# GM 65740

RAPPORT TECHNIQUE DE LA PROPRIETE DIEGO 2010, TRAVAUX DE COMPILATION ET DE PROSPECTION

**Documents complémentaires** 

**Additional Files** 







# RAPPORT TECHNIQUE DE LA PROPRIETE DIEGO, 2010

# Travaux de compilation et de prospection

Cantons de Drouet, Gradis, Druillettes et Lescure
SNRC 32G06 et 32G11
Abitibi, Québec, Canada

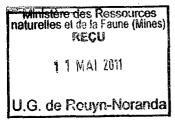
GM 6 5 7 4 0

Ressources naturelles et Faune, Québec

0 8 JUIL. 2011

Service de la Géoinformation

Date: 10 février 2011


Val-d'Or, Québec

Raymond Guérard, Géologue Stagiaire

Philippe Berthelot, Vice-président Exploration

RESSOURCES CARTIER INC.





Rapport technique sur la propriété Diego, travaux de compilation et de prospection, 2010

660/111/

# TABLE DES MATIÈRES (RUBRIQUE 2)1

| SOMMAIRE (RUBRIQUE 3)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INTRODUCTION (RUBRIQUE 4)                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LOCALISATION ET ACCÈS (RUBRIQUE 6)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| HISTORIQUE (RUBRIQUE 8)                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CONTEXTE GÉOLOGIQUE (RUBRIQUE 9)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.1 GEOLOGIE REGIONALE (VOIR FIGURE 2)                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.3 GEOLOGIE ECONOMIQUE (VOIR FIGURE 4)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TRAVAUX DE COMPILATION ET D'ECHANTILLONNAGE (RUBRIQUE 12) | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6.1 COMPILATION                                           | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6.2 ÉCHANTILLONNAGE                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6.2.1 Méthode d'échantillonnage (Rubrique 14)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6.2.2 Préparation, analyse et sécurité (rubrique 15)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6.2.3 Interprétation                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6.3 LITHOGEOCHIMIE:                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CONCLUSION ET RECOMMANDATIONS (RUBRIQUE 22)               | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RÉFÉRENCES (RUBRIQUE 23)                                  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SIGNATURES (RUBRIQUE 24)                                  | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                           | INTRODUCTION (RUBRIQUE 4)  LOCALISATION ET ACCÈS (RUBRIQUE 6)  HISTORIQUE (RUBRIQUE 8)  CONTEXTE GÉOLOGIQUE (RUBRIQUE 9)  5.1 GEOLOGIE REGIONALE (VOIR FIGURE 2)  5.2 GEOLOGIE LOCALE (VOIR FIGURE 3)  5.3 GEOLOGIE ECONOMIQUE (VOIR FIGURE 4)  TRAVAUX DE COMPILATION ET D'ECHANTILLONNAGE (RUBRIQUE 12)  6.1 COMPILATION  6.2 ÉCHANTILLONNAGE  6.2.1 Méthode d'échantillonnage (Rubrique 14)  6.2.2 Préparation, analyse et sécurité (rubrique 15)  6.2.3 Interprétation  6.3 LITHOGEOCHIMIE:  CONCLUSION ET RECOMMANDATIONS (RUBRIQUE 22)  RÉFÉRENCES (RUBRIQUE 23) |

<sup>&</sup>lt;sup>1</sup> Ce rapport est présenté selon le modèle de rapport requis par l'IN 43-101. Là où les rubriques s'appliquent, les auteurs précisent le numéro de rubrique correspondant, dans le cas contraire, ils n'en ont pas tenu compte.

# LISTE DES FIGURES

| Figure 1 : Localisation géographique de la propriété Diego                          | 4  |
|-------------------------------------------------------------------------------------|----|
| Figure 2 : Géologie régionale de la sous-province de l'Abitibi                      | 8  |
| Figure 3 : Géologie de la propriété Diego                                           | 10 |
| Figure 4 : Géologie économique de la propriété Diego                                | 12 |
| Figure 5 : Classification des roches volcaniques d'après Winchester et Floyd (1977) | 22 |
| Figure 6 : Classification des roches intrusives d'après Middelmost (1985)           | 23 |

# LISTE DES TABLEAUX

| Tableau 1 : Compilation des sondages effectués sur la propriété avant l'acquisition par Cartier 17 |
|----------------------------------------------------------------------------------------------------|
| Tableau 2 : Résumé des teneurs anomales lors des travaux d'échantillonnage de 2010                 |
| Tableau 3 : Liste des échantillons choisis présentant des valeurs supérieures à 100 ppb Au 19      |
| Tableau 4 : Liste des rainures présentant des valeurs supérieures à 100 ppb Au20                   |

# LISTE DES ANNEXES

**ANNEXE I** 

LISTE DES TITRES MINIERS

**ANNEXE II** 

**LISTE DES TRAVAUX STATUTAIRES** 

**ANNEXE III** 

LISTE EXHAUSTIVE DES ECHANTILLONS CHOISIS LORS DE LA CAMPAGNE D'ECHANTILLONNAGE DE 2010

LISTE EXHAUSTIVE DES ECHANTILLONS EN RAINURE LORS DE LA CAMPAGNE D'ECHANTILLONNAGE DE 2010

LISTE EXHAUSTIVE DES ECHANTILLONS LITHOGEOCHIMIQUES LORS DE LA CAMPAGNE D'ECHANTILLONNAGE DE 2010

**ANNEXE IV** 

**CERTIFICATS D'ANALYSES** 

**ANNEXE V (EN POCHETTE)** 

**LISTE DES CARTES** 

**ANNEXE VI** 

**SECTIONS DE FORAGES** 

## 1 SOMMAIRE (RUBRIQUE 3)

La propriété Diego est située à une cinquantaine de kilomètres au sud-ouest de la ville de Chapais et à environ quatre-cent (400) kilomètres au nord-est de Val-d'Or. Elle se situe entre la mine Joe Mann (4 289 221 tonnes à 7,56 g/t Au et 0.23% Cu) à quarante (40) kilomètres à l'ouest et le gîte Fenton (401 985 tonnes à 5,01 g/t Au) à huit (8) kilomètres à l'est.

Ce rapport présente les données recueillies sur la propriété Diego suite à une compilation de travaux de forage antérieurs et lors de la campagne de terrain de l'été 2010. L'objectif principal de la campagne de prospection était de réaliser un échantillonnage et une reconnaissance du type de minéralisation présente sur la propriété. Un total de cent vingt-deux (122) échantillons ont été analysés pour leur contenu en or (93 échantillons choisis et 29 en rainures). De plus 28 échantillons lithogéochimiques ont été analysés pour les éléments majeurs (voir annexes III et IV).

Ces travaux font suite à l'acquisition par jalonnement en 2009 de la propriété qui présente un fort potentiel aurifère : travaux de forages de la compagnie Esso (voir ci dessous).

L'objectif principal de la campagne de terrain était d'entreprendre un échantillonnage de surface le plus complet possible sur l'étendue de la propriété afin de préciser le potentiel minéral et de mieux caractériser la nature des minéralisations aurifères. Pour cela nous avons réalisé en binôme plusieurs traverses au Beep Mat sur plusieurs secteurs de la propriété. Les échantillons de roches ont été systématiquement analysés pour l'or.

Les meilleures valeurs aurifères obtenues sont de 5,02 g/t Au, 4,83 g/t Au et 4,08 g/t Au pour des échantillons choisis et de 613 ppb Au sur 0,9 mètre en rainure.

La compilation de 103 sondages antérieurs (15 482,27 mètres) a permis de définir une zone aurifère de dix (10) kilomètres de long sur une largeur de près de deux cents (200) mètres (91 ppb Au sur 213,0m) associée à un essaim de dykes felsiques porphyriques. Les meilleures valeurs proviennent des sondages de Esso Minerals :

GD-18: 0,83 g/t Au/9,1m (incluant 3,80 g/t Au/0,6m) et 2,5g/t Au/0,4m

• GD-24: 0,34 g/t Au/13,0m incluant 2,3 g/t Au/ 1,1m

• GD-38: 0,12 g/t Au/161,5m et 2,1g/t Au/1,6 m et

0,33 g/t Au/ 30,4m (incluant 0,49 g/t Au/ 14,0m)

Un échantillon choisi récoltée par la Soquem (1985) a titré **10,4 g/t Au** dans la partie est de la propriété sur la rive ouest du Lac Bernard.

#### **SUMMARY**

The Diego property is located about 50 kilometres south-west of the town of Chapais that is approximately four hundred (400) kilometres north east of Val-d'Or. It stands between the Joe Mann mine (4 289 221 tons @ 7.56 g/t Au and 0.23% Cu) some forty kilometres west and the Fenton deposit (401 985 tons @ 5.01 g/t Au) 8 kilometres east.

This report presents data collected on the Diego property during the rock sampling program conducted in the summer of 2010. It also contains results of a compilation of previous drilling work. The main goal of the campaign was to realize rock sampling and to do recognition of the mineralization type present on the property. During the June 2010 prospection work, a hundred and twenty-two (122) samples were analyzed for gold (ninety-three (93) grabs and twenty-nine (29) channel samples). Twenty-eight (28) rocks were submitted to whole rock analysis.

This work follows the property claiming in 2009. Property which shows high auriferous potential (refer to Esso drilling campaign).

The principal interest of the field work was to do the most complete sampling over the entire property in order to precise the mineral potential and characterize more the mineralization type. To do this, we conducted Beep-Mat prospecting on many area of the property, in team of two peoples. Rock samples were systematically analyzed for gold.

The best gold values obtained are 5.02g/t Au, 4.83 g/t Au et 4.08 g/t Au in grab samples and 613 ppb Au over 0.9 metre in channel sampling.

A compilation of a hundred and three (103) previous drill holes (15 482.27 metres) defined a felsic porphyry dyke swarm-associated gold bearing zone over ten (10) kilometres long and about two hundred (200) metres wide (91 ppb Au over 213.0m): The best values coming from Esso Minerals' holes:

GD-18: 0.83 g/t Au/9.1m (including 3.80 g/t Au/0.6m) and 2.5g/t Au/0.4m

GD-24: 0.34 g/t Au/13.0m including 2.3 g/t Au/ 1.1m

GD-38: 0.12 g/t Au/161.5m and 2.1g/t Au/1.6 m et

0.33 g/t Au/ 30.4m (including 0.49 g/t Au/ 14.0m)

A grab sample returned 10.4 g/t Au in the eastern part of the property on the west side of Lac Bernard.

## 2 INTRODUCTION (RUBRIQUE 4)

Ce rapport est un compte rendu des travaux de compilation et d'exploration minière réalisés par Ressources Cartier Inc. sur sa propriété Diego au mois de juin 2010. Les travaux de terrain ont consisté en un prélèvement par échantillonnage choisi, par rainurage d'affleurements rocheux minéralisés et de prélèvement pour analyses lithogéochimiques.

La campagne de terrain fut ciblée sur la recherche d'horizons minéralisés par prospection au Beep Mat, permettant d'avoir une profondeur d'investigation correcte d'un mètre cinquante (1.5 m) et de s'affranchir dans cette limite de la couverture de mort – terrain.

Ces travaux font suite à une compilation de travaux de forage antérieurs dans lesquels plusieurs valeurs anomales en or avaient été relevées. Les résultats de cette compilation sont présentés dans ce rapport.

# 3 LOCALISATION ET ACCÈS (RUBRIQUE 6)

La propriété Diego est située à une cinquantaine de kilomètres au sud-ouest de la ville de Chapais et à environ quatre-cent (400) kilomètres au nord-est de Val-d'Or. Elle se situe entre la mine Joe Mann (4 289 221 tonnes à 7,56 g/t Au et 0.23% Cu) à quarante (40) kilomètres à l'ouest et le gîte Fenton (401 985 tonnes à 5,01 g/t Au) à huit (8) kilomètres à l'est (voir figure 1).

Les titres miniers chevauchent les feuillets SNRC 32G11 et 32G06 dans les cantons Drouet, Gradis, Lescure et Druillettes. La propriété compte au total quatre-vingt-huit (88) cellules totalisant une superficie de 49,06 Km². La liste exhaustive des titres miniers est disponible en annexe (Annexe I) et une vue en plan des titres miniers de la propriété se trouve à l'Annexe V en pochette.

Le terrain est facilement accessible à partir de la route 113 reliant Louvicourt à Chibougamau. A une vingtaine de kilomètres à l'est de Chapais (usine Barrette), un chemin forestier se dirige vers le sud sur 40 kilomètres avant de rejoindre un chemin vers l'est menant à la limite nord-ouest de la propriété. Ce même chemin traverse ensuite la propriété sur presque toute sa longueur et est recoupé par plusieurs chemins secondaires donnant accès à la majorité de la superficie du projet (voir figure 1).

La propriété Diego est actuellement enregistrée à 100% sous le nom de Ressources Cartier Inc. (numéro d'intervenant : 80277) sur GESTIM (gestion des titres miniers du Ministère des Ressources Naturelles et de la Faune du Québec), accessible sur internet.

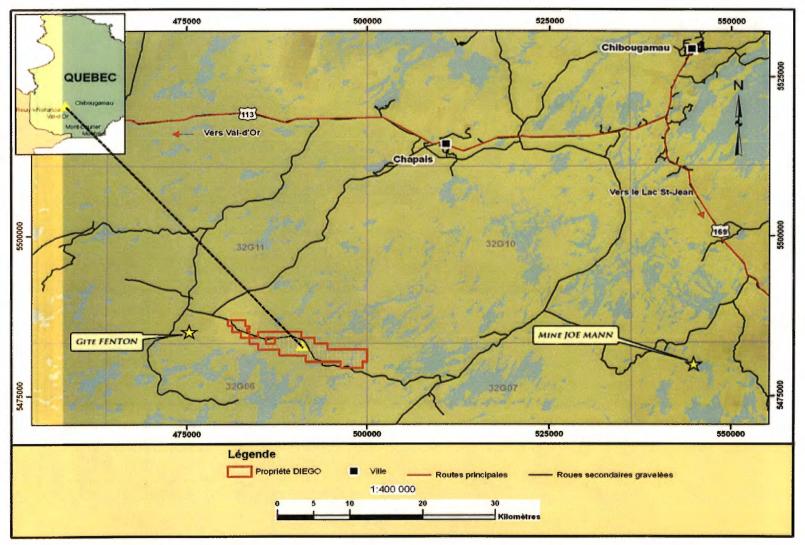



Figure 1 : Localisation géographique de la propriété Diego

# 4 HISTORIQUE (RUBRIQUE 8)

Ce chapitre résume les travaux d'exploration antérieurs qui ont été effectués complètement ou partiellement sur la propriété de Diego.

La région a été explorée par plusieurs campagnes de forage entre les années soixante et les années quatre-vingt-dix :

- La SEREM a réalisée 26 forages entre 1967 et 1968 dont le meilleur résultat est 0,42% Cu sur 3 mètres (sondage B3) dans une brèche à quartz-carbonates à 50% pyrrhotite avec traces de pyrite et chalcopyrite. En 1970 sept sondages sont réalisés sans résultats probants.
- En 1977 Falconbridge exécute 10 forages qui ne montrent pas d'anomalies dignes d'intérêt.
- Esso Minerals Canada entre 1986 et 1988 n'entreprend pas moins de 43 forages qui montreront les meilleures anomalies aurifères trouvées sur ce secteur.
- En 1988, Orbite Exploration VSPA Inc. Réalise 14 forages dont le meilleur GD-2 sort 1,01g/t
   Au/1,68 m dans des tufs siliceux à veines de quartz minéralisées en pyrite et pyrrhotite disséminées.
- Enfin, en 1996 la Soquem réalise deux forages sans résultats probants.

Ces programmes on réussi à démontrer la présence d'un cisaillement aurifère majeur. La minéralisation, quoique non-économique, se retrouve sur plus de 10 kilomètres.

Un programme de sondage de mort-terrain mené par Esso Minerals en 1986 (GM 44071 et GM 44564) a détecté des valeurs en or très anomales. Un suivi par forage au diamant (GM 45676, GM 48402 et GM 48055) a fait ressortir plusieurs valeurs anomales associées à des intrusions felsiques porphyriques à quartz-feldspaths cisaillées et altérées en séricite. Les teneurs demeurent toutefois sub-économiques. La plupart des sondages ont intercepté une minéralisation aurifère dont les principales sont :

Très peu de forage a été effectué sur le côté nord de la faille principale. Le seul sondage du programme de Esso Minerals dans ce secteur (GD-27) a intersecté **0,5g/t Au sur 1,5 mètre** dans une veine de quartz-feldspaths-carbonate-pyrite recoupant une alternance de volcanite mafique et de sédiments. Un nombre limité de sondages a également été fait à l'est du projet où une valeur de **1,0 g/t Au sur 1,6 mètres** associée à un cisaillement et une altération intenses dans le sondage LB-1 de Esso. Dans la partie est de la propriété, SEREM découvre en 1967 des sulfures massifs concordants (90% pyrite-pyrrhotine-chalcopyrite-sphalérite) sur 1,2 mètre dans un tuf chloritisé au-dessus d'un dôme rhyolitique (indice Lac Bernard-Ouest, sondage F1). Il semble que ce soit un système SMV. La minéralisation est anomale en argent (13,7 g/t sur 0,7m), en or (0,34 g/t sur 0,1m) et en zinc (0,2% sur 0,1m).

Hormis les différentes campagnes de forage, plusieurs autres types de travaux ont été entrepris dans la région de la propriété de Diego entre les années soixante et quatre-vingt-dix

1966: Un Survey électromagnétique est entreprit sur les cantons de Druillettes et Drouet (GM 20878) par Prospecting Geophysics Limited pour le compte du BRGM Abitibi (Serem). Mise en évidence de plusieurs zones conductrices souvent associées à des séries d'anomalies magnétiques. La distinction entre les anomalies dues à des corps graphiteux et celles dues aux sulfures est difficile.

Les zones magnétiques et conductrices peuvent êtres en partie reliées à des schistes graphiteux et à des dykes de gabbros. D'autres zones présentent elles des caractéristiques de minéralisations

associées aux sulfures. La répartition des conducteurs et anomalies associées semble se faire à l'échelle régionale selon une distribution NW – SE.

**1976 :** Survey électromagnétique, magnétique et gravimétrique sur les cantons de Druillettes, Gradis et Drouet (GM 32827) pour Falconbridge Nickel Mines LTD.

Total de 67.71 miles de Survey électromagnétique, 68.73 miles de Survey magnétique et 262 mesures de gravité effectuées le long des lignes où les meilleurs EHM furent trouvés.

Beaucoup d'anomalies furent localisées mais très peu seront caractérisées comme étant de première importance. Le gravity Survey n'a en outre pas permis de mettre en évidences des anomalies de masses en relatives à des sulfures.

**1981 :** Levé magnétométrique et levé de très basse fréquence (VLF) effectués sur le canton de Drouet par la Société de Développement de la Baie James (GM 37581).

Le levé magnétométrique révèle deux anomalies pouvant correspondre à des unités de laves magnétiques ou de filons couches gabbroïques.

Le VLF met en relief de nombreux axes conducteurs parallèles aux litages observés.

**1982 :** La Société de Développement de la Baie James entreprend la cartographie au 1 : 2500<sup>e</sup> des anomalies VLF révélées l'année précédente (GM 39349).

Les anomalies magnétiques s'expliquent par la présence à l'affleurement de gabbros magnétiques.

Des lits de sulfures massifs (pyrite et pyrrhotite) dans des laves schisteuses expliquent les forts conducteurs VLF. Sur la propriété l'abondance de conducteurs VLF pourrait être expliquée par l'abondance des horizons graphiteux.

La Société de Développement de la Baie James effectue aussi un levé magnétométrique et levé de très basse fréquence (VLF) sur le canton de Gradis (GM 39368).

**1984 :** Les relevés Cdi Survey Inc. effectuent un relevé magnétique dans les cantons de Drouet et Guercheville pour le compte d'Orbite Exploration VSPA Inc GM 42226).

Mise en évidence de plusieurs anomalies dans le sud du canton de Drouet en ce qui concerne le canton de Drouet.

