GM 61635

ASSESSMENT REPORT ON THE HOTISH DIAMOND EXPLORATION PROJECT

Cette première page a été ajoutée au document et ne fait pas partie du rapport tel que soumis par les auteurs.

DIOS EXPLORATION 2004 HOTISH PROJECT

ASSESSMENT REPORT OF THE HOTISH DIAMOND EXPLORATION PROJECT

REÇU AU MRNFP 0 7 AVR. 2005 BUREAU DU REGISTRAIRE

By Harold.Desbiens M.Sc. geologist

MRNFP - SECTEUR DES MINES REGULE 0 6 AVR. 2005 TM05096 024 Bureau régional - Montré

Ressources naturelles et Faune, Québec

Service de la Géoinformation

GM 61635

November 2004

The Hotish property is located between the Tichegami and Papawskasati Rivers in the Otish Mountains area, Quebec covering 420 sq.km (768claims). It is host within the Mistassini-Lemoyne structure that contains the 10 Renard kimberlites and (located just south of a) five kimberlites (Beaver Lake, and H-1 to 4) cluster. Extensive 2002-2003 till sampling yielded an array of favorable kimberlite indicators minerals including G10, G9, chromites, ilmenites, cr-diopsides.

Dios 2003 drilling program intersected kimberlitic material in thirteen of thirty-seven short holes. Three (3) distinct kimberlitic occurrences were defined, with one found in outcrop. These occur as 1-2 meters wide hypabyssal macrocrystic kimberlite sills. The kimberlite is a dark grey to lightly greenish magnetic ultramafic rock that is composed of 1-5% mm carbonate, 3-5% (locally up to 10%) rounded mm ilmenite (-magnetite) xenocrysts, tr-20% rounded mm-cm yellow-green olivine xenocrysts, 1-8% mm phlogopite macrocrysts and rare (tr-3%) mm-cm serpentinized mantle ultramafic xenoliths. Rare pyropes were only observed in the xenoliths. Thin sections confirm pervasive serpentinization of the olivine-rich matrix. Evidences of flow differentiation (medium-grained phases enclosing a finer one) may be observed.

The latest till campaign yield a number of quality KIMs that defined six new target areas. These include a good part (up to 25% in some sample) of high chromium (8,0-11.56% wt Cr203) pyropes some being associated with diamond-intergrowth chromite (DGC) and/or Cr-picroilmenites. Strong variation in the indicator component ratios clearly suggests sources with distinctive chemistry. High-chromium pyrope content generally suggests good diamond potential. Mn-thermobarometer on the CPX confirms a cold geotherm for the area <u>i.e.</u> that the underlying mantle material sampled by the kimberlite shows favorable temperature-pressure conditions to the diamond preservation.

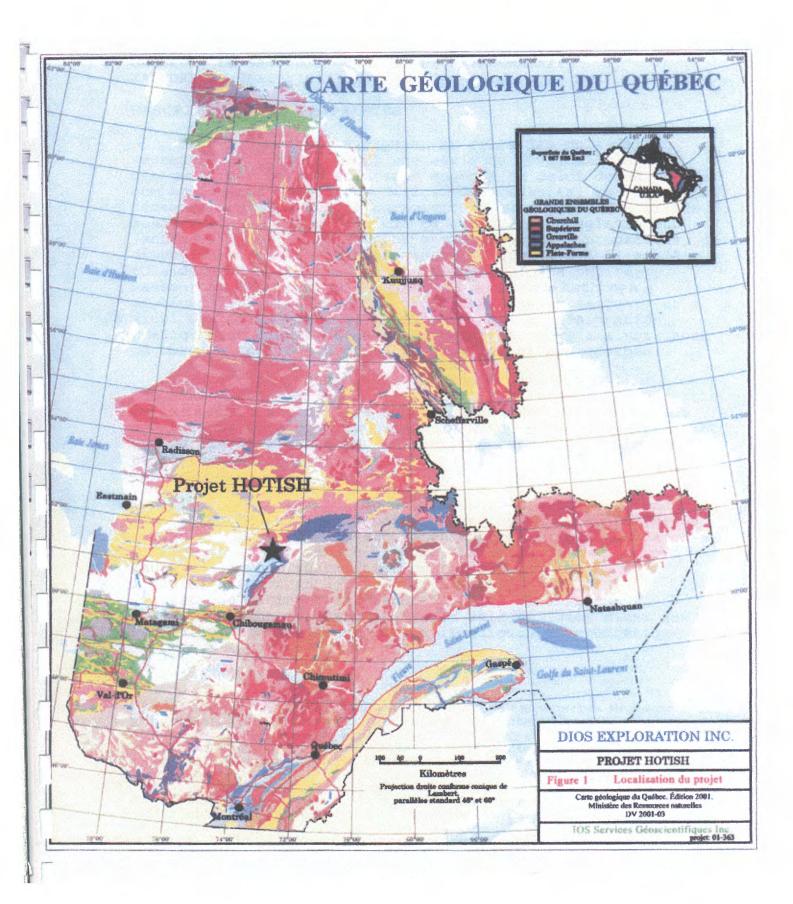
Therefore Dios 2005 Hotish exploration program should focus on the investigation (by drilling) of these promising KIMs anomalies (with better chemistry than the ones already successfully tested).

INTRODUCTION

The HOTISH (363) properties were map-staked by Dios Exploration in the 2003-2004. The HOTISH project is a diamond exploration project in the region of the Proterozoic Otish and Papaskwasati sedimentary basins. It is located north of the Beaver Lake, H 1-4 kimberlites (figure 1, 2) and **along the same Mistassini-Lemoyne corridor that hosts the recent Ashton-Soquem discoveries** (figure 3, 4, 5). The later are located about 100 km further north where a staking rush took place in the fall of 2001(including Ashton-Soquem, Majescor-Canabrava, Dios-Sirios, Plexmar, Ditem). Recent KIMs datas are available, and they showed high counts (10-1000s KIMs) in the vicinities of the HOTISH. In 2004, Ashton-Soquem uncovered a metric N-NW kimberlitic sill on the nearby Tichegami project.

This report aims to describe the 2004 works on HOTISH (363) project, evaluate its pertinence, and recommends further works to fully establish its potential.

DIAMOND EXPLORATION MAIN PRINCIPLES


Dios properties were staked for its diamond potential. Strategies and principles for diamond exploration differ from the conventional metal exploration, a brief review follows.

Primary diamond sources are limited to particular and unusual intrusive rocks that include kimberlites, orangeites and lamproites. They are perpotassic alkaline ultramafic rocks, usually set in hypabyssal dykes or shallow diatremes. Among those, orangeites are only known in Southern Africa, and diamond-bearing lamproites are limited to Australia. So far, kimberlitic diatremes remain the only economical target in diamond exploration.

Diatremes are pipe-shaped intrusions in which the kimberlitic magma enclosed original mantle fragments as well as supracrustal wallrocks. Diamonds are scattered as xenocrysts or as inclusions within the mantle-xenoliths. They are not create within the kimberlite, but are simply carried by it, from the superior mantle to the earth surface.

The setting of diatremes is not influenced by local geology and shallow structures. Its control is associated with wide-scale geotectonic processes that are linked to deep lithospheric structures.

Particular pressure and temperature (only found in sub-cratonic lithosphere) are necessary for the formation of diamond. These conditions for the formation and preservations of diamond can be found within the cratons which act as a thermal shield that preserve a

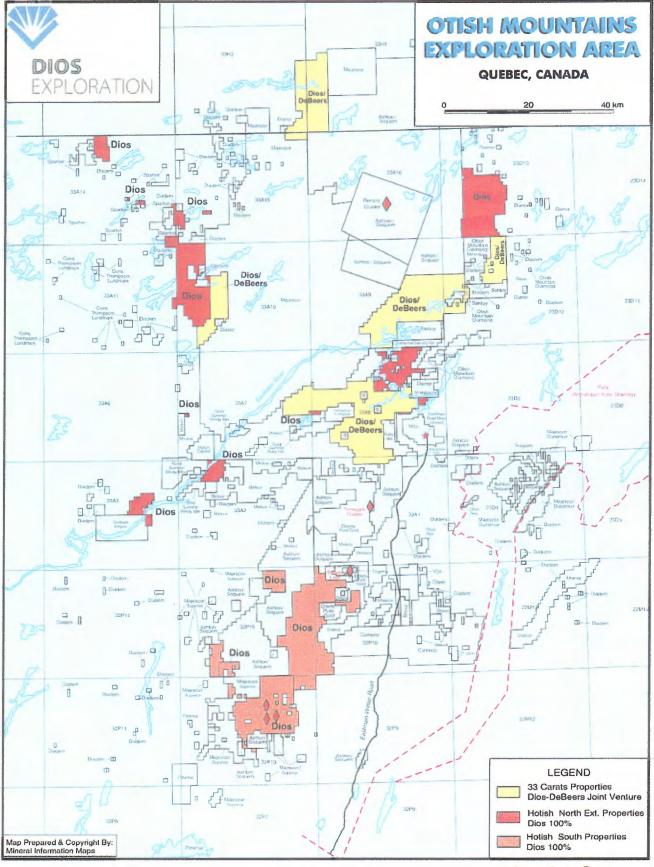


FIGURE 2

cool and rigid lithosphere keel in the superior mantle. Diamonds are transported to the earth surface by the explosive kimberlitic magmatism. On continental scale, the fertile chimneys are limited to older (Archean) cratons of the Canadian Shield: the Slave structural province (NWT), the Superior province (Northern Ontario and Quebec) as well as the Nain province (Labrador).

Diverse large-scale tectonic breaks may make easier the setting of kimberlites. Usually, they are lithosphere root structures, as grabens, transcurrent faults, intracratonic wrench faults, and extensive mafic dyke swarms. Numerous exploration models are known and each has its own followers.

An important fact is that kimberlites are usually set in swarms. These swarms may contain between 1 and 40 diatremes, usually associated with numerous hypabyssal dykes in a radius up to 30 kilometers. Clusters (100-200km diameter) of swarms may also occur. Numerous works suggest that the swarm distribution show some periodicity, with an average spacing of 400 kilometers (Moorhead and al., 1999).

The diamond potential of kimberlitic intrusive is controlled by two main parameters. First, the adjacent lithosphere must be fertile, i.e. it must be formed within favorable diamond-forming rocks (mainly harzburgites and eclogites) and pressure-temperature conditions. Even if the physico-chimical states are constants in a same mantle region, its diamond content may vary a lot. Secondly, conditions within the kimberlitic intrusive and its dynamic setting conditions must allow diamond preservation i.e. short residence time, low oxygen fugacity, minimum dilution within the diatreme, etc. These confirm that the conditions associated with a specific kimberlites are not necessary the same as it's the ones on Dios properties.

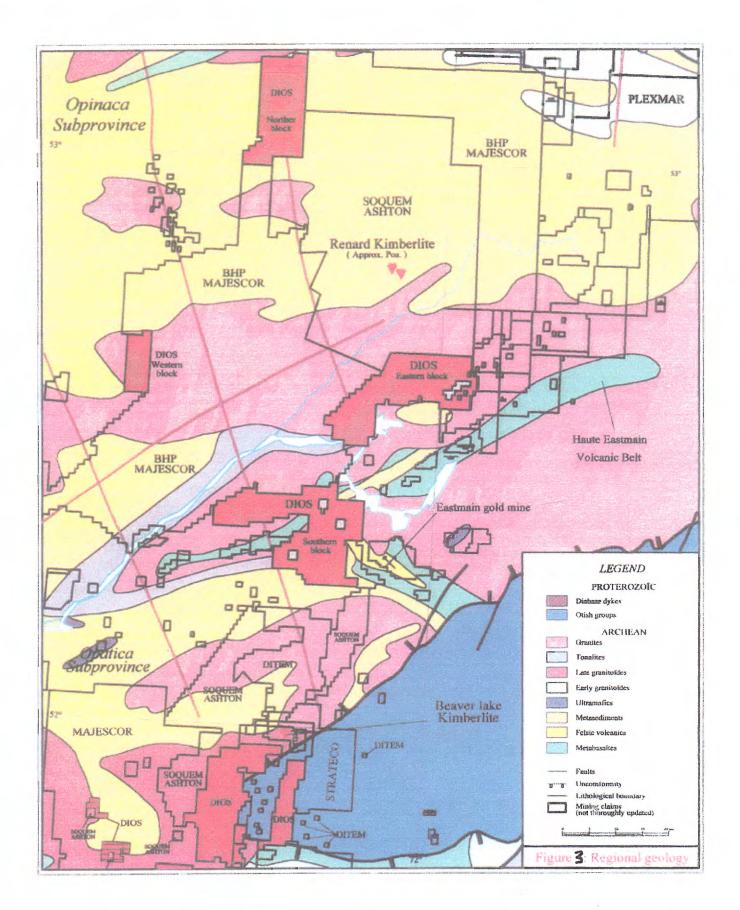
HOTISH PROJECT OVERLOOK

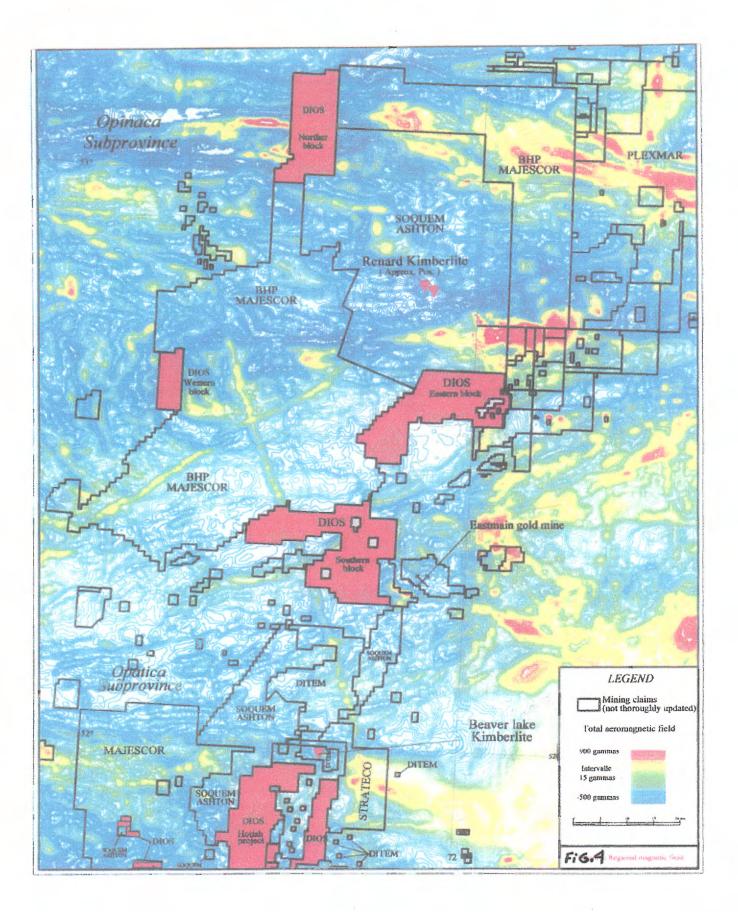
Dios Exploration is the third largest ground holder in this diamond play and is holding a strong position in the center of the area of interest of Majescor and Ashton-Soquem. This project would consist of a regional exploration campaign that aims to target other kimberlitic intrusions, part of the same dyke swarm that host the Beaver Lake, H-1 to 4 kimberlites (as well as the Renards-Lynx cluster). The HOTISH project is composed of the following titles:

Block	Cells	NTS Sheet	Area Sq. km	Longitude.	Latitude.
Papaskwasati	323	32P10	172.6	72 30'-48'	51 30'-45'
Extremite	269	32P15	143.2	72 23'-39'	51 45'-57'
	161	32P16	85.6	72 23'-39'	51 45'-52 00'
Hautbois	61	32P15	32.5	72 36'-42'	51 56'-52 00'
Нурро	34	32P16	18.1	72 19'-25'	51 53'-57'
A-2	26	32P15	13.8	72 47'-52'	51 45'-47'
Total	874		465.8		

DIOS HOTISH PROJECT-MINING TITLES (29/11/04):

Papaskwasati Block:


The Papaskwasati property is composed of 323 registered cells totaling 172.6 square kilometers located within the eastern-half of the 32P/10 NTS sheet, townships 1832,1931 and 1932 (figure 2, 3). It is situated between 51 30'- 51 45' latitudes, and 72 30'-72 48'. It is almost completely surrounded (80%) by Majescor/ Canabrava Mistassini property and limited to the southwest by a small and a large Ashton-SOQUEM property. The Papaskwasati property also enclosed four (4) small Majescor properties (totaling 18 cells).


The property is situated northeast of Mistassini Lake, on the territory of the James Bay municipality, Quebec, Canada. Under the James Bay convention, the area is classified in the #2 category, <u>i.e.</u> that no specific restrictions for the exploration or the exploitation are attached to these mining titles except the normal environmental and Hydro-Quebec requirements.

The Papaskwasati property is located on the undulating lowlands northeast of Mistassini Lake. It is drain by the Papaskwasati, Cheno and Kapaquatche Rivers, all are tributaries of the Mistassini Lake. Access to the property is difficult as few lakes are deep (or long) enough for float-equipped planes. Magyar Lake is the closest accessible lake (a few km to the northeast). In winter, this property may also be access by snowmobile via the Mistassini Lake.

Most of the Papaskwasati block is underlain by Archean gneissic basement and its western portion covers the Mistassini Gr. Papaskwasati Fm sandstones and conglomerates (Chown, 1971). These sanstones are interpreted as a Proterozoic epicontinental siliclastic sequence, in discordance with the Archean basement. Locally, a regolith is developed over the surface of the basement. In the western vicinities of the block, some diabase dykes are reported and a north-south one reaches several hundred meters thick.

Once filtered, the federal airborne magnetic survey outlines seventeen (17) punctual anomalies (figure 4). These anomalies have similar signatures as the one observed at the Beaver Lake kimberlite. Between 1969 and 1980, Pancontinental (Cominco) and Uranerz prospected the region for uranium.

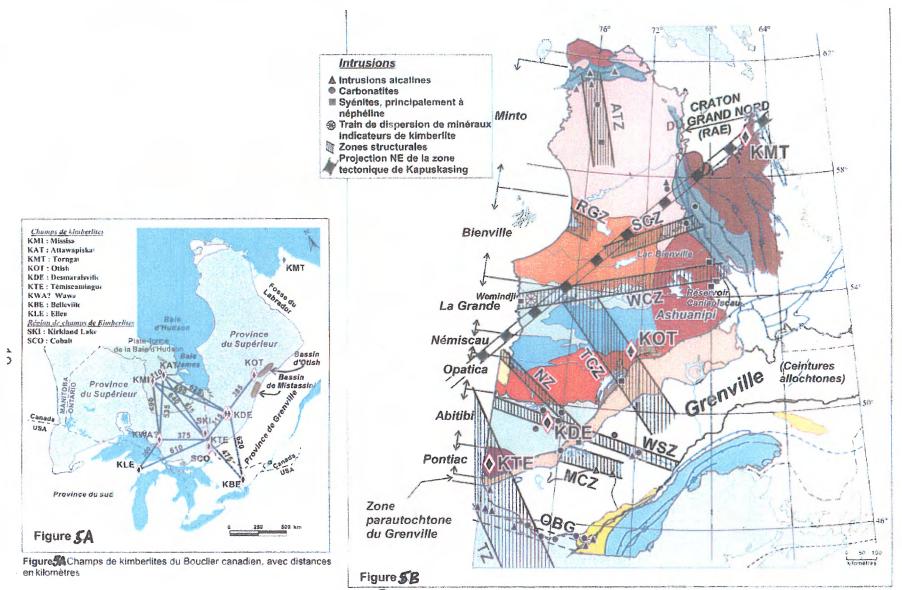


Figure Sub-divisions tectoniques du Québec (Hocq, 1994) avec la localisation des grandes zones de failles cassantes et les intrusions alcalines. Zones structurales: ATZ: Zone Allemand-Tasiat, RGZ: Zone Richmond Gulf, SCZ: Zone Saindon-Cambrian, WCZ: Zone Wemindji-Caniapiscau, TCZ: Zone Témiscamie-Corvette, NZ: Zone Nottaway, WSZ: Zone Waswanipi-Saguenay, MCZ: Zone Mégiscane-Chasseur, TZ: Zone Témiscamingue, OBG: Graben d'Ottawa-Bonnechère. Champs de kimberlites: Torngat (KMT); Otish (KOT); Desmaraisville (KDE); Témiscamingue (KTE)

Extrémité Block:

The Extrémité property is composed of 430 registered cells totaling 228.8 sq. kilometers located within the western-half of the 32P15/16 NTS sheets, townships 2032, 2132 and 2133 (figure 2, 3). It is situated between 51 45'- 52 0'' latitudes, and 72 23'-72 38'30''. It is limited to the northwest and north by Ashton-SOQUEM Tichegami property, and to the east by a staking park surrounding several Ditem small blocks (Beaver Lake, Beaver Lake south), as well as two small Majescor properties, and to the south by a property owned by Majescor.

The Extrémité property located on Otish Mtns rippled high plains and on Eastmain River lowlands. It is drained by the Techigami River (north), the Papaskwasati and the Kapaquatche Rivers (south), all are tributaries of the Mistassini Lake. Access to the property is difficult as few lakes are deep (or long) enough for float-equipped planes.Hyppocampe Lake (a few km to the east), La Recherche Lake (a few km to the west), and Magyar Lake (at the southern limit) are the closest accessible lakes. The Extrémité block is underlain by the (eastern portion) of Otish Gr. Indicator Fm sandstones (Chown, 1971). These sandstones are interpreted as a Proterozoic epicontinental siliclastic sequence, in discordance with the Archean basement. Locally, a regolith is developed over the surface of the basement. Outcrops are scattered, but boulders fields are abundant. The area was intensely work by Uranerz between 1969 and 1980.

Once filtered, the federal airborne magnetic survey outlines eleven (11) punctual anomalies (figure 4). These anomalies have similar signatures as the one observed at the Beaver Lake kimberlite.

Hyppo Block:

The Hyppo property is composed of 34 registered cells (down from the original 119 cdc) located within the western-half of the 32P16 NTS sheet, township 2033 and 2133 (figure 2, 3). It is situated between 51 47'- 51 56'30'' latitudes, and 72 21'30''-72 26'. It is limited to the east by a property (Cardinal) owned by Strateco Resources and a staking park, and to the west and north by a staking park, and to the south by a property owned by Plexmar and a small one owned by Osisko Exploration. The staking parks surrounded numerous Ditem Exploration small blocks.

The Hyppo property located on Otish Mtns rippled high plains. It is drain by the Techigami River, a tributary of the Mistassini Lake. Access to the property is difficult as few lakes are deep (or long) enough for float-equipped planes. Hipocampe Lake is the closest accessible lake (a few km to the east). The Eastmain mine winter road is about 20 km east of this property.

The Indicator Fm sandstones (Otish Gr) underlain the Hyppo block (Chown, 1971) and are interpreted as a Proterozoic epicontinental siliclastic sequence, in discordance with the Archean basement. Locally, a regolith is developed over the surface of the basement. Outcrops are scattered, but boulders fields are abundant.

Once filtered, the federal airborne magnetic survey outlined five punctual anomalies (figure 4). These anomalies have similar signatures as the one observed at the Beaver Lake kimberlite. Similar magnetic anomalies are also present on the adjacent Ditem

blocks. Between 1969 and 1980, the whole area was intensely prospected for uranium by Uranerz.

Hautbois Block:

The Hautbois property is composed of 61 registered cells totaling 32.5 sq. kilometers located within the northeastern-quarter of the 32P15 NTS sheet (figure 2, 3). It is situated between 51 45'- 52 0'' latitudes, and 72 23'-72 38'30''. It is surrounded to the northwest and north by Ashton-SOQUEM Tichegami property, and to the southeast by Dios Hotish extremite block.

The Hautbois property is located on Otish Mtns rippled high plains. It is drained by the Techigami River (north) and its subsidiaries. Access to the property is difficult as few lakes are deep (or long) enough for float-equipped planes. Hyppocampe Lake (about 15-20 km to the southeast), La Recherche Lake? (a few km to the south), and Magyar Lake (at the southern limit) are the closest accessible lakes.

The Hautbois block is underlain by granitic gneisses just west of the (eastern portion) of Otish Gr. Indicator Fm sandstones (Chown, 1971). These sandstones are interpreted as a Proterozoic epicontinental siliclastic sequence, in discordance with the Archean basement. Granitic outcrops are common along the strong topography, and boulders fields are present in the flat areas.

A-2 Block:

The A-2 block is composed of 26 registered cells located in the southern part of the 32P15 NTS sheet, township 2030 (figure 2,3). It is situated between 51 45' -51 47' latitudes and 72 47'-72 51'30''longitudes. It almost completely surrounded an Ashton-SOQUEM property, which itself is enclosed within Majescor/Canabrava Mistassini property.

The A-2 property is located between two platforms of the Techigami Mts. The area is drain by the Memeshquasati River, which is a tributary of the Techigami River and the Mistassini Lake. The Mantouchiche Lake is the closest plane-accessible lake (about 5-10 km to the southeast).

HOTISH GEOLOGICAL CONTEXT

The region is located on the southern limit of the Superior craton, a few kilometers northwest of the Grenville front. The area is centered on the Mantouchiche arch, a stratigraphic promontory for the basement that limits the Otish and Mistassini (Gr.) sedimentary basins. In the area of the Mantouchiche Lake, some small sandstone relics are preserved within this arch. Both groups are described as sedimentary sequence with similar stratigraphy including sandstones at the base. These sandstones pass toward an evaporitic complex on the top in the Otish Group, and toward passive continental margin sequences in the Mistassini Group. The Paspaskwasati basin is located nearby the Mistassini Group, as well as the Mistassini dyke swarm are interpreted as an aulacogen root. Between the 1960-80's, the area was strongly prospected for uranium, looking for Elliot-Lake type (pyritic conglomerate), Key-Lake type (discordance) as well for Lisbon Valley type (epithermal). However, few of the works may be used for diamond exploration. Various companies completed geological mapping, airborne and ground spectrometry, radiometry, magnetrometry and electromagnetometry, Line-cutting, lake sediment and stream geochemical survey, as well as stratigraphic and exploration drilling. Hundred of reports are indexed in the assessment work and their compilation should be completed soon. However, the author has previously compiled all the diamond drill holes and none host alkaline ultramafic rock in the area, except for the Beaver Lake kimberlite (Uranerz).

GLACIAL GEOLOGY

Nature and distribution of the Quaternary deposits:

Glacial landforms are common and well developed throughout the Eastmain region. Being the product of the erosion of metamorphosed and volcano-sedimentary rocks, the regional till located east of the James Bay is generally sandy, pebble-rich and noncalcareous. Although the till thickness may reach 10-15 meters, it is generally much thinner (a few meters). In its upper oxidized portion (B2 horizon, usually less than one meter-thick), the till is characterized by a brownish to beige color; and is grey (C horizon) below the oxidized level. Extensive areas are covered by till shaped in drumlins or crags and tails (behind the protected (down-ice) side of a rocky hill). Going eastward from the Hudson Bay, the dominant drumlins fields progressively change to ribbed or fluted moraines fields, and further away to hummocky moraines (Vincent, 1989).

Drumlins, drumlinoid ridges and crag-and-tail hills consist mainly of lodgment till, but may contain lenses of stratified sand and gravel, many of the drumlins and drumlinoid ridges may prove to have rock cores. The drumlins occur as discrete ridge and are generally 30-3000 meters long, 100-400meters wide and 3-30 meters high. Ribbedmoraine in its most distinctive form consists of arched ridges of bouldery till up to 1600 meters long, 200meters wide and up to 30 meters high. Typically the depressions between the ridges are occupied by elongate or multi-fingered lakes, which serve to accentuate the pattern of ridges. Elongate fields of ribbed moraine occupy shallow depressions in the drift plains or the bottoms of the valleys that cut through the hilly uplands. The hummocky moraine consists of closely spaced, irregularly shaped mounds of bouldery drift, 3 to 15 meters high. Most of the mounds probably consist of ablation (or fusion) till.

