GM 48868

REVERSE CIRCULATION OVERBURDEN DRILLING AND HEAVY MINERAL GEOCHEMICAL SAMPLING, PROJECT LAC SHORTT

Documents complémentaires

Additional Files

MINNOVA INC.

PROJECT LAC SHORTT (PN 090, 114, 115 AND 116)

LESUEUR, BOYVINET, GAND AND LESPERANCE TOWNSHIPS, QUEBEC

REVERSE CIRCULATION OVERBURDEN DRILLING AND HEAVY MINERAL GEOCHEMICAL SAMPLING

PHASE II

Ministère de l'Énergie et des Ressources Service de la Géoinformation 1 1 SEP 1980

Date:

PREPARED BY:

S.A. AVERILL, K.C. GRAHAM AND D.R. HOLMES OVERBURDEN DRILLING MANAGEMENT LIMITED JUNE, 1989

TABLE OF CONTENTS

		Page
1.	SUMMARY	1
2.	INTRODUCTION	4
2.1 2.2	Project Outline Principles of Deep Overburden Geochemistry in Glaciated Terrain	4 12
2.3 2.4 2.5 2.6	Property Description and Access Physiography and Vegetation Previous Work Project Costs	15 18 19 21
3.	DRILLING AND SAMPLING	23
3.1 3.2 3.3 3.4 3.5	Drill Hole Pattern Drilling Equipment Logging and Sampling Sample Processing Sample Analysis	23 26 27 28 34
4.	BEDROCK GEOLOGY	36
4.1 4.2 4.2.1	Regional Geology Bedrock Geology of the Reverse Circulation Drill Holes Bedrock Geology and Geochemistry of the	36 38
4.2.2	Boyvinet Drill Area Bedrock Geology and Geochemistry of the	40
4.2.3	Lesperance Drill Area Bedrock Geology and Geochemistry of the	47
4.2.4	Lesueur West Drill Area Bedrock Geology and Geochemistry of the	53
	Lesueur North Drill Area	58
5.	OVERBURDEN GEOLOGY	66
5.1 5.1.1 5.1.2 5.1.3 5.1.4	Quaternary History and Stratigraphy of the Abitibi Region Quaternary Geology of the Boyvinet Drill Area Quaternary Geology of the Lesperance Drill Area Quaternary Geology of the Lesueur West Drill Area Quaternary Geology of the Lesueur North Drill Area	66 67 68 69 69

		Page
6.	OVERBURDEN GEOCHEMISTRY	70
6.1 6.2 6.2.1 6.2.1.1 6.2.1.1.1 6.2.1.1.2 6.2.1.1.3 6.2.1.1.5 6.2.1.1.6	Hole 170 Anomaly Hole 171 Anomaly Hole 183 Anomaly Hole 185 Anomaly	70 72 72 88 88 88 89 90 91
6.3	Heavy Mineral Arsenic, Copper and Silver Anomalies	91
7.	CONCLUSIONS	95
8.	RECOMMENDATIONS	96
9.	CERTIFICATE	97
10.	REFERENCES	98
	FIGURES	
Figure 1	Project Lac Shortt Location	5
Figure 2	Geological Setting of Project Lac Shortt	6
Figure 3	Schematic Diagram of a Typical Reverse Circulation Rotary Drilling System	14
Figure 4	Claim Map of the Properties	16
Figure 5	Typical Sizes and Shapes of Gold Dispersal Trains for Ice-Parallel and Cross-Ice Trending Bedrock Sources	24
Figure 6	Sample Processing Flow Sheet	29
Figure 7	Plan View of Mineral Separation on a Shaking Table	31

		Page
	FIGURES (Cont'd)	
Figure 8	Effects of Glacial Transport on Gold Particle Size and Shape	33
Figure 9	Ground Magnetics of the Opawica Pluton in the Boyvinet Drill Area	41
Figure 10	Alkalies - Silica Plot for Opawica Pluton, Phase II Drilling, Boyvinet Property	42
Figure 11	Jensen Cation Plot for Sub-Alkaline Samples of Opawica Pluton, Phase II Drilling, Boyvinet Property	45
Figure 12	Jensen Cation Plot for Lesperance Samples	49
Figure 13	Alkalies-Silica Plot for Lesperance Rhyolite and Quartz Diorite	51
Figure 14	Jensen Cation Plot for Lesueur West Samples	54
Figure 15	Alkalies-Silica Plot for Opawica Pluton, Lesueur North	60
Figure 16	Jensen Cation Plot for Opawica Pluton, Lesueur North	61
Figure 17	Jensen Cation Plot for Volcanic Rocks and Tuff, Lesueur North	62
Figure 18	Alkalies-Silica Plot for Andesite, Lesueur North	65
Figure 19	Boyvinet Sections	(in pocket)
Figure 20	Lesperance Sections	(in pocket)
Figure 21	Lesueur West Sections	(in pocket)
Figure 22	Lesueur North Sections	(in pocket)
Figure 23	Comparative Grain Size Distributions for 1988 (Heath & Sherwood) and 1989 (Bradley Brothers) Till Samples, Boyvinet	74
Figure 24	Flow Diagram for Three-Stage Screening of Heavy Mineral Gold Anomalies	76

		<u>Page</u>
	TABLES	
Table 1	Drilling and Sampling Statistics	9
Table 2	List of Boyvinet, Lesueur North, Lesueur West and Lesperance Mining Claims	17
Table 3	Budgeted and Actual Costs of the Phase II Lac Shortt Reverse Circulation Drilling Program	22
Table 4	Heavy Mineral Gold Dispersal Trains Identified by Overburden Drilling Management Limited Laboratory	25
Table 5	Geochemical Contribution of One Gold Grain to a Ten Gram Sample	32
Table 6	Bondar-Clegg Analytical Specifications	35
Table 7	Bedrock Lithologies Intersected in the Reverse Circulation Drill Holes	39
Table 8	Heavy Mineral Gold Anomaly Screening	77
Table 9	Comparison of Calculated and Measured Gold Assays for Anomalies Requiring Third Stage Screening	87
Table 10	Heavy Mineral Arsenic, Copper and Silver Anomalies	92
Table 11	Holes 185, 187 and 188 Arsenic Zone	94

<u>Page</u>

PLANS

Plan I	Bedrock Geology and Carbonate Alteration	(in pocket)
Plan 2	Bedrock Topography and Quaternary Geology	(in pocket)
Plan 3	Bedrock Geology and Heavy Mineral Gold Anomalies	(in pocket)

APPENDICES

Appendix A	Reverse Circulation Drill Hole Logs
Appendix B	Sample Weights - Heavy Mineral Circuit
Appendix C	Gold Grain Counts and Calculated Visible Gold Assays
Appendix D	Bondar-Clegg Heavy Mineral Analyses
Appendix E	Heavy Mineral Absolute Metal Contents
Appendix F	One-Quarter Concentrate Examinations, Pannings and INA Analyses
Appendix G	Binocular Logs - Bedrock Chip Samples
Appendix H	Bondar-Clegg Bedrock Analyses
Appendix I	Binocular Descriptions of Heavy Mineral Concentrates From Kimberlite-Bearing Bedrock Samples

SUMMARY

1.

The report outlines the results of a second phase of reverse circulation overburden drilling and heavy mineral geochemical sampling conducted by Minnova Inc. in four areas of Project Lac Shortt (Boyvinet, Lesperance, Lesueur West and Lesueur North) situated in the Abitibi Greenstone Belt, northwestern Quebec. Eighty-seven vertical holes were drilled in Phase II and bedrock and overburden were sampled to delineate zones of bedrock deformation and/or alteration that could host epigenetic gold mineralization and to test for glacially dispersed mineralization indicative of subcropping gold deposits. Each area had specific targets. On Boyvinet, drilling was targeted on a broad gold dispersal zone over the Opawica Pluton identified in Phase I to better define underlying bedrock structures as well as to test for higher grade dispersion subzones. On Lesperance, which was not tested in Phase I, drilling was targeted on the regional scale Opawica Lake Fault and possible related shear zones. On Lesueur West, drilling was targeted on an extension of the gold-bearing Lesueur Fault identified in Phase I. On Lesueur North, drilling was targeted on an extension of the gold-bearing Lac Shortt Fault identified in Phase I. Total project costs averaged \$112.03/metre (\$34.15/foot).

The bedrock units intersected in Phase II are essentially those of Phase I, with the main addition being small ultramafic dykes of post-Archean age and generally kimberlitic character on Lesueur West. Polarity measurements cannot be obtained from reverse circulation drill samples but the general distribution of the volcano-sedimentary units favours a south-facing, island arc-type pile with andesite at the base, rhyolite at the top and sediments and tuffs in the adjacent basins. The rhyolite has an anomalously high sodium content, suggesting that the volcanic rocks are comagnatic with the differentiated subalkaline to alkaline Opawica Pluton. On Lesueur North, the pluton is separated from the andesite by the Lac Shortt Fault. On Lesperance, the rhyolite is separated from basalt of another volcanic pile by the Opawica Lake Fault. All of the rocks probably belong to the established Caopatina - Quevillon Domain but the formations north of the Lac Shortt Fault on Lesueur North may belong to the Chibougamau - Matagami Domain.

Two types of structures are present in the Opawica Pluton on Boyvinet: 1) narrow, probably north-northeast trending zones of brittle shearing that are characterized by reduction of primary igneous magnetite to hematite and pyrite; and 2) an east-west trending, gneissic strain aureole on the southern contact. Gold mineralization is common in the brittle shear zones and may also be present in the contact strain aureole. The segments of the Opawica Lake Fault on Lesperance, Lesueur Fault on Lesueur West and Lac Shortt Fault on Lesueur North are well defined by strong brittle to ductile shear deformation and hydrothermal alteration but are not anomalous in gold. Remobilized lead-zinc mineralization is present in a kimberlitic dyke near a HEM conductor on Lesueur West, suggesting that the conductor may be caused by volcanogenic massive sulphides. The Lesperance geology also appears to favour massive sulphide mineralization over gold, but the drilling here was targeted mainly on dubious, cross-cutting VLF targets in basalt rather than strong conductors in rhyolite and tuff.

Overburden thickness in the Phase II drill holes averages 20 m. Quaternary strata are of Illinoian to Holocene age. Pockets of west-southwesterly transported, Illinoian-age Lower Till, Sangamon-age fluvial interglacial gravel and Early Wisconsinan-age glaciolacustrine sediments are preserved in bedrock depressions. Southwesterly-transported, Late Wisconsinan-age Chibougamau Till is the primary sampling medium. It directly overlies bedrock in 67 percent of the Phase II drill holes and provides good exploration coverage except on Lesueur West where the bedrock is extensively masked by Sangamon interglacial gravel. The Matheson Till is locally supplanted by glaciofluvial sediments associated with the Kruger Road Esker in the Lesueur West and Lesueur North areas and by numerous de Geer moraines in the Boyvinet and Lesperance areas. Glaciolacustrine sand, silt and clay deposited in Lake Ojibway II during ice retreat overlie the Matheson Till and glaciofluvial sediments and are capped by a thin veneer of Holocene organics.

The gold grain counts and gold assays for the overburden heavy mineral concentrates are generally low and match the bedrock gold geochemistry. Of thirty-eight detected heavy mineral gold anomalies, twenty-nine are caused by abraded, background-type gold grains and three other anomalies are equally insignificant because they are related to very weak mineralization occurring in till clasts or subjacent bedrock rather than in the till matrix.

The remaining six anomalous samples are from Holes 151, 170 and 171 on Boyvinet and define two dispersal trains over the Opawica Pluton. The Hole 151 train is relatively weak and appears to be related to a mineralized shear zone intersected in Hole 150. The Holes 170/171 train is stronger and appears to be related to a mineralized shear zone intersected in Holes 168 and 171. The other fill-in holes on Boyvinet gave generally negative results, indicating that the broad dispersal train zone interpreted from the Phase I drilling is actually a collection of scattered small trains. The heavy mineral base metal results are negative in all four drill areas. However, none of the holes in the favourable Lesperance area were drilled near strong conductors, and the till near the lead-zinc target on Lesueur West generally is not in direct contact with bedrock.

Diamond drilling is presently being performed to test the Holes 151 and 170/171 gold targets on Boyvinet and also the gold targets identified on Boyvinet and Lesueur in Phase I. It is recommended that one drill hole be added to test the HEM zone on Lesueur West for volcanogenic massive sulphide mineralization and to obtain samples of the kimerlitic dykes for further study. Future exploration on and near the Lesperance property should be directed toward volcanogenic massive sulphides rather than gold. No additional exploration is warranted on Lesueur North.

INTRODUCTION

2.1 Project Outline

2.

Between January 11 and February 04, 1989, Minnova Inc. conducted an 87 hole Phase II reverse circulation drilling program for the purpose of chip sampling of the Archean bedrock subcrop and heavy mineral geochemical sampling of the overlying Quaternary overburden on three gold properties of Project Lac Shortt -- Boyvinet, Lesueur and Lesperance -- near Opawica Lake in the Abitibi Greenstone Belt, northwestern Quebec (Figs. 1 and 2). The drill areas are centred 15 km west-southwest of Minnova's Lac Shortt Gold Mine and 10 km northeast of the Bachelor Lake Gold Mine.

The Phase II drill areas were selected on the basis of encouraging overburden and/or bedrock gold results obtained from a Phase I reverse circulation drilling program conducted in 1988. This work is detailed in a report by Overburden Drilling Management Limited ("ODM"; Graham et al., 1988), who managed both programs. The following summary is exerpted from that report:

"One hundred and forty-nine vertical holes were drilled on three properties (Wetjack, Lesueur and Boyvinet), and bedrock and overburden were sampled to identify zones of bedrock deformation and alteration that could host epigenetic gold mineralization and to test for glacially dispersed gold indicative of subcropping mineralization within these structural zones. Total project costs averaged \$77.83/metre (\$23.72/foot).

The drill areas are located either on (Boyvinet) or immediately south of (Wetjack, Lesueur) the Lac Shortt Fault, a regional-scale, eastwest trending shear zone. This shear zone forms the contact between two volcano-sedimentary domains -- the southern Caopatina - Quevillon Domain which is dominated by calc-alkalic andesite and turbiditic sediments, and the northern Chibougamau - Matagami Domain which is dominated by layered mafic/ultramafic sills. The drill areas are also immediately north of a second, parallel shear zone -- the Opawica Lake Fault. The volcano-sedimentary rocks of the Caopatina - Quevillon Domain between the faults are intruded by the syntectonic Opawica Pluton. The pluton is zoned (differentiated) with an albite syenite core and chilled quartz diorite, diorite and gabbro border phases. Metamorphic grade in the volcano-sedimentary rocks is greenschist facies, changing to hornblende hornfels facies near the pluton.

Figure 1 - Project Lac Shortt Location

Microfilm

PAGE DE DIMENSION HORS STANDARD

MICROFILMÉE SUR 35 MM ET

POSITIONNÉE À LA SUITE DES

PRÉSENTES PAGES STANDARDS

Numérique

PAGE DE DIMENSION HORS STANDARD

NUMÉRISÉE ET POSITIONNÉE À LA

SUITE DES PRÉSENTES PAGES STANDARDS

All lithologies show significant shear deformation, reflecting their proximity to the major faults. Recognizable east-west trending zones of generally ductile shearing with associated Fe/Mg carbonate alteration are present along the Lac Shortt Fault on Boyvinet, along the southern edge of the turbidites on Wetjack extending eastward to Boyvinet, and along the centre of the turbidites on Lesueur. The Lac Shortt Fault zone is broadly anomalous in gold, and the turbidite hosted zone on Lesueur is strongly anomalous in both gold and arsenic. Deformation within the Opawica Pluton is mainly by brittle shearing. The resulting mylonite zones are characterized by hematitization and pyritization of magnetite and are generally too narrow to be intersected in the vertical drill holes. Weakly anomalous gold values are common along a possible north-northeast trending cross fault in the pluton.

Overburden thickness in the drill holes averages 18.2 m. Quaternary strata are of Illinoian to Holocene age. Pockets of west-southwesterly transported, Illinoian-age Lower Till and Sangamon to Early Wisconsinan-age Missinaibi Formation sediments are preserved in bedrock depressions on the Lesueur and Boyvinet properties where they were protected from the Wisconsinan glaciation. Southwesterly transported, Late Wisconsinan-age Chibougamau Till is the primary sampling medium. It directly overlies bedrock in 71 percent of the drill holes and thus provides good exploration coverage, but is locally supplanted by coeval Ojibway II esker and De Geer moraine sand and gravel. The youngest Quaternary strata comprise Ojibway II clay capped by Holocene peat.

Overburden geochemistry in the areas of good till cover closely mirrors the underlying bedrock geochemistry, with a notable but encouraging exception occurring over the Opawica Pluton in southern and central Boyvinet where the drilling outlined a broad zone of strong gold dispersal train anomalies indicative of proximal bedrock sources of good grade. Overprinting these dispersal trends are background visible gold anomalies that are easily distinguished from the dispersal train anomalies in the heavy mineral fraction but are indistinguishable in the minus 250 mesh fraction. Consequently almost no reliance was placed on the minus 250 mesh geochemistry, and little of value was obtained from it.

A \$160,000.00 diamond drilling program and a \$150,000.00 Phase II reverse circulation drilling program are proposed to pursue the encouraging findings of the program. The diamond drilling will test the gold-arsenic zone on southern Lesueur, two anomalous gold zones along the Lac Shortt Fault in northern Boyvinet, and an inferred shear zone under the broad dispersal train in southern Boyvinet. The new reverse circulation program will consist of detailed drilling to establish structural orientations and pinpoint other dispersion sources under the train, and reconnaissance drilling along the strike extensions of the Lac Shortt Fault and the Lesueur gold-arsenic zone."

The Phase II drilling on Boyvinet consisted of 31 fill-in holes on the dispersal train over the Opawica Pluton. Other holes that had been planned on the lake to test the eastern extension of the Lac Shortt Fault and the core of the Opawica Pluton were deleted due to poor ice conditions. The Lesueur drilling was performed on two extensions of the property that Minnova acquired on the basis of the positive Phase I results: 1) Lesueur North, where 17 holes were drilled to test the western projection of the Lac Shortt Fault; and 2) Lesueur West, where 12 holes were drilled to test the western projection of the Lesueur gold-arsenic zone. On the Lesperance property, which is 4 km southeast of the Phase I drill areas, 27 reconnaissance holes were drilled to investigate a previously untested segment of the Opawica Lake Fault. The Boyvinet area was drilled first, followed by Lesperance, Lesueur West and Lesueur North.

Overburden Drilling Management Limited prepared the hole layout in consultation with F. Speidel of Minnova. Geologists D. Holmes and P. Collins together with geotechnicians B. Rudnicki and B. Bark of ODM logged and sampled the drill holes (Appendix A), and supervised the drilling at various periods during the program. J. Regis of Minnova assisted with hole layout. Bradley Brothers Limited of Timmins, Ontario, supplied the drilling and road clearing equipment and operators.

All except three holes penetrated the entire overburden section and were extended approximately 1.5 m into bedrock. In total, 437 overburden and 85 bedrock samples were collected. Drilling and sampling statistics are presented in Table 1.

Heavy mineral concentrates (Appendix B) were prepared from the overburden samples at ODM's Nepean, Ontario laboratory. Gold particles sighted during processing were measured to determine their individual contributions to the overall gold content of the concentrates and were classified according to their distance of glacial transport (Appendix C). Three-quarter splits of the heavy mineral concentrates were analyzed for gold, arsenic, copper, zinc and silver (Appendix D) and absolute metal contents were calculated (Appendix E). Subsequently, 1/4 splits of selected heavy mineral concentrates were tested to investigate the causes of unexpected high heavy mineral gold assays (Appendix F).

	Grid	Metres	Drilled	Hole	Samples C	Collected
Hole <u>Number</u>	Coordinates/ Site Numbers	Overburden	Bedrock	Depth (metres)	Overburden	Bedrock
PLS-89- 150/	L18+50W; 8+50N	8.5	1.5	10.0	0	1
151	L16+00W; 8+00N	26.5	1.5	28.0	6	1
152	L6+00W; 4+40N	28.8	1.2	30.0	2	1
153	L8+00W; 7+00N	13.5	1.5	15.0	1	1
154	L20+00W; 3+50N	7.0	1.5	8.5	1	1
155	L12+00W; 2+00N	19.2	1.5	20.7	3	. 1
156	L9+00W 1+00N	15.8	1.2	17.0	3	ī
157	L18+00W; 0+00	10.3	1.7	12.0	1	1
158	L16+00W; 2+50S	11.8	1.7	13.5	1	1
159	L10+00W; 2+70S	5.0	1.5	6.5	1	1
160	L10+00W; 9+50S	3.9	1.6	5.5	Ō	ī
161	L13+00W; 6+00S	6.8	1.7	8.5	1	Ī
162	L4+00W; 2+00N	15.5	1.5	17.0	1	ī
163	L4+75W; 4+50S	10.5	0.0	10.5	$\overline{2}$	ō
164	L5+00W; 4+00S	28.5	1.5	30.0	5	1
165 _°	L1+50W; 1+50S	21.5	1.5	23.0	9	1
166	L0+00; 3+50S	33.0	1.5	34.5	14	1
167	L25+00W; 2+30S	25.6	1.6	27.2	4	1
168	L22+00W; 6+00S	25.5	1.5	27.0	7	1
169-	L20+00W; 8+50S	33.5	1.5	35.0	9	1
170-	L30+00W; 5+75S	16.7	1.3	18.0	1	1
171	L28+00W; 8+50S	18.0	1.5	19.5	5	1
172	L5+50W; 23+50N	29.5	1.5	31.0	6	$\bar{1}$
173	L26+00W; 11+00S	14.9	1.5	16.4	1	1
174	L24+00W; 13+50S	11.8	1.5	13.3	1	1
175	L16+75W; 12+00S	33.7	1.3	35.0	14	1
176	L4+00E; 22+50N	7.0	1.5	8.5	1	$\bar{1}$
1 <i>77</i>	L0+50W; 21+50N	9.8	1.5	11.3	1	Ī
178	L4+00W; 17+50N	9.6	1.5	11.1	Ō	$\bar{1}$
179	L8+00W; 19+50N	20.9	1.5	22.4	ĺ	1
180	L1+25E; 14+90N	13.3	1.5	14.8	7	1
TOTA	LS	535.9	44.8	580.7	109	30

Table 1a - Drilling and Sampling Statistics, Boyvinet

	Grid	Metres	Drilled	Hole	Samples C	Collected
Hole Number	Coordinates/ Site Numbers	Overburden	Bedrock	Depth (metres)	Overburden	Bedrock
PLS-89- 181	No. 20	30.8	1.8	32.6	10	1
182	No. 19	30.6	1.5	32.1	11	1
183	No. 21	24.1	2.5	26.6	5	1
184	No. 22	42.7	1.5	44.2	18	1
185	No. 23	48.8	1.5	50.3	24	1
186	No. 28	28.2	1.4	29.6	7	1
187	No. 29	42.2	0	42.2	19	0
187A	No. 29	41.0	1.5	42.5	0	1
188	No. 30	43.2	2.0	45.2	19	1
189	L64E; 26+50N	3.6	1.5	5.1	0	1
190	L58E; 28+50N	3.4	1.6	5.0	1	i
191	L52E; 28+00N	4.7	1.3	6.0	1	1
192	L48E; 28+50N	6.1	1.4	7.5	1	1
193	L58E; 21+00N	28.0	1.5	29.5	12	1
194	L48E; 15+50N	17.2	1.5	18.7	7	1
195	L64E; 16+50N	33.1	1.5	34.6	13	1
196	L72E; 14+00N	6.8	1.5	8.3	2	· I
197	L72E; 19+75N	23.7	1.5	25.2	6	1
198	L80E; 18+50N	12.8	1.7	14.5	4	1
199	L88E; 17+00N	10.0	2.0	12.0	3	1
200	L96E; 17+00N	17.7	1.8	19.5	4	1
201	L57E; 10+00N	6.8	2.0	8.8	1	1
202	L48E; 2+50N	11.6	1.4	13.0	3	1
203	L40E; 5+00N	11.2	1.8	13.0	2	1
204	L36E; 7+50N	7.4	2.1	9.5	1	1
20 <i>5</i>	L32E; 10+00N	5.5	1.5	7.0	1	1
206	L28E; 11+00N	6.2	1.8	8.0	2	_1
TOTAL	LS	547.4	43.1	590.5	177	26

Table 1b - Drilling and Sampling Statistics, Lesperance

		Grid	Metres	Drilled	Hole	Samples C	Collected
Hole Numb		Coordinates/ Site Numbers	Overburden	Bedrock	Depth (metres)	Overburden	Bedrock
PLS-89	207	No. 12	21.6	1.9	23.5	10	1
FL3-07	208	No. 13	29.5	1.5	31.0	10	1
	208	No. 14	45.8	1.7	47.5	12	1
	210	No. 17	41.7	2.6	44.3	13	2
	211	No. 18	27.5	2.2	29.7	04	1
	212	No. 15	46.4	1.6	48.0	11	ī
	212	No. 16	22.6	2.4	25.0	03	1
	214	No. 22	30.2	1.3	31.5	08	1
	215	No. 21	30.0	1.5	31.5	07	1
	216	No. 23	39.6	1.9	41.5	13	1
	217	No. 20	19.0	2.0	21.0	07	1
	218	No. 19		1.7	15.3	04	1
	219.	L60+00W; 40+00N	13.6 5.8	2.2	8.0	0	1
	220	L44+00W; 43+00N	16.5	1.5	18.0	1	1
	221	L47+00W; 43+00N	30.4	2.2	32.6	8	1
	222	L55+00W; 48+00N	17.7	1.8	19.5	1	1
	223	No. 4	15.4	1.6	17.0	3	1
	224	No. 5	9.2	1.3	10.5	0	1
	225	No. 6	20.0	1.5	21.5	5	1
	226	No. 7	9.0	1.5	10.5) 1	1
	227	No. 8	8.2	1.3	9.5	1	1
	228	L76+00W; 44+50N	8.6	1.4	10.0	2	1
	229	No. 1	26.5	0	26.5	7	0
	229A	No. 1	29.0	2	31.0	6	1
	230	No. 2				5	1
	231	No. 11	21.5	1.8	23.3) 1	1
	232		14.2	1.3	15.5	1	1
	233	No. 10	18.5	1.5	20.0	5	Ţ
		No. 9	20.7	1.3	22.0	2	i
	234	No. 3	12.4	1.6	14.0		_1
	TOTAL	ŲS.	651.1	48.1	699.2	151	29

Table 1c - Drilling and Sampling Statistics, Lesueur

The bedrock chip samples were logged under a binocular microscope (Appendix G) and were analyzed for the major oxides (Appendix H); their lithologies and chemistry were then used to map the geology of the properties (Plan 1) in relation to existing interpretations. Subsamples of the bedrock chips were analyzed for gold, arsenic, copper, zinc, silver and zirconium (Appendix H). All geochemical data were reformatted and merged into single computer files (Appendices E and H).

This report documents and describes the Phase II work and the results obtained. Summaries of local Archean stratigraphy, plutonism and structural geology and Quaternary stratigraphy are included and used in the interpretation of the bedrock and heavy mineral geochemistry. Additional details are available in our Phase I report (Graham et al., 1988).

2.2 Principles of Deep Overburden Geochemistry in Glaciated Terrain

During the Pleistocene epoch of the Quaternary period, the crowns of all ore bodies that subcropped beneath the continental ice sheets of North America were eroded and dispersed down-ice in the glacial debris. The dispersal mechanisms were systematic (Averill, 1978) and the resulting ore "trains" in the overburden are generally long, thin and narrow but most importantly are several hundred times larger than the subcrops of the parent ore bodies. These large trains can be used very effectively to locate the remaining roots of the ore bodies.

Because the dispersal trains originated at the base of the ice, they are either partly or entirely buried by younger, nonanomalous glacial debris. Most trains are confined to the bottom layer of debris deposited during glacial recession — the basal till. In fact, the sampling of glacial overburden for exploration purposes is commonly referred to as "basal till sampling". It is important to note, however, that in areas affected by multiple glaciations the bottom layer of debris in the overburden section may be only the lowermost of several stacked basal tills, and that a dispersal train may occur at any level within any one of the basal till

horizons. Consequently, the term "basal till sampling" is not synonymous with the collection of samples from the base of the overburden section. Moreover, the term is not strictly correct because significant glacial dispersal trains can occur in formations other than basal till.

From the foregoing statements, it can be seen that glacial dispersion and glacial stratigraphy are interdependent. Consequently, the effectiveness of overburden sampling as an exploration method is related to the ability of the sampling equipment to deliver stratigraphic information from the unconsolidated glacial deposits. In areas of deep overburden, including most of the Abitibi Greenstone Belt in northwestern Quebec, drills must be used. Most drills have been designed to sample bedrock and are unsuitable for overburden exploration, but in the last fifteen years rotasonic coring rigs and reverse circulation rotary rigs have been developed to sample the overburden as well as the bedrock. Both drills provide accurate stratigraphic information throughout the hole and also deliver large samples that compensate for the natural inhomogeneity of glacial debris.

Reverse circulation rotary rigs are much more widely used in the Abitibi than are rotasonic coring rigs. They employ dual-tube pipe and a tricone bit with the outer pipe acting as a casing to contain the drill water for recirculation and to prevent contamination of samples by material caving from overlying sections. Air and water are injected at high pressure through the annulus between the outer and inner pipes to deliver a continuous sample of the entire overburden section through the small inner pipe (Fig. 3). The sample is disturbed but returns to surface instantly, and the precise positions of stratigraphic contacts can be identified. Full sample recovery is possible in all formations regardless of porosity or consistency, although sample loss due to blow-out commonly occurs in the first 1 to 3 metres of the hole until a sediment seal is made around the outer pipe.

Reverse circulation holes are normally extended 1.5 metres into bedrock. Cuttings of maximum 1 cm size are obtained. These cuttings are used to determine the bedrock stratigraphy, structure and geochemistry and are also compared to the till clasts to help determine ice flow directions and glacial dispersal patterns.

Figure 3 - Schematic Diagram of a Typical Reverse Circulation Rotary Drilling System

Most of the glacial overburden in Canada is fresh, and metals in the overburden occur in primary, mechanically dispersed minerals rather than in secondary chemical precipitates. While ore mineral dispersal trains are very large, they are also weak due to dilution by glacial transport and are difficult to identify from a normal "soil" analysis of the fine fraction of the samples. Consequently, heavy mineral concentrates are prepared to amplify the primary anomalies, and analysis of the fines is normally reserved for areas where significant post-glacial oxidation is evident. The heavy mineral concentrates are very sensitive, and special care must be taken to avoid the introduction of contaminants into the samples. On gold exploration programs, it is advantageous to separate and examine any free gold particles because most gold anomalies in heavy mineral concentrates are caused by background nugget grains that are of no interest.

2.3 Property Descriptions and Access

Detailed descriptions of the Wetjack (PN-090), Boyvinet (PN-114) and Lesueur (PN-116) properties are provided in our Phase I report. The claims comprising these three properties and the three new groups drilled in Phase II are shown in Figure 4. The Phase II claims, including Boyvinet, are also listed in Table 2.

The new Lesueur North extension of PN-116 comprises 34 quarter-mile claims staked by Minnova in Boyvinet Township. The new Lesueur West extension comprises four claims staked by Minnova encompassing surveyed Lots 38 to 41, Range X, Lesueur Township. The Lesperance property (PN-115) comprises 61 quarter-mile claims in western Lesperance Township on the southern shore and adjoining peninsula of Opawica Lake and on the southern part of the lake itself. Like the Boyvinet property, it is one of five properties totalling 294 claims (termed the Opawica Project) optioned from Camchib Mines Inc., a wholly-owned subsidiary of Campbell Resources Inc., in which Minnova can earn a 60 percent interest.

Microfilm

PAGE DE DIMENSION HORS STANDARD

MICROFILMÉE SUR 35 MM ET

POSITIONNÉE À LA SUITE DES

PRÉSENTES PAGES STANDARDS

Numérique

PAGE DE DIMENSION HORS STANDARD

NUMÉRISÉE ET POSITIONNÉE À LA

SUITE DES PRÉSENTES PAGES STANDARDS

PERMIT CLAIM	TOWNSHIP RANGE	LOT HECTARES	PERMIT CLAIM	TOWNSHIP RANGE	LOT HECTARES	PERMIT	CLAIM	TOWNSHIP	RANGE	LOT	HECTARES
ВОУ	VINET PROPERTY (PN	114)		PERANCE PROPERTY (F	PN 115)		LES	UEUR WEST DE	ILL AREA (E	PN 116)	
383910 1 382744 4 382744 5	Boyvinet Boyvinet Boyvinet	16 16 16	383911B 2 383911B 3 383912 1	Lesperance Lesperance Lesperance	16.0 16.0 16.0	468475 468475	1 2	Lesueur Lesueur	X X	38 39	40 40
382745 5 383712 1	Boyvinet Boyvinet	16 16	383912 2 383912 3	Lesperance Lesperance	16.0 16.0	468476 468476	1 2	Lesueur Lesueur	X X	40 41	40 40
383712 2 382712 3 382710 2	Boyvinet Boyvinet Boyvinet	16 16 8	383912 4 383912 5 383913 1	Lesperance Lesperance Lesperance	16.0 16.0 16.0		LES	UEUR NORTH	DRILL AREA	(PN 116)
382710 5 382710 3	Boyvinet Boyvinet	8 8	383913 2 383913 3	Lesperance Lesperance	16.0 16.0	468462	2	Boyvinet			16
382710 4 382743 5	Boyvinet Boyvinet	8 16	383913 4 383913 5	Lesperance Lesperance	16.0 16.0	468462 468462	3	Boyvinet Boyvinet			16 16
382744 3	Boyvinet	16	383914 1	Lesperance	16.0	468462 468463	5	Boyvinet Boyvinet			16 16
382745 3 382745 4	Boyvinet Boyvinet	16 16	383914 2 383914 3	Lesperance Lesperance	16.0 16.0	468463	3	Boyvinet			16 16
383712 4	Boyvinet	2	383914 4	Lesperance	16.0 16.0	468463 468463	4 5	Boyvinet Boyvinet			16 16
382712 5 382743 4	Boyvinet Boyvinet	8 16	383914 5 383915 1	Lesperance Lesperance	16.0	468464	3	Boyvinet			16
382744 2 382745 2	Boyvinet Boyvinet	16 16	383915 2 383915 3	Lesperance Lesperance	16.0 16.0	468464 468464	5	Boyvinet Boyvinet			16 16
382749	Boyvinet	16	383915 4	Lesperance	16.0	468465 468465	4	Boyvinet Boyvinet			16 16
382749 2 382749 3	Boyvinet Bovvinet	16 16	383915 5 383916 1	Lesperance Lesperance	16.0 16.0	468466	4	Boyvinet			16
382749 4	Boyvinet	16	383916 2	Lesperance	16.0	468466 468467	5 4	Boyvinet Boyvinet			16 16
382749 5 383711 1	Boyvinet Boyvinet	16 16	383916 3 383916 4	Lesperance Lesperance	16.0 16.0	468467	5	Boyvinet			16
383711 2	Boyvinet	16	383917 5	Lesperance	16.0	468468 468458	2	Boyvinet Boyvinet			16 16
383711 3 383711 4	Boyvinet Boyvinet	16 16	383917 1 383917 2	Lesperance Lesperance	16.0 16.0	468468 468468	3	Boyvinet			16 16
383711 5	Boyvinet	16 16	383917 3	Lesperance	16.0 16.0	468468	5	Boyvinet Boyvinet			16 16
382743 1 382743 2	Boyvinet Boyvinet	16	383917 4 383917 5	Lesperance Lesperance	16.0	468469 468469	4 5	Boyvinet Boyvinet			16 16
382743 3	Boyvinet Boyvinet	16 16	383918 1 383918 2	Lesperance Lesperance	16.0 16.0	468471	4	Boyvinet			16
382744 1 382745 1	Boyvinet	16	383918 3	Lesperance	16.0	468471 468472	5 4	Boyvinet Boyvinet			16 16
382746 1 382746 2	Boyvinet Boyvinet	16 16	383918 4 383918 5	Lesperance Lesperance	16.0 16.0	468472	5	Boyvinet			16 16
382746 3	Boyvinet	16	383919 1	Lesperance	16.0	468473 468473	5	Boyvinet Boyvinet			16 16
382746 4 382746 5	Boyvinet Boyvinet	16 16	383919 2 383919 3	Lesperance Lesperance	16.0 16.0	468474 468474	1 2	Boyvinet			16
382748 l	Boyvinet	16	383919 4	Lesperance	16.0	468474	3	Boyvinet Boyvinet			16 16
382748 2 382748 3	Boyvinet Boyvinet	16 16	383919 5 383920 1	Lesperance Lesperance	16.0 16.0	468474	4	Boyvinet			16
382748 4	Boyvinet	16 16	383920 2	Lesperance	16.0 16.0						
382748 5 429071 1	Boyvinet Boyvinet	16	383920 3 383921 1	Lesperance Lesperance	16.0						
429070 4	Boyvinet	16 16	383921 2	Lesperance Lesperance	16.0 16.0						
429070 l 382741 l	Boyvinet Boyvinet	16	383921 3 383921 4	Lesperance	16.5						
382741 2 382742 1	Boyvinet Boyvinet	16 16	383921 5 383922 1	Lesperance Lesperance	16.0 16.0						
382742 2	Boyvinet	16	3 \$3922 2	Lesperance	16.0						
382742 3 382742 4	Boyvinet Boyvinet	16 16	383922 3 383922 4	Lesperance Lesperance	16.0 16.0						
382747 1	Boyvinet	16	383922 5	Lesperance	16.0 16.0						
382747 2 382747 3	Boyvinet Boyvinet	16 16	383923 1 383923 2	Lesperance Lesperance	16.0						
382747 4	Boyvinet	16 16	394540A 1	Lesperance	16.0 16.0						
382747 5 429070 5	Boyvinet Boyvinet	16	394540B 1 394540B 2	Lesperance Lesperance	16.0						
429070 3 429070 2	Boyvinet Boyvinet	16 16	394540B 3 394540B 4	Lesperance Lesperance	16.0 16.0						
382741 3	Boyvinet	16	3943405 4	Lesperance							
382741 4 382741 5	Boyvinet Boyvinet	16 16									
382742 5	Boyvinet	16									
383713 1 383713 2	Lesueur X Lesueur X	58 40									
383714 1	Lesueur X	59 40 60 40									
383714 2 383715 1	Lesueur X	61 40						\$1 1		Voct -	nd Larner
383715 2	Lesueur X Lesueur X	62 40 63 40				Table 2 - List of Boyvin	net, Lesue	eur North,	cesu eur V	vest a	iin respergu
3 83716 1		/ -					(VII)	ning Claims	•		

Table 2 - List of Boyvinet, Lesueur North, Lesueur West and Lesperance
Mining Claims

Highway 113 passes through the Lesueur and Boyvinet properties approximately 15 km north of the town of Desmaraisville. A gravel road branches north off Highway 113 and traverses the Lesueur West drill area. Approximately five km further north along Highway 113, a logging trail branches to the west providing access to most of the Lesueur North drill holes. Across the highway, the Kruger Road extends northeastward providing access to the four remaining Lesueur North holes. Two kilometres from Highway 113, a gravel road branches southward from the Kruger Road and traverses the detailed drilling area on Boyvinet.

Access to the Lesperance property is by a gravel road east off of Highway 113 which follows the north and east shores of Lac Billy before winding east parallel to the Canadian National Railway line south of the property. Approximately 8 km from the highway, a gravel road branches north, traversing the mainland drill area and extending to the peninsula and Opawica Lake.

Access roads were buildozed to holes in all four drill areas that could not be accessed by existing trails. No advance cutting was required because the trees are not of marketable size.

2.4 Physiography and Vegetation

The Lac Shortt Project area lies in the east-central portion of the Abitibi Upland (Bostock, 1968), a north-sloping clay belt region that was covered by Lake Ojibway 10,000 years ago during Late Wisconsinan ice withdrawal. The southern boundary of the clay belt is the Hudson Bay - St. Lawrence River drainage divide, and also roughly coincides with the southern edge of the Abitibi Greenstone Belt. Average overburden thickness in the clay belt ranges from 10 metres in the south where Lake Ojibway was shallow to 30 metres in the north where the lake was deeper. Average overburden thickness in the 87 Phase II drill holes was 19.9 metres.

The Lesueur West drill area straddles a low hill that was identified as part of the surface expression of the Kruger Road Esker in our Phase I report. Relief varies by 15 metres in this area, and vegetation consists almost entirely of post-harvest regrowth.

The Lesueur North drill area straddles an unnamed, west-flowing, meandering creek and is bounded to the south by a 25-metre high, east-west trending ridge of Kruger Road Esker sediments and to the north by a lower, east-west trending bedrock ridge. The drill area is open along the creek, but supports mature spruce separated by areas of wooded spruce swamps elsewhere.

The detailed drilling area on Boyvinet extends southwesterly from the shore of Opawica Lake, between two 30-metre high syenite ridges, gradually rising 20 metres onto the western end of a third bedrock ridge. Excluding a swampy delta in the northeast, the drill area supports mature spruce forest.

The Lesperance drill area includes both the peninsula on the south shore of Opawica Lake and a mainland area further south roughly between the lake and an east-west section of the Canadian National Railway line. The tip of the peninsula is a sand and gravel ridge approximately 10 metres high, vegetated by mature spruce and poplar forest and separated from the mainland by a low, flat, wooded spruce swamp. The mainland area south of the peninsula is characterized by rolling topography with isolated rock outcrops and is vegetated exclusively by post-harvest regrowth.

2.5 Previous Work

Published geological and geophysical work performed in the area of the reverse circulation drilling to January 10, 1983 as compiled by the Ministère de l'Énergie et des Ressources du Québec (MERQ, 1983a and b) is summarized on Plan 1 (MERQ, 1983c). This interpretation shows outcrops bordering the new Lesueur

North drill area as predominantly diorite and gabbro of the Sturgeon Falls Complex with minor andesite and basalt. The Lesueur West drill area is not close to any outcrops but lies immediately north of a known east-northeast trending iron formation in volcano-sedimentary terrane. The mainland part of the Lesperance drill area is bisected by a contact between predominantly tuff and felsic to intermediate volcanics in the north and predominantly basalt in the south, with steeply dipping east-southeast trending stratigraphy. The east-northeast trending Opawica Lake Fault is placed within the tuffs on the overburden covered peninsula.

Recorded mineral exploration in the Boyvinet drill has been discussed previously (Graham et al., 1988).

On Lesueur North, various operators have prospected the surrounding outcrops and performed mag-EM surveys covering the area. The EM surveys identified several east-southeast trending conductors immediately south of the drill area and one east-northeast trending conductor northeast of the drill area. Falconbridge Nickel Mines Ltd. diamond drilled the northeastern conductor and intersected graphitic mafic tuff (Plan 1).

On Lesueur West, recorded mineral exploration comprises various geophysical surveys which have identified several short, east-west trending HEM and VLF conductors. McWatters Gold Mines Ltd. drilled two diamond drill holes based on a mag-EM survey in 1958 (Dugas, 1975) but apparently did not file the results.

In the mainland part of the Lesperance drill area, various operators have performed mag-EM surveys and geological mapping. A number of short, weak, east-west trending magnetic anomalies occur. Several small lenses of massive pyrite-chalcopyrite-sphalerite are known to occur northwest of the drill area and two gold-copper showings occur on the southwest corner of the property. Exploration work on the peninsula consists solely of limited geophysical surveys, and no anomalies have been identified.

Since 1985, Camchib has conducted HEM (Max Min II), VLF and magnetic surveys and geological mapping on a reconnaissance-scale grid (800 foot line separation) covering the mainland part of the Lesperance property and has performed basal till sampling across one VLF and coincident HEM conductor in the reverse circulation drill area using a hand-held percussion drill with a small flow-through sampler (Potapoff, 1987). The Camchib VLF conductors differ in quantity and orientation from those of previous geophysical surveys, making them suspect, but they have been added to Plan I. Potapoff does not specify the basal till sample treatment method, but the anomaly threshold used for gold was 20 ppb, suggesting that raw overburden fines were assayed. No overburden anomalies were identified in southern Lesperance.

2.6

Project Costs

Budgeted and actual costs for the Phase II reverse circulation drilling are presented in Table 3. The budget figure of \$124.17/metre was based on:

- 1. A total of 75 holes having an average hole depth of 20 metres.
- 2. Drilling productivity at 7 metres per operating hour (includes moves).
- 3. An average bit life of 60 metres.
- 4. An average of five overburden samples per hole.
- 5. Ice road preparation costs of \$10,000.00.

Eighty-seven holes were drilled. Hole depth averaged 21.5 metres, giving an average of five overburden samples per hole as expected. Drilling productivity averaged 5.8 metres per hour -- significantly less than the budget estimate. This is due in part to having relatively long moves between drill areas (the Lesperance drilling was not included in the original budget). However, the low drilling productivity was more than offset by: 1) a bit life average of 85 metres per bit -- 42 percent better than budget expectations; and 2) cancellation of the ice road work after sinking the Muskeg tractor on the second day. Total invoiced costs were \$209,543.86 (\$112.03/metre).

				Budget			Actual		
	Service	Company	\$ Total	\$/Metre	_\$/Foot	\$Total	\$/Metre	\$/Foot	
1.	Pre-drilling	ODM	1,500.00	1.00	0.30	2,154.83	1.15	0.35	
2.	Ice Road Preparation	Bradley Brothers	10,000.00	6.67	2.04	2,610.00	1.40	0.42	
3.	Road clearing and drilling operations	Bradley Brothers	103,150.00	68.77	20.96	110,793.55	59.23	18.05	
4.	Field supervision, logging and sampling	ODM	24,245.00	16.16	4.93	32,757.56	17.51	5.34	
5.	Sample shipping and processing	Various, ODM	19,050.00	12.70	3.88	20,672.32	11.05	3.37	
6.	Analytical	Bondar-Clegg	11,812.50	7.88	2.40	13,555.60	7.25	2.21	
7.	Report	ODM	16,500.00	11.00	3.35	(est) <u>27,000.00</u>	14.44	4.40	
	TOTALS		186,257.50	124.17	37.86	209,543.86	112.03	34.15	

Table 3 - Budgeted and Actual Costs for the Phase II Project Lac Shortt Reverse Circulation Drilling Program

DRILLING AND SAMPLING

3.1 Drill Hole Pattern

3.

Heavy mineral dispersal trains from known gold deposits display varying configurations depending on the relationship between the orientation of the deposit and the direction of ice flow (Fig. 5). Dispersal trains from deposits oriented parallel to ice movement are generally ribbon-like, with widths of 100 to 200 m and a detectable length of a kilometre or more (e.g. the EP train, Table 4). In contrast, dispersal trains from deposits oriented perpendicular to ice movement are apronlike with widths of 300 to 400 m (including low grade fringes related to the anomalous alteration haloes that enclose most gold deposits) and an average detectable length of 500 m.

The regional directions of ice flow for the two major glaciations (Illinoian and Wisconsinan) that affected the Lac Shortt area were both southwesterly (Veillette, 1986; Averill, 1986), whereas regional bedding-controlled shear zones strike eastwest. Thus dispersal trains from any shear-hosted gold deposits should trend at about 45 degrees to the strike of the deposits and form elongated aprons. Holes drilled at 300 m stations on east-west or northwest-southeast traverses 400 m apart would be expected to detect dispersion from any significant gold deposits provided these deposits have a good subcrop and till is present down-ice from the deposits. The northwest-southeast orientation is preferred because it is oblique rather than parallel to the bedrock trend and thus provides optimum bedrock stratigraphic, structural and topographic information in addition to good dispersal data.

The follow-up drill holes on central Boyvinet were positioned along seven east-southeast trending traverses on a 100×200 metre grid pattern to test for higher grade zones within the broad Phase I dispersal train and to establish the orientations of bedrock structures within the Opawica Pluton.

Figure 5 - Typical Sizes and Shapes of Gold Dispersal Trains For Ice-Parallel and Cross-Ice Trending Bedrock Sources

		TRAIN LENGTH (m)		
PROVINCE	GOLD DEPOSIT	TRACED	EST. TOTAL	
Saskatchewan	Star Lake	300	800	
Saskatchewan	Tower Lake	500	700	
Saskatchewan	EP2	600	2000	
Ontario	McCool	300	400	
Quebec	Cooke Mine ³	800	1000	
Quebec	Golden Pond West	300	4004	
Quebec	Golden Pond	400	500 ⁴	
Quebec	Golden Pond East	800	10004	
Quebec	Orenada	100	200	
Quebec	Kiena	100	300	
Quebec	Chimo	600	1000	
Newfoundland	Devil's Cove	2000	2000	

- 1 Based on minimum 10 gold grains of similar size and shape per 8 kg sample for free gold trains and on coincident high gold and base metal assays for invisible gold trains
- 2 Deposit oriented parallel to glacial ice advance
- 3 Occluded gold deposit
- 4 Train foreshortened and/or gapped by erosion in last ice advance

Table 4 - Heavy Mineral Gold Dispersal Trains Identified by Overburden Drilling Management Limited Laboratory

On Lesperance, the drill holes on the peninsula were at 200 to 250 metre intervals along two irregular, east-west trending traverses about 300 m apart to test both the overburden and the bedrock for evidence of the Opawica Lake Fault shown on the MERQ compilation (Plan 1). The drill holes on the mainland were positioned at 200 to 300 metre intervals along four irregular, east-southeast trending traverses about 300 metres apart, mainly in the basaltic terrane down-ice from the mafic/felsic contact shown on the MERQ compilation. At least one hole was positioned directly over each VLF axis identified in the Camchib survey even though the validity of these conductors is questionable.

On Lesueur North and Lesueur West, reconnaissance holes were generally at 150 to 300 metre intervals along loosely defined east-southeast trending traverses. The traverse separation is roughly equal to the hole spacing; thus the hole pattern provides semi-detailed overburden coverage and good reconnaissance coverage of the bedrock geology.

3.2 Drilling Equipment

Bradley Brothers' drill rig employed a gear-driven Longyear 38 head with 0.6 metre (2 foot) feed. The drill, together with all its ancillary equipment including air compressor, water pump and logging and sampling facilities, was unitized and enclosed on the bed of a Nodwell Model 160 tracked carrier for all-terrain mobility and all-weather operation.

The rig employed an air compressor with a rated capacity of 300 cfm at 160 psi and a water pump having a capacity of 20 gpm at 600 psi. Water flow was normally restricted to 4 to 5 gpm to improve recovery of fines. The rig was equipped with a 12 volt DC Cool White fluorescent fixture that simulates natural sunlight for accurate sample logging.

Ten-foot drill rods were used. However, the holes were logged in metres using the approximate conversion factor of 3 metres to 10 feet. This resulted in the logged hole depth being 1.6 percent less than true depth.

Bradley Brothers supported the drill rig with a Nodwell GT-1000 muskeg tractor that carried the drill rods and was equipped with one 400-gallon, exhaustheated water tank. They also provided a D-6 wide pad bulldozer for road clearing.

Minnova supplied accommodations and meals for the Bradley and ODM crews at the Lac Shortt Mine.

3.3 Logging and Sampling

The Project Lac Shortt samples were collected in two 20 litre buckets coupled with a plastic tube. This procedure ensures a quiet settling environment thus reducing the loss of fines encountered if only one bucket is used and allowed to overflow. Most of the clay is still lost but a research study made by ODM (Dimock, 1985) showed that sand loss is insignificant and silt loss is reduced to 40 percent compared to 72 percent with the one-bucket system. Interestingly, fine gold is lost in direct proportion to fine minerals of low specific gravity such as quartz and feldspar because the flake shape rather than high density of fine gold is the primary factor controlling the rate of settling. Further research conducted by ODM (Kurina, 1986) on various inlet/outlet attachments on the second bucket showed an additional 33 percent of the fine material in the overflow could be retained by utilizing a horizontally curved inlet tube, which induces spiral flow, and a vertical stack skimmer on the outlet. The two-bucket system with the modified flow configuration was employed on Project Lac Shortt.

A 10-mesh (1700 micron) screen was employed over the first bucket to separate and discard the majority of rock cuttings and thereby increase the proportion of matrix material which is used to identify and trace dispersal trains. The +10 mesh rock cuttings were constantly monitored for any variations which could give clues to overburden stratigraphy, or for any clasts indicative of an environment suitable for gold or base metal mineralization. Approximately 20 percent of the cuttings were kept for future reference. The degree of sorting of the minus 10 mesh matrix was monitored to differentiate till from sand and gravel.

Till units were sampled continuously using an average sample interval of 1.5 metres. Glaciofluvial and interglacial sand and gravel were sampled over longer, 3 to 6 metre intervals because they are far-travelled and thus generally ineffective for mineral tracing. Glaciolacustrine clay and silt were not sampled because they are of no exploration value.

In the field, both the overburden and bedrock samples were assigned an alphanumeric designation indicating the drilling project, the year the hole was drilled, the position of the hole in the overall drilling sequence (includes both the 1988 Phase I and 1989 Phase II holes), and the position of the sample in the drill hole. Thus a designation such as PLS-89-172-03 indicates the third sample collected from the one hundred and seventy-second hole, which was drilled during Phase II in 1989 on Project Lac Shortt. Holes 150 to 234 were drilled in Phase II.

Following collection, the overburden samples were reduced to 7-9 kilograms with an aluminum scoop, packed in heavy plastic bags and shipped in 20-litre metal pails to the ODM processing laboratory in Nepean, Ontario or Rouyn-Noranda, Quebec.

3.4

Sample Processing

ODM's processing procedures for overburden samples are illustrated in the flow sheet of Figure 6 and may be summarized as follows:

First, a 250 gram character sample is extracted from the bulk sample using a tube-type sampler. This character sample is dried and stored for future reference. On the Phase I program, a second character sample was taken, and its minus 250 mesh fraction was separated and analyzed for gold to complement the heavy mineral data and to check for gold occluded in minerals of low specific gravity that are not recovered in the heavy mineral concentrates. However the minus 250 gold data proved to be of no value. Therefore only one character sample was employed in Phase II.

Figure 6 - Sample Processing Flow Sheet

The remainder of the bulk sample is weighed wet and is sieved at 1700 microns (10 mesh) to separate the clasts from the matrix. The +1700 micron clasts are weighed wet and the -1700 micron matrix is processed on a shaking table to obtain a preconcentrate (Fig. 7). The table concentrate and all fractions obtained from it are weighed dry. The sample weights are listed in Appendix B.

While the samples are being tabled, special procedures developed by ODM are used to effect the separation of gold grains from the other heavy minerals. These grains are picked from the deck, placed under a binocular microscope, measured to obtain an estimate of their contribution to the eventual assay of the concentrate (Table 5), and classified as delicate, irregular or abraded (Fig. 8) to determine their approximate distance of glacial transport. Photomicrographs (35 mm slides) are taken if more than 10 gold grains are present.

Magnetite, with a specific gravity of 5.2, is the heaviest of the common minerals and normally forms the top mineral band on the table above garnet and epidote/pyroxene (Fig. 7). Common flake gold coarser than 125 microns separates completely from the magnetite and is readily counted. Fine gold, thick gold and delicate gold travel with the magnetite due to size and shape effects, and only 10 to 20 percent of such grains are readily sighted on the table. Gold particles can also be obscured by pyrite which, if it is abundant, tends to cross the table in the gold path. However, ODM has developed a special panning technique to recover the hidden particles together with some copper, lead and arsenic pathfinder minerals. Samples are normally panned if two or more gold particles are sighted on the table or if any delicate gold is seen or if the table concentrate contains more than 10 percent pyrite. All of the Boyvinet follow-up samples were panned and samples from the other areas were panned to the normal thresholds. The table and pan gold counts are listed in Appendix C.

After the gold grains have been examined, they are recombined with the table concentrate. This concentrate is dried and a heavy liquid separation in methylene iodide (specific gravity 3.3) is performed. The light fraction (S.G. less than 3.3) is stored and the heavy fraction undergoes a magnetic separation to remove drill steel and magnetite. The magnetic separates are checked to ensure that they contain not more than five percent pyrrhotite. The non-magnetic heavy minerals are separated into a 3/4 analytical subsample and a 1/4 library subsample using a riffled microsplitter.

Size Classification	Flake Diame (microns	ppb Au	
Very Fine	50		19
ĬI .	63	(250 mesh)	38
ti .	100		150
Fine	150		494
11	177	(80 mesh)	800
II	200	,	1,140
Medium	300		3,645
**	400		8,160
tt.	500		15,000
Coarse	600		24,300
11	700		36,015
11	800		49,920
11	900		65,610
11	1,000		82,500
Very Coarse	1,000+		82,500+

Table 5 - Geochemical Contribution of One Gold Grain to a Ten Gram Sample

Distance of Transport (metres)

Figure 8 - Effects of Glacial Transport on Gold Particle Size and Shape (Developed by Overburden Drilling Management Ltd.)

Three-quarter splits of the heavy mineral concentrates (Appendix D) and subsamples of the bedrock chips (Appendix H) were pulped in a shatter box and were analyzed for gold by fire assay with atomic absorption finish (FA/AA), for copper, zinc and silver by AA, and for arsenic by colourimetry. When arsenic values exceeded the 2000 ppm colourimetric detection limit, an assay was done using sodium peroxide fusion and distillation to isolate arsenic followed by measurement of the arsenic content of the distillate with a specific ion meter. Whole rock compositions for the bedrock samples (Appendix H) were determined by DC-plasma and gravimetric (LO1) methods. In addition, carbon dioxide was determined by colourimetry and zirconium by x-ray florescence (XRF).

Gold grains are malleable and thus are difficult to homogenize with the rest of the sample, often forming flattened "metallics" in the pulp. To alleviate this problem and improve assay representativity, concentrates that were known to contain one or more coarse gold grains (generally over 200 microns) capable of producing an anomalous assay (over 1000 ppb) were pulped for shorter periods and screened at 150 mesh after pulping. Separate gold determinations were than made on the -150 mesh pulp and the +150 mesh metallics, and a weighted average assay was calculated.

The 3/4 concentrate analyses contained a number of unexpected and higher than expected gold anomalies. To check the reproducability and significance of these anomalies, the corresponding 1/4 library concentrates were examined for visible gold by panning and submitted for non-destructive INA gold analysis (Appendix F).

All analytical work was done by Bondar-Clegg & Company Ltd. at their Ottawa laboratory and their INA facility in Buffalo, New York. Analytical specifications are given in Table 6.

Sample Type	Sample Preparation		Element	Lov Detection		Extraction	Method
Heavy Mineral Concent	rates						
Standard 3/4 splits	Pulverize to -200 mesh	Cu Zn Ag As Au	Copper Zinc Silver Arsenic Gold	1 1 0.1 2 5	ppm ppm ppm ppm ppb	HC1-HNO3, (1:3) HC1-HNO3, (1:3) HC1-HNO3, (1:3) HNO3-HC1O4 Aqua Regia	Atomic Absorption Atomic Absorption Atomic Absorption Colourimetric Fire Assay AA
Pulp and metallics 3/4 splits	Pulverize to -200 mesh; screen 150 mesh, weigh +150 and -150	Au Au Au	-150 +150 Average	0.01	ppm ppm	Aqua Regia Aqua Regia	Fire Assay AA Fire Assay AA Calculated
Selected 1/4 splits	None	Au	Gold	5	ppb	None	Neutron Activation
Bedrock Chips	Pulverize to -200 mesh	SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Total	Silica (SiO ₂) Titanium (TiO ₂) Alumina (A1 ₂ O ₃) Total Iron (Fe ₂ O ₃ *) Manganese (MnO) Magnesium (MgO) Calcium (CaO) Sodium (Na ₂ O) Potassium (K ₂ O) Phosphorous (P ₂ O ₅) Loss on Ignition Whole Rock Total	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	pct	Borate Fusion	DC Plasma CC Plasma DC Plasma DC Plasma CC Plasma DC Plasma CC Plasma CC Plasma
		CO ₂ Zr Cu Zn Ag Au	Carbon Dioxide Zirconium Copper Zinc Silver Gold	0.01 1 1 1 0.1 5	pct ppm ppm ppm ppm ppm ppb	HNO3-HC104 None HC1-HNO3, (1:3) HC1-HNO3, (1:3) HC1-HNO3, (1:3) Aqua Regia	Colourimetric X-ray Fluorescence Atomic Absorption Atomic Absorption Atomic Absorption FA-AA @ 10 gm weight

Table 6 - Bondar Clegg Analytical Specifications

BEDROCK GEOLOGY

4.1 Regional Geology

4.

The following summary of the geology of the Project Lac Shortt area is exerpted from our Phase I report:

"The Opawica Lake region is in the northeastern part of the Archean-age Abitibi Greenstone Belt which comprises repeated komatiitic through tholeiitic to calc-alkalic cycles of lavas and volcaniclastics with coeval clastic and exhalative sedimentary rocks, porphyries, layered mafic-ultramafic sills, and plutons of potassium poor dioritic to tonalitic composition. These rocks have been complexly deformed, metamorphosed to the subgreenschist to greenschist facies, and intruded by late kinematic granodiorite and monzonite plutons (Gariepy et al., 1984).

Stratigraphically the Wetjack and Lesueur properties are in the Caopatina - Quevillon Domain while the Boyvinet property straddles the boundary between this domain and the more northerly Chibougamau - Matagami Domain (Giovanezzo, 1983). The two domains contain a similar range of volcano-sedimentary rocks; the main difference between them is that differentiated mafic/ultramafic sills are common in the Chibougamau - Matagami Domain and are rare in the Caopatina - Quevillon Domain.

Formal stratigraphic group names have not yet been developed for the volcano-sedimentary strata of the Opawica Lake area as they have for the Chibougamau area (MERQ-OGS, 1983). However, on examining the collage of maps and reports covering the Opawica Lake area, it is apparent that two main groups are present within the Caopatina -Quevillon Domain: (1) a group that is dominated by tholeiltic basalt and underlies the area south of the Opawica Lake Fault; and (2) a group that is dominated by calc-alkalic andesite, dacite and tuff and underlies the area north of the fault including the Wetjack and Lesueur drill areas and the south part of the Boyvinet drill area. The strata of both groups are steeply dipping, strike east-west and generally face north but the intervening fault obscures the precise age relationship between the two groups. Further to the north in the Chibougamau - Matagami Domain, differentiated mafic/ultramafic sills of the Sturgeon Falls Complex are more abundant than their volcano-sedimentary hosts, precluding subdivision of the volcano-sedimentary strata into groups.

The main structural zone in the area is the Opawica Lake Fault which extends east-northeastward through Lac Billy and the southern part of Opawica Lake (i.e. south of Opawica Island) to the L'Apparent Pluton (Fig. 2). On the opposite side of the pluton, the same structural

trend can be traced further east-northeastward through the Opemiska (Chapais) mining district and the western part of the Chibougamau mining district where it is known as the Gwillim Lake Fault (Allard and Gobeil, 1984). Related faults in the Opawica Lake region include a southern splay fault near the Bachelor Lake Mine and a northern splay or parallel fault passing through the Lac Shortt Mine and extending westward through the northern part of Opawica Lake (i.e. north of Opawica Island). Giovanezzo (1983) indicates that the Lac Shortt Fault continues westward from Lac Opawica where it marks the boundary between the northern Chibougamau - Matagami and southern Caopatina - Quevillon Domains.

Cross faults in the Opawica Lake region generally strike north-northeast (MERQ, 1983; Plan 1). The peculiar donut shape of Opawica Lake probably results from the presence of two of these cross-faults between the east-west trending Opawica Lake and Lac Shortt Faults.

The principal mineral deposits in the region are (Fig. 2):

- 1. The Bachelor Lake gold mine 15 km southwest of Opawica Lake which started production in July, 1982 with preproduction reserves of approximately 900,000 tonnes of ore grading 6.22 g/t including 10 percent dilution. It is an epigenetic, hydrothermal, shear-controlled deposit occurring in a cross-fault between the two branches of the Opawica Lake Fault. The mineralization is characterized by silicification and hematitization and is hosted by assorted volcanic and volcaniclastic rocks and comagmatic gabbro sills (Buro, 1984) in the contact zone of the syenitic O'Brien Stock. Fluorite, amethyst and pyrite accompany the gold and also occur throughout the O'Brien Stock. The gold has a grain size of 10 to 50 microns and is closely associated with the pyrite.
- 2. The small Coniagas Zn-Ag-Pb massive sulphide deposit which is located 1.5 km west of the Bachelor Lake Mine and was mined from 1961 to 1967.
- Minnova's Lac Shortt gold mine 10 km east of Opawica Lake which started production in September, 1984 with preproduction reserves of approximately 2 million tonnes of 6.0 g/t gold (cut) at a cut-off grade of 3.0 g/t (Morasse, 1986). It is a shear-controlled deposit hosted by silicified, hematitized and K-metasomatized rocks of uncertain lithology along the Lac Shortt Fault at the contact zone of a syenite stock. The gold is very fine (average 6 microns) and occurs as disseminated free grains in the gangue and as micro-inclusions in pyrite (Cormier et al., 1984).
- 4. Minnova's Opemiska gold-copper deposits at Chapais, which occur in sheared mafic/ultramafic sills near the Opawica Lake Gwillim Lake Fault (Watkins and Riverin, 1982).

5. The Chibougamau gold-copper deposits which occur along the Opawica Lake - Gwillim Lake Fault and in a variety of other structural settings.

Considering the strong association of many of the above gold deposits with the Opawica Lake Fault, and the locations of the Project Lac Shortt properties on or proximal to this fault and the related Lac Shortt Fault, these properties should have a high gold potential."

4.2 Bedrock Geology of the Reverse Circulation Drill Holes

Since the Phase II drill areas are located either within (Boyvinet), adjacent to (Lesueur North and Lesueur West) or along strike from (Lesperance) the Phase I drill areas (Plan 1), the lithologic units intersected in Phase II (Table 7) are essentially the same as those of Phase I. The reader is referred to our Phase I report for a detailed description of these units. The only new lithologies intersected in Phase II are:

- 1. Pyroxenite in Hole 172 on Boyvinet, within the gabbro/diorite border phase of the differentiated Opawica Pluton;
- 2. Thin mudstone horizons within the turbidite sequence on Lesueur West;
- 3. Narrow, unmetamorphosed (i.e. post-Archean) ultramafic lamprophyre or kimberlite dikes on Lesueur West.

As in Phase I, structural axes were identified by classifying the samples as unsheared, weakly to moderately sheared, or strongly sheared, and by contouring hydrothermal carbonate (Plan I). To be considered strongly sheared, a sample must show both severe deformation and advanced hydrothermal alteration. Hydrothermal carbonate includes all Fe/Mg carbonate except sedimentary siderite, and also any non-ingeneous calcite in excess of the normal 5 percent ceiling for metamorphic calcite. The main structural zones intersected in Phase II are:

9	Ultramafic lamprophyre or kimberlite
8	Opawica Pluton 8a - gabbro, pyroxenite 8b - diorite 8c - quartz diorite 8d - syenite
7	Gabbro
6	Chemical sediments 6a - iron formation 6b - chert
5	Clastic sediments 5a - greywacke 5b - siltstone 5c - mudstone
4	Rhyolite
3	Intermediate tuffs
2	Intermediate volcanics 2a - andesite 2b - dacite
1	Basalt

Table 7 - Bedrock Lithologies Intersected in the Reverse Circulation Drill Holes

- 1. The Lac Shortt Fault on Lesueur North;
- 2. The Opawica Lake Fault on Lesperance;
- 3. The Lesueur gold-arsenic shear zone on Lesueur West.

The following four sections describe in more detail the bedrock geology and geochemistry of the four Phase II drill areas in the sequence drilled (i.e. Boyvinet followed by Lesperance, Lesueur West and Lesueur North).

4.2.1 Bedrock Geology and Geochemistry of the Boyvinet Drill Area

The Boyvinet Phase II drill area straddles the central syenite and southern gabbro/diorite border phases of the Opawica Pluton that were delineated in Phase I. The new pyroxenite zone intersected in Hole 172 contains cumulate magnetite layers and coincides with a strong magnetic anomaly (Fig. 9).

Syenite (Map Unit 8d) was intersected in 26 drill holes. Like the Phase I syenite, it is a pink to red (hematite-stained), very sodic (i.e. alkalic, Fig. 10) rock. In order of increasing abundance, the three most common textural varieties are: 1) equigranular; 2) strongly porphyrytic with 80 to 90 percent albite phenocrysts of 1 to 3 mm size in a chilled, inequigranular, 0.1 to 0.5 mm groundmass; and 3) inequigranular with coarse-grained feldspar, medium-grained mafic minerals and fine-grained accessory minerals. Where not sheared, the syenite is generally massive, although the albite phenocrysts locally display a primary trachytic flow foliation.

The average composition of the syenite is 80 to 90 percent feldspar, 1 to 2 percent quartz, 8 to 12 percent hornblende, 1 to 2 percent sphene, 0.5 to 2 percent magnetite, and 2 to 3 percent calcite. Riebeckite, the blue, sodic amphibole, is mixed with the hornblende in Hole 165, and the samples from Holes 152 and 153 in the north part of the drill area contain pyroxene instead of hornblende. The sample from Hole 176 in the south contains a few pyroxene xenocrysts that are probably

Microfilm

PAGE DE DIMENSION HORS STANDARD

MICROFILMÉE SUR 35 MM ET

POSITIONNÉE À LA SUITE DES

PRÉSENTES PAGES STANDARDS

Numérique

PAGE DE DIMENSION HORS STANDARD

NUMÉRISÉE ET POSITIONNÉE À LA

SUITE DES PRÉSENTES PAGES STANDARDS

Figure 10 - Alkalies-Silica Plot for Opawica Pluton,
Phase II Drilling, Boyvinet Property

derived from the adjoining gabbro and pyroxenite border phases of the pluton. The samples from Holes 155, 156, 164 and 166 contain I to 5 percent of an accessory mineral that is believed to be apatite (gray, tabular, H=5). Apatite is also common in the carbonatite core of the Lac Shortt syenite pluton (A. Lichtblau, Minnova; personal communication). The apatite-bearing intersections on Boyvinet are near the shore of Opawica Lake, suggesting that the lake-covered core of the Opawica Lake Pluton may contain a zone of carbonatite.

Deformation of the syenite, where present, is by brittle shearing. The most strongly sheared samples, in Holes 150, 168 and 171, are pervasively microfractured to locally mylonitized. This deformation is accompanied by infilling of the fractures by calcite, and by replacement of magnetite by specular hematite and/or pyrite, of sphene by leucoxene, and of hornblende by chlorite and eventually by Fe/Mg carbonate. However, the sheared syenite still contains some magnetite, indicating that it would be difficult to identify the shear zones using a magnetic survey.

It had been hoped that the 100 x 200 m Phase II drilling pattern on Boyvinet would be sufficiently detailed to trace the shear zones directly between drill holes, thereby establishing whether the direction of structural control is north-northeast or east-west. However, as shown on Plan 1 and detailed in an interim report to Minnova dated 24 February, 1989, the structural orientation is still uncertain; the general distribution of the strongly sheared intersections favours a north-northeast trend but some unsheared intersections are present along the same trend and the distribution of outcrop ridges favours an east-west trend.

Quartz diorite (Map Unit 8c) was intersected in Phase II Holes 157, 178 and 179. In the Phase I area, this rock forms a major northwestern border phase of the Opawica Pluton that crystallized after the southern gabbro/diorite border phase but before the central syenite. The Hole 157 intersection of Phase II occurs within the central syenite, contains 10 percent syenite, and probably represents a large xenolith. The Hole 178 and 179 intersections define a small body of quartz diorite

that occurs within the gabbro/diorite and apparently is separated at surface from the main northwestern quartz diorite body of Phase I.

As in Phase I, the quartz diorite is a pale to medium green rock with pink mottling and a wide variety of chill structures and textures. It is more chilled than both the gabbro/diorite and syenite. Considering the sequence of crystallization, this indicates a hiatus between emplacement of the gabbro/diorite and syenite. A chemical hiatus between the quartz diorite and syenite is also evident in the alkalies-silica plot (Fig. 10), where the quartz diorite has a sufficiently high alkaline content to indicate a magmatic affiliation with the syenite but falls in the subalkaline rather than alkaline field. On the Jensen diagram (Fig. 11), the quartz diorite, excluding the syenite-bearing sample of Hole 157, has a composition equivalent to calc-alkalic dacite.

The quartz diorite contains fewer (20 to 40 percent versus 80 to 90 percent) and smaller (0.5 to 1.5 mm versus 1 to 3 mm) plagioclase phenocrysts than the syenite. The groundmass grain size is variable from 0.05 mm to 0.5 mm — often within the sample as well as between samples — and the Hole 157 sample contains xenoliths of earlier-crystallized quartz diorite glass, indicating multi-stage emplacement of the quartz diorite magma. The Hole 178 and 179 samples contain a few xenoliths of gabbro, or xenocrysts of pyroxene derived from the gabbro or pyroxenite. This demonstrates very clearly that the quartz diorite was emplaced after the pyroxenite/gabbro/diorite.

Groundmass material constitutes 60 to 80 percent of the quartz diorite and consists of 60 to 70 percent plagioclase, 15 to 30 percent quartz, 10 to 20 percent hornblende/chlorite, 0 to 5 percent calcite and 0 to 1 percent magnetite. None of the quartz diorite samples are strongly sheared or altered.

The southern pyroxenite/gabbro/diorite border phase of the pluton (Map Units 8a, b) was intersected only in Holes 172 to 180. The Hole 172 sample is a pyroxenite having a Jensen composition equivalent to iron-rich komatilitic basalt whereas the Hole 180 sample is a diorite having a Jensen composition equivalent to calc-alkalic andesite (Fig. 11).

Figure 11 - Jensen Cation Plot for Sub-Alkaline Samples of Opawica Pluton, Phase II Drilling, Boyvinet Property

The pyroxenite is a dark green to black rock consisting of equal proportions of pyroxene-rich and magnetite-rich cumulate layers. The pyroxene-rich layers have a grain size of 0.3 to 1 mm and contain 60 percent dark green pyroxene, 30 percent pale green pyroxene, 10 percent magnetite and 2 percent Fe/Mg carbonate. The magnetite-rich layers are finer-grained (0.05 to 0.2 mm) and contain 60 percent pyroxene, 40 percent magnetite and 0.5 percent pyrite.

The diorite of Hole 180 is a dark green, microporphyrytic rock consisting of 20 to 30 percent plagioclase phenocrysts of 0.3 to 1.5 mm size in an aplitictextured groundmass of 0.05 to 0.1 mm grain size that consists of 60 percent plagioclase, 30 percent chlorite, less than 10 percent quartz (compared to more than 10 percent in quartz diorite) and 0.5 percent magnetite. An unusual feature of the rock is the partial segregation of the plagioclase, chlorite and magnetite into gneissic bands. The same gneiss was previously observed in Hole 118 of Phase I (Graham et al., 1988). Re-examination of other 1988 samples from nearby holes (Appendix G) shows that similar gneiss is present in Holes 117 and 119, forming a broad, anastomosing gneiss zone that may project eastward into the area of inferred shearing that was recommended for diamond drill testing in our Phase I report. As proposed in our interim report of 24 February, 1989, the diorite gneiss probably represents a ductile shear zone of the "contact strain aureole" type as defined by Stott (1986) in his recent studies of the Red Lake - Pickle Lake area of The gneiss probably developed while the central syenite was being emplaced against the already semi-crystallized diorite.

In our Phase I report, we described the problem of differentiating strongly chilled diorite and quartz diorite from the chemically, mineralogically and texturally similar hornfelsed andesite that borders the Opawica Pluton on the south. Indeed, the diorite gneiss samples of Holes 117 and 119 were previously classified as andesite. Re-examination of other questionable 1988 samples from this area (Appendix G) has also resulted in the reclassification of the Hole 120 sample as diorite. Some of these revisions were made with limited confidence, but the revised contact with correspondingly enlarged pluton is used on Plan 1.

Geochemically the Phase II bedrock samples from the Opawica Pluton on Boyvinet contain only background levels of Cu, Zn, As, and Ag (maximum values of 115 ppm, 56 ppm, 10 ppm and 0.3 ppm, respectively), but using a threshold value of 10 ppb, nine of the samples are anomalous in gold. The three highly sheared samples of Holes 150, 168 and 171 assayed 497, 43 and 129 ppb whereas the highest gold assay obtained from the Phase I reconnaissance holes in the same area was 25 ppb. Gold assays for the other six anomalous samples range from 19 to 83 ppb. As shown on Plan 1, all of the anomalies are in the central syenite and their distribution favours a north-northeast structural trend.

4.2.2 Bedrock Geology and Geochemistry of the Lesperance Drill Area

The mainland area on Lesperance is characterized by a southern belt of tholeiitic basalt and a northern belt of calc-alkalic rhyolite. Within the basaltic terrane, gabbro intersections in Holes 193 and 194 define a 250 m thick sill, and a bedded chert-siltstone intersection in Hole 189 probably represents a thin lens of interflow sediments. The paucity of sediments combined with the east-west stratigraphic trend suggests that the numerous southeast-trending VLF conductors that were identified by Camchib and formed the main targets for the reverse circulation drilling are spurious. Further north on the peninsula, the continuation of the calc-alkalic terrane is represented by a broad zone of rhyolite. Hole 187A intersected quartz diorite that probably forms a small satellite plug, dyke or sill of the Opawica Pluton.

The basalt/rhyolite contact on Lesperance is characterized by strong shearing but does not form a bedrock valley (Plan 2). It appears to be the eastern continuation of the contact that is formed by the Opawica Lake Fault at Lac Billy. Thus the MERQ structural interpretation (Plan 1), in which the Opawica Lake Fault on Lesperance is bent northward through the calc-alkalic terrane, is incorrect. However several of the rhyolite intersections on the northern peninsula are strongly sheared, and the bedrock topography here is depressed 20 to 50 metres relative to the mainland area (Plan 1). Thus a second fault -- probably a subsidiary of the Opawica Lake Fault -- is probably present on the peninsula.

At this point, it is instructive to diverge for a moment from gold exploration to consider stratigraphic relationships in the overall calc-alkalic pile between the Opawica Lake Fault and the Lac Shortt Fault, and the implications of these relationships in base metal massive sulphide metallogenesis. As stated in Section 4.2, the limited information available in the literature suggests that the pile faces north. If, however, one considers the abundance of andesite on Boyvinet and northern Lesueur, of rhyolite on the peninsula on Lesperance, and of turbidites, iron formation and tuff on southern Lesueur, southern Boyvinet and Wetjack (Plan 1), it is much easier to visualize a south-facing sequence in which: 1) the andesite represents the platform of a developing island arc system; 2) the Lesperance rhyolite represents an emergent dome on the platform; 3) the sediments and tuff to the west represent a vent-distal basin; and 4) the numerous, short VEM and HEM conductors and occasional Cu-Zn showings adjoining the rhyolite on or near Lesperance are indicators of vent-proximal exhalative mineralization near the top of the fault-truncated pile. Thus the main potential of the Lesperance property could be for base metal massive sulphide deposits rather than for shear-hosted gold deposits.

Returning now to the Lesperance geology, mafic volcanics (basalt; Map Unit 1) were intersected in 13 drill holes. The samples are a medium to dark green colour except where bleached buff in shear zones. All have an equigranular, interlocking volcanic texture. Most have a relatively coarse grain size of 0.1 to 0.3 mm but a few have a finer grain size (aphanitic to 0.1 mm) indicative of quenching. Other quench indicators such as amygdules, variolites and breccia zones were not observed. Greenschist facies metamorphism has converted most pyroxene to chlorite and imparted a weak foliation to the rock. Deformation, where strongest, is mainly by ductile shearing resulting in: 1) the development of a strong schistosity or lamination, often with lineation; 2) bleaching of chlorite; and 3) a rise in the calcite content to more than 5 percent. The most highly sheared sample, in Hole 190 on the Opawica Lake Fault, contains 20 percent schistosityparallel quartz-calcite veins that are brecciated and infilled with 10 percent pyrite. The sample from Hole 200 is moderately sheared and contains a trace of tourmaline. The shearing does not appear to have resulted in any major chemical changes as the samples are closely clustered in the tholeiltic basalt field on the Jensen diagram (Fig. 12).

Figure 12 - Jensen Cation Plot for Lesperance Samples

Unsheared basalt samples generally consist of 35 to 60 percent plagioclase, 35 to 60 percent chlorite, 0 to 2 percent quartz, 1 to 3 percent calcite, 0 to 2 percent leucoxene, and trace to 0.2 percent pyrite. The samples from Holes 201 and 204 contain 2 to 3 percent magnetite. Other magnetite occurrences of this type probably account for the scattered magnetic-high axes shown in the basalt terrane on the MERQ compilation (Plan 1).

Felsic volcanics (rhyolite, Map Unit 4) were intersected in Holes 190 and 191 at the Opawica Lake Fault and in seven holes on the northern peninsula. Typically the ryholite is a pale buff-green, unfoliated, porphyrytic rock comprising 20 to 50 percent plagioclase phenocrysts of 0.5 to 4 mm size and 1 to 5 percent quartz phenocrysts of slightly smaller size in an aphanitic to inequigranular (0.05 to 0.2 mm) groundmass. The groundmass is very hard, and where sufficiently coarse is observed to consist of 50 to 60 percent colourless plagioclase (albite), 30 to 40 percent quartz, and 2 to 10 percent of both chlorite and sericite. Pyrite is generally absent. On the alkalies-silica diagram (Fig. 13), the rhyolite is subalkaline but falls near the alkaline field because it has a 6 percent Na2O content -- much higher than the Abitibi rhyolite average of 3.5 percent (Goodwin, 1977). The high Na₂O content indicates an abundance of albite relative to quartz and results in a SiO₂ content of only 65 percent -- 10 percent lower than Goodwin's Abitibi rhyolite average of 75 percent. It also suggests that the alkaline to subalkaline Opawica Pluton, which intrudes strata that appear to underlie the rhyolite, may be the magma chamber from which the rhyolite was derived. On the Jensen diagram (Fig. 12), the samples are clustered in the calc-alkalic rhyolite field.

Several of the rhyolite samples are strongly sheared by brittle microfracturing and/or lozenging. The fractures are filled with calcite and chlorite but are so pervasive that these minerals have often been weathered out, resulting in a deep ochre discolouration. The shearing is accompanied in Hole 183 by the introduction of 4 percent crystalline pyrite and a trace of fuchsite, and in Hole 188 by 5 percent cummingtonite and a trace of fuchsite.

Figure 13 - Alkalies-Silica Plot for Lesperance Rhyolite and Quartz Diorite

Of the three minor rock units intersected on Lesperance, only the sediments of Hole 189 show significant shearing. The sample consists of 40 percent siltstone (Map Unit 5b) and 60 percent chert (Map Unit 6b) interbedded on a scale ranging from 0.5 mm to greater than 10 mm. The siltstone is schistose and lineated, indicating strong shear deformation, but is only weakly altered. It is dark green and consists of silt-sized material (mostly less than 0.05 mm) with sparse fine sand grains (to 0.1 mm). The silt composition, where visible, is 10 percent quartz grains, 40 percent undifferentiable plagioclase and volcanic lithic grains, 40 percent green chlorite and 10 percent calcite. The chert beds have white to gray colour laminations, contain 10 percent amorphous (i.e. syngenetic) pyrite stringers, and are not visibly sheared. However, the chert grains are set in a matrix of calcite that may have replaced sedimentary siderite.

The gabbro (Map Unit 7) samples of Holes 193 and 194 are apparently from the same sill and have almost identical Jensen compositions matching those of the enclosing tholeiitic basalt (Fig. 12), but have very different colours and textures. The Hole 193 gabbro is a dark green rock with 5 percent pyroxene phenocrysts to 1.2 mm size and of ophitic habit set in a diabasic groundmass comprised of 60 percent pyroxene, 40 percent plagioclase and 3 percent leucoxene grains of 0.2 to 0.6 mm size. The Hole 194 gabbro is stained pink by hematite and has a distinctly diabasic texture. It is comprised of 60 percent slender, partly chloritized pyroxene laths of maximum 0.3 x 1 mm size enclosing 40 percent plagioclase grains of 0.2 to 0.5 mm size. Traces of accessory leucoxene and magnetite are also present.

The quartz diorite of Hole 187A is a chilled, feldspar-porphyrytic, hornblende-bearing, sodic rock similar to the Boyvinet border phase samples of the Opawica Pluton (Map Unit 8c) previously described in Section 4.2.1.

Geochemically, the Lesperance bedrock samples contain normal background levels of Cu, Zn and Ag (maximum values of 158 ppm, 365 ppm and 0.3 ppm, respectively) despite the apparently high base metal potential of the area. Probably this is because none of the holes were drilled on or near electromagnetic conductors. The highest arsenic value is 22 ppm from sheared basalt in Hole 190 on the Opawica Lake Fault. Using a gold anomaly threshold of 10 ppb, the sheared

rhyolite from Hole 183 on the peninsula (39 ppb Au) and the sheared sediments from Hole 189 south of the Opawica Lake Fault (12 ppb Au) are weakly anomalous.

4.2.3 Bedrock Geology and Geochemistry of the Lesueur West Drill Area

The Lesueur West drill area is on the belt of turbidites that hosts the Lesueur gold-arsenic shear zone, hereinafter referred to as the "Lesueur Fault". Ten of the twelve Phase II drill holes intersected turbidites. The other two holes -- Nos. 213 and 214 -- intersected a gabbro sill that appears to be only about 50 m thick.

Three of the turbidite intersections contain narrow (less than 0.3 m thick) dykes of ultramafic lamprophyre or kimberlite. These dykes are unsheared whereas all of the turbidite and gabbro intersections display shear effects. Thus the dykes are of post-Archean age.

As on Lesueur (Graham et al., 1988), the shearing on Lesueur West is mainly ductile, producing a schistosity and lineation. Also as on Lesueur but unlike Boyvinet, Lesperance and Lesueur North, strongly sheared samples always contain Fe/Mg carbonate. An increase in shearing intensity observed within the turbidites in Holes 209 and 215 probably marks the western extension of the Lesueur Fault. As in the Phase I drill area on Lesueur, the fault lacks a coincident bedrock valley (Plan 2). Strong shearing is also evident to the south in Hole 218. This shear zone probably represents the western extension of a barren, unnamed fault on the southern edge of the turbidites that was identified in the Phase I drilling on Lesueur.

The turbidites on Lesueur West include three sediment sub-types which, in conjunction with the local introduction of Fe/Mg carbonate, results in a variety of Jensen compositions (Fig. 14). They consist mainly of fine-grained greywacke (0.05 to 0.25 mm), siltstone (average 0.05 mm) and mudstone (aphanitic). These lithologies appear to be almost randomly interbedded at both the property and drill hole scales. Coarser greywacke consisting of 30 percent plagioclase granules (up to 5 mm) in a medium to coarse-grained sand matrix (0.25 to 1 mm) was intersected in Hole 125. Bedding is generally not evident in the greywacke whereas the siltstone and mudstone typically display laminations less than 1 mm thick.

Figure 14 - Jensen Cation Plot for Lesueur West Samples

ODM has observed that turbidites elsewhere in the Abitibi Greenstone Belt are relatively homogeneous, have Jensen compositions equivalent to calc-alkalic andesite, and have four main components: 1) aphanitic ash fragments of intermediate composition; 2) plagioclase grains; 3) quartz grains; and 4) chlorite recrystallized from clay. The main compositional change accompanying the grain size reduction from greywacke to mudstone is an increase in chlorite at the expense of the other three components. On Lesueur West, the quartz content of the greywacke is about 10 percent, and the chlorite content of the turbidites ranges from 10 - 20 percent in greywacke to 50 - 70 percent in mudstone. The feldspar and ash grains are generally not differentiable from one another due to the fine grain size, or in the case of the coarse greywacke of Hole 215, to masking by pervasive shear-controlled silicification.

The turbidites, unlike the volcanic and plutonic rocks described for the other properties, invariable contain pyrite. This pyrite is often amorphous and obviously syngenetic, but is recrystallized to cubic or dodecahedral crystalline forms in the more highly sheared samples. Its concentration is generally only 0.1 to 0.3 percent in the greywacke but reaches 1 to 5 percent in the mudstone intersections of Holes 210 and 216, where it occurs as thin beds. These mudstone intersections also contain 2 to 10 percent graphite but are not proximal to electromagnetic conductors. In addition, the Hole 216 sample contains 5 percent siderite beds, suggesting that it lies on the western extension of the chemical sedimentary horizon (mainly chert; Plan 1) that was intersected on Lesueur in Phase I.

The greywacke of Hole 218 in the south contains, in addition to 0.3 percent pyrite, traces of both galena and sphalerite. These minerals are very fine-grained, suggesting a syngenetic origin. Sphalerite is also present in the younger ultramafic dyke that cuts the greywacke here. Interestingly, the mineralization is located near a small rhyolite dome that was outlined in Phase I, enhancing the potential for volcanogenic massive sulphides, and is also beside an 800 m long HEM conductor that may not have been previously tested by diamond drilling. However, several of the Phase I reverse circulation drill holes were located down-ice from the conductor and did not yield any till anomalies suggestive of base metal massive sulphide mineralization. Possibly the conductive horizon is blind to detection in

the till (see Section 5.1.3). Alternatively, the mineralization observed in the greywacke of Hole 218 may be epigenetic, as the greywacke is strongly shear-laminated and bleached and contains 8 percent Fe/Mg carbonate. In the upcoming description of the ultramafic dykes, it is shown that the dyke-hosted sphalerite is definitely epigenetic but is related to a younger structural event than the one that caused major deformation of the greywacke.

The two strongly sheared samples from Holes 209 and 215 on the Lesueur Fault warrant detailed description. The Hole 209 sample is a fine-grained greywacke, and the shearing is manifested by: 1) a strong schistosity with closely spaced (0.1 to 0.5 mm), bleached chloritic shear partings; 2) the development of 5 percent sericite, 5 percent bright green fuchsite, 20 percent Fe/Mg carbonate and 0.3 percent tourmaline; and 3) the presence of 40 percent shear-parallel quartz veins that are brecciated and infilled with 10 percent Fe/Mg carbonate. The Hole 215 sample, as previously noted, is a coarse-grained greywacke. The shearing here is manifested by: 1) bleached chloritic shear laminations that wrap around the sand grains; 2) replacement of part of the chlorite by a grey-green tabular mineral that is probably chloritoid; 3) strong silicification resulting in complete replacement of many of the sand grains by blue (strained) to colourless chert; and 4) the development of 8 percent Fe/Mg carbonate and a trace of fuchsite. Unlike the turbidites along the same fault in the Phase I drill area on Lesueur, the Lesueur West samples are not enriched in pyrite and do not contain visible arsenopyrite.

The gabbro (Map Unit 7) of Holes 213 and 214, like the sill on Lesperance, has a Jensen composition equivalent to tholeiltic basalt (Fig. 14). It is a dark green rock in which all pyroxene has been chloritized. The chlorite: plagioclase ratio is about 1.5 to 1. The grain size of both minerals has been reduced by shear-related shredding. More competent quartz and leucoxene grains up to 1.5 mm in size have survived. They occur at concentrations of 2 to 5 percent, and most of the quartz is blue (i.e. strained).

The unmetamorphosed ultramafic dykes (Map Unit 9) found in the turbidites at Holes 211, 217 and 218 are strongly chilled, porphyrytic rocks containing 15 to 50 percent rounded olivine phenocrysts of 0.2 to 2 mm size and 1 to 5 percent phlogopite book phenocrysts of slightly smaller size. Rare ilmenite phenocrysts are also present in two of the samples. The groundmass generally has a grain size of

0.05 to 0.15 mm but locally contains aphanitic flow bands. It is very calcareous, consisting of 30 to 50 percent igneous calcite, 40 to 50 percent phlogopite, 10 to 20 percent olivine and a trace of pyrite. All of the olivine has been altered to serpentine but without exsolution of magnetite; thus the olivine was probably forsterite (Mg2SiO4) and the rock is not magnetic. The abundance of serpentine and calcite results in a soft, clay-like rock that is very susceptible to weathering. In Hole 118, the cores of serpentinized olivine phenocrysts proximal to minor, slickensided slips are vuggy and partly infilled by calcite and sphalerite with a trace of galena. The mineralization is obviously epigenetic, and the slips that control it are obviously younger than the major pre-dyke shear zone in the enclosing greywacke. In any event the dyke mineralization, like that in the greywacke, could be a clue to syngenetic massive sulphide mineralization along the nearby HEM conductor.

The dykes have a Jensen composition equivalent to basaltic komatiite (Fig. 14) but this comparison is not very meaningful as the dykes contain igneous calcite and basaltic komatiite contains plagioclase. Their compositions and textures are highly suggestive of kimberlite. Pyrope — the diagnostic purple garnet that normally forms sparse phenocrysts in kimberlite — was not observed in the raw rock chips or in special heavy mineral fractions that were prepared by crushing and concentrating the bedrock samples (Appendix I). The exotic xenoliths that typify kimberlite also appear to be absent, although a few small scale plates of turbidites were observed in the Hole 118 sample, but this may be due to the small dyke rather than pipe style of emplacement. Alternatively the dyke rock may be ultramafic lamprophyre rather than kimberlite. In any event the dykes, although calcareous like carbonatite, are much younger than the metamorphosed carbonatite of the differentiated Lac Shortt Stock.

Geochemically, the Lesueur West bedrock samples contain only normal background levels of Cu (maximum 118 ppm) but are locally anomalous in the other analyzed metals. The greywacke portion of the Hole 218 sample which contains traces of sphalerite and galena, assayed only 181 ppm Zn whereas the ultramafic dyke portion with 0.5 percent sphalerite assayed 4375 ppm Zn and 1.1 ppm Ag; Pb was not analyzed. The highest arsenic value is 366 ppm from sheared greywacke in

Hole 209 on the Lesueur Fault. Arsenopyrite was not observed here but is abundant on the same fault on the Lesueur property to the east. Also, six other turbidite samples with no visible arsenopyrite on Lesueur West gave elevated arsenic assays (20 to 79 ppb) and several Phase I samples on Lesueur gave similar results. Using a gold anomaly threshold value of 10 ppm, the only anomaly is 78 ppb in the gabbro of Hole 213. This gabbro is only moderately sheared and the gold anomaly does not appear to be significant. The highly sheared samples of Holes 209 and 215 along the Lesueur Fault are not anomalous in gold, probably because they lack the pyrite and arsenopyrite that hosts the gold in this fault on the Lesueur property to the east (Graham et al., 1988).

4.2.4 Bedrock Geology and Geochemistry of the Lesueur North Drill Area

The Lesueur North drill area is centred on the Lac Shortt Fault, which at this location forms the contact between the quartz diorite border phase of the Opawica Pluton on the south and andesite and intermediate tuff of the Chibougamau-Matagami Domain on the north (Plan 1). The andesite and tuff appear to strike parallel to the fault. They are not contact-metamorphosed like their counterparts along the south side of the pluton, indicating that most of the movement along the fault post-dates emplacement of the pluton.

In addition to forming a major lithologic contact, the Lac Shortt Fault on Lesueur North is marked by strong deformation and alteration (Plan 1). It also coincides with the western extension of a 20 m deep, linear bedrock valley (Plan 2) that was identified in the Phase I drill area on Boyvinet. An apparent dextral offset in the fault and the valley between Holes 221 and 222 suggests that a younger cross fault is present in this area. If the cross-fault strikes north-south as depicted on Plan 1, it could also explain an apparent irregularity in the southern contact of the Opawica Pluton that was identified in the Phase I drilling on Boyvinet. This irregularity was originally interpreted (Graham et al., 1988) to be an embayment caused by east-west shearing.

The northwestern quartz diorite border phase of the Opawica Pluton (Map Unit 8c) was intersected in seven of the Lesueur North drill holes. The quartz

diorite here is a strongly chilled, feldspar-porphyrytic, sodic (almost alkaline, Fig. 15; equivalent to calc-alkalic andesite on the Jensen diagram, Fig. 16), hornblende and magnetite bearing rock similar to the Phase II samples from Boyvinet previously described in Section 4.2.1. Co-magnatic (autogenous) xenoliths of quartz diorite glass up to 10 mm in diameter -- often with visible hornblende and magnetite -- are very common, constituting 1 to 10 percent of most samples. The samples from Holes 220 and 222 near the Lac Shortt Fault, like the sheared syenite samples on Boyvinet, are characterized by strong brittle microbrecciation and mylonitization, by carbonatization and brick red hematite staining, and by replacement of most of the original magnetite by specular hematite and pyrite. The carbonate alteration mineral is calcite rather than Fe/Mg carbonate.

The southern diorite rim (Map Unit 8b) of the Opawica Pluton was intersected in Hole 233. The diorite is texturally, mineralogically and chemically similar to the quartz diorite but contains more hornblende (35 percent versus 10 percent) and less quartz (5 percent versus 10 to 20 percent), resulting in a Jensen composition (Fig. 16) equivalent to calc-alkalic basalt rather than andesite.

Andesite (Map Unit 2a) was intersected in five drill holes. It is almost identical to the quartz diorite in the following respects:

- 1. Both rocks are either green or stained pink;
- 2. Both are feldspar-porphyrytic;
- 3. Both have a strongly chilled groundmass with a grain size generally finer than 0.15 mm and often less than 0.05 mm;
- 4. Both may contain small xenoliths (less than 10 mm diameter);
- 5. Both contain about 10 percent quartz, 70 percent albitic plagioclase and 10 to 20 percent (rarely 30 percent) mafic minerals.
- 6. Both fall in the calc-alkalic andesite field on the Jensen diagram (Fig. 16, 17).

Figure 15 - Alkalies - Silica Plot for Opawica Pluton, Lesueur North

Figure 16 - Jensen Cation Plot for Opawica Pluton, Lesueur North

Figure 17 - Jensen Cation Plot for Volcanic Rocks and Tuff, Lesueur North

In fact the two rocks are so similar that, as observed in our Phase I report, several outcrops within the quartz diorite area on western Boyvinet are incorrectly shown as andesite and dacite on the MERQ compilation. However, with careful binocular logging and further examination of the whole rock analyses the two lithologies can be differentiated as they display the following subtle differences:

- 1. The plagioclase phenocrysts in the andesite are generally larger (mostly 1 to 3 mm) than those in the quartz diorite (typically 0.5 to 1.5 mm);
- 2. The phenocrysts in the quartz diorite are often markedly euhedral; those in the andesite are always subhedral;
- 3. The quartz diorite always contains magnetite or locally ilmenite, usually at concentrations of less than 1 percent, regardless of the intensity of shearing or alteration. The andesite never contains these oxides but locally contains leucoxene;
- 4. Except where its mafic minerals have been leached out due to shearing, the quartz diorite contains hornblende (or chlorite that pseudomorphs hornblende). Andesite contains only chlorite, and this chlorite is derived from pyroxene rather than hornblende;
- 5. All xenoliths in the quartz diorite are of grey-white, co-magmatic glass that often contains visible hornblende and magnetite. They resist shearing and are therefore equant. The xenoliths in the andesite consist mainly of blue-white chert that was probably rafted from hyaloclastic zones at the top of the next underlying flow. They are often elongated parallel to the shear foliation. Larger-scale (coarser than chip size), xenolith-like glass zones are also present in the andesite samples from Holes 226 and 232. These are microamygdaloidal and probably represent pillow selvages;
- 6. Shear deformation in the quartz diorite is manifested as brittle microbrecciation and mylonitization. Deformation of the andesite is by

ductile shearing, producing a schistosity and lineation, except in the competent pillow selvages which are brecciated by brittle shearing;

- 7. Red hematite staining associated with the brittle shearing may permeate the entire quartz diorite but in the andesite is confined to the pillow selvages;
- 8. The groundmass of the quartz diorite often contains epidote. This mineral does not occur in the groundmass of the andesite;
- 9. The quartz diorite is more alkalic (Fig. 15) than the andesite (Fig. 18).

As in the quartz diorite, the carbonate alteration mineral in the andesite is calcite. The only other alteration mineral of interest is a trace of fuchsite in the sample from Hole 230 on the Lac Shortt Fault.

Intermediate tuff (Map Unit 3) was intersected in the remaining three holes on Lesueur North, defining a horizon that lies on strike with an HEM conductor located between Lesueur North and Boyvinet, and with the siderite-pyrite iron formation intersected in Hole 80 of the Phase I drilling on Boyvinet (Plan I). All three samples are of lithic ash tuff, and almost all of the lithic fragments are of aphanitic intermediate volcanics. Plagioclase and quartz crystals are not present; the only other component of the tuff is about 10 percent chlorite. The lithic fragments are of mixed fine to coarse ash sizes (0.1 to 1 mm) with sparse very coarse ash (1 to 2 mm), and in Hole 227 a few lapilli (2 to 4 mm). Bedding was not observed. All of the samples have a weakly to moderately developed ductile shear foliation and lineation, are little altered, and contain less than 0.05 percent pyrite. They have a Jensen composition equivalent to calc-alkalic andesite (Fig. 17).

Geochemically, the Lesueur North bedrock samples contain only background levels of Cu, Zn, Ag, As and Au (maximum values of 74 ppm, 74 ppm, 0.2 ppm, 4 ppm and 5 ppb, respectively). The uniformly low gold values are surprising considering the very strong shear deformation and alteration observed in Holes 220 and 222 along the Lac Shortt Fault, and the high gold values found along the fault to the east in the Phase I drilling on Boyvinet.

Figure 18 - Alkalies-Silica Plot for Andesite, Lesueur North

OVERBURDEN GEOLOGY

5.1 Quaternary Geology of the Drill Areas

A discussion of the Quaternary history and stratigraphy of the Abitibi region can be found along with complete Quaternary unit descriptions in ODM's Phase I report.

All of the Quaternary units intersected in the Phase I program were intersected in the Phase II program as well. They include Illinoian-age Lower Till (deposited by ice advancing at 210 to 240 degrees), the Sangamon to Early Wisconsinan-age Missinaibi Formation, Late Wisconsinan-age Chibougamau Till (deposited by ice advancing at 210 to 220 degrees) and Ojibway II sediments, and Holocene-age organic material. Deposits pre-dating the Late Wisconsinan are preserved in all four drill areas in bedrock depressions (Plan 2) where they were protected from erosion during the Wisconsinan glaciation. Elsewhere the bedrock is generally overlain by Chibougamau Till. This till is widespread, is in most cases of predominantly local provenance, and has a good average thickness. Thus it generally provides very good to excellent geochemical exploration coverage. This is not the case in Lesueur West, however, due to masking of the bedrock by subtill Missinaibi interglacial gravel (Plan 2). Ojibway II glaciofluvial sediments overlie and locally supplant the till along the Kruger Road Esker and in numerous De Geer moraines. The till and glaciofluvial sediments are in turn overlain by Ojibway II glaciolacustrine sediments. A veneer of Holocene organics frequently overlies the Pleistocene units, but was generally washed away while collaring the drill holes.

The intersected units are shown in section on Figures 19 to 22 (in pocket). The following sections describe in more detail the Quaternary geology of the four Phase II drill areas.

5

5.1.1 Quaternary Geology of the Boyvinet Drill Area

In the Boyvinet Phase II drill area (Fig. 19), deposits older than Late Wisconsinan are restricted to Lower Till intersections overlain by Missinaibi Formation clay in Holes 166 and 169 immediately north and south of the northeastern syenite ridge, respectively. Both Lower Till (Unit 2) intersections are approximately 6.5 m thick and consist of pebble to boulder-sized clasts in a fine sand-silt rock flour matrix. Clast composition in the Hole 166 intersection changes downward from 50:50 volcanics and sediments versus granitoids to 20:80, indicating that the underlying Opawica Pluton is well represented in the basal samples. The overlying Missinaibi Formation clay sections (Subunit 3c) are both less than 5 m thick and consist of dark grey, very compact, varved clay and silt. The Hole 169 occurrence is adjacent to an 11.6 m thick clay intersection in Hole 107 of Phase I.

Chibougamau Till was intersected in 29 of the 31 drill holes. It directly overlies bedrock in 26 holes, was the lowest unit intersected in one abandoned hole (No. 163) and overlies the Missinaibi Formation clay intersections in Holes 166 and 169. The thickness of the till ranges from less than 0.5 m (in three holes) to 22 m (in Hole 164). As in Phase I, the till has a good rock flour matrix and its clast composition strongly reflects the underlying Opawica Pluton. The matrix has a red granitoid tone when observed under good lighting (on the shaking table) compared to the grey tone of common tills derived from volcanic rocks.

Ojibway II glaciofluvial intersections occur in only one hole (No. 180) adjacent to a similar intersection in Phase I Hole 118. These two intersections represent a De Geer moraine. The moraine completely supplants the Chibougamau Till horizon at Hole 180, producing a blind spot in the geochemical exploration coverage. Typical glaciolacustrine sediments — fine to medium, grey-beige, ice-proximal sand (Subunit 5b) and grey, ice-distal clay-silt (Subunit 5c) — were intersected in 20 and 28 of the 31 holes, respectively. Both subunits tend to moderate the surface topography — the thinner sand member (average 4 m thick) to a lesser extent than the clay-silt member (average 9 m thick). In Hole 150 on the toe of the northwestern syenite ridge, the clay-silt member directly overlies bedrock.

5.1.2 Quaternary Geology of the Lesperance Drill Area

On Lesperance (Fig. 20), Lower Till and overlying Missinaibi Formation sediments were intersected in three holes (Nos. 184, 187 and 188) in the bedrock valley on the peninsula (Plan 2). The Lower Till sections are Abitibi-typical, having an average thickness of 4.4 m and containing abundant locally derived bedrock material. The Missinaibi Formation intersections include a 3.2 m thick section of Sangamon fluvial interglacial gravel and fine beige sand (Subunit 3a) in Hole 184 and two thin (1 to 2 m) sections of dark grey, very compact Ojibway I glaciolacustrine clay-silt (Subunit 3c) in Holes 187 and 188. On mainland Lesperance, no deposits older than Late Wisconsinan are preserved because the bedrock topography is more subdued and the overburden is thinner.

Chibougamau Till was intersected in all eight of the peninsula holes and in twelve of the eighteen mainland holes. Its thickness ranges from less than 0.5 m in some holes on the mainland to 37.2 m in Hole 185 on the peninsula, and averages approximately 5 m on the mainland and 20 m on the peninsula. The till matrix is grey to grey-beige rock flour, with occasional gritty grey, reworked Ojibway I clay. Clasts in the till are pebble to boulder sized, and vary in composition from 50:50 to 60:40 volcanics and sediments versus granitoids. The till composition is typical of the Project Lac Shortt area, and the predominance of locally derived volcanosedimentary material makes the till a good sampling medium.

Ojibway II sediments (Unit 5) include thirteen intersections of De Geer moraine sand and gravel (Subunit 5a) averaging 5 m in thickness. One thick moraine forms the prominent ridge at the tip of the peninsula. Two thinner moraines on the mainland display no surface topography but completely supplant Chibougamau Till in five holes. Glaciolacustrine sand (Subunit 5b) and/or clay-silt (Subunit 5c) were intersected in all twenty-six of the Lesperance drill holes, directly overlying bedrock in one of the mainland holes (No. 189).

5.1.3 Quaternary Geology of the Lesueur West Drill Area

On Lesueur West (Fig. 21), seven of the eleven drill holes intersected Sangamon fluvial interglacial sand and gravel (Missinaibi Formation Subunit 3a) directly overlying bedrock. Only two of these intersections — in Holes 210 and 216 — are capped by Ojibway I glaciolacustrine clay (Subunit 3c). The interglacial sediments are preserved along a bedrock slope with a generally northwest aspect, and appear to be contiguous with five Phase I intersections along the same bedrock slope. Their presence precludes representation of the underlying bedrock geology — including part of the HEM zone that may be mineralized with Pb-Zn — in the Chibougamau Till, although this till was intersected in all but one of the drill holes. The lower part of four of the till intersections has a clay-rich matrix indicative of recycling of Ojibway I clay; thus the clay horizon was initially more extensive than is suggested by the in situ clay intersections of Holes 210 and 216, and was only removed in the waning stages of the Wisconsinan glaciation.

Ojibway II glaciofluvial sediments were intersected in seven Lesueur West drill holes. All of the intersections are associated with the Kruger Road Esker, the full thickness of which is displayed in section at Hole 212 where it attains 35.7 m. Glaciolacustrine sand was intersected in all of the holes except No. 212, and claysilt is ubiquitous. Both the sand and clay-silt horizons are thin, however.

5.1.4 Quaternary Geology of the Lesueur North Drill Area

On Lesueur North (Fig. 22) a Sangamon interglacial gravel section in Hole 229 is the only pre-Wisconsinan unit encountered. The gravel rests on bedrock in the valley along the Lac Shortt Fault. Chibougamau Till was intersected in fourteen of the sixteen drill holes, and is typically thin (1 to 4 m) except in Hole 221 where it infills the fault valley and attains a thickness of 13.6 m. The till here is similar to the Lesueur Phase I till, and thus is an excellent sampling medium.

Ojibway II glaciofluvial sediments were intersected in five Lesueur North drill holes, and generally occupy depressions in the underlying till surface. The presence of these intersections north of the Kruger Road Esker, and primarily in low areas, indicates that the sediments were deposited by distributary spillage off the main esker channel. Thin (average 4 m) sections of glaciolacustrine fine to medium, grey-beige sand were intersected in nine of the sixteen holes, and thicker (average 8 m) sections of grey clay-silt were intersected in all of the holes. All of the Ojibway II sediments tend to moderate the underlying topography to the extent that the drill area is essentially flat.

6. OVERBURDEN GEOCHEMISTRY

6.1 Regional Gold and Base Metal Background and Anomaly Threshold Levels

The interpretation of the heavy mineral gold geochemistry of overburden samples is an involved process. In summary, the gold background of tills is caused mainly by grains of visible gold and these gold grains are so thinly scattered through the till and are of such a wide size range that it is impossible to obtain either a representative number of grains ("particle sparsity effect") or a representative gold assay ("nugget effect"; Table 5) from a sample of reasonable size. In contrast, gold dispersal trains down-ice from known ore bodies have a large concentration of gold grains of a narrow size range such that both representative gold grain counts and gold assays can be obtained. experience, we have established a dispersal train threshold of 10 grains of visible gold for the 8 kg samples that are normally collected on reverse circulation drills. Recognizing that not all gold grains are observed during processing and that gold can be occluded in sulphides or other heavy minerals rather than occurring as free gold grains, we also investigate any anomalies over a second, 1000 ppb threshold. The 1000 ppb value is based on the observation that heavy mineral concentrates from most gold dispersal trains have a gold content similar to that of the source mineralization; thus 1000 ppb in the till is suggestive of highly anomalous bedrock and values over 3,000 ppb are suggestive of ore-grade mineralization. Significant anomalies, in addition to being caused by more than 10 gold grains of a similar size

or by occluded gold, also generally display vertical stratigraphic continuity within the host till horizon and may have an associated pathfinder metal, particularly arsenic or copper. Delicate or irregular gold grains are also significant as they normally indicate a proximal source (Fig. 8).

The base metal background of a heavy mineral concentrate, and particularly of our high-density methylene iodide concentrates, is higher than that of a raw till sample, ranging up to several hundred ppm, because base metals tend to substitute to a significant extent for other metal ions in the structures of heavy silicate and sulphide minerals such as pyroxene and pyrite. The established anomaly threshold level for Cu and Zn, indicating the presence of ore-type minerals such as chalcopyrite and sphalerite in potentially economic concentrations, is 800 ppm. Because till concentrates from dispersal train samples tend to grade the same as the bedrock source mineralization, massive sulphide deposits which typically grade 50,000 ppm (5 percent) combined Cu-Zn often produce anomalies over 10,000 ppm in each metal. The same deposits average 35 ppm (1 ounce/ton) silver, and the silver anomaly threshold corresponding to 800 ppm Cu or Zn is about 2 ppm. Arsenic does not have a well-defined anomaly threshold because arsenic deposits are not in themselves of economic interest. However, arsenic is a very important gold pathfinder. Arsenic values in excess of 800 ppm are normal in till concentrates obtained from dispersal trains down-ice from known gold deposits that contain arsenopyrite but lower values can be significant, especially if the sampling sites are too widely spaced to guarantee sampling of the higher grade core portions of the train. Similarly, Cu and Zn values lower than 800 ppm that would not be of interest in base metal exploration can be significant as indicators of gold mineralization.

Significant Cu, Zn, Ag and As anomalies, like significant gold anomalies, normally display vertical continuity in the host till and have a pathfinder association. In the case of copper and zinc, the presence of grains of banded massive pyrite-chalcopyrite-sphalerite mineralization in the concentrate is a favourable indicator whereas the presence of only coarse crystalline vein-type chalcopyrite or sphalerite is unfavourable unless gold is also present.

6.2.1

Heavy Mineral Gold Anomalies

Of the 431 Lac Shortt heavy mineral concentrates, 18 exceeded our first anomaly thresheld of ten or more grains of visible gold, and 15 of these as well as 20 others exceeded our second anomaly threshold of a measured or calculated gold assay over 1000 ppb. Thus a total of 38 samples (9 percent of the samples collected) met or exceeded one or both of our anomaly thresholds. The 38 anomalies occur in 28 holes that encompass all the drill areas but are concentrated in the Boyvinet followup drill area as are the Phase I anomalies (Plan 3). The anomalies occur in all of the sampled media; one occurs in Lower Till, two occur in Missinaibi fluvial interglacial sediments, thirty-three occur in Chibougamau Till, and two occur in Ojibway II sediments.

In the Abitibi region, on average, 10 percent of samples that contain only background levels of gold yield anomalous assays or visible gold grain counts due to:

- The chance occurrence of one or two coarse gold grains in the sample (nugget effect); or
- 2. The chance clustering of 10 or more fine gold grains in the sample (particle sparsity effect).

The 10 percent Abitibi background noise is entirely attributable to the sampling procedure (i.e. samples are too small to give representative gold grain counts and gold assays). It increases to 15 to 50 percent in the south due to the cumulative effect of glaciating a vast expanse of volcanic terrane that contains a plethora of minor gold occurrences. The fact that only 9 percent of the Minnova Phase II samples are anomalous is surprising because 24 percent of the samples were collected from the fill-in holes on Boyvinet. In Phase I, for example, the very positive results obtained from this area raised the overall anomaly average for the program to 20 percent. This discrepancy was noted at the mid-point of the Phase II drilling program because the Boyvinet holes were drilled first and the samples were

processed immediately. In seeking an explanation, it was observed that Bradley Brothers, who performed the Phase II drilling, used more water and often generated less sample than Heath and Sherwood, who performed the Phase I drilling. If Bradley was preferentially washing the finest portion of the till matrix away from the drill bit, major gold losses would be expected because most of the gold on Boyvinet occurs in the silt and very fine sand sizes (Graham et al., 1988). Bradley was immediately ordered to modify its drilling procedures (correspondence from S. Averill dated February 13, 1989), and ODM performed a series of sieve tests to check for grain size difference between Bradley and Heath & Sherwood samples from adjacent drill holes. However, these tests showed very conclusively that there are no significant differences between samples (Fig. 23). Thus the generally low gold content of the Phase II fill-in holes on Boyvinet appears to be valid. By extension, the anomalies in the Phase I reconnaissance holes in the same area must represent dispersion from widely separated mineral occurrences of small stature, not mass dispersion from a broadly mineralized structure as interpreted in our Phase I report (Graham et al., 1988). Finally, the low overall frequency of anomalies in the four Phase II drill areas suggests in itself that most of the anomalies represent background noise and therefore are not significant.

Heavy mineral arsenic, copper and zinc values over 400 ppm and silver values over 1.0 ppm occurring in association with heavy mineral gold anomalies will be mentioned in the forthcoming discussion of the gold anomalies. The overburden arsenic geochemistry is generally low, as was observed in the Phase I drill areas; most assays are less than 100 ppm. Low arsenic encountered in the Lesueur West drill area, despite the elevated arsenic content of the underlying turbidites, reinforces the observation that the overburden geochemistry here is unrepresentative due to the presence of the Missinaibi Formation between the Chibougamau Till horizon and bedrock. The only Phase II area that consistently produced elevated overburden arsenic is the extreme northeast corner of the Lesperance peninsula. This arsenic dispersion is not associated with gold. Its significance will be discussed in detail in Section 6.2. Silver assays are also generally low, but are sympathetic to gold assays in some of the Boyvinet and

Figure 23 - Comparative Grain Size Distributions for 1988 (Heath & Sherwood) and 1989 (Bradley Brothers) Till Samples, Boyvinet

Lesperance concentrates. Copper and zinc assays are more consistently low than are arsenic and silver, despite the apparently favourable base metal environment of Lesperance, and are rarely sympathetic to gold.

A systematic, three-stage screening process has been applied to each of the 38 heavy mineral gold anomalies (Fig. 24; Table 8) with the objective of eliminating high background noise and isolating any dispersal train anomalies that may be present. In summary, the screening is used to determine the cause of each anomaly, and those anomalies that are caused by background noise are rejected.