1985 : La LTÉE Géophysique Géologique effectue pour Orbite Exploration VSPA Inc. un levé VLF et un levé magnétique dans les cantons de Drouet et Guercheville et Gradis (GM 42554).

Le VLF permet de relever 174 anomalies dont 81 sont classées comme étant d'intérêt. Les anomalies magnétiques sont en général associées aux anomalies VLF.

Cette même année un levé de Polarisation Provoquée est effectué dans les cantons de Drouet et Gradis suite aux résultats des levés magnétiques et VLF, 29 anomalies sont révélées dont une dizaine est classée de première importance (GM 42759 et 42760).

En 1985, une campagne de prospection de SOQUEM rapporte un échantillon choisi de 10,4 g/t Au sur un affleurement situé du côté ouest du Lac Bernard (Roy, 1996) De plus, Soquem cartographie une unité de volcanite felsique orientée est-ouest de 600 à 1000 mètres d'épaisseur coïncidant grossièrement avec une anomalie Input régionale et constituant probablement l'extension ouest du complexe volcanique du Lac des Vents.

1986: Esso Minerals Canada effectue un levé de polarisation provoquée sur les cantons de Drouet et Gradis. Deux bandes anomaliques est —ouest qui traversent entièrement la propriété de Esso Minerals et qui sont interprétées comme deux zones faillées parallèles majeures. Sur ces deux bandes 6 zones anomales d'ampleur sont identifiées et sont évaluées comme des cibles préférentielles pour du forage.

La minéralisation est reliée aux sulfures dans ces zones de cisaillement.

Cette même année, Esso minerals Canada entreprend un levé électromagnétique, magnétique et de résistivité sur sa propriété à l'ouest du lac Bernard dans le canton de Druillettes (GM 44881).

**1987 :** Fairlady réalise un échantillonnage de till par forage à circulation inversé sur le canton de Drouet couplé avec analyses géochimiques des minéraux lourds. Plusieurs trains de dispersions sont mis en évidence.

# 5 CONTEXTE GÉOLOGIQUE (RUBRIQUE 9)

### **5.1 GEOLOGIE REGIONALE** (voir figure 2)

La sous-province de l'Abitibi est la plus grande ceinture archéenne de roches vertes du Bouclier Canadien. Elle couvre une superficie totale de 300 par 700 kilomètres et est constituée d'unités supracrustales orientées est-ouest et d'intrusions massives non foliées. La ceinture a été divisée en deux parties (la zone Volcanique Nord et la zone volcanique Sud) sur la base de la géologie, la géochimie et la géochronologie (*Dimroth et al, 1984; Chown et al., 1992*).

La zone volcanique Nord est limitée au sud par la faille Porcupine-Destor et au nord par des roches du socle et des intrusions à haut degré de métamorphisme. Les roches volcaniques de la zone volcanique Nord ont été divisées par Chown et al (1992) en deux cycles entre 2730 Ma et 2720 Ma (cycle 1) et 2720 Ma et 2705 Ma (cycle 2). La partie nord de la ceinture est marquée par de grands complexes mafiques lités incluant le complexe du lac Doré près de Chibougamau et le pluton Bell Allard dans la région de Matagami. La ceinture est également caractérisée par de grandes bandes de roches sédimentaires. Ces bassins sédimentaires restreints sont contemporains à l'activité volcanique et se développent le long de failles syn-orogéniques et de zones de cisaillement.

La partie nord-est de la ceinture de roches vertes de l'Abitibi est définie comme étant la région Chibougamau-Caopatina (*Chown et al., 1988*) subdivisée en deux parties : La partie Nord dans la région du pluton du Lac Doré et la partie Sud dans la région de la propriété Diego. Le segment Sud est composé de roches basaltiques tholéiitiques de la formation d'Obatogamau et de centres volcaniques felsiques incluant le complexe du Lac des Vents à l'est du groupe de claims. Les roches les plus jeunes sont les roches sédimentaires (conglomérats, wackes et argilites) de la formation Caopatina, formant un bassin de 90 kilomètres au sud de la faille Opawica. Cette dernière est la structure régionale dominante de la partie Sud. Il s'agit d'une zone de cisaillement s'étendant de la faille Lamarck (orientée sud-ouest nord-est) à l'ouest et jusqu'au front de Grenville à l'est.

De nombreux gisements polymétalliques de type 'Sulfures Massifs Volcanogènes' sont associés à des centres volcaniques felsiques locaux dans les régions de Joutel et Matagami. Les gisements d'or orogéniques eux, tendent à se concentrer le long des grandes failles caractérisées par une déformation intense et de longs basins sédimentaires linéaires. Les gisements les plus importants de la partie nord de la ceinture de l'Abitibi sont associés à la faille Casa Berardi (Casa Berardi, Douay et Discovery), la faille Detour (Detour Lake et Fenelon) et la faille Opawica (Joe Mann). Un bon nombre d'importants gisements de veines cuivre-or (les mines Merrill, Copper Rand Henderson) sont associés au complexe du Lac Doré à Chibougamau.

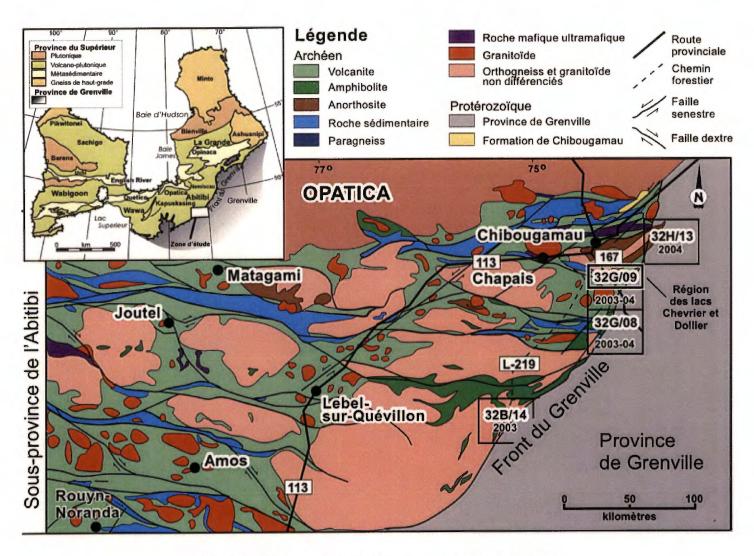



Figure 2 : Géologie régionale de la sous-province de l'Abitibi (Roy et al., 2006 ; SQRC 32G09-200-0201 et 32G09-200-0202)

## **5.2 GEOLOGIE LOCALE** (voir figure 3)

Le projet Diego est situé dans la partie Sud de la région Chibougamau-Caopatina dans le coin nordest de la sous-province de l'Abitibi. Des travaux antérieurs dans la région ont identifié deux unités stratigraphiques principales et une variété de roches intrusives (*Tait and Chown, 1987; Lauzière and Chown, 1988*). La base de la stratigraphie est constituée des basaltes tholéiitique de la formation d'Obatogamau (*Roy et al., 2006*). Ce sont principalement des coulées massives à cristaux de feldspaths qui composent la majeure partie de la propriété. Au sud de ces basaltes (à l'extrême sud du projet) se trouvent principalement des roches sédimentaires intercalées avec les volcanites et superposée à celles-ci. Ce sont surtout des wackes avec, en moindre proportion, des conglomérats et des argilites. *Tait and Chown* (1987) ont également cartographié une unité d'intrusion felsique quartzo-feldsathique recoupant les basaltes et les sédiments. Des sondages d'Esso Minerals dans les années quatre-vingts suggèrent que cette unité est beaucoup plus étendues (quelques kilomètres) vers l'est où elle se présente sous forme de dykes ou de sills dans la partie centrale de la propriété.

Le projet Diego se trouve à l'extrémité ouest du bassin Caopatina, un bassin sédimentaire composé de lithologies variées allant de conglomérats grossiers felsiques à des turbidites distales finement litées. Ce bassin est limité par les failles Opawica-Guercheville au nord et par la faille Rémick au sud. Ces deux structures convergent dans la partie centrale sud de la propriété.

La région au nord de la faille Opawica-Guercheville est principalement constituée de volcanites mafiques de l'Obatogamau intercalées avec des tufs felsiques et recoupés de sills gabbroïques, ou de schistes à quartz-chlorite dans les zones de déformation. Au sud de la faille se trouvent des turbidites et des conglomérats en contact avec des basaltes. Cette faille exerce un contrôle structural régional de première importance pour la minéralisation aurifère (Fenton, Philibert, Lac Meston et Joe Mann).

Des basaltes à gloméroporphyres de feldspaths typiques de la Formation d'Obatogamau et minéralisées parfois en fine pyrite disséminée (<1%) ont été reconnus.

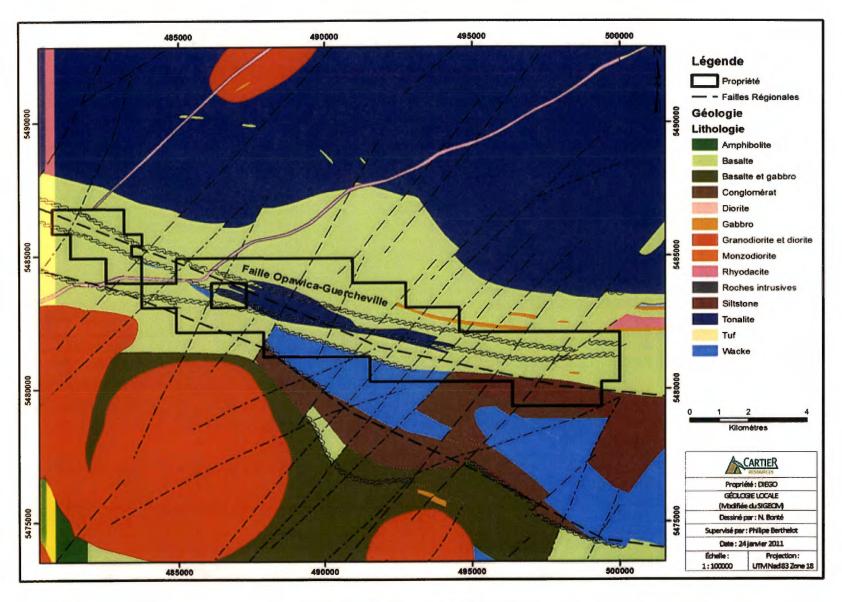



Figure 3 : Géologie de la propriété Diego

## **5.3 GEOLOGIE ECONOMIQUE** (voir figure 4)

La propriété Diego est située à environ 8 kilomètres à l'est du gîte aurifère Fenton (SOQUEM) à 40 kilomètres de Chapais. Il s'agit de lentilles de sulfures semi-massifs à disséminés enveloppées d'une auréole de veinules de pyrite, pyrrhotine et or encaissées dans un basalte cisaillé fortement silicifié. L'inventaire minéral du gîte est évalué à 401 985 tonnes à 5,01 g/t Au. Des intersections orzinc sont assez communes par exemple : 4,16% Zn et 5,8 g/t Au sur 1,0 mètre à Fenton Est.

La mine Joe Mann (4 289 221 tonnes à 7,56 g/t Au et 0.23% Cu), située à 70 kilomètres de Diego, est un dépôt classique de veines aurifères orogéniques.

Les sondages antérieurs ont révélé de larges zones d'essaims de dykes porphyriques anomaux en or sur plus de **200 mètres de largeur** (GD-04 : 91 ppb Au / 213,0 m ; GD-38 : 0,12 g/t Au / 161,5 m) et qui sont suivis sur plus de 10 kms de longueur.

Sur la propriété, huit (8) indices aurifères ont été identifiés comprenant cinq indices trouvés par forages et quatre indices sur échantillons choisis dont trois indices révélés par Ressources Cartier et un indice révélé par la Soquem en 1985.

La campagne de prospection réalisée par Ressources Cartier au mois de juin 2010 a sortie trois échantillons choisis titrant à plus de 4 g/t Au : les échantillons 13616 et 13621 récoltés dans un horizon de tonalite à veines de quartz minéralisées en Py disséminée ont donnés respectivement 4,08 g/t Au et 4,83 g/t Au. Un troisième échantillon choisi (N° 13804) récolté dans une intrusion felsique porphyrique altérée à veines de quartz minéralisées en Py a titré 5,02 g/t Au.

Un échantillon choisi récolté sur la rive ouest du lac Bernard (canton de Druillettes ; feuillet SNRC 32G/6) lors la prospection réalisé par la Soquem en 1985 a titré **10,4 g/t Au**. Pas de précision sur cet échantillon.

Le contexte de minéralisation aurifère s'avère être très similaire à celui du camp minier de Malartic (Osisko, Canadian Malartic).

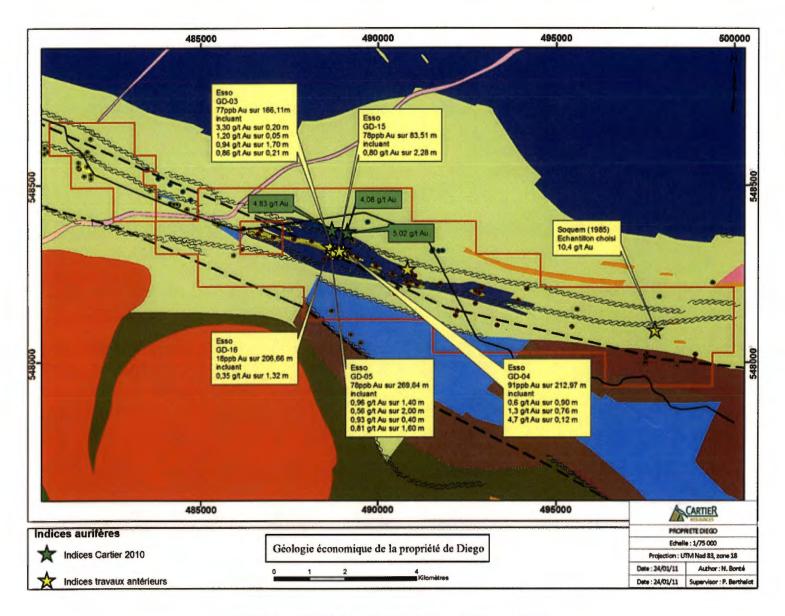



Figure 4 : Géologie économique de la propriété Diego

## 6 TRAVAUX DE COMPILATION ET D'ECHANTILLONNAGE (RUBRIQUE 12)

#### 6.1 COMPILATION

Les données de forage qui ont été intégrées à la base de données proviennent de différentes sources dont certaines étaient en format impérial et d'autre en format métrique. Les analyses et les intervalles géologiques ont été corrigés dans leur format d'origine puis convertis en format métrique. Les données de localisation des forages étaient présentées en différents formats sur les descriptions originales (p.ex.: utilisation de grilles de coordonnées locales). Afin d'obtenir les coordonnées en UTM, un travail de géoréférencement des cartes historiques de géophysique et de forage a été réalisé sur support ArcGIS puis la position des collets a été numérisée (voir tableau 1). Les intervalles géologiques ont été résumés et codés suivant la légende géologique du MRNF (MB 96-08). Un support Access (Géotic Log) a été utilisé pour la saisie des données géologiques et des analyses. La production d'une vue de plan et des sections transversales a été réalisée en utilisant Géotic Graph. La vue en plan et les sections transversales sont accessibles en format AutoCAD. L'intégration finale des données de forage est réalisée sur ArcGIS. Les plans et sections sont présentés en annexe du rapport. 1,3 g/t Au/1,3 m (sondage GD-34).

La compilation des données issues de sondages nous ont permis de mieux comprendre le type de minéralisation rencontré sur la propriété. Ces travaux de compilation ont aussi permis de mettre en avant l'ampleur de la minéralisation et son étendue.

Il apparaît alors que les forages contenant les meilleurs teneurs ont été exécutés par Esso Minerals Canada. Ci dessous suit la liste non exhaustive des meilleurs teneurs en forage qui furent révélées lors de la compilation :

- GD-03: forage effectué sur le canton de Drouet (feuillet SNRC 32G/11) en 1986. Les concentrations anomales en Au sont retrouvées associés à des horizons de tufs felsiques (probablement Porphyre cisaillé), de porphyres à Quartz feldspaths minéralisés à 2-3% de Py.

Le forage est caractérisé par une teneur moyenne de 77 ppb Au/166.11 m avec comme meilleures teneurs :

- 3,3 g/t Au/0.2 m dans une veine de quartz chloritisée avec traces de carbonates.
- **1,2 g/t Au/0.05 m** dans un horizon de porphyre à quartz-feldspaths à 0,5% de Py disséminée entrecoupé de veines de tourmalines.
- **0,94 g/t Au/1.7 m** dans un horizon de porphyre à quartz-feldspaths chloritisé et fracturé associé avec un horizon de schistes à séricite.
- **0,86 g/t Au/0.21 m** dans un horizon de porphyre à quartz-feldspaths chloritisé à 3% de Py concentrée dans des zones silicifiées.
- GD-04 : forage effectué sur le canton de Drouet (feuillet SNRC 32G/6,11) en 1986. Les minéralisations les plus importantes sont associées à des schistes à séricite.

Le forage totalise 91 ppb Au/212.97 m avec pour meilleures teneurs :

- **0,6 g/t Au/0.9 m** dans des laves mafiques à veines de quartz-carbonates à 1% de Po et traces de Py dans les fractures.
- 1,3 g/t Au/0.76 m dans un schiste à carbonates-séricite à 0,5 % Py associé à un horizon de porphyre à quartz-feldspaths silicifié à 1% Py.
- **4,7 g/t Au/0.12 m** dans un schiste à quartz-séricite avec une faible proportion de veines de Quartz-tourmaline.

- GD-05 : forage effectué sur le canton de Drouet (feuillet SNRC 32G/6,11) en 1986. Les minéralisations les plus importantes sont associées à des horizons de porphyres à quartz-feldspaths.

Le forage a obtenu une teneur moyenne de 78 ppb Au/269.64 m avec comme meilleures teneurs :

**0,96 g/t Au/1.4 m** dans un horizon de porphyre à quartz-feldspaths chloritisé. **0,56 g/t Au/2 m** dans un horizon de porphyre à quartz-feldspaths carbonatés à 1% Py dans des veines de quartz et fractures.

**0,93 g/t Au/0.4 m et 0,81 g/t Au/1.6 m** dans un horizon de porphyre à quartz-feldspaths à quartz-feldspaths à veines de quartz-tourmaline.

 GD-15: forage effectué sur le canton de Drouet (feuillet SNRC 32G/11) en 1987. Les teneurs anomales sont principalement liées à des horizons de porphyre à quartz-feldspaths et laves mafigues.

Le forage totalise 78 ppb Au/83.51 m incluant **0,8 g/t Au/2.28 m** dans un horizon de porphyre à quartz-feldspaths et laves mafiques avec veinules à quartz-carbonates et séricite.

GD-16: forage effectué sur les cantons de Drouet et Gradis (feuillet SNRC 32G/6) en 1987.
 Le forage présente une moyenne de 18 ppb Au/206,66 m incluant 0,35 g/t Au/1,32 m dans des schistes à quartz-carbonates-séricite avec veines de quartz-carbonates+tourmaline (localement).

Les sondages sortant les meilleures teneurs aurifères mettent en avant une forte corrélation entre les minéralisations et les horizons de porphyres à quartz-feldspaths. La minéralisation est en outre souvent associée à des zones fracturées où se localisent des veines à quartz-carbonates (+ parfois tourmaline additionnelle) à faible teneur en sulfures (Py et Po < 3%).

