GM 56803

REPORT ON THE 1999 EXPLORATION PROGRAM, HUSKIES PROPERTY

2864, chemin Sullivan Sullivan (Québec) JOY 2N0 Tél.: (819) 824-1030 Fax: (819) 824-1003 email: anglaumaque@cyberabitibi.qc.ca

INTERNATIONAL KIRKLAND MINERALS Inc. &

Bushman Resources Itd.

Joint Venture HUSKIES PROPERTY

Report on the 1999 Exploration Program

Township s 1116 & 1216, Québec

NTS 32K/09

MRN-GÉOINFORMATION 1999

GM 56803

Ressources Naturelles

1 3 ADUT Mag

Bureau Régional Val-d'Or

June 1999

Pierre Rhéaume

anglau**mague** explorations inc.

SUMMARY

The Huskies property is located in Townships 1116 and 1216, east of Lac Rocher, Quebec. It consists of thirty claims covering an area of 480 acres. They are the property of International Kirkland Minerals Inc, which has joint ventured a 50% interest in these claims to Bushman Resources Ltd. Access is by helicopter.

The Lac Rocher area is underlain by sediments and volcanics of the Frotet-Evans volcanosedimentary belt. This greenstone belt is flanked to the south by the felsic Nipukatasi intrusive complex. A recent Cu-Ni dicovery on ground 20 kilometers to the west of the Huskies property by Nuinsco Resources Ltd. has triggered interest in the copper and nickel potential of this relatively unexplored area.

The 1999 exploration program was completed on June 1st 1999. It consisted of grid cutting at 100 meter spacing, followed by geophysical surveys (IP, Mag) in February-March 1999, outlining a series of sharp Mag-Highs associated with strong conductors. Three holes reached bedrock in the course of a 2195 foot diamond drilling program.

The Mag-Highs tested in the course of the 1999 program were accounted for by zones of phlogopite-bearing serpentinized peridotite. None of the ultramafic rocks seen during the 1999 program contained more than traces of sulfide (pyrrhotite), and none of the samples assayed returned anomalous values for any of the elements tested (Cu, Ni, Pt, Pd & Co). The conductors associated to the Mag-Highs are tentatively attributed to OH in the serpentine.

[1:50 AUT 14] 1:53 AUT 15]

	1/101
TABLE OF CONTENT	
1.0 INTRODUCTION	
2.0 PROPERTY, LOCATION AND ACCESS	
3.0 REGIONAL GEOLOGY	
4.0 PROPERTY GEOLOGY	
5.0 PREVIOUS WORK HISTORY	
6.0 1999 EXPLORATION PROGRAM	
6.1 LINE CUTTING	
6.2 GEOPHYSICAL SURVEY	
6.3 DIAMOND DRILLING	
7.0 DISCUSSION	
8.0 CONCLUSION	
9.0 RECOMMENDATIONS	
10.0 BUDGET	

REFERENCES

FIGURE 1:	REGIONAL	GEOLOGY 8	PROPERTY LOCATION	4
			فيستحي ويرجع محاجا المرجع ويرتج فيناطاه فتحاج ألمجار والفاط القائل المتحر والمرجع والمرجع والمرجع والمراجع	

TABLE 1: PREVIOUS WORK HISTORY	8
TABLE 2: DIAMOND DRILLING STATISTICS	11

APPENDIX 1: DIAMOND DRILL LOGS & ASSAY CERTIFICATES

MAP 1: HUSKIES PROPERTY COMPILATION, 1:5000	BACK POCKET
SECTION 1 TO 3: GEOLOGICAL SECTIONS, 1:500	BACK POCKET

1.0 INTRODUCTION

The Huskies Prospect straddles the eastern portion of townships 1116 and 1216, near Lac Bourdemont, about twenty kilometers east of Lac Rocher Québec on NTS map sheet 32K/09; it consists of thirty claims covering 480 acres (Figure 1 and Map 1). It is held by International Kirkland Minerals Inc. which has joint-ventured a 50% stake in the property to Bushman Resources Ltd.

An exploration program consisting of line cutting, geophysical surveying and diamond drilling was done from February 1999 to June 1999. All work was done through the supervision of Anglaumaque Explorations Inc. Geophysics were contracted to Val d'Or SAGAX Inc., Diamond drilling was contracted to Kosy Drilling Inc.

Following is a brief account of the regional and local geology. The report also provides a detailed description of the holes drilled and a discussion of the results obtained.

2.0 PROPERTY, LOCATION AND ACCESS

The Huskies Property is located 20 km east of Lac Rocher, and consists of the following thirty claims:

5225424	5225425	5225426	5225427	5225428	5225429
5225430	5225431	5225432	5225433	5225434	5225435
5225436	5225437	5225438	5225439	5225440	5225441
5225442	5225443	5225444	5225445	5225446	5225447
5225448	5225449	5225450	5237301	5237302	5237303

These lie in the southeast quarter of Township 1216 and in the northeast quarter of Township 1116 on NTS Map Sheet 32K/09. Access to the property is by helicopter.

3.0 REGIONAL GEOLOGY

The area is located south of the western half of the Frotet-Evans Greenstone Belt (2825 MY to 2680 MY, Davis <u>et al</u>. 1995) (Figure 1). The Frotet-Evans Greenstone Belt is a subset of the Opatica Belt, a division of the Superior Province of the Canadian Shield.

Modified from: RG98-05

The closest portion of the Frotet-Evans Belt is termed the "Lac Rocher Metamorphic Complex"; it is adjacent to the Nipukatasi Intrusive Complex. The Lac Rocher Metamorphic Complex (LRMC) is for the most part a high grade (upper amphibolite and higher) equivalent of the Broadback Group sediments (mostly pelites, quartzites and assorted wackes). Rocks of the LRMC consist mostly of quartzo-feldspathic gneiss (paragneiss) bearing 10% to 20% biotite or hornblende. These gneisses are locally interbedded with subordinate amounts of amphibolite and iron formation, they grade into the Nipukatasi Intrusive Complex to the southeast through a zone of migmatites (Brisson *et al.* 1998).

The Nipukatasi Intrusive Complex consists of a large late-tectonic granitic suite, ranging from granite to pegmatite. Both the Lac Rocher Metamorphic Complex and the Nipukatasi Intrusive Complex are cross-cut by Proterozoic Diabase dykes belonging to the northwest trending Mistassini (2140 M.Y.) and to the northeast trending Otish (1730 M.Y.) Swarms.

The structural grain in the vicinity of the Huskies prospect is to the southeast along the south contact of the Frotet-Evans belt. This trend affects the foliation and contacts within the belt as well as the foliation within the surrounding late-tectonic intrusions. Although seven deformation events have been recognized in the belt, the main fabric is the D_2 foliation which is axial to P_2 folds and usually associated with a downdip stretching lineation. The D_2 fabric is affected by northwest trending P_4 folds (Brisson <u>et al.</u> 1998, Franconi 1972) in the Lac Rocher area.

A post-tectonic gabbro to pyroxenite intrusion associated to copper and nickel sulfides was located by Nuinsco 20 kilometers west of the Huskies property. The main rock types found in the intrusion are green **gabbro** (30% plag., 70% pyrox.+amphib., tr. Py. and Mag.) and dark green to black **norite** (20% plag., 60% pyrox., 5% biot., 5% amphib., tr. Ti. and Mag.) with cumulus texture (Chartré, 1997). The norite (at surface) contains up to 10% sulfide consisting of pyrrhotite, chalcopyrite, pentlandite and pyrite. The best drill intersection returned 3.87% Ni, 0.99% Cu, and 0.09% Co over 17.7 meters (Nuinsco Press Release, January 29 1999).

Another Cu-Ni showing was identified in 1959 by Osisco Lake Mines Ltd. (32K/09-007) in mafic amphibolitized sills five kilometers west of the Nuinsco showing. A trench and shallow drill hole (30 metres) identified a 0.9 meter intersection of massive pyrrhotite which assayed 2% Ni (Bandyayera & Morin 1999).

The only showing known to date from Townships 1116 and 1216 (32J/12-001) consists of a minor occurrence of pyrite and pyrrhotite about eight kilometers northeast of the Huskies prospect. (Bellemare & Germain 1987). The only active mining operation in the

Frotet-Evans belt is the Troilus open-pit in the eastern half of the belt (44 146 200 tons at 1.35 g/ton Au, 0.11% Cu, 1.34 g/ton Ag – Boily 1996).

4.0 PROPERTY GEOLOGY

The Huskies Prospect is relatively well provided with outcrop and shows a somewhat rugged topography. Data from recent mapping (Brisson <u>et al.</u> 1998, Franconi 1972) shows a few scattered stations of biotite-gneiss, migmatite and amphibolite. The foliation associated to these rocks shows no preferred orientation.

Twelve outcrops were visited during the 1999 program, these consist for the most part of biotite-gneiss, one station consisted of massive myrmekitic granitic pegmatite. Measurements of foliation have confirmed the absence of a preferred structural grain within bounds of the property.

5.0 PREVIOUS WORK HISTORY

No previous work is recorded for the Huskies property apart from government sponsored surveys (Table 1). Regional mapping was recently completed by Brisson et al. (1998), and before that in 1972 by A. Franconi. A regional airborne Mag-EM INPUT mk VII survey was flown in 1969 by the GSC. Some stream geochemistry was also done by Franconi in 1971.

6.0 1999 EXPLORATION PROGRAM

The 1999 exploration program included the cutting of new lines, a geophysical survey (Mag, and I.P.) and a 2195 foot diamond drilling program.

