GM 62933

ETUDE GEOPHYSIQUE ET GEOCHIMIQUE D'UNE PERIDOTITE AURIFERE DE LA PROPRIETE LAC EWART

Cette première page a été ajoutée au document et ne fait pas partie du rapport tel que soumis par les auteurs.

ÉTUDE GÉOPHYSIQUE ET GÉOCHIMIQUE D'UNE PÉRIDOTITE AURIFÈRE DE LA PROPRIÉTÉ LAC EWART DE RESSOURCES MINIÈRES PRO-OR INC. LG3, QUÉBEC.

Par

MARC R. LAFLÈCHE¹

MARIO BERGERON

Et

YVAN BUSSIÈRES

Reg 65415_-

Ressources naturelles et Faune, Québec

2 9 MARS 2007

Service de la Géoinformation GM 6 2 9 3 3

INRS-EAU, TERRE ET ENVIRONNEMENT

Avril 2006

¹ Membre de l'Ordre des géologues du Québec : numéro de membre 1055

1

Résumé

Ce rapport présente les résultats d'une étude géophysique et géochimique d'un secteur aurifère de la propriété Lac Ewart de Ressources minières Pro-Or inc. Cette propriété est localisée dans le secteur de LG3 (Baie-James, Qc) dans des terrains méta-sédimento-plutoniques archéens appartenant au Groupe de Laguiche de la sous-province tectonique d'Opinaca. La zone anomalique correspond à une méta-péridotite anormalement enrichie en or. Cette unité est bordée de roches méta-sédimentaires métamorphisées au faciès des amphibolites.

Les travaux de terrain réalisés à l'automne 2005 consistent en une cartographie de base et la réalisation de profils magnétométriques et gradiométriques et de polarisation induite de haute résolution spatiale. Ces travaux ont été suivis de levés lithogéochimique et pédogéochimique. Ces travaux ont été réalisés en suivant un réseau de coupe de ligne espacé de 50 m et orientée selon un axe de NE-SO. Les stations ont été positionnées à l'aide d'un système de positionnement satellitaire (GPS).

L'étude réalisée en 2005-2006 permet de documenter la géologie, la géophysique et la géochimie d'une partie (secteur NE) de la propriété du Lac Ewart. Les roches dans ce secteur sont relativement affleurantes et caractérisées par la présence de roches ultramafiques anormalement riches en or. Quoique relativement homogène, le massif de péridotite montre des abondances en or de 20 à 60 fois supérieures aux valeurs normalement observées dans les péridotites terrestres. Cet enrichissement est de type cryptique car les hautes valeurs ne sont pas associées à des structures mégascopiques comme des zones de cisaillement ou des veines de quartz.

La cartographie de 2005 montre bien les limites ouest et est de la péridotite qui est bordée de roches méta-sédimentaires. Le contact entre les roches sédimentaire et péridotitique est de l'ordre de 70° et les variations de direction des contacts suggèrent la présence d'un plis relativement ouvert et plongeant vers le NE.

Le levé magnétométrique démontre clairement la présence d'un corps de roches ultrabasiques fortement magnétiques. Le gradient magnétique permet de préciser les contacts avec les roches méta-sédimentaires tout en soulignant des anisotropies internes pouvant correspondre à des secteurs plus déformés.

Le levé de polarisation induite souligne la présence de roches polarisables qui pourraient correspondre à des zones de sulfures disséminés dans les péridotites.

Avant propos

La cartographie géologique, l'échantillonnage et les travaux de géophysique de 2005 ont été réalisés par Yvan Bussières (Ing. géologue), Maude Gagnon (Ing., BScA) et Christopher Cyr. Le broyage et la pulvérisation des échantillons ont été réalisés par Bruno Boussicault et Yves Monette. Omer S. Nzangou (Ph.D) a réalisé les préparations pour l'analyse chimique en ICP-AES. Réal Gosselin, analyste à l'INRS-ETE, a réalisé l'analyse des éléments majeurs et traces par ICP-AES. Les analyses de métaux précieux (Au, Pt et Pd) ont été réalisées aux laboratoires de Chimitec de Vancouver.

Les données magnétométriques recueillies par Yvan Bussières ont été corrigées pour tenir compte des variations diurnes du champ magnétique terrestre. La banque de données géophysiques a été crée et gérée par M. Yvan Bussières.

L'interprétation finale des résultats a été réalisée par Marc R. LaFlèche professeur à l'INRS-ETE en collaboration avec M. Bruno Boussicault (géophysicien).

TABLE DES MATIÈRES

۷

र

Résumé Avant propos	2 3
 INTRODUCTION Problématique 	5 5 6 6 10
3.CONTEXTE GÉOLOGIQUE 3.1. Géologie régionale et locale	10 10
 4. GÉOPHYSIQUE 4.1 Données magnétométriques (méthodologie) 4.2 Présentation et interprétation des données magnétométriques 4.2.1 Données magnétométriques 4.2.2 Données du champ magnétique total 4.2.3 Données du gradient magnétique mesuré 4.2.4 Susceptibilité magnétique 4.3 Présentation des données de polarisation induite 	14 14 17
 5. LITHOGÉOCHIMIE 5.1. Rainurage No.1 5.2. Rainurage No.2 5.3 Analyses statistiques multivariées 	30 30 31 41
6. Levé pédogéochimique	44
7. Potentiel minéral	50
8. CONCLUSIONS ET RECOMMANDATIONS	51
9. Références bibliographiques	52
Annexe 1 Analyses des métaux précieux (Chimitec)	53
Annexe 2 Analyses par ICP-AES (INRS-ETE)	54
Annexe 3 Analyses par activation neutronique (INAA) (Activation Labs)	56

.

1. INTRODUCTION

1.1 PROBLÉMATIQUE

Dans le cadre des travaux réalisés en 2004, un indice aurifère a été découvert dans le secteur N-E de la limite de la propriété du Lac Ewart (région de LG3) de Ressources minières Pro-Or inc. Cette zone anomalique en Au est associée à des roches ultramafiques (péridotites) encaissées dans des roches méta-sédimentaires du Groupe de Laguiche (sous-province d'Opinaca).

Les trois échantillons lithogéochimiques du levé de 2004, prélevés sur la zone d'affleurement péridotitique ont montré des abondances en or pouvant atteindre plus de 300 ppb. Compte tenu de l'absence de veinules de quartz ou d'accumulation visible de sulfures sur le site d'échantillonnage, la présence de fortes abondances en or (jusqu'à 70 fois le bruit de fond naturel) peut être considérée comme hautement anomalique. Une possibilité, suggérée par le Dr Benoît Dubé (spécialiste de la métallogénie de l'or de la Commission géologique du Canada), serait que l'indice soit associé à la présence d'un skarn de type aurifère (gîte de remplacement métasomatique). Selon cette hypothèse, la zone échantillonnée en 2004 pourrait correspondre à l'enveloppe externe de la zone minéralisée aurifère. La minéralisation pourrait être située au contact entre les roches métasédimentaires et les roches ultramafiques et plus spécifiquement dans la zone de contraste rhéologique entre les roches méta-sédimentaires ductiles et les péridotites massives.

Afin de vérifier la nature et l'importance de la zone aurifère découverte en 2004, des travaux géophysiques et géochimiques sont nécessaires afin de pouvoir évaluer le potentiel minéral de cette zone. Ressources minières Pro-Or inc. a mandaté l'INRS-ETE pour poursuivre l'étude du potentiel aurifère d'une partie de sa propriété Lac Ewart.

1.2. TRAVAUX DE TERRAIN RÉALISÉS À L'AUTOMNE 2005

L'équipe de terrain a procédé à l'étude de la nouvelle section de la propriété du Lac Ewart. Les travaux ont débuté la première semaine d'octobre 2005 pour se terminer vers le 15 octobre 2005.

Les travaux de terrain ont consisté en une couverture géologique et géophysique systématique d'une zone de 500 m par 250 m centrée sur le massif de roches ultrabasiques. Les levés magnétométrique (champ total et gradient magnétique) et de polarisation induite ont couvert une distance linéaire de 3000 m selon un système de coupe de ligne orienté perpendiculairement au contact entre l'unité de roches ultrabasiques et les roches méta-sédimentaires (SO-NE). Les données magnétométriques (champ total et gradient) ont été prélevées en mode continu (haute résolution) pour permettre la détection de zones minéralisées sub-métriques.

L'échantillonnage lithogéochimique a consisté en un prélèvement en rainures (scie à diamant) de 41 échantillons de péridotite. Ces échantillons ont été analysés pour les éléments majeurs et traces ainsi que pour les métaux précieux (Au, Pt, Pd). Les éléments majeurs et traces ont été analysés par spectrométrie d'émission atomique et de masse à source plasma au laboratoire de l'INRS-ETE. Les analyses de métaux précieux ont été réalisées aux laboratoires de Chimitec à Vancouver.

L'échantillonnage pédogéochimique a été réalisé à partir du prélèvement de l'humus sur 99 stations d'échantillonnage réparties sur l'ensemble de la grille de 500 par 250 m. Ces échantillons ont été analysés et préparés par Activation Labs (Ancaster, Ontario). Le dosage a été réalisé à l'aide de la technique d'activation neutronique instrumentale (INAA).

2. LOCALISATION ET ACCESSIBILITÉ

La propriété du Lac Ewart est située dans la région du moyen nord du Québec à environ 25 km au sud du réservoir La Grande 3 (Figure 1). Cette dernière est incluse dans le feuillet 33G04 (SNRC) portant le même nom. Elle affleure dans la partie centre nord de la carte entre les latitudes 53°09' et 53°12' et les longitudes 75°42' et 75°47'.

À partir de la Trans-Taïga, la propriété est accessible par véhicule en empruntant un chemin de terre anciennement utilisé par Hydro-Québec. Ce dernier suit grossièrement la trajectoire d'une ligne de haute tension. Cette ligne sert à l'acheminement de l'électricité en provenance de la centrale de LG3. À environ 38 km du début du chemin, un sentier de VTT d'environ 4 kilomètres

de longueur permet de rejoindre le camp de base de Pro-Or inc. situé au bord du lac. Cependant, lors des travaux de 2005, nous avons atteint la zone de péridotites en se dirigeant directement à partir du chemin de l'Hydro-Quéhec. Le secteur aurifère étudié dans ce projet est situé à environ 1 km du chemin de l'Hydro-Québec.

Figure 1. Carte de localisation de la propriété Lac Ewart, Baie-James, Qc.

Figure 2. Localisation de l'indice de péridotite aurifère (indiquée par une étoile rouge).

La propriété Lac Ewart de Ressources minières Pro-Or inc. renferme 44 claims désignés totalisant une superficie de 2271.94 hectares. La liste des titres est présentée dans le tableau 1.

Tableau 1: Identification des claims de ressources minières Pro-Or inc. désignés dans le système de classification du MRNFP du Québec.

No du	u titre	Date d'expiration	Superficie (Ha)
CDC	1126591	2007-06-09	51,66
CDC	1126592	2007-06-09	51,66
CDC	1126593	2007-06-09	51,66
CDC	1126594	2007-06-09	51,65
CDC	1126595	2007-06-09	51,65
CDC	1126596	2007-06-09	51,65
CDC	1126597	2007-06-09	51,65
CDC	1126598	2007-06-09	51,65
CDC	1126599	2007-06-09	51,64
CDC	1126600	2007-06-09	51,64
CDC	1126601	2007-06-09	51,64
CDC	1126602	2007-06-09	51,63
CDC	1126603	2007-06-09	51,63
CDC	1126604	2007-06-09	51,63
CDC	1126605	2007-06-09	51,63
CDC	1126606	2007-06-09	51,62
CDC	1126607	2007-06-09	51,62
CDC	1126608	2007-06-09	51,62
CDC	1126609	2007-06-09	51,62
CDC	1126610	2007-06-09	51,61
CDC	1126611	2007-06-09	51,61
CDC	25677	2006-07-04	51,61
CDC	25678	2006-07-04	51,67
CDC	25679	2006-07-04	51,67
CDC	25680	2006-07-04	51,67
CDC	25681	2006-07-04	51,67
CDC	25682	2006-07-04	51,66
CDC	25683	2006-07-04	51,66
CDC	25684	2006-07-04	51,66
CDC	25685	2006-07-04	51,65
CDC	25686	2006-07-04	51,64
CDC	25687	2006-07-04	51,64
CDC	25688	2006-07-04	51,64
CDC	25689	2006-07-04	51,63
CDC	25690	2006-07-04	51,62
CDC	99309	2007-10-20	51,62
CDC	99310	2007-10-20	51,62
CDC	99311	2007-10-20	51,61
CDC	99312	2007-10-20	51,61
CDC	99313	2007-10-20	51,61
CDC	99314	2007-10-20	51,61
CDC	99315	2007-10-20	51,6
CDC	99316	2007-10-20	51,6
CDC	99317	2007-10-20	51,6

Total: 2271,94 (Ha)

2.1 **Physiographie**

La topographie de la région est un héritage de la dernière grande période glaciaire. Le relief du terrain est typique du Nord-Ouest du Québec où collines alternent avec des lacs et des zones marécageuses. Les extrémités Nord-Ouest et Sud-Est de la propriété Lac Ewart culminent à une altitude entre 373 et 381 mètres et la dénivellation par rapport au niveau moyen du lac est d'environ 67 mètres. Dans l'ensemble, le terrain est relativement bien drainé.

3. CONTEXTE GÉOLOGIQUE

3.1 GÉOLOGIE RÉGIONALE ET LOCALE

Le contexte géologique de la propriété Ewart de Ressources minières Pro-Or inc. est marqué par la mise en place de plusieurs générations d'intrusions felsiques injectées dans une séquence de roches méta-sédimentaires du Gp de Laguiche (sous-province d'Opinaca). Selon le MRNFP, ces roches sont datées à moins de 2648 +/- 50 Ma. Ces dernières sont recoupées d'une multitude d'injections pegmatitiques et localement de veines de quartz. Les roches granitiques et méta-sédimentaires sont injectées localement par des dykes mafiques, des dykes magnésiens et ou des dykes ultramafiques. Ces dernièrs sont localement associés à des zones anormalement enrichies en or qui font l'objet de la présente étude.

Les analyses lithogéochimiques présentées dans le rapport de LaFlèche et al. (2004) confirment la présence de ces dykes ultramafiques. Neuf échantillons ont montré des abondances en Cr (974-1938 ppm) et Ni (623-1452 ppm) particulièrement élevées. Les études pétrographique et géochimique ont montré qu'il s'agit de roches ultrabasiques (riches en magnésium : 21-34 % MgO).

Dans la région, les données structurales, prélevées sur les roches méta-sédimentaires, montrent une fabrique planaire dominante orientée à N310° et pendante à environ 70° vers le NE. Cette dernière contraste fortement avec le grain tectonique régional de la carte au 1 :50 000 qui est généralement Est-Ouest. Le secteur de la propriété Lac Ewart correspond à un domaine structural différent contrôlé par la présence d'un important corridor de déformation orienté NO-SE. Un important système de linéaments visibles sur les photos aériennes ainsi que sur les images satellites de la région est associé à ce corridor.

Dans le secteur de l'indice aurifère (partie N-E de la propriété), le grain structural redevient dominé par des structures plissées et une foliation relativement E-W.

Projet Lac Ewart

Ressources minières Pro-Or inc.

Roches méta-sédimentaires

Figure 3. Carte géologique de la propriété Lac Ewart. Géologie tirée du rapport de LaFlèche et al. (2004).

Le secteur de la péridotite aurifère est marqué par la présence de roches méta-sédimentaires recoupées par un petit massif de péridotites. La zone péridotitique est soulignée par la présence d'une bute aux pentes fortement escarpées. L'unité de méta-sédiments affleure localement à la base de l'escarpement. À l'échelle de la zone d'affleurement, l'attitude du contact change d'orientation. Il passe de NE-SO à E-O et localement à NO-SE. Ceci suggère que la masse de péridotite occupe la charnière d'un plis relativement ouvert. Compte tenu du pendage observé, ce plis semble plonger vers le NE.

L'examen des échantillons rapportés aux laboratoires montre la présence de textures planaires centimétriques. Lors de la visite de la zone d'affleurement en 2004 nous avons observé une texture brèchique relativement précoce car la matrice entre les fragments était également de composition ultrabasique.

L'affleurement ne montre aucunes textures pouvant être associées à des laves komatiitiques (spinifex, cumulats, bordure de trempe etc..). Dans l'ensemble, la texture est relativement massive et les cumulats de chromitites, de pyroxénites et ou d'anorthosites n'ont pas été observés.

La présence de nombreux copeaux de péridotites au voisinage d'une grande zone de déformation régionale pourrait impliquer une mise en place tectonique de péridotites mantelliques. Ces roches pourraient constituer des fragments la base de la lithosphère précambrienne métasomatisée comme en témoigne les spectres d'éléments traces présentés dans le rapport de (LaFlèche et al., 2004).

Figure 4. Carte géologique de la colline de péridotites aurifères de la propriété Lac Ewart.

4. GÉOPHYSIQUE

Lors de la campagne de terrain de 2005, nous avons procédé à des levés magnétométrique et de polarisation induite de haute résolution dans un secteur de 650 par 250 km englobant la zone de péridotite aurifère. (Figure 4). Ces données géophysiques sont présentées dans les sections suivantes d'abord sous la forme de sections détaillées suivant la trajectoire des lignes et de cartes.

