GM 67483

RAPPORT TECHNIQUE D'EVALUATION 43-101, PROPRIETE MONSTER LAKE

Documents complémentaires

Additional Files

RAPPORT TECHNIQUE D'ÉVALUATION 43-101 PROPRIÉTÉ MONSTER LAKE ABITIBI NTS 32G10

GM 67483

PIERRE O'DOWD GÉOLOGUE, OGQ #668 20 NOVEMBRE 2012

Ressources naturenes et Faure

2 0 AOUT 2013

REÇU AU MRNF

1 0 DEC. 2012

DIRECTION DES TITRES MINIERS

1

Dif information geologique

1256978

SOMMAIRE

La propriété se situe à environ 50 kilomètres au sud-ouest de la ville de Chibougamau et 25 kilomètres au sud de la ville de Chapais. Elle est facilement accessible par des routes forestières en excellent état. La propriété se compose de 114 titres miniers situés dans le canton Rale et couvrant une superficie de 3 383,81 hectares ou 33,84 km².

Depuis près d'une année, Corporation Tomagold (Tomagold) a entrepris d'explorer un cisaillement aurifère orienté N30-N45 avec un fort pendage vers le sud-est. Ce cisaillement de largeur métrique (3-10 mètres) s'observe presque en continu sur au moins 4 kilomètres sur la propriété Monster Lake. Il demeure ouvert autant vers le nord que le sud.

Le cisaillement aurifère se retrouve à l'intérieur de basaltes massifs et coussinés. On observe le long du cisaillement des intrusifs porphyriques et aplitiques. Localement le long du cisaillement, la roche prend un aspect lité et sédimentaire avec la forte présence de graphite (sondage M-45-11).

À l'intérieur du cisaillement, la roche est séricitisée, carbonatisée et injectée de quartz noir. Le cisaillement est localement riche en sulfures tels que la pyrite, pyrrhotite, chalcopyrite et sphalérite. L'or visible est occasionnellement observé dans le quartz noir. Il ne semble pas y avoir d'association directe entre la quantité de sulfures et la teneur en or.

Le cisaillement démontre une tectonique en compression et les veines de quartz noir qui s'y sont développées, dans des zones en tension de forme sigmoïdal, sont minces (moins de 1 mètres) boudinées et discontinues. Les veines pourraient s'être mieux développées là où le cisaillement contient peu de roches ductiles (sédiments).

Il serait important d'investiguer les secteurs où le cisaillement change d'orientation. Nous pourrions y découvrir des secteurs où la tectonique locale serait en tension plutôt qu'en compression. Ceci permettrait l'emplacement de veines de quartz plus importantes et l'or semble se retrouver dans le quartz.

De par sa continuité (4 kilomètres), sa géométrie (pendage fort) et son contenu en or, le cisaillement de Monster Lake est une cible d'exploration de choix. Dans son ensemble les teneurs sont relativement erratiques (or grossier) quoique le cisaillement soit systématiquement anomale en or.

Une approche systématique orientée est donc proposée. Ceci signifie que le cisaillement doit être exploré par forage systématiquement, en débutant ou en se concentrant sur les secteurs où des zones en tension peuvent s'être développées. On parle de secteur avec changement de direction, de pendage ou de lithologies hôtes. Les intersections avec d'autres structures sont également à investiguer.

Au cours de la dernière année, Corporation Tomagold a entrepris des travaux de cartographie, structure, métallurgie et du forage. Elle possède un camp sur le site consistant en un conteneur pour l'entreposage sécuritaire du matériel et des carottes minéralisées, une carothèque avec une scie à roche et une roulotte servant de bureau pour le géologue et de cuisine pour l'équipe.

À ce jour, la propriété Monster Lake fut le site de 271 sondages pour un total de 37 036 mètres, dont 46 (5 187 m) ont été forés par Stellar Pacific en 2010-2011 et 47 sondages (6 852 m) par TomaGold en 2012, les 178 sondages (24 997 m) restant ayant été réalisés par les opérateurs précédents. La plupart de ces forages n'atteigne pas le niveau 200 mètres vertical le long de la structure principale. Comme pour les forages des prédécesseurs, les intersections minéralisées sont en moyenne de teneurs relativement faibles (moins de 3 g/t

Au). Toutefois, le secteur 325 semble vouloir démontrer des teneurs et épaisseurs plus importantes que les autres indices.

L'auteur propose un programme d'exploration en deux phases totalisant \$1 150 000. La première phase consiste en 1 500 mètres de forages centrés sur les indices 325 et Mégane qui semblent, à ce stade de la connaissance, vouloir donner des teneurs plus élevées que sur les autres indices connus. Une majorité de forages visent à investiguer l'hypothèse d'une zone enrichie en or suivant une faible plongée vers le NE. Un forage vise à investiguer la minéralisation au niveau 300 mètres de profondeur. La phase 1 totalise \$300 000.

La phase 2, d'une valeur de \$850 000, consistera en 4 000 mètres de forage qui se répartiront entre la poursuite de la phase 1 et sur la zone 52 qui ne fut pas explorée par Tomagold.

TABLE DES MATIÈRES

SON	MAIRE	2
TAB	LE DES MATIÈRES	5
LIST	E DES FIGURES	6
LIST	E DES TABLEAUX	6
LIST	E DES PHOTOGRAPHIES	7
LIST	E DES ANNEXES	8
1	INTRODUCTION	9
2	RECOURS À D'AUTRES SPÉCIALISTES	11
3	DESCRIPTION ET LOCALISATION DE LA PROPRIÉTÉ	12
4	ACCESSIBILITÉ, CLIMAT, RESSOURCES LOCALES,	
	INFRASTRUCTURE ET PHYSIOGRAPHIE	19
5	HISTORIQUE	21
6	ENVIRONNEMENT GÉOLOGIQUE ET MINÉRALISATION	25
7	TYPES DE DÉPÔT	37
8	EXPLORATION	47
9	FORAGE	51
10	PRÉPARATION DES ÉCHANTILLONS, ANALYSES	
	ET SÉCURITÉ	65
11	VÉRIFICATION DES DONNÉES	68
12	TRAITEMENT DE MINERAIS ET	
	TESTS MÉTALLURGIQUES	76
13	ESTIMÉS DE RESSOURCES	77
14	PROPRIÉTÉS ADJACENTES	78
15	AUTRES DONNÉES ET INFORMATION PERTINENTES	80
16	INTERPRÉTATION ET CONCLUSIONS	81
17	RECOMMANDATIONS	89
18	BIBLIOGRAPHIE	94
19	DATE ET SIGNATURE	96
CER	RTIFICATION DE L'AUTEUR	97

LISTE DES FIGURES

LOCALISATION DE LA PROPRIÉTÉ

IMAGE SATELLITE DU SECTEUR

FIGURE 3.1:

FIGURE 3.2:

FIGURE 3.3:	CARTE DE CLAIMS	16
FIGURE 6.1:	GÉOLOGIE RÉGIONALE	29
FIGURE 6.2:	GÉOLOGIE ET FORAGES	30
FIGURE 8.1 :	MODÈLE 3D – CISAILLEMENT MONSTER LAKE	48
FIGURE 8.2 :	INTERPRÉTATION DES LENTILLES DE	
	QUARTZ EN PLAN	49
FIGURE 8.3 :	SECTION LONGITUDINALE	
	ZONES MÉGANE ET 325	50
FIGURE 9.1:	LOCALISATION DES FORAGES	62
FIGURE 11.1:	STANDARD SE58	72
FIGURE 11.2 :	STANDARD SK62	73
FIGURE 11.3 :	BLANCS	74
FIGURE 16.1 :	LOCALISATION DES SECTIONS	83
FIGURE 16.2 :	SECTION TYPE - ZONE 325	84
FIGURE 16.3 :	SECTION TYPE – ZONE ANNIE	85
FIGURE 16.4 :	SECTION TYPE – ZONE 52	86
FIGURE 16.5 :	SECTION TYPE – ZONE MÉGANE	87
FIGURE 16.6 :	SECTION TYPE – ZONE ERATIX	88
FIGURE 17.1 :	PLAN DES FORAGES PROPOSÉS	92
FIGURE 17.2 :	SECTION LONGITUDINALE AVEC	
	FORAGES PROPOSÉS	93
	LISTE DES TABLEAUX	
TABLEAU 3.1:	LISTE DES CLAIMS,	17
TABLEAU 5.1:	RÉSULTATS HISTORIQUES SIGNIFICATIFS	22
TABLEAU 9.1:	FORAGES COMPLÉTÉS PAR LA SOQUEM	51

14

15

TABLEAU 9.3:	LOCA	LISATION DES FORAGES DE STELLAR	53
TABLEAU 9.4:	MEILL	EURS RÉSULTATS DES FORAGES	
	DE ST	ΓELLAR	57
TABLEAU 9.5 :	COOF	RDONNÉES DES FORAGES DE TOMAGOLD	59
TABLEAU 9.6 :	MEILL	LEURS RÉSULTATS DES FORAGES	
	TOMA	AGOLD	60
TABLEAU 11.1:	ÉCHA	NTILLONS PRÉLEVÉS PAR L'AUTEUR	68
TABLEAU 11.2:	STAN	DARDS ET BLANCS DE TOMAGOLD	69
TABLEAU 11.3:	RÉ-AI	NALYSES, 2012	75
TABLEAU 17.1:	BUDG	GET PROPOSÉ	89
TABLEAU 17.2 :	FORA	GES PROPOSÉS 1	91
	LIS	TE DES PHOTOGRAPHIES	
PHOTOGRAPHIE S	5.1 :	INFRASTRUCTURE DE TOMAGOLD	23
PHOTOGRAPHIE (6.1:	ZONE DE DÉCAPAGE 325	32
PHOTOGRAPHIE (6.2:	VEINE DE QUARTZ NOIR	33
PHOTOGRAPHIE (6.3:	INDICE ERATIX	34
PHOTOGRAPHIE (6.4 :	OR VISIBLE DANS QUARTZ NOIR,	
		SONDAGE M-25-11	35
PHOTOGRAPHIE (6.5 :	DÉTAIL DE LA MINÉRALISATION	
		SONDAGE M-16-10	36
PHOTOGRAPHIE S	9.1 :	ENTREPOSAGE DE LA CAROTTE	
		DE STELLAR	55
PHOTOGRAPHIE S	9.2 :	SECTION DE FORAGES, ZONE 325	56
PHOTOGRAPHIE S	9.3 :	TUBAGE DE LA CAMPAGNE DE 2012	63
PHOTOGRAPHIE S	9.4 :	ENTREPOSAGE DE LA CAROTTE DE	
		2012	63
PHOTOGRAPHIE S	9.5 :	OR GROSSIER DANS LE SONDAGE	
		M-12-60	64

TABLEAU 9.2: RÉSULTATS DES FORAGES DE SOQUEM 51

LISTE DES ANNEXES

ANNEXE 1: JOURNAUX DE SONDAGE DE TOMAGOLD

ANNEXE 2 : CERTIFICAT D'ANALYSES DE L'AUTEUR

ANNEXE 3: PROTOCOLE D'ÉCHANTILLONNAGE ET D'ANALYSE DE

TOMAGOLD

ANNEXE 4: CERTIFICATS D'ANALYSE DE TOMAGOLD

1 INTRODUCTION

Au cours de la dernière semaine du mois d'octobre 2012, l'auteur a reçu le mandat de Corporation Tomagold Inc. (Tomagold) pour produire un rapport technique se qualifiant selon le règlement 43-101 sur les projets miniers au Canada pour la propriété Monster Lake située au sud-ouest de la ville de Chibougamau dans le canton Rale. La production du présent rapport fait partie du processus qui devrait permettre à Corporation Tomagold d'effectuer un financement sur le marché public.

Le projet Monster Lake n'a jamais fait l'objet d'un estimé de ressources et se qualifie donc comme un projet d'exploration peu avancé. L'auteur est familier avec le secteur sous étude ayant produit un rapport technique 43-101 sur ce même projet en novembre 2011.

L'auteur a visité le projet le 2 novembre 2012 en y accédant par une route forestière qui prend sa source directement à l'ouest de l'aéroport de Chibougamau. Il était accompagné par André Jean, le géologue sénior de projet pour Tomagold.

Douze échantillons furent alors prélevés sur des rejets provenant d'échantillons de carottes de récents forages de Tomagold (11 dans M-12-60 et 1 dans M-12-52). Les sites visités sur le projet sont les indices, Annie et 325. Les sondages révisés sont M-12-52, M-12-60 et M-12-71.

Ce rapport se base sur l'information technique fournie par Tomagold, principalement les résultats des travaux de cette dernière, le précédent rapport de l'auteur, les archives du MRNFQ (Examine) ainsi que sur des publications scientifiques du MRNFQ et autres institutions concernant l'environnement géologique régionale et sa métallogénie.

Le présent rapport ou des passages de ce dernier pourraient être présentés aux autorités règlementaires et boursières dans le cadre d'activités de financement de la société.

2 RECOURS À D'AUTRES SPÉCIALISTES

Les titres miniers de la compagnie sont gérés par Corporation Tomagold. La société a produit la carte de claims ainsi que la liste des titres miniers inclus dans le présent rapport (liste en format excel, intitulée TomaGold_Claims.xslx, datée du 1 novembre 2012 et produite par le géologue de la société André Jean). L'auteur a vérifié sur le site du gouvernement du Québec produit à cet effet (Gestim) que tous les titres miniers sont bien enregistrés au nom de Tomagold.

D'importants passages du présent rapport, se rapportant principalement à la géologie régionale, ont été tirés de publications gouvernementales. On notera en particulier le document du MRNFQ DV93-03 qui discute avec grands détails de la géologie régionale du secteur. L'auteur s'est également grandement inspiré d'un document provenant de Wikimetallogenica (Université Laval, Drolet MM, 2011) pour rédiger le chapitre discutant du Type de Dépôt.

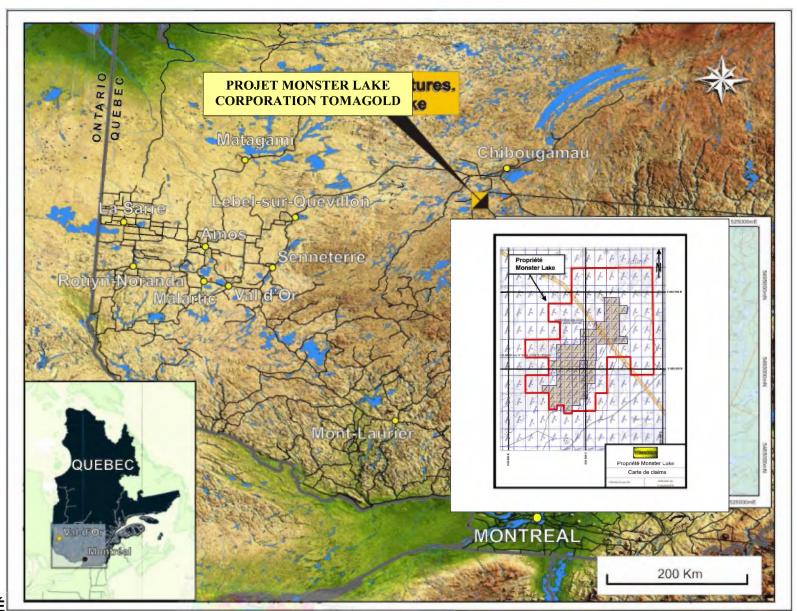
3 DESCRIPTION DE LA PROPRIÉTÉ ET LOCALISATION

En date du 29 avril 2011, Stellar Pacific Ventures Inc. (SPX) et Corporation Carbon2Green (CGN) signait une lettre d'entente pour l'acquisition par CGN des principaux actifs miniers québécois de SPX, soit les propriétés Monster Lake, Vassan et Urban Lake (la « Transaction ») qui constituait un changement dans les activités de CGN au sens de la Politique 5.2 – Changement dans les activités et prises de contrôle inversées de la Bourse de croissance TSX. La transaction fut finalisée en décembre 2011 et Carbon2Green a changé de nom pour devenir Corporation Tomagold (Tomagold).

Tomagold a acquis les droits sur la propriété Monster Lake en décembre 2011 suite à une entente avec Stellar Pacific Ventures qui transférait tous ses actifs Québécois à Tomagold en contrepartie de l'émission de 22 000 000 d'actions ordinaires de catégorie «A » de Tomagold d'une valeur réputée de 0,15\$.

La propriété se situe à environ 50 kilomètres au sud-ouest de la ville de Chibougamau et 25 kilomètres au sud de la ville de Chapais (**Figures 3.1 et 3.2**). Elle est facilement accessible par des routes forestières en excellent état. Elle est centrée sur les coordonnées UTM, nad 83 Zone 18U, 520 000E, 5 490 000N.

La propriété se compose de 114 titres miniers situés dans le canton Rale et couvrant une superficie de 3 383,81 hectares ou 33,84 km² (**Figure 3.3**). Une partie des claims fut acquise de Multi Ressources Boréal et l'autre partie fut acquise de G.L. Geoservice Inc. et Marc Bouchard. Sept claims furent acquis par Tomagold en avril 2012, de Stellar Pacific Ventures. Les droits requis pour conserver les titres miniers sont indiqués au **Tableau 3.1**.


La société Stellar a acquis un intérêt de 100 % dans la propriété de Multi Ressources Boréal en payant une somme de 185 000 \$, en émettant 1 185 000 actions ordinaires de la société aux vendeurs et en réalisant un minimum de 425 000\$ par année en travaux d'exploration pour les deux années de l'entente. Multi Ressources Boréal (le vendeur) détient une royauté équivalente à 1% NSR, rachetable pour \$500 000. Soquem détient également une royauté de 1% NSR sur ces titres. Ces claims sont enregistrés au nom de Tomagold.

La société Stellar a acquis un 100% d'intérêt dans le projet 325 (G.L. Géoservice et Bouchard) en payant \$35 000, en émettant 435 000 actions aux vendeurs et en complétant 175 000\$ de travaux d'exploration sur une période de 2 ans. Les vendeurs retiennent une royauté totale équivalente à 2% NSR dont 1,5% est rachetable pour \$1,5M. Ces claims sont enregistrés au nom de Tomagold.

La propriété se retrouve sur des terres appartenant à la couronne. Tomagold ne détient aucun droit de surface. Il n'existe toutefois aucune restriction pour l'accès à la propriété. Les travaux de terrain importants (forages, décapage) doit faire l'objet d'une demande de Permis d'Intervention en Forêt auprès du MRNFQ. L'obtention de ce permis prend environ deux semaines. Il n'y a aucun passif environnemental connu par l'auteur sur la propriété.

FIGURE 3.1

LOCALISATION DE LA

PROPRIÉTÉ

FIGURE 3.2 IMAGE SATELLITE DU SECTEUR

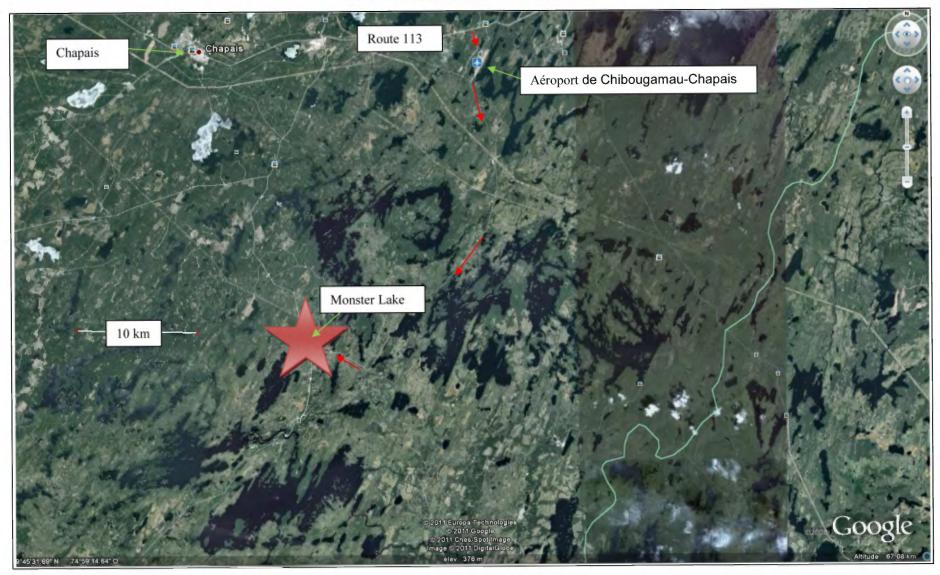


FIGURE 3.3 CARTE DE CLAIMS

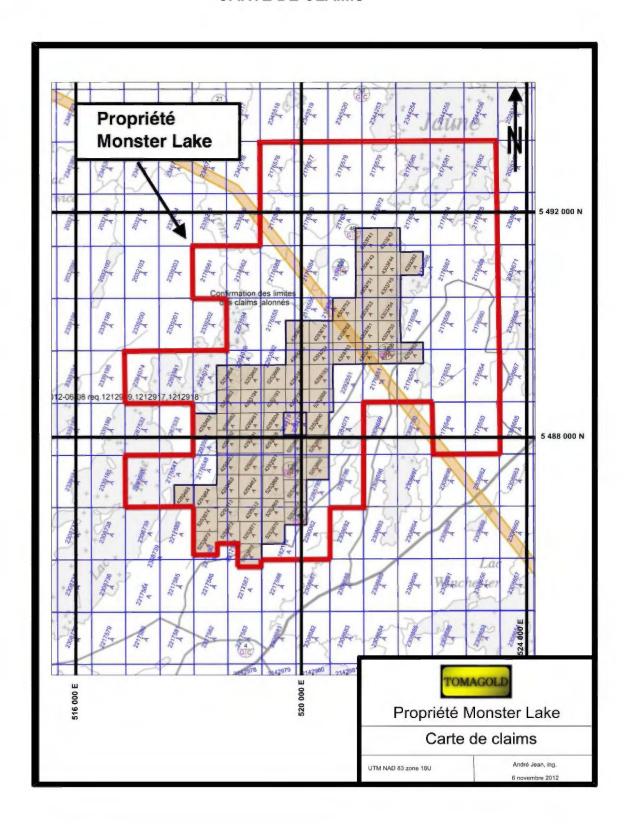


TABLEAU 3.1 LISTE DES CLAIMS

	Date	Date	Superficie		Travaux	Droits	
No titre	d'inscription	d'expiration	(Ha)	Excédents	requis	requis	Détenteur
2176547	2009-01-15	2013-01-14	42,22	0,00\$	1200	53	Tomagold Corp
2176548	2009-01-15	2013-01-14	22,21	0,00\$	500	27	Tomagold Corp
2176549	2009-01-15	2013-01-14	55,85	0,00\$	1200	53	Tomagold Corp
2176550	2009-01-15	2013-01-14	55,85	0,00\$	1200	53	Tomagold Corp
176551	2009-01-15	2013-01-14	40,92	0,00\$	1200	53	Tomagold Corp
176552	2009-01-15	2013-01-14	44,46	0,00\$	1200	53	Tomagold Corp
176553	2009-01-15	2013-01-14	55,84	0,00\$	1200	53	Tomagold Corp
176554	2009-01-15	2013-01-14	55,84	0,00\$	1200	53	Tomagold Corp
176555	2009-01-15	2013-01-14	47,50	0,00\$	1200	53	Tomagold Corp
176556	2009-01-15	2013-01-14	24,47	0,00\$	500	27	Tomagold Corp
176557	2009-01-15	2013-01-14	3,12	0,00\$	500	27	Tomagold Corp
176558	2009-01-15	2013-01-14	44,96	0,00\$	1200	53	Tomagold Corp
2176559	2009-01-15	2013-01-14	55,83	0,00\$	1200	53	Tomagold Corp
176560	2009-01-15	2013-01-14	55,83	0,00\$	1200	53	Tomagold Corp
176561	2009-01-15	2013-01-14	55,82	0,00\$	1200	53	Tomagold Corp
176562	2009-01-15	2013-01-14	55,82	0,00\$	1200	53	Tomagold Corp
176563	2009-01-15	2013-01-14	55,82	0,00\$	1200	53	Tomagold Corp
176564	2009-01-15	2013-01-14	55,82	0,00\$	1200	53	Tomagold Corp
2176565	2009-01-15	2013-01-14	44,58	0,00\$	1200	53	Tomagold Corp
2176566	2009-01-15	2013-01-14	33,05	0,00\$	1200	53	Tomagold Corp
2176567	2009-01-15	2013-01-14	55,82	0,00\$	1200	53	Tomagold Corp
2176568	2009-01-15	2013-01-14	55,82	0,00\$	1200	53	Tomagold Corp
2176569	2009-01-15	2013-01-14	55,82	0,00\$	1200	53	Tomagold Corp
2176570	2009-01-15	2013-01-14	55,81	0,00 \$	1200	53	Tomagold Corp
2176571	2009-01-15	2013-01-14	52,07	0,00 \$	1200	53	Tomagold Corp
2176572	2009-01-15	2013-01-14	37,21	0,00 \$	1200	53	Tomagold Corp
2176573	2009-01-15	2013-01-14	53,82	0,00 \$	1200	53	Tomagold Corp
2176574			55,81		_	53	Tomagold Corp
	2009-01-15	2013-01-14		0,00\$	1200		
2176575	2009-01-15	2013-01-14	55,81	0,00\$	1200	53	Tomagold Corp
2176576	2009-01-15	2013-01-14	55,80	0,00\$	1200	53 53	Tomagold Corp Tomagold Corp
2176577	2009-01-15	2013-01-14	55,80	0,00\$	1200		
2176578	2009-01-15	2013-01-14	55,80	0,00\$	1200	53	Tomagold Corp
2176579	2009-01-15	2013-01-14	55,80	0,00\$	1200	53	Tomagold Corp
2176580	2009-01-15	2013-01-14	55,80	0,00\$	1200	53	Tomagold Corp
2176581	2009-01-15	2013-01-14	55,80	0,00\$	1200	53	Tomagold Corp
2176582	2009-01-15	2013-01-14	55,80	0,00\$	1200	53	Tomagold Corp
2182172	2009-04-07	2013-04-06	22,93	0,00\$	500	27	Tomagold Corp
2284073	2011-04-12	2013-04-11	54,54	0,00\$	1200	53	Tomagold Corp
2284074	2011-04-12	2013-04-11	55,84	0,00\$	1200	53	Tomagold Corp
2284075	2011-04-12	2013-04-11	43,59	0,00\$	1200	53	Tomagold Corp
2284076	2011-04-12	2013-04-11	15,83	0,00\$	500	27	Tomagold Corp
2285785	2011-04-13	2013-04-12	19,86	0,00\$	500	27	Tomagold Corp
2285786	2011-04-13	2013-04-12	55,86	0,00\$	1200	53	Tomagold Corp
2290062	2011-05-04	2013-05-03	49,65	0,00\$	1200	53	Tomagold Corp
2292551	2011-06-02	2013-06-01	35,66	0,00\$	1200	53	Tomagold Corp
2293590	2011-06-06	2013-06-05	20,59	0,00\$	500	27	Tomagold Corp
293591	2011-06-06	2013-06-05	55,84	0,00\$	1200	53	Tomagold Corp
2293592	2011-06-06	2013-06-05	11,61	0,00\$	500	27	Tomagold Corp
293593	2011-06-07	2013-06-06	55,86	0,00\$	1200	53	Tomagold Corp
293594	2011-06-07	2013-06-06	55,83	0,00\$	1200	53	Tomagold Corp
2294781	2011-06-09	2013-06-08	8,05	0,00\$	500	27	Tomagold Corp
2294782	2011-06-09	2013-06-08	55,88	0,00\$	500	27	Tomagold Corp
5253863	2007-08-13	2013-08-12	16,00	0,00\$	500	27	Tomagold Corp
5253864	2007-08-13	2013-08-12	16,00	0,00\$	500	27	Tomagold Corp
5253865	2007-08-13	2013-08-12	16,00	0,00\$	500	27	Tomagold Corp

5253866	2007-08-13	2013-08-12	16,00	0.00\$	500	27	Tomagold Corp
5253867	2007-08-13	2013-08-12	16,00	0,00\$	500	27	Tomagold Corp
5253868	2007-08-13	2013-08-12	16,00	0,00\$	500	27	Tomagold Corp
5253869	2007-08-13	2013-08-12	16,00	0,00\$	500	27	Tomagold Corp
5253870	2007-08-13	2013-08-12	16,00	0,00\$	500	27	Tomagold Corp
5253871	2007-08-13	2013-08-12	16,00	0,00\$	500	27	Tomagold Corp
5253872	2007-08-13	2013-08-12	16,00	0,00\$	500	27	Tomagold Corp
5253873	2007-08-13	2013-08-12	16,00	0,00\$	500	27	Tomagold Corp
5253874	2007-08-13	2013-08-12	16,00	0,00\$	500	27	Tomagold Corp
5253875	2007-08-13:	2013-08-12	16,00	0,00\$	500	27	Tomagold Corp
5253887	2007-08-13	2013-08-12	16,00	0,00\$	500	27	Tomagold Corp
5253888	2007-08-13	2013-08-12	16,00	0,00\$	500	27	Tomagold Corp
5253890	2007-08-13	2013-08-12	16,00	0,00\$	500	27	Tomagold Corp
5253891	2007-08-13	2013-08-12	16,00	0,00\$	500	27	Tomagold Corp
5253892	2007-08-13	2013-08-12	16,00	0,00 \$	500	27	Tomagold Corp
					500	27	
5253893	2007-08-13	2013-08-12	16,00	0,00\$			Tomagold Corp
5253894	2007-08-13	2013-08-12	16,00	0,00\$	500	27	Tomagold Corp
4303741	1984-09-19	2013-08-14	16,00	17 296,21 \$	1000	27	Tomagold Corp
4303742	1984-09-19	2013-08-14	16,00	15 946,02 \$	1000	27	Tomagold Corp
4303743	1984-09-19	2013-08-14	16,00	13 525,83 \$	1000	27	Tomagold Corp
4303744	1984-09-19	2013-08-14	16,00	20 343,09 \$	1000	27	Tomagold Corp
4303745	1984-09-19	2013-08-14	16,00	20 798,00 \$	1000	27	Tomagold Corp
4303751	1984-09-19	2013-08-15	16,00	38 463,03 \$	1000	27	Tomagold Corp
4303752	1984-09-19	2013-08-15	16,00	4 800,43 \$	1000	27	Tomagold Corp
4303753	1984-09-19	2013-08-15	16,00	19 750,02 \$	1000	27	Tomagold Corp
4303754	1984-09-19	2013-08-15	16,00	14 113,77 \$	1000	27	Tomagold Corp
4303755	1984-09-19	2013-08-15	16,00	12 207,12 \$	1000	27	Tomagold Corp
4293162	1984-09-19	2013-08-16	16,00	5 635,09 \$	1000	27	Tomagold Corp
4293282	1984-09-19	2013-08-16	16,00	2 433,66 \$	1000	27	Tomagold Corp
4303761	1984-09-19	2013-08-16	16,00	0,00\$	1000	27	Tomagold Corp
4303762	1984-09-19	2013-08-16	16,00	31 363,40 \$	1000	27	Tomagold Corp
4303763	1984-09-19	2013-08-16	16,00	32 110,85 \$	1000	27	Tomagold Corp
4303764	1984-09-19	2013-08-16	16,00	0,00\$	1000	27	Tomagold Corp
4303765	1984-09-19	2013-08-16	16,00	5 435,55 \$	1000	27	Tomagold Corp
4293215	1984-09-19	2013-08-17	16,00	0,00\$	1000	27	Tomagold Corp
4293183	1984-09-19	2013-08-18	16,00	44 182,15 \$	1000	27	Tomagold Corp
4293184	1984-09-19	2013-08-18	16,00	47 878,34 \$	1000	27	Tomagold Corp
4293222	1984-09-19	2013-08-18	16,00	6 200,92 \$	1000	27	Tomagold Corp
4293223	1984-09-19	2013-08-18	16,00	15 489,23 \$	1000	27	Tomagold Corp
4293224	1984-09-19	2013-08-18	16,00	47 126,11 \$	1000	27	Tomagold Corp
4293192	1984-09-19	2013-08-19	16,00	38 786,68 \$	1000	27	Tomagold Corp
4293193	1984-09-19	2013-08-19	16,00	15 735,96 \$	1000	27	Tomagold Corp
4293194	1984-09-19	2013-08-19	16,00	0,00\$	1000	27	Tomagold Corp
4293504	1984-10-03	2013-08-27	16,00	0,00\$	1000	27	Tomagold Corp
4293505	1984-10-03	2013-08-27	16,00	15 825,05 \$	1000	27	Tomagold Corp
4293481	1984-10-03	2013-08-28	16,00	22 078,35 \$	1000	27	Tomagold Corp
4293482	1984-10-03	2013-08-28	16,00	8 617,87 \$	1000	27	Tomagold Corp
4293483	1984-10-03	2013-08-28	16,00	513,65\$	1000	27	Tomagold Corp
4293491	1984-10-03	2013-08-29	16,00	51 431,13 \$	1000	27	Tomagold Corp
4293492	1984-10-03	2013-08-29	16,00	16 021,99 \$	1000	27	Tomagold Corp
4293521	1984-10-03	2013-08-29	16,00	0,00\$	1000	27	Tomagold Corp
4293522	1984-10-03	2013-08-29	16,00	57 975,32 \$	1000	27	Tomagold Corp
4293523	1984-10-03	2013-08-29	16,00	14 609,57 \$	1000	27	Tomagold Corp
4293462	1984-10-03	2013-08-30	16,00	23 866,56 \$	1000	27	Tomagold Corp
4293463	1984-10-03	2013-08-30	16,00	3 667,23 \$	1000	27	Tomagold Corp
4293464	1984-10-03	2013-08-30	16,00	11 391,34 \$	1000	27	Tomagold Corp
4293465	1984-10-03	2013-08-30	16,00	10 590,15 \$	1000	27	Tomagold Corp
			16,00	2 525,00 \$	1000	27	Tomagold Corp
	1984-10-03	ZU13-U9-U1	L TO:UU				
4293512 4293513	1984-10-03 1984-10-03	2013-09-01 2013-09-01	16,00	8 457,76 \$	1000	27	Tomagold Corp

4 ACCESSIBILITÉ, CLIMAT, RESSOURCES LOCALES, INFRASTRUCTURE ET PHYSIOGRAPHIE

La propriété se situe à proximité des districts miniers de Chapais et Chibougamau. Elle est facilement accessible par la route 113 qui relie Chapais à Chibougamau. Immédiatement à l'ouest de l'aéroport, une série de routes forestières se dirigeant vers le sud atteignent la propriété après environ 25 km.

Le climat est typique de la forêt boréale québécoise, soit des hivers longs secs et rigoureux et des étés courts et également secs. Les périodes de pluies se retrouvent principalement en automne et au printemps. En hiver la température baisse sous les -30°C tandis qu'en été elle attein t parfois +30°C.

Des services sociaux, de santé et relatifs à l'industrie minière sont disponibles aux villes de Chibougamau et Chapais situées à moins de 40 km du projet. Une main d'œuvre qualifiée est également disponible dans la région. On retrouve des services de téléphones cellulaires, hydroélectricité, ferroviaires, transports routiers et autres à l'intérieur de 50 kilomètres du projet.

La région démontre un relief très faible. On note la présence de nombreux lacs et marécages. La forêt consistent en conifères variés dominés pas l'épinette noire et le mélèze dans les zones humides. La forêt a été récoltée sur presque toute la superficie de la propriété. La faune est typique de ce type de forêt avec la présence d'orignaux, ours noirs, renards, perdrix, lièvres, castors et nombreux petits mammifères.

On notera que la propriété est accessible toute l'année. Il n'y a aucune difficulté à travailler presque toute l'année. Les périodes problématiques sont; la fonte des neiges en mai et quelques semaines durant la chasse à l'orignal en automne. La propriété est suffisamment grande pour permettre le développement d'une opération minière si une ressource suffisante y était

délimitée. On retrouve sur le projet de nom	phreux lace qui nourraient convir de
source d'eau et de nombreuses routes d'accè	
source d'éad et de nombreuses routes d'acce	s carrossables toute l'arrilee.

5 HISTORIQUE

Les premiers travaux d'exploration dans la région dateraient du début des années 1950. La découverte du gisement Joe Mann, à l'hiver 1951, amorce une ère de prospection dans tout le secteur.

Les premiers travaux importants ne débuteront toutefois pas avant les années '60-70 avec la publication des premiers levés aériens de la région. Ainsi, les travaux de cette époque seront donc orientés sur la recherche de métaux de base sur les conducteurs Input qui sont nombreux sur le projet et ses environs.

Les premiers travaux d'importance sont effectués par Cominco entre 1975 et 1978. On effectuera différents levés géophysiques, géologiques sur plusieurs blocs de claims dans la région et deux forages sur le projet (W-78-10 abandonné à 43 m et W-78-10A d'une longueur de 182,9 m) (GM34348, GM32742, GN32745, GM32746, GM31615, GM32741). On découvrira alors l'indice appelé maintenant Cominco (1,0 g/t Au sur 3,5 m) et qui se retrouve sur la structure principale.

Entre 1978 et 1980, Mines Patino effectuera des travaux similaires avec des résultats similaires. Un seul forage (350 pieds) sera complété sur le projet dans le secteur appelé Indice Patino (R-1-1: 1,37 g/t Au sur 1,0 m) (GM 36464, GM36463, GM34727, GM33835, GM 33836).

Les véritables travaux d'exploration systématiques sur le projet débuteront en 1984 avec l'implication de la Soquem et la découverte de l'indice Eratix. Entre 1984 et 1995, cette société complétera de nombreux levés de terrain, des décapages et 105 forages totalisant plus de 16 400 mètres de carotte (GM42391, GM42557, GM43024, GM43345, GM 46027, GM50226, GM50535, GM51182, GM53050, GM53351, GM53911, GM53912). Soquem découvrira la nature linéaire de la structure principale avec la mise à jour de nombreux indices (Eratix,

Annie, 325) et la découverte d'autres structures secondaires (Indice 52, Berta, 4 chemins, 3 chemins). Les résultats de ces travaux de forages sont décrits dans le chapitre sur le forage du présent rapport.

TABLEAU 5.1
RÉSULTATS HISTORIQUES SIGNIFICATIFS

Indice	Teneur	Longueur	Commentaires		
	g/t Au	m			
Eratix	27,55	4,20	Sondage 993-85-08		
	4,05	3,90	Sondage 993-85-11		
Annie	14,70	1,50	Sondage 993-94-23		
	13,00	2,90	Sondage 993-94-23		
	1,16	12,70	Sondage 993-94-17		
Zone 52	3,12	2,70	Sondage 993-95-66		
	6,30	5,10	Sondage 993-95-66		
Nouvel	2,57	5,09	Sondage 86-25		
4 Chemins	1,35	0,95	Rainures		
Patino	1,37	1,00	Sondage R-1-1		
3 Chemins	106,70	3,50	Échantillon choisi		
Cominco	1,00	3,50	Sondage 78-10A		
993-91-33	4,57	1,00	Sondage 993-91-33		

On notera que les orientations des structures minéralisées sont assez bien connues puisqu'elles affleurent à plusieurs endroits. Les forages ont donc été positionnés adéquatement pour obtenir des intersections représentatives de ces dernières. En général, les épaisseurs vraies seraient entre 65 à 85% des longueurs en carotte.

Stellar Pacific Ventures a exploré la propriété Monster durant près de 2 années (2009-2011). Elle a entrepris des travaux de compilation, un échantillonnage d'humus, de vastes travaux de décapage, de rainurage et finalement du forage. Elle possède un camp sur le site consistant en un conteneur pour l'entreposage sécuritaire du matériel et des carottes minéralisées, une carothèque avec une scie à roche et une roulotte servant de bureau pour le géologue et de cuisine pour l'équipe (**Photographie 5.1**).

PHOTOGRAPHIE 5.1 INFRASTRUCTURE DE TOMAGOLD

Stellar a commencé à explorer la propriété Monster Lake en effectuant une vaste compilation des données historiques et en complétant un levé d'humus sur le centre-sud de la propriété, le long de près de 4 km des structures aurifères les plus prometteuses. Le levé est centré sur un conducteur EM, identifié par la Soquem, qui se prolonge sur plusieurs kilomètres et qui correspond bien à la minéralisation. Au cours du moins de juin 2010, on a couvert 39 lignes espacées de 100 mètres sur environ 500 mètres avec des stations aux 25 mètres (superficie de 4 000m X 500 m environ). Plus de 900 échantillons furent prélevés.

Les résultats du levé furent relativement erratiques et aucune structure n'en est ressortie. Ce levé fut donc peu productif et eu peu d'impact sur le

développement futur du projet. La société a donc décidé de poursuivre son effort pour mettre à jour les structures aurifères en effectuant du décapage semi-systématique le long de l'axe des structures connues. Ce travail obtint beaucoup plus de succès puisque les structures sont relativement linéaires (du moins dans la demie sud du projet) et qu'elles purent être suivies sur plusieurs kilomètres. Stellar a décapé une superficie d'environ 14 000 m² distribués sur 6 zones (Annie, 325, Mégane, Mégane sud, Bertha et Gabrielle).

L'échantillonnage en rainure effectué sur les décapages ne fut pas complété de façon systématique ni à intervalle régulier. Il ne nous donne donc pas une idée précise de la teneur moyenne des veines exposées. Toutefois, ce travail aura permis de localiser avec précision les structures aurifères favorables et il fut donc d'une grande utilité pour la localisation des forages de Stellar.

Les conditions de terrain à Monster Lake sont favorables au décapage puisque le mort terrain est généralement peu épais (quelques mètres), sauf pour les zones 325 et Annie. C'est un outil important pour aider les géologues à comprendre la géométrie et le patron d'altération associés aux structures aurifères. Toutefois, il serait important de compléter les rainures selon un patron plus régulier de façon à pouvoir les utiliser lors d'un éventuel estimé de ressources.

Environ 650 échantillons en rainure ont été récoltés par l'équipe de Stellar dans 6 zones de décapages distinctes. Ces échantillons sont en moyenne de 1 mètre de longueur. Les teneurs varient de 0,001 à 7,5 g/t Au avec une moyenne de 0,15 g/t Au. Cette teneur ne représente pas la moyenne de la veine puisqu'il s'agit d'un mélange de veine et gangue minéralisées.

La société Stellar a également complété deux programmes de forage qui sont discutés au chapitre 9 du présent rapport technique (46 sondages, 5 187 mètres).

6 ENVIRONNEMENT GÉOLOGIQUE ET MINÉRALISATION

Géologie Régionale

Le texte suivant provient du rapport DV 98-03 publié par le Ministère des Ressources Naturelles et de la Faune (MRNFQ). Il s'intitule « Compilation et Synthèse Géologique et Métallogénique du Segment de Caopatina » (Dion et Simard, 1995):

Toutes les roches de la région appartiennent à la province du Supérieur et sont d'âge Archéen à l'exception des dykes de diabase dont l'âge est Protérozoïque. La Formation d'Obatogamau, à la base de la séquence stratigraphique, représente une vaste plaine sous-marine de basalte tholéitique de 3 à 5 km d'épaisseur et d'au moins 150 km d'extension latérale. La présence de phénocristaux de plagioclases caractérise cette unité.

La Formation d'Obatogamau comprend également les membres des Vents et de Phooey. Le Membre des Vents représente un édifice volcanique mafique-felsique de 2 à 2,5 km d'épaisseur constitué de cinq unités felsiques interstratifiées avec des coulées basaltiques et des filons-couches de gabbro de la Formation d'Obatogamau. Les unités inférieures témoignent de la construction de l'édifice volcanique, tandis que l'unité supérieure, composée de grès et de conglomérats volcanogènes, résulte de sa destruction. Le Membre Phooey est peu documenté. Il comprend une séquence de volcanoclastiques représentant un centre volcanique intermédiaire à mafique localisé dans la partie sud-est de la région.

La Formation d'Obatogamau est surmontée par la Formation de Caopatina, une séquence de roches sédimentaires de 1 à 2 km d'épaisseur résultant de l'érosion des roches volcaniques. Celle-ci se compose de grès, de conglomérats et d'argilites interlités localement avec des tufs cendreux et des coulées de basalte, lesquels témoignent d'une activité volcanique synchrone à la sédimentation.

L'équivalent métamorphisé de la Formation de Caopatina, à l'est du pluton de Surprise, a été assigné à la Formation Messine.

À l'extrémité ouest de la région, la Formation d'Obatogamau a été introduite par le Complexe Anorthosique de la Rivière Opawica. Cette intrusion stratiforme résulte de la cristallisation fractionnée d'un magma tholéiitique et ses caractéristiques morphologiques et chimiques suggèrent une affinité avec les basaltes de l'Obatogamau.

Les intrusions de granitoïdes de la région appartiennent à deux classes : les plutons synvolcaniques, qui occupent souvent le cœur des anticlinaux régionaux, et les plutons syntectoniques. Les intrusions synvolcaniques, typiquement polyphasées, se sont mises en places avant la déformation régionale et sont liées à la genèse des séquences volcaniques. Le complexe Eau Jaune, par exemple, représente vraisemblablement la chambre magmatique qui a alimenté le centre felsique du Membre des Vents. La mise en place des intrusions syntectoniques a été contrôlée par la déformation régionale. Elles montrent communément une forme allongée parallèle à la fabrique régionale et se sont généralement introduites au contact des plutons synvolcaniques et des roches supracrustales.

Aspects structuraux

La région a été affectée par un raccourcissement nord-sud lors de l'orogenèse Kénoréenne qui a amené la production des plis régionaux et le développement de la schistosité principale E-O. Cette phase de déformation est également à l'origine des grands corridors de cisaillement reliés aux failles E-W et aux failles ductiles-cassantes à cassantes NE qui affectent le segment Caopatina. Les roches sont aussi affectées par des failles cassantes tardives NE-NNE probablement reliées à l'orogène grenvillien. Les évidences d'une phase de déformation antérieure à la déformation principale ayant produit des plis nord-sud sans schistosité ont également été retracés à divers endroits dans la bande.

Minéralisations

Le potentiel minéral; du segment de Caopatina est mis en évidence par la présence de la mine Joe Mann et d'une quantité importante d'indices aurifères et en métaux usuels dispersés tout le long du segment. Mentionnons également la présence des gisements aurifères du lac Shortt et du lac Bachelor, ainsi celle du gisement Zn-Pb-Ag de Coniagas situés dans ce même segment immédiatement à l'ouest du secteur.

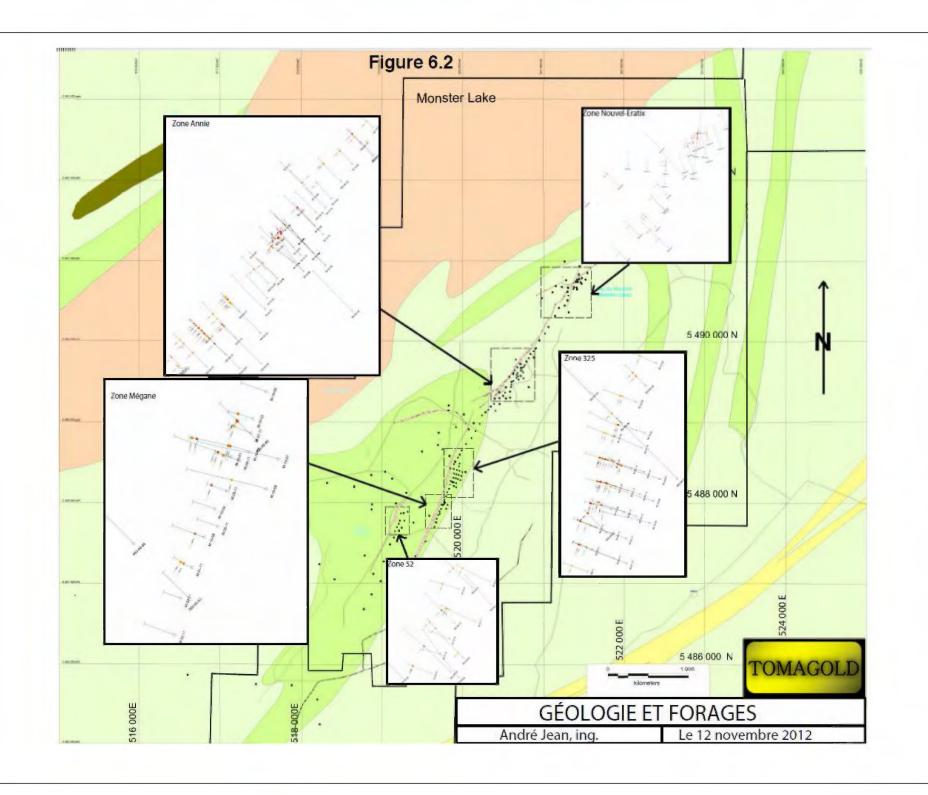
Minéralisations de métaux usuels

Ces types de minéralisations sont généralement peu importants et l'information disponible est rare et de qualité douteuse. Il est tout de même possible de subdiviser ces indices en 4 catégories principales :

- Minéralisations de Cu±Zn±Au±Ag de type sulfures massifs volcanogènes associées aux édifices volcaniques mafiques-felsiques;
- Minéralisations de Zn±Cu±Au±Ag dans des laves mafiques cisaillées, des roches sédimentaires ou des tufs graphiteux;
- Minéralisations de Cu±Au±Ag±o filoniennes liées à des zones de cisaillement E-W ou NE dans des roches volcaniques mafiques et les intrusions associées.
- 4. Minéralisations magmatiques de Cu-Ni±EGP dans des roches volcaniques mafigues et les intrusions associées.

Minéralisations aurifères

Les indices aurifères ont été regroupés en quatre catégories principales basées sur la nature des lithologies encaissantes et sur le contexte structural. L'une d'elles peut être divisée en deux sous-groupes en tenant compte du type de minéralisation présente. À la suite de nos travaux de compilation, nous proposons donc le modèle de classification suivant :


- Minéralisations aurifères liées à des cisaillements E-W (subparallèles à la stratification) dans les roches volcaniques et les intrusions mafiques associées :
 - a. Minéralisations du type veines de quartz et sulfures;
 - b. Minéralisations du type faible dissémination de pyrite;
- Minéralisations aurifères liées à des cisaillements nord-est et nord-ouest recoupant des roches volcaniques et des intrusions mafiques associées;
- 3. Minéralisations aurifères encaissées dans des intrusions intermédiaires à felsiques;
- 4. Minéralisations aurifères encaissées dans des roches volcaniques felsiques, des roches sédimentaires plus ou moins graphitiques et/ou à des formations de fer.

La propriété Monster Lake comprend principalement des basaltes et filons couches gabbroïques d'affinité tholéiitique de la Formation de Obatogamau (Figure 6.1). Un large batholithe syn-tarditectonique granodioritique occupe sa bordure ouest. Selon certaines interprétations basées sur les levés Input, la propriété serait centrée sur un pli dont l'axe serait d'orientation N45. Incidemment, le cisaillement qui est l'hôte de la minéralisation aurifère sur le projet se trouve à correspondre « grossièrement » avec l'axe de ce pli. Cet indice serait donc du type 2 selon la nomenclature proposé ci-haut.

Ainsi, la structure minéralisée qui englobe la majorité des indices aurifères sur le projet est un cisaillement linéaire de direction N30-N45, visible sur environ 4 kilomètres (**Figure 6.2**). Le cisaillement se retrouve principalement dans des basaltes coussinés ou massifs, à proximité de dykes de porphyres et d'aplite. Une composante sédimentaire mineure (riche en graphite) pourrait correspondre

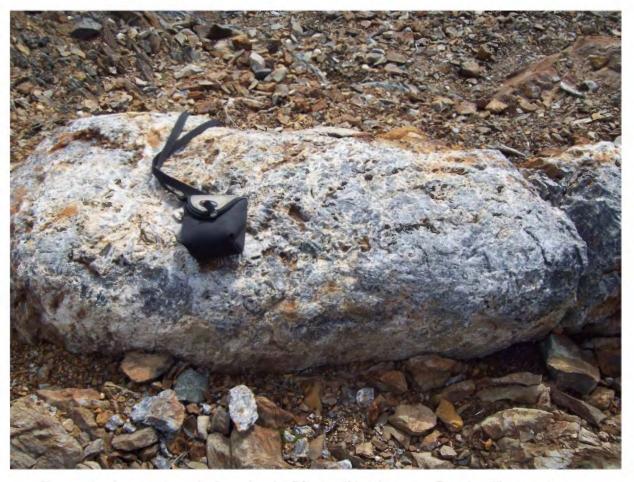
FIGURE 6.1 GÉOLOGIE RÉGIONALE

avec le cisaillement, du moins localement (sondage M-45-11).

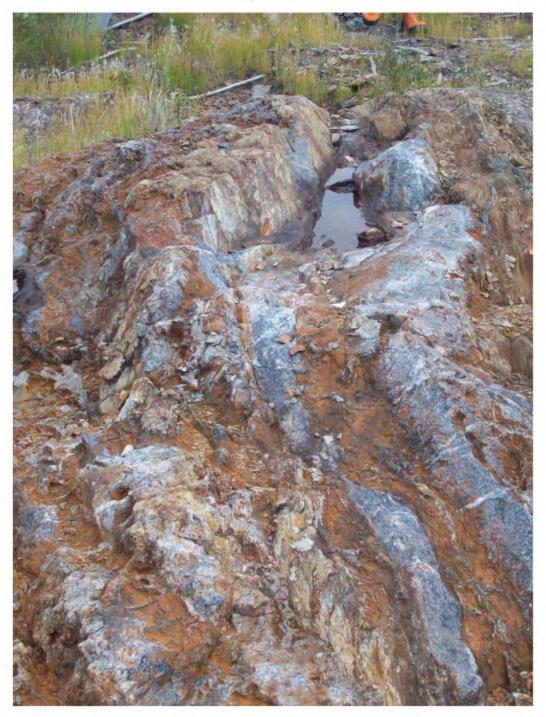

Le cisaillement est d'une largeur variant de 3 à 10 mètres (**Photographie 6.1**). À l'extérieur de sa zone d'influence les roches sont peu déformées. À l'intérieur du cisaillement, la roche est fortement séricitisée, carbonatée et injectée de quartz gris ou noir (**Photographies 6.2 à 6.5**). Il est localement fortement enrichi en sulfures (pyrite>pyrrhotite>chalcopyrite>sphalérite). Le quartz est clairement boudiné et les veines tendent à être minces (moins de 1 mètres) et discontinues (visible sur 5-15 mètres). Toutefois, le cisaillement pour sa part est très continu et rectiligne. Son pendage est généralement fort vers l'est ou sub-vertical.

L'or visible n'est pas rare en forage ou en affleurement (zones de décapage). Lorsque présent, il apparait systématiquement dans le quartz noir (**Photographie 6.4**).

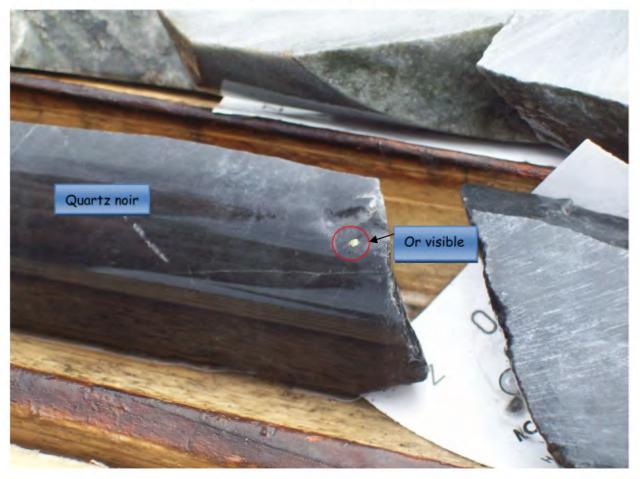
De nombreux décapages ont été complétés par Soquem et Stellar le long de la structure minéralisée principale et sur quelques autres également. La structure principale semble relativement continue et bien développée sur toute sa longueur visible (environ 4 kilomètres). Elle pourrait s'étendre autant au nord que vers le sud. L'échantillonnage en rainure non-systématique effectué sur ces zones de décapage ne nous permet toutefois pas de calculer une teneur moyenne. Toutefois, il est clair que les zones riches (plus de 5 g/t Au sur au moins 2 mètres) sont minoritaires.


La structure principale demeure étonnante de par sa continuité et son contenu systématiquement anomal en or. Les structures secondaires sont moins bien définies (exemple : structure 52) et possiblement plus difficiles à suivre.

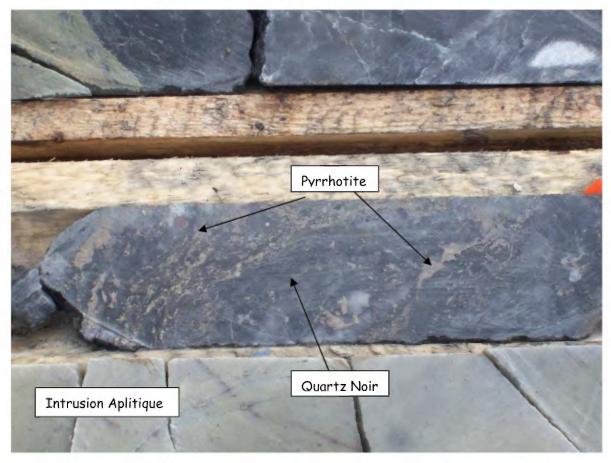
PHOTOGRAPHIE 6.1 ZONE DE DÉCAPAGE 325


On note le contenu important en sulfures à l'intérieur du cisaillement. On notera également les lentilles discontinues de quartz noir.

PHOTOGRAPHIE 6.2 VEINE DE QUARTZ NOIR


Exemple de quartz noir de près de 50 cm d'épaisseur. Ces lentilles sont traçables sur des longueurs métriques à décamétriques. Les épaisseurs des veines individuelles dépassent rarement 1 mètre.

PHOTOGRAPHIE 6.3 INDICE ERATIX


Injection de multiples veines de quartz noir à l'intérieur d'un ensemble très carbonaté. De l'or visible a été rapporté dans ce secteur mais l'auteur n'a pas retrouvé l'endroit précis.

PHOTOGRAPHIE 6.4
OR VISIBLE DANS QUARTZ NOIR, SONDAGE M-25-11

Des masses de quartz gris avec sulfures sont également présentes sur la propriété (indice Berta). Le quartz gris est stérile. Ces masses semblent se retrouver directement dans la charnière du pli interprété et les pendages sont erratiques et généralement faible. Elles semblent distinctes du cisaillement aurifère précédemment décrit.

PHOTOGRAPHIE 6.5
DÉTAIL DE LA MINÉRALISATION, SONDAGE M-16-10

Le cisaillement pricipal es très riche en sulfures, autant dans les veines de quartz (photo ci-haut) que dans la gangue (basalte, possiblement sédiments fins) intensément déformée.

7 TYPES DE DÉPÔTS

Les gisements de filons de quartz aurifères orogéniques sont associés à des terranes métamorphiques de tous âges. Toutefois, les observations faites à l'échelle mondiale indiquent que ces minéralisations aurifères se retrouvent, la plupart du temps, dans les ceintures de roches vertes Archéennes ou, moins fréquemment, dans d'autres ceintures métamorphiques plus récentes. Ces mêmes observations indiquent une forte association entre ce type de minéralisation avec les roches métamorphiques du faciès des schistes verts. Il est également possible de trouver ces filons en association avec d'autres faciès métamorphiques, mais cela est plus rare (Groves et al., 1998).

Ces gisements sont classés dans les gîtes d'affiliation hydrothermale puisque ce sont des fluides métamorphiques de grande profondeur, issus du processus d'accrétion, qui ont transporté l'or et se sont créés un chemin dans la croûte en empruntant d'importantes failles ou zones de déformations. Tout au long de leur parcours, ces fluides ont dissous divers éléments, dont l'or, dans un assemblage de roches comprenant des éléments précurseurs riches en or. Les fluides ont ensuite précipité sous forme de veines ou ont remplacé les roches encaissantes dans des structures de deuxième ou de troisième ordre, à des niveaux crustaux supérieurs, selon un succession de cycles liés à des variations de pression hydrostatique, de température, de pH ou d'autres paramètres physico-chimiques (Dubé et Gosselin, 2007).

En 2005, ces gisements produisaient environ 30% de l'or mondial grâce, notamment, aux gisements du bouclier canadien et du craton australien du Yilgarn (Jébrak et Marcoux, 2008).

Le plus gros gisement de filons de quartz aurifères prenant place dans une ceinture de roches vertes est situé en Australie, dans le complexe Golden Mile à Kalgoorlie. Il contient plus de 1800 tonnes d'or. Le deuxième gisement de

même type le plus important est celui de Hollinger-McIntyre situé à Timmins en Ontario, Canada, qui contient 987 tonnes d'or (Dubé et Gosselin, 2007). La teneur moyenne des filons de quartz aurifères dans des roches vertes est comprise entre 5 à 15 g/t Au. Toutefois, le tonnage de minerai peut énormément varier, allant de quelques milliers de tonnes à plus de 100 millions de tonnes de minerai (Dubé et Gosselin, 2007).

La minéralogie des gisements aurifères de veines de quartz-carbonates dans des ceintures métamorphiques est constante et prévisible au sein de la plupart des dépôts minéralisés. L'abondance de minéraux sulfurés dans ces veines peut aller de trace à un maximum de 3 à 5% (volume), ce qui est le cas de la plupart des gîtes orogéniques. Il est possible de retrouver localement des amas de sulfures massifs, dans les veines ou dans des zones de remplacement. L'arsénopyrite est le sulfure le plus commun dans les gîtes ayant comme encaissant des métasédiments, tandis que la pyrite se retrouve dans des dépôts encaissés par des roches mafiques ou des granitoïdes.

En général, la proportion d'or et d'argent dans ce type de gisement est de 5 or pour 1 argent ou encore 10 pour 1. Les hautes teneurs en or sont souvent associées à des roches carbonatées, et le matériel carbonaté, dans la plupart des veines des quartz-carbonates, est l'endroit où se retrouve l'or visible. Les hautes teneurs en or ne sont pas nécessairement associées avec les plus grandes abondances de minéraux sulfurés. L'or peut se trouver dans les veines de quartz-carbonate, dans les halos d'altération autour de veines stériles ou de basse teneur, ou encore dans les deux environnements, tout dépendant du mécanisme de précipitation de l'or.

En ce qui concerne les minéraux de gangue, il y a généralement : quartz, albite, micas blancs, fuschite, roscoelite, chlorite, tourmaline, biotite et minéraux carbonatés. Les carbonates sont les minéraux de gangues les plus communs, après le quartz. Les carbonates dépassent rarement 5 à 15% volume des veines

minéralisées. Des minéraux issus des phases hydrothermales oxydées, comme la magnétite, l'hématite et/ou l'anhydrite sont présents dans quelques gros gisements.

La minéralisation est fortement contrôlée par les structures en place. Les gisements sont normalement localisés dans des structures du second et du troisième ordre, la plupart du temps à proximité d'une zone de déformation importante, comme une faille d'échelle crustale. Les structures dans lesquelles la minéralisation se retrouve sont souvent près de la transition du domaine ductile au domaine cassant (Jébrak et Marcoux, 2008). Selon Groves et al. (1998) les types de structures qui peuvent être rencontrés sont très variés et les structures suivantes sont souvent retrouvées :

- Fractures cassantes ou zones de cisaillements ayant un angle peu à très prononcé;
- Fractures tabulaires, stockwerk ou zones bréchiques dans des roches compétentes;
- · Zones foliées (ombres de pression);
- Charnières de plis dans une séquence de turbidites ductiles.

Les structures minéralisées présentent généralement peu de déplacement syn et post-minéralisation, mais les gisements ont souvent une profondeur de plusieurs centaines de mètres (Groves et al. 1998). L'épaisseur des veines varient énormément, allant de quelques centimètres à 5 mètres et elles peuvent s'étendre sur des distances allant de 10 à 1 000 mètres. L'extension verticale d'un gisement est souvent de plus de 1 kilomètre et peut même atteindre 2.5 kilomètres (Dubé et Gosselin, 2007).

Ce type de gîte est exclusivement compris dans des terranes de roches métamorphisées suite à un orogène, comme le laisse croire le nom du type de gîtes (veines de quartz aurifère orogénique). Les veines de quartz aurifère se

retrouvent donc dans des roches métamorphiques de différents faciès, mais comme cité précédemment, majoritairement dans des roches métamorphiques du faciès des schistes verts. C'est donc le protolithe de ces roches métamorphiques qui diffèrent.

La lithologie de l'encaissant peut être très variée : volcanites tholéiitiques (Yellowknife, Timmins, Kalgoorlie), intrusions felsiques à mafiques, voire alcalines (Timmins), sédiments ferrifères (Cuiaba) (Jébrak et Marcoux, 2008).

On croit que les dépôts riches en or dans des veines de quartz dont il est question se seraient généralement formés ou remobilisés en même temps que la déformation, le métamorphisme et le magmatisme granitique ayant affectés un environnement de marges convergentes d'avant-arc. Plus précisément, ces filons auraient pris place pendant l'épisode orogénique qui aurait produit ces roches déformées et modeler la géométrie finale des terranes métamorphiques dans lesquelles les ceintures orogéniques se trouvent (Groves et al. 2003).

Un autre élément structural semble nécessaire à la création de ces gisements, soit une faille régionale de dimension importante (de plusieurs centaines de kilomètres de long et d'une centaine de mètres de large). Ces failles se présentent rarement seules et elles sont avoisinées par des structures présentant une multitude d'évènements de déformations. Ils peuvent souvent marquer une zone de sutures suite à la collision (Goldfarb et al, 2005). L'environnement géodynamique dans lequel ces gisements prennent place est certainement un des éléments sur lesquels presque tous s'entendent : il doit y avoir un épisode tectonique majeur.

À l'échelle d'un district minier, les dépôts compris dans des veines de quartzcarbonates sont associés avec une grande variété d'altérations carbonatées, souvent distribués le long de zones de faille majeure et associés à des structures accessoires. À l'échelle d'un gîte, la nature, la distribution et l'intensité des altérations sont majoritairement contrôlées par la composition et la compétence des roches encaissantes ainsi que leur degré de métamorphisme (Dubé et Gosselin, 2007).

Généralement, dans les ceintures de roches vertes, les halos d'altérations proximales sont zonés et caractérisés par de la ferro-carbonatation et de la séricitisation, avec de la sulfuration à la lisière immédiate des veines. (Dubé et Gosselin, 2007). Les altérations carbonatées comprennent la plupart du temps les minéraux suivants : ankérite, dolomite ou calcite. Les sulfures produits par l'altération sont généralement les suivants : pyrite, pyrrhotite, arsénopyrite. Le métasomatisme alcalin produit de la séricite et plus rarement de la fuschite, de la biotite, des feldspaths potassiques et les minéraux mafiques sont fortement chloritisés. Des amphiboles ou du diopside peuvent apparaître progressivement à des niveaux plus profonds de la croûte et les minéraux carbonatés se font plus rare (Groves et al. 1998).

L'âge des gisements de veines quartz aurifères orogéniques est intimement lié avec l'histoire tectonique de la planète. En effet, parce qu'ils sont directement reliés à des épisodes de subductions, c'est lors de la fermeture d'océans qu'ils se seraient formés. Ainsi, il est possible de supposer que ces gisements aurifères se sont formés au même moment.

Les gisements se sont formés il y a plus de 3 milliards d'années, de manière épisodique à partir du milieu de l'Archéen au récent Précambrien, et continuellement durant le Phanérozoïque (Goldfarb, 2001). Toutefois, il y a très peu de gîtes datant du milieu de l'Archéen qui ont été conservés. Le craton du Kaapvaal en Afrique du sud est une exception et se serait formé il y a 3,1 milliards d'année. La croûte de l'Archéen tardif a depuis longtemps été reconnue comme un environnement très favorable aux gîtes orogéniques. Une grande partie des ressources mondiales en or se trouve dans ces terrranes Archéennes dans l'ouest de l'Australie, en Inde, dans le sud et le centre de l'Afrique, dans la

partie Nord de l'Amérique du sud ainsi que dans le centre de l'Amérique du Nord (Goldfarb, 2001).

La croissance importante des masses continentales s'est poursuivi jusqu'à 1,9 - 1,8 milliards d'année. Le Paléoprotérozoïque a donc également été une période où la formation de minéralisations aurifères orogéniques a été possible. Des gisements importants ce sont entre autres formés dans des cratons de Afrique de l'Ouest et de l'Amazonie, probablement dans des régions crustales relativement adjacente.

Suite aux nombreux épisodes orogéniques survenues, la croûte continentale s'est stabilisé pour ensuite connaître une longue période d'extension, des conditions peut favorable pour la formation de minéralisation aurifère orogénique. Alors, de 1,6 à 0,57 milliards d'années, à peu près pas de filons de quartz aurifères de ce type se sont formés.

De la fin du Néoprotérozoïque et durant tout le Paléozoïque, les orogènes sont revenus marquer la croûte continentale. Particulièrement le long des marges actives du continent Gondwana, par exemple près de ce qui est aujourd'hui l'est de l'Australie, la Nouvelle-Zélande et l'Antarctique.

Durant le Mésozoïque (250 à 60 millions d'années), le démantèlement du super continent Pangea est associé avec le développement du bassin de l'océan Pacifique ainsi que la formation d'un énorme système de subduction le long des marges de l'océan. La cordillère des Andes ne contient toutefois pas de gîtes orogéniques, mais d'autres gîtes d'or épithermaux y sont présents. Cela est probablement du au type de marge continentale du secteur, qui n'est pas caractérisée par un vaste environnement d'avant-arc (Goldfarb, 2001). Toutefois, l'ouest de l'Amérique du Nord ainsi que l'est de la Russie et de la Chine contiennent une kyrielle de gîtes aurifères formés grâce aux orogènes qui y ont pris place.

Les gîtes filons de quartz aurifères orogéniques sont des gisements d'affiliation hydrothermale, alors les fluides ont joué un rôle primordial lors de leur formation. Sans ceux-ci, ils n'existeraient tout simplement pas. Toutefois, la source de ces fluides porteurs d'or est encore débattue.

Une étude effectuée sur la géochimie des inclusions fluides, dans les minéraux des veines de quartz, dans divers gisements d'or orogéniques à travers le monde a pu identifier la composition présumée du fluide hydrothermal qui transporterait l'or. Dans la majorité des gisements mondiaux, le même fluide, ayant une salinité peu élevé et contentant une concentration de CO2 peu élevée à modérée, a été retrouvé. C'est ce fluide qui a été identifié comme transporteur d'or, une hypothèse qui semble généralement bien acceptée. Toutefois, ce fluide ne vient jamais seul et il est toujours accompagné par d'autres. Ceux-ci aurait par contre joué des rôles différents, par exemple, des fluides qui se sont formés suite à des changements de pression ou de température à proximité des veines et qui n'auraient pas été mêlés à l'apport aurifère des veines de quartz. Parfois le fluide permettant la formation de la minéralisation aurifère n'est pas présent et cela est probablement due au fait que parfois la recristallisation serait trop importante et qu'il est impossible de retrouver des inclusions fluides de celui-ci dans les minéraux (Ridley et Diamond, 2000).

Même si le fluide coupable semble avoir été trouvé, la source de celui-ci demeure encore mal comprise. Même si une collecte importante de données a été faite sur plusieurs gisements et que cela semblerait suffisant pour déduire la provenance de ces fluides, il est difficile de bien identifier les éléments chimiques ou les isotopes permettant d'identifier avec certitude la source. Il faut essayer d'identifier les éléments qui pourraient permettre d'identifier la roche source et ce sans que le long parcours que le fluide parcours n'ait d'influence, puisque cela lui donne amplement l'occasion de se faire « contaminer » par l'environnement

ambiant. Cela peut s'avérer fort complexe et il s'agit d'une analyse exhaustive, puisqu'il y a une multitude d'environnements différents.

Selon Ridley et Diamond (2000), deux différents types de roches pourraient être à l'origine du fluide : métamorphique ou magmatique. Le premier modèle serait des fluides générés par une dévolatilisation métamorphique de roches mafiques à un faciès des schistes verts à amphibolite. Toutefois, les roches mafiques ne se retrouve pas toujours dans les terranes contenant des veines de quartz aurifère. Une autre hypothèse pourrait peut être également expliquée ce phénomène et serait généré par des réactions calcaire-schistes et que plusieurs types de roches pourraient générer des fluides contenant des silicates et des carbonates en se métamorphisant au faciès des schistes verts ou des amphibolites. Cette hypothèse est plus probable, puisqu'elle ne limite pas le type de roche pouvant générer les veines de quartz.

Le deuxième modèle suggère que les fluides auraient été générés par une intrusion granitique, puisque les inclusions fluides retrouvés dans les veines seraient semblables à certaines inclusions retrouvées dans des plutons granitiques et dans certaines pegmatites. Cette hypothèse a comme faiblesse principale qu'il faudrait retrouver dans tous les cas une intrusion granitique d'âge appropriée à proximité des filons de quartz (parfois à plus grande profondeur), ce qui est parfois difficile à prouver.

L'incapacité de trancher vers un ou l'autre des modèles selon Ridley et Diamond est due au fait qu'aucun élément chimique ou isotope permet d'identifier clairement une source métamorphique ou mafique.

En ce qui concerne la précipitation de l'or, une variété de processus peut en être responsable. Toutefois, la réaction fluide-roche encaissante est la théorie la plus accepté comment étant celle menant à la précipitation dans les gisements où la minéralisation se présente sous forme disséminée ou de remplacement. La

sulfuration de la roche encaissante avec des haut taux de Fe/Fe + Mg vont déstabiliser l'or en brisant les ligands sulfurés ce qui permettra de précipiter de la pyrite et autres minéraux de sulfures. Dans cette situation, la teneur en or sera donc reliée à l'abondance de minéraux de sulfures. À travers l'échange avec les carbonates présent dans les métasédiments, ce qui amène un changement dans le fluide en oxygène et/ou du pH, peut également faciliter la précipitation de l'or. Certains auteurs ont suggéré que le métasomatisme du potassium et du dioxyde de carbone dans la roche encaissante, combiné à la libération d'ions d'hydrogène, causant une baisse du pH, ne permettrait plus de transporter l'or en solution, amenant par conséquent sa précipitation. La fluctuation de pression au sein du système de veines et veinules pourrait favoriser la précipitation de l'or. Cela peut s'expliquer par un mécanisme complexe à décrire (avec des phases liquides et gazeuses de dioxyde de carbone présentent simultanément), mais il est possible de dire que de manière générale, une baisse de pression pourrait engendrer la précipitation de l'or (Goldfarb et al., 2005).

Même si la source du fluide semble encore controversée, une brève description d'un modèle génétique mettant en scène des fluides métamorphiques sera effectuée. Tout d'abord, il faut un orogène. Dans le prisme d'accrétion de cet orogène, des roches sont métamorphisées en profondeur et celles-ci laissent s'échapper un fluide vers les roches se trouvant au-dessus. Une faille majeure jouerait un rôle important dans le processus de minéralisation. Beaudoin et al. (2006) ont effectué la modélisation de plusieurs options de circulation des fluides métamorphiques à travers les roches et leurs structures. Cela a entre autre permis de mieux comprendre le rôle de la faille majeure de Cadillac-Larder Lake se retrouvant dans le district minier de Val d'or. La plupart du temps, une faille d'envergure importante se retrouve dans les districts miniers où sont situés des gisements d'or orogéniques et il n'y a généralement pas de minéralisation aurifère directement dans ses environs. Pourtant, cette faille semble le milieu idéal pour que les fluides y circulent et pour que de l'or s'y accumule. Suite à leurs essais, les auteurs suggèrent que la faille majeure aurait pour rôle majeur

de permettre d'évacuer les fluides hydrothermaux d'une barrière imperméable et que ces même fluides circuleraient dans l'ensemble du socle rocheux et non seulement dans la faille majeure. Les fluides s'accumulent et créent un champ de veines et veinules sub-verticales. Lorsque la contrainte générée par l'accumulation des fluides est supérieur à celle engendrée par le poids de la roche adjacente, il y a création de veines subhorizontales.

8 EXPLORATION

Depuis l'acquisition du projet Monster Lake, Tomagold a effectué la numérisation de la volumineuse banque de données de forages historiques en plus de faire la numérisation systématique de ses propres données de forages à mesure que les travaux progressaient. La société a produit des plans, sections transversales et longitudinales pour tous les indices minéralisés.

En août 2012, la société a mandaté la firme Aecom Énergie, Canada Est de Montréal (Aecom) pour effectuer une étude structurale sur la propriété Monster Lake (Trudel, 2012). Aecom confirme la nature lenticulaire des veines de quartz aurifère et confirme également la nature grossière de l'or présente dans les veines de quartz gris foncé créant ainsi un effet pépite très marqué.

Les figures 8.1 et 8.2 sont tirées du rapport de Aecom. Elle nous donne l'interprétation que cette firme fait de la zone de cisaillement principale sur Monster Lake. Elle nous indique que le cisaillement démontrerait un mouvement senestre et que la faille est inverse. Les lentilles de quartz sigmoïdales occupent des zones en tension en échelon à l'intérieur du cisaillement. Aecom a tenté de définir des plongées pour les différentes zones minéralisées mais, dans plusieurs secteurs, la densité de forages ne permet pas d'arriver à un modèle concluant. Dans le cas des zones Mégane et 325, Aecom suggère un amas avec une plongée faible (10°) vers le NE qui s'étend sur 300 mètres (Figure 8.3).

Aecom indique que la minéralisation découverte à ce jour est marginale et que des zones plus continues et plus riches devront être découvertes pour rendre le projet économiquement rentable. De plus, Aecom mentionne que la découverte d'intersections spectaculaires, comme celle du sondage M-12-60 (238 g/t Au sur 6 mètres), ne devrait pas prendre une importance indue puisque de tels intervalles ne sont pas représentatifs du potentiel de la structure.

FIGURE 8.1

MODÈLE 3D – CISAILLEMENT MONSTER LAKE

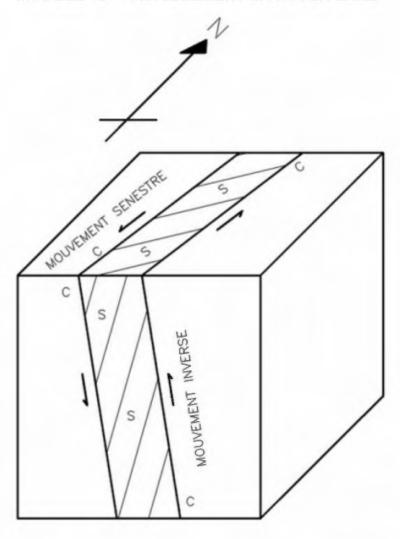


Figure 10 Bloc diagramme de la zone de cisaillement aurifère présente sur la propriété Monster Lake. Les structures C-S indiquent un mouvement senestre dans le plan horizontal, et inverse dans le plan vertical

FIGURE 8.2
INTERPRÉTATION DES LENTILLES DE QUARTZ EN PLAN

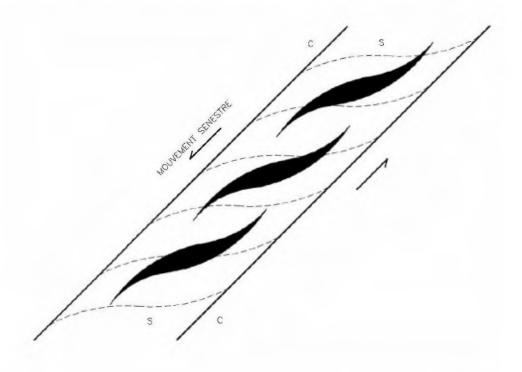
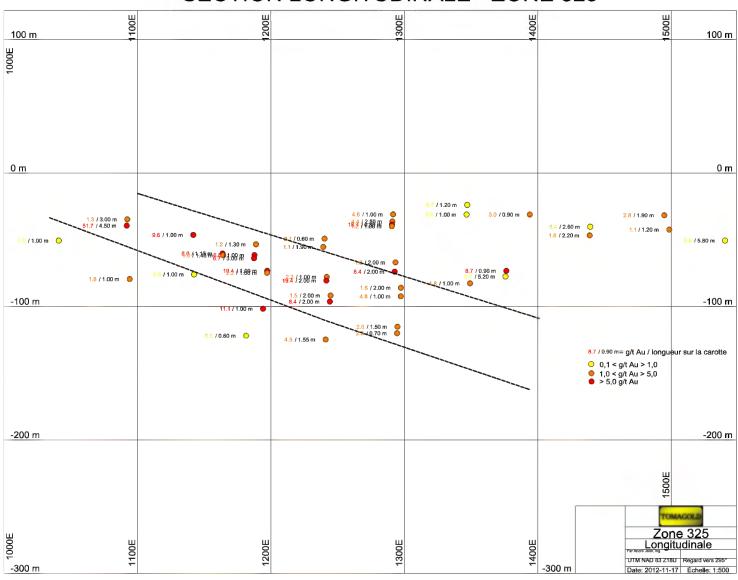



Figure 11 Modèle structural proposé pour les filons de quartz aurifères de la propriété Monster Lake (modifié de Hodgson, 1989)

Enfin la société a mandaté la firme Metallurgical Services Metchib de Chibougamau pour effectuer des tests métallurgiques sur des échantillons de carotte provenant de la propriété (45 kg). Les conclusions de ce rapport indique qu'une récupération de 96,3% de l'or peut être obtenue en cyanurant tout le matériel (« whole ore cyanidation »). Différents autres procédés ont été testés mais ils n'ont pas donné de meilleurs résultats (Rail, M. 2012).

Toutefois, les principaux travaux de Tomagold consistent en forages systématiques le long de la structure principale minéralisée. La compagnie a complété 47 forages (M-12-49 à M-12-92 et M-12-35) pour un total de 6 852 mètres de carotte. Ces travaux sont discutés dans le chapitre 9 du présent rapport technique.

FIGURE 8.3 SECTION LONGITUDINALE - ZONE 325

9 FORAGE

Historiquement le projet a fait l'objet de quelques programmes de forage importants. Ainsi, entre 1984 et 1995 la Soquem a complété plus de 16 400 mètres de forage (115 sondages) sur le projet alors appelé Eratix (**Tableaux 9.1** et 9.2). On notera que la minéralisation aurifère est relativement erratique avec une minorité de valeur au-delà de 10 g/t Au et une majorité de moins de 3 g/t Au. La moyenne du Tableau 9.2 est de 3,19 g/t Au sur 2,4 mètres (longueurs le long de la carotte). On notera que certains forages ont recoupé plus d'une zone anomale. La majorité de ces intervalles fut recoupée à moins de 100 mètres de profondeur verticale.

TABLEAU 9.1 FORAGES COMPLÉTÉS PAR LA SOQUEM

Projet Eratix (Soquem, 993) - Total de mètres de forage							
# GM	Nombre de mètres	Nombre de sondages	#de sondage	Date			
42392	342,60	4	993-84-01 à 993-84-04	Automne 1984			
43024	1 413,19	12	993-85-05 à 993-85-12 993-86-13 à 993-86-16	Juin 1985 à Fév. 1986			
46027	1 147,20	11	993-86-17 à 993-86-26	Sep. 1986 à Mai 1987			
50535	2 126,00	8	993-91-27 à 993-91-34	Mars. 1991			
53051	960,00	6	993-94-27 à 993-94-32	Nov. 1994			
53353	2 666,00	26	993-94-01 à 993-94-26	27 oct. 1994			
53789	2 077,60	11	993-95-70 à 993-95-80	Décembre, 1995			
			993-94-33 à 993-94-40				
53912	5 702,50	37	993-95-41 à 993-95-69	Juin. 1995			
Total	16 435,09	115					

TABLEAU 9.2 RÉSULTATS DES FORAGES DE SOQUEM

Sondage	De	Α	Longueur	Au g/t
	m	m	m	
95-45	43,7	46,8	3,1	1,21
95-47	145,8	146,8	1,0	1,17
95-48	82,5	83,5	1,0	0,90
95-48	169,2	170,2	1,0	2,17

95-49	43,7	45,6	1,9	2,75
95-49	59,2	60,4	1,2	0,96
95-50	84,6	87,8	3,2	2,09
95-52	131,9	137,0	5,1	6,10
95-55	50,2	51,3	1,1	5,83
95-66	148,1	150,8	2,7	3,25
95-66	180,1	181,7	1,6	3,54
95-70				
95-71	65,8 100,1	68,5 102,4	2,7	3,20 1,34
95-72	84,0		2,3	
		85,8	1,8	3,37
95-75	96,6	98,6	2,0	3,12
95-80	58,8	62,5	3,7	1,03
94-08	52,5	53,5	1,0	1,60
94-14	40,7	47,2	6,5	2,24
94-17	46,0	62,5	16,5	0,96
94-19	67,6	68,4	0,9	0,90
94-20	84,0	84,6	0,6	2,62
94-21	56,1	58,1	2,0	3,05
94-21	65,2	66,7	1,5	1,54
94-22	55,6	56,6	1,0	1,53
94-23	50,1	54,6	4,5	16,81
94-23	80,2	81,3	1,1	4,00
94-23	99,1	102,0	2,9	14,76
94-23	125,9	126,6	0,7	9,39
94-23	136,5	140,3	3,8	1,24
94-24	68,9	69,6	0,7	1,75
94-25	148,5	152,3	3,8	0,84
94-26A	199,0	200,3	1,3	1,20
94-26A	202,4	203,9	1,5	1,08
94-26A	218,2	219,7	1,5	2,88
94-27	65,5	66,5	1,0	2,28
94-27	108,2	108,7	0,1	3,80
94-27	126,0	126,6	0,6	0,92
94-28	181,3	184,6	3,3	1,09
94-28	191,4	191,9	0,5	10,31
94-30	97,5	98,6	1,1	1,29
94-32	139,4	144,5	5,1	2,31
94-33	93,5	94,1	0,6	2,84
94-34	101,6	103,5	1,9	2,49
94-35	172,5	175,6	3,1	1,04
94-36	45,0	47,9	2,9	1,06

94-37	76,1	81,7	5,6	1,16
94-37	94,2	94,9	0,7	1,30
94-38	82,0	83,0	1,0	1,26
84-1	48,3	49,4	1,1	3,28
84-2	100,5	103,0	2,5	1,58
85-10	220,5	221,7	1,2	0,96
85-10	237,0	238,0	1,0	11,01
85-11	29,5	30,5	1,0	0,93
85-11	35,5	41,5	6,0	2,72
85-5	19,0	19,7	0,7	2,33
85-8	86,0	92,1	6,1	19,16
85-8	99,6	101,5	1,9	1,55
86-13	28,0	32,3	4,3	2,55
86-16	71,1	71,8	0,1	0,82
86-25	64,4	70,5	6,1	2,28
86-26	83,8	87,5	3,7	0,93
91-33	150,0	151,0	1,0	4,20

En général, les épaisseurs vraies seraient entre 65 à 85% des longueurs en carotte.

Pour sa part, Stellar a complété deux phases de forage entre 2010 et 2011. En 2010 la société a complété 23 sondages totalisant 2 961,5 mètres et en 2011 elle en a complété 23 autres pour un total de 2 273,6 mètres. Les coordonnées des sondages de Stellar sont indiquées au **tableau 9.3** alors que les principaux résultats sont indiqués au **tableau 9.4**.

TABLEAU 9.3 LOCALISATION DES FORAGES DE STELLAR

Forage	UTM nad 83		Longueur	Secteur
	est	nord	m	
M-01-10	519741	5487949	150,0	Mégane
M-02-10	519769	5487988	159,0	Mégane
M-03-10	519775	5488040	63,0	Mégane
M-04-10	519715	5487899	58,0	Mégane
M-05-10	519796	5488082	66,0	Mégane
M-06-10	519699	5487855	86,0	Mégane
M-07-10	519814	5487977	208,0	Mégane
M-08-10	519796	5487930	230,0	Mégane
M-09-10	519809	5488132	66,0	Mégane

M-10-10	519210	5487740	90,0	52
M-11-10	519280	5487786	189,0	52
M-12-10	519236	5487872	123,0	52
M-13-10	519319	5487893	186,0	52
M-14-10	519186	5487699	76,0	52
M-15-10	519162	5487648	99,0	52
M-16-10	519891	5488423	102,0	325
M-17-10	519896	5488367	112,5	325
M-18-10	519888	5488315	102,0	325
M-19-10	519895	5488481	105,0	325
M-20-10	520394	5489233	177,0	Annie
M-21-10	520322	5789160	174,0	Annie
M-22-10	520530	5489373	186,0	Annie
M-23-10	520603	5489443	175,0	Annie
M-24-11	519853	5488276	84,0	325
M-25-11	519844	5488225	75,0	325
M-26-11	519834	5488174	96,0	325
M-27-11	519772	5488017	60,0	325
M-28-11	519754	5487974	63,0	325
M-29-11	519734	5487927	51,0	325
M-30-11	519720	5487872	57,0	325
M-31-11	519680	5487808	51,0	325
M-32-11	519662	5487760	45,0	325
M-33-11	519653	5487703	78,0	325
M-34-11	519540	5487524	33,0	Sud 325
M-35-11	Foré en	2012		325
M-36-11	519931	5488409	106,0	325
M-37-11	519925	5488357	120,2	325
M-38-11	519917	5488309	120,0	325
M-39-11	519891	5488260	135,0	325
M-40-11	519893	5488205	153,0	325
M-41-11	519922	5488193	144,0	325
M-42-11	519921	5488250	136,4	325
M-43-11	519944	5488299	153,0	325
M-44-11	519953	5488349	135,0	325
M-45-11	519962	5488400	132,0	325
M-46-11	pas foré			325
M-47-11	519956	5488456	114,0	325
M-48-11	519381	5487220	63,0	Cominco
		Total	E 407	
		Total	5 187	

En 2010, Stellar a implanté des forages sur les secteurs 325, Annie et Mégane de la structure principale et d'autres sur la structure secondaire appelée 52 (parallèle mais à l'ouest de la principale). En 2011, la société s'est concentrée sur les secteurs contigus de Mégane et 325 et sur leur extension sud.

PHOTOGRAPHIE 9.1
ENTREPOSAGE DE LA CAROTTE DE STELLAR

Stellar a utilisé différentes mailles de forage allant de 200 mètres, 100 mètres, 50 métres et même 25 mètres dans les secteurs qui sont apparus les plus favorables

PHOTOGRAPHIE 9.2 SECTION DE FORAGE, ZONE 325

TABLEAU 9.4
MEILLEURS RÉSULTATS DES FORAGES DE STELLAR

Sondage	De	À	Longueur	Teneur	Secteur
	m	m	m	g/t Au	
M-01-10	33,2	34,1	0,9	3,76	Mégane
M-02-10	49,0	50,0	1,0	3,8	Mégane
	54,2	55,2	1,0	2,22	
M-06-10	23,0	24,0	1,0	3,87	Mégane
	24,0	25,0	1,0	1,11	
M-11-10	159,0	160,0	1,0	1,36	52
	165,0	165,9	0,9	1,83	
	166,4	168,0	1,6	1,18	
M-15-10	79,0	80,0	1,0	2,03	52
	80,0	81,0	1,0	7,51	
	81,0	82,0	1,0	2,12	
	82,0	83,0	1,0	1,08	
M-16-10	46,0	50,6	4,6	5,33	Indice 325
M-17-10	62,4	63,0	0,6	2,11	Indice 325
	69,5	70,7	1,2	1	
	70,7	71,4	0,7	??	
M-18-10	67,7	69,0	1,3	1,17	Indice 325
	78,0	79,0	1,0	6,79	
	79,0	80,0	1,0	0,15	
	80,0	81,0	1,0	11,31	
	81,0	82,0	1,0	5,92	
	82,0	83,0	1,0	2,86	
	78,0	83,0	5,0	5,38	
M-25-11	46,0	47,0	1,0	2,23	Indice 325
	49,5	51,5	2,0	76,53	
	53,0	55,0	2,0	8,263	
M-28-11	40,0	43,0	3,0	1,54	Indice 325
M-29-11	39,0	40,0	1,0	1,684	
M-31-11	22,0	24,0	2,0	2,54	
M-36-11	86,0	88,0	2,0	1,85	Indice 325
	95,0	97,0	2,0	8,38	
M-37-11	100,0	100,0	1,0	2,21	Indice 325
	103,0	105,0	2,0	19,37	
M-38-11	96,0	99,0	3,0	7,22	Indice 325
M-40-11	104,0	105,0	1,0	1,85	Indice 325

M-43-11	131,0	132,0	1,0	11,1	Indice 325
M-44-11	119,0	121,0	2,0	1,47	Indice 325
	125,0	127,0	2,0	8,37	
M-45-11	112,0	114,0	2,0	1,56	Indice 325
	121,0	122,0	1,0	4,81	
M-47-11	106,0	107,0	1,0	1,79	Indice 325
M-48-11	23,0	24,0	1,0	1,53	Indice 325
	28,0	29,0	1,0	4,05	

En général, les épaisseurs vraies sont entre 65 à 85% des longueurs en carotte.

On constatera, en étudiant le tableau des meilleurs résultats de Stellar (**Tableau 9.4**) que l'indice 325 semble vouloir donner des résultats beaucoup plus intéressants que les indices précédemment étudiés. Quoique les teneurs continues de démontrer un caractère passablement erratique, plusieurs intersections sont clairement enrichies en or sur des largeurs plus importantes que sur les autres indices (exemple sondage M-25-11, M-16-10 et M-18-10).

Tomagold a complété 47 forages (M-12-49 à M-12-90, M-12-92 et M-12-35) pour un total de 6 852 mètres de carotte (**Figure 9.1**, **Tableau 9.5**, **Photographies 9.3 et 9.4**). Une majorité de sondages fut complétée sur la zone 325 et plus au nord de celle-ci. En fait seuls deux forages se retrouvent dans la partie sud de la structure minéralisée.

Les forages de Tomagold ont été implantés au GPS par les membres de l'équipe de Tomagold. Les collets n'ont pas été arpentés. Tomagold effectue des tests de déviation à l'aide d'un appareil de type Flexit à tous les 30 à 50 mètres de distance le long des sondages. Les données de forages (descriptions des roches, tests de déviations, analyses) sont entrées sur le logiciel produit par la firme Geotic de Val d'Or (Geotic Log). Plans et sections sont produits par le logiciel Geotic Graph de la même firme.

L'objectif de Tomagold en 2012 était de couvrir la structure principale avec du forage systématique de façon à découvrir des secteurs d'enrichissement de l'or

le long de celle-ci. Cet objectif apparait difficile à atteindre étant donné la nature de l'or sur ce projet. En effet, la distribution de l'or est erratique avec un fort effet pépite et en plus les filons minéralisés (oreshoots) démontrent des géométries encore mal comprises.

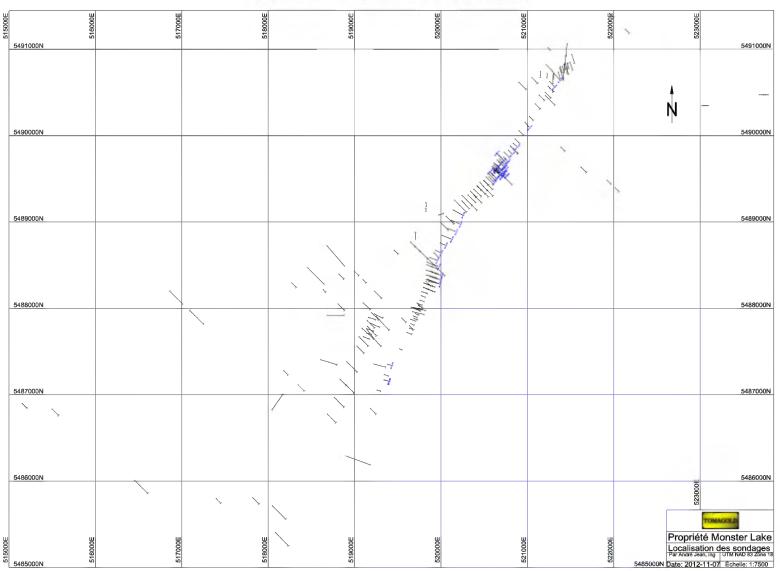
Comme ce fut le cas dans les campagnes de forages précédentes, les résultats de Tomagold furent inconsistants et erratiques. Quoique la structure minéralisée soit présente dans tous les sondages, les teneurs sont en générales marginales (**Tableau 9.6**). Le sondage M-12-60 a donné un intervalle de 238 g/t Au sur 6 mètres (teneurs non coupées) avec de nombreux point d'or grossier (**Photographie 9.5**). Ce résultat spectaculaire ne put toutefois être reproduit dans le sondage M-12-72 foré directement sous le sondage M-12-60.

TABLEAU 9.5
COORDONNÉES DES FORAGES DE TOMAGOLD

	UTM E (NAD	UTM N (NAD		/	ProfFin
Sondage	83 z18)	83 z18)	Azimut	Plongée	(m)
M-12-35	519416	5487343	290	-57	72
M-12-49	519975	5488285	290	-50	177
M-12-50	519983	5488334	290	-50	180
M-12-51	519998	5488384	290	-50	168
M-12-52	519964	5488489	295	-50	207
M-12-53	519944	5488560	295	-50	123
M-12-54	519990	5488649	295	-50	87
M-12-55	520043	5488734	295	-50	90
M-12-56	520112	5488805	295	-50	162
M-12-57	520164	5488891	295	-50	150
M-12-58	520213	5488980	295	-50	162
M-12-59	520243	5489085	295	-50	183
M-12-60	520672	5489591	315	-50	81
M-12-61	520765	5489711	315	-50	85,5
M-12-62	520815	5489796	315	-50	78
M-12-63	520874	5489879	315	-50	78
M-12-64	521017	5490103	315	-50	105
M-12-65	521306	5490574	315	-50	108
M-12-66	521370	5490652	315	-50	195
M-12-67	519383	5487160	290	-50	63

M-12-68	519383	5487160	290	-55	75
M-12-69	520717	5489724	315	-61	234
M-12-70	520751	5489689	315	-56	120
M-12-71	520665	5489778	135	-50	75
M-12-72	520689	5489574	315	-50	150
M-12-72B	520632	5489615	322	-88	153
M-12-72C	520632	5489615	85	-87	162
M-12-73	520682	5489685	315	-50	72
M-12-74	520724	5489645	315	-50	120
M-12-75	520724	5489645	315	-70	174
M-12-76	520745	5489623	315	-70	252
M-12-77	520750	5489548	315	-64	285
M-12-78	520750	5489548	315	-55	270
M-12-79A	520719	5489579	315	-57	124,5
M-12-79B	520719	5489579	315	-57	190
M-12-80	520683	5489615	315	-65	171
M-12-81	520683	5489615	315	-50	126
M-12-82	520649	5489649	315	-50	75
M-12-83	520631	5489598	315	-50	96
M-12-84	520671	5489556	315	-50	153
M-12-85	520671	5489556	315	-71	215
M-12-86	520696	5489534	315	-71	294
M-12-87	520696	5489534	315	-50	195
M-12-88	520632	5489517	315	-71	201
M-12-89	520632	5489517	315	-50	150
M-12-90	520583	5489564	135	-50	51
M-12-92	520608	5489470	315	-50	114
				Total	6 852

TABLEAU 9.6
MEILLEURS RÉSULTATS DES FORAGES DE TOMAGOLD


Sondage	De	À	Longueur	Teneur	Secteur
	m	m	m	g/t Au	
M-12-50	160,6	162,2	1,6	4,52	Indice 325
M-12-51	147,1	148,6	1,5	2,05	Indice 325
	153,7	154,4	0,7	2,27	
M-12-52	96,7	97,6	0,9	8,67	Indice 325
M-12-53	59,8	62,0	2,2	1,56	Indice 325
M-12-56	105,2	106,9	1,8	1,23	Indice 325
M-12-57	77,9	79,3	1,3	1,74	Indice 325
	116,4	117,5	1,1	6,99	

	129,1	132,0	2,9	2,91	
	133,5	135,0	1,5	3,1	
M-12-59	171,3	173,1	1,8	1,32	Annie
M-12-60	69,0	74,7	5,7	237,6	Annie
M-12-61	77,9	79,5	1,6	1,00	Annie
M-12-62	66,0	69,0	3,0	1,96	Annie
M-12-65	85,2	86,3	1,1	1,34	Annie
M-12-71	60,7	62,2	1,5	4,58	Annie
M-12-72	116,2	119,2	3,0	5,38	Annie
	117,7	119,2	1,5	8,07	
M-12-72b	33,0	34,5	1,5	10,79	Annie
	42,0	46,5	4,5	2,26	
M-12-72c	33,8	35,3	1,5	26,89	Annie
	40,5	42,8	2,3	2,6	
M-12-74	92,8	98,8	6,0	5,45	Annie
M-12-76	232,3	233,8	1,5	1,64	Annie
M-12-80	88,5	106,5	18,0	1,36	Annie
M-12-81	69,0	73,5	4,5	1,52	Annie
M-12-84	100,5	102,0	1,5	1,01	Annie
M-12-85	172,5	174,0	1,5	3,97	Annie
	186,0	187,5	1,5	2,35	
M-12-86	274,2	275,2	1,0	1,31	Annie
M-12-87	165,0	166,5	1,5	1,5	Annie
M-12-88	165,0	167,0	2,0	4,53	Annie

En général, les épaisseurs vraies sont entre 65 à 85% des longueurs en carotte.

FIGURE 9.1 LOCALISATION DES FORAGES

PHOTOGRAPHIE 9.3
TUBAGE DE LA COMPAGNE DE 2012

PHOTOGRAPHIE 9.4
ENTREPOSAGE DE LA CAROTTE DE 2012

PHOTOGRAPHIE 9.5 OR GROSIER DANS LE SONDAGE M-12-60

10 PRÉPARATION DES ÉCHANTILLONS, ANALYSES ET SÉCURITÉ

Les échantillons à être prélevés sont déterminés par le géologue en charge de la description des carottes. Ce dernier détermine des intervalles à échantillonner selon des paramètres géologiques (type de roche, de minéralisation, de structure etc...). Les intervalles sont rarement de moins de 30 cm et rarement de plus de 1,5 mètres de longueur. Le géologue entre les intervalles à échantillonner dans son journal de sondage (# d'échantillon, De, À, Longueur) et indique les intervalles à échantillonner à l'aide de craie rouge sur la carotte de même qu'à l'aide d'étiquettes provenant d'un carnet d'échantillons fourni par le laboratoire.

Les intervalles sélectionnés sont acheminées dans la salle d'échantillonnage où un technicien de la compagnie coupe chaque intervalle en deux parties égales dans le sens de la longueur à l'aide d'une scie aux diamants. Une moitié de la carotte de l'intervalle est remise dans la boîte de carotte à son emplacement initial et l'autre moitié est ensachée et numérotée. Une étiquette est brochée à la boîte de carotte à l'emplacement de l'échantillon et l'autre est mise dans le même sac que l'échantillon. S'il y a de l'or visible, un standard ou un blanc sera immédiatement inséré après chacun des échantillons pour éviter la contamination.

Les échantillons de Tomagold sont ensuite scellés, compilées (formulaire d'envoi avec les numéros échantillons et les méthodes de préparation et d'analyse désirées) et acheminés par les membres de son équipe directement au laboratoire de préparation de la Table Jamésienne de Concertation Minière (TJCM) à Chibougamau.

Tomagold demande à la TJCM de produire un sous échantillon de concassé d'environ 1 000 grammes à pulvériser et de l'acheminer en entier chez Laboratoires AgatLabs afin d'avoir un maximum de représentativité. La TJCM

est également chargée d'insérer les échantillons de contrôle (standards et échantillons stériles) selon les instructions de Tomagold.

Les échantillons furent analysés au laboratoire indépendant et accrédité AGAT de Mississauga. Les Laboratoires AGAT (Calgary et Mississauga) possèdent une accréditation du Conseil canadien des normes (CNN) et de l'Association canadienne pour l'accréditation de laboratoires (CALA) pour des tests environnementaux particuliers requis pour l'obtenir. Les accréditations sont particulières aux endroits et aux paramètres et une liste complète de ces derniers est disponible sur les sites www.scc.ca ou www.caeal.ca.

Laboratoires Agat a utilisé la méthode « Fire Assay – Trace Au AAS Finish (202551) (50 gr Charge) ». La limite de détection est de 0,002 ppm Au.

Les deux standards (matériel certifié) utilisés par Tomagold proviennent de chez Rocklab.

- 1. Standard Low (A): SE58 (0,607 ppm Au)
- 2. Standard medium (B): SK62 (4,075 ppm Au)

L'échantillon stérile est un « Blanc de Silice grossière » provenant de la compagnie Sitec. La TJCM en a fait de nombreuses analyses qui se sont systématiquement être sous la limite de détection (<0,001 ppm Au).

Pour une analyse plus complète de l'or dans la roche / la carotte, la Société a choisi la procédure de pâtes métalliques (Metallic Gold, Agat : Fire Assay – ICP Finish (202120), limite de détection de 0,01 g/t Au) pour 8 échantillons, tous sélectionnés de la zone de cisaillement minéralisée du sondage M-12-60. Cette procédure est en mesure de surmonter l'éffet pépite de l'or en augmentant la taille des sous-échantillons à 1 000 g et en faisant physiquement la collecte de l'or libre dans le système en utilisant un tamis à 150 mailles (106 microns). Cette procédure est la plus efficace lorsque l'ensemble de l'échantillon est utilisé pour

l'analyse. Le sous-échantillon est pulvérisé à environ 90 % - 150 mailles (106micron) et par la suite passé à travers un tamis à 150 mailles (106micron). Toute la partie métallique +150 est analysée avec deux sous-échantillons en double de la portion pâte –150. On rapporte les résultats comme une moyenne pondérée de l'or dans l'échantillon au complet.

L'annexe 3 donne le protocole de préparation et d'analyse des échantillons de Tomagold.

11 VERIFICATION DES DONNÉES

L'auteur a prélevé 12 échantillons (rejets d'échantillons de carotte de forages de 2012) auxquels il a ajouté un échantillon stérile et un standard provenant de la TJCM (standard SH65 : 1,348 ppm Au) et il a fait faire un duplicata (**Tableau 11.1**). L'auteur a lui-même apporté les échantillons au laboratoire de préparation de Chibougamau (TJCM). Ces échantillons ont subi le même traitement que ceux de Tomagold. On notera que les résultats de l'auteur sont relativement cohérents avec ceux de Tomagold sauf pour les échantillons 51048 et 51050 qui ont, de toute évidence, été inversés lors de la préparation. Ces erreurs de manipulation, quoique peu fréquentes, se produisent à l'occasion (voir également les standards et les blancs) et les procédures de préparation des analyses de Tomagold et du laboratoire de la TJCM devraient être révisées.

TABLEAU 11.1 ÉCHANTILLONS PRÉLEVÉS PAR L'AUTEUR

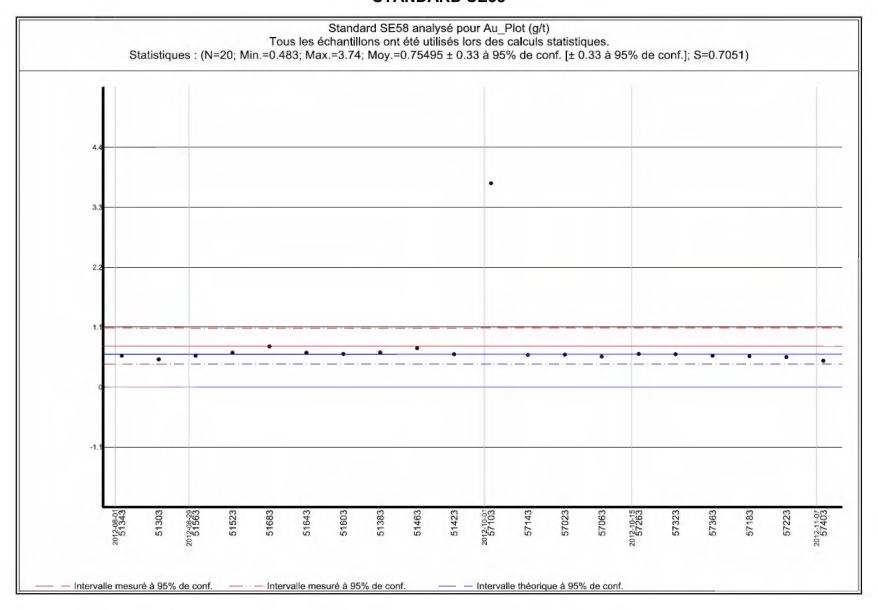
Échan.	Forage	Longueur	Description Résultat g/t Au		at g/t Au
		m		Auteur	Tomagold
51041	M-12-51	1,30	Cisaillement avec qtz noir et sulfures	<0,002	0,004
51042	M-12-51	1,30	Cisaillement avec qtz noir et sulfures	0,004	0,006
51043	M-12-51	1,30	Cisaillement avec qtz noir et sulfures	0,012	0,006
51044	M-12-51		Stérile	<0,002	
51045	M-12-51	1,40	Cisaillement avec qtz noir et sulfures	0,006	<0,002
51046	M-12-51	1,50	Cisaillement avec qtz noir et sulfures	0,016	0,019
51047	M-12-51	1,50	Cisaillement avec qtz noir et sulfures	1,90	2,050
11268	M-12-51		duplicata de 51047	1,48	2,050
51048	M-12-51	1,50	Cisaillement avec qtz noir et sulfures	0,754	0,130
51050	M-12-51	0,90	Cisaillement avec qtz noir et sulfures	0,132	0,808
51051	M-12-51	0,90	Cisaillement avec qtz noir et sulfures	0,005	0,004
51052	M-12-51	0,90	Cisaillement avec qtz noir et sulfures	<0,002	<0,002
51066	M-12-52	0,90	Cisaillement avec qtz noir et sulfures	6,28	8,670
11269			Stérile	<0,002	
11270			SH65 1,348 ppm Au	1,31	

Dans le cadre de son programme de QAQC, Tomagold fait rajouter un échantillon de matériel certifié à tous les 19 échantillons (alternance entre les standards SE58 et le SK62) et un blanc (silice) à tous les 39 échantillons. Donc dans chaque série d'échantillons, on retrouve un standard à tous les 20 échantillons et un blanc à tous les 40 échantillons.

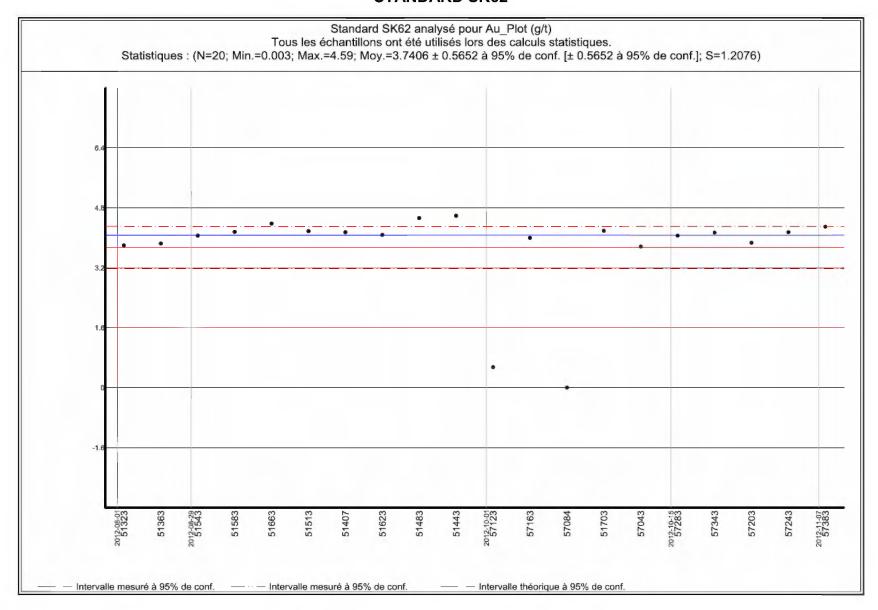
L'auteur a fait une compilation des échantillons de contrôle (standards et stérile) de Tomagold. Au Total, Tomagold a implanté 28 blancs de silice (stérile) et 53 standards dans les échantillons de 2012. De plus la société a effectué 8 réanalyses au même laboratoire mais avec une méthode différentes. La société ne fait pas de duplicata sur une base régulière. Les échantillons de contrôle totalisent donc 89 échantillons sur un total de 968 échantillons prélevés dans les forages de 2012. Ceci donne une moyenne de 9,1% d'échantillons de contrôle ce qui nous apparait en deçà des normes de l'industrie.

Le tableau 11.2 et les Figures 11.1 à 11.3 montrent la compilation des standards et des blancs (sil) de Tomaglod. On note que dans la majorité des cas, les résultats sont conformes à ce qui nous apparait comme une marge d'erreur raisonnable et acceptable. Les quelques incohérences notées sont dues à des erreurs d'étiquetage lors de l'insertion des échantillons de contrôle et non pas à des problèmes d'analyse.

TABLEAU 11.2 STANDARDS ET BLANCS DE TOMAGOLD – 2012


Sondage	Echantillon	Туре	Au ppm	
M-12-49	51004	Sil	< 0.002	
M-12-49	51009	SE58	0.623	
M-12-50	51029	SK62	3.96	
M-12-51	51044	Sil	< 0.002	
M-12-51	51049	SE58	0.489	
M-12-52	51069	SK62	4	
M-12-52	51084	Sil	<0.002	
M-12-52	51089	SE58	0.611	
M-12-54	51109	SK62	3.99	

M-12-55	51124	Sil	0.014
M-12-55	51129	SE58	0.605
M-12-57	51149	SK62	4.51
M-12-59	51164	Sil	< 0.002
M-12-59	51169	SE58	0.556
M-12-65	51189	SK62	3.83
M-12-65	51204	Sil	<0.002
M-12-63	51209	SE58	0.578
M-12-62	51229	SK62	3.7
M-12-60	51244	Sil	0.145
M-12-60	51249	SE58	0.618
M-12-67	51303	SE58	0.509
M-12-67	51313	Sil	0.004
M-12-69	51343	SE58	0.576
M-12-69	51353	Sil	<0.002
M-12-70	51363	SK62	3.85
M-12-71	51383	SE58	0.635
M-12-72	51603	SE58	0.607
M-12-72	51623	SK62	4.08
M-12-73	51393	Sil	<0.002
M-12-74	51407	SK62	4.15
M-12-74	51423	SE58	0.603
M-12-75	51433	Sil	<0.002
M-12-75	51443	SK62	4.59
M-12-76	51463	SE58	0.714
M-12-76	51474	Sil	0.01
M-12-76	51483	SK62	4.53
M-12-77	51514	Sil	<0.002
M-12-77	51513	SK62	4.18
M-12-77	51523	SE58	0.633
M-12-77	51543	SK62	4.06
M-12-77	51554	Sil	<0.002
M-12-77	51563	SE58	0.577
M-12-78	51583	SK62	4.16
M-12-78	51594	Sil	<0.002
M-12-79b	51634	Sil	0.023
M-12-79b	51643	SE58	0.63
M-12-80	51663	SK62	4.38
M-12-80	51674	Sil	0.002
M-12-80	51676	Sil	0.006
M-12-80	51683	SE58	0.744
M-12-81	51703	SK62	4.19
M-12-81	51714	Sil	0.003


M-12-82	57023	SE58	0.595
M-12-85	51323	SK62	3.8
M-12-83	57043	SK62	3.77
M-12-84	57054	Sil	< 0.002
M-12-84	57063	SE58	0.559
M-12-85	57084	SK62	0.003
M-12-85	57094	Sil	0.008
M-12-86	57103	SE58	3.74
M-12-86	57123	SK62	0.549
M-12-86	57134	Sil	< 0.002
M-12-86	57143	SE58	0.591
M-12-88	57163	SK62	4
M-12-88	57174	Sil	0.002
M-12-88	57183	SE58	0.566
M-12-87	57214	Sil	<0.002
M-12-89	57203	SK62	3.87
M-12-87	57223	SE58	0.55
M-12-87	57243	SK62	4.15
M-12-90	57374	Sil	<0.002
M-12-90	57383	SK62	4.3
M-12-92	57403	SE58	0.483
M-12-72b	57254	Sil	<0.002
M-12-72b	57263	SE58	0.608
M-12-72b	57283	SK62	4.06
M-12-72b	57294	Sil	<0.002
M-12-72c	57323	SE58	0.603
M-12-72c	57334	Sil	0.003
M-12-72c	57343	SK62	4.14
M-12-72c	57363	SE58	0.576

L'auteur a vérifié sur le site du MRNF du Québec (Gestim) que les titres miniers formant le projet Monster Lake sont bien enregistrés au nom de Corporation Tomagold.

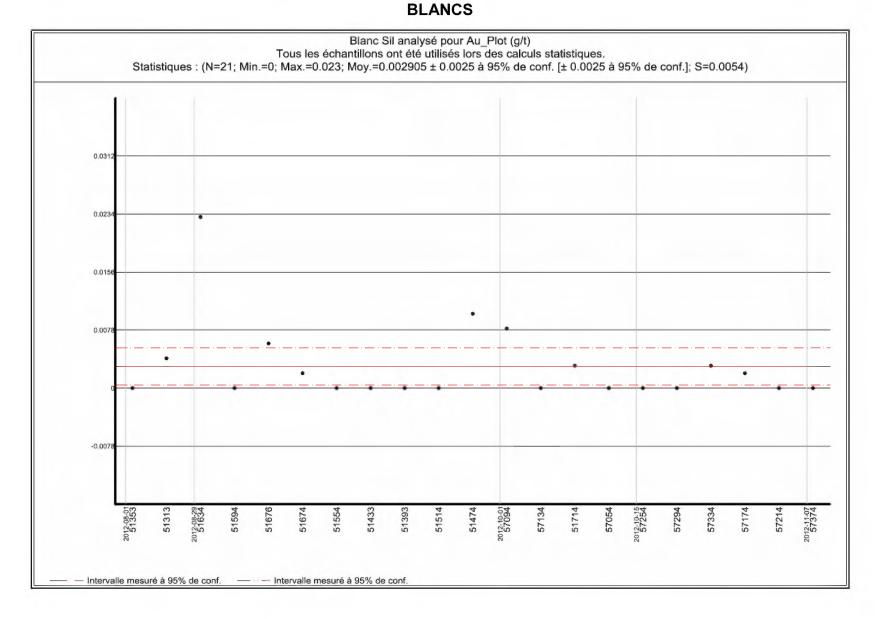

FIGURE 11.1 STANDARD SE58

FIGURE 11.2 STANDARD SK62

FIGURE 11.3

Le **Tableau 11.3** nous donne les résultats de la ré-analyse de certains échantillons pas la méthode « Metallic Sieve (MS) ». On note que les deux méthodes d'analyse donnent des résultats relativement compatibles et ce malgré le fort effet pépite et l'or grossier associés avec la minéralisation du projet.

