GM 52252

1993 ASSESSMENT REPORT, PERMIT 916 (KOGALUK PERMIT)

Cette première page a été ajoutée au document et ne fait pas partie du rapport tel que soumis par les auteurs.

COMINCO LTD. MEA DE GESTION DES LOD QUEBEC

'93 OCT 26 10:03

EXPLORATION

EASTERN CANADA

PERMIT 91**4** (KOGALUK PERMIT)

UNGAVA PENINSULA, NORTHERN QUEBEC

LAT. 58°40'N - 59°01'N LONG. 74°16'

1993 ASSESSMENT REPORT

OCTOBER 1993

V. GROSL

03299 012 1 MER - S.I.S.E.M. 1994/02/17 GM 52252

TABLE OF CONTENTS

1.	Summary	1
2.	Location and Access	2
3.	Fenure	2
4.	Previous Work	2
5.	Work Performed	2
6.	Regional Geology	3
7.	Local Geology - Rock Types	4
	Structure	6
	Alteration	6
	Mineralogy	7
8.	Geochemistry	7
9.	Conclusions and Recommendations	8
10	Finance	8
11	References	8

LIST OF ATTACHMENTS

- 1. Location Map, Scale 1:50,000
- 2. Geology 34-J-8, Scale 1:50,000
- 2a. Geology 34-J-8, Scale 1:10,000
- 3. Geology 34-J-10, Scale 1:50,000
- 4. Geology 34-J-15, Scale 1:50,000
- 4a. Geology 34-J-15, Scale 1:10,000
- 5. Grid 1 (Geology & Soil Geochemistry), Scale 1:500
- 6. Grid 2 (Geology & Soil Geochemistry), Scale 1:2,500
- 7. Figure 1 (BD-93-51)
- 8. Figure 2 (VG-93-94)
- 9. Figure 3 (VG-93-98)
- 10. Geochemistry (Stream & Soil) 34-J-8, Scale 1:50,000
- 11. Geochemistry (Stream & Soil) 34-J-10, Scale 1:50,000
- 12. Geochemistry (Stream & Soil) 34-J-15, Scale 1:50,000
- 13. Kogaluk South Soil Geochemistry Line, Scale 1:20,000

Statement of Expenditures

LIST OF TABLES

- 1. Rock Analyses
- 2. Soil Analyses

COMINCO LTD.

EXPLORATION

EASTERN CANADA

PERMIT 91 (KOGALUK PERMIT)

1993 ASSESSMENT REPORT

OCTOBER 1993

V. GROSL

1. Summary

Permit 916 (Kogaluk Permit) is located on the Ungava Peninsula of Northern Quebec and is a 50/50 joint venture between SOQUEM and Cominco Ltd. The permit covers an area of 317 km² and was acquired in 1992.

Work in 1993 was conducted from three fly camps located along the Kogaluk River. The Kogaluk belt generally consists of metasedimentary assemblages including banded iron formation, mafic to felsic volcanic rocks of submarine nature and younger intrusives such as tonalite, granite, gabbro and pegmatites.

The metamorphic grade is greenstone to mid-amphibolite facies. Structurally the belt forms a narrow, NNW-oriented belt with steeply dipping planar fabric. Good potential exists for gold mineralization hosted by banded iron formation. Potential for volcanogenic massive sulphide mineralization is downgraded because of a limited occurrence of volcanic rocks.

Anomalous gold mineralization was detected in sulphidized banded iron formation in several locations in the central portion of the permit. Chip sampling indicated a number of areas with values of 2-6g/t over 1-2m width. The best value of 71.4g/t over 60cm was obtained from banded iron formation which carried 5-10% pyrrhotite, 5% pyrite and traces of chalcopyrite.

A 1994 program consisting of detailed geological mapping and prospecting, chip sampling, Magnetometer and HLEM geophysical surveying in the cental part of the permit is recommended. IP surveying might also be tried in selected areas.

It is recommended that 152km² of the permit be retained.

2. Location and Access

The Kogaluk Permit area occupies a narrow (approx. 4 km wide by 80 km long) strip of land located between latitudes 58°40'N to 59°01' N and at around longitude 74°16'W. The permit occupies portions of NTS sheet 34-J-8, 34-J-10, 34-J-15 and 34-O-2.

Access to the permit in 1993 was by float-equipped Beaver and Single Otter aircraft supplied by Johnny May Services from Kuujjuaq. The Beaver was on contract for the duration of the job and was shared by other Cominco-Soquem crews working in the general Minto area. Surface access was provided by inflatable boat from three fly camps established on the shores of the Kogaluk River. Kuujjuaq was used as a supply and expediting base for the first two weeks of the program and Povungnituk, a small Inuit community on the east coast of Hudson Bay, for the rest of the summer. Local businesses and the Co-op store were effectively used for services and supplies for the most of the summer.

3. Tenure

The Kogaluk permit is part of the 50/50 joint venture project in the Minto area, Ungava Peninsula, between Cominco Ltd. and Soquem. The Kogaluk permit covers an area of 317km² and expires in 1996. The 1993 expenditure requirements are \$100/km plus \$100/km fee payment. The permit areas are shown on plates 2a to 2c.

4. Previous work

- 1961-63 Geological Survey of Canada reconnaissance mapping (scale 1:1,000.000) by Stevenson, I.M. (characterized the Ungava Peninsula as largely high grade metamorphic and plutonic terrane).
- 1980's GSC colour airmagnetic anomaly maps of Ungava Peninsula.
- 1989-1991 Geological Survey of Canada geological mapping by Percival, J.A.
- 1992 Cominco Ltd.-Soquem joint venture program consisting of air photo interpretation, geophysical and landsat images interpretation, aerial reconnaissance prospecting, geological mapping, prospecting, rock sampling and data interpretation.

5. Work performed in 1993

Field work on the Kogaluk permit was carried out by V. Grosl and B. Dejou geologists of Cominco, T. Skulski geologist on contract by the GSC and E. Kinnan student assistant of Soquem between July 11 and August 4,1993. Based on 1992 geological observations and air magnetics interpretation, fly camps were established in three locations on Kogaluk River with best access to the belt of supracrustal rocks. The work consisted of geological mapping on a scale of 1:50,000, grid mapping of selected areas at 1:500 and 1:5,000, geochemical stream and soil sampling, rock chip and grab sampling, Beep Mat prospecting and VLF surveying in the areas of previously determined anomalous sulphide content. Geochemical rock, stream and soil samples were shipped to the Cominco's Laboratory in Toronto and were analyzed for Cu,Pb,Zn,Ag,Au. Some whole rock analysis, petrographic studies and geochronological studies are in progress (T. Skulski, GSC).