6.1 Line Cutting

During the months of February and March 1999, Denis Chamberland was contracted to cut a North-South grid at 100 meter spacing. The two kilometer East-West baseline starts at the Number 4 Post of Claim #5225448, following the middle of the bloc. The twenty-one lines are 2.4 kilometers long, ranging from 12+00N to 12+00S; they are numbered from L0+00E to L20+00E. A tie-line was cut along the south boundary at 12+00S, a second one was cut along the north boundary at 12+00N. The total length of the grid is 56.4 kilometers.

TABLE 1: PREVIOUS WORK HISTORY							
YEAR	COMPANY	WORK DONE					
1969	GSC	Airborne Mag-EM INPUT mk VII survey flown over the area.					
1971	MRNQ	Stream sediment geochemistry done by Franconi. No significant anomalies are found within the property.					
1972	MRNQ	Geological mapping done by Franconi. Biotite-gneiss, migmatite and amphibolite exposure is mentionned from the current property.					
1998	MRNQ	Regional mapping (Brisson et al) covers the current Mapsheet. Emphasis of this project of Supracrustal Rocks of the Frotet-Evans Belt.					

6.2 Geophysical Survey

anglaumaque

explorations inc.

The whole property was the object of an IP and magnetometer survey carried out by Val d'Or SAGAX Inc. in April 1999 (Allard 1999).

The IP survey was done using a dipole-dipole configuration and separations of a = 25 meters and n = 1 to 6. The penetration of the survey is in the order of 75 meters. Two groups of conductors (DD-3, and DD-7, DD-8a, DD-8b) were found to be in clear association with strong Mag-Highs, with several other anomalies of lesser extent and intensity.

The Magnetometer survey (vertical gradient and total field) was done with measurements at 12.5 meter intervals, with an instrument resolution of 0.1 η T and with base station intervals of 30 seconds. It outlined a series of strong, irregular and apparently discontinuous mag-highs which are coincident with the groups of conductors identified by the IP. These Mag-Highs show a strong asymmetry characterized by strongly negative values on their north edges; these could be the result of north-dipping bodies. One strong Mag-High of a different character was noted north-east of the previously described ones. This anomaly is elliptic to circular in shape and shows no asymmetry; it is best explained by either a vertical or a horizontal magnetic body.

6.3 Diamond Drilling

Between the 20th and the 28th of April 1999, a total of six holes totaling 2195 feet was drilled on the Huskies Prospect (Table 2). The targets were selected on the basis of the 1999 geophysical survey, and were mostly strong conductors associated to magnetic highs. One of the planned holes (99-HUS-03) was never drilled, as the chosen site was flooded. Diamond drill logs and assay results are given in Appendix 1 at the end of this report. A set of plans including geological sections of the drill holes are found in the back pocket.

<u>99HUS-01a & 99HUS-01b</u>: These holes attempted to test a well defined conductor associated to a strong magnetic high. A first attempt to drill this target (hole 99HUS-01a) was collared at L14+00E @ 6+00S, plunging due north at forty five degrees. The casing broke off in thick overburden at 92 feet. Bedrock was successfully reached on

	HUSKIES PROSPECT TABLE 2: DIAMOND DRILLING STATISTICS										
HOLE No.	LONG	LAT	AZ.	DIP	FROM (ft)	TO (ft)	CUMMUL. (ft)	PLANNED EOH	START	FINISHED	COMMENTS
99HUS-01a	14+00E	6+00S	360	-45	0	92	92	656	12/05/99	13/05/99	IP conductor & Mag high.
99HUS-01b	14+00E	5+75S	360	-75	0	656	748	656	14/05/99	20/05/99	IP conductor & Mag high.
99HUS-02a	12+00E	6+50S	180	-45	0	92	840	656	09/05/99	10/05/99	IP conductor & Mag high.
99HUS-02b	12+00E	6+50S	180	-45	0	102	942	656	10/05/99	11/05/99	IP conductor & Mag high.
99HUS-04	6+00E	0+50S	360	-45	0	656	1598	656	24/05/99	28/05/99	IP conductor & Mag high.
99HUS-05	4+00E	2+00N	360	-45	o	597	2195	656	29/05/99	01/06/99	IP conductor.
										ang	aumaque

the second try (termed 99HUS-01b), which was collared at L14+00E @ 5+75S, plunging due north at seventy five degrees; the planned length for the hole was 200 meters (656 feet).

Hole 99HUS-01b reached bedrock at 87 feet and was stopped at 656 feet. It encountered two intervals of serpentinized peridotite (87 to 197 feet and 312 to 412 feet) separated by gneiss giving way down-hole to gneiss and granite. It is debatable whether the gneissic interval separating the two peridotite intervals is a large enclave or a partition separating two distinct dykes.

The serpentinized peridotite is mostly fine-grained and dark greenish-grey. It is strongly magnetic and locally contains visible amounts of magnetite. Fracture planes with acicular anthophyllite and/or waxy serpentine coatings are noted, as are several enclaves of gneissic and granitic rocks at various stages of assimilation. Sulfide content is minimal, consisting at most of trace amounts (<0.5%) of pyrrhotite which occurs mostly as very fine grained disseminations, but also as fracture coatings. The lowermost interval (312 to 420 feet) is characterized by abundant large crystals of phlogopite which preserve the palimpsest outlines of large olivine crystals, now serpentinized. With the exception of minor slickenslides in the peridotite, the excellent degree of preservation of primary textures (eg.: relict olivine outlines) in these very ductile rocks points to a relatively low degree of deformation. They should be regarded as younger than the strongly foliated gneisses surrounding them and incorporated as enclaves.

The gneiss is moderately to strongly foliated, with the foliation at a strong to moderate angle to core axis. The main mafic mineral is hornblende, locally with biotite. The gneiss is cross cut by minor quartz veins and by dykes of granitic pegmatite. There is no significant difference between the gneiss between the two ultramafic intervals and those further down-hole. Some of the least assimilated enclaves in the peridotite are similar to rocks from these gneissic intervals, and are probably derived from them. Sporadic and local traces of disseminated pyrrhotite are noted in both gneissic intervals.

The very strong magnetic response of the peridotite accounts convincingly for the Mag-High target. The very low sulfide content does not, however, satisfactorily account the IP target. The conductor could by caused by the presence of OH in the serpentine.

Assays from hole 99HUS-01b have returned trace amounts of Au, Cu, Co, Pt and Pd; Ni values are within normal values for peridotites (1148 ppm to 1982 ppm).

<u>99HUS-02a & 99HUS-02b</u>: These holes attempted to test a well defined conductor associated to a strong magnetic high. A first attempt to drill this target (hole 99HUS-02a) was collared at L12+00E @ 6+50S, plunging due south at forty five degrees.

The casing broke off in thick overburden at 92 feet. A second attempt was tried at the same location (termed 99HUS-02b) at a slightly steeper angle. The casing broke off again in thick and blocky overburden, this time at 102 feet. Bedrock was never reached, and both the Mag-High and the conductor targeted by these holes remain unexplained.

<u>99FOR-04</u>: This hole, (L6+00E @ 0+50S, N360°, -45°, 656 feet), was chosen to intersect a strong IP conductor associated to a strong Mag-High.

The hole reached bedrock at 23 feet and was stopped at 656 feet. It encountered two intervals of serpentinized peridotite (165 to 313 feet and 365 to 423 feet) separated by granite giving way down-hole to more granite. It is debatable whether the granitic interval separating the two peridotite intervals is a large enclave or a partition separating two distinct dykes.

The serpentinized peridotite is fine-grained to coarse-grained and dark greenish-grey. It is strongly magnetic, contains abundant coarse-grained phlogopite and locally contains visible amounts of magnetite. It is similar to the peridotite described in hole 99HUS-01B, although more strongly altered. Fracture planes with talc and/or waxy serpentine coatings are noted, as are several enclaves of granitic rocks at various stages of assimilation. The presence of micro-crystalline carbonate is noted in a large portion of the first peridotite interval. Sulfide content is minimal, consisting at most of trace amounts (<0.5%) of pyrrhotite which occurs mostly as very fine grained disseminations, but also as fracture coatings. Very rare and minor occurrences of chalcopyrite are noted as fracture coatings. The two peridotite intervals are roughly similar in appearance.

The granite is massive whitish pink and medium to coarse grained. The interval between the two peridotite intervals shows evidence of brittle fracturation and reddish staining from hematization. No sulfides have been noted in the granite.

With the exception of minor slickenslides in the peridotite, the excellent degree of preservation of primary textures (eg.: relict olivine outlines) in these very ductile rocks points to a relatively low degree of deformation. They should be regarded as later the massive granites found in this hole on the basis of the incorporation of these granites as small enclaves within the peridotite.

The very strong magnetic response of these phlogopite-bearing peridotites accounts convincingly for the Mag-High target. The very low sulfide content does not, however, satisfactorily account the IP target. The conductor could by caused by the presence of OH in the serpentine.

Assays from hole 99HUS-01b have returned trace amounts of Au, Cu, Co, Pt and Pd; Ni values are within normal values for peridotites (651 ppm to 1844 ppm).

<u>99HUS-05</u>: This hole, (L4+00E @ 2+00S, N360°, -45°, 597 feet), was chosen to intersect a moderate IP conductor at the periphery of a mag high.

The hole reached bedrock at 20 feet and was stopped at 597 feet, the initial planned depth for this hole was 656 feet (200 meters). It encountered moderately foliated gneiss, cross cut by numerous dykes of granitic pegmatite. No ultramafic rocks were noted. The foliation is at 45 degrees from core axis. Traces of disseminated pyrrhotite are noted, locally reaching 5% in the 167 to 173 feet interval. This interval is believed to account for the moderate IP target.