Les travaux de compilation de sondages ont aussi mis à jour des teneurs aurifères secondaires mais néanmoins intéressantes :

- 2,3 g/t Au/0,9 m (sondage GD-24)
- 3,6 g/t Au/0,4 m (sondage GD-33)
- 4,4 g/t Au/0,2 m (sondage GD-32)
- 2,1 g/t Au/1,2 m (sondage GD-38)
- 2,8 g/t Au/1,0 m (sondage GD-38)
- 2,2 g/t Au/1,1 m (sondage GD-37)
- 4,5 g/t Au/0,1 m (sondage GD-29)
- 1,7 g/t Au/2,1 m (sondage GD-18)
- 3,7 g/t Au/0,4 m (sondage GD-6)
- 2,1 g/t Au/1,1 m (sondage GD-22)
- 1,1 g/t Au/1,0 m (sondage GD-25)

Le tableau 1 résume les travaux de forages qui ont fait l'objet d'une compilation :

| Azimut | Longueur | N° du forage | Compagnie | Estant | Nordant |
|--------|----------|--------------|-----------|--------|---------|
| 68     | 91,44    | 770-01       | Falcon    | 490697 | 5479141 |
| 44     | 121,92   | 770-02       | Falcon    | 489533 | 5480544 |
| 44     | 121,92   | 770-03       | Falcon    | 489254 | 5480781 |
| 44     | 91,44    | 770-04       | Falcon    | 488705 | 5481450 |
| 201    | 91,44    | 770-05       | Falcon    | 486181 | 5483189 |
| 220    | 105,46   | 770-06       | Falcon    | 485934 | 5483023 |
| 180    | 121,92   | 770-07       | Falcon    | 489308 | 5483426 |
| 197    | 130,15   | 770-08       | Falcon    | 495592 | 5481491 |
| 203    | 106,68   | 770-09       | Falcon    | 495442 | 5481010 |
| 180    | 144,78   | 770-10       | Falcon    | 498411 | 5479908 |
| 360    | 153,10   | 96-01        | Soquem    | 497903 | 5481858 |
| 360    | 153,20   | 96-02        | Soquem    | 499412 | 5482257 |
| 200    | 166,10   | A-01         | Orbit     | 491706 | 5483147 |
| 200    | 116,10   | A-02         | Orbit     | 491517 | 5483134 |
| 200    | 124,40   | A-03         | Orbit     | 491541 | 5483180 |
| 200    | 117,30   | A-04         | Orbit     | 481767 | 5485945 |
| 200    | 156,10   | A-05         | Orbit     | 491824 | 5483152 |
| 200    | 136,60   | A-06         | Orbit     | 489857 | 5482922 |
| 200    | 91,40    | A07          | Orbit     | 489724 | 5483961 |
| 205    | 123,60   | A1           | Serem     | 480569 | 5485896 |
| 191    | 183,49   | A10          | Serem     | 481620 | 5485868 |
| 210    | 122,80   | A11          | Serem     | 481514 | 5485524 |
| 30     | 137,16   | A12          | Serem     | 481678 | 5485261 |
| 207    | 121,92   | A13          | Serem     | 480652 | 5485952 |
| 207    | 121,92   | A14          | Serem     | 480469 | 5486079 |
| 207    | 122,80   | A2           | Serem     | 480577 | 5486060 |
| 205    | 121,90   | A3           | Serem     | 481861 | 5486319 |
| 27     | 121,90   | A4           | Serem     | 481767 | 5485945 |
| 205    | 121,90   | A5           | Serem     | 481880 | 5485813 |
| 23     | 124,40   | A6           | Serem     | 481868 | 5485180 |
| 5      | 212,80   | A7           | Serem     | 481870 | 5485298 |
| 180    | 122,50   | A8           | Serem     | 481751 | 5485534 |
| 210    | 136,60   | A9           | Serem     | 481513 | 5485642 |
| 200    | 99,67    | B-01         | Orbit     | 484366 | 5484436 |
| 200    | 213,36   | B-02         | Orbit     | 484493 | 5484832 |
| 200    | 182,58   | B-03         | Orbit     | 484122 | 5485032 |
| 200    | 185,01   | B-04         | Orbit     | 483469 | 5485440 |
| 200    | 182,88   | B-05         | Orbit     | 483781 | 5485195 |
| 200    | 160,02   | B-06         | Orbit     | 484706 | 5484587 |

| Azimut | Longueur | N° du forage | Compagnie | Estant | Nordant |
|--------|----------|--------------|-----------|--------|---------|
| 197    | 123,60   | B1           | Serem     | 485495 | 5483879 |
| 210    | 131,67   | B-10         | Orbit     | 484130 | 5484484 |
| 197    | 121,90   | B2           | Serem     | 484600 | 5484327 |
| 197    | 121,90   | В3           | Serem     | 484225 | 5484473 |
| 197    | 121,90   | B4           | Serem     | 483568 | 5484860 |
| 197    | 121,90   | B5           | Serem     | 483811 | 5484671 |
| 197    | 123,10   | B6           | Serem     | 484842 | 5484044 |
| 343    | 123,14   | B7           | Serem     | 485564 | 5483882 |
| 207    | 129,54   | B8           | Serem     | 485392 | 5483941 |
| 207    | 121,92   | В9           | Serem     | 484330 | 5484467 |
| 180    | 121,90   | C1           | Serem     | 487504 | 5483750 |
| 180    | 121,90   | C2           | Serem     | 487624 | 5483915 |
| 198    | 127,10   | C3           | Serem     | 486893 | 5483893 |
| 160    | 155,45   | E-01         | Serem     | 480036 | 5487119 |
| 160    | 175,87   | E-02         | Serem     | 479975 | 5487239 |
| 200    | 130,15   | E-03         | Serem     | 480055 | 5487753 |
| 200    | 130,15   | E-04         | Serem     | 480350 | 5487651 |
| 200    | 121,92   | G-01         | Serem     | 477979 | 5487196 |
| 20     | 121,92   | G-02         | Serem     | 477937 | 5487097 |
| 20     | 154,53   | G-03         | Serem     | 478522 | 5486980 |
| 200    | 154,53   | GD-01        | Esso      | 486635 | 5483618 |
| 200    | 127,10   | GD-02        | Esso      | 486719 | 5483730 |
| 200    | 169,77   | GD-03        | Esso      | 488664 | 5483268 |
| 200    | 218,24   | GD-04        | Esso      | 489035 | 5483161 |
| 200    | 300,84   | GD-05        | Esso      | 488749 | 5483100 |
| 200    | 212,45   | GD-06        | Esso      | 490931 | 5482291 |
| 200    | 194,16   | GD-07        | Esso      | 490875 | 5482140 |
| 200    | 188,06   | GD-08        | Esso      | 492233 | 5481451 |
| 200    | 177,09   | GD-09        | Esso      | 492182 | 5481321 |
| 200    | 213,96   | GD-10        | Esso      | 493358 | 5481050 |
| 200    | 213,36   | GD-11        | Esso      | 492737 | 5481661 |
| 200    | 218,24   | GD-12        | Esso      | 490536 | 5482094 |
| 200    | 138,68   | GD-13        | Esso      | 490477 | 5481942 |
| 200    | 91,44    | GD-14        | Esso      | 489110 | 5483067 |
| 200    | 92,04    | GD-15        | Esso      | 488922 | 5483142 |
| 200    | 209,40   | GD-16        | Esso      | 488508 | 5482904 |
| 200    | 213,66   | GD-18        | Esso      | 491034 | 5482440 |
| 200    | 108,20   | GD-19        | Esso      | 491101 | 5482194 |
| 200    | 78,64    | GD-20        | Esso      | 491755 | 5482218 |
| 200    | 154,53   | GD-21        | Esso      | 486219 | 5483778 |

| Azimut | Longueur | N° du forage | Compagnie | Estant | Nordant |
|--------|----------|--------------|-----------|--------|---------|
| 199    | 227,69   | GD-22        | Esso      | 492840 | 5481961 |
| 200    | 231,04   | GD-23        | Esso      | 489423 | 5482962 |
| 200    | 151,79   | GD-24        | Esso      | 488148 | 5483425 |
| 200    | 215,80   | GD-25        | Esso      | 492909 | 5482096 |
| 200    | 152,70   | GD-26        | Esso      | 493948 | 5481738 |
| 200    | 152,31   | GD-27        | Esso      | 494183 | 5482071 |
| 200    | 81       | GD-29        | Esso      | 490952 | 5482495 |
| 200    | 93,00    | GD-30        | Esso      | 490814 | 5482278 |
| 200    | 204      | GD-31        | Esso      | 490416 | 5482497 |
| 200    | 258      | GD-32        | Esso      | 489956 | 5482720 |
| 200    | 198      | GD-33        | Esso      | 489232 | 5483061 |
| 200    | 147,20   | GD-34        | Esso      | 487652 | 5483475 |
| 200    | 149,00   | GD-35        | Esso      | 487081 | 5483544 |
| 200    | 147      | GD-36        | Esso      | 481538 | 5485473 |
| 200    | 102      | GD-37        | Esso      | 490914 | 5482551 |
| 200    | 166,50   | GD-38        | Esso      | 490828 | 5482629 |
| 200    | 102      | GD-39        | Esso      | 492749 | 5482006 |
| 5      | 261,21   | LB-01        | Esso      | 497504 | 5479960 |
| 5      | 249,02   | LB-02        | Esso      | 497530 | 5480109 |
| 185    | 212,45   | LB-03        | Esso      | 497513 | 5480003 |
| 5      | 234,39   | LB-04        | Esso      | 497548 | 5480260 |
| 185    | 258,17   | LB-05        | Esso      | 498920 | 5480231 |
| 185    | 151,49   | LB-06        | Esso      | 498904 | 5480089 |

Tableau 1 : Compilation des sondages effectués sur la propriété avant l'acquisition par Cartier

#### 6.2 ÉCHANTILLONNAGE

L'objectif principal de la campagne de prospection était de réaliser un échantillonnage et une reconnaissance du type de minéralisation présente sur la propriété. Les travaux de prospection et d'échantillonnage ont été réalisés sous la direction de Philippe Berthelot, géologue sénior et Vice président de Ressources Cartier, assisté par Guillaume Estrade, Ronan Deroff et Raymond Guérard, géologues stagiaires à Ressources Cartier et Nicolas Bonté, stagiaire alors à l'emploi de Ressources Cartier.

Un total de cent vingt-deux (122) échantillons ont été analysés pour leur contenu en or (93 échantillons choisis et 29 en rainures : voir tableau 2). De plus 28 échantillons lithogéochimiques ont été analysés pour les éléments majeurs (voir annexes III et IV).

Au cours de la prospection du mois de juin 2010, Les meilleures valeurs aurifères obtenues ont été de 5,02g/t Au, 4,83 g/t Au et 4,08 g/t Au pour des échantillons choisis ( ) et de 613 ppb Au sur 0,9 mètre en rainure ( ).

|                           |             | Au (g/t) |            |  |
|---------------------------|-------------|----------|------------|--|
| Type de prélèvement       | Analyses Au | >0,10    | dont >1,00 |  |
| Echantillon choisi        | 93          | 13       | 6          |  |
| Echantillon par rainurage | 29          | 6        | 0          |  |
| TOTAL                     | 122         | 19       | 6          |  |

Tableau 2 : Résumé des teneurs anomales lors des travaux d'échantillonnage de 2010

### 6.2.1 Méthode d'échantillonnage (Rubrique 14)

2 méthodes d'échantillonnage ont été employées :

- 1- Les échantillons choisis consistent en un prélèvement de 300 à 700 grammes de roche dont la croûte d'altération météorique a été éliminée sur place. Les échantillons sont placés avec leurs coupons d'identification respectifs dans des sacs de plastique, fermés par des attaches autobloquantes. Une description macroscopique sommaire de la roche échantillonnée est faite sur place. Les coordonnées UTM ont été relevées à l'aide d'un GPSmap 60 CSx (GARMIN), et conservées dans la mémoire pour être directement entrées dans une base de données. La position et le numéro d'identification de chaque échantillon ont été inscrits sur les affleurements avec du ruban rouge.
- 2- L'échantillonnage par rainure se fait à l'aide d'une scie à roche. Les rainures ont une épaisseur moyenne de 3 à 5 centimètres et une profondeur de 5 centimètres. Les longueurs sont variables et dépendent de la morphologie des affleurements. De la même manière que pour les échantillons choisis, les échantillons sont placés avec leurs coupons d'identification dans des sacs de plastique fermés par des attaches. Les coordonnées UTM sont relevées à l'aide d'un GPSmap 60 CSx (GARMIN).

#### 6.2.2 Préparation, analyse et sécurité (rubrique 15)

Ressources Cartier Inc. implémente des procédures de contrôle et d'analyse de qualité (QAQC) aux échantillons qu'elle fait analyser pour l'or. Cela consiste à assurer la sécurité des échantillons entre leur prélèvement sur le terrain et leur réception au laboratoire. Les envois d'échantillons sont regroupés par lots de 20 ou 40 échantillons incluant un standard, un stérile et un duplicata. Ce nombre (20 ou 40) correspond à la quantité d'échantillons que chacun des laboratoires analyse à la fois. Les résultats analytiques des standards, blancs et duplicatas servent à évaluer la qualité (précision, contamination et fiabilité) des résultats analytiques des échantillons de chaque groupe.

Cent vingt-deux (122) échantillons plus trente-six (36) analyses de contrôle de qualité (QAQC) ont été analysés pour l'or par le laboratoire TECHNI-LAB de Ste Germaine. Le laboratoire a employé les méthodes conventionnelles de détermination par pyroanalyse et finition par absorption atomique (Au 30g). Les laboratoires appliquent une procédure de contrôle de la qualité interne sur les analyses effectuées et une vérification analytique est effectuée par le laboratoire sur les pulpes ou rejets des échantillons qui ont obtenu des teneurs en or supérieures à 1000 ppb. De plus, une analyse par gravimétrie est effectuée pour les teneurs en or supérieures à 5000ppb. Dans le cas de ré-analyse, la moyenne des deux valeurs est calculée. Si une gravimétrie est effectuée, c'est la valeur qui sera retenue.

#### 6.2.3 Interprétation

Les échantillons choisis, récoltés sur la propriété, ayant donnés des valeurs anomales en Au (> 0,10 g/t) permettent de distinguer un type de minéralisation.

La majorité des échantillons aurifères présentent une minéralisation associée à une roche tonalitique fortement cisaillé et recoupé de réseaux de veines de quartz. Une minéralisation aurifère est observée lorsque ces horizons tonalitiques à veines de quartz sont porteurs de sulfures qui se présentent essentiellement sous forme de pyrite, disséminée dans la tonalite (< 8%) et disséminée et en amas dans les veines de quartz (jusqu'à 10%). L'altération est marquée par la formation de complexes de carbonates de fer (altération parfois très intense) et par une forte séricitisation de la tonalite.

L'intensité du cisaillement à localement transformé le protholite tonalitique en schiste à séricite également porteur de minéralisations.

La majorité des zones minéralisées ont été trouvées grâce à l'emploi sur le terrain du Beep Mat et de la prospection des zones sub-affleurentes. Les horizons aurifères sont concentrés à environ deux kilomètres au nord ouest du centre de la propriété sur les claims 2199437 et 2199438. Dix-sept (17) échantillons (onze (11) échantillons choisis et six (6) rainures) ont rapportés des teneurs supérieures à 100 ppb Au. Parmi ces dix-sept (17) échantillons, six (6) échantillons choisis ont donnés des valeurs supérieures à 1,00 g/t Au avec 1,16 g/t Au, 1,55 g/t Au, 2,01 g/t Au, 4,08 g/t Au, 4,83 g/t Au et comme meilleure teneur 5,02 g/t Au.

Le tableau ci-dessous résume les meilleures teneurs obtenues sur un total de cent-vingt-deux échantillons (122). En rouge les échantillons avec Au > 0,1 g/t et en jaune les échantillons > 1 g/t.

| Echantillon Choisis | Estant (Nad83-UTM 18) | Nordant (Nad83-UTM 18) | Au ppb |
|---------------------|-----------------------|------------------------|--------|
| 13549               | 491504                | 5482167                | 315    |
| 13606               | 488721                | 5483751                | 258    |
| 13616               | 489160                | 5483689                | 4080   |
| 13621               | 489163                | 5483687                | 4830   |
| 13625               | 488512                | 5483484                | 115    |
| 13627               | 488587                | 5483469                | 1550   |
| 13629               | 488499                | 5483512                | 101    |
| 13631               | 488501                | 5483512                | 676    |
| 13632               | 488520                | 5483513                | 1160   |
| 13649               | 488723                | 5483755                | 768    |
| 13651               | 488723                | 5483755                | 2010   |
| 13652               | 488710                | 5483735                | 227    |
| 13804               | 488722                | 5483749                | 5020   |

Tableau 3 : Liste des échantillons choisis présentant des valeurs supérieures à 100 ppb Au

| Rainures | Estant (Nad83-UTM 18) | Nordant (Nad83-UTM 18) | Au ppb | Longueur (m) |
|----------|-----------------------|------------------------|--------|--------------|
| 13659    | 488500                | 5483511                | 477    | 1,0          |
| 13661    | 488498                | 5483512                | 245    | 0,8          |
| 13662    | 488498                | 5483512                | 492    | 0,5          |
| 13663    | 488499                | 5483513                | 133    | 0,8          |
| 13664    | 488500                | 5483513                | 387    | 0,8          |
| 13665    | 488500                | 5483506                | 613    | 0,9          |

Tableau 4 : Liste des rainures présentant des valeurs supérieures à 100 ppb Au

#### 6.3 LITHOGEOCHIMIE:

Les échantillons de lithogéochimie ont été analysés par ALS Chemex pour les éléments majeurs par fusion au tétra borate de lithium et détermination par FRX. Les éléments traces sont aussi déterminés par FRX.

Au total vint-huit (28) échantillons ont été récoltés et séparés en trois catégories : huit (8) échantillons correspondent à des Volcanites felsiques à mafiques, dix-huit (18) correspondent à des roches intrusives et deux (2) échantillons correspondent à des roches sédimentaires qui ne seront pas abordées dans ce rapport.

Les roches volcaniques felsiques à mafiques sont interprétées à l'aide du diagramme binaire de Winchester et Floyd (1977, figure 5) basé sur le rapport Nb/Y vs rapport Zr/TiO<sub>2</sub>. Les roches intrusives sont analysées via la classification de Middelmost (1985, figure 6), basé sur le SiO<sub>2</sub> anhydre vs la somme Na<sub>2</sub>O et K<sub>2</sub>O anhydre.

#### Roches volcaniques :

Les roches volcaniques échantillonnées se distinguent en deux pôles : cinq (5) échantillons présentent une composition mafique et trois (3) présentent une composition intermédiaire à felsique.

Les échantillons 552, 19222 et 19228 sont interprétés comme des basaltes avec une teneur  $SiO_2$  moyenne de 47,54 % ( $\pm$  0,61). Ces roches présentent une affinité tholéitique avec un rapport Zr/Y moyen de 2,13 ( $\pm$  0,12).

Les échantillons 553 et 19224 sont présentés comme des basaltes andésitiques avec des teneures SiO2 respectives de 49,5 % et 51,67 %. L'échantillon 553 montre une affinité tholéiltique avec un rapport Zr/Y de 1,63. L'échantillon 19224 se distingue par une affinité transitionnelle, marqué par un rapport Zr/Y de 3,68 l'échantillon se rapproche d'une andésite basaltique.

Les échantillons de composition intermédiaire sont les 19209 et 19216 avec des valeurs  $SiO_2$  de 58,25 % et 54,47 % respectivement. Les deux échantillons montrent une affinité calco-alcaline avec des rapports Zr/Y respectifs de 9,11 et 10,17.

L'échantillon 549 marque le pôle le plus felsique des roches volcaniques échantillonnées avec une teneur SiO<sub>2</sub> de 74,8 %. Cette roche est caractérisée par un rapport Zr/Y de 8,48 qui lui confère une affinité calco-alcaline.

#### Roches intrusives :

Sept (7) échantillons sont interprétés comme des granodiorites. Il s'agit des échantillons 548, 19215, 19218, 19223, 19225, 19226 et 19227. Ces échantillons présentent une teneur SiO<sub>2</sub> moyenne de 64,13 %

avec un écartype moyen de 1%. Ces échantillons sont tous d'affinité calco-alcaline avec un rapport Zr/Y moyen de 15,52 (de 9,93 à 26,75).