The simplest stage in the screening -- and therefore the first one applied -- is to downgrade anomalies which have no vertical stratigraphic continuity; however, these anomalies are not completely eliminated until their cause is determined. An anomaly at the base of a till horizon or in a one-sample thick till horizon is automatically assumed to have vertical stratigraphic continuity even though it generally does not. A lack of vertical stratigraphic continuity is displayed by a single, isolated anomalous sample within or at the top of a multi-sample till horizon or at any level in a sand or gravel horizon. A gold anomaly with no vertical stratigraphic continuity is generally caused by either the nugget effect or the cluster (particle sparsity) effect. These nugget or cluster anomalies sometimes occur in consecutive samples in a drill hole and occasionally they are contiguous with a gold anomaly of another type; we refer to this as "chance" continuity and treat the anomalies as if they had no vertical continuity. To have true vertical continuity, contiguous anomalies must have in common at least one property of a dispersal train anomaly such as delicate gold grains, occluded gold or a pathfinder association. Of the thirty-eight anomalies, four have no vertical stratigraphic continuity by definition because they occur in either Ojibway II or Missinaibi sediments and twenty-one till-hosted anomalies also have no vertical stratigraphic continuity. Of the remaining seventeen till-hosted anomalies, four have vertical continuity and thirteen have basal continuity. Whether the continuity of these anomalies occurs by chance or not will become apparent during the subsequent screening stages.

Figure 24 - Flow Diagram for Three-Stage Screening of Heavy Mineral Gold Anomalies

Hole No.		iold Anon Sample No.	nalies Au Assa Meas.	y (ppb) Calc.	Grains V.G. (*Not Panned)	Ist Stage Screening (Strat. Cont.)	2nd Stage Screening (Meas. Assay: Calc. Assay)	3rd Stage Screening (Nugget Effect)	Remarks	Anomaly Class
PLS-89	151	06	4,340	2,051	20	Basal	High (slightly)	Limited	Pulp and metallics assay; mostly coarse gold detected. 2 abraded, 5 irregular and 13 delicate gold grains observed initially. 48% of calc. assay contributed by one gold grain. Check panned 1/4 conc.; found two grains for calc. assay = 55 ppb Au. INA 1/4 conc. check assay = 504 ppb Au.	Potentially Significant
	162	01	1,133	754	6	Basal	Good	Inferred	5 abraded and 1 irregular gold grains. 90% of calc. assay contributed by one nugget.	Nugget
	167	03	1,209	319	10	No	High	Inferred	6 abraded, 3 irregular and 1 delicate gold grain originally sighted. Check panned 1/4 conc.; found 3 abraded gold grains, 2% pyrite. 1/4 conc. calc. assay = 267 ppb. INA 1/4 conc. check assay = 839 ppb Au.	Nugget/ Cluster
	168	10	1,154	265	7	No	High	Inferred	2 abraded and 5 irregular gold grains originally sighted. Check panned 1/4 conc.; found I abraded and I irregular gold grain and 2% pyrite. 1/4 conc. calc. assay = 80 ppb. INA 1/4 conc. check assay = 260 ppb Au.	Nugget
		07	2,081	468	2	Basal	High	Inferred	2 irregular gold grains originally sighted. Check panned 1/4 conc.; found no V.G., est. 5% pyrite. INA 1/4 conc. check assay = 78 ppb Au.	Nugget
	169	03	6,653	2,333	3	No	High	Inferred	Pulp and metallics assay not requested. 2 abraded and I delicate gold grain. 99% of calc. assay contributed by one nugget. Check panned 1/4 conc.; found no V.G., 7% pyrite. INA 1/4 conc. assay = 714 ppb.	Nugget

Table 8 - Heavy Mineral Gold Anomaly Screening

	Gold Anomalies			Grains V.G.	Ist Stage Screening	2nd Stage Screening	3rd Stage Screening			
Hole No.	Sar	mple No.	Au Assa Meas.	y (ppb) Calc.	(*Not Panned)	(Strat. Cont.)	(Meas. Assay: Calc. Assay)	(Nugget Effect)	Remarks	Anomaly Class
PLS-89- I	169 (09	2,370	1,787	5	Basal (Lower Till)	Good	Observed/ Inferred	Pulp and metallics assay, mostly coarse gold detected. I abraded, 3 irregular and I delicate gold grain sighted, est. 15% pyrite. 77% of calc. assay contributed by one gold grain.	Nugget
1	170 (01	10,515	51	l	Basal	High	No	One irregular gold grain observed initially. Pathfinder Ag = 4.2 ppm. Check panned 1/4 conc.; found 1 abraded gold grain, 50% pyrite. 1/4 conc. calc. assay = 113 ppb. INA 1/4 conc. check assay = 9,030 ppb Au.	Potentially Significant
1	71 (02	1,225	37	8	Vertical	High	No	5 irregular and 3 delicate gold grains originally sighted. Check panned 1/4 conc.; found 7 grains, estimate 5% pyrite. 1/4 conc. calc. assay = 188 ppb. INA 1/4 conc. check assay = 1,030 ppb Au.	Potentially Significant
	(03	1,329	46	2	Vertical	High	No	Two irregular gold grains sighted. Check panned 1/4 conc.; found I irregular gold grain, estimate 5% pyrite. 1/4 conc. calc. assay = 1,247 ppb. INA 1/4 conc. check assay = 2,770 ppb Au.	Potentially Significant
	(04	14,420	690	10	Vertical	High	No	2 abraded, 4 irregular and 4 delicate gold grains originally sighted. Pathfinder Ag = 7.4 ppm. Check panned 1/4 conc.; found 6 grains, estimate 10% pyrite. 1/4 conc. calc. assay = 307 ppb. INA 1/4 conc. check assay = 5,230 ppb Au.	Potentially Significant
	(05	18,321	871	55	Vertical, Basal	High	No	5 irregular and 50 delicate gold grains initially observed. Pathfinder Ag = 7.1 ppm. Check panned 1/4 conc.; found 18 gold grains, estimate 30% pyrite. 1/4 conc. calc. assay = 2,450 ppb. INA 1/4 conc. check assay = 15,300 ppb Au.	Potentially Significant

Table 8 - Heavy Mineral Gold Anomaly Screening (cont'd)

	Gold An	omalies		Grains V.G.	Ist Stage Screening	2nd Stage Screening	Screening Screening		
Hole No.	Sample No.		Calc.	(*Not Panned)	(Strat.	(Meas. Assay:		Remarks	Anomaly Class
PLS-89- 17	2 01	369	160	10	No (Ojib. II sand)	High (slightly)	No	2 abraded, 1 irregular and 7 delicate gold grains.	Cluster
17	4 01	1,070	1,107	12	Basal	Good	Limited	Pulp and metallics assay; mostly fine gold detected. 9 abraded and 3 irregular gold grains observed initially. 58% of calc. assay contributed by two nuggets.	Cluster/ Nugget
17	5 03	530	1,591	7	No	Low	Observed	Pulp and metallics assay; mostly coarse gold detected. 4 abraded, 2 irregular and 1 delicate gold grain initially observed. 97% of calc. assay contributed by two nuggets. Check panned 1/4 conc.; found 3 abraded grains including the larger of the two nuggets observed initially.	Nugget
	05	1,310	1,412	5	No	Good	Observed	Pulp and metallics assay; mostly coarse gold detected. 3 abraded, 1 irregular and 1 delicate gold grain observed initially. 96% of calc. assay contributed by one nugget.	Nugget
18	0 04	2,964	549	2	No (Ojibway II sand and gravel	High)	Inferred	I abraded and I delicate gold grain observed initially. Check panned 1/4 conc.; found no V.G. INA 1/4 conc. check assay = L16 ppb Au.	Nugget
18	2 05	1,564	413	1*	No	High	Inferred	Single irregular gold grain observed initially. Check panned 1/4 conc.; found no V.G. INA 1/4 conc. check assay = 47 ppb Au.	Nugget
18	3 05	1,962	NA	0*	Basal	High	No	Pathfinder Ag = 1.2 ppm. Check panned 1/4 conc.; found 2 abraded, 2 irregular and 2 delicate gold grains, est. 2% pyrite. 1/4 conc. calc. assay = 178 ppb Au, INA 1/4 conc. check assay = 1200 ppb Au.	Potentially Significant

Table 8 - Heavy Mineral Gold Anomaly Screening (cont'd)

Gold Anomalies			Grains V.G.	Ist Stage Screening	2nd Stage Screening	3rd Stage Screening			
	Sample No.	Au Assa Meas.	y (ppb) Calc.	(*Not Panned)	(Strat. Cont.)	(Meas. Assay: Calc. Assay)	(Nugget Effect)	Remarks	Anomaly Class
PLS-89- 185	16	2,084	329	5	No	High	Inferred	3 abraded and 2 delicate gold grains observed. Check panned 1/4 cnc.; found one abraded grain; calc. assay = 25 ppb Au. INA 1/4 conc. check assay = 1,020 ppb Au.	Potentially Significant
188	13	1,004	84	5	No	High	Inferred	4 abraded and I irregular gold grain observed initially. Check panned 1/4 conc.; found one abraded and one irregular gold grain, est. 30% pyrite. 1/4 conc. calc. assay = 71 ppb. INA 1/4 conc. check assay = 641 ppb Au.	Nugget
	15	4,580	719	1*	No	High	Inferred	1 abraded gold grain observed initially. Check panned 1/4 conc.; found no V.G. INA 1/4 conc. check assay = 490 ppb Au.	Nugget
191	01	1,299	49	5	Basal	High	Inferred	2 abraded and 3 irregular gold grains observed initially. Pathfinder Cu = 788 ppm. Check panned 1/4 conc.; found 2 abraded grains; calc. assay = 332 ppb Au. INA 1/4 conc. check assay = 1,060 ppb Au.	Potentially Significant
192	01	766	214	10	Basal	High	No	8 abraded and 2 irregular gold grains observed. Pathfinder Cu = 784 ppm, Ag = 1.3 ppm.	Cluster
194	07	1,160	2,393]*	Basal	Good	Observed	Pulp and metallics assay; mostly coarse gold detected. Single observed gold grain abraded.	Nugget
195	06	1,131	682	6	No	Good	Observed	All abraded gold. 83% of calculated assay contributed by one nugget.	Nugget
	10	450	1,417	2	No	Low	Observed	Pulp and metallics assay; neither fraction anomalous. Both observed gold grains abraded. Check panned 1/4 conc., found no V.G. Nugget lost in handling.	Nugget
196	02	1,038	89	[*	Basal	High	Inferred	Single abraded gold grain observed initially. Check panned 1/4 conc.; found one irregular grain; calc. assay = 45 ppb Au. INA 1/4 conc. check assay = 539 ppb Au.	Nugget

Table 8 - Heavy Mineral Gold Anomaly Screening (cont'd)

		ld Anor			Grains V.G.	Ist Stage Screening	2nd Stage Screening	3rd Stage Screening		
Hole No.	S	ample No.	Au Assa Meas.	y (ppb) Calc.	(*Not Panned)	(Strat. Cont.)	(Meas. Assay: Calc. Assay)	(Nugget Effect)	Remarks	Anomaly Class
PLS-89- I	197	06	5,650	7,788	[*	Basai	Good	Observed	Pulp and metallics assay; mostly coarse gold detected. Single observed gold grain abraded.	Nugget
2	208	07	1,420	1,407	1*	No	Good	Observed	Pulp and metallics assay; mostly coarse gold detected. Single observed gold grain abraded.	Nugget
2	209	06	1,288	773	. [*	No	Good	Observed	Single observed gold grain abraded.	Nugget
		10	388	278	13	No	Good	Observed	5 abraded, 7 irregular and 1 delicate gold grain. 42% of calc. assay contributed by one gold grain.	Cluster/ Nugget
2	217	03	1,270	903	1*	No	Good	Observed	Only observed gold grain abraded.	Nugget
2	221	05	3,200	4,143	3	No	Good	Observed	Pulp and metallics assay; mostly coarse gold detected. All observed gold is abraded. 83% of calc. assay contributed by two nuggets.	Nugget
		08	1,350	104	1*	No	High	Inferred	Only observed gold grain abraded. Check panned 1/4 conc.; found no V.G. Est. 3% pyrite. INA 1/4 conc. check assay = 40 ppb Au.	Nugget
2	229	07	5,289	123	[*	No (Missinaibi gravel)	High	Inferred	Initially observed gold grain abraded. Check panned 1/4 conc.; found no V.G., 7% pyrite, 20 grains arsenopyrite. INA 1/4 conc. check assay = 29 ppb Au.	Nugget
2	229A	06	1,050	522	3	No (Missinaibi gravel)	High (slightly)	Inferred	All abraded gold observed initially. Check panned 1/4 conc.; found no V.G., est. 2% pyrite. INA 1/4 conc. check assay = L5 ppb Au.	Nugget
2	230	04	260	1,673	3	No	Low	Observed	Pulp and metallics assay; neither fraction anomalous. Initially observed gold all abraded. 93% of calc. assay contributed by one nugget. Check panned 1/4 conc.; found originally sighted nugget.	Nugget

Table 8 - Heavy Mineral Gold Anomaly Screening (cont'd)

The second stage in the screening is used to evaluate anomalies occurring in samples where sufficient visible gold was observed to explain the measured (Bondar-Clegg) assays. In its simplest form, the calculated (predicted) visible gold assays are compared to the measured assays to eliminate those anomalies in which the 1,000 ppb threshold is no longer met after the contributions of one or two observed nuggets have been subtracted from the total assays. In a sample with observed nuggets and little or no fine visible gold, either a good correlation of the two assays or a low measured assay indicates that essentially all of the gold in the concentrate is in the nuggets and the anomaly is of no significance.

The correlation between a calculated and measured assay is "good" if the calculated assay is not more than twice as high as or 50 percent less than the measured assay; this allows for a doubling or halving of the normal thickness factor for flake gold particles used in the calculation. Of the thirty-eight anomalous samples, eleven with measured and/or calculated assays over 1000 ppb show good assay correlation. These eleven anomalies are from samples that yielded between one and twelve gold grains, of which no more than four are delicate and/or irregular in any one sample. All of these anomalies are in concentrates that would assay less than 1000 ppb if the contribution of one or two observed gold grains was subtracted from the concentrate assay. None of the anomalies have a pathfinder association. Six of the anomalies — all in Chibougamau Till — have no vertical stratigraphic continuity and thus were downgraded by first-stage screening. The other five — four occurring in Chibougamau Till and one in Lower Till — have chance basal continuity. None of the anomalies are significant.

A low measured assay for a concentrate with observed gold nuggets and a calculated assay over 1000 ppb indicates either nugget loss in handling or nugget retention in any of three places: 1) the ODM 1/4 library split; 2) the Bondar-Clegg base metal analytical split of the pulped 3/4 concentrate (normally 1 to 3 grams); 3) the Bondar-Clegg library split of the pulped 3/4 concentrate (also 1 to 3 grams). If little or no other gold is present in the concentrate, the measured assay for the 3/4 concentrate will be below the 1000 ppb anomaly threshold. Three of the thirty-eight anomalies gave low measured assays. Two to seven gold grains were

observed in each of the anomalous samples and in each case 58 to 96 percent of the calculated assay is caused by one or two abraded grains with a minimum intermediate dimension of 200 microns (i.e. nuggets). The 1/4 concentrates of the three samples were panned and two contained the nuggets observed in initial processing. The missing nugget in the third case must have been lost in handling as the 3/4 concentrate was submitted for pulp and metallics assay, during which all of the plus 150 mesh (100 microns) pulp is analyzed for gold. None of these three anomalies have a pathfinder association. All three occur in Chibougamau Till samples, but they all lack stratigraphic continuity and thus were downgraded by first stage screening. None of the anomalies are significant.

A variation of the second stage of screening pertains to anomalies possessing ten or more gold grains but lacking a calculated or measured assay over 1,000 ppb. The objective here is to eliminate anomalies caused solely by the erratic clustering of fine background gold grains in the till. Unless the multi-grain anomalies possess other properties of dispersal trains, they are generally not significant. This is especially true if the gold grains are abraded, as we have never succeeded in tracing abraded gold to a bedrock source. If, however, the gold grains are of delicate or irregular morphology and occur in stratigraphically contiguous samples, the subanomalous heavy mineral assays could simply indicate that the source has a low grade or narrow subcrop or that the samples were obtained from the margins of a dispersal train.

Of the thirty-eight anomalies, three are of the above weak, multi-grain type. These three anomalies are caused by between ten and thirteen very fine gold grains. Eight of the gold grains in two of the samples are delicate and/or irregular but other characteristics of dispersal train anomalies are lacking, including a pathfinder association and vertical stratigraphic continuity. The predominance of delicate/irregular gold grains in both of these anomalous samples is probably due to liberation of gold from auriferous clasts by either englacial crushing or drill bit milling. The third anomaly is characterized by abraded gold grains and is therefore a typical cluster anomaly, but has a chance basal continuity and a coincidental elevated copper and silver association. None of these three anomalies are significant.

The second-stage screening is very reliable because it is based on direct observation of the gold grains. This screening has effectively eliminated seventeen of the thirty-eight gold anomalies at the 100 percent confidence level. Eleven of these anomalies also have no stratigraphic continuity and thus were downgraded by the first-stage screening.

The third stage in the screening is used to determine the cause of anomalies occurring in samples for which the measured assays are over 1000 ppb and are too high to be accounted for by the gold grains, if any, observed during processing. High measured assays can be caused by any one of the following:

- 1. A nugget that was recovered but not sighted during processing;
- 2. A sighted nugget for which the actual thickness is greater than the assumed thickness (0.1 to 0.2 X diameter) used in the assay calculation;
- 3. The difference in weight between the total concentrate on which the calculation is based and the portion of 3/4 concentrate that is assayed (applies only to samples in which a nugget is present, as fine gold would be evenly distributed through the sample);
- 4. A large number of missed fine gold grains;
- 5. Gold chemically of physically held (occluded) in arsenopyrite or another heavy mineral.

Unsighted nuggets normally account for about 80 percent of unexpectedly high assays, the thickness and weight factors for 10 to 20 percent, and fine gold and occluded gold for less than 10 percent. Only the fine gold and occluded gold anomalies are significant.

The third-stage screening involves a mineralogical investigation of the archived 1/4 concentrate, principally by panning, to determine the probable cause of the high assay in the 3/4 concentrate. The 3/4 concentrate itself cannot be panned as it is pulped (ground in a shatter-box) and largely consumed (by acid digestion) during analysis unless the analysis is by the non-destructive instrumental neutron activation (INA) method.

An absence or minimal amount of fine visible gold in the 1/4 concentrate precludes the occurrence of fine gold in anomalous concentrations in the 3/4 analytical split, and such anomalies can be assumed to have been caused by a missed or unusually thick nugget or by occluded gold. We have encountered occluded gold mainly in samples that contain arsenopyrite; however there is a significant potential for occluded gold in samples that contain other pathfinder minerals or more than 10 percent pyrite. To determine whether occluded gold is actually present, the 1/4 concentrate is analyzed by the non-destructive INA method. Only if the 1/4 split assay duplicates the 3/4 split assay is the presence of occluded gold suggested. The third-stage screening is an indirect method as all checks are made on the 1/4 concentrate rather than on the 3/4 concentrate that was analyzed originally, but is essentially 100 percent reliable.

The twenty-one anomalies that could not be eliminated or enhanced by the second stage screening all had measured assays greater than 1000 ppb and more than twice as high as the corresponding calculated assays. These anomalies are thus amenable to third stage screening.

Five of these anomalies — in Samples 151-06 and 171-02, 03, 04 and 05 — were initially recognized as dispersal train type anomalies simply on the basis of their gold grain counts and stratigraphic continuity. They were nonetheless subjected to third stage screening to check for an occluded gold component in the high measured assays, and will be discussed in detail in section 6.2.1.

The remaining sixteen anomalies come from samples that yielded between zero and ten gold grains during initial processing. Calculated whole concentrate gold assays for those samples with observed gold grains range from 37 to 2333 ppb and measured 3/4 concentrate gold assays range from 1,004 ppb to 10,515 ppb. Check panning of the 1/4 concentrate of one of the anomalous samples - No. 183-05 -- yielded six grains of predominantly delicate/irregular gold (Appendix F) and this anomaly will be discussed in detail in section 6.2.1. The other fifteen 1/4 concentrates yielded between zero and three predominantly abraded gold grains; thus the 3/4 concentrate anomalies were not caused by dispersal train-type concentrations of visible gold. The INA assays (Appendix F) of twelve of these fifteen 1/4 concentrates are well below 1000 ppb and usually show good correlation with the 1/4 concentrate calculated visible gold assays (Table 9). By inference, the twelve high 3/4 concentrate measured assays must have been caused by unsighted nuggets, or by observed nuggets that were thicker than usual, or by analytical problems. None of the twelve anomalies have a pathfinder association. Nine of the twelve -- one occurring in Ojibway II sediments, six in Chibougamau Till and one in Missinaibi interglacial gravel -- have no vertical stratigraphic continuity and thus were downgraded by first stage screening. The other three occur in Chibougamau Till and have chance basal continuity. None of the twelve anomalies are significant. The 1/4 concentrate assays for the other three of the fifteen 170-01, 185-16, 191-01 -- duplicated anomalous samples -- Nos. concentrate assays, indicating that occluded gold is present. These three anomalies will be discussed in detail in Section 6.2.1.

In summary the second and third stage screening, both of which are essentially 100 percent reliable, have eliminated seventeen and twelve of the thirty-eight heavy mineral gold anomalies, respectively. First-stage screening had previously downgraded twenty of the twenty-nine eliminated anomalies. All twenty-nine of the eliminated gold anomalies are caused by background gold grains. The remaining nine anomalies either survived the screening or were identified and enhanced by the screening. These nine anomalies occur in Holes 151, 170 and 171 on Boyvinet and Holes 183, 185 and 191 on Lesperance and all have characteristics of dispersal train anomalies. The six anomalous holes are highlighted on Plan 3 and the anomalies will be described in detail and further evaluated in the following sections.

Gold Assays (ppb) Meas. Meas. Sample Calc. Calc. Whole 3/4 1/4 1/4 No. 504 151-2,051 4,340 55 06 167-319 1,209 267 839 03 168-01 265 1,154 80 260 0 78 468 2,081 07 714 169-6,653 0 03 2,333 170-9,030 01 51 10,515 113 171-02 37 1,225 188 1,030 03 46 1,329 1,247 2,770 04 690 14,420 307 5,230 05 871 18,321 2,450 15,300 180-04 549 2,964 0 L 16 182-05 413 1,564 0 47 183-05 0 1,962 178 1,200 185-16 329 2,084 25 1,020 188-13 84 1,004 71 641 15 719 4,580 0 490 191-10 49 1,299 332 1,060 196-02 89 1,038 45 539 221-08 104 1,350 0 40 229-07 123 5,289 0 29 229A- 06 522 1,050 0 L 5

Table 9 - Comparison of Calculated and Measured Gold Assays for Anomalies Requiring Third-Stage Screening

6.2.1.1 Potentially Significant Gold Anomalies

6.2.1.1.1 Hole 151 Anomaly

Hole 151 was drilled immediately north of the northwestern syenite ridge in the Boyvinet follow-up area. Anomalous sample No. 06 was collected from the base of a Chibougamau Till section resting on bedrock. Twenty grains of predominantly delicate gold were observed during initial processing, and calculated and measured assays are 2051 ppb and 4340 ppb, respectively. Half of the calculated assay was contributed by a single gold grain, and the 1/4 concentrate assayed 504 ppb, indicating that the observed nugget was thicker than assumed and thus responsible for the initial high measured assay.

Hole 151 is only 80 m northeast of Hole 150 which did not encounter any till but intersected sheared syenite grading 497 ppb gold. This shear zone probably represents another small occurrence of the type that appears to have been intersected so disproportionately in the widely spaced Phase I reconnaissance drill holes. If the structural control is north-northeast as suspected, the shear zone probably passes just north of Hole 151 and is the source of the gold in the till.

6.2.1.1.2 <u>Hole 170 Anomaly</u>

Hole 170 was drilled over syenite in the centre of the Boyvinet follow-up area. Anomalous Sample No. 01 was collected from the entire Chibougamau Till section resting on bedrock. Only one fine, irregular gold grain was observed during initial panning, but the 3/4 concentrate assayed 10,515 ppb gold and also produced a silver anomaly (4.2 ppm). The 1/4 concentrate yielded one fine gold grain, 65 to 70 percent pyrite, and a trace of galena but no silver minerals (Appendix F), and produced an INA assay of 9030 ppb gold. Thus the anomaly is strictly an occluded gold anomaly.

The till section is clast-supported and the sample is undersized (4.2 kg) and consists primarily of drill-generated clast and/or bedrock cuttings as evidenced by:
1) a disproportionate amount of +10 mesh material (1.6 kg) which is 95 percent "granitoid" (syenite); and 2) a -10 mesh fraction dominated by pink grains of coarse sand rather than rock flour size. Thus the gold may not be hosted in natural till matrix. Direct contamination of the sample by the underlying syenite can probably be ruled out because the syenite, although slightly anomalous in gold (27 ppb), has a very low sulphide content (less than 0.1 percent). If the anomaly was created partly or entirely by drill bit milling of syenite clasts, it overstates the significance of the bedrock source. Nevertheless, the potential for a nearby source of significant grade is considerably enhanced by the proximity of Hole 170 to anomalous Hole 171 described below.

6.2.1.1.3 Hole 171 Anomaly

Hole 171 is located only 150 m east of Hole 170 and produced anomalies from Samples 02 to 05. The anomalies from Samples 04 and 05 are distinguished from the Hole 170 anomaly by the presence of anomalous concentrations (10 and 55 grains) of fine delicate gold grains. Apart from this, the Hole 171 anomaly has seven properties in common with the Hole 170 anomaly: 1) a Chibougamau Till host; 2) good strength, with assays increasing downsection from 1225 ppb in Samples 02 to 18,321 ppb in Sample 05 at the bedrock interface; 3) predominance of occluded gold, which is consistently responsible for 93 to 97 percent of the measured assays; 4) a pyrite association, with the pyrite content increasing downsection from 5 percent to 40 percent; 5) a silver association, which is not present in the top two samples, but is moderately strong in the bottom two (7.1 and 7.4 ppm); 6) a galena association, which was observed only in Sample 04 (100 grains); and 7) a predominance of syenite in the till which imparts a pink tone to the matrix.

The Hole 171 anomaly is more attractive than the Hole 170 anomaly due to:
1) the predominance of delicate/irregular gold grains, which comprise 80 to 100 percent of the 10 and 55 observed gold grains in Samples 171-04 and 05 respectively; 2) the good vertical continuity of the anomaly, which rules out the

possibility of bedrock contamination as a significant influence; 3) the downsection strengthening of the anomaly, which is manifested in the calculated and measured assay, the gold grain counts, the pyrite concentration and the silver values; and 4) and quality of the till host, which has a good, unsorted rock flour matrix.

In summary, the Holes 170 and 171 anomalies appear to have a common source, and the presence of delicate gold grains and the down-hole increase in anomaly strength in Hole 171 indicate that this source is very local. Moreover, the syenite bedrock in Hole 171 is strongly sheared and yielded a 129 ppb gold anomaly. Similar shearing was observed 200 m to the north-northeast in Hole 168. A north-northeast trending source is compatible with the disposition of the Hole 170 and Hole 171 anomalies as the direction of ice transport for the host Chibougamau Till was to the southwest.

6.2.1.1.4 Hole 183 Anomaly

Sample 05 in Hole 183 on the Lesperance peninsula was collected from the base of a Chibougamau Till section directly overlying bedrock. The sample was not panned initially, and yielded no visible gold on the table, but the 3/4 concentrate assayed 1962 ppb gold and 1.2 ppm silver. Panning of the 1/4 concentrate produced six fine gold grains of varying morphologies (two each of delicate, irregular and abraded), and no silver minerals. The calculated and measured gold assays for the 1/4 concentrate are 178 ppb and 1200 ppb, respectively, indicating that occluded gold is present.

Sample 05 was collected over a very short interval (25 cm) directly above gold-anomalous rhyolite (39 ppb). Thus the anomaly may be caused by gold milled from the rhyolite by the drill bit, or may simply overstate the significance of the rhyolite mineralization because the gold in the till has not been diluted by glacial transport. Obviously the mineralization is not significant.

6.2.1.1.5 Hole 185 Anomaly

Anomalous sample No. 16 in Hole 185 on the Lesperance peninsula was collected from the middle of a 32 m thick Chibougamau Till section. It yielded three abraded and two delicate gold grains during initial processing for a calculated visible gold assay of 329 ppb, but the 3/4 concentrate assayed 2084 ppb gold. The 1/4 concentrate INA assay is 1020 ppb, confirming the anomaly and indicating that occluded gold is present. The mid-till position of the anomaly and uniformly low gold assays from the flanking samples indicate that a true dispersal train is not present. The anomaly was probably created by drill bit milling of a weakly auriferous till clast.

6.2.1.1.6 <u>Hole 191 Anomaly</u>

Hole 191 was drilled on the Opawica Lake Fault in the Lesperance mainland drill area. The hole was shallow, and anomalous sample No. 01 comprises the entire Chibougamau Till section. This sample yielded two abraded and three irregular gold grains for a calculated gold assay of 49 ppb, but the 3/4 concentrate assayed 1299 ppb and the 1/4 concentrate assayed 1060 ppb, indicating that anomalous concentrations of occluded gold are present. The gold has a weak copper association (788 ppm) but no copper minerals were observed in the 1/4 concentrate. The anomaly is probably related to very weak mineralization along the Opawica Lake Fault.

6.3 Heavy Mineral Arsenic, Copper and Silver Anomalies

In volcanogenic massive sulphide exploration, the heavy mineral anomaly threshold for copper and zinc is 800 ppm and for silver is 2 ppm. The anomaly threshold for arsenic is 800 ppm, but arsenic anomalies are only significant if they have a gold association. Of the 431 samples processed, seven produced anomalies in these metals — five in silver, one in copper, and one in arsenic (Table 10).

Sample No.	As (ppm)	Cu (ppm)	Ag (ppm)	Zn (ppm)	Au (p pb)
170- 01	87	153	4.2	115	10,515
171- 04	52	98	7.4	41	14,420
05	63	70	<u>7.1</u>	59	18,832
187- 15	840	202	0.6	202	772
188- 03	62	88	8.0	28	492
19	280	<u>940</u>	1.1	57	385
214- 03	34	136	7.0	36	16

Table 10 - Heavy Mineral Arsenic, Copper and Silver Anomalies

Of the five silver anomalies, three are associated with dispersal train-type gold anomalies and have already been discussed in sufficient detail. The other two silver anomalies in Holes 188 and 214 are of moderate strength (7 and 8 ppm) but are spurious as they lack stratigraphic continuity. One occurs in Ojibway II gravel overlying thick till and the other occurs near the top of a thick Chibougamau Till section. Both are flanked by samples that returned background silver assays (maximum 0.2 ppm).

The one copper anomaly is from Sample 188-19, which is the single Lower Till sample collected from the northeasternmost hole on the Lesperance peninsula rhyolites. The anomaly is weak (940 ppm) and associated with elevated silver (1.1 ppm). No copper or silver minerals were observed in the 1/4 concentrate, but abundant pyrite (50 percent) and some arsenopyrite are present. The copper is probably bound in the pyrite, precluding drill-generated contamination from the underlying bedrock which contains no pyrite. The till pyrite is coarse-grained, suggesting that the anomaly represents dispersion from minor, vein-hosted mineralization.

The one arsenic anomaly occurs in Sample 187-15 and is weak (840 ppm). However, the sample is from one of the three northeasternmost holes on the Lesperance peninsula and these three holes yielded 19 samples that define a weak zone of arsenic dispersion (Table 11). This zone comprises the complete Lower Till sections of Holes 187 (five samples) and 188 (one sample), and thirteen of fourteen samples collected from the lower third of thick Chibougamau Till sections in Holes 185, 187 and 188. All nineteen of these samples and only twelve others from the entire Phase II project assayed over 200 ppm arsenic. Thus the dispersion, although weak, is pronounced in relation to the low arsenic background in the other Phase II Gold assays for the nineteen arsenic-enriched samples are not sympathetic to the arsenic assays, and the higher assays are generally explained by observed gold grains of abraded background-type morphology. The Quaternary stratigraphic setting of the arsenic dispersion is indicative of a nearby source -probably a shear zone located between the peninsula and Opawica Island and forming a splay off the Opawica Lake Fault. Chibougamau Till and Lower Till samples collected from adjacent down-ice Holes 183 and 184 are not enriched in arsenic, indicating that the dispersal train decays rapidly. Thus the source mineralization must be both weak and gold-deficient.

				Gold				
Sample No.		As (ppm)	V.G. Calc. (*not Assay panned) (ppm)		Meas. Assay (ppb)	Quaternary Unit	Strat. Cont.	
185-	18	250	5	160	315	Chibougamau Till	Vertical	
	19	296	2	91	302	Chibougamau Till	Vertical	
	20	352	0*	0	225	Chibougamau Till	Vertical	
	21	358	0*	0	246	Chibougamau Till	Vertical	
	22	592	0*	0	163	Chibougamau Till	Vertical	
	23	356	2	61	314	Chibougamau Till	Vertical	
	24	230	0*	0	122	Chibougamau Till	Vertical	
187-	13	220	0*	0	73	Chibougamau Till	Vert ical	
	14	494	5	116	168	Chibougamau Till	Basal	
	15	840	4	28	772	Lower Till	Vertical	
	16	616	5	494	998	Lower Till	Vertical	
	17	515	0*	0	<i>75</i> 0	Lower Till	Vertical	
	18	286	8	319	843	Lower Till	Vertical	
	19	322	9	287	582	Lower Till	Basal	
188-	14	672	0*	0	363	Chibougamau Till	Vertical	
	15	342	1*	719	4,580	Chibougamau Till	Vertical	
	16	250	0*	0	330	Chibougamau Till	Vertical	
	18	274	0	0	383	Chibougamau Till	Basal	
	19	280	1	2	385	Lower Till	Basal	

Table 11 - Holes 185, 187 and 188 Arsenic Zone

CONCLUSIONS

7.

The objectives of the Phase II reverse circulation bedrock and overburden sampling were: 1) on Boyvinet, to establish the structural pattern and pinpoint the best gold sources beneath the broad dispersal train identified in Phase I; 2) on Lesperance, to locate the Opawica Lake Fault and related structures and test their gold potential; 3) on Lesueur West, to test the western extension of the gold-bearing Lesueur Fault identified in Phase I; and 4) on Lesueur North, to test the western extension of the gold-bearing Lac Shortt Fault identified in Phase I.

In the Boyvinet area, two known or potential gold-bearing structural regimes are now recognized: 1) narrow mylonite zones in the syenite core of the Opawica Pluton that are enveloped by zones of weaker brittle deformation (as intersected in Phase I Holes 101, 104 and 105 and Phase II Holes 150, 168 and 171), probably strike north-northeast, and appear to be the sources of the strong gold dispersion intersected in Phase I Hole 101 and Phase II Hole 171 and weaker dispersion in several other drill holes; and 2) a gneissic contact strain aureole on the southern border of the pluton in the vicinity of the Phase I overburden anomalies of Holes 114, 117 and 118. The fill-in drilling has shown that the gold dispersion over the pluton is much less continuous than the original reconnaissance drilling suggested. In effect, the broad dispersal train zone has been reduced to a collection of scattered dispersal trains indicative of several bedrock sources of varying Diamond drilling that has recently been performed to test the dispersal train anomalies identified in Phase I Holes 114, 117 and 118 and Phase II Hole 171 has basically confirmed this interpretation (F. Speidel, personal communication, 1989).

On Lesperance, the Opawica Lake Fault forms the boundary between the felsic and mafic volcanics rather than passing through the felsic volcanics as shown by previous workers. The fault is not mineralized. The felsic pile appears to face south rather than north, to be comagnatic with the subalkalic to alkalic Opawica Pluton, and to have good potential for base metal massive sulphide mineralization. However, the drilling was focused on VLF rather than VEM or HEM targets, and the VLF conductors are suspect because they cut across the volcanic strata.

In the Lesueur West area, the Lesueur Fault is well defined but lacks the gold-arsenopyrite-pyrite mineralization that characterizes the same fault on the Lesueur property. The presence of ultramafic dykes of generally kimberlitic character is intriguing, and the occurrence of remobilized lead-zinc mineralization in one of the dykes suggests that the nearby HEM zone has a significant potential for hosting volcanogenic massive sulfide mineralization. These conclusions are based mainly on the bedrock data because the overburden on Lesueur West is unrepresentative of the bedrock.

In the Lesueur North area, the results are similar to those on Lesueur West and Lesperance; the target structure (Lac Shortt Fault) is well defined but is unmineralized.

In summary the Phase II program adequately achieved its objectives in all areas except that the overburden data from Lesueur West are of limited value. The Phase II drilling has significantly clarified the nature of gold mineralization in the Opawica Pluton and has indicated that the gold potential of the other three drill areas is low.

RECOMMENDATIONS

8.

Diamond drilling is presently being performed to test the Holes 151 and 170/171 gold targets on Boyvinet and also the gold targets identified on Boyvinet and Lesueur in Phase I. It is recommended that one drill hole be added in the vicinity of Hole 218 on Lesueur West to test the HEM zone for volcanogenic massive sulphide mineralization and to obtain samples of the kimberlitic dykes for further study. If the dykes prove to be true kimberlites, the magnetics of the surrounding area should be examined very carefully for evidence of kimberlite pipes that could be diamantiferous. Future exploration at Lesperance should focus on testing electromagnetic conductors, most of which occur on adjacent properties, for volcanogenic massive sulphides. On Lesueur North, the uniformly negative results obtained from the reverse circulation drilling indicate that no further exploration is required.

* * * * * * * * * *

9. CERTIFICATE - STUART A. AVERILL

I, Stuart A. Averill, residing at 192 Powell Avenue, Ottawa, Ontario hereby certify as follows:

That I attended the University of Manitoba at Winnipeg, Manitoba and graduated with a B.Sc. (Hons.) in Geology in 1969.

That I have worked continuously in the field of mining exploration geology since 1971.

That I am President and a principal owner of Overburden Drilling Management Limited, 107-15 Capella Court, Nepean, Ontario, an independent geological consulting company that I founded in 1974.

That I qualify for and have recently applied for fellowship in the Geological Association of Canada.

That this technical report is based on data gathered on the subject property by employees of Overburden Drilling Management Limited and interpreted by me.

That I have no direct or indirect interest in Minnova Inc.

Stuart A. Averill, B.Sc. (Hons.)

Dated at Ottawa, Ontario this 19th day of June, 1989.

10.

REFERENCES

Allard, G.O., Gobeil, A. 1984:

General Geology of the Chibougamau Region; Chibougamau: Stratigraphy and Mineralization, J. Guha and E.H. Chown (eds.), Canadian Institute of Mining and Metallurgy Special Volume 34, pp. 385-392.

Averill, S.A. 1978:

Overburden Exploration and the New Glacial History of Northern Canada; Canadian Mining Journal, Vol. 99, No. 4, p. 58-64.

1986:

Advice for Juniors Following Dispersal Trains; The Northern Miner, Junior Mining Section, June 16, 1986, p.Ba12.

Bostock, H.S. 1968:

Physiographic Regions; Geology and Economic Minerals of Canada, 5th Edition, edited by R.J.W. Douglas, Geological Survey of Canada, Economic Geology Report No. 1. 1 map @ scale 1: ,000,000.

Buro, Y. 1984:

The Geology of the Bachelor Lake Gold Mine; Chibougamau: Stratigraphy and Mineralization, J. Guha and E.H. Chown (eds.), Canadian Institute of Mining and Metallurgy Special Volume 34, pp. 385-392.

Cormier, M., Gauthier, A., Muir, J.E. 1984:

Geology, Geochemistry and Mineralization at Falconbridge's Lac Shortt Gold Deposit, Gand Township, Quebec; in Chibougamau: Stratigraphy and Mineralization J. Guha and E.H. Chown (eds.), CIM Special Volume 34, p. 393-411.

Dimock, B.K. 1985:

A Comparative Study of Sample Recovery Systems in Glacial Overburden Exploration; student work report prepared for Overburden Drilling Management Limited and Faculty of Science, University of Waterloo, 32 p.

Dugas, J. 1951 and 1975:

Rapport Sur la Canton Lesueur (Moitie Est), Region du Lac Bachelor, Comte d'Abitibi-Est; MERQ, PR-612 initially published in 1951 as DP 3. Accompanied by maps, No. 1807 and 1808 at scale of 1:12,000.

Gariépy, C., Allègre, C.J. Lajoie, J. 1984:

U-Pb Systematics in Single Zircons from the Pontiac Sediments, Abitibi Greenstone Belt; Can. Journal of Earth Sciences, Vol. 21, No. 11, p. 1296-1304.

Giovenazzo, D. 1983:

Canton de Boyvinet; Ministére de l'Énergie et des Ressources, DP 83-33, scale 1:20,000.

Goodwin, A.M. 1977:

Archean Volcanism in Superior Provinces, Canadian Shield; Volcanic Regimes in Canada, W.R.A. Baragar et al. (eds.), Geological Association of Canada, Special Paper 16, pp. 205-241.

Graham, K.C., Averill, S.A., Collins, P.C. 1988:

Lac Shortt Project - Reverse Circulation Overburden Drilling and Heavy Mineral Geochemical Sampling; unpublished report prepared for Minnova Inc. by Overburden Drilling Management Limited, 155 p., 4 plans at scale 1:8,000.

Kurina, K.P. 1986:

Modifications to the Two-Bucket System for Reverse Circulation Drill Hole Sampling: Effects on Fine Particle Retention; student work report prepared for Overburden Drilling Management Limited and Faculty of Science, University of Waterloo, 20 p.

MERQ 1981:

Levé Aéroporté INPUT dans la Région de Desmaraisville; Ministère de l'Énergie et des Ressources, DP-841, 3 maps of eight sheets each, scale 1:20,000.

1983a:

Bibliographie Géoscientifique, 32F/9, Desmaraiseville; Ministère de l'Énergie et des Ressources, 12 p., 9 p. update, 3 maps of scale 1:50,000.

1983b:

Bibliographie Géoscientifique, 32G/12, Lac Opawica; Ministère de l'Énergie et des Ressources, 18 p., 12 p. update, 4 maps of scale 1:50,000.

1983c:

Compilation Geoscientifique, 32F/9-0104 and 0204, 32G/12-0101 and 0201; Ministére de l'Énergie et des Ressources, all updated to Jan. 10, 1983, scale of 1:10,000 or 1:20,000.

MERQ-OGS 1983:

Lithostratigraphic Map of the Abitibi Subprovince; Ontario Geological Survey/Ministère de l'Énergie et des Ressources, Québec, 1:500,000, Catalogued as "Map 2484" in Ontario and "DV 83-16" in Québec.

Morasse, D., Hodgson, C.J., Guha, J., Coulombe, A. 1986:

Preliminary Report on the Geology of the Lac Shortt Gold Deposit, Demaraisville Area, Québec, Canada; Proceedings of Gold '86, an International Symposium on the Geology of Gold: Toronto, 1986, Macdonald, A.J. (ed.), pp. 191-196.

Potapoff, P. 1987:

Report, Opawica Project, Lac Opawica Area - Quebec; unpublished report prepared for Campbell Resources Inc., April 30, 1987, 47 p., with various maps and sections.

Stott, G.M. 1986:

Regional Geology and Structure of the Pickle Lake Metavolcanic Belt, District of Kenora, Patricia Portion; Summary of Field Work and other Activities 1986, Ontario Geological Survey, edited by P.C. Thurston et al., Miscellaneous Paper 132, pp. 9-14.

Veillette, J.J. 1986:

Former Southwesterly Ice Flows in the Abitibi – Tamiskaming Region: Implications for the Configuration of the Late Wisconsinan Ice Sheet; Canadian Journal of Earth Sciences, Vol. 23, No. 11, pp. 1724–1741.

Watkins, D.H., Riverin, G. 1982:

Geology of the Opemisca Copper - Gold Deposits at Chapais, Quebec; Precambrian Sulphide Deposits, H.S. Robinson Memorial Volume, R.W. Hutchinson, C.D. Spense and J.M. Franklin (eds.), Geological Association of Canada Special Paper 25, pp. 427-446.

APPENDIX A REVERSE CIRCULATION DRILL HOLE LOGS

то	DRILL Set up 7:00 - 8:00 AM	diill	8:00 -9:15 AM
TAL HOURS	MECHANICAL DOWN TIME		
NTRACT HOURS	OTHER frauel from nine 6:	30 - 7:00	AM
	MOVE TO NEXT HOLE		
	NEU	BIT \$	BIT SUB
HC AL			
GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
	15 101		
N/R	1.5 No Return - probably organics and sand	- Lo	grandrill
iii E	organics and sand	1	my Shall Hu
1.5	-8.5 OJIBWAY I SEDIMENTS		ease
			all visible wa
	with a few pebbles	24	stem Fittings =
	with a few pebbles	and a	agnetic
	2.0-6.0 day a gray , non-		
	gritty and soft with		
16 E	2.0-6.0 day, gray, non- gritty and soft with subth beige silt varves		
N/R E			
IE	6.0-8.5 No Return - very		
7//	soft, easy drilling assumed		
1 Bedrock	to be clay and for silt		
/// Bedrock	•		
8.5	- 10.0 BEDROCK		
E	1 to sink to real autour		
E	- dark pink to red colour with dark green mottles		
E	- massive structure		
E	- coverse growned 0.5 to 1.5		
E	Feldspar - 80% and chlorite		
E	~ 20% to 30%		
E	- evidence of shearing include		
	- evidence of shearing include chlorita shears and		
E	5-10 % fast-reacting (to HC) carbonate - calcite		
E	carbonate - calcite		
E	- 5 lightly magnetic		
E	- 21% Finally dissen. PY.		
E	,		
1 1 1	Syenite	1	

DATE Jan 22 19 8' SHIFT HOURS TO TOTAL HOURS CONTRACT HOURS	MOVE TO HOLE 9:30 - 10:00 DRILL 10:00 - 12:00 MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER			
	MOVE TO NEXT HOLE	page 10f2		
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
1 1 0.	6.0 No Return			
2-	23.0 OSIBWAY II Sediments - very easy drilling			
3-NR	- poor return - suspected silt and clay,			
4-7	small amount of fine sound			
6	- beige to gray beige fine			
7-	120-150 - no return			
8	easy drilling > rods drop down hole by themselves			
9-	selt and clay			
11-4:::	15.0-16.0 - fine beige sand 16.0-16.5 - medium sand			
12	16.5-17.0- fine beige sand			
13 - NR	17.0-19.0 - medium to come			
15	- beige, slightly oxidized few rounded pebbles.			
16-	19.0-20.0 - fine beige sand 20.0-230 - median to coorse			
17-	beige sand, few rounded pebbles.			
18 02	,			
20				

DATE 19 SHIFT HOURSTO	HOLE NO			
TOTAL HOURS	MECHANICAL DOWN TIME			
CONTRACT HOURS	OTHER			
	MOVE TO NEXT HOLE			
			page 2ef2	
DEPTH INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
23 A 6 4 23 23 24 A 6 4 25 26 X 25 25 25 25 25 25 25 25 25 25 25 25 25	26.5 Chibougamou Till 20-256- abrupt contact with over sand fine grained groy to gro sand silt motrix predominantly cobbles with a few pebbles, approximate composition 60% Volcanic /Se 40% granite.d matrix supported till 6.26.5 matrix similar to above a noticeable decrease in a clast composition become granite.d, approximately 80% granite.d 20% Volcanic / Sediments Sample 06 probably contaminate underlying hill	diments with sand spredominantly		
14-	underlying bedrock 28.0 BEDROCK -light pink colour with mottled dark green grains - Coarse grained, approximately 2mm grain size - massive structure - trace carbonate minerals - predominant motic mineral is chlorite - evidence of shearing - no visible sulphides slightly - Syenite			
28	E.O. H.			

DATE Jan 22 19 89 SHIFT HOURS	MOVE TO HOLE 12:60 - 12:	15 117	► ELEVATION	301 m
TOTAL HOURS	DRILL /2: MECHANICAL DOWN TIME DRILLING PROBLEMS	15 - 1:45 PM		
CONTRACT HOURS	MOVE TO NEXT HOLE			
- N C - H				Page 1
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
3	0.5 Organics - 25.0 OTIBWAY II SEDIMENT 0.5 - 16.5 clay; gray, mongs, and soft with being 5:/t varve (1 to 3 cm in thickness) - clay/sift is softer downsed to 5-25.0 very fine to fine gressord with clay partings - approximately one clay seem pay 2 metre, less than 5 cm thickness tha	its Fig.		

DATE Jan 22 1089	DATE Jan 22 1989 HOLE NO PLS-89-152 LOCATION		
	GEOLOGIST BIT	NO BIT FOOTAGE	
SHIFT HOURS	MOVE TO HOLE		
TOTAL HOURS	MECHANICAL DOWN TIME		
	DRILLING PROBLEMS		
CONTRACT HOURS	OTHER		
<u></u>	MOVE TO NEXT HOLE		
			page Z
H I I I I I I I I I I I I I I I I I I I			
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
21=====================================	5.0-28.8 CHIBUGATAU TILL		
E	- about contact with overlying		
2 2			
23	25.0-26.5 clast-supported till		
	unatrix is fine grow sand; coloble clasts are 50% granitoid and 50% volcanic/salinat		
24 T.: E	colle clasts are 50 %		
25	grant total and 30%		
16 - A E 01	26.5-28.8 matrix-supported tills		
10 A TO E	26.3 = 28.8 man / = sapport		77
27- 0 4	Fine grow sand sitt matrix; with		
FOZ			
Δ. Δ.	40% gramitoid		
20-1/-03			
28.8	-30.0 BEDROCK		
, E	Att & lake Of It wish		
31-	- mottled dark and light pink and dark green colour		111
32_	- massive structure		
33-	- course grained 0,5 to 2,5 mm		7
34-	. 15 % chbrite		To Company and the Company and
	- weakly sheared with approx.		
35—	12 Fast reacting carbonate		
36-	(to HCI) -> colcite		
37-1	- slightly magnetic		
37-	1 / "		
38-	Syenite		
3e - - - - - - - - - -	7,500.1=		1 1 1
1 E 30.0	EOH		
40-			

DATE <u>Jan22</u> 19 <u>8</u>	GEOLOGIST 13. 22. DRILLER 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
SHIFT HOURS	MOVE TO HOLE 1.75-2.00	
TOTAL HOURS	DRILL 2,99 - 3,00	
———	DRILLING PROBLEMS	
CONTRACT HOURS	OTHER	
	MOVE TO NEXT HOLE	
	New E.	· /
DEPTH INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
ME GRA		
1/1 0.	05 Organics (peut)	
1	-13.2 OSIBWAY IL SECUMENTS	
+	05-11.0 groy slightly gritty clay	
3	- Subtle varing	
	- softens downsection	
4	- below 7.0m becomes sorpy	
5	11.0-132 - fine grained gray to gray ben	
	Sand	
	- well sorted	
7		- 1
8-1-1-1-1-1-3-	2-135 Chikongomon Till	
- F	- fine grained gray to gray be	
	Sand silt matrix	7
10-	- clast composition coller	
11 = ==================================	approximately 65% Volconic /Sed,	nests
	35% Granitord	
12-1	- very thin veneer (3m thick)	
13 3 7 7 1	sample Ol was washed from the hole	after
14 = 7 / E = 1	hale was completed and incorporates	60+16
East	Cribway sand and Chibonyonon till	05
15	well as possible bedrack contains	tin
16-]	5-15.0 BEDROUK	
17-	- light pink color with mother	
	dock green	
18-	- course grained, approximately	
19 -	- massive structure	
20	- moderately sheared.	
	- predominant matic mineral is chinte approximately 25%	
	- high percentors of callete de the	
	- Syrenite	
15	O E.O.H.	

DATE Jan 22 19 89	HOLE NO PLS-89-154 LOCATION L ZO +00 W; 3+50 N ELEVATION 3	06 m
	GEOLOGIST D. HOLMES DRILLER R. FOMRHEIBIT NO. CB70161 BIT FOOTAGE 150	· 23.5
SHIFT HOURS	MOVE TO HOLE	
TOTAL HOURS	MECHANICAL DOWN TIME	
	DRILLING PROBLEMS	
CONTRACT HOURS	OTHER travel 5:00 - 5:30 PM	
	MOVE TO NEXT HOLE	
H S S S IC		
METRES LOG LOG SAMPLE NO.	DESCRIPTIVE LOG	
OR GR		
100	1.5 No Return	
1= 70		
= 1.5	-5.5 OJIBWAY I SEDINENTS	
²===	- day; gray, non-gritty	
3 = = =	with subtle beige silt	
===	varves approx zem thick	
4 == [- dol/silt softer downsection	
5 = =	- 404/3111 301	
200		
6 . 4 . 5 . 5	5-7.0 CHIBDUGHTAU TILL	4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
7-19-	- about contact with overlying	
2//2=07	- about contact with overlying clay/silt	
8- 02 bodnek	- matrix supported till;	
9	E. a self-matrix	
	Fine gray sand-silt matrix,	
10-	cobble clast composition	
11-3	approximately 60 % volcanics/	
12_	sediments, 40% granifoid.	STATE OF THE PARTY
13 = =		
7.0 -	8.5 BEDROCK	
	dock sink untiled with light	
15-	- dark pink mottled with light prink and dark green	
16—	1 4 -	
	- massive structure	
17-	- coarse grained 0.5 to Zum	
18	- approx. 15 % hornblende	
	laths	
19	and slow reacting to HCI	
20	and slow reacting to HCI	
		1

FT HOURS	MOVE TO HOLE	
AL HOURS	MECHANICAL DOWN TIME	
 NTRACT HOURS	DRILLING PROBLEMS	
TINACI NOURS	MOVE TO NEXT HOLE	
	MOTE TO HEAT HOLE	
A AL		
SAMPLE NO.	DESCRIPTIVE LOG	
S A		
	Ocazolis	
	-0.5 Organics	
	5- 170 OSIBWAY I SECOMENTS	
	05-11.0 gray non gritty clay	
	- softens downsection	
	-rods foll by themselves	
	·	
	11.0-170 - fine grained gray sand	
	- well sorted	
E	- becomes beige below 14m	
	7.0-19.2 Till (Ch. bougámon)	
H F	- abrupt contact with overlying Sediment	5
■ F		
	- fine ground gray t gray beige sound	
= E	- closts, cobbles approximate composition	
	40% Volconia / Sedimento	
E .	60% Granitud	
+	182-192 - becomes very cobbly	
: =	- clast sun 11 kg	
	- clost supported till, possible sulcrop	
: E01 *		
	sample 03 maybe contaminated with bedieck	
1年 1	2-20.7 BEDROCK	
	- dark pirk colour with mottled dark	
	green grains	
1. 702	- coarse grained, opposionately 2 mm insige	
7	· massive structure	
NE 03	- slightly brewated	
1 Eoy	reaction with HEL.	
Bedrak	reaction with HEL.	
TE !	- predominant matic mineral is chlorite	
	- miduately sheared - slightly magnetic	

DATE	January Z	319 <u>89</u>	HOLE NO PL	S-89.156 LOC	ATION	9100W	1+00N CB70161	ELEVATION_	302 m 44,2-61,2
	T HOURS		MOVE TO HOLE .	8:4	5-9:00	477			
	TO								
1012	AL HOURS			OWN TIME .EMS			<u> </u>		
CON	TRACT HO	URS	OTHER	LW3					
			MOVE TO NEXT	HOLE					
RES	G RVAII.								
DEP1H IN METRE GRAPHII	LOG NTERVAI SAMPLE NO.	1	DESCRIPT	IVE LOG					
	-								
1 - 1	R	0-1	1.5 No .	Return organics and	d chay)				
2 ==	= E	1.5 -	-11.0 OJIB	NAY II SEDI	MENTS				
			- / /		mitt.				
3		,	1.5-10-5 cla	ex; gray, no	n-9/7				
4=	= =			ft beige si	It varves				
=	= =		z-3em in						
5 -	= E		- clay/silt	becomes soft	e downston	٠.			
6	\equiv		77						
		1	0.5-11-0 Fine	e gray to gray	-borge				
7-	= -	,	Sam	d''					
, E						A COLUMN TO THE			
	$\exists E$								1
9	= =	11.0 -	. 15.8 CHIBO	on GARAU T	166				
, =	S E I		- abrupt con	that with on	white				
10-			sand						
11 =	://=		malrix su	apartad . fine				10 m	
	x /= 01#		condition	gooded; five atmix; cold	gray				
12-	A /=			approximately					
13 _ 4				/sadiments 7		1			
· · ·	A CE								
14-14.	; FOZ		with the p	relative parca	4/10				
15			changing to	30/30	10/				
- · / /	e 1503		by sample	05					
16-1//	Eo4	<i>t.</i>	& Sample 01	consists of	both				
17-	bedray	K A	ofipment some	I and Chib.	T:41				
	E								
18-		15.8-	17.0 BE	DROCK	/ .				
19 -	I E		- light pink	:, mettled wh	ite and	41	you.		
= =	E	a	lark green (inal o. 5 to 3	& and Chlo	on Tel			
20-		~ (evidence of 5	trong shearing	, including	,			1
		6.	17.0 BEI - light pink lark green (- coarse grain evidence of 5 excition, 5 - pop for rec - to the sta	to 2% gt 2	veinlets (possibly	gtz-ca.	-bonate) a	-d
		3	the star	In at 1615 in	me to H	CU) 29	chbrit	e shears	
		17.0	EOH	Symite					

DATE Jon 23 19 89	HOLE NO PLS-89-157 LOCATION 18toow 0100 ELEVATION 306m.
DATE19	GEOLOGIST Book DRILLER & Front BIT NO. CETAIN BIT FOOTAGE 612 786
SHIFT HOURS	MOVE TO HOLE
TO	DRILL
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1/1	0-0.5 Organis	
1==	05 88 OSIGWAY IL CEDIMENTS	
2	0562 - slightly gitty gray clay with	
3 == [beige sill varues.	
	-very seft, rod penetrote on their own.	
1 E	6-2-88 fine grained beige sand	
5	- well sorted	
6 = = =	8.8-103 C'bagamon Till	
, <u>3</u> 1.01 E	88-96 - about contact with overlying	
	Sediments	
8—:	- fine grained gray beige same	{
974 E	silf mateix	4
10-1/2	- cobbly approximately	
11-7	50% Volcon I Sed ment	
13 Ecolo	ck - meti 50% Granitoid	
'E	- matrix supported till	
13 -	9.6-1023 - decrease in fine grained so	ad motrix
14=	- Cobble supported till	
15-	103-120 BEDRUCK	
	- dock gree with mottled w	Aite
16-	and pink grains	
17-	- course grained, approximately . 5-	and.
18 = =	" Moderately should	
19	- 2/2 con rate minerals (slow rea	a ting)
20-	- predomin to matic mineral, se	Lorte,
	~40% of rock	
	- trace hematite stain	

- 205% Souble disseminated Sulphides
120 - Gakhiro
120 E.O. H.

DATE January 2319 8	HOLE NO PLS-89-158 LOCATIO	N_L16+00W; 2+505	_ELEVATION306 m
,	GEOLOGIST D. HOLOES DRILLER E.	FOURHEL BIT NO CB 70020	BIT FOOTAGE 6-13.5
SHIFT HOURS	MOVE TO HOLE	1:00 PD - 1:45 PI	~
TOTAL HOURS	DRILL	7.00 1110 1.15371	/
	MECHANICAL DOWN TIME DRILLING PROBLEMS		
CONTRACT HOURS	OTHER		
	MOVE TO NEXT HOLE		
		K /	
	New	B: +	
H HC AL AL			
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
M M M M M M M M M M M M M M M M M M M			
11 0	- / A		
1-22	-1.0 Organics		
2- 1.0	- 11.0 OJIBWAY I SEDIME	NIS	
		.*	
3 = =	1.0 - 10.5 day: gray, non-	77.7	
	and soft with being silt va	rves	
4	5 stor downsection		
, =====================================	10.5-11.0 Fine gray sand		
° == E	10.5-11.5		
6 = = =			
	Ha Cula Bu Bu Tul		
7 = 1/1.0	- 11.8 CHIBOUGATHU TILL		
	· abrupt contact with overly.	7	
8	Sand	,	
	· clost supported till;		
y E	- 20051 30/9-20		
10 E	fine gray sand matrix; with	le	
1111/	clast's approximately 50% volum	-leg	
11号以1/年7月	closts approximately 50% volumes sediments and 50% gramitoid		
-A ? F	* Sample of was whished after be was dribled and thus may incorpor of ibury soul and badrock as well as	adea to	
12=///	was drilled and this may incorpor	afe	
EOZ_	Ojibury sund and bodrock as well as	7-4	
	-13.5 BEDROCK		
14-F			
<u> </u>	- light pink, nottled white a		
15-	dkgn		
	- warse grained 0.5 to Zu	ne An	
16—		4	
17-	- 20 % horn blende is predemina unafre universal, occurs us lath.	Te .	
'(3 E	matic unheral, occurs us late.		
18	-1% dkgn chlorite shears		
3	- unnor hourtite stain, dark s	ed	
19	- slightly magnetic		
d F			
20-	2% fast scarting carbonate	-> Calcile	
	Svenite		1 1
13	.5 EOH		

lan 23 89	HOLE NO FLS-89-159 LOCATION 10100 W 21705 ELEVATION 31 m
DATE 19	GEOLOGIST Book DRILLER R. Frank BIT NO. CE 70020 BIT FOOTAGE 18 30 50
SHIFT HOURS	MOVE TO HOLE 1:45 - 2 cc fm.
TO	DRILL 2100 3:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METNES GRAPHIC LOG INTERVAL NO.	
O.10 OSIBWAI I SEDIMENTS Very fac being exidized sound 10-12 Boulder (motic Volcon) 10-50 Chibougamou Till - abough contact with overlying sediments - fine ground groy to groy being sound Silt motive - clost supported, coldler, approximately Sold Volconic/Sed, mints Sold Granital - poor Sample return couring long Sample return couring long Sample Interval 50-65 BEDROCK - light to medium pink Colour with method dark green boundlande - coarse granick 5-2mm. - mossive structure, Life chlorite shous. - predominant medium mineral is horablande - gyrick, mately Sh carbonute minerals - Syenite 65 E.O.H 18-19-1	

SHIFT HOURS TO TOTAL HOURS CONTRACT HOURS	HOLE NO PLS-89-160 LOCATIO GEOLOGIST DHOLE DRILLER R. MOVE TO HOLE 3:20 - 3: MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER Truel 5:23 - 6:2 MOVE TO NEXT HOLE	+5 +17 +5 - 5:00 PM	ELEVATIO	ON 3/4 m GE 20.0 2.1
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG			
3.8 5	3.8 DJIBWAY I SEDITION. Fine budge (on lized) so very poor sample return - no seal at juls. -3.9 CHIBJUGATAU TILL Hoo thin to hog or sample. -5.5 BEDROCK - light pink, mottled white and lark green - coarse grained as to z m - zo is hornblande laths - minor hematates stain - no evidence of shear: - 2216 carbonate Syanite EDH	(e		

DATE January 2719 89	HOLE NO PLS-89-161 LOCATION GEOLOGIST DHOLDES DRILLER R. F.	CURNEL BIT NO. (87002)	ELEVATION 310 M
SHIFT HOURS	MOVE TO HOLE	477	
TOTAL HOURS	DRILL	7100 401	
TOTAL HOURS	MECHANICAL DOWN TIME DRILLING PROBLEMS		
CONTRACT HOURS	OTHER 7 1 mil 6:34 -7:1	5 461	
	MOVE TO NEXT HOLE		
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
	5.2 OJIBNAY IL SEDINENTS		
		4	
	0-20 clay - being compact a surface softer Lownsection	1	
3	Sustace softer sourceused	ン	
3 = ===================================	slightly gritty		
	2.0 - 4.3 clay - gray non-gri Soft clay with beige sil	Dy	
4	soft clay with beinge sil		
5	Varves '		
拉利法	4.8-5.2 Fine gray-beige sand		
6 = 1. 2 /= 0/	0 7 9		
15.24年			
(引/XE), 5.2 -	6.8 CHIBOUGANAU TILL		
8 - Dednek	-about contact with overlying	7	
3 ←←←†‡	5.2-6.0 clost supported till;		
9 = =	5.2-6.0 class siffer all ble		
10-	fire gray sand making, coloble	≠	
	dots a 50 to volcanies bedien		
11-	50% grantoid.		
12.	6.6-6.8 matrix supported till		
Į E	5.0 - 5.8		
13 -			
143 E 6.8	. 8.5 BEDROCK		
5 E			
15	- light wink, mottled white a	7	
	dark green		
16-	- course grained , 0.5 to 4 min		
17-	- yearon. 20% hours lande latters		
18-			
'83 E	- 44 1% dissen carbonate		
19 -	- no evidence of shearing		
30 F	Syenite		
20-	3 y and		

8.5 EUH

DATE Jan -ay 2419 89	GEOLOGIST	DRILLER R. FOURNEL	BIT NO. <u>CB70020</u>	_ ELEVATION _ _ BIT FOOTAGE _	204m 34.0-5%
SHIFT HOURS	MOVE TO HOLE	9:00-9:30 A	n		
TO	DRILL	9:30-1			
TOTAL HOURS	MECHANICAL DOWN TIME				
CONTRACT HOURS	OTHER				
	MOVE TO NEXT HOLE				
_ s o - l u					
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	,			
ME GR.					
0-	1.5 No Return -p	robably clay			
1 N/R E	13 7 27 20 10 10 1	T SEDUTENTS			
2 == E 1/3	-13.5 OJIBWAY				
	- clay; gray, no soft with subth	nigrity and			
3 = =	soft with subtle	e baige sitt			
	varves.	,			
4 ==== E					
5 = =					1
					
6 = 13.5	5-15.5 CHIBOUGANA	u 1722			A MARINE CONTRACTOR
	- abjust contact u	ith overlying			
	- aboupt contact us				İ
8 = = =	- matrix supporte	d till;			
	Fine gray sand- 51 1				
9	11/12/12/3	4			
10	coloble clasts comp				
10 ====================================	60% volcanics/sodie	ments and			
11 = E	40% granitord				
	"				
12 15.5	-17.0 BEDROCK				
13 = [(top o. Ym of bedro	ele cany be			
	fractured - there	was some			
14 - 4 - 4	not sampled	till - internet			
EA /E		1.			
15-1	- dark red-pink u	ville light pink			
1637/NE	white and dk g	een mottling			
1/NE92,	- humatite stained				
17 bedrock	- coarse grained	0.5 to 3 mm			
	v		and the state of t		
18-	- 15 - 20% matic a	merals Soff			0
19 -	and I / 1	of chlorite			
	~1 % Morite she	1			
20-	- 2-5% slow iea (+0 HCI)	sting carbonate			
				1	1
	- some shearing	g brewind			
	DEOH Syemite				
17.0	DEOH -				

SHIFT HOURS TO TOTAL HOURS CONTRACT HOURS	HOLE NO PLS-89.63 LOCATION 47+75W; 47505 ELEVATION 31. GEOLOGIST D. Howes DRILLER R. FOWENER BIT NO BIT FOOTAGE 51. MOVE TO HOLE 10:35.10:45.47 DRILL 10:45-1:00 PM MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE Lost 2 10010 and 610KL 150.			GE <u>57.0 ~ 61.5</u>
DEPTH METRES GRAPHIC INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
3 3 5 - 3 5	Fine beige - ochre sand - very poor return - rods do wot seal CHIBURATATA TILL abrapt outact with sand 3.3-6.5 Sandy matrix supported to fine beige sund matrix; coloble last compestion approx. 50 % volcanics/sediments 50% gra 6.5.10.0 clost supported till; - still very poor sample return therefore taking much langur say intervals 10.0-10.5 Soulder-5 year. te (not samped) > possibly bedrock 5 EOH - pull rods to change bit and discover broken rod - leave 2 rods bitsub and bit in hole > more 75 mg north and Spot Hole PLS-89-164.	abed 6		

	ATE James 2		HOLE NO PLS -89-164 L GEOLOGIST DE HOLE DRILL	LER R. FORRNEL	BIT NO. CB	70/60 BIT F	/ATION OOTAGE	311 m -30.0m
***	то		DRILL	0-4:00PM				
T	OTAL HOURS		MECHANICAL DOWN TIME					
_			DRILLING PROBLEMS					
С	ONTRACT HO	URS	OTHER					
_			MOVE TO NEXT HOLE		/	. 10	,	
				New Bi	t New	~ Bit Su	6	pagel
DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE NO.		DESCRIPTIVE LOG					
		0-5	S OJIBWAY IT SED	TENTS				
2-3-			0-1.5 day - beige co slightly gritty 1.5-5.5 fine beige sa poor sample return	mpact				
4	E E		,	~ y .				
5-		5.5 -	28.5 CHIBONG ATTACK	TILL				
	· · · · · · · · · · · · · · · · · · ·		· very poor sample re					
6-	0 = 1		of the sample coming outside of the rods	up the				
7	- A F							
8 -	A:		5.5-10.0 matrix supp.	estad till;				
=	o A		Fine berge to gray - 6	eige sand				
	A. Eol		matrix: cobble cla 60% volumns/sodina granitoid	As, 402				
10-	- 4		granitoid					
11_	A?		10.0 - 24.0 clast supp.	rted till;				
12_	· A		fine gray sand-silt	matrix;				•
13	in F		colble clasts st.11.					
14	: 4		- gradual imprevene					
15—	· · · E		sample sororery undopth after 16.0 m	Th				
=	A. E		depin after 16.0 m		- Pillar D. T. Falsa			
16-	- A FOZ							
17-	V . /F			1				
18	- 4							
, = 1	1.0/							£.
19 -	· j / F03							
20-	1/-							

DATE Vamon 2419.	HOLE NO PLS-89-164 LOCATION	
SHIFT HOURS	MOVE TO HOLE	NO BIT FOOTAGE
то	DRILL	
TOTAL HOURS	MECHANICAL DOWN TIME	
CONTRACT HOURS	DRILLING PROBLEMS	
	MOVE TO NEXT HOLE	
		page 2
IN METRES 3RAPHIC LOG NTERVAL NO.	DESCRIPTIVE LOG	
Σ Ω N N		
4 03	24.0-28.5 clast sugarted till	
21-13.0	as above with gray to gray-	
10.0	green sand-sitt matrix;	
22 - 5 A E04	clast amposition still 60/40	
23-10-	- a few clasts have a conting	
30	of very hard gritty day	
24		
25		
13.4 /E		
26 - 4 - 5		
3 1 VE	28.5-30.0 BEDROCK	
27 0,5	- light pink, mothed white	
* 3 / E	- light pink, mottled white and dark green - minor hendite stain	
14. A	- minor hemotite stain	
9 Ob bodrock	- coarse grained 0.5 \$ 3mm	
bedrock		
	- 20-25 % humblende laths and blilorite	
n=		
	~1.2% chosite shears	
2	~ 1% slow searting carbonate	
3 = =		
] [Syemite	
4		
5	30.0 EOH	
5		
J6-		
4 F		
77		
18-		
3 E		
19-]		
20-		

DATE James		HOLE NO PLS-B9-165 LOCATION GEOLOGIST D. HOLDES DRILLER R. F.	BIT NO.	+50S E	LEVATION _3	107 m
SHIFT HOU		MOVE TO HOLE _ Jan 24 4:00 - 4:15 P. DRILL _ Jan 24 4:15-4:45PM - clean &		35 /614 /	/ 1M / 1200	
TOTAL HOU			ank Jam	25 /0.85 - //	100 ATT 7:00	-3.00/11
———	no	DRILLING PROBLEMS difficulty starting	2 CT matercarrie	~ Ja 25 7:0	9:00/19 .	9:30-10:00
CONTRACT	HOURS	DTHER dill startup 1100 - 1:00P	n difficulty's	tasting com	pressor - then	v waterline
		MOVE TO NEXT HOLE and rods of		V		
		travel: Jan 24 4:45-5:30PM	; Jan 25	6:30-7100	ANT, 9:00-9	:30 AV7
				5:00-5:3		sage 1
- S 2 H H					F	July "
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	ġ	DESCRIPTIVE LOG				
ME ME GRA						
		I TAMAN T SEALOREN	74			
	0-	4.4 OJIBWAY ILSEDIMEN				
1 =		0-3.0 clay beige, compant				
2		and gritty				
		9/				
3_====		3.0 -4.4 clay as above with Fire gray-being sand horizons approx 10cm think	æ			
		gray-beige sand horizons				
4		approx 10cm the				
1 2		//				
5-1-1						
10. FO	1 44	21.5 CHIBOUGANAU TILL				
6 H / E	1.7	- abrupt contact				
7 0/4		- wormpl contac.				
7:16		4.4-6.0 motix supported +	. //			
8 4	ĺ					-
1402	2	Five gray-beige to gray sand matrix; while clasts upprox				
9 0 0		matrix; whole clasts approx	.//			
		50% volcamies/sadments 50% grani	Aid			
10-1			4			
11 A . Fo	5	6.0-6.5 clay gray, compact-gril				
"F"		6.5-8.5 clast supported till;				
12-1		E				
E AE		Fine gray sund-silt matrix;	1			
13- 13-	+	cobbles approx 60 % volcanics/sodina	#1			
1. SE		40% granitsid				
14 14 9 1		agritty gray day lumps in				
A/F		and is				
15-	5	8.5-18.0 clost supported till as	5			
16-		dove without day in matri)				
		- clast compositions changes				
17 606		gradually to approx. 70/30	,			
JA, NF		befuer 12.0 and 18:0 m				
18 07						
1/107	'	18.0-21.5 clast supported till with fire gray to gray green sound-silt matrix; collibe clast				
		with time gray to gray green				
20- A 08	3	sund-silt matrix; colpbe clust				
-1	1	granitaid 50% volcanies sediments	1 1			
		granible 50% volcanics (sediment)	Auria			
		- Increase in quarternt of sample 1	D V(
		after 180 m - at 19.0 in clar in matrix to	S-0-7			
		- on 19 pm can in matrix!	up a my			

DATE January 25 19 5	9 HOLE NO PLS-89-165 LOCATION	
SHIFT HOURS	MOVE TO HOLE	
TOTAL HOURS	MECHANICAL DOWN TIME	
	DRILLING PROBLEMS	
CONTRACT HOURS	OTHER	
	MOVE TO NEXT HOLE	
		page 2
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
21-4:09	- several large cobbles in batton 2 metres - mostly garbbro some at which contain up to 18 pyrite	
22 10 bednet	anto 18 prite	
23		
24	1.5-23.0 BEDROCK	
26-	and dark green	
27	- light pink, mottled white and dark green - coarse grand 0.5 to zun 20% hornblende laths	
28-	a // -to shears	
29-	- 10% fast reacting carbonale (to HCI) - calcite	
30-	Syanite	
4 1 1	3.0 EOH	
713		
74-		
75-		
36-		
37- 78-		
33- 34- 35- 36- 37- 38- 399-		
40-		

DATE 19 8 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO PLS.89-166 LOCATION GEOLOGIST B. Book DRILLER K. Fournel Move to Hole 7:5-7:45 DRILL 7:5- MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER Travel 6:30-7:5 MOVE TO NEXT HOLE	HOD 34505 ELEVATION 305mm M BIT NO. A000005 BIT FOOTAGE 0-345 POSE \$12
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1	0.5 Organics 5.5. OSIBWAY II SEDIMENTS 0.5.30 - gritty beige clay 3.0-4.8- fine grained gray to gray-beige Sand - well sorted 4.8.5.5- gritty gray clay with appro- 10cm silt varues every .3 m 5.18.2 - abrupt contact with overlying - matrix supported till - fine grained gray sand silt mal - predominantly collect, approxim 70% Volcanic / Sedimint 30% granitoid 8.7 Boulder (motic Volcanic) -19.2- matrix similiar as above - clost, predominantly collects with occassional pebbles, composition 60% Volcanic / Sediment 46% granitoid 200 Boulder (Rhyolite) -22.8 - clost supported till - slow drilling	g Secliments Change

SHIFT HOURS	GEOLOGIST DRILLER BIT	
TO	DRILL	
OTAL HOURS	MECHANICAL DOWN TIME	
CONTRACT HOURS	OTHER	
	MOVE TO NEXT HOLE	
		page 2 of 2
		· · ·
HIC SALE		
RAPHIC LOG ATERVA NO.	DESCRIPTIVE LOG	
5 <u>z</u> 0		
21.0	-21.2 Boulder (motic Volcanic)	
1 . 4	-22.8 Boulder (granite)	
13.4	-22.8 Double (grande)	
TWIT		
100	3-23.7 Missinabre Sediments	
	-dock gray hard clay	
	-very compact	
10	- very comport - variably gritty - non-gritty	
725	- lighter gray colour downsection	
- 4	- occassional pebbles below 23.5	
1.5		
33.7 123.7	-30.5 Lower Till	
1 6 P 12	-fine grained gray sand sitt matrix - closts, cobbby, approximately	
74 NE	- clasts, cobbly approximately	
4	50% Volcanic / Sed ments	
JA: E	50% granital	
-Txxx	50% Volcanic/Sediments 50% granted -clast supported till	
150	5.25.7 Boulder (granite)	
7.7.14	State (graning	
29.	7-305 Boulder (granite)	
7.11.0		
	5-320 - light to medium grithy gray	
4////	- moderately hard to drill	
1/// Bedrock	- very tew clost	
320	2-323 - Similiar to above	
3 [- increase in clasts, approximate composition 20% Volcanic/Sediment	
3 1	composition 20% Volcanic /Sediment	<u> </u>
32.	3-33.0 - as in 30.5-32.0	
33.0	2-34.5 BEDROCK	
	- light to medium pink colour with	
	mother dark arees beauty	
<u> </u>	- coarse grained - mossive structure	
]	- predominant motic mineral is hornblen	4
4 F	approximately 25% carbonate minerals	}
	(delayed reaction to HCl)	
	- evidence of shearing	
	-Syenite	

DATE James 26 1989 HOLE NO PLS-89-167 LOCATION L Z5400 W; 24305 ELEVATION 307 GEOLOGIST NO HOLE L:15-2:15 TO DRILL Z:15-3:15 TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS CONTRACT HOURS MOVE TO NEXT HOLE MOVE TO NEXT HOLE				
			f	sagel
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
1	22.5 OSIBWAY I STEINENTS 0-12.5 clay - gray & mongrithy and soft with beige sitt varies - softer downsection 12.5-14.0 very fine grained gray sand 14.0-22.5 fine beige sand			

DATE January 26 19 59	HOLE NO PL 5-89-167 LOCATION BIT NO	
SHIFT HOURS	MOVE TO HOLE	
TOTAL HOURS	MECHANICAL DOWN TIME	
	DRILLING PROBLEMS	
CONTRACT HOURS	OTHER	
	MOVE TO NEXT HOLE	
		pagez
DEPTH METRES GRAPHIC COG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
21	22.5-25.6 CHIBUMGATAM TILL -absorpt contact with overlying sand -sandy matrix supported till Fine gray-basing sand matrix coloble clast composition approx 40% Volumics/Sadinants 60% granitoid	
26	5.6-27.2 BEDROCK -light pink, unottled white and dark green - coarse grained 0.5 to 2 mm - m 25% hornblude laths, predominant watre universal - 12 shears coafed with apidote - some day along fracture/ shear surfaces - minor homotite staining 18 carbonate Syenite EOH	
18—		

S - T	HIFT HOURS TO T	5	HOLE NO PLS-89-168 LOCA GEOLOGIST B. Bork DRILLER MOVE TO HOLE 3:55-3:30 DRILL 3:50-5:00 PM. Jan MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER France Sis-6:00 F. MOVE TO NEXT HOLE	26 7:0s	7-9:30 Jan	BIT FOOTA	ON 307m GE 61.7- 88.0
DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE NO.	-	DESCRIPTIVE LOG				
1		3.0-1 3.0-1 10.8	O No Return. 5.0 OSIBIURY II SEDIMO 0.8 - gray slightly grithy of - very occassional thin beds (10cm thick) of corry 15m. - 15.0 - fine grained gray - well sorted - 25.5 Chibougamon Till - about contact with of - observed gray - fine grained gray - fine grained gray - closti; cosoles, gray 60% Volcania 40% Grania 40% Grania - decrease in an - decrease in an - 202 as in 15.0.	Sond sil	timents		

SHIFT HO	DURS	HOLE NO PLS-89~ 168 LOCATIO GEOLOGIST DRILLER MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE	BIT	NO	TAGE
DEPTH IN METRES GRAPHIC LOG INTERVAL	SAMPLE NO.	DESCRIPTIVE LOG			
21 - \(\Delta \)	05 05 06 07 -08 Bedro &	- 25.5 - Clost supported till - Very slow drilling - decrease in amount of grained gray sond - increase in cobbles, of composition 40% Volcan 60% grain - 22.1 Boulder (Granite) - 27.0 BEDROCK - dark pink with mottle green hornblende - coarse grained, approxima - massive structure - predominant matic mineral approximately 20% of rock - approximately 5% carbonete reaction with Hell) - Syenite D E.O. H.	the fine proximate such Sediming to add at the state of t	na.	

DATE Jes 27 19 87 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO PLS-87-169 LOCATION GEOLOGIST B. B. A. DRILLER R. F. MOVE TO HOLE 9:30-9:75 DRILL 9:75-7:00 MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER B. C. C. C. C. C. S. C. U.S. A. MOVE TO NEXT HOLE	BIT NO. CETOLOS	BIT FOOTAGE 53	
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
1	7.5 OSIBINAY IT SECUMENTS. 7.5 OSIBINAY IT SECUMENTS. 7.5 - gray slightly gritty clay - occassional thin beige Varues (approximately row every Im.) - clay becomes more beige below 8.2 m increase in silt varue softens downsection 5-17.5 - fine grained gray well sorted - occassional interbeds of gritty clay, approximen thick every Im23.6 Chibougaman Till - abropt contact with - fine grained gray som - matrix supported till - clasts, cobbles, approxim composition 60% Volcanic, 40% Granitai	self m thick colour so colour so colour so gray for 10-20cm overlying Sechim ch silf motive Sechiments	ne-nts	

DATE	19	HOLE NO PLS-89-169 LOCAT	TON	ELEVATION
		GEOLOGIST DRILLER _	BIT NO	BIT FOOTAGE
SHIFT HO		MOVE TO HOLE		
TOTAL H		MECHANICAL DOWN TIME		
		DRILLING PROBLEMS		
CONTRAC	T HOURS	OTHER		
		MOVE TO NEXT HOLE		200
				page 2of 2
METRES SRAPHIC LOG NTERVAL	SAMPLE NO.	DESCRIPTIVE LOG		
ME 3 SRA NTE	SAN			
1,7.5.	20.8	3-21.9 - clost supported till		
15:17	02 \$ 20.8	- duresse en fine grained	groy sand	
27 3 6 7	-7.4	· slow drilling		
22 - 4	e3*	· closts, cobbles, opproxima	te composition	
1,04	04 *	50% Volconie /Se	Lack	
23- 4	07 *	50% Granitad	America de la constante de la	
24	05	- very similar chococheristic	farout	
~*=====================================	EX	See of an are		
25	- 1	Sample 02,03 to 4 recommend grain size analysis con to determine proper cla	ded to have	
		to determine many sis con	ducted in lab	
26			ssi tico tion	
27	21.	9-23.3 Grovel		
10.0	06	- no fine grained sono	(
28		- predominantly medium to a	Coarse granned	
4	67	- high percentage of pela	21 1	
29 - 4	F	my c posterage of per	The Clasis	
30-1-4	23.	3-23.6 - Till similar to 17	25.20.3	
3	08 23	6-270 Missinchie Sediment	4	
31-10-4		- dark groy hard cle	1 (1	
32 10:0	E	- variable gritty - non	grith	
	09	- very compact, hard	deilling	
33	-	pecomes lighter into		*
1///		- Ding similar to sec	tion intersected in his	le #166
34-1///	10 27	Lower 111		
35 = ///	E	- fine grained gray to	groy beige	
1	E	- matrix Supported till	×	
36-	F	- cobbly, approximate com	posto	
37-	E	352 Sec. to 1		
		1-316 Boulder (Mate 111	canic)	
38-	F 33	3.0-33.5 - Similar to 270-3	33.0 w/h	
1		July Garly Cay in	matry	
39	E 33	3.5-35.0 BEDROCK		
40-	E	- dork to medium	pink colour	
, 1		- Coarse grained	cen hornblende, hemat	the staining
		- dork to medium with mothed dork grained, app massive structure - coidence of shevin	skimately / Imm	Y
		- evidence of shevin	9	/
		- evidence of sheering - predominant motion - approximately 5%	mineral is hornblende	e e
	33	5.0 E.O.H. Syenite		

DATE JON. 27 19 88	HOLE NO PLS-89-170 LOCATION 30100 54755 ELEVATION 301m. GEOLOGIST B.B. DRILLER R. Farrell BIT NO CB10158 BIT FOOTAGE 0-180
SHIFT HOURS	MOVE TO HOLE //00-//30
то	DRILL
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3 3 4 4 5 5 5 6 6 6 7 7 10 10 11 12 12 13 13 14 14 15 15 16 16 17 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	0-0.5 Organics 0.5-15.4 OSIBWAY I SEPIMENTS 0.5-12.2 - gray slightly gritly clay - becomes gray-beige down due to sell varues about thick every.5m. 12.2-15.4 fine grained gray some - well sorted 15.4-16.7 Chibougaman Till - about contact with our Sediments - clast supported till - fine grained gray sand so matrix - clasts, colles, approximate composition 20% Volcanc 15e 30% granitoid 16.7-18.0 BEDROCK	Sing 14 Edmest	
15————————————————————————————————————	- medium pink colour with mothled dark green hornon crystals - coasse grained (1-2mm) - mossive structure - predominant motic mineral is - evidence of shearing - Syenite 180 E.O.H.	ade	

DATE Jan 27 1988	HOLE NO PLS-89-171 LOCATION L28400W 84505 ELEVATION 307m GEOLOGIST B.Bark DRILLER R. Found BIT NO. CB70158 BIT FOOTAGE 180-375
SHIFT HOURS	MOVE TO HOLE 2/15.2/30 DRILL 2/30 - 4/15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3 4	0.5-10.2 OSIBWAY II SEDIMENTS 0.5-8.7 - Slightly gritty gray clay - very poor return 8.7-10.2 · fine grained gray sai - well sorted		
5 6 7 8	10.2-18.0 Chibougamou Till - abrupt contact with over Sediments - matrix supported till - fine grained gray to gra sand silt matrix - pebbles and predominantly	oy beige	
12 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	opproximately 60% Volcanic, 40% granitora 12.4-18.0 - becomes clost support - decrease in matrix - clasts, cobbles, appro 30% Volcanic / Seen	ted till	
16————————————————————————————————————	18.0-19.5 BEDROCK - medium pink colour mottled dork green hori - coarse grainel (1-2mm) - mossive structure - predominant matic mine 15 hornblinde Syenite	nbfendt)	

DATE 19 27 HOLE NO 125-89-172 LOCATION 25+50W 23+50N ELEVATION 308.m. GEOLOGIST 6.8 or DRILLER R. Fournel BIT NO. CB70158 BIT FOOTAGE 37.5 - 68.5 SHIFT HOURS MOVE TO HOLE 7.00-8:00 TO DRILL 8:00-1/:30 TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS CONTRACT HOURS OTHER 15:00-7.00 MOVE TO NEXT HOLE					
				page 18	2
GRAPHIC LOG INTERVAL	SAMPLE NO.	DESCRIPTIVE LOG			
		-2.5 No Return -21.8 OSIBWAY IL SEDIMENTS			
		5-13,2 - gray slightly grithy clay			
		- 2-3 cm churks - becomes beige color dou	nsection		
		- softens downsection			
	13.	2.21.8. fine grained gray-beig's sand - well sorted.			
		- WELL SOFTER.			
	01				

SHIFT HOURS	MOVE TO HOLE DRILLER BIT NO BIT FOOTAGE DRILL
TOTAL HOURS CONTRACT HOL	DRILLING PROBLEMS
	MOVE TO NEXT HOLE
METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
23	218-29.5 Chibougomou Tik 218-29.5 Chibougomou Tik 218-244 - Obryt contact with overlying Subinent - mutrix supported till - fine grained gray to gray-bags 3 and silt matrix - closts, preclaine-ty cobbes, agarximete composition 508 Volcani-Sodimints 508 Volcani-Sodimints 508 grants of 244-295 - becomes clost supported till - durage in matrix - closts, as obour 295-31.0 BLOROCK - dark green to block color- - time to medicin grained - way hard to drill - magnetic - Iron Formation 31.0 E.O. H.

DATE	HOLE NO PLS 89-173 LOCATION L26+00W 1/4005 ELEVATION 308 mgeologist B.Book DRILLER R. Forme BIT NO. B000007 BIT FOOTAGE 0-16.4
SHIFT HOURS	MOVE TO HOLE
то	DRILL 11:45 - 12:45
TOTAL HOURS	MECHANICAL DOWN TIME
-	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
1	0-2.5 No Return 2.5-14.4 OSIBLARY I SEDIMENT - gray slightly grity alay - occassiona (thin beige s - varies approximately round - large clay chunks, 3-50 - Softens downsection 14.4-14.8 Chilosogamon Till - abrupt contact with over - matrix supported till - fine grand gray to gra sand sill matrix - collies, approximate compose 50% internitys - collies, approximate compose 50% internitys - motive grand is-2mm motiled dark green hornblands - coarse grained is-2mm - massive structure - predominant matic miniral is hornblands - Syenite 16.4 E.O. H.	thick sediments being sediments	

DATE Jan. 28 19 89	HOLE NO PLS-89-174 LOCATION L24400W 13150S ELEVATION 308m GEOLOGIST B.B. DRILLER R. FOUNCE BIT NO FOODOGT BIT FOOTAGE 16.4- 27.7
SHIFT HOURS	MOVE TO HOLE 12:42-1:00
то	DRILL/:00-2:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
1	0-0.5 Organics		
2	- non-grithy gray clay		
3-	- Soft - frequent varues of beige :	silf	
5	(10cm thick every 15m)		
6	9.6-11.8 Chibargomon Till		
8	- about contact with ou - matrix supported till		
9	- fine grained gray to gra sand silt matrix	of-beige	
10 4.0	- Cobbles, approximate compo		
12	1/8-13.3 BEDROCK		
13	- light to medium pinks	Colour	
15—	- coarse grained 15-2m.	m -	
16-	- predominant motic mineral	(15	
17-	hornblonde, opproximately 25% - evidence of shearing - Syenite		
1 F	13.3 E.O.H.		
20-			

DATE Jon 28 19 87 HOLE NO PLS-89-175 LOCATION LIGHTS W 12+005 ELEVATION 30Lm GEOLOGIST B.B.A. DRILLER R. Fournel BIT NO. ACCORD BIT FOOTAGE 29.7-64.7 SHIFT HOURS MOVE TO HOLE 2:00-2:15 TO DRILL 2:5-5:15 TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS CONTRACT HOURS OTHER Travel 5:15-6:00 P.M. MOVE TO NEXT HOLE			
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3 3 4 4 5 5 6 6 6 6 7 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	10-10 Organics 10-15.2 OSIBWAY II SEDIMENTS 1.0-85 - pon grithy gray clay - occassion (thin beige site varues (approximately · Som cuery 1.0m) 3.5-13.8 - fine grained gray-beige si - well sorted - occassional thin lamination of pebbles 13.8-15.2 - slightly grithy gray clay - no clasts - compact compared with upper clay 5.2-33.7 Chibougaman Till - obrupt contact with ou Sediments - clast supported till - fine grained gray sand motrix - clasts, cobbles, approximate composition 60% Volkanic IS 40% Granitore	rand n (.scm) h verlying l silf is sediments	
20-06			

DATE Jan. 28 19 89	HOLE NO <u>P15-89-175</u> LOCATION		
	GEOLOGIST DRILLER	BIT NO	BIT FOOTAGE
SHIFT HOURS	MOVE TO HOLE		
то	DRILL		·····
TOTAL HOURS	MECHANICAL DOWN TIME		
	DRILLING PROBLEMS		
CONTRACT HOURS	OTHER		
	MOVE TO NEXT HOLE		

DEPTH IN METRES	GRAPHIC LOG INTERVAL	SAMPLE NO.	DESCRIPTIVE LOG	
21-		06		
22		07	28.3-30.1 - occassional gray gritty clay lumps in matrix, increasing downsection	
23 -		08		
25-		09	30.1-31.9 - clay rich till - decrease in closts	
26-		10	31.9-33.7- as in 28.3.30.1	
27- 28-	4	11		
29	- △ E	12	33.7-35.0 Bedrock - light pink colour with	
30-		13	- light pink colour with mottled dark green hornblande crystals - coarse grained (5-2mm)	
31_ 32_	4		- mossive structure - predominant motic mineral is horn blende, approximately 20% of rock	
33		- 14	- Evidence of Shearing	
34		Badin	- 2.3% carbonate mineral	
35- 36-			35.0 E.O. H.	
77-				
38-				
33- 40-				

DATE JAN. 29 19 99	HOLE NO PLS-89-176 LOCATION LY400E 22450N ELEVATION 313m. GEOLOGIST B.B. DRILLER R. FAURLEL BIT NO AGGOOD BIT FOOTAGE 64-7-73,2
SHIFT HOURS	MOVE TO HOLE 7.6 - 7.45
TO	DRILL 7.45 - 9.15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER Travel 6:30-7:00 A.M.
	MOVE TO NEXT HOLE

- 8 0 7 H			
DEPTH INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
	0-25 OJBWAY IL SEDIMENTS		
2	- beige slightly gritty on		
3 6 4	- Small lumps, approximately	y .5-/mm	
	2.5-7.0 Chibougamon till		
	- matrix supported till		
5-04	- fire grained gray to go Sand selt motorix	ray-beige	
7 5 4	- closts, cobbles, opposine	tely	
1// a2	60% Volcenic / Section	int	
8 bidink	· for return above 4.5m		
	5.5-5.4 Bolder (Make Volconie))	
10-1	7,0-85 BEDROCK - light to Bedium pick o	Nour	
12_	with mothed dock given to	hornblende	
13	- course grained (.5-2mm		
	- predominant motic minera	20.4	
15	hourblande , approximately 200		
	- Syenite		
16—	9.5 E.O. H.		
18-	,,,		
1 E			
19			

DATE Jon. 29 19 89	HOLE NO <u>\$15-89-177</u> LOCATION LOTSON 21150N ELEVATION 31Zm. GEOLOGIST B. Bark DRILLER R. France BIT NO. Koon 966 BIT FOOTAGE 0-11.3
SHIFT HOURS	MOVE TO HOLE
TO	DRILL 9:30 - 10 30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
2	0-0.5 Organics 0.5-8.8 OSIGWAY II SEDIMENTS 0.5-7.7 - Slightly gritty gray clay - beige silt varues, approximately 10cm thick every 1.0m.	
5	7.7.88. fine grained gray sand - well sorted 8.8-9.8 Chibougamou Till - abrupt contact with overlying Sediment - matrix supported till	
9 A 00 10 A 00 10 Dedrok	- time grained gray to gray-beige Sand self matrix - cobble closts, approximately 60% Volcaniel Sediments 40% Granifold	
13-	9.8-11.3 BEDROCK - light pink to white colour with mottled dork given hornblade crystals - course grained ,5-2mm - mossive structure - predominant motic mineral is hornblade, approximately 25% of rock	
18—————————————————————————————————————	- Evidence of spessing - Syenife, possibly disinte	

DATE Jan. 29 19 89	HOLE NO PLS-89-178 LOCATION
	GEOLOGIST B. Bark DRILLER & Fairnel BIT NO KOCC 766 BIT FOOTAGE 1.3-22.4
SHIFT HOURS	MOVE TO HOLE
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	_
3	0-2.5 No Return 2.5-9.4 OSIBLUAY I SEDIMENTS -gray slightly gritty clay -very poor return, possibly bit plugged. 9.4-9.6 Chibougamon Tik	
10————————————————————————————————————		
13-114-115-115-116-116-116-116-116-116-116-116	- massive structure - predominant motic mineral maybe hornburde - Gabbio 10.4-11.1: appear to contain more feldspar - possibly hit Syende contact - light pink colour with mothed dock given hornburde	
18-19-1	- coorse grained - massive structure - predominent motic mineral, horablade - Syenite 11.1 E.O.H.	

DATE Jan 29 19 3 SHIFT HOURS TO TOTAL HOURS	MOVE TO HOLE //:30-//-YS DRILL //:45- /:00 MECHANICAL DOWN TIME DRILLING PROBLEMS	'tooW 18450 N BIT NO. K2005	ELEVATION BIT FOOTA	DN <u>311m.</u> GE <u>22.4-44.8</u>
	· · · · · · · · · · · · · · · · · · ·		pog	1/2
GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
3 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0-20.0 OSIBWAY I SEDIMENTS 0-17.6 -Mon-grilly gray clay -large churks 2-3 cmsoftens downsection -rads full by themselves 17.6-20.0 - Fine grained gray sand -well so-ted.			

DATE	HOLE NO PLS-89-/79 LOCATION GEOLOGIST DRILLER MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE	BIT NO.	
DEPTH INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
21	- 209 Chibayamus Till - about contact with over sediments - matrix supported till - fine grained gray to gra Sond silt motion - clost, cobbles, approximate Composition 60% Volconic 15 40% Granitoid 9-22.4 BEDROK - medium green and whin - coarse grained C.S-1. - mossive structure - predominant matrix minerals maybe chlorite - no carbonate minerals (t. HCl) - Gubbro	sediments te colour onn)	

_	DTAL	O HOURS .CT HOURS		DRILL MECHANIC DRILLING DTHER	AL DOW	MS		prepara	for mou	e 4:00	· - 4:30	o Ta	ravel "	4.30·5°	100 PM
_				MOVE TO		OLE				sinet F					
METRES	GRAPHIC LOG	SAMPLE NO.		DES	SCRIPTI	VE LO	G								
1-		0	-22	03				_							
2	(A) (A)				-	non.g	rithy . ks	Clay				Note:	aracter	splits of	samp
3	2.0.0	2.	2-13	3 C.	hibougo	mou	Till					micros	cope is	dinoeu dicates 04 are	that
4 -	4	oz l		-061	apt co	ontoct	with	Lover!	ying Se.	liments		poblohy	sand	Firmed	s to
5	4								- beige	Sand	_	be go	avel.		
6		03						composi				_		5 13.3	
7-	000	04					ranitor	Sedim	1			grave	l.		
8-	000	6	5-6.	8 · ma											
9-	000 000	E 05		3.3 G	,			J							
10-	000	E06		4 -no	fine			motrix ained							
=	000			mal	rix		•	roximal							
13-	000	207		200	n to	hick		proximo	1	And the second second					
14		08		Compo	sition	50%	Volcon	ic/Sed	ments						
15-	///>	pediock	9.11	· wate	re	turn	is ver	y clea	<u>~</u>						
16-		E	0.7-	10.6- C	in Tine	e gran	ned 6	aige Sa	ad inter	heds					
17-		E	10.0	6-13.3	w. V.ma	rely 1	Ocm	thick							
18		E /		14.8	BED	ROCK		green e	alan-						
19		E		-6	DOISE	9101	ned listed		2007						
20-		F		-/	chlorit	ront,	matic	minera	may	de					

DATE Jan 30 1989 SHIFT HOURS	HOLE NO PLS-89-181 LOCATION SITE BY GEOLOGIST D. HOLMES DRILLER R. FOURNEL B	IT NO. R 00 966 BIT FOOTAG	303 m E 59.6 - 92.2
TO	DRILL	1:30 - 5:00	PM
TOTAL HOURS	MECHANICAL DOWN TIME		
	DRILLING PROBLEMS		
CONTRACT HOURS	OTHER France 6:30-7:00 AM Brown eg.	sip. to highway 7:00-9:00,	407
-	MOVE TO NEXT HOLE _ framal 5:00 -	5:45 PM	
			-
	First hole on Openica Property.		Daya 1
DEPTH INT GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
	0.7 Organics		
6	0.2 Organics 16.8 OTIBWAY II SEDMENTS 0.2-10.2 clay-gray, non-grithy and soft with being siltvarves less than 2 cm thick - becomes softer downsection 10.2-10.5 very fine grained gray sand 10.5-15.0 Fine grained gray sand 15.0-16.8 Fine and medium gray sand interbeds with a Tew clay lenses less than 2 cm thick - 30.8 CHIBOUGAPHU TILL - abrupt contact with overlying sand 16.3-20.5 clast supported till; Fine gray sand silt matrix; pebble and cobble clasts approx. 60% volcanics/sediments 40% gravitoid.		