The mounds and intervening depressions are profusely littered with boulders, which may average 6 meters in diameter. The resulting topography appears as an irregular jumble ridges tending to be oriented normal to the direction of latest ice-movement. Esker complexes are larger features than the simple eskers varying from a few hundred meters to a kilometer or more wide, and up to 40 meters or more high. Typically there is a prominent central ridge, bordered on either side by depressions often occupied by small lakes. In places the central ridge is divided into two or more sub-parallel ridges separated by elongate steep-side depressions.

Glacio-fluvial deposits are frequents in the Upper Eastmain River region; and are mainly present as long (tens of kilometers) and sinuous eskers and their outwash. The simple eskers are considered to have been deposit in the channels of sub-glacial streams and are generally parallel to the last ice-flow direction. Very locally, some eolian deposits remobilized minor parts of the glacio-fluvial deposits. Large areas of poorly-drained terranes (till plains and basement depressions) are filled with shallow organic deposits (bogs).

In 2003, Majescor carried out reverse circulation drilling on their Portage property near the Eastmain River. Their objective was to have a better knowledge of the overburden stratigraphy, and to compare their kimberlite indicator minerals (KIMs) contents. They observed 3 different till units, but without noticing any difference in their KIMs contents.

Quaternary History:

Glacial sediments in the 33 carats project area were mainly the product of the Upper Quaternary deglaciation periods. In the James Bay region (located west of the project), as the ices progressively retreat, the inlandsis (Laurentide Ice Sheet) front was in contact with important water masses. The reconstructed ice-flow patterns (fig.6) suggest that the outflow centers or ice-divides that affected the eastern Hudson Bay region were located in north-central Quebec throughout the Wisconsinan Glaciation (Parent and al., 1995). Critical evidence for this comes from the fact that even the penultimate regional glacial movement was directed toward the northwest and north-northwest throughout key regions east of Hudson Bay and James Bay. These ice-flow patterns provide an indirect record of migrating outflow centers (fig. 10). An early outflow center lying just north of Lake Mistassini migrated subsequently toward the northeast near Lake Bienville, where it may have remained stable during much of the Late Wisconsinan maximum. This migration was apparently accompanied by a 90 degrees change of the overall orientation of the ice-divide. Further eastward, migration in Labrador may have occurred during deglaciation. That late-glacial southwestward deflection recorded (and the dominant one in the Upper Eastmain River region) provides further support to earlier interpretations (Hardy, 1976) that the last deglaciation was dynamically controlled by glacial streaming, surging, and calving into Glacial Lake Ojibway, which had extended into James Bay and Southern Hudson Bay prior to marine incursion.

HOTISH PREVIOUS WORKS

In the 1960's, the Quebec Natural Resources ministry carried out regional mapping (at the 1'': 1mile scale). Hashimoto (1961) and Chown (1971, 1971b) mapped the vicinities of the Papaskwasati block (32P16). Numerous academic and regional studies were completed on the Otish Group (Genest, 1989).

Fig. 6. Sequences of ice-flow patterns in the eastern sector of the Laurentide Ice Sheet. See text for comments and discussion. Compiled from several sources: 1, this paper; 2, Parent and Paradis 1993; 3, Prest et al. 1968; 4, Andrews and Falconer 1969; 5, Hardy 1976, 1982; 6, Parent, unpublished; 7, Paradis and Boisvert 1995; 8, Veillette and Pomares 1991; 9, Veillette 1989; 10, Bouchard and Martineau 1985; 11, Prichonnet and Beaudry 1990; 12, Steele et al. 1989; 13, Thorleifson et al. 1992: 14, Klassen and Thompson 1989; 15, Bouchard and Marcotte 1986; 16, Daigneault 1994; 17, Avlsworth and Shilts 1991; 18, Veillette 1995; 19, Allard et al. 1989; 20, Kleman et al. 1994.

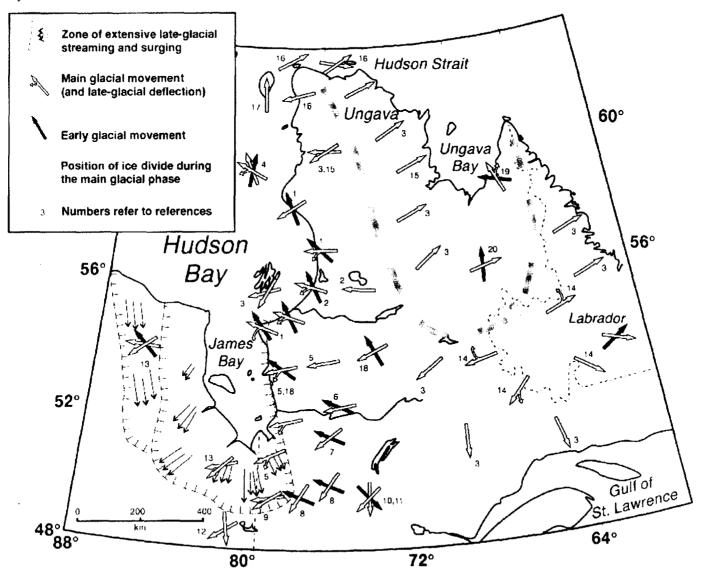
1

1

I

ţ

1


I

)

1

ł

1

Numerous exploration work (c.f. annex 2) was completed over the Hotish property by Uranerz Exploration and SOQUEM. Those works included geological mapping, spectrometical, magnetometrical, I.P., and EM surveys, as well as lake sediment and stream geochemical surveys. Airborne radiometric and magnetic-electromagnetic surveys were also carried out. All these works were compiled, and no kimberlite indicator minerals were previously uncovered in the till (Huss, 2002).

RENARDS, BEAVER LAKE AND H-1 TO 4 KIMBERLITES AS WELL AS OTHER KNOWN KIMS DISPERSION TRAINS

33 Carats five (5) blocks are adjacent to either the Majescor (1920sq.km) or the SOQUEM-Ashton (more than 1000sq.km) extensive properties. So far, limited assessment work is reported to Quebec Natural Resources. Most information concerning their results from these projects are available on their respective web sites: <u>www.majescor.com</u>, <u>www.ditem.ca</u> and <u>www.ashton.ca</u>.

Majescor Portage project

In the fall 2000, Majescor Resources staked its firsts exploration permits (PEM) following the positive results of a regional heavy mineral sampling (about 90 esker samples; Kaiser, 2002). Later, it extended its property to the southwest by map-staking. About the same time, Majescor and BHP map-staked (CDC) the area located northeast of the Ashton-SOQUEM property. A subsequent joint-ventureship was contract by Majescor and BHP on June 21, 2001.

They collected more than 1000 heavy mineral samples on its Portage property and its vicinities. It appears that they outlined several indicator minerals dispersion trains. These minerals are characterized by abundant peridotitic pyropes with a strong G10 (harzburgitic pyropes) / G9 (lherzolitic pyropes) ratio (figure 7) similar to the ones observed in the Lac DeGras area, Nunavut. They also observed picrochromites with composition similar to South african diamonds, as well as Cr-rich diopsides and picroilmenites (their exact counts remain unknown).

In 2002, after completing a 18 holes drilling campaign, 14553km of airborne magnetic surveying at 120m line-spacing and collection of 202 glacial sediments, BHP decided to withdraw from the option agreement Majescor-BHP Portage project.

In 2003, Majescor carried out RC drilling (397 samples in 52 holes) in two main anomalous areas. The Portage anomaly is characterized by an increase in ilmenite and the presence of highly sub-calcic pyrope garnet (G10) with elevated chrome (up to 13.1 Wt% Cr203).

In 2004, Stornoway signed an agreement giving it an exclusive option to acquire a 51% interest in the Portage project. In August of the same year, Majescor announced that it has collected 1336 till samples on fences perpendicular to the glacial movement. The highest count reported to date is of 100 grains, a significant number of the minerals bearing fragile surface textures in the northwest portion of the Portage property. It later announced that on a short follow-up campaign, Majescor geologists found numerous kimberlitic floats (up to 50cm in size) in the original discovery hole. They found more floats over an area, some 75m across ice flow and up to 175m up-ice from the later. Over 200kg of kimberlitic material were collected. They later announced that they recovered 32 diamonds from a 136kg sample.

SOQUEM-Ashton Foxtrot project (33A/16)

In 1996, SOQUEM and Ashton made an agreement concerning diamond exploration for all the northern portion of Quebec. In the fall 2000, the consortium map-staked (PEM and CDC) a large area, east-northeast of the initial Majescor Portage property.

Over a thousand (1000) till samples were collected and numerous indicator minerals dispersion trains were outlined (some with indicator minerals count over 1000 grains). These minerals are mainly peridotitic pyropes associated with Cr-rich diopsides and pilcroilmenites. An extensive high-density airborne magnetic survey was completed on the property (GM 59004), and a four(4)-holes diamond drilling discovered two kimberlitic chimneys. A press release by Ashton (17 dec 2001) confirms the presence of macrodiamonds within the intrusions. At the Renard-1 occurrence, a hypabyssal facies yields 5 macrodiamonds from 205,8 kg and the Renard-2, hypabyssal and diatreme facies yielded 29 macrodiamonds from 163,1 kg (0.67carat/ton). Concentrate from this drill core was composed of a significant percentage of high-Cr, low-Ca pyropes (G10) and diamond-inclusion chromites. Further drilling within a two (2) km-radius outlined TEN (10) diamond-bearing kimberlitic bodies more or less located along a north-south axis:

Renard-2 (8.72carats/13.5ton or 0.64carats/ton); Renard-3 (10micros and 9macros /100kg as well as 2500 diamond fragments; 14.35carats /10.0tons or <u>1.43carats/ton</u>); Renard-4 (21micros and 14macros/100kg; 47.86carats /112.2tons or <u>0.42carats/ton</u>); Renard 65 (40.8carats/158.8tons or 0.26carats/ton) Renard-7 (33diamonds/101kg); Renard-8 (9diamonds/111,8kg); Renard-9(5tons unprocessed)& Renard-10 (diamond-bearing, 187.8kg sample).

In 2004, Ashton-Soquem conducted an extensive exploration program including bulk sampling to recover more than 300 carats of diamonds from at least 600 tonnes of kimberlitic material from the Renard 2, 3, 4 and 65. A total of 24 diamonds greater than 0.5carats in weight including four greater than 1.0carats in weight have been recovered to date from the Renard cluster. These results demonstrate the presence of a coarse stone population and favourable size distribution for the Renard bodies.

Late in 2003, they intersected a serie of NNW-oriented centimetric-metric kimberlitic dykes (Lynx Anomaly), about 3km due east of Renard 65. The zone is about 0.5-4.4 meters wide and dips to the east. Three 0.4mm diamonds were found in the till nearby the Lynx occurrence. Kimberlitic boulders up to two meters were discovered nearby, and a 3.87 tonne sample yielded 4.63 carts of diamonds for an estimated diamond content of 120 cpht. The diamonds recovered included a 0.96 carat colourless composite crystal. In 2004, prospecting crews identified abundant kimberlitic boulders on surface at three new sites. It suggests the potential existence of a kimberlitic system with a strike length of 4.5 km (figure 8, 9). It was later successfully test-drilled (fifteen sites) over a 3.7km strike. 4.9 tonne DMS and 5.6 tonne DMS samples were taken on Lynx south and north, and are still being processed.

ASHTON-SOQUEM Tichegami properties (33A/01-02; 32P/15)

In their assessment works (GM 59230), the tandem reported that about half the 8 reconnaissance samples reported contain KIMs including an eclogitic garnet and an high-Mg olivine (33A/01-02). Further south (32P/15), they recovered very high counts of KIMs in several samples: NQ00-O107: 2406 picroilmenites, 22 chromites, 5 Mg-olivines, 25 pyropes as well as NQ00126, 128, 196 and 006: 9122 picroilmenites, 12 chromites, 42 Mg-olivines, 18 pyropes and 1 Cr-diopsides (GM 59853). Recent works yielded high counts in stream sediments samples: PQ03-0073: 4755 picroilmenites, 135 peridotitic pyropes, 70 chromites, 12 olivines, 3 cr-diopsides; PQ03-0070: 565 picoilmenites, 15 peridotitic pyropes, 3 eclogitic garnets, 1 chromite, 12 olivines; PQ03-0071: 369 picroilmenites, 6 peridotitic pyropes, 10 eclogitic garnets, 2 chromites, 8 olivines; PQ03-0234; 31 picroilmenites, 10 peridotitic pyropes, 4 eclogititic garnets, 7 chromites, 11 olivines; PQ03-0235: 1chromite, 44 picroilmenites, 10 livine in the northeast portion of the 32P/15 sheet (GM 60682). In 2004, Ashton announced that it has intersected a 2.4 meters kimberlitic sill in drilling on the Tichegami property.

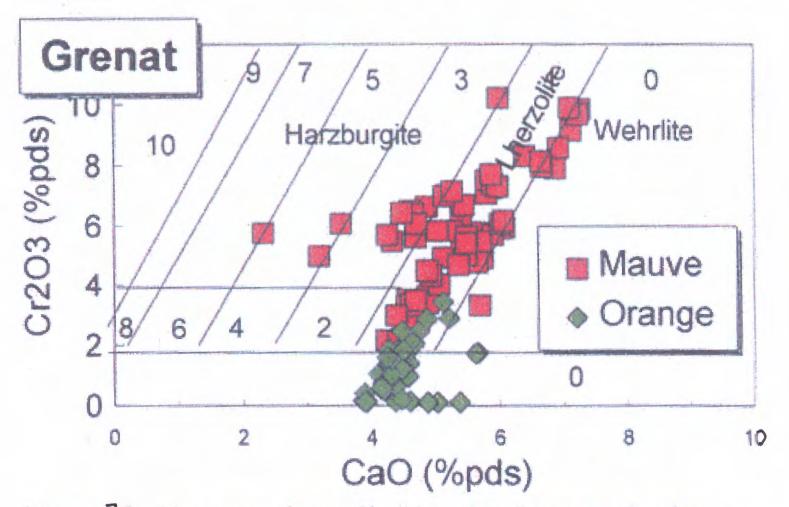
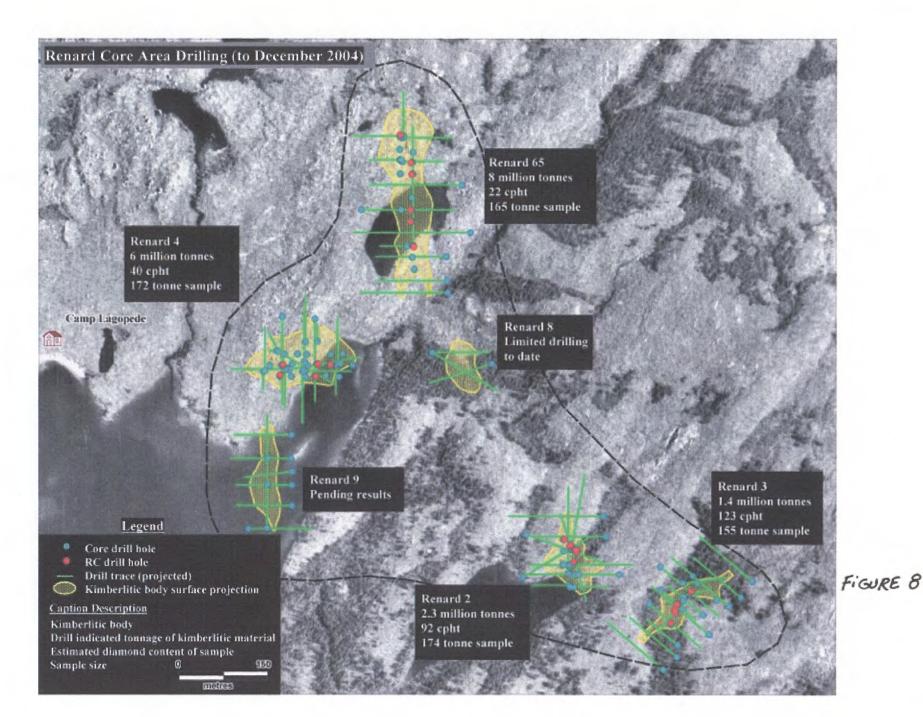



Figure 70: Diagramme de pondération des facteurs J selon Lee (1993) pour les grenats pyropes. On note le facteur pondéré de 1.32 pour l'ensemble des grenats péridotitiques. Le champ des grenats harzburgitiques correspond aux G-10, celui des grenats lherzolitiques

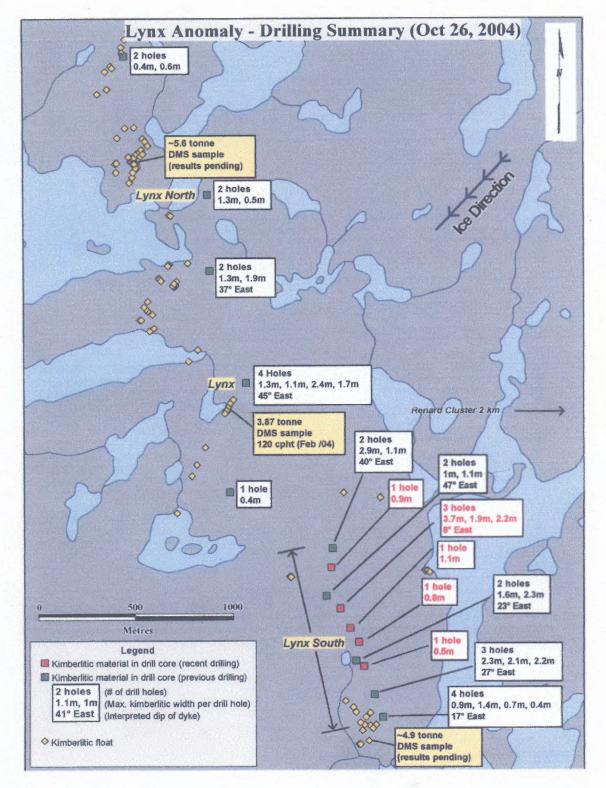


FIGURE 9

MELKIOR Otish Mountains claims (33A/01-02)

Melkior reported interesting counts of KIMs on their nearby properties including sample#884 on J anomaly: 40 Mg-ilmenites (MgO=11%)+4 high-Cr (10%) pyropes, another sample on a separate target yielded 4 eclogitic garnets; and 14 eclogitic garnets, 1 high-Mg (>90%) olivine, 1 high-Mg OPX were also found down-ice of other targets (Apr.24 2002, Melkior press release, GM 59916). It also completed high-resolution aeromagnetic survey on their property (GM 59917).

GOLD SUMMIT MINES (33A/02, A/07-08) projects

In 2002, Gold Summit Mines recovered 3 till samples with harzburgitic pyropes (G10) on their properties located southwest of 33carats southern block.. Other KIMs included 6 high-Mg (FO>90%) olivine, 1picroilmenite(13%MgO), 4 CPX (3X<0.5%Na2O, 1X>1%Na2O), and 2 OPX (GM 60333).

STORNOWAY Premier property (33A/03)

In 2002-2003, Stornoway carried out till sampling that outlined several kimberlite indicator minerals (KIMs) in the northeast portion of its Premier property (GM 60651). These KIMs included G10 pyrope (10%CR203, 3.3%CaO), G9 pyrope, diamond-inclusion chromites, picroilmenites and olivines (GM60651).

DITEM Beaver Lake (32P/15-16) - Tichegami (33/A01) projects

The Beaver Lake kimberlitic intrusion was discovered by Uranerz in 1978, drilling for uranium in the western portion of the Otish Mtns (Gerhisch and al., 1979). Although the kimberlite was identified, no diamond exploration was carried out at this time.

Due to the discoveries of diamond-bearing kimberlites in the Northwest Territories in 1991, and to the growing interest to the diamond exploration in Canada, the area was staked in 1993-1994 by Inco Ltd. and allowed to lapse. Following a deal with Uranerz, Ditem drilled the intrusive in 1998 (Bernier and Moorhead, 2000). Ditem centered its works on the evaluation of the Beaver Lake kimberlitic pipe (Brack, 1998). Two drilling campaigns confirm its nature and its extensions (GM-56612) and a 7-tons bulk sample was extracted (GM-56615). The kimberlite was described as a weakly diamond-bearing (4 small macrodiamonds were recovered) deep diatreme facies.

A detailed petrographic study on core samples given by Ditem, was completed by R.Girard (2001) for the Quebec Natural Resources ministry. The latter confirms the kimberlitic nature of the intrusive, suggesting a diatreme root facies. The mineralogy is complex, showing re-equilibrations during matrix phases. The author concluded that the intrusive minerals, (specially the oxides) shows a chemistry corresponding to a

kimberlitic magma crystallization, and a favorable potential for the discovery of diamond.

Garnets extracted from Ditem samples were analyzed by microprobe and their G10/G9 ratio is about 25% with a J factor of 1,32 (figure 10). Such ratio for harzburgitic pyropes is uncommon and may suggest a strong diamond potential of its source. They also have similar signature as the ones reported by Majescor (G10/G9=28%; J factor=1,36) on their Portage property, 60 km further north of Beaver Lake. This signature is also comparable with the ones from the Lac de Gras area, and confirms the fertility of the underlying lithosphere. Sub-chromitic pyropes are abundant, and their titanium and soda contents suggest an eclogitic source in the mantle. Very few chromites were observed, but they have similar chemistry to those observed in inclusion in South African diamond. Pilcroilmenites are abundant and their mantle signature suggests a weak oxygen fugacity.

The Beaver Lake kimberlite only yields four (4) small macrodiamonds by caustic fusion. No microdiamond was found. Following these results, a 700 tons test mill sample was completed and no diamond was extracted. Furthermore, R.Girard concluded that present oxidized conditions within the diatreme during its setting brought diamond combustion. Oxidation is suggested by oxides reactions that produce abundant titano-magnetite, and may be linked to crust processes during its setting (oxidized phreatic table, oxidized mineralogy of wallrocks, etc). Therefore, prevailing oxydo-reduction conditions may vary for each one of the kimberlites, and diamond-combustion within <u>one</u> intrusive is not indicatory of the others preservation potential.

The Beaver Lake intrusion is associated with uranium mineralizations linked to the Otish Gr. discordance. The described facies are interpreted as kimberlitic diatreme roots younger than the Otish Gr. sedimentary sequence.

North of the Beaver lake occurence, Pure Gold/Ditem tandem (test-drilling a small circular magnetic anomaly) outlined the H-1 kimberlite (fine-grained and black-bluish color) on their Tichegami River property, located in 33A/01 NTS sheet (Apr.22 2002, Ditem press release). A second kimberlitic body (H-2) also corresponding to a small magnetic anomaly was later uncovered approximately 350 meters southeast of the H-1 kimberlite. Both the matrix (coarse grained and pale-green color) and fragments of the H-2 kimberlitic breccia are visually very distinct from the H-1 intrusion. Purple pyrope, chrome diopside and ilmenite were observed in the H-2 core (Aug.7 2002, Ditem press release). One microdiamond was recovered from a 23.15kg sample from one of the 3 phases of the complex H-2 kimberlite (Sept.26 2002, Ditem press release). In the 2003 spring, Ditem discovered two more kimberlitic bodies (H-3&4) in the vicinities of the H-1 lake area. In 2004, Ditem completed a drilling program but no result is available.

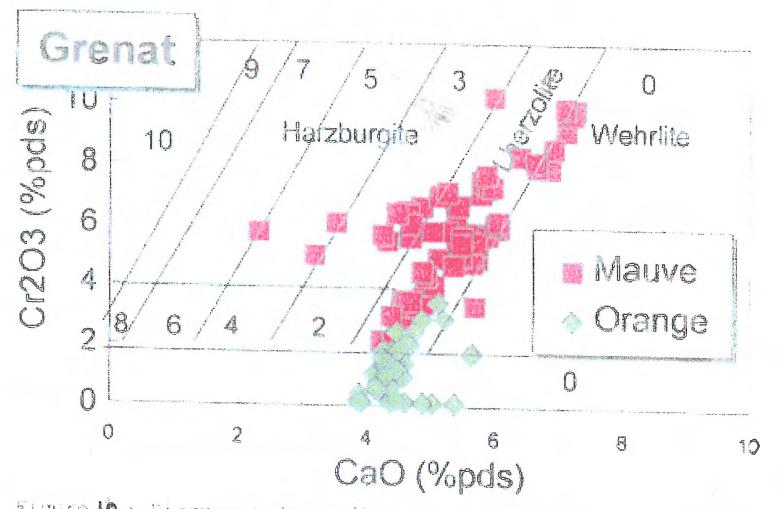


Figure 10 : Diagramme de pondération des facteurs J selon Lee (1993) pour les grenats pyropes. On note le facteur pondéré de 1.32 pour l'ensemble des grenats péridotitiques. Le champ des grenats harzburgitiques correspond aux G-10, celui des grenats lherzolitiques

Majescor/Canabrava Mistassini project:

2001 till sampling by Majescor Resources-Canabrava Diamond Corp. recovered over **500 kimberlite indicator minerals (KIM)** on their Mistassini project. The suite is dominated by ilmenite, with pyrope garnet and chromite being well represented. Rare recoveries of mantle-derived olivine are also reported. Of particular significance is the presence of a good quality **G10 garnets, as well as diamond inclusion chromites (up to 64.2% CR2O3**). The recovery of **perovskite-mantled ilmenite** also suggests a proximal kimberlite source. The Mistassini indicator mineral chemistry and assemblage confirms derivation from a distinct and local kimberlite cluster than the one associated with the diamond-bearing Beaver Lake kimberlite (Feb.11, 2002 Majescor press release). The partners completed a 9224 line-kilometers airborne geophysical survey (at a 150m linespacing) in the 2002 Spring.

2002 follow-up works (294 glacial sediment samples) investigating a large number of geophysical targets outlined **two sites with counts of 507 and 563 KIMs**. A high percentage (up to 90%) of the grains in these samples also bear fragile surface reaction rims indicating proximity to source. A number of other geophysical anomalies also stand out, being closely associated with indicator mineral counts in till as high as 174 and abundant fragile surface textures (Oct.02, 2002, Majescor press release). In the fall 2002, a drilling program tested unsuccessfully 10 geophysical targets.

In the fall 2003, Majescor collected 71 heavy mineral samples that confirm the previous results. Garnet are predominantly peridotitic (G9,G10) and megacrystic, with very few eclogitic geneses present. A number of chromites with diamond inclusion chemistries (CR203, up to 66.8%) have been reported, while a majority of the CPX show elevated CR203 and Na2O contents. Theses chemistries suggest that source kimberlites have sampled the favourable mantle. **One river sediment sample yielded 1827KIMs,** In the fall 2003, Majescor collected 71 heavy mineral samples that confirm the previous results. **One river sediment sample yielded 1827KIMs,** In the fall 2003, Majescor collected 71 heavy mineral samples that confirm the previous results. **One river sediment sample yielded 1827KIMs, including 160 garnets, 3 Cr-diopsides and 25 chromites.** A significant portion of the garnets and ilmenites bear fragile surface textures suggestive of a proximal source.

Plexmar Papaskwasati project:

In 2002, Plexmar completed a till program (121samples processed) on its Papaskwasati property. It recovered **42 pyrope garnets (G9 according Gurney's classification),** eclogitic garnets, perovskite-mantled picroilmenites, as well as 11 high-Cr203 (up to 63.62%) chromites (Oct.23, 2002, Plexmar press release).

DIAMOND POTENTIAL OF THE 33 CARATS-HOTISH REGION

Portage (Majescor) glacial sediments and Beaver lake kimberlite (Ditem) mantlexenocrysts indicate a fertile underlying lithosphere. Pyrope garnet (G10/G9) ratio about 25% indicates a strong diamond potential for the area. Chemistry of various indicator minerals is similar to the ones observed at the Lac DeGras area or in South Africa. Ashton-SOQUEM recent discovery of ten diamond-bearing kimberlitic chimneys on their Foxtrot property confirms the validity of the indicator minerals chemistry.