4.1 DONNÉES MAGNÉTOMÉTRIQUES (MÉTHODOLOGIE)

Dans ce projet, nous avons utilisé un magnétomètre-gradiomètre de type GSM-19 (v 6.0- 2003) de type walking mag (GEM Systems) (Figure 37a). Les options de l'appareil permettent une opération en mode continu (*walking mag and walking grad*) et ou discontinu (*mobile mag and grad*). L'appareil utilise le principe de l'effet Overhauser pour accentuer la polarisation des protons. Contrairement aux magnétomètres classiques à protons, la cellule de ce magnétomètre contient un radical libre ainsi qu'un générateur de radiofréquence (RF) qui permet de perturber le couplage électron-proton. En saturant les lignes de résonance des électrons libres, la polarisation des protons est plus efficace. Ce phénomène se traduit par la production de signaux plus intenses et ce malgré la présence de détecteurs sensiblement plus petits (utilisant moins d'énergie). De plus, le système de détection de l'appareil est plus tolérant à de fortes variations du champ magnétique.

Pour accentuer les contrastes magnétiques et localiser avec précision la présence de fines structures magnétiques, nous avons mesuré le gradient magnétique en utilisant un deuxième détecteur Overhauser situé à 1 m au dessus du premier. L'utilisation simultanée de deux capteurs superposés permet de calculer la différence des deux signaux, usuellement nommé 'pseudogradient'. Ce paramètre est normalement considéré indépendant des variations temporelles du champ magnétique terrestre. Ainsi, l'approche gradiométrique est une méthode qui permet de visualiser directement les données magnétiques sans devoir effectuer de corrections pour les fluctuations diurnes du champ magnétique terrestre. Les données gradiométriques peuvent être comparées d'une zone d'affleurement à l'autre.

Les données du champ magnétique total, mesurées par le premier détecteur, ont été corrigées pour tenir compte de l'effet de dérive du champ magnétique terrestre lors du levé. Pour ce faire, nous avons utilisé une station de base (magnétomètre) de type GSM-19 fonctionnant en mode automatique. Ces données ont été utilisées pour corriger les fluctuations reliées aux variations diurnes du champ magnétique terrestre. L'examen des banques de données permet également de constater qu'aucune tempête magnétique significative n'a perturbé le levé magnétométrique (Figures 5a et 5b). Dans l'ensemble, les variations observées sont de l'ordre de 2 nanotesla (nT) (max de 5 nT pour une période d'acquisition) ce qui est négligeable par rapport aux contrastes du champ magnétique total observés en approchant la colline de roches péridotitiques.

Dans des conditions idéales, la sensibilité de l'appareil est de 0,01 nT et en fonction d'écarts considérables de température cette sensibilité peut atteindre 0,2 nT.

Figure 5a. Variations diurnes du champ magnétique total enregistré à la station de base magnétique du campement de la propriété Lac Ewart.

Figure 5b . Variations diurnes du champ magnétique total enregistré à la station de base magnétique du campement de la propriété Lac Ewart (suite).

4.2 Présentation et interprétation des données magnétométriques

4.2.1 Données magnétométriques

Les données magnétométriques sont présentées sous la forme de sections sur la figure 6 et d'une carte sur la figure 7. Ces données ont été corrigées pour compenser l'évolution diurne du champ magnétique terrestre enregistré à la station de base.

Les données magnétométriques ont été acquises le long de 6 lignes orientées NE-SO et numérotées de 2200E à 2450E. L'espacement entre les lignes est de 50 mètres et les mesures ont été prises en mode continu (*walking mag and grad*) avec une acquisition du champ magnétique total et du gradient magnétique au ¹/₂ seconde.

4.2.2 Données du champ magnétique total

La ligne 2200E, située la plus au nord-ouest, ne montre pas de contrastes significatifs du champ magnétique total (Figure 6). Ceci suggère l'absence de roches péridotitiques (haute susceptibilité magnétique) dans cette partie de la zone étudiée. En effet, les roches péridotitiques débutent sur les lignes situées au sud-est de la ligne 2200E. Par exemple, la ligne 2250E montre la présence d'une première anomalie débutant vers 1630 m et se terminant vers 1650 m et d'une seconde plus importante débutant vers 1700 m et se terminant vers 1725 m. Les deux anomalies montrent des profils fortement asymétriques suggérant que la masse ou les masses de roches péridotitiques agissent comme des dipôles magnétiques (Figure 6). Les lignes 2300E et 2350E montrent les plus fortes anomalies magnétiques observées en sections ainsi qu'en plan. Ces anomalies sont localisées entre 1600 et 1725 m.

Les plus fortes valeurs observées du champ magnétique total sont de 66000 nT (ligne 2300E). Dans le secteur étudié, les variations absolues du champ magnétique total peuvent atteindre un maximum de 7000 nT au voisinage des zones de roches ultrabasiques (Figure 6). Cette forte signature magnétique résulte probablement de la présence de magnétite secondaire reliée au processus de recristallisation métamorphique des péridotites.

Figure 6. Sections montrant les variations du champ magnétique total le long des lignes 2200E à 2450E respectivement.

Contrairement aux péridotites, les roches méta-sédimentaires qui occupent le reste de la zone cartographiée montrent peu de variations du champ magnétique total. Ceci reflète entre autre une faible et relativement uniforme susceptibilité magnétique de ces roches.

La carte du champ magnétique total (Figure 7) souligne bien la présence des roches péridotitiques aurifères qui sont très fortement magnétiques. A l'opposé, les roches encaissantes métasédimentaires montrent un faible bruit de fond magnétique (de l'ordre de 57750 nT). La signature magnétique de ces roches est représentée par un couleur jaune qui devient verdâtre en s'approchant de la péridotite.

4.2.3. Données du gradient magnétique mesuré ('pseudogradient')

Les coupes de gradient magnétique présentées à la figure 8 montrent également la présence de perturbations reliées à la présence des corps péridotitiques. Le gradient magnétique varie de 100 à plus de 1500 nT/m. Ces contrastes sont énormes ce qui explique certaines dégradations des données lors du levé magnétométrique de terrain. Pour vérifier et minimiser ce paramètre nous avons éliminé les données aberrantes soulignées par un critère de qualité du détecteur magnétique (données avec un signal inférieur à 99 %).

Compte tenu de la nature des contacts lithologiques observés sur le terrain, nous ne pouvons expliquer ces perturbations simplement par la variation abrupte d'un milieu dominé par des roches à fortes et faibles susceptibilités magnétiques. La présence de corps géologiques agissant comme de puissants dipôles magnétiques expliquerait avantageusement cette situation.

Figure 8. Sections montrant les variations du gradient magnétique mesuré ('pseudogradient') le long des lignes 2200E à 2450E respectivement.

La carte du gradient magnétique mesuré (Figure 9) montre une image sensiblement différente de celle observée sur la carte du champ magnétique total (Figure 7). Le contraste entre roches péridotitiques et méta-sédimentaires semble plus abrupte et la masse relativement uniforme sur la carte du champ total se dissocie en plusieurs composantes ou alternent zones à gradients magétiques positifs et négatifs.

Figure 9. Carte du gradient magnétique mesuré dans le secteur de la péridotite aurifère.

4.2.4. Susceptibilité magnétique

La figure suivante montre la variabilité de la susceptibilité magnétique mesurée sur des échantillons de péridotites échantillonnées lors du rainurage des deux sections lithogéochimiques. Dans l'ensemble, les valeurs de susceptibilité magnétique sont très élevées ($50 \pm 33 \times 10^{-3}$ SI) par rapport aux valeurs mesurées dans les roches méta-sédimentaires (inf. à 1×10^{-3} SI). Ceci explique les fortes valeurs du champ magnétique observé au dessus des roches péridotitiques. Les variations observées traduisent des variations modales dans la proportion de magnétite contenue dans les péridotites. En affleurement et sur les échantillons en laboratoire, nous avons observé un pseudo-litage modal montrant un alignement planaire des oxydes de fer. Ceci explique les variations de susceptibilité magnétique observées à l'échelle de l'affleurement.

Susceptibilité magnétique

Figure 10. Variations de la susceptibilité magnétique mesurée sur les péridotites des coupes lithogéochimiques 2300 E (1652-1687N) et 2416-2422 E (1622-1630N).

25

4.3 PRÉSENTATION DES DONNÉES DE POLARISATION INDUITE

Suite aux levés magnétométriques, nous avons réalisé un levé de polarisation induite. L'objectif était de vérifier la présence de zones de sulfures disséminés possiblement associées à l'enrichissement aurifère observé dans les péridotites étudiées.

Sur le dispositif de lignes, nous avons réalisé un levé avec une configuration d'électrodes de type dipôle-dipôle. Cette configuration est performante pour repérer des anomalies de chargeabilité et donne généralement une bonne profondeur d'investigation ainsi qu'une bonne résolution spatiale. Le système Terrameter SAS 4000 de ABEM a été utilisé avec 4 électrodes en acier inoxydable. Les mesures ont été prises avec des espacements de 25 m et 50m. Compte tenu de la très faible épaisseur de mort terrain sur les roches péridotitiques, le dispositif permet d'apprécier la présence ou non des phases sulfurées agissant comme accumulateurs de charge. Un dispositif plus puissant couplé à une plus grande séparation des électrodes serait nécessaire pour investiguer plus en profondeur la distribution des phases sulfurées.

Sur les figures 11 et 12, les résultats montrent la présence de zones de chargeabilité situées au nord de la ligne de rattachement 1600N. Quoique d'amplitudes modérées, ces anomalies soulignent la présence de sulfures disséminés dans les péridotites. Ces sulfures ont été observés lors de l'étude au microscope minéragraphique (Figure 13).

Comparativement au plan de la figure 11 (espacement de 25m entre les électrodes), la carte de la figure 12 (espacement de 50m) (donc plus pénétrative) montre une zone de chargeabilité qui traverse la ligne 2450 en se dirigeant vers le lac. Cette zone semble prendre de l'importance en fonction de l'accroissement de la profondeur. Cette zone tout comme les autres zones de chargeabilité élevée sont des secteurs propices pour intersecter des zones aurifères.

Les données géophysiques disponibles ne permettent pas de se prononcer sur l'évolution de cette chargeabilité en fonction de la profondeur. Pour une investigation de l'ordre de 200 à 500m, un levé de polarisation induite de haute puissance serait nécessaire.

Figure 11. Carte de la chargeabilité mesurée lors du levé de polarisation induite (espacement 25 m entre les électrodes).

Figure 12. Carte de la chargeabilité mesurée lors du levé de polarisation induite (espacement 50 m entre les électrodes). Notez que la pénétration verticale du levé est plus importante que pour la carte précédente (au 25 m).

Figure 13 . Photographies montrant les minéraux silicatés (amphiboles: E et F)) et sulfurés (G et H) dans les péridotites. La chargeabilité observée dans les péridotites s'explique par la présence des phases sulfurées disséminées dans la matrice silicatée.

5. LITHOGÉOCHIMIE

Cette section présente les résultats de l'échantillonnage lithogéochimique réalisé le long de deux zones de rainurage (rainurages No. 1 et 2) (Figures 14 et 15). Les échantillons ont été prélevés suite au sciage au diamant de la surface des affleurements. Au laboratoire, les échantillons ont été nettoyés à l'eau chaude et frottés avec une brosse de nylon. Ainsi, avant l'étape de broyage, les échantillons ne montraient aucunes traces de boues de sciage.

L'échantillonnage de 2005 confirme l'interprétation du rapport de LaFlèche et al. (2004) voulant que la colline au bord du lac soit de composition péridotitique. Les abondances en MgO et SiO₂ sont respectivement de 32.8 ± 1.9 et 42.5 ± 2.3 (% pds) et celles du Cr et du Ni sont respectivement de 2014 ± 203 et 1325 ± 138 (ppm). Les hautes abondances en MgO suggèrent que ces roches sont cumulatives en olivine ou bien qu'elles sont des résidus de fusion de péridotites mantelliques.

La colline de péridotite peut être considérée comme fortement anomalique en or car la valeur moyenne est de 84 ppb ce qui est environ 20 fois supérieur aux valeurs normalement observées dans des roches ultrabasiques. Avec un telle concentration en Au, il serait facile de produire un gîte aurifère par un processus d'enrichissement hydrothermal.

5.1 RAINURAGE NO.1

Contrairement à ce qui est observé dans des intrusions litées comme le Complexe de Ménarik, l'on note peu de variation compositionnelle le long des zones de rainurage. Par exemple, les variations des abondances en SiO₂, CaO et Sc ne suggèrent pas la présence de bandes pyroxénitiques à l'intérieur des péridotites (Figures 17 et 18). De la même façon, les variations des abondances en MgO ne suggèrent pas la présence de pures bandes dunitiques constituées de cumulats d'olivine. Les variations des abondances en Cr ne suggèrent pas la présence de zones anormalement enrichies en chromites (ex. chromitites) et finalement, les abondances en Al₂O₃ varient seulement de 4 à 5 % ce qui démontre l'absence de cumulats anorthositiques.

La perte au feu varie de 4 à 10% ce qui est compatible avec l'observation des amphiboles dans les péridotites. Les abondances en S varient de 0,05 à 0,20 % (pds) et curieusement elles sont

inversement corrélées aux abondances en Au (R^2 : 0,43 : corrélation linéaire ou R^2 : 0,66 : corrélation polynomiale d'ordre 2). De la même façon, le Cu et le Zn ne montrent pas de corrélations significatives avec les abondances en S (R^2_{Cu-S} :0,0002; R^2_{Zn-S} :0,0736).

La susceptibilité magnétique, mesurée sur les échantillons en laboratoire, ne corrèle pas significativement avec l'abondance en Au (R^2 : 0,22).

5.2 RAINURAGE NO.2

Tout comme pour la zone de rainurage précédente, l'on note peu de variations compositionnelles le long de la zone de rainurage No.2. Par exemple, les variations des abondances en SiO₂, CaO et Sc ne suggèrent pas la présence de bandes pyroxénitiques à l'intérieur des péridotites (Figures 20 et 21). De la même façon, les variations des abondances en MgO et Cr ne suggèrent pas la présence de pures bandes dunitiques et de chromitites et les abondances en Al₂O₃ ne suggèrent pas la présence de cumulats anorthositiques.

La perte au feu varie de 6,3 à 8,3 % ce qui est compatible avec l'observation des amphiboles dans les péridotites. Les abondances en S varient de 0,10 à 0,31 % (pds) et comme pour la section précédente, elles sont inversement corrélées aux abondances en Au (R^2 : 0,57 : corrélation linéaire). Le Cu et le Zn ne montrent pas de corrélations significatives avec les abondances en S ($R^2_{Cu-S}:0,1094$; $R^2_{Zn-S}:0,0499$).

Tout comme pour la section précédente, la susceptibilité magnétique mesurée sur les échantillons de la rainure No.2, ne corrèle pas avec l'abondance en Au (\mathbb{R}^2 : 0,0322).

Il est probable qu'une partie importante du processus de magnétisation de la péridotite soit antérieure à la mise en place de l'or.

Élément	Unité	moyenne	écart-type	n
SiO ₂	(% pds)	42.48	2.34	38
TiO ₂	(% pds)	0.34	0.04	38
Al_2O_3	(% pds)	4.46	0.49	38
Fe ₂ O ₃ T	(% pds)	8.96	0.43	38
MnO	(% pds)	0.14	0.01	38
MgO	(% pds)	32.83	1.89	38
CaO	(% pds)	3.49	0.89	38
Na₂O	(% pds)	0.20	0.08	38
K₂O	(% pds)	0.04	0.08	31
P ₂ O ₅	(% pds)	0.12	0.02	36
S	(% pds)	0.13	0.07	38
Au	(ppb)	84	85	38
As	(ppm)	472	262	15
Ba	(ppm)	16	5	38
Cr	(ppm)	2014	203	38
Ni	(ppm)	1325	138	38
Со	(ppm)	87	6	38
Cu	(ppm)	178	329	38
Zn	(ppm)	78	12	38
V	(ppm)	92	6	38
Sc	(ppm)	16	1	38
Sr	(ppm)	176	46	38
Y	(ppm)	8	1	10
Zr	(ppm)	36	5	38

Tableau 2. Moyenne et écart-type de la population de péridotites prélevées sur leszones de rainurage No.1 et 2.

,

n: nombre d'échantillons analysés (conc. supérieures à la L.D.

t

Figure 14. Localisation des échantillons lithogéochimiques le long du rainurage No. 1.

Figure 15. Localisation des échantillons lithogéochimiques le long du rainurage No. 2.

Figure 16. Localisation des zones de rainurage No.1 et No.2 dans la péridotite aurifère de la propriété Ewart.

Figure 17. Variations lithogéochimiques observées le long de la zone de rainurage No. 1. Notez que la zone située entre 22 et 33 m correspond à une zone de mort terrain. L'enrichissement en Fe, S et Au de part et autre de cette zone suggère la présence d'une zone minéralisée en or sous le mort-terrain.

Figure 18. Variations lithogéochimiques observées le long du rainurage No 1. Notez que la zone située entre 22 et 33 m correspond à du mort terrain.

Figure 19. Variations de la susceptibilité magnétique mesurée sur les échantillons, des abondances en Au et de la perte-au-feu (PAF) observées le long du rainurage No 1. Notez que la située entre 22 et 33 m correspond à du mort terrain.

Figure 20. Variations lithogéochimiques observées le long du rainurage No.2.

Figure 21. Variations lithogéochimiques observées le long du rainurage No.2.

5.3 ANALYSES STATISTIQUES MULTIVARIÉES

Dans le cadre de cette étude, nous avons utilisé l'analyse en composante principale pour faciliter l'interprétation des données lithogéochimiques en réduisant le nombre de variables. Cette procédure permet de regrouper les variables le long d'axes factoriels qui facilitent l'interprétation des données. La figure suivante présente les résultats dans les espaces F_1 - F_2 , F_1 - F_3 et F_2 - F_3 (Figure 22). Dans la projection F_1 - F_2 , les variables comme le Zr, V, Sc, Al, et Ti se regroupent dans le cadran supérieur gauche. Ces éléments sont reconnus comme étant relativement immobiles vis à vis les processus d'altérations secondaires. Dans le cadran inférieur gauche le CaO, Na₂O, Sr et le SiO₂ se regroupent dans une population de variable pouvant s'interpréter comme étant des éléments mobiles lors de processus d'altération hydrothermal. Le cadran supérieur droit montre un regroupement MgO-Cr-Ni-Co (Mn) qui s'interprète par la présence d'un pôle relié à l'importance des minéraux ferromagnésiens dans les péridotites.