Les échantillons 19212, 19217, 19219 et 19221 sont classés comme étant des granites avec un SiO<sub>2</sub> moyen de 73,23 % (± 1 %). Ces échantillons sauf le 19220 présentent une affinité calco-alcaline avec un rapport Zr/Y moyen de 14,075. L'échantillon 19220 est aussi classé comme un granite mais se détache des autres avec un SiO<sub>2</sub> de 83,17 % et une affinité transitionnelle marquée par un rapport Zr/Y de 3,55.

L'échantillon 19230 est interprété comme une diorite, la roche montre une teneur SiO<sub>2</sub> de 59,93 % et présente une affinité calco-alcaline avec un rapport Zr/Y de 9,37.

Cinq (5) échantillons sont interprétés en tant que gabbros d'affinité tholéiitique. Les échantillons 550, 551, 19210, 19211 et 19214 présentent une teneur SiO2 moyenne de 47,01 % (± 1 %). Le rapport Zr/Y moyen de ces échantillons est de 1,51 (± 0,4).

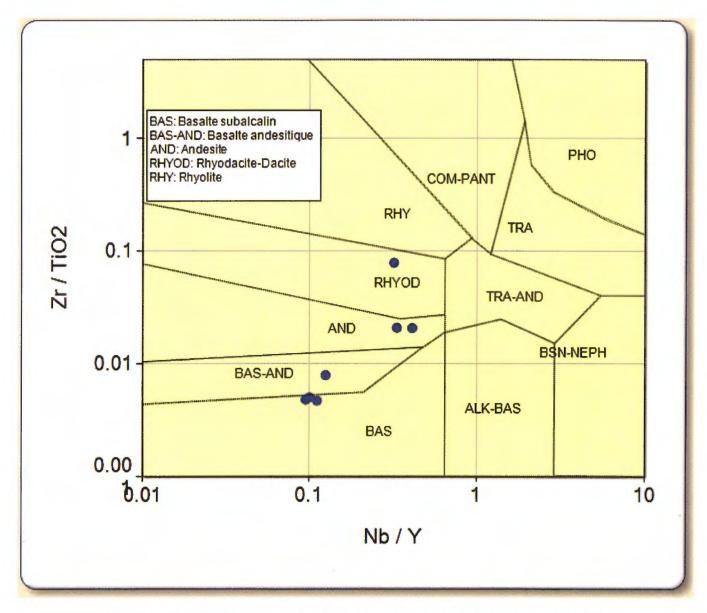



Figure 5 : Classification des roches volcaniques d'après Winchester et Floyd (1977)

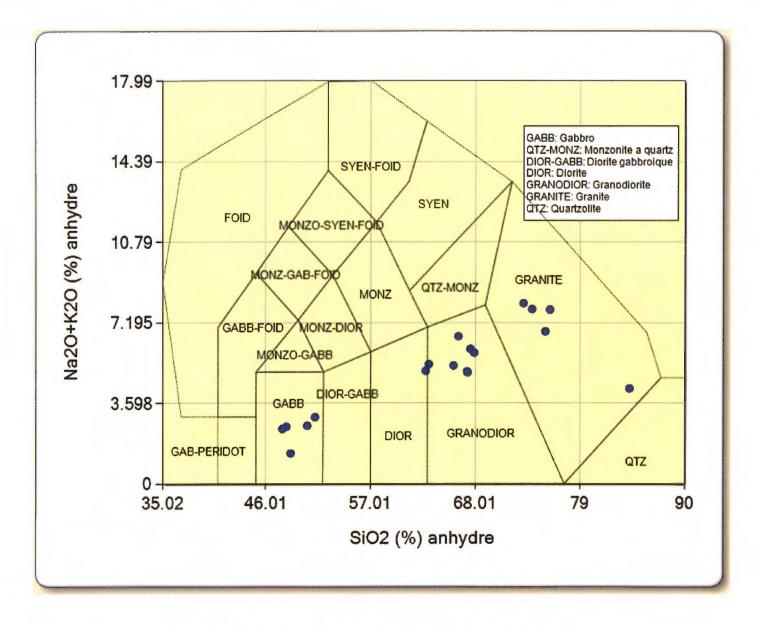



Figure 6 : Classification des roches intrusives d'après Middelmost (1985)

## 7 CONCLUSION ET RECOMMANDATIONS (RUBRIQUE 22)

La compilation s'est essentiellement concentrée sur les 4 911 analyses en or provenant de 102 sondages (15 482,27 mètres) effectués sur la propriété et en bordure de celle-ci. L'intégration de l'information à partir des journaux de sondages de ces trous a permis de construire des sections le long des sondages, des plans de niveaux et des longitudinales. À l'été a eu lieu une campagne de prospection et d'échantillonnage avec prélèvement de 122 échantillons choisis dont 29 échantillons de rainures analysés pour l'or ainsi que de 28 analyses de roche totale pour analyse lithogéochimique.

La compilation des sondages sortant les meilleures teneurs aurifères met en avant une forte corrélation entre les minéralisations et les horizons de porphyres à quartz-feldspaths. La minéralisation est en outre souvent associée à des zones fracturées où se localisent des veines à quartz-carbonates (+ parfois tourmaline additionnelle) à faible teneur en sulfures (Py et Po < 3%).

Les sondages antérieurs ont révélé de larges zones d'essaims de dykes porphyriques anomaux en or sur plus de **200 mètres de largeur** (GD-04 : 91 ppb Au / 213,0 m ; GD-38 : 0,12 g/t Au / 161,5 m) et qui sont suivis sur plus de 10 kms de longueur.

A l'été 2010, les échantillons choisis de Cartier prélevés lors de la campagne de prospection ont rapporté des valeurs anomales en or de l'ordre de **5,02 g/t Au, 4,83 g/t Au** et **4,08 g/t Au** et secondairement 2,01 g/t Au, 1,55 g/t Au et 1,16 g/t Au. Ce travail a permis de confirmé le potentiel aurifère de la propriété révélé lors de la compilation des travaux de forage.

L'échantillonnage a de plus permis de confirmer la relation entre les zones aurifères et la présence d'une intrusion de nature granite à granodiorite (donné par la géochimie) dans le centre de la propriété.

Les trois indices trouvés par Cartier se concentrent à la bordure nord de cette intrusion, là où aucun forage n'a encore été fait. Cela laisse donc une ouverture pour de nouveaux travaux de sondages de la part de Ressources Cartier.

Dans cette optique, le programme d'exploration 2011 comprendra une interprétation géologique et structurale en relation avec les horizons les plus favorables à piéger l'or, afin d'en dégager les meilleures cibles de forage.

Il est recommandé d'effectuer un levé magnétométrique héliporté sur l'ensemble de la propriété et de forer les meilleures cibles aurifères qui ressortiront de l'interprétation.

# 8 RÉFÉRENCES (RUBRIQUE 23)

Chown, E.H., Daigneault, R., Mueller, W. and Mortenesen, J.K., 1992, Tectonic Evolution of the Northern Volcanic Zone, Abitibi belt, Quebec, Canadian Journal of Earth Sciences, p 221-2225

Chown, E.H., Daigneault, R. and Mueller, W. and Pilote, P., 1988, Geology and Metallogeny of the Chapais-Chibougamau District, Gouvernement du Quebec Ministere des Resources naturelles publication DV 98-04, 162 pp.

Dimroth, E. Rocheleau, M. and Mueller, W., 1984, Paleogeography, isostasy and crustal evolution of the Archean Abitibi belt: a comparison between the Rouyn-Noranda and Chibougamau-Chapais areas. In Chibopugamau, Stratigraphy and Mineralization, Canadian Institute of Mining and Metallurgy, Special Volume 34, pages 73-91.

Lauzière, K. and Chown, E.H., 1988, Géologie du secteur du Lac Remick, Gouvernement du Quebec Ministere de l'Energie et des Resources, Service de la géologie, DP88-12, Map with notes.

Roy, P., Cadéron, S., & Houle, P. (2006). Géologie strucuturale et typologie des indices de la région des lacs Chevrier et Dollier. *RG* 2005-02, 33 pages. Québec.

Tait, L. and Chown, E.H., 1987, Géologie de la Région du Guesclin, Gouvernement du Quebec Ministere de l'Energie et des Ressources, Service de la géologie, DP87-12, Map with notes.

9 SIGNATURES (RUBRIQUE 24)

# RAPPORT TECHNIQUE DE LA PROPRIETE DIEGO, 2010

# Travaux de compilation et de prospection

Signé à Val-d'Or, le 10/02/2011

PHILIPPE
BERTHELOT
# 241

QUÉBEC

Philippe Berthelot, vice président exploration, OGQ n°241

Raymond Guerard, geologue stagiaire, OGQ n°1240

# ANNEXE I Liste des titres miniers

| Feuillet<br>SNRC | Rang      | Lot ou<br>Colonne | Superficie  | Titre        | Claim   | Date<br>d'enregistrement | Date<br>d'expiration |
|------------------|-----------|-------------------|-------------|--------------|---------|--------------------------|----------------------|
|                  | ou rangée | 0055              | 56          | CDC          | 2197668 | 14/12/2009               | 13/01/2012           |
| 32G06<br>32G06   | 0027      | 0055              | 56          | CDC          | 2197669 | 14/12/2009               | 13/12/2011           |
| 32G06<br>32G06   | 0028      | 0051              | 56          | CDC          | 2197670 | 14/12/2009               | 13/12/2011           |
|                  | +         |                   | <del></del> |              |         |                          |                      |
| 32G06            | 0028      | 0053              | 56          | CDC          | 2197671 | 14/12/2009               | 13/01/2012           |
| 32G06            | 0028      | 0054              | 56          | CDC          | 2197672 | 14/12/2009               | 13/12/2011           |
| 32G06            | 0028      | 0055              | 56          | CDC          | 2197673 | 14/12/2009               | 13/12/2011           |
| 32G06            | 0028      | 0056              | 56          | CDC          | 2197674 | 14/12/2009               | 13/12/2011           |
| 32G06            | 0029      | 0050              | 56          | CDC          | 2197675 | 14/12/2009               | 13/12/2011           |
| 32G06            | 0029      | 0051              | 56          | CDC          | 2197676 | 14/12/2009               | 13/12/2011           |
| 32G06            | 0029      | 0052              | 56          | CDC          | 2197677 | 14/12/2009               | 13/12/2011           |
| 32G06            | 0029      | 0053              | 56          | CDC          | 2197678 | 14/12/2009               | 13/01/2012           |
| 32G06            | 0029      | 0054              | 56          | CDC          | 2197679 | 14/12/2009               | 13/12/2011           |
| 32G06            | 0030      | 0050              | 56          | CDC          | 2197680 | 14/12/2009               | 13/12/2011           |
| 32G06            | 0030      | 0051              | 56          | CDC          | 2197681 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0001      | 0034              | 56          | CDC          | 2197682 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0001      | 0035              | 56          | CDC          | 2197683 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0001      | 0036              | 56          | CDC          | 2197684 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0001      | 0037              | 56          | CDC          | 2197685 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0002      | 0032              | 56          | CDC          | 2197686 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0002      | 0033              | 56          | CDC          | 2197687 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0002      | 0036              | 56          | CDC          | 2197688 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0002      | 0037              | 56          | CDC          | 2197689 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0002      | 0038              | 56          | CDC          | 2197690 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0002      | 0039              | 56          | CDC          | 2197691 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0003      | 0030              | 56          | CDC          | 2197692 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0003      | 0031              | 56          | CDC          | 2197693 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0003      | 0032              | 56          | CDC          | 2197694 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0004      | 0029              | 56          | CDC          | 2197695 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0004      | 0030              | 56          | CDC          | 2197696 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0004      | 0031              | 56          | CDC          | 2197697 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0004      | 0032              | 56          | CDC          | 2197698 | 14/12/2009               | 13/12/2011           |
| 32G11            | 0003      | 0033              | 42          | CDC          | 2197699 | 14/12/2009               | 13/12/2011           |
| 32G06            | 0028      | 0048              | 56          | CDC          | 2199411 | 14/01/2010               | 13/01/2012           |
| 32G06            | 0028      | 0049              | 56          | CDC          | 2199412 | 14/01/2010               | 13/01/2012           |
| 32G06            | 0028      | 0050              | 56          | CDC          | 2199413 | 14/12/2009               | 13/01/2012           |
| 32G06            | 0020      | 0041              | 56          | CDC          | 2199414 | 14/01/2010               | 13/01/2012           |
| 32G06            | 0029      | 0042              | 56          | CDC          | 2199415 | 14/01/2010               | 13/01/2012           |
| 32G06<br>32G06   | 0029      | 0042              | 56          | CDC          | 2199416 | 14/01/2010               | 13/01/2012           |
|                  | 0029      | 0043              | 56          | CDC          | 2199417 | 14/01/2010               | 13/01/2012           |
| 32G06            | -         |                   |             | CDC          | · ·     | 14/01/2010               | 13/01/2012           |
| 32G06            | 0029      | 0045              | 56          | <del> </del> | 2199418 |                          | ·                    |
| 32G06            | 0029      | 0046              | 56          | CDC          | 2199419 | 14/12/2009               | 13/12/2011           |
| 32G06            | 0029      | 0047              | 56          | CDC          | 2199420 | 14/01/2010               | 13/01/2012           |

# **Ressources Cartier inc.**

| 32G06 | 0029 | 0048 | 56   | CDC | 2199421 | 14/01/2010 | 13/01/2012 |
|-------|------|------|------|-----|---------|------------|------------|
| 32G06 | 0029 | 0049 | 56   | CDC | 2199422 | 14/01/2010 | 13/01/2012 |
| 32G06 | 0030 | 0037 | 56   | CDC | 2199423 | 14/12/2009 | 13/12/2011 |
| 32G06 | 0030 | 0038 | 56   | CDC | 2199424 | 14/01/2010 | 13/01/2012 |
| 32G06 | 0030 | 0039 | 56   | CDC | 2199425 | 14/12/2009 | 13/12/2011 |
| 32G06 | 0030 | 0040 | . 56 | CDC | 2199426 | 14/01/2010 | 13/01/2012 |
| 32G06 | 0030 | 0041 | 56   | CDC | 2199427 | 14/12/2009 | 13/12/2011 |
| 32G06 | 0030 | 0042 | 56   | CDC | 2199428 | 14/01/2010 | 13/01/2012 |
| 32G06 | 0030 | 0043 | 56   | CDC | 2199429 | 14/01/2010 | 13/01/2012 |
| 32G06 | 0030 | 0044 | 56   | CDC | 2199430 | 14/01/2010 | 13/01/2012 |
| 32G06 | 0030 | 0045 | 56   | CDC | 2199431 | 14/01/2010 | 13/01/2012 |
| 32G06 | 0030 | 0046 | 56   | CDC | 2199432 | 14/01/2010 | 13/01/2012 |
| 32G06 | 0030 | 0047 | 56   | CDC | 2199433 | 14/01/2010 | 13/01/2012 |
| 32G06 | 0030 | 0048 | 56   | CDC | 2199434 | 14/01/2010 | 13/01/2012 |
| 32G06 | 0030 | 0049 | 56   | CDC | 2199435 | 14/01/2010 | 13/01/2012 |
| 32G11 | 0001 | 0040 | 56   | CDC | 2199436 | 14/01/2010 | 13/01/2012 |
| 32G11 | 0001 | 0041 | 56   | CDC | 2199437 | 14/01/2010 | 13/01/2012 |
| 32G11 | 0001 | 0042 | 56   | CDC | 2199438 | 14/01/2010 | 13/01/2012 |
| 32G11 | 0001 | 0043 | 56   | CDC | 2199439 | 14/01/2010 | 13/01/2012 |
| 32G11 | 0001 | 0044 | 56   | CDC | 2199440 | 14/01/2010 | 13/01/2012 |
| 32G11 | 0001 | 0045 | 56   | CDC | 2199441 | 14/01/2010 | 13/01/2012 |
| 32G11 | 0001 | 0046 | 56   | CDC | 2199442 | 14/12/2009 | 13/12/2011 |
| 32G11 | 0001 | 0047 | 56   | CDC | 2199443 | 14/01/2010 | 13/01/2012 |
| 32G11 | 0001 | 0048 | 56   | CDC | 2199444 | 14/12/2009 | 13/12/2011 |
| 32G11 | 0002 | 0040 | 56   | CDC | 2199445 | 14/01/2010 | 13/01/2012 |
| 32G06 | 0028 | 0047 | 56   | CDC | 2199466 | 14/01/2010 | 13/01/2012 |
| 32G06 | 0030 | 0036 | 56   | CDC | 2199467 | 14/01/2010 | 13/01/2012 |
| 32G06 | 0028 | 0057 | 56   | CDC | 2223885 | 29/04/2010 | 28/04/2012 |
| 32G06 | 0028 | 0058 | 56   | CDC | 2223886 | 29/04/2010 | 28/04/2012 |
| 32G06 | 0028 | 0059 | 56   | CDC | 2223887 | 29/04/2010 | 28/04/2012 |
| 32G06 | 0028 | 0060 | 56   | CDC | 2223888 | 29/04/2010 | 28/04/2012 |
| 32G06 | 0029 | 0055 | 56   | CDC | 2223889 | 29/04/2010 | 28/04/2012 |
| 32G06 | 0029 | 0056 | 56   | CDC | 2223890 | 29/04/2010 | 28/04/2012 |
| 32G06 | 0029 | 0057 | 56   | CDC | 2223891 | 29/04/2010 | 28/04/2012 |
| 32G06 | 0029 | 0058 | 56   | CDC | 2223892 | 29/04/2010 | 28/04/2012 |
| 32G06 | 0029 | 0059 | 56   | CDC | 2223893 | 29/04/2010 | 28/04/2012 |
| 32G06 | 0029 | 0060 | 56   | CDC | 2223894 | 29/04/2010 | 28/04/2012 |
| 32G06 | 0027 | 0057 | 56   | CDC | 2240172 | 07/08/2010 | 07/07/2012 |
| 32G06 | 0027 | 0056 | 56   | CDC | 2240218 | 07/09/2010 | 07/08/2012 |
| 32G06 | 0027 | 0058 | - 56 | CDC | 2240219 | 07/09/2010 | 07/08/2012 |
| 32G06 | 0027 | 0059 | 56   | CDC | 2240220 | 07/09/2010 | 07/08/2012 |
| 32G11 | 0002 | 0041 | 56   | CDC | 2243440 | 28/07/2010 | 27/07/2012 |
| 32G11 | 0002 | 0042 | 56   | CDC | 2243441 | 28/07/2010 | 27/07/2012 |

# Ressources Cartier inc.

| 32G11 | 0002 | 0043 | 56 | CDC | 2243442 | 28/07/2010 | 27/07/2012 |
|-------|------|------|----|-----|---------|------------|------------|
| 32G11 | 0002 | 0044 | 56 | CDC | 2243443 | 28/07/2010 | 27/07/2012 |
| 32G11 | 0002 | 0045 | 56 | CDC | 2243444 | 28/07/2010 | 27/07/2012 |

