GM 63455

2007 EXPLORATION PROGRAM REPORT, GRIZZLY PROPERTY

Documents complémentaires

Additional Files

QUEENSTON MINING INC.

GRIZZLY PROPERTY 2007 EXPLORATION PROGRAM REPORT

(LAMARK TOWNSHIP, QUEBEC)

(NTS 32G-14)

GM 63455

Michel Leblanc (P. Geo)

RESSOURCES NATURELLES - SECTEUR MINES

1 4 FEV. 2008

BUREAU REGIONAL ROUYN-NORANDA January, 2008

Ressources naturelles et Faune, Québec

2 5 MARS 2008

Service de la Géoinformation

V36169

TABLE OF CONTENT

Executive summary
Accessibility2 Climate, local resources, infrastuctures and physiography2
Climate, local resources, infrastuctures and physiography2
,
Historical works3
a) Keller prospect3
b) Others regional work4
Queenston 2006 stripping program5
Regional geology
Economic geology7
2007 Prospecting Program7
2007 stripping program8
a) Queenimich stripping
b) Gladstone trench10
2007 Drilling program12
a) GRZ-07-0112
b) GRZ-07-0212
c) GRZ-07-0313
d) GRZ-07-0414
e) GRZ-07-0514
Conclusions
Recommendations16
References1
Statement of qualification18

List of Figures

Figure 1: Location Map Figure 2: Claim map

Figure 3: Regional geology
Figure 3: South trench geology

Figure 4: 2006-2007 work compilation

Figure 5: Queenimich trench Figure 6: Gladstone trench Figure 7: DDH GRZ-07-01

Figure 8: DDH GRZ-07-02, GRZ-07-03

Figure 9: DDH GRZ-07-04 Figure 10: DDH GRZ-07-05

List of tables

Table 1: Queenimich grab samples Table 2: Gladstone best gold values

List of photos

Photo 1: Queenimich showing

Photo 2: Gladstone quartz-tourmaline vein

Appendicies

Appendix 1: Queenimich channel sample list Appendix 2: Gladstone channel sample list

Appendix 3: 2007 Prospection-sample description

Appendix 4: Grizzly claim list Appendix 5: Analysis certificates

Appendix 6: 2007 DDH log Description

EXECUTIVE SUMMARY

Between May and September 2007, an exploration program was performed on the Marc Bouchard-Gilbert Lamothe and Queenston Mining owned Grizzly property consisting of 2 weeks of prospecting, 1 week of stripping and 10 days of drilling (5 holes). Results of this exploration program are presented in this report..

Prospecting was conducted inside the Grizzly grid as well as 2.6 km west (Gladstone area), both area included within the limits of Lamark Township (NTS 32G14). Work was mainly concentrated in the vicinity of E-W flowing Daladier creek where carbonatized and mineralized (Py-AsPy) outcrops with anomalous gold values were discovered by prospector Marc Bouchard during a reconnaissance prospecting exercise along a new logging road in June of 2006.

The main purpose of this exploration program was to gain a better understanding of the local geological controls of the mineralization, and hopefully, expose a significant new gold discovery. The second goal of the program was to explain the I.P anomalies detected inside the Grizzly grid.

PROPERTY AND LOCATION

The Grizzly Property is held under an option agreement between Queenston Mining Inc. (QMI) and a group of 2 prospectors (Mrs Marc Bouchard and Gilbert Lamothe respectively from Chapais and Arntfield in Québec).

The Property is located approximately 60 kilometers West of the town of Chapais, Québec and lies completely within the townships of Lamark and Guettard (See Fig.1) The Grizzly claim group consists of 86 claim units in three blocs (Main, Keller and Kill blocs) amounting to approximately 4208 hectares (see claim list in appendix 1) covering about 7 km of N-S stratigraphy and 12 km of E-W strike length (see Fig. 2), bordered by the Chibougamau River on the South and the Lac La Trève to the West. The appendix 4 exposed a complete claim list of Grizzly property.

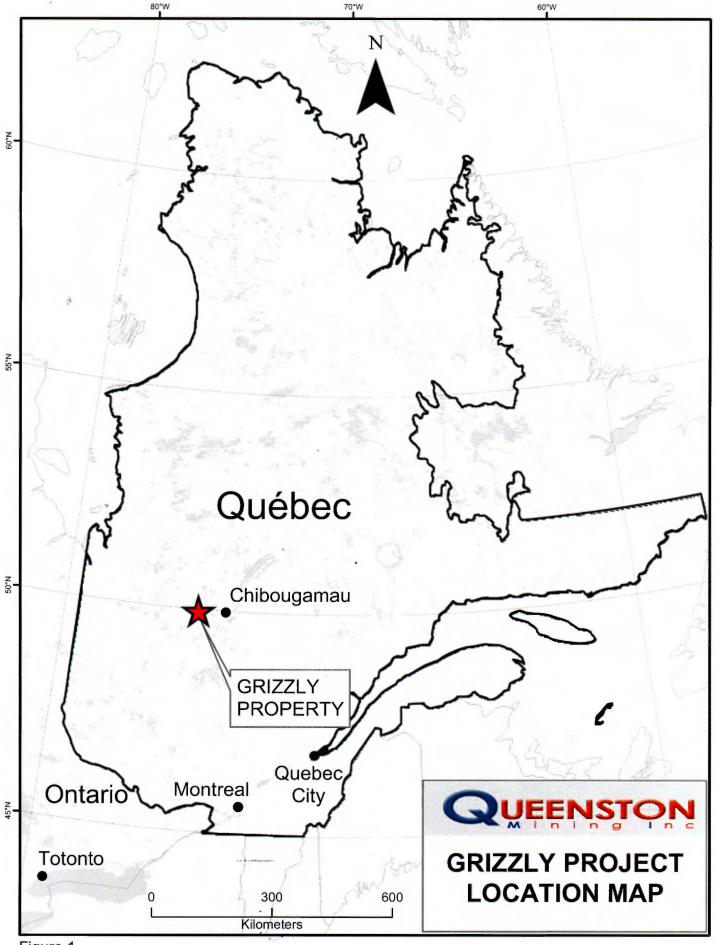
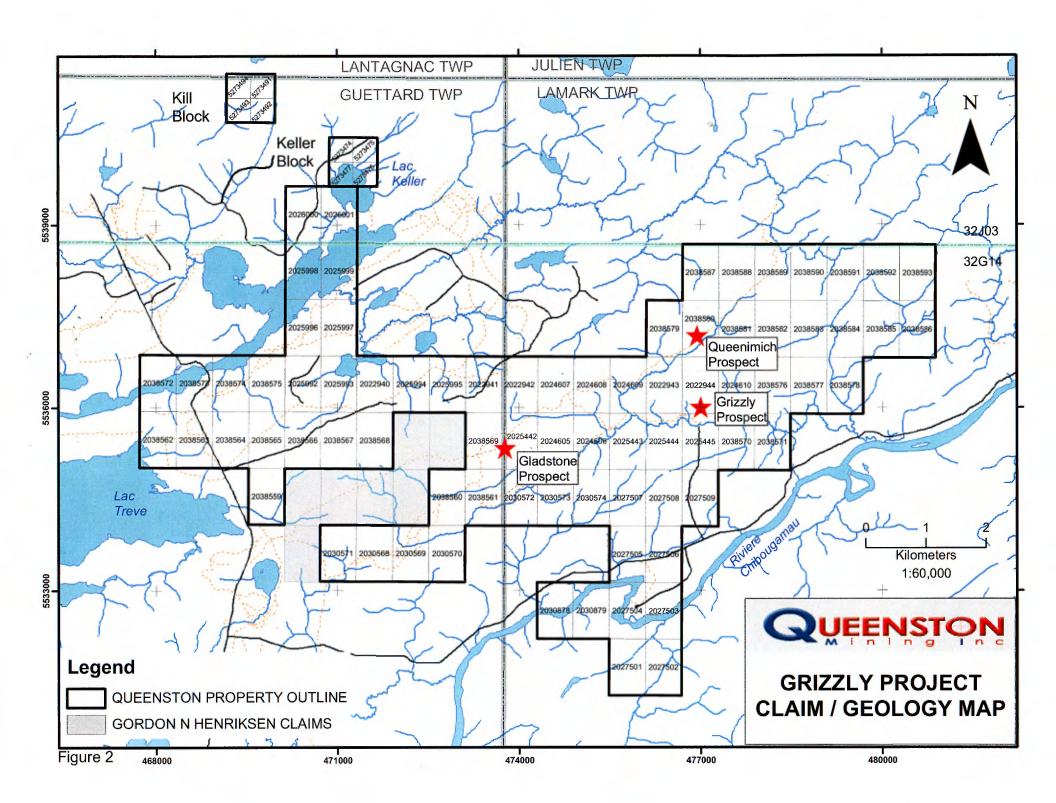



Figure 1

ACCESSIBILITY

Access to the Grizzly Property is accomplished by traveling west from Chapais along Highway 113 for 50 km then north for 20 km along the Poste Abitibi power line road. A 77 km EW logging road (La Bretelle) linking the NS oriented Poste Abitibi road with the NS Barette Nord logging road to the East, allows access to through the Grizzly property while networks of recent secondary logging roads provide new access throughout the property.

CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The terrain in and around the property comprises numerous small hills and low swampy areas with less than 25 meters of overall relief. Outcrop exposure is generally moderate to excellent with areas of good exposure in both Lamark and Guetard Township. Vegetation on the Grizzly claims is mostly composed of mature spruce and jack pine, growing in moderate to well drained areas. Deciduous poplars with pine trees are often characteristic of the well drained south-oriented terrain. A large portion of the area was logged over the past 5 years by 'Barrette Chapais', a local lumber company from Chapais.

There are no known environmental liabilities, man-made or natural features that would encumber any future exploration work on the property. There are however, two native communities (Waswanipi and Oujebougamau) within a 50 km radius.

The Chapais-Chibougamau area offers well-trained exploration and mining personnel. The Lac Short and the Bachelor gold Mines to the SW are two past operational mines located in the vicinity of the Grizzly property.

Climate conditions are typical of northwestern Québec, with temperatures ranging from -40 degrees Celsius in the winter to +35 degrees in the summer. Abundant rain and snowfall are usually observed throughout the year.

HISTORICAL WORKS

a) Keller prospect

The Keller prospect (Figure 2) is a block of 4 conventional claim units(16 Ha) located immediately North of the main Grizzly block, and is completely comprised inside the Guêtard township. This prospect was the object of most of the historical exploration effort in the area.

Between the mid-thirties and the late fifties, The Keller lake prospect was worked by six (6) different exploration companies: Prospectors Airways Limited, Central Chibougamau Mines Limited, Brunswick Quebec Development Limited, Diomar Mining Exploration Syndicate, Fortunata Mines Limited and Power Gold Mines Incorporated, did most of the historical works concerning the Keller prospect.

There is not a complete record of all works done by these different companies. Among the most significant works reported in Kellar Lake area, there are prospecting, sampling, trenching and limited geological mapping. An I.P survey was done by Power Gold Mines in 1976. Two diamond drill holes were drilled by Diomar Mining in 1956. Fortunata Mines Limited drilled few holes in Kellar Lake area but the results were never filed to the Québec Department of Natural Resources. There is no record of exploration work having been done on Kellar prospect from 1958 to 1975.

The last work reported on the Keller prospect was completed by a joint venture comprised of Meston Resources and La Société de Development de la Baie-James (SDBJ) in 1981 (GM 37805). This work consisted of a 14 hole diamond drill program designed to test a 1 km long N-E oriented I.P. anomaly related to the Kellar structure.

b) Other regional work

Eleven (11) diamond drill holes (1 to 11) were drilled in 1956 by Barry Explorations LTD along the Dussault fault, about 5 kilometers east of the Grizzly prospect. (GM 05274).

Six (6) diamond drill holes (1 to 6) were also drilled in 1956 by Tomiska Copper Mines LTD, about 2 km north of the Grizzly prospect. Tomiska tested the Cu-Ni potential of a regional NE diabase dyke present in the area. (GM 07521-A and B)

Opémiska Copper Mines LTD, in the late sixties and early seventies, did a regional drilling program of 24 holes (W-1 to W-22 + 70-L-1 and 70-L-2). These holes were mostly designed to test regional EM anomalies located 3 to 6 kms east of the Grizzly showing (GM 26458).

Some exploration work including 9 DDH and an Electro-Magnetic (EM) survey were done by Patino Mines (Quebec) LTD in 1976 (GM 33038). Two (2) of these holes (L-2-1 and L-2-2) were drilled in an area located between 500 and 1000 meters west of the Grizzly showing. These holes were designed to test EM (Input) anomalies for base metal exploration purposes.

In 1988, Exploration Noranda LTÉE did a diamond drill program consisting of 14 holes (LP-88-04 to 17) essentially testing the Blondeau formation, in an area 2 km south of Keller lake (GM 49083).

Other work in the area was done by Minnova Inc. in 1986-87 (Propriété Rivière Chibougamau (GM 48372)) covering an area north of the Chibougamau River called the "Zee" zone, referring to the point at which the river forms a characteristic "Z" shaped meander. These works (including 4 DDH) were concentrated in Chibougamau River

vicinity and along structures related to the proximal Dussault fault were carbonatized shear zones anomalous in Au-As were reported

A geological synthesis including mapping, compilation and new geological interpretation were elaborated by the ''Ministère de l'Énergie et des Resources (M.E.R.)'' using a 2000 km² cartography program conducted between 1980 and 1982. Townships of Lamark, Guêtard and Julien were part of that new geological interpretation (MM 88-01).

.Recent logging activities in areas have exposed the bedrock in many places, offering new opportunities of prospecting not available to previous prospectors

QUEENSTON 2006 STRIPPING PROGRAM

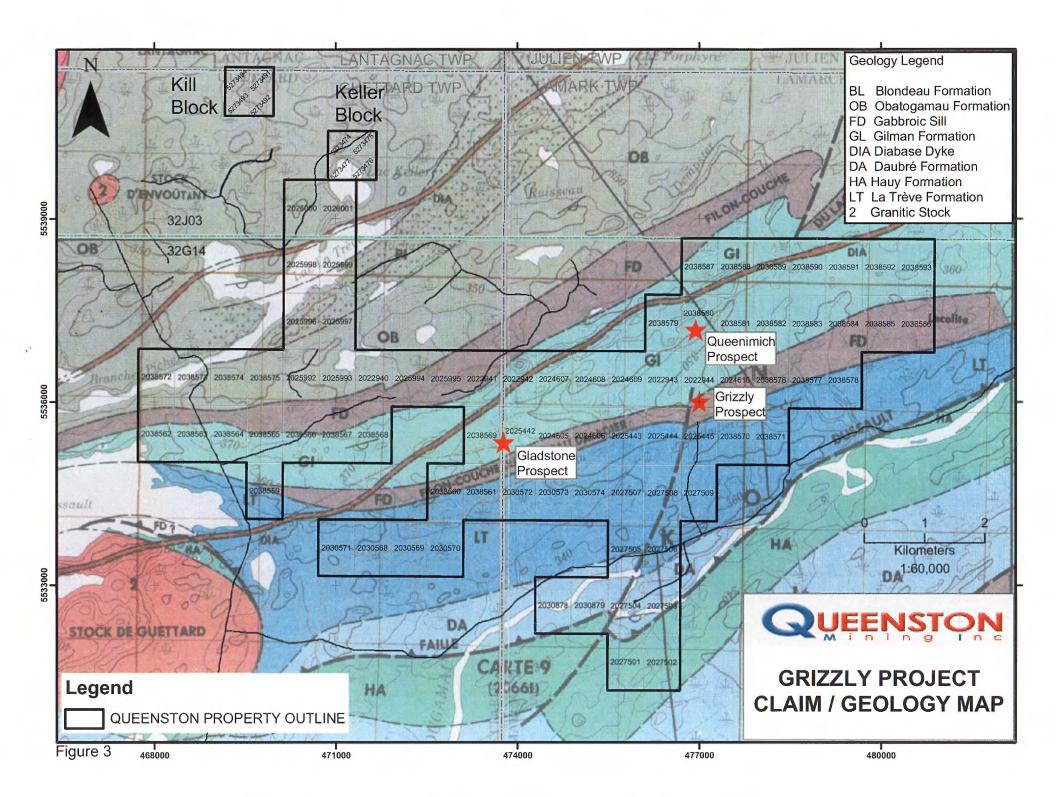
During the fall of 2006, a trenching program by Queenston Mining exposed a new gold occurrence about 200 meters north of the Daladier creek (figure 2 and 3). The trench revealed the presence of a north trending 1-5 meters wide felsic dyke intruding a gabbroic host which forms part of the 10 kilometers long, EW striking Daladier gabbroic sill.

The mineralization encountered in the trench consisted of variable amounts of AsPy+Py disseminated within strongly carbonatized felsic dyke margins. Assays indicate that gold values are erratic and of marginal grade.

REGIONAL GEOLOGY

The area is underlain by rocks of Archean age of the Gilman and La Trève formations. The rocks in the immediate vicinity of the Grizzly prospect are characterized by the presence of a NE-SW oriented and differentiated gabbroic sill (Daladier sill). This kilometric long mafic intrusion of hundred meters width is located at the interface between the conglomeratic rocks of the La Trève (part of the Daubré) formation to the south, and the volcanic dominated sequence of the Gilman formation which forms the North portion of the local stratigraphy. (Figure 3) The La Trève formation is a sedimentary sequence that is typically dominated by 80% polymictic conglomerate

intercalated with conglomeratic sandstone and meter thick sandstone lenses. Interstratified basaltic flows are found locally within the La Trève formation.


The rocks of the Gilman formation are dominated by mafic volcanic and related assemblages that are typically composed of basaltic and gabbroic rocks of 10's to 100's of meters in thickness. The Gilman stratigraphy is also characterized by presence of volcano-sedimentary interflow tuffs, argillites and other related rocks.

The regional stratigraphy is intruded by 2 major felsic (granite-granodiorite) intrusions (Stock de Guetard (NW) and Stock De La moraine (NE)). An important regional syenitic intrusion (Stock de Saussure) intrudes the Daubré sedimentary sequence 15 km to the SW. Many dykes of felsic composition cut the regional stratigraphy.

Two major regional faults are recognized into the area, the most prominent of which is the regional Lamark fault. This represents a major sub-vertical structure oriented NE-SW and of deca-kilometric size which separates the sedimentary Daubré Formation to the North, from the Waconichi Formation to the south (a sequence of felsic to intermediate tuffaceous and related volcano-clastic rocks).

The second structure, the Dussault fault, is probably a subsidiary of the previous Lamark fault and is oriented NEE-SWW in the property area. This regional fault dips north and divides the northern Daubré (conglomerate dominated) sequences from the Hauy formation (sandstone and conglomerates) to the south.

The regional stratigraphy is oriented ENE, paralleling the main regional schistosity (S2). Regional geological map (Figure 3) suggests the presence of late NE structures dislocating the local stratigraphy.

ECONOMIC GEOLOGY

Many factors point towards an interesting regional potential for gold exploration. The presence of major regional structures such as the Lamark and Dussault faults probably favoured the circulation of hydrothermal fluids, potentially gold bearing, at a regional scale. Also the presence of regional felsic intrusions (De La Moraine, Guêtard and Saussure) and their associated dykes may have contributed to hydrothermal fluid circulation along these regional structures at different periods in the regional geological history.

The past regional gold exploitation at the Bachelor and Lac Short mines, located in the SW extension of the Lamark fault, suggests a possible role played in the past by the regional faults in the deposition of gold into these orebodies.

The past exploration programs concerning the Grizzly property, highlighted the presence of anomalous to sub-economic gold occurrences. As demonstrated by the "Zee zone" on the shore of the Chibougamau river and also by the gold occurrence observed in vicinity of the Keller lake to the North, the Grizzly geological setting appears to be favorable for the presence of economic gold deposits.

The presence of Cb-Cl-(Fu) shear zones, anomalous in gold and arsenic, as well as presence of sulfide-gold bearing boulders indicate an interesting gold potential in the area.

2007 PROSPECTING PROGRAM

Between May and July 2007, the Grizzly property was intermittently prospected for a total of 10 days. The prospecting exercise initially targeted anomalies detected by an I.P. survey commissioned by Queenston Mining in the fall of 2006. It was also designed to document the local geology within the limits of the Grizzly Grid along with selected portions of the remainder of the property. A total of 89 rock samples were collected for

assay during the prospecting program from 165 outcrops which were examined and their locations fixed with a GPS (Global Positioning System) device (see figure 4).

The 2007 prospection program leeds to the discovery of two (2) new gold occurrences inside the Property limits. The first gold occurrence (Queenimich prospect) was discovered about 1 km north of the original Grizzly trench (figure 2 and 3). The Queenimich indice returned an initial grab sample of 1.3 g/t Au at the margin of a N240 oriented metric size felsic dyke (Figure 5). A complete list of prospection sample collected is included into appendix 3.

The second gold occurrence (Gladstone) was exposed along a winter logging road about 2.6 km west of Grizzly trench. That new gold occurrence returned an initial gold value up to 11.9 g/t Au inside the mineralized margin of a 10 cm wide N015 oriented Qz-Tourmaline vein in intrusion inside the Daladier gabbroic sill (figure 6).

During August 2007, each of these two (2) new gold sites were further exposed through a mechanical stripping program. The Gladstone prospect was also tested with two short diamond drill holes totaling 198 meters (GRZ-07-04 and GRZ-07-05) both of which revealed the presence of at least 3 distinct parallel ankeritized and mineralized structures. They comprise 1- 5 meter wide sheared/ foliated, NNE trending, gold bearing, alteration zones overprinting a gabbroic section of the Daladier Intrusion similar to that in the Grizzly trench to the east.

2007 STRIPPING PROGRAM

In August 2007, the two (2) new gold bearing structures discovered earlier in the year through surface prospecting (Queenimich and Gladstone) were uncovered during a 7 day stripping program. Following washing and cleaning of the stripped areas, the exposures were systematically mapped and sampled.

a) Queenimich stripping

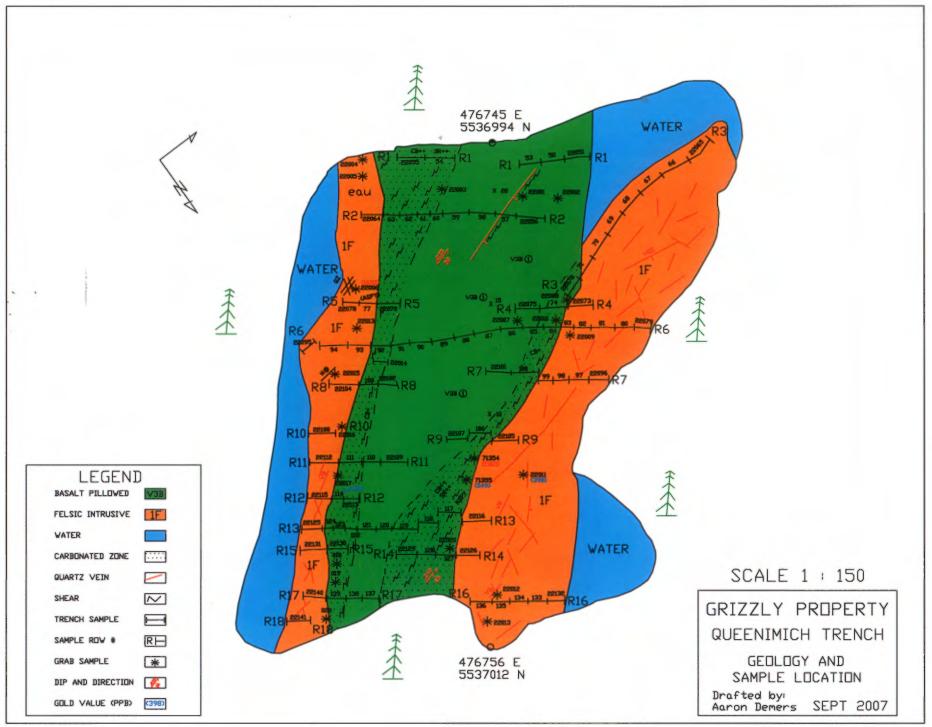
The Queenimich structure is exposed over an area of about 300 square meters (20 X 15 m.) at UTM coordinates 476750E/5537005N (Zone 18).

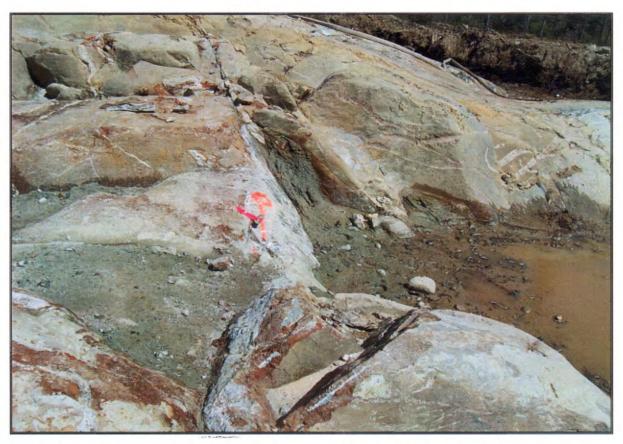
Photo 1: Pillowed basalt confined between two (2) metric size felsic dykes. Basalt appears strongly ankeritized, sericitized and pyritized (AsPy+Py) in vicinity of felsic dyke contacts.

