4.38	-0.07	10	10
MTK-13-03	96	-70.09	60.85	-4.4	-0.04	10	10
MTK-13-03	99	-72.34	62.84	-4.46	-0.01	10	10
MTK-13-03	102	-74.58	64.83	-4.5	0.02	11	11
MTK-13-03	105	-76.83	66.82	-4.49	0.05	11	11
MTK-13-03	108	-79.07	68.81	-4.45	0.08	11	11
MTK-13-03	111	-81.31	70.8	-4.48	0.11	11	11
MTK-13-03	114	-83.56	72.8	-4.5	0.14	11	11
MTK-13-03	117	-85.8	74.79	-4.52	0.18	12	12
MTK-13-03	120	-88.05	76.78	-4.55	0.21	12	12
MTK-13-03	123	-90.29	78.77	-4.54	0.23	12	12
MTK-13-03	126	-92.54	80.75	-4.47	0.26	13	13
MTK-13-03	129	-94.78	82.74	-4.38	0.29	13	13
MTK-13-03	132	-97.03	84.73	-4.33	0.32	13	13
MTK-13-03	135	-99 27	86 73	-4 32	0.35	13	13

Survey name	Station	Mag.Dip	Mag.X	Maq.Y	Mag.Z	Roll Angle	Mag.T/face	DLS
*	Metres	Degrees	nT	nT	nT	Degrees	Degrees	dea./30m
MTK-13-03	3	74.6	14310	0	52017	19.6	185.6	0
MTK-13-03	6	74.6	14318	0	51970	19.6	185.6	0.3
MTK-13-03	9	74.8	14244	0	52295	19.9	186.5	6.8
MTK-13-03	12	74.7	14248	0	52257	18.9	185.1	5.6
MTK-13-03	15	74.6	14139	0	51319	19.5	184.3	16.8
MTK-13-03	18	74.8	14222	0	52397	20.7	189.3	49.2
MTK-13-03	21	74.8	13945	0	51245	22.2	191	3
MTK-13-03	24	73.4	15219	0	51106	22.3	189.3	3.2
MTK-13-03	27	74.2	14894	0	52466	25.7	194.4	10.9
MTK-13-03	30	75.4	13501	0	51683	25	195.7	8.9
MTK-13-03	33	74.3	14266	0	50899	26.7	195.2	14.2
MTK-13-03	36	75.3	13473	0	51369	27.3	195.8	14.2
MTK-13-03	39	74	14819	0	51798	27.5	196.2	21.1
MTK-13-03	42	73	15714	0	51291	29.8	199.2	18.8
MTK-13-03	45	72.3	16450	0	51506	29.7	199.5	10.8
MTK-13-03	48	74	14472	0	50495	28.1	197.9	17.7
MTK-13-03	51	74.9	13858	0	51508	28	195.6	41.2
MTK-13-03	54	74.4	14244	0	51101	28.8	195.7	0.3
MTK-13-03	57	76.5	12761	0	53219	29.6	199.9	15.6
MTK-13-03	60	74.8	14140	0	52029	29.8	198	3.7
MTK-13-03	63	73.9	14947	0	51944	26.6	193.4	5.1
MTK-13-03	66	73.5	15609	0	52671	26.7	191.4	19.9
MTK-13-03	69	71.7	17493	0	52870	27.2	196.2	69.2
MTK-13-03	72	74.1	15420	0	54228	23.2	192.4	23.6
MTK-13-03	75	74.1	14398	0	50602	22.9	188.1	52.2
MTK-13-03	78	76.1	12681	0	51344	26.3	193.3	13
MTK-13-03	81	74.1	14243	0	50123	28.2	195.1	36.3
MTK-13-03	84	73.5	15812	0	53456	28.2	197	30.7
MTK-13-03	87	74.1	14674	0	51444	27.4	195	21.8
MTK-13-03	90	74.3	15688	0	55720	29.6	196	19
MTK-13-03	93	76.1	13190	0	53494	31.2	198.5	23.5
MTK-13-03	96	73.1	15413	0	50826	31.9	197.8	34.9
MTK-13-03	99	75	13197	0	49293	32.4	199.1	22.6
MTK-13-03	102	75.1	13627	0	51294	33.6	201.4	15.5
MTK-13-03	105	73.5	15125	0	51131	34.9	198.4	32.5
MTK-13-03	108	72.7	16587	0	53306	36	199.8	18.9
MTK-13-03	111	72.2	16947	0	52672	36.6	200.2	6.3
MTK-13-03	114	71.6	17310	0	52102	37.4	199.6	6.8
MTK-13-03	117	72.2	16806	0	52314	37.8	201.3	6.4
MTK-13-03	120	71.4	17444	0	51968	39	201.2	4.2
MTK-13-03	123	71.4	17415	0	51818	39.2	200.3	11.7
MTK-13-03	126	72	16923	0	52213	40.1	201.5	9.2
MTK-13-03	129	72	16940	0	52213	40.1	201.4	0.3
MTK-13-03	132	71	18215	0	52838	42.6	203.7	16.7
MTK-13-03	135	72.1	16951	0	52444	43.8	206.6	1.3

		PROPERTY: MTK	HOLE NUMBER MTK13_04							
Province:	Québec	DATE LOGGED: 7-8 March, 2013	Grid East: L3+00E	Method	Depth	Az	Dip			
Township	Lamack	LOGGED BY: Michel Leblanc	Grid North: St 1+25S	reflex	Collar	7.0	-50.0			
Started:	7/03/2013	DRILLED BY: Forage Rouillier	UTM East: 485305E	reflex	18	6.4	-48.6			
Completed:	8/03/2014	UNITS: Metres	UTM North: 5526890N	reflex	72	6.9	-48.4			
CORE SIZE:	NQ	CORE LOCATION: Chapais	ELEV : 351 m.	reflex	117	7.5	-47.9			
			LENGTH: 117 m.							
PURPOSE:	Testing a m	oderate I.P. anomaly detected on line 3+00E/0+75S								

Summary:

Collared on UTM (NAD 83) 485305E/5526890N, this hole was designed to explain a moderate I.P. anomaly suspected as a possible eastern extension of the mineralization observed 300 metres west into previous MTK13_01. For that purposed, this hole was dipped at -50 degres and oriented at N007. From the collar up to the end, MTK13_03 pass through a gabbroic sequence varying in composition from mesocrate to melanocrate with porphyritic noritic gabbro noted as melanocrate unit. A metric wide faulted zone with graphitic gouge associated intersected grossly between 85 and 89 metres could explain the local I.P. anomaly tested. This hole was ended at 117 metres into a mesocrate gabbro. Hole MTK13_04 returned no significant gold value.

SUMMARY I	LOG	MTK13_04			Accov Highli	ath/a)					
From	То	Lithology	Assay nignigu(s)								
0.00	2.50	CSG		in							
2.50	16.70	I3G meso									
16.70	72.75	I3G Nor									
72.75	112.00	I3G Mela	NSV								
112.00	117.00	I3G meso									
	117.00	E.O.H.									