SHIFT HOURS SHIFT HOURS TO DRILL MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILL MECHANICAL DOWN TIME DRILL MOVE TO NEXT HOLE Page Z DESCRIPTIVE LOG DESC	DATE Jam 30 19 80	HOLE NO PLS-89-18 LOCATION	ELEVATION
DRILL TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE Page Z DESCRIPTIVE LOG 19 ===	GEOLOGIST BIT NO.	BIT FOOTAGE	
TOTAL HOURS CONTRACT HOURS CONTRACT HOURS CONTRACT HOURS DESCRIPTIVE LOG DESCRIPTIVE L		MOVE TO HOLE	
DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE Page Z DESCRIPTIVE LOG DESCRIPTINT LOG DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRI			
CONTRACT HOURS OTHER MOVE TO NEXT HOLE Page Z DESCRIPTIVE LOG DESCRIPTIVE LOG ZOS-21.5 matrix supported till; fine gray sand sill meetins; while class appara, 50% verteaming sads to 30% granifold 21.5-2.8 clast supported till; fine gray sond rift metrix with clast supported till similar to 21.56 24.8, clast composition ranges from 20/40 to Similar to 21.56 24.8, clast composition ranges from 20/40 to 50/50 30.8-32.6 BEDROCK - light yellowish-green class vrange from 31.8 to 32.0 - very five grained is bright green chlorite. Afficient to the stimate but probability to 10 in strock - 2 1% claste shears - but man 1 and 5 & calculate alignmental - 2 1% claste shears - but man 1 and 5 & calculate alignmental - 2 1% claste shears - but man 1 and 5 & calculate alignmental - 2 1% claste shears - but man 1 and 5 & calculate alignmental - 2 1% claste shears - but man 1 and 5 & calculate alignmental - 2 1% claste shears - but man 1 and 5 & calculate alignmental - 2 1% claste shears - but man 1 and 5 & calculate alignmental - 2 1% claste shears - but man 1 and 5 & calculate alignmental - 2 1% claste shears - but man 1 and 5 & calculate alignmental - 2 1% claste shears - but man 1 and 5 & calculate alignmental - 2 1% claste shears - but man 1 and 5 & calculate alignmental - 2 1% claste shears - but man 1 and 5 & calculate alignmental - 2 1% claste shears - but man 1 and 5 & calculate alignmental - 2 1% claste shears - but man 2 5 & calculate alignmental - 2 1% claste shears - but man 2 5 & calculate - but man 2	TOTAL HOURS		
DESCRIPTIVE LOG DESCRI	CONTRACT HOURS		
DESCRIPTIVE LOG DESCRI	CONTRACT HOURS		
DESCRIPTIVE LOG DESCRIPTIVE LOG 20.5-21.5 matrix apparted till; fine gray send-sill metrix; exhibit closts apparted. 5.01; Fine gray send-sill metrix with clost apparted till; Fine gray send-sill metrix with clost apparted till; Fine gray send-sill metrix with clost apparted till; Fine gray send-sill metrix with clost apparted till similar to 21.5 to 24.8; clost composition ranges from 60/40 to 50/50 20.8-32.6 BEDROCK - light yellowish-green adam vrange from 31.8 to 32.0 - very fine grained - predominant matic unioned is bright green chlorit. Affight to estimate but probably n 10 % of rock - 218 chlorite shears - between 1 ml 5 % calculate disseminated intermediate function Bispeched intermediate function No leanic		MOVE TO NEXT HOLE	
20.5-21.5 matrix supported till. Fine gray sand-silt matrix; collete clasts apports, 50% volcanics/sadi at 50% granitated 21.5-24.8 Lost supported till; Fine gray sand silt matrix with clast supports supported till; Fine gray sand silt matrix with clast supposition remaining 50/50 24.8-25.0 boulder - galabro 25.0-30.8 clast supported till 5imilar to 21.5 to 24.8, clast composition ranges from 60/40 to 50/50 20.8-32.6 BEDROCK - light yellowish - green colour, vrange from 31.8 to 32.0 - very fine grained 15 brieflt green chlorite difficult to estimate but probably a 10 to 15 fack - 218 Choice shears - 218 Choice shears - 218 Choice shears - 218 Choice intermediate/matrix - 216 Choice intermediate/matrix - 216 Choice intermediate/matrix - 218 Choice intermediate/matrix			page Z
20.5-21.5 matrix supported till. Fine gray sand-silt matrix; collete clasts apports, 50% volcanics/sadi at 50% granitated 21.5-24.8 Lost supported till; Fine gray sand silt matrix with clast supports supported till; Fine gray sand silt matrix with clast supposition remaining 50/50 24.8-25.0 boulder - galabro 25.0-30.8 clast supported till 5imilar to 21.5 to 24.8, clast composition ranges from 60/40 to 50/50 20.8-32.6 BEDROCK - light yellowish - green colour, vrange from 31.8 to 32.0 - very fine grained 15 brieflt green chlorite difficult to estimate but probably a 10 to 15 fack - 218 Choice shears - 218 Choice shears - 218 Choice shears - 218 Choice intermediate/matrix - 216 Choice intermediate/matrix - 216 Choice intermediate/matrix - 218 Choice intermediate/matrix			
20.5-21.5 matrix supported till. Fine gray sand-silt matrix; collete clasts apports, 50% volcanics/sadi at 50% granitated 21.5-24.8 Lost supported till; Fine gray sand silt matrix with clast supports supported till; Fine gray sand silt matrix with clast supposition remaining 50/50 24.8-25.0 boulder - galabro 25.0-30.8 clast supported till 5imilar to 21.5 to 24.8, clast composition ranges from 60/40 to 50/50 20.8-32.6 BEDROCK - light yellowish - green colour, vrange from 31.8 to 32.0 - very fine grained 15 brieflt green chlorite difficult to estimate but probably a 10 to 15 fack - 218 Choice shears - 218 Choice shears - 218 Choice shears - 218 Choice intermediate/matrix - 216 Choice intermediate/matrix - 216 Choice intermediate/matrix - 218 Choice intermediate/matrix	RES PLE S		
20.5-21.5 matrix supported till. Fine gray sand-silt matrix; collete clasts apports, 50% volcanics/sadi at 50% granitated 21.5-24.8 Lost supported till; Fine gray sand silt matrix with clast supports supported till; Fine gray sand silt matrix with clast supposition remaining 50/50 24.8-25.0 boulder - galabro 25.0-30.8 clast supported till 5imilar to 21.5 to 24.8, clast composition ranges from 60/40 to 50/50 20.8-32.6 BEDROCK - light yellowish - green colour, vrange from 31.8 to 32.0 - very fine grained 15 brieflt green chlorite difficult to estimate but probably a 10 to 15 fack - 218 Choice shears - 218 Choice shears - 218 Choice shears - 218 Choice intermediate/matrix - 216 Choice intermediate/matrix - 216 Choice intermediate/matrix - 218 Choice intermediate/matrix	RAF LO LO NAM	DESCRIPTIVE LOG	
Fine gray sand silf metrix; while closits apparay. 50% ordering sadicate 30% granitoid 21.5-24.8 clost superited till; Fine gray sand silf metrix with closet sampsection remaining 50/50 24.8-25.0 boulder - gabbro 25.0-30.5 closet superited till similar to 21.5 to 24.8; closet composition ramps from 60/40 to 50/50 30.8-37.6 BEDROCK - light yellowish - green colour stange From 21.8 to 32.0 - very Fine grained is bright green closet. 25.0-30.5 closet superited till similar to 21.5 to 24.8; closet composition ramps from 60/40 to 50/50 30.8-37.6 BEDROCK - light yellowish - green colour stange From 21.8 to 32.0 - very Fine grained is bright green closet. 26. Fine the to estimate but probably a 10 to 5 rock - 21% closet shears but name 1 of 5 & calcite desseminated 21% coloite vanists Blacecheel intermediate/matic No leavie	□ <u>▼</u> <u>♀</u> <u>₹</u> ⊗		
Fine gray sand silf metrix; while closits apparay. 50% ordering sadicate 30% granitoid 21.5-24.8 clost superited till; Fine gray sand silf metrix with closet sampsection remaining 50/50 24.8-25.0 boulder - gabbro 25.0-30.5 closet superited till similar to 21.5 to 24.8; closet composition ramps from 60/40 to 50/50 30.8-37.6 BEDROCK - light yellowish - green colour stange From 21.8 to 32.0 - very Fine grained is bright green closet. 25.0-30.5 closet superited till similar to 21.5 to 24.8; closet composition ramps from 60/40 to 50/50 30.8-37.6 BEDROCK - light yellowish - green colour stange From 21.8 to 32.0 - very Fine grained is bright green closet. 26. Fine the to estimate but probably a 10 to 5 rock - 21% closet shears but name 1 of 5 & calcite desseminated 21% coloite vanists Blacecheel intermediate/matic No leavie	10:0/	20.5-21.5 matrix supported till.	
closts import. 50th volcanies/sadi at 50th granitoid 21.5-24.8 clost superied till; fine gray sound rill matrix in the clost temporation remaining 55/50 24.8-25.0 bounder - gash tro 25.0-30.8 clost superied till 50.8-30.8 clost superied till 50.8-30.8 clost superied till 50.8-30.8 clost superied till 50.8-30.8 BEDROCK 1/2/15 yellowish - green colour 50/50 50/5	21-c'A./203	Fine gran sand-silt matrix: colle	
23-1-29 21-5-24.8 clast superied till; Fine gray sand siltmatrix with clast temperation remaining 53/50 24-8-25.0 boulder - gabbro 25-30.5 clast superied till 5:miles to 21.5 to 14.8, clast composition ranges from 60/40 to 50/50 28-30.6 BEDROCK - light yellowish green colour stange from 31.8 to 32.0 - pery fine grained is bright green chlorite. Afficient to estimate but probably a 10 to 5 fock 21.6 choite sheers beforem 1.25 pocket - Life choite sheers - Life choite sheets	E Line A	days appros. 50% volcaries/sadi et	
23-10-505 21.5-24.8 clast supported till; Fine gray sand silterative with clast temposition remaining 53/50 24.8-25.0 boulder - gabbro 25.0-30.5 clast supported till 5:miles to 21.5 to 24.8, clast composition ranges from 60/40 to 50/50 28-10-10 30.8-37.6 BEDROCK 1:glit yellowish-green colour vrange From 31.8 to 32.0 very Fine grained 5 bright green closet is bright green closet is bright green closet 21.6 calcite shears between 1 and 5 \$ calcite disseminated 21.6 calcite veinlets Bleached intermediate function Wo canic	22-04	508 gran: toid	
clust Emposition remaining 53/50 24.8-25.0 boulder - galobro 25.6-30.5 clust supported till 5:milar to 21.5 to 24.8; clust composition ranges from 60/40 to 50/50 30.8-32.6 BEDROCK light yellowish-green about vrange from 31.8 to 32.0 - very fine grained 15 bright green chlorite difficult to estimate but probably no 10 to 5 frock 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears			
clust Emposition remaining 53/50 24.8-25.0 boulder - galobro 25.6-30.5 clust supported till 5:milar to 21.5 to 24.8; clust composition ranges from 60/40 to 50/50 30.8-32.6 BEDROCK light yellowish-green about vrange from 31.8 to 32.0 - very fine grained 15 bright green chlorite difficult to estimate but probably no 10 to 5 frock 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears	23-14 - 1-05	21.5-24.8 clost supported Till;	
clust Emposition remaining 53/50 24.8-25.0 boulder - galobro 25.6-30.5 clust supported till 5:milar to 21.5 to 24.8; clust composition ranges from 60/40 to 50/50 30.8-32.6 BEDROCK light yellowish-green about vrange from 31.8 to 32.0 - very fine grained 15 bright green chlorite difficult to estimate but probably no 10 to 5 frock 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears - between 1 and 5 to calculate disseminated 21.8 chlorite shears	E e A	fine gruy sound silt matrix with	
24.8-25.0 boulder - gubbro 25.0-30.8 clast supported till 5:milar to 21.5 to 24.8, clast composition ranges from 60/40 to 50/50 30-8-1-10 30-8-37.6 BEDROCK light yellowish-green colour range from 31.8 to 32.0 - very five grained is bright green chlorite probably on 10 to of rock 36-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	24 7 4 P	clust temposition remaining 50/50	
26-6 A - 07 25.0-30.5 clast supported till 5:milar to 21.5 to 24.8 clast composition ranges from 60/40 to 50/50 28-10-10 30-8-32.6 BEDROCK light yellowish-green about range from 31.8 to 32.0 very fine grained - predominant matic uniased is bright green chlorite - difficult to estimate but probably on 10 to . Frock 218 chlorite shears - between 1 and 5 to calcite disseminated 218 calcite vainlets Blanched intermediate/matic No leanic	10.0		
similar \$D 21.5 to 24.8 clost composition ranges from 60/40 to 50/50 28-10-60 30-60	25 - 25 - 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
similar \$D 21.5 to 24.8 clost composition ranges from 60/40 to 50/50 28-10-60 30-60	30 7 07	25.0-30.9 clast supported till	
amposition ramps from 60/40 to 50/50 30-8-32-6 BEDROCK light yellowish-green about range from 31.8 to 32.0 - very fine grained probability green about is bright green about to be to estimate but probably n 10 to estimate but probably n 10 to estimate Lift cultity to estimate but probably n 10 to estimate Lift cultity values Beauched intermediate funtion wo kanic		similar to 21.5 to 24.8 clost	
28-1. 10 30-8-32-6 BEDROCK light yellowish-green color, stange from 31.8 to 32.0 very five grained predominant wratic universal is bright green chlorite. difficult to estimate but probably in 10 to 5 rock 21% chlorite shears between 1 and 5 % calculate disseminated 11% culcite variets Blacked intermediate funtion Wo karnic	27	composition campes from 60/40 to	
30-8-32.6 BEDROCK light yellowish-green about range From 31.8 to 32.0 very Fine grained probability to estimate but probably on 10 to of rock 21th chlorite shears between I and 5 th coloite disseminated 21th culcite vainlets Blackhold intermediate funtic wo kanic	10:4	50/50	
Jeff yellowish-green about range from 31.8 to 32.0 very fine grained predominant matic uninesal is bright green chlorite. difficult to estimate but probably on 10 to 5 rock 2 1% Morite shears between 1 and 5 to calcute disseminated 11% calcite veinlets Blooched intermediate/matic volumic	28-0.6	2-9,55	
Jeff yellowish-green about range from 31.8 to 32.0 very fine grained predominant matic uninesal is bright green chlorite. difficult to estimate but probably on 10 to 5 rock 2 1% Morite shears between 1 and 5 to calcute disseminated 11% calcite veinlets Blooched intermediate/matic volumic	017		
John Sight yellowish-green adour orange From 31.8 to 32.0 - very Fine grained - predominant wratic uninesal is bright green chlorite. difficult to estimate but probably no 10 to 6 Frock 2 1% chlorite shears - between 1 and 5 to calcute disseminated 2 1% calcite veinlets - 2 1% calcite veinlets - 2 1% calcite veinlets - Blanched intermediate/matic - vo kanic	29-1:01/-09 30	0.8-32.6 BEDROCK	
range From 31.8 to 32.0 very Fine grained predominant matric mineral is bright green chlorite. difficult to estimate but probably on 10 to . Frock 21% chlorite shears between 1 and 5 % calcite disseminated 21% culcite verilets Bleached intermediate/matric volcanic	EA : VE		
range From 31.8 to 32.0 very Fine grained predominant matric mineral is bright green chlorite. difficult to estimate but probably on 10 to . Frock 21% chlorite shears between 1 and 5 % calcite disseminated 21% culcite verilets Bleached intermediate/matric volcanic	30- P.A.	· light yellow. shi - green colour	
Johnson - very fine grained - predominant matic mineral is bright green chlorite - difficult to estimate but probably no 10 to . frock - 2 1% chlorite shears - between 1 and 5 th calcite disseminated 2 1% calcite veinlets - 2 1% calcite veinlets - Blackhed intermediate function wo kanic	10	stange from 31.8 to 32.0	
is bright green chlorite. difficult to estimate but probably in 10 % of rock 2 1% chlorite shears between 1 and 5 % calcute disseminated 2 1% culcite vainlets Bleached intermediate matic	7///=	Francisco	
is bright green chlorite. difficult to estimate but probably in 10 % of rock 2 1% chlorite shears between 1 and 5 % calcute disseminated 2 1% culcite vainlets Bleached intermediate matic	323///=	- very fine granted	
is bright green chlorite. difficult to estimate but probably on 10% of rock 21% chlorite shears between 1 and 5% calcule disseminated disseminated 21% culcite vainlets Bleached intermediate matic volcanic	-///- bedroof	= occominant matic mineral	
probably no 10 to of rock 2 18 chlorite shears between 1 and 5 to calcute disseminated 2 18 cutcite vainlets Bleached intermediate matic volcanic	3= 1=	hilt are dette	
probably no 10 to of rock 2 18 chlorite shears between 1 and 5 to calcute disseminated 2 18 cutcite vainlets Bleached intermediate matic volcanic		is significant to the first	
- 2 18 chlorite shears - between I and 5 % calcute disseminated 2 18 culcite vainlets - 2 18 culcite vainlets Bleached intermediate matic volcanic	7 4- = =	difficult to estimate sur	
36- - between I and 5 & calcule disseminated 2 1 & calcule vainlets - Blanched intermediate matic Wo leavice	E E	probably no 10 10 of rock	
36- - between 1 and 5 % calcute disseminated 21% calcite vainlets Bleached intermediate matic wo leavice	35-	18 / hite shears	
Blanched intermediate matic No lamic		· 2 100 caronic state	
Blanched intermediate matic No lamic	36-	- between 1 and 5 % calcule	
Blanched intermediate matic No lamic	77	disseminated	
Blanched intermediate/matic		- 41% culcite venters	
39-	38-	0 0 6 / 5	
30-7 F Wolcanic	7 d E	Blanched intermediate /mail.	
	3 9-	up lanic	
#0-1 - 22 (E0H			
	#0-	2 C EOH	

DATE	MOVE TO HOLE
CONTRACT HO	URS OTHER repair radiator on drillers truck 7:00-8:30 Travel 8:30-9:00 A.M.
	MOVE TO NEXT HOLE
DEPTH INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
1—^^ 2 3 4 4 5 6	1.5-10.5 OSIBWAY IT SEDIMENTS 1.5-7.2 - Non-gritty gray clay - 2-3 cm clay chunks - Softens downsection 7.2-105- fine grained gray sand - occassional gray clay lenses less than 2cm thick - well sorted 10.5-30.6 Chibouganan Till - obrupt contact with overlying
9- 10- 11- 20- 11- 20- 11- 20- 11- 20- 11- 20- 11- 20- 11- 20- 11- 20- 20- 20- 20- 20- 20- 20- 20- 20- 20	Sediments - motrix supported till - fine grained groy to groy-beige Sond silt motrix - pebbles and coddle closts; predominantly coddles, approximately 60% Volcoine/Sediments 40% graintoid 11.5-13.2 - becomes a clost supported till - decrease in fine grained groy-beige - slower drilling 13.2-25.3 - Similar to 10.5-11.5

DATE19 _ SHIFT HOURSTO TOTAL HOURS		BIT NO BIT FOOTAGE
CONTRACT HOURS		
	MOVE TO NEXT HOLE	page 2012
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
21	1.2-21.6 Boulder (granite) 1.3-26.8 - fine grained gray-beige son. Interbeds - well sorted - very occasional small closts 1.8-27.4 Boulder (diorite) 1.4-30.6 - clost supported till - slow drilling - closts, predominantly combles, approximately 60% Volkanie See 40% granitoid - very light green colour (Glade - fine grained - weakly foliated - L1% carbonate minerals - predominant matic mineral is Chlorite - Motic / Intermediate Volkanie 2.1 E.O.H.	Lineats
36- 37- 38- 39-		

DESCRIPTIVE LOG DESCRI	DATE .3/	GEOLOGIST B.Bark DRILLER R.F. MOVE TO HOLE 1:30-1:45 DRILL 1:45-3:75 MECHANICAL DOWN TIME DRILLING PROBLEMS	ELEVATION 303m. Fournel BIT NO. K000971 BIT FOOTAGE 32.1-58.2 page 10f2
10-17.4 OSIBWAY I SEDIMENTS 1.0.72 - non-gritty dark gray clay - becomes lighter gray below 4.7m. 2.3cm chunks 7.2.116 - Softer light gray clay - beige sill exerces approximately 10cm thick every lm. 116-17.4 - fine grained gray beige sand - well sorted 17.4-24.1 Chibou gamou Till - abright contact with overlying Seeiment - fine grained gray to gray beige Sand sill matrix - Cobble supported till - closts, predominantly cobbles, accessional publis, approximately 60.9 bilanic/Sedment 40% Granitoid	DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
19 🖟 🗘	3 4 4 5 6 7 10 11 12 13 14 15 16 17 18 18 10 17 18 10 17 18 10 11 11 11 12 13 14 15 16 17 18 18 19 10 11 11 11 11 12 11 11 11 11 11 11 11 11	1.0-17.4 OSIBWAY A SEDIMENTS 1.0-7.2 - non-grithy dork gray cla - becomes lighter gray belo 2.3 cm chunks 7.2-11.6 - Softer light gray clay - beige silt various appropriate every lm. 10cm thick every lm. 11.6-17.4 - fine grained gray-beige - well sorted 17.4-24.1 Chibougamou Till - abrupt contact with or Sediments - fine grained gray to gray silt matrix - Cobble supported till - closts, predominantly cobb pebbles, approximately 60% Volcanie/Sed	by beige sand

DATE19	HOLE NO ALS-89-/83 LOCATION	BIT NO BIT FOOTAGE
SHIFT HOURS		
TOTAL HOURS	MECHANICAL DOWN TIME DRILLING PROBLEMS	
CONTRACT HOURS	OTHER	
	MOVE TO NEXT HOLE	page 2.12
_ v v = u		· · · · · · · · · · · · · · · · · · ·
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
	1.4-23.5 - matrix supported till	
22 4	- very easy drilling - pebble closts, occassional cobbles, approximately	
23 04	6% Volconic / Sediment	
24 10 05	40% Granitord	
25 bidrock	23.5-24.1 - clost supported till - matrix as above	
26 ///	- cobbles, approximately	
27	90% Volconie / Sediment 10% granitaid -possibly suberap.	
28-	-possibly suberop.	
10—	- bleached green and white	olour
11 =	· weak foliation	
12-	->10% corbinate minerals (str	ong
13 = -	-no visible sulphides - high percentage of quarts s	stringers
14-	- very soft to drill - Intermediate to Motic do	Leonic
15 26	1.1 E.O.H.	
16—		
18-		
19		
20-		

DATE 19 87 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO PLS-89-184 LOCATION Side # 22 ELEVATION 303m. GEOLOGIST B.B. DRILLER R. Found BIT NO. K000971 BIT FOOTAGE 58.2-102.4 MOVE TO HOLE 3.15-3.30 DRILL Jan. 31 325-4.30 F.S. 1 - 1.30 P.M. MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER Facel Jan. 31 41.30-5.30 F.S. 1 MOVE TO NEXT HOLE POGLA & 3
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
1	1.0 Organics -13.1 OSIBWAY IL SEDIMENTS 0.11.2 - Mon-grithy dark gray clay - Slightly hard - Becomes light gray below 3.4 m. - Occassional being sill varues, approximately 2.2 m. thick curry Im. 11.2-13.1 - fine grained gray-beinge sound - very well sorted 2.1-34.2 Chibougamou Till - obreght contact with overlying Sedments - matrix supported fill - fine grained gray sound silf matrix - pubbles and predominantly couldes, approximately 60% Volcanic/Sedments 40% Grain tool 9.7-222 - clost supported till - decryose in fine grained sand silf matrix - clost composition, cabbles, approximately 50% Volcanic/Sedments 50% Volcanic/Sedments

		40	HOLE NO PLS-8	7-/84 LOCATI	ION		ELEVATION	ON	
	ATE		GEOLOGIST			NO	BIT FOOTA	GE	
5	HIFT HOURS		MOVE TO HOLE						
Т	OTAL HOURS	3	MECHANICAL DOWN						
-	ONTRACT HO	ours	DRILLING PROBLEMS						
_			MOVE TO NEXT HOLE						
							poge	283	
DEPTH IN METRES	SRAPHIC LOG NTERVAL SAMPLE		DESCRIPTIVE	LOG					
	\\ \(\) \(
21 -		22.	2-23.8 - motors - appear - slow - closts	(supported	till some				
~.	1 05		- s/ow	drilling	307/20				
22-	4.		- closts	, cobbles oppi	oxinotely				
23-	2		6	% Volunic/	Sediment				
24 -				To Granitoid					
	XXX		8-34.2 - 6:11 s		3.1-19.7				
25-	07	24.4	1-24.9 - Boulder	(dorile)					
26-	4	242	-37.4 Missin	1. Sel.	+				
27-	- A ₹-08		42.36.0 - Grave						
<i>2</i> 8 -	14.9.	3	- medium	to course as	ained note	ist.			
	09		-very his	on 60% Voles	ontent, agar	eximple			
29-	4.5		Composition	m 60% Volco	inc Sedim	nt			
30-	10		-Occassional	Hole Gran thin in.	terbed (10	(a) of			
31-	4		tine grains	I beige s	Sand				
20	Δ [//	3	- medi	in graphed	Sond				
32-		3	62-365 - fine q	rained being	Casts				
33-	1/2	_	62-365 - fine g. -occassio 65-374 - fine ac	na thin	abble land	ations			
34-		3					,		
35-	000 /3			1	9 1102	con thick	'		
30	660	37.7	4-427 40	wer Til					
36-	/4		- frairis	supported	1:11				
37-			mairic	rained gray					
38-	00 15		-predomine	of Volcanie	withson	e pebbles	-		
39-	201		4	% Granitos	L'Sedimen	*			
<i>U</i> -	6		,						
70-	1 -1,1					1			l

DATE	HOLE NO PS-89-184 LOCATION GEOLOGIST DRILLER DRILLER DRILLER DRILL DRILL DRILLING PROBLEMS DTHER MOVE TO NEXT HOLE	BIT NO.	BIT FOOTAGE
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		pog e 3 f 3
42 - 2 - 18 43 - 19 44 - 45 - 46 - 47 - 48 - 49 - 49 - 49 - 49 - 49 - 49 - 49	7-44.2 BEDROCK -light to medium green of with brownish orange st. - fine grained - moderate foliation - predominant motic mineral chlorite - 210% corbonate minerals reaction to HCL) -1-2% visible disseminated - cuidence of shearing - Intermediate Volcanic 4.2 E.O. H.	(strong	

DATE Feb 12.3.4.5 SHIFT HOURS	MOVE TO HOLE	Side #23 ELEVATION 302m. MODE OF 35 (Status) Fel 3 11.1542.00 (no rebra) Fel 4 12.45.430 Fel 5 7.3042a
TOTAL HOURS		by marping Feb 2,3 oll day Feb 4 7-1:00 PM.
CONTRACT HO	OURS OTHER Troval Feb 2 430-500 Feb 2 6	6.30-7.0Am: 12:00-1:00 Pm, Fel3 in 7:00 7:00 0:30,
	MOVE TO NEXT HOLE	Feb. 4-6.30-7.00 5:00-5:30 Fel 6:32-70
	_	New Bit & Sab. page lot3
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
10 10 11 12 2 3 4 4 5 15 16 4 5 16 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	0-2.0 Organics 2.0-116 OSIBWAY A SEDIMENT 2.0.85 - Non grilly dad gray clay - moderately hard -23 cm cylindrical churks - poor return - clay becomes beige coloin 5.4m, due to silt variation 10cm thick every Im. 85-11.6- fine grained gray beige - well sorted 11.6-48.8 Chibouganau Till 11.6-13.2 - about contact with a - fine grained gray-beig matrix - clasts, pebbles and pred approximate composition 60% Volkania 45% Granite 13.2-24.7 - clast supported till - decrease in matrix	is below or genoximately sond overlying Scaliment in ye sond sitt dominantly couldes in Scaliments to al
18 A - 05 19 A - 05	- slower drilling 14.2.14.6 Boulder (Liorite)	

DATE	19 HOLE NO PLS-89-185 LOCATION . GEOLOGIST DRILLER	PIT NO	_ ELEVATION
SHIFT HOURS	MOVE TO HOLE	BIT NO.	BIT FOOTAGE
TOTAL HOURS			
	DRILLING PROBLEMS		
CONTRACT HO			
	MOVE TO NEXT HOLE		poge 2013
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
21 - 06	23.4.23.7 Boulder (grants)		
22-07	0//7 227		
23-2-4	24.7-327 - matrix supported till fine grained gray-beige s		
24-10-08	3616	1 1	
25- 25	- pebbles and predominantly a approximate composition 60%	offe closts	
26 0			
27 - 4 -10	32.7-346 - light gray grithe ch		
28	- flocky tout		
29	- decrease in closts - significant fine grained go		
30-30-30-30	Sound time grained go	ay-beige	
31	34.4-34.6 Boulder (gabbro)		
32	34.6-37.6 - no more clay		
33 7 1 14	- Similar to 24.7-32.7		
34-	37.6-40.1 - occassional gray grith		
35-0	clay lungs as in 32.7.	.24.6	
36-0-0			
37-0-16			
381			
39			
40-10-			

		HOURS		GEOLOGIST	DRILLE						
_		0		DRILL					-		
	STAL	HOURS		MECHANICAL DON							
С	ONTRA	ст но	URS	OTHER							
-				MOVE TO NEXT H	OLE						
								1 500-30 a a a a a	poge	: 363	
DEPTH IN METRES	GRAPHIC LOG	SAMPLE NO.		DESCRIPT	VE LOG						
	Δ	18	Wa .	407-01.	-: (+: //						
41-	Δ	19	70.7.	40.7 - Clay	girthy day.	lunas					
42	Δ°.	1		-very to	w clasts	ì					
43-	7	20		- Signitus Sond	eart fine go	rained gra	y beg				
44-	ڮٙؼٙ	21	40.7.	-42.8 - clost	supported to	(M					
45-	Δ.,	ŧ		- no m	re clay						
46	30	22			bely , approx		ente				
4/7_	4	23		ڪ	Top granite	and a					
48-	100	£	42.8-	44.3 - clay :	in matrix						
49	Δ·6 ////	25	442	-48.8- as c	6 37.6.						
50-		bedro	£	700 05 (n 70.7-9	0.7					
51-			48.	8-50.3 B	EDROCK						
52-		<u> </u>		- white t	a slightly	greenco	lour-				
<i>5</i> 3-		E		- fine gra	inel						
54-		<u>E</u>		- high per	rcentage of	carbona	te				
55-		E		minerals (strong reach	ion to H	(2)				
56-		E		- predominant	motic mi	neral is	1/2	4			
57-				- Intermedi	ike Voles	nic					
3 ₈ -		E		3 E.O.H.	/						
59-		E	.50.	2 E.O.H.							
60-		E									

DATE FELS 1989 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO PLS-89-186 LOCATION _ GEOLOGIST B.B.J.k DRILLER R. Four MOVE TO HOLE 12:00-12:45 DRILL 12:45 - 4:15 MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER Travel 4:45 - 5:30 MOVE TO NEXT HOLE 4:75 - 4:45	Site #28	<i>ΚοΦ97</i> 3 ΒΙΤ Ι	VATION 30 FOOTAGE 38.8	23m. 3-664
METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG				
2.0-, 2.0-, 2.0.1 3 4 4 5 10.7	O Organics 16.7 OSIBWAY IT SEDIMENTS 0.7 - Slightly grithy gray clay - 1-2 cm cylindrical chunks - Softens downsection, rods de By themselves - Well sorted - occassional interbed of gray clay approximately every 1.5 m. -16.7 - medium to coarse grain sond - well sorted 7-28.1 Chibougaman Till - abrupt contact with a -fine grained gray-beign silt matrix - clast supported till - predommantly cobbbe class 60% Valcanic Ised 40% granitord	serge son-grithy con thick	diments		

DATE19 SHIFT HOURSTO TOTAL HOURS CONTRACT HOURS	HOLE NO PLS-89-186 LOCATION GEOLOGIST DRILLER DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE	BIT NO.	BIT FOOTAGE	
DEPTH IN METHES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
26 0 0 0 7 27 0 0 0 8 28 29 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	24-28.1 Boulder (Livite) 21-28.2 very thin veneer of till to thin to logor souple 82-29.6 BEDROCK White colour with mother fine to medium grained massive to weak foliation Some evidence of shear. predoment motic mineral Calorite, approximately 23 Tolo Carbonake minerals brown staining along so plains Intermediate Volcanic	ing green colour		

DATE FLG 1989 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	MOVE TO HOLE DRILL 7:00 - 5:00 MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER Travel 6:30 - 7:00 P.M. 5:00 - 5:30 P.M. MOVE TO NEXT HOLE	
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1	1.0 Organics 1.0-8.6 OSIBWAY II SEDIMENTS 1.0-47- non-grifty beige clay - approximately tem cylindrical chunks - Soft dielling 4.7-7.2 fine grained gray beige Sand well sorted 7.2.8.2 · medium grained sand - well sorted 6-34.2 Chibougamu Till - abrupt contact with overlying Sediments - Clast supported till - fine grained gray-beige sand silf matrix - clast; predominantly coldles, approximately 60% Volcanic / Sediments 40% granitoid 11.8-264 - very little motrix - very coldly, sow dieling - return is very poor - sample intervals are 20 7.5 m Gad still only obtaining approximately 4 kg. - drill is approximated at very stow pereliation	

SHIFT HOURS MOTO DR TOTAL HOURS ME DR CONTRACT HOURS OT	OLOGIST DRILLER VE TO HOLE CHANICAL DOWN TIME LLING PROBLEMS HER VE TO NEXT HOLE		
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
$22 - \Delta$ $23 - \Delta$ $23 - \Delta$ $24 - \Delta$ $25 - \Delta$ $26 - \Delta$ $26 - \Delta$ $27 - \Delta$ $27 - \Delta$ $28 - \Delta$ $29 - \Delta$ $31 - \Delta$ $31 - \Delta$ $31 - \Delta$ $31 - \Delta$ $32 - \Delta$ $31 - \Delta$ $32 - \Delta$ $33 - \Delta$ $34 - \Delta$ $34 - \Delta$ $35 - 9 - 36$ $36 - \Delta$ $37 - \Delta$ $36 - \Delta$ $37 - \Delta$ $37 - \Delta$ $37 - \Delta$ $38 - $	Somple return improved me comple interval regular 1.5 n ample interval regular 1.5 n appearance of locky texture - gray slightly grithy controlly texture - very few closts - significant fine grained pull rods due to plugge of Missinabre Sedime a indistinct contact with and drilling moderately hard drilling moderately hard drilling on closts or sand sorted - occassional thin interval gray clay 4 - fine grained gray grithy - occassional gray grithy - occassional closts: pro- 60% blocarie 15. 40% Granitaid 97 - till similar to observal gray grith clay	groy sond bit hour fing till clay and bits of our commantly colors commantly colors commantly	

SHIFT HOURS TOTAL HOURS CONTRACT HOURS	GEOLOGIST DRILLER MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE		
			poge 30f3
GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3	7-40.7 - till, similar to 3 7-42.2 - till, with no clo very sandy fine grained gray se occassional cobbles; of 50% Volcanic 50% Granitoid Redrock not reached 7.2 -> bit plugged hood hole Driller recomment Some hole for a the would be very poor 6ft to West and a -> see log for 187.	Sediments Sediments I to pull out of add not going a list time, because Moved drill beilled programs	e retin

DATE Feb. 7 1989	HOLE NO PES-89-187A LOCATION 6ft wit of hole 187 ELEVATION 305m.
	GEOLOGIST B. Book DRILLER R. Found BIT NO. KOOD 970 BIT FOOTAGE 0- 425 m.
SHIFT HOURS	MOVE TO HOLE
то	DRILL
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER TIONEL 6:30-7:00 A.M. 5:00-5:30 P.M.
	MOVE TO NEXT HOLE 4:30 - Sion PM

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
41 1/1 20 42 // Declar	* hole # 187A was not logged or sampled until
43	41.0 m. The stratigraphy is similar to hole # 107
5	> bedrock was interest 12
7	forthest depth seached in hole #187. This would indicate that bedrock is very steeply plunging in this orea.
9-	41.0-425 BEDROCK
11_	-white colour with mothed green
13 -	- coare grained (5-2mm) - mossive structure - predominant matic mineral is chlorite - 41% Visible sulphides - approximately and
15—	- approximately 5% corbonate minerals
18-	42.5 E.O.H.
19	

SHIFT HOURS		MOVE TO HOLE						
OTAL HOURS	3	MECHANICAL D	OWN TIME					
		DRILLING PROB						
ONTRACT HO	DURS		el 6:30-7	TOO FI.M.				
		MOVE TO NEXT	HOLE					
							page	143
WAL								
GRAPHII LOG NTERVA SAMPLE		DESCRIP	TIVE LOG					
7.7	0-11	Organic	C					
1 -		•						
	1.0-1	1.4 0511	SWAY II SE	EDIMENTS				
		1.0-24-	beige slightly	Contino	/			
			Lange Signing	7.119	107			
			very small					
:		3.4-5.6	fine grained	1 /2	/			
· : E		- 4	well sorted	, 20192 32	na			
:: F		5.6-6.0 - n	vilum to coo	se grome	d beige	Sand		
2000		20	me thin los	mine ton -	£ 006		. //	
500							morely	
0.00		6.0-10.4.	interbedded .					
000			(lessedded .	sond and	Gravel	ł		
000		C	Sravel; medio	in and	iores a			
000		^	beige motri	× .	7	ained		
500		-	Thin Zan	interfect	46	. ,		
200		4	thin Zon grained bei	92 50 /	line	grained	and mode	un
		10.4-100		300	901621	rotely Rues	2.5m.	
the F			ine grains	d gray	1.62.			
A		10.9-114	Boulder (1			
- 4/-		,	Boulder (motic Vo	(canic)			
1 - 1								
03	11.4	40.5	Chibougom	on Til				
4		- fine	anial					
		/	grained g	Toy sand	self.	matrix		
1 = F04				1///	i	1 1		
- 1 E		- clas	ts, predomino	ntly cobbs	es appro	rimately.		
05			- 10 000	-anic/Den	ments			
7-1			70% Gra.	retord				
	18.	2-19.0. me	atrix suppor	41411				
06		- dec	rease in 1	to TIN				
7.0:		- ma	reuse in clo	12.				
07	19.	0-201	f.	/				
····]			fine graine. d interbe	1910/16	eige			
		50)	in Terbe	col	I			

		HOURS			89-/88 LOCATION						
_		TO		DRILL	N TIME						
_	JIAL	HOURS	>		N TIME						
C	ONTR	ACT HO	DURS	OTHER							
_		-		MOVE TO NEXT HO	LE						
								pag-	2015	Ś.	
			T								
METRES	GRAPHIC	SAMPLE NO.		DESCRIPTIV	E LOG						
	1.1.1.1	07		- 224/ 4	/ /						
21 -	Δο	7	20.	+ 23.4 Till, 51	milior to 11.4-1	8.2					
-	- 1	700	1311	7-0 4:11 -	1. 1						
22		*	23.7		miliar to above		.,,				
23	4:	En	de-maleurote V	arithy	in sections of g	roy sligh	Hy				
20-	. 7			56	of in motrix						
24-	7	-10			s flaky and		5				
-	10	T		10cm	beds approximate	7					
25-	Δ	F	25.	2-276 - fine	grained groy s	and					
26-		E,		- no	losts, well son	4.1					
=		E"		- occassi	ional flakes of	aray c	6				
27-				- Sand	becomes slight	11/2	7				
28-	.,0		27/	211 01	in in	14 Coorse	- doc	unsection	n		
=	4:7.	I	27.6	-31.6 - Clay 1	ich till						
29-	10	E12		- predomine	ably slightly go at fine grown l the return	thy gray	cloy	umps			
0-	Δ.\.			- Significan	H time grand	gray so	and				
=	100	1									
1 _	1			•	Ew closts						
2_	10	E	31.6	-37.1 Till	similar to	20.7.	23.4				
-	- 1	13									
3-	1	+	37.	-38.2 - gray	coorse graine	Sond					
_ =	-	E		-very	few closts						
1 =		E14		8003	ssional woodch	ادعر					
5-	4.	*	38.	2-39.3 - fine	grained gray	being	cand	-			
=	01	15		- 000	cassional small	1 det					
6-		F		- app	ears well so-	ed sis					
7_	Δ.	E-16	20								
		7	57.	5-40.2 - ma	tix supported	6:16	ا ر. ا				
8-		1/2		-tine	grained gray.	sand se	It mo	tick			
9		F"		-clos	sts, predominar			,			
=	100	E 10			60% Volce		Linen	15			
0-	·°. \(\D	F10			40% 610mi	toid					

DATE	N
TO DRILL TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS CONTRACT HOURS OTHER MOVE TO NEXT HOLE Page Pag	BE
TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE Page DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG Page 40.2-40.5 - till becomes very cobbly - decrease in matrix - clost supported till 40.5-41.6 Missinable Sediments - dork gray coloured clay bedrak - non-griffy hord drilling - no closts, no sand	
DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE Page DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG Page 40.2-40.5 - till becomes very cobbly - decrease in matrix - clost supported till 40.5-41.6 Missinable Sediments - dock gray coloured clay - hord drilling - no closts, no sand	
DESCRIPTIVE LOG DESCRI	
DESCRIPTIVE LOG DESCRI	
DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG 40.2-40.5 - till becomes very cobbly - decrease in matrix - clost supported till 40.5-41.6 Missinable Sediments - dock gray coloured clay - non-griffy - hard drilling - no closts, no sand	
DESCRIPTIVE LOG DESCRI	212
40.2-40.5 - till becomes very cobbly - decrease in matrix - clost supported till 4-1-20 - dark gray coloured clay - hard drilling - no closts, no sand	393
40.2-40.5 - till becomes very cobbly - decrease in matrix - clost supported till 4-1-20 - dark gray coloured clay - hard drilling - no closts, no sand	
40.2-40.5 - till becomes very cobbly - decrease in matrix - clast supported till 40.5-41.6 Missinable Sediments - dark gray coloured clay - hard drilling - no clasts, no sand	
40.2-40.5 - till becomes very cobbly - decrease in matrix - clost supported till 40.5-41.6 Missinable Sediments - dark gray coloured clay - hard drilling - no closts, no sand	
40.2-40.5 - till becomes very cobbly - decrease in matrix - clost supported till 40.5-41.6 Missinobia Sediments - dork groy coloured cloy - hord drilling - no closts, no sand	
- decrease in matrix - clast supported till 3-20 4-120 - dock gray coloured clay - hard drilling - no clasts, no sand	
20 - clost supported to the sediments 4- 20 - dock groy coloured cloy - non-gritty - hord drilling - no closts, no sand	
3-A.o. 40.5-41.6 Missinobie Sediments 4-120 - dock groy coloured clay - non-gritty - hord drilling - no closts, no sand	
4- 40.5-41.6 Missinobie Sediments - dock groy coloured clay - non-gritty - hard drilling - no closts, no sand	
- dock gray coloured clay - non-gritty - hard drilling - no closts, no sand	
- dock gray coloured clay - non-gritty - hard drilling - no closts, no sand	
- non-gritty - hard drilling - no closts, no sand	
- non-gritty - hard drilling - no closts, no sand	
hord drilling - no closts, no sand	
- no closts, no sand	
7-1 -	
4 F	
8 41.6-43.2 Lower Till	
- very cobbly till	
- fine ground gray sound matrix	
of the grand grand shall be a second of the second shall be a	
- Copples, approximately	
15% Volconic / Sedimento	
25% Graniford	
2-	
<u> </u>	
43.2-45.2 BEDPOCK	
- light green- colour	
5 - medium acrisid	
- medium grained - mossive structure	
6 predominal	
- predominant matic minural	
- very sheared	
- soft drill-	
- approximately 1% visible sulphides	
- Gabbro	
10 45.2 E.O.H.	

DATE Fel 8 1989	HOLE NO PLS-89-189 LOCATION LEGE SETSON ELEVATION 316
DATE	GEOLOGIST B. B. A. DRILLER R. Frence BIT NO. CG 70274 BIT FOOTAGE 0.5.1
SHIFT HOURS	MOVE TO HOLE
то	DRILL 2.45.3.30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL	SAMPLE NO.	DESCRIPTIVE LOG			
1 - 2 - 3 - 4	bidrak	0-2.0 No Return 2.0-3.6 OSIBWAY I SEDIMENTS - slightly gritty beige cle - moderately hard to dritte 3.6-5.1 BEDROCK - medium green color - fine grained - well falsted - highly shound - approximately 5% greats sta - 3-5% visible sulphides - predominant motic minusel - brown staining along same - Matic Volconic 5.1 E.O. H.	ingues is charite	* &	

DATE Fet 8 1989	HOLE NO FLS-89-190 LOCATION LSEE 28750 N ELEVATION 316 GEOLOGIST B.Back DRILLER R. Formal BIT NO CB70274 BIT FOOTAGE 5.1-10.1
SHIFT HOURS	MOVE TO HOLE 330+3,45
то	DRILL 3:45-5:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER Travel 5:00-5:30
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
2	0.0.5 Organics 0.5-3.1 OSIBWAY I SEDIMENTS - slightly gritty beigg clay - moderately hard to drill	
3 D. 6. 201	Sediment	
8-1	- fine grained beige sond sitt matrix - closts, mainly peobles, some coldes, opproximate composition 50% Volume / Sediment-	
9 - - - - - - - - - -	* - sample OI may be contaminated with bedrock	
12-	3.4.5.0 BEDROCK - medium green colour, light green below 4.m. - fine grained - well foliated	
15-16-1	- some brown staining along tracture surfaces - predominant matic mineral is chlorite - approximately 5% visible sulphides - highly should	
18-	- Intermediate to Metic Volcanic 5.0 E.O. H.	٠.
20-		

DATE Feb: 9 19 89	HOLE NO PLS-89-191 LOCATION LSZE 28N ELEVATION 3/4/2 GEOLOGIST B. Bark DRILLER R. Faural BIT NO CB70Z7Y BIT FOOTAGE 10.1-16.1
SHIFT HOURS	MOVE TO HOLE 7:00-7:30
TO	DRILL 7:30-10:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER Travel 6:30-7:00
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
3 \(\text{\tinx{\text{\tinx{\text{\texi{\text{\text{\tinx{\tinx{\tinx{\tinx{\text{\text{\text{\text{\til\text{\texi\tinx{\text{\text{\text{\text{\text{\tin}\tint{\text{\text{\tex{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te\tint{\text{\text{\text{\text{\texi\texi{\texi}\text{\tiint{\text{\text{\text{\text{\text{\texi{\texi{\texi{\texi{\texi{\ti	0-0.5 Organics 0.5-29 OSIBWAY II SEDIMENTS - slightly gritty beige clay - Icm cylindrical chunks 2.4-4.7 Chibougamou Till - obsept contact with over Sediments - matrix supported till - fine grained gray beige silt matrix - closts, predominantly cobe approximate composition 50% Volcanic / Se 50% Granitaid	Sand Hes
10— 11— 12— 13— 14— 15— 16— 17— 18— 19— 20—	4.7-6.0 BEDROCK - light green colour - time grained - well folioted (schistose) - predominant motic mineral chlorite - LIB visible sulphides - approximately 3-5% quant - Intermediate Volcanic 6.0 E.O. H.	

DATE <u>Feb. 9</u> 19 <u>89</u>	HOLE NO PS-89-192 LOCATION LYSE 28+50N ELEVATION 3/3m. GEOLOGIST B.Book DRILLER R. Fournel BIT NO. CB70274 BIT FOOTAGE 16.1-23.6
SHIFT HOURS	MOVE TO HOLE
то	DRILL 10:45 -11:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

EPTH IN ETRES APHIC LOG ERVAL NO.				
DEPTH IN METRE: GRAPHIC LOG INTERVA SAMPLE	DESCRIPTIVE LOG			
1	0-0.5 Organics			
2	0.5-4.1 OSIBWAY IL SEDIMENTS	1 1 1		
3	- gray slightly gritty clay			
4	μαν γουν			
5 0 0	4.1-61 Chibougaman Till			
6 0 A 02	4.1-4.4 - fine grained beige so	and silt		
1- Dedic	- very oxidized matrix	and clasts		
9	- clasts, predominantly cos.	des		,
10-	50% 610n	tord ments		
11-3	4.4-6.1- matrix becomes gray	sond and silt		
12	" Summonty Co	ables		
13 -	40% Grantond			
14 = =	· matrix supported to			74
15	6.1-7.5 BEDROCK			
16—	- light green colour			
17—	Time around			
18-	- very well foliated (s predominant motic miner	al is chorite		
19 -	- highly sheared - LID visible sulphides			E
	- Intermediate Volconic		1 1 1	1
	7.5 E.O.H.			

	ATE <u>Feb. 9, K</u>	GEOLOGIST B. Back DRILLER R. Fournel BIT NO. CB 70274 BIT FOOTAGE 23.6-53.1
_	TO	
T	OTAL HOURS	MECHANICAL DOWN TIME
_	ONTRACT U	DURS OTHER Travel Et 9 5:00-5:30PM Feb. 10 6:30-7:00 P.M.
_	ONTRACT HO	MOVE TO NEXT HOLE
		MOVE TO NEXT HOLE
DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
		0-20 No Return
1 -	E	2.0 No Kelven
3		20-16.1 OJIBWRY II SEDIMENTS
2		AND THE TOSTBURY IL SEDMIENIS
3		20-3.2 - beige slightly girtly clay
=	000	- moderately compact
4	000 001	
_ =	000	3.2-14.8 Gravel
5-	000	3.2-5.3 - medium to coarse grained matrix
6-	000	-closts as-1: 11 all
3	000	cobbles, composition Solo Volcaried Sediments Solo granito d
7-	000	50% are 1
8	I	-Occassional intell
=	03	beige sond interbeds of coarse grained. 3m think
9-	000	3m 41. 1. Casts, approximate
10-	000	5.3-6.5 - growl becomes slightly exides I with beige to other coloured medicin ground said 6.5-72-
=	200	hair & becomes slightly exidesed with
11_	000	sege to other coloured medium organist
	000	closis as above
_	000 = 04	6.5-7.3 - motive as above
	000	- clost become very oxidized
	000	7.3-8.8 -
=	000	7.3-8.8 - Coorse grained beige sand - occassional small closts
15	600	88-140 (small closts
3	1 200	8.8-14.8 - Grave (os in 5.3-6.5 - predominantly colbles, very poor return
16-	. 1 05	from mantly cobbles, very poor return
17	1 606	14.8-16.1 medium to coarse gray-beige sont as in 7.3-8.8
₫,	1 = 1	
18	07	16.1-28.0 - Chibougamun Till
19	15/1	16.172 - fine grained gray sand silk matrix
= =	08	- closts, pebbles and predominantly cobbles
20-	08	60% Volcanic / Sodiment
		40% Grantoid

172 - See Next page.

S T	HIFT H	OURS HOURS		MOVE TO HOLE	N TIME	BI	F NO	ELEVA BIT FO	OTAGE	
ETRES	RAPHIC LOG	MPLE NO.		DESCRIPTIVE	E LOG			page	2012	
ο Σ	R S	S.								
21	1	08		-18.0 - mateix oxidized - thin so with	ections opproximate	/y 10-20c	n			
23-	٥١١١	-09	/8·0 -,	- till Simil	ported, very t	,				
25	о д Д	10	20.4-	27.0 - clost s	apported till					
26-		_//		- decreose Sond	in fine grain	of gray.	leige			
27-		- 12		- slower o	redominantly coe	6/05				
28 -		13 bedroe	k 270.	5	of Volcanie / Se	diments.				
10-				- gray g.	ity clay lung	05.				
12			28.0.	295 BEDA						
13		-		- dark gre - medium	00-1					
14				- Some evi	deare of st					
15-				- no visible - Gabbro	motic minero sulphides	(s hor	ablende			
17—			29.5	E.O. H.						
19 -		-								

DATE _Feb. 10 19 89	HOLE NO PLS 89-194 LOCATION 48E 15+50N ELEVATION 318 m. GEOLOGIST B. Book DRILLER R. Formel BIT NO. 6270274 BIT FOOTAGE 531-71.8
SHIFT HOURS	MOVE TO HOLE _9.30 -/0:00
TO	DRILL /olos-/, op
TOTAL HOURS	MECHANICAL DOWN TIME
-	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
	0-1.0 Organies			
1=11	1.0-13.8 OSIBWAY I SEDIMENTS			
2	1.0-4.2 - beige slightly gritty clay			
3	4.2-5.3 - medium grained beige son	2		
	5.3-88- Grovel			
4	· medium and com			
5-	· medium and coorse grained - very cobbly rapproximately	1 1		
000	50% Volcanic / Sed	mente		
000	30% Granitord			
7-000 00	8.8-9.8 - medium grained gray	beige con		
8 500				
0000	9.8-11.2 - coorse grained oxid			
	9.8-11.2 - coorse grained oxidize occassional pebbles	the beige	and	
10-	11.2-13.2 - Similar to 53.8.8 win of median grained be 2m thick	to thin inter	beds	
11_	2m thick	ige sond as	proximately	
12-000	13.2-13.8 - Grovel, similar to.	52-80		
13 - 00 - 05	13.8-17.2 Chibougoman Till			
9.000	- fine grained and			
14-40	- fine grained gray sand s - people's and predominantly as	et matrix		
15	- 10 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ents geroxi	mutely	
16-10-	- clost supported fill			
設定し	155-172 - clay nick fill			
17-14 0	- gray grifty clay lumps			
18 08 bedra	ek - closts mosty coolies, is	Wodonie/S	diner	
19	40	granitoid		
20-	17.2-18.7 BEDROCK			
	- dark green cabour - medium to coarse grained	ا ا ا	1	1 1
	- mossive structure - predominant mobile moneral	is homblade	_	
	- decrease in teldspor below	0/8.10 nd 10.	comes stightly	i magnetic
	18.7 E.O.H. Intrusive (possible Gon	(dea)		

DATE Fel-10 11 19 89	HOLE NO FLS-89-195 LOCATION LEGATION SIGN
DATE	GEOLOGIST B. Bak DRILLER R. Faral BIT NO. CB70274 BIT FOOTAGE 718-106.4
SHIFT HOURS	MOVE TO HOLE 100 -1130 P.M.
TO	DRILL Feb. 10 1:30-5:00 Feb. 11 7: 0-8:30 A.M.
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER Travel Febro 5:00-5:30 P.M. Feb. 11 1:0-7.0 P.M.
	MOVE TO NEXT HOLE

0.0.5 Organies 0.5-122 Ostowny It secuments 0.5-122 Ostowny It secuments 0.5-122 Ostowny It secuments 0.5-124 Ostowny It secuments 3.4-125 becomes gray bage color sother downsection, to a songly texture. 7.8-10.3-fine grained gray bage send - occasional thin introducts of gray barge clay 103-122 Gravel - medium to coarse grained send matrix - lots of closts, pebble and accessional coddless, approximate composition 604 Voltania / Schmitts 10-12-03-1 10-12-03-1 11-03-03-1 12-03-1 13-03-1 14-03-1 15-03-1 15-03-1 15-03-1 15-03-1 15-03-1 15-1-18-3-clost supported till - becomes very colding 15-1-18-3-clost supported till - becomes very coldinate - second server coldinate - second servery coldinate - second second servery coldinate - second se	05-12 OSIBLING AL SECUMENTS 05-12 OSIBLING ALL BEQUE COLOR 05-34 - Slightly gilly beige clay 34-8-6 becomes gray brige color - sother downsichen, to a songy textire. 7.8-103- fine grained gray-beige send - occasional thin introbals of gray-brige clay 103-122 Gravel - medium to course grained sound motion - lots of closts, pebble and accossional cold colder, approximate comparition 604 Volume [Schimats 406 graintail - fine grained gray to gray-beige sand silt matrix - motive supported till - closts, pebbles and achilles, approximately 606 Volume [Schimats 406 Graintail 10-12-13-1-18-3 - clost supported till - becomes very coldly, the deiling oppositionally DEPTH MEINES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG						
-decrese in motion	- decrese in The grantoid	3 4 5 6 7 8 9 10 9 10 9 9 10 10 9 9 10 10	05-122 OSIBWAY IT SEDIMENTS 05-3.4 - Slightly girtly beige color - softens downsection, to a sony texture. 7.8-10.3 - fine grained gray beige sor - occassional thin introbeds of clay 10.3-12.2 Gravel - medium to coarse graine - lots of clasts, pebbles Cohbles, approximate compos 60% Volcanie 40% granita 122-33.1 Chibouganou Till - fine grained gray to gra silt matrix - matrix supported till - clasts, pebbles and cohbles 60% Volcanie / Sedim 40% Granitaid 15.1-183 - clast supported till - becomes very cobbly, she approximately 60% Volcanie - decrease in matrix	ond so ond som solis	occoss oximat	, d		

DATE 19 _ SHIFT HOURSTO	HOLE NO PLS-89-195 LOCAT GEOLOGIST DRILLER _ MOVE TO HOLE DRILL	BIT NO.	ELEVATION BIT FOOTAGE
TOTAL HOURS	MECHANICAL DOWN TIME DRILLING PROBLEMS		
CONTRACT HOURS	OTHER		
	MOVE TO NEXT HOLE		27.1
			page 20 2
METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
21 - 07 27.1	1-25.3 - till os in 122-15.1		
1 4	3-26.4 - occassional gray grit.	ty doy lumps	
23 4			
28.	1-3/2 - Clay rich fill		
5 0 0	- predominantly gray grit, - significant fine graine	of gray sand	
26	- occassional small do	ests.	
27-30	12-33.1 - till similar to	25.3-26.54	
8 1 4 4 1 1			
74.	3.1-34.6 BEDROCK		
0-1/20	-medium green colour- -fine grained		
2 / 2 / 3	- moderate foliation		
3-2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3	- predominant motic mi.		
4- / Bulnk	- Some brown staining , surfaces.	slong fracture	
5	- Motic Volconic		
6-3 E			
7-	4.6 E.O.H.		
8-			
9-			
<u></u>			

DATE Feb 11 1989	HOLE NO PLS-89-196 LOCATION LTZE 14100N ELEVATION 3/2m. GEOLOGIST B. Book DRILLER R. Found BIT NO CB 70274 BIT FOOTAGE 706. 4-114.7
SHIFT HOURS	MOVE TO HOLE
TOTAL HOURS	DRILL
CONTRACT HOURS	DRILLING PROBLEMSOTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
3 5 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5-6.2 OJBWAY II SEDIMENTS 0-4.4 · beige slightly gritty clay - very poor return 4.4-5.0 · (ine grained gray beige sand - well sorted 5.0-6.2 · Grave(median to coarse grained beige sand matrix lots of clasts, predominantly coables, Some pebbles, approximately
10- 11- 12- 13- 14- 15-	50% Volconic/Sediment 50% Granitoid 6.2.6.8 Chibougamou Till fine grained groy sond silt motive - motive supported till - closts, mainly cobbles approximately 60% Volconic/Sediments 40% granitoid 68-8.3 BEDROCK - medium green colour - fine grained - moderate foliation
18—	- predominant motic mineralis chlorite - approximately 5% quarty stringers - Matic Volcanic 8.3 E.O.H.

SHIFT HOURSTO TOTAL HOURS		MOVE 10	IST <u>B.Back</u>) HOLE <u>10</u> 10:30 -		LER ZVIVO	1377E [BIT NO. 2	B70275	BII FO	OTAGE 2	0-53		
		MECHANI	ICAL DOWN	TIME									
	_			PROBLEM									
CONTR	ACT H	OURS	OTHER _	/ravel	5:00	5:50							
	-		MOVE TO	O NEXT HOL	LE								
										News	set 1	Pege lo	12
GRAPHIC	INTERVAL SAMPLE NO.		DE	ESCRIPTIVI	E LOG								
nn	Ē	0-1.0	o Grg.	anies	- H 444								
1	E	1.0-	19.7 0.	JIBWAY	I SE	DIMEN.	2						
	E				ritly be								
	E				gray be								
	F	5.3	2-66 - 0	very fine	e grained	gray	beige 5	and					
	E		- 6	occassione	d inter	beds or	fgray	clay a	peroxin	otely			
	E	-		ruem ,	Thick				1				
=	1 E	6.	6-7.2 -	medium	to con.	rse gra	ined son	d					
	E		-	thin lo.	minations con this	of pe	bokes ,	peroxin	nately				
3	丰					k			/				
000	1	/		7 610				-	1.				
000	F°1			- medius	m to co	se gra	ined bo	ige s	and m	atrix			-
000	7			2/23/3	predom	nontly o	costes,	approx.	mately				
000	7			5	10% Gra	ritard	edimen.	3					
000	1			- 5/00	to drill								
- 000	FOZ	1-	72-126	- Very	thin lo	ixers of	Cordin	1 class	66	(
000	F	- /	26-13.4	- 1.11/e	or no	metric	1]	(5 -	(Jem)			
- 000	7	1	3.4-16.3.	- Gravel	Similia	to 7:	132	dere	and a				
000													
000	-03				n 126								
- 000	E	182	-1.8.4	Boulde	er Die,	te)							
000	=	19.7-	23.7	Chibou	goman i	Till							
000	4			_			1011	1					
000	E			2 .//	ained gr	/			11				
000	Foy			70%	predomin Vokoni	only Co	1000	oximo	1 my				
	<u> </u>			300	1	1 seal							
1XKK	E			20%	dianilois	<					'	1	
	1111		-	clost's	granitoi o Supporte	d till							

D	ATE	19	HOLE NO PLS-89-	DRILLER			
S	HIFT HOURS		MOVE TO HOLE				
T	OTAL HOURS		MECHANICAL DOWN	TIME			
_			DRILLING PROBLEMS				
C	ONTRACT HO	URS	MOVE TO NEXT HOLE				
			MOVE TO NEXT HOLE			0.52	
					pog	x 2012	
DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE NO.		DESCRIPTIVE	LOG .			
	A	20.0	1-21.3 - gray gri	ity clay in			
21-	05		motily.				
22-	1		· similior to	19.7-20.0			
23-	06	21.	3-23.7 - very	edbly, very	Alle motion		
24-	Dedn.	K	70 /	more clay			
₹5-		23	7.25.2 1	BEDROCK			
<i>2</i> 6−			- dark	green colour			
27_			- me	erate foliation			
78-			- prea	rate totation			
29-			'is a	Morite matic	mineral		
10-			- appro	ominant matice , windredy 5% go issible sulphide	ants stringers		
10-			- 10 0	isible sulphide	es		
11 —			· Matie	· Volcanic			
12_			_				
13		25	2 E.O.H.				
14-							
15—	E						
-							
16-							
17-							
18-	E						
-0-							
19							
20-	 						

DATE Feb 18 1984	HOLE NO PLS-89-198 LOCATION 180 GEOLOGIST P. Collins DRILLER & Fournier	DE 18450N ELEVATION 310 M
SHIFT HOURS	MOVE TO HOLE 3:45 -5:00 Feb 14.	
,TO	DRILL 4:00 - 12:30	
OTAL HOURS	MECHANICAL DOWN TIME	
	DRILLING PROBLEMS	
CONTRACT HOURS	OTHER [ravel 6:30-7:15 7:15-8:00 stant	up. 8:00-9:00 wait for water chan
	MOVE TO NEXT HOLE	and hist : new sub : new roods : nourse.
	n	en bot; new sub; new rods; newson,
GRAPHIC LOG INTERVAL SAMPLE NO.		
SRAPHIC LOG NTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
S, I		
0	0-05 Organics	
	5-7.0 Djubury I Sediment	
	(0.5-1.5) beige coxidized) slightly	
0.00	gritty soft day	
00 /-01	1000	
00/E	1.5-34) Gravel: makin supported	
000	ated built I	
080 (4	ation. Pelable clasts (subsounded	
000/=	relate clasts (subrounded)	
	vounded) of composition: 45%	
30 /F	olianies and sediments; 55°66 mitod	
0001	3.4 - 4.0) clast supported gravel	
000 /E 03	ic matrix of mindon composition	
1 A 1/2 / /= 1	0 1.5-3.4	
	4.0 - 7.0) returns to motion sugarted	
	wed with occasional thin fine sand bed	
28/1-04		
(ZD) 7	0 - 12.8 Chilbougaman Fill	
ASS TE	very beige fine sand / sult and	
700 P	10 en gratty clay matrix (3-5%)	
	obble clast supported till of	
MED.	The same of the sa	
So2	mpointen: 50 - 6 Volcanics and	
777	idiments: 50% Fromitoids	
	sulders at: 8.0-8.6 galebra	
E	9,6 - 9.8	
E		
E	10.6-10.9 matic volcania	
E	12.3 - 12.6 granificial	
E	his very cobbly; abund and -10 next	
	longs in may rux Below 8.6 m Place	
E W	of to 30th gray gritter clay in matin	
E whice	of to 30 h gray gritty day in matic	
- Nace	way to extend sample interval to	
appr	eximately 2m to get 8 kg sands	
12	.8- 14.5 Bedrock - Mati Volcanii medin to dente; trie grained; not intim; carbonatzad n 3 d diso & shriger ii tried; kalenter	
, i	median to dank ; fire grained; mod.	
(-	inten; carbonatzed in 3% diso 3 shrager)
	14.5 - E.O. H.	

ATE Fob is	19 HOLE NO PLS-89-199 LOCATION GEOLOGIST Glims DRILLER & Fourt	886 17 NO. C. 630	ELEVATION	304m .5 - 26.5
HIFT HOURS	MOVE TO HOLE 12:30 - 12:30			
OTAL HOURS				
ONTRACT HO	DRILLING PROBLEMS			
ONTRACT HO				-
	MOVE TO NEXT HOLE			
ALC (ALC				
GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
	0.0-8.0 O Sway I Sediment			
	(0.0-4.0) beige (oxided) slightly			
	gritty, soft clay			
=======================================	V.			
=	(4.0-5.0) beige Sie grained sand			
== E	(5.0-80) Gravel: medium sand			
=======================================	makes DIAD I III A			The same of the sa
:: F	matix Petales/cotales clast			
F	supported of composition: 40%			
300 TE	Volcanice and sediments; 60 %			,
So /Ea	Granitorido			
	7.0-8.0 occasional thin fine			
030	grained sand bed.			
4	, , , , , , , , , , , , , , , , , , , ,			
8 A 62	22 10 1 C/1- X.10			
A @)	8.0-10.6 Chibougaman Till			
€ V 1 € 03	gradational contact into till.			
1///	beige grey fire sund/pilt and			
/// E	grey gritly clay matrix (up to 20-	1591		
For				
	Clust supported: Cobble clarks			
l E	6+ composition: 45 % Volcanie			
E	and sediments; 55% 6 raintino			
E	* 500			
E	* Suple 03 2 4.0 kg; however,			
F	Then over 1.0m interval			
I F	clay with which requests			
E	in less suple vetur.			
E				
E	10.0-12.0 Bedrock			
F	-dark green			
F	- dark green - The grand			
I E	- toliated			
	- chleritic			
E	- 5% diss & reinlet carbonate			
	- 3-5-6 quarte carbonate verilots			ł
	- 3-5-6 quarts carbonate verilets with have hemalite			
	- below 11.0 occ. 2cm hemotyte			
	- < 1 % outphide			
	Marie Volcanie.			

DATE <u>Feb 19</u> 19 89	HOLE NO PLS-89-202 LOCATION 1486 2+50 N ELEVATION 326
DATE 7 22.7 19 37	GEOLOGIST P. Collins DRILLER R. Formall BIT NO. CB76157 BIT FOOTAGE 598-678
SHIFT HOURS	MOVE TO HOLE
TO	DRILL 12:15 - 2:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG					
10	0.0-1.0 <u>Organies</u>					
1322					İ	
	1,0-11.6 Ojibinay I Sidmente					
2	(1.0-3.0) being (oxidized) slightly					
3	gritty soft clay		and the second			
	(3.0-3.5) beign fine grand and					
000 01	(3.5-6.0) interbeds of sandand gravel. Beige exidued very his to					
5 000	his gracied sund a occasional					
6-000	media to course sand interbeds.					
	Rebble and labble clasts of imposita					
7-00 -02	406 Volcanies and Sediments; 60%					
8-10	Oranitoids.					
	(6.0-7.5) Gravel: Sorked cornse					
380 TE	of composition Cobble clast support					
10-10-10-10-10-10-10-10-10-10-10-10-10-1	selments \$0% 6 cantoids.					
11-100.	- less return on matrix during clust					
9/	suggested gravel (normal).					
12-	(7.5-9.3) sorted beige hie, medin					
13	and course sand interpeds					
14 E	(9.3 - 10.7) similar to 6.0-7.5					
	(10.7-11.6) for sund interbeds					
15	initially appearant to be till yet					
16	rot red.					
] E	11.6-13.0 Bedoock					
17-	- dark green - frie grained					
18-	- Soli-tod			1		
19 -	= can bonstized (3-5%) hope					
	- 2-3 6 43/ambate ne: 11					
20-	combonatized (3-5%) hope disserted and strings -2-3th phologometric verilets -< 1% supplieds					
	- helmente, epidote	<i>f</i> 1				
	1 commente 5 6 supriedos	./				
	Marie Volenia 13.0 E.O. H.					
	12.0 E.U. M					

	HOLE NO PLS-89-200 LOCATION L966 17W ELEVATION 303m GEOLOGIST P. Collums DRILLER P. FOURSE BIT NO. CB 20157 BIT FOOTAGE 26.5-46.0
DATE 50 18 1989	GEOLOGIST P. Collons DRILLER R. FOURSIE BIT NO. CB 70157 BIT FOOTAGE 26.5-46.0
SHIFT HOURS	MOVE TO HOLE 2:00 - 2:30
то	DRILL 2:30- 4:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER Travel to Camp. 5:00-5:45
	MOVE TO NEXT HOLE 4:00 - 5:00

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
10 11 12 12 13 15 16 17 18 18 19 19 19 19 19	0.0-1.0 Organics 1.0-11.8 Oj hvay I Sediments initially beige (viidized) slightly gritty to non gritty gray soft clay (drusectic) 11.8-17.7 (hiborgaman TID) beige grey slightly ported (sitt deficient) five sand motive Up to 25% medin grained sand. -> Matrix supported. Cobble clusts of composition: 45%. Volcanics and Sediments; 55% Granitoido -occasional thin medin grained sand bed. below 16.2 till becomes clast supported resulting in less most return on matrix 17.7-19.5 Bedrock - med im to dark green - very five to five grained - strong foliation; sheaved - chloritic - carbonatized 5% dies. 15-20% carb/quent, veinlets - 21% dies eminated sulphide Mafic Volcanic. 19.5 E. O. H.		

DATE Feb 19 19 89 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO <u>\$15-89-201</u> LOCAT GEOLOGIST <u>P(s) ms</u> DRILLER <u>A</u> MOVE TO HOLE <u>4.00-5:00</u> Feb DRILL <u>10:15-11:45</u> MECHANICAL DOWN TIME <u>Serve</u> DRILLING PROBLEMS OTHER <u>Travel</u> : (5:30-7) MOVE TO NEXT HOLE	RFOUNTIER BIT NO2 18 (Pm)	70157 BIT FOOTAG	E 46.0-54.8
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5-6.4 Ojboway I Sedime - 4.5 beige (oxidized) olightly soft clay (very little return or et still can see small grains lay a scoop). - 6.4 beige (oxidized) on red for media grained sand 6.8 (hibourgamous till appeared to be thin layer of ill slighty unon hed beige for mother Robble / small obble clash of composition. S Islamies and sediment; SC Grantoids. Till is matrix or - 8.8 Bedrock dark green for agrained foliated - chloritii 3-5 to cabaste <1 " Sulphides - hard to drill - ~ 1 " hemstit. downesti Matri Volcanic 8.8 F.O.H.	equity n clay of ine ? the ine clay of or or or or or or or or or		

DATE <u>Feb 19</u> 19 89	HOLE NO PLS-89-202 LOCATION 1486 2+50 N ELEVATION 326 GEOLOGIST P. Collina DRILLER R. Fournell BIT NO CB70157 BIT FOOTAGE 57.8 - 67.8
SHIFT HOURS	MOVE TO HOLE 11:45 - 12:15
TO	DRILL 12:15 - 2:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVA SAMPLE NO.	DESCRIPTIVE LOG		
3	1.0-1.0 Organies 1.0-1.6 Ojbury I Sediment (1.0-3.0) beige (vxidiged) slightly grithy soft clay (3.0-3.5) beige five grained and (3.5-6.0) interbeds of sand and graved. Beige exidized very hick his grained sand 2 occasional mediu to coanse sand interbeds. Pebble and labble clasts of imposita 40°6 Volcanies and Sediments; 60°6 Orantoids. (6.0-7.5) Gravel: Sorked coanses sand matrix. Cabble clast support of composit in: 30°6 Volcanies and Sediments; 60°6 orantoids. - leas return on matrix during clast support coanses sand interbeds. (7.5-9.3) sorted beinge fine, medium and coanse sand interbeds (9.3-10.7) similar to 6.0-7.5 (10.7-11.6) fine sund interbeds intilly appeared to be fill yet to sorted. 11.6-13.0 Bed oock - dark green - fine grained - faliated - combonatived (3-5%) happed 12.3-1 ph/ambate veinlets - Tr. hemate, epidete - kelm 12.0 apple green bands (spidele		

DATE Feb 19 19 89	HOLE NO PLS-89-203 LOCATION 1406 5N ELEVATION 330 GEOLOGIST P. Collins DRILLER R. Formus BIT NO. CO 70157 BIT FOOTAGE 678-80.8
	GEOLOGIST P. Collum DRILLER A. Found BIT NO. CO TO T BIT FOOTAGE 6 78 - 80 3
SHIFT HOURS	MOVE TO HOLE _2:15 - 2:40
TO	DRILL 2:40 - 4:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER <u>Travel</u> 5:00 - 5:30
	MOVE TO NEXT HOLE 4:30-5:00

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	I T		i	
ME GRA		-	-		
1	0.0 - 0.5 Organics 0.5 - 11.2 Ojib way I Sedinat (0.5 - 3.3) beige, non gritty, pure soft clay (3.3 - 8.7) beige sorted fine grained sand; medium to course sand below (8.7 - 11.2) Gravel: med to course sand matrix. Occasival beige free sand bed. Coloble clast supported: 30% Volcanies and sediments; 70% Granitoids 11.2 - 13.0 Bedrock -dark green -fine to med. grainel -foliated -chloritic -carbonatyed (3-5%) - below 12.0 5-7 % quants/cab vein leti with 0.5% sulphides Mafic Volcanie 13.0 E.O.H.				

DATE Feb 20 19 89	HOLE NO <u>PLS-89-204</u> LOCATION <u>366</u> 7+50N ELEVATION <u>326</u> GEOLOGIST <u>P.Collins</u> DRILLER <u>R. Foursell</u> BIT NO <u>CD+0157</u> BIT FOOTAGE <u>90.8-90.3</u>
SHIFT HOURS	MOVE TO HOLE 4:30-5:00 fel14
TO	DRILL 7:15-10:00 wait for water 45 minutes.
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER Travel 6:30 - 7:15
-	MOVE TO NEXT HOLE

DEPTH INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
1	0.0-0.5 Organics 0.5-7.4 Ojbaray I Sediments beige (oxidized) blightly grithy to non- grithy soft clay. (2.0-4.0) beige (oxidized) frie grained Sand (4.0-5.5) Cobble clast support ked graves very lettle to no return this is due to the tack that Pieve is no matrix; thus no seal around round round south and surple works away - much tank empties quickly (5.5-6.0) beige souted his grained (6.0-7.4) Cobble clast supported graved ormilar to 4.0.5.5 yet are able to get some veturn. Com se sund mach is Cobble clast comportin: 30 °L V/s and 7.4-9.5 Beoeck - Mafie -dark green (initially or he weathered surface) -fine grained -well Foliated -chloritic; sericitized in places. -5-7 °L can bornate; stringer t -4 °C Sulphides 9.5 E-0.H-		

SHIFT HOURS TOTAL HOURS CONTRACT HOL	MOVE TO HOLE 10:00 - 10:15 DRILL 10:15 - 11:15 MECHANICAL DOWN TIME DRILLING PROBLEMS	BIT NO.	ELEVA	ATION 322 DOTAGE 90.3 - 97.3
- S S = =	MOVE TO NEXT HOLE			
DEPTH METRES GRAPHIC LOG INTERVA SAMPLE NO.	DESCRIPTIVE LOG			
3	0.0-0.5 Ojdoway I Sediments (0.5-2.5) belige order slightly goth to ma gritty port clay (2.5-5.0) very fine to fine beige oxist grained sound with minor clay bed; (5.0-5.5) Clast supported gravel bed Very little matrix. Child's of composition: 30% tolcanics and sediments; 70% Granitoids × note somple 01 may appear to look like till in characte applit as it is a good mix time—unsurted. 5.5 Bedrock Very similar to hole # 204 Mafir Volcanic 7.0 F.O.H.			

DATE Feb. 20 19 89	HOLE NO PLS-89-206 LOCATION 286 11N ELEVATION 3/8 GEOLOGIST P. Collins DRILLER R. Fournel BIT NO C670157 BIT FOOTAGE 97.3 -105.3
SHIFT HOURS	MOVE TO HOLE 11:45 - 12:00
то	DRILL 12:00 - 1:15
TOTAL HOURS	MECHANICAL DOWN TIME 3:00-5:00 service water hauler
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE Partney to highway 1:15-3:00

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3	0.0-0.5 Organics 0.5-6.2 Of iloway I Sediments (0.5-2.5) being coxidized) slightly pritty soft closy (2.5-3.5) very frie to frie grained being sand (3.5-5.0) Matrix supported gravel Sorted frie to median gravier sand matrix. Cobble closts of composition: 30% Volcanics & Sediments; 70% Graintoids (5.0-6.2) less matrix gravel becomes plightly clast supported. There are occasional sorted frie sand beds throughout interval (6.2-8.0 Bedrock Matric Volcanic very Similar to 204.		

DATE Feb 21 1 SHIFT HOURS TOTAL HOURS CONTRACT HOU	MOVE TO HOLE 7:50-1:40 MECHANICAL DOWN TIME DRILLING PROBLEMS	BIT NO COTO	BIT FOOTAG	N 316 ;E 105.3- 128.8
			Pg. 10 ==	2
DEPTH METRES INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
3 1 2 3 10 10 10 10 10 10 10 10 10 10	0.5 - (6.8 Ojibway I Sedinati (0.5 - 3.0) beige (oxidused) nongrith soft clay. Beige openy downsection (3.0 - 6.8) beige to beige grey very fine to fine granied sand with clay interbeds. - pebble bed at 16.5 m (6.8 - 19.0 Chibougaman Till gradational contact into slightly sorted coomse brised fine-medin rand matrix (minor sitt). less sorted in appearance downsection. However, up to 40% medin graned sand in sections. (matrix supported) Cobble clasts of composition: 40% Volcanies and sediments; (60% Granitoids. (8.3 - 9.0) boulder-grabboro (9.0 - 9.2) boulder-grabboro (9.0 - 9.2) boulder-granitoid (9.3 - 10.1) Till is clast supported Cotbbles & small boulders; other wise similar to 6.8 - 8.3 (10.9 - 11.1) boulder-granite (11.1 - 11.7) Till matrix contains up to 30% gray quitty clay in matrix (11.7 - 14.0) similar to 6.8 - 8.3 (14.0 - 15.0) minor grey quitty clay in matrix (c'5-t) (15.0 - 15.2) boulder-granitoid. (15.1 - 18.0) similar to above yet in arcase in percentage of volcanics and sediments to h 60%.			

DATE <u>Feb 21</u> 19 89 SHIFT HOURS TO	MOVE TO HOLE DRILLER			
OTAL HOURS	DRILLING PROBLEMSOTHER			*** 1
	MOVE TO NEXT HOLE	Pg 7	2 of 2	
GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
Son all Con 15. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	0-19.0 till becomes clast pported: very little matrix sundent-10 mesh cuttings. mposition of clasts simila to 2-18.0 MISSINAIBI SEDITENTS 1-21.6 Gravel: Clast supported Led medium to coarse sand matrix tole / Cotoble clasts of composition o b Volcanies of sediments; So to Granitorids. 21.6 - 23.5 Bedrock light green of dank grey (bleaded) aphanitic sheared chloritic; dank grey siltstone ands in crease domsection o to 20%. carbonatzed (3-5%) 7 6 106 diss. sulphides Int. Volcanie / prefa Sedimet. 23.5 E.O.H.			

SHIFT HOURS	GEOLOGIST <u>F. Collim</u> DRILLER <u>F. Found</u> E MOVE TO HOLE <u>2:45-3:00</u> Feb 21st DRILL <u>3:00-5:00</u> 21st <u>B:00-10:3:</u>		- 27- BIL FOOTA	GE 01- 21-
TOTAL HOURS	MECHANICAL DOWN TIME	-		
———	DRILLING PROBLEMS			
CONTRACT HOUR	RS OTHER Travel 6:30-7:00 6622 5	fartup -	7:00-8100	
	MOVE TO NEXT HOLE			
			Pg 10f 2	
METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
	0.0-17.5 Ojibway # Sediments			
1-1-1	(0.0-3.0) beige, oxidued slightly			
2	grifty to non gutty (below 1.0m)			
	pure, soft alay			
3-				
. ₹ · 1 E	(3.0-10.0) beige very fine to fine grained sand. Occasion al this			
4 7 F	grained sand. Occasion at then			
5-3-	pebble bed and clay beds.			
1 E	at 9.0 m course sand bed.			
6-3. 4	(10.0-14.5) Gravel: clast supporkel			
,] [Sovked medin and course sandmony			
(3) E	with a 256 fine sand in places			
8-1	Coloble clasts of composite: 30%			
_ 	Volcanics and sediment; 40%			
9 F	Granitorido			
0	below 12.5 Volcanics and sedinal			
13 (F)				
1-00/501	increase in composition to 50%			
2 50/4	(14.5-15.0) Dorted coarse sand &			
PRI	(15.0-17.5) matrix supported gravel			
3 00 E 02	with and in the made a les and			
130NE	with predominty medic and fine sand			
350	Matrix offeringe similar to 12.5 to			
5-1	17.5-24.0 Chibougaman Till			
100: E 03				
500 F	gradational contact into a			
700年	slightly sorted smewhat coarse baged			
100 F O4	his Fire sand makix. Pleve is			
8 40 4	approximatel. 10/ 11 1			
05	approximately 1% gritty clay in noting			
o ∆ .	cossele clast supported of composit.			
077. 1200	50 % Volcanies and sediments; 50%			

	/	C 1 - 1 . 1 .	- 6-11	HOLE NO PLS - 8	89-208 LOCATION	site 13		ELEVATI	ON		_
D	ATE _t	Eb 21/2:	19 87		DRILLER						_
S	HIFT	HOURS		MOVE TO HOLE							_
_		то	_	DRILL							_
Т	OTAL	HOURS		MECHANICAL DOWN	N TIME						_
_		-		DRILLING PROBLEM	IS						_
C	ONTR	ACT HO	URS	OTHER						· · · · · · · · · · · · · · · · · · ·	
_		-		MOVE TO NEXT HOL	LE						-
							Py 20+	2			
_ v	U	- u									_
DEPT PIN NETRE	GRAPHI	SAMPLE NO.		DESCRIPTIV	E LOG						
	ΔO	06	20.0	0-24.0 Till	is matrix supp	ated					
71-	A	注			medin to coar			ļ			
	A	1/4				se				ļ	
22-	OA	£07	some	d beds at 21.	om \$ 22.4m						
23-	C	往									
	1	EOR	24.0	7-29.5 Miss	sinails i Sediment	4, 3					
24 -		TE.			<u></u>					Ì	
		/F	(2)	1.0-25.0) beige	very fine to fine						
25-		E09	de	ained sand w	ith grey rongi	17					
:		JE"	pi	rure, compact	day in ter keds						
26-	199	V.E	Ch	ay is dry but no	of tough						
27-	00	KŁ.									
	OFC.	7	and	0-25.5) Dovied	medin and cours	ie					
z8-	Do	10	7.0	uned band bee	ds (non oxidized	<i>)</i>					
	(5)	7	(25	5.5 - 28.7) Bould	der-granite						
29-		F	(52	1.7 - 29.5) France	0 0 1 -						
	(50	<i>if</i>	ve	my colobly. 600	Le Vol -	ted					
30-	111	Į/E li	Se	dia: L	3						
3 1−	711	ZE	m	diments; 40%	Granitords.						
		E	20	nd.	of media {con:	se					
32-		E									
		E	, in	con 2 +. 0 there	e is an increas-	e					
33-		E	1	percentage of U	olianis and						
-44	1	E	Sea	diments to 75°	6. 20% of who	ich					
34-		E	6	siltstone					-		
35-		E		29.5-31.0 Be	drock						
=		F	1	3	Concorda						
36-	}	F		- greenish gre	2						
=		E		- aphantic;	initially greened in	hate rock poud	elups.				
37-		E		- well foliates	initially greened in		1				
·38		E		- 1-2 6 carlon	rate			1			
30-		E		- Lo. 5 do sul	lphides						
39-		E									
=		E		Meta SedineA	/ siltstone						
40-		F		31.0 €.	0,14.			1			
				211							

	DIS-89-708 - 0017101	C -La # 14		EL ELIATI	370	
DATE Feb. 22	HOLE NO PLS-89-209 LOCATION S	146 DIT NO	c (22072	ELEVAII	10N <u>02 - 7</u>	8.5
SHIET HOUR		ALL BIT NO.	COTOLY	E BII FOOI	AGE 37.0 TO	7.0
SHIFT HOUR	The state of the s					
TOTAL HOUR						
TOTAL HOUR						
CONTRACT H	DRILLING PROBLEMS				· · · · · · · · · · · · · · · · · · ·	
	MOVE TO NEXT HOLE 4:45-5:00	(cant war	1)			
	MOVE TO NEXT TIDES					
			g 1	of 3		
(0 0 1			4 -			
GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOC					
METRES SRAPHIC LOG NTERVAL SAMPLE NO.	DESCRIPTIVE LOG					
2 5 2 0						_
1=1	0.0-0.5 Organics					
14=====================================						
1	0.5 - 19.0 Ojilsway I Sediments					
?=====================================	(0.5-3.3) have - /					
=======================================	(0.5-3.3) beinge (oxidized) shightly					
) 	gritty to non gritty (downsection),					
E) soil play					
	(3.3-16.5) being very fine to fine grained sand with occasional					
= : - F	himsel sand with occasional			1		
I I F	thin peoble & clay beds.					
3 l E	- there are mediin grained sand					
3 · . F	The se de helian 14 ha					
,377 E	fluvial in appearance)					
∃· · . E	(16.5-18.0) interbeds of medium of					
id : 1 E	course sand and grameles.					
	(18 0 - 18 2)					
	(18.0-18.3) boulder-gramite					
∃ }.: E	(18,3-19.0) sorted fine & medin					
	grained sand with pebble interbed	4				
1 E						
3. W. I E	19.0-37.0 Chibougaman Till					
<u> </u>	slightly sorted (silt deficient)					
4 · F	being grey fine sand matrix.					
3 TILE	up to 2506 medium sand					
3 E						
E	(matin supported). Coloble				-	
3 E	clasts are present of composition;					
	45% Volcanics and Sediments;					
∄. : · E	55% Granitoids.					
1 · · F						
1000						
000						
3000 /E 1						
- XXX						
1000 E						
100						
A DE						
1 1 1	1	1		1	1 1	Į.

DATE Feb 22 1	9 89 HOLE NO P25-89-209 LOCATION S		
SHIFT HOURS	MOVE TO HOLE		
TO			
TOTAL HOURS	MECHANICAL DOWN TIME DRILLING PROBLEMS		
CONTRACT HOU			
	MOVE TO NEXT HOLE		
		Pg	2 of 3
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
Δο' 02 71-0.Δ 02	(22.0-24.6) min grey gritty day		
21	MI MUNITUR & G		
22-03	at 23.5 m pure, dry, compact clay partings.		
23-0/	(24.0-28.5) up to 30% gray gritty		
24 40 04	clay in matrix. Reventage increases. substantially downsection. Moreover,		
25	compositional percentage of Volcanics		
A PIE OS	and sediments in a eases to 60%.		
26-	(28.5-28.9) Boulder-gubbero		
27-	(28.9-34.7) similar to 24.0-28.5 (34.7-35.4) boulder-mongarite		
41.	(35.4 - 35.9) boulder - granodinite		
28-07	(35-7 - 36.1) boulder - gaboro		
29-	(36.1-37.0) similar to 24.0-29.5		
30-1-1-1	37.0-45.8 missinaibi		
31 - 08	Sediments		
	(37.0 - 38.7) beige grey very fine to		
32	- January		
33	(38.7 to 40.0) predominantly grey silt		
1.5	(40.0-44.0) beige grey very fine sand with silt interbeds		
34 1	between 37.0 }440 -11		
35	2-3 in ches of sample in number one		
36-			
37.4 2 1			
100 E			
38-			
39			
40====			

DATE Feb. 22 19 89	HOLE NO PLS-89-209 LOCATION _ GEOLOGIST DRILLER		
TOTAL HOURS CONTRACT HOURS	MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER		
	MOVE TO NEXT HOLE	Pg 3 of 3	
GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
13 - 12 4 5 6 - 12 4 5 6 - 12 6 6 - 12 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2-45.8 Gravel: Cobble clast apported of composition 60% of carnies of Sediments; 40% of carnitorials. Very little matrix Asundant -10 mesh cuttings 5.8 - 47.5 Bedrock median of light grey-green; bloock very fie graind sheared; schistose chloritic; sericitized silicitied; mildly carbonatied silicitied; mildly carbonatied vein lets; slight increase in To age downsection 3% blue green fuschite Altered Volc.?. 47.5 E.O.H.		

TOT	FT HOURS TO TAL HOURS NTRACT HO	-	HOLE NO PLS-89 GEOLOGIST P. Colling MOVE TO HOLE 7:0 DRILL 8:00 - 1:4 MECHANICAL DOWN TO DRILLING PROBLEMS OTHER Travel MOVE TO NEXT HOLE	DRILLER R. H. DE - 8:00 (1) STIME	will BIT NO.	CR702761	BIT FOOTAGE	76.8-121-1
DEPTH IN METRES	SAMPLE NO.		DESCRIPTIVE	LOG				
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 20		(s.s. grades) (s.o. grades) (s	5-20.0 Of 5-20.0 Of 3.5) beige oxiety to non gritty by to non gritty y. 5.0) beige very uned sand with any bed -11.0) sorted bereined sand (glan -17.8) beige of ding to course of 8-20.0) Poble occasional fine 8-20.0) Poble occasional fine 8-20.0) Poble occasional fine 8-20.0) Poble occasional fine 6 Course sand do 450 Volca occasional occasional for do 5 Course sand do 6 Course occasional for 6 Course occasional for do 6 C	its way I sede dyed olightly by, pure, sof fine to fine the occasional ige fine to mad ige fine to fine the occasional ige fine to mad i	in			

SHIFT HOURS TOTAL HOURS TOTAL HOURS CONTRACT HOURS CONTRACT HOURS OTHER MOVE TO NEXT HOLE DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE Population of the same of making with the same of the sam	DATE 6623 19	989 HOLE NO PLS-89-210 LOCATION Side A	
TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE Po 20 f 3 DESCRIPTIVE LOG DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION	SHIFT HOURS		IT NO BIT FOOTAGE
CONTRACT HOURS OTHER MOVE TO NEXT HOLE Rg 20 f 3 DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG OF 12			
CONTRACT HOURS OTHER MOVE TO NEXT HOLE Po 20 { 3} DESCRIPTIVE LOG DES	TOTAL HOURS		
DESCRIPTIVE LOG DESCRI	CONTRACT HOUR		
DESCRIPTIVE LOG DESCRIPTIVE			
200 - 34.2 Chibangaman Till quadathonal context. Shipting sorted his sound markin with 12 to gray anthy clay within 23 A 1 03 Clad 5 of composition: 50 to volcamics and sediments; 50 to appoint ordes (21.4 - 25.7) Tell instructs clay rich up to 60 to gray quity clay; results in less marky retur (25.7 - 28.0) similar to above with above is to gray gutty clay in morks. Also compositio of Volcanics foodiments increases to 60 to (24.8 - 30.0) peure, gras, had computed rengalty clay partings (30.7 A 1 08 34.2 - 41.7 Missinaulo Sodiments 34.2 - 36.2 peure, hard, gres compact slighty guity to non gutty clay builder (grante) at 35.0 - 35.3 galloro carboll at 35.7. 36.2 - 37.5 Grand: Volcanics 12 clays carpositio: 65 to Volcanics			Pg 20 f 3
quadational context. Stept by 32 A 1 03 24 A 1 03 25 A 1 03 26 A 1 04 27 A 2 1 04 28 A 2 1 09 28 A 2 1 09 29 A 2 1 09 20 A 2 1	DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
quadational contact. Slight by 300 de l'an es sound monthis with 1-2 to expay grithy clay coloble clad 3 of compristion: 50-t volcanies and sediments; 50 t quantitoride (21.4-25.7) Till matrix is clay rich up to 60 to grey grithy clay; results in less matrix retur (25.7-28.0) similar to about 20 0 d of (25.0-21.6) similar to about unth about 15 to grey grithy along in motivis. Also compositio of volcanies & sodiments increases to 60 to (29.8-30.0) pure, grees, hard compret nongultry clay partings (30.0-34.2) Similar to 28.0 to 29.8 34.2-41.7 Missinculoi Sodiments 34.2-41.7 Missinculoi Sodiments 34.2-36.2 pure, hard, grey compart slightly grithy to non grithy clay. builder (grante) at 35.0-35.3 galdoro cotoble at 35.7. 36.2-37.5 Grand: Cloot supported. Vary Cotobly with clad composition: 65 to Volcanies	100/1	20.0 - 34.2 Childregamous Till	
22- Ac 103 Clads of carpatine with 12 to gray critical sold Volcamics and sediments; 50 to granitoride (21.4 - 25.7) Tell instricts clay tick up to 60 to gray gritty clay; results in less matrix returned and about 15 to grey gritty clay; results in less matrix returned and about 15 to grey gritty clay; results in less matrix returned and about 15 to grey gritty clay about 15 to grey gritty clay in motrix. Also composition of Volcamics & soliments increases to 60 to 29.8 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21		
12 d gray critty clay color with lands of composition: 50 to Volcamics and sediments; 50 to granitarious 26 A C C C C C C C C C C C C C C C C C C	1 / NF 02		
clads of composition: 50 % volcamics and sediments; 50% quanitorids (21.4-25.7) Tell innative clay rich up to 60% open quitty clay; resolts in less matrix returations (25.7-28.0) semilan to about the	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-2 to gray gutty clay. Colobbe	
apanitoride (21.4-25.7) Till inatria clay rich up to 60 to apey grithy clay; results in less matrix retur (25.7-28.0) similar to 20.0 to 21.3. (25.0-27.8) similar to aborno unth about 15 to apey grithy of Volcanis & sodiments increases to 60°C. (24.8-30.0) pure, aprey, hard corporat rongrithy clay partnings (30.0-34.2) similar to 28.0 to 29.8 31-20 34.2-41.7 Missinculoi Sediments 34.2-36.2 pure, hard, apey compact slightly grithy to non aprity clay. boulder (granite) at 35.0-75.3 galdoro cotolels at 35.7. 36.2-37.5 Gravel: Clost supported. Vary Cotoley with clost composition: 65°6 Volvanis	Z3 A F 03	clads of composition: 50%	
25 1 04 (21.4-25.7) Tell imatria is clay rich up to 60% or gry grithy clay; results in less matrix return (25.7-28.0) similar to 20.0 to 21.3 (25.7-28.0) similar to 20.0 to 21.3 (29.0-21.8) similar to above with about 15% or grey grithy clay in motive. Also composition of Volcanies's sodiments increases to 600%. 129.8-30.0) pure, ones, hard compact nonguity clay partings (30.0-34.2) similar to 28.0 to 29.8 (30.0-34.2) similar to 28.0 to 29.8 (34.2-41.7 Missinaulsi Sediments and grey compact slightly grithy to non grithy clay parting for the clay in the clay composition in 35.7. 36.2-37.5 Grand: Clast supported. Vary Cotology with clays composition: 65.5 Voltomis	24 10 4	Volcanics and sediments; 50%	
rich up to 60% open grithy clay; results in less matury retu- (25.7 - 28.0) similar to above (25.0 - 29.8) similar to above unth about 15% open grithy rlay in motrix. Also composition of Volcanics & sodiments increases to 60%. (29.8 - 30.0) pure, open, had corpuet rongrithy clay partings (30.0 - 34.2) similar to 28.0 to 29.8 31-2 - 30.7 pure, hard, open compact slightly grithy to non quity clay. builder (granite) at 35.0-35.3 garboro cotable at 35.7. 36.2 - 37.5 Gravel: Clost supported. Very (otboly with clost composition: 65% Volcanies	POLLOY		
27- A c (25.7 - 28.0) similar to about (25.7 - 28.0) similar to about (25.7 - 28.0) similar to about (28.0 - 21.8) similar to about (28.0 - 21.8) similar to about (28.0 c) Volcanics & sodiments increases to 60%. 31-07 (29.8 - 30.0) pure, open, had (29.8 - 30.0) pure partings (30.0 - 34.2) similar to 28.0 to 29.8 32- A (30.0 - 34.2) similar to 28.0 to 29.8 34-2 - 41.7 Missinculoi Sodiments 34.2 - 30.2 pure, hard, open compact slightly gritty to non (29.4) portly clay. boulder (grante) at 35.0-35.3 galdoro cotable at 35.7. 36.2 - 37.5 Grand: Cloat surported. Very (obboly with clost composition: 65% Volcanies	TO TEST		
27 A C (25.7 - 28.0) similar to 20.0 to 21.3 (28.0 - 21.8) similar to about 129.0 - 21.8) similar to about 129.0 - 21.8) similar to about 130 of volcanics of sediments increases to 60°6. (29.8 - 30.0) pure, eyes, had corput rongulty clay partings (30.0 - 34.2) similar to 28.0 to 29.8 34.2 - 36.2 pure, hard, eyes compact slighty eyithy to non eyethy clay. brilder (grante) at 35.0-35.3 gabbio cobbble at 35.7. 36.2 - 37.5 Gravel: Clost supported. Very (obbby with clost composition: 65°6 Volcanies	26-17/1/205		
28 0 4 06 (29.0 - 21.8) similar to above with about 15 to grey gutty clay in motivis. Also composition of Volcanics & sediments increases to 60° b. (29.8 - 30.0) pure, grey, had compute nongrity clay partings (30.0 - 34.2) similar to 28.0 to 29.8 34 A 10 34.2 - 41.7 Missinculos Sediments 34.2 - 36.2 pure, hand, grey compact slightly guity to non gutty clay. brounder (granite) at 35.0-35.3 gabbio coolbile at 35.7. 36.2 - 37.5 Gravel: Clost supported. Very (obbly with clost composition: 65° 6 Volcanies	7 // //	9	
unth about 15 to grey gutty slay in motive. Also compositio of Volcanics & sodiments increases to 60°6. 129.8 - 30.0) pure, gres, had corpuet rongutty clay partings A 0 109 (30.0 - 34.2) similar to 28.0 to 29.8 34.2 - 36.2 pure, hard, grey compact slightly gutty to non grity clay. brilder (grante) at 35.0-35.3 gabboro cotable at 35.7. 36.2 - 37.5 Gravel: Clost supported. Very Cotably with clost composition: 65°6 Volcanics	30 / 1/2	21,3	
of Volcanics & sediments increases to 60%. 129.8 - 30.0) pure, gres, had compact nongrithy clay partings 109 130-09 130-09 130-09 130-09 130-0-34.2) similar to 28.0 to 29.8 34-2-41.7 Missinculoi Sediments 34.2-36.2 pure, hard, gres compact slightly grithy to non grithy clay. boulder (grante) at 35.0-35.3 gathoro colobbe at 35.7. 36-02 38-39-30-12 12 clock composition: 65% Volzanis	28-	(28.0 - 29.8) similar to above	
30- 10 10 10 10 10 10 10 10 10 10 10 10 10	29-	clay in motivix. Also composition	
12-08 129.8 - 30.0) pure, gres, hand compact nongrithy clay partings 130.0 - 34.2) similar to 28.0 131-00 132-00 133-00 134.2 - 41.7 Missinards Sediments 34.2 - 36.2 pure, hand, gres compact slightly grithy to non grithy clay. 137-00 138-31 36.2 - 37.5 Growel: Clost supported. Very (obbly with clost composition: 65.06 Volzamis	/ /-		
Compact non quity clay partings (30,0-34.2) similar to 28.0 (30,0-34.2) similar to 28.0 (34.2-41.7 Missivaubi Sedimets 34.2-36.2 pune, hand, aper compact slightly quity to non quity clay. brulder (gramte) at 35.0-35.3 quitoro cotoble at 35.7. 36.2-37.5 Gravel: Clost supported. Very (obboly with clost compositin: 65.66 Volzamis			
33-0A 34-2-41.7 Missinculsi Sediments 34.2-36.2 pune, hand, energy compact slightly griting to non griting clay. brulder (gramite) at 35.0-35.3 gabbro colobbe at 35.7. 36.2-37.5 Gravel: Clost supported. Very (obboly with clost composition: 65.66 Volzamies	31-01	(29.8 - 30.0) pure, grey, hard	
33-CA 34.2-41.7 Missinculsi Sediments 34.2-36.2 pune, hand, quey compact slightly gritty to non gritty clay. brulder (grante) at 35.0-35.3 gabboro cotobble at 35.7. 36.2-37.5 Gravel: Clost supported. Very (obbby with clost composition: 65.66 Volzomis			
34-2-41.7 Missinails Sediments 34.2-36.2 pune, hand, grey compact slightly gritty to non gritty clay. boulder (granite) at 35.0-35.3 gabboro cotable at 35.7. 36.2-37.5 Gravel: Clost supported. Very (aboly with clost composition: 65.06 Volzomis	- / /-	(30,0-34.2) Similar to 28.0	
34.2-41.7 Wisservails Sediment? 34.2-36.2 pine, hand, grey compact slightly gritty to non gritty clay. brulder (grante) at 35.0-35.3 gabbro cotobbe at 35.7. 38 36.2-37.5 Gravel: Clost supported. Very (obbly with clost composition: 65% Volzomes	= CNF		
compact slightly gritty to non gritty clay. brulder (grante) at 35.0-35.3 gabboro cotobbe at 35.7. 36.2-37.5 Gravel: Clost supported. Very (obbdy with clost composition: 65% Volzamis	34-	34.2-41.7 Missingulsi Sediments	
compact slightly gritty to non gritty clay. brulder (grante) at 35.0-35.3 gabboro cotobbe at 35.7. 36.2-37.5 Gravel: Clost supported. Very (obbdy with clost composition: 65% Volzamis	35 22	34.2-36.2 pure, hard, grey	
protty clay. broulder (grante) at 35.0-35.3 gabbro cotoble at 35.7. 38-36.2-37.5 Gravel: Clost supported. Very (obbly with clost composition: 65% Volzonies	6		
gabbro cotolele at 35.7. 36.2-37.5 Gravel: Clost supported. Very Cotolog with clost composition: 65°6 Volzamis	36 SE/F	grating clay.	
gabbro cotolele at 35.7. 36.2-37.5 Gravel: Clost supported. Very Cotolog with clost composition: 65°6 Volzamis	37-200年	boulder (grante) at 35.0-35.3	
36.2-37.5 Gravel: Clost supported. Very Cobbly with 12 clost composition: 65.06 Volzamies	38	galobro cotoble at 35.7.	
clust composition: 65% Volzames	作	36,2-37.5 Gravel: Clost	
cross composition. 63 6 000 comes	39 20 12	supported. Very colody with	
33 6 0 10000	40-55 NE	and sediments; 35 6 Frankoids	

DATE Feb 23 19 89 SHIFT HOURS	HOLE NO <u>PLS-89-210</u> LOCATION S GEOLOGIST DRILLER		
TOTAL HOURS CONTRACT HOURS	DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE		
		Pg 304	F 3
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
41 38. 42 41. 43 41. 44 45 41. 46 47 48 49 49 49 49 49 49 49 49 49 49 49 49 49	5-38.5 Dovted coon se, medin Frie Damed interbeds; dank yish green colour. 5-41.5 similar to 36.24 37.5 5-41.7 Dovted coones Dand comple 13 contains some bedwell sips. 7-44.3 Bedvock lank grey to black very fre grained to applant; is well Foliated; sheared silicitied 15-20°C growts/ contract resilets with assoc- out phides, initial 0.5 m has up to 20°C course chinks of sulphides. there are at il 3-5 C sulphide below this appears se condant graphitic much the bond are compa		

	HIFT	eb23/24 HOURS		HOLE NO PLS - 89-211 LOCATIO GEOLOGIST P. Collins DRILLER R. A.					29.7
T		HOURS		DRILL 2:00 - 4:15 MECHANICAL DOWN TIME	·				
_	OIAL	_		DRILLING PROBLEMS					
C	ONTR	ACT HO	URS	OTHER 4:15-5:00 run out of n	rater-clean	mudtan	k Travel	5:00-5:30	
-		-		MOVE TO NEXT HOLE				1.4	
					0		New B	A.	
"	0		1	· · · · · · · · · · · · · · · · · · ·	Pg 1	of 2			
DEPTH IN METRES	GRAPHIC	INTERVAL SAMPLE NO.		DESCRIPTIVE LOG					
	11	E		0.0-1.0 Organis					
1	2	<u> </u>							
		}		0-20.0 Ojibway II Sedime					
2-		Į Ę	(1.0	- 6.0) grey, rongritty, pure.	SUH				
3 –		F	16.	0- 9.5) grey silt with claying	terbeds				
4		E							
		E	(4)	5-13.5) gray beige fine grain					
5-		E	112						
6	_	E	(13.	5-20.0) beige grey fix rained sand with occasion	al				
3		E	5	used med sand beds. Coars					
7_		F		and bed at 19.5m.					
8-		E							
	= =	E		-clay bed at 16.0m					
9-		E		U					
10-		E							
11		E							
[]		E							
12-	1	-							
13		E							
3		E							
14		E							
15-		E							
=		E							
16-	, . ^	E							
17-	1:								
. =	-	E							
18		E							
19	: .	-							
20-		E							
		1							1

TAL HOURS NTRACT HOURS	MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER			
	MOVE TO NEXT HOLE	-	2	
			rg 2 of	2
C E I			ı	
GRAPHIC LOG NTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
Sol.				
· ' ' / F	20.0-25.5 Chibougaman Till			
24 01 (2	0.0-22.c) appears to be a mix of			
N LE	Il and sand Often matrix			
a	ppears sorted and coarse biased			
1 E 62 1 12	is to Go to nedium and course			
	and in places - Pebble and abble			
	lasts: 50 6 Volcanics Sedints			
A/E03 5	06 Granite do.			
17.14	22.0-25.5) Unserted gray beigt			
= 5	ine sand/silt with up to 80°7			
25 E04 9	very with the making Class			
X5 \F /	rey gritty clay matrix. Clay ich matrix supported resulting			
でが	in al 14 le cole milland from			
VE05	in slighty less return; there for a comple of is taken over a 2mintered			
NE S	angle 62 to Franch over to 2			
	abble clasts of composition: 608			
	betennies and sediments; 40 %			
E	Granitoido			
IF 2	25.5-27.5 Missinaibi Sediment			
	5.5-26.0 Sovied course sand lead			
	,			
	non aritty dua less partings			
	non gritty, dry day partings			
	ic. 2-27.5 clost supported			}
<u> </u>	matrix. Cobble clast composition			
E				
E	45% Volcanics and Sediments;			
E				
E	27.5-29.7 Bedrock			
-	-dark gray to black			
	very fire grained			
I E	- well Foliated scheoned			
-	- 5-7-6 quants/carbonate veintets			
1 -	sulphides; 1-2 % overall			

DATE \$\frac{\epsilon}{24}\$ 19 89 HOLE NO \$\frac{\text{P15} \cdots \text{89} - 212}{\text{ LOCATION } \text{ste # 15}} \text{ELEVATION } \frac{326}{326}\$ SHIFT HOURS MOVE TO HOLE \$\frac{\text{9:30}}{\text{9:30}}\$ PRILLER \$\text{R. Founded}\$ BIT NO. \$\text{63747273}\$ BIT FOOTAGE \$\frac{27.7 - 77.7}{27.7}\$ MOVE TO HOLE \$\frac{9:30}{\text{9:30}}\$ - 4:30 TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER \$\frac{4:30}{\text{5:00}}\$ Sion drain and fank, hore ste, Travel \$\text{5:00} - 5:30 MOVE TO NEXT HOLE Reg 1 of 3								
METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG							
	0.5. 41.7 Oils way I Sediments 0.5. 41.7 Oils way I Sediments 0.5. 3.0) beige (oxidized), pure, promptly soft day 1.0 0.0) very fine exading to his grained sund with occasional him clay bed. 10.0-10.0) presol-minently sorted verige Lie experied sound 10.0-12.0) Sorted medium grained 10.0-24.0) interbeds of medium, coverse and minima mis grained sound with vannile interbeds							

DATE Feb 24 19 89 SHIFT HOURS	HOLE NO PLS-89-212 LOCATION DRILLER DRILLER		
TOTAL HOURS CONTRACT HOURS	DRILL		
		Pg 20-	3
GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
23 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	d making s'making supported' rounded of rounded Petable botole closts of composition o'b volcanies and sediments; 6 Granitorids. 3-35.5 Gravel becomes of supported with very little to ix. Becomes very cotology reserved in a showe elow 32.0 volcanies & sedimets or ease in composition to 60% 5-41.7 Slight increase in ound of making; predominantly edium and course grained and		

DATE Feb 24 19 8 SHIFT HOURS	HOLE NO PLS-89-212 LOCATION Site 19 GEOLOGIST DRILLER BIT NO MOVE TO HOLE	
TOTAL HOURS CONTRACT HOURS	MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE	
		Pg 3.f3
METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
43 A A A A A A A A A A A A A A A A A A A	at 40.0-40.4 Boulder-granite 41.7-46.4 Chibougaman Till alor upt contract into very lay vich till motivix 60-70 to irey gritty clay and the sand/ silt motive. Coldolo clasts of imposition: 60% Volcanics and ediments; 40% Granitoids 42.0-42.4 Boulder-granodionite 42.8-46.4 Till motive becomes less clay rich (gradually) ~5% and dost supported; otherwise, similar to 41.7-42.8 boulders at 44.0-44.2 fe Countie 46.4-48.0 Bedwork - light greyish green - very his grained - mell filiated - carbonatized both disseminated and grants / carbonate veinlets 25% - elloritic - 20.5% sulphides Tutermediate Volcanic 48.0 G.O.H.	

DATE feb 25 19 89 HOLE NO PLS-89-213 LOCATION Site #16 ELEVATION 5! GEOLOGIST P. Celling DRILLER P. Fournel BIT NO. EB70273 BIT FOOTAGE 77.7-11 MOVE TO HOLE 4:30-5:00 Feb 24 TO DRILL 7:30- TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS CONTRACT HOURS OTHER Travel 6:30-7:10 7:10-7:30 startup MOVE TO NEXT HOLE Pg 1 of 2.							
DEPTH IN METRES	GRAPHIC LOG INTERVAL	NO.	DESCRIPTIVE LOG				
1			0.0-0.5 Organies 0.5-22.6 Djihway II Sediments (0.6-2.0) beige (oxid), pure, nongrity, soft clay (2.0-4.0) beige very hie to his grained sand 2 occasional thinically hed; public had (4.0-9.0) sorked his and media grained sand (9.0-10.0) similar to 2.0-4.0 (10.0-21.2) predominantly sorted reduce and covarse grained sand with occasional being fine sand ed; and granule bed;				

DATE <u>fcb 25</u> 19 <u>89</u> SHIFT HOURS	HOLE NO <u>PLS-89 - 2/3</u> LOCATION <u>S</u> GEOLOGIST DRILLER MOVE TO HOLE DRILL	BIT NO		
TOTAL HOURS CONTRACT HOURS	MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE			
		Pa	2 of 2	
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
23 -	2 - 21.6 Gravel: matrix yepovted. Sovted medium to evere sand matrix. Coloble lasts of composition: 45 to clasts of composition: 45 to clasts of composition: 45 to clasts of composition: 45 to clasts; 55 th canitoido. 1.6-22.4 Boulder-matrivolumi 2.4-22.6 mediu grained sand the few peloble clasts. 1.6-25.0 Bedrock dark green med in grained metrally olighty perphysicis teptue foliated chlastic; 1 to be O stain downed 23.7-23.9 silve field band; mild, curbonatzed 6 1 to diss sulphid. Goldono: 25.0 E.O.H.			

DATE Feb 26 19 89 SHIFT HOURS TOTAL HOURS	HOLE NO PLS-89-214 LOCATION Site # GEOLOGIST & Colling DRILLER & Formul BIT MOVE TO HOLE 1:45-2:00 DRILL 2:00-5:00 MECHANICAL DOWN TIME DRILLING PROBLEMS	22 NO. <u>CB 70273</u>	_ ELEVATIC	IN 320 GE 102.7-434.2
CONTRACT HOURS	OTHERMOVE TO NEXT HOLE			
	MOVE TO NEXT HOLE		Pg 1 of 2	
ORAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
3 (0.5 4 (3.6 5 (8.6 7 (8.6 10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0.0-0.5 Organics 0.5-22.2 Ojibiumy I Sediments -3.8) beige, poff, magnithy day with silf interbeds. 8-8.0) beige sorted very fix to five gravised sound. 0-17.8) sorted fix to media. gravised sound. - below 11.0 Here are course sound / graval interbeds. - at 14.5 grey soft day bed. 17.8-20.5) Matrix supported Gravel or bed median to coarse graved sound natrix. Pebble / cobble clasts of composition. 40 the Volcanios and sediments; 60% Granitoido			

DATE <u>Feb 25</u> 19 89 SHIFT HOURS		3		DRILLER		ELEVATION		
TO1	TAL HOURS	3	MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE					
-			MOVE TO NEXT HOLE		Pg.	20f2	·	
DEPTH IN METRES	SAMPLE NO.		DESCRIPTIVE LOG	1				
21 - 22 - A - C - A -	7. A. () ~ . A	in pla yet so medi: 22.2 grad grad graft and 60°C helow in m 30.	- 22.2) matrix is a ces giving hell appealed to for of ma and coarse grave - 30.2 Chibourge laterial contact in fine sand belt a clay matrix (5%) (cobbb clasts of cobbb clasts of cobbb clasts of cobbb clasts and so gravimately, it was a green fine grained foliated - charitie - corbonative 2-3% and 2-3% and 2-3% arbitice - corbonative 2-3% Mafic Volcary 31.5 E.O.H.	earance. hix is sorted ned sand canan Till to beige and grey Pebble comparation; ediments; f supported gritty clay che weinled:				

DATE Feb 26 19 89 SHIFT HOURS TO TOTAL HOURS CONTRACT HOURS	HOLE NO PIS-89-215 LOCATION	S BIT NO. 4044	whip	N 318
DEPTH METRES INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
3 (0. 3 (5. 4 (1. 5 (1. 6 (1. 7 (2. 8 (2. 9 (3. 10 (3. 11 (4. 12 (4. 12 (4. 14. 15. 16. 17. 18. 19. 10. 11. 12. 14. 15. 16. 16. 17. 18. 18. 18. 18. 18. 18. 18. 18	0.5-14.5 Ojibowny I Sediments 5-5.0) grey, nongvitty , post clay 0-6.0) grey silt with gray soft lay interbelo. 6.0-14.5) being grey very frie to frie grained sand. 6.5-24.0 Chibougaman Till being grey, fine sand/silt and rey grifty clay matrix (2-3 ob) matrix supported. Pubble and bble clasts of comprition. 5-1 Volcanies and Sediments; 15-1 Frankfordo. 18.0-22.0 matrix is fairly sorted and coarse brased with one grithy lay. Otherwise similar to 14.5-18.0			

GEOLOGIST	-2/5 LOCATION		ELEVATION BIT FOOTAGE	
SHIFT HOURS MOVE TO HOLE		.%		
TOTAL HOURS MECHANICAL DOWN	TIME		1000	The same of the sa
DRILLING PROBLEMS			-	4-30 PM
CONTRACT HOURS OTHER		· ·	,	and the same of th
MOVE TO NEXT HOLE		*-		
	nd>	P	2 f 2	## 45
SHAPHIC LOG NIERVAL SAMPLE SAM	LOG	*		
SAP				1.4
00 04 . at 20.5. gray, pur	e, non griths;			6
21 - Do Compact day par	whigs.	-		•
22 0 A F 05 22.0 - 24.0 simile		-	3200	**
23 - 1 - 1	- 44		- 7	· #
24.0 - 30.0 Miss			(8)) (4)	
(24.0-24.3) gray	, pure, dry ,	.0004	ESTREM.	
compact, non quit				2 - 30
26 - (24.3 - 29.3) dark sund/silt = 00	easinal this		-	
27 - compact clay pm	trips.			44
(29.3 - 30.0) Gra	wel: Coblale			
clast supported			Att of	
29 = 1 65 % Volcanies & Granitorido. «Ven	sidiments; 35%	*	estimo	
30-1/1 alundat -10 med	cuttings. Der		"	
1 1 108 is a small amount	at of natural		* *	1 100
1/1/2 marker			4	
yet this is probable overdying glacic				-
33 - sediments. Occo	social perse			
34- E compact day par	map.	h.	-	4265
30.0-315 Bedwood		A District	-	
- light greensh green	(bleached)			
- very his grand; age	hamitic in places			. 25
37 Ained : 15-20	1	* *	-3	
18- L with me a carbona	+	2000		4.74
39 - chloritie - < 1 7 pulphide				
1 E Alternal Violen	mi a		and the	
70-7		•		

DATE Feb 26 19 80 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO PLS-89- 216 LOCATIO GEOLOGIST P. Collois DRILLER Re MOVE TO HOLE 10:15-10:45 DRILL 10:45 - 2:45 MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE	found BIT NO. CR36	
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3	1.0-12.5 Ojibovay II Sedimen 1.0-3.0) keige to beige grey rong 2.0-10.5) beige grey very hie to he grained sand (10.5-12.5) five and with med to coarse sand interbeds. Occe thin granule bed 2.5-36.5 Chibongaman Till till from beginning of vitera is clast supported resulting in porreturn on matrix. as a resu surples 02,03 are about. 5-6. grey beigt his sand/silt and min grey grothy clay. Cobble clasts of composition: 60 of Volcanies and sediments; 40. Granitoids 13.0-13.2 Boulder - granito 19.6-22.0 predominantly very five to five granied sen with occ. pure grey composition clay parting, are of pebbole bed	ind dain of the state of the st	

DATE Feb 26 198	HOLE NO PLS-89-216 LOCATION _ GEOLOGIST DRILLER			
SHIFT HOURS	MOVE TO HOLE			
TO	DRILL			
TOTAL HOURS	DRILLING PROBLEMS			-
CONTRACT HOURS	OTHER			-
	MOVE TO NEXT HOLE			
		1	Py 20 + 2	
H ES HIC LE				
METRES GRAPHIC GRAPHIC INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
00:				
21-2	22.0 - 24.5 similar to			
三·	12.5-19.6 yet olso occasional			
22-	pure gray compact clay parting,	1		
23 0 0	matrix is por			
1004	24.5-30.3 Till similar to 12.5-19			
24 0	get is making supported (better retu			
10/2/5	There are occasinal thin sorter	}		
25 40	meduin grained sand beds			
26 40 607	30.3-31.2 Sorted median to			
27	course grained sand bed			
A NEOS	31.2-32.0 simila to 29.5-30.	3		
28-0	32.0-32.2 pur e gray, compact			
29-0 1	nongrithy clay portings.			
A.O.	32.2-33.0 similar to 30.3-31.2			
30-10-0	33.0 - 36.0 similar to 24.5-30.3			
31	with approximately 10% grey grid by clay in matrix.			
3.5. E.				
32 30	36.0-36.5 Boulder-galdero			
12 C/F	36.5-39.6 Missinaibi Sediment		BALL AND AND AND AND AND AND AND AND AND AND	
33-00	36.5-39.0 dank grey silt			
34 10	39.0-39.6 Gravel: Coloble			
18 X/E	clast supported. Composition			
35-10 -12	of class is 65% volcames &			
3.4	Sediments; 35% Grantoids			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	sorted fire tomedin sand			
37-	natix.			
. === F	39.6 - 41.5 BEDROCK			
F E		-Silfstne		
39 50 750	very fire arranged and a sit			
39 H	- dank gray to bluch Meta Sed. very five grained; apparitie in places			
4 0-3/	-well foliated			
"-1//E"	-3-5 to gt3/Emin carbonate			
·· =	- occasional graphiti à mudatme bando			
42-7	- coarse chunks of sulchide 2-3-	6 weall	A	
	- course chunks of sulphides 2-3- - below 20.5 this bands of blue or	een alfest m	K	

TAL HOURS	- DRILL 3:00 - 4:30 2612 7:3	
TAL HOURS		· ·
NTRACT HO	DRILLING PROBLEMS	tank 5:00-5:30 travel 26th 6:30-7:002
MINACI NO	MOVE TO NEXT HOLE	7:00-7:30 strup.
	MOVE TO NEXT HOLE	1,00 1,10 3,11-1,00
PHIC NG AVAL PLE O.	DESCRIPTIVE LOC	
GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
	00-05 Organies	
	0.5-8.0 Ojbway I Sectione	etr
	(0.5-2.2) beige exiclized, pure soft clay (nongretty)	2
· .] [(2.2-8.0) beigs to other very	
	his to the grained sand with occasional thin clay bed.	
F	· ·	
	8.0-19.0 Chibonguman To	<u>£</u>
	beging fire sund sold mad	h x
· 2/E.	(motion supported). Cobble class of composition: 55% Volcano & Sediments j 45% Grandoid	vies
	& Sediments j 45% Granutoid	1
A Eur	(10:0-10.3) boulder-granuta	nd
? AV.	(10.3 - 16.0) till be comes	640
O LEO3	clast supported. Makix appear slightly in ted and occasionly	
D Soy	volumes & section ents in even	
	to 60 %.	
30 05	(16.0-16.3) knolder - galloro	
200	(163-19.0) similar to 10.3-16 0	
DEOL	19.0-21.0 Bedrock	
	- dank knownsh grey - fire grained; initially very hie	
27	- fire grained; initially very his grained (sittsone) - Colisted	
08	- biotitice - can broatyzed 3-56; 61% sulphide	

DATE Feb 27 19 89 SHIFT HOURS TO TOTAL HOURS CONTRACT HOURS	HOLE NO PLS-89-218 LOCATION GEOLOGIST P. Colling DRILLER R. FO MOVE TO HOLE 9:00 9:15 DRILL 9:15 ~ 11:00 MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER 11:00-12:00 change oil in MOVE TO NEXT HOLE 12:00 - 2:	dill taked	In a shad	k, forme pre	pure for mage
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG				
2 (0.9) 3 (2.9) 4 (2.9) 4 (2.9) 5 (2.9) 6 (2.9) 7 (2.9) 8 (2.9) 8 (2.9) 9 (2.9) 10 (2.9)	0.0-0.5 Organics .5-7.5 Ojdsway I Sediment 5-2.5) beige (oxidized), rongo t clay. 5-7.5) beige to octre very fin ne grained sand = excisional t clay bed .5-13.6 Chibougaman Ti rey being fine sand/silt is rey being fine sand/silt is nat supported. Cotables of mposition: 55% Volcanic and sediments; 45% Grante 13.6-15.3 Bedrock - light greyish green - very fine to triagrained - strong foliation; sheared - & 106 disseminated carbonote - 2-306 quarts stringers - & 106 suppliedes Altered Volcanic 15.3 E.O.H.				

DATE Feb 28 19 89	HOLE NO PLS-89-219 LOCATION LEOW 40N West of Bry ELEVATION 373 GEOLOGIST P. Collins DRILLER P. Forund BIT NO CAF0272 BIT FOOTAGE 77.8-85.8
SHIFT HOURS	MOVE TO HOLE _8:30-9:15
TO	DRILL 9:15 - 10:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 8:00-8:30 Floot drill to Kruger road 7:30-8:00 travel
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3 4 5 6 7 10 11 12 13 14 15 16 17 18 19	0.0-0.5 Organies 0.5-5.8 Ojibway I Sediments (0.5-3.8) beige (oxidized), pure, nongrity, soft day (3.8-5.8) beige loxid) very fie med below 5.0m. Occasinal thin clay beds (not enough return to simple seperately) 5.8-8.0 Bedrock - dark queen - porphyritic texture; feld phenos - silicitied massive no visible sulphides Granitoid 8.0 E.O.H.		

DATE Feb 28 19 39 SHIFT HOURS	HOLE NO PLS-89-220 LOCATION L49W 73N ELEVATION 317 GEOLOGIST PCITIM DRILLER P. Formed BIT NO. C840272 BIT FOOTAGE 85.8 ~ 103.8 MOVE TO HOLE 10 30 -11:00
TO	DRILL 11:00 - 12:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE
PHIC GG AVAL	DESCRIPTIVE LOC

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		_
1 1 1	0.0 - 1.0 Organics		
2	1.0-15 c Ojhung I Salmests		
3	soft clay		
4	8.0-11.5 gray, very his to find		
5	Clay Bea		
6	change in colour to oche		
7	In and medin gramed		
8-	sangl		
10-	graditional contact-initial		
11-	makin Mere wither beigh gray		
12	fre sand miner set lanton		
13	composition: 50 % Villances		
14	unil seilments; 50% granute de		
15-0-0	- dank red-own of your		
16-0	- massing - prophysitie texture: teletysan		
17	quals phenouse to in a slighty		
19	paymetic dank gray openulmoses - phenoughts of leld. and hemotyst		
20-	- 2-3 de to My cabout e grass		
	Gamtoid.		

SHIFT HOURS TOTAL HOURS CONTRACT HOURS	GEOLOGIST P. Collins DRILLER R. Four MOVE TO HOLE 12:15-12:30 DRILL 12:30-2:45 MECHANICAL DOWN TIME	HTW 48N ELEVATION 3/6
	MOVE TO NEXT HOLE	
		Pg 10f2
METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
5	1.0-16.0 O'jilo way I Sediments (1.0-10.5) gray, pure, nonquity soft clay (10.5-13:5) gray very fine sand filt (13.5-16.0) gray beige fine granied sand 16.0-30.4 Chibongaman Till gray beige fine sand/silt making. Cotoble clasts of compating 50-16 Granitoids 5-10-16 grity clay is matrix between 18.0-30.4 Till is clost supported hay little return on matrix especially between 18.0 to 21.0 as a result samples 02,03 are smaller	

S	ATE Feb 28 HIFT HOURS TO TO TAL HOURS	-	GEOLOGIST MOVE TO HOLE DRILL MECHANICAL DOWN	9-221 LOCATION DRILLER TIME	BIT NO.			
С	ONTRACT HO		OTHER					
_			MOVE TO NEXT HOL	E				
						Pa	20+2	
	ال احا الل				T			
DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE NO.		DESCRIPTIVE	LOG				
21-	0.00	Cu	2-30.4 muts rurse broad a things. .2-26.5 bown	ix is slightly sale bundant -10 mesh lder-gabboro				
23-	000	26.º	5-27.0 simila .0-27.3 bould	to 22-0-30.4 les - granitie				
25	∆.0.1 0.0.1 0.0.1		4-321 Be	a to 22.0-30.4				
	DO 75-07		med green bleaded in places green med in grand	to light yeldowish sheared less				
z9-	0.00.00 0.00.00 0.00.00	-	district downsed the title to comb. 5 panitoid	is sheared less				
30-	0.0		32.6 E.O.	14.				
32	09							
3 3-								- PANESTA
35-								
36-								
37-								
3 8-1								
40-								

DATE Feb 28 1989	GEOLOGIST P. Collin DRILLER R. FOUNDER BIT FOOTAGE Q. 0 - 19.5
SHIFT HOURS	MOVE TO HOLE 2:45 - 3:00 DRILL 3:00 - 4:15
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	OTHER 4:15-4:50 clean med furth movedilltoroad 4:50-5:15 part

DESCRIPTIVE LOG DESCRIPTIVE LOG D.O O. S. Organics O.S 14.6 Ojibway II Sediments (4.5 - 8.5) grey very his sand/all with them soft clay into bed. (8.6 - 14.4) gray beige his garrined Sand - beige in colour below 10.0 m 14.6 - 17.7 Chibong amount Till (14.6 - 14.8) boulder - granits; beige groy his sand muse all mather. Cabble clash supported of composition: 50 to decaries by sediments; 50 to Granitaids. (15.3 - 15.5) granitaid boulder 17.7 - 14.5 Bedrock - dank grasm fraddist violat - moderately fricated - northeridy fricated - templiad folian bands 2.3 to F.O. in flores - 17 FeMy can benefit hy brief granifoid.
0.5-14.6 Ojiboray I Sediments (0.5-4.5) grey, pure, soft romgetty (lay (4.5-8.5) grey very his samed / self inth thin soft clay into bedo. (8.6-14.6) grey being his grained Sand - being in colour below 70.0 m 14.6-17.7 Chibong aman Till (14.6-14.8) boulder- granitic being gray his sand miner solt metric. Coloble clash supported of composition: 50°% volcanies & sodiments; 50°% or controles. (15.3-15.5) granitoid boulder 17.7-19.8 Bedrock - derk gram fradict violet - mod to course grained - moderaty filiated - hemolyad tolic bands 2-3-15 EO in place - 17 FeMy au bounte hy brid granitoid.
19.5 E-O.H.

DATE Marsh 1 19 89	HOLE NO P65-89-223 LOCATION Site#4 Northlessee ELEVATION 3/6 GEOLOGIST P. Collins DRILLER R. Found BIT NO. HODOGODIS BIT FOOTAGE 19.5-36.5
DATE 111001 1 19 0/	GEOLOGIST P. Collins DRILLER R. Found BIT NO. HODOGO 35 BIT FOOTAGE 19.5- 36.5
SHIFT HOURS	MOVE TO HOLE
TO	DRILL 7,45 - 4:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
1	0.0-0.7 Organics 0.7-11.3 Ojib way I Sedinents (0.7-8.0) quey, rangrith, soft ele (8.0-10.4) quey silt = clay in the bedo (10.4-11.3) quey very frie quaired sond 11.3-15.4 Chibougaman Till quey beige frie sand silt and quey quitty clay matrix (10%) Shifty clast supported: Coldles of composition: 55% Volcanics of Sedinent : 45% 6 raidvido somple # 03 ~ 4.0 kg 15.4-17.0 Bedrock - dank queen - mediu quained - massive to weel fil. - prophyritic texture un planes 943 feldoper phenos: trace artenite (61%) - clinic - Lois & sulphides Granit oid - divite 17.0 E.O.H.	7	

DATE March 1 1989	HOLE NO PLI-89-224 LOCATION Site # 5 Lover ELEVATION 3/4 GEOLOGIST P. Collins DRILLER R. Formed BIT NO. HODD DO 35 BIT FOOTAGE 56.6-47.2
SHIFT HOURS	MOVE TO HOLE9:15-9:30
то	DRILL 9:30 - 10:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METHES GRAPHIC LOG CLOG NO. SAMPLE SAMPLE NO.	
0.0. 0.7 Organico 0.7-9.0 Ojibowy I Sedinents (0.7-7.0) grey, soft, run quthy clay (7.0-9.0) grey very fix and & sile 9.0-9.2 Chibongaman Till appeared to be this veneer of till overlying bedrooke. Too small to anaple ar leg seperately. 9.2-10.5 Bedrooke - med in to alive green - med i coarse grained - prophys tic text. - weak Fol. to messon - siliified - phenos of Felder, gts acoptimed orange red hren, ankeite - 1-20 Fe Mg Caule - 3-56 quest/al shipes Grantoid - drinte	

DATE March 1	89 HOLE NO PLS-89-225 LOCATION Site # 6 Lemen ELEVATION 317
DATE THOUGHT 1	GEOLOGIST P. Colling DRILLER R. 1- BIT NO. HODOUS BIT FOOTAGE 47.2-6
SHIFT HOURS	MOVE TO HOLE
то	DRILL 10:45 - 12:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOU	S OTHER
	MOVE TO NEXT HOLE
SRAPHIC LOG NTERVAL SAMPLE NO.	
GRAPHIC LOG NTERVAL SAMPLE NO.	DESCRIPTIVE LOG
R S IN S	
111	0,0-1,0 organics
12 A F	
, - 	1.0 - 20.0 Ojiloway I Sedinett
3-3 E	(1.0-5.7) grey, soft, pon grithy clay
= =	(5.2-6.0) Grand (making supported)
3— E	neding course sand matrix.
	+ 10 mest greenule { pelble clasts;
JE L	410 mest granule & personale
=======================================	45 6 Volcanies of sediments; 55 6
880	Grantoids
	(6.0-7.0) similar to 1.0-5.7
	17.0-13.0) similar to 5.7.6.0 with
3000/E	
1	cobble sized class below 10.5
() F 01	(13.0-13.3) being , out to slightly
H000/E	gritty clay
1000/E	
7000	(13.3-15.0) Gravel is clost supported otherwise similar to 5.7-6.0
100 VE	(150-162) = 10 5.7-6.0
1 6 55 \F	(15.0-15.3) Gray beige, soft nongett
100 F 02	ked
500	(15.3-18.0) Gravel is motion supported
10 OF	to (5.7-6.0)
600/E	(18.0-20.01 mrs mas 1
138/	gravel with al
* E 03	
- 38/F "	well mended pebble clast of
"TENTE I	similar composition to 5.7-6.0
199/E	20.0-215 0 /
, 2000 LE	20.0-21.5 Bedrock
1000 F	Gastad - divita

21.5 £0.4.