Stripping revealed a simple geological setting consisting of 2 felsic dykes of undetermined thickness (meter size) oriented at N235-N240 and dipping 45-50 degrees NW (figure 5). These dykes intruded a strongly sheared, pillowed and carbonatized basaltic sequence. The carbonatization, shearing and mineralization are mostly confined to the immediate margins of the felsic dykes with mineralization consisting mainly of a combination of disseminated AsPy and Py within a variably sericitized and strongly carbonatized matrix (Photo 1). The Queenimich occurrence shares many similarities with

	dilzziy st	ripping program 2007, Queenir	mon gi		-	
Sample Number	Trench	Description	Au (ppb)	Au (g/t)	Au Check	Average Au (ppb)
					N. 1111	
22001	Queenimich	Centimetric Cb+++ shear vn, 2% sulfides	Nil	-	Nil	-
22002	Queenimich	V3B cis+++, Cb+++, 2% Py	Nil	-	Nil	-
22003	Queenimich	V3B cis++, Cb+++, 2% Py	Nil	-	Nil	-
22004	Queenimich	Cb+ Qz-Vn, 1% AsPy	Nil	-	Nil	-
22005	Queenimich	Cb+ 1F, 2% AsPy+Py	55	-	0.06	
22006	Queenimich	1F Sheared, Cb++, Si++,min.20% AsPy	1653	-	1.65	1.47
22007	Queenimich	V3B cis++, Cb++, Cl+, 1% Py	Nil	-	Nil	-
22008	Queenimich	1F cis, si++, Cb+, 5% AsPy	48	-	0.05	-
22009	Queenimich	Qz vn in 1F, trace of sulfides	Nil	-	Nil	-
22010	Queenimich	Cis++, Cb++, Sr++,10% AsPy	137	123	0.14	0.12
22011	Queenimich	Qz vn in 1F, trace of sulfides	398	-	0.4	_
22012	Queenimich	Qz vn in 1F, trace of sulfides	Nil	-	Nil	-
22013	Queenimich	Qz vn with min eponte. 2% diss. Py+AsPy	10	-	0.01	
22014	Queenimich	V3B cis+++,Cb+++, 1% sulfides	Nil	-	Nil	
22015	Queenimich	Qz vn in 1F, trace of sulfides	Nil	-	Nil	-
22016	Queenimich	Ctc Qz-Ak-Vn, 1% AsPy	Nil	-	Nil	
22017	Queenimich	Cis+++, Cb+++, Sr++, 20% AsPy	147	-	0.15	
22018	Queenimich	Cis++, Cb++, Cl+, 2% sulfides	Nil	-	Nil	-
22019	Queenimich	Cis+++, Cb+++, Sr++, 2% AsPy+Py	Nil	Nil	Nil	Ni
22020	Queenimich	Cis++, Cb++, Cl+, 1% sulfides	Nil	-	Nil	

TABLE 1




Figure 5

the style of mineralization and alteration observed inside the Grizzly trench located about 1 km south, however, the dyke orientations appear different in both stripped areas.

A total of 20 grab and 91 channel samples (total of 111 samples) were collected from the area of the Queenimich stripping. The best gold value (1.65 g/t Au, Table 1) comes from a grab sample (#22006) comprising 20% AsPy mineralization within the carbonatized and sheared margin of the southernmost dyke (figure 5). A complete list of Queenimich trench samples is included into appendix 1.

b) Gladstone stripping

The Gladstone prospect stripping, located at UTM 473580E/5535160N (Zone 18) covers about 700 square meters (35 X 20 m.)

Photo 2: N015 decimetric wide Quartz-Tourmaline vein dipping 45° ESE into a strongly ankeritized leucoxenitic gabbro part of the regional Daladier gabbroic sill.

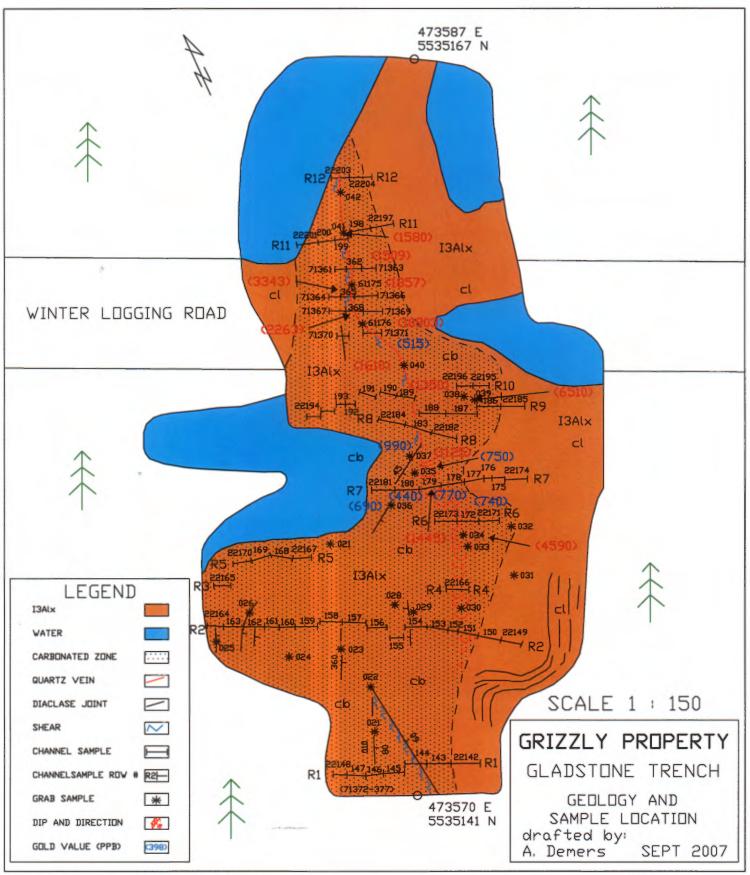


Figure 6

Disseminated Py and minor AsPy mineralization in the Gladstone trench occurs within a medium grained, leucoxenitic gabbro that is strongly ankeritized and locally fuschite altered (figure 6). Generally, the Gladstone showing consists of a complex Qz-Ak and Qz-Ak-Tm, 1-5 meter wide alteration envelope centered on a 10- 20 cm wide, N015 oriented, quartz-tourmaline vein zone exposed over a length of 20 meters in the stripped area. (Photo 2)

A total of 84 rock samples, 22 grab and 62 channel samples were collected from the area of the Gladstone stripping. The better gold values range between 1.02 g/t Au (sample # 22035) and 11.9 g/t Au (sample # 61176) and are listed in table 2. A complete list of Gladstone trench samples is included into appendix 2 and 3.

The best gold values were obtained from the mineralized margins of quartz-tourmaline veins. It was noted that veins containing only quartz and ankerite appear to contain lower gold values then those including tourmaline. The vein orientations appear complex and often erratic but a dominant NE direction is inferred. The main vein cuts the gabbro at N015 with a dip of 55 degrees to the ESE.

Two (2) diamond drill holes, GRZ-07-04 and GRZ-07-05 (figures 9 and 10), with collars spaced about 50 meters apart, were drilled in the vicinity of the Gladstone stripping. Both holes revealed the presence of at least 3 parallel, 2-5 meter ankeritic, fuchsitic, and pyritized structures that returned anomalous gold values. From the drilling, it appears that these 3 structures define an alteration corridor at least 50 meters in width and 75 metres along strike. Both the thickness and length of the alteration corridor are open and require additional work to complete the evaluation of the system.

Sample no	Type	Length (m.)	Description Description	Value (Au ppb	
61175	Initial Grab	ND	Vn Qz-Tm in sheared Cb++gabbro, 5% Py	1851	
61176	Initial Grab	ND	Mineralized margin previous vein, 5-7% Py	10903	
71362	Initial channel	,5	Channel 2 (I3A + Qz vn)	1509	
71365	Initial channel	,5	Channel 3 (I3A + Qz vn)	3343	
71368	Initial channel	,5	Channel 4 (I3A + Qz vn)	2363	
71378	Initial Grab	ND	Grab. Eponte min. 5% Py	1390	
71380	Initial Grab	ND	Grab. VQz-Tm, 3% Py	1555	
22034	Trench Grab	ND	I3A Ak+++, Cl, 5% Py	4680	
22035	Trench Grab	ND	I3A Ak+++, Cl, 5% Py	1002	
22037	Trench Grab	ND	Ak+++ gossan Qz inj. (025/90), 5% Py	1125	
22039	Trench Grab	ND	I3A Ak+++, Qz inj., 5% Py+AsPy	6510	
22040	Trench Grab	ND	Vn Qz-Tm with massive Py, 020/55	1620	
22041	Trench Grab	ND	Vn Qz-Tm, 020/55, 5% Py	1390	
22179	Trench Channel	1,4	I3A cis++, Ak+++, Fu, 15% QV, 5% Py	1445	

2007 DRILLING PROGRAM

The 2007 drilling campaign on Grizzly property consisted of five (5) holes totaling 831 meters of coring. All diamond drill holes were drilled between August 15 and September 1, and tested different geological and geophysical targets as well as the extension of some of the new gold occurrences discovered during the previous exploration program. All holes successfully explained the various targets tested and all 5 casings were left in place. Hole GRZ-07-05 casing was damaged during the demobilization of the drill. The 5 Grizzly diamond drill hole descriptions are included in appendix 6 and 2007 Assay certificates are grouped into appendix 5.

a) GRZ-07-01

Hole GRZ-07-01, collared on section 0+00E / 6+75N (UTM 477200E / 5535447N) at a dip of – 48 degrees and azimuth of N150 was designed to test I.P. anomalies with coincident high resistivity and a strong metal factor within a conglomeratic sequence. It intersected a sedimentary package dominated by polygenetic conglomerates interlayered with 2-10 metre thick arkosic, micro-conglomeratic, and, locally, argillitic lenses with all units dipping at 45-50 degrees NW (figure 7). The I.P anomaly was explained by an interval containing up to 30% Py observed in disseminated, clotted, nodular and clastic forms intersected between 63.30 and 64.50 meters. The hole was terminated at 189 meters inside a polygenic conglomeratic unit. No significant gold values were obtained from hole GRZ-07-01.

b) GRZ-07-02

Collared on section 0+05W / 0+75N (UTM 476832E / 5536083N) at a dip of -50 degrees and azimuth of N135, hole GRZ-07-02 was designed to serve 3 purposes: 1) testing mineralization below the Grizzly stripping, 2) testing a proximal I.P. anomaly and 3) testing the possibility of the presence of a deformation corridor situated between the north gabbroic suite (Daladier sill) and the south conglomeratic sequences of La Trève

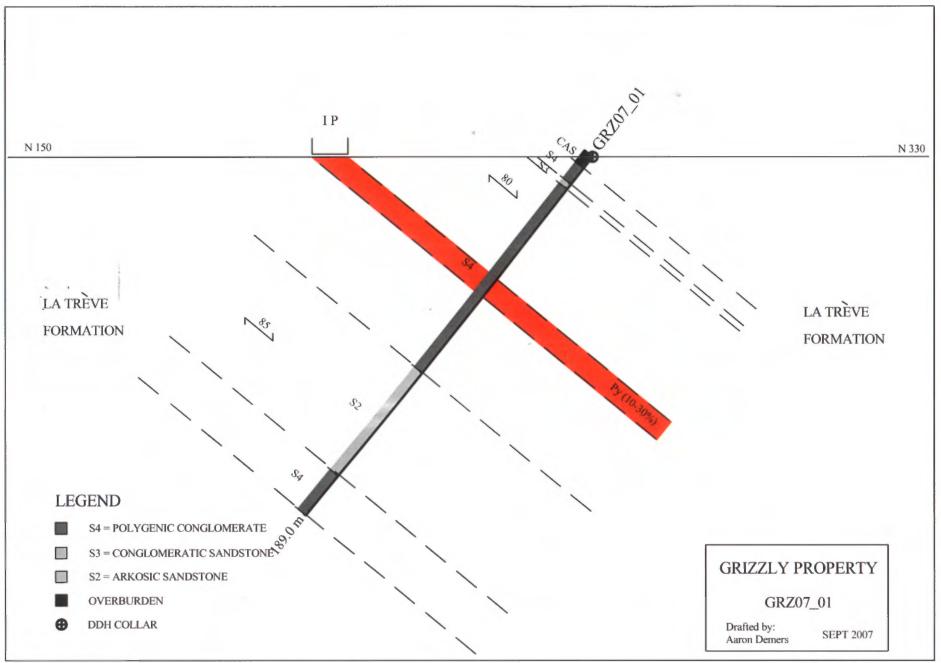


Figure 7

formation. From collar to 52.40 metres, hole GRZ-07-02 traverses the Grizzly trench geology consisting of a leucoxenitic gabbro complex that is locally ankeritized and mineralized with Py and Aspy. The gabbro is cut by several biotitic lamprophyric intrusives and a 1-4 metre wide felsic dyke with the bulk of the mineralization spatially associated with these intrusives. A mineralized, highly magnetic pyroxenitic unit that represents the base of the Daladier gabbroic sill, was intersected between 54.55 and 64.10 meters, explaining the local I.P anomaly detected by the I.P. survey. From 73.30 m. to the end, the hole intersected a sedimentary sequence dominated by intercalated arkose, silstone, argilite and local micro-conglomerate units that are interpreted as part of the base of the La Treve conglomeratic formation. The contact between the northern Daladier gabbroic sill complex and the La Trève sedimentary sequence, appears to be concordant with no evidence of a deformation corridor (figure 8). The core assayed from hole GRZ-07-02 under the Grizzly trench did not return any significant gold values. The best assay (960 ppb Au) was obtained between 63.60 to 64.10 m. at the base of the pyroxenitic unit.

c) GRZ-07-03

Hole GRZ-07-03, laid out to test 2 strong I.P. anomalies within a topographic depression that is located between two gabbroic phases of the Daladier sill, was collared on section 1+00E / 2+50N (UTM 476838E / 5536307N) at a dip of -45 degrees and azimuth of N150. It was also designed to test the base of the Daladier gabbroic sill about 100 meters east and down dip of the Grizzly stripping.

The first I.P. anomaly appears to represent the expression of a semi-massive (30-70%), 2.3 metre wide, pyritic and graphitic lens at the upper contact of the gabbroic sill between 44.7 to 47.0 m. The second I.P. target seems to be explained by a second argilitic unit that is also mineralized with up to 20% disseminated Py over narrow intervals. In addition, a 27 meter interval within the Daladier sill (114.0 to 137.0 m.) cut a moderately foliated and ankeritized section with up to 2% disseminated Py and local fuchsite alteration. Although hole GRZ-07-03 passed through a thick section of the Daladier gabbroic sill from 82.75 to 200.15 m, the extension of the mineralized pyroxenitic zone

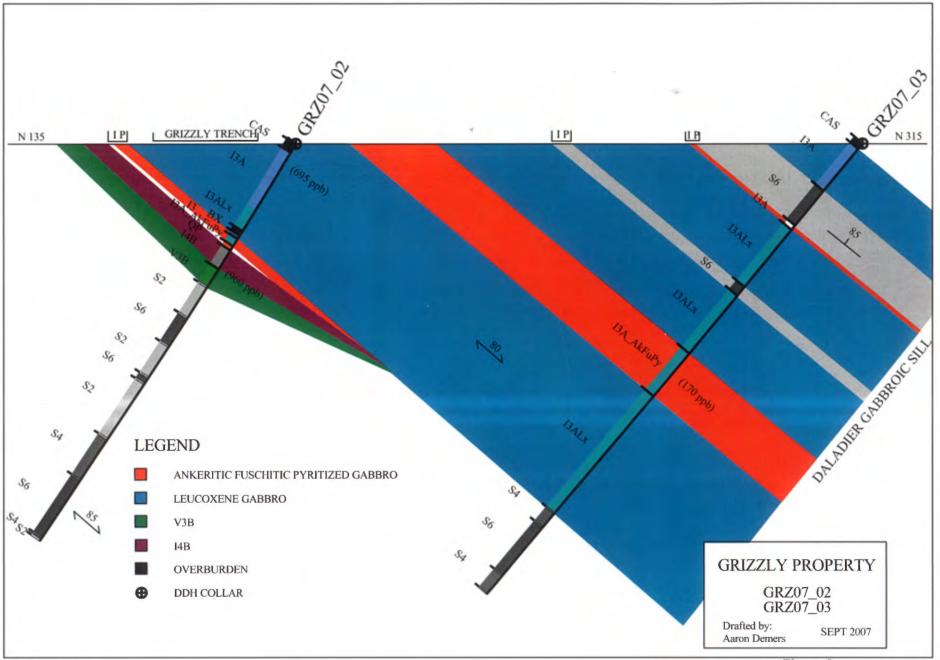


Figure 8

observed in previous hole GRZ-07-02 was not identified in GRZ-07-03 (figure 8). No significant gold values were reported in the hole which was terminated at 243.0 meters in the La Treve argilitic, arkosic and conglomeritic formation.

d) GRZ-07-04

Hole GRZ-07-04 was collared outside the cut grid at UTM 473617E / 5535215N with a dip of —45 degrees and azimuth of N260 and was designed to test an area under, and 50 metres north, of the Gladstone trench. It revealed the presence of a 70 meter wide, discontinuous deformation corridor including at least 3 separate parallel ankeritic and pyritic structures along the 99 meter length of the hole (figure 9). The first altered corridor (East Gladstone structure) was intersected from 21.7 to 30.0 meters, consisting of a moderate to strong ankeritization with up to 1-2% disseminated Py and local associated fuchsite alteration. The second alteration zone (North extension of Gladstone trench), intersected between 46.0 to 64.0 meters, consists of moderate pervasive ankeritization with local fuchsite and up to 1-2% disseminated Py. The lowermost interval (West Gladstone), from 83.20 to 98.0 metres, is similar in intensity to the two previous ones but is mineralized with up to 5% of disseminated Py associated with a 10 and 20cm, brecciated, Qz-Tm- veins with fuchsitic margins intersected between 85.6 and 87.35 meters. Hole GRZ-07-04 was terminated at 99.0 meters in a leucoxenitic gabbro, immediately below the third structure. No significant gold values were encountered in the hole.

e) GRZ-07-05

Also collared outside of the grid but at UTM 473620E / 5535164N) at a dip of –45 degrees and azimuth of N260, hole GRZ-07-05 was laid out to test the continuity of mineralization and alteration below the Gladstone stripping. As with previous hole GRZ-07-04, collared 50 meters to the north, hole 05 intersected 3 distinct ankeritic horizons which are located, from top to bottom: from the collar to 8.8 m (Gladstone East), from 21.0 to 44.0 m (Gladstone trench extension), and from 75.0 to 79.0 meters (Gladstone west, figure 10). Each zone consisted of moderate to strong pervasive ankeritization and partial bleaching

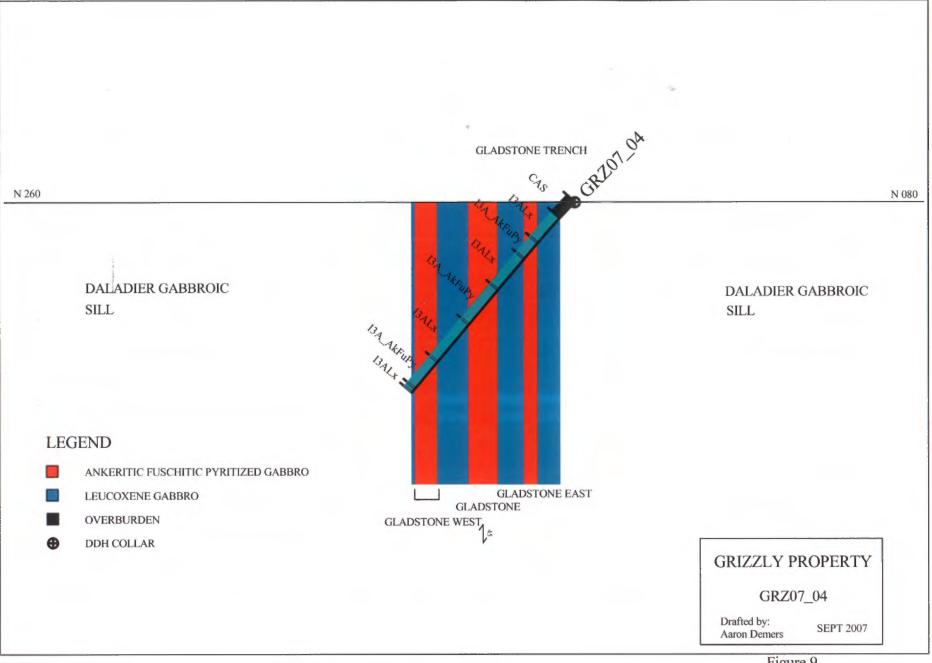


Figure 9

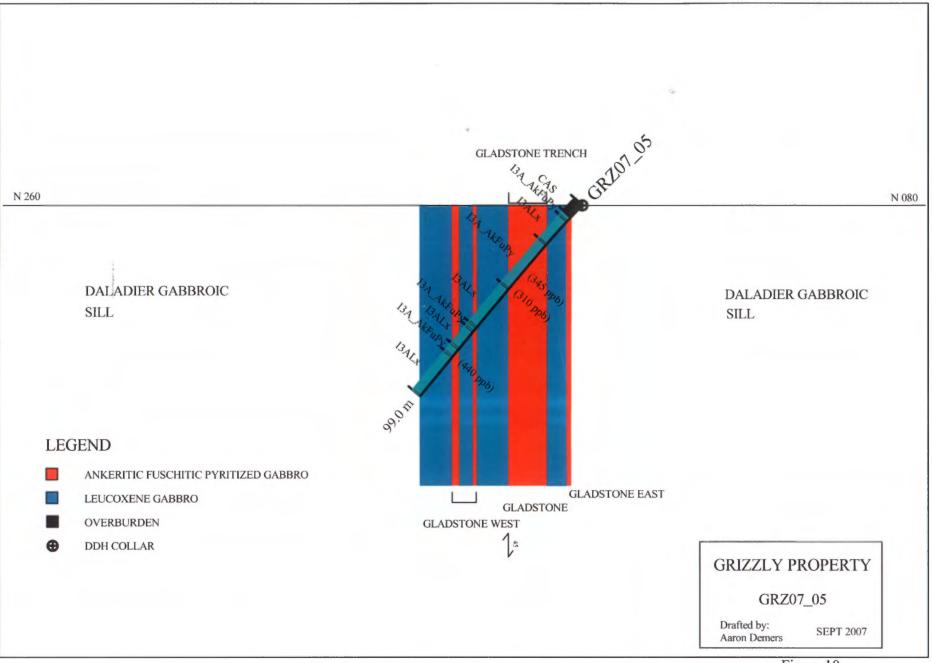


Figure 10

of the gabbroic host along with disseminated Py, and local fuchsite alteration associated with Qz-Ak vein margins. Assays from the mineralized zones returned anomalous gold values varying from 310 to 440 ppb in hole GRZ-07-05.

CONCLUSIONS

In addition to the previously discovered Grizzly prospect, the 2007 prospecting program was successful in the discovery of two (2) new surface gold occurrences (Queenimich et Gladstone). Both zones were subsequently stripped, washed, mapped and sampled (grab and channel).

The Queenimich stripping highlighted a Grizzly type mineralization characterized by bleached, sericitized, and ankeritized zones that are mineralized with disseminated AsPy at the margins of two, meter wide, felsic dykes. However, grab and channel samples from both areas (Grizzly and Queenimich), returned only erratic and low grade gold values. For that reason, no further work is proposed in the vicinity of these two stripped exposures.

The Gladstone gold prospect, about 2.6 km west of the Grizzly area, appears more interesting in some aspects such as the frequency and quality of gold values obtained from grab samples as well as apparent presence of a ENE oriented deformation corridor. For these reasons, it is suggested to do additional work in this area including line cutting, I.P. survey and diamond drilling (if new targets are defined by these works).

The 2006 and 2007 exploration program confirms the potential for gold exploration inside the limits of Grizzly property. The low level of exploration committed up to now by Queenston Mining and the rate of discovery of new gold occurrences in the area suggest that a more aggressive exploration program could lead to the discovery of additional new near surface mineralization and hopefully to a possible high grade gold discovery.

RECOMMENDATIONS

For a next exploration program, it is suggested to:

- 1) Investigate the Gladstone area by geophysics to highlight possible future drill targets in the vicinity.
- 2) Make a closer examination of the Keller prospect in light of the new exposures uncovered by recent logging activity in the vicinity.

REFERENCES

Szask, D., Taylor, M.J.: Supplementary Report, Field Activity, Kellar Lake Property, 1981, Ressources du Lac Meston Inc, Guêtard Township, 82 p. (GM 37805)

Duggan, M., Pain, E.F.: **11 DDH Logs and Report on DDH**, 1957, Barry Explorations LTD, Lamark Township, 26 p. (GM 05274)

Ingham, W. N.: **6 DDH logs**, 1957, Tomiska Copper Mines LTD, Lamark Townships, 8 p. (GM 07521-A and B)

Gagnon, A., Leclair, G., Leduc, C.: **Diamond Drill Record**, 1970, Opémiska Copper Mines LTD, Dolomieu Townships, 45 p. (GM 26458).

Limay, L.: **Diamond Drill Hole Log, Julien TWP Property**, Patino Mines, LTD, 1977, 26 p. (GM 33038).

Aubertin, R., Bussière, I.: **Journal de sondages au diamante, projet Porphyre Show**. Exploration Noranda LTEE, 1989, 32G14, 32J03, 110 p. (GM 49083).

Légaré, S.: Rapport de forage 1987, Propriété Rivière Chibougamau (PN-102) Minnova Inc., 1988, Lamark Townships, 132 p. (GM 48372)

Charbonneau, J.M., Picard, C., Dupuis-Hébert, L.: Synthèse géologique de la region de Chapais-Branssat (Abitibi), MRN, 1991, 200 p. (MM 88-01).

STATEMENT OF QUALIFICATION

MICHEL LEBLANC 1051, route Raymond Canton-Tremblay, (Saguenay), Qc

- I, Michel Leblanc, of the Town of Chicoutimi, Province of Quebec do hereby certify that:
- 1. I am a professional geologist residing at 1051 route Raymond, Canton-Tremblay, Quebec. G7H 5B2
- 2. I am a graduate of the Universite du Quebec a Chicoutimi with a B.Sc (1991) degree in Geological Sciences.
- 3. I am a Professional Geologist registered with the Ordre des geologues du Quebec (OGQ, reg, no. 613).
- 4. I have practiced my profession as a geologist for over 15 years. I have prepared reports, conducted, supervised and managed programs for a number of major and junior companies. I have been operating as consulting contract geologist since 2002.
- 5. As author I am familiar with the material covered in the report having been directly involved in all aspects of the exploration programs conducted on the Grizzly Property in 2007.
- 6. I own shares and share options of Queenston Mining Inc, a publicly traded securities listed on the Toronto Stock Exchange.
- 7. Permission is granted for use of this report, in whole or in part, for assessment and qualification requirements, but not for advertising purposes.

Michel Leblanc, BSc, PGeo. DATED at Chicoutimi, Quebec This 15 day of January, 2008.