6. Regional Geology

The Minto area is part of the Goudalie lithotectonic terrane as described by Percival et al (1991). The Goudalie terrane is comprised of biotite and hornblende tonalite and tonalitic gneisses, with lesser paragneisses and metavolcanic rocks. Diabase dykes oriented WNW cross cut all other lithologies except for later granitic veins (Percival et al, 1991). Metasediments and metavolcanic rocks form NNW-oriented belts ranging from 1 to 8km wide and 10's of km in length. These belts are commonly intruded by granitoid plutons which have an ovoid shape and generally occupy the centre of medium sized lakes. The areas between the greenstone belts or septae are characterized by granulite facies granodiorite and gneiss.

The metamorphic grade of the supracrustals generally varies from greenschist facies (chlorite-epidote assemblage) to upper amphibolite facies (garnet-cordierite-sillimanite-biotite assemblage). The orientation of the foliation as defined by mafic minerals (biotite and hornblende mainly) is generally belt parallel at N350. Most of the supracrustal rocks describe a dome and basin tectonic regime possibly related to multiple phases of deformation. The Goudalie terrane has many of the characteristics of granite-greenstone terranes of the southern Superior Province (Percival et al, 1991), and, by analogy, has potential to host VMS and Au deposits. The Goudalie terrane is in contact to the west with the Minto Lake terrane which is characterized by orthopyroxene-bearing diatexite and granite, and to the east with the Utsalik terrane composed mainly of distinctive orthopyroxene and hornblende-bearing granite and granodiorite. Both the eastern and western contacts of the Goudalie terrane are gradational.

7. Local Geology

The Kogaluk supracrustal assemblage is a linear, NNW trending belt from 400 to 2,500m in width and about 100km long (including Tasiat permit), which in most part straddles the shores of Kogaluk River. The belt is generally delineated by younger tonalite intrusives on its east and west margins. It is dominated by metasedimentary rocks (greywacke, sandstone, siltstone, argillite) with about 10 to 20% volcanogenic rocks. The volcanic rocks are represented by massive and pillowed basalt to andesite flows, mafic to intermediate tuffs, and locally by aphyric to quartz-feldspar phyric rhyolite, dacite, and chert. In the central portion of the permit banded iron formation consisting of at least two separate horizons, one of which bears sulphides, constitutes a significant portion of the Kogaluk permit stratigraphy. Beside tonalite plutons, younger granitoid intrusives were encountered. Gabbro and diabase sills and dykes were found cutting both supracrustal and tonalite rocks. The youngest rocks encountered were pegmatite and aplite dykes.

The rocks to the west of the Kogaluk belt are predominantly paragneisses, while the rocks to the east are mainly granitoid gneisses. They are believed to be older possibly basement stratigraphy to the supracrustals.

The description of the lithologies in approximate chronologic order follows:

ARCHEAN

A) High Grade Metamorphic Rocks

<u>Paragneiss</u> grading into <u>Diatexite</u> underlie large areas in the centre of the Kogaluk permit (East and west of the Kogaluk River). This unit appears to be thickened due to tight folding. Gneissic banding is pronounced by segregation of coarser feldspar- (quartz)-biotite-(garnet, + sillimanite) from finer feldspar-biotite bands. Garnet crystals are mm's to cm's scale and are more common on the west side of the river. Sillimanite (up to 10% as 1 to 10mm large porphyroblasts) rich bands were observed in the same area. Pegmatoid and aplitic bands cm's to m's wide, parallel to gneissosity are very common. In the area east of the Kogaluk River paragneiss are injected by tonalite intrusions (probably along the axial planes of folds), from several meters to 10's of meters width. The injections are parallel to gneissosity and usually occupy topographic highs.

A band of <u>Mafic Gneiss</u> approx. 400m wide, interbedded in the above described paragneiss was mapped on the west side of Kogaluk River. This gneiss is banded with thick biotite, amphibole layers and thin plagioclase and quartz layers.

<u>Orthogneiss</u> exhibits thick layers of quartzo-feldspathic and thin biotite rich layers occurs mainly in the areas east of the Kogaluk River. Mapping of this unit was very restricted.

B) Supracrustal Rocks

<u>Mafic to Intermediate Flows</u> make up a very small portion (1%) of supracrustal package. A narrow band (several metres) of west facing, fairly well preserved mafic pillow basalts were found on the east shore of Kogaluk River in the southern portion of the permit. In the central portion of the permit is a 3 to 5m wide band of deformed pillow and breccia andesites, epidotized and silicified, with trace amount of sulphides.

Massive, nondescript bands of mafic to intermediate flows were observed in southern and central portions of the permit. This unit carried 3 to 15cm diameter clasts or breccia fragments epidotized and surrounded by rims of biotite. This unit is best exposed in the area north of Tonalite Lake.

<u>Mafic Tuffs</u> are finely bedded predominantly amphibole-biotite rich with 10 to 30% felsic (plagioclase) layers or fragments. This is the most widespread unit of volcanogenic origin. It was mapped throughout the Kogaluk belt, but is best exposed in the Grid-1 area.

<u>Crystal Tuff</u> of rhyolitic and dacitic composition occur in southern portion of the permit (Grid-1). They are 10 to 30m wide usually sericitized and composed of 10-25% quartz eyes. In the Grid-1 area, where it is best exposed, this rock appears lightly sheared. A narrow

band of aphyric, sericitized rhyolite was also observed in central portion of the permit in an area of very limited outcrop.

<u>Dacite</u> was mapped in the Grid-1 area. It is composed of 10-20% biotite flakes in a matrix of light grey feldspar and quartz.

<u>Chert</u> sediment is very rare and was encountered in only two locations. In the Grid-1 area it is from 2 to 30m thick and comprises recrystallized quartz with numerous bands and laminae of tourmaline. It is in contact with rhyolite and probably represents a quiescence period between the volcanic activity and subsequent sedimentation. Minor (<1%) sulphides occur in this chert bed.

In the central portion of the permit a thin (50 cm's) chert horizon was encountered in the same stratigraphic position, but no sulphides were seen.

<u>Banded Iron Formation</u> is a prominent rusty weathering unit occurring intermittently over a 12km strike length in the central portion of the permit. It consists of at least two separate horizons, internally folded and separated by schists/gneisses. The thicker magnetite-chert banded horizon is 10-50m thick with bands of mm to cm scale. The sulphide-bearing magnetite iron horizon is 2 to 5m thick and associated with garnetiferous siliceous, metasediments. Epidote alteration is common. Sulphides (pyrite and pyrrhotite 2-10% and locally chalcopyrite 1%) occur as discontinuous layers, blotches and specks, and are often associated with chlorite and biotite enrichment.

<u>Metasediments (Schists)</u> are the most widespread package of rocks occurring throughout the belt and are represented by greywacke, argillite, conglomerate, sandstone and siltstone. Most common mineral assemblages are plagioclase-quartz-biotite-/garnet/+-sillimanite+- cordierite \pm pyrite \pm pyrrhotite. Pegmatitic bands and quartz veins parallel to schistosity are characteristically very common. In some areas (Grid-1, central portion of the permit) the sediments overlying the volcanics are silicified and may carry 2-10% sulphide specks and blotches in narrow (10-20cm's) layers. Garnet crystals may also be present. The sulphidic sediments may be the stratigraphic equivalent of the Banded Iron Formation.