DIAMOND POTENTIAL OF 33 CARATS-HOTISH REGION

Portage (Majescor) glacial sediments and Beaver lake kimberlite (Ditem) mantlexenocrysts indicate a fertile underlying lithosphere. Pyrope garnet (G10/G9) ratio about 25% indicates a strong diamond potential for the area. Chemistry of various indicator minerals is similar to the ones observed at the Lac DeGras area or in South Africa. Ashton-SOQUEM recent discovery of ten diamond-bearing kimberlitic chimneys on their Foxtrot property confirms the validity of the indicator minerals chemistry. Therefore, Dios Hotish project is well located within a probable associated swarm. It is known that kimberlitic intrusives occur in swarms, which extends vary from 10 to 40 km radius.

Exploration of this property in this under-worked but favorable region is fully warranted. Its designation as a favorable zone is based on the following characteristics:

1. Presence of ten diamond-bearing kimberlites on Ashton-Soquem Foxtrot property;

2. Chemistry of the indicator minerals associated with this kimberlite shows the lithosphere fertility;

3. Presence of five kimberlitic bodies on Ditem properties;

4. Presence of three kimberlitic dykes on Dios Hotish property;

 Located within the NNE oriented Mistassini-Lemoyne Corridor along which recent discoveries of diamond-bearing kimberlitic diatremes as well as several nepheline syenites (Fontanges and Temiscamie) and carbonatites (Castignon and Lemoyne);
The Archean Superior craton is dated about 2,7-2,8 billions years, to abide by the

Clifford's rule:

7. Close to a zone where seismic surveys suggest the presence of a lithosphere keel (Moorhead, 1999). A 200 km-thick lithosphere is required to secure the thermodynamic conditions of formation and preservation of diamonds. Fertility of this lithosphere keel is confirmed by the chemistry of Wemindji, Portage and Otish indicator minerals;

8. Mistassini dyke swarm (oriented at N330) and Preissac(oriented at N060) intersect themselves in the area. This situation is similar to the one observed in the favorable Wawa-Hearts-Kapuskasing area, Ontario;

8. Glacial geology is simple and the dispersion trains geometry is known to narrow and very short.

The interest in this sector located in a strong diamond-potential and poorly explored region is mainly based on its strategic location with respect to the general repartition of the known kimberlitic dyke swarms and its geotectonic environment (figure 10). The following facts concerning the area are to be considered:

1. Close to (20km south) a crust weakness along which two kimberlitic swarms (Portage and Otish) are spaced with an 400km-interval. This discontinuity is deeply rooted in the lithosphere;

2. Located <u>at to the junction</u> of the Mistassini-Lemoyne and Temiscamie-Corvette corridors;

3. The property is located 400km northeast of Le Tac swarm, 400km south-east of the Wemindji dispersion trains (and Majescor kimberlitic sill), and 100km south of Bienville Lake dispersion trains. This corresponded to the regular spacing between kimberlitic swarms;

4. Close to (20km south) a crust weakness along which two kimberlitic swarms (Portage and Otish) are spaced with an 400km-interval. This discontinuity is deeply rooted in the lithosphere;

5. The property is located 400km northeast of Le Tac swarm, 400km south-east of the Wemindji dispersion trains (and Majescor kimberlitic sill), and 100km south of Bienville Lake dispersion trains. This corresponded to the regular spacing between kimberlitic swarms;

Located within the NNE oriented Mistassini-Lemoyne Corridor along which recent discoveries of diamond-bearing kimberlitic diatremes as well as several nepheline syenites (Fontanges and Temiscamie) and carbonatites (Castignon and Lemoyne);
The Archean Superior craton is dated about 2,7-2,8 billions years, to abide by the Clifford's rule;

11. Close to a zone where seismic surveys suggest the presence of a lithosphere keel (Moorhead, 1999). A 200 km-thick lithosphere is required to secure the thermodynamic conditions of formation and preservation of diamonds. Fertility of this lithosphere keel is confirmed by the chemistry of Wemindji, Portage and Otish indicator minerals; 12. Mistassini dyke swarm (oriented at N330) and Preissac(oriented at N060) intersect themselves in the area. This situation is similar to the one observed in the favorable Wawa-Hearts-Kapuskasing area, Ontario;

HOTISH 2002-2004 WORKS PROGRAMS

To evaluate its Hotish block, DIOS Exploration completed a helicopter-supported till sampling campaign, during June, 2002. A team composed of geologists Harold Desbiens, Alexandre Boudreault, Patrice Gagnon, Robert Gagnon collected 266 till samples (130 on the Papaskwasati block, 101 on the Extrémité block, 27 on the Hyppo block and 8 on the A-1&2 blocks.). Where possible, a regular sampling mesh (usually rectangular and quincunx) was apply and it varies from 0,25 to 1,0 sample per square kilometer. Base camp was located on Berry Island in the northeast portion of Mistassini Lake. The sampling sites were reached with a Notor-helicopter (Helimax). Transport to the base camp was done by a Otter-plane (Air Saguenay) from Temiscamie, about 175 north of Chibougameau. When possible the non-oxidized C-horizon (grey-beige color) was sampled between 0,6 and 1,5 meters. Samples were collected as part of a reconnaissance program to evaluate the up-ice regional geology. Site locations were chosen based on the availability of glacial material located down-ice of circular magnetic anomalies and to complete the most regular mesh possible. All samples were later processed at the IOS Services Géoscientifiques laboratory in Jonquière, Québec. In September (9) 2002, Dios announced that they recover up to 128 kimberlite indicator minerals (KIMs) per sample, numerous Cr & Mg-picroilmenites with perovskite rims, and observed G10/G9 pyropes ratios of 10% (Gurney) and 37% (Dawson & Stephen). In December (2) 2002, Dios announced new samples with high counts (from hundred to thousands) of KIMs including favorable picroilmenites/ perovskites, diamond-inclusion chromites, G9 and G10 pyropes as well as kimberlitic fragments.

Back in October 2002, an helicopter-supported team composed of geologists Harold Desbiens, Alexandre Boudreault, Patrice Gagnon and Patrice Villeneuve Gagnon collected 39 heavy mineral samples on the Hotish project. Base camp was located at the Temiscami camp. An Abitibi Astar B-2 helicopter was used to reach the sampling sites. Samples were collected as a follow-up till sampling survey on the previously detected anomalous areas.

Early in 2003, a 4391 line-km airborne magnetic survey with a 125m-spacing (Terraquest Ltd) was done over the HOTISH blocks where kimberlite indicator minerals were identified. This was shortly followed by 18 local ground magnetic surveys (G.L. Geoservices).

In March 2003, a brief detailed till sampling campaign, targeting down-ice area of selected magnetic anomalies or KIMs anomalies was completed. One of these samples yielded 52 pyropes, with a significant amount with high chromium content.

From July to September 2003, a helicopter-support drilling program completed 37 holes totaling 1014.42 meters. **Kimberlitic material was intersected in thirteen of these holes, delineating** three distinct kimberlites. They all consist of **metric hypabyssal macrocrystic kimberlite sills**. Typical drill holes show flow differentiation, <u>i.e.</u> medium-grained phases are sandwiching a fine-grained central phase. The medium-grained phase appears richer (2-10% vs 1-2%) in interstitial and segregation (bubbly) carbonate,

rounded xenocrystic olivine (5-20% vs tr-10%), and serpentinized mantle-xenoliths (Tr-3% vs tr-1%) than the finer-grained phase. Each one of the hypabyssal kimberlite sills is described more in detail in the following:

The Hotish-1 kimberlite was only intersected in drilling (11 short holes) over a minimum 175 meters strike length where it was defined as a metric (1-2m thick) hypabyssal sill oriented N 100 and dipping 20-30 degrees to the northeast. Its wallrock is hematitized granite-syenite. The kimberlite is a dark grey to lightly greenish magnetic ultramafic rock that is composed of 1-5% mm carbonate, 3-5% (locally up to 10%) rounded mm ilmenite (-magnetite) xenocrysts, tr-20% rounded mm-cm yellow-green olivine xenocrysts, 1-8% mm phlogopite macrocrysts and rare (tr-3%) mm-cm serpentinized mantle ultramafic xenoliths. Rare pyropes were only observed in the xenoliths. Thin sections confirm pervasive serpentinization of the olivine-rich matrix. It also shows the best evidences of flow differentiation. In holes 25 and 30, a 0.27cm splay is present 50cm away from the main sill. Chemistry on Hotish -1 ilmenites shows two kimberlitic populations in the reduced field, including a high-chromium (Cr2O3>2%) one that distinguishes it from the others (Cr2O3 vs MgO plot). It was also observed in its associated ilmenite-rich dispersion train. All the pyropes of the studied hole (25) contain less than 2% Cr2O3. Caustic fusion by SGS Lakefield on 40.5 kg of core did not yield any diamond.

The Hotish-2 kimberlite shows a lot of mineralogical similarities with the previous one, but it was discovered in outcrop by tracing back up-ice a boulders train along the Papawskasati River, about 1km SE of the Hotish-1 kimberlite. It was also intersected in hole 36, 100 meters away from the outcrop. It shows the same N100 and low dipping (-30) as the previous kimberlite. The Hotish-2 kimberlite consists of a metric (0.9-1.1m thick) hypabyssal macrocrystic sill injected in granitic rocks. Visually, one of the differences is the presence (1-3%) of phlogopite macrocrysts reaching over 1.0 cm associated with abundant (5-30%) mm serpentinized olivine macrocrysts. Crustal (granite) and mantled xenoliths (tr-1%) were observed. Several peridotitic pyropes were observed in boulders and in the fusion material. Their chromium content was below 8% Cr2 O3 and the diamond preservation line. Some eclogitic garnets are also present (Ti02 vs Na2O plot). The abundant ilmenites show one low to moderate-chromium (Cr2O3<2%) kimberlitic population in the reduced field (Cr2O3 vs MgO plot). Caustic fusion by SGS Lakefield on a 148 kg sample did not yield any diamond.

The **Hotish-3 kimberlite** is only known as a thin (0.44m wide) hypabyssal macrocrystic kimberlitic drill intersection in hole 37, located about 3km north of the Hotish-1 kimberlite. Its orientation is unknown (but suspected N-S) and core angle suggest a moderate- high angle dip. The general petrology of Hotish-3 is relatively similar to the two other kimberlites. However, fusion of the core yielded a population of cr-diopsides that are characteristic of garnet peridotites (jadeite-kosmochlor line on the Na vs Al + Cr plot). Using the Mn-thermobarometer on the CPX, it was possible to calculate the temperatures and pressures of the garnet lherzolite xenoliths. It confirms a cold geotherm for the area <u>i.e.</u> that the underlying mantle material sampled by the kimberlite shows favorable temperature-pressure conditions to the diamond preservation. Some

harzburzitic chromites close to the diamond fields are also present (Cr2O3 vs MgO plot). Abundant kimberlitic low to moderate-chromium ilmenites are in the reduced field (Cr2O3 vs MgO plot). No field follow-up was carried in the vicinity of this kimberlitic occurrence for possible outcrop.

Further ground geophysical surveys (Geosig), prospecting, and till sampling (280 samples) were done simultaneously to the drilling. The latest till campaign yield a number of quality KIMs that defined six new target areas. These include a good part (up to 25% in some sample) of high chromium (8,0-11.56% wt Cr203) pyropes some being associated with diamond-intergrowth chromite (DGC) and/or Cr-picroilmenites. Strong variation in the indicator component ratios clearly suggests sources with distinctive chemistry. High-chromium pyrope content generally suggests good diamond potential. Cr-diopside data interpretation also indicates a good population showing chemistry within the diamond window field.

HOTISH 2004 PROSPECTING-MAPPING PROGRAMS

In August 2004, geologists Harold Desbiens, Robert Gagnon, Pietro Costa and prospector Daniel Verreault carried out a first prospecting-mapping program (2-9th august) targeting areas located down of quality kimberlite indicator minerals, extensive boulders field, as well as selected creek and river shores. A Helimax Notor Hughes 520d was used to access the sites. Base camp was set up at Dios' Bohier Island camp along the Eastmain River.

During the prospecting-mapping campaign, numereous outcrops were mapped, all of them were of granite-tonalite, pegmatite, or diorite compositions. A minor peridotite and pyroxenite component was also observed in the boulders fields. Good glacial striaes were measured at two locations, and showed similar orientation N214-220. More details are available in annex 3.

A quick recheck of the Hotish-2 kimberlitic boulders dispersion train was done. It showed the presence of rounded cm kimberlitic pebbles from 0.4 to 1.4km down-ice (and down current of the Pepehsquasati River) of the Hotish-2 kimberlitic sill. Protected beaches associated with turns in the river usually host a good amount of these cm pebbles.

The vicinities of the Hotish-3 occurrence (ddh intersect) along a small lake were also investigated for kimberlitic pebbles-boulders or outcrops, but none were found.

In 2003, previous prospecting around the Hotish-1 kimberlite yielded a single elongate cm kimberlitic pebble along a small creek in a valley about 200 meters down-ice of the kimberlite occurrence.

Near the end of the first 2004 campaign, a new kimberlite float occurrence (18U 669104E; 5754860N) was found along a branch of the Memesquasati River flowing

DIOS EXPLORATION 2004 HOTISH PROJECT

toward the north (some tens kilometers up-ice from previously identified kimberlitic sills). The kimberlitic float (30 cm x 15 cm x 10 cm) is sub-rounded, with fragile negative alteration texture showing the fragile nature of the material. The presence of 5-10% of millimetric rounded ilmenite xenocrysts and 10-15% of mm-cm exotic xenoliths (appearing in positive relief) in a dark aphanitic ultramafic matrix may be observed. It is strongly magnetic and has a medium brown color on the altered surface.

In September 2004, the same team carried out a follow-up campaign in the vicinities of the kimberlite float discovery. No additional kimberlite boulder or pebble was found.

IOS geologists (Patrice Villeneuve) also prospected and collected 40 till samples over the newly acquired ground, as well as some in the areas with the previous best quality KIMs. The samples were transported to IOS Geoscientifique laboratory in Saguenay, Quebec, and later processed. The results are available in annex 4.

CONCLUSIONS AND RECOMMENDATIONS

Therefore, it is proposed that the 2005 Hotish exploration program should focus on the investigation (by drilling and prospecting) of these promising KIMs anomalies (with better chemistry than the ones already successfully tested). The works completed in the past two years on the Hotish project (extensive geochemical and geophysical data) permitted to develop a distinctive exploration model. It is based on these important observations:

-the Mistassini Lake-Beaver Lake segment of the Mistassini –Lemoyne corridor appears to be part of a important **kimberlitic sills-dykes complex** that are characterized by various orientations and dips (figures 5, 8,9);

-so far, the dominant orientations are WNW-ESE and N-S (tensional fractures associated to the NE-SW Mistassini-Lemoyne Corridor);

-such metric sills-dykes systems usually don't have good (or any) geophysical response, in certain case they follow magnetic breaks and/or the main foliation;

-the sills-dykes geometry crosscuts the main (last) glacial movement and therefore creates a large kimberlite indicator minerals (KIMs) **smear-pattern**, instead of the more common elongate dispersion trains;

-these smears are relatively thin and continuous forming kilometric lineaments parallel to the sills (it results in very low to no KIMs count in the up-ice samples);

-boulders-pebbles tracking and 2003 drilling confirmed very short glacial transport for the high count of indicator minerals (less than one kilometer);

-the mineralogy and chemistry of each sills-dykes show variations, and results in distinctives KIMs populations in the till (ex: ilmenite-rich pyrope-poor; pyrope-rich; chromite and ilmenite-rich pyrope-poor, chromite and pyrope-poor, etc.)

-the available KIMs data in the assessment reports strongly suggested that the sills extend themselves on Ashton-SOQUEM Tichegami (confirmed by recent drilling) and Majescor Mistassini properties;

-along these (magnetic and/or KIMs) breaks, conventional (circular)geophysical anomalies should not be neglected as the sills and dykes are often linked to a blow or a conventional kimberlitic pipe (it was the case of the nearby Beaver Lake kimberlite, where a connecting dyke was intersected in a hole previously to the pipe discovery);

-prospecting for kimberlitic boulders and outcrops should systematically be done in the vicinity of high KIMs counts and along rivers;

So, the 2005 proposed program is mainly supported by the till's KIMs data, targeting the lineaments associated with the most favorable chemistry for diamond (i.e. G10, High Cr-G9, DGC: Diamond interGrowth Chromite, DIC: Diamond Inclusion Chromite, Na-diopside, etc.).

HOTISH-BUDGET PROPOSITION

Phase 1: one sample per 4 sq.km till sampling campaign...done

Phase 2: Airborne geophysics.....done

Phase 3: Ground geophysic, prospecting, first exploration drilling campaign and one sample per 1km till sampling......done

Phase 4: one sample per 1-2 sq.km till sampling campaign o	n new
ground	(done)

Phase 5: Prospecting, second drilling campaign

Drilling (20x100m/ \$80)	\$ 160 000
Mobilization of drilling platform	
Helicopter(\$1200/h)	
Geology and assaying	
Report	
Caustic fusion test (6 tests /\$5000)	\$ 30 000
Miscellaneous	\$ 15 000
Administration (7%)	\$ 20 000
Phase4 subtotal	\$395 000

Phase 6: exploration drilling campaign

Drilling (12x100m/ \$80)	\$ 96 000
Mobilization of drilling platform	
Helicopter	\$ 70 000
Geology and assaying	\$ 20 000
Caustic fusion test (4 tests /\$5000)	\$ 20 000
Miscellaneous	\$ 10 000
Administration (7%)	\$ 15 000
Phase 5 subtotal	\$ 251 000
HOTISH Project (phase 5 + 6)	\$ 646 000

GUE / GEO (O3) Walt Teetren HAROLD DESBIENS # 550 ¥ Harold Desbiens QUÉBEC M.Sc.geologist #550 OGQ

REFERENCES

Ashton mining of Canada: www.ashton.ca

Ashton (2004) « Exploration pour le diamant par minéraux indicateurs, région des rivières Tichégami et Eastmain, été 2003, projet 11883 », QNRM, GM 60682, 134p.

Bernier, L., Moorhead, J. (2001) "Etude pétrographique et minéralogique de la kimberlite des monts Otish", QRNM, MB-2000-14, 55p.

Brack, W. (1998) "Report on the Otish Mountains diamond prospect, North central Quebec", Ditem Exploration, QNRM, GM 56612.

Brack, W. (1999) "Report on the diamond drilling activities in 1998 -Otish Mountains project", Ditem Exploration, QNRM, GM 56615.

Chown, E.H. (1971a) "Région de Tichégami", QNRM, RG144, 64p.

Chown, E.H. (1971b) "Région de la rivière Savane", QNRM, RG 146, 37p.

Desbiens, H. (2002a) "33CARATS Project, Upper Eastmain River Area, Northern Quebec (33A/01,07,08,09,10,15; 33H/01,02; 23D/05,12), Summary Report", Dios Exploration, Internal report.

Dios Exploration: www.diosexplo.com

Ditem Resources: www.ditem.ca

Ditem Exploration (2003) "Till sampling programme, Matoush Claim Group", QRNM, GM60593, 99p.

Ditem Explorations and Pure Gold Minerals (2003) "Till sampling programme, Beaver Lake North Claim, Otish Mountains", QRNM, GM 60476, 64p.

Ditem Explorations and Pure Gold Minerals (2003) "Till sampling programme, Beaver Lake South Claim Group", QRNM, GM 60801, 91p.

Docuscience inc and Ressources Plexmar (2004) "Proportions minérales, Projet Papaskwasati", QRNM, GM 60971, 25p.

Docuscience inc, and Ressources Plexmar (2003) "Campagne d'échantillonage du till dans le cadre de l'exploration pour le diamant, projet Papaskwasati partie 1 : Logistique des travaux et traitement des échantillons", QRNM, GM 60522, 391p.+4maps

Docuscience inc, and Ressources Strateco (2003) "Campagne d'échantillonnage du till dans le cadre de l'exploration pour le diamant, Projet Cardinal, Mont Otish", QRNM, GM 60453, 313p. + 5maps.

Eade, K.E. (1965) "Fort George River and Kaniapiscau River (West Half) Map-Areas, New Quebec", GSC, Memoir 339, 82p.

Fahrig, W.F. (1987) "The tectonic settings of continental mafic dyke swarms: failed arm and early passive margin", in Mafic Dykes Swarms, H.C.Hall and W.F.Fahrig (ed), Geol. Ass.Can., SP 34, pp331-348.

Fipke, C.E., Gurney, J.J., Moore, R.O. (1995) "Diamond exploration techniques emphasing indicator mineral geochemistry and Canadian examples", GSC Bulletin 423, 86p.

Gerisch, W., Jenkins, C.C., Leppin, M. (1979) "Report on exploration works with 14 ddh logs", Uranerz Mining, QNRM, GM 34787.

Girard, R. (2001a) "Caractérisation de l'intrusion kimberlitique du lac Beaver, Monts Otish-Pétrographie et minéralogie", QRNM, MB 2001-08, 23p+annexes.

Girard, R. (2001b) "The 33Carats Project: A diamond exploration program in the Otish Proterozoic Basin-Qualifying Report", for Dios Exploration, Internal report.

Girard, R. (2001c) "Projet Hotish: Exploration pour le diamant dans le secteur des Bassins de Otish et de Papaskwasati-Rapport de qualification", for Dios Exploration, Internal report.

Girard, R. (2002) "L'exploration pour le diamant techniques et aspects pratiques: Notes de cours; Association des prospecteurs du Québec", IOS Services geoscientifiques.

Hashimoto, T. (1961) "Rapport préliminaire sur la région du lac Hyppocampe, District de Mistassini", QNRM, RP-438, 5p.

Hughes, O.L. (1964) "Surficial geology, Nichicun-Kaniapiskau map-area, Quebec", GSC, Bulletin 106, 20p.

Huss,L. (2002) "Compilation géoscientifique dela région du bassin sédimentaire des Monts Otish et de la cuvette de Papawskasati", IOS Services Géoscientifiques, for Dios Exploration, 70p.+maps.

Majescor: www.majescor.com

Majescor (2003) "Glacial sediment sampling, airborne geophysics and diamond drilling, Mistassini property 2001-2003", QRMNQ, GM 60777, 12p.

DIOS EXPLORATION 2004 HOTISH PROJECT

Majescor (2003) "Glacial sediment sampling, airborne geophysics and diamond drilling, Mistissini property", QRNM, GM 60781, 187P. + 1map.

Moorhead, J., Beaumier, M., Lefevre, D., Bernier, L., Martel, D. (1999) "Kimberlites, linéaments et rifts crustaux au Québec", QRNM, MB-99-35, 135p.

Moorhead, J., Perreault, S., Berclaz, A., Sharma, K., Beaumier, M., Cadieux, A.M. (2000) "Kimberlites and diamonds in Northern Québec", QRNM, PRO 99-09, 6p.

Moorhead, J., Houle, P. (2002) "D'autres kimberlites diamantifères rapportées dans la région des monts Otish", in <u>www.mrn.gouv.qc.ca/mines/potentiel-chauds-diamants.jsp</u>

O'Connor, A. (2001) "High-resolution aeromagnetic survey (Permit 1555 and 1556) and Heavy mineral sampling (Permit1556), Northern Quebec, NTS 33A/09 and 33A/16", Ashton Mining of Canada, QRNM, GM 59004, 9p.

O'Connor, A. (2001) "Heavy mineral sampling (Permit 1619), Northern Quebec, NTS 33A/03 and 33A/02", Ashton Mining of Canada, QRNM, GM59230, 21p+maps.

Parent, P., Paradis, S.J., Boisvert, E. (1995) "Ice-flow patterns and glacial transport in the eastern Hudson Bay region: implications for the late Quaternary dynamics of the Laurentide Ice Sheet", Can.J.Earth Sci., vol.32, pp2057-2070.

Parent, S.J., Boisvert, E. (1995) "Séquence des éccoulements glaciaires dans le secteur de Chibougamau-Némiscau, Québec", in Current Research 1995-C, GSC, pp259-264.

Parent, M., Paradis, S., Doiron, A. (1996) "Palimpset glacial dispersal trains and their significance for drift prospecting", Journal of Geochemical Exploration, V.56, pp123-140.

Plexmar Resouces: www.plexmar.com

SOQUEM (2003) "Assessment report, Tichegami 1 and Tichegami 3", QRNM, GM 59853, 275p. +16maps.

Veillette, J.J. (1995) "New evidence for northwestward glacial ice flow, James Bay region, Québec", in GSC, Current Research, 1995-C, pp135-142.

Vincent, J.S. (1989) "Le Quaternaire du sud-est du Bouclier Canadien", in Le Quaternaire du Canada et du Groenland, Chap.3, R.J.Fulton(ed), GSC, V.1, pp266-295.