APPENDIX 1 QUEENIMICH CHANNEL SAMPLE LIST

Location	Number	Length (m.)	Description	Au	Au Check	Au (g/t)	Au Check	Average Au (ppb)
	20054	0.0	Ven of of the	N.C.I		Nil		0
R1-1	22051	0.9	V3B Cl, Cb+, Py tr.	Nil	- Nil	Nil	Nil	0
R1-2	22052	0.8	V3B Cl, Py tr.	Nil	INII	Nil	INII	
R1-3	22053	0.7	V3B CI, Py tr.	Nil	-	0.01	-	0.01
R1-4	22054	0.9	V3B CI, Cb+++, 5% AsPy+Py	7	-	Nil	-	0.01
R1-5	22055	0.7	V3B Cb+++, Sr+, 10% AsPy	2	-		-	
R2-1	22056	0.9	V3B cis, Cl, Cb	Nil	-	Nil	-	(
R2-2	22057	0.9	V3B cis, Cl	Nil	- N.131	Nil	- N.171	(
R2-3	22058	0.9	V3B cis, Cl, Cb	Nil	Nil	Nil	Nil	(
R2-4	22059	1.1	V3B cis+, Cl, Cb+	Nil	-	Nil	-	(
R2-5	22060	0.8	Cis++, Cl+, Cb+	Nil	-	Nil	-	(
R2-6	22061	0.6	Cis++, Cb+++, 5% AsPy	Nil	-	Nil	-	(
R2-7	22062	0.8	V3B cis++, Cb+++, Sr+, 10% Py+AsPy	Nil	-	Nil	-	(
R2-8	22063	0.6	V3B cis++, Cb+++, Sr+, 10% Py+AsPy, ctc	2	-	Nil	-	(
R2-9	22064	1.3	1F cis, cb+	2	-	Nil	-	(
R3-1	22065	0.9	1F Sr, Py tr.	Nil	-	Nil	-	(
R3-2	22066	0.9	1F Sr, Py tr.	Nil	-	Nil	-	(
R3-3	22067	0.9	1F Sr, Py tr.	Nil	-	Nil	-	
R3-4	22068	0.9	1F Sr, Py tr.	Nil	Nil	Nil	Nil	
R3-5	22069	0.9	1F Sr, Py tr.	Nil	-	Nil	-	
R3-6	22070	0.7	1F Sr, Py tr.	Nil	-	Nil	-	
R3-7	22071	0.7	1F Sr++, Cb+, 1-2% Py	Nil	-	Nil	-	
R3-8	22072	0.5	V3B Cb+++, 3-4% AsPy+Py, contact	Nil	-	Nil	-	(
R4-1	22073	0.5	1F Sr+, Qz inj., Cb+, 1% Py	Nil	-	Nil	-	
R4-2	22074	0.9	V3B Cb++, Cl, 1-2% Py	Nil	-	Nil	-	(
R4-3	22075	1.0	V3B Cb+, Cl, 1% Py	Nil	-	Nil	-	
R5-1	22076	0.7	V3B cis+, Cb++, 3% AsPy+Py	Nil	-	Nil	-	
R5-2	22077	1.0	V3B cis+++, Cb+++, Sr++, 7% AsPy+Py	Nil	-	Nil	-	
R5-3	22078	0.5	1F Cb+, Sr+, 1-2% Py (AsPy)	Nil	-	Nil	-	
R6-1	22079	1.0	1F Sr, 10% QV, Py tr.	7	-	0.01	-	0.0
R6-2	22080	0.8	1F Sr, 15% QV, tr. Py	Nil	Nil	Nil	Nil	
R6-3	22081	0.9	1F Sr, 10% QV, Py tr.	Nil	-	Nil	-	
R6-4	22082	0.9	1F Sr, Cb, 5% QV	Nil	-	Nil	-	
R6-5	22083	0.9	1F Sr+, Cb++, 1% Py (AsPy), ctc	Nil	-	Nil	-	

Location	Number	Length (m.)	- Description	Au	Au Check	Au (9/1)	Au Check	Average Au (ppb)
R6-6	22084	0.7	V3B cis+, Cb++, Cl, 3% AsPy+Py	Nil	-	Nil	-	0
R6-7	22085	1.0	V3B CI, Cb, Py tr.	2	-	Nil	-	0
R6-8	22086	1.3	V3B CI, Cb, Py tr.	Nil	-	Nil	-	0
R6-9	22087	0.9	V3B cis+, Cis++, Sr+, 1-2% AsPy+Py	Nil	-	Nil		0
R6-10	22088	0.9	V3B Cl+, Cb++, 1% Py+AsPy	7	-	0.01	-	0.01
R6-11	22089	0.7	V3B Cl+, Cb++, 1% Py+AsPy	10	Nil	0.01	Nil	0.01
R6-12	22090	0.6	V3B cous., Cb++, cis+, 2% AsPy+Py	Nil	-	Nil	-	0
R6-13	22091	0.7	V3B cous., Cb++, cis+, 3-5% AsPy+Py	Nil	-	Nil	-	0
R6-14	22092	0.7	V3B cous., Cb++, cis+, 3-5% AsPy+Py, ctc	Nil	-	Nil	-	0
R6-15	22093	0.8	1F Cb++, cis, Sr++, 1-2% Py+AsPy, ctc	10	-	0.01	-	0.01
R6-16	22094	0.8	1F Sr+, Cb, 1% Py	21	-	0.02	-	0.02
R6-17	22095	1.2	1F Sr+, Cb, 1% Py	21	-	0.02	-	0.02
R7-1	22096	0.9	1F Sr	34	-	0.03	-	0.03
R7-2	22097	1.0	1F Sr	2	-	Nil	_	0
R7-3	22098	0.9	1F Sr	14	14	0.01	0.01	0.01
R7-4	22099	0.9	1F Sr, ctc	Nil	-	Nil	-	0
R7-5	22100	0.9	V3B cis+, cb++, 3% AsPy+Py	Nil	-	Nil	_	0
R7-6	22101	0.7	V3B, cis, Cl, Cb, 1% Py+AsPy	Nil	-	Nil	-	0
R8-1	22102	0.7	V3B cis+, Cb++,2-3% Py+AsPy	Nil	-	Nil		0
R8-2	22103	0.7	V3B cis+++, Cb+++,7% Py+AsPy	Nil	-	Nil	-	0
R8-3	22104	0.6	1F Sr+, Cb+, 2% Py (AsPy)	Nil	-	Nil	_	0
R9-1	22105	1.0	1F Sr+, cis, tr. Py	Nil	-	Nil	-	_ 0
R9-2	22106	0.9	V3B cis, Cb+++	Nil	-	Nil	-	0
R9-3	22107	0.9	V3B cis++, Cb, Cl	Nil	-	Nil	-	0
R10-1	22108	1.0	1F+ 50% QV	Nil	-	Nil	-	0
R11-1	22109	0.6	V3B Cb+, Cl	2	2	Nil	Nil	
R11-2	22110	0.5	V3B cis++, Cb+++	Nil	-	Nil	-	0
R11-3	22111	0.7	V3B cis+++, Cb+++, ctc	27	-	0.03	-	0.03
R11-4	22112	0.8	1F+ 50% QV	Nil	-	Ni	-	0
R12-1	22113	0.7	V3B cis, Cb++, Cl+	Nil	_	Ni	-	0
R12-2	22114	0.6	V3B cis+++, Cb+++, 10% Qz, ctc	466	363	0.47	0.36	0.415
R12-3	22115	0.7	1F Sr+, cis, Cb+	7	-	0.01		0.01
R13-1	22116	1.1	1F Sr+, 5% Qz	10	-	0.01	-	0.01
R13-2	22117	0.9	V3B cis++, Cb+++	17	-	0.02	-	0.02
R13-3	22118	1.0	V3B cis+++, Cb+++	2	-	Ni	-	0

Location	Number	Length (m.)	Description		Au. Check	Au (g/t)	Au Check	Average Au (ppb)
R13-4	22119	0.9	V3B cis+++, Cb+++	Nil	-	Nil	-	0
R13-5	22120	1.0	V3B cis, Cb, Cl	Nit	-	Nil	-	0
R13-6	22121	0.9	V3B cis, Cb, Cl	Nii	-	Nil	-	0
R13-7	22122	0.7	V3B cis+++, Cb++	Nil	_	Nil	-	0
R13-8	22123	0.7	V3B cis, Cb+	Nil		Nil	_	0
R13-9	22124	0.5	V3B cis+++, Cb+++, ctc	75	82	0.08	0.08	0.08
R13-10	22125	1.1	1F, 5% QV	21	-	0.02	_	0.02
R14-1	22126	1.0	1F, 5% QV	51	-	0.05	_	0.05
R14-2	22127	0.9	V3B cis++, Cb++, ctc	Nil	-	Nil	-	0
R14-3	22128	0.8	V3B cis++, Cb++, ctc	Nil	-	Nil		0
R14-4	22129	0.9	V3B cis+++, Cb+++	Nil	2	Nil	Nil	0
R15-1	22130	0.9	V3B cis+++, Cb+++, ctc	Nil	-	Nil		0
R15-2	22131	0.7	1F Sr	10		0.01	-	0.01
R16-1	22132	1.0	1F 10% QV	Nil	-	Nil		0
R16-2	22133	1.0	1F 10% QV	Nil	-	Nil		0
R16-3	22134	0.9	1F 10% QV	Nil	1	Nil	-	0
R16-4	22135	0.9	1F 20% QV	21	-	0.02	-	0.02
R16-5	22136	1.1	1F 10% QV, ctc	Nil	-	Nil	<u> </u>	0
R17-1	22137	0.8	V3B, cis+++, Cb++	Nil	-	Ni		0
R17-2	22138	0.7	V3B, cis+++, Cb++	Nil	Nil	Ni	Nil	
R17-3	22139	1.2	V3B, cis+++, Cb++, ctc	Nil	-	Ni		0
R17-4	22140	0.8	1F 10% QV	Nil	-	Ni		0
R18-1	22141	0.9	1F 40% QV	Nil	-	Ni		0

APPENDIX 2 GLADSTONE CHANNEL SAMPLE LIST

Grizzly stripping program 2007, Gladstone chanel samples										
Location	Number	Length (m.)	Description	Au	Au Check	Au (g/t)	Au Check	Average Au (ppb)		
R1-1	22142	1.2	I3A Lx, Cb++, Cl+, 1% Py	Nil		Nil		0		
R1-2	22142	0.9	I3A Lx, Cb++, Cl+, 1% Py	Nil	Nil	Nil	Nil	0		
R1-3	22144	1.2	I3A Lx, Ak+++, 10% QV, 1% Py	Nil	1411	Nil	IVII	0		
R1-4	22145	1.1	I3A Lx, Ak+++, Cl+, 1% Py	Nil		Nil		0		
R1-5	22146	1.2	I3A Lx, Ak++, Cl, 1% Py	Nil		Nil		0		
R1-6	22140	1.0	I3A Lx, Ak+, Cl, 1% Py	Nil		Nil		0		
R1-7		0.9	I3A Lx, Ak++, Cl, 1% Py	Nil		Nil		0		
R2-1	22149	1.1	I3A Lx, CI, Py trace	Nil		Nil		0		
R2-2	22150	1.1	I3A Lx, Ak+, Cl, Py trace	Nil		Nil		0		
R2-3		0.9	I3A Lx, Ak++, 5% QV, Py trace	Nil	-	Nil	-	0		
R2-4		0.5	I3A Lx, Ak+++, 10% QV, 3% Py	Nil		Nil		0		
R2-5	22153	1.1	I3A Lx, Ak++, 5% QV, 3% Py	Nil	_	Nil	_	0		
R2-6	22154	1.2	I3A Lx, Ak++, 1% Py	7	7	0.01	0.01	0.01		
R2-7	22155	0.8	I3A Lx, Ak++, 1% Py	Nil	-	Nil	0.01	0.01		
R2-8	22156	1.1	I3A Lx, Ak++, 2% Py	Nil	-	Nil	_	C		
R2-9	22157	1.0	I3A Lx, Ak++, 2% Py+AsPy	Nil	-	Nil	-	C		
R2-10	22158	0.9	I3A Lx, Ak++, 2% Py+AsPy	Nil	-	Nil	-	C		
R2-11	22159	0.9	I3A Lx, Ak++, 1% Py	Nil	-	Nil	_	C		
R2-12		0.9	I3A Lx, Ak++, 2% Py	Nil	-	Nil	-	C		
R2-13	22161	1.0	I3A Lx, Ak++, 5% QV, 2% Py	Nil	-	Nil	-	C		
R2-14		0.9	I3A Lx, Ak++, 5% QV, 2% Py	2	-	Nil	-	C		
R2-15		0.8	I3A Lx, Ak++, 5% QV, 1-2% Py	Nil	-	Nil	-	C		
R2-16		0.9	I3A Lx, Ak++, 5% QV, 1% Py	Nil	-	Nil	-	C		
R3-1		0.7	QV-Tm-Ak in I3A Lx Ak+++, 5% Py	Nil	Nil	Nil	Nil	C		
R4-1		1.0	I3A cis ++, Ak+++, 20%, QV-Tm, 4% Py	Nil	-	Nil	-	C		
R5-1		0.9	I3A Lx, Ak+++, 1% Py	Nil	-	Nil	-	C		
R5-2	22168	1.0	I3A Lx, Ak+++, 1% Py	Nil	-	Nil	-	C		
R5-3	22169	1.1	I3A Lx, Ak+++, 1% Py	Nil	-	Nil	-	C		
R5-4	22170	1.3	I3A Lx, Ak+++, 1% Py	Nil	-	Nil	-	C		
R6-1		0.7	I3A Lx, Ak++, 7% Py	645	826	0.65	0.83			
R6-2		0.8	50% QV-Tm-Ak in I3A Lx Ak+++, 7% Py	391	-	0.39	-	0.39		
R6-3	22173	0.8	I3A Lx, Ak++, 3% Py	62	-	0.06	-	0.06		
R7-1	22174	1.3	I3A Lx, Cl, Cb, tr. Py	2	-	Nil	-	C		

Location	Number	Length (m.)	Description	Au	Au Check	Au (g/t)	Au Check	Average Au (ppb)
R7-2a	22175	0.7	I3A Lx, Cl, Cb, tr. Py	Nil	-	Nil	-	0
R7-2b	22176	0.7	I3A Lx, Cl, Cb, 2% Py	Nil	-	Nil	-	0
R7-3	22177	1.3	I3A Lx, Cl, Cb+, tr. Py	Nil	-	Nil	-	0
R7-4	22178	1.2	I3A Lx, Ak++, Cl, 2% Py	768	-	0.77	-	0.77
R7-5	22179	1.4	I3A cis++, Ak+++, Fu, 15% QV, 5% Py	1296	-	1.3	1.59	1.445
R7-6	22180	0.9	I3A Lx, Ak++, Cl, 1% Py	435	-	0.44	-	0.44
R7-7	22181	0.8	I3A Lx, Ak++, Cl, 3% Py	69	-	0.07	-	0.07
R8-1	22182	1.0	I3A Lx, Ak+++, 10% QV, 3% Py	151	-	0.15	-	0.15
R8-2	22183	0.9	I3A Lx, Ak+++, Sr, Fu, 10% QV, 3% Py	127	127	0.13	0.13	0.13
R8-3	22184	1.3	I3A Lx, Ak+++, 3% Py	93	-	0.09	-	0.09
R9-1	22185	1.2	I3A Lx, Cl, Cb, Py trace	Nil	-	Nil	-	0
R9-2	22186	1.2	I3A Lx, Ak++, Cl, Py trace	Nil	-	Nil	-	0
R9-3	22187	1.2	I3A cis, Ak+++, 3% Py	96	-	0.1	-	0.1
R9-4	22188	0.7	I3A Lx, Ak+++, 1-2% Py	7	-	0.01	-	0.01
R9-5	22189	1.0	I3A Lx, Ak+++, 5% QV, 10% Py	130	-	0.13	-	0.13
R9-6	22190	0.8	I3A Lx, Ak+++, 2% Py	2	-	Nil	-	0
R9-7	22191	0.7	I3A Lx, Ak+++, 2% Py with 2 cm, QV	Nil	-	Nil	-	0
R9-8	22192	0.7	I3A Lx, Ak+++, 1% Py	2	-	Nil	-	0
R9-9	22193	0.7	I3A Lx, Ak+++, 1% Py	Nil	-	Nil	-	0
R9-10	22194	1.0	I3A Lx, Ak++, Cl, 1% Py	Nil		0.01	-	0.01
R10-1	22195	0.6	I3A Lx, Ak++, Cl, 5% QV, 3% Py	7	-	Nil	-	0
R10-2	22196	0.5	I3A Lx, Ak+++, 15% QV, 10% Py	754	-	0.75	1.95	1.35
R11-1	22197	0.8	I3A Ak+, Cl, tr. Py	10	1-	0.01	-	0.01
R11-2	22198	1.0	I3A Ak++, Cl, 3% Py	3	-	Nil	-	0
R11-3	22199	0.9	I3A Ak+++ with QV-Tm (10 cm) (Gladstone vn), 2% Py	48	-	0.05	-	0.05
R11-4	22200	0.9	I3A Lx, Ak++, Cl, Py tr.	14	-	0.01	-	0.01
R11-5	22201	1.0	I3A Lx, Ak, Cl, tr. Py	Nil	-	Nil	-	0
R12-1	22202	0.9	I3A Lx, Ak, Cl, 1% Py	Nil	-	Nil	-	0
R12-2	22203	1.0	I3A cis++, Ak+++, 15% QV, 3% Py (Gladstone north ext.)	Nil	2	Nil	Nil	0

APPENDIX 3 2007 PROSPECTION-SAMPLE DESCRIPTION

Sample	Easting	Northing	Grizzly sample description - Description	Litho	Min	Alteration	Gold	Comment
number	Easuild	NORUM	pescription		(%)	(visual)	(ppb)	
ITUITIDEI		All and the second			(70)	Wiscal)		
61157	476937	5536016	Sheared felsic -intermediate tuf (Boulder), 5-7% diss. Py	V1 tuf	6		274	Day 1 (5 may)
61158	477062	5536129	I3A cis, Cb+, Cl, Py trace	I3A	tr.	Cb,Cl	<.001	Day 1 (5 may)
61159	477064	5536176	I3A cis, 1-2% Py, Cb++	I3A	1	Cb	<.001	Day 1 (5 may)
61160	477160	5536122	N-S Qz-vn cutting cb++ shear (260/30 NW), 2-3% Py	QV	2		<.001	Tested I.P. no 1 (day 1, 5 may)
61161	477160	5536122	20 cm N-S Qz-vn cutting shear zone (260/30 NW), 2-3% Py	QV	2		<.001	Tested I.P. no 1 (day 1, 5 may)
61162	477160	5536122	Mineralized margins of previous vn, 5% Py.		5		<.001	Tested I.P. no 1 (day 1, 5 may)
61163	477160	5536122	1F cis, Cb+, Si+, 2-3% fine Py	1F	2	Cb, Si	<.001	Tested I.P. no 1 (day 1, 5 may)
61164	477160	5536122	N-S Qz-Cb vn intersecting shear zone (260/30 NW)	QV	tr.		<.001	Tested I.P. no 1 (day 1, 5 may)
61165	477294	5536106	1 ft N-S Qz-Vn Tm dipping 70E, Trace of Py	QV	tr.		137	Day 1 (5 may)
61166	477294	5536106	Margin (I3A) of previous Qz-vn. Trace of Py.	!3A	tr.		<.001	Day 1 (5 may)
61167	476592	5536101	V3B sheared (260/30 NW), Cb+, Cl+	V3B	tr.	Cb,Cl	<.001	Day 2 (6 may)
61168	476375	5536027	Cl++, Cb++, Gp++ shear with 5% diss. Py	Shear	5	Cb, Cl, Gp	<.001	Tested I.P. 2 (Day 2, 6 may)
61169	476375	5536027	Cl++, Cb++, Gp++ shear with 5% diss. Py	Shear	5	Cb, Cl, Gp	<.001	Tested I.P. 2 (Day 2, 6 may)
61170	476375	5536027	Cl++, Cb++, Gp++ shear with 5% diss. Py	Shear	5	Cb, Cl, Gp	<.001	Tested I.P. 2 (Day 2, 6 may)
61171	476700	5536260	1FP Sr+, Cb+, 1-2% diss. Py	1FP	2	Sr, Cb	<.001	Day 2 (6 may)
61172	476700	5536260	1FP Sr+, Cb+, 1% Py	1FP	1	Sr, Cb	<.001	Day 2 (6 may)
61173	476700	5536260	I3A min, 7% diss. AsPy, boulder	I3A	7		<.001	Day 2, aspect similar to Grizzly (6 ma
61174	476853	5536275	V3B cis (260/35 NW) Cl+, cc+	V3B	tr.	CI, Cc	<.001	Day 2, North margin of a topographic
61175	473582	5535163	Vn Qz-Tm in sheared Cb++gabbro, 5% Py	QV	5	Cb	1851	Gladstone (day 3, 7 may)
61176	473582	5535163	Mineralized margin previous vein, 5-7% Py	I3A	6		10903	Gladstone (day 3, 7 may)
61177	473582	5535163	I3A Cb++, 1-2% diss. Py	I3A	2	Cb	410	Gladstone (day 3, 7 may)
61188	476880	5535211	S4 conglomeratic cis, cb+, Sr+, tr. Py	S4	tr.	Cb, Sr	<.001	Day 4, (8 may)
61189	476862	5535225	S4 conglomeratic polymictic cis, cb+, Sr+, 3-5% Py	S4	4	Cb, Sr	<.001	Day 4, (8 may)
61190	477052	5535266	Cis (250/50 NW), Si+, Sr+ tr. Py	S4	tr.	Si, Sr	<.001	Day 4, (8 may)
61191	477052	5535266	Sheared graphitic gossan, 1-2% diss. Py (250/50 NW)	S4	2	Gossan	<.001	Day 4, (8 may)
61192	477052	5535266	Sheared graphitic gossan, 1-2% diss. Py (250/50 NW)	S4	2	Gossan	<.001	Day 4, (8 may)
61193	477052	5535266	Sheared graphitic gossan, 1-2% diss. Py (250/50 NW)	S4	2	Gossan	<.001	Day 4, (8 may)
61194	477060	5535250	Shear cb++, Cl+, 5% diss. Py dans conglomerat	S4	5	Cb, Cl	<.001	Day 4, (8 may)
61195	477246	5535302	S4 conglomeratic, cis (250/50 NW), 1-3% diss. Py	S4	2		<.001	Day 4, (8 may)
61196	477246	5535302	S4 conglomeratic, cis (250/50 NW), 1-3% diss. Py	S4	2		<.001	Day 4, (8 may)
61197	476660	5536980	V3B cis, cb+, 3% diss. Py (Si+-Sr+ banding)	V3B	3	Cb, Si, Sr	<.001	Day 5 (9 may)
61198	???	???	Cl+, Cb++shear zone, 1-2% fine AsPy? (250/50 NW)		2	Cl, Cb	<.001	Day 5 (9 may)
61199	476750	5537004	Eponte Sr++, 10% AsPy		10	Sr	137	Queenimich (9 may)
61200	476750	5537004	Vn Qz-Ak ds Fp	QV	tr.		<.001	Queenimich (9 may)
71354	476750	5537004	Eponte Sr++, Cb++, 15% fine diss. AsPy		15	Sr, Cb	1303	Queenimich (9 may)
71355	476750	5537004	Mineralized margin, Sr++. Cb++ + V.Qz, 10% AsPy	V3B	10	Sr, Cb	549	Queenimich (9 may)
71356	476750	5537004	1F Cb+, K+, tr. Py	1F	tr.	Cb, K	<.001	Queenimich (9 may)
71357	476750	5537004	Cis, Cb++, Cl, 5% AsPy+Py	V3B	5	Cb, Cl	<.001	Queenimich (9 may)
71358	476768	5537047	Sheared V3B, Cb+, tr. Py (260/60 NW)	V3B	tr.	Cb	<.001	Day 5 (9 may)

Sample	Easting	Northing	Description	Litho	Min	Alteration	Gold	Comment
number					(%)	(visual)	(ppb)	
71359	476470	5336025	Qz-vn + eponte in 1FP	QV	tr.		<.001	Day 5 (9 may), possible old drill site
71360	473582	5535163	Trench north: Channel 1 (Qz vn + I3A)	QV	3	Cb	354	Gladstone trench sampling
71361	473582	5535163	Trench north: Channel 2 (I3A east)	I3A	1	Cb	26	Gladstone trench sampling
71362	473582	5535163	Trench north: Channel 2 (I3A + Qz vn)	QV	3	Cb	1509	Gladstone trench sampling
71363	473582	5535163	Trench north: Channel 2 (I3A west)	I3A	1	Cb	23	Gladstone trench sampling
71364	473582	5535163	Trench north: Channel 3 (I3A east)	I3A	1	Cb	15	Gladstone trench sampling
71365	473582	5535163	Trench north: Channel 3 (I3A + Qz vn)	QV	3	Cb	3343	Gladstone trench sampling
71366	473582	5535163	Trench north: Channel 3 (I3A west)	I3A	1	Cb	11	Gladstone trench sampling
71367	473582	5535163	Trench north: Channel 4 (I3A west)	I3A	1	Cb	44	Gladstone trench sampling
71368	473582	5535163	Trench North: Channel 4 (I3A + Qz vn)	QV	3	Cb	2363	Gladstone trench sampling
71369	473582	5535163	Trench north: Channel 4 (I3A east)	13A	1	Cb	7	Gladstone trench sampling
71370	473582	5535163	Trench north: Channel 5 (I3A west)	13A	1	Cb	27	Gladstone trench sampling
71371	473582	5535163	Trench north: Channel 5 (I3A + Qz vn)	QV	3	Cb	515	Gladstone trench sampling
71372	473569	5535163	Trench south: I3A cb+++	I3A	2	Cb	<5	Gladstone trench sampling
71373	473582	5535141	Trench south: I3A cb+++	I3A	2	Cb	72	Gladstone trench sampling
71374	473582	5535141	Trench south: I3A cb+++	I3A	2	Cb	<5	Gladstone trench sampling
71375	473582	5535141	Trench south: I3A cb+++	I3A	2	Cb	<5	Gladstone trench sampling
71376	473582	5535141	Trench south: I3A cb+++	I3A	2	Cb	<5	Gladstone trench sampling
71377	473582	5535141	Trench south: I3A cb+++	I3A	2	Cb	<5	Gladstone trench sampling
71378	473582	5535163	Trench 1: grab. Eponte min. 5% Py	I3A	5	Cb	1390	Gladstone trench sampling (replicate)
71379	473582	5535163	Trench 1: grab. Eponte min. 4-5% Py	I3A	4	Cb	240	Gladstone trench sampling (replicate)
71380	473582	5535163	Trench 1: grab. VQz-Tm, 3% Py	QV	3	Cb	1555	Gladstone trench sampling (replicate)
71381	474466	5535535	Boulder 1pi3, sub angular, cb+, micacé, 3% diss. Py, cis	Bloc	3		10	Prospection Phase 2 (1-4 june, 2007)
71382	474910	5535680	cb++, si+, 5-7% AsPy+Py		6	Cb, Si	24	Scott prospect
71383	474910	5535680	cb++, si+, 5-7% AsPy+Py Qz. Inj.		6	Cb, Si	17	Scott prospect
71384	474910	5535680	Cb+, Si+, 2% Py (AsPy)		2	Cb, Si	2	Scott prospect
71385	474910	5535680	Cb++, Si+, Fu+, AsPy+Py 3-4%		3	Cb, Si, Fu	<.001	Scott prospect
71386	474910	5535680	v.Qz min + epontes	QV	2	,,	7	Scott prospect
71387	474220	5535644	Boulder sub-angular, 10% Py, 1-2% Po, si++, Gp	Bloc	10	Si, Gp	7	Prospection Phase 2 (1-4 june, 2007)
71388	474133	5535320	I3A Cb, ss+, Py tr.	I3A	tr.	Ss	2	Prospection Phase 2 (1-4 june, 2007)
71389	474161	5536921	Bloc anguleux, Cb+, Si+, 5% Pv	Bloc	5	Cb, Si	31	Prospection Phase 2 (1-4 june, 2007)
71390	474161	5536921	Fragment v.Qz min. Py 5%	Bloc	5		82	Prospection Phase 2 (1-4 june, 2007)
71391	474161	5536921	Gros boulder min. Py 5%, Qz inj.	Bloc	5		14	Prospection Phase 2 (1-4 june, 2007)
71392	474520	5537505	Bloc cb++, Si+, 2-3% AsPy+Py	Bloc	3	Cb, Si	7	Prospection Phase 2 (1-4 june, 2007)
71393	474525	5537525	Bloc Qz 3 pi3, 3% AsPy+Py	Bloc	3		38	Prospection Phase 2 (1-4 june, 2007)
71394	????	????	Bloc anguleux min. 3% diss. Py	Bloc	3		10	Prospection Phase 2 (1-4 june, 2007)
71395	477167	5537047	C.g. Pyroxenite, magnetic, 10% diss. Po, tr. Cpy	4P	10		70	20 m. of proximal trench
71396	471538	5536200	V. gz min, 1% Py	QV	1		<.001	Prospection Phase 2 (1-4 june, 2007)
71397	471538	5536200	Eponte min. + 5% Py	QV	5		7	Prospection Phase 2 (1-4 june, 2007)
71398	471538	5536200	I3A Cb++, 3% Po	I3A	3	Cb	<.001	Prospection Phase 2 (1-4 june, 2007)
71399	471333	5535755	V3B Gossan	V3B	1	Gossan	48	Prospection Phase 2 (1-4 june, 2007)
22043	476662	5537039	(V3B QV injected), Py trace	V3B	tr.	CI, Cb	2	End of stripping phase 2
22044	476662	5537039	(V3B QV injected), Py trace	V3B	tr.	CI, Cb	2	End of stripping phase 2
22045	476662	5537039	(V3B QV injected), Py trace	V3B	tr.	CI, Cb	<.001	End of stripping phase 2
22046	476662	5537039	(V3B QV injected), Py trace	V3B	tr.	CI, Cb	<.001	
								End of stripping phase 2
22047	476662	5537039	(V3B QV injected), Py trace (20 m. ouest)	V3B	tr.	CI, Cb	<.001	End of stripping phase 2