DATE March 1989	HOLE NO PLS-89-226 LOCATION Ste#7 Veneur ELEVATION 3/4 GEOLOGIST P. Collins DRILLER R. Found BIT NO HOTOLOGIST BIT FOOTAGE 68.7-79.2
SHIFT HOURS	MOVE TO HOLE 12:30-12:45 DRILL 12:45-1:45
TOTAL HOURS CONTRACT HOURS	MECHANICAL DOWN TIME
	MOVE TO NEXT HOLE

		·	 		
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG				
3 3 4 4 5 6 7 7 8 A A O O O O O O O O O O O O O O O O O O	DESCRIPTIVE LOG 0.0-0.5 Organics 0.5-8.0 Ojiloway I Sediments (0.5-8.0) grey soft, nongritts clay. 8.0-9.0 Chilory amou Till grey beige fire rand pilt matrix. Petoble and coloble sloots of composition: 55% Volcanics and sediments; 45% Granitoids. 9.0-10.5 Bedrock -dark green - coarse feldopur phenocupts firer granied grandmass - well Colisted to heared; mother def. in places - reddish stain fe My carbanate anhente - slow reactin poacid to - 1 16 Mulphides				
13	Granitaid - dionte 10,5 E.O.H.				

DATE Man chl 19 89 SHIFT HOURS TO TOTAL HOURS CONTRACT HOURS	HOLE NO \$15-89-227 LOCATION Site GEOLOGIST F. Colling DRILLER R. Forumel MOVE TO HOLE 1:45-2:00 DRILL 2:00 - 2:45 MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE	# 8 Leoner	ELEVA	ATION 3.	14 - 88.7
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG				T
1	0.7-7.5 Og Isway I Sedinate grey, soft non gritty clay with sidt interbeds 7.5-8.2 Chilougaman Till grey beige fine sand / selt matrix. Pebble and collide clasts of composition: 55% Volcanies and sediments, 45% 6 rand sids Somple #01 is undersized 8.2-9.5 Bedrock - light to media green (beeched in places) - course grand phenomysts of feldopen (stretched) in a hier grained groundness - 5 home foliation - 1% LeMy cabrate Granitaid - diants 9.5 E.O.H.				

M () C-	HOLE NO PLJ-228 LOCATION L	76 100 W 44	HOON FIFE	VATION 320
DATE Mach 1989	GEOLOGIST P. Collin DRILLER R. Form	BIT NO. #	0000035 BIT F	OOTAGE 88.7 - 98.
SHIFT HOURS	MOVE TO HOLE 2:45-3:30			
TO	DRILL 3:30 - 4:40			
TOTAL HOURS	MECHANICAL DOWN TIME			
	DRILLING PROBLEMS			
CONTRACT HOURS	OTHER 4:40-5:00 move singles h	proad 5=	00-5-30	ravel
-	MOVE TO NEXT HOLE			
BRAPHIC LOG NTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
SAM SAM	DESCRIPTIVE LOG			
- 0 E				
	0.0-0.3 Organics			
1	- C ! L			
	0.3 - 6.5 Ojlavay I Sediment			
2 1 =	(0.3-3.6) beige conidized)			
3-1	(0.3 = 3.6) petat to 10.5			
	soft, non gitty clay			
4-1	[3.6-6.5) being very his sand and silt with clay inter beds			
<u></u> = − =	and it is to hade			
5	mes seet were stay with see	- de-roles		
- F	6.6-01 ChipmannuTill			
*= = F	6.5-8.6 ChibongamanTill			
, 100年	beige grey frie sand sitt matrix Colle clost supported: 45% Volcanies and sediments; 55% Grantoids			
A VEOL	(All , last supported: 456			
8-1:0	sediments;			
No Tros	vocamus out	-		
9-1///F03	33°6 6 pann oldes			
1////	Sample #02 undersized		1	
O T T E	0. 12. 0.1.1			
E E	8.6-10.0 Bedwork			
3 E				
23 E	-dark green			
3 E	- comse grand			
3	- massing			
i E	- porphyritic fexture			
13 E	Feld of phenogras			
E E	Feld) at Phenogsts - 106 culote			
3 1	- no visible sulphils			
<u>, </u>	5 1 1 1 1			
3 F	Grantoid - divite			
7-3				
1 E	10.0 E.O.H.			
8-				
,3 E				
F F				
J E				

DATE March 2 19 89 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO \$\frac{\(l\sum_{15}\)-229 LOCATION GEOLOGIST \$\frac{\(l\sum_{15}\)}{\(l\sum_{15}\)}\) DRILLER \$\frac{\(l\sum_{15}\)}{\(l\sum_{15}\)}\) DRILL \$\frac{\(l\sum_{15}\)}{\(l\sum_{15}\)}\) MECHANICAL DOWN TIME \$\frac{\(l\sum_{15}\)}{\(l\sum_{15}\)}\) OTHER \$\frac{\(l\sum_{15}\)}{\(l\sum_{15}\)}\) MOVE TO NEXT HOLE \$\frac{\(l\sum_{15}\)}{\(l\sum_{15}\)}\) LOCATION GRATION \$\frac{\(l\sum_{15}\)}{\(l\sum_{15}\)}\) DRILLING PROBLEMS \$\frac{\(l\sum_{15}\)}{\(l\sum_{15}\)}\) OTHER \$\frac{\(l\sum_{15}\)}{\(l\sum_{15}\)}\) ONEXT HOLE \$\frac{\(l\sum_{15}\)}{\(l\sum_{15}\)}\)	well BIT NO. Hos	
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
2 (c) 3 (c) 3 (d) 4 (d) 5 (d) 11 (d) 12 (d) 13 (d) 14 (d) 15 (d) 16 (d) 17 (d) 18 (d)	0.0-0.5 Organics 0.5-20.3 Oxformy I Sedments 5-8.0) grey soft, non getty of s.c. 11.0) grey very he sound/s with the clay interbeds. 11.0-12.6) grey beige fine grain sand 12.6-14.8 has help list mating sheaftly innow led get becomes more anted & coarsen downent Original two swed/self may be care in from overlying Sediment Colobbe clasts 40°6 Volcanies & Sedments; 60°6 Granitoids and 13.0-13.5 Sounder-grain wholes: 40°6 Volcanies & Seds 60°6 Granitoids. Minor comes smed making 5.6-17.0 again digith insulation of 12.6-14.8 14.5.18.0 Gravel similar to 14.8 14.5.18.0 Gravel similar to 14.8 Seige fie cyrained sand Eve fie sand interbed	to 1	

	ATE March 2		HOLE NO <u>PLS-89-229</u> L GEOLOGIST DRILL MOVE TO HOLE					<u>+</u>
_	то		DRILL					
Т	OTAL HOURS	8	MECHANICAL DOWN TIME					
-	ONTRACT HO	ILIBS	DRILLING PROBLEMS		 			
_		ons	MOVE TO NEXT HOLE		 			
					Pg :	2 of 2		
DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE NO.		DESCRIPTIVE LOG					
	00 407	19.3	-20.3 Gravel: Cosble cl	ast				
21-	οΔ Fos	1	supported. No retu	undue				
	10/1	A 40	to sample washing a	way.				
22-	3	100	to infer gravel by 12 dillis behaving.	way				
23-	0.1		to a boat of.					
	A > \	20	1.3-24.6 Chibongam	an Till				
24-	16 T/F 1		being gray fire sand /	silt & min				
25-	28/E"		grey onthy clay making. (23%)				
	28/4		Corbble clast supported composition: 456 Vole	ot				
26-	3							
27-	E		Sediments; 65t Gra	notords.				
			- below 23.0 marting is she	ghtly suted				
28 -			24.0-24.2 Sorted coars	e sand had				
z9			24.2-24.6 similar to	1				
30-			24.6 - 26.5 Missinails					
31-			Gravel: cotte clast of compentin: 606 Vol	upper ted				
			ot composition: 60% Vol	canics }				
312-			sediments; 40 6 Gran					
33-			Minim coarse sand	nuprx.				
			A 265 pull rods to	change				
34-		hi.	t Push rods down }	mange				
15-		4	the tous down f	Hart				
:		n	sample at 26.5; how	ever, and				
.36-		W	of get any return as so	angele				
£7-] E	31	as washing outside of vo inface. Here fine m	as to				
-, -		e	est Bm & redvill. See	229A	and the second s			
38								
*10			26.5 E.O.H.					
39-								
40-	1						∇	

SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO PLS-89-229A LOCATION GEOLOGIST P. Collins DRILLER R. Som MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE	Site#13measto{229 ELEVATION 3/4	
		Pg 1 of 2	
METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
1	0.5-20.0 Ojdoway T Sediments very similar to 229 see log for descriptions.		

S	HIFT	Narch 2 HOURS	GEOLOGIST DRILLER				
		HOURS					
-		_	DRILLING PROBLEMS				
C	ONTF	RACT HO					
_		-	MOVE TO NEXT HOLE	 			
				Pg. S	20f2.		
- w	0	E AL		 V			
DEPTI IN METRE	GRAPHIC	SAMPLE NO.	DESCRIPTIVE LOG				
	AO		20.2-24.6 Chibougaman Till				
	1.	-03	For description see (og for 229				
22-	Δ) 0	1					
	, , \	24	24.6-24.0 Missinaibi Sedimenti?				
24 -	41	朱	24.6-25. Gravel: clast supported				
25-		Eos	60 % Vol carries & sediments; 40%				
-	UZ.	4	Granitoids. Very little making				
26-	P.S	E	Granitoids. Very little making Sorted med in to coarse grained				
27-	(5)	LE	Sound.				
	92	E	25.5-21.0 boulder - Tron formation				
28-	تت	1/2 OP	note initially thought to be bedrock				
29-	ون	沙	as 25.0-25.5 untained abundant fe				
:	111	YE.	Formati chips is fractured bedrock				
30-	111	F07	onface (225% of chips)				
31_	111.	1/2	27.0 - 29.0 during this interval				
:		E	the drilling was fairly rapid of				
32_		F	still getting to formatin chips				
33-		E	(hemotypid). Also fine sand return; thus it is possible that				
	1	F	The interval represents a fractive				
34-		E	29.0-31.0 Bedrock				,
_±5		E	- light to medin green (bleachad)				
=		E					
∌6-		E	- fire grained grandmass, feldopur phenos.				
37-		E	- highly aftered sheared authoritized			-	
Ξ		E	- 3-5% Formy Combinated Cakende)				
38		E	- brick red banding kelow 29.5				
39-		=	- sertengen				
		E	high altered granitored				
40		F					

DATE ALVIN 2/19 89

HOLE NO PUS-89-230 LOCATION Site # Z

GEOLOGIST P. Collins DRILLER R. Formal BIT NO. GB70271 BIT FOOTAGE 31.0-54.3

SHIFT HOURS

MOVE TO HOLE 2:45-3:00 (2nd)

DRILL 3:00-5:00 (2nd) 11:00-1:15 March 5/8

TOTAL HOURS

MECHANICAL DOWN TIME March 3 very cold tried to drillin moving rods & bit

DRILLING PROBLEMS Rept Freezing. Air compressor broke down 11:00

CONTRACT HOURS

OTHER Tried to repair compressor 11:00-5:00. March 4 very over compressor

MOVE TO NEXT HOLE order new one From Timmins. Instal March 5 7:00-11:00

Palof 2

DESCRIPTIVE LOG DESCRI			9,0,-	
2 (0.5-8.0) grey beigg, non gritty soft clay (8.0-11.0) grey, very line Sound and self with thin clay interbeds (11.0-12.2) grey being line grained sound 12.2-21.5 Chib ong amon till being grey olightly sorted to the sound minor self mehr Ciddle clast supported of Composition: 50% roleanies and selfiments; 50% Granitoids 13.0-13.4 brokker grabbre 13.0-13.4 brokker grabbre	DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
18-12. A TE 0 OK. HAWAR 2	10 11 12 13 14 10 11 11 12 13 14 10 10 11 11 12 14 10 10 11 11 12 13 14 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	(0.5-8.0) grey beige, non quitty, soft clay (8.c-11.0) grey, very fine sound and silt with thin clay in terbeds (11.0-12.2) grey being fine grained sound 12.2-21.5 Chibong amon Till beige grey slightly sorted at composition: So to volcanies and sediments; 50% Granifolds 13.0-13.4 boulder gulobro		

	HIFT HOURS		HOLE NO PLS-8 GEOLOGIST	DRILLER					
Т	OTAL HOURS		MECHANICAL DOWN	TIME					
-	ONTRACT HO	URS	DRILLING PROBLEMS		· · · · · · · · · · · · · · · · · · ·				
_		00	MOVE TO NEXT HOL						
	,					T) 7 20 f 2	2	
DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE NO.		DESCRIPTIVE	LOG					
21-	0.0	21.5 - m	-23.3 Bedred edium of light ine grained strong foliation carbonatzed diss Satisfer Servicitzed - & 17 diss out Aldered Tot. Vo	ock green (bleade	d)				
Z2 -	/// 66	-8	Avong foliation	: phoaved					
z 3		_	carlomatzed	asob both					
14		-	sericitied series						
25		-	- 51% diss out	hides					
26			Aldered Int. Vo	leani					
27-			23.3 EO.H						
=									
78-									
29-									
∌ 0-									
3 1_									
32_									
3 3-									
34-									
35									
=	E								
316−									*
37- -									
<i>3</i> 8-									
3 19									
40-	E								

DATE CLIAND. 19 35 SHIFT HOURS WO'E TO HOLE	DATE <u>March 5</u> 19 8	HOLE NO 125-89-231 LOCATION Sode 4	ELEVA	TION 314
TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG O. 5 - 13.3 Oj burant Sulint (0.5 - 100) gray, soft, rom gutly than clay interbads (12.0 - 12.3) gray very his grained David Sund Laift de Filiant Intitulty sund (alt de Filiant) Intitulty sund (alt de Filiant) Intitulty abundant rach because and from became union ted domain Cobble clast of composition: Afric Volcanies and Edinants 53 to Grantorido. 14.2 - 15.5 Bodrock - med komed, Filiant - chemityed Tot. Volcanie: 15.5 E.O.H. 15.5 E.O.H.		GEOLOGIST F. CELLE DRILLER A POUNTED BI	T NO. 6870271 BIT FOO	DTAGE 54.3 - 69.8
TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS ONE TO NEXT HOLE DESCRIPTIVE LOG OS - 13.3 O j ibwayt salint (0.5 - 10.0) gray, soft, nongarty thay clay interbads (12.0 - 12.0) gray of wift from clay interbads (12.0 - 12.0) gray revy his grained Dand 13.2 - 14.2 Chilo organical and correct braced from grained stand Laif do tricent) Initially abundant rach because our flow because our plan became uners had demonst Cothle clock of conputation: 45°t Volcanics and sediments 55°t Grantride 14.2 - 16.5 Badrock - med his grained - week based, tricin 19.2 - 16.5 Badrock - med his grained - week based, tricin - climitized 19.2 - 16.5 Badrock - med his grained - week based, tricin - climitized 19.1 - Volcanic 19.5 E.O.H.		DRILL 1:45 - 2:45		
DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG O.5 - 13.3 Oj boway I white Co.5 - 10.0) grey, soft, non gully thay (10.0 - 12.0) grey galf with thin clay inferbeds (12.0 - 13.3) grey remy his grained Danel 13.2 - 14.2 Chilo organian Tell being grey dightly onted and corne brised first grained Stand (ailf de frient) Initially abundant rach bocares and April Volcanics and Sediment 55 To Grantords 14.2 - 15 S. Badrock - med in green - med kange green - med kange green - med kange from - week boned, felicit 11- 2 - Calculate - Clipative 11- 2 - Calculate - Clipative The Volcanic 11- 2 - Calculate - Clipative - Clipative Tot. Volcanic 11- 11- 11- 11- 11- 11- 11- 11- 11- 1	TOTAL HOURS			
DESCRIPTIVE LOG DESCRIPTIVE LOG O. 5 - 13.3 Oj ibwayê salinti (0.5 - 10.0) gray, soft, nonguty day (10.0 - 12.0) gray alt wife thin clay interbals (12.0 - 12.3) any very his grained Dand 13.2 - 14.2 Chibongaman Tell beig any slighty ontad and course briese fine grained Sand Lailt de fileint) Initially abundant needs because and plen became unserted demant Cobble clast of compatini: 45°C Volcanio and Sedinals 55°C Granitorido. 14.2 - 15°S Radvole - med in graen - wood band telunt - charityeli Int. Volcanic? 18- 18- 18- 18- 18- 18- 18- 18				
DESCRIPTIVE LOG DESCRIPTIVE LOG O.5 - 13.3 O jiburaya Salinti (0.5 - 10.0) gray, soft, nonquity clay (10.0 - 12.0) gray ait wift thin clay interbeds (12.0 - 13.3) gray very his grained Dand 13.2 - 14.2 Chilo organian Till being gray slight, conted and counter brissed fine grained sand (silt de fileat) Initially absundant nach tocoares and then became unsorted dimenti Cobble closh of co-paitin: 45% Volcanies and Ediment 55% Granitoriob. 14.2 - 155 Bedrock - med imaginal - weat board, fileath - chirtied - weat board, fileath - chirtied - 26 can land e - 21 to autifulia Int. Volcanie 18. 18. 18. 18. 18. 18. 18. 18	CONTRACT HOURS			
0.5 - 13.3 Of ibway I Solids (0.5 - 10.0) gray, soft, rongutly stay (10.0 - 12.0) gray aft with thin clay interbeds (12.0 - 13.3) gray very his grained Dand 13.2 - 14.2 Chilo organian Till being gray slightly contaid and coarse becased fine grained sand (all the ficient) Initially abundant made to craves and then became unserved domost the Cobble clasts of compartion: 45th Volcania and sediments 55th Graniforids. 14.2 - 15.5 Redvock - medium green - pred he spained - week hand, foliation - chleritied 2 - chenitical 17- 2 - Can but e - Cl L sulphili Int. Volcania? 18- 18- 18- 18- 18- 18- 18- 18		MOVE TO NEXT HOLE		
0.5 - 13.3 Of ibway I Solids (0.5 - 10.0) gray, soft, rongutly stay (10.0 - 12.0) gray aft with thin clay interbeds (12.0 - 13.3) gray very his grained Dand 13.2 - 14.2 Chilo organian Till being gray slightly contaid and coarse becased fine grained sand (all the ficient) Initially abundant made to craves and then became unserved domost the Cobble clasts of compartion: 45th Volcania and sediments 55th Graniforids. 14.2 - 15.5 Redvock - medium green - pred he spained - week hand, foliation - chleritied 2 - chenitical 17- 2 - Can but e - Cl L sulphili Int. Volcania? 18- 18- 18- 18- 18- 18- 18- 18				
0.5 - 13.3 Of ibway I Solids (0.5 - 10.0) gray, soft, rongutly stay (10.0 - 12.0) gray aft with thin clay interbeds (12.0 - 13.3) gray very his grained Dand 13.2 - 14.2 Chilo organian Till being gray slightly contaid and coarse becased fine grained sand (all the ficient) Initially abundant made to craves and then became unserved domost the Cobble clasts of compartion: 45th Volcania and sediments 55th Graniforids. 14.2 - 15.5 Redvock - medium green - pred he spained - week hand, foliation - chleritied 2 - chenitical 17- 2 - Can but e - Cl L sulphili Int. Volcania? 18- 18- 18- 18- 18- 18- 18- 18	E A C			
0.5 - 13.3 Oj ibwayt salidy (0.5 - 10.0) grey, soft, nongutly stay (10.0 - 12.0) grey alt with thin clay interbeds (12.0 - 13.3) grey very hie grained Dand 13.2 - 14.2 Chiboragaman Till beige grey stightly conted and coone bussed fine grained sound (silt de ticlent) Initially abundant reclai to course south Pen became unsured admagh Cobble lasts of composition: 45°t Volcanies and Sediment 55°t Granitoride. 14.2 - 15°S Badrock - med sine grained - week toord, brightly - week toord, brightly 16- 16- 17- 18- 18- 18- 18- 18- 18- 18	GRAPH LOG LOG INTERV SAMPL	DESCRIPTIVE LOG		
0.5 - 13.3 Ojibwayt salida (0.5 - 10.0) grey, soft, nongutty stay (10.0 - 12.0) grey alt with thin clay interbeds (12.0 - 13.3) grey very hie grained Dand 13.2 - 14.2 Chiborgaman Tell beigo grey slighth contact and corre brised fine grained sand (ailt de ficient) Initially abundant redictocrare and then became uncorted domain then became uncorted domain Cobble clooks of composition: 45% Volcanies and Sediments 55% Grantorido. 14.2 - 155 Bedrock -need in green -pred fine grained - week boned, felicitude 26 can land - chloritized 26 can land 18. Int. Volcanie? 15.5 E.O.H.	^^	0.0-0.5 Organica		
(0.5-10.0) grey soft, non gutly clay interbeds (12.0 - 13.3) grey very his grained Dand 13.2 - 14.2 Chib organian Till beigs grey slightly conted and coverse breased fine grained sund (silt de fileer) Initially abundant needs because and then became unsorted donnach Cobble clooks of composition: 45°t Volcanies and sediments 53°t Grantorids. 14.2 - 165 Bedrock - med im green - pred fine grained - week boned, folioin - clevitiged 2 Coalant e - Ll & sulphili Int. Volcanie ? 15.5 E.O.H.	1	0.5 - 13.3 Ojibway I Sedint		γ.
13.2 - 14.2 Chiboryaman Till Buigo grey slights onted and coarse busied fine grained sand (sailt de ticlent) Initially abundant nedit becomes and then become unsorted domast the beanse unsorted domast St. Volcanio and Sediments 55 6 Granitorido. 14.2 - 15.5 Redvock - med um green - pred he grained - weak bonod, tolicith - choritiged - 26 ca land e - 4.1 & autymid. Int. Volcanie ? 15.5 E.O. H.				
13.2 - 14.2 Chilo organian Till beigs grey stightly conted and coarse brissed fine grained sound [silt de ficient) Initially absundant medin tocoarse sound then became un sorted downer Cobble clasts of compaition: 45°t Volcanies and Sediments 55°6 Granitorids. 14.2 - 16.5 Redwork - med um green - pred he grained - weak bonod, Felicih - chloritied - 2°6 cantente - 2°6 cantente - 15° canten	3	day : 11 'h y :		
13.2 - 14.2 Chilo organian Till bries grey slightly conted and course breased fine grained sand (silt de ficient) Initially abundant redi tocourse and pen became unsured dominant Cobble clasts of compaiting. 45th Volcanies and Sediments 55th Granitorials. 14.2 - 16.5 Bedwork - pred his grained - week bosod, Feliah - chloritised - 26 cantomid Tht. Volcanie? 15.5 E.O. H.	4	clay interbeds		
13.2-14.2 Chilo orgaman Till beigs grey slightly conted and coarse brissed fine grained sund (sult de ficient) Initially abundant needin tocoarse and then became unsorted dynaseth Cobble clasts of compartion: 45° Volcanies and Sediments 55° 6 Granitorids. 14.2-155 Bedrock - med aim green - pred his grained - weed board. Foliath - chloritized 2 Cearlant e - 41° to supplied Int. Volcanie? 15.5 E.O. H.	5	(12.0 - 13.3) grey very his grained		
beige grey slightly onted and coarse braced fine grained sand (sit de ticent) Initially abundant medit becoarse and then became unserted dounsets Cobble clasts of composition: 45% Volcanies and Sediments 55% Granitorids. 14.2-16.5 Redwork - med im green - pred fine grained - weak bonod, Islant - chloritized - 2 Cealante - LI & sulphints Int. Volcanie ? 15.5 E.O.H.				
bugs grey slights on ted and coarse breased fine grained sund (silt de ticent) Initially abundant medi becoarse and then became unserted drungets Cobble clashs of compaition: 45t Volcanies and Sediments 55t Granitorids. 14.2-155 Bedrock -med im green -med he grained - weak bonod, foliath - chloritical - 2 Coarlant e - (17 sulphid) Int. Volcanie) 15.5 E.O.H.	7	13.2 - 14.2 Chiloryaman Till		
Abundante un sorted drusseth Cobbbe clasts of composition: 45 °C Volcanies and Sediments 55 °C Granitorids. 14.2 - 15.5 Bedvock - med um green - pred he grainel - weak borod, Foliath - chloritisel - 2 °C carlotte - L1 & sulphials Int. Volcanie? 15.5 E.O.H.	8	beige grey slightly conted and		
Abundante un sorted domastr Cobbbe clasts of composition: 45% Volcanies and Sediments 55% Granitorids. 14.2-155 Bedvock -med tim green -pned his grainel - weak bonod foliation - chloritized - 2% carbonte - L1% subphili Int. Volcanie? 15.5 E.O.H.	9	course brased fine grained		
Men became unsorted dynaser. Cobble closts of composition: 45t Volcanies and Sediments 55t Granitorids. 14.2 - 15.5 Bedvock - med um green - pred he grained - weak honord, foliath - chloritized - 2 C can lant e - C1 L sulphial. Int. Volcanie. 15.5 E.O.H.	10-1-1-1			
13-30. 01 14.2-15.5 Bedrock 14.2-15.5 Bedrock -med um green -pred he grand - weak homod, foliath - chloritized - 2 Coa lant e - L1 & sulphid. Int. Volcanic.? 15.5 E.O.H.		then became un sorted dourset		
35 6 Granitorido. 14.2 - 15.5 Bedrock - med um green - pred. fre grainel - weak to mod. Foliath - chloritized - 2 6 carlout e - L1 & sulphials Int. Volcanic? 15.5 E.O.H.		Colable clasts of composition:		
14.2-15.5 Bedrock -med um green -pred fre grainel - weak bonod foliah - chloritized - 2 Coarlant e - LI & sulphill Int. Volcanic? 15.5 E.O.H.	2	45% Volcanies and Sediments		
- med im green - pred he grainel - weak to mod. Foliain - chloritized - 2 C can lant e - LI Laulychioli Int. Volcanic? 15.5 E.O.H.	13 = 1			
- med im green - pred he grained - weak to mod. Foliate - chloritized - 2 C can lant e - LI & sulphishi Int. Volcanic? 15.5 E.O.H.	400.	14.2-15.5 Bedrock		
- chloritied - 2 Coarlant e - L1 & sulphish Int. Volcomic? 15.5 E.O.H.	02			
- chloritied - 2 Ccarlante - L1 & sulphish Tot. Volcanic? 15.5 E.O.H.	° -	- pred - fire grainel		
2 Cambante - LI & subsphish Int. Volcanic? 15.5 E.O.H.	6-J [E	- weak homod, foliate		
8- 15.5 E.O.H.	3 E	- chloritized		
Int. Volcence? 15.5 E.O.H.	7			
15.5 E.O.H.	18-3 E '	- LI To sudjetuals		
] E 15.5 E.OH.] E	Int. Volcanie?		
	19]	15.5 F.OH.		
		13.3		

DATE March 5/619 89	HOLE NO <u>PLS-89-232</u> LOCATION <u>Site # 10</u> ELEVATION <u>312+</u> GEOLOGIST <u>P. Collins</u> DRILLER <u>R. Found</u> BIT NO. (18227) BIT FOOTAGE 69.8-
SHIFT HOURS	MOVE TO HOLE 2:45-3:00
TO	DRILL 3:00-5:00 Sth 9:30-10:30 6th
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS 7:15-9:30 cold weather start
CONTRACT HOURS	OTHER Name 1 5:00-5:30 St 6:30-7:15 Gt
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG			
1/2/1	0.0-15 Organics			
, 34	1.5 - 17.5 Ojib way I Sedinati			
3	(1.5 - 9.4) grey non gritty, soft clay			
4	(9.4-11.5) Gravel: sorted medium and coarse sand matrix Coloble clasts of composition: 406 Ochanic	-~		
6	(clast supported)			
7	11.5-11.7 Boulder-gabboro 11.7.12.4 similar to 9.4-4.5			
9-	12.4-13.5 Fravel becomes making supported and slightly unouted in places			
10-3-51	13 5-17.5 Gravel is mee again clast suggested occasion famile			
12 02	g.4-11.5			
13 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	gradational contact into gray being fine pand/silt matrix			
15-	Colobbe clasts of composit in: 457 Volcanics of Sediments; 55% Granitoids.			
17 S S S S S S S S S S S S S S S S S S S	+ sample OS undersized ~ 4 kg. 18.5-20.0 Bedrock			
18-00-05	- medium green - frie to medium grained - moderately toliated; sheared in place			
20	- car brustsad 5-1-6			
	- 5 to pinkish Felsie buds - < 1 to outphiles			

DATE March 6 1989	HOLE NO PLS-89-233 LOCATION SITE#9 ELEVATION 3/4 GEOLOGIST P. Gilius DRILLER R. Foursel BIT NO Appeal BIT FOOTAGE 2.0-24.0
SHIFT HOURS	MOVE TO HOLE 10:30 - 10:45
то	DRILL 10:45 - 12:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

		_		
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
: ^ ^	0.0-0.7 Organics			
	0.7 - 19.8 Of ibway I Sediments			
2	(0.7-13.4) grey, non-quitty, soft clo			
3	(13.4-18.5) grey very fine sand/sult with occasional thin clay bad.			
4	(18.5-19.8) Framel: clost supported			
5	sorted median - & course grained sand matrix. Cobble clasts of composition			
6	40 % Volcanies & sedimente; 60%.			
8	19.8 - 20.7 Chibougamen Till			
9	gray being fine sand / silt and gray griffy clay makin (10°C)			
10	Cobble clast of composition: 50			
11	Volcanics of sediments; 50 6 6 mind	āid		
12	* Souple \$02 undersised. 1 4 kg. 20.7-22.0 Bedrock			
13	- light & med green (bleached in places)			
14-1	- slightly puply ritic (course gr.			
15	- slightly puphyritic (coarse gr. feldspa phenos. : Fuin g. mass - strong foliation; shewed in place - chloritici	9		
16	- combantized 5-7 of Fe/mg		Appropries	
18	- Tr. hemstite - < 1 % sulphides			
19	Granitoid - Diorite.			
20-13-97-02	22.0 E.O.H.			
21				

			c 86 334							318	,
DATE March	6 19 89	HOLE NO PL	15-89-234 L	OCATION _>	V-Te # 3	NO A	200022	LELEVA	ATION _	24.0-	38.0
SHIFT HOUR	15	ACVE TO HOLE	E 12:30 -1	:00	DII	NO.	J-00 £ /	BII FO	OTAGE 3		
то	r	RILL 1:00	- 2:45								
TOTAL HOUR	_		DOWN TIME								
		DILLING DOO	DIEMS								
CONTRACT H	OURS C	THER 2:45-	9:30 change	Ithm lio	; move	to hig	Away K	nger ro	actintar	section	
		NOVE TO NEX									
H ES H											
DEPTH IN METRES GRAPHIC LOG LOG NNTERVAL NO.		DESCRI	PTIVE LOG							-	
M B GR GR											
3/1	0.0	-0.5 0	raunics								
1======================================	0.5 -	11.0	jilsway II S	ediments							
2 = ===================================	100	a s \ 1 . ·	- ()								
	(0.5-	soft du	pe (oxidised), . Grey being	non quity							
3		3.0m	ST-COS ISSUE	ge sein						- 41	
3 == E											
4	(8.6-	11.0) being	e fine grain	ed band			İ				
_ = = F										9	
5	11.0	- 12.4 C	hibougam	an Till							
6			•								
	sho	lity soute	ed of coarse and matrix. Colables ele	bised							
7-	beig	e fine sa	nd matrix.	(mahix							
	Sup	purled).	Colobler ele	ests of							
8-	com	positioni	50% Vol	canico t							
	Sed	in ents;	50% Gra	ritordo.							
9-											
10-1. : -											
	12.	4 - 14.0	Bedrock								
11-10-7	- m	ed in gr		-							
E OI		eo un gr	een				:				
12-	100	ourse gra	uned: porph	y iti							
13	CH	elaspa p	henos)								
13-1/202	- m	assine to	weakly fol	liated							
14	- 50	licitized.	Chand to d	إ الكنا							
] [- 1	6 conter	Late (diss.	1							
15-		< IT N	sulphid .								
16 E											
16-		"Divide	- galshao								
17-											
3 E		14.0 - E	. 0.14.								
18—											
] [E											
19											
20-											

APPENDIX B SAMPLE WEIGHTS - HEAVY MINERAL CIRCUIT

OVERBURDEN DRILLING MANAGEMENT LIMITED - LABORATORY SAMPLE LOG

ABBREVIATIONS

DATA LOG

Clast:

Size of Clast:
6: Granules
P: Pebbles
C: Cobbles
BL: Boulder Chips
BK: Bedrock Chips

% Clast Composition:

V/S: Volcanics and Sediments

GR: Granitics LS: Limestone

OT: Other Lithologies

(Refer to Footnotes Below)

TR: Only Trace Present NA NOT APPLICABLE

Class:

BLD: Boulder Chips BDK: Bedrock Chips

GOLD LOG

Number of Grains:

T: Number Found on Shaking Table
P: Number Found After Panning

Thickness:

C: Calculated Thickness of Grain M: Actual Measured Thickness of Grain

Footnotes:

- A: Gritty Clay Lumps Present
- 8: Smooth Clay Lumps Present
- C: Organics Present
- D: Oxidized

Matrix:

S/U: Sorted or Unsorted

SD: Sand : Y: Yes Fraction Present : F: Fine ST: Silt : N: Fraction Not Present : M: Medium CY: Clay : C: Coarse

Colour:

B: Beige
GY: Grey
GB: Grey Beige
GN: Green
GG: Grey Green
BN: Brown
BK: Black
OC: Ochre
PK: Pink

OE: Orange

MIPL1FEB.WR1

OVERBURDEN DRILLING MANAGEMENT LIMITED

TOTAL # OF SAMPLES IN THIS REPORT = 40

SAMP		WEIGHT				MEIGHT					AU				SCRI								CLASS
NO	•				=====	:::::::::	Ħ.	I. CON	IC	1111			CLAS	ST.				MATR	łΙχ				*********
		TABLE	+10	TABLE	TABLE	M.I.	CONC.	NON	ZZZZ	NO.	CALC	SIZ	====: E	:===: 	====	HE	s/U			CY			
		SPLIT	CHIPS	FEED	CONC	LIGHTS	TOTAL	MAG	MAG	V.G.				:==:	====	===					===	===	
													V/S	GR	LS	01					SD —	CY	
PL	\$-89																						
15	1-01	8.8	0.6	₹.2	274.7	232.8	41.9	30.3	11.6	5	338	P	70	30	NA	NA	Ü	Y	Y	Y	В	В	TILL
15.	1-02	8.3	0.1	8.2	285.0	226.8	58.2	45.3	12.9	0	NA	P	70	30	NA	NA	\$	M	Y	Υ	В	В	SAND
15	1-03	8.1	0.0	8.1	154.6	102.6	52.0	38.0	14.0	1	17	TR	NA	NA	NA	NA	\$	F	Y	Υ	8	В	SAND
15	1-04	9.8	3.3	6.5	244.2	191.7	52.5	36.1	16.4	6	23	P	60	40	NA	NA	U	Y	Y	Y	В	В	TILL
	1-05	9.6	2.0	7.6	211.9	161.6	50.3	34.4	15.9	6	154	P	70	30	NA	NA	U	Y	Y	Y	В	В	TILL
	1-06	7.6	3.2	4.4	313.8	270.5	43.3	22.2	21.1	20	2051	C	20	80	NA	NA	U	Y	Y	Y	В	В	TILL
	2-01	9.7	2,3	7.4	312.7	268.4	44.3	31.3	13.0	7	124	P	70	30	NA	NA	U	Y	Y	Y	В	В	TILL
	2-02	8.9	3.0	5.9	202.1	148.7	53.4	36.4	17.0	3	105	¢	80	20	NA	NA	U	Y	Y	Y	GG		TILL
	3-01	8.7	1.4	7.3	108.4	63.9	44.5	28.5	16.0	3				70	NA	NA	U	Y	Y	Y	GB		TILL
	4-01	6.4	1.1	5.3	120.1	93.9	26.2	18.0	8.2	3	67	P	80	20	NA	NA	U	Y	Y	Y	GB		TILL
	5-01	7.9	0.0	7.9	168.4	113.0	55.4	35.7	19.7	0	NA	TR	NA	NA	NA	NA	\$	F	Ţ	Y	GB	_	SAND
	5-02	8.5	1.5	7.0	287.4	236.1	51.3	32.0	19.3	4	209	P	40	60	NA	NA	U	Y	Y	Y	GB		TILL
	5-03	6.4	1.6	4.8	241.7	200.8	40.9	23.5	17.4	5		P.C		85	NA	NA	U	Y	Y	Y	GB		TILL TILL
	6-01	8.4	0.6	7.8	168.4	114.4	54.0	36.2	17.8	7	188		35	65	NA	NA	U	Y	Y	Y	GB CB		
	6-02	8.8	1.1	7.7	155.6	111.8	43.8	27.5	16.3	7	305 67	P	50	50	NA	NA NA	U	Y Y	Y	Y	GB GB	_	TILL TILL
	6-03	4.2 8.6	0.6	3.6 5.6	106.5	76.5 186.5	30.0	20.9	9.1 14.2	5	33	P C	20 40	80 60	NA NA	NA NA	U	Y	ī	r Y	GB		TILL
	7-01	6.0	3.0 1.2	4.8	226.8 213.7	178.2	40.3 35.5	26.1 21.7	13.8	3 3	35	C	40 60	40	NA NA	NA NA	U	Ϋ́	Y	Y	GG		TILL
	8-01 9-01	6.6	1.6	5.0	167.4	131.1	36.3	23.5	12.8	4	96	C	70	30	NA	NA NA	U	Y	Y	Y	В	В	TILL
	1-01	6.7	1.7	5.0	204.4	168.9	35.5		13.2	4	195	C	70	30	NA	NA	U	Y	Ý	Ý	В	В	TILL
	2-01	8.8	1.2	7.6	312.4	264.2	48.2	32.2	16.0	6	156	P	80	20	NA	NA	U	Y	Ÿ	Y	GG	_	TILL
	3-01	6.4	0.4	6.0	189.0	154.6	34.4		12.1	9	179	F	70	30	NA	NA	Ü	Ý	Ý	Ÿ	8	В	TILL
	3-02	5.3	0.8	4.5	139.9	103.7	36.2	23.2	13.0	5	146	P	70	30	NA-	NA	Ü	Ÿ	Ý	Ÿ	GB	-	TILL
	4-01	7.2	0.3	6.9	170.8	129.8	41.0	27.3	13.7	8	166	P	70	30	NA	NA	Ü	Y	Y	Ÿ	В	8	TILL
	4-02	9.2	1.5	7.7	262.0	200.3	61.7	35.0	26.7	2	16	P	80	20	NA	NA	U	Ÿ	Y	Y	66	_	TILL
	4-03	5.3	1.0	4.3	118.4	88.1	30.3		10.5	4	123	C	90	10	NA	NA		Ϋ́		Ÿ	GY		TILL
	4-04	6.8	1.1	5.7	157.2		31.3			4	80			10		NA		Υ		Y		66	TILL
	4-05	6.1	1.1	5.0	121.2	91.7	29.5	20.7	8.8	4	69	Ρ	60	40	NA	NA	Ū	Y	Y	Ý	GG	GG	TILL
16	5-01	6.8	1.5	5.3	196.5		40.5		12.2	0	NA	P	7ū	30	NA	NA	U	Υ	Y	Υ	GY	GY	TILL
16	5-02	9.1	2.2	6.9	330.1		62.8		22.4	3	92	P	90	10	NA	NA	S	C	Υ	Υ	GY		GRAVEL
16	5-03	8.4	2.0	6.4	337.0	284.3	52.7	30.7	22.0	2	273	P	85	15	NA	NA	S	C	Y	Y	GB	GB	GRAVEL
165	5-04	4.7	0.5	4.2	249.6	214.4	35.2	24.5	10.7	2	76	P	80	20	NA	NA	U	Y	Y	Υ	GY	GY	TILL
16	5-05	7.5	1.2	6.3	176.2	119.8	56.4	37.7	18.7	3	42	C	95	5	NA	NA	U	Y	Y	Y	GY	GY	TILL
16	5-06	5.1	1.1	4.0	106.3	70.1	36.2	24.3	11.9	4	23	C	95	5	NA	NA	U	Y	Υ	Υ	GY	GY	TILL
16	5-07	8.8	4.0	4.8	269.2	216.9	52.3	33.6	18.7	5	153	P	80	20	NA	NA	U	γ	γ	Y	GY	GY	TILL
16	5-08	9.2	3.1	6.1	291.3	238.1	53.2	25.2	28.0	0	NA	F	70	30	NA	NA	U	Y	Y	Y	GY	GY	TILL
163	5-09	7.1	1.4	5.7	295.1	251.1	44.0	25.6	18.4	0	NA	P	70	30	ΝA	NA	U	Y	Y	Y	GY	GY	TILL & BOK
	6-01	7.3	1.2	6.1	311.6		47.1		18.5	0	NA	P	90	10	NA	NA		Y		Y	GY		TILL
	6-02	6.4	1.1	5.3	317.2		57.3			2	43	P	90	10	NA	NA		Y		Y	GY		TILL
166	6-03	8.9	2.0	6.9	399.3	334.4	64.9	38.2	26.7	4	190	P	90	10	NA	NA	U	Υ	Y	Y	ĢΥ	GY	TILL

MIPLIMAR.WR1

OVERBURDEN DRILLING MANAGEMENT LIMITED

TOTAL # OF SAMPLES IN THIS REPORT = 40

	FLE	WEIGHT	(KG.W	ET)	=====	WEIGHT	(GRAMS	DRY)			A U			DE	SCRI	PTI	DN .						CLASS
Į5	10.							I. CON					CLAS					MATR	XIX				
		TABLE		TABLE	TABLE	M.I.	CONC.	NON		NO.	CALC	SIZE	:	4/	EZZZ		5/U	SD	ST	CY	COL		
		SPLIT	CHIPS	FEED	CONC	LIGHTS	TOTAL	MAG	MAG	V.G.	PPB		V/S		LS	=== OT					SD	CY	

F	L5-89																						
1	.66-04	6.1	0.7	5.4	185.4	138.7	46.7	31.0	15.7	1	12	Ρ	70	30	NA	NΑ	U	Y	Y	Υ	GB	GB	TILL
1	l66-05	6.9	0.8	6.1	154.6	107.7	46.9	30.7	16.2	4	263	₽	9 0	10	NA	NA	U	Y	Υ	Y	G₿	GB	TILL
1	66-06	9.1	2.0	7.1	210.3	148.3	62.0	41.4	20.6	5	44	Ρ	95	5	NA	NA	U	Υ	Y	Y	GB	G₿	TILL
1	166-07	9.6	2.7	6. 9	206.3	147.7	58.6	37.0	21.6	2	51	P	9 0	10	NA	NΑ	U	Y	Y	Υ	GB	GB	TILL
1	66-08	9.6	3.5	6.1	168.6	116.4	52.2	31.7	20.5	1	12	P	85	15	NA	NA	U	Y	Y	Y	GB	GB	TILL
i	166-09	10.0	4.5	5.5	238.6	178.3	60.3	32.7	27.6	2	14	P	90	10	NA	NΑ	IJ	γ	Y	Y	GB	GB	TILL
1	66-10	10.0	3.0	7.0	183.4	147.4	36.0	23.0	13.0	4	40	C	50	5 0	TR	Α	U	Y	Y	Y	GB	GB	TILL
1	166-11	9 . 9	2.6	7.3	240.1	194.6	45.5	29.2	16.3	1	7	С	50	5 0	NA	NA	U	Y	Y	Υ	GB	GB	TILL
	66-12	9.4	2.5	6.9	247.7	211.5	36.2	23.0	13.2	3	334	С	40	60	TR	NA	U	Y	γ	Υ	GB	GB	TILL
1	66-13	10.0	2.3	7.7	322.2	279.8	42.4	26.6	15.8	3	76	C	50	50	TR	NΑ	U	Υ	Y	Y	GB	GB	TILL
. 1	66-14	8.0	2.8	5.2	257.0	227.4	29.6	13.7	15.9	1	47	C,Bk	5	95	NA	NΑ	U	Y	Y	Υ	67	GΥ	TILL
1	67-01	8.2	0.0	8.2	165.3	119.8	45.5	30.6	14.9	1	33	TR	NΑ	NA	TR	A	S	F	Y	Υ	GB	NΑ	SAND
1	67-02	B.i	0.0	8.1	217.6	168.9	48.7	34.6	14.1	2	17	TR	NA	NA	NΑ	NA	5	F	γ	Y	GB	GĐ	SAND
1	67-03	8.9	1.5	7.4	25 8.3	221.i	37.2	21.2	16.0	10	319	С	15	85	NA	NA	L	Y	Y	Y	F	B	TILL
Ì	67-04	5.2	1.0	5.2	210.9	168.7	42.2	24.7	17.5	5	298	С	10	90	AA	NA	U	Y	γ	Y	В	B	TILL
1	168-01	8.8	2.5	6. 3	239.7	195.8	43.9	27.7	16.2	7	265	С	40	60	NA	NA	U	Y	Y	Υ	₽	B	TILL
1	58- 02	9.2	2.7	6.5	249.1	207.2	39.9	26.0	13.9	8	89	С	70	30	NΑ	NΑ	U	Υ	Υ	Υ	GB	GB	TILL
i	68-03	9.3	2.8	6.5	175.2	131.8	43.4	26.9	16.5	4	195	С	9 0	10	NA	NΑ	U	Y	Y	Υ	GB	GB	TILL
1	68-04	9.2	2.9	6.3	324.5	276.6	47.9	30.6	17.3	4	260	С	90	10	NA	NΑ	U	Υ	γ	γ	GB	GB	TILL
1	68-05	8.8	3.3	5.5	300.2	262.6	37.6	27.2	10.4	1	181	C	75	5	NA	MA	U	Y	Y	Y	GY	GY	TILL & BLD
1	60-86	8.8	2.2	6.6	410.9	372.6	38.3	25.6	12.7	2	108	С	50	50	NΑ	NA	U	Y	Y	Y	GY	GΥ	TILL & BLD
1	65-07	8.8	2.2	6.6	326.1	294.1	32.0	19.2	12.8	2	468	C	50	50	NA	NA	U	Y	Y	Y	GF	GB	TILL
1	69-01	9.0	2.5	6.5	303.0	245.4	57.6	37.0	20.6	5	685	С	70	30	NA	NΑ	IJ	Y	γ	Υ	GB	GB	TILL
1	69-02	9.5	3.6	5.9	295.6	248.7	46.9	30.4	16.5	1	6	С	30	70	NA	NA	U	Y	Y	Y	GB	GB	TILL
1	69-03	8.2	2. i	6.1	148.9	127.2	41.7	22.2	19.5	3	2333	С	10	90	NA	NΑ	S	C	Y	Y	6B	NA	GRAVEL
1	69-04	7.5	2.9	4.6	289.4	246.6	42.8	27.8	15.0	4	624	С	30	70	NA	NA	S	C	Y	Y	GB	NA	GRAVEL
1	<i>6</i> 9-05	2.9	0.9	2.0	222.9	212.3	10.6	6.6	4.0	4	222	F	50	50	NA	NA	U	Y	γ	Υ	GB	GNB	TILL
1	.69-06	8.3	2.1	6.2	219.9	178.2	41.7	28.6	13.1	2	443	С	95	5	NA	NΑ	U	Y	Y	γ	GY	GY	TILL
1	69- 07	9.1	2.2	6.9	114.3	57.0	57. 3	34.9	22.4	1	29	D	85	15	AM	NΑ	IJ	Υ	γ	Y	GY	GY	TILL
1	.69-08	8.3	1.5	6.8	338.7	293.2	45.5	31.4	14.1	3	71	С	70	30	NA	NΑ	U	Y	γ	γ	GY	GY	TILL
1	59-0 9	8.3	2.7	5.6	121.8	84.5	37.3	20.8	16.5	5	1787	C	40	60	NA	MA	U	Y	Y	Y	GΥ	GΥ	TILL
1	70-01	4.2	1.6	2.6	241.5	221.8	19.7	12.6	7.1	1	51	C. BK	5	95	NΑ	NA	S	C	Y	Y	PKB	В	GRAVEL
1	71-01	8.5	1.2	7.3	151.3	99.5	51.8	31.8	20.0	2	53	Ρ	70	30	NΑ	A	U	γ	γ	Y	GF	GB	TILL
1	71-02	8.1	1.3	6. B	197.6	139.7	57.9	37.0	20.9	8	37	C	20	80	NA	NA	U	Υ	Y	γ	PKB	B	TILL
1	71-03	5.1	1.6	3.5	283.9	253.3	30.6	18.1	12.5	2	45	С	10	90	NA	NA	IJ	y	γ	Y	PKB	В	TILL
į	71-04	8.8	2.0	6.8	181.7	130.7	51.0	31.0	20.0	10	69 0	C	20	8 0	NA	NA	U	Y	Y	Y	PKB	В	TILL
1	7i-05	4.4	0.3	4.1	154.6	110.2	44.4	30.4	14.0	55	871	C	5	95	NA	NA	U	γ			FKB	B	TILL
1	72 - 01	8.5	0.0	8.5	269.9	222.2	47.7	29.6	18.1	10		TR	NA	NA	NA	A	U	Υ		Y		B	TILL
1	72-02	8.4	2.2	6.2	191.9		36.3			5	101		60	40	NΑ	NΑ	U	γ		Υ	GB	GB	TILL
1	72-03	5.1	2.0	6.1	254.0	221.6	32.4	21.2	11.2	4	415			50		NΑ	U	Y			ΘY		TILL

MIPL2MAR.WR1 FOTAL # OF SAMPLES IN THIS REPORT = 40

OVERBURDEN DRILLING MANAGEMENT LIMITED

	SAMPLE NO.	WEIGHT		WE!) =====:	= =====	WEIGHT					AU ======	===] ====)ESCF	RIPTI	DN						CLASS
							M.	I. C	ONC				CLA	ST				MAT	RIX				******
		TABLE SPLIT	+10 CHIPS	TABLE FEED	TABLE CONC	M.I. LIGHTS	CONC. TOTAL	NON MAG	MAG	ND. V.G.	CALC PPB	SI	Έ	7/	•	====	S/U				COL	OR	
			· · · · · · · · · · · · · · · · · · ·			·					, . 2			GR	LS						SD		
	PLS-89																	-					
	172-04	8.2	2.3	5.9	211.5	172.7	38.8	21.9	7 16.9	1	1	Р	80	20	N/A	MA	-		17				
	172-05	8.5	2.7	5.8	292.1	260.3	31.8	18.7		2	30	þ	70	20 30			5	C	Y	•	GY	NA	GRAVE
	172-05	9.8	2.0	6.8	447.1	400.7	46.4	25.6		ō	NA	P	70 70	30			U	Y	Y	•	GY	GY	TILL
	173-01	8.5	2.0	4.5	258.8	216.5	42.3	25.9		2	42	P	40	50 60		NA	IJ	Y	Y	•	64	GY	TILL
	174-01	7.9	6.0	1.9	345.1	305.4	39.7	23.5		12	1107	P				NA	Ü	Y	Y	•	GB	GB	T/BDK
	175-01	7.9	0.1	7.8	320.1	295.0	25.1	19.1		3	77	P	60	40 NA	NA	NA	IJ	Y	γ	Υ	GB	GB	T/BDK
	175-02	4.5	0.0	4.5	122.9	110.5	12.4	7.5		ა 7			100	NA	NA	NA	S	F		NA	GF	NA	SAND
	175-03	8.5	2.0	6.5	240.6	188.6	52.0	32.4			217	TR	NA	NA	NA	NA	5	F	NA	NΑ	GB	NA	SAND
	175-04	8.7	2.1	6.6	141.2	200.0 89.5	51.7	33.4 33.4		7	1591	P	70	30	NA	NA	U	Y	Y	γ	GY	GY	TILL
	175-05	8.6	1.7	6.9	342.1					1	6	P	70	30	NΑ	NΑ	U	Y	Y	γ	GY	GY	TILL
	175-06	8.4	1.9	6.5	103.6	274.2	67.9	42.0		5	1412	F	70	30	NΑ	NA	U	Y	Y	Y	GY	GY	TILL
	175-07	8.7	1.7			58.7	44.9	28.3		1	7	P	80	20	NΑ	NΑ	U	Υ	¥	Y	GY	GΥ	TILL
	175-08	8.6		7.0	244.5	176.7	67.8	45.0		4	17	Ρ	85	15	NA	NA	U	γ	Y	Y	ΒY	GY	TILL
	175-09		1.1	7.5	314.7	273.3	41.4	27.2	14.2	1	7	P	70	30	NA	NA	U	γ	γ	Ÿ	ΒY	GΥ	TILL
		9 . 0	2.5	5.5	272.7	223.6	49.1	32.1	17.0	5	64	P	80	20	NA	NA	U	Ý	Ÿ	Ÿ	GY	GY	T/BLD
	175-10	6.0	1.5	4.5	322.6	293.2	29.4	20.6	8.8	3	50	F	60	40	NA	NΑ	Ū	y	Ý	γ	GY	GΥ	T/BLD
	175-11	5.7	1.6	4.1	203.3	174.0	29.3	19.7	9.6	1	10	Ρ	60	40	NA		Ū	Ý	Ý	Ÿ	GY	GY	
	175-12	7.7	1.9	5.8	310.4	275.9	34.5	20.4	14.1	1	18	P	60	40	NA	NA	U	Ϋ́	y	•			TILL
	175-13	6.9	1.1	5.8	354.2	317.8	36.4	22.2	14.2	2	298	P	60	40	NA		U	Ý	γ		GY	GY	T/BLD
	175-14	8.2	1.4	6.8	351.3	302.9	48.4	27.7	20.7	3		p	70	30	NA		_		•		GY	GY	T/BLD
	176-01	8.4	1.5	6.9	204.6	162.1	42.5	26.4	16.1	5		P	70	30 30	NA NA		U	Y	Y		GY	GY	T/BDK
	177-01	9.5	1.6	6.9	311.9	262.8	49.1	33.6	15.5	3		F F					U	Y	Y		GB	GB	TILL
	179-01	7.7	2.2	5.5	358.6			39.8	20.5	9	_		60 7 0	4 ()	NA		U	Y	Y		GB	GB	TILL
	180-01	8.9	3.2	5.7	364.9			28.8	28.7	7 5		P		30	NA		U	Y	Y	Y	GB	GB	TILL
	180-02	8.9	2.8	6.1	359.9			32.0		-		P		40	NA		U	γ	γ	Υ	GB	GB	TILL
	180-03		2.8	6.0	350.1				18.4	5		P .		4 ()	NA		U	Y	Y	Y	GB	GB	TILL
	180-04		2.5	3.7	250.7			29.8	17.1	6		P		40	NA	NA	U	γ	Y	γ	В	B	TILL
	180-05			6.6				11.4	7.2	2		P			NA	NΔ	U	¥	γ	γ	В	В	TILL
	190-0 6			5.5	327.2		48.2	32.4	15.8	6	26	F			NΑ	NA	U	Y	Y	Υ :	B	B	TILL
	180-07				250.6	212.4			16.1	0	NA	Ρ	7 0	30	NΑ	NΑ	S	C				GB	GRAVEL
	181 - 01				281.1			24.7	20.1	2	132	F	70	30	NA	NA .	S	M	Y			GN	GRAVEL
	181-02				455.3				16.3	3	76	P	70	30			IJ	Y	Ÿ			GB	TILL
					375.0				13.9	1	2	C]	Ϋ́	Ϋ́			GB -	TILL
	181-03 181-04				333.1				10.8	4	90 (Ē						Ϋ́	Ÿ			GB GB	
	181-04 101 AF						53.1	36.2	16.9	0	NA !					NA (Ý					TILL
	181-05					270.5	46.6	32.6	14.0	e	NA F					NA (3B	TILL
	81-06					377.1	48.4		13.6	0	NA F					NA (3B	TILL
	81-07				437.2	368.1 6			29.8	1	9 F								γ : υ :			B	TILL
			2.8	5.9		169.8 3				0	NA F								γ :			3B	TILL
		9.0	2.4 (6.6		213.2 4			13.7	3	3 (VA L			γ ·			ξY	TILL
1	81-10	5.5 (5.7 1			0						VA L			Υ '			θY	TILL
						232.4 5					NA C					4 Α (J			ΥY			B	TILL
		•				=∀=∗⊤ ಲೆ	-೧೯೮೮	:U: 1	10.7	Q	NA P	. {	3 0 2	10 N	MA N	ψA U		Y	Y Y	/ G	B 6	B	TILL

MINNOVA

03/20/89

MIPL3MAR.WR1

OVERBURDEN DRILLING MANAGEMENT LIMITED

TOTAL # OF SAMPLES IN THIS REPORT = 39

AMPLE	WEIGHT		_ :		WEIGHT		DRY)			¥U				SCRI								CLASS
NJ.	=====					۲.	I. COM	C				CLAS	ST				MATR	IΧ				
	TABLE		TABLE	TABLE	M.I.	CONE.	NON		NO.	CALC	SIZE	Ξ	%			S/U	SD		СҮ	COLO	R	
	57111	CHIPS	FELD	CONC	LIGHTS	IUIAL	MAG	MAG	V.G.	PPB		V/S	GR	LS	=== OT					==== SD	== CY	
PL8-89				-																		
182-02	8.6	2.1	6.5	248.9	201.2	47.7	31.9	15.8	0	AM	D	80	20	NΔ	NΑ	Ц	γ	Y	Y	В	В	TILL
182-03	9.1	1.8	7.3	259.6	204.7	54.9	36.9	18.0	0	NA	С	80	20	NA	NΑ	1	Y	γ	γ	B	В	TILL
182-04	9.6	1.9	7.7	223.2	172.4	50.8	34.1	16.7	2	20	P	80	20	NA	NΑ	IJ	Y	γ	Υ	GB	6B	TILL
182-05	9.1	2.6	6.5	220.8	149.5	51.3	27.5	23.7	1	413	Ρ	80	20	NΑ	NA	U	¥	Y	¥	GB	GB	TILL
182-05	8.8	2.1	6.7	182.5	137.6	44.9	30.0	14.9	2	13	Ρ	80	20	NA	NA	U	y	γ	Y	GB	GB	TIA
182-07	8.7	1.5	7.2	186.8	144.1	42.7	27.3	15.4	0	NA	P	85	15	NA	NA	U	Y	Υ	Y	GB	GB	TILL
182-08	8.8	2.0	ó.8	235.7	189.3	46.4	32.5	13.9	1	11	P	80	20	NA	NA	IJ	Y	Y	Y	GB	GB	TILL
182-09		0.6	7.6	245.7	195.3	51.4	36.8	14.6	6	44	P	80	20	NA	NA	U	Y	Y	Y	GR	68	TIL
182-10		1.0	7.6	216.7	178.3	38.4	25.4	13.0	1	59	P	B0	20	NΑ	NA	U	Y	Y	Υ	GB	GB	TIL
182-11	8.3	1.3	7.0	336.4	295.8	40.6	27.0	13.6	1	107	P	75	25	NA	NA	U	Υ	Y	Y	GB	GB	TIL
183-01 457 05	8.3	1.4	6.9	361.7	318.1	43.6	28.4	15.2	5	39	P	75	25	MA	NA	U	Y	Y	Y	GB	GB OF	TIL
1 9 3-02 183-03	-	1.2	7.7	237.5	189.5	43.0	30.4	17.6	1	12	P	80	20	NA	NA	U	Y	Y	Y	GB GB	GB	TIL
	8.9	2.2	6.7	352.6	286.6 236.3	66.0			1 7	22	P	80	20	NA NA	NA	U	γ	Y	Y	GB	GB	TIL
183-04 183-05	8.6 8.5	2.0 1.4	6.6 7.1	298.6 281.0	227.4	62.3 53.6	43.4	18.9 18.8	3	113 NA	P	80 98	20	NA NA	NA NA	U	Υ	Y	Y	GB D	6B	TIL
1 0 0-00 184-01	e. 4	1.3	7.1	238.7	198.2	40.5	34.8 27.3	13.2	0	NA NA	0	80	2 20	NA	NA	U	Υ Υ	Υ	Υ Υ	B GB	B GB	TIL
1 04 -01 184 - 02		1.3	6.3	194.6	153.3	41.3	26.0	15.3	0	nn NA	C	80	20	NA	NA	U	Y	Y	Y	GB	6B	TIL
184-03		0.8	4.5	324.0	296.4	27.6	17.3	10.3	1	547	C	75	25	NA	NA	U	Y	Y	¥	GB	GB	TIL
184-04 184-04	8.4	1.8	6.6	196.3	152.0	44.3	28.1	16.2	1	13	С	75	25	NA	NA	U	Ý	Ý	Y	GB	GB	TIL
194-05	8.5	1.3	7.2	244.5	208.1	36.4	24.7	11.7	Ô	NA	Ē	70	30	NA	NΑ	U	Ý	Ý	Ý	GB	GB	TIL
184-06	8.9	1.2	7.7	404.7		104.4	71.3	33.1	Õ	NA	C	75	25	NΑ	NA	U	γ	Ý	Ÿ	GB	GB	TIL
184-07	8.8	1.2	7.6	339.0	289.0		35.5	14.5	0	NA	C	75	25	NΑ	NA	U	ý	Ý	Ý	GB	GB	TIL
84-08	8.2	0.7	7.5	178.3	147.1	31.2	22.7	8.5	Ô	NA	Ē	65	35	NA	NΑ	Ū	Ý	Ý	Ÿ	GB	GB	TIL
184-09	8.4	1.5	6.9	190.7	154.9	35.8	22.8	13.0	0	NA	C	75	25	MA	NΑ	U	Ÿ	Ÿ	Y	GB	GB	TIL
84-10	8.4	1.4	7.0	161.8	135.2	26.6	18.1	8.5	0	NA	C	70	30	NΑ	NA	U ·	Ÿ	Y	ý	GE	GB	TIL
184-11	8.9	2.1	6.8	224.6	186.4	38.2	26.3	11.9	0	NA	C	65	35	NΑ	NA	U	γ	γ	γ	GB	GB	TIL
84-12	8.9	1.4	7.5	333.1	276.7	54.4	39.1	17.3	0	NA	C	70	30	NA	NA	U	Υ	Y	γ	GB	GB	TIL
84-13	9.1	2.4	6.7	394.5	348.5	46.0	31.3	14.7	0	NΑ	C	65	35	NΑ	NA	U	Y	γ	Υ	GP	GB	TIL
184-14	8.8	1.8	7.0	184.8	156.6	30.2	20.5	9.7	0	NA	0	70	30	NA	NΑ	U	Y	¥	¥	GE	GB	TIL
184-15		2.5	6.4	415.4		52.2		15.0		404	0	70	30	NΑ	NA	U	Y	Y	Y	GB	GP	TIL
84-16	9.2	1.2	8.0	253.3	205.2			15.3		NA	C	60		NA	NΑ	U	Y	γ	Y	GB	GB	TIL
94-17		1.2	7.7	284.0		42.8		11.5		NA	0	70	30	NA	NΑ	U	Y	Y	¥	6B	GB	TIL
.84-18		1.3	7.4	325.8		41.5		8.6	1	569	С	- 20	70	NΑ	NΑ	U	Y	¥	Υ	GB	GB	TIL
185-01		1.4	7.2	274.8	227.8			13.7		NA	С	6 5-	35	NA		U	Y	Y	¥	GB	GB	TIL
85-02		2.1	5.7	314.4	248.8	45.6		13.5	0	NΑ	C	60	40	NΑ			Y	γ	Y	GB	GB	TIL
185-03		1.5	4.4	348.1	306.9	41.2		11.7	0	NA	P	75	25	NΑ		U	Y	Y	Y	GB	GB	TIL
185-04	6.6	1.4	5.2	276.9	231.8	45.1			1		P.	65	35	NA		Ü	Y	Y	Y	GB	GB	TILL
185-05		1.2	4.5	311.3		41.7			1		0	70	30	NA		U	Y		Y	GB GB	GB	TIL
185-06	8.3	2.9	5.4	230.0		46.4			0	NA NA	0	70	30	NA	NA		Y		Y	GB	GB	TILL
185-07	7.7	2.8	4.9	238.4	175.1	43.3	51.4	11.7	Q	MΑ	0	65	35	MA	NΑ	IJ	Y	Υ	Y	GB	68	TILL

MIPLAMAR.WR1

OVERBURDEN DRILLING MANAGEMENT LIMITED

TOTAL # OF SAMPLES IN THIS REPORT = 40

No. No. No. No. No. CALC SIZE No. No. CALC SIZE No. No. No. CALC SIZE No. No. No. No. CALC SIZE No. No	9	BAMPLE	WEIGHT		•		WEIGHT					ALI				SCRI								CLASS
TABLE 1-10 TABLE TABLE M.I. COMC N. N. N. N. N. CALC SIZE Z S. S. U. S. C. C.		NU.						Ħ.	I. COM	C	=====			CLAS	T				MATR	ΙX				
Fig. 8-8 8 8 8 8 0.0 6.8 501.4 244.7 54.7 41.4 15.3 0 NA C 50 50 NA NA U Y Y Y 8 6 6 TILL 185-09 8.9 1.6 7.1 449.4 384.1 65.3 47.1 18.2 1 397 C 60 40 NA NA U Y Y Y 8 6 8 TILL 185-10 6.8 2.0 6.8 26.2 232.0 50.2 35.0 18.2 0 NA C 50 50 NA NA NA U Y Y Y 8 8 8 TILL 185-11 9.0 2.5 6.5 245.1 20.6 9 38.2 24.1 14.1 0 NA C 60 40 NA NA W U Y Y Y 8 8 9 TILL 185-12 9.0 1.5 7.7 296.4 246.8 45.6 54.6 15.0 0 NA C 60 40 NA NA W U Y Y Y 8 8 9 TILL 185-15 8.3 15 7.2 262.5 35.9 24.8 12.1 1 199 C 50 50 NA NA U Y Y Y 8 9 6 TILL 185-15 8.3 15 7.2 262.5 31.7 0 45.3 30.4 14.9 0 NA C 40 60 NA NA U Y Y Y 8 8 9 TILL 185-15 8.3 15 7.2 262.5 31.7 0 45.3 30.4 14.9 0 NA C 40 60 NA NA U Y Y Y 8 8 9 TILL 185-15 8.3 15 7.2 262.5 31.7 0 45.3 30.4 14.9 0 NA C 40 60 NA NA U Y Y Y 8 8 9 TILL 185-15 8.3 15 7.2 262.5 31.7 0 45.3 30.4 14.9 0 NA C 40 60 NA NA U Y Y Y 8 8 9 TILL 185-19 8.3 16 7.2 262.5 31.7 0 50 NA NA W U Y Y Y 8 8 9 TILL 185-19 8.3 16 7.2 262.5 31.7 0 50 NA NA W U Y Y Y 9 8 9 TILL 185-19 8.3 16 7.2 262.5 31.7 0 50 NA NA W U Y Y Y 9 8 9 TILL 185-19 8.4 1.3 7.1 181.9 143.7 32.2 27.3 10.9 0 NA C 40 60 NA NA U Y Y Y 9 8 9 TILL 185-19 5.5 0.5 4.9 159.1 122.4 163.4 27.3 29.5 191.1 10.4 5 16.6 5 329 C 60 40 NA NA U Y Y Y 9 8 9 TILL 185-19 5.5 0.5 4.9 159.1 122.0 31.1 24.3 6.8 2 91 P 80 20 NA NA U Y Y Y 9 8 9 TILL 185-19 5.5 0.5 4.9 159.1 122.0 31.1 24.3 6.8 2 91 P 80 20 NA NA U Y Y Y 9 8 9 TILL 185-19 5.5 0.5 4.9 159.1 122.0 31.1 24.3 6.8 2 91 P 80 20 NA NA U Y Y Y 9 8 9 TILL 185-24 8.3 0.9 5.6 113.4 98.4 20.0 12.7 7.3 0 NA P 9 01 10 NA NA U Y Y Y 9 8 9 TILL 185-24 8.3 0.7 7.6 21.9 183.6 27.3 10.1 20.2 2 0 NA P 9 01 10 NA NA U Y Y Y 9 8 9 TILL 185-24 9.3 0.7 7.6 21.9 164.4 137.9 26.5 15.7 10.2 0 NA P 9 01 10 NA NA U Y Y Y 9 8 9 TILL 185-24 9.3 0.7 7.6 21.8 19.4 20.0 12.7 7.3 0 NA P 9 01 10 NA NA U Y Y Y 9 8 9 TILL 185-24 9.3 0.7 7.6 21.8 19.4 20.0 12.7 7.3 0 NA P 9 01 10 NA NA U Y Y Y 9 8 9 TILL 185-24 9.3 0.7 7.6 21.8 19.4 20.0 12.7 7.3 0 NA P 9 01 10 NA NA U Y Y Y 9 8 9 TILL 185-24 9.3 0.7 7.6 21.8 19.1 12.7 12.8 18.5 19.7 10.2 0 NA P 9 01 N								CONC.	NON					=	%							COLO	R	
185-06 8.8 2.0 8.8 30.4 244.7 56.7 41.4 15.5 0 NA C 50 50 NA NA U Y Y Y 86 65 TILL 185-07 8.7 1.8 7.1 4.4 384.1 45.5 47.1 18.2 1 397 C 60 40 NA NA U Y Y Y 86 65 TILL 185-10 NA C 50 50 NA NA U Y Y Y 86 65 TILL 185-11 7.0 2.5 6.5 245.1 205.2 50.2 35.0 50.2 35.0 50.2 35.0 36.1 36.1 1.8			U1 L L 1	OHII: O	3 - New York day	CON	CIMILLO		11610	TING	7.0.	112												
185-07 8.9 1.8 7.1 447, 4 384,1 65.3 47.1 18-2 1 397 C 60 40 48 48 U V V V 6B 6B TILL		PLS-89																						
185-10 6.8 2.0 6.8 2.0 2.2 232.0 50.2 35.0 15.2 0 NA C 65 35 NA NA U V V GR 6V TILL 185-12 9.0 1.3 7.7 29.4 24.6 24.6 34.6 15.0 0 NA C 60 40 NA NA U V V V GR 6V TILL 185-13 8.7 1.7 7.0 242.2 205.3 35.9 24.8 12.1 1 199 C 50 50 NA NA U V V V GR 6V TILL 185-15 5.8 1.6 7.2 262.3 217.0 45.3 30.4 14.9 0 NA C 60 40 NA NA U V V V GR 6V TILL 185-16 8.8 1.6 7.2 262.3 217.0 45.3 30.4 14.9 0 NA C 60 40 NA NA U V V V GR 6V TILL 185-16 8.8 1.6 7.1 181.9 143.7 32.2 27.3 30.9 0 NA C 60 40 NA NA U V V V GR 6V TILL 185-16 8.8 1.6 7.1 181.9 143.7 32.2 27.3 30.9 0 NA C 50 50 50 NA NA U V V V GR 6V TILL 185-16 8.8 0.4 4.4 146.8 117.3 29.5 19.1 10.4 5 160 P 80 20 NA A U V V V V V V V V V		185-08	8.8	2.0	6.8	301.4	244.7	56.7	41.4	15.3	0	NA	C	50	50	NΑ	NΑ	U	Υ	Y	¥	GB	GĐ	TILL
185-11 9.0 2.5 2.5 2.5 245.1 206.9 38.2 24.1 14.1 0 NA C 60 40 NA NA U V V V 68 69 TILL 185-12 9.0 1.3 7.7 294.2 246.8 49.6 34.6 15.0 0 NA C 60 40 NA MA U V V V 68 69 TILL 185-14 8.7 1.8 8.9 169.6 138.5 31.1 20.8 10.3 0 NA C 40 60 NA NA U V V V 88 69 TILL 185-15 5.3 1.6 7.2 262.3 217.0 45.3 30.4 14.9 0 NA C 60 40 NA NA U V V V 88 69 TILL 185-16 8.4 1.3 7.1 21.2 165.3 47.1 30.5 16.6 5 329 C 60 40 NA NA U V V V 68 69 TILL 185-16 8.8 8.4 1.3 7.1 21.2 165.3 47.1 30.5 16.6 5 329 C 60 40 NA NA U V V V 68 69 TILL 185-16 8.5 5 6.5 4.5 1.2 1.2 1.3 1.1 24.3 6.8 2 91 P 80 20 NA A U V V V 69 69 TILL 185-12 7.4 0.8 6.6 212.8 183.6 27.3 20.1 9.2 0 NA P 90 10 NA A U V V V 69 69 TILL 185-20 7.4 0.8 6.6 212.8 183.6 23.3 20.1 9.2 0 NA P 90 10 NA A U V V V 69 69 TILL 185-21 6.5 0.5 0.5 1.3 1.4 1.5 1.		185-09	8.9	1.8	7.i	449.4	384.1	65.3	47.1	18.2	i	397	C	60	40	NΑ	NA	U	Y	Y	¥	GB	GB	TILL
185-12 9.0 1.5 7.7 296.4 246.8 49.6 34.6 15.0 0 NA C 60 40 NA NA U V V 96 6V TILL 185-15 8.7 1.5 6.7 1.5		185-10	6.8	2.0	6.8	282.2	232.0	50.2	35.0	15.2	0	NA	0	65	35	NA	NA	U	Υ	Υ	¥	GB	GY	TILL
185-13 8.7		185-11	9.0	2.5	6.5	245.1	206.9	38.2	24.1	14.1	Û	NA	0	60	40	NA	NΑ	U	Y	Y	Y	GB	GY	TILL
185-14 8.7 1.8 6.9 169.6 138.5 31.1 20.8 10.3 0 MA C 60 MA NA U V V V 9B 6V TILL 185-15 8.8 1.6 7.2 262.3 217.0 45.3 30.5 16.6 5 329 C 60 40 MA MA U V V V 9B 6V TILL 185-17 8.7 1.6 7.1 181.9 143.7 38.2 27.3 10.9 0 MA C 50 40 MA MA U V V V 9B 6V TILL 185-18 8.8 0.4 6.4 146.8 117.3 29.5 19.1 10.4 5 160 P 80 20 MA A U V V V 9V 6V 6V TILL 185-19 5.5 0.6 4.9 159.1 128.0 31.1 24.3 6.8 2 91 P 80 20 MA A U V V V 9V 6V TILL 185-21 6.5 0.9 5.6 118.4 98.4 20.0 12.7 7.3 0 MA P 90 10 MA A U V V V 9V 6V TILL 185-22 8.3 0.9 7.4 176.9 143.9 33.0 21.0 12.0 2 61 P 90 10 MA A U V V V 9V 9V TILL 185-24 8.3 0.7 7.6 219.8 184.7 35.1 23.2 11.9 0 MA P 90 10 MA A U V V V 9V 9V TILL 185-05 8.4 1.4 7.0 187.9 143.5 44.4 26.5 17.9 1 1 F 90 10 MA MA U V V V 9V 9V TILL 186-06 8.1 1.4 7.0 187.9 143.5 44.4 26.5 17.9 1 1 F 90 20 20 20 20 20 20 20		185-12	9.0	1.3	7.7	296.4	246.8	49.6	34.6	15.0	0	NA	C	60	40	NA	NA	U	Y	Y	Y	GB	GY	TILL
185-15 8.8 1.6 7.2 262.3 217.0 45.3 30.4 14.9 0 NA C 60 40 NA NA U V V V GB GY TILL 185-16 8.4 1.3 7.1 212.4 185.3 47.1 30.5 16.6 5 329 C 60 40 NA NA U V V V GB GY TILL 185-18 8.8 0.4 8.4 144.8 117.3 27.5 10.9 0 NA C 55 55 NA NA U V V V GB GY TILL 185-18 8.8 0.4 8.4 144.8 117.3 27.5 19.1 10.4 5 160 P 80 20 NA A U V V V GB GY TILL 185-19 5.5 0.5 4.9 159.1 129.0 31.1 24.3 6.8 2 91 P 80 20 NA NA U V V V GY GY TILL 185-21 6.5 0.9 5.6 118.4 98.4 20.0 12.7 7.3 0 NA P 90 10 NA NA U V V V GY GY TILL 185-22 8.0 1.1 6.9 164.4 137.9 26.5 15.7 10.8 0 NA P 90 10 NA A U V V V GY GY TILL 185-23 8.3 0.7 7.6 219.8 143.5 33.0 21.0 12.0 2 61 P 90 10 NA A U V V V GY GY TILL 185-24 8.3 0.7 7.6 219.8 184.7 33.1 21.0 12.0 2 61 P 90 10 NA NA U V V V GY GY TILL 185-25 8.7 1.7 5.2 11.9 0 NA P 95 15 NA A U V V V GY GY TILL 185-26 3.7 1.7 5.3 21.4 174.3 37.1 25.3 11.8 1 59 P 80 20 NA NA U V V V GY GY TILL 185-04 5.5 1.9 3.6 148.9 143.5 44.4 26.5 17.9 1 1 P 80 20 NA NA U V V V GY GY TILL 185-05 8.2 1.9 3.6 148.9 143.5 44.4 26.5 17.9 1 1 P 80 20 NA NA U V V V GY GY TILL 185-06 8.1 1.4 7.0 187.9 143.5 44.4 26.5 17.9 1 1 P 80 20 NA NA U V V V GY GY TILL 185-06 8.1 1.4 7.0 187.9 143.5 44.4 26.5 17.9 1 1 P 80 20 NA NA U V V V GY GY TILL 185-06 8.1 1.4 1.7 2.3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5											1	199	C	50	50		NΑ	U	Υ	Y	Y	GB	GY	
185-16 8.4 1.3 7.1 212.4 165.3 47.1 30.5 16.6 5 329 C 60 40 NA NA U Y Y Y 6B 6Y TILL 185-17 8.7 1.6 7.1 181.9 143.7 38.2 27.3 10.9 0 NA C 55 55 NA NA U Y Y Y 6B 6Y TILL 185-18 6.8 0.4 6.4 146.8 117.3 29.5 19.1 10.4 5 160 P 80 20 NA A U Y Y Y 6Y 6Y TILL 185-19 5.5 0.6 4.9 159.1 128.0 31.1 24.3 6.8 2 91 P 80 20 NA NA U Y Y Y 6Y 6Y TILL 185-20 7.4 0.8 6.6 212.9 183.6 29.3 20.1 9.2 0 NA P 90 10 NA NA U Y Y Y 6Y 6Y TILL 185-21 6.5 0.9 5.6 118.4 98.4 20.0 12.7 7.3 0 NA P 90 10 NA NA U Y Y Y 6Y 6Y TILL 185-22 8.0 1.1 6.9 144.4 137.9 26.5 15.7 10.8 0 NA P 90 10 NA NA U Y Y Y 6Y 6Y TILL 185-23 8.3 0.9 7.4 176.9 143.9 33.0 21.0 12.0 2 61 P 90 10 NA P 8 U Y Y Y 6B 6Y TILL 185-24 8.3 0.7 7.6 219.8 184.7 35.1 23.2 11.9 0 NA P 90 10 NA P 8 U Y Y Y 6B 6Y TILL 185-25 8.4 1.4 7.0 187.9 143.8 33.0 21.0 12.0 2 61 P 90 10 NA P U Y Y Y 6B 6Y TILL 186-02 7.0 1.7 5.3 211.4 174.3 37.1 25.3 11.8 1 59 P 80 20 NA NA U Y Y Y 6B 6Y TILL 186-05 8.4 1.4 7.0 187.9 143.5 4.2 4.2 25.5 11.8 1 59 P 80 20 NA NA U Y Y Y 6B 6Y TILL 186-05 8.2 1.8 6.4 1.4 7.0 187.9 143.5 37.1 25.3 11.8 1 59 P 80 20 NA NA U Y Y Y 6B 6Y TILL 186-05 8.2 1.8 6.4 24.7 16.2 7.9 1 1 23 C 75 25 NA NA U Y Y Y 6B 6Y TILL 186-06 8.1 1.4 6.7 170.6 144.1 25.5 18.4 8.1 0 NA C 70 30 NA NA U Y Y Y 6B 6Y TILL 186-07 8.3 11.4 6.7 170.6 144.1 25.5 18.4 8.1 0 NA C 70 30 NA NA U Y Y Y 6B 6Y TILL 186-07 8.3 11.4 7.3 33.1 257.7 45.4 33.7 11.7 1 43 C 60 40 NA NA U Y Y Y 6B 6Y TILL 187-07 5.4 18. 5.4 14.4 7.3 35.2 27.1 38.8 40.8 18.0 2 86 P 80 20 NA NA U Y Y Y 6B 6Y TILL 187-07 5.4 18. 5.4 14.4 7.3 35.2 25.1 32.5 12.5 0 NA P 70 30 NA NA U Y Y Y 6B 6Y TILL 187-07 5.4 18. 5.5 18. 8 40.8 18.0 2 86 P 80 20 NA NA U Y Y Y 6B 6Y TILL 187-07 5.4 18. 5.5 18. 8 40.8 18.0 2 86 P 80 20 NA NA U Y Y Y 6B 6Y TILL 187-07 5.4 18. 5.5 18. 8 40.8 18.0 2 86 P 80 20 NA NA U Y Y Y 6B 6B TILL 187-07 5.4 8 0.6 4.2 233.6 198.8 34.8 25.9 27.1 18.8 20.8 50 NA NA U Y Y Y 6B 6B TILL 187-07 4.6 0.6 4.2 233.6 198.8 34.8 25.9 27.1 18.0 0 NA C 50 50 NA NA U Y Y Y 6B 6B TILL 187-07 4.6 0.6 4.2 233.6 198.8 34.8 25.9 27.1 18.0											0			40	-			U						
185-17 8.7 1.6 7.1 181.9 143.7 38.2 27.3 10.9 0 NA C 55 45 NA NA U Y Y GB BY TILL 185-18 8.8 0.4 8.4 146.8 117.3 29.5 19.1 10.4 5 160 P 80 20 NA A U Y Y GF GF TILL 185-19 5.5 0.6 4.9 159.1 128.0 31.1 24.3 6.8 2 91 P 80 20 NA A U Y Y Y GF GF TILL 185-21 6.5 0.9 5.6 118.4 98.4 20.0 12.7 7.3 0 NA P 90 10 NA NA U Y Y Y GF GF TILL 185-22 8.0 1.1 6.9 164.4 137.9 26.5 15.7 10.8 0 NA P 90 10 NA A U Y Y Y GF GF TILL 185-23 8.3 0.9 7.4 154.9 143.5 30.2 21.0 12.0 2 61 P 90 10 NA A U Y Y Y GF GF TILL 185-24 8.3 0.9 7.4 154.9 135.5 44.4 26.5 17.9 1 1 P 80 20 NA NA U Y Y Y GF GF TILL 185-05 8.4 1.4 7.0 187.9 143.5 54.4 26.5 17.9 1 1 P 80 20 NA NA U Y Y Y GF GF TILL 185-05 5.7 1.7 4.0 187.9 143.5 44.4 26.5 17.9 1 1 P 80 20 NA NA U Y Y Y GF GF TILL 185-05 5.7 1.7 4.0 187.9 143.5 44.4 26.5 17.9 1 1 P 80 20 NA NA U Y Y Y GF GF TILL 185-05 8.2 1.8 6.4 204.9 187.0 35.9 24.5 11.4 3 10 C 75 25 NA NA U Y Y Y GF GF TILL 185-05 8.2 1.8 6.4 204.9 187.0 35.9 24.5 11.4 3 10 C 70 30 NA NA U Y Y Y GF GF TILL 185-05 8.2 1.8 6.4 204.9 187.0 35.9 24.5 11.4 3 10 C 70 30 NA NA U Y Y Y GF GF TILL 187-01 8.7 1.4 7.3 26.5 9.7 1.5 33.4 11.4 25.5 18.5 9.6 2 12.5 C 75 25 NA NA U Y Y Y GF GF TILL 187-02 8.7 1.4 7.3 26.5 9.7 1.5 1.5 1.4 3 10 C 70 30 NA NA U Y Y Y GF GF TILL 187-04 8.7 1.4 7.3 26.5 9.7 7.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5											-							_						
185-18											_												-	
185-19 5.5 0.6 4.9 159.1 128.0 31.1 24.3 6.8 2 91 P B0 20 NA NA U Y Y Y 6Y 6Y TILL 185-20 7.4 0.8 6.6 212.9 183.6 29.3 20.1 9.2 0 NA P 90 10 NA NA U Y Y Y 6Y 6Y TILL 185-21 6.5 0.9 5.6 118.4 98.4 20.0 12.7 7.3 0 NA P 90 10 NA A U Y Y Y 6Y 6Y TILL 185-22 8.0 1.1 6.9 164.4 137.9 26.5 15.7 10.8 0 NA P 90 10 NA A U Y Y Y 6Y 6Y TILL 185-23 8.3 0.9 7.4 176.9 143.9 33.0 21.0 12.0 2 61 P 90 10 NA R U Y Y Y 6B 6Y TILL 185-24 9.3 0.7 7.6 219.8 184.7 35.1 23.2 11.9 0 NA P 90 10 NA NA U Y Y Y 6B 6Y TILL 185-24 9.3 0.7 7.6 219.8 184.7 35.1 23.2 11.9 0 NA P 90 10 NA NA U Y Y Y 6B 6Y TILL 185-25 7.0 1.7 5.3 211.4 174.3 37.1 25.3 11.8 1 59 P 80 20 NA NA U Y Y Y 6B 6Y TILL 185-03 5.7 1.7 4.0 169.8 141.7 28.1 18.5 9.6 2 125 C 75 25 NA NA U Y Y Y 6B 6Y TILL 185-04 5.5 1.9 3.6 148.9 124.8 24.1 16.2 7.9 1 23 C 75 25 NA NA U Y Y Y 6B 6Y TILL 185-05 8.2 1.8 6.4 204.9 124.9 25.1 12.5 9.6 2 125 C 75 25 NA NA U Y Y Y 6B 6Y TILL 185-05 8.2 1.8 6.4 204.9 125.0 125.9 125.0 1											-		_					_	•					
185-26 7.4 0.8 6.6 212.9 183.6 29.3 20.1 9.2 0 NA P 90 10 NA NA U Y Y Y 69 6Y TILL 185-21 6.5 0.9 5.6 118.4 98.4 20.0 12.7 7.3 0 NA P 90 10 NA A U Y Y Y 69 6Y TILL 185-22 8.0 1.1 6.9 164.4 137.9 26.5 15.7 10.8 0 NA P 90 10 NA B U Y Y Y 69 6Y TILL 185-23 8.3 0.7 7.6 121.8 184.7 33.0 21.0 12.0 2 61 P 90 10 NA B U Y Y Y 69 6Y TILL 185-24 9.3 0.7 7.6 219.8 184.7 35.1 23.2 11.9 0 NA P 90 10 NA NA U Y Y Y 68 6Y TILL 185-27 7.6 1.7 5.3 211.4 174.3 37.1 25.3 11.8 1 59 P 80 20 NA NA U Y Y Y 68 6Y TILL 186-01 8.4 1.4 7.0 187.9 143.5 44.4 26.5 17.9 1 1 P 80 20 NA NA U Y Y Y 68 6Y TILL 186-02 7.0 1.7 5.3 211.4 174.3 37.1 25.3 11.8 1 59 P 80 20 NA NA U Y Y Y 68 6Y TILL 186-03 5.7 1.7 4.0 169.8 141.7 28.1 18.5 9.6 2 125 C 75 25 NA NA U Y Y Y 68 6Y TILL 186-05 8.2 1.8 6.4 204.9 169.0 35.9 24.5 11.4 3 10 C 70 30 NA NA U Y Y Y 68 6Y TILL 186-05 8.2 1.8 6.4 204.9 169.0 35.9 24.5 18.4 8.1 0 NA C 70 30 NA NA U Y Y Y 68 6Y TILL 186-07 8.3 1.1 7.2 303.1 25.7 15.8 8.0 4 8.1 0 NA C 70 30 NA NA U Y Y Y 68 6Y TILL 187-07 8.3 1.1 7.2 303.1 25.7 15.8 8.0 18.0 2 86 P 80 20 NA NA U Y Y Y 68 6Y TILL 187-04 4.9 1.6 3.3 319.0 284.8 34.2 25.1 9.1 0 NA C 70 30 NA NA U Y Y Y 68 6B TILL 187-04 4.9 1.6 3.3 319.0 284.8 34.2 25.1 9.1 0 NA C 70 30 NA NA U Y Y Y 68 6B TILL 187-05 4.8 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y 68 6B TILL 187-07 4.6 0.4 2.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y 68 6B TILL 187-07 4.6 0.4 2.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y 68 6B TILL 187-07 4.6 0.4 2.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y 68 6B TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y 68 6B TILL 187-07 4.6 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y 68 6B TILL 187-07 4.6 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y 68 6B TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y 68 6B TILL 187-07 4.6 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y 68 6B TILL 187-07 4.6 0.6 4.2 233.6 13.5 22.3 9.2											_		•					_						
185-21 6.5 0.9 5.6 118.4 98.4 20.0 12.7 7.3 0 NA P 90 10 NA A U Y Y Y GY GY TILL 185-22 8.0 1.1 6.9 16.4.4 137.9 26.5 15.7 10.8 0 NA P 85 15 NA A U Y Y Y GY GY TILL 185-23 8.3 0.9 7.4 176.9 143.9 33.0 21.0 12.0 2 61 P 90 10 NA B U Y Y Y GB GY TILL 185-24 8.3 0.7 7.6 219.8 184.7 35.1 23.2 11.9 0 NA P 90 10 NA P 0 10 NA B U Y Y Y GB GY TILL 186-01 6.4 1.4 7.0 187.9 143.5 44.4 26.5 17.9 1 1 P 80 20 NA NA U Y Y Y GB GY TILL 186-02 7.0 1.7 5.3 211.4 174.3 37.1 25.3 11.8 1 59 P 80 20 NA NA U Y Y Y GB GY TILL 186-03 5.7 1.7 4.0 149.8 141.7 28.1 18.5 9.6 2 125 C 75 25 NA NA U Y Y Y GB GY TILL 186-04 5.5 1.9 3.6 148.9 124.2 24.1 16.2 7.9 1 23 C 75 25 NA NA U Y Y Y GB GY TILL 186-05 8.2 1.8 6.4 204.9 165.0 35.9 24.5 11.4 3 10 C 70 30 NA NA U Y Y Y GB GY TILL 186-07 8.3 1.1 7.2 303.1 257.7 45.4 33.7 11.7 1 43 C 60 40 NA NA U Y Y Y GB GY TILL 187-04 8.3 1.1 7.2 303.1 257.7 45.4 33.7 11.7 1 43 C 60 40 NA NA U Y Y Y GB GY TILL 187-04 4.9 1.6 3.3 319.0 284.8 34.2 25.1 9.1 0 NA C 70 30 NA NA U Y Y Y GB GB TILL 187-04 4.9 1.6 3.3 319.0 284.8 34.2 25.1 9.1 0 NA C 70 30 NA NA U Y Y Y GB GB TILL 187-05 3.0 0.4 4.2 233.6 198.8 34.2 25.1 9.1 0 NA C 70 30 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 75 50 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 75 50 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.4 0.3 5.7 12.5 13.5 12.2 0 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 6																		-			•			
185-22 8.0 1.1 6.9 164.4 137.9 26.5 15.7 10.8 0 NA P 85 15 NA A U Y Y Y GY GY TILL 185-23 8.3 0.9 7.4 176.9 143.9 33.0 21.0 12.0 2 61 P 90 10 NA B U Y Y Y GB GY TILL 185-24 9.3 0.7 7.6 219.8 184.7 35.1 23.2 11.9 0 NA P 90 10 NA NA U Y Y Y GB GY TILL 185-27 1.4 1.4 7.0 187.9 143.5 44.4 26.5 17.9 1 1 P 80 20 NA NA U Y Y Y GB GY TILL 185-27 7.0 1.7 5.3 211.4 174.3 37.1 25.3 11.8 1 59 P 80 20 NA NA U Y Y Y GB GY TILL 185-27 7.0 1.7 5.3 211.4 174.3 37.1 25.3 11.8 1 59 P 80 20 NA NA U Y Y Y GB GY TILL 185-27 7.0 1.7 5.3 211.4 174.3 37.1 25.3 11.8 1 59 P 80 20 NA NA U Y Y Y GB GY TILL 185-27 8.2 1.8 6.4 20.9 169.0 35.9 24.5 11.4 3 10 C 75 25 NA NA U Y Y Y GB GY TILL 185-20 8.2 1.8 6.7 170.6 144.1 26.5 18.4 8.1 0 NA C 75 30 NA NA U Y Y Y GB GY TILL 185-20 8.2 1.8 6.7 170.6 144.1 26.5 18.4 8.1 0 NA C 75 30 NA NA U Y Y Y GB GY TILL 187-21 8.7 1.4 7.3 265.9 207.1 58.8 40.8 18.0 2 86 R 80 20 NA NA U Y Y Y GB GY TILL 187-22 8.2 0.8 4.4 401.3 356.2 45.1 32.6 12.5 0 NA P 70 30 NA NA U Y Y Y GB GB TILL 187-23 5.4 1.8 3.6 241.1 207.1 34.0 24.4 9.6 0 NA C 75 30 NA NA U Y Y Y GB GB TILL 187-25 4.9 0.6 4.2 233.6 198.8 34.2 25.1 9.1 0 NA C 75 30 NA NA U Y Y Y GB GB TILL 187-26 3.0 0.4 2.6 283.0 260.9 22.1 16.0 6.1 0 NA C 75 30 NA NA U Y Y Y GB GB TILL 187-26 4.5 0.6 4.0 289.5 256.1 33.4 25.7 8.7 1 9.1 0 NA C 75 30 NA NA U Y Y Y GB GB TILL 187-26 4.5 0.6 4.0 289.5 256.1 33.4 25.7 8.7 1 9.1 0 NA C 75 30 NA NA U Y Y Y GB GB TILL 187-26 4.5 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-26 4.5 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-26 5.5 4.1 31.4 22.6 12.5 0 NA C 75 30 NA NA U Y Y Y GB GB TILL 187-26 4.0 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-26 4.0 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-26 4.0 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-26 4.0 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-26 4.0 0.6 4.0 289.5 256.1 33.5 22.3 9.2													,					_	•		-			
185-23 8.3 0.9 7.4 176.9 143.9 33.0 21.0 12.0 2 61 P 90 10 NA B U Y Y Y 6B 6Y TILL 185-24 8.3 0.7 7.6 219.8 184.7 35.1 23.2 11.9 0 NA P 90 10 NA NA U Y Y Y 6B 6Y TILL 186-01 8.4 1.4 7.0 187.9 143.5 44.4 26.5 17.9 1 1 P 80 20 NA NA U Y Y Y 6B 6Y TILL 186-02 7.0 1.7 5.3 211.4 174.3 37.1 25.3 11.8 1 59 P 80 20 NA NA U Y Y Y 6B 6Y TILL 186-03 5.7 1.7 4.0 169.8 141.7 28.1 16.5 9.6 2 12.5 0 75 25 NA NA U Y Y Y 6B 6Y TILL 186-05 8.2 1.8 6.4 204.9 169.0 35.9 24.5 11.4 3 10 C 70 30 NA NA U Y Y Y 6B 6Y TILL 186-05 8.2 1.8 6.4 204.9 169.0 35.9 24.5 11.4 3 10 C 70 30 NA NA U Y Y Y 6B 6Y TILL 186-06 8.1 1.4 6.7 170.6 144.1 25.5 18.4 8.1 0 NA C 70 30 NA NA U Y Y Y 6B 6Y TILL 186-07 8.3 1.1 7.2 303.1 257.7 45.4 33.7 11.7 1 43 C 60 40 NA NA U Y Y Y 6B 6Y TILL 187-01 8.7 1.4 7.3 265.9 207.1 58.8 40.8 18.0 2 866 R 80 20 NA NA U Y Y Y 6B 6B TILL 187-03 5.4 1.8 3 31.0 24.4 9.6 0 NA C 70 30 NA NA U Y Y Y 6B 6B TILL 187-04 4.9 1.6 3.3 319.0 284.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y 6B 6B TILL 187-05 4.8 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y 6B 6B TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y 6B 6B TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y 6B 6B TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y 6B 6B TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y 6B 6B TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y 6B 6B TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y 6B 6B TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y 6B 6B TILL 187-07 4.6 0.6 5.5 1.5 4.1 314.1 282.6 31.5 23.3 9.2 1 29 C 60 40 NA NA U Y Y Y 6B 6B TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y 6B 6B TILL 187-07 4.6 0.6 5.5 5.9 259.0 250.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y 6B 6B TILL 187-07 4.6 0.6 6.8 12.6 13.3 20.5 15.0 0 NA P 20 80 NA NA U Y Y Y 6B 6B TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 1											•						-	_						
185-24 8.3 0.7 7.6 219.8 184.7 35.1 23.2 11.9 0 NA P 90 10 NA NA U Y Y Y GB GY TILL 186-01 8.4 1.4 7.0 187.9 143.5 44.4 26.5 17.9 1 1 P 80 20 NA NA U Y Y Y GB GY TILL 186-02 7.0 1.7 5.3 211.4 174.3 37.1 25.3 11.8 1 59 P 80 20 NA NA U Y Y Y GB GY TILL 186-03 5.7 1.7 4.0 169.8 141.7 28.1 18.5 9.6 2 125 C 75 25 NA NA U Y Y Y GB GY TILL 186-05 8.2 1.8 4.2 204.9 169.0 35.9 24.5 11.4 3 10 C 70 30 NA NA U Y Y Y GB GY TILL 186-06 8.1 1.4 6.7 170.6 144.1 26.5 18.4 8.1 0 NA C 70 30 NA NA U Y Y Y GB GY TILL 186-07 8.3 1.1 7.2 303.1 257.7 45.4 33.7 11.7 1 43 C 60 40 NA NA U Y Y Y GB GY TILL 187-01 8.7 1.4 7.3 265.9 207.1 58.8 40.8 18.0 2 86.6 P 80 20 NA NA U Y Y Y GB GY TILL 187-02 5.2 0.8 4.4 401.3 356.2 45.1 32.6 12.5 0 NA P C 70 30 NA NA U Y Y Y GB GY TILL 187-03 5.4 1.8 3.6 241.1 207.1 34.0 24.4 9.6 0 NA C 70 30 NA NA U Y Y Y GB GY TILL 187-04 4.9 1.6 3.3 319.0 284.8 34.2 25.1 9.1 0 NA C 70 30 NA NA U Y Y Y GB GB TILL 187-05 4.8 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.9 31.7 22.6 9.1 3 20.0 1 65 35 NA NA U Y Y Y GB GB TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.9 31.7 22.6 9.1 3 20.0 NA P S 30 70 NA NA U Y Y Y GB GB TILL 187-12 6.4 0.3 6.1 261.1 21.4 41.7 23.5 18.2 0 NA P S 30 50 NA NA U Y Y Y GB GB TILL 187-12 6.4 0.3 6.1 261.1 21.4 41.7 23.5 18.2 0 NA P S 30 70 NA NA U Y Y Y GB GB TILL 187-13 5.7											-							_						
186-01 8.4 1.4 7.0 187.9 143.5 44.4 26.5 17.9 1 1 1 P 80 20 NA NA U Y Y Y GY GY TILL 186-02 7.0 1.7 5.3 211.4 174.3 37.1 25.3 11.8 1 59 P 80 20 NA NA U Y Y Y GB GY TILL 186-03 5.7 1.7 4.0 167.8 141.7 28.1 18.5 9.6 2 125 C 75 25 NA NA U Y Y Y GB GY TILL 186-04 5.5 1.9 3.6 148.9 124.8 24.1 16.2 7.9 1 23 C 75 25 NA NA U Y Y Y GB GY TILL 186-05 8.2 1.8 6.4 204.9 169.0 35.9 24.5 11.4 3 10 C 70 30 NA NA U Y Y Y GB GY TILL 186-05 8.1 1.4 6.7 170.6 144.1 26.5 18.4 8.1 0 NA C 70 30 NA NA U Y Y Y GB GY TILL 186-07 8.3 1.1 7.2 303.1 257.7 45.4 33.7 11.7 1 43 C 60 40 NA NA U Y Y Y GB GB TILL 187-02 5.2 0.8 4.4 401.3 356.2 45.1 32.6 12.5 0 NA P 70 30 NA NA U Y Y Y GB GB TILL 187-04 4.9 1.6 3.3 319.0 284.8 34.0 24.4 9.6 0 NA C 70 30 NA NA U Y Y Y GB GB TILL 187-05 4.8 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.4 4.0 289.5 256.1 33.4 23.2 198.8 34.8 25.9 4.9 1 183 C 50 50 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63.0 C 60 40 NA NA U Y Y Y GB GB TILL 187-09 7.0 1.3 5.7 341.6 309.9 31.7 22.6 9.1 3 20.2 1 29 C 60 40 NA NA U Y Y Y GB GB TILL 187-09 7.0 1.3 5.7 341.6 309.9 31.7 22.6 9.1 3 20.2 1 29 C 60 40 NA NA U Y Y Y GB GB TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 9.1 3 20.2 1 29 C 60 40 NA NA U Y Y Y GB GB TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 9.1 3 20.4 C 65 35 NA NA U Y Y Y GB GB TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 9.1 3 20.4 C 65 35 NA NA U Y Y Y GB GB TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 3 95 P 50 50 NA NA U Y Y Y GB GB TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 3 95 P 50 50 NA NA U Y Y Y GB GB TILL 187-11 7.9 2.0 5.9 269.0 224.4 44.6 26.8 17.8 0 NA P 50 50 NA NA U Y Y Y GB GB TILL 187-11 7.9 2.0 5.7 25.9 250.1 33.4 23.2 10.2 1 63 0 NA NA U Y Y Y GB GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 50 50 NA NA U Y Y Y GB GB TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA U Y Y Y GB GB TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y G											_							_	•					
168-02 7.0 1.7 5.3 211.4 174.3 37.1 25.3 11.8 1 59 P 80 20 NA NA U Y Y Y 6B 6Y TILL 186-03 5.7 1.7 4.0 169.8 141.7 28.1 18.5 9.6 2 125 C 75 25 NA NA U Y Y Y 6B 6Y TILL 186-04 5.5 1.9 3.6 148.9 124.8 24.1 16.2 7.9 1 23 C 75 25 NA NA U Y Y Y 6B 6Y TILL 186-05 8.2 1.8 6.4 204.9 169.0 35.9 24.5 11.4 3 10 C 70 30 NA NA U Y Y Y 6B 6Y TILL 186-06 8.1 1.4 6.7 170.6 144.1 26.5 18.4 8.1 0 NA C 70 30 NA NA U Y Y Y 6B 6Y TILL 186-06 8.1 1.4 7.2 303.1 257.7 45.4 33.7 11.7 1 43 C 60 40 NA NA U Y Y Y 6B 6B TILL 187-01 8.7 1.4 7.3 265.9 207.1 58.8 40.8 18.0 2 86.6 R 80 20 NA NA U Y Y Y 6B 6B TILL 187-03 5.4 1.8 3.6 241.1 207.1 34.0 24.4 9.6 0 NA C 70 30 NA NA U Y Y Y 6B 6B TILL 187-04 4.9 1.6 3.3 319.0 284.8 34.2 25.1 9.1 0 NA C 70 30 NA NA U Y Y Y 6B 6B TILL 187-05 4.8 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y 6B 6B TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 50 50 NA NA U Y Y Y 6B 6B TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 50 50 NA NA U Y Y Y 6B 6B TILL 187-07 7.0 1.3 5.7 341.6 309.9 31.7 22.6 9.1 3 204 C 65 35 NA NA U Y Y Y 6B 6B TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 9.1 3 204 C 65 35 NA NA U Y Y Y 6B 6B TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 9.1 3 204 C 65 35 NA NA U Y Y Y 6B 6B TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 9.1 3 204 C 65 35 NA NA U Y Y Y 6B 6B TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 9.1 3 204 C 65 35 NA NA U Y Y Y 6B 6B TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 3 95 P 50 50 NA NA U Y Y Y 6B 6B TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 20 80 NA NA U Y Y Y 6F 6B TILL 187-13 5.7 0.3 5.4 151.0 130.5 20.5 16.0 4.5 0 NA P 20 80 NA NA U Y Y Y 6F 6B TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA NA U Y Y Y 6F 6B TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA NA U Y Y Y 6F 6B TILL 187-13 5.7 0.3 5.4 151.0 130.5 20.5 16.0 4.5 0 NA P 20 80 NA NA U Y Y Y 6F 6B TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA NA U Y Y Y 6F 6F TILL 187-15 8.9											-							_						
186-03 5.7 1.7 4.0 169.8 141.7 28.1 16.5 9.6 2 125 C 75 25 NA NA U Y Y Y GB GY TILL 186-04 5.5 1.9 3.6 148.9 124.8 24.1 16.2 7.9 1 23 C 75 25 NA NA U Y Y Y GB GY TILL 186-05 8.2 1.8 6.4 204.9 169.0 35.9 24.5 11.4 3 10 C 70 30 NA NA U Y Y Y GB GY TILL 186-06 8.1 1.4 6.7 170.6 144.1 26.5 18.4 8.1 0 NA C 70 30 NA NA U Y Y Y GB GY TILL 186-07 8.3 1.1 7.2 303.1 257.7 45.4 33.7 11.7 1 43 C 60 40 NA NA U Y Y Y GB GY TILL 187-01 8.7 1.4 7.3 265.9 207.1 58.8 40.8 18.0 2 866 P 80 20 NA NA U Y Y Y GB GB TILL 187-02 5.2 0.8 4.4 401.3 356.2 45.1 32.6 12.5 0 NA P 70 30 NA NA U Y Y Y GB GB TILL 187-03 5.4 1.8 3.6 241.1 207.1 34.0 24.4 9.6 0 NA P 70 30 NA NA U Y Y Y GB GB TILL 187-05 4.8 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y GB GB TILL 187-05 4.8 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-09 7.0 1.3 3.7 341.6 30.9 31.7 22.6 9.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-09 7.0 1.3 5.7 341.6 30.9 31.7 22.6 9.1 33.9 20.7 12.6 3 95 P 50 50 NA NA U Y Y Y GB GB TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 3 95 P 50 50 NA NA U Y Y Y GB GB TILL 187-17 7.9 2.0 5.9 269.0 224.4 44.6 26.8 17.8 0 NA P 30 70 NA NA U Y Y Y GB GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 20 B0 NA NA U Y Y Y GB GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 20 B0 NA NA U Y Y Y GB GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 20 B0 NA NA U Y Y Y GB GB TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA NA U Y Y Y GF GY TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA NA U Y Y Y GF GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 8.7 4 28 P 98 2 NA NA U Y Y Y GF GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 8.7 4 28 P 98 2 NA NA U Y Y Y GF GY TILL											_									-				
186-04 5.5 1.9 3.6 148.9 124.8 24.1 16.2 7.9 1 23 C 75 25 NA NA U Y Y Y GB GY TILL 186-05 8.2 1.8 6.4 204.9 169.0 35.9 24.5 11.4 3 10 C 70 30 NA NA U Y Y Y GB GY TILL 186-06 8.1 1.4 6.7 170.6 144.1 26.5 18.4 8.1 0 NA C 70 30 NA NA U Y Y Y GB GY TILL 186-07 8.3 1.1 7.2 303.1 257.7 45.4 33.7 11.7 1 43 C 60 40 NA NA U Y Y Y GB GB TILL 187-01 8.7 1.4 7.3 265.9 207.1 58.8 40.8 18.0 2 866 R 80 20 NA NA U Y Y Y GB GB TILL 187-02 5.2 0.8 4.4 401.3 356.2 45.1 32.5 12.5 0 NA P 70 30 NA NA U Y Y Y GB GB TILL 187-03 5.4 1.8 3.6 241.1 207.1 34.0 24.4 9.6 0 NA C 70 30 NA NA U Y Y Y GB GB TILL 187-04 4.9 1.6 3.3 319.0 284.8 34.2 25.1 9.1 0 NA C 70 30 NA NA U Y Y Y GB GB TILL 187-05 4.8 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y GB GB TILL 187-06 3.0 0.4 2.6 283.0 260.9 22.1 16.0 6.1 0 NA C 50 50 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-09 7.0 1.3 5.7 341.6 309.9 31.7 22.6 9.1 3 204 C 65 35 NA NA U Y Y Y GB GB TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 3 95 P 50 50 NA NA U Y Y Y GB GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 20 80 NA NA U Y Y Y GB GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 20 80 NA NA U Y Y Y GB GB TILL 187-13 5.7 0.3 5.4 151.0 130.5 20.5 16.0 4.5 0 NA P 20 80 NA NA U Y Y Y GB GB TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA U Y Y Y GB GY TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA U Y Y Y GF GY TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA U Y Y Y GF GY TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA U Y Y Y GF GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 F 98 2 NA NA U Y Y Y GF GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 F 98 2 NA NA U Y Y Y GF GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 F 98 2 NA NA U Y Y Y GF GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 F 98 2 NA NA U Y Y Y GF GY TILL											-							-			-			
186-05 8.2 1.8 6.4 204.9 169.0 35.9 24.5 11.4 3 10 C 70 30 NA NA U Y Y GB GY TILL 186-06 8.1 1.4 6.7 170.6 144.1 26.5 18.4 8.1 0 NA C 70 30 NA NA U Y Y GB GY TILL 186-07 8.3 1.1 7.2 303.1 257.7 45.4 33.7 11.7 1 43 C 60 40 NA NA U Y Y GB GB TILL 187-01 8.7 1.4 7.3 265.9 207.1 58.8 40.8 18.0 2 866 R 80 20 NA NA U Y Y Y GB GB TILL 187-02 5.2 0.8 4.4 401.3 356.2 45.1 32.6 12.5 0 NA P 70 30 NA NA U Y Y Y GB GB TILL 187-04 4.9 1.6 3.3 319.0 284.8 34.2 25.1 9.1 0 NA C 70 30 NA NA U Y Y Y GB GB TILL 187-05 4.8 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y GB GB TILL 187-06 3.0 0.4 2.6 283.0 260.9 22.1 16.0 6.1 0 NA C 50 50 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-09 7.0 1.3 5.7 341.6 309.9 31.7 22.6 9.1 3 204 C 65 35 NA NA U Y Y Y GB GB TILL 187-10 8.8 1.9 6.7 275.4 236.1 39.3 26.7 12.6 3 9.5 P 50 50 NA NA U Y Y Y GB GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 30 70 NA NA U Y Y Y GB GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 30 70 NA NA U Y Y Y GB GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 20 80 NA NA U Y Y Y GB GB TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA NA U Y Y Y GY GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y GY GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y GY GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y GY GY TILL													_											
186-06 8.1 1.4 6.7 170.6 144.1 26.5 18.4 8.1 0 NA C 70 30 NA NA U Y Y Y GB GY TILL 186-07 8.3 1.1 7.2 303.1 257.7 45.4 33.7 11.7 1 43 C 60 40 NA NA U Y Y Y GB GB TILL 187-01 8.7 1.4 7.3 265.9 207.1 58.8 40.8 18.0 2 866 R 80 20 NA NA U Y Y Y GB GB TILL 187-02 5.2 0.8 4.4 401.3 356.2 45.1 32.6 12.5 0 NA P 70 30 NA NA U Y Y Y GB GB TILL 187-03 5.4 1.8 3.6 241.1 207.1 34.0 24.4 9.6 0 NA C 70 30 NA NA U Y Y Y GB GB TILL 187-04 4.9 1.6 3.3 319.0 284.8 34.2 25.1 9.1 0 NA C 50 50 NA NA U Y Y Y GB GB TILL 187-05 4.8 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y GB GB TILL 187-06 3.0 0.4 2.6 283.0 260.9 22.1 16.0 6.1 0 NA C 50 50 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-09 7.0 1.3 5.7 341.6 309.9 31.7 22.6 9.1 3 204 C 65 35 NA NA U Y Y Y GB GB TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 9.1 3 204 C 65 35 NA NA U Y Y Y GB GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 50 50 NA NA U Y Y Y GB GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 50 50 NA NA U Y Y Y GB GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 50 50 NA NA U Y Y Y GB GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 50 50 NA B U Y Y Y GB GB TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA U Y Y Y GB GY TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA NA U Y Y Y GB GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y GB GY TILL											-		_					_	-	-				
186-07 8.3 1.1 7.2 303.1 257.7 45.4 33.7 11.7 1 43 C 60 40 NA NA U Y Y Y 6B 6B TILL 187-01 8.7 1.4 7.3 265.9 207.1 58.8 40.8 18.0 2 96.6 R 80 20 NA NA U Y Y Y 6B 6B TILL 187-02 5.2 0.8 4.4 401.3 356.2 45.1 32.6 12.5 0 NA P 70 30 NA NA U Y Y Y 6B 6B TILL 187-03 5.4 1.8 3.6 241.1 207.1 34.0 24.4 9.6 0 NA C 70 30 NA NA U Y Y Y 6B 6B TILL 187-04 4.9 1.6 3.3 319.0 284.8 34.2 25.1 9.1 0 NA C 50 50 NA NA U Y Y Y 6B 6B TILL 187-05 4.8 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y 6B 6B TILL 187-06 3.0 0.4 2.6 283.0 260.9 22.1 16.0 6.1 0 NA C 50 50 NA NA U Y Y Y 6B 6B TILL 187-08 5.6 1.5 4.1 314.1 282.6 31.5 22.3 9.2 1 29 C 60 40 NA NA U Y Y Y 6B 6B TILL 187-09 7.0 1.3 5.7 341.6 309.9 31.7 22.6 9.1 3 204 C 65 35 NA NA U Y Y Y 6B 6B TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 3 95 P 50 50 NA NA U Y Y Y 6B 6B TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 20 B0 NA NA U Y Y Y 6B 6B TILL 187-13 5.7 0.3 5.4 151.0 130.5 20.5 16.0 4.5 0 NA P 20 B0 NA NA U Y Y Y 6B 6B TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA U Y Y Y 6B 6Y TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y 6B 6Y TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y G 6Y TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y G 6Y TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y G 6Y TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y G 6Y TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y G 6Y TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y G 6Y TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y G 6Y TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y G 6Y TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y G 6Y TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y G 6Y TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y											_		_					-						
187-01 8.7 1.4 7.3 265.9 207.1 58.8 40.8 18.0 2 866 P 80 20 NA NA U Y Y Y 6B 6B TILL 187-02 5.2 0.8 4.4 401.3 356.2 45.1 32.6 12.5 0 NA P 70 30 NA NA U Y Y Y 6B 6B TILL 187-03 5.4 1.8 3.6 241.1 207.1 34.0 24.4 9.6 0 NA C 70 30 NA NA U Y Y Y 6B 6B TILL 187-04 4.9 1.6 3.3 319.0 284.8 34.2 25.1 9.1 0 NA C 50 50 NA NA U Y Y Y 6B 6B TILL 187-05 4.8 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y 6B 6B TILL 187-06 3.0 0.4 2.6 283.0 260.9 22.1 16.0 6.1 0 NA C 50 50 NA NA U Y Y Y 6B 6B TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y 6B 6B TILL 187-08 5.6 1.5 4.1 314.1 282.6 31.5 22.3 9.2 1 29 C 60 40 NA NA U Y Y Y 6B 6B TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 9.1 3 204 C 65 35 NA NA U Y Y Y 6B 6B TILL 187-11 7.9 2.0 5.9 269.0 224.4 44.6 26.8 17.8 0 NA P 30 70 NA NA U Y Y Y 6PK 6B TILL 187-12 6.4 0.3 5.4 151.0 130.5 20.5 16.0 4.5 0 NA P 30 70 NA NA U Y Y Y 6PK 6B TILL 187-13 5.7 0.3 5.4 151.0 130.5 20.5 16.0 4.5 0 NA P 50 50 NA NA U Y Y Y 6PK 6B TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA A U Y Y Y GY GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y GY GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y GY GY TILL											-		-					_						
187-02 5.2 0.8 4.4 401.3 356.2 45.1 32.5 12.5 0 NA P 70 30 NA NA U Y Y 9 86 88 TILL 187-03 5.4 1.8 3.6 241.1 207.1 34.0 24.4 9.6 0 NA C 70 30 NA NA U Y Y 9 86 88 TILL 187-04 4.9 1.6 3.3 319.0 284.8 34.2 25.1 9.1 0 NA C 50 50 NA NA U Y Y 9 86 88 TILL 187-05 4.8 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y 9 86 88 TILL 187-06 3.0 0.4 2.6 283.0 260.9 22.1 16.0 6.1 0 NA C 50 50 NA NA U Y Y 9 86 88 TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y 9 86 88 TILL 187-09 7.0 1.3 5.7 341.6 309.9 31.7 22.6 9.1 3 204 C 65 35 NA NA U Y Y 9 86 88 TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 3 95 P 50 50 NA NA U Y Y 9 86 88 TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 30 70 NA NA U Y Y 9 87 87 TILL 187-13 5.7 0.3 5.4 151.0 130.5 20.5 16.0 4.5 0 NA P 20 80 NA NA U Y Y 9 87 87 TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA A U Y Y 9 87 87 TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y 9 67 67 TILL											_													
187-03 5.4 1.8 3.6 241.1 207.1 34.0 24.4 9.6 0 NA C 70 30 NA NA U Y Y GB GB TILL 187-04 4.9 1.6 3.3 319.0 284.8 34.2 25.1 9.1 0 NA C 50 50 NA NA U Y Y GB GB TILL 187-05 4.8 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y GB GB TILL 187-06 3.0 0.4 2.6 283.0 260.9 22.1 16.0 6.1 0 NA C 50 50 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-08 5.6 1.5 4.1 314.1 282.6 31.5 22.3 9.2 1 29 C 60 40 NA NA U Y Y Y GB GB TILL 187-09 7.0 1.3 5.7 341.6 309.9 31.7 22.6 9.1 3 204 C 65 35 NA NA U Y Y Y GB GB TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 3 95 P 50 50 NA NA U Y Y Y GB GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 30 70 NA NA U Y Y Y GY GY GY TILL 187-13 5.7 0.3 5.4 151.0 130.5 20.5 16.0 4.5 0 NA P 50 50 NA B U Y Y Y GY GY GY TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA NA U Y Y Y GY GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y GY GY TILL											_									,				
187-04 4.9 1.6 3.3 319.0 284.8 34.2 25.1 9.1 0 NA C 50 50 NA NA U Y Y Y GB GB TILL 187-05 4.8 0.6 4.2 233.6 198.8 34.8 25.9 8.9 1 183 C 50 50 NA NA U Y Y Y GB GB TILL 187-06 3.0 0.4 2.6 283.0 260.9 22.1 16.0 6.1 0 NA C 50 50 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-08 5.6 1.5 4.1 314.1 282.6 31.5 22.3 9.2 1 29 C 60 40 NA NA U Y Y Y GB GB TILL 187-09 7.0 1.3 5.7 341.6 309.9 31.7 22.6 9.1 3 204 C 65 35 NA NA U Y Y Y GB GB TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 3 95 P 50 50 NA NA U Y Y Y GB GB TILL 187-11 7.9 2.0 5.9 269.0 224.4 44.6 26.8 17.8 0 NA P 30 70 NA NA U Y Y Y GP GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 20 80 NA NA U Y Y Y GP GY TILL 187-13 5.7 0.3 5.4 151.0 130.5 20.5 16.0 4.5 0 NA P 50 50 NA B U Y Y Y GP GY TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA A U Y Y Y GP GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y GP GY TILL																			-	,				
187-05																								
187-06 3.0 0.4 2.6 283.0 260.9 22.1 16.0 6.1 0 NA C 50 50 NA NA U Y Y Y GB GB TILL 187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U Y Y Y GB GB TILL 187-08 5.6 1.5 4.1 314.1 282.6 31.5 22.3 9.2 1 29 C 60 40 NA NA U Y Y Y GB GB TILL 187-09 7.0 1.3 5.7 341.6 309.9 31.7 22.6 9.1 3 204 C 65 35 NA NA U Y Y Y GB GB TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 3 95 P 50 50 NA NA U Y Y Y GB GB TILL 167-11 7.9 2.0 5.9 269.0 224.4 44.6 26.8 17.8 0 NA P 30 70 NA NA U Y Y Y GPK GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 20 80 NA NA U Y Y Y GY GY TILL 187-13 5.7 0.3 5.4 151.0 130.5 20.5 16.0 4.5 0 NA P 50 50 NA B U Y Y Y GY GY TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA A U Y Y Y GY GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y GY GY TILL																					Ý			
187-07 4.6 0.6 4.0 289.5 256.1 33.4 23.2 10.2 1 63 C 60 40 NA NA U											0										Ý			
187-08 5.6 1.5 4.1 314.1 282.6 31.5 22.3 9.2 1 29 C 60 40 NA NA U Y Y Y GB GB TILL 187-09 7.0 1.3 5.7 341.6 309.9 31.7 22.6 9.1 3 204 C 65 35 NA NA U Y Y Y GB GB TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 3 95 P 50 50 NA NA U Y Y Y GB GB TILL 187-11 7.9 2.0 5.9 269.0 224.4 44.6 26.8 17.8 0 NA P 30 70 NA NA U Y Y Y GPK GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 20 80 NA NA U Y Y Y GY GY TILL 187-13 5.7 0.3 5.4 151.0 130.5 20.5 16.0 4.5 0 NA P 50 50 NA B U Y Y Y GY GY TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA A U Y Y Y GY GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y GY GY TILL											1					NA	NΑ				γ			
187-09 7.0 1.3 5.7 341.6 309.9 31.7 22.6 9.1 3 204 C 65 35 NA NA U Y Y Y GB GB TILL 187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 3 95 P 50 50 NA NA U Y Y Y GB GB TILL 187-11 7.9 2.0 5.9 269.0 224.4 44.6 26.8 17.8 0 NA P 30 70 NA NA U Y Y Y GPK GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 20 80 NA NA U Y Y Y GY GY TILL 187-13 5.7 0.3 5.4 151.0 130.5 20.5 16.0 4.5 0 NA P 50 50 NA B U Y Y Y GY GY TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA A U Y Y Y GY GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y GY GY TILL			5.6								i							U		¥	Y			
187-10 8.8 1.9 6.9 275.4 236.1 39.3 26.7 12.6 3 95 P 50 50 NA NA U Y Y Y GB GB TILL 187-11 7.9 2.0 5.9 269.0 224.4 44.6 26.8 17.8 0 NA P 30 70 NA NA U Y Y Y GPK GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 20 80 NA NA U Y Y Y GY GY TILL 187-13 5.7 0.3 5.4 151.0 130.5 20.5 16.0 4.5 0 NA P 50 50 NA B U Y Y Y GY GY TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA A U Y Y Y GY GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y GY GY TILL		187-09	7.0	1.3							3		C	65		NA	NΑ	ij	¥	γ	Υ	GB	GB	
167-11 7.9 2.0 5.9 269.0 224.4 44.6 26.8 17.8 0 NA P 30 70 NA NA U Y Y Y GPK GB TILL 187-12 6.4 0.3 6.1 263.1 221.4 41.7 23.5 18.2 0 NA P 20 80 NA NA U Y Y Y GY GY TILL 187-13 5.7 0.3 5.4 151.0 130.5 20.5 16.0 4.5 0 NA P 50 50 NA B U Y Y Y GY GY TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA A U Y Y Y GY GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y GY GY TILL		187-10	8.8	1.9			236.1				3							Li	У		Y			
187-13 5.7 0.3 5.4 151.0 130.5 20.5 16.0 4.5 0 NA P 50 50 NA B U Y Y Y GY GY TILL 187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA A U Y Y Y GY GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y GY GY TILL		187-11	7.9	2.0	5.9	269.0	224.4	44.6	26.8	17.8	0	NA	Þ	30	70	MA	NΑ	U	Y	¥	Y	GPK	GB	
187-14 6.8 0.0 6.8 162.0 142.9 19.1 14.5 4.6 5 116 TR NA NA NA A U Y Y Y GY GY TILL 187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y GY GY TILL		187-12	6.4	0.3	5.1	263.1	221.4	41.7	23.5	18.2	0	NA	P	20	80	ΝA	NΑ	U	Y	Y	Y	ΘY	GY	TILL
187-15 8.9 1.5 7.4 232.2 195.8 36.4 27.7 8.7 4 28 P 98 2 NA NA U Y Y Y GY GY TILL	m		5.7	0.3	5.4				16.0	4.5	0	NA	P	50	50	NA	В	Ų	Υ	Υ	γ	GY	GY	TILL
										4.6	5	116	TR	NA	NΑ	NΑ	A	U	γ	Υ	Y	GY	GY	TILL
187-16 7.3 1.1 6.2 168.2 137.4 30.8 22.8 8.0 5 494 P 90 10 NA NA U Y Y Y GY GY TILL													F	98	-		NA	U	Υ					
		187-16	7.3	1.1	6.2	168.2	137.4	30.8	22.8	8.0	5	494	F	90	10	NA	NA	IJ	Y	Y	Y	GY	GY	TILL