DIOS EXPLORATION 2004 HOTISH PROJECT

ANNEX 1. HOTISH CLAIMS LIST

32P10	28	43	0 CDC	1039457 A	11/28/2001	11/27/2003	0	0	53.38
32P10	28	44	0 CDC	1039458 A	11/28/2001	11/27/2003	0	0	53.38
32P10	28	45	0 CDC	1039459 A	11/28/2001	11/27/2003	0	0	53.38
32P10	28	46	0 CDC	1039460 A	11/28/2001	11/27/2003	0	0	53.38
32P10	28	47	0 CDC	1039461 A	11/28/2001	11/27/2003	0	0	53.38
32P10	29	36	0 CDC	1036036 A	11/8/2001	11/7/2003	0	0	53.36
32P10	29	37	0 CDC	1036037 A	11/8/2001	11/7/2003	0	0	53.36
32P10	29	38	0 CDC	1036038 A	11/8/2001	11/7/2003	0	0	53.36
32P10	29	39	0 CDC	1036039 A	11/8/2001	11/7/2003	0	0	53.37
32P10	29	40	0 CDC	1039462 A	11/28/2001	11/27/2003	0	0	53.37
32P10	29	41	0 CDC	1039463 A	11/28/2001	11/27/2003	0	0	53.37
32P10	29	42	0 CDC	1039464 A	11/28/2001	11/27/2003	0	0	53.37
32P10	29	43	0 CDC	1039465 A	11/28/2001	11/27/2003	0	0	53.37
32P10	29	44	0 CDC	1039466 A	11/28/2001	11/27/2003	0	0	53.37
32P10	29	45	0 CDC	1039467 A	11/28/2001	11/27/2003	0	0	53.37
32P10	29	46	0 CDC	1039468 A	11/28/2001	11/27/2003	0	0	53.37
32P10	29	47	0 CDC	1039469 A	11/28/2001	11/27/2003	0	0	53.37
32P10	30	36	0 CDC	1036040 A	11/8/2001	11/7/2003	0	0	53.35
32P10	30	37	0 CDC	1036041 A	11/8/2001	11/7/2003	0	0	53.35
32P10	30	38	0 CDC	1036042 A	11/8/2001	11/7/2003	0	0	53.36
32P10	30	39	0 CDC	1036043 A	11/8/2001	11/7/2003	0	0	53.36
32P10	30	40	0 CDC	1039470 A	11/28/2001	11/27/2003	0	0	53.36
32P10	30	41	0 CDC	1039471 A	11/28/2001	11/27/2003	0	0	53.36
32P10	30	42	0 CDC	1039472 A	11/28/2001	11/27/2003	0	0	53.36
32P10	30	43	0 CDC	1039473 A	11/28/2001	11/27/2003	0	0	53.36
32P10	30	44	0 CDC	1039474 A	11/28/2001	11/27/2003	0	0	53.36
32P10	30	45	0 CDC	1039475 A	11/28/2001	11/27/2003	0	0	53.36
32P10	30	46	0 CDC	1039476 A	11/28/2001	11/27/2003	0	0	53.36
32P10	30	47	0 CDC	1039 4 77 A	11/28/2001	11/27/2003	0	0	53.36
								1	7261.38

32P10	25	48	0 CDC	1040462 A	11/30/2001	11/29/2003	0	0	53.41
32P10	25	49	0 CDC	1040463 A	11/30/2001	11/29/2003	0	0	53.41
32P10	25	50	0 CDC	1040464 A	11/30/2001	11/29/2003	0	0	53.41
32P10	26	36	0 CDC	1036024 A	11/8/2001	11/7/2003	0	0	53.39
32P10	26	37	0 CDC	1036025 A	11/8/2001	11/7/2003	0	0	53.39
32P10	26	38	0 CDC	1036026 A	11/8/2001	11/7/2003	0	0	53.39
32P10	26	39	0 CDC	1036027 A	11/8/2001	11/7/2003	0	0	53.39
32P10	26	40	0 CDC	1039438 A	11/28/2001	11/27/2003	0	0	53.39
32P10	26	41	0 CDC	1039439 A	11/28/2001	11/27/2003	0	0	53.39
32P10	26	42	0 CDC	1039440 A	11/28/2001	11/27/2003	0	0	53.4
32P10	26	43	0 CDC	1039441 A	11/28/2001	11/27/2003	0	0	53.4
32P10	26	44	0 CDC	1039442 A	11/28/2001	11/27/2003	0	0	53.4
32P10	26	45	0 CDC	1039443 A	11/28/2001	11/27/2003	0	0	53.4
32P10	26	46	0 CDC	1039444 A	11/28/2001	11/27/2003	0	0	53.4
32P10	26	47	0 CDC	1039445 A	11/28/2001	11/27/2003	0	0	53.4
32P10	26	48	0 CDC	1040465 A	11/30/2001	11/29/2003	0	0	53.4
32P10	26	49	0 CDC	1040466 A	11/30/2001	11/29/2003	0	0	53.4
32P10	26	50	0 CDC	1040467 A	11/30/2001	11/29/2003	0	0	53.4
32P10	27	36	0 CDC	1036028 A	11/8/2001	11/7/2003	0	0	53.38
32P10	27	37	0 CDC	1036029 A	11/8/2001	11/7/2003	0	0	53.38
32P10	27	38	0 CDC	1036030 A	11/8/2001	11/7/2003	0	0	53.38
32P10	27	39	0 CDC	1036031 A	11/8/2001	11/7/2003	0	0	53.38
32P10	27	40	0 CDC	1039446 A	11/28/2001	11/27/2003	0	0	53.38
32P10	27	41	0 CDC	103 944 7 A	11/28/2001	11/27/2003	0	0	53.39
32P10	27	42	0 CDC	1039448 A	11/28/2001	11/27/2003	0	0	53.39
32P10	27	43	0 CDC	1039449 A	11/28/2001	11/27/2003	0	0	53.3 9
32P10	27	44	0 CDC	1039450 A	11/28/2001	11/27/2003	0	0	53.39
32P10	27	45	0 CDC	1039451 A	11/28/2001	11/27/2003	0	0	53.39
32P10	27	46	0 CDC	1039452 A	11/28/2001	11/27/2003	0	0	53.39
32P10	27	47	0 CDC	1039453 A	11/28/2001	11/27/2003	0	0	53.39
32P10	28	36	0 CDC	1036032 A	11/8/2001	11/7/2003	0	0	53.37
32P10	28	37	0 CDC	1036033 A	11/8/2001	11/7/2003	0	0	53.37
32P10	28	38	0 CDC	1036034 A	11/8/2001	11/7/2003	0	0	53.37
32P10	28	39	0 CDC	1036035 A	11/8/2001	11/7/2003	0	0	53.37
32P10	28	40	0 CDC	1039454 A	11/28/2001	11/27/2003	0	0	53.38
32P10	28	41	0 CDC	1039455 A	11/28/2001	11/27/2003	0	0	53.38
32P10	28	42	0 CDC	1039 45 6 A	11/28/2001	11/27/2003	0	0	53.38

32P10	23	35	0 CDC	1036012 A	11/8/2001	11/7/2003	0	0	53.42
32P10	23	36	0 CDC	1036013 A	11/8/2001	11/7/2003	0	0	53.42
32P10	23	37	0 CDC	1036014 A	11/8/2001	11/7/2003	0	0	53.42
32P10	23	38	0 CDC	1036015 A	11/8/2001	11/7/2003	0	0	53.42
32P10	23	39	0 CDC	1039516 A	11/28/2001	11/27/2003	0	0	53.42
32P10	23	40	0 CDC	1039517 A	11/28/2001	11/27/2003	0	0	53.42
32P10	23	41	0 CDC	1039518 A	11/28/2001	11/27/2003	0	0	53.42
32P10	23	42	0 CDC	1039519 A	11/28/2001	11/27/2003	0	0	53.42
32P10	23	44	0 CDC	1039789 A	11/28/2001	11/27/2003	0	0	53.42
32P10	23	45	0 CDC	1039790 A	11/28/2001	11/27/2003	0	0	53.43
32P10	23	48	0 CDC	1040456 A	11/30/2001	11/29/2003	0	0	53.43
32P10	23	49	0 CDC	1040457 A	11/30/2001	11/29/2003	0	0	53.43
32P10	23	50	0 CDC	104 04 58 A	11/30/2001	11/29/2003	0	0	53.43
32P10	24	30	0 CDC	1039791 A	11/28/2001	11/27/2003	0	0	53.41
32P10	24	31	0 CDC	1040104 A	11/28/2001	11/27/2003	0	0	53.41
32P10	24	32	0 CDC	1040105 A	11/28/2001	11/27/2003	0	0	53.41
32P10	24	33	0 CDC	1040106 A	11/28/2001	11/27/2003	0	0	53.41
32P10	24	34	0 CDC	1040107 A	11/28/2001	11/27/2003	0	0	53.41
32P10	24	35	0 CDC	1040108 A	11/28/2001	11/27/2003	0	0	53.41
32P10	24	36	0 CDC	1036016 A	11/8/2001	11/7/2003	0	0	53.41
32P10	24	37	0 CDC	1036017 A	11/8/2001	11/7/2003	0	0	53.41
32P10	24	38	0 CDC	1036018 A	11/8/2001	11/7/2003	0	0	53.41
32P10	24	39	0 CDC	1036019 A	11/8/2001	11/7/2003	0	0	53.41
32P10	24	40	0 CDC	1039520 A	11/28/2001	11/27/2003	0	0	53.41
32P10	24	41	0 CDC	1039521 A	11/28/2001	11/27/2003	0	0	53.41
32P10	24	42	0 CDC	1039522 A	11/28/2001	11/27/2003	0	0	53.41
32P10	24	44	0 CDC	1039792 A	11/28/2001	11/27/2003	0	0	53.42
32P10	24	45	0 CDC	1039793 A	11/28/2001	11/27/2003	0	0	53.42
32P10	24	48	0 CDC	1040459 A	11/30/2001	11/29/2003	0	0	53.42
32P10	24	49	0 CDC	1040460 A	11/30/2001	11/29/2003	0	0	53.42
32P10	24	50	0 CDC	1040461 A	11/30/2001	11/29/2003	0	0	53.42
32P10	25	36	0 CDC	1036020 A	11/8/2001	11/7/2003	0	0	53.4
32P10	25	37	0 CDC	1036021 A	11/8/2001	11/7/2003	0	0	53.4
32P10	25	38	0 CDC	1036022 A	11/8/2001	11/7/2003	0	0	53.4
32P10	25	39	0 CDC	1036023 A	11/8/2001	11/7/2003	0	0	53.4
32P10	25	44	0 CDC	1039794 A	11/28/2001	11/27/2003	0	0	53.41
32P10	25	45	0 CDC	1039795 A	11/28/2001	11/27/2003	0	0	53.41

32P10	21	50	0 CDC	14454 A	3/1/2004	2/28/2006	0	0	53.45
32P10	21	51	0 CDC	14455 A	3/1/2004	2/28/2006	0	0	53.45
32P10	22	24	0 CDC	1039778 A	11/28/2001	11/27/2003	0	0	53.43
32P10	22	25	0 CDC	1039779 A	11/28/2001	11/27/2003	0	0	53.43
32P10	22	26	0 CDC	1039780 A	11/28/2001	11/27/2003	0	0	53.43
32P10	22	27	0 CDC	1036112 A	11/8/2001	11/7/2003	0	0	53.43
32P10	22	28	0 CDC	1036113 A	11/8/2001	11/7/2003	0	0	53.43
32P10	22	29	0 CDC	1036114 A	11/8/2001	11/7/2003	0	0	53.43
32P10	22	30	0 CDC	1036115 A	11/8/2001	11/7/2003	0	0	53.43
32P10	22	31	0 CDC	1036116 A	11/8/2001	11/7/2003	0	0	53.43
32P10	22	32	0 CDC	1036004 A	11/8/2001	11/7/2003	0	0	53.43
32P10	22	33	0 CDC	1036005 A	11/8/2001	11/7/2003	0	0	53.43
32P10	22	34	0 CDC	1036006 A	11/8/2001	11/7/2003	0	0	53.43
32P10	22	35	0 CDC	1036007 A	11/8/2001	11/7/2003	0	0	53.43
32P10	22	36	0 CDC	1036008 A	11/8/2001	11/7/2003	0	0	53.43
32P10	22	37	0 CDC	1036009 A	11/8/2001	11/7/2003	0	0	53.43
32P10	22	38	0 CDC	1036010 A	11/8/2001	11/7/2003	0	0	53.43
32P10	22	39	0 CDC	1039512 A	11/28/2001	11/27/2003	0	0	53.43
32P10	22	40	0 CDC	1039513 A	11/28/2001	11/27/2003	0	0	53.43
32P10	22	41	0 CDC	1039514 A	11/28/2001	11/27/2003	0	0	53.43
32P10	22	42	0 CDC	1039515 A	11/28/2001	11/27/2003	0	0	53.43
32P10	22	43	0 CDC	1039781 A	11/28/2001	11/27/2003	0	0	53.43
32P10	22	44	0 CDC	1039782 A	11/28/2001	11/27/2003	0	0	53.43
32P10	22	45	0 CDC	1039783 A	11/28/2001	11/27/2003	0	0	53.43
32P10	22	46	0 CDC	1039784 A	11/28/2001	11/27/2003	0	0	53.44
32P10	22	47	0 CDC	1039785 A	11/28/2001	11/27/2003	0	0	53.44
32P10	22	48	0 CDC	1039786 A	11/28/2001	11/27/2003	0	0	53.44
32P10	23	25	0 CDC	1039787 A	11/28/2001	11/27/2003	0	0	53.42
32P10	23	26	0 CDC	1039788 A	11/28/2001	11/27/2003	0	0	53.42
32P10	23	27	0 CDC	1036117 A	11/8/2001	11/7/2003	0	0	53.42
32P10	23	28	0 CDC	1036118 A	11/8/2001	11/7/2003	0	0	53.42
32P10	23	29	0 CDC	1036119 A	11/8/2001	11/7/2003	0	0	53.42
32P10	23	30	0 CDC	1036120 A	11/8/2001	11/7/2003	0	0	53.42
32P10	23	31	0 CDC	1036121 A	11/8/2001	11/7/2003	0	0	53.42
32P10	23	32	0 CDC	1036122 A	11/8/2001	11/7/2003	0	0	53.42
32P10	23	33	0 CDC	1036123 A	11/8/2001	11/7/2003	0	0	53.42
32P10	23	34	0 CDC	1036011 A	11/8/2001	11/7/2003	0	0	53.42

.

32P10	20	40	0 CDC	1039502 A	11/28/2001	11/27/2003	0	0	53.45
32P10	20	41	0 CDC	1039503 A	11/28/2001	11/27/2003	0	0	53.45
32P10	20	42	0 CDC	1039504 A	11/28/2001	11/27/2003	0	0	53.45
32P10	20	43	0 CDC	1039769 A	11/28/2001	11/27/2003	0	0	53.45
32P10	20	44	0 CDC	1039770 A	11/28/2001	11/27/2003	0	0	53.45
32P10	20	45	0 CDC	1039771 A	11/28/2001	11/27/2003	0	0	53.45
32P10	20	46	0 CDC	1041088 A	12/3/2001	12/2/2003	0	0	53.45
32P10	20	47	0 CDC	14447 A	3/1/2004	2/28/2006	0	0	53.45
32P10	20	50	0 CDC	14448 A	3/1/2004	2/28/2006	0	0	53.46
32P10	20	51	0 CDC	14449 A	3/1/2004	2/28/2006	0	0	53.46
32P10	20	52	0 CDC	14450 A	3/1/2004	2/28/2006	0	0	53.46
32P10	21	24	0 CDC	1039772 A	11/28/2001	11/27/2003	0	0	53.44
32P10	21	25	0 CDC	1039773 A	11/28/2001	11/27/2003	0	0	53.44
32P10	21	26	0 CDC	1039774 A	11/28/2001	11/27/2003	0	0	53.44
32P10	21	27	0 CDC	1036103 A	11/8/2001	11/7/2003	0	0	53.44
32P10	21	28	0 CDC	1036104 A	11/8/2001	11/7/2003	0	0	53.44
32P10	21	29	0 CDC	1036105 A	11/8/2001	11/7/2003	0	0	53.44
32P10	21	30	0 CDC	1036106 A	11/8/2001	11/7/2003	0	0	53.44
32P10	21	31	0 CDC	1036107 A	11/8/2001	11/7/2003	0	0	53.44
32P10	21	32	0 CDC	1036108 A	11/8/2001	11/7/2003	0	0	53.44
32P10	21	33	0 CDC	1036109 A	11/8/2001	11/7/2003	0	0	53.44
32P10	21	34	0 CDC	1036110 A	11/8/2001	11/7/2003	0	0	53.44
32P10	21	35	0 CDC	1036111 A	11/8/2001	11/7/2003	0	0	53.44
32P10	21	36	0 CDC	1039505 A	11/28/2001	11/27/2003	0	0	53.44
32P10	21	37	0 CDC	1039506 A	11/28/2001	11/27/2003	0	0	53.44
32P10	21	38	0 CDC	1039507 A	11/28/2001	11/27/2003	0	0	53.44
32P10	21	39	0 CDC	1039508 A	11/28/2001	11/27/2003	0	0	53.44
32P10	21	40	0 CDC	1039509 A	11/28/2001	11/27/2003	0	0	53,44
32P10	21	41	0 CDC	1039510 A	11/28/2001	11/27/2003	0	0	53.44
32P10	21	42	0 CDC	1039511 A	11/28/2001	11/27/2003	0	0	53,44
32P10	21	43	0 CDC	1039775 A	11/28/2001	11/27/2003	0	0	53.44
32P10	21	44	0 CDC	1039776 A	11/28/2001	11/27/2003	0	0	53.44
32P10	21	45	0 CDC	1039777 A	11/28/2001	11/27/2003	0	0	53.44
32P10	21	46	0 CDC	1041089 A	12/3/2001	12/2/2003	0	0	53.44
32P10	21	47	0 CDC	14451 A	3/1/2004	2/28/2006	0	0	53.45
32P10	21	48	0 CDC	14452 A	3/1/2004	2/28/2006	0	0	53.45
32P10	21	49	0 CDC	14453 A	3/1/2004	2/28/2006	0	0	53.45

32P10	19	32	0 CDC	1035950 A	11/8/2001	11/7/2003	0	0	53.46
32P10	19	33	0 CDC	1035951 A	11/8/2001	11/7/2003	0	Ō	53.46
32P10	19	34	0 CDC	1035952 A	11/8/2001	11/7/2003	0	0	53.46
32P10	19	35	0 CDC	1035953 A	11/8/2001	11/7/2003	0	0	53.46
32P10	19	36	0 CDC	1035954 A	11/8/2001	11/7/2003	0	0	53.46
32P10	19	37	0 CDC	1039492 A	11/28/2001	11/27/2003	0	0	53.46
32P10	19	38	0 CDC	1039493 A	11/28/2001	11/27/2003	0	0	53.46
32P10	19	39	0 CDC	1039494 A	11/28/2001	11/27/2003	0	0	53.46
32P10	19	40	0 CDC	1039495 A	11/28/2001	11/27/2003	0	0	53.46
32P10	19	41	0 CDC	1039496 A	11/28/2001	11/27/2003	0	0	53,46
32P10	19	42	0 CDC	1039497 A	11/28/2001	11/27/2003	0	0	53.46
32P10	19	43	0 CDC	1039762 A	11/28/2001	11/27/2003	0	0	53.46
32P10	19	44	0 CDC	1039763 A	11/28/2001	11/27/2003	0	0	53.46
32P10	19	45	0 CDC	1039764 A	11/28/2001	11/27/2003	0	0	53.46
32P10	19	46	0 CDC	1041087 A	12/3/2001	12/2/2003	0	0	53.46
32P10	19	47	0 CDC	14441 A	3/1/2004	2/28/2006	0	0	53.46
32P10	19	48	0 CDC	14442 A	3/1/2004	2/28/2006	0	0	53.46
32P10	19	49	0 CDC	14443 A	3/1/2004	2/28/2006	0	0	53.47
32P10	19	50	0 CDC	14444 A	3/1/2004	2/28/2006	0	0	53.47
32P10	19	51	0 CDC	14445 A	3/1/2004	2/28/2006	0	0	53.47
32P10	19	52	0 CDC	14446 A	3/1/2004	2/28/2006	0	0	53.47
32P10	20	24	0 CDC	1039765 A	11/28/2001	11/27/2003	0	0	53.45
32P10	20	25	0 CDC	1039766 A	11/28/2001	11/27/2003	0	0	53.45
32P10	20	26	0 CDC	1039767 A	11/28/2001	11/27/2003	0	0	53.45
32P10	20	27	0 CDC	1039768 A	11/28/2001	11/27/2003	0	0	53.45
32P10	20	28	0 CDC	1036099 A	11/8/2001	11/7/2003	0	0	53.45
32P10	20	29	0 CDC	1036100 A	11/8/2001	11/7/2003	0	0	53.45
32P10	20	30	0 CDC	1036101 A	11/8/2001	11/7/2003	0	0	53.45
32P10	20	31	0 CDC	1036102 A	11/8/2001	11/7/2003	0	0	53.45
32P10	20	32	0 CDC	1035955 A	11/8/2001	11/7/2003	0	0	53.45
32P10	20	33	0 CDC	1035956 A	11/8/2001	11/7/2003	0	0	53.45
32P10	20	34	0 CDC	1035957 A	11/8/2001	11/7/2003	0	0	53.45
32P10	20	35	0 CDC	1035958 A	11/8/2001	11/7/2003	0	0	53.45
32P10	20	36	0 CDC	1039498 A	11/28/2001	11/27/2003	0	0	53.45
32P10	20	37	0 CDC	1039499 A	11/28/2001	11/27/2003	0	0	53.45
32P10	20	38	0 CDC	1039500 A	11/28/2001	11/27/2003	0	0	53.45
32P10	20	39	0 CDC	1039501 A	11/28/2001	11/27/2003	0	0 -	53.45

32P10	17	48	0 CDC	1040375 A	11/30/2001	11/29/2003	0	0	53.48
32P10	17	49	0 CDC	1040376 A	11/30/2001	11/29/2003	0	Ō	53.48
32P10	17	50	0 CDC	1040377 A	11/30/2001	11/29/2003	0	0	53.48
32P10	17	51	0 CDC	14437 A	3/1/2004	2/28/2006	0	0	53.49
32P10	17	52	0 CDC	14438 A	3/1/2004	2/28/2006	0	0	53.49
32P10	18	25	0 CDC	1040332 A	11/29/2001	11/28/2003	0	0	53.47
32P10	18	26	0 CDC	1040333 A	11/29/2001	11/28/2003	0	0	53.47
32P10	18	27	0 CDC	1040334 A	11/29/2001	11/28/2003	0	0	53.47
32P10	18	28	0 CDC	1036094 A	11/8/2001	11/7/2003	0	0	53.47
32P10	18	32	0 CDC	1035942 A	11/8/2001	11/7/2003	0	0	53.47
32P10	18	33	0 CDC	1035943 A	11/8/2001	11/7/2003	0	0	53.47
32P10	18	34	0 CDC	1035944 A	11/8/2001	11/7/2003	0	0	53.47
32P10	18	35	0 CDC	1035945 A	11/8/2001	11/7/2003	0	0	53.47
32P10	18	36	0 CDC	1035946 A	11/8/2001	11/7/2003	0	0	53.47
32P10	18	37	0 CDC	1035947 A	11/8/2001	11/7/2003	0	0	53.47
32P10	18	38	0 CDC	1035948 A	11/8/2001	11/7/2003	0	0	53.47
32P10	18	39	0 CDC	1035949 A	11/8/2001	11/7/2003	0	0	53.47
32P10	18	40	0 CDC	1039489 A	11/28/2001	11/27/2003	0	0	53.47
32P10	18	41	0 CDC	1039490 A	11/28/2001	11/27/2003	0	0	53.47
32P10	18	42	0 CDC	1039491 A	11/28/2001	11/27/2003	0	0	53.47
32P10	18	43	0 CDC	1039758 A	11/28/2001	11/27/2003	0	0	53.47
32P10	18	44	0 CDC	1039759 A	11/28/2001	11/27/2003	0	0	53.47
32P10	18	45	0 CDC	1039760 A	11/28/2001	11/27/2003	0	0	53.47
32P10	18	46	0 CDC	1039761 A	11/28/2001	11/27/2003	0	0	53.47
32P10	18	47	0 CDC	1040378 A	11/30/2001	11/29/2003	0	0	53.47
32P10	18	48	0 CDC	1040379 A	11/30/2001	11/29/2003	0	0	53.47
32P10	18	49	0 CDC	1040380 A	11/30/2001	11/29/2003	0	0	53.47
32P10	18	50	0 CDC	1040381 A	11/30/2001	11/29/2003	0	0	53.48
32P10	18	51	0 CDC	14439 A	3/1/2004	2/28/2006	0	0	53.48
32P10	18	52	0 CDC	144 40 A	3/1/2004	2/28/2006	0	0	53.48
32P10	19	25	0 CDC	1040335 A	11/29/2001	11/28/2003	0	0	53.46
32P10	19	26	0 CDC	1040336 A	11/29/2001	11/28/2003	0	0	53.46
32P10	19	27	0 CDC	1040337 A	11/29/2001	11/28/2003	0	0	53.46
32P10	19	28	0 CDC	1036095 A	11/8/2001	11/7/2003	0	0	53.46
32P10	19	29	0 CDC	1036096 A	11/8/2001	11/7/2003	0	0	53.46
32P10	19	30	0 CDC	1036097 A	11/8/2001	11/7/2003	0	0	53.46
32P10	19	31	0 CDC	1036098 A	11/8/2001	11/7/2003	0	0	53.46

32P10	16	36	0 CDC	1035931 A	11/8/2001	11/7/2003	0	0	53.49
32P10	16	37	0 CDC	1035932 A	11/8/2001	11/7/2003	0	0	53.49
32P10	16	38	0 CDC	1035933 A	11/8/2001	11/7/2003	0	0	53.49
32P10	16	39	0 CDC	1035934 A	11/8/2001	11/7/2003	0	0	53.49
32P10	16	40	0 CDC	1039484 A	11/28/2001	11/27/2003	0	0	53.49
32P10	16	41	0 CDC	1039485 A	11/28/2001	11/27/2003	0	0	53.49
32P10	16	42	0 CDC	1039703 A	11/28/2001	11/27/2003	0	0	53.49
32P10	16	43	0 CDC	10397 04 A	11/28/2001	11/27/2003	0	0	53.49
32P10	16	44	0 CDC	1039705 A	11/28/2001	11/27/2003	0	0	53.49
32P10	16	45	0 CDC	1039706 A	11/28/2001	11/27/2003	0	0	53.49
32P10	16	46	0 CDC	1039707 A	11/28/2001	11/27/2003	0	0	53.49
32P10	16	47	0 CDC	1039708 A	11/28/2001	11/27/2003	0	0	53.49
32P10	16	48	0 CDC	1040372 A	11/30/2001	11/29/2003	0	0	53.49
32P10	16	49	0 CDC	1040373 A	11/30/2001	11/29/2003	0	0	53.49
32P10	16	50	0 CDC	1040374 A	11/30/2001	11/29/2003	0	0	53.49
32P10	17	26	0 CDC	1040485 A	11/30/2001	11/29/2003	0	0	53.48
32P10	17	27	0 CDC	1040486 A	11/30/2001	11/29/2003	0	0	53.48
32P10	17	28	0 CDC	1036089 A	11/8/2001	11/7/2003	0	0	53.48
32P10	17	29	0 CDC	1036090 A	11/8/2001	11/7/2003	0	0	53.48
32P10	17	30	0 CDC	1036091 A	11/8/2001	11/7/2003	0	0	53.48
32P10	17	31	0 CDC	1036092 A	11/8/2001	11/7/2003	0	0	53.48
32P10	17	32	0 CDC	1036093 A	11/8/2001	11/7/2003	0	0	53.48
32P10	17	33	0 CDC	1035935 A	11/8/2001	11/7/2003	0	0	53.48
32P10	17	34	0 CDC	1035936 A	11/8/2001	11/7/2003	0	0	53.48
32P10	17	35	0 CDC	1035937 A	11/8/2001	11/7/2003	0	0	53.48
32P10	17	36	0 CDC	1035938 A	11/8/2001	11/7/2003	0	0	53.48
32P10	17	37	0 CDC	1035939 A	11/8/2001	11/7/2003	0	0	53.48
32P10	17	38	0 CDC	1035940 A	11/8/2001	11/7/2003	0	0	53.48
32P10	17	39	0 CDC	10359 4 1 A	11/8/2001	11/7/2003	0	0	53.48
32P10	17	40	0 CDC	1039486 A	11/28/2001	11/27/2003	0	0	53.48
32P10	17	41	0 CDC	1039487 A	11/28/2001	11/27/2003	0	0	53.48
32P10	17	42	0 CDC	1039488 A	11/28/2001	11/27/2003	0	0	53.48
32P10	17	43	0 CDC	1039756 A	11/28/2001	11/27/2003	0	0	53.48
32P10	17	44	0 CDC	1039757 A	11/28/2001	11/27/2003	0	0	53.48
32P10	17	45	0 CDC	1039709 A	11/28/2001	11/27/2003	0	0	53.48
32P10	17	46	0 CDC	1039710 A	11/28/2001	11/27/2003	0	0	53.48
32P10	17	47	0 CDC	1039711 A	11/28/2001	11/27/2003	0	0	53.48