Michel Leblanc, géo O.G.Q. n°613

					DESCRIPTION (Hole no.	ATK13 0	14)		
	Maio		Mino	r	DESCRIPTION (HOLE NOT		<u>, , , , , , , , , , , , , , , , , , , </u>		i
From (m)	To (m)	Litho code			Description	Sample Number	From	То	
0.00	2.50	CSG			Overburden			+	•
					Including a 70 cm granodioritic boulder.				-
2.50	16.70	I3G meso			Mesocrate gabbro			+	
								<u> </u>	
					Medium greenish gray, medium grained, equigranular mafic gabbroic rock affected by a moderate				
					pervasive chloritization with a weak intergranular epidotization. Weak vein controlled calcite. Mostly				
					throughout unit. Weak vein controlled hematization observed near lower ctc. Trace of vein and fracture				
					controlled Py. Diffuse lower ctc into a metric wide foliated zone intersected at 40 tca.				
						63686	9.00	10.00	
			15.70	16.70	Development of a moderate foliation at 40 tca approaching the lower ctc. Chloritized and weakly	63687	15.70	16.70	
					hematized.				
40.70	70.75	12C Mar							,
10.70	12.15	ISG NOF						-	•
					Greenish gray, slightly brownish, porphyritic, massive and melanocratic gabbroic rock of noritic affinity			+	
					with presence of 10-20% of mm size, dark green, often euhedral pyroxene porphyrs noted throughout				
					unit intervalle. Moderate pervasive chloritization overprinted by a weak pervasive hematization. Local	63688	16.70	18.00	,
					vein controlled specularite observed with calcite. Locally intruded by very corse grained pyroxenite	63689	23.00	24.00	
					throuhout unit. Only trace of fracture and vein controlled Py noted along unit. Trace of Cpy locally	63690	30.00	31.00	
					observed. Diffuse lower ctc.	63691	35.90	36.75	-
						63692	36.75	37.25	
			35.90	37.25	Coarse grained, gray-greenish dyke of granodioritic affinity intersected at 65 tca. Presence of many cm	63693	40.70	41.50	
			27.75	29.65	size angular gabbroic nost rock inclusions.	63694	41.50	42.35	
			41.50	42.35	Area injected by many felsic dykelets with moderate hematization associated. Granodioritic affinity with a	63696	54.00	55.00	
				12.00	trace of Cpy at 41.50 m.	63697	62.00	63.00	-
			43 30	45.30	Very coarse grained pyroxenitic dyke intersected at 30 tca. Characterized by more than 50% of cm size	63698	68.00	68.90	•
						63699	72.00	72.75	•
72.75	112.00	I3G Mela			Melanocrate Gabbro			-	•
								<u> </u>	
					Rock color varying from medium green to dark gray, medium grained with local original texture				
				_	presenting mm size pyroxene phenocrysts supported by a very strongly chloritized matrix overprinted by				
					faulted zone with graphitic and chloritic gougy material associated. Moderate-strong magnetism				
					decreasing to weak intensity into faulted section. Locally injected by decimetric wide Qz-calcite veins.				•
					Moderate discontinuous foliation locally developed at 55-60 tca. Trace to 1% of disseminated, fracture			+	•
					and vein controlled Py. Local trace of Cpy noted along local vein margin.	63700	72.75	73.75	•
						63701	73.75	75.00	
						63702	75.00	75.60	
			77.50	80.00	Porphyritic section with 15-20% of epidotized feldspars? Elongated along local foliation at 55 tca.	63703	83.00	84.00	
			85.40	87.70	Strongly tractured section (faulted) with graphitic and chloritic gouge associated. Low core angle	63704	88.00	89.15	
					explaination for the local I.P. anomaly.	63706	92.90	93.50	-
			88.00	88.15	Slightly hematized Qz-calcite vein intersected at 35 tca.	63707	93.50	94.25	
			89.60	89.70	Decimetric wide Qz calcite vein intersected at 30 tca. Trace of diss. Cpy along lower margin.	63708	98	99	
			90.50	90.60	Decimetric wide Qz calcite vein intersected at irregular core angle	63709	102.00	103.00	

		DESCRIPTION (Hole no I	MTK13_0	4)				
	Major		N	linor				
From (m)	To (m)	To Litho (m) code			Description	Sample Number	From	т
			92.95	93.20	Qz-calcite vein intersected at 30 tca. Slightly hematized.	63710	105.00	106.
			88.00	93.00	Moderate-strong fracturing level following an overlaying faulted zone.	63711	108.00	109.
			93.25	112.00	Area affected by a strong pervasive chloritization, with local decimetric wide breccia developed.	63712	111.00	112.
					\neg Moderate magnetism throughout this intervalle. Moderate fracture and vein controlled calcite and weak			1
					vasive hematization.			
112.00	12.00 117.00 13G meso Mesoc			Mesocrate Gabbro			├──	
								1
					Greenish gray, fine grained, massive and moderately chloritized gabbro with local presence of mm size			
					euhedral chloritized pyroxenes. Moderate-strong magnetism, poorly foliated with preferential fracturing			<u> </u>
					at 40 tca. No significant mineralization associated. Lower ctc not reached.			1
_	117.00	EOH			End of hole			<u> </u>
	117.00	Е.О.П.						+

	Major	•	M	inor				
From	То	Litho			Sample description	Au g/t	Ag g/t	Cu pp
(m)	(m)	code						
0.00	2.50	CSG						-
2.50	16 70	I3G meso						
2.50	10.10	150 meao						
					I3G CI40, Cb10, Tr. Py	-0.005		
			15.70	16.70	I3G CI40, Cb15, Hm,Tr. Py, Low ctc.	-0.005		
16 70	72.75	12G Nor						
10.70	12.15	130 101		-				
					13G Por Px (Noritic) CI40 Tr Pv	0.005		
					I3G Por Px (Noritic), CI40, Hm10, Tr. Py	-0.005		
					I3G Por Px (Noritic), CI40, Hm10, Tr. Py	-0.005		
					Granodiorite dyke+matic clasts. Hm. Cl. Tr. Py	0.005		
					Granodiorite dyke+mafic clasts, Hm, Cl, Tr. Py	-0.005		
			35.90	37.25	I3G Por Px (Noritic), Cl40, Tr. Py	-0.005		
			37.75	38.65	I3G Por Px (Noritic), CI40, Tr. Py	-0.005	-	
			41.50	42.35	I3G Por Px (Noritic), Cl30, Hm5, Tr. Py	-0.005		
					I3G Por Px (Noritic), CI30, Hm5, Tr. Py	-0.005		
			43.30	45.30	I3G Por Px (Noritic), CI30, Tr. Py	-0.005		
					I3G CI40, Cb10, tr. Py	-0.005		
72.75	112.00	I3G Mela						
			_					
					13G CI50 Hm10, 1% By	0.005		
					I3G CI50, Hinto, 1% Py	-0.005		
					I3G CI50, Hm15, Cb20, 2% Py	-0.005		
-			77.50	80.00	I3G melano, CI40, tr. Py	-0.005		1
			85.40	87.70	I3G melano, Cl40, Hm10, Fract., 15% Qz-cc-vn, 1% Py	-0.005		
	2				I3G melano, Cl40, Hm10, Fract., 10% Qz-cc-vn, 1% Py	-0.005		
			00.55		QZV+I3G melano, 1% Py	-0.005		
			88.00	88.15	13G Cl30, Cb15, Tr. Py	-0.005		<u> </u>
			89.60	89.70	13G CI40, Hm5, Cb15, 1% Py	J -0.005		

	Majo	r	М	inor				
From (m)	To (m)	Litho code			Sample description	Au g/t	Ag g/t	Cu ppr
			92.95	93.20	I3G CI40, Hm5, Cb10, 1% Py	-0.005		
			88.00	93.00	I3G CI40, Hm5, Cb10, 1% Py	-0.005		
			93.25	112.00	I3G CI40, Hm5, Cb10, 1% Py	-0.005		
112.00	117.00	I3G meso						
				1				
	117.00	E.O.H.						<u> </u>
		2.0.11						

