GM 66755

VISITE GEOLOGIQUE DU 31 MAI 2012, PROPRIETE CAUMONT

Documents complémentaires

Additional Files

Visite géologique

Du 31 mai 2012

PROPRIÉTÉ CAUMONT Région de la Baie James SNRC: 32N08

Le 15 juillet 2012

450 rue de la Gare-du-Palais

1^{er} étage

Québec (Québec)

G1K 3X2

Tel: 418-614-0940

Fax: 418-614-0627

www.monarquesresources.com

RECU AU MRNF

GM 66755

19 1111. 2012

DIRECTION DES TITRES MINIERS

Jonathan Lalancette, ing.

Maude Lévesque Michaud, ing. Jr

1222988

SOMMAIRE

La propriété Caumont, constituée de 99 cellules, est située dans le secteur de Nemiscau, à approximativement 300 kilomètres de la ville de Chibougamau dans le Nord-du-Québec et appartient à 100% à la compagnie Ressources Monarques Inc. Elle est divisée en guatre blocs: Lac Nemiscau, Kaname, Caumont Ouest et Caumont Est. Géologiquement la propriété se trouve dans la ceinture volcano-sédimentaire de la formation du Lac des Montagnes de la sous-province de l'Opatica dans la province du Supérieur. La géologie locale se compose principalement d'amphibolite, de méta-sédiments riches en quartz, de schiste à biotite-sillimanite, de pegmatite, de basalte et d'intrusions ultramafiques. L'Indice Montagne, situé au sud du Lac Caumont, présente un contexte intéressant pour un potentiel de gîte de sulfures massifs magmatiques Ni-Cu-EGP associés à des intrusions ultramafiques. Des travaux antérieurs de prospection, de géophysique et de forage y ont eu lieu en 1962, 1975 et 1987. En 2010 et 2011, Ressources Monarques (auparavant Exploration Nemaska) a réalisé des travaux de prospection, cartographie, échantillonnage et décapage sur l'ensemble de la propriété Caumont. Ressources Monarques a effectué une autre petite campagne de prospection, cartographie et échantillonnage au printemps 2012. Un total de 15 échantillons choisis y a été pris. Le présent rapport traîte de cette campagne.

ABSTRACT

The Caumont property, consisting of 99 claims, is located near Nemiscau, about 300 km from the city of Chibougamau in the Northern Quebec, and is full-owned by Monarques Resources Inc. The property is composed of four blocks: Lac Nemiscau, Kaname, Caumont West and Caumont East. Geologically, the property overlies the Lac des Montagnes formation, a volcano-sedimentary belt of the subprovince of the Opatica in the Superior province. The local geology mainly consists of amphibolites, quartz-rich metasediments, biotite and sillimanite bearing schists, pegmatites, basalts and ultramafic intrusions. The Montagne Showing, located south of the Lac Caumont, has a good potential for Ni-Cu-PGE magmatic massive sulphides associated with ultramafic intrusions. Prospecting, geophysical survey and drilling were done on this showing in 1962, 1974 and 1987. In 2010 and 2011, Monarques Resources (known before as Nemaska Exploration) did prospecting, mapping, sampling and mechanical stripping work all over Caumont property. Monarques Resources made another prospecting, mapping and sampling survey in spring 2012. A total of 15 samples was taken. This report covers this work.

SOMN	//AIRE	II
ABSTR	RACT	ا
INTRO	DUCTION	1
A)	OBJECTIFS	1
B)	Sources des renseignements et des données	1
DESCR	RIPTION DE LA PROPRIÉTÉ	2
A)	LOCALISATION	2
B)	SUPERFICIE ET TYPE DE TITRE	2
C)	DÉTENTEUR	2
торо	GRAPHIE, ACCESSIBILITÉ, INFRASTRUCTURE ET CLIMAT	6
A)	TOPOGRAPHIE ET VÉGÉTATION	6
B)	Accessibilité	6
C)	Infrastructure	6
D)	CLIMAT	7
ніѕто	RIQUE	8
A)	Travaux antérieurs effectués par le gouvernement du Québec	8
B)	TRAVAUX ANTÉRIEURS EFFECTUÉS PAR DES COMPAGNIES D'EXPLORATION	8
CONTI	EXTE GÉOLOGIQUE	11
A)	GÉOLOGIE RÉGIONALE	11
B)	GÉOLOGIE LOCALE	11
TYPE [DE GÎTE MINÉRAL	15
A)	Sulfures massifs magmatiques Ni-Cu-EGP associés aux intrusions ultramafiques	15
В)	CHROMITITES STRATIFORMES	
C)	SULFURES MASSIFS EXHALATIFS	16
D)	FORMATION DE FER RUBANÉES	16
TRAVA	AUX EFFECTUÉS	17
A)	DESCRIPTION DES TRAVAUX	17
Ω.	Evécuteurs and Traveux 2011	10

C)	RÉSULTATS ET INTERPRÉTATION	20
(Carte Géologique	20
1	Minéralisation	20
MÉTH	HODE D'ÉCHANTILLONNAGE	24
PRÉPA	ARATION, ANALYSE ET SÉCURITÉ DES ÉCHANTILLONS	25
A)	Préparation des échantillons	25
B)	Analyse des échantillons	25
C)	MESURES DE CONTRÔLE DE LA QUALITÉ DES ANALYSES	26
CONC	CLUSIONS ET RECOMMANDATIONS	27
A)	Conclusions	27
B)	RECOMMANDATIONS	27
RÉFÉR	RENCES	28
A)	LITTÉRAIRES	28
B)	Numériques	30
DATE	FT PAGE DE SIGNATURE	31

Figures

Figure 1: Localisation régionale des propriétés de Ressources Monarques	3
Figure 2: Propriétés de Ressources Monarques	4
Figure 3: Localisation des cellules de la propriété Caumont	5
Figure 4: Géologie régionale	13
Figure 5: Géologie locale	14
Figure 6: Carte des traverses et des échantillons choisis du 31 mai 2012	18
Figure 7: Carte géologique du secteur Sud-Ouest du bloc Caumont Ouest	21
Figure 8: Formation de fer rubanée au contact de la pegmatite	22
Figure 9: Horizon de pyrite massive	23
Figure 10: Surface rouillée sur un affleurement de méta-sédiments minéralisés	23
Tableaux Tableau 1: Formations géologiques	12
Tableau 2: Équipe de Ressources Monarques Inc. impliquée au projet	
Tableau 3: Envois d'échantillons	
Annexes	
ANNEXE 1: LISTE DES CELLULES	32
ANNEXE 2: TABLEAU DES FICHES D'AFFLEUREMENT	36
ANNEXE 3: TABLEAU DES ÉCHANTILLONS	42
ANNEYE A: DADDODT IOUDNALIED	15

INTRODUCTION

A) OBJECTIFS

La visite géologique du 31 mai 2012 a permis de répondre aux objectifs suivants :

- Prospecter le secteur Sud-Ouest du Bloc Caumont Ouest de la propriété Caumont;
- Expliquer les anomalies géophysique électromagnétiques et magnétiques repérées lors du levé héliporté réalisé en 2011 dans cette portion de la propriété;

B) SOURCES DES RENSEIGNEMENTS ET DES DONNÉES

Le contenu du présent rapport provient :

- des travaux de cartographie et de prospection effectués le 31 mai 2012;
- des échantillons d'affleurements et de blocs erratiques provenant du secteur couvert par la cartographie géologique et la prospection;
- des travaux statutaires répertoriés au Ministère des Ressources Naturelles et de la Faune du Québec (MRNF).

DESCRIPTION DE LA PROPRIÉTÉ

A) LOCALISATION

La propriété Caumont se situe dans le nord-ouest de la province de Québec. Elle se trouve à environ 225 kilomètres, à vol d'oiseau, au nord-ouest de la ville de Chibougamau (*Figure 1* et *Figure 2*). Elle se situe entre les coordonnées utm 384 125 mE et 420 300 mE en longitude et entre les coordonnées utm 5 694 350 mN et 5 714 440 mN en latitude (UTM NAD83 Zone 18).

B) SUPERFICIE ET TYPE DE TITRE

La propriété Caumont est constituée de quatre blocs dénommés Caumont Est, Caumont Ouest, Kaname et Lac Nemiscau. Ils totalisent 99 cellules d'une superficie totale de 5 292,49 hectares (*Figure 3*). Il s'agit de cellules désignées sur carte (CDC) situés dans les feuillets SNRC 32N07, 32N08 et 32N09. La liste complète des cellules est énumérée dans le tableau de l'*Annexe 1*.

C) DÉTENTEUR

Tous les cellules sont détenus à 100% par Ressources Monarques Inc. Ces cellules sont enregistrés en bonne et due forme auprès du Ministère des Ressources Naturelles et de la Faune du Québec. Les travaux requis au prochain renouvellement et les dates d'expiration sont indiqués dans le tableau joint à l'*Annexe 1*.

NUMÉRIQUE

Page(s) de dimension(s) hors standard numérisée(s) et positionnée(s) à la suite des présentes pages standard

DIGITAL FORMAT

Non-standard size page(s) scanned and placed after these standard pages

TOPOGRAPHIE, ACCESSIBILITÉ, INFRASTRUCTURE ET CLIMAT

A) TOPOGRAPHIE ET VÉGÉTATION

La topographie des différents blocs de la propriété Caumont consiste en des terrains relativement plats d'une altitude moyenne de 300 mètres avec une dénivellation inférieure à 20 mètres. Environ 10% de la propriété est recouvert par des lacs et rivières. Le drainage des eaux de surface s'effectue le long de ruisseaux ou par des écoulements superficiels en direction de la rivière Nemiscau qui s'écoule vers le sud-ouest. La végétation est principalement constituée de mousses, de lichens et de conifères. Elle est clairsemée et de type taïga Les dépôts glaciaires dans la région consistent en un diamicton sableux, incluant généralement une bonne proportion de fragments (20% à 30%) (Charbonneau, 2007). Plusieurs eskers sont présents dans ce secteur. Des sols organiques recouvrent certaines parties plus basses et moins bien drainées. Ces dépôts ont généralement une épaisseur entre de 0 et 5 mètres, localement jusqu'à 15 mètres.

B) ACCESSIBILITÉ

Les blocs de la propriété Caumont se trouvent au sud-ouest du Relais Routier Nemiscau situé au KM 291 sur la Route du Nord. Cette route de gravier entretenue à l'année débute près de Chibougamau. On y accède en empruntant la route 167 nord en direction du Lac Albanel sur 20 kilomètres à partir de Chibougamau. Il est aussi possible de l'atteindre à partir de Matagami par la Route de la Baie James. L'intersection de ces deux routes est au KM 275 de la Route de la Baie James. À partir de cette intersection, le relais routier est situé à environ 110 kilomètres. Un réseau de routes secondaires a été développé à proximité de la propriété grâce aux travaux d'Hydro-Québec dans le secteur. Bien qu'il soit possible d'accéder à certaines parcelles de la propriété par le Lac Nemiscau et la rivière Nemiscau, la plupart demeure accessible seulement par hélicoptère.

C) INFRASTRUCTURE

Le Relais Routier Nemiscau est opéré par Cree Construction and Development Corporation (CCDC) et offre des services de restauration, de logement et d'entretien de machinerie légère et lourde. Dans la région, Hydro-Québec possède le campement Nemiscau et les sous-stations électriques Nemiscau et Albanel. L'aéroport de Nemiscau est desservi par des vols réguliers d'Air Creebec à partir de Montréal via Chibougamau.

D) CLIMAT

Le climat de la région est typique du moyen nord québécois, avec des températures moyennes de -20°C en janvier et de 17°C en juillet. Les températures estivales atteignent parfois plus de 30°C et les températures hivernales avoisinent les -40°C sur de courts laps de temps. La période de gel débute habituellement tôt en novembre, pour se prolonger jusqu'à la fin du mois d'avril. Les précipitations annuelles sont d'environ 80 cm.

HISTORIQUE

A) TRAVAUX ANTÉRIEURS EFFECTUÉS PAR LE GOUVERNEMENT DU QUÉBEC

De 1963 à 1978, le Ministère des Ressources Naturelles du Québec a effectué des travaux de cartographie régionale et locale. Il s'agit des travaux suivants :

- Carte de la région Fort-Rupert (Gillain et Remick, 1963):
- Géologie de la région du Lac des Montagnes (Valiquette, 1963);
- Géologie de la région du Lac Lemare (Valiquette, 1964);
- Géologie de la région du Lac Cramoisy (Valiquette, 1965);
- Géologie de la région du Lac Nemiscau (Wallach, 1973);
- Cartographie dans la région du Lac Champion (Dubé, 1974a);
- Géochimie des sédiments de ruisseau de la région du Lac Champion (Dubé, 1974b);
- Compilation de la cartographie de la région de la Rivière Nemiscau (Valiquette, 1975);
- Compilation de la cartographie dans la région des Lacs Champion, Tesecau et de la Rivière Rupert (Dubé, 1978).

B) TRAVAUX ANTÉRIEURS EFFECTUÉS PAR DES COMPAGNIES D'EXPLORATION

En 1962, la compagnie Noranda Exploration a rapporté sept trous de forage (Oille et Wiltsey, 1962). Trois d'entre eux (C62-1, C62-2 et C62-3) totalisant 343 mètres ont été forés au sud du Lac Caumont, dans le bloc Caumont Ouest. Ils ont intercepté des méta-sédiments, de la pegmatite, des roches ultramafiques et des gneiss à quartz-biotite. Les minéralisations observées se résument à la présence de pyrite et/ou de pyrrhotite localement. Aucune analyse n'a été rapportée.

En 1963, Inco a réalisé plusieurs forages sur leur propriété Nemiscau. Trois d'entre eux sont à proximité de la propriété Caumont. Les deux premiers sont situés approximativement à 4 kilomètres au nord-est du bloc Kaname (Moss, 1963a). Ils totalisent 42 mètres. La principale lithologie interceptée est un méta-sédiment. Quelques sulfures et la présence de graphite expliquent le conducteur ciblé. Aucun résultat anomalique n'a été rapporté. Le troisième trou a été foré à environ 5 kilomètres au sud-est du bloc Caumont Ouest, soit à la bordure de la propriété Dumulon (Moss, 1963b). Il a une longueur de 18 mètres. La principale lithologie interceptée est un méta-sédiment et les meilleurs résultats obtenus sont de 0,1% Cu et 0,05% Ni sur 1,4m associés avec une zone contenant 80% de pyrrhotite.

De 1973 à 1975, la compagnie Canex Placer a réalisé des travaux dans le secteur du Lac Caumont et du Lac Valiguette. Une grande campagne de reconnaissance géologique ciblant des formations de roches ultramafiques a tout d'abord été effectuée (Burns, 1973). La plupart de ces formations se situe à l'est du Lac Nemiscau et au sud du Lac Valiquette. Un levé géophysique aéroporté électromagnétique et magnétique a ensuite été fait (Broadbent et Paterson, 1974). Trois secteurs ont été survolés, le premier à l'est du Lac Nemiscau, le deuxième dans le secteur du Lac des Montagnes et du Lac Valiquette tandis que le troisième se trouve dans le secteur du Lac Voirdye. Plusieurs anomalies ont été détectées. Des travaux de cartographie et d'échantillonnage au sol et de géophysiques ont suivis sur des anomalies détectées par un levé géophysique aéroporté (Boniwell et Isenor, 1974). Un conducteur de 12 mètres de large a été détecté au sud du Lac Caumont et un échantillon choisi pris sur un affleurement de ce conducteur a donné 1,02% Cu. Selon les trayaux effectués sur la grille B-2, un conducteur de 18 mètres de large se situe au contact entre des métavolcanites et des roches gabbroïques. Sur la grille C-6, au sud-est du Lac Valiguette et du Lac des Montagnes, un conducteur d'intensité moyenne d'une longueur de 305 mètres a été détecté. Celui-ci a la même orientation que la structure régionale. Sur la grille C-9, un conducteur de forte intensité a été détecté sur une longueur de 365 mètres. Canex Placer a par la suite réalisé une campagne de forage en 1975 ainsi que d'autres levés géophysiques électromagnétique et magnétique au sol (Hilgendorf, 1975). Sur les neuf trous de forage de la campagne, guatre d'entre eux ont été réalisés au sud du Lac Caumont (B-2-1, B-1-1, B-3-1 et B-3-2). Les lithologies principales interceptées sont du basalte, de l'amphibolite, de la pegmatite et de la péridotite. Les meilleurs résultats proviennent du trou B-1-1 (0,45% Ni et 0,77% Cu sur 1,46m). La minéralisation est constituée de pyrrhotite et de chalcopyrite allant de massives à disséminées.