L'espace F_1 - F_2 ne permet pas d'identifier un regroupement de variables propres au mécanisme de mise en place de l'or. Toutefois, comme le montre les projections dans les espaces F_1 - F_3 et F_2 - F_3 , l'axe F3 semble bien répondre au processus de mise en place de l'or (Figure 22). Ainsi, le regroupement Au, Ba, PAF, susceptibilité magnétique (S.M) et le S serait compatible avec un mode de mise en place de l'or par un processus de percolation de fluide aurifère. Ce dernier devait contenir entre autre du S, du Ba ainsi que des éléments volatils (PAF).

Nous avons projeté les échantillons lithogéochimiques sur un diagramme composite permettant de visualiser à la fois les échantillons et les variables (éléments). Cette présentation de type *Biplot* permet d'identifier et de regrouper des échantillons potentiellement affectés par des variables sensibles à l'objectif recherché qui consiste à mettre en évidence des vecteurs d'altération associés à la mise en place de l'or (Figure 23). Par exemple, l'échantillon 16424 contenant 337 ppb d'or tombe sur le vecteur de l'or (axe F3 positif). Sur cette figure, la majorité des échantillons tombant dans la partie inférieure du diagramme (axe F3 négatif) montre de faibles abondances en or.

Figure 22. Analyse statitistique multivariée en composante principale montrant le regroupement des variables dans l'espace F_1 , F_2 et F_3 de l'analyse en composante principale.

Figure 23. Analyse en composante principale (ACP) des échantillons lithogéochimiques prélevés sur le massif de péridotite. Notez que l'axe factoriel principal (F_3) est fortement dominé par l'or.

6. LEVÉ PÉDOGÉOCHIMIQUE

Un des objectifs de l'étude était de vérifier si d'autres indices aurifères étaient présents au voisinage de la péridotite aurifère. Pour ce faire, nous avons échantillonné 99 échantillons de sols organiques (A_0). Ces échantillons ont été séchés à l'étuve (60° C) et tamisés pour retenir la fraction passant 2 mm. Par la suite, les échantillons ont été expédiés chez *Activation Labs* (Ancaster, Ontario) pour une analyse des éléments traces et de quelques éléments majeurs par activation neutronique instrumentale. Avant l'analyse, les techniciens d'Activation Labs ont pressé les échantillons (presse hydraulique) pour produire des pastilles plus denses. Les échantillons ont été expédiés au réacteur nucléaire de McMaster (Ontario) et par la suite dosés par spectrométrie gamma.

6.1 Résultats

Les résultats analytiques pour l'or montrent que, dans l'ensemble de la zone étudiée, les teneurs en Au sont près des limites de détection (1 ppb). Toutefois, un nombre significatif d'échantillons de sols montrent des abondances élevées en or au dessus de la zone de péridotitique (Figure 24). Ceci semble suggérer que l'or est strictement localisé dans les péridotites et possiblement près des contacts avec les roches méta-sédimentaires. L'antimoine qui est un élément souvent associé à l'or dans les minéralisations aurifères, montre également des concentrations élevées au-dessus des péridotites. Quoique nous disposons de peu d'analyses d'As, les quelques valeurs significatives tombent au voisinage immédiat des zones riches en or (Figure 24).

La carte lithogéochinque du Cr et de Fe permet de préciser la position des roches ultramfiques. La distribution de ces éléments démontre que les péridotites occupent une zone bien limitée dans l'espace étudié par le levé. De plus la distribution du Fe et du Cr, qui reflète la présence de roches ultramafiques, ne suggère pas de dispersion glaciaire importante dans le secteur (Figure 24). Ainsi, la méthode d'exploration pédogéochimique semble particulièrement efficace dans ce secteur.

44

Figure 24. Cartes des données pédogéochimiques montrant la distribution de l'Au, de Sb, du Fe et du Cr. Notez que la représentativité des cartes pour Sb, Fe et Cr est forte tandis que pour l'or elle est biaisée en raison du faible nombre d'analyses disponibles (abondances sup. au seuil de détection analytique).

Figure 25. Carte de distribution de l'or (levé pédogéochimique).

Figure 26. Carte de distribution de l'arsenic (levé pédogéochimique).

Figure 27. Carte de distribution du chrome (levé pédogéochimique).

Figure 28. Carte de distribution du fer (levé pédogéochimique).

7. POTENTIEL MINÉRAL

Les résultats de l'étude montrent qu'il existe réellement un secteur anomalique en or spécifiquement associé à des roches péridotitiques encaissées de roches méta-sédimentaires. La masse de rochers ultramafiques est très fortement magnétique ce qui permet de localiser sa présence sur le terrain.

Les travaux de rainurage des affleurements de péridotite confirment l'observation du rapport de LaFlèche et al. (2004) comme quoi la colline de péridotite est enrichie en or.

La moyenne des abondances en or est de 84 ppb pour un bruit de fond normalement inférieur à 5 ppb pour ce type de roche. La plus haute abondance en or mesurée est de 362 ppb. Les zones d'échantillonnage de l'automne 2005 consistaient en des affleurements ne montrant pas de signes d'altérations (carbonatation, oxydation de surface etc.). Par conséquence, il n'est pas étonnant que les analyses en or ne montrent pas la présence de zones économiquement exploitables. Toutefois, il est hautement probable que le secteur affleurant, constitué de roches relativement fraîches et peu déformées, soient les épontes d'un système beaucoup plus important et probablement plus altérés passant dans le mort terrain (en bas de la colline).

Les données de polarisation induite avaient pour objectif d'évaluer, dans les secteurs affleurant et sub-affleurant, la présence de zones à haute chargeabilité. Les résultats de l'étude montrent que l'ensemble de la péridotite est anomalique avec une chargeabilité de l'ordre de 10. Cette signature électrique des péridotites s'explique par la présence de sulfures disséminés observée lors de l'étude pétrographique des échantillons.

Pour poursuivre l'évaluation du potentiel aurifère du secteur, il faudrait envisager l'implantation de sondages qui permettraent de réaliser des profils lithogéochimiques en continu dans le massif de péridotite.

8. CONCLUSIONS ET RECOMMANDATIONS

Les travaux réalisés à la fin de l'automne 2005 confirment le potentiel en or d'un secteur de la propriété Lac Ewart de Ressources minières Pro-Or inc. Dans ce secteur, l'or est essentiellement associé à une unité de péridotites qui montre des signatures magnétique et de polarisation induite qui permettent une localisation rapide des zones anomaliques en or. Les travaux de terrain de 2005 ne permettent pas de résoudre l'énigme tant qu'à l'origine de ces roches ultramafiques aurifères. Compte tenu de l'absence de structures d'altérations mégascopiques (visibles en affleurement) et des abondances en or (hautement anomaliques), il est probable que les zones de rainurages (No 1 et 2) soient localisées dans les épontes d'un système aurifère plus important localisé sous le mort terrain ou en profondeur sous la zone d'affleurement.

En fonction du volume de roches ultramafiques et de l'importance du bruit de fond en or, nous croyons que le potentiel aurifère de l'unité de péridotite est élevé. Étant donné la nature atypique de la minéralisation aurifère (métasomatisme aurifère cryptique) et de sa mise en place en contexte péridotitique, il n'existe pas de cas semblables rapportés dans la littérature géoscientifique québécoise. En l'absence de modèles comparatifs, il est difficile de proposer un cadre gîtologique pour optimiser l'exploration du site.

Toutefois, nous croyons qu'à l'approche d'une zone de cisaillement avec circulation de fluides hydrothermaux, l'or pourrait être facilement concentrée pour former des bandes potentiellement économiques. L'existence de ces structures devra être investiguée par forage car la colline de péridotite est bordée d'escarpements abrupts laissant présager une importante couverture de mort terrain.

Il est évident que le reste de cette partie de la propriété du Lac Ewart devrait être évalué dans un contexte d'exploration aurifère. Notez que les travaux réalisés en 2004 avaient été initialement planifiés pour l'exploration de gîtes de chromitites platinifères.

Dans le secteur étudié, la magnétométrie est une méthode rapide pour détecter la présence des roches ultramafiques. Étant donné que la géochimie des sols (horizon organique) répond bien à la présence de l'or et que la dispersion latérale des signatures géochimiques (dispersion glaciaire) semble minimale, nous croyons que ces méthodes d'exploration devraient être privilégiées.

RÉFÉRENCES BIBLIOGRAPHIQUES PERTINENTES

Gauthier, M, Laroque, M, Chartrand, F., 1997. Cadre géologique, style et répartition des minéralisations métalliques de la Grande Rivière, Territoire de la Baie-James. MRNQ, Manuscrits bruts, MB 97-30.

Gleeson, C F., 1976. Report on geochemical (lake sediments and waters), James Bay Territory, areas A and B. GM 34038. Rapport de C. F. **Gleeson** & Associated Ltd pour le compte du Groupe Minier SES.

Gleeson, C F., 1975. Geochemical report on a lake sediment survey of the La Grande River – Sakami Lake Area. GM 50002. Rapport de C. F. **Gleeson** & Associated Ltd pour le compte du Groupe Minier SES.

Gosselin, C., Gouthier, J., et Simard, M., 2002. Carte géologique 1:50 000 du feuillet 33G04. Ministère des Ressources Naturelles du Québec, carte S1-33G04-C3G-02E.

Houlé. M., 2000. Pétrologie et métallogénie du complexe de Ménarik, Baie-James, Qc, Canada. Mémoir de mâitrise (M.Sc.), Université Laval, 450 pages.

LAFLÈCHE, M.R, BERGERON, M. ET BOUSSICAUT, B. 2004. Rapport géologique et géophysique de la propriété lac Ewart (LG3) Baie-James, Qc. Rapport INRS-ETE, 100 pages.

LaFlèche, M.R., Moorhead, J. et Gouthier, J., 2000. Géochimie et pétrogénèse du volcanisme tholéiitique et calco-alcalin archéen du groupe de Yasinski, sous-province de la Grande. Série des MB, MRNQ, 65 pages.

Annexe 1

Analyses de Chimitec

,

,

Échantillon	Au _{ppb}	Pt ppb	Pd ppb	Échantillon	Au ppb	Pt ppb	Pd ppb
16401	53	< L.D.	3	16420	1	6	< L.D.
16402	50	< L.D.	1	16421	2	< L.D.	3
16403	50	< L.D.	1	16423	2	< L.D.	< L.D.
16404	7	< L.D.	2	16424	2	< L.D.	2
16405	24	< L.D.	2	16425	143	< L.D.	2
16406	30	< L.D.	3	16426	170	< L.D.	< L.D.
16407	18	< L.D.	2	16427	164	< L.D.	2
16408	1	< L.D.	3	16428	17	< L.D.	2
16409	50	6	2	16429	11	< L.D.	2
16410	87	< L.D.	2	16430	57	< L.D.	2
16411	7	< L.D.	1	1643 1	362	< L.D.	< L.D.
16412	49	0.01	1	16432	184	< L.D.	2
16413	64	< L.D.	2	16433	337	< L.D.	4
16414	42	8	1	16434	13	< L.D.	1
16415	84	< L.D.	2	16435	92	< L.D.	1
16416	90	< L.D.	1	16436	164	< L.D.	1
16417	156	< L.D.	2	16437	142	< L.D.	2
16418 [.]	62	< L.D.	1	16438	196	< L.D.	< L.D.
16419	101	< L.D.	3	16439	112	< L.D.	1

53

ANNEXE 2

.

	SiO2	TiO2	AI2O3	Fe2O3T	MnO	MgO	CaO	Na2O	K20	P2O5	S
Échontillon	%	%	%	%	~~ %	76	%	%	%	%	%
Condition											
16401	48.7	.346	4.87	8.69	.118	28.5	4.16	.243	.020	.122	.09
16402	47.0	.345	4.53	8.51	.116	29.1	4.26	.221	.032	.110	.06
16403	47.8	.361	4.72	9.09	.127	29.7	3.17	.214	.037	.164	.05
16404	43.2	.367	5.15	9.35	.134	30.4	3.93	.186	.025	.100	.18
16405	40.9	.382	5.15	9.57	.138	31.5	3.23	.233	.023	.110	.14
16406	40.5	.351	4.85	8.98	.129	31.2	4.33	.211	.030	.102	.15
16407	41.8	.393	5.39	9.41	.131	32.0	3.32	.183	.031	.106	.14
16408	40.4	.377	5.07	9.48	.136	32.1	3.87	.195	.040	.203	.16
16409	44.3	.232	3.07	8.10	.124	31.5	5.60	.195	.039	.123	.05
16410	39.3	.301	4.10	8.81	.128	34.6	2.65	.149	.035	< L.D.	.06
16411	42.4	.373	4.22	8.37	.137	33.8	3.55	.158	.032	.123	.06
16412	41.6	.293	4.06	9.29	.129	35.2	2.03	.161	.044	.110	.08
16413	43.1	.326	4.01	8.68	.132	34.8	3.17	.642	.492	.0940	.07
16414	42.5	.297	3.85	8.77	.134	34.9	3.05	.161	.022	.133	.06
16415	42.6	.318	4.25	8.90	.142	35.0	2.71	.194	< L.D.	.125	.06
16416	41.3	.334	4.16	9.08	.132	36.2	2.03	.151	< L.D.	.0910	.06
16417	41.9	.311	4.34	8.78	.150	35.4	2.25	.145	.025	.110	.05
16418	43.3	.316	4.05	8.15	.138	33.0	3.96	.164	.029	.101	.04
16419	41.6	.371	5.00	9.21	.148	34.4	2.49	.147	.024	.115	.07
16420	44.8	.315	4.68	9.45	.146	33.2	2.77	.143	.036	.0950	.11
16421	44.7	.452	5.28	10.0	.137	33.0	2.18	.164	< L.D.	.113	.16
16423	42.3	.358	4.84	9.52	.138	32.2	3.07	.165	.034	.104	.16
16424	42.3	.352	4.66	8.81	.133	31.3	5.02	.191	.035	.134	.18
16425	44.8	.279	3.60	8.16	.133	32.5	4.90	.176	.026	.123	.06
16426	39.6	.341	4.13	9.30	.143	35.2	2.46	.141	.020	< L.D.	.06
16427	42.5	.316	4.29	9.26	.139	34.5	2.41	.153	< L.D.	.0980	.06
16428	40.6	.330	4.25	9.56	.141	32.5	4.14	.189	.033	.112	.23
16429	40.6	.372	5.23	8.89	.133	30.3	5.20	.212	.038	.120	.31
16430	40.6	.405	5.07	8.94	.134	32.1	4.08	.203	.027	.162	.21
16431	43.4	.328	4.22	9.21	.134	34.0	2.96	.181	.021	.102	.12
16432	42.7	.322	4.34	8.87	.142	33.6	3.28	.149	.033	.0860	.17
16433	39.4	.321	4.05	8.84	.138	34.0	2.89	.163	.021	.100	.10
16434	40.4	.395	4.79	9.58	.147	35.1	2.57	.140	< L.D.	.118	.18
16435	40.3	.325	4.20	8.63	.135	32.2	3.44	.202	< L.D.	.116	.19
16436	39.6	.336	4.53	9.08	.146	33.2	3.44	.229	.022	.139	.18
16437	41.4	.305	4.17	9.01	.131	34.0	3.50	.146	< L.D.	.123	.21
16438	41.6	.350	4.49	8.71	.136	33.0	3.73	.182	< L.D.	.118	.22
16439	41.6	.318	4.06	8.77	.137	32.3	4.41	.211	.026	.131	.25
16401	48.5	.370	4.84	8.68	.119	28.6	4.29	.249	< L.D.	.119	.09
16418	44.5	.319	4.12	8.44	.144	33.8	4.08	.244	< L.D.	.125	.06
16439	41.6	.329	4.04	8.57	.138	32.3	4.45	.235	.018	.136	.27

Analyses par fusion alcaline et dosage ICP-AES (INRS-ETE)

ANNEXE 2 (SUITE)

.

.