Feuillet	Rang Lot	i	No séquen Type de ti	tı No titre	Statul	du ti Date d'inscrip	Date d'expirat N	lombre d'é Nomi	bre de S	uperficie
32P10	13	50	0 CDC	1040368	А	11/30/2001	11/29/2003	0	0	53.52
32P10	14	47	0 CDC	1039572	Α	11/28/2001	11/27/2003	0	0	53.51
32P10	14	48	0 CDC	1039573	Α	11/28/2001	11/27/2003	0	0	53.51
32P10	15	26	0 CDC	1040481	Α	11/30/2001	11/29/2003	0	0	53.5
32P10	15	27	0 CDC	1040482	Α	11/30/2001	11/29/2003	0	0	53.5
32P10	15	28	0 CDC	1035919	Α	11/8/2001	11/7/2003	0	0	53.5
32P10	15	29	0 CDC	1035920	Α	11/8/2001	11/7/2003	0	0	53.5
32P10	15	30	0 CDC	1035921	Α	11/8/2001	11/7/2003	0	0	53.5
32P10	15	31	0 CDC	1035922	Α	11/8/2001	11/7/2003	0	0	53.5
32P10	15	32	0 CDC	1035923	Α	11/8/2001	11/7/2003	0	0	53.5
32P10	15	36	0 CDC	1035924	Α	11/8/2001	11/7/2003	0	0	53.5
32P10	15	37	0 CDC	1035925	Α	11/8/2001	11/7/2003	0	0	53.5
32P10	15	38	0 CDC	1035926	Α	11/8/2001	11/7/2003	0	0	53.5
32P10	15	39	0 CDC	1035927	Α	11/8/2001	11/7/2003	0	0	53.5
32P10	15	40	0 CDC	1039483	Α	11/28/2001	11/27/2003	0	0	53.5
32P10	15	41	0 CDC	9464	Α	12/16/2003	12/15/2005	0	0	53.5
32P10	15	42	0 CDC	1039697	A	11/28/2001	11/27/2003	0	0	53.5
32P10	15	43	0 CDC	1039698	A	11/28/2001	11/27/2003	0	0	53.5
32P10	15	44	0 CDC	1039699	A	11/28/2001	11/27/2003	0	0	53.5
32P10	15	45	0 CDC	1039700	Α	11/28/2001	11/27/2003	0	0	53.5
32P10	15	46	0 CDC	1039701	Α	11/28/2001	11/27/2003	0	0	53.5
32P10	15	47	0 CDC	1039702	A	11/28/2001	11/27/2003	0	0	53.5
32P10	15	48	0 CDC	1040369	Α	11/30/2001	11/29/2003	0	0	53.5
32P10	15	49	0 CDC	1040370	Α	11/30/2001	11/29/2003	0	0	53.5
32P10	15	50	0 CDC	1040371	A	11/30/2001	11/29/2003	0	0	53.5
32P10	16	26	0 CDC	1040483	A	11/30/2001	11/29/2003	0	0	53.49
32P10	16	27	0 CDC	1040484	A	11/30/2001	11/29/2003	0	0	53.49
32P10	16	28	0 CDC	1036084	A	11/8/2001	11 <i>/7/</i> 2003	0	0	53.49
32P10	16	29	0 CDC	1036085	A	11/8/2001	11/7/2003	0	0	53.49
32P10	16	30	0 CDC	1036086	A	11/8/2001	11/7/2003	0	0	53.49
32P10	16	31	0 CDC	1036087	A	11/8/2001	11/7/2003	0	0	53.49
32P10	16	32	0 CDC	1035928	A	11/8/2001	11/7/2003	0	0	53.49
32P10	16	33	0 CDC	1035929	A	11/8/2001	11/7/2003	0	0	53.49
32P10	16	34	0 CDC	1035930	A	11/8/2001	11/7/2003	0	0	53.49
32P10	16	35	0 CDC	1036088	A	11/8/2001	11/7/2003	0	0	53.49

Feuillet	Rang	Lot	Type de t	titr No titre	S	atut du ti Date d'insc	Date d'expi	Nombre d	e Sup	erficie (
32P15		1	18 CDC	1034717	А	11/8/2001	11/7/2003	C)	53.34
32P15		1	19 CDC	1034718		11/8/2001	11/7/2003	(C	53.34
32P15		1	22 CDC	1034719	Α	11/8/2001	11/7/2003	()	53.34
32P15		1	23 CDC	1034720	А	11/8/2001	11/7/2003	()	53.34
32P15		1	24 CDC	1034721	А	11/8/2001	11/7/2003	()	53.34
32P15		1	59 CDC	1034319	А	11/8/2001	11/7/2003	()	53.35
32P15		1	60 CDC	1034320	А	11/8/2001	11/7/2003	()	53.35
32P15		2	18 CDC	1034722	А	11/8/2001	11/7/2003	()	53.33
32P15		2	19 CDC	1034723	А	11/8/2001	11/7/2003	()	53.33
32P15		2	22 CDC	1034724	А	11/8/2001	11/7/2003	()	53.33
32P15		2	23 CDC	1034725	А	11/8/2001	11/7/2003	()	53,33
32 P15		2	49 CDC	1034321	А	11/8/2001	11/7/2003	()	53.34
32P15		2	50 CDC	1034322	А	11/8/2001	11/7/2003	()	53.34
32P15		2	51 CDC	1034323		11/8/2001	11/7/2003	()	53.34
32P15		2	52 CDC	1033905		11/7/2001	11/6/2003)	53.34
32P15		2	53 CDC	1033906	А	11/7/2001	11/6/2003	0)	53.34
32P15		2	54 CDC	32676	А	8/20/2004	8/19/2006	(כ	53.34
32P15		2	57 CDC	1034325	А	11/8/2001	11/7/2003	(כ	53.34
32P15		2	58 CDC	1034326	А	11/8/2001	11/7/2003	()	53.34
32P15		2	59 CDC	1034327	А	11/8/2001	11/7/2003)	53.34
32P15		2	60 CDC	1033865		11/7/2001	11/6/2003)	53.34
32P15		3	18 CDC	1034726		11/8/2001	11/7/2003		0	53.32
32P15		3	19 CDC	1034727		1 1/8/20 01	11/7/2003	()	53.32
32P15		3	20 CDC	1034728	А	11/8/2001	11/7/2003	()	53.32
32P15		3	21 CDC	1034729		11/8/2001	11/7/2003	(כ	53.32
32P15		3	22 CDC	1034730		11/8/2001	11/7/2003	()	53.32
32P15		3	23 CDC	1034731		11/8/2001	11/7/2003)	53.32
32P15		3	25 CDC	1034732		11/8/2001	11/7/2003)	53.32
32P15		3	26 CDC	1034733		11/8/2001	11/7/2003	()	53.32
32P15		3	49 CDC	1033907		11 <i>/7/</i> 2001	11/6/2003)	53.33
32P15		3	50 CDC	1034328		11/8/2001	11/7/2003	-)	53.33
32P15		3	51 CDC	1034329		11/8/2001	11/7/2003		כ	53.33
32P15		3	52 CDC	1033866		11/7/2001	11/6/2003		כ	53.33
32P15		3	53 CDC	1033867		11/7/2001	11/6/2003)	53.33
32P15		3	54 CDC	1033868	A	11/7/2001	11/6/2003	(כ	53.33

32P15	3	55 CDC	1033869 A	11/7/2001	11/6/2003	. 0	53.33
32P15	3	56 CDC	1033870 A	11/7/2001	11/6/2003	0	53.33
32P15	3	57 CDC	1033871 A	11/7/2001	11/6/2003	0	53.33
32P15	3	58 CDC	1033872 A	11/7/2001	11/6/2003	0	53.33
32P15	3	59 CDC	1033873 A	11/7/2001	11/6/2003	· 0	53.33
32P15	3	60 CDC	1033874 A	11/7/2001	11/6/2003	0	53.33
32P15	4	18 CDC	1034734 A	11/8/2001	11/7/2003	0	53.31
32P15	4	19 CDC	1034735 A	11/8/2001	11/7/2003	0	53.31
32P15	4	20 CDC	1034736 A	11/8/2001	11/7/2003	0	53.31
32P15	4	21 CDC	1034737 A	11/8/2001	11/7/2003	0	53.31
32P15	4	22 CDC	1034738 A	11/8/2001	11/7/2003	0	53.31
32P15	4	23 CDC	1034739 A	11/8/2001	11/7/2003	0	53.31
32P15	4	24 CDC	1034740 A	11/8/2001	11/7/2003	0	53.31
32P15	4	25 CDC	1034741 A	11/8/2001	11/7/2003	0	53.31
32P15	4	26 CDC	1034742 A	11/8/2001	11/7/2003	0	53.31
32P15	4	49 CDC	1034330 A	11/8/2001	11/7/2003	0	53.32
32P15	4	50 CDC	1033908 A	11/7/2001	11/6/2003	0	53.32
32P15	4	51 CDC	1033909 A	11/7/2001	11/6/2003	0	53.32
32P15	4	52 CDC	1033910 A	11/7/2001	11/6/2003	0	53.32
32P15	4	53 CDC	1033911 A	11/7/2001	11/6/2003	0	53.32
32P15	4	54 CDC	1033912 A	11/7/2001	11/6/2003	0	53.32
32P15	4	55 CDC	1033875 A	11/7/2001	11/6/2003	0	53.32
32P15	4	56 CDC	1033876 A	11/7/2001	11/6/2003	0	53.32
32P15	4	57 CDC	1033877 A	11/7/2001	11/6/2003	0	53.32
32P15	4	58 CDC	1033878 A	11/7/2001	11/6/2003	0	53.32
32P15	4	59 CDC	1033879 A	11/7/2001	11/6/2003	0	53.32
32P15	4	60 CDC	1033880 A	11/7/2001	11/6/2003	0	53.32
32P15	5	49 CDC	1034331 A	11/8/2001	11/7/2003	0	53.31
32P15	5	50 CDC	1033825 A	11/7/2001	11/6/2003	0	53.31
32P15	5	51 CDC	1033826 A	11/7/2001	11/6/2003	0	53.31
32P15	5	52 CDC	1033827 A	11/7/2001	11/6/2003	0	53.31
32P15	5	53 CDC	1033828 A	11/7/2001	11/6/2003	0	53.31
32P15	5	54 CDC	1033829 A	11/7/2001	11/6/2003	0	53.31
32P15	5	55 CDC	1033830 A	11/7/2001	11/6/2003	0	53.31
32P15	5	56 CDC	1033831 A	11/7/2001	11/6/2003	0	53.31
32P15	5	57 CDC	1033832 A	11/7/2001	11/6/2003	0	53.31
32P15	5	58 CDC	1033833 A	11/7/2001	11/6/2003	0	53.31

32P15	5	59 CDC	1033881 A	11/7/2001	11/6/2003	0	53.31
32P15	5	60 CDC	1033882 A	11/7/2001	11/6/2003	0	53.31
32P15	6	49 CDC	1034332 A	11/8/2001	11/7/2003	0	53.3
32P15	6	50 CDC	1033834 A	11/7/2001	11/6/2003	0	53.3
32P15	6	51 CDC	1033835 A	11/7/2001	11/6/2003	0	53.3
32P15	6	52 CDC	1033836 A	11/7/2001	11/6/2003	0	53.3
32P15	6	53 CDC	1033837 A	11/7/2001	11/6/2003	0	53.3
32P15	6	54 CDC	1033838 A	11/7/2001	11/6/2003	0	53.3
32P15	6	55 CDC	1033839 A	11/7/2001	11/6/2003	0	53.3
32P15	6	56 CDC	1033840 A	11/7/2001	11/6/2003	0	53.3
32P15	6	57 CDC	1033841 A	11/7/2001	11/6/2003	0	53.3
32P15	6	58 CDC	1033883 A	11/7/2001	11/6/2003	0	53.3
32P15	6	59 CDC	1033884 A	11/7/2001	11/6/2003	0	53.3
32P15	6	60 CDC	1033885 A	11/7/2001	11/6/2003	0	53.3
32P15	7	49 CDC	1033913 A	11/7/2001	11/6/2003	0	53.29
32P15	7	50 CDC	1033914 A	11/7/2001	11/6/2003	0	53.29
32P15	7	51 CDC	1033842 A	11/7/2001	11/6/2003	0	53.29
32P15	7	52 CDC	1033843 A	11/7/2001	11/6/2003	0	53.29
32P15	7	53 CDC	1033844 A	11/7/2001	11/6/2003	0	53.29
32P15	7	54 CDC	1033845 A	11/7/2001	11/6/2003	0	53.29
32P15	7	55 CDC	1033846 A	11/7/2001	11/6/2003	0	53.29
32P15	7	56 CDC	1033 84 7 A	11/7/2001	11/6/2003	0	53.29
32P15	7	57 CDC	1033848 A	11/7/2001	11/6/2003	0	53.29
32P15	7	58 CDC	1033886 A	11/7/2001	11/6/2003	0	53.29
32P15	7	59 CDC	1033887 A	11/7/2001	11/6/2003	0	53.29
32P15	7	60 CDC	1033888 A	11/7/2001	11/6/2003	0	53.29
32P15	8	49 CDC	1033915 A	11/7/2001	11/6/2003	0	53.28
32P15	8	50 CDC	1033916 A	11/7/2001	11/6/2003	0	53.28
32P15	8	51 CDC	1033849 A	11/7/2001	11/6/2003	0	53.28
32P15	8	52 CDC	1033850 A	11/7/2001	11/6/2003	0	53.28
32P15	8	53 CDC	1033851 A	11/7/2001	11/6/2003	0	53.28
32P15	8	54 CDC	1033852 A	11/7/2001	11/6/2003	0	53.28
32P15	8	55 CDC	1033853 A	11/7/2001	11/6/2003	0	53.28
32P15	8	56 CDC	1033854 A	11/7/2001	11/6/2003	0	53.28
32P15	8	57 CDC	1033855 A	11/7/2001	11/6/2003	0	53.28
32P15	8	58 CDC	1033856 A	11/7/2001	11/6/2003	0	53.28
32P15	8	59 CDC	1033889 A	11/7/2001	11/6/2003	0	53.28

1			1	4	1		L	 	•	1		•	1	•
1 1	1			1	I	1			1	1	1	1		-
	1		1	1	1	1			1	I	1			- 1

32P15	8	60 CDC	1033890 A	11/7/2001 11/6/2003	0	53.28
32P15	9	48 CDC	1034333 A	11/8/2001 11/7/2003	Õ	53.27
32P15	9	49 CDC	1033917 A	11/7/2001 11/6/2003	Ō	53.27
32P15	9	50 CDC	1033918 A	11/7/2001 11/6/2003	Ō	53.27
32P15	9	51 CDC	1033857 A	11/7/2001 11/6/2003	Ó	53.27
32P15	9	52 CDC	1033858 A	11/7/2001 11/6/2003	0	53.27
32P15	9	53 CDC	1033859 A	11/7/2001 11/6/2003	Ō	53.27
32P15	9	54 CDC	1033860 A	11/7/2001 11/6/2003	0	53.27
32P15	9	55 CDC	1033861 A	11/7/2001 11/6/2003	0	53.27
32P15	9	56 CDC	1033862 A	11/7/2001 11/6/2003	0	53.27
32P15	9	57 CDC	1033863 A	11/7/2001 11/6/2003	Ō	53.27
32P15	9	58 CDC	1033891 A	11/7/2001 11/6/2003	0	53.27
32P15	9	59 CDC	1033892 A	11/7/2001 11/6/2003	Ō	53.27
32P15	9	60 CDC	1033893 A	11/7/2001 11/6/2003	Õ	53.27
32P15	10	44 CDC	1033919 A	11/7/2001 11/6/2003	Ō	53.26
32P15	10	45 CDC	1033920 A	11/7/2001 11/6/2003	0	53.26
32P15	10	46 CDC	1033921 A	11/7/2001 11/6/2003	Ō	53.26
32P15	10	47 CDC	1033922 A	11/7/2001 11/6/2003	Ō	53.26
32P15	10	48 CDC	1033923 A	11/7/2001 11/6/2003	Ō	53.26
32P15	10	49 CDC	1033924 A	11/7/2001 11/6/2003	0	53.26
32P15	10	50 CDC	1033925 A	11/7/2001 11/6/2003	Ō	53.26
32P15	10	51 CDC	1033926 A	11/7/2001 11/6/2003	Ō	53.26
32P15	10	52 CDC	1033785 A	11/7/2001 11/6/2003	Ō	53.26
32P15	10	53 CDC	1033786 A	11/7/2001 11/6/2003	0	53.26
32P15	10	54 CDC	1033787 A	11/7/2001 11/6/2003	Õ	53.26
32P15	10	55 CDC	1033894 A	11/7/2001 11/6/2003	Ō	53.26
32P15	10	56 CDC	1033895 A	11/7/2001 11/6/2003	Ō	53.26
32P15	10	57 CDC	1033896 A	11/7/2001 11/6/2003	Ō	53.26
32P15	10	58 CDC	1033897 A	11/7/2001 11/6/2003	ō	53.26
32P15	10	59 CDC	1034335 A	11/8/2001 11/7/2003	Ō	53.26
32P15	10	60 CDC	1034336 A	11/8/2001 11/7/2003	ō	53.26
32P15	11	44 CDC	1033927 A	11/7/2001 11/6/2003	Ō	53.25
32P15	11	45 CDC	1033928 A	11/7/2001 11/6/2003	Ō	53.25
32P15	11	46 CDC	1033898 A	11/7/2001 11/6/2003	Ō	53.25
32P15	11	47 CDC	1033899 A	11/7/2001 11/6/2003	õ	53.25
32P15	11	48 CDC	1033929 A	11/7/2001 11/6/2003	Ō	53.25
32P15	11	49 CDC	1033930 A	11/7/2001 11/6/2003	Õ	53.25
					-	

												-				,	
	1	1	1	1	ĩ	1	1	1	1	1	1		•]	1	1
1	(1)	1			1		1	•	J)	,	1	
•	•	,	•	•		•			,								

.

32P15	11	50 CDC	1033931 A	11/7/2001 11/6/2003	0	53.25
32P15	11	51 CDC	1033932 A	11/7/2001 11/6/2003	0	53,25
32P15	11	52 CDC	1033788 A	11/7/2001 11/6/2003	0	53.25
32P15	1 1	53 CDC	1033789 A	11/7/2001 11/6/2003	0	53.25
32P15	11	54 CDC	1033790 A	11/7/2001 11/6/2003	0	53.25
32P15	11	55 CDC	1033900 A	11/7/2001 11/6/2003	0	53.25
32P15	11	56 CDC	1033933 A	11/7/2001 11/6/2003	0	53.25
32P15	11	57 CDC	1033934 A	11/7/2001 11/6/2003	0	53.25
32P15	11	58 CDC	12694 A	2/24/2004 2/23/2006	0	53.25
32P15	11	59 CDC	12695 A	2/24/2004 2/23/2006	0	53.25
32P15	11	60 CDC	10337 4 5 A	11/7/2001 11/6/2003	0	53.25
32P15	12	48 CDC	1033901 A	11/7/2001 11/6/2003	0	53.24
32P15	12	49 CDC	1033902 A	11/7/2001 11/6/2003	0	53.24
32P15	12	50 CDC	1033903 A	11/7/2001 11/6/2003	0	53.24
32P15	12	51 CDC	1033904 A	11/7/2001 11/6/2003	0	53.24
32P15	12	52 CDC	1033791 A	11/7/2001 11/6/2003	0	53.24
32P15	12	53 CDC	1033792 A	11/7/2001 11/6/2003	0	53.24
32P15	12	54 CDC	1033793 A	11/7/2001 11/6/2003	0	53.24
32P15	12	55 CDC	1033935 A	11/7/2001 11/6/2003	0	53.24
32P15	12	56 CDC	1033936 A	11/7/2001 11/6/2003	0	53.24
32P15	12	57 CDC	1034337 A	11/8/2001 11/7/2003	0	53.24
32P15	12	58 CDC	1034338 A	11/8/2001 11/7/2003	0	53.24
32P15	12	59 CDC	1034339 A	11/8/2001 11/7/2003	0	53.24
32P15	12	60 CDC	1033746 A	11/7/2001 11/6/2003	0	53.24
32P15	13	48 CDC	10337 9 4 A	11/7/2001 11/6/2003	0	53.23
32P15	13	49 CDC	1033795 A	11/7/2001 11/6/2003	0	53.23
32P15	13	50 CDC	1033796 A	11/7/2001 11/6/2003	0	53.23
32P15	13	51 CDC	1033797 A	11/7/2001 11/6/2003	0	53.23
32P15	13	52 CDC	1033798 A	11/7/2001 11/6/2003	0	53.23
32P15	13	53 CDC	1033799 A	11/7/2001 11/6/2003	0	53.23
32P15	13	54 CDC	1033800 A	11/7/2001 11/6/2003	0	53.23
32P15	13	55 CDC	1033937 A	11/7/2001 11/6/2003	0	53.23
32P15	13	56 CDC	1033938 A	11/7/2001 11/6/2003	0	53.23
32P15	13	57 CDC	1034340 A	11/8/2001 11/7/2003	0	53.23
32P15	13	58 CDC	1034341 A	11/8/2001 11/7/2003	0	53.23
32P15	13	59 CDC	1034342 A	11/8/2001 11/7/2003	0	53.23
32P15	13	60 CDC	1033747 A	11/7/2001 11/6/2003	0	53.23

32P15	14	48 CDC	1033801 A	11/7/2001 11/6/2003	0	53.22
32P15	14	49 CDC	1033802 A	11/7/2001 11/6/2003	0	53.22
32P15	14	50 CDC	1033803 A	11/7/2001 11/6/2003	0	53.22
32P15	14	51 CDC	1033804 A	11/7/2001 11/6/2003	0	53.22
32P15	14	52 CDC	1033805 A	11/7/2001 11/6/2003	0	53.22
32P15	14	53 CDC	1033806 A	11/7/2001 11/6/2003	0	53.22
32P15	14	54 CDC	1033939 A	11/7/2001 11/6/2003	0	53.22
32P15	14	55 CDC	1034343 A	11/8/2001 11/7/2003	0	53.22
32P15	14	56 CDC	1034344 A	11/8/2001 11/7/2003	0	53.22
32P15	14	57 CDC	1034345 A	11/8/2001 11/7/2003	0	53.22
32P15	14	58 CDC	1034346 A	11/8/2001 11/7/2003	0	53.22
32P15	14	59 CDC	1033864 A	11/7/2001 11/6/2003	0	53.22
32P15	14	60 CDC	1033748 A	11/7/2001 11/6/2003	0	53.22
32P15	15	48 CDC	1033807 A	11/7/2001 11/6/2003	0	53.21
32P15	15	49 CDC	1033808 A	11/7/2001 11/6/2003	0	53.21
32P15	15	50 CDC	1033809 A	11/7/2001 11/6/2003	0	53.21
32P15	15	51 CDC	1033810 A	11/7/2001 11/6/2003	0	53.21
32P15	15	52 CDC	1033811 A	11/7/2001 11/6/2003	0	53.21
32P15	15	53 CDC	1033940 A	11/7/2001 11/6/2003	0	53.21
32P15	15	54 CDC	1033941 A	11/7/2001 11/6/2003	0	53.21
32P15	15	56 CDC	1034348 A	11/8/2001 11/7/2003	0	53.21
32P15	15	57 CDC	1034349 A	11/8/2001 11/7/2003	0	53.21
32P15	15	58 CDC	1034350 A	11/8/2001 11/7/2003	0	53.21
32P15	15	59 CDC	10337 4 9 A	11/7/2001 11/6/2003	0	53.21
32P15	15	60 CDC	1033750 A	11/7/2001 11/6/2003	0	53.21
32P15	16	48 CDC	1033812 A	11/7/2001 11/6/2003	0	53.2
32P15	16	49 CDC	1033813 A	11/7/2001 11/6/2003	0	53.2
32P15	16	50 CDC	1033814 A	11/7/2001 11/6/2003	0	53.2
32P15	16	51 CDC	1033815 A	11/7/2001 11/6/2003	0	53.2
32P15	16	52 CDC	1033816 A	11/7/2001 11/6/2003	0	53.2
32P15	16	53 CDC	1033942 A	11/7/2001 11/6/2003	0	53.2
32P15	16	54 CDC	1033943 A	11/7/2001 11/6/2003	0	53.2
32P15	16	55 CDC	1034351 A	11/8/2001 11/7/2003	0	53.2
32P15	16	56 CDC	1034352 A	11/8/2001 11/7/2003	0	53.2
32P15	16	58 CDC	1034354 A	11/8/2001 11/7/2003	0	53.2
32P15	16	59 CDC	1033751 A	11/7/2001 11/6/2003	0	53.2
32P15	16	60 CDC	1033752 A	11/7/2001 11/6/2003	0	53.2