<u>Conglomerate</u> beds composed of cm's size polymictic clasts of sedimentary and volcanic origin occur in southern and central portions of the permit.

<u>Sandstone/Siltstone</u> beds of arkosic composition are commonly massive white to light orange weathering and may be mistaken for intermediate volcanic rock.

<u>Quartzite</u> beds are typically white weathering, thin to thick bedded, finely grained, occasionally laminated, almost pure quartz siltstone or sandstone. This lithology is most prominent in the central portions of the permit.

Flow banded <u>Rhyolite</u> approx. 30m wide was followed over a 2km strike length in the

central portion of the permit. This rhyolite is distinctly different from rhyolites mapped in southern areas of the permit. It is fresh, grey with mm thick light feldspathic bands, probably younger than the above described stratigraphy.

C) Intrusive Rocks

<u>Granitoid Intrusives</u> (quartz-feldspar-biotite-amphibole) well foliated, older or contemporaneous with the supracrustals are mainly found in central portions of the permit. <u>Tonalite Plutons</u> (K-spar-quartz-biotite) mark the borders of the supracrustal belt. They appear to be concordant with the belt and are generally not foliated, although in some areas (central) moderately foliated tonalites with specks of pyrite were observed. <u>Granite Intrusions</u> (quartz-feldspar-biotite \pm amphibole, massive, unfoliated, porphyritic, commonly cut by pegmatite dykes (K-spar-quartz-muscovite \pm garnet \pm tourmaline, were mapped mostly in central portions of the permit.

PROTEROZOIC

<u>Diabase</u> dykes and sills, often gabbroic, are the youngest intrusions in the permit. They are generally 10's of metres wide crosscutting the supracrustal and intrusive rocks.

Structure

The belt trends at roughly 330°. The beds are mostly vertically to steeply west and east dipping. Preliminary observations indicate an antiformal structure with granitoid intrusion and tonalite in its core in the central portion of the belt. Minor folds in the belt plunge steeply north and south.

Alteration

Silicification, sericitization associated with tourmaline and sulphide enrichment was found in the southern portion of the belt (Grid-1). Strong carbonate (ankerite, dolomite) and silica alteration with minor tourmaline and sulphide mineralization are found crosscutting the stratigraphy (sediments and volcanics) in the northern portion of the belt. Silica and epidote alteration of the sulphidic iron formations is very prominent in the central portion of the permit. A number of locations exhibit strong silicification with associated tourmaline and sulphide mineralization within volcanic and sedimentary package. Biotite and chlorite are also enriched in banded iron formation in the areas of sulphide mineralization.

Mineralization

Disseminated pyrite hosted by rhyolite (quartz-sericite schist), chert and silicified metasediments was observed in several locations in the Grid-1 area (Kogaluk South). Pyrite was locally accompanied by traces of chalcopyrite in the chert and rhyolite. Outcrops which carried considerable (2-10%) sulphides were chip sampled and analyzed for Cu, Pb, Zn, Ag,

Au. Elevated Cu, Au values were obtained from silicified sediment, rhyolite and chert. Best result was 812ppm Cu and 600ppb Au from the chert horizon and 1000ppb Au from a pyrite-speckled rhyolite float. All analyses are plotted on the attached Plate-3 and listed on Table-1.

Best sulphide mineralization hosted by intermittently exposed banded iron formation was found in northern portion of the permit approx. 5km SSE of Lake Tikimuattuup Quamaningua (Figure-1). About 5-20% pyrite/pyrrhotite and locally chalcopyrite occur as disseminations, blotches and mm layers over 0.5 to 2m widths. Quartz, biotite, chlorite and sometimes epidote are also present. Chip sampling of this mineralization revealed a number of anomalous gold locations in order of 2-6g/t over 1-2m width. The best result was 71.4g/t over 0.6m width. Additional chip sampling is needed to better determine the exact width and continuity of gold mineralization.

Disseminated pyrite associated with 10-20cm's wide quartz veins with tourmaline crystals, and hosted by metasediments, was also found in the same general area. Best gold value was 807ppb/.8m.

8. Geochemistry

<u>Soil and stream silt</u> samples were taken mostly on recce traverses and on a few grid lines. The best soil was developed in the areas of small dry ponds and in depressions between outcrops. Scattered anomalous Cu and Au (up to 600ppm Cu and 200ppb Au) were obtained in the Kogaluk South area.

Geochemical results are plotted on Plates 5, 6, 10 to 13 incl. Figures 1,2, and 3 and plates 2 to 6 incl. show rock geochemistry and location of mineralized samples.

Whole rock lithogeochemical analysis were done on 2 samples to date in the Grid-1 area. Additional analysis are in progress (T. Skulski - G.S.C.). Results will be examined at a future date.

9. Conclusions and Recommendations

The 1993 summer program downgraded the potential for base metal mineralization on the Kogaluk permit, but defined in more detail areas of best potential for gold mineralization. Because of the limited thickness and strike extent of volcanic rocks the occurrence of the VMS style mineralization is unlikely, however there are two major areas of good potential for gold mineralization.

i) The southern portion of the permit which is underlain by tourmaline bearing chert, sericitized rhyolite and silicified metasediments revealed a few gold anomalous areas in 1992 and 1993. This area should be explored further in 1994 with follow-up mapping and sampling, magnetometer surveying, and possibly some IP surveying in selected areas.

ii) The central portion of the permit has an extensive strike length of sulphidized and altered banded iron formation which carries anomalous gold in a number of sampled locations. One sample assayed 71.4g/t over 60cm. It is recommended that areas of the central portion of the permit be covered by Magnetometer and HLEM surveys to better define extensions of the banded iron formation and to help define drilling targets.

It is recommended that 152km² be retained.

10. Finance

The Kogaluk permit expenditure for 1993 was \$126,632. Statement of Expenditures is attached.

11. References

FRANKLIN, J.M., SANGSTER, D.M., AND LYDON, J.W., 1981: Volcanic Associated Massive Sulphide Deposits: in SEG Seventy-Fifth Anniversary Volume, Skinner, B.J. ed. p.485-627.

GOVETT, G.J.S. and NICHOL, I., 1979: Lithogeochemistry in mineral exploration. In: Geophysics and geochemistry in the Search for Metallic Ore (editor P.J. Hood). Geol. Survey Canada, report 31.

MCLEOD, J.A., 1992, Minto-Vizien Sections: Cominco internal report.

MOORE, D.W., 1992, Minto-Vizien 1992 Year End Report, Cominco internal report.