Dans le début des années 80, la Société de Développement de la Baie James (SDBJ) a réalisé plusieurs travaux dans le secteur de la propriété Caumont dans le cadre de campagnes à l'échelle régionale. En 1979, une campagne de reconnaissance géologique afin de cartographier les formations ultramafiques a eu lieu (Borduas, 1979). En 1980, le Projet LIEN visait la prospection pour le lithium dans les pegmatites à partir des anomalies de sédiments de fond de lac (Otis, 1980). Une anomalie de 25 ppm Li a été rapportée dans le Lac Caumont. Ce secteur a été survolé en hélicoptère et de la pegmatite blanche a été observée à l'extrémité sud du Lac Caumont. Par contre, ces pegmatites n'ont pas été cartographiées ou prospectées. En 1981, un levé aéroporté EM et Mag a couvert le secteur du Lac des Montagnes (Fortin, 1981). La suite des travaux de la SDBJ n'a pas eu lieu à l'intérieur des limites de la propriété Caumont.

En 1987, la compagnie Ressources Fort Rupert a rapporté des travaux de cartographie, d'échantillonnage et de prospection au BeepMat sur leur propriété Lac Caumont, qui correspond à

l'emplacement du bloc Caumont Ouest actuel (Lamothe, 1987). Les résultats analytiques ont retourné de faibles valeurs en or et des valeurs significatives en Ni, Cu, Pd et Pt associées aux unités ultramafiques (jusqu'à 0,44% Ni, 0,43% Cu, 1,3 g/t Pd et 0,13 g/t Pt). Des chapeaux de fer dans des quartzites à amphibole ont été observés au sud des intrusions ultramafiques, mais il n'y a pas eu de valeur significative dans les analyses.

Également en 1987, la compagnie Muscocho Exploration a réalisé un levé gradiométrique au sol sur leur propriété Lac des Montagnes (Brunelle, 1987). Un levé VLF au sol de 108,5 kilomètres a ensuite été complété sur la même propriété (Gilliatt, 1987). La suite des travaux ne s'est pas concentrée dans le secteur du Lac Caumont.

En 2002, Soquem a réalisé un levé HLEM et magnétique sur une petite grille dans le bloc du Lac Nemiscau (Jourdain, 2002). Une anomalie EM a été détectée dans la partie nord de la grille.

En 2010, Exploration Nemaska a effectué un levé aéroporté électromagnétique et magnétique ayant couvert les blocs Lac Nemiscau et Kaname (Letourneau et al., 2010). Les blocs Caumont Ouest et Caumont Est ont été couvert par le même type de levé en 2011 (Desaulniers, 2011). Ce levé a été commandé par Ressources Monarques afin d'obtenir la couverture complète de la propriété.

En 2010 et 2011, Ressources Monarques (auparavant Exploration Nemaska) a réalisé des travaux de prospection, cartographie, échantillonnage et décapage dans l'ensemble de la propriété Caumont (Lévesque Michaud & Caron, 2012). En tout, 98 échantillons choisis et 248 échantillons par rainures ont été pris. Sept sites ont été l'objet de travaux de décapage mécanique. Les meilleurs résultats d'analyses sont de 1,32% Cu, 0,76% Ni et 1,05 ppm Pd.

CONTEXTE GÉOLOGIQUE

A) GÉOLOGIE RÉGIONALE

La propriété Caumont est située dans la partie nord-est de la province géologique du Supérieur, qui elle se situe en plein cœur du Bouclier canadien. La province du Supérieur s'étend du Manitoba jusqu'au Québec et est composée principalement de roches d'âge Archéen. Le métamorphisme régional est au faciès des schistes verts, mais les alentours des corps intrusifs peuvent aller jusqu'au faciès des amphibolites, voir des granulites. Au Québec, la partie Est de la province du Supérieur est divisée en plusieurs sous-provinces, soit du sud vers le nord : Pontiac, Abitibi, Opatica, Nemiscau, Opinaca, La Grande, Ashuanipi, Bienville et Minto (Hocq, 1994). La région couverte dans ce rapport est située dans la sous-province de Nemiscau. La *Figure 4* montre la position de la propriété Caumont dans la province du Supérieur.

B) GÉOLOGIE LOCALE

La propriété Caumont est située dans la formation volcano-sédimentaire du Lac des Montagnes, entre les granitoïdes et les orthogneiss du Lac Champion et les orthogneiss et les granitoïdes indifférenciés de l'Opatica NE. La ceinture volcano-sédimentaire du Lac des Montagnes est une séquence de méta-sédiments alumineux et d'amphibolites contenant des basaltes et des sills ultramafiques. Ces roches sont très cisaillées et elles sont recoupées par 20% de granitoïdes tardifs (leucogranite et pegmatite à biotite). La position de la propriété ainsi que de la ceinture du Lac des Montagnes en relation avec les terranes du Lac Champion et de l'Opatica NE est présentée à la *Figure 5*.

La formation volcano-sédimentaire du Lac des Montagnes a une orientation nord-est. La propriété Caumont se situe dans la partie sud-ouest de cette formation. Le secteur est principalement composé d'amphibolites, de méta-sédiments riches en quartz, de schistes à biotite-sillimanite, de pegmatites, de basaltes et d'intrusions ultramafiques. La géophysique démontre l'extension des intrusions ultramafiques et des formations de fer. Le secteur au nord de la formation du Lac des Montagnes est principalement composé d'orthogneiss avec des intrusions de granite tandis que le secteur au sud, lui, est principalement composé de méta-sédiments, mais contient également des intrusions granitiques. L'âge de ces formations est indiqué dans le *Tableau 1* (Valiquette, 1975).

Tableau 1: Formations géologiques

Pléistocène et Holocène	Moraines, eskers, dépôts alluvionnaires, tourbières réticulées, cordons morainiques.
Protérozoïque	11 – Diabase.
	10 – Pegmatites : - blanches à muscovite, tourmaline, grenat et magnétique; - roses à microcline.
	9 – Granite rose et blanc.
	8 – Granite gris à oligoclase et hornblende marqué à plusieurs endroits de phénocristaux de microcline rose.
	7 – Roches ultramafiques (serpentinites, roches à aiguilles de trémolite).
	6 – Gneiss à plagioclase et hornblende.
	5 – Roches métasomatiques à cordiérite et anthophyllite.
Archéen	 4 – Méta-sédiments, schiste à biotite, schiste à biotite et grenat. Schistes porphyroblastiques : avec biotite, sillimanite, grenat; avec biotite, cordiérite, grenat; avec biotite, andalousite, grenat; avec biotite, sillimanite, andalousite et staurotide; avec biotite, andalousite, cordiérite, sillimanite; méta-sédiments à amphiboles.
	3 – Méta-sédiments riches en quartz, schiste à quartz, séricite et sillimanite, quartzite impure.
	2 – Amphibolite métavolcanique à coussinets.
	1 – Gneiss à oligoclase.

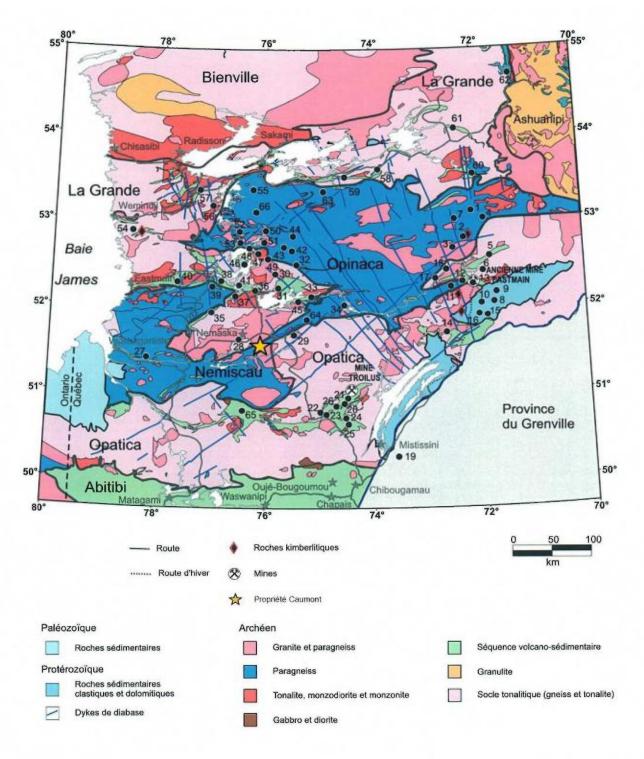
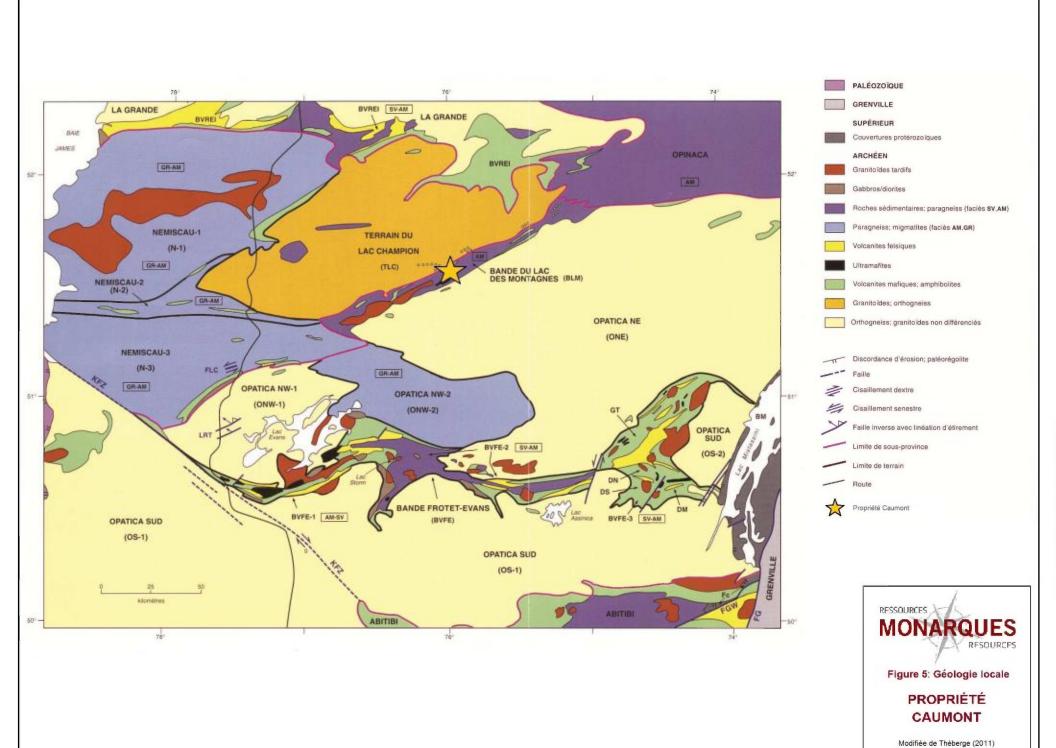



Figure 4: Géologie régionale

PROPRIÉTÉ CAUMONT

Modifiée de Perreault et al. (2006) Date: 15 février 2012

Date: 15 février 2012

TYPE DE GÎTE MINÉRAL

La section qui suit est modifiée de Bussières et al. (2011).

A) SULFURES MASSIFS MAGMATIQUES NI-CU-EGP ASSOCIÉS AUX INTRUSIONS ULTRAMAFIQUES

Les sulfures massifs associés aux intrusions ultramafiques se présentent sous la forme de lentilles majoritairement disposées dans de la péridotite (Foose et al., 1986). Le modèle de déposition de ces sulfures est l'exsolution d'un liquide sulfuré immiscible dans un magma mafique à ultramafique. Ce liquide sulfuré, plus lourd, coule dans le fond du magma dans lequel il se trouve et s'accumule dans les dépressions du plancher de la chambre magmatique. Ce liquide immiscible s'enrichit généralement en cuivre, nickel, cobalt et éléments du groupe du platine (EGP) de telle sorte que ces éléments se retrouvent de 10 à 100 000 fois plus concentrés dans un liquide sulfuré que dans un liquide silicaté. Des dépôts de classe mondiale se trouvent dans ce type de gîte dont, entre autres, Voisey's Bay au Labrador. Le dépôt Nisk-1, propriété de Ressources Monarques, qui consiste en des lentilles de sulfures massifs riches en Ni-Cu-EGP dans une intrusion de péridotite, se situe dans la formation du Lac des Montagnes.

B) CHROMITITES STRATIFORMES

Les chromitites stratiformes consistent en des bandes de chromite dans de la roche ultramafique (Duke, 1996). Les lits de chromitites se forment par le dépôt du minéral lourd de chromite sur le plancher d'une chambre magmatique. La formation de la chromite peut être provoquée, entre autres, par l'assimilation de la roche encaissante de l'intrusion ultramafique. De tels processus ont été impliqués dans la mise en place du Complexe intrusif du Bushveld en Afrique du Sud. Le Bushveld contient entre autres les horizons du Merensky Reef et l'unité de chromitite UG2 qui renferment l'essentiel des réserves mondiales de platine. Les lits de chromitites de par leur nature stratiforme ont une grande continuité latérale. Des horizons de chromitite, situés dans la propriété Duval détenue par Ressources Monarques et à environ 30 kilomètres de la propriété Caumont, ont été travaillés à la fin des années 80 (Zuiderveen, 1988).

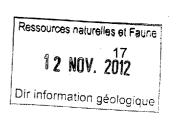
C) SULFURES MASSIFS EXHALATIFS

Lors de la campagne de cartographie-prospection de l'été 2010, des sulfures massifs exhalatifs s'apparentant à des SEDEX ont été observés dans des quartzites impures. Un de ces horizons est présent dans les blocs Caumont Ouest et Caumont Est. On en retrouve aussi dans les propriétés Lemare et Bourier. Les travaux effectués par Exploration Nemaska et Ressources Monarques en 2010 et 2011 sur l'ensemble de leurs propriétés qui couvrent une centaine de kilomètres de la formation du Lac des Montagnes ont permis de retracer de façon discontinue un horizon de sulfures massifs exhalatifs. Ce type de gîte contenu dans des roches archéennes reste inconnu à ce jour.

D) FORMATION DE FER RUBANÉES

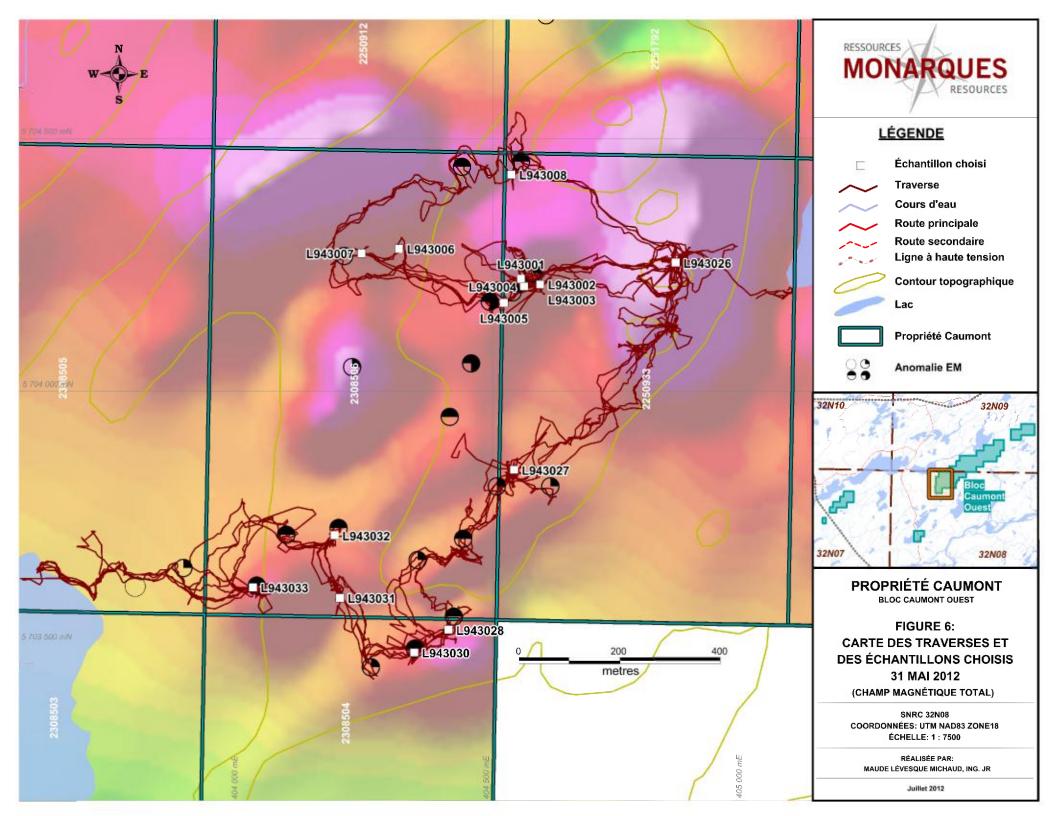
Lors de la campagne de cartographie-prospection des étés 2010 et 2011, des formations de fer rubanées ont été observées dans les propriétés Duval, Valiquette, Caumont et Bourier. Ces formations de fer sont encaissées dans des méta-sédiments riches en quartz et des schistes à biotite-sillimanite. Des exemples connus de ce type de gîte sont les mines Wabush et Fermont dans la Fosse du Labrador. Plus près de la propriété, le projet Duncan de Century Iron Mines Inc est un bon exemple de formations de fer rubanées. Les formations de fer peuvent également être aurifères. La mine Lupin au Canada est un exemple de gîte aurifère dans une formation de fer à grunérite.