Sample	Easting	Northing	Description	Litho	Min	Alteration	Gold	Comment
number					(%)	(visual)	(ppb)	Market Committee
22048	476662	5537039	(V3B QV injected), Py trace (20 m. ouest)	V3B	tr.	CI, Cb	<.001	End of stripping phase 2
22049	476662	5537039	(V3B QV injected), Py trace (20 m. ouest)	V3B	tr.	CI, Cb	<.001	End of stripping phase 2
22050	?????	?????	Boulder sulfure massif	SM			<.001	End of stripping phase 2

APPENDIX 4 GRIZZLY CLAIM LIST

	and the second			Griziy e	ctive claims list	(Up to A	ugust 2	008)
Feuillet	Type	- No titre	Statut	Inscription	Expiration	Sup. (Ha)	Works	Owner (s)
SNRC 32G14	CDC	2022940	Actif	08/08/2006 0:00	07/08/2008 23:59	55.36	1200	GILBERT LAMOTHE (1360) 100 % (responsable)
SNRC 32G14	CDC	2022941	Actif	08/08/2006 0:00	07/08/2008 23:59	55.36	1200	GILBERT LAMOTHE (1360) 100 % (responsable)
SNRC 32G14	CDC	2022942	Actif	08/08/2006 0:00	07/08/2008 23:59	55.36	1200	GILBERT LAMOTHE (1360) 100 % (responsable)
SNRC 32G14	CDC	2022943	Actif	08/08/2006 0:00	07/08/2008 23:59	55.36	1200	GILBERT LAMOTHE (1360) 100 % (responsable)
SNRC 32G14	CDC	2022944	Actif	08/08/2006 0:00	07/08/2008 23:59	55.36	1200	GILBERT LAMOTHE (1360) 100 % (responsable)
								MARC BOUCHARD (3671) 50 % (responsable)
SNRC 32G14	CDC	2024605	Actif	13/09/2006 0:00	12/09/2008 23:59	55.37	1200	G L GEOSERVICE INC (5214) 50 %
								MARC BOUCHARD (3671) 50 % (responsable)
SNRC 32G14	CDC	2024606	Actif	13/09/2006 0:00	12/09/2008 23:59	55.37	1200	G L GEOSERVICE INC (5214) 50 %
								MARC BOUCHARD (3671) 50 % (responsable)
SNRC 32G14	CDC	2024607	Actif	13/09/2006 0:00	12/09/2008 23:59	55.36	1200	G L GEOSERVICE INC (5214) 50 %
								MARC BOUCHARD (3671) 50 % (responsable)
SNRC 32G14	CDC	2024608	Actif	13/09/2006 0:00	12/09/2008 23:59	55.36	1200	G L GEOSERVICE INC (5214) 50 %
								MARC BOUCHARD (3671) 50 % (responsable)
SNRC 32G14	CDC	2024609	Actif	13/09/2006 0:00	12/09/2008 23:59	55.36	1200	G L GEOSERVICE INC (5214) 50 %
								MARC BOUCHARD (3671) 50 % (responsable)
SNRC 32G14	CDC	2024610	Actif	13/09/2006 0:00	12/09/2008 23:59	55.36	1200	G L GEOSERVICE INC (5214) 50 %
								MARC BOUCHARD (3671) 50 % (responsable)
SNRC 32G14	CDC	2025442	Actif	20/09/2006 0:00	19/09/2008 23:59	55.37	1200	G L GEOSERVICE INC (5214) 50 %
								MARC BOUCHARD (3671) 50 % (responsable)
SNRC 32G14	CDC	2025443	Actif	20/09/2006 0:00	19/09/2008 23:59	55.37	1200	G L GEOSERVICE INC (5214) 50 %
						1	ļ	MARC BOUCHARD (3671) 50 % (responsable)
SNRC 32G14	CDC	2025444	Actif	20/09/2006 0:00	19/09/2008 23:59	55.37	1200	G L GEOSERVICE INC (5214) 50 %
]]					ļ	j	MARC BOUCHARD (3671) 50 % (responsable)
SNRC 32G14	CDC	2025445	Actif	20/09/2006 0:00	19/09/2008 23:59	55.37	1200	G L GEOSERVICE INC (5214) 50 %
	j j		j]	j	GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2025992	Actif	26/09/2006 0:00	25/09/2008 23:59	55.36	1200	MARC BOUCHARD (3671) 50 %
	1 1		ļ,			ļ .]	GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2025993	Actif	26/09/2006_0:00	25/09/2008 23:59	55.36	1200	MARC BOUCHARD (3671) 50 %
) [ļ,		GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2025994	Actif	26/09/2006 0:00	25/09/2008 23:59	55.36	1200	MARC BOUCHARD (3671) 50 %
			Į į			ļ	,	GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2025995	Actif	26/09/2006 0:00	25/09/2008 23:59	55.36	1200	MARC BOUCHARD (3671) 50 %
								GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2025996	Actif	26/09/2006 0:00	25/09/2008 23:59	55.35	1200	MARC BOUCHARD (3671) 50 %
								GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2025997	Actif	26/09/2006 0:00	25/09/2008 23:59	55.35	1200	MARC BOUCHARD (3671) 50 %
								GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2025998	Actif	26/09/2006 0:00	25/09/2008_23:59	55.34	1200	MARC BOUCHARD (3671) 50 %

Feuillet	Туре	No titre	Statut	Inscription	Expiration	Sup. (Ha)	Works	Owner (s)
								GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2025999	Actif	26/09/2006 0:00	25/09/2008 23:59	55.34	1200	MARC BOUCHARD (3671) 50 %
								GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2027501	Actif	02/10/2006 0:00	01/10/2008 23:59	55.41	1200	MARC BOUCHARD (3671) 50 %
								GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2027502	Actif	02/10/2006 0:00	01/10/2008 23:59	55.41	1200	MARC BOUCHARD (3671) 50 %
								GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2027503	Actif	02/10/2006 0:00	01/10/2008 23:59	55.4	1200	MARC BOUCHARD (3671) 50 %
								GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2027504	Actif	02/10/2006 0:00	01/10/2008 23:59	55.4	1200	MARC BOUCHARD (3671) 50 %
								GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2027505	Actif	02/10/2006 0:00	01/10/2008 23:59	55.39	1200	MARC BOUCHARD (3671) 50 %
	1							GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2027506	Actif	02/10/2006 0:00	01/10/2008 23:59	55.39	1200	MARC BOUCHARD (3671) 50 %
	•		l					GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2027507	Actif	02/10/2006 0:00	01/10/2008 23:59	55.38	1200	MARC BOUCHARD (3671) 50 %
			ļ]		GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2027508	Actif	02/10/2006 0:00	01/10/2008 23:59	55.38	1200	MARC BOUCHARD (3671) 50 %
								GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2027509	Actif	02/10/2006 0:00	01/10/2008 23:59	55.38	1200	MARC BOUCHARD (3671) 50 %
								GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2030568	Actif	24/10/2006 0:00	23/10/2008 23:59	55.39	1200	MARC BOUCHARD (3671) 50 %
								GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2030569	Actif	24/10/2006 0:00	23/10/2008 23:59	55.39	1200	MARC BOUCHARD (3671) 50 %
								GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2030570	Actif	24/10/2006 0:00	23/10/2008 23:59	55.39	1200	MARC BOUCHARD (3671) 50 %
	l i					ĺ		GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2030571	Actif	24/10/2006 0:00	23/10/2008 23:59	55.39	1200	MARC BOUCHARD (3671) 50 %
						Ì		GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2030572	Actif	24/10/2006 0:00	23/10/2008 23:59	55.38	1200	MARC BOUCHARD (3671) 50 %
								GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2030573	Actif	24/10/2006 0:00	23/10/2008 23:59	55.38	1200	MARC BOUCHARD (3671) 50 %
								GILBERT LAMOTHE (1360) 50 % (responsable)
SNRC 32G14	CDC	2030574	Actif	24/10/2006 0:00	23/10/2008 23:59	55.38	1200	MARC BOUCHARD (3671) 50 %
01100 0004 :	امما	00000=0		0=40000000	00/40/0000 == ==			MARC BOUCHARD (3671) 50 %
SNRC 32G14	CDC	2030878	Actif	27/10/2006 0:00	26/10/2008 23:59	55.4	1200	G L GEOSERVICE INC (5214) 50 % (responsable)
ONDO SSS 4 :		0000077	ا ا	07/10/0555	00/40/0055 55 55		40	MARC BOUCHARD (3671) 50 %
SNRC 32G14	CDC	2030879	Actif	27/10/2006 0:00	26/10/2008 23:59	55.4	1200	G L GEOSERVICE INC (5214) 50 % (responsable)
SNRC 32G14	CDC	2038559	Actif	08/12/2006 0:00	07/12/2008 23:59	55.38	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038560	Actif	08/12/2006 0:00	07/12/2008 23:59	55.38	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038561	Actif	08/12/2006 0:00	07/12/2008 23:59	55.38	1200	QUEENSTON MINING INC (1199) 100 % (responsable)

Feuillet	Туре	No titre	Statut	linscription	Expiration	Sup. (Ha)	Works	Owner (s)
SNRC 32G14	CDC	2038562	Actif	08/12/2006 0:00	07/12/2008 23:59	55.37	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038563	Actif	08/12/2006 0:00	07/12/2008 23:59	55.37	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038564	Actif	08/12/2006 0:00	07/12/2008 23:59	55.37	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038565	Actif	08/12/2006 0:00	07/12/2008 23:59	55.37	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038566	Actif	08/12/2006 0:00	07/12/2008 23:59	55.37	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038567	Actif	08/12/2006 0:00	07/12/2008 23:59	55.37	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038568	Actif	08/12/2006 0:00	07/12/2008 23:59	55.37	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038569	Actif	08/12/2006 0:00	07/12/2008 23:59	55.37	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038570	Actif	08/12/2006 0:00	07/12/2008 23:59	55.37	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038571	Actif	08/12/2006 0:00	07/12/2008 23:59	55.37	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038572	Actif	08/12/2006 0:00	07/12/2008 23:59	55.36	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038573	Actif	08/12/2006 0:00	07/12/2008 23:59	55.36	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038574	Actif	08/12/2006 0:00	07/12/2008 23:59	55.36	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038575	Actif	08/12/2006 0:00	07/12/2008 23:59	55.36	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038576	Actif	08/12/2006 0:00	07/12/2008 23:59	55.36	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038577	Actif	08/12/2006 0:00	07/12/2008 23:59	55.36	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038578	Actif	08/12/2006 0:00	07/12/2008 23:59	55.36	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038579	Actif	08/12/2006 0:00	07/12/2008 23:59	55.35	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038580	Actif	08/12/2006 0:00	07/12/2008 23:59	55.35	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038581	Actif	08/12/2006 0:00	07/12/2008 23:59	55.35	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038582	Actif	08/12/2006 0:00	07/12/2008 23:59	55.35	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038583	Actif	08/12/2006 0:00	07/12/2008 23:59	55.35	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038584	Actif	08/12/2006 0:00	07/12/2008 23:59	55.35	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038585	Actif	08/12/2006 0:00	07/12/2008 23:59	55.35	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038586	Actif	08/12/2006 0:00	07/12/2008 23:59	55.35	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038587	Actif	08/12/2006 0:00	07/12/2008 23:59	55.34	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038588	Actif	08/12/2006 0:00	07/12/2008 23:59	55.34	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038589	Actif	08/12/2006 0:00	07/12/2008 23:59	55.34	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038590	Actif	08/12/2006 0:00	07/12/2008 23:59	55.34	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038591	Actif	08/12/2006 0:00	07/12/2008 23:59	55.34	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038592	Actif	08/12/2006 0:00	07/12/2008 23:59	55.34	1200	QUEENSTON MINING INC (1199) 100 % (responsable)
SNRC 32G14	CDC	2038593	Actif	08/12/2006 0:00	07/12/2008 23:59	55.34	1200	QUEENSTON MINING INC (1199) 100 % (responsable)

Total superficie: 4207.86

APPENDIX 5 ANALYSIS CERTIFICATES

		2007 sample list, type and	Certificates no
From		Origin -	Certificates no
22001	22019	Queenimich trench grab samples	7W-2635-RG1
22020	22042	Gladstone trench grab samples	7W-2635-RG1
22043	22050	Grizzly prospection 2007 samples	7W-2668-RG1
22051	22141	Queenimich trench channel samples	7W-2668-RG1+ 7W-2669-RG1
22142	22203	Gladstone trench channel samples	7W-2669-RG1+ 7W-2670-RG1
22204	22228	GRZ-07-01	7W-2880-RG1+7W-2861-RG1
22228	22283	GRZ-07-02	7W-2861-RG1+7W-3047-RG1+7W-2861-RG1+7W-2993-R
22284	22370	GRZ-07-03	7W-2993-RG1+7W-2994-RG1
22371	22417	GRZ-07-04	7W-2994-RG1+7W-2995-RG1
22417	22456	GRZ-07-05	7W-2995-RG1
71360	71377	Gladstone trench sampling	18342
61157	61177	Grizzly prospection 2007 samples	2864
61187	61200	Grizzly prospection 2007 samples	2864-2865
71354	71359	Grizzly prospection 2007 samples	2865
71378	71399	Grizzly prospection 2007 samples	7W-2203-RG1
61101	61118	Grizzly 2006 investigation	6W-2602-RG1

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

7W-2635-RG1

Company:

QUEENSTON MINING INC.

Date: AUG-16-07

Project:

Grizzly

Attn:

We hereby certify the following Geochemical Analysis of 42 Rock samples submitted AUG-01-07 by .

Sample	Au	Au Check	Au	Au Check	
Number	PPB	PPB	g/tonne	g/tonne	
- 22001	Nil	•••	Ni.1	_	
22002	Nil	· -	Nil	_	
22003	Nil	-	Nil.	-	
22004	Ni.1	-	Nil	_	
22005	55	-	0.06	-	
22006	1653	_	1.65	1.47	
22007	Nil	-	Nil	_	
22008	48		0.05	-	
22009	Nil	-	Nil	-	·
22010	137	123	0.14	0.12	
Blank	Nil.	-	Ni]	-	
STD OxK48	3538	-	3.54	•	
22011	398	-	0.40	_	
22012	Nil	-	Nil	~	
22013	10	_	0.01	-	
22014	Nil		Ni1		
22015	Nil	-	Nil	-	
22016	Nil	-	Nil	-	
22017	147	-	0.15	-	
22018	Nil	-	Nil	_	
22019	Nil	Nil	Nil	Nil	
- 22020	Nil	-	Nil	wa.	
22021	Nil	~	Nil	-	
22022	Nil	-	Nil	-	
22023	Nil		Nil	_	
22024	Ni.l	*	Nil		
22025	Nil	-	Nil		
22026	Nil	_	\mathtt{Nil}		
22027	Nil	-	Nil	_	
22028	Nil		Nil		

Certified by Daniel at

Assaying - Consulting - Representation

Page 2 of 2

Geochemical Analysis Certificate

7W-2635-RG1

Company:

QUEENSTON MINING INC.

Date: AUG-16-07

Project:

Grizzly

Attn:

We hereby certify the following Geochemical Analysis of 42 Rock samples submitted AUG-01-07 by .

Sample Number	Au PPB	Au Check PPB	Au g/tonne	Au Check g/tonne	
				9/0011116	
22029	Nil	-	Nil	_	
Blank	Nil	_	Nil	-	
STD OxK48	3531	-	3.53	_	
22030	Nil	-	Nil	_	
22031	Nil	-	Nil	_	
22032	51		0.05		
22033	Nil	-	Nil	_	
22034	4766	-	4.77	4.59	
22035	1022	747	1.02	0.75	·
22036	1049	-	1.05	0.69	
< 22037	1262		1.26	0.99	
22038	261	_	0.26	_	
22039	4251	_	4.25	8.77	
22040	1625	-	1.63	1.61	
22041	1203	-	1.20	1.58	
- 22042	69		0.07		

Certified by Donis Charte

Assaying - Consulting - Representation

Page 1 of 3

Geochemical Analysis Certificate

7W-2668-RG1

Company:

QUEENSTON MINING INC.

Date: AUG-16-07

Project:

Grizzly

Attn:

We hereby certify the following Geochemical Analysis of 71 Rock samples submitted AUG-03-07 by .

	Sample Number	Au PPB	Au Check PPB	Au g/tonne	Au Check g/tonne	
· · · · •	22043	2		Nil		
	22044	2	_	Nil	_	•
	22045	Nil	_	Nil	_	
	22046	Nil	-	Nil	_	
	22047	Nil	_	Nil	-	
	22048	Nil		Nil		
5-1 mg	22049	Nil	_	Nil	_	
	22050	Nil	_	Nil	_	
	22051	Nil	-	Nil	-	
.	22052	Nil	Nil	Nil	Nil	
	Blank	Nil	_	Nil		
	STD OxK48	3559	_	3.56	_	
	22053	Nil	-	Nil	-	
	22054	7	-	0.01	-	
	22055	2	-	Nil	<u>-</u>	
terrer stille	22056	Nil	_	Nil	-	
	22057	Nil	-	Nil	-	
	22058	Nil	Nil	Nil	Nil	
andria.	22059	Nil	-	Nil	_	
	22060	Nil	· -	Nil	<u>-</u>	• -
	22061	Nil	-	Nil	-	
	22062	Nil	<u>-</u> ·	Nil	-	
	22063	2	-	Nil	-	
	22064	2	_	Nil	-	
	22065	Nil		Nil	-	
	22066	Nil	<u>-</u>	Nil	<u>-</u>	
	22067	Nil	-	Nil	_	
	22068	Nil	Nil	Nil	Nil	
	22069	Nil	-	Nil	-	
	22070	Nil		Nil		

Certified by Down Charles

Assaying - Consulting - Representation

Page 2 of 3

Geochemical Analysis Certificate

7W-2668-RG1

· Company:

QUEENSTON MINING INC.

Date: AUG-16-07

Project:

Grizzly

Attn:

We hereby certify the following Geochemical Analysis of 71 Rock samples submitted AUG-03-07 by.

	Sample Number	Au PPB	Au Check PPB	Au g/tonne	Au Check g/tonne	
	22071	Nil		 Nil		
	Blank	Nil	_	Nil	_	
	STD OxK48	3463	_	3.46	-	
	22072	Nil	-	Nil	_	
	22073	Nil	-	Nil	-	
	22074	Nil		Nil		
	22075	Nil	_	Nil	_	
	22076	Nil	_	Nil	_	
	22077	Nil	_	Nil	-	
1445	22078	Nil	-	Nil	_	
	22079	7		0.01	-	
	22080	Nil	Nil	Nil	Nil	
	22081	Nil	_	Nil	-	
	22082	Nil		Nil	_	
	22083	Nil	-	Nil	_	
	22084	Nil		Nil		
	22085	2	-	Nil	_	
	22086	Nil	-	Nil	_	
	22087	Nil	_	Nil	_	
	22088	7	-•	0.01	<u>.</u>	•
	22089	10	Nil	0.01	Nil	
	22090	Nil	_	Nil	_	
	22091	Nil	-	Nil	_	
	22092	Nil	_	Nil	_	
	22093	10	<u>-</u>	0.01	_	
L-5.	22094	21	-	0.02	-	
	22095	21	_	0.02	-	
	22096	34	-	0.03	-	
	22097	2	-	Nil	-	
	22098	14	14	0.01	0.01	

Assaying - Consulting - Representation

Page 3 of 3

Geochemical Analysis Certificate

7W-2668-RG1

Company:

QUEENSTON MINING INC.

Date: AUG-16-07

Project:

Grizzly

Attn:

We hereby certify the following Geochemical Analysis of 71 Rock samples submitted AUG-03-07 by.

	Sample	Au	Au Check	Au	Au Check	
	Number	PPB	PPB	g/tonne	g/tonne	
•••	22099	Nil	-	Nil	-	
	22100	Nil	-	Nil	-	
	Blank	Nil	-	Nil	-	
-	STD OxK48	3531	-	3.53	-	
	22101	Nil	-	Nil	_	
	22102	Nil	-	Nil		
	22103	Nil	_	Nil	_	
	22104	Nil	-	Nil	-	
	22105	Nil	-	Nil	-	
an .	22106	Nil	-	Nil	-	
	22107	Nil	-	Nil	-	
	22108	Nil	-	Nil	-	
-	22109	2	2	Nil	Nil	
	22110	Nil	-	Nil	_	
	22111	27	<u>-</u>	0.03	_ _	
w.	22112	Nil	-	Nil	-	
	22113	Nil	-	Nil	-	

Assaying - Consulting - Representation

Page 1 of 3

Geochemical Analysis Certificate

7W-2669-RG1

Company: QUEENSTON MINING INC.

Date: AUG-21-07

Project:

Grizzly

Attn:

We hereby certify the following Geochemical Analysis of 70 Rock samples submitted AUG-03-07 by.

	Sample Number	Au PPB	Au Check PPB	Au g/tonne	Au Check g/tonne	
otomia.						
	22114 22115	466	363	0.47	0.36	
	22116	, 7	-	0.01	-	
	22116	10	_	0.01	-	
	22117	17	_	0.02	_	
		2		Nil		
	22119	Nil		Nil	_	
	22120	Nil	_	Nil	<u>-</u>	
	22121	Nil	-	Nil	-	•
	22122	Nil	-	Nil	-	
	22123	Nil	-	Nil	_	
	Blank	Nil		Nil		
	STD OxK48	3525	=	3.53	_	
	22124	75	82	0.08	0.08	
	22125	21	_	0.02	_	
	22126	51	-	0.05	_	
	22127	Nil		Nil		
	22128	Nil	_	Nil	_	·
	22129	Nil	2	Nil	Nil	
	22130	Nil	_	Nil	_	
	22131	10	_	0.01	-	•
	22132	Nil		Nil		
	22133	Nil	_ ,	Nil	_	
-	22134	Nil	_	Nil	_	
٠	22135	21	_	0.02	_	
	22136	Nil	-	Nil	_	
-	22137	Nil		Nil		
	22138	Nil	Nil	Nil	Nil	
	22139	Nil		Nil	- 14.T.T.	•
	22140	Nil	_	Nil	_	
	22141	Nil	_	Nil	_	
						

Assaying - Consulting - Representation

Page 2 of 3

Geochemical Analysis Certificate

7W-2669-RG1

Company:

QUEENSTON MINING INC.

Date: AUG-21-07

Project:

Grizzly

Attn:

We hereby certify the following Geochemical Analysis of 70 Rock samples submitted AUG-03-07 by .

	Sample	Au	Au Check	Au	Au Check	
	Number	PPB	PPB	g/tonne	g/tonne	
	22142	Nil		Nil		
	Blank	Nil	~	Nil	_	
	STD OxK48	3531	_	3.53	_	
	22143	Nil	Nil	Nil	Nil	
	22144	Nil	-	Nil	_	
	22145	Nil	-	Nil		
	22146	Nil	_	Nil	_	
	22147	Nil	_	Nil	_	
	22148	Nil	_	Nil	_	
	22149	Nil	-	Nil	-	•
	22150	Nil	-	Nil		
	22151	Nil	-	Nil	_	
	22152	Nil	_	Nil	-	
	22153	Nil	_	Nil	_	
	22154	7	7	0.01	0.01	
	22155	Nil	-	Nil		
	22156	Nil	-	Nil	_	
	22157	Nil	_	Nil	_	
	22158	Nil	-	Nil	-	
	22159 •	Nil	- <u>-</u>	Nil	-	
	22160	Nil	~	Nil	-	
	22161 '	Nil		Nil		
	22162	2		Nil	_	
٠	22163	Nil	-	Nil	-	
	22164	Nil		Nil	-	
	22165	Nil	Nil	Nil	Nil	
	22166	Nil	-	Nil	-	·
	22167	Nil	-	Nil		
	22168	Nil	-	Nil	_	
	22169	Nil		Nil	-	

Certified by Denis Chath

Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 3 of 3

Geochemical Analysis Certificate

7W-2669-RG1

Company:

QUEENSTON MINING INC.