TABLEAU 11.3 RÉ-ANALYSES, 2012

de	à	# éch	Au_Gravité	Au_MS	
m	m		PPM		
69,00	69,75	51242	200	205	
69,75	70,50	51243	184	181	
70,50	71,25	51245	233	243	
71,25	72,00	51246	105	75,8	
72,00	72,75	51247	97,9	101	
72,75	73,50	51248	379	381	
73,50	74,10	51250	700	493	
74,10	74,70	51251	59	59	

L'auteur est satisfait de la vérification des résultats des analyses de Tomagold et il est confiant que les résultats obtenus sont conforme à la réalité du projet. L'auteur suggère toutefois que la société inclue l'utilisation de duplicatas à son programme actuelle de contrôle de qualité. En fait, les analyses dépassant un certain seuil, disons 3 g/t Au par exemple, devraient être reprises systématiquement et la société devrait utiliser la moyenne des deux résultats comme étant la valeur de l'intervalle en question.

12 TRAITEMENT DE MINERAIS ET TESTS METALLURGIQUES

En octobre 2012, TomaGold a retenu les services de Services Métallurgiques METCHIB de Chibougamau, afin de réaliser une étude métallurgique sur un échantillon aurifère composite extrait de la Zone 325 de Monster Lake (45 kg). L'objectif principal de ce programme d'essais était de caractériser la minéralisation de Monster Lake en vue du traitement d'un échantillon en vrac. Ce programme comprenait la caractérisation minéralogique, l'évaluation de l'indice de broyabilité Bond, la séparation par gravité, les essais acidogènes statiques, les cinétiques de cyanuration de l'or selon différents pourcentages de solides, la granulométrie, la concentration de cyanure, les concentrations de nitrate de plomb, et les cinétiques d'absorption de l'or sur du charbon activé (CIP et CIL).

La teneur de tête aurifère moyenne obtenue après tous les essais a donné 4,8 g/t Au. Les principaux minéraux contenus dans cet échantillon étaient du quartz, des plagioclases et des sulfures. Les analyses et les observations au binoculaire ont démontré une association possible entre l'or et les sulfures. La Société a également obtenu de bons résultats de la cyanuration de l'échantillon entier, avec une récupération de l'or pouvant atteindre 96,3 %. Différents autres procédés ont été testés mais ils n'ont pas donné de meilleurs résultats (Rail, M. 2012). Deux tests de vérification à base d'acide (méthode Sobek) ont été effectués afin de déterminer le potentiel de drainage minier acide. Ces tests ont démontré le potentiel de drainage minier acide pour les résidus miniers, principalement dû au contenu élevé de sulfures de fer (9%). Des tests statistiques additionnels sur d'autres échantillons composites sont recommandés.

Le rapport mentionne que la concentration du cyanure est un paramètre important dans la récupération de l'or. En effet une faible concentration de NaCN amène une perte de récupération.

13 ESTIMÉS DE RESSOURCES La société Tomagold n'a pas effectué d'estimé de ressources pour la propriété Monster Lake.

14 PROPRIÉTÉS ADJACENTES

Le secteur de la propriété Monster Lake est relativement actif pour l'exploration aurifère. On retrouve à environ 20 km au sud-est l'indice principal, la mine Joe Mann (production : 6,4 MT à 8,52 g/t Au, 1997). À environ 12 km au sud-est de la propriété, on retrouve le gîte Philibert qui contiendrait une ressource historique de 1,4 Mt titrant 5,3 g/t Au et enfin le gîte Chevrier, situé à environ 15 km au nord-est, et qui contient une ressource historique de 3,7 MT titrant 5,1 g/t Au. Ces trois estimés proviennent du DV98-3 publié par le gouvernement du Québec (page 118). Les ressources historiques mentionnées ne sont pas conformes avec le Règlement 43-101 sur les projets miniers. On ne mentionne pas les catégories de ressources pas plus que les paramètres utilisés pour effectuer les estimés. L'auteur ne fut pas en mesure de vérifier l'information concernant ces estimations et ils doivent donc être considérés comme spéculatifs. De plus, cette information n'est pas nécessairement indicative de la valeur de la minéralisation présente sur la propriété faisant l'objet du présent rapport technique.

La mine Joe Mann et le gîte Philibert se retrouve à l'intérieur de la zone de déformation est-ouest de Opawica-Guercheville (aussi appelé Fancamp-Guercheville) qui passe plusieurs kilomètres au sud de la propriété Monster Lake. Des zones de déformation est-ouest ne semblent pas présentes sur Monster Lake. Contrairement à ce qu'on observe à Monster Lake où la minéralisation se retrouve dans des basaltes, les zones minéralisées de Joe Mann et Philibert sont associées à des gabbros cisaillés. À la mine Joe Mann, la minéralisation consiste en minces veines de quartz-carbonates-plagioclase (0,75 m en moyenne) avec une variété de sulfures en quantité mineure (Py-Cp-Po-As-Sb). L'or semble favoriser une association avec la chalcopyrite.

Le gîte Chevrier est probablement celui qui ressemble le plus à Monster Lake. La roche hôte principale est un basalte plissé selon un axe nord-est. On y observe des porphyres et autres intrusions à proximité du cisaillement qui contrôle la minéralisation. Le cisaillement englobe des veines de quartzcarbonates-sulfures et de l'or visible est parfois observé. En termes de géométrie, Monster Lake semble beaucoup plus simple que Chevrier.

15 AUTRES DONNÉES ET INFORMATIONS PERTINENTES

Toutes les données et informations pertinentes ont été traitées dans les autres chapitres de ce rapport.

16 INTERPRÉTATION ET CONCLUSIONS

Depuis une année, Corporation Tomagold Inc. a entrepris d'explorer un cisaillement aurifère orienté N30-N45 avec un fort pendage vers le sud-est (**Figures 16.1 à 16.6**). Ce cisaillement de largeur métrique (3-10 mètres) s'observe presque en continu sur au moins 4 kilomètre sur la propriété Monster Lake. Il demeure ouvert autant vers le nord que le sud.

Le cisaillement aurifère se retrouve à l'intérieur de basaltes massifs et coussinés. On observe le long du cisaillement des intrusifs porphyrique et aplitique. Localement le long du cisaillement, la roche prend un aspect lité et sédimentaire avec la forte présence de graphite (sondage M-45-11

À l'intérieur du cisaillement, la roche est séricitisée, carbonatisée et injectée de quartz noir. Le cisaillement est localement riche en sulfures tels que la pyrite, pyrrhotite, chalcopyrite et sphalérite. L'or visible est occasionnellement observé dans le quartz noir. Il ne semble pas y avoir d'association directe entre la quantité de sulfures et la teneur en or.

Le cisaillement démontre une tectonique en compression et les veines de quartz noir qui s'y sont développées dans des zones en tension sigmoïdales sont minces (moins de 1 mètres) boudinées et discontinue. Les veines pourraient s'être mieux développées là où le cisaillement contient peu de roches ductiles (sédiments ou mylonite).

Il serait important d'investiguer les secteurs où le cisaillement change d'orientation. Nous pourrions y découvrir des secteurs où la tectonique locale serait en tension plutôt qu'en compression. Ceci permettrait l'emplacement de veines de quartz plus importantes et l'or semble se retrouver dans le quartz.

De par sa continuité (4 kilomètres), sa géométrie (pendage fort) et son contenu en or, le cisaillement de Monster Lake est une cible d'exploration de choix. Dans son ensemble les teneurs sont relativement erratiques (or grossier) quoique le cisaillement soit systématiquement anomale en or.

Une approche systématique orientée est donc proposée. Ceci signifie que le cisaillement doit être exploré par forage systématiquement, en débutant ou en se concentrant sur les secteurs où des zones en tension peuvent s'être développées. On parle de secteurs avec changement de direction, de pendage ou de lithologies hôtes. Les intersections avec d'autres structures sont également propices à être investiguer.

À la lumière des récents forages sur les zones 325 et Mégane, il apparait qu'une hypothèse sur la plongée de la minéralisation peut être élaborée. En effet, le géologue de Tomagold André Jean et l'étude structurale de Trudel (2012) proposent une plongée à angle faible vers le nord-est de la minéralisation de ce secteur (**Figure 8.3**). Tomagold a développé un modèle qui permettra d'investiguer cette possibilité au cours de la prochaine phase de forage (**Figures 17.1 et 17.2**).

L'auteur est d'avis que la propriété Monster Lake démontre suffisamment d'intérêt pour y poursuivre un effort soutenu d'exploration.

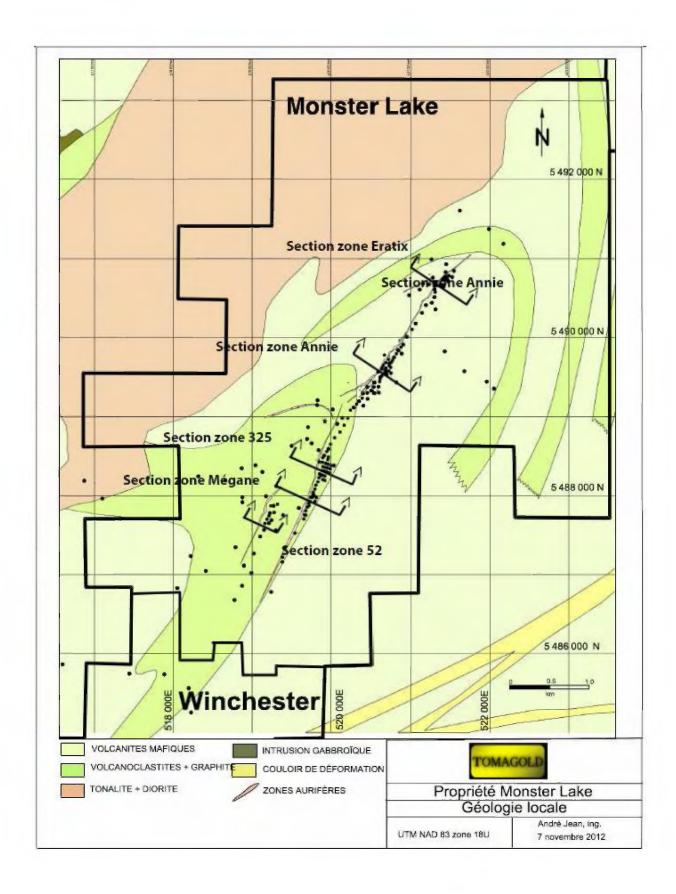
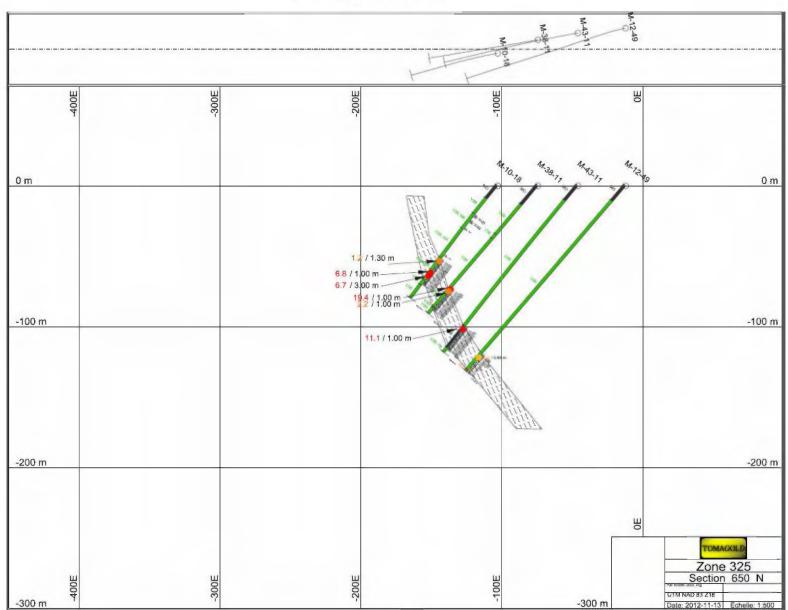
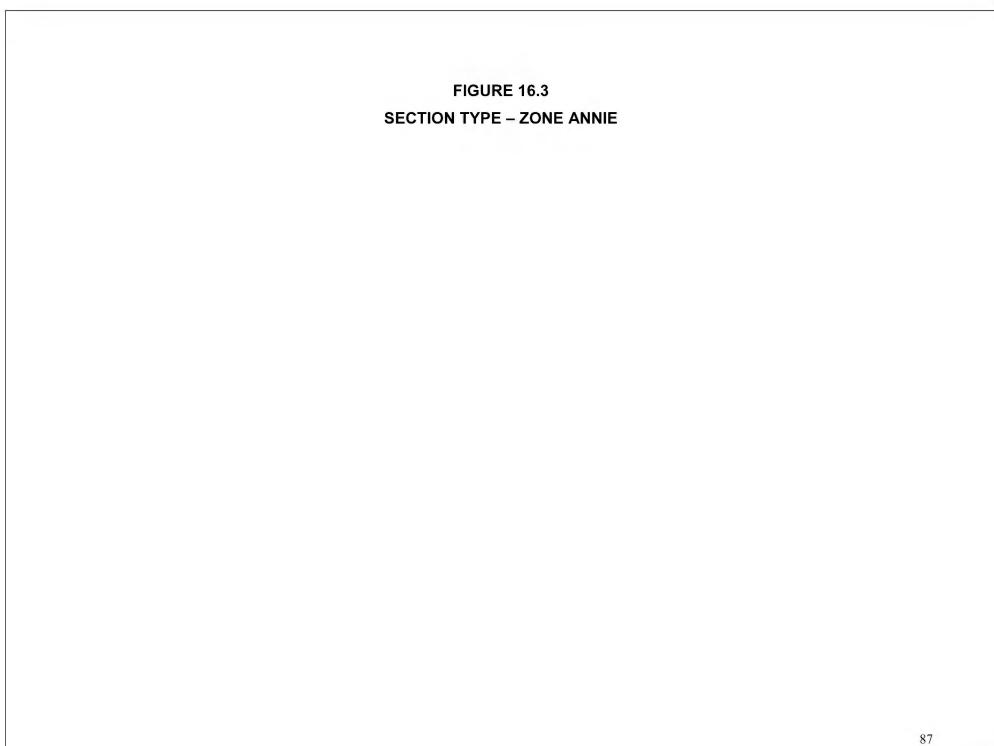




FIGURE 16.2 SECTION TYPE – ZONE 325

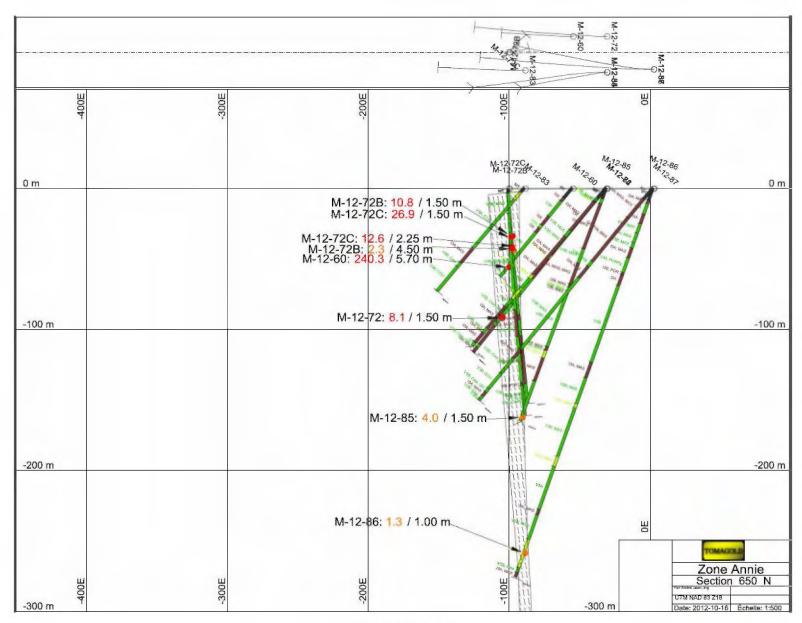


FIGURE 16.4 SECTION TYPE – ZONE 52

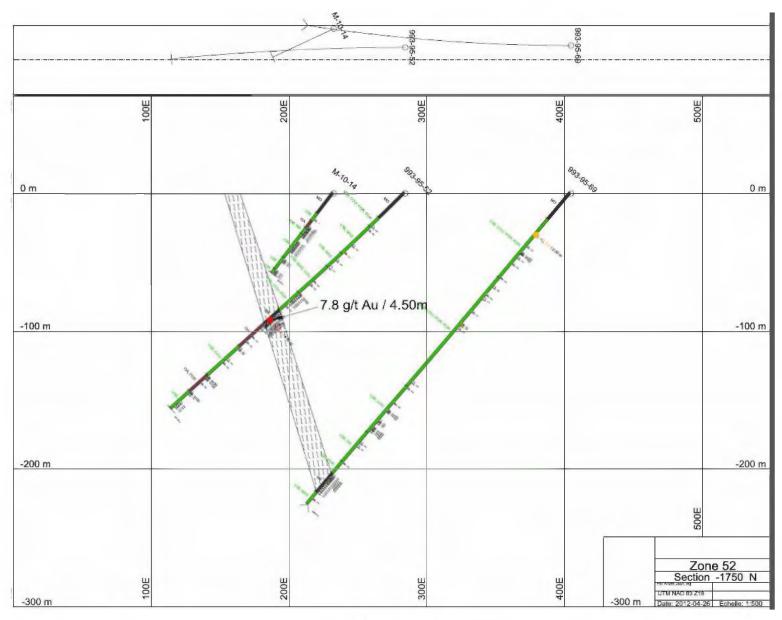


FIGURE 16.5 SECTION TYPE – ZONE MÉGANE

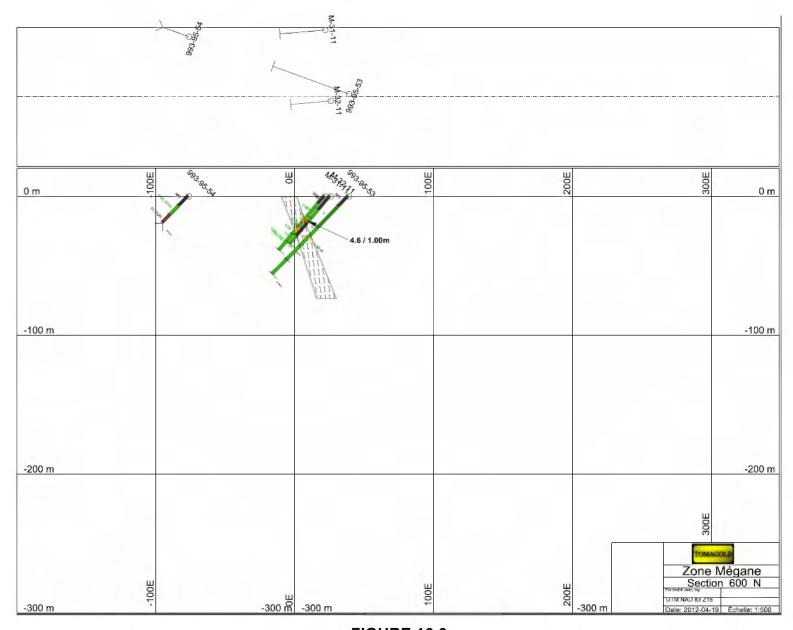
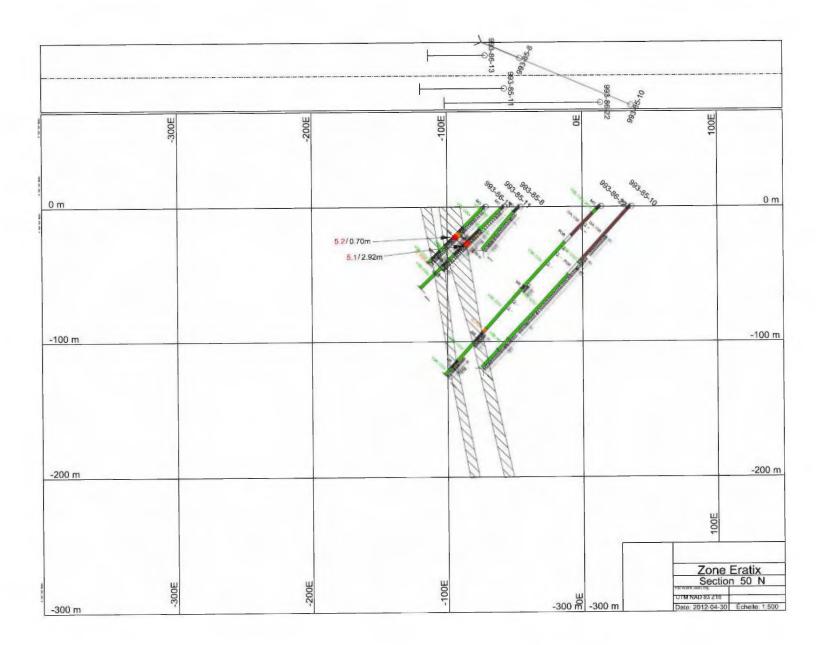



FIGURE 16.6
SECTION TYPE – ZONE ERATIX

17 RECOMMENDATIONS

L'auteur propose un programme d'exploration en deux phases totalisant \$1 150 000. La première phase consiste en 1 500 mètres de forages centrés sur les indices 325 et Mégane qui semblent, à ce stade de la connaissance, vouloir donner des teneurs plus élevées que sur les autres indices connus. Une majorité de forages visent à investiguer l'hypothèse d'une zone enrichie en or suivant une faible plongée vers le NE. Un forage vise à investiguer la minéralisation au niveau 300 mètres de profondeur. La phase totalise \$300 000.

La phase 2, d'une valeur de \$850 000, consistera en 4 000 mètres de forage qui se répartiront sur la poursuite de la phase 1 et sur la zone 52 qui ne fut pas explorée par Tomagold.

Le **tableau 17.1** donne le détail des dépenses proposées pour les deux phases tandis que le **Tableau 17.2** et les **Figures 17.1 à 17.2** montrent la localisation des huit premiers forages proposés. Les autres forages de la phase 2 sont conditionnels au succès des huit premiers.

Tableau 17.1
Budget 2012-13 - Monster Lake

Phase 1	item	coût/item	Coût	
Forage				
Mob-demob			10 000 \$	
Forage	1500	125 \$	187 500 \$	
Géologie	30	700 \$	21 000 \$	
Assistant (2)	30	600 \$	18 000 \$	
Analyses	150	30 \$	4 500 \$	
Supervision	6	800 \$	4 800 \$	
Accomodations	30	375 \$	11 250 \$	
Communication			1 000 \$	
Équipement-véhicule			6 000 \$	
Carothèque			3 000 \$	
Transport (hommes)			5 000 \$	

Route d'accès			1 000 \$	
Permis - coupe de bois			1 000 \$	274 050 \$
Dessin			5 000 \$	
Rapport			10 000 \$	15 000 \$
Imprévus			10 950 \$	10 950 \$
Total Phase 1				300 000 \$
Phase 2	item	coût/item	Coût	
Forage				
Mob-demob			10 000 \$	
Forage	4000	125 \$	500 000 \$	
Géologie	100	600 \$	60 000 \$	
Assistant (2)	100	600 \$	60 000 \$	
Analyses	500	30 \$	15 000 \$	
Supervision	30	800 \$	24 000 \$	
Accomodations	100	375 \$	37 500 \$	
Communication			5 000 \$	
Équipement-véhicule			20 000 \$	
Carothèque			3 000 \$	
Transport (hommes)			10 000 \$	
Route d'accès			1 000 \$	
Permis - coupe de bois			2 000 \$	747 500 \$
Dessin			10 000 \$	
Rapport			20 000 \$	30 000 \$
Imprévus			72 500 \$	72 500 \$

TABLEAU 17,2 FORAGES PROPOSÉS

# sondage	E (UTM NAD 83)	N (UTM NAD 83)	Azimut	Plongée	Longueur (m)
1	520037	5488316	290°	-60°	400
2	519975	5488548	290°	-60°	190
3	520038	5488628	290°	-60°	245
4	520145	5488792	290°	-60°	260
5	520203	5488876	290°	-60°	290
6	520248	5489024	290°	-60°	340
7	520380	5489072	290°	-60°	375
8	520470	5489136	290°	-60°	400
				TOTAL	2500

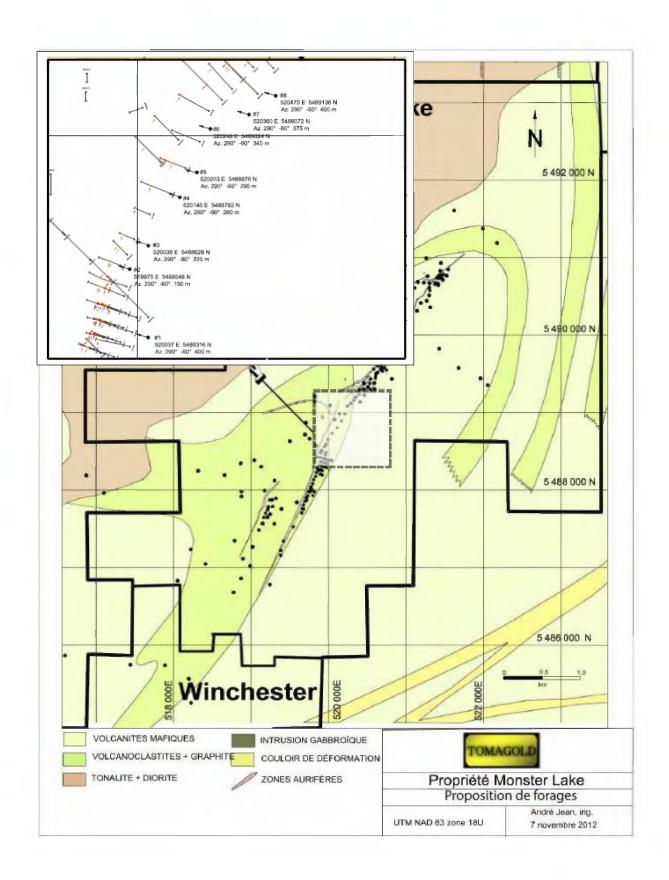
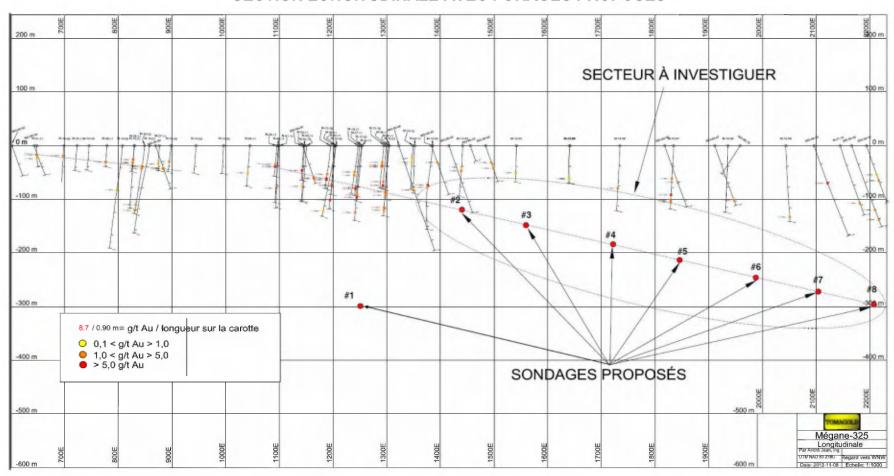



FIGURE 17.2 SECTION LONGITUDINALE AVEC FORAGES PROPOSÉS

18 BIBLIOGRAPHIE

Beaudoin, G., Therrien, R., et Savard, C., 2006 3D numerical modelling of fluid flow in the Val d'Or orogenic gold district: major crustal shear zones drain fluids from overpressured vein fields, Mineralum Deposita, vol.41, p.82-98

Dion, C., et Simard, M., 1995, Compilation et Synthèse Géologique et Métallogénique du Segment de Caopatina, tiré du DV93-03

Drolet, M.M., 2011, WikiMetallogenica, Département de Géologie et Génie Géologique, Université Laval.

Dubé, B. et Gosselin P., 2007, *Greenstone-hosted quartz-carbonate vein deposit*, compris dans Goodfellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No.5, p.49-73

Garolfo, P.S., 2004, Mass transfer during gold precipitation within a vertically extensive vein network (Sigma deposit - Abitibi greenstone belt - Canada). Part I. Patterns of hydrothermal alteration haloes Eur. J. Mineral, v.16, p. 753-760

Goldfarb, R.J., Groves, D.I., et Gardoll, D., 2001, Orogenic gold and geologic time: A global synthesis: Ore geology Reviews, v.18, p.1-75

Goldfarb, R.J., Baker, T., Dubé, B., Groves, D.I., Hart, J.R.C., et Gosselin, P., 2005, Distribution, Character, and Genesis of Gold Deposits in Metamorphic Terranes, Economic geology 100th Anniversary Volume, p.407-450

Groves, D.I., Condie, K.C., Goldfarb, R.J., Hronsky, J.M.A., et Vielreicher, R.M., 2005, Secular Changes in Global Tectonic Processes and Their Influence on the Temporal Distribution of Gold-Bearing Mineral Deposits: Society of Economic Geology, 100th Anniversary Special Paper, v.100, p.203-224

Groves, D.J., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., et Robert, F., 1998, Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationships to other gold deposit types: Ore geology Reviews, v.13, p.7-27

Jébrak, M., Marcoux, E., 2008, *Géologie des ressources minérales*, Ressources naturelles et Faune, Québec, 667pp.

O'Dowd, P, 2011, Rapport technique d'évaluation 43-101, propriété Monster Lake, région de l'Abitibi, SNRC 32G/10, 24 novembre 2011.

Rail, M., 2012, Scoping metallurgical study on a Tomagold's Monster Lake deposit sample. Nov. 14, 2012.

Ridley, J.R., et Diamond, L.W., 2000 Fluid chemistry of orogenic lode-gold deposits and implications for genetic models, Reviews in Economic Geology, v.13, p.141-162

Robert, F., et Brown, A.C., 1986, Archean gold-bearing quartz veins at the Sigma mine, Abitibi greestone belt, Quebec. Part I: Economic Geology, v.81, p.578-592

Trudel, P. 2012, Analyse structural de la propriété Monster Lake, Chibougamau, Québec, Août 2012, Rapport de la société Aecom soumis à Corporation Tomagold Inc.

Fichiers Examine consultés :

GM36464, GM36463, GM34348, GM34727, GM32742, GM33835, GM32745, GM33836, GM32746, GM31615, GM42391, GM32741, GM42557, GM43024, GM43345, GM46027, GM50226, GM50535, GM51182, GM53050, GM53351, GM53911, GM53912

19 DATE ET SIGNATURE

RAPPORT TECHNIQUE D'ÉVALUATION 43-101 PROPRIÉTÉ MONSTER LAKE ABITIBI NTS 32G10

Préparé pour:

Corporation Tomagold inc.

777 de la Commune O, bureau 100 Montréal, QC, H3C 1Y1

Signé le 20 novembre 2012 à Saint-Jean-sur-Richelieu

(s) Pierre O'Dowd

Géologue et Personne Qualifiée selon le Règlement 43-101

(OGQ #668)

REÇU AU MRNF

1 0 DEC. 2012

DIRECTION DES TITRES MINIERS

100

CERTIFICATION DE QUALIFICATION PIERRE O'DOWD GÉOLOGUE

Je certifie que :

Je réside au 622 des Fortifications, Saint-Jean-sur-Richelieu, J2W 2W8. Mon numéro de téléphone est le 514-910-9766.

J'ai gradué de l'Université de Montréal en 1978 avec un baccalauréat en Géologie.

J'ai accumulé plus de 34 années d'expérience en exploration et développement minier dont une douzaine d'années pour le groupe Falconbridge-Noranda (maintenant Xstrata). J'ai œuvré dans une quinzaine de pays sur des projets de métaux de base et précieux. Je suis présentement consultant à mon compte.

Je suis membre de l'Ordre des Géologues du Québec (# 668) et je suis une personne qualifiée au terme du Règlement 43-101 sur l'information concernant les projets miniers.

J'ai visité la propriété faisant l'objet du rapport intitulé RAPPORT TECHNIQUE D'ÉVALUATION 43-101, PROPRIÉTÉ MONSTER LAKE, RÉGION DE L'ABITIBI, SNRC 32G/10, 20 NOVEMBRE 2012, le 2 novembre 2012. J'ai rédigé un rapport 43-101 sur ce projet en novembre 2011.

Le rapport intitulé RAPPORT TECHNIQUE D'ÉVALUATION 43-101, PROPRIÉTÉ MONSTER LAKE, RÉGION DE L'ABITIBI, SNRC 32G/10, 20 NOVEMBRE 2012 a été rédigé en entier par l'auteur et il en prend la responsabilité entière. Des passages de quelques chapitres ont été tirés

d'anciens rapports rédigés par l'auteur lui-même ou par des géologues ayant œuvrés dans la région.

À la date d'effet du rapport technique, le rapport technique comporte, à ma connaissance, tous les renseignements scientifiques et techniques qui doivent être publiés pour que le rapport ne soit pas trompeur.

Je suis indépendant de l'émetteur ou de tout autre tiers pour le compte duquel le rapport intitulé RAPPORT TECHNIQUE D'ÉVALUATION 43-101, PROPRIÉTÉ MONSTER LAKE, RÉGION DE L'ABITIBI, SNRC 32G/10, 20 NOVEMBRE 2012 a été rédigé et je n'ai aucun intérêt dans la propriété faisant l'objet de ce rapport. Je recevrai des honoraires professionnels pour la rédaction du présent rapport de qualification, conformément à la description prévu par l'article 1.5 de l'instrument National 43-101.

L'auteur a lu le Règlement 43-101 sur l'information concernant les projets miniers.et son annexe 43-101-A1 et le présent rapport technique a été établi conformément à ce règlement.

1 and and

(s) Pierre O'Dowd

Signé le 20 novembre 2012 à Saint-Jean-sur-Richelieu

	ANNE	XF 1		
IOUBNI	AUX DE SONDA		ACOLD	
JOURNA	OX DE SONDA	GES DE TOM	AGOLD	
				103

Foré par : Décrit par : Collet Azimut : Plongée : Longueur : Déviation Type	FORAGE DCB ROGER OUELLET 290.00° -50.00° 150.00 m		Canton : Rang : Lot : Du : Au :	Rale 32G10 1910-11-21 1910-11-22 Est Nord Élévation	F	Viveau : Place de travail : Date de description : Annie	SURFACE Még	gane -63
Décrit par : Collet Azimut : Plongée : Longueur : Déviation Type	290.00° -50.00° 150.00 m		Lot : Du :	1910-11-21 1910-11-22 Est Nord	UTM 519 741	Date de description :	Méç	
Décrit par : Collet Azimut : Plongée : Longueur : Déviation Type	290.00° -50.00° 150.00 m		Du :	1910-11-21 1910-11-22 Est Nord	UTM 519 741			
Azimut : Plongée : Longueur : Déviation Type	290.00° -50.00° 150.00 m			1910-11-22 Est Nord	UTM 519 741			
Azimut : Plongée : Longueur : Déviation Type	-50.00° 150.00 m		Au :	Est Nord	519 741	Annie		
Azimut : Plongée : Longueur : Déviation Type	-50.00° 150.00 m			Nord	519 741	Annie		
Plongée : Longueur : Déviation Type	-50.00° 150.00 m			Nord	519 741			
Longueur : Déviation ————————————————————————————————————	150.00 m			Nord			-134	-03
Déviation Type					5 487 980		0.00	
Туре	Profondeur			Élévation			258	284
Туре	Profondeur				0		0	0
	Profondeur							
		Azimut	Plongée	Invalide		Description		
Acide	0.00		-50.00°	Non				
Acide	50.00		-51.00°	Non				
Acide	100.00		-51.00°	Non				
Acide	150.00		-52.00°	Non				
		100						
Description								
	AZIMUT NON CONSIDERE;							
							0	
							laki A ng (01231	4762)
							0	

		Developer		Analyse				
		Description	De	Α	Numéro	Longueur	Au_Plot (g/t)	
.00	3.50	мо						
		Mort Terrain						
		Ancien Résumé :M-T						
.50	19.70	V3B	10.20	11.40	666130	1.20	0.008	
		Basalte Ancien Résumé :V3B						
9.70	32.70	V3B; M8	21.00	22.00	666131	1.00	0.015	
		Basalte; Schiste	22.00	23.00	666132	1.00	0.007	
		Ancien Résumé :V3B-M8	23.00	24.00	666133	1.00	0.006	
			24.00	25.00	666134	1.00	0.007	
			25.00	26.00	666135	1.00	0.008	
			26.00	27.00	666136	1.00	0.007	
			27.00	28.00	666137	1.00	0.006	
			28.00	29.00	666138	1.00	0.006	
			29.00	30.00	666139	1.00	0.007	
			30.00	31.00	666140	1.00	0.007	
			31.00	32.00	666141	1.00		
			32.00	32.70	666142	0.70	0.009	
							0.009	
2.70	43.20	M8 Schiste	32.70	33.20	666143	0.50	0.021	
		Ancien Résumé :M8,Zone Megane	33.20	34.10	666144	0.90	4.906	
			34.10	34.90	666145	0.80	0.145	
			34.90	36.00	666146	1.10	0.226	
			36.00	37.00	666147	1.00	0.077	
			37.00	38.00	666148	1.00	0.399	
			38.00	39.00	666149	1.00	0.011	
			39.00	40.00	666151	1.00	0.050	
			40.00	41.00	666152	1.00	0.071	
			41.00	42.00	666153	1.00	0.052	
			42.00	43.20	666154	1.20	0.010	
3.20	50.40	V3B	43.20	44.20	666155	1.00	0.006	
		Basalte	45.00	45.50	666156	0.50	0.005	
		Ancien Résumé :V3B						
0.40	51.80	12J						
		Diorite Ancien Résumé :12J						

		Description		Analyse			
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
1.80	64.10	V3B	58.50	59.00	666157	0.50	0.005
		Basalte	61.40	62.00	666158	0.60	0.005
		Ancien Résumé :V3B					
4.10	69.50	12J					
		Diorite Ancien Résumé :12J					
9.50	123.60	V3B	82.40	82.90	666159	0.50	0.007
	120100	Basalte	92.60	93.10	666160	0.50	0.011
		Ancien Résumé :V3B,Zone Mega!	97.50	99.00	666161	1.50	0.005
			109.00	110.50	666162	1.50	0.007
			114.90	116.00	666163	1.10	0.007
23.60	128.80	V3B Basaite	126.00	126.80	666164	0.80	0.005
		Ancien Résumé :V3B	126.80	127.80	666165	1.00	0.005
		Autom (County 1955)	127.80	128.80	666166	1.00	0.007
28.80	142.50	M8; V3B	128.80	130.00	666167	1.20	0.005
		Schiste; Basalte	130.00	131.10	666168	1.10	0.009
		Ancien Résumé :M8,V3B	131.10	132.00	666169	0.90	0.014
			132.00	133.00	666171	1.00	0.066
			133.00	134.00	666172	1.00	0.160
			134.00	135.00	666173	1.00	0.015
			135.00	136.00	666174	1.00	0.006
			136.00	137.00	666175	1.00	0.059
			137.00	138.00	666176	1.00	0.061
			138.00	139.00	666177	1.00	0.005
			139.00	140.00	666178	1.00	0.005
			140.00	141.00	666179	1.00	0.006
			141.00	142.50	666180	1.50	0.005
42.50	150.00	V3B	145.60	147.60	666181	2.00	0.007
7 ∠.JU	130.00	Basalte	145.60	147.00	000101	2.00	0.007
		Ancien Résumé :V3B					
150.00	Fin du sond	2008			l		
		chantillons: 50					

Nombre d'échantillons : 50

Nombre d'échantillons QAQC : 0

Longueur totale échantillonnée : 49.60

Foré par :	M-10-02		Titre minier : Canton : Rang : Lot :	5253894	N Pi	ection : iveau : lace de travail :	
Décrit par :			Du : Au :		D	ate de description :	
Collet	200.00%				UTM	Annie	Mégane
Azimut : Plongée : Longueur :	290.00° -50.00° 159.00 m			Est Nord Élévation	519 769 5 487 988 0	-120 284 0	-42 305 0
éviation ———	Butudan	A	Planafa	Involido		Description	
Type Flexit Flexit Flexit	51.00 100.00 159.00	Azimut 282.60° 282.50° 280.50°	-52.70° -53.30° -54.40°	Invalide Non Non Non		Description	
Description						Q.A.	in Aging (01234762)
Dimension de la ca	rotte: NX			Ciment	é : Non		Entreposé : Non

		Description		Analyse						
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)			
0.00	12.00	МО								
		Mort Terrain								
		Ancien Résumé :M-T			1200					
2.00	42.00	V3B; I3A	12.00	13.00	666241	1.00	0.010			
		Basalte; Gabbro	13.00	14.10	666242	1.10	0.009			
0.00	40.50	Ancien Résumé :V3B,13A	10.40	10.10	200040		0.047			
2.00	46.50	V3B Basalte	42.40	43.40	666243	1.00	0.017			
		Ancien Résumé :V3B	45.50	46.50	666244	1.00	0.009			
6.50	68.00	M8; V3B	46.50	48.00	666245	1.50	0.880			
		Schiste; Basalte	48.00	49.00	666246	1.00	0.031			
		Ancien Résumé :M8,V3B-Zone Megane!	49.00	50.00	666247	1.00	3.804			
			50.00	51.00	666248	1.00	0.332			
			51.00	52.30	666249	1.30				
							0.172			
			52.30	53.30	666250	1.00	0.092			
			53.30	54.20	666251	0.90	0.124			
			54.20	55.20	666252	1.00	2.218			
			55.20	56.20	666253	1.00	0.093			
			56.20	57.00	666254	0.80	0.144			
			57.00	58.00	666255	1.00	0.066			
			58.00	59.00	666256	1.00	0.068			
			59.00	60.00	666257	1.00	0.069			
			60.00	61.00	666258	1.00	0.064			
			61.00	62.20	666259	1.20	0.048			
			62.20	63.00	666261	0.80	0.007			
			63.00	64.00	666262	1.00	0.007			
			64.00	65.00	666263	1.00	0.006			
			65.00	66.00	666264	1.00	0.020			
						1.00				
			66.00	67.00	666265		0.013			
			67.00	68.00	666266	1.00	0.010			
8.00	134.30	V3B	68.00	69.00	666267	1.00	0.010			
		Basalte	69.00	70.00	666268	1.00	0.011			
		Ancien Résumé :V3B	90.00	91.10	666269	1.10	0.009			
			117.00	118.00	666270	1.00	0.014			
			118.00	119.00	666271	1.00	0.031			

		Description	Analyse						
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)		
			119.00	120.00	666272	1.00	0.012		
34.30	144.80	V3B	134.30	135.60	666273	1.30	0.008		
		Basalte	135.60	136.60	666274	1.00	0.019		
		Ancien Résumé :V3B	136.60	137.60	666275	1.00	0.679		
			138.00	139.00	666276	1.00	2.175		
			141.00	142.00	666277	1.00	0.341		
			143.00	144.00	666278	1.00	0.189		
14.80	151.00	V3B							
		Basaite							
		Ancien Résumé :V3B							
51.00	156.00	V3B	151.00	152.00	666279	1.00	1.212		
		Basalte Assista Richard (ACR)	152.00	153.00	666281	1.00	0.126		
		Ancien Résumé :V3B	153.00	154.00	666282	1.00	0.013		
			154.00	155.00	666283	1.00	0.021		
			155.00	156.00	666284	1.00	0.022		
56.00	159.00	M8	156.00	157.00	666285	1.00	0.011		
		Schiste	157.00	158.00	666286	1.00	0.087		
		Ancien Résumé :M8	158.00	159.00	666287	1.00	0.149		

Nombre d'échantillons : 45

Nombre d'échantillons QAQC : 0

Longueur totale échantillonnée : 46.00

Sondage :	M-10-03		Titre minier : Canton : Rang :	5253894	Nive	ion : au : e de travail :	
Foré par :			Lot:				
Décrit par :			Du :		Date	e de description :	
			Au:				
Collet							
	000.00%				UTM	Annie	Mégane
Azimut : Plongée :	290.00° -50.00°			Est	519 775	-152	-63
Longueur :	63.00 m			Nord	5 488 040	324	352
Longueur .	03.00 III			Élévation	0	0	0
-Déviation							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	60.00	283.00°	-50.90°	Non			
Description							loki A iz (01234762)
Dimension de la care	otte :			Ciment	té : Non		Entreposé : Non

		Description		Analyse						
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)			
.00	11.70	MO								
		Mort Terrain								
		Ancien Résumé :M-T								
11.70	28.00	V3B	26.00	27.10	666289	1.10	0.005			
		Basalte Ancien Résumé :V3B								
28.00	49.00	V3B; M8	29.00	30.00	666290	1.00	0.005			
_0.00	10100	Basalte; Schiste	30.00	31.00	666291	1.00	0.015			
		Ancien Résumé :V3B-M8	31.00	32.00	666292	1.00	0.009			
			32.00	33.00	666293	1.00	0.036			
			33.00	34.00	666294	1.00	0.217			
			34.00	35.00	666295	1.00	0.507			
			35.00	36.00	666296	1.00	0.089			
			36.00	37.00	666297	1.00	0.265			
			37.00	38.00	666298	1.00	0.025			
			38.00	39.00	666299	1.00	1.031			
			39.00	40.00	666300	1.00	0.536			
			40.00	41.00	666301	1.00	0.236			
			41.00	42.00	666302	1.00	0.025			
			42.00	43.00	666303	1.00	0.005			
			43.00	44.00	666304	1.00	0.040			
			44.00	45.00	666305	1.00	0.031			
			45.00	46.00	666306	1.00	0.011			
			46.00	46.90	666307	0.90	0.012			
			46.90	47.40	666308	0.50	0.084			
			47.40	48.00	666309	0.60	0.005			
			48.00	49.00	666311	1.00	0.006			
			48.00	49.00	000311	1.00	0.006			
19.00	52.50	13A								
		Gabbro Ancien Résumé :I3A								
52.50	63.00	V3B	54.00	55.00	666312	1.00	0.005			
22.00	00.00	Basalte	56.60	57.20	666313	0.60	0.007			
		Ancien Résumé :V3B	56.60	37.20	1000313	0.00	0.007			

63.00	Fin du sondage
	Nombre d'échantillons : 24
	Nombre d'échantillons QAQC : 0
	Longueur totale échantillonnée : 22.70

Projet: MONSTER Sondage: M-10-03 3 / 3

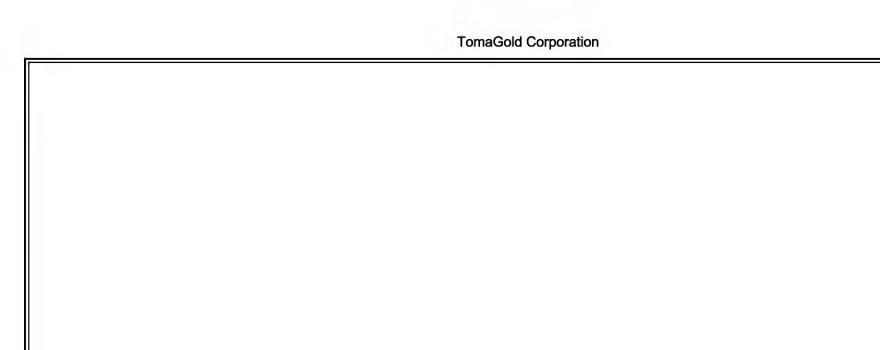
Sondage : Foré par : Décrit par :	M-10-04		Titre minier : Canton : Rang : Lot : Du : Au :	5253894	Niv Pla	eau : ce de travail : te de description :	
Collet Azimut : Plongée : Longueur Déviation	295.00° -50.00° : 58.00 m			Est Nord Élévation	UTM 519 715 5 487 899 0	Annie -94 182 0	Mégane -44 201 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	50.00	283.50°	-52.80°	Non			
						liki de iz	(0iQ 34762)
Dimension de la ca	arotte:			Cimen	ıté : Non		Entreposé : Non

		Description		Analyse						
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)			
00	6.00	МО								
		Mort Terrain								
		Ancien Résumé :M-T								
00	24.20	V3B	13.60	14.70	666182	1.10	0.005			
		Basalte	16.40	17.50	666183	1.10	0.005			
		Ancien Résumé :V3B	22.00	23.00	666184	1.00	0.005			
			23.00	24.00	666185	1.00	0.005			
			24.00	25.00	666186	1.00	0.005			
.20	47.40	M8; V3B	25.00	26.00	666187	1.00	0.005			
		Schiste; Basalte	26.00	27.00	666188	1.00	0.005			
		Ancien Résumé :M8,V3B	27.00	28.00	666189	1.00	0.005			
			28.00	29.00	666191	1.00	0.007			
			29.00	30.00	666192	1.00	0.066			
			30.00	31.00	666193	1.00	0.041			
			31.00	32.00	666194	1.00	0.080			
			32.00	33.00	666195	1.00	0.116			
			33.00	34.00	666196	1.00	0.027			
			34.00	35.00	666197	1.00	0.004			
			35.00	36.00	666198	1.00	0.003			
			36.00	36.90	666199	0.90	0.003			
						1.00				
			36.90	37.90	666200	199	0.018			
			37.90	39.00	666201	1.10	0.011			
			39.00	40.00	666202	1.00	0.014			
			40.00	41.00	666203	1.00	0.011			
			41.00	42.00	666204	1.00	0.012			
			42.00	43.00	666205	1.00	0.010			
			43.00	44.00	666206	1.00	0.015			
			44.00	45.00	666207	1.00	0.012			
			45.00	46.00	666208	1.00	0.018			
			46.00	47.40	666209	1.40	0.015			
7.40	58.00	V3B	47.40	48.40	666211	1.00	0.027			
		Basalte								
		Ancien Résumé :V3B								

58.00	Fin du sondage
	Nombre d'échantillons : 28
	Nombre d'échantillons QAQC : 0
	Longueur totale échantillonnée : 28.60

Projet: MONSTER Sondage: M-10-04 3/3

	1-10-05		Titre minier : Canton : Rang :	2294781	Niv	ction : /eau : ace de travail :	
Foré par : Décrit par :			Lot : Du : Au :		Da	te de description :	
Collet Azimut : Plongée : Longueur : —Déviation	290.00° -50.00° 66.00 m			Est Nord Élévation	UTM 519 796 5 488 082 0	-167 368 0	Mégane -66 399 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Description	51.00	289.10°	-51.30°	Non		- Dak	in (Ag org (01034762)
Dimension de la caro	4			Ciment	ó : Non	,	Entreposé : Non


		Description	Analyse						
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)		
.00	13.00	мо							
		Mort Terrain							
		Ancien Résumé :M-T			1.500				
3.00	31.80	V3B	17.00	18.00	666314	1.00	0.005		
		Basalte Ancien Résumé :V3B	20.90	21.90	666315	1.00	0.011		
		Alideli Nesulite . VSB	27.00	28.50	666316	1.50	0.005		
			30.80	31.80	666317	1.00	0.005		
1.80	62.00	M8; V3B	31.80	33.00	666318	1.20	0.005		
		Schiste; Basalte	33.00	34.00	666319	1.00	0.007		
		Ancien Résumé :M8,V3B	34.00	35.00	666320	1.00	0.007		
			35.00	36.00	666321	1.00	0.129		
			36.00	37.00	666322	1.00	0.221		
			37.00	38.00	666323	1.00	0.061		
			38.00	39.00	666324	1.00	0.051		
			39.00	40.00	666325	1.00	0.022		
			40.00	41.00	666326	1.00	0.003		
			41.00	42.00	666327	1.00	0.093		
			42.00	43.00	666328	1.00	0.049		
			43.00	44.00	666329	1.00	0.068		
			44.00	45.00	666331	1.00	0.031		
			45.00	46.00	666332	1.00	0.382		
			46.00	47.00	666333	1.00	0.009		
			47.00	48.00	666334	1.00	0.005		
			48.00	49.00	666335	1.00	0.037		
			49.00	50.00	666336	1.00	0.017		
			50.00	51.00	666337	1.00	0.005		
			51.00	52.20	666338	1.20	0.003		
			52.20	53.20	666339	1.00	0.013		
			53.20	53.90	666340	0.70	0.090		
			53.90	55.00	666341	1.10	0.011		
					666342	1.00	0.024		
			55.00	56.00					
			56.00	57.00	666343	1.00	0.006		
			57.00	58.00	666344	1.00	0.006		
			58.00	59.00	666345	1.00	0.023		

		Description	Analyse						
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)		
			59.00	60.00	666346	1.00	0.015		
			60.00	61.00	666347	1.00	0.023		
			61.00	62.00	666348	1.00	0.031		
62.00	66.00	V3B							
		Basalte							
		Ancien Résumé :V3B							
66.00	Fin du sondage								
	Nombre d'écha								
		antillons QAQC : 0 le échantillonnée : 34.70							
	Longueur total	e edianununnee . 94.70		_					

Sondage :	M-10-06		Titre minier : Canton : Rang :	5253894	Ni	ection : veau : ace de travail :	
Foré par :			Lot :				
Décrit par :			Du : Au :		Da	ate de description :	
-Collet					UTM	Annie	Mégane
Azimut :	290.00°			Est	519 699	-75	-36
Plongée : Longueur :	-50.00° 86.00 m			Nord	5 487 855	140	155
				Élévation	0	0	0
Déviation Type	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit Flexit	50.00 84.00	290.30° 290.30°	-52.20° -52.50°	Non Non			
Description							liki A ig (01234762)
Dimension de la ca	arotte :			Cime	enté : Non		Entreposé : Non

Projet : MONSTER

		Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00	12.00	MO					
		Mort Terrain					
		Ancien Résumé :M-T					
2.00	20.40	V3B Basalte					
		Ancien Résumé :V3B					
0.40	51.00	M8; V3B	20.40	21.00	666212	0.60	0.008
		Schiste; Basalte	21.00	22.00	666213	1.00	0.008
		Ancien Résumé :M8,V3B	22.00	23.00	666214	1.00	0.017
			23.00	24.00	666215	1.00	3.875
			24.00	25.00	666216	1.00	1.114
			25.00	26.00	666217	1.00	0.034
			26.00	27.00	666218	1.00	0.020
		27.00	28.00	666219	1.00	0.013	
		28.00	29.00	666221	1.00	0.054	
		29.00	29.50	666222	0.50	0.025	
			29.50	30.50	666223	1.00	0.026
			30.50	31.50	666224	1.00	0.050
			31.50	32.50	666225	1.00	0.020
			32.50	33.50	666226	1.00	0.020
			33.50	34.50	666227	1.00	0.008
			34.50	36.00	666228	1.50	0.008
				37.00	1 - 1 - 1		
			36.00		666229	1.00	0.013
			37.00	38.00	666230	1.00	0.010
			38.00	38.90	666231	0.90	0.015
			38.90	40.00	666232	1.10	0.005
			40.00	41.00	666233	1.00	0.005
			41.00	42.00	666234	1.00	0.007
			42.00	43.00	666235	1.00	0.008
			43.00	44.00	666236	1.00	0.008
			44.00	45.00	666237	1.00	0.005
			47.00	48.00	666238	1.00	0.007
1.00	86.00	V3B	69.00	70.20	666239	1.20	0.008
		Basalte					
		Ancien Résumé :V3B					

86.00 Fin du sondage

Nombre d'échantillons : 27

Nombre d'échantillons QAQC : 0

Longueur totale échantillonnée : 26.80

Titre minier: 5253894 Section: Canton: Niveau: Rang: Place de travail: Lot: Du: Date de description: Au: UTM Annie Mégane 290.00° -50.00° Nord 5487 977 308 318 Élévation 0 0 0 0 0
Lot: Du: Date de description: Au: UTM Annie Mégane 290.00° -50.00° Nord 5 487 977 308 318 Élévation 0 0 0
Lot: Du: Date de description: Au: UTM Annie Mégane 290.00° -50.00° Nord 5 487 977 308 318 Élévation 0 0 0 0
Au : UTM Annie Mégane 290.00° -50.00° Nord 5 487 977 308 318 Élévation 0 0 0
Au : UTM Annie Mégane 290.00° -50.00° Nord 5 487 977 308 318 Élévation 0 0 0
UTM Annie Mégane 290.00°
290.00° -50.00° Nord 5 487 977 308 318 208.00 m Élévation 0 0
-50.00° Nord 5 487 977 308 318 Élévation 0 0
-50.00° 208.00 m Nord 5 487 977 308 318 6 lévation 0 0 0
208.00 m Élévation 0 0
Profondeur Azimut Plongée Invalide Description
278.20° -51.10° Non
00 280.30° -51.70° Non
00 283.30° -52.10° Non
00 284.10° -52.60° Non

Projet : MONSTER

		Personnelle		_	Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00	12.00	МО					
		Mort Terrain					
		Ancien Résumé :M-T					
12.00	50.50	V3B					
		Basalte Ancien Résumé :V3B					
50.50	55.70	V3B					
	00.70	Basalte					
		Ancien Résumé :V3B-GP					
50.5	0 55.70	O Gp	51.60	52.60	666001	1.00	0.006
		Graphite	52.60	53.60	666002	1.00	0.019
		Ancien Résumé :V3B-GP	53.60	54.60	666003	1.00	0.015
			54.60	55.60	666004	1.00	0.005
55.70	93.10	V3B	60.90	62.20	666005	1.30	0.005
		Basalte	66.50	67.50	666006	1.00	0.005
		Ancien Résumé :V3B	90.00	91.00	666007	1.00	0.005
93.10	96.00	V3B					
		Basalte					
		Ancien Résumé :V3B					
96.00	110.10	M8	96.00	97.00	666008	1.00	0.118
		Schiste	97.00	98.00	666009	1.00	0.010
		Ancien Résumé :M8-V3B	98.00	99.00	666010	1.00	0.006
			99.00	100.00	666011	1.00	0.058
			100.00	101.00	666012	1.00	0.140
			101.00	102.00	666013	1.00	0.228
			102.00	103.00	666014	1.00	0.028
			103.00	104.00	666015	1.00	0.005
			104.00	105.00	666016	1.00	0.005
			105.00	106.00	666017	1.00	0.005
			106.00	107.00	666018	1.00	0.005
			107.00	108.00	666019	1.00	0.005
			108.00	109.00	666020	1.00	0.011
			109.00	110.10	666021	1.10	0.005
110.10	114.30	12.J	110.10	111.00	666022	0.90	0.005
		Diorite					

		Personalista			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
		Ancien Résumé :l2J				1	
114.30	119.80	V3B	117.00	118.00	666023	1.00	0.005
		Basalte					
		Ancien Résumé :V3B					
119.80	130.70	V3B Basaite	120.00	121.00	666024	1.00	0.007
		Ancien Résumé :V3B	122.50	123.50	666026	1.00	0.019
			124.70	125.70	666027	1.00	0.014
130.70	169.30	V3B; I2J	138.00	139.00	666028	1.00	0.005
		Basalte; Diorite					
169.30	182.40	Ancien Résumé :V3B,I2J V3B	169.30	170.30	666029	1.00	0.128
109.50	102.40	Basalte	172.30	173.30	666030	1.00	0.009
		Ancien Résumé :V3B	178.00	179.00	666031	1.00	0.009
				180.00	666032	1.00	
			179.00				800.0
			180.00	181.00	666033	1.00	0.006
			181.00	181.90	666034	0.90	0.005
			181.90	182.40	666035	0.50	0.005
182.40	208.00	V3B	182.40	183.00	666036	0.60	0.005
		Basalte Ancien Résumé :V3B	183.00	184.00	666037	1.00	0.005
		Alicien resume .vsb	184.00	185.00	666038	1.00	0.009
			185.00	186.00	666039	1.00	0.010
			186.00	187.00	666040	1.00	0.005
			187.00	188.00	666041	1.00	0.005
			188.00	189.00	666042	1.00	0.010
			189.00	190.00	666043	1.00	0.013
			190.00	191.00	666044	1.00	0.006
			191.00	192.00	666045	1.00	0.005
			192.00	193.00	666046	1.00	0.005
			193.00	194.00	666047	1.00	0.005
			194.00	195.00	666048	1.00	0.005
			195.00	196.00	666049	1.00	0.024
			196.00	197.00	666051	1.00	0.048
			197.00	198.00	666052	1.00	0.006
			198.00	199.00	666053	1.00	0.005

	Description			Analyse		
	Description	De	A	Numéro	Longueur	Au_Plot (g/t)
		199.00	200.00	666054	1.00	0.009
		200.00	201.00	666055	1.00	0.050
		201.00	202.00	666056	1.00	0.005
		202.00	203.00	666057	1.00	0.005
		203.00	204.00	666058	1.00	0.006
		204.00	205.00	666059	1.00	0.008
		205.00	205.60	666060	0.60	0.025
		205.60	206.60	666061	1.00	0.083
		206.60	207.10	666062	0.50	0.011
		207.10	208.00	666063	0.90	0.019
208.00	Fin du sondage Nombre d'échantillons : 61 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 59.30					

Sondage :	M-10-08		Titre minier : Canton :	5253894	Niv	otion : eau :	
			Rang :		Pla	ce de travail :	
Foré par :			Lot :				
Décrit par :			Du :		Dat	e de description :	
			Au :				
Collet					UTM	Annie	Mégane
Azimut :	290.00°			F./			
Plongée :	-55.00°			Est	519 796	-60	10
Longueur :	230.00 m			Nord	5 487 930	261	268
				Élévation	0	0	0
Déviation ———							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	50.00	282.40°	-56.00°	Non			
Flexit	100.00	282.90°	-56.30°	Non			
Flexit	150.00	225.20°	-56.20°	Oui			
Flexit	210.00	284.90°	-56.50°	Non			
Description							
. Decempaion							
						Lie	(01Q34762)
Dimension de la ca	rotte :			Cime	enté : Non		Entreposé : Non

Projet : MONSTER

		Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00	10.70	МО					
		Mort Terrain					
		Ancien Résumé :M-T					
0.70	54.10	I3A; I2J	33.70	34.40	666064	0.70	0.006
		Gabbro; Diorite Ancien Résumé : 3A, 2J	50.80	51.30	666065	0.50	0.007
4.10	85.40	V2J; V3B	54.10	54.80	666066	0.70	0.006
4.10	00.40	Andésite; Basalte	54.80	55.80	666067	1.00	0.010
		Ancien Résumé :V2J,V3B	76.40	77.40	666068	1.00	0.005
			84.40	85.40	666069	1.00	0.005
5.40	117.30	V2J; M8	85.40	86.40	666070	1.00	0.005
		Andésite; Schiste Ancien Résumé :V2J,M8	86.40	87.00	666071	0.60	0.005
		Aliden Nesaulie . V20, Nio	87.00	88.00	666072	1.00	0.005
		88.00	89.00	666073	1.00	0.005	
		89.00	90.00	666074	1.00	0.005	
			90.00	91.00	666076	1.00	0.005
			91.00	92.00	666077	1.00	0.005
			92.00	93.00	666078	1.00	0.005
			93.00	94.00	666079	1.00	0.005
			94.00	95.00	666080	1.00	0.005
			95.00	96.00	666081	1.00	0.022
			96.00	97.00	666082	1.00	0.012
			97.00	97.80	666083	0.80	0.005
			97.80	99.10	666084	1.30	0.119
			99.10	100.10	666085	1.00	0.798
			100.10	101.10	666086	1.00	0.012
			101.10	102.00	666087	0.90	0.014
			102.00	103.00	666088	1.00	0.183
				103.80	666089	0.80	0.163
			103.00				
			103.80	104.50	666090	0.70	0.005
			104.50	105.30	666091	0.80	0.008
			105.30	106.30	666092	1.00	0.016
			106.30	107.30	666093	1.00	0.024
			107.30	108.20	666094	0.90	0.020

					Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
			108.20	109.00	666095	0.80	0.016
			109.00	110.00	666096	1.00	0.007
			110.00	111.00	666097	1.00	0.201
			111.00	112.00	666098	1.00	0.005
				113.00	666099	1.00	0.005
			112.00				
			113.00	114.00	666101	1.00	0.005
			114.00	114.80	666102	0.80	0.005
			114.80	115.80	666103	1.00	0.005
			115.80	117.30	666104	1.50	0.005
117.30	137.80	V3B	120.00	121.00	666105	1.00	0.005
		Basalte	123.00	124.30	666106	1.30	0.005
		Ancien Résumé :V3B	132.90	133.90	666107	1.00	0.005
			137.00	138.00	666108	1.00	0.005
137.80	149.80	13A					
		Gabbro					
		Ancien Résumé :I3A					
149.80	156.50	V3B					
		Basalte					
-		Ancien Résumé :V3B					
156.50	160.00	S9B Formation de Fer oxidée	158.40	159.40	666109	1.00	0.005
		Ancien Résumé :S9B					
160.00	197.90	V3B; I3A	192.80	193.60	666110	0.80	0.005
	101100	Basalte; Gabbro	102.00	100.00			0.000
		Ancien Résumé :V3B,I3A					
197.90	201.10	S9B	199.80	201.00	666111	1.20	0.005
		Formation de Fer oxidée					
		Ancien Résumé :S9B					
201.10	209.80	V3B; I3A	208.80	209.80	666112	1.00	0.005
		Basalte; Gabbro Ancien Résumé :V3B,I3A					
209.80	222.80	M8; V3B	209.80	210.90	666113	1.10	0.005
203.00	222.00	Schiste; Basalte	210.90	211.90	666114	1.00	0.009
		Ancien Résumé :M8,V3B					
			211.90	213.00	666115	1.10	0.009
			213.00	214.00	666116	1.00	0.008
			214.00	215.00	666117	1.00	0.005

		Paradatas			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
			215.00	216.00	666118	1.00	0.005
			216.00	217.00	666119	1.00	0.005
			217.00	218.00	666120	1.00	0.005
			218.00	219.00	666121	1.00	0.019
			219.00	220.00	666122	1.00	0.005
			220.00	221.00	666123	1.00	0.007
			221.00	222.00	666124	1.00	0.032
			222.00	222.80	666126	0.80	0.014
222.80	227.40	V3B	222.80	223.80	666127	1.00	0.008
		Basalte	225.00		666128	1.00	0.009
		Ancien Résumé :V3B	227.00	228.00	666129	1.00	0.005
227.40	230.00	V3B; I3A Basalte; Gabbro					
		Ancien Résumé :V3B,I3A					
230.00	Fin du sondag	ge					
	Nombre d'écha						
		nantillons QAQC : 0 ale échantillonnée : 61.10					
	Longueur total	ale evilanuminee . VI. IV					

Sondage :	M-10-09		Titre minier : Canton : Rang :	2294781	Sect Nive Plac		
Foré par :			Lot:		, 133		
Décrit par :			Du :		Date	e de description :	
			Au :				
-Collet -				-			
2.6-4				_	UTM	Annie	Mégane
Azimut :	290.00°			Est	519 809	-193	-79
Plongée :	-50.00°			Nord	5 488 132	414	450
Longueur :	66.00 m			Élévation	0	0	0
Déviation ———							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	60.00	292.20°	-52.90°	Non	-		
Description						l	li (A ig (01234762)
Dimension de la card	otte :			Cimente	é: Non		Entreposé : Non

			Description		Analyse							
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)				
0.00	15.00	МО										
		Mort Terrain										
		Ancien Résumé :MT										
5.00	31.40	V3B		18.00	19.00	666352	1.00	0.005				
		Basalte		21.00	22.00	666353	1.00	0.013				
		Ancien Résumé :V3B		26.00	27.00	666354	1.00	0.005				
1.40				27.00	28.10	666355	1.10	0.005				
1.40	33.10	13A										
		Gabbro										
		Ancien Résumé :I3A										
33.10	42.40	V3B		42.00	43.00	666356	1.00	0.005				
		Basalte										
		Ancien Résumé :V3B										
2.40	52.90	V3B; M8		43.00	44.30	666357	1.30	0.005				
		Basalte; Schiste		44.30	45.00	666358	0.70	0.038				
		Ancien Résumé :V3B,M8		45.00	46.00	666359	1.00	0.083				
				46.00	46.90	666360	0.90	0.013				
				46.90	48.00	666361	1.10	0.005				
				48.00	49.00	666362	1.00	0.005				
				49.00	50.00	666363	1.00	0.005				
				50.00	51.00	666364	1.00	0.006				
				51.00	52.00	666365	1.00	0.005				
				52.00	53.00	666366	1.00	0.005				
2.90	66.00	V3B		53.00	54.00	666367	1,00	0.005				
		Basalte		62.00	63.00	666368	1.00	0.006				
		Ancien Résumé :V3B		02.00	00.00	000000	1.00	0.000				

Nombre d'échantillons : 17 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 17.10

				Toola corporation			
Sondage : M	I-10-10		Titre minier : Canton : Rang :	4293491	Niv	etion : eau : ce de travail :	
Foré par :			Lot:				
Décrit par :			Du:		Dat	te de description :	
			Au:				
-Collet		_			UTM	Annie	Mégane
Azimut :	290.00°			Est	519 210	-339	-402
Plongée :	-50.00°			Nord	5 487 740	-287	-190
Longueur:	90.00 m						0
				Élévation	0	0	0
Déviation ————————————————————————————————————							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	50.00	292.40°	-48.30°	Non			
Flexit	90.00	292.40°	-48.80°	Non			
Description							
						Q.e.	A (01034762)
						Yano	Q & Course
Dimension de la carot	te:			Ciment	té : Non		Entreposé: Non

		Description	Analyse							
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)			
0.00	22.00	MO Mort Terrain Ancien Résumé :M-T								
22.00	28.20	V3; S9B Roche Volcanique mafique; Formation de Fer oxidée Ancien Résumé :V3V,S9B	27.00	28.20	14038	1.20	0.010			
8.20	38.00	I3A Gabbro Ancien Résumé :I3A								
38.00	52.20	V3B; M8 Basalte; Schiste Ancien Résumé :V3B,M8	38.00 38.70 39.70 40.60	38.70 39.70 40.60 41.40	14039 14040 14041 14042	0.70 1.00 0.90 0.80	0.010 0.010 0.020 0.010			
		41.40 42.00 43.00 44.00	42.00 43.00 44.00 45.00	14043 14044 14045 14046	0.60 1.00 1.00	0.010 0.010 0.010 0.010				
			45.00 46.00 47.00	46.00 47.00 48.00	14047 14048 14049	1.00 1.00 1.00	0.010 0.010 0.010			
			48.00 49.00 50.00	49.00 50.00 51.00	14051 14052 14053	1.00 1.00 1.00	0.010 0.010 0.000			
2.20	69.10	I3A; V3 Gabbro; Roche Volcanique mafique Ancien Résumé :I3A,V3V	57.00 63.00	58.00 64.00	14054 14055	1.00	0.010 0.010			
9.10	78.60	V3B Basalte Ancien Résumé :V3B	78.50	79.50	14056	1.00	0.010			
78.60	90.00	M8 Schiste Ancien Résumé :M8	79.50 80.50 81.50 84.00 86.50	80.50 81.50 84.00 85.50 87.00	14057 14058 14059 14060 14061	1.00 1.00 2.50 1.50 0.50	0.010 0.000 0.000 0.010 0.030			
			87.00	88.50	14062	1.50	0.010			

Description			Analyse		
Безанрион	De	A	Numéro	Longueur	Au_Plot
	88.50	90.00	14063	1.50	(g/t) 0.010
	00.30	30.00	14003	1.50	0.010
Fin du sondage					
Nombre d'échantillons : 25					
Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 26.70					
 Longueur totale echanulionnee : 26.70	_				

			Tome	Cold Corporation			
ondage : Foré par : Décrit par :	M-10-11		Titre minier : Canton : Rang : Lot : Du : Au :	4293491	Nive Plac	tion : eau : ce de travail : e de description :	
Azimut : Plongée : Longueur :	290.00° -55.00° 189.00 m			Est Nord Élévation	UTM 519 280 5 487 786 0	-322 -205 0	Mégane -364 -114 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit Flexit Flexit Flexit	50.00 100.00 150.00 189.00	293.10° 295.10° 297.10° 299.20°	-56.70° -57.30° -57.70° -58.30°	Non Non Non			
Description						lohi d	July (01934165)
Dimension de la ca	protto '			Cimenté	e · Non		Entreposé : Non

Projet : MONSTER

		Provided in			_	Analyse		
		Description	1	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00	16.50	MO						(9/1)
		Mort Terrain						
		Ancien Résumé :MT						
16.50	18.60	V3B; COU						
		Basalte; Coussiné(e)						
18.60	40.00	V3B						
		Basaite						
20.00		Ancien Résumé :V3B						9.1-7
40.00	42.10	V3B	40.00		41.00	666482	1.00	0.071
		Basaite Ancien Résumé :V3B						
42.10	59.60	V3B	57.00		58.00	666483	1.00	0.367
→2.10	59.00	N3B Basalte						
		Ancien Résumé :V3B	58.00		59.00	666484	1.00	0.419
59.60	116.50	V3B	61.00		62.00	666485	1.00	0.174
		Basalte	85.00			666486	1.00	0.766
		Ancien Résumé :V3B	91.80			666487	1.00	0.093
116.50	122.50	V3B	116.50	0	117.90	666488	1.40	0.323
		Basalte	117.90	0	118.80	666489	0.90	0.249
		Ancien Résumé :V3B	122.00	0	122.80	666491	0.80	0.128
122.50	138.40	V3B	123.00	0	124.00	666492	1.00	0.044
		Basalte	124.00	o	125.00	666493	1.00	0.063
		Ancien Résumé :V3B	133.00		134.00	666494	1.00	0.012
			134.00		135.00	666495	1.00	0.135
							1.00	
			135.00		136.00	666496		0.051
			136.00			666497	1.00	0.098
			137.00	0	138.40	666498	1.40	0.017
138.40	166.40	V3B; M8	138.40	0	139.40	666499	1.00	0.078
		Basalte; Schiste	139.40	0	140.40	666500	1.00	0.098
		Ancien Résumé :V3B,M8	140.40	0	141.40	14001	1.00	0.017
			141.40	0	142.40	14002	1.00	0.331
			142.40		143.40	14003	1.00	0.167
			143.40		144.20	14004	0.80	0.179
			144.20		145.20	14005	1.00	0.311
			145.20	0	146.20	14006	1.00	0.894

			Description		Analyse							
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)				
				146.20	147.80	14007	1.60	0.130				
				147.80	148.80	14008	1.00	0.055				
				148.80	150.00	14009	1.20	0.434				
				150.00	151.00	14011	1.00	0.279				
				151.00	152.00	14012	1.00	0.396				
				152.00	153.00	14013	1.00	0.099				
				153.00	154.00	14014	1.00	0.049				
				154.00	155.00	14015	1.00	0.071				
				155.00	156.00	14016	1.00	1.192				
				156.00	157.00	14017	1.00	0.057				
				157.00	158.10	14018	1.10	0.590				
				158.10	159.00	14019	0.90	0.197				
				159.00	160.00	14020	1.00	1.362				
				160.00	161.00	14021	1.00	0.101				
				161.00	162.00	14022	1.00	0.184				
				162.00	163.00	14023	1.00	0.045				
				163.00	164.00	14024	1.00	0.293				
				164.00	165.00	14025	1.00	0.322				
				165.00	165.90	14026	0.90	1.837				
				165.90	166.40	14027	0.50	0.050				
6.40	183.70	I3A		166.40	168.00	14028	1.60	1.188				
		Gabbro		176.80	177.30	14029	0.50	0.050				
		Ancien Résumé :I3A		180.00	181.00	14031	1.00	0.011				
				182.50	183.00	14032	0.50	0.009				
3.70	189.00	V3B		183.70	184.50	14033	0.80	0.009				
5.70	100.00	Basalte		184.50	185.50	14034	1.00	0.278				
		Ancien Résumé :V3B		185.50	186.70	14035	1.20	0.076				
				186.70	187.70	14036	1.00	0.009				
				187.70	188.70	14037	1.00	0.009				
				107.70	100.70	17007	1.00	0.003				
9.00	Fin du sond	age		I								
	Nombre d'é	chantillons: 53										
	Nombre d'é	chantillons QAQC: 0										
	Longueur to	tale échantillonnée : 53.10										

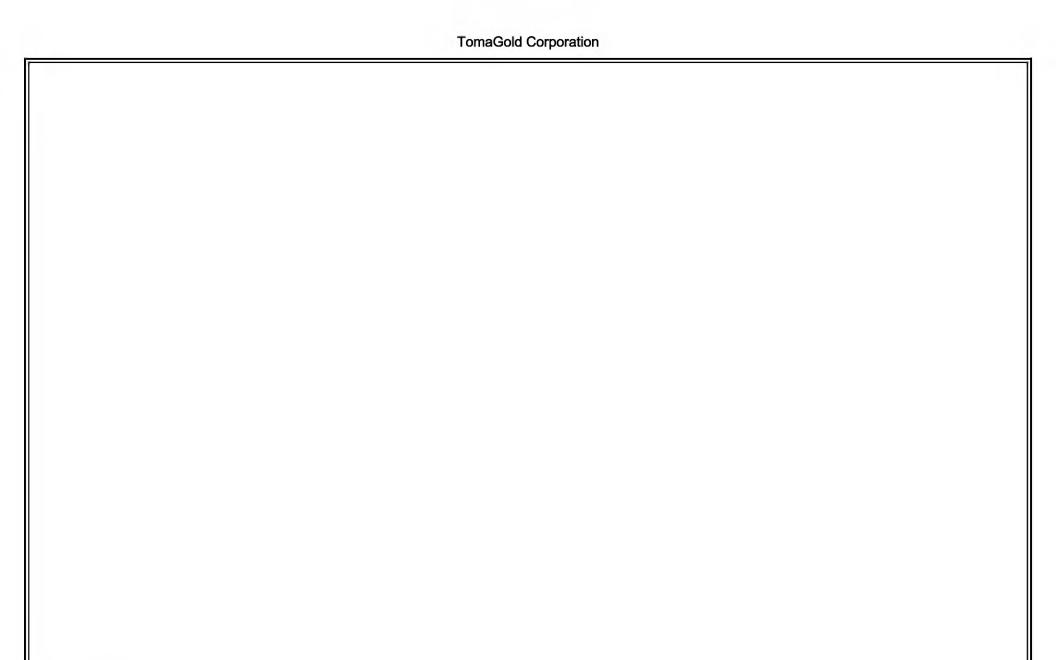
Sondage : Foré par : Décrit par :	M-10-12		Titre minier : Canton : Rang : Lot : Du : Au :	4293491		Section : Niveau : Place de travail : Date de description :	
Collet Azimut : Plongée : Longueur : Déviation	290.00° -50.00° 123.00 m			Est Nord Élévation	UTM 519 236 5 487 872 0	Annie -415 -176 0	Mégane -446 -62
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit Flexit Description	50.00	286.00° 260.40°	-48.90° -49.20°	Non		Rhi A	5 (019 34762)
Dimension de la ca	rotte :			Cimen	ıté : Non		Entreposé : Non

Projet : MONSTER

		Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00	21.00	MO Mort Terrain Ancien Résumé :MT					
21.00	23.40	V3B Basalte Ancien Résumé :V3B					
23.40	44.00	V3B; M8	25.00	26.00	666371	1.00	0.005
		Basalte; Schiste	26.00	27.00	666372	1.00	0.005
	Ancien Résumé :V3B,M8	27.00	28.00	666373	1.00	0.005	
		28.00	29.00	666374	1.00	0.006	
			29.00	30.00	666375	1.00	0.006
		30.00	31.00	666376	1.00	0.005	
		31.00	32.00	666377	1.00	0.005	
		32.00	33.00	666378	1.00	0.005	
		33.00	34.00	666379	1.00	0.005	
		34.00	35.00	666380	1.00	0.005	
			35.00	36.00	666381	1.00	0.005
			36.00	37.00	666382	1.00	0.005
			37.00	38.00	666383	1.00	0.005
			38.00	39.00	666384	1.00	0.012
			39.00	40.00	666385	1.00	0.005
			40.00	41.00	666386	1.00	0.008
			41.00	42.00	666387	1.00	0.005
			42.00	43.00	666388	1.00	0.005
			43.00	44.00	666389	1.00	0.006
4.00	55.00	V3B	44.00	45.00	666391	1.00	0.005
		Basalte					
		Ancien Résumé :V3B			15.12 5 5		
5.00	76.80	V3B; M8 Basalte; Schiste	55.00	56.00	666392	1.00	0.005
		Ancien Résumé :V3B,M8	56.00	57.00	666393	1.00	0.010
			57.00	58.00	666394	1.00	0.005
			58.00	59.00	666395	1.00	0.007
			59.00	60.00	666396	1.00	0.007
			60.00	61.00	666397	1.00	0.009
			61.00	62.00	666398	1.00	0.040

		Descriptio	62.00 63.00 64.00 65.00 66.00 67.00 68.00	63.00 64.00 65.00 66.00 67.00 68.00 69.00	Numéro 666399 666400 666401 666402 666403 666404	1.00 1.00 1.00 1.00 1.00 1.00	Au_Plot (g/t) 0.030 0.223 0.022 0.086 0.782 3.242
			63.00 64.00 65.00 66.00 67.00 68.00	64.00 65.00 66.00 67.00 68.00	666400 666401 666402 666403 666404	1.00 1.00 1.00 1.00	0.030 0.223 0.022 0.086 0.782
			64.00 65.00 66.00 67.00 68.00	65.00 66.00 67.00 68.00	666401 666402 666403 666404	1.00 1.00 1.00	0.022 0.086 0.782
			65.00 66.00 67.00 68.00	66.00 67.00 68.00	666402 666403 666404	1.00	0.086 0.782
			66.00 67.00 68.00	67.00 68.00	666403 666404	1.00	0.782
			67.00 68.00	68.00	666404		
			68.00			1.00	3.242
				69.00	000405		
			60.00		666405	1.00	0.203
			69.00	69.90	666406	0.90	0.437
			69.90	70.70	666407	0.80	0.752
			70.70	71.60	666408	0.90	4.974
			71.60	72.60	666409	1.00	0.026
			72.60	73.60	666411	1.00	0.008
			73.60	74.60	666412	1.00	0.005
			74.60	75.60	666413	1.00	0.005
			75.60	76.80	666414	1.20	0.013
5.80 90	90.80	V3B	82.30	82.90	666415	0.60	0.035
		Basalte					
		Ancien Résumé :V3B					
0.80 94	94.60	V1D	90.80	91.80	666416	1.00	0.005
		Dacite	91.80	93.00	666417	1.20	0.005
		Ancien Résumé :V1D	93.00	93.80	666418	0.80	0.005
			93.80	94.90	666419	1.10	0.013
4.60 10	102.40	V3B; M8	94.90	96.00	666420	1.10	0.032
		Basalte; Schiste	96.00	97.50	666421	1.50	0.006
		Ancien Résumé :V3B,M8	97.50	98.10	666422	0.60	0.163
			98.10	99.00	666423	0.90	0.010
			99.00	100.00	666424	1.00	0.005
			101.50	102.50	666425	1.00	0.011
02.40 12	123.00	V3B; i3A	107.90	109.10	666426	1.20	0.005
		Basalte; Gabbro	119.00	120.00	666427	1.00	0.005
		Ancien Résumé :V3B,13A					
23.00 Fi	Fin du sondag	e					
	Nombre d'écha						
		antillons QAQC : 0 le échantillonnée : 54.80					

Occident	N 40 40		Titre minier :	4293491		Section :	
Sondage :	M-10-13		Canton :			Niveau :	
			Rang :			Place de travail :	
Foré par :			Lot:				
Décrit par :			Du :			Date de description :	
			Au :				
Collet —							
					UTM	Annie	Mégane
Azimut :	290.00°			Est	519 319	-370	-384
Plongée :	-55.00°			Nord	5 487 893	-102	-3
Longueur	: 186.00 m						
				Élévation	0	0	0
—Déviation ———					<u> </u>		
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	51.00	295.30°	-57.50°	Non			
Flexit	102.00	295.70°	-58.20°	Non			
Flexit	150.00	299.40°	-58.90°	Non			
Flexit	186.00	299.60°	-59.20°	Non			
Description							
;							
						0	
						luki de ig (01232	11(2)
						, 0,	
Dimension de la ca	arotte : NX			Cim	enté : Non	E	Entreposé : Non


		Description			Analyse		. 1
		Description	De	À	Numéro	Longueur	Au_Plot
							(g/t)
0.00	12.00	MO					
		Mort Terrain Ancien Résumé :M-T					
12.00	59.00	V3B	17.50	18.50	666428	1.00	0.006
12.00	00.00	Basalte	30.00		666429	1.00	0.005
		Ancien Résumé :V3B	31.00		666431	1.00	0.052
			32.00	33.00	666432	1.00	0.005
			33.00	34.00	666433	1.00	0.034
			34.00	35.00	666434	1.00	0.005
			35.00	37.00	666435	2.00	0.025
			39.00		666436	1.00	0.005
			42.00		666437	1.00	0.014
			43.00		666438	1.00	0.005
			44.00		666439	1.00	0.005
59.00	124.10	V3B	60.00	60.60	666440	0.60	0.010
00.00	124.10	Basalte	81.40	82.40	666441	1.00	0.005
		Ancien Résumé :V3B	84.00	85.30	666442	1.30	0.005
			89.50	90.50	666443	1.00	0.015
			106.00	107.00	666444	1.00	0.007
			111.00		666445	1.00	0.005
			114.00		666446	1.00	0.410
			117.00		666447	1.00	0.007
			122.00		666448	1.00	0.021
124.10	130.20	I3A					
124.10	100.20	Gabbro					
		Ancien Résumé :I3A					
130.20	146.70	V3B; M8	130.20	131.80	666449	1.60	0.005
797		Basalte; Schiste	131.80	132.80	666451	1.00	0.012
		Ancien Résumé :V3B,M8	132.80	133.80	666452	1.00	0.007
			133.80	135.00	666453	1.20	0.005
			135.00	136.00	666454	1.00	0.008
			136.00	137.00	666455	1.00	0.017
			137.00	138.00	666456	1.00	0.005
			138.00	139.00	666457	1.00	0.005

		Description		Analyse							
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)				
			139.00	140.00	666458	1.00	0.009				
			140.00	141.00	666459	1.00	0.006				
			141.00	142.00	666460	1.00	0.006				
			142.00	143.00	666461	1.00	0.015				
146.70	161.90	V3B; M8	146.70	147.80	666462	1.10	0.005				
		Basalte; Schiste	147.80	148.90	666463	1.10	0.012				
		Ancien Résumé :V3B,M8	148.90	150.00	666464	1.10	0.264				
			150.00	151.00	666465	1.00	0.029				
			151.00	152.00	666466	1.00	0.041				
			152.00	153.00	666467	1.00	0.012				
			153.00	154.00	666468	1.00	0.505				
			154.00	155.00	666469	1.00	0.128				
			155.00	156.00	666471	1.00	0.019				
			156.00	157.00	666472	1.00	0.395				
			157.00	158.00	666473	1.00	0.111				
			158.00	159.00	666474	1.00	0.414				
			159.00	160.00	666475	1.00	0.005				
			160.00	161.00	666476	1.00	0.019				
			161.00	162.00	666477	1.00	0.006				
61.90	182.00	V3B	162.00	163.00	666478	1.00	0.005				
		Basalte	163.00	164.00	666479	1.00	0.006				
		Ancien Résumé :V3B	164.00	165.00	666480	1.00	0.006				
			165.00	166.00	666481	1.00	0.006				
82.00	186.00	V3B									
02.00	100.00	Basalte									
		Ancien Résumé :V3B									
186.00	Fin du sond	age		1	1						
		chantillons : 51									
	Nombre d'é	chantillons QAQC: 0									

Longueur totale échantillonnée : 53.00

Sondage :	M-10-14		Titre minier : Canton : Rang :	4293522	Niv	otion : eau : ce de travail :	
Foré par : Décrit par :			Lot : Du : Au :		Dat	te de description :	
Collet Azimut : Plongée : Longueur Déviation	290.00° -50.00° 76.00 m			Est Nord Élévation	UTM 519 186 5 487 699 0	-328 -333 0	Mégane -403 -237 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Description							
jesanpuon						luki d	· (01234762)
Dimension de la c	rotte :			Cime	nté : Non		Entreposé : Non

		Decedation				Analyse		
		Description		De	À	Numéro	Longueur	Au_Plot (g/t)
0.00	19.50	MO						
		Mort Terrain						
		Ancien Résumé :M-T						
19.50	26.70	V3B	24.	1.00	25.00	14064	1.00	
		Basalte						
20.70	20.40	Ancien Résumé :V3B			20.00	44005	1.00	
26.70	33.40	I3A Gabbro		1.00	32.00	14065	1.00	
		Ancien Résumé :I3A			33.00	14066	1.00	
		,	33.0	3.00	33.50	14067	0.50	
33.40	38.80	V3B; M8	33.	3.50	34.50	14068	1.00	
		Basalte; Schiste	34.:	1.50	35.50	14069	1.00	
		Ancien Résumé :V3B,M8	35.	5.50	36.00	14071	0.50	
			36.	3.00	37.00	14072	1.00	
			37.	7.00	38.00	14073	1.00	
			38.4	3.00	39.00	14074	1.00	
38.80	61.30	V3B		9.00	40.00	14075	1.00	
36.60	61.50	Basalte						
		Ancien Résumé :V3B			41.00	14076	1.00	
				5.00	46.00	14077	1.00	
			46.0	3.00	47.00	14078	1.00	
			47.4	7.00	48.00	14079	1.00	
			48.0	3.00	49.00	14080	1.00	
			49.4	9.00	50.00	14081	1.00	
			50.4	0.00	51.00	14082	1.00	
			51.	1.00	52.00	14083	1.00	
			52.	2.00	53.00	14084	1.00	
			53.	3.00	54.00	14085	1.00	
			54.1	1.00	55.00	14086	1.00	
61.30	72.00	V3B			63.00	14087	1.00	
01.30	12.00	V3B Basalte						
		Ancien Résumé :V3B			64.00	14088	1.00	
			64.0	1.00	65.00	14089	1.00	
72.00	76.00	V3B	72.0	2.00	73.00	14091	1.00	
		Basalte	73.4	3.00	74.00	14092	1.00	
		Ancien Résumé :V3B	74.	1.00	75.00	14093	1.00	
			75.1	5.00	76.00	14094	1.00	

76.00 Fin du sondage

Nombre d'échantillons : 29 Nombre d'échantillons QAQC : 0

Longueur totale échantillonnée : 28.00

Sondage :	M-10-15		Titre minier :	4293522		ection :	
			Canton :			veau:	
			Rang:		PI	ace de travail :	
Foré par :			Lot:				
Décrit par :			Du:		Da	ate de description :	
			Au:				
-Collet					LITA	Annie	Ménana
Azimut :	290.00°				UTM		Mégane
Plongée :	-50.00°			Est	519 162	-309	-398
Longueur :	99.00 m			Nord	5 487 648	-386	-293
Longuour .	00.00 ,,,			Élévation	0	0	0
Déviation ———							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	50.00	292.50°	-48.30°	Non			
Flexit	99.00	292.70°	-48.50°	Non			
Description							
						1.00	
						Puki	A ing (01934762)
						4.	D.8.
Dimension de la car	otte:			Cime	nté : Non		Entreposé : Non

Projet : MONSTER

		Paradettas			Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot
							(g/t)
0.00	14.00	MO					
		Mort Terrain					
		Ancien Résumé :M-T					
14.00	24.50	V3B	16.50	17.50	14095	1.00	0.006
		Basalte Ancien Résumé :V3B	22.80	24.00	14096	1.20	0.005
24.50	33.00	V3B	25.00	26.00	14097	1.00	0.005
24.50	33.00	Basalte	26.00	27.00	14098	1.00	0.007
		Ancien Résumé :V3B					
			27.00	28.00	14099	1.00	0.005
			28.00	29.00	14100	1.00	0.005
			29.00	30.00	14101	1.00	0.005
			30.00	31.00	14102	1.00	
			31.00	32.00	14103	1.00	
33.00	41.90	13A					
		Gabbro					
		Ancien Résumé :I3A					
41.90	51.10	V3B; M8	41.90	42.90	14104	1.00	
		Basalte; Schiste	42.90	43.90	14105	1.00	
		Ancien Résumé :V3B,M8	47.00	48.00	14106	1.00	0.005
			48.00	48.90	14107	0.90	0.005
			48.90	51.10	14108	2.20	
51.10	66.30	V3B	60.60	61.60	14109	1.00	
51.10	00.50	Basalte	00.00	01.00	14103	1.00	
		Ancien Résumé :V3B					
66.30	71.50	V3B	66.30	67.30	14111	1.00	0.005
		Basalte	67.30	68.30	14112	1.00	0.021
		Ancien Résumé :V3B	68.30	69.20	14113	0.90	1 1 1 1 1
71.50	94.40	V3B; M8	72.00	73.00	14114	1.00	
71.50	94.40	V3B; M8 Basalte; Schiste					0.005
		Ancien Résumé :V3B,M8	73.00	74.00	14115	1.00	0.005
			74.00	75.00	14116	1.00	0.005
			75.00	75.90	14117	0.90	0.005
			75.90	76.60	14118	0.70	0.009
			76.60	78.00	14119	1.40	0.044
			78.00	79.00	14120	1.00	0.063
			79.00	80.00	14121	1.00	2.034

Description			Analyse		
Description	De	A	Numéro	Longueur	Au_Plot
	 80.00	81.00	14122	1.00	(g/t) 7.514
	81.00	82.00	14123	1.00	2.119
	82.00	83.00	14124	1.00	1.023
	83.00	84.00	14125	1.00	0.010
	84.00	85.00	14126	1.00	0.006
	85.00	86.00	14127	1.00	0.006
	86.00	86.60	14128	0.60	0.003
	86.60	87.00	14129	0.40	0.009
	87.00	88.00	14131	1.00	0.029
	88.00	89.00	14132	1.00	0.009
	89.00	90.00	14133	1.00	0.052
	90.00	91.00	14134	1.00	0.005
	91.00	92.00	14135	1.00	0.005
	92.00	93.00	14136	1.00	0.005
	93.00	94.20	14137	1.20	0.005
94.40 99.00 I3A Gabbro					
Ancien Résumé :l3A					
99.00 Fin du sondage					
Nombre d'échantillons : 41					
Nombre d'échantillons QAQC : 0					
Longueur totale échantillonnée : 41.40					

Sondage :	M-10-16		Titre minier :	2294781	Se	ection:	
Condage .	141-10-10		Canton :		Niv	veau:	
			Rang:		Pla	ace de travail :	
Foré par :			Lot:				
Décrit par :			Du :		Da	ate de description :	
			Au:				
Collet			-				
					UTM	Annie	Mégane
Azimut :	290.00°			Est	519 891	-341	-154
Plongée :	-50.00°			Nord	5 488 423	677	742
Longueur:	102.00 m						
				Élévation	0	0	0
Déviation ———							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	51.00	287.20°	-50.20°	Non			
Flexit	102.00	290.00°	-50.70°	Non			
		100					
-							
Description							
						Dr. A	
						Kaki A	5 (OIQ34962)
Dimension de la co	rotta ·			Cimenté	. Non		Entroposé : Non
Dimension de la ca	ione .			Cimente	: . INOII		Entreposé : Non

Projet : MONSTER

		Description	A 100		Analyse						
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)				
0.00	6.00	МО									
		Mort Terrain									
		Ancien Résumé :M-T									
.00	24.20	V3B	12.00	13.00	14208	1.00					
		Basalte Ancien Résumé :V3B	16.00	17.00	14209	1.00					
		Anden resume .vsb	19.20	20.20	14211	1.00					
			20.20	21.20	14212	1.00					
4.20	38.80	V3B; I3A	26.00	27.00	14213	1.00					
		Basalte; Gabbro	27.00	28.00	14214	1.00					
		Ancien Résumé :V3B,I3A	29.00	30.00	14215	1.00					
			31.00	32.00	14216	1.00					
			36.00	37.30	14217	1.30					
8.80	59.10	V3B; M8	38.80	39.80	14218	1.00	0.012				
		Basalte; Schiste	39.80	40.80	14219	1.00	4.633				
		Ancien Résumé :V3B,M8	40.80	42.00	14220	1.20	0.357				
			42.00	43.00	14221	1.00	0.601				
			43.00	44.00	14222	1.00	0.967				
			44.00	45.00	14223	1.00	0.098				
			45.00	46.00	14224	1.00	0.079				
			46.00	47.10	14225	1.10	2.690				
			47.10	48.00	14226	0.90	6.625				
			48.00	48.50	14227	0.50	4.070				
			48.50	49.80	14228	1.30	0.165				
			49.80	50.60	14229	0.80	18.365				
			50.60	51.40	14231	0.80	0.237				
			51.40	52.40	14232	1.00	1.199				
			52.40	52.90	14233	0.50	0.082				
			52.90	54.00	14234	1.10	0.087				
			54.00	55.00	14235	1.00	0.088				
			55.00	55.90	14236	0.90	0.059				
			55.90	57.00	14237	1.10	0.009				
			55.90	58.00	14237	1.10	0.007				
			58.00	59.10	14239	1.10	0.005				

		Description			Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
59.10	102.00 V3B Basalte Ancien Résumé :V3B						
102.00	Fin du sondage Nombre d'échantillons : 30 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 29.60						

Projet : MONSTER

Sondage :	M-10-17		Titre minier : Canton : Rang :	2294781	Niv	ction : eau : ce de travail :	
Foré par : Décrit par :			Lot : Du : Au :		Da	te de description :	
Collet Azimut : Plongée : Longueur	290.00° -50.00° 112.50 m			Est Nord Élévation	UTM 519 897 5 488 367 0	-297 642 0	Mégane -121 697 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
							laki de ng (01234762)
Dimension de la ca	rotte :			Ciment	té : Non		Entreposé : Non

		Procedution			Analyse		. 1
		Description	De	À	Numéro	Longueur	Au_Plot
							(g/t)
0.00	9.00	MO					
		Mort Terrain					
9.00	24.00	Ancien Résumé :M-T	12.00	13.00	14169	1.00	0.005
9.00	24.00	V3B Basalte					
		Ancien Résumé :V3B	19.00	20.00	14171	1.00	0.005
			21.00	22.00	14172	1.00	0.005
24.00	29.80	S9B	27.70	28.70	14173	1.00	0.005
		Formation de Fer oxidée	28.70	29.70	14174	1.00	0.005
		Ancien Résumé :S9B					
29.80	43.10	V3B	35.00	36.00	14175	1.00	0.005
		Basalte Ancien Résumé :V3B	39.90	40.60	14176	0.70	0.005
43.10	47.20	I3A					
40.10	47.20	Gabbro					
		Ancien Résumé :I3A					
47.20	58.80	V3B	48.40	49.50	14177	1.10	0.005
= 0.0		Basalte	53.00	53.60	14178	0.60	0.005
		Ancien Résumé :V3B	57.00	58.00	14179	1.00	0.005
58.80	82.40	V3B; M8	60.00	61.40	14180	1.40	0.009
36.60	02.40	Basalte; Schiste					
		Ancien Résumé :V3B,M8	61.40	62.40	14181	1.00	0.070
			62.40	63.00	14182	0.60	2.112
			63.00	64.00	14183	1.00	0.049
			64.00	64.70	14184	0.70	0.034
			64.70	65.70	14185	1.00	0.188
			65.70	66.50	14186	0.80	0.084
			66.50	67.50	14187	1.00	0.066
			67.50	68.50	14188	1.00	0.011
			68.50	69.50	14189	1.00	0.033
			69.50	70.70	14191	1.20	0.973
			70.70	71.40	14192	0.70	1.315
			71.40	72.40	14193	1.00	0.056
			72.40	73.50	14194	1.10	0.020
			73.50	75.90	14195	2.40	0.020
			75.90	76.70	14196	0.80	0.120
			76.70	77.40	14197	0.70	0.383

		Decodelism				Analyse		
		Description		De	Α	Numéro	Longueur	Au_Plot
								(g/t)
					78.00	14198	0.60	0.035
					79.00	14199	1.00	0.026
					80.00	14200	1.00	0.007
			8	80.00	81.00	14201	1.00	0.005
			3	81.00	82.40	14202	1.40	0.005
82.40	106.80	V3B	9	90.00	91.00	14203	1.00	0.005
		Basalte	8	91.00	92.00	14204	1.00	800.0
		Ancien Résumé :V3B	5	97.50	99.00	14205	1.50	0.005
106.80	112.50	V3B		108.50	110.00	14206	1.50	0.117
		Basalte		110.00	111.00	14207	1.00	0.005
		Ancien Résumé :V3B						
112.50	Fin du sond	dage	'					
		ochantillons: 37						
	Nombre d'é	chantillons QAQC: 0						

Longueur totale échantillonnée : 37.80

				Toola oorporation			
Sondage : Foré par :	M-10-18		Titre minier : Canton : Rang : Lot :	2294781	Ni Pl	ection : veau : ace de travail :	
Décrit par :			Du : Au :		Da	ate de description :	
-Collet					UTM	Annie	Mégane
Azimut : Plongée : Longueur :	290.00° -50.00° 102.00 m			Est Nord Élévation	519 888 5 488 315 0	-267 599 0	-103 647 0
Déviation ————						Description	
Type Flexit Flexit	51.00 100.00	Azimut 284.30° 272.50°	-52.20° -51.30°	Invalide Non Oui		Description	
Description						luki de ig (01234762	
Dimension de la ca	rotte :			Ciment	é : Non		Entreposé : Non

		Description	-		Analyse			
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)	
0.00	12.00	МО						
		Mort Terrain						
		Ancien Résumé :M-T						
12.00	26.10	V3B						
		Basalte						
00.40	20.40	Ancien Résumé :V3B	20.40	07.00	11100		0.040	
26.10	39.40	V3B; M8 Basalte; Schiste	26.10	27.00	14139	0.90	0.010	
		Ancien Résumé :V3B,M8	27.00	28.00	14140	1.00	0.005	
		, 413.517 (33.416 . 1.75 . 1.16 . 1.16 . 1.16 . 1.16 . 1.16 . 1.16 . 1.16 . 1.16 . 1.16 . 1.16 . 1.16 . 1.16 .	31.00	32.00	14141	1.00	0.005	
			32.00	33.00	14142	1.00	0.005	
			38.00	39.00	14143	1.00	0.005	
9.40	65.70	V3B; I3A	62.00	63.00	14144	1.00	0.005	
		Basalte; Gabbro						
		Ancien Résumé :V3B,I3A						
5.70	85.60	V3B; M8	66.00	67.00	14145	1.00	0.007	
		Basalte; Schiste	67.00	67.70	14146	0.70	0.016	
		Ancien Résumé :V3B,M8	67.70	69.00	14147	1.30	1.175	
			69.00	70.00	14148	1.00	0.020	
			70.00	70.90	14149	0.90	0.005	
			70.90	72.00	14151	1.10	0.013	
			72.00	73.00	14152	1.00	0.005	
			73.00	74.00	14153	1.00	0.007	
			74.00	75.00	14154	1.00	0.010	
			75.00	76.00	14155	1.00	0.086	
			76.00	77.00	14156	1.00	0.031	
			77.00	78.00	14157	1.00	0.138	
			78.00	79.00	14158	1.00	6.791	
			79.00	80.00	14159	1.00	0.153	
			80.00	81.00	14160	1.00	11.313	
			81.00	82.00	14161	1.00	5.918	
			82.00	83.00	14162	1.00	2.862	
			83.00	84.00	14163	1.00	0.123	
			84.00	85.00	14164	1.00	0.026	
			85.00	86.00	14165	1.00	0.017	

	_	Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
85.60	90.00	V3B	86.00	87.00	14166	1.00	0.005
50.00	00.00	Basalte	87.00		14167	1.00	0.005
		Ancien Résumé :V3B	88.00				
			88.00	89.00	14168	1.00	0.007
90.00	102.00	V3B Basaite					
		Ancien Résumé :V3B					
							4
102.00	Fin du sondag	ge					
	Nombre d'éch						
		nantillons QAQC: 0					
L	Longueur tota	ale échantillonnée : 28.90					

				icola corporation			
Sondage : Foré par :	M-10-19		Titre minier : Canton : Rang : Lot :	4293192	Niv	ction : reau : rce de travail :	
Décrit par :			Du : Au :		Da	te de description :	
Azimut : Plongée : Longueur				Est Nord Élévation	UTM 519 895 5 488 481 0	-379 721	Mégane -180 795 0
Déviation Type	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	51.00 105.00	290.90° 293.40°	-51.40° -52.20°	Non Non			
Description —						lehi A	Jug (01034762)
Dimension de la c	arotte :			Cimenté	é∶ Non		Entreposé : Non

		Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
.00	9.00	MO					
		Mort Terrain					
		Ancien Résumé :M-T					
.00	21.00	V3B	12.40	13.50	14243	1.10	
		Basalte					
		Ancien Résumé :V3B					
1.00	24.00	V3B	22.10	23.40	14244	1.30	
		Basalte Ancien Résumé :V3B					
4.00	28.20		25.80	27.00	14245	1.20	0.007
4.00	20.20	V3B Basalte		40.00			
		Ancien Résumé :V3B	27.00	28.20	14246	1.20	0.008
8.20	51.90	V3B; M8	28.20	29.20	14247	1.00	0.008
		Basalte; Schiste	29.20	30.30	14248	1.10	0.091
		Ancien Résumé :V3B,M8	30.30	31.50	14249	1.20	0.676
			31.50	32.00	14251	0.50	0.357
			32.00	33.00	14252	1.00	0.007
			33.00	34.00	14253	1.00	0.062
			34.00	35.00	14254	1.00	0.005
			35.00	36.00	14255	1.00	0.005
			36.00	36.70	14256	0.70	0.162
			36.70	37.70	14257	1.00	0.205
			37.70	38.70	14258	1.00	0.035
			38.70	39.70	14259	1.00	0.142
			39.70	40.70	14260	1.00	0.621
			40.70	41.70	14261	1.00	0.420
			41.70	42.70	14262	1.00	0.142
			42.70	43.70	14263	1.00	0.024
			43.70	44.70	14264	1.00	0.034
			44.70	45.70	14265	1.00	0.044
			45.70	46.80	14266	1.10	0.049
			46.80	48.00	14267	1.20	0.283
			48.00	48.50	14268	0.50	0.039
			48.50	49.50	14269	1.00	0.005
			49.50	50.50	14271	1.00	0.005
			49.50	50.50	14271	1.00	

		Description		Analyse						
		Безанрион	De	A	Numéro	Longueur	Au_Plot (g/t)			
			50.50	51.90	14272	1.40	0.005			
1.90	54.10	V3B	52.50	53.20	14273	0.70				
		Basalte								
		Ancien Résumé :V3B								
54.10	64.00	13A	60.00	61.00	14274	1.00				
		Gabbro								
		Ancien Résumé :I3A								
4.00	82.10	V3B	74.00	75.00	14275	1.00				
		Basalte								
		Ancien Résumé :V3B								
32.10	94.00	V3B	82.10	83.10	14276	1.00				
		Basalte	90.00	91.30	14277	1.30				
		Ancien Résumé :V3B	93.00	94.00	14278	1.00				
			00.00	04.00	14210	1.00				
94.00	103.60	V3B								
		Basalte								
		Ancien Résumé :V3B								
103.60	105.00	V3B	103.60	105.00	14279	1.40				
		Basalte								
		Ancien Résumé :V3B								

Nombre d'échantillons : 35 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 35.90

ondage:	M-12-35		Titre minier :	5253868		Section:	
			Canton :			Niveau :	
			Rang :			Place de travail :	Coreshack sous les lignes
Foré par :	Forage MAGMA		Lot:				électiques
Décrit par :	David Duguay		Du :	2012-06-19		Date de description :	2012-06-20
			Au:	2012-06-19			
Collet —					UTM	Annie	Mégane
Azimut :	290.00°			Est	519 416		87
Plongée :	-57.00°			Nord	5 487 343		-422
Longueur:	72.00 m			Élévation	0 407 545		0
Péviation ———			Planata	Invalide		Description	
Type	Profondeur	Azimut					
Type	Profondeur 15.00	Azimut 284.10°	Plongée -56.40°		Mag : 56340		
Type Flexit Flexit	15.00 51.00	284.10° 283.80°	-56.40° -57.10°	Non Non	Mag : 56340 Mag : 55910		
Flexit	15.00	284.10°	-56.40°	Non	Mag : 56340 Mag : 55910 Mag 56190		
Flexit Flexit	15.00 51.00	284.10° 283.80°	-56.40° -57.10°	Non Non	Mag : 55910		
Flexit Flexit	15.00 51.00	284.10° 283.80°	-56.40° -57.10°	Non Non	Mag : 55910		

Description

luli A og (01034162)

Dimension de la carotte : NQ Cimenté : Non Entreposé : Oui

			Description			Analyse		
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00	6.90		MT					
			Mort terrain					
6.90	39.30		13A					
			Gabbro					
			Roche qui semble être un gabbro, principalement noir-verdâtre avec des grains leucocrate (50% mafic,					
			50% felsic). La granulométrie est moyenne. Globalement la roche est massive avec certaine zone plus					
			mafic(avec un foliation visible a environ 45 degrés) avec 5% de feldsic et des veines de quartz (voir en					
			lithologie secondaire pour les veines de plus de 10cm)					
			veine de quartz de moins de 1cm : à 12.5 (Qrz noir et blanc), à 12.55, à 14.9 (présence de quartz noir), à					
			17.85 et à 20.1.					
			Le contact inférieur est marqué par une diminution importante de la granulométrie.					
			Section mafic : de 14.4 à 15.85 (quelques petit cristaux de quartz noir visible au milieu de l'interval), de					
			17.05 à 17.55, de 21.3 à 21.8,					
7.0	00	39.00	Car30	13.10	14.60	51314	1.50	0.058
			Carbonatisation 30					
			Globalement non altéré mais lorsque les section plus mafic, décris dans les lithologie primaire dans la diabase, ils réagissent à l'acide.					
14.	.60	16.10	Py02; Po02	14.60	16.10	51315	1.50	0.038
			Pyrite 2%; Pyrrhotine 2%	16.10	17.55	51316	1.45	0.003
			Py-Po : gf to gm, généralement diss, parfois le long d'une veinule de quartz ou carvonate.					
23.	.30	23.40	Py01					
			Pyrite 1%					
			Fine bande de pyrite					
26.	.00	26.15	QZVN					
			Veines de qtz					
			quartz blanc					
33.	.25	33.40	QZVN					
			Veines de qtz					
			2 veines de 2-3cm à chaque extrémité de l'interval. Quartz blanc					
36.	.20	36.30	QZVN					
			Veines de qtz					
			Veine de quatrz avec une enclave de la roche encaissante.					
39.30	51.40		V3B					
			Basalte					
			Basalt à granulométrie très fine et massif. Seul le premier 0.5 m montre une texture légèrement cisaillé ou					

				Decembion		Analyse			
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
				déformé. La couleur est noir foncé avec une légère teinte de vert. De façon régulière, il est observé des					
				fracture remplit de carbonate.					
				Le contact inférieur est marqué par le changement de texture de la roche ainsi que le changement de					
				couleur.					
	39.95		40.70	Po					
				Pyrrhotine					
				Gm, diss, magnétique					
	40.70		53.30	Py; Po; Cp					
				Pyrite; Pyrrhotine; Chalcopyrite					
				La minéralisation est généralement diss, parfois il se retrouve en amas.					
.40		52.30		V3B; POR					
				Basalte; Porphyrique / Porphyritic					
				La roche est de couleur vert moyen avec des porphyre 1 à 2 mm.					
				Contact inférieur : relativement net à 70 degrée					
.30		60.40		V3A; QN	53.00	54.50	51317	1.50	0.008
				Basalte andésitique; Quartz noir					
				Globalement la roche est de couleur vert moyen clair avec une section au milieux tirant sur le violet. La					
				roche est majoritairement homogène à l'exception de la section violacé et du mètre suivant cette section				0	
				ou il semble y avoir des textures brêchique (voir photo dans le dossier photo). Il y a trois section avec					
				des veines de quartz (lithosecondaire)					
				Le contact inférieur est marqué par l'augmentation de la granulométrie.					
	52.30		54.20	Car50					
				Carbonatisation 50					
				Section réagissant moyennement à l'acide.					
	53.30		54.25	Po05; Cp01; Py					
				Pyrrhotine 5%; Chalcopyrite 1%; Pyrite					
				Po : gf, concentré principalement dans uen bande de 5-10cm.					
				Cpx : gf, retrouvé au travers des zone plus massive de Po					
				Py : mg à gg, retrouvé également au travers de la Po					
				La section se retrouve dans basalt andésitique plus violacé, il y a des évidance de déformation et					
				un peu de quartz noir.					
	54.25		57.25	Po02; Py	54.50	56.00	51318	1.50	<0.002
				Pyrrhotine 2%; Pyrite	56.00	57.50	51319	1.50	0.009
				gf, se présente principallement en fine veinule.					
	56.98		57.01	QZVN	57.50	59.00	51320	1.50	0.010
				Veines de qtz					