MIPL5MAR.WR1

OVERBURDEN DRILLING MANAGEMENT LIMITED

TOTAL # OF SAMPLES IN THIS REPORT = 40

SAMPLE	WEIGHT				WEIGHT		DRY)			AU	DESCRIPTION											CLASS
				=====		М.	I. COM	C				CLAS	ī			1	MATR	IX				
			TABLE	TABLE	M.I.	CONC.	NON		NO.	CALC PPB	SIZ	Ξ	/, 			S/U (CY (COLO	R	
	SFLII	CHIPS	FEEU	CONC	LIGHTS	IUIHL	MAG	MAG	V.G.	FFB		V/S		LS	OT					seee SD	CY	
PLS-89									-													
187-17	7.4	1.3	6.1	152.4	123.6	28.8	21.2	7.6	0	NA	C	95	5	NA	NA	U	¥	Y	γ	GY	GY	TILL
187-18	5.2	0.0	5.2	169.3	146.4	22.9	17.1	5.8	8	319	TR	NΑ	NA	NA	NΑ	U	¥	Y	¥	6Y	67	TILL
187-19	8.6	0.0	8.5	254.5	220.3	34.2	24.1	10.1	9	287	TR	NA	NA	NΑ	NΑ	U	¥	Y	Y	GΥ	GY	TILL
188-01	8.0	3.5	4.5	254.7	232.0		16.9	5.8	0	NA	Ō	60	40	NA	NA	U	Y	Y	¥	B	В	TILL
185-02	6.8	2.1	6. 7	298.3	250.1	48.2	34.1	14.1	1	2	С	60	40	NΑ	AM	U	Y	Y	Y	GB	GΥ	TILL
188-03	9.7	1.8	6.9	226.1	185.1	40.0	26.8	13.2	5	151	C	60	40	NA	NA	U	Y	Y	¥	GB	GΥ	TILL
188-04	8.9	1.6	7.3	229.0	183. <i>6</i>	45.4	29.8	15.6	1	13	С	60	40	NA	NΑ	U	Υ	¥	Y	GB	GΥ	TILL
188-05	8.5	1.5	7.0	193.9	150.1	43.8	26.2	17.6	5	492	0	60	40	NA	NA	U	Y	Y	Υ	GB	GY	TILL
188-06	8.5	1.4	7.2	169.9	134.6	35.3	24.5	10.8	0	NA	C	55	45	NA	NA	U	Y	Y	Y	GB	GY	TILL
188-07	8.4	0.5	7.8	231.8	186.0	45.8	33.9	11.9		47	С	60	40	NA	NA	U	Y	Y	Y	GB	6Y	TILL
189-08	8.8	2.2	6.6	253.8	213.3	40.5	26.7	13.8	0	NA O	2	60	40	NA	NA	IJ	¥	Y	Y	GB	GY 57	TILL
188-09	8.8	1.3	7.5	203.6	167.8	35.8	24.6	11.2		26	0	55	45	NA	NA	U	Y	¥	Y	GB	6Y	TILL
189-10	9.7	1.2	7.5	220.3	179.5	40.8	27.2	13.6	0	NA	C	5 5	45	NA NA	NA	U	Y	Ψ	Y	GB	GY	TILL
188-11	8.3	0.1	8.2	148.1	119.5	28.6	20.5	8.1	0	NA NA	0	60	40	NA	NA NA	U	γ	Y	Y Y	GB	GY DV	TILL
188-12	7.6 9.0	1.6	6.0 6.9	188.1 200.9	161.0 161.9	27.1 39.0	18.1 25.4	9.0 13.6	0 5	NA ea	0	60 70	4 0 30	NA NA	NA NA	U	Y Y	Υ v	Y	GB GB	GY ev	TILL
189-13 186-14	7.V 5.9	1.7	5.7 7.2	240.7	193.4	46.6	33.6	13.0	0	84 NA	0	80	20	NA NA	NA NA	U	Υ	Y Y	Υ	GB GB	GY GY	TILL
188-15	8,8	1.9	6.7	418.0	348.5	49.5	50.7	18.8	1	719	С	80	20	NA NA	NA NA	U	Y	¥	¥	GB	GY	TILL
188-16	8.5	0.9	7.6	253.5	223.4	30.1	22.1	8.0	0	NA	C	95	5	NA NA	NA	U	Y	Y	¥	GB	GY	TILL
188-17	8.1	0.3	7.8	170.6	135.5	35.1	26.2	5.9	1	7	P	75 85	15	NA	NA	U	Ý	Ϋ́	Ÿ	GY	GY	TILL
186-18	8.3	2.1	£.2	176.5	128.3	48.2	33.3	14.9	Ô	NA		80	20	NA	NΑ	U	Ϋ́	Ý	Ý	GY	NA	TILL
188-19	9.1	2.2	5.9	153.4	100.4	53.0	38.9	14.1	1	2	Õ	80	20	NA	NA	U	Ý	Ý	ý	GB	GB	TILL
190-01	2,5	0.6	2.0	240.3	214.2	26.1	22.8	3.3	9	148	Ē	65	35	NΑ	NA	Ü	Ý	Ÿ	Ý	В	В	TILL
191-01	4.3	0.5	3.7	175.1	147.3	27.8	20.7	7.1	5	49	ē	85	15	NA	NA	Ū	Ý	ÿ	y	GB	GB	TILL
192-01	7.6	1.1	6.5	237.2	189.7		33.4	14.1	10	214	P	90	10	NΑ	NΑ	Ū	Ÿ	ý	Ý	6B	GB	TILL
193-01	5,5	2.8	2.7	195.5	183.1	12.4	9.0	3.4	1	21	Р	80	20	NΑ	NΑ	Ü	Y	Y	Ý	В	В	TILL
193-02	8.0	3.8	4.2	278.6	242.0	36.6	23,7	12.9	1	161	Ω	80	20	NΑ	NA	S	C	γ	NA	GB	ΝA	GRAVEL
193-05	7.7	2.1	5.6	208.1	178.1	30.0	19.2	10.8	0	NA	С	180	20	NΑ	NA	U	¥	γ	Y.	GB	GB	TILL
195-04	5.0	2.0	3.0	195.2	177.1	18.1	12.3	5.8	0	NΑ	C	75	25	NΑ	NΑ	1	Y	Y	Y	GB	GB	TILL
193-05	7.0	1.1	5.9	195.9	167.4	28.5	20.1	8.4	0	NA	C	75	25	NA	NA	U	Y	γ	¥	GB	GB	TILL
195-06	5.2	1,4	3.8	174.8	154.5	20.3	14.2	6.1	- de	45	C	75	25	NΑ	NΑ	IJ	Υ			GB	GB	TILL
193-07	7.5	0.8	6.8	127.4	107.3	20.1	12.7	7.4	1	228	0	75	25	NΑ	NΑ	U	Y	γ	γ	GB	GB	TILL
193-08	6.5	1.5	5.0	144,8	122.5	22.3	13.6	8.7	0	NA	C	60	40	NA	NΑ	U	Y	Y	Y	GB	GY	TILL
193-09	6.6	3.0	3.6	139.8		27.7		8.2		109	C	70	30.	MA	NΑ	U	Y	γ		GB	GY	TILL
193-10	5.8	2.0	3,8	109.5		16.5		5.4		NΑ	P	70	30	NA	NΑ		Y	Y		GB	GB	TILL
193-11	4.5	1.3	3.2	147.6		15.4		5.0		NA		80	20	MA	NA		Y	¥		GB	GY	TILL
193-12	4.3	1.1	3.2	107.0		11.7	7.7	4.0		NA	C	80	20	NA	NΑ		Y	Y		GGN -	GB	TILL
194-01	8.0	2.0	5. 0	240.9		38.5		11.5		958		60	40	NΑ	NA		Y	Y		GB	GB	TILL
194-02	8.1	1.2	6.9	336.6		34.0		9.5		NA		70	30	NA	NA		Y			GB 	GĐ	TILL
194-03	7.9	0.2	7.7	231.0	182.1	48.9	34.7	14.2	θ	NA	C	80	20	NΑ	NΑ		Y	Y	Y	GB	GB	TILL

MIPLIAPR.WA:

OVERBURDEN DRILLING MANAGEMENT LIMITED

NOTAL # OF SAMPLES IN THIS REPORT = 39

SAMPLE	WEIGHT		WEIGHT		WEIGHT (GRAMS DRY)					AU DESCRIPTION										CLASS		
NO.	=====					M.	I. COM	C				CLAS	T				MAT	XIX				
	TABLE			TABLE	M.I.	CONC.	NON		NO.		SIZ	_	#/ /*			=== S/U				COL	OR	
	ortii	CHIPS	FEEL)	CONC	LIGHTS	IUIRL	MAG	MAG	V.6.	PPB		V/S		LS	OT					SD		
FLS-E	*** ***																					
194-0		1.3	6. 9	300.6	279.7	20.9	13.6	7.3	0	NA	3	65	35	NA	NA	5	C	¥	N	GB	NA	GRAVEL
194-0	5 7.7	2.1	5.6	126.6	109.6	17.0	11.5	5.5	()	NA	P	* 70	30	NA	NΑ	U	Y	¥	Y	GB	GB	TILL
194-0	6 6.7	2.6	4.1	138.5	114.7	23.8	16.5	7.3	0	ΝĀ	C	70	30	NA	NA	U	Y	¥	¥	GN	GΥ	TILL
194-0	7 6.0	1.8	4.2	153.3	133.1	20.2	13.5	5.7	1	2393	C	85	15	NA	A	U	¥	¥	Y	GYG	GY	TILL
195-0	1 8.2	2.2	6.0	264.0	231.5	32.5	22.4	10.1	Ű	NA	P	80	20	NΑ	NΑ	5	C	¥	N	GB	NΑ	GRAVEL
195-0	2 8.2	1.7	6.5	254.2	201.2	53.0	34.8	18.2	i	43	C	80	20	NΑ	NΑ	U	Y	Y	Y-	GB	GP	TILL
195-0	3 5.5	1.2	4,3	162.0	128.3	33.7	22.9	iù.8	Ō	NA	C	80	20	NΑ	NΑ	Ú	Y	¥	Y	GB	GB	TILL
195-0	4 4.8	1.2	3.6	137.6	110.6	27.0	19.5	7.5	0	NA	C	60	40	NΑ	NA	Ú	Y	.Y	γ	54	GY	TILL
195-0	5 7.1	1.9	5.2	206.1	176.2	29.9	21.1	8.8	0	NA	C	80	20	NΑ	NΑ	1	Y	¥	¥	GB	GB	TILL
195-0	6 7.1	2,2	4.9	178.8	143.7	35.1	24,1	11.0	6	682	C	90	10	NΑ	NA	U	Y	¥	¥	GB	GB	TILL
195-0	7 4.7	0.2	3.9	142.6	115.4	26.2	i8.5	7.7	0	NA	C	85	15	NA	NΑ	ij	Y	Y	Y	GB	GB	TILL
195-0	5 6,4	1.5	4.9	179.9	148.7	31.2	20.8	10.4	0	NΑ	C	80	20	NΑ	NΑ	- U	Y	Y	Y	GB	GY	TILL
195-0	9 5.7	1.4	4.3	164.5	143.3	21.2	13.8	7.4	0	NΑ	C	75	25	ΝA	NΑ	U	Y	¥	¥	GB	GΥ	TILL
195-1	0 6.0	2.1	5.9	150.8	128.4	22.4	14.7	7.7	2	1417	C	70	30	NΑ	NΑ	U	Y	Y	¥	GB	GY	TILL
195-1	1 5.4	1.2	4.2	152.3	136.3	16.0	10.1	5.9	1	8	C	70	30	NΑ	A	U	¥	Y	Y	GB	ΘY	TILL
195-1	2 5.4	1.4	5.0	148.6	128.0	20.6	12.7	7.9	0	NA	ū	80	20	NΑ	A	U	Y	Y	Y	GB	GY	TILL
195-1	5,1	1.5	3.6	142.4	125.6	16.8	10.6	6.2	Q	NA	C	75	25	NΑ	NΑ	U	Y	¥	Y	GB	GY	TILL
196-0	1 8.1	2.6	5.5	289.3	260.0	29.3	19.6	9.7	0	NA	- C	75	25	NA	NΑ	8	0	Y	N	GB	NΑ	GRAVEL
1 9 6-0	2 4.5	1.6	3.0	130.6	113.8	16.8	11.4	5.4	1	89	\mathbb{C}	75	25	NΑ	ŅΔ	U	Υ	Y	Y	GB	GY	TILL
197-O	1 8.4	2.9	5.5	271.7	245.6	26.1	17.5	8.6	0	NA	Ε	70	30	NΑ	NΑ	U	y	¥	Y	GB	GB	TILL
197-0	7.4	J.8	3.6	276.3	261.5	14.8	10.9	3.7	2	717	С	45	55	NΑ	NΑ	\$	C	¥	¥	GE	GB	BRAVEL
197-0	5 7.7	4,9	2.8	161.8	145.7	16.1	10.9	5.2	0	NA	P	80	20	NΑ	ΝA	S	C	¥	Y	GB	GB	GRAVEL
197-0	4 8.3	3.2	3.1	251.9	232.0	19.9	11.1	8.8	0	NA:	Ρ	70	30	NΑ	NΑ	U	Y	Y	Y	EB	GB	TILL
.197-0		1,5	3.1	159.8	144.7	15.1	9.1	6.0	0	NA	F	20	80	NΑ	NA	U	Y	γ.	Y	GB	GB	TILL
197-0	6 5.7	1.9	3.8	174.5	150.9	23.6	15.6	8.0	4	7788	F	40	60	NΑ	NA	U	Y	Y	Y	GB	GB	TILL
198-0		3.0	4.6	249.4	219.9	29.5	17.7	11.8	0	MA	F	90	10	NΑ	MA	U	γ	$\frac{V^2}{2}$	Y	GB.	GB	TILL
195-0	2 5.0	1.7	6.3	308.1		38.6		14.8	0	NΑ	P	50	50	NΑ	ΝA	U	Y	Y	Y	GB	GB	TILL
198-0		2.0	5.3	202.9		32.7			8	120	P	99	1	NA	NΑ	U	Y	Y	¥	GB	68	TILL
198-0		3.1	6. 0	302.5		38.6			1	110	C	97	3	NΑ	ΝA	U	Y	¥		GGN	GGN	TILL
199-0		1.5	7,4	414.5		62. 0			0	NA	C	50	50	NA	NA	U	Y	¥	Y	GB	GB	TILL
199-0		1.5	7.3	272.8		50.5			0	NA	0	70	30	NA	NΑ	C.	Y	Y	Y	Œ	GB	TILL
199-0		0.3	3.9	183.5		21.1		6.0	0	ΝÁ	0	90	1.	NA	NΑ		¥	Y	γ	GB	GB	TILL
200-0		1.3	7.3	186.5		44.9			3	196	C	70	30	NA	NΑ		Y	Y	γ	GB	ŒB	TILL
200-0		1.4	7.7	199.2	157.1		32.6		3	15	C	60	40	NΑ	NA	Special Control	Y	¥	¥	GP	GB	TILL
200-0		0.8	8.0	248.6	202.1		30.6		0	NA		60		MA	NΑ	U	Y	Y			GB	TILL
200-0		2.3	5.3	158.7	129.1			8.3	()	NA	C	85	15	ΝA	NΑ		Y	¥		GB	GB	TILL
201-0		0.7	7.3	175,5	134.6		28.4		ĺ	7	P	70	30	NΑ	$\mathbb{N} \Delta$	IJ		Y			В	TILL
202-0		0.9	7.4	293.3		43.8			1	69		60	40	NΑ	NΑ	U	Y	Y	Y	P	B	TILL
202-0		1.5	6.8	364.3		35.9			Ţ	377		70	30	NΑ	NΑ	U		γ			GR	TILL
202-0	3 9,2	2.4	6.8	256.4	204.8	51.6	34.7	16.9	0	NA	₽	70	30	NΑ	NΑ	8	0	Υ	N	GB	NΑ	GRAVEL

OVERBURDEN DRILLING MANAGEMENT LIMITED

MIFL2APR.WR1
TOTAL # OF BAMPLES IN THIS REPORT = 40

SAMPLE	WEIGHT (KG.WET)			WEIGHT (GRAMS DRY)						AU			DESCRIPTION										
NO.				=====			I. CON		=====	======		CLAS	Ţ				MAT	RIX					
	TABLE	+10	TABLE	TABLE	M.I.	conc.	NON	====	NO.	CALC	SIZ	==== E	==== %	====	===	=== 5/U				COL			
	SPLIT	CHIFS	FEED)	CONC	LIGHTS	TOTAL	MAG	MAG	V.6.	PPB										TTT:			
			······································									V/5	idh'	L5 	OT					SD	UY		
PLE-BS																							
203-03	5,4	0.3	8.1	329.1	276.2	52.9	40.4	12.5	1	263	P	70	30	NΑ	NΑ	S		¥	M	GB	ΝĤ	SAND	
203-03	8.7	3.0	5.7	275.0	242.2	32.8	23.0	7.8	0	NA	C	40	60	NΑ	NΑ	5	C	¥	N	GP	NΑ	GRAVE:	
204-01	4.2	0.8	3,4	232. <i>6</i>	206.4	26.2	19.1	7.1	0	NΑ	P	50	50	NΑ	NΑ	U	V	Y	Y	B	B	TILL	
205-01	8.8	1,4	7.4	311,9	258.1	53.8	40.1	13.7	0	ħΑ	Ç	30	70	NA	ΝA	U	Υ	¥	V	GB	GB	TILL	
205-01	8.2	2,4	5.8	241.9	211.6	30.3	21.6	8.7	Ü	NΑ	Ç	40	60	NΑ	NΑ	S	C	Y	4	GE	NΑ	GRAVEL	
206~02		1.4	4.3	246.5	223.7	22.8	12.6	10.2	Ō	NA	ε	50	50	NΑ	NA	S	D	¥	į.	GB	ħΑ	GRAVEL	
207-01		2.2	5.0	322.2	276.7	45.5	31.0	14.5	0	ΝA	C	85	15	NΑ	MA	U	Y	. ¥	¥	GB	GB	TILL	
207-03		1.4	7.1	330,4	273.8	56.6	34.0	22.6	4	581	C	70	30	NΑ	ΝA	U	Y	Y	Y	GB	GE	TILL	
207-03		1.4	7.1	342.4	296.9	45.5	30.3	15.2	0	NA	C	60	40	NA	NA	Ų	¥	¥	Y	GF	GB	TILL	
.207-04		2.0	5.6	392.7	341.5	51.4	32.1	19.3	Ü	NA	Ē	45	35	NΑ	NΑ	U	Y	Y	¥	GB	BB.	TILL	
207-05	9,0	1.4	7.a	392.9	347.6	45.3	27.4	17.9	1	14	Ç	70	30	NA	ŅΑ	U	¥	Y	¥	GB	GB	TILL	
207-08		1.6	7.4	302.5	254.2	48.3	32.7	15.6	1	88		70	30	NA	ΝA	U	Y	Y	Y	GB	GB	TILL	
\ 207-07	7 9.0	2.0	7.0	318.8	265.6	53.2	35.7	17.5	0	ΝA	P	60	40	ΝA	NΑ	U	Y	Y	Y	GB	GB	TILL	
207-08	9 9,9	2.7	6.2	263.0	202.2	60.8	37.8	23.0	0	NA	P	70	30	NA	NΑ	U	Y	¥	·Y	GYG	NGYE	MTILL	
207-09		3.3	4.7	178.0	139.4	38.6	21.7	16.9	Q	NA	P	70	30	NΑ	NA	S	C	Y	ħ	GĐ	NΑ	GRAVE	
207-10	7.0	1.5	5.1	176.4	140.6	35.8	20.6	15.2	0	NA	F	80	20	ΝÂ	NΑ	S	C	Y	N	GP	ŅΔ	BRAVE	
205-01	8.0	7.4	5.6	199.2	153.4	45.8	25.8	20.0	÷	191	₽	70	30	NA	NΑ	5	C	Y	N	SB	NΑ	GRAVE	
208-01	7.5	2.9	4.6	137.0	107.0		17.8	12.2	()	NA	P	75	25	NΑ	ΝA	3	C	¥	M	GB	NΑ	8RAYE	
205-03	6.5	1.5	5.2	316.1	273.0	43.1	26.6	16.5	0	NΑ	F	75	25	NΑ	NA	IJ	Y	1	Y	GB	GB	TILL	
202-04	7,6	i.t	6.0	225, 1	177.0		32.0	15.1	()	NΑ	F	70	30	NΔ	NΑ	IJ	Y	¥	Ţ	GB	GB	TILL	
208-05	8.3	1.9	á.4	170.4	127.0		30.2	15.2	Û	NΑ	C	70	30	NΑ	ħΑ	U	¥	¥	Y	GB	68	TILL	
208-0	9.0	1.5	7.5	260.4	211.2		31,9	17.3	0	NΑ		70	25	NΑ	NΑ		¥	¥	¥	GE	GB	TILL	
205-07	5.8	1.5	5.3	190.1	171.4	18.7	13.3	5.4	1	1407	Ç	70	30	NA	ΝA	IJ	Y	¥	Y	GE:	65	TILL	
209-03	9.7	1.1	7.5	154.9	109.4	45.5	30.0	15.5	Ü	NA	C	80	20	MA	NA	3	¥	Y	Y	GP	GB	TILL	
208-09		1,4	6.9	183.9	147.9	36.0	21.3	14.7	1	136	C	70	30	NA	NA	S	C	Y	N	GMB	ΝA	BRAVE	
205-19		1.7	7.3	286.6	222.1	64.5	30,2	34.3	0	NA		80	20	NA	NA	9	С	¥	N	GNB		GRAVE	
209-01		୍କ 8	8.3	280.9	224.8			18.5	0	NA		65	35	ΝA	NΑ	Щ	Y	Y	Y	GB	68	TILL	
209-01		0.9	7.5	257. <i>E</i>		55.8					0			ΝĄ						GB		TILL	
209-03		1,3	7.5	351.7		46.7					<u> </u>		30			U	Y		Y	Œ	86	TILL	
209-04			7.7	330.0		42.3					Ü				NΑ		Y			GB		TILL	
209-05		1.5	7.1	346.6		47.0					Ũ			ΝA			¥					TILL	
209-08			5.9	289.6		39.1				773			20		NΑ	L	Y			ΘY		TILL	
209-07			7.1	300.5		49.6				MA					NΑ	1.1	¥			ΒY		TILL	
209-08			5,8	282.1		36.9				ΝA			25		WA					GY			
209-09			5.6	298.4		34.2				349			30		NΑ		¥			ΕY		TILL	
- 205-10		1.5	6.2	225.6		40.2				278			30			U	Y					TILL	
209-11		1.2	7.4	164.7		34.9					ũ				NΑ	Ų	¥					TILL	
209-12		1.9	7.2	184.5		67.4					C				MA	Ü	¥					TILL	
210-01	5,9	2.0	6.9	221.5	174.0	47.5	27.7	19.8	1	225	P	70	30	NA	NΑ	IJ	¥	Y	Y	GΒ	GB	TILL	
210-01	9.0	2.1	6.9	219.5	169.8	49.7	29.2	20.5	Ξ	675	P	75	25	NΑ	NΑ	IJ	¥	Y	¥	GB	GB	77	

MIPL3APR.WR1

OVERBURDEN DRILLING MANAGEMENT LIMITED

TOTAL # OF SAMPLES IN THIS REPORT = 40

9	SAMPLE NO.	WEIGHT	(KG.W	ET)		WEIGHT	(GRAMS	DRY)			4U	DESCRIPTION								CLASS			
	NU.						M.	I. COM					CLAS	3 T				MATE	RIX				<u> </u>
		TABLE		TABLE	TABLE	M.I.	CONC.	NON		NO.	CALC	SIZ		%		===	S/U	SD	ST	CY	COL		
		SPLIT	CHIPS	FEED	CONC	LIGHTS	TOTAL	MAG	MAG	V.G.	PPB		V/S	GR	LS	 OT					SD	CY	
	PLS-89																					`	
	210-03	9.4	1.5	7.9	206.5	161.9	44.6	23.4	21.2	1	8	C	80	20	NA	NA	U	γ	Υ	Y	GYG	GY	TILL
	210-04	6.4	1.4	5.0	118.2	98.9	19.3	12.4	6.9	0	NA	C	80	20	NA	NA	U	Y	Υ	γ	GY	GY	TILL
	210-05	8.7	2.5	6.2	154.8	124.0	30.8	19.3	11.5	1	33	C	75	25	NA	NA	U	Υ	Y	Y	GY	GY	TILL
	210-06	6.7	1.4	5.3	122.5	102.6	19.9	13.5	6.4	1	283	C	70	30	NA	NA	U	Y	Y	Y	GY.	6Y	TILL
	210-07	7.2	1.6	5.6	121.3	100.2		14.3	6.8	0	NA	C	80	20	NA	NA	U	Y	Y	Υ	GY	GY	TILL
	210-08	8.6	1.9	6.7	122.9	88.4	34.5	23.0	11.5	0	NA	C	70	30	NA	NA	IJ	Y	Y	Υ	GY	GY	TILL
	210-09	8.5	1.7	6.8	151.0	115.9		22.5	12.6	1	67	C	70	30	NA	NA	U	Υ	Y	Υ	GY	GY	TILL
	210-10	8.1	0.6	7.5	118.5	88.1	30.4	20.5	9.9	1	141	С	85	15	NA	NA	U	Y	Y	Υ	GY	6Y	TILL
	210-11	8.5	1.4	7.1	213.4	169.6		29.0	14.8	0	NA	C	80	20	NA	NA	S	M	N	N	GYG		GRAVEL
	210-12	8.8	1.9	6.9	189.0	115.3		55.7	18.0	0	NA	C	70	30	NA	NA	S	C	N	Υ			GRAVEL
	210-13	7.8	1.9	5.9	225.8	139.3		67.7	18.8	0	NA	Č	70	30	NA	NA	S	C	N	Y	GY	6Y	GRAVEL
-	211-01	8.9	2.2	6.7	195.4	146.9		26.3	22.2	3	217	C	70	30	NA	NA	S	C	N	Y	GY	GY	GRAVEL
	211-02	8.4	1.2	7.2	219.1	184.8	34.3	22.2	12.1	0	NA	C	65	35	NA	NA	U	Y	Y	Y	GY	GY	TILL
	211-03	6.3	1.0	5.3	126.7	100.0		17.3	9.4	1	87	C	65	35	NA	NA	U	Y	Y	Y	GYG		TILL
	211-04	6.9	2.3	4.6	169.8	117.7 153.5		39.4	12.7	6	158	C	60	40	NA NA	NA	S	C	N	Y			GRAVEL
	212-01 212-02	8.1 8.5	0.0 0.1	8.1	180.4	219.2		16.9 20.3	10.0	0	NA	TR	NA 40	NA 60	NA	NA	5 S	M	N	N	B	NA	SAND
	212-02	8.4	0.4	8.4 8.0	251.7 180.7	153.9	26.8	19.2	7.6	-	NA 78	C	40	60	na Na	NA NA	5	M	N	N ai	B	na Na	Sand Sand
	212-03	8.6	1.8	6.B	167.2	144.6	22.6	15.4	7.2	1	NA	P	60	40	NA NA	NA NA	S	C	N N	N N	B B	NA	6RAVEL
	212-05	8.3	1.8	6.5	202.5	186.8	15.7	10.1	5.6	Ö	NA NA	P	40	60	NA	NA	S	C	N	N N	GB	NA	GRAVEL
	212-06	8.5	3.1	5.4	269.2	238.5	30.7	18.5	12.2	0	NA	P	50	50	NA	NA.	S	C	N	N	GY	NA	G RAVEL
	212-07	8.5	2.8	5.7	261.3	205.7	55.6	29.4	26.2	Ö	NA	P	70	30	NA	NA	5	C	N		GY	NA	GRAVEL
	212-08	8.9	3.4	5.5	264.8	210.3		32.3	22.2	1	20	P	70	30	NA	NA	S	C	N	N	GY	NA	GRAVEL
	212-09	8.6	2.3	6.3	244.5	194.3	50.2	29.0	21.2	ō	NA	P	70	30	NA	NA	S	Č	N		GY	NA	GRAVEL
	212-10	8.9	1.4	7.5	221.7	186.5		24.2	11.0	ō	NA	P	90	10	NA	NA	Ū	Ÿ	Ÿ	y	GY	6Y	TILL
	212-11	8.5	1.6	6.9	205.5	171.4		24.2	7.9	0	NA	Ρ	80	20	NA	NA	U	Υ	γ	Υ	GΥ	GY	TILL
	213-01	8.0	0.0	8.0	180.8	156.4	24.4	18.1	6.3	0	NA	TR	NA	NA	NA	NA	S	F	Υ	Υ	В	NA	SAND
	213-02	8.6	0.0	8.6	178.2		36.0			0	NA	TR	NA	NA	NA	NA		F	Y		В	NA	SAND
	213-03	8.2	2.6	5.6	132.1	99.6	32.5	20.4	12.1	0	NA	C	80	20	NA	NA	U	Υ	γ	Y	GN	6N	TILL
	214-01	7.9	0.2	7.7	155.7	114.8	40.9	30.2	10.7	0	NA	Ρ	50	50	NA	NA	U	γ	Y	γ	GB	68	TILL
	214-02	8.2	1.4	6.8	300.0	274.8	25.2	17.4	7.8	0	NA	P	65	35	NA	NA	U	Υ	Υ	Υ	GB	6B	TILL
	214-03	8.3	1.6	6.7	134.8	95.7	39.1	24.5	14.6	0	NA	P	55	45	NA	NA	U	Υ	Υ	Υ	GB	GB	TILL
	214-04	9.1	1.5	7.6	166.5	125.4		23.9		0	NA	P	70	30	NA	NA	U	Υ	Υ	Y	GB	GB	TILL
	214-05	8.9	1.8	7.1	189.1		40.5			0	NA	P	65	35	NA	NA	U		γ				TILL
	214-06	8.9	1.7	7.0	159.7	129.1		18.5		5	169		75	25	NA	NA	U		Y		GY		TILL
	214-07	8.8	1.6	7.2	187.9	157.2		19.1		0	NA	P	70	30	NA	NA	U						TILL
_	214-08	9.4	1.9	7.5	119.5	80.9		24.4		1	41	P	70	30	NA	NA	U				GY		TILL
	215-01	9.3	1.6	7.7	359.4	318.7		24.9		0	NA	P	70	30	NA	NA	U						TILL
	215-02	8.9	1.3	7 .6	145.8		36.8			1	66	P	65	35 75	NA	NA	U						TILL
	215-03	9.2	1.2	8.0	214.5	172.0	42.5	28.7	13.6	0	NA	P	65	35	NA	NA	U	ŗ	¥	Y	ďΥ	ΒY	TILL

MIPL4APR.WR1

OVERBURDEN DRILLING MANAGEMENT LIMITED

TOTAL # OF SAMPLES IN THIS REPORT = 40

SAMPLE NO.	WEIGHT	(KG.₩	ET)		WEIGHT	(GRAMS	DRY)		A	NU	DESCRIPT								CLASS			
NU.						M.	I. CDN	 C ===				CLAS	ST				MATI	RIX				
	TABLE	+10	TABLE	TABLE	M.I.	CONC.	NON		ND.	CALC	SIZ		7.			S/U	SD	ST	CY	COL		
	5FL11	CHIPS	FEED	CONC	LIGHTS	IUIAL	MAG	MAG	v.G.	PPB		V/S		LS	OT					SD	CY	
PLS-8	7																					
215-0	4 9.1	1.7	7.4	181.5	148.2		22.0	11.3	5	142	P	70	30	NA	NA	U	γ	Y	Υ	GB	6 Y	TILL
215-0	5 8. 8	1.7	7.1	162.1	142.6	19.5	12.6	6.9	0	NA	P	65	35	NA	NΑ	Ü	Υ	Υ	Υ	GB	GB	TILL
215-0		2.0	7.1	300.3	245.2	55.1	37.8	17.3	1	27	Ρ	75	25	NA	NA	U	Y	Y	Y	GY	GY	TILL
215-0		2.8	5.8	290.4	218.3	72.1	51.7	20.4	1	56	P	9 0	10	NA	NA	S	C	Υ	N	6 Y	NA	GRAVEL
216-0		1.3	8.2	255. 3	196.9	58.4	35.9	22.5	3	202	Ρ	70	30	NA	NA	U	Υ	Υ	Υ	6Đ	GB	TILL
216-0		0.7	5.2	330.B	292.0	38.8	25.2	13.6	1	25	F	80	20	NA	NA	U	Y	γ	Y	GB	6B	TILL
216-0		1.0	4.0	233.2	206.8	26.4	16.4	10.0	0	NA	P	80	20	NA	NA	U	Y	Y	Y	GB	GB	TILL
216-0		0.7	4.1	329.2	305.7	23.5	16.1	7.4	0	` NA	P	80	20	NA	NA	U	Y	Y	Υ	6B	6B	TILL
216-0		1.3	5.6	318.8	293.8	25.0	16.2	8.8	0	NA	P	60	40	NA	NA	U	Y	Y	Y	6B	GB	TILL
216-0		2.6	6.2	352.1	322.2	29.9	20.8	9.1	1	139	P	70	30	NA	NA	U	γ	Y	Υ	GB	6B	TILL
216-0		2.4	6.0	308.9	273.9	35.0	24.1	10.9	0	NA	P	75	25	NA	NA	U	Y	Y	Y	GB	GB	TILL
216-0		2.0	7.3	337.5	299.4	38.1	26.7	11.4	1	56	P	75	25	NA	NA	IJ	Y	Y	Y	GB	GB	TILL
216-0		2.0	7.3	373.4	343.2	30.2	19.8	10.4	0	NA	P	75	25	NA	NA	U	Y	Y	Y	GB	GB	TILL
216-1		0.9	7.8	184.8	155.2	29.6	19.4	10.2	5	251	C	70	30	NA	NA	U	Y	Y	Y	GY	GY	TILL
216-1		0.6	7.8	158.4	121.9	36.5	26.0	10.5	1	7	C	40	60	NA	NA	U	Y	Y	Y	6Y	GY	TILL
216-1		1.2	5.2	159.4	130.5	28.9	18.6	10.3		NA	C	60	40	NA	NA	Ū	Ą	Y	Y	GY	6Y	TILL
216-1		2.8	6.2	226.9	167.4	59.5	33.7	25.8	1	1	C	70	30	NA	NA	5	C	Y	Y			GRAVEL
217-0		2.0	6.6	204.6	168.2	36.4	23.1	13.3	1	8	C	50	50	NA	NA	U	Y	Y	Y	GB	GB GVG	TILL
217-0		3.0	5.1	217.4	201.6	17.8	10.2	7.6		NA	C	70	30	NA	NA	U	Y	Υ	Y		GYG	
217-0		1.3	8.1	258.5	211.0	47.5	29.2	18.3	1	903	C	70	30	NA	NA	U	γ	Υ	Y	6Y	GY	TILL
217-0		0.9	7.7	165.7	129.4	36.3	22.2	14.1	0	NA	C	70	30	NA	NA	IJ	Y	Y	Y	GB	6B	TILL
217-0		1.6	6.7	216.3	177.8	38.5	25.2	13.3	0	NA	C	70	30	NA	NA	U	Y	Y	Y	GB	6B	TILL
217-0		2.4 1.8	6.6	225.4	185.6	39.8	22.0 19.6	17.8	0	NA 77	P P	75	25	NA NA	NA	U	Y Y	Y	Y Y		6Y6	
217-0			4.3	245.9	215.6	30.3		10.7	1	77		80	20		NA NA	U		Y		GY	GY	TILL
218-0 218-0		1.0 0.9	7.4 7.8	256.5 311.7	209.6 263.6	46.9 48.1	31.1	15.8 18.0	2	123 417	P P	50 60	50 40	na Na	NA NA	U	Y Y	Y Y	Y Y	GB GB	GB GB	TILL TILL
218-0		1.3	7.4	279.5	239.0			13.4	1	106	C					-		Ϋ́	Ϋ́			
218-0		1.6	7.7	301.8	255.6	46.2	30.4	15.8	1	850		60 65	4 0 3 5	na Na	NA NA		Y Y	Ϋ́	Ϋ́	GB GB	GB GB	TILL TILL
220-0		1.9	7.4	278.7	238.5	40.2	26.4	13.8	0	NA.		50	აა 5 0	NA NA	NA NA	U		γ	Y	GB	GB	TILL
221-0		2.1	5.8	280.3	239.5		27.3	13.5		14	P	60	40	NA	NA	Ü		Y	Ÿ	GB	GB	TILL
221-0		1.1	2.7	225.9	205.1	20.8	15.1	5.7		97	P	65	35	NA	NA		Ϋ́			GB	GB	TILL
221-0		0.9	4.0	326.0	294.2		23.1	8.7	0	NA	P	70	30	NA	NA		Y	Ÿ		GB	GB	TILL
221-0		2.3	5.0	308.6	284.6		15.5	8.5		NA		65	35	NA	NA		Y	Ϋ́		6B	GB	TILL
221-0		2.5	6.0	276.4	250.5		16.0	9.9	3	4143	C	60	40	NA	NA		Ÿ	Ϋ́		GB	GB	TILL
221-0		1.6	7.4	248.5	211.9		22.8	13.8	1	44	С	60	40	NA	NA	U				GB	GB	TILL
221-0		1.4	7.7	215.2	175.7		22.9	16.6	0	NA	C	60	40	NA	NA		Ϋ́	Ϋ́		GB	GB	TILL
221-0		1.1	7.9	357.4	323.5		20.4	13.5	1	104	C	65	35	NA	NΑ		Ϋ́	Ÿ		GB	GB	TILL
222-0		1.3	8.4	266.4	222.7			18.7	ō	NA	Č	70	30	NA	NA		Ϋ́	Ÿ		GB	GB	TILL
223-0		2.0	6.3	264.7	230.7		21.9		ō	NA	P	70	30	NA	NA		Ϋ́	Ŷ		GB	GB	TILL
223-0		1.5	7.0	245.3		32.7				145			30	NA	NA							TILL

MIPLSAPR.WR1

OVERBURDEN DRILLING MANAGEMENT LIMITED

TOTAL # OF SAMPLES IN THIS REPORT =

37

	SAMPLE	WEIGHT	(KG.W	ET)		WEIGHT	(GRAMS	DRY)		AU DESCRIPTION									CLASS				
	NO.		,				I. CON					CLAS	3T				MATR	ΙX					
		TABLE		TABLE	TABLE CONC	M.I. LIGHTS	CONC.	non Mag	MA6	NO. V.G.	CALC PPB	SIZ	E	7,			S/U	SD	ST	CY	COL		
		5rL11	CHIPS	FEED	CUNC	LIGHIS	IUIML	rino	rmo	V. D.	rrb		V/S	GR	LS	OT					SD		
	PLS-89																						
	223-03	3.1	0.4	2.7	167.9	158.7	9.2	6.2	3.0	0	NA	C	70	30	NA	NA	U	Y	Υ	γ	GB	6B	TILL
	225-01	8.9	1.2	7.7	236.4	210.0	26.4	19.0	7.4	Û	NA	P	65	35	NA	NΑ	S	C	N	N	GB	NA	GRAVEL
	225-02	8.4	1.4	7.0	194.3	175.8	18.5	13.3	5.2		NA	P	65	35	NA	NA	S	C	N	N	GB	NA	GRAVEL
	225-03	8.6	1.9	6.7	171.0	154.3		12.2	4.5		NA	C	80	20	NA	NA	S	C	N	N	GB	NA	GRAVEL
	225-04	9.1	1.8	7.3	165.1	134.7	30.4		10.9	1	109	P	80	20	NA	NA	S	C	N	N	GB	NA	GRAVEL
	225-05	7.5	2.4	5.1	219.9	197.4	22.5	13.6	8.9	0	NA	P	70	30	NA	NA	S	C	N	N	GB	NA DE	GRAVEL
	226-01	6.5	1.8	4.7	161.5 213.2	132.9 191.0	28.6 22.2	18.7 15.6	9.9 6.6		na Na	P P	85 95	15 5	na Na	NA NA	. U	Υ Υ	Y Y	Ϋ́Υ	GB GB	6B 6B	TILL TILL
	227-01 228-01	4.8 8.8	1.6 2.6	3.2 6.2	179.5	152.7		16.6	10.2		NA	C	80	20	NA	NA NA	S	Ċ	N	N	GB	NA	GRAVEL
	228-02	4.9	1.1	3.8	225.4	204.1	21.3		7.5		NA NA	C	75	25	NA	NA	U	γ	Ÿ	Ϋ	GB	GB	TILL
	229-01	7.6	3.6	4.0	170.8	154.0		9.9	6.9		NA	Č	75	25	NA	NA	S	Ċ	N	N	GB	NA	GRAVEL
	229-02	5.5	3.0	2.5	140.6	127.1	13.5	B.3	5.2		NA		70	30	NA	NA	S	C	N	N	GB	NA	GRAVEL
_	229-03	9.0	1.8	7.2	283.9	251.6	32.3	17.0	15.3	0	NA	P	80	20	NA	NA	U	Υ	Y	γ	В	В	TILL
	229-04	9.3	1.3	8.0	219.4	195.2	24.2	14.8	9.4	0	NA	Ρ	6 0	40	NA	NA	U	Y	Y	Υ	В	В	TILL
	229-05	9.2	1.6	7.6	215.7	175.0			17.6		NA	P	80	20	NA	NA		Y	Υ	Y	6B	GB	TILL
	229-06	9.3	2.1	7.2	219.6	185.0			15.2		NA	С	6 0	40	NA	NΑ	U	Y	Y	Y	GB	6B	TILL
	229-07	9.2	2.3	6.9	240.3	198.2			18.6		123		70	30	NA	NA	U	Y	Y	γ	GB	GB	TILL
	229A-01	8.6	1.6	7.0	238.2	204.8	33.4		12.9		NA		70	30	NA	NA		Y	Υ	Y	GĐ	GB	TILL
	229A-02	9.0	2.5	6.5	235.7	213.3			10.5		NA	P	70	30	NA	NA		Y Y	Y	Y Y	GB GB	GB CD	TILL
	229A-03	5.9	1.5 2.7	4.4	216.1 309.1	197.8 275.8	18.3 33.3		7.8 12.2	0	NA	C	80 75	20 25	na Na	NA NA		Ϋ́	Y Y	Y Y	GB	GB GB	TILL
	229A-04 229A-05	9.2 6.7	2.8	6.5 3.9	204.7	172.9	31.8	19.7	12.2	0	NA NA	C	70 70	30	run NA	C		C	Y	ı N	GB	NA	GRAVEL
	227H-03	6.4	1.9	4.5	264.4	235.4			11.6		522		80	20	NA	NA	U	Υ	Ý	Υ	GB	GB	TILL
	230-01	9.4	1.8	7.6	377.0	323.8	53.2		23.1	4	426	C	70	30	NA	NA	U	Ÿ	Ÿ	Ý	GB	GB	TILL
	230-02	9.0	1.2	7.8	386.7	342.4			16.1	2	26	Č	40	60	NA	NA	Ū	Ÿ	Ý	Ÿ	6B	6B	TILL
	230-03	8.6	1.8	6.8	362.0	307.2			24.7		NA	C	65	35	NA	NA	IJ	Y	Υ	Υ	G B	GB	TILL
	230-04	8.7	2.0	6.7	305.5	264.2	41.3	27.2	14.1	3	1673	C	70	30	NA	NA	U	Υ	Y	γ	6 B	GB	TILL
	230-05	8.6	2.5	6.1	322.5	272.0	50.5	35. 3	15.2	0	NA	C	70	30	NA	NA	U	Y	Y	Υ	6B	GB	TILL
	231-01	8.8	1.9	6.9	254.0			27.4			NA		70	30	NA	NA	S	C			6B	NA	GRAVEL
	232-01	8.7	1.3	7.4	223.9	186.5		26.1			NA		70	30	NA	NA	S	C		N	GB	NA	GRAVEL
	232-02	8.4	1.8	6.6	327.3	288.8		27.0			NA	C	70	30	NA	NA	U	Y	Y		GB	GB	TILL
	232-03	8.6	2.8	5.8	218.1	182.9		23.9			207		75 75	25	NA	NA		M/C	Υ		GB	NA	GRAVEL
	232-04	8.6	2.0	6.6	344.4	281.0		35.1	28.3		NA		65 200	25	NA	NA	S	M/C	Y		GB	NA	GRAVEL.
	232-05	2.6	0.6	2.0	194.1	176.2		11.8	6.1	0	NA NA		80	20	NA NA	NA	U	Y			GB CD	GB	TILL
	233-01 233-02	6.9 4.0	1.5 1.0	5.4 3.0	278.5 172.6	253.5 155.0	25.0 17.6		8.2 5.6		na Na		60 70	40 30	na Na	NA NA	U	Y Y		Y	6B cp	GB GB	TILL TILL
	233-02	6.3	1.4	4.9	225.6			17.3			14M 58	C C	75		NA	NA NA	IJ			Y		В	TILL
	AUT VI	0.0	***	10 /	ELU:U	1//+0	2/:0	17.0	10.7	•	20	u	,	£U	1777	1412	Ü	,	1	•	D	D	: A 51-

APPENDIX C GOLD GRAIN COUNTS AND CALCULATED VISIBLE GOLD ASSAYS

MIPL1FEB.							i	NUMBER	OF 6	RAINS					
TOTAL # 0	F PANN	INGS		40		ABRAD	ED	IRRE	ULAR	DELIG	CATE	TOTAL	NON	CALC V.G.	
SAMPLE #	PANNES Y/N		1ETER	: TH	ICKNESS	1	zzz P	7	P	====: T	=== P	=====	MAG GMS	ASSAY PPB	REMARKS
PLS-89															
151-01	Y	50	X X X 2	75	5 C 13 C 36 C	1					2 2				EST. 0.5% PYRITE
												5	30.	3 338	
151-02	Y	NO VIS	SIBLE	GOLD	ı										EST. 3 GRAINS OF PYRITE
151-03	Y	75	X	75	15 C		1					1			NO SULPHIDES
												1	38.	0 17	
151-04	Y	25 50		50 50	8 C 10 C		1		1 2		1	3			EST. 0.5% PYRITE
				••			•		•			-6		1 23	
151-05	Y	50	X	50	10 C						2	2			EST. 10 GRAINS OF PYRITE
		50 50	X X 1	75 00	13 C 15 €				1		1	1			
		75	X 1	.00	18 C		1		1			1			
		100	X 1	.50	25 C	1						1			
												6	34.	4 154	
151-06	Y	25 25		25 50	5 C 8 C		1				1 2				EST. 0.5% PYRITE PHOTOMICROGRAPH AVAILABLE
		50		50	10 C				1		2	3			PICTURE REFERENCE #159
		50 75	X X 1	75 00	13 C 18 C				2		3 2	5 2			
			X 1		50 M				1		2	1			
		100		00	20 C						1	1			
		100	X 1	.25 :00	22 C 29 C						1	1			
		150	X 2	00	34 C	1					•	1			
		225	Х 2	75	46 C			1				1			
												20	22.2	2 2051	
152-01	Y	25 50		50 50	8 C 10 C				2		3	3 2			EST. 2% PYRITE
_		50		75	13 C				2 1			1			
		75	X 1	00	50 M				1			1			
												7	31.3	3 124	
152-02	Y	50	X	50	10 C						1	1			EST. 10% PYRITE

	MIPL1FEB.							N	JMBER	0F 6	RAINS					
	TOTAL # Of		IGS	40		ABRA	ADED		IRREGU	LAR	DELICA				CALC V.G.	
,	SAMPLE #	PANNED Y/N	DIAME	TER	THICKNESS		::::: [T	P	7	== P	=====	MAG GMS	ASSAY PPB	REMARKS
	PLS-89															
				125			1						1			
			/5 X	150	22 C		1	l					1			
													3	36.4	105	
	153-01	Y	25 X	25	5 C							1	1			EST. 3% PYRITE
			25 X									1	1			
			50 X	50	10 C							1	1			
													3	28.5	10	
	154-01	Y	50 X	50	10 C							1	1			EST. 1% PYRITE
			50 X							1			1			
			5U X	100	15 C					1			1			
													3	18.0	67	
	155-01	Y 1	VO VISI	BLE 6	OLD											EST. 0.5% PYRITE
	155-02	Y	50 X	75	13 C					i			1			EST. 0.1% PYRITE
				125						1			1			
				100 100			1					1	1 1			
														70.0	200	
													4	32.0	209	
	155-03	Y	25 X									1				NO SULPHIDES
			25 X 25 X							1			1			
			50 X				1	1		Ī		1				
													5	23.5	44	
	156-01	Y	50 X	50	10 C					1			1			EST. 1% PYRITE
				75						3			3			
				100 100						1		1	1 1			
			100 X				1			•			1			
													7	36.2	188	
	156-02	Y	98 V	75	10 C					1			1			EST. 2% PYRITE
	- 100-02	Ţ	50 X	100	15 C					1			1			LUI. Z# FIRIIE
				75	15 C	;	1						1			
			75 X 100 X	100 100			1 1			1			1 2			
			125 X				1			•			1			

dIPL1FEB.						N	NUMBER OF 6	RAINS				
TOTAL # (OF PANNIN	IGS	40		ABRADED		IRREGULAR	DELICATE	TOTAL	NON	CALC V.G.	•
SAMPLE #	PANNED Y/N	NIAMFIE	- R	THICKNESS			*********** P	1 P		MAG GMS	ASSAY PPB	REMARKS
	()((VINIE		111101111200	'	•	•	• •		0110		NETH-KKY
PLS-89												
									7	27.5	305	
156-03	Y	25 X	50					1				EST. 1% PYRITE
		50 X	50					4	1			
		50 X	75	13 C		1	1	1	3			
								_	5	20.9	67	
157-01	Y	25 X	25	5 C				1	1			EST. 1% PYRITE
10, 01	r	50 X	50	10 C				1				COIL 14 TIME
		75 X	75	15 C			1	_	1			
										26.1	33	
									J	20.1	33	
158-01	Y	50 X	50				2		2			EST. 5% PYRITE
		50 X	75	13 C		1			1			
									3	21.7	35	
									·	•••	•	
159-01	Y		50	10 C			1	1				EST. 0.5% PYRITE
			75	13 C					1			
		75 X	125	20 C		1			1			
									4	23.5	96	
161-01	Y	25 X	50	8 C		1			1			NO SULPHIDES
	•	50 X	75	13 C		•	1		1			NO SOLITIVES
			100	18 C		1	_		1			
		75 X	175	25 C	1				1			
										22.3	195	
									*	22.5	170	
162-01	Y	25 X	25	5 C		1			1			EST. 5% PYRITE
		25 X	50	8 C		1			1			
		50 X	50	8 C		2			2			
		75 X	75	50 M			1		1			
		250 X	250	27 C	1				1			
									6	32.2	156	
163-01	Υ	50 X	50	8 C		1		3	4			EST. 1% PYRITE
	•		75	10 C		•	3	1	4			EVI. IT FINITE
		200 X		25 C	1		-	•	1			
										^^ -		
									9	22.3	179	

MIPL1FEB.		NCC				ļ	NUMBE	R OF G	RAINS					
TOTAL # 0			40		ABRADI			GULAR					CALC V.G.	
SAMPLE #	PANNED Y/N	DIAME	TER	THICKNESS	=====: T	=== P	1	==== P	====== T	== P	=====	MAG GMS	ASSAY PPB	REMARKS
PLS-89														
163-02	Y	25 X		8 C				2			2			EST. 1% PYRITE
		50 X		8 C		1					1			
		75 X 100 X									1 1			
		100 Y	200	22 (1									
											5	23.2	146	
164-01	Y	25 X	25	5 C						1	1			EST. 1% PYRITE
		25 X		8 C				2			2			
		50 X						1			1			
		50 X				1					1			
		75 X 75 X				1					1 1			
		100 X				•	1				1			
_											8	27.3	166	
164-02	Y	25 X	75	10 C		1					1			EST. 5% PYRITE
		50 X	75	13 C		1					1			
											2	35.0	16	
164-03	Y	50 X	50	10 C				1			4			EST. 2% PYRITE
104-03	ī	50 X						1 2			1 2			ESI. 24 FIRILE
		75 X		20 C				•			1			
											4	19.8	123	
											•	17.0	120	
164-04	Y	25 X		5 C				2			2			EST. 2% PYRITE
		25 X	50 125	8 C 20 C	1			1			1 1			
		/ V X	***	20 0	•									
											4	20.5	80	
164-05	Y	25 X	25	5 C				2			2			EST. 2% PYRITE
		50 X		13 C				1			1			
		75 X	100	18 C	1						1			
											4	20.7	69	
165-01	Y I	NO VISIE	BLE GO	OLD										EST. 8% PYRITE
165-02	Y	50 X	50	10 C		1					1			EST. 2% PYRITE
		75 X	75	15 C		1					1			
		100 X	150	25 C		1					Í			
											3	40.4	92	

MIPL1FEB.		****							NU	IMBER	OF 6	RAINS	i					
TOTAL # (40			ABRA							TOTAL		CALC V.G	•	
SAMPLE #	PANNE Y/N		MET	ER	THICKN	ESS		===			P	1			MAG GMS	ASSAY PPB	REMA	RKS
PLS-89																		
165-03	Y	75 150		75 200	1	5 C 4 C			1					1			EST.	2% PYRITE 1000 GRAINS OF MARCASITE
														2	30.7	7 273		
165-04	Y			75 125	1 2	3 C 0 C					1			1			EST.	5% PYRITE
															24.	5 76		
165-05	Y	50	Y	50	1	0 C							1					5% PYRITE
200 00	•	50	X	75 100	1	3 C 8 C					1		•	1			2011	V4 111112
														3	37.7	7 42		
165-06	Y	25	X	25		5 C			1					1			EST.	10% PYRITE
			X X	50 75		8 C 3 C					2 1			2 1				
														4	24.3	3 23		
165-07	Y	50	X	50	1	D C			2					2			EST.	0.5% PYRITE
				75 100		3 C								1				
				100		0 M			1	1				1				
														5	33.6	153		
165-08	Y	NO VIS	31BI	LE 60	LD												EST.	2% PYRITE
165-09	Y	NO VIS	SIBI	LE GO	LD												EST.	5% PYRITE
166-01	Y	NO VIS	SIBI	_E 60	LD												EST.	0.5% PYRITE
166-02	Y			75		5 C					1			1			EST.	2% PYRITE
		75	X	100	18	3 C					1			1				
														2	38.6	43		
166-03	Y	50		75		3 C			1	1				2			EST.	3% PYRITE
		50 100		100 150		5 C				1				1 1				
				•••	•	, ,,	•											
														4	38.2	190		

	MIPLIMAR.								NUM	1BER	OF G	RAINS						
	TOTAL # 0		16 5		4 0		ABRAD	ED	IF	REGL	ILAR	DELIC				CALC V.G	1	
	SAMPLE #	PANNED Y/N	DIAN	1ETE	:R	THICKNESS	T	·=== P	==	T	P	T	=== Р	*****	MAG GMS	assay PPB	REMA	RKS
	PLS-89 166-04	¥	50	X	75	13 C	1							1			EST.	3% PYRITE
														1	31.0	12		2 GRAINS OF ARSENOPYRITE
	166-05	Υ	50	X	50 100 125	10 C 15 C		1						1			EST.	2% PYRITE
			125			18 C 31 C		1						1				
														4	30.7	263		
_	165-06	Υ			50 125	8 C 20 C		2	•				2	4 1			EST.	2.5% PYRITE
	`													5	41.4	44		
	166-07	Y			75 125	13 C 20 C								1 1			EST.	1% PYRITE
														2	37.0	51		
	166-08	γ	50	X	75	13 C	1							1				5% PYRITE 500 GRAINS OF ARSENDPYRITE
														1	31.7	12		
	166-09	Y	25 50		5 0 75	8 C 13 C								1			EST.	3% PYRITE 3 GRAINS OF ARSENDPYRITE
														2	32.7	14		
	166-10	Y	25 50		50 75	8 C 13 C		1 1						2 2			EST.	0.5% PYRITE
														4	23.0	40	٠	
	166-11	Y	50	X	50	10 C		1						1			EST.	8% PYRITE
_														1	29.2	7		
	166-12	Y	50 50	X	75	10 C 13 C							1	1 1			EST.	1% PYRITE
			75	X	150	75 M		1						1				
														3	23.0	334		
	166-13	Υ	50 75		75 75	13 C 15 C	1						1	1 1			EST.	1% PYRITE

	MIPL1MAR.WR1 TOTAL # OF FANNINGS 40			۸.		N	UMBER	OF G	RAINS					
					ABRA				DELIC				CALC V.G.	•
SAMPLE #	PANNED Y/N		ETER	THICKNES			T		===== T				ASSAY PPB	REMARKS
PLS-89		75	× 10) 18	C 1						1			
											3	26.6	5 76	
166-14	Y	75	X 7	5 15	С					1	1			EST. 1.% PYRITE
											1	13.	7 47	
167-01	γ	75	X 10	0 18	С			1			1			TRACE OF PYRITE
											<u> </u>	30.	6 33	
167-02	Υ	50 52				1		1			1			EST. 0.25% PYRITE
											2	34.6	5 17	
167-03	Y	25 25 50 50 75	X 5 X 7 X 5	8 5 10 0 10 5 13 5 20	C C C C	1 1 1 1 1		1 2		1	1 1 2 3 1 1 1			EST. 1.5% PYRITE 1 GRAIN OF ARSENOPYRITE
											10	21.	2 319	
167-04	Y	50 75 75	X 5 (10 X 15 (17 X 10	0 15 0 22 5 25	С	1 1					1 1 1 1			EST. 2% PYRITE
											5	24.	7 298	
168-01	Ÿ	25	(7 (5 (15 (17	5 10 0 10 0 25	C C	1		2 1 1 1			2 1 2 1 1			EST. 8% PYRITE
166-02	Υ	25 : 50	(2 (5 (5) 8 i	3			1 1 1		1 1	2			EST. 10% PYRITE