TRAVAUX EFFECTUÉS


A) DESCRIPTION DES TRAVAUX

Le 31 mai 2012, une journée de prospection, cartographie géologique et échantillonnage a eu lieu dans la portion Sud-Ouest du bloc Caumont Ouest. Un support héliporté a été nécessaire au déroulement des travaux. Afin d'aider à repérer les anomalies géophysiques électromagnétiques et magnétiques, des "BeepMat" ont été utilisés. Le support héliporté a été fourni par la compagnie Hélicoptères Canadiens Ltée et les "BeepMat" sont loués chez Instrumentation GDD Inc.

Les travaux effectués comprennent :


- la prise de 14 fiches d'affleurement (*Annexe* 2) contenant des informations sur la cartographie, les lithologies, les structures, les minéralisations et les échantillons;
- le prélèvement et l'analyse de 15 échantillons choisis (Annexe 3);
- l'analyse de 1 échantillon pour le contrôle de qualité (Annexe 3).

La *Figure* 6 présente la carte des traverses effectuées et des échantillons choisis. Le rapport journalier pour cette journée est joint à l'*Annexe* 4.

¹ Appareil géophysique, aussi nommé "tapis de prospection", permettant de détecter les anomalies magnétiques et électromagnétiques au sol. Il nécessite un seul opérateur par appareil. Trois différentes séries de l'appareil ont été utilisées, soit le BM4+, le BM8+ ainsi que BM8 Li-ION.

² Les certificats d'analyse n'étaient pas disponible lors de la rédaction du rapport.

B) EXÉCUTEURS DES TRAVAUX 2011

Les travaux de cartographie, de prospection et d'échantillonnage ont été faits par une équipe supervisée par Jonathan Lalancette, ingénieur. Le *Tableau 2* présente tous les membres de l'équipe impliqués dans cette journée de prospection. Ils tous employés de Ressources Monarques Inc. à l'exception pilote et du mécanicien de l'hélicoptère.

Tableau 2: Équipe de Ressources Monarques Inc. impliquée au projet

Poste	Nom
Ingénieur	Jonathan Lalancette
Géologue stagiaire	Louis-Philippe Richard
Ingénieur junior	Paméla Tremblay, Maude Lévesque-Michaud
Étudiants en géologie et/ou en ingénierie	Richard Audet, Clovis Cameron Auger, Andrée Poirier, Laurisha Bynoe
Technicien stagiaire	Jean-François Dion
Manœuvre	Jean-Pierre D'Amboise, Samuel Gagnon, Jacques Tanguay
Pilote hélicoptère	Zsombor Györfi
Mécanicien hélicoptère	Marc-André Pouliot

C) RÉSULTATS ET INTERPRÉTATION

CARTE GÉOLOGIQUE

Selon les cartes géologiques du MRNF (Ducharme, 2001), ce secteur est compris dans une bande de métabasalte et d'amphibolite en contact au sud avec des roches ultramafiques. Lors de la journée de prospection, un seul affleurement d'origine volcanique a été observé. Il s'agit d'un métabasalte très silicifié. Tous les autres affleurements sont d'origine sédimentaire ou ignée (voir *Figure 7*). En grande majorité, il s'agit de migmatite et de paragneiss migmatisés. Un affleurement de pegmatite a été cartographié au sommet d'une petite colline. De petites bandes de formation de fer rubanée décimétriques à métriques ont été notées au contact des deux lithologies précédemment mentionnées (voir *Figure 8*).

MINÉRALISATION

Les formations de fer observées ne contiennent que des traces de sulfures, la pyrite en l'occurrence. La présence de magnétite et d'hématite en grande concentration explique les anomalies magnétiques du secteur. Les anomalies électromagnétiques, quant à elles, ont pu être expliquées par la présence d'horizon de sulfures semi-massifs à massifs dans les méta-sédiments. Grâce à l'utilisation du « BeepMat », ces horizons ont été facilement repérés et ont pu être échantillonnés. Ils sont composés principalement de pyrite massive, parfois en cristaux millimétriques cubiques et grossièrement grenus, et localement de pyrrhotite en concentration moindre (voir *Figure 9*). Les affleurements de méta-sédiments contenant les bandes de sulfures sont facilement identifiables, car ils sont très rouillés en surface et on y observe souvent un chapeau de fer (croûte d'oxydation) formée sur la surface de la roche (voir *Figure 10*).

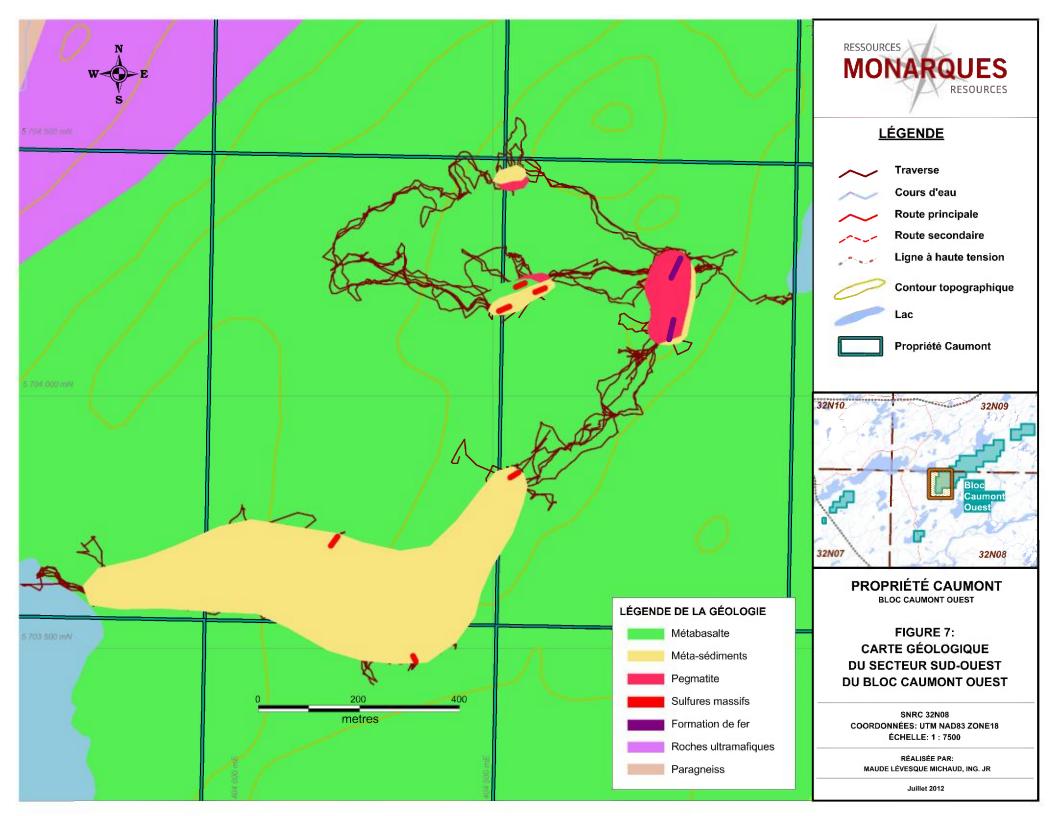


Figure 8: Formation de fer rubanée au contact de la pegmatite

Figure 9: Horizon de pyrite massive

Figure 10: Surface rouillée sur un affleurement de méta-sédiments minéralisés

MÉTHODE D'ÉCHANTILLONNAGE

Lors de cette journée de prospection sur la propriété Caumont, l'échantillonnage effectué consistait à choisir sur le terrain des échantillons de roches contenant des sulfures ou tout autre type de minéralisation afin de détecter la présence d'or et de métaux de base.

Les échantillons ont été prélevés au marteau et au ciseau à froid sur le terrain puis mis à l'intérieur de sacs de plastique soigneusement fermés et identifiés. Le poids moyen est de 1 kilogramme par échantillon. La localisation de chaque échantillon est enregistrée à l'aide d'un GPS (Garmin GPSmap 60Cx). Chacune des étapes de l'échantillonnage est effectuée sous la supervision d'un chef d'équipe (ingénieur, géologue stagiaire ou ingénieur junior) qui s'occupe également de mettre à jour quotidiennement la compilation des échantillons dans une base de données.

Les échantillons d'affleurement ont été prélevés sur différentes lithologies (méta-sédiments, méta-volcanique, formation de fer et sulfures massifs). Une attention particulière a été portée aux minéraux pouvant être d'intérêt économique en contenant ou en étant associés à des métaux précieux ou des métaux de base (chalcopyrite, pyrite, pyrrhotite, etc.).

PRÉPARATION, ANALYSE ET SÉCURITÉ DES ÉCHANTILLONS

A) PRÉPARATION DES ÉCHANTILLONS

Les équipes de Ressources Monarques ont préparé les envois d'échantillons. Les échantillons ont alors été mis dans des sacs soigneusement fermés et identifiés puis expédiés directement chez ALS Chemex à Val D'Or par le personnel de Ressources Monarques. Ils y ont été préparés et analysés.

Deux envois ont été préparés pour les échantillons de la propriété Caumont (voir *Tableau 3*).

Code de l'envoi :Analysé pour :Nombre d'échantillons :Méthodes d'analyse :TB12148418Au + métaux de base14TL43-PKG (AU-TL43 + ME-MS41)VO12147437Pt, Pd, Au + métaux de base1PGM-ICP23 + ME-MS41

Tableau 3: Envois d'échantillons

B) ANALYSE DES ÉCHANTILLONS

Les échantillons ont été envoyés au laboratoire ALS Chemex pour être analysés selon les méthodes ME-MS41, PGM-ICP23 et AU-TL43.

La préparation et le dosage pour les éléments du groupe du platine (Pt, Pd) et l'Au par la méthode PGM-ICP23 se fait à partir d'un poids moyen de 30 grammes. Il s'agit d'une pyroanalyse avec fusion au plomb. Le dosage s'effectue par spectrométrie d'émission atomique à source plasma (ICP-AES). Un seul échantillon a été soumis à cette méthode.

Aussi, quatorze (14) échantillons ont été soumis à la méthode Au-TL43 pour l'analyse de l'or. Celleci consiste en la digestion dans l'eau régale (HNO₃-HCl 1:3). Ce mélange d'acide génère du chlore et des chlorures qui dissolvent l'or libre et les composés d'or. L'or dissout est ensuite déterminé par spectrométrie par absorption atomique (SAA), sinon par spectrométrie de masse (ICP-MS).

L'ensemble des échantillons ont été soumis à la méthode d'analyse ME-MS41 (51 éléments). Celleci consiste en la digestion dans l'eau régale (HNO₃-HCl 1:3) et le dosage se fait par spectrométrie d'émission atomique à source plasma (ICP-AES). Suite à cette analyse, les résultats sont examinés pour voir s'il y a des concentrations élevées de bismuth, de mercure, de molybdène, d'argent et de tungstène. Si c'est le cas, ils sont dilués en conséquence. Ils sont ensuite ré-analysés par spectrométrie de masse (ICP-MS).

C) MESURES DE CONTRÔLE DE LA QUALITÉ DES ANALYSES

Afin d'assurer un contrôle de la qualité des analyses géochimiques, les équipes de Ressources Monarques insèrent des échantillons de contrôle de qualité (duplicata, blanc ou standard) à raison d'un pourcentage d'environ 6%. Pour un total de quinze (15) échantillon, un seul échantillon a été introduit dans la séquence. Il s'agit d'un blanc de silice utilisé depuis 2011 chez Ressources Monarques.

Ce contrôle à l'interne s'ajoute au contrôle de la qualité effectué par le laboratoire.

CONCLUSIONS ET RECOMMANDATIONS

A) CONCLUSIONS

Les travaux de terrain réalisés le 31 mai 2012 ont permis de mieux décrire les unités géologiques responsables des anomalies magnétiques et électromagnétiques sur la propriété Caumont. Des affleurements de formation de fer et des horizons de sulfures semi-massifs à massifs encaissés dans des méta-sédiments ont en effet été observés dans la portion sud-ouest du bloc Caumont Ouest.

La minéralisation rencontrée est principalement composée de pyrite. On observe aussi la pyrrhotite en concentration moindre. Les formations de fer sont quant à elles dominées par la magnétite bien qu'on observe aussi l'hématite.

B) RECOMMANDATIONS

Étant donné que les certificats d'analyses n'étaient pas disponibles lors de la rédaction de ce rapport, il est difficile pour l'auteur de recommander des travaux dans le secteur sud-ouest du bloc Caumont Ouest. Par contre, vue la nature des roches rencontrées et la présence d'une concentration non négligeable de sulfures dans celles-ci, l'auteur pense pertinent de conserver les cellules impliquées. Un examen des résultats devra être fait lors de la réception des certificats d'analyse et des travaux de suivi devraient suivre dans l'optique où des résultats intéressants en ressortiraient.

RÉFÉRENCES

A) LITTÉRAIRES

BONIWELL, J.B., ISENOR, F.M. (1974). Report on Ground Geophysical & Geological Follow-Up, James Bay Joint Venture. Canex Placer Ltd, GM 34023.

BORDUAS, B. (1979). Recherche de nickel et d'amiante sur le territoire de la Baie James, Rapport Projet Niami. SDBJ, GM 38184.

BROADBENT, C.H., PATERSON N.R. (1974). Helicopter Geophysical Survey, James Bay Nickel Venture. Canex Placer Ltd, GM 34022.

BRUNELLE, S. (1987). Report on Geophysical Surveys, Lac des Montagnes Property. Explorations Muscocho Ltee, GM 44641.

BURNS, J.G. (1973). Summary Report, Geological Reconnaissance July-August 1973, James Bay Nickel Venture. Canex Placer Ltd, GM 34021.

BUSSIÈRES, Y., RICHARD, L.P., LÉVESQUE-MICHAUD, M. (2011). Cartographie et prospection 2010, Tranchées et rainurages 2010, Propriété Lac des Montagnes. Exploration Nemaska inc, GM 65439.

CHARBONNEAU, R. (2007). Campagne régionale d'échantillonnage de till 2006, propriété Lac des Canards. Les Consultants Inlandsis, Overburden Drilling Management for Gestion IAMGOLD-QUEBEC Inc. GM 63228.

DESAULNIERS, E. (2011). Heliborne Magnetic and TDEM Survey, Nemaska Project, Québec. Prepared by ED Géophysique for Ressources Monarques.

DUBÉ, C. (1974a). Rapport préliminaire de la région du Lac Champion. MRN, DP 278.

DUBÉ, C. (1974b). Géochimie des sédiments de ruisseau : Région du Lac Champion (Nouveau-Québec). MRN, DP 419.

DUBÉ, C. (1978). Région des Lacs Champion, Tesecau et de la Rivière Rupert (Territoire de Mistassini et d'Abitibi) – Compilation. MRN, DPV 585.

DUCHARME, M. (2001). Compilation et interprétation, Compilation géoscientifique – Géologie 1:50000, 32N08 – Lac de la Sicotière. Système d'information géominière du Québec, Ministère des Ressources Naturelles et de la Faune, CGSIGEOM32N08.