# ANNEXE II Liste des travaux statutaires

- DP-82-18 REGION DES LACS CAOPATINA ET DES VENTS, DISTRICT DE CHIBOUGAMAU. 1982, Par GOBEIL, A, RACICOT, D. 1 CARTE (ECHELLE 1/100 000) AVEC NOTES MARGINALES. 1 microfiche.
- DP-88-12 GEOLOGIE DU SECTEUR DU LAC REMICK PROJET CAOPATINA. 1988, Par LAUZIERE, K, CHOWN, E H. 1 CARTE /2F (ECHELLE 1/20 000). 1 microfiche.
- DP-90-04 GEOLOGIE DE LA PARTIE EST DU SECTEUR DE CAOPATINA. 1990, Par LAUZIERE, K, CHOWN, E H, TAIT, L. 2 CARTES /4 F (ECHELLES: 1/50 000 ET 1/20 000). 1 microfiche.
- DV 88-09 TRAITEMENT DES DONNEES GEOPHYSIQUES (AEROMAGNETIQUES) LAC DODA. 1988, Par SIAL GEOSCIENCES INC. 1 page. CARTES 2075A-B-C-D (ECHELLE 1/50 000). 1 microfiche.
- DV 88-10 TRAITEMENT DES DONNEES GEOPHYSIQUES (AEROMAGNETIQUES) LAC DICKSON. 1988, Par SIAL GEOSCIENCES INC. 1 page. CARTES 2076A-B-C-D (ECHELLE 1/50 000). 1 microfiche.
- DV 95-03 TRAITEMENT DES DONNEES GEOPHYSIQUES, REGION DU LAC DES VENTS (PARTIE EST) (PARTIES DES DECOUPURES SNRC 32 G/6, 7, 10, 11, CARTES A, B, C). 1996, Par SIAL GEOSCIENCES INC. 1 page. 3 CARTES (ECHELLE 1/50 000). 1 microfiche.
- ET 90-01 GEOLOGIE DE LA REGION DU LAC DICKSON (BANDE CAOPATINA-DESMARAISVILLE). 1992, Par MIDRA, R, CHOWN, E H, TAIT, L. CARTE 2148 (ECHELLE 1/50 000). 1 microfiche.
- ET 91-05 GEOLOGIE DU SECTEUR DU LAC DODA BANDE CAOPATINA-DESMARAISVILLE (SOUS-PROVINCE DE L'ABITIBI). 1993, Par MIDRA, R, LAUZIERE, K, CHOWN, E H, TAIT, L. 1 microfiche.
- ET 91-10 MINERALISATION AURIFERE DU SECTEUR ORIENTAL DE LA BANDE CAOPATINA-DESMARAISVILLE. 1994, Par DION, C, GUHA, J. 154 pages. 3 microfiches.
  - GM 20878 REPORT ON GEOPHYSICAL SURVEYS. 1966, Par BERGMANN, H J. 11 pages. 10 cartes. 4 microfiches.
  - GM 21558 3 JOURNAUX DE SONDAGE. 1967, Par. 15 pages. 1 microfiche.
- GM 22539 JOURNAL DE SONDAGES AU DIAMANT, CUIVRE ABITIBI. 1967, Par CHAUMONT, P. 18 pages. 1 microfiche.
- GM 22586 JOURNAL DE SONDAGES AU DIAMANT, CUIVRE ABITIBI. 1968, Par CHAUMONT, P. 72 pages. 2 microfiches
  - GM 26435 JOURNAL DE SONDAGES AU DIAMANT. 1970, Par ROY, P L. 34 pages. 1 microfiche.
- GM 32827 REPORT ON GEOPHYSICAL SURVEYS ON PART OF PROPERTY, CHIBOUGAMAU PROJECT, DODA LAKE. 1976, Par LAVOIE, C. 26 pages. 17 cartes. 7 microfiches.
- GM 33449 DIAMOND DRILL HOLE LOG, GRADIS-RASLES PROJECT. 1977, Par OUELLET, A J. 43 pages. 1 microfiche.
- GM 37581 LEVE MAGNETOMETRIQUE ET DE TRES BASSE FREQUENCE, PROPRIETE DR-1. 1981, Par BELAND, G. 7 pages. 2 cartes. 1 microfiche.
  - GM 39349 LEVE GEOLOGIQUE, PROPRIETE DR-1. 1982, Par BELAND, G. 8 pages. 1 carte. 1 microfiche.
- GM 39368 LEVES MAGNETOMETRIQUE ET ELECTROMAGNETIQUE, PROPRIETE GRADIS I. 1982, Par BELAND, G. 5 pages. 2 cartes. 1 microfiche.
- GM 39954 RAPPORT D'EVALUATION TECHNIQUE SUR LE PROJET LAC PAUL. 1982, Par GRENIER, J. 47 pages. 8 cartes. 3 microfiches.
- GM 40568 RAPPORT D'EVALUATION TECHNIQUE SUR LE PROJET LAC PAUL. 1983, Par GRENIER, J. 65 pages. 9 cartes. 4 microfiches.
- GM 41948 EVALUATION REPORT ON DROUET TOWNSHIP PROPERTY. 1984, Par STOCH, J, SMITH, P H. 15 pages. 1 microfiche.

- GM 42226 RAPPORT DE LEVES MAGNETIQUES. 1985, Par GOSSELIN, R. 19 pages. 10 cartes. 3 microfiches.
- GM 42554 LEVES ELECTROMAGNETIQUES VLF & MAGNETIQUE, PROJET LAC PAUL. 1985, Par LAVOIE, C. 33 pages. 78 cartes. 18 microfiches.
- GM 42759 LEVE DE POLARISATION PROVOQUEE, PROJET LAC PAUL GROUPE A. 1985, Par LAVOIE, C. 11 pages. 14 cartes. 4 microfiches.
- GM 42760 LEVE DE POLARISATION PROVOQUEE, PROJET LAC PAUL GROUPE B. 1985, Par LAVOIE, C. 12 pages. 20 cartes. 5 microfiches.
  - GM 42910 GEOLOGICAL SURVEY, G-D PROJECT. 1985, Par JANSEN, J G. 31 pages. 4 cartes. 2 microfiches
  - GM 43065 LEVE AU TAPIS PROSPECTEUR. 1985, Par DESSUREAULT, M. 12 pages. 1 carte. 1 microfiche.
- GM 43359 RAPPORT SUR LES TRAVAUX EXECUTES, CAMPAGNE D'EXPLORATION 1985, PROJET GUERCHEVILLE-DROUET. 1986, Par DE GROSBOIS, M. 78 pages. 12 cartes. 5 microfiches.
  - GM 43405 REPORT, DROUET TOWNSHIP PROPERTY. 1986, Par SMITH, P H. 12 pages. 7 cartes. 3 microfiches.
- GM 43617 JOURNAL DE SONDAGE, PROPRIETE LAC PAUL. 1986, Par SOCOMINES INC. 18 pages. 11 cartes. 4 microfiches.
  - GM 44565 INDUCED POLARIZATION SURVEY. 1987, Par ALLARD, M. 12 pages. 101 cartes. 18 microfiches.
- GM 44758 ELECTROMAGNETIC SURVEY, DRUILLETTES-I CLAIM GROUP. 1987, Par PATENAUDE, C. 7 pages. 2 cartes. 2 microfiches.
  - GM 44863 LEVE HLEM ET MAG. 1987, Par BUSSIERES, Y. 19 pages. 12 cartes. 3 microfiches.
  - GM 44881 DIGHEM III SURVEY, LAC BERNARD AREA. 1986, Par KILTY, S J. 59 pages. 6 cartes. 3 microfiches.
  - GM 45576 REVERSE CIRCULATION DRILL LOG. 1986, Par GARAND, D. 168 pages. 1 carte. 4 microfiches.
- GM 45676 DIAMOND DRILL LOG, G-D PROSPECT. 1987, Par JANSEN, J, GONTHIER, M. 123 pages. 1 carte. 4 microfiches.
- GM 46134 REVERSE CIRCULATION OVERBURDEN DRILLING AND HEAVY MINERAL GEOCHEMICAL SAMPLING. 1987, Par HOLMES, D R, AVERILL, S A, MACNEIL, K A, HUNEAULT, R. 148 pages. 3 cartes. 4 microfiches.
  - GM 46303 DIAMOND DRILL LOG. 1986, Par GARAND, D. 101 pages. 1 carte. 3 microfiches.
- GM 46326 REVERSE CIRCULATION DRILL HOLE LOG. 1987, Par ELCOM, K, LEBER, R. 619 pages. 2 cartes. 12 microfiches.
- GM 46429 GEOLOGICAL PROPERTY REPORT, RESEAU BERNARD AND LAC DES VENTS PROPERTIES. 1987, Par CANOVA, E: 19 pages. 5 cartes. 2 microfiches.
  - GM 47526 SONDAGES -1988, PROJET "LAC PAUL". 1988, Par LAVALLEE, J. 54 pages. 17 cartes. 5 microfiches.
- GM 48055 DIAMOND DRILL LOG, LAC CAOPATINA PROSPECT. 1987, Par LEBER, R, BABINEAU, J, GARAND, D, JANSEN, J. 190 pages. 4 cartes. 6 microfiches.
- GM 48402 DIAMOND DRILL LOG, G-D PROSPECT. 1988, Par JANSEN, J, GONTHIER, M, LEBER, R, BABINEAU, J. 286 pages. 6 cartes. 8 microfiches.
- GM 54503 RAPPORT TECHNIQUE DES TRAVAUX, CAMPAGNE 1996, OPTION VENDOME #339. 1996, Par RIOPEL, J. 128 pages. 4 cartes. 4 microfiches.
- GM 54584 LEVE MAGNETOMETRIQUE ET EMH (MAX-MIN), PROJET DRUILLETTES-95-1 (1175). 1996, Par ROY, I, BOIVIN, M. 15 pages. 8 cartes. 3 microfiches.
  - GM 61582 DROUET PROJECT. 2004, Par MARSDEN, H. 84 pages. 3 cartes.

- MB 89-07 ANALYSE GEOMETRIQUE ET DYNAMIQUE DES COULOIRS DE DEFORMATION. 1989, Par DAIGNEAULT, R. 27 pages. 1 microfiche.
- MB 89-40 GEOLOGIE DU SECTEUR DES LACS DES VENTS, SURPRISE ET CAOPATINA RAPPORT INTERIMAIRE. 1989, Par LAUZIERE, K, CHOWN, E H, MUELLER, W, TAIT, L. 100 pages. 3 CARTES (ECHELLES 2 X 1/20 000, 1 X 1/50 000). 2 microfiches.
- MB 89-60 GEOLOGIE DE LA REGION DU LAC REMICK PROJET CAOPATINA RAPPORT INTERIMAIRE. 1989, Par LAUZIERE, K, CHOWN, E H, SHARMA, K N M. 93 pages. 1 CARTE (ECHELLE 1/50 000) ET 1 CARTE / 2F (ECHELLE 1/20 000). 3 microfiches.
- MB 89-62 ETUDE METALLOGENIQUE DE LA BANDE CAOPATINA-DESMARAISVILLE (SECTEUR JOE MANN) LES INDICES AURIFERES, PHASE II -. 1989, Par DION, C, GUHA, J. 94 pages. 2 microfiches.
- MB 91-30 GEOLOGIE DE LA REGION DU LAC DICKSON (BANDE CAOPATINA-DESMARAISVILLE). 1992, Par MIDRA, R, CHOWN, E H, TAIT, L. 65 pages. 2 microfiches.
- MB 92-16 GEOLOGIE DU SECTEUR DU LAC SURPRISE, BANDE CAOPATINA DESMARAISVILLE (SOUS-PROVINCE DE L'ABITIBI). 1992, Par MIDRA, R, LAUZIERE, K, CHOWN, E H, MUELLER, W. 122 pages. 1 CARTE/4 F (ECHELLE 1/20 000). 4 microfiches.
- MB 96-12 GEOLOGIE DE LA REGION DE SCOTSTOWN. 1996, Par TREMBLAY, A. 66 pages. 1 CARTE (ECHELLE 1/50 000). 2 microfiches.
- MB 99-33 COMPILATION ET SYNTESE GEOLOGIQUE ET METALOGENIQUE DU SEGMENT DE CAOPATINA, REGION DE CHIBOUGAMAU. 1999, Par DION, C, SIMARD, M. 341 pages. 7 microfiches.
- PRO 97-04 CARTE GEOLOGIQUE ET DISTRIBUTION DES INDICES AURIFERES ET DES METAUX USUELS DU SEGMENT DE CAOPATINA, REGION DE CHIBOUGAMAU. 1997, Par SIMARD, M, DION, C. 1 page. 1 microfiche.

# ANNEXE III Liste exhaustive des échantillons

Liste exhaustive des échantillons choisis lors de la campagne d'échantillonnage de 2010 (en jaune = Au > 0,1 g/t; en rouge = Au > 1 g/t)

| Echantillon | Au ppb | utmE<br>Zone 18 | utmN<br>zone 18 | Date<br>échantillonnage | Nature roche | Description                                                                                     |
|-------------|--------|-----------------|-----------------|-------------------------|--------------|-------------------------------------------------------------------------------------------------|
| 13540       | 9      | 490942          | 5482710         | 06/10/2010              | I3A          | Gabbro à grains fins, verdâtre, fine pyrite disséminée, veinules de carbonates.                 |
| 13541       | 13     | 491087          | 5482661         | 06/10/2010              | I3A          | Gabbro à grains fins, verdâtre, fine pyrite disséminée et en amas (2%).                         |
| 13542       | 10     | 491090          | 5482605         | 06/10/2010              | V3B          | Basalte verdâtre, aphanitique, gloméroporphyres de feldspaths, 2% pyrite disséminée.            |
| 13543       | 0      | 491345          | 5482729         | 06/10/2010              | V3B          | Veine de quartz fumée, rouillée avec pyrite disséminée dans les basaltes bréchiques.            |
| 13544       | 5      | 491259          | 5483091         | 06/11/2010              | 11           | Dyke felsique blanchâtre à yeux de quartz et pyrite disséminée.                                 |
| 13545       | 9      | 491259          | 5483091         | 06/11/2010              | 12           | Dyke intermédiaire verdâtre à yeux de quartz et pyrite disséminée.                              |
| 13546       | 5      | 491506          | 5482906         | 06/11/2010              | 11           | Dyke felsique blanchâtre, à yeux de quartz et veine de quartz.                                  |
| 13547       | 6      | 491416          | 5482521         | 06/11/2010              | V3B          | 2% pyrrhotite disséminée dans basalte coussiné, gloméroporphyrique, rouillé.                    |
| 13548       | 8      | 491416          | 5482521         | 06/11/2010              | V3B          | 2% pyrrhotite disséminée dans basalte coussiné, gloméroporphyrique, rouillé.                    |
| 13549       | 315    | 491504          | 5482167         | 06/11/2010              | M8           | Veine de quartz au contact entre le schiste mafique et à séricite-quartz.                       |
| 13551       | 6      | 491810          | 5482350         | 06/12/2010              | V3B          | Basalte verdâtre, aphanitique, très schisteux, fine pyrite disséminée.                          |
| 13552       | 10     | 491810          | 5482340         | 06/12/2010              | 11           | Dyke felsique à yeux de quartz très schisteux.                                                  |
| 13553       | 7      | 491738          | 5481841         | 06/12/2010              | V3B          | Basalte verdâtre, aphanitique, pyrite fine disséminée et veinule de quartz-épidote.             |
| 13554       | 5      | 491656          | 5483081         | 13/06/2010              | V3B          | Veine de quartz dans un basalte verdâtre, aphanitique et gloméroporphyrique                     |
| 13556       | 0      | 491656          | 5483081         | 13/06/2010              | V3B          | Veine de quartz dans un basalte verdâtre, aphanitique et gloméroporphyrique                     |
| 13557       | 5      | 494550          | 5480235         | 13/06/2010              | 11           | Dyke felsique vert clair, yeux de quartz et de feldspaths, aphanitique.                         |
| 13558       | 0      | 495175          | 5480698         | 13/06/2010              | V3B          | Basalte verdâtre très épidotisé avec magnétite en veinules et disséminée.                       |
| 13559       | 18     | 496518          | 5479640         | 14/06/2010              | I1           | Intrusion felsique verdâtre, aphanitique, à quartz et plagioclases, très schisteuse (rouillée). |
| 13561       | 0      | 496658          | 5479686         | 14/06/2010              | 11           | Veine de quartz-pyrite dans l'intrusion felsique rouillée.                                      |
| 13562       | 0      | 496658          | 5479686         | 14/06/2010              | I1           | Veine de quartz-pyrite dans l'intrusion felsique rouillée.                                      |
| 13563       | 8      | 496658          | 5479686         | 14/06/2010              | I1           | Intrusion felsique rouillée, 2-5% pyrite disséminée.                                            |
| 13564       | 7      | 497678          | 5481060         | 14/06/2010              | V3B          | Veine de quartz fumée dans basalte.                                                             |
| 13565       | 6      | 497984          | 5481206         | 14/06/2010              |              | Boulder de quartz fumé.                                                                         |
| 13566       | 7      | 489500          | 5481896         | 15/06/2010              | S1           | Sédiments bleuâtres à grains fins                                                               |
| 13567       | 6      | 491003          | 5482573         | 16/06/2010              |              | Boulder de quartz-tourmaline dans le dyke felsique                                              |

| 13568 | 8    | 490991 | 5482571 | 16/06/2010 | I1  | Veine de quartz dans le dyke felsique                                                      |
|-------|------|--------|---------|------------|-----|--------------------------------------------------------------------------------------------|
| 13569 | 25   | 490987 | 5482567 | 16/06/2010 | 11  | Intrusion felsique à grains moyens, pyrite et chalcopyrite (5%)                            |
| 13571 | 8    | 491620 | 5481991 | 16/06/2010 | V3B | Veine de quartz plissée dans basalte cisaillée à plagio étirés                             |
| 13572 | 7    | 491620 | 5481991 | 16/06/2010 | 11  | Dyke felsique à yeux de quartz                                                             |
| 13573 | 6    | 491446 | 5482446 | 18/06/2010 | I1  | Dyke felsique recoupé par dyke intermédiaire et veinules de quartz                         |
| 13574 | 9    | 491503 | 5482170 | 18/06/2010 | M8  | Contact schiste à chlorite et schiste à séricite-quartz                                    |
| 13576 | 13   | 491502 | 5482511 | 18/06/2010 | M8  | Schiste à séricite-quartz                                                                  |
| 13577 | 9    | 491369 | 5482639 | 18/06/2010 | I1D | Tonalite blanchâtre, avec yeux de quartz, assez schisteuse.                                |
| 13578 | 6    | 491000 | 5482572 | 16/06/2010 | I1  | Veine de quartz dans dyke felsique                                                         |
| 13579 | 24   | 490997 | 5482573 | 16/06/2010 |     | Contact basalte cisaillé et dyke felsique                                                  |
| 13581 | 6    | 490997 | 5482572 | 16/06/2010 | 11  | Veine de quartz dans le dyke felsique                                                      |
| 13582 | 7    | 490995 | 5482572 | 16/06/2010 | 11  | Veine de quartz dans dyke felsique                                                         |
| 13606 | 258  | 488721 | 5483751 | 06/10/2010 | I1D | V de Qz minéralisé, dans I1                                                                |
| 13607 | 13   | 488691 | 5483777 | 06/10/2010 | I1D | V de Qz à 2% PY dans I1D                                                                   |
| 13608 | 8    | 488747 | 5483594 | 06/10/2010 | I1D | I1D à traces de py                                                                         |
| 13609 | 35   | 488566 | 5483589 | 06/10/2010 |     | Horizon felsique à Qz, Cl et lits de Mg et 5 à 10% PY disséminée                           |
| 13611 | 13   | 488462 | 5483560 | 06/10/2010 | I1D | Enclave dans I1D, £il de Qz, Cl, 1,5 à 2,5% de PY disséminée, 4% Mg disséminée, carbonates |
| 13612 | 8    | 488429 | 5483561 | 06/10/2010 | I1D | V de Qz de 40cm dans I1D, sulfures en amas et en plaquage                                  |
| 13613 | 6    | 488560 | 5483439 | 06/11/2010 | I1D | V de Qz dans I1D avec poches de sulfures altérés                                           |
| 13614 | 12   | 488563 | 5483442 | 06/11/2010 | I1D | V de Qz dans I1D avec minéralisation PY                                                    |
| 13616 | 3998 | 489160 | 5483689 | 06/12/2010 | I1D | I1D à veine de qz minéralisées en Py                                                       |
| 13617 | 18   | 489158 | 5483691 | 06/12/2010 | I1D | I1D altération en Cb Fe et Cl, veine de qz minéralisées en Py                              |
| 13618 | 80   | 489159 | 5483687 | 06/12/2010 | I1D | I1D, altération en Cb Fe et Cl avec veine de qz minéralisées en Py                         |
| 13619 | 7    | 489164 | 5483689 | 06/12/2010 | I1D | Veine de qz minéralisée en Py dans I1D                                                     |
| 13621 | 5252 | 489163 | 5483687 | 06/12/2010 | I1D | Veine de qz minéralisée en Py dans I1D                                                     |
| 13622 | 0    | 488723 | 5484044 | 06/12/2010 | I3A | Veine de qz minéralisée en Py dans I3A                                                     |
| 13623 | 7    | 487478 | 5483408 | 06/12/2010 | V3  | Veine de qz minéralisée en Py dans V3                                                      |
| 13624 | 25   | 488524 | 5483501 | 13/06/2010 | I1D | I1D cisaillée, altération en Cb Fe, Py disséminée 5 à 10%, veine de qz                     |
| 13625 | 115  | 488512 | 5483484 | 13/06/2010 | I1D | I1D, altération en Cb Fe, 2% de Py disséminée                                              |
| 13626 | 6    | 488509 | 5483484 | 13/06/2010 | I1D | I1D, altération en Cb Fe, 1-2% Py disséminée                                               |