Date: AUG-21-07

Project:

Grizzly

Attn:

We hereby certify the following Geochemical Analysis of 70 Rock samples submitted AUG-03-07 by.

Sample	Au	Au Check	Au	Au Check	
Number	PPB	PPB	g/tonne	g/tonne	
22170	Nil		Nil		
22171	645	826	0.65	0.83	
Blank	Nil	-	Nil	-	
STD OxK48	3634	-	3.64	-	
22172	391	-	0.39	_	
22173	62		0.06		
22174	2	-	Nil	_	
22175	Nil	-	Nil	-	
22176	Nil	-	Nil	_	
22177	Nil	_	Nil	-	•
22178	768	-	0.77	-	
22179	1296	-	1.30	1.59	·
22180	435	-	0.44	-	
22181	69	-	0.07	-	
22182	151	_	0.15	-	
22183	127	127	0.13	0.13	

Grizzly

Swastika Laboratories Ltd

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-2670-RG1

Company:

QUEENSTON MINING INC.

Date: AUG-16-07

Project: Attn:

We hereby certify the following Geochemical Analysis of 20 Rock samples submitted AUG-03-07 by.

	Sample Number	Au PPB	Au Check PPB	Au g/tonne	Au Check g/tonne	
~	22184	93	-	0.09		
	22185	Nil	-	Nil	-	
	22186	Nil	-	Nil	-	
•	22187	96	-	0.10	-	
	. 22188	7		0.01	-	
	22189	130	-	0.13		
-	22190	2		Nil	_	
	22191	Nil	-	Nil	_	
	22192	2	-	Nil	-	
	22193	Nil	-	Nil	-	
	Blank	Nil		Nil		
	STD OxK48	3614	-	3.61	-	
	22194	Nil	_	0.01	-	
	22195	7	_	Nil	-	
	22196	754		0.75	1.95	
	22197	10	-	0.01	-	
	22198	3	_	Nil	_	
	22199	48	_	0.05		
	22200	14	-	0.01	-	
	22201	Nil	-	Nil	_ •	
	22202	Nil		Nil		
	22203	Nil	2	Nil	Nil	

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-2880-RG1

Company:

QUEENSTON MINING INC.

Date: SEP-14-07

Project:

Attn:

We hereby certify the following Geochemical Analysis of 13 Core samples submitted AUG-30-07 by.

Sample Number	Au PPB	Au Check PPB	Au g/tonne	Au Check g/tonne	Cu PPM	
22204	Nil		Nil		12	-
22205	10	-	0.01	_	47	
22206	Nil	-	Nil	=	25	
22207	Nil	_	Nil	_	43	
22208	51	-	0.05	_	30	
22209	7	-	0.01	-	21	_
22210	Nil	_	Nil	-	15	
22211	Nil	-	Nil		25	
22212	2	-	Nil	-	11	
22213	Nil		Nil		31	_
22214	75	55	0.08	0.06	27	
22215	7	-	0.01	-	20	
22216	Nil	-	Nil	-	15	

Assaying - Consulting - Representation

Page 1 of 3

Geochemical Analysis Certificate

7W-2861-RG1

Company:

QUEENSTON MINING INC.

Date: SEP-05-07

Project:

Grizzly

Attn:

We hereby certify the following Geochemical Analysis of 66 Rock samples submitted AUG-27-07 by .

Sample	Au	Au Check	Au	Au Check	
Number	PPB	PPB	g/tonne	g/tonne	
22217	21	3	0.02	Nil	
22218	2	_	Nil		
22219	Nil	_	Nil	-	
22220	Nil	_	Nil	_	
22221	Nil	-	Nil	_	
22222	7		0.01	-	
22223	Nil	_	Nil	_	
22224	Nil	-	Nil	_	
22225	Nil	-	Nil	-	
22226	10		0.01	_	
22227	Nil	-	Nil	-	
`~22228	Nil	-	Nil	_	•
22229	17	-	0.02	-	
22230	216	-	0.22	-	
22231	Nil	-	Nil	-	
22232	Nil		Nil		
22233	Nil	_	Nil	-	
22234	Nil	_	Nil	_	
22235	672	720	0.67	0.72	
22236	• 113	-	0.11	-	•
Blank	Nil	-	Nil		
STD OxK48	3634	-	3.63	-	
22237	7	_	0.01	-	
22238	17	-	0.02	-	
22239	10	-	0.01	-	
22240	2	-	Nil		
22241	14	-	0.01	-	
22242	7	_	0.01	-	
22243	2	-	Nil	-	
22244	Nil	_	Nil	_	

Certified by Down Charles

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-3047-RG1

Company:

OUEENSTON MINING INC.

Date: SEP-24-07

Project:

ŪB

roject: Ul

Attn:

We hereby certify the following Geochemical Analysis of 12 Core samples submitted SEP-18-07 by .

Sample	Ni	Pt	Pd	
Number	PPM	PPB	PPB	
22260	10	<5	<5	
22261	21	<5	<5	
22262	323	< 5	7	
22263	164	< 5	<5	
22264	206	<5	<5	
22265	23	<5	<5	
22266	264	<5	<5	
22267	381	<5	< 5	
22268	138	< 5	<5	
22269	72	< 5	< 5	
22270	9	<5	<5	
22271	8	<5	<5	

Certified by Denis Chal

Assaying - Consulting - Representation

Page 2 of 3

Geochemical Analysis Certificate

7W-2861-RG1

Company:

QUEENSTON MINING INC.

Date: SEP-05-07

Project:

Grizzly

Attn:

We hereby certify the following Geochemical Analysis of 66 Rock samples submitted AUG-27-07 by .

	Sample	Au	Au Check	Au	Au Check	
	Number	PPB	PPB	g/tonne	g/tonne	
note man,	22245	Nil	-	Nil		
	22246	Nil	_	Nil	_	
	22247	Nil	_	Nil	_	
rec'es.	22248	Nil	-	Nil	_	
	22249	27		0.03	_	
	22250	2	Nil	Nil	Nil	
	22251	Nil	-	Nil	_	
	22252	Nil	-	Nil	_	
	22253	Nil	_	Nil	-	
	22254	Nil	-	Nil	-	
	22255	134		0.13		
	22256	7	-	0.01	_	
	22257	31	-	0.03		
	22258	2	-	Nil	_	
	22259	Nil	_	Nil	-	
***	22260	Nil	7	Nil	Nil	
	22261	Nil	-	Nil	_	
	22262	Nil	-	Nil	-	
	22263	Nil	_	Nil	_	
	22264	17	·	0.02	_	• '
	22265	Nil	_	Nil	-	
	22266	Nil	_	Nil	-	
	22267	Nil	-	Nil	-	
	22268	27	_	0.03	_	
	22269	Nil		Nil		
refere	22270	69	-	0.07	-	
	22271	960	-	0.96	~	
	22272	99	-	0.10	***	
	22273	Nil	-	Nil	-	
	22274	7	Nil	Nil	Nil	

Certified by Denis Plant

Assaying - Consulting - Representation

Page 3 of 3

Geochemical Analysis Certificate

7W-2861-RG1

Company:

QUEENSTON MINING INC.

Project: Attn:

Grizzly

Date: SEP-05-07

We hereby certify the following Geochemical Analysis of 66 Rock samples submitted AUG-27-07 by.

Sample	Au	Au Check	Au	Au Check	
Number	PPB	PPB	g/tonne	g/tonne	
22275	Nil	-	Nil	_	
22276	Nil		Nil	-	
22277	Nil	-	Nil	-	
22278	Nil	-	Nil	~	
22279	Nil	_ _	Nil		
22280	Nil	-	Nil	-	
22281	Nil	_	Nil	_	
22282	Nil	**	Nil	-	

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

7W-2993-RG1

Company:

QUEENSTON MINING INC.

Date: SEP-26-07

Project: Attn:

Grizzly

We hereby certify the following Geochemical Analysis of 54 Core samples submitted SEP-13-07 by.

Sample Number	Au PPB	Au Check PPB	Au g/tonne	Au Check g/tonne	
22283	14		0.01		
22284	Nil	_	Nil	_	
22285	Nil	_	Nil	_	
22286	Nil	_	Nil	_	
22287	Nil	-	Nil	-	
22288	Nil		Nil.		
22289	17	10	0.02	0.01	
22290	2	-	Nil	_	
22291	7	-	0.01	-	
22292	Nil	-	Nil	-	
Blank	Nil		Nil		
STD OxK48	3593	_	3.59	_	
22293	Nil	-	Nil	_	
22294	2	_	Nil	-	
. 22295	Nil	_	Nil	_	
22296	Nil		Nil		
22297	7	_	0.01	<u>-</u>	
22298	7	_	0.01	_	
22299	2	- ,	Nil	=	
22300	3	- *	Nil	-	•
22301	Nil		Nil	-	
22302	14	_	0.01		
22303	10	_	0.01	_	•
22304	Nil	-	Nil	-	
22305	Nil		Nil		
22306	Nil		Nil		
22307	Nil	Nil	Nil	Nil	,
22308	Nil	-	Nil	-	
22309	2	_	Nil	-	
~ 22310	Nil		Nil		

Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 2 of 2

Geochemical Analysis Certificate

7W-2993-RG1

Company:

QUEENSTON MINING INC.

Date: SEP-26-07

Project:

Grizzly

Attn:

We hereby certify the following Geochemical Analysis of 54 Core samples submitted SEP-13-07 by .

Sample	Au	Au Check	Au	Au Check	
Number	PPB	PPB	g/tonne	g/tonne	
22311	Nil		Nil	-	
Blank	Nil	_	Nil	-	
STD OxK48	3463	_	3.46	-	
22312	Nil	-	Nil	-	
22313	Nil	-	Nil	-	
22314	17		0.02	-	
22315	2	-	Nil	-	
22316	3	Nil	Nil	Nil	
22317	Nil	_	Nil	-	
22318	Nil	_ _	Nil		
22319	Nil	-	Nil	-	
22320	Nil	_	Nil	-	
22321	Nil	_	Nil	-	
22322	7	_	0.01	-	
22323	7	-	0.01		
22324	Nil	-	Nil	-	
22325	Nil	_	Nil	_	
22326	Nil	-	Nil	_	
22327	Nil	-	Nil	-	
* 22328	Nil	·	· Nil		
22329	2	-	Nil	-	
22330	Nil	Nil	Nil	Nil	
22331	Nil	-	Nil	-	
22332	Nil	-	Nil	_	
22333	Nil		Nil		
22334	Nil	-	Nil	_	,
22335	Nil	-	Nil	-	,
22336	Nil	-	Nil	-	
				1	

Certified by Danis Charty

Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

7W-2994-RG1

Company:

QUEENSTON MINING INC.

Project:

Grizzly

Date: SEP-25-07

Attn:

з. sep-13-07

We hereby certify the following Geochemical Analysis of 54 Core samples submitted MMM-DD-YY by .

	Sample	Au	Au Check	Au	Au Check	
	Number	PPB	PPB	g/tonne	g/tonne	
	22337	2		Nil		
	22338	3	_	Nil	_	
	22339	Nil	_	Nil	_	
	22340	Nil	_	Nil	-	
	22341	17	_	0.02	_	
	22342	Nil		Nil		
	22343	Nil	_	Nil	_	
	22344	Nil	_	Nil	_	
	22345	34	-	0.03	-	
**	22346	Nil	-	Nil	_	
	Blank	Nil	-	Nil		
	STD OxK48	3634	_	3.63	-	
	22347	Nil	_	Nil	_	
	22348	Nil	_	Nil	_	
	22349	Nil	_	Nil	-	
alla re	22350	10		0.01		
	22351	96	_	0.10	_	
	22352	192	_	0.19	-	
	22353	89	69	0.09	0.07	
	22354	27	31	0.03	0.03	·
	22355	14	-	0.01		
	22356	Nil	_	Nil	-	
•	22357	Nil	_	Nil	_	
	22358	Nil	_	Nil		
	22359	Nil	-	Nil	-	·
-	22360	Nil		Nil		
	22361	Nil	-	Nil	-	
	22362	Nil	-	Nil	-	
	22363	Nil	-	Nil	-	
	22364	Nil	-	Nil	.	
						·

Certified by Denie Chart

Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 2 of 2

Geochemical Analysis Certificate

7W-2994-RG1

Company:

QUEENSTON MINING INC.

Date: SEP-25-07

Project:

Grizzly

Attn:

з. sep-13-07

We hereby certify the following Geochemical Analysis of 54 Core samples submitted MMM-DD-YY by .

	Sample	Au	Au Check	Au	Au Check	
	Number	PPB	PPB	g/tonne	g/tonne	
}	22365	Nil	-	Nil	_	
	22366	Nil	-	Nil	_	
	Blank	Nil		Nil	_	
ال	STD OxK48	3627	-	3.63	-	
ร ว.	22367	Nil	-	Nil	_	
7.	22368	Nil		Nil		
Ì	22369	Nil	_	Ni1		
1	22370	Nil	_	Nil	_	
1	22371	Nil	_	Nil	_	
	22372	Nil	-	Nil	-	
	22373	2		Nil		
	22374	Nil	_	Nil	_	
	22375	Nil	Nil	Nil	Nil	
	22376	Nil	-	Nil	_	
	22377	Nil	_	Nil	_	
	22378	Nil		Nil		
	22379	7	_	0.01	_	
,	22380	Nil	_	Nil	_	
2	22381	Nil	_	Nil	_	
C	22382 •	Nil	-	Nil	• –	•
	22383	Nil	-	Nil		
	22384	2	-	Nil	_	
	22385	3	_	Nil	_	
	22386	Nil	-	Nil	_	
	22387	14	-	0.01	-	
	22388	Nil	Nil	Nil	Nil	
	22389	Nil	-	Nil	_	
	22390	Nil	-	Nil		
•	and the second s					

Certified by Deing Claster

Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 1 of 3

Geochemical Analysis Certificate

7W-2995-RG1

Company:

QUEENSTON MINING INC.

Date: SEP-28-07

Project:

Grizzly

Attn:

We hereby certify the following Geochemical Analysis of 66 Core samples submitted SEP-13-07 by .

Sample	Au	Au Check	Au	Au Check	
Number	PPB	PPB	g/tonne	g/tonne	
22391	7	-	0.01	-	
22392	Nil	_	Nil	-	
22393	Nil	-	Nil	-	
22394	Nil	=	Nil	-	
22395	Nil	-	Nil	-	
22396	2	-	Nil	-	
22397	Nil	Nil	Nil	Nil	
22398	Nil	_	Nil	-	
22399	Nil	-	Nil	-	
22400	Nil	_ _	Nil		
Blank	Nil	· -	Nil	-	
STD OxK48	3559	_	3.56	-	
22401	Nil	_	Nil	-	
22402	Nil	_	Nil	-	
22403	Nil	.	Nil	_	
22404	Nil		Nil	-	
22405	Nil	_	Nil	-	
22406	10	_	0.01	-	
22407	Nil	-	Nil	-	
22408	Nil	_	Nil	· -	
22409	2	-	Nil	_	
22410	Nil	- .	Nil	-	
22411	7	-	0.01	-	
22412	Nil	Nil	Nil	Nil	
22413	Nil	-	Nil		
22414	Nil	-	Nil	-	
22415	2	-	Nil	•••	
, 22416	Nil	-	Nil	-	
22417	3	-	Nil	-	
₇ ,22418	Nil	-	Nil	-	

Certified by Denis Chaty

Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 2 of 3

Geochemical Analysis Certificate

7W-2995-RG1

Company:

QUEENSTON MINING INC.

Date: SEP-28-07

Project:

Grizzly

Attn:

We hereby certify the following Geochemical Analysis of 66 Core samples submitted SEP-13-07 by .

Sample	Au	Au Check	Au	Au Check	
Number	PPB	PPB	g/tonne	g/tonne	
22419	Nil		Nil		
Blank	Nil		Nil	_	
STD OxK48	3497	_	3.50	-	
22420	17	_	0.02	_	
22421	Nil	-	Nil	-	
22422	7		0.01		
22423	Nil	_	Nil	_	
22424	298	391	0.30	0.39	
22425	17	_	0.02	_	
22426	Nil	_	Nil	-	
22427	2	-	Nil	-	
22428	10	_	0.01	_	
22429	Nil	-	Nil	-	
22430	Nil	-	Nil	-	
22431	Nil	-	Nil	-	
22432	Nil	-	Nil	-	
22433	Nil		Nil	-	
22434	Nil	-	Nil	-	
22435	Nil	-	Nil	-	
22436	Nil	-	Nil	-	•
22437	Nil	-	Nil		
22438	58	=	0.06	-	
22439	Nil	-	Nil	-	
22440	Nil	-	Nil	-	
22441	Nil	-	Nil	-	•
22442	Nil		Nil	-	
22443	291	333	0.29	0.33	
22444	Nil	_	Nil	-	
22445	Nil	-	Nil	-	
22446	99	<u>-</u>	0.10	<u>-</u>	

Certified by Denis Charly

Assaying - Consulting - Representation

Page 3 of 3

Geochemical Analysis Certificate

7W-2995-RG1

Company:

QUEENSTON MINING INC.

Date: SEP-28-07

Project: Attn: Grizzly

We hereby certify the following Geochemical Analysis of 66 Core samples submitted SEP-13-07 by .

Sample	Au	Au Check	Au	Au Check	
Number	PPB	PPB	g/tonne	g/tonne	
22447	Nil	-	Nil	-	
22448	Nil	-	Nil	-	
Blank	Nil	-	Nil	-	
STD OxK48	3504	_	3.50	-	
22449	Nil	_ _	Nil		
22450	Nil		Nil	_	
22451	31	=	0.03	-	
22452	Nil	-	Nil	_	
22453	408	466	0.41	0.47	
22454	Nil		Nil		
22455	144	-	0.14	-	
22456	2	-	Nil	-	

Certified by Danis Charle

Laboratoire Expert Inc.

127, Boulevard Industriel Rouyn-Noranda, Québec Canada, J9X 6P2 Téléphone: (819) 762-710

Date : 2007/05/31

Page: 1 de 1

Téléphone : (819) 762-7100, Télécopieur : (819) 762-7510 Client : Queenston Mining Inc.	
Destinataire : Michel Leblanc	Dossier : 18342
	Votre no. commande :
P.O. Box 996 Kirkland Lake	Projet : 3641
Ontario Téléphone : (705) 856-7437 P2N 3L1 Télécopieur: (705) 567-4426	Nombre total d'echantillors : 13

<u>Identification</u>	Au FA-GEO ppb 5	Au-Dup FA-GEO ppb 5	Au FA-GRAV g/t 0.03
	344	364	
71360	26	304	
71361			1.58
71362	1437		1.38
71363	23		
71364	15		
71365	3340		3,46
71366	11		
71367	44		
71368	2265		2.43
71369	7		
71370	27		
71371	515		
71372	<5	<5	
71373	72		
71374	<5		
71375	<5		
71376	<5		
71377	<5		

Luce Lafleur, Directrice de Bureau

PolyMet Laboratories

AuAssay 2007

CERTIFICATE

2864

Client:

Queenston Mining Inc.

Job No. 0-136

Date:

May 16/07

Date.	Way 10/07		
		· Au	Au
Sample #		oz/ton	g/tonne
61157		0.008	0.274
61158		<.001	<.001
61159		<.001	<.001
61160		<.001	<.001
61161		<.001	<.001
61162		<.001	<.001
61163		<.001	<.001
61164		<.001	<.001
61165		0.004	0.137
61166		<.001	<.001
61167		<.001	<.001
61168		<.001	<.001
61169		<.001	<.001
61170		<.001	<.001
* *			
61171		<.001	<.001
61172		<.001	<.001
61173		<.001	<.001
61174		<.001	<.001
61175		0.054	1.851
61176		0.318	10.903
61177		0.012	0.411

OXL 51

0.170 5.829

Blank

<.001

28

PolyMet Laboratories

AuAssay 2007 CERTIFICATE

2865

Client: Queenston Mining Inc.

Job No. 0-136

Date:

May 16/07

Sample #	Au · oz/ton	Au g/tonne
	15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i e m
25 10 pm 2) (0	
61188	<.001	<.001
61189	<.001	<.001
61190	<.001	<.001
61191	<.001	<.001
61192	<.001	<.001
61193	<.001	<.001
61194	<.001	<.001
61195	<.001	<.001
61196	<.001	<.001
61197	<.001	<.001
61198	<.001	<.001
61199	0.004	0.137
61200	<.001	<.001
71354	0.038	1.303
71355	0.016	0.549
71356	<.001	<.001
71357	<.001	<.001
71358	<.001	<.001
71359	<.001	<.001
sal - A	. <.001	<.001
sal - B	0.002	0.069
sal - C	<.001	<.001
sal - D	<.001	<.001

OXL 51 0.168 5.760 Blank <.001

Certified Assaver:

26

Established 1928

Swastika Laboratories Ltd

Assaying - Consulting - Representation

Geochemical Analysis Certificate

7W-2203-RG1

Company:

QUEENSTON MINING INC.

Date: JUN-28-07

Project:

Grizzly (3641)

Attn:

We hereby certify the following Geochemical Analysis of 22 Core samples submitted JUN-22-07 by .

Sample	Au	Au Check	Au	Au Check	
Number	PPB	PPB	g/tonne	g/tonne	
71378	1409	-	1.41	1.37	
71379	240	_	0.24	-	
71380	1605	-	1.61	1.50	
71381	10	-	0.01	_	
71382	24	-	0.02	-	
71383	17	_	0.02	_	
71384	2	-	Nil	_	
71385	Nil	_	Nil	_	
71386	7		0.01	-	
71387	7	Nil	0.01	Nil	
Blank	Nil	_	Nil	-	
STD OxJ47	2400	-	2.40	-	
71388	2	-	Nil	-	
71389	31	-	0.03	_	
71390	82	-	0.08	<u>-</u>	
71391	14	-	0.01	-	
71392	7	-	0.01	_	
71393	38	_	0.04	-	
71394	10	_	0.01	_	
71395	65	• 69	0.07	0.07	•
71396	Nil	_	Nil	_	
71397	7	_	0.01	_	
71398	Nil	_	Nil	_	·
71399	48	-	0.05	-	

Certified by Duis Charles

Established 1928

Swastika Laboratories Ltd

Assaying - Consulting - Representation

Geochemical Analysis Certificate

6W-2602-RG1

Company:

QUEENSTON MINING INC.

Date: AUG-31-06

Project:

Grizzly

Attn:

We hereby certify the following Geochemical Analysis of 19 Rock samples submitted AUG-29-06 by .

Sample	Au	Au Check	Au	Au Check	Multi		
Number	PPB	PPB	g/tonne	g/tonne	Element		
61101	168	-	0.17	-	Results		
61102	27	-	0.03	_	to		
61103	Nil	_	Nil	-	follow		
61104	24	-	0.02	-			
61105	Nil		Nil	-			
61106	401	-	0.40	-			
61106 A	2949	2781	2.95	2.78			
61107	1282	-	1.29	-			
61108	144	-	0.14	-			
61109	240	<u>-</u>	0.24				
Blank	Nil	-	Nil	_			
STD OxJ47	2462	-	2.46	-		4	
61110	99	-	0.10	-			
61111	161	-	0.16	-			
61112	144		0.14				
61113	195	· -	0.20	-			
61114	79	-	0.08	-			
61115	14	-	0.01	-			
61116	154	-	0.15	-			
61117	3291		3.29	3.67			
61118	3634	-	3.63	-			

Certified by Jun

APPENDIX 6 2007 DDH LOG DESCRIPTION

					Gr	izzly	2007- Summary DDH Pr	ogram
Hole ID GRZ-07-01	Grid X	Grid East L 0+00 (477200E)	Grid North ST 6+75S (5535477N)	150	Dip -48	Depth 189	,	Observations Hole no GRZ-07-01 intersected a sedimentary sequence dominated by polymictic conglomerats intercalated with metric to decametric arkosic, micro-conglomeratic and locally argilitic levels all diping at 45-50 degrees toward N330 direction. The two I.P has been intersected between 63.0 and 112.0 meters consisting in 3 to 30% Py in both disseminated, clotted, nodular and clastic forms. No significant value obtained.
GRZ-07-02	X	L 0+05W (476832E)	ST 0+75 N (5536083N)	135	-50	201	I.P. anomaly and possibility of a deformation	Hole GRZ-07-02 intersected a complex rock setting mainly composed by a leucoxenitic gabbro (from collar to 52.40 m.), locally ankeritized and mineralized in Py and Aspy. That leucoxenitic gabbro, part of the regional Daladier mafic sill is cut by few biotitic lamprophyres and a metric felsic dyke. The bulk of mineralization is spatially associated to these intrusions. A mineralized pyroxenitic unit was intersected between 54.55 and 64.10 meters, explaining the locale I.P anomaly detected. From 73.30 m. to the end, GRZ-07-02 intersected a sedimentary sequence dominated by arkose, silstone, argilite and local micro-conglomerat units intercalated interpreted as part of the La Trève sedimentary Formation. The contact with the Daladier gabbroic sill appears to be concordant and no evidence of deformation corridor were observed.
GRZ-07-03	X	L 1+00 E (476838E)	ST 2+50 N (5536307N)	150	-45	243	topographic depression sits between two gabbroic sills. Also design to test the base of the Daladier sill about 100 meters east of and 200 meters downdip of grizzly trench.	Hole GRZ-07-03 pass through a sequence dominated by 2 gabbroic sills intercalated with 2 argilitic levels (locally graphitic and sulfidic). The first I.P. tested appears to be the expression of a metric pyritic (semi-massive) and graphitic level sits between 44.7 to 47.0 m. (upper ctc with a Gabbroic sill). The second I.P. tested seems to be explained by a second argilitic level with disseminated Py reaching locally 20% on a narrow interval. Also, a 27 meters (114.0 to 137.0 m.) gabbroic interval inside the Daladier sill returned a moderately foliated and ankeritized section with up to 2% disseminated Py and Fu alteration associated. The hole pass through the Daladier gabbroic sill from 82.75 to 200.15 m and the extension of the mineralized pyroxenitic level observed inside GRZ-07-02 wasn't presents in GRZ-07-03. Hole GRZ-07-03 was terminated inside the La Treve formation basal argilitic, arkosic and conglomeratic sediment at 243.0 meters.