Assays from hole 99HUS-05 have returned trace amounts of Au, Cu, Zn, Ag, and Ni.

7.0 DISCUSSION

The objective of the 1999 program was to test the Cu-Ni potential of the Huskies Prospect. This was done by ground geophysics followed by drilling.

As a result of this program a cluster of strong magnetic highs associated with good conductive responses were identified within bounds of the property.

The drilling of these targets has identified a series of previously unknown ultramafic units hosted by gneissic and granitic rocks. The high magnetic susceptibility of these ultramafic rocks strongly suggests that they are the cause of the positive magnetic features targeted by the drilling. The lack of significant sulfide, however, is at odds with the strong conductors picked up by the IP survey.

A limited petrographic study is currently under way to establish whether these ultramafics have any kimberlitic affinity. The study is being done by B. Murck at Toronto University, on the basis of the presence of significant phlogopite and carbonate in some of these rocks. Preliminary indications are that these rocks do not have any such affinity. The samples are being described as intensely serpentinized phlogopite-bearing peridotites. The replacement by serpentine of primary minerals other than phlogopite and oxides is virtually complete. The carbonate is a late alteration product associated to chloritization of the phlogopite crystals and probably of late hydrothermal origin (B. Murck 1999, Pers. Communication).

It is possible that the conductors targeted by hole 99HUS-01 and 99HUS-04 are the result of OH content within serpentine in the ultramafics. This hypothesis is certainly plausible in view of the great abundance of serpentine in these rocks; the large LOI (Loss On Ignition) values could be indicative of a significant amount of -OH and H_20 in the serpentine. It remains possible, however, that metallic conductors are present in the vicinity of these holes and that they were missed by the drill-holes.

It is still too early to establish whether the ultramafic bodies intersected by holes 99HUS-01B and -04 connect or not. One interesting hypothesis to this effect relates to the two different magnetic signatures found on the property. Holes 99HUS-01B and -04 both intersected ultramafic bodies associated to strong magnetic highs bordered to the north by strong magnetic inversions, suggesting a dip to the north. Northeast of both these holes is an elliptic mag high without such an inversion (M7 in Allard 1999), suggesting either a flat-lying body or a vertical "cylindrical" body. It is tentatively suggested that these northdipping ultramafic bodies could be minor sills related to a subvertical mafic to ultramafic intrusion associated to this mag high. This magnetic high has yet to be tested by drilling.

8.0 CONCLUSION

- 1- Two holes have intersected serpentinized phlogopite-bearing ultramafic rocks associated to strong magnetic highs and IP conductors. It is unclear whether both intersections belong to the same intrusive body or not.
- 2- These ultramafic rocks are strongly magnetic and account for the magnetic signature targeted.
- 3- Insufficient amounts of sulfide have been noted to account for the strong IP targets associated to these Mag-Highs. It is suggested that the conductors are caused by -OH in the abundant serpentine in these rocks.

9.0 RECOMMENDATIONS

It is suggested that the two holes which have intersected ultramafic rocks (99HUS-1B, -04) be the object of down-hole pulse EM. This would demonstrate conclusively whether the strong conductors targeted by these holes are caused by –OH in serpentine or by a metallic conductor at the periphery of a drill-hole. If they re caused by the serpentine, a

conductive body will be seen to surround each hole. If a metallic lens has been missed, a conductor will be shown in a given direction from the drill-hole. Magnetic anomaly M7 should also be drilled on the basis of its different magnetic signature (devoid of a bordering inversion). If it also turns out to be caused by ultramafic rocks, down-hole pulse EM is also advised.

10.0 BUDGET

-	1 x 650 foot diamond drill hole (\$20/foot)	\$13 000
-	Downhole Pulse EM Survey (3 holes at \$5000/hole)	\$15 000
-	Contingency (10%)	\$2 800
	TOTAL:	
		\$30 800

heering and NERRE REGAUGE P STES FELLOSY Pierre Rhéaume A CALOURS CEOLOGICAL CE leve Kleanne

REFERENCES

- **Bandyayera D & Morin R. 1999:** The Rocher Lake showing (the Nuinsco discovery) and the nickel-copper potentiel of the Frotet-Evans area. MRNQ, PRO-99-06, 11 p.
- Bellemare Y, Germain M, 1987: Catalogue des Gites Minéraux du Québec (1er Mai 1987). MNRQ, DV 87-23.
- Allard M, 1999: A report on geophysical surveys carried out on the Huskies Prospect, Lac Rocher area, Québec. Submitted to International Kirkland Minerals Inc. – 99-N389- Val-d'Or SAGAX, May 1999.
- Boily B, 1996: Minéralization de type porphyrique dans la ceinture de Roches Vertes de Frotet-Evans – Le Gisement Cu-Au Troïlus. In: Pilote P., Dion C. & Morin R. 1996 (eds.): Géologie et évolution métallogénique de la région de Chibougamau: des gîtes de type Cu-Au-Mo porphyriques aux gisements filoniens mésothermaux aurifères. MNRQ, MB 96-14.
- Brisson H, Gosselin C, Fallara F, Gaulin R & Dion D-J. 1998: Géologie de la région du Lac Rocher (SNRC 32K/09) and map SI-32K09-C3G-98C. MNRQ RG-98-05, 22 p, 1 map.
- Chartré E. 1997: Programme d'exploration minière Projet "Lac Rocher" Canton 1115 9 p.
- Davis W J, Machado N, Gariépy C, Sawyer E W & Benn K. 1995: U-Pb geochronology of the Opatica tonalite-gneiss belt and its relationship to the Abitibi greenstone belt, Superior Province, Québec, Can. J. of Earth Sci., vol. 32, pp 113-127.
- Franconi A 1972: Géologie da la région du Lac Rocher, territoire d'Abitibi. MRNQ DP-060. 13 p.

Franconi A 1971: Géochimie des sédiments de ruisseau: région du Lac Rocher, territoire d'Abitibi. MRNQ DP-209. 7 p.

Geological Survey of Canada 1969: Lac Rocher aeromagnetic map. Map 5380G, 1:63360.

Nuinsco 1999a: 25 January Press Release.

Nuinsco 1999b: 26 April Press Release.

-	
	anglaumaque
-	explorations inc.

APPENDIX 1

DIAMOND DRILL LOGS

_	COMPANY PROJECT DRILL HOLE TOWNSHIP CLAIM	: INTERNATIO : HUSKIES : 99HUS-01A : 1116 : 5237302	ONAL KIRKLA)	TD	<u> </u>	NO. B	LOT : ZONE : REF. : ANGE : NTS : 32K/09		PRINTED : June 21,1	999
-	COORDINATE	S AT COLLAR							<u></u>	
	GRID #1 LINE STATION ELEVATION	: 14+00E : 06+00S : 0.000		GRID #2 LINE STATION ELEVATION	: 00+00E : 00+00N : 0.000		GRID #3 LATITUDE : LONGITUDE : ELEVATION :	0.000 0.000 0.000	GRID #4 LATITUDE : LONGITUDE : ELEVATION :	0.000 0.000 0.000
1	SAMPLING		<u></u>					DATE	<u>, , , , , , , , , , , , , , , , , , , </u>	
}	BASIC AS LITHO	SAYS : DLOGY :						DATE OF SUF	7 JOURNAL : June 21,19 RVEY DATE : MING DATE :	99
	PEOPLE									
L	GEOLOG CONTRAC RE	IST : PIERRE TOR : KOSY L LOG :	B RHEAUME DRILLING					DRILLING DRILLING	G STARTED : May 12,199 FINISHED : May 13,199	9 9
لہ -	LENGTH		C	OLLAR :	0.00	FINAL :	92.00			
┝	CORE	STORED	:				SIZE : BQ	CAS	SING LEFT : Yes	
	PURPOSE TARGET REMARKS	: test mag-I : : Hole aband Casing bro	IP associati donned in th oken and lef	on ick and blo t in place.	cky overbi	ırden.				
_		L DATA	AZIMUTH :	360°0'		DIP : 45° 0'	<u></u>			
1						211 1 10 0				
Д,						ن				
ł										
, .										
Ţ										
<u> </u>							\bigcirc	-		
							Y-	1		
Ţ						_				

New New York and the standard of the Standard of the Standard States and a state of the States of th

-	FROM (f)	T0 (f)	DESCRIPTION	
-	0.00	92.00	CAS, PR	
			<u>CASING</u> . Casing left in place.	
-				
		92.00	END OF HOLE	
_				
-			i i i i i i i i i i i i i i i i i i i	
_				
			•	
! 				
_	·			
4				
_				
	PAGE: 2		GEOLOGICAL DESCRIPTION	HOLE NO: 99HUS-01A

Classic Presidentia d'Antonio a coloqui

-	COMPANY : INTERNATIONAL KIRKLAND PROJECT : HUSKIES DRILL HOLE : 99HUS-01B TOWNSHIP : 1116 CLAIM : 5237302	KO. Ra	LOT : ZONE : REF. : ANGE : NTS : 32K/09	PRINTED : June 21,1999	
-	COORDINATES AT COLLAR				
_	GRID #1 GRID #2 LINE : 14+00E LINE : 0 STATION : 05+75S STATION : 0 BLEVATION : 0.000 ELEVATION : 0	0+00E 0+00N .000	GRID #3 LATITUDE : LONGITUDE : ELEVATION :	GRID #4 0.000 LATITUDE : 0.000 LONGITUDE : 0.000 ELEVATION :	0.000 0.000 0.000
	SAMPLING			DATE	
-	BASIC ASSAYS : 814301-814325 LITHOLOGY : 814301,-305,-311,-316,-320			DATE OF JOURNAL : June 01,1999 SURVEY DATE : CEMENTING DATE :	
	PEOPLE				
	GEOLOGIST : PIERRE RHEAUME CONTRACTOR : KOSY DRILLING RELOG :			DRILLING STARTED : May 14,1999 DRILLING FINISHED : May 20,1999	
 _	LENGTH COLLAR : 0.	00 FINAL :	646.00		
L	CORE STORED : ANGLAUMAQUE HEAD OFFICE		SIZE : BQ	CASING LEFT : Yes	
لہ	PURPOSE : test mag-IP association TARGET :				
I	REMARKS : Mag explained by serpentinite. Not a noted to justify the IP.	enough sulfide			
Ⅎ	DIRECTIONAL DATA AZIMUTH : 360°0'	DIP : 75° 0'			
	Length Azimuth Dip				
	330.00 360 0' 75 0' 646.00 360 0' 75 0'	·			
}					
1					
I					
1					
]			K.		
Ţ					
2					

.....