| 10007 | 4500 | 400507 | 5400400 | 42/00/0040 | 140 | IAD circulta 7 00/ Du dissersioné                                                          |
|-------|------|--------|---------|------------|-----|--------------------------------------------------------------------------------------------|
| 13627 | 1566 | 488587 | 5483469 | 13/06/2010 | I1D | I1D cisaillée, 7-8% Py disséminée                                                          |
| 13628 | 35   | 488598 | 5483472 | 13/06/2010 | I1D | I1D, minéralisation 1-2% Py                                                                |
| 13629 | 101  | 488499 | 5483512 | 13/06/2010 | I1D | I1D, altération en Cb Fe, 3% Py disséminée                                                 |
| 13631 | 676  | 488501 | 5483512 | 13/06/2010 | I1D | I1D schisteux, forte altération en Cb Fe, veinules de Py                                   |
| 13632 | 1139 | 488520 | 5483513 | 13/06/2010 | I1D | I1D schisteux à Ser-Cb Fe- sulfures altérés                                                |
| 13633 | 9    | 488246 | 5483089 | 13/06/2010 | I1D | Dyke de I1D dans V3, traces de sulfures                                                    |
| 13634 | 6    | 488151 | 5483258 | 13/06/2010 | I1D | Veine de qz altérée, possible minéralisation, encaissée dans I1D cisaillée et schiste à CI |
| 13636 | 20   | 483483 | 5484666 | 13/06/2010 | V3  | Veine de qz dans V3 cisaillée                                                              |
| 13637 | 7    | 481640 | 5486040 | 14/06/2010 | M8  | Schiste felsique à limonite, sulfures altérés, conducteur                                  |
| 13638 | 8    | 481641 | 5486040 | 14/06/2010 | M8  | Schiste felsique à limonite, sulfures altérés, conducteur                                  |
| 13639 | 13   | 481732 | 5486146 | 14/06/2010 | M8  | Schiste felsique à Ser, conducteur                                                         |
| 13641 | 12   | 481637 | 5486182 | 14/06/2010 | M8  | Schiste minéralisé avec veinules de Py et Py en placage, conducteur                        |
| 13642 | 9    | 481505 | 5486199 | 14/06/2010 | V3B | Veine de qz dans V3B cisaillé, altération en Cb Fe                                         |
| 13643 | 13   | 481200 | 5486265 | 15/06/2010 | S1  | Sédiment fin à Mg, traces de sulfures                                                      |
| 13644 | 13   | 481000 | 5486397 | 15/06/2010 | M8  | Schiste à Ser, minéralisation en Py disséminée dans V3B                                    |
| 13645 | 9    | 480903 | 5486355 | 15/06/2010 | V3B | Veine de qz minéralisée en Py et veinules de Cp dans V3B cisaillé                          |
| 13646 | 22   | 480904 | 5486362 | 15/06/2010 | М8  | Schiste, minéralisation en veinules de Py et Cp en placage                                 |
| 13647 | 12   | 480856 | 5486410 | 15/06/2010 |     | Conducteur felsique, forte altération en Cb Fe                                             |
| 13648 | 6    | 481192 | 5486270 | 15/06/2010 | V3B | Veine de qz dans V3B cisaillée avec cavité d'altération                                    |
| 13649 | 768  | 488723 | 5483755 | 16/06/2010 | I1D | Tonalité altérée à Cb Fe-Ser-1-2% amas Py                                                  |
| 13651 | 1923 | 488723 | 5483755 | 16/06/2010 | I1D | Tonalité altérée à Cb Fe-Ser-1-2% amas Py                                                  |
| 13652 | 227  | 488710 | 5483735 | 16/06/2010 |     | Veine de qz avec amas de sulfures                                                          |
| 13692 | 6    | 498059 | 5480673 | 17/06/2010 | V3B | Basalte et gabbro avec veines de quartz et pyrite en veinules et disséminée (3%)           |
| 13693 | 8    | 498062 | 5480745 | 17/06/2010 | V3B | Basalte avec traces de pyrite.                                                             |
| 13694 | 0    | 498202 | 5481002 | 17/06/2010 | V3B | Basalte avec veinules de quartz                                                            |
| 13696 | 7    | 498363 | 5481796 | 17/06/2010 | 12  | Veine de quartz altérée, traces de sulfures dans dyke intermédiaire                        |
| 13697 | 5    | 498131 | 5481746 | 17/06/2010 | V3B | Veine de quartz dans basalte                                                               |
| 13698 | 7    | 498004 | 5481325 | 17/06/2010 | V3B | Basalte très cisaillé avec veinules de quartz et traces de sulfures                        |
| 13699 | 0    | 498396 | 5481738 | 17/06/2010 | V1  | Lave felsique aphanitique à yeux de quartz                                                 |
| 13701 | 0    | 497834 | 5480699 | 17/06/2010 | I3A | Gabbro avec veinules de carbonates et pyrite disséminée (2%)                               |

| 13   | 490993                            | 5482570                                                                     | 06/02/2010                                                                                                                  | <b>I</b> 1                                                                                                                                                                     | Intrusion felsique altérée (chl), 1% py diss.                                                                                                                                                    |
|------|-----------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10   | 491410                            | 5482517                                                                     | 06/02/2010                                                                                                                  | V3B                                                                                                                                                                            | Basalte altéré, rouillé, py en plaquage dans les fractures                                                                                                                                       |
| 0    | 490024                            | 5482433                                                                     | 06/02/2010                                                                                                                  | I1                                                                                                                                                                             | Intrusion felsique porphyrique, py diss. Et en Vnles                                                                                                                                             |
| 4821 | 488722                            | 5483749                                                                     | 06/02/2010                                                                                                                  | I1                                                                                                                                                                             | Intrusion felsique porphyrique, altérée, Vqtz-py                                                                                                                                                 |
| 18   | 488444                            | 5483447                                                                     | 16/06/2010                                                                                                                  | I1D                                                                                                                                                                            | Veine de qz encaissée dans une tonalite avec minéralisation en Py                                                                                                                                |
| 22   | 488246                            | 5483331                                                                     | 16/06/2010                                                                                                                  | I1D                                                                                                                                                                            | Veine de qz dans I1D très déformée schisteuse                                                                                                                                                    |
| 11   | 488020                            | 5483013                                                                     | 16/06/2010                                                                                                                  |                                                                                                                                                                                | Veine de qz à Ser-Cb de Fe en amas                                                                                                                                                               |
| 0    | 487998                            | 5482978                                                                     | 16/06/2010                                                                                                                  |                                                                                                                                                                                | Veine de qz avec amas de Cb Fe et schiste fortement altéré avec Ser                                                                                                                              |
|      | 10<br>0<br>4821<br>18<br>22<br>11 | 10 491410<br>0 490024<br>4821 488722<br>18 488444<br>22 488246<br>11 488020 | 10 491410 5482517<br>0 490024 5482433<br>4821 488722 5483749<br>18 488444 5483447<br>22 488246 5483331<br>11 488020 5483013 | 10 491410 5482517 06/02/2010 0 490024 5482433 06/02/2010 4821 488722 5483749 06/02/2010 18 488444 5483447 16/06/2010 22 488246 5483331 16/06/2010 11 488020 5483013 16/06/2010 | 10 491410 5482517 06/02/2010 V3B 0 490024 5482433 06/02/2010 I1 4821 488722 5483749 06/02/2010 I1 18 488444 5483447 16/06/2010 I1D 22 488246 5483331 16/06/2010 I1D 11 488020 5483013 16/06/2010 |

Liste exhaustive des échantillons en rainure lors de la campagne d'échantillonnage de 2010 (en jaune = Au > 0,1 g/t; en rouge = Au > 1 g/t)

| Echantillon | Au ppb | utmE zone 18 | utmN zone 18 | Longueur | Date échantillonnage | Nature roche | Description                               |
|-------------|--------|--------------|--------------|----------|----------------------|--------------|-------------------------------------------|
| 13653       | 12     | 488496,25    | 5483506,70   | 0.9      | 16/06/2010           | I1D          | Tonalite cisaillée                        |
| 13654       | 22     | 488497,00    | 5483507,50   | 1        | 16/06/2010           | I1D          | Tonalite cisaillée                        |
| 13682       | 20     | 488514,00    | 5483490,50   | 0.8      | 16/06/2010           | I1D          | Tonalite cisaillée avec veine de qz       |
| 13683       | 78     | 488510,75    | 5483487,00   | 1        | 16/06/2010           | I1D          | Tonalite cisaillée avec veine de qz       |
| 13684       | 37     | 488510,50    | 5483486,50   | 0.7      | 16/06/2010           | I1D          | Tonalite cisaillée avec veine de qz       |
| 13685       | 0      | 488000,00    | 5482985,00   | 1.1      | 16/06/2010           | M8           | Schiste à Ser-Cb Fe                       |
| 13686       | 9      | 488102,00    | 5483081,00   | 1.1      | 16/06/2010           | I1D          | Tonalite schisteux                        |
| 13687       | 39     | 488120,00    | 5483092,00   | 1        | 16/06/2010           | I1D          | Tonalite cisaillée                        |
| 13688       | 27     | 488162,00    | 5483139,00   | 1        | 16/06/2010           | V3B          | V3B cisaillé                              |
| 13689       | 16     | 488213,00    | 5483184,00   | 1.1      | 16/06/2010           | I1D          | Dyke felsique très déformé, protolyte I1D |
| 13691       | 18     | 488229,00    | 5483205,00   | 1.1      | 16/06/2010           | I1D          | Tonalite cisaillée                        |
| 13656       | 21     | 488498,00    | 5483509,00   | 0.9      | 16/06/2010           | I1D          | Tonalite cisaillée                        |
| 13657       | 28     | 488498,50    | 5483509,25   | 1        | 16/06/2010           | I1D          | Tonalité cisaillée                        |
| 13658       | 28     | 488499,25    | 5483510,00   | 1        | 16/06/2010           | I1D          | Tonalite cisaillée                        |
| 13659       | 477    | 488499,75    | 5483510,50   | 1        | 16/06/2010           | I1D          | Tonalite cisaillée                        |
| 13661       | 245    | 488497,50    | 5483512,00   | 0.8      | 16/06/2010           | I1D          | Tonalite cisaillée                        |
| 13662       | 492    | 488498,25    | 5483512,00   | 0.5      | 16/06/2010           | I1D          | Tonalite cisaillée                        |
| 13663       | 133    | 488498,75    | 5483512,75   | 0.8      | 16/06/2010           | I1D          | Tonalite cisaillée                        |
| 13664       | 387    | 488499,50    | 5483512,50   | 0.8      | 16/06/2010           | I1D          | Tonalite cisaillée                        |
| 13665       | 613    | 488500,00    | 5483505,75   | 0.9      | 16/06/2010           | I1D          | Tonalite cisaillée                        |
| 13666       | 15     | 488497,00    | 5483511,50   | 0.6      | 16/06/2010           | I1D          | Tonalite cisaillée                        |
| 13672       | 7      | 488524,25    | 5483499,50   | 0.8      | 16/06/2010           | I1D          | I1D cisaillé                              |
| 13673       | 16     | 488523,50    | 5483499,00   | 0.7      | 16/06/2010           | I1D          | I1D cisaillé                              |
| 13674       | 10     | 488522,70    | 5483499,50   | 0.75     | 16/06/2010           | I1D          | I1D cisaillé                              |

| 13676 | 14 | 488520,25 | 5483495,70 | 0.85 | 16/06/2010 | I1D   | I1D cisaillé                        |
|-------|----|-----------|------------|------|------------|-------|-------------------------------------|
| 13677 | 52 | 488520,00 | 5483495,00 | 0.75 | 16/06/2010 | . I1D | Tonalité cisaillée                  |
| 13678 | 8  | 488518,75 | 5483495,00 | 0.9  | 16/06/2010 | I1D   | Tonalité cisaillée                  |
| 13679 | 30 | 488512,50 | 5483491,50 | 1.1  | 16/06/2010 | I1D   | Tonalite cisaillée avec veine de qz |
| 13681 | 9  | 488512,00 | 5483490,50 | 1.1  | 16/06/2010 | I1D   | Tonalite cisaillée avec veine de qz |

Liste exhaustive des échantillons lithogéochimiques lors de la campagne d'échantillonnage de 2010

|             |              | illons lithogéoc |         |      |       |         |         |       |      | M 0 0/ |       | N 00 0/ |      |
|-------------|--------------|------------------|---------|------|-------|---------|---------|-------|------|--------|-------|---------|------|
| Echantillon | utmE zone 18 | utmN zone 18     | Al2O3 % |      |       | Cr2O3 % | Fe2O3 % | K2O % |      | MgO %  | MnO % | Na2O %  | Nb % |
| 19224       | 495175       | 5480698          | 13.24   | 0    | 10.58 | 0.04    | 11.62   | 0.01  | 3.72 | 7.14   | 0.19  | 0.64    | 2    |
| 19225       | 496821       | 5479420          | 17.63   | 0.02 | 3.38  | 0.02    | 3.99    | 0.66  | 2.95 | 1.54   | 0.1   | 4.17    | 2    |
| 19226       | 496553       | 5479633          | 19.06   | 0.02 | 3.99  | 0.02    | 3.32    | 0.64  | 2.98 | 1.18   | 0.04  | 4.44    | 2    |
| 19227       | 496505       | 5479629          | 18.1    | 0.03 | 4.01  | 0.02    | 2.89    | 1     | 2.39 | 1.34   | 0.04  | 3.82    | 2    |
| 19228       | 497678       | 5481060          | 15.37   | 0    | 14.34 | 0.04    | 11.04   | 0.05  | 3.11 | 3.51   | 0.29  | 1.8     | 2    |
| 19229       | 497487       | 5479615          | 16.62   | 0.05 | 1.1   | 0.03    | 5.26    | 1.77  | 2.61 | 2.84   | 0.08  | 4.56    | 4    |
| 19230       | 490013       | 5482797          | 15.49   | 0.04 | 5.29  | 0.02    | 6.15    | 1.13  | 3.05 | 2.87   | 0.09  | 3.68    | 6    |
| 19231       | 489500       | 5481896          | 15.87   | 0.05 | 2.21  | 0.02    | 5.27    | 1.58  | 2.48 | 2.54   | 0.08  | 3.7     | 3    |
| 548         | 488713       | 5483735          | 16.3    | 0.03 | 3.41  | 0.02    | 4.59    | 1.39  | 1.62 | 1.76   | 0.07  | 5.08    | 5    |
| 549         | 488724       | 5483746          | 13.37   | 0.05 | 0.17  | 0.01    | 1.88    | 1.85  | 1.42 | 0.27   | 0.02  | 3.91    | 8    |
| 550         | 488792       | 5482829          | 13.16   | 0    | 8.34  | 0.02    | 13.78   | 0.2   | 3.36 | 6.91   | 0.18  | 2.62    | 2    |
| 551         | 489133       | 5483105          | 15.78   | 0.01 | 12.37 | 0.05    | 11.05   | 0.38  | 2.85 | 7      | 0.18  | 2.05    | 0    |
| 552         | 487478       | 5483405          | 14.84   | 0    | 10.76 | 0.04    | 12.92   | 0.06  | 2.62 | 7.54   | 0.2   | 1.76    | 2    |
| 553         | 498396       | 5481738          | 13.39   | 0.03 | 9.09  | 0.02    | 11.29   | 0.43  | 6.98 | 5.54   | 0.23  | 2.41    | 0    |
| 19209       | 490582       | 5482544          | 17.15   | 0.01 | 4.12  | 0.02    | 7.13    | 0.41  | 2.92 | 2.57   | 0.12  | 5.26    | 6    |
| 19210       | 490942       | 5482710          | 15.21   | Ö    | 9.18  | 0.04    | 13.26   | 0.66  | 3.26 | 8.61   | 0.2   | 1.66    | 2    |
| 19211       | 491090       | 5482605          | 15.83   | 0    | 11.79 | 0.05    | 11.68   | 0.08  | 3.03 | 7.7    | 0.19  | 1.22    | 2    |
| 19212       | 491369       | 5482639          | 15.79   | 0.03 | 0.56  | 0.02    | 1.03    | 1.15  | 1.07 | 0.36   | 0.02  | 6.5     | 0    |
| 19214       | 491288       | 5483530          | 14.28   | 0    | 11.45 | 0.03    | 10.66   | 0.53  | 2.31 | 8.09   | 0.19  | 1.96    | 0    |
| 19215       | 491292       | 5483130          | 15.45   | 0    | 3.35  | 0.02    | 4.3     | 0.16  | 1.58 | 1.61   | 0.06  | 5.5     | 5    |
| 19216       | 491292       | 5483130          | 15.66   | 0.01 | 6.86  | 0.02    | 8.45    | 0.22  | 4.2  | 4.38   | 0.12  | 2.99    | 7    |
| 19217       | 491259       | 5483091          | 15.77   | 0.02 | 0.99  | 0.02    | 1.33    | 0.72  | 0.72 | 0.38   | 0.03  | 7.24    | 0    |
| 19218       | 491259       | 5483091          | 15.43   | 0.04 | 3.2   | 0.02    | 4.56    | 1.55  | 3.19 | 1,63   | 0.07  | 4.24    | 5    |
| 19219       | 491425       | 5482813          | 14.59   | 0.03 | 0.25  | 0.04    | 1.12    | 1.2   | 0.7  | 0.21   | 0.01  | 6.52    | 0    |
| 19220       | 491504       | 5482166          | 10.06   | 0.03 | 0.11  | 0.02    | 0.95    | 1.36  | 0.89 | 0.15   | 0.03  | 2.84    | 0    |
| 19221       | 491502       | 5482251          | 15.19   | 0.03 | 0.36  | 0.02    | 1.13    | 1.53  | 1.21 | 0.44   | 0.01  | 5.06    | 0    |
| 19222       | 491810       | 5482350          | 14.82   | 0.01 | 10.66 | 0.03    | 12.41   | 0.19  | 3.75 | 7.62   | 0.2   | 1.77    | 2    |
| 19223       | 494550       | 5480235          | 19.5    | 0.04 | 3.96  | 0.02    | 4.23    | 0.9   | 3.2  | 1.65   | 0.06  | 4.17    | 3    |