VO13053589 - Finalized CLIENT : FANCAM - Fancamp Exploration Ltée # of SAMPLES : 151 DATE RECEIVED : 2013-03-21 PROJECT : MTK CERTIFICATE COMMENTS : 94399 EXTRA SAMPLE PO NUMBER :

	Au-AA23
SAMPLE	Au
DESCRIPTION	ppm
63686	-0.005
63687	-0.005
63688	-0.005
63689	-0.005
63690	-0.005
63691	-0.005
63692	-0.005
63693	-0.005
63694	-0.005
63695	-0.005
63696	-0.005
63697	-0.005
63698	-0.005
63699	-0.005
63700	-0.005
63701	-0.005
94396	0.592
63702	-0.005
63703	-0.005
63704	-0.005
63705	-0.005
63706	-0.005
63707	-0.005
63708	-0.005
63709	-0.005
63710	-0.005
63711	-0.005
63712	-0.005

Survey name	Station	Azimuth	Dip	Mag.Str.	Gravity	East	North	Elevation	LocalA	LocalB	LocalC	Tool°
*	Metres	Degrees	Degrees	nT	G	Metres	Metres	Metres	Metres	Metres	Metres	Centigrade
MTK-13-04	9	24.7	-49	56065	1.00067	1.39	3.68	-4.53	3.93	0.09	0	9
MTK-13-04	12	22.4	-48.9	55815	1.000585	2.17	5.49	-6.79	5.9	0.24	0	9
MTK-13-04	15	22.9	-48.8	55389	1.000555	2.93	7.31	-9.05	7.87	0.36	0	9
MTK-13-04	18	22.5	-48.7	55310	1.000788	3.7	9.13	-11.31	9.84	0.48	0.01	9
MTK-13-04	21	21.3	-48.7	54933	1.000753	4.44	10.97	-13.56	11.82	0.57	0.03	9
MTK-13-04	24	21.5	-48.7	55061	1.000722	5.16	12.81	-15.81	13.8	0.64	0.04	9
MTK-13-04	27	21.6	-48.6	55156	1.000441	5.89	14.66	-18.06	15.78	0.72	0.06	9
MTK-13-04	30	21.9	-48.6	55397	1.000381	6.62	16.5	-20.32	17.76	0.8	0.08	9
MTK-13-04	33	21.8	-48.6	55192	1.000316	7.36	18.34	-22.57	19.74	0.89	0.1	9
MTK-13-04	36	22.1	-48.6	55281	1.000524	8.1	20.18	-24.82	21.73	0.98	0.12	9
MTK-13-04	39	22	-48.5	54953	1.000623	8.84	22.03	-27.06	23.71	1.08	0.15	9
MTK-13-04	42	22.3	-48.5	55247	1.000621	9.59	23.87	-29.31	25.69	1.18	0.17	9
MTK-13-04	45	22	-48.6	55252	1.000246	10.34	25.7	-31.56	27.68	1.28	0.19	9
MTK-13-04	48	22.5	-48.6	55049	1.000016	11.09	27.54	-33.81	29.66	1.38	0.21	9
MTK-13-04	51	23.2	-48.7	55053	1.000312	11.86	29.37	-36.06	31.64	1.51	0.23	9
MTK-13-04	54	23.1	-48.7	55152	1.000365	12.64	31.19	-38.32	33.61	1.64	0.24	9
MTK-13-04	57	23.4	-48.6	55069	1.000044	13.43	33.01	-40.57	35.59	1.78	0.25	9
MTK-13-04	60	23.9	-48.6	55076	0.999926	14.22	34.82	-42.82	37.57	1.93	0.27	9
MTK-13-04	63	24.5	-48.6	55016	1.000515	15.04	36.63	-45.07	39.54	2.1	0.29	9
MTK-13-04	66	24.6	-48.5	54806	1.000311	15.86	38.44	-47.32	41.52	2.29	0.3	9
MTK-13-04	69	24.5	-48.5	54953	1.000507	16.69	40.25	-49.56	43.5	2.47	0.33	9
MTK-13-04	72	23.9	-48.4	55293	1.00054	17.5	42.07	-51.81	45.48	2.64	0.35	9
MTK-13-04	75	21.8	-48.3	55651	1.000005	18.28	43.9	-54.05	47.48	2.77	0.38	10
MTK-13-04	78	23.2	-48.2	55138	1.000708	19.04	45.75	-56.29	49.47	2.88	0.42	10
MTK-13-04	81	20.7	-48.2	54834	1.000826	19.79	47.6	-58.53	51.47	2.97	0.46	10

Survey name	Station	Trax°	Mag.Dip	Mag.X	Mag.Y	Mag.Z	Roll Angle	Mag.T/face	DLS
*	Metres	Centigrade	Degrees	nT	nT	nT	Degrees	Degrees	deg./30m
MTK-13-04	9	9	73.5	15921	0	53757	70.6	235.3	36
MTK-13-04	12	9	73.3	16067	0	53453	69	234.6	15.5
MTK-13-04	15	9	74.1	15175	0	53269	65.5	231.9	3.7
MTK-13-04	18	9	73.1	16087	0	52919	66.9	232.4	2.9
MTK-13-04	21	9	72.8	16271	0	52468	70.4	236.2	8.4
MTK-13-04	24	9	72.8	16248	0	52609	73	238.7	1.7
MTK-13-04	27	9	72.8	16278	0	52700	76.1	241.8	0.7
MTK-13-04	30	9	72.9	16290	0	52947	79.1	244.7	2.1
MTK-13-04	33	9	72.9	16203	0	52760	76.9	242.7	1
MTK-13-04	36	9	72.9	16270	0	52832	79.3	244.8	1.9
MTK-13-04	39	9	73	16093	0	52544	81.7	247.4	0.8
MTK-13-04	42	9	73.1	16106	0	52847	85.2	250.8	2.4
MTK-13-04	45	9	73	16194	0	52826	87.6	253.2	2.1
MTK-13-04	48	9	73.2	15922	0	52696	90.2	255.8	3.1
MTK-13-04	51	9	72.9	16144	0	52633	92.1	257	4.9
MTK-13-04	54	9	73.1	16068	0	52759	91.9	257	1.3
MTK-13-04	57	9	73.1	16002	0	52693	94.8	259.8	2.5
MTK-13-04	60	9	72.9	16166	0	52650	97.3	261.8	3.3
MTK-13-04	63	9	73.2	15856	0	52681	96.8	261.5	4
MTK-13-04	66	9	73.4	15699	0	52509	96.9	261.8	1.2
MTK-13-04	69	9	73.2	15841	0	52621	95.7	260.5	0.4
MTK-13-04	72	9	73.2	16025	0	52920	94.1	259.1	4
MTK-13-04	75	10	72.7	16588	0	53121	96.6	262.2	13.9
MTK-13-04	78	10	73.5	15654	0	52869	98.8	264.7	9
MTK-13-04	81	10	74	15116	0	52709	100.2	267.9	16.7

		PROPERTY: MTK	F	IOLE NUMBER	MTK13_05		
Province:	Québec	DATE LOGGED: 8-9 March, 2013	Grid East: L1+00W	Method	Depth	Az	Dip
Township	Lamack	LOGGED BY: Michel Leblanc	Grid North: St 1+50S	reflex	Collar	7.0	-50.0
Started:	8/03/2013	DRILLED BY: Forage Rouillier	UTM East: 484899E	reflex	18	1.9	-48.8
Completed:	9/03/2014	UNITS: Metres	UTM North: 5526886N	reflex	69	6.1	-47.1
CORE SIZE:	NQ	CORE LOCATION: Chapais	ELEV : 359 m.				
			LENGTH: 126.0 m.				
PURPOSE:	Testing MT	<13_01 mineralization extension 100 m. west were a mag br	reak is matching with a moderate	I.P. anomaly.			