03/03/89

BOLD CLASSIFICATION

~~~~~~~~~~~~~

|   | MIPLIMAR. |               |               |           |             |        |          | Number     | 0F 6   | RAINS      |       |        |            |              |      |                                          |
|---|-----------|---------------|---------------|-----------|-------------|--------|----------|------------|--------|------------|-------|--------|------------|--------------|------|------------------------------------------|
|   | TOTAL # 0 |               | 165           | 40        |             | ABRADE | ED)      | IRREG      | ULAR   | DELIC      |       |        |            | CALC V.G     |      |                                          |
|   | SAMPLE #  | PANNED<br>Y/N | DIAME         | TER       | THICKNESS   | T      | ===<br>F | =====<br>T | P      | =====<br>T | <br>P | 2222   | MAG<br>GMS | ASSAY<br>PPB | REMA | NRKS                                     |
|   | PLS-89    |               |               |           |             |        |          |            |        |            |       |        |            |              |      |                                          |
|   |           |               | 75 X          | 75        | 15 C        |        |          |            | 1      |            |       | 11     |            |              |      |                                          |
|   |           |               |               |           |             |        |          |            |        |            |       | 8      | 26.0       | 89           |      |                                          |
|   | 168-03    | Y             |               | 25<br>75  |             |        |          |            | 1      |            |       | 1      |            |              | EST. | 5% PYRITE<br>1000 GRAINS OF ARSENOPYRITE |
|   |           |               | 75 X          | 100       | 18 C        | 1      |          |            |        |            |       | 1      |            |              |      | 1000 BINTING OF HIGENOFINITE             |
|   |           |               | 100 X         | 175       | 27 C        | 1      |          |            |        |            |       | 1      |            |              |      |                                          |
|   |           |               |               |           |             |        |          |            |        |            |       | 4      | 26.9       | 195          |      |                                          |
|   | 168-04    | Y             |               | 50<br>100 |             |        |          |            | 1<br>1 |            |       | 1      |            |              | EST. | 9% PYRITE<br>2000 GRAINS OF ARSENOPYRITE |
| _ |           |               | 75 X          | 100       | 18 C        |        |          |            | 1      |            |       | 1      |            |              |      | 2000 BRHINS OF HRSENOFINIE               |
|   |           |               | 150 X         | 175       | 31 C        | 1      |          |            |        |            |       | 1      |            |              |      |                                          |
|   |           |               |               |           |             |        |          |            |        |            |       | 4      | 30.6       | 260          |      |                                          |
|   | 168-05    | γ             | 75 X          | 225       | 29 C        | 1      |          |            |        |            |       | 1      |            |              | EST. | 2% PYRITE                                |
|   |           |               |               |           |             |        |          |            |        |            |       | 1      | 27.2       | 181          |      | 100 GRAINS OF ARSENDPYRITE               |
|   | 168-06    | Y             | 50 X          | 100       | 15 C        |        |          |            | 1      |            |       | 1      |            |              | EST. | 2% PYRITE                                |
|   |           |               | 100 X         | 125       | 22 C        |        |          |            | 1      |            |       | 1      |            |              |      | 0.1% ARSENOPYRITE                        |
|   |           |               |               |           |             |        |          |            |        |            |       | 2      | 25.6       | 108          |      |                                          |
|   | 168-07    | Y             | 50 X          |           |             |        |          |            | 1      |            |       | 1      |            |              | EST. | 5% PYRITE                                |
|   |           |               | 100 X         | 150       | 75 M        |        |          |            | 1      |            |       | 1      |            |              |      | 2000 GRAINS OF ARSENDPYRITE              |
|   |           |               |               |           |             |        |          |            |        |            |       | 2      | 19.2       | 468          |      |                                          |
|   | 169-01    | Y             | 25 X<br>100 X |           | 8 C<br>22 C |        |          |            | 2<br>1 |            | i     | 3      |            |              | EST. | 3% PYRITE                                |
|   |           |               | 150 X         |           | 100 M       | 1      |          |            | i      |            |       | 1<br>1 |            |              |      | 200 GRAINS OF ARSENDPYRITE               |
|   |           |               |               |           |             |        |          |            |        |            |       | 5      | 37.0       | 685          |      |                                          |
|   | 169-02    | Y             | 50 X          | 50        | 10 C        |        |          |            | 1      |            |       | 1      |            |              | FST  | 3% PYRITE                                |
|   |           |               |               |           |             |        |          |            | -      |            |       |        | 70.4       |              |      | 200 GRAINS OF ARSENDPYRITE               |
|   | (15. cs   | 27            |               |           |             |        |          |            |        |            |       | 1      | 30.4       | 6            |      |                                          |
|   | 169-03    | Y             | 25 X<br>25 X  |           | 5 C<br>8 C  |        | 1        |            |        |            | 1     | 1<br>1 |            |              | EST. | 5% PYRITE 300 GRAINS OF ARSENDPYRITE     |
|   |           |               | 225 X         | 300       | 100 M       | 1      |          |            |        |            |       | 1      |            |              |      | 1 GRAIN OF GALENA                        |
|   |           |               |               |           |             |        |          |            |        |            |       | 3      | 22.2       | 2333         |      |                                          |

GOLD CLASSIFICATION

|   | MIPLIMAR.  |               | 100                   | 40                                       |                                      |        | N      | IUMBER | OF G | RAINS |     |                  |            |              |                                               |
|---|------------|---------------|-----------------------|------------------------------------------|--------------------------------------|--------|--------|--------|------|-------|-----|------------------|------------|--------------|-----------------------------------------------|
|   | TOTAL # OF |               | כט                    | 40                                       |                                      | ABRADE | ED     | IRREGL | ILAR | DELIC | ATE |                  |            | CALC V.G.    |                                               |
|   | SAMPLE #   | PANNED<br>Y/N | DIAM                  | ETER                                     | THICKNESS                            | T      | P<br>P | T      | P    | T     | P   | ****             | MAG<br>GMS | ASSAY<br>PPB | REMARKS                                       |
|   | PLS-89     |               |                       |                                          |                                      |        |        |        |      |       |     |                  |            |              |                                               |
|   | 169-04     | Y             | 25<br>25<br>50<br>125 | X 50                                     | 8 C<br>13 C                          |        | 1      |        |      |       | 1   | 1<br>1<br>1      |            |              | EST. 10% PYRITE<br>100 GRAINS OF ARSENOPYRITE |
|   |            |               |                       |                                          |                                      |        |        |        |      |       |     | 4                | 27.8       | 624          |                                               |
|   | 169-05     | Y             | 50                    | X 50<br>X 75<br>X 100                    | 13 C                                 |        |        | 1      | 1    |       | 1   | 1<br>2<br>1      |            |              | EST. 1% PYRITE                                |
| _ |            |               |                       |                                          |                                      |        |        |        |      |       |     | 4                | 6.6        | 222          |                                               |
|   | 169-06     | Υ             | 25 (<br>100 (         | X <b>25</b><br>X 200                     |                                      |        | 1      |        |      |       | 1   | 1<br>1           |            |              | EST. 5% PYRITE                                |
|   |            |               |                       |                                          |                                      |        |        |        |      |       |     | 2                | 28.6       | 443          |                                               |
|   | 169-07     | Y             | 50                    | X 125                                    | 18 C                                 |        | 1      |        |      |       |     | 1                |            |              | EST. 15% PYRITE                               |
|   |            |               |                       |                                          |                                      |        |        |        |      |       |     | 1                | 34.9       | 29           |                                               |
|   | 169-08     | Υ             | 25 )<br>25 )<br>100 ) |                                          | 8 C                                  |        | 1<br>1 |        | 1    |       |     | 1<br>1<br>1      |            |              | EST. 15% PYRITE                               |
|   |            |               |                       |                                          |                                      |        |        |        |      |       |     | 3                | 31.4       | 71           |                                               |
|   | 169-09     |               | 50 X<br>75 X<br>125 X | ( 100<br>( 175<br>( 75<br>( 150<br>( 325 | 50 M<br>22 C<br>15 C<br>27 C<br>50 C | 1      |        | 1      | 1    |       | 1   | 1<br>1<br>1<br>1 |            |              | EST. 15% PYRITE                               |
|   |            |               |                       |                                          |                                      |        |        |        |      |       |     | 5                | 20.8       | 1787         |                                               |
|   | 170-01     | Y             | 75 X                  | 75                                       | 15 C                                 |        |        |        | 1    |       |     | 1                |            |              | EST. 15% PYRITE                               |
| _ |            |               |                       |                                          |                                      |        |        |        |      |       |     | 1                | 12.6       | 51           |                                               |
|   | 171-01     | Y             |                       | 50<br>125                                | 10 C<br>20 C                         |        | 1      |        | 1    |       |     | 1                |            | !            | EST. 5% PYRITE                                |
|   |            |               |                       |                                          |                                      |        |        |        |      |       |     | 2                | 31.8       | 53           |                                               |
|   | 171-02     | Υ             | 25 X                  | 50                                       | 8 C                                  |        |        |        | 1    |       | 2   | 3                |            |              | EST. 7% PYRITE                                |

|           | MIPLIMAR.WR1<br>TOTAL # OF PANNINGS |                |            |              |                                         | ١      | IUMBER | OF 6   | RAINS |             |               |            |              |                                         |
|-----------|-------------------------------------|----------------|------------|--------------|-----------------------------------------|--------|--------|--------|-------|-------------|---------------|------------|--------------|-----------------------------------------|
|           |                                     | 703            | 40         |              | ABRADE                                  | ED)    | IRREG  | ULAR   | DELIG | CATE        | TOTAL         | NON        | CALC V.G     |                                         |
| SAMPLE    | # PANNED<br>Y/N                     | DIAME          | TER        | THICKNESS    | T                                       | p<br>P | T      | P      | T     | P           |               | MAG<br>GMS | ASSAY<br>PPB | REMARKS                                 |
| PL5-8     | ić.                                 |                |            |              |                                         |        |        |        |       |             |               |            |              |                                         |
|           |                                     | 25 X<br>50 X   |            |              |                                         |        |        | 3      |       | 1           | 1<br>3        |            |              |                                         |
|           |                                     | 50 X           |            |              |                                         |        |        | 1      |       |             | í             |            |              |                                         |
|           |                                     |                |            |              |                                         |        |        |        |       |             | 8             | 37.0       | 37           |                                         |
| 171-0     | 3 Y                                 | 50 X           |            |              |                                         |        |        | 1      |       |             | i             |            |              | EST. 5% PYRITYE                         |
|           |                                     | 75 X           | 75         | 15 C         |                                         |        |        | 1      |       |             | 1             |            |              |                                         |
|           |                                     |                |            |              |                                         |        |        |        |       |             | 2             | 18.1       | 46           |                                         |
| 171-0     | 4 Y                                 | 50 X           |            | 10 C         |                                         | 2      |        | 1      |       | 1           |               |            |              | EST. 20% PYRITE                         |
| _         |                                     | 50 X<br>75 X   |            | 13 C<br>18 C |                                         |        |        | 1      |       | 1           | 1<br>2        |            |              | 10 GRAINS OF GALENA                     |
|           |                                     | 100 X          | 175        | 27 C         |                                         |        |        | _      |       | i           | 1             |            |              |                                         |
|           |                                     | 125 X<br>125 X |            | 29 C<br>36 C |                                         |        | 1      |        |       | 1           | 1<br>1        |            |              |                                         |
|           |                                     |                |            |              |                                         |        |        |        |       |             | 10            | 31         | 690          |                                         |
| . <b></b> | - 1/                                | 5E V           | ~~         |              |                                         |        |        |        |       | _           |               | 51         | 070          |                                         |
| 171-0     | 5 Y                                 | 25 X<br>25 X   |            | 5 C<br>8 C   |                                         |        |        |        |       | 9<br>13     | 9<br>13       |            |              | EST. 35% PYRITE<br>200 GRAINS OF GALENA |
|           |                                     | 25 X<br>50 X   |            | 10 C<br>10 C |                                         |        |        | •      |       | 2           | 2             |            |              | PHOTOMICROGRAPH AVAILABLE               |
|           |                                     | 50 X           | 75         | 13 C         |                                         |        |        | 1<br>1 |       | 7<br>6      | 8<br>7        |            |              | PICTURE REFERENCE # 159                 |
|           |                                     | 50 X<br>50 X   | 100<br>125 | 15 C<br>18 C |                                         |        |        | 1      |       | 2           | 3<br>1        |            |              |                                         |
|           |                                     | 75 X           | 75         | 15 C         |                                         |        |        |        |       | 2           | 2             |            |              |                                         |
|           |                                     | 75 X<br>100 X  | 100<br>125 | 18 C<br>22 C |                                         |        |        | 1      |       | 7           | 8<br>1        |            |              |                                         |
|           |                                     | 125 X          |            | 31 C         |                                         |        |        | _      |       | 1           | 1             |            |              |                                         |
|           |                                     |                |            |              |                                         |        |        |        |       |             | 55            | 30.4       | 871          |                                         |
| 172-01    | Υ                                   |                |            | 5 C          |                                         |        |        |        |       | 2           | 2             |            |              | EST. 5% PYRITE                          |
|           |                                     | 25 X<br>50 X   |            | 8 C<br>13 C  |                                         | 1      |        | 1      |       | 2<br>2<br>2 | <b>4</b><br>2 |            |              |                                         |
|           |                                     | 75 X           | 125        | 20 C         |                                         |        |        |        |       | 1           | 1             |            |              |                                         |
| _         |                                     | 100 X          | 125        | 22 C         |                                         | 1      |        |        |       |             | 1             |            |              |                                         |
|           |                                     |                |            |              |                                         |        |        |        |       |             | 10            | 29.6       | 160          |                                         |
| 172-02    | . Y                                 | 25 X           | 50         | 8 0          |                                         |        |        |        |       | 2           | 2             |            |              | EST. 3% PYRITE                          |
|           |                                     | 25 X<br>75 X   | 75<br>100  | 10 C<br>18 C |                                         | i      |        | i      |       | 1           | 1<br>2        |            |              | 3 GRAINS OF GALENA                      |
|           |                                     |                |            |              |                                         |        |        | •      |       |             |               | 73 ,       | 4.0.4        |                                         |
|           |                                     |                |            |              | • • • • • • • • • • • • • • • • • • • • |        |        |        |       |             | ט             | 23.6       | 101          |                                         |

SOLD CLASSIFICATION

\_\_\_\_\_

| MIPLIMAR.          |        | 100 A                                        |                  |        | -       | NUMBER | OF 6 | RAINS    |                  |     |           |                |
|--------------------|--------|----------------------------------------------|------------------|--------|---------|--------|------|----------|------------------|-----|-----------|----------------|
| TOTAL # 0 SAMPLE # | PANNED | 16S 4                                        | ,                | ABRADE | D<br>== | IRREGU | ILAR | DELICATE | – –              |     | CALC V.G. |                |
|                    | Y/N    | DIAMETER                                     | THICKNESS        | T      | Ρ       | T      | P    | T F      | )                | GMS | PPB       | REMARKS        |
| PLS-89             |        |                                              |                  |        |         |        |      |          |                  |     |           |                |
| 172-03             | Υ      | 25 X 25<br>50 X 50<br>100 X 125<br>100 X 175 | ) 10 C<br>5 50 M | 1      |         | í      |      | 1        | 1<br>1<br>1<br>1 |     |           | EST. 1% PYRITE |
|                    |        |                                              |                  |        |         |        |      |          |                  | 21  | 2 A15     |                |

#### -----

|   | MIPL2MAR.U       |              | TNOC                                          | 32                    | i                                                           | _ |             | N                                       | UMBER       | OF G | RAINS |   |                                           |            |              |       |                                                            |
|---|------------------|--------------|-----------------------------------------------|-----------------------|-------------------------------------------------------------|---|-------------|-----------------------------------------|-------------|------|-------|---|-------------------------------------------|------------|--------------|-------|------------------------------------------------------------|
|   |                  |              |                                               | ű.                    | •                                                           |   | BRADED      |                                         | IRREGU      |      |       |   |                                           |            | CALC V.G.    |       |                                                            |
|   | SAMPLE #         | PANNE<br>Y/N |                                               | ETER                  | THICKNESS                                                   |   | <br>T       | P                                       | =====<br>T  | P    | T     |   | *****                                     | MAG<br>GMS | ASSAY<br>PPB | REMAI | RKS                                                        |
|   | PLS-89<br>172-04 | Y            | <b>2</b> 5 (                                  | ¥ 25                  | 5.0                                                         | • |             | 1                                       |             |      |       |   | í                                         |            |              | EST.  | 10% PYRITE                                                 |
|   | 172-05           | γ            | <b>5</b> 0 (                                  |                       |                                                             |   |             |                                         |             | 1    |       | 1 | 1 1 1                                     |            |              | EST.  | 2% PYRITE                                                  |
|   | 172-06           | Y            | NO VIS                                        | IBLE 6                | OLD                                                         | - |             |                                         |             |      |       |   | 2                                         | 18.7       |              | EST.  | 2% PYRITE                                                  |
|   | 173-01           | Υ            |                                               | X 50<br>X 100         |                                                             |   | 1           | 1                                       |             |      |       |   | 1                                         |            |              | EST.  | 2% PYRITE<br>50 GRAINS OF ARSENOPYRITE                     |
|   |                  |              |                                               |                       |                                                             |   |             |                                         |             |      |       |   | 2                                         | 25.9       | 42           |       |                                                            |
|   | 174-01           | Y            | 25 )<br>25 ;<br>80 )<br>80 ;<br>75 )<br>100 ) | X 100                 | 8 C<br>13 C<br>13 C<br>18 C<br>18 C<br>22 C<br>25 C<br>75 M |   |             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1       |      |       |   | 1<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>1 |            |              |       | 2% PYRITE PHOTOMICROGRAPH AVAILABLE PICTURE REFERENCE #160 |
|   |                  |              |                                               |                       |                                                             |   |             |                                         |             |      |       |   | 12                                        | 23.5       | 1107         |       |                                                            |
|   | 1 <b>75-</b> 01  | Υ            |                                               | ( 50<br>( 75<br>( 100 | 13 C                                                        |   |             | 1                                       |             | 1    |       |   | 1<br>1<br>1                               |            |              | EST.  | 1% PYRITE                                                  |
|   |                  |              |                                               |                       |                                                             |   |             |                                         |             |      |       |   | 3                                         | 19.1       | 77           |       |                                                            |
| _ | 175-02           | γ            | 25 )<br>25 X<br>25 )<br>75 X                  | 50<br>75              | 8 C<br>10 C                                                 |   | :           | 1                                       | 2<br>1<br>1 | 1    |       |   | 3<br>1<br>1<br>2                          | 2.5        |              | EST.  | 1% PYRITE                                                  |
|   | 175-03           | Y            | 175 X                                         | 50<br>100             | 5 C<br>8 C<br>20 C<br>125 M<br>50 M                         |   | 1<br>1<br>1 | 1                                       |             | 1    |       | 1 | 7<br>3<br>1<br>1<br>1                     | 7.5        | 217          |       | 2% PYRITE<br>0.25% ARSENOPYRITE                            |

|   | MIPL2MAR.  |               |                |            |               |            | 1        | NUME | ER C      | )F 6 | RAINS  |          |               |            |              |                  |
|---|------------|---------------|----------------|------------|---------------|------------|----------|------|-----------|------|--------|----------|---------------|------------|--------------|------------------|
|   | TOTAL # OF |               | 165            | 32         |               | ABRADI     | ED       | IRR  | EGUL      | AR   | DELICA | ATE      |               |            | CALC V.G.    |                  |
|   | SAMPLE #   | PANNED<br>Y/N | DIAMET         | ER         | THICKNESS     | =====<br>T | ===<br>P | ===  | ====<br>T | P    | Ţ      | ===<br>Р | =====         | MAG<br>GMS | ASSAY<br>PPB | REMARKS          |
|   | PLS-89     |               |                |            |               |            |          |      |           |      |        |          |               |            |              |                  |
|   |            |               |                |            |               |            |          |      |           |      |        |          | $\frac{}{7}$  | 32.4       | 1591         |                  |
|   | 175-04     | Y             | 25 X           | 75         | 10 C          |            |          |      |           | 1    |        |          | 1             |            |              | EST. 5% PYRITE   |
|   |            |               |                |            |               |            |          |      |           |      |        |          | 1             | 33.4       | 6            |                  |
|   | 175-05     | Y             | 25 X           | 25         | 5 0           |            | 1        |      |           |      |        |          | 1             |            |              | EST. 5% PYRITE   |
|   |            |               | 25 X<br>50 X   | 50<br>75   | 8 C<br>13 C   |            |          |      |           | 1    |        | 1        | 1             |            |              |                  |
|   |            |               | 100 X<br>200 X | 125<br>350 | 22 C<br>100 M |            | i<br>1   |      |           |      |        | •        | 1             |            |              |                  |
|   |            |               | EAC. V         | 000        | 100 11        |            | •        |      |           |      |        |          |               |            |              |                  |
| _ |            |               |                |            |               |            |          |      |           |      |        |          | 5             | 42.0       | 1412         |                  |
|   | 175-06     | Ÿ             | 50 X           | 50         | 10 C          |            | 1        |      |           |      |        |          | 1             |            |              | EST. 5% PYRITE   |
|   |            |               |                |            |               |            |          |      |           |      |        |          | 1             | 28.3       | 7            |                  |
|   | 175-07     | Y             | 25 X           | <b>25</b>  | 5 C           |            | 1        |      | 1         |      |        |          | 2             |            |              | EST. 7% PYRITE   |
|   |            |               | 25 X<br>75 X   | 50<br>75   | 8 C<br>15 C   |            |          |      | 1         | 1    |        |          | 1<br>1        |            |              |                  |
|   |            |               |                |            |               |            |          |      |           |      |        |          | 4             | 45.0       | 17           |                  |
|   | 175-08     | y             | 50 X           | 50         | 10 C          |            | 1        |      |           |      |        |          | 1             |            |              | EST. 5% PYRITE   |
|   |            |               |                |            |               | ~~         |          |      |           |      |        |          |               | 27.2       | 7            |                  |
|   | 175-09     | ٧             | 25 X           | 25         | 5 C           |            |          |      |           | •    |        |          |               |            |              | EDT BU BURTYE    |
|   | 1,5 0,     | ,             | 50 X           | 50         | 10 C          | 1          |          | 1    | l         | 1    |        |          | 1<br>2        |            |              | EST. 2% PYRITE   |
|   |            |               | 50 X<br>75 X   | 100<br>100 | 15 C<br>18 C  | 1<br>1     |          |      |           |      |        |          | 1<br>1        |            |              |                  |
|   |            |               |                |            |               |            |          |      |           |      |        |          | <del></del> 5 | 32.1       | 64           |                  |
|   | 175-10     | v             | 25 X           | 25         | 5 €           |            | 1        |      |           |      |        |          |               |            |              | TRT AN EURYPE    |
|   | 4:W 45     | 1             | 50 X           | 75         | 13 C          |            | 1        |      |           |      |        |          | 1             |            | ł            | EST. 1% PYRITE   |
| _ |            |               | 50 X           | 100        | 15 C          |            |          | 1    |           |      |        |          | 1             |            |              |                  |
|   |            |               |                |            |               |            |          |      |           |      |        |          | 3             | 20.6       | 50           |                  |
|   | 175-11     | Y             | 50 X           | 50         | 10 C          |            | 1        |      |           |      |        |          | 1             |            |              | EST. 0.5% PYRITE |
|   |            |               |                |            |               |            |          |      |           |      |        |          | 1             | 19.7       | 10           |                  |
|   | 175-12     | Υ             | 50 X           | 75         | 13 C          |            | 1        |      |           |      |        |          | 1             |            | E            | EST. 0.5% PYRITE |

\*\*\*\*\*\*

|   | MIPL2MAR.WR1<br>TOTAL # OF PANNINGS |               |                                                |                         |                                     |            | ŀ         | NUMB | ER O | F G     | RAINS |           |                       |            |              |      |                                                    |
|---|-------------------------------------|---------------|------------------------------------------------|-------------------------|-------------------------------------|------------|-----------|------|------|---------|-------|-----------|-----------------------|------------|--------------|------|----------------------------------------------------|
|   |                                     |               | 65                                             | 32                      |                                     | ABRAD      | ED        | IRR  | EGUL | AR      |       |           | TOTAL                 |            | CALC V.G.    | ,    |                                                    |
|   | SAMPLE #                            | PANNED<br>Y/N | DIAMETE                                        | R                       | THICKNESS                           | =====<br>T | :===<br>P | ===  | T    | ==<br>P | T     | ====<br>P |                       | MAG<br>GMS | ASSAY<br>PPB | REMA | RKS                                                |
|   | PLS-89                              |               |                                                |                         |                                     |            |           |      |      |         |       |           | 1                     | 20.4       |              |      | 5 GRAINS OF ARSENDPYRITE                           |
|   | 175-13                              | Υ             | 50 X<br>125 X                                  |                         | 13 C<br>31 C                        |            |           |      |      |         |       |           | 1<br>1                |            |              | EST. | 0.5% PYRITE                                        |
|   |                                     |               |                                                |                         |                                     |            |           |      |      |         |       |           |                       | 22.2       | 298          |      |                                                    |
|   | 175-14                              | Y             | 50 X<br>50 X<br>125 X                          | 50<br>75<br>200         | 13 C                                |            | 1         |      | 1    |         |       |           | 1<br>1<br>1           |            |              | EST. | 0.5% PYRITE                                        |
|   |                                     |               |                                                |                         |                                     |            |           |      |      |         |       |           | 3                     | 27.7       | 246          |      |                                                    |
|   | 176-01                              | Υ             | 25 X<br>50 X<br>100 X<br>125 X                 | 50<br>75<br>100<br>125  | 8 C<br>13 C<br>20 C<br>25 C         | 1<br>1     |           |      | 1    |         |       |           | 1<br>1<br>2<br>1      |            |              | EST. | 0.1% PYRITE                                        |
|   |                                     |               |                                                |                         |                                     |            |           |      |      |         |       |           | <del></del> 5         | 26.4       | 240          |      |                                                    |
|   | 177-01                              | Y             | 25 X<br>25 X<br>50 X                           | 25<br>50<br>50          | 8 C                                 |            | 1         |      |      |         |       | 1         | 1 1 1                 |            |              | EST. | 5% PYRITE<br>TRACE ARSENDPYRITE<br>TRACE MARCASITE |
|   |                                     |               |                                                |                         |                                     |            |           |      |      |         |       |           | 3                     | 33.6       | , 9          |      |                                                    |
|   | 175-01                              | Y             | 50 X<br>75 X<br>75 X<br>75 X<br>100 X<br>225 X | 125<br>125              | 20 C                                | 1          | 1 2       |      | 1    | 1       |       | i         | 1<br>4<br>1<br>1<br>1 |            |              | EST. | 3% PYRITE<br>TRACE ARSENOPYRITE                    |
|   |                                     |               |                                                |                         |                                     |            |           |      |      |         |       |           | 9                     | 39.8       | 817          |      |                                                    |
| _ | 180-01                              | Ÿ             | 25 X<br>25 X<br>50 X<br>75 X<br>125 X          | 125<br>100<br><b>75</b> | 5 C<br>15 C<br>15 C<br>15 C<br>25 C | 1          | 1         |      |      |         |       | 1         | 1<br>1<br>1<br>1      |            |              | EST. | 1% PYRITE<br>TRACE ARSENOPYRITE                    |
|   |                                     |               |                                                |                         |                                     |            |           |      |      |         |       |           | 5                     | 28.8       | 168          |      |                                                    |
|   | 180-02                              | Ÿ             | 25 X<br>50 X<br>75 X                           | 25<br>50<br>75          | 5 C<br>10 C<br>15 C                 | 1          | i<br>1    |      |      |         | 1     | 1         | 1<br>2<br>2           |            |              | EST. | 5% PYRITE<br>TRACE ARSENOPYRITE                    |

-----

| MIPL2MAR.WR1<br>TOTAL # OF PANNINGS 3 |                 |               |                               |                |                              |             | N | UMBER             | OF 6      | RAINS |   |             |            |              |                                                   |
|---------------------------------------|-----------------|---------------|-------------------------------|----------------|------------------------------|-------------|---|-------------------|-----------|-------|---|-------------|------------|--------------|---------------------------------------------------|
|                                       |                 |               |                               | 32             |                              | ABRADE      | D | IRREG             | ULAR      | DELIC |   |             |            | CALC V.G.    | i <b>.</b>                                        |
|                                       | SAMPLE #        | PANNE!<br>Y/N | )<br>DIAMETE                  | R              | THICKNESS                    | *==*==<br>T | P | === <b>=</b><br>T | ====<br>P | T     | P | =====       | MAG<br>GMS | ASSAY<br>PPB | REMARKS                                           |
|                                       | PLS-89          |               |                               |                |                              |             |   |                   |           |       |   |             |            |              |                                                   |
|                                       |                 |               |                               |                |                              |             |   |                   |           |       |   | 5           | 32.0       | 53           | 3                                                 |
|                                       | <b>18</b> 0-03  | γ             | 25 X<br>25 X<br>50 X          | 25<br>50<br>75 | 5 C<br>9 C                   |             | 1 |                   |           |       | 2 |             |            |              | EST. 1% PYRITE<br>TRACE ARSENDPYRITE              |
|                                       |                 |               | 100 X                         |                | 13 C<br>27 C                 |             |   |                   |           |       | 1 | 1<br>1      |            |              |                                                   |
|                                       |                 |               |                               |                |                              |             |   |                   |           |       |   | 6           | 29.8       | 150          | ,                                                 |
|                                       | 180-04          | Y             | 25 X<br>125 X                 |                | 5 C<br>31 C                  |             | 1 |                   |           |       | 1 | 1           |            |              | EST. 1% PYRITE<br>TRACE ARSENDPYRITE              |
|                                       |                 |               |                               |                |                              |             |   |                   |           |       |   | 2           | 11.4       | 549          | 7                                                 |
|                                       | 180-05          | Y             | 25 X<br>50 X<br>50 X          | 25<br>50<br>75 | 5 C<br>10 C<br>13 C          |             | 2 |                   |           | 1     | 3 | 3<br>2<br>1 |            |              | TRACE PYRITE TRACE ARSNEOPYRITE                   |
|                                       |                 |               |                               |                |                              |             |   |                   |           |       |   |             | 32.4       | 26           | 5                                                 |
|                                       | 1 <b>8</b> 0-0á | γ             | NO VISIBL                     | .E GC          | LD                           |             |   |                   |           |       |   |             |            |              | EST. 3% PYRITE                                    |
|                                       | 180-07          | Y             | 50 X<br>125 X                 |                | 13 C<br>25 C                 |             | 1 | 1                 |           |       |   | 1           |            |              | TRACE ARSENOPYRITE EST. 2% PYRITE 1% ARSENOPYRITE |
|                                       |                 |               |                               |                |                              |             |   |                   |           |       |   |             | 24.7       | 132          | -                                                 |
|                                       | 181-01          | у             | 25 X<br>50 X<br>100 X         | 100            | 5 C<br>15 C<br>22 C          |             | 1 | 1                 |           |       |   | 1<br>1<br>1 |            |              | EST. 10% PYRITE<br>30 GRAINS OF ARSENDPYRITE      |
|                                       |                 |               |                               |                |                              |             |   |                   |           |       |   | 3           | 36.6       | 76           | 5                                                 |
|                                       |                 |               |                               |                |                              |             |   |                   |           |       |   |             |            |              |                                                   |
|                                       | 181-02          | N             | 50 X                          | 75             | 13 C                         | 1           |   |                   |           |       |   | 1           |            |              |                                                   |
|                                       |                 |               |                               |                |                              |             |   |                   |           |       |   | 1           | 36.2       | 2 2          | ?                                                 |
| _                                     | 181-03          | Y             | 50 X<br>50 X<br>75 X<br>100 X | 75<br>100      | 10 C<br>13 C<br>75 M<br>18 C | 1           | 1 | 1                 | 1         |       |   | 1<br>1<br>1 |            |              | EST. 5% PYRITE 200 GRAINS OF ARSENDPYRITE         |
|                                       |                 |               |                               |                |                              |             |   |                   |           |       |   | 4           | 20.9       | 90           | <del>-</del><br>1                                 |
|                                       | 181-04          | N             | NO VISIBL                     | .E 60          | LD                           |             |   |                   |           |       |   |             |            |              |                                                   |

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

| MIPL2MAR. |       | 11100 70            | -             |         | NUMBE | R OF B | GRAINS   |        |      |           |                                             |
|-----------|-------|---------------------|---------------|---------|-------|--------|----------|--------|------|-----------|---------------------------------------------|
| TOTAL # 0 | PANNE | ID                  |               | ABRADED | ====  | GULAR  | DELICATE |        | MAG  | CALC V.G. |                                             |
|           | Y/N   | DIAMETER            | THICKNESS     | T       | P T   | Р      | T P      |        | GMS  | PPB       | REMARKS                                     |
| PLS-89    |       |                     |               |         |       |        |          |        |      |           |                                             |
| 181-05    | N     | NO VISIBLE 6        | <b>GD</b> LD  |         |       |        |          |        |      |           |                                             |
| 181-06    | N     | NO VISIBLE (        | GOLD          |         |       |        |          |        |      |           |                                             |
| 181-07    | Ŋ     | 50 X 75             | 5 13 <b>C</b> |         | i     |        |          | 1      |      |           |                                             |
|           |       |                     |               |         |       |        |          | 1      | 39.3 | , 9       |                                             |
| 181-08    | N     | NO VISIBLE (        | GOLD          |         |       |        |          |        |      |           |                                             |
| 181-09    | Y     | 25 X 50<br>75 X 100 |               |         |       | i      |          | 1<br>2 |      |           | EST. 7% PYRITE<br>50 GRAINS OF ARSENOPYRITE |
| _         |       |                     |               |         |       |        |          | 3      | 29.9 | 7 3       |                                             |

181-10 N NO VISIBLE GOLD

182-01 N NO VISIBLE GOLD

#### 

| MIPL3MAR.i       |   | ţ                            | NUMBER         | OF E                | RAINS       |   |   |  |            |   |                  |      |              |      |                                         |
|------------------|---|------------------------------|----------------|---------------------|-------------|---|---|--|------------|---|------------------|------|--------------|------|-----------------------------------------|
|                  |   |                              | ō              |                     | ABRAD       |   |   |  |            |   |                  |      | CALC V.6     |      |                                         |
| SAMPLE #         |   |                              | TER            | THICKNESS           | =====<br>T  |   |   |  | =====<br>T |   |                  |      | ASSAY<br>PPB | REMA | RKS                                     |
| PLS-89<br>182-02 | N | MO VISIE                     | BLE GC         | OLD                 |             |   |   |  |            |   |                  |      |              |      |                                         |
| 182-03           | N | NO VISI                      | PLE GO         | OLD                 |             |   |   |  |            |   |                  |      |              |      |                                         |
| 182-04           | Ÿ |                              |                | 5 C<br>15 C         |             |   |   |  |            |   | 1<br>1           |      |              | EST. | 10% PYRITE<br>20 GRAINS OF ARSENOPYRITE |
|                  |   |                              |                |                     |             |   |   |  |            |   | 2                | 34.1 | 20           |      |                                         |
| 182-05           | N | 200 X                        | 200            | 38 C                |             |   | 1 |  |            |   | 1                |      |              |      |                                         |
|                  |   |                              |                |                     |             |   |   |  |            |   | 1                | 27.6 | 413          |      |                                         |
| 182-05           | Ÿ |                              |                | 5 C<br>13 C         |             |   |   |  |            |   | <u>1</u><br>1    |      |              | EST. | 7% PYRITE                               |
| ••.              |   |                              |                |                     |             |   |   |  |            |   |                  | 30.0 | 13           |      |                                         |
| 182-07           | N | NO VISIE                     | SLE 6D         | PLD                 |             |   |   |  |            |   |                  |      |              |      |                                         |
| 187-08           | N | 50 X                         | 75             | 13 C                | 1           |   |   |  |            |   | 1                |      |              |      |                                         |
|                  |   |                              |                |                     |             |   |   |  |            |   | 1                | 32.5 | 11           |      |                                         |
| 182-07           | γ | 25 X<br>50 X<br>50 X<br>75 X | 50<br>75       |                     |             | 1 |   |  |            | 2 | 2<br>1<br>2<br>1 |      |              | EST. | 3% PYRITE                               |
|                  |   |                              |                |                     |             |   |   |  |            |   | -6               | 36.8 | 44           |      |                                         |
| 182-16           | N | 100 X                        | 100            | 20 C                | 1           |   |   |  |            |   | i                |      |              |      |                                         |
|                  |   |                              |                |                     |             |   |   |  |            |   | 1                | 25.4 | 59           |      |                                         |
| 182-11           | N | 100 X                        | 150            | 25 C                | i           |   |   |  |            |   | 1                |      |              |      |                                         |
|                  |   |                              |                |                     |             |   |   |  |            |   | 1                | 27.0 | 107          |      |                                         |
| 183-01           | Y | 25 X<br>50 X<br><b>5</b> 0 X | 50<br>50<br>75 | 8 C<br>10 C<br>13 C | 2<br>1<br>1 | 1 |   |  |            |   | 2<br>1<br>2      |      |              |      | 7% PYRITE<br>25 GRAINS OF ARSENOPYRITE  |
|                  |   |                              |                |                     |             |   |   |  |            |   | 5                | 28.4 | 39           |      |                                         |
| 183-02           | N | 50 X                         | <b>7</b> 5     | <b>1</b> 3 C        | 1           |   |   |  |            |   | 1                |      |              |      |                                         |
|                  |   |                              |                |                     |             |   |   |  |            |   |                  |      |              |      |                                         |

\_\_\_\_\_\_

| MIPL3MAR.<br>TOTAL # 0 |    | n:Taime                      | ,               |        | ļ      | NUMBE     | ER OF | - 6 | RAINS |          |             |            |              |                |
|------------------------|----|------------------------------|-----------------|--------|--------|-----------|-------|-----|-------|----------|-------------|------------|--------------|----------------|
|                        |    |                              | ō               | ABRADE | <br>ED | IRRE      | GUL/  | ¥R  |       |          |             |            | CALC V.G     |                |
| SAMPLE #               |    | ED<br>DIAMETER               | THICKNESS       | T      | F      | ====<br>T |       | F   | T     | ===<br>P | =====       | MAG<br>BMS | ASSAY<br>PPB | REMARKS        |
| PLS-89                 |    |                              |                 |        |        |           |       |     |       |          |             |            |              |                |
|                        |    | <b>***</b> ( )               |                 |        |        |           |       |     |       |          | 1           | 30.4       | 12           |                |
| 150-03                 | F¥ | 75 X 1                       | 00 18 0         | I      |        |           |       |     |       |          | 1           |            |              |                |
|                        |    |                              |                 |        |        |           |       |     |       |          | 1           | 46.7       | 22           |                |
| 183-04                 | Y  | 25 X ;<br>75 X 10<br>125 X 1 | 00 18 C         |        |        | i<br>1    |       | 1   |       |          | 1<br>1<br>1 |            |              | EST, 2% PYRITE |
|                        |    |                              |                 |        |        |           |       |     |       |          | 3           | 43.4       | 113          |                |
| 183-05                 | N  | NO VISIBLE                   | GOLD            |        |        |           |       |     |       |          |             |            |              |                |
| 184-01                 | Ŋ  | NO VISIBLE                   | GOLD            |        |        |           |       |     |       |          |             |            |              |                |
| 184-02                 | N  | NO VISIBLE                   | GOLD            |        |        |           |       |     |       |          |             |            |              |                |
| 184-03                 | N  | 125 X 25                     | 50 34 C         | 1      |        |           |       |     |       |          | 1           |            |              |                |
|                        |    |                              |                 |        |        |           |       |     |       |          | 1           | 17.3       | 547          |                |
| 184-04                 | N  | 50 X 7                       | 75 <b>1</b> 3 C | 1      |        |           |       |     |       |          | 1           |            |              |                |
|                        |    |                              |                 |        |        |           |       |     |       |          | 1           | 28.1       | 13           |                |
| 184-05                 | N  | NO VISIBLE                   | 60LD            |        |        |           |       |     |       |          |             |            | •            | ,              |
| 184-06                 | N  | NO VISIBLE                   | 60LD            |        |        |           |       |     |       |          |             |            |              |                |
| 184-07                 | N  | NO VISIBLE                   | 60LD            |        |        |           |       |     |       |          |             |            |              |                |
| 184-08                 | N  | NO VISIBLE                   | GOLD            |        |        |           |       |     |       |          |             |            |              |                |
| 184-09                 | N  | NG VISIBLE                   | GOLD            |        |        |           |       |     |       |          |             |            |              |                |
| 184-10                 | N  | NO VISIBLE                   | GOLD            |        |        |           |       |     |       |          |             |            |              |                |
| 184-11                 | N  | NO VISIBLE                   | GOLD            |        |        |           |       |     |       |          |             |            |              |                |
| 184-12                 | N  | NO VISIBLE (                 | GOLD            |        |        |           |       |     |       |          |             |            |              |                |
| 184-13                 | N  | NO VISIBLE                   | GOLD            |        |        |           |       |     |       |          |             |            |              |                |
| 184-15                 | N  | NO VISIBLE (                 | GOLD            |        |        |           |       |     |       |          |             |            |              |                |
| 184-16                 | ¥  | 75 X 100                     | ) 18 C          | 1      |        |           |       |     |       |          | 1           |            | Ε            | ST. 5% PYRITE  |

| MIPLIMAP.      |              | 17150           |                |              | ļ           | NUMBEI   | R OF G | RAINS            |            |          |       |            |              |         |        |       |        |      |
|----------------|--------------|-----------------|----------------|--------------|-------------|----------|--------|------------------|------------|----------|-------|------------|--------------|---------|--------|-------|--------|------|
|                |              | VINGS           | á              |              | ABRADI      | ED       | IRRE   | GULAR            | DELIC      | ATE      | TOTAL | NON        | CALC V.G     |         |        |       |        |      |
| SAMPLE #       | PANNE<br>Y/N |                 | E TH           | HICKNESS     | =====:<br>T | ===<br>P | T      | <b>====</b><br>P | =====<br>T | ===<br>P | ===== | MAG<br>GMS | ASSAY<br>PPB | REMARKS |        |       |        |      |
| <b>P</b> LS-89 |              | •               |                |              |             |          |        |                  |            |          |       |            |              |         |        |       |        |      |
|                |              | 75 X .<br>175 X |                | 22 C<br>50 M |             |          |        |                  |            |          | 1     |            |              | 10      | GRAINS | OF AR | SENOPY | RITE |
|                |              |                 |                |              |             |          |        |                  |            |          | 3     | 36.2       | 404          |         |        |       |        |      |
| 184-17         | N            | NO VISIBL       | E GOLI         | )            |             |          |        |                  |            |          |       |            |              |         |        |       |        |      |
| 184-18         | N            | NO VISIBLE      | E GOLI         | )            |             |          |        |                  |            |          |       |            |              |         |        |       |        |      |
| <b>185-</b> 01 | Ŋ            | 200 X           | 275            | 44 C         | 1           |          |        |                  |            |          | 1     |            |              |         |        |       |        |      |
|                |              |                 |                |              |             |          |        |                  |            |          | 1     | 32.9       | 569          |         |        |       |        |      |
| <b>185-</b> 02 | Ν            | NO VISIBLE      | E GOLI         | )            |             |          |        |                  |            |          |       |            |              |         |        |       |        |      |
| 185-03         | N            | NO VISIBLE      | E GOLD         | ı            |             |          |        |                  |            |          |       |            |              |         |        |       |        |      |
| 185-04         | N            | NO VISIBLE      | E <b>6</b> 0L0 | )            |             |          |        |                  |            |          |       |            |              |         |        |       |        |      |
| 185-05         | N            | 175 X 2         | 200            | 36 C         | 1           |          |        |                  |            |          | 1     |            |              |         |        |       |        |      |
|                |              |                 |                |              |             |          |        |                  |            |          | 1     | 29.7       | 318          |         |        |       |        |      |
| 185-06         | N            | NO VISIBLE      | E GOLD         |              |             |          |        |                  |            |          |       |            |              |         |        |       |        |      |
| 185-07         | N            | NO VISIBLE      | GOLD           |              |             |          |        |                  |            |          |       |            |              |         |        |       |        |      |

#### -----

| MIPL4MAR.WR:<br>TOTAL # OF PANNINGS 14 |     |                                  |              |   | 1 | NUMBE | ER OF | G | RAINS      |   |             |            |              |                 |
|----------------------------------------|-----|----------------------------------|--------------|---|---|-------|-------|---|------------|---|-------------|------------|--------------|-----------------|
|                                        |     |                                  |              |   |   |       |       |   |            |   |             |            | CALÇ V.6     | •               |
| SAMPLE #                               |     | ED<br>DIAMETER THI               | CKNESS       |   |   |       |       |   | =====<br>T |   |             | MAG<br>GMS | ABSAY<br>PPB | REMARKS         |
| PL8-89                                 |     |                                  |              |   |   |       |       | • | ·          |   |             | 5.15       | , ( 2        | redains.        |
|                                        | ħ;  | NO VISIBLE GOLD                  |              |   |   |       |       |   |            |   |             |            |              |                 |
| 185-09                                 | i v | 175 X 300                        | 44 C         | 1 |   |       |       |   |            |   | 1           |            |              |                 |
|                                        |     |                                  |              |   |   |       |       |   |            |   | 1           | 47.1       | 397          |                 |
| <b>185-1</b> 0                         | Ν   | NO VISIBLE GOLD                  |              |   |   |       |       |   |            |   |             |            |              |                 |
| 185-11                                 | N   | NO VISIBLE GOLD                  |              |   |   |       |       |   |            |   |             |            |              |                 |
| 185-12                                 | N   | NO VISIBLE GOLD                  |              |   |   |       |       |   |            |   |             |            |              |                 |
| 185-13                                 | N   | 150 X 150                        | 29 C         | 1 |   |       |       |   |            |   | 1           |            |              |                 |
| _                                      |     |                                  |              |   |   |       |       |   |            |   | 1           | 24.8       | 199          |                 |
| 185-14                                 | N   | ND VISIBLE GOLD                  |              |   |   |       |       |   |            |   |             |            |              |                 |
| 185-15                                 | N   | ND VISIPLE GOLD                  |              |   |   |       |       |   |            |   |             |            |              |                 |
| 185-14                                 | Y   | 25 X 50<br>75 X 125<br>100 X 125 |              |   | i |       |       |   |            | 2 | 2<br>1<br>1 |            |              | EST. 15% PYRITE |
|                                        |     | 150 X 175                        |              |   |   |       |       |   |            |   | 1           |            |              |                 |
|                                        |     |                                  |              |   |   |       |       |   |            |   | 5           | 30.5       | 329          |                 |
| 185-17                                 | N   | NO VISIBLE GOLD                  |              |   |   |       |       |   |            |   |             |            |              |                 |
| 185-18                                 | ý   | <b>2</b> 5 X <b>5</b> 0          | 8 C          |   | 1 |       |       |   |            |   | i           |            |              | EST. 10% PYRITE |
|                                        |     | 50 X 50                          | 10 C<br>15 C |   | 1 |       |       |   |            |   | i<br>1      |            |              |                 |
|                                        |     | 75 X 75                          | 15 C         |   | 1 |       |       |   |            |   | 1           |            |              |                 |
|                                        |     | 100 X 100                        | 20 C         |   | 1 |       |       |   |            |   | 1           |            |              |                 |
|                                        |     |                                  |              |   |   |       |       |   |            |   | 5           | 19.1       | 160          |                 |
| 185-19                                 |     | 25 X 50<br>100 X 125             |              | 1 |   |       | 1     |   |            |   | 1           |            |              | EST. 5% PYRITE  |
| _                                      |     |                                  |              |   |   |       | -     |   |            |   |             | 74.7       | 91           |                 |
| 185-20                                 | N   | NO VISIBLE GOLD                  |              | , |   |       |       |   |            |   | <u> </u>    | 27.0       | 71           |                 |
|                                        |     | NO VISIBLE GOLD                  |              |   |   |       |       |   |            |   |             |            |              |                 |
|                                        |     |                                  |              |   |   |       |       |   |            |   |             |            |              |                 |
| 185-22                                 | N   | NO VISIBLE GOLD                  |              |   |   |       |       |   |            |   |             |            |              |                 |

#### ------

| MIPLAMAR.       |   | 4.5           |          |              | ħ      | <b>√UMBE</b> | R OF | GRAINS      |      |           |        |                                       |              |                 |
|-----------------|---|---------------|----------|--------------|--------|--------------|------|-------------|------|-----------|--------|---------------------------------------|--------------|-----------------|
|                 |   | NINGS<br>     | 14       |              | ABRADE | ED           | IRRE | GULAR       | DELI | CATE      | TOTAL  | NON                                   | CALC V.G     | •               |
| SAMPLE #        |   |               | ER       | THICKNESS    | T      | == <b>=</b>  | T    | <b>====</b> | T    | ====<br>P | =====  | MAG<br>GMS                            | ASSAY<br>PPB | REMARKS         |
| PL3-89          |   |               |          |              |        |              |      |             |      |           |        |                                       |              |                 |
| 185-23          | ¥ |               |          | 15 C<br>15 C |        |              |      |             | 1    |           | 11     |                                       |              | EST. 7% PYRITE  |
| 185-24          | N | NO VISIB      | i F RI   | 7! n         |        |              |      |             |      |           | 2      | 21.0                                  | 61           |                 |
|                 |   |               |          |              | ,      |              |      |             |      |           |        |                                       |              |                 |
| 185-A1          | Ť | 25 X          | 25       | 5.0          | 1      |              |      |             |      |           |        |                                       |              | EST. 15% PYRITE |
|                 |   |               |          |              |        |              |      |             |      |           | 1      | 26.5                                  | 1            |                 |
| 186-02          | N | 75 X          | 125      | 20 C         | 1      |              |      |             |      |           | 1      |                                       |              |                 |
| _               |   |               |          |              |        |              |      |             |      |           | 1      | 25.3                                  | 59           |                 |
| 186-03          | ¥ |               |          | 10 C<br>22 C | 1      |              |      |             | i    |           | 1<br>1 |                                       |              | EST. 5% PYRITE  |
|                 |   |               |          |              |        |              |      |             |      |           | 2      | 18.5                                  | 125          |                 |
| 186-04          | N | 50 X          | 75       | 13 C         | 1      |              |      |             |      |           | i      |                                       |              |                 |
|                 |   |               |          |              |        |              |      |             |      |           | 1      | 16.2                                  | 23           |                 |
| 18 <i>6</i> -05 | Υ | 25 X<br>50, X | 25<br>50 | 5 C<br>22 C  | 1<br>1 | 1            |      |             |      |           | 2<br>1 |                                       |              | EST. 5% PYRITE  |
|                 |   |               |          |              |        |              |      |             |      |           | 3      | 24.5                                  | 10           |                 |
| 185-05          | N | NO VISIBL     | .E 60    | LD           |        |              |      |             |      |           |        |                                       |              |                 |
| 186-07          | N | 50 X          | 100      | 15 C         | 1      |              |      |             |      |           | 1      |                                       |              |                 |
| 187-01          | Y | 50 X<br>250 X |          | 10 C<br>75 C | 1<br>1 |              |      |             |      |           | 1 1    | · · · · · · · · · · · · · · · · · · · |              | EST. 8% PYRITE  |
| `               |   |               |          |              |        |              |      |             |      |           | 2      | 40.8                                  | 866          |                 |
| 187-02          | N | NO VISIBL     | E GO     | _D           |        |              |      |             |      |           |        |                                       |              |                 |
| 187-03          | N | NO VISIBL     | E GDL    | .D           |        |              |      |             |      |           |        |                                       |              |                 |
| 187-04          | N | NO VISIBL     | E GOL    | _D           |        |              |      |             |      |           |        |                                       |              |                 |

#### -----

| MIPL4MAR.        |              |                             | ħ                           | UMBER                              | OF G          | RAINS     |       |           |            |   |             |              |              |      |                                       |
|------------------|--------------|-----------------------------|-----------------------------|------------------------------------|---------------|-----------|-------|-----------|------------|---|-------------|--------------|--------------|------|---------------------------------------|
| TOTAL # 0        |              |                             | 14                          |                                    | ABRADE        | ED        | IRREG | JLAR      | DELIC      |   |             |              | CALC V.G     | •    |                                       |
| SAMPLE #         | YANNE<br>YAN |                             | ETER                        | THICKNESS                          | T             | ===<br>P  | T     | ====<br>P | =====<br>T | P | 2222        | MAG<br>GMS   | ASSAY<br>PPB | REMA | RKS                                   |
| PL9-89<br>187-05 | A. 8         | 100 )                       | X 125                       | 50 C                               | 1             |           |       |           |            |   | 1           |              |              |      |                                       |
|                  |              |                             |                             |                                    |               |           |       |           |            |   | 1           | 25.9         | 183          |      |                                       |
| 187-06           | N            | NO VIS                      | IBLE G                      | DLD                                |               |           |       |           |            |   |             |              |              |      |                                       |
| 187-07           | ¥            | 50 )                        | X 75                        | 50 M                               |               |           |       |           | i          |   | 1           |              | ·            |      | 2% PYRITE<br>1000 GRAINS ARSENDPYRITE |
| 187-08           | N            | 75 )                        | X 75                        | 15 C                               | 1             |           |       |           |            |   | 1<br>1<br>1 | 23.2<br>33.7 |              |      |                                       |
|                  |              |                             |                             |                                    |               |           |       |           |            |   | 1           | 22.3         | 29           |      |                                       |
| 197-09           | Y            |                             | 75<br>100<br>125            | 13 C<br>50 M<br>22 C               | i<br>1        | ***       |       |           |            |   | 1<br>1<br>1 |              |              | EST. | 5% PYRITE<br>1000 ARSENOPYRITE        |
|                  |              |                             |                             |                                    |               |           |       |           |            |   | 3           | 22.6         | 204          |      |                                       |
| 187-10           | ¥            | 75 X                        | ( 25<br>( 100<br>( 125      | 5 C<br>18 C<br>20 C                | 1             |           | 1     |           |            |   | 1<br>1<br>1 |              |              | EST. | 5% PYRITE<br>1000 ARSENOPYRITE        |
|                  |              |                             |                             |                                    |               |           |       |           |            |   | 3           | 26.7         | 95           |      |                                       |
| 187-11           | N            | NO VISI                     | BLE GC                      | )LD                                |               |           |       |           |            |   |             |              |              |      |                                       |
| 187-12           | N            | NO VISI                     | BLE GO                      | LD                                 |               |           |       |           |            |   |             |              |              |      |                                       |
| 187-13           | N            | NO VISI                     | BLE GO                      | KLD                                |               |           |       |           |            |   |             |              |              |      |                                       |
| 187-14           | Y            | <b>25</b> X<br>50 X<br>50 X | 25<br>50<br>50<br>75<br>100 | 5 C<br>8 C<br>10 C<br>13 C<br>18 C | 1             | - Bereit. | 1     |           |            |   | 1 1 1 1     |              |              |      | 5% PYRITE<br>1000 GRAINS ARSENOPYRITE |
| _                |              |                             |                             |                                    |               |           |       |           |            |   | 5           | 14.5         | 115          |      |                                       |
| 187-15           | Y            | 25 X<br>50 X<br>50 X        | 50                          | 5 C<br>10 C<br>13 C                | <u>1</u><br>1 | 1         |       |           |            |   | 1<br>2<br>1 |              |              |      | 20% PYRITE<br>0.5% ARSENOPYRITE       |
|                  |              |                             |                             |                                    |               |           |       |           |            |   | 4           | 27.7         | 28           |      |                                       |
| 187-16           | Y            | 50 X                        | 75                          | 13 C                               |               | 1         |       |           |            |   | 1           |              |              | EST. | 25% PYRITE                            |

\_\_\_\_\_\_

| MIPL4MAR. |          |             |     | NUMBER    | OF 6  | RAINS |       |        |          |   |       |        |                   |         |        |              |
|-----------|----------|-------------|-----|-----------|-------|-------|-------|--------|----------|---|-------|--------|-------------------|---------|--------|--------------|
| TOTAL # 0 | F PANNIM | <b>(6</b> 8 | 14  |           | ABRAD |       | IRREG | I B AD | TATEL TO |   | TOTAL | k!/Tki | CALBUIN           |         |        |              |
| SAMPLE #  | PANNED   |             |     |           | ===== |       | ===== |        |          |   | TOTAL |        | CALC V.G<br>ASSAY |         |        |              |
|           | Y/N      | DIAME       | TER | THICKNESS | 5 T   | Р     | T     | P      | Ţ        | P |       | GMS    | PPB               | REMARKS |        |              |
| PLS-89    |          |             |     |           |       |       |       |        |          |   |       |        |                   |         |        |              |
|           |          | 50 X        | 100 | 15 (      | ;     | 1     |       |        |          |   | 1     |        |                   | 50      | GRAINS | ARSENOPYRITE |
|           |          | 75 X        | 100 | 18 (      | )     | 1     |       |        |          |   | 1     |        |                   |         |        |              |
|           |          | 75 X        | 125 | 20 0      | 1     |       |       |        |          |   | 1     |        |                   |         |        |              |
|           |          | 125 X       | 225 | 34 (      | 1     |       |       |        |          |   | 1     |        |                   |         |        |              |
|           |          |             |     |           |       |       |       |        |          |   |       |        |                   |         |        |              |
|           |          |             |     |           |       |       |       |        |          |   | - 5   | 22.    | R 494             |         |        |              |

| MIPLSMAR.WR1<br>TOTAL # OF PANNINGS 12 |      |                                               |                       |                             |          | N      | UMBER  | OF 6     | RAINS |     |                                 |      |              |                                     |
|----------------------------------------|------|-----------------------------------------------|-----------------------|-----------------------------|----------|--------|--------|----------|-------|-----|---------------------------------|------|--------------|-------------------------------------|
| TOTAL # 04                             | FANN | INGS                                          | 12                    |                             | ABRADE!  | <br>D  | IRREGL | <br>ILAR | DELIC | ATE | TOTAL                           | NON  | CALC V.G.    |                                     |
| SAMFLE #                               |      | D<br>DIAMETE                                  | E TH                  |                             |          |        |        |          |       |     |                                 |      | ASSAY<br>PPB | REMARKS                             |
| FLE-99<br>187-17                       | N    | NO VISIBL                                     | E GOLD                |                             |          |        |        |          |       |     |                                 |      |              |                                     |
| 187-18                                 | Y    | 25 X<br>50 X<br>50 X<br>75 X                  | 50<br>50<br>75<br>125 | 10 C<br>13 C                | 2        | 1<br>1 |        |          |       |     | 1<br>3<br>1<br>1<br>1           |      |              | EST. 15% FYRITE                     |
|                                        |      |                                               |                       |                             |          |        |        |          |       |     | 8                               | 17.1 | 319          |                                     |
| <b>-</b><br>164-16                     | Y    | 25 X<br>25 X<br>25 X<br>50 X<br>75 X<br>100 X | 50<br>75<br>50<br>125 | 8 C<br>10 C<br>10 C<br>20 C | 1        |        |        | 1        |       |     | 2<br>3<br>1<br>1<br>1<br>1<br>1 |      | 287          | EST. 3% PYRITE                      |
| 188-01                                 | N.   | NO VISIB                                      | LE GOLI               | )                           |          |        |        |          |       |     |                                 |      |              |                                     |
| 188-02                                 | Ņ    | 25 X                                          | 50                    | 5 C                         | i        |        |        |          |       |     | 1                               |      |              |                                     |
|                                        |      |                                               |                       |                             |          |        |        |          |       |     | 1                               | 34.1 | 2            |                                     |
| 185-63                                 | Y    | 50 X<br>50 X<br>75 X                          | 100                   | 13 C<br>15 C<br>18 C        | i        |        |        |          |       |     | 1<br>1<br>3                     |      |              | EST. 3% PYRITE                      |
|                                        |      |                                               |                       |                             |          |        |        |          |       |     | 5                               | 26.8 | 151          |                                     |
| 185~04                                 | N    | 50 X                                          | 75                    | 13 C                        | 1        |        |        |          |       |     | 1                               |      |              |                                     |
|                                        |      |                                               |                       |                             |          |        |        |          |       |     | 1                               | 29.8 | 3 13         |                                     |
| 188-05                                 | Y    | 50 X<br>150 X                                 | 75<br>250             | 13 C<br>38 C                | <u>i</u> | 2      |        | 1        |       |     |                                 |      |              | EST 5% PYRITE<br>2 GRAINS OF GALENA |
| _                                      |      |                                               |                       |                             |          |        |        |          |       |     | 5                               | 26.2 | 492          |                                     |
| 189-05                                 | N    | NO VISIBL                                     | LE GOLI               | )                           |          |        |        |          |       |     |                                 |      |              |                                     |
| 188-07                                 | ¥    | 50 X                                          | 75                    | 10 C<br>13 C<br>18 C        |          | 1      | 1      |          |       |     | 1                               |      |              | EST. 2% PYRITE                      |

#### .

|   | MIPLEMAR. |     | VINGS :                                               | f O                                               |        | !                             | NUMBER | R OF G | RAINS  |                  |                  |            |              |                                            |
|---|-----------|-----|-------------------------------------------------------|---------------------------------------------------|--------|-------------------------------|--------|--------|--------|------------------|------------------|------------|--------------|--------------------------------------------|
|   | SAMPLE #  |     |                                                       | <u>i</u>                                          | ABRADE | D                             |        |        | DELICA |                  |                  |            | CALC V.G     |                                            |
|   | DHMFLS #  | Y/N |                                                       | THICKNESS                                         | T      | ==<br>F                       | T      | P      | T      | ==<br>P          |                  | MAG<br>GMS | ASSAY<br>PPB | REMARKS                                    |
|   | PLS-89    |     |                                                       |                                                   |        |                               |        |        |        |                  | 3                | 33.9       | 47           |                                            |
|   | 189-08    | N   | NO VISIBLE                                            | GOLD                                              |        |                               |        |        |        |                  |                  |            |              |                                            |
|   | 188-09    | N   | <b>75</b> X - 7                                       | 75 <b>15</b> C                                    | 1      |                               |        |        |        |                  | 1                |            |              |                                            |
|   |           |     |                                                       |                                                   |        |                               |        |        |        |                  | 1                | 24.6       | 26           |                                            |
|   | 188-10    | N   | NO VISIBLE                                            | GOLD                                              |        |                               |        |        |        |                  |                  |            |              |                                            |
|   | 188-11    | N   | NO VISIBLE                                            | GOLD                                              |        |                               |        |        |        |                  |                  |            |              |                                            |
|   | 189-12    | Tu  | NG VISIBLE                                            | GOLD                                              |        |                               |        |        |        |                  |                  |            |              |                                            |
| _ | 188-13    | Y   | 25 X 5<br>50 X 7                                      | 25 5 0<br>50 8 0<br>75 13 0<br>75 15 0<br>90 18 0 |        | Perch. Januar perch. Specific |        | i      |        |                  | 1<br>1<br>1<br>1 |            |              | EST. 40% PYRITE                            |
|   |           |     |                                                       |                                                   |        |                               |        |        |        |                  | 5                | 25.4       | 84           |                                            |
|   | 189-14    | N   | NO VISIBLE                                            | GOLD                                              |        |                               |        |        |        |                  |                  |            |              |                                            |
|   | 188-15    | N   | 225 X 37                                              | 5 54 C                                            | 1      |                               |        |        |        |                  | 1                |            |              |                                            |
|   |           |     |                                                       |                                                   |        |                               |        |        |        |                  | 1                | 50.7       | 719          |                                            |
|   | 198-14    | N   | NO VISIBLE                                            | GOLD                                              |        |                               |        |        |        |                  |                  |            |              |                                            |
|   | 188-17    | И   | 50 X 50                                               | 0 10 0                                            | 1      |                               |        |        |        |                  | i                |            |              |                                            |
|   |           |     |                                                       |                                                   |        |                               |        |        |        |                  | 1                | 26.2       | 7            |                                            |
|   | 196-19    | Y   | NO VISIBLE (                                          | GOLD                                              |        |                               |        |        |        |                  |                  |            |              | EST. 50% PYRITE                            |
|   | 189-19    | Ý   | 50 X 75                                               | 5 13 C                                            |        | 1                             |        |        |        |                  | į                |            | į            | 500 GRAINS ARSENDPYRITE<br>EST. 50% PYRITE |
|   |           |     |                                                       |                                                   |        |                               |        |        |        |                  | 1                | 38.9       | 2            | 500 GRAINS ARSENDPYRITE                    |
|   | 190-01    | Y   | 25 X 25<br>25 X 50<br>50 X 50<br>50 X 75<br>125 X 150 | ) 10 C<br>) 10 C<br>5 13 C                        |        | 1                             |        |        |        | 2<br>2<br>2<br>1 | 2<br>3<br>2<br>1 |            | i            | EST. 70% PYRITE                            |
|   |           |     |                                                       |                                                   |        |                               |        |        |        |                  | 9                | 22.8       | 148          |                                            |

#### -------

|   | MIPL5MAR.       |            | k:TNIOO              | 10         |              |       | ŀ      | NUMBER | R OF ( | RAINS      |        |       |              |                 |
|---|-----------------|------------|----------------------|------------|--------------|-------|--------|--------|--------|------------|--------|-------|--------------|-----------------|
|   |                 |            | NINGG                | 12         |              | ABRAD |        |        |        |            |        |       | CALC V.G     | i <b>.</b>      |
|   | SAMPLE #        |            | ED<br>DIAMETI        | ΞF:        | THICKNESS    |       |        |        |        | =====<br>T | =====  |       | ASSAY<br>PPB | REMARKS         |
|   | PLS-59          |            |                      |            |              |       |        |        |        |            |        |       |              |                 |
|   | 191 <b>-</b> 01 | V          | <b>25</b> %          | ne.        | 8.5          |       |        |        |        |            |        |       |              |                 |
|   | 171.01          | i          | 50 X                 | 75         | 13 C         | 1     |        |        | 1      |            | 1      |       |              | EST. 15% PYRITE |
|   |                 |            | <b>5</b> 0 X<br>75 X |            | 15 C<br>18 C |       |        |        | 1<br>1 |            | 1<br>1 |       |              |                 |
|   |                 |            | 100 X                | 125        | 18 C         | 1     |        |        |        |            | 1      |       |              |                 |
|   |                 |            |                      |            |              |       |        |        |        |            | 5      | 20.7  | 49           |                 |
|   | 192-01          | Y          | 25 X                 |            | 8 C          |       | 2      |        |        |            | 2<br>2 |       |              | EST. 15% PYRITE |
|   |                 |            | 50 X<br>50 X         | 50<br>75   | 10 C<br>13 C |       | 2<br>i |        | 2      |            | 2<br>3 |       |              |                 |
|   |                 |            | 50 X                 | 100        | 15 C         | 1     | •      |        | -      |            | 1      |       |              |                 |
|   |                 |            | 75 X<br>7 <b>5</b> X | 100<br>200 | 18 C<br>27 C | 1     |        |        |        |            | 1      |       |              | ٠.              |
| _ |                 |            |                      |            |              |       |        |        |        |            | 10     | 33.4  | 214          |                 |
|   | 107_01          | £.i        | 50 Y                 | <b>5</b> 0 | 1A P         | ,     |        |        |        |            |        | J.).# | 214          |                 |
|   | 170TV1          | 19         | UV A                 | ا)ل        | 10 0         | 1     |        |        |        |            | 1      |       |              |                 |
|   |                 |            |                      |            |              |       |        |        |        |            | İ      | 9.0   | 21           |                 |
|   | <b>193-</b> 02  | N          | 125 X                | 150        | 27 C         | 1     |        |        |        |            | 1      |       |              |                 |
|   |                 |            |                      |            |              |       |        |        |        |            | 1      | 23.7  | 161          |                 |
|   | 193-03          | N          | NO VISIBL            | E 60i      | _D           |       |        |        |        |            |        |       |              |                 |
|   | 193-04          | N          | NO VISIBL            | E GOL      | .D           |       |        |        |        |            |        |       |              |                 |
|   | 193-05          | N          | NO AISIBF            | E GOL      | _D           |       |        |        |        |            |        |       |              |                 |
|   | 193-06          | N          | 50 X                 | 100        | 15 C         | i     |        |        |        |            | 1      |       |              |                 |
|   |                 |            |                      |            |              |       |        |        |        |            | 1      | 14.2  | 45           |                 |
|   | 193-07          | N          | 100 X                | 150        | 25 C         | 1     |        |        |        |            | 1      |       |              |                 |
|   |                 |            |                      |            |              |       |        |        |        |            | 1      | 12.7  | 228          |                 |
| • | 193-08          | N          | NO VISIBLE           | E GOL      | .D           |       |        |        |        |            | -      |       | 225          |                 |
|   | 1 <b>9</b> 3-09 | N          | 75 X 1               | .50        | 22 C         | 1     |        |        |        |            | 1      |       |              |                 |
|   |                 |            |                      |            | <b>-</b> _   | -     |        |        |        |            |        | 10.5  | 4.05         |                 |
|   | 193-10          | ħ <i>i</i> | NO VISIBLE           | , en       | Б            |       |        |        |        |            | 1      | 19.5  | 109          |                 |
|   | 170 10          | 1.4        | HO VIOIDED           | OUL        | D            |       |        |        |        |            |        |       |              |                 |

#### ------

| MIPL5MAR.U     |     | √INGS 12                                        |                              |          | ١ | NUM | IBER ( | OF G | RAINS   |             |      |                    |                 |
|----------------|-----|-------------------------------------------------|------------------------------|----------|---|-----|--------|------|---------|-------------|------|--------------------|-----------------|
| SAMPLE #       |     |                                                 |                              | ABRADE   |   |     | REGUL  |      | DELICAT |             |      | CALC V.G.<br>ASSAY |                 |
|                | Y/N | DIAMETER TH                                     | (CKNESS                      | T        | P |     | T      | P    |         | 5           | GMS  |                    | REMARKS         |
| <b>5</b> 78-80 |     |                                                 |                              |          |   |     |        |      |         |             |      |                    |                 |
| 173-11         | N   | NO VISIBLE GOLD                                 |                              |          |   |     |        |      |         |             |      |                    |                 |
| 193-12         | N   | NO VISIBLE GOLD                                 |                              |          |   |     |        |      |         |             |      |                    |                 |
| 194-01         | Y   | 75 X 125<br>100 X 150<br>125 X 175<br>150 X 225 | 75 M<br>50 M<br>29 C<br>36 C | <u>1</u> | 1 | -   |        |      | ;       | 1<br>1<br>1 |      |                    | EST. 15% PYRITE |
|                |     |                                                 |                              |          |   |     |        |      |         | 4           | 27.0 | 958                |                 |
| 194-02         | N   | NO VISIBLE GOLD                                 |                              |          |   |     |        |      |         |             |      |                    |                 |
| 194-03         | N   | NO VISIBLE GOLD                                 |                              |          |   |     |        |      |         |             |      |                    |                 |

| MIPLIAPR.        |    |                                                    |                            |             | į        | NUMBER         | OF G      | RAINS  |    |                  |      |              |                 |
|------------------|----|----------------------------------------------------|----------------------------|-------------|----------|----------------|-----------|--------|----|------------------|------|--------------|-----------------|
|                  |    | NINSE                                              | Ć                          | ABRADE      | ED       | IRREGL         | <br>JLAR  | DELICA | TE | TOTAL            | NON  | CALC V.6     | ı               |
| SAMPLE #         |    | ED<br>DIAMETER                                     | THICKNESS                  | ======<br>T | ===<br>P | <b>====</b> == | ====<br>P | T      | D  | =====            |      | assay<br>Ppb | REMARKS         |
| PLE-89<br>194-04 | Ņ  | ND VISIBLE                                         | GOLD                       |             |          |                |           |        |    |                  |      |              |                 |
| 194-05           | N  | NC VISIBLE                                         | GOLD                       |             |          |                |           |        |    |                  |      |              |                 |
| 194-05           | N  | NO VISIBLE                                         | 60LD                       |             |          |                |           |        |    |                  |      |              |                 |
| <b>19</b> 4-07   | N  | 200 X 37                                           | 75 <b>5</b> 2 C            | 1           |          |                |           |        |    | 1                |      |              |                 |
|                  |    | •                                                  |                            |             |          |                |           |        |    | 1                | 13.5 | 2393         |                 |
| <b>1</b> 95-01   | N  | NO VISIBLE                                         | GOLD                       |             |          |                |           |        |    |                  |      |              |                 |
| 195-02           | N  | 100 X 10                                           | 00 20 C                    | 1           |          |                |           |        |    | 1                |      |              |                 |
| _                |    |                                                    |                            |             |          |                |           |        |    | 1                | 34.8 | 43           |                 |
| 195-03           | N  | NO VISIBLE                                         | GOLD                       |             |          |                |           |        |    |                  |      |              |                 |
| 155-04           | N  | NO VISIBLE                                         | GOLD                       |             |          |                |           |        |    |                  |      |              |                 |
| 195-05           | ħ  | NO VISIBLE                                         | 60LD                       |             |          |                |           |        |    |                  |      |              |                 |
| 195 <b>-</b> 0a  | V. | 25 X 5<br>50 X 5<br>50 X 7<br>100 X 12<br>200 X 22 | 0 10 C<br>5 13 C<br>5 22 C | the child   | 2        |                |           |        |    | 2<br>1<br>1<br>1 |      |              | EST. 10% PYRITE |
| -                |    |                                                    |                            |             |          |                |           |        |    | 6                | 24.1 | 662          |                 |
| 195±(*           | N  | NO VISIBLE                                         | GOLD                       |             |          |                |           |        |    |                  |      |              |                 |
| 195-06           | N  | NO VISIBLE (                                       | GOLD                       |             |          |                |           |        |    |                  |      |              |                 |
| ; <b>05-</b> (); | N  | NO VISIBLE                                         | 60LD                       |             |          |                |           |        |    |                  |      |              |                 |
| 195-10           | Y  | 100 X 125<br>200 X 275                             | 3 22 C<br>5 44 C           |             |          |                |           |        |    | 1                |      |              | EST. 3% PYRITE  |
|                  |    |                                                    |                            |             |          |                |           |        |    | 2                | 14.7 | 1417         |                 |
| 195-11           | N  | 25 X 50                                            | 90                         | 1           |          |                |           |        |    | 1                |      |              |                 |
|                  |    |                                                    |                            |             |          |                |           |        |    | 1                | 10.1 | 8            |                 |
| 195-12           | N  | NO VISIBLE 6                                       | 30LD                       |             |          |                |           |        |    |                  |      |              |                 |

#### -------

|   | MIPLIAPR.       |    | VNINGS            |                          |   | ı        | MUMB( | ER OF        | GRAINS    |           |          |            |              |                                 |
|---|-----------------|----|-------------------|--------------------------|---|----------|-------|--------------|-----------|-----------|----------|------------|--------------|---------------------------------|
|   |                 |    |                   | c                        |   |          |       |              |           |           |          |            | CALC V.6     |                                 |
|   | SAMPLE #        |    | VED<br>V DIAMETER | THICKNESS                | T | P        | ===:  | =====<br>Г Р | ====<br>T | ====<br>F | ====     | MAG<br>GMS | ASSAY<br>PPB | REMARKS                         |
|   | FL3-8°          |    |                   |                          |   |          |       |              |           |           |          |            |              |                                 |
|   | 195+13          | li | WO VISIBLE        | 60LD                     |   |          |       |              |           |           |          |            |              |                                 |
|   | 176-01          | N  | MG VISIBLE        | GOLI                     |   |          |       |              |           |           |          |            |              |                                 |
|   | 195-02          | Ŋ  | 50 x 1            | 25 18 C                  | i |          |       |              |           |           | 1        |            |              |                                 |
|   |                 |    |                   |                          |   |          |       |              |           |           | <u> </u> | 11.4       | 89           |                                 |
|   | [ <b>5</b> 7-0] | N  | NO VISIBLE        | GOLD                     |   |          |       |              |           |           |          |            |              |                                 |
|   | 197-02          | Υ  | 25 X 5            |                          |   |          |       |              |           |           |          |            |              | EST. 15% PYRITE                 |
|   |                 |    | 150 X 2           | 00 34 C                  | 1 |          |       |              |           |           | 1        |            |              |                                 |
|   |                 |    |                   |                          |   |          |       |              |           |           | 2        | 10.9       | 717          |                                 |
|   | 197-03          | N  | NO VISIBLE        | GOLD                     |   |          |       |              |           |           |          |            |              |                                 |
|   | 197-04          | N  | NO VISIBLE        | GOLD                     |   |          |       |              |           |           |          |            |              |                                 |
|   | 197-05          | ٨  | NO VIBIBLE        | GOLD                     |   |          |       |              |           |           |          |            |              |                                 |
|   | 197-0è          | N  | 425 X <b>5</b> 0  | )0 <b>76</b> C           | 1 |          |       |              |           |           | i        |            |              |                                 |
|   |                 |    |                   |                          |   |          |       |              |           |           | 1        | 15.6       | 7788         |                                 |
|   | 198-01          | N  | NO VISIBLE        | GOLD                     |   |          |       |              |           |           |          |            |              |                                 |
|   | 198-02          | N  | NO VISIBLE        | GOLD                     |   |          |       |              |           |           |          |            |              |                                 |
|   | 198-03          | Y  | 25 × 5            | i 8 C                    |   | 1        |       |              |           |           | 1        |            |              | EST. 5% PYRITE                  |
|   |                 |    | 50 X 5<br>50 X 7  | 90 10 <b>C</b><br>5 13 C |   | i        |       | 3            |           | 2         | 2<br>4   |            |              |                                 |
|   |                 |    | 50 X 10           | 0 15 0                   |   |          |       | -            | 1         |           | 1        |            |              |                                 |
|   |                 |    |                   |                          |   |          |       |              |           |           | 8        | 21.7       | 120          |                                 |
|   | 198-04          | ¥  | 100 X 15          | 0 25 C                   | 4 |          |       |              |           |           | 1        |            | -            | EST. 5% PYRITE                  |
|   |                 |    |                   |                          |   |          |       |              |           |           | i        | 25.4       | 110          |                                 |
| - | 199-01          | N  | NO VISIBLE        | GOLP                     |   |          |       |              |           |           |          |            |              |                                 |
|   | 179-02          | N  | NG VISIBLE (      | 30LD                     |   |          |       |              |           |           |          |            |              |                                 |
|   | 199-07          | N  | NO VISIBLE (      | GOLD                     |   |          |       |              |           |           |          |            |              |                                 |
|   | 200-01          |    | 75 X 100          | ) 18.0                   |   | <u> </u> |       |              |           |           | <u> </u> |            | 5            | 197. 15% <b>P</b> yrit <b>e</b> |
|   |                 |    |                   |                          |   |          |       |              |           |           | _        |            | _            | eerrawa tootata                 |

\_\_\_\_\_

|   | MIPL1APA,<br>TOTAL # O |          | MOG       | £     |                 |                                        | ļ           | NUME | EP (      | OF G | RAINS       |          |          |            |                 |                 |
|---|------------------------|----------|-----------|-------|-----------------|----------------------------------------|-------------|------|-----------|------|-------------|----------|----------|------------|-----------------|-----------------|
|   |                        |          |           |       |                 |                                        |             |      |           |      |             |          |          |            | CALC V.G.       |                 |
| ì | BAMPLE E               |          |           |       | THICKNESS       | ************************************** | :==<br>F    |      | ===:<br>T | F    | <b>====</b> | ===<br>P |          | MAG<br>GMS | ASSAY<br>PPB    | REMARKS         |
|   | PLS-39                 |          |           |       | 22 C<br>25 C    |                                        |             |      |           |      |             |          | bard. Ph |            |                 |                 |
|   |                        |          |           |       |                 |                                        |             |      |           |      |             |          | 3        | 30.8       | 196             |                 |
|   | 200-02                 | ¥        | 25 X      | 50    | 50<br>80<br>130 |                                        | 1<br>1<br>1 |      |           |      |             |          | 1        |            |                 | EST. 10% PYRITE |
|   |                        |          |           |       |                 |                                        |             |      |           |      |             |          | 3        | 32.6       | 15              |                 |
|   | 200-03                 | N        | NG VISIBU | .E 80 | LD              |                                        |             |      |           |      |             |          |          |            |                 |                 |
|   | 200-04                 | NI<br>iv | NO VISIEL | .E 60 | LD              |                                        |             |      |           |      |             |          |          |            |                 |                 |
| ` | 201-01                 | Νį       | 25 X      | 75    | 10 C            | 1                                      |             |      |           |      |             |          | 1        |            |                 |                 |
|   |                        |          |           |       |                 |                                        |             |      |           |      |             |          | 1        | 28.4       | 7               |                 |
|   | 202-01                 | N        | 75 X      | 150   | <b>22</b> C     | i                                      |             |      |           |      |             |          | 1        |            |                 |                 |
|   |                        |          |           |       |                 |                                        |             |      |           |      |             |          | 1        | 30.9       | 69              |                 |
|   | 202+02                 | ħi       | 150 X     | 225   | 36 C            | 1                                      |             |      |           |      |             |          | 1        |            |                 |                 |
|   |                        |          |           |       |                 |                                        |             |      |           |      |             |          | 1        | 25.1       | <del>37</del> 7 |                 |
|   | 202-03                 | N M      | 40 VISIBL | E 60  | LD              |                                        |             |      |           |      |             |          |          |            |                 |                 |

BOLD CLASEIFICATION

-----

| MIPLZAPA.)<br>TOTAL # 67 | -              | MINGS              | 7         |            |   | NUMBER OF | ان | KAINS<br> |   |      |              |               |
|--------------------------|----------------|--------------------|-----------|------------|---|-----------|----|-----------|---|------|--------------|---------------|
| SAMPLE *                 |                |                    | ,         | ABRADE     |   |           |    |           |   |      | CALC V.6     |               |
| omurus a                 |                |                    | THICKNESS | =====<br>T |   |           |    | T P       |   |      | ASSAY<br>PPB | REMARKS       |
| b_5-8c                   |                |                    |           |            |   |           |    |           |   |      |              |               |
| 200 <del>-</del> 01      | Ħ              | 100 % 1            | 75 75 M   | 1          |   |           |    |           | 1 |      |              |               |
|                          |                |                    |           |            |   |           |    |           | 1 | 40.4 | 263          |               |
| 203-02                   | N              | NC VISIELE         | GOLD      |            |   |           |    |           |   |      |              |               |
| 204-01                   | λ <sub>i</sub> | NO VISIBLE         | GOLD      |            |   |           |    |           |   |      |              |               |
| 205-01                   | N              | NO VISIBLE         | GCLD      |            |   |           |    |           |   |      |              |               |
| 205-01                   | N              | NO VISIBLE         | GOLT)     |            |   |           |    |           |   |      |              |               |
| 206-02                   | Ņ              | MO VISIBLE         | GOLD      |            |   |           |    |           |   |      |              |               |
| 207-01                   | N              | NO VISIBLE         | GOLD      |            |   |           |    |           |   |      |              |               |
| 207-02                   | Υ              | 50 X               | 75 13 C   | 1          |   |           |    |           | 1 |      |              | EST. 2% PYRIT |
|                          |                | 50 X 10<br>75 X 11 |           | 1          |   |           |    |           | Í |      |              |               |
|                          |                | 100 × 2            |           | i          | 1 |           |    |           | 1 |      |              |               |
|                          |                |                    |           |            |   |           |    |           | 4 | 34.0 | 581          |               |
| 207-45                   | by.            | MO VISIBLE         | SOLD      |            |   |           |    |           |   |      |              |               |
| <b>267-</b> 04           | Ħ              | NO VIEIBLE         | GGLD      |            |   |           |    |           |   |      |              |               |
| 207-05                   | ħ.             | 25 ) 1(            | 00 13 0   | <u> </u>   |   |           |    |           | 1 |      |              |               |
|                          |                |                    |           |            |   |           |    |           |   | 57 A | 14           |               |
| 747444                   | £:             | 7E V 38            | XO 50 M   |            |   |           |    |           |   | 4/14 | 14           |               |
| 4417TVB                  | Į2             | /a % 1%            | AC QUIT   | i          |   |           |    |           | 1 |      |              |               |
|                          |                |                    |           |            |   |           |    |           | 1 | 32.7 | 88           |               |
| 207-07                   | ħ;             | NO VISIBLE         | SCLD      |            |   |           |    |           |   |      |              |               |
| 207-0E                   | N              | NO VISIBLE         | GOLD      |            |   |           |    |           |   |      |              |               |
| 207-09                   | M              | NO VISIBLE         | GGLD      |            |   |           |    |           |   |      |              |               |
| 207-10                   | N              | NO VISIBLE         | 60LD      |            |   |           |    |           |   |      |              |               |
| 208-01                   | V,             | 125 X 17           | 5 29 C    | i          |   |           |    |           | 4 |      |              |               |
|                          |                |                    |           |            |   |           |    |           | 1 | 25.8 | 191          |               |

04/11/89

## COLD CLASSIFICATION

### 

| ¥. | TPLOAPS.                 | WRI          |         |               | NUMBER OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PE |              | ħ    | NUMBER | OF G | RAINS       |         |                                           |                    |                |
|----|--------------------------|--------------|---------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|--------|------|-------------|---------|-------------------------------------------|--------------------|----------------|
| 7  | 07AL # 0                 | e dan        | h[N     | 38            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ABR          | ADED | IRREGU | LAR  | DELICAT     | E TOTAL | NON<br>- mag                              | CALC V.E.<br>ASSAY |                |
| 5  | AMPLE #                  | PARN<br>Y/N  | EI<br>! | DIAMETER      | THICKNES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |      |        |      | ======<br>T |         | GMS                                       |                    | REMARKS        |
|    | <b>5</b> _3-39<br>203-02 |              | Ş       | O VIEIELE     | 60LĪ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |      |        |      |             |         |                                           |                    |                |
|    | 205-03                   | W            | ,       | MI VIBIBLE    | GOLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |      |        |      |             |         |                                           |                    |                |
|    | 208-04                   | N            | į       | NO VISIELE    | 60LD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |      |        |      |             |         |                                           |                    |                |
|    | 208-05                   | 1            | :       | NO VISIBLE    | 30LD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |      |        |      |             |         |                                           |                    |                |
|    | 208-05                   |              |         | NO VISIBLE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |        |      |             |         |                                           |                    |                |
|    | 208-07                   | 7 ħ          | į       | 200 Y :       | 273 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 C          | 1    |        |      |             |         | 1                                         | 13.3 140           |                |
|    | ~                        |              |         | NO VISIBL     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |        |      |             |         | i                                         |                    |                |
|    | <b>2</b> 07 <b>-</b> 0   | Ç i          | K}      | 100 X         | 150 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 C          | 1    |        |      |             |         | 1<br>                                     | 21.3 13            | <del>56</del>  |
|    | 208-1                    | .0           | N       | NO VISIB      | LE GOLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |      |        |      |             |         |                                           |                    |                |
|    | 205-0                    | _            |         | NO VISIE      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |        |      |             |         | i                                         |                    | EST. 3% PYRITE |
|    | <u> 20</u> 9-0           | 92           | Ý       | 25 X<br>100 X | 50<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15 C<br>20 C | 4    |        | 1    |             |         | 1 2                                       | 33.1               | <del></del>    |
|    |                          |              |         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |        |      |             |         | i                                         | WOF 4              |                |
|    | 209-                     | 07           | A       | 75 X          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 C         | 1    |        |      |             |         |                                           | 28.9               | 35             |
|    | 7() <del>2</del> -       | -04          | N       | 150 X         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 C         | Pro- |        |      |             |         | 1                                         |                    |                |
|    | ± v /                    |              |         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |        |      |             | •       | 1                                         | 27.5               | 37             |
|    | ?() <b>?</b>             | <b>-</b> :35 | ħ)      | MO VISI       | BLE GOLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |      |        |      |             |         |                                           |                    |                |
| ~  | 209                      | -05          | N       | 200 X         | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44 C         | 1    |        |      |             |         | 1<br>———————————————————————————————————— |                    | 773            |
|    | 209                      | <b>-</b> 07  | ţ       | : NO VIS      | IBLE GOLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |      |        |      |             |         |                                           |                    |                |
|    | 209                      | -08          | ţ,      | ( NO VIS      | IELE GOLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |      |        |      |             |         |                                           |                    |                |

-----

|   | MIPLZAPA.<br>TOTAL # 3 |         |                                                | 7                      |                                             |        | 1        | NUMB | ER OF       | GRA | AINS |              |             |            |              |      |                                      |
|---|------------------------|---------|------------------------------------------------|------------------------|---------------------------------------------|--------|----------|------|-------------|-----|------|--------------|-------------|------------|--------------|------|--------------------------------------|
|   |                        |         |                                                |                        |                                             | ABRADE | D        |      |             |     |      |              |             |            | CALC V.G     |      |                                      |
|   | BAMPLE #               |         |                                                |                        | THICKNESS                                   | 7      | ===<br>P | ===  | T F         | =   | T 6  | : <b>:</b> : |             | MAG<br>GMS | ASSAY<br>PPB | REMA | ARKS                                 |
|   | PLS-30                 |         |                                                |                        |                                             |        |          |      |             |     |      |              |             |            |              |      |                                      |
|   | <u> 209-09</u>         | ¥       | 75 X                                           | 100                    | 8 C<br>50 M<br>29 C                         | ĺ      |          |      | 1           |     |      |              | 1 1         |            |              | EST. | 2% PYRITE                            |
|   |                        |         |                                                |                        |                                             |        |          |      |             |     |      | •            | 3           | 22.6       | 349          |      |                                      |
|   | 209-10                 | V       | 25 x<br>25 x<br>50 X<br>50 x<br>75 x<br>100 x  | 50<br>50<br>75<br>100  | 18 C<br>13 C                                | 1      | 1 1      |      | 4<br>1<br>1 |     | 1    |              | 10 1 10 1   |            |              | EST. | 2% PYRITE                            |
|   |                        |         |                                                |                        |                                             |        |          |      |             |     |      | -            | 13          | 24.8       | 278          |      |                                      |
| _ | 209-11                 | ¥       |                                                | 50                     | 5 C<br>10 C<br>18 C                         |        | 1        |      | 3<br>1<br>1 |     |      |              | 3<br>2<br>1 |            |              | EST. | 2% PYRITE                            |
|   |                        |         |                                                |                        |                                             |        |          |      |             |     |      |              | 6           | 24.0       | 61           |      |                                      |
|   | 209-12                 | ¥       |                                                | 75                     | 8 8<br>13 8<br>20 0                         |        | 3        |      | i           |     |      |              | 1<br>3<br>1 |            |              |      | 40% PYRITE<br>50 GRAINS ARSENDPYRITE |
|   |                        |         |                                                |                        |                                             |        |          |      |             |     |      | -            | 5           | 44.3       | 61           |      |                                      |
|   | 210-01                 | ###<br> | 150 /                                          | 175                    | 31 C                                        | 1      |          |      |             |     |      |              | 1           |            |              |      |                                      |
|   |                        |         |                                                |                        |                                             |        |          |      |             |     |      | _            | 1           | 27.7       | 225          |      |                                      |
|   | 210-02                 | ¥       | 25 X<br>50 X<br>75 X<br>75 X<br>100 X<br>175 X | 50<br>75<br>125<br>150 | 8 C<br>10 C<br>15 C<br>20 C<br>25 C<br>40 S | 1      | 2 2      |      |             |     | i    |              | 1222        |            |              | EST. | 5% PYRITE                            |
|   |                        |         |                                                |                        |                                             |        |          |      |             |     |      | _            | 8           | 29.2       | 675          |      |                                      |

|   | MIPL3APR.  |               | THE           | _          |              |        | ļ        | NUMBE     | R OF          | GF     | RAINS  |   |        |            |              |                 |  |
|---|------------|---------------|---------------|------------|--------------|--------|----------|-----------|---------------|--------|--------|---|--------|------------|--------------|-----------------|--|
|   | TOTAL # OF |               |               | 5          |              | ABRADE | D        | IRRE      | GULAF         | 7      | DELICA |   |        |            | CALC V.6     |                 |  |
|   | SAMPLE #   | PANNET<br>Y/N | D<br>Diameti  | ER         | THICKNESS    | T      | ===<br>P | ====<br>T | ====<br> <br> | =<br>> | T      | P |        | MAG<br>GMS | assay<br>PPB | REMARKS         |  |
|   | PLS-89     |               |               |            |              |        |          |           |               |        |        |   |        |            |              |                 |  |
|   | 210-03     | N             | <b>5</b> 0 X  | <b>5</b> 0 | 10 C         | 1      |          |           |               |        |        |   | 1      |            |              |                 |  |
|   |            |               |               |            |              |        |          |           |               |        |        |   | 1      | 23.4       | 8.213141     |                 |  |
|   | 210-04     | N             | NO VISIB      | LE 60      | OLD          |        |          |           |               |        |        |   |        |            |              |                 |  |
|   | 210-05     | N             | 50 X          | 100        | 15 C         | 1      |          |           |               |        |        |   | 1      |            |              |                 |  |
|   |            |               |               |            |              | •      |          |           |               |        |        |   |        | 19.3       | 33           |                 |  |
|   |            |               |               |            |              |        |          |           |               |        |        |   |        | 17.3       | 33           |                 |  |
|   | 210-06     | N             | 125 X         | 150        | 27 C         | 1      |          |           |               |        |        |   | 1      |            |              |                 |  |
|   |            |               |               |            |              |        |          |           |               |        |        |   | 1      | 13.5       | 283          |                 |  |
| _ | 210-07     | N             | NO VISIB      | LE 60      | ILD          |        |          |           |               |        |        |   |        |            |              |                 |  |
|   | 210-08     | N             | NO VISIB      | LE GO      | LD           |        |          |           |               |        |        |   |        |            |              |                 |  |
|   | 210-09     | N             | 100 X         | 100        | 20 C         | 1      |          |           |               |        |        |   | 1      |            |              |                 |  |
|   |            |               |               |            |              |        |          |           |               |        |        |   | 1      | 22.5       | 67           |                 |  |
|   | 210-10     | N             | 125 X         | 125        | 25 C         | 1      |          |           |               |        |        |   | 1      |            |              |                 |  |
|   | 210 10     | .,            | 120 /         | 120        | 20 0         | •      |          |           |               |        |        |   |        | 00 E       | 444          |                 |  |
|   |            |               |               |            |              |        |          |           |               |        |        |   | 1      | 20.5       | 141          |                 |  |
|   | 210-11     | N             | NO VISIB      | LE 60      | ILD          |        |          |           |               |        |        |   |        |            |              |                 |  |
|   | 210-12     | Y             | NO VISIB      | LE GO      | HLD          |        |          |           |               |        |        |   |        |            |              | EST. 75% PYRITE |  |
|   | 210-13     | γ             | NO VISIB      | LE 60      | ILD          |        |          |           |               |        |        |   |        |            |              | EST. 75% PYRITE |  |
|   | 211-01     | Y             | 50 X          |            | 13 C         |        | 1        |           |               |        |        |   | 1      |            |              | EST. 10% PYRITE |  |
|   |            |               | 75 X<br>125 X |            | 20 C<br>27 C |        |          |           |               |        |        |   | 1<br>1 |            |              |                 |  |
|   |            |               |               |            |              |        |          |           |               |        |        |   | 3      | 26.3       | 217          |                 |  |
|   | 211-02     | N             | NO VISIB      | ECO        | ם וו         |        |          |           |               |        |        |   | •      | 20.0       |              |                 |  |
| _ |            |               |               |            |              |        |          |           |               |        |        |   |        |            |              |                 |  |
|   | 211-03     | N             | 75 X          | 125        | 20 C         | 1      |          |           |               |        |        |   | 1      |            |              |                 |  |
|   |            |               |               |            |              |        |          |           |               |        |        |   | 1      | 17.3       | 87           |                 |  |
|   | 211-04     | Y             | 25 X<br>25 X  | 25<br>50   | 5 C<br>8 C   |        | 1        |           | 1             | l      |        |   | 1<br>1 |            |              | EST. 60% PYRITE |  |
|   |            |               | 50 X          | 50         | 10 C         |        | 1        |           |               |        |        |   | 1      |            |              |                 |  |
|   |            |               |               |            |              |        |          |           |               |        |        |   |        |            |              |                 |  |

NUMBER OF GRAINS

#### GOLD CLASSIFICATION

MIPLJAPR.WR1

------

|   | TOTAL # 0 |        | THICK        | _        |              |        | P      | HIDER                                  | ur c | MHINO |   |             |            |              |         |
|---|-----------|--------|--------------|----------|--------------|--------|--------|----------------------------------------|------|-------|---|-------------|------------|--------------|---------|
|   | TOTAL # 0 |        |              | 5        |              | ABRADE | D      |                                        |      | DELIC |   |             |            | CALC V.G.    | •       |
|   | SAMPLE #  | PANNE! |              | ER       | THICKNESS    | T      | P      | ************************************** |      |       | P | == <b>2</b> | MAG<br>GMS | ASSAY<br>PPB | REMARKS |
|   | PLS-89    |        |              | _        |              |        |        |                                        |      |       |   |             |            |              |         |
|   |           |        | 75 X<br>75 X | 75<br>75 | 15 C<br>75 M |        | i<br>i |                                        |      |       |   | 1<br>1      |            |              |         |
|   |           |        | 100 X        | 125      | 22 C         |        |        |                                        | 1    |       |   | 1           |            |              |         |
|   |           |        |              |          |              |        |        |                                        |      |       |   | 6           | 39.4       | 158          |         |
|   | 212-01    | N      | NO VISIB     | LE GO    | ILD          |        |        |                                        |      |       |   |             |            |              |         |
|   | 212-02    | N      | NO VISIB     | LE 60    | LD           |        |        |                                        |      |       |   |             |            |              |         |
|   | 212-03    | N      | 75 X         | 125      | 20 C         | 1      |        |                                        |      |       |   | 1           |            |              |         |
|   |           |        |              |          |              |        |        |                                        |      |       |   | 1           | 19,2       | 78           |         |
| _ | 212-04    | N      | NO VISIB     | LE GO    | )LD          |        |        |                                        |      |       |   |             |            |              |         |
|   | 212-05    | N      | NO VISIB     | LE 60    | LD           |        |        |                                        |      |       |   |             |            |              |         |
|   | 212-06    | N      | NO VISIB     | LE 60    | )LD          |        |        |                                        |      |       |   |             |            |              |         |
|   | 212-07    | N      | NO VISIB     | LE 60    | LD           |        |        |                                        |      |       |   |             |            |              |         |
|   | 212-08    | N      | 50 X         | 100      | 15 C         | 1      |        |                                        |      |       |   | 1           |            |              |         |
|   |           |        |              |          |              |        |        |                                        |      |       |   | 1           | 32.3       | 20           |         |
|   | 212-09    | N      | NO VISIB     | LE 60    | ILD          |        |        |                                        |      |       |   |             |            |              |         |
|   | 212-10    |        | NO VISIB     |          |              |        |        |                                        |      |       |   |             |            |              |         |
|   |           |        | NO VISIB     |          |              |        |        |                                        |      |       |   |             |            |              |         |
|   | 213-01    | N      | NO VISIB     |          |              |        |        |                                        |      |       |   |             |            |              |         |
|   | 213-02    | N      | NO VISIB     |          |              |        |        |                                        |      |       |   |             |            |              |         |
|   |           |        |              |          |              |        |        |                                        |      |       |   |             |            |              |         |
|   | 213-03    | N      | NO VISIB     |          |              |        |        |                                        |      |       |   |             |            |              |         |
| _ | 214-01    | N      | NO VISIB     |          |              |        |        |                                        |      |       |   |             |            |              |         |
|   | 214-02    | N<br>  | NO VISIB     |          |              |        |        |                                        |      |       |   |             |            |              |         |
|   | 214-03    | N      | NO VISIB     |          |              |        |        |                                        |      |       |   |             |            |              |         |
|   | 214-04    | N      | NO VISIB     |          |              |        |        |                                        |      |       |   |             |            |              |         |
|   | 214-05    | N      | NO VISIB     | LE GO    | LD           |        |        |                                        |      |       |   |             |            |              |         |

| MIPLJAPR. | ₩R1      |            |                 |         | ı | NUMBER | OF 6 | RAINS |     |       |      |           |                |
|-----------|----------|------------|-----------------|---------|---|--------|------|-------|-----|-------|------|-----------|----------------|
| TOTAL # O | F PANNII | N6S        | 5               | ABRADED |   | IRREGI | JLAR | DELIC | ATE | TOTAL | NON  | CALC V.G. | •              |
| SAMPLE #  | PANNED   |            |                 | ======  | = |        | ===  | ===== | 222 | ====  |      | ASSAY     |                |
|           | Y/N      | DIAMETER   | THICKNESS       | 5 T     | P | T      | P    | Ť     | P   |       | GMS  | PPB       | REMARKS        |
| PLS-89    |          |            |                 |         |   |        |      |       |     |       |      |           |                |
| 214-06    | Υ        | 25 X       | 50 8 0          | ;       | 1 |        |      |       |     | 1     |      |           | EST. 3% PYRITE |
|           |          | 50 X       | 50 10 0         | ;       | 1 |        |      |       |     | 1     |      |           |                |
|           |          | 50 X       | 75 13 (         | 1       |   |        |      |       |     | 1     |      |           |                |
|           |          |            | 75 <b>5</b> 0 l |         | 1 |        |      |       |     | 1     |      |           |                |
|           |          | 75 X 1     | 100 18 0        | 1       |   |        |      |       |     | 1     |      |           |                |
|           |          |            |                 |         |   |        |      |       |     | 5     | 18.5 | 169       |                |
| 214-07    | N I      | NO VISIBLE | E GOLD          |         |   |        |      |       |     |       |      |           |                |
| 214-08    | N        | 75 X 1     | 00 18 0         | 1       |   |        |      |       |     | 1     |      |           |                |
|           |          |            |                 |         |   |        |      |       |     | 1     | 24.4 | 41        |                |
| 215-01    | N I      | NO VISIBLE | GOLD            |         |   |        |      |       |     |       |      |           |                |
| 215-02    | N        | 100 X 1    | .00 20 0        | 1       |   |        |      |       |     | 1     |      |           |                |
|           |          |            |                 |         |   |        |      |       |     | 1     | 22.8 | 66        |                |
| 215-03    | N i      | NO VISIBLE | 60LD            |         |   |        |      |       |     |       |      |           |                |

|   | MIPL4APR. |              | 7.NOD         | ^          |              |        |          | NUP | iber ( | OF G | RAINS |   |        |            |              |                 |          |
|---|-----------|--------------|---------------|------------|--------------|--------|----------|-----|--------|------|-------|---|--------|------------|--------------|-----------------|----------|
|   | TOTAL # 0 |              |               | 8          |              | ABRADI | ED       | IF  | REGU   | LAR  | DELIC |   |        |            | CALC V.G.    | ı               |          |
|   | SAMPLE #  | PANNE<br>Y/N | D<br>DIAMET   | ER         | THICKNESS    | T      | ===<br>P |     | T      | P    | T     | F | 22522  | MAG<br>6MS | assay<br>PPB | REMARKS         |          |
|   | PLS-89    |              |               |            |              |        |          |     |        |      |       |   |        |            |              |                 |          |
|   | 215-04    | Y            | <b>25</b> X   | 50         |              |        | 1        |     |        |      |       |   | 1      |            |              | EST. 2% PYRITE  |          |
|   |           |              | 50 X          | <b>5</b> 0 |              |        | 1        |     |        |      |       |   | 1      |            |              |                 |          |
|   |           |              | 50 X<br>50 X  | 75<br>75   | 13 C<br>50 M |        | 1        |     |        |      |       |   | 1 1    |            |              |                 |          |
|   |           |              | 75 X          |            |              |        | •        |     |        |      |       |   | 1      |            |              |                 |          |
|   |           |              |               |            |              |        |          |     |        |      |       |   | 5      | 22.0       | 142          |                 |          |
|   | 215-05    | N            | NO VISIE      | LE 6       | OLD          |        |          |     |        |      |       |   |        |            |              |                 |          |
|   | 215-06    | N            | 75 X          | 100        | 18 C         | 1      |          |     |        |      |       |   | 1      |            |              |                 |          |
|   |           |              |               |            |              |        |          |     |        |      |       |   | 1      | 37.8       | 27           |                 |          |
|   | 215-07    | Y            | 125 X         | 125        | 25 C         | 1      |          |     |        |      |       |   | 1      |            |              | EST. 50% PYRITE | <u>:</u> |
|   |           |              |               |            |              |        |          |     |        |      |       |   |        | 51.7       | 56           |                 |          |
|   |           |              |               |            |              |        |          |     |        |      |       |   | •      | J.,        |              |                 |          |
|   | 216-01    | Y            | 50 X          |            |              |        | 1        |     |        |      |       |   | 1      |            |              | EST. 2% PYRITE  |          |
|   |           |              | 75 X<br>100 X |            |              |        |          |     | 1<br>1 |      |       |   | 1<br>1 |            |              |                 |          |
|   |           |              |               |            |              |        |          |     |        |      |       |   |        |            |              |                 |          |
|   |           |              |               |            |              |        |          |     |        |      |       |   | 3      | 35.9       | <b>2</b> 02  |                 |          |
|   | 216-02    | N            | <b>5</b> 0 X  | 100        | 1 <b>5</b> C | 1      |          |     |        |      |       |   | 1      |            |              |                 |          |
|   |           |              |               |            |              |        |          |     |        |      |       |   | 1      | 25.2       | 25           |                 |          |
|   | 216-03    | N            | NO VISIE      | LE G       | OLD          |        |          |     |        |      |       |   |        |            |              |                 |          |
|   | 216-04    | N            | NO VISIB      | LE G       | DLD          |        |          |     |        |      |       |   |        |            |              |                 |          |
|   | 216-05    | N            | NO VISIB      |            |              |        |          |     |        |      |       |   |        |            |              |                 |          |
|   |           |              |               |            |              |        |          |     |        |      |       |   |        |            |              |                 |          |
|   | 216-06    | N            | 125 X         | 125        | 25 C         | 1      |          |     |        |      |       |   | 1      |            |              |                 |          |
|   |           |              |               |            |              |        |          |     |        |      |       |   | 1      | 20.8       | 139          |                 |          |
|   | 216-07    | N            | NO VISIB      | LE G       | DLD          |        |          |     |        |      |       |   |        |            |              |                 |          |
| _ | 216-08    | N            | 75 X          | 125        | 20 C         | 1      |          |     |        |      |       |   | 1      |            |              |                 |          |
|   |           |              |               |            |              |        |          |     |        |      |       |   | 1      | 26.7       | 56           |                 |          |
|   | 216-09    | N            | NO VISIB      | LE GI      | OLD          |        |          |     |        |      |       |   |        |            |              |                 |          |
|   | 216-10    | Y            | 25 X          | 25         | 5 C          | 1      |          |     |        |      |       |   | 1      |            |              | EST. 1% PYRITE  |          |
|   |           |              |               |            |              |        |          |     |        |      |       |   |        |            |              |                 |          |

| MIPL4APR.  |        |               | _     |              |        | ħ  | NUMBE | er of                | GR/ | AINS |   |                                        |            |              |                 |
|------------|--------|---------------|-------|--------------|--------|----|-------|----------------------|-----|------|---|----------------------------------------|------------|--------------|-----------------|
| TOTAL # OF |        |               | 8     |              | ABRADE | ED | IRR   | GULAR                |     |      |   | TOTAL                                  |            | CALC V.G.    |                 |
| SAMPLE #   | PANNE! |               | ER    | THICKNESS    | T      | P  | ===   | г <del>и и и</del> г |     | T    | p | ###################################### | MAG<br>GMS | ASSAY<br>PPB | REMARKS         |
| PLS-89     |        |               |       |              |        |    |       |                      |     |      |   |                                        |            |              |                 |
|            |        | 25 X          | 50    | 8 C          |        |    | 1     | Į.                   |     |      |   | 1                                      |            |              |                 |
|            |        | 50 X<br>75 X  | 75    | 13 C         |        |    |       |                      |     |      |   | 1                                      |            |              |                 |
|            |        | 75 X<br>125 X | 125   | 20 C<br>25 C | 1<br>1 |    |       |                      |     |      |   | 1                                      |            |              |                 |
|            |        | 120 %         | 120   | 25 0         | •      |    |       |                      |     |      |   | <u></u>                                | 19.4       | 251          |                 |
| <b>-</b>   |        |               |       |              |        |    |       |                      |     |      |   |                                        | 17.4       | 251          |                 |
| 216-11     | N      | 50 X          | 50    | 10 C         | 1      |    |       |                      |     |      |   | 1                                      |            |              |                 |
|            |        |               |       |              |        |    |       |                      |     |      |   | 1                                      | 26.0       | 7            |                 |
| 216-12     | N      | NO VISIB      | LE GC | ILD          |        |    |       |                      |     |      |   |                                        |            |              |                 |
| 216-13     | Y      | 25 X          | 25    | 5 C          |        | 1  |       |                      |     |      |   | 1                                      |            |              | EST. 60% PYRITE |
|            |        |               |       |              |        |    |       |                      |     |      |   | 1                                      | 33.7       | 1            |                 |
| 217-01     | N      | <b>5</b> 0 X  | 50    | 10 C         | 1      |    |       |                      |     |      |   | 1                                      |            |              |                 |
|            |        |               |       |              |        |    |       |                      |     |      |   | 1                                      | 23.1       | 8            |                 |
| 217-02     | N      | NO VISIB      | LE 60 | LD           |        |    |       |                      |     |      |   |                                        |            |              |                 |
| 217-03     | N      | 150 X         | 225   | 100 M        | 1      |    |       |                      |     |      |   | 1                                      |            |              |                 |
|            |        |               |       |              |        |    |       |                      |     |      |   | 1                                      | 29.2       | 903          |                 |
| 217-04     | N      | NO VISIB      | LE GC | JLD          |        |    |       |                      |     |      |   |                                        |            |              |                 |
| 217-05     | N      | NO VISIB      | LE GO | )LD          |        |    |       |                      |     |      |   |                                        |            |              |                 |
| 217-06     | N      | NO VISIB      | LE GO | ILD          |        |    |       |                      |     |      |   |                                        |            |              |                 |
| 217-07     | Y      | 100 X         | 100   | 20 C         |        |    |       | 1                    |     |      |   | 1                                      |            |              | EST. 40% PYRITE |
|            |        |               |       |              |        |    |       |                      |     |      |   | 1                                      | 19.6       | 77           |                 |
| 218-01     | N      | 100 X         | 175   | 27 C         | i      |    |       |                      |     |      |   | i                                      |            |              |                 |
| _          |        |               |       |              |        |    |       |                      |     |      |   | 1                                      | 31.1       | 123          |                 |
| 218-02     | Y      | 100 X         | 100   | 50 M         | i      |    |       |                      |     |      |   | 1                                      |            |              | EST. 2% PYRITE  |
|            |        | 125 X         |       | 75 M         |        |    |       |                      |     |      |   | 1                                      |            |              |                 |
|            |        |               |       |              |        |    |       |                      |     |      |   | 2                                      | 30.1       | 417          | •               |
| 218-03     | N      | 75 X          | 100   | 50 M         | 1      |    |       |                      |     |      |   | 1                                      |            |              |                 |

|   | MIPL4APR.<br>TOTAL # 0 |              | MINICO         | 8      |              |        | 1  | NUM | BER  | OF 6 | RAINS |                 |       |            |              |                |
|---|------------------------|--------------|----------------|--------|--------------|--------|----|-----|------|------|-------|-----------------|-------|------------|--------------|----------------|
|   |                        |              |                | ŏ      |              | ABRADE | :D | IR  | REGU | LAR  |       |                 | TOTAL |            | CALC V.6     | •              |
|   | SAMPLE #               | PANNE<br>Y/N |                | TER    | THICKNESS    | T      | P  | === | T    | P    | T     | <b>===</b><br>P | ***** | MAG<br>GMS | assay<br>PPB | REMARKS        |
|   | PLS-89                 |              |                |        |              |        |    |     |      |      |       |                 |       |            |              |                |
|   |                        |              |                |        |              |        |    |     |      |      |       |                 | 1     | 27.1       | 106          |                |
|   | 218-04                 | N            | 225 X          | 300    | 50 M         | 1      |    |     |      |      |       |                 | 1     | 2.71       |              |                |
|   |                        | •            | n              | •••    | 50 11        | •      |    |     |      |      |       |                 |       | 70.4       | DE A         |                |
|   | 000.04                 |              |                |        |              |        |    |     |      |      |       |                 | 1     | 30.4       | <b>85</b> 0  |                |
|   | 220-01                 | N            | NO VISI        |        |              |        |    |     |      |      |       |                 |       |            |              |                |
|   | 221-01                 | N            | 50 X           | 75     | 13 C         | 1      |    |     |      |      |       |                 | i     |            |              |                |
|   |                        |              |                |        |              |        |    |     |      |      |       |                 | 1     | 27.3       | 14           |                |
| _ | 221-02                 | N            | 50 X           | 75     | 50 M         | 1      |    |     |      |      |       |                 | 1     |            |              |                |
|   |                        |              |                |        |              |        |    |     |      |      |       |                 | 1     | 15.1       | 97           |                |
|   | 221-03                 | N            | NO VISI        | BLE GI | OLD          |        |    |     |      |      |       |                 |       |            |              |                |
|   | 221-04                 | N            | NO VISIE       | OLE GO | OLD          |        |    |     |      |      |       |                 |       |            |              |                |
|   | 221-05                 | Υ            | 150 X          |        | 50 M         |        | 1  |     |      |      |       |                 | 1     |            |              | EST. 3% PYRITE |
|   |                        |              | 200 X<br>250 X |        | 75 M<br>52 C | i<br>1 |    |     |      |      |       |                 | 1     |            |              |                |
|   |                        |              |                |        |              |        |    |     |      |      |       |                 |       | 16.0       | 4143         |                |
|   | 221-06                 | N            | 75 X           | 100    | 18 C         | 1      |    |     |      |      |       |                 | 1     | 1010       | 1210         |                |
|   | 221 00                 | .,           | / U N          | 200    | 10 0         | •      |    |     |      |      |       |                 |       |            |              |                |
|   |                        |              |                | =      |              |        |    |     |      |      |       |                 | 1     | 22.8       | 44           |                |
|   | 221-07                 |              | NO VISIE       |        |              |        |    |     |      |      |       |                 |       |            |              |                |
|   | 221-08                 | N            | 100 X          | 125    | 22 C         | 1      |    |     |      |      |       |                 | 1     |            |              |                |
|   |                        |              |                |        |              |        |    |     |      |      |       |                 | 1     | 20.4       | 104          |                |
|   | 222-01                 | N            | NO VISIB       | LE 60  | LD           |        |    |     |      |      |       |                 |       |            |              |                |
| _ | 223-01                 | N            | NO VISIB       | LE 60  | LD           |        |    |     |      |      |       |                 |       |            |              |                |
|   | 223-02                 | N            | 100 X          | 150    | 25 C         |        |    |     | 1    |      |       |                 | 1     |            |              |                |
|   |                        |              |                |        |              |        |    |     |      |      |       |                 | 1     | 20.0       | 145          |                |
|   |                        |              |                |        |              |        |    |     |      |      |       |                 |       |            |              |                |

------

| MIPL5APR.      |        |               | _        |         |       | ħ       | IUMBEF | OF (      | 3RA] | INS   |         |        |            |              |         |
|----------------|--------|---------------|----------|---------|-------|---------|--------|-----------|------|-------|---------|--------|------------|--------------|---------|
| TOTAL # O      |        |               | 4        | AE      | RADEI | )<br>)  | IRRE   | ULAR      |      |       |         | TOTAL  |            | CALC V.G.    |         |
| SAMPLE #       | PANNE! | D<br>DIAMETER | THICKNES | ==<br>S | T     | ==<br>P | T      | ====<br>Р |      | <br>T | ==<br>P | SERES. | MAG<br>BMS | assay<br>PPB | REMARKS |
| PLS-89         |        |               |          |         |       |         |        |           |      |       |         |        |            |              |         |
| 223-03         | N      | NO VISIBLE    | GOLD     |         |       |         |        |           |      |       |         |        |            |              |         |
| 225-01         | N      | NO VISIBLE    | GOLD     |         |       |         |        |           |      |       |         |        |            |              |         |
| 225-02         | N      | NO VISIBLE    | GOLD     |         |       |         |        |           |      |       |         |        |            |              |         |
| <b>225-</b> 03 | N      | NO VISIBLE    | GOLD     |         |       |         |        |           |      |       |         |        |            |              |         |
| 225-04         | N      | 100 X 1       | 25 22    | C       | 1     |         |        |           |      |       |         | 1      |            |              |         |
|                |        |               |          |         |       |         |        |           |      |       |         | 1      | 19.5       | 5 109        |         |
| 225-05         | N      | NO VISIBLE    | GOLD     |         |       |         |        |           |      |       |         |        |            |              |         |
| 226-01         | N      | NO VISIBLE    | GOLD     |         |       |         |        |           |      |       |         |        |            |              |         |
| 227-01         | N      | NO VISIBLE    | GOLD     |         |       |         |        |           |      |       |         |        |            |              |         |
| 228-01         | N      | NO VISIBLE    | GOLD     |         |       |         |        |           |      |       |         |        |            |              |         |
| 228-02         | N      | NO VISIBLE    | 60LD     |         |       |         |        |           |      |       |         |        |            |              |         |
| 229-01         | N      | NO VISIBLE    | 60LD     |         |       |         |        |           |      |       |         |        |            |              |         |
| <b>229-</b> 02 | N      | NO VISIBLE    | GOLD     |         |       |         |        |           |      |       |         |        |            |              |         |
| 229-03         | N      | NO VISIBLE    | GOLD     |         |       |         |        |           |      |       |         |        |            |              |         |
| 229-04         | N      | NO VISIBLE    | GOLD     |         |       |         |        |           |      |       |         |        |            |              |         |
| 229-05         | N      | NO VISIBLE    | 60LD     |         |       |         |        |           |      |       |         |        |            |              |         |
| 229-06         | N      | NO VISIBLE    | GOLD     |         |       |         |        |           |      |       |         |        |            |              |         |
| 229-07         | N      | 125 X 12      | 25 25    | С       | i     |         |        |           |      |       |         | 1      |            |              |         |
|                |        |               |          |         |       |         |        |           |      |       |         | 1      | 23.5       | 123          |         |
| 229A-01        | N      | NO VISIBLE    | 60LD     |         |       |         |        |           |      |       |         |        |            |              |         |
| 229A-02        | N      | NO VISIBLE    | 60LD     |         |       |         |        |           |      |       |         |        |            |              |         |
| 229A-03        | N      | NO VISIBLE    | 60LD     |         |       |         |        |           |      |       |         |        |            |              |         |
| 229A-04        | N      | NO VISIBLE    | 60LD     |         |       |         |        |           |      |       |         |        |            |              |         |
| 229A-05        | N      | NO VISIBLE    | GOLD     |         |       |         |        |           |      |       |         |        |            |              |         |

| MIPLSAPR.V     |     |                |               |              |        | 1  | NUME | BER ( | DF 6 | RAINS |   |        |              |              |                |
|----------------|-----|----------------|---------------|--------------|--------|----|------|-------|------|-------|---|--------|--------------|--------------|----------------|
| TOTAL # OF     |     |                | 4             |              | ABRADI | ED | IRF  | REGUI | LAR  | DELIC |   |        |              | CALC V.G.    | ı              |
| SAMPLE #       | Y/N | DIAMET         | ER            | THICKNESS    | T      | P  | #25  | T     | P    | T     | P |        | MAG<br>6MS   | ASSAY<br>PPB | REMARKS        |
| PLS-89         |     |                |               |              |        |    |      |       |      |       |   |        |              |              |                |
| 229A-06        | Y   |                | 75            | 50 M         |        |    |      |       |      |       |   | 1      |              |              | EST. 2% PYRITE |
|                |     | 75 X<br>75 X   |               | 50 M<br>50 M | 1      |    |      |       |      |       |   | 1      |              |              |                |
|                |     |                |               |              |        |    |      |       |      |       |   | 3      | 17.4         | 522          |                |
| 230-01         | γ   | 25 X           | 50            | 8 C          | i      |    |      |       |      |       |   | 1      |              |              | EST. 1% PYRITE |
|                |     | 50 X<br>50 X   | 75<br>100     | 13 C<br>15 C | 1      |    |      |       |      | 1     |   | i<br>1 |              |              |                |
|                |     | 100 X          |               | 100 M        | •      |    |      |       | 1    |       |   | 1      |              |              |                |
|                |     |                |               |              |        |    |      |       |      |       |   | 4      | 30.1         | 426          |                |
| <b>230</b> -02 | Y   | 25 X           |               | 8 0          |        |    |      |       |      |       |   | 1      |              |              | EST. 1% PYRITE |
|                |     | 50 X           | 100           | 15 C         | 1      |    |      |       |      |       |   | 1      |              |              |                |
|                |     |                |               |              |        |    |      |       |      |       |   | 2      | <b>28.</b> 2 | 26           |                |
| 230-03         | N   | NO VISIB       | LE 60         | DLD          |        |    |      |       |      |       |   |        |              |              |                |
| 230-04         | γ   | 25 X           | 50            | 8 C          |        | 1  |      |       |      |       |   | 1      |              |              | EST. 2% PYRITE |
|                |     | 125 X<br>250 X | 125<br>300    | 25 C<br>75 M | 1<br>1 |    |      |       |      |       |   | 1      |              |              |                |
|                |     |                |               |              |        |    |      |       |      |       |   | 3      | 27.2         | 1673         |                |
| 230-05         | N   | NO VISIB       | LE 60         | OLD          |        |    |      |       |      |       |   |        |              |              |                |
| 231-01         | N   | NO VISIB       | LE 60         | OLD          |        |    |      |       |      |       |   |        |              |              |                |
| 232-01         | N   | NO VISIB       | LE 60         | OLD          |        |    |      |       |      |       |   |        |              |              |                |
| 232-02         | N   | NO VISIB       | LE <b>G</b> C | DLD          |        |    |      |       |      |       |   |        |              |              |                |
| 232-03         | N   | 100 X          | 200           | 29 C         | 1      |    |      |       |      |       |   | 1      |              |              |                |
|                |     |                |               |              |        |    |      |       | ,    |       |   | 1      | 23.9         | 207          |                |
| 232-04         | N   | NO VISIB       | LE GO         | OLD          |        |    |      |       |      |       |   |        |              |              |                |
| 234-05         | N   | NO VISIBL      | .E 60         | NLD          |        |    |      |       |      |       |   |        |              |              |                |
| 233-01         | N   | NO VISIBL      | LE GO         | )LD          |        |    |      |       |      |       |   |        |              |              |                |
| 233-02         | N   | NO VISIBL      | _E 60         | OLD          |        |    |      |       |      |       |   |        |              |              |                |

| MIPL5APR. |          |          |           |        | 1 | NUMBER | <b>OF</b> 6 | RAINS   |         |     |           |         |
|-----------|----------|----------|-----------|--------|---|--------|-------------|---------|---------|-----|-----------|---------|
| TOTAL # 0 | F PANNIN | igs 4    | ŀ         | ABRADE |   | IRREGI | K AR        | DELICAT | Ε ΤΠΤΔΙ | NON | CALC V.G. |         |
| SAMPLE #  | PANNED   |          |           |        |   | =====  |             |         |         |     | ASSAY     | •       |
|           | Y/N      | DIAMETER | THICKNESS | Ţ      | P | T      | P           | T       | ₽       | GMS | PPB       | REMARKS |
| PLS-89    |          |          |           |        |   |        |             |         |         |     |           |         |
| 234-01    | N        | 75 X 100 | 18 C      |        |   | 1      |             |         | 1       |     |           |         |
|           |          |          |           |        |   |        |             |         | 1       | 17. | 3 58      |         |

# APPENDIX D BONDAR-CLEGG HEAVY MINERAL ANALYSES



|      | REPORT: 089-     | 50693.0          |           |           |           |           |           | Ł      | ROUFET: LAC SHORT | PAGE 1      |
|------|------------------|------------------|-----------|-----------|-----------|-----------|-----------|--------|-------------------|-------------|
|      | SAMPLE<br>NUMBER | ELEMENT<br>UNITS | Cu<br>PPM | Zn<br>PPM | Ag<br>PPM | As<br>PPM | Au<br>PPB | Testwt |                   |             |
| :    | PLS-89-15        | 1-01-3/4H        | 26        | 23        | <0.1      | 4         | 368       | 18.00  |                   |             |
|      | PLS-89-15        | 1-02-3/4H        | 19        | 18        | <0.1      | 3         | 136       | 30.00  |                   |             |
|      | PLS-89-15        |                  | 19        | 17        | <0.1      | 6         | 37        | 25.00  |                   |             |
|      | PLS-89-15        | 1-04-3/4H        | 42        | 25        | <0.1      | 9         | 140       | 23.00  |                   |             |
|      | PLS-89-15        | 1-05-3/4H        | 28        | 26        | <0.1      | 4         | 194       | 21.00  |                   |             |
|      | PLS-89-15        | 2-01-3/4H        | 104       | 36        | 0.1       | 39        | 314       | 20.00  |                   |             |
|      | PLS-89-15        | 2-02-3/4H        | 155       | 33        | <0.1      | 59        | 82        | 23.00  |                   |             |
|      | PLS-89-15        | 3-01-3/4H        | 102       | 44        | 0.1       | 22        | 206       | 17.00  |                   |             |
|      | PLS-89-15        | 4-01-3/4H        | 33        | 24        | <0.1      | 6         | 50        | 9.00   |                   |             |
|      | PLS-89-15        | 5-01-3/4H        | 74        | 31        | <0.1      | 23        | 26        | 22.00  |                   |             |
|      | PLS-89-15        | 5-02-3/4H        | 33        | 20        | <0.1      | 8         | 195       | 20.00  |                   |             |
|      | PLS-89-15        | 5-03-3/4H        | 29        | 23        | <0.1      | 4         | 35        | 13.00  |                   |             |
|      | PLS-89-15        | 6-01-3/4H        | 60        | 30        | <0.1      | 9         | 317       | 23.00  |                   |             |
|      | PLS-89-15        | 6-02-3/4H        | 65        | 29        | <0.1      | 17        | 674       | 17.00  |                   |             |
|      | PLS-89-15        | 6-03-3/4H        | 104       | 55        | 0.2       | 35        | 458       | 12.00  |                   |             |
|      | PLS-89-15        | 7-01-3/4H        | 129       | 50        | 0.2       | 58        | 358       | 15.00  |                   |             |
|      | PLS-89-15        |                  | 214       | 45        | 0.5       | 36        | 648       | 12.00  |                   |             |
|      | PLS-89-15        | 9-01-3/48        | 23        | 19        | <0.1      | 3         | 138       | 13.00  |                   |             |
|      | PLS-89-16        |                  | 34        | 25        | <0.1      | 5         | 97        | 13.00  |                   |             |
|      | PLS-89-16        |                  | 121       | 48        | 0.2       | 380       | 1133      | 21.00  | 20 retes          | + Au=311pph |
|      | PLS-89-16        | 3-01-3/4H        | 95        | 22        | 0.1       | 7         | 766       | 13.00  |                   |             |