| Echantillon | P2O5<br>% | SiO2<br>% | SrO<br>% | TiO<br>2 % | Total % | y<br>pp<br>m | Zr<br>ppm | Date<br>échantillonnage | Nature<br>roche | Description                                                                                      |
|-------------|-----------|-----------|----------|------------|---------|--------------|-----------|-------------------------|-----------------|--------------------------------------------------------------------------------------------------|
| 19224       | 0.056     | 51.67     | 0.05     | 0.75       | 99.7    | 16           | 59        | 13/06/2010              | V3B             | Basalte verdâtre très épidotisé avec magnétite en veinules et disséminée.                        |
| 19225       | 0.095     | 65.28     | 0.04     | 0.29       | 100.15  | 5            | 81        | 14/06/2010              | 11              | Intrusion felsique verdâtre, aphanitique, à quartz et plagioclases (rhyolite?).                  |
| 19226       | 0.074     | 63.35     | 0.05     | 0.27       | 99.42   | 4            | 63        | 14/06/2010              | I1              | Intrusion felsique verdâtre, aphanitique, à quartz et plagioclases, très schisteuse (rhyolite?). |
| 19227       | 0.078     | 64.56     | 0.04     | 0.3        | 98.62   | 6            | 79        | 14/06/2010              | 11              | Intrusion felsique verdâtre, aphanitique, à quartz et plagioclases, très schisteuse (rhyolite?). |
| 19228       | 0.063     | 48.09     | 0.03     | 0.9        | 98.63   | 20           | 45        | 14/06/2010              | V3B             | Basalte verdâtre aphanitique, schisteux, veinules de carbonates.                                 |
| 19229       | 0.12      | 63.31     | 0.04     | 0.6        | 98.99   | 16           | 116       | 15/06/2010              | S1              | Sédiments grisâtres à grains fins                                                                |
| 19230       | 0.158     | 59.93     | 0.05     | 0.63       | 98.57   | 19           | 178       | 15/06/2010              | 13              | Intrusion mafique à plagioclases                                                                 |
| 19231       | 0.12      | 64.37     | 0.04     | 0.56       | 98.89   | 16           | 114       | 15/06/2010              | S1              | Sédiments bleuâtres à grains fins                                                                |
| 548         | 0.12      | 65.12     | 0.05     | 0.47       | 100.05  | 16           | 159       | 06/10/2010              | 12              | 12 avec traces de PY, FP mm dominants                                                            |
| 549         | 0.029     | 74.8      | 0.03     | 0.27       | 98.07   | 25           | 212       | 06/10/2010              | V3              | Roche volcanique aphanitique, schiste à Cl en contact avec I1D                                   |
| 550         | 0.079     | 48.58     | 0.02     | 1.08       | 98.33   | 23           | 45        | 06/11/2010              | I3A             | I3A magnétique avec Pg, traces de sulfures disséminés (affleurement douteux)                     |
| 551         | 0.046     | 46.03     | 0.02     | 0.64       | 98.46   | 16           | 25        | 06/11/2010              | 13A             | I3A à Pg-Am et traces de Py                                                                      |
| 552         | 0.065     | 47.61     | 0.02     | 0.92       | 99.35   | 21           | 44        | 06/12/2010              | V3B             | Basalte avec traces de sulfures                                                                  |
| 553         | 0.049     | 49.5      | 0.02     | 0.69       | 99.67   | 19           | 31        | 17/06/2010              | V1              | Lave felsique aphanitique à yeux de quartz                                                       |
| 19209       | 0.165     | 58.25     | 0.03     | 0.79       | 98.94   | 18           | 164       | 06/10/2010              | V3B             | Basalte aphanitique verdâtre, gloméroporphyres de feldspaths, coussiné, très schisteux.          |
| 19210       | 0.053     | 45.33     | 0.02     | 0.76       | 98.25   | 26           | 33        | 06/10/2010              | I3A             | Gabbro à grains fins, verdâtre, fine pyrite disséminée, veinules de carbonates.                  |
| 19211       | 0.051     | 46.61     | 0.02     | 0.69       | 98.93   | 17           | 30        | 06/10/2010              | I3A             | Basalte verdâtre, aphanitique, gloméroporphyres de feldspaths, 2% pyrite disséminée.             |
| 19212       | 0.037     | 72.53     | 0.03     | 0.12       | 99.24   | 5            | 70        | 06/10/2010              | I1D             | Tonalite blanchâtre, avec yeux de quartz, assez schisteuse.                                      |
| 19214       | 0.046     | 48.51     | 0.02     | 0.6        | 98.66   | 24           | 25        | 06/11/2010              | I3A .           | Gabbro à grains moyens, verdâtre, 80% amphiboles et 20% plagioclases.                            |
| 19215       | 0.126     | 65.67     | 0.05     | 0.51       | 98.39   | 8            | 171       | 06/11/2010              | I1              | Dyke felsique blanchâtre, à grains fins, quartz.                                                 |
| 19216       | 0.186     | 54.47     | 0.05     | 0.84       | 98.45   | 17           | 173       | 06/11/2010              | V3B             | Basalte à gloméroporphyre de feldspaths.                                                         |
| 19217       | 0.045     | 72.14     | 0.04     | 0.13       | 99.58   | 4            | 86        | 06/11/2010              | I1              | Dyke felsique blanchâtre à yeux de quartz et pyrite disséminée.                                  |
| 19218       | 0.129     | 64.94     | 0.04     | 0.45       | 99.49   | 15           | 160       | 06/11/2010              | 12              | Dyke intermédiaire verdâtre à yeux de quartz et pyrite disséminée.                               |
| 19219       | 0.024     | 75.27     | 0.02     | 0.1        | 100.1   | 7            | 57        | 06/11/2010              | I1D             | Tonalite blanchâtre, à yeux de quartz.                                                           |
| 19220       | 0.036     | 83.17     | 0.03     | 0.07       | 99.74   | 9.           | 32        | 06/11/2010              | 11              | Cisaillement intense dans les dykes felsiques devenant des schistes à séricite-quartz.           |
| 19221       | 0.046     | 72.97     | 0.03     | 0.15       | 98.18   | 6            | 76        | 06/11/2010              | I1              | Dyke felsique blanchâtre, à yeux de quartz, très cisaillé.                                       |
| 19222       | 0.06      | 46.93     | 0.02     | 0.79       | 99.27   | 18           | 37        | 06/12/2010              | V3B             | Basalte verdâtre, aphanitique, très schisteux, fine pyrite disséminée.                           |
| 19223       | 0.135     | 60.02     | 0.05     | 0.44       | 98.37   | 4            | 107       | 13/06/2010              | 11              | Dyke felsique vert clair, yeux de quartz et de feldspaths, aphanitique.                          |

### **ANNEXE IV**

Certificats d'analyses





pyroanalyse géochimie environnement

À l'attention de Monsieur Raymond Guérard

Client Ressources Cartier Inc.

851, 5° avenue Val-d'Or (Québec) J9P 1C1 Date de réception 10-06-30 Projet 800

Certificat 30097-1027V

| Échantillon<br># | Au<br>ppb | Au<br>g/t | Réanalyse<br>Au<br>g/t     |                |   |   |   |      |              |
|------------------|-----------|-----------|----------------------------|----------------|---|---|---|------|--------------|
|                  | AA        |           | >5000 ppb<br>Gravimétrie l | Métallic Sieve |   |   |   |      |              |
| 13540            | 9         |           | •                          |                |   |   |   |      |              |
| 13541            | 13        |           |                            |                |   |   |   |      |              |
| 13542            | 10        |           | -                          |                |   |   |   |      |              |
| 13543            | <5        |           |                            |                |   |   |   |      |              |
| 13544            | 5         |           |                            |                | • |   |   |      |              |
| 13545            | 9         |           |                            |                |   |   |   |      |              |
| 13546            | 5         |           |                            |                |   |   |   |      |              |
| 13547            | 6         |           |                            |                |   |   |   |      |              |
| 13548            | 8         |           |                            | *              |   |   |   |      |              |
| 13549            | 315       |           |                            |                |   |   |   |      |              |
| 13550            | 8         |           |                            |                |   |   |   |      |              |
| 13551            | 6         |           |                            |                |   |   |   |      |              |
| 13552            | 10        |           |                            |                |   |   |   |      |              |
| 13553            | 7         |           |                            |                |   |   |   |      |              |
| 13554            | 5         |           |                            |                |   |   | • |      |              |
| 13555            | 3973      | 4,21      |                            |                |   |   |   |      |              |
| 13556            | <5        |           |                            |                |   |   |   |      |              |
| 13557            | - 5       |           |                            | •              |   |   |   |      |              |
| 13558            | <5        |           |                            |                |   |   |   |      |              |
| 13559            | 18        |           |                            |                |   |   |   |      |              |
| 13560            | 34        |           |                            |                |   |   |   |      |              |
| 13561            | <5        |           |                            |                |   |   |   |      |              |
| 13562            | <5        |           |                            |                |   |   |   |      |              |
| 13563            | 8         | •         |                            |                |   |   |   |      |              |
| 13564            | 7         |           |                            |                |   |   |   |      |              |
| 13565            | 6         |           |                            |                |   |   |   |      |              |
| 13566            | 7         |           |                            |                |   |   |   |      |              |
| 13567            | 6         |           |                            |                |   |   |   |      |              |
| 13568            | 8         |           |                            |                |   | ÷ |   |      |              |
| 13569            | 25        |           |                            |                |   |   |   |      | . 41/0       |
| 13570            | 9         |           |                            |                |   |   |   | تزلع | CH<br>Milike |

Date: 2010-07-25

par: Sylvain Auclair, B. Sc.
Chimiste, 1980-006

Sylvain Auclain
1980-006



### **CERTIFICAT D'ANALYSE**

### TECHNI-LAB

pyroanalyse géochimie environnement

À l'attention de Monsieur Raymond Guérard

Client Ressources Cartier Inc.

851, 5° avenue Val-d'Or (Québec) J9P 1C1 Date de réception 10-06-30 Projet 800 Certificat 30097-1027V

| Échantillon | Au   | Réanalyse<br>Au | Réanalyse<br>Au |              |      |             |
|-------------|------|-----------------|-----------------|--------------|------|-------------|
| #           | ppb  | g/t             | g/t             |              |      |             |
|             |      | >1000 ppb       | >5000 ppb       |              |      |             |
|             | AA   | AA2             | Gravimétrie Mé  | tallic Sieve | <br> |             |
| 13571       | 8    |                 |                 |              |      |             |
| 13572       | 7    |                 |                 |              |      |             |
| 13573       | 6    |                 |                 |              |      |             |
| 13574       | 9    |                 |                 |              |      |             |
| 13575       | 769  |                 |                 |              |      |             |
| 13576       | 13   |                 |                 |              |      |             |
| 13577       | 9    |                 |                 |              |      |             |
| 13578       | 6    |                 |                 |              |      |             |
| 13579       | 24   |                 |                 |              |      |             |
| 13580       | 27   |                 |                 |              |      |             |
| 13581       | 6    |                 |                 |              |      |             |
| 13582       | 7    |                 |                 |              |      |             |
| 13606       | 258  |                 |                 |              |      |             |
| 13607       | 13   |                 |                 |              |      |             |
| 13608       | 8    |                 |                 |              |      |             |
| 13609       | 35   |                 |                 |              |      |             |
| 13610       | 7    |                 |                 |              |      |             |
| 13611       | 13   |                 |                 |              |      |             |
| 13612       | 8    |                 |                 |              |      |             |
| 13613       | 6    |                 |                 |              |      |             |
| 13614       | 12   |                 |                 |              |      |             |
| 13615       | 818  |                 |                 |              |      |             |
| 13616       | 3998 | 4,17            |                 |              |      |             |
| 13617       | 18   |                 |                 |              |      |             |
| 13618       | 80   |                 |                 |              |      |             |
| 13619       | 7    |                 |                 |              |      |             |
| 13620       | 10   |                 |                 |              |      |             |
| 13621       | 5252 |                 | 4,83            |              |      |             |
| 13622       | <5   |                 |                 |              |      |             |
| 13623       | 7    |                 |                 |              |      |             |
| 13624       | 25   |                 |                 |              |      | Sylvain Aut |
|             | -    | , 1             | des échantil    |              |      | Sylvain Aug |

Date: 2010-07-25

par : Sulvam Auclair, B. Sc.
Chimiste, 1980-006

Sylvain Auctain

QUEBEC





oyroanalyse géochimie environnement

À l'attention de Monsieur Raymond Guérard

Client Ressources Cartier Inc.

851, 5° avenue Val-d'Or (Québec) J9P 1C1 Date de réception 10-06-30 Projet 800 Certificat 30097-1027V

| <i>t</i>    |      | Réanalyse |               |               |         |             |
|-------------|------|-----------|---------------|---------------|---------|-------------|
| Échantillon | Au   | Au        | Au            | •             |         |             |
| #           | ppb  | g/t       | g/t           |               |         |             |
|             |      |           | >5000 ppb     | . m. a.       |         |             |
|             | AA   | AA2       | Gravimétrie M | etallic Sieve |         |             |
| 13625       | 115  |           |               |               |         |             |
| 13626       | 6    |           |               |               |         |             |
| 13627       | 1566 | 1,54      |               |               | •       |             |
| 13628       | 35   |           |               |               |         |             |
| 13629       | 101  |           |               |               |         |             |
| 13630       | <5   |           |               |               |         |             |
| 13631       | 676  |           |               |               |         |             |
| 13632       | 1139 | 1,20      |               |               |         |             |
| 13633       | 9    |           |               |               |         |             |
| 13634       | 6    |           |               |               |         |             |
| 13635       | 801  |           |               |               |         |             |
| 13636       | .20  |           |               |               |         |             |
| 13637       | 7    |           |               |               |         |             |
| 13638       | 8    |           |               |               |         |             |
| 13639       | 13   |           |               |               |         |             |
| 13640       | 9    |           |               |               |         |             |
| 13641       | 12   |           |               |               |         |             |
| 13642       | 9    |           |               |               |         |             |
| 13643       | 13   | •         |               | •             |         |             |
| 13644       | 13   |           |               |               |         |             |
| 13645       | 9    |           |               |               |         |             |
| 13646       | 22   |           |               |               |         |             |
| 13647       | 12   |           |               |               |         |             |
| 13648       | 6    |           |               |               |         |             |
| 13649       | 768  |           |               |               |         |             |
| 13650       | 7    |           |               |               |         |             |
| 13651       | 1923 | 2,10      |               |               |         |             |
| 13652       | 227  |           |               |               |         |             |
| 13653       | 12   |           |               |               |         |             |
| 13654       | 22   |           |               |               | CH!     | 7726<br>3 4 |
| 13655       | 3988 | 4,06      |               |               | Sylvain | ζ.<br>.v.   |

Date: 2010-07-25

par: \_\_\_\_\_\_\_\_\_Auslair, B. Sc.

Les résultats des échantillons ci-dessus sont certifiés

Chimiste, 1980-006







pyroanalyse geochimie environnement

À l'attention de Monsieur Raymond Guérard

Client Ressources Cartier Inc.

851, 5° avenue
Val-d'Or (Québec)
J9P 1C1

Date de réception 10-06-30 Projet 800 Certificat 30097-1027V

| OUL ILLIUM. | <br>~~~. |
|-------------|----------|
|             |          |
|             |          |
|             |          |
|             |          |
|             |          |

| <u> </u>    | _   |     | e Réanalyse   |               |   |   |   |          |                                       |
|-------------|-----|-----|---------------|---------------|---|---|---|----------|---------------------------------------|
| Échantillon | Au  | Au  | Au            |               |   |   |   |          |                                       |
| <b>.</b> #  | ppb | g/t | g/t           |               |   |   |   |          |                                       |
|             |     |     | b >5000 ppb   |               |   |   |   |          |                                       |
|             | AA  | AA2 | Gravimétrie l | Métallic Siev | e |   |   |          | · · · · · · · · · · · · · · · · · · · |
| 13656       | 21  |     |               | •             |   |   |   |          |                                       |
| 13657       | 28  |     |               |               |   |   |   |          |                                       |
| 13658       | 28  |     |               |               |   |   |   |          |                                       |
| 13659       | 477 |     |               |               |   |   |   | ,        |                                       |
| 13660       | 427 |     |               |               |   |   |   |          |                                       |
| 13661       | 245 |     |               |               |   |   |   |          |                                       |
| 13662       | 492 |     |               |               |   |   |   |          |                                       |
| 13663       | 133 |     |               |               |   |   |   |          |                                       |
| 13664       | 387 |     |               |               |   |   |   |          |                                       |
| 13665       | 613 |     |               |               |   |   |   |          |                                       |
| 13666       | 15  |     |               |               |   |   |   |          |                                       |
| 13667       | 18  |     |               |               |   |   |   |          |                                       |
| 13668       | 22  |     |               |               |   |   |   |          |                                       |
| 13669       | 11  |     |               |               |   |   |   |          |                                       |
| 13670       | · 7 |     |               |               |   |   |   |          |                                       |
| 13671       | <5  |     |               |               |   |   |   |          |                                       |
| 13672       | 7   |     |               |               |   |   |   |          |                                       |
| 13673       | 16  |     |               |               |   |   |   |          |                                       |
| 13674       | 10  |     |               |               |   |   |   |          |                                       |
| 13675       | 843 |     |               |               |   |   |   |          |                                       |
| 13676       | 14  |     |               |               |   |   |   |          |                                       |
| 13677       | 52  |     |               |               |   |   |   |          |                                       |
| 13678       | 8   |     |               |               |   |   |   |          |                                       |
| 13679       | 30  |     |               |               |   |   |   |          |                                       |
| 13680       | <5  |     |               | •             |   |   |   |          |                                       |
| 13681       | 9   |     |               |               |   |   |   |          |                                       |
| 13682       | 20  |     |               |               |   |   | • |          |                                       |
| 13683       | 78  |     |               |               |   |   |   |          |                                       |
| 13684       | 37  |     |               |               |   |   |   |          |                                       |
| 13685       | <5  |     |               |               |   | • |   |          |                                       |
| 13686       | 9   |     |               |               |   |   |   | فللغلائم | gssssss<br>c Hilbs                    |

Les résultats des échantillons ci-dessus sont certifiés

Date: 2010-07-25

par: Sylvain Auclair, B. Sc.
Chimiste, 1980-006

CHIMICS Sylvain Auclain



À l'attention de Monsieur Raymond Guérard

Date: 2010-07-25

Client Ressources Cartier Inc.

851, 5° avenue Val-d'Or (Québec) J9P 1C1

Date de réception 10-06-30 Projet 800 Certificat 30097-1027V

|              |      | Réanalyse |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                       |
|--------------|------|-----------|-------------|----------------|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Échantillon  | Au   | Au        | Au          |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| #            | ppb  | g/t       | g/t         |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|              |      | >1000 ppb |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|              | AA   | AA2       | 3ravimétrie | Métallic Sieve |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13687        | 39   |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • • • • • • • • • • • • • • • • • • • |
| 13688        | 27   |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13689        | 16   |           |             |                |   |   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| 13690        | 7    |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13691        | 18   |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13692        | 6    |           |             |                | • |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13693        | 8    |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13694        | <5   |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13695        | 4099 | 3,88      |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13696        | 7    |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13697        | 5    |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13698        | 7    |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13699        | <5   |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13700        | 5    | 4         |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13701        | <5   |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13801        | 13   |           |             |                | • |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13802        | 10   |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13803        | <5   |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13804        | 4821 | 5,23      |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13546-Double | 6    |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13568-Double | 8    |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13612-Double | 10   |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13624-Double | 27   |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13633-Double | 7    |           |             |                |   | • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13650-Double | 8    |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13667-Double | 26   |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13688-Double | 27   |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13697-Double | <5   |           |             |                |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 13700-Double | <5   |           |             |                |   |   | d Trite Hill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SHOW SHOW                               |
| 13804-Double |      | 5,09      |             |                |   |   | THE THE PARTY OF T |                                         |

**CERTIFICAT D'ANALYSE** 

Sylvain Auclair, B. Sc.