	FROM (f)	TO (f)	DESCRIPTION	
	0.00	87.00	CAS, PR	
			<u>CASING</u> . Casing left in place.	
-	87.00	197.00	I4I,fg,dGN-dGY,sSpt,lFrs,trPo	
-			SERPENTINIZED PERIDOTITE. Fine grained dark greenish-grey serpentinized peridotite. Moderately fractured with serpentine coated fracture planes and slickenslides. Traces of very fine grained dis noted, locally reaching up to 0.5%. Strongly magnetic with visible magnetite crystal throughout. Veinlets of acicular anthophyllite are locally noted, as are small encla country-rock (gneiss?) at various stages of assimilation. Lower contact irreguler, r core axis.	anarchic talc and seminated pyrrhotite are s disseminated ves (less than 10 cm) of oughly at 30 degrees from
	197.00	312.00	M1,Mg,lGY-mGY,Fol60	
	i		GNEISS. Moderately foliated gneiss, foliation at strong angle to core axis ranging from 60 t biotite and/or hornblende. Cross cut by guartz veins and by granitic pegnatites. Tra pyrrhotite occur locally.	o 90 degrees. 15% to 30% ces of disseminated
			216.50 - 217.80 VNq30	
1			<u>QUARTZ VEIN.</u> Massive white guartz vein at 30 degrees from core axis. No sulfides.	
			262.00 - 263.00 VNq45 DI1G,WT	
1			<u>QUARTZ VEINS</u> . Series of stacked massive white quartz vein at 45 degrees from core axis. No	sulfides.
			282.00 - 293.00 I1B,WT	
			<u>GRANITE PEGMATITE</u> Massive creamy white granitic pegmatite, lower contact at 70 degrees to the c	ore axis.
inned.	312.00	420.00	I4,sSpt,cg-fg,sGN-mGN .	
			ULTRAMAFIC ROCKS. Heterogeneous assemblage of strongly serpentinized ultramafic rocks, some fine grain these rocks are strongly magnetic and most of then contain significant amounts of ph Serpentinization is not as intense downhole. Some enclaves are noted, sometimes with sometimes at advanced stages of assimilation. Traces of disseminated pyrrhotite are coatings of pyrrhotite and locally chalcopyrite on fracture planes.	ed, some coarse. All logopite. complex reaction rims, noted, as are thin
1			312.00 - 345.00 I4I,ph,cg,sSpt	
			<u>PERIDOTITE</u> . Strongly serpentinized ultramafic rock composed mainly of phlogopite and. Of large serpentinized mafic crystals which are thought to be pseudomorphic a magnetic. No sulfides.	fter olivine. Strongly
1			345.00 - 396.50 I4I,fp,ph,fg,sSpt	
			<u>PERIDOTITE</u> . Strongly serpentinized peridotite with 5% phlogopite and 10% plagioclase. Tec plagioclase-and-phlogopite-bearing-peridotite . Traces of very fine grained p quantify due to the presence of n ica flakes.	hnically a yrrhotite, difficult to
			396.50 - 403.50 I1B,WT	
			<u>GRANITE</u> . Massive white granitic enclave with complex reaction rims.	
3	420.00	646.00	M1,Mg,lGY-mGY,Fol60	
			<u>GNEISS</u> . Moderately foliated gneiss, foliation at strong angle to core axis ranging fron 60 to hornblende, locally with garnet. Locally cross cut by granitic dykes. Faint traces of	o 90 degrees. 15% to 40% f disseminated py.
	PAGE: 2		GEOLOGICAL DESCRIPTION	HOLE NO: 99HUS-01B

-[FROM (f)	T0 (f)	DESCRIPTION	
			498.00 - 502.00 I1B,WT	
			<u>GRANITE</u> . Massive white granite.	
			547.00 - 552.00 I1B,WT	
			<u>GRAMITE</u> . Nassive white granite.	
		646.00	END OF HOLE	
_				
ł			i	
			,	
امىم				
1				
ï				
	1			
L	DACE. 2			
	rage: 3		GEOLOGICAL DESCRIPTION	HOLE NO: 99HUS-01B

-[FROM (f)	T0 (f)	DESCRIPTION	SAMPLE N.	LENG. (f)	Cu ppm	Ni ppn	Co ppm	Au ppb	Pt ppb	Pd ppb	S ¥
	87.00	92.00	Fine grained serpentinized peridotite with traces of pyrrhotite.	814301	5.00	5	1705	103	3	5	4	
	92.00	97.00	As above, trace pyrrhotite.	814302	5.00	4	1799	109	1	<5	3	0.03
	97.00	102.00	As above, trace pyrrhotite.	814303	5.00	4	1798	110	<1	13	13	0.02
	102.00	107.00	As above, trace pyrrhotite.	814304	5.00	4	1790	104	<1	13	15	0.02
	107.00	112.00	As above, trace pyrrhotite.	814305	5.00	4	1755	106	<1	11	12	
	112.00	117.00	As above, trace pyrrhotite.	814306	5.00	4	1877	105	22	5	5	0.02
	117.00	122.00	As above, trace pyrrhotite.	814307	5.00	5	1693	97	<1	6	6	0.02
1	162.00	167.00	As above, strongly fractured.	814308	5.00	3	1463	84	<1	35	36	0.05
	167.00	172.00	As above, with antigorite veining.	814309	5.00	3	1523	86	<1	<5	4	0.05
	172.00	177.00	Fractured serpentinized peridotite.	814310	5.00	, 4	1596	88	<1	<5	3	0.07
_	177.00	182.00	As above.	814311	5.00	6	1607	103	<1	18	13	
1	182.00	187.00	As above.	814312	5.00	12	1577	100	<1	9	8	0.08
	187.00	192.00	As above.	814313	5.00	10	1670	103	<1	<5	1	0.08
	192.00	197.00	As above, locally with relict pyroxenes.	814314	5.00	6	1184	81	8	<5	1	0.03
	312.00	317.00	Phlogopite-per idotite with traces of pyrrhotite.	814315	5.00	6	1657	76	<1	8	6	0.08
1	317.00	319.00	As above.	814316	2.00	3	1695	67	<1	8	7	
	327.00	332.00	As above, locally very fine grained, trace pyrrhotite?.	814317	5.00	245	1148	72	1	7	11	0.22
	342.00	345.00	As above, trace pyrrhotite.	814318	3.00	26	1790	96	<1	20	13	0.12
	347.00	352.00	Plagioclase-be aring	814319	5.00	3	1934	136	1	14	10	0.12

__ PAGE: 4

ASSAY SAMPLE RESULTS #1

and a spectrum destry in the international and the data from the construction of the data second destruction of the data in the data international destruction of the data international destruction of the internation of the international destruction of the internat

HOLE NO: 99HUS-01B

	FROM (f)	T0 (f)	DESCRIPTION	SAMPLE N.	LENG. (f)	Cu ppn	Ni ppm	Co ppm	Au ppb	Pt ppb	Pd ppb	S &
-			phlogopite peridotite with trace pyrrhotite.									
_	353.00	354.00	As above.	814320	1.00	2	1726	145	<1	< 5	<1	
	372.00	377.00	As above, locally sheared.	814321	5.00	3	1895	99	4	63	67	0.12
	387.00	392.00	As above, trace pyrrhotite.	814322	5.00	3	1982	58	1	6	3	0.11
	403.00	407.00	Serpentinized peridotite with half assimilated enclaves.	814325	4.00	17	1627	92	1	13	16	0.14
	407.00	412.00	Serpentinized plagioclase-be aring peridotite with	814324	5.00	300	1742	99	2	21	27	0.49
			half-assimilat ed enclaves and									
I			pyrrhotite.		-							
	412.00	417.00	As above, locally with traces of pyrrhotite and chalcopyrite on slippage faces.	814323	5.00	203	1754	93	1	10	9	0.26
		646.00	END OF HOLE									
						i		r				
1												
1												
-												
1												
	PAGE: 5			AS	SAY SAM	PLE RESULTS	#1			HOL	E NO: 99HUS	-01B