	As	Ba	Cr	NI	Co	Cu	Zn	V	Sc	Sr	Y	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Échantillon												
16401	1036	15	1878	1361	82	2181	90	94	16	114	< L.D.	33
16402	927	15	1826	1238	82	225	101	92	15	126	< L.D.	33
16403	758	17	1869	1050	83	61	73	85	14	116	< L.D.	41
16404	< L.D.	15	1997	1233	86	191	75	99	17	152	< L.D.	41
16405	372	21	1999	998	79	81	119	96	17	134	< L.D.	43
16406	226	15	1894	1271	89	264	80	89	15	182	< L.D.	42
16407	< L.D.	15	2084	1118	87	108	75	104	17	153	7	41
16408	< L.D.	15	1982	1165	80	158	102	105	17	207	7	41
16409	< L.D.	17	1595	1006	69	223	71	80	12	247	7	26
16410	278	15	2321	1373	104	91	65	91	13	140	< L.D.	29
16411	< L.D.	15	1696	1249	76	164	65	95	15	198	7	39
16412	< L.D.	16	2063	1348	86	557	71	85	15	121	< L.D.	34
16413	< L.D.	14	2017	1367	92	32	105	99	16	177	7	38
16414	< L.D.	14	1942	1348	86	140	70	87	16	183	< L.D.	29
16415	< L.D.	18	2259	1428	93	95	81	92	16	171	< L.D.	34
16416	< L.D.	14	2171	1554	99	58	81	82	13	128	< L.D.	35
16417	323	15	2312	1511	94	38	74	88	14	145	< L.D.	29
16418	197	15	1611	1238	83	26	61	98	16	245	9	30
16419	< L.D.	13	2035	1371	91	71	70	89	16	191	< L.D.	37
16420	< L.D.	14	1791	1322	87	298	79	96	18	193	8	34
16421	< L.D.	16	2020	1485	84	149	88	107	17	165	< L.D.	39
16423	< L.D.	16	1968	1350	88	92	76	100	16	192	< L.D.	37
16424	< L.D.	14	1809	1373	89	77	72	94	17	318	< L.D.	48
16425	573	16	1913	1367	88	90	71	91	16	288	8	28
16426	426	15	2256	1359	88	120	89	85	13	145	< L.D.	32
16427	469	14	2641	1321	81	136	74	81	15	156	< L.D.	32
16428	< L.D.	14	2259	1567	96	73	77	87	15	183	< L.D.	38
16429	< L.D.	14	2120	1217	84	93	68	99	18	243	8	41
16430	< L.D.	16	1982	1178	89	93	69	99	20	204	8	42
16431	255	17	2114	1374	91	155	84	91	16	143	< L.D.	40
16432	< L.D.	12	2136	1415	94	191	59	85	15	157	< L.D.	37
16433	356	36	2094	1328	86	79	61	87	14	178	< L.D.	37
16434	< L.D.	12	2145	1515	95	145	79	101	16	130	< L.D.	37
16435	< L.D.	16	1998	1363	84	83	72	91	15	175	< L.D.	34
16436	256	19	1952	1308	90	91	77	92	15	159	< L.D.	37
16437	< L.D.	12	2088	1402	90	98	72	87	15	160	< L.D.	31
16438	2/5	15	2255	1629	87	97	73	97	16	160	< L.D.	36
16439	< L.D.	15	1948	1360	85	98	94	94	16	186	< L.D.	43
10401	827	17	1926	1206	88	98	82	97	16	115	< L.D.	39
10418	< L.D.	33	1084	1268	78	78	/5	93	17	262	9	35
10439	< L.U.	18	1928	1382	93	84	88	90	16	186	< L.D.	- 33

- **ANNEXE 3**-

Analyses d'Activation neutronique instrumentale (INAA) des échantillons d'humus (Activation Labs)

Analyses d'humus Activation labs

.

Element:	Au	Ag	As	W	Hg	Sb	Se	Мо	Zn	Со	Cr	Ni	lr	Са	Na	Ва	Rb
Unités:	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	%	ppm	ppm	ppm
Lim. de détection:	1	2	1	1	0.5	0.1	2	0.5	20	1	1	10	5	0.5	100	100	20
2200 E 1350	< L.D.	< L.D.	2	< L.D.	< L.D.	0.3	< L.D.	< L.D.	< L.D.	2	2	< L.D.	< L.D.	< L.D.	400	< L.D.	< L.D.
2200 E 1375	< L.D.	< L.D.	1	< L.D.	< L.D.	0.2	< L.D.	0.8	< L.D.	1	10	< L.D.	< L.D.	< L.D.	8600	200	< L.D.
2200 E 1400	2	< L.D.	1	< L.D.	< L.D.	0.3	< L.D.	< L.D.	40	2	7	< L.D.	< L.D.	< L.D.	2500	100	< L.D.
2200 E 1425	< L.D.	< L.D.	4	2	< L.D.	0.4	< L.D.	< L.D.	30	5	53	< L.D.	< L.D.	1.3	12000	500	40
2200 E 1450	3	< L.D.	2	< L.D.	< L.D.	0.3	< L.D.	< L.D.	20	3	47	< L.D.	< L.D.	< L.D.	3400	100	< L.D.
2200 E 1475	< L.D.	< L.D.	2	< L.D.	< L.D.	0.4	< L.D.	< L.D.	30	2	18	< L.D.	< L.D.	1.1	12700	300	30
2200 E 1500	< L.D.	< L.D.	1	< L.D.	< L.D.	0.4	< L.D.	0.9	50	3	3	< L.D.	< L.D.	< L.D.	200	< L.D.	< L.D.
2200 E 1525	< L.D.	< L.D.	2	< L.D.	< L.D.	0.5	< L.D.	0.6	40	8	2	< L.D.	< L.D.	< L.D.	200	100	< L.D.
2200 E 1550	< L.D.	< L.D.	2	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	4	21	< L.D.	< L.D.	0.9	20400	300	30
2200 E 1575	< L.D.	< L.D.	2	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	5	9	< L.D.	< L.D.	< L.D.	300	< L.D.	< L.D.
2200 E 1600	< L.D.	< L.D.	3	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	4	33	< L.D.	< L.D.	< L.D.	3000	100	< L.D.
2200 E 1625	< L.D.	< L.D.	1	< L.D.	< L.D.	0.4	< L.D.	< L.D.	< L.D.	< 1	10	< L.D.	< L.D.	0.8	9300	200	20
2200 E 1650	< L.D.	< L.D.	3	< L.D.	< L.D.	0.1	< L.D.	< L.D.	< L.D.	4	49	< L.D.	< L.D.	< L.D.	20400	300	< L.D.
2200 E 1675	< L.D.	< L.D.	9	< L.D.	< L.D.	0.2	< L.D.	< L.D.	< L.D.	3	21	< L.D.	< L.D.	1.5	20600	400	40
2200 E 1700	< L.D.	< L.D.	3	< L.D.	< L.D.	0.3	< L.D.	< L.D.	30	6	3	30	< L.D.	< L.D.	200	< L.D.	< L.D.
2200 E 1725	< L.D.	< L.D.	11	< L.D.	< L.D.	0.6	< L.D.	< L.D.	30	17	3	50	< L.D.	< L.D.	200	< L.D.	< L.D.
2200 E 1750	< L.D.	< L.D.	2	< L.D.	< L.D.	0.4	< L.D.	< L.D.	30	7	4	< L.D.	< L.D.	< L.D.	200	< L.D.	< L.D.
2200 E 1775	2	< L.D.	1	< L.D.	< L.D.	0.2	< L.D.	0.8	30	6	8	< L.D.	< L.D.	< L.D.	700	100	< L.D.
2200 E 1800	< L.D.	< L.D.	1	< L.D.	< L.D.	0.2	< L.D.	< L.D.	< L.D.	2	14	< L.D.	< L.D.	< L.D.	16100	300	< L.D.
2200 E 1825	3	< L.D.	3	< L.D.	0.5	0.5	< L.D.	< L.D.	40	9	7	< L.D.	< L.D.	0.5	2600	100	< L.D.
2200 E 1850	< L.D.	< L.D.	2	< L.D.	< L.D.	0.5	< L.D.	< L.D.	30	5	10	< L.D.	< L.D.	< L.D.	3300	200	< L.D.
2250 E 1350	< L.D.	< L.D.	1	< L.D.	< L.D.	0.2	< L.D.	< L.D.	< L.D.	5	2	< L.D.	< L.D.	< L.D.	300	200	< L.D.
2250 E 1375	< L.D.	< L.D.	1	< L.D.	< L.D.	0.2	< L.D.	< L.D.	< L.D.	3	11	< L.D.	< L.D	. < L.D.	4100	200	< L.D.
2250 E 1400	< L.D.	< L.D.	1	< L.D.	< L.D.	0.2	< L.D.	< L.D.	< L.D.	1	9	< L.D.	< L.D.	. < L.D.	18700	300	20
2250 E 1425	< L.D.	< L.D.	1	< L.D.	< L.D.	0.3	< L.D.	0.7	20	6	16	< L.D.	< L.D	0.5	4600	200	< L.D.
2250 E 1450	< L.D.	< L.D.	1	< L.D.	< L.D.	0.3	< L.D.	< L.D.	30	1	27	< L.D.	< L.D.	< L.D.	11600	300	30
2250 E 1475	< L.D.	< L.D.	2	< L.D.	< L.D.	0.4	< L.D.	0.5	50	5	20	< L.D.	<ld< td=""><td>< L.D.</td><td>13700</td><td>400</td><td>20</td></ld<>	< L.D.	13700	400	20
2250 E 1500	< L.D.	< L.D.	1	< L.D.	< L.D.	0.2	< L.D.	< L.D.	< L.D.	6	34	< L.D.	< L.D	< L.D.	9700	200	< L.D.
2250 E 1525	< L.D.	< L.D.	< L.D.	2	< L.D.	0.2	< L.D.	< L.D.	< L.D.	1	17	< L.D.	< L.D	< L.D.	17500	300	< L.D.
2250 E 1550	< L.D.	< L.D.	2	< L.D.	< L.D.	0.2	< L.D.	< L.D.	< L.D.	6	62	< L.D.	< L.D.	. 1.5	10400	300	< L.D.
2250 E 1575	< L.D.	< L.D.	1	< L.D.	< L.D.	0.1	< L.D.	< Ł.D.	< L.D.	2	36	< L.D.	< L.D	< L.D.	15100	400	< L.D.
2250 E 1600	< L.D.	< L.D.	1	< L.D.	< L.D.	< 0.1	< L.D.	< L.D.	< L.D.	2	11	< L.D	<l.d< td=""><td>< L.D.</td><td>7200</td><td>200</td><td>< L.D.</td></l.d<>	< L.D.	7200	200	< L.D.
2250 E 1625	< L.D.	< L.D.	6	< L.D.	< L.D.	0.2	< L.D.	< L.D.	< L.D.	5	13	40	< L.D.	< L.D.	3200	200	< L.D.
2250 E 1650	< L.D.	< L.D.	4	< L.D.	< L.D.	0.5	< L.D.	< L.D.	< L.D.	4	15	< L.D.	< L.D	< L.D.	5100	200	< L.D.
2250 E 1675	< L.D.	< L.D.	2	< L.D.	< L.D.	0.4	< L.D.	< L.D.	50	1	2	< L.D.	< L.D	< L.D.	200	< L.D.	< L.D.
2250 E 1700	< L.D.	< L.D.	6	< L.D.	< L.D.	0.1	< L.D.	< L.D.	< L.D.	3	13	<1.D	< L.D	0.7	12800	300	20
2250 E 1725	6	< L.D.	10	< L.D.	< L.D.	0.2	< L.D.	< L.D.	< L.D.	4	95	< L.D.	< L D	0.9	6700	100	< L.D.
2250 E 1750	3	< L.D.	4	< L.D.	< L.D.	0.5	< L.D.	< L.D.	< L.D.	9	3	60	< L D	<1 D	200	< I D	< D
2300 E 1350	< L.D.	< L.D.	1	< L.D.	< L.D.	0.3	< L D	< L.D.	< L.D.	2	12	< I D	< I D	<1.0	12400	200	20
2300 E 1375	< L.D.	< L.D.	1	< L.D.	< L.D.	0.1	< L.D.	< L.D.	<1 D	10	8	<1 D	< I D	<1 D	4700	100	<1 D
2300 E 1400	< L.D.	<1.D.	1	<1.D.	<10	<1 D	<1 D	<1 D	<1 D	5	14	<1 D	< I D	<1 D	9400	300	<1 D
2300 E 1425	< L.D.	< L.D.	1	< L.D.	< L.D.	< L.D.	<l.d.< td=""><td>< L.D.</td><td>< L.D.</td><td>3</td><td>23</td><td><1.D</td><td>< I.D</td><td>< L D</td><td>12000</td><td>200</td><td><l d<="" td=""></l></td></l.d.<>	< L.D.	< L.D.	3	23	<1.D	< I.D	< L D	12000	200	<l d<="" td=""></l>
2300 E 1450	< L.D.	< L.D.	< 1	< L.D.	< L.D.	0.1	<l.d.< td=""><td><ld.< td=""><td><l.d.< td=""><td>6</td><td>21</td><td><1 D</td><td><1 D</td><td><ld.< td=""><td>12000</td><td>200</td><td>20</td></ld.<></td></l.d.<></td></ld.<></td></l.d.<>	<ld.< td=""><td><l.d.< td=""><td>6</td><td>21</td><td><1 D</td><td><1 D</td><td><ld.< td=""><td>12000</td><td>200</td><td>20</td></ld.<></td></l.d.<></td></ld.<>	<l.d.< td=""><td>6</td><td>21</td><td><1 D</td><td><1 D</td><td><ld.< td=""><td>12000</td><td>200</td><td>20</td></ld.<></td></l.d.<>	6	21	<1 D	<1 D	<ld.< td=""><td>12000</td><td>200</td><td>20</td></ld.<>	12000	200	20
2300 E 1475	< L.D.	< L.D.	1	< L.D.	< L.D.	< L.D.	<l.d.< td=""><td>< L.D.</td><td><l d<="" td=""><td>2</td><td>10</td><td><1 D</td><td><1 D</td><td>07</td><td>11100</td><td>200</td><td><ld< td=""></ld<></td></l></td></l.d.<>	< L.D.	<l d<="" td=""><td>2</td><td>10</td><td><1 D</td><td><1 D</td><td>07</td><td>11100</td><td>200</td><td><ld< td=""></ld<></td></l>	2	10	<1 D	<1 D	07	11100	200	<ld< td=""></ld<>
2300 E 1500	< L.D.	< L.D.	2	< L.D.	< L.D.	0.5	<l.d.< td=""><td>1.2</td><td>30</td><td>10</td><td>4</td><td><1.D</td><td><1 D</td><td><1D</td><td>300</td><td>100</td><td>< L D</td></l.d.<>	1.2	30	10	4	<1.D	<1 D	<1D	300	100	< L D
2300 E 1525	1	< L.D.	1	< L.D.	< L.D.	0.1	< L.D.	< L.D.	< L.D	5	23	< L.D.	<1 D	0.6	5300	300	<l d<="" td=""></l>
2300 E 1550	< L.D.	< L.D.	1	< L.D.	< L.D.	0.2	< L.D.	< L.D.	30	3	21	< L.D.	< L.D	0.8	13800	300	< L.D.

- ANNEXE 3 (SUITE) -

.

p.