DUKE, J.M. (1996). Gîtes stratiformes de chromite; dans Géologie des types de gîtes minéraux du Canada, rév. par O.R. Eckstrand, W.D. Sinclair et R.I. Thorpe, Commission géologique du Canada, Géologie du Canada, n°8; (aussi The Geology of North America, vol. P-1, Geological Society of America).

FORTIN, R. (1981). Rapport final, Levé géophysique aéroporté, Régions de Elmer Eastmain, Lac des Montagnes, Lac du Glas, Projet S80-5117. SDBJ, GM 38445.

GILLAIN, P.R., REMICK, J.H. (1963). Région de Fort-Rupert. MRN, Carte 1510.

GILLIATT, J. (1987). Report on VLF-EM Survey, over the Lac des Montagnes Claim Group. Explorations Muscocho Ltee, GM 46065.

HILGENDORF, C. (1975). Report on Diamond Drilling and Ground Geophysical Follow-Up, James Bay Venture. Canex Placer Ltd, GM 34024.

HOCQ, M., VERPAELST, P., CLARK, T., LAMOTHE, D., BRISEBOIS, D., BRUN, J., MARTINEAU, G. (1994). Géologie du Québec. MRN, MM 94-01.

JOURDAIN, V. (2002). Rapport sur la champagne d'exploration, Projet EM-Baie (1320). Soquem inc, GM 60504.

LAMOTHE, G. (1987). Rapport de travaux d'exploration, Projet Nemiscau, Propriété « Lac Caumont ». Ressources Fort Rupert Ltee, GM 45890.

LETOURNEAU, O., PAUL, R., BOIVIN, M. (2010). Data Acquisition Report, Helicopter-Borne TDEM and Magnetic Survey, Lac des Montagnes Project. Exploration Nemaska inc, GM 65177.

LÉVESQUE MICHAUD, M., CARON, Y. (2012). Travaux de prospection 2010-2011, Propriété Caumont, Région de la Baie James. Ressources Monarques.

MOSS, R.D. (1963a). Sampling Record, Nemiscau Property. Canadian Nickel Co Ltd, GM 16448-D.

MOSS, R.D. (1963b). Sampling Record, Nemiscau Property. Canadian Nickel Co Ltd, GM 16448-E.

OILLE, V.A., WILTSEY, W.J. (1962). 7 Diamond Drill Hole Logs. Noranda Expl Co Ltd, Noranda Mines Ltd, GM 12655.

OTIS, M. (1980). Projet LIEN. SDBJ, GM 37998.

VALIQUETTE, G. (1963). Géologie de la région du Lac des Montagnes, Territoire de Mistassini. MRN, RP 500.

VALIQUETTE, G. (1964). Géologie de la région du Lac Lemare, Territoire de Mistassini. MRN, RP 518.

VALIQUETTE, G. (1965). Géologie de la région du Lac Cramoisy, Territoire de Mistassini. MRN, RP 534.

VALIQUETTE, G. (1975). Région de la Rivière Nemiscau. MRN, RG 158.

WALLACH, J. (1973). Geology of the Nemiscau Lake Area, Mistassini Territory. MRN, DP 146.

ZUIDERVEEN, J. (1988). Diamond Drill record, Lac Levac Property. Explorations Muscocho Ltée., GM 47653.

B) NUMÉRIQUES

FOOSE, M.P., ZIENTEK, M.L., et KLEIN, D.P.(1986). Magmatic Sulfide Deposits, Summary of Relevant Geologic, Geoenvironmental, and Geophysical Information, http://pubs.usgs.gov/of/1995/ofr-95-0831/CHAP4.pdf

DATE ET PAGE DE SIGNATURE

Ce rapport est dressé en date du 15 juillet 2012 et est signé à Nemiscau par :

254than Laborates 1385347 Outsit

Jonathan Lalancette, ing.

Le 15 juillet 2012

et signé par:

Maude Lévesque-Michaud, ing. jr

Marke M ing. jr

Le 15 juillet 2012

ANNEXE 1: LISTE DES CELLULES

Propriété	Feuillet	No titr	re	Date d'inscription	Date d'expiration	Superficie (ha)	Travaux requis	Droits requis	Détenteur
Caumont	32N07	CDC :	2229615	6 mai 2010	5 mai 2012 *	53.72	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N07	CDC 2	2229621	6 mai 2010	5 mai 2012 *	53.69	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N07	CDC 2	2229624	6 mai 2010	5 mai 2012 *	53.68	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N07	CDC 2	2229625	6 mai 2010	5 mai 2012 *	53.68	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N07	CDC 2	2160850	13 juin 2008	12 juin 2012 *	53.7	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N07	CDC :	2160851	13 juin 2008	12 juin 2012 *	53.7	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N07	CDC :	2160852	13 juin 2008	12 juin 2012 *	53.69	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N07	CDC :	2160853	13 juin 2008	12 juin 2012 *	53.69	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N07	CDC 2	2160854	13 juin 2008	12 juin 2012 *	53.69	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N07	CDC :	2160855	13 juin 2008	12 juin 2012 *	53.68	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N07	CDC :	2160856	13 juin 2008	12 juin 2012 *	53.68	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N07	CDC :	2160857	13 juin 2008	12 juin 2012 *	53.67	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N07	CDC 2	2160858	13 juin 2008	12 juin 2012 *	53.67	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2	2160860	13 juin 2008	12 juin 2012 *	53.74	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC :	2160861	13 juin 2008	12 juin 2012 *	53.74	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC :	2160862	13 juin 2008	12 juin 2012 *	53.73	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2	2160863	13 juin 2008	12 juin 2012 *	53.73	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N07	CDC :	2238398	17 juin 2010	16 juin 2012 *	53.67	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2	2161825	20 juin 2008	19 juin 2012 *	53.59	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC :	2161826	20 juin 2008	19 juin 2012 *	53.59	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2	2161835	23 juin 2008	22 juin 2012 *	53.58	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC :	2162149	23 juin 2008	22 juin 2012 *	53.55	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2	2162150	23 juin 2008	22 juin 2012 *	53.55	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC :	2162163	23 juin 2008	22 juin 2012 *	53.54	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2	2238865	29 juin 2010	28 juin 2012 *	53.73	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC :	2238880	29 juin 2010	28 juin 2012 *	53.54	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2	2238881	29 juin 2010	28 juin 2012 *	53.54	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2	2238882	29 juin 2010	28 juin 2012 *	53.54	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2	2238883	29 juin 2010	28 juin 2012 *	53.54	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC :	2238884	29 juin 2010	28 juin 2012 *	53.54	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2	2238885	29 juin 2010	28 juin 2012 *	53.54	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2	2238886	29 juin 2010	28 juin 2012 *	53.53	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC :	2238887	29 juin 2010	28 juin 2012 *	53.53	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	_	2238888	29 juin 2010	28 juin 2012 *	53.53	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2	2238889	29 juin 2010	28 juin 2012 *	53.53	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC :	2250930	23 sept. 2010	22 sept. 2012	53.61	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09		2250931	23 sept. 2010	22 sept. 2012	53.61	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09		2250932	23 sept. 2010	22 sept. 2012	53.61	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	_	2250933	23 sept. 2010	22 sept. 2012	53.64	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08		2250934	23 sept. 2010	22 sept. 2012	53.64	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	$\overline{}$	2250935	23 sept. 2010	22 sept. 2012	53.64	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC :	2250936	23 sept. 2010	22 sept. 2012	53.64	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	_	2250937	23 sept. 2010	22 sept. 2012	53.63	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08		2250938	23 sept. 2010	22 sept. 2012	53.63	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC :	2250939	23 sept. 2010	22 sept. 2012	53.62	1 200 \$	53 \$	100% Ressources Monarques (87630)

Propriété	Feuillet	No titre	Date d'inscription	Date d'expiration	Superficie (ha)	Travaux requis	Droits requis	Détenteur
Caumont	32N08	CDC 2250	940 23 sept. 2010	22 sept. 2012	53.62	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2250	941 23 sept. 2010	22 sept. 2012	53.62	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	942 23 sept. 2010	22 sept. 2012	53.59	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	943 23 sept. 2010	22 sept. 2012	53.59	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	944 23 sept. 2010	22 sept. 2012	53.59	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	948 23 sept. 2010	22 sept. 2012	53.58	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	955 23 sept. 2010	22 sept. 2012	53.58	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	956 23 sept. 2010	22 sept. 2012	53.58	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	957 23 sept. 2010	22 sept. 2012	53.6	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	958 23 sept. 2010	22 sept. 2012	53.6	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	959 23 sept. 2010	22 sept. 2012	53.6	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	960 23 sept. 2010	22 sept. 2012	53.59	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	961 23 sept. 2010	22 sept. 2012	53.61	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	962 23 sept. 2010	22 sept. 2012	53.62	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	963 23 sept. 2010	22 sept. 2012	53.6	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	964 23 sept. 2010	22 sept. 2012	53.59	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	965 23 sept. 2010	22 sept. 2012	53.59	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	966 23 sept. 2010	22 sept. 2012	53.6	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	967 23 sept. 2010	22 sept. 2012	53.57	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	968 23 sept. 2010	22 sept. 2012	53.59	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	969 23 sept. 2010	22 sept. 2012	53.57	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	970 23 sept. 2010	22 sept. 2012	53.58	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	971 23 sept. 2010	22 sept. 2012	53.57	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	972 23 sept. 2010	22 sept. 2012	53.58	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250	910 23 sept. 2010	22 sept. 2012	53.62	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2250	311 23 sept. 2010	22 sept. 2012	53.64	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2250		22 sept. 2012	53.64	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2250	913 23 sept. 2010	22 sept. 2012	53.63	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250		22 sept. 2012	53.57	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250		22 sept. 2012	53.6	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250		22 sept. 2012	53.61	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2250		22 sept. 2012	53.61	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2251		28 sept. 2012	53.63	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2251		28 sept. 2012	53.63	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2251		28 sept. 2012	53.63	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2251		28 sept. 2012	53.63	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2251		28 sept. 2012	53.62	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2308		18 août 2013	53.65	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2308		18 août 2013	53.65	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2308		18 août 2013	53.64	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2308		18 août 2013	53.64	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2308		18 août 2013	38.31	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N08	CDC 2308		18 août 2013	53.62	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2308		18 août 2013	53.61	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2308	510 19 août 2011	18 août 2013	53.61	1 200 \$	53 \$	100% Ressources Monarques (87630)

Propriété	Feuillet	No tit	re	Date d'inscription	Date d'expiration	Superficie (ha)	Travaux requis	Droits requis	Détenteur
Caumont	32N09	CDC	2308511	19 août 2011	18 août 2013	53.6	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC	2308512	19 août 2011	18 août 2013	53.6	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC 2308513		19 août 2011	18 août 2013	53.6	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC	2308514	19 août 2011	18 août 2013	53.55	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC	2323750	15 nov. 2011	14 nov. 2013	53.58	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC	2323751	15 nov. 2011	14 nov. 2013	53.57	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC	2323752	15 nov. 2011	14 nov. 2013	53.56	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC	2323753	15 nov. 2011	14 nov. 2013	53.56	1 200 \$	53 \$	100% Ressources Monarques (87630)
Caumont	32N09	CDC	2323754	15 nov. 2011	14 nov. 2013	53.56	1 200 \$	53 \$	100% Ressources Monarques (87630)
99				187		5292.49	118 800 \$	5 247 \$	

^{*} En date du 9 juillet 2012, les cellules identifiées sont en cours de renouvellement auprès du MRNF.

Propriété Caumont, Ressources Monarques, juillet 2012

ANNEXE 2: TABLEAU DES FICHES D'AFFLEUREMENT

AFFLEUREMENT	PROPRIÉTÉ	No SNRC	UTMX Nad 83	UTMY Nad 83	Alt.	Date	No CLAIM	MILIEU	DIMENSION	QUALITÉ
10001	Caumont	32N08	404855	5704131	317	2012-05-31	2250933	В	6	R
10002	Caumont	32N08	404542	5703843	315	2012-05-31	2250933	В	2	М
10003 10004	Caumont Caumont	32N08 32N08	404436 404412	5703679 5703526	314 289	2012-05-31 2012-05-31	2308506 2308504	B B	1 3	M A
10004	Caumont	32N08	404344	5703481	290	2012-05-31	2308504	В	2	A
10006	Caumont	32N08	404197	5703589	291	2012-05-31	2308506	В	4	R
10007 10008 10009	Caumont Caumont Caumont	32N08 32N08 32N08	404186 404024 403762	5703713 5703610 5703653	296 289 279	2012-05-31 2012-05-31 2012-05-31	2308506 2308506 2308505	B B B	4 5 6	M - R
20001	Caumont	32N08	404863	5704255	320	2012-05-31	2250933	В	7	R
20002	Caumont	32N08	404594	5704211	308	2012-05-31	2250933	В	3	А
20003	Caumont	32N08	404556	5704221	310	2012-05-31	2250933	В	5	E
20004	Caumont	32N08	404522	5704174	304	2012-05-31	2250933	В	2	М
20005	Caumont	32N08	404537	5704429	315	2012-05-31	2250933	В	4	E

				LITHOLOGI	IE 1						LITHOLOG	IE 2		
AFFLEUREMENT	Lithologie	%	Minéralogie	Couleur fraîche	Couleur altérée	Épaisseur	Text. et/ou struct.	Lithologie	%	Minéralogie	Couleur fraîche	Couleur altérée	Épaisseur	Text. et/ou struct.
10001	I1G	80	FP-QZ-TL-BO	GS	0	Α	GG-MA-PG	S9	10	MG-QZ-BO	GF	0	М	PZ-RU-SA
10002	M4	95	BO-FP-QZ	G	0	М	SA-GF	F1	5	PY-PO-QZ	GJ	Ου	D	MA-GM
10003	MT				OU									
10004	M4	100	BO-QZ-FP	GB	OG	М	FO-GF							
10005	M4	95	BO-QZ-FP-PO	G	0	М	GF-FO	F2	5	PY-PO	GJ	ON	С	MA-GG
10006	M4	30	QZ-FP-PO-PY	G	0	М	FO-GF	M22	70	BO-QZ-FP	GN	BG	М	GF
10007 10008 10009	M4 M4 M4	98 100 100	BO-QZ-FP QZ-FP-BO-PY QZ-FP-BO-PY	G G G	OU GO GO	M M M	GF-FO FO-GF GR-PZ	F	2	PY=PO	GJ	0	D	GG-MA
20001	I1G	90	QZ-FP-TL-GR	В	BS	А	GG-MA-PG	S9	5	MG-QZ-BO	G6	0	М	PZ-GF-SA
20002	M4	99	FP-QZ-PY-PO	G-2	0	М	MA-SA-GM							
20003	V3B	60	AM-GR-PY-PO	G	GO	М	FO-GF-PZ	I1G	40	FP-QZ	В	В	М	MA-GG
20004	M4	99	FP-QZ-BO-AP	G3	0	М	GF-GM-MA							
20005	M4	50	FP-QZ-BO-PY	G	GO	М	GF-MA	I1B	50	FP-QZ	В	BS	М	GF-MA

				LITHOLOG	GIE 3		
AFFLEUREMENT	Lithologie	%	Minéralogie	Couleur fraîche	Couleur altérée	Épaisseur	Text. et/ou struct.
10001	M4	10	FP-BO-QZ	G	0	М	FO-GF
10002							
10003							
10004							
10005							
10006							
10007 10008 10009							
20001	M4	5	MI-QZ-FP	G	0	М	FO-GF
20002							
20003							
20004							
20005							

		STRUCTUR	RE 1		STRUCTUR	RE 2		STRUCTUR	RE 3
AFFLEUREMENT	Туре	Direction (°)	Pendage (°)	Туре	Direction (°)	Pendage (°)	Туре	Direction (°)	Pendage (°)
10001							N	192	72
10002					= =			66	
10003									
10004	N	255	58						
10005	N	336	82	0	336	82			
10006	N	197	68						
10007									
10008	N	202	64						
10009									
20001							F	205	80
20002									
20003									
20004									
20005								v	- 32

AFFLEUREMENT	ÉCHANTILLONS	PHOTOS	REMARQUES
10001	NUL	NUL	Continuité affleurement 20001 (PT). Pas d'échantillon. Dessus colline.
10002	L943027	JL 1000001-02	Conducteur HFR=60000. Bcp d'affleurements de pegmatites et de métasédiments aux alentours. Colline affleurante sur plusieurs centaines de mètres. Échantillon entre 2 pts conducteurs.
10003	NUL	NUL	Conducteur HFR=5600. Roche à 1m de mort-terrain. Conducteur sur une dizaine de mètres orienté N300. Surface rouillée et lisse au fond du trou.
10004	L943028	JL-100-0003	Faiblement conducteur, pas de sulfures observés en surface mais rouillé en surface.
10005	L943030	JL-100-0004-5	Couche de pyrite semi-massive dans l'encaissant de méta-sédiments, Conducteur HFR 1500. Situé directement dans une ligne de conducteur du levé héliporté.
10006	L943031	JL-100-0006	Légerement MAG, Conducteur HFR 5000. M4 avec 5-10% sulfures (PY-PO).
10007	L943032	JL-100-0007-8	Ligne de conducteur sur une vingtaine de mètres orientés à 40 degrés. Pyrite massive observée aux deux extrémités du conducteur. Conducteur max HFR 8000 (surface= 1800). Légèrement magnétique, Échantillon bande de sulfures massifs PY-PO.
10008	L943033	JL-100-0009	Méta-sédiments silicifiés avec 10% PY. PY disséminée et en veinules mm. Conducteur HFR 2500.
10009	NUL	NUL	Méta-sédiments avec début de migmatisation.
20001	L943026	PT-100-0001	Affleurement au sommet d'une petite colline. Anomalie magnétique (BM=-30000). TL dans pegmatite.
20002	L943002-03	LP 31 mai	Méta-sédiment très altéré, épaisse couche de chapeau de fer, horizon de PY et traces de PO, HFR=35000. Composition varie dans affleurement, coin plus schisteux avec MV et coin plus QZ. Altéré sur 30 cm.
20003	L943001	NUL	Métabasalte, 1% GR, 1% [PY-PO], 98% AM. Pegmatite I1G, 15% QZ, 85% FP. Échantillon: HFR=6000. Qques zones MAG=1000 et une zone de 1m2 à MAG=6000. Qques zones rouillées. Légèrement magnétique (PO), plis à échelle métrique. Silicifié +.
20004	L943005	NUL	Affleurement oxydé autour de la cible TDEM "OF". HFR 38000. Ségrégation des Mx felsiques et mafiques (Bo). Présence de Py plurimm en amas jusqu'à 50% localement. 5% de Py/Po disséminée dans les bandes plus felsiques. Bande avec HFR 200+ orientée environ 045°.
20005	L943008	NUL	Roche très peu magnétique. Petite zone métrique avec HFR entre 4000 et 12000. OF+. Près de cible TDEM "OA".