PERCIVAL, J.A., CARD, K.D., STERN, R.A., and BEGIN, N.J., 1990: A geological transect of northeastern Superior Province, Ungava Peninsula, Quebec: The Lake Minto area: in Current Research, Part C, Geological Survey of Canada, Paper 90-1C, p. 133-141.

PERCIVAL, J.A., and CARD, K.D., 1992: Vizien greenstone belt and adjacent high grade domains of the Minto block, Ungava Peninsula, Quebec; in Current Research, Part C, Geological Survey of Canada, Paper 92-1C, p. 69-80.

PERCIVAL, J.A. and CARD, K.D., 1992: Geology of the Vizien greenstone belt; Geological Survey of Canada, Open File 2495, scale 1:50000.

STEVENSON, I.M., 1963: Leaf River Map-Area, New Quebec: Parts of 24SW, 24NW, 34SE, and 34NE; Geological Survey of Canada, Paper 62-24, 6p.

STEVENSON, I.M., 1965: Leaf River Map Area, Quebec and District of Keewatin: 34 parts of 24, 25 and 35; Geological Survey of Canada, Paper 64-28, 10p.

STEVENSON, I.M., 1968: A geological reconnaissance of Leaf River map area, New Quebec and Northwest Territories; Geological Survey of Canada Memoir 356, 112p.

Submitted by:

V. Grosl, Project Geologist, Exploration, Eastern Canada

Endorsed by:

RB Cook

R.B. Cook, Manager, Exploration, Eastern Canada

Distribution: Toronto Files, Quebec Govt.

STATEMENT OF EXPENDITURES

MINING EXPLORATION PERMIT 914 (KOGALUK)

Staff Costs:
Transportation:
Camp Costs:
Expediting:\$ 1,462
Mob and Demob: \$ 11,000
Assaying:\$ 9,570
Freight:\$ 6,900
Report Writing, Drafting, Reproduction: \$ 12,900
Total:

TABLE 1

ROCK ANALYSES

COMINCO LTD. TOR	. MINTO	D RECCE. KOGALUK (TL South)	.93-047	JULY22/93
ROCKS	-	(V. GR	DSL)		
SAMPLE #	Cu	ı Pb	Zn	λq	Au
	I	ppm ppm	ppm	ppm	ppb
1 VG - 93 - A		6 2 8	54	21	<10
2 7		2 28	56	<1	<10
3 8		(1 30)	80	<1	<10
4 9		2 22	16	<1	90
5 10	12	20 26	36	<1	302
6 11		8 48	120	<1	24
7 12	1	18 40	70	<1	44
8 13	5	32 6	12	<1	42
9 13 A		MISSING			•-
10 14		6 20	38	<1	12
11 15	1	28	70	1	30
12 16	19	50 24	52	ī	150
13 17		22 4	30	4	1000
14 19		4 24	40	1	171
15 20		4 30	44	ī	90
16 21		22 16	34	<1	<10
17 22	-	4 26	92	<1	<10
18 23	1	L 4 20	64	<1	12
19 24	1	L4 18	16	<1	171
20 25	10	04 18	34	1	150
21 26		8 30	86	<1	16
22 28	0-2 M	1 22	24	<1	12
23 28	2-4 M	x1 24	22	1	41
24 28	4-6 M	L8 22	26	1	199
25 28	6-7.5 M	58 24	22	<1	186
26 30		10 30	76	1	65
27 34 A	•	(1 20	34	<1	22
28 34 B		1 34	26	1	40
29 34 C		4 36	28	<1	344
30 33		(1 32	28	1	101
KOGALUK SOUTH	NO				
38 EK-93- 1	816	5 46	04	1	22
39 2	817 1	2 26	03 70	× 1	22
40 3	818	1 26	50	<pre><1</pre>	<10
41 4	819	12 20	92 95	<1 ×1	<10
42 5	820	10 22	40	<pre><1</pre>	J4 150
43 6	821 14	14 20	4U 40		157
44 7	822 12	13 JU	74 74		500
/	V26 14		27	/T	79

COMINCO LTD. TOR.	MINTO RECCE.	TL93-047	JULY22/93
	KOGALUK (S	OUTH)	
ROCKS	(V. GRO)	SL)	
SAMPLE #	Cu Pb	Zn Ag	Au
	ppm ppm	DDM DDM	daa
45 EK-93- 8 A 823	3 144 30	46 <1	108
46 8 B 824	812 30	86 1	450
47 8 C 82	5 520 12	20 <1	214
48 8D 820	5 240 8	14 <1	55
49 8 821	7 90 8	18 <1	55
50 8 F 82	3 232 4	12 <1	129
51 8 G 829) 116 <1	16 <1	600
52 8 H 830) 112 1	14 <1	111
53 8 I 831	L 240 6	24 <1	87
54 8J 832	2 160 8	16 <1	108
55 9A 833	3 46 18	36 <1	94
56 9 B 834	40 14	38 <1	18
57 9 C 83	5 18 20	40 <1	22
58 BD-93-7 801	L 38 30	26 <1	58
59 9 802	2 38 32	130 <1	<10
60 10 803	3 46 14	22 <1	161
61 10 804	22 28	22 <1	101
62 10 805	5 2 24	20 <1	98
63 10 806	5 42 20	36 <1	154
64 10 B 807	7 1 24	30 <1	18
65 10 A 808	3 64 8	22 <1	108
66 11 809	78 30	38 <1	101
67 15 810) 168 24	50 <1	34
68 16 811	L 4 6	14 <1	32
69 17 812	2 36 36	62 <1	<10
70 20 A 813	3 · 2 20	20 <1	22
71 20 B 814	32 32	118 1	20
72 20 C 815	5 12 12	18 <1	168
73 24 836	52 36	64 <1	<10
74 29 837	28 88	210 <1	227
75 EK-93 10 838	22 50	64 <1	347
76 VG-93 28 A 28A	8 20	26 <1	38

CU,PB,ZN,AG AU TOTAL EXTRACTION A.A. finish HOT BROMINE EXTRACTION A.A. finish

. . .

Í

-

COMINCO LTD. TOR.