September Veine minéralisé ne montrant que du quartz blanc. September September	A 60.50	Numéro 51321	Longueur	Au_Plot (g/t)
58.95	60.50	51321	1.50	0.020
	60.50	51321	1.50	0.020
Section contenant plusieurs yeux de quartz blanc; 2				
59.80 S 59.95 Q2VN Veines de qtz Veine de quartz blanc 60.50 Gabbro Roche ressemblant grandement à la roche initial, a l'exeption que les éléments felsic semble être devenu de couleur crémeux du à une saussuritation ou albitisation??. 60.40 S 63.10 Alb Albitisation élément felsic devenu de couleur crème. 60.40 Fragment englobé d'une matrice noir (peut-être de la séricitation). 60.40 Pyrrhodine 4%; Pyrite Po: gf. se présente dans la matrice noir. Magnétique et brunâtre. Py: peu de pyrite, plus jaune et présentant de beau petit cube 72.07 Pyrrhodine 4%; Pyrite Po: gf. se présente dans la matrice noir. Magnétique et brunâtre. Py: pu peu de pyrite, plus jaune et présentant de beau petit cube Basalt a vec des porphyrèue / Porphyritic Basalt avec des porphyrèue de limension assé variable, étant plus petit au sommet de la carotte et grossit				
Veines de qtz veine de quartz blanc 6.40		1		
veine de quartz blanc 6.40				
60.40 64.40 64.40 64.40 66.50 66.50 Roche ressemblant grandement à la roche initial, a l'exeption que les éléments felsic semble être devenu de couleur crémeux du à une saussuritation ou albitisation??. 60.40 63.10 Albitisation 66.40 65.00 M25 Mylonite Fragment englobé d'une matrice noir (peut-être de la séricitation). 64.40 Po04; Py Pyrrhotine 4%; Pyrite Poc : gf. se présente dans la matrice noir. Magnétique et brunâtre. Py : peu de pyrite, plus jaune et présentant de beau petit cube 72.00 72.00 V3B; POR Basalte; Porphyrique / Porphyritlüc Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit 66.50 66.50 Acchercia de la carotte et grossit 66.50 67.50 67.50 Acchercia de la carotte et grossit 66.50 67.50 67.50 67.50 Acchercia de la carotte et grossit				
Gabbro Roche ressemblant grandement à la roche initial, a l'exeption que les éléments felsic semble être devenu de couleur crémeux du à une saussuritation ou albitisation??. Contact inférieur est caractérissé par l'apparition d'une zone déformé 60.40 60.40 Alb Albitisation élément felsic devenu de couleur crème. M25 Myonite Fragment englobé d'une matrice noir (peut-être de la séricitation). Contact inférieur : marqué par une changement totale de texture 64.40 65.00 Po04; Py Pyrntotine 4%; Pyrite Po : gf, se présente dans la matrice noir. Magnétique et brunâtre. Py : peu de pyrite, plus jaune et présentant de beau petit cube 72.00 72.00 V3B; POR Baselte; Porphyrique / Porphyritic Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit 66.00 de fonction de variable de texture por la carotte et grossit 66.00 de fonction de variable de la carotte et grossit				
Roche ressemblant grandement à la roche initial, a l'exception que les éléments felsic semble être devenu de couleur crémeux du à une saussuritation ou albitisation??. Contact inférieur est caractérissé par l'apparition d'une zone déformé 60.40 63.10 Alb Albitisation élément felsic devenu de couleur crème. M25 Mylonite Fragment englobé d'une matrice noir (peut-être de la séricitation). Contact inférieur : marqué par une changement totale de texture 64.40 65.00 Po04; Py Pyrrhotine 4%; Pyrite Po : gf, se présente dans la matrice noir. Magnétique et brunêtre. Py : peu de pyrite, plus jaune et présentant de beau petit cube 72.00 72.00 V3B; POR Basalte; Porphyrique / Porphyritic Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit	62.00	51322	1.50	<0.002
de couleur crémeux du à une saussuritation ou albitisation??. Contact inférieur est caractérissé par l'apparition d'une zone déformé 60.40 63.10 Alb Albitsation élément felsic devenu de couleur crème. Myonite Fragment englobé d'une matrice noir (peut-être de la séricitation). Contact inférieur : marqué par une changement totale de texture 64.40 65.00 Po04; Py Pyrrhotine 4%; Pyrite Po : gf, se présente dans la matrice noir. Magnétique et brunâtre. Py : peu de pyrite, plus jaune et présentant de beau petit cube 0 72.00 V3B; POR Basalte; Porphyrique / Porphyritlo Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit	62.00	51323 (Std)	1.50	3.800
de couleur crémeux du à une saussuritation ou albitisation??. Contact inférieur est caractérissé par l'apparition d'une zone déformé 60.40 63.10 Alb Albitisation élément felsic devenu de couleur crème. 65.00 M25 Mylonite Fragment englobé d'une matrice noir (peut-être de la séricitation). Contact inférieur : marqué par une changement totale de texture 64.40 65.00 Po04; Py Pyrrhotine 4%; Pyrite Po : gf, se présente dans la matrice noir. Magnétique et brunâtre. Py : peu de pyrite, plus jaune et présentant de beau petit cube 72.00 72.00 V3B; POR Basalte; Porphyrique / Porphyritic Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit	63.50	51324	1.50	0.003
Contact inférieur est caractérissé par l'apparition d'une zone déformé 60.40 63.10 Alb Albitisation élément felsic devenu de couleur crème. M25 Mylonite Fragment englobé d'une matrice noir (peut-être de la séricitation). Contact inférieur : marqué par une changement totale de texture 64.40 65.00 Po04; Py Pyrrhotine 4%; Pyrite Po : gf, se présente dans la matrice noir. Magnétique et brunâtre. Py : peu de pyrite, plus jaune et présentant de beau petit cube 72.00 72.00 V3B; POR Basalte; Porphyrique / Porphyrttic Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit	65.00	51325	1.50	0.012
60.40 63.10 Alb Albitisation élément felsic devenu de couleur crème. M25 Mylonite Fragment englobé d'une matrice noir (peut-être de la séricitation). Contact inférieur : marqué par une changement totale de texture 64.40 65.00 Po04; Py Pyrrhotine 4%; Pyrite Po : gf, se présente dans la matrice noir. Magnétique et brunâtre. Py : peu de pyrite, plus jaune et présentant de beau petit cube 72.00 V3B; POR Basalte; Porphyrique / Porphyrtitic Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit	00.00	31323	1.50	0.012
Albitisation élément felsic devenu de couleur crème. Mytonite Fragment englobé d'une matrice noir (peut-être de la séricitation). Contact inférieur : marqué par une changement totale de texture 64.40 65.00 Po04; Py Pyrrhotine 4%; Pyrite Po : gf, se présente dans la matrice noir. Magnétique et brunâtre. Py : peu de pyrite, plus jaune et présentant de beau petit cube 72.00 V3B; POR Basalte; Porphyrique / Porphyritic Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit				
élément felsic devenu de couleur crème. Mytonite Fragment englobé d'une matrice noir (peut-être de la séricitation). Contact inférieur : marqué par une changement totale de texture 64.40 65.00 Po04; Py Pyrrhotine 4%; Pyrite Po : gf, se présente dans la matrice noir. Magnétique et brunâtre. Py : peu de pyrite, plus jaune et présentant de beau petit cube V3B; POR Basalte; Porphyrique / Porphyritic Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit				
Mylonite Fragment englobé d'une matrice noir (peut-être de la séricitation). Contact inférieur : marqué par une changement totale de texture 64.40 65.00 Po04; Py Pyrrhotine 4%; Pyrite Po : gf, se présente dans la matrice noir. Magnétique et brunâtre. Py : peu de pyrite, plus jaune et présentant de beau petit cube 72.00 V3B; POR Basalte; Porphyrique / Porphyritic Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit				
Mylonite Fragment englobé d'une matrice noir (peut-être de la séricitation). Contact inférieur : marqué par une changement totale de texture 64.40 65.00 Po04; Py Pyrrhotine 4%; Pyrite Po : gf, se présente dans la matrice noir. Magnétique et brunâtre. Py : peu de pyrite, plus jaune et présentant de beau petit cube 72.00 V3B; POR Basalte; Porphyrique / Porphyritic Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit				
Fragment englobé d'une matrice noir (peut-être de la séricitation). Contact inférieur : marqué par une changement totale de texture 64.40 65.00 Po04; Py Pyrrhotine 4%; Pyrite Po : gf, se présente dans la matrice noir. Magnétique et brunâtre. Py : peu de pyrite, plus jaune et présentant de beau petit cube 72.00 V3B; POR Basalte; Porphyrique / Porphyritic Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit				
Contact inférieur : marqué par une changement totale de texture 64.40 65.00 Po04; Py Pyrrhotine 4%; Pyrite Po : gf, se présente dans la matrice noir. Magnétique et brunâtre. Py : peu de pyrite, plus jaune et présentant de beau petit cube 72.00 V3B; POR Basalte; Porphyrique / Porphyritic Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit				
64.40 65.00 Po04; Py Pyrrhotine 4%; Pyrite Po : gf, se présente dans la matrice noir. Magnétique et brunâtre. Py : peu de pyrite, plus jaune et présentant de beau petit cube 72.00 V3B; POR Basalte; Porphyrique / Porphyritic Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit				
Pyrrhotine 4%; Pyrite Po : gf, se présente dans la matrice noir. Magnétique et brunâtre. Py : peu de pyrite, plus jaune et présentant de beau petit cube 72.00 V3B; POR Basalte; Porphyrique / Porphyritic Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit				
Po : gf, se présente dans la matrice noir. Magnétique et brunâtre. Py : peu de pyrite, plus jaune et présentant de beau petit cube V3B; POR Basalte; Porphyrique / Porphyritic Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit				
Py : peu de pyrite, plus jaune et présentant de beau petit cube 72.00 V3B; POR Basalte; Porphyrique / Porphyritic Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit				
72.00 V3B; POR Basalte; Porphyrique / Porphyritic Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit				
Basalte; Porphyrique / Porphyritic Basalt avec des porphyre de dimension assé variable , étant plus petit au sommet de la carotte et grossit				
Basalt avec des porphyre de dimension assé variable, étant plus petit au sommet de la carotte et grossit	66.50	51326	1.50	<0.002
en descendant.				
	1			

Nombre d'échantillons : 12 Nombre d'échantillons QAQC : 1 Longueur totale échantillonnée : 17.95

			Toma				
Sondage : M	-12-49		Titre minier : Canton :	2294782		Section :	
			Rang:			Place de travail :	
Foré par :	Magma Drilling		Lot :				
Décrit par :	A. Jean		Du :	2012-01-26		Date de description : 2012	-01-28
Doom par 1	223		Au :	2012-01-27		Date de decempnent	
-Collet							
				_	UTM	Annie	Mégane
Azimut :	290.00°			Est	519 975	-184	-12
Plongée :	-50.00°			Nord	5 488 285	639	665
Longueur :	177.00 m			Élévation	0	0	0
Déviation ———							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	18.00	283.00°	-48.00°	Non			
Flexit	51.00	281.00°	-48.10°	Non			
Flexit	102.00	282.60°	-48.00°	Non			
Flexit	177.00	281.90°	-47.80°	Non			
							<u> </u>
Description							
						Da. A	5 mg (01234762)

Cimenté : Non

Dimension de la carotte :

NQ

Entreposé: Oui

				Description			Analyse		
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
.00		14.60		10					
			N	fort terrain					
4.60		175.80	\	3B	159.80	161.00	51001	1.20	<0.002
			E	dasalte					
			C	ris foncé à noir, massif, peu carbonaté jusqu'à 162.9m.faiblement à modérément magnétique. Évidence					
				e bordure de coussisns à plusieurs endroits. QQ filaments mm échevelés épidotisées. QQ amygdules					
				arbonatées par endroits. QQ filons ici et là de 2-20mm de calcite, 45°AC. QQ rares lits mm de Po					
			s	emi-massive, parfois en grains isolés.					
	160.90		161.10	I2J	161.00	162.20	51002	1.20	<0.002
				Diorite 60°	162.20	162.20	51004 (Bln)	0.00	
				Dyke de Micro diorite aux contacts nets, miceo grenue., gris moyen.	162.20	163.40	51003	1.20	0.002
	162.90		174.60	Car35					
				Carbonatisation 35					
				Pervasive et intra matricielle. Filonnets de Cb mm à partir de 167.5m souvent plissottés à 65°AC.					
	163.40		174.60	CIS	163.40	164.00	51005	0.60	0.878
				Cisaillé(e) 60°	164.00	165.40	51006	1.40	0.166
	163.40		164.00	Po04; Py03					
				Pyrrhotine 4%; Pyrite 3%					
				Finement disséminée mais dans une foliation à 40-60° AC, // au cisaillement					
	165.40		166.00	Py03; Po10; Cptr	165.40	166.00	51007	0.60	0.033
				Pyrite 3%; Pyrrhotine 10%; Chalcopyrite tr Id. à la précédente	166.00	166.00	51009 (Std)	0.00	
				iu. a la precedente	166.00	167.50	51008	1.50	0.014
					167.50	169.00	51010	1.50	0.003
					169.00	170.05	51011	1.05	<0.002
	170.05		171.20	Po15; Py01; Cptr	170.05	171.20	51012	1.15	0.052
				Pyrrhotine 15%; Pyrite 1%; Chalcopyrite tr					
				En filonnets mm semi-massifs, 65°AC. 4-5% de fragments de qtz noir 3-5 mm plutôt arrondis,					
				parfois anguleux.					
	171.20		173.80	Po03; Py01	171.20	172.50	51013	1.30	0.010
				Pyrrhotine 3%; Pyrite 1%	172.50	174.00	51014	1.50	0.111
				En filonnets discontinus, alignés à 65°AC // au cisaillement	174.00	175.50	51015	1.50	0.019
	174.60		177.00	Car30; Ser30	175.50	177.00	51016	1.50	0.005
				Carbonatisation 30; Séricitisation 30					
	174.60		175.80	CIS; BRE					
				Cisaillé(e) 70°; Bréchique					

	Description		_	Analyse		
	Безанрион	De	À	Numéro	Longueur	Au_Plot (g/t)
175.80 177.00	Diorite 75° Micro diorite, gris foncé, massif, granulo fine, parcourue par des filonnets en cheveux de calcite à 50°AC. Fin du trou à 177.0m					
Nombre d'éd	chantillons : 14 chantillons QAQC : 2			1	1	
	otale échantillonnée : 17.20					

Projet : MONSTER

			Toma				
ondage :	M-12-50		Titre minier :	2294782	Se	ection :	
ondage .	W-12-50		Canton :		Ni	veau :	
			Rang:		Pla	ace de travail :	
Foré par :	Magma Drilling		Lot:				
Décrit par :	A. Jean		Du :	2012-01-27	Da	ate de description : 201	2-01-29
			Au:	2012-01-29			
Collet —							
					UTM	Annie	Mégane
Azimut :	290.00°			Est	519 983	-213	-30
Plongée :	-50.00°			Nord	5 488 334	680	71
Longueur:	180.00 m						
				Élévation	0	0	
éviation ———							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
lexit	24.00	284.00°	-50.60°	Non			
lexit	54.00	289.00°	-50.50°	Non			
lexit	102.00	289.00°	-50.90°	Non			
lexit	180.00	290.10°	-50.40°	Non			

Cimenté : Non

Dimension de la carotte :

NQ

Entreposé : Oui

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00		15.00	A F.	мо					
				Mort terrain					
15.00		28.00		3G					
				Gabbro					
				Gabbro noir, massif, à granulo moyenne au début pour devenir très fin sur les derniers 5 m.Texture					
				ophhitique bien développée sur les premiers 8m. Modérément saussuritisée. Faiblement magnétique.QQ					
				très fins filonnets de CB 1-2 mm ép. Contact inf. à 10°AC.					
28.00		148.90		V3B; COU					
				Basalte 10°; Coussiné 10°					
				Gris foncé à noir, massif, faiblement carbonaté sur des longueurs dm mais ces passages sont très peu					
				nombreux. Modérément magnétique. Présence de nombreux cheveux/filonnets de Cb d'ép. mm dans tous					
				les sens. Coussins évidents à de nombreux endroits, de faible dimension, 10-15 cm de diam. QQ grains /					
				amas ici et là de Po, 1-5mm diam. QQ amygdules à partir de 95m.					
				QQ passages cm de brèches inter-coussins, représentées par des frgaments et phénoxtaux de Fp en					
				bâtonnets.					
3	30.40		30.95	Po04	30.40	30.95	51017	0.55	0.005
				Pyrrhotine 4%					
				En amas allongés à 35°AC dans les épontes de l'aplite.					
3	30.60		30.75	I1F					
				Aplite 35°					
				De couleur rôsée, à grans très fins, mélanocrate à 90%, avec 5% de Po en amas allongé à 35°AC					
				sur l'éponte inf. et aussi en remplissage mm de fractures. Les épontes sup. et inf. sont intensément					
				cisaillées sur plus de 15 cm.					
1	33.50		147.50	Potr					
				Pyrrhotine tr					
				QQ petits filaments mm de Po semi-massive, souvent dans la matrice inter-coussins.					
1	147.50		153.65	Po02	147.50	148.50	51018	1.00	0.002
				Pyrrhotine 2%	148.50	150.00	51019	1.50	0.024
				en petits grains concentrés en lamelles mm le long de S2					
148.90		150.90		\$1	150.00	151.50	51020	1.50	0.028
				Grès 60°					
				Gris moyen, massif, granulo fine à moyenne. On y observe très bien les petits grains de qtz					
				sub-anguleux à sub-arrondis flottant dans une matrice aphanitique noire de biotite et chlorite.					
150.90		151.75		S2	151.50	153.00	51021	1.50	0.019
				Siltstone 75°					
				ld. au précédent mais granulo extrêmement fine.					
151.75		152.70		S2; BRC					
				Siltstone 25°; Brèche de coulée 25°					
				Le même siltstone que le précédent mais sous forme de brèches dont les fragments de section cm sont					

			Description			Analyse		
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
		SI	ub-arrondis (brèche intraformationelle ?).					
52.70	158.90	S	:1; S3; TU1	153.00	153.65	51022	0.65	0.023
		G	Srès 40°; Wacke; Tuf felsique					
		G	ris moyen, massif. La granulo varie de très fine à moyenne. Certains passages dcm ont plutôt l'aspect					
		ď	'un grauwacke avec une matrice biotisée (sédiments sales, ma Itriés).Le litage S0 est bien dévelloppé à					
			0-50°AC.					
		Р	ourrait être un tuf car certains grains felsiques montrent une bordure figée!					
153.65	1:	53.90	Po15; Py05	153.65	153.90	51023	0.25	0.115
			Pyrrhotine 15%; Pyrite 5%					
			en petits grains concentrés en lamelles mm le long de S2					
153.90	1:	57.70	Py02; Po02	153.90	154.50	51024	0.60	0.114
			Pyrite 2%; Pyrrhotine 2%	154.50	156.00	51025	1.50	0.053
			en petits grains concentrés en lamelles mm le long de S2 et aussi disséminée.	156.00	157.70	51026	1.70	0.061
157.70	. 4	69.85	D 07 D-00	157.70	158.70	51027	1.00	0.237
157.70	11	09.00	Py07; Po02					0.237
			Pyrite 7%; Pyrrhotine 2% en petits grains concentrés en lamelles mm le long de S2. Certains passages de 5-10cm dans le	158.70	158.70	51029 (Std)	0.00	
			graphite ont plus de 20% Py.	158.70	159.65	51028	0.95	0.049
58.90	167.10		11; S6; Gp					
56.90	107.10		n; So; Gp Brès 70°; Mudrock; Graphite					
			réquence sédimentaire représentée par des passages dcm à métriques gréseux montrant de nombreux					
			ts/lamelles de mudrock et de graphite parfois massif parfois en fins cheveux, // à S0. Le litage, parfois					
			ndulant, est très bien développé à 45-55°AC.					
159.65	. 1	60.30	QZVN	159.65	160.30	51030	0.65	0.342
100.00		00.00	Veines de quartz 65°	160.30	160.60	51031	0.30	0.535
			Quartz noir. Certains passages montrent beaucoup de graphite dans la matrice. Le premier 15 cm	160.30	160.60	51031	0.30	0.535
			montre 20% Py sous forme d'agglomération de grains formant des lits mm // S2.					
160.60	11	62.15	QZVN	160.60	162.15	51032	1.55	4.520
			Veines de quartz 30°	162.15	163.50	51033	1.35	0.714
			Qtz noir comme la précédente, avec beaucoup de graphite dans la matrice et fractures.					
				163.50	165.00	51034	1.50	0.053
				165.00	166.50	51035	1.50	0.003
				166.50	168.00	51036	1.50	0.149
67.10	169.85	M	18; Gp	168.00	169.50	51037	1.50	0.098
			schiste 45°; Graphite	169.50	171.00	51038	1.50	0.025
			ichiste graphitique interlité avec qq passages cm de grès-siltstone. La schistosité varie beaucoup, de	109.50	171.00	01000	1.50	0.020
			5°AC au début, o°AC à 168.3m pour revenir à 75°AC jusqu'à la fin.					
69.85	170.90	s						
			Grès 75°					
			rénite quartzifère, très pure, massive, blanc légèrement verdâtre. Granulo de 1-2 mm. Les grains de qtz					

		Description			Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot
							(g/t)
		sont très bien arrondis.					
169.	85 173.						
		Pyrrhotine 2%; Pyrite 2%					
00	470.00	en petits grains concentrés en lamelles mm le long de S2	474.00	170 50	54000	1.50	0.000
.90	173.60	S1; S6; Gp	171.00	172.50	51039	1.50	0.008
		Grès 80°; Mudrock; Graphite	172.50	173.65	51040	1.15	
		Unité id. à celle de 158,9 à 167.1m. On y observe très bien le litage qui montre des crénulations et des					
.60		plis parasites en Z					
.60	180.00	V3B; POBPg					
		Basalte 50°; Porphyroblaste de plagicolase 50°					
		Le basalte d'Obatogamau avec les porphyres de Fp blanc-verdâtre, sub arrondis, de 5mm à 20mm de					
		diam. De couleur vert olive, massif.					
		Fin du trou à 180.0m					

180.00 Fin du sondage

Nombre d'échantillons : 23 Nombre d'échantillons QAQC : 1 Longueur totale échantillonnée : 26.70

Sondage : M	I-12-51		Titre minier : Canton :	2294782		Section : Niveau :	
Foré par :	Magma		Rang : Lot :			Place de travail :	
Décrit par :	A. Jean		Du :	2012-01-30		Date de description : 201	12-01-31
			Au :	2012-01-31			
-Collet -					UTM	Annie	Mégane
Azimut : Plongée : Longueur : Déviation	290.00° -50.00° 168.00 m			Est Nord Élévation	519 998 5 488 384 0	-238 725 0	-4. 76
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	18.00	286.70°	-50.40°	Non			
Flexit	51.00	288.80°	-51.10°	Non			
Flexit	153.00	290.60°	-51.80°	Non			
Flexit	168.00	290.90°	-51.50°	Non			

Flexit	18.00	286.70°	-50.40°	Non	
Flexit	51.00	288.80°	-51.10°	Non	
Flexit	153.00	290.60°	-51.80°	Non	
Flexit Flexit	168.00	290.90°	-51.50°	Non	

Entreposé : Oui Cimenté : Non NQ Dimension de la carotte :

Description

		Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00	11.90	MO					
		Mort terrain					
11.90	134.30	V3B; COU					
		Basalte; Coussiné					
		Basalte noir, massif. QQ coussins sont observables. Matériel inter coussins souvent épidotisé. QQ rares					
		veinules de CB mm dans tous les sens.					
		Présence de Po en tr en amas ou grains isolés, parfois en filonnets mm échevelés.					
		Présence d'amygdules 2-3 mm diam à partir de 81m.					
		Légèrement magnétique, peu ou pas carbonaté.					
134.30	135.80	I1F					
		Aplite 50°					
		Intrusif felsique que l'on appelait autrefois porphyre à qtz. On y observe très bien les petits porphyres de					
		qtz 1-2 mm diam. flottant dans une matrice aphanitique siliceuse.					
		Gris pâle, massif.					
35.80	145.60	V3B; COU; BRC					
		Basalte 50°; Coussiné 50°; Brèche de coulée 50°					
		ld. à celui du début, mais semble plus chloritisé alors que les filonnets de Po sont plus nombreux. Les					
		derniers 5 m sont plutôt bréchique (brèche de coulée ?)					
140.3	0 145.6		140.30	141.60	51041	1.30	0.004
		Pyrrhotine 8%	141.60	142.90	51042	1.30	0.006
		Distribuée en amas 2-5 mm et aussi en filonnets comme remplissage de fractures				1.7	0.006
			142.90	142.90	51044 (Bln)	0.00	
			142.90	144.20	51043	1.30	0.006
			144.20	145.60	51045	1.40	<0.002
45.60	150.10	M25; LAM					
		Mylonite 70°; Laminations parallèles 70°					
		schistosité fortement développée soulignant un cisaillement intense à 70°AC. Une forte lamination est					
		prédominante montrant des lamelles mm foncées en alternance rythmique avec des lamelles plus pâles.					
		Le protolithe semble être sédimentaire, les lamelles pâles ont l'aspect d'un grès alors que les lamelles					
		foncées sont plutôt silteuses. On peut y observer clairement les grains gréseux qui ont roulés le long de					
		plans à 70°AC.					
		Certains passages dcm sont fortement pyritisés (et Po), jusqu'à 25% Su.					
145.6	0 150.1	10 Py15; Po10	145.60	147.10	51046	1.50	0.019
		Pyrite 15%; Pyrrhotine 10%	147.10	148.60	51047	1.50	2.050
		Grains de Su agglomérés le long de plans mm à 70°AC. Certains passages dcm ont jusqu'a 40%					2.000
		de Su total.	148.60	148.60	51049 (Std)	0.00	
			148.60	150.10	51048	1.50	0.130
150.10	154.40	QZVN	150.10	151.00	51050	0.90	0.808
		Veines de quartz 65°					

			Description			Analyse	1	
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)
		V. de qt	z noire, massive. On y observe à peu près pas de graphite pur. La veine est à peu près stérile,	151.00	151.90	51051	0.90	0.004
		sauf de	la Py disséminée en trace.	151.90	152.80	51052	0.90	<0.002
				152.80	153.70	51053	0.90	<0.002
				153.70	154.40	51054	0.70	2.270
54.40 1	161.50	00: 040	-					
54.40 I	161.50	S6; S10	⊏ e 55°; Chert graphiteux					
			équence sédimentaire que dans le sondage M-12-50, à savoir des unités gréseuses séricitisées					
			peur cm en alternance avec des unités plus minces de silstone. Les unités de mudrock sont plus					
		-	ntes et très dures et de couleur noir charbon dû à leur contenu graphitique.					
			y observer encore le S0 dans les unités gréseuses. L'ensemble est passablement perturbé,					
			la forme de brèches à plusieurs endroits.					
		Logunit	és de mudrock montrent une minéralisation sous forme de Py + Po en grains regroupés le long de					
			es de mudrock montrent une mineralisation sous forme de ry + ro en grants regioupes le long de m // à S2.					
154.40	161		Po06; Py04	154.40	156.00	51055	1.60	0.085
101110	101		Pyrrhotine 6%; Pyrite 4%	101.10	100.00	0.000	1.00	0.000
			Les Su sont particulièrement présents en lamelles et remplissage de fractures dans le mudrock					
			graphitique.					
154.50	158		Ser40	156.00	157.50	51056	1.50	0.010
			Séricitisation 40	157.50	159.00	51057	1.50	0.094
				159.00	160.50	51058	1.50	0.169
				160.50	161.50	51059	1.00	0.009
61.50 1	168.00	V3B; P0	DR .					
		Basalte	70°; Porphyrique 70°					
		Le basa	lte de l'Obatogamau avec porphyres de Fp. Notez que les porphyres de Fp sont totalement					
		altérés e	en chlorite noire sur les premiers 3.5m					
		Fin du t	rou à 168.0m					
161.50	165	.00	Chl50; Car25					
			Chloritisation 50; Carbonatisation 25					
			Les porphyres de Fp sont totalement altérés en Chlorite noire alors que le pourtour de ceux-ci					
			réagissent fortement au HCI.					

Nombre d'échantillons : 17 Nombre d'échantillons QAQC : 2 Longueur totale échantillonnée : 21.20

TomaGold Corporation Titre minier : 4293192 Section: Sondage: M-12-52 Canton: Niveau: Place de travail : Rang: Lot: Foré par : Magma Décrit par : A. jean 2012-02-01 Date de description : 2012-02-07 Du: Au: -Collet Mégane UTM Annie Azimut: 295.00° -336 -124 Est 519 964 Plongée : -50.00° 5 488 489 776 836 Nord Longueur: 207.00 m 0 Élévation 0 -Déviation

Туре	Profondeur	Azimut	Plongée	Invalide	Description
Flexit	18.00	286.60°	-48.80°	Non	
Flexit	51.00	286.40°	-48.70°	Non	
Flexit	102.00	285.40°	-49.00°	Non	
Flexit Flexit	153.00	297.10°	-48.70°	Non	
Flexit	207.00	298.10°	-48.40°	Non	

Description

Entreposé: Oui Cimenté: Non Dimension de la carotte : NQ

				Description			Analyse		
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00		12.00		MO					
				Mort terrain					
12.00		26.90		V3B					
				Basalte					
				Vert foncé, plutôt massif sans coussin, 15-20% de V. de Cb mm selon 2 système, 20° et 65°AC, très					
				faiblement magnétique et montrant par endroits du cisaillement à 65°AC					
	19.90		20.50	QZVN	19.90	20.50	51060	0.60	<0.002
				Veines de quartz 65°					
				3-4 V. de qtz fumé, 5 -8 cm dans le basalte, dont une irrégulière, + ou - //AC. Pas de sulfures					
26.90		41.40		13G					
				Gabbro 40°					
				Vert très foncé à noir, massif,vgranulo assez fine mais texture ophitique observable. Même composition					
				que le basalte précédent, avec qq veinules de CB mm généralement à faible °AC. Faiblement magnétique.					T ,
41.40		42.50		V3B					
				Basalte 20°					A /
				Basalte id. à celui du début. Contact souligné par veinule de CB 20°AC.					
42.50		46.60		I3G; I3G					
				Gabbro 20°; Gabbro					
				Gabbro id. à celui de 26.9 à 41.4					
46.60		48.25		IIF					
				Aplite 60°					
				De couleur gris moyen, massif, contacts nets. Petits Po de Fp visibles mais peu nombreux. Granulo fine,					
				1-2 mm. Composition granitique.					
48.25		62.95		13G					
				Gabbro 60°					
				ld. aux précédents					
62.95		93.20		V3B	90.20	91.70	51061	1.50	0.043
				Basalte					
				Contact graduel avec le gabbro précédent. Vert foncé, massif, qq coussins discernables, mais rares. QQ					
				amas mm de Po apparaîssent à partir de 70 m et les concentrations de Po en lits mm à 60°AC					
				commencent à 87m.					
	90.35		93.20	BRE	91.70	93.20	51062	1.50	0.016
				Bréchique					
93.20		111.60		T1 c; M8Gp	93.20	94.40	51063	1.20	0.095
				Tuf felsique à cendres 60°; Schiste graphiteux	94.40	95.60	51064	1.20	0.189
				Contact assez net avec le basalte précédent. De couleur gris moyen à clair, massif. Le litage S0 (S2) est	95.60	96.70	51065	1.10	0.083
				bien développé à 60°AC.					
				Cette unité volcanosédimentaire est probablement cisaillé // à S2 sur des longueurs dcm à métriques.					
				Certains passages sont carrément un tuf à Xtaux soudés. Les zones cisaillées sont mise en évidence					
				par des cheveux mm séricitisés. L'altération générale est la séricitisation et la silicification. Certains					

Le gra La min elle es	Description ages métriques sont uniquement silicifiés et/ou uniquement séricitisés. raphite est associé à des unités de tufs et shales graphiteux et parfois en passages dcm massifs. sinéralisation, majoritairement Py et un peu de Po est omniprésente, particulièrement de 96.5 à 98m ou est semi-massive (50-60%) en agglomération de petits grains allongés selon des plans à 60°AC. filons de qtz noir se présentent à partir de 100.1m et ce jusqu'à 108.3m Ser35; Sil20 Séricitisation 35; Silicification 20 Py08; Po02	De	A	Numéro	Longueur	Au_Plot (g/t)
Le gra La min elle es Les filc 93.20 102.50 93.20 96.70 96.70 97.60 97.60 100.20 100.20 106.90 100.20 100.50 100.50 104.65 102.50 108.90	raphite est associé à des unités de tufs et shales graphiteux et parfois en passages dcm massifs. ninéralisation, majoritairement Py et un peu de Po est omniprésente, particulièrement de 96.5 à 98m ou est semi-massive (50-60%) en agglomération de petits grains allongés selon des plans à 60°AC. filons de qtz noir se présentent à partir de 100.1m et ce jusqu'à 108.3m Ser35; Sil20 Séricitisation 35; Silicification 20					
La min elle es Les file 93.20 102.50 93.20 96.70 96.70 97.60 97.60 100.20 100.20 106.90 100.20 100.50 100.50 104.65 102.50 108.90	ninéralisation, majoritairement Py et un peu de Po est omniprésente, particulièrement de 96.5 à 98m ou est semi-massive (50-60%) en agglomération de petits grains allongés selon des plans à 60°AC. filons de qtz noir se présentent à partir de 100.1m et ce jusqu'à 108.3m Ser35; Sil20 Séricitisation 35; Silicification 20					
La min elle es Les file 93.20 102.50 93.20 96.70 96.70 97.60 97.60 100.20 100.20 106.90 100.20 100.50 100.50 104.65 102.50 108.90	ninéralisation, majoritairement Py et un peu de Po est omniprésente, particulièrement de 96.5 à 98m ou est semi-massive (50-60%) en agglomération de petits grains allongés selon des plans à 60°AC. filons de qtz noir se présentent à partir de 100.1m et ce jusqu'à 108.3m Ser35; Sil20 Séricitisation 35; Silicification 20					
P3.20 102.50 93.20 96.70 96.70 97.60 97.60 100.20 98.20 100.20 100.20 106.90 100.50 104.65 102.50 108.90	filons de qtz noir se présentent à partir de 100.1m et ce jusqu'à 108.3m Ser35; Sil20 Séricitisation 35; Silicification 20					
93.20 102.50 93.20 96.70 96.70 97.60 97.60 100.20 98.20 100.20 100.20 106.90 100.50 104.65 102.50 108.90	Ser35; Sil20 Séricitisation 35; Silicification 20					
93.20 102.50 93.20 96.70 96.70 97.60 97.60 100.20 98.20 100.20 100.20 106.90 100.50 104.65 102.50 108.90	Ser35; Sil20 Séricitisation 35; Silicification 20					
93.20 96.70 96.70 97.60 97.60 100.20 98.20 100.20 100.20 106.90 100.50 104.65 102.50 108.90	Séricitisation 35; Silicification 20					
96.70 97.60 97.60 100.20 98.20 100.20 100.20 106.90 100.20 100.50 100.50 104.65 102.50 108.90						
96.70 97.60 97.60 100.20 98.20 100.20 100.20 106.90 100.20 100.50 100.50 104.65 102.50 108.90						
97.60 100.20 98.20 100.20 100.20 106.90 100.20 100.50 100.50 104.65 102.50 108.90	Pyrite 8%; Pyrrhotine 2%					
97.60 100.20 98.20 100.20 100.20 106.90 100.20 100.50 100.50 104.65 102.50 108.90	En agglomération de petits grains formant des lits mm // S2					
97.60 100.20 98.20 100.20 100.20 106.90 100.20 100.50 100.50 104.65 102.50 108.90	Py50; Po05	96.70	97.60	51066	0.90	8.670
98.20 100.20 100.20 106.90 100.20 100.50 100.50 104.65 102.50 108.90	Pyrite 50%; Pyrrhotine 5%	30.70	97.00	31000	0.50	0.070
98.20 100.20 100.20 106.90 100.20 100.50 100.50 104.65 102.50 108.90		97.60	98.90	E4067	1.30	0.220
100.20 106.90 100.20 100.50 100.50 104.65 102.50 108.90	Py04; Gp05	97.60	96.90	51067	1.30	0.330
100.20 106.90 100.20 100.50 100.50 104.65 102.50 108.90	Pyrite 4%; Graphite 5%					
100.20 100.50 100.50 104.65 102.50 108.90	TU1	98.90	98.90	51069 (Std)	0.00	
100.20 100.50 100.50 104.65 102.50 108.90	Tuf felsique	98.90	100.20	51068	1.30	0.048
100.20 100.50 100.50 104.65 102.50 108.90	Tuf felsique soudé					
100.50 104.65 102.50 108.90	QZVN	100.20	101.50	51070	1.30	1.090
100.50 104.65 102.50 108.90	Veines de quartz					
100.50 104.65 102.50 108.90	15% de Veinules de qtz noir de 2 à 15 mm, souvent boudinées et déchiquetées, sans direction					
100.50 104.65 102.50 108.90	préferencielle dans le tuf					
102.50 108.90	Py25; Gp70				1	
102.50 108.90	Pyrite 25%; Graphite 70%					
102.50 108.90	Associé à du graphite semi-massif					
	Py02; Gp10	101.50	102.80	51071	1.30	0.571
	Pyrite 2%; Graphite 10%					
104.65 105.20	Sil65; Ser15	102.80	104.10	51072	1.30	0.397
104.65 105.20	Silicification 65; Séricitisation 15	104.10	105.40	51073	1.30	0.769
	Py08; Gp25					
	Pyrite 8%; Graphite 25%					
	Associé à du graphite semi-massif					
105.20 108.30	Pytr-1; Gp05	105.40	106.90	51074	1.50	0.025
	Pyrite tr-1; Graphite 5%					
106.90 108.30	QZVN	106.90	108.30	51075	1.40	0.039
	Veines de quartz					

			Description			Analyse		
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
	108.30	109.10	Py10	108.30	109.40	51076	1.10	0.050
			Pyrite 10%					
			Associé à une silicification intense.					
	108.90	109.60	Ser40; Sil05					
			Séricitisation 40; Silicification 5					
	109.10	111.60	Pytr-1; Gp30	109.40	110.50	51077	1.10	0.032
			Pyrite tr-1; Graphite 30%					
			Associé à un shale graphitique					
	109.60	111.60	\$6	110.50	111.60	51078	1.10	0.033
			Mudrock					
			Tuf ou shale graphitique					
111.60	169.95	5 V3B:	POR					
			alte 65°; Porphyrique 65°					
			alte vert moyen à porphyres de Fp de 1-30 mm de diam. Les Por sont totalement chloritisés sur les					
			niers 4 m. Basalte d'Obatogamau typique.					
	140.50	152.20	Chl50; Sil50	168.00	169.50	51079	1.50	<0.002
			Chloritisation 50; Silicification 50					
			Les Por de Fp sont totalement noirs, faisant penser à de la chlorite noire ou biotite, mais la dureté					
			est trop élevée QTZ NOIR ?					
	169.50	169.95	Po08; Sptr; Pytr; Gp55	169.50	169.95	51080	0.45	0.031
			Pyrrhotine 8%; Sphalérite tr; Pyrite tr; Graphite 55%					
			Graphite semi-massif, très dur, silicifié, envahie par des Su sous forme de filonnets/cheveux à					
			60°AC					
169.95	196.70) V3B;	: I3G	169.95	171.50	51081	1.55	0.004
			alte 70°; Gabbro	178.00	179.40	51082	1.40	<0.002
		Basa	alte micro grenu et/ou gabbro à grains fins. Certains passages dcm à métriques sont franchement	170.00	173.40	01002	1.40	40.002
		intru	sifs alors que d'autres sont franchement aphanitiques, plutôt aspect extrusif. Les passages de l'un à					
		l'autr	re sont graduels, sans contacts définis/nets. La composition est la même pour les 2 types de roches.					
		Certa	ains passages dcm à métriques montrent des amygdules, alors que d'autres montrent des fractures					
		de te	ension à 65°AC remplies de calcite.					
	179.40	179.70	Sp10; Cp03; Po03	179.40	179.40	51084 (Bln)	0.00	
			Sphalérite 10%; Chalcopyrite 3%; Pyrrhotine 3%	179.40	180.40	51083	1.00	0.014
			Su en filonnets qui semblent occupés l'interstice entre 2 coussins.					
	180.30	180.40	Sp50; Po05	180.40	182.00	51085	1.60	< 0.002
			Sphalérite 50%; Pyrrhotine 5%	196.00	197.00	51086	1.00	0.018
			Amas de Su de forme globulaire, 8cm X 3cm, semble intersticiel entre 2 coussins.	1.5.55				
	196.60	196.70	Po10					
			Pyrrhotine 10%					
			Filonnets de Po en cheveux, 65°AC, marquant le contact entre le basalte supérieur et la diorite					
			inférieure.					

		Description	Analyse							
		Безсприоп	De	A	Numéro	Longueur	Au_Plot (g/t)			
6.70 201.9	0	12.J	199.30	200.80	51087	1.50	<0.002			
		Diorite 65°								
		Gris moyen, massif, granulo moyenne. Grains de Fp et Qtz 1-2 mm flottant dans une matrice aphanitique								
		de composition felsique. Non magnétique.								
200.80	201.60	QZVN								
		Veines de quartz 60°								
		Filons de qtz noir et gris, cm, tantôt bien définis, tantôt amas démembrés, avec du graphite disloqué								
		en fragments anguleux de dimension 1-3 cm.								
200.80	201.60	Po06; Gp25	200.80	200.80	51089 (Std)	0.00				
		Pyrrhotine 6%; Graphite 25%	200.80	201.60	51088	0.80	0.180			
		Sous forme de cheveux associés intimement au graphite	201.60	203.00	51090	1.40	0.004			
	_									
1.90 207.0	D	V3B; POR								
		Basalte 65°; Porphyrique 65°								
		Vert moyen, massif avec Po de Fp beaucoup plus petits(4-10mm) que ceux des coulées supérieures, mais beaucoup plus nombreux de 15-25%.								
		mais beaucoup pius nombreux de 15-25%.								
		Fin du trou à 207.0m								

207.00 Fin du sondage

Nombre d'échantillons : 28 Nombre d'échantillons QAQC : 3 Longueur totale échantillonnée : 34.20

TomaGold Corporation Titre minier : 4293192 Section: Sondage: M-12-53 Canton: Niveau: Place de travail : Rang: Lot: Foré par : Magma Drilling Décrit par : A. Jean 2012-02-09 Date de description : 2012-02-10 Du: 2012-02-10 Au: -Collet Mégane UTM Annie Azimut: 295.00° -400 -176 Est 519 944 Plongée : -50.00° 812 888 Nord 5 488 560 Longueur: 123.00 m 0 Élévation 0 -Déviation

Туре	Profondeur	Azimut	Plongée	Invalide	Description
Flexit	18.00	291.50°	-50.30°	Non	
Flexit	51.00	272.40°	-50.50°	Oui	
Flexit	102.00	289.40°	-49.00°	Non	
Flexit	123.00	288.30°	-49.90°	Non	
		1 - 1			

Description

laki A iz (01234762)

Dimension de la carotte : NO Cimenté : Non Entreposé : Oui

	Description			Description			Analyse				
				Безаграбії	De	À	Numéro	Longueur	Au_Plot (g/t)		
0.00		12.00		MO							
				Mort terrain							
2.00		16.20		V2D							
				Trachyte							
				Trachyte montrant 15-20% de phénoxtaux de Fp de 1 X 3 mm en forme de bâtonnets flottant dans une							
				matrice aphanitique mafique. Texture trachytique typique.Non magnétique							
6.20		51.10		V3B							
				Basalte							
				Vert foncé à noir, massif montrant qq rares structures de mini coussins de 10-15 cm de diam. On y							
				observe plusieurs passages dcm à métriques avec amygdules de CB 1-2 mm diam. Légèrement							
				magnétique. Les 4 derniers mèetres sont plutôt bréchiques.							
	47.15		51.10	BRE							
				Bréchique							
	48.90		51.10	Po03	48.90	50.00	51091	1.10	0.016		
				Pyrrhotine 3%	50.00	51.10	51092	1.10	0.025		
				En amas généralement étirés selon S2 à 65°AC							
51.10		67.60		T1 I; T1 c	51.10	52.40	51093	1.30	0.308		
				Tuf felsique à lapillis 45°; Tuf felsique à cendres	52.40	53.70	51094	1.30	0.488		
				Unité volcasédimentaire représentée par des tufs à xtaux et à cendres, parfois soudés montrant un litage	53.70	55.00	51095	1.30	0.069		
				S0 très bien developpé à 75°AC, donnant l'aspect de sédiments gréseux en alternance avec des	55.00	56.30	51096	1.30	0.247		
				siltstone et mudrock. L'unité montre peu de graphite comparativement aux autres trous précédents. Les				1.30			
				Su se présentent en lamelles mm à cm // S0. Certains passages dcm sont semi massifs et certains de	56.30	57.60	51097	1.30	0.091		
				ceux-ci sont intimement liés à des filons de qtz noir.							
				de 65.0 à 67.6m: un tuf à lapillis.							
	51.10		57.40	Po02; Pytr							
				Pyrrhotine 2%; Pyrite tr							
	57.40		63.80	Po10; Py05; Cp01	57.60	58.70	51098	1.10	0.014		
				Pyrrhotine 10%; Pyrite 5%; Chalcopyrite 1%	58.70	59.80	51099	1.10	0.042		
				La distribution des Su est très hétérogène. Certains passages dcm ont des Su en trace alors que	59.80	60.90	51100	1.10	1.150		
				d'autres ont des passages dcm semi-massifs, dont un presque massif, surtout en Py. Le qtz noir	60.90	62.00	51101	1.10	1.960		
				est ici et là, souvent en fragments/amas nodulaires.	62.00	62.90	51102	0.90	0.092		
				Landard Anna Carata and Anna C							
				Le qtz noir est surtout présent de 61.6 à 62.3m, constituant plus de 60% de la carotte. Il est	62.90	63.80	51103	0.90	0.033		
				également présent de 56m à 61.6 sous forme de quelques veinules de 5-8 mm et en amas cm.	63.80	65.30	51104	1.50	0.010		
67.60		123.00		V3B; POR							
				Basalte 65°; Porphyrique 65°							
				Massif, gris moyen, à Fp de Plagio de 2 à 20 mm diam.							

		Description	Analyse				1
		Description	De	À	Numéro	Longueur	Au_Plo
		Les por sont noirs de 87.5 à 92.1m Il semble y avoir un contact de coulée à 45°AC à 92.1m entre les 2					
		basaltes à Por blancs et celui à por noirs (anorthose ????)					
		Le dernier 1.5 m montre des Por Fp blancs beaucoup plus petits, 1-4 mm et sont plus nombreux 15%					
		Fin du trou à 123.0m					
93.20	95.5						
		Bréchique					
	Fin du sonda						
1	Nombre d'éc	hantillons: 14					

Projet : MONSTER

Longueur totale échantillonnée : 16.40

Sondage : M-12-53

			Titre minier :	4293192	Si	ection:	
ondage: N	Л-12-5 4		Canton :			iveau :	
			Rang:			lace de travail :	
Foré par :	Magma Driling		Lot:				
Décrit par :	A. Jean		Du :	2012-02-09	D	ate de description : 2012	-02-10
			Au :	2012-02-10			
-Collet					UTM	Annie	Mégane
Azimut :	295.00°						-18
Plongée :	-50.00°			Est	519 990	-431	
Longueur:	87.00 m			Nord	5 488 649	907	98
				Élévation	0	0	
éviation ————							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	18.00	292.20°	-50.90°	Non			
Flexit Flexit	51.00 87.00	294.50° 293.10°	-51.40° -51.60°	Non Non			
Description						Qiki d	- ing (01034762)

			Decembra			Analyse		
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00	12.0)	мо				1	
			Mort terrain					
12.00	14.3)	V3B					
			Basaite					
			Gris très foncé, massif avec qq rares petits porphyres de Fp en bâtonnets.					
14.30	16.1)	V2D					
			Trachyte					
			La matrice reste la même mais les porhyres sont plus nombreux et suggère une texture trachytique					
16.10	35.0)	V3B					
			Basaite					
			ld. à celui du début. QQ passages dcm trachytique. Pseudo coussins dcm par endroits.					
35.00	37.1)	V2D					
			Trachyte					
			ld. à celle de 14.3 à 16.1m.					
37.10	62.1)	V3B					
			Basalte					
			Vert moyen à vert foncé, massif. QQ porphyres de Fp en bâtonnets jusqu'à 43m pseudo trachytique.					
43.	20	51.00	BRE	60.60	62.10	51105	1.50	0.045
			Bréchique					
62.10	77.6)	TX1; TX2; TL2	62.10	63.30	51106	1.20	0.424
			Tuf à cristaux felsique 65°; Tuf à cristaux intermédiaire; Tuf à lapilis intermédiaire					
			Séquence volcanosédimentaire représentée par des tufs felsiques à intermédiaires, qq passages dcm à					
			grains très fins et bien lités (tuf à cendres ?) alors que la séquence se termine par un tuf à lapillis					
			intermédiaire. On y voit ici et là des fragments noirs anguleux à sub arrondis de qtz noir de dimension mm.					
			On y observe également de petits filons mm à 2 cm de qtz noir ici et là, particulièrement à partir de 66.9m.					
			La minéralisation en Su est relativement faible, ne dépassant pas 5-6%, surtout Py, Po, sauf de 71.1 à					
			75.0 où elle atteint 8-10%.					
62.	10	63.30	Py05; Po01					
			Pyrite 5%; Pyrrhotine 1%					
63.	30	66.90	Po01; Py01	63.30	64.50	51107	1.20	0.963
			Pyrrhotine 1%; Pyrite 1%	64.50	64.50	51109 (Std)	0.00	
				64.50	65.70	51108	1.20	0.122
				65.70	66.90	51110	1.20	0.523
66.	90	68.90	Py05; Po01	66.90	67.90	51111	1.00	0.900
			Pyrite 5%; Pyrrhotine 1%	67.90	68.90	51112	1.00	0.225
68.	90	70.60	Po02; Py02	68.90	69.70	51113	0.80	0.023

		Description		· .			
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
		Pyrrhotine 2%; Pyrite 2%	69.70	70.60	51114	0.90	0.101
70.60	71.10	QZVN					
		Veines de quartz 50°					
		Qtz noir massif, 4% de fine Py agglomérée le long de plans à 55°AC.					
70.60	71.10	Py03; Po01	70.60	71.10	51115	0.50	0.059
		Pyrite 3%; Pyrrhotine 1%					
71.10	75.70	Py10; Po02	71.10	72.00	51116	0.90	0.301
		Pyrite 10%; Pyrrhotine 2%	72.00	73.00	51117	1.00	0.215
		Irrégulier et très mai distribué passages dem avec trace en alternance avec passages dem de	73.00	74.00	51118	1.00	0.128
		15-20%					
			74.00	75.00	51119	1.00	0.239
			75.00	76.00	51120	1.00	0.444
75.70	77.60	TL1	76.00	77.50	51121	1.50	0.019
		Tuf à lapilis felsique 45°					
		Les fragments sont surtout anguleux, souvent triangulaires, surtout de couleur noire, probablement					
		du qtz noir. Possiblement qq fiammes et chards. On y voit aussi du fluage par endroits, à 15°AC,					
		donnat une texture mylonitique par endroits.					
		La matrice aphanitique d'aspect vitreuse est de couleur gris moyen.					
87.0	00	/3B; POR					
		Basalte 15°; Porphyrique 15°					
		Basalte, gris-verdâtre à vert foncé, massif, à phénoxtaux de Fpde 2 à 20 mm diam.					
		in du trou à 87.0m					
77.60	87.00	V3B; POR					
		Basalte 15°; Porphyrique 15°					
		Le basalte d'Obatogamau à porphyres de Fp blancs, de 5 mm à 20 mm de diamètre.					
		Fin du trou à 87.0m.					

87.00 Fin du sondage

Nombre d'échantillons : 16 Nombre d'échantillons QAQC : 1 Longueur totale échantillonnée : 16.90

Sondage :	M-12-55		Titre minier :	4293192		Section :	
Jonaago .	WEIZ 00		Canton :			Niveau:	
			Rang :			Place de travail :	
Foré par :	Magma Drilling		Lot:				
Décrit par :	André Jean		Du :	2012-02-10		Date de description : 2012-02-	-11
			Au :	2012-02-11			
Collet -							
					UTM	Annie	Mégane
Azimut :	295.00°			Est	520 043	-453	-178
Plongée :	-50.00°			Nord	5 488 734	2.1	1 088
Longueur:	90.00 m						
				Élévation		0	0
Déviation ———							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
lexit	15.00	288.70°	-50.60°	Non			
Flexit	51.00	296.00°	-50.70°	Non			
I							
i							
Description							
						0	
						laki A iz (01034762)
=				0:			
Dimension de la car	arotte: NQ			Cime	enté : Non		Entreposé : Oui

				Decembries			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00		7.50		мо					9-5
				Mort terrain					
7.50		47.80		V3B					
				Basalte					
				Vert foncé à noir, massif, qq franges de coussins et qq passages dcm montrant des amygdules de QTZ					
				1-3 mm diam. Légèrement magnétique sauf dans les passages où l'on retrouve de la Po à partir de 40.5					
				m.					
47.80		56.70		V2D					
				Trachyte 30°					
				Contacts sup. et inf. nets à 30°AC. Texture trachytique soulignée par les bâtonnets de Fp de 1 X 3 mm					
				flottant dans une matrice aphanitique de composition mafique. Non magnétique					
56.70		78.60		V3B					
				Basalte 30°					
				Même basalte que celui du début. 15-20% de veinules de CB à partir de 72.0 m à 75-80°AC. Fortement					
				silicifié de 69.0 à 72.0m					
	74.60		74.80	M25					
				Mylonite 65°					
				Basalte fortement cisaillé, silicifié, séricitisé avec 10% Py et Po en tr.					
	74.60		74.80	Py10; Potr	74.60	75.60	51122	1.00	0.534
				Pyrite 10%; Pyrrhotine tr					
	75.48		75.55	M25					
				Mylonite 65°					
				ld. à la précédente					
	75.48		75.55	Py07; Po03					
				Pyrite 7%; Pyrrhotine 3%					
78.60		81.55		M25; V3B					
				Mylonite 70°; Basalte					
				Mélange de basalte fortement séricitisé et modérément chloritisé en lamelles à 70°AC avec des fragments					
				et veinules de qtz noir. Les veinules sont // à S2 à 70°AC. Les veinules de qtz noir dont parfois franches,					
				1-3 cm d'ép. et parfois en lambeaux déchiquetés formant souvent des nodules arrondis.					
	78.60		81.55	QZVN					
				Veines de quartz 70°					
				Env. 25% de qtz sur l'ensemble, en veinules de 1-3 cm et aussi en lambeaux déchiquetés.					
	78.60		81.55	Py10; Po05	78.60	78.60	51124 (Bln)	0.00	
				Pyrite 10%; Pyrrhotine 5%	78.60	79.60	51123	1.00	0.834
				% très variable sur des longueurs cm à dcm et généralement concentrés en lamelles mm à cm // à	79.60	80.60	51125	1.00	0.535
				S2 à 70°AC.					
					80.60	81.55	51126	0.95	0.091

	Decadelian			Analyse		
Δ -	Description	De	À	Numéro	Longueur	Au_Plot (g/t)
81.55 86.90	T1; Gp	81.55	82.50	51127	0.95	0.033
	Tuf felsique 50°; Graphite	82.50	82.50	51129 (Std)	0.00	
	Tuf felsique graphitique. On peut même y observer un granoclassement à 84.3m. Le sommet serait vers	82.50	83.40	51128	0.90	0.006
	le collet du trou. La litologie primaire est parfaitement conservée, variant de 25-50°AC avec possiblement	83.40		51130	0.90	<0.002
	des lits entrecroisés et/ou transposés.					
		84.30	85.10	51131	0.80	0.020
84.40 85.90	·	85.10	85.90	51132	0.80	0.029
	Graphite 40°					
85.90 86.10	S10					
	Chert					
	Chert possible. Pas sûr.					
85.90 86.90	Po10; Py10	85.90	86.90	51133	1.00	0.125
	Pyrrhotine 10%; Pyrite 10%					
	Les Su sont dans une zone fortement silicifiée et perturbée, possiblement des injections de qtz gris.					
	Possiblement un chert de 85,9 à 86.1m					
86.90 90.00	V3B; POR	86.90	88.40	51134	1.50	0.002
	Basalte 70°; Porphyrique 70°					
	Basalte à porphyres de Fp séricitisés.					
	Fin du trou à 90.0m					

90.00 Fin du sondage

Nombre d'échantillons : 11 Nombre d'échantillons QAQC : 2 Longueur totale échantillonnée : 10.80

		Titre minier :	4293192	S	Section :	
-12-56						
Magma Drilling		Lot:				
		Du :	2012-02-11	Г	Date de description : 2012-0	02-12
			20,2 02 10			
				UTM	Annie	Mégane
295.00°			Est	520 112	-455	-15
-50.00°					1 104	1 18
162.00 m						
			Elevation		<u> </u>	
Profondeur	Azimut	Plongée	Invalide		Description	
21.00	292.80°	-48.40°	Non			
51.00						
162.00	291.80°	-48.10°	Non			
	-50.00° 162.00 m Profondeur 21.00	Magma Drilling A. Jean 295.00° -50.00° 162.00 m Profondeur 21.00 292.80° 51.00 290.90°	Canton : Rang : Lot : Lot : Au : Du : Au :	Canton : Rang : Lot : A. Jean	Canton : Nagma Drilling	Canton : Niveau : Rang : Place de travail :

Cimenté : Non

Dimension de la carotte :

NQ

Entreposé: Oui

				Decembries			Analyse		
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00		14.80		мо					
				Mort terrain					
14.80		16.00		V3B					
				Basalte					
				Basalte massif, vert foncé.					
16.00		22.90		13G					
				Gabbro					
				Noir, massif, à grains plutôt fins.					
22.90		32.00		V2D; POR					
				Trachyte; Porphyrique					
				Texture trachytique moins bien développée mais on y observe beaucoup de bâtonnets de Fp qui sont					
				alignés à 20;AC. Il y a aussi beaucoup de Por. de Fp plutôt arrondis, 1-4 mm diam.					
32.00		47.00		V3B					
				Basalte					
				ld. aux précédents					
47.00		49.80		V2D					
				Trachyte 45°					
				Contact net à 45°AC. texture trachytique très bien développée.					
49.80		103.20		V3B					
				Basalte 45°					
				ld. aux précédents					
(69.50		76.00	Sil80					
				Silicification 80					
8	85.50	!	94.50	Sil80					
				Silicification 80					
103.20		113.10		T1	103.20	104.70	51135	1.50	0.160
				Tuf felsique 65°					
				Tuf felsique très fins, probablement à cendres. Gris moyen, massif. Il est injecté par des filons/amas de					
				qtz gris à noir, de façon très irrégulière, tantôt dispersé en amas et tantôt plutôt massif, sur des longueurs					
				dcm, paerticulièrement de 108.2 à 108.6 et de 110.8 à 111.4m.					
				On notera l'absence de graphite.					
1	104.70		105.15						
				Veines de quartz					
				qtz noir fortement fragmenté					
	104.70		105.15	Py03; Po03	104.70	105.15	51136	0.45	0.045
				Pyrite 3%; Pyrrhotine 3%					
								_ 4	

			Description			Analyse		
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)
105.1	15	105.80	Py30; Po05	105.15	105.80	51137	0.65	1.820
			Pyrite 30%; Pyrrhotine 5%					
105.8	30	111.40	Po04; Py04; Cptr	105.80	106.90	51138	1.10	0.887
			Pyrrhotine 4%; Pyrite 4%; Chalcopyrite tr					
			Distribution extrêmement variable, passant de presque nul à 15 % sur des longueurs cm à dcm					
106.6	80	106.80	\$10	106.90	108.00	51139	1.10	0.161
			Chert 70°	108.00	109.10	51140	1.10	0.013
				109.10	110.20	51141	1.10	0.011
109.5	50	110.40	\$10	110.20	111.40	51142	1.20	0.007
			Chert 75°					
111.4	10	112.20	Po05; Py01	111.40	112.20	51143	0.80	0.028
			Pyrrhotine 5%; Pyrite 1%	112.20	113.70	51144	1.50	0.031
13.10	138.50	V3B:	; POR					
			alte 75°; Porphyrique 75°					
			porphyres de Fp sont chloritisés vert sur les premiers 3 m.					
38.50	141.90	V2D						
		Trac	hyte 15°					
		Les	porphyres de fp sont plutôt prismatiques au lieu d'en bâtonnets.					
41.90	162.00	V3B;	POR					
		Basa	alte 15°; Porphyrique 15°					
		Basa	alte à Porphyres de Fp d'Obatogamau, de 5 à 25 mm de diam.					
		Fin d	du trou à 162.0m					
						l		

162.00 Fin du sondage

Nombre d'échantillons : 10 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 10.50

TomaGold Corporation Titre minier: 4293183 Section: Sondage: M-12-57 Niveau: Canton: Place de travail : Rang: Lot: Foré par : Magma drilling Décrit par : A. Jean 2012-02-14 Date de description : 2012-02-24 Du: 2012-02-23 Au: -Collet Mégane UTM Annie Azimut: 295.00° -479 -151 Est 520 164 Plongée : -50.00° 5 488 891 1 201 1 284 Nord Longueur: 150.00 m 0 Élévation 0 -Déviation Plongée Invalide Description Type Profondeur **Azimut**

.,,,,					
Flexit	18.00	292.50°	-51.20°	Non	
Flexit	51.00	289.60°	-51.70°	Non	
Flexit	102.00	291.70°	-51.80°	Non	
Flexit Flexit	150.00	290.70°	-52.20°	Non	
Flexit					

Entreposé: Oui Cimenté: Non Dimension de la carotte : NQ

Description

	Deparinties			Analyse		
	Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00 12.00	мо					
	Mort terrain					
12.00 77.90	V3B; COU					
	Basalte; Coussiné					
	Basalte vert grisâtre à vert foncé, massif. On y observe qq bordures de coussins ici et là. Recoupé par					
	de nombreuses veinules de CB, mm, dans tous les sens.					
77.90 79.25	M25; QZVN					
	Mylonite 25°; Veines de quartz					
	Zone bréchique intensément cisaillée à 25°AC, injectée par un filon de qtz noir de 40 cm de long à 20°AC					
	avec 15% de Py en amas le long des épontes et 5% de Po disséminée.					
77.90 7	9.25 Py15; Po02	77.90	79.25	51145	1.35	1.740
	Pyrite 15%; Pyrrhotine 2%					
	Présents surtout sur les premiers 40 cm					
79.25 116.40	V3B; COU					
	Basalte; Coussiné					
	ld. au précédent.					
116.40 117.50	M25					
	Mylonite 30°					
	Mylonite complètement recristalisée, fortement cisaillée, avec 10% Py et 2% Po					
116.40 1	17.50 Py10; Po02	116.40	117.50	51146	1.10	6.990
	Pyrite 10%; Pyrrhotine 2%					
117.50 129.10	V3B	127.60	129.10	51147	1.50	0.870
	Basalte					
	ld. aux précédents					
129.10 129.70	M25; QZVN					
	Mylonite; Veines de quartz					
	Zone de brèche discontinu avec contacts francs à 10° et 170°AC, frôlant pour ainsi dire la carotte avec					
	des injections de qtz blancs avec 7% Su.					
129.10 1	29.70 Py05; Po02	129.10	129.10	51149 (Std)	0.00	
	Pyrite 5%; Pyrrhotine 2%	129.10	130.50	51148	1.40	1.820
	le long de plans // au cisaillement, + ou - 10°AC.		100.00			
129.70 130.00	V3B					
	Basalte 10°					
	ld. aux précédents					
130.00 141.45	T1; M25; QZVN					
	Tuf felsique; Mylonite; Veines de quartz					
	Tuf felsique mylonitisé. Les p^lans de cisaillementvarient de 15 à 45°AC et plissottés jusqu'à 133.4 m pour					
	devenir constant à 50-55°AC par la suite. Certains horizons mm à cm ont un aspect cherteux. La pyrite					
	en fins grains y est regroupée en lits mm semi-massifs // à S2, soit 10-30 °AC et 50°AC à partir de					
	en inio granio y est regroupee en illo nini sentimiassilo il a 32, solt 10-30. Ac et 30 Ac a parti de					

	Description			Analyse		
	Description	De	A	Numéro	Longueur	Au_Plot (g/t)
18	33.4m.					
De	es fragments/amas de qtz gris foncé à noir sont de 138.4 à 139.0m et qquns jusqu'à la fin. Ces					
	agments de qtz noir ressemble à un chert noir !!!!!!					
130.00 141.45	Py10; Po05	130.50	132.00	51150	1.50	3.920
	Pyrite 10%; Pyπhotine 5%	132.00	133.50	51151	1.50	0.216
		133.50	135.00	51152	1.50	3.100
		135.00	136.50	51153	1.50	0.894
		136.50	138.00	51154	1.50	0.025
		138.00	139.50	51155	1.50	0.736
		139.50	140.50	51156	1.00	0.377
		140.50		51157	0.95	0.050
150.00						
	3B; POR	141.45	143.00	51158	1.55	0.002
	<mark>asalte; Porphyrique</mark> asite à porphyres de Fp typique de l'Obatogamau. Les por. sont chloritisés noir jusqu'à 148m pour					
	evenir plutôt séricitisés jusqu'à la fin. Le basalte devient intensément carbonaté à partir de 145.5m.					
Fi	n du trou à 150.0m.					
141.45 145.50	Chi70					
	Chloritisation 70					
	chlorite noire					
145.50 150.00	Car80; Ser30					
	Carbonatisation 80; Séricitisation 30					

Nombre d'échantillons : 13 Nombre d'échantillons QAQC : 1 Longueur totale échantillonnée : 17.85

	40.50		Titre minier :	4293183		Section:	
ondage : M	-12-58		Canton :			Niveau :	
			Rang:			Place de travail :	
Foré par :	Magma drilling		Lot:				
Décrit par :	A. Jean		Du :	2012-02-23		Date de description :	
			Au :	2012-02-25			
-Collet		_					
					UTM	Annie	Mégane
Azimut :	295.00°			Est	520 213	-507	-15
Plongée :	-50.00°			Nord	5 488 980	1 299	1 386
Longueur :	162.00 m			Élévation	0	0	
A taken							
Déviation —————						Daniel Warr	
Туре	Profondeur	Azimut 301.70°	Plongée -49.90°	Invalide Oui		Description	
Flexit Flexit	12.00 51.00	291.60°	-50.00°	Non			
Flexit	102.00	292.50°	-50.10°	Non			
Flexit	150.00	292.10°	-50.40°	Non			
		77.5					

Cimenté : Non

Dimension de la carotte :

NQ

Entreposé: Oui

		Description			Analyse		
. 0		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00	4.70	мо					
		Mort terrain					
1.70	24.10	V3B					
		Basalte					
		Gris foncé à gris verdâtre, massif, sans coussins. Recoupée par de nombreuses veinules mm de Cb,					
24.10	26.00	V2D					
		Trachyte 15°					
		Belle texture trachytique typique. Vert foncé, massif					
26.00	43.90	V3B					
		Basalte 20°					
		ld. au précédent					
13.90	48.90	T1					
		Tuf felsique 15°					
		Gris pâle, granulo fine. On observe bien les fragments plutôt sub arrondis, 0.2 à 0.5 mm.					
		Pourrait être un tuf à cendres ou un tuf soudé.					
8.90	131.90	V3B; POR					
		Basalte; Porphyrique					
		Alternance de passages aphanitiques avec des passages un peu plus grossiers. Passages graduels de					
		l'un à l'autre.					
31.90	133.50	T1	131.90	133.50	51159	1.60	0.007
		Tuf felsique 10°					
		Hyper felsique, aspect cherteux par endroits. Le litage est bien conservé à 20-25°AC. Aspect rhyolitique					
		par endroits.					
33.50	162.00	par endroits. V3B					
33.50	162.00						
33.50	162.00	V3B					
33.50	162.00	V3B Basalte					

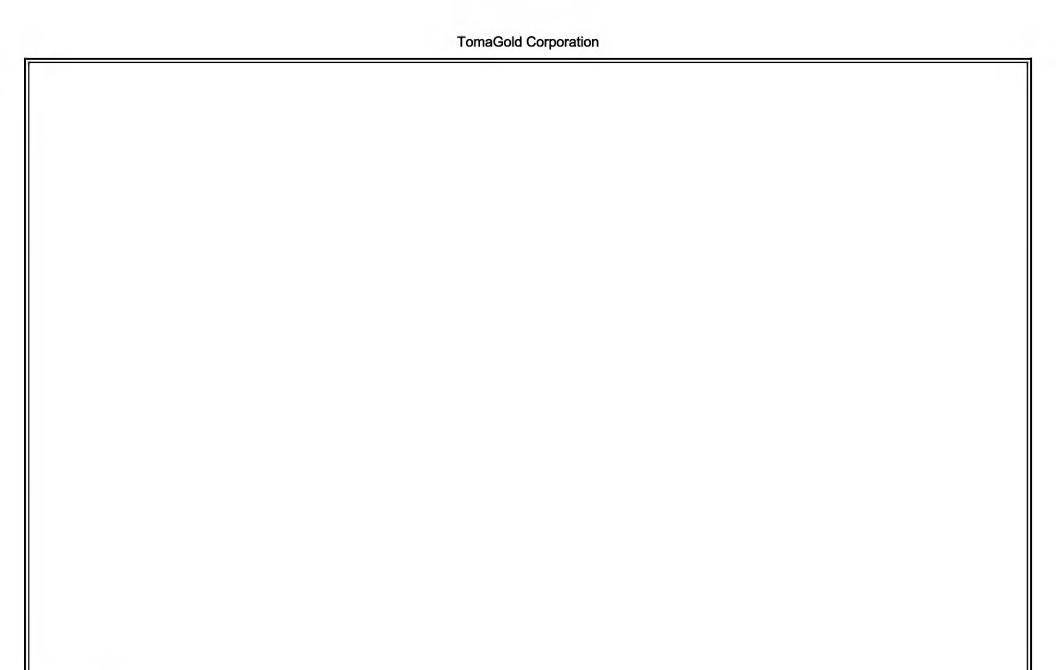
Nombre d'échantillons : 1 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 1.60

			TOTAL	Ook Oorporation	<u> </u>		
Sondage :	M-12-59		Titre minier :	4293183	Sec	ction :	1
g			Canton:			eau:	
			Rang :		Plac	ce de travail :	
Foré par :	Magma drilling		Lot:				
Décrit par :	A. Jean		Du :	2012-02-24	Date	e de description :	
			Au:	2012-03-11			
Collet —							
				_	UTM	Annie	Mégane
Azimut :	295.00°			Est	520 243	-560	-180
Plongée :	-50.00°			Nord	5 489 085	1 394	1 492
Longueur:	183.00 m			Élévation	0	0	0
Déviation							
Déviation ———		_					
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	15.00	298.20°	-50.10°	Non			
Flexit	51.00	298.40°	-50.70°	Non			
Flexit	183.00	300.40°	-51.10°	Non			
	a a utá						
ris majeur moteur	saute.					Λ	
						laki A = (01231	4762)
						1,0	
Dimension de la ca	rotte: NQ			Ciment	té: Non		Entreposé : Oui

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00		9.00		MT					
				Mort terrain					
9.00		17 1.30		V3B					
				Basalte					
				Gris foncé à noir, massif. Recoupé par de nombreux cheveux/filonnets de Cb mm dans tous les sens.					
				Faiblement magnétique.					
	19.20		33.50	Car30					
				Carbonatisation 30					
	50.10		52.20	V2D					
				Trachyte 10°					
				Dyke mafique à texture trachytique. Les Por de Fp prismatiques sont petits, de l'ordre de 1-2 mm.					
	71.50		78.00	Car20					
				Carbonatisation 20					
	104.30		105.90	V2D	170.00	171.30	51160	1.30	0.042
				Trachyte 70°					
				Dyke id. au précédent					
171.30		173.05		T1I					
				Tuf felsique à lapillis 15°					
				Unité volcanoclastite représentéee par des fragments anguleux de qtz noir, de gros fragments cm de					
				qtz-cb blancs. La matrice aphanitique est fortement chloritisé vert et qq fragments sont fortement					
				séricitisés. Le litage S0 est de 15°AC et est très bien préservé.					
	171.30		173.05	Po03; Pytr	171.30	172.20	51161	0.90	1.790
				Pyrrhotine 3%; Pyrite tr	172.20	173.05	51162	0.85	0.817
				Po en amas arrondis de 2-5mm inter fragments dans la matrice.					
173.05		174.80		T3 c	173.05	173.05	51164 (Bln)	0.00	
				Tuf mafique à cendres 10°	173.05	174.00	51163	0.95	0.019
				Tuf mafique, forterment chloriteux montrant fines lamines à 10°AC.	174.00	174.80	51165	0.80	0.121
174.80		175.20		T1I					
				Tuf felsique à lapillis 10°					
				ld. à celui de 171.3 à 173.05, mais les fragments de qtz noir sont plus nombreux. Le litage S0 bien					
				préservé est à 10°AC.					
	174.80		175.20	Py06; Po03	174.80	175.20	51166	0.40	0.402
				Pyrite 6%; Pyrrhotine 3%					
-				Pyrite en grains individuels mais regroupés en amas					
175.20		182.00		V3B	175.20	176.80	51167	1.60	0.014
				Basalte	176.80	176.80	51169 (Std)	0.00	
				Vert foncé, aphanitique, fortement chloritisé.	176.80	178.50	51168	1.70	<0.002

		Description			Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
			178.50	180.00	51170	1.50	0.004
			180.00	181.00	51171	1.00	0.002
			181.00	182.00	51172	1.00	0.025
32.00	183.00	T1	182.00	183.00	51173	1.00	0.016
		Tuf felsique 5°					
		Fines lamelles mm à 5°AC, de composition felsiques, modérément à fortement séricitisé.					
		Fin du trou à 183.0m					

Nombre d'échantillons QAQC : 2 Longueur totale échantillonnée : 13.00


Foré par : Magma drilling Décrit par : A. Jean Du : 2012-03-19 Date de description Au : 2012-03-20 UTM Annie Azimut : 315.00° Plongée : -50.00° Longueur : 81.00 m Déviation Déviation	Niveau :	Canton : Niveau : Rang : Place de travail :	
Canton : Niveau : Rang : Place de travail :	Rang : Place de travail :	Foré par : Magma drilling Lot : Place de travail :	
Foré par : Magma drilling	Date de description : 2012-03-20 Date de descri	Foré par : Magma drilling	
Description Du : 2012-03-19 Date de description	Du : 2012-03-19 Date de description : 2012-03-20 UTM Annie Mégane Est 520 672 -614 -62 Nord 5 489 591 2 056 2 145 Élévation 0 0 0 Plongée Invalide Description 0° Non Non	Description Description	
Collet Au: 2012-03-20 UTM Annie Azimut: 315.00° Plongée: -50.00° Longueur: 81.00 m Est 520 672 Nord 5 489 591 Elévation Type Profondeur Azimut Plongée Invalide Description Flexit 51.00 317.80° -50.90° Non Flexit 51.00 318.40° -50.90° Non	UTM Annie Mégane Est 520 672 -614 -62 Nord 5 489 591 2 056 2 145 Élévation 0 0 0 Plongée Invalide Description O' Non Non	Au : 2012-03-20 Collet	
Collet	UTM Annie Mégane	Collet	
Azimut : 315.00° Plongée : -50.00° Longueur : 81.00 m Type Profondeur Azimut Plongée Invalide Description Flexit 51.00 317.80° -50.90° Non Slexit 51.00 318.40° -50.90° Non	Est	Azimut : 315.00°	
Azimut : 315.00° Plongée : -50.00° Longueur : 81.00 m Type Profondeur Azimut Plongée Invalide Description Flexit 15.00 317.80° -50.90° Non Flexit 51.00 318.40° -50.90° Non	Est	Azimut : 315.00° Plongée : -50.00° Longueur : 81.00 m Type Profondeur Azimut Plongée Invalide Description Flexit 51.00 317.80° -50.90° Non Slexit 51.00 318.40° -50.90° Non	
Plongée : -50.00° Longueur : 81.00 m Nord 5 489 591 Est 520 672 Nord 5 489 591 Elévation 0 Est 520 672 Nord 5 489 591 Elévation 0 Est 520 672 Nord 5 489 591 Elévation 0 Est 520 672 Nord 5 489 591 Elévation 0 Est 520 672 Nord 5 489 591 Elévation 0 Est 520 672 Nord 5 489 591 Elévation 0 Est 520 672 Nord 5 489 591 Elévation 0 Est 520 672 Nord 5 489 591 Elévation 0 Est 520 672 Nord 5 489 591 Elévation 0 Elévation 0	Nord 5 489 591 2 056 2 145 Elévation	Plongée : -50.00° Longueur : 81.00 m Type Profondeur Azimut Plongée Invalide Description Plongée : -50.00° Nord 5 489 591 2 056	Vlégane
Longueur : 81.00 m Solution	Plongée Invalide Description Non Non Non	Longueur : 81.00 m	-6
Elévation	Plongée Invalide Description Non Non Non	Elévation	2 14
Type Profondeur Azimut Plongée Invalide Description lexit 15.00 317.80° -50.90° Non lexit 51.00 318.40° -50.90° Non	O° Non Non	Type Profondeur Azimut Plongée Invalide Description lexit 15.00 317.80° -50.90° Non lexit 51.00 318.40° -50.90° Non	
Type Profondeur Azimut Plongée Invalide Description Elexit 15.00 317.80° -50.90° Non Elexit 51.00 318.40° -50.90° Non	O° Non Non	Type Profondeur Azimut Plongée Invalide Description Elexit 15.00 317.80° -50.90° Non Elexit 51.00 318.40° -50.90° Non	
Flexit 15.00 317.80° -50.90° Non Flexit 51.00 318.40° -50.90° Non	O° Non Non	Flexit 15.00 317.80° -50.90° Non Flexit 51.00 318.40° -50.90° Non	
lexit 51.00 318.40° -50.90° Non)° Non	lexit 51.00 318.40° -50.90° Non	
		Description	
Description		Polis As in	(01034762)
Description	Polis A_ ir (01934762)	4.08	
Description	laki A iz (01234762)		
Description	liki of in (01924762)		
Description	liki A iz (01234762)	Dimension de la carotte : NQ Cimenté : Non Entre	posé : Oui

				Decembrian			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00		9.20		МТ					
				Mort terrain					
9.20		12.50		13A					
				Gabbro					
				Gris moyen à foncé, grenue, massif					
12.50		26.50		V3B					
				Basalte 30°					
				Gris moyen, massif.					
26.50		34.40		13A					
				Gabbro 75°					
				ld. au précédent mais légèrement moins grenu					
34.40		37.00		V2D					
				Trachyte 50°					
				Gris moyen, massif. Env. 50% de phenoXtaux de Fp prismatiques jusqu'à 5 mm de diam.					
37.00		40.90		I3A					
				Gabbro 55°					
				id au précédent					
40.90		64.70		V3B					
				Basalte 25°					
	10.50		57.00	Gris moyen à gris très pâle causé par l'altération en séricite et CB. QQ bordures de coussins visibles.					
	48.50		57.00	Car10; Ser10					
04.70		74.70		Carbonatisation 10; Séricitisation (indéterminée) 10	05.00	00.50	54000	4.50	2.005
64.70		74.70		T1 I; M25	65.00	66.50	51239	1.50	0.995
				Tuf felsique à lapillis 40°; Mylonite Tuf felsique à lapillis fortement cisailée, donnant l'aspect mylonitique. Fragments felsiques fortemement	66.50	68.00	51240	1.50	1.190
				étirés à 30-40°AC					
	68.00		74.10	QZVN					
	00.00		74.10	Veines de qtz 10°					
				Veine de qtz noire, sub // AC, rentre dans la carotte, en ressort à 72.0m pour réentrer dans la					
				carotte à 73.3m pour en ressortir à 74.1m. Le tuf encaissant est complètement silicifié.					
	68.00		74.10	Autr; Py02; Po01; Cptr	68.00	69.00	51241	1.00	0.607
				Or natif tr; Pyrite 2%; Pyrrhotine 1%; Chalcopyrite tr	69.00	69.75	51242	0.75	205.000
				Beaucoup de points d'or dans le qtz noir, plus de 60 points visibles.					200.000
					69.75	69.75	51244 (Bln)	0.00	
					69.75	70.50	51243	0.75	184.000
					70.50	71.25	51245	0.75	243.000
					71.25	72.00	51246	0.75	105.000
					72.00	72.75	51247	0.75	101.000
					72.75	72.75	51249 (Std)	0.00	
					72		3.210 (0.0)	1	

	Description			Analyse		
	Description	De	A	Numéro	Longueur	Au_Plot
						(g/t)
		72.75		51248	0.75	381.000
		73.50		51250	0.60	700.000
		74.10	74.70	51251	0.60	59.000
74.70	81.00 V3B	74.70	76.35	51252	1.65	0.052
	Basalte 40°	76.35	78.00	51253	1.65	0.106
	Fin du trou à 81.0m					
81.00	Fin du sondage					
	Nombre d'échantillons : 13 Nombre d'échantillons QAQC : 2					
	Longueur totale échantillonnée : 13.00					
	Europaten totale contaminating . 10:00		_			

Sondage :	M-12-61		Titre minier :	4303762		Section:	
Condage .	W-12-01		Canton:			Niveau:	
			Rang :			Place de travail :	
Foré par :	Magma drilling		Lot:				
Décrit par :	A. Jean		Du :			Date de description :	
			Au:				
Collet							
					UTM	Annie	Mégane
Azimut :	315.00°			Est	520 765	-634	-41
Plongée :	-50.00°			- 41			
Longueur	85.50 m			Nord	5 489 711	2 206	2 295
				Élévation	0	0	0
Déviation ——							
	Profession days	A=t4	Discrete	I P.4		D d. etc	
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	18.00	316.90°	-49.20°	Non			
Flexit	51.00	316.80°	-49.30°	Non			
Description						3 1	
Tiges coincées à 84.0r	n. Tiges ont cassées à + ou - pres o	du collet. Perdues 26 tiges de l	NQ, crowbar, shell, bit.			liki A og (01234162)	
						6 (c) 23	
Dimension de la ca	rotte: NQ			Cimen	té : Non		Entreposé : Oui

			Description			Analyse		
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00	13.00		MT					
			Mort terrain					
13.00	29.90		13A					
			Gabbro					
			Gris moyen à					
			foncé, massif, modérément grenue					
29.90	34.60		V3B					
			Basalte 35°					
			Vert moyen à gris verdâtre, massif, avec qq veinul;es de Cb mm à 35°AC					
34.60	38.60		V2D					
			Trachyte 40°					
			Contacts nets à 40°AC. Po de Fp prismatiques de 1-2 mm flottant dans une matrice mafique aphanitique					
38.60	61.20		13A					
			Gabbro 55°					
			ld. au précédent mais plus grenu.					
61.20	77.90		V3B; COU	76.40	77.90	51232	1.50	0.007
			Basalte; Coussiné(e)					
			Vertv foncé à gris foncé, massif avec qq bordures de coussins. Amygdules de 3-4 mm visibles à					
			plusieurs endroits.					
77.90	85.50		T1 I; M25	77.90	78.25	51233	0.35	0.951
			Tuf felsique à lapillis 30°; Mylonite					
			Tuf à lapillis felsiques. Les lapillis sont fortement étirés donnant une texture mylonitique.					
			Fin du trou à 85.5m tiges coincées. Perdu 26 tiges + shell+crowbar+bit					
77	.90	78.25	QZVN					
			Veines de qtz 30°					
			Une veine de qtz noir avec 5% de Py et 2% de Po.					
77	.90	78.25	Py05; Po03; Cptr					
			Pyrite 5%; Pyrrhotine 3%; Chalcopyrite tr					
			Les Su sont dans un remplissage de freactures à 5°AC.					
78	3.25	82.90	QZVN					
			Veines de qtz 30°					
			10% de filons de qtz, env. 1-2 cm ép // à S2 avec des Su env. 1-2% le long des contacts					
78	3.25	82.90	Pytr; Po01	78.25	79.50	51234	1.25	0.962
			Pyrite tr; Pyrrhotine 1%					
79	0.00	81.00	FAI+	79.50	81.00	51235	1.50	0.194
			Faille majeure	81.00	82.50	51236	1.50	0.142
			Perdu les tiges !!!!!!	82.50	84.00	51237	1.50	0.200
				84.00	85.50	51238	1.50	0.156

85.50 Fin du sondage

Nombre d'échantillons : 7

Nombre d'échantillons QAQC : 0

Longueur totale échantillonnée : 9.10

Sondage :	M-12-62		Titre minier :	4303762		Section:	
oridage .	IVI- 12-02		Canton :			Niveau :	
			Rang :			Place de travail :	
Foré par :	Magma drilling		Lot:				
Décrit par :	A. Jean		Du :			Date de description :	
			Au :				
Collet —							
					UTM	Annie	Mégane
Azimut :	315.00°			Est	520 815	-658	-40
Plongée :	-50.00°						
Longueur:	78.00 m			Nord	5 489 796	2 302	2 394
				Élévation	0	0	0
Déviation ———			_				
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
-lexit	18.00	316.10°	-50.20°	Non			
Flexit	51.00	318.30°	-50.30°	Non			
Flexit	78.00	316.70°	-50.40°	Non			
						ρ_{\star}	
						Kuhi A	(01034762)

				Description			Analyse		
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00		12.00		MT					
				Mort terrain					
12.00		23.10		V2J	15.50	17.00	51219	1.50	< 0.002
				Andésite					
				Gris verdâtre, massif, aphanitique.Les bordures de coussins sont à 10°AC.					
	17.00		19.30	QZVN					
				Veines de qtz					
				Andésite envahie par des veines de qtz fumé, de forme irr., parfois en amas. Les injections sont à					
				angle très faible, de l'ordre de 10°AC.					
	17.00		19.30	Pytr; Cptr	17.00	18.15	51220	1.15	0.003
				Pyrite tr; Chalcopyrite tr	18.15	19.30	51221	1.15	<0.002
				QQ petits amas de Su disséminés dans le qtz	19.30	20.80	51222	1.50	<0.002
23.10		36.40		13A					
				Gabbro 35°					
				Massif, grenue, gris moyen à foncé. Contact sup. net à 35°AC, contact inf. graduel					
36.40		42.60		V3B					
				Basaite					
				Massif, gris foncé, sans bordure évidente de coussins.					
42.60		61.35		13A					
				Gabbro 10°					
				ld. au précédent.					
61.35		70.90		T1D I; M25	61.40	62.90	51223	1.50	0.003
				Tuf dacitique à lapillis 40°; Mylonite					
				Tuf dacitique fortement cisaillé à 25°AC, aspect mylonitisé dont les fragments sont fortement étirés.					
	62.90		69.00	QZVN					
				Veines de qtz 40°					
				Plusieurs petitd filons de qtz noir, 0.5 à 1 cm d'ép à 40-45°AC, env. une aux 20-40 cm, parfois					
				complètement déchiquetées formant des amas irr.					
	62.90		69.00	Py1-2	62.90	64.50	51224	1.60	0.157
				Pyrite 1-2	64.50	66.00	51225	1.50	0.187
				Fine Py disséminée, souvent disséminée dans le tuf et parfois concentrée aux contacts de filons	66.00	67.50	51226	1.50	2.170
				de qtz.	67.50	69.00	51227	1.50	1.750
	69.00		69.80	QZVN					
				Veines de qtz 10°					
				Une veine de qtz noire, contact sup 10°AC, inf. 35°AC,					
	69.00		69.80	Py1-2	69.00	69.00	51229 (Std)	0.00	
					69.00	69.80	51228	0.80	0.418
				AUx épontes et disséminée dans le filon					

V2J Andésite Id. à celle de 12 à 23.1m. Les premiers 2 mètres sont cisaillés. V2D Trachyte 55° Fin du trou à 78.0m	69.80 70.90	70.90 72.40	Numéro 51230 51231	1.10 1.50	Au_Plot (g/t) 0.099 <0.002
Andésite Id. à celle de 12 à 23.1m. Les premiers 2 mètres sont cisaillés. V2D Trachyte 55°					0.099
Andésite Id. à celle de 12 à 23.1m. Les premiers 2 mètres sont cisaillés. V2D Trachyte 55°	70.90	72.40	51231	1.50	<0.002
Andésite Id. à celle de 12 à 23.1m. Les premiers 2 mètres sont cisaillés. V2D Trachyte 55°					
V2D Trachyte 55°					
Trachyte 55°					
Fin du trou à 78.0m					
			1		

Nombre d'échantillons : 12 Nombre d'échantillons QAQC : 1 Longueur totale échantillonnée : 16.30

				acola corporation			
Sondage :	M-12-63		Titre minier : Canton :	4303762		ection :	
			Rang :			ace de travail :	
Foré par :	Magma drilling		Lot :				
Décrit par :	A. Jean		Du :	2012-03-15	De	ate de description : 2012-03	116
Econi par .	7 000		Au :	2012-03-16	Dai	te de description . 2012-00	-10
Collet —				2012-00-10			
0001					UTM	Annie	Mégane
Azimut :	315.00°			Est	520 874	-675	-31
Plongée :	-50.00°			Nord	5 489 879	2 402	2 495
Longueur:	78.00 m						
				Élévation	0	0	0
Déviation ———							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
lexit	15.00	309.40°	-51.70°	Non			
Flexit	51.00	310.90°	-51.50°	Non			
Flexit	78.00	311.10°	-51.20°	Non			
Description							
						Dank	
						like As is 10	1934162)
Dimension de la card	rotte: NQ			Ciment	té : Non		Entreposé : Oui

				Description			Analyse		
7.A				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00		8.90		MT					
				Mort terrain					
8.90		47.60		V2J					
				Andésite					
				Gris moyen à verdâtre, massif, aphanitique recoupée par de nombreuses veinules / cheveux de Cb d'ép.					
				mm.					
	46.00		49.00	Car40	46.10	46.10	51209 (Std)	0.00	
				Carbonatisation 40	46.10	47.60	51208	1.50	0.002
47.60		55.10		T2J I; M25	47.60	48.80	51210	1.20	0.008
				Tuf andésitique à lapillis 55°; Mylonite	48.80	49.90	51211	1.10	0.003
				Tuf andésitique fortement cisaillé et chloritisé et faiblement séricitisé. La roche prend l'aspect d'une	40.00	49.90	121211	1.10	0.003
				mylonite par endroits. Les fragments sont fortement étirés à 55°AC alors que la chloritisation assombrit le					
				tout.					
	47.60		49.90	QZVN					
				Veines de qtz 55°					
				4 petits filons/amas irr. de qtz noir					
	49.00		55.10	Chn40					
				Chloritisation (noire) 40					
	49.90		50.10	QZVN					
				Veines de qtz 45°					
				Une veine de qtz fumé/noire avec tr de Py et Po					
	49.90		55.10	Pytr; Potr	49.90	50.10	51212	0.20	0.801
				Pyrite tr; Pyrrhotine tr					
	50.10		55.10	QZVN	50.10	51.00	51213	0.90	0.308
				Veines de qtz	51.00	52.50	51214	1.50	0.265
				QQ mini veinules et amas irr. de qtz noir avec de traces de Py distribuées très irrégulièrement.	52.50	54.00	51215	1.50	0.013
					54.00		51216	1.10	0.023
55.10		60.95		V2J	55.10	56.70	51217	1.60	0.036
				Andésite 50° Vost movem à vost eleir, massive ques de nombreuses veixules ma de CR à angle fast					
	E6 00		EG 70	Vert moyen à vert clair, massive avec de nombreuses veinules mm de CB à angle fort					
	56.20		56.70	M25; V2J; QZVN					
				Mylonite 65°; Andésite; Veines de qtz					
				Andésite fortement cisaillée d'aspect mylonitique avec des fragments et amas irr. de qtz noir avec des tr de Py fine isolée.					
	56.20		56.70	Pytr	56.70	58.20	51218	1.50	0.002
	30.20		50.70	Pytrite tr	55.76	50.20	V1210	1.50	0.002
60.95		73.00		13B					
50.55		73.00		Diabase 65°					
				Diabase OV					

		Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
		Gris foncé, très massif, montranty la texture ophitique typique du diabase. Les plagio sont modérément					
70.00	70.00	saussuritisés.					
73.00	78.00	V2J Andésite 35°					
		ld. a celle de 55.1 à 60.95m.					
		Fin du trou à 78.0m					
78.00	Fin du sonda	ige hantillons : 10					
		hantillons QAQC:1					
		ale échantillonnée : 12.10					

Sondage: M-12-63

ondage : M	И-12-64						
			Canton :		N	liveau:	
			Rang :		P	Place de travail :	
Foré par :	Magma drilling		Lot:				
Décrit par :	A. Jean		Du :	2012-03-14	D	Date de description : 2012-0	03-15
			Au :	2012-03-15			
Collet —							
					UTM	Annie	Mégane
Azimut :	315.00°			Est	521 017	-733	-19
Plongée :	-50.00°			Nord	5 490 103	2 662	2 760
Longueur:	105.00 m						
				Élévation	0	0	C
Déviation ————							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	12.00	319.50°	-48.90°	Non			
Flexit	51.00	319.80°	-49.60°	Non			
Flexit	99.00	323.20°	-49.00°	Non			
Description							
Dosonpac						1.	
						laki Aiz	(010 34762)
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	tte: NQ				enté : Non		Entreposé : Oui

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00		6.60		MT					
				Mort terrain					
6.60		52.80		V3B; COU	51.30	52.80	51192	1.50	0.003
				Basalte; Coussiné(e)					
				Vert foncé à presque noir, massif. On y observe plusieurs bordures de coussins.					
52.80		65.50		T1 c	52.80	54.00	51193	1.20	0.002
				Tuf felsique à cendres 65°					
				Gris moyen à légèrement brunâtre, massif. On y observe très bien les petits grains de composition plutôt					
				felsique, arrondis, possiblement soudés. La matrice aphanitique est d'un gris moyen, de composition					
				intermédiaire.					
	53.00		55.00	Seb25					
				Séricitisation (brune) 25					
	53.00		55.00	Br	54.00	55.50	51194	1.50	0.004
				Bréchique 70°	55.50	57.00	51195	1.50	0.017
	56.10		56.15	Pytr; Cp01; Po01					
				Pyrite tr; Chalcopyrite 1%; Pyrrhotine 1%					
				en amas irr. remplissant fractures inter fragments					
	56.40		57.00	Po03	57.00	58.50	51196	1.50	0.003
				Pyrrhotine 3%	58.50	60.00	51197	1.50	0.002
				En filonnets mm					
	59.00		62.00	Seb20					
				Séricitisation (brune) 20					
	59.20		65.50	CIS	60.00	61.50	51198	1.50	0.003
				Cisaillé(e) 65°					
	60.10		60.12	Cp00.5; Pytr; Po02					
				Chalcopyrite 0.5%; Pyrite tr; Pyrrhotine 2%					
	60.90		61.00	QZVN	61.50	63.00	51199	1.50	0.057
				Veines de qtz	63.00	63.90	51200	0.90	0.151
				Qtz noir en amas irr. cataclasé.					
	63.90		64.10	QZVN	63.90	65.50	51201	1.60	0.025
				Veines de qtz					
				En amas irr. cataclasé					
55.50		105.00		V3B; COU	65.50	67.00	51202	1.50	0.006
				Basalte 65°; Coussiné(e) 65°					
				ld. au précédent. On y observe qq bordures de coussins.					
	103.00		105.00	Car30					
				Carbonatisation 30					

Nombre d'échantillons : 11 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 15.70	
Longueur totale échantillonnée : 15.70	

Projet: MONSTER Sondage: M-12-64 3 / 3

			101110	Gold Corporation			
ondage :	M-12-65		Titre minier : Canton : Rang :	4303751		Section : Niveau : Place de travail :	
Foré par :	Magma drilling		Lot:				
Décrit par :	A. Jean		Du :	2012-03-13		Date de description :	
22000			Au :	2012-03-14			
-Collet							
Azimut :	315.00°				UTM	Annie	Mégane
Plongée :	-50.00°			Est	521 306	-861	-4
Longueur :	108.00 m			Nord	5 490 574	3 199	3 313
				Élévation	0	0	0
Déviation ———							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	12.00	317.80°	-49.80°	Non			
Flexit Flexit	51.00 102.00	319.20° 319.00°	-49.70° -50.00°	Non Non			
Description							

Cimenté : Non

Dimension de la carotte :

NQ

Entreposé : Oui

				Decarintion			Analyse		
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00		4.50		MT					
				Mort terrain					
4.50		28.90		TX2; T2J c	12.40	13.90	51187	1.50	0.002
				Tuf à Xtaux intermédaire; Tuf andésitique à cendres					
				Séquence volcaniclastique représentée par des tufs à Xtaux de 1-2m de longueur en alternance avec					
				des tufs à cendres à grains très fins. La composition est plutôt intermédiaire à légèrement mafique. Les					
				passages de l'un à l'autre sont nombreux alors que les contacts sont généralement assez nets avec des					
				AC de45-60°.					
	13.90		14.10	QZVN					
				Veines de qtz 75°					
				Qtz fumé aux contacts nets avec des tr de Py					
	13.90		14.10	Pytr	13.90	13.90	51189 (Std)	0.00	
				Pyrite tr	13.90	15.50	51188	1.60	<0.002
	14.90		14.95	QZVN					
				Veines de qtz 80°					
				ld.					
	14.90		14.95	Pytr					
				Pyrite tr					
	15.50		16.05	QZVN					
				Veines de qtz 70°					
				ld.					
	15.50		16.05	Pytr	15.50	16.05	51190	0.55	0.002
				Pyrite tr	16.05	17.55	51191	1.50	0.004
28.90		57.70		V2J					
				Andésite 70°					
				Massive, gris moyen à verdâtre. On y observe très bien les bordures de coussins. Q passages dcm					
				plus grenus.					
	32.70		39.90	CIS					
				Cisaillé(e) 65°					
57.70		58.40		TX2					
				Tuf à Xtaux intermédaire 25°					
				Les xtaux de Fp sont prismatiques, 1-2mm diam.					
58.40		96.00		V3B					
				Basalte 80°					
				Vert foncé à presque noir, massif. On y observe plusieurs bordures de coussins, ainsi que des					
				passages dcm de brèches de coulée, avec qq rares amas de Po intersticiels.					
	64.50		65.00	CIS	82.60	82.60	51204 (Bln)	0.00	
				Cisalilé(e) 25°	82.60	84.10	51203	1.50	<0.002

			Decembrian			Analyse		
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)
84.1	10	86.30	QZVN					
			Veines de qtz					
			5 Veinules de qtz noir de 5mm à 2 cm, se présente en 2 systèmes, soit // AC et en amas irr. à					
			70°AC avec des tr. de Py et Po					
84.1	10	86.30	CIS					
			Cisaillé(e) 60°					
84.1	10	86.30	Pytr; Potr	84.10	85.20	51205	1.10	0.396
			Pyrite tr; Pyrrhotine tr	85.20	86.30	51206	1.10	1.340
				86.30	87.80	51207	1.50	0.021
89.5	50	90.30	CIS					
00.0	30	50.50	Cisaillé(e) 30°					
6.00	103.2	20	TX2; T2J c					
			Tuf à Xtaux intermédaire 80°; Tuf andésitique à cendres					
			ld. à celui de 4.5 à 28.9 avec plusieurs alternances de tufs à cendres et de tufs à Xtaux.					
03.20	108.0		V3B					
			Basalte 70°					
			Massif, vert foncé à noir.					
			Fin du trou à 108.0m					

108.00 Fin du sondage

Nombre d'échantillons : 8 Nombre d'échantillons QAQC : 2 Longueur totale échantillonnée : 10.35

3/3

			TOTAL	Cold Corporation			
Sondage :	M-12-66		Titre minier :	4303745		ection :	
3			Canton :			iveau :	
			Rang :		PI	lace de travail :	
Foré par :	Magma drilling		Lot:				
Décrit par :	A. Jean		Du :	2012-03-11	Da	ate de description : 2012-03-	-12
			Au:				
Collet —							
					UTM	Annie	Mégane
Azimut :	315.00°			Est	521 370	-871	12
Plongée :	-50.00°			Nord	5 490 652	3 299	3 412
Longueur:	195.00 m			Élévation	0	0	0
Déviation ———							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	9.00	321.60°	-52.20°	Non			
Flexit	51.00	317.50°	-52.30°	Non			
Flexit	102.00	318.70°	-52.40°	Non			
Flexit	195.00	321.60°	-52.20°	Non			
						1.	
						laki A iz (010 34762)
						O	
Dimension de la car	rotte: NQ			Ciment	á · Non		Entreposé : Oui
miension de la Cal	oue. MQ			Cirileit	C. INOH		Entrepose. Our

				Description			Analyse			
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)	
0.00		3.20		MT						
				Mort terrain						
3.20		32.80		TX2; T1D c						
				Tuf à Xtaux intermédaire; Tuf dacitique à cendres						
				Séquence de rx volcaniclastiques représentée par des passages de longueur métrique de tufs à Xtaux						
				de composition intermédiaire en alternance avec des passages beaucoup plus fin et plus homogène, des						
				cendres et possiblement soudés.						
32.80		40.55		V2J						
				Andésite 65°						
				De couleur vert moyen à gris moyen, massif, avec de nombreuses veinules / cheveux de CB. On peut y						
				observer qq bordures de coussins.						
40.55		41.20		TX2						
				Tuf à Xtaux intermédaire 75°						
				ld. aux passages inclus de 3.2 à 32.8m						
41.20		91.30		V2J						
				Andésite 75°						
				Andésite id. à celle de 32.8 à 40.55. Gris moyen à vert pâle, massive. On y observe aussi qq bordures						
				de coussins.						
	55.70		69.00	Car60; Ser15	59.40	60.90	51174	1.50	0.005	
				Carbonatisation 60; Séricitisation (indéterminée) 15						
	60.90		65.15	QZVN						
				Veines de qtz 0°						
				Inj. de veines de qtz fumé sub-// AC, 5 mm à 1 cm ép, avec qq grains de Py en trace dans le qtz						
				mais surtout près des épontes. Les veines sont fortement boudinées et plissottées.						
	60.90		65.15	Pytr	60.90	62.30	51175	1.40	0.009	
				Pyrite tr	62.30	63.70	51176	1.40	0.030	
					63.70	65.15	51177	1.45	0.005	
					65.15	66.65	51178	1.50	0.005	
					80.00	81.40	51179	1.40	<0.002	
	81.40		87.80	QZVN						
				Veines de qtz 0°						
				Inj. de veines de qtz fumé, fortement cisaillées, souvent en gros fragments anguleux, plissottées et						
				étirées dans le cisaillement, pratiquement dans l'axe de la carotte.						
				Zone Eratix ????						
	81.40		87.80	Chv25; Ser05						
				Chloritisation (verte) 25; Séricitisation (indéterminée) 5						
	81.40		87.80	CIS+; MYL						
				Clsaillement fort 10°; Mylonitique						

		Description				Analyse		
		Description	ı	De	A	Numéro	Longueur	Au_Plot (g/t)
81.4	0 87.80) Pytr	81.40		82.70	51180	1.30	0.012
		Pyrite tr	82.70		84.00	51181	1.30	0.004
			84.00		85.30	51182	1.30	0.002
			85.30		86.60	51183	1.30	0.004
			86.60		87.80	51184	1.20	0.005
			87.80		89.30	51185	1.50	0.016
91.30	94.45	T1D c						
		Tuf dacitique à cendres						
		Gris moyen, massif. On y observe très birn les petits grains très fins de composition intermédiaire.						
		On peut y observer un granoclassement à 94.4m, le sommet étant vers le collet du trou						
94.45	95.45	TX2						
		Tuf à Xtaux intermédaire 75°						
		ld. à celui de 40.55 à 41.2m						
95.45	139.90	V3B; COU						
		Basalte 65°; Coussiné(e) 65°						
		Veret foncé, massif, montrant plusieurs bordures de coussins.						
139.90	143.20	13A						
		Gabbro 50°						
		Gris foncé, massif, granulo fine, légèrement magneitique.						
143.20	153.10	V3B; COU						
		Basalte 60°; Coussiné(e) 60°						
		ld. au précédent						
153.10	155.00	TX2						
		Tuf à Xtaux intermédaire 60°						
		id. aux précédents						
155.00	157.20	V3B						
		Basalte 65°						
		ld. aux précédents						
157.20	157.90	TX2						
		Tuf à Xtaux intermédaire 60°						
		id.						
157.90	163.00	V3A						
		Basalte andésitique 60°						
		gris moyen, massif, aphanitique						
163.00	163.25	V3B; BRC						
		Basalte 40°; Brèche de coulée 40°						
		Brèche de sommet de coulée. On y observe petyiys coussins dcm						
163.	00 163.2	25 Po03	163.00)	163.30	51186	0.30	0.023

		Description			Analyse			
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)	
		Pyrrhotine 3%						
		En amas intersticiel entre les fragmenbts bréchiques						
163.25	165.30	TX2						
		Tuf à Xtaux intermédaire 70°						
		ld.						
165.30	175.50	V2J; COU						
		Andésite 70°; Coussiné(e) 70°						
		Massive, gris verdâtre, coussinée.						
75.50	177.20	TX2						
		Tuf à Xtaux intermédaire 70°						
		id.						
177.20	195.00	V3B; COU						
		Basalte 70°; Coussiné(e) 70°						
		ld.						
		Fin du trou à 195.0m						
177	80 179	9.00 V3B; BRC						
		Basaite 10°; Brèche de coulée 10°						

Sondage: M-12-66

195.00 Fin du sondage

Nombre d'échantillons : 13 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 16.85

ondage : M Foré par :	I-12-67		Titre minier : Canton : Rang :	5253868		Section : Niveau : Place de travail :	
Foré par :	F M44 CM44					Flace de travair.	
Décrit par :	Forage MAGMA David Duguay		Lot : Du : Au :	2012-06-19 2012-06-19		Date de description : 20	12-06-20
Azimut : Plongée : Longueur :	290.00° -50.00° 63.00 m			Est Nord Élévation	UTM 519 383 5 487 160 0	Annie 193 -575 0	Mégane 3 -60
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	27.00 63.00	283.90° 284.40°	-47.50° -47.40°	Non Non	MAG 56990 MAG 56560 -		

Cimenté : Non

Dimension de la carotte :

NQ

Entreposé : Oui

			Description			Analyse		
		<u> </u>	Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00	21.05		MT					
			Mort terrain					
21.05	21.70		TX1					
			Tuf à Xtaux felsique					
			Tuf ayant des cristaux (5% de cristaux felsique) d'environ 1 à 5 mm. La couleur générale est gris foncé.					
			Dans les 15 premier cm de l'interval, il est retrouvé une roche granitique? avec 35% de minéraux mafic.					
			Contact inférieur : Il est graduelle sur 5 cm. Il est marqué par le changement de lithologie.					
21.70	34.25		V3B					
			Basalte					
			Basalt très fin de couleur vert foncé. La zone est parcouru par des veinules de calcite à 60 degrés. Dans					
			l'interval, il y a un tuf à cendre? (de 25 à 25.65) et une section déformé (mylonite) avec quelques yeux de					
			quartz (de 30 à 30.25).					
			le basalt montre des traces de sulfure (Py-Po)					
			Le contact inférieur est marqué par un contact avec un tuf à cristaux felsic					
21.9	95	45.25	Car20					
			Carbonatisation 20					
			Zone réagissant faiblement à l'acide.					
25.0	00	25.65	T2J c					
			Tuf andésitique à cendres					
			Tuf très fin grisatres moyen. Les cendres semblent felsiques. Les contacts avec le basalte est net					
			à 65 degrés. Il y a plusieurs veinules/fracture remplit avec des carbonates.					
28.4	15	34.25	Su02; Po01; Pytr; Cptr	29.45	30.95	51301	1.50	0.012
			Sulfures 2%; Pyrrhotine 1%; Pyrite tr; Chalcopyrite tr					
			Grain fin concentré en amas en pourtour des yeux/veinules de quartz.					
30.0	00	30.25	M25					
			Mylonite					
			Zone très déformé montrant des yeux de quartz noir. La composition globale semble être un					
			mélange entre des sulfure-feldspath-quartz noir (cristaux millimétrique).					
34.25	38.95		TX1					
			Tuf à Xtaux felsique					
			La granulométrie semble fine et la roche a une couleur gris-brunâtre. Les cendres semblent					
			principalement des minéraux felsiques bien qu'il y est distingué des minéraux mafic en batonnant qui					
			semblent avoir une alignement préférencielle.					
			Le contact inférieur est graduelle sur 0.5 mètres et se dirige vers un basalt/andésite.					
38.95	45.25		V3B; COU					
			Basalte; Coussiné(e)			1		

		Decadation			Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
		Basalt cousiné. La roche est fine et verdâtre moyen. Il y a des fractures remplient de carbonate dans les deux derniers mètres de l'interval, les fractures sont mm à cm.					10 /
		Le contact inférieur est marqué par l'augmentation de la déformation créant ainsi une texture mylonitique.					
38.95	45.25	Py02	43.75	45.25	51302	1.50	0.009
		Pyrite 2%	43.75	45.25	51303 (Std)	1.50	0.509
		Grain moyen disséminé, parfois en veinule. Plusieurs cristaux idiomorphique avec des faces					
		carrées.					
15.25 50.85		M25; QN; M8Gp					
		Mylonite; Quartz noir; Schiste graphiteux					
		Section très déformé. Il y a des yeux de quartz noir (2%, moins d'un cm). En plus des quartz noir, il y a					
		un gros cristaux d'olivine? au sommet de l'intervalle (10 cm de large). Il semble fractruré et serpentinisé.					
		Les veines/fracture remplient de calcite n'ont pas vraiment d'orientation.					
		Présence de graphite					
		Le contact inférieur montre une diminuation marqué de la déformation et un allure plus massive.	_				
45.25	52.65	Car-40; Ser	45.25	46.70	51304	1.45	0.801
		Carbonatisation faible 40; Séricitisation (indéterminée)	46.70	48.10	51305	1.40	0.648
		Cette section réagissait moyainnement à l'acide et semble être séricitisé ???	48.10	49.55	51306	1.45	0.150
			49.55	50.85	51307	1.30	0.502
45.25	50.85	Po15; Py04; Cp02					
		Pyrrhotine 15%; Pyrite 4%; Chalcopyrite 2%					
		Tous les sulfures sont fin et disséminé. Cette interval contient des quartz noir associée à l'or.					
50.85 54.35		TX2; TX1					
		Tuf à Xtaux intermédaire; Tuf à Xtaux felsique					
		Tuf très fine de couleur plus pâle que précédemment. Les cendres sont inférieur a 1 mm. Généralement,					
		le tuf semble beaucoup plus massif que les roches précédentes. Il semblent également avoir deux					
		compositions dans le tuf. De 50.85 à 52.65, il est gris moyens tandis que de 52.65 à 54.35, il a des teintes					
		brunâtres avec une granulométrie des cendres légèrement supérieure. La seconde section semble avoir					
		moins de minéralisation également.					
		Les cendres semblent de composition mafic.					
		Le contact inférieur est marqué par un changement de couleur et une disparition des cendres volcanique.					
50.85	56.90	Po02; Py01; Cp	50.85	52.40	51308	1.55	0.016
		Pyrrhotine 2%; Pyrite 1%; Chalcopyrite	52.40	53.90	51309	1.50	0.005
		Po : gf, concentré en amas, magnétique					
		Py : gm, souvent englobé par de la Po, de forme carré					
		Cpx : gf, diss au travers de la Po					
52.65	54.35	Car50; Seb+	53.90	55.40	51310	1.50	<0.002

		Description			Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
		Carbonatisation 50; Séricitisation forte (brune)					
		Section réagissant plus fortement à l'acide et plus brunâtre					
35 57.85		13A	55.40	56.90	51311	1.50	<0.002
		Gabbro					
		Gabbro très fin et magnétique. Sa couleur est vert foncé. Il est parcourru par des petite (mm) fracture					
		calcite. Il y a 2% de sulfure, ce pourcentage diminue en descendant le long du forage. L'interval contient					
		une section de tuf andésitique? à lapilli (de 58 à 58.35).					
56.90	63.00	Po01; Py	56.90	58.40	51312	1.50	< 0.002
		Pyrrhotine 1%; Pyrite	56.90	58.40	51313 (Bln)	1.50	0.004
		Po:gm, diss, mag					
		Py : gf, concentré dans une fracture?					
58.00	58.35	TZJI					
		Tuf andésitique à lapillis					
		Tuf tr`;es fine avec des lapillis de 1 à 2mm. Il y a 5% de lapillis felsiques					

63.00 Fin du sondage

Nombre d'échantillons : 11 Nombre d'échantillons QAQC : 2 Longueur totale échantillonnée : 16.15

Sondage: M-12-68 Titre minier: Canton:

5253868

Section:

Niveau:

Foré par :

Forage MAGMA

Rang: Lot:

Place de travail :

Coreshack sous ligne

électrique

Décrit par :

David Duguay

Du:

Au:

2012-06-20

2012-06-20

Est

Nord

Élévation

Date de description :

Annie

2012-06-21

193

-575

0

-Collet

Azimut:

290.00°

Plongée :

-55.00°

Longueur:

75.00 m

UTM

519 383

5 487 160

38 -605

0

Mégane

-Déviation

Profondeur	Azimut	Plongée	Invalide	Description
9.00	273.20°	-54.40°	Oui	Mag 62190 - Marge très différente avec les deux suivants peut-être du au mag ou au fait que
18.00	287.70°	-54.40°	Non	Mag 62190 Écart un peu douteux j'ai l'impression que la lecture a été prise avec la déclina
72.00	286.20°	-54.70°	Non	
	9.00 18.00	9.00 273.20° 18.00 287.70°	9.00 273.20° -54.40° 18.00 287.70° -54.40°	9.00 273.20° -54.40° Oui 18.00 287.70° -54.40° Non

esci	

Dimension de la carotte :

NQ

Cimenté: Non

Entreposé : Oui

				Decementary			Analyse		
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00		3.30		MT					
				Mort terrain					
3.30		4.30		V3A					
				Basalte andésitique					
				gf, de couleur vert-brun assez clair.					
				Le contact inférieur est représenté par un changement radical de lithologie.					
	3.30		5.85	Pd03; Py; Cp	3.30	4.80	51327	1.50	0.011
				Pentlandite 3%; Pyrite; Chalcopyrite					
				Po : semble être en remplissement des fractures					
				Py et Cpx : se retrouve avec la Po					
4.30		5.85		QZVN; QN	4.80	6.30	51328	1.50	0.005
				Veines de qtz; Quartz noir					
				gg, parcouru de fracture. Les fracture sont remplit par des carbonate (réagit fortement a l'acide.					
				Le contact inférieur est graduelle (sur 30cm) une fois quitter la veine il semble y avoir une zone de					
				transition avant de d'arrivé dans de l'andésite					
5.85		9.85		V2J					
				Andésite					
				Roche a gf, massive de vouleur gris violacé. Dans le dernier .5m il semble y avoir une zone de couleur					
				plus pâle et avec une zone d'un blanc violet crèmeux.					
				Contact inférieur : irrégulier et graduelle vers un tuf					
	9.40		15.95	Alb+50					
				Albitisation forte 50					
				zone qui semble avoir été totalement délavé					
				La zone supérieur semble avoir été plus altéré					
9.85		10.20		V3B; POR					
				Basalte 40°; Porphyrique / Porphyritic 40°					
				gf, massif avec des porhpyre (2%) felsic.					
10.20		19.75		V1	17.50	19.00	51329	1.50	0.005
				Volcanite felsique					
				Zone blanc verdâtre assez claire à gris moyen très fin. la roche est fractur, par endroit et change					
				régulièrement de couleur.					
				Contact inférieur : graduelle, laissant la place a du basalt.					
	18.00		18.35	Po01; Cp					
				Pyrrhotine 1%; Chalcopyrite					
				la mineralisation se présente sous forme de veinule. Présence de quartz noir dans cette interval					

	Decembries			Analyse		
	Description	De	A	Numéro	Longueur	Au_Plot (g/t)
18.10 18	35 QZVN					
	Veines de qtz					
	Ce n'est pas une veine continue mais une section avec plein de petite veine/patches de quartz noir					
	ou peut-être fumé.					
19.75 35.40	V3B; QN					
	Basalte; Quartz noir					
	Basalt à gf de couleur noir. En plus du changement de couleur dans la seconde motier il est observé plus					
	de fracture remplit de calcite. L'interval contient des zones/veines de quartz (lithologie secondaire) et des					
	sections qui semblent plus déformé.					
	Section plus déformé : de 20.95 à 21.4 (texture brèchique par momment),					
	Contact inférieur : diminution de la granulométrie					
20.95 21	40 Po02; Py; Cp					
	Pyrrhotine 2%; Pyrite; Chalcopyrite					
	Se présentant en remplacement dans les peites fracture, semblent associée a une veine de quartz.					
23.75 25	D5 Car30					
	Carbonatisation 30					
	roche réagissant globalement a l'acide.					
27.40 27	45 QZVN					
	Veines de qtz					
	Veine a environ 40 degrés de quartz blanc					
28.45 28	90 QZVN					
	Veines de qtz					
	contact franc à 45-50 degrés de quartz blanc avec un remplissage de carbonate dans les					
	fracutres.					
35.40 51.45	V3B; COU					
A	Basalte; Coussiné(e)					
	basalt a gf, massif et uniforme. Il semble y avoir des coussin ?. L'interval inclut une section qui semble					
	avoir eu des déformations importantes.					
	zone défomé : de 35 à 35.4					
	Contact inférieur : marqué par une augmentation de granulométrie.					
51.45 52.70	I3A					
	Gabbro					
	Gabbro a gf, massif et uniforme.					
52.70 65.30	V3B	53.65	55.15	51330	1.50	<0.002
	Basalte					

			Description			Analyse		
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
			Basalte noir légèrement verdâtre présentant des fractures remplit de calcite. Le basalt contient une					
			section plus cisaillé/déformé.					
			Section déformé : de 54.6 à 54.9 (zone avec une foliation aléatoire et des yeux de quartz noir. et					
			Contact inférieur : assez net, marqué par une zone mylonitisé.					
	54.50	54.90	Po01	63.35	64.85	51331	1.50	< 0.002
			Pyrrhotine 1%					
			gf, diss.					
			Présence de quartz noir					
	64.60	68.10	Sp10; Po10; Cp02; Py					
			Sphalérite 10%; Pyrrhotine 10%; Chalcopyrite 2%; Pyrite					
			Po: gf à gm, diss, magnétique.					
			Sph: rougeatre					
			Cpx : il sont plutôt verdâdre et sont toujours avec la Po					
			Py:gm, très peu					
			Zone très déformé avec beaucoup de quartz.					
	64.85	68.10	Car20; Ser20	64.85	66.35	51332	1.50	0.470
			Carbonatisation 20; Séricitisation (indéterminée) 20					
			Zone déformé ou la matrice à été transformé en séricite.					
5.30	68.00		M25; YxQn	66.35	67.85	51333	1.50	0.031
			Mylonite; Yeux de quartz noir	67.85	69.55	51334	1.70	<0.002
			Xone avec du plissement et une foliation aléatoire. Zone riche en yeux de quartz noir	07.00	00.00		10	-0.002
.00	75.00		V3B; POR					
			Basalte; Porphyrique / Porphyritic					
			Basalt d'obatogamo à grain fin ayant 35-40% de porphire feldspatique et calcique.					
			addit a obatogamo a gram im ayant oo 40% aa porpriiro totabbatiquo ot calonquo.					