and the second second

and the second

Veride

	COMPANY PROJECT DRILL HOLE TOWNSHIP CLAIM	INTERNATION HUSKIES 99HUS-02A 1116 5237302	AL KIRKLAND		NO. R	LOT : ZONE : REF. : ANGE : NTS : 32K/09		PRINTED : June 21,199	9
	COORDINATES GRID #1 LINE STATION ELEVATION	<u>AT COLLAR</u> 12+00E 06+50S 0.000	GRID #2 Line Station Elevation	: 00+00E : 00+00N : 0.000		GRID #3 LATITUDE : LONGITUDE : ELEVATION :	0.000 0.000 0.000	GRID #4 LATITUDE : LONGITUDE : ELEVATION :	0.000 0.000 0.000
ן ן ן	SAMPLING BASIC ASS LITHOI	AYS : Ogy :					DATE DATE OF Sur Cenent	JOURNAL : June 21,1999 VEY DATE : ING DATE :	
ן יייי ו	GEOLOGI CONTRACT REL	ST : PIERRE F OR : KOSY DRI OG :	RHEAUME	0.00	DTUNT	02.00	DRILLING DRILLING	STARTED : May 09,1999 FINISHED : May 10,1999	
	CORE	STORED :	COLLAR .	0.00	FINAL ;	92.00 SIZE : BO	CAS	ING LEFT . Yes	
 	PURPOSE : TARGET : REMARKS :	test mag-IP Hole abandon Casing broke	association ned in thick and blo n and left in place.	ocky overburd	en.	0120 · 5x			
	<u>DIRECTIONAL</u>	<u>DATA</u> A	ZIMUTH : 180° O'	DI	P : 45° O'				
1									
							•		
1									
						-	P. RL		
L									

wind "Printed and a "Antopia" gauges to obtain a such all the start for some

	FROM (f)	TO (f)	DESCRIPTION	
	0.00	92.00	CAS, PR	
_			<u>CASING</u> . Casing left in place.	
		92.00	END OF HOLE	
_				
1				
			J	
-			•	
-				
	PAGE: 2		GBOLOGICAL DESCRIPTION	HOLE NO: 99HUS-02A

produces search research i same

anannen in Germulder ausgaran 1200

	COMPANY : INTERNATIONAL KIRKLAND PROJECT : HUSKIES DRILL HOLE : 99HUS-02B TOWNSHIP : 1116 CLAIM : 5237302	N	LOT : ZONE : O. REF. : RANGE : NTS : 32K/09	PRINTED : June 21,	1999
-	COORDINATES AT COLLARGRID #1GRID #LINE : 12+00ELINSTATION : 06+50SSTATICELEVATION : 0.000ELEVATIC	2 E : 00+00E N : 00+00N N : 0.000	GRID #3 LATITUDE : LONGITUDE : Elevation :	GRID #4 0.000 LATITUDE : 0.000 LONGITUDE : 0.000 ELEVATION :	0.000 0.000 0.000
	<u>SAMPLING</u> BASIC ASSAYS : LITHOLOGY :		· · · · · · · · · · · · · · · · · · ·	DATE DATE OF JOURNAL : June 21,1 SURVEY DATE : CENENTING DATE :	999
	<u>PEOPLE</u> GEOLOGIST : PIERRE RHEAUME CONTRACTOR : KOSY DRILLING RELOG :			DRILLING STARTED : May 10,199 DRILLING FINISHED : May 11,199	99 19
	LENGTH COLLAR :	0.00 FINAL	: 102.00		
_ +	<u>CORE</u> STORED :		SIZE : BQ	CASING LEPT : Yes	
	PURPOSE : test mag-IP association TARGET : REMARKS : Hole abandonned in thick and b Casing broken and left in plac	locky overburden. e.			
	<u>DIRECTIONAL DATA</u> AZIMUTH : 180° 0'	DIP : 45°0	1		
		,			
]					
]					
]					
1			/	わっ	
				1'- 1	-
L					

.....

• Conflicte d'artificia e a dia Gippen, el rechargement des actual a cons

Anglaumaque Explorations Inc.

- 0.00 102.00 CAS.PR CASING. Casing left in place. 102.00 BHD OF ROLE 	FROM (f)	T0 (f)	DESCRIPTION	
CASING. 102.00 RHO HOLE NHO OF HOLE 	- 0.00	102.00	CAS, PR	
	-		<u>CASING</u> . Casing left in place.	
		102.00	END OF HOLE	
	-			
	-			
	-			
	_			
	-			
	_			
	_		i i i i i i i i i i i i i i i i i i i	
	-			
	_		•	
	-			
	-			
	_			
	-			

	COMPANY : INTERNATIONAL KIRKLANDLOT :PRINTED : June 21,1999PROJECT : HUSKIESZONE :DRILL HOLE : 99HUS-04NO. REF. :DRILL HOLE : 99HUS-04NO. REF. :RANGE :TOWNSHIP : 1116RANGE :CLAIM : 5225447	
-	COORDINATES AT COLLAR	
-	GRID #1 GRID #2 GRID #3 GRID #4 LINE : 06+00E LINE : 00+00E LATITUDE : 0.000 LATITUDE : 0.000 STATION : 00+50S STATION : 00+00N LONGITUDE : 0.000 LONGITUDE : 0.000 ELEVATION : 0.000 BLEVATION : 0.000 ELEVATION : 0.000 ELEVATION : 0.000))
	SAMPLING DATE	
-	BASIC ASSAYS : 814326-814346 LITHOLOGY : 814329, 814336 CEMENTING DATE : CEMENTING DATE :	
	PEOPLE	
	GEOLOGIST : PIERRE RHEAUME CONTRACTOR : KOSY DRILLING RELOG : DRILLING FINISHED : Nay 22,1999 DRILLING FINISHED : Nay 27,1999	
-	LENGTH COLLAR : 0.00 FINAL : 657.00	٦
	CORE STORED : ANGLAUMAQUE HEAD OFFICE SIZE : BQ CASING LEFT : Yes	1
_	PURPOSE : test mag-IP association	٦
	REMARKS : Mag explained by serpentinite. Not enough sulfide	
-	DIRECTIONAL DATA AZIMUTH : 360° 0' DIP : 45° 0'	
_	Length Azimuth Dip	
_	330.00 360 0' 53 0' 657.00 360 0' 55 0'	
	•	
-		
-		
_		
_	P. KL	
L		

.

_ [FROM (f)	T0 (f)	DESCRIPTION	
ŀ	0.00	23.00	CAS, PR	
			<u>CASING</u> . Casing left in place.	
	23.00	164.00	I1G,WT	
			<u>GRANITIC PEGNATITE</u> . Nassive coarse grained granitic pegnatite. Najor constituents are quartz, felds noted. A few Large enclaves of gneissic rocks are noted.	par and biotite, no sulfide is
-			23.00 - 47.00 M1,BT,1GY,F0145	
			<u>BIOTITE GNEISS</u> . Poorly foliated quartzo-feldspathic biotite gneiss with foliation at 45 bearing insignificant traces of very fine sulfide.	degrees from core axis,
			51.00 - 53.00 M1,BT,1GY,Fol45	
			<u>BIOTITE GNEISS</u> . Gneiss as previously described, contacts of enclave are blurred, probabl assimilation.	y as a result of partial
			152.00 - 163.00 M1,BT,mGY,Fol30-45	
			<u>BIOTITE GNEISS</u> . Gneiss as previously described.	
	164.00	313.00	I4I,cg,Mag,dGN-dGY,sSpt,lFrs,trPo	
			<u>SERPENTINIZED PERIDOTITE</u> . Fine grained dark greenish-grey serpentinized phlogopite-bearing peridotite. Mor anarchic talc and serpentine coated fracture planes and slickenslides. Trace.	derately fractured with
-			209.00 - 212.00 I41,cg,sSpt,mCar,mTlc	
_			<u>CARBONATIZED PERIDOTITE</u> . Cumulus-textured phlogopite-bearing peridotite as previously described, carbonate-talc alteration at the periphery of an altered granitic enclave	with moderate to light e.
			212.00 - 219.00 I1G,sCar,mFrc	
			<u>GRANITIC ENCLAVE</u> . Highly strained and fractured granitic enclave with strong alteration, \mathbf{n}	ostly to carbonate.
			219.00 - 232.00 I41,cg,sSpt,sCar-mTlc	
_			<u>CARBONATIZED PERIDOTITE</u> . Highly carbonatized and moderately talcose interval of peridotite, with a to core axis.	strong fracturation parallel
			232.00 - 248.00 I1G,mCar,mFrc	
			<u>GRANITIC ENCLAVE</u> . Highly strained and fractured granitic enclave with strong alteration, mo	ostly to carbonate.
_			248.00 - 270.00 I41,cg,sSpt,sCar,sTlc	
			<u>CARBONATIZED PERIDOTITE</u> . Highly carbonatized and talcose interval of peridotite, with strong fract axis.	uration parallel to core
	313.00	362.00	I1G, mFrc	
			<u>GRANITIC PEGHATITE</u> . Massive coarse grained granitic pegmatite. Major constituents are quartz, felds noted. This could be a very large enclave.	par and biotite, no sulfide is
-	PAGE: 2		GEOLOGICAL DESCRIPTION	HOLE NO: 99HUS-04