ROCKS

	SAMPLE #		Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb
1	VG-93- 101	. C.5M	18	48	122	1	65
2	VG-93- 103	A COMP	160	38	84	<1	16
3	VG-93- 103	B	28	12	40	1	29
4	VG-93- 105	δ λ	20	30	56	1	185
5	VG-93- 105	6 B	10	32	208	<1	119
6	TS-279- 93	A-7801	106	30	96	<1	47
7	TS-290- 93	A-7802	56	24	150	1	41
8	TS-340- 93	A-7803	48	30	74	<1	29
9	TS-340- 93	A-7804	50	28	66	<1	43
10	TS-350A 93	A-7805	4	10	24	<1	<10
11	TS-350B 93	A-7806	2	34	36	<1	11
12	TS-350C 93	A-7807	8	40	100	<1	36
13	TS-280- 93	A-7808	184	44	244	<1	13
14	EK-93- 42	870	184	28	64	1	108
15	EK-93- 40	871	8	42	92	<1	<10
16	EK-93- 45	5 872	26	46	160	<1	358
17	EK-93- 44	873	28	30	102	<1	29
18	EK-93- 41	874	2	40	106	<1	29
19	BD-93- 66	875	ลี	86	116	21	23
20	BD-93- 69	876	162	38	92	`±	210
21	BD = 93 = 70	877	44	20	94		<u> </u>
21	BD-93- 71	878	68	24	124		(10
22	<u>97-93-</u> 72	. 070	12	14	124		22
23	BD = 93 = 72		29	73	79		<10
27	BD-93- 73		20	~ ~ ~	70	< T	<10
23	$U_{-02} = 01$	MISSING	226	26	174	•	
20	VG - 33 - 110		230	20	134	Ţ	16
21	VG - 93 - 110	NTOOTNO	404	22	124	3	63
20	VG-33- 113		2	10	20		
29	EK-93- 60			18	32	<1	13
30	EK-93- 63	/810	46	22	80	<1	<10
31	EK-93- 64	7811	8	20	42	<1	31
32	EK-93- 50	7812	<1	26	64	<1	13
33	EK-93- 56	7813	82	12	112	<1	29
34	BD-93- 55	864	432	28	150	<1	47
35	BD-93- 56	865	32	24	119	<1	16
36	VG-93- 93	866	20	20	64	<1	59
37	BD-93- 58	867	<1	28	100	<1	190
38	BD-93- 59	868	<1	10	48	3	156
39	BD-93- 60	869	2	24	92	<1	587
40	VG-93- 94	CH-0	6	22	30	<1	365
41	VG-93- 94	CH-1	38	24	94	<1	<10
42	VG-93- 94	CH-2	62	24	60	<1	<10
43	VG-93- 94	CH-3	28	24	74	<1	<10
44	VG-93- 94	CH-4	<1	30	84	<1	<10
45	VG-93- 94	CH-5	8	26	76	<1	<10
46	VG-93- 94	CH-6	22	24	76	<1	<10
47	VG-93- 98	CH-1	14	22	100	<1	3800

Ş ŧ

į

COMINCO LTD. TOR.	MINTO RE Kogaluk I	CCE. North	T	L93-053	AUG 23/93
ROCKS		(V. GRO	SL)		
SAMPLE #	Cu	Pb	Zn	λα	Au
	bbw	ppm	ppm	ppm	ppb
48 VG-93- 98 CH-2	26	20	160	<1	607
49 VG-93- 98 CH-3	22	18	100	<1	6200
50 VG-93- 101 A	100	20	66	<1	6280
51 VG-93- 101 B	<1	16	44	<1	543
KOGALUK NORTH					
58 BD-93- 47 850	<1	18	34	<1	10
59 BD-93- 47 851	<1	24	26	<1	18
60 VG-93- 81 852	<1	16	30	<1	103
61 VG-93- 79	16	20	60	<1	15
62 VG-93- 81	<1	22	28	<1	13
63 VG-93- 81	<1	34	116	1	22
64 VG-93- 81 B	358	38	140	1	15
65 VG-93- 84 1.5M	30	30	68	<1	455
66 VG-93- 85 06M	72	12	26	<1	228
67 VG-93- 85 .6-1.4M	1 60	12	20	<1	807
68 VG-93- 85 1.4-2.0	24	24	50	<1	43
69 VG-93- 85 B	26	30	120	<1	18
70 BD-93- 49 A 853	2	28	88	<1	5100
71 BD-93- 49 B 854	<1	30	68	1	147
72 BD-93- 49 C 855	202	36	100	2	3560
73 BD-93- 50 856	14	18	14	<1	16
74 BD-93- 51 857	4000	26	120	5	71400
75 VG-93- 86 CH-1	18	26	64	<1	137
76 VG-93- 86 CH-2	8	22	36	<1	187
77 VG-93- 86 CH-3	210	26	80	· <1	738
78 VG-93- 86 B	28	22	50	<1	241
79 VG-93- 89	11	8	4	<1	106
80 VG-93- 92	4	8	16	<1	2100
81 BD-93- 52 858	300	26	60	<1	1800
82 BD-93- 53 859	2	40	60	2	32
83 BD-93- 54 860	50	30	106	1	444
84 BD-93- 54 B1 861	100	26	110	<1	202
85 BD-93- 54 B2 862	320	26	88	1	902
86 BD-93- 54 C 863	688	20	72	1	1400

CU,PB,ZN,AG

TOTAL EXTRACTION A.A. finish

et ...

COMINCO LTD. TOR.	MINTO RE Kogalu	CCE. K NORTH	TI	293-073	SEPT 16/93
ROCKS		(V. GROS	ն)		
SAMPLE #	Cu	Pb	Zn	λg	Au
	եեա	55.4	55m	55.	քեր
1 VG-93- 67 839	82	50	118	<1	38
2 VG-93- 67 840	64	36	56	<1	50
3 VG-93- 67 841	58	46	126	<1	65
4 VG-93- 67 842	12	42	76	<1	55
5 VG-93- 67 843	28	54	110	<1	170
6 VG-93- 67 844	72	54	116	<1	150
7 VG-93- 67 0-2	M 12	52	76	<1	60
8 VG-93- 67 2-4	M 5	42	34	<1	50
9 VG-93- 67 4-6	M 5	46	50	<1	58

CU,PB,ZN,AGTOTAL EXTRACTION A.A. finishAUHOT BROMINE EXTRACTION A.A. finish

COMINCO LTD. TOR.