32P15 17 51 CDC 1033817 A 11/7/2001 11/6/2003 0 32P15 17 52 CDC 1033818 A 11/7/2001 11/6/2003 0 32P15 17 53 CDC 1033819 A 11/7/2001 11/6/2003 0 32P15 17 54 CDC 1033850 A 11/7/2001 11/6/2003 0 32P15 17 55 CDC 1034355 A 11/6/2001 11/7/2003 0 32P15 17 56 CDC 1034357 A 11/6/2001 11/6/2003 0 32P15 17 58 CDC 1033754 A 11/7/2001 11/6/2003 0 32P15 18 51 CDC 1033821 A 11/7/2001 11/6/2003 0 32P15 18 53 CDC 1033824 A 11/7/2001 11/6/2003 0 32P15 18 53 CDC 1033756 A 11/7/2001 11/6/2003 0 32P15 18 56 CDC 1033756 A 11/7/2001 11/6/2003 0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
32P15 17 53 CDC 1033819 A 11/7/2001 11/6/2003 0 32P15 17 54 CDC 1033820 A 11/7/2001 11/6/2003 0 32P15 17 55 CDC 1034355 A 11/8/2001 11/7/2003 0 32P15 17 56 CDC 1034355 A 11/8/2001 11/7/2003 0 32P15 17 57 CDC 1034357 A 11/8/2001 11/6/2003 0 32P15 17 58 CDC 1033755 A 11/7/2001 11/6/2003 0 32P15 18 51 CDC 1033822 A 11/7/2001 11/6/2003 0 32P15 18 53 CDC 1033822 A 11/7/2001 11/6/2003 0 32P15 18 53 CDC 1033824 A 11/7/2001 11/6/2003 0 32P15 18 56 CDC 1033757 A 11/7/2001 11/6/2003 0 32P15 18 57 CDC 1033758 A 11/7/2001 11/6/2003 0 <td>32P15</td> <td>17</td> <td>51 CDC</td> <td>1033817 A</td> <td>11/7/2001</td> <td>11/6/2003</td> <td>0</td> <td>53.19</td>	32P15	17	51 CDC	1033817 A	11/7/2001	11/6/2003	0	53.19
32P15 17 54 CDC 1033820 A 11/7/2001 11/6/2003 0 32P15 17 55 CDC 1034355 A 11/8/2001 11/7/2003 0 32P15 17 56 CDC 1034356 A 11/8/2001 11/7/2003 0 32P15 17 57 CDC 1034357 A 11/7/2001 11/6/2003 0 32P15 17 58 CDC 1033753 A 11/7/2001 11/6/2003 0 32P15 17 60 CDC 1033755 A 11/7/2001 11/6/2003 0 32P15 18 51 CDC 1033821 A 11/7/2001 11/6/2003 0 32P15 18 52 CDC 1033822 A 11/7/2001 11/6/2003 0 32P15 18 53 CDC 1033756 A 11/7/2001 11/6/2003 0 32P15 18 56 CDC 1033759 A 11/7/2001 11/6/2003 0 32P15 18 59 CDC 1033760 A 11/7/2001 11/6/2003 0 <td>32P15</td> <td>17</td> <td>52 CDC</td> <td>1033818 A</td> <td>11/7/2001</td> <td>11/6/2003</td> <td>0</td> <td>53.19</td>	32P15	17	52 CDC	1033818 A	11/7/2001	11/6/2003	0	53.19
32P15 17 55 CDC 1034355 A 11/8/2001 11/7/2003 0 32P15 17 56 CDC 1034356 A 11/8/2001 11/7/2003 0 32P15 17 57 CDC 1034357 A 11/8/2001 11/7/2003 0 32P15 17 58 CDC 1033753 A 11/7/2001 11/6/2003 0 32P15 17 60 CDC 1033755 A 11/7/2001 11/6/2003 0 32P15 18 51 CDC 1033821 A 11/7/2001 11/6/2003 0 32P15 18 52 CDC 1033823 A 11/7/2001 11/6/2003 0 32P15 18 53 CDC 1033824 A 11/7/2001 11/6/2003 0 32P15 18 54 CDC 1033757 A 11/7/2001 11/6/2003 0 32P15 18 56 CDC 1033758 A 11/7/2001 11/6/2003 0 32P15 18 59 CDC 1033760 A 11/7/2001 11/6/2003 0 <td>32P15</td> <td>17</td> <td>53 CDC</td> <td>1033819 A</td> <td>11/7/2001</td> <td>11/6/2003</td> <td>0</td> <td>53.19</td>	32P15	17	53 CDC	1033819 A	11/7/2001	11/6/2003	0	53.19
32P15 17 56 CDC 1034356 A 11/8/2001 11/7/2003 0 32P15 17 57 CDC 1034357 A 11/8/2001 11/7/2003 0 32P15 17 58 CDC 1033753 A 11/7/2001 11/6/2003 0 32P15 17 58 CDC 1033755 A 11/7/2001 11/6/2003 0 32P15 18 51 CDC 1033755 A 11/7/2001 11/6/2003 0 32P15 18 51 CDC 1033821 A 11/7/2001 11/6/2003 0 32P15 18 53 CDC 1033824 A 11/7/2001 11/6/2003 0 32P15 18 54 CDC 1033824 A 11/7/2001 11/6/2003 0 32P15 18 55 CDC 1033756 A 11/7/2001 11/6/2003 0 32P15 18 56 CDC 1033759 A 11/7/2001 11/6/2003 0 32P15 18 59 CDC 1033760 A 11/7/2001 11/6/2003 0 <td>32P15</td> <td>17</td> <td>54 CDC</td> <td>1033820 A</td> <td>11/7/2001</td> <td>11/6/2003</td> <td>0</td> <td>53.19</td>	32P15	17	54 CDC	1033820 A	11/7/2001	11/6/2003	0	53.19
32P15 17 57 CDC 1034357 A 11/8/2001 11/7/2003 0 32P15 17 58 CDC 1033753 A 11/7/2001 11/6/2003 0 32P15 17 59 CDC 1033754 A 11/7/2001 11/6/2003 0 32P15 17 60 CDC 1033755 A 11/7/2001 11/6/2003 0 32P15 18 51 CDC 1033821 A 11/7/2001 11/6/2003 0 32P15 18 52 CDC 1033822 A 11/7/2001 11/6/2003 0 32P15 18 53 CDC 1033756 A 11/7/2001 11/6/2003 0 32P15 18 56 CDC 10033757 A 11/7/2001 11/6/2003 0 32P15 18 56 CDC 10033758 A 11/7/2001 11/6/2003 0 32P15 18 50 CDC 1033706 A 11/7/2001 11/6/2003 0 32P15 19 51 CDC 1033705 A 11/7/2001 11/6/2003 0 </td <td>32P15</td> <td>17</td> <td>55 CDC</td> <td>1034355 A</td> <td>11/8/2001</td> <td>11/7/2003</td> <td>0</td> <td>53.19</td>	32P15	17	55 CDC	1034355 A	11/8/2001	11/7/2003	0	53.19
32P15 17 58 CDC 1033753 A 11/7/2001 11/6/2003 0 32P15 17 59 CDC 1033754 A 11/7/2001 11/6/2003 0 32P15 17 60 CDC 1033755 A 11/7/2001 11/6/2003 0 32P15 18 51 CDC 1033821 A 11/7/2001 11/6/2003 0 32P15 18 52 CDC 1033822 A 11/7/2001 11/6/2003 0 32P15 18 53 CDC 1033824 A 11/7/2001 11/6/2003 0 32P15 18 54 CDC 1033824 A 11/7/2001 11/6/2003 0 32P15 18 56 CDC 1033757 A 11/7/2001 11/6/2003 0 32P15 18 57 CDC 1033760 A 11/7/2001 11/6/2003 0 32P15 18 58 CDC 1033761 A 11/7/2001 11/6/2003 0 32P15 18 60 CDC 1033705 A 11/7/2001 11/6/2003 0 <td>32P15</td> <td>17</td> <td>56 CDC</td> <td>1034356 A</td> <td>11/8/2001</td> <td>11/7/2003</td> <td>0</td> <td>53.19</td>	32P15	17	56 CDC	1034356 A	11/8/2001	11/7/2003	0	53.19
32P15 17 59 CDC 1033754 A 11/7/2001 11/6/2003 0 32P15 17 60 CDC 1033755 A 11/7/2001 11/6/2003 0 32P15 18 51 CDC 1033821 A 11/7/2001 11/6/2003 0 32P15 18 52 CDC 1033822 A 11/7/2001 11/6/2003 0 32P15 18 53 CDC 1033823 A 11/7/2001 11/6/2003 0 32P15 18 54 CDC 1033824 A 11/7/2001 11/6/2003 0 32P15 18 55 CDC 1033756 A 11/7/2001 11/6/2003 0 32P15 18 56 CDC 1033759 A 11/7/2001 11/6/2003 0 32P15 18 58 CDC 1033760 A 11/7/2001 11/6/2003 0 32P15 18 60 CDC 1033705 A 11/7/2001 11/6/2003 0 32P15 19 51 CDC 1033706 A 11/7/2001 11/6/2003 0 <td>32P15</td> <td>17</td> <td>57 CDC</td> <td>1034357 A</td> <td>11/8/2001</td> <td>11/7/2003</td> <td>0</td> <td>53.19</td>	32P15	17	57 CDC	1034357 A	11/8/2001	11/7/2003	0	53.19
32P15 17 60 CDC 1033755 11/7/2001 11/6/2003 0 32P15 18 51 CDC 1033821 A 11/7/2001 11/6/2003 0 32P15 18 52 CDC 1033822 A 11/7/2001 11/6/2003 0 32P15 18 53 CDC 1033824 11/7/2001 11/6/2003 0 32P15 18 54 CDC 1033824 11/7/2001 11/6/2003 0 32P15 18 55 CDC 1033756 11/7/2001 11/6/2003 0 32P15 18 56 CDC 1033757 A 11/7/2001 11/6/2003 0 32P15 18 59 CDC 1033760 11/7/2001 11/6/2003 0 32P15 18 60 CDC 1033705 11/7/2001 11/6/2003 0 32P15 19 51 CDC 1033706 11/7/2001 11/6/2003	32P15	17	58 CDC	1033753 A	11/7/2001	11/6/2003	0	53.19
32P15 18 51 CDC 1033821 A 11/7/2001 11/6/2003 0 32P15 18 52 CDC 1033822 A 11/7/2001 11/6/2003 0 32P15 18 53 CDC 1033823 A 11/7/2001 11/6/2003 0 32P15 18 54 CDC 1033824 A 11/7/2001 11/6/2003 0 32P15 18 55 CDC 1033756 A 11/7/2001 11/6/2003 0 32P15 18 56 CDC 1033758 A 11/7/2001 11/6/2003 0 32P15 18 58 CDC 1033759 A 11/7/2001 11/6/2003 0 32P15 18 59 CDC 1033760 A 11/7/2001 11/6/2003 0 32P15 19 51 CDC 1033705 A 11/7/2001 11/6/2003 0 32P15 19 52 CDC 1033705 A 11/7/2001 11/6/2003 0 32P15 19 53 CDC 1033707 A 11/7/2001 11/6/2003 0 <td>32P15</td> <td>17</td> <td>59 CDC</td> <td>1033754 A</td> <td>11/7/2001</td> <td>11/6/2003</td> <td>0</td> <td>53.19</td>	32P15	17	59 CDC	1033754 A	11/7/2001	11/6/2003	0	53.19
32P15 18 52 CDC 1033822 A 11/7/2001 11/6/2003 0 32P15 18 53 CDC 1033823 A 11/7/2001 11/6/2003 0 32P15 18 54 CDC 1033824 A 11/7/2001 11/6/2003 0 32P15 18 55 CDC 1033756 A 11/7/2001 11/6/2003 0 32P15 18 56 CDC 1033757 A 11/7/2001 11/6/2003 0 32P15 18 57 CDC 1033758 A 11/7/2001 11/6/2003 0 32P15 18 58 CDC 1033760 A 11/7/2001 11/6/2003 0 32P15 18 60 CDC 1033705 A 11/7/2001 11/6/2003 0 32P15 19 51 CDC 1033705 A 11/7/2001 11/6/2003 0 32P15 19 52 CDC 1033705 A 11/7/2001 11/6/2003 0 32P15 19 53 CDC 1033708 A 11/7/2001 11/6/2003 0 <td>32P15</td> <td>17</td> <td>60 CDC</td> <td>1033755 A</td> <td>11/7/2001</td> <td>11/6/2003</td> <td>0</td> <td>53.19</td>	32P15	17	60 CDC	1033755 A	11/7/2001	11/6/2003	0	53.19
32P15 18 53 CDC 1033823 A 11/7/2001 11/6/2003 0 32P15 18 54 CDC 1033824 A 11/7/2001 11/6/2003 0 32P15 18 55 CDC 1033756 A 11/7/2001 11/6/2003 0 32P15 18 56 CDC 1033757 A 11/7/2001 11/6/2003 0 32P15 18 57 CDC 1033759 A 11/7/2001 11/6/2003 0 32P15 18 58 CDC 1033759 A 11/7/2001 11/6/2003 0 32P15 18 59 CDC 1033761 A 11/7/2001 11/6/2003 0 32P15 18 60 CDC 1033705 A 11/7/2001 11/6/2003 0 32P15 19 51 CDC 1033706 A 11/7/2001 11/6/2003 0 32P15 19 52 CDC 1033707 A 11/7/2001 11/6/2003 0 32P15 19 54 CDC 1033708 A 11/7/2001 11/6/2003 0 <td>32P15</td> <td>18</td> <td>51 CDC</td> <td>1033821 A</td> <td>11/7/2001</td> <td>11/6/2003</td> <td>0</td> <td>53.18</td>	32P15	18	51 CDC	1033821 A	11/7/2001	11/6/2003	0	53.18
32P15 18 54 CDC 1033824 A 11/7/2001 11/6/2003 0 32P15 18 55 CDC 1033756 A 11/7/2001 11/6/2003 0 32P15 18 56 CDC 1033757 A 11/7/2001 11/6/2003 0 32P15 18 57 CDC 1033758 A 11/7/2001 11/6/2003 0 32P15 18 58 CDC 1033760 A 11/7/2001 11/6/2003 0 32P15 18 59 CDC 1033760 A 11/7/2001 11/6/2003 0 32P15 18 60 CDC 1033705 A 11/7/2001 11/6/2003 0 32P15 19 51 CDC 1033705 A 11/7/2001 11/6/2003 0 32P15 19 52 CDC 1033706 A 11/7/2001 11/6/2003 0 32P15 19 53 CDC 1033707 A 11/7/2001 11/6/2003 0 32P15 19 54 CDC 1033708 A 11/7/2001 11/6/2003 0 <td>32P15</td> <td></td> <td></td> <td>1033822 A</td> <td>11/7/2001</td> <td>11/6/2003</td> <td>0</td> <td>53.18</td>	32P15			1033822 A	11/7/2001	11/6/2003	0	53.18
32P15 18 55 CDC 1033756 A 11/7/2001 11/6/2003 0 32P15 18 56 CDC 1033757 A 11/7/2001 11/6/2003 0 32P15 18 57 CDC 1033758 A 11/7/2001 11/6/2003 0 32P15 18 58 CDC 1033759 A 11/7/2001 11/6/2003 0 32P15 18 59 CDC 1033760 A 11/7/2001 11/6/2003 0 32P15 18 60 CDC 1033761 A 11/7/2001 11/6/2003 0 32P15 19 51 CDC 1033705 A 11/7/2001 11/6/2003 0 32P15 19 52 CDC 1033707 A 11/7/2001 11/6/2003 0 32P15 19 53 CDC 1033708 A 11/7/2001 11/6/2003 0 32P15 19 54 CDC 1033708 A 11/7/2001 11/6/2003 0 32P15 19 56 CDC 1033763 A 11/7/2001 11/6/2003 0 <td>32P15</td> <td>18</td> <td>53 CDC</td> <td>1033823 A</td> <td>11/7/2001</td> <td>11/6/2003</td> <td>0</td> <td>53.18</td>	32P15	18	53 CDC	1033823 A	11/7/2001	11/6/2003	0	53.18
32P15 18 56 CDC 1033757 A 11/7/2001 11/6/2003 0 32P15 18 57 CDC 1033758 A 11/7/2001 11/6/2003 0 32P15 18 58 CDC 1033759 A 11/7/2001 11/6/2003 0 32P15 18 59 CDC 1033760 A 11/7/2001 11/6/2003 0 32P15 18 60 CDC 1033761 A 11/7/2001 11/6/2003 0 32P15 19 51 CDC 1033705 A 11/7/2001 11/6/2003 0 32P15 19 52 CDC 1033707 A 11/7/2001 11/6/2003 0 32P15 19 53 CDC 1033708 A 11/7/2001 11/6/2003 0 32P15 19 54 CDC 1033708 A 11/7/2001 11/6/2003 0 32P15 19 55 CDC 1033763 A 11/7/2001 11/6/2003 0 32P15 19 57 CDC 1033764 A 11/7/2001 11/6/2003 0 32P15 19 58 CDC 1033765 A 11/7/2001 11/6/2003 <td></td> <td></td> <td></td> <td>1033824 A</td> <td>11/7/2001</td> <td>11/6/2003</td> <td></td> <td>53.18</td>				1033824 A	11/7/2001	11/6/2003		53.18
32P15 18 57 CDC 1033758 A 11/7/2001 11/6/2003 0 32P15 18 58 CDC 1033759 A 11/7/2001 11/6/2003 0 32P15 18 59 CDC 1033760 A 11/7/2001 11/6/2003 0 32P15 18 60 CDC 1033761 A 11/7/2001 11/6/2003 0 32P15 19 51 CDC 1033705 A 11/7/2001 11/6/2003 0 32P15 19 52 CDC 1033706 A 11/7/2001 11/6/2003 0 32P15 19 53 CDC 1033707 A 11/7/2001 11/6/2003 0 32P15 19 54 CDC 1033708 A 11/7/2001 11/6/2003 0 32P15 19 56 CDC 1033763 A 11/7/2001 11/6/2003 0 32P15 19 57 CDC 1033764 A 11/7/2001 11/6/2003 0 32P15 19 57 CDC 1033765 A 11/7/2001 11/6/2003 0 <td>32P15</td> <td></td> <td></td> <td>1033756 A</td> <td>11/7/2001</td> <td>11/6/2003</td> <td>0</td> <td>53.18</td>	32P15			1033756 A	11/7/2001	11/6/2003	0	53.18
32P15 18 58 CDC 1033759 A 11/7/2001 11/6/2003 0 32P15 18 59 CDC 1033760 A 11/7/2001 11/6/2003 0 32P15 18 60 CDC 1033761 A 11/7/2001 11/6/2003 0 32P15 19 51 CDC 1033705 A 11/7/2001 11/6/2003 0 32P15 19 52 CDC 1033706 A 11/7/2001 11/6/2003 0 32P15 19 53 CDC 1033707 A 11/7/2001 11/6/2003 0 32P15 19 53 CDC 1033708 A 11/7/2001 11/6/2003 0 32P15 19 54 CDC 1033708 A 11/7/2001 11/6/2003 0 32P15 19 56 CDC 1033763 A 11/7/2001 11/6/2003 0 32P15 19 56 CDC 1033765 A 11/7/2001 11/6/2003 0 32P15 19 50 CDC 1033766 A 11/7/2001 11/6/2003 0 32P15 19 50 CDC 1033767 A 11/7/2001 11/6/2003 <td>32P15</td> <td>18</td> <td></td> <td>1033757 A</td> <td>11/7/2001</td> <td>11/6/2003</td> <td>0</td> <td>53.18</td>	32P15	18		1033757 A	11/7/2001	11/6/2003	0	53.18
32P15 18 59 CDC 1033760 A 11/7/2001 11/6/2003 0 32P15 18 60 CDC 1033761 A 11/7/2001 11/6/2003 0 32P15 19 51 CDC 1033705 A 11/7/2001 11/6/2003 0 32P15 19 52 CDC 1033706 A 11/7/2001 11/6/2003 0 32P15 19 53 CDC 1033707 A 11/7/2001 11/6/2003 0 32P15 19 54 CDC 1033708 A 11/7/2001 11/6/2003 0 32P15 19 55 CDC 1033709 A 11/7/2001 11/6/2003 0 32P15 19 56 CDC 1033763 A 11/7/2001 11/6/2003 0 32P15 19 57 CDC 1033764 A 11/7/2001 11/6/2003 0 32P15 19 58 CDC 1033766 A 11/7/2001 11/6/2003 0 32P15 19 59 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 19 60 CDC 1033767 A 11/7/2001 11/6/2003 <td></td> <td></td> <td></td> <td>1033758 A</td> <td>11/7/2001</td> <td>11/6/2003</td> <td>0</td> <td>53.18</td>				1033758 A	11/7/2001	11/6/2003	0	53.18
32P15 18 60 CDC 1033761 A 11/7/2001 11/6/2003 0 32P15 19 51 CDC 1033705 A 11/7/2001 11/6/2003 0 32P15 19 52 CDC 1033706 A 11/7/2001 11/6/2003 0 32P15 19 53 CDC 1033707 A 11/7/2001 11/6/2003 0 32P15 19 54 CDC 1033708 A 11/7/2001 11/6/2003 0 32P15 19 54 CDC 1033708 A 11/7/2001 11/6/2003 0 32P15 19 55 CDC 1033709 A 11/7/2001 11/6/2003 0 32P15 19 56 CDC 1033763 A 11/7/2001 11/6/2003 0 32P15 19 57 CDC 1033765 A 11/7/2001 11/6/2003 0 32P15 19 59 CDC 1033766 A 11/7/2001 11/6/2003 0 32P15 19 60 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 20 51 CDC 1033710 A 11/7/2001 11/6/2003 <td></td> <td></td> <td></td> <td>1033759 A</td> <td>11/7/2001</td> <td>11/6/2003</td> <td>0</td> <td>53.18</td>				1033759 A	11/7/2001	11/6/2003	0	53.18
32P15 19 51 CDC 1033705 A 11/7/2001 11/6/2003 0 32P15 19 52 CDC 1033706 A 11/7/2001 11/6/2003 0 32P15 19 53 CDC 1033707 A 11/7/2001 11/6/2003 0 32P15 19 54 CDC 1033707 A 11/7/2001 11/6/2003 0 32P15 19 54 CDC 1033708 A 11/7/2001 11/6/2003 0 32P15 19 55 CDC 1033709 A 11/7/2001 11/6/2003 0 32P15 19 56 CDC 1033763 A 11/7/2001 11/6/2003 0 32P15 19 57 CDC 1033765 A 11/7/2001 11/6/2003 0 32P15 19 58 CDC 1033766 A 11/7/2001 11/6/2003 0 32P15 19 60 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 19 60 CDC 1033767 A 11/7/2001 11/6/2003 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>53.18</td>							0	53.18
32P15 19 52 CDC 1033706 A 11/7/2001 11/6/2003 0 32P15 19 53 CDC 1033707 A 11/7/2001 11/6/2003 0 32P15 19 54 CDC 1033708 A 11/7/2001 11/6/2003 0 32P15 19 55 CDC 1033709 A 11/7/2001 11/6/2003 0 32P15 19 56 CDC 1033763 A 11/7/2001 11/6/2003 0 32P15 19 56 CDC 1033764 A 11/7/2001 11/6/2003 0 32P15 19 57 CDC 1033765 A 11/7/2001 11/6/2003 0 32P15 19 58 CDC 1033766 A 11/7/2001 11/6/2003 0 32P15 19 59 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 19 60 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 20 51 CDC 1033710 A 11/7/2001 11/6/2003 0 32P15 20 52 CDC 1033711 A 11/7/2001 11/6/2003 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>53.18</td>							0	53.18
32P15 19 53 CDC 1033707 A 11/7/2001 11/6/2003 0 32P15 19 54 CDC 1033708 A 11/7/2001 11/6/2003 0 32P15 19 55 CDC 1033709 A 11/7/2001 11/6/2003 0 32P15 19 56 CDC 1033763 A 11/7/2001 11/6/2003 0 32P15 19 57 CDC 1033764 A 11/7/2001 11/6/2003 0 32P15 19 57 CDC 1033765 A 11/7/2001 11/6/2003 0 32P15 19 58 CDC 1033766 A 11/7/2001 11/6/2003 0 32P15 19 59 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 19 60 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 20 51 CDC 1033710 A 11/7/2001 11/6/2003 0 32P15 20 52 CDC 1033711 A 11/7/2001 11/6/2003 0 32P15 20 53 CDC 1033713 A 11/7/2001 11/6/2003 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>53.17</td>								53.17
32P15 19 54 CDC 1033708 A 11/7/2001 11/6/2003 0 32P15 19 55 CDC 1033709 A 11/7/2001 11/6/2003 0 32P15 19 56 CDC 1033763 A 11/7/2001 11/6/2003 0 32P15 19 57 CDC 1033764 A 11/7/2001 11/6/2003 0 32P15 19 57 CDC 1033765 A 11/7/2001 11/6/2003 0 32P15 19 58 CDC 1033766 A 11/7/2001 11/6/2003 0 32P15 19 59 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 19 60 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 20 51 CDC 1033710 A 11/7/2001 11/6/2003 0 32P15 20 52 CDC 1033712 A 11/7/2001 11/6/2003 0 32P15 20 53 CDC 1033713 A 11/7/2001 11/6/2003 0 32P15 20 54 CDC 1033714 A 11/7/2001 11/6/2003 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>53.17</td>							0	53.17
32P15 19 55 CDC 1033709 A 11/7/2001 11/6/2003 0 32P15 19 56 CDC 1033763 A 11/7/2001 11/6/2003 0 32P15 19 57 CDC 1033764 A 11/7/2001 11/6/2003 0 32P15 19 57 CDC 1033765 A 11/7/2001 11/6/2003 0 32P15 19 58 CDC 1033766 A 11/7/2001 11/6/2003 0 32P15 19 59 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 19 60 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 20 51 CDC 1033710 A 11/7/2001 11/6/2003 0 32P15 20 52 CDC 1033712 A 11/7/2001 11/6/2003 0 32P15 20 53 CDC 1033713 A 11/7/2001 11/6/2003 0 32P15 20 54 CDC 1033714 A 11/7/2001 11/6/2003 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>53.17</td>							0	53.17
32P15 19 56 CDC 1033763 A 11/7/2001 11/6/2003 0 32P15 19 57 CDC 1033764 A 11/7/2001 11/6/2003 0 32P15 19 58 CDC 1033765 A 11/7/2001 11/6/2003 0 32P15 19 59 CDC 1033766 A 11/7/2001 11/6/2003 0 32P15 19 59 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 19 60 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 20 51 CDC 1033710 A 11/7/2001 11/6/2003 0 32P15 20 52 CDC 1033711 A 11/7/2001 11/6/2003 0 32P15 20 53 CDC 1033712 A 11/7/2001 11/6/2003 0 32P15 20 54 CDC 1033713 A 11/7/2001 11/6/2003 0 32P15 20 55 CDC 1033714 A 11/7/2001 11/6/2003 0 32P15 20 56 CDC 1033768 A 11/7/2001 11/6/2003 <td></td> <td></td> <td></td> <td></td> <td></td> <td>11/6/2003</td> <td>0</td> <td>53.17</td>						11/6/2003	0	53.17
32P15 19 57 CDC 1033764 A 11/7/2001 11/6/2003 0 32P15 19 58 CDC 1033765 A 11/7/2001 11/6/2003 0 32P15 19 59 CDC 1033766 A 11/7/2001 11/6/2003 0 32P15 19 60 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 20 51 CDC 1033710 A 11/7/2001 11/6/2003 0 32P15 20 51 CDC 1033710 A 11/7/2001 11/6/2003 0 32P15 20 52 CDC 1033711 A 11/7/2001 11/6/2003 0 32P15 20 53 CDC 1033712 A 11/7/2001 11/6/2003 0 32P15 20 54 CDC 1033713 A 11/7/2001 11/6/2003 0 32P15 20 55 CDC 1033714 A 11/7/2001 11/6/2003 0 32P15 20 56 CDC 1033768 A 11/7/2001 11/6/2003 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>53.17</td>							0	53.17
32P15 19 58 CDC 1033765 A 11/7/2001 11/6/2003 0 32P15 19 59 CDC 1033766 A 11/7/2001 11/6/2003 0 32P15 19 60 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 20 51 CDC 1033710 A 11/7/2001 11/6/2003 0 32P15 20 52 CDC 1033711 A 11/7/2001 11/6/2003 0 32P15 20 52 CDC 1033712 A 11/7/2001 11/6/2003 0 32P15 20 53 CDC 1033713 A 11/7/2001 11/6/2003 0 32P15 20 54 CDC 1033713 A 11/7/2001 11/6/2003 0 32P15 20 55 CDC 1033714 A 11/7/2001 11/6/2003 0 32P15 20 56 CDC 1033768 A 11/7/2001 11/6/2003 0							0	53.17
32P15 19 59 CDC 1033766 A 11/7/2001 11/6/2003 0 32P15 19 60 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 20 51 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 20 51 CDC 1033710 A 11/7/2001 11/6/2003 0 32P15 20 52 CDC 1033711 A 11/7/2001 11/6/2003 0 32P15 20 53 CDC 1033712 A 11/7/2001 11/6/2003 0 32P15 20 54 CDC 1033713 A 11/7/2001 11/6/2003 0 32P15 20 55 CDC 1033714 A 11/7/2001 11/6/2003 0 32P15 20 56 CDC 1033768 A 11/7/2001 11/6/2003 0								53.17
32P15 19 60 CDC 1033767 A 11/7/2001 11/6/2003 0 32P15 20 51 CDC 1033710 A 11/7/2001 11/6/2003 0 32P15 20 52 CDC 1033711 A 11/7/2001 11/6/2003 0 32P15 20 52 CDC 1033712 A 11/7/2001 11/6/2003 0 32P15 20 53 CDC 1033713 A 11/7/2001 11/6/2003 0 32P15 20 54 CDC 1033714 A 11/7/2001 11/6/2003 0 32P15 20 55 CDC 1033714 A 11/7/2001 11/6/2003 0 32P15 20 56 CDC 1033768 A 11/7/2001 11/6/2003 0								53.17
32P15 20 51 CDC 1033710 A 11/7/2001 11/6/2003 0 32P15 20 52 CDC 1033711 A 11/7/2001 11/6/2003 0 32P15 20 53 CDC 1033712 A 11/7/2001 11/6/2003 0 32P15 20 54 CDC 1033713 A 11/7/2001 11/6/2003 0 32P15 20 55 CDC 1033714 A 11/7/2001 11/6/2003 0 32P15 20 56 CDC 1033768 A 11/7/2001 11/6/2003 0								53.17
32P15 20 52 CDC 1033711 A 11/7/2001 11/6/2003 0 32P15 20 53 CDC 1033712 A 11/7/2001 11/6/2003 0 32P15 20 54 CDC 1033713 A 11/7/2001 11/6/2003 0 32P15 20 55 CDC 1033714 A 11/7/2001 11/6/2003 0 32P15 20 56 CDC 1033768 A 11/7/2001 11/6/2003 0								53.18
32P15 20 53 CDC 1033712 A 11/7/2001 11/6/2003 0 32P15 20 54 CDC 1033713 A 11/7/2001 11/6/2003 0 32P15 20 55 CDC 1033714 A 11/7/2001 11/6/2003 0 32P15 20 55 CDC 1033768 A 11/7/2001 11/6/2003 0								53.16
32P15 20 54 CDC 1033713 A 11/7/2001 11/6/2003 0 32P15 20 55 CDC 1033714 A 11/7/2001 11/6/2003 0 32P15 20 56 CDC 1033768 A 11/7/2001 11/6/2003 0								53.16
32P15 20 55 CDC 1033714 A 11/7/2001 11/6/2003 0 32P15 20 56 CDC 1033768 A 11/7/2001 11/6/2003 0								53.16
32P15 20 56 CDC 1033768 A 11/7/2001 11/6/2003 0								53.16
								53.16
32P15 20 57 CDC 1033769 A 11/7/2001 11/6/2003 0								53.16
	32P15	20	57 CDC	1033769 A	11/7/2001	11/6/2003	0	53.16