[FROM (f)	T0 (f)	DESCRIPTION
ſ	362.00	423.00	I4I,cg,Mag,dGN-dGY,sSpt,lFrs,trPo
			SERPENTINIZED PERIDOTITE. Fine grained dark greenish-grey serpentinized phlogopite-bearing peridotite as previously described. Moderately fractured with anarchic white talc and serpentine coated fracture planes and slickenslides. Traces of very fine grained pyrrhotite is noted. Strongly magnetic with well preserved cumulus texture.
			368.00 - 376.00 I1G,sFrc,mHem
			<u>GRANITIC PEGMATITE</u> . Massive coarse grained granitic pegmatite, as previously described. No sulfide is noted, but rock is strongly fractured and hematized.
	423.00	657.00	IIG,WT
			G <u>RANITIC PEGNATITE</u> . Massive coarse grained granitic pegnatite. Major constituents are quartz, feldspar and biotite, no sulfide is noted. A few Large enclaves of gneissic rocks are noted.
1			515.00 - 530.00 M1,BT,1GY,Fol35
 			<u>BIOTITE GNEISS</u> . Poorly foliated quartzo-feldspathic biotite gneiss with foliation at 35 degrees from core axis, bearing insignificant traces of very fine sulfide.
			538.00 - 552.00 M1,BT,1GY,Fo150
			<u>BIOTITE GNEISS</u> . Poorly follated guartzo-feldspathic biotite gneiss with foliation at 50 degrees from core axis, bearing insignificant traces of very fine sulfide.
,			558.00 - 561.00 M1,BT,1GY
			BIOTITE GNEISS. Poorly foliated quartzo-feldspathic biotite gneiss.
1			573.00 - 578.00 M1, BT, 1GY
1			<u>BIOTITE GNEISS</u> . Poorly foliated quartzo-feldspathic biotite gneiss.
			<u>BIOTITE GNEISS</u> .
,			Poorly follated quartzo-feldspathic blotite gnelss.
1			542.00 - 551.00 MI,BT,IGY
			<u>BIUTITE GNEISS</u> . Poorly foliated guartzo-feldspathic biotite gneiss.
		657.00	END OF HOLE
ı			
ţ			
, ingener	PAGE: 3		GEOLOGICAL DESCRIPTION HOLE NO: 99HUS-04

	FROM (f)	T0 (f)	DESCRIPTION	SAMPLE N.	LENG. (f)	Cu ppn	Ni ppm	Co ppn	Au ppb	Pt ppb	Pd ppb	S ¥
-	167.00	172.00	Serpentinized phlogopite-bea ring peridotite	814326	5.00	92	1483	95	1	20	18	0.69
			with traces of pyrrhotite.									
	172.00	177.00	As above, trace pyrrhotite.	814327	5.00	78	1434	91	<1	31	22	0.59
	177.00	182.00	As above.	814328	5.00	125	1431	97	<1	18	16	0.34
ş	182.00	184.00	As above.	814329	2.00	16	1515	102	<1	8	7	0.21
	197.00	202.00	Serpentinized phlogopite-per idotite with talc-carbonate alteration and traces of disseminated pyrrhotite.	814330	5.00	6	1417	92	<1	5	1	0.10
	202.00	206.00	As above, trace sulfide.	814331	4.00	4	1497	95	(1	<5	3	0.12
	206.00	212.00	As above, with trace pyrrhotite and chalcopyrite.	814332	6.00	8	1267	84	<1	<5	3	0.18
	248.00	252.00	Serpentinized phlogopite-per idotite with talc-carbonate alteration and traces of sulfide.	814333	4.00	4	651	56	<1	<5	<1	<0.02
ì	252.00	257.00	As above.	814334	5.00	2	914	56	<1	<5	2	<0.02
1	257.00	262.00	As above, strongly altered.	814335	5.00	47	966	63	<1	<5	2	0.24
	292.00	294.00	Fine grained serpentinized peridotite.	814336	2.00	4	1827	115	1	<5	1	0.19
	294.00	297.00	As above.	814337	3.00	4	1745	107	1	<5	1	0.21
- sher	297.00	302.00	As above.	814338	5.00	4	1779	106	1	5	1	0.20
	302.00	307.00	As above, trace pyrrhotite.	814339	5.00	4	1802	112	<1	<5	2	0.23
I	307.00	311.00	As above.	814340	4.00	5	1734	109	<1	<5	2	0.48
	311.00	313.00	As above, strongly altered with locally 0.5% pyrrhotite stringers at contact with granite.	814341	2.00	61	1122	75	<1	<5	<1	2.43
	377.00	382.00	Serpentinized peridotite, upper contact.	814342	5.00	6	1844	127	1	<5	2	0.12

PAGE: 4

1. - Children gelaggelissing das son - Children & Anna and Stag

HOLE NO: 99HUS-04

[FROM (f)	T0 (f)	DESCRIPTION	SAMPLE N.	LENG. (f)	Cu ppn	Ni ppn	Co ppm	Au ppb	Pt ppb	Pd ppb	ş
[382.00	387.00	As above.	814343	5.00	5	1787	99	<1	<5	<1	0.10
	407.00	412.00	Serpentinized peridotite.	814344	5.00	3	1769	106	<1	<5	(1	0.08
	412.00	417.00	As above.	814345	5.00	3	1686	86	1	<5	2	0.08
	417.00	423.00	As above, lower contact.	814346	6.00	4	1744	113	1	9	5	0.08
		657.00	END OF HOLE									
_												
لانتهم												
1						J						
_												
								•				
1												
ł												
- and -												
ł												
	PAGE: 5			10	CYA CYA		#1					

-

. ...

- - ----

	COMPANY : INTERNATIONAL KIRKLAND PROJECT : HUSKIES DRILL HOLE : 99HUS-05 TOWNSHIP : 1216 CLAIM : 5225440)]	LOT : ZONE : NO. REF. : RANGE : NTS : 32K/09	<u> </u>	PRINTED : June 21,19	99
	COORDINATES AT COLLAR						
	GRID #1 LINE : 04+00E STATION : 02+00N ELEVATION : 0.000	GRID #2 LINE : (STATION : (ELEVATION : (00+00E 00+00N 0.000	GRID #3 LATITUDE : LONGITUDE : ELEVATION :	0.000 0.000 0.000	GRID #4 LATITUDE : Longitude : Elevation :	0.000 0.000 0.000
Ţ	SAMPLING BASIC ASSAYS : 814347-814349 LITHOLOGY :				DATE DATE OF SUR	JOURNAL : June 01,199 VEV DATE :	9
ſ	PEOPLE				UEMEAT	ING DATE :	
	GEOLOGIST : PIERRE RHEAUME CONTRACTOR : KOSY DRILLING RELOG :				DRILLING DRILLING	STARTED : May 27,1999 FINISHED : May 31,1999	
	<u>LENGTH</u> CO	LLAR: 0.	00 FINAL	: 597.00			
L	<u>CORE</u> STORED : ANGLAUMAQU	E HEAD OFFICE	}	SIZE : BQ	CAS	ING LEFT : Yes	
	PURPOSE : test IP at "the fringe TARGET : REMARKS : The IP is believed to bearing locally up to	" of a mag-hi be explained 5% pyrrhotite	gh by the 5 foot inte	rval			
	<u>DIRECTIONAL DATA</u> AZIMUTH : 3	60°0'	DIP : 45° 0	ŗ			
Ţ							
]							
1							
Ţ							
Ţ				~	$\mathcal{P}\mathcal{R}$	-	
Ţ					1		
]						_	

and a constant and the second second

	FROM (f)	T0 (f)	DESCRIPTION
	0.00	20.00	CAS, PR
			<u>CASING</u> . Casing left in place.
_	20.00	597.00	H1,BT,1GY,F0145
			<u>BIOTITE GNEISS</u> . Poorly foliated quartzo-feldspathic biotite gneiss with foliation at 45 degrees from core axis, locally with minor pyrrhotite up to 5%.
			26.00 - 27.00 I1G
			<u>GRANITIC PEGMATITE.</u> Massive coarse grained granitic peg n atite.
\$			28.00 - 30.00 I1G
_			<u>GRANITIC PEGNATITE.</u> Massive coarse grained granitic peg n atite.
1			42.00 - 45.00 I1G
	,		<u>GRANITIC PEGMATITE</u> . Massive coarse grained granitic pegmatite.
	i		53.00 - 54.00 I1G
,,			<u>GRAWITIC PEGMATITE.</u> Massive coarse grained granitic pegmatite.
			102.00 - 103.00 IIG
1			<u>GRANITIC PEGMATITE</u> . Massive coarse grained granitic pegmatite.
			104.00 - 105.00 IIG
			<u>GRANITIC PEGNATITE</u> . Massive coarse grained granitic pegnatite.
			120.00 - 122.00 IIG
	l		<u>GRANITIC PEGMATITE</u> . Massive coarse grained granitic pegmatite.
			150.00 - 152.00 IIG
			<u>GRANITIC PEGNATITE</u> . Massive coarse grained granitic pegmatite.
,			163.00 - 164.00 IIG
			<u>GRANITIC PEGMATITE</u> . Massive coarse grained granitic pegmatite.
1]		166.00 - 169.00 IIG
1			<u>GRANITIC PEGMATITE</u> . Massive coarse grained granitic pegmatite.
1			182.00 - 184.00 IIG
			<u>GRANITIC PEGNATITE</u> . Massive coarse grained granitic pegmatite.
1			187.00 - 193.00 IIG
			<u>GRANITIC PEGNATITE</u> . Massive coarse grained granitic pegmatite.
L]		

.....

- 1.84 http://www.