1

ş

TL93-098 SEPT 11/93

				KOGALU	К				
ROC	CKS							F	ECHECK
	SAMPLE #			Cu	РЬ	Zn	уd	Au	λu
				ppm	ppm	ppm	ppm	ppb	ppb
K-1	7210	0		• •	22	0.6	11	6 D E	
1	7210	1 1		270	32	30		625	
2	7211		1.7	270	20	70		123	
3	7212	1./	2.5	220	20	30		240	1010
9	7213	2.5	3.2	320	29	92		1000	1016
5	7214	3.2	4.4	210		74		1/60	1800
7	7215	4.2	5.2	50%	74	00		1100	923
	7210	5.2	6.1	012	16	02		5400	5400
0	7210	6.1	0.0	212	10	79	<1 21	9000	9200
10	7210	0.0	7.1	340	24	60	X1	1470	1200
11	7213	7.1	7.3	160	26	104		1010	1/00
12	7220	1.3	10 2	TOO	20	104		3200	3300
12	7221	0.7	11 7	40	20	34		30 /10	
13	1222	11.7	12.7	40	30	140		125	
14	1223	12.7	12.7	24 04	30	190		123	
12	1229	12.7	14.0	74	30	120		74	
17	1225	14.U	15.0	12	30	92	<1 ×1	20	
10	1220	15.0	17.0	262	34	120	<1 <1	14 522	
10	1221	17.0	10 0	502	30	120	21	522	
13	1220	17.0	10.0	32	24	130		190	
20	1229	18.0	10.9	20	30	124	<1 ×1		
21	7230	18.9	19.5	10	20	114		73	1070
22	7231	21.2	21.65	114	38	114	1	1000	10/9
23	7232	21.65	22.00	914	32	38		190	2040
24	1233	22.00	22.60	1/4	20	40	< T	3100	3040
20	1234	22.00	23.70	310	30	40	(1	234	
V _3	5								
26	7725	0 0	0 9	1.4	34	128	71	59	
20	7235	0.0	1 4	17 50	20	76	21	2100	3100
21	7230	1 4	1.9	204	20	78	21	1999	1050
20	7237	1 0	24	110	22	74	21	2716	1900
20	7230	2 4	2.7	400	34	92	21	200	
31	7233	3.0	4 0	54	36	78	21	1910	
32	7240	4.0	4.9	96	26	88	21	3550	2800
33	7242	4.9	5.65	158	20	70	21	1772	1650
34	7243	5 65	6 5	246	24	56	21	3680	2455
35	7235	5.05	7 3	54	36	74	×1	2000	2422
36	7213	7 3	8 2	21	40	116	21	557	
20	1233	1.5	0.2	4	10	110	1	507	
K - 2	>								
27	7746	0 0	0 65	22	30	64	Z1	6.2	
28	7240	0.65	1 7	236	24	50	21	3220	3200
30	7748	1.7	2.7	286	28	56	<1	5020	JZUU
53	1414	±•/	- • /	200	2.4		74	J V 4	
		AU	HOT BROM	INE EXT	RACTION	2	.A. f1	nish	
	CU, PB, ZN.	AG	TOTAL E)	TRACTIO	N A.A	finis			

COMI	NCO LTD.	TOR.		MINTO RE Kogalu	CCE. K	T	L93-098	S S	EPT 11/9	3
ROCK	S							R	ECKECK	
S	AMPLE #			Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	Au ppb	
K-4					• •	• •				
40	7249	0.0	0.6	148	34	94	<1	56		
41	7250	0.6	0.8	480	28	50	<1	1214		
42	7251	0.8	1.8	48	30	114	<1	<10		
43	7252	1.8	2.8	82	36	124	<1	<10		
44	7253	2.8	3.4	56	34	110	<1	102		
45	7254	3.4	4.4	66	32	36	<1	166		
46	7255	4.4	4.95	234	26	58	<1	89		
47	7256	4.95	5.6	122	28	46	<1	164		
4.9	7257	6.15	7.0	22	34	84	<1	12		

1

ļ

.

CU, PB, ZN, AG TOTAL EXTRACTION A.A. finish

TABLE 2

SOIL ANALYSES

COMINCO LTD. TOR.	MINTO RECCE. (KOGALUK SOUTH)	TL93-046	JULY 21/93
SOILS	V. GROSL		

											RECHECKS
	TOR. LAB	SANPLE	FIE	LD	Cu	የb	Zn	Ag	Au	ORGANIC	Au
	NUMBER	+	10-03	RDINATES	ppe	ppe	pps	ppe	ppb		рръ
1	89300292	172198	0+00	2+00	5	4	43	4	3	3	
2	B9300293	172199			10	17	24	ä	1	3	
3	89300294	172200			9	4	27	ä	ā	ō	
4	B9300295	172201			a	7	133	ä	ä	4	
5	B9300296	172202			12	12	37	(I	a	4	
6	89300297	172203			9	6	31	ä	14	2	15
7	89300298	172204			Í	11	40	a	2	4	
8	B9300299	172197			6	9	32	< <u>(</u>	a	i	
9	89300300	185003			ā	8	49	ä	à	0	
10	B9300301	185004			10	8	40	(1	2	3	
11	89300302	185005			a	7	16	ä	2	3	
12	B9300303	185006			(1	8	55	1	ā	ō	
13	89300304	185002			17	9	65	(I	đ	4	
14	B9300305	185009			138	10	145	ä	10	3	9
15	89300306	185010			192	14	36	ä	- di	3	-
16	B9300307	185011			21	11	57	a	1	ō	
17	89300308	185012			41	8	27	- CI	à	3	
18	B9300309	185013			25	15	45	ä	ä	Ĩ	
19	89300310	185101			120	11	49	a	<1	3	
20	R9300311	185102			184	8	26	<1 <1	2	4	
21	R9300312	185030			6	q	7	~	2	2	
22	R9300313	185031			ă	13	141	~	~1	2	
23	R9300314	185103			~	14	19	ä	~	3	
24	R9300315	195104				10	21	~ ~ ~	6	1	
25	89300316	185105			3	4	4	21	(1	1	
26	R9300317	185106			17	7	12		7	- 2	
27	R930031R	195107			<i>(</i> 1	12	52		1	2	
28	R9300319	185108			29	6	37		100	1	26
29	89300320	185100			12	11	21	71	10	1	20
20	B9200221	195110			12	5	37	71	0		13
21	89200321	105110			21	2	37 27	<u></u>	2	0	10
22	B0300311	185007			19	5	26	71	7 20	1	
33	B9200323	195009			25	5	52	71	30	1	77 20
- 34 - 34	D0200224	172227			3J 1	10	33 24		40	v ^	30
- 25	DJJVVJ2J DJJVVJ2J	172220			2	10	49	<1 /1	4	v	
- 30	833VV320 89300327	172230			2	7	10			0	
27	B0200227	172233			3 75	10	33 07		1 21	0	
37 20	89200220	172241			40 11	17	0/	11	VI.	I	
20	80300353	172274			11 21	11	Ę	71	2		
33 40	B0200221	195011			т. Т.	11	J	71	2	1	
- TV - #1	0030V3333	105011			11	001M0					
41 42	07300332 DQ200332	105010			۲N ۱۱	(V)	20	74	/1		
44	029449999	103411			0	10	23	U	- 11	1	

COMINCO LTD. TOR.	MINTO RECCE. (KOGALUK SOUTH)	TL 93-046	JULY 21/93
SOILS	V. GROSL		

TOR. LAB Number	SAMPLE #	FIELD Co-ordinates	Cu ppa	Pb pp s	Zn pp n	Ag ppn	Au ppb	ORGANIC	RECHECKS Au ppb
43 B9300334	185020		2	8	36	(1	4	0	
44 B9300335	185021		36	6	6	(1	(1	2	
45 89300336	185022		324	9	8	(1	1	1	
46 B9300337	185026		16	5	21	(1	15	i	15
47 B9300338	185027		11	11	48	<1	10	2	
48 B9300339	185029		18	4	10	(1	3	3	
49 89300340	185032		5	4	14	<1	10	1	
50 B9300341	185033		3	8	64	4	(1	2	
51 89300342	185034		42	5	22	<1	(1	2	
52 B9300343	185035		8	6	14	(1	(1	2	
53 B9300344	185036		<1	7	21	(1	(1	2	
54 89300345	185037		<1	4	27	<1	<1	0	
55 89300346	185038		4	13	32	<1	2	2	
56 B9300347	185039		29	7	34	<1	2	0	

CU,PB,ZN,AG HOT HNO3 A.A. finish AU HOT BROMINE EXTRACTION FLAMLESS A.A. finish

, insets

1

Ì

.