ANNEXE 3: TABLEAU DES ÉCHANTILLONS

			D1025-000-0000		Ten premium and annual	1	-		
ÉCHANTILLON	PROPRIÉTÉ	(nad 83)	NORDANT (nad 83)	DATE	GÉOLOGUE/ ASSISTANT	No AFFLEUREMENT	CLAIM	TYPE GRAB/CHANNEL	BLOC/OUTCROP
L943001	CAUMONT	404556	5704222	2012-05-31	PT/LPR	20003	2250933	GRAB	OUTCROP
L943002	CAUMONT	404594	5704211	2012-05-31	PT/LPR	20002	2250933	GRAB	OUTCROP
L943003	CAUMONT	404594	5704211	2012-05-31	PT/LPR	20002	2250933	GRAB	OUTCROP
L943004	CAUMONT	404562	5704207	2012-05-31	PT/LPR	8	2250933	GRAB	OUTCROP
L943005	CAUMONT	404522	5704174	2012-05-31	PT/LPR	20004	2250933	GRAB	OUTCROP
L943006	CAUMONT	404314	5704282	2012-05-31	PT/LPR	1.5	2308506	GRAB	OUTCROP
L943007	CAUMONT	404240	5704273	2012-05-31	PT/LPR) /t	2308506	GRAB	OUTCROP
L943008	CAUMONT	404537	5704429	2012-05-31	PT/LPR	20005	2250933	GRAB	OUTCROP
L943026	CAUMONT	404863	5704254	2012-05-31	PT/LPR	20001	2250933	GRAB	OUTCROP
L943027	CAUMONT	404542	5703843	2012-05-31	JL/MLM	10002	2250933	GRAB	OUTCROP
L943028	CAUMONT	404412	5703526	2012-05-31	JL/MLM	10004	2308504	GRAB	OUTCROP
L943029	CAUMONT			2012-05-31	JL/MLM			Quartz blank - SITEC	
L943030	CAUMONT	404344	5703481	2012-05-31	JL/MLM	10005	2308504	GRAB	OUTCROP
L943031	CAUMONT	404197	5703589	2012-05-31	JL/MLM	10006	2308506	GRAB	OUTCROP
L943032	CAUMONT	404186	5703713	2012-05-31	JL/MLM	10007	2308506	GRAB	OUTCROP
L943033	CAUMONT	404024	5703610	2012-05-31	JL/MLM	10008	2308506	GRAB	OUTCROP

ÉCHANTILLON	LITHOLOGIE	MINÉRALOGIE	MINÉRALISATION	ALTÉRATION	MÉTHODE D'ANALYSE CHOISIE	NOTES SUR LE TERRAIN
L943001	V3B	AM/GR	PY/PO	SI+	TL43-PKG	Affleurement Si+, 1% Sulfures disséminés, quelques zones de HFR-1000 + zone de 1m² HFR-6000
L943002	M4	FP/QZ	PY/PO	OF+++	TL43-PKG	40% Sulfures, Grains moyens,HFR-50000
L943003	M4	FP/QZ	PY	OF+++	TL43-PKG	60% Sulfures, Pyrite sub-idiomorphes de 3-10mm, encaissant silicifié, Altération chlorItisée, près du contact de pegmatite.
L943004	M4	FP/QZ	PY	OF++	TL43-PKG	5% Pyrite disséminé, Si+, HFR 1000 et une zone de 6000 de 1m², quelques zones rouillées
L943005	M4	FP/QZ/BO	PY/PO/AP	OF+++	TL43-PKG	40% PY/PO. Traces AP.
L943006	M4		PO		TL43-PKG	1% Pyrrhotite disséminée, HFR-13000
L943007	V3B		PY/PO		PGM-ICP23/ME-MS41	10% Pyrite et pyrrhotite, HFR-34000
L943008	M4	FP/QZ/BO	PY/PO	OF+	TL43-PKG	HFR-4000-12000, traces SF, PY/PO disséminées.
L943026	S9	QZ/MG/BO	PY/PO		TL43-PKG	
L943027	F1		PY/PO		TL43-PKG	90% PY et 10% PO, sulfures semi-massifs à massifs.
L943028	M4	BO/QZ/FP			TL43-PKG	
L943029	11				TL43-PKG	
L943030	F2		PY/PO		TL43-PKG	Bande PY semi-massive.
L943031	M4	QZ/FP	PY/PO		TL43-PKG	5-10% PY/PO, légèrement MAG, conducteur HFR 5000.
L943032	F1		PY/PO	===	TL43-PKG	95% PY et 5% PO.
L943033	M4	QZ/FP/BO	PY	SI+	TL43-PKG	Silicifié, 10% PY disséminée et en veinule millimétriques, HFR 2500.

ANNEXE 4: RAPPORT JOURNALIER

RAPPORT JOURNALIER

Date: 31-05-2012

Frais, ensoleillé avec passages MÉTÉO: nuageux

CAMPEMENT: Nemiscau

COMMENTAL	RES SUR LE	S TRAVAUX:							-			
Départ du can	npement vers	7h00 et retour entre 16h00 et 17	h00. Les 11	membres de l'é	áquipe ont été mobi	lisés sur la parti	e Ouest	du bloc Caum	ont Ouest	de la proprié	té Caumo	nt
afin de pouvoi	r renouveller	les claims de ce secteur et d'effe	ctuer une jou	rnée de format	tion sur le terrain. D	es anomnalies	TDEM or	nt été visitées				
En fin de jourr	née, une visité	e sur l'indice Montagne a été effe	ctuée avant c	le rentrer au ca	ampement.					=		
				=						=		
COMMENTAL	RES SUR LE	S TRAVAUX AU CAMPEMENT:								W		=1
Jacque est de	meuré au car	mpement afin de préparer et de f	aire l'entretier	n de matériel.	-							
COMMENTAL	RES SUR LA	GÉOLOGIE:										
ÉQUIPE 1 :	Géologue :	J. Lalancette/M. L. Michaud	Assistant :	R. A/C.A./S	S.G. Propriété :	Caumont	Claim:	2308504- 2308506- 2250933	Ech. De :	L943027	Ech. À :	L943033
pyrite-pyrrhoti	te massive à	plusieurs anomalies EM dans le semi-massive encaissées dans d et échantillonnés.										
ÉQUIPE 2 :	Géologue :	P. Tremblay/L.P. Richard	Assistant :	JP.D./A.P JF.D./L.B.	Propriété :	Caumont	Claim:	2308506- 2250933	Ech. De :	L943001	Ech. À :	L943008
									Ech. De :	L943026	Ech. À :	
Commentaire	s : Visite de	plusieurs anomales EM situées l	es plus au no	rd dans l'extrér	mité Ouest du bloc	Caumont Ouest	de la pro	priété Caum	ont. Quelqu	ies zones pre	sentant ı	ın HFR de

35000 à 38000 ont été détectées au BeepMat et échantillonnées. Ces lithologies conductrices sont principalement des métasédiments avec des sulfures disséminés. Localement, des métabasaltes amphibolitisés ont été observés avec des traces de sulfures. Une formation de fer sans minéralisation a également été échantillonnée, Environ 6 cibles EM furent visitées et expliquées par la présence de conducteurs.

PERSONNEL EXTERNE	TÂCHES	COMPAGNIE
Zsombor Györfi	Pilote	Canadian Helicopters
Marc-André Pouliot	Mécanicien	Canadian Helicopters

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: RESSOURCES MONARQUES INC. 450 RUE DE LA GARE DU PALAIS B.P. 10 **QUEBEC QC G1K 3X2**

Page: 1 Finalisée date: 8-JUIL-2012

Compte: REMONA

CERTIFICAT VO12147437

Projet: CAU-GE-202

Bon de commande #: 5009

Ce rapport s'applique aux 29 échantillons de roche soumis à notre laboratoire de Val

d'Or, QC, Canada le 27-JUIN-2012.

Les résultats sont transmis à:

GUY BOURASSA YVES CARON

ISABELLE BOURASSA MAUDE LEVESQUE-MICHAUD

GUY BOURASSA LOUIS-PHILIPPE RICHARD

	PRÉPARATION ÉCHANTILLONS	
CODE ALS	DESCRIPTION	
WEI-21	Poids échantillon reçu	
LOG-22	Entrée échantillon - Reçu sans code barre	
LOG-24	Entrée pulpe - Reçu sans code barre	
CRU-QC	Test concassage QC	
CRU-31	Granulation - 70 % < 2 mm	
SPL-21	Échant, fractionné - div. riffles	
PUL-31	Pulvérisé à 85 % < 75 um	

	PROCÉDURES ANALYTI	QUES
CODE ALS	DESCRIPTION	
ME-MS41	Aqua regia 51 éléments ICP-MS	
PGM-ICP23	Pt, Pd et Au 30 g FA ICP	ICP-AES

A: RESSOURCES MONARQUES INC. ATTN: MAUDE LEVESQUE-MICHAUD **450 RUE DE LA GARE DU PALAIS** B.P. 10 **QUEBEC QC G1K 3X2**

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat ****

REÇU AU MRNF

DIRECTION DES TITRES MINIERS

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.aisglobal.com

A: RESSOURCES MONARQUES INC. 450 RUE DE LA GARE DU PALAIS B.P. 10 QUEBEC QC G1K 3X2

CERTIFICAT D'ANALYSE VO12147437

Page: 2 - A Nombre total de pages: 2 (A - D) plus les pages d'annexe Finalisée date: 8-JUIL-2012 Compte: REMONA

Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.2	ME-MS41 B ppm 10	ME-MS41 Ba pprn 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02
L943007		0.73	0.009	<0.005	<0.001	1.20	0.97	0.7	<0.2	<10	20	0.06	2.12	1.01	0.11	3.62
L943009		1.01	0.002	< 0.005	<0.001	0.04	0.50	0.5	<0.2	<10	<10	0.24	0.95	0.19	0.04	0.39
L943010		1.21	0.001	0.006	0.004	0.06	0.94	4.6	<0.2	⁻ <10	10	0.11	0.04	1.80	0.06	2.81
L943011		1.12	0.001	< 0.005	0.001	< 0.01	0.07	11.7	<0.2	<10	<10	0.06	0.08	0.14	0.02	0.15
.943012		0.75	0.001	0.007	0.001	0.01	0.11	15.0	<0.2	30	<10	0.15	0.59	0.14	0.04	0.76
.943013		0.06	0.200	0.190	0.121	0.82	2.02	55.0	0.2	10	140	0.50	1.78	1.46	0.10	37.4
-943014		0.87	0.001	< 0.005	< 0.001	0.01	0.02	4.8	<0.2	50	<10	0.11	0.02	0.83	0.04	0.49
L943015		0.73	< 0.001	< 0.005	<0.001	0.01	2.66	1.0	<0.2	<10	<10	0.08	0.01	0.07	0.03	4.42
L943017		1.11	0.001	0.047	0.044	0.05	0.63	8.4	<0.2	10	<10	0.29	0.20	0.07	0.01	0.70
L943018		1.46	0.003	0.053	0.150	0.28	1.69	2.7	<0.2	<10	<10	<0.05	0.49	0.71	0.10	0.52
.943019		1.55	0.001	0.011	0.011	0.03	0.99	10.6	<0.2	20	<10	0.43	0.26	0.07	0.03	0.94
_943020		1.05	0.014	0.093	0.216	0.43	1.19	1.0	<0.2	<10	10	<0.05	0.19	0.36	0.17	0.26
_943021		1.05	0.023	0.021	0.006	1.04	0.88	33.4	<0.2	<10	10	0.07	0.95	0.69	0.18	45.0
L943023		1.28	0.004	0.030	0.080	0.11	0.39	0.7	<0.2	<10	10	<0.05	0.09	0.32	0.10	5.93
L943035		0.96	0.003	0.006	0.002	0.59	0.93	2.0	<0.2	<10	10	0.05	0.07	0.69	0.09	3.48
943044		1.10	0.003	0.005	0.003	0.15	2.24	9.4	<0.2	<10	10	0.13	0.30	0.56	0.33	10.90
L943045		0.90	0.005	< 0.005	0.001	0.21	0.80	8.9	<0.2	<10	10	<0.05	0.70	0.51	0.18	3.46
L943051		1.25	0.002	<0.005	0.001	0.18	1.75	0.4	<0.2	<10	<10	0.14	0.27	1.35	0.07	11.25
L943065		1.09	0.006	0.416	1.210	0.23	3.49	7.1	<0.2	<10	100	0.56	0.85	0.12	0.11	0.56
L943066		1.19	0.010	0.117	1.670	1.84	1.81	3.1	<0.2	<10	20	0.19	1.37	0.28	0.12	0.53
943067		1.12	0.001	<0.005	0.006	0.20	0.90	1.7	<0.2	10	<10	0.16	0.22	0.05	0.03	0.64
L943068		1.78	0.001	<0.005	0.006	0.03	0.37	8.9	<0.2	60	<10	0.78	0.32	0.01	0.05	0.81
L943088		1.81	0.001	0.064	0.230	0.84	0.33	12.4	<0.2	60	<10	0.15	1.15	0.05	0.09	1.22
L943089		1.02	0.003	0.005	0.005	0.31	0.78	25.0	<0.2	<10	10	0.11	0.15	0.24	0.14	11.30
L943090		1.20	0.004	<0.005	0.003	0.30	2.51 -	28.9	<0.2	<10	30	0.23	0.34	0.28	0.33	30.0
943091		1.36	0.004	0.005	0.003	0.23	2.48	42.1	<0.2	<10	30	0.23	0.33	0.29	0.35	29.6
L943092		0.95	0.015	<0.005	0.002	0.16	1.98	128.0	<0.2	<10	20	0.45	0.54	0.63	0.02	34.8
L943093		1.21	0.010	0.009	0.002	1.20	0.19	48.9	<0.2	<10	<10	0.08	0.51	0.21	0.66	12.70
L943094		0.48	0.003	0.022	<0.001	0.81	0.93	34.6	< 0.2	<10	10	0.10	1.51	0.22	1.12	8.01