HOLE NO: 99HUS-05

	FROM (f)	10 (f)	DESCRIPTION	 ······································
			205.00 - 206.00 IIG	
			<u>GRANITIC PEGMATITE.</u> Massive coarse grained granitic pegmatite.	
			207.00 - 218.00 IIG	
			<u>GRANITIC PEGMATITE.</u> Massive coarse grained granitic pegmatite.	
			221.00 - 222.00 IIG	
			<u>GRANITIC PEGHATITE.</u> Massive coarse grained granitic peg n atite.	
			234.00 - 238.00 IIG	
_			<u>GRANITIC PEGMATITE.</u> Massive coarse grained granitic pegmatite.	
			258.00 - 265.00 IIG	
			<u>GRANITIC PEGMATITE</u> . Nassive coarse grained granitic pegnatite.	
			272.00 - 275.00 IIG	
			<u>GRANITIC PEGNATITE</u> . Massive coarse grained granitic pegnatite.	
1			278.00 - 289.00 IIG	
است.			<u>GRANITIC PEGNATITE</u> . Massive coarse grained granitic pegnatite.	
			303.00 - 305.00 IIG	
			<u>GRANITIC PEGNATITE</u> . Massive coarse grained granitic pegmatite.	
			307.00 - 308.00 I1G	
			<u>GRANITIC PEGNATITE.</u> Massive coarse grained granitic pegnatite.	
			315.00 - 316.00 IIG	
			<u>GRANITIC PEGNATITE</u> . Massive coarse grained granitic pegnatite.	
jana,			318.00 - 321.00 IIG	
			<u>GRANITIC PEGMATITE</u> Massive coarse grained granitic pegmatite.	
			330.00 - 332.00 IIG	
			<u>GRAMITIC PEGMATITE.</u> Massive coarse grained granitic pegmatite.	
l			342.00 - 350.00 11G	
			<u>GRANITIC PEGMATITE.</u> Massive coarse grained granitic pegmatite.	
			353.00 - 359.00 11G	
1			<u>GRANITIC PEGMATITE</u> . Massive coarse grained granitic pegmatite.	
ł	1			

FROM (f)	T0 (f)	DESCRIPTION
_		367.00 - 398.00 I1G
		<u>GRANITIC PEGMATITE.</u> Massive coarse grained granitic peg n atite.
		402.00 - 408.00 IIG
		<u>GRANITIC PEGNATITE.</u> Massive coarse grained granitic peg n atite.
		429.00 - 430.00 IIG
		<u>GRANITIC PEGNATITE.</u> Massive coarse grained granitic pegnatite.
		431.00 - 432.00 IIG
		<u>GRANITIC PEGNATITE</u> . Massive coarse grained granitic pegnatite.
1		433.00 - 435.00 I1G
		<u>GRANITIC PEGMATITE.</u> Massive coarse grained granitic peg n atite.
		438.00 - 441.00 IIG
		<u>GRANITIC PEGNATITE.</u> Massive coarse grained granitic pegmatite.
		443.00 - 445.00 I1G
		<u>GRANITIC PEGMATITE.</u> Massive coarse grained granitic pegmatite.
		449.00 - 451.00 IIG
اح مر ا		<u>GRANITIC PEGMATITE</u> . Massive coarse grained granitic pegmatite.
		466.00 - 480.00 IIG
		<u>GRANITIC PEGNATITE</u> . Massive coarse grained granitic peg n atite.
		482.00 - 497.00 IIG
		<u>GRANITIC PEGMATITE.</u> Massive coarse grained granitic peg n atite.
entr		504.00 - 506.00 I1G
		<u>GRANITIC PEGMATITE</u> . Massive coarse grained granitic pegmatite.
		533.00 - 549.00 IIG
		<u>GRANITIC PEGMATITE.</u> Massive coarse grained granitic pegmatite.
I		557.00 - 596.00 I1G
		<u>GRANITIC PEGMATITE</u> . Massive coarse grained granitic pegmatite.
J	597.00	BND OF HOLE

.....

·····

····

any the first to a second stated block compare dimensions and the second

-[FROM (f)	TO (f)	DESCRIPTION	SAMPLE N.	LENG. (f)	Cu ppn	Ni ppm	Au ppb	Zn ppn	Ag ppm
	167.00	169.00	Bt Gneiss & Granite with 1% pyrrhotite.	814347	2.00	62	14	<5	34	0.2
	169.00	172.00	Gneiss with 5% pyrrhotite.	814348	3.00	134	81	<5	282	0.8
	172.00	177.00	As above, <1% pyrhotite.	814349	5.00	46	115	<5	147	<0.1
		597.00	END OF HOLE							
ĺ		·								
1										
ured.										
									}	
				i.						
						•				
ı										
I					}					
1										
L										
F	AGE: 5		ASSAY SAMPL	E RESULTS #1				HOI	E NO: 99HUS	5-05

The state of the Connect of the Interview of States and the

with sources

Rapport Lab Geochimie Geochemical Lab Report

RAPPORT: C99-61079.0 (COMPLET)

CLIENT: ANGLAUMAQUE

PROJET: HUSKIES

RÉFÉRENCE: 170297

SOUMIS PAR: P. RHEAUME

DATE RECU: 26-MAY-99 DATE DE L'IMPRESSION: 9-JUN-99

 • • • • •	<u>~</u>	

DATE	000000		NOMBRE	LIMITE INFÉRI	EURE	NÉTUORE	TYPES D'ÉCHANTILLONS	NOMBRE	FRACTION UTILISÉE	NOMBRE	PRÉP. DE L'É	CHAN.	NOMBRE
APPROUVE	CUMMANDE	ELEMENT D	'ANALYSES	DE DETECTION	EXTRACTION	METHODE	CAPOTTE DE EOPACE	25	-150	25	CONCASSER, P	ULVERISE	25
990609	1 Au	Or - Pyro Analys	e 25	1 PP8	PYRO ANALYSE	PYROANALYSE-DCP		23	150				_
990609	2 Pt	Platine	- 25	5 PPB	PYRO ANALYSE	PYROANALYSE-DCP							
990609	3 Pd	Palladium	25	1 PPB	PYRO ANALYSE	PYROANALYSE-DCP	COPIES DU RAPPORT À: 1	INT.KIRK. I	MINERALS INC.	FACTURE	A: INT.KIRK.	MINERALS	INC.
990609	4 Cu	Cuivre	25	1 PPM	HCL:HNO3 (3:1)	ABSORPTION ATOMIQUE							
990609	5 Co	Cobalt	25	1 PPM	HCL:HNO3 (3:1)	ABSORPTION ATOMIQUE	******	******	******	*****	********	*******	****
990609	6 NI	Nickel	25	2 PPM	HCL:HNO3 (3:1)	ABSORPTION ATOMIQUE	Ce rapport	ne doit ê	tre reproduit que dans	s sa totalité	. Les données	s présenté	es
							dans ce rap	pport sont	exprimées sur base sè	che sauf ind	ication cont	raire et n	e
990609	7 \$i02	Silica (SiO2)	5	0.01 PCT	FUSION BORATE	INDUC. COUP. PLASMA	concernent	que les é	chantillons reçus, ide	ntifiés par	le numéro		
990609	8 TiO2	Titane (TiO2)	5	0.01 PCT	FUSION BORATE	INDUC. COUP. PLASMA	d'échantil	lon.					
990609	9 Al 203	Alumine (Al203)	5	0.01 PCT	FUSION BORATE	INDUC. COUP. PLASHA	****	******	******	******	*********	*********	****
990609 1	0 Fe203*	Fer Total (Fe203) 5	0.01 PCT	FUSION BORATE	INDUC. COUP. PLASMA							
990609 1	1 MinO	Manganese (MnO)	5	0.01 PCT	FUSION BORATE	INDUC. COUP. PLASMA							
990609 1	2 MgO	Magnesium (MgO)	5	0.01 PCT	FUSION BORATE	INDUC. COUP. PLASMA							
990609 1	3 CaO	Calcium (CaO)	5	0.01 PCT	FUSION BORATE	INDUC. COUP. PLASMA							
990609 1	4 Na20	Sodium (Na2O)	5	0.01 PCT	FUSION BORATE	INDUC. COUP. PLASMA	• • • • • • • • • • • • • • • • • • •						
990609 1	5 1/20	Potassium (K2O)	5	0.05 PCT	FUSION BORATE	INDUC. COUP. PLASMA							
990609 1	6 P2O5	Phosphore (P205)	5	0.03 PCT	FUSION BORATE	INDUC. COUP. PLASMA	L						
990609 1	7 LOI	Perte au feu	5	0.05 PCT	Perte au feu 1000 C	GRAVIMETRIE							
990609 1	8 Total	Elements majeurs	Tot 25	0.01 PCT									
990609 1	9 Ba	Baryum	5	10 PPM	FUSION BORATE	INDUC. COUP. PLASMA							
990609 2	0 Cr	Chrome	5	10 PPM	FUSION BORATE	INDUC. COUP. PLASMA	k .						
990609 2	1 Sr	Strontium	5	5 PPM	FUSION BORATE	INDUC, COUP. PLASMA	L .						
990609 2	2 Zr	Zirconium	5	1 PPM	Pressed Pellet	XRAY FLUORESCENCE							
990609 2	3 Y	Yttrium	5	1 PPM	Pressed Pellet	XRAY FLUORESCENCE							
990609 2	4 S Tot	Soufre (Total)	5	0.02 PCT		LFCO							
			-	0102 1 01		-2							