Element:	Au	Ag	As	W	Hg	Sb	Se	Мо	Zn	Co	Cr	Ni	Ir	Ca	Na	Ва	Rb
Unités:	ppb	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	%	ppm	ррт	ppm
2300 E 1575	< L.D.	< L.D.	1	< L.D.	< L.D.	0.2	< L.D.	< L.D.	30	2	11	< L.D.	< L.D.	< L.D.	7300	300	< L.D.
2300 E 1600	10	< L.D.	5	< L.D.	< L.D.	0.2	< L.D.	< L.D.	30	15	630	130	< L.D.	1.8	4800	200	< L.D.
2300 E 1625	< L.D.	< L.D.	1	< L.D.	< L.D.	0.3	< L.D.	< L.D.	30	5	14	50	< L.D.	< L.D.	3600	200	< L.D.
2300 E 1650	< L.D.	< L.D.	1	< L.D.	< L.D.	0.2	< L.D.	< L.D.	20	2	13	< L.D.	< L.D.	0.8	11100	300	20
2300 E 1675	< L.D.	< L.D.	4	< L.D.	< L.D.	0.1	< L.D.	< L.D.	< L.D.	2	13	< L.D.	< L.D.	0.5	8200	100	< L.D.
2300 E 1700	< L.D.	< L.D.	2	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	4	20	< L.D.	< L.D.	< L.D.	10300	200	< L.D.
2300 E 1725	< L.D.	< L.D.	5	< L.D.	< L.D.	0.5	< L.D.	< L.D.	< L.D.	2	13	60	< L.D.	0.6	7100	100	< L.D.
2350 E 1350	< L.D.	< L.D.	1	< L.D.	< L.D.	0.2	< L.D.	< L.D.	< L.D.	2	15	< L.D.	< L.D.	< L.D.	17100	200	< L.D.
2350 E 1375	< L.D.	< L.D.	1	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	4	10	< L.D.	< L.D.	1	10800	200	30
2350 E 1400	< L.D.	< L.D.	1	< L.D.	< L.D.	0.2	< L.D.	< L.D.	20	< L.D.	5	< L.D.	< L.D.	< L.D.	5200	200	< L.D.
2350 E 1425	< L.D.	< L.D.	3	< L.D.	< L.D.	0.3	< L.D.	< L.D.	30	8	31	< L.D.	< L.D.	0.9	10000	200	20
2350 E 1450	< L.D.	< L.D.	< 1	< L.D.	< L.D.	0.2	< L.D.	< L.D.	< L.D.	5	6	< L.D.	< L.D.	< L.D.	4600	200	< L.D.
2350 E 1475	2	< L.D.	2	< L.D.	< L.D.	0.2	< L.D.	< L.D.	< L.D.	5	6	< L.D.	< L.D.	< L.D.	3100	200	< L.D.
2350 E 1500	< L.D.	< L.D.	1	< L.D.	< L.D.	0.2	< L.D.	< L.D.	30	2	7	< L.D.	< L.D.	0.5	6300	100	< L.D.
2350 E 1525	< L.D.	< L.D.	3	1	< L.D.	0.3	< L.D.	< L.D.	30	3	13	< L.D.	< L.D.	< L.D.	11000	300	< L.D.
2350 E 1550	< L.D.	< L.D.	< 1	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	4	8	< L.D.	< L.D.	< L.D.	6400	200	< L.D.
2350 E 1575	< L.D.	< L.D.	1	< L.D.	< L.D.	0.2	< L.D.	< L.D.	< L.D.	5	14	< L.D.	< L.D.	0.5	2100	200	< L.D.
2350 E 1600	6	< L.D.	3	< L.D.	< L.D.	0.3	< L.D.	< L.D.	< L.D.	6	32	< L.D.	< L.D.	< L.D.	11500	200	< L.D.
2350 E 1625	< L.D.	< L.D.	1	1	< L.D.	0.1	< L.D.	< L.D.	< L.D.	7	110	< L.D.	< L.D.	< L.D.	11100	100	20
2350 E 1650	< L.D.	< L.D.	2	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	3	48	< L.D.	< L.D.	< L.D.	18500	300	50
2350 E 1675	106	< L.D.	37	4	< L.D.	1	< L.D.	< L.D.	30	21	650	< L.D.	< L.D.	0.7	400	< L.D.	< L.D.
2350 E 1700	< L.D.	< L.D.	2	< L.D.	< L.D.	0.3	< L.D.	< L.D.	< L.D.	2	11	< L.D.	< L.D.	0.5	5400	< L.D.	< L.D.
2350 E 1725	< L.D.	< L.D.	6	< L.D.	< L.D.	0.5	< L.D.	< L.D.	< L.D.	8	31	< L.D.	< L.D.	1	8100	200	< L.D.
2400 E 1350	< L.D.	< L.D.	1	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	2	18	< L.D.	< L.D.	< L.D.	13000	200	< L.D.
2400 E 1375	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	0.2	< L.D.	< L.D.	< L.D.	2	15	< L.D.	< L.D.	< L.D.	10200	200	20
2400 E 1400	3	< L.D.	1	< L.D.	< L.D.	0.4	< L.D.	0.6	60	2	8	< L.D.	< L.D.	< L.D.	2800	100	< L.D.
2400 E 1425	< L.D.	< L.D.	2	< L,D.	< L.D.	0.5	< L.D.	< L.D.	20	3	5	< L.D.	< L.D.	< L.D.	2100	100	< L.D.
2400 E 1450	< L.D.	< L.D.	2	< L.D.	< L.D.	0.3	< L.D.	< L.D.	< L.D.	3	14	< L.D.	< L.D.	< L.D.	8200	300	< L.D.
2400 E 1475	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	40	4	6	< L.D.	< L.D.	< L.D.	200	100	< L.D.
2400 E 1500	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	0.2	< L.D.	< L.D.	< L.D.	1	10	< L.D.	< L.D.	< L.D.	13500	300	< L.D.
2400 E 1525	< L.D.	< L.D.	1	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	2	8	< L.D.	< L.D.	< L.D.	5000	200	< L.D.
2400 E 1550	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	< L.D.	4	13	< L.D.	< L.D.	< L.D.	3900	100	< L.D.
2400 E 1575	3	< L.D.	2	< L.D.	< L.D.	0.3	< L.D.	< L.D.	30	3	4	< L.D.	< L.D.	< L.D.	3300	100	< L.D.
2400 E 1600	2	< L.D.	2	< L.D.	< L.D.	0.3	< L.D.	0.9	20	2	10	< L.D.	< L.D.	< L.D.	200	< L.D.	< L.D.
2400 E 1625	< L.D.	< L.D.	3	< L.D.	< L.D.	0.3	< L.D.	< L.D.	50	51	1100	250	< 5	1.9	4200	< L.D.	< L.D.
2400 E 1650	2	< L.D.	2	< L.D.	< L.D.	0.3	< L.D.	< L.D.	30	3	10	30	< L.D.	< L.D.	700	< L.D.	< L.D.
2400 E 1675	< L.D.	< L.D.	1	< L.D.	< L.D.	0.2	< L.D.	< L.D.	30	2	18	< L.D.	< L.D.	1	9400	200	< L.D.
2400 E 1700	2	< L.D.	8	< L.D.	< L.D.	1	< L.D.	< L.D.	40	12	2	180	< L.D.	0.7	400	100	< L.D.
2400 E 1725	< L.D.	< L.D.	4	< L.D.	< L.D.	0.3	< L.D.	< L.D.	< L.D.	3	25	< L.D.	< L.D.	< L.D.	5500	100	< L.D.
2450 E 1350	< L.D.	< L.D.	2	< L.D.	< L.D.	0.1	< L.D.	< L.D.	< L.D.	4	40	< L.D.	< L.D.	< L.D.	8500	300	< L.D.
2450 E 1375	< L.D.	< L.D.	2	< L.D.	< L.D.	0.3	< L.D.	0.9	< L.D.	2	8	< L.D.	< L.D.	< L.D.	6700	100	20
2450 E 1400	< L.D.	< L.D.	2	<ld< td=""><td>< L.D.</td><td>0.6</td><td><ld.< td=""><td>< L.D.</td><td>50</td><td>8</td><td>3</td><td><ld< td=""><td>< L.D.</td><td>< L.D.</td><td>400</td><td>100</td><td>< L.D.</td></ld<></td></ld.<></td></ld<>	< L.D.	0.6	<ld.< td=""><td>< L.D.</td><td>50</td><td>8</td><td>3</td><td><ld< td=""><td>< L.D.</td><td>< L.D.</td><td>400</td><td>100</td><td>< L.D.</td></ld<></td></ld.<>	< L.D.	50	8	3	<ld< td=""><td>< L.D.</td><td>< L.D.</td><td>400</td><td>100</td><td>< L.D.</td></ld<>	< L.D.	< L.D.	400	100	< L.D.
2450 E 1425	2	<1 D	1	< D	<1 D	0.3	<1 D	0.6	60	<1 D	5	<1 D	< I D	< I D	2700	<1 D	< I D
2450 E 1450	- < L D	< L D.	2	< L D.	<1.D	0.2	< L D	< L.D.	<1.D	1	9	< L.D.	< L.D.	<1.D.	9200	200	<1.D
2450E 1475	< I D	<1 D	1	< D	<1 D	0.2	<1 D	<1 D	<1.0	5	19	< L D	< I D	0.9	11000	200	<1 D
2450 E 1500	<1 D	<1 D	< 1	< D	<1 D	< 0.1	<1 D	<1 D	<1 D	3	12	< I D	< I D	0.9	17400	300	30
2450 E 1525	<1.D	< L.D.	1	<1 D	<ld< td=""><td>0.2</td><td><ld< td=""><td>< L D</td><td><</td><td>2</td><td>11</td><td>< D</td><td></td><td><l d<="" td=""><td>13100</td><td>200</td><td><ld< td=""></ld<></td></l></td></ld<></td></ld<>	0.2	<ld< td=""><td>< L D</td><td><</td><td>2</td><td>11</td><td>< D</td><td></td><td><l d<="" td=""><td>13100</td><td>200</td><td><ld< td=""></ld<></td></l></td></ld<>	< L D	<	2	11	< D		<l d<="" td=""><td>13100</td><td>200</td><td><ld< td=""></ld<></td></l>	13100	200	<ld< td=""></ld<>
2450 E 1550	< L.D.	< L.D.	3	< L.D.	< L.D.	0.3	< L.D.	< L.D.	< L.D.	4	11	< L.D.	< L.D.	< L D	700	100	< L.D.
2450 E 1675	< L.D.	< L.D.	43	< L.D.	< L.D.	0.4	< L.D.	< L.D.	30	15	69	< L.D.	< L.D.	< L.D.	4200	200	< L.D.
2450 E 1700	< L.D.	< L.D.	2	< L.D.	< L.D.	0.1	< L.D.	< L.D.	30	5	6	< L.D.	< L.D.	0.8	2700	200	< L.D.
2450 E 1725	1	< L.D.	1	< L.D.	< L.D.	0.1	< L.D.	< L.D.	< L.D.	2	5	< L.D.	< L.D.	< L.D.	4900	200	< L.D.
2450 E 1750	< L.D.	< L.D.	2	< L.D.	< L.D.	0.5	< L.D.	< L.D.	40	4	7	< L.D.	< L.D.	< L.D.	2800	200	< L.D.

57

.

-

Element:	Cs	Sr	Br	Fe	Hf	Sc	Th	U	Та	La	Ce	Nd	Sm	Eu	Тb	Yb	Lu
Unités:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
L. Dét.	0.5	10	1	0.05	0.5	0.1	0.5	0.1	0.5	0.1	1	3	0.1	0.2	0.2	0.1	0.1
2200 E 1350	1	< L.D.	8	0.07	< L.D.	0.3	< L.D.	< L.D.	< L.D.	1.6	3	< L.D.	0.2	< L.D.	< L.D.	< L.D.	< L.D.
2200 E 1375	1.4	150	5	0.38	2.2	1.9	2.6	0.4	< L.D.	9.4	15	6	0.9	0.3	< L.D.	0.5	< L.D.
2200 E 1400	0.8	< L.D.	8	0.15	1	0.9	0.7	< L.D.	< L.D.	3.5	6	< L.D.	0.3	< L.D.	< L.D.	0.2	< L.D.
2200 E 1425	2.6	< L.D.	9	1.38	2.8	6.1	3.5	< L.D.	< L.D.	15	23	8	1.5	0.5	< L.D.	0.8	0.1
2200 E 1450	1	< L.D.	10	0.26	1.7	1.4	1.1	< L.D.	< L.D.	4.4	7	< L.D.	0.4	< L.D.	< L.D.	0.3	< L.D.
2200 E 1475	1	< L.D.	8	0.53	6.5	3.1	4	1.1	< L.D.	17	25	9	1.6	0.5	< L.D.	0.8	0.1
2200 E 1500	< L.D.	< L.D.	8	0.27	< L.D.	0.5	< L.D.	< L.D.	< L.D.	< L.D.	6	< L.D.	0.3	< L.D.	< L.D.	0.1	< L.D.
2200 E 1525	< L.D.	< L.D.	12	0.34	< L.D.	1.2	0.6	0.5	< L.D.	15	27	10	1.5	0.3	< L.D.	0.4	< L.D.
2200 E 1550	1.1	< L.D.	9	0.87	5.4	3.8	3.1	0.9	< L.D.	11	15	7	1	0.4	0.4	0.7	0.1
2200 E 1575	0.6	< L.D.	36	1.19	< L.D.	2.4	1.7	0.9	< L.D.	5.5	10	4	0.6	< L.D.	< L.D.	0.2	< L.D.
2200 E 1600	0.8	< L.D.	18	0.43	1.1	3.6	2.6	1.4	< L.D.	9.8	16	5	0.9	0.3	< L.D.	0.3	< L.D.
2200 E 1625	0.7	220	4	0.2	3.2	1.5	2.5	0.8	0.6	7.6	12	5	0.7	0.3	< L.D.	0.5	< L.D.
2200 E 1650	1.5	< L.D.	10	0.87	5.8	5.2	5.8	0.9	< L.D.	24	36	12	2.2	0.9	< L.D.	1	0.1
2200 E 1675	< L.D.	< L.D.	9	0.68	8.3	3.7	4.5	1	< L.D.	14	19	10	1.3	0.4	< L.D.	0.7	0.1
2200 E 1700	< L.D.	< L.D.	17	0.34	< L.D.	0.5	< L.D.	0.2	< L.D.	3.4	7	< L.D.	0.3	< L.D.	< L.D.	0.1	< L.D.
2200 E 1725	< L.D.	< L.D.	13	0.32	< L.D.	0.7	< L.D.	0.2	< L.D.	5.8	11	4	0.6	< L.D.	< L.D.	0.2	< L.D.
2200 E 1750	< L.D.	< L.D.	15	0.12	< L.D.	0.5	< L.D.	0.1	< L.D.	3.4	6	< L.D.	0.4	< L.D.	< L.D.	0.2	< L.D.
2200 E 1775	0.5	< L.D.	17	0.39	< L.D.	2.7	1.3	0.7	< L.D.	4.9	8	< L.D.	0.5	< L.D.	< L.D.	0.3	< L.D.
2200 E 1800	0.9	< L.D.	5	0.48	5.6	3.3	3.1	0.8	< L.D.	12	18	6	1.1	0.4	< L.D.	0.7	0.1
2200 E 1825	< L.D.	< L.D.	14	0.36	1.1	1.6	1.1	0.3	< L.D.	5.7	10	4	0.6	< L.D.	< L.D.	0.3	< L.D.
2200 E 1850	0.7	120	11	0.24	1.9	1.6	1.4	0.4	< L.D.	7.3	13	5	0.7	< L.D.	< L.D.	0.4	< L.D.
2250 E 1350	< L.D.	< L.D.	10	0.15	< L.D.	0.9	< L.D.	0.5	< L.D.	9.5	16	6	0.9	0.2	< L.D.	0.4	< L.D.
2250 E 1375	0.9	< L.D.	8	0.46	1.2	2.1	2	0.8	< L.D.	9.2	15	6	0.9	0.2	< L.D.	0.4	< L.D.
2250 E 1400	1.2	340	4	0.3	3.6	2	2.3	0.9	< L.D.	8.3	11	5	0.8	0.3	< L.D.	0.6	< L.D.
2250 E 1425	0.7	< L.D.	9	0.43	1.6	2.3	2.1	0.7	< L.D.	13	20	7	1.1	0.3	< L.D.	0.5	< L.D.
2250 E 1450	2.2	210	4	0.38	3.9	4.5	4.6	1.4	< L.D.	17	28	11	1.6	0.5	< L.D.	0.8	0.1
2250 E 1475	1.7	< L.D.	8	0.65	4.2	3.6	3.1	0.8	< L.D.	12	20	7	1.2	0.4	< L.D.	0.6	< L.D.
2250 E 1500	1.2	< L.D.	27	0.89	2.7	5.1	4.1	1.7	< L.D.	16	23	7	1.3	0.4	< L.D.	0.5	< L.D.
2250 E 1525	0.9	540	3	0.37	6.6	2.6	3.6	0.9	< L.D.	10	16	7	1.1	0.4	< L.D.	0.7	< L.D.
2250 E 1550	< L.D.	400	4	0.93	5.8	7.1	2.6	0.7	< L.D.	11	19	8	1.7	0.4	< L.D.	1.3	0.2
2250 E 1575	< L.D.	< L.D.	6	0.69	3.8	5.5	2.3	0.8	< L.D.	7.8	12	5	1	0.4	< L.D.	0.6	0.1
2250 E 1600	< L.D.	< L.D.	7	0.2	4.1	1.3	2.2	0.5	< L.D.	6.1	10	3	0.6	< L.D.	< L.D.	0.4	< L.D.
2250 E 1625	0.9	< L.D.	11	0.47	1	3.4	2.9	1.5	< L.D.	13	20	6	1.1	0.3	< L.D.	0.5	< L.D.
2250 E 1650	0.9	< L.D.	8	0.41	1.7	2.9	2.5	0.7	< L.D.	14	22	6	1.3	0.3	< L.D.	0.5	< L.D.
2250 E 1675	< L.D.	< L.D.	10	0.06	< L.D.	0.2	< L.D.	< L.D.	< L.D.	0.6	1	< L.D.	< L.D.	< L.D.	< L.D.	< L.D	. < L.D.
2250 E 1700	0.9	< L.D.	8	0.41	4.6	2.5	2.6	0.8	< L.D.	11	15	5	0.9	0.3	< L.D.	0.5	< L.D.
2250 E 1725	0.5	270	5	0.58	1.8	2.6	1.7	0.5	< L.D.	6.3	9	5	0.6	0.2	< L.D.	0.4	< L.D.
2250 E 1750	< L.D.	< L.D.	10	0.24	< L.D.	0.7	0.6	< L.D.	< L.D.	4.9	8	< L.D.	0.5	< L.D.	< L.D.	0.1	< L.D.
2300 E 1350	1	< L.D.	5	0.33	3.1	2.6	2.8	0.6	< L.D.	12	19	7	1.2	0.4	< L.D.	0.6	< L.D.
2300 E 1375	1.1	< L.D.	15	0.49	1.9	2.6	2.5	1.6	< L.D.	17	26	9	1.6	0.4	< L.D.	0.6	< L.D.
2300 E 1400	0.9	< L.D.	10	0.52	4	3.1	2.5	1.7	< L.D.	16	25	8	1.4	0.4	< L.D.	0.6	< L.D.
2300 E 1425	1.1	< L.D.	8	0.51	2.8	3.7	4.1	1.4	< L.D.	19	28	9	1.8	0.5	< L.D.	0.8	< L.D.
2300 E 1450	1.1	< L.D.	21	0.73	2.8	3.4	2.9	0.9	< L.D.	11	16	4	1.1	0.3	< L.D.	0.6	< L.D.
2300 E 1475	0.7	< L.D.	7	0.32	4.6	2.2	2.9	0.7	< L.D.	9.4	15	5	0.8	0.3	< L.D.	0.5	< L.D.
2300 E 1500	< L.D.	< L.D.	20	0.46	< L.D.	1.6	1.2	1.2	< L.D.	35	54	22	2.9	0.6	0.3	0.4	< L.D.
2300 E 1525	< L.D.	< L.D.	9	0.6	1.7	4.2	1.4	0.5	< L.D.	7.9	12	5	0.9	0.3	< L.D.	0.4	< L.D.
2300 E 1550	1.3	< L.D.	4	0.53	3.4	3.2	2.1	0.8	< L.D.	9.4	14	6	0.9	0.4	< L.D.	0.5	< L.D.

.