Sondage: M-12-68

Nombre d'échantillons : 8 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 12.20

	Φ		Toma	aGold Corporation	on		
Sondage :	M-12-69		Titre minier : Canton :	4303762		Section : Niveau :	
			Rang :			Place de travail : CSL	É
Foré par :	Forage MAGMA		Lot:				
Décrit par :	DD		Du :	2012-06-21		Date de description : 2012	2-06-22
			Au:	2012-06-23			
Collet —					UTM	Annie	Mégane
Azimut :	315.00°			Est	520 717	-677	-89
Plongée :	-61.00°			Nord	5 489 724		2 282
Longueur :	234.00 m						
				Élévation	0	0	0
Déviation ———							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	12.00	310.80°	-64.10°	Non	Mag : 57520		
Flexit	51.00	313.80°	-61.50°	Non	Mag : 56370		
Flexit	102.00	314.80°	-62.80°	Non	Mag : 56300		
Flexit	153.00	316.30°	-62.80°	Non	Mag : 56440		
Flexit	201.00	316.12°	-62.60°	Non	Mag 56240		
Flexit	233.90	316.90°	-63.20°	Non	Mag 56240		

Description

lahi A iz (01234162)

Dimension de la carotte : NQ Cimenté : Non Entreposé : Oui

1000 1000			Analyse			
2 2 2 2 2 2 2 2 2 2	Au_Plot (g/t)	Longueur	Numéro	À	De	
21 25 25 25 25 25 25 25						
Basis						
Bealt a of 16 coulour votable focto perconnel of fracture of fracture of 55 days (in provide one of a calcular substance of	1.200	1.50	51335	7.70	.20	
Contact Infection: graduatie sur 20cm, marqué par une sugmentation de la granulométrie et un chargement de torture (roche massive)						
Contact inferiour: graduate sur 20cm, marqué par une augmentation de la granufornétrie et un changement de fortune (roche massive)						
6.30 6.80 SISS Siderification 15 Siderification 15 Siderification 16 Signaturative et dure a rayer. 7.70 9.20 51336 1.50 7.70						
Silicitation 15						
8.30						
Procedure Proc						
Po : gf. concentré en amas Po : gf. dises Po : gf.	0.024	1.50	51336	9.20	.70	
Py: gf, diss						
9.15						
Silicification 40 similater au précédent. 21.25 30.90 I 33A; MAS Gabbro 55°, Massift/ve) 55° Galbbro fin (environ 1mm), massif avec aussi des fracture remplit de carbonate avec une orientation entre 55 et 70 degrés. Couleur similatier au basait précédent, soit vert-sale sombre. L'interval contient une large bande de quartz noir (de 24.2 à 24.55). Contact inférieur : Marqué par une diminution progressive de la granulometrie. 24.20 25.55 QZVN Veines de qtz 27.20 7.55 PPO1 Pyrtte 1% gf à gm. diss et cubique. 30.90 34.64 V3B Basalt très fin verdâtre ayant une teinte violacé. Encora une fois des fracture carbonatisé. Contact inférieur : net avec un retour a un basait plus normal. 32.80 34.65 Bio35 Biofissation 35						
similaire au précédent. 21.25 30.90 I3A; MAS Gabbro 55°; Massif(ve) 55° Gabbro 55°; Massif(ve) 55° Gabbro fin (environ 1mm), massif avec aussi des fracture remplit de carbonate avec une orientation entre 55 et 70 degrée. Couleur similaire au basalt précédent, soit vert-sale sombre. L'interval contient une large bande de quartz noir (de 24.2 à 24.55). Contact inférieur : Marqué par une diminution progressive de la granulometrie. 24.20 25.55 QZVN Veines de qtz 27.20 27.55 Py01 Pyrite 1% g à gm, diss et cubique. 30.90 34.64 V3B Basalt rès fin verdâtre ayant une teinte violacé. Encore une fois des fracture carbonatisé. Contact inférieur : net avec un retour a un basalt plus normal. 32.80 34.65 Bio35 Biotésation 35	0.134	1.50	51337	10.70	.20	
21.25 30.90 I3A: MAS Gabbro 55*; Massif(ve) 55* Gabbro 55*; Massif(ve) 55* Gabbro 55*; Massif(ve) 55* Contact inférieur : Marqué par une diminution progressive de la granulometrie. 24.20 25.5 QZVN Veines de qtz 27.20 27.55 Py01 Pyrite 1% grà m, diss et cubique. 30.90 34.64 V3B Basalte 60* Basalt très fin verdâtre ayant une teinte violacé. Encore une fois des fracture carbonatisé. 32.80 34.65 Biodisation 35 Biotisation 35 Biotisation 35 Gabbro 55*; Massif(ve) 55* Gabro 55*; Massif(ve) 55* Gabbro 65* Gabbro 55*; Massif(ve) 55* Gabbro 10* Ga						
Gabbro 55°; Massift(ve) 55° Gabbro fin (environ 1mm), massif avec aussi des fracture remplit de carbonate avec une orientation entre 55 et 70 degrés. Couleur similaire au basalt précédent, soit vert-sale sombre. L'interval contient une large bande de quartz noir (de 24.2 à 24.55). Contact inférieur : Marqué par une diminution progressive de la granulometrie. 24.20 25.55 QZVN Veines de qtz 27.20 27.55 Py01 Pyrite 1% grâ ym, diss et cubique. 30.90 34.64 V3B Basalte 60° Basalt très fin verdâtre ayant une teinte violacé. Encore une fois des fracture carbonatisé. Contact inférieur : net avec un retour a un basalt plus normal. 32.80 34.65 Bio35 Biotisation 35						
Gabbro fin (environ 1mm), massif avec aussi des fracture remplit de carbonate avec une orientation entre 55 et 70 degrés. Couleur simillaire au basalt précédent, soit vert-sale sombre. L'interval contient une large bande de quartz noir (de 24.2 à 24.55). Contact inférieur : Marqué par une diminution progressive de la granulometrie. 24.20 25.55 QZVN Veines de qtz 27.20 27.55 Py01 Pyrite 1% gf à gm, diss et cubique. 30.90 34.64 V3B Basalte 60* Basalt très fin verdâtre ayant une teinte violacé. Encore une fois des fracture carbonatisé. Contact inférieur : net avec un retour a un basalt plus normal. 32.80 34.65 Bio35 Biodiseation 35						
55 et 70 degrés. Couleur simillaire au basalt précédent, soit vert-sale sombre. L'interval contient une large bande de quartz noir (de 24.2 à 24.55): Contact inférieur : Marqué par une diminution progressive de la granulometrie. 24.20 25.55 QZVN Veines de qtz 27.20 27.55 Py01 Pyrite 1% gf à gm, diss et cubique. 30.90 34.64 V3B Basalt rès fin verdâtre ayant une teinte violacé. Encore une fois des fracture carbonatisé. Contact inférieur : net avec un retour a un basalt plus normal. 32.80 34.65 Biodisation 35 Figitalization au passible vertaure de la granulometrie. 26.60 28.10 51338 1.50 26.60 28.10 51338 1.50 Contact inférieur : net avec un retour a un basalt plus normal.						
Contact inférieur : Marqué par une diminution progressive de la granulometrie. Contact inférieur : Marqué par une diminution progressive de la granulometrie. 24.20						
Contact inférieur : Marqué par une diminution progressive de la granulometrie. 24.20						
24.20 25.55 QZVN Velnes de qtz 27.20 27.55 PyO1 Pyrite 1% gf à gm, diss et cubique. 30.90 34.64 V3B Basalte 60° Basalt très fin verdâtre ayant une teinte violacé. Encore une fois des fracture carbonatisé. Contact inférieur : net avec un retour a un basalt plus normal. 32.80 34.65 Bio35 Biotisation 35						
Velnes de qtz 27.20 27.55 Py01 Pyrite 1% gf à gm, diss et cubique. 30.90 34.64 V3B Basalte 60° Basalt très fin verdâtre ayant une teinte violacé. Encore une fois des fracture carbonatisé. Contact inférieur : net avec un retour a un basalt plus normal. 32.80 34.65 Bio35 Biotisation 35						
27.20 27.55 Py01 Pyrite 1% gf à gm, diss et cubique. 30.90 34.64 V3B Basalte 60° Basalt rès fin verdâtre ayant une teinte violacé. Encore une fois des fracture carbonatisé. Contact inférieur : net avec un retour a un basalt plus normal. 32.80 34.65 Bio35 Biotisation 35	0.083	1.50	51338	28.10	6.60	
Pyrite 1% gf à gm, diss et cubique. 30.90 34.64 V3B Basalte 60° Basalt très fin verdâtre ayant une teinte violacé. Encore une fois des fracture carbonatisé. Contact inférieur : net avec un retour a un basalt plus normal. 32.80 34.65 Bio35 Biotisation 35						
gf à gm, diss et cubique. 30.90 34.64 V3B Basalte 60° Basalt très fin verdâtre ayant une teinte violacé. Encore une fois des fracture carbonatisé. Contact inférieur : net avec un retour a un basalt plus normal. 32.80 34.65 Bio35 Biotisation 35						
30.90 34.64 V3B Basalte 60° Basalt très fin verdâtre ayant une teinte violacé. Encore une fois des fracture carbonatisé. Contact inférieur : net avec un retour a un basalt plus normal. 32.80 34.65 Bio35 Biotisation 35						
Basalte 60° Basalt très fin verdâtre ayant une teinte violacé. Encore une fois des fracture carbonatisé. Contact inférieur : net avec un retour a un basalt plus normal. 32.80 34.65 Bio35 Biotisation 35						
Basalt très fin verdâtre ayant une teinte violacé. Encore une fois des fracture carbonatisé. Contact inférieur : net avec un retour a un basalt plus normal. 32.80 34.65 Bio35 Biotisation 35						
Contact inférieur : net avec un retour a un basalt plus normal. 32.80 34.65 Bio35 Biotisation 35						
32.80 34.65 Bio35 Biotisation 35						
Biotisation 35						
hosalt histitició						
บลอสแ มเบแนวเซ						

				December			Analyse		
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
34.64		45.30		V3B; COU Basalte 65°; Coussiné(e) 65° Basalt a grain très fin montrant des évidences de coussins. La couleur évolut entre le début de l'interval (vert-sale foncé) et la fin (noir verdâtre). L'interval montre une veine de quartz (voir lithologie secondaire).					
	36.90		41.45	Contact inférieur : asser net, marqué par un changement de texture. Car65 Carbonatisation 65					
	37.90		37.95	la roche réagit modérément à fortement a l'acide QZVN Velnes de qtz 70° veine de quartz blanc					*
45.30		58.15		Diabase à porphyre (1 à 2 cm).	46.40	47.90	51339	1.50	0.106
	46.70 46.95		47.55 47.15	Contact inférieur : plus ou moins visible, graduelle sur une dizaine de cm Po Pyrrhotine gm, diss Sej55					
50.45	48.90	00.00	52.30	Séricitisation (jaune) 55 séricitisation ??? altération jaune-brunâtre, ne réagissant pas à l'acide et est très du à rayer. Car25 Carbonatisation 25					
58.15		83.20		V3B; COU Basalte 45°; Coussiné(e) 45° Basal très fin de couleur noir légèrement verdâtre et uniforme. Le basalte présente quelques évidence de cousin dans les 5 premiers mètres, le restant de l'interval n'en montre pas. L'interval contient une section de tuf basaltique (de 62.65 à 63.05) et deux zones hétorogène à l'interval.					
				 de 75.15 à 75.4 : zone montrant une texture brèchique avec de gros cristaux de feldspath. De 81 à 82.5 : zone montrant une plus forte déformation avec une veine de quartz, fumé à noir, en son centre. 					
	65.55		67.05	Contact inférieur : graduelle sur quelques cm, marqué par un grossisement de la granulo et l'uniformisation (devient plus massif) de la roche Sil25 Silicification 25 Silicification ??? Altération associé a une fracture remplit de de calcite.					

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
	74.00		74.40	Po01; Cp	74.00	75.40	51340	1.40	0.008
				Pyrrhotine 1%; Chalcopyrite					
				Les deux minéralisation sont concentré dans un amas entre deux coussin.					
	75.15		75.40	Po02; Cp	79.50	81.00	51341	1.50	< 0.002
				Pyrrhotine 2%; Chalcopyrite					
				Po : gf, en amas et magnétique					
				Cpx : au travers de la Po					
	79.90		83.20	Car25					
				Carbonatisation 25					
				réagit faiblement à l'acide.					
	81.00		82.50	Cp01	81.00	82.50	51342	1.50	0.015
				Chalcopyrite 1%	81.00	82.50	51343 (Std)	1.50	0.576
				gm, diss	82.50	84.00	51344	1.50	0.006
					02.50	04.00	51344	1.50	0.000
33.20		91.40		I3A; MAS					
				Gabbro; Massif(ve)					
				Roche très massive et très uniforme ne montrant pas de texture particulire. La roche semble contenir 25					
				% de minéraux felsique grisâtres. Ressemble a un gabbro.					
				Contact inférieur : net mais ondulant, marqué par une diminution de la granulométrie et l'apparition des					
				fracture remplit de carbonate					
91.40		104.80		V3B	91.50	93.10	51345	1.60	< 0.002
				Basalte 40°					
				Basalt à gtf, de couleur noir-verdâtre montrant des fracture remplit avec des carbonate. Interval					
				comprend 2 veines de quartz.					
				Veine de quartz : 100.10 (1 cm): quartz noir en chevron					
				de 104.55 à 104.75 : veine de quartz blanc qui semble sub-parallel, la veine ne traverse pas la carrotte					
				en totalité.					
				Contact inférieur : net, marqué par une augmentation de granulométrie.					
	91.60		91.80	Cp02; Po02					
				Chalcopyrite 2%; Pyrrhotine 2%					
				Les deux sont a gm, concentré dans les veine de quartz fumé.					
	92.00		115.10	Car55					
				Carbonatisation 55					
				réagit moyennement à fortement à l'acide sur l'ensemble de l'interval,sauf sur les dernier 2 mètre où					
				la réaction diminue grandement.					
	92.75		93.00	Po02; Cp	93.10	94.60	51346	1.50	0.006
					1		1		

			Description			Analyse		
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
			gf, concentré en une fine section.					
95.85		95.95	Po04	96.10	97.60	51348	1.50	<0.002
			Pyrrhotine 4%					
			gf, diss dans ce qui semble être de petite veinule.					
04.80	115.10		T2 c					
			Tuf intermédiaire à cendres 25°					
			Tuf à cendre gris foncé et homogène montrant un grossisement des cendre dans le dernier mètre de					
			l'interval. La section présente des veines (1 à 2 cm de large) parallel à sub-parallel de quartz noir (de					
			107.45 à 12.3).					
			Contact inférieur : graduelle, marqué par l'augmentation de la granulo des particule (cendre> lapillis).					
15.10	124.95		TX1					
			Tuf à Xtaux felsique					
			Roche noir verdâte. Le tuf à deux phases avec des granulometrie de lapillis différent.					
			De 115.1 à 116.75 et 122.9 à 124.95 : 10% de lapillis ayant 2 à 4 mm de granulo. La matrice est					
			également plus pale que l'autre section.					
			De 116.75 à 124.95 : Les xtaux de roche se rapproche de cendre, environ 1mm de granulométre (3% de					
			Xtaux). La roche est plus foncé que la zone avec de gros lapillis.					
			Contact inférieur : Graduelle, marqué par la disparition des xtaux.					
124.95	129.90		V3B					
			Basalte					
			Basalt très fine de couleur vert-sale foncé. Montre des fracture remplit de calcite ainsi qu'une veine de					
			quartz (de 126.6 à 127.2) plissé sub-parallel, fumé à noir.					
			Contact inférieur : marqué par l'apparition d'un tuf					
124.95	5	133.50	Car25	126.20	127.70	51349	1.50	<0.002
			Carbonatisation 25					
126.60)	127.20	Po; Cp					
			Pyrrhotine; Chalcopyrite					
			fg, diss dans la veine de quartz.					
29.90	143.50		TX1					
			Tuf à Xtaux felsique 50°					
			Tuf de couleur gris foncé s'éclaircissant en descendant dans le forage. de 129.9 à 133.5, les cristaux					
			sont des cendre. À partir de 133.5, les cristaux devient des lapillis de quelques millimètre. L'interval					
			comprend également des sections avec des lapillis mafic (de 134.8 à 135.3 et 140.7 à 141.5).					
			Contact inférieur : graduelle, marqué par un changement de lithologie et par l'augmentation de la foliation.					

			Decodeffor		_	Analyse		
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
140	0.70	141.50	Car20					(3.7
			Carbonatisation 20					
143	3.15	146.20		143.20	144.70	51350	1.50	0.007
			Carbonatisation 60					
143.50	146.20	0	V3B; MAG	144.70	146.20	51351	1.50	<0.002
			Basalte; Magnétique					
			Basalt noir rubannée très finement grenu. L'interval contient une section avec des fracture large montrant					
			des textures brèchique de 145.45 à 145.75 et une fine bande de quartz noir à 144.6.					
			Contact inférieur : net, montrant un changement de couleur de roche ainsi que l'apparition de lapillis. La					
			roche inférieur semble avoir remplit une fracture car elle montre une structure de flame dans le basalt.					
146.20	149.50	0	TX1					
			Tuf à Xtaux felsique 40°					
			Roche gris moyen à foncé contenant des lapillis de 1mm à 4mm. L'ensemble est homogène.					
			Contact inférieur : net, marqué par la disparittion des lapillis					
149.50	153.50	0	V3B					
			Basaite 50°					
			gf, homogène de couleur noir.					
150	0.40	150.90						
			Carbonatisation 40					
153.50	157.95	5	TX1					
			Tuf à Xtaux felsique 40°					
			simillaire à celui de 146.2 à 149.5					
157.95	162.65	5	I3A					
			Gabbro 50°					
			Gabbro à gf, noir légèrement grisâtre homogène. l'interval contien une section plus fine et gris clair (de 150.6 à 162.15)					
			100.0 & 102.10)					
			ontact inférieur : net, marqué par l'apparition de lapillis.					
160	0.60	162.15	Car70					
			Carbonatisation 70					
			réagissant fortement à l'acide.					
162.65	167.25	5	TX1					
			Tuf à Xtaux felsique 60°					
			Tuf simillaire au précédent					
			Contact inférieur : net, marqué par le disparition des lapillis					
167.25	181.80	0	13A					
			Gabbro 50°					

				Proceeded on			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
			Gal	bbro a grain fin (1mm) de couleur noir très massif et homogène. L'interval contient une roche grise					(0-7
			fone	cé très fine et plus fortement folié (de 173 à 174.15) et une veine de quartz blanc (de 181.4 à 181.5).					
				ntact inférieur : graduelle, marqué par une diminution de la granulométrie					
	181.10)	181.50	QZVN					
				Veines de qtz					
				blanc					
181.80		186.95	V3E						
			Bas						
				ilte noir très fin. L'interval contient quelques veines de quartz légèrement fumé.					
	184.50)	186.00	Car50					
				Carbonatisation 50					
				la roche à une teinte légèrement plus grisâtre.					
	185.15	5	185.25	QZVN					
				Veines de qtz					
		_		quartz blanc légèrement fumé					
	185.15	5	185.25	Ср	185.15	186.80	51352	1.65	<0.002
				Chalcopyrite	185.15	186.80	51353 (Bln)	1.65	<0.002
				Gf en amas avec un reflect verdâtre.					
	186.20)	186.30	Po01					
				Pyπhotine 1%					
				gf, concentré dans la seconde moitier					
	186.70)	186.80	QZVN					
				Veines de qtz					
				mélange de quartz blanc et de quartz fumé					
186.95		209.85	I3A						
				bbro 60°					
				bbro très similiaire à ceux précédent.					
				terval inclut une section plus fin contenant des fracture emplit de carbonate (de 191.9 à 195.5), une					
			sec	tion de diabase? beaucoup plus sombre (de 203.6 à 204.45) et un tuf à cristaux (de 205.1 à 206.65)					
			Cor	ntact inférieur : net, marqué par une diminution de granulo.					
			001	naoc intonosii i noi, marque pai une ullillitution de grandio.					
	193.70)	198.80	Car35					
	.00.70	•		Carbonatisation 35					
				Granulométrie légèrement plus fin que les deux roche autour de cette zone					
	198.85	5	199.50	FAI					
	.00.00		.55.00	Faille					
				Zone forment fracturé					

		Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
203.60	204.45	13B					
		Diabase 30°					
		Diabase ??? roche très noir, très fine et massive. Ressemble grandement à un dyke avec les deux					
		contact très net					
9.85 229.	60	13A					
		Gabbro					
		Globallement la roche est un gabbro à grain fin (1-2mm) de couleur noir. Il semble y avoir 15% de					
		feldsique. Il y a quelques zones qui ressort sur l'interval. Il y a une section qui croise une veine					
		sub-parralele de quartz (de 215.15 à 217.85), une veine de quartz noir (de 223.9 à 224) et une zone					
		avec des fracture remplit de carbonate (de 228.9 à 229.3)					
		Contact inférieur : Net, montrant un changement de texture et une augmentation de la proportion felsic et					
		de la granulo.					
223.90	224.00	QZVN					
		Veines de qtz					
		Veine contenant du quartz noir mais ne semblant pas minéralisé.					
9.60 234.	00	13B					
		Diabase 50°					
		Diabase amphibolitisé à grain moyen, avec 30% felsic. La première moitier est plus leucocrate.					

Nombre d'échantillons : 17 Nombre d'échantillons QAQC : 2 Longueur totale échantillonnée : 25.65

Sondage :	M-12-70
conaago .	101 12 70

Titre minier:

4303762

2012-06-24

Section:

Canton: Rang:

Niveau:

Foré par :

MAGMA

Lot: Du:

Date de description :

Place de travail :

2012-06-25

Annie

Décrit par :

DD

2012-06-25 Au:

-Collet

Azimut:

315.00°

Plongée :

-56.00°

Longueur:

120.00 m

UTM

Annie

Mégane

Est Nord

Élévation

520 751

5 489 689

-628 2 181

-42 2 269

0

-Déviation

Туре	Profondeur	Azimut	Plongée	Invalide	Description
Flexit	18.00	314.10°	-56.00°	Non	Mag 57420
Flexit	51.00	313.40°	-56.20°	Non	Mag 56320
Flexit	102.00	315.10°	-56.60°	Non	Mag 56170
Flexit	120.00	314.60°	-56.60°	Non	Mag 55800

Description

Ils ont perdu 15m de casing (5 tige de 3m dans le trou en raison de boulder). Ils se sont ravancé de 1.5m pour reforé.

Dimension de la carotte :

NQ

Cimenté: Non

Entreposé : Oui

			Decadation			Analyse		
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00	11.00		МТ					
			Mort terrain					
11.00	18.80		I3A; MAS					
			Gabbro; Massif(ve)					
			Gabbro gris foncé à gf jusqu'à gm (environ 2mm) massif et homogène.					
			Contact inférieur : très net, marqué par l'apparition d'un tuf à cristaux intermédiaire					
18.80	22.30		V3B; POR					
			Basalte 45°; Porphyrique / Porphyritic 45°					
			Basalt de couleur noir contenant 10% des porphyre (2 à 4 mm) à gm (5% felsic et 5% amphibole). La					
			roche est homogène sur toute l'interval					
			Contact inférieur : net, marqué par le retour du gabbro					
22.30	28.25		13A; MAS					
			Gabbro 45°; Massif(ve) 45°					
			Gabbro en tout point simillaire au précédent. L'interval contient une section plus déformé avec des					
			fracture remplit avec des carbonate, cette zone est également plus pâle que la précédente (de 24.55 à					
			25)					
			Contact inférieur : graduelle, marqué par la diminution de la granulométrie.					
24	4.60	24.65	QZVN					
			Veines de qtz					
			blanc					
28.25	41.80		V3B					
			Basalte					
			Basalt? grossier (grain inférieur à 1mm mais visible à l'oeil) de couleur noir légèrement grisâtre. La roche					
			est peut-être un peu trop grossière pour pour être du basalt L'interval contient une section brèchique					
			(de 28.95 à 29.15), deux veines de quartz, une section plus déformé et fine (de 36.15 à 38, voir					
			lithosecondaite) et une zone altéré séricitisé ? (de 34.85 à 35.05).					
			Veine de quartz : de 24.6 à 24.65 (quartz blanc) et 32.25 (1-2 cm, quartz légèrement fumé)					
			Contact inférieur : marqué par une augmentation progressive de la granulométrie.					
28	8.85	29.35	Car35					
			Carbonatisation 35					
32	2.25	32.26	QZVN					
			Veines de qtz					
			légèrement fumé, non minéralisé					
34	4.85	35.05	Ser55					
			Séricitisation (indéterminée) 55					

				Decembring			Analyse		
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
				Sérisitisation ?					
	36.1	5	38.00	V3B					
				Basaite 25°					
				Basalt gris-noir montrant une plus faible granulométre (aphanititque) et une foliation (35 degrés).					
				Chaque contact est net à 25 degrés					
41.80		60.35		I3A; MAS					
				Gabbro; Massif(ve)					
				Gabbro similaire au premier. Roche gris moyen à gris foncé avec une granulo de 1 à 2 mm, massif.					
				L'interval est presque totalement homogène à l'exception de quelques zones différente : 3 section granulo					
				très fine basaltique et 1 tuf à cristaux felsic (de 56.15 à 57.5, 3% lapillis)					
				Section de basalt : de 45.05 à 43.6 (contient 8% de fracture carbonatisé), de 53.12 à 54.4 (gris moyen) et					
				60.2 à 60.35 (section plus noir)					
				Contact inférieur : net, marqué par l'apparition de lapillis.					
	53.1	0	54.40	Car20					
				Carbonatisation 20					
	55.8	0	56.30	Car40					
				Carbonatisation 40					
	56.1	5	57.30	TX1					
				Tuf à Xtaux felsique					
				Tuf gris moyen à gris foncé, contenant 3% de lapillis (felsic).					
60.35		68.80		TX1					
				Tuf à Xtaux felsique 35°					
				Tuf gris moyen contennant 10% de lapillis felsic.					
				Contact inférieur : net, marqué par la disparrition des lapillis et le changement de couleur.					
	67.5	0	67.95	V3B					
				Basalte 35°					
				Basalt noirt très fin et massif avec 2 contact net à 35 degré					
68.80		75.45		V3B					
				Basalte 35°					
				Basalt gris foncé ayant une granulo de moins 1mm contenant des fractures remplit de carbonate. L'inter					
				val est presque homogène contenant une zone plus verdâtre de 74.85 à 75.45.					
				Contact inférieur : net et sub-parallel, marqué par une augmentation de la granulométrie.					
75.45		92.40		13A					
				Gabbro					
				Gabbro similaire au précédent excepté qu'il est légèrement plus fin. Très massif. L'interval contient une					
				section de basalt (de 77.2 à 78.9) et un tuf à cristaux felsic (de 82.95 à 83.3)					

			Description			Analyse		
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)
	== 00		Contact inférieur : marqué par une diminution de la granulo ainsi qu'à un changement de couleur.					
	77.20	78.90	V3B					
			Basalte 50°					
	00.05	00.00	basalt massif ayant 2 contact net.					
	82.95	83.30	TX1					
			Tuf à Xtaux felsique					
2.40	98.1		V3A					
			Basalte andésitique					
			Basalt très fin ayant une couleur gris moyen à gris pâle montrant un niveau de déformation croissant en					
			s'approchant du contact inférieur. De 92.4 à 94.55, il y a beaucoup de fracture contenant des carbonate.					
			Contact inférieur : net, marqué par l'apparition de quart noir					
	92.40	98.15	Car20	92.40	93.90	51354	1.50	0.108
			Carbonatisation 20	93.90	95.40	51355	1.50	0.010
				95.40	96.90	51356	1.50	0.090
	96.45	96.95	Ро; Ср	96.90	98.40	51357	1.50	1.280
			Pyrrhotine; Chalcopyrite					
			gf, diss					
	96.95	98.50	Py02; Po					
			Pyrite 2%; Pyrrhotine					
			Py: gm, diss					
			Po : gf, diss à travers la Py					
8.15	105.		QZVN; YxQn					
			Veines de qtz 65°; Yeux de quartz noir 65°					
			Veine de quartz contenantv de la séricite? dans les fractues et entre les grain. Le quartz est très noir.					
			Contact inférieur : net, marqué par une diminution de quartz et la diminution de granulométrie					
	98.15	105.10	Ser20	98.40	99.90	51358	1.50	0.407
			Séricitisation (indéterminée) 20					
			séricitisation dans les fracture ? trait blanc, semble faiblement rayable à l'ongle.					
	98.50	100.55	Py02	99.90	101.40	51359	1.50	0.713
			Pyrite 2%	101.40	102.90	51360	1.50	0.058
			Gm, diss	101.70	102.00	10.000	1.00	0.000
	102.70	105.10	Py01; Po	102.90	104.40	51361	1.50	<0.002
			Pyrite 1%; Pyrrhotine	104.40	105.90	51362	1.50	0.082
			Gf, concentré dans des peties bandes.					
				104.40	105.90	51363 (Std)	1.50	3.850
05.10	109.	.45	V3B; YxQn	105.90	107.40	51364	1.50	0.082

			Description	Analyse							
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)			
		ı	Basalte 70°; Yeux de quartz noir 70°								
			Basalt vert moyen sale, contenant 15% de yeux de quartz noir et 15% de fractures remplient de								
		(carbonate.								
		(Contact inférieur : net, marqué par la disparition des fractures carbonaté et l'homogénisation de la roche.								
	105.10	108.00	Ser25								
			Séricitisation (indéterminée) 25								
			similaire au précédent								
	106.60	107.30	Po03	107.40	108.90	51365	1.50	0.020			
			Pyrrhotine 3%	108.90	110.40	51366	1.50	<0.002			
			fg, en amas dans les fractures entre les quartz								
9.45	120.00	1	/3B								
		- 1	Basalte 50°								
		i	Basalt noir très fin. L'interval include des sections déformé et un tuf à cristaux felsic (de 116.15 à 116.8).								
			Section déformé : de 117.85 à 118.1 (brèchique)								
			Section altéré : de 113.8 à 114.2 (albitisation ?), de 115.15 à 115.3 (albitisation?) et de 117.15 à 17.25.								
	113.00	114.20	Alb30								
			Albitisation 30								
			albitisation ???rose crémeux								
	115.15	115.40	Alb07								
			Albitisation 7								
			similaire ua précédent								
	117.85	118.10	Po	118.45	120.00	51367	1.55	0.011			
			Pyrrhotine								
			gf, diss								
	119.40	120.00	Car20								
			Carbonatisation 20								
	119.40	120.00	Su								
			Sulfures								
			Gtf, diss								

Nombre d'échantillons : 13 Nombre d'échantillons QAQC : 1 Longueur totale échantillonnée : 19.55

ondage :	14.40.74		Titre minier :	4303762			Section:	
ondago i	M-12-71		Canton :				Niveau :	
			Rang :				Place de travail : CSLÉ	
Foré par :	MAGMA		Lot:					
Décrit par :	DD		Du :	2012-06-25			Date de description : 2012-06	3-26
			Au :	2012-06-25				
Collet —								
					UTM		Annie	Mégane
Azimut :	135.00°			Est		520 665	-752	-16
Plongée :	-50.00°			Nord		5 489 778	2 183	2 30
Longueur	: 75.00 m			Élévation		0	0	
Déviation ———								
Туре	Profondeur	Azimut	Plongée	Invalide			Description	
lexit	12.00	135.20°	-50.30°	Non	Mag 56720			
Flexit	51.00	134.20°	-50.20°	Non	Mag 56130			
Flexit	75.00	135.00°	-50.10°	Non	Mag 55860			

Cimenté : Non

Dimension de la carotte :

NQ

Entreposé : Oui

			Description			Analyse		
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00	5.30	1	мт					
		1	Mort terrain					
5.30	20.00	1	V3B; FIN					
			Basalte; Grains fins					
		F	Roche noir légèrement grisâtre grain fin (moins de 1mm). L'interval contient une section verdâtre avec					
		C	des fractures Cb (de 12 à 12.65) et des section déformé.					
		5	Section déformé : de 5.55 à 5.7 : section montrant une texture brèchique avec de gros fragment de basalt					
			et un peu de minéralisation.					
			de 14 à 14.5 : section montrant 2 section brèchique séparé par une un 15cm de basalt.					
			de 18.9 à 19.25 : Section fortement déformé montrant des veinules plissé					
		(Contact inférieur : net, marqué par une homogénisation de la roche et l'apparition des fracture carbonaté.					
14.15		14.30	Po01					
			Pyrrhotine 1%					
			Gf, diss					
20.00	24.00	1	V3B	21.00	22.50	51368	1.50	0.018
			Basalte 70°	22.50	24.00	51369	1.50	0.008
		E	Basalt verdâtre très fin montrant des fracture Cb à un angle de 70-80 degrés. Plus l'on approche du					
			contact inférieur et plus la foliation augmente en ingtensité, l'angle des fracture Cb passe de 70-80 degrés					
		é	à 35 degrés.					
		(Contact inférieur : net, marqué par une augmentation de la déformation.					
23.50		24.00	Po					
			Pyrrhotine					
			Gf, concentré en fine bande.					
24.00	25.60	1	V3B	24.00	25.50	51370	1.50	0.030
		E	Basalte	25.50	27.00	51371	1.50	0.038
		5	Section déformé avec des gros fragment de 1 à 1.5 cm. Le dernier 0.5 m est marqué par une diminution					
		ŀ	progressive des fragment et de la déformation pour redevenir un basalt verdâtre similaire au précédent.					
		(Contact inférieur : graduellle sur 20 cm, marqué par un changement de texture					
24.00		25.00	Car30					
			Carbonatisation 30					
24.00		25.50	Po01.5; Cp					
			Pyrrhotine 1.5%; Chalcopyrite					
			Po : Gf, concentré en petite veinule entre les bandes.					
			Cpx : Avec la Po, reflet verdâtre					
25.60	28.65		V2J					
		,	Andésite					

	Description			Analyse						
	Description	De	A	Numéro	Longueur	Au_Plot (g/t)				
	Roche très fine et gris moyen-foncé, montrant desporphyre? allongé et gris moyen (couleur									
	quasi-semblable à la roche). Les porphyre mesure 1mm de large par 4 mm de long en moyenne. La									
	seconde moitier de l'interval montre une diminution de l'allongement des cristaux et un changement									
	progeressif de couleur des porphyre (de gris moyen vers blanc.									
	Contact inférieur : graduelle, marqué par un changement de look des lapillis.									
25.60 27.80	Car15									
	Carbonatisation 15									
28.65 37.50	13B									
	Diabase									
	Diabase très intéressant montrant une variation de granulométrie vers la base de l'interval. Les porphyre									
	sont a gm durant les 3 premier mètre pour ensuite diminuer progressivement de granulométrie jusqu'a									
	devenir des cendre à la fin. La couleur de la roche est verdatre foncé. L'interval inclut une section									
	montrant plusieurs texture brèchique, de 34.6 à 35.8 (section montrant 3 zone à texture brèchique									
	distincte).									
	Contact inférieur : Net, sub-parallel, marqué par la disparition des cendres et la diminution de la granulo.									
34.90 35.80	Po01; Cp									
	Pyrrhotine 1%; Chalcopyrite									
	Po : concentré dans les secteur déformées, elles sont présent en amas									
	Cpx : en trace, associé à la Po									
36.70 39.50	Po; Cp									
	Pyrrhotine; Chalcopyrite									
	Tout les deux gf, diss									
37.50 46.10	V3B	43.90	45.40	51372	1.50	0.014				
	Basalte 30°									
	Basalut a gf, noir légèrement grisâtre par momment. Il est relativement homogène dans sont emsemble.									
	L'interval inclut une section plus déformé en s'approchant du contact inférieur (de 44 à 44.65 et 44.9 à									
	45.25)									
	Contact inférieur : relativement net, marqué par une augmentation de granulométrie ainsi que de la									
	déformation.									
44.10 44.69	Cp; Po	45.40	46.90	51373	1.50	0.019				
	Chalcopyrite; Pyrrhotine	-								
	Gf, présent ensemble, généralement en amas									
46.10 57.75	V3B	46.90	48.40	51374	1.50	0.045				
	Basalte 55°	48.40	49.90	51375	1.50	0.035				
	Basalt à gf de couleur gris moyen et contenant des fractures Cb. de 46.1 à 49.9, il est noter une très forte									
	déformation avec du quartz noir (2%). Suit à cette zone, les fracture Cb ont une angles de 35 degrés .	49.90	51.40	51376	1.50	0.006				
	Enfin, durant le dernier deux mètre le niveau de déformation semble augmenter en s,approchant du									

		Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
		contact inférieur.					
		Contact inférieur : Net, marqué par un changement radical de texture et de granulométrie. Également une augmentation de la déformation.					
46.10	48.35	Car20					
		Carbonatisation 20					
46.10	49.90	Po02; Cp					
		Pyrrhotine 2%; Chalcopyrite					
		Po : gf, concentré entre les bandes					
		Cpx : retrouvé au travers de la Po					
		La minéralisation est plus importante de 48 à 48.35 (3% Po).					
52.20	57.75	Car35	57.45	59.10	51377	1.65	0.004
		Carbonatisation 35					
.75 65.1	5	TX1					
		Tuf à Xtaux felsique 35°					
		Roche d'un gris clair légèrement brunâtre par endroit et à gtf. La roche est également très fortement folié					
		à 45 degrée. l'interval est homogène et contient 2 petites veine de quartz noir ainsi que des yeux de					
		quartz noir.					
		Veine de quartz noir : de 59.12 à 59.17 et 61.6 à 61.62.					
		Contact inférieur : Graduelle, marqué par une diminution de la foliation					
58.90	59.35	Sej30					
		Séricitisation (jaune) 30					
		Séricitation ??? section plus jaunasse que la roche autour .					
58.90	64.70	Py02; Cp	59.10	60.65	51378	1.55	0.016
		Pyrite 2%; Chalcopyrite					
		Py : gm, diss, idiomorphe (carré), Il y a de plus forte concentarion autour de la seconde veine de					
		quartz noir (de 61.6 à 61.62)					
		Cpx : en contact avec la Py					
59.12	59.17	QZVN	60.65	62.15	51379	1.50	4.580
		Veines de qtz					
		Veine de quartz noir					
61.60	61.62	QZVN	62.15	63.65	51380	1.50	0.740
		Veines de qtz	63.65	65.15	51381	1.50	0.690
		Noir					
64.60	67.05	Car40					
		Carbonatisation 40					

			Description			Analyse)	
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)
5.15	67.90		V3B	65.15	66.65	51382	1.50	0.004
			Basalte	65.15	66.65	51383 (Std)	1.50	0.635
			Basalt noir à gtf, massif et homogène.					
			Contact inférieur : marqué par l'apparition de cendre ?					
7.90	75.00		V3B; POR	70.35	71.85	51384	1.50	0.006
			Basalte; Porphyrique / Porphyritic					
			Basalt porphyric. Roche très noir avec des porphyre de moins de 1mm. L'interval contient des sections à					
			porphyre plus grossier et une veine de quartz (de 72.25 à 72.27).					
			Section à porphyre : De 73.15 à 73.35 et de 74.8 à 75					
70	.90	71.30	Po02; Cp					
			Pyrrhotine 2%; Chalcopyrite					
			Po : gf, en amas, concentré dans la veine de quartz					
			Cpx : gf, au travers de la Po					
71	.25	71.27	QZVN					
			Veines de qtz					
			Légèrement fumé					

75.00 Fin du sondage

Nombre d'échantillons : 16 Nombre d'échantillons QAQC : 1 Longueur totale échantillonnée : 24.20

Titre minier: 4303763 Section: Sondage: M-12-72 Canton: Niveau: Rang: Place de travail: Annie Lot: Foré par : MAGMA DD Décrit par : Du: 2012-07-18 Date de description : 2012-07-20 2012-07-19 Au: -Collet

Azimut : 315.00°

Plongée : -50.00°

Longueur: 150.00 m

 UTM
 Annie
 Mégane

 Est
 520 689
 -590
 -38

 Nord
 5 489 574
 2 056
 2 138

 Élévation
 0
 0
 0

-Déviation

Туре	Profondeur	Azimut	Plongée	Invalide	Description
Flexit	18.00	318.90°	-50.60°	Non	Mag 57540
Flexit	51.00	318.30°	-50.90°	Non	Mag 56430
Flexit	102.00	319.80°	-51.30°	Non	Mag 56310
Flexit	150.00	320.70°	-51.10°	Non	Mag 56220

Description

luki A iz (01234762)

Dimension de la carotte : Non Entreposé : Oui

				Description	Analyse					
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)	
0.00		12.20		MT						
				Mort terrain						
12.20		13.50		V3B; MAS						
				Basalte; Massif(ve)						
				Basalt gris très foncé èa gtf contenant 3% de porphyres mm.						
				Contact inférieur : net, marqué par l'appartition d'un tuf						
13.50		14.40		TX1; MAS						
				Tuf à Xtaux felsique 85°; Massif(ve) 85°						
				Tuf gris moyen avec 10% de lapillis dans une matrice de cendre						
				Contact inférieur : net, marqué par la dispartion des cendres et lapillis						
14.40		41.50		13A						
				Gabbro 80°						
				Gabbro gris foncé à gf, massif. L'interval contient une fracture CB avec des fragments de QN,						
				Fracture CB avec fragments de QN : à 26.95 (veines a 25 degrée de 1cm d'épaisseur).						
				Contact inférieur : graduel, marqué par une diminution de la granulométrie.						
	14.40		41.50	Su						
				Sulfures						
				Les gabbro a toujours quelques grains de sulfure. Il arrive qu'il y ait de plus grande concentration						
				dans les fine fractures CB.						
	17.40		18.20	Car40						
				Carbonatisation 40						
				Roche plus terne						
41.50		57.15		V3B; MAS						
				Basalte; Massif(ve)						
				Basalt gris foncé a gtf et contenant 2% de porphyres felsiques mm. L'interval contient une section						
				déformé (de 46.5 à 51.15), un tuf à cristaux felsiques (de 52.4 à 53) et une section avec plusieurs						
				fractures CB avec fragment de QN (de 56.3 à 56.5).						
				Contact inférieur : Net, marqué par l'augmentation de la granulométrie.						
	42.25		43.15	Car30						
				Carbonatisation 30						
				similaire au précédent						
	46.20		50.60	Cp00.5; Po	46.20	47.70	51602	1.50	0.005	
				Chalcopyrite 0.5%; Pyrrhotine						

				Description		Analyse						
		Description				A	Numéro	Longueur	Au_Plot (g/t)			
				gf, diss au travers de la zone déformé.	46.20	47.70	51603 (Std)	1.50	0.607			
	10.50		50.00									
	46.50		50.60	Ser-05; Sil10	47.70	49.20	51604	1.50	0.002			
				Séricitisation faible 5; Silicification 10	49.20	50.70	51605	1.50	<0.002			
	52.40		53.00	TX1								
				Tuf à Xteux felsique 80°								
				Tuf gris moyen avec 2% de lapillis dans une matrice de cendres.								
	56.10		56.85	Car20	56.10	57.00	51606	0.90	0.002			
				Carbonatisation 20								
57.15		61.90		I3A; MAS								
				Gabbro 30°; Massif(ve) 30°								
				Gabbro gris foncé légèrement verdâtre avec quelques fines fractures de CB.								
				Contact inférieur : net, marqué par l'apparition d'un tuf								
61.90		65.00		TX1; MAS								
				Tuf à Xtaux felsique 80°; Massif(ve) 80°								
				Tuf gris moyen avec 15% de lapillis dans une matrice de cendre.								
				Contact inférieur : net, marqué par la dispartion de l'unité sédimentaire.								
65.00		83.10		I3A; MAS								
				Gabbro 75°; Massif(ve) 75°								
				Gabbro gris foncé gf à gm simillaire aux précédents. Les 3 premiers mètres sont marqués par								
				l'augmentation progressive de la granulométrie. L'interval contient une section déformé (de 77.95 à 78.5)								
				et rien d'autre.								
				Contact inférieur : Net, marqué par une diminution de granulométrie et l'apparition de porphyres dans la								
				roches								
	65.00		89.30	Su								
				Sulfures								
				très difficile de faire une zone précise, il y a toujours quelques grains de sulfure. Parfois il est en								
00.40		105.70		proportion importante dans des fractures.								
83.10		105.70		V3B Basalte 75°								
				Basalt a gtf contenant 5% de fines fractures CB et de couleur verdâtre. L'interval contient des fragments								
				de quartz (de 92.5 à 92.85, une veine et un fragment). Les dernier mètres montres une augmetnation de								
				fractures CB dans une orientation de 50 degrés.								
				Contact inférieur : net marqué par un changement de couleur et l'augmentation de la déformation.								
	89.30		92.45	Po01; Cp01								
				Pyrrhotine 1%; Chalcopyrite 1%								

		Description			Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
		Gf, concentré dans les fractures ou en bordure des gros fragment de quartz.					
89.50	92.95	Sil10; Alb05					
		Silicification 10; Albitisation 5					
92.45	105.70	Su	104.20	105.70	51607	1.50	0.355
		Sulfures					
		Gm, diss au travers de la roche					
105.50	128.00	Car30; Alb50					
		Carbonatisation 30; Albitisation 50					
		Alb : tout est délavé et mou.					
05.70 122.90	0 V	3B; Ciss; QN	105.70	107.20	51608	1.50	0.014
	В	asalte 20°; Cisaillé; Quartz noir 20°					
	В	asalt gris moyen à gtf avec une forte foliation à 50 degrés. Le basalt contient 10% de fragment de quartz					
	n	oir. L'interval include une section avec 50% QN de 119.4 à 120.5.					
	C	ontact inférieur : Net marqué par un changement de couleur et la disparition du QN					
106.50	106.80	Po02	107.20	108.70	51609	1.50	0.521
		Pyrrhotine 2%					
		gm, retrouvé dans la veine de QN					
107.50	111.25	Po03; Py	108.70	110.20	51610	1.50	0.020
		Pyrrhotine 3%; Pyrite	110.20	111.70	51611	1.50	0.682
		gf, diss					
111.25	114.35	Py02; Po; Cp	111.70	113.20	51612	1.50	0.281
		Pyrite 2%; Pyrrhotine; Chalcopyrite	113.20	114.70	51613	1.50	0.431
		Py:gm, diss					
		Po et Cpx : gf, diss					
114.35	119.95	Py05; Au	114.70	116.20	51614	1.50	0.870
		Pyrite 5%; Or natif	116.20	117.70	51615	1.50	2.690
		Gm, diss	117.70	119.20	51616	1.50	8.070
		2 grain d'or sont visible a proximité de 118.9	119.20	120.70	51617	1.50	0.953
440.05	404.40						
119.95	121.40	Po03; Py01	120.70	122.20	51618	1.50	0.659
		Pyrrhotine 3%; Pyrite 1%	122.20	123.70	51619	1.50	0.095
00.00	-	gm, concentré autour du quartz noir	400.70	405.00	E4000	4.50	0.000
2.90 126.25		3B	123.70	125.20	51620	1.50	0.002
		asalte 20°	125.20	126.70	51621	1.50	<0.002
		asalt plus classique vert-gris foncé à gtf. Interval contient des fractures CB et un fragment de quartz à 24.5.					
	C	ontact inférieur : net, marqué par l'augmentation de la granulométrie					

			Description			Analyse		
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)
26.25	143.00		I3A; MAS	126.70	128.20	51622	1.50	0.019
			Gabbro 70°; Massif(ve) 70°	126.70	128.20	51623 (Std)	1.50	4.080
			Gabbro à gf de couleur gris-verdâtre foncé. L'interval contient un tuf (de 126.55 à 129), des fragments de					
			quartz et des sections basaltique.					
			Fragments de quartz : à 129.05 et 138.2					
			Section basaltique : de 136.45 à 137.05 et de 138.7 à 140.					
			Contact infériueur : graduel, marqué par un changement de granulométrie.					
127.4	0	128.25	Py03					
			Pyrite 3%					
			gm, concentré au centre dans une zone déformé					
128.5	5	129.00	TX1					
			Tuf à Xtaux felsique 60°					
			Gris moyen avec 2% lapillis					
138.7	0	140.00	Car20	142.85	144.35	51624	1.50	0.003
			Carbonatisation 20					
			Section basaltique					
43.00	145.70		V3B	144.35	145.85	51625	1.50	0.002
			Basalte					
			Basalt à gtf, légèrement cisaillé avec 10% de fractures CB et 5% de QN.					
			Contact inférieur : graduel, marqué par la disparition des fractures CB et l'augmentation de la granulo					
45.70	150.00		I3A; MAS					
			Gabbro; Massif(ve)					
			Gabbro similaire au précédent. L'interval include un tuf (de 146.75 à 147.3) et deux veinules de quartz					
			concentré à 149.6 et 149.9.					
146.7	5	147.30	TX1					
			Tuf à Xtaux felsique					
			identique au précédent					

150.00 Fin du sondage

Nombre d'échantillons : 22 Nombre d'échantillons QAQC : 2 Longueur totale échantillonnée : 32.40

M-12-72B		Titre minier : Canton :	4303763		Section : Niveau :	
MAGMA		Rang : Lot :			Place de travail : Annie	
DD		Du : Au :	2012-08-23 2012-08-26		Date de description : 2012-0	8-24
				UTM	Annie	Mégane
322.00° -88.00° 153.00 m			Est Nord Élévation	520 632 5 489 615 0	-660 2 044 0	-10 2 14
Profondeur	Azimut	Plongée	Invalide		Description	
9.00 51.00	122.70° 122.90°	-85.40° -84.80°	Non Non	Mag 56610 Mag 56030		-
150.00	119.10°	-84.00°	Non	Mag 56410		
	MAGMA DD 322.00° -88.00° 153.00 m Profondeur 9.00 51.00 102.00	MAGMA DD 322.00° -88.00° -88.00 m 153.00 m Profondeur 9.00 122.70° 51.00 122.90° 102.00 126.30°	Canton: Rang: Lot: DD Du: Au: 322.00° -88.00° 153.00 m Profondeur Azimut Plongée 9.00 122.70° 51.00 122.90° -84.80° 102.00 126.30° -84.10°	NAGMA Lot :	Canton: Rang: Lot: DD Du: 2012-08-23 Au: 2012-08-26 UTM 322.00° -88.00° 153.00 m Profondeur Azimut Plongée Invalide 9.00 122.70° -85.40° Non Mag 56610 51.00 122.90° -84.80° Non Mag 56030 Non Mag 56030 Non Mag 56140	Canton : Niveau : Rang : Place de travail : Annie

luli A ng (01034762)

Dimension de la carotte : NQ Cimenté : Non Entreposé : Oui

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00		3.00		MT				1	9-33-1
				Mort terrain					
3.00		17.25		V3B; MAS					
				Basalte; Massif(ve)					
				Basalt vert foncé à gtf et massif. l'interval conteint une section grisâtre avec quelques fractures (fine)					
				remplit de QN (de 5.4 à 9.3).					
				Contact inférieur : graduel, marqué par une augmentation progressive de la déformation					
	9.30		31.70	Su	12.00	13.50	57245	1.50	<0.002
				Sulfures	13.50	15.00	57246	1.50	<0.002
				Gf à gm, diss	15.00	16.50	57247	1.50	<0.002
					16.50	18.00	57248	1.50	<0.002
					10.50	10.00	37240	1.50	10.002
17.25		82.80		V3B; Ciss; QN					
				Basalte; Cisaillé; Quartz noir					
				Basalte variant de gris clair à gris foncé avec une forte foliation (voir dans l'onglet structure pour les orientations) et une granulométrie très fine. L'interval contient une section massive (de 22.4 à 31.3), une					
				section d'augmetnation progressive de la déformation (de 17.25 à 21.8), des zones avec une plus grande					
				concentration de QN et une section de diminution progressive de la roche avec 5% de fracture CB (de					
				74 à 82.8).					
				Zones avec du quartz noir : de 35 à 35.1 (veines massive), de 45.4 à 47.7 (10% QN), de 53.3 à 54.6					
				(5% QN), de 59.3 à 59.65 (séries de 4 veinules).					
				Contact inférieur : Graduel, marqué par une diminution progressive de la déformation					
	17.25		82.80	Ser+; Car-	18.00	19.50	57249	1.50	<0.002
				Séricitisation forte; Carbonatisation faible					
				L'altération en séricite diminue progressivement à partir de 74m					
	18.25		18.26	FOL-	19.50	21.00	57250	1.50	0.004
				Foliation faible 60°	21.00	22.50	57251	1.50	0.004
	22.00		22.01	FOL+	22.50	24.00	57252	1.50	<0.002
				Foliation forte 45°	24.00	25.50	57253	1.50	0.002
					24.00	25.50	57254 (Bln)	1.50	<0.002
					25.50	27.00	57255	1.50	0.007
					27.00	28.50	57256	1.50	0.021
					28.50	30.00	57257	1.50	0.021
					30.00				
						31.50	57258	1.50	0.019
					31.50	32.25	57259	0.75	0.321

		Description			Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
31.70	35.85	Py03; Po01; Cp					,
		Pyrite 3%; Pyrrhotine 1%; Chalcopyrite					
		Py, gm, idiomorphe, diss. Parfois elle est retrouvé dans de fine fracture					
		Po : gm, diss ua travers de la Py					
		Cpx: gm, diss					
32.00	32.01	FOL+	32.25	33.00	57260	0.75	0.953
		Foliation forte 30°	33.00	33.75	57261	0.75	9.280
			33.75	34.50	57262	0.75	12.300
			33.75	34.50	57263 (Std)	0.75	0.608
			34.50	35.25	57264	0.75	0.691
			35.25	36.00	57265	0.75	0.133
35.85	41.60	Py01; Po01					
		Pyrite 1%; Pyrrhotine 1%					
		Gf à gm, Certaines zones dans l'interval contient une plus grande proportion de sulfure que d'autre					
36.00	36.01	FOL+	36.00	36.75	57266	0.75	0.051
		Foliation forte 15°	36.75	37.50	57267	0.75	0.010
			37.50	38.25	57268	0.75	0.084
38.00	38.01	FOL+	38.25	39.00	57269	0.75	0.424
		Foliation forte 10°	39.00	40.50	57270	1.50	0.028
40.00	40.01	FOL+	40.50	42.00	57271	1.50	0.012
		Foliation forte 25°					
41.60	42.20	Cp; Po	42.00	43.50	57272	1.50	1.620
		Chalcopyrite; Pyrrhotine					
		Gm, diss					
42.20	46.00	Py02					
		Pyrite 2%					
		Gm, idiomorphe carré, diss					
43.00	43.01	FOL+	43.50	45.00	57273	1.50	4.240
		Foliation forte 30°	45.00	46.50	57274	1.50	0.933
			45.00	40.50	37274	1.50	0.555
46.00	46.01	FOL+					
		Foliation forte 40°					
46.00	48.50	Py; Po	46.50	48.00	57275	1.50	0.140
		Pyrite; Pyrrhotine	48.00	49.50	57276	1.50	1.150
		Gm, diss					
48.50	51.70	Py02; Po					
		Pyrite 2%; Pyrrhotine					
		Py: gm, diss, idiomorphe					

				P. controller				Analyse		
				Description		De	A	Numéro	Longueur	Au_Plot (g/t)
	49.00		49.01	FOL+	49	9.50	51.00	57277	1.50	0.185
				Foliation forte 40°						
	51.00		51.01	FOL+	51	1.00	52.50	57278	1.50	0.032
				Foliation forte 30°						
	51.70		53.15	Py03	52	2.50	54.00	57279	1.50	0.046
				Pyrite 3% Gm, diss						
	53.15		55.00	Po00.7; Py00.3	54	4.00	55.50	57280	1.50	0.008
	00.10		00.00	Pyrrhotine 0.7%; Pyrite 0.3%		5.50	57.00	57281	1.50	<0.002
				Gf à gm, diss	000	0.50	37.00	37201	1.50	40.002
	57.00		57.01	FOL+	57	7.00	58.50	57282	1.50	0.015
				Foliation forte 50°	57	7.00	58.50	57283 (Std)	1.50	4.060
					58	8.50	60.00	57284	1.50	0.004
	60.00		60.01	FOL+	60	0.00	61.50	57285	1.50	0.002
				Foliation forte 15°	61	1.50	63.00	57286	1.50	0.003
	63.00		63.01	FOL+	63	3.00	64.50	57287	1.50	0.005
				Foliation forte 10°		4.50		57288	1.50	<0.002
						6.00		57289	1.50	0.008
						7.50		57290	1.50	0.008
	68.00		68.01	FOL+		9.00		57291	0.75	0.230
	00.00		00.01	Foliation forte 20°		9.75		57292	0.75	0.087
	70.50		70.51	FOL+ Foliation forte 30°		0.50		57293	0.75	0.079
				r dilaturi fotto do		0.50		57294 (Bln)	0.75	<0.002
						1.25		57295	0.75	0.014
						2.00		57296	1.50	0.006
						3.50		57297	1.50	0.004
	74.00		74.01	FOL+		5.00		57298	1.50	0.004
				Foliation forte 45°	76	6.50	78.00	57299	1.50	0.006
	78.00		78.01	FOL-	78	8.00	79.50	57300	1.50	0.005
				Foliation faible 50°	79	9.50	81.00	57301	1.50	0.004
					81	1.00	82.50	57302	1.50	0.003
					82	2.50	84.00	57303	1.50	0.004
82.80		89.85		V3B; MAS						
				Basalte; Massif(ve)						
				Basalte noir, à gtf et massif. L'interval est homogène						

							Analyse		
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
89.85	82.80	93.45	89.85	Contact inférieur : net, marqué par une augmetnation de la granulométrie Sil- Silicification faible I3A; MAS Gabbro 60°; Massif(ve) 60° Gabbro gris foncé à gf et massif. L'interval est homogène.					
93.45	92.50	105.00	92.60	Contact inférieur : Graduel sur moins de 10 cm, marqué par une diminution de la granulométrie Po05 Pyrrhotine 5% Gf, concentré dans une fines section déformé V3B; MAS Basalte 80°; Massif(ve) 80° Basalt gris foncé verdâtre à gtf et massif. L'interval contient une section plus fortement déformé avec	99.40	100.90	57304	1.50	0.012
105.00	0	139.00		quelques fragments de QN (de 99.8 à 100.9), des section déformé sans QN et une section trachitique (de 93.95 à 95.4). Section déformé : de 110 à 110.3, de 115.3 à 115.5 (avec 20% de quartz fumé). Contact inférieur : Net, marqué par un changement lithologique. 13B; POR Diabase 70°; Porphyrique / Porphyritic 70° Diabase noir avec 20% de porphyres felsiques (2-4mm de diamètre)					
	110.00 115.30		110.30	Contact inférieur : net, marqué par un retour au basalte Po Pyrrhotine gm, diss	115.20	115.70	57305	0.50	<0.002
139.0	146.10	153.00	150.10	Gf ;a gm, diss V3B; MAS Basalte 50°; Massif(ve) 50° Basalte noir-verdâtre à gtf et massif. L'interval contient seulement une section plus déformé (de 148.8 à 150.1).	146.00 147.50		57306 57307	1.50	<0.002 <0.002
			.55.10	Pyrite 1%; Pyrrhotine 1% Gf à gm. Py : se retrouve dans des fractures CB en amas	149.00	150.50	57308	1.50	0.012

	Decadellas		_	Analyse		
	Description	De	A	Numéro	Longueur	Au_Plot (g/t)
	Po : se retrouve principalement dns la section déformé de 148.8 à 150.1					
153.00	Fin du sondage	1				
	Nombre d'échantillons : 60					
	Nombre d'échantillons QAQC : 4					
	Longueur totale échantillonnée : 78.50		_			

Projet: MONSTER Sondage: M-12-72B

Sondage :	M-12-72C
-----------	----------

Titre minier:

4303763

Section:

Canton: Rang:

Niveau:

Foré par :

MAGMA

Lot:

Au:

Place de travail :

Annie

Décrit par :

DD

Du:

2012-08-25 2012-08-27

Nord

Élévation

Date de description :

Annie

2012-08-26

-Collet

Azimut:

85.00°

Plongée :

-87.00°

Longueur:

162.00 m

UTM Est

520 632

5 489 615

-660 2 044

-108 2 145

0

Mégane

-Déviation

Туре	Profondeur	Azimut	Plongée	Invalide	Description
Flexit	9.00	74.40°	-85.10°	Non	Mag 56930
Flexit	51.00	84.00°	-84.30°	Non	Mag 56320
Flexit	102.00	91.80°	-83.10°	Non	Mag 56380
Flexit	151.00	96.90°	-82.90°	Non	Mag 51700
Flexit	162.00	87.00°	-82.80°	Non	Mag 55470
			1		

	otion

Dimension de la carotte :

NQ

Cimenté: Non

Entreposé : Oui

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00		3.00		MT					
				Mort terrain					
3.00		17.60		V3B; MAS	15.00	16.50	57309	1.50	<0.002
				Basalte; Massif(ve)					
				Basalt gris foncé verdâtre èa gtf avec 2% de fines fractures CB. L'interval commence a avoir certaine					
				défomration dans le dernier mètre.					
				Contact inférieur : graduel, marqué par une augmentation de la séricitisation					
	16.10		18.00	Py01	16.50	18.00	57310	1.50	<0.002
	10.10		10.00	Pyrite 1%	10.50	10.00	0,010	1.50	-0.002
				Gm, diss					
17.60		86.40		V3B; Ciss					
				Basalte; Cisaillé					
				Basalte à gtf généralement gris clair-moyen avec des sections plus foncé. La roche est généralement					
				très bien folié. L'interval inclut une section massive (de 21.65 à 24) et des sections plus riches en QN. Il y					
				a une diminution de la déformation à partir de 79.88 ou il y a apparition de 5% fractures CB.					
				Section plus riche en QN : de 41.15 à 42.6 (une veines de 30 cm avec beaucoup de peties veinules et de					
				fragment, de 69.5 à 69.9 et de 71 à 71.2.					
				Contact inférieur : net, marqué par une augmentation de la granulométrie					
	17.60		86.40	Ser+; Car					
				Séricitisation forte; Carbonatisation					
				LA séricitisation diminue en même temps que le niveau de déformation					
	18.00		18.01	FOL-					
				Foliation faible 45°					
	18.00		34.20	Su	18.00	19.50	57311	1.50	<0.002
				Sulfures	19.50	21.00	57312	1.50	0.160
				Trae de sulgures à gm de Py-Po-Cpx.					
	21.00		21.01	FOL-	21.00	22.50	57313	1.50	0.025
				Foliation faible 60°	22.50	24.00	57314	1.50	0.248
					24.00	25.50	57315	1.50	0.003
					25.50	27.00	57316	1.50	0.079
					27.00	28.50	57317	1.50	0.406
					28.50	30.00	57318	1.50	0.224
	30.00		30.01	FOL+	30.00	31.50	57319	1.50	0.004
				Foliation forte 15°	31.50	33.00	57320	1.50	0.011

		Paradation			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot
32.00	32.01	FOL+	33.00	33.75	57321	0.75	(g/t) 0.022
32.00	02.01	Foliation forte 10°	33.75	34.50	57322	0.75	48.100
			33.75	34.50	57323 (Std)	0.75	0.603
34.20	35.20	Py01	34.50	35.25	57324	0.75	5.680
		Pyrite 1%					
35.20	41.20	gm, diss	35.25	36.00	57325	0.75	0.045
35.20	41.20	Su Sulfures	35.25	36.00	57325	0.75	0.045
		Gm, diss. Py-Po					
36.00	36.01	FOL+	36.00	36.75	57326	0.75	0.024
		Foliation forte 30°	36.75	37.50	57327	0.75	0.018
			37.50	39.00	57328	1.50	0.039
			39.00	40.50	57329	1.50	0.077
40.50	40.51	FOL+ Foliation forte 15°	40.50	41.25	57330	0.75	9.610
41.15	41.50	QZVN; QN					
41.13	41.50	Veines de qtz 45°; Quartz noir 45°					
41.20	43.30	Py04; Po	41.25	42.00	57331	0.75	12.400
		Pyrite 4%; Pyrrhotine	42.00	42.75	57332	0.75	15.800
		Py : gm, idiomnorphique de forpme carré et diss	42.75	43.50	57333	0.75	0.354
						0.75	0.003
			42.75	43.50	57334 (Bln)		
43.30	44.50	Py	43.50	44.25	57335	0.75	0.027
		Pyrite Gm, diss	44.25	45.00	57336	0.75	7.630
44.50	45.30	Py02					
44.50	40.00	Pyrite 2%					
		Gm, carré, diss					
45.00	45.01	FOL+	45.00	45.75	57337	0.75	0.879
		Foliation forte 10°					
45.30	48.40	Su	45.75	46.50	57338	0.75	0.067
		Sulfures	46.50	48.00	57339	1.50	0.010
		Gf à gm, diss					
48.00	48.01	FOL+	48.00	49.50	57340	1.50	0.281
		Foliation forte 15°					
48.40	49.70	Py03	49.50	51.00	57341	1.50	0.164
		Pyrite 3% Gm, diss, carré					
		On, diss, waite					

		Description			Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
49.70	50.80	Su					
		Sulfures					
		Gm, diss					
50.80	52.00	Py02					
		Pyrite 2%					
		Gm, diss, idiomorphe					
51.00	51.01	FOL+	51.00	52.50	57342	1.50	0.155
		Foliation forte 30°	51.00	52.50	57343 (Std)	1.50	4.140
51.20	53.00	FOL					
		Folié(e)					
		FOliation complètement aléatoire et plissé. Impossible d'avoir une orientation précise.					
52.00	71.00	Su	52.50	54.00	57344	1.50	0.016
		Sulfures					
		Trace de gm de sulfure		_			
54.00	54.01	FOL-	54.00	55.50	57345	1.50	0.005
		Foliation faible 45°	55.50	57.00	57346	1.50	0.002
			57.00	58.50	57347	1.50	0.026
			58.50	60.00	57348	1.50	0.003
			60.00	61.50	57349	1.50	0.007
			61.50	63.00	57350	1.50	0.504
63.00	63.01	FOL+	63.00	64.50	57351	1.50	0.035
		Foliation forte 30°	64.50	66.00	57352	1.50	0.009
			66.00	67.50	57353	1.50	0.019
67.50	67.51	FOL+	67.50	69.00	57354	1.50	0.004
*****	01.01	Foliation forte 20°	69.00	70.50	57355	1.50	0.441
			70.50	71.25	57356	0.75	0.004
71.00	71.20	Py02					
		Pyrite 2%					
		Gm, idiomorphe, diss					
71.20	86.40	Su	71.25	72.00	57357	0.75	0.006
		Sulfures	72.00	73.50	57358	1.50	0.014
		gm, diss					
73.50	73.51	FOL+	73.50	75.00	57359	1.50	0.090
		Foliation forte 20°	75.00	76.50	57360	1.50	0.024
			76.50	78.00	57361	1.50	0.009

			Description			Analyse	,	
			Безаграбії	De	A	Numéro	Longueur	Au_Plot (g/t)
78.0	00	78.01	FOL-	78.00	79.50	57362	1.50	0.006
			Foliation faible 45°	78.00	79.50	57363 (Std)	1.50	0.576
				79.50	81.00	57364	1.50	0.043
				81.00	82.50	57365	1.50	0.003
				82.50	84.00	57366	1.50	0.002
				84.00	85.50	57367	1.50	<0.002
				85.50	87.00	57368	1.50	0.002
6.40	105	.50	I3A; MAS	87.00	88.50	57369	1.50	<0.002
			Gabbro 30°; Massif(ve) 30°					
			Gabbro gris foncé à gm et massif. L'interval comprend un diabase porphyriques (de 93.7 à 95.7), un tuf à					
			cristaux (de 98.6 à 98.1) et une section fortement déformé (de 96.55 à 97.4).					
			Contact inférieur : net, marqué par une diminution de la granulométrie					
93.7	70	95.70	13B; POR	96.30	97.60	57370	1.30	<0.002
		33113	Diabase 80°; Porphyrique / Porphyritic 80°	33.33	0.100			0.002
			Dlabase gris foncé à gtf et contenant 15% de porphyres felsiques (5mm, 1% de porphyres mafic).					
			L'interval est marqué par l'absence de porphyre dans les deux extrémités du dyke					
98.6	60	98.90	TX1					
			Tuf à Xtaux felsique 80°					
			Tuf à cristaux avec 2% de lapillis felsiques					
05.50	138	.30	V3B; COU					
			Basalte 80°; Coussiné(e) 80°					
			Basalte gris foncé à noir avec une granulométrie fine. L'interval contient des sections déformées.					
			Sections déformées : de 108.7 à 108.9, de 109.2 à 114.4 et de 127.1 à 127.6 (sections basaltiques					
			verdâtres avec 5% de fractures CB).					
			Contact inférieur : Net, marqué par un changement lithologique					
38.30	140	.40	I3B; POR					
			Diabase 45°; Porphyrique / Porphyritic 45°					
			Diabase gris foncé, gtf, massif contenant 20% de porphyres mm felsiques.					
			Contact inférieur : net, marqué par un retour a un basalte.					
40.40	162	.00	V3B; Ciss					
			Basalte 75°; Cisaillé 75°					
			Basalte gris verdâtre moyen à foncé, gtf et la roche est faiblement cisaillé/déformé. Le basalte contient					
			1-4% de sulfures, principalement Po. L'interval est très homogène dans son hétérogénéité.					
140	.40	146.40	Po01					

		Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plo (g/t)
		Pyrrhotine 1%					
		m, diss dans les sections plus formtement déformée ou dans de fines fractures					
142.75	146.60	Car+	145.40	146.90	57371	1.50	0.023
		Carbonatisation forte					
146.40	147.50	Py02; Po	146.90	148.40	57372	1.50	0.023
		Pyrite 2%; Pyrrhotine					
		Gm, concentré dans des fractures Cb					
147.50	162.00	Po02; Py					
		Pyrrhotine 2%; Pyrite					
		Gf à gm,, généralement diss, souvent il y a de plus grand concentration dans des sections plus					
		circonscrit dans des zones légèrement rubanné.					
152.45	152.75	Car					
		Carbonatisation					
156.00	160.90	Sil					
		Silicification					
160.90	162.00	Sil; Car					
		Silicification; Carbonatisation					

162.00 Fin du sondage

Nombre d'échantillons : 60 Nombre d'échantillons QAQC : 4 Longueur totale échantillonnée : 77.80

	14.40.70		Titre minier :	4303762		Section:		
ondage :	M-12-73		Canton :			Niveau :		
			Rang :			Place de travail :	CSLÉ	
Foré par :	MAGMA		Lot:					
Décrit par :	DD		Du :	2012-06-26		Date de description :	2012-06-27	
			Au :	2012-06-26				
Collet —								
					UTM	Annie	Mé	gane
Azimut :	315.00°			Est	520 6	682	-674	-10
Plongée :	-50.00°			Nord	5 489 6		2 129	2 23
Longueur	: 72.00 m			Élévation	3 403 (0		
				Elevation		0	0	
Déviation ———	-		-					
Туре	Profondeur	Azimut	Plongée	Invalide		Descript	ion	
Flexit	12.00	314.80°	-49.80°	Non	Mag 58570			
Flexit	31.00	315.40°	-49.60°	Non	Mag 56470			
Flexit	72.00	315.60°	-49.90°	Non	Mag 55990			

Cimenté : Non

Dimension de la carotte :

NQ

Entreposé : Oui

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00		5.00		МТ					
				Mort terrain					
5.00		16.00		I1; POR	6.65	8.15	51385	1.50	0.006
				Intrusif felsique; Porphyrique / Porphyritic					
				Roche de couleur gris moyen à gris clair avec de grain très fin. L'interval est presque totalement					
				homogène, il y a une veine de quartz noir (7.3 à 7.35) et une section transitionnel vers un basalt (de 15 à					
				16).					
				Contact inférieur : Graduelle, marqué par un changement radical de couleur.					
	7.15		7.65	Py01					
				Pyrite 1%					
				gm, concentré autour de la veinve de quartz					
	7.30		7.35	QZVN					
				Veines de qtz					
				Veine de quartz noir avec chaque contact à 35 degrés.					
	10.65		15.85	Car60					
				Carbonatisation 60					
				section plus grisâtre					
	15.85		37.90	Car60	15.85	17.35	51386	1.50	0.013
				Carbonatisation 60					
				basalt? plus grisâtre					
16.00		19.90		V2D					
				Trachyte					
				Trachite très fin avec ce qui semble être des cendres. L'interval contient 2 sectiin plus déformé (de 16 à					
				16.4 et de 19.65 à 19.9).					
				Contact inférieur : Marqué par le grossisement des cristaux.					
	16.00		16.40	Py01					
				Pyrite 1%					
				gf, concentré le long d'une veine Cb sub-parallel					
19.90		22.75		V2D					
				Trachyte 80°					
				trachyte a une granulométrie très fine.L'interval es homogène.					
				Contact inférieur : Net, marqué par la disparition des lapillis.					
	22.25		22.40	Py01; Po01					
				Pyrite 1%; Pyrrhotine 1%					
				gf à gm, diss					
22.75		35.60		11	25.70	27.35	51387	1.65	0.003
				Intrusif felsique 30°					

				Decadation			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
				Roche à grain très fin et de couleur gris moyen (légèrement plus foncé que le premier basalt). La première moitier de l'interval semble avoir beaucoup plus déformé (remarque des bandes de différentes concentration ou des petites fractures aléatoire). La seconde moiteir est plus massive. l'interval contient une section avec des petites veines de quartz noir (de 25.7 à 27.2).					
	07.00		07.00	contact inférieur : Graduelle, marqué par l'apparition des fractures remplit de Cb et une légère augmentation de granulo	25.00	20.00	54000	4.50	0.005
	27.00		27.20	Py Pyrite gm, diss. Présence d'une veine de quartz	35.30	36.80	51388	1.50	0.005
	35.40		36.60	Cp; Py Chalcopyrite; Pyrite Gf, concentré autor d'une fracture remplit de Cb					
35.60		39.80		V3B Basalte	36.80 38.30	38.30 39.80	51389 51390	1.50	0.011
				Basalt à grain fin et de couleur vert moyen contenant des fractures remplit de CB (50 degrés d'orientation). L'interval contient une section de gabbro (de 35.6 à 38.3).					
39.80		41.15		Contact inférieur : Net, marqué par l'apparition du quartz noir QZVN; YxQn Veines de qtz 70°; Yeux de quartz noir 70° Quartz à grains grossier de couleur noir , légèrement minéralisé. Interval hétérogène comprenant une section basaltique (de 39.95 à 40.4).					
	39.80		41.25	Contact inférieur : net, marqué par le retour du basalt précédent Su01; Py; Cp Sulfures 1%; Pyrite; Chalcopyrite Gf, parfois en amas.	39.80	41.30	51391	1.50	0.004
41.15		45.25		V3B; YxQn Basalte 70°; Yeux de quartz noir 70° Propriété similaire au précédent. L'interval montre plusieurs fractures remplit de Cb ayant un orientation de 35 degrés.	41.30 41.30 42.80	42.80 42.80 44.30	51392 51393 (Bln) 51394	1.50 1.50 1.50	0.019 <0.002 0.002
45.25		48.55		Contact inférieur : Net, marqué par l'apparition de cendre. V2D Trachyte 40° Roche de couleur gris fondé à noir, très massif ayant des cendres (moins de 1mm)					
				Contact inférieur : net, marqué par la disparition des cendre					

				Description	0 0 0		Analyse		
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
3.55		67.50		V3B; COU	53.15	54.50	51395	1.35	0.012
				Basalte 60°; Coussiné(e) 60°					
				Basalt à gf de couleur noir et massif. Il semble y avoir des évidence de coussin?. L'interval contient des					
				sections déformé, une veine de quartz blanc (57.9 à 58.15). Les deux coté de la veine de quartz sembles					
				montrées l'apparition d'une foliation à 40 degrés.					
				Section déformé :					
				De 51.5 à 52.35 : section avec 10% de fracture Cb					
				de 53.2 à 53.5 : très déformé et possiblement silicifié					
				de 56.2 à 56.5 : grain plus grossier et foliation aléatoire.					
				Contact inférieur : Net, marqué par l'apparition de cendre et quelques lapillis.					
5	3.20		53.40	Sil15					
				Silicification 15					
				très dur et légèrement griâtre/blanc					
5	6.10		56.50	Alb10	57.80	58.25	51397	0.45	0.003
				Albitisation 10					
				section blanc/jaune crème					
5	7.90		58.15	QZVN					
				Veines de qtz.					
				Blanc					
.50		72.00		V2D	67.75	68.75	51396	1.00	0.003
				Trachyte 50°					
				Tuf de couleur gris-moyen à gris foncé légèrement verdâtre. La section montre une section avec des					
				lapillis (de 68.75 à 69.15)					
6	8.60		68.65	Su					
				Sulfures					
				Présent dans une veine de quartz.					

72.00 Fin du sondage

Nombre d'échantillons : 12 Nombre d'échantillons QAQC : 1 Longueur totale échantillonnée : 16.45

				aGold Corporati	-OII		
ondage :	M-12-74		Titre minier :	4303763		Section :	
ondage.	IVI- 12-74		Canton:			Niveau :	
			Rang:			Place de travail : CSLÉ	I^{\bullet}
Foré par :	MAGMA		Lot:				
Décrit par :	DD		Du :	2012-06-27		Date de description : 2012-	07-04
			Au :	2012-07-03			
Collet —							
					UTM	Annie	Mégane
Azimut :	315.00°			Est	520 724	-616	-43
Plongée :	-50.00°			Nord	5 489 645		2 217
Longueur :	120.00 m						
				Élévation	0	0	C
Péviation ———							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	18.00	316.20°	-49.80°	Non	Mag 57000		
Flexit	102.00	316.80°	-50.20°	Non	Mag 56190		
Flexit	120.00	317.10°	-50.20°	Non	Mag 56050		
Description						QA: A	(2002000)
asing laisse en place, i	Trou probablement trop court					Lan D	(01Q34762)
Dimension de la card	rotte: NQ			Cirr	nenté : Non		Entreposé : Oui

Projet : MONSTER

			Description			Analyse		
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00		11.10	МТ					
			Mort terrain					
11.10		14.50	I3A; MAS					
			Gabbro; Massif(ve)					
			Gabbro massif ayant une ganulométrie fine et une grouleur gris foncé.					
			Contact inférieur : net, marqué par la diminution de la granulométrie.					
14.50		16.75	V3B; MAS					
			Basaite 85°; Massif(ve) 85°					
			Basalt à gtf, noir.					
			Contact inférieur : net, marqué par un changement de lithologie					
16.75		19.00	I3B; MAS					
			Diabase 85°; Massif(ve) 85°					
			Diabase a gf et de couleur gris moyen à gris foncé. Il y a des porphyres felsiques (10%, environ 5mm).					
			L'interval est homogene.					
			Contact inférieur : graduelle sur quelques cm, marqué par un changement de lithologies					
19.00		26.50	V3B; MAS					
			Basalte 80°; Massif(ve) 80°					
			Basalt a gf (moins d'un mm) de couleur noir verdâtre et massif. l'interval est homogène.					
			Contact inférieur : net, marqué par une augmentation de granulométrie					
	24.70	26	6.60 Car40					
			Carbonatisation 40					
26.50		30.30	13A; MAS					
			Gabbro 15°; Massif(ve) 15°					
			Gabbro simillaire au précédent.					
			Contact inférieur : net, marqué par une diminution de granulométrie					
30.30		32.30	V3B; MAS					
			Basaite 45°; Massif(ve) 45°					
			Basalt plus grisâtre que le précédent, gf, massif et homogène.					
			Contact inférieur : net, marqué par une augmentation de granulométrie					
32.30		34.25	13A	33.75	34.25	51398	0.50	0.012
			Gabbro 50°					
			similaire au précédent.					
			Contact inférieur : net, marqué par une augmentation de granulo					

				Decadedia			Analyse		. 1
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
	34.05		34.08	QZVN; QN Veines de qtz; Quartz noir					
				Veine carbonaté avec des fragments de quartz noir.					
34.25		35.75		V3B					
				Basalte 30°					
				Idem au précédent					
				Contact inférieur : net, augmentation de granulométrie					
35.75		44.00		I3A; MAS					
				Gabbro 30°; Massif(ve) 30°					
				Gabbro identique au précédent. Interval très homogène.					
				Contact Inférieur : net mais ondulant, marqué par une diminution de granulo et l'apparition de fracture cb.					
44.00		90.95		V3B; COU; QN	44.00	45.50	51425	1.50	0.019
				Basalte 85°; Coussiné(e); Quartz noir 85°	47.00	47.70	51399	0.70	0.002
				Basalt a gtf de couleur noir verdâtre. l'interval contient des section porphyrique et des veines/veinules de					
				quartz noir.					
				Section porphyrique : de 47.3 à 49.5 et de 56.4 à 50.15					
				Veine de quartz : 44.15 (1cm de large, sug parallel a la carotte), de 44.5 à 44.75, 45.25 (1cm de large), 78.55 à 78.75 (fragment de quartz avec des injections séricitisé) et de 86.9 à 90.95 (section avec					
				plusieurs petite veinules sub parallel)					
				Contact inférieur : graduelle sur 10 cm, marqué par l'augmentation de la foliation					
	44.00		46.10	Car25					
	74.00		40.10	Carbonatisation 25					
	50.00		51.50	Car60	52.90	54.50	51400	1.60	0.005
	00.00		01.00	Carbonatisation 60	02.00	04.00	01400	1.00	0.000
	53.75		55.05	Car50	54.50	56.10	51401	1.60	0.004
	00.70		00.00	Carbonatisation 50	0 1100	00110		1,00	0.001
	62.05		62.20	Car20; Seb30					
				Carbonatisation 20; Séricitisation (brune) 30					
				Séricite : brun pâle					
	73.00		73.10	Seb30; Car10					
				Séricitisation (brune) 30; Carbonatisation 10					
				Séricitisation brun moyen					
	85.40		90.95	Po; Py	86.80	88.30	51402	1.50	0.004
				Pyrrhotine; Pyrite	88.30	89.80	51403	1.50	0.007
				Py et Po en trace, gm, diss	74.44				
	89.20		100.90	Car30; Sej10	89.80	91.30	51404	1.50	0.005
				Carbonatisation 30; Séricitisation (jaune) 10					

			Description			Analyse		
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
			Certaine section on de la séricite jaune					
90.95	100.	.90	V3B; Ciss; QN	91.30	92.80	51405	1.50	0.096
			Basalte; Cisaillé; Quartz noir	92.80	94.30	51406	1.50	2.410
			Basalt ayant un teinte plus gris moyen verdâtre, fortement folié à 45 degrées, il y a beaucoup de fragment	92.80	94.30	51407 (Std)	1.50	4.150
			irrégulier de quartz noir. L'interval contient des sections plus riches en quartz noir et des veines de	94.30	95.80	51408	1.50	4.680
			quartz noir massive, c'est section contient des injection séricitisé entre les fragment de quartz.	94.50	95.00	51406	1.50	4.000
			Section avec des fragments de QN: de 93 à 93.3 (50 fragments QN), de 94.5 à 94.7 et de 97.4 à 97.85					
			(semble plus déformé).					
			Contact inférieur : graduelle sur 2cm, marqué par l'apparittion de volcanoclastique.					
90.9	5	97.85	Py02; Po; Au					
			Pyrite 2%; Pyrrhotine; Or natif					
			Gm cubique de couleur doré, diss mais souvent en amas associé au quartz noir					
			Or : Plusieurs grain d'or entre les métrages 97. Environ 8 de repéré.		_			
95.3	5	95.80	QZVN; MAS	95.80	97.30	51409	1.50	5.740
			Veines de qtz; Massif(ve)					
			Veine massive de quartz gris foncé à noir					
96.1	0	96.45	QZVN; QN; MAS	97.30	98.80	51410	1.50	8.970
			Veines de qtz; Quartz noir; Massif(ve)	98.80	100.30	51411	1.50	0.037
			Quartz noir	100.30	101.80	51412	1.50	0.010
100.90	103.	.10	TX1	101.80	103.30	51413	1.50	0.006
			Tuf à Xtaux felsique					
			Roche de couleur gris moyen-foncé à cendre très massif					
			Contact inférieur : net, marqué par le retour du basalt cisaillé.					
103.10	113.	.60	V3B; Ciss					
			Basalte; Cisaillé					
			basalt similaire au précédent à l'exeption que les fragments de quartz ne sont pas tous noir, il y a					
			également du quartz blanc. La foliation est encore à 45 avec une légère variation d'une zone à l'autre.					
			l'interval contien des section riche en quartz blancde 105 à 106.45 et d'autre riche en QN (de 103.5 à					
			104.15)					
			Contact Inférieur : graduelle, marqué par la diminution de la foliation.					
103.	10	113.60	Car25; Sej-10	103.30	104.80	51414	1.50	0.005
			Carbonatisation 25; Séricitisation faible (jaune) 10					
103.	90	104.00	QZVN; QN	104.80	106.30	51415	1.50	0.633
			Veines de qtz; Quartz noir					
			petite veine de quartz noir mélangé avec un peu de blanc					

		Description			Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
105.00	106.00	QZVN					
		Veines de qtz					
		Veine de quartz blanc					
105.45	106.45	Py02; Po	106.30	107.80	51416	1.50	0.062
		Pyrite 2%; Pyrrhotine	107.80	109.30	51417	1.50	0.059
		Py : gm à gf, principalement en Amas entre les fragments de quartz	109.30	110.80	51418	1.50	0.191
		Po : généralement retrouvé au travers de la Py	103.30	110.00	31410	1.50	0.131
110.20	112.35	Po01; Py01	110.80	112.30	51419	1.50	0.080
		Pyrrhotine 1%; Pyrite 1%	112.30	113.80	51420	1.50	0.030
		Py-Po: a gf, concentré en de fine bandes. Ils ne semblent pas nécessairement associé au quartz					
		noir, ils sont fréquamment avec aucun quartz au alentour.					
.60 120	00 V3	BB	113.80	115.30	51421	1.50	0.014
	Ba	asalte	115.30	116.80	51422	1.50	0.007
	Ва	asalt à gtf gris foncé verdâtre homogène. L'interval contient un 0.5m de fracture CB et 2 peitte fracture	115.30	116.80	51423 (Std)	1.50	0.603
	co	ntenant des petits fragment de QN vers la fin de l'interval.	110.00	110.00	01420 (0(0)	1.00	0.000
115.45	115.50	Po02; Cp01	118.70	119.50	51424	0.80	0.002
		Pyrrhotine 2%; Chalcopyrite 1%					
		Gm de Py et Cpx mélangé.					

120.00 Fin du sondage

Nombre d'échantillons : 26 Nombre d'échantillons QAQC : 2 Longueur totale échantillonnée : 36.70

		Toma	Gold Corporation				
Sondage : M-	12-75	Titre minier :	4303763	-	Section :		
Soridage . IVI-	12-75	Canton :			Niveau :		
		Rang:			Place de travail :	Annie	
Foré par :	MAGMA	Lot:					
Décrit par :	DD	Du:	2012-07-03		Date de description :	2012-07-05	
		Au:	2012-07-05				
Collet -	<u> </u>		-				
				UTM	Annie	Méga	ane
Azimut :	315.00°		Est	520 724		-616	-43
Plongée :	-70.00°		Name	F 400 C4F		0.404	2 217
Longueur :	174.00 m		Nord	5 489 645		2 131	2 217

Élévation

Déviation

Туре	Profondeur	Azimut	Plongée	Invalide	Description
Flexit	15.00	312.00°	-69.50°	Non	Mag 57390
Flexit	51.00	314.10°	-69.30°	Non	Mag 56260
Flexit	102.00	314.80°	-69.40°	Non	Mag 56350
Flexit	150.00	315.50°	-69.30°	Non	Mag 56300
Flexit	174.00	313.10°	-69.70°	Non	Mag 55970

Description

Dimension de la carotte : NQ Cimenté : Non Entreposé : Oui

				Decadation			Analyse		
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00		8.95		MT					
				Mort terrain					
				Il y a un bloc ? granitique de 20 cm à la fin du mort terrain					
8.95		12.85		I3A; MAS					
				Gabbro; Massif(ve)					
				Gabbro à gain fin (1mm) de couleur gris foncé, massif. L'interval est très homogène.					
				Contact inférieur : graduelle, marqué par une diminution progressive de la granulométrie					
12.85		37.15		V3B					
				Basalte					
				Basalt noir très fine. L'interval contient une section verdâtre (de 18 à 20.5) avec des fractures Cb et une					
				fracture très déformé en son centre (de 18.8 à 19.05), Ensuit il y a des tuf à cristaux felsique.					
				Tuf à cristaux felsique : de 21.25 à 21.4, de 25.85 à 26.2 et de 26.55 à 27.1					
				Contact inférieur : Graduelle, marqué par une augmentation progressive de la granulométrie					
	12.85		19.60	Car30					
				Carbonatisation 30					
	21.25		21.40	TX1					
				Tuf à Xtaux felsique 45°					
				Tuf contenant des lapillis de 2 à 5mm					
	25.85		26.20	TX1					
				Tuf à Xtaux felsique 70°					
				similaire au précédent					
	25.85		26.55	Car25					
				Carbonatisation 25					
	26.55		27.10	TX1					
				Tuf à Xtaux felsique 55°					
				similaire aux précédent					
	28.25		29.05	Car50					
				Carbonatisation 50					
				la roche a une teinte plus pale					
37.15		56.20		I3A; MAS; FIN					
				Gabbro 25°; Massif(ve); Grains fins 25°					
				Gabbro fin de couleur gris foncé avec une légère teinte de vert. l'interval est homogène mais contient une					
				veine de quartz blanc (de 41 à 41.05)					
				COntact inférieur : graduelle, marqué par une augmentation de granulométrie				A	
	45.15		45.60	Car20	45.30	45.80	51426	0.50	0.003
				Carbonatisation 20					

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
	49.50		50.80	Car20					
				Carbonatisation 20					
6.20		62.10		I3A; MOY					
				Gabbro; Grains moyens					
				Gabbro relativement similaire au pr.c.dent excepter qu'il a une granulométrie plus grossier. Interval					
				homogène et massif.					
				Contact inférieur : Graduelle sur 30 cm, marqué par un changement de granulométrie et de couleur					
2.10		148.15		V3B; POR; QN	68.00	69.00	51427	1.00	0.004
				Basalte; Porphyrique / Porphyritic; Quartz noir	69.00	70.00	51428	1.00	0.009
				Basalt a gtf de couleur noir et contant plusieur fine fracture Cb et des sections avec des porphyres. Sur					
				les 80 m que mesure cette section, la roche a une allure plus ou moins constante. Les éléments qui					
				ressorte sont des petits veine de quartz, des sections plus grossière, du diabase (de 87.4 à 90), section					
				avec des porphyres plus grossier (de 111.85 à 113,85) et une section folié avec des fragment de QN.					
				Quartz fumé : de 69.35 à 69.4 (chaque bordure est séricitisé), à 72.75 (veinule sériciticé en bordure), à					
				95.15 (2 petite veinules mm), de 96.7 à 96.85 (quartz fumé grisâtre foncé), de 121.85 à 121.9 (veinules					
				dans une section un peut plus déformé), à 123.55 (veinule mm), de 125.7 à 126.7 (veinule mm parallel à la					
				carotte et de 129.6 à 129.7 (fracture contenant des fragment de QN).					
				Section plus grossière : de 73.5 à 76.65, de 93.35 à 100					
				Secton plus folié avec des fragments de QN : de 141.1 à 148.15. Augmentation progressive de la foliation					
				et présence de quartz blanc et noir sous forme de fragment irrégulier et de petite veinule					
				Contact inférieur : Graduelle sur plusieurs mètres, marqué par un augmtentation importante de la foliation.					
	69.35		69.50	Po; Cp					
				Pyrrhotine; Chalcopyrite					
				Po - Cpx : gf concentré dans les épontes de la veine de quartz					
	87.40		90.00	I3B; POR	94.80	96.30	51429	1.50	0.002
				Diabase 80°; Porphyrique / Porphyritic 80°					
				Diabase à gf de couleur gris moyen à gris moyen foncé. Il y a une section contenant des					
				porphyrires au centres de l'interval.					
	95.20		95.50	Car20	96.30	97.30	51430	1.00	0.007
				Carbonatisation 20					
	96.70		96.85	QZVN					
				Veines de qtz					
				La veine est grisâtre foncé, elle ne fait pas tout la largeur de la carotte. La veine à probablement été					
				intercepté sur sa bordure.					

			Description			Analyse		
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)
	96.70	96.85	Po; Cp	121.45	122.40	51431	0.95	0.004
			Pyrrhotine; Chalcopyrite					
			Po-Cpx : gf, diss dans le quartz. La po est majoritaire					
	121.85	122.85	Car10; Alb05; Sej10	125.70	127.15	51432	1.45	0.003
			Carbonatisation 10; Albitisation 5; Séricitisation (jaune) 10	125.70	127.15	51433 (Bln)	1.45	<0.002
				129.05	130.05	51434	1.00	0.008
	129.60	129.70	Cp01; Po01	136.50	138.00	51435	1.50	0.002
	.20.00	.200	Chalcopyrite 1%; Pyrrhotine 1%		139.50		1.50	
			gf, diss sur l'interval	138.00	139.50	51436	1.50	0.003
	138.30	138.70	Po	139.50	141.00	51437	1.50	0.003
			Pyrrhotine	141.00	142.50	51438	1.50	0.002
			gf, concentré près des veine de quartz	141.00	142.00	01400	1.50	0.002
	142.35	145.20	Po	142.50	144.00	51439	1.50	0.003
			Pyrrhotine	144.00	145.50	51440	1.50	0.003
			Gf, diss					
	144.05	148.20	Car25					
			Carbonatisation 25					
	145.20	147.00	Po01; Cp	145.50	147.00	51441	1.50	<0.002
			Pyrrhotine 1%; Chalcopyrite	147.00	148.50	51442	1.50	0.017
			Po: gf, diss	147.00	148.50	51443 (Std)	1.50	4.590
			Cp : gf, retrouvé avec la Po					
18.15	165.05	V3E	B; Ciss; QN	148.50	150.00	51444	1.50	0.007
		Bas	salte; Cisaillé; Quartz noir	150.00	151.50	51445	1.50	0.208
			salt à gf de couoleur vert-gris foncé avec une foliation importante à 30-40 degrés. l'interval contient					
			s fragments de quartz noir sur toute la longueur. Les fragments sont principalement concentré dans					
			ux sections (de 150.8 à 152.4 et 156.15 à 157.75). Il y a beaucoup de fractures/fragment de carbonate					
		dan	as la matrice folié.					
		Cor	ntact inférieur : Graduel sur 2 m, marqué par une diminution de la foliation et une augmentation de la					
			nulométrie.					
	148.15	151.20	Po; Cp					
			Pyrrhotine; Chalcopyrite					
			Po - Cpx : gf, concentré autour des fragments de quartz					
	151.20	152.40	Po02; Cp	151.50	153.00	51446	1.50	0.533
			Pyrrhotine 2%; Chalcopyrite					
			Po : gf, concentré en amas					
			Cpx : associé a la Po					
	152.40	156.70	Po; Cp	153.00	154.50	51447	1.50	0.060
			Pyrrhotine; Chalcopyrite					

		Description Analyse De À Numéro Longueur							
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)		
		gf, concentré en amas	154.50	156.00	51448	1.50	0.050		
			156.00	157.50	51449	1.50	0.015		
156.70	160.00	Po01; Cp							
		Pyrrhotine 1%; Chalcopyrite							
		Po : gf, concentré en amas							
		cpx : concentré avec la Po							
156.80	162.55	Car15	157.50	159.00	51450	1.50	0.021		
		Carbonatisation 15	159.00	160.50	51451	1.50	0.003		
		section faiblement carbonisé avec beaucoup de fracture/fragment de Cb	139.00	100.50	31431	1.50	0.003		
160.00	163.40	Po; Cp	160.50	162.00	51452	1.50	0.002		
		Pyrrhotine; Chalcopyrite	162.00	163.50	51453	1.50	0.003		
		Gf, concentré en amas							
			163.50	165.00	51454	1.50	0.003		
			165.00	166.50	51455	1.50	0.005		
5.05 174.0	0 I3A;	QN	168.35	169.35	51456	1.00	0.010		
	Gab	bro; Quartz noir							
	Gab	bro à gf (environ 1mm) de couleur vert sombre moyen. Le gabbro est très homogène et massif.							
	l'inte	erval contient 2 curiosité, soit une veinule (5mm) de quartz (à 168.95) et un diabase porphyrique (de							
	168	95 à 169.9).							
168.95	169.90	I3B; POR							
		Diabase 70°; Porphyrique / Porphyritic 70°							
		Diabase gris foncé à gris moyen avec des porphyrire mm (5% de porphyre).							

174.00 Fin du sondage

Nombre d'échantillons : 29 Nombre d'échantillons QAQC : 2 Longueur totale échantillonnée : 39.40

Sondage: M-12-76 Titre minier:

4303763

Section:

Canton: Rang:

Niveau:

Foré par :

MAGMA

Lot:

Place de travail :

Annie

Décrit par :

DD

Du:

Au:

2012-07-06 2012-07-07

Est

Nord

Élévation

Date de description :

Annie

2012-07-07

-Collet

Azimut:

315.00°

Plongée :

-70.00°

Longueur:

252.00 m

UTM

520 745

5 489 623

-585 2 130

2 209

Mégane

-14

0

-Déviation

	Туре	Profondeur	Azimut	Plongée	Invalide	Description
	Flexit	15.00	313.60°	-69.90°	Non	Mag 56820
Ш	Flexit	51.00	314.80°	-70.20°	Non	Mag 56490
Ш	Flexit	102.00	316.70°	-70.50°	Non	Mag 56300
П	Flexit	150.00	317.50°	-70.50°	Non	Mag 56390
П	Flexit	201.00	319.50°	-71.00°	Non	Mag 56440
П	Flexit	252.00	320.20°	-71.10°	Non	Mag 56056
Ш						
Ш						
Ш						
Ш						
П						
Ιl						

Description

luki A oz (01234762)

Dimension de la carotte :

NQ

Cimenté: Non

Entreposé : Oui

				Description			Analyse		
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00		6.80		MT					
				Mort terrain					
6.80		9.65		V3B					
				Basalte					
				Basalt a gf de couleur noir-verdâtre. L'interval est très fracturé et contient une veine/fracture CB					
				sub-parallel avec des petite fragment de quartz noir					
				Contact inférieur : Graduel que quelques cm, marqué par une augmentation de granulométrie.					
	6.80		8.15	Car40					
				Carbonatisation 40					
				Couleur légèrement plus pâle que la roche autour					
9.65		42.60		V3B; FIN; MAS					
				Basalte; Grains fins; Massif(ve)					
				Gabbro à gf (environ 1mm) de couleur gris-verdâtre foncé. L'interval contient des sections basaltique,					
				des veines/veinules de Qtz et un dyke? felsique.					
				Section basaltique : de 16.7 à 18 (contact à 20 degré de chaque coté), de 20.35 à 22.45 (chaque contact					
				est a 40 degré) et de 23 à 23.7.					
				Dyke felsique : de 32.45 à 32.9. roche très fine de couleur gris légèrement violacé.					
				Veines/veinules de quartz : à 20.6 (moins d'un cm de large), de 33.75 à 33.8 (fracture de 5cm de large					
				carbonaté avec plusieurs fragment de quatz noir) et 38.9 à 39.8 (Section contenant beaucoup de fracture					
				Cb avec des fragment de quartz noir et blanc.					
				Contact inférieur : Net, marqué par l'apparition de lalillis millimétrique (mm)					
	20.35		21.25	Car20	20.35	20.90	51457	0.55	0.004
				Carbonatisation 20					
				section basaltique					
	20.59		20.61	Su					
				Sulfures					
				Gf de sulfure en trace					
	23.00		23.70	Car50	33.25	34.25	51458	1.00	0.004
				Carbonatisation 50					
	33.75		33.80	Po; Cp	36.00	37.00	51459	1.00	0.003
				Pyrrhotine; Chalcopyrite	38.70	40.10	51460	1.40	0.004
				Tout deux à gf diss au travers du quartz					
	38.90		39.80	Cp; Po					
				Chalcopyrite; Pyrrhotine					
				Zone plus large que les précédents. Les sulfures sont à gf et diss					

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
42.60		43.30		TX1					
				Tuf à Xtaux felsique 50°					
				Roche à grain fin de couleur gris moyen avec des lapillis mm. Les lapillis sembles être orienté dans le					
				même angle que les contacts inférieur et supérieur.					
				Contact inférieur : net, marqué par la disparition de lapillis.					
43.30		55.20		V3B	45.65	46.55	51461	0.90	0.014
				Basalte 50°					
				Basalt à gf et de couleur noir verdâtre. l'interval contient beaucoup de petite fracture CB et donc une					
				avec des fragment de QN (de 46.05 à 46.15).					
				Contact inférieur : Net, marqué par un changement de lithologie					
55.20		57.10		13B					
				Diabase 80°					
				Diabase à gf contenant des porphyre allant de 2 à 5mm. Sa couleur est gris moyen et est homogène sur					
ı				toute l'interval					
				Contact inférieur : Net marqué par un changement lithologique					
57.10		65.45		I3A; MAS					
				Gabbro 45°; Massif(ve) 45°					
				Gabbro à gf de couleur gris foncé, massif. L'interval est homogène.					
				Contact inférieur : net marqué par la diminution de granulométrie					
	57.40		57.50	Sej20; Alb10					
				Séricitisation (jaune) 20; Albitisation 10					
				Section plus blanchâtre					
	57.40		57.50	Po01; Cp	58.00	59.00	51462	1.00	0.003
				Pyrrhotine 1%; Chalcopyrite	58.00	59.00	51463 (Std)	1.00	0.714
				Po : 1% est peut-être un peu généreux, gf et diss					
				Cpx : se retrouve au travers de la Po					
	65.15		69.10	Car70					
				Carbonatisation 70					
				Section plus claire et basaltique					
65.45		68.90		V3B; MAS	66.00	67.50	51464	1.50	0.004
				Basalte 45°; Massif(ve) 45°	67.50	69.00	51465	1.50	<0.002
				Basalt a gtf de couleur gris moyen, massif. l'interval contient plusieurs fracture CB.					-1000
				Contact inférieur : net, marqué par l'augmentation de granulométrie					
68.90		92.75		I3A; MAS; QN	70.00	71.15	51466	1.15	0.003
				Gabbro 50°; Massif(ve); Quartz noir 50°					

	Description			Analyse		
	Description	De	A	Numéro	Longueur	Au_Plot (g/t)
	Gabbro a gf, de couleur gris-verdâtre, massif. L'interval contient des sections plus déformé avec des					
	fragments de quartz irrégulier et une section basaltique à porhpyre (de 74.6 à 75.2).					
	Section déformé avec fragments de quartz : de 70.2 à 70.9 (les fragments de quartz sont centimétrique et					
	situé au centre de la zone déformé à l'intérieur d'une fracture carbonaté), de 83.15 à 83.75 (fracture Cb					
	avec 85% de fragment de quatz fumé à noir. Les fragments sont arrondis et d'environ 1 cm de diamètre)					
	et à 85.1 (fracture de 1 cm de large avec des petits fragment de quartz légèrement fumé).					
	Contact inférieur : graduel sur près de 0.5m, marqué par une diminution de granulométrie.					
70.20 70	0 Cp01; Po					
	Chalcopyrite 1%; Pyrrhotine					
	Probablement la zone la plus intéressante jusqu'à mainenant dans ce sondage. Sulfure diss à gf.					
	Les sulfures se retrouve principalement au contact des fragments de quartz avec la roche					
	encaissante.					
74.60 75	0 V3B; POR	83.10	84.10	51467	1.00	0.003
	Basalte 25°; Porphyrique / Porphyritic 25°					
	Basalt a gtf contenant des 2 % de porphyres mm. Contact inférieur net à 60-70 degrés.					
84.70 85	5 Car30					
	Carbonatisation 30					
	section légèrement plus fine					
2.75 116.60	V3B	93.30	94.30	51468	1.00	0.009
	Basalte					
	Basalt gtf de couleur noir avec des teintes de vert foncé et contenant par momment des porphyees felsic.					
	L'interval est relativementr homogène et contient régulièrement des fractures CB. Les éléments qui					
	ressorte de l'interval est une section déformé (de 93.3 à 94, la section se termine par des fragments de					
	quartz noir), une section contenant une veinules (moins 1cm de large) de quartz noir sub-parralel à la					
	carotte (de 106.75 à 108.25) et une section plus grossière (de 108.5 à 114.05).					
	Contact inférieur : Net, marqué par une augmentation de granulométrie					
93.80 94	0 Ср; Ро	106.75	108.25	51469	1.50	0.003
	Chalcopyrite; Pyrrhotine					
	Cpx : en plus grande proportion. Gf, diss					
	Po: gf, diss					
6.60 151.50	I3A; MAS					
	Gabbro 45°; Massif(ve) 45°					
	Gabbro plus fin que le précédent de couleur gris foncé. La roche est massive et relativement homogène					
	sur toute la longueur. L'interval include des zones basaltique porphyrique, une zone silicifié (de 142.1 à					
	142.25) et une section contenant des fragments de quartz noir dans une fracture Cb (de 142.8 à 143.2)					
	Section basaltique à porphyre : de 124.5 à 126.6 (3% porphyre, les contacts sont graduelle sur quelques					

		Description			Analyse				
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)		
		cm), de 139.15 à 140.4 (5% de porphyre, contact net à 55 degrés) et de 149.1 à 150.45 (2% porphyre,					9		
		contacts net à 40 degrés).							
		Contact inférieur : graduel, marqué par une diminution de la granulométrie.							
142.10	142.25	Alb40	142.10	143.60	51470	1.50	0.002		
		Albitisation 40							
		section blanc-rosé crèmeux.							
51.50 216.30		V3B; POR	152.00	153.00	51471	1.00	0.002		
		Basalte; Porphyrique / Porphyritic							
		Basalt à gtf de couleur gris-très foncé verdâtre. Dans l'ensemble le basalt est très hétérogène et contient							
		des fractures Cb. l'interval contient des sections déformées avec des textures brèchiques, des							
		veines/veinules et/ou fragment de quartz noir,							
		Section déformé : de 160.8 à 161.6,							
		de 164.4 à 164.65 (texture brèchique à l'intérieur de la fracture CB),							
		de 166.3 à 166.65,							
		de 176.15 à 176.6 (une section de 2 cm au sommet et une section de 10cm à la base),							
		de 178.5 à 179.55 (section déformé avec beaucoup de fracture CB dans lequel des fragments de QN est							
		retrouvé),							
		de 187.3 à 187.75 (section déformé avec beaucoup de fracture Cb et des fragments de Qn mm) et de							
		194.2 à 194.35 (section brèchique),							
		Fragment de QN : à 156.9 (fragment dans une fracture Cb, vracture de 1cm de large), de 164.1 à 164.25							
		(Fragment centimétrique retrouvé dans une séricitisé),							
		de 178.5 à 179.55 (fragment dans des fractures CB), à 181.2 (gros fragment centimétrique seul),							
		de 184.9 à 185.35 (quelques veinules et fragments de quartz mm dans une zone altéré),							
		à 191.1 (fragment de quartz mm dans une fracture CB), à 193.7 (veine de 1cm de QN), de 195.8 à							
		195.85 (2 petites fracture CB avec des fragments de quartz noir),							
		de 199.95 à 200.3 (veines ou très gros fragments de quartz fumé dans une section séricitisé) et							
		de 205.75 à 205.85 (Contient 5% de fragment de quartz fumé angulaire).							
		Contact inférieur : graduel sur 0.5m, marqué par l'apparition d'un cisaillement							
152.20	161.60	Po; Cp	160.60	162.10	51472	1.50	0.003		
		Pyrrhotine; Chalcopyrite							
		Po - Cpx : gf, principalement concentré dans les secteurs montrant des fragments de quartz noir							
		ou des veinules CB. La minéralisation se présente souvent en amas.							
160.80	161.60	Car30	163.80	164.80	51473	1.00	0.003		
. 55.50	.000	Carbonatisation 30							
		was a constituted in the constitution of the c	163.80	164.80	51474 (Bln)	1.00	0.010		
164.10	164.25	Sil50							
		Silicification 50							

		Description		Analyse					
		резсприон	De	À	Numéro	Longueur	Au_Plo (g/t)		
		roche verdâtre clair							
164.10	164.65	Po01; Cp	166.05	167.10	51475	1.05	0.003		
		Pyrrhotine 1%; Chalcopyrite							
		Po - Cpx : gf, diss dans la fracture CB souvent en bordure des fragments de quartz							
166.30	166.65	Po01	175.80	176.80	51476	1.00	0.004		
		Pyrrhotine 1%							
		gf, diss en bordure es gf de quartz							
176.05	176.70	Po							
		Pyrrhotine							
		gf, concentré dans les sections brèchique							
178.50	179.55	Po; Cp	178.60	179.60	51477	1.00	0.468		
		Pyrrhotine; Chalcopyrite	181.10	182.60	51478	1.50	0.005		
		Po - Cpx : gf, diss	184.30	185.80	51479	1.50	0.014		
			104.00	100.00	01473	1.00	0.014		
184.90	185.35	Sil50							
		Silicification 50							
		roche plus clair que la roche encaissante							
184.90	185.40	Po02; Cp	187.15	188.15	51480	1.00	0.003		
		Pyrrhotine 2%; Chalcopyrite							
		Po : gf, concentré entre dans les petites fractures							
		Cpx : Diss au travers des amas de Po							
187.30	187.75	Po01; Cp	191.00	192.50	51481	1.50	0.003		
		Pyrrhotine 1%; Chalcopyrite	193.50	194.50	51482	1.00	0.045		
		Po : gf, concentré dans une petite band parallel à la carotte	193.50	194.50	51483 (Std)	1.00	4.530		
		Cpx: diss							
193.60	193.80	Cp03; Po02							
		Chalcopyrite 3%; Pyrrhotine 2%							
		Cpx : gf, concentré en pourtour de la veine de quartz fumé/noir							
		Po : gf, concentré autour de la veine de quartz							
195.15	196.10	Car30	195.45	196.45	51484	1.00	0.006		
		Carbonatisation 30	199.65	200.60	51485	0.95	0.014		
		Les deux extrémité sont brunâtre							
199.85	200.40	Po02; Cp	204.30	205.20	51486	0.90	0.004		
		Pyrrhotine 2%; Chalcopyrite							
		Po : gf, concentré dans ou en bordure du fragment de quartz fumé							
		Cpx : concentré dans/ou en bordure du fragment de quartz							
204.40	204.85	Py02							
		Pyrite 2%							
		Gm, diss, grain cubique certain presque idiomorphe							

		Description		Analyse						
				A	Numéro	Longueur	Au_Plot (g/t)			
206.70 20	07.35	Car30	210.60	211.50	51487	0.90	0.004			
		Carbonatisation 30								
		roche plus pâle								
210.95 21	11.10	Py; Po								
		Pyrite; Pyrrhotine								
		Py - Po : gm, diss en amas								
214.90 21	16.50	Po								
		Pyrrhotine								
		gf, diss								
215.05 21	16.20	Car35								
		Carbonatisation 35								
		roche légèrement plus clair que la roche encaissante								
216.30 219.10	V	/3B; M25; Ciss; QN								
	В	Basalte; Mylonite; Cisaillé; Quartz noir								
	R	Roche, probablement du basalt, brun grisâtre biotisé et chloritisé avec 25% de quartz (blanc et fumé).								
	С	Contact inférieur : Graduel, marqué par une diminution de la foliation								
216.30 21	19.10	Car25	216.30	217.80	51488	1.50	0.009			
		Carbonatisation 25								
216.50 21	19.10	Po	217.80	219.30	51489	1.50	0.005			
		Pyrrhotine								
		Gf, diss								
219.10 223.30	V	/3B; MAS								
	В	sasalte; Massif(ve)								
	В	asalt a grain fin de couleur vert-sale foncé. Roche homogène avec des fractures CB.								
	С	Contact inférieur : graduel sur 10 cm, marqué par l'augmentation de la foliation.								
219.10 25	50.05	Car10	221.80	223.30	51490	1.50	0.005			
		Carbonatisation 10								
223.30 250.05	V	/3B; Ciss; RUB	223.30	224.80	51491	1.50	0.028			
	В	Basalte; Cisaillé; Rubané / Ribbon	224.80	226.30	51492	1.50	0.277			
	В	Basalt a gf de couleur vert-sale foncé avec 15% de fracture carbonaté. La roche est moins cissaillé que								
		a zone précédente. Les fractures n'ont pas d'orientation spécifique. Il y a quelques petit fragment de								
	q	uartz fumé disséminé sur la longueur de l'interval et il y a également un background de sulfure d'environ								
	1	à 2%. dans les derniers mêtres de l'interval, il est remarqué une diminution du niveau de déformation.								
	С	Contact inférieur : graduel sur quelques cm, marqué par une roche massif et homogène								
223.30 22	26.00	Po01								
		Pyrrhotine 1%								
		gf, en amas. Les amas sont diss								

		Description		Analyse					
				À	Numéro	Longueur	Au_Plot (g/t)		
226.00	227.00	Po05	226.30	227.80	51493	1.50	0.154		
		Pyrrhotine 5%							
		fg, suit les bandes de la foliation							
227.00	227.55	Po01							
		Pyrrhotine 1%							
		fg, diss							
227.55	228.10	Po04; Cp	227.80	229.30	51494	1.50	0.432		
		Pyrrhotine 4%; Chalcopyrite							
		Po : fg, concentré dans les bands Cb							
		Cpx : concentré dans les amas de Po							
228.10	229.90	Po01	229.30	230.80	51495	1.50	0.460		
		Pyrrhotine 1%							
		fg, diss							
229.90	230.30	Po04							
		Pyrrhotine 4%							
		fg, diss dans les fractures							
230.30	232.80	Po01	230.80	232.30	51496	1.50	0.189		
		Pyrrhotine 1%	232.30	233.80	51497	1.50	1.640		
		gf, diss							
232.80	233.10	Po03							
		Pyrrhotine 3%							
		gf, diss							
233.10	250.05	Po	233.80	235.30	51498	1.50	0.164		
		Pyrrhotine	235.30	236.80	51499	1.50	0.015		
		Gf, diss	236.80	238.30	51500	1.50	0.013		
			238.30	239.80	51501	1.50	0.018		
			239.80	241.30	51502	1.50	0.039		
			241.30	242.80	51503	1.50	0.005		
					51504				
			242.80	244.30		1.50	0.022		
			244.30	245.80	51505	1.50	0.002		
			245.80	247.30	51506	1.50	0.007		
			247.30	248.80	51507	1.50	0.004		
			248.80	250.30	51508	1.50	0.031		
252.									
		bbro 45° bbro à gf de couleur gris moyen à gris foncé, massif et homogène.							