Summary:

DDH MTK13_05 was designed to test possible extension of mineralization 100 metres east of previous MTK13_01 where a low mag is matching with a moderate I.P. anomaly. Into MTK13_01, it was noted that some of the best mineralized area are associated with strong silicification which was associated with sharp decrease of local host rock magnetism. The local low magnetism associated with a moderate I.P. was suggesting a possible mineralized and silicified area located west of MTK13_01. DDH MTK13_05 was collared 100 metres west on UTM (Nad 83) 484899E/5526886N, dipped at -50 and oriented N007. From the collared up to 43.10m this hole collar into an intermediate lapillis tuff followed by gabbroic rock form 43.10 to 102.00 metres where it came back into intermediate tuffaceous sequence up to the end of hole at 126.0 metres. the local tested I.P. anomaly was explained by presence of 3 to 5% of disseminated and fracture controlled Py hosted by a mesogabbro with 3-4% disseminated Mt. Only isolated anomalous gold values has been reported from MTK13_05.

SUMMARY I	LOG	MTK13_05	Assay Highligth(s)						
From	То	Lithology		Assay nighing	jui(s)				
0.00	3.30	CSG							
3.30	43.10	TL2							
43.10	70.00	I3G mela	58	59	399 ppb	over	1.0 m.		
70.00	102.00	I3G meso							
102.00	106.00	TX2	_						
106.00	126.00	TL2							
	126.00	E.O.H.							

Michel Leblanc, géo O.G.Q. n°613

	Majo	r	Mi	nor					
From	То	Litho			Description	Sample	From	То	L
(m)	(m)	code				Number			
0.00	3.30	CSG			Overburden				
3.30	43.10	TL2			Intermediate Lapillis Tuff				+
					Medium green, strongly clastic tuffaceous unit of apparent intermediate-mafic composition.	63713	9.00	10.00	1.
					Characterized by a strong componment in mm to 10 cm clasts slightly elongated along a moderate	63714	18.00	19.00	1.
					foliation developed at 60-65 tca. Centimetric elongated clasts often supported by a micro-clastic matrix.	63715	26.00	27.00	1.
					Local bomb size clasts noted. Many poecilitic (pumice like) lapillis filled by chloritic and/or calcite	63716	36.00	37.00	1.
					-material are observed along this unit. Clasts are dominated by intermediate to matic composition, most	63717	37.00	38.00	1
					are andesitic, some are dacitic locally. Poorly mineralized rock with only local trace or eunedral Py	63718	38.00	39.00	1.
					observed into the interclastic matrix. Non magnetic rock. A moderate chloritzation and a weak	63719	39.00	40.00	1
					epidolization are the dominant alteration present. Calcite is dominant into veins and veinlets. Diffuse	63720	40.00	40.85	0
						63721	40.85	42.00	1.
						63722	42.00	43.10	1.
			39.00	39.60	Strongly foliated and carbonated area. Foliation developed at 50 tca. 1-2% diss. Py associated.	63723	43.10	43.75	0.
			39.60	40.85	Fine grained section leading to lower ctc with underlying gabbro. Could be a fine grained chloritized	63724	43.75	44.50	0.
					crystal tuff or a gabbroic chilled upper margin.	63725	47.00	48.00	1
						63726	51.00	52.00	
43 10	70.00	I3G mela			Mesocrate Gabbro (Mt)	63727	54.00	55.00	$\frac{1}{1}$
40.10	10.00					63728	55.00	56.00	1
					Dark greenish gray medium to coarse grained massive to slightly foliated matic gabbroic rock	63729	56.00	57.00	$\frac{1}{1}$
					characterized by a moderate chloritization overninted by a weak-moderate nervasive and vein	63720	57.00	58.00	1
					controlled calcite. Some part of this unit are characterized by a diffuse porphyritic texture (Pyroxene)	63731	58.00	59.00	
					phenocx). Most unit presents a very strong magnetism level with presence of 3 to 5% of disseminated Mt	63732	50.00	60.00	1
		-		_	(peper like) observed in most unit intervale. Mostly massive with local weak foliation noted at 40-45 tca.	63733	60.00	61.00	1
					Lovcally with weak epidotization noted. From 54.0 to 66.5 m. a moderate disseminated Py is observed	62724	61.00	62.00	1.
					with the already present diss. Mt. Both mineralization combined seems to provide explaination to the	62725	62.00	62.00	1
					local I.P. anomaly tested. Weak moderate calcite vein content with a weak silicification and	03735	62.00	64.00	1.
					hematization associated to the mineralized area. Local cm wide qzv. Diffuse lower ctc defined by	63730	64.00	65.00	1
				_	disappearance of Mt peper texture and decrease of magnetism.	63738	65.00	66.00	
						63730	66.00	66.55	
						03739	00.00	70.00	- U.
						63740	69.00	70.00	1.
			54.00	66.55	3 to 5% diss. Py into a partially silicified and weakly hematized section. 3-4% diss. Mt also present.	63741	77.00	78.00	<u> 1.</u>
					tested. This mineralization is sharing similarities with the mineralization observed into MTK13_01100	63/42	86.00	87.00	1.
					metres west	63743	92.00	93.00	1.
						63744	99.00	100.00	1.
						63745	108.00	109.00	1.
70.00	102.00	I3G meso			Gabbro mesocrate	63746	109.00	110.00	1.
						63747	110.00	111.00	1.
					Rock color becoming lighter greenish gray with increasing feldspars content and decrease of ferro-	63748	111.00	112.00	1.
					magnesian proportion. This unit is also characterized by a very weak magnetism contrastiing with the	63749	112.00	113.00	1.
					overlaying gabbro. Medium grained, locally leucoxenitic were foliation and chloritization is stronger.	63750	113 00	114.00	1
					Mostly massive rock with local weak foliation developed at 60 tca. Grain size diminishing down unit	63751	114.00	115.00	1 1
					suggestion a possibe metric size chilled lower margin. Weak content in cm wide calcite veins. Only trace	63752	115.00	116.00	1.
					of vein and fracture controlled Py noted along this unit. Diffuse lower ctc with underlaying chloritized	63753	116.00	117.00	1
					tuffaceous unit.	63754	122.00	123.00	1
							122.00	120.00	† <u>''</u>
			77.00	78.00	Slight increasing of foliation, chloritization and leucoxene content. Moderate foliation developed at 35			<u> </u>	-
			99,00	102.00	Grain size diminishing to fine grained approaching lower unit contact suggesting an apparent chilled				+
			~~.~~						+

		DESCRIPTION (Hole no N	ITK13_08	5)	
Major	Minor				
From To Litho (m) (m) code		Description	Sample Number	From	То
102.00 106.00 TX2		Chloritized ash tuff			
		Mostly fine grained, chloritized (basaltic aspect) with diffuse mm size clasts elongated along a waek foliation developed at 70 tca. Non magnetic with trace to 1% of Py. Moderate vein controlled calcite. Diffuse lower ctc defined by appearance of diffuse and sparse poecilitic pumice clasts of cm size.			
106.00 126.00 TL2		Lapillis Tuff			
		From 106 metres the tuffaceous rock evolve gradationally toward a lapillis and bloc type with strong presence of poecilitic pumice clasts filled by chloritic material. Rock color generally medium green with clasts color varying from medium to dark green. Intermediate composition is characterizing the bulk of			
		the clasts which often close packed or supported by a micro-clastic matrix of similar composition. Non magnetic rock. Weak-moderate vein controlled calcite. Including a weakly pyritized interval from 108.0 to 117.0 metres. Moderate foliation developed at 50-70 trea throughout unit Lower cte not reached			
	108.00 117.00	Moderately chloritized with moderate vein controlled calcite and foliated at 60-65 tca. Presence of up to 5% of disseminated Py mostly present along margins of small qzv. Local weak hematization associated.			