					`				1	,	t	1	ļ	4
1	1			1	I			•				1	1	4
1				1	[1	[1	4	:	4

32P15	20	58 CDC	1033770 A	11/7/2001 11/6/2003	0	53.16
32P15	20	59 CDC	1033771 A	11/7/2001 11/6/2003	0	53.17
32P15	20	60 CDC	1033772 A	11/7/2001 11/6/2003	0	53.17
32P15	21	51 CDC	1033773 A	11/7/2001 11/6/2003	0	53,15
32P15	21	52 CDC	1033715 A	11/7/2001 11/6/2003	0	53.15
32P15	21	53 CDC	1033716 A	11/7/2001 11/6/2003	0	53.15
32P15	21	54 CDC	1033717 A	11/7/2001 11/6/2003	0	53.15
32P15	21	56 CDC	1033719 A	11/7/2001 11/6/2003	0	53.15
32P15	21	57 CDC	103377 4 A	11/7/2001 11/6/2003	0	53.15
32P15	21	58 CDC	1033775 A	11/7/2001 11/6/2003	0	53.16
32P15	21	59 CDC	1033776 A	11/7/2001 11/6/2003	0	53.16
32P15	21	60 CDC	1033777 A	11/7/2001 11/6/2003	0	53.16
32P15	22	51 CDC	1033778 A	11/7/2001 11/6/2003	0	53.14
32P15	22	52 CDC	1033720 A	11/7/2001 11/6/2003	0	53.14
32P15	22	53 CDC	1033721 A	11/7/2001 11/6/2003	0	53.14
32P15	22	54 CDC	1033722 A	11/7/2001 11/6/2003	0	53.14
32P15	22	55 CDC	1033723 A	11/7/2001 11/6/2003	0	53.14
32P15	22	56 CDC	1033724 A	11/7/2001 11/6/2003	0	53.14
32P15	22	57 CDC	1033725 A	11/7/2001 11/6/2003	• 0	53.15
32P15	22	58 CDC	1033779 A	11/7/2001 11/6/2003	0	53.15
32P15	22	59 CDC	1033780 A	11/7/2001 11/6/2003		53.15
32P15	22	60 CDC	1033781 A	11/7/2001 11/6/2003		53.15
32P15	23	51 CDC	10337 82 A	11/7/2001 11/6/2003	0	53.13
32P15	23	52 CDC	1033726 A	11/7/2001 11/6/2003	0	53.13
32P15	23	53 CDC	1033727 A	11/7/2001 11/6/2003		53,13
32P15	23	54 CDC	1033728 A	11/7/2001 11/6/2003		53.13
32P15	23	55 CDC	1033729 A	11/7/2001 11/6/2003		53.13
32P15	23	56 CDC	1033730 A	11/7/2001 11/6/2003		53.13
32P15	23	57 CDC	1033731 A	11/7/2001 11/6/2003		53.14
32P15	23	58 CDC	1033732 A	11/7/2001 11/6/2003		53.14
32P15	23	59 CDC	1033783 A	11/7/2001 11/6/2003		53.14
32P15	23	60 CDC	1033784 A	11/7/2001 11/6/2003		53.14
32P15	24	42 CDC	13075 A	2/16/2004 2/15/2006		53.12
32P15	24	43 CDC	13076 A	2/16/2004 2/15/2006		53.12
32P15	24	44 CDC	13077 A	2/16/2004 2/15/2006		53.12
32P15	24	45 CDC	13078 A	2/16/2004 2/15/2006		53.12
32P15	24	46 CDC	13079 A	2/16/2004 2/15/2006	0	53.12

		 1 1 1	1 I I
			1 1 1
3 1 1 1	1 7 1 1	1 1 1	, , ,

32P15	24	47 CDC	13080 A	2/16/2004 2/15/2006	0	53.12
32P15	24	55 CDC	1033733 A	11/7/2001 11/6/2003	0	53.12
32P15	24	56 CDC	1033734 A	11/7/2001 11/6/2003	0	53.13
32P15	24	57 CDC	1033735 A	11/7/2001 11/6/2003	0	53.13
32P15	24	58 CDC	1033736 A	11/7/2001 11/6/2003	0	53.13
32P15	24	59 CDC	1033737 A	11/7/2001 11/6/2003	0	53.13
32P15	24	60 CDC	1033738 A	11/7/2001 11/6/2003	0	53.13
32P15	25	38 CDC	13374 A	2/12/2004 2/11/2006	0	53.11
32P15	25	39 CDC	13375 A	2/12/2004 2/11/2006	0	53.11
32P15	25	40 CDC	13376 A	2/12/2004 2/11/2006	0	53.11
32P15	25	41 CDC	13081 A	2/16/2004 2/15/2006	0	53.11
32P15	25	42 CDC	13082 A	2/16/2004 2/15/2006	0	53.11
32P15	25	43 CDC	13083 A	2/16/2004 2/15/2006	0	53.11
32P15	25	44 CDC	13084 A	2/16/2004 2/15/2006	0	53.11
32P15	25	45 CDC	13085 A	2/16/2004 2/15/2006	0	53.11
32P15	25	46 CDC	13086 A	2/16/2004 2/15/2006	0	53.11
32P15	25	47 CDC	13087 A	2/16/2004 2/15/2006	0	53.11
32P15	25	55 CDC	1033739 A	11/7/2001 11/6/2003	0	53.12
32P15	25	56 CDC	1033740 A	11/7/2001 11/6/2003	0	53.12
32P15	25	57 CDC	1033741 A	11/7/2001 11/6/2003	0	53.12
32P15	25	58 CDC	1033742 A	11/7/2001 11/6/2003	0	53.12
32P15	25	59 CDC	1033743 A	11/7/2001 11/6/2003	0	53.12
32P15	25	60 CDC	1033744 A	11/7/2001 11/6/2003	0	53.12
32P15	26	38 CDC	13377 A	2/12/2004 2/11/2006	0	53.1
32P15	26	39 CDC	13378 A	2/12/2004 2/11/2006	0	53.1
32P15	26	40 CDC	13379 A	2/12/2004 2/11/2006	0	53.1
32P15	26	41 CDC	13088 A	2/16/2004 2/15/2006	0	53.1
32P15	26	42 CDC	13089 A	2/16/2004 2/15/2006	0	53.1
32P15	26	43 CDC	13090 A	2/16/2004 2/15/2006	0	53.1
32P15	26	44 CDC	13091 A	2/16/2004 2/15/2006	0	53.1
32P15	26	45 CDC	13092 A	2/16/2004 2/15/2006	0	53.1
32P15	26	46 CDC	13093 A	2/16/2004 2/15/2006	0	53.1
32P15	26	47 CDC	13094 A	2/16/2004 2/15/2006	0	53.1
32P15	27	38 CDC	13380 A	2/12/2004 2/11/2006	0	53.0 9
32P15	27	39 CDC	13381 A	2/12/2004 2/11/2006	0	53.09
32P15	27	40 CDC	13382 A	2/12/2004 2/11/2006	0	53.09
32P15	27	41 CDC	13095 A	2/16/2004 2/15/2006	0	53.09

1	1	1	1	+	1		1	1	1	1	1	1	1	1	1	1	1	1
,	1	1		1	1			1	1	1	1	1	1	1	1			1
•	•	•	•	•	,	,	,	,	•	•	*	•	•	•				•

32P15	27	42 CDC	13096 A	2/16/2004 2/15/2006	0	53.09
32P15	27	43 CDC	13097 A	2/16/2004 2/15/2006	0	53.09
32P15	27	44 CDC	13098 A	2/16/2004 2/15/2006	0	53.09
32P15	27	45 CDC	13099 A	2/16/2004 2/15/2006	0	53.09
32P15	27	46 CDC	13100 A	2/16/2004 2/15/2006	0	53.09
32P15	27	47 CDC	13101 A	2/16/2004 2/15/2006	0	53.09
32P15	28	38 CDC	13383 A	2/12/2004 2/11/2006	0	53.08
32P15	28	39 CDC	133 84 A	2/12/2004 2/11/2006	0	53.08
32P15	28	40 CDC	13385 A	2/12/2004 2/11/2006	0	53.08
32P15	28	41 CDC	13102 A	2/16/2004 2/15/2006	0	53.08
32P15	28	42 CDC	13103 A	2/16/2004 2/15/2006	0	53.08
32P15	28	43 CDC	13104 A	2/16/2004 2/15/2006	0	53.08
32P15	28	44 CDC	13105 A	2/16/2004 2/15/2006	0	53.08
32P15	28	45 CDC	13106 A	2/16/2004 2/15/2006	0	53.08
32P15	28	46 CDC	13107 A	2/16/2004 2/15/2006	0	53.08
32P15	28	47 CDC	13108 A	2/16/2004 2/15/2006	0	53.08
32P15	29	38 CDC	13386 A	2/12/2004 2/11/2006	0	53.07
32P15	29	39 CDC	13387 A	2/12/2004 2/11/2006	0	53.07
32P15	29	40 CDC	13388 A	2/12/2004 2/11/2006	0	53.07
32P15	29	42 CDC	13109 A	2/16/2004 2/15/2006	0	53.07
32P15	29	43 CDC	13110 A	2/16/2004 2/15/2006	0	53.07
32P15	29	44 CDC	13111 A	2/16/2004 2/15/2006	0	53.07
32P15	29	45 CDC	13112 A	2/16/2004 2/15/2006	0	53.07
32P15	29	46 CDC	13113 A	2/16/2004 2/15/2006	0	53.07
32P15	29	47 CDC	13114 A	2/16/2004 2/15/2006	0	53.07
					1	8946.33

Code de te Rang	Lot	Type de t	titr No titre	Statut	du ti Date d'insc	Date d'expiNe	ombre d'∉Nombi	re de S	uperficie
32P16	1	1 CDC	12719	A	2/24/2004	2/23/2006	0	0	53.35
32P16	1	2 CDC	12720			2/23/2006	0	0	53.35
32P16	1	3 CDC	12721	А	2/24/2004	2/23/2006	0	0	53.35
32P16	1	4 CDC	1035999	Α	11/8/2001	11/7/2003	0	0	53.35
32P16	1	5 CDC	12722	А	2/24/2004	2/23/2006	0	0	53.35
32P16	1	6 CDC	12723	Α	2/24/2004	2/23/2006	0	0	53.35
32P16	1	7 CDC	12724	Α	2/24/2004	2/23/2006	0	0	53.35
32P16	1	8 CDC	12725	Α	2/24/2004	2/23/2006	0	0	53.35
32P16	2	1 CDC	1035604	А	11/7/2001	11/6/2003	0	0	53.34
32P16	2	2 CDC	1035760	A	11/7/2001	11/6/2003	0	0	53.34
32P16	2	3 CDC	1035761	Α	11/7/2001	11/6/2003	0	0	53.34
32P16	2	4 CDC	1036000	A	11/8/2001	11/7/2003	0	0	53.34
32P16	2	5 CDC	12715	A	2/24/2004	2/23/2006	0	0	53.34
32P16	2	6 CDC	12716	Α	2/24/2004	2/23/2006	0	0	53.34
32P16	2	7 CDC	12717	Α	2/24/2004	2/23/2006	0	0	53.34
32P16	2	8 CDC	12718	А	2/24/2004	2/23/2006	0	0	53.34
32P16	3	1 CDC	1035605	А	11/7/2001	11/6/2003	0	0	53.33
32P16	3	2 CDC	1035606	A	11/7/2001	11/6/2003	0	0	53.33
32P16	3	3 CDC	1035762	Α	11/7/2001	11/6/2003	0	0	53.33
32P16	3	4 CDC	12711	A	2/24/2004	2/23/2006	0	0	53.33
32P16	3	5 CDC	12712	A	2/24/2004	2/23/2006	0	0	53.33
32P16	3	6 CDC	12713	А	2/24/2004	2/23/2006	0	0	53.33
32P16	3	7 CDC	12714	Α	2/24/2004	2/23/2006	0	0	53.33
32P16	4	1 CDC	1035608		11/7/2001	11/6/2003	0	0	53.32
32P16	4	2 CDC	1035609	Α	11/7/2001	11/6/2003	0	0	53.32
32P16	4	3 CDC	12755	A	2/5/2004	2/4/2006	0	0	53.32
32P16	4	4 CDC	12706	A	2/24/2004	2/23/2006	0	0	53.32
32P16	4	5 CDC	12707	Α	2/24/2004	2/23/2006	0	0	53.32
32P16	4	6 CDC	12708	Α	2/24/2004	2/23/2006	0	0	53.32
32P16	4	7 CDC	12709	A	2/24/2004	2/23/2006	0	0	53.32
32P16	4	8 CDC	12710	Α	2/24/2004	2/23/2006	0	0	53.32
32P16	5	1 CDC	1035610	Α	11/7/2001	11/6/2003	0	0	53.31
32P16	5	2 CDC	1035611	A	11/7/2001	11/6/2003	0	0	53.31
32P16	5	3 CDC	1036001	Α	11/8/2001	11/7/2003	0	0	53.31
32P16	5	4 CDC	1036002	A	11/8/2001	11/7/2003	0	0	53.31

32P16	5	5 CDC	12702 A	2/24/2004 2/23/2006	0	0	53.31	
32P16	5	6 CDC	12703 A	2/24/2004 2/23/2006	0	0	53.31	
32P16	5	7 CDC	12704 A	2/24/2004 2/23/2006	0	0	53.31	
32P16	5	8 CDC	12705 A	2/24/2004 2/23/2006	0	0	53.31	
32P16	6	1 CDC	1035763 A	11/7/2001 11/6/2003	0	0	53.3	
32P16	6	2 CDC	1035612 A	11/7/2001 11/6/2003	0	0	53.3	
32P16	6	3 CDC	1035613 A	11/7/2001 11/6/2003	0	0	53.3	
32P16	6	4 CDC	12697 A	2/24/2004 2/23/2006	0	0	53.3	
32P16	6	5 CDC	12698 A	2/24/2004 2/23/2006	0	0	53.3	
32P16	6	6 CDC	12699 A	2/24/2004 2/23/2006	0	0	53.3	
32P16	6	7 CDC	12700 A	2/24/2004 2/23/2006	0	0	53.3	
32P16	6	8 CDC	12701 A	2/24/2004 2/23/2006	0	0	53.3	
32P16	7	1 CDC	1035764 A	11/7/2001 11/6/2003	0	0	53.29	
32P16	7	2 CDC	1035765 A	11/7/2001 11/6/2003	0	0	53.29	
32P16	7	3 CDC	1035622 A	11/7/2001 11/6/2003	0	0	53.29	
32P16	7	4 CDC	12753 A	2/5/2004 2/4/2006	0	0	53.29	
32P16	7	5 CDC	12696 A	2/24/2004 2/23/2006	0	0	53.29	
32P16	8	1 CDC	1035766 A	11/7/2001 11/6/2003	0	0	53.28	
32P16	8	2 CDC	1035767 A	11/7/2001 11/6/2003	0	0	53,28	
32P16	8	3 CDC	1035768 A	11/7/2001 11/6/2003	0	0	53.28	
32P16	8	4 CDC	1035630 A	11/7/2001 11/6/2003	0	0	53.28	
32P16	9	1 CDC	1035769 A	11/7/2001 11/6/2003	0	0	53.27	
32P16	9	2 CDC	1035770 A	11/7/2001 11/6/2003	0	0	53.27	
32P16	9	3 CDC	1035771 A	11/7/2001 11/6/2003	0	0	53.27	
32P16	9	4 CDC	1035772 A	11/7/2001 11/6/2003	0	0	53.27	
32P16	10	1 CDC	1035774 A	11/7/2001 11/6/2003	0	0	53.26	
32P16	11	1 CDC	1036279 A	11/8/2001 11/7/2003	0	0	53.25	
32P16	12	1 CDC	1036282 A	11/8/2001 11/7/2003	0	0	53.24	
32P16	13	1 CDC	1036285 A	11/8/2001 11/7/2003	0	0	53.23	
32P16	13	2 CDC	1036286 A	11/8/2001 11/7/2003	0	0	53.23	
32P16	14	2 CDC	1035255 A	11/7/2001 11/6/2003	0	0	53.22	
32P16	14	3 CDC	1035256 A	11/7/2001 11/6/2003	0	0	53.22	
32P16	15	1 CDC	1035257 A	11/7/2001 11/6/2003	0	0	53.21	
32P16	15	2 CDC	1035258 A	11/7/2001 11/6/2003	0	0	53.21	
32P16	15	3 CDC	1035259 A	11/7/2001 11/6/2003	0	0	53.22	
32P16	15	4 CDC	1035260 A	11/7/2001 11/6/2003	0	0	53.22	
32P16	15	5 CDC	1035261 A	11/7/2001 11/6/2003	0	0	53.22	

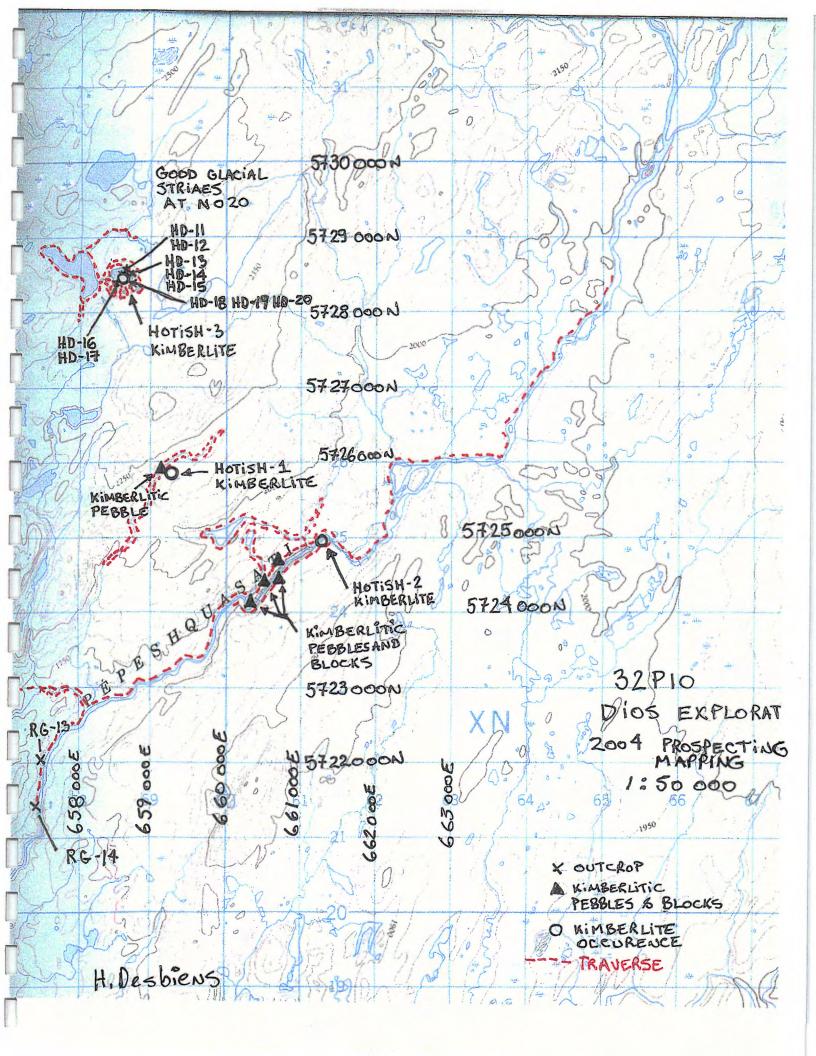
32P16	16	1 CDC	1035262 A	11/7/2001 11/6/2003	0	0	53.2
32P16	16	2 CDC	1035263 A	11/7/2001 11/6/2003	0	0	53.2
32P16	16	3 CDC	1035264 A	11/7/2001 11/6/2003	0	0	53.21
32P16	16	4 CDC	1035265 A	11/7/2001 11/6/2003	0	0	53.21
32P16	17	1 CDC	1035266 A	11/7/2001 11/6/2003	0	0	53.19
32P16	17	2 CDC	1035267 A	11/7/2001 11/6/2003	0	0	53.2
32P16	18	1 CDC	1035268 A	11/7/2001 11/6/2003	0	0	53.19
32P16	18	2 CDC	1035229 A	11/7/2001 11/6/2003	0	0	53.19
32P16	18	15 CDC	1036303 A	11/8/2001 11/7/2003	0	0	53.19
32P16	18	16 CDC	1036304 A	11/8/2001 11/7/2003	0	0	53.19
32P16	18	17 CDC	1036305 A	11/8/2001 11/7/2003	0	0	53.19
32P16	18	18 CDC	1036306 A	11/8/2001 11/7/2003	0	0	53.19
32P16	19	1 CDC	1035230 A	11/7/2001 11/6/2003	0	0	53.18
32P16	19	2 CDC	1035231 A	11/7/2001 11/6/2003	0	0	53.18
32P16	19	15 CDC	1036309 A	11/8/2001 11/7/2003	0	0	53.18
32P16	19	16 CDC	1036310 A	11/8/2001 11/7/2003	0	0	53.18
32P16	19	17 CDC	1036311 A	11/8/2001 11/7/2003	0	0	53.18
32P16	19	18 CDC	1036312 A	11/8/2001 11/7/2003	0	0	53.18
32P16	19	19 CDC	1036313 A	11/8/2001 11/7/2003	0	0	53.18
32P16	19	20 CDC	1036314 A	11/8/2001 11/7/2003	0	0	53.18
32P16	20	1 CDC	1035232 A	11/7/2001 11/6/2003	0	0	53.17
32P16	20	2 CDC	1035233 A	11/7/2001 11/6/2003	0	0	53.17
32P16	20	10 CDC	20816 A	5/20/2004 5/19/2006	0	0	53.17
32P16	20	11 CDC	1045717 A	1/28/2002 1/27/2004	0	0	53.17
32P16	20	12 CDC	1045718 A	1/28/2002 1/27/2004	0	0	53.17
32P16	20	13 CDC	1045719 A	1/28/2002 1/27/2004	0	0	53.17
32P16	20	14 CDC	1045720 A	1/28/2002 1/27/2004	0	0	53.17
32P16	20	15 CDC	1045721 A	1/28/2002 1/27/2004	0	0	53.17
32P16	20	16 CDC	1035269 A	11/7/2001 11/6/2003	0	0	53.17
32P16	20	17 CDC	1035270 A	11/7/2001 11/6/2003	0	0	53.17
32P16	20	18 CDC	1035271 A	11/7/2001 11/6/2003	0	0	53.17
32P16	20	19 CDC	1035272 A	11/7/2001 11/6/2003	0	0	53.17
32P16	20	20 CDC	1035273 A	11/7/2001 11/6/2003	0	0	53.17
32P16	21	1 CDC	1045722 A	1/28/2002 1/27/2004	0	0	53.16
32P16	21	2 CDC	1045723 A	1/28/2002 1/27/2004	0	0	53.16
32P16	21	3 CDC	1045724 A	1/28/2002 1/27/2004	0	0	53.16
32P16	21	4 CDC	1035234 A	11/7/2001 11/6/2003	0	0	53.16

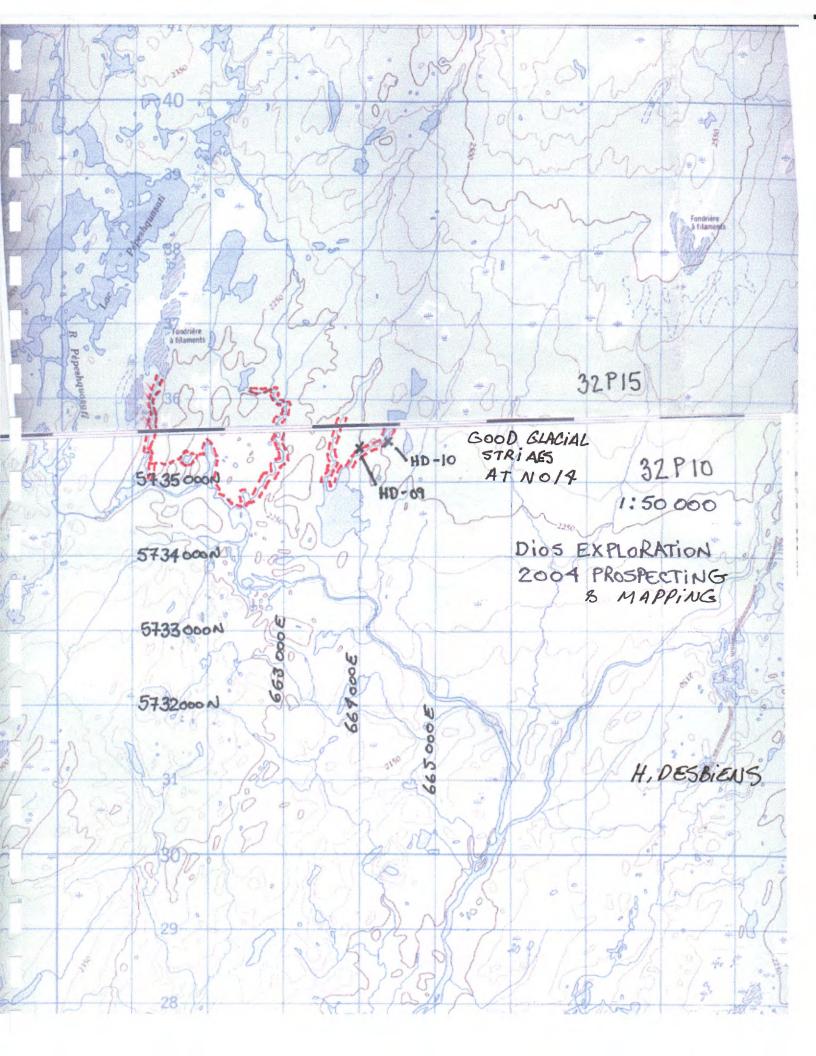
32P16	21	5 CDC	1035235 A	11/7/2001 11/6/2	003 0	0	53.16
32P16	21	6 CDC	1035236 A	11/7/2001 11/6/2	003 0	0	53.16
32P16	21	7 CDC	1035237 A	11/7/2001 11/6/2	003 0	0	53.16
32P16	21	8 CDC	1035238 A	11/7/2001 11/6/2	003 0	0	53.16
32P16	21	9 CDC	1035239 A	11/7/2001 11/6/2	003 0	0	53.16
32P16	21	17 CDC	1035276 A	11/7/2001 11/6/2	003 0	0	53.16
32P16	21	18 CDC	1035277 A	11/7/2001 11/6/2	003 0	0	53.16
32P16	21	19 CDC	1035278 A	11/7/2001 11/6/2	003 0	0	53.16
32P16	21	20 CDC	1035279 A	11/7/2001 11/6/2	003 0	0	53.16
32P16	22	1 CDC	1035240 A	11/7/2001 11/6/2	003 0	0	53.15
32P16	22	2 CDC	1035241 A	11/7/2001 11/6/2	003 0	0	53.15
32P16	22	3 CDC	1035242 A	11/7/2001 11/6/2	003 0	0	53.15
32P16	22	4 CDC	1035243 A	11/7/2001 11/6/2	003 0	0	53.15
32P16	22	5 CDC	1035244 A	11/7/2001 11/6/2	003 0	0	53.15
32P16	22	6 CDC	1035245 A	11/7/2001 11/6/2	003 0	0	53.15
32P16	22	7 CDC	1035246 A	11/7/2001 11/6/2	003 0	0	53.15
32P16	22	8 CDC	1035247 A	11/7/2001 11/6/2		0	53.15
32P16	22	9 CDC	1035248 A	11/7/2001 11/6/2	003 0	0	53.15
32P16	22	17 CDC	1035282 A	11/7/2001 11/6/2	003 0	0	53.15
32P16	22	18 CDC	1035283 A	11/7/2001 11/6/2	003 0	0	53.15
32P16	22	19 CDC	1035284 A	11/7/2001 11/6/2	003 0	0	53.15
32P16	22	20 CDC	1035285 A	11/7/2001 11/6/2	003 0	0	53.15
32P16	23	1 CDC	1035249 A	11/7/2001 11/6/2	003 0	0	53.14
32P16	23	2 CDC	1035250 A	11/7/2001 11/6/2	003 0	0	53.14
32P16	23	3 CDC	1035251 A	11/7/2001 11/6/2		0	53.14
32P16	23	4 CDC	1035174 A	11/7/2001 11/6/2	003 0	0	53.14
32P16	23	5 CDC	1035175 A	11/7/2001 11/6/2	003 0	0	53.14
32P16	23	6 CDC	1035176 A	11/7/2001 11/6/2	003 0	0	53.14
32P16	23	7 CDC	1035177 A	11/7/2001 11/6/2		0	53.14
32P16	23	8 CDC	1035178 A	11/7/2001 11/6/2		0	53.14
32P16	23	9 CDC	1035179 A	11/7/2001 11/6/2		0	53.14
32P16	23	17 CDC	1035288 A	11/7/2001 11/6/2		0	53.14
32P16	23	18 CDC	1035289 A	11/7/2001 11/6/2		0	53.14
32P16	23	19 CDC	1035290 A	11/7/2001 11/6/2		0	53.14
32P16	23	20 CDC	1035291 A	11/7/2001 11/6/2		0	53.14
32P16	24	1 CDC	1035252 A	11/7/2001 11/6/2		0	53.13
32P16	24	2 CDC	1035180 A	11/7/2001 11/6/2	003 0	0	53.13