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd. 2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: 604 984 0221
Télécopieur: 604 984 0218

www.alsglobal.com

A: RESSOURCES MONARQUES INC. **450 RUE DE LA GARE DU PALAIS** B.P. 10 **QUEBEC QC G1K 3X2**

CERTIFICAT D'ANALYSE

Page: 2 - B Nombre total de pages: 2 (A - D) plus les pages d'annexe Finalisée date: 8-JUIL-2012 **Compte: REMONA**

VO12147437

Description échantillon	Méthode élément unités L.D.	ME-MS41 Co ppm 0.1	ME-MS41 Cr ppm 1	ME-MS41 Cs ppm 0.05	ME-MS41 Cu ppm 0.2	ME-MS41 Fe . % 0.01	ME-MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME-MS41 In ppm 0.005	ME-MS41 K % 0.01	ME-MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME-MS41 Mg % 0.01	ME-MS41 Mn ppm 5
L943007		76.2	34	0.95	566	22.5	2.15	0.35	0.09	0.01 <0.01	0.019 0.005	0.14 0.01	1.9 0.2	4.8 4.7	0.45 1.57	925 143
L943009		33.8	91	5.19	114.0	1.76	1.76	0.05	<0.02 0.10	<0.01	0.005	<0.01	1.3	8.5	0.54	196
L943010		14.7	21	0.54 0.22	52.2 3.1	0.88 0.86	2.34 0.68	0.07 <0.05	<0.02	<0.01	< 0.005	<0.01	<0.2	1.0	1.00	59
L943011		10.3 44.1	99 184	0.22	3. i 1.8	2.88	0.68	0.12	<0.02	<0.01	0.006	<0.01	0.4	1.6	5.60	237
L943012																
L943013		42.9	262	4.96	2290	3.43	5.85	0.15	0.21	0.02	0.228	0.42	19.6	8.4	0.56	216
L943014		82.9	276	<0.05	1.3	4.90	0.33	0.19	<0.02	<0.01	0.008	<0.01	0.2	2.1	20.1	439
L943015		79.0	130	0.42	2.1	6.24	4.99	0.14	0.07	< 0.01	0.016	<0.01	1.8	1.0	5.61 8.22	345 593
L943017		58.6	1150	1.35	7.6	6.48	1.48	0.22	0.02	<0.01	0.009	<0.01	0.3 0.3	1.1 66.6	2.03	247
L943018		76.7	89	0.60	1190	3.56	2.44	0.11	0.02	<0.01	0.012	0.01				
L943019		88.1	905	1.56	46.6	6.00	1.97	0.37	0.02	<0.01	0.010	<0.01	0.4	1.7	9.58	581
L943020		52.3	113	3.16	1260	2.52	1.65	<0.05	<0.02	<0.01	0.008	0.09	0.2	80.4	1.04	123
L943021		55.2	34	0.82	2480	3.71	1.44	0.13	0.02	<0.01	0.024	0.03.	33.6	89.8	0.64	113
L943023		36.9	14	2.50	594	1.44	0.74	<0.05	<0.02	<0.01	0.006	80.0	2.7	21.0	0.19	43
L943035		30.9	38	0.61	386	2.91	3.43	0.07	0.09	<0.01	0.017	0.05	1.4	18.8	0.62	252
L943044		30.6	180	1.36	103.0	5.31	6.38	0.10	0.06	<0.01	0.024	0.08	5.3	72.4	1.42	549
L943045		51.4	31	0.53	582	7.97	1.85	0.11	0.06	<0.01	0.008	0.05	1.8	14.3	0.31	293
L943051		27.3	17	0.49	306	3.96	4.38	0.12	0.14	<0.01	0.025	0.03	5.5	41.9	0.88	400
L943065		157.0	583	70.5	1710	6.58	5.26	0.19	<0.02	<0.01	0.015	1.13	0.3	366	4.42	163
L943066		347	186	23.4	8260	8.03	2.55	0.25	0.02	<0.01	0.024	0.20	0.3	176.5	2.19	141
L943067		76.7	484	0.96	63.9	6.32	1.68	0.22	0.03	<0.01	0.010	<0.01	0.3	1.9	7.83	512
L943068		42.6	695	2.86	11.1	4.66	1.05	0.33	0.06	0.01	0.007	0.01	0.3	1.0	15.95	297
L943088		146.5	649	2.25	1080	7.80	1.12	0.25	0.02	<0.01	0.011	<0.01	0.5	0.6	11.10	395
L943089		25.1	96	1.14	98.8	2.81	2.22	0.05	0.09	<0.01	0.005	0.09	6.2	44.6	0.58	180
L943090		23.5	104	5.39	104.0	7.66	6.94	0.14	0.17	<0.01	0.016	0.27	17.3	133.0	2.07	926
L943091		21.6	120	4.97	89.0	7.35	6.78	0.14	0.16	0.01	0.013	0.26	15.7	134.0	1.99	919
L943092		5.9	55	0.95	9.2	6.72	11.45	0.42	0.17	0.01	0.018	0.09	17.9	41.3	0.83	388
L943093		35.3	7	0.35	1440	11.60	0.91	0.25	0.02	<0.01	0.093	0.02	6.8	3.6	0.13	279
L943094		62.2	23	3.15	631	20.5	4.61	0.46	0.07	0.01	0.069	0.10	3.7	37.8	0.46	237

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Telephone: 604 984 0221
www.alsglobal.com
Telecopieur: 604 984 0218

A: RESSOURCES MONARQUES INC. 450 RUE DE LA GARE DU PALAIS B.P. 10 QUEBEC QC G1K 3X2 Page: 2 - C
Nombre total de pages: 2 (A - D)
plus les pages d'annexe
Finalisée date: 8-JUIL-2012
Compte: REMONA

iiinera	113									CERTIF	ICAT D	'ANAL\	/SE V	01214	7437	
Description échantillon	Méthode élément unités L.D.	ME-MS41 Mo ppm 0.05	ME-MS41 Na % 0.01	ME-MS41 Nb ppm 0.05	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME-MS41 Ta ppm 0.01
L943007		2.18	0.13	0.28	216	120	2.2	5.5	0.003	>10.0	<0.05	5.6	9.4	0.2	10.2	<0.01
L943009		0.26	0.03	< 0.05	659	20	1.0	4.9	< 0.001	0.24	< 0.05	8.0	0.5	0.5	0.7	<0.01
L943010		0.31	0.03	0.16	37.0	210	0.9	0.7	< 0.001	0.06	0.10	3.8	0.4	<0.2	21.6	<0.01
L943011		0.14	0.02	<0.05	54.9	160	0.5	0.2	< 0.001	0.03	< 0.05	0.5	<0.2	<0.2	0.7	<0.01
L943012		0.10	0.02	<0.05	618	20	0.5	0.4	< 0.001	0.03	<0.05	1.3	<0.2	0.3	0.9	<0.01
L943013	·	9.49	0.37	0.44	2150	1730	15.2	49.7	0.004	1.21	1.75	3.7	3.2	4.1	108.0	0.01
L943014		0.32	0.02	0.06	2170	20	0.6	<0.1	< 0.001	0.02	0.06	3.7	<0.2	0.5	0.9	<0.01
L943015		0.05	0.02	0.08	222	280	0.9	0.6	< 0.001	0.01	<0.05	16.7	0.2	1.2	0.8	<0.01
L943017		0.08	0.02	0.06	709	40	0.8	0.4 `	< 0.001	0.07	0.10	5.1	0.2	3.7	0.3	<0.01
L943018		0.27	0.11	< 0.05	524	90	0.7	0.6	0.004	1.28	0.07	2.9	3.0	<0.2	2.9	<0.01
L943019		0.14	0.02	0.06	1040	50	0.8	0.6	<0.001	0.25	0.09	7.2	0.4	4.6	0.2	<0.01
L943020		0.17	0.06	<0.05	430	30	2.1	14.9	0.001	0.79	<0.05	2.1	2.8	<0.2	4.1	<0.01
L943021		1.49	0.04	0.06	2320	. 960	1.9	4.0	0.006	2.50	0.05	2.6	6.7	0.3	6.7	<0.01
L943023		0.14	0.03	0.05	234	20	0.8	15.3	0.001	0.60	<0.05	1.8	1.2	<0.2	7.2	<0.01
L943035		0.37	0.12	0.13	67.5	370	3.8	7.2	0.003	0.49	<0.05	8.1	1.3	<0.2	2.8	<0.01
L943044		0.71	0.12	0.25	96.7	230	5.9	5.1	0.002	2.17	0.14	4.5	1.6	0.3	16.0	<0.01
L943045	•	1.04	0.05	0.31	131.5	220	1.5	4.9	0.004	4.45	0.25	2.0	2.6	2.4	5.2	<0.01
L943051		0.25	0.22	0.17	27.5	650	1.2	2.7	0.001	0.49	0.05	11.8	2.1	0.2	10.2	0.01
L943065		1.38	0.03	80.0	2190	70	25.0	118.5	0.010	1.74	0.17	2.0	5.9	0.3	1.4	<0.01
L943066		1.98	0.05	0.10	5240	70·	2.7	34.1	0.014	5.08	0.14	1.8	9.0	0.4	1.0	<0.01
L943067		0.10	0.02	0.06	853	40	1.3	0.6	<0.001	0.24	0.06	6.1	0.6	3.0	0.2	<0.01
L943068		0.23	0.02	0.06	1830	40	0.9	5.7	<0.001	0.06	0.19	7.5	0.2	2.2	0.4	<0.01
L943088		0.25	0.02	0.08	1080	220	2.6	0.6	0.001	1.43	0.16	5.7	1.5	8.0	2.1	<0.01
L943089		0.59	0.03	0.31	80.3	200	6.5	5.8	0.001	1.04	0.16	1.9	1.2	<0.2	5.2	<0.01
L943090		1.22	0.03	0.30	68.4	220	10.2	14.1	0.002	2.86	0.16	5.8	2.0	0.4	3.8	0.01
L943091		1.05	0.03	0.45	63.3	280	9.7	13.5	0.001	2.47	0.14	5.5	1.7	0.4	3.8	0.01
L943092		0.86	0.03	0.46	27.3	680	8.9	4.6	<0.001	1.27	0.71	4.8	1.9	0.5	73.7	0.01
L943093		0.65	0.03	0.16	64.0	270	2.5	0.8	0.002	8.07	0.13	0.7	3.7	1.0	2.6	<0.01
L943094		2.80	0.04	0.55	115.0	170	4.8	6.1	0.007	>10.0	0.13	2.0	9.6	0.4	5.0	< 0.01

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: RESSOURCES MONARQUES INC. 450 RUE DE LA GARE DU PALAIS B.P. 10 **QUEBEC QC G1K 3X2**

CERTIFICAT D'ANALYSE VO12147437

Page: 2 - D Nombre total de pages: 2 (A - D) plus les pages d'annexe Finalisée date: 8-JUIL-2012 Compte: REMONA

											OLIX I II	IOA I D	ANALISE	VQ 12 17	7.107
Description échantillon	Méthode élément unités L.D.	ME-MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2	ME-MS41 Ti % 0.005	ME-MS41 TI ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5				
L943007		0.75	0.3	0.051	0.07	0.08	37	3.75	3.51	38	2.3				
943009		0.06	<0.2	0.015	0.13	0.20	18	0.05	0.45	12	<0.5				
.943010		0.02	<0.2	0.125	<0.02	<0.05	30	0.30	4.93	10	2.1				
.943010 .943011		<0.01	<0.2	<0.005	<0.02	0.10	3	1.00	0.07	8	<0.5				
.943012		0.03	<0.2	<0.005	0.02	1.89	6	0.17	0.58	11	<0.5				
943013		0.26	10.5	0.181	0.80	2.16	170	1.23	8.65	52	6.4				
		0.26	<0.2	< 0.005	< 0.02	0.11	3	0.63	0.21	18	<0.5				
.943014				0.005	<0.02	0.11		0.03	4.13	14	2.8				
.943015		0.01	0.5				180		1.29	36	0.7				
.943017		0.03	<0.2	0.020	0.03	< 0.05	67	0.24 <0.05			0.7				
943018		0.28	<0.2	0.019	0.11	<0.05	18		0.62	24					
L943019		0.07	<0.2	0.015	0.09	0.20	46	0.42	1.63	35	8.0				
.943020		0.35	<0.2	0.015	0.17	0.13	13	<0.05	0.30	25	<0.5				
.943021		1.05	0.9	0.012	0.22	2.17	18	0.21	2.11	22	0.6				
943023		0.16	<0.2	0.022	0.09	< 0.05	7	0.05	0.36	20	<0.5				
943035		0.06	0.6	0.125	0.06	0.19	68	0.32	4.71	36	1.6				
943044		0.27	2.3	0.158	0.08	0.74	91	0.40	2.62	195	2.0				
943045		0.48	0.6	0.087	0.04	2.06	23	0.70	3.59	45	1.0				
.943051		0.08	0.7	0.140	0.02	0.14	94	0.29	9.03	28	2.2				
L943065		0.80	<0.2	0.117	1.67	0.13	67	0.10	0.25	49	<0.5				
L943066		1.91	<0.2	0.068	0.79	0.23	32	0.26	0.46	49	0.5				
			<0.2	0.012	0.07	0.08	40	0.27	1.26	29	0.9				
_943067		0.11	<0.2 <0.2	0.012	0.07	0.08	10	1.37	1.64	29	2.6				
L943068		0.03							3.28	13	0.5				
.943088		0.19	<0.2	0.009	0.15	0.09	31	0.51		41	3.3				
_943089		0.16	2.7	0.110	0.06	0.60	28	2.46	1.09		5.9				
_943090		0.36	6.7	0.156	0.18	2.47	85	0.55	4.92	145					
.943091		0.32	7.0	0.157	0.18	2.35	86	0.54	4.58	145	5.1				
943092		0.13	6.6	0.124	0.03	0.75	41	0.75	4.84	33	6.7				
_943093		0.76	0.5	0.006	0.07	1.49	5	0.55	3.30	318	0.6				
943094		1.18	1.1	0.052	0.15	1.70	23	0.50	2.15	157	2.5				
		l													
		!													
		l													
											•				
		l													

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Teléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: RESSOURCES MONARQUES INC. 450 RUE DE LA GARE DU PALAIS B.P. 10 QUEBEC QC G1K 3X2

Page: Annexe 1 Total # les pages d'annexe: 1 Finalisée date: 8-JUIL-2012 **Compte: REMONA**

Projet: CAU-GE-202

CERTIFICAT D'ANALYSE VO12147437

Méthode	COMMENTAIRE DE CERTIFICAT
ME-MS41	L'analyses de l'or par cette méthode sont semi-quantitatif à cause du peu d'échantillon pesée (0.5g).
·	·
-	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: RESSOURCES MONARQUES INC. 450 RUE DE LA GARE DU PALAIS B.P. 10 **QUEBEC QC G1K 3X2**

Page: 1 Finalisée date: 16-JUIL-2012

Compte: REMONA

CERTIFICAT TB12148418

Projet: CAU-GE-202

Bon de commande #: 5009

Ce rapport s'applique aux 49 échantillons de roche soumis à notre laboratoire de Val

d'Or, QC, Canada le 22-JUIN-2012.

Les résultats sont transmis à:

GUY BOURASSA YVES CARON

ISABELLE BOURASSA MAUDE LEVESQUE-MICHAUD

GUY BOURASSA LOUIS-PHILIPPE RICHARD

	PRÉPARATION ÉCHANTILLONS
CODE ALS	DESCRIPTION
WEI-21	Poids échantillon reçu
LOG-24	Entrée pulpe - Reçu sans code barre
LOG-22	Entrée échantillon - Reçu sans code barre
CRU-QC	Test concassage QC
PUL-QC	Test concassage QC
CRU-31	Granulation - 70 % < 2 mm
SPL-21	Échant. fractionné - div. riffles
PUL-31	Pulvérisé à 85 % <75 um

	PROCÉDURES ANALYTIQUES	
CODE ALS	DESCRIPTION	INSTRUMENT
ME-OG46	Teneur marchandes éléments - Aqua regia	ICP-AES
Cu-OG46	Teneur marchande Cu - Aqua regia	VARIABLE
Au-TL43	Teneur trace Au - 25 g AR	ICP-MS
ME-MS41	Aqua regia 51 éléments ICP-MS	

A: RESSOURCES MONARQUES INC. ATTN: MAUDE LEVESQUE-MICHAUD **450 RUE DE LA GARE DU PALAIS** B.P. 10 **QUEBEC QC G1K 3X2**

RECU AU MRNF

DIRECTION DES TITRES MINIERS

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.

***** Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: 604 984 0221
www.alsglobal.com
Télécopieur: 604 984 0218

A: RESSOURCES MONARQUES INC. 450 RUE DE LA GARE DU PALAIS B.P. 10 QUEBEC QC G1K 3X2

CERTIFICAT D'ANALYSE TB12148418

Page: 2 - A Nombre total de pages: 3 (A - D) plus les pages d'annexe Finalisée date: 16-JUIL-2012 Compte: REMONA

		OLKINIOAI DARALISE IBIZIAGAIO														
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-TL43 Au ppm 0.001	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.2	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 8e ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 · Co ppm 0.1	ME-MS41 Cr ppm 1
L943001		1.10	0.001	0.17	3.02	0.5	<0.2	<10	20	0.09	0.18	1.82	0.05	7.10	32.2	195
L943002		0.84	< 0.001	1.95	0.26	39.5	<0.2	<10	<10	0.08	14.30	0.08	0.95	3.70	85.2	5
L943003		0.91	<0.001	1.37	0.33	54.6	<0.2	<10	10	0.10	5.92	0.16	0.46	5.36	136.5	5
L943004		1.07	0.046	3.10	1.70	0.5	<0.2	<10	10	0.05	0.22	1.15	2.75	9.82	25.4	112
L943005		1.79	<0.001	16.10	0.69	13.5	<0.2	<10	20	0.22	36.6	0.43	4.83	11.85	73.0	53
L943006		0.93	0.003	0.63	2.18	2.7	<0.2	<10	60	0.15	0.64	1.60	0.28	10.15	41.9	30
L943008		1.29	< 0.001	1.54	0.15	6.9	<0.2	<10	<10	0.18	8.25	0.17	4.67	2.62	4.4	5
L943016	•	1.15	0.003	0.29	1.77	4.8	<0.2	<10	10	0.23	0.27	0.30	0.12	15.65	15.1	19
L943022		1.28	0.917	15.40	1.28	0.8	0.7	<10	30	1.69	6.29	0.37	2.49	1.29	18.0	3
L943024		1.33	0.001	0.10	0.63	1.3	<0.2	<10	10	0.10	0.21	0.66	0.03	5.86	21.9	9
L943025		1.37	0.002	0.19	0.26	2.6	<0.2	<10	<10	0.08	0.27	0.31	0.01	1.89	6.2	14
L943026		0.89	< 0.001	0.12	0.78	1.8	<0.2	<10	150	0.37	0.30	0.50	0.05	13.30	4.8	31
L943027		1.05	<0.001	1.16	0.26	56.4	<0.2	<10	<10	0.19	10.80	0.05	0.25	5.14	120.0	19
L943028		0.89	<0.001	0.07	3.94	1.6	<0.2	<10	370	0.54	0.18	2.08	0.04	45.8	9.9	63
L943029		0.99	<0.001	<0.01	0.02	<0.1	<0.2	<10	<10	0.08	0.01	0.01	<0.01	36.5	0.2	14
L943030		0.99	<0.001	1.13	0.70	17.2	<0.2	<10	10	0.13	8.38	0.32	0.16	17.90	309	27
L943031		0.80	< 0.001	0.24	0.95	0.5	<0.2	<10	60	0.10	0.76	0.33	0.17	13.30	62.8	94
L943032		0.73	< 0.001	0.41	0.13	70.0	<0.2	<10	<10	0.09	1.80	0.07	0.22	3.67	58.6	3
L943033		0.93	< 0.001	0.34	0.90	4.2	<0.2	<10	10	0.15	0.44	0.22	0.23	22.7	11.9	36
L943034		0.71	<0.001	0.01	1.10	5.3	<0.2	<10	10	0.16	0.06	2.55	0.10	1.24	10.4	18
L943036		1.18	0.001	0.03	0.20	0.9	<0.2	<10	10	0.16	0.05	0.27	0.03	6.97	4.2	10
L943037		1.14	0.001	0.14	2.50	3.4	<0.2	<10	130	0.42	0.43	0.31	0.01	17.85	12.9	83
L943038		0.70	0.005	0.52	1.60	82.8	<0.2	<10	20	0.11	0.46	0.23	0.02	8.93	23.6	105
L943039		0.88	0.007	0.62	1.36	2.4	<0.2	<10	10	0.13	0.83	0.18	80.0	12.35	49.4	53
L943040		1.08	0.001	0.17	2.40	3.8	<0.2	<10	40	0.22	0.29	0.36	0.14	17.45	11.9	138
L943041		0.75	0.001	0.17	2.46	2.3	<0.2	<10	30	0.21	0.33	0.34	0.14	20.7	11.4	120
L943042		1.01	0.007	0.47	1.28	0.8	<0.2	<10	10	0.17	0.19	0.38	0.31	16.65	12.8	20
L943043		1.09	< 0.001	0.10	2.09	8.6	<0.2	<10	140	0.28	0.38	0.46	0.02	11.05	9.3	53
L943046		1.10	0.239	0.08	2.49	605	0.2	<10	40	0.29	80.0	0.36	0.57	12.05	51.8	316
L943047		1.24	0.012	0.37	1.79	2250	<0.2	<10	10	0.28	1.92	0.25	8.98	20.8	52.6	269
L943048		0.79	<0.001	1.08	1.09	33.6	<0.2	<10	10	0.34	2.03	0.10	0.24	9.28	84.3	109
L943049		0.98	0.006	0.31	2.41	349	<0.2	<10	10	0.34	0.31	0.23	0.09	5.33	41.3	105
L943050		1.00	< 0.001	0.75	0.64	32.8	<0.2	<10	<10	0.28	11.25	0.08	0.13	2.59	34.9	168
L943052		1.49	0.035	0.10	1.49	164.5	<0.2	<10	<10	0.12	0.21	0.27	0.43	10.80	33.0	44
L943053		0.52	<0.001	0.34	1.13	3.5	<0.2	<10	10	0.11	0.84	0.91	0.05	2.25	98.3	28
L943058		0.93	<0.001	0.50	1.40	2.4	<0.2	<10	50	0.21	2.15	0.22	0.66	23.0	30.3	51
L943059		1.14	< 0.001	0.01	1.63	184.0	<0.2	<10	20	0.26	0.22	0.49	0.05	0.53	28.6	118
L943060		0.60	0.012	0.54	1.30	74.7	<0.2	<10	10	0.33	0.40	0.28	0.26	8.00	40.3	101
L943061		1.49	0.001	1.36	3.10	103.0	<0.2	<10	<10	0.44	3.98	0.24	0.71	4.23	22.5	68
L943062		0.89	< 0.001	0.04	3.10	1.8	<0.2	<10	40	0.19	0.09	0.19	0.07	7.25	32.2	2

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

450 RUE DE LA GARE DU PALAIS B.P. 10

QUEBEC QC G1K 3X2

A: RESSOURCES MONARQUES INC.

CERTIFICAT D'ANALYSE

Page: 2 - B Nombre total de pages: 3 (A - D) plus les pages d'annexe Finalisée date: 16-JUIL-2012 **Compte: REMONA**

TB12148418

Description échantillon	Méthode élément unités L.D.	ME-MS41 Cs ppm 0.05	ME-MS41 Cu ppm 0.2	ME-MS41 Fe % 0.01	ME-MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME-MS41 In ppm 0.005	ME-MS41 K % 0.01	ME-MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME-MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME-MS41 Mo ppm 0.05	ME-MS41 Na % 0.01
L943001		3.33	549	9.20	6.87	0.14	0.07	0.01	0.021	0.16	3.1	17.5	0.55	940	0.46	0.19
L943001 L943002		0.19	135.5	35.0	0.93	0.34	0.03	0.02	0.025	0.01	1.8	3.9	0.11	240	0.99	0.01
L943002		0.27	103.5	28.6	1.48	0.33	0.05	0.01	0.018	0.02	2.4	2.8	0.06	165	0.80	0.01
L943004		0.41	>10000	5.51	4.04	0.11	0.13	<0.01	0.118	0.05	3.9	17.1	0.68	631	0.88	0.07
L943005		1.58	197.5	25.3	3.79	0.22	0.08	0.02	0.276	0.11	4.8	17.6	0.43	1540	0.85	0.04
L943006		1.48	474	7.59	4.94	0.22	0.08	0.01	0.022	0.06	5.3	16.0	0.62	648	0.57	0.12
L943008		0.26	32.1	3.43	0.74	0.05	0.13	0.01	0.267	0.13	1.2	0.8	0.01	98	0.35	0.03
L943008 L943016		2.84	78.5	10.30	8.14	0.26	0.04	0.02	0.005	0.11	8.0	66.3	0.83	1450	0.65	0.05
L943010		12.25	>10000	5.61	5.80	0.16	0.27	0.02	1.115	0.22	0.8	88.1	1.04	164	1.16	0.03
L943022 L943024		1.09	298	2.79	2.76	0.10	0.08	<0.01	0.012	0.05	3.0	21.8	0.46	222	0.58	0.07
L943025		0.40	313	1.11	1.18	<0.05	0.03	0.01	<0.005	0.02	1.5	4.2	0.08	57	2.05	0.02
L943025 L943026		4.99	5.5	25.5	7.33	1.50	0.04	0.04	0.006	0.26	7.7	44.5	0.42	159	0.19	0.05
L943020		0.27	93.8	30.2	1.61	0.75	0.04	0.01	0.010	0.02	2.7	22.4	0.19	274	0.45	0.01
L943027		2.77	31.4	3.09	11.45	0.18	0.11	0.02	0.013	0.80	23.1	26.2	0.71	568	0.79	0.40
L943028		<0.05	1.4	0.26	0.23	<0.05	0.02	<0.01	<0.005	<0.01	16.2	1.3	<0.01	27	0.11	<0.01
L943030		0.84	206	22.4	2.63	0.49	0.08	0.04	0.036	0.04	10.8	23.9	0.41	245	2.39	0.04
L943030		1.79	207	6.37	3.80	0.16	0.05	<0.01	0.007	0.22	5.8	22.2	0.46	361	1.68	0.08
L943032		0.13	108.0	29.0	0.78	0.64	0.03	0.03	0.017	0.02	1.9	0.6	0.10	169	0.42	0.01
L943032		3.83	34.3	3.99	4.46	0.15	0.32	0.01	0.008	0.20	11.4	36.1	1.10	573	0.87	0.04
L943034		0.33	3.4	1.34	2.90	0.07	0.09	<0.01	0.007	0.01	0.6	9.0	0.41	360	0.52	0.05
L943036		3.75	30.4	2.59	1.02	0.09	<0.02	<0.01	0.015	0.03	3.6	0.5	0.10	108	0.31	0.01
L943037		10.30	56.7	11.20	9.59	0.55	0.07	0.02	0.005	0.68	8.5	91.1	1.31	642	0.54	0.03
L943037		0.54	94.7	6.29	6.27	0.13	0.06	0.01	0.007	0.06	4.9	43.4	0.99	797	1.30	0.03
L943036		1.01	408	22.6	4.28	0.47	0.09	0.03	0.007	0.06	6.5	56.4	1.04	589	1.06	0.02
L943040		2.12	101.0	7.26	7.03	0.18	0.13	0.01	0.007	0.13	8.9	93.9	1.47	1670	1.07	0.05
		1.87	72.5	7.43	6.92	0.16	0.13	0.01	0.007	0.11	10.7	98.4	1.63	1500	1.24	0.04
L943041 L943042		1.73	66.7	9.50	5.09	0.26	0.06	0.01	0.014	0.07	9.4	35.5	0.67	1220	0.79	0.05
L943042 L943043		20.5	16.1	12.20	13.10	0.73	0.08	0.02	0.014	0.72	4.9	91.6	0.81	232	0.85	0.03
L943045		1.46	40.1	5.11	8.03	0.15	0.05	0.01	0.023	0.16	5.6	81.1	1.25	1240	0.50	0.05
L943047		0.98	342	5.06	7.71	0.15	0.10	0.01	0.340	0.08	10.2	107.0	1.60	479	3.88	0.04
		1.20	990	26.5	6.08	0.64	0.06	0.03	0.046	0.07	4.3	80.2	0.85	612	2.21	0.01
L943048		8.09	31.5	5.99	5.82	0.16	0.02	0.03	0.016	0.29	2.1	123.0	0.81	1070	0.46	0.01
L943049 L943050		0.73	31.5	9.90	6.18	0.17	0.02	0.01	0.034	0.06	1.3	15.4	0.30	246	2.41	0.01.
		1.52	45.2	3.59	4.84	0.17	0.04	<0.01	0.031	0.09	5.0	44.0	0.77	634	1.25	0.01
L943052 L943053		1.48	782	4.30	3.11	0.16	0.10	0.01	0.034	0.06	1.1	15.4	0.80	252	0.54	0.16
		6.51	235	9.13	5.72	0.25	0.13	0.01	0.074	0.19	11.0	57.0	0.81	520	1.07	0.04
L943058		1.11	2.1	1.74	2.18	< 0.05	0.02	<0.01	<0.005	0.12	0.3	84.8	1.56	283	0.10	0.02
L943059		1.35	206	4.26	3.75	0.09	0.02	0.01	0.017	0.14	3.6	50.4	0.79	535	2.70	0.03
L943060		1.92	163.5	10.70	13.50	0.26	0.06	0.02	0.028	0.04	2.1	77.6	2.60	1070	0.60	0.02
L943061		45.8	7.4	7.03	13.65	0.20	0.06	0.01	0.054	1.09	3.2	87.8	2.54	300	0.17	0.03
L943062		45.6	7.7	1.00	10.00	0.20	0.00	0.0.								

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Téléphone: 604 984 0221
www.alsqlobal.com
Télécopieur: 604 984 0218

A: RESSOURCES MONARQUES INC. 450 RUE DE LA GARE DU PALAIS B.P. 10 QUEBEC QC G1K 3X2 Page: 2 - C
Nombre total de pages: 3 (A - D)
plus les pages d'annexe
Finalisée date: 16-JUIL-2012
Compte: REMONA