and near vertical structures along the 99 meters length of hole. The altered corridor (East Gladstone structure) was intersected from 21.7 to meters, consisting of a moderate to strong ankeritization with up to disseminated by and local fucshitic alteration associated. The scorridor (Gladstone structure (north extension)) was intersected from 44.0 meters consisting in a moderate pervasive ankeritic corridor will Fu and up to 1-2% disseminated Py associated. The third and intersection was located from 83.20 to 98.80 m. along hole. This interval was similar in intensity with the two previous one but with up of disseminated Py was reported into a decimetric breciated Qz-with Fuschitic margins intersected between 85.6 and 87.35 meters GRZ-07-04 was terminated at 99.0 meters into a leucoxenitic gabbro; after the third (west gladstone structure). GRZ-07-05 473620E 5535164N 260 473620E 473620E 473620E						Gr	izzly :	2007- Summary DDH Pro	ogram
North. deformatiom corridor including at least 3 differents parallels ankeritic, and near vertical structures along the 99 meters length of hole. The altered corridor (East Gladstone structure) was intersected from 21.7 t meters, consisting of a moderate to strong ankeritization with up to disseminated by and local fuschilic alteration associated. The scorridor (Gladstone structure (north extension)) was intersected from 64.0 meters consisting in a moderate pervasive ankeritic corridor with Fu and up to 1-2% disseminated Py associated. The third an intersection was located from 63.20 to 98.80 m. along hole. That is interval was similar in intensity with the two previous one but with up of disseminated Py was reported into a decimetric brecciated Q2-with Fuschitic margins intersected between 85.6 and 87.35 meters GR2-07-04 was terminated at 99.0 meters into a leucoxenitic gabbro, after the third (west gladstone structure). GRZ-07-05 473620E 5535164N 260 45 99 Testing continuity of mineralization and alteration. As previous hole collared 50 meters north (GRZ-07-04), hole GRZ below Gladstone trench. Testing continuity of mineralization and alteration. As previous hole collared 50 meters north (GRZ-07-04), hole GRZ intersected 3 distinct ankeritic structures along it's course. These struare respectively located from top to bottom of hole between colar and (Gladstone East), 21.0 to 44.0 m. (Glastone trench extension) and be 75.0 to 79.0 meters for Gladstone west. Every structure preser moderate to strong, discontinuous and pervasive ankeritization ble partially the gabbroic host. Disseminated Py and local Fu alteration associated (mostly along Qz-Ak vein margins) are respected inside	Hole ID	Grid	Grid East	Grid North	AZ	Dip	Depth	Target	Observations
below Gladstone trench. intersected 3 distinct ankeritic structures along it's course. These stru are respectively located from top to bottom of hole between colar and (Gladstone East), 21.0 to 44.0 m. (Glastone trench extension) and be 75.0 to 79.0 meters for Gladstone west. Every structure preser moderate to strong, discontinuous and pervasive ankeritization bles partially the gabbroic host. Disseminated Py and local Fu alte associated (mostly along Qz-Ak vein margins) are reported inside ankeritic structures. A Qz-Ak vein is reported along hole from 75.70 to	GRZ-07-04		473617E	5535215N	260	-45	99	North.	deformatiom corridor including at least 3 differents parallels ankeritic, pyritic and near vertical structures along the 99 meters length of hole. The first altered corridor (East Gladstone structure) was intersected from 21.7 to 30.0 meters, consisting of a moderate to strong ankeritization with up to 1-2% disseminated py and local fucshitic alteration associated. The second corridor (Gladstone structure (north extension)) was intersected from 46.0 to 64.0 meters consisting in a moderate pervasive ankeritic corridor with local Fu and up to 1-2% disseminated Py associated. The third ankeritic intersection was located from 83.20 to 98.80 m. along hole. That altered interval was similar in intensity with the two previous one but with up to 5% of disseminated Py was reported into a decimetric brecciated Qz-Tm-Vn with Fuschitic margins intersected between 85.6 and 87.35 meters. Hole GRZ-07-04 was terminated at 99.0 meters into a leucoxenitic gabbro, shortly
	GRZ-07-05		473620E	5535164N	260	-45	99	- '	intersected 3 distinct ankeritic structures along it's course. These structures are respectively located from top to bottom of hole between colar and 8.8 m (Gladstone East), 21.0 to 44.0 m. (Glastone trench extension) and between 75.0 to 79.0 meters for Gladstone west. Every structure presented a moderate to strong, discontinuous and pervasive ankeritization bleaching partially the gabbroic host. Disseminated Py and local Fu alteration associated (mostly along Qz-Ak vein margins) are reported inside these ankeritic structures. A Qz-Ak vein is reported along hole from 75.70 to 76.25

831 meters

PROPERTY:	Grizzly			HOLEN	IUMBER GR	Z-07-01	Delegation of the control of the con	
Province:	Québec	DATE LOGGED:	Grid:	0+00 E_	Method	Depth	Az	Dip
Township	Lamark	LOGGED BY: Michel Leblanc		6+75 N	reflex	Collar	150	-48.0
Started:	18-Aug-07	DRILLED BY: Benoit Diamond Drilling	UTM:	477200 E				
Completed:			NAD 83 5	535447 N	reflex	72	152.8	-48.0
CORE SIZE:	NQ	CORE LOCATION: Chapais	ELEV:		reflex	144	156.1	-47.9
			LENGTH	1: 189.0 m	reflex	189	157.0	-48.1
	strong metal	ometric I.P. anomaly with coincident High resistivity and factor inside conglomeratic sequences.						
COMMENTS:		ected a sedimentary sequence dominated by polymictic					<u> </u>	
conglomerats and locally arg I.P has been i	intercalated gilitic levels a ntersected b ninated, clotte	with metric to decametric arkosic, micro-conglomeratic II diping at 45-50 degrees toward N330 direction. The two etween 63.0 and 112.0 meters consisting in 3 to 30% Pyed, nodular and clastic forms.			Assay hic			
And the second s	To	GRZ-07-01	From	То	Assay ing Metres	Au g/t	Cu%	
From		Lithology	From	10	Metres	Au g/t	Cu /s	
0.00 5.80	5.80 14.45	OVB (CSG)				-	 	
14.45		Conglomerat polymictic (S4)				 		
	17.00	Conglomeratic sandstone (S3)					 	
17.00 114.00	114.00 138.90	Conglomerat polymictic (S4) Arkosic sandstone / argilite (S2)				 	 	
138.90	168.20	Arkosic sandstone / arginte (52) Arkosic sandstone / conglomerat (S2)				 	 	
168.20	189.00	Conglomerat polymictic (S4)				 	 -	
189.00	109.00	E.O.H.				 		
						1		

		DESCRIPTION (Hole no GRZ-07-01)			Theren weeks					700 - 100 700 - 100
From (m)	To (m)	Description	Qcv (%)	Py (%)	Alt.	SampleN umber	From	То	Length	Au g/t
0.00	5.80	OVB (casing)								
5.80	14.45	Conglomerat (Polymictic)			ļ					
3.00	14.45	Congionie at (Polymic)			 					
		Coarse grained, heterogenous, medium to light gray, fragmental and intermediate to felsic composition.								
		Caracterized by strong fragmental componment. Mostly cm to decimetric, often rounded, also diffuse, and			<u> </u>					
		often strongly sericitized fragments transposed into moderate foliation mostly comprised between 70 and 80 tca. All unit is affected by a moderate to strong pervasive sericitization affecting both fragments and								
		their matrix. Weak chloritization also reported along unit. Some fragment presents a strongly developed								
		porphyritic texture with mm to cm sub-euhedral Fp noted. fragment composition varying.			-					
		Only trace of mineralization noted in disseminated and clotted forms. Non magnetic rock, Lower ctc								
		defined by increase of foliation, chloritization and stronger mineralization. Overall with 1 to 5% of mm to cm								
		Qz vein intersected at variable core angles.								
14.45	17.00	Conglomeratic sandstone								
		Mostly medium gray, fine grained, foliated, mineralized and altred unit of felsic-intermediate composition.		tr.	Sr, Cl	22204	13.50	14.45	0.95	0.00
		Mostly fine to medium grained with possible mm to cm fragments transposed into a strong foliation		5	Sr, CI	22205	14.45	15.00	0.55	0.01
		measured at 80 tca. Affected by a moderate pervasive chloritization and a weak to moderate lens shape carbonatization. Local strong Qz vein content. Weak sericitization noted. Strong mineralization content	30	5 2	Sr, Cl Sr, Cl	22206 22207	15.00 15.70	15.70 16.50	0.70	0.00
		defined by 5 to 7% of disseminated Py associated to chlorite and transposed into foliation. Qz-Cb veins are	-30		31, 01	22201	13.70	10.50	0.80	0.00
		observed in transposition into foliation. locally decimetric Qz vein intersected at 15-25 tca. Diffuse lower ctc								
		defined by decrease of mineralization and increase of grain size.								
		15.7 to 16.5 m: Injected by 40% Qz vein with 2% intersticial Py associated.								
				2	Sr	22208	16.50	17.00	0.50	0.05
17.00	114.00	Conglomerat (polymictic)								<u> </u>
		Mostly medium to light gray, coarse grained, fragmental, polymictic, moderately altered rock of felsic								
		composition. Presents a strong percentage of cm to decimetric rounded to sub-angular felsic dominated								
		fragments with presence of 10-15% of sub-angular mafic like chloritized fragments. Local fragment shows		tr.	Sr	22209	17.00	18.00	1.00	0.01
		gabbroic characteristics with leucoxene content. Fragments size and percent varying widely along unit.								
		Both clast and sandy material were observed as fragments support. All unit is moderately to strongly								
		affected by a pervasive sericitization affecting both fragments and matrix.		1	0 01	22210	30.40	31.40	1.00	0.00
		Weak to moderate foliation noted between 75 and 80 tca along unit .Also local bedding observed at 75-80		1 tr.	Sr, Cl Cl, Sr	22211 22212	53.60 62.50	54.75 63.30	1.15 0.80	0.00
		tca. Non magnetic rock with up to 1% of clotty disseminated Py observed. Weak Qz vein content		7	Cl, Sr	22213	63.30	64.00	0.70	0.00
		consisting mainly in mm to cm low core angle vein without significant sulfide associated. Py observed		10	CI, Sr	22214	64.00	64.50	0.50	0.08
		along unit between 1 and locally up to 30% in disseminated, clotted, nodular and sulfide clasts. Py is the		5	Cl, Sr	22215	64.50	65.35	0.85	0.01
		only sulfide observed and essentially of sedimentary origin. Diffuse lower ctc defined by decreasing of fragments content and grain size.		3	Cl, Sr	22216	69.80	71.00	1.20	0.00
+		mayments content and graff 5126.		6	CI, Sr CI, Sr	22217 22218	71.00 72.00	72.00 73.00	1.00 1.00	0.02
		30.4 to 31.4 m: With 1% clotted and disseminated Py.		10	CI, Sr	22218	73.00	74.00	1.00	Nil Nil
		53.60 to 54.75 m: ld precedent.		3	Cl, Sr	22220	74.00	74.60	0.60	Nil
		63.30 to 64.50 m: Sulfidic level with up to 30% Py in diss., clotted and nodular forms.		7	Cl, Sr	22221	74.60	75.45	0.85	Nil
		71.0 to 75.45 m: Fragments supported conglomeratic levels with 10% Qz-calcite veins and 3 to 10% of		10	Cl, Sr	22222	90.70	92.00	1.30	0.01

	То		Qcv	Py		SampleN				
From (m)	(m)	Description	(%)	(%)	Alt.	umber	From	То	Length	Aug/t
		diss, clotted and nodular Py in intersticial position.		15	CI, Sr	22223	92.00	92.75	0.75	Nil
	<u> </u>	90.70 to 93.25 m: Strong content in argilitic clasts. 5 to 30% Py in nodular, disseminated and clotted forms.		25	Cl, Sr		92.75	93.25	0.50	Nil
	 -	109.0 to 112.0 m: Chloritized, sericitized, argilitic clasts dominated with 3 to 5% disseminated and clotted		7	Sr, CI		99.50	100.45	0.95	Nil
		Py.		20	Sr, Cl	22226	100.45	101.00	0.55	0.01
		· J·		6	Sr, Cl Sr, Cl	22227 22228	101.00	102.00 110.60	1.00	Nil Nil
					31, 01	22220	109.00	110.00	1.00	INII
114.00	138.90	Arkosic sandstone / argilite								
					<u> </u>					
		Grayish, medium grained, local mm to cm peebles, moderately altered sedimentary rock. Mostly composed								
		by mm size grayish fine grained material with 10-15% mm feldspars laths. Interlayered with metric argilitic								
		and/or siltstone levels. Affected by a weak to moderate pervasive sericitization and a weak vein controlled								
		carbonatization. Local rounded pebbles of mm to cm size are observed . Slight foliation measured at 75-80 tca.local bedding noted inside argilitic levels and measured at 80-85 tca. Micro-conglomeratic aspect in			<u> </u>					<u> </u>
		top unit area. Non magnetic rock with an average of 1% Py mostly in disseminated form. Diffuse lower cto		-	ļ					
		defined by graduational decreases of grain size over 10 cm.			<u> </u>					
					 		<u> </u>			
		126.0 to 128.0 m: Medium gray, argilitic level with bedding measured at 85 tca. Trace of Py in								
		disseminated form.			†					
138.90	168.20	Arkosic sandstone / conglomerat								
		Mostly modium gray modium to fine grained leadly and the later than the later tha			 					——
		Mostly medium gray, medium to fine grained, locally conglomeratic. Heterogenous unit composed mainly by medium grained (arkosic) levels (70%) interlayered with decimetric to metric conglomeratic and micro-			ļ					
		conglomeratic levels. Also local cm rounded and isolated felsic peebles observed. Argilitic clasts elongated		 						
		into foliation are the most common fragments type observed. Moderate sericitization and chloritization.		 	1			-		—
		Weak to moderate vein and fracture controlled carbonatization, local argilitic mm levels intersected. Most	-		1		<u> </u>			
		fragments are slightly to moderately elongated into a moderate foliation (bedding) intersected at 75-85 tca.							l''''	
		Local Py observed inside mm to cm beds in clotted and disseminated forms. Also local mm euhedral Py								
		crystal observed. Non magnetic rock. Sharp lower ctc at 90 tca.								
										
		138.90 to 139.90 m: Micro-conglomeratic level dominated by mm to cm argilitic fragments supported by a		<u> </u>	ļ					
		medium grained sandstone size matrix. Trace of Py associated.		 	 					
		149.50 to 150.50 m: Dark gray argilitic level with 1% Py in mm automorph form.								
		153.20 to 154.10 m: Micro-conglomeratic level dominated by mm to cm argilitic fragments supported by a		· · · · · · · · · · · · · · · · · · ·			ļ	-		
		medium grained sandstone size matrix. Foliation at 90 tca. Trace of Py associated.								· · · · · · · · · · · · · · · · · · ·
		155.0 to 156.0 m: Lost core								
		156.0 to 159.0 m: Micro-conglomeratic level dominated by 50% mm to cm fragments (mostly argilite)								
		supported by a medium grained (sandstone size) matrix. Fragments are elongated into foliation (bedding?)								
		intersected at 85-90 tca.								
		161.20 to 162.10 m: ID precedent (156.0-159.0)		ļ	ļ					
168.20	189.00	Polymictic Conglomerat		ļ	-					<u> </u>
100.20		Polymicite Conglomerat Mostly medium gray, strongly fragmental, moderately foliated conglomeratic rock. Composed by up to 70%			-					
		of cm to decimetric rounded to sub-angular and slightly elongated fragments of variable composition but								
		dominated by argilite with also good representation of porphyritic (intrusive), volcanic mafic, intermediate								
		and others sedimentary pebbles and clasts. Fragments and pebbles are supported by a medium grained			†					

	Personal years	DESCRIPTION (Hole no GRZ-07-01)		7.	Service of the					
From (m)	To (m)	Description	Qcv (%)	Py (%)	Alt.	SampleN umber	From	То	Length	Au g/t
		arkosic matrix rich in mm Fp laths. Many clasts and pebbles are transposed into a moderate foliation								
		intersected at 85-90 tca. Fragments are locally close packed into short interval.								
		Overall, that unit is affected by a moderate mix of chloritization and sericitization. Chloritization mostly								
		developed into matrix. No magnetism observed overall but local fragments presents a weak to moderate magnetism. Py noted along unit in dissemination and fracture controlled form. Lower ctc not reached.								
		The second of the second state is a second s								
\vdash		Casing left in hole								
189.00		E.O.H								

PROPERTY	Grizziy			HOLE	NUMBER	GRZ-07-02		
Province:	Québec	DATE LOGGED:	Grid:	0+05W	Method	Depth	Az	Dip
Township	Lamark	LOGGED BY: Michel Leblanc		0+75 N	reflex	Collar	135	-50.0
Started:	20-Aug-07	DRILLED BY: Benoit Diamond Drilling	UTM:	476832 E	reflex	15	137	-49.6
Completed:	21-Aug-07	UNITS: Metres	NAD 83	5536083 N	reflex	102	143.9	-50.9
CORE SIZE:	NQ	CORE LOCATION: Chapais	ELEV :		reflex	174	147.0	-51.2
			LENG1	TH: 201 m				

PURPOSE: Testing below Grizzly trench, proximal moderate I.P. anomaly and possibility of a deformation corridor between north gabbroic and south conglomeratic sequences.

COMMENTS:

Hole GRZ-07-02 was collared to pass through the grizzly trench geology and intersected a complex rock setting mainly composed by a leucoxenitic gabbro (from collar to 52.40 m.), locally ankeritized and mineralized in Py and Aspy. That leucoxenitic gabbro, part of the regional Daladier mafic sill is cut by few biotitic lamprophyres and a metric felsic dyke. The bulk of mineralization is spatially associated to these intrusions. A mineralized pyroxenitic unit was intersected between 54.55 and 64.10 meters, explaining the locale I.P anomaly detected and that highly magnetic pyroxenitic unit is interpreted to represents the base of the Daladier gabbroic sill. From 73.30 m. to the end, GRZ-07-02 intersected a sedimentary sequence dominated by arkose, silstone, argilite and local micro-conglomerat units intercalated. That sedimentary sequence is interpreted as part of the base of the La Treve conglomeratic formation. The contact between the Daladier gabbroic sill appears to be concordant and no evidence of deformation corridor were observed.

SUMMARY L	OG	GRZ-07-02					
From	То	Lithology	From	То	Metres	Au g/t	
0.00	4.50	OVB (casing)					
4.50	33.40	I3A (Lx)	18.0	18.9	0.85	0.70	
33.40	44.75	I3A (melano)					
44.75	47.00	BX (Mylonityzed)		: 4			
47.00	48.75	Lamprophyre (I3)		•		1	
48.75	52.40	I3A (Lx-Ak)					
52.40	54.55	Felsic dike (QP)					
54.55	64.10	Pyroxenite (I4B)	63.6	64.1	0.50	0.96	
64.10	73.30	Mafic volcanic (V3B)					
73.30	88.90	Arkose/siltstone (S2)					
88.90	103.35	Silstone/argilite (S6)				1	
103.35	119.00	Arkose (S2)					
119.00	122.15	Argilite (S6)					
122.15	150.00	Arkose (S2)					
150.00	170.60	Polygenic micro-conglomerat (S4)					
170.60	199.60	Argilite/silstone (S6)					
199.60	200.80	Monogenic Conglomerat ? (S4)					
200.80	201.00	Arkose (S2)					
201.00		E.O.H.					

PT	T - "	DESCRIPTION (Hole no GRZ-07-02)	Manus Cityalidan	Smugal.			Tolk common		Hinte Company	Monta management.			351 420 add	
From (m)	To (m)	Description	Qcv (%)	Py (%)	Cpy (%)	Alt.	SampleN umber	From	То	Lenath	Au g/t	Ni (ppm)	Pt (ppb)	Pd (ppb)
0.00	4.50	OVB (casing)											,	
4.50	00.40													
4.50	33.40	13A (Lx)												
	+	Medium gray, coarse grained, massive to moderately foliated and leucoxenitic gabbroic rock.		tr.			22229	12.00	13.00	1.00	0.02			
	1	Characterized by 5 to 10% of mm brownish leucoxene disseminated randomly along unit. Overall affected		1		cl	22230	13.00	14.00	1.00	0.22			
	 	by a moderate chloritization and Fp plagioclase presents an apparent epidotization (saussuritization).		1		cl	22231	14.00	15.00	1.00	0			
	-	Weakly magnetic rock. Weak to moderate foliation intersected at 70-80 tca. Local ankeritization on metric		1		cl	22232	15.00	16.00	1.00	0			
	 	section. Overall with 1 to 3% Py in disseminated and fracture controlled form. Also noted in local Qz vein		11		cl	22233	16.00	17.00		0			
	+	wich represents less than 2% of unit. Ak veins also observed locally (up to 10%) Cpy locally observed	\vdash	1		cl	22234	17.00	18.00		0			
	- -	inside Qz vein. Local AsPy observed. Sharp lower ctc at 80 tca defined by a decimetric lamprophyre dyke.	\vdash	_1_	1	cl	22235	18.00	18.85		0.695			
	-			3			22236	18.85	20.00		0.11			
		18.0 to 18.85 m: 10% smoky Qz veins with 1% Cpy associated.	\vdash	1		ak,cl	22237	20.00	21.00	1.00	0.01			
		18.85 to 20.0 m: Ankeritized, chloritized, incipient breccification. Strong foliation at 75-85 tca. 2-3% Py-	\vdash	1	-	ak,cl	22238	21.00	22.00	1.00	0.02			
	 	AsPy disseminated along foliation.	$\vdash \vdash$	1	\vdash	ak,cl	22239	22.00	22.75	0.75	0.01	ļ		
	 	20.0 to 24.30 m: Moderate and pervasive ankeritization. 1% diss. And fracture controlled Py noted.	\vdash	_1_		ak,cl	22240	22.75	23.50	0.75	0			
	 	24.30 to 25.00 m: With 10% Ak vein intersected at 85-90 tca. Strong foliation at 90 tca. Trace of Py.	45	1		ak,cl	22241	23.50	24.30		0.01			
	 	32.50 to 32.97 m: Foliated, ankeritized 3% disseminated Py	15	1		ak,cl	22242	24.30	25.00		0.01			
		32.97 to 33.40 m: Medium grained lamprophyric dyke intersected at 80 tca. Located at the interface with	10	tr. 3		cl ak	22243	25.00	26.00		0			⊢—
	† ·	underlying unit. 10% disseminated Bo. Trace of Py.	10				22244	32.50	32.97		0			
	T	amonymy unit. 10% discommission but I fact of 1 y.	\vdash	tr.		bo,ak	22245	32.97	33.40		0			
33.40	44.75	I3A (melano)		1		cl	22246	33.40	33.95	0.55	U			
	1,	is v. (include)												
		Dark gray-greenish, fine grained, massive to slightly foliated and strongly magnetic rock of high maficity	\vdash											
	 	indice. Local thinly disseminated whitish leucoxene noted. Affected by a pervasive chloritization and a												
	 	weak vein controlled carbonatization (calcite). Trace to 1% of fracture and vein controlled Py associated.												—
	 	Overall with less than 5% of Qz-Cb veins intersected at variable core axis. Diffuse lower ctc at 80 tca with	-					-						
		underlying unit defined by a sharp alteration front marked by increasing of ankeritization.									 			
		, to the property of the state								_		-		
		33.40 to 33.60 m: Moderately ankeritized with 2% diss. Py+AsPy.	\vdash	_										
44.75	47.00	BX (Mylonityzed)								_				
										 				
		Beige greenish, medium grained, brecciated and mylonitized section with central decimetric Qz-Ak vein	 							_				\vdash
		intersected at 50 tca. Strongly ankeritized section with minor chloritization also observed. Strong foliation												\vdash
		measured at 50 tca with Qz-Vn transposed inside. With 1% Py noted in dissemination. Local sericitic												
		veinlets. Unit sits at the interface with a metric lamprophyric dyke. Apparent ctc measured at 40 tca with								 				
		the next lower unit.											-	
				tr.		cl	22247	44.00	44.75	0.75	0			
		45.45 to 46.05 m: Qz-Ak vein intersected at 50 tca. 1% Py associated.		1		ak,cl	22248	44.75	45.45	0.70	0			
47.00	48.75	Lamprophyre	75	1		ak	22249	45.45	46.05		0.03			
			10	1		ak,cl	22250	46.05	47.00	0.95	0			
		Medium gray to light brown, biotitic, foliated, altered dyke of lamprophyre aspect. Affected by					22251	47.00	48.00	1.00	0			
		ankeritization as neighbourg unit suggesting a pre-alteration age. Affected by a pervasive ankeritization					22252	48.00	48.75	0.75	0			
		and a moderate foliation developed at 75 tca. Non magnetic. With 1-2% thinly disseminated Py+AsPy								1				
		associated. Sharp lower ctc at 75 tca with underlying unit.												
48.75	52.40	I3A (Lx-Ak)					22253	48.75	49.70	0.95	ō l			
]							22254	49.70	50.70	1.00	0			·
	_	Medium to light gray, slightly greenish, fine grained, foliated with thinly diss. Brownish Lx. Affected by a					22255	50.70	51.75		0.13			
]		pervasive ankeritization and a weak chloritization. Moderate foliation noted throughout unit at 70-75 tca.			$\neg \uparrow$		22256	51.75	52.40		0.01			
		Non magnetic rock with trace to locally up to 2% of thinly disseminated Py+AsPy. Diffuse lower ctc with	1											
		underlying unit.					1							