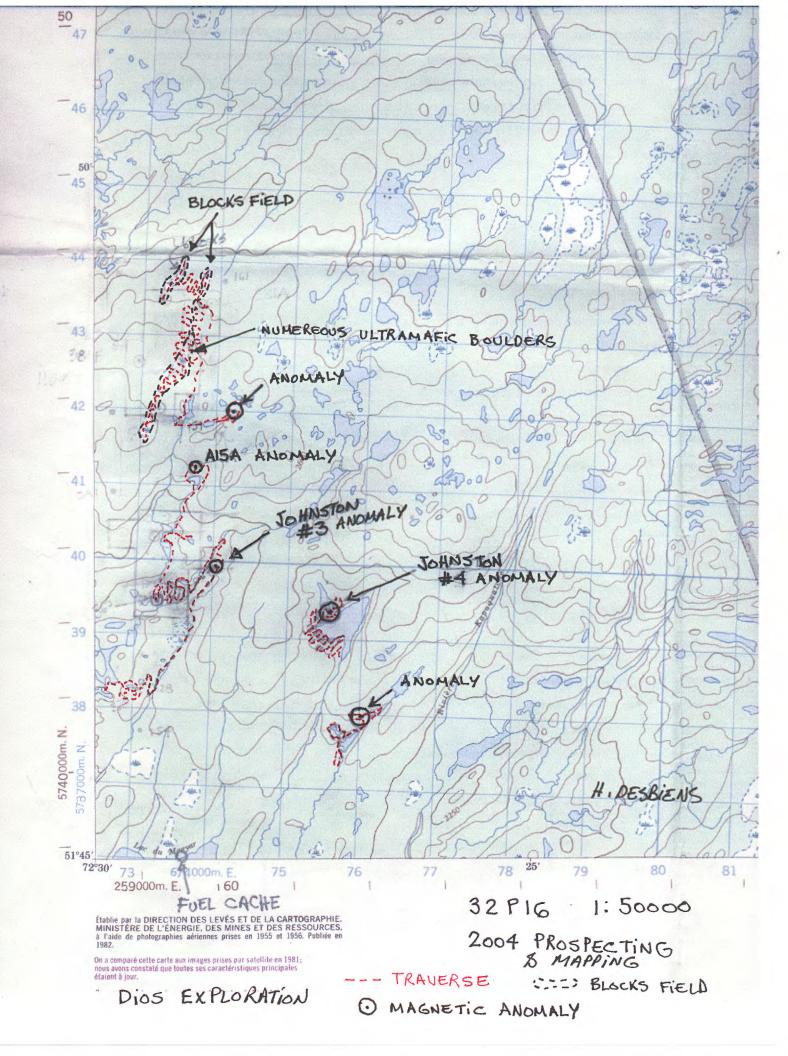
32P16	24	3 CDC	1035181 A	11/7/2001	11/6/2003	0	0	53.13
32P16	24	4 CDC	1035182 A	11/7/2001	11/6/2003	0	0	53.13
32P16	24	5 CDC	1035183 A	11/7/2001	11/6/2003	0	0	53.13
32P16	24	6 CDC	1035184 A	11/7/2001	11/6/2003	0	0	53.13
32P16	24	7 CDC	1035185 A	11/7/2001	11/6/2003	0	0	53.13
32P16	24	8 CDC	1035186 A	11/7/2001	11/6/2003	0	0	53.13
32P16	24	9 CDC	1035187 A	11/7/2001	11/6/2003	0	0	53.13
32P16	25	1 CDC	1035253 A	11/7/2001	11/6/2003	0	0	53.12
32P16	25	2 CDC	1035188 A	11/7/2001	11/6/2003	0	0	53.12
32P16	25	3 CDC	1035189 A	11/7/2001	11/6/2003	0	0	53.12
32P16	25	4 CDC	1035190 A	11/7/2001	11/6/2003	0	0	53.12
32P16	25	5 CDC	1035191 A	11/7/2001	11/6/2003	0	0	53.12
32P16	25	6 CDC	1035192 A	11/7/2001	11/6/2003	0	0	53.12
32P16	25	7 CDC	1035193 A	11/7/2001	11/6/2003	0	0	53.12
32P16	25	8 CDC	1035194 A	11/7/2001	11/6/2003	0	0	53.12
32P16	25	9 CDC	1035195 A	11/7/2001	11/6/2003	0	0	53.12
32P16	25	10 CDC	1035196 A	11/7/2001	11/6/2003	0	0	53.12
32P16	25	11 CDC	1035197 A	11/7/2001	11/6/2003	0	0	53.12
32P16	25	12 CDC	1035198 A	11/7/2001	11/6/2003	0	0	53.12
32P16	25	13 CDC	1035199 A	11/7/2001	11/6/2003	0	0	53.12
32P16	25	14 CDC	1035200 A	11/7/2001	11/6/2003	0	0	53.12
32P16	26	1 CDC	1035214 A	11/7/2001	11/6/2003	0	0	53.11
32P16	26	2 CDC	1035201 A	11/7/2001	11/6/2003	0	0	53.11
32P16	26	3 CDC	1035202 A	11/7/2001	11/6/2003	0	0	53.11
32P16	26	4 CDC	1035203 A	11/7/2001	11/6/2003	0	0	53.11
32P16	26	5 CDC	1035204 A	11/7/2001	11/6/2003	0	0	53.11
32P16	26	6 CDC	1035205 A	11/7/2001	11/6/2003	0	0	53.11
32P16	26	7 CDC	1035206 A	11/7/2001	11/6/2003	0	0	53.11
32P16	26	8 CDC	1035207 A	11/7/2001	11/6/2003	0	0	53.11
32P16	26	9 CDC	1035208 A	11/7/2001	11/6/2003	0	0	53.11
32P16	26	10 CDC	1035209 A	11/7/2001	11/6/2003	0	0	53.11
32P16	26	11 CDC	1035210 A	11/7/2001	11/6/2003	0	0	53.11
32P16	26	12 CDC	1035211 A	11/7/2001	11/6/2003	0	0	53.11
32P16	26	13 CDC	1035212 A	11/7/2001	11/6/2003	0	0	53.11
32P16	26	14 CDC	1035213 A	11/7/2001	11/6/2003	0	0	53.11
32P16	27	1 CDC	1035215 A	11/7/2001	11/6/2003	0	0	53.1
32P16	27	2 CDC	1035216 A	11/7/2001	11/6/2003	0	0	53.1

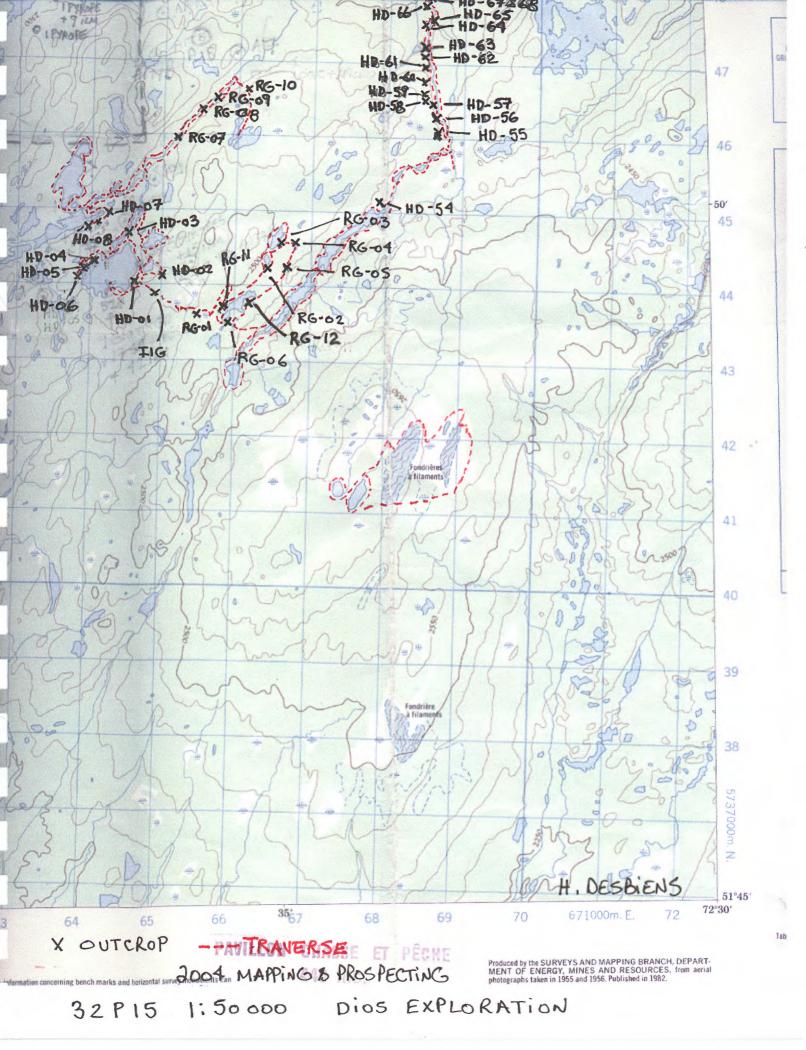
			• .	t						1	•	1	1	1
1	1	1	í i	•		1 1		1			}	1	1	1
1)			1					,	1	2	1	
1			1 1		I I	, <u>,</u>		,			,			

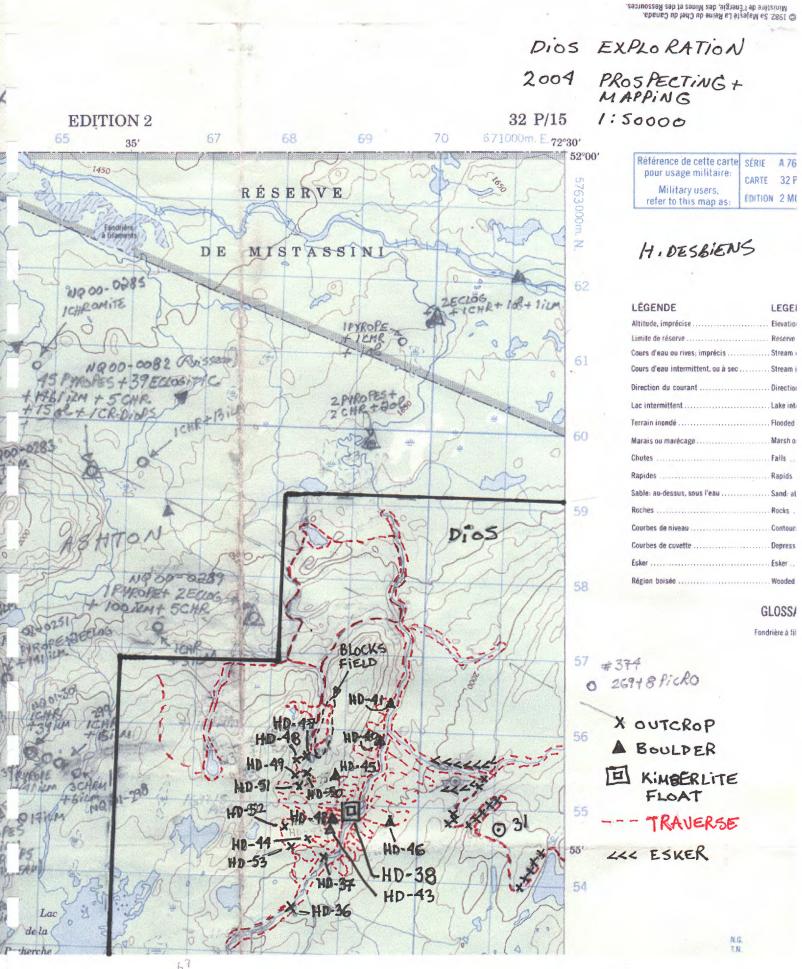
32P16	27	3 CDC	1035217 A	11/7/2001	11/6/2003	0	0	53.1
32P16	27	4 CDC	1035218 A	11/7/2001	11/6/2003	0	0	53.1
32P16	27	5 CDC	1035219 A	11/7/2001	11/6/2003	0	0	53.1
32P16	28	1 CDC	1035220 A	11/7/2001	11/6/2003	0	0	53.09
32P16	28	2 CDC	1035221 A	11/7/2001	11/6/2003	0	0	53.09
32P16	28	3 CDC	1035222 A	11/7/2001	11/6/2003	0	0	53.09
32P16	28	4 CDC	1035223 A	11/7/2001	11/6/2003	0	0	53.09
32P16	28	5 CDC	1035224 A	11/7/2001	11/6/2003	0	0	53.09
32P16	29	1 CDC	1035225 A	11/7/2001	11/6/2003	0	0	53.08
32P16	29	2 CDC	1035226 A	11/7/2001	11/6/2003	0	0	53.08
32P16	30	1 CDC	1035227 A	11/7/2001	11/6/2003	0	0	53.07
32P16	30	2 CDC	1035228 A	11/7/2001	11/6/2003	0	0	53.07
							1	0374.14

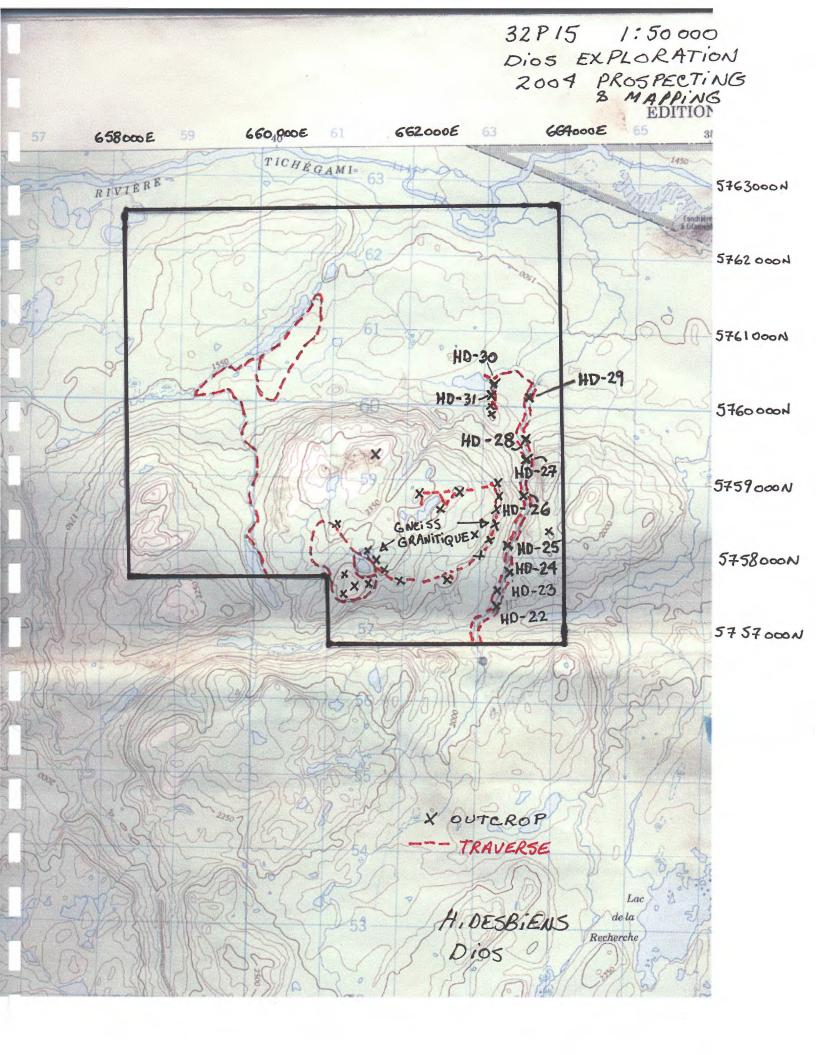

DIOS EXPLORATION 2004 HOTISH PROJECT

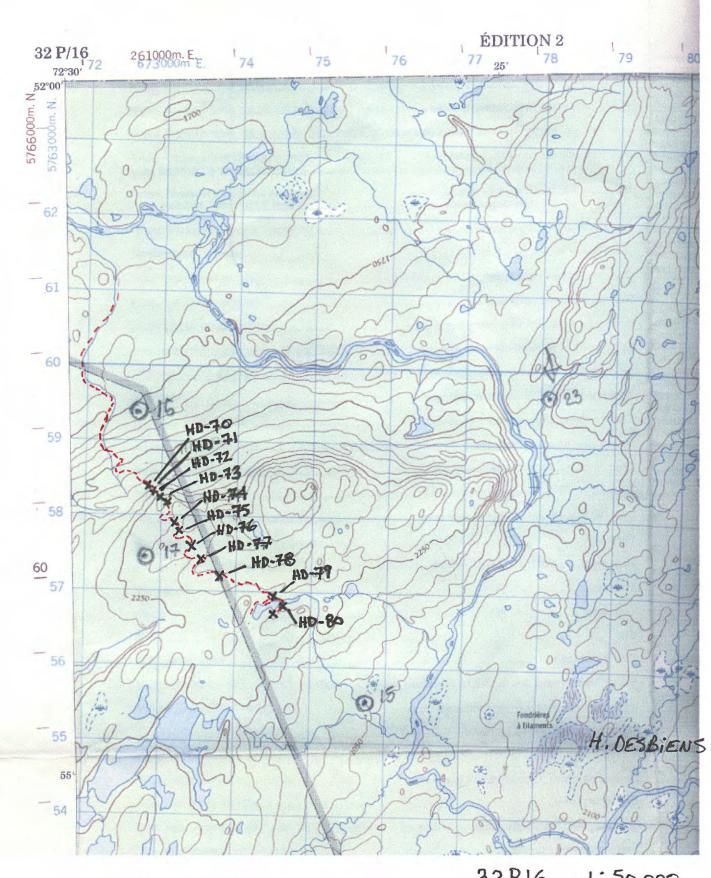

ANNEX 3 HOTISH OUTCROPS- BOULDERS DESCRIPTION AND LOCATION TABLE AND 2004 GEOLOGICAL MAPPING FIELD MAPS


Grid	UTM							
Datum	NAD27	Canad	da					
No affleurement	Cible	UT M e	əst l	UTM nord	Lithologie	Minéraux	Altération	Structure
RG-01	Lac 177 B		665481	5743704	11G	QZ FP MI	hématisation	
RG-02	Lac 177 B		666399	5744119	11G	QZ FP MI	faible épidotisation	Joint 090°/80°
RG-03	Lac 177 B		666549	5744597	11G	QZ FP MI		
RG-04	Lac 177 B		666789	5744576	11G	QZ FP AM		
RG-05	Lac 177 B		666688	5744211	11G	QZ FP		
RG-06	Lac 177 B		665896	5743550	I1G grains fins	QZ FP MI		
RG-07	Lac 177 D		665163	5745937	I1G injection de QZ	QZ FP MI		
RG-08	Lac 177 D		665526	5746385	I1G rose	QZ FP MI		
RG-09	Lac 177 D		665716	5746500	11G	QZ FP MI		
RG-10	Lac 177 D		666087	5746628	11G	QZ FP MI		
RG-11		485	666755	5743679	11G	QZ FP MI	faible épidotisation	
RG-12		485	667249	5743737	11G	QZ FP MI		
RG-13	Papas		657498	5721951	11G		chlorite + épidote	fracture 020°/65
RG-14	Papas		657473	5721361	I1G			
RG-15		216	668573	5756183	I1G rose	FP QZ		joints 228°/75
RG-16		216	668534	5756823	S3 (gres) arkosique	QZ 90-100%		
RG-17	Hautbois		659982	5758416	I1G texture peg	QZ FP		
RG-18	Hautbois	1	659990	5759113	I1G rose påle			joints 320°/80°
RG-19	Hautbois	;	659795	5759877	I1G +/- rubannée			
RG-20	Hautbois	I	660380	5761096	I1G + dyke mafique			
RG-21	A2	1	651927	5738202	V3B		chlorite	schistosité 260°/75°
HD-01	Lac 177 A	4	664700	5744300	11G	QZ BO	faiblement hématisé	
HD-02	Lac 177 A		665100	5744100	l1G	QZ BO		
HD-03	Lac 177 A		664500	5744750	I1G pegmatitique			foliation 180°/70°
HD-04	Lac 177 A	ļ	664000	5744300	11G		faiblement hématisé	
HD-05	Lac 177 A	4	663975	5744275	11G		faiblement hématisé	
HD-06	Lac 177 A		663925	5744225			faiblement hématisé	
HD-07	Lac 177 C		664200	5744900		QZ BO	hématisation	
HD-08	Lac 177 C		663800	5744750		QZ BO	hématisation	
HD-09			663995	5735400				diaclase 240°/80°
HD-10		90	664330	5735520	11G			diaclase 220°/80°- stries N014°


HD-11	Hole 37	658560	5728610 I1G			stries N020°
HD-12	Hole 37	658550	5728575 I1G			diaclase 260°/85°
HD-13	Hole 37	658615	5728530 I1B			
HD-14	Hole 37	658615	5728560 I1G			
HD-15	Hole 37	658620	5728565 I1G			
HD-16	Hole 37	658580	5728570 I1G			
HD-17	Hole 37	658600	5728600 I1G			
HD-18	Hole 37	657825	5728511 I1G pegmatitique			foliation 220°/85°
HD-19	Hole 37	657810	5728580 I1G			
HD-20	Hole 37	657833	5728643 I1G	QZ FP BO		
HD-21	473	668224	5756865 I1G	QZ BO FP		foliation 045°/80°
HD-22	Hautbois	663152	5757360 gneiss granitique	BO AM		foliation 255°/40°
HD-23	Hautbois	663180	5757500 gneiss granitique			diaclase 300°/80°
HD-24	Hautbois	663305	5757850 gneiss granitique			diaclase 050°/90°-010°/90°
HD-25	Hautbois	663340	5758100 gneiss granitique			diaclase 010°/90°
HD-26	Hautbois	663510	5758780 gneiss granitique			diaclase 010°/90°
HD-27	Hautbois	663645	5759340 gneiss granitique			
HD-28	Hautbois	663410	5759680 gneiss granitique			
HD-29	Hautbois	663558	5760108 gneiss granitique			foliation 015°/90° diaclase 320°/90°
HD-30	Hautbois	663081	5760239 gneiss granitique			
HD-31	Hautbois	663030	5760245 gneiss granitique			
HD-32	214	667310	5752546 I1G	BO	hématisation	diaclases 240°/90° 290°/80°
HD-33	214	667367	5752660 I1G	BO	hématisation	diaclases 230°/85° 310°/80°
HD-34	214	667425	5752800 I1G	BO	hématisation	diaclases 240°/90° 315°/80°
HD-35	214	667550	5752940 I1G	BO	hématisation	
HD-36	214	668409	5753614 I1G		légèrement hématisé	
HD-37	214	668785	5754250 gneiss granitique	BÓ	hématisation	diaclases 240°/90° 300°/80°
HD-38	214	669104	5754860 bloc kimberlitique	15% fragment, MT ++		
HD-39	214	669234	5755007 bloc 141 péridotite	MT ++		
HD-40	follow-up HD-38	669515	5755861 bloc 141 péridotite	MT ++		
HD-41	follow-up HD-38	669602	5756350 bloc 141 péridotite	MT ++		
HD-42	follow-up HD-38	668962	5754718 bloc I4I péridotite	MT ++		
HD-43	follow-up HD-38	668946	5754675 bloc l4l péridotite	MT ++		
HD-44	follow-up HD-38	668684	5754682 I1G	BO		diaclases 020/85 090/80
HD-45	follow-up HD-38	668848	5755431 bloc 141 péridotite	MT ++		
HD-46	follow-up HD-38	669694	5754823 bloc 141 péridotite	MT ++		
	-					


HD-47	follow-up HD-38	668656	5755635 I1G K-FPTH		hématisation	
HD-48	follow-up HD-38	668540	5755568 11G K-FPTH		hématisation	diaclases 005/85 250/80
HD-49	follow-up HD-38	668459	5755237 11G K-FPTH		hématisation	diaclases 355/85 260/80
HD-50	follow-up HD-38	668250	5755250 I1G K-FPTH		hématisation	
HD-51	follow-up HD-38	668314	5755287 I1G K-FPTH		hématisation	diaclases 350/80
HD-52	follow-up HD-38	668306	5754687 I1G K-FPTH		hématisation	diaclases 350/80
HD-53	follow-up HD-38	668367	5754438 I1G K-FPTH		hématisation	diaclases 310/85 010/80
HD-54	N365	667992	5745117 I1G pegmatitique		hématisation	diaclases 005/85 296/75
HD-55	N365	668723	5746067 I1G K-FPTH		hématisation	diaclases 050/85 340/80
HD-56	N365	668732	5746144 DIORITE			diaclases 030/85 280/00
HD-57	N365	668640	5746345 I1G K-FPTH		hématisation	diaclases 250/85 355/85
HD-58	N365	668600	5746440 I1G K-FPTH		hématisation	diaclases 345/80 260/85
HD-59	N365	668575	5746545 I1G K-FPTH		hématisation	diaclases 000/85 270/80
HD-60	N365	668545	5746780 1G K-FPTH		hématisation	diaclases 240/85 330/85
HD-61	N365	668530	5746960 TONALITE			diaclases 230/80 320/85
HD-62	N365	668503	5747085 I1G K-FPTH		hématisation	diaclases 348/80
HD-63	N365	668525	5747145 I1G K-FPTH		hématisation	diaclases 320/85 230/75
HD-64	N365	668500	5747545 I1G K-FPTH		hématisation	diaclases 338/80 235/80
HD-65	N365	668515	5747590 I1G pegmatitique			diaclases 005/80 225/80
HD-66	N365	668575	5747740 I1G pegmatitique			diaclases 005/80 230/80
HD-67	N365	668537	5747785 I1G K-FPTH		hématisation	
HD-68	N365	668505	5747790 I1G K-FPTH		hématisation	diaclases 005/85 240/85
HD-69	N365	668509	5747865 I1G K-FPTH		hématisation	diaclases 005/80 235/80
HD-70	button234	672822	5758250 I1G	BO		
HD-71	button234	672866	5758195 I1G	BO		diaclases 310/85 260/85
HD-72	button234	672917	5758175 I1G	BO		diaclases 320/85 260/85
HD-73	button234	672990	5758160 I1G	BO		diaclases 320/85 260/80
HD-74	button234	673150	5757865 I1G K-FPTH			diaclases 010/85 275/85
HD-75	button234	673190	5757740 I1G K-FPTH			diaclases 010/80
HD-76	button234	673335	5757540 I1G K-FPTH			diaclases 300/75 225/80
HD-77	button234	673470	5757340 I1G pegmatitique			diaclases 260/85 350/85
HD-78	button234	673858	5757135 I1G pegmatitique			diaclases 235/80
HD-79	button234	674570	5756900 I1G	BO	hématisation	stries N022-024°
HD-80	button234	674560	5756870 I1G	BO	hématisation	diaclases 210/80





KIMBERLITE FLOAT

Dios

X OUTCROP --- TRAVERSE

32P16 1:50000 2004 PROSPECTING & MAPPING