	Waju		IAI					
From (m)	To (m)	Litho code			Sample description	Au g/t	Ag g/t	Cu ppm
0.00	3.30	CSG						
3 30	43 10	TI 2				_		
					TL2, Cl20, Cb15, tr. Py	-0.005		
					TL2, Cl20, Cb15, tr. Py	-0.005		
					TL2, Cl20, Cb5, tr. Py	-0.005		
					TL2, Cl20, Cb5, tr. Py	-0.005		
					TL2, Fol, Cl20, Cb10, 1% Py	-0.005		
					TL2, Fol, Cl20, Cb10, 1% Py	-0.005		
					TL2, Fol, Cl20, Cb30, 1% Py	0.015		
					1X2 CI30, C05, 11, Py	-0.005		
					13G CI30, Ep10, Tr. Py	-0.005		
	1		39.00	39.60	I3G CI30, Ep10, Tr, Pv, 2% Cpv blebs	0,000		
_			39.60	40.85	I3G Cl25 Ep5 Tr Pv 2% Mt	0.009		
			00.00	.0.00	I3G CI30, 3% Mt. Cb10, 1% Pv	0.005		
					I3G CI30, 3% Mt, Cb10, 1% Py	0.009		
43.10	70.00	I3G mela			I3G CI30, 4% Mt, Cb10, 1% Py	-0.005		
	-				I3G CI30, 4% Mt, Cb10, 2% Py	0.011		
					I3G CI30, 4% Mt, Cb10, 1% Py	0.009		
					I3G CI30, 4% Mt, Cb10, 3% Py	0.02		
	_				I3G CI30, 4% Mt, Cb10, 5% Py, 10% QZV	0.399		
					I3G CI30, Cb5, Mt 4%, Py 3%	0.077		
					I3G CI30, Cb5, Mt 4%, Py 2%	0.036		
					13G Cl30, Cb5, Mt 4%, Py 2%	0.007		
_					13G C130, CD5, Mt 4%, Py 3%	-0.005		
					I3G CI30, Cb5, Mt 4%, Py 3%	0.011		
					I3G CI30, Cb5, Mt 4%, Py 1%	-0.005		
					I3G CI30, Cb5, Mt 4%, Py 1%	-0.005		
					I3G CI30, Py tr. Mt 3%, Cb5,	0.005		
			54.00	66.55	I3G Lx Meso, CI30, Ep10, Cb10, Tr. Py	0.118		
					I3G meso, CI20, Ep10, Tr. Pv	0.007		
					I3G meso Lx Cl25 Ep10 Tr Pv 5% cc vn	0.007		
					I3G meso Lx f.g., CI30, Ep10, 1% Pv, 5% cc vn	-0.005		
-					TL2 Cl25, Cb10, Hm5, 4% Py	-0,005		
70.00	102.00	I3G meso			TL2 Cl25, Cb10, Hm5, 2% Py	-0.005		
					TL2 Cl25, Cb15, Hm5, 2% Py	-0.005		
					TL2 Cl25, Cb10, Hm5, 2% Py	-0.005		
_					TL2 Cl25, Cb10, Hm5, 1% Py	-0.005		
					TL2 Cl25, Cb10, Hm5, 1% Py	0.012		
					TL2/TX2, Cl25, Cb10, 1% Py	0.006		
					TL2/TX2, Cl25, Cb10, 3% Py	-0.005		
					TL2/TX2, Cl25, Cb10, 1% Py	-0.005		
					TL2/TB2, Cl25, 1% Py	-0.005		-
			77.00	78.00				
			99.00	102.00				

	Major		м	inor			_	
From (m)	To (m)	Litho code			Sample description	Au g/t	Ag g/t	Cu ppr
102.00	106.00	TX2						
106.00	126.00	TL2						

VO13053589 - Finalized CLIENT : FANCAM - Fancamp Exploration Ltée # of SAMPLES : 151 DATE RECEIVED : 2013-03-21 PROJECT : MTK CERTIFICATE COMMENTS : 94399 EXTRA SAMPLE PO NUMBER :

	Au-AA23
SAMPLE	Au
DESCRIPTION	ppm
63713	-0.005
63714	-0.005
63715	-0.005
63716	-0.005
63717	-0.005
63718	-0.005
63719	0.015
63720	-0.005
63721	-0.005
63722	-0.005
63723	0.009
63724	0.005
94397	0.007
63725	0.006
63726	0.009
63727	-0.005
63728	0.011
63729	0.009
63730	0.02
63731	0.399
63732	0.077
63733	0.036
63734	0.007
63735	-0.005
63736	0.011
63737	0.07
63738	-0.005
63739	-0.005
63740	0.005
63741	0.118
63742	0.007
63743	-0.005
63744	-0.005
63745	-0.005
63746	-0.005
63747	-0.005
63748	-0.005
63749	-0.005
63750	0.012
63751	0.006
63752	-0.005
63753	-0.005
63754	-0.005
94399	-0.005