Rapport Lab Geochimie Geochemical Lab Report

CLIENT : ANGLAUMAQUE		PROJET: HUSKIES
RAPPORT: C99-61079.0 (COMPLET)	DATE RECU : 26-MAY-99 DATE DE L'IMPRESSION: 9-JUN-99	PAGE 1 DE 1
	Can Nach Kan Back Lot Tatal Back Sr. 7r. X S Tat	
L'ÉCHANTILLON UNITÉS PPB PPB PPB PPM PPM PPM PCT PCT PCT PCT PCT PCT PCT	PCT PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PCT	
814301 3 5 4 5 103 1705 33.24 0.02 0.36 10.38 0.12 41.01	.01 <.01 <.05 <.03 13.79 99.50 <10 5656 <5 1 2 0.02	
814302 1 <5 3 4 109 1799		
814303 <1 13 13 4 110 1798		
814304 <1 13 15 4 104 1790		
814305 <1 11 12 4 106 1755 31.30 0.02 0.41 11.82 0.16 40.59	0.04 <.01 <.05 <.03 14.49 99.72 <10 8890 <5 <1 2 0.02	
814306 22 5 5 4 105 1877		
814307 <1 6 6 5 97 1693		
814308 <1 35 36 3 84 1463		
814309 <1 <5 4 3 86 1523		
814310 <1 <5 3 4 88 1596		
814311 <1 18 13 6 103 1607 35.27 0.04 0.92 12.72 0.07 37.30	0.05 <.01 0.07 <.03 11.64 98.91 <10 8105 <5 2 4 0.07	
814312 <1 9 8 12 100 1577		
814313 <1 <5 1 10 103 1670	·	
814314 8 45 1 6 81 1184		
814315 <1 8 6 6 76 1657		
814316 <1 8 7 3 67 1695 36.71 0.21 3.53 8.72 0.10 36.12	0.04 0.02 1.33 <.03 10.62 98.06 227 6353 27 6 1 0.08	
814317 1 7 11 245 72 1148		
814318 <1 20 13 26 % 1790		
814319 1 14 10 3 136 1934		
814320 <1 <5 <1 2 145 1726 35.14 0.05 1.02 12.67 0.08 36.90	0.06 <.01 <.05 0.07 11.73 98.67 <10 9394 10 7 4 0.13	
814321 4 63 67 3 99 1895		
814322 1 6 3 3 58 1982		
814323 1 10 9 203 93 1754		
814324 2 21 27 300 99 1742		
814325 1 13 16 17 92 1627		
		\sim
		(*5

		S Inter	tek tec	Testi	ng Serv Bondar C	ices legg			Rappo Geoch	ort Lab nemica	Geochim I Lab Repo	ie ort
RAPP	RT: C99-61	27.0 (PARTIEL)					RÉFÉREN	æ: 170299)			
CL I EI PROJI	IT: ANGLALM ET: HUSKIES	at					Sounis 1 Date recu:	PAR: P. RH 51-MAY-99	eaume Date de l'impres	sion: 21-JJA	1-99	
DATE			NOMERE	LINITE INFÉR		MÉTINTE	TYPES D'ÉCHANTILLONS	NOMERE	FRACTION UTILISÉE	NOMERE	PRÉP. DE L'ÉCHAN.	NOMBRE
0000			AL TOES				CAROTTE DE FORAGE	21	- 150	21	DUNCASSER, PULVER	ISE 21
0000	X) Z Pt	ur - Pyro Analyse Platine	21	1 PP8 5 PP8	PTRU ANALYSE PYRO ANALYSE	PYROMMALTSE-DEP						
0000	0 3 Pd	Palladium	21	1 PPB	PYRO ANALYSE	PYROANALYSE-DOP		8 44 cu *1		FACTURE	A+ 2864. CH. SULLI	VAN
0000	N 4 CU N 5 Co	Cuivre Cobelt	21	1 PPM 2 PPM	HCL:HNUS (3:1) HCL:HNO3 (3:1)	ABSORPTION ATOMICO ABSORPTION ATOMICUE	E CUPTES DU RAPPURT AT C	004, 68. 3		I MUTURE.	A. GAVY DIV BOALT	
0000	10 6 Ni	Nickel	21	2 PHN	HCL:HNO3 (3:1)	ABSORPTION ATOMIQUE	*******	*****	*********		******	*******
0000			•				Ce rapport	ne doit ê conteant	tre reproduit que dans	i sa totaliti khe sauf in	e. Les donnees pres dication contraire	entees et ne
0000	0 8 TiO2	Titane (TiO2)	2	0.01 PCT	FUSION BORATE	TNOUC. COUP. PLASH	i concernent	que les á	chantillons recus, ide	ntifiés per	Le numéro	
0000	0 9 AL203	Alumine (Al203)	2	0_01 PCT	FUSION BORATE	INDUC. COUP. PLASH	d'échantili	an.				
0000	00 10 Fe203	Fer Total (Fe203)	2	0.01 PCT	FUSION BORATE	INDUC. COUP. PLASH	**********	*******	******		****************	
0000	70 11 MmD - 30 12 MmD -	Manganese (MnD) Magnesium (MaC)	2	0.01 PCT	FUSION BORATE	INDUC, CUUP, PLASM INDUC COUP, PLASM						
		Hoge contract (right)			TUSTON BONNIE							
0000	0 13 CaO	Calcium (CaO)	2	0.01 PCT	FUSION BORATE	INDUC. COUP. PLASH	A Contraction of the second seco					
0000	N 14 Na20 XX 15 K20	Sodium (Na20) Potassium (K20)	2	0.01 PCT	FUSION BORATE	INDUC, LEUP, PLASM INDUC, COLP. PLASM	n n N					
0000	00 16 P205	Phosphore (P205)	2	0.03 PCT	FUSION BORATE	INDUC. COUP. PLASH	Å					
0000	00 17 LOI	Perte au feu	2	0.05 PCT	Perte au feu 1000	C GRAVIMETRIE						
JUU	20 10 10tal	ELEMENTS MOJEURS TO	τ 2)	V.VI PLI								
0000	00 19 Ba	Вагулл	2	10 PPN	FUSION BORATE	INDUC. COUP. PLASM	A					
0000	0 20 Cr	Chrone	2	10 PPM	FUSION BORATE	INDUC. COUP. PLASH	A.					
0000	20 22 S Tot	struntium Soufre (Total)	2	5 PPM 0,02 PCT	PUSIUN BURATE	LECO						
	,											
		RÉSULTATS À SUIVRE POL	UR: Nb	Y Zr								
							;					
							-					
(

ITS - Chimitee - Bondar Clear, 1322-B Harricana, Val.d'Co. D Contes tan 200 and and

Zh 002

1

Ì

E 003	ITS	sting Services Bondar Clegg													Rapport Lab Geochimie Geochemical Lab Report												
101	CLIENT : ANGLALMAQUE RAPPORT: C99-61127.0	(PAR	TIEL D) 				00	115464	1	108	DATE	REQU	: 31-NA)	(-99	DATE	DEL	' impri	SSION	: 21-JU	N-99	PROJE PAG	ET: 46. GE 1	JSKIES De 1			
	NUMÉRO DE ÉLÉMENT L'ÉCHANTILLON UNITÉS	au PP8 P	Pr Po Phi PPi	1 Ou 1 PPH 1	Co N FN PP	SiO2 PCT	tio2 / PCT	Al203 PCT	Fe2061* PCT	nino PCT	N90 PC7	CaO Na PCT P	20 K et P	20 9205 CT PCT	LOI PCT	Total PC1 P	Ba PPM	Cr : PPN PI	Sr S T M P	л Л							
	814326 814327 814328	1 ব ব	20 11 31 22 13 12	9 92 2 78 3 125	95 1480 91 1434 97 1434														0. 0. 0.	99 39 54							
ICLEGG	814329 814330	ব ব	8 7 5 1	7 16 1 1 6	02 1515 92 1417	i 38.45	0.23	3.63	10,42	0.14 3	4. 2	0.29 0.	021.	53 0.08	9.87	99.47 2	291 5	5270	\$2 0. 0.	21 10							
MITEC BONDAF	814331 814332 814333 814334 814335	4 4 4 4 4 4 7	ବ ଓ ବ ବ ବ ବ ବ	5 4 5 8 1 4 2 2 2 47	95 1497 84 1267 56 66° 56 914 63 966	7 7 6 5													0. a. 40. €0.	12 18 02 02 24							
ITS CHI	814336 814337 814338 814338	1	ଷ 1 ଷ 1 ଷ 1	4	115 1827 107 1743 106 1775	7 35.80 5	0.05	0.88	11.95	0.05	35.31	1.17 <	01 <.	.05 <.03	12.05	97. 84 -	<10	5844	9 (). 0. 0.	19 21 20 23							
, , , , , , , , , , , , , , , , , , ,	814340	ন ন	উ জ ব	2 5	109 173/ 175 112														0. 2	48 43							
00950956	814342 814343 3 814344 5 814345	1 <1 <1 1	\$ \$ \$ \$ \$ \$ \$ \$	2 6 1 1 5 1 3 1 2 3	127 1844 99 178 106 176 86 168	6 7 7 8													0 6 0 0	12 10 08 08							
	707 814346 91	1	¢ ؛	; 41	113 1744														Q	03							
	6/21/99 LUN 16:3																										

ITS - Chimitee - Boudar Clegg, 1322-B Harricana, Val-d'Or. P.Ouchee. JOD 326 (210) 276 (210)

003

۱

1

I

ITS Intertek Testing Services Chimitec

	CLIENT : ANGLA RAPPORT: C99-6	UMAQUE 1150.0 (CC	mplet)			PROJET: EUSKIES DATE RECU: 01-JUN-99 DATE DE L'IMPRESSION: 7-JUN-99 PAGE 1 DE											
	NUMERO DE L'èceantillon	LAMENT UNITÈS	Au30 PPB	Cu PPM	Zn PPM	Ag PPM	ni PPM										
	814347		<5	62	34	0.2	14										
	814348		<\$	134	282	0.8	81										
	814349		<5	46	147	<0.1	115										