Chimiste, 1980-006



### **CERTIFICAT D'ANALYSE**

TECHNI-LAB

pyroanalyse géochimie environnement

À l'attention de Monsieur Raymond Guérard

Client Ressources Cartier Inc. 851, 5° avenue Val-d'Or (Québec)

J9P 1C1

Date de réception 10-06-30 Projet 800 Certificat 30097-1027V

|               |      | Réanalyse | Réanalyse     |                |   |   |   |  |
|---------------|------|-----------|---------------|----------------|---|---|---|--|
| Échantillon   | Au   | Au        | Au            |                |   |   |   |  |
| #             | ppb  | g/t       | g/t           |                |   |   |   |  |
|               |      | >1000 ppb | >5000 ppb     |                |   |   |   |  |
|               | AA   | AA2       | Gravimétrie M | Iétallic Sieve |   |   |   |  |
| std CDN-GS-60 |      |           | 57,22         |                |   |   |   |  |
| std OXE-74    | 636  |           |               |                |   |   |   |  |
| std OXE-74    | 589  |           |               |                |   |   |   |  |
| std OXE-74    |      | 0,63      |               | •              |   |   |   |  |
| std OXF-65    | 835  |           | •             |                |   |   |   |  |
| std OXF-65    | 826  |           |               |                |   |   |   |  |
| std OXK-69    |      |           | 3,64          |                |   |   |   |  |
| std OXN-77    | 7844 |           |               |                |   |   |   |  |
| std OXN-77    | 7943 |           |               |                |   |   | • |  |
| std OXN-77    | 8042 |           |               |                |   |   |   |  |
| std OXN-77    | 8060 |           |               |                | • |   |   |  |
| std OXN-77    | 7752 |           |               |                |   |   |   |  |
| std OXN-77    | 7795 |           |               |                |   |   |   |  |
| std OXN-77    | 7736 |           |               |                |   |   |   |  |
| std OXN-77    |      | 7,86      |               |                |   | - |   |  |
| std SE-44     | 632  |           |               |                |   |   |   |  |
| std SE-44     | 624  |           |               |                |   |   |   |  |
| std SE-44     | 626  |           |               |                |   |   |   |  |
| std SE-44     | 592  |           |               |                |   |   |   |  |
| std SE-44     | 626  |           |               |                |   |   |   |  |
| std se-44     |      | 0,62      |               |                |   |   |   |  |
| std SI-42     |      | 1,78      |               |                |   | * |   |  |
| std SN-50     | 8957 |           |               |                |   |   |   |  |
| std SN-50     | 8810 |           |               |                |   |   |   |  |
| std SN-50     |      | 8,75      |               |                |   |   | • |  |
| std SP-37     |      | 18,18     |               |                |   |   |   |  |
| std SP-37     |      |           | 18,32         |                |   |   |   |  |

Les résultats des échantillons ci-dessus sont certifiés

Date: 2010-07-25

par: Sylvain Auglan Sylvain Auglair, B. Sc.

Chimiste, 1980-006

Sylvain Auclain
1980-006

OUEBEC





environnement

À l'attention de Monsieur Raymond Guérard

Date de réception 10-06-30 Projet 800

Client Ressources Cartier Inc.

851, 5<sup>e</sup> avenue Val-d'Or (Québec) J9P 1C1

Certificat 30097-1027V

|             |     | Réanalyse | Réanalyse                  |
|-------------|-----|-----------|----------------------------|
| Échantillon | Au  | Au        | Au                         |
| #           | ppb | g/t       | g/t                        |
|             |     | >1000 ppb | >5000 ppb                  |
| •           | AA  | AA2       | Gravimétrie Métallic Sieve |

Note: Ces résultats ne se rapportent qu'aux échantillons soumis pour l'analyse.

Les résultats des échantillons ci-dessus sont certifiés

Date: 2010-07-25

Sylvain Auclair, B. Sc.

Chimiste, 1980-006





### **ALS Chemex**

EXCELLENCE EN ANALYSE CHIMIQUE

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7

Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alschemex.com

### A: RESSOURCES CARTIER 851, 5E AVENUE, BUREAU 215 VAL-D OR QC J9P 1C1

Page: 1 Finalisée date: 25-JUIL-2010

Compte: CARTRES

### CERTIFICAT VO10087256

Projet: 800

Bon de commande #:

Ce rapport s'applique aux 29 échantillons de pulpe soumis à notre laboratoire de Val d'Or, QC, Canada le 29-JUIN-2010.

Les résultats sont transmis à:

PHILIPPE BERTHELOT

RITA DUMARESQ

RAYMOND GUÉRARD

| PRÉPARATION ÉCHANTILLONS |                                     |  |  |  |  |  |  |  |  |
|--------------------------|-------------------------------------|--|--|--|--|--|--|--|--|
| CODE ALS                 | DESCRIPTION                         |  |  |  |  |  |  |  |  |
| WEI-21                   | Poids échantillon reçu              |  |  |  |  |  |  |  |  |
| LOG-QC                   | Test QC sur échantillons pulpe      |  |  |  |  |  |  |  |  |
| LOG-24                   | Entrée pulpe - Reçu sans code barre |  |  |  |  |  |  |  |  |

|          | PROCÉDURES ANALYTIQUE               | ES         |
|----------|-------------------------------------|------------|
| CODE ALS | DESCRIPTION                         | INSTRUMENT |
| ME-XRF06 | Roche totale - XRF                  | XRF        |
| OA-GRA06 | Perte par calcination pour ME-XRF06 | WST-SIM    |
| ME-XRF05 | Analyse XRF de degré trace          | XRF        |

A: RESSOURCES CARTIER ATTN: RITA DUMARESQ 851, 5E AVENUE, BUREAU 215 VAL-D OR QC J9P 1C1

Ce rapport est final et remplace tout autre rapport préliminaire portant ce numéro de certificat. Les résultats s'appliquent aux échantillons soumis. Toutes les pages de ce rapport ont été vérifiées et approuvées avant publication.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager



### **ALS Chemex**

**EXCELLENCE EN ANALYSE CHIMIQUE** 

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alschemex.com

À RESSOURCES CARTIER 851, 5E AVENUE, BUREAU 215 VAL-D OR QC J9P 1C1 Page: 2 - A Nombre total de pages: 2 (A - B) Finalisée date: 25-JUIL-2010

Compte: CARTRES

Projet: 800

|                                           |         |                                           |                                  |                                  |                               |                               |                              |                              |                              | CERT                         | TIFICAT D'ANALYSE VO10087256 |                              |                                  |                              |                                |                              |
|-------------------------------------------|---------|-------------------------------------------|----------------------------------|----------------------------------|-------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------------------|------------------------------|--------------------------------|------------------------------|
| Description échantillon                   | Méthode | WEI-21                                    | ME-XRF06                         | ME-XRF06                         | ME-XRF06                      | ME-XRF06                      | ME-XRF06                     | ME-XRF06                     | ME-XRF06                     | ME-XRF06                     | ME-XRF06                     | ME-XRF06                     | ME-XRF06                         | ME-XRF06                     | ME-XRF06                       | ME-XRF06                     |
|                                           | élément | Poids reçu                                | SiO2                             | Al2O3                            | Fe2O3                         | CaO                           | MgO                          | Na2O                         | K2O                          | Cr2O3                        | TiO2                         | MnO                          | P2O5                             | SrO                          | BaO                            | LOI                          |
|                                           | unités  | kg                                        | %                                | %                                | %                             | %                             | %                            | %                            | %                            | %                            | %                            | %                            | %                                | %                            | %                              | %                            |
|                                           | L.D.    | 0.02                                      | 0.01                             | 0.01                             | 0.01                          | 0.01                          | 0.01                         | 0.01                         | 0.01                         | 0.01                         | 0.01                         | 0.01                         | 0.001                            | 0.01                         | 0.01                           | 0.01                         |
| 548                                       |         | 0.30                                      | 65.12                            | 16.30                            | 4.59                          | 3.41                          | 1.76                         | 5.08                         | 1.39                         | 0.02                         | 0.47                         | 0.07                         | 0.120                            | 0.05                         | 0.03                           | 1.62                         |
| 549                                       |         | 0.27                                      | 74.80                            | 13.37                            | 1.88                          | 0.17                          | 0.27                         | 3.91                         | 1.85                         | 0.01                         | 0.27                         | 0.02                         | 0.029                            | 0.03                         | 0.05                           | 1.42                         |
| 550                                       |         | 0.29                                      | 48.58                            | 13.16                            | 13.78                         | 8.34                          | 6.91                         | 2.62                         | 0.20                         | 0.02                         | 1.08                         | 0.18                         | 0.079                            | 0.02                         | <0.01                          | 3.36                         |
| 551                                       |         | 0.31                                      | 46.03                            | 15.78                            | 11.05                         | 12.37                         | 7.00                         | 2.05                         | 0.38                         | 0.05                         | 0.64                         | 0.18                         | 0.046                            | 0.02                         | 0.01                           | 2.85                         |
| 552                                       |         | 0.27                                      | 47.61                            | 14.84                            | 12.92                         | 10.76                         | 7.54                         | 1.76                         | 0.06                         | 0.04                         | 0.92                         | 0.20                         | 0.065                            | 0.02                         | <0.01                          | 2.62                         |
| 553                                       |         | 0.30                                      | 49.50                            | 13.39                            | 11.29                         | 9.09                          | 5.54                         | 2.41                         | 0.43                         | 0.02                         | 0.69                         | 0.23                         | 0.049                            | 0.02                         | 0.03                           | 6.98                         |
| 19209                                     |         | 0.27                                      | 58.25                            | 17.15                            | 7.13                          | 4.12                          | 2.57                         | 5.26                         | 0.41                         | 0.02                         | 0.79                         | 0.12                         | 0.165                            | 0.03                         | 0.01                           | 2.92                         |
| 19210                                     |         | 0.25                                      | 45.33                            | 15.21                            | 13.26                         | 9.18                          | 8.61                         | 1.66                         | 0.66                         | 0.04                         | 0.76                         | 0.20                         | 0.053                            | 0.02                         | <0.01                          | 3.26                         |
| 19211                                     |         | 0.29                                      | 46.61                            | 15.83                            | 11.68                         | 11.79                         | 7.70                         | 1.22                         | 0.08                         | 0.05                         | 0.69                         | 0.19                         | 0.051                            | 0.02                         | <0.01                          | 3.03                         |
| 19212                                     |         | 0.26                                      | 72.53                            | 15.79                            | 1.03                          | 0.56                          | 0.36                         | 6.50                         | 1.15                         | 0.02                         | 0.12                         | 0.02                         | 0.037                            | 0.03                         | 0.03                           | 1.07                         |
| 19213<br>19214<br>19215<br>19216<br>19217 |         | Not Recvd<br>0.27<br>0.27<br>0.28<br>0.31 | 48.51<br>65.67<br>54.47<br>72.14 | 14.28<br>15.45<br>15.66<br>15.77 | 10.66<br>4.30<br>8.45<br>1.33 | 11.45<br>3.35<br>6.86<br>0.99 | 8.09<br>1.61<br>4.38<br>0.38 | 1.96<br>5.50<br>2.99<br>7.24 | 0.53<br>0.16<br>0.22<br>0.72 | 0.03<br>0.02<br>0.02<br>0.02 | 0.60<br>0.51<br>0.84<br>0.13 | 0.19<br>0.06<br>0.12<br>0.03 | 0.046<br>0.126<br>0.186<br>0.045 | 0.02<br>0.05<br>0.05<br>0.04 | <0.01<br><0.01<br>0.01<br>0.02 | 2.31<br>1.58<br>4.20<br>0.72 |
| 19218                                     |         | 0.28                                      | 64.94                            | 15.43                            | 4.56                          | 3.20                          | 1.63                         | 4.24                         | 1.55                         | 0.02                         | 0.45                         | 0.07                         | 0.129                            | 0.04                         | 0.04                           | 3.19                         |
| 19219                                     |         | 0.28                                      | 75.27                            | 14.59                            | 1.12                          | 0.25                          | 0.21                         | 6.52                         | 1.20                         | 0.04                         | 0.10                         | 0.01                         | 0.024                            | 0.02                         | 0.03                           | 0.70                         |
| 19220                                     |         | 0.25                                      | 83.17                            | 10.06                            | 0.95                          | 0.11                          | 0.15                         | 2.84                         | 1.36                         | 0.02                         | 0.07                         | 0.03                         | 0.036                            | 0.03                         | 0.03                           | 0.89                         |
| 19221                                     |         | 0:27                                      | 72.97                            | 15.19                            | 1.13                          | 0.36                          | 0.44                         | 5.06                         | 1.53                         | 0.02                         | 0.15                         | 0.01                         | 0.046                            | 0.03                         | 0.03                           | 1.21                         |
| 19222                                     |         | 0.30                                      | 46.93                            | 14.82                            | 12.41                         | 10.66                         | 7.62                         | 1.77                         | 0.19                         | 0.03                         | 0.79                         | 0.20                         | 0.060                            | 0.02                         | 0.03                           | 3.75                         |
| 19223                                     |         | 0.31                                      | 60.02                            | 19.50                            | 4.23                          | 3.96                          | 1.65                         | 4.17                         | 0.90                         | 0.02                         | 0.44                         | 0.06                         | 0.135                            | 0.05                         | 0.04                           | 3.20                         |
| 19224                                     |         | 0.29                                      | 51.67                            | 13.24                            | 11.62                         | 10.58                         | 7.14                         | 0.64                         | 0.01                         | 0.04                         | 0.75                         | 0.19                         | 0.056                            | 0.05                         | <0.01                          | 3.72                         |
| 19225                                     |         | 0.36                                      | 65.28                            | 17.63                            | 3.99                          | 3.38                          | 1.54                         | 4.17                         | 0.66                         | 0.02                         | 0.29                         | 0.10                         | 0.095                            | 0.04                         | 0.02                           | 2.95                         |
| 19226                                     |         | 0.30                                      | 63.35                            | 19.06                            | 3.32                          | 3.99                          | 1.18                         | 4.44                         | 0.64                         | 0.02                         | 0.27                         | 0.04                         | 0.074                            | 0.05                         | 0.02                           | 2.98                         |
| 19227                                     |         | 0.30                                      | 64.58                            | 18.10                            | 2.89                          | 4.01                          | 1.34                         | 3.82                         | 1.00                         | 0.02                         | 0.30                         | 0.04                         | 0.078                            | 0.04                         | 0.03                           | 2.39                         |
| 19228                                     |         | 0.27                                      | 48.09                            | 15.37                            | 11.04                         | 14.34                         | 3.51                         | 1.80                         | 0.05                         | 0.04                         | 0.90                         | 0,29                         | 0.063                            | 0.03                         | <0.01                          | 3.11                         |
| 19229                                     |         | 0.29                                      | 63.31                            | 16.62                            | 5.26                          | 1.10                          | 2.84                         | 4.56                         | 1.77                         | 0.03                         | 0.60                         | 0.08                         | 0.120                            | 0.04                         | 0.05                           | 2.61                         |
| 19230                                     |         | 0.27                                      | 59.93                            | 15.49                            | 6.15                          | 5.29                          | 2.87                         | 3.68                         | 1.13                         | 0.02                         | 0.63                         | 0.09                         | 0.158                            | 0.05                         | 0.04                           | 3.05                         |
| 19231                                     |         | 0.31                                      | 64.37                            | 15.87                            | 5.27                          | 2.21                          | 2.54                         | 3.70                         | 1.58                         | 0.02                         | 0.56                         | 0.08                         | 0.120                            | 0.04                         | 0.05                           | 2.48                         |



### **ALS Chemex**

EXCELLENCE EN ANALYSE CHIMIQUE

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Téléphone: 604 984 0221 Télécopieur: 604 984 0218 www.alschemex.com

À: RESSOURCES CARTIER 851, 5E AVENUE, BUREAU 215 VAL-D OR QC J9P 1C1 Page: 2 - B Nombre total de pages: 2 (A - B)

Finalisée date: 25-JUIL-2010 Compte: CARTRES

Projet: 800

|                         |         |           |          |          |          |   |          |   |       |      |                                        | <br>            |
|-------------------------|---------|-----------|----------|----------|----------|---|----------|---|-------|------|----------------------------------------|-----------------|
|                         |         | ME 1/2500 | NE VOCOS | ME VEC   | ME ADEOE |   |          |   |       |      |                                        |                 |
|                         | Méthode | ME-XRF06  | ME-XRF05 | ME-XRF05 | ME-XRF05 |   |          |   |       |      |                                        |                 |
|                         | élément | Total     | Nb       | Υ        | Zr       |   |          |   |       |      |                                        |                 |
| Description échantillon | unités  | %         | ppm      | ppm      | ppm      |   |          |   |       |      |                                        |                 |
| Description ecuantinion | L.D.    | 0.01      | 2        | 2        | 2        |   |          |   |       | <br> |                                        | <br>            |
| 548                     |         | 100.05    | 5        | 16       | 159      |   |          |   |       |      |                                        |                 |
| 549                     |         | 98.07     | 8        | 25       | 212      |   |          |   |       |      |                                        |                 |
| 550                     |         | 98.33     | 2        | 23       | 45       |   |          |   |       |      |                                        |                 |
| 551                     |         | 98.46     | <2       | 16       | 25 ·     |   |          |   |       |      |                                        |                 |
| 552                     |         | 99.35     | 2        | 21       | 44       |   |          |   | •     |      |                                        |                 |
| 553                     |         | 99.67     | <2       | 19       | 31       |   |          |   |       |      |                                        | <br><del></del> |
| 19209                   |         | 98,94     | 6        | 18       | 164      | • |          |   |       |      |                                        |                 |
| 19210                   |         | 98,25     | 2        | 26       | 33       |   |          |   |       |      |                                        |                 |
| 19211                   |         | 98.93     | 2        | 17       | 30       |   |          |   |       |      |                                        |                 |
| 19212                   |         | 99.24     | <2       | 5        | 70       |   |          |   |       |      |                                        |                 |
| 19213                   |         |           |          |          |          |   |          |   | . ,,, | <br> | ······································ | <br>            |
| 19214                   |         | 98.66     | <2       | 24       | 25       |   |          |   |       |      |                                        |                 |
| 19215                   |         | 98.39     | 5        | 8        | 171      |   |          |   |       |      |                                        |                 |
| 19216                   |         | 98.45     | . 7      | 17       | 173      |   |          |   |       |      |                                        |                 |
| 19217                   |         | 99.58     | <2       | 4        | 86       |   |          |   |       |      |                                        |                 |
| 19218                   |         | 99.49     | 5        | 15       | 160      |   |          |   |       | <br> |                                        | <br>            |
| 19219                   |         | 100.10    | <2       | 7        | 57       |   |          |   |       |      |                                        |                 |
| 19220                   |         | 99.74     | <2       | 9        | 32       |   |          |   |       |      |                                        |                 |
| 19221                   |         | 98.18     | <2       | 6        | 76       |   |          |   |       |      |                                        |                 |
| 19222                   |         | 99.27     | 2        | 18       | 37       |   |          |   |       |      |                                        |                 |
|                         |         | 98.37     | 3        | 4        | 107      |   | <u> </u> |   |       | <br> |                                        |                 |
| 19223                   |         | 99.70     | 2        | 16       | 59       |   |          |   |       |      |                                        |                 |
| 19224                   |         | 100.15    | 2        | 5        | 81       |   |          |   |       |      |                                        |                 |
| 19225                   |         | 99.42     | 2        | 4        | 63       |   |          |   |       |      |                                        |                 |
| 19226<br>19227          |         | 98.62     | 2        | 6        | 79       |   |          |   |       |      |                                        |                 |
|                         |         | <u> </u>  |          |          |          |   |          |   |       | <br> |                                        | ····            |
| 19228                   |         | 98.63     | 2        | 20       | 45       |   |          |   |       |      |                                        |                 |
| 19229                   |         | 98.99     | 4        | 16       | 116      |   |          |   |       |      |                                        |                 |
| 19230                   |         | 98.57     | 6        | 19       | 178      |   |          |   |       |      |                                        |                 |
| 19231                   |         | 98.89     | 3        | 16       | 114      |   |          |   |       |      |                                        |                 |
|                         |         |           |          |          |          |   |          |   |       |      |                                        |                 |
|                         |         |           |          |          |          |   |          |   |       |      |                                        |                 |
|                         |         |           |          |          |          |   |          |   |       |      |                                        |                 |
|                         |         |           |          |          |          |   |          | • |       |      |                                        |                 |
|                         |         |           | •        |          |          |   |          |   |       |      |                                        |                 |
|                         |         | 1         |          |          |          |   |          |   |       |      |                                        |                 |
|                         |         | ł         |          |          |          |   |          |   |       |      |                                        |                 |
|                         |         |           |          |          |          |   |          |   |       |      |                                        |                 |
|                         |         | 1         |          |          |          |   |          |   |       |      |                                        |                 |
|                         |         | ł         |          |          |          |   |          |   |       |      |                                        |                 |
|                         |         | l         |          |          |          |   |          |   |       | <br> |                                        | <br>            |

## **ANNEXE V** (en pochette) Liste des cartes

- Prospection juin 2010 (1 : 20 000)
- 1. 2. Forages antérieurs recompilés par Ressources Cartier (1 : 20 000)

# Numérique

PAGE DE DIMENSION HORS STANDARD

NUMÉRISÉE ET POSITIONNÉE À LA

SUITE DES PRÉSENTES PAGES STANDARDS

## ANNEXE VI Sections de forages