Survey name	Station	Azimuth	Dip	Mag.Str.	Gravity	East	North	Elevation	LocalA	LocalB	LocalC	Tool°
*	Metres	Degrees	Degrees	nT	G	Metres	Metres	Metres	Metres	Metres	Metres	Centigrade
MTK-13-05	3	16.7	-49.2	56997	1.000762	0	0	0	0	0	0	10
MTK-13-05	6	16.4	-49.2	57395	0.999511	0.56	1.88	-2.27	1.96	-0.01	0	10
MTK-13-05	9	16.6	-49.2	57247	0.999752	1.12	3.76	-4.54	3.92	-0.01	0	10
MTK-13-05	12	17.6	-49.1	57915	1.000224	1.69	5.63	-6.81	5.88	0	0	10
MTK-13-05	15	18.5	-49	56997	1.000197	2.3	7.5	-9.08	7.84	0.04	0.01	10
MTK-13-05	18	18.9	-48.9	56334	1.000195	2.93	9.37	-11.34	9.81	0.11	0.02	10
MTK-13-05	21	19.1	-48.8	56019	1.000369	3.58	11.23	-13.6	11.79	0.19	0.04	10
MTK-13-05	24	18.9	-48.7	55811	1.000448	4.22	13.1	-15.86	13.76	0.27	0.06	10
MTK-13-05	27	18.9	-48.6	55659	1.000055	4.86	14.98	-18.11	15.74	0.34	0.09	10
MTK-13-05	30	19	-48.5	55547	1.000198	5.51	16.86	-20.36	17.73	0.42	0.13	10
MTK-13-05	33	18.8	-48.4	55457	1.000246	6.15	18.74	-22.6	19.72	0.49	0.16	10
MTK-13-05	36	18.7	-48.3	55411	1.000443	6.79	20.63	-24.85	21.71	0.56	0.21	10
MTK-13-05	39	18.6	-48.2	55366	1.000615	7.43	22.52	-27.08	23.71	0.63	0.26	10
MTK-13-05	42	19	-48.1	55289	1.000124	8.08	24.42	-29.32	25.71	0.7	0.31	10
MTK-13-05	45	20	-47.9	54968	1.000103	8.75	26.31	-31.55	27.71	0.8	0.38	10
MTK-13-05	48	22	-47.9	54825	1.000024	9.47	28.18	-33.77	29.72	0.95	0.44	10
MTK-13-05	51	22.8	-47.8	55163	0.999858	10.24	30.04	-36	31.72	1.15	0.5	10
MTK-13-05	54	27	-47.7	53785	0.999906	11.08	31.87	-38.22	33.71	1.43	0.56	10
MTK-13-05	57	29.3	-47.6	54129	1.000647	12.04	33.65	-40.44	35.69	1.83	0.61	10
MTK-13-05	60	21.3	-47.6	53932	0.999942	12.9	35.48	-42.65	37.69	2.14	0.67	10
MTK-13-05	63	29.4	-47.5	54930	0.999996	13.77	37.3	-44.87	39.69	2.44	0.74	11
MTK-13-05	66	18	-47.5	57826	1.000737	14.58	39.15	-47.09	41.69	2.68	0.81	11
MTK-13-05	69	21.2	-47.4	55022	1.000464	15.26	41.06	-49.3	43.72	2.78	0.9	11
MTK-13-05	72	355.2	-47.3	52057	1.001026	15.54	43.04	-51.52	45.69	2.49	0.94	11
MTK-13-05	75	22.5	-47.2	56295	1.000404	15.85	45.01	-53.74	47.67	2.21	0.99	11
MTK-13-05	78	21.8	-47.2	56328	1.000815	16.62	46.9	-55.94	49.7	2.41	1.08	11
MTK-13-05	81	21.9	-47.2	56035	1.000254	17.38	48.79	-58.14	51.73	2.59	1.18	11
MTK-13-05	84	21.9	-47.2	55892	1.000478	18.14	50.68	-60.34	53.76	2.77	1.29	11
MTK-13-05	87	22.1	-47.2	55741	1.000747	18.9	52.58	-62.54	55.79	2.96	1.39	11
MTK-13-05	90	22.2	-47.1	55674	1.00078	19.67	54.47	-64.74	57.82	3.15	1.49	11
MTK-13-05	93	22.3	-47.1	55654	1.000217	20.45	56.36	-66.94	59.86	3.35	1.59	11
MTK-13-05	96	22.3	-46.9	55605	1.000409	21.22	58.25	-69.13	61.89	3.55	1.7	11
MTK-13-05	99	22.2	-46.9	55584	1.000963	22	60.15	-71.33	63.93	3.74	1.82	11
MTK-13-05	102	22.3	-46.7	55566	1.000956	22.77	62.05	-73.51	65.98	3.94	1.93	11
MTK-13-05	105	22	-46.5	55589	1.000601	23.55	63.95	-75.69	68.03	4.13	2.06	11
MTK-13-05	108	22.1	-46.4	55580	1.000648	24.33	65.87	-77.87	70.08	4.32	2.2	11
MTK-13-05	111	22.1	-46.2	55699	1.000702	25.11	67.79	-80.04	72.15	4.52	2.34	11
MTK-13-05	114	22.4	-46.1	55263	1.00061	25.89	69.71	-82.2	74.22	4.72	2.5	11

Survey name	Station	Azimuth	Dip	Mag.Str.	Gravity	East	North	Elevation	LocalA	LocalB	LocalC	Tool°
*	Metres	Degrees	Degrees	nT	G	Metres	Metres	Metres	Metres	Metres	Metres	Centigrade
MTK-13-05	117	23.2	-45.8	54806	0.999879	26.7	71.63	-84.36	76.29	4.94	2.66	11
MTK-13-05	120	21.6	-45.7	55409	1.001076	27.5	73.57	-86.51	78.37	5.15	2.83	11
MTK-13-05	123	22.4	-45.5	55111	1.00046	28.29	75.51	-88.65	80.46	5.34	3.01	11
MTK-13-05	126	21.6	-45.4	55297	1.00055	29.07	77.47	-90.79	82.56	5.53	3.2	12

Survey name	Station	Trax°	Mag.Dip	Mag.X	Mag.Y	Mag.Z	Roll Angle	Mag.T/face	DLS
*	Metres	Centigrade	Degrees	nŤ	nT	nT	Degrees	Degrees	deg./30m
MTK-13-05	3	10	75.3	14503	0	55121	168.3	339	0
MTK-13-05	6	10	75.5	14358	0	55570	168.3	339.4	2
MTK-13-05	9	10	75.2	14671	0	55335	168.2	338.9	1
MTK-13-05	12	10	74.4	15544	0	55790	170.4	339.9	6.4
MTK-13-05	15	10	73.1	16603	0	54525	170.3	337.9	6.4
MTK-13-05	18	10	72.6	16803	0	53770	171.1	337.9	3.1
MTK-13-05	21	10	72.5	16881	0	53416	170.4	337	1.7
MTK-13-05	24	10	72.4	16837	0	53211	173.7	340.4	1.8
MTK-13-05	27	10	72.3	16890	0	53035	172.6	339.3	1.1
MTK-13-05	30	10	72.3	16859	0	52926	172.9	339.5	0.9
MTK-13-05	33	10	72.2	16932	0	52809	173.7	340.4	1.7
MTK-13-05	36	10	72.2	16959	0	52752	175.2	341.9	1.4
MTK-13-05	39	10	72	17076	0	52667	174.8	341.5	1.6
MTK-13-05	42	10	71.9	17174	0	52554	174.4	340.7	3.2
MTK-13-05	45	10	71.9	17108	0	52238	173.5	339.3	6.9
MTK-13-05	48	10	76.1	13137	0	53228	173.7	343.2	13.5
MTK-13-05	51	10	76.7	12644	0	53694	173.8	343.7	4.9
MTK-13-05	54	10	77.3	11811	0	52472	175.2	344.2	28.7
MTK-13-05	57	10	76.9	12311	0	52710	177.2	344.8	15.4
MTK-13-05	60	10	74.1	14803	0	51861	180.3	348.1	53.8
MTK-13-05	63	11	77.2	12131	0	53573	180.6	348.7	54.3
MTK-13-05	66	11	75.4	14560	0	55963	185	355.7	77.1
MTK-13-05	69	11	74.6	14616	0	53045	186.9	355.4	21.8
MTK-13-05	72	11	81.6	7576	0	51502	186.9	8.2	175.6
MTK-13-05	75	11	71.8	17581	0	53479	185.7	350.3	184.7
MTK-13-05	78	11	72	17407	0	53571	185.9	351.1	4.6
MTK-13-05	81	11	72.2	17095	0	53363	185.6	351.1	0.4
MTK-13-05	84	11	72.3	16972	0	53253	184.5	350.1	0.1
MTK-13-05	87	11	72.4	16816	0	53144	186.5	352.1	1.6
MTK-13-05	90	11	72.5	16779	0	53085	185.9	351.5	0.8
MTK-13-05	93	11	72.5	16766	0	53068	190.7	356.3	0.8
MTK-13-05	96	11	72.5	16735	0	53027	193.9	359.6	1.2
MTK-13-05	99	11	72.5	16725	0	53008	193	358.8	0.9
MTK-13-05	102	11	72.5	16715	0	52992	191.7	357.5	1.6
MTK-13-05	105	11	72.4	16778	0	52996	192.4	358.4	2.6
MTK-13-05	108	11	72.5	16753	0	52995	191.2	357.2	1.5
MTK-13-05	111	11	72.4	16812	0	53101	192.1	358.2	2
MTK-13-05	114	11	73.1	16051	0	52880	191.4	358.1	2.9