From	То	Description	Qcv	Ру	Сру	Alt.	SampleN					Ni	Pt	Pd
(m)	(m)	Description	(%)	(%)	(%)	AIL.	umber	From	То	Length	Au g/t	(ppm)	(ppb)	(ppb)
50.40	E4 EE	Falsia dilu (OR)					22257	52.40	53.00	0.60	0.03			
52.40	54.55	Felsic dike (QP)					22258	53.00	53.75		0	_		
		Light gray to beige, fine grained, locally porphyritic, foliated and altered rock of felsic affinity. Affected by a		_			22259	53.75	54.55		0			-
		moderate pervasive sericitization and ankeritization. With up to 5% of sub-millimetric rounded and					LLLOO	000			<u> </u>	<u> </u>		<u> </u>
		euhedral Qz porphyrs surrounded by a sericitized matrix. Moderate foliation measured at 70 tca. Presence					-							
		of 1 to 2% of Py+AsPy both noted in disseminated form. AsPy is finer than Py. Diffuse lower ctc over 10	-											
		cm defined by a fast increase of magnetism.		—			1							
	 	an action by a last increase of magneticin.	 				22260	54.55	55.25	0.70	0	10	<5	<5
				 			22261	55.25	55.95	0.70	0	21	<5	<5
54.55	64 10	Pyroxenite					22262	55.95	56.55	0.60	0	323	<5	7
J4.JJ	04.10	1 yroxerine	┢				22263	56.55	57.25	0.70	0	164	<5	<{
		Dark gray-blackish to brownish, medium grained, foliated, mineralized with high maficity indice. Overall					22264	57.25	58.25	1.00	0.02	206	<5	<5
		affected by a strong and black chloritization and by a moderate to strong spotted and foliation controlled					22265	58.25	59.00	0.75	0	23	<5	</td
		carbonatization (calcite+ankerite). Locally injected by decimetric lamprophyre dyke. Very strong					22266	59.00	60.00	1.00	0	264	<5	</td
		magnetism characterizing this unit. Well developed foliation at 75-80 tca. Overall with good mineralization					22267	60.00	61.00	1.00	0	381	<5	</td
		background varying between 1 and up to 10% Py in dissemination and fracture controlled forms. Diffuse					22268	61.00	62.00	1.00	0.03	138	<5	<
		lower ctc defined by a decrease in magnetism and mineralization content.					22269	62.00	63.00	1.00	0	72	<5	<
		,					22270	63.00	63.60	0.60	0.07	9	<5	<
		55.95 to 56.55 m: Biotitic lamprophyre intersected at 55 tca.		1			22271	63.60	64.10	0.50	0.96	8	<5	<
64.10	73.30	Mafic volcanic (I3A fg)					22272	64.10	65.55	1.45	0.1			Ь
							22273	65.55	66.30	0.75	0			ـــــ
		Gray-greenish, fine grained, chloritized, foliated and of mafic composition. Weakly to moderately					22274	66.30	67.00	0.70	0		l	
	<u> </u>	carbonated (calcite) in vein controlled form. Weakly developed foliation at 70-80 tca. Non to weakly	—				22275	67.00	68.00	1.00	0		Γ''	
		magnetic. Locally with thin white leucoxene disseminated into foliation. Only trace of vein controlled Py					22276	68.00	68.85	0.85	0		I	
		observed along unit. Sharp lower ctc with underlying unit measured at 75 tca.											L	
				T										<u> </u>
73.30	88.90	Arkose/siltstone										<u> </u>		<u> </u>
												<u> </u>		
		Mostly medium gray, fine to medium grained, bedded, laminated. Dominated by arkosic levels with 20-												
		25% mm to decimetric silstone layers. Well developed bedding along unit mostly into the 7-65-75 tca		I										ــــــ
		range. Local ondulation and folding observed. Unit is variably affected by chloritization in pervasive form										ļ		ļ
		and by sericite in veinlets controlled by bedding. Local decimetric levels with mm to cm elongated							<u> </u>		1	1	<u> </u>	↓
		fragments noted inside that interval. Fragments into these levels are of variable composition but often					22277	83.70	84.30	0.60	0		ļ	↓
		argilitic. Metric section presents hematization and/or potassic alteration. Non magnetic rock with local	<u> </u>			<u> </u>	22278	84.30	85.50	1.20	0			₩
·		trace of bedding controlled Py. Sharp lower ctc at 70 tca defined by a decrease of the arkosic portion.		1	L	L	22279	85.50	86.15	0.65	0	-	 	₩-
				<u> </u>			22280	86.15	87.00	0.85	0			↓ —
		73.30 to 76.80 m: Micro-conglomeratic level with mm to cm elongated argilitic dominant fragments	3			ļ	22281	87.00	88.00	1.00	L		1	
		strongly transposed into foliation at 75 tca.	<u> </u>	L	<u> </u>	1	ļ <u>.</u>	ļ		L	0	+	 -	₩
		78.10 to 78.85 m: Orangish and moderately hematized and/or potassic section. Trace of Py.		Ļ	↓		22282	88.00	88.90	0.90	10	-	 	₩
		84.30 to 85.50 m: Strongly sericitized in pervasive form. Trace of disseminated Py.	Ь_	ļ	ļ	ļ	ļ	├			<u> </u>		 	+
		85.50 to 86.15 m: Sericitized, hematized/potassic, 1% disseminated Py.	Ь—	-	<u> </u>			 	├	 	 	+	┿┈	+
			├	 		 		 	 		+	+	+	+
88.90	103.35	Silstone/argilite	₩	-		├	 	 	1	 	+	 	+	+
		0.00 1 1 1 1 1 (700)	_	 	+		 			+	1	+	+	+
		Section dominated by silstone (70%) intercalated with 25% argilite and few minor cm to decimetric arkosic		-	1	-	 		 	+	1 -	+	+	+
		horizons. Mostly medium gray, fine grained to aphanitic grain size, bedded and laminated unit. Loca	1	_	 		 	 	 	+	+	+	+	+
		presence of isolated cm argilitic fragments transposed into the foliation-bedding at 75 tca. Weak pervasive		1	 	├	 	 	+	+	+	+	 	+-
		chloritization locally observed. Local ondulation of bedding. Weak sericitization in veinlets form. Nor		₩-	 	├	 	 	 	+	+	+	+	+
	<u> </u>	magnetic rock with local Py in thin veins controlled by bedding. Py also observed into local mm to cm		 - -	 		 	-	1	 	+-	+	+	+-
	ı	carbonate vein. Weak Qz-calcite veining along unit (less than 3% of unit rock content). Sharp lower ctc at	ч	1	1	ı	1	I	I	1	I	.1		+-

		DESCRIPTION (Hole no GRZ-07-02)			Auguria Ortanius		filosophia and an annual and an annual and an annual	ggover i District CVI Comit Dist	Migrae Casa	State Control	S	Podgijayah - Hill Mosamen - Cilij		
From (m)	To (m)	Description	Qcv (%)	Py (%)	Сру (%)	Alt.	SampleN umber	From	То	Length	Au g/t	Ni (ppm)	Pt (ppb)	Pd (ppb)
103.35	119.00	Arknse												
100.00	110.00	Arrose		1										
		Medium gray to slightly greenish, medium grained, foliated, bedded sedimentary rock of arkosic aspect. Affected by a weak to moderate chloritization. Well developed bedding throughout unit at 70-75 tca. With							ļ					
	 	isolated cm fragments of variable composition transposed into foliation. Locally carbonated in vein form	_	 					 					
		strongly controlled by foliation and bedding. Non magnetic rock with local trace of vein controlled Py.												$\overline{}$
		Sharp lower ctc at 75 tca defined by a sharp decrease of grain to the argilite size.												
		114.05 to 117.20 m: Carbonatized and chloritized section with 15% mm to cm calcite-Qz vein strongly					22283	114.05	115.00	0.95	0.01			
_	ļ	controlled by foliation and bedding. Well developed foliation at 70 tca.												
110.00	122.15	Applito							ļ					
113.00	122.15	Arginte							 			ļ		
		Medium gray, fine grained to aphanitic, homogenous, bedded. Bedding at 70-75 tca. Weakly chloritized.							 					
	· · · · · · · · · · · · · · · · · · ·	Non magnetic and without significant mineralization associated. Sharp lower ctc at 70 tca characterized by	\vdash	-							· · · · · · · · · · · · · · · · · · ·	<u> </u>		
		a sharp increase of grain size into the arkosic range.		\vdash					<u> </u>					$\overline{}$
				t										
122.15	150.00	Arkose												
		Modium con and the state of the	L	<u> </u>										<u>'</u>
		Medium gray, medium grained, foliated, bedded sedimentary rock of arkosic aspect. Affected by a weak chloritization. Well developed bedding throughout unit at 70-75 tca. With isolated cm fragments	├											——
	-	transposed into foliation. Fragments are of variable composition and size (cm to decimetric) but dominated	⊢						<u> </u>			-		
		by rounded granitic (porphyritic) pebbles transposed into foliation. Local weak carbonatization controlled	—			-						ļ		
		by foliation. Non magnetic rock with local trace of Py. Gradational lower ctc over 1 meter defined by	 											[
		increasing of chloritization (amphibolitization?).												
150.00	170.60	Polygenic micro-conglomerat												 '
		Dark green, heterogenous, fragmental, foliated and polygenic composition. Characterized by close packed	ļ									<u> </u>		 -
		but matrix supported, sub-angular to rounded mm to cm fragments strongly transposed into foliation at 75-										ļ		 '
		80 tca. Interfragmental matrix strongly chloritized, locally amphibolitized and/or biotized. Fragments	 -									<u> </u>		J
		varying in composition (felsic intrusive, argilitic and others sedimentary rocks as well as mafic volcanic).	\vdash											
		General angularity of fragments suggest an immature sedimentary package. Local decimetric argilitic												
		levels intersected. Local cm rounded pebbles encountered. Weak to moderate carbonate-Qz veining with												
		local decimetric Qz-Cb vein intersected. Inter-fragmental matrix presents sub-millimetric apparent												
		porphyroblasts also affected by weak biotization.	<u> </u>											
		Non magnetic rock with only trace of Py observed. Moderate carbonatisation in mm to cm lenses shape and veinlets. Sharp lower ctc at 75 tca defined by a sharp change in dominant grain size and also by a												
		decrease of fragments content.		ļ. —										
	-								-					
		155.80 to 155.90 m: Slightly pinkish, calcite vein intersected at 65 tca.												$\overline{}$
		159.35 to 159.60 m: Decimetric chloritized argilitic level intersected at 75 tca.												
		164.20 to 164.60 m: Similar to previous 159.35-159.60 m.												
170.00	100.00	A114/11-A												
170.60	199.60	Argilite/silstone	<u> </u>	ļ										
		Dark green, blackish, fine grained, locally laminated argilite. Well developed bedding at 70 tca. Moderate	\vdash	\vdash	-								-	
	-	carbonate veining mostly transposed into bedding (foliation). Some decimetric silty levels are	\vdash											
		interleyeredalong unit. Affected by a weak to moderate pervasive chloritization, non magnetic rock with	_	\vdash										
		local of bedding controlled Py. Local decimetric to metric talcose pyroxenitic dykes reported along unit.	\vdash											

-						100000000000000000000000000000000000000		a market black and the series	1	M. Sour Selection Resemble				
From (m)	To (m)	Description	Qcv (%)	Py (%)	Сру (%)	Alt.	SampleN umber	From	То	Length	Au g/t	Ni (ppm)	Pt (ppb)	Pd (ppb)
		Some cm calcite veins presents boudinage features along foliation. Locally affected by faulting, Local												
		decimetric Qz-calcite veins intersected. Sharp lower contact defined by a decimetric Qz-Cb vein												
		intersected at 70 tca.												
		178.67 to 179.10 m: Two decimetric Qz-Cb veins intersected at 70 tca.												
		182.70 to 183.05 m; Decimetric talcose ultramafic dike transposed into foliation at 75 tca.												
		184.30 to 185.00 m: Faulted section with talcose gouge and micro-breccia associated.												
		185.00 to 186,65 m: Talcose pyroxenitic dike intersected and foliated at 75 tca.												
		189.90 to 191.65 m: Talcose, foliated pyroxenitic dike intersected at 75 tca. Locally faulted.												
		190.85 to 191.00 m: Gougy and talcose fault with micro-breccia intersected at 80 tca.												
		191.65 to 192.70 m: Arkosic micro-conglomeratic level dominated by argilitic sub-angular fragments.												
		192.90 to 194.35 m: Idem previous sub-unit (191.65-192.70 m.)												
		195.00 to 198.00 m: Fragmental level characterized by close packed monogenic, angular diffuse argilitic												
		fragments of same composition than their surrounded matrix.								1				t
199.60	200.80	Monogenic Conglomerat ?			_									
												———		
		Dark green to blackish, fragmental, chloritized rock. Characterized by presence of many rounded black					22284	200.00	200.80	0.80	0.00			
		argilitic fragments, locally close packed, surrounded by a fine grained chloritized matrix. Monogenic												
		fragments composition looking like argilitic in composition. Highly magnetic fragments and matrix, 1-2%												
		intersticial Py associated. Thin disseminated Mt. Sharp lower ctc at 75 tca.												
		i i												
200.80	201.00	Arkose		-										
									· · · · · · · · · · · · · · · · · · ·					
		Coarse grained, chloritized, foliated arkosic level. Non magnetic without mineralization observed. Lower												
		ctc not reach.												
		Casing left in hole												
201.00		E.O.H.										-		
								-		1		+		-

PROPERTY:	Grizzly		The Paris	HOLE	NUMBER (3RZ-07-03		
Province:	Québec	DATE LOGGED: 23 to 29 August, 2007	Grid:	1+00E	Method	Depth	Az	Dip
Township	Lamark	LOGGED BY: Michel Leblanc		2+50 N	reflex	Collar	150	-45.0
Started:	22-Aug-07	DRILLED BY: Benoit Diamond Drilling	UTM:	476838 E	reflex	15	147.9	-45.9
Completed:	24-Aug-07	UNITS: Metres	NAD 83	5536307 N	reflex	87	152.0	-46.5
CORE SIZE:	NQ	CORE LOCATION: Chapais	ELEV		reflex	156	154.4	-46.6
			LENG.	TH: 243.0 m.	reflex	237	156.6	-47.3

PURPOSE: Testing 2 strong I.P. anomalies inside a topographic depression sits between two gabbroic sills. Also design to test the base of the Daladier sill about 100 meters east of and 200 meters downdip of grizzly trench.

COMMENTS:

Hole GRZ-07-03 passes through a sequence dominated by 2 gabbroic sills interlayered with 2 argilitic levels (locally graphitic and sulfidic). The first I.P. tested appears to be the expression of a metric pyritic (semi-massive) and graphitic level sits between 44.7 to 47.0 m. (upper ctc with a Gabbroic sill). The second I.P. tested seems to be explained by a second argilitic level with disseminated Py reaching locally 20% on a narrow interval. Also, a 27 meters (114.0 to 137.0 m.) gabbroic interval inside the Daladier sill returned a moderately foliated and ankeritized section with up to 2% disseminated Py and Fu alteration associated. The hole passes through the Daladier gabbroic sill from 82.75 to 200.15 m and the extension of the mineralized pyroxenitic level observed inside GRZ-07-02 wasn't present in GRZ-07-03. Hole GRZ-07-03 was terminated inside the La Treve formation basal argilitic, arkosic and conglomeritic sediment at 243.0 meters. .

SUMMARY L	OG -	GRZ-07-03	sa Hilanda sarah	. 179. julija ja ja		ek masanskii (†)	ere i
From	То	Lithology	From	To	Metres	Au g/t	
0.00	3.00	OVB (CSG)					
25.90	44.70	Argilite (S6)					
44.70	78.00	I3A Lx, POR					
78.00	82.75	Argilite (S6)		•			
82.75	114.00	I3A Lx (Daladier sill)					
114.00	137.00	I3A Lx, Ak (Daladier sill)		•			
137.00	200.15	I3A Lx (Daladier sill)	172	173	1.00	0.19	
200.15	207.65	Conglomerat (altered) (S4) / Lamprophyre (I3)				1	
207.65	233.40	Argilite / Arkose (S6)					
233.40	243.00	Conglomerat / Arkose (S4)					
243.00		E.O.H.					

Sing Service Control	1,00	DESCRIPTION (Hole no GRZ-07-03)		res een sa Maarin sa			popularing a language of				enser in die Geber	
From (m)	To (m)	Description	Qcv (%)	P0 (%)	Py (%)	Сру (%)	Alt.	Sample Number	From	То	Length	Au a/t
0.00	3.00	OVB (casing)		È	` '	<u> </u>			110111		Longer	ria gri
3.00	25.90	I3A fg										
	 	Madium groute elight exception to a discount of the state				<u> </u>	ļ					
		Medium gray to slight green, fine to medium grained, slightly leucoxenitic, weakly foliated and mafic rock. Moderately and pervasively chloritized, moderately carbonatized in veins and veinlets forms. Weak		1		ļ						
	 	foliation developed at 85 tca. Weakly magnetic with local trace of Py associated to carbonate in local										
	 	veins. Sharp lower ctc at 85 tca.		ļ		<u> </u>						
25.90	47.00	Argilite									<u> </u>	
	47.00	Prignito				-						
		Greenish beige to black, laminated, banded, fine grained rock of sedimentary origin. Presents a well		 		l				-		
		developed bedding or banding at 80-85 tca with 20% of mm to cm black argilitic graphitic levels are										
		intergited with 75-80% of cm to decimetric sericitized argilitic horizon. Local mm to cm carbonate veins are		<u> </u>								
		intersected. Moderate slicing at 80-85 tca. locally intruded by a metric mafic intrusion. Local Po noted in										
		close association with the black graphitic argilite portion of unit. Local disseminated Py. Cm Py bands										
		preceding a metric graphitic semi-massive sulfides level sits at the base. Strong magnetism observed										
		throughout unit but only associated to the black argilite portion of unit. Sharp sheared lower ctc with										
		undelying unit intersected at 80 tca.										
		30.0 to 31.0 m: With 1% Po associated to 20% black argilitic and graphitic level.		2			cl,gp,sr	22285	30.00	31.00	1.00	0
		35.50 to 37.50 m: Section dominated by graphitic black argilitite with 1-2% Po associated.										
		39.60 to 41.70 m: Medium grained, carbonated gabbroic dyke. 1% diss. Py. Transposed into foliation at 80										
		tca.			3		cl,sr	22286	42.00	43.00	1.00	0
		44.15 to 44.70 m: 15% bedding controlled Py.	ļ	.	3		cl,sr	22287	43.00	44.15	1.15	0
		44.70 to 47.00 m: Semi massive pyritic level with 30 to 70% Py in bedding, stringer, nodules with strong		ļ	10		cl,sr	22288	44.15	44.70	0.55	0
	ļ	graphitic content. Explaining first I.P.anomaly.	<u> </u>	 	60	ļ	gp	22289	44.70	45.25	0.55	0.015
47.00	79.00	I3A Lx, POR			50 70		gp	22290	45.25 46.00	46.00 47.00	0.75 1.00	0.01
47.00	70.00	ION LA, FOR	-		- 70		gp	22291	46.00	47.00	1.00	0.01
		Dark gray greenish, medium to coarse grained, locally porphyritic or leucoxenitic mafic (mesogabbroic)		-								
	 	composition. With local well developed porphyritic texture noted (sub millimetric euhedral chloritized		-					 		-	
		pyroxene porphyrs (porpix) supported by a moderately and pervasively chloritized matrix. Local vein	-	1								
		controlled epidotization. Locally glomero-porphyric near the base of unit. Weak to moderate local										
		pervasive foliation developed at 75-80 tca. Local decimetric to metric lamprophyric dykes reported. Non to		 	-							
		weakly magnetic rock with locally up to 2-3% vein and fracture controlled disseminated and clotted Py					L					
		observed. Sharp lower ctc at 45 tca without clear chilled margin noted.							<u> </u>			
						l	<u> </u>		t			
		47.0 to 47.6 m: Sheared and mylonitized upper ctc with 3% disseminated Py and moderate carbonate				1			1		1	
		(calcite) veining	10		3	i	cl,cb	22292	47.00	48.00	1.00	0
		47.6 to 51.65 m: Foliated, chloritized, carbonated, locally brecciated with 10% mm to cm calcite vein	10	<u> </u>	1		cl,cb	22293	48.00	49.00	1.00	0
		transposed into a well developed foliation at 70 tca. Up to 1% disseminated Py associated.	10		tr.		cl,cb	22294	49.00	50.00	1.00	0
		55.20 to 56.00 m: Dark gray, biotitic, fragmental lamprophyric like dyke intersected at 70 tca. With up to	5		tr.		cl,cb	22295	50.00	51.00	1.00	0
		10% of mm to cm sub-angular chloritized fragments. 1% of thinly disseminated Py associated.	5		tr.		cl,cb	22296	51.00	51.65	0.65	0
		56.60 to 57.65 m: Chloritized, carbonated, foliated at 55 tca with 3% disseminated Py associated	5		1		cl	22297	51.65	52.40	0.75	0.01
		59.65 to 61.0 m: Lamprophyric dykes similar to previous 55.20-56.00 m. but with gabbroic enclavs.			3		cl,cb	22298	56.60	57.45	0.85	0.01
		Intersected at irregular core axis. 1% thinly disseminated Py associated.			1		bo	22299	62.65	63.70	1.05	0
		62.65 to 66.0 m: Medium-dark gray, biotitic, local fragments. Similar to previous lamprophyre intersected			1		bo	22300	63.70	64.40	0.70	0
		at 55.20-56.0 m.			11		bo	22301	64.40	65.10	0.70	0
	<u> </u>	74.5 to 77.8 m: Glomero porphyric section, leucoxenitic and massive.			1	1	bo	22302	65.10	66.00	0.90	0.01

ANTENNE L		DESCRIPTION (Hole no GRZ-07-03)	noncept orac	distribution (Villa)					153 <u>6</u> 153621-1366-5		Called the Control	Carringon and
From (m)	To (m)	Description	Qcv (%)	P0 (%)	Py (%)	Cpy (%)	Alt.	Sample Number	From	То	Length	Au g/t
78.00	82.75	Argilite		ļ	 	<u> </u>						
70.00	02.75	Arginite		†								
		Medium gray, locally greenish, fine grained, moderately bedded and chloritized unit of sedimentary origin.									-	
		Also weakly chloritized. Presents a moderate calcite veining reaching 15% locally in mm to cm veins		İ								
	1	mostly transposed in foliation (bedding) well developed at 80 tca. Mineralization in bedding and fracture										
	ļ	controlled Py noted along unit reaching 20% at the lower ctc that is sharp and measured at 85 tca. Non										
	 	magnetic rock.	ļ	ļ	2		cl,sr	22303	79.40	80.10	0.70	0.01
	 	81.50 to 82.20 m. With 15% of calcite-Qz veins and veinlets mostly transposed into foliation (bedding) at	<u> </u>		tr.		cl,sr,cb cl,sr,cb		80.10 80.75	80.75 81.50	0.65 0.75	0
	1	191:30 to 62:20 m. with 15% of calcile-dz veins and veinlets mostly transposed into foliation (bedding) at 180-85 tca.			tr.		ci,sr,cb	22305	81.50	82.20	0.75	0
	 	82.20 to 82.75 m: 10% calcite veins and up to 20% disseminated, banded pyrite sits at the lower ctc.			20		cl,cb	22307	82.20	82.75	0.70	0
		Possible explanation of second I.P. anomaly.		-	-20		01,00	22007	OL.LU	02.70	0.00	<u> </u>
									<u> </u>			
82.75	114.00	I3A Lx (Daladier sill)										
					1		ci,cb	22308	82.75	83.50	0.75	0
	ļ <u> </u>	Dark gray-greenish, fine to medium grained, leucoxenitic and chloritized melanogabbro. Chracterized by			2	<u> </u>	cl,cb	22309	83.50	84.25	0.75	0
	 	5% of thinly disseminated leucoxene supported by a dark green chloritized matrix masking strongly the		ļ	1	ļ	cl,cb	22310	84.25	85.00	0.75	0
	-	original gabbroic texture. Non to weakly magnetic rock with local trace of Py in veins and fractures. Locally well developed foliation at 70 tca. Weak to moderate Qz and/or calcite veining along unit with epidote	<u> </u>		1	 	cl,cb cl,cb	22311 22312	85.00 86.00	86.00 87.00	1.00	0
	1	observed locally into some veins. Local brecciated veins also reported. Graduational lower ctc defined by				-	CI,CD	22312	80.00	87.00	1.00	├
-		increasing of foliation and appearance of ankeritization.		 			.				1	
		112.75 to 114.0 m: Increasing of foliation and carbonatization and local breccification. Well developed			1		cl,cb	22313		113.40	0.65	0
	-	foliation at 60-65 tca with trace of Py associated.	bx	ļ	1 1	ļ	cl,cb	22314	113.40		0.60	0.02
114.00	127.00	I3A Lx, Ak (Daladier sill)	ļ	Į .	1	-	cl,ak	22315	114.00		0.70	0
114.00	137.00	ISA LX, AK (Dalauler Sill)	-	 	tr.	 	cl,ak cl.ak	22316 22317		117.00	1.35	0
		Medium to light gray, locally beige, bleached and leucoxenitic gabbroic rock. Partially preserved original	_		tr.		cl,ak,fu		117.00		1.00	0
	 	gabbroic texture with discontinuous bleaching along fractures and vein margins. With 5% disseminated			2		cl,ak,fu		118.00		1.00	0
	<u> </u>	brownish leucoxene often elongated into a moderate to strong foliation measured between 65 and 80 tca			tr.		cl,ak	22320	119.00	120.00	1.00	0
		throughout that interval. Discontinuous pervasive ankeritization overwriting chloritization. Local trace of Fu			tr.		cl,ak	22321	120.00	121.00	1.00	0
		noted with bleached ankeritization. Local cm qz-Ak-Tm vein intersected. Veinlets sericitization locally										
		observed. Overall with trace to 1% of thinly disseminated Py associated to ankeritized zones, gradational							,		ļ	
		lower ctc defined by decreasing of ankeritization.		ļ	ļ		.				-	
		121.3 to 121.4 m: Sericitized, ankeritized. Fu trace with trace of Pv associated.	<u> </u>	}	tr		cl.ak.fu	22322	121.00	122.00	1,00	0.01
		121.3 to 121.4 III. Selicitized, ankentized, Fu trace with trace of FV associated.	<u> </u>	-	tr.		cl,ak	22323	122.00		1.00	0.01
137.00	200.15	I3A Lx (Daladier sill)			1		cl,ak	22324	123.00		1.00	0
					1		cl,ak	22325	124.00	125.00	1.00	0
		Dark green, medium to coarse grained, massive to moderately foliated, mesogabbroic to melano-gabbroic			1		cl,ak	22326	125.00	126.00	1.00	0
		composition. Pervasively chloritized, locally carbonated and ankeritized. Locally glomero-porphyritic.			1		cl,ak	22327	126.00	127.00		0
	ļ	Becoming leucoxenitic when original textures are poorly preserved and affected by foliation. Epidote			tr.		cl,ak	22328	127.00	128.00	1.00	0
		locally observed inside cm veins. Weak to moderate veining (mainly Qz and Cb filled. Foliation measured throughout unit between 65 and 80 tca. Pyritic content varying from trace to 3% locally in disseminated,	<u> </u>		tr.	L	cl,ak	22329	128.00	129.00	1.00	0
		clotted, coarse grained form and often associated to carbonate into veins. Sharp lower ctc at 80 tca.			tr.	↓	cl,ak	22330	129.00	130.00	1.00	0
		provides, source grained form and orien associated to carbonate into veins. Sharp lower cit at 60 (ca.		-	tr.		cl,ak cl,ak	22331 22332	130.00 131.00	131.00 132.00	1.00	0
				 	tr.	 	ci,ak cl.ak	22332	131.00	133.00		0
			⊢	—	tr.		cl.ak	22334	133.00			0