Professional Control of the Control	
Longueur totale échantillonnée : 63.30	

Projet: MONSTER Sondage: M-12-76 9 / 9

Sondage: M-12-77 Titre minier:

4303763

2012-07-10

Est

Nord

Élévation

Section:

Canton: Rang:

Niveau:

Annie

Foré par :

MAGMA

Lot:

Au:

Place de travail:

Décrit par :

DD

Du: 2012-07-09 Date de description :

2012-07-09

-Collet

Azimut:

315.00°

Plongée :

-64.00°

Longueur:

285.00 m

UTM

520 750

5 489 548

Annie

28 2 146

Mégane

-Déviation

	Туре	Profondeur	Azimut	Plongée	Invalide	Description
Fle	exit	24.00	314.00°	-64.90°	Non	Mag 57080
Fle	exit	51.00	315.50°	-65.20°	Non	Mag 56620
Fle	exit	105.00	316.00°	-65.20°	Non	Mag 56360
Fle	exit	150.00	317.40°	-65.60°	Non	Mag 56760
Fle	exit	201.00	317.60°	-66.00°	Non	Mag 56650
Fle	exit	252.00	318.50°	-66.60°	Non	Mag 56380
Fle	exit	285.00	318.90°	-66.40°	Non	Mag 56280
╽┕						

D				

Casing en place. J'ai peut-être décidé d'arrêter le trou un peu trop tôt. Il a été arrêté a minuit dans la nuit du 10 au 11 juillet. Dans la dernière section, on voit quelques fragments de quartz angulaire de 1 cm ainsi que des trâces de sulfure (Po)

luki A ig (01234762)

Dimension de la carotte :

NQ

Cimenté: Non

Entreposé : Oui

			Description			Analyse		
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00	18.70		MT					
			Mort terrain					
8.70	24.70		TX1	18.70	19.65	51509	0.95	0.002
			Tuf à Xtaux felsique					
			Tuf a Xtaux felsique ??? J'ai affaire a une roche cisaillé et déformé. Sa couleur est gris-verdâtre					
			relativement pâle par momment c'est uniquement une matrice felsique ne réagissant pas à l'acide avec					
			des fragments (dont du QN) de taille de bloc. Le premier mètre de l'interval est très détrui (probablement					
			causé par les vibration de la drill.					
			Contact inférieur : graduel, marqué par un changement de lithologie (basalt)					
19.30)	21.35	Py03; Po	19.65	21.15	51510	1.50	0.009
			Pyrite 3%; Pyrrhotine	21.15	22.65	51511	1.50	0.028
			Py - Po : gf se retrouve principalement dans les petites fractures entre les fragment.					
21.20)	21.65	Car35	22.65	24.15	51512	1.50	0.007
			Carbonatisation 35	22.65	24.15	51513 (Std)	1.50	4.180
			Section plus grisâtre	22.65	24.15	51514 (Bln)	1.50	<0.002
				24.15	25.65	51515	1.50	0.030
24.70	43.30		V3B; MAS					
			Basalte; Massif(ve)					
			Basalt gtf de couleur gris foncé contenant de fines fractures CB. L'interval est relativement homogene					
			mais contient une zone déformé et une section avec 2 veines/fragment de quartz fumé (de 35.15 à 35.2).					
			Zone déformé : de 25.05 à 25.35 et de 25.5 à 25.6 (section comprenant du quartz fumé).					
13.30	69.80		I3A; MAS	48.05	49.55	51516	1.50	0.003
			Gabbro; Massif(ve)					
			Gabbro à gf de couleur gris foncé avec avec une petite teinte de vert foncé. Le gabbro est massif et très					
			uniforme sur la longueur. l'interval contient un diabase (de 48.75 à 51.95), des fracture CB avec des					
			fragments de quartz fumé et une section basaltique (de 65.7 à 66.2).					
			Fracture Cb avec fragments de quartz : à 54.38 (1cm se large) et de 66.2 à 66.55 (fracture sub parallel					
			de 1 cm de large).					
			Contact inférieur : graduel, marqué par une diminution de la granulométrie					
48.75	5	51.95	13B					
			Diabase 50°					
			Diabase à gtf avec 15% de porphyre felsic mm. Les deux contacts sont net à 50 degrés. Les deux					
			contact montre une bande réactionnel, plus important à la base.					
48.85	5	49.00	Cp; Po					
			Chalcopyrite; Pyrrhotine					

		Description			Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
		Cpx - Po : gf, diss. La Cpx est la plus importante					
65.70	66.45	Car15					
		Carbonatisation 15					
65.70	66.45	Po; Cp	65.80	66.90	51517	1.10	0.003
		Pyrrhotine; Chalcopyrite	66.90	68.40	51518	1.50	0.004
		Gf, diss. Plus grande proportion de Po					
67.50	67.70	Py02; Po	69.35	70.85	51519	1.50	0.004
		Pyrite 2%; Pyrrhotine					
		Py-Po : gm, concentré dans une veinule de quartz					
9.80 88.50		V3B					
		Basalte					
		Basalt à gf et de couleur gris foncé . Le basalt contient des fractures fines CB. Le basalt devient plus					
		grossier à partir de 74.5 (se rapproche d'un gabbro très fin). La zone plus fine situé avant 74.5 est					
		également plus déformé. l'interval contient deux élément intéressant. Le premier est une fracture Cb de					
		2cm de large contenant du QN (à 75.45) et l'autre est une section altéré qui a en sont centre une fracture					
		CB avec du QN (de 83.15 à 83.4).					
		Contact inférieur : graduel, marqué par l'augmentation de granulométrie					
69.80	70.65	Car40					
		Carbonatisation 40					
		Dans la section déformé					
75.20	75.75	Car10	83.05	84.55	51520	1.50	0.002
		Carbonatisation 10					
83.15	83.40	Sej20					
		Séricitisation (jaune) 20					
		séricitisation ? dans les fractures					
83.15	83.40	Po					
		Pyrrhotine					
		gf, concentré dans fracture CB					
84.50	84.55	Car40					
		Carbonatisation 40					
84.50	84.55	Cp; Py; Po					
		Chalcopyrite; Pyrrthotine					
		gf, concentré dans la veinules de quartz légèrement fumé					
8.50 93.65		I3A; MAS					
		Gabbro; Massif(ve)					
		Gabbro à gf de couleur vert-noir foncé. La roche st masive et homogène					
		Contact inférieur : net marqué par la diminution de granulométrie					

	Description			Analyse		
	Description	De	A	Numéro	Longueur	Au_Plot (g/t)
93.65 95.30	V3A					
	Basalte andésitique 55°					
	Basalt de couleur gris moyen à gris foncé, à granulométrie fine et homogène.					
	Contact inférieur : net, marqué par le changement de lithologie et l'augmentation de la granulo					
95.30 102.65	12J	101.10	102.00	51521	0.90	0.003
	Diorite 45°					
	Diorite à gf contenant 15 % de minéraux felsic souvent en batonnet. La roche contient des fracture Cb.					
	Dans l'ensemble la roche est homogène. L'interval contient une section avec deux petites veinules de					
	quartz mm à 101.45.					
	Contact inférieur : graduel sur 10 cm, marqué par la diminution de granulométrie.					
101.30 10	55 Cp; Po					
	Chalcopyrite; Pyrrhotine					
	gf, diss dans lesw fracture CB					
102.65 104.55	V3B	103.50	105.00	51522	1.50	0.025
	Basalte 60°	103.50	105.00	51523 (Std)	1.50	0.633
	Basalt a gf de coueleur vert foncé contenant 10% de fracture carbonaté et 2% de fragment de quartz					
	noir.				91	
	Contact inférieur : net, marqué par un changement de couleur et apparition d'une foliation					. • 1
104.55 111.35	I1; MAS	105.00	106.50	51524	1.50	<0.002
	Intrusif felsique 30°; Massif(ve) 30°	106.50	108.00	51525	1.50	<0.002
	Intrusif felsic gris moyen à gf contenant une bonne foliation à 30 degrés et 5% de QN réparti sous forme	108.00	109.50	51526	1.50	0.003
	de fragment sur l'interval.					
	Contact inférieur : net, marqué par un changement de granulométrie.					
104.55 10	35 SII					
	Silicification					
	Roche blanchâtre semblant avoir été délavé.					
108.35 11		109.50	111.00	51527	1.50	<0.002
	Carbonatisation 30					
	légèrement plus pâle que la roche précédente.					
111.35 114.80	13B					
	Diabase 30°					
	Diabase a gf, gris moyen à gris foncé avec 15% de minéraux felsique. l'interval est toalement homogène.					
	Contact inférieur : graduel, marqué par un changement de granulométrie et une transition progressive					

		Description			Analyse				
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)		
	,	vers un basalt.							
113.80	128.10	Car20; Car40							
		Carbonatisation 20; Carbonatisation 40							
		De 20 à 40% de carbonisation selon la section. Géréralement plus verdâtre.							
14.80 128	.10	V3B	119.90	121.10	51528	1.20	0.005		
		Basalte 40°							
	1	Basalt à gf, vert moyen à vert foncé. de 114.8 à 117.25, le basalt est beaucoup plus noir avant d'aller							
		prendre sa couleur verte. l'interval contient des veinules de quartz noir et des fractures CB contenant							
	,	des fragments de QN.							
		Veinules de QN : à 116.3,							
		Fracture CB avec QN : de 120.2 à 120.75 et de 124.95 à 125.75.							
		Contact inférieur : graduel sur 2 cm, marqué par l'augmentatyion de la granulométrie							
120.15	120.45	Po01	124.50	126.00	51529	1.50	0.024		
		Pyrrhotine 1%							
		fg, diss							
28.10 165	.65	3A; MAS; QN							
		Gabbro 20°; Massif(ve); Quartz noir 20°							
		Gabbro gris foncé à gf et massif. La roche reste constant sur la totalité de l'interval. L'interval contient							
	,	des fractures Cb avec des fragments de quartz (noir ou blanc), deux veines de quartz et du diabase (de							
		148.9 à 149.65)							
		Fracture Cb avec du quartz : à 134.6, de 148.8 à 148.9, à 150.75, à 160.3,							
	,	Veine de quartz : de 138.7 à 138.9 (blanc et massif) et de 157.2 à 157.7 (plusieurs veines mm à cm)							
		Contact inférieur : net, marqué par l'apparition de lapillis							
128.10	165.65	Cp; Po	129.25	130.25	51530	1.00	0.004		
		Chalcopyrite; Pyrrhotine	138.40	139.40	51531	1.00	0.010		
		tout deux à gf, son principalement retrouvé dans des fractures CB avec ou sans fragment de							
		quartz. Il y a une zone avec 1% de Cpx à gm (de 129.7 à 129.85).							
138.70	138.90	QZVN							
		Veines de qtz 80°							
		Veine de quartz blanc massif avec quelque fragment de Qn en bordure.							
148.90	149.65	13B	150.30	151.00	51532	0.70	0.003		
		Diabase 80°	157.00	158.00	51533	1.00	<0.002		
		Diabase à gf avec 5% de porphyre de 2mm de diamètre. Couleur gris moyen							
157.20	157.70	QZVN; QN							
		Veines de qtz 50°; Quartz noir 50°							

		Description			Analyse			
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)	
		Plusieurs veine de quartz mm à cm, dont la majorité est noir.						
165.65	173.15	TX1	171.60	172.60	51534	1.00	< 0.002	
		Tuf à Xtaux felsique						
		Tuf avec 15% de cristaux felsique (environ 5mm de diamètre). Le tuf contient des sections avec une						
		moins grande proportion de lapillis, ainsi que plus petie.						
		Section avec 10% de lapillis de 1-2mm : de 168.45 à 169.4 et de 170.25 à 170.65						
		Section avec 35 % de lapillis mafic et felsic de 5 à 8 mm : de 171.75 à 173.15						
		Contact inférieur : net, marqué par la disparition des lapillis.						
172.20	172.40							
		Pyrrhotine 1%; Chalcopyrite						
		gf, concentré dans une fine bande						
73.15	182.60	13A	179.20	180.70	51535	1.50	0.003	
70.10	102.00	Gabbro 80°						
		Gabbro identique au précédent. l'interval contient une fracture CB avec des fragments de quartz (à	180.70	182.20	51536	1.50	0.018	
		179.4, 1cm de large avec des fragments de 5mm).	182.20	183.70	51537	1.50	<0.002	
		Contact inférieur : graduel sur 50 cm, marqué par une diminution de granulométrie.						
182.60	280.65	V3B; QN	183.70	185.20	51538	1.50	<0.002	
		Basalte; Quartz noir						
		Basalt vert-noir foncé (de 182.6 à 193.3), noir légèrement verdâtre (de 193.3 à 218.4 et de 258 à 280.65)						
		et gris foncé (de 218.4 à 258. La section verdâtre est rtès hétérogène marqué par plusieurs changement						
		de couleur et un changement de l'orientation des fractures CB (de 45 degrée jusqu'à 15 degrée). La						
		section noir est homogène et massif. L'interval contient des sections plus déformé avec des fragments de						
		quartz., une veine de quartz blanc (de 220.40 à 220.6)						
		Section déformé avec des fragments de quartz noir : de 184.6 à 188.15 (fragment des les zones CB), de						
		191.1 à 193.4 (fragment dans les fractures CB), 194.85 à 195.35, de 217.1 à 218.4 (Section à texture						
		brèchique par endroit et avec des fractures de CB avec des fragment de QN), de 229.3 à 229.45, de 231						
		à 231.35, de 238.15 à 238.45 (section légèrement mylonitisé avec un sulfure semi-massif en Po, de						
		241.85 à 242.3 (section plus déformé avec des veines de quartz fumé, de 252.9 à 253 et 269.8 à 270.15						
		(section à texture légèrement brèchique avec sulfure).						
		Veine de quart : 242.1 à 242.3 (quartz fumé), à 257.15 (5mm),						
		Notice des foreurs : la roche était très dure à foré (45 min pour 3 m) à partir sur basalt noir et relativement						
		homogène.						
		Contact inférieur : Graduel sur 10cm, marqué par l'apparition d'une foliation importante à 45 degrés.						

Description		Description	4 = 0		Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
182.60	185.50	Ser					
		Séricitisation (indéterminée)					
		La roche est plus pâle que le reste.					
184.60	187.30	Ру	185.20	186.70	51539	1.50	<0.002
		Pyrite	186.70	188.20	51540	1.50	<0.002
		gf, concentré dans les zones avec des fragments de QN					
186.85	187.30	Car15; Ser					
		Carbonatisation 15; Séricitisation (indéterminée)					
		Section de couleur vert-sale moyen					
188.10	188.11	Alb	188.20	189.70	51541	1.50	0.002
		Albitisation	189.70	191.20	51542	1.50	0.022
		Une veine complètement de couleur crèmeuse	189.70	191.20	51543 (Std)	1.50	4.060
191.10	193.40	Car60					
		Carbonatisation 60					
		Couleur plus pâle que la roche encaissante					
191.10	193.40	Cp; Po	191.20	192.70	51544	1.50	0.002
		Chalcopyrite; Pyrrhotine	192.70	194.20	51545	1.50	0.035
		gf, diss dans la fracutre sub parallel a la carotte avec des fragments de quartz noir/fumé	194.20	195.70	51546	1.50	0.002
194.95	195.35	Car50	198.40	199.40	51547	1.00	<0.002
		Carbonatisation 50					
198.95	199.20	Po; Cp	216.60	218.70	51548	2.10	0.003
		Pyrrhotine; Chalcopyrite					
		gf, diss					
216.70	218.40	Car40; Alb10	219.35	220.65	51549	1.30	<0.002
		Carbonatisation 40; Albitisation 10					
220.40	220.60	QZVN					
		Veines de qtz 45°					
		Veine de quartz très blanc et opaque avec en bordure des fragment de quartz fumé sub-arondi.					
		Chaque contact était relativement net à 40 degrés					
225.40	238.15	Po; Cp	228.60	230.10	51550	1.50	0.004
		Pyrrhotine; Chalcopyrite					
		Trâce. gf, diss					
229.30	229.45	Alb10	230.10	231.60	51551	1.50	0.028
		Albitisation 10					
231.45	233.85	Car30	231.60	233.10	51552	1.50	0.003
		Carbonatisation 30	233.10	234.60	51553	1.50	0.002
			233.10	234.60	51554 (Bln)	1.50	<0.002

Description					Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot
			234.60	236.25	51555	1.65	(g/t) 0.003
			236.25	237.25	51556	1.00	0.003
			237.25	238.75	51557	1.50	0.026
237.50	239.55	V3B; M25					
		Basalte 35°; Mylonite					
		Basalt de couleur plus pâle que le basalt encaissant avec en sont centre une section légèrement					
		mylonitisé (de 238.15 à 238.45) et étant semi-massif en Po. Les deux contact sont net, lui du					
		sommet à 35 degrés et celui de la base à 80.					
238.15	238.45	Po25; Cp					
		Pyrrhotine 25%; Chalcopyrite					
		Po : remplit l'espace entre les fragment dans la première moitier de l'interval					
		Cp : se retrouve en bordure de la zone riche en Po					
238.45	252.90	Po01	238.75	240.25	51558	1.50	0.004
		Pyrrhotine 1%	240.25	241.25	51559	1.00	<0.002
		Gf, se retrouve principalement dans les fracture Cb ou les veinules de quartz. Mais la Po est aussi retrouvé dans la roche même					
044.40	040.05		044.05	040.75	E4500	4.50	0.000
241.10	242.95	Ser??	241.25	242.75	51560	1.50	0.003
		Séricitisation (indéterminée) ?? Roche plus pâle					
241.85	242.30		242.75	244.25	51561	1.50	0.004
241.00	242.30	QZVN Veines de qtz 45°					0.024
		Section défomé dans les 3 premier quart avec une veine de quartz fumé cm à la fin de l'interval	244.25	245.75	51562	1.50	0.017
		Geoloff deforme dans les o premier quart avec une veine de quartz fume om a la fill de fillervar	244.25	245.75	51563 (Std)	1.50	0.577
			245.75	247.25	51564	1.50	<0.002
			247.25	248.75	51565	1.50	<0.002
			248.75	250.25	51566	1.50	<0.002
050.00	050.40						
250.20	250.40	Car05	250.25	251.75	51567	1.50	0.019
		Carbonatisation 5 roche beaucoup plus pâle que la roche encaissante	251.75	253.25	51568	1.50	<0.002
252.90	253.00						
252.90	253.00	Alb10 Albitisation 10					
252.90	256.40		253.25	054.75	51569	1.50	<0.002
252.90	250.40	Po02; Cp		254.75			
		Pyrrhotine 2%; Chalcopyrite Gf à gm, concentré près des fragment de quartz noir et dans les fractures Cb	254.75	256.25	51570	1.50	0.003
		or a giri, concorne pres des naginant de quanz non et dans les natures ou	256.25	257.75	51571	1.50	<0.002
256.40	268.50	Po01	257.75	259.25	51572	1.50	0.003
		Pyrrhotine 1%					
		similaire au précédent sauf en moins grande proportion					
268.50	270.15	Po03; Cp					

			Description			Analyse		
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
			Pyrrhotine 3%; Chalcopyrite					
			similaires aux précédent avec une plus grande proportion					
269.	.80	270.50	Sil??					
			Silicification ??					
			roche plus pâle que l'encaissant					
270.	.15	285.00	Po01					
			Pyrrhotine 1%					
			! à 2 % de Po					
272.	.95	273.00	Alb15	279.15	280.50	51573	1.35	0.018
			Albitisation 15	280.50	282.00	51574	1.50	0.006
80.65	283.40	V	B; Ciss	282.00	283.50	51575	1.50	0.008
00.00	200.40		salte 80°; Cisaillé 80°	202.00	200.00	01010	1.50	0.000
			salt à gtf de couleur vert-foncé, avec 10% de fracture CB et 2 de quartz (fumé/blanc/noir).					
		Co	ntact inférieur : Graduel sur 1cm, marqué par la disparition de la foliation					
83.40	285.00	13/		283.50	285.00	51576	1.50	< 0.002
		Ga	abbro					
		Ga	abbro à gf, massif et homogène contenant trâce à 1% de sulfure (Po-cpx)					

285.00 Fin du sondage

Nombre d'échantillons : 62 Nombre d'échantillons QAQC : 6 Longueur totale échantillonnée : 87.25

TomaGold Corporation Titre minier: 4303763 Section: Sondage: M-12-78 Canton: Niveau: Rang: Place de travail : Annie Lot: Foré par : MAGMA DD Décrit par : Du: 2012-07-11 Date de description : 2012-07-16 2012-07-17 Au: -Collet Mégane UTM Annie Azimut: 315.00° Est 520 750 -529 28 -55.00° Plongée : Nord 5 489 548 2 080 2 146 Longueur: 270.00 m Élévation 0 0 -Déviation

	Туре	Profondeur	Azimut	Plongée	Invalide	Description
l	Flexit	27.00	316.50°	-55.30°	Non	Mag 57430
	Flexit	51.00	316.30°	-55.30°	Non	Mag 56580
l	Flexit	102.00	317.30°	-55.50°	Non	Mag 56750
l	Flexit	150.00	317.30°	-55.60°	Non	Mag 56440
	Flexit	201.00	315.90°	-55.60°	Non	Mag 56340
	Flexit	252.00	318.60°	-55.60°	Non	Mag 56540
	Flexit	270.00	319.20°	-55.60°	Non	Mag 56250
l						
l						

Description

Laki A ig (01934762)

Dimension de la carotte : NQ Cimenté : Non Entreposé : Oui

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00		21.00		MT					
				Mort terrain					
21.00		22.20		I3B; MAS					
				Diabase; Massif(ve)					
				Diabase gris très foncé à grain fin avec des porphyres (10% de porphyre, 5 à 10mm).					
				Contact inférieur : net, marqué par la diminution de granulométrie					
2.20		37.85		V3B; MAS	24.70	25.30	51577	0.60	0.003
				Basalte; Massif(ve)					
				Basalt gris foncé à grain fin. L'interval contient deux veines conjugué de 24.8 à 25.05.					
				Contact inférieur : graduel, marqué par l'augmentation de la granulométrie.					
	24.80		25.05	Cp; Po					
				Chalcopyrite; Pyrrhotine					
				Gf, diss au travers des deux veines conjugués					
	28.80		28.90	Po01					
				Pyrrhotine 1%					
				gm, concentré dans la veines CB					
	28.90		34.35	Po; Cp					
				Pyrrhotine; Chalcopyrite					
				Gm, diss dans la matrice du gabbro					
37.85		66.35		I3A; MAS; FIN					
				Gabbro 65°; Massif(ve); Grains fins 65°					
				Gabbro gris foncé à grain fin et relativement homogène. L'interval contient des sections basaltique plus fin					
				et deux veines de quartz blanc légèrement grisâtre de 42.25 à 42.55 (une veine a chaque extrémité de					
				l'interval).					
				Section basaltique : de 39.95 à 40.45 (verdâtre) et de 45.55 à 46.35 (noir)					
				Contact inférieur : Net, marqué par la diminution de la granulométrie					
	39.95		40.45	Car80					
				Carbonatisation 80					
				Section basaltique dans le gabbro					
	39.95		40.45	Ср	42.00	43.50	51578	1.50	0.006
				Chalcopyrite					
				gf à gm, diss dans les fractures					
	42.25		42.45	Po					
				Pyrrhotine					
				gm, diss				A	

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
	62.80		63.35	Car50 Carbonatisation 50 Section plus blanchâre					
66.35		71.70		V3B Basalte 70° Basalt noir à gtf, très homogène contenant quelques fractures CB.					
71.70		78.40		Contact inférieur : graduel sur quelques cm, marqué par l'augmentation de granulométrie. 13A Gabbro 45° Gabbro plus fin que le précédent, de couleur noir à gris très foncé. L'interval contient une section basaltique (de 75.15 à 76.1).					
	75.65 76.50		76.10 76.70	Contact inférieur : Net, marqué par un changement de granulométrie et de couleur. Car80 Carbonatisation 80 Section basaltique dans le Gabbro Car30	78.00	79.50	51579	1.50	0.004
78.40		82.65		Carbonatisation 30 V3B Basalte 30° Basalt à gtf, couleur gris-foncé verdâtre avec la seconde moitier silicifi. et plus blanchâtre. La section silicifié contient plusieurs veines et veinules de quartz noir.					
	78.50		84.15	Contact inférieur : Net, marqué par l'apparition du tuf felsic. Car60; Sil Carbonatisation 60; Silicification Section très blanchâtre	79.50	81.00	51580	1.50	0.006
	79.85		83.15	Cp00.5; Po00.5 Chalcopyrite 0.5%; Pyrrhotine 0.5% Gm, les deux sulfures sont généralement ensemble en bordure de la veines de quartz noir sub-parallel à la carrotte.	81.00 82.50 82.50	82.50 84.00 84.00	51581 51582 51583 (Std)	1.50 1.50 1.50	0.004 <0.002 4.160
82.65		83.80		TX1 Tuf à Xtaux felsique 55° Tuf de couleur gris moyen légèrement brunâtre avec des lapillis mm. L'interval est homogène et contient une veine sub-parallel a la carrotte sur la première moitier.					
83.80	1 1	88.90		Contact inférieur : net, marqué par la disparition des lapillis V3B Basalte	84.00	85.50	51584	1.50	0.004

			Description			Analyse		
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)
			Basalt noir à gf ayant quelques que fines veinules CB.					
			Contact inférieur : net, marqué par l'augmentation de la granulométrie					
38.90	109.65		I3A; MAS; QN	96.00	96.65	51585	0.65	0.021
			Gabbro; Massif(ve); Quartz noir					
			Gabbro gris foncé à gf. L'interval contient des sections basaltique massive et une section basaltique					
			cissaillé avec fragment de QN (de 96.05 à 96.5).					
			Section basaltique : de 90.25 à 91.5 et de 94.5 à 95.2					
			Contact inférieur : graduel, marqué par la diminution progressive de la granulométrie.					
09.65	132.70		V3B; QN					
			Basalte; Quartz noir					
			Basalt noir à gtf avec 5% de porphyres mm. l'interval contient plusieurs veinules de QN et des sections					
			plus déformé.					
			Veines/veinules QN: à 112.1 (1 cm), de 117.6 à 117.7 (veines CB avec du QN en bordure et de 129.65 à 129.7.					
			d 125.7 .					
			Section déformé : de 116.65 à 117.05 (semble silicifié) et de 124.4 à 126.35 (Section parcouru de fine					
			veinules de QN ou de CB					
			Contact inférieur : Net, marqué par l'apparition d'un couche sédimentaire avec des lapillis					
117	7.55	117.80	Po00.5; Cp00.5					
			Pyrrhotine 0.5%; Chalcopyrite 0.5%					
			Gm, concentré en bordure des fragments de Qn et de la veines CB					
120	0.60	120.70	Po02					
			Pyrrhotine 2%					
			Gf, concentré dans une fracture					
124	4.40	126.35	Po; Cp					
			Pyrrhotine; Chalcopyrite					
			gf èa gm, concen tré dans les veines Cb avec des fragments de QN.					
126	6.90	128.40	Car70					
			Carbonatisation 70					
129	9.60	129.70	Po					
			Pyrrhotine					
			Gf, diss					
32.70	136.25		TX1					
			Tuf à Xtaux felsique 45°					
			Tuf gris moyen compossé d'agrégat de lapillis et de cendre. L'interval contient deux zones dans lapillis					

				Decadelles			Analyse		
Δ.				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
			(de 133	3.1 à 133.6 et de 133.9 à 134).					
			Contac	ct inférieur : net, marqué par la disparition des lapillis et des cendres.					
	133.10	133.60		Car40					
				Carbonatisation 40					
	133.90	134.00		Car50					
				Carbonatisation 50					
136.25	145.50)	V3B; C	cou					
			Basalte	e 80°; Coussiné(e) 80°					
			Basalt	noir à gtf contenant 3% de porphyres mm. L'interval est hétérogène avec plusieurs variation de					
			couleu	r. De 141 à 144, les fractures CB contient de petit fragment de QN					
			Contac	ct inférieur : graduel, marqué par une augmentation de granulométrie					
	136.85	137.85		Car50					
				Carbonatisation 50					
				section pluis verdâtre dans le basalt					
	140.95	143.40		Car10; Seb25					
				Carbonatisation 10; Séricitisation (brune) 25					
				Les pourtours des fractures sont altéré en séricite/CB					
145.50	152.00)	I3A						
			Gabbro	0					
			Gabbro	o noir à gf, massif, L'interval contient une section basaltique (de 150 à 152), une section avec des					
			fragem	nnts de quartz noir/fumé (de 148.8 à 149) et une section avec des fractures Cb avec des					
			fragme	ents de quartz fumé (de 147.4 à 147.65).					
			Contac	ct inférieur : net, marqué par l'apparition de lapillis					
	147.30	147.65		Cp; Po					
				Chalcopyrite; Pyrrhotine					
				Gf, concentré dans les fractures Cb avec fragment de Qtz					
	151.20	152.00		Po01					
				Pymhotine 1%					
				fg à gm, concentré le long des fractures					
152.00	153.50)	13B; M	AS					
				se 30°; Massif(ve) 30°					
			Diabas	se gris foncé à gris moyen contenant 3% de porphyres mm.					
			Contac	ct inférieur : net					
153.50	164.20)	13A; M	AS					
			Gabbro	o 30°; Massif(ve) 30°					
			Gabbro	o gris foncé, massif. L'interval contient une section basaltique)de 154.7 à 156.45, verdâtre avec					

	Description			Analyse		
	Description	De	A	Numéro	Longueur	Au_Plot (g/t)
	des fracture CB à 30 degrés), une section avec des fractures Cb avec des fragement de quartz fumé					
	(de 157 à 157.2).					
	Contact inférieur, graduel, marqué par une diminution de granulométrie					
154.70 156	0.60 Car30					
	Carbonatisation 30					
64.20 167.30	V3B; MAS					
	Basalte 80°; Massif(ve) 80°					
	Basalt gris foncé à noir, massif. Interval homgogène.					
	Contact inférieur : net, marqué par l'appartiion de lapillis/porphyre de plusieurs mm.					
67.30 173.00	I3B; MAS					
	Diabase 40°; Massif(ve) 40°					
	Diabase gris foncé avec des porphyres felsiques de 5mm. L'interval contient une section basaltique, de					
	168.05 à 169.3.					
	Contact inférieur : net, marqué par la dispartion des porhpyres					
173.00 220.30	V3B; COU					
	Basalte 10°; Coussiné(e) 10°					
	Basalt noir à gtf. La roche est parcourru de fines fractures et des cousins. L'interval contient des					
	sections avec des porphyres mm, des veines/fragments des quartz noir/blanc/fumé, des sections					
	déformées et des sections albitisées					
	Section avec porphyres : de 181 à 182.1 et de 187.7 à x					
	Veines/fragment de quartz noir/blanc : de à 183.1 (fracture Cb avec fragemnt de QN), de 186.75 à					
	186.85 (quartz blanc légèrement fumé), de 190.3 à 190.65 (plusieurs veines et veinulea des quartz), à					
	191.85 (plusieurs fragments mm de QN dans une section déformé), 192.25 (fragment cm) et 194.05 à					
	194.15 (gros fragment de QN), à 201.1 (gros fragment de QN), de 211.5 à 211.7 (veine de quartz blanc)					
	et de 215.3 à 215.4 (patches de quartz fumé)					
	Section albitisé : de 192.25 à 192.5, de 203.4 à 203.55 (1 fragment de QN au début de l'interval),					
	Section déformé/brèchique : de 207 à 207.3, de 210.85 à 212.5 (avec grosse veines de qaurtz blanc).					
	Contact inférieur : net, marqué par l'apparition de minéralisation semi-massive et des évidence d'un					
	coussinement plus important.					
173.50 174	.80 Po00.5; Cp00.5	186.60	187.10	51586	0.50	0.006
	Pyrrhotine 0.5%; Chalcopyrite 0.5%					
	Gf à gm, concentré dans les sections brèchiques.					

		Decadellan			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
186.70	186.85	Cp01; Po01					
		Chalcopyrite 1%; Pyrrhotine 1%					
		Gf, concentré en bordure de la veines de quartz					
186.75	186.85	QZVN					
		Veines de qtz					
		Quartz fumé grisâtre					
190.00	192.00	Po01; Cp01					
		Pyrrhotine 1%; Chalcopyrite 1%					
		gm, concentré dans les sections brèchique et les petites fractures Cb					
192.20	194.20	Car30; Alb10	192.70	194.20	51587	1.50	0.003
		Carbonatisation 30; Albitisation 10					
		Albitisation : concentré au sommet de l'interval					
194.80	194.95	Cp02; Po02					
		Chalcopyrite 2%; Pyrrhotine 2%					
		gf, concentré autour du fragment de quartz					
196.50	197.00	Po; Cp					
		Pyrrhotine; Chalcopyrite					
		gf, concentré en band dans les fractures CB					
203.40	203.55	Alb80					
		Albitisation 80					
		La roche est complètement blanc crème					
203.40	203.55	Po02; Cp					
		Pyrrhotine 2%; Chalcopyrite					
		Po : gf, concentré entre les fragments CB					
207.00	207.30	Sej20					
		Séricitisation (jaune) 20					
		les pourtour des fragments de roche et les fractures semblent séricitisé					
207.00	207.30	Po02					
		Pyrrhotine 2%					
		gf à gm, concentré en amas en bordure du fragment de quartz					
208.00	208.80	Po01					
200.00	200.00	Pyrrhotine 1%					
		Gf concentré en bordure du fragment de quartz					
210.80	212.50	Po02; Cp	210.85	212.50	51588	1.65	0.003
210.00	212.00	Pyrrhotine 2%; Chalcopyrite	2.10.00	2.2.00	0.000		0.000
		gf, concentré en bandes dans les fractures CB					
244 50	211 70						
211.50	211.70	QZVN					
		Veines de qtz 60°					

	Description			Analyse		
	Description	De	À	Numéro	Longueur	Au_Plot (g/t)
	Quartz très blanc					
215.10 220	Po Po					
	Pyrrhotine					
	gf, diss					
217.15 218	Car20	218.90	220.50	51589	1.60	0.005
	Carbonatisation 20					
220.30 230.30	V3B; COU	220.50	222.00	51590	1.50	0.016
	Basalte 20°; Coussiné(e) 20°	222.00	223.50	51591	1.50	0.004
	Basalt vert-grisâtre moyen avec des évidences de coussin. La section est semi massive en Po. Cette	223.50		51592	1.50	0.005
	minéralisation semble être inter-coussin. La première moitier de l'interval est beaucoup plus minéralisé que		225.00			
	la seconde moitier.	225.00	226.50	51593	1.50	0.019
		225.00	226.50	51594 (Bln)	1.50	<0.002
	Contact inférieur : graduel, marqué par l'apparition d'une foliation.					
220.30 226) Sil					
	Silicification					
	roche est nettement plus dur que le basalt environnant.					
220.30 225	Po28; Py02; Cp					
	Pyrrhotine 28%; Pyrite 2%; Chalcopyrite					
	Po : gm, concentré entre se qui semble être des coussins de basalt.					
	Py : concentré principalement dans avec une bande de Po au sommet du trou					
	Cpx : se retouve au travers de la Po et de la Py					
225.30 233	Po05; Py	226.50	228.00	51595	1.50	<0.002
	Pyrrhotine 5%; Pyrite	228.00	229.50	51596	1.50	<0.002
	Po : gf, se retrouvant principalement en bandes au travers des fractures CB	229.50	231.00	51597	1.50	0.003
230.30 236.65	V3B; Ciss					
	Basalte 45°; Cisaillé 45°					
	Basalt a gtf de vouleur vert-gris moyen avec une foliation importante à 45 degrés. L'interval contient 20%					
	de fractures CB dans orienté dans le sens de la foliation. La minéralisation est présente de 230.3 à 233.6.					
	Contact inférieur : graduel, marqué par l'augmentation de la granulométrie et la disparition des fractures					
	CB.					
230.30 236	Ser?	231.00	232.50	51598	1.50	0.002
	Séricitisation (indéterminée) ?	232.50	234.00	51599	1.50	0.067
	séricitisarion? entre les fractures CB?	234.00	235.50	51600	1.50	0.061
		235.50	237.00	51601	1.50	<0.002
236.65 247.60	I3A; MAS; MOY					
	Gabbro; Massif(ve); Grains moyens					
	Gabbro gris foncé à gm, massif et homogène sur la quasi totalité de l'interval. L'interval contient une					
	<u> </u>					

		Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
	8	section déformé (de 243.45 à 243.8).					
	C	Contact inférieur : graduel, marqué par la diminution progressive de la granulométrie.					
47.60 261.80	V	/3B; MAS					
	В	Basalte; Massif(ve)					
		Basalt gris-verdâtre moyen à gtf. L'inteerval contient des tufs porphyriques et une section déformé (de 251.15 à 251.8)					
	Т	Tufs à porphyre : 248.3 à 249.05 et de 249.55 à 249.65.					
	C	Contact inférieur : net, marqué par l'augmentation de la granulométrie					
248.30	249.05	I1; POR					
		Intrusif felsique; Porphyrique / Porphyritic					
		TYuf gris moyen					
249.55	249.65	I1; POR					
		Intrusif felsique; Porphyrique / Porphyritic					
		Même que le précédent					
61.80 270.00	13	3A; MAS					
		Gabbro 70°; Massif(ve) 70°					
		Sabbro gris foncé légèrement verdâtre à gf. L'interval conteint une section basaltique de 264.8 à 267.15				1	
		et une section avec des fractures CB, de 268.45 à 269.25.					
266.85	267.15	Py02					
		Pyrite 2%					
000.75	000.05	gm, idiomorphe, concentré dans une veinules de quartz/CB					
268.75	269.25	Carl5 Carbonatisation 15					
		Cardonausation 15					

Nombre d'échantillons : 23 Nombre d'échantillons QAQC : 2 Longueur totale échantillonnée : 32.00

			Titre minier :	4303763			Section:	
ondage:	M-12-79A		Canton :				Niveau :	
			Rang :				Place de travail : Annie	
Foré par :	MAGMA		Lot :					
Décrit par :	DD		Du :	2012-07-19			Date de description : 2012-0	17 21
seem par .			Au :	2012-07-19			Date de description . 2012-0	77-21
Collet —			Au .	2012-07-20				
Conct					UTM		Annie	Mégane
Azimut :	315.00°			Est		520 719	-573	
Plongée :	-57.00°			Nord		5 489 579	2 080	2
Longueur:	124.50 m							2
				Élévation		0	0	
Déviation ————								
Туре	Profondeur	Azimut	Plongée	Invalide			Description	
Flexit	12.00	317.50°	-70.20°	Non	Mag 56910			
Flexit	51.00	318.60°	-70.50°	Non	Mag 56410			
Flexit	102.00	321.50°	-70.70°	Non	Mag 56560			
W 0								
Decomption							Dr. A consum	
							lake A og (01234762)	:

Cimenté: Non

Dimension de la carotte :

NQ

Entreposé : Oui

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00		5.50		MT					
				Mort terrain					
	0.00		6.10	Car40					
				Carbonatisation 40					
				section basaltique					
5.50		6.10		V3B; MAS					
				Basalte; Massif(ve)					
				Basalt vert foncé avec des fractures CB à gtf.					
				Contact inférieur : net, marqué par l'augmentation de granulométrie					
6.10		23.10		I3A; MAS	11.15	12.15	51626	1.00	0.003
				Gabbro 80°; Massif(ve) 80°					
				Gabbro à gf, gris foncé à noir, massif. L'interval contient des sections basaltiques, une section déformé					
				avec des fragments/veinules de quartz (de 11.7 à 12)					
				Section basaltique : de 12.55 à 13.3					
				Contact inférieur :net, marqué par la diminution de la granulométrie					
	11.40		13.60	Car60					
				Carbonatisation 60					
				On remarque une faible différente de teinte avec la roche encaissante					
	11.70		11.95	Cp; Po					
				Chalcopyrite; Pyrrhotine					
				gf, concentré en bordure du Qtz					
23.10		29.90		Ciss					
				Cisaillé 25°					
				Basalt à gf, gris moyen légèrement verdâtre avec bon foliation à 45 degrés. L'interval conteint une veines de QN (de 27 à 27.3).					
				ue Win (ue 21 a 21.3).					
				Contact inférieur : net, marqué par l'augmentation de la granulométrie					
	23.10		30.25	Car30; Car60; Alb	24.90	26.40	51627	1.50	0.013
				Carbonatisation 30; Carbonatisation 60; Albitisation	26.40	27.90	51628	1.50	0.003
				varie entre 30 et 60%, section cissaillé	27.90	29.40	51629	1.50	0.034
29.90		38.25		13A					
				Gabbro 80°					
				Gabbro gris foncé à gf, massif. L'interval contient 2 veines de quartz blanc (de 37.5 à 37.6)					
				Contact inférieur : net, marqué par la diminution de la granulométrie					
	33.00		33.40	Car20					

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
			_	Carbonatisation 20					(9/7)
	37.50		40.80	Car30					
				Carbonatisation 30					
38.25		60.40		V3B; MAS	40.00	41.00	51630	1.00	0.006
.O.ZO		00.40		Basalte 65°; Massif(ve) 65°	40.00	41.00	01000	1.00	0.000
				Basalt gris foncé à gtf, massif. L'interval contient des sections plus grossière et une veines de quartz					
				fumé (de 40.3 à 40.4) et une section déformé (de 55.6 à 55.7). Les derniers mètres, la roche est plus					
				noir.					
				Section grossière : de 43.5 à 44.25 et 47.4 à 49.5					
				Contact inférieur : net, marqué par l'augmentation de la granulométrie					
	40.30		40.40	QZVN					
				Veines de qtz 60°					
				Quartz fumé, massif					
	49.50		57.20	Car					
				Carbonatisation					
				Varie entre 30 et 60%					
	55.50		55.70	Ср					
				Chalcopyrite					
				gm, diss dans la fracture					
60.40		80.55		I3A; MAS					
				Gabbro 65°; Massif(ve) 65°					
				Gabbro gris foncé légèrement verdâtre à gf, massif. L'interval contient une section basaltique (de 70.65 à					
				73.7).					
				Contact inférieur : graduel, marqué par le passage vers une diabase amphibolitisé					
	70.40		73.70	Car20					
				Carbonatisation 20					
30.55		83.00		13B					
				Diabase					
				Diabase amphibolitisé, noi, massif et homogène.					
				Contact inférieur : net, marqué par la diminution de la granulométrie.					
33.00		105.45		V3B; MAS					
				Basalte 80°; Massif(ve) 80°					
				Basalt à gttf, noir, massif avec 2% de fines fractures CB. L'interval contient des sections déformés et un					
				tuf (de 102.35 à 103)					
				Section déformé : de 84 à 84.15, de 86.5 à 90, de 94 à 94.3 (avec fragments cm de QN) et de 101 à					

			Description			Analyse		
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
		101.3	35 (avec du QN).					
		Conta	act inférieur : net, marqué par l'apparition d'élément volcanique					
84.00	84	.50	Chv50	93.80	94.60	51631	0.80	0.004
			Chloritisation (verte) 50					
94.00	10	0.25	Car20					
			Carbonatisation 20					
94.00	94	.30	Po02; Cp					
			Pyrrhotine 2%; Chalcopyrite					
			gf à gm, diss dans la zone de déformation.					
100.5	0 10	0.60	Sil					
			Silicification					
102.3	5 10	3.00	TX1					
			Tuf à Xtaux felsique 50°					
			Tuf gris moyen avec 2% de lapillis de 1mm, deux contact net.					
05.45	109.70	TX1						
		Tuf à	Xtaux felsique 45°					
		Tuf g	ris moyen, massif, contenant 15% de lapillis mm dans une matrice de cendre.					
		Conta	act inférieur : net, marqué par le retour du basalt					
9.70	124.50	V3B;	MAS					
		Basal	Ite 20°; Massif(ve) 20°					
		Basa	It à gttf, noir, massif avec 2% de porphyres felsiques. L'interval est homogène.					

Nombre d'échantillons : 6 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 7.30

ondage :	M-12-79B		Titre minier :	4303763			Section:	
inaago i	W 12 705		Canton:				Niveau:	
			Rang:				Place de travail : Annie	
Foré par :	MAGMA		Lot:					
Décrit par :	DD		Du :	2012-07-21			Date de description : 2012-07	7-22
			Au:	2012-07-21				
Collet —								
				_	UTM		Annie	Mégane
Azimut :	315.00°			Est		520 719	-573	
Plongée :				Nord	5	489 579	2 080	2
Longueur	: 190.00 m			Élévation		0	0	
				Lievation			•	
éviation ———								
Туре	Profondeur	Azimut	Plongée	Invalide			Description	
lexit	12.00	315.70°	-56.00°	Non	Mag 57680			
lexit	51.00	317.40°	-56.00°	Non	Mag 56420			
lexit	102.00	319.90°	-56.30°	Non	Mag 56520			
lexit	150.00	320.20°	-56.50°	Non	Mag 56300			
lexit	189.00	320.10°	-56.10°	Non	Mag 56090			

Cimenté : Non

Dimension de la carotte :

NQ

Entreposé : Oui

				Description			Analyse				
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)		
0.00		4.80		MT							
				Mort terrain							
1.80		15.25		I3A; MAS							
				Gabbro; Massif(ve)							
				Gabbro noir à gm, massif et homogène sur toute sa longueur.							
				Contact inférieur : marqué par un changement de granulométrie et de couleur							
15.25		20.50		V3B; MAS							
				Basalte 80°; Massif(ve) 80°							
				Basalt vert-grisâtre à gtf avec 10% de fracture CB avec un orientation de 45 degré. l'interval contient une							
				fracture avec du QN à 18.4 (fracture de 1 cm de large).							
				Contact inférieur : Net, marqué par l'augmentation de la granulométrie							
	15.25		20.50	Car40							
				Carbonatisation 40							
				basalt verdâtre							
20.50		34.85		I3A; MAS							
				Gabbro 75°; Massif(ve) 75°							
				Gabbro gris foncé à gf jusqu'a gm, massif. L'interval contient une section basaltique (de 31.1 à 32.2).							
				Contact inférieur : net, marqué par la diminution de la granulonétrie							
34.85		55.15		V3B; MAS	36.10	37.40	51632	1.30	<0.002		
				Basalte 80°; Massif(ve) 80°							
				Basalt à gtf, noir dans l'ensemble avec une portion verdâtre (de 35.55 à 38). L'interval contient des							
				fragments/veines/veinules de quartz, un intrusif felsiques (de 36.35 à 37) et un tuf (de 43.5 à 44.75).							
				Quartz : à 37.2 (fragment cm), à 42.5 (fracture Cb avec des fragment de QN mm) et de 44.75 à 44.95							
				(veines de quartz blanc mélangé avec du quartz fumé).							
				Contact inférieur : net, marqué par un changement de granulométrie							
	36.35		37.00	11; MAS							
				Intrusif felsique 60°; Massif(ve) 60°							
				semble être de la ryolyte, deux contact net.							
	36.35		37.00	Py02							
				Pyrite 2%							
				gm, diss dans la rhyolite							
	37.60		38.00	Car40							
				Carbonatisation 40							
				basalt verdâtre avec fracture CB							

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
	43.50		44.75	TX1; MAS	44.45	45.45	51633	1.00	<0.002
				Tuf à Xtaux felsique 70°; Massif(ve) 70°	44.45	45.45	51634 (Bln)	1.00	0.023
				gris moyen avec 10% de lapillis felsiques mm			(=,		
	44.55		45.25	Car40					
				Carbonatisation 40					
				basalt verdâtre mais plus foncé que les deux précédents	1				
	44.75		44.95	QZVN; MAS					
				Veines de qtz 30°; Massif(ve) 30°					
				Veines de quartz blanc avec du quartz fumé en bordure inférieur					
5.15		69.60		I3A; MAS	61.40	61.90	51635	0.50	< 0.002
				Gabbro 88°; Massif(ve) 88°					
				Gabbro gris foncé à noir avec une granulo moyenne (environ 1mm), massif. L'interval contient uen					
				section déformé avec une fracture CB contenant du QN (de 61.5 à 61.75)					
				Contact inférieur : net, marqué par un changement de lithologie					
9.60		72.40		13B					
				Diabase 35°					
				Diabase noir à gris foncé, gm, massif et amphibolitisé. L'interval contient une zone altéré de 70.8 à 71.					
				Contact inférieur : graduel, marqué par une diminution de granulométrie.					
	69.60		70.80	Amp					
				Amphibolitisation					
	70.80		71.00	Chv					
				Chloritisation (verte)					
	71.00		72.40	Amp					
				Amphibolitisation					
2.40		78.95		V3B; MAS	75.95	76.95	51636	1.00	0.002
				Basalte; Massif(ve)					
				Basalt noir à gtf, massif, contenant de fine fracture CB. L'interval contient une fracture CB avec des					
				fragment de QN (à 76.1) et un fragment cm de quartz blanc (à 74.1).					
				Contact inférieur : net, marqué par l'apparition de lapillis					
	76.10		77.00	Chv40					
				Chloritisation (verte) 40					
	76.10		76.80	Po					
				Pyrrhotine					
				gf, concentré dans les épontes des fractures CB.					
	77.50		77.90	Cp01					
				Chalcopyrite 1%					

		Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
		gf, diss					
78.95	82.65	TX1					
		Tuf à Xtaux felsique 70°					1
		Séquece de tuf gris moyen à lapillis avec un tuf gris foncé à cendre.					
		Section à lapillis : de 76.95 à 80.55, de 80.65 à 80.85 et de 82.25 à 82.65					
		Interval contient une section avec des fragments de QN, de 81.15 à 82.05					
		Contact inférieur : net, marqué par le retour du basalt.					
82.65	88.75	V3B; MAS					
		Basaite 70°; Massif(ve) 70°					
		Basalt vert-grisâtre à gtf. L'interval contient une veine de quartz sub-parallel (de 77.05 à 77.55.					
		Contact inférieur : net, marqué par l'apparition de porphyres de 5mm à 8mm.					
83.20	84.00	Cp02; Po02					A
		Chalcopyrite 2%; Pyrrhotine 2%					
		gm, concentré dans les fractures CB					
83.75	88.75	Car25	86.10	87.60	51637	1.50	<0.002
		Carbonatisation 25					
		La roche est plus terne et plus verte					
88.75	91.80	13B; POR					
		Diabase 30°; Porphyrique / Porphyritic 30°					
		Diabase à gtf gris foncé avec 20% de porphyres felsiques de 5 à 8mm.Le dernier mètre de l'interval est					
		marqué par la disparition des porphyres.					
		Contact inférieur : net, marqué par un retour au basalt noir.					
91.80	168.25	I3B; MAS; COU					
		Diabase 40°; Massif(ve); Coussiné(e) 40°					
		Basalt noir à gttf, massif et contenant de fines fractures CB sur toute la longueur. L'interval contient des					
		section déformés, des veines/veinules/fragments de QN, des section verdâtres et une veines de					
		carbonate massive (de 110.6 à 110.75)					
		Section déformé : de 101.95 à 102.6, de 132.9 à 133.1, de 154.05 à 154.15 (section chloritisé + silicifié.					
		Section verdâtre : de 110.1 à 112, de 134.55 à 143.6, de 152 à 153.95					
		Quartz : à 93.1 et à 93.2 (deux fractures Cb avec des fragments de QN, de 99.85 à 100.1 (plusieurs					
		fractures CB avec des fragments de QN), de 114.4 à 114.85 (fractures CB avec des fragments cm de					
		QN), de 139.75 à 139.8 (fractures CB avec des fragments cm de QN), de 153.95 à 154.05 (veines de					

		Description			Analyse		
		Description	De	À	Numéro	Longueur	Au_Plo (g/t)
	qua	artz massive)					
	0						
		ntact inférieur : graduel, marqué par l'augmentation de la déformation et l'apparition de fracture CB enté à 45 degrés.					
103.50	104.50	Po; Cp					
		Pyrrhotine; Chalcopyrite					
		gf, diss					
109.90	112.80	Car60					
		Carbonatisation 60					
		Altération ciblé principalement le long des fracture					
132.90	133.10	Po01					
		Pyrrhotine 1%					
		gtf, diss					
134.70	143.60	Car20; Seb	134.70	136.20	51638	1.50	0.003
		Carbonatisation 20; Séricitisation (brune)					
		Section de la roche vert-brunâtre réagissant faiblement èa l'acide					
135.90	136.10	Cp02	136.20	137.70	51639	1.50	0.043
		Chalcopyrite 2%					
		gf à gm, concentré dans une fracture CB					
136.30	137.60	Cp; Po	137.70	139.20	51640	1.50	0.005
		Chalcopyrite; Pyrrhotine	139.20	140.70	51641	1.50	0.013
		gf, diss en bordure des fragments de quartz					
152.00	153.30	Car60; Sej	152.60	154.20	51642	1.60	0.006
		Carbonatisation 60; Séricitisation (jaune)	152.60	154.20	51643 (Std)	1.60	0.630
153.95	154.05	QZVN					
		Veines de qtz 85°					
		Quartz fumé avec en bordure du QN					
153.95	156.10	Po01; Cp					
		Pyrrhotine 1%; Chalcopyrite					
		gf, concentré dans les fractures CB et en bordure du quartz noir					
154.05	154.15	Sil50	154.20	155.80	51644	1.60	0.032
		Silicification 50					
159.50	168.25	Po; Cp					
		Pyrrhotine; Chalcopyrite					
		Diss dans des section déformé/brêchique					
161.00	161.40	Sil25	166.50	168.00	51645	1.50	0.003
		Silicification 25					
		section blanche et dur à rayer					

	Description			Analyse		
	Description	De	À	Numéro	Longueur	Au_Plot (g/t)
168.00 178.5	50 Seb+25; Car10	168.00	169.50	51646	1.50	0.139
	Séricitisation forte (brune) 25; Carbonatisation 10					
	Se trouve dans la section cisaillé.					
68.25 178.50	V3B; Ciss; QN					
	Basalte; Cisaillé; Quartz noir					
	Basalt à gf de couleur vert-grisâtre sâle avec 10-15% de fracture CB et 5% de QN. L'interval contient					
	deux sections de quartz massif (de 169.05 à 169.6 et de 170.2 à 170.5)					
	Contact inférieur : graduel, marqué par l'augmentation progressive de la granulométrie et la disparition des					
	fractures CB.					
168.25 178.5	50 Po05; Cp03	169.50	171.00	51647	1.50	0.004
	Pyrrhotine 5%; Chalcopyrite 3%	171.00	172.50	51648	1.50	0.034
	Gf à gm, diss dans les bandes de cisaillement. Les dernier mètres montre une diminution	172.50	174.00	51649	1.50	0.029
	progressive de la minéralisation.	174.00	175.50	51650	1.50	0.004
		175.50	177.00	51651	1.50	<0.002
		177.00	178.50	51652	1.50	<0.002
178.50 189.00	I3A; MAS; MOY	178.50	180.00	51653	1.50	< 0.002
	Gabbro; Massif(ve); Grains moyens					
	Beau gabbro gris foncé à gm et massif. L'interval contient 2 tuf.					
	Tuf : Gris moyen à gris foncé. de 179.6 à 180.3 2% (de lapillis de 1-2mm) et de 183.7 à 184 (105 lapillis					
	de 2-4mm).					

190.00 Fin du sondage

Nombre d'échantillons : 20 Nombre d'échantillons QAQC : 2 Longueur totale échantillonnée : 28.00

Sondage :	M-12-80

Titre minier: Canton:

4303763

Section:

Niveau:

Foré par :

MAGMA

Lot:

Place de travail :

Annie

Décrit par :

DD

Du:

Au:

Rang:

2012-07-22 2012-07-23

Est

Nord

Élévation

Date de description :

Annie

2012-07-23

-Collet

Azimut:

315.00°

Plongée :

-65.00°

Longueur:

171.00 m

UTM

520 683

5 489 615

-624 2 080

0

-64 2 171

0

Mégane

-Déviation

Туре	Profondeur	Azimut	Plongée	Invalide	Description
Flexit	15.00	321.70°	-63.80°	Oui	Mag 56910
Flexit	51.00	312.80°	-63.60°	Non	Mag 56500
Flexit	102.00	314.80°	-63.80°	Non	Mag 56690
Flexit	150.00	314.00°	-63.70°	Non	Mag 56520
Flexit	171.00	315.00°	-63.80°	Non	Mag 56170

Descri	

Dimension de la carotte :

NQ

Cimenté: Non

Entreposé : Oui

				Promintion			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
9.00		17.50		I3A; MAS					
				Gabbro; Massif(ve)					
				Gabbro gris moyen à gris foncé, gm (1-2mm) et massif. L'interval contient deux sections basaltiques (de					
				10.5 à 10.9, verdâtre et 17 à 17.3, noir).					
				Contact inférieur : net, marqué par l'apparition de lapillis et de cendre.					
17.50		22.70		TX2; MAS					
				Tuf à Xtaux intermédaire 45°; Massif(ve) 45°					
				Tuf gris moyen avec 20% de lapillis felsiques et mafiques (1 à 5mm).					
				Contact inférieur : net, marqué par le retour d'un gabbro					
	18.00		18.85	Car60					
				Carbonatisation 60					
				Marqué par une disparitions des lapillis					
	22.50		22.70	Car60					
				Carbonatisation 60					
				similaire au précédent					
22.70		32.50		13A; V3B; MAS	22.70	23.70	51654	1.00	0.492
				Gabbro 35°; Basalte; Massif(ve) 35°					
				Interval avec alternance de basalt et de gabbro.					
				Basalt : noir à gtf, massif					
				Gabbro : gris-foncé à noir à gf, massi.					
				De 22.7 à 23.7 : basalt avec une veine de quartz noir (de 23.25 à 23.35)					
				à 26.1 : Gabbro					
				à 26.4 : basalt altéré					
				à 32.5 : basalt (contient un gros fragment de quart (de 27.3 à 27.4)					
				Contact inférieur : graduel, marqué par l'augmentation de la granulométrie.					
	23.15		23.35	Po01; Cp					
				Pyrrhotine 1%; Chalcopyrite					
				Gf, en bordure du QN					
	23.25		23.35	QZVN					
				Veines de qtz 40°					
				quartz noir avec 2-3% sulfure.					
	26.10		26.40	Car; Sil; Chl	27.10	28.60	51655	1.50	0.011
				Carbonatisation; Silicification; Chloritisation (indéterminée)					
				Transition entre le basalt etle gabbro					
	27.20		29.50	Py; Cp					
				Pyrite; Chalcopyrite				4	

				Description			Analyse		
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
				Gf, en amas dans des espèces de petites goutelette.					
32.50		48.90		13A; MAS					
				Gabbro; Massif(ve)					
				Gabbro gris foncé à gf, massif. Interval contient une section basaltique (de 40.3 à 41.7, contient des					
				fractures CB).					
				Contact inférieur : graduel, marqué apr une diminution progressive de la granulométrie.					
	40.60		41.70	Car35					
				Carbonatisation 35					
48.90		74.10		V3B; MAS; COU					
				Basalte; Massif(ve); Coussiné(e)					
				Basalt à gtf noir avec une teinte de vert et massif mais coussiné. L'interval contient une section plus					
				grossière (de 57.8 à 61), une section déformé (de 52.7 à 54.95) et une section gris moyen, possiblement					
				altéré (de 66.15 à 67.9).					
				Contact inférieur : Graduel, passant vers un basalt plus déformé et plus altéré de couleur gris-vert					
				moyen.					
	52.70		54.95	Sil10; Sej					
				Silicification 10; Séricitisation (jaune)					
				Silicification localisé dans les premier 10cm de l'interval					
				Séricitisation est ciblé près des fractures CB					
	52.70		54.95	Po; Cp	62.70	63.35	51656	0.65	0.010
				Pyrrhotine; Chalcopyrite					
				gf à gm, diss dans la section déformé					
	62.90		63.10	Cp03; Po02					
				Chalcopyrite 3%; Pyrrhotine 2%					
				Gm concentré dans la première moitier de la veines de quartz blanc à fumé					
	66.15		67.90	Cp; Po					
				Chalcopyrite; Pyrrhotine					
				Gf, concentré dans les fractures CB					
	67.20		67.90	Car60; Alb?					
				Carbonatisation 60; Albitisation ?					
				section plus grisâtre					
74.10		84.00		V3B; Ciss					
				Basalte; Cisaillé					
				Basalt à gtf, gris moyen à gris moyen verdâtre, faiblement cisaillé. L'interval contient une section silicifié					
				(de 74.6 à 74.75) et une veine de quartz noir sub-parallel (de 83.3 à 84).					
				Contact inférieur : net, marqué par un changement de texture.					

			Description			Analyse		
Δ			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
	74.40	74.75	Po; Cp					
			Pyrrhotine; Chalcopyrite					
			gf, concentré en bordure de la zone silicifié					
	74.60	114.20	Ser70?	78.00	79.50	51657	1.50	0.002
			Séricitisation (indéterminée) 70?	79.50	81.00	51658	1.50	0.005
			Altération gris-moyen de plus faible dureté retrouvé dans la totalit. de la roche et entre les fragment	81.00	82.50	51659	1.50	0.016
			de quartz noir dans la veines massive.	82.50	84.00		1.50	
				82.50	84.00	51660	1.50	0.012
	83.30	86.70	Po01; Cp					
			Pyrrhotine 1%; Chalcopyrite					
			Gf à gm, concentré en bordure de la veines sub-parallel de QN					
4.00	93.9	90	TX2; QN; QN	84.00	85.50	51661	1.50	0.243
			Tuf à Xtaux intermédaire; Quartz noir; Quartz noir	85.50	87.00	51662	1.50	0.204
			Tuf? gris moyen avec une foliation à 30 degrés. L'Interval include des sections à 40% de QN (de 93.9 à	85.50	87.00	51663 (Std)	1.50	4.380
			97.2 et de 101.25 à 105.1)					
			Contact inférieur : net, marqué par un retour au basalt					
	86.70	86.80	Po02; Py01	87.00	88.50	51664	1.50	0.006
			Pyrrhotine 2%; Pyrite 1%	88.50	90.00	51665	1.50	0.327
			Gm, diss	90.00	91.50	51666	1.50	0.738
			La pyrite est idiomorphique.					
	90.50	96.50	Py08	91.50	93.00	51667	1.50	1.040
			Pyrite 8%	93.00	94.50	51668	1.50	0.727
			Gm, parfois grossier, principalement diss entre le quartz massif.					
3.90	126	6.10	I3A; MAS	94.50	96.00	51669	1.50	0.718
			Gabbro 10°; Massif(ve) 10°	96.00	97.50	51670	1.50	1.910
			Gabbro généralement gris foncé et a gm avec 1m au début de couleur plus verdâtre avec une granulo					
			moins grande. L'interval inclut un tuf (de 115.75 à 116.5) et une veine de quartz blanc (de 117.1 à 117.2)					
			Contact inférieur : net, marqué par la diminution radical de granulométrie					
	93.90	97.20	QZVN; QN					
			Veines de qtz 70°; Quartz noir 70°					
			Succession de plusieurs veines et fragment de quartz noir.					
	96.50	101.25	Py03; Po02	97.50	99.00	51671	1.50	3.620
			Pyrite 3%; Pyrrhotine 2%	99.00	100.50	51672	1.50	1.230
			Gf à gm, concentré dans les éponte des fragments/veines de quartz noir.	100.50	101.50	51673	1.00	2.370
				100.50	101.50	51674 (Bln)	1.00	0.002
	101.25	105.10	QZVN; QN	101.50	102.50	51675	1.00	1.440
			Veines de qtz; Quartz noir					

		Description		Analyse					
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)		
		Simillaire au précédent.	101.50	102.50	51676 (Bln)	1.00	0.006		
101.25	101.85	Po03; Cp							
		Pyrrhotine 3%; Chalcopyrite							
		Gf, concentré dans la veines de quartz							
101.85	102.20	Au; Py01; Po01							
		Or natif; Pyrite 1%; Pyrrhotine 1%							
		Au : 2 grains, le premier a 1mm de diamètre le second est de moins de 1mm							
102.20	105.00	Py03	102.50	103.50	51677	1.00	2.020		
		Pyrite 3%	103.50	105.00	51678	1.50	0.900		
		Gm, diss dans la roche gris moyen							
105.00	105.90	Py02; Po01	105.00	106.50	51679	1.50	1.270		
		Pyrite 2%; Pyrrhotine 1%	106.50	108.00	51680	1.50	0.006		
		Py : gm, diss dans la pâte gris moyen	108.00	109.50	51681	1.50	0.009		
		Po : en amas, se retrouve souvent entre les grains de quartz	100.00	109.50	31001	1.50	0.009		
115.75	116.50	TX1							
		Tuf à Xtaux felsique 45°							
		Tuf gris moyen avec 2% de lapillis dans une matrice de cendre.							
117.10	117.20	QZVN	117.75	118.50	51682	0.75	0.004		
		Veines de qtz 80°	117.75	118.50	51683 (Std)	0.75	0.744		
		Blanc	V		, ,				
10 130	0.80 V3I	B; MAS	126.10	127.60	51684	1.50	0.008		
	Bas	alte 45°; Massif(ve) 45°							
	Bas	alt à gtf, verdâtre avec des veines CB et deux veines de quartz (de 127.4 à 128.1 et de 128.68 à							
	129	.4)							
	Co	ntact inférieur : net, marqué par une augmentation de la granulométrie							
126.85	127.05	Po02							
		Pyrmotine 2%							
		gm, diss							
127.40	127.90	QZVN							
		Veines de qtz 45°							
		Quartz blanc mélanger avec du quartz fumé avec une bande basaltique de 5cm au 3/4 de l'interval.							
127.40	128.50	Chv10	127.60	129.10	51685	1.50	<0.002		
		Chloritisation (verte) 10							
		Entre les grains/fragments de quartz							
128.08	128.12	QZVN							
		Veines de qtz							
		Fragment de quartz fumé							
128.65	129.40	QZVN	129.10	130.60	51686	1.50	< 0.002		

			Description		Analyse					
			Description		À	Numéro	Longueur	Au_Plot (g/t)		
			Veines de qtz							
			Veines de quartz fumé avec de la séricite entre les fragments.							
130.80	156.00		3A; MAS							
			Gabbro 55°; Massif(ve) 55°							
			Gabbro gris foncé à gf, massif. L'interval contient un tuf (de 132.5 à 133.6), une veines CB avec des							
			fragments de quartz blanc (à 131.74), une séries de 5 veins de 1 cm de quartz noir (de 139.7 à 140) et 2							
			sections altéré noir (de 148 à 148.1 et de 150.5 à 150.6).							
			Contact inférieur : graduel, marqué par une diminution progressive de la granulométrie.							
132.	50	133.60	TX1	139.55	140.45	51687	0.90	0.002		
			Tuf à Xtaux felsique 65°							
			Gris moyen avec 2% de lapillis dans une matrice de cendre. Deux contact net							
139.	70	140.00	Po							
			Pymhotine							
			gm, concentré dans une des veines de QN							
148.0	00	148.10	14B							
			Pyroxénite							
			Roche inconnu, noir et très dur à rayer							
150.	50	150.60	14B							
			Pyroxénite							
			simillaire au précédent							
156.00	162.90		V3B; MAS							
			Basalte; Massif(ve)							
			Basalt noir, gtf à gf et massif. L'interval include des fractures CB avec des fragments de quartz.							
			Veines Cb avec fragments de quartz : de 158.25 à 158.35 et de 160.55 à 160.9 (fracture sub-parallel)							
			Contact inférieur : net, marqué par l'augmentation de la granulométrie.							
159.	30	160.90	Car20							
			Carbonatisation 20							
62.90	170.00		I3A; MAS							
			Gabbro 80°; Massif(ve) 80°							
			Gabbro gris foncé à fg (gm sur le dernier mètre de l'interval) et massif. L'interval inclut une zone							
			basaltique avec des contacts ondullant/irréguiller (de 165.9 à 167).							
165.9	90	167.40	Car50							
			Carbonatisation 50							

171.00	Fin du sondage
	Nombre d'échantillons : 30
	Nombre d'échantillons QAQC : 4
	Longueur totale échantillonnée : 40.80

Projet: MONSTER Sondage: M-12-80 7/7

			Titre minier :	4303763		Section :	
Sondage :	M-12-81			4303763			
			Canton :			Niveau :	
			Rang :			Place de travail :	
Foré par :			Lot:				
Décrit par :			Du :			Date de description :	
			Au:				
Collet -							
					UTM	Annie	Mégane
Azimut :	315.00°			Est	520 683	-6	-64
Plongée :	-50.00°			Nord	5 489 615		
Longueur:	126.00 m						
				Élévation	0		0 0
Déviation ———					_		
Туре	Profondeur	Azimut	Plongée	Invalide		Description	•
Flexit	15.00	314.70°	-49.00°	Non	Mag 58910		
Flexit	51.00	314.50°	-49.10°	Non	Mag 56330		
Flexit	102.00	315.00°	-48.90°	Non	Mag 56310		
Flexit	126.00	315.20°	-49.00°	Non	Mag 56230		
Flexit							
—Description —							•
Description							11 ,
Description							luki A iz (01234762)
Description							laki A = (01234762)
Description —							lake A og (01234762)
Description —							Lake A = (01234962)
Description —							liki A iz (01234712)
Description —							Lake A og (01234962)

				Decembries			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00		9.40		MT					
				Mort terrain					
9.40		13.00		I3A; MAS					
				Gabbro; Massif(ve)					
				Gabbro à gf, gris très foncé et massif.					
				Contact inférieur : net, marqué par l'apparition d'un tuf massif					
13.00		16.60		TX1					
				Tuf à Xtaux felsique 60°					
				Tuf gris moyen à gris foncé avec 15% de lapillis (2 à 5mm) felsiques et 5% de lapillis mafique dans une					
				matrice de cendre. Les 50 derniers centimètre est marqué par la disparition progressive des lapillis					
				felsiques et mafique.					
				Contact inférieur : net, marqué par le retour au basalt classic					
	15.50		16.65	Car30					
				Carbonatisation 30					
16.60		18.55		V3B; MAS					
				Basalte 45°; Massif(ve) 45°					
				Basalt gris foncé à gtf, massif. Le basalt contient 3% de fractures CB					
				Contact inférieur : net, marqué par l'augmentation de la granulométrie					
18.55		23.70		I3B; MAS					
				Diabase 60°; Massif(ve) 60°					
				Diabase gris foncé à gm, massif. L'interval est homogène.					
				Contact inférieur : net, marqué par la diminution de la granulométrie.					
	18.55		23.70	Amp					
				Amphibolitisation					
3.70		50.40		V3B; MAS					
				Basalte 60°; Massif(ve) 60°					
				Basalt noir à gtf aec 2% de porphyres mm, massif. L'interval contient des section de gabbro, une portion					
				plus verdâtre (de 34 à 48.75), une portion en un minéraux jaune souffre (de 48.75 à 50.4) et une veine de					
				quartz noir (à 45.7 et de 36 à 36.3 - veines sub-parallel).					
				Gabbro : de 29.5 à 31 et de 31.5 à 32.25					
				Contact inférieur : graduel, passant vers une unité gris moyen à gris clair avec une forte foliation					_
	34.00		45.55	Car60	35.70	36.30	51688	0.60	0.009
				Carbonatisation 60					
				Basalt verdâtre, lien ?					

				Description			Analyse		
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
	38.90	30	.10	Po02; Py01	43.50	45.00	51689	1.50	0.005
	00.00	00.	. 10	Pyrrhotine 2%; Pyrite 1%					
				gf, concentré dans les zone déformé	45.00	46.50	51690	1.50	0.011
	45.55	90	.95	Car25; Sej25					
	40.00	00.	.50	Carbonatisation 25; Séricitisation (jaune) 25					
				Séricite jaune couleur souffre ?? présent au deux extrémité de l'interval					
	45.00	46	E0		46.50	49.00	E4604	1.50	0.007
	45.90	46.	.50	Py02; Po	46.50	48.00	51691		0.007
				Pyrite 2%; Pyrrhotine	48.00	49.50	51692	1.50	0.006
				Gf à gm, diss					
	48.70	48.	.75	Py02					
				Pyrite 2%					
				gm, concentré dans la veines de quartz					
	48.75	50.	.65	Su	49.50	51.00	51693	1.50	0.008
				Sulfures					
				Trâce de Py-po-Cpx, gf, diss					
50.40	8	0.95	TX	2; Ciss; QN	51.00	52.50	51694	1.50	0.012
			Tuf	à Xtaux intermédaire 25°; Cisaillé; Quartz noir 25°	52.50	54.00	51695	1.50	0.007
			Roo	che possiblement un tuf gris moyen à gf avec une foliation très important marqué par les minéraux	54.00	55.50	51696	1.50	0.007
			mat	fiques. La foliation est généralement à 40 degrée mais devient sub-parallel à la carotte (de 69 à 75) et	000	00.00	0.000	1.00	0.001
			ma	ssive (de 63.7 à 69). L'interval contient 2% de QN dont une veine plus importante (de 79 à 79.1) et un					
			fraç	gment (de 67.9 à 68).					
			Cor	ntact inférieur : net mais ondulant, marqué par le retour au basalt verdâtre					
	54.25	54.	.60	Po; Cp	55.50	57.00	51697	1.50	0.028
				Pyrrhotine; Chalcopyrite					
				gf, concentré dans les veinules de quartz noir					
	55.80	56.	.60	Po02; Cp	57.00	58.50	51698	1.50	0.010
				Pyrrhotine 2%; Chalcopyrite	58.50	60.00	51699	1.50	0.050
				gf à gm, concentré en bandes parallel à la foliation					
	58.90	59.	.10	Py01					
				Pyrite 1%					
				Gm, diss					
	60.00	60.	.90	Py02; Po	60.00	61.50	51700	1.50	0.521
				Pyrite 2%; Pyπhotine	00.00				
				gf, concentré dans les bandes de foliartion					
	61.00	62.	00	Py02	61.50	63.00	51701	1.50	0.043
	01.00	02.		Pyrite 2%	01.30	00.00	0.7701	1.50	0.040
	00.00	^-	45	gf à gm, diss	22.22	04.50	F4700	1.50	0.400
	62.00	69.	.15	Ру	63.00	64.50	51702	1.50	0.189

				Description			Analyse	.4.4	
a.				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
				Pyrite	63.00	64.50	51703 (Std)	1.50	4.190
				gf à gm, diss	64.50	66.00	51704	1.50	0.172
					66.00	67.50	51705	1.50	0.019
					67.50	69.00	51706	1.50	0.020
					69.00	70.50	51707	1.50	0.512
	69.15		72.75	Py02	70.50	72.00	51708	1.50	2.500
				Pyrite 2%	72.00	73.50	51709	1.50	1.550
				gm, diss	72.00	10.00	01700	1.00	1.000
	72.75		73.80	Su	73.50	75.00	51710	1.50	0.208
				Sulfures					
				gf, diss					
	73.80		75.35	Py02; Po	75.00	76.50	51711	1.50	0.006
				Pyrite 2%; Pyrrhotine					
	75.35		78.50	gf à gm, diss	76.50	78.00	51712	1.50	0.003
	75.35		70.50	Py Pyrite					
				gf à gm, diss	78.00		51713	1.50	0.006
					78.00		51714 (Bln)	1.50	0.003
	78.50		80.00	Py02	79.50	81.00	51715	1.50	0.054
				Pyrite 2%					
80.95		126.00		gm, concentré près des veinules/veines de QN V3B; MAS	81.00	82.50	51716	1.50	0.010
00.93		120.00		Basalte 50°; Massif(ve) 50°	01.00	02.50	51716	1,50	0.010
				Basalt gris-vert foncé à gttf, massif. L'interval contient des sections plus déformé avec 15% de fracture					
				CB, des section déformé, une section à 50% brèchique, des veines de quartz, une section plus grossière					
				(de 122.65 à 12345) et un tuf (de 123.45 à 125).					
				Section avec des fractures CB : de 90 à 96, de 99 à 103.1					
				Section brèchique : de 112.7 à 116.35, Plusieurs sections décicentimétrique, de bloc dans une matrice à					
				gf sillicifié.					
				Section déformé : 103.1 à 103.5, de 109.2 à 111.45					
				Veine de quartz : de 100.7 à 101.3, de 108.15 à 108.25,					
	85.40		85.50	Sil50					
				Silicification 50					
	96.50		06.00	Section blanchâtre très dur à rayer					
	86.50		96.30	Car50					

		Description			Analyse		
		Description	De	À	Numéro	Longueur	Au_Plo (g/t)
		Carbonatisation 50	-				(9/1)
86.70	86.95						
00.70	00.50	Po01; Py Pyrrhotine 1%; Pyrite					
		gf à gm, diss					
100.20	101.50	Py03; Po01	100.20	101.70	51717	1.50	0.015
100.20	101.50	Pyrite 3%; Pyrrhotine 1%	100.20	101.70		1.50	0.010
		Py : gm et gg, concentré dans le quartz massif					
		Po : gf à gm, concentré de chaque coté de la veine de quartz, dans le basalt					
100.70	101.30	QZVN	105.40	106.65	51718	1.25	0.004
100.70	101.00	Veines de qtz 85°	100.10	100.00		1.20	0.001
		Quartz fumé avec minéralisation en Py					
107.85	108.15	Car40					
107.00	100.10	Carbonatisation 40					
108.15	108.25	QZVN	108.15	109.65	51719	1.50	0.003
100.15	100.23	Veines de qtz 60°	100.15	109.00	51719	1.50	0.003
		Blanc					
109.20	111.45						
109.20	111.40	Po02; Py01 Pyrrhotine 2%; Pyrite 1%					
		gf à gm, concentré dans les zones déformé					
123.45	125.00	TX1					
123.43	125.00	Tuf à Xtaux felsique 30°					
		Tuf gris moyen à gris foncé avec 10% de lapillis felsic de 1mm					
125.00	126.00						
125.00	120.00	Car50 Carbonatisation 50					
		Carbonatisation 50					

126.00 Fin du sondage

Nombre d'échantillons : 30 Nombre d'échantillons QAQC : 2 Longueur totale échantillonnée : 43.85

Sondage :	M-12-82		Titre minier :	4303763		Section:			
ondage .	WI- 12-02		Canton:			Niveau :			
			Rang:			Place de travail :	Annie		
Foré par :	MAGMA		Lot:						
Décrit par :	DD		Du :	2012-07-24		Date de description :	2012-07-25		
			Au:	2012-07-24					
-Collet					UTM	Annie		Mégane	
Azimut :	315.00°			Est	520 649		-672		-110
Plongée :	-50.00°			Nord	5 489 649		2 080		2 183
Longueur	: 75.00 m			Élévation	3 403 043	A. ———	0		2 100
Déviation ———									
Туре	Profondeur	Azimut	Plongée	Invalide		Description	า		
Flexit	12.00	311.60°	-51.00°	Non	Mag 58270				
Flexit	54.00	315.00°	-50.90°	Non	Mag 56590				
Flexit	75.00	315.60°	-51.10°	Non	Mag 56300				

Description

liki A iz (01024762)

Dimension de la carotte : NQ Cimenté : Non Entreposé : Oui

				Description	Analyse						
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)		
0.00		6.00		MT				()			
				Mort terrain							
	3.00		6.00	Car35	3.10	4.60	57020	1.50	< 0.002		
				Carbonatisation 35	4.60	5.90	57021	1.30	0.004		
				associé à la section plus verdâtre du basalte							
.00		33.20		V3B; MAS; COU							
				Basalte; Massif(ve); Coussiné(e)							
				Basalt noir à gtf, massif. Les premiers mètres sont plus pâle que le restant de l'interval. L'interval contient							
				aussi des sections déformés, une section plus grossière (de 10.2 à 11.55).							
				Section déformé : de 21.9 à 24.1, de 26.2 à 26.9 et de 32 à 33.2							
	6.00		18.00	FRC+							
				Fracturation forte							
	16.80		17.00	Py01							
				Pyrite 1%							
				gm, diss							
	17.50		17.60	Po01							
				Pyrrhotine 1%							
				Gm, diss							
	21.90		22.50	Po01; Cp01							
				Pyrrhotine 1%; Chalcopyrite 1%							
				Gf, concentré en amas dans des sections déformés							
	23.50		24.10	Po; Cp							
				Pyrrhotine; Chalcopyrite							
				gf, concentré dans de fines fractures							
	32.00		37.60	Cp01	32.00	33.50	57022	1.50	0.003		
				Chalcopyrite 1%	32.00	33.50	57023 (Std)	1.50	0.595		
				gf, se retrouvant dans des zones plus déformé ou dans des amas qui semble être des goutelets							
				différent de la roche initial							
3.20		42.45		V3B	33.50	35.00	57024	1.50	0.003		
				Basalte 45°	35.00	36.50	57025	1.50	0.002		
				Basalt à gtf, globalement verdâtre foncé avec une section légèrement violacé (de 38.9 à 40.75). La zone	36.50	38.00	57026	1.50	<0.002		
				est faiblement cisaillé comparativement à la lithologie que l'on appel généralement basalt cisaillé. La roche							
				contient 5% de fracture CB orienté à 45 degrés. L'interval contient une section brèchique (de 33.95 à							
				34.3) et un fragment de quartz fumé (à 34.7).							
				Contact inférieur : net, marqué par un retour au basalt classic							
	37.00		42.45	Car40	38.00	39.50	57027	1.50	0.011		
				Carbonatisation 40	39.50	41.00	57028	1.50	0.004		

			Decembrian			Analyse		
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)
		_		41.00	42.50	57029	1.50	<0.002
2.45	75.00		V3B; MAS; COU					
			Basalte; Massif(ve); Coussiné(e)					
			Basalt verdâtre-gris foncé, gtf, massif et avec 2% de porphyres felsiques. l'interval contient des section					
			plus déformé,					
			Section déformé : de 46 à 46.1, de 51 à 52.9, de 60.8 à 67.1 (zone déformé discontnue), de 70 à 71.5 et					
			de 74.45 à 74.7.					
42.45		43.50	FRC+					
			Fracturation forte					
45.00		51.00	FRC+					
			Fracturation forte					
46.00		46.10	Po01					
			Pyrrhotine 1%					
			gf, diss					
52.50		52.90	Po01; Cp01					
			Pyrrhotine 1%; Chalcopyrite 1%					
			gf, concentré au centre de l'interval					
60.80		67.10	Cp; Po					
			Chalcopyrite; Pyrrhotine					
			Gf, concentré dans des fines fratures et des sections déformé					
63.00		65.50	FRC+					
			Fracturation forte					
66.40		66.70	Sil20					
			Silicification 20					
			Concentré sans une section déformé					
74.45		74.70	Po01					
			Pyrrhotine 1%					
			gf à gm, diss					

Nombre d'échantillons : 9

Nombre d'échantillons QAQC : 1

Longueur totale échantillonnée : 13.30

				cola corporati				
Sondage : Foré par : Décrit par : Collet Azimut : Plongée :	M-12-83 315.00° -50.00°		Titre minier : Canton : Rang : Lot : Du : Au :	4303763 Est		Section : Niveau : Place de travail Date de descript Anni	ion : le -648	Mégane -101
Longueur				Nord	5	489 598	2 032	2 130
				Élévation		0	0	0
-Déviation								
Туре	Profondeur	Azimut 245 60°	Plongée	Invalide	M 50420	Des	scription	
Flexit Flexit	12.00 51.00	315.60° 317.80°	-49.40° -49.70°	Non Non	Mag 58430 Mag 56470			
Flexit	96.00	317.20°	-50.20°	Non	Mag 56110			
Description								ing (010,34762)
Dimension de la ca	rotte:			Cim	enté : Non			Entreposé: Non

Projet : MONSTER

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00		4.30		MT					
				Mort terrain					
4.30		11.20		T1					
				Tuf felsique					
				Tuf felsiques ??????. Roche de couleur gris-violacé moyen avec une foliation a 75 degrés et une section					
				avec des fines bandes de QN					
				Contact inférieur : graduel, marqué par l'apparition de fracture CB et un changement de couleur.					
	4.30		13.30	Car40	4.30	6.00	57030	1.70	0.006
				Carbonatisation 40	6.00	7.50	57031	1.50	0.003
					7.50	9.00	57032	1.50	0.184
					9.00	10.50	57033	1.50	0.004
					10.50	12.00	57034	1.50	0.002
1.20		56.15		V3B; COU					
			Basalte; Coussiné(e)						
				Basalt a gtf de couleur variable, passant de vert foncé au début vers le noir. L'interval est rès					
		hétérogène. Elle contient plusieurs section déformé, une veines de quartz (de 20.85 à 21.1, sub-parallel							
				;a la carotte), un tuf à cristaux felsique (de 14.5 à 15.15), du diabase,					
				Section déformé : de 12.2 à 13.3, 17.65 à 17.8, de 31.5 à 35.5, de 40.5 à 49.25 (plusieurs zones avec					
				une textures brèchique), de 50.2 à 51.1 (texture brèchique)					
				Diabase : de 41.65 à 41.9 et de 51.45 à 51.9					
				N.B : Ce basalt n'est pas du tout commun dans les trou antérieur, il semble y avoir eu des éléments déformationnel différent.					
				Contact inférieur : graduel, marqué par un grossiement de la granulométrie.					
	12.20		13.30	Py01					
				Pyrite 1%					
				Gm, diss dans la zone déformé					
	14.50		15.15	TX1					
				Tuf à Xtaux felsique 70°					
				Roche gris moyen avec 10 % de lapillis felsiques					
	16.60		20.50	Py02					
				Pyrite 2%					
				Gm amas de py diss tout au long de l'interval. Les cristaux sont idiomophique.					
	23.15	;	37.65	Po01; Cp					
				Pyrrhotine 1%; Chalcopyrite					

				Decembion			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
				Tout deux à gf, des amas diss tout au long de l'interval. La Cpx est toujours en contact avec la Po					
:	36.30		38.80	Car60					
				Carbonatisation 60					
				Section plus noir					
	40.50		44.70	Po03					
				Pyrrhotine 3%					
				Gf, diss					
	41.65		41.90	13B					
				Diabase 80°					
				Gris à blanchâtre ayant 35% d'élément felsique.					
	45.75		48.20	Po05					
				Pyrrhotine 5%					
				gf, diss, magnétique de couleur brun					
	51.45		51.90	13B					
				Diabase 80°					
				simillaire au précédent.					
6.15		69.75		13A; MAS					
				Gabbro; Massif(ve)					
				Gabbro gris foncé à noir , massif à gf. l'interval contient une zone de déformation (de 63.8 à 64.1).					
				Contact inférieur : graduel, marqué par une diminution de granulométrie					
4	68.25		71.90	Car50					
				Carbonatisation 50					
				Basalt plus vert avec des fragments de quartz noir					
9.75		73.65		V3B; Ciss	69.75	71.25	57035	1.50	0.004
				Basalte; Cisaillé	71.25	72.75	57036	1.50	0.002
				Basalt verdâtre à gtf cisaillé avec des fragments de quartz fumé à noir.	72.75	74.25	57037	1.50	0.003
				Contact inférieur : graduel, marqué par une diminution de défmortation					
3.65		96.00		V3B; COU	78.60	80.10	57038	1.50	0.002
				Basalte; Coussiné(e)					
				Basalt à gtf de couleur vert-gris très foncé. L'interval contient des veines de quartz (de 79.3 à 79.5 et de					
				87.85 à 90, deux veines sub-parralel succésive) et une section contenant ce qui semble être des					
				intrusion felsique (de 80 à 84.65. Cet élément représente une pâte blanche en aiguille (probablement					
				plagio) avec des fragments mafic à l'intérieur. Enfin. l'interval une diabase (de 92 à 92.15)					
	80.00		84.65	Sil?					
				Silicification ?					
				Dans les sections brèchique, la pâte est blanchâtre et très dur.					

		Description		Analyse				
		Description	De	À	Numéro	Longueur	Au_Plo (g/t)	
80.00	84.65	Po	80.10	81.60	57039	1.50	0.002	
		Pyrrhotine	81.60	83.10	57040	1.50	0.003	
		gf, diss	83.10	84.65	57041	1.55	0.004	
			87.70	89.20	57042	1.50	0.004	
			87.70	89.20	57043 (Std)	1.50	3.770	
87.85	93.00	Car40	89.20	90.70	57044	1.50	0.006	
		Carbonatisation 40						
92.00	92.15	13B						
		Diabase 45°						
		Diabase contenant 5% de lapillis felsiques de 1-2mm						
				1	I	1		

Sondage: M-12-83

Nombre d'échantillons : 14 Nombre d'échantillons QAQC : 1 Longueur totale échantillonnée : 21.25

Sondage :	M-12-84		Titre minier :	4303763		Section :	
Condage :	W-12-04		Canton :			Niveau :	
			Rang:			Place de travail :	
Foré par :			Lot:				
Décrit par :			Du :			Date de description :	
			Au:				
Collet —							
					UTM	Annie	Mégane
Azimut :	315.00°			Est	520 671	-590	-45
Plongée :	-50.00°			Nord	5 489 556		2 114
Longueur	153.00 m						
				Élévation	0	0	0
Déviation —					_		
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	51.00	306.50°	-49.60°	Non	Mag 56110		
Flexit	102.00	307.60°	-49.20°	Non	Mag 56250		
Flexit	153.00	308.20°	-49.50°	Non	Mag 56000		
Description							Da. A
							luki A ng (01234762)
Dimension de la ca	rotte:			Cim	enté : Non		Entreposé: Non

				Decembrian			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00		13.25		MT					
				Mort terrain					
3.25		39.70		I3A; MAS					
				Gabbro; Massif(ve)					
				Gabbro gris foncé à gm. L'interval contient des sections basaltiques, une section déformé (de 31.6 à					
				31.7, contenant des fragments mm de QN) et des veine ou fragments de quartz.					
				Sections basaltique : de 16.1 à 16.4, 21.5 à 23.5 (basalte gris moyen à gris foncé avec des porphyres					
				felsiques), de 29.95 à 31.6 (basalte noir),					
				Veines ou fragments de quartz : de 16.4 à 16.5 (fragment cm dans une fracture CB),					
				Contact inférieur : net, marqué par une diminution subite de granulométrie					
	14.00		22.50	FRC+					
				Fracturation forte 60°					
				Roche en miette très très fracturé rendant difficile le loggage					
9.70		45.40		V3B; MAS					
				Basalte 80°; Massif(ve) 80°					
				Basalte noir à gtf avec 5% de porphyres mm. L'interval est homogène.					
				Contact inférieur : graduel, marqué par une augmentation graduel de la granulométrie.					
	39.70		41.20	Po01; Cp					
				Pyrrhotine 1%; Chalcopyrite					
				Gf, concentré au centre dans un fragment CB					
	40.75		50.10	Car40					
				Carbonatisation 40					
5.40		81.10		I3A; MAS	60.65	62.35	57045	1.70	0.024
				Gabbro; Massif(ve)					
				Gabbro gris moyen à gris foncé, gm, massif. Le gabbro est relativement identique sur toute sa longueur à					
				l'exeption d'un tuf (de 66.75 à 67.15), d'une section basaltique (de 67.15 à 62) et d'une section déformé					
				(de 72.35 à 72.7).					
				Contact inférieur : Très net, marqué par l'apparition de lapillis et de cendre.					
	66.75		67.15	TX1	71.40	72.90	57046	1.50	0.004
				Tuf à Xtaux felsique 45°					
				Tuf gris foncé avec 5% de lapillis de 1mm.					
	72.35		72.70	Car40					
				Carbonatisation 40					
	75.25		81.10	Po; Cp					
				Pyrrhotine; Chalcopyrite					

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
				gf à gm, amas diss le long de l'interval					
81.10		84.65		TX1; MAS					
				Tuf à Xtaux felsique 55°; Massif(ve) 55°					
				Tuf à cristaux gris moyen avec 17% de lapillis felsiques et 3% de lapillis mafiques. Les lapillis ont une					
				dimensions de 2 à 5mm et ils baignes dans une matrice de cendre. L'interval contient une section					
				basaltique (de 84.65 à 84.85)					
				Contact inférieur : net, marqué par le retour au basalt					
84.65		93.40		V3B					
				Basalte 45°					
				Basalt gris foncé verdâtre à gtf. L'interval contient une veines de quartz noire massive (de 87.1 à 87.2).					
				Contact inférieur : net, marqué par l'augmentation de la foliation					
	84.65		84.85	Cp; Po					
				Chalcopyrite; Pyrrhotine					
				gm, diss					
	86.45		88.00	Car40	86.45	88.00	57047	1.55	0.045
				Carbonatisation 40					
	87.10		87.20	QZVN; QN					
				Veines de qtz 70°; Quartz noir 70°					
				Veines ou agrégat de fragments de quartz avec ce qui semble être une pâte de fushite					
	87.10		87.35	Po02; Cp					
				Pyrrhotine 2%; Chalcopyrite					
				gm, diss					
	92.80		93.75	Py01	92.80	94.50	57048	1.70	0.009
				Pyrite 1%					
				gm, idomorphe carré, diss					
93.40		103.75		T1; Ciss	94.50	96.00	57049	1.50	0.012
				Tuf felsique; Cisaillé	96.00	97.50	57050	1.50	<0.002
				Tuf ?? gris moyen à gf avec une forte foliation. La foliation est orienté à 45 degrés. IL y a 1-2% de quartz	97.50	99.00	57051	1.50	0.007
				blanc et noir.	99.00	100.50	57052	1.50	0.012
				N.B : Je ne suis pas certain que c'est un tuf ou bien un basalt cisaillé/altéré.	100.50	102.00	57053	1.50	1.010
					100.50	102.00	57054 (Bln)	1.50	<0.002
				Contact inférieur : Graduel, marqué par une diminution du degré de déformation.					
	93.40		103.40	Car40; Sej40					
				Carbonatisation 40; Séricitisation (jaune) 40					
				La section réagit à l'acide. Les fractures sont très douce au touché, probablement de la séricite					
	100.75		101.60	Py05	102.00	103.50	57055	1.50	0.006
				Pyrite 5%					

	Description			Analyse		
	Description	De	À	Numéro	Longueur	Au_Plot (g/t)
	gm, concentré près des fragments de quartz fumé. Idiomorphe.					
102.30 103.0	0 Py02					
	Pyrite 2%					
	Gm, diss,					
103.00 111.0	0 Py01	103.50	105.00	57056	1.50	0.005
	Pyrite 1%					
	Gf à gm, diss dans la roche					
03.75 110.80	V3B					
	Basalte					
	Basalt noir légèrement verdâtre à gf avec 5% de fracture CB.					
	Contact inférieur : Net, marqué par l'augmentation de la granulométrie					
103.80 110.0	0 Car30					
	Carbonatisation 30					
110.80 131.00	13A; MAS					
	Gabbro 50°; Massif(ve) 50°					
	Gabbro gris foncé, gf à gm et massif. L'interval contient des sections basaltiques, des sections plus					
	déformé et des fragments de quartz (de 114.45 à 114.6).					
	Sections basaltiques : de 113.25 à 113.7 (2% de porphyres felsiques), de 114.6 à 117,					
	Sections déformés : de 119.5 à 120, de 124.7 à 124.8 et de 129 à 129.9 (5% de porphyres mm felsiques).					
	Contact inférieur : net, marqué par une diminution de granulométrie					
119.50 120.0	0 Sii30					
	Silicification 30					
	Section blanchâtre très dur à rayer					
131.00 135.40	V3B; MAS					
	Basalte 70°; Massif(ve) 70°					
	Basalt noir à gtf, massif. L'interval contient un interval avec 3% de porphyres felsiques (de 131 à 133).					
	Contact inférieur : graduel, marqué par une augmentation granudel de la granulométrie					
135.40 144.30	I3A; MAS					
	Gabbro; Massif(ve)					
	Gabbro gris très foncé à gf, massif. L'interval conteint une sections basaltique (de 143.3 à 143.8).					
	Contact inférieur : net, marqué par une diminution de granulométrie et de l'augmentation de la déformation.					
137.00 137.1	0 Chv50					
	Chloritisation (verte) 50					
	En pourtour des fractures CB					

	Description			Analyse		
	Description	De	À	Numéro	Longueur	Au_Plot (g/t)
142.00 142.10	Po01	142.00	142.10		0.10	
	Pyrrhotine 1%					
	gf, concentré dans une fracture					
142.80 152.80	Car40	144.00	145.50	57057	1.50	0.002
	Carbonatisation 40					
149.85	V3B; Ciss; QN	145.50	147.00	57058	1.50	0.003
	Basalte 85°; Cisaillé; Quartz noir 85°	147.00	148.50	57059	1.50	0.003
	Basalt vert-gris sâle à gtf contenant 10% de fractures CB orienté de façon aléatoire.					
	Contact inférieur : graduel, marqué par la diminution progressive de la déformation					
144.30 147.30	Po; Cp					
	Pyrrhotine; Chalcopyrite					
	gf, se retrouve principalement dans des fracture ou près de fragment de quartz					
147.30 147.75	Po05					
	Pyrrhotine 5%					
	gm à gg, diss dans la roche					
147.75 149.85	Po02	148.50	150.00	57060	1.50	0.003
	Pyrrhotine 2%					
	Gf à gm, diss					
49.85 153.00	I3A; MAS	150.00	151.50	57061	1.50	0.002
	Gabbro; Massif(ve)	151.50	153.00	57062	1.50	0.009
	Gabbro gris foncé à gf. Le gabbro contient 2% de fracture CB orienté à 50 degrés.	151.50	153.00	57063 (Std)	1.50	0.559

153.00 Fin du sondage

Nombre d'échantillons : 18 Nombre d'échantillons QAQC : 2 Longueur totale échantillonnée : 26.05

Canton: Rang: Place de travail: Annie Foré par: MAGMA Lot: Décrit par: DD Du: 2012-08-01 Date de description: 2012-08-02				Titue and allow	1000700		0 11		
Rang Place de travail Annie	ondage: N	1-12-85		Titre minier :	4303763		Section :		
Foré par : MAGMA									
Description Description							Place de travail :	Annie	
Au: 2012-08-02 Collet				Lot :					
Azimut : 315.00° Est 520 671 -590 -48	Décrit par :	DD		Du :	2012-08-01		Date de description :	2012-08-02	
Azimut : 315.00° Plongée : -71.00° Longueur : 215.00 m Type Profondeur Azimut Plongée Invalide Description Flexit 18.00 305.00° -69.00° Non Mag 57050 Flexit 102.00 305.90° -69.30° Non Mag 56740 Flexit 150.00 302.20° -69.60° Non Mag 57070				Au:	2012-08-02				
Azimut : 315.00° Plongée : -71.00° Longueur : 215.00 m Type Profondeur Azimut Plongée Invalide Description Flexit 18.00 305.00° -69.00° Non Mag 57050 Flexit 102.00 305.90° -69.30° Non Mag 56740 Flexit 150.00 302.20° -69.60° Non Mag 57070	Collet -								
Plongée : -71.00° Longueur : 215.00 m Type Profondeur Azimut Plongée Invalide Description Flexit 18.00 305.00° -69.00° Non Mag 57050 Flexit 51.00 304.90° -69.40° Non Mag 56980 Flexit 102.00 305.90° -69.30° Non Mag 56740 Flexit 150.00 302.20° -69.60° Non Mag 57070		0.45.000			_	UTM	Annie	Mé	jane ————————————————————————————————————
Nord 5 489 556 2 030 2 114					Est	5	520 671	-590	-45
Élévation 0 0 0 Déviation Type Profondeur Azimut Plongée Invalide Description Flexit 18.00 305.00° -69.00° Non Mag 57050 Flexit 51.00 304.90° -69.40° Non Mag 56980 Flexit 102.00 305.90° -69.30° Non Mag 56740 Flexit 150.00 302.20° -69.60° Non Mag 57070					Nord	5 4	189 556	2 030	2 114
Type Profondeur Azimut Plongée Invalide Description Flexit 18.00 305.00° -69.00° Non Mag 57050 Flexit 51.00 304.90° -69.40° Non Mag 56980 Flexit 102.00 305.90° -69.30° Non Mag 56740 Flexit 150.00 302.20° -69.60° Non Mag 57070	Longueur :	215.00 m			Élévation		0	0	0
Type Profondeur Azimut Plongée Invalide Description Flexit 18.00 305.00° -69.00° Non Mag 57050 Flexit 51.00 304.90° -69.40° Non Mag 56980 Flexit 102.00 305.90° -69.30° Non Mag 56740 Flexit 150.00 302.20° -69.60° Non Mag 57070									
Flexit 18.00 305.00° -69.00° Non Mag 57050 Flexit 51.00 304.90° -69.40° Non Mag 56980 Flexit 102.00 305.90° -69.30° Non Mag 56740 Flexit 150.00 302.20° -69.60° Non Mag 57070	Deviation —————								
Flexit 51.00 304.90° -69.40° Non Mag 56980 Flexit 102.00 305.90° -69.30° Non Mag 56740 Flexit 150.00 302.20° -69.60° Non Mag 57070	Туре						Descrip	tion	
Flexit 102.00 305.90° -69.30° Non Mag 56740 Flexit 150.00 302.20° -69.60° Non Mag 57070									
Flexit 150.00 302.20° -69.60° Non Mag 57070									
Flexit 201.00 305.50° -69.70° Non Mag 56600									
	Flexit	201.00	305.50°	-69.70°	Non	Mag 56600			
laki Az iz (01234762)	Description						/	7	

Projet : MONSTER

Dimension de la carotte :

NQ

Entreposé : Oui

				Decadetion			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00		8.00		MT					
				Mort terrain					
.00		11.90		V3B; MAS					
				Basalte; Massif(ve)					
				Basalt à gtf de couleur noir, massif et contenant 2% de porphyres felsiques					
				Contact inférieur : net, marqué par l'augmentation de la granulométrie					
	8.00		15.00	FRC+					
				Fracturation forte 35°					
1.90		46.10		I3A; MAS					
				Gabbro 80°; Massif(ve) 80°					
				Gabbro gris foncé, gf à gm, massif et constant sur l'interval. La couleur s'éclairci par momment. L'interval					
				contient des sections basaltiques, des sections déformés, un intrusif felsique (de 20.3 à 21), un tuf à					
				cristaux felsique (de 24.1 à 24.5) et deux fracturers CB avec des petits fragments de QN (à 15.05 et de					
				45.8 à 46.1, fracture sub -parralel).					
				Sections basaltiques : de 13.75 à 15 (basalt contenant 1-2 % de porphyres felsiques mm), de 15.9 à 16,					
				de 25.5 à 26.8 (contacts net à 50) et de 42 à 42.65 (basalte avec 1-2% de porphyre).					
				Sections déformées : de 34.8 à 35.7 (montre une légère diminution de granulo et la présence de 3% de					
				fractures CB) et de 38.1 à 38.6 (marqué par de larges fractures Cb avec des fragments de basalte à					
				l'intérieur.					
				Contact inférieur : graduel, marqué par une diminution progressive de la granulométrie					
	20.30		21.00	11					
				Intrusif felsique 60°					
				Roche gris moyen à gris foncé avec des gttf. Les deux contacts sont net à 60					
	24.10		24.50	TX1; MAS					
				Tuf à Xtaux felsique 50°; Massif(ve) 50°					
				Tuf gris moyen avec 2% de lapillis mm felsiques.					
	38.10		38.60	Py02; Cp					
				Pyrite 2%; Chalcopyrite					
				Py : gm, concentré dans une fracture Cb sub-parralel à la carotte					
				Cpx : se retrouve associé à la Py					
	45.65		46.50	Car40					
				Carbonatisation 40					
				Section de basalte plus pâle					
6.10		56.95		V3B; MAS					
				Basalte; Massif(ve)					
				Basalt à gtf de couleur très noir avec 2% de porphyre mm felsiques. L'interval est marqué par de fine					

				Decodiation			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
				fracture CB ondualnt.					
	47.05		47.70	Contact inférieur : net, marqué par une augmentation de la granulométrie. Po02; Cp01					
	77.00		.,	Pyπhotine 2%; Chalcopyrite 1% tous deux à gf, diss dans les bandes cisaillés					
56.95		72.90		13A; MAS; MAG					
				Gabbro 70°; Massif(ve) 70°; Magnétique 70°					
				Gabbro simillaire au précédent, soit gf à gm, gris foncé et massif. Le gabbro reste constant sur toute					
				l'interval. L'interval contient quelques sections basaltiques					
				Sections basaltiques : de 59 à 59.3 et de 68.6 à 69.2.					
				Contact inférieur : net, marqué par une diminution de granulométrie					
	59.00		59.30	Car40					
				Carbonatisation 40					
				La carbonisation entour des les fractures CB					
	68.60		69.20	Car60					
				Carbonatisation 60					
	00.00		00.00	Section basaltique dans le gabbro					
	68.80		68.90	Cp01; Po01					
				Chalcopyrite 1%; Pyrrhotine 1% Gf, diss					
72.90		75.45							
2.90		75.45		I3B; MAS Diabase 45°; Massif(ve) 45°					
				Diabase 45 , massil(ve) 45 Diabase gris moyen ;a gris foncé avec une matrice à gf et 19% de porphyres felsiques et 1% de					
				porphyres mafic de 5 à 8mm de diamètre.					
				contact inférieur : net marqué par un changement lithologique					
	72.90		73.10	Po01					
				Pyrrhotine 1%					
				Gf, diss					
75.45		77.90		TX1; MAS					
				Tuf à Xtaux felsique 45°; Massif(ve) 45°					
				Tuf gris moyen aec une matrice majoritairement composée de cendre à gf et 5% de lapillis de 1mm. La					
				seconde moiter montre un tuf plus noir avec moins de lapillis					
				Contact inférieur : net, marqué par un changement de lithologie					
77.90		78.40		V3B; MAS					
				Basalte 70°; Massif(ve) 70°					

			Description			Analyse		
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
			asalt noir avec une teinte de vert. L'interval contient une fracture Cb large avec des framgents de QN (à r.8)					
		Co	ontact inférieur : net, marqué par un retour du diabase					
8.40	80.60	138	B; MAS					
		Dia	abase 80°; Massif(ve) 80°					
		Dia	abase en tout point simillaire au précédent. L'interval contient une section sans porphyres felsiques (de					
		79	9.9 à 80.6).					
		Co	ontact inférieur : net, marqué par un retour du basalte					
80.60	120.20	V3	BB; MAS					
		Ва	asalte; Massif(ve)					
		Ва	asalte à gtf de couleur noir et massif. L'interval contient des sections déformées, des tuf à cristaux					
		fel	lsiques, des veines de quartz fumée et une section gabbroique (de 90.8 à 95.25)					
		Se	ections déformées : de 82.4 à 82.7, de 87.35 à 87.5, de 89.75 à 90.3, de 92.75 à 93.7 (section plus					
		ve	ordâtre avec certaines fines fractures remplit de QN), de 110.75 à 112.1 (les fractures Cb contient des					
		fra	agments de QN) et 115.5 à 116					
		Tu	ıf à cristaux felsiques : 82.7 à 83.1, de 98.6 à 98.8 et 99.15 à 100					
			eines de quartz : de 83.35 à 83.45 (quartz fumé), à 95.45, à 107.9 (quartz noir dans une fines fractures) à 120.1					
		Co	ontact inférieur : net, marqué par l'apparition du diabase à porphyres mm felsiques.					
82.2	20 8	2.35	Po02					
			Pyrrhotine 2%					
			Gtf, diss dans des fractures déformées					
82.7	70 8	3.10	TX1; MAS					
			Tuf à Xtaux felsique 75°; Massif(ve) 75°					
			tuf gris moyen avec 10% de lapillis felsiques. Les deux contacts sont net mais ondulant.					
83.3	35 8	3.45	QZVN					
			Veines de qtz 40°					
			Quartz fumé avec un fragment cm de basalte au coeur.					
83.3	35 8	3.45	Po03; Cp	89.50	90.50	57064	1.00	0.007
			Pyrrhotine 3%; Chalcopyrite					
			Po : gf à gm, concentré dans les épontes entre quartz et le basalte.					
			Cpx : quelques grains retrouvé en bordure des amas de Po					
89.7	75 9	0.30	Po01; Cp	92.70	94.20	57065	1.50	0.022
			Pyrrhotine 1%; Chalcopyrite	94.20	95.70	57066	1.50	0.003

			Description			Analyse		
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
			Gf, concentré principalement dans un gros amas carrés. Les Cps sont principalement en bordure					
			de cette amas					
95.25	95	5.45	Cp; Po					
			Chalcopyrite; Pyrrhotine					
			Gf, concentré en bordure de la fine veines de quartz noir					
98.60	10	00.00	TX1; MAS	109.50	111.00	57067	1.50	<0.002
			Tuf à Xtaux felsique 45°; Massif(ve) 45°	111.00	112.50	57068	1.50	0.002
			Tuf gris foncé à cendre. Le tuf contient 2% de lapillis felsiques. L'interval contient du basalte de	112.50	114.00	57069	1.50	0.011
			98.8 à 99.15.	114.00	115.50	57070	1.50	0.005
115.5	0 11	6.00	Su	115.50	117.00	57071	1.50	0.002
			Sulfures					
			gtf, diss					
20.20	122.50	13B; I						
			ase 45°; Massif(ve) 45°					
		Diaba	ase gris foncé avec 15-20% de porphyres (5-8mm) felsiques.					
		Conta	act inférieur : Net, marqué par un retour au basalte					
22.50	123.20	V3B;	MAS					
		Basa	ite 70°; Massif(ve) 70°					
		Basa	lte gris foncé à gtf.					
		Conta	act inférieur : apparition d'un unité sédimentaire.					
23.20	128.85	TX1;	MAS					
		Tufà	Xtaux felsique 45°; Massif(ve) 45°					
		Tuf g	ris moyen composée de 20% de lapillis felsiques, 2% de lapillis mafiques et le reste est des cendres.					
		L'inte	erval comprend un tuf cristaux mafiques uniquement (de 127.5 à 127.9)					
		Conta	act inférieur : net, marqué par un retour à un gabbro					
28.85	146.10	I3A; I	MAS					
		Gabb	oro 40°; Massif(ve) 40°					
		Gabb	oro gris foncé à noir, gm et massif. Le gabbro comprend des sections basaltiques.					
		Secti	ons basaltiques : de 137.6 à 138.45 et de 138.9 à 139.7.					
46.10	178.20		MAS; COU					
			Ite 80°; Massif(ve); Coussiné(e) 80°					
			Ite à gf de couleur noir verdâtre, montre des évidences de coussinement et la roche est massive.					
			l'ensemble de l'interval le basalte reste relativement identique. à partir de 157, il y a apparition de					
			ralisation plus constante. Entre 165.4 à 178.2, Il est noter un changment frappant de l'allure du					
			Ite, il devient progressivement plus verdâtre et le niveau de défomation augmente en approchant du					

150.85 151	L'inter sectio (augn dernie	Description It inférieur avec la veines de quartz noire massive. val contient des sections déformés et une veine de quartz (à 169.1). Ins déformées : de 150.85 à 151.2 (section comprenant des fragments de QN) et de 165.4 à 178.2 sentation progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). Institution progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). Institution progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). Institution progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). Institution progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). Institution progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). Institution progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). Institution progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). Institution progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres).	156	De	A	Numéro	Longueur	Au_Plot (g/t)
150.85 151 156.85 170	L'inter sectio (augn dernie Conta 56.85	val contient des sections déformés et une veine de quartz (à 169.1). Ins déformées : de 150.85 à 151.2 (section comprenant des fragments de QN) et de 165.4 à 178.2 sentation progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). Institution progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). Institution progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). Institution progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). Institution progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). Institution progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). Institution progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). Institution progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). Institution progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres).	156	66.00	157.50	57072		
150.85 151 156.85 170	sectio (augn dernie Conta 56.85	ns déformées : de 150.85 à 151.2 (section comprenant des fragments de QN) et de 165.4 à 178.2 sentation progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). ct inférieur : net, marqué par l'arrivé du quartz noir massif. Po01; Cp Pyrrhotine 1%; Chalcopyrite gf, concentré dans de fines fractures. Chv20 Chloritisation (verte) 20 Roche prenant des teintes verdâtre	156	66.00	157.50	57072		
150.85 151 156.85 170	(augn dernie Conta 56.85	nentation progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). ct inférieur : net, marqué par l'arrivé du quartz noir massif. Po01; Cp Pyrrhotine 1%; Chalcopyrite gf, concentré dans de fines fractures. Chv20 Chloritisation (verte) 20 Roche prenant des teintes verdâtre	156	66.00	157.50	57072		
150.85 151 156.85 170	(augn dernie Conta 56.85	nentation progressive de la déformation avec une apparition de fracture CB orienté à 45 dans les 2 rs mètres). ct inférieur : net, marqué par l'arrivé du quartz noir massif. Po01; Cp Pyrrhotine 1%; Chalcopyrite gf, concentré dans de fines fractures. Chv20 Chloritisation (verte) 20 Roche prenant des teintes verdâtre	156	56.00	157.50	57072		
150.85 151 156.85 170	dernia Conta 56.85 51.20	rs mètres). ct inférieur : net, marqué par l'arrivé du quartz noir massif. Po01; Cp Pyrrhotine 1%; Chalcopyrite gf, concentré dans de fines fractures. Chv20 Chloritisation (verte) 20 Roche prenant des teintes verdâtre	156	56.00	157.50	57072		
150.85 151 156.85 170	Conta 56.85 51.20	ct inférieur : net, marqué par l'arrivé du quartz noir massif. Po01; Cp Pyrrhotine 1%; Chalcopyrite gf, concentré dans de fines fractures. Chv20 Chloritisation (verte) 20 Roche prenant des teintes verdâtre	156	56.00	157.50	57072		
150.85 151 156.85 170	56.85 51.20	Po01; Cp Pyrrhotine 1%; Chalcopyrite gf, concentré dans de fines fractures. Chv20 Chloritisation (verte) 20 Roche prenant des teintes verdâtre	156	56.00	157.50	57072		
150.85 151 156.85 170	51.20	Pyrrhotine 1%; Chalcopyrite gf, concentré dans de fines fractures. Chv20 Chloritisation (verte) 20 Roche prenant des teintes verdâtre	156	56.00	157.50	57072		
156.85 170		gf, concentré dans de fines fractures. Chv20 Chloritisation (verte) 20 Roche prenant des teintes verdâtre	156	56.00	157.50	57072		
156.85 170		Chv20 Chloritisation (verte) 20 Roche prenant des teintes verdâtre	156	56.00	157.50	57072		
156.85 170		Chloritisation (verte) 20 Roche prenant des teintes verdâtre	156	56.00	157.50	57072	1	
	70.60	Roche prenant des teintes verdâtre				I	1.50	<0.002
	70.60							
	70.60	Po03; Py; Cp						
165.40 178			157	57.50	159.00	57073	1.50	<0.002
165.40 178		Pyrrhotine 3%; Pyrite; Chalcopyrite	159	59.00	160.50	57074	1.50	<0.002
165.40 178		gf à gm, les trois sulfures sont diss.	160	60.50	162.00	57075	1.50	< 0.002
165.40 178			162	62.00	163.50	57076	1.50	<0.002
165.40 178			163	33.50	165.00	57077	1.50	<0.002
165.40 178			165	55.00	166,50	57078	1.50	< 0.002
100.40	78 20	Chv30?; Sil10	166	66.50	168.00	57079	1.50	0.002
	10.20	Chloritisation (verte) 30?; Silicification 10				1		
		Je ne suis pas sur des altération mentionné ci-haut.		88.00	169.50	57080	1.50	<0.002
			169	69.50	171.00	57081	1.50	0.006
170.60 178	78.20	Po03; Py03; Cp	171	1.00	172.50	57082	1.50	0.003
		Pyrrhotine 3%; Pyrite 3%; Chalcopyrite	172	2.50	174.00	57083	1.50	3.970
		Gm, diss sur la longueur de l'interval.	172	2.50	174.00	57084 (Std)	1.50	0.003
		Po : se retrouve en majorité au début et à la fin de l'interval	174	4.00	175.50	57085	1.50	<0.002
		Py : se retrouve majoritaire dans le milieu de l'interval Cpx : est retrouvé en trace sur toute la longueur.			177.00	57086	1.50	0.002
		Cpx . est retrouve en trace sur toute la longueur.			178.50	57087	1.50	0.434
			177	7.00	170.00	0,000	1.00	0.404
3.20 185.90		; QN; MAS						
		s de qtz 10°; Quartz noir; Massif(ve) 10° palement une veine de quartz massif, généralement noir avec une section fumé/grisâtre, couleurs						
		veines plutôt rare dans pour cette zone (de 180.95 à 182.9). Il semble y avoir de la séricitissation						
		les grains, parfois en grosse patches dans le quartz massif.						
		ct inférieur : Net, marqué par la disparition du QN massif.						

		Description		80.00				
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)	
178.20	185.90	Car10; Ser10	178.50	180.00	57088	1.50	0.163	
		Carbonatisation 10; Séricitisation (indéterminée) 10	180.00	181.50	57089	1.50	0.279	
		L'altération se situes dans la pâte retrouvé entre le quartz noir et dans les fractures. Il y a un						
		mélange de carbonisation et d'un élément gris moyen/verdâtre						
178.20	180.85	Po03; Py02						
		Pyrrhotine 3%; Pyrite 2%						
		La granulométrie est plutôt moyen en début d'interval et devient de plus en plus fine.						
180.85	182.90	Py03	181.50	183.00	57090	1.50	0.462	
		Pyrite 3%						
		Py gf à gtf, idiomorphique et diss						
182.90	183.05	Po03; Py02	183.00	184.50	57091	1.50	0.076	
		Pyrrhotine 3%; Pyrite 2%						
		Gm, diss						
183.05	184.50	Py; Po						
		Pyrite; Pyrrhotine						
		gm à gf, diss				1		
184.50	185.90	Py02; Po02; Cp	184.50	186.00	57092	1.50	0.583	
		Pyrite 2%; Pyrrhotine 2%; Chalcopyrite						
		Gf diss.						
		La Cpx est principalement concentré dans une fracture de sulfure massif (quelques mm) au						
		sommet de l'interval.						
90 191	.00 T1							
	Tuf	felsique 10°						
	T1	?????? Cette roche est toujours difficile à nommé. Roche gris moyen à gris clair à gf. La foliation est						
	par	fois à 45 parfois aléatoire. Elle contient 5-8% de fragments de quartz noir, principalement concentré						
	ent	re 186.1 à 187.1. Une altération jaune-orange est également présente sur 5% de la roche. L'interval						
	con	ttient une géode de calcite à 189.35.						
		ntact inférieur : net, marqué par un retour a un basalte avec fractures CB						
185.90	191.00	Ser; Car20; Sej10	186.00	187.50	57093	1.50	2.350	
		Séricitisation (indéterminée); Carbonatisation 20; Séricitisation (jaune) 10	186.00	187.50	57094 (Bln)	1.50	0.008	
		Séricite???: La roches semble altéré grandement en un pâte gris moyen à gris clair que je crois						
		être de la séricite (à confirmé). Au travers de la séricite grisâtre il y a une altération jaune-orangé.						
		La roche réagit faiblement à l'acide						
185.90	186.55	Po04						
		Pyrrhotine 4%						
		gm, diss dans la foliation						
187.40	188.30	Po03	187.50	189.00	57095	1.50	0.378	
		Pyrrhotine 3%	189.00	190.50	57096	1.50	0.110	
		gm, diss dans la foliation						

		Description			Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
			190.50	192.00	57097	1.50	0.008
190.90	191.00	Po					
		Pyrrhotine					
		gm à gf, diss					
91.00 213.00) v	'3B; MAS	192.00	193.50	57098	1.50	0.005
	В	sasalte 30°; Massif(ve) 30°	193.50	195.00	57099	1.50	0.008
	В	lasalte noir foncé avec une teinte plus verdâtre dans les premiers mètres. La granulométrie est à gtf et la					
	ro	oche est massive. L'interval contient des sections déformées et une diabase (de 210.6 à 212.25).					
	s	sections déformées : de 191 à 195.2 (section plus claire avec 10% de fractures CB) et de 207.65 à					
	2	08.9 (section contenant 5% de fragments de quartz fumés)					
191.00	195.20	Chv?					
		Chloritisation (verte) ?					
		Le basalte est nettement plus clair et ne réagit pas à l'acide					
195.20	198.00	Po	207.50	209.00	57100	1.50	0.027
		Pyrrhotine					
		gm, diss					
210.60	212.25	13B; MAS					
		Diabase 45°; Massif(ve) 45°					
		Diabase gris foncé à gtf avec 15% de porphyres (2 à 6mm) felsiques .					

215.00 Fin du sondage

Nombre d'échantillons : 35 Nombre d'échantillons QAQC : 2 Longueur totale échantillonnée : 52.00

Sondage: M-12-86 Titre minier :

4303763

Section:

Canton: Rang:

Niveau:

Foré par :

MAGMA

Lot:

Place de travail:

Annie

Décrit par :

DD

Du:

Au:

2012-08-03 2012-08-05

Date de description :

Annie

2012-08-04

-Collet

Azimut:

315.00°

Plongée :

-71.00°

Longueur:

294.00 m

Est

Nord

Élévation

UTM

520 696

5 489 534

-557 2 032

0

-12 2 107

Mégane

-Déviation

Туре	Profondeur	Azimut	Plongée	Invalide	Description
Flexit	15.00	323.40°	-57.10°	Oui	Mag 57660
Flexit	51.00	323.30°	-70.10°	Non	Mag 56300
Flexit	102.00	324.60°	-70.40°	Non	Mag 56880
Flexit	150.00	326.40°	-69.90°	Non	Mag 56960
Flexit	201.00	222.90°	-70.80°	Oui	Mag 56190
Flexit	252.00	326.40°	-70.40°	Non	Mag 56500
Flexit	294.00	327.70°	-70.30°	Non	Mag 56340

Description

Trou prévu à 250m, prolongé jusqu'a 294m suite à une modification des section grâce au log précédent. Mais, malgré avoir frappé la zone, je crois que j'aurais du prolonger d'avantage le trou (peut-être un 10m de plus)

lahi A og (01234762)

Dimension de la carotte :

NQ

Cimenté: Non

Entreposé : Oui

				Decembion			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00		9.00		MT					
				Mort terrain					
00.6		11.65		I3A; MAS					
				Gabbro; Massif(ve)					
				Gris foncé à gf.					
				Contact inférieur : net, marqué par une diminution de granulométrie					
11.65		19.60		V3A					
				Basalte andésitique 40°					
				Basalte andésitique ?? Couleur gris moyen à gf. La roche montre une foliation à 10-15 degrés. Roche					
				homogène.					
				Contact inférieur : Net, marqué par l'augmentation de la granulométrie et un changement de couleur					
1	11.65		45.00	Car20					
				Carbonatisation 20					
				La totalité de la première partie du sondage réagit faiblement à l'aide.					
19.60		26.90		13A					
				Gabbro 25°					
				Gabbro gris-moyen verdâtre à gm, Foliation moyen orienté à 30 degrés.					
				Contact inférieur : net, marqué par une diminution de granulométrie					
26.90		33.90		V3B; MAS					
				Basalte 80°; Massif(ve) 80°					
				Basalte à gf de couleur vert-gris foncé. La roche contient 5% de fractures CB.					
				Contact inférieur : net, marqué par un changement de couleur					
33.90		41.10		V3A; MAS	34.00	35.50	57101	1.50	0.017
				Basalte andésitique 90°; Massif(ve) 90°					
				Basalte andésitique ?? Roche similaire à la première que j'ai nommé du même nom. Gris claire avec des					
				fractures remplit de QN. L'interval contient une veines de quartz fumé (de 34.4 à 34.6)					
				Contact inférieur : Graduel sur quelques cm, marqué par un retour à une couleur d'un basalte plus					
				classique.					
3	34.40		34.60	QZVN					
				Veines de qtz 70°					
				Quartz fumé avec en bordure du CB					
3	34.40		34.80	Po02; Cp01					
				Pyrrhotine 2%; Chalcopyrite 1%					
				Gm, amas concentré dans a premières fractures CB.					