|      | PLS-89-16        |                  | 53        | 29        | <0.1      | 6         | 159       | 14.60  |                   |             |
|      | PLS-89-16        |                  | 29        | 32        | <0.1      | 5         | 255       | 16.00  |                   |             |
| i    | PLS-89-16        | 4-02-3/4H        | 150       | 42        | <0.1      | 75        | 35        | 22.00  |                   |             |
| :    | PLS-89-16        | 4-03-3/4H        | 111       | 31        | 0.2       | 22        | 185       | 11.00  |                   |             |
| **** | PLS-89-16        | 4-04-3/4H        | 107       | 48        | <0.1      | 31        | 134       | 11.60  |                   |             |
|      | PLS-89-16        |                  | 111       | 26        | <0.1      | 21        | 160       | 12.00  |                   |             |
|      | PLS-89-16        |                  | 173       | 25        | 0.1       | 13        | 28        | 17.00  |                   |             |
|      | PLS-89-16        | 5-02-3/4H        | 79        | 22        | <0.1      | 5         | 183       | 26.00  |                   |             |
|      | PLS-89-16        | 5-03-3/4H        | 56        | 25        | <0.1      | 17        | 38        | 19.00  |                   |             |
| :    | PLS-89-16        | 5-04-3/4H        | 184       | 44        | <0.1      | 72        | 60        | 14.00  |                   |             |
| :    | PLS-89-165       |                  | 203       | 61        | <0.1      | 96        | 65        | 25.00  |                   |             |
|      | PLS-89-169       |                  | 175       | 60        | 0.1       | 80        | 101       | 14.00  |                   |             |
|      | PLS-89-165       | •                | 180       | 54        | <0.1      | 104       | 333       | 21.00  |                   |             |
| 1    | PLS-89-165       | 5-08-3/4H        | 94        | 30        | <0.1      | 30        | <5        | 14.00  |                   |             |
|      | PLS-89-165       | 5-09-3/4H        | 149       | 49        | 0.7       | 59        | 30        | 18.60  |                   |             |
| 1    | PLS-89-166       | •                | 139       | - 54      | <0.1      | 70        | 212       | 17.00  |                   |             |
|      | PLS-89-166       | •                | 242       | 57        | 0.2       | 77        | 234       | 25.00  |                   |             |
| 1    | PLS-89-166       | •                | 258       | 61        | 0.5       | 118       | 229       | 24.00  |                   |             |

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontario K1J 8X5 (613) 749-2220 Telex 053-3233



| REPORT: 08       | 9-50694.0        |           |           |           |           |               |               | ROJECT: | AC SHORT      |                | PAGE 1        |
|------------------|------------------|-----------|-----------|-----------|-----------|---------------|---------------|---------|---------------|----------------|---------------|
| SAMPLE<br>NUMBER | ELEMENT<br>UNITS | Cu<br>PPM | Zn<br>PPM | Ag<br>PPM | As<br>PPH | Au-150<br>PPM | Au+150<br>PP# | Ad AA   | TestWt<br>grs | -150Wit<br>gas | +150Wt<br>gms |
| PLS-89-          | 151-06-3/4H      | 73        | 41        | 0.5       | 3         | 0.99          | 17.25         | 4.34    | 9.00          | 12.97          | 3.37          |
|                  |                  |           |           |           |           |               |               |         |               |                |               |
|                  |                  |           |           |           |           |               |               |         |               |                |               |
|                  |                  |           |           |           |           |               |               |         |               |                |               |
|                  |                  |           |           |           |           |               |               |         |               |                |               |
|                  |                  |           |           | <u> </u>  |           |               |               |         |               |                |               |
|                  |                  |           |           |           |           |               |               |         |               |                |               |
|                  |                  |           |           |           | •         |               |               |         |               |                |               |
|                  |                  |           |           |           |           |               |               |         |               |                |               |
|                  |                  |           |           |           |           |               |               |         |               |                |               |
|                  |                  |           |           |           |           | 700           |               |         |               |                |               |



|                          | <u> </u>     |                          |            |                |             |           |            |               |                    |        |  |
|--------------------------|--------------|--------------------------|------------|----------------|-------------|-----------|------------|---------------|--------------------|--------|--|
|                          | REPORT: 089- | -50759.0                 |            |                |             |           |            |               | PROJECT: LAC SHORT | PAGE 1 |  |
|                          | SAMPLE       | ELEMENT                  | Cu         | Zn             | Ag          | As        | Áu         | Testwt        |                    |        |  |
|                          | NUMBER       | UNITS                    | PPH        | PPH            | PPM         | bb#<br>us | P28        | GESTAL        |                    |        |  |
|                          | 5: 0.00.10   |                          | 4.01       |                |             |           |            |               |                    |        |  |
|                          |              | 6-04-3/4H                | 181        | 55<br>50       | 0.1         | 126       | 95         | 19.00         |                    |        |  |
|                          |              | 66-05-3/4H               | 183        | 59             | 0.3         | 86        | 137        | 20.00         |                    |        |  |
|                          |              | 66-06-3/4H               | 184        | 53             | 0.1         | 98        | 281        | 27.00         |                    |        |  |
| İ                        |              | 66-07-3/4H<br>66-08-3/4H | 250        | 66<br>35       | <0.1        | 112       | 89         | 24.00         |                    |        |  |
|                          | br2-03-10    | 0-00-3/40                | 250        | 75             | 0.3         | 74        | 105        | 20.00         |                    |        |  |
|                          | PLS-89-16    | 6-09-3/4H                | 201        | 55             | 0.2         | 108       | 100        | 21.00         |                    | -      |  |
|                          | PLS-89-16    | 6-10-3/4H                | 141        | 42             | <0.1        | 49        | 156        | 14.00         |                    |        |  |
| į                        | PLS-89-16    | 6-11-3/4H                | 129        | 47             | 0.2         | 50        | 47         | 18.00         |                    |        |  |
| į                        | PLS-89-16    |                          | 176        | 69             | 0.9         | 45        | 480        | 14.00         |                    |        |  |
|                          | PLS-89-16    | 6-13-3/4H                | 149        | 44             | <0.1        | 58        | 411        | 16.00         |                    |        |  |
| :                        | PLS-89-16    | 6-14-3/4H                | 117        | 84             | <0.1        | 41        | 163        | 7.00          |                    |        |  |
| :                        | PLS-89-16    |                          | 27         | 22             | <0.1        | 3         | 56         | 20.00         |                    |        |  |
|                          | PLS-89-16    |                          | 32         | 22             | <0.1        | a         | 50<br>50   | 22.00         |                    |        |  |
|                          | PLS-89-16    | •                        | 114        | 52             | 0.3         | 43        | 1209       | 13.00         |                    |        |  |
|                          | PLS-89-16    | •                        | 124        | 58             | 1.0         | 45        | 640        | 15.00         |                    |        |  |
| <del></del>              |              |                          |            |                |             |           |            |               |                    |        |  |
|                          | PLS-89-16    | •                        | 147        | 92             | <0.1        | 38        | 1154       | 17.00         |                    |        |  |
|                          | PLS-89-16    |                          | 157        | 61             | 0.2         | 57        | 128        | 16.00         |                    |        |  |
|                          | PLS-89-16    | •                        | 176        | 52             | <0.1        | 73        | 223        | 16.00         |                    |        |  |
|                          | PLS-89-16    |                          | 284        | 48             | 0.2         | 88        | 194        | 19.60         |                    |        |  |
|                          | PLS-89-16    | 8-05-3/4H                | 154        | 94             | 0.1         | 43        | 265        | 17.00         |                    |        |  |
|                          | PLS-89-16    | 8-06-3/4H                | 154        | 49             | 0.1         | 55        | 834        | 16.00         |                    |        |  |
|                          | PLS-89-16    | 8-07-3/4H                | 191        | 42             | <0.1        | 50        | 2081       | 11.00         |                    |        |  |
| 1                        | PLS-89-169   | 9-01-3/4H                | 159        | 57             | 0.1         | 46        | 916        | 24.00         |                    |        |  |
|                          | PLS-89-169   | 9-03-3/4H                | 181        | 75             | 0.5         | 64        | 6653       | 13.00         |                    |        |  |
|                          | PLS-89-169   | 9-04-3/4H                | 216        | 81             | 0.1         | 54        | 794        | 17.60         |                    |        |  |
|                          | PLS-89-169   | 0_05_2740                | 100        | 70             | 40.1        | - 40      |            | 00.00         |                    |        |  |
|                          | PLS-89-169   | -                        | 192<br>160 | 78<br>50       | <0.1        | 48        | <5         | 20.00         |                    |        |  |
|                          | PLS-89-169   |                          | 206        | 56             | <0.1<br>0.4 | 97<br>153 | 68<br>121  | 18.00         |                    |        |  |
|                          | PLS-89-169   |                          | 179        | 59             | 0.4         | 65        | 131<br>290 | 22.00         | ,                  |        |  |
|                          | PLS-89-170   |                          | 153        | 115            | 4.2         | 87        | 10515      | 20.G0<br>6.00 |                    |        |  |
|                          |              | 7 01 37 411              |            | 113            | <u> </u>    | 01        | 10313      | 0.00          |                    |        |  |
|                          | PLS-89-171   | L-01-3/4H                | 173        | 50             | 0.1         | 51        | 444        | 20.00         |                    |        |  |
|                          | PLS-89-171   | L-02-3/4H                | 116        | 41             | 0.1         | 42        | 1225       | 24.00         |                    |        |  |
|                          | PLS-89-171   | 03-3/4H                  | 133        | 47             | 0.7         | 47        | 1329       | 10.00         |                    |        |  |
|                          | PLS-89-171   |                          | 98         | 41             | 7.4         | 52        | 14420      | 20.00         |                    |        |  |
| and a special section of | PLS-89-171   | 05-3/4H<br>              | 70         | 59             | 7.1         | 63        | 18321      | 19.00         |                    |        |  |
|                          | PLS-89-172   | 2-01-3/4H                | 161        | 52             | 0.1         | 45        | 369        | 29.00         |                    |        |  |
|                          | PLS-89-172   |                          | 215        | , 70           | 0.5         | 38        | 669        | 14.00         |                    |        |  |
| 1                        | PLS-89-172   |                          | 156        | 32             | 0.1         | 43        | 718        | 12.00         |                    |        |  |
| Ì                        |              | •                        |            | - <del>-</del> |             | , ,       | . 10       | 12.00         |                    |        |  |
|                          |              |                          |            |                |             |           |            |               |                    |        |  |

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontario K1J 8X5 (613) 749-2220 Telex 053-3233



| <br>REPURT: 089-         | 50760.0          |                    |           |           |           |               |               | PROJECT: I   | AC SHADT       |                | PAGE 1        |
|--------------------------|------------------|--------------------|-----------|-----------|-----------|---------------|---------------|--------------|----------------|----------------|---------------|
|                          |                  |                    |           |           |           |               |               | Evente 1: 1  | ראר פטמצו      |                | PHUE I        |
| SAMPLE<br>NUMBER         | ELEMENT<br>UNITS | Cu<br>PPH          | Zn<br>PPH | Ag<br>PPM | As<br>PPK | Au-150<br>PPM | Au+150<br>PP# | Au Av<br>PPM | TestWt<br>grs  | -150Wt<br>gns  | +150¥t<br>ges |
| PLS-89-169<br>PLS-89-169 |                  | 161<br>27 <b>4</b> | 57<br>69  | 0.2       | 43<br>76  | 0.20<br>0.36  | 0.13<br>11.64 | 0.20<br>2.37 | 18.00<br>10.00 | 20.50<br>12.14 | 1.10<br>2.64  |
|                          |                  |                    |           |           |           |               |               |              |                |                |               |
|                          |                  |                    |           |           |           |               |               |              |                |                |               |
|                          |                  |                    |           |           |           |               |               |              |                |                |               |
|                          |                  |                    |           |           |           |               |               |              |                |                |               |
|                          |                  |                    |           |           |           |               |               |              |                |                |               |
| <br>4                    |                  |                    |           |           |           |               |               |              |                |                |               |
|                          |                  |                    |           |           |           |               |               |              |                |                |               |
| <br>                     |                  |                    |           |           |           |               |               |              |                |                |               |
|                          |                  |                    |           |           |           |               |               |              |                |                |               |
|                          |                  |                    |           |           |           | <b></b>       |               |              |                |                |               |
| <br>- 1/                 |                  |                    |           |           |           |               |               |              |                |                |               |
|                          |                  |                    |           |           |           |               |               |              |                |                |               |
|                          |                  |                    |           |           |           |               |               |              |                |                |               |
| <br>                     |                  |                    |           |           |           |               |               |              |                |                |               |



|         | REPORT: 089      | -50789.0         |           |           |                                        |           |            |                | PROJECT: LAC SHORT | PAGE 1 |  |
|---------|------------------|------------------|-----------|-----------|----------------------------------------|-----------|------------|----------------|--------------------|--------|--|
|         | SAMPLE<br>NUMBER | ELEMENT<br>UNITS | Cu<br>PPH | Zn<br>PPM | PPK<br>Aq                              | As<br>PPM | Au<br>PP8  | Testwt<br>gms  |                    |        |  |
|         | PLS-89-1         |                  | 241       | 55        | 0.2                                    | 58        | 373        | 12.00          | , <u>.</u>         |        |  |
|         | PLS-89-1         |                  | 50        | 37        | 0.2                                    | 15        | 207        | 10.00          |                    |        |  |
|         | PLS-89-1         |                  | 63        | 28        | <0.1                                   | 11        | 90         | 16.00          |                    |        |  |
| !       | PLS-89-1         |                  | 128       | 52        | 0.3                                    | 50        | 274        | 15.00          |                    |        |  |
| <u></u> | PLS-89-1         | 75-01            | 120       | 54        | 0.2                                    | 23        | 30         | 10.00          |                    |        |  |
|         | PLS-89-1         | 75-02            | 161       | 59        | 0.1                                    | 43        | 195        | 2.00           |                    |        |  |
|         | PLS-89-1         | 75-04            | 154       | 57        | 0.3                                    | 82        | 101        | 20.00          |                    |        |  |
| :       | PLS-89-11        | 75-06            | 168       | 58        | 0.4                                    | 88        | 88         | 17.00          |                    |        |  |
|         | PLS-89-11        | 75-07            | 149       | 56        | 0.4                                    | 80        | 105        | 18.00          |                    |        |  |
|         | PLS-89-17        | 75-08            | 162       | 74        | 0.1                                    | 80        | 137        | 7.00           |                    |        |  |
|         | PLS-89-17        | 75-09            | 152       | 67        | 0.1                                    | 78        | 195        | 12.00          |                    |        |  |
|         | PLS-89-17        |                  | 145       | 57        | 0.1                                    | 50        | 138        | 12.00          |                    | •      |  |
| :       | PLS-89-17        |                  | 162       | 48        | 0.2                                    | 58        | 80         | 12.00          |                    |        |  |
|         | PLS-89-17        |                  | 143       | 48        | 0.6                                    | 86        | 68         | 12.00          |                    |        |  |
|         | PLS-89-17        |                  | 152       | 56        | 0.4                                    | 61        | 284        | 13.00          |                    |        |  |
|         | PLS-89-17        | 75 _1 /          | 122       | 96        | ZO 1                                   | F.C       | 220        | 10.00          |                    |        |  |
| į       | PLS-89-17        |                  | 122<br>49 | 90<br>31  | <0.1                                   | 56        | 220        | 18.00          |                    |        |  |
|         | PLS-89-17        |                  | 99        | 42        | <0.1<br><0.1                           | 24        | 177        | 10.00          |                    |        |  |
| 1 -     | PLS-89-17        |                  | 126       | 42<br>66  | 0.2                                    | 21<br>41  | 207        | 9.00           |                    |        |  |
|         | PLS-89-18        |                  | 116       | 50<br>50  | 0.3                                    | 41<br>47  | 790<br>392 | 3.00<br>13.00  |                    |        |  |
|         |                  |                  |           |           | 0.3                                    |           | 372        | 10.00          |                    |        |  |
|         | PLS-89-18        |                  | 127       | 47        | <0.1                                   | 41        | 339        | 18.00          |                    |        |  |
|         | PLS-89-18        |                  | 37        | 24        | 0.1                                    | 6         | 133        | 19.00          | •                  |        |  |
|         | PLS-89-18        |                  | 36        | 27        | 0.1                                    | 5         | 2964       | 5.00           |                    |        |  |
|         | PLS-89-18        |                  | 26        | 22        | <0.1                                   | 2         | 85         | 17.00          |                    |        |  |
|         | PLS-89-18        | 10-06            | 111       | 31        | 0.1                                    | 11        | 53         | 13.00          |                    |        |  |
|         | PLS-89-18        | 80-07            | 213       | 35        | 0.2                                    | 27        | 220        | 15.00          |                    |        |  |
| l       | PLS-89-18        |                  | 154       | 104       | 0.7                                    | 141       | 442        | 11.00          |                    |        |  |
|         | PLS-89-18        |                  | 93        | 25        | 0.2                                    | 64        | 71         | 20.00          |                    |        |  |
| İ       | PLS-89-18        |                  | 77        | 25        | 0.1                                    | 51        | 405        | 12.00          |                    |        |  |
|         | PLS-89-18        | 1-04             | 109       | 77        | 1.6                                    | 52        | 109        | 14.00          |                    |        |  |
|         | PLS-89-18        | 1-05             | 76        | 24        | 0.1                                    | 53        | 155        | 16.00          |                    |        |  |
|         | PLS-89-18        |                  | 113       | 32        | 0.5                                    | 43<br>61  | 113<br>70  | 16.00          |                    |        |  |
| 1       | PLS-89-18        |                  | 82        | 34        | <0.1                                   | 61<br>35  | 70<br>360  | 15.00          |                    |        |  |
|         | PLS-89-18        |                  | 127       | 54<br>54  | 0.4                                    | 55<br>69  | 300<br>174 | 18.00<br>15.00 |                    |        |  |
|         | PLS-89-18        |                  | 104       | 55        | 0.1                                    | 51        | 195        | 16.00          |                    |        |  |
|         | 01.0.00.10       | 1 10             | 1 22      |           | ······································ |           |            |                |                    |        |  |
|         | PLS-89-18        |                  | 129       | 39        | 0.1                                    | 32        | 35         | 11.00          |                    |        |  |
|         | PLS-89-18        | 7-01             | 173       | . 55      | 0.5                                    | 180       | 197        | 14.60          |                    |        |  |
| 1       |                  |                  |           |           |                                        |           |            |                |                    |        |  |

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontario K1J 8X5 (613) 749-2220 Telex 053-3233



| REPORT: 089                      | 9-50790.0        |                   |                |                   |                  |                      |                                       | ROJECT: (            | LAC SHORT               |                         | PAGE 1               |
|----------------------------------|------------------|-------------------|----------------|-------------------|------------------|----------------------|---------------------------------------|----------------------|-------------------------|-------------------------|----------------------|
| SAMPLE<br>NUMBER                 | ELEMENT<br>UNITS | Cu<br>PPH         | Zh<br>PPK      | Ag<br>PPM         | As<br>PPM        | Au-150<br>PP#        | Au+150<br>PPM                         | Au Av<br>PPM         | TestWt<br>gcs           | -150Wt<br>gms           | +150Wt<br>grs        |
| PLS-89-1<br>PLS-89-1<br>PLS-89-1 | L <b>75-0</b> 3  | 184<br>187<br>209 | 52<br>46<br>56 | 0.4<br>0.2<br>0.1 | 93<br>110<br>100 | 1.19<br>0.10<br>0.42 | 0.06<br>3.08<br>5.36                  | 1.07<br>0.53<br>1.31 | 11.00<br>17.00<br>22.00 | 15.26<br>20.51<br>25.13 | 1.87<br>3.49<br>5.54 |
|                                  |                  |                   |                |                   |                  |                      |                                       |                      |                         |                         |                      |
|                                  |                  |                   |                | 10 1000           |                  |                      |                                       |                      |                         |                         |                      |
|                                  |                  |                   |                |                   |                  |                      | · · · · · · · · · · · · · · · · · · · |                      |                         |                         |                      |
|                                  | ,                |                   |                |                   |                  |                      |                                       |                      |                         |                         |                      |
|                                  |                  |                   |                |                   |                  |                      |                                       |                      |                         |                         |                      |
|                                  |                  |                   |                |                   |                  |                      |                                       |                      |                         | ·                       |                      |
|                                  |                  |                   |                |                   |                  |                      |                                       |                      |                         |                         |                      |
|                                  |                  |                   |                |                   |                  |                      | ·                                     |                      |                         |                         |                      |



|   | REPORT: 089      | -50845.0         |           |           |           |           |           |        | PROJECT: LAC SHORT | PAGE 1 |  |
|---|------------------|------------------|-----------|-----------|-----------|-----------|-----------|--------|--------------------|--------|--|
|   | SAMPLE<br>NUMSER | ELEMENT<br>UNITS | Cu<br>P2# | Zn<br>PP# | Ag<br>PPM | As<br>pp# | Åu<br>P28 | Testat |                    |        |  |
|   | PLS-89-11        | 82-02            | 106       | 32        | <0.1      | 82        | 125       | 20.00  |                    |        |  |
|   | PLS-89-11        |                  | 114       | 46        | <0.1      | 83        | 321       | 24.00  |                    |        |  |
|   | PLS-89-18        |                  | 123       | 42        | 0.2       | 77        | 65        | 22.00  |                    |        |  |
|   | PLS-89-16        |                  | 202       | 35        | 0.3       | 71        | 1554      | 17.00  |                    |        |  |
|   | PLS-89-18        | 32-06            | 295       | 33        | <û.i_     | 69        | 141       | 19.60  |                    |        |  |
|   | _PLS-89-18       | 32-07            | 141       | 151       | <0.1      | 75        | 154       | 17.00  |                    |        |  |
|   | PLS-89-18        |                  | 98        | 28        | 0.5       | 42        | 221       | 21.00  |                    |        |  |
|   | PLS-89-18        | 32-09            | 95        | 24        | <0.1      | 34        | 92        | 25.00  |                    |        |  |
|   | PLS-89-18        | 32-10            | 107       | 45        | 0.2       | 51        | 81        | 16.00  |                    |        |  |
|   | PLS-89-18        | 32-11            | 98        | 26        | 0.1       | 45        | 295       | 16.00  |                    |        |  |
|   | PLS-89-18        | 33-01            | 124       | 43        | 0.2       | 244       | 183       | 18.00  |                    |        |  |
|   | PLS-89-18        | 33-02            | 125       | 38        | <0.1      | 150       | 134       | 19.00  |                    |        |  |
|   | PLS-89-18        | 33-03            | 116       | 28        | <0.1      | 150       | 110       | 30.00  |                    |        |  |
|   | PLS-89-18        | 33-04            | 101       | 25        | <0.1      | 75        | 80        | 30.00  |                    | A.     |  |
|   | PLS-89-18        | 13-05            | 229       | 32        | 1.2       | 51        | 1962      | 23.00  |                    |        |  |
|   | PLS-89-18        | 34-01            | 141       | 42        | <0.1      | 60        | 325       | 18.00  |                    |        |  |
|   | PLS-89-18        | 34-02            | 96        | 43        | <0.1      | 146       | 137       | 16.00  |                    |        |  |
|   | PLS-89-18        | 34-03            | 108       | 43        | <0.1      | 114       | 820       | 9.00   |                    |        |  |
|   | PLS-89-18        | 34-04            | 201       | 37        | 0.3       | 122       | 152       | 18.00  |                    |        |  |
|   | PLS-89-18        | 34-05            | 87        | 33        | <0.1      | 65        | 26        | 16.00  |                    |        |  |
|   | PLS-89-18        | 4-06             | 120       | 25        | <0.1      | 60        | 64        | 30.00  |                    |        |  |
|   | PLS-89-18        |                  | 89        | 29        | <0.1      | 54        | 162       | 22.00  |                    |        |  |
|   | PLS-89-18        |                  | 94        | 31        | <0.1      | 68        | 145       | 13.00  |                    |        |  |
|   | PLS-89-18        | 34-09            | 98        | 29        | 0.5       | 108       | 166       | 13.00  |                    |        |  |
|   | PLS-89-18        | 4-10             | 99        | 26        | 0.2       | 116       | 156       | 10.00  |                    |        |  |
|   | PLS-89-18        | 4-11             | 124       | 31        | <0.1      | 87        | 101       | 16.00  | ,                  |        |  |
|   | PLS-89-18        |                  | 144       | 39        | <0.1      | 158       | 433       | 25.00  |                    |        |  |
|   | PLS-89-18        |                  | 158       | 48        | 0.1       | 157       | 273       | 20.00  |                    |        |  |
|   | PLS-89-18        | 4-14             | 136       | 35        | <0.1      | 118       | 113       | 12.00  |                    |        |  |
|   | PLS-89-18        | 4-15             | 121       | 31        | <0.1      | 113       | 429       | 23.00  |                    |        |  |
|   | PLS-89-18        | 4-16             | 161       | 34        | 0.3       | 50        | 637       | 21.00  |                    |        |  |
|   | PLS-89-18        |                  | 127       | 33        | <0.1      | 76        | 72        | 20.00  |                    |        |  |
|   | PLS-89-18        | 4-18             | 645       | 29        | 0.1       | 32        | 173       | 21.00  |                    |        |  |
|   | PLS-89-18        | 5-01             | 107       | 33        | <0.1      | 112       | 711       | 21.00  |                    |        |  |
|   | PLS-89-18        | 5-02             | 151       | 44        | 0.5       | 78        | 78        | 20.00  |                    |        |  |
|   | PLS-89-18        | 5-03             | 137       | 27        | <0.1      | 65        | 113       | 18.00  |                    |        |  |
| i | PLS-89-18        |                  | 89        | 25        | <0.1      | 83        | 104       | 20.00  |                    |        |  |
|   | PLS-89-18        |                  | 82        | 24        | <0.1      | 62        | 930       | 18.00  |                    |        |  |
|   | PLS-89-18        |                  | 74        | 29        | <0.1      | 43        | 54        | 21.00  |                    |        |  |
|   | PLS-89-18        | 5-07             | 92        | 22        | <0.1      | 51        | 120       | 20.00  |                    |        |  |
|   |                  |                  |           |           |           |           |           |        |                    |        |  |



|   | REPORT: 089      | -50366.0            |           |           |           |           |            |               | PROJECT: LAC SHORT | PAGE 1 |                                        |
|---|------------------|---------------------|-----------|-----------|-----------|-----------|------------|---------------|--------------------|--------|----------------------------------------|
|   | SAMPLE<br>NUMBER | ELEMENT<br>UNITS    | Cu<br>PPH | Zn<br>PP# | AG<br>PPM | AS<br>HQQ | Au<br>PPB  | TesiHt<br>grs |                    |        |                                        |
|   | PLS-89-11        | 85-08-3/4H          | 140       | 44        | <0.1      | 66        | 20         | 25.00         |                    |        |                                        |
| ! | PLS-89-1         | 85-09-3/48          | 144       | 39        | <0.1      | 69        | 640        | 28.00         |                    |        |                                        |
| : | PLS-89-10        | 85-10-3/4H          | 138       | 45        | <0.1      | 91        | 221        | 20.00         |                    |        |                                        |
|   |                  | 85-11-3/4H          | 200       | 61        | 0.2       | 92        | 404        | 13.00         |                    |        |                                        |
|   | PLS-89-11        | 85-12-3/4H          | 121       | 39        | <0.1      | 56        | 131        | 20.00         |                    |        | ······································ |
|   |                  | 85-13-3/4H          | 95        | 42        | <0.1      | 51        | 118        | 14.00         |                    |        |                                        |
| i |                  | 85-14-3/4H          | 123       | 42        | <0.1      | 46        | 284        | 11.00         | -                  |        |                                        |
|   |                  | 85-15-3/4H          | 123       | 39        | <0.1      | 75        | 141        | 17.00         |                    |        |                                        |
|   |                  | 85-16-3/4H          | 135       | 44        | 0.4       | 75        | 2084       | 17.00         |                    |        |                                        |
|   | PLS-89-10        | 85-17-3/4H<br>      | 92        | 38        | <0.1      | 44        | 298        | 15.00         |                    |        |                                        |
|   |                  | 65-18-3/4H          | 225       | 61        | <0.1      | 250       | 315        | 10.00         |                    |        |                                        |
| š |                  | 85-19-3/4H          | 201       | 97        | <0.1      | 296       | 302        | 13.00         |                    |        |                                        |
|   |                  | 85-20-3/4H          | 240       | 128       | <0.1      | 352       | 225        | 10.00         |                    |        |                                        |
|   |                  | 85-21-3/4H          | 158       | 78        | 0.1       | 358       | 246        | 5.00          |                    |        |                                        |
|   | PLS-69-18        | 85-22-3/4H          | 188       | 98        | 0.2       | 592       | 163 1      | 7.60          |                    |        |                                        |
| _ |                  | 85-23-3/4H          | 145       | 71        | <0.1      | 356       | 314        | 11.00         | ,                  |        |                                        |
|   |                  | 65-24-3/4H          | 127       | 61        | <0.1      | 230       | 122        | 13.00         |                    |        |                                        |
|   |                  | 85-01-3/48          | 232       | 49        | 0.1       | 97        | 127        | 13.00         |                    |        |                                        |
| ! |                  | 86-02-3/4H          | 164       | 50        | <0.1      | 93        | 133        | 14.00         |                    |        |                                        |
|   | PLS-89-18        | 85-03-3/4H          | 137       | 43        | <0.1      | 88        | 120        | 9.00          |                    |        |                                        |
| : |                  | 6-04-3/4H           | 163       | 43        | <0.1      | 79        | 137        | 7.00          |                    |        |                                        |
| 1 |                  | 85-05-3/4H          | 112       | 88        | <0.1      | 85        | 129        | 13.00         |                    |        |                                        |
|   |                  | 86-06-3/4H          | 98        | 35        | <0.1      | 54        | 50         | 9.00          |                    |        |                                        |
| i |                  | 36-07-3/4H          | 91        | 32        | <0.1      | 21        | 20         | 20.00         |                    |        |                                        |
|   | FLS-89-18        | 87-01-3/4H          | 209       | 62        | <0.1      | 83        | 135        | 25.00         |                    |        |                                        |
| : | PLS-89-18        | 87-02-3/ <b>4</b> H | 205       | 52        | <0.1      | 70        | 248        | 19.00         |                    |        |                                        |
|   |                  | 37-03-3/48          | 219       | 78        | <0.1      | 71        | 98         | 12.00         |                    |        |                                        |
|   |                  | 37-04-3/4H          | 236       | 61        | <0.1      | 80        | 64         | 14.00         |                    |        |                                        |
|   |                  | 37-05-3/4H          | 152       | 56        | <0.1      | 42        | 208        | 14.00         |                    |        |                                        |
|   | PLS-89-18        | 37-06-3/4H          | 129       | 52        | <0.1      | 50        | 30         | 7.00          |                    |        |                                        |
|   |                  | 37-07-3/4H          | 150       | 54        | <0.1      | 48        | 92         | 13.00         |                    |        |                                        |
| [ |                  | 37-08-3/4H          | 169       | 265       | <0.1      | 51        | 150        | 11.00         |                    |        |                                        |
|   |                  | 37-09-3/4H          | 120       | 46        | <0.1      | 31        | 33         | 12.00         |                    |        |                                        |
|   |                  | 37-10-3/4H          | 141       | 49        | <0.1      | 43        | <b>7</b> 0 | 15.00         |                    |        |                                        |
|   | PLS-89-18        | 37-11-3/4H          | . 161     | 77        | <0.1      | 41        | 49         | 14.00         |                    |        |                                        |
|   |                  | 37-12-3/48          | 135       | 46        | 0.1       | 37        | 28         | 13.00         |                    |        |                                        |
|   |                  | 37-13-3/4H          | 170       | , 95      | <0.1      | 220       | 73         | 7.00          |                    |        |                                        |
|   |                  | 87-14-3/4H          | 198       | 102       | 0.5       | 496       | 163        | 5.00          |                    |        |                                        |
|   |                  | 17-15-3/4H          | 202       | 94        | 0.6       | 640       | 772        | 15.00         | •                  |        |                                        |
| į | PUS-89-18        | 37-16-3/48          | 266       | 144       | 0.5       | 616       | 993        | 12.00         |                    |        |                                        |
|   |                  |                     |           |           |           |           |            |               |                    |        |                                        |



|   | REPURT: 089            | -50908.0                 |                  |                 |             |            |             |                | PROJECT: NOME | PAGE 1      |                                        |
|---|------------------------|--------------------------|------------------|-----------------|-------------|------------|-------------|----------------|---------------|-------------|----------------------------------------|
|   | SAMPLE<br>MURBER       | ELEMENT<br>UMITS         | Qu<br>PP#        | Zn<br>PPH       | Aq<br>PP∺   | As<br>PPH  | Au<br>PPB   | Tesiwi<br>gas  | ·             |             |                                        |
|   |                        | 87-17-3/4H<br>87-18-3/4H | 197<br>119       | 146<br>57       | 0.5<br>0.2  | 515<br>286 | 750<br>843  | 10.00<br>9.00  |               |             |                                        |
|   |                        | 87-19-3/45               | 113              | 49              | <0.1        | 322 .      | 582         | 13.00          |               |             |                                        |
|   |                        | 88-01-3/48               | 52               | 38              | 0.1         | 32         | <10         | 9.00           |               |             |                                        |
|   | PLS-89-18              | 88-02-3/4h               | કહે              | 33              | 0.1         | 56         | 344         | 19.00          |               |             | ·                                      |
|   |                        | 88-03-3/4H               | 88               | 28              | 8.0         | 62         | 492         | 15.00          |               |             |                                        |
|   |                        | 88-04-3/4H<br>88-05-3/4H | 74               | 27<br><b>25</b> | 0.2<br>0.3  | 59         | 96<br>252   | 16.00          |               |             |                                        |
|   |                        | 00-00-0/48<br>88-06-3/48 | 110<br>89        | 48              | 0.3         | 64<br>65   | 253<br>72   | 14.00<br>13.00 |               |             |                                        |
|   |                        | 88-07-3/4H               | 106              | 26              | 0.6         | 43         | 95          | 18.00          |               |             |                                        |
|   | PLS-89-18              | 8-08-3/4H                | 120              | 31              | 0.5         | 53         | 109         | 14.00          |               |             |                                        |
|   |                        | 88-09-3/4H               | 83               | 36              | 2.9         | 74         | 43          | 14.00          |               |             |                                        |
|   | PLS-89-18              | 88-10-3/4H               | 86               | 26              | 0.5         | 86         | 404         | 15.00          |               |             |                                        |
|   |                        | 38-11-3/4H               | 52               | 22              | 0.2         | 34         | 109         | 11.00          |               |             |                                        |
|   | PLS-89-18              | 88-12-3/4H               | 108              | 35              | 0.6         | 124        | 60          | 8.00           | W             |             |                                        |
|   | PLS-89-18              | 38-13-3/4H               | 282              | 74              | 0.7         | 130        | 1004        | 13.00          |               |             |                                        |
| 4 | PLS-89-18              | 88-14-3/4H               | 200              | 66              | 1.0         | 672        | 363         | 20.00          |               |             |                                        |
|   |                        | 38-15-3/4H               | 167              | 65              | 0.8         | 342        | 4580        | 30.00          |               |             |                                        |
| • |                        | 88-16-3/4h               | 138              | 68              | 0.6         | 250        | 330         | 11.00          |               |             |                                        |
|   | PLS-89-18              | 38-17-374H<br>           | 133              | 44              | 0.3         | 74         | 200         | 15.00          |               | <del></del> |                                        |
|   |                        | 8-18-3/4H                | 545              | 55              | 1.0         | 274        | 383         | 18.00          |               |             | <del>"</del>                           |
| ! |                        | 38-19-3/4H               | 940<br>arc       | 57              | 1.1         | 280        | 385<br>(3)  | 22.00          |               |             |                                        |
|   |                        | 90-01-3/4H<br>91-01-3/48 | 356<br>788       | 27<br>49        | 0.6<br>0.9  | 85<br>105  | 671<br>1299 | 14.66<br>13.00 |               |             |                                        |
|   |                        | 92-01-3/4H               | 782<br>784       | 64              | 1.3         | 123        | 766         | 22.00          |               |             |                                        |
|   | D! S-84-10             | 3-01-3/4H                | 91               | 27              | 0.4         | 13         | 368         | 4.00           |               |             |                                        |
|   |                        | /3-02-3/4H               | 122              | 27              | 0.2         | 16<br>16   | 582         | 15.60          |               |             |                                        |
|   |                        | 93-03-3/43               | 59               | 23              | 0.2         | 7          | 74          | 11.03          |               |             |                                        |
|   | PLS-89-19              | 3-04-3/48                | δ6 ·             | 24              | <0.1        | 7          | 50 <b>6</b> | 7.60           |               |             |                                        |
|   | PLS-89-19              | 93-05-3/4H               | 50               | 22              | 0.1         | 16         | 385         | 13.00          |               |             |                                        |
|   |                        | 3-06-3/4H                | 112              | 36              | 0.3         | 752        | 323         | 8.00           | -             |             | ······································ |
| 1 |                        | 13-07-3/4H               | 42               | 24              | 0.2         | 68         | 210         | 7.00           |               |             |                                        |
|   | -                      | 3-08-3/4H                | 123              | 49              | 0.2         | 68         | 105         | 8.00           |               |             |                                        |
|   |                        | 3-09-3/4H                | 220              | 54              | 0.7         | 192        | 538         | 12.00          |               |             |                                        |
|   | PL 2-89-19             | 3-10-3/4H<br>            | 403              | 32              | 1.8         | 145        | 180         | 5.00           |               |             |                                        |
|   |                        | 3-11-3/4H                | 204              | 44              | 0.9         | 145        | 270         | 5.00           |               |             |                                        |
|   | PLS-89-19<br>PLS-89-19 |                          | 289<br>49        | , 34            | 0.7         | 90         | 300         | 3.60           |               |             |                                        |
|   | PLS-89-19              |                          | <b>48</b><br>107 | 21<br>22        | <0.1<br>0.1 | 11<br>6    | <5<br><5    | 18.00<br>16.00 |               |             |                                        |
|   | PLS-89-19              |                          | 52               | 22<br>19        | 0.5         | o<br>7     | 71          | 10.00<br>24.00 |               |             |                                        |
|   | 20 07 17               | . 02 0; 111              | V-2              |                 | V.2         | ,          | 1 =         | 47.00          |               |             |                                        |



| L | REPORT: 089      | -51117.0         |           |           |           |           |                                         |               | PROJECT: LAC SHORT                                                                                             | PAGE |  |
|---|------------------|------------------|-----------|-----------|-----------|-----------|-----------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------|------|--|
|   | SANPLE<br>NUMBER | ELEMENT<br>UNITS | Cu<br>PPM | Zn<br>PPM | Ag<br>PPK | As<br>PPM | Au<br>PP8                               | Testwt<br>grs |                                                                                                                |      |  |
|   | PLS-89-19        | 94-04-3/4H       | 49        | 29        | <0.1      | 5         | 25                                      | 6.00          | ,                                                                                                              |      |  |
|   | PLS-89-19        | 94-05-3/4H       | 72        | 38        | <0.1      | 16        | 158                                     | 4.00          |                                                                                                                |      |  |
|   | PLS-89-19        | 94-06-3/4H       | 254       | 45        | 0.2       | 143       | 116                                     | 8.00          |                                                                                                                |      |  |
|   | PLS-89-19        | 95-01-3/4H       | 266       | 48        | 0.4       | 214       | 238                                     | 13.00         |                                                                                                                |      |  |
|   | PLS-89-19        | 95-02-3/4H       | 199       | 49        | 0.5       | 135       | 329                                     | 22.00         |                                                                                                                |      |  |
|   | PLS-89-19        | 95-03-3/4H       | 144       | 41        | 0.3       | 95        | 249                                     | 13.00         |                                                                                                                |      |  |
|   | PLS-89-19        | 95-04-3/4H       | 272       | 70        | <0.1      | 123       | 270                                     | 10.00         |                                                                                                                |      |  |
|   | PLS-89-19        | 95-05-3/4H       | 255       | 61        | <0.1      | 102       | 343                                     | 12.00         |                                                                                                                |      |  |
| l | PLS-89-19        | 95-06-3/4H       | 284       | 67        | 0.2       | 168       | 1131                                    | 14.00         |                                                                                                                |      |  |
|   | PLS-89-19        | 95-07-3/4H       | 122       | 52        | <0.1      | 137       | 153                                     | 10.00         |                                                                                                                |      |  |
|   | PLS-89-19        | 95-08-3/4H       | 148       | 55        | 0.1       | 179       | 218                                     | 12.00         |                                                                                                                |      |  |
|   | PLS-89-19        | 95-09-3/4H       | 124       | 42        | 0.2       | 142       | 125                                     | 6.00          |                                                                                                                |      |  |
|   | PLS-89-19        | 95-11-3/4H       | 192       | 47        | 0.2       | 129       | 225                                     | 4.00          |                                                                                                                |      |  |
|   | PLS-89-19        | 95-12-3/4H       | 250       | 30        | 0.4       | 81        | 110                                     | 6.00          |                                                                                                                |      |  |
|   | PLS-89-19        | 95-13-3/4H       | 225       | 31        | 0.9       | 78        | 75                                      | 4.00          |                                                                                                                | ,    |  |
| _ | PLS-89-19        | 06-01-3/4H       | 74        | 46        | <0.1      | 12        | 16                                      | 11.00         |                                                                                                                |      |  |
| į | PLS-89-19        | 6-02-3/4H        | 352       | 48        | 0.3       | 129       | 1038                                    | 5.00          |                                                                                                                |      |  |
|   | PLS-89-19        | 7-01-3/4H        | 90        | 28        | 0.3       | 43        | 97                                      | 9.00          |                                                                                                                |      |  |
| • |                  | 7-02-3/4H        | 57        | 22        | 0.7       | 170       | 135                                     | 4.GO          |                                                                                                                |      |  |
|   |                  | 7-03-3/4H        | 65        | 28        | 0.5       | 19        | 263                                     | 4.00          |                                                                                                                |      |  |
|   | PLS-89-19        | 17-04-3/4H       | 231       | 42        | 0.2       | 21        | 24                                      | 4.00          |                                                                                                                |      |  |
|   |                  | 17-05-3/4H       | 359       | 42        | 0.5       | 50        | 120                                     | 2.50          |                                                                                                                |      |  |
|   |                  | 8-01-3/4H        | 161       | 28        | 0.3       | 100       | 43                                      | 9.00          |                                                                                                                |      |  |
|   |                  | 8-02-3/4H        | 52        | 24        | <0.1      | 8         | 71                                      | 14.00         |                                                                                                                |      |  |
|   |                  | 8-03-3/4H        | 169       | 75        | 0.5       | 126       | 238                                     | 12.00         |                                                                                                                |      |  |
|   | PLS-89-19        | 8-04-3/4H        | 241       | 72        | 0.4       | 117       | 160                                     | 15.00         |                                                                                                                |      |  |
|   |                  | 9-01-3/4H        | 51        | 21        | 0.1       | 15        | 78                                      | 27.00         |                                                                                                                |      |  |
|   | PLS-89-19        |                  | 112       | 31        | 0.3       | 158       | 500                                     | 20.00         |                                                                                                                |      |  |
| ! | PLS-89-19        |                  | 147       | 39        | <0.1      | 114       | 223                                     | 7.00          |                                                                                                                |      |  |
|   | PLS-89-20        | 0-01-3/4H        | 202       | 33        | 0.6       | 142       | 235                                     | 19.00         |                                                                                                                |      |  |
|   | PLS-89-20        | 0-02-3/4H        | 85        | 33        | <0.1      | 82        | 08                                      | 20.00         | · · · · · · · · · · · · · · · · · · ·                                                                          |      |  |
| 1 | PLS-89-20        | •                | 107       | 23        | 0.4       | 134       | 307                                     | 18.00         |                                                                                                                |      |  |
| İ | PLS-89-20        |                  | 266       | 48        | 0.6       | 160       | 158                                     | 12.00         |                                                                                                                |      |  |
|   | PLS-89-20        |                  | 78        | 25        | <0.1      | 25        | 311                                     | 17.00         |                                                                                                                |      |  |
|   | PLS-89-20        |                  | 38        | 16        | 0.1       | 3         | 159                                     | 19.60         |                                                                                                                |      |  |
|   | PLS-89-20        | 2-02-3/4H        | 35        | 21        | <0.1      | 3         | 36                                      | 14.00         | 77444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 |      |  |
|   | PLS-89-202       | •                | 74        | . 21      | <0.1      | 17        | 87                                      | 22.00         |                                                                                                                |      |  |
| ı |                  | •                |           | ,         |           |           | • • • • • • • • • • • • • • • • • • • • | 22100         |                                                                                                                |      |  |

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontario K1J 8X5 (613) 749-2220 Telex 053-3233



| REPORT: 089      | 9-51118.0                                 |                     |                |                   |                 |                      | <b>F</b>              | PROJECT: L           | AC SHORT             |                      | PAGE 1               |   |
|------------------|-------------------------------------------|---------------------|----------------|-------------------|-----------------|----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|---|
| SAMPLE<br>Number | ELEMENT<br>UNITS                          | Cu<br>PPM           | Zn<br>PPM      | Ag<br>PPM         | As<br>PPM       | Au-150<br>PPM        | Au+150<br>PPM         | Au Av<br>PPM         | Test#t<br>gms        | -150Wt<br>gms        | +150Wt<br>ges        |   |
| PLS-89-3         | 194-07-3/4H<br>195-10-3/4H<br>197-06-3/4H | 350<br>200<br>193   | 26<br>37<br>34 | 0.5<br>0.7<br>0.9 | 56<br>208<br>99 | 0.05<br>0.50<br>0.34 | 3.15<br>0.26<br>17.93 | 1.16<br>0.45<br>5.65 | 4.93<br>7.44<br>7.05 | 6.17<br>8.10<br>7.73 | 3.44<br>2.31<br>3.34 |   |
|                  |                                           |                     |                |                   |                 |                      |                       |                      |                      |                      |                      |   |
|                  |                                           |                     |                |                   |                 |                      |                       |                      |                      |                      |                      |   |
|                  |                                           |                     |                |                   |                 |                      |                       |                      |                      |                      | ,                    |   |
|                  |                                           |                     |                |                   |                 | ż                    |                       |                      |                      |                      |                      |   |
|                  |                                           |                     |                |                   |                 |                      |                       |                      |                      |                      |                      | • |
|                  |                                           |                     |                |                   |                 |                      |                       |                      |                      |                      |                      |   |
|                  | ·                                         | . 1 - 2 - 2 - 2 - 2 |                |                   |                 |                      |                       |                      |                      |                      |                      |   |
|                  | 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -   |                     | - 4-144        |                   |                 |                      |                       |                      |                      |                      |                      |   |
|                  | ·                                         |                     |                |                   |                 |                      |                       |                      |                      |                      |                      |   |
|                  |                                           |                     | ,              |                   |                 |                      |                       |                      |                      | 1914-26-1            |                      |   |



| REPORT:          | 089-51138.0             |           |           |           |           |           |               | PROJECT: NONE | PAGE 1 |
|------------------|-------------------------|-----------|-----------|-----------|-----------|-----------|---------------|---------------|--------|
| SAMPLE<br>NUMBER | ELEMENT<br>UNITS        | Cu<br>PPM | Zn<br>PPM | Ag<br>PPM | As<br>PPM | Au<br>PP8 | Testut<br>gms |               |        |
| PLS-8            | 89-203-01-3/4H          | 24        | 17        | 0.3       | 4         | <5        | 18.00         |               |        |
| PLS-             | 89-203-02-3/4H          | 167       | 26        | 0.2       | 9         | 32        | 13.00         |               |        |
|                  | 39-204-01-3/4H          | 38        | 21        | 0.2       | 3         | <5        | 10.00         |               |        |
|                  | 89-205-01-3/4H          | 85        | 18        | 0.4       | 6         | 68        | 16.00         |               |        |
| PLS-8            | 39-206-01-3/4H          | 32        | 23        | 0.6       | 3         | 297       | 11.00         |               |        |
|                  | 39-206-02-3/4H          | 66        | 22        | <0.1      | 7         | 140       | 12.00         |               |        |
|                  | 39-207-01-3/4H          | 54        | 18        | <0.1      | 3         | 207       | 18.00         |               |        |
|                  | 89-207-02-3/4H          | 257       | 25        | 0.2       | 21        | 258       | 20.00         |               | •      |
|                  | 39-207-03-3/4H          | 88        | 25        | 0.1       | 22        | 413       | 17.00         |               |        |
| PLS-8            | 39-207-04-3/4H          | 176       | 26        | 0.1       | 19        | 24        | 19.00         |               |        |
|                  | 39-207-05-3/4H          | 310       | 25        | <0.1      | 24        | 28        | 15.00         |               |        |
|                  | 39-207-06-3/4H          | 116       | 29        | 0.6       | 17        | 112       | 19.00         |               |        |
|                  | 39-207-07-3/4H          | 97        | 32        | <0.1      | 22        | 153       | 21.00         |               |        |
| :                | 39-207-08-3/4H          | 174       | 41        | 0.5       | 107       | 313       | 23.00         |               | •      |
| PLS-8            | 39-207-09-3/4H          | 127       | 79        | 0.1       | 101       | 985       | 12.00         |               |        |
|                  | 39-207-10-3/4H          | 132       | 95        | 0.3       | 112       | 775       | 11.00         |               |        |
|                  | 39-208-01-3/4H          | 153       | 39        | 0.2       | 73        | 73        | 14.00         |               |        |
| · ·              | 39-208-02-3/4H          | 172       | 36        | 0.4       | 44        | 34        | 8.00          |               |        |
|                  | 39-208-03-3/4H          | 143       | 37        | 0.7       | 31        | 24/       | 15.00         |               |        |
| PLS-8            | 39-208- <b>04-</b> 3/4H | 95        | 23        | 1.1       | 17        | 54        | 19.00         |               |        |
| :                | 9-208-05-3/4H           | 167       | 31        | <0.1      | 29        | 42        | 17.00         |               |        |
| £                | 39-208-06-3/4H          | 282       | 30        | <0.1      | 32        | 74        | 19.00         |               |        |
|                  | 9-208-08-3/4H           | 142       | 37        | <0.1      | 32        | 16        | 17.00         |               |        |
|                  | 19-208-09-3/4H          | 86        | 28        | 0.2       | 11        | 641       | 11.00         |               |        |
| PLS-8            | 19-208-10-3/4H          | 235       | 59        | 0.6       | 160       | 68        | 18.00         |               |        |
|                  | 9-209-01-3/4H ···       | 158       | 38        | <0.1      | 30        | 73        | 23.00         |               |        |
|                  | 9-209-02-3/4H           | 143       | 33        | 0.1       | 49        | 128       | 20.00         |               |        |
|                  | 19-209-03-3/4H          | 115       | 33        | 0.1       | 54        | 42        | 17.00         |               |        |
| ř                | 9-209-04-3/4H           | 134       | 43        | <0.1      | 27        | 32        | 16.00         |               |        |
| PLS-8            | 9-209-05-3/4H           | 120       | 48        | 0.3       | 27        | 30        | 17.00         |               |        |
|                  | 9-209-06-3/4H           | 149       | 41        | 0.1       | 53        | 1288      | 13.00         |               |        |
|                  | 9-209-07-3/4H           | 129       | 38        | 0.3       | 26        | 51        | 17.00         |               |        |
| i                | 9-209-08-3/4H           | 128       | 33        | 0.2       | 32        | 42        | 13.00         |               |        |
|                  | 9-209-09-3/4H           | 219       | 36        | <0.1      | 34        | 423       | 12.00         |               |        |
| PLS-8            | 9-209-10-3/4H           | 124       | 31        | 0.2       | 20        | 388       | 13.00         |               |        |
|                  | 9-209-11-3/4H           | 81        | 35        | 0.3       | 15        | 115       | 13.00         | ***           |        |
|                  | 9-209-12-3/4H           | 250       | - 112     | 0.8       | 288       | 89        | 27.00         |               |        |
| 1                | 9-210-01-3/4H           | 149       | 35        | 0.3       | 53        | 79        | 16.00         |               |        |
| PLS-8            | 9-210-02-3/4H           | 182       | 36        | <0.1      | 43        | 533       | 17.00         |               |        |
|                  |                         |           |           |           |           |           |               |               |        |

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontario K1J 8X5 (613) 749-2220 Telex 053-3233



| REPORT: 089      | -51130 n         |           | -         |           |           |               | [             | ROJECT: I | NUNE          |               | PAGE 1                                |
|------------------|------------------|-----------|-----------|-----------|-----------|---------------|---------------|-----------|---------------|---------------|---------------------------------------|
| KEPUKI: UOS      | -51139.0         |           | ····      |           |           |               | [             | RUJECII   | TUNE          |               | PMUE I                                |
| SAMPLE<br>Number | ELEMENT<br>UNITS | Cu<br>PPK | Zn<br>PPM | Ag<br>PPM | As<br>PPM | Au-150<br>PPM | Au+150<br>PPM | Au Av     | Test¥t<br>grs | -150Wt<br>gns | +150\t<br>gms                         |
| PLS-89-2         | 08-07-3/4H       | 111       | 33        | 8.1       | 16        | 0.06          | 4.07          | 1.42      | 5.00          | 6.23          | 3.18                                  |
|                  |                  |           |           |           |           |               |               |           |               |               |                                       |
|                  |                  |           |           |           |           |               |               |           |               |               |                                       |
|                  |                  |           |           |           |           |               |               |           |               |               |                                       |
|                  |                  |           |           |           |           |               |               |           |               |               |                                       |
|                  |                  |           |           |           |           |               |               |           |               |               |                                       |
| ****             |                  |           |           |           |           |               |               |           |               |               | ,                                     |
|                  |                  |           |           |           |           |               |               |           |               |               |                                       |
|                  |                  |           |           |           |           | ÷             |               |           |               |               |                                       |
|                  |                  |           |           | •         |           |               |               |           |               |               | · · · · · · · · · · · · · · · · · · · |
|                  |                  |           |           |           |           |               |               |           |               |               |                                       |
|                  |                  |           |           |           |           |               |               |           |               |               |                                       |
|                  | •                |           |           |           |           |               |               |           |               |               |                                       |
|                  |                  |           |           |           |           |               |               |           |               |               |                                       |
|                  |                  |           |           |           |           |               |               |           |               |               |                                       |
|                  |                  |           |           |           |           |               |               |           |               |               |                                       |
|                  |                  |           |           |           |           |               |               |           |               |               |                                       |
|                  |                  |           |           |           |           |               |               |           |               |               |                                       |



| SAMPLE         ELEMENT         Cu         Zn         Ag         As         Au           NUM3ER         UNITS         PPM         PP |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PLS-89-210-04-3/4H       151       45       <0.1       65       158         PLS-89-210-05-3/4H       134       38       <0.1       59       189         PLS-89-210-06-3/4H       101       44       0.1       34       384         PLS-89-210-07-3/4H       126       37       0.4       61       230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| PLS-89-210-05-3/4H       134       38       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| PLS-89-210-06-3/4H 101 44 0.1 34 384<br>PLS-89-210-07-3/4H 126 37 0.4 61 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| PLS-89-210-07-3/4H 126 37 0.4 61 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 010 00 000 00 01411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| PLS-89-210-08-3/4H 140 44 <0.1 44 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| PLS-89-210-09-3/4H 147 43 <0.1 50 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| PLS-89-210-10-3/4H 120 36 <0.1 60 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| PLS-89-210-11-3/4H 173 41 0.1 34 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| PLS-89-210-12-3/4H 198 316 0.9 164 295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| PLS-89-210-13-3/4H 180 197 1.2 258 605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| PLS-89-211-01-3/4H 292 40 0.3 63 616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PLS-89-211-02-3/4H 208 52 1.1 240 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| PLS-89-211-03-3/4H 155 51 0.2 45 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PLS-89-211-04-3/4H 165 78 0.6 177 562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| PLS-89-212-01-3/4H 20 23 <0.1 5 334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| PLS-89-212-02-3/4H 27 21 0.5 4 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| PLS-89-212-03-3/4H 38 19 <0.1 2 <6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| PLS-89-212-04-3/4H 64 24 <0.1 4 <7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| PLS-89-212-05-3/4H 101 37 0,2 17 <17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PLS-89-212-06-3/4H 326 38 0.2 67 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PLS-89-212-07-3/4H 297 52 <0.1 66 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PLS-89-212-08-3/4H 635 36 0.1 44 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| PLS-89-212-09-3/4H 200 34 0.1 47 306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PLS-89-212-10-3/4H 242 60 <0.1 33 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PLS-89-212-11-3/4H 183 41 <0.1 37 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PLS-89-213-01-3/4H 25 20 <0.1 <2 <6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| PLS-89-213-02-3/4H 23 17 <0.1 3 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| PLS-89-213-03-3/4H 761 33 <0.1 59 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PLS-89-214-01-3/4H 92 28 0.3 19 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| PLS-89-214-02-3/4H 176 36 <0.1 36 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PLS-89-214-03-3/4H 136 36 7.0 34 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| PLS-89-214-04-3/4H 132 32 <0.1 33 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PLS-89-214-05-3/4H 311 33 <0.1 32 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PLS-89-214-06-3/4H 173 35 0.3 52 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PLS-89-214-07-3/4H 91 24 0.2 34 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| PLS-89-214-08-3/4H 136 52 0.5 94 332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PLS-89-215-01-3/4H 144 29 0.1 32 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| PLS-89-215-02-3/4H 84 23 0.1 16 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| PLS-89-215-03-3/4H 72 21 0.1 20 461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |



|          | REPORT: 089-       | -51193.0           |            |           | ]         |           |             |        | PROJECT: LAC SHORT | PAGE 1 |
|----------|--------------------|--------------------|------------|-----------|-----------|-----------|-------------|--------|--------------------|--------|
|          | SAMPLE<br>Number   | ELEMENT<br>UNITS   | Cu<br>PPM  | Zn<br>PPM | Ag<br>PPM | As<br>PPM | Au<br>PPB   | Testwi |                    |        |
|          | PLS-89-21          | 15-04-3/4H         | 82         | 28        | 0.5       | 19        | <5          | 10.00  | ]                  |        |
|          | PLS-89-21          | L5-05-3/4H         | 129        | 36        | 0.5       | 23        | 30          | 5.00   | 1                  |        |
|          | ₽LS-89-21          | L5-06-3/4H         | 196        | 36        | 0.3       | 37        | 79          | 28.00  | )                  |        |
|          | PLS- <b>89-21</b>  | L5-07-3/4H         | 281        | 188       | 1.5       | 338       | 119         | 22.00  | )                  |        |
| <u> </u> | PLS-89-21          | 16-01-3/4H         | 115        | 36        | 0.7       | 21        | 66_         | 20.00  | )                  |        |
|          | PLS- <b>89</b> -21 | 16-02-3/4H         | 104        | 36        | 2.7       | 30        | 46          | 13.00  | 1                  |        |
|          | PLS- <b>89-2</b> 1 | 16-03-3/4H         | 167        | 52        | 0.5       | 22        | 69          | 7.00   | )                  |        |
|          | PLS- <b>8</b> 9-21 | 16-04-3/4H         | 110        | 36        | 0.2       | 18        | <7          | 7.00   | )                  |        |
|          | PLS- <b>89</b> -21 | 16-05-3/4H         | 99         | 36        | 0.6       | 16        | 43          | 7.00   | )                  |        |
|          | PLS- <b>89</b> -21 | 16- <u>06-3/4H</u> | 137        | 57        | 0.5       | 28        | 99          | 10.0   | ]                  |        |
| -        | PLS- <b>89</b> -21 | 16-07-3/4H         | 412        | 64        | 0.8       | 32        | 25          | 13.0   | ]                  |        |
|          | PLS-89-21          | L6-08-3/4H         | 89         | 35        | 0.5       | 38        | 99          | 13.00  | ] ,                |        |
|          | PLS-89-21          | 16-09-3/4H         | 167        | 53        | 0.6       | 30        | 84          | 10.0   | )                  |        |
|          | PLS-89-21          | L6-10-3/4H         | 112        | 45        | 0.6       | 32        | <b>8</b> 37 | 9.00   | )                  |        |
|          | PLS-89-21          | 16-11-3/4H         | 103        | 47        | 0.4       | 22        | 346_        | 13.0   | )                  |        |
| · ·      | PLS- <b>8</b> 9-21 | 16-12-3/4H         | 160        | 42        | 0.6       | 22        | 195         | 8.0    | ]                  |        |
|          | PLS-89-21          | 16-13-3/4H         | 298        | 191       | 1.6       | 302       | 96          |        |                    |        |
|          | PLS- <b>89-2</b> 1 | 17-01-3/4H         | 156        | 44        | 0.4       | 39        | <b>2</b> 5  | 12.0   | )                  |        |
|          | PLS- <b>89-2</b> 1 | 17-02-3/4H         | 332        | 56        | 0.4       | 66        | 60          | 3.00   | )                  |        |
| <u> </u> | PLS-89-21          | 17-03-3/4H         | 169        | 41        | <0.1      | 21        | 1270        | 15.00  | )                  |        |
|          | PLS- <b>89-</b> 21 | 17-04-3/4H         | <b>9</b> 5 | 38        | <0.1      | 20        | 888         | 10.0   | ]                  |        |
|          | PLS- <b>89</b> -21 | L7-05-3/4H         | 126        | 62        | <0.1      | 24        | 32          | 13.00  | )                  |        |
|          | PLS-89-21          | L7-06-3/4H         | 233        | 59        | 0.7       | 308       | 122         | 11.00  |                    |        |
|          | PLS-89-21          | L7-07-3/4H         | 328        | 491       | 1.1       | 300       | 300         | 9.00   | )                  |        |
|          | PLS-89-21          | 18-01-3/4H         | 129        | 46        | 0.3       | 47        | 25          | 18.00  | ]                  |        |
|          | PLS-89-21          | L8-02-3/4H         | 89         | 35        | 0.1       | 58        | 165         | 16.00  | ]                  |        |
|          |                    | L8-03-3/4H         | 121        | 32        | <0.1      | 27        | 77          | 14.00  |                    |        |
|          |                    | 18-04-3/4H         | 232        | 45        | 0.1       | 65        | 69          | 16.00  |                    |        |
|          |                    | 20-01-3/4H         | 60         | 44        | 0.5       | 5         | 18          | 15.00  |                    |        |
|          |                    | 21-01-3/4H         | 125        | 39        | 0.2       | 29        | 144         | 14.00  |                    |        |
|          | PLS- <b>89</b> -22 | 21-02-3/4H         | 71         | 39        | 0.5       | 17        | 225         | 6.00   | ]                  |        |
|          |                    | 21-03-3/4H         | 54         | 27        | <0.1      | 27        | 297         | 10.00  |                    |        |
|          |                    | 21-04-3/4H         | 115        | 33        | 0.1       | 19        | 47          | 7.00   |                    |        |
|          |                    | 21-06-3/4H         | 129        | 37        | 0.3       | 50        | 5 <b>8</b>  | 12.00  |                    |        |
|          |                    | 21-07-3/4H         | 123        | 40        | <0.1      | 32        | 57          | 10.00  |                    |        |
|          | PLS- <b>89</b> -22 | 21-08-3/4H         | 121        | 48        | <0.1      | 31        | 1350        | 10.00  |                    |        |
|          |                    | 22-01-3/4H         | 40         | . 29      | 0.7       | 2         | 875         | 12.00  |                    |        |
|          |                    | 23-01-3/4H         | 165        | 40        | <0.1      | 41        | 256         | 11.00  |                    |        |
|          |                    | 23-02-3/4H         | 147        | 72        | <0.1      | 35        | 198         | 10.00  |                    |        |
| 1        |                    |                    |            |           |           |           |             |        |                    |        |

Bondar-Cleg2 & Company Ltd. 5420 Canotek Road Ottawa, Ontario K1J 8X5 (613) 749-2220 Telex 053-3233



| REPORT: 08                            | 9-51194.0        |                   |           |           |               |               |              | PROJECT: I    | AC SHORT      |               | PAGE 1    |
|---------------------------------------|------------------|-------------------|-----------|-----------|---------------|---------------|--------------|---------------|---------------|---------------|-----------|
| SAMPLE<br>NUMBER                      | ELEMENT<br>UNITS | Zn<br>PP <u>N</u> | Ag<br>PPM | As<br>PPM | Au-150<br>PPM | Au+150<br>PPM | Au Av<br>PPM | TestWt<br>gas | -150Wt<br>gms | +150Wt<br>gms | Cu<br>PPM |
| PLS-89-                               | 221-05-3/4H      | 36                | 0.4       | 39        | 0.26          | 31.16         | 3.20         | 5.00          | 10.45         | 1.10          | 148       |
|                                       |                  |                   |           |           |               |               |              |               |               |               |           |
|                                       | , 18 Ph. 1       |                   |           |           |               |               |              |               |               |               |           |
|                                       |                  |                   |           |           |               |               |              |               |               | ,             |           |
|                                       | -                |                   |           |           |               |               |              |               |               |               |           |
|                                       |                  |                   |           | •.        |               |               |              |               |               |               |           |
|                                       |                  |                   |           |           |               |               |              |               |               |               |           |
|                                       |                  |                   |           |           |               |               |              |               |               |               |           |
| · · · · · · · · · · · · · · · · · · · |                  |                   |           |           |               |               |              |               |               |               |           |
|                                       |                  |                   |           |           |               |               |              |               |               |               |           |
|                                       |                  |                   |           |           |               |               |              |               |               |               |           |
|                                       |                  |                   | •         |           |               |               |              |               |               |               |           |



|   | DEDANT - AAA       | £420/ B             | ,          |     | 1    |                     |               | Γ      | DDA ICCT. LAC OUADT | DAAC 4                                 |
|---|--------------------|---------------------|------------|-----|------|---------------------|---------------|--------|---------------------|----------------------------------------|
|   | REPORT: 089-       | -312U4.U            | ,          |     |      |                     |               |        | PROJECT: LAC SHORT  | PAGE 1                                 |
|   | SAMPLE             | ELEMENT             | Cu         | Zn  | Ag   | As                  | Au            | Testwt | :                   |                                        |
|   | NUMBER             | UNITS               | PPM        | PPM | PPM  | PPM                 | PPB           | gms    |                     |                                        |
|   | PI \$-89-22        | <br>23-03-3/4H      | 191        | 49  | 0.1  | 35                  | <25           | 2.00   |                     |                                        |
| 1 |                    | 25-01-3/4H          | 167        | 42  | 0.3  | 33<br>44            | 243           | 9.00   |                     |                                        |
| 1 |                    | 25-02-3/4H          | 153        | 37  | 0.2  | <del>44</del><br>47 | 48            | 5.00   |                     |                                        |
|   |                    | 25-03-3/4H          | 114        | 48  | <0.1 | 12                  | <13           | 4.00   |                     |                                        |
|   |                    | 25-04-3/4H          | 65         | 27  | <0.1 | 3                   | 123           | 10.00  |                     |                                        |
|   | 110 07 22          | 23 64 57 411        |            |     | 10.1 |                     |               | 10.00  |                     |                                        |
|   | PLS- <b>89</b> -22 | 25 <b>-</b> 05-3/4H | 96         | 37  | <0.1 | 11                  | <10           | 5.00   | ]                   |                                        |
|   | PLS-89-22          | 26-01-3/4H          | 163        | 39  | 0.3  | 51                  | 71            | 8.00   | )                   |                                        |
|   | PLS- <b>89-2</b> 2 | 27-01-3/4H          | 233        | 52  | 1.6  | 37                  | 115           | 6.00   | )                   |                                        |
|   | PLS-89-22          | 28-01-3/4H          | 39         | 25  | 0.1  | 9                   | 381           | 7.00   | ]                   |                                        |
|   | PLS- <b>89</b> -22 | 2 <b>8-0</b> 2-3/4H | 38         | 29  | <0.1 | 5                   | 708           | 5.00   | ]<br>               |                                        |
|   |                    |                     |            |     |      |                     |               |        |                     |                                        |
|   |                    | 29-D1-3/4H          | 76         | 21  | 0.1  | 4                   | <17           | 3.00   |                     |                                        |
| į |                    | 29-02-3/4H          | 56         | 26  | <0.1 | 6                   | 210           | 2.00   |                     |                                        |
|   |                    | 29-03-3/4H          | 26         | 22  | 0.2  | 2                   | 293           | 8.00   |                     |                                        |
|   |                    | 29-04-3/4H          | 43         | 24  | 0.1  | 4                   | <b>&lt;8</b>  | 6.00   |                     | ,                                      |
|   | PLS- <b>89</b> -22 | 29-05-3/4H          | 91         | 27  | <0.1 | 36                  | 225           | 12.00  |                     |                                        |
|   | DI C_99_22         | 29-06-3/4H          | 166        | 42  | <0.1 | 22                  | 147           | 9.00   | )                   |                                        |
| 1 |                    | 29-07-3/4H          | 195        | 42  | 0.5  | 34                  | 52 <b>8</b> 9 | 13.00  |                     |                                        |
|   |                    | 29A-D1-3/4H         | 94         | 23  | <0.1 | 34<br>4             | 3207          | 10.00  |                     |                                        |
|   |                    | 29A-02-3/4H         | 65         | 31  | 0.3  | 8                   | 383           | 4.00   |                     |                                        |
|   |                    | 29A-03-3/4H         | 218        | 42  | 0.2  | 26                  | 120           | 3.00   |                     |                                        |
| - | 120 07 22          | 27 4 43 37 411      | 210        | 76  |      | 20                  | 120           | 3.00   |                     |                                        |
| 1 | PLS-89-22          | 29A-04-3/4H         | 159        | 49  | 0.5  | 28                  | 44            | 11.00  | 1                   |                                        |
|   | PLS-89-22          | 29A-05-3/4H         | 189        | 38  | 0.1  | 25                  | 90            | 10.00  |                     |                                        |
|   | PLS-89-22          | 29A-06-3/4H         | 100        | 34  | <0.1 | 10                  | 1050          | . 8.00 |                     |                                        |
|   | PLS-89-23          | 80-01-3/4H          | 72         | 25  | <0.1 | 17                  | 259           | 17.00  |                     |                                        |
|   | PLS-89-23          | 80-02-3/4H          | 57         | 25  | <0.1 | 8                   | 38            | 15.00  |                     |                                        |
|   |                    |                     |            |     |      |                     |               |        |                     |                                        |
|   |                    | 80-03-3/4H          | 204        | 160 | <0.1 | 18                  | 27            | 18.00  |                     |                                        |
| : |                    | 80-05-3/4H          | 176        | 20  | 0.2  | 14                  | 28            | 18.00  |                     |                                        |
| į | PLS-89-23          |                     | 207        | 41  | 0.6  | 54                  | 102           | 15.00  |                     |                                        |
|   |                    | 2-01-3/4H           | 136        | 37  | 0.2  | 35                  | 30            | 14.00  |                     |                                        |
|   | PLS-89-23          | 12-02-3/4H          | 168        | 56  | 0.2  | 30                  | 92            | 15.00  |                     |                                        |
|   | PLS- <b>8</b> 9-23 | 12-03-3/4H          | 182        | 41  | 0.3  | 40                  | 430           | 12.00  |                     | ······································ |
|   |                    | 12-04-3/4H          | 196        | 48  | 0.3  | 4u<br>64            | 430<br>181    | 23.00  |                     |                                        |
|   |                    | 12-05-3/4H          | <b>8</b> 5 | 32  | 0.3  | 37                  | 400           | 3.00   |                     |                                        |
|   |                    | 13-01-3/4H          | 154        | 52  | 0.3  | 32                  | 30            | 7.00   |                     |                                        |
|   |                    | 3-02-3/4H           | 97         | 35  | <0.1 | 21                  | 113           | 4.00   |                     |                                        |
|   |                    |                     |            |     |      |                     |               | 7,00   |                     |                                        |
|   | PLS-89-23          | 84-01-3/4H          | 47         | 37  | <0.1 | 4                   | 383           | 8.00   |                     |                                        |
|   |                    |                     |            |     |      |                     |               |        | ·                   |                                        |

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontario K1J 8X5 (613) 749-2220 Telex 053-3233



| REPORT: 089       | -51205.0         |           |           | ]                                     |           |                                       |               | PROJECT: I   | AC SHORT      |               | PAGE 1 |
|-------------------|------------------|-----------|-----------|---------------------------------------|-----------|---------------------------------------|---------------|--------------|---------------|---------------|--------|
| SAMPLE<br>NUMBER  | ELEMENT<br>UNITS | Cu<br>PPM | Zn<br>PPM | Ag<br>PPM                             | As<br>PPM | Au-150<br>PPM                         | Au+150<br>PPM | Au Av<br>PPM | TestWt<br>gms | -150Wt<br>gms | +150Wt |
| PLS- <b>89</b> -2 | 30-04-3/4H       | 430       | 26        | 0.1                                   | 20        | 0.09                                  | 0.52          | 0.26         | 8.00          | 12.32         | 7.73   |
|                   |                  |           |           |                                       |           |                                       |               |              |               |               |        |
|                   |                  |           |           | · · · · · · · · · · · · · · · · · · · |           |                                       |               |              |               |               |        |
|                   |                  |           |           |                                       |           |                                       |               |              |               |               |        |
|                   |                  |           |           |                                       |           |                                       |               |              |               |               |        |
|                   |                  |           |           |                                       |           |                                       |               |              |               |               |        |
|                   |                  |           |           |                                       |           |                                       |               |              |               |               |        |
|                   |                  |           |           | · · · · · · · · · · · · · · · · · · · |           |                                       |               |              |               |               |        |
|                   |                  |           |           |                                       |           |                                       |               |              |               |               |        |
|                   |                  |           |           |                                       |           | r                                     |               |              |               |               |        |
|                   |                  |           |           | <u> </u>                              |           |                                       |               |              |               |               |        |
| ·                 |                  |           |           |                                       |           |                                       |               |              |               |               |        |
|                   |                  |           |           |                                       |           |                                       |               |              |               |               |        |
|                   |                  |           |           |                                       |           |                                       |               |              |               |               |        |
|                   |                  |           |           |                                       |           |                                       |               |              |               |               |        |
|                   |                  |           |           |                                       |           |                                       |               |              |               |               |        |
|                   |                  |           |           |                                       |           |                                       |               |              |               |               |        |
|                   |                  |           |           |                                       |           |                                       |               |              |               |               |        |
|                   |                  |           | ,         |                                       |           |                                       |               | <u></u>      |               |               |        |
|                   |                  |           |           |                                       |           |                                       |               |              |               |               |        |
|                   |                  |           |           |                                       |           | · · · · · · · · · · · · · · · · · · · |               |              |               |               |        |

# APPENDIX E HEAVY MINERAL ABSOLUTE METAL CONTENTS

| BAMPLE NUMBER                            | :WEIGHT (g):A<br>: NON-MAG : |                 |                   | Cu ASSAY | : ABSOLUTE :<br>: METAL CONTENT :<br>:Cu (micrograms) | Zn ASSAY<br>PPM |        | AS ASSAY |        | Ag ASSAY |      |
|------------------------------------------|------------------------------|-----------------|-------------------|----------|-------------------------------------------------------|-----------------|--------|----------|--------|----------|------|
|                                          |                              |                 |                   |          |                                                       |                 |        |          |        |          |      |
| FLS-89-151-01-3/4F                       |                              | 368.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-151-02-3/4F                       |                              | 136.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-29-151-03-3/4F                       |                              | 37.0            |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-151-04-3/4F                       |                              | 140.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-151-05-3/4F<br>PLS-89-151-06-3/4F |                              | 194.0<br>4340.0 | 6673.6<br>96348.0 |          |                                                       |                 |        |          |        |          |      |
| PLS-89-152-01-3/4F                       |                              | 314.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-152-01-3/4F                       |                              | 82.0            |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-153-01-3/4F                       |                              | 206.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-154-01-3/4F                       |                              | 50.0            |                   |          |                                                       |                 |        |          |        |          |      |
| FLS-89-155-01-3/4F                       |                              | 26.0            |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-155-02-3/4F                       |                              | 195.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-155-03-3/4F                       |                              | 35.0            |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-156-01-3/4h                       |                              | 317.0           |                   |          |                                                       |                 |        |          |        |          |      |
| FLS-89-156-02-3/4F                       |                              | 674.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-156-03-3/4F                       |                              | 458.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-29-157-01-3/4F                       |                              | 358.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-59-158-01-3/4F                       |                              | 648.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-159-01-3/4F                       |                              | 138.0           |                   |          |                                                       |                 |        |          |        |          |      |
| -89-161-01-3/4                           |                              | 97.0            |                   |          |                                                       |                 |        |          |        |          |      |
| _0-89-162-01-3/4                         |                              | 1133.0          |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-163-01-3/4F                       |                              | 766.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-163-02-3/4F                       |                              | 159.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-164-01-3/4F                       |                              | 255.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-164-02-3/4F                       |                              | 35.0            |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-164-03-3/4F                       |                              | 185.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-164-04-3/4F                       |                              | 134.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PL3-89-164-05-3/4H                       |                              | 160.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-39-165-01-3/4H                       |                              | 28.0            |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-165-02-3/4F                       |                              | 183.0           |                   |          |                                                       |                 |        |          |        |          |      |
| FLS-39-165-03-3/4F                       |                              | 38.0            |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-19-165-04-3/4H                       |                              | 60.0            |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-165-05-3/4F                       |                              | 65.0            |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-165-06-3/4F                       |                              | 101.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-165-07-3/4F                       |                              | 333.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-165-08-3/4H                       |                              | -5.0            |                   |          |                                                       |                 |        |          |        |          |      |
| PL5-89-165-09-3/4H                       |                              | 30.0            |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-84-166-01-3/4H                       |                              | 212.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-166-02-3/4H                       |                              | 234.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-166-03-3/4H                       |                              | 229.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-166-04-3/4H                       | 31.0 :                       | 95.0            | 2945.0            | 181.0    | 5611.0                                                | 55.0            | 1705.0 | 1 126.0  | 3906.0 | 0.1      |      |
| PLS-89-166-05-3/4H                       | 30.7 1                       | 137.0           | 4205.9            | 183.0    |                                                       |                 |        |          |        |          |      |
| PL5-89-166-06-3/4H                       | 41.4                         | 281.0           | 11633.4           | 184.0    | 7617.6                                                | 53.0            | 2194.2 | 98.0     | 4057.2 | 0.1      | 4.1  |
| PLS-89-166-07-3/4H                       |                              | 89.0            |                   |          | 9250.0                                                | 66.0            | 2442.0 | 112.0    | 4144.0 | : -0.1   |      |
| -89-166-08-3/4H                          |                              | 105.0           |                   | 250.0    |                                                       |                 | 2377.5 | 74.0     | 2345.8 | 0.3      | 9.5  |
| J-89-166-09-3/4H                         |                              | 100.0           |                   |          |                                                       |                 |        | 105.0    | 3531.6 | 0.2      | 6.5  |
| PLS-89-166-10-3/4H                       |                              | 156.0           |                   |          |                                                       |                 |        |          |        |          |      |
| PLS-89-166-11-3/4H                       |                              | 47.0            |                   |          |                                                       |                 |        |          |        | *        |      |
| PLS-89-166-12-3/4H                       | 23.0 1                       | 480.0           | 11040.0           | 176.0    | 4048.0                                                | 69.0            | 1587.0 | 45.0     | 1035.0 | 0.9      | 20.7 |

|                     | WEIGHT (g)<br>NON-MAG | : PPB   | :METAL CONTENT<br>:Au (nanograms) | :     | : METAL CONTENT :<br>:Cu (micrograms): |       | : METAL CONTENT :<br>:Zn (micrograms); |       | ! METAL CONTENT :<br>!As (micrograms): |      | : METAL CONTENT<br>:Ag (micrograms. |
|---------------------|-----------------------|---------|-----------------------------------|-------|----------------------------------------|-------|----------------------------------------|-------|----------------------------------------|------|-------------------------------------|
| PLS-89-166-13-3/4H  |                       |         |                                   |       |                                        | 44.0  |                                        | 58.0  |                                        |      |                                     |
| PLS-89-166-14-3/4H  |                       |         |                                   |       |                                        | 84.0  |                                        | 41.0  |                                        |      |                                     |
| PLS-89-167-01-3/4H  |                       |         |                                   |       |                                        | 22.0  |                                        | 3.0   |                                        | -0.1 |                                     |
| PLS-89-167-02-3/4H) |                       |         |                                   |       |                                        | 22.0  |                                        | 4.0   |                                        |      |                                     |
| PLS-89-167-03-3/4H  |                       |         |                                   |       |                                        | 52.0  |                                        | 43.0  |                                        | 0.3  |                                     |
| PLS-89-167-04-3/4H  |                       |         |                                   |       |                                        | 58.0  |                                        | 45.0  |                                        | 1.0  |                                     |
| FLS-89-168-01-3/4H  |                       |         |                                   |       |                                        | 92.0  |                                        | 38.0  |                                        | -0.1 |                                     |
| PLS-89-168-02-3/4H  |                       |         |                                   |       |                                        | 61.0  |                                        | 57.0  |                                        |      |                                     |
| PLS-89-168-03-3/4H  |                       |         |                                   |       |                                        | 52.0  |                                        | 73.0  |                                        |      |                                     |
| PLS-89-168-04-3/4H  |                       |         |                                   |       |                                        | 48.0  |                                        | 88.0  |                                        |      |                                     |
| PLS-89-168-05-3/4H  |                       |         |                                   |       |                                        | 94.0  |                                        | 43.0  |                                        |      |                                     |
| PLS-89-168-06-3/4H  |                       |         |                                   |       |                                        | 49.0  |                                        | 55.0  |                                        |      |                                     |
| PLS-89-168-07-3/4H  |                       |         |                                   |       |                                        | 42.0  |                                        | 50.0  |                                        |      |                                     |
| PLS-89-169-01-3/4H  |                       | 916.0   |                                   |       |                                        | 57.0  |                                        | 46.0  |                                        |      |                                     |
| FLS-89-169-02-3/4H  |                       |         |                                   |       |                                        | 57.0  |                                        | 43.0  |                                        |      |                                     |
| PLS-89-169-03-3/4H  |                       |         |                                   |       |                                        | 75.0  |                                        | 64.0  |                                        |      |                                     |
| PLS-89-169-04-3/4H1 |                       |         |                                   |       |                                        | 81.0  |                                        | 54.0  |                                        |      |                                     |
| PLS-89-169-05-3/4H  |                       |         |                                   |       |                                        | 78.0  |                                        | 48.0  |                                        |      |                                     |
| PLS-89-169-06-3/4H  |                       |         |                                   |       |                                        | 50.0  |                                        | 97.0  |                                        |      |                                     |
| -89-169-07-3/4H     |                       |         |                                   |       |                                        | 56.0  |                                        | 153.0 |                                        |      |                                     |
| 5-89-169-08-3/4H    |                       |         |                                   |       |                                        | 59.0  |                                        | 65.0  |                                        |      |                                     |
| PLS-89-169-09-3/4H  |                       |         |                                   |       |                                        | 69.0  |                                        | 76.0  |                                        |      |                                     |
| PLS-89-170-01-3/4H  |                       | 10515.0 |                                   |       |                                        | 115.0 |                                        | 37.0  |                                        |      |                                     |
| PLS-89-171-01-3/4H  |                       |         |                                   |       |                                        | 50.0  |                                        | 51.0  |                                        |      |                                     |
| PLS-89-171-02-3/4H  |                       |         |                                   |       |                                        | 41.0  |                                        | 42.0  |                                        |      |                                     |
| PLS-89-171-03-3/4H  |                       |         |                                   |       |                                        | 47.0  |                                        | 47.0  |                                        |      |                                     |
| PLS-89-171-04-3/4H  |                       | 14420.0 |                                   |       |                                        | 41.0  |                                        | 52.0  |                                        |      |                                     |
| PLS-89-171-05-3/4H  |                       | 18321.0 |                                   |       |                                        | 59.0  |                                        | 63.0  |                                        |      |                                     |
| FLS-89-172-01-3/4H  |                       | -       |                                   |       |                                        | 52.0  |                                        | 45.0  |                                        |      |                                     |
| PLS-89-172-02-3/4H  |                       |         |                                   |       |                                        | 70.0  |                                        | 38.0  |                                        |      |                                     |
| PLS-89-172-03-3/4H  |                       |         |                                   |       |                                        | 32.0  |                                        | 43.0  |                                        |      |                                     |
| PLS-89-172-04       | 21.9                  |         |                                   |       |                                        | 55.0  |                                        | 58.0  |                                        |      |                                     |
| PLS-89-172-05       |                       | 207.0   |                                   | 50.0  |                                        | 37.0  |                                        |       |                                        |      |                                     |
| PL\$-89-172-06      |                       | 90.0    |                                   | 63.0  |                                        | 28.0  |                                        |       |                                        |      |                                     |
| PLS-39-173-01       |                       | 274.0   |                                   | 128.0 |                                        |       |                                        |       |                                        |      |                                     |
| PLS-89-174-01       |                       | 1070.0  |                                   | 184.0 |                                        | 52.0  |                                        |       |                                        |      |                                     |
| PLS-89-175-01       |                       | 30.0    |                                   | 120.0 |                                        | 54.0  |                                        |       |                                        |      |                                     |
| PL5-89-175-02       |                       |         |                                   | 161.0 |                                        | 59.0  |                                        |       |                                        |      |                                     |
| PLS-89-175-03       |                       | 530.0   |                                   | 187.0 |                                        | 46.0  |                                        |       |                                        |      |                                     |
| PLS-89-175-04       |                       | 101.0   |                                   | 154.0 |                                        | 57.0  |                                        |       |                                        |      |                                     |
| PLS-89-175-05       |                       | 1310.0  |                                   | 209.0 |                                        | 56.0  |                                        |       |                                        |      |                                     |
| PLS-89-175-06       |                       | 88.0    |                                   | 168.0 |                                        | 58.0  |                                        |       |                                        |      |                                     |
| PLS-89-175-07       |                       | 105.0   |                                   | 149.0 |                                        | 56.0  |                                        |       |                                        |      |                                     |
| PLS-89-175-08       |                       | 137.0   |                                   | 162.0 |                                        | 74.0  |                                        |       |                                        |      |                                     |
| -89-175-09          |                       | 195.0   |                                   | 152.0 |                                        | 67.0  |                                        |       |                                        |      |                                     |
| -89-175-10          |                       | 138.0   |                                   | 145.0 |                                        | 57.0  |                                        |       |                                        |      |                                     |
| FLS-89-175-11       |                       |         |                                   | 162.0 |                                        | 48.0  |                                        |       |                                        |      |                                     |
| PLS-89-175-12       | 20.4                  | 68.0    |                                   | 143.0 |                                        |       |                                        |       |                                        |      |                                     |
| PLS-89-175-13       | 22.2                  | 284.0   | 6304.8                            | 152.0 |                                        |       | 1243.2                                 |       | 1354.2                                 | 0.4  |                                     |

| SAMPLE NUMBER | :WEIGHT [gl:<br>: NON-MAG : | Au ASSAY<br>PPB | : ABSOLUTE<br>:METAL CONTENT<br>:Au (nanograms) | CU ASSAY<br>PPM | : ABSOLUTE :<br>: METAL CONTENT :<br>:Cu (micrograms): | Zn ASSAY<br>PPM | : ABSOLUTE<br>: METAL CONTENT<br>:Zn (micrograms) | AS ASSAY | : METAL CONTENT : | Ag ASSAY<br>PPM | : ABSOLUTE<br>: METAL CONTENT<br>: Ag !micrograms! |
|---------------|-----------------------------|-----------------|-------------------------------------------------|-----------------|--------------------------------------------------------|-----------------|---------------------------------------------------|----------|-------------------|-----------------|----------------------------------------------------|
| PLS-89-175-14 | 27.7 :                      |                 |                                                 |                 |                                                        | 96.0            |                                                   |          |                   |                 |                                                    |
| PLS-89-176-01 | 26.4 :                      | 177.0           | 4672.8                                          | 49.0            | 1293.6                                                 | 31.0            | 812.4                                             | 24.0     | 633.6             | -0.1            | -2.6                                               |
| PLS-89-177-01 | 33.6                        |                 |                                                 |                 | 3326,4 1                                               | 42.0            | 1411.2                                            | 21.0     | 705.6             | -0.1            | 1 -3.4                                             |
| PLS-89-179-01 | 39.8                        |                 |                                                 |                 |                                                        | 66.0            |                                                   |          |                   |                 |                                                    |
| PLS-89-190-01 | -23.8 :                     |                 |                                                 |                 |                                                        | 50.0            |                                                   | 47.0     | 1353.6            | 0.3             | 1 3.6                                              |
| PLS-54-180-00 | 32.0                        | 339.0           | 10848.0                                         | 127.0           | 4064,0 :                                               | 47.0            | 1504.0                                            | 41.0     | 1312.0            | -0.1            | -3.2                                               |
| FLS-89-180-03 | 29,8 :                      | 133.0           | 1 3963.4                                        | 37.0            | 1102.6                                                 | 24.0            | 715.2                                             | 6.0      | 178.8             | 0.1             | 3.0                                                |
| PLS-89-180-04 | 11.4                        |                 |                                                 |                 | 410.4 :                                                | 27.0            | 307.8                                             | 5.0      | 57.0              | 0.1             | 1.1                                                |
| PLS-89-180-05 | 32.4                        |                 |                                                 |                 |                                                        | 22.0            | 712.8                                             | 1 2.0    | 64.8              | -0.1            | -3.2                                               |
| PLS-89-180-06 | 22.1                        |                 |                                                 |                 |                                                        | 31.0            | 685.1                                             | 11.0     | 243.1             | 0.1             | 2.2                                                |
| PLS-89-180-07 | 24.7                        |                 |                                                 |                 |                                                        | 35.0            | 864.5                                             | 27.0     | 666.9             | 0.2             | 1 4.9                                              |
| PLS-89-161-01 | 36.6                        | 442.0           |                                                 |                 | 5636.4 :                                               | 104.0           | 3806.4                                            | 141.0    | 5160.6            | 0.7             | 25.6                                               |
| PLS-89-181-02 | 36.2 1                      |                 |                                                 |                 |                                                        | 25.0            |                                                   | 64.0     | 2316.8            | 0.2             | 7.2                                                |
| PLS-89-181-03 | 20.9                        |                 |                                                 |                 |                                                        | 25.0            |                                                   |          |                   |                 |                                                    |
| PLS-89-131-04 | 36.2                        |                 |                                                 |                 |                                                        | 77.0            |                                                   |          |                   |                 |                                                    |
| PLS-89-181-05 | 32.6                        |                 |                                                 |                 |                                                        | 24.0            |                                                   |          |                   |                 |                                                    |
| FLS-89-131-06 | 34.3                        |                 |                                                 |                 |                                                        | 32.0            |                                                   |          |                   |                 |                                                    |
| PLS-89-181-07 | 39.3                        |                 |                                                 |                 |                                                        | 34.0            |                                                   |          |                   |                 |                                                    |
| PLS-39-181-08 | 25.6                        |                 |                                                 |                 |                                                        | 54.0            |                                                   |          |                   |                 |                                                    |
| -89-181-09    | 29.9                        |                 |                                                 |                 |                                                        | 55.0            |                                                   |          |                   |                 |                                                    |
| _5-39-131-10  | 19.0                        |                 |                                                 |                 |                                                        | 39.0            |                                                   |          |                   |                 |                                                    |
| PLS-89-182-01 | 36.1                        |                 |                                                 |                 |                                                        | 55.0            |                                                   |          |                   |                 |                                                    |
| PLS-89-182-02 | 31.9                        |                 |                                                 |                 |                                                        | 32.0            |                                                   |          |                   |                 |                                                    |
| PLS-89-182-03 | 36.9                        |                 |                                                 |                 |                                                        | 46.0            |                                                   |          |                   |                 |                                                    |
| PLS-39-182-04 | 34.1                        |                 |                                                 |                 |                                                        | 42.0            |                                                   |          |                   |                 |                                                    |
| PLS-89-182-05 | 27.6                        |                 |                                                 |                 |                                                        | 35.0            |                                                   |          |                   |                 |                                                    |
| PLS-39-182-06 | 30.0                        |                 |                                                 |                 |                                                        | 33.0            |                                                   |          |                   |                 |                                                    |
| PLS-39-182-07 | 27.3                        |                 |                                                 |                 |                                                        | 151.0           |                                                   |          |                   |                 |                                                    |
| PLS-89-182-08 | 32.5                        |                 |                                                 |                 |                                                        | 28.0            |                                                   |          |                   |                 |                                                    |
| PLS-89-182-09 | 36.8                        |                 |                                                 |                 |                                                        | 24.0            |                                                   |          |                   |                 |                                                    |
| PLS-39-182-10 | 25.4                        |                 |                                                 |                 |                                                        | 45.0            |                                                   |          |                   |                 |                                                    |
| PLS-29-182-11 | 27.0                        |                 |                                                 |                 |                                                        |                 |                                                   |          |                   |                 |                                                    |
| PLS-89-133-01 |                             | 183.0           |                                                 | 124.0           |                                                        |                 |                                                   | 1 244.0  |                   |                 |                                                    |
| PLS-89-183-02 |                             | 134.0           |                                                 | 125.0           |                                                        |                 |                                                   | 150.0    |                   |                 |                                                    |
|               | 46.7                        |                 |                                                 |                 |                                                        |                 |                                                   |          |                   |                 |                                                    |
| PLS-89-183-04 | 43.4                        |                 |                                                 | 101.0           |                                                        |                 |                                                   |          |                   |                 |                                                    |
| PLS-89-183-05 |                             | 1962.0          |                                                 |                 |                                                        |                 |                                                   |          |                   |                 |                                                    |
| PL5-89-134-01 | 27.3                        |                 |                                                 | 141.0           |                                                        |                 |                                                   |          |                   |                 |                                                    |
| PLS-89-184-02 |                             | 137.0           |                                                 |                 |                                                        |                 |                                                   |          |                   |                 | -2.6                                               |
| PLS-89-184-03 | 17.3                        |                 |                                                 |                 |                                                        |                 |                                                   |          |                   |                 |                                                    |
| PLS-39-184-04 |                             | 152.0           |                                                 | 201.0           |                                                        |                 |                                                   |          |                   |                 |                                                    |
|               |                             | 26.0            |                                                 |                 |                                                        |                 |                                                   |          |                   |                 |                                                    |
| PLS-89-184-06 |                             | 64.0            |                                                 |                 |                                                        |                 |                                                   |          |                   |                 |                                                    |
|               |                             | 162.0           |                                                 |                 |                                                        |                 |                                                   |          |                   |                 |                                                    |
| -39-184-08    |                             | 145.0           |                                                 |                 |                                                        |                 |                                                   |          |                   |                 |                                                    |
| -89-184-09    | 22.8                        |                 |                                                 |                 |                                                        |                 |                                                   |          |                   |                 |                                                    |
|               | 18.1                        |                 |                                                 |                 |                                                        |                 |                                                   |          |                   |                 |                                                    |
|               |                             | 101.0           |                                                 | 124.0           |                                                        |                 |                                                   |          |                   |                 |                                                    |
|               |                             | 433.0           |                                                 | 144.0           |                                                        |                 |                                                   | 138.0    |                   |                 |                                                    |

| SAMPLE NUMBER     | :WEIGHT ( | ) Au ASSA<br>  PPB | AY: ABSOLUTE<br>:METAL CONTENT<br>:Au (nanograms | Cu ASSAY<br>  PPM | : ABSOLUTE<br>: METAL CONTENT<br>:Cu (micrograms) | Zn ASSAY<br>PPM | : ABSOLUTE :A<br>: METAL CONTENT :<br>:Zn (micrograms): | s ASSAY<br>PPM | : ABSOLUTE<br>: METAL CONTENT<br>:As (micrograms) | AS ASSAY<br>PPM | : ABSOLUTE<br>: METAL CONTENT<br>: Ag Umicrograms |
|-------------------|-----------|--------------------|--------------------------------------------------|-------------------|---------------------------------------------------|-----------------|---------------------------------------------------------|----------------|---------------------------------------------------|-----------------|---------------------------------------------------|
| PLS-89-154-13     | 31.3      |                    |                                                  |                   |                                                   |                 |                                                         | 157.0          |                                                   |                 |                                                   |
| PLS-89-184-14     | 20.       | 5   113.           | .0 : 2316.5                                      | 1 136.0           | 2785.0                                            | 35.0            | 717.5                                                   | 118.0          | 2419.0                                            | -0.1            | -2.1                                              |
| PLS-89-184-15     | 36.2      |                    |                                                  |                   |                                                   |                 |                                                         | 113.0          | 4090.6                                            | -0.1            | : -3.6                                            |
| PLS-59-184-16     | 32.8      |                    |                                                  |                   |                                                   |                 |                                                         | 90.0           |                                                   | 0.3             |                                                   |
| PLS-89-184-17     | 31.       |                    | 0 2253,6                                         |                   |                                                   |                 |                                                         | 76.0           | 2378.8                                            | -0.1            | -3.1                                              |
| PLS-29-184-18     | 32.       |                    |                                                  |                   |                                                   |                 |                                                         | 32.0           |                                                   |                 |                                                   |
| PLS-89-185-01     | 33.       |                    |                                                  |                   |                                                   |                 |                                                         | 112.0          | 3729.6                                            | -0.1            | -3.3                                              |
| PLS-39-135-02     | 32.       |                    | .0 : 2503.8                                      |                   |                                                   |                 |                                                         | 78.0           | 2503.8                                            | 0.5             | 16.1                                              |
| PLS-89-185-03     | 29.       |                    |                                                  |                   |                                                   |                 |                                                         | 66.0           | 1947.0                                            | -0.1            | : -3.0                                            |
| PLS-89-185-04     | 31.       |                    |                                                  |                   |                                                   |                 |                                                         | 83.0           |                                                   | -0.1            | ; -3.2                                            |
| PLS-89-135-05     | 29.       |                    |                                                  |                   |                                                   |                 |                                                         | 62.0           | 1841.4                                            | -0.1            | -3.0                                              |
| PLS-89-185-06     | 33.       |                    | .0   1819.8                                      |                   |                                                   |                 |                                                         | 43.0           | 1449.1                                            | -0.1            | 1 -3.4                                            |
| PLS-89-185-07     | 31.       |                    |                                                  |                   |                                                   |                 |                                                         | 51.0           |                                                   | -0.1            | -3.1                                              |
| PLS-89-185-08-3/4 |           |                    | .0 : 828.0                                       |                   |                                                   |                 |                                                         | 66.0           |                                                   |                 | 1 -4.1                                            |
| PLS-89-185-09-3/4 |           |                    |                                                  |                   |                                                   |                 |                                                         | 69.0           |                                                   |                 | -4.7                                              |
| PLS-29-185-10-3/4 |           |                    |                                                  |                   |                                                   |                 |                                                         | 91.0           |                                                   | -0.1            | ; -3.5                                            |
| PLS-89-185-11-3/4 |           |                    |                                                  |                   |                                                   |                 |                                                         | 92.0           | 2217.2                                            | 1 0,2           | 4.8                                               |
| PLS-89-185-12-3/4 |           |                    |                                                  |                   |                                                   |                 |                                                         | 56.0           | 1937.6                                            | -0.1            | 4 -3.5                                            |
| PLS-89-185-13-3/4 |           |                    |                                                  |                   |                                                   |                 |                                                         | 51.0           | 1264.8                                            | -0.1            | -2.5                                              |
| 9-39-185-14-3/4   |           |                    |                                                  |                   |                                                   |                 |                                                         | 46.0           | 956.8                                             | -0.1            | -2.1                                              |
| _3-89-135-15-3/4  |           |                    |                                                  |                   |                                                   |                 |                                                         | 75.0           |                                                   | -0.1            | : -3.0                                            |
| PL5-89-185-16-3/4 |           |                    |                                                  |                   |                                                   |                 |                                                         | 75.0           |                                                   |                 |                                                   |
| PLS-89-135-17-3/4 |           |                    |                                                  |                   |                                                   |                 |                                                         | 44.0           | 1201.2                                            | : -0.1          | ; -2.7                                            |
| PLS-89-185-18-3/4 |           |                    |                                                  |                   |                                                   |                 |                                                         | 250.0          | 4775.0                                            | -0.1            | -1.9                                              |
| PLS-89-185-19-3/4 |           |                    |                                                  |                   |                                                   | 97.0            | 2357.1 :                                                | 296.0          | 7192.8                                            | -0.1            | -2,4                                              |
| PLS-89-185-20-3/4 |           |                    |                                                  | : 240.0           | 4824.0                                            | 128.0           | 1 . 2572.8 1                                            | 352.0          | 1 7075.2                                          | -0.1            | : -2.0                                            |
| PLS-89-185-21-3/4 | H: 12.    | 7 1 246            | .0 : 3124.2                                      | 158.0             | 2006.6                                            | 78.0            | 990.6 1                                                 | 358.0          | 4546.6                                            | 0.1             | 1.3                                               |
| PLS-89-185-22-3/4 | H: 15.    | 7 : 163            | .0   2559.1                                      | 188.0             | 2951.6                                            | 98.0            | 1538.6                                                  | 592.0          | 9294.4                                            | 0.2             | 3.1                                               |
| PLS-89-185-23-3/4 | H: 21.    | 314                | .0 1 6594.0                                      | 145.0             | 3045.0                                            | 71.0            | 1491.0 :                                                | 356.0          | 1 7476.0                                          | -0.1            | -2.1                                              |
| PLS-89-185-24-3/4 | H: 23.:   | 2   .122           | .0: 2830.4                                       | 127.0             | 2946.4                                            | 61.0            | 1415.2 :                                                | 230.0          | 5336.0                                            | -0.1            | 1 -2.3                                            |
| PLS-89-186-01-3/4 | H: 26.    | 5 : 127            | .0 : 3365.5                                      | 232.0             | 6148.0                                            | 49.0            | 1298.5                                                  | 97.0           | 2570.5                                            | : 0.1           | 2.7                                               |
| PLS+89-186-02-3/4 | H: 25.    | 3   133            | .0 : 3364.9                                      | 164.0             | 4149.2                                            | 50.0            | 1265.0                                                  | 93.0           | 2352.9                                            | -0.1            | -2.5                                              |
| PLS-89-186-03-3/4 | H: 18.    | 5 ; 120            | .0: 2220.0                                       | 137.0             | 2534.5                                            | 43.0            | 795.5 1                                                 | 88.0           | 1628.0                                            | -0.1            | -1.9                                              |
| PLS-89-186-04-3/4 | H: 16.:   | 2 ! 137            | .0 : 2219.4                                      | 163.0             | 2640.6                                            | 43.0            | 696.6 1                                                 | 79.0           | 1279.8                                            | -0.1            | -1.6                                              |
| PLS-89-186-05-3/4 | H: 24.    | 5   129            | .0 : 3160.5                                      | 112.0             | 2744.0                                            | : 88.0          | 2156.0 1                                                | 85.0           | 2082.5                                            | -0.1            | 1 -2.5                                            |
| PLS-89-186-06-3/4 | H: 18.    | 4 : 50             | .0 : 920.0                                       | 98.0              | 1803.2                                            | 35.0            | 644.0 :                                                 | 54.0           | 993.6                                             | -0.1            | -1.8                                              |
| PLS-89-136-07-3/4 | H: 33.    | 7 : 20             | .0 : 674.0                                       | 91.0              | 3066.7                                            | 1 32.0          | 1078.4 1                                                | 21.0           | 707.7                                             | -0.1            | -3.4                                              |
| PLS-89-187-01-3/4 | H: 40.    | £   135            | .0: 5508.0                                       | 209.0             | 8527.2                                            | 62.0            | 2529.6                                                  | 83.0           | 3386.4                                            | -0.1            | -4.1                                              |
| PLS-89-187-02-3/4 | H: 32.    | 6 1 248            | .0 8084.8                                        | 205.0             | 6683.0                                            | 52.0            | 1 1695.2 1                                              | 70.0           | 2282.0                                            | -0.1            | -3.3                                              |
| PLS-89-187-03-3/4 | H: 24.    | 4: 98              | .0 : 2391.2                                      | 219.0             | 5343.6                                            | 78.0            | 1903.2                                                  | 71.0           | 1732.4                                            | -0.1            | -2.4                                              |
| PLS-89-187-04-3/4 | H: 25.    | 1   64             | .0 : 1606.4                                      | 236.0             | 5923.6                                            | 61.0            | 1531.1                                                  | 80.0           | 2008.0                                            | -0.1            | -2.5                                              |
| PLS-89-187-05-3/4 |           |                    | .0 : 5387.2                                      |                   |                                                   |                 |                                                         | 42.0           |                                                   |                 |                                                   |
| PLS-89-187-06-3/4 | H: 16.    | 0 : 30             | .0: 480.0                                        | 129.0             | 2064.0                                            | 52.0            | 832.0 1                                                 | 50.0           | 300.0                                             | -0.1            | -1.6                                              |
| PLS-89-187-07-3/4 | H: 23.:   | 2: 92              | .0   2134.4                                      | 150.0             | 3480.0                                            | 54.0            | 1252.8 ;                                                | 48.0           | 1113.6                                            | -0.1            |                                                   |
| 9-39-187-08-3/4   | H: 22.    | 3 : 150            | .0   3345.0                                      | 169.0             | 3768.7                                            | 265.0           | 5909.5                                                  | 51.0           | 1137.3                                            | -0.1            |                                                   |
| _3-89-187-09-3/4  |           |                    | .0 : 745.8                                       | 120.0             | 2712.0                                            | 46.0            | 1039,6 1                                                | 31.0           | 700.6                                             |                 |                                                   |
| PLS-89-187-10-3/4 |           |                    | .0 : 1869.0                                      |                   |                                                   |                 |                                                         | 43.0           |                                                   |                 |                                                   |
| PLS-89-187-11-3/4 |           |                    | .0 : 1313.2                                      |                   |                                                   |                 |                                                         | 41.0           |                                                   |                 |                                                   |
| PLS-89-187-12-3/4 | H: 23.    | 5 : 28             | .0 : 658.0                                       | 136.0             | 3196.0                                            | 46.0            | 1081.0 :                                                | 37.0           | 869.5                                             | 0.1             | 2.4                                               |

|                    | :WEIGHT (g):AL<br>: NON-MAG : | ASSAY<br>PPE | : ABSOLUTE<br>:METAL CONTENT<br>:Au (nanograms |         | : ABSOLUTE<br>: METAL CONTENT<br>:Cu (micrograms) | :Zn ASSAY<br>: PPM | : ABSOLUTE<br>: METAL CONTENT<br>:Zn (micrograms | i   | ASSAY<br>PPM | : ABSOLUTE<br>: METAL CONTENT<br>:As (micrograms) | IAG ASSAY<br>  PPM<br> | : ABSOLUTE<br>: METAL CONTENT<br>:Ag (micrograms) |
|--------------------|-------------------------------|--------------|------------------------------------------------|---------|---------------------------------------------------|--------------------|--------------------------------------------------|-----|--------------|---------------------------------------------------|------------------------|---------------------------------------------------|
| LS-89-187-13-3/4H  | 16.0 1                        | 73.0         | 1168.0                                         | 170.0   | 2720.0                                            | 95.0               | 1520.0                                           | 1   | 220.0        | 3520.0                                            | -0.1                   | -1.6                                              |
| PLS-89-187-14-3/4H | 14.5                          | 168.0        | 2436.0                                         | 1 198.0 | 2871.0                                            | 102.0              | 1479.0                                           | 1   | 496.0        | 7192.0                                            | 0.5                    | 7.3                                               |
| FLS-89-187-15-3/4H | 27.7 :                        | 772.0        | 21384.4                                        | 202.0   | 5595.4                                            | 1 94.0             | 2603.8                                           | 1   | 840.0        | 23268.0                                           | 0.6                    | 1 16.6                                            |
| PLS-89-187-16-3/4H | 22.8 1                        | 998.0        | 22754.4                                        | 266.0   | 6064.8                                            | 144.0              | 3283.2                                           | 1   | 616.0        | 14044.8                                           | 0.5                    | 11.4                                              |
| PL5-59-187-17-3/4H | 21.2                          | -750.0       | 15900.0                                        | 197.0   | 1 4176.4                                          | 146.0              | 3095.2                                           | i   | 515.0        | 10918.0                                           | 0.5                    | 10.6                                              |
| PLS-89-187-18-3/4H | 17.1                          | 843.0        | 14415.3                                        | 119.0   | 2034.9                                            | 57.0               | 974.7                                            | 1   | 286.0        | 4890.6                                            | 0.2                    | 1 3.4                                             |
| FLS-89-187-19-3/4H | 24.1                          | 582.0        | 14026.2                                        | 113.0   | 1 2723.3                                          | 49.0               | 1180.9                                           | ij  | 322.0        | 7760.2                                            | -0.1                   | -2.4                                              |
| PLS-89-188-01-3/4H | 16.9 1                        | -10.0        | -169.0                                         | 52.0    | \$78.8                                            | 38.0               | 642.2                                            |     | 32.0         | 540.8                                             | 0.1                    | 1.7                                               |
| PLS-89-188-02-3/4H | 34.1 !                        | 344.0        | 11730.4                                        | 69.0    | 2352.9                                            | 33.0               | 1125.3                                           | i   | 56.0         | 1909.6                                            | 0.1                    | 1 3.4                                             |
| FLS-89-188-03-3/4H | 26.8                          | 492.0        | 13185.6                                        | 88.0    | 2358.4                                            | 1 28.0             | 750.4                                            | . 1 | 62.0         | 1661.6                                            | 8.0                    | 214.4                                             |
| PLS-39-188-04-3/4H | 29.8 1                        | 96.0         | 2860.8                                         | 74.0    | 2205.2                                            | 1 27.0             | 304.6                                            | , t | 59.B         | 1758.2                                            | 0.2                    | 1 6.0                                             |
| PLS-89-188-05-3/4H | 26.2                          | 253.0        | 6628.6                                         | 110.0   | 2882.0                                            | 25.0               | 655.0                                            | 1   | 64.0         | 1676.8                                            | 0.3                    | 7.9                                               |
| PLS-89-138-06-3/4H | 24.5                          | 72.0         | 1764.0                                         | 89.0    | 2180.5                                            | 48.0               | 1176.0                                           | 1   | 65.0         | 1592.5                                            | 0.3                    | .7.4                                              |
| PLS-89-188-07-3/4H | 33.9 :                        | 95.0         | 3220.5                                         | 106.0   | 3593.4                                            | 26.0               | 881.4                                            | . 1 | 43.0         | 1457.7                                            | 0.6                    | 1 20.3                                            |
| PLS-89-188-08-3/4H | 26.7 1                        | 109.0        | 2910.3                                         | 120.0   | 3204.0                                            | : 31.0             | 827.7                                            | 1   | 53.0         | 1415.1                                            | : 0.5                  | 13.4                                              |
| PLS-89-188-09-3/4H | 24.6                          | 43.0         | 1057.8                                         | 83.0    | 2041.8                                            | 36.0               | 885.6                                            | 1   | 74.0         | 1820.4                                            | 2.9                    | 71.3                                              |
| PLS-89-188-10-3/4H | 27.2                          | 404.0        | 10988.8                                        | 86.0    | 2339.2                                            | 26.0               | 707.2                                            | 1   | 36.0         | 2339.2                                            | 0.5                    | 13.6                                              |
| PLS-89-188-11-3/4H | 20.5                          | 109.0        | 2234.5                                         | 52.0    | 1066.0                                            | 22.0               | 451.0                                            | 1   | 34.0         | 697.0                                             | 0.2                    | 4.1                                               |

| PS-99-188-12-344H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | SAMPLE NUMBER      | :WEIGHT (g):A<br>: NON-MAG :<br>: | u ASSAY<br>PPB | : ABSOLUTE<br>:METAL CONTENT<br>:Au (nanograms) | :Cu    | ASSAY<br>PPM | : ABSOLUTE<br>: METAL CONTENT<br>:Cu (micrograms) | Zn ASSAY<br>PPM | ! METAL CONTENT : :Zn (micrograms)! | s ASSAY<br>PPM | : ABSOLUTE<br>: METAL CONTENT<br>:As !micrograms | Ag ASSAY<br>: PPM | : ABSOLUTE<br>: METAL CONTENT<br>:Ag (micrograms) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------|-----------------------------------|----------------|-------------------------------------------------|--------|--------------|---------------------------------------------------|-----------------|-------------------------------------|----------------|--------------------------------------------------|-------------------|---------------------------------------------------|
| PLS-8-185-13-374H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
| PiS-9-183-143-1441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
| PLS-8-185-15-374H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
| PLS-8-18-18-1-374H  22.1   33.0   7293.0   133.0   344.6   44.0   1152.8   290.0   5525.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
| PLS-89-128-17-3/4H   33.2   383.0   5240.0   5240.0   133.0   3624.6   44.0   1152.8   74.0   1534.2   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   174.5   |   |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
| Fig. 28-18-13-174H    33.3   33.0   1275.3   545.0   12142.5   55.0   1831.5   274.0   9124.2   1915-99-136-19-74H    33.9   385.0   1477.5   940.0   3656.0   57.0   2217.3   280.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   10992.0   1   |   |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
| PLS-89-136-19-374H; 32, 9; 385, 0; 1497, 5; 940, 0; 3656, 0; 57, 0; 2217, 3; 280, 0; 1093, 0; PLS-98-190-01-374H; 22, 8; 671, 0; 1529, 8; 356, 0; 811, 8; 27, 0; 615, 6; 85, 0; 1936, 0; PLS-98-190-01-374H; 20, 8; 1299, 0; 26893, 3; 782, 0; 1611, 6; 45, 0; 1014, 3; 105, 0; 2175, 5; PLS-98-192-01-374H; 33, 4; 76-6, 0; 25894, 4; 784, 0; 28185, 6; 44, 0; 2137, 6; 123, 0; 4108, 2; PLS-98-193-01-374H; 9, 0; 362, 0; 3312, 0; 91, 0; 819, 0; 27, 0; 243, 0; 13, 0; 117, 0; PLS-98-193-02-374H; 19, 2; 77, 0; 1420, 8; 59, 0; 1132, 8; 22, 0; 243, 0; 13, 0; 117, 0; PLS-98-193-02-374H; 19, 2; 77, 0; 1420, 8; 59, 0; 1132, 8; 23, 0; 441, 6; 7, 0; 134, 4; PLS-98-193-03-374H; 12, 3; 365, 0; 7736, 8; 59, 0; 1132, 8; 23, 0; 441, 6; 7, 0; 134, 4; PLS-98-193-05-374H; 12, 3; 365, 0; 7736, 8; 50, 0; 1095, 0; 22, 0; 442, 2; 16, 0; 321, 6; PLS-98-193-05-374H; 12, 3; 365, 0; 7736, 8; 50, 0; 1095, 0; 22, 0; 442, 2; 16, 0; 321, 6; PLS-99-193-05-374H; 13, 0; 105, 0; 1422, 0; 123, 0; 1590, 0; 22, 0; 442, 2; 16, 0; 321, 6; PLS-99-193-05-374H; 13, 0; 105, 0; 1422, 0; 123, 0; 1590, 0; 22, 0; 442, 2; 16, 0; 321, 6; PLS-99-193-05-374H; 13, 0; 105, 0; 1422, 0; 123, 0; 1676, 8; 49, 0; 666, 4; 68, 0; 924, 8; PLS-99-193-05-374H; 13, 0; 105, 0; 122, 0; 220, 0; 4290, 0; 34, 0; 163, 0; 163, 0; 924, 8; PLS-99-193-05-374H; 13, 0; 1535, 0; 1091, 0; 220, 0; 4290, 0; 34, 0; 1633, 0; 192, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0; 3744, 0;  |   |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
| PLS-89-190-01-374H   20.7   1299.0   2689.3   788.0   8116.8   27.0   615.6   85.0   1938.0   PLS-89-191-01-374H   20.7   1299.0   2689.3   788.0   16311.6   49.0   1014.3   105.0   2173.5   PLS-89-193-01-374H   33.4   766.0   25884.4   788.0   26818.5   64.0   2173.6   123.0   4108.2   PLS-89-193-01-374H   20.7   522.0   1379.4   122.0   2991.4   27.0   639.9   16.0   379.2   PLS-89-193-01-374H   20.7   522.0   1379.4   122.0   2991.4   27.0   639.9   16.0   379.2   PLS-89-193-03-374H   19.2   74.0   1420.8   59.0   1132.8   23.0   441.6   7.0   134.4   PLS-89-193-04-374H   12.3   806.0   9918.8   66.0   811.3   24.0   295.2   7.0   86.1   PLS-89-193-04-374H   20.1   385.0   7788.5   50.0   1005.0   22.0   442.2   16.0   321.6   PLS-89-193-04-374H   14.2   323.0   4586.6   112.0   1590.4   36.0   511.2   782.0   10678.4   PLS-89-193-05-374H   14.2   323.0   4586.6   112.0   1590.4   36.0   511.2   782.0   10678.4   PLS-89-193-07-374H   13.0   105.0   1428.0   123.0   1672.8   49.0   666.4   68.0   863.6   863.6   PLS-89-193-07-374H   13.0   105.0   1428.0   123.0   1672.8   49.0   666.4   68.0   863.6   PLS-89-193-07-374H   13.0   105.0   1428.0   220.0   4290.0   58.0   1065.0   152.0   3744.0   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1   1429.1     |   | PLS-89-158-19-3/4H |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
| PLS-89-192-01-374H    33,4   766,0   25584,4   784,0   26185,6   64,0   2137,6   123,0   4108,2   PLS-98-193-01-374H    9,0   362,0   3312,0   91,0   819,0   27,0   243,0   13,0   13,0   177,0   PLS-89-193-03-374H    19,2   74,0   1420,8   59,0   1132,8   230,0   441,6   7,0   134,4   PLS-89-193-03-374H    19,2   74,0   1420,8   59,0   1132,8   23,0   441,6   7,0   134,4   PLS-89-193-03-374H    13,3   366,0   9913,8   66,0   811,8   24,0   295,2   7,0   86,1   PLS-89-193-03-374H    14,2   323,0   4586,6   112,0   1590,4   36,0   511,2   752,0   10678,4   PLS-89-193-06-374H    14,2   323,0   4586,6   112,0   1590,4   36,0   511,2   752,0   10678,4   PLS-89-193-06-374H    15,0   105,0   1423,0   123,0   1672,8   49,0   66,1   68,0   924,8   PLS-89-193-08-374H    15,0   105,0   1423,0   123,0   1672,8   49,0   66,6   68,0   924,8   PLS-89-193-08-374H    15,0   105,0   1423,0   123,0   1473,0   34,0   105,0   192,0   3744,0   PLS-89-193-10-374H    15,0   150,0   1943,0   203,0   429,0   54,0   1055,0   192,0   3744,0   PLS-89-193-10-374H    15,0   220,0   220,0   242,0   211,6   44,0   457,6   145,0   1609,5   PLS-89-193-12-374H    7,7   300,0   230,0   220,0   2225,3   34,0   261,8   90,0   693,0   PLS-89-193-12-374H    7,7   300,0   230,0   230,0   220,0   2225,3   34,0   261,8   90,0   693,0   PLS-89-194-02-374H    24,5   5,0   122,5   107,0   2621,5   22,0   557,0   110,1   297,0   PLS-89-194-02-374H    24,5   5,0   122,5   107,0   2621,5   22,0   559,0   6,0   147,0   PLS-89-194-03-374H    15,5   156,0   1914,0   245,7   52,0   1804,4   19,0   659,3   7,0   242,9   PLS-89-194-03-374H    15,5   156,0   1914,0   255,0   250,0   250,0   250,0   350,0   350,0   350,0   360,0   370,0   360,0   370,0   380,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   390,0   |   | PL5-89-190-01-3/4H |                                   | 671.0          | : 15298.8                                       | 1      | 356.0        | 8116.8                                            | 27.0            | 615.6                               | 85.0           | 1938.0                                           | : 0.6             | 13.7                                              |
| PLS-89-193-01-3/4H; 9.0; 368.0; 3312.0; 91.0; 819.0; 27.0; 243.0; 13.0; 117.0; PLS-89-193-02-3/4H; 23.7; 562.0; 13793.4; 122.0; 2991.4; 27.0; 639.9; 16.0; 379.2; 379.2; 18.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; 19.9; |   | PLS-89-191-01-3/4H |                                   | 1299.0         | 26889.3                                         | •      | 788.0        |                                                   |                 |                                     | 105.0          | 2173.5                                           | 0.9               | 18.6                                              |
| PLS-89-193-01-3/4H    9,0   368.0   3312.0   91.0   819.0   27.0   243.0   13.0   117.0       PLS-89-193-02-3/4H    23.7   562.0   13793.4   122.0   2991.4   27.0   639.9   16.0   379.2       PLS-89-193-00-3/4H    10.2   74.0   1420.8   59.0   1132.8   23.0   441.6   7.0   134.4       PLS-89-193-04-3/4H    12.3   806.0   9913.8   66.0   811.3   24.0   295.2   7.0   86.1       PLS-89-193-05-3/4H    12.3   835.0   7738.5   50.0   1005.0   22.0   442.2   16.0   321.6       PLS-89-193-05-3/4H    12.1   325.0   7738.5   50.0   1005.0   22.0   442.2   16.0   321.6       PLS-89-193-05-3/4H    12.7   210.0   2667.0   42.0   533.4   24.0   304.2   660.0   863.6       PLS-89-193-07-3/4H    15.0   105.0   1423.0   123.0   1672.8   49.0   666.4   68.0   9924.8       PLS-89-193-08-3/4H    15.0   105.0   1423.0   123.0   1672.8   49.0   666.4   68.0   9924.8       PLS-89-193-10-3/4H    11.1   150.0   1999.0   403.0   4473.3   32.0   355.2   145.0   1506.0   192.0   3744.0       PLS-89-193-11-3/4H    7.7   300.0   2300.0   239.0   2225.3   34.0   261.8   90.0   693.0       PLS-89-193-12-3/4H    27.0   -5.0   -135.0   42.0   220.0   221.0   567.0   11.0   297.0       PLS-89-194-02-3/4H    27.0   -5.0   -135.0   42.0   220.0   220.5   34.0   261.8   90.0   693.0       PLS-89-194-03-3/4H    33.7   71.0   2465.7   52.0   1804.4   19.0   659.3   70.0   242.9       PLS-89-194-03-3/4H    15.5   158.0   1817.0   72.0   828.0   20.1   39.0   47.0   47.0       PLS-89-194-03-3/4H    15.5   116.0   1817.0   72.0   828.0   33.0   47.0   47.0   47.0       PLS-89-194-03-3/4H    15.5   116.0   1817.0   72.0   828.0   33.0   47.0   16.0   184.0   17.0       PLS-89-194-03-3/4H    15.5   116.0   1817.0   72.0   828.0   33.0   47.0   16.0   184.0   17.0       PLS-89-194-03-3/4H    15.5   116.0   1817.0   72.0   828.0   33.0   47.0   16.0   184.0   17.0       PLS-89-194-03-3/4H    15.5   116.0   1817.0   72.0   828.0   33.0   47.0   16.0   135.0   22.0   23.0   23.0   23.0   23.0   23.0   23.0   23.0   23.0   23.0   23.0   23.0   23.0   23.0      |   | PLS-89-192-01-3/4H | 33,4 1                            | 766.0          | 25584.4                                         | 1      | 784.0        | 26185.6                                           | 64.0            | 2137.6                              | 123.0          | 4108,2                                           | 1.3               | 43.4                                              |
| PLS-89-193-03-3/4H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | PLS-89-193-01-3/4H | 9.0 !                             | 368.0          | 3312.0                                          | t<br>1 | 91.0         | 819.0                                             | 27.0            | 243.0 1                             | 13.0           | 117.0                                            | 0.4               | 3.6                                               |
| FLS-89-193-06-3/4H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | PLS-89-193-02-3/4H |                                   | 582.0          | 13793.4                                         | 1      | 122.0        | 2891.4                                            | 27.0            | 639.9 1                             | 16.0           | 379.2                                            | : 0.2             | 4.7                                               |
| FILS-89-193-04-3/4H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | PLS-89-193-03-3/4H | 19,2 1                            | 74.0           | 1420.8                                          | †      | 59.0         | 1132.8                                            |                 |                                     |                |                                                  | 0.2               | 3.8                                               |
| PLS-69-193-06-3/4H;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | PLS-89-193-04-3/4H |                                   | 806.0          | 9913.8                                          | à<br>ì | 66.0         | 811.8                                             | 24.0            | 295.2                               | 7.0            | 86.1                                             | -0.1              | -1.2                                              |
| PLS-89-193-07-3/4H  12.7   210.0   2667.0   42.0   533.4   24.0   304.8   68.0   863.6   PLS-89-193-08-3/4H  13.6   105.0   1428.0   123.0   1672.8   49.0   666.4   68.0   924.8   -89-193-08-3/4H  11.1   120.0   1998.0   403.0   4290.0   54.0   1053.0   192.0   3744.0   -89-193-10-3/4H  11.1   120.0   1998.0   403.0   4473.3   32.0   355.2   145.0   1609.5   PLS-89-193-11-3/4H  11.1   120.0   230.0   204.0   2121.6   44.0   457.6   145.0   1508.0   PLS-89-193-12-3/4H  17.7   300.0   2310.0   259.0   2225.3   34.0   261.8   90.0   693.0   PLS-89-194-01-3/4H  27.0   -5.0   -135.0   42.0   1296.0   21.0   557.0   11.0   297.0   PLS-89-194-02-3/4H  24.5   -5.0   -122.5   107.0   2621.5   22.0   539.0   6.0   147.0   PLS-89-194-03-3/4H  34.7   71.0   2463.7   52.0   1804.4   19.0   659.3   7.0   242.9   PLS-89-194-06-3/4H  11.5   150.0   1817.0   72.0   622.0   38.0   47.0   16.0   184.0   PLS-89-194-06-3/4H  11.5   150.0   1817.0   72.0   622.0   38.0   47.0   16.0   184.0   PLS-89-194-07-3/4H  13.5   116.0   1914.0   254.0   4795.0   26.0   351.0   56.0   756.0   PLS-89-194-07-3/4H  13.5   116.0   15660.0   350.0   4725.0   26.0   351.0   56.0   756.0   PLS-89-195-01-3/4H  22.4   235.0   5331.2   266.0   5958.4   48.0   1075.2   214.0   4793.6   PLS-89-195-02-3/4H  22.4   235.0   5331.2   266.0   5958.4   48.0   1075.2   215.0   4698.0   PLS-89-195-03-3/4H  22.4   235.0   525.0   272.0   5304.0   70.0   1366.0   123.0   2398.5   PLS-89-195-03-3/4H  24.1   131.0   27257.1   284.0   6844.4   67.0   1227.1   102.0   2155.5   PLS-89-195-07-3/4H  21.1   343.0   7237.3   255.0   240.0   370.0   383.9   95.0   2175.5   PLS-89-195-07-3/4H  21.1   343.0   7237.3   255.0   240.0   370.0   331.0   328.6   73.0   2398.5   PLS-89-195-07-3/4H  21.1   343.0   7237.3   255.0   240.0   370.0   331.0   328.6   73.0   2398.5   PLS-89-195-08-3/4H  20.1   235.0   6615.0   200.0   2309.0   370.0   331.0   326.6   73.0   3322.2   PLS-89-195-07-3/4H  20.1   225.0   2255.0   2255.0   2385.0   310.0   326.6   73.0   332.0   335.0   326.8   |   | PLS-89-193-05-3/4H | 20.1                              | 385.0          | 7738.5                                          | f .    | 50.0         | 1005.0                                            |                 |                                     | 16.0           | 321.6                                            | 0.1               | 2.0                                               |