From (m)	To (m)	Description	Qcv (%)	P0 (%)	Py (%)	Сру (%)	Alt.	Sample Number	From	То	Lenath	Au g/t
· · ·	 ` ` ·	142.90 to 143.40 m: Brecciated qz-cb-tm vein intersected at 25 tca. Trace of Py	()	\/_	tr.	(,	cl,ak	22335	134.00	135.00	1.00	0
		163.40 to 164.0 m: Injected by 30% Qz-calcite vein. Trace of Pv.			tr.		cl,ak	22336	135.00	136.00	1.00	ŏ
		168.0 to 176.0 m: Foliated at 70 tca. 1 to 3% disseminated Py in euhedral and clotted forms. Vein			tr.		cl,ak	22337	136.00	137.00	1.00	0
		controlled ankerite.			tr.		cl,ak	22338	137.00	138.00	1.00	0
		186.8 to 187.70 m: Carbonatized, foliated, chloritized with 1% diss. Py associated.			tr.		cl	22339	138.00	139.00	1.00	0
					tr.		cl	22340	139.00	139.80	0.80	0
200.15	207.65	Conglomerat (altered) / Lamprophyre	40		1		cl	22341	139.80	140.25	0.45	0.02
					tr.		cl	22342	140.25	141.00	0.75	0
		Beige yellowish, banded, fragmental, locally laminated conglomerate dominated level with siltstone and			tr.		cl,cb	22343	141.00	142.00	1.00	0
		lamprophyric dyke inserted. Stongly fragmental unit, polymictic, rounded to angular and elongated into a			tr.		cl,cb	22344	142.00	142.90	0.90	0
		well defined foliation measured ar 80 tca. Affected by a dominant moderate to strong pervasive					cl,tm,cb	22345	142.90	143.40	0.50	0.03
		sericitization with ankeritization associated. Local trace of Fu noted. Non to weakly magnetic rock with			tr.		cl,ak	22346	162.00	163.00	1.00	0
	1	fracture and veinlets controlled specularite hematite. 1% of thinly disseminated Py also noted. Fracture	30		tr.		cl,cb	22347	163.00	164.00	1.00	0
		controlled Cpy locally observed in fracture controlled position. A metric biotitic altered lamprophyric dyke is			tr.		cl	22348	168.00	169.10	1.10	0
	ļ	inserted inside that sedimentary unit. Diffuse lower ctc defined by decreasing of sericitization over 1 meter.			tr.		cl	22349	169.10	170.00	0.90	0
					tr.		cl	22350	170.00	171.00	1.00	0.01
	<u> </u>	200.15 to 201.0 m: Chloritized dominated, strongly foliated at 75 tca with 1-2% disseminated Py.			1		cl,cb	22351	171.00	172.00	1.00	0.1
		201.0 to 204.25 m: Biotitic, altered, foliated lamprophyre dyke. Brownish, medium grained with strong			1		cl,cb	22352	172.00	173.00	1.00	0.19
		biotite content. Carbonatized (ankeritized?), foliated at 75 tca and non magnetic with 1% of thinly	5		1		ak	22353	173.00	174.00	1.00	0.08
		disseminated Py associated. Seems to be transposed into foliation at 75 tca. Biotite locally Fu+.	5		1		ak	22354	174.00	175.00	1.00	0.03
			5		1		ak	22355	175.00	176.00	1.00	0.01
					tr.		cl	22356	176.00	177.00	1.00	0
207.65	233.40	Argilite / Arkose			1		cl	22357	186.80	187.70	0.90	0
	ļ				tr.		cl,cb	22358	199.00	200.15	1.15	0
		Mostly medium gray with mm yellow to green apple lamination, fine to medium grained. Unit dominated by			1		cl,sr	22359	200.15	201.00	0.85	0
		80% laminated argilite interlayered with 15-20% of decimetric to metric arkosic levels. Most unit is affected			1		bo,cb	22360	201.00	202.00	1.00	0
		by a moderate pervasive chloritization with weak to moderate veinlets and bedding controlled sericitization			1		bo,cb,fu	22361	202.00	203.00	1.00	0
		marking the foliation mostly measured between 70 and 85 tca. Carbonate-Qz veining varying between 2			1	ļ	bo,cb,fu	22362	203.00	204.25	1.25	0
		and 10% mostly in mm to cm vein boudined and transposed into foliation. Possible local vein controlled Fu			1	tr.	r,fu,ak,hı		204.25	205.00	0.75	0
		noted. Pervasive silicification locally observed. Non magnetic rock with up to 3% local Py in bedding			1	tr.	sr,ak,hm	22364	205.00	206.00	1.00	0
		controlled dissemination. Local hematization (specularite form). Sharp lower ctc at 75 tca defined by rock			1		sr,ak,hm	22365	206.00	207.00	1.00	0
		turning to polymictic conglomerate.			1	tr.	sr,ak,hm	22366	207.00	207.65	0.65	0
	<u> </u>	215.0 to 215.60 m: Arkosic, sericitized, Fu+? Level with 2-3% disseminated Py. 10% mm to cm boudined			<u></u>	L				L		
		Cb-Qz vein transposed into a strong foliation measured at 85 tca.	10		3		cb	22367	215.00	215.65	0.65	0
		218.0 to 218.85 m: Similar to previous 215.0-215.60 m.	10		2		sr,hm	22368	218.00	218.85	0.85	0
		222.6 to 223.6 m: Coarse grained, carbonatized, ankeritized, chloritized and foliated arkosic level			1		cl,sr,ak	22369	224.00	225.00	1.00	0
		intersected at 80 tca. Bedding at 80 tca noted and trace of Py.			İ		İ			1		
		223.6 to 225.50 m: Moderately silicified and weakly ankeritized with 1% of thinly disseminated Py.				ļ	ļ					
					<u> </u>					<u> </u>		
233.40	243.00	Conglomerat / Arkose				-						
233.40												
233.40		Mixed unit dominated by conglomeratic levels interlayered with arkosic horizons. Medium gray, coarse										
233.40		Mixed unit dominated by conglomeratic levels interlayered with arkosic horizons. Medium gray, coarse grained, fragmental and polymictic composition of fragments varying mostly from argilite to arkose, often										
233.40		Mixed unit dominated by conglomeratic levels interlayered with arkosic horizons. Medium gray, coarse										

From (m)	To (m)	Description	Qcv (%)	P0 (%)	Py (%)	Cpy (%)	Alt.	Sample Number	From	То	Length	Au g/l
		Uz verning. Locally with up to 2-3% or disseminated Py. Also local decimetric silty levels intersected. Lower ctc never reach.										
		233.40 to 235.0 m: Close packed conglomeritic level with diffuse cm to decimetric rounded fragments transposed into foliation at 80 tca. Trace of Py associated.										
		241.25 to 242.50 m: Arkosic level with spotted chloritization and 2-35 disseminated Py in cm bands parallels to the foliation (bedding) at 80 tca. Also with 5% of boudined veins.	5		3		cl,cb	22370	241.25	242.50	1.25	0.00
	-	242.5 to 243.0 m: Fine grained, grayish homogenous silty level foliated at 80 tca with 1% diss. Py										
		Casing left in hole										
43.00		E.O.H.										

PROPERTY:	Grizzly		HOL	NUMBER G	RZ-07-04		
Province:	Québec	DATE LOGGED: 1 September, 2007	Grid:	Method	Depth	Az	Dip
Township	Lamark	LOGGED BY: Michel Leblanc		reflex	Collar	260	-45.0
Started:	29-Aug-07	DRILLED BY: Benoit Diamond Drilling	UTM: 473617E	reflex	21	263.2	-49.1
Completed:	30-Aug-07	UNITS: Metres	NAD 83: 5535215	reflex	90	264.0	-49.5
CORE SIZE:	NQ	CORE LOCATION: Chapais	ELEV :				
			LENGTH: 99.0 m.				

PURPOSE: Testing Gladstone showing extension, 50 meters North.

COMMENTS:

Hole GRZ-07-04 reveals the presence of a 75 meter wide and discontinuous deformation corridor including at least 3 different parallels ankeritic, pyritic and near vertical structures along the 99 meter length of the hole. The first altered corridor (East Gladstone structure) was intersected from 21.7 to 30.0 meters, consisting of a moderate to strong ankeritization with up to 1-2% disseminated by and local fucshitic alteration associated. The second corridor (Gladstone structure (north extension)) was intersected from 46.0 to 64.0 meters, consisting in a moderate pervasive ankeritic corridor with local Fu and up to 1-2% disseminated Py associated. The third ankeritic intersection was located from 83.20 to 98.80 m. along hole. That altered interval was similar in intensity with the two previous one but with up to 5% of disseminated Py was reported into a decimetric brecciated Qz-Tm-Vn with Fuschitic margins intersected between 85.6 and 87.35 meters. Hole GRZ-07-04 was terminated at 99.0 meters into a leucoxenitic gabbro, shortly after the third (west gladstone structure).

SUMMARY L	0 G	GRZ-07-04						
From	То	Lithology	From	То	Metres	Au g/t		
0.00	8.70	OVB (CSG)						
8.70	39.00	I3A (Mesogabbro)						
39.00	64.00	I3A Lx						
64.00	83.20	13A					l	
83.20	99.00	I3A Lx, POR, Ak						
99.00		E.O.H.						

		DESCRIPTION (Hole no GRZ-07-04)					ngar Tiber T. States and Tiber T. States and	Charles	s allign metalsis	CIETA CARROLLE
From (m)	To (m)	Description	Qcv (%)	Py (%)	Alt.	Sample Number	From	То	Length	Aug/t
0.00	8.70	OVB (casing)								
8.70	30.00	I3A (Mesogabbro)			···					
0.70	35.00	IOA (Mesogabbio)					1			
		Medium gray-greenish, medium grained, massive to foliated mesogabbroic rock. Sloghtly porphyritic with 15-20% of sub millimetric rounded chloritized pyroxene porphyrs (porpix) disseminated into a feldspathic dominated matrix affected by a mixe of epidotization (saussurite) and chloritization. Cb-Qz veining varying from 1 to 5% along unit. The central part of unit is affected by a moderate to strong pervasive ankeritization with up to 1% disseminated Py associated. local trace of Fu noted. Foliation varying from weak to strong into ankeritizaed section and measured 45-50 tca. Gradational lower ctc with underlying unit defined by stronger chloritization and leucoxene content.								
		21.70 to 30.0 m: Moderate to strong pervasive and vein controlled ankeritization with up to 1% Py		+-	cl	22371	21.00	21.70	0.70	0
-		disseminated and local. Fu alteration.		tr. tr.	cl.ak	22371	21.70	23.00	1.30	0
		26.0 to 27.5 m: Sheared, foliated, strongly ankeritized with 1% disseminated Py associated and		1	cl,ak,fu	22373	23.00	24.00	1.00	0
		local Fu. Strongly foliated at 45 tca.		1	cl,ak,fu	22374	24.00	25.00	1.00	0
				1	cl,ak,fu	22375	25.00	26.00	1.00	0
				1	cl,ak,fu	22376	26.00	27.00	1.00	0
39.00	64.00	I3A Lx	5	1	cl,ak,fu	22377	27.00	27.50	0.50	0
		Dark to medium green, locally bleached to medium gray, medium grained, foliated, locally porphyritic rock		tr. tr.	ak,cl ak,cl	22378 22379	27.50 28.50	28.50 30.00	1.00	0.01
		of gabbroic composition. Affected by a moderate pervasive chloritization where weakly foliated. Foliation becoming stronger with ankeritization in lower part of unit. Foliation measured from 45 to 50 tca and ankeritization was found mostly in moderate pervasive form. Local ankeritization bleaching noted on decimetric section and vein margins. Ankeritization and foliation aren't strong enough to erase the gabbroic primary texture. With weak local magnetism and up to 1% of thinly disseminated Py associated to the stronger ankeritic section. Local cm qz-ak-tm vein intersected. Leucoxene are whitish in top unit turning to brownish into ankeritized and foliated lower section. Local spotted Fu alteration observed.		tr. tr.	ak,cl ak,cl ak,cl	22380 22381 22382	46.00 47.00 48.00	47.00 48.00 49.00	1.00 1.00 1.00	0 0
		Diffuse lower ctc over 1 meter defined by a gradational decrease of ankeritization.	5	tr.	ak,cl	22383	49.00	50.00	1.00	0
				tr.	ak,cl	22384	50.00	51.00	1.00	0
		46.0 to 64.0 m: Weak to moderate pervasive ankeritization, moderately to strongly foliated at 45-50 tca,		tr.	ak,cl	22385	51.00	52.00	1.00	0
		locally Fuschitic. With less than 5% of mm to cm Qz-Cb veins and up to 1% of disseminated Py 61.90 to 62.40 m: decimetric Qz-Ak vein intersected at 35 tca with Fu+ margin and 1% diss. Py associated		tr.	ak,cl	22386 22387	52.00 53.00	53.00 54.00	1.00	
		to these margins.		tr. tr.	cl,ak,fu ak,cl	22388	54.00	55.00	1.00	0.01
		12 122 132 132		1 1	ak,cl	22389	55.00	56.00	1.00	0
64.00	83.20	13A		1	cl,ak,fu	22390	56.00	57.00	1.00	0
			5	1	cl,ak,fu	22391	57.00	58.00	1.00	0.01
		Dark gray greenish, medium to coarse grained, locally porphyritic, massive to foliated mesogabbroic rock		tr.	ak,cl	22392	58.00	59.00	1.00	0
		with local disseminated leucoxene. Mainly affected by a pervasive chloritization with development of a	5	tr.	ak,cl	22393	59.00	60.00	1.00	Ö
		weak pervasive ankeritization to the upper and lower margins. Mesogabbroic composition with 35-40% of	5	tr.	cl,ak,fu	22394	60.00	61.00	1.00	0
		sub-millimetric chloritized pyroxene surrounded by a plagioclase dominated sericitic (saussuritized) matrix.	1	tr.	cl,ak,fu	22395	61.00	61.90	0.90	0
		Overall without significant magnetism noted. Locally with up to 1% of coarse grained euhedral Py. With	10	1	fu,ak	22396	61.90	62.40	0.50	0
		loss than 20/ of mm to am calgita value I and nomburitie section with 50/ of mm to am calgita value I and nomburities								
		less than 2% of mm to cm calcite veins. Local porphyritic section with 5% of mm pyroxene phenocrysts		tr.	ak,cl	22397	62.40	63.25	0.85	0
		less than 2% of mm to cm calcite veins. Local porphyritic section with 5% of mm pyroxene phenocrysts noted. Diffuse lower ctc over 1 meter defined by increasing of ankeritization and decreasing of chloritization.		tr.	ak,cl	22398	63.25	64.00	0.75	0
		noted. Diffuse lower ctc over 1 meter defined by increasing of ankeritization and decreasing of chloritization.		tr. tr.	ak,cl cl	22398 22399	63.25 64.00	64.00 65.00	0.75 1.00	0
		noted. Diffuse lower ctc over 1 meter defined by increasing of ankeritization and decreasing of		tr.	ak,cl	22398	63.25	64.00	0.75	0

From (m)	To (m)	Description	Qcv	Py	Alt.	Sample				
(111)	(11)		(%)	(%)		Number	From	То	Length	Au g/t
83.20	99.00	I3A Lx, POR, Ak								
		Light gray, locally apple green, partially bleached, foliated, altered and leucoxenitic gabbroic rock. Overall affected by a moderate to strong pervasive ankeritization with a weak to moderate spotted chloritization. Locally Fucshitized on decimetric section and along some Qz-Ak vein margins. Porphyritic rock with 5 to 10% of chloritic pyroxene porphyrs elongated into a moderate to strong foliation intersected at 45 tca. Brownish-orange leucoxene content locally observed in foliation controlled form. Non magnetic rock with up to 5% of disseminated Py observed in association to a local decimetric brecciated Qz-Tm-Ak veins. Gradational lower ctc defined by gradual increasing of chloritization.	35	tr. tr. 5	ak,cl,fu ak,cl,fu ak,fu ak,cl,fu ak,cl,fu	22402 22403 22404 22405 22406	84.00 85.00 85.60 86.35 87.00	85.00 85.60 86.35 87.00 88.00	1.00 0.60 0.75 0.65 1.00	0 0 0 0 0
		85.60 to 86.35 m: Decimetric, brecciated, Qz-Tm-Ak vein with 5% disseminated and euhedral Py associated to Fucshitized margins		tr.	ak,cl ak.cl	22407 22408	88.00 89.00	89.00 90.00	1.00	0
		96.0 to 97.0 m: Strongly foliated at 45 tca, leucoxenitic, ankeritized, chloritized with 1% foliation controlled disseminated Py associated.		1 tr.	ak,cl,fu ak,cl,fu ak,cl,fu	22409 22410 22411	90.00 91.00 92.00	91.00 92.00 93.00	1.00 1.00 1.00	0 0 0.01
		Casing left in hole		tr.	ak,cl	22412 22413	93.00 94.00	94.00	1.00	0.01
99.00		E.O.H.		tr.	ak,cl ak,cl ak,cl	22414 22415	95.00 96.00	95.00 96.00 97.00	1.00	0
				tr. tr.	ak,cl ak.cl	22416 22417	97.00 98.00	98.00 99.00	1.00	0

PROPERITY	ontzaly		HOLE	NUMBER G	RZ-07-05		man of the second secon
Province:	Québec	DATE LOGGED: 1-2 September, 2007	Grid:	Method	Depth	Az	Dip
Township	Lamark	LOGGED BY: Michel Leblanc		reflex	Collar	260	-45.0
Started:	30-Aug-07	DRILLED BY: Benoit Diamond Drilling	UTM: 473620E	reflex	21	263.2	-49.1
Completed:	01-Sep-07	UNITS: Metres	NAD 83: 5535164N	reflex	87	262.1	-49.9
CORE SIZE:	NQ	CORE LOCATION: Chapais	ELEV :				
			LENGTH: 99.0 m.				

PURPOSE:

Testing continuity of mineralization and alteration below Gladstone trench.

COMMENTS:

As previous hole collared 50 meters north (GRZ-07-04), hole GRZ-07-05 intersected 3 distinct ankeritic structures along it's course. These structures are respectively located from top to bottom of hole between colar and 8.8 m. (Gladstone East), 21.0 to 44.0 m. (Gladstone trench extension) and between 75.0 to 79.0 meters for Gladstone west. Every structure presented a moderate to strong, discontinuous and pervasive ankeritization bleaching partially the gabbroic host. Disseminated Py and local Fu alteration associated (mostly along Qz-Ak vein margins) are reported inside these ankeritic structures. A Qz-Ak vein is reported along hole from 75.70 to 76.25 m. with Pyritized and fucshite associated to it's margins.

SUMMARY L	OG	GRZ-07-05		Hig	hlight(s)	791 - 16 - 15 - 15 - 15 - 15 - 15 - 15 - 1
From	То	Lithology	From	То	Metres	Au g/t
0.00	6.60	OVB (CSG)				
6.60	8.80	I3A Ak				
8.80	21.00	I3A				
21.00	44.00	I3A Lx, Ak	22.75	23.80	1.05	0.34
44.00	99.00	I3A	42.00	43.00	1.00	0.3
			76.25	77.00	0.75	0.44

From (m)	To (m)	Descríption	Qcv (%)	Py (%)	Alt.	Sample Number	From	То	Length	Au a
0.00	6.60	OVB (Casing damaged)								
6.60	8.80	I3A Ak		1	ak.cl	22418	6.60	7.20	0.60	0
0.00	0.00	ISA AK		1	ak,fu	22419	7.20	7.90	0.70	0
		Whitish to light gray, bleached, porphyritic, medium grained gabbroic rock. Affected by a strong pervasive	<u> </u>	2	ak,cl	22420	7.90	8.80	0.90	0.02
		ankeritization-sericitization-fucshitization. Micro-porphyritic texture with 20% sub-millimetric chloritized		tr.	cl	22421	8.80	10.00	1.20	0
	ļ	pyroxene disseminated inside the bleached altered matrix. Non magnetic, rusty fractures, mineralized in								<u> </u>
		disseminated Py (1 to 3%). Diffuse lower ctc with underlying unit defined by a subtle decrease of bleaching and appearance of disseminated leucoxene.					 	 	 	├
		and appearance of disseminated redcoxene.				L	<u> </u>	ļ		
		7.2 to 7.9 m: Strong whitish bleaching with moderate Fu alteration associated. 1% diss. Py associated.								
8.80	21.00	IOA	ļ				<u> </u>	-	-	├—
3.60	21.00	IJA	<u> </u>		 		 	<u> </u>	 	\vdash
		Medium gray-dark green, medium grained, massive to foliated, chloritized and weakly leucoxenitic								
		mesogabbroic rock. Affected by a moderate pervasive and spotted chloritization and local moderate								
	ļ <u>.</u>	epidotization and weak carbonatization (calcite) turning to ankerite on both unit margins. Local vein			ļ		<u> </u>	ļ	 	ļ
		controlled hematite (specularite) reported. Weak carbonate veinlets content. Non magnetic with trace of leuhedral Py locally observed. Weak to moderate foliation developed at 60 tca developped to the base of		ļ				 	-	
	ļ — —	unit. Graduational lower ctc over 1 meter with underlying unit by increasing of ankeritization and leucoxene			 			 	 	
		turning from white to brownish.								
1.00	44.00	I3A Lx, Ak		tr.	cl.ak	22422	21.00	22.00	1.00	0.01
		ier an m		tr.	ak,cl	22423	22.00	22.75	0.75	0
		Light gray to greenish, foliated, altered, medium grained, locally glomero-porphyritic and leucoxenitic	10	5	ak,fu	22424	22.75	23.80		0.345
		gabbroic rock. Discontinuous bleaching of rock with original texture partially preserved. Locally micro-	5	1	ak,cl	22425	23.80	25.00	1.20	0.02
		porphyritic with 15-20% sub-millimetric rounded chloritized pyroxene porphyrs disseminated into a moderately to strongly ankeritized (bleached) and sericitized matrix with local Fu alteration noted on short		1	ak,cl ak,cl	22426 22427	25.00 26.00	26.00 27.00	1.00	0
		intervals (often Qz-Vn margins). 5% of disseminated brownish leucoxene are observed along unit.		tr.	cl,ak	22428	27.00	27.95		0.01
		Moderate pervasive chloritization characterized the less bleached section. Well developed foliation along		tr.	cl	22429	27.95	29.00	1.05	0
		unit mostly between 45-55 tca. Presence of disseminated Py (up to 5% locally). Non magnetic rock. Sharp		tr.	cl	22430	29.00	30.00	1.00	0
		lower ctc at 55 tca defined by a subtle decrease of ankeritization.		tr.	cl	22431	30.00	31.30	1.30	0
				tr.	ak,cl	22432	31.30	32.00	0.70	0
	<u> </u>	22.75 to 23.80 m: Bleached, fuschitized, ankeritized, mineralized section with 5% of euhedral disseminated	3	1	ak,cl ak,cl	22433 22434	32.00 33.00	33.00 34.00	1.00	0
		Py and 10% Qz-Ak-Tm veins mostly intersected at 45-50 tca.	3	tr.	ak,cl	22435	34.00	35.00	1.00	0
		24.0 to 27.0 m: Weakly preserved glomero-porphyritic texture (cm size), strongly ankeritized, bleached,	3	1	ak,cl	22436	35.00	36.00	1.00	0
		also micro-porphyritic. With 1-2% of disseminated Py associated mostly in coarse grained euhedral form.	<u> </u>	tr.	cl,ak	22437	36.00	37.00	1.00	0
		27.95 to 31.30 m: Chloritized, leucoxenitic and well preserved original texture. No bleaching reported.		tr.	cl,ak	22438	37.00	38.00		0.06
		Trace of diss. Py. 10% mostly calcitic veins.		tr.	cl,ak	22439	38.00	39.00	1.00	0
		32.0 to 39.0 m: Bleached, foliated glomero-porphyritic section, local Fu with trace to 3% of disseminated		tr.	ak,cl	22440	39.00	40.00	1.00	0
		euhedral Py. Also micro-porphyritic and local brownish disseminated leucoxene. With average of 5% mm to cm Qz-Ak veins.	2	2	ak,fu,cl	22441	40.00	40.90	0.90	0
		ITO CITI LIZ-AK VAIDS	5	1	ak,cl	22442	40.90	42.00	1.10	0
		to official Art verific.	_			1	44	44		-
		to oni 42 Ar venio.	5 10	1 tr.	ak,cl ak,cl	22443 22444	42.00 43.00	43.00 44.00	1.00	0.31

	lain succid	DESCRIPTION (Hole no GRZ-07-05)								
From (m)	To (m)	Description	Qcv (%)	Py (%)	Alt.	Sample Number	From	То	Length	Au g/t
44.00	99.00	13A								
		Dark green, grayish, medium to coarse grained, massive, locally foliated, glomero-porphyritic rock of meso gabbroic affinity. Also presence of thinly disseminated whitish leucoxene turning to brownish where foliation and ankeritization are stronger. Overall affected by a moderate pervasive chloritization. Weather epidotization noted between chloritized pyroxenitic rock portion. Local Fu noted in Qz-Ak vein margin. Locally with up to 5% of cm poorly defined agglomerate pyroxene often transposed into foliation. Mostly non to weakly magnetic. Local moderate pervasive ankeritization developed with foliation observed at 45 tca. Disseminated Py locally noted in coarse euhedral form and up to 3%. Local trace of disseminated AsPy noted. Diffuse lower ctc over 2 meters defined by graduational increase of a pervasive ankeritization with leucoxene turning brownish.		2	cl ak,cl	22446 22447	63.00 64.00	64.00 65.00	1.00	0.1
		64.0 to 66.0 m: Partially bleached, ankeritized, foliated section with local Qz-Ak-Tm vein intersected at 65 tca. Well developed foliation at 45 tca suggesting a vertical dipping. Local Fu noted in vein margin. 1-4% discontinuous disseminated Py in euhedral form and trace of AsPy.		1 tr.	ak,cl cl,ak ak,cl	22448 22449 22450	65.00 73.25 74.00	66.00 74.00 75.00	0.75	0
		75.0 to 79.0 m: Moderate to strongly ankeritized, sericitized, foliated, pyritized, fucshitized gabbroic rock. With 1 to 5% disseminated euhedral Py (trace AsPy) mostly associated to a decimetric Qz-Ak vein	90	3 10	ak,cl ak,fu	22451 22452	75.00 75.70	75.70 76.25	0.70 0.55	0.03
		intersected at 40 tca between 75.70 to 76.25 meters. Brownish leucoxene disseminated into a well developed foliation intersected at 40-45 tca. Ankeritization and bleaching fading from 78.0 to 79.0 meters where only chloritization is presents.		7 1 2 tr.	ak,fu ak,cl ak,cl cl,ak	22453 22454 22455 22456	76.25 77.00 78.00 79.00	77.00 78.00 79.00 80.00	1.00 1.00	0.44 0 0.14 0
		Casing left in hole			<u> </u>				 	