		Description					Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
	36.50		38.10	Cp01; Po01					
				Chalcopyrite 1%; Pyrrhotine 1%					
				Gf à gm, minéralisation consantré au deux extrémité de l'interval					
41.10		45.00		V3B; MAS					
				Basalte; Massif(ve)					
				Basalte verdâtre foncé à gtf avec 5% de fracture CB. L'interval contient une section gabbroique (de 44.2					
				à 44.4)					
				Contact inférieur : Net, marqué par une augmentation de granulométrie					
5.00		52.40		I3A; MAS					
				Gabbro 70°; Massif(ve) 70°					
				Gabbro gris foncé à gf avec quelques fines fractures CB, massif. L'interval conteint une section					
				basaltique à porphyres mm felsiques (de 49.6 à 49.75)					
				Contact inférieur : net, marqué apr uen diminution de granulométrie					
2.40		63.65		V3A; PORPg					
				Basalte andésitique 40°; Phénocristaux de plagioclase 40°					
				Basalte andésitique ?? roche simillaire au 2 précédents (témois prélevé pour confirmation, à 54.4). Roche					
				gris moyen à gris claire avec une foliation à 40 degrés. La roche conteient des fractures CB. L'interval					
				contient une section avec des phénocristaux de plagioclase? de 60 à 62.5.					
				Contact inférieur : Net, marqué apr l'apparition d'une diabase à porphyres felsiques					
	52.40		63.65	Car20					
				Carbonatisation 20					
	55.40		56.90	Po					
				Pyrrhotine					
				gf à gm, diss					
3.65		65.20		I3B; POR					
				Diabase 80°; Porphyrique / Porphyritic 80°					
				Diabase gris foncé avec 10% de porphyres (2 à 4mm) felsiques.					
				Contact inférieur : net, marqué par uin changement lithologique					
65.20		73.50		13A					
				Gabbro 45°					
				Gabbro gris foncé à gf/gm, massif. L'interval est homogène					
				Contact inférieur : Net, marqué par une diminution de granulométrie					
73.50		131.30		V3B	78.00	79.60	57102	1.60	<0.002
				Basalte 80°	78.00	79.60	57103 (Std)	1.60	3.740
				Basalte à gtf à couleur variable, gris-verdâtre (de 73.5 à 80.5), noir (de 80.5 à 110), gris foncé (de 110 à			` '		

Description					Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
	12	6). Globablement le basalt à 5% de porphyres mm felsiques.					
	L'ir	nterval contient des sections déformés, une section avec une foliation à 45(de 91.5 à 91.9), une					
		ction avec des fractures CB avec des fragments de QN (de 77.6 à 79.6), une diabase (de 102.85 à					
	10-	4) et des tuf à cristaux felsiques.					
	Se	octions déformés : de 89.1 à 89.6, de 91.9 à 95.9, de 100.6 à 101.1, de 109.9 à 113 (section avec des					
	fra	gments de quartz noir mm/cm dans des fractures CB et de 128.7 à 131.3 (contient des fractures CB					
	sul	b-parralel avec des fragments de QN et une altération Cb dans la roche autour de la fracture.					
	Tu	f : de 115.5 à 116.15 et de 116.8 à 117.9					
	Co	ontact inférieur : Graduel sur 10 cm, marqué par une augmentation de granulométrie					
78.30	79.60	Po					
7 5.00	70100	Pyrrhotine					
		gf, concentré en bordure des fractures CB					
79.60	80.20	Car40					
70.00	00.20	Carbonatisation 40					
		Section plus brunâtre du basalte					
86.20	87.10	13; MAS	86.75	88.25	57104	1.50	0.003
		Intrusif mafique; Massif(ve)					
		Intrusif mafique ? Roche gris très foncé avec des porphyres de 1-2mm mafic.					
87.10	87.25	Po04; Cp01	99.90	101.40	57105	1.50	0.009
		Pyrrhotine 4%; Chalcopyrite 1%					
		Gf à gm, concentré en bordure de fragment de QN					
100.60	101.10	Chv25					
		Chloritisation (verte) 25					
		Chv ?? zone de déformation plus verdâtre					
102.85	104.00	I3B; MAS; POR	111.10	112.70	57106	1.60	0.003
		Diabase 60°; Massif(ve); Porphyrique / Porphyritic 60°					
		Diabase gris foncé à gtf contenant des porphyres (2-5mm) felsiques.					
115.50	116.15	TX1					
		Tuf à Xtaux felsique 70°					
		Tuf gris moyen avec 2% de lapillis dans une matrice de cendre					
116.80	117.90	TX1					
		Tuf à Xtaux felsique 45°					
		Tuf gris moyen avec 10% de lapillis mm felsiques dans une matrice de cendre					
118.60	119.10	Po01					
		Pyrrhotine 1%					
		gf, concentré en bordure d'une fracture Cb sub-parralel					

	Pacarintian			Analyse		
Λ	Description	De	A	Numéro	Longueur	Au_Plot (g/t)
120.40 120.6	0 Po; Cp					
	Pyrrhotine; Chalcopyrite					
	Gf, concentré dans une fracture					
128.70 131.3	0 Seb40	128.70	130.20	57107	1.50	0.006
	Séricitisation (brune) 40	130.20	131.70	57108	1.50	0.002
	Séricite présente en bordure des fractures CB					
131.30 143.00	13A; MAS	137.05	138.00	57109	0.95	0.002
	Gabbro; Massif(ve)					
	Gabbro gris foncé légèrement verdâtre à gf. L'interval contient une large fracture CB avec 80% de					
	fragment de QN (de 137.3 à 137.36)					
	Contact inférieur : graduel, marqué par une diminution progressive de la granulométrie					
143.00 162.40	V3B; MAS					
	Basalte; Massif(ve)					
	Basalt gris foncé à gtf, massif et quasiment totalement homogène. L'interval contient quelques sections					
	déformés et un tuf à cristaux (de 156 à 157.5)					
	Sections déformées : de 144.4 à 145.4, de 148.1 à 149.35 et de 158.55 à 159.1.					
	Contact inférieur : net, marqué par l'apparition d'un tuf					
156.00 157.5	0 TX1; MAS					
	Tuf à Xtaux felsique 60°; Massif(ve) 60°					
	Tuf gris foncé avec 2% de lapillis(1-2mm) felsiques					
158.55 159.8	0 Po					
	Pyrrhotine					
	gf, diss dans de fine fracture				41	
162.40 165.80	TX1; MAS	165.50	167.00	57110	1.50	<0.002
	Tuf à Xtaux felsique 40°; Massif(ve) 40°					
	Tuf gris moyen avec 08% de lapillis (2-4mm) felsiques et 2% de lapillis mafiques					
	Contact inférieur : net, marqué par un changement lithologique					
165.80 202.40	V3B; MAS					
	Basalte 45°; Massif(ve) 45°					
	Basalt vert-gris foncé à noi à gtf et contenant 4% de fracture Cb orienté à 50 degrés. L'interval contient					
	une veines de quartz noir massive (de 167.2 à 168.55), des veinules de quartz, un tuf à cristaux (de 181					
	à 181.8). Le basalte a une allure différente à partir de 185.5 avec une séries de section altéré et/oui					
	légèrement altéré.					
	Veinules de quartz : à 172.2, de 176.75 à 175.85 (noir massif)					

		Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
	Co	ntact inférieur : net, marqué par changement lithologique vers un tuf					
167.00	169.35	Po; Cp	167.00	168.55	57111	1.55	0.006
		Pyrrhotine; Chalcopyrite					
		Gf à gm, amas diss dans le quartz#					
167.20	168.55	QZVN; QN; MAS	168.55	170.05	57112	1.50	0.002
		Veines de qtz 45°; Quartz noir; Massif(ve) 45°					
		Veines de quartz massif très très noir et opaque. Le quartz montre peu ou pas de minéralisation					
		Les deux contact sont net à 45 degrés					
169.60	170.40	Car60	176.30	177.30	57113	1.00	< 0.002
		Carbonatisation 60					
176.75	176.85	QZVN; MAS					
		Veines de qtz 80°; Massif(ve) 80°					
		Noir massif avec des fragments de basalte					
181.00	181.80	TX1	184.50	186.00	57114	1.50	0.002
		Tuf à Xtaux felsique 80°					
		Tuf gris moyen comprenent 10% de bloc (1cm de diamètre), 5% de lapillis (2 à 8mm).					
184.65	184.90	Po02; Cp					
		Pyrrhotine 2%; Chalcopyrite					
		Fg à gm, concentré dans une fines bandes					
185.50	188.65	Car60; Ser	186.00	187.50	57115	1.50	0.003
		Carbonatisation 60; Séricitisation (indéterminée)	187.50	189.00	57116	1.50	0.002
		Section plus déformé et carbonisé	189.00	190.50	57117	1.50	0.006
189.90	193.00	Po03; Cp01	190.50	192.00	57118	1.50	< 0.002
		Pyrrhotine 3%; Chalcopyrite 1%	192.00	193.50	57119	1.50	0.004
		gm, concentré dans 2 sections déformés de 20cm chacunes.					
193.00	202.40	Po01; Cp					
		Pyrrhotine 1%; Chalcopyrite					
		Gf à gm, diss					
194.50	202.40	Sil30					
		Silicification 30					
		Plusieurs section decacentimétrique blanchâtre					
02.40 209.8	35 TX	2; MAS					
	Tu	f à Xtaux intermédaire 35°; Massif(ve) 35°					
	Tu	f gris moyen à gris clair contenant 10% de lapillis felsiques et mafique (2%). L'interval compren 2 zones					
	av	ec seulement des cendres (de 206.5 à 206.9 et de 209.35 à 209.35).					
	Co	ontact inférieur : net, marqué par un retour au basalte					

			Description			Analyse		
Δ			Description	De	A	Numéro	Longueur	Au_Plot (g/t)
	205.00	212.70	Car30					
			Carbonatisation 30					
09.85	242.20		V3B					
			Basalte 10°					
			Basalt à gtf avec une couleur très variable. Le basalte a une allure très hétérogène avec beaucoup des					
			petites section altéré. En fait, l'interval est homgène dans sont hétérogène L'interval contient une					
			fractures CB contenant des fragments de basalte et de quartz noir (de 214.25 à 214.6)					
			Contact inférieur : graduel sur quelques cm, marqué par un augmentation de granulométrie					
	211.40	218.80	Po02	213.75	215.25	57120	1.50	0.005
			Pyrrhotine 2%					
			Gf, concentré dans de fine fractures ou des fractures CB					
	218.80	242.00	Po01					
			Pyrrhotine 1%					
			Gf, concentré dans de fine fractures. Il y a des sections plus minéralisé 9de 234.5 à 235.3 et de					
			240.85 à 242)					
	221.60	242.20	Sil; Alb	240.85	242.00	57121	1.15	0.002
			Silicification; Albitisation					
			Silicification ou albitisation ? plusieurs sections decacentimétrique blanchâtre réagissant parfois à					
			l'acide souvent pas.					
42.20	246.30		I3A; MAS					
			Gabbro; Massif(ve)					
			Gabbro gris foncé à gm, massif et homogène.					
			Contact inférieur : graduel, marqué apr une diminution progressive sur plusieurs cm					
46.30	264.80		V3B; MAS					
			Basalte; Massif(ve)					
			Basalte noir à gtf et massif. Ce basalt est nettement plus homogène et plus constant que ce qui a pu être					
			observé dans l'interval précédent de basalte L'interval contient une interval cisaillé (de 263.6 à 264.8) et un fragment de quartz noir (à 258.55).					
			Contact inférieur : net, marqué par un changement compositionnel					
	248.80	268.30	Po	253.20	254.20	57122	1.00	0.011
	270.00	200.50	Pyrrhotine Pyrrhotine					
			Gm, amas diss	253.20	254.20	57123 (Std)	1.00	0.549
			on and dio	259.20	260.70	57124	1.50	<0.002
				260.70	262.20	57125	1.50	<0.002
				262.20	263.70	57126	1.50	<0.002
	263.50	289.10	Car20; Seb; Sej	263.70	265.20	57127	1.50	0.007
	200.00	200.10	Carbonatisation 20; Séricitisation (brune); Séricitisation (jaune)	200.10	200.20	0, 12,	1.50	0.007

		Deparinties			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
		Séricitisation ?			+		(9/1)
64.80 286.	00 т	1; QN	265.20	266.70	57128	1.50	0.011
200.		uf felsique 60°; Quartz noir 60°	266.70	268.20	57129	1.50	0.004
		uf felsiques comprennant des lapillis suivant la foliation à 35 degrés. La roche est gris moyen avec une					
		ointe de jaune. L'interval est composé de 2% de fragment de quartz noir. IL est à noté que les derniers	268.20	269.70	57130	1.50	0.035
	m	nètre de l'interval est embêtant entre un tuf ou un basalt cisaillée avec du quartz noir.					
	C	contact inférieur : graduel, laissant progressivement sa place à un basalte cisaillé.					
268.30	274.50	Po02; Cp01	269.70	271.20	57131	1.50	0.034
		Pyrrhotine 2%; Chalcopyrite 1%	271.20	272.70	57132	1.50	0.021
		Gf, concentré dans les sections avec des fragments de QN	272.70	274.20	57133	1.50	0.325
			272.70	274.20	57134 (Bln)	1.50	<0.002
			274.20	275.20	57135	1.00	1.310
274.50	274.60	Po01; Au					
		Pyrrhotine 1%; Or natif					
		1 grain d'or visible					
274.60	279.00	Po01; Cp	275.20	276.70	57136	1.50	0.009
		Руπhotine 1%; Chalcopyrite	276.70	278.20	57137	1.50	0.006
		gf, diss en amas	278.20	279.70	57138	1.50	0.003
			279.70	281.20	57139	1.50	0.008
280.80	281.65	Po01; Cp01	281.20	282.70	57140	1.50	0.005
		Pyrrhotine 1%; Chalcopyrite 1% Gf à gm, concentré dans la veinules de QN					
282.10	286.00		282.70	284.20	57141	1.50	0.005
202.10	200.00	Po Pyrrhotine					
		gf, diss	284.20	285.70	57142	1.50	0.003
			284.20	285.70	57143 (Std)	1.50	0.591
			285.70	287.20	57144	1.50	0.004
86.00 289.	70 V	3B; Ciss	287.20	288.70	57145	1.50	0.003
	В	asalte; Cisaillé					
		asalte gris moyen à gris foncé, marqué par 5% fracture CB orienté à 45 degrés et comprenant 1% de					
	fr	agment de QN.					
	C	contact inférieur : graduel, marqué par une diminution progressive de la déformation et du cisaillement.					
288.70	294.00	Py	288.70	290.20	57146	1.50	0.005
		Pyrite					
		Gf et gm, diss sur toute la longueur					

		Decadedian			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
289.70	293.00	I3A; MAS	290.20	291.70	57147	1.50	0.002
		Gabbro; Massif(ve)	291.70	292.50	57148	0.80	0.003
		Gabbro à gf de couleur gris foncé verdâtre, massif. l'interval est homogène.	292.50	294.00	57149	1.50	0.004
294.00	Fin du sonda	age					
		chantillons: 45					
		chantillons QAQC: 4					
	Longueur tot	tale échantillonnée : 64.65					

Projet : MONSTER

Sondage: M-12-86

Sondage :	M-12-87

Titre minier:

4303763

2012-08-21

Nord

Élévation

Section:

Canton: Rang:

Niveau:

Annie

Annie

Foré par :

MAGMA

Lot:

Place de travail :

Décrit par :

DD

Du:

Au:

2012-08-20

Date de description :

2012-08-21

-Collet

Azimut:

315.00°

Plongée :

-50.00°

Longueur:

195.00 m

UTM Est

520 696

5 489 534

-557 2 032

-12 2 107

0

Mégane

-Déviation

	Туре	Profondeur	Azimut	Plongée	Invalide	Description
	Flexit	15.00	323.50°	-50.70°	Oui	Mag 64290
l	Flexit	54.00	319.00°	-50.70°	Non	Mag 56410
	Flexit	102.00	319.10°	-50.90°	Non	Mag 56440
	Flexit	150.00	320.40°	-50.60°	Non	Mag 56340
	Flexit	195.00	320.10°	-50.50°	Non	Mag 56080
	77. 6					
	7 7 4					

Description

Dimension de la carotte :

NQ

Cimenté: Non

Entreposé : Oui

				Description		Analyse				
		Description				À	Numéro	Longueur	Au_Plot (g/t)	
0.00		10.50		MT						
				Mort terrain						
10.50		28.00		I3A; MAS; MOY						
				Gabbro; Massif(ve); Grains moyens						
				Gabbro gris foncé à gm, massif. L'interval contient une section basaltique (de 11.9 à 13.2)						
				Contact inférieur : graduel, marqué par une diminution de granulométrie						
	10.50		28.00	Py02	21.60	22.60	57212	1.00	0.004	
				Pyrite 2%						
				Py : gm à gg diss sur toute la longueur. Par momment il y a ds plus forte concentration de Py						
				grossière dans des veinules de quartz						
28.00		67.80		I3A; FIN; MAS						
				Gabbro; Grains fins; Massif(ve)						
				Gabbro à gf, gris foncé et massif. L'interval contient des sections basaltiques, une section déformée (de						
				51.2 à 51.55) une diorite (de 34 à 34.8) et un lamphrophyre (de 61 à 61.1).						
				Section basaltique : de 40.45 à 41.6, de 49.2 à 50.85, de 52.25 à 52.6 et de 56.25 à 56.9,.						
				Contact inférieur : net, marqué par une diminution de granulométrie						
	28.00		63.00	Ру						
				Pyrite						
				Py : gm à gg diss						
	40.45		41.10	Car						
				Carbonatisation						
	49.20		50.55	Car	50.85	51.85	57213	1.00	0.002	
				Carbonatisation	50.85	51.85	57214 (Bln)	1.00	<0.002	
					51.85	52.85	57215	1.00	0.002	
	52.25		52.60	Car						
				Carbonatisation						
	52.60		52.95	Car						
				Carbonatisation						
	61.00		61.10	130						
				Lamprophyre mafique						
				Lamphrophyre ???? verdâtre						
	63.00		63.40	Py02						
				Pyrite 2%						
				Py:gg, diss dans une veinules de quartz						
67.80		72.40		V3B; MAS						
				Basalte 70°; Massif(ve) 70°						

			Description	Analyse						
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)		
		Ва	asalte noir à gtf contenant 2-3% de porphyres felsiques mm et massif. L'interval est homogène.							
		Co	ontact inférieur : graduel, marqué par l'augmentation de la granulométrie							
72.40	82.90	13/	A; MAS							
		Ga	abbro; Massif(ve)							
		Ga	abbro gris foncé à noir avec une granulométrie fine. L'interva lest relativement homogène avec							
		qu	uelques fractures CB. Les derniers mètres de l'interval montrent une granulométrie moyenne.							
		Co	ontact inférieur : Net, marqué par une diminution de granulométrie							
32.90	148.50	V3	BB; MAS	84.00	85.20	57216	1.20	0.003		
		Ва	asalte 45°; Massif(ve) 45°							
		Ва	asalt grsi foncé à gtf et généralement massif. L'interval contient des sections trachytiques, des sections							
		ga	abbroique, des sections déformées, un tuf à cristaux (de 112.6 à 116.3, des veinules de quartz fumé et							
		un	ne veines de quartz blanc-grisâtre (de 146.4 à 146.6)							
		Se	ection trachytique : de 85.5 à 91 et de 96.7 à 98.8							
		Se	ections grabbroique : de 86 à 87.4, de 101.3 à 102.7, de 103.9 à 105.5							
		Se	ections déformées (fragments de QN) : de 93 à 93.5, de 102.7 à 103.1, de 106 à 109.5 (légère							
		fra	acturation remplit de CB et de fragments de QN), de 118.1 à 118.7, de 129.9 à 134.2 (plusieurs patches							
			e plusieurs dizaines de cm succécives), de 135.35 à 136 (section à textures brèchiques) et de 140.7 à 10.85.							
		Qı	uartz fumé : à 84.7 et à 85, deux veines des quelques cm							
		Co	ontact inférieur : graduel sur quelques cm, marqué par une augmentation de granulométrie							
82.90	86	.00	Car+							
			Carbonatisation forte							
87.40	89	.50	Car+	88.10	89.50	57217	1.40	0.004		
			Carbonatisation forte							
92.50	94	.00	Car+							
			Carbonatisation forte							
112.6	60 11	6.30	TX1							
			Tuf à Xtaux felsique 80°							
			Tuf à cristaux (2-5mm) felsiques dans une matrice de cendres. les lapillis felsiques représentent							
			15% de la roche, il y a également 2% de lapillis mafiques.							
116.3	30 14	8.50	Sil-							
			Silicification faible			1	1			

			Description			Analyse		
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
	129.90	134.20	Py; Po					
			Pyrite; Pyrπhotine					
			Gm à gg, présent uniquement dans les sections déformées du basalte					
	135.35	136.00	Py01	146.20	146.80	57218	0.60	<0.002
			Pyrite 1%					
			Py: gm, concentré dans une veinule sub-parallel.					
	146.40	146.60	QZVN					
			Veines de qtz 70°					
			Veines fragmenté au contact ondulant avec deux contact net. Quartz blanc-grisâtre					
148.50	156.	.35	3A; MAS	154.85	156.35	57219	1.50	<0.002
			Gabbro; Massif(ve)					
			Gabbro gris-foncé légèrement verdâtre à gm, massif. L'interval est homogène.					
			Contact inférieur : net, marqué par une diminution de granulométrie et l'augmentation de la déformation					
			dans la roche					
156.35	170.		/3B; Ciss; QN	156.35	157.85	57220	1.50	0.006
			Basalte; Cisaillé; Quartz noir					
			Basalte gris-verdâtre sâle à gtf et avec une forte foliation par endroit. L'interval inclut une section sans					
			ractures CB (de 158.7 à 161.5) et une veines de quartz noir massive (de 161.5 à 165.5).					
			Contact inférieur : graduel, marqué par une diminution progressive de la déformation sur quelques cm.					
	157.00	157.01	FOL-	157.85	159.00	57221	1.15	0.003
			Foliation faible 45°					
	158.60	170.50	Ser+					
			Séricitisation forte					
	159.00	159.01	FOL-	159.00	159.75	57222	0.75	0.243
			Foliation faible 45°	159.00	159.75	57223 (Std)	0.75	0.550
				159.75	160.50	57224	0.75	0.043
				160.50	161.25	57225	0.75	0.123
	161.00	162.50	Py02; Po02	161.25	162.00	57226	0.75	1.170
			Pyrite 2%; Pyrrhotine 2%					
			Gm, généralement diss en bande					
	161.50	165.50	QZVN; QN					
			Veines de qtz 45°; Quartz noir 45°					
	1223		Veines de quartz très noir et massive avec une séricitisation dans les fractures.					_
	162.00	162.05	FOL-	162.00	162.75	57227	0.75	0.772
			Foliation faible 50°					
	162.50	164.00	Po01; Py	162.75	163.50	57228	0.75	0.383
			Pyrrhotine 1%; Pyrite					

		Description	_		Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
		Po : gm, principalement en amas	163.50	164.25	57229	0.75	0.529
		Py: gm, diss					
164.00	165.40	Ру	164.25	165.00	57230	0.75	0.012
		Pyrite	165.00	165.75	57231	0.75	1.440
		gm, diss					
165.40	166.40	Py05; Po02	165.75	166.50	57232	0.75	1.550
		Pyrite 5%; Pyrrhotine 2%					
		Gm, diss dans la foliation					
166.50	166.51	FOL+	166.50	167.25	57233	0.75	0.134
		Foliation forte 45°	167.25	168.00	57234	0.75	0.067
168.00	168.01	FOL+	168.00	169.50	57235	1.50	0.050
		Foliation forte 30°					
169.50	169.51	FOL+	169.50	171.00	57236	1.50	0.015
		Foliation forte 40°					
70.50 184.3	30 \	/3B; COU					
		Basalte; Coussiné(e)					
		Basalte gris foncé à gttf avec des évidences de coussin ainsi que le la déformation inter coussin.					
	L	interval contient des section déformées et une veinule de quartz noir à 180.7.					
		Sections déformées : 178 à 178.5 (brèchique) et de 179.7 à 179.9.					
		Contact inférieur : graduel sur 10 cm, marqué par l'augmentation de la déformation et le retoru de fragment le QN.					
178.00	178.50	Ср				1 1	
		Chalcopyrite					
		gm, diss					
179.70	179.90	Ср	182.80	184.30	57237	1.50	<0.002
		Chalcopyrite					
		gm, diss					
84.30 187.5	50 \	/3B; Ciss; QN	184,30	185.25	57238	0.95	0.015
		Basalte; Cisaillé; Quartz noir	185.25	186.00	57239	0.75	<0.002
		Basalte gris-foncé verdâtre avec une déformation moyen. La roche contient 10% de fragment/veines de	100.20	100.00	07200	0.70	\0.00Z
		uartz noir ou fumé. L'interval contient des veines de quartz.					
	\	/eines de quartz : de 184.5 ;a 184.65, de 184.65 à 185 (séries de fragment cm) et de 186 à 186.5					
		veinules ou fractures sub-parralel avec des fragments de QN).					
	(Contact inférieur : Net, marqué par une diminution net de la foliation					
186.00	186.50	Su	186.00	186.75	57240	0.75	<0.002

Analyse						
À Numéro	Longueur	Au_Plot (g/t)				
5 57241	1.00	<0.002				
57242	1.50	0.009				
57243 (Std)	1.50	4.150				
0 57244	1.50	0.003				
		1				

195.00 Fin du sondage

Nombre d'échantillons : 30 Nombre d'échantillons QAQC : 3 Longueur totale échantillonnée : 30.30

Titre minier: 4303763 Section: Sondage: M-12-88 Canton: Niveau: Rang: Place de travail : Annie Lot: Foré par : MAGMA DD Décrit par : Du: 2012-08-05 Date de description : 2012-08-06 2012-08-07 Au: -Collet

A = i 4 .

Azimut : 315.00° Plongée : -71.00°

Longueur: 201.00 m

	UTM	Annie	Mégane
Est	520 632	-590	-59
Nord	5 489 517	1 975	2 060
Élévation	0	0	0

-Déviation

Туре	Profondeur	Azimut	Plongée	Invalide	Description
Flexit	15.00	315.00°	-71.60°	Non	Mag 57290
Flexit	51.00	316.20°	-71.70°	Non	Mag 56450
Flexit	102.00	316.20°	-72.20°	Non	Mag 56730
Flexit	150.00	316.80°	-72.40°	Non	Mag 56580

esc	

laki A ing (01234712)

Dimension de la carotte : NQ Cimenté : Non Entreposé : Oui

				Description			Analys	se	
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
.00		8.50		MT					
				Mort terrain					
50		20.70		13A; MAS					
				Gabbro; Massif(ve)					
				Gabbro gris foncé à gm. L'interval contient deux dykes felsiques (de 14.2 à14.6 et de 15.2 à 15.6)					
				Contact inférieur : net, marqué par un changement granulométrique					
	14.20		14.60	11; MAS					
				Intrusif felsique 70°; Massif(ve) 70°					
				Intrusif felsique de couleur gris-bêche foncé					
	15.20		15.60	11; MAS					
				Intrusif felsique 70°; Massif(ve) 70°					
				ldem au précédent					
0.70		79.30		V3B					
				Basalte 85°					
				Basalte à gtf de couleur généralement gris foncé à noir, 2% de porphyres mm felsiques. Le basalte est					
				très hétérogène regrouppant des sections altérées ou déformée aux diverses couleurs, du diabase, un					
				tuf à cristaux felsiques(de 76.1 à 76) et des veines de quartz.					
				Section déformé : de 23.1 à 23.25 (section avec des fragments de QN), de 26.8 à 34.05 (Section avec de					
				la silicification et de la carboniusation et quelques fragments de QN), de 39.1 à 39.8, de 52.9 à 54.5, de					
				61.8 à 64 (section carbonisé et gris moyen) et de 77 à 77.2 (cisaillé).					
				Diabase : de 73.6 à 76.25 et de 77.2 à 79.3.					
				Tuf : de 76.1 à 76					
				Quartz : de 45.65 à 45.75 (avec des la chlorite dans les fracture) et de 49 à 49.3 (deux veines avec des					
				la chlorites et 52.8 à 52.9.					
				Contact inférieur : graduel, marqué par une augmentation de granulométrie					
	22.50		30.50	Sil	22.50	24.00	57150	1.50	<0.002
				Silicification					
				Section blanchâtre					
	30.30		30.50	Po01; Cp					
				Pyrrhotine 1%; Chalcopyrite					
				gf, dans le fragment de QN					
	30.50		33.50	Car20; Sil	45.25	46.25	57151	1.00	0.004
				Carbonatisation 20; Silicification			1		

		Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
45.60	45.80	Po					
		Pyrrhotine					
		gf, diss					
45.65	45.75	Chv15	48.50	49.50	57152	1.00	0.006
		Chloritisation (verte) 15					
		Entre les framgents de quartz					
49.00	49.30	Chv15	52.20	53.70	57153	1.50	0.002
		Chloritisation (verte) 15					
		Entre les QN					
52.80	52.90	Chv15					
		Chloritisation (verte) 15					
		Entre le QN					
52.90	54.50	Ser20	57.00	58.50	57154	1.50	<0.002
		Séricitisation (indéterminée) 20					
		Séricitisation ?					
57.30	58.30	Car60; Seb					
		Carbonatisation 60; Séricitisation (brune)					
		section brunâtre					
57.30	58.30	Py01	61.30	62.80	57155	1.50	<0.002
		Pyrite 1%					
		gm, idiomorphe					
61.80	63.80	Car60; Seb	62.80	64.30	57156	1.50	0.002
		Carbonatisation 60; Séricitisation (brune)					
		Sections brun-grisâtre					
73.60	76.25	I3B; POR					
		Diabase 45°; Porphyrique / Porphyritic 45°					
		Diabase gris foncé à noir avec 10% de porphyres (5mm de diamèrte) felsiques. Les deux contacts					
		sont net					
77.00	77.20	TX1					
		Tuf à Xtaux felsique 70°					
		Tuf gris foncé avec 5% de lapillis mm felsiques					
77.20	79.30	13B; POR					
		Diabase 30°; Porphyrique / Porphyritic 30°					
		Similaire au précédent. Le contact inférieur est graduel avec une diminution marqué des					
		porphyress felsiques.					
78.90	79.10	Po; Cp					
		Pyrrhotine; Chalcopyrite					
		Gm, concentré dans une fine fracture					
79.10	93.35	Po		1			

			Docarintian				Analyse		
			Description		De	À	Numéro	Longueur	Au_Plot (g/t)
			Pyrrhotine						
			gf à gm, diss						
79.30	93.30		I3A; MAS						
			Gabbro; Massif(ve)						
			Gabbro gris foncé à gf, massif et comprennant quelques fines fractures CB. L'interval comprend un						
			basalte verdâtre (de 83 à 83.5) et une fracture Cb avec fragment de QN (à 90.9)						
			Contact inférieur : net, marqué par l'apparition d'un diabase						
93.30	103.40		TX1; MAS	97.	50	99.00	57157	1.50	< 0.002
			Tuf à Xtaux felsique 30°; Massif(ve) 30°						
			Tuf gris moyen avec 15% de lapillis (2-5mm de diamètre) felsiques. l'interval contient du basalte (de 98.1						
			à 103.4)						
			Contact inférieur : net, marqué un retour a un basalte verdâtre.						
98.10	0	100.50	V3B	99.	.00	100.50	57158	1.50	0.004
			Basalte						
			Basalt à gtf, verdâtre						
100.5	50	102.00	V3B; Ciss						
			Basalte; Cisaillé						
			Basalt noir cisaillé.						
100.5	50	102.00	Car10; Ser						
			Carbonatisation 10; Séricitisation (indéterminée)						
100.5	50	102.00	Po02; Cp	100	0.50	102.00	57159	1.50	0.164
			Pyrrhotine 2%; Chalcopyrite	102	2.00	103.50	57160	1.50	< 0.002
			Gf, diss						
103.40	145.60		V3B; MAS						
			Basalte 45°; Massif(ve) 45°						
			Basalte gris foncé à noir avec des gtf, massif et très fractur. entre 114 et 122). L'interval basaltique						
			semble avoir une augmentation progressive de la granulométrie sur les 3-4 derniers mètres. L'interval						
			contient des sections déformées, un dyke basaltique avec 2% de porphyres (de 134.7 à 136.2) et des						
			fractures CB avec fragment de quartz.						
			Sections déformées : de 192 à 192 2 (avec de la minéralisation), de 194 F à 199 (ception						
			Sections déformées : de 122 à 122.2 (avec de la minéralisation), de 124.5 à 129 (section déformé/altérées avec une fracture CB sub-parallel avec quartz en fragment).						
			voiministationes areo une nacture ob sub-paraller areo quarte en nagiment).						
			Fragment de quartz noir : à 111.8, à 133.1, à 129.5,						
			Contact inférieur : Graduel, marqué par l'augmentation de la granulométrie						
103.4	40	122.00	Po						
			Pyrrhotine						

		Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
		gf à gm, diss					
114.00	122.00	FRC+	121.85	123.35	57161	1.50	0.024
		Fracturation forte 70°					
122.00	122.20	Po04; Cp01	123.35	124.85	57162	1.50	<0.002
		Pyrrhotine 4%; Chalcopyrite 1%	123.35	124.85	57163 (Std)	1.50	4.000
		Gm, concentré dans la zones de défomration					
124.50	129.00	Car30; Ser-					
		Carbonatisation 30; Séricitisation faible					
124.50	130.30	Po	124.85	126.35	57164	1.50	0.005
		Pyrrhotine	126.35	127.85	57165	1.50	0.005
		Gf à gm, diss	127.85	129.35	57166	1.50	<0.002
	10						
15.60 154		; MAS					
		base; Massif(ve) base à gm, amphibolitisé, massif et homogène.					
	Dia	uase a giri, ampinuoniuse, massii et nomogene.					
		ntact inférieur : Graduel, sur 10 cm, marqué par une diminution de la granulométrie				. ==	
145.80	154.10	Amp	153.00	154.50	57167	1.50	0.005
		Amphibolitisation Altération amphibolitisé de la diabase					
54.10 173	.35 V3I		154.50	156.00	57168	1.50	0.016
173		3; Ciss Palte; Cisaillé					
		salte à gtf, majoritairement gris clair avec les extrémités verdâtres avec une foliation forte variant de 0	156.00	157.50	57169	1.50	0.003
		0 degrés. La roche conteint 3% de QN et 2%, principalement regroupé entre les métrages 165 à	157.50	159.00	57170	1.50	0.071
		6.65 et 2% de fushite verte. Le basalte est marqué par une augmentation progressive de la foliation (de					
		.1 à 162.6, couleur verdâtre) et une diminution progressive de la foliation (de 168.6 à 173.35,					
		element verdâtre)					
	Coi	ntact inférieur : Graduel, marqué par une diminution progressive de la foliation					
158.70	159.20	Py02; Po01	159.00	160.50	57171	1.50	0.002
		Pyrite 2%; Pyrrhotine 1%	160.50	162.00	57172	1.50	0.149
		Gf à gm, concentré dans les fractures			57173	1.50	0.287
			162.00	163.50			
			162.00	163.50	57174 (Bln)	1.50	0.002
162.60	168.60	Car20; Ser+	163.50	165.00	57175	1.50	0.397
		Carbonatisation 20; Séricitisation forte					
163.60	166.30	Po04	165.00	166.00	57176	1.00	2.290
		Pyrrhotine 4%	166.00	167.00	57177	1.00	6.760
		Gm, diss entre les bandes de foliation					
166.30	167.00	Py03					

			Description	- 100 0		Analyse		
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)
			Pyrite 3%					
			gm, diss					
1	167.00	169.00	Po01	167.00	168.00	57178	1.00	0.397
			Pyrrhotine 1%	168.00	169.50	57179	1.50	0.823
			Gm, diss	169.50	171.00	57180	1.50	0.090
1	169.70	169.90	Car100	171.00	172.50	57181	1.50	0.024
			Carbonatisation 100	172.50	174.00	57182	1.50	0.003
				172.50	174.00	57183 (Std)	1.50	0.566
3.35	201.00	V	3B; COU	174.00	175.50	57184	1.50	0.004
			asalte; Coussiné(e)					
			asalte gris foncé légèrment verdâtre à gtf. L'interval est marqué par une allure déformé (de 173.35 à					
		1	75.5, section contient des fragments de QN). L'interval contient une section déformé (de 190.8 à 194.5),					
		u	ne section porphyrique (de 176 à 179) et un tuf à cristaux (de 181.9 à 183.5 et de 186.9 à 188.1).					
1	181.90	183.50	I3B; MAS					
			Diabase 45°; Massif(ve) 45°					
			Diabase à gm avec 15% de porphyres (2 à 5mm) felsiques. Les deux contacts sont net. Contact					
			supérieur est a 45 degrés et le contact inférieur à 15 degrés					
1	186.90	188.10	TX1	190.50	192.00	57185	1.50	<0.002
			Tuf à Xtaux felsique					
			Tuf à cristaux mm felsiques gris foncé.					
1	190.80	194.50	Alb; Sil	192.00	193.50	57186	1.50	0.003
			Albitisation; Silicification					
			Faiblement					
1	192.10	194.50		193.50	195.00	57187	1.50	0.002
			Pyrrhotine 1%					
			gm, concentré entre les coussins					

201.00 Fin du sondage

Nombre d'échantillons : 35 Nombre d'échantillons QAQC : 3 Longueur totale échantillonnée : 50.00

Sondage :	M-12-89		Titre minier : Canton :	4303763		Section : Niveau :		
			Rang :			Place de travail :		
Foré par :			Lot:					
Décrit par :			Du :			Date de description :		
			Au :			Date de description.		
Collet -			Au .					
Collet					UTM	Annie	Mégane	
Azimut :	315.00°			₅₋₁ [
Plongée :				Est		520 632	-590	-59
Longueur				Nord	5	489 517	1 975	2 060
				Élévation		0	0	0
Déviation ——					_			
Туре	Profondeur	Azimut	Plongée	Invalide		Descripti	on	
Flexit	15.00	312.60°	-52.30°	Non	Mag 57080			
Flexit	51.00	312.40°	-52.30°	Non	Mag 56340			
Flexit	102.00	313.00°	-52.40°	Non	Mag 56000			
Flexit	150.00	313.40°	-52.20°	Non	Mag 56280			
Description								
2 dod npalon							0	
							Polis As ing (010 34762)	
Dimension de la c	earotte :			Cim	ienté : Non		Entreposé :	Non

						<u> </u>	Analyse		
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
9.00		9.30		If					(3-7
				Intrusif felsique					
				Gris-brunâtre à gttf					
9.30		19.50		I3B; MAS	16.20	16.70	57188	0.50	0.005
				Diabase 85°; Massif(ve) 85°					1 2 2 2
				Diabase gris foncé à gm. L'interval contient une section déformée avec des fragments de QN (de 12.45 à					
				12.75) et une section basaltique (de 16.5 à 17.5, avec une veines de QN de 16.65 à 16.8).					
				Contact inférieur : marqué par un changement de granulométrie.					
	16.65		16.80	QZVN; QN					
				Veines de qtz 85°; Quartz noir 85°					
19.50		31.20		V3B					
				Basalte 75°					
				Basalte noire à gtf avec 1-2% de porphyres felsiques. l'interval contient une section avec des fractures					
				CB (de 30.4 à 31.2)					
				Contact inférieur : net, marqué par un augmentation de granulométrie					
	20.40		30.00	Sil					
				Silicification					
	25.15		27.15	Po01	30.00	31.20	57189	1.20	0.003
				Pyπhotine 1%					
				gm, concentré dans les zone plus déformé					
31.20		38.85		I3A; MAS	38.40	39.40	57190	1.00	<0.002
				Gabbro 80°; Massif(ve) 80°					
				Gabbro gris foncé à noire avec un gf. Interval homogène					
				Contact inférieur : marqué par une diminution de granulométrie					
	38.80		40.50	Po01					
				Pyrrhotine 1%					
				gf, diss					
38.85		57.65		V3B	39.40	40.90	57191	1.50	0.003
				Basalte 30°					
				Basalte à gtf noir avec 2% porphyriques . L'interval contient une section altéré (de 38.85 à 40.5) et une					
				section déformée (de 46 à 46.6). La sections contient aussi une section très fracturé de 54 à 56.5.					
				Contact inférieur : graduel, marqué par une augmentation de granulométrie.					
	38.85		40.50	Car+					
				Carbonatisation forte					
57.65		63.60		13A	59.80	61.30	57192	1.50	<0.002
				Gabbro 45°					

	Description			Analyse		
	Description	De	À	Numéro	Longueur	Au_Plot (g/t)
	Gabbro à gris foncé à gf et massif. L'interval contient un tuf à cristaux felsiques (de 60.1 à 60.75) et deux					
	sections fortement folié (de 60 à 60.1 et de 60.75 à 60.9)					
	Contact inférieur : net, marqué par un changement lithologique					
60.10 60.75	TX1					
	Tuf à Xtaux felsique 60°					
	Tuf gris moyen contenant 10% de cristaux felsiques dans une matrice de cendre.					
68.90	I3B; MAS					
00.00	Diabase 80°; Massif(ve) 80°					
	Diabase à gm, gris foncé et massif. La roche est amphibolitisé. L'interval contient une section basaltique					
	(de 66.4 à 67.5)					
	Contact inférieur : net, marqué par la diminution net de la granulométrie et un changement de couleur.					
63.60 68.90	Amp	67.40	68.90	57193	1.50	<0.002
00.00	Amphibolitisation	07.40	00.00	07.100	1.00	-0.002
68.90 79.55	V3A; Ciss; QN	68.90	70.40	57194	1.50	<0.002
79.33	Basalte andésitique 55°; Cisaillé; Quartz noir 55°					
	Basalt gris moyen violacé à gttf. La roche contient une section séricitisé (de 73.5 à 79.55). La roche	70.40	71.90	57195	1.50	0.007
	contient 5% de fracture CB dans les sections non séricitisé et 2% de QN dans l'interval séricitisé.	71.90	73.40	57196	1.50	0.005
	Contient 5 % de l'acture Ob dans les sections non seniouse et 2 % de qui dans initier du seniouse.					
	Section fortement folié et cisaillé : Gris clair très jaunâtre avec une foliation généralement à 45 degrés					
	avec quelques sections avec une foliation ondulant.					
	Contact inférieur : net, marqué par un augmentation de la granulométrie.					
72.00 79.55	Ser+					
	Séricitisation forte					
73.10 73.55	Po02; Py01	73.40	74.90	57197	1.50	0.011
	Pyrrhotine 2%; Pyrite 1%					
	Gm, concentré en gros amas					
73.55 74.55	Po01; Py	74.90	76.40	57198	1.50	0.299
	Pyrrhotine 1%; Pyrite	76.40	77.90	57199	1.50	0.026
	Gm, diss	77.90	79.40	57200	1.50	0.015
		79.40	80.90	57201	1.50	0.005
79.55 99.60	I3A; MAS					
	Gabbro 80°; Massif(ve) 80°					
	Gabbro à gm de couleur gris foncé avec 3% de fracture CB. l'interval contient une section de basalte à					
	porphyre (de 81.5 à 82.6), des sections déformés (de 88.15 à 88.4 et de 94.2 à 94.4).					
	Contact inférieur : net, marqué par une diminution de granulométrie					

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
	82.60		95.70	Car+	87.20	89.70	57202	2.50	0.008
				Carbonatisation forte	87.20	89.70	57203 (Std)	2.50	3.870
99.60		134.60		NOA NOB	140.50	112.00	57204	1.50	1111
99.60		134.60		V3A; V3B	110.50				0.003
				Basalte andésitique 20°; Basalte Basalte andésitique ou basalte régulier ? Généralement gris moyen à gtf et globalement massif. La roche	114.00	115.50	57205	1.50	0.003
				conteint 3% de porphyres mafiques et felsiques sur la première moitier de l'interval. L'interval contient des					
				section gabbroique, des sections déformées, un basalte à porphyres noir (de 118.8 à 119.5) et du quartz					
				(fragments ou veines/veinules).					
				(inaginents ou veines/veinules).					
				section de gabbro : de 100.4 à 100.85 (faiblement folié à 70 degrés), de 105.3 à 105.7, de 109.6 à 110.6					
				et de 112 à 114.6.					
				OLGO TIE G TITO.					
				section déformé : de 100.85 à 109.6 (section avec une foliation moyen à 40 degrée), de 110.6 à 112 (
				présence d'une texture brèchique) et de 132.85 à 133.1 (section avec une foliation aléatoire).					
				Fragment de quartz : de 131.3 à 131.55 (2 gros framgnets consécutif).					
				Contact inférieur : net, marqué par une augmentation de la granulométrie.					
	114.60)	132.85	Car+	115.50	117.00	57206	1.50	0.004
				Carbonatisation forte	117.00	118.50	57207	1.50	0.003
					118.50	120.00	57208	1.50	<0.002
			=0						
	118.80)	119.50	•	120.00	121.50	57209	1.50	0.003
				Pyrite 2%					
				gm, diss dans le basalte noir					
	120.15	5	121.00	•	121.50	123.00	57210	1.50	0.003
				Pyrite 1%	130.50	132.00	57211	1.50	0.002
				Gm à gf, diss					
	132.85	5	137.00						
				Carbonatisation forte					
34.60)	150.00		I3A; MAS					
				Gabbro 80°; Massif(ve) 80°					
				Gabbro gris foncé à gm relativement massif. La roche conteint plusieurs section blanchâtre (de 141 à					
				147.4, 50% de section blanchâtre. L'interval contient une section avec des fragment de quartz blanc (de					
				136.8 à 137).					
	138.00)	147.40	Sii60					
				Silicification 60					
				Section avec beaucoup d'interval blanchâtre					

150.00	Fin du sondage
	Nombre d'échantillons : 23
T A 91	Nombre d'échantillons QAQC : 1
	Longueur totale échantillonnée : 33.70

Projet: MONSTER Sondage: M-12-89 5 / 5

ondage :	M-12-90		Titre minier :	4303763		Section:	
			Canton :			Niveau :	
			Rang :			Place de travail : Annie	
Foré par :	MAGMA		Lot:				
Décrit par :	DD		Du :	2012-08-27		Date de description : 2012-	08-28
			Au:	2012-08-28			
Collet —				-			
					UTM	Annie	Mégane
Azimut :	135.00°			Est	520 583	-658	-125
Plongée :	-50.00°			Nord	5 489 564	1 974	2 077
Longueur :	51.00 m			Élévation			2 0, .
				Elevation	0	0	
éviation ———	_				_		
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
lexit	12.00	142.20°	-50.70°	Non	Mag 57320		
exit	51.00	141.20°	-50.00°	Non	Mag 55940		
		1979					
Description —							
						0	
						lehi Asis	(010.34762)
						0	

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00		4.70		MT					
				Mort terrain					
.70		15.20		V3B; COU	13.50	15.00	57373	1.50	0.002
				Basalte; Coussiné(e)	13.50	15.00	57374 (Bln)	1.50	<0.002
				Basalte noir à gris doncé verdâtre, gtf et avec des évidences de coussinement. L'interval contient un	15.00	16.50	57375	1.50	<0.002
				portion plus altéré de 9.5 à 15.2.					
				Contact inférieur : net, marqué par l'augmentation de la déformation et la séricitisation.					
5.20		32.85		V3B; Ciss					
				Basalte 50°; Cisaillé 50°					
				Basalte gris moyen à gtf fortement cisaillé et séricitisé contenant 2% de QN. L'interval est relativement					
				homogène.					
				Contact inférieur : net, marqué par une augmentation de granulométrie et la diminution de la déformation.					
	15.20		32.85	Ser+	16.50	18.00	57376	1.50	0.071
				Séricitisation forte					
				Gris moyen					
	15.20		17.90	Su					
				Sulfures					
				Gf, concentré dans des fractures fines					
	17.90		19.20	Py01					
				Pyrite 1%					
				Gm à gg, diss					10.10
	18.00		18.01	FOL+	18.00	19.50	57377	1.50	0.089
	40.00		00.00	Foliation forte 45°	10.50	04.00	F7070	4.50	0.057
	19.20		23.30	Su Sulfures	19.50	21.00	57378	1.50	0.257
				f à gm, diss					
	21.00		21.01	FOL+	21.00	22.50	57379	1.50	0.071
	21.00		21.01	Foliation forte 45°	22.50	24.00	57380	1.50	0.097
	23.30		26.85	Py03	22.00	24.00	07000	1.50	0.007
	25.50		20.00	Pyrite 3%					
				Gm à gg, diss, idiomorphe					
	24.00		24.01	FOL+	24.00	24.75	57381	0.75	0.007
				Foliation forte 50°	24.75	25.50	57382	0.75	0.190
								0.75	
					24.75	25.50	57383 (Std)		4.300
					25.50	26.25	57384	0.75	0.277
					26.25	27.00	57385	0.75	0.811

			Description			Analyse		
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)
26.85		32.85	Po01; Cp					
			Pyrrhotine 1%; Chalcopyrtte					
			Gf à gm, diss. Les Cpx sont dans de fines fractures.					
27.00		27.01	FOL+	27.00	28.50	57386	1.50	0.041
			Foliation forte 45°	28.50	30.00	57387	1.50	0.003
30.00		30.01	FOL-	30.00	31.50	57388	1.50	0.028
			Foliation faible 45°	31.50	33.00	57389	1.50	0.006
				01.00	00.00	0.000	1.00	0.000
.85	42.50		I3A; MAS					
			Gabbro 70°; Massif(ve) 70°					
			Gabbro à gf et de couleur gris foncé. L'interval contient un tuf à cristaux (de 35.8 à 36.1 et un basalte					
			verdâtre (de 38.3 à 40)					
			Contact inférieur : graduel, marqué par la diminution progressive de la granulométrie.					
34.50		38.00	Po00.7; Py00.3					
			Pyrrhotine 0.7%; Pyrite 0.3%					
			Gf, concentré dans des sections plus déformé.					
35.80		36.10	TX1					
			Tuf à Xtaux felsique 30°					
			Gris moyen avec 2% de lapillis mm					
39.50		40.00	Car+					
			Carbonatisation forte					
41.60		42.00	Py01; Po01					
			Pyrite 1%; Pyrrhotine 1%				1	
			Gf, concentré dans des fractures.					
.50	51.00		V3B; MAS	48.15	49.60	57390	1.45	< 0.002
			Basalte; Massif(ve)					
			Basalte noir, gttf, massif contenant 5% de porphyres mm felsiques. L'interval contient une section					
			gabbroique (de 46.5 à 47.4) et une veine de quartz (de 49.15 à 49.35).					
49.15		49.35	QZVN					
			Veines de qtz					
			Blanc à gris fumé					

Nombre d'échantillons : 16 Nombre d'échantillons QAQC : 2 Longueur totale échantillonnée : 20.95

3/3

ondage :	M-12-92		Titre minier :	4303763		Section :	
			Canton :			Niveau :	
			Rang :			Place de travail :	Annie
Foré par :	MAGMA		Lot :				
Décrit par :	DD		Du:	2012-08-28		Date de description :	2012-08-29
			Au:	2012-08-29			
Collet ———					42		
A i 4 .	245.00%			_	UTM	Annie	Mégane
Azimut :	315.00° -50.00°			Est	520 (608	-574
Plongée :				Nord	5 489 4	470	1 925 2 00
Longueur :	114.00 m			Élévation		0	0
				_			
Péviation ———							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
lexit	18.00	316.80°	-48.40°	Non	Mag 56490		
lexit	51.00	316.80°	-48.10°	Non	Mag 56290		
lexit	102.00	314.80°	-48.90°	Non	Mag 56280		
Description —							
							loki A ~ (01234762)
							fra R. S. Course
Dimension de la ca	rotte: NQ			Cim	enté : Non		Entreposé : Oui

			Decembries		Analyse De À Numéro Longueur				
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)	
00	11.20)	MT						
			Mort terrain						
.20	17.30)	I3B; MAS						
			Diabase; Massif(ve)						
			Diabase noir à gris-foncé à gm, amphibolitisé						
			Contact inférieur : net, marqué par une diminution de la granulométrie						
11	.20	17.30	Amp						
			Amphibolitisation						
.30	67.80)	V3B; MAS						
			Basalte; Massif(ve)						
			Basalte généralement gris foncé à noir avec une gtf et massif. L'interval contient plusieurs basalte						
			andésitique, sections gabbroique,						
			Basalte andésitique : de 20.7 à 24.55, de 31.4 à 32.1 (avec quelques fragments de QN), de 33.1 à 33.6 et						
			de 65 à 67.						
			Section gabbroique : de 39.6 à 39.5, de 41.6 à 42.5,						
			Sections déformées : de 46.5 à 48.5, de 49.6 à 50.7, de 59.2 à 60.5 et de 62.3 à 62.6 (texture brèchique)						
			Contact inférieur : net, marqué par une augmentation de granulométrie						
20	.70	21.00	Po01	31.30	32.40	57391	1.10	<0.002	
			Pyrrhotine 1%						
			gf, concentré dans la section déformé						
31	.40	32.10	Car; Seb						
			Carbonatisation; Séricitisation (brune)						
31	.40	33.60	Po	32.40	33.70	57392	1.30	0.003	
			Pyrrhotine						
			Gf, concentré dans les deux sections altéré						
33	.10	33.60	Car; Seb						
			Carbonatisation; Séricitisation (brune)						
35	.50	35.70	Po01						
			Pyrrhotine 1%						
			fg, diss						
47	.55	48.50	Po01	49.80	50.70	57393	0.90	<0.002	
			Pyrrhotine 1%						
			gf, diss						

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
	53.95		54.55	I3B; POR					
				Diabase; Porphyrique / Porphyritic					
				Noir avec 25% de porphyres felsiques mm					
	55.30		55.80	TX1					
				Tuf à Xtaux felsique					
				Gris violacé					
	59.20		60.50	Po					
				Pyrrhotine					
				Gf, diss dans les patchs déformées					
	65.00		67.00	Ser-	65.00	66.00	57394	1.00	0.004
				Séricitisation faible	66.00	67.00	57395	1.00	<0.002
67.80		82.30		I3A; MAS					
				Gabbro 45°; Massif(ve) 45°					
				Gabbro gris foncé à gm et massif. L'interval est homogène.					
				Contact inférieur : graduel, marqué par une diminution progressive de la granulométrie					
82.30		84.50		V3B; MAS	82.50	83.70	57396	1.20	< 0.002
				Basalte; Massif(ve)					
				Basalte noir à gtf, massif. L'interval contient une section déformée (de 83.2 à 86.6)					
				Contact inférieur : net, marqué par un changement lithologique					
84.50		86.50		I3B; MAS; POR					
				Diabase 50°; Massif(ve); Porphyrique / Porphyritic 50°					
				Diabase gris moyen à gris foncé avec 15% de porphyre felsiques					
				Contact inférieur : net, marqué par un changement lithologique					
86.50		102.00		V3B; Ciss; QN					
				Basalte 60°; Cisaillé; Quartz noir 60°					
				Basalte gris clair à gris moyen avec une granulométrie fine et une foliation importante. L'interval est					
				homogène comprenant une zone plus riche en QN (de 91.9 à 92.55)					
				Contact inférieur : Graduel, marqué par une diminution progressive de la déformation					
	86.50		102.00	Ser+; Car-	87.00	88.50	57397	1.50	<0.002
				Séricitisation forte; Carbonatisation faible					
	87.80		90.90	Po	88.50	90.00	57398	1.50	0.007
				Pyrrhotine					
				Gf à gm, diss					
	90.00		90.01	FOL-	90.00	91.50	57399	1.50	0.030
				Foliation faible 70°					

		Description	Analyse De À Numéro Longueur				
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
90.90	92.55	Py03					
		Pyrite 3%					
		Gm à gg, idiomorphe, diss					
91.50	91.51	FOL+	91.50	92.25	57400	0.75	0.566
		Foliation forte 25°	92.25	93.00	57401	0.75	0.055
92.55	93.30	Ру					
		Pyrite					
		gm, diss					
93.00	93.01	FOL+	93.00	94.50	57402	1.50	1.030
		Foliation forte 45°	93.00	94.50	57403 (Std)	1.50	0.483
93.30	96.45	Py03	94.50	96.00	57404	1.50	0.379
00.00	00,10	Pyrite 3%	0 1130	00.00	0.101		3,010
		Gm à gg, diss dans la foliation					
96.00	96.01	FOL+	96.00	97.50	57405	1.50	0.705
		Foliation forte 45°					
96.45	97.80	Py01	97.50	99.00	57406	1.50	0.331
		Pyrite 1%					
		Gm, diss					
97.80	99.50	Py02					
		Pyrite 2%					
		Gm, diss					
99.00	99.01	FOL+	99.00	100.50	57407	1.50	0.037
		Foliation forte 55°					
99.50	102.00		100.50	102.00	57408	1.50	0.016
		Pyrite; Pyrrhotine					
		Gm, diss					
02.00 1	07.50	I3A; MAS	102.00	103.50	57409	1.50	<0.002
		Gabbro; Massif(ve)					
		Gabbro gris foncé à gf, massif.					
		Contact inférieur: net, marqué par un changement de granulométrie					
07.50 1	14.00	V3B; MAS	109.40	109.90	57410	0.50	0.040
		Basalte 15°; Massif(ve) 15°	1.55.15	100100			3,0,0
		Basalte gris foncé à gf, 15% de porpohyres mm felsiques, roche massive. L'interval contient une section					
		de gabbro (de 109 à 109.8) et une section déformé de 109.8 à 110)					
109.80	110.00						
		Pyrrhotine 2%; Chalcopyrite 1%					
		Gf à gm, concentrée autour du quartz fumé.					

114.00 Fin du sondage Nombre d'échantillons : 19 Nombre d'échantillons QAQC : 1 Longueur totale échantillonnée : 23.50 5/5 Projet : MONSTER Sondage: M-12-92

Sondage : Foré par : Décrit par :	M-20-10		Titre minier : Canton : Rang : Lot : Du : Au :	4293183		Section : Niveau : Place de travail : Date de description :	
Azimut : Plongée : Longueur :	315.00° -50.00° 177.00 m			Est Nord Élévation	UTM 520 394 5 489 233 0	Annie -558 1 606 0	Mégane -123 1 696 0
-	Poster days	A-t4	Discrete	I P. 4		Daniel de la	
Flexit Flexit Flexit	51.00 108.00 147.00	Azimut 313.80° 314.50° 314.80°	Plongée -48.20° -49.90° -50.40°	Non Non Non		Description	
Description ;						lahi Az ing (01234762)	
Dimension de la ca	rotte: AW34			Cimer	nté : Non		Entreposé : Non

Projet : MONSTER

		Description			Analyse		
_ 0		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00	6.00	MT					
		Mort terrain					
5.00	17.60	V3B					
		Basalte					
17.60	21.00	13A					
		Gabbro					
21.00	35.00	V3B					
		Basalte					
35.00	44.10	M8	38.00	38.70	14312	0.70	1.701
		Schiste	41.60	42.70	14316	1.10	0.476
44.10	55.30	13					
		Intrusif mafique					
55.30	71.20	V3B					
		Basalte					
1.20	78.80	13A					
		Gabbro					
78.80	99.00	V3B; I3A					
		Basalte; Gabbro					
9.00	114.00	V3B					
		Basalte					
14.00	149.00	V3B					
		Basalte					
49.00	172.00	M8	163.50	165.00	14348	1.50	0.833
		Schiste	165.00	166.50	14349	1.50	0.049
			166.50	168.00	14351	1.50	1.616
			168.00	169.50	14352	1.50	0.275
72.00	177.00	V3B					
		Basalte					
177.00	Fin du sond	lage			l		
		chantillons : 6					
		chantillons QAQC: 0					

Longueur totale échantillonnée : 7.80

Sondage : Foré par : Décrit par :	M-21-10		Titre minier : Canton : Rang : Lot : Du : Au :	4293183		Section : Niveau : Place de travail : Date de description :	
Collet Azimut : Plongée : Longueur Déviation	315.00° -50.00° : 174.00 m			Est Nord Élévation	UTM 520 322 5 489 160 0	Annie -557 1 503 0	Mégane -149 1 596 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit Flexit Description	51.00	317.00° 318.30°	-47.10° -47.80°	Non		laki A iz (01234712)	
Dimension de la ca	urotte :			Ciment	té: Non		Entreposé : Non

Projet : MONSTER

Description			Analyse		
Description	De	À	Numéro	Longueur	Au_Plot (g/t)
00 MT					
Mort terrain					
.70 V3B					
Basalte					
.40 I3A					
Gabbro					
.00 V3B					
Basalte					
.70 V3B					
Basalte					
.30 I3A					
Gabbro					
3.00 V3B	107.10	108.00	14420	0.90	0.166
Basalte					
7.00 I3A					
Gabbro					
77.90 V3B					
Basalte					
0.20 I3A					
Gabbro					
8.50 V3B; QZVN	144.00	145.00	14428	1.00	2.141
Basalte; Veines de qtz					
4.00 V3B					
Basalte					
			1		

Nombre d'échantillons : 2 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 1.90

Sondage : Foré par : Décrit par :	M-22-10		Titre minier : Canton : Rang : Lot : Du : Au :	4293224		Section : Niveau : Place de travail : Date de description :	
Collet Azimut : Plongée : Longueur			,	Est Nord Élévation	UTM 520 530 5 489 373 0	Annie -561 1 801 0	Mégane -75 1 885 0
Déviation Type	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit Flexit	102.00 150.00	317.40° 318.70°	-50.00° -50.30°	Non Non			
Description						Q.	li Az ig (01234762)
Dimension de la ca	arotte :			Cime	enté : Non		Entreposé : Non

Projet : MONSTER

			Description			Analyse			
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)	
0.00	9.40	MT							
		Mort terrain							
9.40	31.80	I3A							
		Gabbro							
31.80	38.00	M8; V3B							
		Schiste; Basalte							
38.00	66.00	V3B							
		Basalte							
66.00	81.00	V3B		73.50	75.00	14361	1.50	0.180	
		Basalte		75.00	76.50	14362	1.50	0.464	
31.00	86.30	M8		82.00	83.00	14368	1.00	1.379	
		Schiste							
36.30	117.00	V3B		99.70	100.70	14376	1.00	0.906	
		Basalte							
117.00	131.40	M8		121.00	122.00	14382	1.00	0.361	
		Schiste		122.00	123.00	14383	1.00	0.243	
				123.00	124.00	14384	1.00	0.410	
				124.00	125.00	14385	1.00	1.526	
				125.00	126.00	14386	1.00	0.773	
				126.00	127.00	14387	1.00	0.510	
131.40	186.00	I3A; V3B							
		Gabbro; Basalte							

Nombre d'échantillons : 10 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 11.00

Sondage : Foré par : Décrit par : Collet	M-23-10		Titre minier : Canton : Rang : Lot : Du : Au :	4303763		Section : Niveau : Place de travail : Date de description :	
Azimut : Plongée : Longueur : —Déviation	315.00° -50.00° : 175.00 m			Est Nord Élévation	UTM 520 603 5 489 443 0	Annie -558 1 902 0	Mégane -47 1 982 0
	Profondeur	Azimut	Planafa	Invalide		Description	
Flexit Flexit Flexit Description	54.00 102.00 150.00	313.40° 315.30° 316.70°	Plongée -47.30° -48.40° -48.60°	Non Non Non			g (01Q34762)
Dimension de la ca	nrotte :			Cime	enté : Non		Entreposé : Non

Projet : MONSTER

			Description			Analyse)	
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)
.00	12.50	MO						
		Mort Terrain						
		Ancien Résumé :M-T						
2.50	55.60	I3A		39.00	39.80	14280	0.80	0.005
		Gabbro Ancien Résumé :I3A		49.20	51.00	14281	1.80	0.005
		Ancien Resume :13A		53.04	54.60	14282	1.56	0.005
55.60	106.80	V3B		74.40	75.00	14283	0.60	0.005
		Basalte		85.50	86.40	14284	0.90	0.011
		Ancien Résumé :V3B		101.60	102.30	14285	0.70	0.008
106.80	121.50	V3B; M8		106.80	108.00	14286	1.20	0.007
		Basalte; Schiste		108.00	109.00	14287	1.00	0.008
		Ancien Résumé :V3B,M8		109.00	110.00	14288	1.00	0.005
			110.00	111.00	14289	1.00	0.023	
				111.00	112.00	14291	1.00	0.156
				112.00	112.70	14292	0.70	0.103
				112.70	113.20	14293	0.50	0.015
				113.20	114.00	14294	0.80	0.628
				114.00	115.00	14295	1.00	0.059
				115.00	116.00	14296	1.00	0.020
				116.00	117.00	14297	1.00	0.025
				117.00	118.00	14298	1.00	0.009
				118.00	119.00	14299	1.00	0.013
				119.00	120.00	14300	1.00	0.043
				120.00	121.50	14301	1.50	0.014
121.50	131.00	124						
121.00	131.00	I3A Gabbro						
		Ancien Résumé :I3A						
131.00	175.00	V3B		133.60	135.00	14302	1.40	0.005
		Basalte		135.00	136.40	14303	1.40	0.005
		Ancien Résumé :V3B		159.00	160.50	14304	1.50	0.005
				168.00	169.50	14305	1.50	0.032

175.00	Fin du sondage
	Nombre d'échantillons : 25
	Nombre d'échantillons QAQC : 0
	Longueur totale échantillonnée : 26.86

Projet: MONSTER Sondage: M-23-10 3 / 3

Sondage: M-24- Foré par : Décrit par : Collet	.11		Titre minier : Canton : Rang : Lot : Du : Au :	2294781			
Azimut : Plongée : Longueur : —Déviation	290.00° -50.00° 84.00 m			Est Nord Élévation	UTM 519 853 5 488 276 0	-264 547 0	-113 596 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Description						luki de ig	(OIQ34762)
Dimension de la carotte :				Ciment	té : Non		Entreposé : Non

		Description				Analyse		
		Description		De	À	Numéro	Longueur	Au_Plot (g/t)
0.00	12.00	MO						
		Mort Terrain						
		Ancien Résumé :M-T						
12.00	35.00	V3B		18.00	19.00	16001	1.00	0.005
		Basalte		25.00	26.00	16002	1.00	0.005
		Ancien Résumé :V3B		29.00	30.00	16003	1.00	0.005
				31.00	32.00	16004	1.00	0.005
				34.00	35.00	16007	1.00	0.005
35.00	44.00	V3B		38.00	39.00	16006	1.00	0.005
		Basalte		42.00	43.00	16008	1.00	0.005
		Ancien Résumé :V3B		43.00	44.00	16009	1.00	0.016
44.00	46.00	V3B		44.00	45.00	16010	1.00	0.005
44.00	40.00	Basalte						
		Ancien Résumé :V3B		45.00	46.00	16011	1.00	0.008
46.00	48.00	V3B		46.00	47.00	16012	1.00	0.021
		Basalte	1	47.00	48.00	16013	1.00	0.016
		Ancien Résumé :V3B			10.00			0.010
48.00	51.00	V3B		48.00	49.00	16014	1.00	0.005
		Basalte		49.00	50.00	16015	1.00	0.005
		Ancien Résumé :V3B		50.00	51.00	16016	1.00	0.005
51.00	53.00	V1		51.00	52.00	16017	1.00	0.005
		Roche volcanique felsique		52.00	53.00	16018	1.00	0.005
		Ancien Résumé :V1 ?			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
53.00	54.00	V3B						
		Basalte						
		Ancien Résumé :V3B+SF						
53.00	54.00	Su		53.00	54.00	16019	1.00	0.005
		Sulfures						
	50.00	Ancien Résumé :V3B+SF		51.00	5.4.50			2.242
54.00	56.00	V1 Penha valentique faleique		54.00	54.50	16020	0.50	0.010
		Roche volcanique felsique Ancien Résumé :V1 ?		54.50	55.00	16021	0.50	0.005
		A MONOTH COOKING A V T I		55.00	56.00	16022	1.00	0.005
56.00	57.00	V3B; COU		56.00	57.00	16023	1.00	0.006
		Basalte; Coussiné						
		Ancien Résumé :V3B+CO						
57.00	59.00	V3B		57.00	58.00	16024	1.00	0.005

		Description			Analyse	<u> </u>	
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
		Basalte	58.00	59.00	16025	1.00	0.287
		Ancien Résumé :V3B					
59.00	60.00	V3B; COU	59.00	60.00	16026	1.00	1.832
		Basalte; Coussiné					
		Ancien Résumé :V3B+CO					
0.00	61.00	M8	60.00	61.00	16027	1.00	9.615
		Zone minéralisé					
		Ancien Résumé :ZM					
61.00	63.00	V3B	61.00	62.00	16028	1.00	0.338
		Basalte	62.00	63.00	16029	1.00	0.033
		Ancien Résumé :V3B					
63.00	73.00	V3B	63.00	64.00	16030	1.00	0.008
		Basalte	67.00	68.00	16031	1.00	0.009
		Ancien Résumé :V3B;AE	69.00	70.00	16032	1.00	0.005
			72.00	73.00	16033		
			72.00	73.00	16033	1.00	0.005
73.00	84.00	V3B	75.00	76.00	16034	1.00	0.072
		Basalte	80.00	81.00	16035	1.00	0.033
		Ancien Résumé :V3B					

84.00 Fin du sondage

Nombre d'échantillons : 34 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 33.00

Sondage: Ma	-25-11		Titre minier : Canton : Rang : Lot : Du : Au :	2294781	Niv Pla	ction : veau : ace de travail : ate de description :	
Collet Azimut : Plongée : Longueur : Déviation	290.00° -50.00° 75.00 m			Est Nord Élévation	UTM 519 844 5 488 225 0	Annie -234 504 0	Mégane -96 548 0
Туре	Profondeur	Azimut	Plongée	Invalide	Description		
Flexit	50.00	289.00°	-49.10°	Non			
Description						liki de iz (
Dimension de la carotte :				Ciment	té: Non	Entreposé : Non	

		December			Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot
							(g/t)
0.00	15.00	Blocs					
		Blocs Ancien Résumé :Blocs					
15.00	36.00	V3B	15.00	16.00	16036	1.00	0.005
15.00	30.00	Basalte					
		Ancien Résumé :V3B	18.00	19.00	16037	1.00	0.005
			26.00	27.00	16038	1.00	0.005
			35.00	36.00	16039	1.00	0.022
36.00	38.00	M8; V3B	36.00	37.00	16041	1.00	0.011
		Zone minéralisé; Basaite	37.00	38.00	16042	1.00	0.023
		Ancien Résumé :ZM+V3B					
38.00	40.00	V1	38.00	39.00	16043	1.00	0.051
		Roche volcanique felsique Ancien Résumé :V1 ?	39.00	40.00	16044	1.00	0.017
40.00	42.00	M8	40.00	41.00	16045	1.00	0.054
40.00	42.00	Zone minéralisé					
		Ancien Résumé :ZM	41.00	42.00	16046	1.00	0.030
42.00	44.00	V3B					
		Basalte					
		Ancien Résumé :V3B					
44.00	51.00	M8; V3B	44.00	45.00	16047	1.00	0.967
		Zone minéralisé; Basalte	45.00	46.00	16048	1.00	2.234
		Ancien Résumé :ZM+V3B	46.00	47.00	16049	1.00	0.774
			47.00	48.00	16050	1.00	0.203
			48.00	49.00	16051	1.00	0.016
			49.00	49.50	16052	0.50	1.890
			49.50	50.00	16054	0.50	149.300
			50.00	50.50	16055	0.50	147.000
			50.50	51.00	16056	0.50	126.900
51.00	61.00	V3B	51.00	51.50	16057	0.50	20.790
		Basalte Ancien Résumé :V3B	53.00	54.00	16058	1.00	10.760
		Alluent results.vad	54.00	55.00	16059	1.00	5.767
			55.00	56.00	40451	1.00	0.051
			56.00	57.00	40452	1.00	0.067
, , , , , , , , , , , , , , , , , , ,			57.00	58.00	16060	1.00	0.115
			58.00	59.00	40453	1.00	0.021

		Description			Analyse	9	
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
			59.00	60.00	40454	1.00	0.144
			60.00	61.00	40455	1.00	0.005
1.00	75.00	V3B; Fp	61.00	62.00	16061	1.00	0.011
		Basalte; Feldspath (alcalin)	62.00	63.00	40456	1.00	<0.02
		Ancien Résumé :V3B; FP	63.00	64.00	40457	1.00	0.067
			64.00	65.00	40458	1.00	0.079
			65.00	66.00	40459	1.00	0.031
			66.00	67.00	16062	1.00	0.014
			69.00	70.00	16063	1.00	0.012
			71.00	72.00	16064	1.00	0.068
			74.00	75.00	16065	1.00	0.010
75.00	Nombre d'é	dage ichantillons : 37 ichantillons QAQC : 0 otale échantillonnée : 34.50			1		

Sondage :	M-26-11		Titre minier : Canton : Rang :	2294781	Niv	ction : eau : ce de travail :	
Foré par : Décrit par :			Lot : Du : Au :		Dat	e de description :	
Collet Azimut : Plongée : Longueur Déviation	290.00° -50.00° 96.00 m			Est Nord Élévation	UTM 519 834 5 488 174 0	Annie -205 461 0	Mégane -79 498 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	50.00 96.00	289.60° 287.40°	-52.70° -52.70°	Non Non			
Description						liki A iz (0103476	2)
Dimension de la ca	urotte :			Cimen	nté : Non		Entreposé : Non

		Doggrafian			Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
0.00	18.00	MO					
		Mort Terrain					
		Ancien Résumé :MT					
18.00	69.00	V3B	52.00	53.00	1	1.00	0.007
		Basalte	53.00	54.00	2	1.00	0.020
		Ancien Résumé :V3B	54.00	55.00	3	1.00	0.006
			55.00	56.00	4	1.00	0.015
			57.00	58.00	5	1.00	0.008
			58.00	59.00	6	1.00	0.043
			64.00	65.00	7	1.00	0.951
			65.00	66.00	8	1.00	0.143
			66.00	67.00	9	1.00	0.023
69.00	96.00	V3B; Fp	83.00	84.00	10	1.00	0.005
		Basalte; Feldspath (alcalin)					
		Ancien Résumé :V3B; FP					
96.00	Fin du sond	age	1		•		
		chantillons: 10					
	Nombre d'é	chantillons QAQC: 0					

Longueur totale échantillonnée : 10.00

Sondage :	M-27-11		Titre minier :	5253894		tion :	
			Canton :			eau:	
			Rang :		Plac	e de travail :	
Foré par :			Lot :				
Décrit par :			Du:		Date	e de description :	
			Au:				
Collet							
					UTM	Annie	Mégane
Azimut :	290.00°			Est	519 772	-138	-54
Plongée :	-50.00°			Nord	5 488 017	306	331
Longueur :	60.00 m			Élévation	0	0	0
-Déviation							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	50.00	293.20°	-52.20°	Non			
Description						4	
1						Luki	A og (01034762)
						`	.00
Dimension de la car				Cimenté			Entreposé : Non

		Description			Analyse		
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)
.00 11.	.00	MO					
		Mort Terrain					
		Ancien Résumé :MT					
1.00 42.	.00	V3B	41.00	42.00	16222	1.00	0.018
		Basaite					
		Ancien Résumé :V3B; CO					
2.00 49.	.00	V3B					
		Basalte					
		Ancien Résumé :V3B; SF					
42.00	49.00	Su	42.00	43.00	16223	1.00	0.888
		Sulfures Applies Discourse AVOD OF	43.00	44.00	16224	1.00	0.774
		Ancien Résumé :V3B; SF	44.00	45.00	16225	1.00	0.880
			45.00	46.00	16226	1.00	0.394
			46.00	47.00	16227	1.00	0.055
			47.00	48.00	16228	1.00	0.236
			48.00	49.00	16229	1.00	0.023
9.00 60.	.00	V3B; Fp	49.00	50.00	16231	1.00	0.023
		Basalte; Feldspath (alcalin)					
		Ancien Résumé :V3B; FP					
60.00 Fir	n du sondage		1				
	ombre d'échai						

Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 9.00

Foré par : Décrit par :	M-28-11		Titre minier : Canton : Rang : Lot : Du : Au :	5253894	Nive Plac	tion : eau : ce de travail : e de description :	
Collet Azimut : Plongée : Longueur : Déviation	290.00° -50.00° 63.00 m			Est Nord Élévation	UTM 519 754 5 487 974 0	Annie -120 263 0	Mégane -48 285 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	50.00	285.80°	-49.30°	Non			
Description						loki de ng (0123496	2)
Dimension de la card	otte :			Ciment	té : Non	<u>-</u>	Entreposé : Non

				Description			Analyse		
				Description	De	À	Numéro	Longueur	Au_Plot (g/t)
.00		5.00		NO					
				fort Terrain					
				ancien Résumé :MT					
.00		8.00	,	/3B					
				Basalte					
				ancien Résumé :V3B					
.00		26.00		/3B					
				Sasalte					
				ancien Résumé :V3B; CO					
6.00		39.00		/3B					
				Basalte					
				uncien Résumé :V3B; SF					
	26.00		34.00	Su					
				Sulfures					
	04.00		10.00	Ancien Résumé :V3B; SF	04.00	05.00	40000		0.007
	34.00		40.00	Su Sulfures	34.00	35.00	16232	1.00	0.007
				Ancien Résumé :V3B; SF	35.00	36.00	16233	1.00	0.011
				Alicien Resume .vsb, sr	36.00	37.00	16234	1.00	0.010
					37.00	38.00	16235	1.00	0.477
					38.00	39.00	16236	1.00	0.517
9.00		43.00		/3B	39.00	40.00	16237	1.00	0.136
				Basalte					
				ncien Résumé :V3B; SF					
	39.00		40.00	MY					
				Mylonitique					
				Ancien Résumé :MY					
	40.00		43.00	Su	40.00	41.00	16238	1.00	2.523
				Sulfures					
				Ancien Résumé :V3B; SF					
	41.00		43.00	VEI;;QZ;;;;	41.00	42.00	16239	1.00	0.935
				Veindde Quartz	42.00	43.00	16241	1.00	1.143
				Ancien Résumé :QZ					
3.00		47.00		/3B; Fp	43.00	44.00	16242	1.00	0.475
				dasalte; Feldspath (alcalin)	44.00	45.00	16243	1.00	0.110
				ancien Résumé :V3B; FP	45.00	46.00	16244	1.00	0.082
					46.00	47.00	16245	1.00	0.223
					70.00	+1.00	10240	1.00	0.223
	43.00		43.50	Su					

		Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
		Sulfures					
		Ancien Résumé :V3B; SF					
7.00	50.00	V3B; Qz	47.00	48.00	16246	1.00	0.005
		Basalte; Quartz	48.00	49.00	16247	1.00	0.005
		Ancien Résumé :V3B; QZ	49.00	50.00	16248	1.00	0.005
0.00	54.00	V3B					
0.00	54.00	Basalte					
		Ancien Résumé :V3B; PO					
50.00	54.00	Po	50.00	51.00	16249	1.00	0.005
		Pyrrhotine					
		Ancien Résumé :V3B; PO					
4.00	63.00	V3B; Fp					
		Basalte; Feldspath (alcalin)					
		Ancien Résumé :V3B; FP					
					I		

63.00 Fin du sondage

Nombre d'échantillons : 17 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 17.00

Sondage: M Foré par : Décrit par : —Collet	-29-11		Titre minier : Canton : Rang : Lot : Du : Au :	5253894	N P	Section : liveau : Place de travail : Date de description :	
	200 00°			_	UTM	Annie	Mégane
Azimut : Plongée :	290.00° -50.00°			Est	519 734	-101	-42
Longueur :	51.00 m			Nord	5 487 927	216	234
				Élévation	0	0	0
Déviation Type	Profondeur	Azimut	Plongée	Invalide		Description	
Description						Qdi .	de (01234762)
Dimension de la carott	e:			Cimen	nté : Non		Entreposé : Non

		Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00	8.00	МО					
		Mort Terrain					
		Ancien Résumé :MT					
3.00	25.70	V3B	24.00	25.00	16198	1.00	0.005
		Basalte	25.00	26.00	16199	1.00	0.005
		Ancien Résumé :V3B; CO					
25.70	39.30	V3B					
		Basalte Ancien Résumé :V3B; SF					
25	5.70 39.30		26.00	27.00	16201	1.00	0.005
	0.70	Sulfures	27.00	28.00	16202	1.00	0.005
		Ancien Résumé :V3B; SF	28.00	29.00	16203	1.00	0.005
						1.00	
			29.00	30.00	16204		0.008
			30.00	31.00	16205	1.00	0.008
			31.00	32.00	16206	1.00	0.010
			32.00	33.00	16207	1.00	0.007
			33.00	34.00	16208	1.00	0.009
			34.00	35.00	16209	1.00	0.007
			35.00	36.00	16211	1.00	0.009
			36.00	37.00	16212	1.00	0.006
			37.00	38.00	16213	1.00	0.009
			38.00	39.00	16214	1.00	0.488
			39.00	40.00	16215	1.00	1.684
39.30	39.90	M25					
		Mylonite					
39	9.30 39.90						
		Mylonitique					
		Ancien Résumé :MY					
9.90	41.00	V3B					
		Basalte Ancien Résumé :V3B; SF					
30	9.90 41.00		40.00	41.00	16216	1.00	0.165
00	-1.00	Sulfures	10.00	11.00			0.100
		Ancien Résumé :V3B; SF					
11.00	42.80	QZVN					
		Veines de qtz					

	Description			1		
		De	À	Numéro	Longueur	Au_Plot (g/t)
42.80 VEI;;QZ;;;;		41.00	42.00	16217	1.00	0.095
Veindde Quartz		42.00	43.00	16218	1.00	0.020
Ancien Résumé :QZ						
V3B						
Basalte						
Ancien Résumé :V3B; SF						
43.00 Su						
Sulfures						
Ancien Résumé :V3B; SF						
V3B; Fp		43.00	44.00	16219	1.00	0.031
Basalte; Feldspath (alcalin)		44.00	45.00	16221	1.00	0.011
Ancien Résumé :V3B; FP						
	Ancien Résumé :QZ V3B Basalte Ancien Résumé :V3B; SF 3.00 Su Sulfures Ancien Résumé :V3B; SF V3B; Fp Basalte; Feldspath (alcalin)	Ancien Résumé :QZ V3B Basalte Ancien Résumé :V3B; SF 3.00 Su Suffures Ancien Résumé :V3B; SF V3B; Fp Basalte; Feldspath (alcalin) Ancien Résumé :V3B; FP	Ancien Résumé :QZ V38 Besalte Ancien Résumé :V3B; SF 3.00 Su Sulfures Ancien Résumé :V3B; SF V3B; Fp 43.00 Ancien Résumé :V3B; FP 44.00 Ancien Résumé :V3B; FP	Accien Résumé · ΩZ V3B Basalte Ancien Résumé · V3B; SF 3.00 Su Sultures Ancien Résumé · V3B; SF V3B; Fp 43.00 44.00 Basalte; Feldspeth (alcalin) Ancien Résumé · V3B; FP	Ancien Résumé (QZ V38 Bearle Bearle Ancien Résumé (V38): SF S.00 Su Su Sulfures Ancien Résumé (V38): SF V38: FP 43.00 44.00 16219 Bearle (V38): FP 44.00 45.00 16221 Ancien Résumé (V38): FP 45.00 16221 Ancien Résumé (V38): FP 45.00 16221	Ancien Résumé :02Z V38 Baselte Ancien Résumé :V38; SF 3,00 Su Sultime Ancien Résumé :V38; SF V38; FP 46,00 Ancien Résumé :V38; FP

Sondage : M-29-11

51.00 Fin du sondage

Nombre d'échantillons : 21 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 21.00

Sondage : Foré par :	M-30-11		Titre minier : Canton : Rang : Lot :	5253894	Niv	ction : eau : ce de travail :	
Décrit par :			Du : Au :		Da	te de description :	
Collet Azimut : Plongée : Longueur : Déviation	290.00° -50.00° 57.00 m			Est Nord Élévation	UTM 519 720 5 487 872 0	Annie -72 167 0	Mégane -26 180 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	57.00	286.70°	-57.90°	Non			
Description						Ledi:	A (01034762)
Dimension de la ca	rotte :			Cime	nté : Non		Entreposé : Non

			Description		Analyse						
0			Description	De	À	Numéro	Longueur	Au_Plot (g/t)			
0.00	11.00	M	10					0,771			
		M	fort Terrain								
		Α	ncien Résumé :MT								
11.00	37.00	V	3B	35.00	36.00	16251	1.00	0.005			
			asalte	36.00	37.00	16252	1.00	0.006			
		Α	ncien Résumé :V3B								
37.00	43.00		3B								
			asalte								
			ncien Résumé :V3B; SF								
37.0	00	43.00	Su	37.00	38.00	16253	1.00	0.009			
			Sulfures	38.00	39.00	16254	1.00	0.122			
			Ancien Résumé :V3B; SF	39.00	40.00	16255	1.00	0.030			
				40.00	41.00	16256	1.00	0.070			
				41.00	42.00	16257	1.00	0.197			
				42.00	43.00	16258	1.00	0.272			
				42.00	45.00	10230	1.00	0.212			
43.00	44.00		18Gp								
			chiste graphiteux								
43.0	00	44.00	FRC								
			Fracturé								
			Ancien Résumé :Fr; GP								
43.0	00	44.00	Gp	43.00	44.00	16259	1.00	0.279			
			Graphite Ancien Résumé :Fr; GP								
11.00	10.00										
44.00	46.00		3B sasalte								
			asaite ncien Résumé :V3B; SF								
44.0	00	46.00	Su	44.00	45.00	16261	1.00	0.015			
44.0	00	40.00	Sulfures								
			Ancien Résumé :V3B; SF	45.00	46.00	16262	1.00	0.005			
46.00	57.00	1/	3B; Qz; Fp	46.00	47.00	16263	1.00	0.011			
10.00	37.00		зъ, с.с., гр asalte; Quartz; Feldspath (alcalin)	40.00	47.00	10200	1.50	0.011			
			ncien Résumé :V3B; QZ; FP								
		,									

Nombre d'échantillons : 12

Nombre d'échantillons QAQC : 0

Longueur totale échantillonnée : 12.00

Foré par : Décrit par :	M-31-11		Titre minier : Canton : Rang : Lot : Du : Au :	4293505	Nive Plac	tion : eau : ce de travail : e de description :	
Collet Azimut : Plongée : Longueur : Déviation	290.00° -50.00° 51.00 m			Est Nord Élévation	UTM 519 680 5 487 808 0	Annie -55 93 0	Mégane -29 104 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	51.00	308.00°	-51.50°	Non			
Description						lehi A	e (010 34762)
Dimension de la car	otte :			Cimenté	é: Non		Entreposé : Non

		Description		Analyse						
		Description		De	À	Numéro	Longueur	Au_Plot (g/t)		
0.00	7.00	MO								
		Mort Terrain								
		Ancien Résumé :MT								
.00	22.80	V3B	22.0	.00	23.00	16264	1.00	4.550		
		Basalte								
		Ancien Résumé :V3B								
2.80	31.90	V3B								
		Basalte Ancien Résumé :V3B; SF								
22.8	31.90		23.0	00	24.00	16265	1.00	0.559		
22.0	51.50	Sulfures								
		Ancien Résumé :V3B; SF	24.0			16266	1.00	0.005		
			25.0			16267	1.00	0.005		
			26.0	.00	27.00	16268	1.00	0.005		
			27.0	.00	28.00	16269	1.00	0.009		
			28.0	.00	29.00	16271	1.00	0.020		
			29.0	.00	30.00	16272	1.00	0.113		
			30.0	.00	31.00	16273	1.00	0.030		
			31.0	.00	32.00	16274	1.00	0.492		
1.90	36.00	V3B	32.0	00	33.00	16275	1.00	0.019		
71.50	50.00	Basalte	33.0			16276	1.00	0.007		
		Ancien Résumé :V3B; AE								
			34.0			16277	1.00	0.018		
86.00			35.0	.00	36.00	16278	1.00	0.006		
6.00	51.00	V3B; Fp	36.0	.00	37.00	16279	1.00	0.020		
		Basalte; Feldspath (alcalin)								
		Ancien Résumé :V3B; FP								

Nombre d'échantillons : 15 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 15.00

Sondage : Foré par :	M-32-11		Titre minier : Canton : Rang : Lot :	4293505	Niv	ction : veau : uce de travail :	
Décrit par :			Du : Au :		Da	te de description :	
Collet Azimut : Plongée : Longueur : Déviation	290.00° -50.00° 45.00 m			Est Nord Élévation	UTM 519 662 5 487 760 0	Annie -34 47 0	Mégane -21 54 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit							
Description						L.	li A iz (01234762)
Dimension de la ca	rotte :			Cimen	nté : Non		Entreposé : Non

	Description			Analyse		
	Description	De	A	Numéro	Longueur	Au_Plot (g/t)
13.00	МО					
	Mort Terrain					
	Ancien Résumé :MT					
21.00	V3B	20.00	21.00	16281	1.00	0.005
	Basalte					
	Ancien Résumé :V3B; CO	04.00	00.00	10000		2 225
26.00	V3B Basalte	21.00	22.00	16282	1.00	0.005
	Ancien Résumé :V3B; AE	22.00	23.00	16283	1.00	0.005
	Allolet (Codulte . VDD, AL	23.00	24.00	16284	1.00	0.005
		24.00	25.00	16285	1.00	0.005
		25.00	26.00	16286	1.00	0.005
37.00	M8					
	Zone minéralisé					
	Ancien Résumé :ZM; GP; SR; CB					
26.00	37.00 Ser; Car					
	Séricitisation; Carbonatisation					
	Ancien Résumé :ZM; GP; SR; CB					
26.00	37.00 Gp	26.00	27.00	16287	1.00	0.009
	Graphite	27.00	28.00	16288	1.00	0.009
	Ancien Résumé :ZM; GP; SR; CB	28.00	29.00	16289	1.00	0.012
		29.00	30.00	16291	1.00	0.038
		30.00	31.00	16292	1.00	0.027
		31.00	32.00	16293	1.00	0.019
		32.00	33.00	16294	1.00	0.028
		33.00	34.00	16295	1.00	0.006
		34.00	35.00	16296	1.00	0.009
		35.00	36.00	16297	1.00	0.014
		36.00	37.00	16298	1.00	0.040
45.00	V3B	37.00	38.00	16299	1.00	0.020
	Basalte	38.00	39.00	16301	1.00	0.005
	Ancien Résumé :V3B; AE	39.00	40.00	16302	1.00	0.005
		40.00	41.00	16303	1.00	0.008
		41.00	42.00	16304	1.00	0.006
		42.00	43.00	16305	1.00	0.005
						0.005
		43.00	44.00	16306	1.00	

	Description	(2)		Analyse		
	Description	De	À	Numéro	Longueur	Au_Plot
		44.00	45.00	16307	1.00	(g/t) 0.005
		44.00	40.00	10007	1.00	0.000
45.00	Fin du sondage	1				
	Nombre d'échantillons : 25					
	Nombre d'échantillons QAQC : 0					
	Longueur totale échantillonnée : 25.00	-				

			Au:		Date	de description :		
—Collet — Azimut : Plongée : Longueur : —Déviation —	290.00° -50.00° 78.00 m		Au .	Est Nord Élévation	UTM 519 653 5 487 703 0	Annie 0 0 0	C	0 0 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description		\neg
Flexit	51.00	274.10°	-51.00°	Oui				
Description				Cimenté		liki Aziz (o	Entreposé : Non	

		Decembring		·	Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00	17.00	MO					
		Mort Terrain					
		Ancien Résumé :MT					
17.00	39.00	V3B	38.00	39.00	16308	1.00	0.005
		Basalte Ancien Résumé :V3B					
39.00	42.00	V3B; BRE	39.00	40.00	16309	1.00	0.005
39.00	42.00	Basalte; Brèchique	40.00	41.00	16311	1.00	0.005
		Ancien Résumé :V3B; BR					
			41.00	42.00	16312	1.00	0.005
42.00	52.00	M8					
		Zone minéralisé Ancien Résumé :ZM; SR; CB					
42.00	52.00	Sr; Car	42.00	43.00	16313	1.00	0.005
42.00	32.00	Séricite; Séricite	43.00	44.00	16314	1.00	0.005
		Ancien Résumé :ZM; SR; CB					
			44.00	45.00	16315	1.00	0.005
			45.00	46.00	16316	1.00	0.020
			46.00	47.00	16317	1.00	0.021
			47.00	48.00	16318	1.00	0.020
			48.00	49.00	16319	1.00	0.057
			49.00	50.00	16321	1.00	0.058
			50.00	51.00	16322	1.00	0.239
			51.00	52.00	16323	1.00	0.101
52.00	61.00	V3B					
		Basalte					
52.00	61.00	Sr	52.00	53.00	16324	1.00	0.044
		Séricite	53.00	54.00	16325	1.00	0.005
		Ancien Résumé :AE; SR	54.00	55.00	16326	1.00	0.012
			55.00	56.00	16327	1.00	0.005
			56.00	57.00	16328	1.00	0.025
			57.00	58.00	16329	1.00	0.025
			58.00	59.00	16331	1.00	0.005
			59.00	60.00	16332	1.00	0.019
			60.00	61.00	16333	1.00	0.009
	0.70		30.00	31.00	10000	1.00	0.008
61.00	62.00	QZVN; M8Gp					
		Veines de qtz; Schiste graphiteux					

Analyse						
uméro Longueur	Au_Plot (g/t)					
1.00	0.005					
1.00	0.005					
1.00	0.028					
1.00	0.006					
1.00	0.007					
1.00	0.016					
1.00	0.005					
1.00	0.005					
1.00	0.000					
1.00	0.005					
1.00	0.003					

Sondage: M-33-11

78.00 Fin du sondage

Nombre d'échantillons : 32 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 32.00

Foré par : Décrit par :	-34-11		Titre minier : Canton : Rang : Lot : Du : Au :	4293521	Section : Niveau : Place de travail : Date de description :			
Collet Azimut : Plongée : Longueur : Déviation	290.00° -50.00° 33.00 m			Est Nord Élévation	UTM 519 540 5 487 524 0	Annie 47 -206 0	Mégane -8 -212 0	
Туре	Profondeur	Azimut	Plongée	Invalide		Description		
Description						Liki A iz (0123476	L)	
Dimension de la carott	e :			Cimente	é : Non		Entreposé : Non	

9.00 9.00 9.00 15.00 15.00 25.00	Mori Anci 0 V3B Basi Anci 0 M8	ort Terrain cien Résumé :MT B salte cien Résumé :V3B	13.00 14.00	14.00 15.00	Numéro 16344 16345	1.00 1.00	Au_Plot (g/t)
9.00 15.00 15.00 25.00	Mori Anci 0 V3B Basi Anci 0 M8 Zoni	ort Terrain cien Résumé :MT B salte cien Résumé :V3B ne minéralisé			1		
15.00 25.00	Anci 0 V3B Basi Anci 0 M8 Zoni	cien Résumé :MT B salte cien Résumé :V3B 3 ne minéralisé			1		
15.00 25.00	0 V3B Basic Anci 0 M8 Zone	B salte cien Résumé :V3B s ne minéralisé			1		
15.00 25.00	Basi Anci 0 M8 Zoni Anci	salte cien Résumé :V3B 3 ne minéralisé			1		
	Anci 0 M8 Zon ci Anci	cien Résumé :V3B 3 ne minéralisé	14.00	15.00	16345	1.00	
	0 M8 Zon i Anci	s ne minéralisé			1		
	Zon d Anci	ne minéralisé					
15.00	Anci						
15.00		Gen Resulte .E.M., OD					
15.50	25.00	Cb	15.00	16.00	16346	1.00	0.017
		Carbonate	16.00	17.00	16347	1.00	0.017
		Ancien Résumé :ZM; CB	17.00		16348		
				18.00		1.00	0.007
			18.00	19.00	16349	1.00	0.008
			19.00	20.00	16351	1.00	0.024
			20.00	21.00	16352	1.00	0.085
			21.00	22.00	16353	1.00	0.678
			22.00	23.00	16354	1.00	0.293
			23.00	24.00	16355	1.00	0.043
			24.00	25.00	16356	1.00	0.079
25.00 30.00	0 V3B	В	25.00	26.00	16357	1.00	0.022
		salte	26.00	27.00	16358	1.00	0.005
			27.00	28.00	16359	1.00	0.005
			28.00	29.00	16361	1.00	0.005
			28.00	29.00	10301	1.00	0.005
30.00 33.00							
		salte					
	Anci	cien Résumé :V3B					

Longueur totale échantillonnée : 16.00

Sondage :	M-36-11		Titre minier : Canton : Rang :	2294782	Niv	ction : reau : nce de travail :	
Foré par : Décrit par :			Lot : Du : Au :		Da	te de description :	
Collet Azimut : Plongée : Longueur Déviation	290.00° -50.00° 106.00 m			Est Nord Élévation	UTM 519 931 5 488 409 0	Annie -303 696 0	Mégane -112 750 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	50.00	289.20° 288.90°	-50.30° -50.60°	Non Non			
Description -						L.	li A ~ (01234762)
Dimension de la ca	arotte :			Cimen	ıté : Non		Entreposé : Non

		Description		Analyse						
		Description	De	À	Numéro	Longueur	Au_Plot (g/t)			
.00	9.00	МО								
		Mort Terrain								
		Ancien Résumé :MT								
00.0	81.00	V3B	79.00	80.00	16104	1.00	0.005			
		Basalte	80.00	81.00	16105	1.00	0.018			
	00.00	Ancien Résumé :V3B	21.22	20.00	10100	1.00	0.050			
31.00	99.00	V3B; M8 Basalte; Zone minéralisé	81.00	82.00	16106	1.00	0.059			
		Ancien Résumé :V3B; ZM; F	82.00	83.00	16107	1.00	0.049			
		Aldel Nesulle .vob, EN, I	83.00	84.00	16108	1.00	0.091			
			84.00	85.00	16109	1.00	0.010			
			85.00	86.00	16111	1.00	0.164			
			86.00	87.00	16112	1.00	2.034			
			87.00	88.00	16113	1.00	1.663			
			88.00	89.00	16114	1.00	0.396			
			89.00	90.00	16115	1.00	0.324			
			90.00	91.00	16116	1.00	0.081			
			91.00	92.00	16117	1.00	0.274			
			92.00	93.00	16118	1.00	0.158			
			93.00	94.00	16119	1.00	0.311			
			94.00	95.00	16121	1.00	0.587			
			95.00	96.00	16122	1.00	2.329			
			96.00	97.00	16123	1.00	14.430			
			97.00	98.00	16124	1.00	0.153			
			98.00	99.00	16125	1.00	0.209			
99.00	106.00	V3B; Fp	99.00	100.00	16126	1.00	0.025			
		Basalte; Feldspath (alcalin)								
		Ancien Résumé :V3B; FP								

Nombre d'échantillons : 21 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 21.00

Foré par : Décrit par :	M-37-11		Titre minier : Canton : Rang : Lot : Du : Au :	2294782	Niv Pla	ction : veau : ace de travail : ate de description :	
Collet Azimut : Plongée : Longueur : —Déviation	290.00° -50.00° 120.00 m			Est Nord Élévation	UTM 519 925 5 488 357 0	Annie -270 655 0	Mégane -91 702 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	100.00	286.90°	-51.40°	Non			
Description						liki de ing (01234762)	
Dimension de la ca	rotte :			Cimen	té : Non		Entreposé : Non

0.00	11.00	MO Mort Terrain	De	À	Numéro	Longueur	Au_Plot
							(g/t)
1.00	85.00	Most Torrain					
1.00	85.00						
1.00	85.00	Ancien Résumé :mt					
		V3B Basalte	14.00	15.00	16066	1.00	0.013
		Ancien Résumé :V3B	20.00	21.00	16067	1.00	0.005
		, install reconstruction	28.00	29.00	16068	1.00	0.005
			36.00	37.00	16069	1.00	0.005
			44.00	45.00	16071	1.00	0.005
			58.00	59.00	16072	1.00	0.005
			67.00	68.00	16073	1.00	0.005
			72.00	73.00	16074	1.00	0.005
5.00	109.00	M8	85.00	86.00	16075	1.00	0.076
		Zone minéralisé	86.00	87.00	16076	1.00	0.044
		Ancien Résumé :ZM; AE	87.00	88.00	16077	1.00	0.005
			88.00	89.00	16078	1.00	0.005
			89.00	90.00	16079	1.00	0.153
			90.00	91.00	16080	1.00	0.280
			91.00	92.00	16081	1.00	0.440
			92.00	93.00	16082	1.00	0.005
			93.00	94.00	16083	1.00	0.347
			94.00	95.00	16084	1.00	0.277
			95.00	96.00	16086	1.00	0.210
			96.00	97.00	16087	1.00	0.106
			97.00	98.00	16088	1.00	0.024
			98.00	99.00	16089	1.00	0.071
			99.00	100.00	16091	1.00	0.167
			100.00	101.00	16092	1.00	2.209
			101.00	102.00	16093	1.00	0.840
			102.00	103.00	16094	1.00	0.421
			103.00	104.00	16095	1.00	36.240
			104.00	105.00	16096	1.00	2.484
			105.00	106.00	16097	1.00	0.021
			106.00	107.00	16098	1.00	0.021
			107.00	107.00	16099	1.00	0.062

	Description			Analyse		
	Description	De	À	Numéro	Longueur	Au_Plot (g/t)
109.00	120.00 V3B; PORPg Basalte; Phénocristaux de plagioclase					
120.00	Fin du sondage					
	Nombre d'échantillons : 31 Nombre d'échantillons QAQC : 0					
	Longueur totale échantillonnée : 31.00					

Sondage : Foré par : Décrit par : Collet	M-38-11		Titre minier : Canton : Rang : Lot : Du : Au :	2294782	Nive Pla	etion : eau : ce de travail : e de description :	
Azimut : Plongée : Longueur Déviation	290.00° -50.00° : 120.00 m			Est Nord Élévation	UTM 519 917 5 488 309 0	Annie -242 615 0	Mégane -74 657 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit Flexit Description	50.00	290.60° 313.00°	-49.10° -49.90°	Non Oui		4	
Dimension de la ca	urotte ·			Cimenté	· Non	liki A iz (01034762)	Entreposé : Non

				Description			Analyse		
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00		18.00		мо					
				Mort Terrain					
				Ancien Résumé :MT					
18.00		46.00		V3B					
				Basalte Ancien Résumé :V3B; CO					
46.00		50.00		V3B					
10.00		00.00		Basalte					
				Ancien Résumé :V3B; PO					
	46.00		50.00	Po					
				Pyrrhotine					
				Ancien Résumé :V3B; PO					
50.00		97.00		V3B	95.00	96.00	16175	1.00	0.017
				Basalte Ancien Résumé :V3B	96.00	97.00	16176	1.00	19.440
97.00		114.00		V3B					
37.00		114.00		Basalte					
				Ancien Résumé :V3B; SF; AE					
	97.00		114.00	Su	97.00	98.00	16177	1.00	0.050
				Sulfures	98.00	99.00	16178	1.00	2.160
				Ancien Résumé :V3B; SF; AE	99.00	100.00	16179	1.00	0.005
					100.00	101.00	16181	1.00	0.009
					101.00	102.00	16182	1.00	0.006
					102.00	103.00	16183	1.00	0.005
					103.00	104.00	16184	1.00	0.005
					104.00	105.00	16185	1.00	0.023
					105.00	106.00	16186	1.00	0.007
					106.00	107.00	16187	1.00	0.005
					107.00	108.00	16188	1.00	0.003
					107.00	109.00	16189	1.00	0.010
						110.00	16191	1.00	
					109.00				0.033
					110.00	111.00	16192	1.00	0.018
					111.00	112.00	16193	1.00	0.049
					112.00	113.00	16194	1.00	0.024
					113.00	114.00	16195	1.00	0.023
114.00		115.00		V3B					

	Description			Analyse						
	Description	De	A	Numéro	Longueur	Au_Plot (g/t)				
	Basalte									
114.00 115.00	O Ser	114.00	115.00	16196	1.00	0.005				
	Séricitisation									
	Ancien Résumé :SR; QZ									
5.00 120.00	V3B	115.00	116.00	16197	1.00	0.024				
	Basalte									
	Ancien Résumé :V3B; CO									

Nombre d'échantillons : 21 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 21.00

Foré par : Décrit par :	M-39-11		Titre minier : Canton : Rang : Lot : Du : Au :	2294781	Niv Pla	etion : eau : ce de travail : e de description :	
Collet Azimut : Plongée : Longueur : Déviation	290.00° -50.00° 135.00 m			Est Nord Élévation	UTM 519 891 5 488 260 0	Annie -226 562 0	Mégane -72 601 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	51.00	291.50°	-49.60°	Non			
Description						Lu	li A iz (01034762)
Dimension de la card	otte :			Ciment	té : Non	-	Entreposé : Non

	Description			Analyse		
	Description	De	A	Numéro	Longueur	Au_Plot
0.00 14.00	MO					(g/t)
	Mort Terrain					
_ = 4	Ancien Résumé :MT					
14.00 84.00	V3B	82.00	83.00	16154	1.00	0.005
	Basalte	83.00	84.00	16155	1.00	0.005
	Ancien Résumé :V3B; CO					
84.00 92.00	V3B					
	Basalte					
	Ancien Résumé :V3B; SF; AE					
84.00 92.00		84.00	85.00	16156	1.00	0.015
	Sulfures	85.00	86.00	16157	1.00	0.007
	Ancien Résumé :V3B; SF; AE	86.00	87.00	16158	1.00	0.012
		87.00	88.00	16159	1.00	0.011
		88.00	89.00	16161	1.00	0.006
		89.00	90.00	16162	1.00	0.005
		90.00	91.00	16163	1.00	0.005
		91.00	92.00	16164	1.00	0.011
00.00		0.1100	02.00			
92.00 94.00	V3B Basalte					
Α	Ancien Résumé :V3B; PO					
92.00 94.00		93.00	94.00	16165	1.00	0.007
	Рултhotine					*****
	Ancien Résumé :V3B; PO					
94.00 95.00	V3B					
	Basalte					
	Ancien Résumé :V3B; SF; AE					
94.00 95.00	Su	94.00	95.00	16166	1.00	0.005
	Sulfures					
	Ancien Résumé :V3B; SF; AE					
95.00 96.00	V3B					
	Basalte					
05.00	Ancien Résumé :V3B; PO					
95.00 96.00	Po Pyrrhotine					
	Ancien Résumé :V3B; PO					
96.00 101.00	V3B					
	Basalte					
	Ancien Résumé :V3B; SF; AE					

	Description			Analyse		
	Description	De	A	Numéro	Longueur	Au_Plot (g/t)
96.00	101.00 Su	96.00	97.00	16167	1.00	0.005
	Sulfures	97.00	98.00	16168	1.00	0.022
	Ancien Résumé :V3B; SF; AE	98.00	99.00	16169	1.00	0.030
		99.00	100.00	16171	1.00	0.880
		100.00	101.00	16172	1.00	0.092
1.00	135.00 V3B; Fp	101.00	102.00	16173	1.00	0.006
	Basalte; Feldspath (alcalin)	102.00	103.00	16174	1.00	0.005
	Ancien Résumé :V3B; FP					

Nombre d'échantillons : 19 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 19.00

ondage :	M-40-11		Titre minier :	2294781		tion:	
			Canton:			eau:	
			Rang:		Plac	ce de travail :	
Foré par :			Lot:				
Décrit par :			Du:		Date	e de description :	
			Au:				
-Collet							
					UTM	Annie	Mégane —-
Azimut :	290.00°			Est	519 893	-185	-4
Plongée :	-50.00°			Nord	5 488 205	525	55
Longueur :	153.00 m			Élévation	0	0	
Déviation ————							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	50.00	292.40°	-49.20°	Non			
Flexit	100.00	286.70°	-49.60°	Oui			
Flexit	153.00	293.40°	-49.60°	Non			
Description							
						Dr. A	(01034762)
						fine of	(0:434.62)
Dimension de la ca				Cimente	á · Non		Entreposé : Non

				Description			Analyse		
				Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00		14.00	1	ло					
			1	Nort Terrain					
				Ancien Résumé :MT					
14.00		33.00	,	/3B					
				Basalte					
				Ancien Résumé :V3B					
33.00		40.00	,	/3B					
				Basalte					
				Ancien Résumé :V3B; PO					
	33.00		91.00	Po					
				Pyrrhotine					
				Ancien Résumé :V3B; PO					
40.00		55.00		/3B					
				Basalte					
				Ancien Résumé :V3B					
55.00		57.00		/3B					
				Basalte					
	55.00		57.00	FRC					
				Fracturé					
				Ancien Résumé :FR					
57.00		91.00		/3B					
				Basalte Ancien Résumé :V3B					
91.00		92.00							
91.00		92.00		/3B Basalte					
				Ancien Résumé :V3B; AE					
	91.00		92.00						
	31.00		VZ.UU	Po Pymhotine					
				Ancien Résumé :V3B; PO					
92.00		93.00	,	/3B					
52.00		00.00		Basalte					
				Ancien Résumé :V3B; SF					
	92.00		93.00	Su					
				Sulfures					
				Ancien Résumé :V3B; SF					
93.00		104.00	,	/3B					
				Basalte					<u>.</u>
				Ancien Résumé :V3B; SF; AE					4. 4. 4
	93.00		104.00	Su	100.00	101.00	16148	1.00	0.007

		Description		Analyse						
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)			
		Sulfures	101.00	102.00	16149	1.00	0.011			
		Ancien Résumé :V3B; SF; AE	103.00	104.00	16151	1.00	0.107			
1.00	107.00	M25	104.00	105.00	16152	1.00	1.849			
		Mylonite	105.00	106.00	16153	1.00				
.00	153.00	V3B; PORPg								
		Basalte; Phénocristaux de plagioclase								

Nombre d'échantillons : 5 Nombre d'échantillons QAQC : 0

Longueur totale échantillonnée : 5.00

Sondage : Foré par : Décrit par : Collet Azimut :	M-41-11 290.00°		Titre minier : Canton : Rang : Lot : Du : Au :	2294782 Est	Nive Plac	etion : eau : ce de travail : e de description : Annie	Mégane -12
Plongée : Longueur ; —Déviation	-50.00° 144.00 m			Nord Élévation	5 488 193 0	537	559
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	50.00	290.70°	-46.90°	Non			
Description						luki de iz (012)	14(2)
Dimension de la ca	rotte :			Ciment	é : Non		Entreposé : Non

Projet : MONSTER

		Description			Analyse		
		Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00	19.00	MO					
		Mort Terrain					
	100.00	Ancien Résumé :MT	400.00	101.00	10000		0.005
19.00	123.00	V3B Basalte	120.00	121.00	16362	1.00	0.005
		Ancien Résumé :V3B; CO	121.00	122.00	16363	1.00	0.015
			122.00	123.00	16364	1.00	0.231
23.00	133.00	M8; V3B	123.00	124.00	16365	1.00	0.048
		Zone minéralisé; Basalte	124.00	125.00	16366	1.00	0.009
		Ancien Résumé :ZM; V3B	125.00	126.00	16367	1.00	0.005
			126.00	127.00	16368	1.00	0.014
			127.00	128.00	16369	1.00	0.030
			128.00	129.00	16371	1.00	0.028
			129.00	130.00	16372	1.00	0.016
			130.00	131.00	16373	1.00	0.014
			131.00	132.00	16374	1.00	0.029
			132.00	133.00	16375	1.00	0.005
33.00	144.00	V3B; Fp	133.00	134.00	16376	1.00	0.005
00.00	111.00	Basalte; Feldspath (alcalin)	134.00	135.00	16377	1.00	0.005
		Ancien Résumé :V3B; FP	135.00	136.00	16378	1.00	0.005
			135.00	136.00	16378	1.00	0.005
						1 1	

Nombre d'échantillons : 16 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 16.00

				Toola Corporation			
Sondage : Foré par : Décrit par :	M-42-11		Titre minier : Canton : Rang : Lot : Du : Au :	2294782	Niv Pla	etion : eau : ce de travail : te de description :	
Collet Azimut : Plongée : Longueur Déviation				Est Nord Élévation	UTM 519 921 5 488 250 0	-197 576 0	Mégane -41 608
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	100.00	289.30° 289.80°	-50.30° -50.20°	Non			
Description						lahi de	(OIQ34762)
Dimension de la c	arotte :			Ciment	é : Non		Entreposé : Non

			Description			Analyse		
			Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00	14.00		мо					
			Mort Terrain					
			Ancien Résumé :MT					
14.00	119.00			116.00	117.00	16379	1.00	0.005
				117.00	118.00	16381	1.00	0.005
			Ancien Résumé :V3B; CO	118.00	119.00	16382	1.00	0.015
119.00	125.00)	M8					
			Zone minéralisé					
			Ancien Résumé :ZM; FC; AK					
1	19.00	125.00	·	119.00	120.00	16383	1.00	0.116
				120.00	121.00	16384	1.00	0.417
			Ancien Résumé :ZM; FC; AK	121.00	122.00	16385	1.00	0.023
				122.00	123.00	16386	1.00	0.171
				123.00	124.00	16387	1.00	0.051
				124.00	125.00	16388	1.00	0.031
125.00	127.00)	v3B	125.00	126.00	16389	1.00	0.005
				126.00	127.00	16391	1.00	8E-04
			Ancien Résumé :V3B; AE					
127.00	133.00)	M8; QZVN	127.00	128.00	16392	1.00	0.005
			Schiste; Veines de qtz					
1	27.00	128.00	Ру					
			Pyrite					
			Ancien Résumé :QZ; PY					
1	27.00	128.00	VEI;;QZ;;;; Veindde Quartz					
			Ancien Résumé :QZ; PY					
1	28.00	133.00	Sch					
			Schisteux(se)					
			Ancien Résumé :SC; PY					
1	28.00	133.00	Ру	128.00	129.00	16393	1.00	0.295
				129.00	130.00	16394	1.00	0.259
			Ancien Résumé :SC; PY	130.00	131.00	16395	1.00	0.114
				131.00	132.00	16396	1.00	0.089
				132.00	133.00	16397	1.00	0.107
122.00	400 4	,						
133.00	136.40			133.00	134.00	16398	1.00	0.009
			pasaito, i oraspatii (arcailli)	134.00	135.00	16399	1.00	0.008

	Description			Analyse		
	Description	De	A	Numéro	Longueur	Au_Plot (g/t)
	Ancien Résumé :V3B; FP					
136.40	Fin du sondage					
	Nombre d'échantillons : 19					
	Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 19.00					
	• • • • • • • • • • • • • • • • • • • •					

Projet : MONSTER

Sondage : Foré par : Décrit par : Collet	M-43-11		Titre minier : Canton : Rang : Lot : Du : Au :	2294782		Section : Niveau : Place de travail : Date de description : Annie	Mégane
Azimut :	290.00°			Est	519 944	-216	-46
Plongée : Longueur :	-50.00° 153.00 m			Nord	5 488 299	627	662
Longueur	155.00 111			Élévation	0	0	0
Déviation ———							
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit Flexit Description	102.00	286.40° 286.30°	-51.00° -51.00°	Non Non			liki A iz (01034762)
Dimension de la ca	rotte :			Ciment	té : Non		Entreposé : Non

Projet : MONSTER

	Description	Analyse							
	Description	De	A	Numéro	Longueur	Au_Plot (g/t)			
0.00 14.00	мо								
	Mort Terrain								
	Ancien Résumé :MT								
4.00 129.00									
	Basalte Ancien Résumé :V3B								
29.00 149.00									
	Schiste								
129.00	149.00 Py	129.00	130.00	16402	1.00	0.073			
	Pyrite	130.00	131.00	16403	1.00	0.070			
	Ancien Résumé :PY; V3B	131.00	132.00	16404	1.00	11.070			
		132.00	133.00	16405	1.00	0.011			
		133.00	134.00	16406	1.00	0.038			
		134.00	135.00	16407	1.00	0.039			
		135.00	136.00	16408	1.00	0.008			
		136.00	137.00	16409	1.00	0.029			
		137.00	138.00	16411	1.00	0.013			
		138.00	139.00	16412	1.00	0.006			
		139.00	140.00	16413	1.00	0.008			
		140.00	141.00	16414	1.00	0.011			
		141.00	142.00	16415	1.00	0.016			
		142.00	143.00	16416	1.00	0.011			
		143.00	144.00	16417	1.00	0.042			
		144.00	145.00	16418	1.00	0.049			
		145.00	146.00	16419	1.00	0.044			
		146.00	147.00	16421	1.00	0.005			
		147.00	148.00	16422	1.00	0.009			
		148.00	149.00	16423	1.00	0.009			
19.00 153.00		149.00	150.00	16424	1.00	0.021			
	Basalte; Feldspath (alcalin) Ancien Résumé :V3B; FP								
53.00 Fin du	sondage								
Nombr	e d'échantillons : 21								
	e d'échantillons QAQC : 0								
Longue	eur totale échantillonnée : 21.00								

Sondage: M Foré par : Décrit par : Collet	И-44-11		Titre minier : Canton : Rang : Lot : Du : Au :	2294782	Nive Plac	etion : eau : ce de travail : e de description :	
Azimut : Plongée : Longueur : —Déviation	290.00° -50.00° 135.00 m			Est Nord Élévation	UTM 519 953 5 488 349 0	Annie -245 669 0	Mégane -63 709 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	102.00	287.10°	-49.70°	Non			
Description						liki A iz (010	234162)
Dimension de la caro	otte :			Ciment	té : Non		Entreposé : Non