Survey name	Station	Trax°	Mag.Dip	Mag.X	Mag.Y	Mag.Z	Roll Angle	Mag.T/face	DLS
*	Metres	Centigrade	Degrees	nT	nT	nT	Degrees	Degrees	deg./30m
MTK-13-05	117	11	74.7	14443	0	52868	191.3	359.5	6.1
MTK-13-05	120	11	72.9	16314	0	52953	192.3	359.3	11.6
MTK-13-05	123	11	73.2	15937	0	52756	192.7	359.8	5.9
MTK-13-05	126	12	73	16151	0	52886	193.2	0.5	5.6

Appendix IV Certificates of Analyses

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

À FANCAMP EXPLORATION LTÉE 340, AVE VICTORIA WESTMOUNT QC H3Z 2M8

Page: 1 Finalisée date: 16-AVRIL-2013 Compte: FANCAM

	PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION	
WEI-21	Poids échantillon reçu	
LOG-24	Entrée pulpe - Reçu sans code barre	
LOG-QC	Test QC sur échantillons pulpe	

	PROCÉDURES ANALYT	IQUES
CODE ALS	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30 g fini FA-AA	AAS

Projet: MTK

Bon de commande #:

Ce rapport s'applique aux 112 échantillons de pulpe soumis à notre laboratoire de Val d'Or, QC, Canada le 18-MARS-2013.

CERTIFICAT VO13051966

Les résultats sont transmis à:

GILBERT LAMOTHE	MICHEL LEBLANC	PETER SMITH

A: FANCAMP EXPLORATION LTÉE ATTN: MICHEL LEBLANC C.P.2506 ROUYN-NORANDA QC J9X 5B1

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication. Signature:

Nacera

Nacera Amara, Laboratory Manager, Val d'Or

2 1 MARS 20:4

RECU AU MRNF

DIRECTION DES TITRES MINIERS

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: FANCAMP EXPLORATION LTÉE 340, AVE VICTORIA WESTMOUNT QC H3Z 2M8

Page: 2 - A Nombre total de pages: 4 (A) Finalisée date: 16-AVRIL-2013 Compte: FANCAM

.

Projet: MTK

CERTIFICAT D'ANALYSE VO13051966

.

Description echantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005					 		
63501 63502 63503 63504 63505		0.28 0.32 0.28 0.29 0.32	0.005 0.016 0.005 0.008 <0.005		 · ·		•			
63506 63507 63508 63509 63510		0.33 0.30 0.30 0.33 0.33 0.32	<0.005 <0.005 <0.005 <0.005 <0.005							
63511 63512 63513 63514 63515		0.30 0.30 0.30 0.32 0.33	<0.005 0.014 <0.005 <0.005 0.010						•	
63516 63517 63518 63519 63520		0.36 0.33 0.33 0.34 0.31	0.005 0.015 0.071 0.010 0.063							
63521 / 63522 63523 63524 \ 94388		0.33 0.33 0.38 0.30 0.33	0.024 0.023 0.694 0.413 <0.005			-				
63525 63526 63527 63528 63529		0.35 0.35 0.33 0.37 0.34	0.088 0.061 0.016 0.078 <0.005							
63530 63531 63532 63533 63533 63534		0.32 0.36 0.32 0.35 0.35	<0.005 <0.005 <0.005 0.015 0.007							
63535 63536 63537 63538 63539		0.34 0.37 0.35 0.34 0.35	<0.005 <0.005 <0.005 <0.005 0.005	•						

(ALS) Minerals

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

À: FANCAMP EXPLORATION LTÉE 340, AVE VICTORIA WESTMOUNT QC H3Z 2M8

Page: 3 - A Nombre total de pages: 4 (A) Finalisée date: 16-AVRIL-2013 Compte: FANCAM

Projet: MTK

CERTIFICAT D'ANALYSE VO13051966

Description échantillon	Méthode élément unités L.D.	WEi-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005			1				
63540 63541 63542 63543 63544		0.33 0.29 0.35 0.35 0.33	0.039 0.382 0.110 0.007 0.024							
63545 63546 63547 63548 94389		0.34 0.34 0.36 0.36 0.35	<0.005 <0.005 <0.005 <0.005 <0.005							
63549 63550 63551 63552 63553		0.37 0.31 0.34 0.36 0.35	<0.005 0.016 0.130 0.049 0.749		`					·
63554 63555 63556 63557 63558		0.32 0.35 0.32 0.35 0.35 0.32	1.975 0.114 0.398 <0.005 <0.005							-
63559 63560 63561 63562 63563		0.35 0.33 0.34 0.34 0.34	<0.005 <0.005 <0.005 <0.005 0.050		 					
63564 63565 63566 63567 63568		0.36 0.30 0.33 0.34 0.34	<0.005 <0.005 <0.005 <0.005 <0.005		-					
63569 63570 63571 63572 63573		0.32 0.32 0.36 0.34 0.35	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005							
63574 63575 63576 63577 63578		0.34 0.34 0.34 0.36 0.33	0.014 0.025 . 0.011 <0.005 0.008	 · .	 		 	· ·	· ·	

.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

À FANCAMP EXPLORATION LTÉE 340, AVE VICTORIA WESTMOUNT QC H3Z 2M8

Page: 4 - A Nombre total de pages: 4 (A) Finalisée date: 16-AVRIL-2013 Compte: FANCAM

Projet: MTK

•

CERTIFICAT D'ANALYSE VO13051966

Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-AA23 Au ppm 0.005						 ,				
63579 63580 63581 63582 63583		0.37 0.36 0.34 0.35 0.37	0.005 <0.005 <0.005 0.008 0.010		· .			•		·		·	١
63584 63585 63586 63587 63588		0.37 0.35 0.33 0.36 0.32	<0.005 <0.005 0.011 <0.005 <0.005										
63589 63590 63591 63592 63593		0.33 0.35 0.32 0.33 0.32	0.019 <0.005 0.013 0.015 0.024								·		
63594 63595 94391 63596 63597		0.35 0.35 0.32 0.34 0.31	0.007 <0.005 <0.005 <0.005 <0.005				•						`
63598 63599 63600 63601 63602		0.33 0.32 0.33 0.30 0.34	<0.005 <0.005 <0.005 0.021 0.009							· · ·			
63603 63604 63605 63606 63607		0.33 0.34 0.34 0.33 0.33	0.018 <0.005 <0.005 <0.005 <0.005	-								· ·	
63608 63609		0.36 0.35	<0.005 <0.005			• •	. •			r			

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: FANCAMP EXPLORATION LTÉE **340, AVE VICTORIA** WESTMOUNT QC H3Z 2M8

Page: 1 Finalized Date: 13-APR-2013 Account: FANCAM

CERTIFICATE VO13053589

Project: MTK

P.O. No.:

This report is for 151 Pulp samples submitted to our lab in Val d'Or, QC, Canada on 21-MAR-2013.