'n

- deb serve

COM	INCO LTD.	TOR.	NINTO RECCE. KOGALUK NORTH	Ţ	L 93-054	A	UG24/93		
S01	LS		V. GROSL						
	TOR. LAD	SAMPLE	FIELD	Cu	РЬ	Zn	Ag	Au	ORGANIC
	NUMBER	\$	CO-ORDINATES	ppa	ppe	ppe	ppa	рръ	
1	B9300441	171761		15	22	7 9	<1	Ω	4
2	B9300442	171762		29	16	159	<1	1	3
3	B9300443	171763		19	11	27	<1	3	4
4	B9300444	171760		34	12	89	1	6	3
5	B9300445	185081		24	8	48	(1	20	0
6	B9300446	182032		3	6	30	<1	<1	0
1	89300447	185093		10	8	31			0
8	89300448	185124		16	1	44	(1	1	2
9	B9300449	185146		37	3	33	4	2	1
10	B9300450	185147		40	4	54		(1	1
11	B9300451	185150		92	15	63		<u>a</u>	4
12	89300452	185151		33	4	39		3	0
13	B9300453	185152		65	9	/4		5	0
14	B3300454	182123		36	3	30			0
12	89300400	180104		44		42			0
ID 47	87300436	192122		13	2	32		16	0
17	893VV43/	192126		32	8	64 97		3	0
10	87300438	105157		31	7	5/			4
13	83300433	102120		9Z	1	3/		(1	U
20	89300460	105100		180	2	20		2	4
21	83300461 00300463	102100		2/	/	36		26	0
22	5730046Z	105162		2	7	10		3	U .
23	B33VV903	105162		D 40	0 7	37			•
27	DJJVV707	105164		40 2	/ E	0J 22			0
23	873VU703	105165		0 77	3 (4	75		-	0
20	D0200467	105100		// 27	14	73		1	3
27	D0200407	105167		27	,,	27		1 /1	0
20	00200460	105042		3/ /1	11 C	32 10			4
20	P9200403	105042		50	7	10	71	2	4
21	89300470	195052		21	10	56	71	3	4
32	89300471	185052		12	12	25	~	2	2
33	89300472	185064		12	6	20	(1	á	Ĵ Ĵ
34	89300474	185139		%	q	48	~	(1	ů.
35	B9300475	185139		37	ģ	37	(1	ä	0
36	89300476	185140		32	14	44	(1	a	2
37	B9300477	185141		41	10	22	ä	ä	2
38	89300478	185142		17	8	54	(1	ä	ō
39	B9300479	185143		11	8	24	(1	(1	Ō
40	B9300480	185144		13	12	63	<u>ki</u>	<1	Ō
41	B9300481	185145		19	5	20	(1	1	4
42	89300482	185100		17	11	27	<1	1	0
43	B93004B3	185123		25	16	81	۲۱	a	3

CU, PB, ZN, AG AU

HOT HNO3 A.A. finish HOT BROMINE EXTRACTION FLAMLESS A.A. finish

.

•

INCO LTD. Ls	TOR.	NINTO RECCE. KOGALUK NORTH V. GROSL	T	L 93-054	٨	UG24/93		
TOR. LAB NUMBER	SAMPLE #	FIELD CO-ORDINATES	Cu ppe	Pb ppm	Zn ppe	Ag ppm	Au ppb	ORGANIC
B9300484	172244		27	14	65	(1	(1	2
B9300485	185082		<1	7	11	<1	2	0
B9300486	185083		(1	5	22	(1	1	0
89300487	185084		<1	4	16	(1	(1	1
B9300488	185094		4	8	11	4	(1	4
	INCO LTD. LS TOR. LAB NUMBER B9300484 B9300485 B9300485 B9300487 B9300488	INCO LTD. TOR. LS TOR. LAB SAMPLE NUMBER # B9300484 172244 B9300485 185082 B9300486 185083 B9300487 185084 B9300488 185094	INCO LTD. TOR. MINTO RECCE. KOGALUK NORTH LS V. GROSL TOR. LAB SAMPLE FIELD NUMBER & CO-ORDINATES B9300484 172244 B9300485 185082 B9300485 185083 B9300487 185084 B9300488 185094	INCO LTD. TOR. MINTO RECCE. T KOGALUK NORTH LS V. GROSL TOR. LAB SAMPLE FIELD Cu NUMBER Image: CO-ORDINATES ppm B9300484 172244 27 B9300485 185082 <1	INCO LTD. TOR. MINTO RECCE. TL93-054 KOGALUK NORTH LS V. GROSL TOR. LAB SAMPLE FIELD Cu Pb NUMBER # CO-ORDINATES ppm ppm B9300484 172244 27 14 B9300485 185082 <1	INCO LTD. TOR. MINTO RECCE. TL93-054 A KOGALUK NORTH KOGALUK NORTH V. GROSL Sample FIELD Cu Pb Zn NUMBER V. GROSL Co-ORDINATES ppm ppm ppm B9300484 172244 27 14 65 B9300485 185082 <1	INCO LTD. TOR. MINTO RECCE. TL93-054 AU624/93 KOGALUK NORTH LS V. GROSL V. GROSL TOR. LAB SAMPLE FIELD Cu Pb Zn Ag NUMBER # CO-ORDINATES ppm ppm ppm ppm B9300484 172244 27 14 65 <1	INCO LTD. TOR. MINTO RECCE. TL93-054 AU624/93 KOGALUK NORTH V. GROSL V. GROSL Au TOR. LAB SAMPLE FIELD Cu Pb Zn Ag Au NUMBER # CO-ORDINATES ppm intervalue

CU, PB, ZN, AG	HOT	HNO3 A.A. finish		
AU	HOT	BROMINE EXTRACTION	FLAMLESS A.A.	finish