CERTIFICAT D'ANALYSE TB12148418

															_	
Description échantillon	Méthode élément unités L.D.	ME-MS41 Nb ppm 0.05	ME-MS41 Ni ppm 0.2	ME-MS41 P pprn 10	ME-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 · Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME-MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2
L943001		0.14	114.0	270	1.4	10.8	0.002	0.74	<0.05	13.1	1.4	0.2	35.1	<0.01	0.12	0.2
L943002		0.53	71.4	50	4.1	1.0	0.003	>10.0	< 0.05	1.9	5.7	1.7	2.5	< 0.01	0.08	0.5
L943003		0.43	64.4	700	5.0	2.2	0.004	>10.0	< 0.05	2.1	8.2	1.5	2.2	< 0.01	0.07	0.9
L943004		0.25	76.9	180	1.6	2.7	0.004	2.02	< 0.05	13.9	3.4	0.6	15.8	< 0.01	0.65	0.8
L943005		0.43	57.7	1720	10.7	13.3	0.003	>10.0	0.09	10.4	4.9	4.7	4.3	0.01	0.13	1.3
L943006		0.29	99.9	480	2.3	3.0	0.002	3.97	<0.05	7.6	1.3	0.2	42.0	0.01	0.10	0.9
L943008		0.09	11.3	870	8.8	6.1	0.001	2.01	< 0.05	0.3	1.1	0.3	4.4	< 0.01	0.02	0.5
L943016		0.52	32.4	240	3.0	11.9	0.002	4.63	< 0.05	1.6	0.8	<0.2	9.7	< 0.01	0.08	1.4
L943022		0.23	76.5	1580	25.5	51.0	0.001	2.60	0.17	0.4	20.5	1.3	7.4	0.02	15.25	1.6
L943024		0.29	18.7	430	1.2	5.1	0.001	0.61	0.06	6.1	2.1	<0.2	5.6	<0.01	0.20	0.4
L943025		0.16	5.9	170	1.1	2.2	0.001	0.20	0.05	1.0	1.4	<0.2	4.5	<0.01	0.25	<0.2
L943026		0.61	13.7	1010	0.7	62.0	0.001	0.02	< 0.05	1.9	0.3	0.3	22.1	<0.01	0.03	1.8
L943027		0.91	62.9	100	4.0	2.7	0.002	>10.0	< 0.05	2.0	5.2	0.9	1.5	< 0.01	0.20	0.8
L943028		0.62	15.5	1220	6.7	41.8	0.001	0.13	<0.05	5.7	0.7	0.9	115.5	0.01	0.03	5.0
L943029		<0.05	1.0	20	0.2	0.3	<0.001	0.01	<0.05	0.1	0.2	<0.2	0.6	< 0.01	0.01	1.6
L943030		1.78	83.9	630	2.9	5.1	0.003	>10.0	<0.05	1.8	4.1	0.6	6.3	0.01	0.70	1.8
L943031		0.38	123.5	510	0.9	11.3	0.003	3.48	< 0.05	8.8	1.5	<0.2	11.6	< 0.01	0.20	1.2
L943032		0.87	55.8	90	4.2	1.4	0.003	>10.0	< 0.05	1.2	6.0	0.2	1.4	< 0.01	0.12	0.5
L943033		0.23	20.7	680	5.0	18.4	0.001	2.77	< 0.05	6.7	1.3	0.4	8.6	< 0.01	0.07	4.5
L943034		0.18	15.6	370	1.4	1.7	< 0.001	0.04	<0.05	5.0	0.2	0.6	12.4	< 0.01	0.01	<0.2
L943036		0.12	14.5	590	0.7	2.8	0.002	0.22	0.06	0.7	1.1	<0.2	5.5	<0.01	0.12	0.8
L943037		0.47	46.5	680	3.2	85.8	0.001	0.32	< 0.05	5.8	0.7	0.3	15.9	<0.01	80.0	3.0
L943038		0.51	47.5	340	16.7	5.2	0.001	2.63	0.50	3.5	1.1	<0.2	6.7	< 0.01	0.12	1.7
L943039		0.88	104.0	180	2.1	3.5	0.003	>10.0	< 0.05	3.5	2.5	0.2	3.9	< 0.01	0.36	1.7
L943040		0.41	33.9	250	3.2	7.6	0.002	2.60	0.05	6.2	8.0	0.2	11.8	0.01	0.07	3.1
L943041		0.39	31.6	290	3.4	6.6	0.002	2.48	0.05	5.6	0.9	0.3	9.7	0.01	0.09	3.5
L943042		0.52	18.4	180	4.7	6.5	0.002	4.84	0.08	1.3	6.6	0.4	5.4	<0.01	0.17	2.4
L943043		0.49	32.9	1620	5.5	69.9	0.001	0.12	<0.05	3.5	0.4	0.6	11.5	<0.01	0.08	3.3
L943046		0.33	168.0	140	4.2	9.0	0.003	0.48	0.25	9.4	0.7	0.5	17.2	0.01	0.18	2.2
L943047		0.65	160.0	320	16.6	7.9	0.009	1.60	0.31	9.1	3.3	1.4	4.0	0.01	0.18	4.9
L943048		0.70	250	210	6.1	7.5	0.007	>10.0	0.06	7.1	6.8	2.6	1.8	<0.01	0.41	2.2
L943049		0.28	89.6	220	0.5	41.1	0.002	0.30	0.24	7.4	0.8	1.1	1.5	0.01	0.13	0.5
L943050		0.92	95.1	190	10.7	9.3	0.004	6.30	0.06	4.9	3.1	0.7	0.8	0.01	0.10	0.7
L943052		0.30	54.1	210	2.5	6.4	0.002	0.50	0.07	3.1	1.2	0.3	4.6	<0.01	0.27	1.5
L943053		0.13	34.3	10	0.6	4.9	0.006	1.79	<0.05	5.3	6.2	0.4	1.1	<0.01	0.18	<0.2
L943058		0.82	58.7	370	2.5	27.4	0.005	4.31	<0.05	5.5	3.2	2.9	3.3	<0.01	0.07	3.3
L943059		0.28	102.0	90	1.5	18.5	< 0.001	0.03	0.06	1.2	0.2	0.3	9.2	0.01	0.02	<0.2
L943060	•	0.30	100.5	190	12.1	14.0	0.002	1.63	0.10	8.2	1.6	0.9	6.7	<0.01	0.27	0.8
L943061		0.80	52.9	700	209	7.6	0.001	3.19	0.22	8.8	1.7	3.3	1.6	0.04	0.12	2.6
L943062		0.19	1.4	440	3.5	164.5	0.001	0.03	< 0.05	9.9	0.5	0.9	1.4	0.01	0.04	1.1

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Telephone: 604 984 0221 Telecopieur: 604 984 0218 www.alsglobal.com

A: RESSOURCES MONARQUES INC. 450 RUE DE LA GARE DU PALAIS B.P. 10 QUEBEC QC G1K 3X2

CERTIFICAT D'ANALYSE

Page: 2 - D Nombre total de pages: 3 (A - D) plus les pages d'annexe Finalisée date: 16-JUIL-2012 **Compte: REMONA**

TB12148418

								L		OLKIII	IOAT D'ANALTSE	IBILITOTIO	
Description échantillon	Méthode élément unités L.D.	ME-MS41 Ti % 0.005	ME-MS41 Tl ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	Cu-OG46 Cu % 0.001			
L943001 L943002 L943003 L943004 L943005		0.121 0.012 0.014 0.200 0.037	0.07 0.02 0.29 0.03 0.09	0.07 1.25 5.85 0.44 0.48	214 12 9 82 27	0.29 7.96 8.18 0.92 0.68	9.21 1.37 3.76 5.01 11.60	81 206 38 602 1180	1.1 0.7 1.0 2.1 2.6	0.985			
L943006 L943008 L943016 L943022 L943024		0.085 <0.005 0.078 <0.005 0.141	0.02 0.05 0.11 0.57 0.05	0.26 4.29 0.24 1.05 0.24	53 1 24 6 56	0.16 0.23 1.06 0.06 0.17	5.65 2.50 1.28 0.36 5.09	81 1360 62 127 18	1.6 2.3 1.5 2.1 1.5	4.02			
L943025 L943026 L943027 L943028 L943029	****	0.042 0.054 0.013 0.262 <0.005	<0.02 0.34 0.03 0.22 <0.02	0.22 0.39 0.40 1.43 0.14	10 26 9 68 1	5.71 3.20 0.14 10.80 0.09	1.37 3.55 1.46 10.10 2.78	4 20 53 64 <2	0.5 1.0 1.3 2.9 0.5			_	
L943030 L943031 L943032 L943033 L943034		0.103 0.141 0.009 0.075 0.072	0.03 0.10 0.03 0.20 <0.02	0.51 0.24 0.44 0.73 <0.05	25 125 5 49 39	2.51 0.64 0.09 0.20 0.92	4.74 5.66 1.96 6.89 5.42	31 80 103 100 23	2.0 1.5 1.1 14.1 2.8	- "			
L943036 L943037 L943038 L943039 L943040		0.008 0.165 0.123 0.079 0.157	0.02 0.51 0.05 0.03 0.07	0.21 0.64 0.67 0.91 1.24	6 61 48 32 84	0.06 0.45 0.75 0.75 0.34	1.72 4.67 1.75 3.97 3.26	9 68 35 47 107	0.7 2.7 2.7 3.6 5.3				
L943041 L943042 L943043 L943046 L943047		0.151 0.062 0.153 0.146 0.180	0.05 0.06 0.47 0.10 0.21	1.39 0.51 0.70 0.47 0.97	69 15 60 137 86	0.32 0.31 0.49 0.65 0.81	3.80 1.82 1.89 2.75 5.46	112 88 53 227 1930	5.3 2.3 3.1 2.0 3.9	- 14			
L943048 L943049 L943050 L943052 L943053		0.053 0.192 0.048 0.078 0.053	0.07 0.45 0.05 0.07 0.03	2.97 0.27 3.23 0.43 0.05	53 85 29 43 61	0.45 0.41 0.27 0.34 <0.05	3.91 3.99 2.24 2.72 4.53	421 133 65 374 8	2.2 <0.5 1.1 1.2 2.7				
L943058 L943059 L943060 L943061 L943062		0.159 0.116 0.168 0.170 0.200	0.29 0.10 0.22 0.10 0.91	0.48 0.09 0.51 3.58 0.23	43 23 89 94 342	1.01 0.16 0.94 1.53 0.52	6.39 0.54 3.67 5.07 11.40	303 36 98 375 87	5.4 <0.5 0.7 1.4 1.0				

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Telephone: 604 984 0221
www.alsglobal.com
Telecopieur: 604 984 0218

A: RESSOURCES MONARQUES INC. 450 RUE DE LA GARE DU PALAIS B.P. 10 QUEBEC QC G1K 3X2 Page: 3 - A Nombre total de pages: 3 (A - D) plus les pages d'annexe Finalisée date: 16-JUIL-2012

Compte: REMONA

Minera	ie							Proje	et: CAU-G	E-202						
	13									CERTIF	ICAT D	'ANAL	YSE T	B1214	8418	
Description échantillon	Méthode élément unités L.D.	WEI-21 Poids reçu kg 0.02	Au-TL43 Au ppm 0.001	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.2	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME-MS41 Cr ppm 1
L943063 L943064 L943076 L943077 L943078		0.06 1.27 1.02 1.34 0.78	0.221 0.052 <0.001 0.219 0.024	0.90 2.69 0.08 0.88 2.25	2.14 0.83 3.20 0.85 1.94	59.7 7.8 1.4 >10000 6150	0.2 <0.2 <0.2 0.2 <0.2	10 <10 <10 <10 <10	150 10 320 <10 20	0.39 0.10 0.79 2.90 4.61	1.72 0.70 0.22 2.71 11.70	1.58 0.97 0.41 0.33 0.45	0.10 0.12 0.01 0.05 2.44	39.6 10.00 28.6 5.42 18.10	47.0 63.4 14.0 441 210	291 5 79 4 145
L943079 L943080 L943081 L943082		1.50 0.71 1.03 0.67	<0.001 0.001 <0.001 0.008	0.01 0.38 0.88 0.59	0.03 2.19 2.22 3.10	56.9 10.2 32.8 278	<0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10	<10 40 10 30	0.06 0.49 0.60 0.93	0.02 0.34 0.70 1.31	0.01 0.27 0.23 0.33	<0.01 0.21 0.44 0.74	15.30 22.3 24.8 9.38	1.1 7.9 22.1 53.3	17 16 101 211
			,													
		,														

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218

www.alsglobal.com

450 RUE DE LA GARE DU PALAIS B.P. 10 QUEBEC QC G1K 3X2

Page: 3 - B Nombre total de pages: 3 (A - D) plus les pages d'annexe Finalisée date: 16-JUIL-2012 **Compte: REMONA**

Projet: CAU-GE-202

A: RESSOURCES MONARQUES INC.

	_									CERTIF	ICAT D	'ANAL'	YSE T	B1214	8418	
Description échantillon	Méthode élément unités L.D.	ME-MS41 Cs ppm 0.05	ME-MS41 Cu ppm 0.2	ME-MS41 Fe % 0.01	ME-MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME-MS41 In ppm 0.005	ME-MS41 K % 0.01	ME-M\$41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME-MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME-MS41 Mo ppm 0.05	ME -MS41 Na % 0.01
L943063 L943064 L943076 L943077 L943078		4.96 0.81 50.9 2.25 5.46	2570 6630 22.7 217 629	3.57 4.67 10.75 12.25 13.50	6.35 2.99 12.70 3.39 10.80	0.24 0.11 0.60 0.38 0.23	0.21 0.10 0.04 0.10 0.27	0.03 <0.01 <0.01 <0.01 <0.01	0.238 0.009 0.009 0.047 0.023	0.44 0.05 1.80 0.04 0.17	18.2 6.4 13.4 2.5 8.6	8.5 16.7 130.5 12.0 158.5	0.59 0.35 1.13 0.13 1.04	235 156 98 1590 757	10.65 1.28 0.86 1.74 1.97	0.37 0.05 0.11 0.02 0.04
L943079 L943080 L943081 L943082	·	0.06 104.0 1.94 14.25	2.6 44.9 74.4 195.0	0.41 8.28 8.36 11.10	0.21 7.61 7.04 11.10	<0.05 0.16 0.14 0.26	0.02 0.07 0.14 0.07	<0.01 <0.01 <0.01 <0.01	<0.005 <0.005 0.029 0.030	0.01 0.62 0.12 0.36	6.8 11.0 11.4 4.3	0.9 111.5 93.1 186.5	0.01 1.15 1.94 2.45	50 1340 1160 1660	0.22 0.65 2.01 1.36	<0.01 0.02 0.02 0.06
	·													•		
															·	
			,													

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 www.alsglobal.com A: RESSOURCES MONARQUES INC. 450 RUE DE LA GARE DU PALAIS B.P. 10 QUEBEC QC G1K 3X2 Page: 3 - C Nombre total de pages: 3 (A - D) plus les pages d'annexe Finalisée date: 16-JUIL-2012 Compte: REMONA

mmera										CERTIF	ICAT D	'ANAL	YSE 1	B1214	8418	
Description échantillon	Méthode élément unités L.D.	ME-MS41 Nb ppm 0.05	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME-MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2
L943063 L943064 L943076 L943077 L943078		0.45 0.42 0.16 1.23 1.31	2350 37.3 46.2 225 143.5	1910 590 640 1100 1430	15.4 3.1 5.3 2.8 32.4	53.3 8.1 220 7.6 29.1	0.003 0.001 <0.001 0.011 0.009	1.28 2.49 0.13 >10.0 6.50	1.85 0.15 <0.05 11.75 1.60	3.8 4.5 6.9 0.6 6.6	3.3 6.1 0.3 2.0 6.0	4.4 0.2 0.6 0.2 2.1	125.0 11.6 52.8 3.6 4.9	0.01 <0.01 <0.01 0.30 0.03	0.25 0.83 0.03 2.55 0.81	10.5 0.2 3.7 1.9 4.1
L943079 L943080 L943081 L943082		<0.05 0.41 0.27 0.29	2.0 11.4 53.1 137.0	20 280 270 270	0.3 4.1 19.5 14.1	0.4 160.5 9.8 49.1	<0.001 0.001 0.004 0.003	0.06 2.68 4.74 6.97	0.06 0.05 0.10 0.07	0.1 1.8 7.6 11.6	0.2 0.5 2.4 2.5	<0.2 1.0 0.8 1.1	0.3 6.6 3.2 6.1	<0.01 <0.01 0.01 0.01	<0.01 0.06 0.29 0.39	1.1 1.9 5.1 1.6
						,										

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alsglobal.com

A: RESSOURCES MONARQUES INC. **450 RUE DE LA GARE DU PALAIS** B.P. 10 **QUEBEC QC G1K 3X2**

Page: 3 - D Nombre total de pages: 3 (A - D) plus les pages d'annexe Finalisée date: 16-JUIL-2012 Compte: REMONA

illinera	15									CERTIFICA	T D'ANALYSE	TB12148418	
Description échantillon	Méthode élément unités L.D.	ME-MS41 Ti % 0.005	ME-MS41 Ti ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	Cu-OG46 Cu % 0.001			
L943063 L943064 L943076 L943077 L943078		0.185 0.155 0.193 0.009 0.108	0.84 0.06 1.50 0.08 0.16	2.19 0.39 0.78 2.77 1.15	193 37 77 4 58	1.22 1.20 0.75 0.30 0.67	10.00 6.99 1.77 0.96 8.77	57 39 50 12 330	7.2 1.8 1.3 1.8 10.9				
_943079 _943080 _943081 _943082		<0.005 0.101 0.132 0.212	<0.02 1.44 0.08 0.56	0.10 0.36 1.19 0.51	2 23 56 147	0.16 1.35 2.34 2.48	1.97 2.31 7.27 3.72	6 78 196 268	0.5 3.0 5.0 2.7		5.0°		
			·										
			•										

^{*****} Voir la page d'annexe pour les commentaires en ce qui concerne ce certificat *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Teléphone: 604 984 0221 www.alsglobal.com Telécopieur: 604 984 0218

A: RESSOURCES MONARQUES INC. 450 RUE DE LA GARE DU PALAIS B.P. 10 QUEBEC QC G1K 3X2

Page: Annexe 1 Total # les pages d'annexe: 1 Finalisée date: 16-JUIL-2012 Compte: REMONA

CERTIFICAT	D'ANAI YSE	TB12148418	
OLIX I II IOA I	DAIMALISE	1016170710	

Méthode	COMMENTAIRE DE CERTIFICAT	
ME-MS41	L'analyses de l'or par cette méthode sont semi-quantitatif à cause du peu d'échantillon pesée (0.5g).	
,		
•		