The following have access to data associated with this certificate: PETER SMITH

MICHEL LEBLANC

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-24	Pulp Login - Rcd w/o Barcode	
LOG-QC	QC Test on Received Samples	

	ANALYTICAL PROCED	URES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30g FA-AA finish	AAS

TO: FANCAMP EXPLORATION LTÉE ATTN: GILBERT LAMOTHE 340, AVE VICTORIA WESTMOUNT QC H3Z 2M8

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

> **RECU AU MRNF** 2 1 MARS 2014 DIRECTION DES TITRES MINIERS

Signature:

Nacera Amara, Laboratory Manager, Val d'Or

Comments: 94399 EXTRA SAMPLE

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: FANCAMP EXPLORATION LTÉE 340, AVE VICTORIA WESTMOUNT QC H3Z 2M8

Page: 2 - A Total # Pages: 5 (A) Finalized Date: 13-APR-2013 Account: FANCAM

Project: MTK

CERTIFICATE OF ANALYSIS VO13053589

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005										·			
63610 63611		0.27 0.31	<0.005 <0.005													
63612		0.29	<0.005													
63613		0.29	< 0.005													
63614		0.29	<0.005									•				
63615		0.31	<0.005	•	÷											
63616		0.30	<0.005													
63617		0.32	<0.005									•				
63618		0.27	<0.005				•		-		-					
63619		0.38	0.009						• *		 		· · · ·			
63620		0.28	0.010													
63621		0.29	<0.005											·		
63622		0.31	0.005													
63624		0.23	0.007		:											
63625		0.32	<0.005			•						<u></u>				
63626		0.26	0.007													
63627		0.30	0.005													
63628		0.30	<0.005													
63629		0.33	0.016	· · ·										•		
63630		0.27	0.048													
63631	'	0.32	0.010													
63632		0.29	0.008		. '											
63633		0.30	<0.005									,				
62624		0.00	<0.005							 						
63635		0.28	<0.005	•												
63636		0.30	<0.005						•							
63637		0.31	<0.005													
63638		0.29	<0.005													
63639		. 0.31	<0.005													
63640		0.27	0.241													
63641		0.29	0.012													
63642		0.28	<0.005													
63643		0.32	×0.005					 		 	 					
63644		0.32	0.007													
63645		0.30	<0.005 0.009													
63647		0.32	0.008													
63648		0.29	0.007													
								 							•	

Comments: 94399 EXTRA SAMPLE

ALS) Minerals

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: FANCAMP EXPLORATION LTÉE 340, AVE VICTORIA WESTMOUNT QC H3Z 2M8

Page: 3 - A Total # Pages: 5 (A) Finalized Date: 13-APR-2013 Account: FANCAM

Project: MTK

CERTIFICATE OF ANALYSIS VO13053589

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm . 0.005	1					-							
63649 63650 63651 63652 63653		0.30 0.28 0.28 0.30 0.30	0.006 <0.005 0.016 0.005 <0.005		· .	,						-				
63654 63655 94394 63656 63657	·····	0.32 0.30 0.16 0.30 0.31	0.008 0.009 0.588 <0.005 0.008											• .		
63658 63659 63660 63661 63662		0.29 0.31 0.32 0.31 0.31	0.006 0.005 <0.005 <0.005 <0.005									سي				
63663 63664 63665 63666 63666 63667		0.31 0.29 0.30 0.29 0.31	<0.005 <0.005 <0.005 <0.005 0.005	-		 										
63668 63669 63670 63671 63672		0.29 0.28 0.29 0.32 0.29	<0.005 <0.005 <0.005 <0.005 <0.005	· · · · · · · · · · · · · · · · · · ·							-					
63673 63674 63675 63676 63677		0.30 0.30 0.32 0.31 0.27	0.005 <0.005 <0.005 <0.005 <0.005	· · ·				,								
63678 94395 63679 63680 63681		0.30 Not Recvd 0.31 0.27 0.30	<0.005 <0.005 <0.005 <0.005				ı									
63682 63683 63684 63685 63686		0.30 0.30 0.31 0.27 0.29	0.009 <0.005 <0.005 <0.005 <0.005 <0.005				•••			× • • •	•	• ••	-	· . •	• .:	P

Comments: 94399 EXTRA SAMPLE

2103 Dollarton Hwy North Vancouver BC V7H OA7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: FANCAMP EXPLORATION LTÉE 340, AVE VICTORIA WESTMOUNT QC H3Z 2M8

Page: 4 - A Total # Pages: 5 (A) Finalized Date: 13-APR-2013 Account: FANCAM

Project: MTK

CERTIFICATE OF ANALYSIS VO13053589

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005		-	/			·				
63687 63688 63689 63690 63691		0.28 0.28 0.32 0.28 0.28	<0.005 <0.005 <0.005 <0.005 <0.005		·								•
63692 63693 63694 63695 63695		0.31 0.29 0.31 0.27 0.28	<0.005 <0.005 <0.005 <0.005 <0.005				 	•		<u>, , , , , , , , , , , , , , , , , , , </u>			
63697 63698 63699 63700 63701		0.31 0.30 0.29 0.31 0.29	<0.005 <0.005 <0.005 <0.005 <0.005						· ·				
94396 63702 63703 63704 63705)	0.15 0.32 0.29 0.29 0.28	0.592 <0.005 <0.005 <0.005 <0.005								<u>, , , , , , , , , , , , , , , , , , , </u>		
63706 63707 63708 63709 63710		0.31 0.26 0.31 0.29 0.29	<0.005 <0.005 <0.005 <0.005 <0.005	·. · ·				- <u>-</u>					
63711 63712 63713 63714 63715		0.30 0.29 0.31 0.31 0.31	<0.005 <0.005 <0.005 <0.005 <0.005						· · ·		r		
63716 63717 63718 63719 63720		0.29 0.30 0.28 0.31 0.28	<0.005 <0.005 <0.005 0.015 <0.005	•							-	· .	
63721 63722 63723 63724 94397		0.30 0.31 0.29 0.29 0.29	<0.005 <0.005 0.009 0.005 0.007	• .									

Comments: 94399 EXTRA SAMPLE

.

.

(ALS)

Minerals

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: FANCAMP EXPLORATION LTÉE 340, AVE VICTORIA WESTMOUNT QC H3Z 2M8

Page: 5 - A Total # Pages: 5 (A) Finalized Date: 13-APR-2013 Account: FANCAM

Project: MTK

CERTIFICATE OF ANALYSIS VO13053589

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005		·· ·		·							
63725 63726 63727 63728 63729		0.30 0.29 0.31 0.29 0.30	0.006 0.009 <0.005 0.011 0.009											
63730 63731 63732 63733 63734	• • • • •	0.25 0.33 0.28 0.32 0.29	0.020 0.399 0.077 0.036 0.007	 										
63735 63736 63737 63738 63738 63739		0.29 0.33 0.30 0.31 0.29	<0.005 0.011 0.070 <0.005 <0.005		 									
63740 63741 63742 63743 63744	<u> </u>	0.28 0.32 0.31 0.31 0.28	0.005 0.118 0.007 <0.005 <0.005	 										
63745 63746 63747 63748 63749		0.29 0.30 0.30 0.32 0.30	<0.005 <0.005 <0.005 <0.005 <0.005							··		•		
63750 63751 63752 63753 63753 63754	~	0.28 0.30 0.30 0.29 0.31	0.012 0.006 <0.005 <0.005 <0.005	 							- · ·	-		
94399		0.31	<0.005			<u>.</u>								
			·					·	•			×	·.	•••