Element:	Cs	Sr	Br	Fe	Hf	Sc	Th	U	Та	La	Ce	Nd	Sm	Eu	Тb	Yb	Lu
Unités:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
2300 E 1575	< L.D.	< L.D.	6	0.31	1.9	2	1.9	0.4	< L.D.	7.2	10	4	0.7	0.3	< L.D.	0.4	< L.D.
2300 E 1600	0.8	< L.D.	8	1.97	3.2	11	1.9	0.5	< L.D.	10	18	7	1.5	0.4	0.4	1	0.1
2300 E 1625	0.7	< L.D.	7	0.29	1.5	1.5	1.2	0.3	< L.D.	4.6	8	< L.D.	0.5	< L.D.	< L.D.	0.3	< L.D.
2300 E 1650	0.7	< L.D.	8	0.31	3.7	1.8	2.5	< L.D.	< L.D.	9.8	14	6	1	0.3	< L.D.	0.5	< L.D.
2300 E 1675	0.5	< L.D.	6	0.4	2	1.6	1	0.3	< L.D.	3.7	6	< L.D.	0.4	< L.D.	< L.D.	0.3	< L.D.
2300 E 1700	< L.D.	< L.D.	8	0.42	3.9	3.7	3.3	1	< L.D.	11	17	7	1.1	0.3	< L.D.	0.6	< L.D.
2300 E 1725	1	< L.D.	7	0.3	2.2	2.4	2.1	0.6	< L.D.	7.5	11	4	0.8	0.2	< L.D.	0.4	< L.D.
2350 E 1350	0.7	< L.D.	3	0.42	3.4	2.2	3.2	0.7	< L.D.	14	20	11	1.3	0.5	< L.D.	0.6	0.1
2350 E 1375	0.7	< L.D.	17	0.57	3.1	3.9	2.5	1.3	< L.D.	13	18	9	1.3	0.4	< L.D.	0.7	< L.D.
2350 E 1400	< L.D.	200	7	0.14	1.6	0.8	1.4	<1.D.	< L.D.	3.7	6	< L.D.	0.4	< L.D.	< L.D.	0.2	< L.D.
2350 E 1425	21	<1 D	17	0.82	3.3	42	3.3	2.6	< I D	25	36	13	22	0.6	<1 D	0.9	0.1
2350 E 1450	0.6	180	21	0.42	0.9	37	19	12	< D	14	22	10	1.5	0.4	<1 D	0.6	< L.D.
2350 E 1475	0.5	<1.0	10	0.53	0.6	16	1	0.9	<1 D	16	25	10	14	04	0.2	0.4	< I D
2350 E 1500	<1.0	<1 D	7	0.22	21	1.3	1	< I D	<1 D	4	7	3	04	<1 D	<1 D	0.2	<1.0
2350 E 1525	12	< L.D.	7	0.22	2.1	20	3 1	<1.D.		15	22	7	14	04	< L D	0.2	< L D
2350 E 1550	<1.2 <1.D		л Л	0.40	11	2.0	1 1	- L.D.		7	11	5	0.6	<1 D	<1 D	0.4	
2350 E 1575	~ L.D.		7	0.42	0.5	2.0	1.1	0.4		51	0	3	0.0			0.0	
2350 E 1600	0.0		4 9	0.33	0.5	2.5	10	0.Z		9.1 9.7	1/	6	0.0	~ L.D.		0.5	
2350 E 1625	0.9	<ld.< td=""><td>0 6</td><td>0.39</td><td>2.1</td><td>2.0</td><td>1.9</td><td></td><td></td><td>0.7 6.6</td><td>0</td><td>4</td><td>0.9</td><td>0.0</td><td></td><td>0.5</td><td></td></ld.<>	0 6	0.39	2.1	2.0	1.9			0.7 6.6	0	4	0.9	0.0		0.5	
2350 E 1025	< L.D.	< L.D.	0	0.7	2.0	3.7	1.1	< L.U.	NL.D.	4.4	30	4	1.0	< L.U.	< L.D.	0.0	< L.D.
2350 E 1050	1.5	< L.U.	0	0.54	7.9	4	4.7	1.0	<l.d.< td=""><td>14</td><td>20</td><td></td><td>1.3</td><td>0.4</td><td><l.d.< td=""><td>0.9</td><td>0.1</td></l.d.<></td></l.d.<>	14	20		1.3	0.4	<l.d.< td=""><td>0.9</td><td>0.1</td></l.d.<>	0.9	0.1
2350 E 1675	0.6	< L.D.	5	1.09	< L.D.	5.1	< L.U.	< L.D.	< L.D.	2.5	4	< L.D.	0.4	< L.D.	< L.D.	0.3	< L.D.
2350 E 1700	0.8	< L.D.	8	0.22	2.3	1.0	1.8	0.5	< L.D.	0.0	-	3	0.7	< L.D.	< L.D.	0.4	< L.U.
2350 E 1725	1.1	< L.D.	12	0.76	1.8	4.3	1	0.4	< L.D.	4.4	1	< L.D.	0.0	0.3	< L.D.	0.4	< L.D.
2400 E 1350	1.2	< L.D.	13	0.89	5.4	2.8	3	0.8	< L.D.	12	18	4	1.1	0.3	< L.D.	0.6	< L.D.
2400 E 1375	0.7	< L.D.	T_{χ}	0.32	4.1	2	2.4	0.6	< L.D.	9.1	12	4	0.9	0.3	< L.D.	0.5	< L.D.
2400 E 1400	0.7	< L.D.	26	0.26	1	0.8	0.7	< L.D.	< L.D.	2	4	< L.D.	0.3	< L.D.	< L.D.	0.2	< L.D.
2400 E 1425	0.5	< L.D.	13	0.21	1.1	1	1.1	0.3	< L.D.	3.8	7	< L.D.	0.4	< L.D.	< L.D.	0.2	< L.D.
2400 E 1450	0.6	< L.D.	17	0.33	4.6	2.7	4	< L.D.	< L.D.	16	24	7	1.4	0.3	< L.D.	0.6	0.1
2400 E 1475	< L.D.	< L.D.	16	0.47	< L.D.	3.2	1.2	2.1	< L.D.	28	44	16	2.4	0.5	0.2	0.5	< L.D.
2400 E 1500	0.5	< L.D.	5	0.33	3.3	2.3	1.8	0.5	< L.D.	6.9	10	4	0.8	0.2	< L.D.	0.5	< L.D.
2400 E 1525	0.6	< L.D.	11	0.34	1.4	1.9	1.8	0.8	< L.D.	5	8	4	0.5	< L.D.	< L.D.	0.3	< L.D.
2400 E 1550	0.6	< L.D.	11	0.4	1	3.6	3.4	2.1	< L.D.	14	22	6	1.1	0.3	< L.D.	0.4	< L.D.
2400 E 1575	0.5	< L.D.	9	0.19	0.8	1.1	0.8	0.3	< L.D.	3.6	7	3	0.4	< L.D.	< L.D.	< L.D.	< L.D.
2400 E 1600	0.7	< L.D.	9	0.1	< L.D.	0.3	< L.D.	< L.D.	< L.D.	0.9	2	< L.D.	0.1	< L.D.	< L.D.	< L.D.	< L.D.
2400 E 1625	3.4	< L.D.	5	3.71	1.3	13	1.3	< L.D.	< L.D.	6.2	11	6	1.2	0.4	< L.D.	0.8	0.1
2400 E 1650	0.6	< L.D.	8	0.13	< L.D.	0.4	< L.D.	< L.D.	< L.D.	1.3	2	< L.D.	0.1	< L.D.	< L.D.	< L.D.	< L.D.
2400 E 1675	0.9	< L.D.	9	0.32	4.3	2.6	3	0.6	< L.D.	10	17	6	1.1	0.3	< L.D.	0.7	0.1
2400 E 1700	< L.D.	< L.D.	10	0.13	< L.D.	0.5	< L.D.	0.2	< L.D.	6.3	11	5	0.7	< L.D.	< L.D.	< L.D.	< L.D.
2400 E 1725	0.6	< L.D.	6	0.47	1.6	1.7	1.7	< 0.1	< L.D.	5.5	8	< L.D.	0.5	0.2	< L.D.	0.2	< L.D.
2450 E 1350	1.1	< L.D.	18	0.91	4.3	5.8	8.9	8.1	< L.D.	25	33	11	2	0.5	< L.D.	0.7	0.1
2450 E 1375	0.6	< L.D.	17	0.54	1.8	2.3	1.8	0.7	< L.D.	15.2	21	8	1.2	0.4	< L.D.	0.5	< L.D.
2450 E 1400	< L.D.	< L.D.	10	0.23	< L.D.	0.7	< L.D.	0.2	< L.D.	3.1	6	< L.D.	0.4	< L.D.	< L.D.	0.2	< L.D.
2450 E 1425	< L.D.	< L.D.	9	0.17	0.8	0.6	0.7	< L.D.	< L.D.	2.4	4	< L.D.	0.3	< L.D.	< L.D.	0.1	< L.D.
2450 E 1450	0.6	< L.D.	8	0.4	4.3	1.4	2.2	< L.D.	< L.D.	6.6	10	< L.D.	0.7	0.2	< L.D.	0.4	< L.D.
2450E 1475	0.6	< L.D.	8	0.93	3.2	4.3	2.2	< L.D.	< L.D.	6.2	9	3	0.6	< L.D.	< L.D.	0.5	< L.D.
2450 E 1500	1.3	< L.D.	4	0.49	3	2.8	2	< L.D.	< L.D.	8.8	13	3	0.8	0.3	< L.D.	0.5	0.1
2450 E 1525	0.7	< L.D.	8	0.53	2.6	2.1	2.2	< L.D.	< L.D.	6	8	3	0.6	< L.D.	< L.D.	0.3	< L.D.
2450 E 1550	0.7	< L.D.	23	0.5	0.5	2.4	2	1.7	< L.D.	10	17	7	0.9	0.2	< L.D.	0.4	< L.D.
2450 E 1675	1.4	100	15	1.07	1.1	4.1	1.6	< L.D.	< L.D.	11	17	7	1.2	0.3	< L.D.	0.5	< L.D.
2450 E 1700	< L.D.	< L.D.	12	0.33	0.8	1.8	1.2	0.5	< L.D.	5.2	8	3	0.5	< L.D.	< L.D.	0.3	< L.D.
2450 E 1725	< L.D.	< L.D.	10	0.2	1.7	1	1.3	< L.D.	< L.D.	4.3	7	< L.D.	0.4	< L.D.	< L.D.	0.4	< L.D.
2450 E 1750	0.9	< L.D.	12	0.29	0.9	1.6	1.2	1	< L.D.	6.6	11	4	0.7	< L.D.	< L.D.	0.3	< L.D.

Quality Analysis ...

Innovative Technologies

 Date Submitted:
 12/7/2005 1:24:11 PM

 Invoice No.:
 A05-4360

 Invoice Date:
 2/2/2006

 Your Reference:
 LAC EWART

INRS - Eau Terre Environnement 490, Rue De La Couronne Quebec City Quebec G1K 9A9 Canada

REÇU AU MRNF

1 9 MAR, 2007

Dire rich au developpement mineral

ATTN: Marc LaFleche

CERTIFICATE OF ANALYSIS

99 Humus samples were submitted for analysis.

The following analytical package was requested:

Code 2A-15g Humus INAA(INAAGEO)

REPORT A05-4360

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

CERTIFIED BY :

C. Douglas Read, B.Sc. Laboratory Manager

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL ancaster@actlabsint.com ACTLABS GROUP WEBSITE http://www.actlabsint.com Activation Laboratories Ltd. Report: A05-4360

.

.

Analyte Symbol	Au	Ag	As	Ba	Br	Са	Co	Cr	Cs	Fe	Hſ	Hg	lr	Мо	Na	Ni	Rb	Sb	Sc	Se	Sr	Ta	Th	U
Unit Symbol	ppb	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Detection Limit	1	2	1	100	1	0.5	1	1	0.5	0.05	0.5	0.5	5	0.5	100	10	20	0.1	0.1	2	10	0.5	0.5	0.1
Analysis Method	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA
2200 E 1350				- 100																				
2200 E 1330	< 1 	- 2	2	< 100		< 0.5	2	2	1.0	0.07	< 0.5	< 0.5	< 5	< 0.5	400	< 10	< 20	0.3	0.3	< 2	< 10	< 0.5	< 0.5	< 0.1
2200 E 1375	2	~ 2		200	5	< 0.5	1	10	1.4	0.38	2.2	< 0.5	< 5	0.8	8600	< 10	< 20	0.2	1.9	< 2	150	< 0.5	2.6	0.4
2200 E 1400		• 2		100	8	< 0.5	2		0.8	0.15	1.0	< 0.5	< 5	< 0.5	2500	< 10	< 20	0.3	0.9	< 2	< 10	< 0.5	0.7	< 0.1
2200 E 1450		~ 2	-	500	40	1.3	5	53	2.0	1.38	2.8	< 0.5	< 5	< 0.5	12000	< 10	40	0.4	6.1	< 2	< 10	< 0.5	3.5	< 0.1
2200 E 1475	- 1	~ 2	-	200	10	< U.S	3	•/	1.0	0.20	1.7	< 0.5	< 5	< 0.5	3400	< 10	< 20	0.3	1,4	< 2	< 10	< 0.5	1.1	< 0.1
2200 E 1500	~ 1	~ 2	1	- 100	•	1.1	2	18	1.0	0.53	0.5	< 0.5	< 5	< 0.5	12/00	< 10	30	0.4	3.1	< 2	< 10	< 0.5	4.0	1.1
2200 E 1500	<1 <1	~ 2	2	100	12	< 0.5	3	3	< 0.5	0.2/	< 0.5	< 0.5	< 5	0.9	200	< 10	< 20	0.4	0.5	< 2	< 10	< 0.5	< 0.5	< 0.1
2200 E 1550	~1	~ 7	2	200	12	< 0.5	•	2	< 0.5	0.34	< 0.5	< 0.5	< 5	0.6	200	< 10	< 20	0.5	1.2	< 2	< 10	< 0.5	0.6	0.5
2200 E 1550	<1	~ 2	2	- 100	9	0.9	4	21	1.1	0.87	5.4	< 0.5	< 5	< 0.5	20400	< 10	30	< 0.1	3.8	< 2	< 10	< 0.5	3.1	0.9
2200 E 1600	~ 1	~ 2	2	100	18	< 0.5 < 0.5	3	9	0.0	1.19	< 0.5	< 0.5	< 5	< 0.5	300	< 10	< 20	< 0.1	2.4	< 2	< 10	< 0.5	1.7	0.9
2200 F 1625	e 1	~ 2	1	200	10	< 0.5 A P	- 1	33	0.0	0.43	1.1	< 0.5	< 5	. < 0.5	3000	< 10	< 20	< 0.1	3.6	< 2	< 10	< 0.5	2.6	1.4
2200 E 1650	< 1	~ 2	3	300	10	< 0.6	4	40	1.5	0.20	3.2 E 9	< U.5	< 5	< 0.5	9300	< 10	20	0.4	1.5	< 2	220	0.6	2.5	0.8
2200 F 1675	< 1			400		1.5	-	48	- 0.5	0.07	J.0 8 3	< 0.5 < 0.5	< 5 < 5	< 0.5	20400	< 10	< 20	0.1	5.2	< <u>2</u>	< 10	< 0.5	5.8	0.9
2200 E 1700	< 1		3	< 100	17	- 0.5	5	21	< 0.5	0.00	0.3	< 0.5	~ 5	< 0.5	20600	< 10 00	40	0.2	3.7	< 2	< 10	< 0.5	4.5	1.0
2200 F 1725	e 1	-2 -2	11	< 100	13	< 0.5	17	3	< 0.5	0.34	< 0.5	< 0.5	~ 5	< 0.5	200	30	< 20	0.3	0.5	< 2	< 10	< 0.5	< 0.5	0.2
2200 E 1750	< 1	<2	2	< 100	15	< 0.5	7	3	< 0.5	0.32	< 0.5	< 0.5 c 0.5	~ 5	< 0.5	200	5U < 10	< 20	0.6	0.7	< 2	< 10	< 0.5	< U.5	0.2
2200 E 1775	2	< 2	- 1	100	17	< 0.5	Ŕ	-	0.5	0.12	< 0.5	< 0.5	~ 5	< 0.5 A #	200	< 10	< 20	0.4	0.5	- 2	< 10	< 0.5	< 0.5	0.1
2200 E 1800	< 1	< 2	1	300	5	< 0.5	2	14	0.0	0.55	5.8	< 0.5	- 5	< 0.6	18100	~ 10	< 20	0.2	2.1	~ 2	< 10	< 0.5	1.3	0.7
2200 E 1825	3	< 2	3	100	14	0.5	9	7	< 0.5	0.46	1.1	0.5	< 5	× 0.5	2800	< 10	~ 20	0.2	3.3	< 2	< 10	< 0.5	3.1	0.8
2200 E 1850	< 1	< 2	2	200	11	< 0.5	5	10	0.7	0.24	19	< 0.5	< 5	< 0.5	3300	< 10 < 10	< 20	0.5	1.0	~ 2	120	< 0.5	1.1	0.3
2250 E 1350	< 1	< 2	1	200	10	< 0.5	5	2	< 0.5	0.15	< 0.5	< 0.5	< 5	< 0.5	300	< 10	< 20	0.5	0.9	- 2	< 10	< 0.5 < 0.5	<	0.4
2250 E 1375	< 1	< 2	1	200	8	< 0.5	3	11	0.9	0.46	12	< 0.5	< 5	< 0.5	4100	< 10	< 20	0.2	21	~ 2	< 10	< 0.5	20	0.0
2250 E 1400	< 1	< 2	1	300	4	< 0.5	1	9	1.2	0.30	3.6	< 0.5	< 5	< 0.5	18700	< 10	20	0.2	2.0	< 2	340	< 0.5	2.0	0.0
2250 E 1425	< 1	< 2	1	200	9	0.5	6	16	0.7	0.43	1.6	< 0.5	< 5	0.7	4600	< 10	< 20	0.3	2.0	< 2	< 10	< 0.5	2.5	0.8
2250 E 1450	< 1	< 2	1	300	4	< 0.5	1	27	2.2	0.38	3.9	< 0.5	< 5	< 0.5	11600	< 10	30	0.0	4.5	~ 2	210	< 0.5	4.6	1.4
2250 E 1475	< 1	< 2	2	400	8	< 0.5	5	20	1.7	0.65	4.2	< 0.5	< 5	0.5	13700	< 10	20	0.4	3.6	< 2	< 10	< 0.5	3.1	0.8
2250 E 1500	< 1	< 2	1	200	27	< 0.5	6	34	1.2	0.89	2.7	< 0.5	< 5	< 0.5	9700	< 10	< 20	0.0	5.1	< 2	< 10	< 0.5	J.1	17
2250 E 1525	< 1	< 2	< 1	300	3	< 0.5	1	17	0.9	0.37	6.6	< 0.5	< 5	< 0.5	17500	< 10	< 20	0.2	2.6	< 2	540	< 0.5	3.6	6.9
2250 E 1550	< 1	< 2	2	300	4	1.5	6	62	< 0.5	0.93	5.8	< 0.5	< 5	< 0.5	10400	< 10	< 20	0.2	7.1	< 2	400	< 0.5	26	0.0
2250 E 1575	< 1	< 2	1	400	6	< 0.5	2	- 36	< 0.5	0.69	3.8	< 0.5	< 5	< 0.5	15100	< 10	< 20	0.1	5.5	< 2	< 10	< 0.5	23	0.7
2250 E 1600	< 1	< 2	1	200	7	< 0.5	2	11	A040 CT	0.20-			< 5	< 0.5	7200	< 10	< 20	< 0.1	13	< 2	< 10	< 0.5	2.2	0.5
2250 E 1625	2	< 2	6	200	11	< 0.5	5	13	u E Ç I	U AI	1.3.62	NJ F0.5	< 5	< 0.5	3200	40	< 20	0.2	3.4	< 2	< 10	< 0.5	2.9	1.5
2250 E 1650	2	< 2	4	200	8	< 0.5	4	15	0.9	0.41	1.7	< 0.5	< 5	< 0.5	5100	< 10	< 20	0.5	2.9	< 2	< 10	< 0.5	2.5	0.7
2250 E 1675	< 1	< 2	2	< 100	10	< 0.5	1	2	\$ 0.5	0.06	< 0.5	< 0.5	< 5	< 0.5	200	< 10	< 20	0.4	0.2	< 2	< 10	< 0.5	< 0.5	< 0.1
2250 E 1700	< 1	< 2	6	300	8	0.7	3	13	1.9	MAR	2802	< 0.5	< 5	< 0.5	12800	< 10	20	0.1	2.5	< 2	< 10	< 0.5	2.6	0.8
2250 E 1725	6	< 2	10	100	5	0.9	4	95	0.5	0.58	1.8	< 0.5	< 5	< 0.5	6700	< 10	< 20	0.2	2.6	< 2	270	< 0.5	1.7	0.5
2250 E 1750	3	< 2	4	< 100	10	< 0.5	9	3	< 0.5	0.24	< 0.5	< 0.5	< 5	< 0.5	200	60	< 20	0.5	0.7	< 2	< 10	< 0.5	0.6	< 0.1
2300 E 1350	< 1	< 2	1	200	5	< 0.5	2	12:	1.9	0.33	3,1	< 0.5	< 5	< 0.5	12400	< 10	20	0.3	2.6	< 2	< 10	< 0.5	2.8	0.6
2300 E 1375	< 1	< 2	1	100	15	< 0.5	10			0.49	1.9	< 0.5	< 5	< 0.5	4700	< 10	< 20	0.1	2.6	< 2	< 10	< 0.5	2.5	1.6
2300 E 1400	< 1	< 2	1	300	10	< 0.5	5	14	0.9	0.52	4.0	-0.5-	< 5	< 0.5	9400	< 10	< 20	< 0.1	3.1	< 2	< 10	< 0.5	2.5	1.7
2300 E 1425	< 1	< 2	1	200	8	< 0.5	3	23	1.1	0.51	2.8	< 0.5	< 5	< 0.5	12000	< 10	< 20	< 0.1	3.7	< 2	< 10	< 0.5	4.1	1.4
2300 E 1450	< 1	< 2	< 1	200	21	< 0.5	6	21	1.1	0.73	2.8	< 0.5	< 5	< 0.5	12000	< 10	20	0.1	3.4	< 2	< 10	< 0.5	2.9	0.9
2300 E 1475	< 1	< 2	1	200	7	0.7	2	10	0.7	0.32	4.6	< 0.5	< 5	< 0.5	11100	< 10	< 20	< 0.1	2.2	< 2	< 10	< 0.5	2.9	0.7
2300 E 1500	< 1	< 2	2	100	20	< 0.5	10	4	< 0.5	0.46	< 0.5	< 0.5	< 5	1.2	300	< 10	< 20	0.5	1.6	< 2	< 10	< 0.5	1.2	1.2
2300 E 1525	1	< 2	1	300	9	0.6	5	23	< 0.5	0.60	1.7	< 0.5	< 5	< 0.5	5300	< 10	< 20	0.1	4.2	< 2	< 10	< 0.5	1.4	0.5
2300 E 1550	< 1	< 2	1	300	4	0.8	3	21	1.3	0.53	3.4	< 0.5	< 5	< 0.5	13800	< 10	< 20	0.2	3.2	< 2	< 10	< 0.5	2.1	0.8
2300 E 1575	< 1	< 2	1	300	6	< 0.5	2	11	< 0.5	0.31	1.9	< 0.5	< 5	< 0.5	7300	< 10	< 20	0.2	2.0	< 2	< 10	< 0.5	1.9	0.4
2300 E 1600	10	< 2	5	200	8	1.8	15	630	0.8	1.97	3.2	< 0.5	< 5	< 0.5	4800	130	< 20	0.2	11.0	< 2	< 10	< 0.5	1.9	0.5
2300 E 1625	< 1	< 2	1	200	7	< 0.5	5	14	0.7	0.29	1.5	< 0.5	< 5	< 0.5	3600	50	< 20	0.3	1.5	< 2	< 10	< 0.5	1.2	0.3
2300 E 1650	< 1	< 2	1	300	8	0.6	2	13	0.7	0.31	3.7	< 0.5	< 5	< 0.5	11100	< 10	20	0.2	1.8	< 2	< 10	< 0.5	2.5	< 0.1
2300 E 1675	< 1	< 2	4	100	6	0.5	2	13	0.5	0.40	2.0	< 0.5	< 5	< 0.5	8200	< 10	< 20	0.1	1.6	< 2	< 10	< 0.5	1.0	0.3