			Description			Analyse							
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)					
0.00		14.00	мо					9.33					
			Mort Terrain										
			Ancien Résumé :MT										
14.00		27.00	V3B										
			Basalte										
		00.00	Ancien Résumé :V3B; CO										
7.00		28.00	QZVN										
	27.00	28.0	Velines de qtz VEli;;QZ;;;;										
	27.00	20.0	Veinde Quartz										
			Ancien Résumé :QZ										
28.00		119.00	V3B	116.00	117.00	16425	1.00	0.155					
			Basalte	117.00	118.00	16426	1.00	0.005					
			Ancien Résumé :V3B; CO	118.00	119.00	16427	1.00	0.005					
				110.00	113.00	10427	1.00	0.000					
19.00		135.00	M8										
			Zone minéralisé Ancien Résumé :ZM; AK; SR										
	119.00	135.0		119.00	120.00	16428	1.00	1.792					
	113.00	155.	Ankérite			16429	1.00						
			Ancien Résumé :ZM; AK; SR	120.00	121.00			1.145					
				121.00	122.00	16431	1.00	0.082					
				122.00	123.00	16432	1.00	0.329					
				123.00	124.00	16433	1.00	0.696					
				124.00	125.00	16434	1.00	0.325					
				125.00	126.00	16435	1.00	3.190					
				126.00	127.00	16436	1.00	13.550					
				127.00	128.00	16437	1.00	1.786					
				128.00	129.00	16438	1.00	1.158					
				129.00	130.00	16439	1.00	0.412					
				130.00	131.00	16441	1.00	0.135					
				131.00	132.00	16442	1.00	0.190					
				132.00	133.00	16443	1.00	0.009					
				133.00	134.00	16444	1.00	0.005					
				134.00	135.00	16445	1.00	0.006					

Find a scortings Northwork dehantitions : 19 Northwork dehantition (AMC): 0 Longuaur tatas dehantitionnels : 19.00	
Longueur totale échantillonnée : 19.00	
	ì
	,
	ļ
	ļ
	ļ
	ļ

Projet: MONSTER Sondage: M-44-11 3 / 3

			101110	Cold Corporation			
Sondage : Foré par : Décrit par :	M-45-11		Titre minier : Canton : Rang : Lot : Du : Au :	2294782	Nive Plac	e de description :	
—Collet Azimut : Plongée : Longueur -Déviation				Est Nord Élévation	UTM 519 962 5 488 400 0	Annie -274 711 0	Mégane -81 758 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit Flexit Flexit	51.00 102.00 132.00	287.80° 293.30° 293.90°	-49.40° -49.30° -49.00°	Non Non Non			
Description						liki A-iz	(oig 34762)
Dimension de la c	arotte :			Cimenté	e: Non		Entreposé : Non

Projet: MONSTER

	Decadestion			Analyse		
	Description	De	A	Numéro	Longueur	Au_Plot (g/t)
0.00 9.00	MO				()	
	Mort Terrain					
	Ancien Résumé :MT					
9.00 21.00	V3B Basaite					
	Ancien Résumé :V3B; PO					
9.00 21.00	Po					
	Pyrrhotine					
	Ancien Résumé :V3B; PO					
21.00 111.00	V3B	108.00	109.00	16446	1.00	0.010
	Basalte	109.00	110.00	16447	1.00	0.005
	Ancien Résumé :V3B; CO	110.00	111.00	16448	1.00	0.631
111.00 129.00	M8					
	Zone minéralisé					
444.00	Ancien Résumé :ZM; SR	111.00	440.00		1.00	0.047
111.00 129.00	Sr Séricite	111.00	112.00	16449	1.00	0.017
	Ancien Résumé :ZM; SR	112.00	113.00	16451	1.00	1.223
		113.00	114.00	16452	1.00	1.892
		114.00	115.00	16453	1.00	0.163
		115.00	116.00	16454	1.00	0.152
		116.00	117.00	16455	1.00	0.188
117.00 132.00		117.00	118.00	16456	1.00	0.140
	Or natif Ancien Résumé :V.G. (117-177.4)	118.00	119.00	16457	1.00	0.173
	/ Indian (Coding 1, 4, 6, (11) 117,4)	119.00	120.00	16458	1.00	0.007
		120.00	121.00	16459	1.00	0.028
		121.00	122.00	16461	1.00	4.813
		122.00	123.00	16462	1.00	0.013
		123.00	124.00	16463	1.00	0.007
		124.00	125.00	16464	1.00	0.022
		125.00	126.00	16465	1.00	0.224
		126.00	127.00	16466	1.00	0.015
		127.00	128.00	16467	1.00	0.009
		128.00	129.00	16468	1.00	0.007
129.00 132.00	V3B; Fp					
	Basalte; Feldspath (alcalin)					

	Description			Analyse		
	резсприон	De	À	Numéro	Longueur	Au_Plot (g/t)
Ar 129.00 132.00	cien Résumé :V3B; FP; EP Epi Fekispath (alcalin) Ancien Résumé :V3B; FP; EP	129.00	130.00	16469	1.00	0.007
00 Fin du sondage Nombre d'échantill	ons: 22			1	I	

Nombre d'échantillons : 22

Nombre d'échantillons QAQC : 0

Longueur totale échantillonnée : 22.00

			101110	Toola Corporation			
Sondage : Foré par : Décrit par :	M-47-11		Titre minier : Canton : Rang : Lot : Du : Au :	5273478	Niv Pla	ction : reau : nce de travail : te de description :	
Collet Azimut : Plongée : Longueur Déviation				Est Nord Élévation	UTM 519 956 5 488 456 0	Annie -318 747 0	Mégane -114 804 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Flexit	51.00	294.30° 292.20°	-51.20° -51.00°	Non			
Description =						liki de iz (c	01Q 347(2)
Dimension de la c	earotte :			Ciment	é : Non		Entreposé : Non

Projet : MONSTER

			Description			Analyse						
			Description	De	À	Numéro	Longueur	Au_Plot (g/t)				
0.00	10.00	MO										
		Mort Terrain										
		Ancien Résumé :MT										
10.00	85.00	V3B										
		Basalte										
		Ancien Résumé :V3B; CO										
35.00	87.00	V3B										
		Basalte										
		Ancien Résumé :V3B; PO										
85.00	87.00) Po										
		Pyrrhotine										
		Ancien Résumé :V3B; PO										
37.00	97.00	V3B		96.00	97.00	16471	1.00	0.005				
		Basalte										
		Ancien Résumé :V3B; CO										
7.00	106.00	M8Gp										
		Schiste graphiteux										
97.00	106.0	00 Su		97.00	98.00	16472	1.00	0.005				
		Sulfures		98.00	99.00	16473	1.00	0.009				
		Ancien Résumé :AE; SF		99.00	100.00	16474	1.00	0.124				
				100.00	101.00	16475	1.00	0.034				
				101.00	102.00	16476	1.00	0.176				
				102.00	103.00	16477	1.00	0.097				
				103.00	104.00	16478	1.00	0.056				
				104.00	105.00	16479	1.00	0.090				
				105.00	106.00	16481	1.00	0.158				
106.00	114.00	V3B		106.00	107.00	16482	1.00	1.786				
	. 1 1.00	Basalte		100.00	.07.00			1.,50				
		Ancien Résumé :V3B; CO										

Nombre d'échantillons : 11 Nombre d'échantillons QAQC : 0 Longueur totale échantillonnée : 11.00

Sondage :	M-48-11		Titre minier : Canton : Rang :	5253868	Niv	oction : veau : ace de travail :	
Foré par : Décrit par :			Lot : Du : Au :		Da	ate de description :	
Collet Azimut : Plongée : Longueur Déviation	290.00° -50.00° 63.00 m			Est Nord Élévation	UTM 519 381 5 487 220 0	Annie 149 -534 0	Mégane 6 -554 0
Туре	Profondeur	Azimut	Plongée	Invalide		Description	
Description						Loki	A ing (01234762)
Dimension de la ca	arotte :			Cime	enté : Non		Entreposé : Non

	2.80 MT Mort ter 9.30 M8; QZ	Description	De	À	Numéro	Longueur	Au_Plot
	Mort ter						(g/t)
2.80 29				_			-23
2.80 29	9.30 M8; QZ						
					16493	1.00	0.444
	Schiste	; Veines de qtz	23.00	24.00	16494	1.00	1.530
			24.00	25.00	16495	1.00	0.641
			25.00	26.00	16496	1.00	0.352
			26.00	27.00	16497	1.00	0.034
			28.00	29.00	16499	1.00	4.053
9.30 63	3.00 V3B						
	Basalte						
	in du sondage						
	Nombre d'échantillons :						
	Nombre d'échantillons C Longueur totale échantil						

ANNEXE 2 CERTIFICAT D'ANALYSES DE L'AUTEUR

5623 MoADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD 100-777 RUE OU LA CONNUNE O MONTREAL, QC H3C1Y1 (514) 907-9016

ATTENTION TO: André Jean

PROJECT NO: Lac Monstre

AGAT WORK ORDER: 12T661745

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, ICP Supervisor

DATE REPORTED: Nov 13, 2012

PAGES (INCLUDING COVER): 4

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

<u>IOTES</u>			

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 4

AGAT WORK ORDER: 12T661745

PROJECT NO: Lac Monstre

ATTENTION TO: André Jean

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9698 FAX (905)501-0589 http://www.agatlabs.com

				Fire Assay - Trace Au, AAS fin	ish (202551) (50g Charge)	
DATE SAMPLED: No	v 09, 2012			DATE RECEIVED: Nov 09, 2012	DATE REPORTED: Nov 13, 2012	SAMPLE TYPE: Rock
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample Description	RDL:	0.01	0.002			
51041		0.99	< 0.002			
51042		1.04	0.004			
51043		1.01	0.012			
51044		1.06	< 0.002			
51045		1.00	0.006			
51046		1.04	0.016			
51047		1.01	1.90			
51048		1.07	0.754			
51050		0.99	0.132			
51051		1.05	0.005			
51052		1.03	< 0.002			
51066		1.02	6.28			
11268		1.00	1.48			
11269		0.52	< 0.002			
11270		0.05	1.31			

Comments: RDL - Reported Detection Limit

Certified By:

-

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: CORPORATION TOMAGOLD PROJECT NO: Lac Monstre

AGAT WORK ORDER: 12T661745 ATTENTION TO: André Jean

PROJECT NO. Lac Monsue	OSECT NO. Eac Monsule							ATTENTION TO: Angle Jean						
			Solid	d Anal	ysis									
RPT Date: Nov 13, 2012			REPLIC	ATE				REFE	RENCE MATE	RIAL				
PARAMETER	Defet	Accords to	Codedaya	Dec 84	RPD	Method Blank	Result	Expect Value		Accepta	ble Limits			
PARAMETER	Batch	Sample ld	Original	Rep #1	NPU		Value	Value	Recovery	Lower	Upper			
Fire Assay - Trace Au, AAS finish	(202551) (50g C	harge)												
Au	1	3909813	0.002	0.002	0.0%	< 0.002	1.47	1.52	97%	90%	110%			
Fire Assay - Trace Au, AAS finish	(202551) (50g C	Charge)												
Au	1	3909826	< 0.002	0.042		< 0.002				90%	110%			

Certified By:

munde by

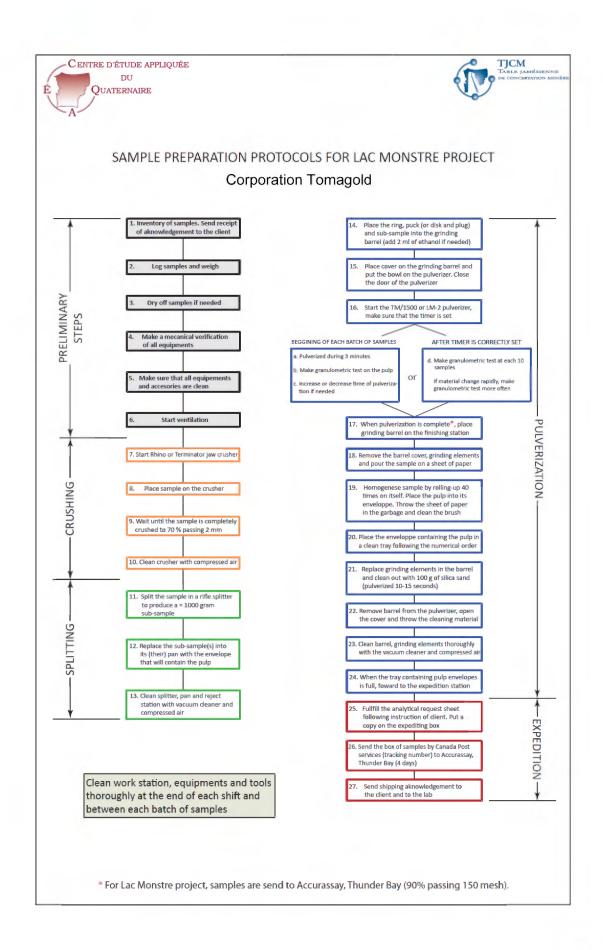
5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-9589 http://www.agatlabs.com

Method Summary

CLIENT NAME: CORPORATION TOMAGOLD

AGAT WORK ORDER: 12T661745

PROJECT NO: Lac Monstre


ATTENTION TO: André Jean

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis	•	<u> </u>	
Sample Login Weight	MIN-12009		BALANCE
Au	MIN-200-12004	BUGBEE, E: A Textbook of Fire Assaying	AA

AGAT METHOD SUMMARY (V1)

Page 4 of 4

ANNEXE 3	
PROTOCOLE DE PRÉPARATION ET D'ANALYSE DES ÉCHANTII	LONS
	108

200-276, rue Albert St. Ottawa, ON (Canada) K1P 6N7 Canadă Tel: +1 613 238 3222
Fal.: +1 613 569 7808
E-mail/Countet : info@acc.sa
Internet: http://www.sct.ca

SCOPE OF ACCREDITATION

AGAT LABORATORIES LTD. 5623 McAdam Road Mississauga , ON L4Z 1N9

Accredited Laboratory No. 665 (Conforms with requirements of CAN-P-1579)

CONTACT:

Mr. Nick Boulton

TEL:

(905) 712-5100 Ext. 5075

FAX:

(905) 712-5120

EMAIL: URL: boulton@agatlabs.com www.agatlabs.com

CLIENTS SERVED:

All interested clients

FIELDS OF TESTING:

Chemical/Physical

PROGRAM SPECIALTY Mineral Analysis

AREA:

ISSUED ON:

2010-10-21

VALID TO:

2014-02-17

METALLIC ORES AND PRODUCTS

Mineral Analysis Testing

Mineral Assaying Geotechnical Testing

MIN-200-12000

Determination of Total Carbon and Sulphur in

Geological Samples Using Infrared Combustion

MIN-200-12001

Determination of Sixteen (16) Metals in Geological Samples employing Peroxide Fusion with Inductively Coupled Plasma Optical Emission Spectroscopy

	(ICP-OES) finish [Ni, Co, Fe, S, Mg, Pb, Si, Ca, Al, Mn, Zn, Cr, Sn, As, Mo; ICP-OES]
MIN-200-12004	Determination of Gold and Silver in Mineralogical Samples by Lead Fusion Fire Assay with Gravimetric Finish
MIN-200-12006	Determination of Gold, Platinum and Palladium in Geological Samples by Lead Fusion Fire Assay with Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) finish [Au, Pt, Pd; ICP-OES]
MIN-200-12014	Determination of Total Nitrogen in Mineralogical Samples by Inert Gas Fusion - Thermal Conductivity Detection
MIN-200-12015	Determination of Oxides in Mineralogical Samples Using Lithium Metaborate Fusion and Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES) [SiO ₂ , Al ₂ O ₃ , Fe ₂ O ₃ , CaO, MgO, Na ₂ O, K ₂ O, Cr ₂ O ₃ , TiO ₂ , MnO, P ₂ O ₅ , SrO, BaO]
MIN-200-12016	Determination of Rare Earth Elements in Mineralogical Samples Using Lithium Borate Fusion and Inductively Coupled Plasma - Mass Spectroscopy (ICP-MS) [Ce, La, Y, Dy, Er, Eu, Gd, Ho, Lu, Tb, Tm, Yb, Nd, Pr, Sm, Th, U]
MIN-200-12018	Determination of Metals in Mineralogical Samples Using Aqua Regia (Nitric and Hydrochloric Acid) Digestion and a Combination of Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES) and Inductively Coupled Plasma - Mass Spectroscopy (ICP-MS) [Ag, As, Au, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Ga, Ge, Hf, Hg, In, La, Li, Mn, Mo, Ni, Nb, P, Pb, Re, Rb, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Tl, U, V, W, Y, Zn, Zr]
MIN-200-12020	Determination of Metals in Mineralogical Samples Using Aqua Regia (Nitric and Hydrochloric Acid) Digestion and Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES) [Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zr, Zn]
MIN-200-12021	Determination of Loss on Ignition in Mineralogical Samples
MIN-200-12022	Determination of Mercury in Mineralogical Samples using Aqua Regia (Nitric and Hydrochloric Acid) Digestion and Flow Injection - Cold Vapour Atomic Absorption Spectrometry
MIN-200-12023	Determination of Gold, Platinum and Palladium in Mineralogical Samples by Lead Fusion Fire Assay with Inductively Coupled Plasma - Mass Spectroscopy (ICP-MS) Finish
MIN-200-12024	Determination of Specific Gravity in Mineralogical Samples by a Gas Pycnometer

MIN-200-12025

Determination of Acid-Base Accounting Procedure

Determination of Metals in Mineralogical Samples
Using Inductively Coupled Plasma - Optical Emission
Spectroscopy (ICP-OES) Following Four Acid
Digestion [Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr,
Cs, Cu, Fe, Ga, In, K, La, Li, Mg, Mn, Mo, Na, Ni, P,
Pb, Rb, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V,
W, Y, Zr, Zn]

MIN-200-12035 Determination of Metals in Mineralogical Samples

using Four Acid Digestion and a Combination of Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES) and Inductively Coupled Plasma - Mass Spectroscopy (ICP-MS) [Ag, As, Au, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Ga, Ge, Hf, Hg, In, La, Li, Mn, Mo, Ni, Nb, P, Pb, Re, Rb, Sb, Sc, Se,

Sn, Sr, Ta, Te, Th, T1, U, V, W, Y, Zn, Zr]

Notes:

CAN-P-1579: Requirements for the Accreditation of Mineral Analysis Testing Laboratories

S. Cross, Director, Conformity Assessment

Date: 2010-10-21

Number of Scope Listings: 16 SCC 1003-15/833 Partner File #0

Partner:

AGAT Laboratories is a highly specialized, Canadian-based company that provides analytical laboratory services worldwide. We offer services to the Environmental, Energy, Mining, Industrial, Transportation, Agri-Food and Life Science sectors. With world-class facilities and state-of-the-art instrumentation, our qualified personnel adhere to our mission statement, delivering "Service Beyond Analysis"

AGAT Method code: 202 120 AGAT SOP: MIN-200-12040

Method Description: Metallic Screen - Gold Analysis

500g of crushed material (75% passing 2 mm) is pulverized using a ring and puck to ensure approximately 80 - 90% passing 75 µm. The material on top of the screen is referred to as the "plus" (+) fraction with the material passing through the screen is referred to as the "minus" (-) fraction. Both the "plus" fraction and "minus" fraction weights are recorded.

The entire "plus" fraction is sent for fire assay determination while two (30g) replicates of the "minus" are taken for fire assay determination. Either gravimetric gold determination or an analytical finish of ICP-OES is used.

Gold assay results are reported for both "plus" and "minus" fractions, weights of both fractions, and the calculated "total gold" of the sample.

The calculation for "total gold" is as follows:

Total gold (g/t) =
$$\frac{\text{(Au ("minus") g/t x Wt. "Minus" x 10-6 t/g) + (Au ("plus") g/t x Wt. "Plus" x 10-6t/g))}}{\text{(Wt. ("minus") + Wt. ("plus") x 10-6 t/g}}$$

Blanks, sample replicates, duplicates, and internal reference materials (both aqueous and geochemical standards) are routinely used as part of AGAT Laboratories quality assurance program.

Either Mettler-Toledo Microbalances or PerkinElmer 7300DV and 8300DV ICP-OES instruments are used in the analysis

Service Beyond Analysis
www.agatlabs.com

AGAT Laboratories is a highly specialized, Canadian-based company that provides analytical laboratory services worldwide. We offer services to the Mining, Environmental, Energy, Industrial, Transportation, Agri-Food and Life Science sectors. With world-class facilities and state-of-the-art instrumentation, our qualified personnel adhere to our mission statement, delivering "Service Beyond Analysis"

AGAT Method code: 202052, 202054, 202552, 202554

AGAT SOP: MIN-200-120006

Method Description: Determination of Gold, Platinum and Palladium in Geological Samples by Lead Fusion Fire Assay with Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) Finish.

Prepared samples are fused using accepted fire assay techniques, cupelled and parted in nitric acid and hydrochloric acid. Sample splits of 30g are routinely used. If 50g are required than 202552 or 202554 are used. 202052 and 202552 refer to gold analysis only.

Blanks, sample replicates, duplicates, and internal reference materials (both aqueous and geochemical standards) are routinely used as part of AGAT Laboratories quality assurance program.

PerkinElmer 7300DV and 8300DV ICP-OES instruments are used in the analysis.

Service Beyond Analysis
www.agatlabs.com

	ANNEXE 4		
CERTIFICAT	S D'ANALYSES [DE TOMAGOLD	
			115

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD 777 RUE OU LA COMMUNE O MONTREAL, QC H3C1Y1

ATTENTION TO: Andre Jean

PROJECT NO: Monster Lake

AGAT WORK ORDER: 12T586137

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, ICP Supervisor

DATE REPORTED: Apr 04, 2012

PAGES (INCLUDING COVER): 7

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES		

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

CLIENT NAME: CORPORATION TOMAGOLD

Certificate of Analysis

AGAT WORK ORDER: 12T586137

PROJECT NO: Monster Lake

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: Andre Jean

				Fire	e Assay -	Metallic Gold	- ICP Finish (202120)		
DATE SAMPLED: Mar 26, 2012 DATE RECEIVED: Mar 26, 2012 DATE REPORTED: Apr 04, 2012 SAMPLE TYPE: Other									
	Analyte:	Metallic Gold	Plus (+) Fraction Weight	Minus (-) Fraction Weight	Au Assay A (+) Fraction	u Assay (-) Fraction			
	Unit:	g/t	g	g	g/t	g/t			
Sample Description	RDL:	0.01	0.01	0.01	0.01	0.01			
51241		0.81	51.9	919	0.53	0.82			
51242		205	69.3	1163	478	189			
51243		181	77.3	1275	588	156			
51245		243	26.4	419	641	218			
51246		75.8	24.0	424	138	72.2			
51247		101	59.9	1086	198	95.2			
51248		381	22.9	402	712	362			
51250		493	70.9	1288	878	472			

Comments:

RDL - Reported Detection Limit

Certified By:

y of stomus

AGAT WORK ORDER: 12T586137 PROJECT NO: Monster Lake 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: Andre Jean

Fire Assay - Trace Au, AAS finish (202551) (50g Charge)								
DATE SAMPLED: Ma	ar 26, 2012			DATE RECEIVED: Mar 26, 2012	DATE REPORTED: Apr 04, 2012	SAMPLE TYPE: Other		
	Analyte:	Sample Login Weight	Au	Au-Grav				
	Unit:	kg	ppm	g/t				
Sample Description	RDL:	0.01	0.002	0.05				
51187		1.04	0.002					
51188		1.08	<0.002					
51189		0.16	3.83					
51190		1.12	0.002					
51191		1.06	0.004					
51192		1.03	0.003					
51193		1.10	0.002					
51194		1.07	0.004					
51195		1.08	0.017					
51196		1.02	0.003					
51197		1.08	0.002					
51198		1.06	0.003					
51199		1.11	0.057					
51200		1.07	0.151					
51201		1.09	0.025					
51202		1.06	0.006					
51203		1.11	< 0.002					
51204		1.08	< 0.002					
51205		1.09	0.396					
51206		1.07	1.34					
51207		1.09	0.021					
51208		1.05	0.002					
51209		0.15	0.578					
51210		1.09	0.008					
51211		1.13	0.003					
51212		1.07	0.801					
51213		1.04	0.308					
51214		1.11	0.265					
51215		1.08	0.013					
51216		1.09	0.023					
51217		1.03	0.036					

Certified By:

y Latonium

AGAT WORK ORDER: 12T586137 PROJECT NO: Monster Lake

CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

5623 McADAM ROAD MISSISSAUGA, ONTARIO

CLIENT NAME: CORPORATION TOMAGOLD ATTENTION TO: Andre Jean

Fire Assay - Trace Au, AAS finish (202551) (50g Charge)								
DATE SAMPLED: Ma	ar 26, 2012			DATE RECEIVED: Mar 26, 2012	DATE REPORTED: Apr 04, 2012	SAMPLE TYPE: Other		
	Analyte:	Sample Login Weight	Au	Au-Grav				
	Unit:	kg	ppm	g/t				
Sample Description	RDL:	0.01	0.002	0.05				
51218		1.09	0.002					
51219		1.07	<0.002					
51220		1.12	0.003					
51221		1.08	<0.002					
51222		1.10	<0.002					
51223		1.07	0.003					
51224		1.12	0.157					
51225		1.09	0.187					
51226		1.10	2.17					
51227		1.08	1.75					
51228		1.10	0.418					
51229		0.16	3.70					
51230		1.04	0.099					
51231		1.08	< 0.002					
51232		1.12	0.007					
51233		1.06	0.951					
51234		1.03	0.962					
51235		1.10	0.194					
51236		1.07	0.142					
51237		1.08	0.200					
51238		1.02	0.156					
51239		1.08	0.995					
51240		1.06	1.19					
51241		1.11	0.607					
51242		1.07	>10	200				
51243		1.09	>10	184				
51244		0.16	0.145					
51245		1.06	>10	233				
51246		1.11	>10	105				
51247		1.08	>10	97.9				
51248		1.09	>10	379				

Certified By:

y Latomia

AGAT WORK ORDER: 12T586137 PROJECT NO: Monster Lake

ATTENTION TO: Andre Jean

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

02:2:11 10:11:2: 00				7111211101110.71111000011					
				Fire Assay	- Trace Au, AAS fin	ace Au, AAS finish (202551) (50g Charge)			
DATE SAMPLED: Ma	ar 26, 2012			DATE RECEIV	ED: Mar 26, 2012	DATE REPORTED: Apr 04, 2012	SAMPLE TYPE: Other		
	Analyte:	Sample Login Weight	Au	Au-Grav					
	Unit:	kg	ppm	g/t					
Sample Description	RDL:	0.01	0.002	0.05					
51249		1.07	0.618						
51250		1.09	>10	700					
51251		1.03	>10	59.0					
51252		1.12	0.052						
51253		1.07	0.106						

Comments: R

RDL - Reported Detection Limit

CLIENT NAME: CORPORATION TOMAGOLD

Certified By:

y of stomura

Quality Assurance

CLIENT NAME: CORPORATION TOMAGOLD

PROJECT NO: Monster Lake

AGAT WORK ORDER: 12T586137 ATTENTION TO: Andre Jean

			Solid	d Anal	ysis						
RPT Date: Apr 04, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL	
DADAMETED	Datab	011-1	0.1.1	D #4	B00	Method Blank	Result	Expect		Accepta	able Limits
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD		Value	Value	Recovery	Lower	Upper
Fire Assay - Trace Au, AAS finish	(202551) (50g C	Charge)									
Au	1	3218417	0.0032	0.0024	28.6%	< 0.002	0.0771	0.0849	90%	90%	110%
Fire Assay - Trace Au, AAS finish	(202551) (50g C	Charge)									
Au	1	3218430	0.003	0.004	28.6%	< 0.002	0.198	0.203	97%	90%	110%
Fire Assay - Trace Au, AAS finish	(202551) (50g C	Charge)									
Au	1	3218441	< 0.002	< 0.002	0.0%	< 0.002	0.937	0.922	102%	90%	110%
Fire Assay - Trace Au, AAS finish	(202551) (50g C	Charge)									
Au	1	3218453	0.962	1.20	22.0%	< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish	(202551) (50g C	Charge)									
Au	1	3218465	84.5	91.6	8.1%	< 0.002				90%	110%

Certified By:

y of tomer

Method Summary

CLIENT NAME: CORPORATION TOMAGOLD

PROJECT NO: Monster Lake

AGAT WORK ORDER: 12T586137 ATTENTION TO: Andre Jean

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Metallic Gold	MIN-200-12004	BUGBEE, E: A Textbook of Fire Assaying	CALCULATION
Plus (+) Fraction Weight	MIN-200-12004	BUGBEE, E: A Textbook of Fire Assaying	
Minus (-) Fraction Weight	MIN-200-12004	BUGBEE, E: A Textbook of Fire Assaying	
Au Assay (+) Fraction	MIN-200-12004	BUGBEE, E: A Textbook of Fire Assaying	
Au Assay (-) Fraction	MIN-200-12004	BUGBEE, E: A Textbook of Fire Assaying	
Sample Login Weight	MIN-12009		BALANCE
Au	MIN-200-12004	BUGBEE, E: A Textbook of Fire Assaying	AA
Au-Grav			GRAVIMETRIC

CLIENT NAME: CORPORATION TOMAGOLD 777 RUE OU LA COMMUNE O MONTREAL, QC H3C1Y1

ATTENTION TO: ANDRE JEAN

PROJECT NO: MONSTER LAKE

AGAT WORK ORDER: 12U576365

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, ICP Supervisor

DATE REPORTED: Mar 05, 2012

PAGES (INCLUDING COVER): 6

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES		

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 12U576365 PROJECT NO: MONSTER LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

				Fire Assay - Trace Au, AAS fin	ish (202551) (50g Charge)	
DATE SAMPLED: Fe	b 21, 2012			DATE RECEIVED: Feb 21, 2012	DATE REPORTED: Mar 05, 2012	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample Description	RDL:	0.01	0.002			
40451		1.09	0.051			
40452		1.10	0.067			
40453		1.09	0.021			
40454		1.11	0.144			
40455		1.09	0.005			
40456		1.10	< 0.002			
40457		1.11	0.067			
40458		1.10	0.079			
40459		1.12	0.031			
51001		1.10	< 0.002			
51002		1.09	< 0.002			
51003		1.10	0.002			
51004		0.04	< 0.002			
51005		1.09	0.878			
51006		1.11	0.166			
51007		1.09	0.033			
51008		1.10	0.014			
51009		0.06	0.623			
51010		1.11	0.003			
51011		1.10	< 0.002			
51012		1.12	0.052			
51013		1.10	0.010			
51014		1.10	0.111			
51015		1.09	0.019			
51016		1.11	0.005			
51017		1.09	0.005			
51018		1.11	0.002			
51019		1.11	0.024			
51020		1.10	0.028			
51021		1.12	0.019			
51022		1.10	0.023			

Certified By:

y of tome

AGAT WORK ORDER: 12U576365 PROJECT NO: MONSTER LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

				Fire Assay - Trace Au, AAS fin	rish (202551) (50g Charge)	
DATE SAMPLED: Fe	b 21, 2012			DATE RECEIVED: Feb 21, 2012	DATE REPORTED: Mar 05, 2012	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample Description	RDL:	0.01	0.002			
51023		1.09	0.115			
51024		1.10	0.114			
51025		1.09	0.053			
51026		1.11	0.061			
51027		1.09	0.237			
51028		1.10	0.049			
51029		0.05	3.96			
51030		1.11	0.342			
51031		1.10	0.535			
51032		1.12	4.52			
51033		1.11	0.714			
51034		1.12	0.053			
51035		1.11	0.003			
51036		1.13	0.149			
51037		1.11	0.098			
51038		1.12	0.025			
51039		1.13	0.008			
51041		1.12	0.004			
51042		1.14	0.006			
51043		1.12	0.006			
51044		0.04	<0.002			
51045		1.11	< 0.002			
51046		1.12	0.019			
51047		1.11	2.05			
51048		1.13	0.130			
51050		1.11	0.808			
51051		1.12	0.004			
51052		1.13	<0.002			
51053		1.12	< 0.002			
51054		1.14	2.27			
51055		1.12	0.085			

Certified By:

y Latomura

AGAT WORK ORDER: 12U576365 PROJECT NO: MONSTER LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

				Fire Assay - Trace Au, AAS fin	ish (202551) (50g Charge)	
DATE SAMPLED: Fe	b 21, 2012			DATE RECEIVED: Feb 21, 2012	DATE REPORTED: Mar 05, 2012	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample Description	RDL:	0.01	0.002			
51056		1.12	0.010			
51057		1.11	0.094			
51058		1.13	0.169			
51059		1.11	0.009			
51060		1.13	< 0.002			
51061		1.13	0.043			
51062		1.12	0.016			
51063		1.14	0.095			
51064		1.12	0.189			
51065		1.11	0.083			
51066		1.12	8.67			
51067		1.11	0.330			
51068		1.13	0.048			
51069		0.04	4.00			
51070		1.11	1.09			
51071		1.12	0.571			
51072		1.13	0.397			
51073		1.12	0.769			
51074		1.14	0.025			
51075		1.12	0.039			
51076		1.10	0.050			
51077		1.09	0.032			
51078		1.11	0.033			

Comments:

RDL - Reported Detection Limit

Certified By:

y Latomira

Quality Assurance

CLIENT NAME: CORPORATION TOMAGOLD

PROJECT NO: MONSTER LAKE

AGAT WORK ORDER: 12U576365 ATTENTION TO: ANDRE JEAN

		Solic	Solid Analysis	ysis						
RPT Date: Mar 05, 2012		REPLICATE	ATE				REFER	ENCE MATERIAL	RIAL	
PARAMETER Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result	Expect	Percyary	Accepta	Acceptable Limits
						Value	Value	recovery	Lower	Upper
Fire Assay - Trace Au, AAS finish (202551) (50g Charge) Au 3133(harge) 3133074	0.019	0.019	0.0%	< 0.002	0.0805	0.0849	95%	90%	110%
Fire Assay - Trace Au, AAS finish (202551) (50g Charge) Au 1 31331	harge) 3133135	0.0328	0.0366	11.0%	< 0.002	0.389	0 417	93%	90%	110%
Fire Assay - Trace Au, AAS finish (202551) (50g Charge) Au 3133	harge) 3133098	0.008	0.009	11.8%	< 0.002	0.411	0.417	99%	90%	110%
Fire Assay - Trace Au, AAS finish (202551) (50g Charge) Au 3133-	narge) 3133110	0.002	0.002	0.0%	< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish (202551) (50g Charge) Au 31331	harge) 3133122	0.0831	0.0840	1.1%	< 0.002				90%	110%

Certified By:

Method Summary

CLIENT NAME: CORPORATION TOMAGOLD

AGAT WORK ORDER: 12U576365 ATTENTION TO: ANDRE JEAN

PROJECT NO: MONSTER LAKE		ATTENTION TO:	ANDRE JEAN
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Sample Login Weight	MIN-12009		BALANCE
Au	MIN-200-12004	BUGBEE, E: A Textbook of Fire Assaying	AA

CLIENT NAME: CORPORATION TOMAGOLD 777 RUE OU LA COMMUNE O MONTREAL, QC H3C1Y1

ATTENTION TO: ANDRE JEAN

PROJECT NO: MONSTER LAKE

AGAT WORK ORDER: 12U576379

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, ICP Supervisor

DATE REPORTED: Mar 02, 2012

PAGES (INCLUDING COVER): 6

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES		

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 12U576379 PROJECT NO: MONSTER LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

				Fire Assay - Trace Au, A	AAS finish (202051)	
DATE SAMPLED: Fe	b 21, 2012			DATE RECEIVED: Feb 21, 2012	DATE REPORTED: Mar 02, 2012	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample Description	RDL:	0.01	0.002			
51079		1.12	<0.002			
51080		1.24	0.031			
51081		1.22	0.004			
51082		1.31	<0.002			
51083		1.28	0.014			
51084		1.36	< 0.002			
51085		1.41	< 0.002			
51086		1.46	0.018			
51087		1.27	< 0.002			
51088		1.73	0.180			
51089		0.05	0.611			
51090		1.31	0.004			
51091		1.29	0.016			
51092		1.26	0.025			
51093		1.33	0.308			
51094		1.40	0.488			
51095		1.22	0.069			
51096		1.38	0.247			
51097		1.53	0.091			
51098		1.41	0.014			
51099		1.57	0.042			
51100		1.48	1.15			
51101		1.21	1.96			
51102		1.37	0.092			
51103		1.45	0.033			
51104		1.53	0.010			
51105		1.52	0.045			
51106		1.77	0.424			
51107		1.38	0.963			
51108		1.51	0.122			
51109		0.06	3.99			

Certified By:

y of stomma

AGAT WORK ORDER: 12U576379 PROJECT NO: MONSTER LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

				Fire Assay - Trace Au, A	AAS finish (202051)	
DATE SAMPLED: Fe	b 21, 2012			DATE RECEIVED: Feb 21, 2012	DATE REPORTED: Mar 02, 2012	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample Description	RDL:	0.01	0.002			
51110		1.66	0.523			
51111		1.71	0.900			
51112		1.48	0.225			
51113		1.54	0.023			
51114		1.45	0.101			
51115		1.68	0.059			
51116		1.77	0.301			
51117		1.63	0.215			
51118		1.79	0.128			
51119		1.54	0.239			
51120		1.15	0.444			
51121		1.28	0.019			
51122		1.32	0.534			
51123		1.44	0.834			
51124		1.49	0.014			
51125		1.56	0.535			
51126		1.41	0.091			
51127		1.58	0.033			
51128		1.30	0.006			
51129		0.05	0.605			
51130		1.44	<0.002			
51131		1.58	0.020			
51132		1.44	0.029			
51133		1.61	0.125			
51134		1.58	0.002			
51135		1.42	0.160			
51136		1.61	0.045			
51137		1.32	1.82			
51138		1.17	0.887			
51139		1.37	0.161			
51140		1.44	0.013			

Certified By:

y of tome

AGAT WORK ORDER: 12U576379 PROJECT NO: MONSTER LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

	Fire Assay - Trace Au, AAS finish (202051)									
DATE SAMPLED: Fe	b 21, 2012			DATE RECEIVED: Feb 21, 2012	DATE REPORTED: Mar 02, 2012	SAMPLE TYPE: Other				
	Analyte:	Sample Login Weight	Au							
	Unit:	kg	ppm							
Sample Description	RDL:	0.01	0.002							
51141		1.27	0.011							
51142		1.63	0.007							
51143		1.49	0.028							
51144		1.32	0.031							
51049		0.05	0.489							

Comments:

RDL - Reported Detection Limit

Certified By:

y Later

Quality Assurance

CLIENT NAME: CORPORATION TOMAGOLD

PROJECT NO: MONSTER LAKE

AGAT WORK ORDER: 12U576379 ATTENTION TO: ANDRE JEAN

			Solid	d Anal	ysis						
RPT Date: Mar 02, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Campiald	Oniminal	D #4	RPD	Method Blank	Result	Expect		Accepta	ble Limits
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD		Value	Value	Recovery	Lower	Upper
Fire Assay - Trace Au, AAS finish (2	02051)										
Au	1	3133235	0.0075	0.0081	7.7%	< 0.002	0.424	0.417	102%	90%	110%
Fire Assay - Trace Au, AAS finish (2	02051)										
Au	1	3133195	0.092	0.062		< 0.002	0.0744	0.0849	88%	90%	110%
Fire Assay - Trace Au, AAS finish (2	02051)										
Au	1	3133207	0.101	0.059		< 0.002	0.204	0.203	100%	90%	110%
Fire Assay - Trace Au, AAS finish (2	02051)										
Au	1	3133219	0.091	0.081	11.6%	< 0.002	0.878	0.922	95%	90%	110%
Fire Assay - Trace Au, AAS finish (2	02051)										
Au	1	3133231	0.887	1.02	13.9%	< 0.002	0.0805	0.0849	95%	90%	110%
Fire Assay - Trace Au, AAS finish (2	02051)										
Au	1	3133237	0.031	0.031	0.0%	< 0.002				90%	110%

Certified By:

y of tomura

ANALYTICAL TECHNIQUE

Method Summary

CLIENT NAME: CORPORATION TOMAGOLD

PARAMETER

AGAT WORK ORDER: 12U576379

PROJECT NO: MONSTER LAKE

ATTENTION TO: ANDRE JEAN

Solid Analysis		
Sample Login Weight	MIN-12009	

BALANCE

Au

BUGBEE, E: A Textbook of Fire

LITERATURE REFERENCE

MIN-200-12019 Assaying

AGAT S.O.P

AAS

CLIENT NAME: CORPORATION TOMAGOLD 100-777 RUE OU LA CONNUNE O MONTREAL, QC H3C1Y1

ATTENTION TO: ANDRE JEAN

PROJECT NO: MONSTER LAKE

AGAT WORK ORDER: 12U586018

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, ICP Supervisor

DATE REPORTED: Apr 11, 2012

PAGES (INCLUDING COVER): 5

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

<u>*NOTES</u>		

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 12U586018 PROJECT NO: MONSTER LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

Fire Assay - Trace Au, AAS finish (202551) (50g Charge)									
DATE SAMPLED: Ma	r 26, 2012			DATE RECEIVED: Mar 26, 2012	DATE REPORTED: Apr 11, 2012	SAMPLE TYPE: Other			
	Analyte:	Sample Login Weight	Au						
	Unit:	kg	ppm						
Sample Description	RDL:	0.01	0.002						
51145		1.14	1.74						
51146		1.12	6.99						
51147		1.13	0.870						
51148		1.14	1.82						
51149		0.63	4.51						
51150		1.14	3.92						
51151		1.11	0.216						
51152		1.12	3.10						
51153		1.19	0.894						
51154		1.13	0.025						
51155		1.14	0.736						
51156		1.16	0.377						
51157		1.15	0.050						
51158		1.13	0.002						
51159		1.14	0.007						
51160		1.15	0.042						
51161		1.12	1.79						
51162		1.15	0.817						
51163		1.12	0.019						
51164		0.69	< 0.002						
51165		1.20	0.121						
51166		1.14	0.402						
51167		1.15	0.014						
51168		1.17	< 0.002						
51169		0.71	0.556						
51170		1.16	0.004						
51171		1.13	0.002						
51172		1.14	0.025						
51173		1.21	0.016						
51174		1.15	0.005						
51175		1.16	0.009						

Certified By:

y of stomus

AGAT WORK ORDER: 12U586018 PROJECT NO: MONSTER LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

	Fire Assay - Trace Au, AAS finish (202551) (50g Charge)										
DATE SAMPLED: Ma	r 26, 2012			DATE RECEIVED: Mar 26, 2012	DATE REPORTED: Apr 11, 2012	SAMPLE TYPE: Other					
	Analyte:	Sample Login Weight	Au								
	Unit:	kg	ppm								
Sample Description	RDL:	0.01	0.002								
51176		1.18	0.030								
51177		1.17	0.005								
51178		1.15	0.005								
51179		1.16	< 0.002								
51180		1.17	0.012								
51181		1.14	0.004								
51182		1.17	0.002								
51183		1.14	0.004								
51184		1.15	0.005								
51185		1.22	0.016								
51186		1.16	0.023								

Comments: RDL - Reported Detection Limit

Certified By:

y of stomura

Quality Assurance

CLIENT NAME: CORPORATION TOMAGOLD

PROJECT NO: MONSTER LAKE

AGAT WORK ORDER: 12U586018 ATTENTION TO: ANDRE JEAN

			Solid	Anal	ysis						
RPT Date: Apr 11, 2012			REPLIC	ATE				REFER	RENCE MATE	RIAL	
PARAMETER	Datab	Commission	Oniminal	D #4	DOD	Method Blank	Result	Expect	December	Accepta	able Limits
	Batch	Sample Id	Original	Rep #1	RPD		Value	Value	Recovery	Lower	Upper
Fire Assay - Trace Au, AAS finish (2)2551) (50g C	Charge)									
Au	1	3216736	0.377	0.366	3.0%	< 0.002	1.02	1.027	99%	90%	110%
Fire Assay - Trace Au, AAS finish (2)2551) (50g C	Charge)									
Au	1	3216748	< 0.002	0.013		< 0.002	0.416	0.417	99%	90%	110%
Fire Assay - Trace Au, AAS finish (2)2551) (50g C	Charge)									
Au	1	3216760	0.012	0.004		< 0.002				90%	110%

Certified By:

y of tomura

Method Summary

CLIENT NAME: CORPORATION TOMAGOLD

PARAMETER

AGAT WORK ORDER: 12U586018

PROJECT NO: MONSTER LAKE

ATTENTION TO: ANDRE JEAN LITERATURE REFERENCE ANALYTICAL TECHNIQUE

_			
Sa	lid	Ana	lysis

Sample Login Weight MIN-12009 BALANCE

AGAT S.O.P

Au MIN-200-12004

Assaying

BUGBEE, E: A Textbook of Fire

AA

CLIENT NAME: CORPORATION TOMAGOLD 100-777 RUE OU LA CONNUNE O MONTREAL, QC H3C1Y1

(514) 907-9016

ATTENTION TO: ANDRE JEAN

PROJECT NO: LAC MONTRE

AGAT WORK ORDER: 12U617986

SOLID ANALYSIS REVIEWED BY: Ron Cardinall, Certified Assayer - Director - Technical Services (Mining)

DATE REPORTED: Jul 16, 2012

PAGES (INCLUDING COVER): 6

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES		

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 12U617986 PROJECT NO: LAC MONTRE

ATTENTION TO: ANDRE JEAN

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CO	RPORATION	TOMAGOLD	ATTENTION TO: ANDRE JEAN								
			Fire Assay - Trace Au, AAS fir	nish (202551) (50g Charge))						
DATE SAMPLED: Ju	ıl 11, 2012		DATE RECEIVED: Jul 09, 2012	DATE REPORTED: Jul 16, 2012	SAMPLE TYPE: Other						
Compute Description	Analyte: Unit:	Au ppm									
Sample Description 51301	RDL:	0.002									
51302		0.009									
51303		0.509									
51304		0.801									
51305		0.648									
51306		0.150									
51307		0.502									
51308		0.016									
51309		0.005									
51310		<0.003									
51311		<0.002									
51312		<0.002									
51313		0.004									
51314		0.058									
51315		0.038									
51316		0.003									
51317		0.003									
51318		<0.002									
51319		0.002									
51320		0.010									
51321		0.010									
51322		<0.002									
51323		3.80									
51324		0.003									
51325		0.003									
51326		<0.002									
51327		0.002									
51328		0.005									
51329		0.005									
51330 51331		<0.002 <0.002									
51332		0.470									

Certified By:

AGAT WORK ORDER: 12U617986 PROJECT NO: LAC MONTRE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CO	RPORATION	TOMAGOLD		ATTENTION TO: ANDRE	JEAN				
CLIENT NAME: CORPORATION TOMAGOLD									
DATE SAMPLED: Jul	I 11, 2012		DATE RECEIVED: Jul 09, 2012	DATE REPORTED: Jul 16, 2012	SAMPLE TYPE: Other				
	Analyte:	Au							
	Unit:	ppm							
	RDL:	0.002							
51333		0.031							
51334		<0.002							
51336		0.024							
51337		0.134							
51338		0.083							
51339		0.106							
51340		0.008							
51341		<0.002							
51342		0.015							
51343		0.576							
51344		0.006							
51345		<0.002							
51346		0.006							
51347		<0.002							
51348		<0.002							
51349		<0.002							
51350		0.007							
51351		<0.002							
51352		<0.002							
51353		<0.002							
51354		0.108							
51355		0.010							
51356		0.090							
51357		1.28							
51358		0.407							
51359		0.713							
51360		0.058							
51361		<0.002							
51362		0.082							
51363		3.85							
51364		0.082							

Certified By:

AGAT WORK ORDER: 12U617986 PROJECT NO: LAC MONTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

RDL - Reported Detection Limit

Comments:

ATTENTION TO: ANDRE JEAN

Fire Assay - Trace Au, AAS finish (202551) (50g Charge)									
DATE SAMPLED: Jul 11, 2012 Analyte: Au Unit: ppm			DATE RECEIVED: Jul 09, 2012	DATE REPORTED: Jul 16, 2012	SAMPLE TYPE: Other				
	Analyte:	Au							
	Unit:	ppm							
Sample Description	RDL:	0.002							
51365		0.020							
51366		<0.002							
51367		0.011							

Certified By:

Quality Assurance

CLIENT NAME: CORPORATION TOMAGOLD

PROJECT NO: LAC MONTRE

AGAT WORK ORDER: 12U617986 ATTENTION TO: ANDRE JEAN

			Solid	d Anal	ysis						
RPT Date: Jul 16, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Don #1	RPD	Method Blank	Result	Expect	Recovery	Accepta	able Limits
PARAMETER	Daton	Sample id	Original	Rep #1	KPD		Value	Value	Recovery	Lower	Upper
Fire Assay - Trace Au, AAS finish (20)2551) (50g C	harge)									
Au	1	3501317	0.004	< 0.002		< 0.002	0.236	0.263	90%	90%	110%
Fire Assay - Trace Au, AAS finish (20)2551) (50g C	harge)									
Au	1	3501331	0.011	0.003		< 0.002	1.58	1.52	104%	90%	110%
Fire Assay - Trace Au, AAS finish (20)2551) (50g C	Charge)									
Au	1	3501345	< 0.002	< 0.002	0.0%	< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish (20)2551) (50g C	harge)									
Au	1	3501357	< 0.002	< 0.002	0.0%	< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish (20)2551) (50g C	harge)									
Au	1	3501369	0.020	0.009		< 0.002				90%	110%

Certified By:

Method Summary

CLIENT NAME: CORPORATION TOMAGOLD

Au

AGAT WORK ORDER: 12U617986

AA

PROJECT NO: LAC MONTRE		ATTENTION TO: A	NDRE JEAN
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			

Assaying

MIN-200-12004

BUGBEE, E: A Textbook of Fire

CLIENT NAME: CORPORATION TOMAGOLD 100-777 RUE OU LA CONNUNE O MONTREAL, QC H3C1Y1 (514) 907-9016

ATTENTION TO: ANDRE JEAN

PROJECT NO: LAC MONTSTRE

AGAT WORK ORDER: 12U623517

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, ICP Supervisor

DATE REPORTED: Aug 17, 2012

PAGES (INCLUDING COVER): 8

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

	*NOTES			
١				

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 12U623517 PROJECT NO: LAC MONTSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

				Fire Assay - Trace Au, AAS fir	nish (202551) (50g Charge)	
DATE SAMPLED: Ju	I 24, 2012			DATE RECEIVED: Jul 25, 2012	DATE REPORTED: Aug 17, 2012	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample Description	RDL:	0.01	0.002			
51368		1.07	0.018			
51369		1.10	0.008			
51370		1.08	0.030			
51371		1.09	0.038			
51372		1.01	0.014			
51373		1.11	0.019			
51374		1.05	0.045			
51375		1.11	0.035			
51376		0.87	0.006			
51377		1.03	0.004			
51378		1.07	0.016			
51379		1.12	4.58			
51380		1.10	0.740			
51381		1.07	0.690			
51382		1.07	0.004			
51383		0.13	0.635			
51384		1.07	0.006			
51385		1.01	0.006			
51386		1.07	0.013			
51387		1.07	0.003			
51388		1.07	0.005			
51389		1.05	0.011			
51390		1.09	0.029			
51391		1.03	0.004			
51392		1.15	0.019			
51393		1.10	< 0.002			
51394		1.13	0.002			
51395		1.17	0.012			
51396		1.08	0.003			
51397		0.95	0.003			
51398		1.08	0.012			

Certified By:

y of tome

AGAT WORK ORDER: 12U623517 PROJECT NO: LAC MONTSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

	Fire Assay - Trace Au, AAS finish (202551) (50g Charge)							
DATE SAMPLED: Ju	I 24, 2012			DATE RECEIVED: Jul 25, 2012	DATE REPORTED: Aug 17, 2012	SAMPLE TYPE: Other		
	Analyte:	Sample Login Weight	Au					
	Unit:	kg	ppm					
Sample Description	RDL:	0.01	0.002					
51399		1.08	0.002					
51400		1.06	0.005					
51401		1.09	0.004					
51402		1.09	0.004					
51403		1.06	0.007					
51404		1.06	0.005					
51405		1.08	0.096					
51406		1.09	2.41					
51407		0.13	4.15					
51408		1.09	4.68					
51409		1.10	5.74					
51410		1.06	8.97					
51411		1.08	0.037					
51412		1.09	0.010					
51413		1.10	0.006					
51414		1.09	0.005					
51415		1.10	0.633					
51416		1.09	0.062					
51417		1.09	0.059					
51418		1.09	0.191					
51419		1.08	0.080					
51420		1.06	0.030					
51421		1.08	0.014					
51422		1.08	0.007					
51423		0.12	0.603					
51424		1.09	0.002					
51425		1.08	0.019					
51426		1.08	0.003					
51427		1.08	0.004					
51428		1.09	0.009					
51429		1.07	0.002					

Certified By:

y Latomica

AGAT WORK ORDER: 12U623517 PROJECT NO: LAC MONTSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

	Fire Assay - Trace Au, AAS finish (202551) (50g Charge)							
DATE SAMPLED: Ju	I 24, 2012			DATE RECEIVED: Jul 25, 2012	DATE REPORTED: Aug 17, 2012	SAMPLE TYPE: Other		
	Analyte:	Sample Login Weight	Au					
	Unit:	kg	ppm					
Sample Description	RDL:	0.01	0.002					
51430		1.08	0.007					
51431		1.09	0.004					
51432		1.09	0.003					
51433		1.08	< 0.002					
51434		1.05	0.008					
51435		1.08	0.002					
51436		1.02	0.003					
51437		1.08	0.003					
51438		1.08	0.002					
51439		1.07	0.003					
51440		1.07	0.003					
51441		1.07	< 0.002					
51442		1.07	0.017					
51443		0.13	4.59					
51444		1.09	0.007					
51445		1.10	0.208					
51446		1.09	0.533					
51447		1.09	0.060					
51448		1.06	0.050					
51449		1.09	0.015					
51450		1.07	0.021					
51451		1.09	0.003					
51452		1.09	0.002					
51453		1.07	0.003					
51454		1.09	0.003					
51455		1.07	0.005					
51456		1.13	0.010					
51457		1.13	0.004					
51458		0.87	0.004					
51459		1.11	0.004					
51460		1.11	0.003					

Certified By:

y Latomia

AGAT WORK ORDER: 12U623517 PROJECT NO: LAC MONTSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

				Fire Assay - Trace Au, AAS fir	nish (202551) (50g Charge)	
DATE SAMPLED: Ju	I 24, 2012			DATE RECEIVED: Jul 25, 2012	DATE REPORTED: Aug 17, 2012	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample Description	RDL:	0.01	0.002			
51461		1.09	0.014			
51462		1.05	0.003			
51463		0.12	0.714			
51464		1.07	0.004			
51465		1.07	<0.002			
51466		1.09	0.003			
51467		1.17	0.003			
51468		1.07	0.009			
51469		1.15	0.003			
51470		1.10	0.002			
51471		1.06	0.002			
51472		1.08	0.003			
51473		1.15	0.003			
51474		1.10	0.010			
51475		1.12	0.003			
51476		1.11	0.004			
51477		1.05	0.468			
51478		1.13	0.005			
51479		1.14	0.014			
51480		1.08	0.003			
51481		1.09	0.003			
51482		1.11	0.045			
51483		0.05	4.53			
51484		1.08	0.006			
51485		1.16	0.014			
51486		1.06	0.004			
51487		1.07	0.004			
51488		1.09	0.009			
51489		1.11	0.005			
51490		1.14	0.005			
51491		1.13	0.028			

Certified By:

y Latomur

AGAT WORK ORDER: 12U623517 PROJECT NO: LAC MONTSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

DATE SAMPLED: Jul 24, 2012 DATE RECEIVED: Jul 25, 2012 DATE REPORTED: Aug 17, 2012 SAMPLE TYPE: Other							
	Unit:	kg	ppm				
Sample Description	RDL:	0.01	0.002				
51492		1.10	0.277				
51493		1.08	0.154				
51494		1.13	0.432				
51495		1.11	0.460				
51496		1.14	0.189				
51497		1.16	1.64				
51498		1.08	0.164				
51499		1.09	0.015				
51500		1.11	0.013				
51501		1.06	0.018				
51502		1.09	0.039				
51503		1.12	0.005				
51504		1.08	0.022				
51505		1.06	0.002				
51506		1.05	0.007				

Comments: RDL - Reported Detection Limit

Certified By:

y of stomus

Quality Assurance

CLIENT NAME: CORPORATION TOMAGOLD

PROJECT NO: LAC MONTSTRE

AGAT WORK ORDER: 12U623517 ATTENTION TO: ANDRE JEAN

			Solid	d Anal	ysis						
RPT Date: Aug 17, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL	
DADAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result	Expect	Bessyery	Acceptable Limi	
PARAMETER	Batch	Sample id	Original	Rep#1	RPD		Value	Value	Recovery -	Lower	Upper
Fire Assay - Trace Au, AAS finish	h (202551) (50g (Charge)									
Au	1	3548429	0.740	0.679	8.6%	< 0.002	0.619	0.607	102%	90%	110%
Fire Assay - Trace Au, AAS finish	h (202551) (50g (Charge)									
Au	1	3548442	< 0.002	< 0.002	0.0%	< 0.002	1.59	1.52	105%	90%	110%
Fire Assay - Trace Au, AAS finish	h (202551) (50a (Charge)									
Au	1	3548455	2.41	2.19	9.6%	< 0.002	0.602	0.607	99%	90%	110%
Fire Assay - Trace Au, AAS finish	h (202551) (50a (Charge)									
Au	1	3548468	0.080	0.088	9.5%	< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish	h (202551) (50g (Charge)									
Au	1	3548481	0.003	0.003	0.0%	< 0.002	0.604	0.607	99%	90%	110%
Fire Assay - Trace Au, AAS finish	h (202551) (50g (Charge)									
Au	1	3548494	0.208	0.160	26.1%	< 0.002	0.28	0.263	106%	90%	110%
Fire Assay - Trace Au, AAS finish	h (202551) (50g (Charge)									
Au	1	3548507	0.004	0.003	28.6%	< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish	h (202551) (50g (Charge)									
Au	1	3548520	0.002	0.002	0.0%	< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish	h (202551) (50g (Charge)									
Au	1	3548533	0.006	0.004		< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish	h (202551) (50g (Charge)									
Au	1	3548546	1.64	2.18	28.3%	< 0.002				90%	110%

Certified By:

y of tomura

Method Summary

CLIENT NAME: CORPORATION TOMAGOLD

PARAMETER

AGAT WORK ORDER: 12U623517

PROJECT NO: LAC MONTSTRE

ATTENTION TO: ANDRE JEAN LITERATURE REFERENCE ANALYTICAL TECHNIQUE

Solid Analysis

MIN-12009 Sample Login Weight

AGAT S.O.P

BALANCE

Au MIN-200-12004

Assaying

BUGBEE, E: A Textbook of Fire

AA

CLIENT NAME: CORPORATION TOMAGOLD 100-777 RUE OU LA CONNUNE O MONTREAL, QC H3C1Y1 (514) 907-9016

ATTENTION TO: ANDRE JEAN

PROJECT NO: LAC MONSTRE

AGAT WORK ORDER: 12U629981

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, ICP Supervisor

DATE REPORTED: Aug 28, 2012

PAGES (INCLUDING COVER): 9

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES	
	_ 1

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 12U629981 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

	Fire Assay - Trace Au, AAS finish (202551) (50g Charge)							
DATE SAMPLED: Au	ıg 13, 2012			DATE RECEIVED: Aug 13, 2012	DATE REPORTED: Aug 28, 2012	SAMPLE TYPE: Other		
	Analyte:	Sample Login Weight	Au					
	Unit:	kg	ppm					
Sample Description	RDL:	0.01	0.002					
51507		0.91	0.004					
51508		1.08	0.031					
51509		1.00	0.002					
51510		1.08	0.009					
51511		1.07	0.028					
51512		0.98	0.007					
51513		0.05	4.18					
51514		0.94	< 0.002					
51515		1.09	0.030					
51516		1.05	0.003					
51517		0.96	0.003					
51518		0.99	0.004					
51519		1.02	0.004					
51520		0.97	0.002					
51521		1.04	0.003					
51522		1.08	0.025					
51523		0.05	0.633					
51524		0.99	< 0.002					
51525		1.07	< 0.002					
51526		1.06	0.003					
51527		1.00	< 0.002					
51528		0.97	0.005					
51529		0.99	0.024					
51530		0.95	0.004					
51531		1.05	0.010					
51532		0.95	0.003					
51533		1.06	<0.002					
51534		1.00	<0.002					
51535		0.94	0.003					
51536		1.06	0.018					
51537		0.97	<0.002					

Certified By:

y Later

AGAT WORK ORDER: 12U629981 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

CLIENT NAIVIE. CO	IN CINATIOI	1 TOWAGO	LD		ATTENTION TO, ANDRE 3	LAN	
Fire Assay - Trace Au, AAS finish (202551) (50g Charge)							
DATE SAMPLED: Au	ıg 13, 2012			DATE RECEIVED: Aug 13, 2012	DATE REPORTED: Aug 28, 2012	SAMPLE TYPE: Other	
	Analyte:	Sample Login Weight	Au				
	Unit:	kg	ppm				
Sample Description	RDL:	0.01	0.002				
51538		0.97	<0.002				
51539		1.00	< 0.002				
51540		0.97	<0.002				
51541		1.02	0.002				
51542		1.03	0.022				
51543		0.05	4.06				
51544		0.94	0.002				
51545		1.02	0.035				
51546		0.97	0.002				
51547		0.93	< 0.002				
51548		1.00	0.003				
51549		1.04	< 0.002				
51550		0.93	0.004				
51551		1.10	0.028				
51552		1.02	0.003				
51553		1.10	0.002				
51554		1.09	< 0.002				
51555		1.00	0.003				
51556		0.96	0.003				
51557		1.11	0.026				
51558		1.07	0.004				
51559		0.98	< 0.002				
51560		1.01	0.003				
51561		1.04	0.024				
51562		0.99	0.017				
51563		0.05	0.577				
51564		1.06	<0.002				
51565		1.10	<0.002				
51566		1.01	<0.002				
51567		1.09	0.019				
51568		1.08	<0.002				

Certified By:

y of tomus

AGAT WORK ORDER: 12U629981 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

Fire Assay - Trace Au, AAS finish (202551) (50g Charge)									
DATE SAMPLED: Au	g 13, 2012			DATE RECEIVED: Aug 13, 2012	DATE REPORTED: Aug 28, 2012	SAMPLE TYPE: Other			
	Analyte:	Sample Login Weight	Au						
	Unit:	kg	ppm						
Sample Description	RDL:	0.01	0.002						
51569		1.02	<0.002						
51570		0.99	0.003						
51571		1.01	< 0.002						
51572		0.97	0.003						
51573		1.07	0.018						
51574		0.97	0.006						
51575		1.08	0.008						
51576		1.02	< 0.002						
51577		0.96	0.003						
51578		1.08	0.006						
51579		0.99	0.004						
51580		0.99	0.006						
51581		1.02	0.004						
51582		0.99	< 0.002						
51583		0.05	4.16						
51584		1.04	0.004						
51585		1.05	0.021						
51586		0.96	0.006						
51587		1.04	0.003						
51588		0.99	0.003						
51589		0.95	0.005						
51590		1.02	0.016						
51591		1.06	0.004						
51592		0.96	0.005						
51593		1.13	0.019						
51594		1.05	<0.002						
51595		1.13	< 0.002						
51596		1.12	< 0.002						
51597		1.03	0.002						
51598		0.99	0.003						
51599		1.02	0.067						

Certified By:

y Later

AGAT WORK ORDER: 12U629981 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

				Fire Assay - Trace Au, AAS fin	ish (202551) (50g Charge)		
DATE SAMPLED: Au	ıg 13, 2012		DATE RECEIVED: Aug 13, 2012		DATE REPORTED: Aug 28, 2012	SAMPLE TYPE: Other	
	Analyte:	Sample Login Weight	Au				
	Unit:	kg	ppm				
Sample Description	RDL:	0.01	0.002				
51600		1.06	0.061				
51601		1.01	< 0.002				
51602		1.04	0.005				
51603		0.05	0.607				
51604		1.07	0.002				
51605		1.02	< 0.002				
51606		1.09	0.002				
51607		1.13	0.355				
51608		1.04	0.014				
51609		1.12	0.521				
51610		1.11	0.020				
51611		1.05	0.682				
51612		1.02	0.281				
51613		1.04	0.431				
51614		1.00	0.870				
51615		1.10	2.69				
51616		1.00	8.07				
51617		1.11	0.953				
51618		1.05	0.659				
51619		0.99	0.095				
51620		1.11	0.002				
51621		1.02	< 0.002				
51622		1.02	0.019				
51623		0.05	4.08				
51624		1.05	0.003				
51625		1.02	0.002				
51626		1.07	0.003				
51627		1.08	0.013				
51628		0.99	0.003				
51629		1.07	0.034				
51630		1.02	0.006				

Certified By:

y of tomus

AGAT WORK ORDER: 12U629981 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

				Fire Assay - Trace Au, AAS fin	ish (202551) (50g Charge)	
DATE SAMPLED: Au	ıg 13, 2012			DATE RECEIVED: Aug 13, 2012	DATE REPORTED: Aug 28, 2012	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample Description	RDL:	0.01	0.002			
51631		0.98	0.004			
51632		1.05	< 0.002			
51633		1.09	< 0.002			
51634		0.98	0.023			
51635		1.15	<0.002			
51636		1.07	0.002			
51637		1.15	< 0.002			
51638		1.14	0.003			
51639		1.05	0.043			
51640		1.01	0.005			
51641		1.16	0.013			
51642		1.12	0.006			
51643		0.05	0.630			
51644		1.03	0.032			
51645		1.06	0.003			
51646		1.09	0.139			
51647		1.04	0.004			
51648		1.11	0.034			
51649		1.15	0.029			
51650		1.06	0.004			
51651		1.14	< 0.002			
51652		1.13	< 0.002			
51653		1.07	< 0.002			
51654		1.04	0.492			
51655		1.06	0.011			
51656		1.02	0.010			
51657		1.12	0.002			
51658		1.02	0.005			
51659		1.13	0.016			
51660		1.07	0.012			
51661		1.01	0.243			

Certified By:

y Later

AGAT WORK ORDER: 12U629981 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

Fire Assay - Trace Au, AAS finish (202551) (50g Charge)								
DATE SAMPLED: Au	g 13, 2012			DATE RECEIVED: Aug 13, 2012	DATE REPORTED: Aug 28, 2012	SAMPLE TYPE: Other		
	Analyte:	Sample Login Weight	Au					
	Unit:	kg	ppm					
Sample Description	RDL:	0.01	0.002					
51662		1.13	0.204					
51663		0.05	4.38					
51664		1.04	0.006					
51665		1.04	0.327					
51666		1.07	0.738					
51667		1.04	1.04					
51668		1.09	0.727					
51669		1.10	0.718					
51670		1.01	1.91					
51671		1.09	3.62					
51672		1.04	1.23					
51673		1.00	2.37					
51674		1.07	0.002					
51675		1.11	1.44					
51676		0.95	0.006					
51677		1.12	2.02					
51678		1.04	0.900					
51679		1.12	1.27					
51680		1.11	0.006					
51681		1.02	0.009					
51682		0.98	0.004					
51683		0.05	0.744					
51684		1.13	0.008					
51685		1.09	<0.002					
51686		1.00	<0.002					
51687		1.03	0.002					

Comments: RDL - Reported Detection Limit

Certified By:

y of tomura

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: CORPORATION TOMAGOLD

PROJECT NO: LAC MONSTRE

AGAT WORK ORDER: 12U629981 ATTENTION TO: ANDRE JEAN

Solid Analysis											
RPT Date: Aug 28, 2012		REPLIC	CATE				REFE	RENCE MATE	RIAL		
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result	Expect	Bassyary	Accepta	able Limits
PARAMETER	Вассп						Value	Value	Recovery	Lower	Upper
- Fire Assay - Trace Au, AAS finish (202551) (50g C	Charge)							25.		
Au	1	3604628	0.004	0.004	0.0%	< 0.002	0.269	0.263	102%	90%	110%
ire Assay - Trace Au, AAS finish (202551) (50g C	Charge)									
u	1	3604706	0.003	0.004	28.6%	< 0.002	0.242	0.263	92%	90%	110%
ire Assay - Trace Au, AAS finish (202551) (50g C	harge)									
u	1	3604653	0.002	0.002	0.0%	< 0.002	0.265	0.263	101%	90%	110%
ire Assay - Trace Au, AAS finish (202551) (50g C	charge)									
u	1	3604733	0.003	0.037		< 0.002				90%	110%
ire Assay - Trace Au, AAS finish (202551) (50g C	Charge)									
u	1	3604679	0.0034	0.0041	18.7%	< 0.002				90%	110%
ire Assay - Trace Au, AAS finish (202551) (50g C	charge)									
u	1	3604760	< 0.002	< 0.002	0.0%	< 0.002				90%	110%
re Assay - Trace Au, AAS finish (202551) (50g C	harge)									
u	1	3604773	0.0063	0.0054	15.4%	< 0.002				90%	110%
re Assay - Trace Au, AAS finish (202551) (50g C	charge)									
u	1	3604784	1.44	1.17	20.7%	< 0.002				90%	110%
ire Assay - Trace Au, AAS finish (202551) (50g C	Charge)									
u	1	3604796	0.002	0.003		< 0.002				90%	110%

Certified By:

y of tomura

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: CORPORATION TOMAGOLD

PARAMETER

AGAT WORK ORDER: 12U629981

PROJECT NO: LAC MONSTRE

ATTENTION TO: ANDRE JEAN

LITERATURE REFERENCE ANALYTICAL TECHNIQUE

_				•
Sa	lid	Ana	lysis	

Sample Login Weight MIN-12009 BALANCE

AGAT S.O.P

54141105

Au MIN-200-12004

Assaying

BUGBEE, E: A Textbook of Fire

AA

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD 100-777 RUE OU LA CONNUNE O MONTREAL, QC H3C1Y1

(514) 907-9016

ATTENTION TO: ANDRE JEAN

PROJECT NO: LAC MONSTRE

AGAT WORK ORDER: 12U634940

SOLID ANALYSIS REVIEWED BY: Ron Cardinall, Certified Assayer - Director - Technical Services (Mining)

DATE REPORTED: Sep 25, 2012

PAGES (INCLUDING COVER): 9

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

<u>*NOTES</u>			

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 12U634940 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

	Fire Assay - Trace Au, AAS finish (202551) (50g Charge)								
DATE SAMPLED: Au	ıg 27, 2012			DATE RECEIVED: Aug 29, 2012	DATE REPORTED: Sep 25, 2012	SAMPLE TYPE: Other			
	Analyte:	Sample Login Weight	Au						
	Unit:	kg	ppm						
Sample Description	RDL:	0.01	0.002						
51688		0.07	0.009						
51689		0.08	0.005						
51690		0.07	0.011						
51691		0.07	0.007						
51692		0.08	0.006						
51693		0.09	0.008						
51694		0.07	0.012						
51695		0.07	0.007						
51696		0.07	0.007						
51697		0.08	0.028						
51698		0.08	0.010						
51699		0.07	0.050						
51700		0.07	0.521						
57001		0.08	0.043						
57002		0.07	0.189						
57003		0.05	4.19						
57004		0.07	0.172						
57005		0.07	0.019						
57006		0.08	0.020						
57007		0.09	0.512						
57008		0.08	2.50						
57009		0.09	1.55						
57010		0.10	0.208						
57011		0.09	0.006						
57012		0.09	0.003						
57013		0.07	0.006						
57014		0.07	0.003						
57015		0.09	0.054						
57016		0.09	0.010						
57017		0.09	0.015						
57018		0.10	0.004						

Certified By:

AGAT WORK ORDER: 12U634940 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

	Fire Assay - Trace Au, AAS finish (202551) (50g Charge)								
DATE SAMPLED: Au	g 27, 2012	DATE RECEIVED: Aug 29, 2012			DATE REPORTED: Sep 25, 2012	SAMPLE TYPE: Other			
	Analyte:	Sample Login Weight	Au						
	Unit:	kg	ppm						
Sample Description	RDL:	0.01	0.002						
57019		0.10	0.003						
57020		0.09	< 0.002						
57021		0.09	0.004						
57022		0.10	0.003						
57023		0.05	0.595						
57024		0.09	0.003						
57025		0.09	0.002						
57026		0.09	< 0.002						
57027		0.08	0.011						
57028		0.07	0.004						
57029		0.10	< 0.002						
57030		0.07	0.006						
57031		0.08	0.003						
57032		0.07	0.184						
57033		0.07	0.004						
57034		0.08	0.002						
57035		0.09	0.004						
57036		0.07	0.002						
57037		0.07	0.003						
57038		0.07	0.002						
57039		0.08	0.002						
57040		0.08	0.003						
57041		0.07	0.004						
57042		0.07	0.004						
57043		0.05	3.77						
57044		0.08	0.006						
57045		0.07	0.024						
57046		0.07	0.004						
57047		0.07	0.045						
57048		0.08	0.009						
57049		0.09	0.012						

Certified By:

AGAT WORK ORDER: 12U634940 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

	Fire Assay - Trace Au, AAS finish (202551) (50g Charge)								
DATE SAMPLED: Au	ıg 27, 2012			DATE RECEIVED: Aug 29, 2012	DATE REPORTED: Sep 25, 2012	SAMPLE TYPE: Other			
	Analyte:	Sample Login Weight	Au						
	Unit:	kg	ppm						
Sample Description	RDL:	0.01	0.002						
57050		0.08	<0.002						
57051		0.08	0.007						
57052		0.09	0.012						
57053		0.09	1.01						
57054		0.08	<0.002						
57055		0.08	0.006						
57056		0.07	0.005						
57057		0.07	0.002						
57058		0.09	0.003						
57059		0.07	0.003						
57060		0.08	0.003						
57061		0.09	0.002						
57062		0.07	0.009						
57063		0.05	0.559						
57064		0.08	0.007						
57065		0.07	0.022						
57066		0.07	0.003						
57067		0.09	< 0.002						
57068		0.08	0.002						
57069		0.08	0.011						
57070		0.07	0.005						
57071		0.07	0.002						
57072		0.10	< 0.002						
57073		0.08	< 0.002						
57074		0.07	<0.002						
57075		0.07	< 0.002						
57076		0.08	< 0.002						
57077		0.09	< 0.002						
57078		0.09	<0.002						
57079		0.07	0.002						
57080		0.09	<0.002						

Certified By:

AGAT WORK ORDER: 12U634940 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

Fire Assay - Trace Au, AAS finish (202551) (50g Charge)									
DATE SAMPLED: Au	g 27, 2012	DATE RECEIVED: Aug 29, 2012			DATE REPORTED: Sep 25, 2012	SAMPLE TYPE: Other			
	Analyte:	Sample Login Weight	Au						
	Unit:	kg	ppm						
Sample Description	RDL:	0.01	0.002						
57081		0.10	0.006						
57082		0.07	0.003						
57083		0.05	3.97						
57084		0.09	0.003						
57085		0.10	<0.002						
57086		0.09	0.002						
57087		0.09	0.434						
57088		0.07	0.163						
57089		0.08	0.279						
57090		0.07	0.462						
57091		0.09	0.076						
57092		0.09	0.583						
57093		0.08	2.35						
57094		0.09	0.008						
57095		0.09	0.378						
57096		0.08	0.110						
57097		0.08	0.008						
57098		0.07	0.005						
57099		0.07	0.008						
57100		0.09	0.027						
57101		0.07	0.017						
57102		0.08	<0.002						
57103		0.05	3.74						
57104		0.09	0.003						
57105		0.07	0.009						
57106		0.08	0.003						
57107		0.07	0.006						
57108		0.07	0.002						
57109		0.09	0.002						
57110		0.08	<0.002						
57111		0.08	0.002						

Certified By:

AGAT WORK ORDER: 12U634940 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

	Fire Assay - Trace Au, AAS finish (202551) (50g Charge)								
DATE SAMPLED: AU	ıg 27, 2012			DATE RECEIVED: Aug 29, 2012	DATE REPORTED: Sep 25, 2012	SAMPLE TYPE: Other			
	Analyte:	Sample Login Weight	Au						
	Unit:	kg	ppm						
Sample Description	RDL:	0.01	0.002						
57112		0.07	0.002						
57113		0.07	< 0.002						
57114		0.07	0.002						
57115		0.07	0.003						
57116		0.08	0.002						
57117		0.08	0.006						
57118		0.07	< 0.002						
57119		0.07	0.004						
57120		0.08	0.005						
57121		0.09	0.002						
57122		0.07	0.011						
57123		0.05	0.549						
57124		0.08	< 0.002						
57125		0.07	< 0.002						
57126		0.07	<0.002						
57127		0.07	0.007						
57128		0.07	0.011						
57129		0.07	0.004						
57130		0.07	0.035						
57131		0.09	0.034						
57132		0.08	0.021						
57133		0.07	0.325						
57134		0.07	<0.002						
57135		0.09	1.31						
57136		0.09	0.009						
57137		0.10	0.006						
57138		0.10	0.003						
57139		0.09	0.008						
57140		0.09	0.005						
57141		0.10	0.005						
57142		0.07	0.003						

Certified By:

AGAT WORK ORDER: 12U634940 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

Fire Assay - Trace Au, AAS finish (202551) (50g Charge)									
DATE SAMPLED: Au	g 27, 2012			DATE RECEIVED: Aug 29, 2012	DATE REPORTED: Sep 25, 2012	SAMPLE TYPE: Other			
	Analyte:	Sample Login Weight	Au						
	Unit:	kg	ppm						
Sample Description	RDL:	0.01	0.002						
57143		0.05	0.591						
57144		0.09	0.004						
57145		0.10	0.003						
57146		0.09	0.005						
57147		0.09	0.002						
57148		0.09	0.003						
57149		0.09	0.004						
57150		0.09	< 0.002						
57151		0.09	0.004						
57152		0.07	0.006						
57153		0.10	0.002						
57154		0.09	< 0.002						
57155		0.09	< 0.002						
57156		0.07	0.002						
57157		0.07	< 0.002						
57158		0.08	0.004						
57159		0.08	0.164						
57160		0.07	< 0.002						
57161		0.07	0.024						
57162		0.08	<0.002						
57163		0.05	4.00						
57164		0.09	0.005						
57165		0.07	0.005						
57166		0.08	< 0.002						

Comments:

RDL - Reported Detection Limit

Certified By:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: CORPORATION TOMAGOLD

PROJECT NO: LAC MONSTRE

AGAT WORK ORDER: 12U634940 ATTENTION TO: ANDRE JEAN

			Solid	d Anal	ysis						
RPT Date: Sep 25, 2012			REPLIC	ATE				REFEF	RENCE MATE	RIAL	
PARAMETER	Datah	Commission Lie	October	Rep #1	RPD	Method Blank	Result	Expect	Deserve	Acceptable Lim	
- TATANIETEN	Batch	Sample Id	Original				Value	Value	Recovery	Lower	Upper
Fire Assay - Trace Au, AAS finish	(202551) (50g C	charge)									
Au	1	3649462	0.005	0.005	0.0%	< 0.002	1.5	1.52	99%	90%	110%
Fire Assay - Trace Au, AAS finish	(202551) (50g C	Charge)									
Au	1	3649478	< 0.002	< 0.002	0.0%	< 0.002	0.246	0.263	94%	90%	110%
Fire Assay - Trace Au, AAS finish	(202551) (50g C	charge)									
Au	1	3649409	0.163	0.176	7.7%	< 0.002	1.42	1.52	93%	90%	110%
Fire Assay - Trace Au, AAS finish	(202551) (50g C	charge)									
Au	1	3649423	< 0.002	< 0.002	0.0%	< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish	(202551) (50g C	Charge)									
Au	1	3649437	0.0023	0.0026	12.2%	< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish	(202551) (50g C	harge)									
Au	1	3649371	0.007	0.009	25.0%	< 0.002				90%	110%

Certified By:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: CORPORATION TOMAGOLD

PROJECT NO: LAC MONSTRE

AGAT WORK ORDER: 12U634940 ATTENTION TO: ANDRE JEAN

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Solid Analysis					
Sample Login Weight	MIN-12009		BALANCE		
Au	MIN-200-12004	BUGBEE, E: A Textbook of Fire Assaying	AA		

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD 100-777 RUE OU LA CONNUNE O MONTREAL, QC H3C1Y1 (514) 907-9016

ATTENTION TO: Andre Jean

PROJECT NO: LAC MONSTRE

AGAT WORK ORDER: 12U642944

SOLID ANALYSIS REVIEWED BY: Ron Cardinall, Certified Assayer - Director - Technical Services (Mining)

DATE REPORTED: Oct 03, 2012

PAGES (INCLUDING COVER): 5

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

<u>*NOTES</u>			

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 12U642944 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: Andre Jean

	Fire Assay - Trace Au, AAS finish (202551) (50g Charge)									
DATE SAMPLED: Se	ep 18, 2012			DATE RECEIVED: Sep 18, 2012	DATE REPORTED: Oct 03, 2012	SAMPLE TYPE: Other				
	Analyte:	Sample Login Weight	Au							
	Unit:	kg	ppm							
Sample Description	RDL:	0.01	0.002							
57373		1.12	0.002							
57374		1.11	<0.002							
57375		1.12	<0.002							
57376		1.12	0.071							
57377		1.12	0.089							
57378		1.11	0.257							
57379		1.10	0.071							
57380		1.10	0.097							
57381		1.11	0.007							
57382		1.12	0.190							
57383		0.05	4.30							
57384		1.13	0.277							
57385		1.12	0.811							
57386		1.12	0.041							
57387		1.13	0.003							
57388		1.12	0.028							
57389		1.12	0.006							
57390		1.09	< 0.002							
57391		1.13	<0.002							
57392		1.11	0.003							
57393		1.11	<0.002							
57394		1.13	0.004							
57395		1.12	<0.002							
57396		1.12	<0.002							
57397		1.12	<0.002							
57398		1.12	0.007							
57399		1.14	0.030							
57400		1.05	0.566							
57401		1.10	0.055							
57402		1.12	1.03							
57403		0.05	0.483							

Certified By:

AGAT WORK ORDER: 12U642944 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: Andre Jean

Fire Assay - Trace Au, AAS finish (202551) (50g Charge)										
DATE SAMPLED: Se	p 18, 2012		DATE RECEIVED: Sep 18		DATE REPORTED: Oct 03, 2012	SAMPLE TYPE: Other				
	Analyte:	Sample Login Weight	Au							
	Unit:	kg	ppm							
Sample Description	RDL:	0.01	0.002							
57404		1.12	0.379							
57405		1.11	0.705							
57406		1.11	0.331							
57407		1.11	0.037							
57408		1.12	0.016							
57409		1.11	< 0.002							
57410		1.10	0.040							

Comments: RDL -

RDL - Reported Detection Limit

Certified By:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: CORPORATION TOMAGOLD

PROJECT NO: LAC MONSTRE

AGAT WORK ORDER: 12U642944
ATTENTION TO: Andre Jean

			Solid	d Anal	ysis						
RPT Date: Oct 03, 2012			REPLIC	CATE				REFE	RENCE MATE	RIAL	
PARAMETER	Retch	Complete	Original	Rep #1	RPD	Method Blank	Result	Expect	Recovery	Accepta	able Limits
	Batch	Sample Id					Value	Value	Recovery	Lower	Upper
Fire Assay - Trace Au, AAS finish	(202551) (50g C	harge)									
Au	1	3717852	0.0024	0.0030	22.2%	< 0.002	0.255	0.263	97%	90%	110%
Fire Assay - Trace Au, AAS finish	(202551) (50g C	harge)									
Au	1	3717864	0.811	0.949	15.7%	< 0.002	1.45	1.52	95%	90%	110%
Fire Assay - Trace Au, AAS finish	(202551) (50g C	harge)									
Au	1	3717874	< 0.002	< 0.002	0.0%	< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish	(202551) (50g C	harge)									
Au	1	3717887	0.016	0.017	6.1%	< 0.002				90%	110%

Certified By:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: CORPORATION TOMAGOLD

AGAT WORK ORDER: 12U642944

PROJECT NO: LAC MONSTRE

ATTENTION TO: Andre Jean

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Sample Login Weight	MIN-12009		BALANCE
Au	MIN-200-12004	BUGBEE, E: A Textbook of Fire Assaving	AA

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD 100-777 RUE OU LA CONNUNE O MONTREAL, QC H3C1Y1 (514) 907-9016

ATTENTION TO: ANDRE JEAN

PROJECT NO: LAC MONSTRE

AGAT WORK ORDER: 12U642958

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, ICP Supervisor

DATE REPORTED: Oct 15, 2012

PAGES (INCLUDING COVER): 10

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES	

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 12U642958 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

				Fire Assay	- Trace Au, AAS fir	nish (202551) (50g Charge)	
DATE SAMPLED: Se	p 18, 2012		DATE RECEIVED: Sep 18, 2012			DATE REPORTED: Oct 15, 2012	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight	Au	Au-Grav			
	Unit:	kg	ppm	g/t			
Sample Description	RDL:	0.01	0.002	0.05			
57167		1.11	0.005				
57168		1.11	0.016				
57169		1.12	0.003				
57170		1.12	0.071				
57171		1.12	0.002				
57172		1.13	0.149				
57173		1.12	0.287				
57174		1.10	0.002				
57175		1.11	0.397				
57176		1.12	2.29				
57177		1.10	6.76				
57178		1.13	0.397				
57179		1.12	0.823				
57180		1.11	0.090				
57181		1.13	0.024				
57182		1.12	0.003				
57183		0.05	0.566				
57184		1.10	0.004				
57185		1.11	<0.002				
57186		1.11	0.003				
57187		1.13	0.002				
57188		1.12	0.005				
57189		1.12	0.003				
57190		1.13	< 0.002				
57191		1.13	0.003				
57192		1.13	<0.002				
57193		1.14	<0.002				
57194		1.13	< 0.002				
57195		1.11	0.007				
57196		1.12	0.005				
57197		1.13	0.011				

Certified By:

y Latomira

AGAT WORK ORDER: 12U642958 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

				Fire Assay - Trace Au, AAS fir	nish (202551) (50g Charge)	
DATE SAMPLED: Se	p 18, 2012			DATE RECEIVED: Sep 18, 2012	DATE REPORTED: Oct 15, 2012	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight	Au	Au-Grav		
	Unit:	kg	ppm	g/t		
Sample Description	RDL:	0.01	0.002	0.05		
57198		1.11	0.299			
57199		1.14	0.026			
57200		1.13	0.015			
57201		1.12	0.005			
57202		1.14	0.008			
57203		0.05	3.87			
57204		1.13	0.003			
57205		1.11	0.003			
57206		1.12	0.004			
57207		1.12	0.003			
57208		1.14	< 0.002			
57209		1.10	0.003			
57210		1.12	0.003			
57211		1.12	0.002			
57212		1.13	0.004			
57213		1.12	0.002			
57214		1.10	< 0.002			
57215		1.12	0.002			
57216		1.11	0.003			
57217		1.11	0.004			
57218		1.13	< 0.002			
57219		1.10	< 0.002			
57220		1.12	0.006			
57221		1.12	0.003			
57222		1.11	0.243			
57223		0.05	0.550			
57224		1.13	0.043			
57225		1.12	0.123			
57226		1.11	1.17			
57227		1.11	0.772			
57228		1.12	0.383			

Certified By:

y of stomus

AGAT WORK ORDER: 12U642958 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

				Fire Assay	- Trace Au, AAS fir	nish (202551) (50g Charge)	
DATE SAMPLED: Se	p 18, 2012		DATE RECEIVED: Sep 18, 2012			DATE REPORTED: Oct 15, 2012	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight	Au	Au-Grav			
	Unit:	kg	ppm	g/t			
Sample Description	RDL:	0.01	0.002	0.05			
57229		1.13	0.529				
57230		1.11	0.012				
57231		1.13	1.44				
57232		1.13	1.55				
57233		1.14	0.134				
57234		1.13	0.067				
57235		1.11	0.050				
57236		1.13	0.015				
57237		1.12	<0.002				
57238		1.12	0.015				
57239		1.14	<0.002				
57240		1.11	< 0.002				
57241		1.13	<0.002				
57242		1.13	0.009				
57243		0.05	4.15				
57244		1.12	0.003				
57245		1.14	< 0.002				
57246		1.13	< 0.002				
57247		1.12	< 0.002				
57248		1.12	< 0.002				
57249		1.13	<0.002				
57250		1.14	0.004				
57251		1.12	0.004				
57252		1.10	<0.002				
57253		1.12	0.002				
57254		1.13	<0.002				
57255		1.12	0.007				
57256		1.11	0.021				
57257		1.12	0.071				
57258		1.12	0.019				
57259		1.11	0.321				

Certified By:

y of stomus

AGAT WORK ORDER: 12U642958 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

				Fire Assay	- Trace Au, AAS fir	nish (202551) (50g Charge)	
DATE SAMPLED: Se	p 18, 2012			DATE RECEIV	ED: Sep 18, 2012	DATE REPORTED: Oct 15, 2012	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight	Au	Au-Grav			
	Unit:	kg	ppm	g/t			
Sample Description	RDL:	0.01	0.002	0.05			
57260		1.11	0.953				
57261		1.13	9.28				
57262		1.12	>10	12.3			
57263		0.05	0.608				
57264		1.10	0.691				
57265		1.11	0.133				
57266		1.13	0.051				
57267		1.10	0.010				
57268		1.11	0.084				
57269		1.12	0.424				
57270		1.10	0.028				
57271		1.13	0.012				
57272		1.13	1.62				
57273		1.11	4.24				
57274		1.13	0.933				
57275		1.14	0.140				
57276		1.13	1.15				
57277		1.12	0.185				
57278		1.13	0.032				
57279		1.13	0.046				
57280		1.12	0.008				
57281		1.12	< 0.002				
57282		1.14	0.015				
57283		0.05	4.06				
57284		1.13	0.004				
57285		1.11	0.002				
57286		1.12	0.003				
57287		1.14	0.005				
57288		1.11	<0.002				
57289		1.12	0.008				
57290		1.13	0.008				

Certified By:

y Later

AGAT WORK ORDER: 12U642958 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

				Fire Assay - T	race Au, AAS fi	nish (202551) (50g Charge)	
DATE SAMPLED: Se	p 18, 2012			DATE RECEIVED:	Sep 18, 2012	DATE REPORTED: Oct 15, 2012	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight	Au	Au-Grav			
	Unit:	kg	ppm	g/t			
Sample Description	RDL:	0.01	0.002	0.05			
57291		1.11	0.230				
57292		1.12	0.087				
57293		1.11	0.079				
57294		1.10	< 0.002				
57295		1.11	0.014				
57296		1.11	0.006				
57297		1.12	0.004				
57298		1.10	0.004				
57299		1.12	0.006				
57300		1.12	0.005				
57301		1.11	0.004				
57302		1.11	0.003				
57303		1.12	0.004				
57304		1.10	0.012				
57305		1.11	< 0.002				
57306		1.11	< 0.002				
57307		1.11	<0.002				
57308		1.10	0.012				
57309		1.11	< 0.002				
57310		1.12	< 0.002				
57311		1.10	<0.002				
57312		1.11	0.160				
57313		1.12	0.025				
57314		1.11	0.248				
57315		1.12	0.003				
57316		1.12	0.079				
57317		1.13	0.406				
57318		1.11	0.224				
57319		1.13	0.004				
57320		1.13	0.011				
57321		1.12	0.022				

Certified By:

y of stomus

AGAT WORK ORDER: 12U642958 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

				Fire Assay - Trace Au, A	AS finish (202551) (50g Charge)	
DATE SAMPLED: Se	p 18, 2012			DATE RECEIVED: Sep 18, 2012	DATE REPORTED: Oct 15, 2012	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight	Au	Au-Grav		
	Unit:	kg	ppm	g/t		
Sample Description	RDL:	0.01	0.002	0.05		
57322		1.12	>10	48.1		
57323		0.05	0.603			
57324		1.13	5.68			
57325		1.11	0.045			
57326		1.12	0.024			
57327		1.12	0.018			
57328		1.12	0.039			
57329		1.11	0.077			
57330		1.12	9.61			
57331		1.13	>10	12.4		
57332		1.11	>10	15.8		
57333		1.12	0.354			
57334		1.12	0.003			
57335		1.11	0.027			
57336		1.11	7.63			
57337		1.10	0.879			
57338		1.12	0.067			
57339		1.12	0.010			
57340		1.11	0.281			
57341		1.12	0.164			
57342		1.13	0.155			
57343		0.05	4.14			
57344		1.11	0.016			
57345		1.10	0.005			
57346		1.10	0.002			
57347		1.12	0.026			
57348		1.11	0.003			
57349		1.12	0.007			
57350		1.10	0.504			
57351		1.11	0.035			
57352		1.12	0.009			

Certified By:

y Latomia

AGAT WORK ORDER: 12U642958 PROJECT NO: LAC MONSTRE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CORPORATION TOMAGOLD

ATTENTION TO: ANDRE JEAN

				Fire Assay	- Trace Au, AAS fin	rish (202551) (50g Charge)	
DATE SAMPLED: Se	p 18, 2012		_	DATE RECEIV	ED: Sep 18, 2012	DATE REPORTED: Oct 15, 2012	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight	Au	Au-Grav			
	Unit:	kg	ppm	g/t			
Sample Description	RDL:	0.01	0.002	0.05			
57353		1.13	0.019				
57354		1.11	0.004				
57355		1.13	0.441				
57356		1.12	0.004				
57357		1.12	0.006				
57358		1.11	0.014				
57359		1.13	0.090				
57360		1.13	0.024				
57361		1.12	0.009				
57362		1.13	0.006				
57363		0.05	0.576				
57364		1.14	0.043				
57365		1.12	0.003				
57366		1.11	0.002				
57367		1.11	< 0.002				
57368		1.13	0.002				
57369		1.12	< 0.002				
57370		1.13	<0.002				
57371		1.11	0.023				
57372		1.12	0.023				

Comments:

RDL - Reported Detection Limit

Certified By:

y of stomus

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: CORPORATION TOMAGOLD

PROJECT NO: LAC MONSTRE

AGAT WORK ORDER: 12U642958 ATTENTION TO: ANDRE JEAN

			Solid	d Anal	ysis						
RPT Date: Oct 15, 2012			REPLIC	CATE	_			REFER	RENCE MATE	RIAL	
DADAMETED	Datah	0	Onininal	D-= #4	DDD	Method Blank	Result	Expect	Bassing	Accepta	able Limits
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD		Value	Value	Recovery	Lower	Upper
Fire Assay - Trace Au, AAS finish (2025	551) (50g C	harge)									
Au	1	3718124	0.022	0.026	16.7%	< 0.002	0.266	0.263	101%	90%	110%
Fire Assay - Trace Au, AAS finish (2025)	551) (50g C	harge)									
Au	1	3718137	0.354	0.381	7.3%	< 0.002	1.66	1.52	109%	90%	110%
Fire Assay - Trace Au, AAS finish (2025)	551) (50g C	harge)									
Au	1	3717984	< 0.002	< 0.002	0.0%	< 0.002	0.258	0.263	98%	90%	110%
Fire Assay - Trace Au, AAS finish (2025)	551) (50a C	harge)									
Au	1	3718163	0.0056	0.0051	9.3%	< 0.002	1.53	1.52	101%	90%	110%
Fire Assay - Trace Au, AAS finish (2025)	551) (50a C	harge)									
Au	1	3718175	< 0.002	< 0.002	0.0%	< 0.002	0.264	0.263	100%	90%	110%
Eiro Accay Traco Au AAS finish (202)	551) (50° C	'harao)									
Fire Assay - Trace Au, AAS finish (2025) Au	1 (50g C	3718020	0.123	0.118	4.1%	< 0.002	1.5	1.52	99%	90%	110%
E											
Fire Assay - Trace Au, AAS finish (2025) Au	551) (50g C 1	narge) 3718033	< 0.002	0.002		< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish (2025) Au	551) (50g C 1	harge) 3718047	< 0.002	0.002		< 0.002				90%	110%
Au		37 100-77	V 0.002	0.002		V 0.002				30 70	11070
Fire Assay - Trace Au, AAS finish (2025	, , •	• ,	0.20	9.74	4 90/	< 0.002				90%	110%
Au	1	3718061	9.28	9.74	4.8%	< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish (2025)		•				1111					
Au	1	3718074	4.24	4.27	0.7%	< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish (2025	551) (50g C										
Au	1	3718086	0.002	< 0.002		< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish (2025	551) (50g C	harge)									
Au	1	3718099	0.0042	0.0049	15.4%	< 0.002				90%	110%
Fire Assay - Trace Au, AAS finish (2025)	551) (50g C	harge)									
Au	1	3718111	< 0.002	< 0.002	0.0%	< 0.002				90%	110%

Certified By:

y of tomura

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: CORPORATION TOMAGOLD

AGAT WORK ORDER: 12U642958 ATTENTION TO: ANDRE JEAN

PROJECT NO: LAC MONSTRE		ATTENTION TO	: ANDRE JEAN
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Sample Login Weight	MIN-12009		BALANCE
Au	MIN-200-12004	BUGBEE, E: A Textbook of Fire Assaying	AA
Au-Grav			GRAVIMETRIC

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tei: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com

Certificate of Analysis

Date Received: 12/08/2010

Date Completed: 12/13/2010

Job #: 201020039

Reference:

Sample #: 82

Stellar Pacific Venrures Inc 1155 University # 812 Montreal Quebec, On, CAN

H3B 3A7 Ph#: (514) 866-6299

Fax#: (514) 866-6299

Email: ness.stellan@bellnet.ca, rogerovellet@vidoetron.ca

\cc#	Client ID	Au ppm	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Nì ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W	Y ppm	Zn ppm
593	666130	0.008	4	7.65	4	63	<2	16	8.05	<4	40	98	5	8.34	1.68	15	1.74	1523	19	27	444	4	<5	<5	<10	61	7030	109	273	<10	25	129
594	666131	0.015	1	8.55	4	77	<2	17	6.10	<4	40	165	3	9.42	1.90	13	1.92	1691	25	35	520	5	<5	<5	<10	193	7937	83	293	<10	27	104
595	666132	0.007	4	7.93	2	79	2	17	5.47	<4	51	177	22	11.19	1.91	12	1.92	2036	24	49	450	11	<5	<5	<10	132	6300	55	258	<10	25	116
5 96	666133	0.006	3	8.13	4	78	2	17	5.88	<4	47	154	31	11.83	1.84	12	1.98	2188	24	44	526	6	<5	<5	<10	154	6683	107	270	<10	27	118
597	666134	0.007	4	7.87	6	73	2	9	5.86	<4	42	151	12	10.75	1.76	12	1.77	2017	24	36	525	7	<5	<5	<10	176	7164	77	273	<10	27	107
598	666135	0.008	12	8.66	4	89	<2	15	5.85	<4	45	201	17	10.19	1.92	14	1.67	1937	26	38	539	<1	<5	<5	<10	185	7712	73	286	<10	28	104
599	666136	0.007	4	7.83	2	75	2	15	5.52	<4	42	165	5	9.48	1.70	12	1.68	1857	24	39	526	5	<5	<5	<10	172	7928	106	281	<10	28	102
600	666137	0.006	4	8.16	3	78	<2	13	5.42	<4	42	125	5	9.92	1.74	14	1.74	1983	22	31	534	5	<5	<5	<10	164	7954	103	283	<10	28	106
601	666138	0.006	5	7.99	4	72	2	14	5.50	<4	50	131	9	10.34	1.67	13	1.88	2105	23	35	537	7	<5	<5	<10	156	7816	100	280	<10	28	110
602	666139	0.007	8	7.74	3	66	2	10	5.63	<4	40	120	4	9.85	1.69	13	1.79	2030	20	32	511	<1	<5	<5	<10	161	7735	48	270	<10	27	107
603D	666139	0.008	6	6.99	4	58	2	8	5.26	<4	40	117	4	9.49	1.47	11	1.71	1943	18	32	499	5	<5	<5	<10	144	7397	47	258	<10	25	104
604	666140	0.007	6	6.79	2	62	2	15	5.57	<4	47	78	16	12.95	1.48	11	2.09	2552	20	27	477	10	<5	<5	<10	97	6651	52	244	<10	23	136
605	666141	0.009	4	6.70	2	55	2	13	5.18	<4	41	88	14	12.08	1.46	11	2.13	2257	19	26	459	7	<5	<5	<10	97	6684	70	246	<10	23	169
506	666142	0.009	8	7.11	4	46	2	14	5.83	<4	46	71	52	11.41	1.42	15	2.06	2096	19	28	419	9	<5	<5	<10	80	6643	59	259	<10	22	229
507	666143	0.021	<1	6.43	4	94	2	19	6.63	<4	37	79	177	8.28	1.57	17	1.66	1348	16	26	458	7	<5	<5	<10	80	1820	89	229	<10	16	139
308	666144	3.759	<1	3.73	60	94	2	12	4.29	5	90	142	984	11.79	1.45	9	0.80	678	24	51	215	8	<5	<5	<10	64	184	111	64	<10	4	376
509	666145	0.109	<1	5.48	8	388	<2	8	3.79	<4	13	102	64	3.38	1.77	9	1.25	546	12	30	547	4	<5	<5	<10	111	220	67	61	<10	5	48
310	666146	0.247	<1	5.76	10	400	<2	10	4.05	<4	9	71	28	3.20	1.72	9	1.20	545	12	28	582	4	<5	9	<10	124	230	81	62	<10	5	38
311	666147	0.108	1	5.16	10	281	<2	8	2.72	<4	9	87	20	1.86	1.62	9	0.76	315	11	16	386	5	<5	<5	<10	124	208	63	44	<10	5	35 '
512	666148	0.350	<1	5.19	13	193	<2	8	6.55	<4	20	113	239	4.42	1.54	9	1.18	693	15	31	401	4	<5	<5	<10	149	179	90	123	<10	5	314

PROCEDURE CODES: ALM1, ALFA1, ALMA1

ertified By: Jason Moore, General Manag

10/16 Gorham Street Thunder Bay, GN Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571 w.vw.accurassay.com assay@accurassay.co.n

Certificate of Analysis

Date Received: 12/08/2010

Date Completed: 12/13/2010

Job #: 201020039

Reference:

Sample #: 82

Stellar Pacific Venrures Inc

1155 University # 812 Montreal Quebec, On, CAN

H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ness.stellan@bellnet.ca, rogerovellet@vidoetron.ca

	-			_			-						Acres -	And College Control	-500					auto.						.,44,444,444	Α.					
\cc#	Client ID	Au ppm	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co	Cr ppm	Cu ppm	Fe	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Ni ppm	P	Pb ppm	Sb ppm	Se ppm	Sn ppm	Sr ppm	Ti ppm	TI ppm	V	W	Y	Zn ppm
613	666149	0.019	2	7.82	65	331	<2	22	8.08	<4	14	76	8	1.85	1.81	10	1.22	561	11	67	339	5	<5	<5	<10	216	274	99	68	<10	6	32
614D	666149	0.012	3	8.13	71	339	<2	11	8.23	<4	14	77	6	1.86	1.89	11	1.25	567	12	71	350	4	<5	12	<10	220	285	80	68	<10	6	31
615	666150	3.902	2	7.12	1104	123	2	19	7.18	<4	34	287	109	6.75	1.89	42	3.70	1624	10	157	208	22	14	<5	<10	106	1006	135	200	26	9	136
616	666151	0.050	<1	6.30	25	182	<2	13	3.77	5	57	100	336	4.17	1.82	10	0.63	247	18	55	195	8	<5	7	<10	126	203	101	34	20	4	1503
617	666152	0.071	1	5.91	14	164	2	18	3.96	10	64	148	417	4.64	1.68	11	0.32	290	19	56	231	9	<5	12	<10	104	164	149	35	48	6	3665
618	666153	0.052	<1	5.60	9	201	<2	13	6.10	5	31	118	325	4.77	1.88	12	0.55	525	21	57	315	7	<5	<5	<10	113	180	57	52	25	7	1796
619	666154	0.010	<1	6.03	8	195	<2	12	5.67	<4	40	142	162	5.37	1.70	16	1.21	1252	13	66	211	4	<5	<5	<10	108	194	119	129	<10	4	74
620	666155	0.006	2	8.49	11	186	<2	12	6.48	<4	41	162	119	5.67	1.77	27	1.63	1176	14	67	207	2	<5	<5	<10	104	273	64	190	<10	5	136
621	666156	<0.005	7	8.96	5	66	<2	19	4.68	<4	51	257	118	5.22	1.55	14	1.63	1290	18	80	217	4	<5	<5	<10	136	4520	54	215	<10	16	121
622	666157	<0.005	8	7.92	3	66	<2	10	5.66	<4	38	260	70	4.28	1.48	12	1.14	1269	20	73	218	5	<5	<5	<10	108	4246	79	193	<10	15	93
623	666158	0.005	1	8.02	14	218	<2	18	8.99	<4	38	151	101	4.70	1.64	16	1.13	1370	13	63	211	5	<5	<5	<10	75	801	111	189	<10	7	66
624	666159	0.006	6	8.88	7	70	<2	7	8.77	<4	47	169	153	5.98	1.66	15	1.50	2152	14	76	219	2	<5	<5	<10	49	3953	99	222	<10	16	116
625D	666159	0.008	4	8.09	8	76	<2	9	8.42	<4	46	164	141	5.72	1.62	15	1.38	2079	15	69	217	3	<5	<5	<10	49	3795	86	219	<10	15	111
626	666160	0.011	5	9.46	10	111	<2	18	6.91	<4	53	208	159	6.20	1.73	15	1.48	1737	17	78	217	5	<5	<5	<10	88	4304	53	229	<10	17	100
627	666161	0.005	4	9.31	5	128	<2	23	6.84	<4	58	276	138	7.12	1.78	15	1.48	2121	25	82	230	6	<5	<5	<10	112	4861	61	251	<10	17	108
528	666162	0.007	4	8.59	2	111	2	19	5.04	<4	49	125	160	9.80	1.75	13	2.12	2735	20	45	402	7	<5	<5	<10	93	6982	57	301	<10	26	211
529	666163	0.009	7	8.07	5	109	2	24	5.69	4	87	77	400	16.11	1.76	14	2.35	3818	27	40	360	14	<5	<5	<10	63	6017	131	264	<10	28	240
530	666164	< 0.005	6	8.45	3	76	<2	15	4.28	<4	50	79	92	9.59	1.82	16	2.52	1409	21	26	437	2	<5	<5	<10	107	6775	60	294	<10	25	227
331	666165	0.005	5	7:72	4	64	2	17	3.82	<4	45	69	61	9.50	1.77	15	2.52	1235	19	27	409	6	<5	<5	<10	83	6019	96	279	<10	22	313
332	666166	0.007	5	7.42	7	61	<2	16	5.31	<4	43	63	69	8.67	1.57	13	2.14	1200	17	26	377	6	<5	<5	<10	67	4731	89	292	<10	24	325

PROCEDURE CODES: ALM1, ALFA1, ALMA1

ertified By: 1450n Moore, General Manage

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 12/08/2010 Date Completed: 12/13/2010

Job #: 201020039

Reference: Sample #: 82

Stellar Pacific Venrures Inc 1155 University # 812 Montreal Quebec, On, CAN

H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ness.stellan@bellnet.ca, rogerovellet@vidoetron.ca

																					2,000					400000						
\cc#	Client ID	Au ppm	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Ni ppm	P	Pb ppm	Sb ppm	Se ppm	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W	Y ppm	Zn ppm
633	666167	<0.005	<1	7.00	3	57	<2	12	5.51	<4	28	58	62	7.09	1.39	13	1.87	1103	14	24	402	4	<5	<5	<10	69	2132	54	293	<10	9	261
634	666168	0.009	<1	7.95	3	75	<2	18	5.23	<4	36	104	463	7.99	1.71	16	1.92	959	19	36	392	10	<5	<5	<10	68	1493	63	274	<10	8	240
635	666169	0.016	<1	6.48	2	362	<2	16	4.11	5	35	76	217	5.00	1.37	11	1.05	892	18	45	337	7	<5	5	<10	75	307	71	80	15	6	873
636D	666169	0.012	1	6.88	6	386	<2	17	4.16	5	35	80	217	5.04	1.32	11	1.05	902	19	45	340	8	<5	<5	<10	80	314	61	83	13	6	889
637	666170	<0.005	<1	3.82	2	80	<2	3	0.41	<4	<1	10	5	0.12	1.58	11	0.20	<100	13	<1	<100	5	<5	6	<10	28	175	92	4	<10	4	28
638	666171	0.066	<1	6.25	24	153	<2	15	4.62	5	70	138	445	7.94	1.51	13	1.12	966	22	74	186	10	<5	<5	<10	90	293	42	100	13	6	809
639	666172	0.160	2	6.74	16	350	2	15	6.63	<4	58	96	1437	6.56	1.51	19	1.16	769	19	51	303	11	<5	<5	<10	76	271	61	76	<10	9	187
640	666173	0.015	<1	7.02	9	366	<2	16	4.37	<4	29	104	60	3.21	1.89	16	0.94	403	15	36	511	5	<5	<5	<10	93	248	57	55	<10	10	51
641	666174	0.006	1	7.20	8	354	<2	17	3.88	<4	10	121	38	2.70	1.82	16	1.05	440	17	35	569	1	<5	8	<10	104	247	83	60	<10	8	55
642	666175	0.059	<1	6.76	3	169	2	19	4.82	11	88	137	488	9.37	1.79	14	0.60	564	26	108	301	14	<5	<5	<10	84	223	18	83	31	6	2355
643	666176	0.061	<1	6.66	3	225	<2	19	8.54	<4	45	108	1233	6.90	1.90	15	1.12	1244	23	68	329	9	<5	<5	<10	111	261	71	54	<10	10	273
644	666177	< 0.005	2	8.34	15	398	<2	18	3.91	<4	17	95	30	3.82	1.69	18	1.42	537	16	31	539	3	<5	12	<10	92	305	80	108	<10	8	90
645	666178	<0.005	2	8.34	12	430	<2	20	2:92	<4	13	103	11	3.02	1.62	18	1.37	388	19	32	593	4	<5	<5	<10	82	313	91	61	<10	10	68
546	666179	< 0.005	1	8.16	7	237	2	18	3.56	5	78	135	423	9.16	1.47	19	1.35	514	26	85	324	11	<5	6	<10	69	894	109	104	13	11	863
347D	666179	800.0	2	9.04	7	258	2	20	3.89	6	86	145	463	9.93	1.59	20	1.49	559	28	92	358	13	<5	<5	<10	74	960	63	112	14	13	930
348	666180	<0.005	9	10.24	6	149	<2	17	4.90	<4	27	160	101	4.67	1.97	18	1.76	755	23	47	404	9	<5	<5	<10	207	3775	159	146	<10	17	278
349	666181	0.007	10	9.47	110	222	<2	22	3.46	4	23	158	247	4.26	1.89	15	1.78	749	24	58	582	123	<5	<5	18	207	3885	102	116	14	16	1081
350	666182	< 0.005	7	9.78	10	82	<2	13	7.68	<4	38	124	20	8.18	1.83	14	2.02	1550	24	31	547	11	<5	<5	<10	252	8900	113	318	<10	31	143
351	666183	0.005	6	9.21	2	106	<2	22	7.93	<4	47	136	42	10.59	1.92	19	1.55	2057	29	28	505	5	<5	<5	<10	236	8342	68	319	<10	25	120
352	666184	<0.005	3	9.95	5	107	2	22	8.01	<4	48	120	22	10.11	1.94	18	1.90	1867	30	37	550	9	<5	<5	<10	276	8557	117	325	<10	25	125

PROCEDURE CODES: ALM1, ALFA1, ALMA1

ertified By: theon Moore, General Manage

Thursday, December 16, 2010

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 12/08/2010

Date Completed: 12/13/2010

Job #: 201020039

Reference:

Sample #: 82

Stellar Pacific Venrures Inc 1155 University # 812 Montreal Quebec, On, CAN

H3B 3A7 Ph#: (514) 866-6299

Fax#: (514) 866-6299

Email: ness.stellan@bellnet.ca, rogerovellet@vidoetron.ca

ICC#	Client ID	Au ppm	Ag ppm	AI %	As	Ba ppm	Be	Bi ppm	Ca %	Cd ppm	Co	Cr ppm	Cu	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo	Ni ppm	P	Pb ppm	Sb ppm	Se ppm	Sn	Sr	Tí ppm	TI	V	W	Y	Zn
653	666185	<0.005	10	8.93	5	106	2	18	7.50	<4	53	125	48	10.76	1.95	18	1.84	1766	28	37	553	7	<5	<5	<10	251	9196	75	333	<10	26	122
654	666186	<0.005	5	9.42	6	92	2	19	7.42	<4	45	125	29	10.02	1.89	16	1.72	1751	27	35	551	7	<5	<5	<10	267	9278	96	345	<10	28	117
655	666187	<0.005	6	9.34	4	105	2	18	7.20	<4	42	112	16	11.61	1.91	18	2.06	2066	31	34	525	11	<5	<5	<10	231	8864	74	320	<10	26	149
656	666188	< 0.005	5	7.67	6	97	2	20	6.37	<4	49	93	78	10.27	1.66	16	1.58	1475	27	33	447	4	<5	<5	<10	212	7226	85	268	<10	20	111
657	666189	< 0.005	7	8.85	5	100	2	17	6.75	<4	43	93	29	9.31	1.85	20	1.84	1227	26	26	501	5	<5	<5	<10	210	8415	49	304	<10	24	129
658R	666189	<0.005	2	8.99	6	98	<2	14	6.85	<4	44	92	29	9.44	1.97	19	1.89	1233	25	28	507	7	<5	<5	<10	211	8464	101	308	<10	25	127
659	666190	0.417	13	6.81	264	285	<2	16	0.67	35	4	223	357	4.91	1.36	24	0.90	242	26	6	<100	1916	21	<5	13	50	662	50	21	95	8	8150
660	666191	0.015	2	8.00	8	265	2	24	7.61	<4	34	88	127	7.68	1.89	31	1.65	983	23	27	490	29	<5	<5	<10	137	2685	128	243	<10	12	196
661	666192	0.028	<1	8.05	11	259	<2	15	7.32	<4	28	109	90	6.88	1.82	22	1.38	904	16	35	416	8	<5	<5	<10	150	321	75	153	<10	6	128
662	666193	0.040	<1	7.45	10	364	<2	20	5.15	<4	26	129	135	3.68	1.68	16	1.07	610	17	44	434	8	<5	<5	<10	167	310	82	69	<10	6	194
663	666194	0.083	<1	7.81	11	350	<2	12	2.92	<4	10	98	31	2.17	1.62	16	0.81	352	15	22	392	7	<5	12	<10	192	257	103	50	<10	5	201
564	666195	0.090	<1	6.84	7	395	<2	13	2.63	<4	5	97	36	1.46	1.52	15	0.44	291	17	13	303	7	<5	6	<10	189	300	80	36	<10	4	477
365	666196	0.025	1	6.67	10	348	<2	17	3.06	<4	14	97	40	2.77	1.68	19	0.84	442	17	25	441	7	<5	11	<10	198	290	53	56	<10	4	178
366	666197	0.011	2	6.96	6	360	<2	16	4.76	<4	26	134	116	3.51	1.67	25	0.82	691	19	43	322	6	<5	5	<10	254	333	15	123	<10	3	46
367	666198	0.007	<1	6.57	7	225	<2	16	5.84	<4	32	179	107	5.07	1.77	26	0.91	1160	19	67	204	11	<5	<5	<10	184	328	82	198	<10	3	73
368	666199	0.006	3	6.57	9	196	<2	17	5.55	<4	38	206	111	6.07	1.84	29	0.94	927	20	71	216	5	<5	<5	<10	124	1603	67	221	<10	5	159
369D	666199	0.011	<1	6.87	6	188	<2	15	5.55	<4	37	206	108	6.04	1.81	28	1.03	918	18	70	213	7	<5	<5	<10	121	1596	82	220	<10	6	157
370	666200	0.018	4	8.30	5	99	<2	14	6.67	<4	90	252	144	6.96	1.83	21	1.23	1484	21	84	220	6	<5	<5	<10	146	4873	64	245	<10	13	146
371	666201	0.011	10	8.16	5	92	<2	12	6.06	<4	53	276	143	5.39	1.72	17	1.08	1390	18	78	213	5	<5	8	<10	133	4841	134	231	<10	12	105
372	666202	0.014	12	8.55	7	102	<2	15	5.77	<4	51	252	143	5.92	1.79	19	1.29	1429	21	80	221	6	<5	10	<10	138	4872	87	228	<10	12	125

PROCEDURE CODES: ALM1, ALFA1, ALMA1

ertified By: Moore, General Manage

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (907) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 12/08/2010
Date Completed: 12/13/2010

Job #: 201020039

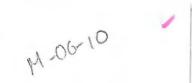
Reference:

Sample #: 82

Stellar Pacific Venrures Inc 1155 University # 812

Montreal Quebec, On, CAN

H3B 3A7 Ph#: (514) 866-6299


Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ness.stellan@bellnet.ca, rogerovellet@vidoetron.ca