ł

Í

COMINCO LTD. TOR. M

INTO RECO	CE.	TL93-079	SEPT 24/93
(KOGALUK	SOUTH)		
v.	GROSL		

SOILS

	TOR. LAB	SAMPLE	Cu	Pb	Zn	λg	Au	ORGANIC
	NUMBER	#	ppm	ppm	ppm	ppm	ррЬ	
1	B9300623	185030	M	SSING				
2	B9300624	185031	M	ISSING				
3	B9300625	185112	13	11	24	<1	9	0
4	B9300626	185113	14	15	26	<1	3	0
5	B9300627	185114	18	13	34	<1	1	Õ
6	B9300628	185115	34	14	43	<1	20	Ő
7	B9300629	185116	22	15	50	<1	3	Ŏ
8	B9300630	185117	2	12	27	<1	6	Ŏ
9	B9300631	185118	5	15	32	<1	2	4
10	B9300632	185119	2	13	22	<1	1	1
11	B9300633	185120	8	18	32	<1	<1	4
12	B9300634	185121	15	12	43	<1	1	Ō
13	B9300635	185122	41	11	38	<1	4	2
14	B9300636	185125	31	14	78	<1	1	õ
15	B9300637	185126	10	21	48	<1	3	0
16	B9300638	185127	19	18	21	<1	2	3
17	B9300639	185128	37	24	53	<1	3	2
18	B9300640	185129	14	16	38	<1	<1	Ō
19	B9300641	185130	15	17	42	<1	<1	Ō
20	B9300642	185149	148	33	65	<1	5	4

1

CU,PB,ZN,AG HOT HNO3 A.A. finish AU HOT BROMINE EXTRACTION FLAMLESS A.A. finish

COMINCO LTD. TOR	. MINTO RECCE.	TL93-080	SEPT 24/93
	(KOGALUK CENTRAL)		
SOILS	V. GROSL		

, chan-

÷

TOR. LAB NUMBER	SAMPLE #	Cu ppm	PD PDm	Zn ppm	Ag ppm	Au ppb	ORGANIC
B9300643	185099	7	8	16	<1	2	0
	185084	M	ISSING				
	185083	M	ISSING				
B9300644	185085	48	11	28	<1	6	4
B9300645	185086	100	11	85	<1	1	1
B9300646	185087	11	7	26	<1	<1	Ō
B9300647	185088	10	8	26	<1	<1	0
B9300648	185089	14	9	28	<1	<1	3
B9300649	185090	<1	7	26	<1	12	2
B9300650	185091	<1	7	20	<1	14	3
B9300651	185092	78	9	27	<1	<1	4
	TOR. LAB NUMBER B9300643 B9300644 B9300645 B9300646 B9300647 B9300648 B9300649 B9300650 B9300651	TOR. LAB NUMBERSAMPLE #B9300643185099 185084 185083B9300644185083B9300645185085B9300645185086B9300646185087B9300647185088B9300648185089B9300649185090B9300650185091B9300651185092	TOR. LAB NUMBERSAMPLE #Cu ppmB93006431850997185084M185083MB930064418508548B9300645185086100B930064618508711B930064718508810B930064818508914B9300649185090<1	TOR. LAB NUMBERSAMPLE #CuPbppmppmppmppmB930064318509978185084MISSING185083MISSINGB93006441850854811B930064518508610011B9300646185087117B9300647185088108B9300649185090<1	TOR. LAB SAMPLE Cu Pb Zn NUMBER # ppm ppm ppm ppm B9300643 185099 7 8 16 185083 MISSING 185083 MISSING B9300644 185085 48 11 28 B9300645 185086 100 11 85 B9300646 185087 11 7 26 B9300647 185088 10 8 26 B9300648 185089 14 9 28 B9300649 185090 <1	TOR. LAB SAMPLE Cu Pb Zn Ag NUMBER # ppm	TOR. LAB NUMBER SAMPLE # Cu Pb Zn Ag Au B9300643 185099 7 8 16 <1

CU,PB,ZN,AG	HOT HNO3 A.A. finish	
AU	HOT BROMINE EXTRACTION FLAMLESS A.A	. finish

COMINCO LTD. TOR.

MINTO RECC. TL93-082 SEPT24/93 KOGALUK SOUTH, CENTRE

SOILS AND SILTS

	TOR. LAB NUMBER	SAMPLE #	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	ORGANIC
1	B9300655	185131	65	13	63	<1	3	4
2	B9300656	185132	18	8	66	<1	10	2
3	B9300657	185133	32	10	42	<1	10	1
4	B9300658	185134	3	13	16	<1	3	Ō
5	B9300659	185135	12	9	44	<1	3	Ō
6	B9300660	171754	35	10	62	<1	<1	1
7	B9300661	171755	42	8	31	<1	2	4
8	B9300662	171756	<1	6	32	<1	1	4
9	B9300663	171757	14	8	38	<1	4	4
10	B9300664	171758	24	9	24	<1	2	3
11		171759	M	ISSING				
12	A9300113	185136	17	8	28	<1	<1	0
13	A9300114	185137	18	8	39	<1	3	1

CU,PB,ZN,AG Au

HOT NITRIC ACID EXTRACTION A.A. finish HOT BROMINE EXTRACTION A.A. finish

COMINCO LTD. TOR. MINTO RECCE. KOGALUK NORTH SOILS V. GROSL

	TOR. LAB NUMBER	SAMPLE #	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	ORGANIC
_			-			•		
Б	B9300665	185047	5	4	17	<1	<1	1
1	B9300666	185048	3	13	58	<1	<1	4
8	B9300667	185049	1	13	34	<1	8	4
9	B9300668	185050	<1	8	24	<1	10	4
10	B9300669	185046	111	11	29	<1	3	4
11	B9300670	185180	103	6	31	<1	4	4
12	B9300671	185181	94	21	63	<1	7	4
13	B9300672	185182	77	17	123	<1	<1	i
14	B9300673	185044	33	11	50	<1	<1	4
15	B9300674	185045	86	9	15	<1	<1	4
16	B9300675	185040	18	8	36	<1	<1	2
17	B9300676	185041	8	17	74	<1	4	0
18	B9300677	185054	23	19	44	<1	<1	3
26		185057	37	10	33	<1	<1	4

CU, PB, ZN, AG AU

HOT HNO3 A.A. finish HOT BROMINE EXTRACTION FLAMLESS A.A. finish

.

1

COMINCO LTD. TOR.	MINTO RECCE.	TL93-084	SEPT 24/93
	(KOGALUK SOUTH)		
SOILS	V. GROSL		

	TOR. LAB NUMBER	SAMPLE #	Cu ppm	bbw bp	Zn ppm	Ag ppm	Au ppb	ORGANIC
1	B9300678	185014	<1	3	34	<1	1	4
2	B9300679	185016	12	4	26	<1	16	Ō
3	B9300680	185018	5	<1	12	<1	6	Ō
4	B9300681	185023	23	9	41	<1	14	3
5	B9300682	185025	19	13	30	<1	10	4
6	B9300683	172241	19	12	51	<1	<1	2
7	B9300684	172243	5	13	29	<1	<1	ō
8	B9300685	172246	<1	5	14	<1	<1	Ō
9	B9300686	165 ???	3	7	95	<1	<1	4
10	B9300687	165 ???	18	11	43	<1	<1	3

CU,PB,ZN,AG AU

HOT HNO3 A.A. finish Hot bromine Extraction Flamless A.A. finish