Activation Laboratories Ltd. Report: A05-4360

.

													-											
Analyte Symbol	Au	Ag	As	Ba	Br	Ca	Co	Cr	Cs	Fe	Hf	Hg	lr	Mo	Na	Ni	Rb	Sb	Sc	Se	Sr	Ta	Th	U
Unit Symbol	ррь	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Detection Limit	1	2	1	100	1	0.5	1	1	0.5	0.05	0.5	0.5	5	0.5	100	10	20	0.1	0.1	2	10	0.5	0.5	0.1
Analysis Method	INAA			INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA		INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA
2300 E 1700	< 1	< 2	2	200	8	< 0.5	4	20	< 0.5	0.42	3.9	< 0.5	< 5	< 0.5	10300	< 10	< 20	< 0.1	3.7	< 2	< 10	< 0.5	3.3	1.0
2300 E 1725	< 1	< 2	5	100	7	0.6	2	13	1.0	0.30	2.2	< 0.5	< 5	< 0.5	7100	60	< 20	0.5	2.4	< 2	< 10	< 0.5	2.1	0.6
2350 E 1350	< 1	< 2	1	200	3	< 0.5	2	15	0.7	0.42	3.4	< 0.5	< 5	< 0.5	17100	< 10	< 20	0.2	2.2	< 2	< 10	< 0.5	3.2	0.7
2350 E 1375	< 1	< 2	1	200	17	1.0	4	10	0.7	0.57	3.1	< 0.5	< 5	< 0.5	10800	< 10	30	< 0.1	3.9	< 2	< 10	< 0.5	2.5	1.3
2350 E 1400	< 1	< 2	1	200	7	< 0.5	< 1	5	< 0.5	0.14	1.6	< 0.5	< 5	< 0.5	5200	< 10	< 20	0.2	0.8	< 2	200	< 0.5	1.4	< 0.1
2350 E 1425	< 1	< 2	3	200	17	0.9	8	31	2.1	0.82	3.3	< 0.5	< 5	< 0.5	10000	< 10	20	0.3	4.2	< 2	< 10	< 0.5	3.3	2.6
2350 E 1450	< 1	< 2	< 1	200	21	< 0.5	5	6	0.6	0.42	0.9	< 0.5	< 5	< 0.5	4600	< 10	< 20	0.2	3.7	< 2	180	< 0.5	1.9	1.2
2350 E 1475	2	< 2	2	200	10	< 0.5	5	6	0.5	0.53	0.6	< 0.5	< 5	< 0.5	3100	< 10	< 20	0.2	1.6	< 2	< 10	< 0.5	1.0	0.9
2350 E 1500	< 1	< 2	1	100	7	0.5	2	7	< 0.5	0.22	2.1	< 0.5	< 5	< 0.5	6300	< 10	< 20	0.2	1.3	< 2	< 10	< 0.5	1.0	< 0.1
2350 E 1525	< 1	< 2	3	300	7	< 0.5	3	13	1.2	0.43	2.7	< 0.5	< 5	< 0.5	11000	< 10	< 20	0.3	2.9	< 2	< 10	< 0.5	3.1	< 0.1
2350 E 1550	< 1	< 2	< 1	200	4	< 0.5	4	8	< 0.5	0.42	1.1	< 0.5	< 5	< 0.5	6400	< 10	< 20	< 0.1	2.3	< 2	< 10	< 0.5	1.1	0.4
2350 E 1575	< 1	< 2	1	200	7	0.5	5	14	0.8	0.39	0.5	< 0.5	< 5	< 0.5	2100	< 10	< 20	0.2	1.7	< 2	< 10	< 0.5	1.0	0.2
2350 E 1600	6	< 2	3	200	8	< 0.5	6	32	0.9	0.39	2.7	< 0.5	< 5	< 0.5	11500	< 10	< 20	0.3	2.5	< 2	< 10	< 0.5	1.9	< 0 1
2350 E 1625	< 1	< 2	1	100	6	< 0.5	7	110	< 0.5	0.70	2.8	< 0.5	< 5	< 0.5	11100	< 10	20	0.1	3.7	< 2	< 10	< 0.5	1.7	< 0.1
2350 E 1650	< 1	< 2	2	300	8	< 0.5	3	48	1.5	0.54	7.9	< 0.5	< 5	< 0.5	18500	< 10	50	< 0.1	4.0	< 2	< 10	< 0.5	4.7	1.6
2350 E 1675	106	< 2	37	< 100	5	0.7	21	650	0.6	1.69	< 0.5	< 0.5	< 5	< 0.5	400	110	< 20	10	51	<2	< 10	< 0.5	< 0.5	e 0 1
2350 E 1700	< 1	< 2	2	< 100	8	0.5	2	11	0.8	0.22	2.3	< 0.5	< 5	< 0.5	5400	< 10	< 20	03	1.6	< 2	< 10	< 0.5	1.8	0.1
2350 E 1725	< 1	< 2	6	200	12	1.0	8	31	1.1	0.76	1.8	< 0.5	< 5	< 0.5	8100	< 10	< 20	0.5	43	< 2	< 10	< 0.5	1.0	0.0
2400 E 1350	< 1	< 2	1	200	13	< 0.5	2	18	1.2	0.89	5.4	< 0.5	< 5	< 0.5	13000	< 10	< 20	< 0.1	2.8	< 2	< 10	< 0.5	3.0	0.4
2400 E 1375	< 1	< 2	< 1	200	7	< 0.5	2	15	0.7	0.32	4.1	< 0.5	< 5	< 0.5	10200	< 10	20	0.2	2.0	< 2	< 10	< 0.5	24	0.0
2400 E 1400	3	< 2	1	100	26	< 0.5	2	8	0.7	0.26	1.0	< 0.5	< 5	0.6	2800	< 10	< 20	0.4	0.8	< 2	< 10	< 0.5	0.7	< 0.0
2400 E 1425	< 1	< 2	2	100	13	< 0.5	3	5	0.5	0.21	1.1	< 0.5	< 5	< 0.5	2100	< 10	< 20	0.5	1.0	< 2	< 10	< 0.5	11	0.3
2400 E 1450	< 1	< 2	2	300	17	< 0.5	3	14	0.6	0.33	4.6	< 0.5	< 5	< 0.5	8200	< 10	< 20	0.3	27	< 2	< 10	< 0.5	4.0	< 0.1
2400 E 1475	< 1	< 2	< 1	100	16	< 0.5	4	6	< 0.5	0.47	< 0.5	< 0.5	< 5	< 0.5	200	< 10	< 20	< 0.1	3.2	< 2	< 10	< 0.5	12	21
2400 E 1500	< 1	< 2	< 1	300	5	< 0.5	1	10	0.5	0.33	3.3	< 0.5	< 5	< 0.5	13500	< 10	< 20	0.2	2.3	< 2	< 10	< 0.5	1.8	0.5
2400 E 1525	< 1	< 2	1	200	11	< 0.5	2	8	0.6	0.34	1.4	< 0.5	< 5	< 0.5	5000	< 10	< 20	< 0.1	1.9	< 2	< 10	< 0.5	1.8	0.8
2400 E 1550	< 1	< 2	< 1	100	11	< 0.5	4	13	0.6	0.40	1.0	< 0.5	< 5	< 0.5	3900	< 10	< 20	< 0.1	3.6	< 2	< 10	< 0.5	3.4	21
2400 E 1575	3	< 2	2	100	9	< 0.5	3	4	0.5	0.19	0.8	< 0.5	< 5	< 0.5	3300	< 10	< 20	0.3	1.1	< 2	< 10	< 0.5	0.8	0.3
2400 E 1600	2	< 2	2	< 100	9	< 0.5	2	10	0.7	0.10	< 0.5	< 0.5	< 5	0.9	200	< 10	< 20	0.3	0.3	< 2	< 10	< 0.5	< 0.5	< 0.1
2400 E 1625	< 1	< 2	3	< 100	5	1.9	51	1100	3.4	3.71	1.3	< 0.5	< 5	< 0.5	4200	250	< 20	0.3	13.0	< 2	< 10	< 0.5	13	< 0.1
2400 E 1650	2	< 2	2	< 100	8	< 0.5	3	10	0.6	0.13	< 0.5	< 0.5	< 5	< 0.5	700	30	< 20	0.3	0.4	< 2	< 10	< 0.5	< 0.5	< 0.1
2400 E 1675	< 1	< 2	1	200	9	1.0	2	18	0.9	0.32	4.3	< 0.5	< 5	< 0.5	9400	< 10	< 20	0.2	2.6	< 2	< 10	< 0.5	3.0	0.6
2400 E 1700	2	< 2	8	100	10	0.7	1/2	DR	- 0.5	0.13	< 0.5	< 0.5	< 5	< 0.5	400	180	< 20	1.0	0.5	< 2	< 10	< 0.5	< 0.5	0.2
2400 E 1725	< 1	< 2	4	100	6	< 0.5	3	u PC	UOAT	1 947	1.6		< 5	< 0.5	5500	< 10	< 20	0.3	1.7	< 2	< 10	< 0.5	1.7	< 0.1
2450 E 1350	< 1	< 2	2	300	18	< 0.5	4	40 ີ	ີດ	אאר י	NE.	< 0.5	< 5	< 0.5	8500	< 10	< 20	0.1	5.8	< 2	< 10	< 0.5	8.9	8 1
2450 E 1375	< 1	< 2	2	100	17	< 0.5	2	8	0.6	0.54	1.8	< 0.5	< 5	0.9	6700	< 10	20	0.3	2.3	< 2	< 10	< 0.5	1.8	0.7
2450 E 1400	< 1	< 2	2	100	10	< 0.5	8	13	1 AMA IN	923	_ < 0.5	< 0.5	< 5	< 0.5	400	< 10	< 20	0.6	0.7	< 2	< 10	< 0.5	< 0.5	0.2
2450 E 1425	2	< 2	1	< 100	9	< 0.5	< 1	5	263N.	. 1 40,	7 0.8	< 0.5	< 5	0.6	2700	< 10	< 20	0.3	0.6	< 2	< 10	< 0.5	0.7	< 0.1
2450 E 1450	< 1	< 2	2	200	8	< 0.5	1	9	0.6	0.40	4.3	< 0.5	< 5	< 0.5	9200	< 10	< 20	0.2	1.4	< 2	< 10	< 0.5	22	< 0.1
2450E 1475	< 1	< 2	1	200	8	0.9	Dira.		0.6	0.93	3.2	< 0.5	< 5	< 0.5	11000	< 10	< 20	0.2	4.3	< 2	< 10	< 0.5	22	< 0.1
2450 E 1500	< 1	< 2	< 1	300	4	0.9		1001111	Geveboil	ernar.	3.0	< 0.5	< 5	< 0.5	17400	< 10	30	< 0.1	2.8	< 2	< 10	< 0.5	20	< 0.1
2450 E 1525	< 1	< 2	t	200	8	< 0.5	2	11	0.7		nnistej	< 0.5	< 5	< 0.5	13100	< 10	< 20	0.2	2.1	< 2	< 10	< 0.5	22	< 0.1
2450 E 1550	< 1	< 2	3	100	23	< 0.5	4	11	0.7	0.50	0.5	< 0.5	< 5	< 0.5	700	< 10	< 20	0.3	2.4	< 2	< 10	< 0.5	2 A	17
2450 E 1675	< 1	< 2	43	200	15	< 0.5	15	69	1.4	1.07	1.1	< 0.5	< 5	< 0.5	4200	< 10	< 20	0.4	4.1	< 2	100	< 0.5	1.6	* 0 *
2450 E 1700	< 1	< 2	2	200	12	0.8	5	6	< 0.5	0.33	0.8	< 0.5	< 5	< 0.5	2700	< 10	< 20	0.1	1.8	- L K 2	< 10	< 0.5	1.0	ν.I Δε
2450 E 1725	1	< 2	1	200	10	< 0.5	2	5	< 0.5	0.20	1.7	< 0.5	< 5	< 0.5	4900	< 10	< 20	0.1	10	د ب	< 10	< 0.5	12	v.5 < 0.4
2450 E 1750	< 1	< 2	2	200	12	< 0.5	4	7	0.9	0.29	0.9	< 0.5	< 5	< 0.5	2800	< 10	< 20	0.5	16	< 2	< 10	< 0.5	1.3	1.0
													-							~ 6	~ / •	~ 0.0	1.4	1.0

Activation Laboratories Ltd.