\cc#	Client ID	Au ppm	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Li	Mg %	Mn ppm	Mo ppm	Ni ppm	P ppm	Pb ppm	Sb	Se ppm	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W	Y ppm	Zn ppm
673	666203	0.011	2	9.74	5	73	<2	19	6.06	<4	52	281	145	5.76	1.73	14	1.42	1338	15	81	228	7	<5	<5	<10	126	4898	75	236	<10	17	99
674	666204	0.012	1	8.55	8	58	<2	23	5.27	<4	43	251	72	6.33	1.52	12	1.76	1503	14	85	239	8	<5	<5	<10	116	4901	120	225	<10	17	130
675	666205	0.010	6	11.79	4	89	<2	20	6.79	<4	55	296	63	7.28	1.84	17	1.90	1747	20	98	281	6	<5	5	<10	153	5803	81	286	<10	20	150
676	666206	0.015	4	10.04	4	86	<2	17	6.64	<4	46	273	76	6.90	1.63	18	1.67	1554	18	84	241	5	<5	<5	<10	127	4666	77	244	<10	16	128
677	666207	0.012	2	9.24	15	135	<2	17	6.53	<4	40	177	46	6.32	1.91	29	1.70	1391	16	72	234	7	<5	<5	<10	83	360	145	210	<10	5	117
678	666208	0.018	2	7.67	17	147	<2	19	7.00	<4	37	183	96	5.42	1.91	27	1.14	1509	19	72	206	9	<5	<5	<10	98	314	120	205	<10	4	102
679	666209)	0.014	2	8.37	7	303	<2	12	7.06	<4	43	170	151	5.64	1.93	22	1.32	1274	16	74	215	4	<5	<5	<10	63	1115	80	201	<10	8	102
680D	666209	0.015	1	7.36	8	381	<2	17	6.50	<4	42	172	144	5.37	2.07	25	1.03	1233	20	73	204	8	<5	<5	<10	76	1218	67	215	<10	6	100
681	666210	0.016	3	5.46	3	105	<2	14	0.65	<4	<1	471	10	0.54	1.89	19	0.27	<100	37	13	<100	8	<5	14	<10	40	246	42	24	<10	7	26
682	666211	0.027	5	9.04	6	93	2	18	6.28	<4	50	249	114	6.62	1.87	18	1.59	1501	23	84	238	5	<5	<5	<10	132	5057	87	253	<10	14	144

PROCEDURE CODES: ALM1, ALFA1, ALMA1

ertified By Jeson Moore, General Manage

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com Thunder Bay, ON Canada P78 5x5

Fax: (807) 622-7571 assay@accurassay.com

ecember 23, 2010

ic Venrures Inc sity # 812 ebec, On, CAN

66-6299 B66-6299

stellar@belinet.ca, rogerouellet@videotron.ca

Certificate of Analysis

Date Received: 12/13/2010

Date Completed: 12/21/2010

Job #: 201020042

Reference:

Sample #: 77

int ID	Au ppb	Ag ppm	AI 16	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd	Co	Cr	Çu	Fe %	K %	Li ppm	Mg %	Mn	Mo	Ni ppm	p	Pb	Sb	Se	Sn	Sr	Ti	TI mag	V	W	Y	Zn
212	8	9	9.77	9	200	2	2	7.01	9	45	105	87	7.44	1.83	34	1.23	787	29	31	534	10	5	7	<10	162	5357	6	236	<10	17	87
213	8	3	11.55	61	291	2	<1	9.52	9	64	65	91	7.31	2.19	43	1.46	902	28	30	549	16	<5	7	<10	201	633	14	235	<10	10	99
214	14	2	10.42	12	327	2	<1	10.81	8	30	57	127	6.56	2.13	40	1.28	904	28	28	480	13	<5	8	<10	197	607	11	213	<10	8	84
215	3875	1	7.16	51	117	3	17	5.73	23	160	110	605	18.05	0.78	24	0.87	606	32	88	347	34	<5	8	<10	166	290	10	103	<10	5	276
216	1114	<1	<0.01	<2	<1	<2	<1	<0.01	<4	<1	<1	<1	0.02	<0.01	<1	<0.01	<100	<1	<1	<100	<1	<5	<5	<10	<3	<100	<2	<2	<10	<2	<1
217-	40	4	8.37	13	665	2	<1	5.95	<4	9	114	27	2.47	1.88	24	0.96	537	20	40	468	3	<5	<5	<10	250	557	14	71	<10	5	39
218-	277	1	8.13	8	387	2	<1	2.23	<4	7	113	16	1.54	1.68	21	0.59	259	23	13	381	6	<5	7	<10	396	451	6	44	<10	3	57
219"	16	<1	8.87	10	440	2	<1	2.81	<4	10	114	29	2.60	1.91	21	0.81	337	19	32	488	7	<5	6	<10	282	419	<2	45	<10	4	74
220	1299	2	6.38	19	928	2	5	2.17	<4	19	114	48	2.85	1.21	33	0.81	487	56	72	626	46	6	6	<10	406	459	9	113	<10	6	73
221	034 39	2	10.23	5	523	2	4	1.87	<4	3	121	15	1.28	2.12	24	0.37	165	31	5	351	9	<5	7	<10	384	495	12	15	<10	3	17
221	29	<1	8.72	3	447	2	<1	1.59	<4	3	108	13	1.14	2.03	20	0.31	148	28	4	299	6	<5	10	<10	326	415	8	13	<10	2	8
222	113	1	8.43	3	446	2	<1	2.84	<4	5	121	19	2.30	2.05	24	0.65	330	20	29	517	6	<5	9	<10	246	466	10	40	<10	3	29
223	23	2	7.55	14	349	2	<1	4.56	4	23	107	84	3.03	1.68	27	0.44	392	27	32	561	10	<5	<5	<10	169	470	12	66	<10	5	120
224	52	3	7.77	29	372	2	2	5.63	7	41	120	700	5.18	1.34	30	0.45	418	32	60	342	15	<5	11	<10	191	483	6	43	<10	5	464
225	24	1	10.09	12	458	2	<1	6.09	6	21	96	111	4.25	1.96	29	0.80	672	32	28	467	12	<5	11	<10	285	527	10	124	<10	5	352
?26	8	2	7.93	4	136	2	<1	1.95	<4	<1	71	3	0.93	1.34	19	0.34	283	25	1	306	6	<5	6	<10	266	311	6	4	<10	3	3
227	8	2	8.54	10	370	2	<1	3.63	7	15	87	65	2.95	1.58	28	0.79	471	28	21	456	8	<5	14	<10	202	452	12	48	12	4	1431
?2 8	7	1	8.15	9	342	2	<1	2.99	<4	17	76	101	2.46	1.30	29	0.66	299	24	23	370	7	<5	9	<10	239	417	7	35	<10	4	108
!29	13	<1	6.60	10	391	2	5	2.58	11	71	116	318	6.39	1.52	29	0.35	222	26	67	214	16	<5	21	<10	186	368	3	33	13	3	1577
!30	10	1	7.51	14	457	2	<1	2.35	4	35	81	103	2.75	1.49	29	0.37	212	25	27	238	10	<5	13	<10	194	449	9	21	<10	3	472

CODES: ALP1, ALFA1, ALMA1

ACT TO A THE SAME OF THE SAME

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

-1141-12/23/2010 1:53 PM

Thunder Bay, ON Canada P78 5X5

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com

ecember 23, 2010

ic Venrures Inc sity # 812 ebec, On, CAN

66-6299 866-6299 stellar@bellnet.ca, rogerouellet@videotron.ca

Certificate of Analysis

Date Received: 12/13/2010

Date Completed: 12/21/2010

Job #: 201020042

Reference:

Sample #: 77

ant ID	Au ppb	Ag ppm	Al %	As	Ba	Be ppm	8i ppm	Ca %	Cd	Co	Cr	Cu	Fe %	K	Li	Mg	Mn	Ma	Ní	ppm	Pb	Sb	Se	Sn	Sr	Tì ppm	TI	V	W	Y	Zn
3231)	14	1	6.65	11	404	2	<1	2.54	10	57	104	468	4.91	1.68	29	0.37	249	30	61	224	12	5	13	<10	156	439	ppin	32	20	ppm	ppm 2161
3231	15	2	7.14	13	419	2	8	2.62	11	59	104	479	5.00	1.72	29	0.39	251	30	62	218	15	<5	13	<10	161	433	11	33	19	3	2215
3232	5	<1	11.36	15	403	2	4	5.38	<4	В	69	12	2.39	1.97	33	1.55	808	28	21	435	B	<5	12	<10	242	490	25	100	<10		35
3233	<5	2	9.65	14	349	2	<1	4.33	4	18	78	34	3.38	1.94	38	1.34	660	30	51	403	R	<5	6	<10	194	541	9	91	<10	5	78
1234	7	3	11.18	11	382	2	<1	4.07	4	18	76	25	3.54	1.89	40	1.57	624	25	52	369	9	<5	7	<10	164	592	15	88	<10	7	114
1235	8	3	8.68	5	588	2	<1	2.19	4	10	80	53	2.93	1.58	31	0.74	459	34	15	218	4	<5	<5	<10	113	813	17	31	<10	4	117
1236	8	6	9.18	9	257	2	9	3.79	8	46	205	190	6.57	1.59	37	1.25	1011	32	74	288	10	<5	5	<10	165	5028	6	252	<10	8	171
1237	5	1	10.96	3	168	2	6	5.93	7	45	210	140	5.92	1.66	33	1.12	1315	33	76	272	11	<5	9	10	174	5052	11	240	<10	11	151
238	7	4	12.24	2	159	2	2	6.42	7	45	205	179	5.91	1.63	31	1.16	1345	31	77	272	9	<5	6	<10	179	4790	В	228	<10	13	147
239	8	3	10.55	28	205	2	<1	6.02	7	46	167	160	5.99	1.84	29	1.12	1590	29	72	272	11	<5	8	<10	92	4566	8	218	<10	11	172
240	9	2	7.35	6	148	2	2	0.93	<4	2	314	9	0.44	1.35	30	0.35	<100	41	9	<100	5	<5	10	<10	57	454	11	19	<10	5	<1
241	10	7	9.66	5	308	2	7	3.40	13	48	176	271	6.56	1.82	30	1.26	849	33	65	513	20	<5	11	12	196	5654	7	204	22	11	2877
241	10	8	12.00	5	315	2	<1	3.57	13	47	170	262	6.52	1.87	30	1.51	841	34	63	509	27	<5	14	<10	202	5641	8	201	22	16	2848
242	9	8	13.78	5	170	2	<1	6.00	11	43	126	35	9.50	2.10	33	1.96	1759	34	38	596	14	<5	5	<10	242	8744	8	300	<10	25	162
243	17	10	12.25	9	151	3	8	6.78	17	67	81	125	13.57	2.12	31	1.91	2154	33	40	507	20	<5	<5	10	213	7275	11	244	-10	24	144
244	100 9	13	12.80	9	169	2	5	6.42	10	37	73	39	8.38	2.03	37	1.77	1474	30	41	510	13	<5	12	<10	198	7168	12	239	<10	21	179
245	,880	4	12.07	4	299	2	2	7.80	10	23	60	98	8.02	1.86	40	1.87	1421	22	28	543	14	≪5	6	<10	117	1348	8	248	<10	14	161
246	. 🗀 31	1	9.62	23	351	2	<1	5.05	12	38	161	411	8.67	1.44	32	1.02	792	27	41	404	16	<5	7	<10	119	448	7	121	<10	6	494
247	3804	2	8.51	58	123	3	5	4.22	22	76	169	608	14.97	0.79	30	0.78	752	36	75	326	28	<5	9	<10	126	485	10	64	11	6	1342
248	332	1	9.85	9	576	2	9	5.32	6	28	94	154	5.14	1.60	25	1.04	658	22	40	552	9	<5	9	<10	191	499	10	87	<10	6	29

E CODES: ALP1, ALFA1, ALMA1

1046 Gorham Street Tel; (807) 626-1630 www.accurassay.com Trunder Bay, ON Canada P78 5X5

Fax: (807) 622-7571 assay@accurassay.com

N-02-10

ecember 23, 2010

ic Venrures Inc sity # 812 ebec, On, CAN

66-6299 866-6299 stellar@bellnet.ca, rogerouellet@videotron.ca

Certificate of Analysis

Date Received: 12/13/2010

Date Completed: 12/21/2010

Job #: 201020042

Reference:

Sample #: 77

																									-						
ant ID	Au ppb	Ag ppm	Al 95	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co	Cr ppm	Cu pp:n	Fe %	K %	Li	Mg %	Mn ppm	Мо ppm	Ni ppm	ppm	Pb ppm	Sb ppm	Se	Sn ppm	Sr	Ti ppm	TI	V ppm	W	Y	Zn
3249	172	1	8.44	21	289	2	3	3.90	13	67	154	633	8.31	1.10	22	0.65	361	25	68	277	14	<5	13	<10	161	392	11	41	11	5	1223
3250	92	1	9.85	13	352	2	<1	3.73	<4	14	103	60	2.56	1.98	27	0.66	323	19	15	426	8	<5	6	<10	326	396	13	68	<10	5	34
3251	124	<1	8.58	8	313	2	<1	3.08	<4	9	116	53	2.23	2.13	24	0.71	353	20	17	437	7	<5	9	<10	296	370	13	47	<10	4	22
3251	124	<1	8.10	7	313	2	<1	3.03	<4	9	114	54	2.21	2.10	24	0.69	352	20	17	428	8	<5	6	<10	291	370	14	47	<10	4	23
3252	2218	1	8.09	63	285	2	<1	4.51	9	40	109	143	7.22	1.83	29	1.04	464	22	45	545	14	<5	9	<10	240	388	4	67	<10	5	285
1253	93	<1	9.08	9	242	2	<1	4.87	5	23	101	110	4.44	2.09	29	1.14	462	21	47	559	11	<5	9	<10	273	355	13	65	<10	5	129
1254	144	1	8.23	35	389	2	<1	4.02	7	63	117	272	5.24	1.39	25	0.66	397	20	63	436	16	<5	9	<10	174	379	4	72	<10	6	485
1255	66	2	7.45	37	374	<2	3	2.72	13	64	161	536	5.05	1.58	22	0.44	289	23	54	227	24	<5	16	<10	137	395	12	36	32	4	3420
256	68	2	8.25	63	348	2	2	3.24	15	78	167	944	5.43	1.51	24	0.43	317	27	87	246	24	5	18	<10	137	433	7	43	31	4	3718
257	69	4	8.77	40	303	2	8	3.83	24	93	160	2171	9.20	1.25	26	0.52	370	36	160	258	27	<5	25	13	130	494	7	70	53	5	6075
258	64	3	6.49	49	218	2	<1	2.83	21	104	118	1320	10.55	1.28	26	0.41	321	36	190	235	34	<5	30	12	115	421	13	59	30	4	3569
259	48	2	9.09	55	409	2	13	2.09	9	78	164	539	5.36	1.83	25	0.49	238	31	72	262	21	<5	19	12	157	425	9	51	10	4	1214
260	1526	3	10.64	1655	168	2	4	7.83	9	35	278	134	7.15	2.31	70	3.51	1702	13	161	243	29	26	5	<10	130	2089	12	206	29	11	145
261	7	2	9.24	15	465	<2	<1	2.83	<4	В	73	37	1.88	2.12	26	0.88	420	21	22	303	6	5	14	<10	235	504	9	36	<10	4	179
261	7	2	8.60	5	451	2	<1	2.66	<4	8	68	34	1.79	1.98	25	0.81	396	21	20	291	3	<5	9	<10	222	492	13	33	<10	4	167
262	7	1	8.21	<2	442	2	5	2.27	<4	3	94	32	1.15	2.15	21	0.30	225	24	5	257	4	<5	9	<10	241	345	7	14	<10	3	97
263	6	1	8.28	3	424	2	<1	1.79	<4	5	135	29	0.81	1.94	20	0.25	192	21	6	263	21	<5	11	<10	255	359	11	5	<10	3	190
264	20	2	6.39	3	326	2	<1	2.82	9	44	134	745	4.75	1.77	22	0.30	351	24	51	285	12	<5	12	<10	180	346	10	29	11	3	1495
265	13	1	7.70	4	443	2	5	6.32	6	38	157	296	4.52	1.81	29	0.66	995	21	68	263	11	∢5	9	<10	167	435	5	202	<10	4	19
266	10	3	9.15	8	313	2	<1	5.21	8	36	196	113	6.09	1.94	39	1.10	1018	24	81	287	11	<5	11	<10	146	1105	7	240	<10	5	139

E CODES: ALP1, ALFA1, ALMA1

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

-1141-12/23/2010 1:53 PM

Page 3 of 5

1046 Gorham Street Tel: (807) 626-1630 www.accurisssity.com Thunder Bay, ON

Canada P78 5X5

Fax: (807) 622-7571 assay@accurassay.com

ecember 23, 2010

ic Ventures Inc sity # 812 ebec, On, CAN

66-6299 866-6299

stellar@bellnet.ca, rogerouellet@videotron.ca

Certificate of Analysis

Date Received: 12/13/2010

Date Completed: 12/21/2010

Job #: 201020042

Reference:

Sample #: 77

ent ID	Au ppb	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co	Cr ppm	Cu	Fe %	K %	Li	Mg %	Mn	Mo ppm	Ni ppm	P	Pb	Sb	Se	Sn	Sr	Ti ppm	Π mqq	V	W ppm	Y	Zn	
3267	10	3	10.63	5	97	2	4	6.37	9	55	248	179	7.07	2.00	27	1.56	1423	20	86	285	8	<5	<5	<10	147	5124	4	240	<10	15	145	
3268	11	8	12.00	9	117	2	11	6.93	11	86	409	450	9.25	1.92	28	1.38	1623	38	112	315	18	<5	<5	<10	163	5457	6	267	<10	16	152	
3269	9	6	12.10	3	131	<2	3	6.81	8	47	247	101	6.66	2.15	24	1.54	1684	21	83	278	7	<5	<5	<10	148	5152	8	252	<10	17	97	
3270	14	3	10.33	24	866	2	<1	10.22	6	37	170	144	4.91	1.62	29	1.02	1948	23	57	224	8	<5	9	<10	103	2814	13	193	<10	7	32	
3271	31	4	10.46	22	702	2	<1	8.47	8	43	182	246	6.59	2.07	32	1.58	1841	22	76	246	12	<5	8	<10	99	2414	9	225	<10	5	59	
1271	18	2	11.35	27	760	2	7	9.30	9	45	195	277	7.22	1.75	35	1.67	1995	24	83	273	11	<5	В	<10	106	2650	13	245	<10	6	77	
1272	12	5	10.47	20	349	2	2	7.58	7	38	175	245	6.11	1.90	31	1.46	1679	25	277	238	10	<5	7	<10	94	2339	12	194	<10	6	122	
1273	8	<1	10.28	20	305	<2	<1	6.08	9	38	203	75	7.03	1.83	32	1.34	1674	19	88	264	14	<5	6	<10	99	1879	9	225	<10	8	270	
274	17	2	9.36	4	307	2	14	7.27	11	37	162	1021	7.96	2.04	28	1.05	1979	35	39	271	15	<5	6	<10	108	1580	10	144	<10	6	381	
275	19	2	11.07	26	550	2	22	5.96	9	42	82	126	7.94	2.09	31	1.85	2741	27	32	454	12	<5	9	<10	122	2115	21	266	<10	6	111	
276	15	3	11.37	7	272	2	7	5.58	11	36	73	285	8.83	2.06	35	1.59	2385	30	23	429	8	<5	5	<10	100	3735	13	251	<10	7	156	
277	20	2	10.46	26	305	2	1	5.78	11	27	86	31	8.61	1.92	27	1.57	3279	27	28	411	14	<5	6	<10	126	3566	14	231	<10	6	62	
278	11	10	11.06	8	137	2	9	5.09	11	28	55	126	9.39	2.14	34	1.58	2251	28	28	428	14	<5	≪5	<10	93	5763	11	262	<10	8	172	
279	8	5	11.07	8	135	2	4	6.52	11	36	63	59	9.32	1.95	35	1.76	1436	27	26	455	13	<5	<5	<10	107	5614	11	284	<10	11	170	
280	7	1	6.70	8	145	2	<1	0.87	<4	2	260	4	0.51	1.76	28	0.32	<100	28	4	<100	3	<5	8	<10	54	452	6	8	<10	5	<1	
281	16	3	8.74	28	370	2	<1	4.16	5	22	111	13	4.31	2.13	33	1.27	897	24	52	384	8	<5	<5	<10	119	538	17	101	<10	5	62	
281	13	3	9.92	22	374	2	<1	4.31	5	19	110	13	4.41	2.23	32	1.38	910	26	51	394	6	<5	8	<10	122	551	11	102	<10	5	65	
282	13	2	11.28	9	207	2	5	6.57	13	35	70	78	10.26	2.38	34	2.24	1737	20	31	482	17	<5	7	<10	117	461	10	276	<10	7	129	
283	21	1	11.03	3	251	2	4	5.53	10	37	130	107	8.19	1.93	27	1.75	1536	25	23	370	15	<5	7	<10	137	431	15	207	<10	7	57	
284	22	2	12.31	20	291	2	10	6.25	11	29	65	59	8.94	1.64	34	1.93	1628	28	26	458	15	<5	<5	<10	149	490	11	255	<10	8	92	
4																																

E CODES: ALP1, ALFA1, ALMA1

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com Thunder Bay, ON Canada P78 5X5

Fax: (607) 622-7571 assay@accurassay.com

ecember 23, 2010

ic Venrures Inc sity # 812 ebec, On, CAN

66-6299 866-6299 stellar@bellnet.ca, rogerouellet@videotron.ca Certificate of Analysis

Date Received: 12/13/2010

Date Completed: 12/21/2010

Job #: 201020042

Reference:

Sample #: 77

t ID	Au ppb	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fø %	K %	∐ ppm	Mg %	Mn ppm	Mo ppm	Ni ppm	P	Pb ppm	Sb ppm	Se ppm	Sn ppm	Sr ppm	Ti ppm	TI ppm	V	ppm	Y	Zn ppm
85	11	2	10.43	7	439	2	3	6.33	8	28	78	178	6.73	1.72	30	1.42	1408	29	26	444	12	<5	6	<10	147	518	19	247	<10	7	40
86	87	<1	8.15	16	267	2	1	4.59	11	63	217	794	6.54	1.63	29	0.68	759	42	74	194	14	<5	6	<10	113	443	12	87	<10	5	1052
87	149	2	8.30	35	339	2	3	5.20	8	51	161	552	5.85	1.35	29	0.62	605	34	77	275	17	<5	14	<10	102	446	8	129	<10	6	452
59	14	9	11.30	8	152	2	25	6.43	12	53	135	94	10.47	1.76	32	1.80	1725	35	32	580	19	<5	7	<10	277	8438	5	289	<10	22	147

E CODES: ALP1, ALFA1, ALMA1

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 12/13/2010

Date Completed: 12/21/2010

Job #: 201020041

Reference:

Sample #: 26

Thursday, December 23, 2010

Stellar Pacific Venrures Inc 1155 University # 812 Montreal Quebec, On, CAN

H3B 3A7 Ph#: (514) 866-6299

Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

cc#	Client ID	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Li	Mg	Мп	Mo	Ni	P	Pb	Sb	Se	Sn	Sr	Ti	TI	V	W	V	Zn
		ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
743	666288	26	9	9.63	5	140	2	7	6.01	11	43	158	60	9.48	1.87	30	1.27	1769	34	39	553	14	<5	5	<10	269	8671	7	299	<10	18	108
744	666289	<5	13	12.45	4	158	2	10	6.83	14	44	133	55	11.43	1.89	33	1.69	2096	38	34	575	22	<5	8	<10	281	8556	7	295	<10	25	134
745	666290	<5	7	10.46	26	181	2	<1	6.90	12	34	69	6	9.30	2.25	37	1.60	1806	26	28	527	15	<5	<5	<10	114	5699	12	286	<10	18	104
746	666291	15	2	10.78	20	165	2	11	6.40	10	27	76	21	8.40	2.09	38	1.39	1593	33	26	516	12	<5	8	<10	142	3731	10	250	<10	15	97
747	666292	9	5	9.78	27	196	2	2	7.32	10	29	72	20	8.17	1.95	36	1.46	1682	26	27	521	12	<5	5	<10	140	2712	7	238	<10	18	110
748	666293	36	3	10.65	9	298	2	19	6.49	11	21	63	71	8.89	1.92	38	1.63	1556	25	24	532	15	<5	5	<10	142	677	10	243	<10	9	156
749	666294	172	2	10.08	32	328	2	<1	6.45	12	40	101	335	9.46	1.69	32	1.68	1148	26	36	507	15	<5	8	<10	154	462	8	221	<10	6	141
750	666295	507	2	9.68	46	340	2	7	5.12	10	38	136	467	8.03	1.20	25	1.29	775	32	38	478	13	<5	<5	<10	167	465	14	107	<10	6	66
751	666296	103	3	8.81	25	386	2	<1	4.48	4	16	71	156	3.58	1.89	25	1.15	626	25	30	587	8	<5	<5	<10	174	481	14	80	<10	6	36
752	666297	289	3	9.92	18	634	2	<1	5.80	7	22	115	304	5.49	1.64	28	1.37	664	30	38	462	10	<5	11	<10	210	619	10	103	<10	6	139
753D	666297	254	2	8.75	12	556	2	<1	5.03	6	18	102	271	4.80	1.63	25	1.24	584	27	33	403	8	<5	<5	<10	184	538	11	90	<10	5	113
754	666298	28	3	7.58	14	362	2	<1	3.00	<4	9	112	45	1.68	1.55	25	0.50	294	31	14	323	3	5	11	<10	230	487	6	38	<10	4	156
'55	666299	834	<1	7.79	27	436	2	1	3.31	6	28	156	207	4.42	1.59	23	0.78	427	27	32	272	9	<5	11	<10	175	396	4	51	<10	4	473
56	666300	550	<1	7.50	40	383	2	<1	3.98	7	26	79	173	4.55	1.73	25	0.96	605	22	32	397	7	<5	9	<10	191	424	9	76	<10	5	476
57	666301	227	1	7.88	24	342	2	7	5.98	10	47	141	326	4.21	1.53	32	0.87	497	24	61	270	15	<5	7	<10	199	407	8	72	17	5	2153
58	666302	25	2	10.04	36	195	<2	<1	9.59	4	16	127	68	3.07	1.98	33	2.18	681	18	93	389	6	<5	5	<10	307	365	24	102	<10	6	158
59	666303	<5	1	9.09	34	185	2	<1	7.97	<4	9	83	33	1.91	1.73	31	1.52	473	21	44	552	6	<5	9	<10	364	367	13	71	<10	6	61
60	666304	40	2	6.08	27	261	2	<1	6.00	5	27	64	99	2.56	1.55	35	0.47	394	22	36	329	5	<5	12	<10	369	374	9	38	<10	4	861
61	666305	31	1	7.17	8	225	2	14	4.29	15	40	92	518	11.83	1.36	34	1.06	1055	30	64	402	24	<5	<5	<10	206	421	5	141	<10	4	613
62	666306	11	2	7.03	16	221	2	4	4.25	13	48	105	486	10.40	1.35	36	1.09	928	35	49	550	24	<5	6	<10	199	519	7	217	<10	4	345

PROCEDURE CODES: ALP1, ALFA1, ALMA1

Thursday, December 23, 2010

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 12/13/2010

Date Completed: 12/21/2010

Job #: 201020041

Reference:

Sample #: 26

Stellar Pacific Venrures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

						-		_		-	-	-		-				THE RESIDENCE OF THE PARTY OF T	-	-14	-		-	_							100	
Acc#	Client ID	Au ppb	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co	Cr ppm	Cu ppm	Fe %	K %		Mg %	Mn ppm	Mo ppm	Ni ppm	P	Pb ppm	Sb ppm	Se ppm	Sn ppm	Sr ppm	Ti ppm	TI ppm	V	W	Y ppm	Zn ppm
1763	666307	12	1	9.07	17	251	3	7	4.96	18	57	134	707	11.60	1.23	37	1.37	739	36	72	382	23	<5	5	<10	229	414	14	108	16	5	1902
1764D	666307	12	2	9.37	18	285	3	21	5.04	18	59	145	750	12.07	1.78	40	1.43	774	41	75	408	23	<5	5	<10	245	493	<2	118	17	5	1989
1765	666308	84	2	7.96	7	419	2	<1	2.20	9	38	147	276	4.62	1.84	37	0.52	255	35	44	267	16	<5	12	<10	218	440	7	43	13	4	1629
1766	666309	<5	1	8.84	12	273	2	<1	4.85	4	18	86	35	3.21	1.66	38	1.19	623	25	24	416	7	<5	8	<10	220	353	14	88	<10	5	90
1767	666310	418	16	7.58	359	405	2	<1	0.80	42	4	226	458	5.00	1.12	34	0.78	243	31	7	112	1888	26	6	10	59	720	9	21	77	7	8020
1768	666311	6	2	9.35	10	318	2	<1	3.79	4	17	110	20	3.47	2.03	37	1.17	453	29	23	449	25	<5	6	<10	140	938	13	92	<10	6	191
1769	666312	<5	2	9.19	12	174	2	7	6.38	7	41	186	153	6.05	1.85	36	1.12	1187	23	77	250	10	<5	7	<10	131	1181	5	212	<10	6	109
1770	666313	7	1	9.50	4	309	2	<1	2.34	<4	5	171	34	1.22	1.87	23	0.32	281	32	9	277	7	<5	9	<10	216	387	10	27	<10	4	52

PROCEDURE CODES: ALP1, ALFA1, ALMA1

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 12/13/2010
Date Completed: 12/23/2010

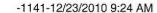
Job #: 201020040

Reference:

Sample #: 55

Stellar Pacific Venrures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Thursday, December 23, 2010


Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ness.stellan@bellnet.ca, rogerovellet@vidoetron.ca

Acc#	Client ID	Au ppb	Ag ppm	Al %	As ppm	Ba	Be ppm	Bi ppm	Ca %	Cd	Co	Cr	Cu	Fe %	K %	Li ppm	Mg %	Mn	Mo	Ni ppm	P	Pb ppm	Sb	Se	Sn	Sr	Ti ppm	TI	V	W	Y	Zn
1683	666314	5	16	14.02	9	82	<2	23	6.96	11	71	115	163	12.10	1.87	35	1.94	2215	43	46	664	21	<5	<5	<10	259	9722	16	328	<10	32	139
1684	666315	11	15	14.99	15	91	<2	27	7.50	10	43	130	41	9.68	1.93	43	1.64	1991	44	31	607	12	<5	5	<10	129	8628	11	308	<10	24	114
1685	666316	<5	9	13.71	5	76	<2	22	6.97	11	49	137	19	10.55	2.09	35	1.91	2204	41	36	641	10	<5	<5	<10	208	10025	13	329	<10	31	135
1686	666317	<5	7	13.21	7	64	<2	15	6.87	11	57	139	48	10.66	2.02	35	2.19	2253	39	38	612	25	<5	<5	<10	258	9836	10	327	<10	31	148
1687	666318	5	1	14.93	5	72	<2	23	6.72	10	45	93	12	9.89	1.91	44	1.95	2042	42	30	582	15	<5	<5	<10	183	9140	24	307	<10	27	169
1688	666319	7	<1	13.20	11	111	<2	14	6.97	10	39	80	39	9.34	1.87	46	1.69	1758	37	36	543	21	<5	<5	<10	123	874	17	264	11	10	122
1689	666320	7	1	11.72	<2	200	<2	18	6.29	10	39	81	88	9.36	2.25	42	1.76	2167	37	42	516	17	<5	5	<10	150	544	<2	242	<10	7	92
1690	666321	130	3	11.30	15	182	<2	25	7.18	10	32	100	241	9.78	2.31	35	1.97	1789	38	32	466	27	<5	<5	<10	167	470	20	204	<10	7	76
1691	666322	179	<1	11.17	19	211	<2	19	7.04	10	39	90	126	8.83	2.18	36	1.84	1638	35	28	516	14	<5	<5	<10	200	475	3	232	<10	7	73
1692	666323	051 53	3	11.12	17	313	<2	16	6.11	9	38	125	253	8.33	2.10	32	1.60	1084	34	29	486	24	<5	<5	<10	197	511	20	245	<10	7	42
1693D	666323	48	<1	11.71	16	312	<2	25	5.88	9	36	125	237	8.07	2.13	36	1.52	1042	38	27	490	15	<5	<5	<10	193	549	16	236	<10	7	35
1694	666324	40	<1	10.36	19	371	<2	14	4.45	4	20	145	144	3.60	1.91	28	0.87	404	26	29	306	14	<5	7	<10	182	403	<2	62	<10	6	28
1695	666325	25	<1	9.53	9	234	<2	16	3.54	6	35	96	178	5.00	2.04	28	0.60	294	26	35	281	14	<5	<5	<10	182	331	5	36	<10	5	680
1696	666326	7	<1	10.94	24	321	<2	16	4.04	4	17	100	27	3.88	1.86	35	1.35	556	30	35	636	7	<5	<5	<10	233	459	7	81	<10	6	80
1697	666327	152	2	9.17	12	209	<2	21	3.87	11	67	104	740	10.95	1.97	28	0.92	527	40	83	402	15	<5	11	<10	178	412	<2	55	<10	6	402
1698	666328	189	<1	9.38	12	297	<2	16	3.84	6	28	106	124	5.35	1.78	32	1.14	592	33	42	549	14	<5	<5	<10	199	507	16	73	<10	5	241
1699	666329	632	2	7.67	49	246	<2	12	2.61	14	85	106	524	9.79	1.88	27	0.54	352	39	67	235	21	<5	6	<10	133	435	15	46	14	4	1325
1700	666330	9	1	7.95	4	67	<2	10	0.95	<4	3	136	8	0.36	1.81	31	0.39	<100	29	<1	<100	10	<5	9	<10	41	482	16	7	<10	7	10
1701	666331	35	<1	8.40	4	376	<2	18	3.14	13	68	147	538	8.61	1.85	30	0.66	402	39	88	259	14	<5	13	13	138	546	<2	56	18	4	1668
1702	666332	277	<1	8.53	44	440	<2	18	3.88	13	98	187	350	9.17	1.70	33	0.58	385	39	67	303	16	<5	8	11	145	529	8	69	17	5	1367

PROCEDURE CODES: ALP1, ALFA1, ALMA1

Certified By:

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Thursday, December 23, 2010

Stellar Pacific Venrures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ness.stellan@bellnet.ca, rogerovellet@vidoetron.ca

Certificate of Analysis

Date Received: 12/13/2010

Date Completed: 12/23/2010

Job #: 201020040

Reference:

Sample #: 55

																	-															
Acc#	Client ID	Au ppb	Ag ppm	AI %	As	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co	Cr ppm	Cu	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Ni ppm	P	Pb ppm	Sb	Se ppm	Sn ppm	Sr ppm	Ti ppm	Ti ppm	V	W	Y	Zn
1703	666333	9	<1	7.99	7	312	<2	15	2.08	<4	9	124	58	1.91	1.92	27	0.48	242	26	12	366	7	<5	13	<10	187	476	9	37	<10	4	263
1704D	666333	8	2	8.79	8	341	<2	12	2.40	<4	10	132	61	2.08	1.83	27	0.53	261	23	14	380	11	<5	7	<10	226	418	5	39	<10	4	281
1705	666334	5	<1	8.60	12	343	<2	9	2.87	<4	9	105	32	1.74	1.84	26	0.62	343	31	11	340	10	<5	<5	<10	262	511	11	42	<10	4	97
1706	666335	37	<1	8.98	24	456	2	14	2.65	9	61	122	329	6.99	1.63	31	0.71	417	43	63	397	14	<5	<5	<10	153	766	21	88	<10	4	1075
1707	666336	17	<1	8.01	7	311	2	18	1.26	<4	7	116	42	1.20	1.65	25	0.33	117	35	3	259	7	<5	<5	<10	146	512	4	20	<10	3	57
1708	666337	5	<1	9.62	7	218	<2	16	1.77	<4	2	68	12	0.74	1.58	23	0.31	134	27	<1	457	13	<5	11	<10	182	393	5	20	<10	3	18
1709	666338	13	<1	8.92	7	194	<2	6	2.38	<4	3	77	17	0.92	1.73	28	0.34	193	33	1	454	11	<5	9	<10	158	443	14	17	<10	4	37
1710	666339	90	<1	8.55	9	273	2	16	1.47	<4	4	120	24	0.96	1.78	29	0.35	113	38	2	277	12	<5	<5	<10	142	542	16	17	<10	3	35
1711	666340	11	1	9.51	7	299	<2	12	1.85	<4	5	132	27	1.12	1.98	23	0.34	118	29	2	264	14	<5	<5	<10	191	372	9	16	<10	3	63
1712	666341	24	<1	9.85	9	277	<2	16	6.05	4	16	171	89	2.61	1.74	36	0.71	392	38	54	271	18	<5	11	<10	180	467	<2	50	12	6	954
1713	666342	5	<1	10.55	18	192	<2	19	7.31	<4	9	102	27	1.61	2.03	34	1.33	443	28	86	389	12	<5	<5	<10	358	429	17	69	<10	6	13
1714	666343	<5	<1	9.46	16	266	2	13	6.55	<4	8	87	83	1.36	1.88	38	0.84	396	33	61	468	7	<5	10	<10	340	574	<2	64	<10	5	29
1715D	666343	7	2	8.96	13	259	2	19	6.86	<4	9	84	76	1.33	2.10	36	0.87	388	28	60	453	6	<5	15	<10	347	498	14	63	<10	5	27
1716	666344	6	<1	9.90	15	340	2	8	8.74	<4	7	75	16	1.01	1.85	38	0.64	438	27	46	501	8	<5	17	<10	403	494	<2	69	<10	6	7
1717	666345	23	<1	8.62	6	379	<2	13	2.83	<4	14	105	122	1.72	1.79	38	0.53	267	37	17	225	15	<5	15	<10	221	558	15	33	<10	4	261
1718	666346	15	<1	10.02	10	500	<2	17	3.33	4	27	135	189	3.19	1.66	38	0.96	499	36	47	278	11	<5	5	<10	177	538	<2	65	<10	5	572
1719	666347	23	<1	9.79	13	579	<2	11	2.20	5	32	119	322	2.78	2.05	35	0.71	343	36	35	180	7	<5	12	<10	100	570	<2	43	<10	4	926
1720	666348	31	<1	9.48	6	440	<2	17	3.28	7	57	216	507	4.69	2.01	35	0.83	681	39	67	233	16	<5	<5	<10	85	2172	7	163	<10	8	964
1721	666349	7	6	14.09	7	99	<2	16	6.47	- 7	54	266	196	6.81	1.99	39	1.76	1453	40	83	291	12	<5	<5	<10	191	5660	10	273	<10	19	218
1722	666350	1257	<1	9.35	20	909	2	14	2.63	<4	25	140	60	3.34	1.84	40	1.10	579	72	84	711	57	<5	<5	<10	478	676	16	137	<10	9	103

PROCEDURE CODES: ALP1, ALFA1, ALMA1

Certified By: Democratic House Laboratory Manager

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 12/13/2010
Date Completed: 12/23/2010

Job #: 201020040

Reference:

Sample #: 55

Stellar Pacific Venrures Inc 1155 University # 812 Montreal Quebec, On, CAN

Thursday, December 23, 2010

H3B 3A7 Ph#: (514) 866-6299

Fax#: (514) 866-6299

Email: ness.stellan@bellnet.ca, rogerovellet@vidoetron.ca

								-																								
Acc#	Client ID	Au ppb	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd	Co	Cr ppm	Cu	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo	Ni ppm	P	Pb	Sb	Se	Sn	Sr	Ti	TI	V	w	Υ	Zn
1723	666351	5	6	12.65	3	76	<2	20	5.94	6	49	269	108	5.86	2.07	33	1.61	1406	37	80	ppm 281	ppm 12	ppm <5	ppm <5	ppm 10	ppm 180	ppm 5499	ppm	ppm	ppm	ppm	ppm
1724	666352	5	2	10.85	27	325	<2	15	5.37	10	37	101	41	8.84	1.92	34	1.32	1931	41	31	489	11	<5	<5	<10	129	3532	,	264	<10 <10	15	131
1725	666353	14	8	13.84	8	148	<2	26	6.47	11	43	75	61	9.93	2.06	47	1.77	1828	43	34	529	15	<5	<5	<10	114	5319	17	284	<10	13	125
1726D	666353	11	4	12.74	11	135	<2	14	6.50	11	45	75	58	10.06	2.06	45	1.85	1848	37	35	518	15	<5	<5	<10	108	4893	20	287	<10	12	128
1727	666354	<5	5	12.17	7	89	<2	22	6.09	10	47	145	30	9.37	2.14	33	1.60	1889	39	34	559	14	<5	<5	<10	178	9405	10	315	<10	25	110
1728	666355	<5	4	12.98	4	105	<2	23	6.28	12	63	144	92	10.95	2.14	34	1.96	2124	41	36	612	14	<5	<5	<10	174	9756	6	333	<10	28	125
1729	666356	<5	8	12.46	6	66	2	17	5.42	10	42	78	16	9.22	2.11	41	1.81	1668	37	32	516	7	<5	8	<10	109	7682	17	282	<10	21	133
1730	666357	<5	<1	13.81	22	258	<2	21	6.52	9	29	80	38	8.62	1.90	48	1.63	1564	43	29	525	24	<5	<5	<10	110	1284	14	256	<10	10	122
1731	666358	38	<1	11.09	10	338	<2	20	7.18	6	31	104	255	6.16	1.98	35	1.18	850	35	40	597	15	<5	<5	<10	161	700	<2	222	<10	7	73
1732	666359	17	<1	8.31	13	270	<2	15	2.46	<4	16	134	520	2.10	1.67	29	0.43	270	29	17	235	6	<5	11	<10	125	546	13	26	<10	4	403
1733	666360	90	<1	9.23	20	225	<2	17	4.04	<4	18	100	105	2.67	1.82	31	0.46	408	31	24	315	10	<5	9	<10	152	537	15	43	<10	5	432
1734	666361	<5	<1	10.15	13	278	<2	17	4.52	5	39	183	228	4.95	1.90	43	1.12	674	32	65	250	6	<5	6	<10	208	588	16	203	<10	5	73
1735	666362	<5	3	12.51	13	374	<2	15	5.44	4	30	189	108	4.30	1.78	46	1.74	577	38	75	1112	14	<5	5	<10	230	4061	6	164	<10	13	136
1736	666363	<5	7	12.41	4	71	<2	19	5.62	5	33	165	64	4.99	1.81	41	2.15	661	34	80	1348	13	<5	<5	<10	385	5940	15	155	<10	17	84
1737D	666363	<5	4	12.76	10	76	<2	13	5.33	5	30	155	61	4.75	1.75	43	1.96	631	38	77	1293	15	<5	5	<10	363	5706	15	148	<10	16	72
1738	666364	6	9	12.40	13	76	<2	11	5.84	6	54	251	270	5.61	1.75	41	1.79	778	37	81	711	17	<5	7	<10	341	5608	6	206	<10	15	179
1739	666365	<5	2	11.21	25	134	<2	28	5.08	6	53	209	122	5.73	1.83	38	1.24	1009	34	80	263	11	<5	<5	<10	166	4496	20	232	<10	11	64
1740	666366	<5	3	10.36	6	79	<2	13	5.91	6	49	262	119	6.21	1.69	35	1.24	1261	35	83	274	16	<5	<5	<10	286	5390	2	242	<10	10	91
741	666367	<5	5	11.90	9	80	<2	22	5.28	7	48	211	40	6.45	2.03	34	1.75	1407	34	74	271	18	<5	<5	<10	235	5116	16	234	<10	13	70
1742	666368	6	6	13.03	2	73	<2	16	6.91	9	53	235	485	8.11	2.08	29	1.89	1826	33	76	251	8	<5	6	<10	194	4998	17	235	<10	18	104

PROCEDURE CODES: ALP1, ALFA1, ALMA1

Certified By: 10-50-00-00 Dec. Lebon By Manager

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

-1141-12/23/2010 9:24 AM

Page 3 of 3

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Friday, January 7, 2011

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Certificate of Analysis

Date Received: 12/20/2010

Date Completed: 01/03/2011

Job #: 201020043

Reference:

Sample #: 58

																																$\overline{}$
Acc#	Client ID	Au	Ag	Al	As	Ва	Be	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	K %	Li	Mg %	Mn	Mo ppm	Ni	P	Pb	Sb ppm	Se ppm	Sn	Sr ppm	Ti	TI ppm	V	W	Y	Zn
1055	666370	ppb	ppm	%	ppm	ppm	ppm	ppm		ppm	ppm	ppm					0.25	ppm <100	3	ppm	<100	ppin	_		<10	40	ppm		ррш	<10	ррт	ppin
1855	666371	<5	<1	4.80	,	119	<2	<1	0.58	<4	10	014	2	0.13	1.34	19		1992	3	102		14	<5	<5 .c	<10	98	291 3586	<2	181	<10	13	65
1856		<5	4	8.01	5	72	<2	<1	4.81	8	43	211	24	6.60	1.56	19	1.37		0		200	11	.5	<5 -5							8	
1857	666372	<5	3	6.61	18	310	<2	<1	4.88	6	40	229	3	4.52	1.48	26	1.01	1420	3	100	192	,	<5 -	<5 -F	<10	86	3134	<2	183	<10		52
1858	666373	<5	3	7.29	16	433	<2	<1	4.94	6	38	196	5	4.84	1.47	23	1.29	1401	1	101	179	5	-	<5	<10	59	2152	4	173	<10	10	54
1859	666374	6	1	7.19	21	188	<2	<1	5.88	7	36	186	10	5.37	1.45	19	1.21	1601	1	93	176	6	<5	<5	<10	57	1314	,	164	<10	10	58
1860	666375	6	3	6.83	6	101	<2	<1	6.60	8	39	182	29	6.20	1.39	20	1.16	1638	2	94	162	10	<5	<5	<10	61	507	8	162	<10	6	70
1861	666376	<5	<1	6.71	10	182	<2	3	6.44	8	34	221	13	5.73	1.41	20	1.19	1508	1	103	184	8	5	<5	<10	64	350	<2	180	<10	5	79
1862	666377	<5	<1	6.51	10	159	<2	<1	6.09	7	32	212	55	5.69	1.99	22	1.22	1393	2	90	181	9	<5	<5	<10	70	307	9	154	<10	4	78
1863	666378	<5	<1	7.13	<2	126	<2	<1	5.81	7	35	223	60	5.94	1.75	20	1.20	1494	1	96	183	9	<5	<5	<10	72	300	4	169	<10	4	70
1864	666379	<5	<1	6.96	5	82	<2	<1	5.08	7	36	201	39	5.55	1.63	19	1.17	1365	2	99	183	9	6	<5	<10	83	381	3	169	<10	4	74
1865D	666379	<5	<1	6.08	5	81	<2	<1	4.80	7	35	193	37	5.29	1.57	19	1.06	1309	2	96	175	9	<5	<5	<10	78	361	<2	164	<10	4	70
1866	666380	<5	<1	6.90	18	184	<2	<1	5.83	7	36	259	46	5.31	1.51	19	1.17	1328	2	99	169	8	<5	<5	<10	78	306	10	166	<10	5	62
1867	666381	<5	<1	7.25	14	325	<2	2	7.24	8	36	220	30	5.77	1.47	22	1.38	1410	1	103	224	10	<5	<5	<10	70	413	5	176	<10	6	60
1868	666382	<5	<1	7.25	14	101	<2	<1	5.29	7	32	221	14	5.32	1.39	20	1.35	1245	1	109	192	9	<5	<5	<10	65	250	7	186	<10	5	58
1869	666383	<5	<1	7.28	5	85	<2	<1	5.80	7	24	199	7	5.49	1.42	19	1.42	1684	1	100	179	9	<5	<5	<10	57	296	7	172	<10	7	78
1870	666384	12	<1	7.52	8	80	<2	<1	5.91	15	81	185	449	11.17	1.40	22	1.53	2412	2	109	175	23	5	<5	<10	69	2138	<2	145	<10	12	136
1871	666385	<5	<1	7.53	18	84	<2	<1	5.40	9	40	212	51	6.78	1.36	22	1.44	1772	1	94	183	11	<5	<5	<10	94	3424	4	178	<10	13	76
1872	666386	8	2	7.18	19	66	<2	<1	5.38	8	37	213	57	5.69	1:45	18	1.34	1370	1	91	168	10	<5	<5	<10	58	2003	4	164	<10	11	46
1873	666387	<5	4	7.36	16	201	<2	<1	4.96	8	38	177	50	6.08	1.48	25	2.20	1119	2	88	168	8	<5	<5	<10	61	2055	10	152	<10	11	51
874	666388	<5	5	8.24	18	78	<2	<1	5.46	8	39	189	47	6.30	1.54	31	3.03	1147	2	94	186	12	6	<5	<10	74	2344	3	166	<10	13	55

PROCEDURE CODES: ALP1, ALFA1, ALMA1

Certified By:

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 12/20/2010

Date Completed: 01/03/2011

Job #: 201020043

Reference:

Sample #: 58

Stellar Pacific Ventures Inc

1155 University # 812 Montreal Quebec, On, CAN

H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

																							-						- mino		Page 10 miles and	
Acc#	Client ID	Au	Ag	Al	As	Ва	Be	Bì	Ca	Cd	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Мо	Ni	Р	Pb	Sb	Se	Sn	Sr	Ti ppm	T) ppm	V	W	Y	Zn
		ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	ppm	ppm	ppm				76	2977	4	165	<10	13	54
1875	666389	5	5	8.01	10	67	<2	<1	5.56	8	39	182	57	6.38	1.51	28	3.09	1072	2	93	177	8	<5	<5	<10			4			13	
1876D	666389	6	4	8.21	<2	70	<2	<1	5.78	8	40	188	61	6.61	1.54	30	3.13	1116	1	97	185	11	5	<5	<10	81	3132	3	172	<10		55
1877	666390	<5	1	7.08	1456	145	<2	<1	6.20	8	30	252	96	5.63	1.63	50	2.94	1446	2	147	204	25	40	<5	<10	102	1509	9	175	25	9	103
1878	666391	<5	5	7.74	17	73	<2	<1	6.00	8	36	197	25	6.01	1.50	23	2.78	1097	2	92	176	8	<5	<5	<10	100	3061	9	168	<10	12	52
1879	666392	5	1	6.51	27	98	<2	<1	5.63	6	35	158	42	4.39	1.34	25	1.01	1235	2	77	148	7	<5	<5	<10	79	473	<2	141	<10	5	41
1880	666393	10	<1	7.10	9	110	<2	<1	6.65	11	55	152	212	8.20	1.41	29	1.24	1550	2	103	142	11	8	<5	<10	92	337	3	141	<10	5	53
1881	666394	<5	<1	7.31	42	141	<2	<1	5.49	7	31	168	23	5.07	1.29	31	1.10	1445	2	82	155	9	<5	<5	<10	103	285	<2	153	<10	4	49
1882	666395	7	<1	7.77	40	160	<2	<1	5.23	6	31	176	37	4.98	1.92	33	1.15	1615	2	82	168	9	6	<5	<10	129	286	2	169	<10	4	43
1883	666396	7	<1	7.84	61	149	<2	<1	5.60	8	48	171	72	6.24	1.75	33	1.26	1508	3	86	149	12	5	<5	<10	118	298	<2	159	<10	4	55
1884	666397	9	<1	7.12	50	147	<2	<1	5.42	5	24	146	14	3.84	1.70	29	1.12	1235	2	72	212	8	<5	<5	<10	129	255	4	131	<10	4	27
1885	666398	40	<1	7.24	37	207	<2	<1	5.71	5	22	164	31	3.97	1.66	25	1.16	1312	2	64	222	8	<5	<5	<10	125	271	<2	125	<10	4	20
1886	666399	28	<1	7.01	40	184	<2	<1	5.47	6	29	169	44	4.87	1.54	29	1.07	1333	2	70	174	10	<5	<5	<10	118	289	2	148	<10	4	32
1887D	666399	32	<1	7.14	34	177	<2	<1	5.72	7	31	169	45	5.02	1.54	27	1.14	1373	2	71	179	14	<5	<5	<10	119	258	<2	146	<10	4	34
1888	666400	236	<1	6.22	18	235	<2	<1	4.54	7	35	183	105	5.42	1.46	23	1.01	1299	3	84	143	10	<5	<5	<10	125	298	3	149	<10	3	19
								-1		,	25	110	6	4.32	1.41	25	1.66	1234	3	62	277	9	<5	<5	<10	124	301	3	120	<10	4	44
1889	666401	41	<1	6.39	64	233	<2	<1	5.50	0						20	1.03	1318	2	63	134	R	<5	<5	<10	95	257	4	115	<10	3	25
1890	666402	61	<1	5.69	12	243	<2	<1	4.49	ь	26	236	70	5.10	1.18				0		146	14	<5	<5	<10	98	284	<2	114	<10	4	22
1891	666403	150	<1	6.13	136	264	<2	<1	5.13	10	67	215	217	7.42	1.28	19	1.11	1445	2	86								2	122	<10	5	19
1892	666404	865	<1	7.22	19	325	<2	<1	4.54	6	22	149	90	4.46	1.86	22	1.24	1047	3	47	487	10	<5	<5	<10	119	309	0			6	33
1893	666405	269	<1	9.06	21	277	<2	<1	6.52	8	27	192	67	5.89	1.88	26	1.97	1440	2	67	278	15	6	<5	<10	134	293	9	149	<10	0	
1894	666406	403	<1	7.49	25	235	<2	<1	6.04	6	25	163	31	4.62	1.39	19	1.92	1350	1	77	157	9	<5	<5	<10	110	291	6	124	<10	4	23

PROCEDURE CODES: ALP1, ALFA1, ALMA1

Certified By:

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Friday, January 7, 2011

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Certificate of Analysis

Date Received: 12/20/2010

Date Completed: 01/03/2011

Job #: 201020043

Reference:

Sample #: 58

Acc#	Client ID	Au	Ag ppm	Al %	As ppm	Ba ppm	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe %	K %	Li	Mg %	Mn	Мо	Ni	Р	Pb	Sb	Se	Sn	Sr	Ti	TI	V	W	Y	Zn
895	666407	707	<1	5.60	20	224	ppm <2	ppm <1	% 1.50	ppm <4	ppm 9	220	ppm 24	2.10	1.35	14	0.51	ppm 293	ppm 3	ppm 15	ppm <100	ppm	ppm <5	ppm <5	ppm <10	ppm 46	ppm 229	ppm <2	ppm 48	ppm <10	ppm	ppm 8
896	666408	724	<1	5.98	51	300	<2	<1	3.34	8	57	180	1032	6.39	1.30	17	0.79	672	3	35	125	11	<5	<5	<10	74	288	<2	77	<10	4	34
897	666409	33	<1	7.00	10	449	<2	<1	3.08	<4	19	79	83	2.49	1.44	13	0.60	539	12	12	103	3	<5	<5	<10	67	217	<2	29	<10	5	11
898D	666409	16	<1	6.80	8	478	<2	<1	2.94	<4	19	78	75	2.41	1.45	17	0.54	530	12	15	109	7	<5	<5	<10	75	262	<2	32	<10	5	13
899	666410	<5	<1	4.72	<2	101	<2	<1	0.50	<4	<1	5	2	0.08	1.27	15	0.24	<100	2	<1	<100	<1	<5	<5	<10	34	211	<2	3	<10	5	6
900	666411	8	<1	7.36	19	191	2	<1	5.40	9	29	98	46	7.26	1.37	26	1.79	1758	2	29	234	13	<5	<5	<10	93	284	11	177	<10	4	69
901	666412	<5	<1	7.20	31	229	<2	<1	5.91	9	26	94	5	6.51	1.36	22	2.08	1930	2	34	215	11	<5	<5	<10	95	299	5	174	<10	4	58
902	666413	<5	2	8.91	25	141	<2	<1	5.94	9	29	93	<1	7.38	1.93	26	2.35	2111	1	38	227	12	<5	<5	<10	87	581	12	200	<10	7	64
903	666414	13	<1	7.30	13	84	2	<1	5.99	14	119	82	252	10.29	1.72	18	2.10	2351	2	47	191	17	7	<5	<10	86	2640	<2	163	<10	12	55
904	666415	35	3	8.48	26	117	<2	<1	5.74	10	74	178	253	7.76	1.53	22	1.90	1838	3	76	198	15	<5	<5	<10	72	3523	2	193	<10	14	65
905	666416	<5	<1	7.31	<2	463	<2	<1	1.63	<4	8	144	21	1.82	1.45	14	0.77	328	3	19	130	3	<5	<5	<10	62	801	7	31	<10	8	22
906	666417	<5	<1	6.29	4	599	2	<1	1.01	<4	2	151	31	0.79	1.39	16	0.22	103	3	7	124	6	<5	<5	<10	82	388	<2	3	<10	5	7
907	666418	<5	<1	7.29	5	363	<2	<1	0.98	<4	2	135	28	0.84	1.41	12	0.24	108	2	5	132	1	<5	<5	<10	87	353	<2	3	<10	7	10
908	666419	6	1	6.19	11	404	<2	<1	1.50	<4	4	212	8	1.28	1.39	18	0.35	264	4	13	123	3	<5	<5	<10	73	495	2	12	<10	5	16
909D	666419	19	<1	5.69	8	410	2	<1	1.42	<4	4	222	8	1.26	1.27	18	0.34	266	4	12	124	7	5	<5	<10	71	518	<2	12	<10	5	16
910	666420	32	1	7.50	24	247	<2	<1	5.77	7	36	284	74	4.99	1.55	18	2.19	1302	2	224	175	10	<5	<5	<10	107	3166	10	176	<10	12	80
911	666421	6	<1	8.13	8	156	<2	<1	5.27	7	39	300	48	5.34	1.55	16	2.38	1359	1	95	194	8	<5	<5	<10	115	3006	4	169	<10	12	61
912	666422	163	4	7.19	13	223	<2	<1	3.97	6	20	252	55	4.77	1.53	16	1.83	1109	2	58	124	7	<5	<5	<10	46	1934	15	108	<10	11	53
913	666423	10	2	7.41	30	584	<2	<1	7.01	8	37	257	169	6.26	1.52	20	2.22	1641	2	84	159	13	<5	<5	<10	51	2601	7	163	<10	12	69
914	666424	<5	1	8.31	7	109	<2	<1	6.25	8	40	301	72	6.20	1.43	16	2.78	1389	1	98	164	10	<5	<5	<10	127	3063	10	178	<10	13	57

PROCEDURE CODES: ALP1, ALFA1, ALMA1

Certified By: Elem Denomin & Bio., Canara any, Manager

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 12/20/2010

Date Completed: 01/03/2011

ompicioa. o moorzo

Job #: 201020043

Reference:

Sample #: 58

1155 University # 812 Montreal Quebec, On, CAN H3B 3A7 Ph#: (514) 866-6299

Stellar Pacific Ventures Inc

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Acc #	Client ID		_														_													W			
1915	666425	11	<1	7.96	24	77	<2	<1	5.11	12	49	150	110	9.33	1.49	17	2.12	2224	2	53	286	15	6	<5	<10	64	4433	3	216	<10	17	83	
1916	666426	<5	8	8.15	21	81	<2	<1	5.70	10	41	68	35	8.04	1.45	18	2.39	2212	1	37	384	12	8	<5	<10	69	5548	<2	269	<10	23	83	
1917	666427	5	<1	7.63	18	80	<2	<1	5.94	9	39	188	136	7.18	1.70	14	2.42	2121	2	40	256	15	<5	<5	<10	86	4330	3	220	<10	18	65	

PROCEDURE CODES: ALP1, ALFA1, ALMA1

Certified By: David Brand H. Bla. Laboratory Manager

Thunder Bay, ON Canada P78 5X5

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com

Wednesday, January 5, 2011

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Certificate of Analysis

Date Received: 12/30/2010 Date Completed: 01/05/2011

Job #: 201020048

Reference: Sample #: 54

Acc#	Client ID	Au ppb	Au oz/t	Au g/t (ppm)
2103	666428	6	<0.001	0.006
2104	666429	<5	<0.001	<0.005
2105	666430	422	0.012	0.422
2106	666431	52	0.002	0.052
2107	666432	<5	<0.001	<0.005
2108	666433	34	<0.001	0.034
2109	666434	<5	<0.001	<0.005
2110	666435	25	<0.001	0.025
2111	666436	<5	<0.001	<0.005
2112	2 2 2 11	17	<0.001	0.017
	Oup 666437	10	<0.001	0.010
2114		5	<0.001	0.005
2115		<5	<0.001	<0.005
2116		10	<0.001	0.010
2117		<5	<0.001	<0.005
2118		<5	<0.001	
2119				<0.005
		15	<0.001	0.015
2120		7	<0.001	0.007
2121		5	<0.001	0.005
2122		410	0.012	0.410
2123	1 00 1	5	<0.001	0.005
	Oup 666447)	9	<0.001	0.009
2125		21	<0.001	0.021
2126	666449	<5	<0.001	<0.005
2127	666450	<5	<0.001	<0.005
2128	666451	12	<0.001	0.012
2129	666452	7	<0.001	0.007
2130	666453	<5	<0.001	<0.005
2131	666454	8	<0.001	0.008
2132	666455	17	<0.001	0.017

PROCEDURE CODES: ALM1, ALFA1, ALMA1

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

AL903-1141-01/05/2011 1:14 PM

1046 Gorham Street Tel; (807) 626-1630 www.accurussay.com Thunder Bay, ON Canada P78 5X5

Fax: (607) 622-7571 assay@accurassay.com

Wednesday, January 5, 2011

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Certificate of Analysis

Date Received: 12/30/2010 Date Completed: 01/05/2011

Job #: 201020048

Reference: Sample #: 54

Acc#	Client ID	Au ppb	Au oz/t	Au
2133	666456	φρυ <5	<0.001	g/t (ppm) <0.005
2134	666457	<5	<0.001	
2135 Dup	}			<0.005
		<5	<0.001	<0.005
	666458	9	<0.001	0.009
2137	666459	6	<0.001	0.006
2138	666460	6	<0.001	0.006
2139	666461	15	<0.001	0.015
2140	666462	<5	<0.001	<0.005
2141	666463	12	<0.001	0.012
2142	666464	71	0.002	0.071
2143	666465	<5	<0.001	<0.005
2144	666466	30	<0.001	0.030
2145	666467	10	<0.001	0.010
2146 Dup	666467	14	<0.001	0.014
2147	666468	505	0.015	0.505
2148	666469	136	0.004	0.136
2149	666470	1372	0.040	1.372
2150	666471	13	<0.001	0.013
2151	666472	419	0.012	0.419
2152	666473	17	<0.001	0.017
2153	666474	169	0.005	0.169
2154	666475	5	<0.001	0.005
2155	666476	19	<0.001	0.019
2156	666477	7	<0.001	0.007
2157 Dup	7	<5	<0.001	<0.005
2158	666478	<5	<0.001	<0.005
2159	666479	6	<0.001	0.006
2160	666480	6	<0.001	0.006
2161	666481	6	<0.001	0.006
2101	000401	· ·	V0.00 I	0.000

PROCEDURE CODES: ALM1, ALFA1, ALMA1

Certified By: And But Lances, horage

Thunder Bay, ON Canada P78 5X5

1046 Gorham Street Tel: (807) 626-1630 www.accurussay.com Fax: (807) 622-7571 assay@accurassay.com

Monday, January 3, 2011

stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Certificate of Analysis

Date Received: 12/20/2010 Date Completed: 01/03/2011

Job #: 201020045

Reference: Sample #: 56

Acc#	Client ID	Au ppb	Au oz/t	Au g/t (ppm)
1946	666482	71	0.002	0.071
1947	666483	367	0.011	0.367
1948	666484	419	0.012	0.419
1949	666485	174	0.005	0.174
1950	666486	766	0.022	0.766
1951	666487	93	0.003	0.093
1952	666488	323	0.009	0.323
1953	666489	249	0.007	0.249
1954	666490	214	0.007	0.214
1955		135	0.004	0.135
	666491 p 666491	120	0.004	0.120
1957	666492	44	0.001	0.044
1958	666493	63	0.002	0.063
1959	686494	12	<0.001	0.012
1960	666495	135	0.004	0.135
1961	666496	51	0.001	0.051
1962	666497	98	0.003	0.098
1963	666498	17	<0.001	0.017
1964	666499	78	0.002	0.078
1965	666500	98	0.003	0.098
1966	14001 .017	20	<0.001	0.020
1967 Du	ip 14001)	14	<0.001	0.014
1968	14002	331	0.010	0.331
1969	14003	167	0.005	0.167
1970	14004	179	0.005	0.179
1971	14005	480	0.014	0.480
1972	14006	778	0.023	0.778
1973	14007	130	0.004	0.130
1974	14008	55	0.002	0.055
1975	14009	434	0.013	0.434

PROCEDURE CODES: ALM1, ALFA1, ALMA1

Certified By:

1046 Gorham Street Tel: (807) 526-1630 www.accurassay.com Thunder Bay, ON Canada P78 5X5

Fax: (807) 622-7571 assay@accurassay.com

Monday, January 3, 2011

stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Certificate of Analysis

Date Received: 12/20/2010 Date Completed: 01/03/2011

Job #: 201020045

Reference: Sample #: 56

Acc#	Client ID	Au	Au	Аи
		ppb	oz/t	g/t (ppm)
1976	14010	3527	0.103	3.527
1977	14011	301	0.009	0.301
1978 Dup	14011)	257	0.007	0.257
1979	14012	396	0.012	0.396
1980	14013	69	0.002	0.069
1981	14014	49	0.001	0.049
1982	14015	71	0.002	0.071
1983	14016	1192	0.035	1.192
1984	14017	57	0.002	0.057
1985	14018	590	0.017	0.590
1986	14019	197	0.006	0.197
1987	14020	1362	0.040	1.362
1988	14021	101	0.003	0.101
1989 Dup	14021)	101	0.003	0.101
1990	14022	184	0.005	0.184
1991	14023	45	0.001	0.045
1992	14024	293	0.009	0.293
1993	14025	322	0.009	0.322
1994	14026	1837	0.054	1.837
1995	14027	50	0.001	0.050
1996	14028	1188	0.035	1.188
1997	14029	50	0.001	0.050
1998	14030	13	<0.001	0.013
1999	14031	9	<0.001	0.009
2000 Dup	14031	12	<0.001	0.012
2001	14032	9	<0.001	0.009
2002	14033	9	<0.001	0.009
2003	14034	278	0.008	0.278
2004	14035	76	0.002	0.076
2005	14036	9	<0.001	0.009
2000		~	-5.001	0.003

PROCEDURE CODES: ALM1, ALFA1, ALMA1

1046 Gorham Street Tel: (807) 626-1630 www.accurassiw.com Thunder Bay, ON Fax: (807) 622-7571 assay@accurassay.com Canada P78 5X5

Monday, January 3, 2011

stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Certificate of Analysis

Date Received: 12/20/2010

Date Completed: 01/03/2011

Job #: 201020045

Reference:

Sample #: 56

Acc	Client ID	Au	Au	Au
#		ppb	oz/t	g/t (ppm)
2006	14037	9	<0.001	0.009

PROCEDURE CODES: ALM1, ALFA1, ALMA1

Certified By: [--- Company to age to accomp to age

Thunder Bay, ON Canada P78 5X5

1046 Gotham Street Tel: (807) 625-1630 www.accurissay.com

Fax: (807) 622-7571 assay@accurassay.com

Thursday, December 23, 2010

Stellar Pacific Venrures Inc. 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7 Ph#: (514) 866-6299 Fax#: (514) 866-6299 Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Certificate of Analysis

Date Received: 12/20/2010 Date Completed: 12/23/2010

Job #: 201020044

Reference:

Sample #: 26

Acc#	Client ID	Au ppb	Ag ppm	Al %	As ppm	Ba ppm	Be	Bi ppm	Ca %	Cd ppm	Co	Cr ppm	Cu	Fø %	K %	Li ppm	Mg	Mn	Mo ppm	Ni ppm	P	Pb ppm	Sb	Se ppm	Sn ppm	Sr ppm	Ti ppm	IT mqq	V	W ppm	Y ppm	Zn ppm
1918	14038	11	<1	3.53	<2	32	4	<1	2.72	12	42	129	132	6.54	0.61	8	1.66	960	20	35	373	6	<5	6	<10	39	3359	4	163	15	13	82
1919	14039	11	<1	5.01	<2	27	4	<1	6.38	15	50	78	84	8.46	0.68	15	1.77	1761	20	39	406	12	<5	14	<10	32	4646	13	277	18	19	112
1920	14040	14	<1	4.45	4	31	4	<1	5.91	11	36	197	33	6.07	0.62	16	2.00	1554	22	70	618	<1	<5	<5	<10	42	3639	10	166	17	14	108
921	14041 -	17	<1	4.00	2	40	3	4	6.71	11	36	220	484	6.09	0.84	12	1.37	1436	26	61	296	12	<5	18	<10	33	1068	7	136	15	9	84
1922	14042	10	1	6.86	2	50	4	<1	6.36	16	54	76	124	9.15	1.32	18	1.78	1946	24	42	401	10	<5	11	<10	37	6271	11	295	19	23	130
1923	14043	13	<1	4.41	3	29	5	<1	6.16	17	50	81	90	9.11	0.34	12	1.71	2185	22	43	360	5	<5	<5	<10	22	5581	11	273	17	19	135
924	14044	14	<1	5.42	4	68	4	<1	4.89	16	62	137	206	8.83	0.89	14	1.86	2242	23	58	373	7	<5	11	12	48	4705	11	211	16	18	152
925	14045	12	<1	4.39	3	55	3	<1	4.67	11	54	262	62	6.23	0.57	10	1.70	1961	18	119	194	9	<5	<5	≪10	39	3625	12	178	18	11	107
926	14046	12	<1	5.17	3	45	3	<1	4.69	12	60	287	221	6.80	0.88	10	1.91	1992	21	123	197	11	<5	15	<10	49	3879	11	167	17	12	97
927	14047	12	<1	4.02	<2	28	2	<1	3.63	9	57	244	236	5.10	0.63	7	1.37	1425	18	115	176	7	<5	10	<10	45	3604	6	134	18	12	101
928D	14047	12	<1	4.36	<2	33	2	<1	3.80	10	59	261	236	5.31	0.78	8	1.45	1484	18	119	182	9	<5	11	<10	47	3746	9	142	14	12	100
929	14048	11	<1	4.11	3	39	2	<1	3.36	9	55	283	190	5.16	0.81	8	1.35	1469	21	118	181	8	<5	9	<10	40	3491	4	145	15	11	74
1930	14049	11	<1	3.68	<2	49	2	<1	3.00	8	45	262	112	4.79	0.70	7	1.32	1373	17	100	193	10	<5	14	<10	34	3496	18	144	17	11	68
931	14050	503	18	4.37	356	163	3	3	0.39	49	6	207	428	5.36	1.68	18	1.01	256	18	7	<100	2228	25	12	<10	26	267	5	12	77	13	8122
932	14051	7	1	6.24	4	76	3	<1	4.24	10	51	263	114	5.46	1.61	13	1.46	1568	21	115	190	27	<5	<5	<10	62	3916	10	161	17	13	156
933	14052	6	<1	3.97	<2	34	2	<1	3.57	8	52	250	198	4.79	0.77	8	1.19	1320	19	113	179	5	<5	6	<10	42	3630	8	132	16	11	63
934	14053	5	<1	4.42	2	50	2	<1	3.37	8	47	226	111	4.54	0.98	9	1.25	1290	16	109	178	8	<5	10	<10	52	3856	12	139	12	11	58
935	14054	8	<1	3.97	<2	30	3	<1	5.02	9	42	175	197	4.84	0.70	8	1.78	975	15	70	249	6	<5	<5	<10	59	4163	7	126	17	12	53
936	14055	6	<1	5.64	4	40	3	<1	3.61	13	52	230	84	7.44	0.90	15	3.74	1133	24	113	191	12	<5	19	<10	39	3284	10	147	18	9	97
937	14056	6	<1	6.32	28	132	3	<1	7.37	14	44	182	33	7.64	1.26	24	1.81	2128	19	91	155	12	<5	21	<10	45	2948	7	156	15	13	82

PROCEDURE CODES: ALM1, ALFA1, ALMA1

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com Thunder Bay, ON Canada P78 5X5

Fax: (807) 622-7571 assay@accurassay.com

Thursday, December 23, 2010

Stellar Pacific Venrures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7 Ph#: (514) 866-6299 Fax#: (514) 866-6299 Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Certificate of Analysis

Date Received: 12/20/2010

Date Completed: 12/23/2010

Job #: 201020044

Reference:

Sample #: 26

Acc#	Client ID	Au ppb	Ag ppm	AJ %		Ba ppm	Be ppm	Bi ppm	Ca %	Cd	Co				K		Mg %	Mn ppm	Mo ppm	Ni ppm	ppm	Pb ppm	Sb ppm	Se ppm	Sn ppm	Sr	Ti ppm	TI ppm	V	W	Y	Zn ppm
1938	14057	9	<1	5.30	21	162	2	<1	9.35	9	30	140	88	5.24	1.15	21	1.76	1568	15	46	454	11	<5	6	<10	46	997	18	105	14	13	51
1939D	14057	9	<1	4.05	20	124	3	<1	8.82	9	29	129	83	4.92	0.66	18	1.64	1484	11	43	421	6	<5	9	<10	36	881	8	96	16	12	47
1940	14058	<5	<1	5.64	20	48	2	<1	5.82	10	32	287	63	5.46	0.86	33	3.33	1388	18	124	842	6	<5	7	<10	47	593	9	140	17	12	85
1941	14059	<5	<1	5.45	21	48	3	2	5.85	10	34	316	16	5.40	0.74	34	3.51	1413	16	136	930	8	<5	6	<10	49	500	9	125	16	11	82
1942	14060	6	<1	5.01	31	56	3	3	5.21	11	44	205	33	5.82	0.74	28	2.59	1431	14	111	347	10	<5	11	<10	41	342	13	137	17	9	81
1943	14061	29	<1	4.70	21	93	3	7	7.81	10	42	179	85	5.48	0.90	23	1.80	1795	14	100	177	5	<5	≪5	<10	48	139	7	94	13	6	57
1944	14062	10	1	7.27	31	75	3	5	6.94	11	45	180	14	6.03	1.66	31	1.75	1943	17	98	172	6	≪5	11	<10	79	515	8	151	17	11	68
1945	14063	6	<1	6.79	11	63	3	4	7.76	12	44	190	11	6.78	1.26	32	1.80	2192	18	99	166	7	<5	7	<10	72	392	7	157	16	10	75

PROCEDURE CODES: ALM1, ALFA1, ALMA1

Thursday, February 24, 2011

Stellar Pacific Ventures Inc

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 02/10/2011
Date Completed: 02/17/2011
Revised Date: 02/24/2011
Job #: 201120002

Reference: Sample #: 153

1155 University # 812	
Montreal Quebec, On, CAN	
H3B 3A7	
Ph#: (514) 866-6299	
Fax#: (514) 866-6299	

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

-				
Acc #	Client ID	Au	Au	Au
		ppb	oz/t	g/t (ppm)
154	14065	<5	<0.001	<0.005
155	14066	<5	<0.001	<0.005
156	14067	<5	<0.001	<0.005
157	14068	8	<0.001	0.008
158	14069	5	<0.001	0.005
159	14070	5	<0.001	0.005
160	14071	<5	<0.001	<0.005
161	14072	<5	<0.001	<0.005
162	14073	<5	<0.001	<0.005
163	14074	12	<0.001	0.012
164 Dup	14074	5	<0.001	0.005
165	14075	7	<0.001	0.007
166	14076	<5	<0.001	< 0.005
167	14077	6	<0.001	0.006
168	14078	<5	<0.001	<0.005
169	14079	35	0.001	0.035
170	14080	6	<0.001	0.006
171	14081	<5	<0.001	<0.005
172	14082	<5	<0.001	<0.005
173	14083	<5	<0.001	< 0.005
174	14084	<5	<0.001	<0.005
175 Dup	14084	<5	<0.001	< 0.005
176	14085	<5	<0.001	<0.005
177	14086	<5	<0.001	<0.005
178	14087	<5	<0.001	<0.005
179	14088	<5	<0.001	<0.005
180	14089	<5	<0.001	<0.005
181	14090	<5	<0.001	<0.005
182	14091	9	<0.001	0.009
183	14092	<5	<0.001	<0.005

PROCEDURE CODES: ALM1, ALFA2

Certified By: Person Research In the Control of the

Thursday, February 24, 2011

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Date Received: 02/10/2011 Date Completed: 02/17/2011 Revised Date: 02/24/2011 Job #: 201120002

Reference: Sample #: 153

		.000	1 34	Parties Jan.
Acc #	Client ID	Au	Au	Au
		ppb	oz/t	g/t (ppm)
184	14093	<5	<0.001	<0.005
185	14094	<5	<0.001	<0.005
186 Dup	14094	<5	<0.001	<0.005
187	14095	6	<0.001	0.006
188	14096	<5	<0.001	<0.005
189	14097	<5	<0.001	<0.005
190	14098	7	<0.001	0.007
191	14099	<5	<0.001	< 0.005
192	14100	<5	<0.001	<0.005
193	14101	<5	<0.001	<0.005
194	14106	<5	<0.001	<0.005
195	14107	<5	<0.001	<0.005
196	14108	67	0.002	0.067
197	14110	<5	<0.001	<0.005
198	14111	5	<0.001	0.005
199	14112	21	<0.001	0.021
200	14133	52	0.002	0.052
201	14134	<5	<0.001	<0.005
202	14135	<5	<0.001	<0.005
203	14136	<5	<0.001	<0.005
204	14137	<5	<0.001	<0.005
205	14169	<5	<0.001	<0.005
206	14170	480	0.014	0.480
207	14171	<5	<0.001	<0.005
208 Dup	14171	<5	<0.001	<0.005
209	14172	<5	<0.001	<0.005
210	14173	<5	<0.001	<0.005
211	14174	<5	<0.001	<0.005
212	14175	<5	<0.001	<0.005
213	14176	<5	<0.001	<0.005
2.0		~~	V0.001	10.003

PROCEDURE CODES: ALM1, ALFA2

Thursday, February 24, 2011

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 02/10/2011
Date Completed: 02/17/2011
Revised Date: 02/24/2011
Job #: 201120002

Reference: Sample #: 153

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN

H3B 3A7 Ph#: (514) 866-6299

Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Au g/t (ppm)	Au oz/t	Au ppb	Client ID	Acc #
<0.005	<0.001	<5	14177	214
<0.005	<0.001	<5	14178	215
<0.005	<0.001	<5	14179	216
0.120	0.003	120	14196	217
0.380	0.011	380	14197	218
0.385	0.011	385	14197	219 Rep
0.035	0.001	35	14198	220
0.026	<0.001	26	14199	221
0.007	<0.001	7	14200	222
<0.005	<0.001	<5	14201	223
<0.005	<0.001	<5	14202	224
<0.005	<0.001	<5	14203	225
0.008	<0.001	8	14204	226
<0.005	<0.001	<5	14205	227
0.117	0.003	117	14206	228
0.005	<0.001	5	14207	229
0.012	<0.001	12	14218	230
4.633	0.135	4633	14219	231
0.357	0.010	357	14220	232
0.601	0.018	601	14221	233
0.967	0.028	967	14222	234
0.098	0.003	98	14223	235
0.079	0.002	79	14224	236
2.690	0.078	2690	14225	237
6.625	0.193	6625	14226	238
4.070	0.119	4070	14227	239
0.177	0.005	177	14228	240
0.153	0.004	153	14228	241 Dup
18.365	0.536	18365	14229	242
0.007	<0.001	7	14245	243

PROCEDURE CODES: ALM1, ALFA2

Certified By: Dane Demokration of the Laborary Member

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Friday, January 14, 2011

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Certificate of Analysis

Date Received: 12/30/2010 Date Completed: 01/05/2011

Job #: 201020047

Reference: Sample #: 34

																	_										_					and the last of th
Acc#	Client ID	Au ppb	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd	Co	Cr ppm	Cu	Fe %	K %	Li ppm	Mg %	Mn	Mo ppm	Ni ppm	P	Pb ppm	Sb	Se ppm	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W	Y ppm	Zn ppm
2066	14115	<5	<1	8.02	39	74	3	<1	7.28	<4	17	125	27	4.98	1.70	36	1.98	1455	39	72	354	48	<5	<5	<10	83	259	8	135	<10	6	101
2067	14116	5	<1	7.46	38	49	2	13	7.59	<4	23	143	71	6.74	1.43	37	2.34	1668	38	75	323	59	<5	<5	<10	76	229	9	153	<10	4	64
2068	14117	<5	<1	6.45	39	38	2	11	7.04	<4	24	127	48	7.29	1.05	38	2.68	1461	42	80	445	56	<5	<5	<10	42	173	14	149	<10	4	82
2069	14118	9	<1	7.88	46	128	2	<1	7.89	<4	21	145	35	6.41	1.89	34	2.24	1698	33	78	359	63	5	<5	<10	65	226	15	152	<10	5	51
2070	14119	35	<1	7.39	49	236	<2	<1	7.72	<4	14	134	32	6.21	1.97	21	1.89	2184	39	71	391	50	5	<5	<10	78	218	3	136	<10	4	43
2071	14120	58	<1	7.83	46	133	2	10	6.48	<4	14	130	12	6.03	1.86	21	1.92	2080	36	76	553	49	<5	<5	<10	83	188	10	145	<10	4	46
2072	14121	2034	<1	7.85	51	201	2	12	6.59	<4	10	134	54	6.17	2.09	18	1.82	2066	36	69	381	52	<5	<5	<10	93	210	4	148	<10	3	38
2073	14122	7514	<1	6.40	42	307	2	<1	6.01	<4	13	135	319	5.95	2.21	12	1.78	1582	34	42	480	41	6	<5	<10	85	209	4	77	<10	4	23
2074	14123	2119	<1	5.98	59	264	2	<1	4.86	<4	23	227	451	6.31	2.24	14	1.42	1232	37	45	282	37	<5	<5	<10	74	200	10	84	<10	4	15
2075	14124	1083	<1	6.72	46	157	2	3	6.73	<4	28	94	216	7.34	1.96	23	2.47	2120	41	50	386	63	<5	<5	<10	79	186	3	163	<10	4	41
2076D	14124	962	<1	6.50	55	153	3	<1	6.88	<4	30	89	218	7.47	1.78	22	2.51	2190	47	49	370	58	<5	<5	<10	80	171	6	166	<10	4	43
2077	14125	54	<1	7.32	48	70	2	6	6.87	<4	16	90	8	7.16	1.80	29	2.86	2327	43	50	440	60	<5	<5	<10	71	185	8	183	<10	5	54
2078	14126	10	<1	6.89	50	65	3	6	6.25	<4	17	82	11	7.14	1.85	28	2.77	2132	39	52	433	58	<5	<5	<10	62	189	15	171	<10	3	52
2079	14127	12	1	7.30	44	64	3	<1	5.97	<4	17	87	5	7.60	1.84	30	2.66	2303	45	52	595	65	<5	<5	<10	65	201	11	184	<10	4	70
2080	14128	6	<1	6.93	48	61	2	<1	6.68	<4	16	79	2	7.29	1.82	28	2.68	2386	44	48	400	59	<5	<5	<10	75	192	10	177	<10	4	61
2081	14129	9	2	6.51	40	63	2	<1	6.97	<4	17	106	71	7.32	1.77	21	2.45	2457	43	46	445	58	<5	<5	<10	84	165	8	146	<10	3	47
2082	14130	4017	4	7.65	2421	131	2	4	7.58	<4	18	262	121	6.76	2.15	56	3.62	1622	40	133	436	80	30	<5	<10	102	933	3	194	27	9	90
2083	14131	29	<1	6.87	46	136	2	3	7.78	<4	33	95	277	8.66	2.24	20	2.24	2026	42	76	588	73	5	<5	<10	93	249	15	125	<10	5	36
2084	14132	9	<1	7.24	52	188	3	<1	8.12	<4	19	207	29	6.98	2.17	23	2.32	2089	39	91	371	63	<5	<5	<10	93	253	21	132	<10	3	40
2085	14180	9	2	7.14	49	229	2	6	4.92	<4	21	69	226	9.32	1.88	23	1.94	1251	49	43	688	79	<5	<5	<10	61	1924	4	244	<10	12	115

PROCEDURE CODES: ALM1, ALFA1, ALMA1

Certified By: Selection of the Laboratory Mensor

£ - 3

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Friday, January 14, 2011

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Certificate of Analysis

Date Received: 12/30/2010 Date Completed: 01/05/2011

Job #: 201020047

Reference: Sample #: 34

			********	75	total a			- Table - Tabl	-			***************************************	AL PROPERTY		-	- Delivery	707															
Acc#	Client ID	Au ppb	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y	Zn ppm
2086	14181	71	<1	4.74	46	142	5	8	3.94	<4	60	64	981	16.75	1.59	11	0.70	750	87	103	494	117	6	<5	<10	62	214	2	70	24	4	2538
2087D	14181	68	<1	6.19	40	142	4	18	3.90	<4	55	66	935	16.44	2.01	14	0.69	724	80	101	651	128	6	<5	<10	73	312	2	78	19	4	2438
2088	14182	2112	<1	5.17	62	110	5	5	2.41	<4	82	195	404	16.33	1.84	11	0.62	384	82	82	392	112	<5	<5	<10	66	291	7	59	<10	3	446
2089	14183	49	<1	6.09	48	127	5	14	2.92	<4	77	72	874	17.86	1.89	12	0.68	389	85	85	406	136	<5	<5	<10	106	345	6	55	16	3	1624
2090	14184	27	<1	6.33	45	165	4	14	3.89	<4	55	141	533	14.39	2.02	20	1.60	536	76	78	347	116	<5	<5	<10	98	198	<2	78	16	4	1420
2091	14185	240	<1	6.82	46	319	2	<1	4.50	<4	3	62	90	4.49	2.25	18	1.59	568	35	41	629	30	<5	<5	<10	138	224	12	65	<10	6	48
2092	14186	84	<1	4.79	48	109	3	5	2.48	<4	67	137	434	12.75	1.71	11	0.59	261	71	63	453	78	<5	<5	<10	85	142	4	39	16	4	839
2093	14187	48	<1	6.17	60	200	2	1	4.13	<4	7	145	107	3.96	1.92	19	1.84	612	34	63	470	20	<5	<5	<10	133	166	10	57	<10	5	298
2094	14188	11	<1	6.42	55	179	2	<1	4.77	<4	3	167	37	3.98	1.95	24	2.35	694	32	79	626	23	<5	<5	10	127	169	8	66	<10	5	56
2095	14189	33	<1	6.61	51	252	2	<1	4.99	<4	3	145	74	3.91	2.15	19	2.20	678	36	75	514	21	<5	<5	<10	132	191	12	68	<10	5	46
2096	14190	6	<1	2.93	39	42	<2	<1	0.30	<4	<1	451	5	0.41	1.51	16	0.14	<100	44	5	228	<1	<5	<5	<10	17	110	8	39	<10	4	16
2097	14191	1004	<1	6.95	45	251	<2	<1	3.92	<4	<1	147	52	3.26	2.20	19	1.72	548	34	57	597	20	<5	<5	<10	126	191	9	60	<10	5	61
2098D	14191	941	<1	6.76	80	237	2	<1	3.98	<4	<1	145	54	3.35	2.14	19	1.76	560	35	59	503	18	<5	<5	<10	121	186	11	58	<10	5	70
2099	14192	1315	2	6.79	185	164	3	<1	3.20	<4	83	106	1013	9.92	2.18	16	0.69	338	63	97	341	82	<5	<5	10	92	207	2	41	35	5	3620
2100	14193	56	<1	6.03	53	287	<2	<1	5.98	<4	<1	81	61	1.69	2.11	14	0.40	381	36	16	419	8	<5	<5	<10	75	202	14	12	<10	6	256
2101	14194	20	<1	6.15	43	289	<2	<1	2.35	<4	<1	108	133	1.33	2.13	12	0.25	130	39	14	319	5	<5	<5	<10	59	201	4	11	<10	4	335
2102	14195	234	<1	7.91	47	456	<2	<1	1.67	<4	<1	99	10	1.14	2.09	14	0.27	<100	37	12	441	8	<5	<5	<10	128	284	9	5	<10	3	76

PROCEDURE CODES: ALM1, ALFA1, ALMA1

Certified By: Denis Denisma N Bisc. Laboratory Workson

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Friday, January 14, 2011

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Certificate of Analysis

Date Received: 12/30/2010 Date Completed: 01/05/2011

Job #: 201020049

Reference: Sample #: 31

Acc#	Client ID	Au ppb	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co	Cr ppm	Cu	Fe %	K %	Li ppm	Mg %	Mn	Mo ppm	Ni ppm	P	Pb ppm	Sb	Se	Sri ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W	Y ppm	Zn ppm
2162	14138	10	22	7.19	55	51	3	3	3.75	<4	32	71	160	10.20	1.62	15	2.17	1777	54	56	696	85	5	<5	11	53	7233	<2	279	<10	21	148
2163	14139	10	7	6.81	48	24	2	<1	5.68	<4	21	74	110	7.60	1.38	17	1.98	1244	50	45	735	56	<5	<5	<10	56	3982	6	289	<10	22	83
2164	14140	<5	<1	7.25	48	26	3	<1	5.53	<4	16	72	63	7.17	1.49	21	2.68	1197	51	52	693	57	<5	<5	<10	47	1876	11	295	<10	22	78
2165	14141	<5	<1	8.63	54	11	3	<1	5.20	<4	25	1230	2	6.83	1.61	29	5.76	1140	57	306	796	80	6	<5	<10	22	2334	9	139	<10	10	127
2166	14142	<5	<1	8.85	51	11	3	5	4.11	<4	27	1227	<1	7.97	1.58	31	5.69	1202	55	273	726	89	5	<5	<10	18	2869	8	150	<10	12	140
2167	14143	<5	4	8.14	51	14	2	<1	7.21	<4	32	524	1	7.62	1.72	32	5.70	1506	58	172	1032	92	5	<5	<10	35	6741	11	310	<10	29	112
2168	14144	<5	5	6.37	45	32	2	<1	4.07	<4	27	66	155	10.93	1.61	14	1.89	2359	62	46	651	87	<5	<5	<10	36	4864	<2	203	<10	17	125
2169	14145	7	3	7.91	64	30	2	5	4.07	<4	19	850	30	7.05	1.45	22	5.20	1437	58	208	634	74	<5	<5	13	40	3058	12	152	<10	13	122
2170	14146	16	1	7.45	55	581	<2	<1	4.27	<4	<1	362	11	2.53	2.13	18	2.14	681	35	79	565	18	<5	<5	<10	81	920	8	59	<10	6	45
2171	14147	1212	4	6.76	62	534	2	1	3.20	<4	<1	105	83	3.41	2.13	20	1.24	409	41	30	801	18	<5	<5	<10	68	2065	7	63	<10	10	36
2172D	14147	1137	<1	7.18	62	560	2	<1	3.33	<4	<1	108	89	3.55	2.14	22	1.28	421	42	30	906	17	<5	<5	<10	73	2173	4	66	<10	11	36
2173	14148	20	4	7.04	52	427	<2	<1	4.25	<4	3	61	19	3.97	2.01	25	1.53	589	39	36	1017	21	<5	<5	<10	67	2890	10	65	<10	13	51
2174	14149	<5	3	7.30	57	275	2	<1	4.10	<4	3	70	15	3.90	1.97	26	1.54	612	33	36	898	24	<5	<5	<10	89	3125	4	74	<10	13	58
2175	14150	<5	<1	3.09	34	18	<2	<1	0.34	<4	<1	371	7	0.40	1.66	16	0.15	<100	41	4	237	<1	<5	<5	<10	13	132	<2	26	<10	4	18
2176	14151	13 ,	* 3	5.56	39	192	4	13	1.85	<4	74	144	732	12.57	1.75	20	1.16	346	73	70	542	83	5	<5	<10	72	1676	<2	56	20	12	1742
2177	14152	<5	<1	7.03	49	225	2	<1	2.27	<4	11	153	227	4.69	2.12	23	1.26	364	41	47	303	25	<5	<5	<10	105	1446	5	43	<10	11	476
2178	14153	7	3	6.47	51	209	4	8	2.80	<4	247	136	644	11.43	1.86	24	1.24	393	67	115	674	99	5	<5	11	65	1805	2	66	22	10	2454
2179	14154	10	<1	6.89	51	150	2	<1	4.01	<4	7	296	100	3.49	1.90	33	2.55	505	34	95	933	26	<5	<5	<10	75	339	10	71	<10	6	129
2180	14155	86	1	6.14	52	359	2	1	3.71	<4	<1	73	201	2.15	2.33	15	0.58	256	45	21	540	8	5	<5	<10	75	230	12	18	10	5	844
2181	14156	31	<1	7.60	43	306	<2	<1	4.22	<4	<1	84	192	2.06	2.32	16	0.59	265	41	25	221	14	<5	<5	<10	86	225	3	22	<10	5	355

PROCEDURE CODES: ALM1, ALFA1, ALMA1

Certified By:

Friday, January 14, 2011

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Tel. (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 12/30/2010 Date Completed: 01/05/2011

Job #: 201020049

Reference: Sample #: 31

		-												Description .		-		elements of the second				****			-							
Acc#	Client ID	Au ppb	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu	Fe %	K %	Li ppm	Mg %	Mn ppm	Mo ppm	Ni ppm	P	Pb ppm	Sb	Se ppm	Sn ppm	Sr ppm	Ti ppm	TI ppm	V	W	Y ppm	Zn ppm
2182	14157	136	<1	7.55	46	312	<2 <2	<1	5.59	<4	8	117	505	3.00	2.43	18	0.78	418	40	50	412	18	<5	<5	<10	109	218	8	50	15	5	1237
2183D	14157	140	<1	6.40	49	245	<2	<1	5.57	<4	9	110	509	2.99	2.24	17	0.78	419	37	48	465	14	<5	<5	<10	91	184	3	43	12	5	1233
2184	14158	6791	<1	6.75	49	338	2	5	4.35	<4	8	87	155	3.48	2.35	16	0.71	380	41	43	698	15	<5	<5	<10	99	226	6	35	12	5	530
2185	14159	153	<1	5.97	45	364	<2	<1	1.46	<4	<1	104	6	1.08	2.03	13	0.26	<100	37	6	343	2	<5	<5	<10	108	281	3	13	<10	3	30
2186	14160	11313	<1	6.51	52	332	<2	<1	1.53	<4	<1	89	47	2.08	2.02	12	0.29	102	38	10	464	6	<5	<5	<10	100	235	4	15	<10	3	173
2187	14161	5918	<1	6.30	91	119	3	1	3.24	<4	45	164	764	10.54	2.05	16	0.55	339	62	58	631	69	5	<5	<10	70	202	3	44	<10	5	220
2188	14162	2862	<1	6.77	59	157	2	3	2.82	<4	35	155	436	8.72	1.88	17	0.77	364	54	53	596	56	6	<5	<10	70	209	<2	54	24	5	2429
2189	14163	123	<1	6.41	41	205	2	1	3.87	<4	17	95	157	4.09	1.99	19	1.14	512	38	36	457	16	<5	<5	<10	70	343	2	48	<10	8	461
2190	14164	26	2	6.33	45	163	2	3	4.61	<4	22	152	291	5.63	1.83	19	1.15	897	47	61	477	26	6	<5	<10	71	2709	4	154	<10	14	158
2191	14165	17	2	6.72	43	19	2	<1	3.36	<4	26	213	162	6.10	1.39	21	1.81	1251	40	77	337	35	<5	<5	<10	66	3846	<2	179	<10	12	120
2192	14166	5	7	7.12	43	11	2	<1	4.15	<4	33	203	274	6.29	1.48	17	2.08	1645	33	86	449	46	<5	<5	<10	75	4047	4	166	<10	12	127
2193	14167	<5	2	7.20	47	15	2	<1	3.84	<4	25	255	73	5.34	1.67	15	1.73	1498	40	72	508	35	<5	<5	<10	79	4318	<2	170	<10	13	81
2194D	14167	<5	4	7.34	50	14	2	<1	4.06	<4	25	268	77	5.58	1.66	15	1.79	1561	37	77	536	38	<5	<5	<10	84	4522	7	179	<10	14	85
2195	14168	7	4	7.46	41	16	2	9	4.07	<4	22	242	96	5.35	1.58	14	1.45	1407	36	72	212	35	<5	<5	<10	74	4728	5	183	<10	14	68

PROCEDURE CODES: ALM1, ALFA1, ALMA1

Certified By:

Wednesday, August 3, 2011

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 07/26/2011 Date Completed: 08/03/2011 Job #: 201120036

Reference: Sample #: 59

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Acc#	Client ID	Au ppb	Au oz/t	Au g/t (ppm)
1936	016001	<5	<0.001	<0.005
1937	016002	<5	<0.001	<0.005
1938	016003	<5	<0.001	<0.005
1939	016004	<5	<0.001	<0.005
1940	016005	<5	<0.001	<0.005
1941	016006	<5	<0.001	<0.005
1942	016007	<5	<0.001	<0.005
1943	016008	<5	<0.001	<0.005
1944	016009	16	<0.001	0.016
1945	016010	<5	<0.001	<0.005
	up 016010	<5	<0.001	<0.005
1947	016011	8	<0.001	0.008
1948	016012	21	<0.001	0.021
1949	016013	16	<0.001	0.016
1950	016014	<5	<0.001	<0.005
1951	016015	<5	<0.001	<0.005
1952	016016	<5	<0.001	<0.005
1953	016017	<5	<0.001	<0.005
1954	016018	<5	<0.001	<0.005
1955	016019	<5	<0.001	<0.005
1956	016020	10	<0.001	0.010
1957 Du	p 016020	10	<0.001	0.010
1958	016021	<5	<0.001	<0.005
1959	016022	<5	<0.001	<0.005
1960	016023	6	<0.001	0.006
1961	016024	<5	<0.001	<0.005
1962	016025	287	0.008	0.287
1963	016026	1832	0.053	1.832
1964	016027	9615	0.281	9.615
1965	016028	338	0.010	0.338

PROCEDURE CODES: ALM1, ALFA2

Certified By: Moore, General Manager

Wednesday, August 3, 2011

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assa,@accurassay.com

Certificate of Analysis

Date Received: 07/26/2011 Date Completed: 08/03/2011 Job #: 201120036

> Reference: Sample #: 59

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Acc#	Client ID	Au ppb	Au oz/l	Au g/t (ppm)
1966	016029	33	<0.001	0.033
1967	016030	8	<0.001	0.008
	up 016030	6	<0.001	0.006
1969	016031	9	<0.001	0.009
1970	016032	<5	<0.001	<0.005
1971	016033	<5	<0.001	<0.005
1972	016034	720	0.021	0.720
1973	016035	33	<0.001	0.033
1974	016066	13	<0.001	0.013
1975	016067	<5	<0.001	<0.005
1976	016068	<5	<0.001	<0.005
1977	016069	<5	<0.001	<0.005
1978	016070	3872	0.113	3.872
	up 016070	3865	0.113	3.865
1980	016071	<5	<0.001	<0.005
1981	016072	<5	<0.001	<0.005
1982	016073	<5	<0.001	<0.005
1983	016074	<5	<0.001	<0.005
1984	016075	76	0.002	0.076
1985	016076	44	0.001	0.044
1986	016077	<5	<0.001	<0.005
1987	016078	<5	<0.001	<0.005
1988	016079	153	0.004	0.153
1989	016080	297	0.009	0.297
	up 016080	263	0.008	0.263
1991	016081	443	0.013	0.443
1992	016082	<5	<0.001	<0.005
1993	016083	347	0.010	0.347
1994	016084	277	0.008	0.277
1995	016085	<5	<0.001	<0.005

PROCEDURE CODES: ALM1, ALFA2

Certified By: Asson Moore, General Manager

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 08/02/2011 Date Completed: 08/09/2011 Revised Date: 08/12/2011

> Reference: Sample #: 140

Job #: 201120040

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca

Acc	# Client ID	Au	Au	Au
		ppb	oz/t	g/t (ppm)
2275	016036	<5	<0.001	<0.005
2276	016037	<5	<0.001	<0.005
2277	7 016038	<5	<0.001	<0.005
2278	3 016039	22	<0.001	0.022
2279	016040	704	0.021	0.704
2280	016041	11	<0.001	0.011
2281	016042	23	<0.001	0.023
2282	016043	51	0.001	0.051
2283	016044	17	<0.001	0.017
2284	016045	54	0.002	0.054
2285	Dup 016045	44	0.001	0.044
2286	016046	30	<0.001	0.030
2287	016047	967	0.028	0.967
2288	016048	2234	0.065	2.234
2289	016049	774	0.023	0.774
2290	016050	203	0.006	0.203
2291	016051	16	<0.001	0.016
2292	016052	240	0.007	0.240
2293	016053	1890	0.055	1.890
2294	016054	20398	0.595	20.398
2295	016055	149264	4.355	149.264
2296	Dup 016055	146958	4.287	146.958
2297	016056	126869	3.701	126.869
2298	016057	20792	0.607	20.792
2299	016058	10759	0.314	10.759
2300	016059	5767	0.168	5.767
2301	016060	115	0.003	0.115
2302	016061	11	<0.001	0.011
2303	016062	14	<0.001	0.014
2304	016063	12	<0.001	0.012
			VO.001	0.012

PROCEDURE CODES: ALM1, ALFA2

Wednesday, August 3, 2011

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 07/26/2011

Date Completed: 08/03/2011

Job #: 201120036

Reference: Sample #: 59

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca, rogerouellet@videotron.ca

Acc#	Client ID	Au	Au	Au
		ppb	oz/t	g/t (ppm)
1996 (016086	210	0.006	0.210
1997 (016087	106	0.003	0.106
1998 (016088	24	<0.001	0.024
1999 (016089	71	0.002	0.071

PROCEDURE CODES: ALM1, ALFA2

Cortified By Jeson Woore, General Manager

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 08/02/2011
Date Completed: 08/09/2011
Revised Date: 08/12/2011
Job #: 201120040

Reference: Sample #: 140

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca

						_
Acc #	Client ID		Au ppb	Au oz/t	Au g/t (ppm)	
2305	016064		68	0.002	0.068	
2306	016065		10	<0.001	0.010	
2307 D	up 016065		<5	<0.001	<0.005	
2308	016091		167	0.005	0.167	
2309	016092		2209	0.064	2.209	
2310	016093		840	0.025	0.840	
2311	016094		421	0.012	0.421	
2312	016095		36244	1.057	36.244	
2313	016096		2484	0.072	2.484	
2314	016097		21	<0.001	0.021	
2315	016098		91	0.003	0.091	
2316	016099		62	0.002	0.062	
2317	016100		1910	0.056	1.910	
2318 Di	up 016100	Insufficient Samp	ole			
2319	016101		28	<0.001	0.028	
2320	016102		8	<0.001	0.008	
2321	016103		<5	<0.001	<0.005	
2322	016104		<5	<0.001	<0.005	
2323	016105		18	<0.001	0.018	
2324	016106		59	0.002	0.059	
2325	016107		49	0.001	0.049	
2326	016108		91	0.003	0.091	
2327	016109		10	<0.001	0.010	
2328	016110		<5	<0.001	<0.005	
2329 Du	ıp 016110	Insufficient Samp	le			
2330	016111		164	0.005	0.164	
2331	016112		2034	0.059	2.034	
2332	016113		1663	0.049	1.663	
2333	016114		396	0.012	0.396	
2334	016115		324	0.009	0.324	

PROCEDURE CODES: ALM1, ALFA2

Certified By:

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 08/02/2011
Date Completed: 08/09/2011
Revised Date: 08/12/2011
Job #: 201120040

Reference: Sample #: 140

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca

Acc #	Client ID	Au	Au	Au
0005	040440	ppb	oz/t	g/t (ppm)
2335	016116	81	0.002	0.081
2336	016117	274	0.008	0.274
2337	016118	158	0.005	0.158
2338	016119	311	0.009	0.311
2339	016120	649	0.019	0.649
2340 D	oup 016120	Insufficient Sample		
2341	016121	587	0.017	0.587
2342	016122	2329	0.068	2.329
2343	016123	14428	0.421	14.428
2344	016124	153	0.004	0.153
2345	016125	209	0.006	0.209
2346	016126	25	<0.001	0.025
2347	016127	7	<0.001	0.007
2348	016128	20	<0.001	0.020
2349	016129	6	<0.001	0.006
2350	016130	1980	0.058	1.980
2351 D	up 016130	Insufficient Sample		
2352	016131	15	<0.001	0.015
2353	016132	8	<0.001	0.008
2354	016133	43	0.001	0.043
2355	016134	951	0.028	0.951
2356	016135	143	0.004	0.143
2357	016136	23	<0.001	0.023
2358	016137	<5	<0.001	<0.005
2359	016138	No Sample Received		
2360	016139	44	0.001	0.044
2361	016140	<5	<0.001	<0.005
2362 Du	up 016140	Insufficient Sample		
2363	016141	90	0.003	0.090
2364	016142	13	<0.001	0.013
		77		0,0,0

PROCEDURE CODES: ALM1, ALFA2

Certified By:

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 08/02/2011
Date Completed: 08/09/2011
Revised Date: 08/12/2011
Job #: 201120040

Reference: Sample #: 140

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca

Au	Au	Au	Client ID	Acc #
g/t (ppm)	oz/t	ppb		
0.009	<0.001	9	016143	2365
0.016	<0.001	16	016144	2366
0.006	<0.001	6	016145	2367
0.031	<0.001	31	016146	2368
0.012	<0.001	12	016147	2369
0.007	<0.001	7	016148	2370
0.011	<0.001	11	016149	2371
0.718	0.021	718	016150	2372
		Insufficient Sample	up 016150	2373 Du
0.107	0.003	107	016151	2374
1.849	0.054	1849	016152	2375
<0.005	<0.001	<5	016154	2376
<0.005	<0.001	<5	016155	2377
0.015	<0.001	15	016156	2378
0.007	<0.001	7	016157	2379
0.012	<0.001	12	016158	2380
0.011	<0.001	11	016159	2381
1.853	0.054	1853	016160	2382
0.006	<0.001	6	016161	2383
0.008	<0.001	8	up 016161	2384 Du
<0.005	<0.001	<5	016162	2385
<0.005	<0.001	<5	016163	2386
0.011	<0.001	11	016164	2387
0.007	<0.001	7	016165	2388
<0.005	<0.001	<5	016166	2389
<0.005	<0.001	<5	016167	2390
0.022	<0.001	22	016168	2391
0.030	<0.001	30	016169	2392
3.977	0.116	3977	016170	2393
0.809	0.024	809	016171	2394

PROCEDURE CODES: ALM1, ALFA2

Certified By:

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 08/02/2011
Date Completed: 08/09/2011
Revised Date: 08/12/2011
Job #: 201120040

Reference: Sample #: 140

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)
2395 D	Oup 016171	954	0.028	0.954
2396	016172	92	0.003	0.092
2397	016173	6	<0.001	0.006
2398	016174	<5	<0.001	<0.005
2399	016175	17	<0.001	0.017
2400	016176	19439	0.567	19.439
2401	016177	50	0.001	0.050
2402	016178	2160	0.063	2.160
2403	016179	<5	<0.001	<0.005
2404	016180	<5	<0.001	<0.005
2405	016181	9	<0.001	0.009
	up 016181	6	<0.001	0.006
2407	016182	6	<0.001	0.006
2408	016183	<5	<0.001	<0.005
2409	016232	7	<0.001	0.007
2410	016233	11	<0.001	0.011
2411	016234	10	<0.001	0.010
2412	016235	477	0.014	0.477
2413	016236	517	0.015	0.517
2414	016237	136	0.004	0.136
2415	016238	2523	0.074	2.523
2416	016239	939	0.027	0.939
	up 016239	935	0.027	0.935
2417 00	016240	<5	<0.001	<0.005
2419	016241	1143	0.033	
		475		1.143
2420	016242		0.014	0.475
2421	016243	110	0.003	0.110
2422	016244	82	0.002	0.082
2423	016245	223	0.007	0.223
2424	016246	<5	<0.001	<0.005

PROCEDURE CODES: ALM1, ALFA2

Certified By:

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 08/02/2011
Date Completed: 08/09/2011
Revised Date: 08/12/2011

Job #: 201120040

Reference: Sample #: 140

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca

Au	Au	Au	Acc # Client ID
g/t (ppm)	oz/t	ppb	
<0.005	<0.001	<5	2425 016247
<0.005	<0.001	<5	2426 016248
<0.005	<0.001	<5	2427 016249
0.334	0.010	334	2542 016090

PROCEDURE CODES: ALM1, ALFA2

Certified By:

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Monday, September 26, 2011

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299 Email: ress.stellar@bellnet.ca **Certificate of Analysis**

Date Received: 09/12/2011 Date Completed: 09/26/2011 Job #: 201120052

> Reference: Sample #: 123

Client ID 016346 016347 016348	Au ppb 17 16	Au oz/t <0.001	Au g/t (ppm)
016347	17		
			0.017
016348		<0.001	0.016
	7	<0.001	0.007
016349	8	<0.001	0.008
016350			1.678
016351			0.024
016352			0.085
016353			0.678
016354			0.293
016355			0.048
			0.043
			0.079
016357			0.022
016358			<0.005
016359			<0.005
016360			3.405
016361			<0.005
			<0.005
			0.015
016364			0.231
016365			0.048
016365			0.043
			0.009
			<0.005
			0.014
			0.030
016370			0.568
016371			0.028
			0.016
			0.014
	016350 016351 016352 016353 016354 016355 016355 016356 016357 016358 016359 016360 016361 016362 016363 016363 016365 016365 016365 016365 016365 016365 016367 016368 016369 016370	016350 1678 016351 24 016352 85 016353 678 016354 293 016355 48 016355 43 016356 79 016357 22 016358 <5	016350 1678 0.049 016351 24 <0.001

PROCEDURE CODES: ALM1, ALFA2

Certified By: Jason Moore, General Manag

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Monday, September 26, 2011

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca

Certificate of Analysis

Date Received: 09/12/2011 Date Completed: 09/26/2011 Job #: 201120052

Reference: Sample #: 123

Acc#	Client ID	Au ppb	Au oz/t	Au g/t (ppm)
2955	016374	29	<0.001	0.029
2956	016375	5	<0.001	0.005
2957 D	Oup 016375	<5	<0.001	<0.005
2958	016376	<5	<0.001	<0.005
2959	016377	<5	<0.001	<0.005
2960	016378	<5	<0.001	<0.005
2961	016379	<5	<0.001	<0.005
2962	016380	1740	0.051	1.740
2963	016381	<5	<0.001	<0.005
2964	016382	15	<0.001	0.015
2965	016383	116	0.003	0.116
2966	016384	417	0.012	0.417
2967	016385	23	<0.001	0.023
2968 D	up 016385	26	<0.001	0.026
2969	016386	171	0.005	0.171
2970	016387	51	0.001	0.051
2971	016388	31	<0.001	0.031
2972	016389	<5	<0.001	<0.005
2973	016390	4568	0.133	4.568
2974	016391	8	<0.001	0.008
2975	016392	<5	<0.001	<0.005
2976	016393	295	0.009	0.295
2977	016394	259	0.008	0.259
2978	016395	114	0.003	0.114
2979 Du	ир 016395	113	0.003	0.113
2980	016396	89	0.003	0.089
2981	016397	107	0.003	0.107
2982	016398	9	<0.001	0.009
2983	016399	8	<0.001	0.008
2984	016400	614	0.018	0.614

PROCEDURE CODES: ALM1, ALFA2

Certified By: Jason Moore, General Manag

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Monday, September 26, 2011

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca

Certificate of Analysis

Date Received: 09/12/2011
Date Completed: 09/26/2011
Job #: 201120052

Reference: Sample #: 123

Acc#	Client ID	Au ppb	Au oz/t	Au g/t (ppm)
2985	016402	73	0.002	0.073
2986	016403	70	0.002	0.070
2987	016404	11069	0.323	11.069
2988	016405	11	<0.001	0.011
2989	016406	38	0.001	0.038
2990 F	Rep 016406	37	0.001	0.037
2991	016407	39	0.001	0.039
2992	016408	8	<0.001	0.008
2993	016409	29	<0.001	0.029
2994	016410	1841	0.054	1.841
2995	016411	13	<0.001	0.013
2996	016412	6	<0.001	0.006
2997	016413	8	<0.001	0.008
2998	016414	11	<0.001	0.011
2999	016415	16	<0.001	0.016
3000	016416	11	<0.001	0.011
3001 D	up 016416	10	<0.001	0.010
3002	016417	42	0.001	0.042
3003	016418	49	0.001	0.049
3004	016419	44	0.001	0.044
3005	016420	3282	0.096	3.282
3006	016421	<5	<0.001	<0.005
3007	016422	9	<0.001	0.009
3008	016423	57	0.002	0.057
3009	016424	21	<0.001	0.021
3010	016425	155	0.005	0.155
3011	016426	<5	<0.001	<0.005
3012 Du	up 016426	<5	<0.001	<0.005
3013	016427	<5	<0.001	<0.005
3014	016428	1792	0.052	1.792

PROCEDURE CODES: ALM1, ALFA2

Certified By: Jeson Moore, Gen

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Monday, September 26, 2011

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@belinet.ca

Certificate of Analysis

Date Received: 09/12/2011 Date Completed: 09/26/2011 Job #: 201120052

> Reference: Sample #: 123

Acc#	Client ID			
ACC #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)
3015	016429	1145	0.033	1.145
3016	016430	594	0.017	0.594
3017	016431	82	0.002	0.082
3018	016432	329	0.010	0.329
3019	016433	696	0.020	0.696
3020	016434	325	0.009	0.325
3021	016435	3190	0.093	3.190
3022	016436	9341	0.273	9.341
3023	Oup 016436	17762	0.518	17.762
3024	016437	1786	0.052	1.786
3025	016438	1158	0.034	1.158
3026	016439	412	0.012	0.412
3027	016440	1830	0.053	1.830
3028	016441	135	0.004	0.135
3029	016442	190	0.006	0.190
3030	016443	9	<0.001	0.009
3031	016444	<5	<0.001	<0.005
3032	016445	6	<0.001	0.006
3033	016446	<5	<0.001	<0.005
3034 E	Oup 016446	12	<0.001	0.012
3035	016447	<5	<0.001	<0.005
3036	016448	631	0.018	0.631
3037	016449	17	<0.001	0.017
3038	016450	3079	0.090	3.079
3039	016451	1223	0.036	1.223
3040	016452	1892	0.055	1.892
3041	016453	163	0.005	0.163
3042	016454	152	0.004	0.152
3043	016455	188	0.005	0.188
3044	016456	152	0.004	0.152

PROCEDURE CODES: ALM1, ALFA2

Certified By: Jeson Moore, General Manager

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Monday, September 26, 2011

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7

Ph#: (514) 866-6299 Fax#: (514) 866-6299

Email: ress.stellar@bellnet.ca

Certificate of Analysis

Date Received: 09/12/2011 Date Completed: 09/26/2011 Job #: 201120052

> Reference: Sample #: 123

Acc#	Client ID	Au ppb	Au oz/t	Au g/t (ppm)
3045 D	oup 016456	131	0.004	0.131
3046	016457	173	0.005	0.173
3047	016458	7	<0.001	0.007
3048	016459	28	<0.001	0.028
3049	016460	524	0.015	0.524
3050	016461	4813	0.140	4.813
3051	016462	13	<0.001	0.013
3052	016463	7	<0.001	0.007
3053	016464	22	<0.001	0.022
3054	016465	224	0.007	0.224
3055	016466	15	<0.001	0.015
3056 D	up 016466	14	<0.001	0.014
3057	016467	9	<0.001	0.009
3058	016468	7	<0.001	0.007
3059	016469	7	<0.001	0.007

PROCEDURE CODES: ALM1, ALFA2

Certified By: Jeson Moore, General

Monday, September 26, 2011

Stellar Pacific Ventures Inc

Montreal Quebec, On, CAN

1155 University # 812

Ph#: (514) 866-6299

Fax#: (514) 866-6299 Email: ress.stellar@bellnet.ca

H3B 3A7

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 09/12/2011 Date Completed: 09/26/2011 Job #: 201120051 Reference:

Sample #: 31

	Acc#	Client ID	Au ppb	Au oz/t	Au g/t (ppm)
5	2891	016470	1860	0.054	1.860
140	2892	016471	<5	<0.001	<0.005
	2893	016472	<5	<0.001	<0.005
	2894	016473	9	<0.001	0.009
	2895	016474	124	0.004	0.124
	2896	016475	34	<0.001	0.034
	2897	016476	176	0.005	0.176
	2898	016477	97	0.003	0.097
	2899	016478	56	0.002	0.056
	2900	016479	72	0.002	0.072
	2901 D	up 016479	98	0.003	0.098
	2902	016480	4041	0.118	4.041
	2903	016481	158	0.005	0.158
	2904	016482	1786	0.052	1.786
	2905	016483	92	0.003	0.092
	2906	016484	103	0.003	0.103
	2907	016485	34	0.001	0.034
	2908	016486	14	<0.001	0.014
	2909	016487	10	<0.001	0.010
	2910	016488	43	0.001	0.043
	2911	016489	38	0.001	0.038
	2912 Du	ıp 016489	55	0.002	0.055
	2913	016490	521	0.015	0.521
	2914	016491	7	<0.001	0.007
	2915	016492	11	<0.001	0.011
	2916	016493	444	0.013	0.444
	2917	016494	1530	0.045	1.530
	2918	016495	641	0.019	0.641
	2919	016496	352	0.010	0.352

PROCEDURE CODES: ALM1, ALFA2

2920

016497

Certified By: 4596

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

0.034

34

< 0.001

Monday, September 26, 2011

1046 Gorham Street Thunder Bay, ON Canada P7B 5X5 Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Certificate of Analysis

Date Received: 09/12/2011
Date Completed: 09/26/2011
Job #: 201120051

Reference: Sample #: 31

Stellar Pacific Ventures Inc 1155 University # 812 Montreal Quebec, On, CAN H3B 3A7 Ph#: (514) 866-6299

Fax#: (514) 866-6299 Email: ress.stellar@bellnet.ca

Acc#	Client ID	Au	Au	Au
		ppb	oz/t	g/t (ppm)
2921	016498	235	0.007	0.235
2922	016499	4263	0.124	4.263
2923 D	up 016499	3844	0.112	3.844
2924	016500	1783	0.052	1.783

PROCEDURE CODES: ALM1, ALFA2

Certified By: Moore, General Manager