Report: A05-4360

.

.

Analyte Symbol	w	Zn	La	Ce	Nd	Sm	Eu	Tb	Yb	Lu	Mass	
Unit Symbol	ррт	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	g	
Detection Limit	1	20	0.1	1	3	0.1	0.2	0.2	0.1	0.1		
Analysis Method	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	
2007 E 4050												
2200 E 1350	< 1	< 20	1.6	3	< 3	0.2	< 0.2	< 0.2	< 0.1	< 0.1	15.1	
200 E 13/5	< 1	< 20	9.4	15	6	0.9	0.3	< 0.2	0.5	< 0.1	15.3	
200 E 1400	< 1	40	3.5	6	< 3	0.3	< 0.2	< 0.2	0.2	< 0.1	14.0	
2200 E 1425	2	30	15.0	23	8	1.5	0.5	< 0.2	0.8	0.1	15.6	
2200 E 1450	< 1	20	4.4	7	< 3	0.4	< 0.2	< 0.2	0.3	< 0.1	15.4	
200 E 1475	< 1	30	17.0	25	9	1.6	0.5	< 0.2	0.8	0.1	15.0	
200 E 1500	< 1	50	< 0.1	6	< 3	0.3	< 0.2	< 0.2	0.1	< 0.1	15.2	
200 E 1525	< 1	40	15.0	27	10	1.5	0.3	< 0.2	0.4	< 0.1	15.4	
2200 E 1550	< 1	< 20	11.0	15	7	1.0	0.4	0.4	0.7	0.1	15.1	
2200 E 1575	< 1	< 20	5.5	10	4	0.6	< 0.2	< 0.2	0.2	< 0.1	15.4	
200 E 1600	< 1	< 20	9.8	16	5	0.9	0.3	< 0.2	0.3	< 0.1	15.6	
2200 E 1625	< 1	< 20	7.6	12	5	0.7	0.3	< 0.2	0.5	< 0.1	15.8	
200 E 1650	< 1	< 20	24.0	36	12	2.2	0.9	< 0.2	1.0	0.1	15.9	
200 E 1675	< 1	< 20	14.0	19	10	1.3	0.4	< 0.2	0.7	0.1	15.9	
200 E 1700	< 1	30	3.4	7	< 3	0.3	< 0.2	< 0.2	0.1	< 0.1	8.38	
200 E 1725	< 1	30	5.8	11	4	0.6	< 0.2	< 0.2	0.2	< 0.1	15.2	
200 E 1750	< 1	30	3.4	6	< 3	0.4	< 0.2	< 0.2	0.2	< 0.1	13.3	
2200 E 1775	< 1	30	4.9	8	< 3	0.5	< 0.2	< 0.2	0.3	< 0.1	15.3	
200 E 1800	< 1	< 20	12.0	18	6	1.1	0.4	< 0.2	0.7	0.1	15.2	
200 E 1825	< 1	40	5.7	10	4	0.6	< 0.2	< 0.2	0.3	< 0.1	12.6	
200 E 1850	< 1	30	7.3	13	5	0.7	< 0.2	< 0.2	0.4	< 0.1	15.6	
250 E 1350	< 1	< 20	9.5	16	6	0.9	0.2	< 0.2	0.4	< 0.1	15.9	
250 E 1375	< 1	< 20	9.2	15	6	0.9	0.2	< 0.2	0.4	< 0.1	15.2	
250 E 1400	< 1	< 20	8.3	11	5	0.8	0.3	< 0.2	0.6	< 0.1	15.5	
250 E 1425	< 1	20	13.0	20	7	11	0.3	< 0.2	0.5	< 0.1	15.3	
250 E 1450	< 1	30	17.0		11	1.6	0.5	< 0.2	0.0	0.1	15.8	
250 E 1475	< 1	50	12.0	20	7	12	0.5	< 0.2	0.6	< 0.1	15.5	
250 E 1500	د 1	< 20	16.0	23	. 7	13	0.4	< 0.2	0.0	< 0.1	16.5	
250 E 1525	2	< 20	10.0	16	, 7	1.5	0.4	< 0.2	0.5	< 0.1	15.5	
250 E 1550	e 1	< 20	11.0	10	,	1.7	0.4	~ 0.2	4.2	~ 0.1	15.7	
250 E 1575	21	< 20	7.8	12	5	1.7	0.4	~ 0.2	1.3	0.2	15.0	
250 F 1600	21	< 20	6.1	10	3	0.6	< 0.2	~02	0.0	V.I	15.8	
250 5 1825	~ 1	< 20	12.0	~		0.0	~ 0.2	.0.2	0.4	× 0.1	13.1	
250 E 1850	~ 1	~ 20	14.0	20	0	1.3	0.3	< 0.2	0.5	< 0.1	15.4	
250 E 1675	~ ~	~ 20	0.6		~ ^ ^	1.3	0.3	< 0.2	0.5	< 0.1	15.4	
250 E 1700	~ 1	- 20 - 20	11.0	1	< 3	F.U >	< U.2	< 0.2	< U.1	< 0.1	15.2	
250 E 1725	~ 1	~ 20	+1.U # 2	15	5	0.9	0.3	< 0.2	0.5	< 0.1	15.3	
50 E 1750	~ 1	~ ~~	0.3	A	5	0.6	0.2	< 0.2	0.4	< 0.1	15.5	RECITALIMENE
200 E 1350	• 1	< 20	4.9	8	< 3	U.5	< 0.2	< 0.2	0.1	< 0.1	12.8	rego no miner
NO E 1375	• 1	< 20	12.0	19	-	1.2	0.4	< 0.2	0.6	< 0.1	15.8	
300 E 13/3	< 1	< 20	17.0	26	9	1.6	0.4	< 0.2	0.6	< 0.1	15.1	4 Q MAD 2007
200 E 1400	< 1	< 20	16.0	25	8	1.4	0.4	< 0.2	0.6	< 0.1	15.1	1 3 MAR LUUT
	< 1	< 20	19.0	28	9	1.8	0.5	< 0.2	0.8	< 0.1	15.9	
300 E 1450	< 1	< 20	11.0	16	4	1.1	0.3	< 0.2	0.6	< 0.1	15.7	
300 E 1475	< 1	< 20	9.4	15	5	0.8	0.3	< 0.2	0.5	< 0.1	15.8	Intraction du developpement minéral
300 E 1500	< 1	30	35.0	54	22	2.9	0.6	0.3	0.4	< 0.1	15.3	
300 E 1525	< 1	< 20	7.9	12	5	0,9	0.3	< 0.2	0.4	< 0.1	15.4	
300 E 1550	< 1	30	9.4	14	6	0.9	0.4	< 0.2	0.5	< 0.1	15.4	
300 E 1575	< 1	30	7.2	10	4	0.7	0.3	< 0.2	0.4	< 0.1	15.1	
00 E 1600	< 1	30	10.0	18	7	1.5	0.4	0.4	1.0	0.1	15.7	
00 E 1625	< 1	30	4.6	8	< 3	0.5	< 0.2	< 0.2	0.3	< 0.1	15.3	
300 E 1650	< 1	20	9.8	14	6	1.0	0.3	< 0.2	0.5	< 0.1	15.6	

Page 4 of 7

Activation Laboratories Ltd.

Report: A05-4360

· ·

٠

												•
Analyte Symbol	w	Zn	La	Ce	Nd	Sm	Eu	ть	Yb	Lu	Mass	
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	9	
Detection Limit	1	20	0.1	1	3	0.1	0.2	0.2	0.1	0.1		
Analysis Method	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	
2300 E 1700	< 1	< 20	11.0	17	7	1.1	0.3	< 0.2	0.6	< 0.1	15.5	
2300 E 1725	< 1	< 20	7.5	11	4	0.8	0.2	< 0.2	0.4	< 0.1	15.1	
2350 E 1350	< 1	< 20	14.0	20	11	1.3	0.5	< 0.2	0.6	0.1	15.2	
2350 E 1375	< 1	< 20	13.0	18	9	1.3	0.4	< 0.2	0.7	< 0.1	15.3	
2350 E 1400	< 1	20	3.7	6	< 3	0.4	< 0.2	< 0.2	0.2	< 0.1	15.5	
2350 E 1425	< 1	30	25.0	36	13	2.2	0.6	< 0.2	0.9	0.1	15.1	
2350 E 1450	< 1	< 20	14.0	22	10	1.5	0.4	< 0.2	0.6	< 0.1	15.1	
2350 E 1475	< 1	< 20	16.0	25	10	1.4	0.4	0.2	0.4	< 0.1	15.1	
2350 E 1500	< 1	30	4.0	7	3	0.4	< 0.2	< 0.2	0.2	< 0.1	15.4	
2350 E 1525	1	30	15.0	22	7	1.4	0.4	< 0.2	0.4	< 0.1	15.7	
2350 E 1550	< 1	< 20	7.0	11	5	0.6	< 0.2	< 0.2	0.3	< 0.1	15.1	
2350 E 1575	< 1	< 20	5.1	9	3	0.6	< 0.2	< 0.2	0.3	< 0.1	15.5	
2350 E 1600	< 1	< 20	8.7	14	6	0.9	0.3	< 0.2	0.5	< 0.1	15.6	
2350 E 1625	1	< 20	6.6	9	4	0.7	< 0.2	< 0.2	0.5	< 0.1	15.4	
2350 E 1650	< 1	< 20	14.0	20	6	1.3	0.4	< 0.2	0.9	0.1	15.7	
2350 E 1675	4	30	2.5	4	< 3	0.4	< 0.2	< 0.2	0.3	< 0.1	15.7	
2350 E 1700	< 1	< 20	6.6	11	3	0.7	< 0.2	< 0.2	0.4	< 0.1	15.4	
2350 E 1725	< 1	< 20	4.4	7	< 3	0.6	0.3	< 0.2	0.4	< 0.1	15.4	
2400 E 1350	< 1	< 20	12.0	18	4	1.1	0.3	< 0.2	0.6	< 0.1	15.8	
2400 E 1375	< 1	< 20	9.1	12	4	0.9	0.3	< 0.2	0.5	< 0.1	15.8	
2400 E 1400	< 1	60	2.0	4	< 3	0.3	< 0.2	< 0.2	0.2	< 0.1	12.1	
2400 E 1425	< 1	20	3.8	7	< 3	0.4	< 0.2	< 0.2	0.2	< 0.1	15.7	
2400 E 1450	< 1	< 20	16.0	24	7	1.4	0.3	< 0.2	0.6	0.1	15.3	
2400 E 1475	< 1	40	28.0	44	16	2.4	0.5	0.2	0.5	< 0.1	15.8	
2400 E 1500	< 1	< 20	6.9	10	4	0.8	0.2	< 0.2	0.5	< 0.1	15.8	
2400 E 1525	< 1	< 20	5.0	8	4	0.5	< 0.2	< 0.2	0.3	< 0.1	15.0	
2400 E 1550	< 1	< 20	14.0	22	6	1.1	0.3	< 0.2	0.4	< 0.1	15.1	
2400 E 13/3	<1	30	3.6	7	3	0.4	< 0.2	< 0.2	0.2	< 0.1	15.0	
2400 2 1000	< 1 	20	0.9	2	< 3	0.1	< 0.2	< 0.2	< 0.1	< 0.1	15.0	
2400 6 1850	• 1	20	6.2	11	6	1.2	0.4	< 0.2	0.8	0.1	15.8	
2400 E 1875	< 1 < 1	30	1.3	2	< 3	0.1	< 0.2	< 0.2	< 0.1	< 0.1	15.6	
2400 E 1700	~ 1	30	10.0	17	•	1.1	0.3	< 0.2	0.7	0.1	15.4	
2400 E 1705	~ 1	40	0.3	11	5	0.7	< 0.2	< 0.2	0.3	< 0.1	14.7	
2450 E 1350	21	< 20 < 20	25.0	0 32	× 3 11	U.D 2.0	0.2	< 0.2	0.2	< 0.1	15.6	
2450 E 1375	~ 1	< 20	15 0	33		2.0	U.D	~ 0.2	U.7	0.1	15.7	
2450 E 1400	< 1	- 20	3.1	21 6	0 23	1.z	U.4	< 0.2	0.5	< 0.1	13./	
2450 F 1425	<1	60	3.1 74	4	- 3	0.4	~ 0.2	~ 0.2	0.2	< 0.1	15.4	
2450 F 1450	24	< 20	2.4 8.6	4	~ 3	0.3	.0.2	< 0.2	0.1	< 0.1	15.4	
2450F 1475	< 1 < 1	< 20	5.0	0	- 3	0.7	U.Z	< 0.2	0.4	< 0.1	15.0	THATPNE
2450 E 1500	< 1	< 20	0.2 8 R	9 13	3	0.0	NU.2	< U.2	0.5	< 0.1	15.3	BECU AU MDIT
2450 E 1525	< 1	< 20	6.0	13 R	3	0.0	v.a < 0.2	< 0.2	0.0 /1 2	0.1	15.5	····· 2 ···
2450 E 1550	< 1	< 20	10.0	17	7	0.0	0.2	< 0.2	0.3	× 0.1	10.0	2007
2450 E 1675	< 1	30	11.0	17	7	1.9	0.2	~ 0.2	0.4	< 0.1	15.1	1 9 MAR 2007
450 E 1700	< 1	30	5.2	'' R	' 2	1.2 D E	203	202	0.3	< 0.1	15.3	
2450 E 1725	< 1	< 20	43	7	د م د م	0.0	< 0.2	< 0.2	0.3 n.4	201	15.5	
450 E 1750	< 1	40	6.6	11	4	0.7	< 0.2	< 0.2	л. т л 1	< 0.1	15.3	server signed and the server and the ser
			5.0		-	4.1	- 0.4	- 0.2	0.0	- U.I	13.3	Der Torre der der der der der der der der der

Activation Laboratories Ltd. Report: A05-4360

Quality Control																								
Analyte Symbol	Au	Ag	As	Ва	Br	Ca	Co	Cr	Cs	Fe	Hſ	Hg	Ir	Mo	Na	Ni	Rb	Sb	Sc	Se	Sr	Ta	Th	υ
Unit Symbol	ppb	ppm	ppm	ppm	ppm	%	ррт	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Detection Limit	1	2	1	100	1	0.5	1	1	0.5	0.05	0.5	0.5	5	0.5	100	10	20	0.1	0.1	2	10	0.5	0.5	0.1
Analysis Method	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA
L-STD Spiked Au Meas	24	< 2	4	< 100	2	1.5	< 1	6	< 0.5	0.08	< 0.5	< 0.5	< 5	< 0.5	400	< 10	< 20	0.3	0.2	< 2	< 10	< 0.5	< 0.5	< 0.1
L-STD Spiked Au Cert	22	0.6	4	30	3	1.9	0.4	5	0.09	0.07	0.3			0.2	300		3	0.5	0.2	0.3	50		0.2	0.06
L-STD Spiked Au Meas	21	< 2	5	< 100	2	1.7	< 1	9	< 0.5	0.09	< 0.5	< 0.5	< 5	< 0.5	400	< 10	< 20	0.3	0.3	< 2	< 10	< 0.5	< 0.5	< 0.1
L-STD Spiked Au Cert	22	0.6	4	30	3	1.9	0.4	5	0.09	0.07	0.3			0.2	300		3	0.5	0.2	0.3	50		0.2	0.06
L-STD Spiked Au Meas	25	< 2	5	< 100	2	1.5	< 1	7	< 0.5	0.09	< 0.5	< 0.5	< 5	< 0.5	300	< 10	< 20	0.4	0.2	< 2	< 10	< 0.5	< 0.5	< 0.1
L-STD Spiked Au Cert	22	0.6	4	30	3	1.9	0.4	5	0.09	0.07	0.3			0.2	300		3	0.5	0.2	0.3	50		0.2	0.06
L-STD Control (new) Meas	25	< 2	6	< 100	2	1.4	< 1	6	< 0.5	0.08	< 0.5	< 0.5	< 5	0.6	400	< 10	< 20	0.5	0.2	< 2	< 10	< 0.5	< 0.5	< 0.1
L-STD Control (new)	1.4	0.6	4	30	3	2.0	0.3	3	0.1	0.08	0.3			0.2	400	2	3	1	0.2	0.3	70		0.2	0.06

 REÇI	JAU	MRNF	
) g	MAR	2007	1
	: (e: 80)	genen m	inerar]

••

_

Activation Laboratories Ltd. Re

Report: A05-4360

Quality Control													
Analyte Symbol	w	Zn	La	Ce	Nd	Sm	Eu	ТЬ	Yb	Lu	Mass		
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	g		
Detection Limit	1	20	0.1	1	3	0.1	0.2	0.2	0.1	0.1			
Analysis Method	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA		
L-STD Spiked Au Meas	< 1	20	< 0.1	2	< 3	0.3	< 0.2	< 0.2	< 0.1	< 0.1	15.0		
L-STD Spiked Au Cert		30	2	2	2	0.3	80.0		0.10	0.01			
L-STD Spiked Au Meas	< 1	30	< 0.1	2	< 3	0.3	< 0.2	< 0.2	0.1	< 0.1	15.0		
L-STD Spiked Au Cert		30	2	2	2	0.3	80.0		0.10	0.01			
L-STD Spiked Au Meas	< 1	30	2.2	2	< 3	0.3	< 0.2	< 0.2	< 0.1	< 0.1	15.0		
L-STD Spiked Au Cert		30	2.2	2	2	0.3	0.08		0.10	0.01			
L-STD Control (new) Meas	< 1	30	2.2	2	< 3	0.3	< 0.2	< 0.2	< 0.1	< 0.1	15.0		
L-STD Control (new) Cert		40	2.4	2	2	0.3	0.08		0.1	0.01			

REÇUAUMRNE 1 : MAR 2007

Page 7 of 7