| FLS-89-193-08-3/4H;   13.6   105.0   1428.0   123.0   1672.8   49.0   666.4   68.0   924.8   68-9132-09-3/4H;   19.5   535.0   10491.0   220.0   4290.0   54.0   1053.0   192.0   3744.0   1-29-193-10-3/4H;   11.1   120.0   1998.0   403.0   4473.3   32.0   355.2   145.0   1609.5   1609.5   FLS-89-193-11-3/4H;   10.4   270.0   2808.0   204.0   2121.6   44.0   457.6   145.0   1609.5   1508.0   FLS-89-193-12-3/4H;   7.7   300.0   2310.0   2299.0   2225.3   34.0   261.8   90.0   693.0   FLS-89-194-01-3/4H;   27.0   -5.0   -135.0   48.0   1296.0   21.0   567.0   11.0   297.0   FLS-89-194-02-3/4H;   24.5   -5.0   -122.5   107.0   2621.5   22.0   539.0   6.0   147.0   FLS-89-194-02-3/4H;   34.7   71.0   2463.7   52.0   1804.4   19.0   665.4   59.0   344.4   5.0   68.0   FLS-89-194-03-3/4H;   13.6   25.0   340.0   49.0   666.4   29.0   344.4   5.0   68.0   FLS-89-194-05-3/4H;   11.5   158.0   1817.0   72.0   822.0   38.0   437.0   16.0   184.0   FLS-89-194-06-3/4H;   13.5   116.0   1914.0   254.0   4191.0   45.0   742.5   143.0   2359.5   FLS-89-194-07-3/4H;   13.5   1160.0   15660.0   350.0   4725.0   26.0   351.0   56.0   742.5   143.0   2359.5   FLS-89-195-07-3/4H;   22.4   238.0   5331.2   266.0   5958.4   48.0   1075.2   214.0   4793.6   FLS-89-195-07-3/4H;   22.4   238.0   5702.1   144.0   3297.5   41.0   938.9   95.0   2175.5   FLS-89-195-07-3/4H;   19.5   270.0   5265.0   272.0   5304.0   70.0   1365.0   123.0   2396.5   FLS-89-195-07-3/4H;   19.5   270.0   5265.0   272.0   5304.0   70.0   1365.0   123.0   2396.5   FLS-89-195-07-3/4H;   19.5   270.0   5265.0   272.0   5304.0   70.0   1365.0   123.0   2396.5   FLS-89-195-07-3/4H;   19.5   270.0   5265.0   272.0   5304.0   70.0   1365.0   123.0   2396.5   FLS-89-195-07-3/4H;   19.5   270.0   5265.0   272.0   5304.0   70.0   1365.0   123.0   2396.5   FLS-89-195-07-3/4H;   13.5   110.0   1397.0   2250.0   2257.0   5304.0   70.0   1365.0   123.0   2396.5   FLS-89-195-07-3/4H;   13.2   215.0   1725.0   124.0   1711.2   42.0   579.6   144.0   179.0   3723.2   FLS-89-1   |   | PLS-89-193-06-3/4H | 14.2                              | 323.0          | 4586.6                                          | 1      | 112.0        | 1590.4                                            | 36.0            | 511.2 :                             | 752.0          | 10678.4                                          | : 0.3             | 1 4.3                                             |
| -89-193-09-3/4H; 19.5   538.0   10491.0   220.0   4290.0   54.0   1053.0   192.0   3744.0   .89-193-10-3/4H; 11.1   190.0   1998.0   403.0   4473.3   32.0   355.2   145.0   1609.5   .89-193-11-3/4H; 10.4   270.0   2808.0   204.0   2121.6   44.0   457.6   145.0   1508.0   .89-193-11-3/4H; 27.7   300.0   2310.0   289.0   2225.3   34.0   261.8   90.0   693.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .893.0   .89 |   | PLS-89-193-07-3/4H | 12.7 1                            | 210.0          | 2667.0                                          | 1      | 42.0         | 533.4                                             | 24.0            | 304.8                               | 68.0           | 863.6                                            | 0.2               | 2.5                                               |
| -89-193-10-3/4H    11.1   120.0   1998.0   403.0   4473.3   32.0   355.2   145.0   1609.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | FLS-89-193-08-3/4H | 13.6 1                            | 105.0          | 1428.0                                          | 1      | 123.0        | 1672.8                                            | 49.0            | 666.4 !                             | 68.0           | 924.8                                            | 0.2               | 2.7                                               |
| PLS-89-193-11-3/4H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 | -89-193-09-3/4H    | 19.5 :                            | 538.0          | 10491.0                                         | 1      | 220.0        | 4290.0                                            | 54.0            | 1053.0                              | 192.0          | 3744.0                                           | 0.7               | 13.7                                              |
| PLS-89-193-12-3/4H;   7.7   300.0   2310.0   289.0   2225.3   34.0   261.8   90.0   693.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 | J-89-193-10-3/4H   | 11.1                              | 180.0          | 1998.0                                          | ÷      | 403.0        | 4473.3                                            | 32.0            | 355.2 ;                             | 145.0          | 1609.5                                           | 1.8               | 20.0                                              |
| PLS-89-194-01-3/4H  27.0   -5.0   -135.0   48.0   1296.0   21.0   567.0   11.0   297.0   PLS-89-194-02-3/4H  24.5   -5.0   -122.5   107.0   2621.5   22.0   539.0   6.0   147.0   PLS-89-194-02-3/4H  33.7   71.0   2463.7   52.0   1804.4   19.0   659.3   7.0   242.9   PLS-89-194-03-3/4H  13.6   25.0   340.0   49.0   666.4   29.0   394.4   5.0   680.0   PLS-89-194-05-3/4H  11.5   158.0   1817.0   72.0   828.0   437.0   16.0   184.0   PLS-89-194-06-3/4H  11.5   158.0   1817.0   72.0   828.0   437.0   16.0   184.0   PLS-89-194-06-3/4H  13.5   116.0   1914.0   254.0   4191.0   45.0   742.5   143.0   2359.5   PLS-89-194-07-3/4H  13.5   116.0   1914.0   254.0   4191.0   45.0   742.5   143.0   2359.5   PLS-89-194-07-3/4H  13.5   116.0   15660.0   350.0   4725.0   26.0   351.0   56.0   756.0   PLS-89-195-01-3/4H  22.4   238.0   5331.2   266.0   5958.4   48.0   1075.2   214.0   4793.6   PLS-89-195-02-3/4H  34.8   329.0   11449.2   199.0   6925.2   49.0   1705.2   135.0   4698.0   PLS-89-195-03-3/4H  22.9   249.0   5702.1   144.0   3297.6   41.0   938.9   95.0   2175.5   PLS-89-195-05-3/4H  19.5   270.0   5265.0   272.0   5304.0   70.0   1365.0   123.0   2396.5   PLS-89-195-05-3/4H  21.1   343.0   7237.3   255.0   5380.5   61.0   1287.1   102.0   2152.2   PLS-89-195-07-3/4H  15.5   153.0   2830.5   122.0   2257.0   52.0   962.0   137.0   2534.5   PLS-89-195-07-3/4H  15.5   153.0   2830.5   122.0   2257.0   52.0   962.0   137.0   2534.5   PLS-89-195-07-3/4H  15.5   153.0   2830.5   122.0   2257.0   52.0   962.0   137.0   2534.5   PLS-89-195-07-3/4H  15.7   450.0   6615.0   200.0   2940.0   37.0   543.9   208.0   3057.6   PLS-89-195-10-3/4H  10.1   225.0   2272.5   192.0   1399.2   47.0   474.7   129.0   1302.9   PLS-89-195-10-3/4H  10.1   275.0   2272.5   192.0   1399.2   47.0   474.7   129.0   1302.9   PLS-89-195-10-3/4H  10.6   75.0   795.0   225.0   2385.0   31.0   328.6   78.0   325.2   235.2   2997.0   235.2   2497.0   37.0   328.6   78.0   325.2   235.2   2497.0   31.0   328.6   78.0   325.2   235.2   2497.0   335.0    |   | PLS-89-193-11-3/4H | 10.4                              | 270.0          | 2808.0                                          | )      | 204.0        | 2121.6                                            | 44.0            | 457.6                               | 145.0          | 1508.0                                           | i 0.9             | 9,4                                               |
| PLS-89-194-02-3/4H; 24.5   -5.0   -122.5   107.0   2621.5   22.0   539.0   6.0   147.0   PLS-89-194-03-3/4H; 34.7   71.0   2463.7   52.0   1804.4   19.0   659.3   7.0   242.9   PLS-89-194-03-3/4H; 13.6   25.0   340.0   49.0   666.4   29.0   394.4   5.0   68.0   PLS-89-194-06-3/4H; 11.5   158.0   1817.0   72.0   828.0   38.0   437.0   16.0   184.0   PLS-89-194-06-3/4H; 11.5   158.0   1817.0   72.0   828.0   38.0   437.0   16.0   184.0   PLS-89-194-06-3/4H; 11.5   116.0   1914.0   254.0   4191.0   26.0   351.0   56.0   756.0   PLS-89-194-07-3/4H; 13.5   1160.0   15660.0   350.0   4725.0   26.0   351.0   56.0   756.0   PLS-89-195-01-3/4H; 22.4   238.0   5331.2   266.0   5958.4   48.0   1075.2   214.0   4793.6   PLS-89-195-02-3/4H; 34.8   329.0   11449.2   199.0   6925.2   49.0   1705.2   135.0   4698.0   PLS-89-195-03-3/4H; 22.9   249.0   5702.1   144.0   3297.6   41.0   938.9   95.0   2175.5   PLS-89-195-05-3/4H; 19.5   270.0   5265.0   272.0   5304.0   70.0   1365.0   123.0   2398.5   PLS-89-195-06-3/4H; 24.1   1131.0   27257.1   284.0   6844.4   6844.1   614.7   102.0   2152.2   PLS-89-195-08-3/4H; 26.1   1131.0   27257.1   284.0   6844.4   67.0   1614.7   168.0   4048.8   PLS-89-195-08-3/4H; 20.8   218.0   4534.4   148.0   3078.4   55.0   1144.0   179.0   3723.2   PLS-89-195-08-3/4H; 20.8   218.0   4534.4   148.0   3078.4   55.0   1144.0   179.0   3723.2   PLS-89-195-03-3/4H; 13.8   125.0   1725.0   124.0   1711.2   42.0   579.6   142.0   1959.6   PLS-89-195-10-3/4H; 10.1   225.0   2272.5   192.0   1339.2   47.0   474.7   129.0   1302.9   PLS-89-195-10-3/4H; 10.1   275.0   272.5   192.0   1339.2   47.0   474.7   129.0   1302.9   PLS-89-195-10-3/4H; 10.6   75.0   795.0   225.0   2355.0   31.0   328.6   78.0   3255.2    -59-196-02-3/4H; 11.4   1038.0   11833.2   352.0   4012.8   48.0   547.2   129.0   1470.6    -89-197-01-3/4H; 11.4   1038.0   11833.2   352.0   4012.8   48.0   547.2   129.0   1470.6                                                                                                                    |   | PLS-89-193-12-3/4H | 7.7 :                             | 300.0          | 2310.0                                          | ,      | 289.0        | 2225.3                                            | 34.0            | 261.8 :                             | 90.0           | 693.0                                            | : 0.7             | 1 5.4                                             |
| PLS-89-194-03-3/4H1 34.7 : 71.0 : 2463.7 : 52.0 : 1804.4 : 19.0 : 659.3 : 7.0 : 242.9 : PLS-89-194-04-3/4H1 13.6 : 25.0 : 340.0 : 49.0 : 666.4 : 29.0 : 394.4 : 5.0 : 68.0 : PLS-89-194-05-3/4H1 11.5 : 158.0 : 1817.0 : 72.0 : 828.0 : 38.0 : 437.0 : 16.0 : 184.0 : PLS-89-194-06-3/4H1 16.5 : 116.0 : 1914.0 : 254.0 : 4191.0 : 45.0 : 742.5 : 143.0 : 2359.5 : PLS-89-194-07-3/4H1 13.5 : 1160.0 : 15660.0 : 350.0 : 4725.0 : 26.0 : 351.0 : 56.0 : 756.0 : PLS-89-195-01-3/4H1 22.4 : 238.0 : 5331.2 : 266.0 : 5958.4 : 48.0 : 1075.2 : 214.0 : 4793.6 : PLS-89-195-02-3/4H1 34.8 : 329.0 : 11449.2 : 199.0 : 6925.2 : 49.0 : 1705.2 : 135.0 : 4698.0 : PLS-89-195-03-3/4H1 19.5 : 249.0 : 5702.1 : 144.0 : 3297.6 : 41.0 : 938.9 : 95.0 : 2175.5 : PLS-89-195-05-3/4H1 19.5 : 270.0 : 5265.0 : 272.0 : 5360.0 : 70.0 : 1365.0 : 123.0 : 2398.5 : PLS-89-195-06-3/4H1 24.1 : 1131.0 : 27257.1 : 284.0 : 6844.4 : 67.0 : 1614.7 : 168.0 : 4048.6 : PLS-89-195-07-3/4H1 18.5 : 153.0 : 2830.5 : 122.0 : 2257.0 : 520.0 : 962.0 : 137.0 : 2254.5 : PLS-89-195-08-3/4H1 20.8 : 218.0 : 4534.4 : 148.0 : 3078.4 : 55.0 : 1144.0 : 179.0 : 3723.2 : PLS-89-195-09-3/4H1 13.8 : 125.0 : 1725.0 : 124.0 : 1711.2 : 42.0 : 579.6 : 142.0 : 1959.6 : PLS-89-195-13-3/4H1 10.1 : 225.0 : 2272.0 : 2250.0 : 2270.0 : 530.0 : 3057.6 : 40.0 : 3078.4 : 50.0 : 3057.6 : 40.0 : 3078.4 : 50.0 : 3057.6 : 40.0 : 3078.4 : 50.0 : 3057.6 : 40.0 : 3078.4 : 50.0 : 3057.6 : 40.0 : 3078.4 : 50.0 : 3057.6 : 40.0 : 3078.4 : 50.0 : 3057.6 : 40.0 : 3078.4 : 50.0 : 3057.6 : 40.0 : 3078.4 : 50.0 : 3057.6 : 40.0 : 3078.4 : 50.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3078.4 : 50.0 : 3057.6 : 40.0 : 3078.4 : 50.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : 40.0 : 3057.6 : |   | PLS-89-194-01-3/4H | 27.0 1                            | -5.0           | -135.0                                          | :      | 48.0         | 1296.0                                            | 21.0            | 567.0                               | 11.0           | 297.0                                            | : -0.1            | -2,7                                              |
| FLS-89-194-04-3/4H;         13.6   25.0   340.0   49.0   666.4   29.0   394.4   5.0   68.0             FLS-89-194-05-3/4H;         11.5   152.0   1817.0   72.0   828.0   38.0   437.0   16.0   184.0             FLS-89-194-06-3/4H;         16.5   116.0   1914.0   254.0   4191.0   45.0   742.5   143.0   2359.5             FLS-89-194-07-3/4H         13.5   1160.0   15660.0   350.0   4725.0   26.0   351.0   56.0   756.0             FLS-89-195-01-3/4H;         22.4   238.0   5331.2   266.0   5958.4   48.0   1075.2   214.0   4793.6             FLS-89-195-02-3/4H;         23.6   329.0   11449.2   199.0   6925.2   49.0   1705.2   135.0   4698.0             FLS-89-195-03-3/4H;         22.9   249.0   5702.1   144.0   3297.5   41.0   938.9   95.0   2175.5             FLS-89-195-04-3/4H;         19.5   270.0   5265.0   272.0   5304.0   70.0   1365.0   123.0   2398.5             FLS-89-195-05-3/4H;         21.1   343.0   7237.3   255.0   5380.5   61.0   1287.1   102.0   2152.2             FLS-89-195-06-3/4H;         24.1   1131.0   27257.1   284.0   6844.4   67.0   1614.7   168.0   4048.8             FLS-89-195-08-3/4H;         20.8   218.0   4534.4   148.0   3078.4   55.0   1144.0   179.0   3723.2             FLS-89-195-103-3/4H;         13.8   125.0   1725.0   124.0   1711.2   42.0   579.6   142.0   1959.6             FLS-89-195-11-3/4H;         10.1   225.0   2272.5   192.0   1939.2   47.0   474.7   129.0   1302.9             FLS-89-195-13-3/4H;         10.6   75.0   795.0   225.0   2385.0   31.0   328.6   73.0   328.6   73.0   326.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | PLS-89-194-02-3/4H | 24.5                              | -5.0           | -122.5                                          | 1      | 107.0        | 2621.5                                            | 22.0            | 539.0 1                             | 6.0            | 147.0                                            | 0.1               | 1 2.5                                             |
| PLS-89-194-06-3/4H; 11.5   158.0   1817.0   72.0   828.0   38.0   437.0   16.0   184.0   PLS-89-194-06-3/4H; 16.5   116.0   1914.0   254.0   4191.0   45.0   742.5   143.0   2359.5   PLS-89-194-07-3/4H; 13.5   1160.0   15660.0   350.0   4725.0   26.0   351.0   56.0   756.0   PLS-89-195-01-3/4H; 22.4   238.0   5331.2   266.0   5958.4   48.0   1075.2   214.0   4793.6   PLS-89-195-02-3/4H; 34.8   329.0   11449.2   199.0   6925.2   49.0   1705.2   135.0   4698.0   PLS-89-195-03-3/4H; 22.9   249.0   5702.1   144.0   3297.6   41.0   938.9   95.0   2175.5   PLS-89-195-04-3/4H; 19.5   270.0   5265.0   272.0   5304.0   70.0   1365.0   123.0   2396.5   PLS-89-195-05-3/4H; 21.1   343.0   7237.3   255.0   5380.5   61.0   1287.1   102.0   2152.2   PLS-89-195-07-3/4H; 24.1   1131.0   27257.1   284.0   6844.4   67.0   1614.7   168.0   4048.8   PLS-89-195-07-3/4H; 18.5   153.0   2830.5   122.0   2257.0   520.0   962.0   137.0   2534.5   PLS-89-195-08-3/4H; 20.8   218.0   4534.4   148.0   3078.4   55.0   1144.0   179.0   3723.2   PLS-89-195-09-3/4H; 13.8   125.0   1725.0   124.0   1711.2   42.0   579.6   142.0   1959.6   PLS-89-195-10-3/4H; 10.1   225.0   2272.5   192.0   1939.2   47.0   474.7   129.0   1302.9   PLS-89-195-13-3/4H; 10.6   75.0   795.0   225.0   2385.0   31.0   381.0   81.0   1022.7   PLS-89-195-13-3/4H; 10.6   75.0   795.0   225.0   2385.0   31.0   328.6   78.0   826.8   PLS-89-195-13-3/4H; 10.6   75.0   795.0   225.0   2385.0   31.0   328.6   78.0   826.8   PLS-89-196-02-3/4H; 11.4   1038.0   11833.2   352.0   4012.8   48.0   547.2   129.0   1470.6   -89-197-01-3/4H; 11.4   1038.0   11833.2   352.0   4012.8   48.0   547.2   129.0   43.0   752.5                                                                                                                                                                                                                                                                                                                                                                                       |   | PLS-89-194-03-3/4H | 34.7                              | 71.0           | 2463.7                                          | 1      | 52.0         | 1804.4                                            | 19.0            | 659.3 1                             | 7.0            | 242.9                                            | 0.5               | 17.4                                              |
| PLS-89-194-06-3/4H: 16.5   116.0   1914.0   254.0   4191.0   45.0   742.5   143.0   2359.5   PLS-89-194-07-3/4H: 13.5   1160.0   15660.0   350.0   4725.0   26.0   351.0   56.0   756.0   PLS-89-195-01-3/4H: 22.4   238.0   5331.2   266.0   5958.4   48.0   1075.2   214.0   4793.6   PLS-89-195-02-3/4H: 34.8   329.0   11449.2   199.0   6925.2   49.0   1705.2   135.0   4698.0   PLS-89-195-03-3/4H: 22.9   249.0   5702.1   144.0   3297.5   41.0   938.9   95.0   2175.5   PLS-89-195-04-3/4H: 19.5   270.0   5265.0   272.0   5304.0   70.0   1365.0   123.0   2398.5   PLS-89-195-05-3/4H: 21.1   343.0   7237.3   255.0   5380.5   61.0   1287.1   102.0   2152.2   PLS-89-195-06-3/4H: 24.1   1131.0   27257.1   284.0   6844.4   67.0   1614.7   168.0   4048.8   PLS-89-195-07-3/4H: 18.5   153.0   2830.5   122.0   2257.0   52.0   962.0   137.0   2534.5   PLS-89-195-09-3/4H: 20.8   218.0   4534.4   148.0   3078.4   55.0   1144.0   179.0   3723.2   PLS-89-195-09-3/4H: 13.8   125.0   1725.0   124.0   1711.2   42.0   579.6   142.0   1959.6   PLS-89-195-10-3/4H: 14.7   450.0   6615.0   200.0   2940.0   37.0   543.9   208.0   3057.6   PLS-89-195-13-3/4H: 10.1   225.0   2272.5   192.0   1939.2   47.0   474.7   129.0   1302.9   PLS-89-195-13-3/4H: 12.7   110.0   1397.0   250.0   315.0   30.0   381.0   81.0   1028.7   PLS-89-195-13-3/4H: 10.6   75.0   795.0   225.0   2385.0   31.0   328.6   78.0   326.8   PLS-89-195-13-3/4H: 10.6   75.0   795.0   225.0   2385.0   31.0   328.6   78.0   326.8   PLS-89-196-01-3/4H: 19.6   16.0   313.6   74.0   1450.4   46.0   901.6   12.0   235.2   -59-196-02-3/4H: 11.4   1038.0   11833.2   352.0   4012.8   48.0   547.2   129.0   1470.6   -59-197-01-3/4H: 17.5   97.0   1697.5   90.0   1575.0   28.0   490.0   43.0   752.5                                                                                                                                                                                                                                                                                                          |   | PLS-89-194-04-3/4H | 13.6 !                            | 25.0           | 1 340.0                                         | •      | 49.0         | 666.4                                             | 29.0            | 394.4                               | 5.0            | 68.0                                             |                   |                                                   |
| PLS-89-194-07-3/4H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | PLS-89-194-05-3/4H | 11.5                              | 158.0          | 1817.0                                          | i<br>i | 72.0         | 828.0                                             | 38.0            | 437.0 1                             | 16.0           | 184.0                                            | -0.1              | -1.2                                              |
| PLS-89-195-01-3/4H: 22.4   238.0   5331.2   266.0   5958.4   48.0   1075.2   214.0   4793.6   PLS-89-195-02-3/4H  34.8   329.0   11449.2   199.0   6925.2   49.0   1705.2   135.0   4698.0   PLS-89-195-03-3/4H  22.9   249.0   5702.1   144.0   3297.6   41.0   938.9   95.0   2175.5   PLS-89-195-04-3/4H  19.5   270.0   5265.0   272.0   5304.0   70.0   1365.0   123.0   2398.5   PLS-89-195-05-3/4H  21.1   343.0   7237.3   255.0   5380.5   61.0   1287.1   102.0   2152.2   PLS-89-195-06-3/4H  11.1   1131.0   27257.1   284.0   6844.4   67.0   1614.7   168.0   4048.8   PLS-89-195-07-3/4H  15.5   153.0   2830.5   122.0   2257.0   52.0   962.0   137.0   2534.5   PLS-89-195-08-3/4H  20.8   218.0   4534.4   148.0   3078.4   55.0   1144.0   179.0   3723.2   PLS-89-195-09-3/4H  13.8   125.0   1725.0   124.0   1711.2   42.0   579.6   142.0   1959.6   PLS-89-195-10-3/4H  10.1   225.0   2272.5   192.0   1939.2   47.0   474.7   129.0   1302.9   PLS-89-195-12-3/4H  10.1   225.0   2272.5   192.0   1375.0   30.0   381.0   81.0   1028.7   PLS-89-195-13-3/4H  19.6   16.0   313.6   74.0   1450.4   46.0   901.6   12.0   235.2   1470.6   -89-196-02-3/4H  11.4   1038.0   11833.2   352.0   4012.8   48.0   547.2   129.0   43.0   752.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | PLS-89-194-06-3/4H |                                   | 116.0          | 1914.0                                          | 1      | 254.0        | 4191.0                                            |                 |                                     |                |                                                  |                   |                                                   |
| PLS-89-195-02-3/4H; 34.8; 329.0; 11449.2; 199.0; 6925.2; 49.0; 1705.2; 135.0; 4698.0; PLS-89-195-03-3/4H; 22.9; 249.0; 5702.1; 144.0; 3297.6; 41.0; 938.9; 95.0; 2175.5; PLS-89-195-04-3/4H; 19.5; 270.0; 5265.0; 272.0; 5304.0; 70.0; 1365.0; 123.0; 2398.5; PLS-89-195-05-3/4H; 21.1; 343.0; 7237.3; 255.0; 5380.5; 61.0; 1287.1; 102.0; 2152.2; PLS-89-195-06-3/4H; 24.1; 1131.0; 27257.1; 284.0; 6844.4; 67.0; 1614.7; 168.0; 4048.8; PLS-89-195-07-3/4H; 18.5; 153.0; 2830.5; 122.0; 2257.0; 52.0; 962.0; 137.0; 2534.5; PLS-89-195-08-3/4H; 20.8; 218.0; 4534.4; 148.0; 3078.4; 55.0; 1144.0; 179.0; 3723.2; PLS-89-195-09-3/4H; 13.8; 125.0; 1725.0; 124.0; 1711.2; 42.0; 579.6; 142.0; 1959.6; PLS-89-195-10-3/4H; 14.7; 450.0; 6615.0; 200.0; 2940.0; 37.0; 543.9; 208.0; 3057.6; PLS-89-195-11-3/4H; 10.1; 225.0; 2272.5; 192.0; 1939.2; 47.0; 474.7; 129.0; 1302.9; PLS-89-195-12-3/4H; 12.7; 110.0; 1397.0; 250.0; 3175.0; 328.6; 78.0; 310.0; 235.2; PLS-89-195-13-3/4H; 10.6; 75.0; 795.0; 225.0; 2385.0; 31.0; 328.6; 78.0; 328.6; 78.0; 310.6; 313.6; 74.0; 450.4; 46.0; 901.6; 12.0; 235.2; -59-196-02-3/4H; 11.4; 1038.0; 11833.2; 352.0; 4012.8; 48.0; 547.2; 129.0; 1470.6; -89-197-01-3/4H; 17.5; 97.0; 1697.5; 90.0; 1575.0; 28.0; 490.0; 43.0; 752.5;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | PLS-89-194-07-3/4H |                                   |                |                                                 |        | 350.0        | 4725.0                                            |                 |                                     | 56.0           | 756.0                                            | 0.5               |                                                   |
| PLS-89-195-03-3/4H: 22.9   249.0   5702.1   144.0   3297.6   41.0   938.9   95.0   2175.5   PLS-89-195-04-3/4H: 19.5   270.0   5265.0   272.0   5304.0   70.0   1365.0   123.0   2398.5   PLS-89-195-05-3/4H: 21.1   343.0   7237.3   255.0   5380.5   61.0   1287.1   102.0   2152.2   PLS-89-195-06-3/4H: 24.1   1131.0   27257.1   284.0   6844.4   67.0   1614.7   168.0   4048.8   PLS-89-195-07-3/4H: 18.5   153.0   2830.5   122.0   2257.0   52.0   962.0   137.0   2534.5   PLS-89-195-08-3/4H: 20.8   218.0   4534.4   148.0   3078.4   55.0   1144.0   179.0   3723.2   PLS-89-195-09-3/4H: 13.8   125.0   1725.0   124.0   1711.2   42.0   579.6   142.0   1959.6   PLS-89-195-10-3/4H: 14.7   450.0   6615.0   200.0   2940.0   37.0   543.9   208.0   3057.6   PLS-89-195-12-3/4H: 10.1   225.0   2272.5   192.0   1939.2   47.0   474.7   129.0   1302.9   PLS-89-195-12-3/4H: 12.7   110.0   1397.0   250.0   3175.0   381.0   318.0   81.0   1028.7   PLS-89-195-13-3/4H: 10.6   75.0   795.0   2250.0   2385.0   31.0   328.6   78.0   326.8   PLS-89-196-01-3/4H: 11.4   1038.0   11833.2   352.0   4012.8   48.0   547.2   129.0   1470.6   -89-197-01-3/4H: 11.4   1038.0   11833.2   352.0   4012.8   48.0   547.2   129.0   1470.6   -89-197-01-3/4H: 17.5   97.0   1697.5   90.0   1575.0   28.0   490.0   43.0   752.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                    |                                   | 238.0          | 5331.2                                          | 1      | 266.0        | 5958.4                                            | 48.0            | 1075.2                              | 214.0          | 4793.6                                           |                   |                                                   |
| PLS-89-195-04-3/4H: 19.5   270.0   5265.0   272.0   5304.0   70.0   1365.0   123.0   2398.5   PLS-89-195-05-3/4H  21.1   343.0   7237.3   255.0   5380.5   61.0   1287.1   102.0   2152.2   PLS-89-195-06-3/4H  24.1   1131.0   27257.1   284.0   6844.4   67.0   1614.7   168.0   4048.8   PLS-89-195-07-3/4H  18.5   153.0   2830.5   122.0   2257.0   52.0   962.0   137.0   2534.5   PLS-89-195-08-3/4H  20.8   218.0   4534.4   148.0   3078.4   55.0   1144.0   179.0   3723.2   PLS-89-195-09-3/4H  13.8   125.0   1725.0   124.0   1711.2   42.0   579.6   142.0   1959.6   PLS-89-195-10-3/4H  14.7   450.0   6615.0   200.0   2940.0   37.0   543.9   208.0   3057.6   PLS-89-195-11-3/4H  10.1   225.0   2272.5   192.0   1939.2   47.0   474.7   129.0   1302.9   PLS-89-195-12-3/4H  12.7   110.0   1397.0   250.0   3175.0   30.0   381.0   81.0   1028.7   FLS-89-195-13-3/4H  19.6   16.0   313.6   74.0   1450.4   46.0   901.6   12.0   235.2   -89-196-01-3/4H  11.4   1038.0   11833.2   352.0   4012.8   48.0   547.2   129.0   1470.6   -89-197-01-3/4H  17.5   97.0   1697.5   90.0   1575.0   28.0   490.0   43.0   752.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | PLS-89-195-02-3/4H | 34.8                              | 329.0          | 11449.2                                         | :      | 199.0        | 6925.2                                            | 49.0            | 1705.2                              | 135.0          | 4698.0                                           | 0.5               | 17.4                                              |
| PLS-89-195-05-3/4H; 21.1   343.0   7237.3   255.0   5380.5   61.0   1287.1   102.0   2152.2   PLS-89-195-06-3/4H; 24.1   1131.0   27257.1   284.0   6844.4   67.0   1614.7   168.0   4048.8   PLS-89-195-07-3/4H; 18.5   153.0   2830.5   122.0   2257.0   52.0   962.0   137.0   2534.5   PLS-89-195-08-3/4H; 20.8   218.0   4534.4   148.0   3078.4   55.0   1144.0   179.0   3723.2   PLS-89-195-09-3/4H; 13.8   125.0   1725.0   124.0   1711.2   42.0   579.6   142.0   1959.6   PLS-89-195-10-3/4H; 14.7   450.0   6615.0   200.0   2940.0   37.0   543.9   208.0   3057.6   PLS-89-195-11-3/4H; 10.1   225.0   2272.5   192.0   1939.2   47.0   474.7   129.0   1302.9   PLS-89-195-12-3/4H; 12.7   110.0   1397.0   250.0   3175.0   30.0   381.0   81.0   1028.7   PLS-89-195-13-3/4H; 19.6   75.0   795.0   225.0   2385.0   31.0   328.6   78.0   325.2   PLS-89-196-01-3/4H; 19.6   16.0   313.6   74.0   1450.4   46.0   901.6   12.0   235.2   PLS-89-196-02-3/4H; 11.4   1038.0   11833.2   352.0   4012.8   48.0   547.2   129.0   1470.6   -89-197-01-3/4H; 17.5   97.0   1697.5   90.0   1575.0   28.0   490.0   43.0   752.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | PLS-89-195-03-3/4H | 22.9 1                            | 249.0          | 5702.1                                          |        |              |                                                   | 41.0            | 938.9                               | 95.0           | 2175.5                                           |                   |                                                   |
| PLS-89-195-06-3/4H: 24.1   1131.0   27257.1   284.0   6844.4   67.0   1614.7   168.0   4048.8   PLS-89-195-07-3/4H  18.5   153.0   2830.5   122.0   2257.0   52.0   962.0   137.0   2534.5   PLS-89-195-08-3/4H  20.8   218.0   4534.4   148.0   3078.4   55.0   1144.0   179.0   3723.2   PLS-89-195-09-3/4H  13.8   125.0   1725.0   124.0   1711.2   42.0   579.6   142.0   1959.6   PLS-89-195-10-3/4H  14.7   450.0   6615.0   200.0   2940.0   37.0   543.9   208.0   3057.6   PLS-89-195-11-3/4H  10.1   225.0   2272.5   192.0   1939.2   47.0   474.7   129.0   1302.9   PLS-89-195-12-3/4H  12.7   110.0   1397.0   250.0   3175.0   30.0   381.0   81.0   1028.7   PLS-89-195-13-3/4H  10.6   75.0   795.0   225.0   2385.0   31.0   328.6   78.0   326.8   PLS-89-196-01-3/4H  19.6   16.0   313.6   74.0   1450.4   46.0   901.6   12.0   235.2   459-196-02-3/4H  11.4   1038.0   11833.2   352.0   4012.8   48.0   547.2   129.0   1470.6   489-197-01-3/4H  17.5   97.0   1697.5   90.0   1575.0   28.0   490.0   43.0   752.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | PLS-89-195-04-3/4H |                                   |                |                                                 |        |              |                                                   |                 |                                     | 123.0          | 2398.5                                           |                   |                                                   |
| PLS-89-195-07-3/4H; 18.5   153.0   2830.5   122.0   2257.0   52.0   962.0   137.0   2534.5   PLS-89-195-08-3/4H; 20.8   218.0   4534.4   148.0   3078.4   55.0   1144.0   179.0   3723.2   FLS-89-195-09-3/4H; 13.8   125.0   1725.0   124.0   1711.2   42.0   579.6   142.0   1959.6   PLS-89-195-10-3/4H; 14.7   450.0   6615.0   200.0   2940.0   37.0   543.9   208.0   3057.6   PLS-89-195-11-3/4H; 10.1   225.0   2272.5   192.0   1939.2   47.0   474.7   129.0   1302.9   PLS-89-195-12-3/4H; 12.7   110.0   1397.0   250.0   3175.0   30.0   381.0   81.0   1028.7   FLS-89-195-13-3/4H; 10.6   75.0   795.0   225.0   2385.0   31.0   328.6   78.0   826.8   PLS-89-196-01-3/4H; 19.6   16.0   313.6   74.0   1450.4   46.0   901.6   12.0   235.2   -59-196-02-3/4H; 11.4   1038.0   11833.2   352.0   4012.8   48.0   547.2   129.0   1470.6   -89-197-01-3/4H; 17.5   97.0   1697.5   90.0   1575.0   28.0   490.0   43.0   752.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
| PLS-89-195-08-3/4H; 20.8   218.0   4534.4   148.0   3078.4   55.0   1144.0   179.0   3723.2   FLS-89-195-09-3/4H; 13.8   125.0   1725.0   124.0   1711.2   42.0   579.6   142.0   1959.6   PLS-89-195-10-3/4H; 14.7   450.0   6615.0   200.0   2940.0   37.0   543.9   208.0   3057.6   PLS-89-195-11-3/4H; 10.1   225.0   2272.5   192.0   1939.2   47.0   474.7   129.0   1302.9   PLS-89-195-12-3/4H; 12.7   110.0   1397.0   250.0   3175.0   30.0   381.0   81.0   1028.7   FLS-89-195-13-3/4H; 10.6   75.0   795.0   225.0   2385.0   31.0   328.6   78.0   826.8   PLS-89-196-01-3/4H; 19.6   16.0   313.6   74.0   1450.4   46.0   901.6   12.0   235.2   -59-196-02-3/4H; 11.4   1038.0   11833.2   352.0   4012.8   48.0   547.2   129.0   1470.6   -89-197-01-3/4H; 17.5   97.0   1697.5   90.0   1575.0   28.0   490.0   43.0   752.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | PLS-89-195-06-3/4H | 24.1                              |                |                                                 |        | 284.0        | 6844.4                                            | 67.0            | 1614.7                              | 168.0          | 4048.8                                           | 0.2               | 4.8                                               |
| FLS-89-195-09-3/4H;       13.8 ! 125.0 ! 1725.0 ! 124.0 ! 1711.2 ! 42.0 ! 579.6 ! 142.0 ! 1959.6 !         PLS-89-195-10-3/4H;       14.7 ! 450.0 ! 6615.0 ! 200.0 ! 2940.0 ! 37.0 ! 543.9 ! 208.0 ! 3057.6 !         PLS-89-195-11-3/4H;       10.1 ! 225.0 ! 2272.5 ! 192.0 ! 1939.2 ! 47.0 ! 474.7 ! 129.0 ! 1302.9 !         PLS-89-195-12-3/4H;       12.7 ! 110.0 ! 1397.0 ! 250.0 ! 3175.0 ! 30.0 ! 381.0 ! 81.0 ! 1028.7 !         FLS-89-195-13-3/4H;       10.6 ! 75.0 ! 795.0 ! 225.0 ! 2385.0 ! 31.0 ! 328.6 ! 78.0 ! 826.8 !         PLS-89-196-01-3/4H;       19.6 ! 16.0 ! 313.6 ! 74.0 ! 1450.4 ! 46.0 ! 901.6 ! 12.0 ! 235.2 !         -59-196-02-3/4H;       11.4 ! 1038.0 ! 11833.2 ! 352.0 ! 4012.8 ! 48.0 ! 547.2 ! 129.0 ! 1470.6 !         -89-197-01-3/4H;       17.5 ! 97.0 ! 1697.5 ! 90.0 ! 1575.0 ! 28.0 ! 490.0 ! 43.0 ! 752.5 !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | PLS-89-195-07-3/4H |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
| PLS-89-195-10-3/4H; 14.7; 450.0; 6615.0; 200.0; 2940.0; 37.0; 543.9; 208.0; 3057.6; PLS-89-195-11-3/4H; 10.1; 225.0; 2272.5; 192.0; 1939.2; 47.0; 474.7; 129.0; 1302.9; PLS-89-195-12-3/4H; 12.7; 110.0; 1397.0; 250.0; 3175.0; 30.0; 381.0; 81.0; 1028.7; FLS-89-195-13-3/4H; 10.6; 75.0; 795.0; 225.0; 2385.0; 31.0; 328.6; 78.0; 826.8; PLS-89-196-01-3/4H; 19.6; 16.0; 313.6; 74.0; 1450.4; 46.0; 901.6; 12.0; 235.2; -59-196-02-3/4H; 11.4; 1038.0; 11833.2; 352.0; 4012.8; 48.0; 547.2; 129.0; 1470.6; -89-197-01-3/4H; 17.5; 97.0; 1697.5; 90.0; 1575.0; 28.0; 490.0; 43.0; 752.5;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
| PLS-89-195-11-3/4H; 10.1   225.0   2272.5   192.0   1939.2   47.0   474.7   129.0   1302.9   PLS-89-195-12-3/4H; 12.7   110.0   1397.0   250.0   3175.0   30.0   381.0   81.0   1028.7   FLS-89-195-13-3/4H; 10.6   75.0   795.0   225.0   2385.0   31.0   328.6   78.0   826.8   PLS-89-196-01-3/4H; 19.6   16.0   313.6   74.0   1450.4   46.0   901.6   12.0   235.2   -59-196-02-3/4H; 11.4   1038.0   11833.2   352.0   4012.8   48.0   547.2   129.0   1470.6   -89-197-01-3/4H; 17.5   97.0   1697.5   90.0   1575.0   28.0   490.0   43.0   752.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
| PLS-89-195-12-3/4H; 12.7 : 110.0 : 1397.0 : 250.0 : 3175.0 : 30.0 : 351.0 : 81.0 : 1028.7 : FLS-89-195-13-3/4H; 10.6 : 75.0 : 795.0 : 225.0 : 2385.0 : 31.0 : 328.6 : 78.0 : 326.8 : PLS-89-196-01-3/4H; 19.6 : 16.0 : 313.6 : 74.0 : 1450.4 : 46.0 : 901.6 : 12.0 : 235.2 : -59-196-02-3/4H; 11.4 : 1038.0 : 11833.2 : 352.0 : 4012.8 : 48.0 : 547.2 : 129.0 : 1470.6 : -89-197-01-3/4H; 17.5 : 97.0 : 1697.5 : 90.0 : 1575.0 : 28.0 : 490.0 : 43.0 : 752.5 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
| FLS-89-195-13-3/4H: 10.6: 75.0: 795.0: 225.0: 2385.0: 31.0: 328.6: 78.0: 826.8: PLS-89-196-01-3/4H: 19.6: 16.0: 313.6: 74.0: 1450.4: 46.0: 901.6: 12.0: 235.2: -59-196-02-3/4H: 11.4: 1038.0: 11833.2: 352.0: 4012.8: 48.0: 547.2: 129.0: 1470.6: -89-197-01-3/4H: 17.5: 97.0: 1697.5: 90.0: 1575.0: 28.0: 490.0: 43.0: 752.5:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
| PLS-89-196-01-3/4H: 19.6: 16.0: 313.6: 74.0: 1450.4: 46.0: 901.6: 12.0: 235.2: -59-196-02-3/4H: 11.4: 1038.0: 11833.2: 352.0: 4012.8: 48.0: 547.2: 129.0: 1470.6: -89-197-01-3/4H: 17.5: 97.0: 1697.5: 90.0: 1575.0: 28.0: 490.0: 43.0: 752.5:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
| -59-196-02-3/4H; 11.4 : 1038.0 : 11833.2 : 352.0 : 4012.8 : 48.0 : 547.2 : 129.0 : 1470.6 : -89-197-01-3/4H; 17.5 : 97.0 : 1697.5 : 90.0 : 1575.0 : 28.0 : 490.0 : 43.0 : 752.5 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
| -89-197-01-3/4H; 17.5; 97.0; 1697.5; 90.0; 1575.0; 28.0; 490.0; 43.0; 752.5;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _ |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
| FL5-89-19/-UZ-5/4H; 1U.9 ( 155.0 ) 1471.5 ( 57.0 ) 621.3 ( 22.0 ) 239.8 ( 170.0 ) 1853.0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     | 170.0          |                                                  |                   |                                                   |
| PLS-89-197-03-3/4H: 10.9   263.0   2866.7   65.0   708.5   28.0   305.2   19.0   207.1   PLS-39-197-04-3/4H: 11.1   24.0   266.4   231.0   2564.1   42.0   466.2   21.0   233.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                    |                                   |                |                                                 |        |              |                                                   |                 |                                     |                |                                                  |                   |                                                   |

| SAMPLE NUMBER                            | :WEIGHT (g) |       |                | Cu ASSAY | : ABSOLUTE      | Zn ASSAY |                   | As ASSAY     |                | Ag ASSAY |                 |
|------------------------------------------|-------------|-------|----------------|----------|-----------------|----------|-------------------|--------------|----------------|----------|-----------------|
| JAHREE MONDEN                            | NON-MAG     | PPB   | METAL CONTENT  |          | : METAL CONTENT |          | : METAL CONTENT : | PPM          | METAL CONTENT  |          | METAL CONTENT   |
|                                          | I NON TIMO  | . 110 | Au (nanograms) |          | Cu (micrograms) |          | Zn (micrograms)   | * * * * *    | As imicrograms |          | Ag (micrograms) |
| 710.00.407.65.3/44                       |             |       |                |          |                 |          |                   |              |                |          |                 |
| PLS-89-197-05-3/4H<br>PLS-89-197-06-3/4H |             |       |                |          |                 |          |                   | 50.0<br>99.0 |                |          |                 |
| PLS-89-198-01-3/4H                       |             |       |                |          |                 |          |                   | 100.0        |                |          |                 |
| PLS-89-198-02-3/4H                       |             |       |                |          |                 |          |                   | 8.0          |                |          |                 |
| PLS-89-198-03-3/4H                       |             |       |                |          |                 |          |                   | 126.0        |                |          |                 |
| PLS-89-198-04-3/4H                       |             |       |                |          |                 |          |                   | 117.0        |                |          |                 |
| PLS-89-199-01-3/4H                       |             |       |                |          |                 |          |                   | 15.0         |                |          |                 |
| PLS-89-199-02-3/4H                       |             |       |                |          |                 |          |                   | 158.0        |                |          |                 |
| FLS-89-199-03-3/4H                       |             |       |                |          |                 |          |                   | 114.0        |                |          |                 |
| PLS-89-200-01-3/4H                       |             |       |                |          |                 |          |                   | 142.0        |                |          |                 |
| PLS-89-200-02-3/4H                       |             |       |                |          |                 |          |                   | 32.0         |                |          |                 |
| PLS-89-200-03-3/4H                       |             |       |                |          |                 |          |                   | 134.0        |                |          |                 |
| PLS-89-200-04-3/4H                       |             |       |                |          |                 |          |                   | 160.0        |                |          |                 |
| PLS-89-201-01-3/4H                       |             |       |                |          |                 |          |                   | 25.0         |                |          |                 |
| PLS-89-202-01-3/4H                       |             |       |                |          |                 |          |                   | 3.0          |                |          |                 |
| PLS-89-202-02-3/4H                       |             |       |                |          |                 |          |                   | 3.0          |                |          |                 |
| PLS-89-202-03-3/4H                       |             |       |                |          |                 |          |                   | 17.0         |                |          |                 |
| PLS-89-203-01-3/4H                       |             |       |                |          |                 |          |                   | 4.0          |                |          |                 |
| PLS-89-203-02-3/4H                       |             |       |                |          |                 |          |                   | 9.0          |                |          |                 |
| -89-204-01-3/4H                          |             |       |                |          |                 |          |                   | 3.0          |                |          |                 |
| _0-89-205-01-3/4H                        |             |       |                |          |                 |          |                   | 6.0          |                |          |                 |
| PLS-89-206-01-3/4H                       |             |       |                |          |                 |          |                   | 3.0          |                |          |                 |
| PLS-89-206-02-3/4H                       |             |       |                |          |                 |          |                   | 7.0          |                |          |                 |
| PLS-89-207-01-3/4H                       |             |       |                |          |                 |          |                   | 3.0          |                |          |                 |
| PLS-89-207-02-3/4H                       |             |       |                |          |                 |          |                   | 21.0         |                |          |                 |
| PLS-89-207-03-3/4H                       |             |       |                |          |                 |          |                   | 22.0         |                |          |                 |
| FLS-89-207-04-3/4H                       |             |       |                |          |                 |          |                   | 19.0         |                |          |                 |
| PLS-89-207-05-3/4H                       |             |       |                |          |                 |          |                   | 24.0         |                |          |                 |
| PLS-89-207-06-3/4H                       |             |       |                |          |                 |          |                   | 17.0         |                |          |                 |
| PLS-89-207-07-3/4H                       |             |       |                |          |                 |          |                   | 22.0         |                |          |                 |
| PLS-89-207-08-3/4H                       |             |       |                |          |                 |          |                   | 107.0        |                |          |                 |
| PLS-89-207-09-3/4H                       |             |       |                |          |                 |          |                   | 101.0        |                |          |                 |
| PLS-89-207-10-3/4H                       |             |       |                |          |                 |          |                   | 112.0        |                |          |                 |
| PLS-89-208-01-3/4H                       |             |       |                |          |                 |          |                   | 73.0         |                |          |                 |
| PLS-89-208-02-3/4H                       |             |       |                |          |                 |          |                   | 44.0         |                |          |                 |
| PLS-89-208-03-3/4H                       |             |       |                |          |                 |          |                   | 31.0         |                |          |                 |
| PLS-89-208-04-3/4H                       |             |       |                |          |                 |          |                   | 17.0         |                |          |                 |
| PLS-89-208-05-3/4H                       |             |       |                |          |                 |          |                   | 29.0         |                |          |                 |
| PLS-89-208-06-3/4H                       |             |       |                |          |                 |          |                   | 32.0         |                |          |                 |
| PLS-89-208-07-3/4H                       |             |       |                |          |                 |          |                   | 16.0         |                |          |                 |
| FLS-89-208-08-3/4H                       |             |       |                |          |                 |          |                   | 32.0         |                |          |                 |
| PLS-89-208-09-3/4H                       |             |       |                |          |                 |          |                   | 11.0         |                |          |                 |
| PLS-89-208-10-3/4H                       |             |       |                |          |                 |          |                   | 160.0        |                |          |                 |
| PLS-89-209-01-3/4H;                      |             |       |                |          |                 |          |                   | 30.0         |                |          |                 |
| -89-209-02-3/4H                          |             |       |                |          |                 |          |                   | 49.0         |                |          |                 |
| ,-89-209-03-3/4H                         |             |       |                |          |                 |          |                   | 54.0         |                |          |                 |
| PLS-89-209-04-3/4H:                      |             |       |                |          |                 |          |                   | 27.0         |                |          |                 |
| PLS-89-209-05-3/4H                       |             |       |                |          |                 |          |                   | 27.0         |                |          |                 |
| PLS-89-209-06-3/4H;                      |             |       |                |          |                 |          |                   | 53.0         |                |          |                 |

|                                          | :WEIGHT (<br>: NON-MAG | 1   | PPB            | :METAL CONTENT | <br> } |       | : METAL CONTENT<br>:Cu (micrograms) | !    | : METAL CONTENT : |      | : METAL CONTENT | );    | : METAL CONTENT |
|------------------------------------------|------------------------|-----|----------------|----------------|--------|-------|-------------------------------------|------|-------------------|------|-----------------|-------|-----------------|
| PLS-89-209-07-3/4H                       |                        | 8 / | 51.0           |                |        | 129.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-209-08-3/4H                       |                        | 8 : | 42.0           |                |        | 128.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-209-09-3/4H                       |                        | 6 1 | 423.0          |                |        | 219.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-209-10-3/4H                       |                        | 8   | 388.0          |                |        | 124.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-209-11-3/4H                       |                        | 0 : | 115.0          |                |        | 81.0  |                                     |      |                   |      |                 |       |                 |
| PLS-89-209-12-3/4H                       |                        | 3 ; | 89.0           |                |        | 250.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-210-01-3/4H                       |                        | 7:  | 79.0           |                |        | 149.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-210-02-3/4H                       |                        | 2 1 | 533.0          |                |        | 182.0 |                                     |      |                   |      |                 |       |                 |
| FLS-89-210-03-3/4H                       |                        | 4 1 | 33.0           |                |        | 185.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-210-04-3/4H                       |                        | 4:  | 158.0          |                |        | 151.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-210-05-3/4H                       |                        | 3 1 | 189.0          |                |        | 134.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-210-06-3/4H                       |                        | 5 : | 384.0          |                |        | 101.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-210-07-3/4H                       |                        | 3 : | 230.0          |                |        | 126.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-210-08-3/4H                       |                        | 0 : | 111.0          |                |        | 140.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-210-06-3/4H                       |                        | 5 1 | 148.0          |                |        | 145.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-210-10-3/4H                       |                        | 5 : | 414.0          |                |        | 120.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-210-11-3/4H                       |                        | 0   | 71.0           |                |        | 173.0 |                                     |      |                   |      |                 |       |                 |
|                                          |                        | 7:  | 295.0          |                |        | 198.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-210-12-3/4H<br>PLS-89-210-13-3/4H |                        | 7 1 | 295.0<br>605.0 |                |        |       |                                     |      |                   |      |                 |       |                 |
|                                          |                        |     |                |                |        | 180.0 |                                     |      |                   |      |                 |       |                 |
| -89-211-01-3/4H                          |                        | 3 ! | 616.0          |                |        | 292.0 |                                     |      |                   |      |                 |       |                 |
| _3-89-211-02-3/4H                        |                        | 2 ! | 230.0          |                |        | 208.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-211-03-3/4H                       |                        |     | 349.0          |                |        | 155.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-211-04-3/4H                       |                        |     | 562.0          |                |        | 165.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-212-01-3/4H                       |                        | 9 : | 334.0          |                |        | 20.0  |                                     |      |                   |      |                 |       |                 |
| FLS-89-212-02-3/4H                       |                        | 3 : | 21.0           |                |        | 27.0  |                                     |      |                   |      |                 |       |                 |
| PLS-89-212-03-3/4H                       |                        | 2 : | -6.0           |                |        | 38.0  |                                     |      |                   |      |                 |       |                 |
| PLS-89-212-04-3/4H                       |                        |     | -7.0           |                |        | 64.0  |                                     |      |                   |      |                 |       |                 |
| PLS-89-212-05-3/4H                       |                        |     | -17.0          |                |        | 101.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-212-06-3/4H                       |                        |     | 100.0          |                |        | 326.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-212-07-3/4H                       |                        | 4 : | 43.0           |                |        | 297.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-212-08-3/4H                       |                        | 3 : | 58.0           |                |        | 635.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-212-09-3/4H                       |                        | 0 ; | 306.0          |                |        | 200.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-212-10-3/4H                       |                        | 2   | 32.0           |                |        | 242.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-212-11-3/4H                       |                        |     | 23.0           |                |        | 183.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-213-01-3/4H                       |                        | 1 : | -6.0           |                |        | 25.0  |                                     |      |                   |      |                 |       |                 |
| PLS-89-213-02-3/4H                       |                        | 7 ; | 28.0           |                |        | 23.0  |                                     |      |                   |      |                 |       |                 |
| PLS-89-213-03-3/4H                       |                        |     | 51.0           |                |        | 761.0 |                                     |      |                   |      |                 |       |                 |
| PLS-89-214-01-3/4H                       |                        | 2 : | 25.0           |                |        | 92.0  |                                     |      |                   | 19.0 | 573.8           | 0.3   | 9.1             |
| PLS-89-214-02-3/4H                       |                        | 4 ; | 49.0           | 852.6          | i      | 176.0 | 3062.4                              | 36.0 | 626.4             | 36.0 | 626.4           | -0.1  | -1.7            |
| PLS-89-214-03-3/4H                       |                        | 5 : | 16.0           |                | 1      | 136.0 | 3332.0                              | 36.0 | 882.0             | 34.0 | 833.0           | 1 7.0 | 171.5           |
| PLS-89-214-04-3/4H                       |                        | 9 ; | 99.0           | 2366.1         | i      | 132.0 | 3154.8                              | 32.0 | 764.8             | 33.0 | : 788.7         | -0.1  | -2.4            |
| PLS-89-214-05-3/4H                       |                        |     | 45.0           |                |        | 311.0 |                                     |      |                   | 32.0 | 739.2           | -0.1  |                 |
| PLS-89-214-06-3/4H                       |                        |     | 165.0          |                |        | 173.0 |                                     |      |                   | 52.0 | 962.0           |       |                 |
| PLS-89-214-07-3/4H;                      |                        |     | 150.0          |                |        | 91.0  |                                     |      |                   | 34.0 | 649.4           | 0.2   | 3.8             |
| -89-214-08-3/4H                          |                        |     | 332.0          |                |        | 136.0 |                                     | 52.0 | 1268.8            | 94.0 | 2293.6          | 0.5   |                 |
| _5-89-215-01-3/4H                        |                        |     | 81.0           |                |        | 144.0 |                                     | 29.0 | 722.1             | 32.0 | 796.8           | 0.1   | 2.5             |
| PLS-89-215-02-3/4H                       | 22.                    | 8 : | 130.0          |                | ;      | 84.0  |                                     | 23.0 | 524.4             | 16.0 | 364.8           | 0.1   | 1 2.3           |
| PLS-89-215-03-3/4H                       | 28.                    | 9 : | 461.0          | 13322.9        | ţ      | 72.0  | 2080.8                              | 21.0 | 606.9             | 20.0 | 578.0           | 0.1   | 2.9             |
| PLS-89-215-04-3/4H:                      | 22.                    | 0 1 | -5.0           | -110.0         |        | 82.0  | 1804.0                              | 28.0 | 616.0 1           | 19.0 | 418.0           | 1 0.5 | 11.0            |

| SAMPLE NUMBER     |      | HT (g) A | u ASSAY |          | :Cu    | ASSAY<br>PPM | :<br>: M |         | Zn ASSA | Y : | ABSOLUTE :A METAL CONTENT : Zn (micrograms): | AS ASSAY<br>PPM | :      | ABSOLUTE<br>METAL CONTENT<br>(micrograms) | Ag i   | ASSAY |       |
|-------------------|------|----------|---------|----------|--------|--------------|----------|---------|---------|-----|----------------------------------------------|-----------------|--------|-------------------------------------------|--------|-------|-------|
|                   |      |          |         |          |        | ======       |          | -       |         |     |                                              |                 |        | -                                         |        |       |       |
| PLS-89-215-05-3/4 | H:   | 121.6 1  | 30.0    | : 3648.0 | 1      | 129.0        | 1        | 15686.4 | 36.     | 0 ; | 4377.6 :                                     | 23.0            | ŀ      | 2796.8                                    | 1      | 0.5   | 60.8  |
| PLS-89-215-06-3/4 |      | 37.8 1   | 79.0    |          |        | 196.0        |          | 7408.8  |         |     | 1360.8 :                                     | 37.0            | !      | 1398.6                                    |        | 0.3   | 11.3  |
| PLS-89-215-07-3/4 |      | 51.7     | 119.0   |          |        | 281.0        |          | 14527.7 |         |     | 9719.6                                       | 338.0           |        | 17474.6                                   |        | 1.5   |       |
| PLS-89-216-01-3/4 |      | 35.9     | 66.0    |          |        | 115.0        |          | 4128.5  |         |     | 1292.4                                       | 21.0            |        | 753.9                                     |        | 0.7   |       |
| PLS-89-216-02-3/4 |      | 25.2     | 46.0    |          |        | 104.0        |          | 2620.8  |         |     | 907.2                                        | 30.0            |        | 756.0                                     |        | 2.7   |       |
| PL5-89-216-03-3/4 |      | 16.4     | 69.E    |          |        | 167.0        |          | 2738.8  |         |     | 852.8                                        | 22.0            |        | 360.8                                     |        | 0.5   |       |
| PLS-89-216-04-3/4 |      | 16.1     | -7.0    |          |        | 110.0        |          | 1771.0  |         |     | 579.6                                        | 18.0            |        | 289.8                                     |        | 0.2   |       |
| PLS-89-216-05-3/4 |      | 16.2     | 43.0    |          |        | 99.0         |          | 1603.8  |         |     | 583.2 :                                      | 16.0            |        | 259.2                                     |        | 0.6   |       |
| PLS-89-216-06-3/4 |      | 20.8     | 99.0    |          |        | 137.0        |          | 2849.6  |         |     | 1185.6                                       | 28.0            |        | 582.4                                     |        | 0.5   | 10.4  |
| PLS-89-216-07-3/4 |      | 24.1 :   | 25.0    |          |        | 412.0        |          | 9929.2  |         |     | 1542.4                                       | 32.0            |        | 771.2                                     |        | 0.8   |       |
| PLS-89-216-08-3/4 |      | 26.7     | 99.0    |          |        | 39.0         |          | 2376.3  |         |     |                                              | 38.0            |        | 1014.6                                    |        | 0.5   |       |
| PLS-89-216-09-3/4 |      | 19.8 :   | 84.0    |          |        | 167.0        |          | 3306.6  |         |     | 1049.4 :                                     | 30.0            |        | 594.0                                     | +      | 0.6   | 11.9  |
| PLS-89-216-10-3/4 |      | 19.4 :   | 337.0   |          |        | 112.0        |          | 2172.8  |         |     |                                              | 32.0            | 1      | 620.8                                     | 1      | 0.6   | 11.6  |
| PLS-89-216-11-3/4 | H:   | 26.0 1   | 346.0   |          |        | 103.0        | 1        | 2678.0  |         |     |                                              | 22.0            | 1      | 572.0                                     | 1      | 0.4   | 10.4  |
| PLS-89-216-12-3/4 |      | 18.6     | 195.0   |          |        | 160.0        |          | 2976.0  |         |     | 781.2 ;                                      | 22.0            | l<br>E | 409.2                                     |        | 0.6   | 11.2  |
| PLS-89-216-13-3/4 | H:   | 33.7 1   | 96.0    | 3235.2   | 1      | 298.0        | f .      | 10042.6 | 191.    | 0 : | 6436.7                                       | 302.0           | ì      | 10177.4                                   | 1      | 1.6   | 53.9  |
| PLS-89-217-01-3/4 | H:   | 23.1 :   | 25.0    |          |        | 156.0        | 1        | 3603.6  |         | 0 : | 1016.4                                       | 39.0            | ;      | 900.9                                     | 1      | 0.4   | 9.2   |
| PLS-89-217-02-3/4 | H:   | 10.2 :   | 60.0    | 612.0    | į.     | 332.0        | ł        | 3386.4  | 56.     | 0 : | 571.2                                        | 66.0            | 1      | 673.2                                     | 1      | 0.4   | 4.1   |
| PLS-89-217-03-3/4 | H:   | 29.2 :   | 1270.0  | 37084.0  | 1      | 169.0        | 1        | 4934.8  | 41.     | 0 : | 1197.2                                       | 21.0            | i<br>i | 613.2                                     | 1      | -0.1  | -2.9  |
| -89-217-04-3/4    | H;   | 22.2 :   | 885.0   | 19713.6  | !      | 95.0         | 1        | 2109.0  | 38.     | 0 : | 843.6                                        | 20.0            | £<br>I | 444.0                                     | į.     | -0.1  | -2.2  |
| J-89-217-05-3/4   | H:   | 25.2     | 32.0    | 806.4    | i      | 126.0        | 1        | 3175.2  | 62.     | 0 : | 1562.4 :                                     | 24.0            | f      | 604.8                                     | 1      | -0.1  | -2.5  |
| PLS-89-217-06-3/4 | H:   | 22.0     | 122.0   | 2684.0   | •      | 233.0        | 1        | 5126.0  | 59.     | 0 : | 1298.0                                       | 308.0           | 5      | 6776.0                                    | ;      | 0.7   | 15.4  |
| PLS-89-217-07-3/4 | H:   | 19.6     | 300.0   | 5880.0   | ŧ      | 328.0        | 1        | 6428.8  | 491.    | 0 ; | 9623.6 :                                     | 300.0           | 1      | 5880.0                                    | {      | 1.1   | 21.6  |
| PLS-89-218-01-3/4 | H:   | 31.1 :   | 25.0    | 777.5    | i      | 129.0        | 1        | 4011.9  | 46.     | 0 : | 1430.6                                       | 47.0            | 1      | 1461.7                                    | 1      | 0.3   | 9.3   |
| PLS-89-218-02-3/4 | H:   | 30.1 :   | 165.0   | 4966.5   | ;      | 89.0         |          | 2678.9  | 35.     | 0 : | 1053.5                                       | 58.0            | ŀ      | 1745.8                                    | 1      | 0.1   | 3.0   |
| PLS-89-218-03-3/4 | H;   | 27.1     | 77.0    | 2086.7   | •      | 121.0        | 1        | 3279.1  | 32.     | 0 ( | 867.2                                        | 27.0            | 4      | 731.7                                     | †<br>4 | -0.1  | -2.7  |
| FLS-89-218-04-3/4 | H:   | 30.4 1   | 69.0    | 2097.6   | 1      | 232.0        |          | 7052.8  | 45.     | 0 : | 1368.0                                       | 65.0            | i.     | 1976.0                                    | 1      | 0.1   | 3.0   |
| PLS-89-220-01-3/4 | H:   | 26.4     | 18.0    | 475.2    | :      | 60.0         | i.       | 1584.0  | 44.     | 0 : | 1161.6                                       | 5.0             | 1      | 132.0                                     | 1      | 0.5   | 13.2  |
| PLS-89-221-01-3/4 | H:   | 27.3 1   | 144.0   | 3931.2   | :      | 125.0        | †        | 3412.5  | 39.     | 0 : | 1064.7                                       | 29.0            | 1      | 791.7                                     | }      | 0.2   | 5.5   |
| PLS-89-221-02-3/4 | H:   | 15.1 (   | 225.0   | 3397.5   | ł<br>I | 71.0         |          | 1072.1  | 39.     | 0 ; | 588.9 1                                      | 17.0            | 1      | 256.7                                     | 1      | 0.5   | 7.6   |
| PLS-89-221-03-3/4 | H:   | 23.1 1   | 297.0   | 6860.7   | 4      | 54.0         | 1        | 1247.4  | 27.     | 0 ; | 623.7 ;                                      | 27.0            | 1      | 623.7                                     | 1      | -0.1  | -2.3  |
| PLS-89-221-04-3/4 | K:   | 15.5     | 47.0    | 728.5    | ŧ      | 115.0        | 1        | 1782.5  | 33.     | 0 : | 511.5 :                                      | 19.0            | 4      | 294.5                                     |        | 0.1   | 1.6   |
| PLS-89-221-05-3/4 | H:   | 16.0     | 3200.0  | 51200.0  | 1      | 36.0         | 1        | 576.0   | 0.      | 4 ; | 6.4 1                                        | 0.3             | 1      | 4.2                                       | 1      | 39.0  | 624.0 |
| PLS-89-221-06-3/4 | H:   | 22.8 1   | 58.0    | 1322.4   | i      | 129.0        | ŧ.       | 2941.2  | 37.     | 0 } | 843.6                                        | 50.0            | 1      | 1140.0                                    | *      | 0.3   | 1 6.8 |
| PLS-89-221-07-3/4 | H)   | 22.9     | 57.0    | 1305.3   | 1      | 123.0        | 4        | 2816.7  | 40.     | 0 : | 916.0                                        | 32.0            | 1      | 732.8                                     | 1      | -0.1  | -2.3  |
| PLS-89-221-08-3/4 | H:   | 20.4 :   | 1350.0  | 27540.0  | :      | 121.0        | ŧ.       | 2468.4  | 48.     | 0 : | 979.2 1                                      | 31.0            | i      | 632.4                                     | 2      | -0.1  | -2.0  |
| PLS-89-222-01-3/4 | H:   | 25.0     | 875.0   | 21875.0  | i i    | 40.0         | i        | 1000.0  | 29.     | 0 ; | 725.0 1                                      | 2.0             | 1      | 50.0                                      | 1      | 0.7   | 17.5  |
| PLS-89-223-01-3/4 | H:   | 21.9 !   | 256.0   | 5606.4   | ì      | 165.0        | 1        | 3613.5  | 40.     | 0 : | 876.0 :                                      | 41.0            | 1      | 897.9                                     | i      | -0.1  | -2.2  |
| PLS-89-223-02-3/4 |      | 20.0 :   | 198.0   | 3960.0   | 1      | 147.0        | 1        | 2940.0  | 72.     | 0 : | 1440.0 :                                     | 35.0            | 1      | 700.0                                     | 4      | -0.1  | -2.0  |
| PLS-89-223-03-3/4 |      | 6.2 1    | -25.0   |          |        | 191.0        |          | 1184.2  |         |     |                                              | 35.0            |        | 217.0                                     | j      | 0.1   |       |
| PLS-89-225-01-3/4 |      | 19.0 :   | 243.0   |          |        | 167.0        |          | 3173.0  |         |     |                                              | 44.0            |        | 336.0                                     |        | 0.3   |       |
| PLS-89-225-02-3/4 |      | 13.3     | 48.0    |          |        | 153.0        |          | 2034.9  |         |     |                                              | 47.0            |        | 625.1                                     | 1      | 0.2   |       |
| PLS-89-225-03-3/4 |      | 12.2 :   | -13.0   |          |        | 114.0        |          | 1390.8  |         |     | 585.6                                        | 12.0            |        | 146.4                                     |        | -0.1  |       |
| PLS-29-225-04-3/4 |      | 19.5     | 123.0   |          |        | 65.0         |          | 1267.5  |         |     | 526.5                                        | 3.0             |        | 58.5                                      |        | -0.1  |       |
| 3-89-225-05-3/4   |      | 13.6     | -10.0   |          |        | 96.0         |          | 1305.6  |         |     | 503.2 :                                      | 11.0            |        | 149.6                                     |        | -0.1  |       |
| -89-226-01-3/4    |      | 18.7     | 71.0    |          |        | 163.0        |          | 3048.1  |         |     | 729.3                                        | 51.0            |        | 953.7                                     |        | 0.3   |       |
| PLS-89-227-01-3/4 |      | 15.6     | 115.0   |          |        | 233.0        |          | 3634.8  |         |     | 311.2                                        | 37.0            |        | 577.2                                     |        | 1.6   |       |
| PLS-89-228-01-3/4 |      | 16.6     | 381.0   |          |        | 39.0         |          | 647.4   |         |     | 415.0 1                                      | 9.0             |        | 149.4                                     |        | 0.1   |       |
| FLS-89-228-02-3/4 | Mi . | 13.8     | 708.0   | 9770.4   | 1      | 38.0         | i        | 524.4   | 29.1    | Ü   | 400.2                                        | 5.0             | 1      | . 69.0                                    | 1      | -0.1  | -1.4  |

#### OVERBURDEN DRILLING MANAGEMENT LIMITED

#### Absolute Metal Content of Heavy Mineral Concentrates

|                    | :WEIGHT (g)<br>: NON-MAG<br>: | : PPB   | : ABSOLUTE<br>:METAL CONTENT<br>:Au (nanograms | 11      | : METAL CONTENT :<br>:Cu (micrograms): | Zn ASSAY<br>PPM | : METAL ( | CONTENT : | s ASSAY<br>PPM | METAL CONTENT<br> As (micrograms) |        | : METAL CONTENT<br>:Ag (micrograms) |
|--------------------|-------------------------------|---------|------------------------------------------------|---------|----------------------------------------|-----------------|-----------|-----------|----------------|-----------------------------------|--------|-------------------------------------|
| PLS-89-229-01-3/4H | 9.9                           | : -17.0 | -168.3                                         |         |                                        | 21.0            |           | 207.9 1   | 4.0            |                                   |        |                                     |
| PLS-89-229-02-3/4H | 8.3                           | 210.0   | 1743.0                                         | 56.0    | 464.8                                  | 26.0            | f<br>F    | 215.8 ;   | 6.0            | 49.8                              | : -0.1 | 3.0-                                |
| PLS-89-229-03-3/4H | 17.0                          | 293.0   | 4981.0                                         | 26.0    | 442.0 ;                                | 22.0            | ;         | 374.0 :   | 2.0            | : 34.0                            | 0.2    | 3.4                                 |
| PLS-89-229-04-3/4H | 14.5                          | 3.3-    | -118.4                                         | 43.0    | 636.4                                  | 24.0            | 1         | 355.2     | 4.0            | 59.2                              | 0.1    | 1.5                                 |
| PLS-89-229-05-3/4H | 23.1                          | 225.0   | 5197.5                                         | 91.0    | 2102.1 :                               | 27.0            | ;         | 623.7 :   | 36.0           | 331.6                             | -0.1   | -2.3                                |
| PLS-89-229-06-3/4H | 19.4                          | 147.0   | 2851.8                                         | 1 166.0 | 3220.4 :                               | 42.0            | 1         | 814.8 :   | 22.0           | 426.8                             | -0.1   | -1,9                                |
| PLS-89-229-07-3/4H | 23.5                          | 5289.0  | 124291.5                                       | 195.0   | 4582.5                                 | 43.0            | 1         | 1010.5 :  | 34.0           | 799.0                             | 0.5    | 11.8                                |
| PLS-89-229A-01-3/4 | 20.5                          | 39.0    | 799.5                                          | 94.0    | 1927.0 ;                               | 23.0            | ,<br>,    | 471.5     | 4.0            | 82.0                              | -0.1   | -2.1                                |
| PLS-89-229A-02-3/4 | 11.9                          | 383.0   | 4557.7                                         | : 65.0  | 773.5 :                                | 31.0            | 1         | 368.9 1   | 8.0            | 95.2                              | 0.3    | 3.6                                 |
| PLS-89-229A-03-3/4 | 10.5                          | 120.0   | 1260.0                                         | : 218.0 | 2289.0 ;                               | 42.0            | 1         | 441.0 :   | 26.0           | 273.0                             | 0.2    | 2.1                                 |
| PLS-89-229A-04-3/4 | 21.1                          | 44.0    | 928.4                                          | 159.0   | 3354.9 :                               | 49.0            | 1         | 1033.9 :  | 28.0           | 590.8                             | 0.5    | 10.6                                |
| PLS-89-229A-05-3/4 | 19.7                          | 90.0    | 1773.0                                         | 189.0   | 3723.3 :                               | 38.0            | 1         | 748.6 1   | 25.0           | 492.5                             | 0.1    | 2.0                                 |
| PL5-89-229A-06-3/4 | 17.4                          | 1050.0  | 18270.0                                        | 100.0   | 1740.0 1                               | 34.0            | 1         | 591.6 :   | 10.0           | 174.0                             | -0.1   | -1.7                                |
| PLS-89-230-01-3/4H | 30.1                          | 259.0   | 7795.9                                         | 72.0    | 2167.2 1                               | 25.0            | 1         | 752.5 1   | 17.0           | 511.7                             | -0.1   | : -3.0                              |
| PLS-89-230-02-3/4H | 28.2                          | 38.0    | 1071.6                                         | 57.0    | 1607.4                                 | 25.0            | 1         | 705.0 :   | 8.0            | 225.6                             | -0.1   | -2.8                                |
| PLS-89-230-03-3/4H | 30.1                          | 27.0    | 812.7                                          | 204.0   | 6140.4                                 | 160.0           | 1         | 4816.0 :  | 18.0           | 541.8                             | -0.1   | -3.0                                |
| PLS-89-230-04-3/4H | 27.2                          | 260.0   | 7072.0                                         | : 430.0 | 11696.0 :                              | 26.0            | :         | 707.2 :   | 20.0           | 544.0                             | 0.1    | 2.7                                 |
| PLS-89-230-05-3/4H | 35.3                          | 28.0    | 988.4                                          | 176.0   | 6212.8 1                               | 20.0            | 1         | 706.0 :   | 14.0           | 494.2                             | 0.2    | 7.1                                 |
| PLS-89-231-01-3/4H | 27.4                          | 102.0   | 2794.8                                         | 207.0   | 5671.8 ;                               | 41.0            | 1         | 1123.4 :  | 54.0           | 1479.6                            | 0.6    | 16.4                                |
| -89-232-01-3/4H    | 26.1                          | : 30.0  | 783.0                                          | 136.0   | 3549.6 1                               | 37.0            |           | 965.7     | 35.0           | 913.5                             | 0.2    | 5.2                                 |
| 5-89-232-02-3/4H   | 27.0                          | 92.0    | 2484.0                                         | 168.0   | 4536.0 1                               | 56.0            | 1         | 1512.0 :  | 30.0           | 810.0                             | 0.2    | 5.4                                 |
| PLS-89-232-03-3/4H | 23.9                          | 430.0   | 10277.0                                        | 182.0   | 4349.8 ;                               | 41.0            | 1         | 979.9 1   | 40.0           | 956.0                             | 0.3    | 7.2                                 |
| PLS-89-232-04-3/4H | 35.1                          | 181.0   | 6353.1                                         | 196.0   | 6879.6 1                               | 48.0            | 1         | 1684.8 :  | 64.0           | 2246.4                            | 0.2    | 7.0                                 |
| PLS-89-232-05-3/4H | 11.8                          | 400.0   | 4720.0                                         | : 85.0  | 1003.0 :                               | 32.0            | ;         | 377.6 :   | 37.0           | 436.6                             |        |                                     |
| PLS-89-233-01-3/4H | 16.8                          | 30.0    | 504.0                                          | 154.0   | 2587.2 1                               | 52.0            | 1         | 373.6 :   | 32.0           | : 537.6                           | 0.2    | 3.4                                 |
| PLS-89-233-02-3/4H | 12.0                          | : 113.0 | 1356.0                                         | 97.0    | 1164.0 1                               | 35.0            | 1         | 420.0 :   | 21.0           |                                   |        |                                     |
| PLS-89-234-01-3/4H | 17.3                          | 383.0   | 6625.9                                         | 47.0    | 313.1 :                                | 37.0            | :         | 640.1     | 4.0            |                                   |        |                                     |

# APPENDIX F ONE-QUARTER CONCENTRATE EXAMINATIONS, PANNINGS AND INA ANALYSES

#### → GOLD CLASSIFICATION

-----

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

| KEVIN. WR1       | - makei       | TNICO                      |                                        |                                                                    |         | ħ           | NUMBER | OF G     | RAINS |                                 |                                                |            |              |              |                                                                                       |
|------------------|---------------|----------------------------|----------------------------------------|--------------------------------------------------------------------|---------|-------------|--------|----------|-------|---------------------------------|------------------------------------------------|------------|--------------|--------------|---------------------------------------------------------------------------------------|
| TOTAL # OF       |               |                            |                                        |                                                                    | ABRADED | )           | IRREGL | LAR      |       |                                 |                                                |            | CALC V.G.    | 1            |                                                                                       |
| SAMPLE #         | PANNE)<br>Y/N |                            | IETER                                  | THICKNESS                                                          | T       | F           | T      | ===<br>P | T     | P                               | ====                                           | MAG<br>GMS | ASSAY<br>PPB | REMA         | RK5                                                                                   |
| PLS-89<br>151-06 | Y             | 25<br>50                   |                                        |                                                                    |         |             |        | 1        |       | 1                               | 1<br>1                                         |            |              | EST.         | 0.25% PYRITE                                                                          |
|                  |               |                            |                                        |                                                                    |         |             |        |          |       |                                 | 2                                              | 5.0        | 55           |              |                                                                                       |
| 167-03           | Y             | 25<br>50<br>50             |                                        | 13 C                                                               |         | 1<br>1<br>1 |        |          |       |                                 | 1<br>1<br>1                                    |            |              | EST.         | 2% PYRITE                                                                             |
|                  |               |                            |                                        |                                                                    |         |             |        |          |       |                                 | 3                                              | 5.5        | 267          |              |                                                                                       |
| 168-01           | Y             | 50<br><b>5</b> 0           |                                        |                                                                    |         | 1<br>1      |        |          |       |                                 | 1                                              |            |              | EST.         | 2% PYRITE                                                                             |
|                  |               |                            |                                        |                                                                    |         |             |        |          |       |                                 | 2                                              | 7.1        | 80           |              |                                                                                       |
| 168-07           | Y             | NO VIS                     | IBLE G                                 | OLD                                                                |         |             |        |          |       |                                 |                                                |            |              | EST.         | 5% PYRITE                                                                             |
| <b>169-</b> 03   | Υ             | NO VIS                     | IBLE G                                 | DLD                                                                |         |             |        |          |       |                                 |                                                |            |              | EST.         | 7% PYRITE                                                                             |
| 170-01           | Υ             | <b>5</b> 0                 | X 75                                   | 13 C                                                               |         | 1           |        |          |       |                                 | 1                                              |            |              | EST.         | 50% PYRITE                                                                            |
|                  |               |                            |                                        |                                                                    |         |             |        |          |       |                                 | 1                                              | 3.3        | 113          |              |                                                                                       |
| 171-02           | <b>Y</b>      | 25<br>25<br>50<br>50<br>50 | X 50<br>X 50<br>X 75                   | 8 C<br>10 C<br>13 C                                                |         | 1<br>1<br>1 |        | 1        |       | 1 1 1                           | 1<br>1<br>2<br>2<br>1                          |            |              | EST.         | 5% PYRITE                                                                             |
|                  |               |                            |                                        |                                                                    |         |             |        |          |       |                                 | 7                                              | 10.0       | 188          |              |                                                                                       |
| 171-03           | γ             | 125                        | X 200                                  | 31 C                                                               |         |             |        | 1        |       |                                 | 1                                              |            |              | EST.         | 5% PYRITE                                                                             |
|                  |               |                            |                                        |                                                                    |         |             |        |          |       |                                 | 1                                              | 5.0        | 1247         |              |                                                                                       |
| 171-04           | Υ             | 100                        | X 50<br>X 50<br>X 75<br>X 100<br>X 125 | 5 C<br>8 C<br>10 C<br>13 C<br>15 C<br>15 C<br>18 C<br>20 C<br>22 C |         | 1           |        | 1        |       | 1<br>1<br>1<br>1<br>2<br>1<br>1 | 1<br>2<br>1<br>1<br>1<br>1<br>2<br>1<br>1<br>1 |            |              | V.G.<br>MAKI | 20% PYRITE 100 GRAIN GALENA IS DELICATE CRYSTALLINE NG PANNING RECOVERY VERY FICIENT. |

#### \_GOLD CLASSIFICATION

\_\_\_\_\_

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

|   | ŒVIN.WR1                  |               |              |                |           |         | Ì       | VUMBE | R OF G | RAINS |           |        |            |              |       |                                       |
|---|---------------------------|---------------|--------------|----------------|-----------|---------|---------|-------|--------|-------|-----------|--------|------------|--------------|-------|---------------------------------------|
|   | TOTAL # DF                |               |              |                |           | ABRADEL | )       |       | GULAR  |       |           | TOTAL  |            | CALC V.G     |       |                                       |
| ţ | SAMPLE #                  | PANNE!<br>Y/N | DIAME        | TER            | THICKNESS | T       | ==<br>P | T     | P      | T     | ====<br>P |        | MAG<br>GMS | ASSAY<br>PPB | REMAI | RKS                                   |
|   | PLS-89                    |               |              |                |           |         |         |       |        |       |           | 12     | 8.4        | 990          |       |                                       |
|   |                           |               |              |                | _         |         |         |       |        |       |           |        |            | 770          |       | · · · · · · · · · · · · · · · · · · · |
|   | 171-05                    | Y             | 25 X<br>50 X |                |           |         | 1       |       | 1      |       |           | 1<br>1 |            |              | EST.  | 30% PYRITE                            |
|   |                           |               | 50 X         | 75             | 13 C      |         | 1       |       | 2      |       | 1         | 4      |            |              |       |                                       |
|   |                           |               | 50 X         |                |           |         |         |       | 1      |       | 1         | 2      |            |              |       |                                       |
|   |                           |               | 75 X         |                |           |         | 3       |       | i      |       | 1         | 5      |            |              |       |                                       |
|   |                           |               | 75 X         |                |           |         | 2       |       |        |       |           | 2      |            |              |       |                                       |
|   |                           |               | 75 X         |                |           |         |         |       |        |       | 1         | 1      |            |              |       |                                       |
|   |                           |               | 100 X        | 100            | 20 C      |         | 1       |       | 1      |       |           | 2      |            |              |       |                                       |
|   |                           |               |              |                |           |         |         |       |        |       |           | 18     | 8.3        | 2450         |       |                                       |
|   | 180-04                    | Y             | NO VISI      | BLE G          | DLD       |         |         |       |        |       |           |        |            |              | EST.  | 0.25% PYRITE                          |
| _ | 182-05                    | Υ             | NO VISI      | BLE G          | OLD       |         |         |       |        |       |           |        |            |              | EST.  | 3% PYRITE                             |
|   | 183-05                    | Y             | 25 X         | 50             | 8 C       |         | i       |       |        |       |           | 1      |            |              | EST.  | 2% PYRITE                             |
|   |                           |               | 25 X         |                |           |         | 1       |       |        |       |           | 1      |            |              |       | 500 GRAINS MARCASITE                  |
|   |                           |               | 50 X         |                |           |         |         |       | 1      |       | 1         | 2      |            |              |       |                                       |
|   |                           |               | <b>5</b> 0 X | 75             | 13 C      |         |         |       | 1      |       | 1         | 2      |            |              |       |                                       |
|   |                           |               |              |                |           |         |         |       |        |       |           | 6      | 7.9        | 178          |       |                                       |
|   | 185-16                    | Y             | 50 X         | 50             | 10 C      |         | 1       |       |        |       |           | 1      |            |              | EST.  | 7% PYRITE                             |
|   |                           |               |              |                |           |         |         |       |        |       |           | 1      | 7.7        | 25           |       |                                       |
|   |                           |               |              |                |           |         |         |       |        |       |           |        |            |              |       |                                       |
|   | 188-13                    | Y             | 25 X         |                |           |         |         |       | i      |       |           | 1      |            |              | EST.  | 30% PYRITE                            |
|   |                           |               | 50 X         | 75             | 13 C      |         | 1       |       |        |       |           | 1      |            |              |       |                                       |
|   |                           |               |              |                |           |         |         |       |        |       |           | 2      | 6.4        | 71           |       |                                       |
|   | 188-15                    | Υ             | NO VISII     | BLE G          | DLD       |         |         |       |        |       |           |        |            |              | EST.  | 10% PYRITE                            |
|   | 191-01                    | Y             | 50 X         | 50             | 10 C      |         | 1       |       |        |       |           | i      |            |              | FST.  | 15% PYRITE                            |
|   | 111 41                    | •             |              | 125            |           |         | 1       |       |        |       |           | 1      |            |              | LUII  | 10% ( 1/1/12                          |
|   |                           |               |              |                |           |         |         |       |        |       |           |        |            |              |       |                                       |
| _ |                           |               |              |                |           |         |         |       |        |       |           | 2      | 5.1        | 332          |       |                                       |
| - | 196-02                    | Y             | 50 X         | 50             | 10 C      |         |         |       | 1      |       |           | 1      |            |              | EST.  | 5% PYRITE<br>10 GRAINS ARSENDPYRITE   |
|   |                           |               |              |                |           |         |         |       |        |       |           | 1      | 2.7        | 71           |       |                                       |
|   | 221-08                    | Y             | NO VISI      | BLE 60         | OLD       |         |         |       |        |       |           |        |            |              | EST.  | 3% PYRITE                             |
|   | <b>22<del>9-</del></b> 07 | Ÿ             | NO VISI      | BLE <b>G</b> ( | OLD       |         |         |       |        |       |           |        |            |              | EST.  | 7% PYRITE                             |

GOLD CLASSIFICATION

-----

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

KEVIN.WR1

NUMBER OF GRAINS

TOTAL # OF PANNINGS

ABRADED IRREGULAR DELICATE TOTAL NON CALC V.G.

SAMPLE # PANNED

======= ====== ===== MAG ASSAY

Y/N DIAMETER THICKNESS

T P T P T P 6MS PPB REMARKS

PLS-89

229A-06 Y NO VISIBLE GOLD

20 GRAINS FINE ARSENDPYRITE

EST. 2% PYRITE



| :     | REPORT: 089-51329.0            |           |         | PROJECT: NOGE | PAGE 1 |
|-------|--------------------------------|-----------|---------|---------------|--------|
|       | SAMPLE ELEMENT<br>NUMBER UNITS | Au<br>PP8 | WT<br>9 |               |        |
|       |                                |           |         |               |        |
|       | PLS-89-151-06-1/4H             | 504       | 4.99    |               | •      |
|       | PLS-89-167-03-1/4H             | 839       | 5.46    |               |        |
| į     | PLS-89-168-01-1/4H             | 260       | 7.01    |               |        |
|       | PLS-89-168-07-1/4H             | 78        | 4.76    |               |        |
| ·<br> | PLS-89-169-03-1/4H             | 714       | 6.01    |               |        |
|       | PLS-89-169-09-1/4H             | 480       | 5.52    |               |        |
| i     | PLS-89-170-01-1/4H             | 9030      | 3.18    |               |        |
|       | PLS-89-171-02-1/4H             | 1030      | 9.89    |               |        |
|       | PLS-89-171-03-1/4H             | 2770      | 4.76    |               |        |
|       | PLS-89-171-04-1/4H             | 5230      | 8.18    |               |        |
|       | PLS-89-171-05-1/4H             | 15300     | 8.17    |               |        |
|       | PLS-89-180-04-1/4H             | <16       | 2.73    |               |        |
|       | PLS-89-182-05-1/4H             | 47        | 6.06    |               |        |
|       | PLS-89-183-05-1/4H             | 1200      | 7.87    |               |        |
|       | PLS-89-185-16-1/4H             | 1020      | 7.70    |               | ,      |
| _     | PLS-89-188-13-1/4H             | 641       | 6.41    |               |        |
| ı     | PLS-89-188-15-1/4H             | 490       | 13.24   |               |        |
|       | PLS-89-191-01-1/4H             | 1060      | 5.31    |               |        |
|       | PLS-89-196-02-1/4H             | 539       | 2.65    |               |        |
|       | PLS-89-221-08-1/4H             | 40        | 5.44    |               |        |
|       | PLS-89-229-07-1/4H             | 29        | 5.22    |               |        |
|       | PLS-89-229A-06-1/4H            | <5        | 4.07    |               |        |
|       |                                |           |         |               |        |

#### MINNOVA: PLS-89

## 1/4 Concentrate Examinations for Arsenic, Copper and Silver Anomalies

| Sample<br>No. | Anomaly<br>(in ppm) | Observations                                                                                                                           |
|---------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 170-01        | Ag=4.2              | No silver minerals<br>65 to 70% pyrite<br>10% sphene<br>trace galena                                                                   |
| 171-04        | Ag=7.4              | No silver minerals<br>20% pyrite<br>Abundant sphene<br>0.1% galena                                                                     |
| -05           | Ag=7.1              | No silver minerals 40% pyrite Abundant sphene 0.1% galena Trace of apple green, soft mineral in syenite lithic grains (lead sulphate?) |
| 187-15        | As=840              | 0.5% arsenopyrite in table conc. 20% pyrite in table conc.                                                                             |
| 188-03        | Ag=8.0              | No silver minerals<br>5% pyrite                                                                                                        |
| -19           | Cu=940              | No chalcopyrite No brass contamination 50% pyrite (200 grains arsenopyrite in table conc; 3/4 As assay = 280 ppm)                      |
| 214-03        | Ag=7.0              | No silver minerals<br>5% pyrite                                                                                                        |

# APPENDIX G BINOCULAR LOGS - BEDROCK CHIP SAMPLES

# Re-logs of 1988 holes

| SAMPLE           | COLOUR                                                                | STRUCTURE                                                                                                                                            | GRAIN                                                                    | TEXTURE                                                                                                                       |                                                                                                                                                                                       | MINERA                                                           | LOGY                                                                         |                                                                                            | NAME                                                      |
|------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| NUMBER           | OOLOON                                                                | STRUCTURE                                                                                                                                            | SIZE (mm)                                                                | TEXTURE                                                                                                                       | Silicates                                                                                                                                                                             | Carbonates                                                       | Sulphides                                                                    | Other                                                                                      | IVAIVIE                                                   |
| PLS-88<br>117-09 | Variable dank green to punk to relations                              | Ch: Med. 60% shear foliated, 40% shear mylmitized eausing fragmentations lectrical into of phenos (may simply my the an mained contact greis banding | Where not my lonit; gul fell. shones = 0.5-1.5 Groundmass aphanitic      | Strongly perphysytic<br>withlasham: fre to<br>eguigianulan growninss                                                          | 30-40% white to rardy pint-stained fuld) phonos.  Audulass (60%) = 30% chl. from hb. 60-70% plus 210% gtg.                                                                            | 7% fracture<br>4 schistority<br>calista                          | Mylan te<br>hotts trace<br>cubin py.                                         | Mylonite<br>andwere 11.<br>fundy dissem.<br>specthem.<br>(course information<br>vocation)) | DIORITE                                                   |
| / <i>I</i> S-02  | (b) 40% sight                                                         | consisting of (a) being digested in (b)                                                                                                              | to 1. a<br>b) Fell. phones                                               | arhanith the sugary                                                                                                           | (4) 60% hb/scfind: to<br>(localinghh.) 46%.<br>play (localingh. 5% as<br>phonos).<br>(b) 30% fell phonos<br>(localingh.) 70%.<br>funasc) = 70% play.<br>50%. on ph. (or chl.) / 250%. | Nil. Reflects<br>instability goods<br>undtamophisms              | < 0.1% py. conc. in paphyny custact                                          | N:1                                                                                        | (a) BASALT<br>(xenoliths<br>-60%)<br>(b) DIORITE<br>(40%) |
| 119-04           | 90% darke<br>gm. fleefund<br>white bluck<br>10% pint<br>bounds        | Gneiss-bundel; bunde<br>course than this such<br>Also will foliated<br>within bunds.<br>Chilled.                                                     | Fell. phens                                                              | Strongly paphyrytic<br>with equiporhular<br>interlocking grandmuss                                                            | 30% or ended white fill hands for goldmass =  Av 50% plane + 40%.  Ab. (often chlarte; falls to < 10% in pink bens); < 10% of but selections of the selections.                       | Ü                                                                | o.1%. cone. in mostly mostic portions of grandmass (indicatingly is primary) | 6.1% omagnit: to<br>core, in brest<br>med: c putions<br>of gmass.                          | DIORITE                                                   |
| 120-08           | 251. chips                                                            | well fol. to meistic<br>Either of (b). Roskestic<br>phase of (b). Mod. brittle                                                                       | (a) Fe ld., phenos<br>0.5-1<br>Gmass variable<br><0.05-0.1<br>(b) < 0.05 | (a) Strongly paphy mytic with equipmented interlibeting that he can but how aby chilled gunas of the Aphanitic mon dashingtic |                                                                                                                                                                                       | (a) 1% fracture<br>calcite<br>b) 10% fracture<br>+ dissem/alcite | (a) tr. disson.<br>Py.<br>(b) 0.1% fracture<br>-hosted cubingry.             | (6) tr. magnetite (b) tr. fuchsite on shear                                                | (e) DIORITE<br>(25%)<br>(b) BASALT<br>(75%)               |
| [21-J]           | Variable brown (as #115) to black (both hb-besing) to snew (cheritic) | l1 <i>64</i>                                                                                                                                         |                                                                          | Variably papely after with variably appeards a                                                                                | Variably 5-301, white fully phonos (av. 101.) locally who gred.  901. Grandhass =  301. hb. Lorania bly chl.  701. play                                                               | 1% fracture<br>calcite                                           | 0.1% J. 35em . jy.                                                           | tr. magnetita                                                                              | DIORITE                                                   |

| SAMPLE                      | COLOUR                                                             | STRUCTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GRAIN                                              | TEVTUDE                                                                                                               |                                                                                                                                                           | MINERA                                          | LOGY                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 144145      |
|-----------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| NUMBER                      | OOLOON                                                             | STRUCTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SIZE (mm)                                          | TEXTURE                                                                                                               | Silicates                                                                                                                                                 | Carbonates                                      | Sulphides                                                                    | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NAME        |
| PLS -89<br>1 <b>5</b> 0 -01 | Pink to<br>brick ved<br>with dash<br>gren chloit:<br>shear surface | No flour foliation. Strong shear deformation manifestud buy pen various conformation microfractones and 5-1. Slickenfield chlostic chears.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mainly 1-3<br>(boundaries<br>obscured by<br>stain) | Strongly fell spar-<br>prophyriffic with<br>inequipmentar interlecting<br>or abothwass (apatite,)<br>sphere coarsest) | 85% white to red-<br>stained fuld phones<br>15% groudmass =<br>30% chl. (ascand<br>from hb.), 30% feld,<br>5-10% sphore (all,<br>congletely to leverseen) | 7% fracture-<br>hosted calciti.                 | Goundmass in 14 of chips cuntains 5-10%. hydrothemal cubic pg.               | Grown-moss cartaing 20% apatita (bleachers to land to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the | y) SYENVITÉ |
| 151-07                      | Medium pink<br>flecked epeen                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Feld. 0.5-2 Hb., sphere 0.3-1 MH. 0.1              | chneguigian ular<br>intuiloching                                                                                      | 80% white to pick<br>Stamed filld.<br>12% hb. (chloite<br>in 2/3 sample)<br>2% sty.<br>2% splane                                                          | Croudmeer<br>contains 5-10%.<br>dissem. calcita | N: 1                                                                         | 0.5% dissem.<br>magnetiti.<br>No apalite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SYENITE     |
| 152-03                      | Lock pink                                                          | Massive. No flow foliation. Weak sheardymatu manifested by locally pervasive micheralum hosting culcita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Px. 1-4<br>Fell. 0.5-3<br>OHMA 0.1-0.3             | chegu:grander<br>intelock:ng                                                                                          | 85% white to pink -stand-fuldspan 5% It. an. px 5% chlotit probably from px. 1% guartz 0.11% sphere                                                       | 2-3%. Fracture<br>hostel colection              | Trace py .<br>related to<br>dracturing                                       | 2% dissem.<br>specular hem.<br>(var:ably<br>magnitite)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SYENITE     |
| 153-02                      | White to<br>pale puzzle<br>flecked blad                            | We are trackytic flow foliation. Moderate shear dyfarates manifestel by 3%. Slick-ensided chlastic chears a local securing cubmatice and its had market that the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and the color and | Feld. 0.5-3<br>Px. 0.2-2<br>Accessories<br>0.1-0.2 | De was breather                                                                                                       | go! white to pale purple-stained fild, 8! dark green px. (locally cht.) 11. guardy 0.5! leucowne transphene                                               | 5% fracture<br>hosted calcite                   | 10% of chips<br>cartain 5%.<br>microfracture<br>-hostel hydrothemo<br>pyrite | o.s./. specular<br>hem., no.mt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SYEWITE     |
| 154-02                      | Med:um<br>puik fleched<br>black                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Major<br>minuale<br>O.S.Z                          | Atypically eguligian what interlocking                                                                                | 80% white to mostly<br>prink-standed full<br>15% hb (no chl.)<br>21. guarty<br>21. ag: lote<br>0.5% sphare                                                | 1% dissem cal.<br>Concentrated<br>with hb.      | N:1                                                                          | 0.3% dissom.<br>magnetite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SYENITÉ     |

| SAMPLE           | COLOUR                                                                | STRUCTURE                                                                                                            | GRAIN                                                                                            | TEXTURE                                                                                                                                                                                    |                                                                                                                                                              | MINERAL                                                                 | _OGY                                                                      |                                                                                               | NAME                                      |
|------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------|
| NUMBER           | 0020011                                                               | OMOOTONE                                                                                                             | SIZE (mm)                                                                                        | TEXTORE                                                                                                                                                                                    | Silicates                                                                                                                                                    | Carbonates                                                              | Sulphides                                                                 | Other                                                                                         | NAME                                      |
| PLS-89<br>155-04 | Mottled<br>punk +<br>gray-quen                                        | Massive no flow or metamorphic folm. Moderate shear diformation manifested by payease calciti-timed maximum columns. | Fell-phenos<br>1-3<br>Apatitu<br>Phenos<br>1-2<br>Graundmass<br>0.1-0.3                          | Strongly paylogytic w. inequiplication inter-<br>locking grundmass that often merger with apatita phenos.                                                                                  | 80% white to mostly pink-stained-feld phenos. 15% groundmass = \$ to% year futd 30% dk com chloste 10%. 35%.                                                 | 31. fracture<br>cule:te<br>browness<br>contains 10%<br>dissem.calcite   | Nil Gundmass contains 5-10% magnetite to mainly specular hemotites        | 51. phonos of gray mineral with pyrakore-like cleavage + hardness of 5, assumed to be apatite | SYEWITE                                   |
| 156-04           | White flecked black, locally stained pink                             | Moderate shear                                                                                                       | Fell-phenos<br>1-3<br>Hb. phenos<br>0.5-2<br>Groundmass<br>0.1-0.2                               | Strongly popping of ic with<br>equipromular in the beting<br>glowed mass                                                                                                                   | 85% white to locally pink stained fald. phenos. 3-5% pantly chloritized hb. phenos 10% groundmass = 40% 3k an. chloritizen no 413, 10-20% feld, 2% sphenos   | 3% fracture<br>calcite<br>handmoss<br>contains 10%.<br>dissens. colcite | Nil                                                                       | noundmuss contains 10%, Imagnetite to mostly spec. hom., olso tot, green, probably apatite    | SYENTTE                                   |
| 157-02           |                                                                       | Chilled,<br>(b) Massive with<br>10% aphanitic/lemocratic                                                             | (a) 0. 2-0.5<br>(b) Fall.<br>phonos<br>0.5-1<br>Class patches<br>aphabatic<br>matrix<br>0.05-0.3 | (4) Inequipmentan Interlicking (b) Vary hoterscenceus 10% apphantil/eucoustic glain patcher of 20% fold phones irregularly distribute through a chilled inequipmen interbolking groundmass | a) Fox pint-stained feld, for. hb, 5-107. gfg. b) 20% fald phinds 10% glass patcher 60% broundlass = 60% droundlass = log chi de ellostifad bb., 10-20% gfg. | a) Nil<br>(b) 1% dissem<br>cal.<br>Also 1% fraduce<br>calcite           | (a) N: 1<br>(b) 1% dissens<br>entri py<br>observat replicing<br>magnotiti | (a) N; l<br>(b) 0.5-17.<br>dissom mt.                                                         | SYEWITE<br>(10%)<br>PTZ UN ORITE<br>(90%) |
| 158-02           | White to pale pink,                                                   | Massive. No flow<br>on met. foliation.<br>No shew Lymation                                                           | Plag. 0.3-3 Hb.0.3-1 Sphere + wht. 0.2-03                                                        | direquigramular<br>intellocking to diabasic                                                                                                                                                | 85%. white to pale<br>pink-stained fuld.<br>10% hb. (no chloste)<br>1% of 3.<br>1-2% sphene                                                                  | 2% dissem.<br>calcite concentrated<br>mean horn blands                  | N: 1                                                                      | 0.5% specular<br>hem. (barely<br>magnetite)                                                   | SYENITE                                   |
| 159-02           | Pinited un to<br>post-glacial<br>weathering<br>(near surface<br>hill) | Massive.<br>No significant<br>shear diffirmation                                                                     | Plag.<br>0.41-3<br>Hb.0.3-2<br>Sphere 4<br>wht.0.1-0.3                                           | dregui granular<br>intellecting                                                                                                                                                            | 80-85 white to pink-stained (weathmend) full. (10-15th hb. (no chl.) 21.9 fz.                                                                                | 1%. Jissem cal. concentrated mean hb. 1% calcite in isolated fraction   | N; !                                                                      | 1-2% dissem.<br>magnet: ti<br>(rally specular<br>hem.)                                        | STINGY 2                                  |

| SAMPLE           | COLOUR                                  | STRUCTURE                                                                                                                  | GRAIN                                                          | TEXTURE                                                                      |                                                                                                          | MINERAL                                                                 | OGY       |                                                                                               | NAME    |
|------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------|---------|
| NUMBER           | COLOUR                                  | STRUCTURE                                                                                                                  | SIZE (mm)                                                      | TEXTURE                                                                      | Silicates                                                                                                | Carbonates                                                              | Sulphides | Other                                                                                         | NAME    |
| PLS-89<br>160-01 | Locally slightly rusty streets          | Massive with local trackytic flow folin. Very weak shear John manifested by 1% crush grand locally prossive unicrostochung | Feld.<br>0.5-4<br>Hb=0.5-2<br>Accessnies<br>0.2-0.3            | chrequignanulae<br>ivHeulock:ng                                              | 85-90% white to<br>puch -stained fild<br>8-10% hb. (nochl.)<br>1% 941.<br>6.5-11% sphere                 | 1% fracture<br>calcite                                                  | N:1       | 1-2% specular<br>hematitu (vauly<br>not.) both<br>dissem and<br>consentated in<br>crush zones | SYENITE |
| /61-o2           |                                         | Massive me flour foliation.  15% weakly cousted jour record weak shear Jufamation                                          | Fald .0.5-3<br>Hb.0.5-2<br>Access nive<br>0.1-0.3              | Inequipmental intulations to Jeabasic                                        | 85% white to puth<br>stanied field!<br>10-124.hb.(no chl.)<br>1% sphene                                  | No dissemeal. In host. Crush your contail 5%. fracture + dissem. cal.   | N:1       | 0.5-1%.d:ssom. magnet:ti Crush garen contain 2-3%. specular hernot to                         | SYENITE |
| 162-02           | black.<br>30% Leep<br>red-stained       | Promunced trackytic<br>flow Ist'in but har<br>metancyphic firt'in.<br>No 5: cyn: 1: can't<br>shear Information             | Fild<br>phenos<br>0.5-3 mm<br>long<br>hundmas;<br>0.1-1.0      | Strongly porphysytic<br>with his fiving and flor<br>interlocking groundwass. | 85% white to red -stand fully ghanos (nownheass = 50% hb (no cht.) 30% gran fully 10-20% gt z no sphelie | 3% dissem<br>Afracher cul                                               | N:1       | Gondham<br>cartain 51.<br>magnetite<br>(1. lally specular<br>hematile)                        | SYEWITE |
| /63              | No                                      | BEDROCK SP                                                                                                                 | )MPL                                                           |                                                                              |                                                                                                          |                                                                         |           |                                                                                               |         |
| /64 -06          | Pale sink-<br>stainly,<br>flecked black | 1 M , 1 , 1 , 1                                                                                                            | Fell:= 0.5-4<br>Ab., apa4:ti<br>0.5 - 2<br>Magnet:ti<br>6 0. 1 | Donegue in anni on                                                           | 55% white to<br>puth -stand fuld<br>by hb (no chloste)<br>24. gt.<br>40.1 % sphene                       | 1% Lissem. cal.,<br>plus 3-5% ungs<br>where same<br>colecte bearhed sit | N:1       | 2% dissom mt. 0.2% agatite                                                                    | SYEWITE |

| SAMPLE           | COLOUR                                                   | STRUCTURE                                                                                                                                 | GRAIN                                                                                                      | TEXTURE                                                                                                        |                                                                                                                                                                                          | MINERAL                                                                                                          | _OGY                                                    |                                                                                                                                                                   | MANGE   |
|------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| NUMBER           | 3020011                                                  | OTHOOTONE                                                                                                                                 | SIZE (mm)                                                                                                  | TEXTONE                                                                                                        | Silicates                                                                                                                                                                                | Carbonates                                                                                                       | Sulphides                                               | Other                                                                                                                                                             | NAME    |
| PLS-89<br>165-10 | Pah pinh<br>flecked<br>black                             | Massive with local<br>trachytic flour folin.<br>31. myloriti zones<br>with thought the fined<br>walls read millerate<br>shear duformation | Feld. phonas<br>o. \$ 44<br>Amph. phons<br>= 1-2 bons<br>(acitular)<br>Groundness<br>= 0.1-0.5             | Porphyrytic to diabasic<br>with visagurgainden<br>interdoctoring grahadmass                                    | 50/white to pink. Steened field phones 5% amphibole phones (b.: vie beck: t= 2:1) 15% gowdness = 40%. ht/vebeck: to, 30% amy 16/10, 10% of 6, 3% sphus Mylon to contains 50              | Countmass contains 10% cal. Mylonite contains 25% caleite                                                        |                                                         | Goundmuss contains 5% magnetite + spelular hem. (both precent)                                                                                                    | SYENITE |
| 166-15           | Medium<br>punk flecked<br>black                          | Maniel w. local weak trulytic flar folin. Weak shear deformation manifested as 3%. ruggy chlaitic cruch                                   | Feld. phenos 1-5 Grandonass = 0.1-0.5                                                                      | Strongly up hungter<br>with wholy light and the<br>interlocking from denois.                                   | 85 white to puch stamed full phones = 50% chlorite times b.                                                                                                                              | Boundmass contains 10% colorte Crush gover have 30% where growsound filled with colorte                          | Crush gove rugs bold 64. amorphine makes ite            | frombinan<br>contains to 1.<br>mit. + Spec. horrs,<br>and 2011. soft<br>green brown grambas<br>his real - pobl. gotto<br>bus cont din sol.<br>what needes - gypum | J       |
| /17-o <b>\$</b>  | Medium<br>punh fleched<br>black                          | Massive.<br>Noflow foliation.                                                                                                             | Feld. 0.5-3<br>Hb. 0.5-2<br>Sphure<br>0.3-0.5<br>Oxides 0.1                                                | dreguigional ar<br>intelleting                                                                                 | 85% white to pinker stamed fulls. 8-10% hb. (no chl.) 1-2% quants. 2-3% apidote. 3% sphere                                                                                               | 1% dissem calenta<br>clustered with<br>hb.                                                                       | N:1                                                     | 1% dissem.<br>magnetite or<br>bealty specular<br>hometite                                                                                                         | SYENITE |
| /68-08           | Brick ved<br>due to<br>shear entrolled<br>homatitization | Or molly massive with little or no flow foliation.  Now very pervacially microfronthud by strong shearing but little mylonitized          | Fell, Phones<br>Vange approx<br>0.5-3 km<br>(outlines<br>obscumed by<br>ham.stain)<br>Goundmass<br>0.1-0.5 | Strongly popphy yetic<br>with interior and an<br>interior from the<br>(he consult, magnetic<br>finest)         | 85% red-stained<br>feld. phenos<br>15% grandmess =<br>englinally bb-dominated<br>(bb. new old carbonating<br>3% sphene (now leacorate<br>Hb sullines Still visible<br>cles sphene wedge. | Goundmass cortains 85%, mixed Fe/Mg coality (18.10%, yof total sample) Also 2%, fractur hosted coab. of same mix | 15% py. replacing nort. son grownings of half of sample | Coundmess Contains 154. dissem. mt. which is completely replaced by spec. hom. in 30% of Chips + py. in 50% of chips                                              | Syewite |
| /69-10           | purk                                                     | Massive ins flow foliation.  Moderate shear  Jufamedion manifested his pervacive coleta- bearing microfractum.                            | Fild whome<br>mostly<br>1-4<br>Goundmass<br>= 0.1-1                                                        | · Stranch fuldspan - paglynglic<br>with hinguiggenulan<br>interlocking gloudeness<br>(hb. coancert, mt. finad) | 85%. White to punk. Stanied full shows. 15% grandeds = 70% chapter by chlostiges handlanded No sphere No some frank fell. of 412. (also no intersect al                                  | 5% calcite                                                                                                       | N:1                                                     | Crowdmass contains 15%. oxide -morthy specular hem. locally not.                                                                                                  | Syenite |

| SAMPLE           | COLOUR                                          | STRUCTURE                                                                                                                                      | GRAIN                                                              | TEXTURE                                                                                                                        |                                                                                                                                                                                                            | MINERAL                                                                                                          | _OGY                                                                                                    |                                                                                                                                        | NAME       |
|------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------|
| NUMBER           | COZODII                                         | STROOTONE                                                                                                                                      | SIZE (mm)                                                          | TEXTURE                                                                                                                        | Silicates                                                                                                                                                                                                  | Carbonates                                                                                                       | Sulphides                                                                                               | Other                                                                                                                                  | MANIE      |
| PLS-89<br>170-02 | Pale to<br>Jey pinks,<br>flected an.<br>& black | Massive, no flow foliation. Weak-moderate shew differential by semi- per year of the fragment of the semi- per year in the fragment of semple. | Feld.<br>0.5-4<br>Hb.=0.3-1<br>Accessories<br>5-0.1-0.3            | dineguigionular<br>intellecteing                                                                                               | 0.5-9.13 sphere                                                                                                                                                                                            | 3-5% fracture<br>-hosted colcite<br>in chloristand<br>holf of sample<br>only.                                    | 0.1% fracture - hosted cubic py. in chladigud half of saylle only                                       | 1% dissem. mt.<br>(Iscally spec.<br>hem. wi) buth<br>hb. 4 chloits<br>bearing hort)                                                    | SYENITE    |
| 171- 06          | Aink to brick and                               | Massire, moder<br>foliation.<br>Strong sheen Lufametion<br>unconfested by pervacion<br>inconfracturing & accoc.<br>act. 442 veinlete           | Fild. plenos. mostly 1-4 (boundaries obscured by                   | Strongly fullepor paphymytic with the guing and the interlocking of endmass (hb. coccess), mt. firest)                         | 85% white to red - e the inner fall of physics. 2% for a sent of \$7.  Originally his Jan mit of but his bloody had on half specific from one fight into the hart.  Originally 3% 50 have and lead opening | oh half sample, on our hars butters, 180%. Fe/Mg carb<br>(replaces Hb.)<br>Permanent frature<br>hast 5%. Calcite | on 14 samle,<br>ant. of graholomae<br>is replaced by<br>cultipy.<br>(1/4 × 10% × 15%.<br>= 0.3-0.4% yg. | Crocurdomana<br>worstowns 15% dissean<br>nort. which to<br>completed, variously<br>by spec. here.<br>the souls to<br>py. in the sayale |            |
| 172-07           |                                                 | Cumulate layered. Massive. Unextemphend Mosignificant shearing 51. 412. veris                                                                  | (4) 0.3-1<br>(b) 0.05-0.2                                          | (4) driegai granden interlaking with chitacental most.  (b) Equigran ular interlaking                                          | / /                                                                                                                                                                                                        | (4) et % dissem<br>Fe/My carb<br>b) ni l<br>Also 1% fracture<br>calcitu                                          | (4) n: 1<br>(4) 0-5% interstited<br>py. (arriage 1%)                                                    | (a) 10% intersectal magnetite  (b) 40%. interstitial amagnetite                                                                        | PYROXENITE |
| 173-06           | Medium<br>pink flecked<br>green                 | Weak trackytic flow foliation.  Moderate steadylander beended by 5% church former broadly persone microfracturing also chlorization of all bb. | V W1423.                                                           | Strongly foldspar<br>pophylytic with<br>inequispecular interlocking<br>poldular (bb.+ fold<br>bonest, unt. + sphone<br>forest) | 55% white to puik - Stained falso, phonos. 15% growdowns! = 50% completely chloritize how blenghe) 30% gray field 31/50 blene Also 21/inforsertal of 5.                                                    | Rowmans contains to -15%.  Jissem calciti.  Also 2-3%  Microfronture  coliti                                     | N: 1                                                                                                    | Crowdiness<br>contains sit.<br>magnetite<br>(ready specular<br>hematite)                                                               | SYEWITE    |
| 174 -o z         | Pale peirk<br>fleeheld black<br>t green         | Massive.<br>No flow tolon                                                                                                                      | Full=0.5-3<br>Hb = 0.5-2<br>CHg = 0.5-1<br>Accessnies<br>• 0.1-0.3 | anequiponular<br>interlocking                                                                                                  | 80% white to pink -<br>stained full<br>12-15% hb. (half alt.<br>to chl.)<br>5% gtz.<br>1% splene                                                                                                           | 31. dissem.<br>cale:te                                                                                           | N:1                                                                                                     | 1% magnet: te                                                                                                                          | SYENITE    |

| SAMPLE           | COLOUR                                | STRUCTURE                                                                                                                                                                     | GRAIN                                                                                                                    | TEXTURE                                                                                                                                                                                                           |                                                                                                                                                       | MINERA                                                      | _OGY                                                          |                                                              | NAME                                           |
|------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|
| NUMBER           | 0020011                               | OMOOTOME                                                                                                                                                                      | SIZE (mm)                                                                                                                | TEXTORE                                                                                                                                                                                                           | Silicates                                                                                                                                             | Carbonates                                                  | Sulphides                                                     | Other                                                        | NAME                                           |
| PLS-87<br>175-18 | Med: um<br>pinte flected<br>black     | Massire.<br>No flour folin.<br>Zero shear I ufametion                                                                                                                         | FdL .0.5-3<br>Hb. 0.5-2<br>Accessaics<br>0.1-0.L                                                                         | A good example of inequipmental intulolking texture                                                                                                                                                               | 80-55% white to<br>puik -stained field<br>12% hb. (rowly ch!)<br>3% aprilate<br>1-2% gtz<br>1% sphere                                                 | 1% dissemical                                               | N: I                                                          | 1% magnut: te                                                | SYEWITE<br>-                                   |
| 176-02           | Pale puito<br>flached<br>black of gn. | We ake trackytic<br>flour foliation.<br>(1% pyroxene xencerysts<br>from adjacent gabbre.<br>blear shear dynamics<br>manifested as by country<br>gones & anse of y veinless    | Fold 0.5-25<br>Hb. 0.5-1.5<br>Accessories<br>0.1-0.2<br>Paxeneogots<br>to 3.0                                            | chequi gambar<br>interlocking w. space<br>pyronene kunocrypte                                                                                                                                                     | 80% white to pink 3 famid fild. 15% hb. (half alt. to chlorite) 2% 9tz. 0.5% Sphane 1% 20% Laterysto                                                  | 1% dissem, ral.<br>Couch gover heet<br>10%, collected       | Very vare pg. cuber in 19. q 13 verilots assoc. w. eruch zame | 0.5%, dissem. magnetiti Crush gan contain 2%, spec. hemaliti | SYEWITE                                        |
| 177-02           | Pale pink<br>Aleched black            | 10.                                                                                                                                                                           | FaU. phenos<br>1-2<br>Gmass<br>0.1-1                                                                                     | Strongly feld. pappy y fre<br>with whe guighandler<br>intulating grandmass<br>(hb. coanent, accessories<br>finent)                                                                                                | 50% white to pink<br>stained filed. hours.<br>20% grandonkss =<br>60% hb. (raulychl.)<br>20% granfild.)<br>10% granfild.                              | Golumens<br>containe <5%.<br>calite (i.e.<br><1% of sample) | N:1                                                           | Contains 3%. dissem. ant.                                    | SYENITE                                        |
| 178-01           | Variable pale pale forpale path block | Chilled, hybridized.  Massive.  No significant shear dylamatian Race px. benowsts insurted from a abboro                                                                      | Course t<br>phase<br>1-2 mm<br>fell, phones<br>in 0.2-0.4<br>mm gences.<br>Finest o.L-<br>0.5m phoned<br>in 0.05-d.1 gma | Heterogeneous Both sharp<br>tanadational versations<br>from strongly papelyrytic<br>(50% fell plants) with<br>equipundar interlecting geness.<br>to<br>weakly papelyrytic (10% fell<br>phenols) with apitic<br>a. | Average: (locally dimitic w. no quarty); 60-70% white to puth standfeld 20% granty; 15%. hb. (variably chl.) Trace sphere << 1%, px. xonocrytts       | 1% fracture<br>culcite                                      | N:1                                                           | 0.5-1% dissem.<br>magnet: te                                 | QUARTE<br>DIORITE                              |
| 179-02           |                                       | Uniformly chilled.  Massive with 5%. gabboox kondiths lowly lower than ghip scale.  5% epidote fills hairline fracture probably represent cooling structure mot shear affects | Fell. phonos.<br>0.5-1<br>Gownless                                                                                       | Micropophonytic with sugary to aplitic growthmuss. Gabbro xonal: the are diabasic                                                                                                                                 | 40% group to puch stained fold. phonos. 60% groundmars = 60% ground puch fold. 30% ground to puch fold. 10% the love to, no sphere 50% plays, 50% px. |                                                             | 20.1%-friely<br>dissem. py.<br>(probably prinary)             | No oxides                                                    | QUARTE<br>DIORITE<br>(51. gabbro<br>Xenel: Hs) |

| SAMPLE               | COLOUR                                                                                        | STRUCTURE                                                                                                                                            | GRAIN                                                                | TEXTURE                                                                                                                                                                                |                                                                                                                               | MINERA                                                                     | LOGY                                                 |                                                                                                      | NAME      |
|----------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------|
| NUMBER               | 0020011                                                                                       | OTTOOTOTE                                                                                                                                            | SIZE (mm)                                                            | TEXTURE                                                                                                                                                                                | Silicates                                                                                                                     | Carbonates                                                                 | Sulphides                                            | Other                                                                                                | IVAIVIE   |
| PLS - 89<br>180 - 08 | Davke green                                                                                   | Gneiss: c flow<br>banked in fuls: c<br>timatic layer 0.5-5<br>mm thick.<br>bittle<br>Novehear dyfornation.<br>Chilled.                               | Field phenos<br>0-3-1.5<br>Gandmasi<br>0.05-0.1                      | Microphyphypytic with aplific to sligging grandmass.                                                                                                                                   | 20-35/. fell phinos, white, rauly puts 75%. growthmass = 60%. plag. 30% thl. <10%. quarty no splane                           | No dissense cash. Transfordure calcite                                     | N:1                                                  | 0.5% dissem. magnetite locally conc. in greised bands grading 101. urt Indication banding is primary | DIORITE   |
| 181- 11              | Pale buff-<br>green<br>10% buff<br>bleached gover<br>abjoin cabos                             | Unfolicted Unsheared 1% carb. veins                                                                                                                  | Fell phenos<br>0.5 L<br>Qtz. phenos<br>0.3-0.5<br>Grmoss<br>0.05-0.2 | Strongly foldsparpaphynglic<br>w. integri grounder<br>interlieking groundmass                                                                                                          | 30% play phenos 1% gly phenos 70% hard groundmess= 60.70% colombess albett 30-40% gly 5% chlorite irregulary distributed      | 41% dissom<br>calcite in<br>groundmass<br>it, vein calcite                 | NiL                                                  | ΝİL                                                                                                  | RHYOLITE  |
| 182-12               | Buff Jue to<br>low mates<br>4 bleaching.<br>Pervasive<br>where stain<br>due to<br>we athering | United: ated.  Strong brittle shear recorded by pervasive microstracturing, bleaching of all chl. + softicient permeab: Why for pervasive weathering | 0.05-0.2                                                             | Strongly fty-fald paphyrgtic with may unganulal interlocking groundmass. Fuld phenos vague due to effects of bleaching twoathing, qtg.phenos promorement, qtg.phenos                   | 20% play. phonas 5-10% gfz phonas 70% growthness = 30% gfz 60-70% alfite I had 2% bleached a limonita stained chi.            | 2.1 min of various.<br>- hosted calcite                                    | Nil                                                  | N:1                                                                                                  | RHYOUTE   |
| 183-06               | whiteveins                                                                                    | 20%, g.c. v.<br>Strong shearing marifestel<br>bu stickensidel trackers                                                                               | Fell. 4<br>9tg. phenes<br>0. 4-1.0,<br>1 mely 2.0<br>1 mais 0.05     | Strongly puphyrytic with megulinomalan interlecking fromhauss but there relationships nour vague due to bleaching                                                                      | 50-60% play phenes 14. 94y. phenes 40% growthness = 40% growthness = 40% fald 10% completely bleaded To thinkeste on slickens | Veins contain<br>10% collète<br>Rock hosts<br>1% un inofraction<br>colette | Gordman<br>Contains 104.<br>xlline hydrollund<br>py. | N:]                                                                                                  | RHYO LITE |
| 184-19               | to weathering                                                                                 | recorded by they and                                                                                                                                 | 6.05 -0.2                                                            | Strongly purphysatic<br>unth Inky was familian<br>interdo etc. in groundmus s<br>but there valutions hips<br>mour vague (except glz,<br>phonos) Jue to Ikac (: 1)<br>thin on: to stain | Robably 30% play 2-3% sty phonos 70% growmass = 30% sty low had 60% ellit broked chl. 1% Sonsite                              | 3% coles to<br>living microfructures                                       | o.1 percent<br>timonitized<br>py; to lubes           | 5% courty<br>1:mon the bon<br>groundmass                                                             | RHYOLITE  |

| SAMPLE            | COLOUR                                                                    | STRUCTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GRAIN                                                                                | TEXTURE                                                                                                                                                       |                                                                                                                                                              | MINERA                                                                       | LOGY                  |                                       | NAME                                                        |
|-------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------|---------------------------------------|-------------------------------------------------------------|
| NUMBER            | JOEGGI                                                                    | OMOOTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SIZE (mm)                                                                            | TEXTONE                                                                                                                                                       | Silicates                                                                                                                                                    | Carbonates                                                                   | Sulphides             | Other                                 | NAME                                                        |
| PLS- 89<br>185-25 | Pale<br>green-buff                                                        | Massive with local scricitic shears (unfoliated) weak shear deformation imanifested by pervasive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Plag and gtz. phonos upto 3mm groundmuss                                             | Porphyrytic, play and gtz phenos in inequipment groundmass - very hard.                                                                                       | 52 gtz phonos. 25% plag phonos. 75% groundmass consists of 2% gn chlorite 3% serkite 40% gt & 458 plag                                                       | 22 microtadure infill calcite in 20% of rock                                 | N:(                   | N:1                                   | RHYOLITE                                                    |
| 186-08            | Green and white with 10% ochre colons chips due to mentering              | manifested by pervasive micro fracturing in 20% of sample Unfoliated with pervasive microfracturing - breeciation indicating strong steam determation - calcite and choite along microfractures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | plag phonos upto 4mm gts phonos up to 3mm groundway 0.05 to 2mm                      | Posting office, play and gtz phonos in inequipmental groundwass                                                                                               | 5% 9tz. planes                                                                                                                                               | 3% microfracture in till calcite                                             | M: l                  | N:1                                   | RHYOLITE                                                    |
| 1874-01           | White to<br>pale pink<br>Stained,<br>flecked gn.                          | Chillet (Smuth Intrustry)<br>Unit of ister<br>Weeks shear Information<br>recorded by Incally<br>perconinc Innievo fracture<br>w. carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Plag. phons<br>0.5-1.5<br>Gesurbmass<br>0.1-0.4                                      | Strongly fuldsyan paphygytic<br>arth almedral to puck-<br>subhedral white to puck-<br>staned fuld, phenos<br>in inequignomular inter-<br>lactoring groundwass | 45% play phones = 60% grandmass = 30% gtg. 40% play 25% chl. from hb. 1% epidete no sphene                                                                   | 1% m:crofractule<br>hosted bal                                               | Trace coases culic py | N: 1                                  | QUARTZ<br>AOR.TE                                            |
| 188-20            | Green and white                                                           | Untilizated with sericitic slickensliches and frecture bernages with dislocation trugs 2-3 mm apart hydrothernal minerals include redictions and individual (cumulation of trong sheet, determined from strong sheet, determined to trong sheet, determined from sheet, determined from sheet, determined from sheet, sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, determined from sheet, dete | plag. planes<br>03 to 4<br>9 ta. planes<br>0.5 to 2<br>9 condenses<br>to 0.05<br>0.2 | Strongly purphyrytic, play and 9 to phones in inequipromular interboking groundwass                                                                           | 5 & qtz. phenos.<br>458 plag. phenos.<br>50% groundmoss =<br>5-10% gmchlorite<br>52 sericite<br>40% gtz, 48% plag<br>53 brown-block aughbole-<br>cuminghinge | < 1% microfractus<br>calcife                                                 | N:/                   | tr. fuchsite                          | RHYOLITE                                                    |
| 189-01            | (a) Pale gray<br>- white.<br>(60% sample)<br>(b) Dt. grun<br>(40% sample) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (a) < 0.  <br>(b) < 0.  <br>muitly<br>< 0.05                                         | (a) chuty to equipionalar<br>with collections strings<br>py.; had<br>(b) silty with about 10%.<br>fine said; over printed<br>by schistosity                   | (a) 40% chut in a Carbonate matrix (punter matrix in sulphile stringers) (b) 10% greatly silf to-50% greatly silf fo-50% greatly silf                        | (4) 60% calcite materix-probably replaces or small sitesite (b) 10% of comm. | lan: Wal              | (a) N.:/<br>(b) n.: (no<br>leucoxene) | (a) CHERT<br>(601. Sample)<br>b) SICTSTANE<br>(401. Sample) |

| SAMPLE           | COLOUR                                             | STRUCTURE                                                                                                                        | GRAIN                                                   | TEXTURE                                                                                                          |                                                                                                   | MINERAL                                     | _OGY                                    |                                          | NAME      |
|------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|------------------------------------------|-----------|
| NUMBER           | COLOGN                                             | STRUCTURE                                                                                                                        | SIZE (mm)                                               | TEXTURE                                                                                                          | Silicates                                                                                         | Carbonates                                  | Sulphides                               | Other                                    | IVAIVIC   |
| PLS-89<br>190-02 | Pak green to butt-blooded                          | Schistose due to showing separation of partings Z-3 mm<br>2016 shear-parallel brecciated<br>212-carb-chl-py vains                |                                                         | Equigrammen interbeking grains visible batween shear partings. Overall                                           | 50% blenched clibite<br>50% plag                                                                  | 208 vains contain 30% calcite 60% 9t3.      | 10% intill py. within broccinted veins. | Nil                                      | BASALT    |
|                  |                                                    | Chilled variety of volcanic.<br>Strong shear deformation and alteration                                                          |                                                         | rock is soft.                                                                                                    |                                                                                                   | 8 % dissem calcite                          |                                         |                                          |           |
| 191-02           | Pale gray-<br>green to<br>locally<br>buff! blacked | around phonocrysts                                                                                                               | Felipar<br>phanos.<br>0.2 to Zmm<br>Groundmass          | Porphyrytic with upto 30% plag. phanos. in vary hard aphanitic, bencocratic                                      | 0-30% feld phanos white (fuzzy) 70-100% groundmass = 2% green chlorite                            | 7 (2 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1 |                                         | <i>N:</i> /                              | RHYO LITC |
| ·                | DIVIT O MOTHER                                     | 5% schistosity-porallel gav.                                                                                                     |                                                         | groundwass. No gtzeyes                                                                                           | 22 green chlorite<br>2-32 sericite<br>752 guartz-Tolfgan                                          | 3% fracture calcile                         | throughout                              |                                          |           |
| 192-02           | Pake gray-<br>green to<br>buff-bloched             | Shear related undulating schistosity - shear laminated and locanged strong shear chromation with chliste and sericite afteration |                                                         | Aphanitic - (Falkyan phanos either absent or obscured by deformation) - very hard and knococratic between sheers | 22 green chbrite<br>10% sericite<br>80% quarte-teldspar<br>(hard)                                 | 5-102 dissam cakib                          | л:/                                     | N:1                                      | RHYULITE  |
| 193-13           | Dak green                                          | No significant shear deformation: unhead lunto linked, 32 epidotised frontunes                                                   | px. phenos<br>upto 1.2 mm<br>Caroundurass<br>0.2 to 0.6 | Large px. phonos display ophitic texture in groundinass of diabasic texture - px. phenos. enclose feldsymr       | est. 5% dk. gn. px. plan. grounduress: 55-60 kmed to dk. gn. px. 35-40% plaq. 1% epidote-traphre  | 0.5 2 poeture<br>Colsite                    | 40.17 dissem.                           | 37 Jencoxena                             | GABBRO    |
| 194-08           | Dark green<br>and<br>pink                          | Massive, unsheared<br>61% quote veinlets<br>veinlets and foldsonr<br>stained pink (benetite)                                     | px. laths od X Imm plag crystals o.z x .5               | Diabosic texture -<br>px laths enclose feldspor                                                                  | 458-50% chbritisal<br>grean px.<br>15% dk. gn. chbrite<br>35-40% white (stained<br>pink) Foldspar |                                             | 40.1% dissem. py                        | 20,1% dissem. unguelite 4.1% leacograme. | GABBRO    |

| SAMPLE           | COLOUR                     | STRUCTURE                                                                                                                                           | GRAIN                                      | TEXTURE                                                                             |                                                                                        | MINERAL                                         | LOGY                    |       | NAME   |
|------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------|-------|--------|
| NUMBER           | 0020011                    | OTTIOOTOTIE                                                                                                                                         | SIZE (mm)                                  | TEXTURE                                                                             | Silicates                                                                              | Carbonates                                      | Sulphides               | Other | NAME   |
| PLS-89<br>195-14 | Medium<br>to dank<br>gneen | weakly Poliated<br>Unchilled<br>No significant shear<br>deformation (onsbeared)                                                                     | 0.1<br>4.<br>0.2                           | Equigranular<br>interlocking.                                                       | 60-65 & plagio clasa<br>ponthy epidotized.<br>30-35 & green chloriba<br>52 epidote.    | Trace Fracture<br>lining calcite                |                         | NIC.  | BASALT |
| 196-03           | Medium to dark green       | weakly foliated unchilled No significant shear deformation                                                                                          | 0-1<br>to<br>0.3                           | Egnigronular, interlocking                                                          | 45-50% alk. gn. chl.<br>to medium gn chl.<br>50-55% plag.<br>210 gtz<br>170 saussurite | 76 calcite veinlets 12 gt z veinlets            | <0.1 % dissempy.        | NiL   | BASALT |
| 197-07           | Dark<br>green              | Weak to moderate Tolication unchilled volcanic variety No significant shear detorhation , rephrete calcite alteration To cross-cutting calcite vail | 0-1mm                                      | Equigranular, interlocking                                                          | 50% dk. gn. chl.<br>45-50% plag.<br>est. 2% gtz<br>22 sawswite                         | 5% calcite veins<br>3% disson.<br>calcite       | 40.16 dissem.           | NiL   | BASALT |
| 198-05           | Medium<br>to donk<br>green | Unfoliated No significent shear deformation (unshould) Unchilled                                                                                    | 0.1                                        | Equigranular<br>interlocking                                                        | 60-657 plazio clase<br>30-35 & green elloide<br>22 gtz.                                | 32 dissem.<br>and 22 fracture<br>filling cality | Ko.12 di ssem<br>pyrite | Níc   | BASALT |
| 199-04           | Dark<br>green              | weakly foliated  No significant  shear deformation (un sheared)                                                                                     | 0.1<br>to<br>0.3<br>gtz eyes<br>o.1 to 0.3 | Equigranular interlocking with rave gte eyes" of same grain sign as other on: needs | 50% dark green<br>chlosite<br>50% plagioclase<br>< 1% blue gtzeyes                     | 5% calcite veinlets 1% dissense calcite         | tr. dissem. py.         | NıL   | BASALT |

| SAMPLE            | COLOUR                    | STRUCTURE                                                                                                                                                            | GRAIN             | TEVTUDE                                                    |                                                                                                                                  | MINERA                                                    | LOGY                                       |                                                                    | NAME   |
|-------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------|--------|
| NUMBER            | OOLOGN                    | STRUCTURE                                                                                                                                                            | SIZE (mm)         | TEXTURE                                                    | Silicates                                                                                                                        | Carbonates                                                | Sulphides                                  | Other                                                              | NAME   |
| fLS-89<br>200- 05 | Medium<br>to dark<br>quen | cull foliated to shiotose. Weak shear deformation indicated by 32 dark quen chloritic shearplan parallel to Foliation. Chilled.                                      | 0:05<br>(Max)     | aphanitic to equipmenter interlocking.                     | 55-coeplagioclase<br>partly sawsunitized<br>35-402 green<br>Chlorite<br>525aussunite<br>Few grains tournaline<br>on steen plane. | 12 dissem.<br>coleta<br>6-72 vein<br>calcite              | 0.12 dissem.<br>pyrite                     | Nil.                                                               | BASALT |
| 201-oz            | Dank<br>green             | Well Foliated  chilled  NO Significant shear  deformation or alteration  (unsheared)                                                                                 | 0.05<br>t-<br>0.1 | Equipmentar<br>interboting                                 | 50-552 plagioclase<br>partly epidotized<br>45-502 dark green<br>Chlorite                                                         | 32 fracture<br>Filling calcite                            | 0.5 & disserning the patchy concentrations | 12 dissem.<br>magnetite with<br>few patchy<br>concentrations       | BASALT |
| 202-04.           | Dark<br>green             | Weakly foliated<br>unsheared.<br>. unchilled                                                                                                                         | al<br>t.<br>0.3   | Equigranular interlocking                                  | 602 dk.gn. chlorite<br>402 plag<br>13 gtz.                                                                                       | 2% calcite voin<br>3% disson<br>calcite                   | 20.18 dissempt.                            | Nil                                                                | BASALT |
| 203- 03           | Dark green                | Unchilled. We ale show dif. defined by will be ditted to but schilt one fabric 15%, fotiation parallel 9.6.                                                          | 0.15-0.3          | Eguigi unular intubeking                                   | 60% pale to st. an. chloric (locally 14:11 px.) 35% plag.                                                                        | 2% dissem. 4 folim calcite 3% verilit calcite             | وم معدد، له ۱۰۱۰                           | 2% fewcoxum                                                        | BASALT |
| 204-02            | Darle<br>guen             | Unchilled.  Mideratily sheared— chloritic partings at 1 mm intervals, of the with common flather chl. a slicken- sides, but no bleaching 4 little velated alteration | 0.150.3           | Equipmender enter-<br>belierle o vegorinted by<br>shearing | 50-60% politionale<br>green chl. (locally<br>still px.)<br>30-41%, plan<br>2%, gfg.                                              | 8% Lissenn 4<br>schistosity calette<br>3% verilet calette | < 0.1% disson<br>pyrite                    | 3% Lissem Crystalline mt. often remak to schittee chladic partinge | Basalt |

| SAMPLE           | COLOUR                                 | STRUCTURE                                                                                                                                                                                                                                         | GRAIN               | TEXTURE                                                                                                         |                                                                                                                                                              | MINERAL                                                                                          | LOGY                                               |                                                       | NAME       |
|------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|------------|
| NUMBER           | 0020011                                |                                                                                                                                                                                                                                                   | SIZE (mm)           | TEXTURE                                                                                                         | Silicates                                                                                                                                                    | Carbonates                                                                                       | Sulphides                                          | Other                                                 | NAME       |
| PLS-89<br>205-02 | Dark<br>green                          | Weak to moderate foliation - Unchilled volcanic noderate shear determate 16 quarts-carbonale voin                                                                                                                                                 | 0.1<br>to<br>0.2    | Equigranular interlocking locally, grains are shredded obscuring texture and grain size.                        |                                                                                                                                                              | 1% guarte-carbond<br>vein contains<br>so to codeite<br>10h dissemi                               | KO.1% dissem<br>PY.                                | trace dissem, magnetite                               | BASALT     |
| 206-03           | Dark                                   | weak to moderate foliation - unchilled volcanic - weak shear effects - weak shear effects - weak shear effects - weak shear effects - weak shear parties shear parties of any link partie that no ng fix and recorded 10 g mart 2 - carbunde vein | 0.1<br>to<br>0.4    | Egnigranular interlocking                                                                                       | chbrite  the plag.  28 quartz                                                                                                                                | 1% guntz-carbonate vein contains 30% calcite 28 dissemi                                          | 20.1% dissem                                       |                                                       | BASALT     |
| 207-11           | Madium gray-green (partially blenched) | well foliated to schistose - shear laminatel Bulled moderate shear control 5% gtz- calcite reinbyanell tol schistosty                                                                                                                             |                     | fine grained sandy<br>fexture with secondary<br>Fine grained metrix                                             | 10% gte soud<br>15% gray-green<br>chlorite<br>75% undifferentiable<br>plag and aphanitic<br>volumic lithics.                                                 | 5% etz-carbonate<br>reintekcontains<br>30% calcite                                               | 0.1 \$ dissemply.                                  | Nil                                                   | GREYWACKE  |
| 208-11           | Gray.green                             | well Fyliated to<br>schistose, badded.<br>5% of chips chloritic<br>Flakes<br>Weak shear control.                                                                                                                                                  | silf grains<br>Loos | silty                                                                                                           | est. 20% gm. chbite<br>Boto undifferentiated<br>play and gto<br>sand growns +<br>lithics (due fine<br>5:32)                                                  |                                                                                                  | co. 1 % dissem<br>py cubes                         | N:/                                                   | SILT STONE |
| 209-13           | pale buff-grea                         | No bedding visible, probably for to vary strong shearing causing strong-schistosism arbeached which shear lamination surfaces 0.1-0.5 mm apant.  Review brecciated also.                                                                          |                     | Fine sandy texture randy vetalined dur to shear lamination, blearling tearborate replacement along schistosity. | 10% sty sand<br>15% buff-blocked<br>chl. (relings. to shear<br>partings)<br>5%. Shicita<br>5%. fucksite<br>40.50% und: Heartistle<br>plag a uphamitic volume | 20% dissem. 4 foliation-hosted Fe/Mg Carb. in world. 10-1. Same Carb. in fracture in ftg. veins. | Co.1% dissem py. in host  Only trace py. in very s | o.31. dissem<br>founding in<br>host; none<br>in using | CREYWACKÉ  |

| SAMPLE           | COLOUR                                                                                                 | STRUCTURE                                                                                                                  | GRAIN                                                               | TEXTURE                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MINERAL                                                        | LOGY                                                               |                                                                 |                                            |
|------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------|
| NUMBER           |                                                                                                        |                                                                                                                            | SIZE (mm)                                                           | TEXTURE                                                                           | Silicates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Carbonates                                                     | Sulphides                                                          | Other                                                           | NAME                                       |
| PLS-89<br>210-14 | a) Dark (902) g'ry  b) Light (102) grey                                                                | completions and hosping                                                                                                    | a hundstone<br>40.05, to<br>aphon; tic<br>b)g reguache<br>.05 to 2  | (a) undstone has appropriate texture  (b) grayuncke has very,                     | (a) mudstone consists of cyto 60-70% dk. gray choice (egt) and of plant day plant day gray mudstone consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of consists of co | 22 gtz carbonale                                               | est. 5% cabre<br>syngenitic py<br>in bads upto<br>0.5 to lum thick | 2 h graphite in made time.                                      | MUDSTONE (906)  GREYNACKE                  |
|                  | giey "                                                                                                 | -Welak shearing<br>2% gtz-calcite vains.                                                                                   | os to z<br>Bulded at<br>Scale of<br>Lows to lun                     | (b) grayuncke has very to find sandy to sandy to sandy to sandy to fine           | 10-18%, 2 to sand<br>20 to gray charite<br>65-70% undifferentiable<br>play and sole lithic sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                    | ,                                                               | (10%)                                      |
|                  | 4) Dark (903)                                                                                          | Badded. similar to<br>210-14                                                                                               | grain sizes<br>similar to<br>210-14<br>but bals                     | similar to 210-14                                                                 | similar to 210-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Similar to<br>210-14                                           | est. 1% syngarily<br>Py.                                           | similar to<br>210-14                                            | MUDSTONE<br>(90%)                          |
|                  | (b) Light gray                                                                                         |                                                                                                                            | are upto<br>zmm                                                     |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                    |                                                                 | GREYWACKE<br>(10%)                         |
| 211-05           | to pute )                                                                                              | Schistose mainly Jue to belding & metamorphisms. Weak shewing manifested by minor distraction & welning with no languation | Galutinul<br>in beds<br>20.05 tr<br>0.2                             | Mainly 5:14y to locally fisherly (30-40%)                                         | 10% gtg, sand 80% lim! flerent: able place, sand & aphantic both. Ittlic stand 20% grangehl (risel to 60-70%. in same si Histore bads)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10% dissom<br>of fractive<br>colcite<br>of, veinlet<br>colcite | 0.1% Jissam.py. 1% vein-hosted coarce cubic py.                    | N: 1                                                            | SILTSTONE<br>(601.)<br>GREYWA(KE<br>(401.) |
|                  | (b) 15% of<br>Sample iz<br>medium<br>gray-brown<br>trootted blue<br>- Jean Local<br>- Stain on seryort | Massive. No<br>foliation + mo shear<br>effects indicating<br>post-Archeamage<br>No significant                             | Goodmoss 0.05-0.1 Olivine planos 0.2-2.0 Plagapite phanos 0.1-1.0   | Strongly puphyrytic with equipmental interlocation to felted groundmassis Olivine | 15% of: vira phones<br>3% phones to book<br>fhends<br>80% grownhouss<br>= 36% phones to<br>30% sugartin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Goudness<br>curtains 50%.<br>primary calcite                   | N:1                                                                | Trace ilmenite phenos of 0.2 mm. No magnetite from surpentinget | a<br>kimberlitë                            |
| 212-12           | lala dad                                                                                               | Linealed, schistose with chloritic shear slips approx 0.05 upto Imm apart - mederate shearing.                             | role. lithing<br>912, chling<br>1/29 sand<br>9100ins<br>1.1 to 0.15 | very fine to fine grained                                                         | 20-25 by seen the brite<br>10% gtz Sand<br>65 1-70% and offerentially<br>Wear is litting and<br>play sand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2% variet<br>calcite<br>5% dissem onl<br>Fradure calcite       | trace dissem.                                                      | N:/                                                             | GREYWACKE                                  |

| SAMPLE              | COLOUR                                        | STRUCTURE                                                                                                                                                                                           | GRAIN                                                                                                     | TEXTURE                                                                                        |                                                                                                                                                   | MINERAL                                                                                                                | LOGY                                            |                                                                       | NAME                    |
|---------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------|-------------------------|
| NUMBER              |                                               | 1                                                                                                                                                                                                   | SIZE (mm)                                                                                                 |                                                                                                | Silicates                                                                                                                                         | Carbonates                                                                                                             | Sulphides                                       | Other                                                                 | NAME                    |
| PLS - 89<br>213 -04 | Dark<br>green                                 | 1 00 Facinacy                                                                                                                                                                                       | Qtz barrosae<br>batusaen. 2 to 18<br>chosite plans<br>to the steer<br>chosite of<br>plag. should<br>for 2 | diabasic groundinass,                                                                          | 276 blue to colourless gte. est. 60% dk. gn. chbrik 38% plag.                                                                                     | 2-3% veinleit<br>calcite<br>1% dissem. calcite                                                                         | L. P. PY.                                       | 5 % lenessame -<br>grey-overge                                        | GABBRO                  |
| 214-09              | Dark<br>green                                 | well tolisted,<br>breadly showed with<br>shreading of primary<br>envisorly<br>moderate show deternation                                                                                             | Q to burgery<br>Softman 2615<br>clarite and<br>play should<br>play should                                 | Texture masked by structure. shredded chlorite, plag.                                          | Z-5% blue to colonless<br>gte.<br>est. Gora elk gm. chl.<br>35% plag.                                                                             | 1% vainlet calcite 2-3% dissam calcite.                                                                                | 2.12 py                                         | 2-36 lencomana<br>gray when                                           | G ABBRO                 |
| 215- <b>9</b> 8     | Blanched pale buff-<br>green.                 | No bedding risible  Strong pervasive  NICCO shearing and linetim  around grounds admeting  yrains preserves grain size.  Shearing also manifestably  Elicitically to about as                       | plag crystals<br>(granules)<br>cysto 5 mm<br>sand<br>0.3 to lum                                           | medium to coarse sorted<br>sandy textured<br>groundwars contaming<br>granules (plag. crystals) | 30% plag-grandes 10% chlorite Iscally replicad by tabular chloritist approx. 60% silicitication (blue and colombass) 110 visible gtz. sand grains | 1% code: te sports:  8% Fe/Ty curb.  along show surfaces and selectively replacing grains.                             | 0.2% cubic to doobecahedmal py.                 | trace fuchsite<br>41% secondary(1)<br>conver benowene<br>grains.      | CREYWACKE               |
| 216 - 14            | Dock<br>gray<br>5:1 buff<br>-brown bods       | Bodded.  wall tolicital to schistope with graphitic & sericitic short slips. paralleto bodding.  - some slips display to some tills display.  18 912-calcide periods.  Manufacture short definition | gradusize < 0.05 bods typically 0.05 to it with substitute (py) bods upto                                 | aphanitic<br>Buff-brown beds are<br>granular                                                   | very soft<br>30-40% gray chlorife<br>50% plag., lithics, 4tg                                                                                      | Butt-brown laucenter bands are to 1 Magneter (soldiste) esta To of rock  18 gts. carbonate mindles contain 30% calcita | Syngalic px. beds est. 1% of sock.              | trace forcheite.  10% graphite,  wostly along  shan sips.  (bodding). | Mudstone<br>(graphitic) |
| 217-01              | a) 6at of<br>Sample is<br>medium<br>gray-quen | No visible bedding<br>(ie. uniform grain<br>Sige). Schistose.<br>Moderate shown effects<br>strong deformation<br>manifected by dustile lineable<br>but only weakly bjeckbelantied                   | ļ                                                                                                         | Silty.                                                                                         | Mod. soft. 50/ mostly green to partly buff bleached chies to 40-50% und flerentiable plag. + vok. lithics +qtg.                                   | No Lissem, calita,<br>3-5%, sc listosity<br>-hosted veintet<br>colcita                                                 | <0.1% dissens.<br>py. and po.<br>(both prosent) | Nil                                                                   | SILTITONE               |

| SAMPLE                                    | COLOUR                                                                          | STRUCTURE                                                                                                                                                                            | GRAIN                                                                           | TEVTUDE                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MINERAL                                                                                           | LOGY                                                                                                                 |                                                                                       | NAME                                                                        |
|-------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| NUMBER                                    |                                                                                 | OTHOOTONE                                                                                                                                                                            | SIZE (mm)                                                                       | TEXTURE                                                                                                                          | Silicates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Carbonates                                                                                        | Sulphides                                                                                                            | Other                                                                                 | NAME                                                                        |
| PLS-89 b)<br>217-08<br>cmf <sup>1</sup> 2 | - bround                                                                        | Massive, no foliation contrasting with school independent made and age. No significant xenoliths                                                                                     | 0.1-0.2<br>Olivine<br>phomas                                                    | Strongly prophyrytic with egyl grandular interlections chilled groundmars. Olivine phonos rounded, phisoppite phonos are books.  | Vániably 20-607.  Surpuntinized objects  phenos (aurage  50%)  3-5% phosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosographosograph | primary cale te                                                                                   | Chambrass<br>portion contains<br>0.5% jy.                                                                            | No magnetite despituses of blivine.  No ilmone it either as grandens.  No another is. | ULTRAMAFIC<br>CAMPROPHIRE<br>CL<br>KIMBERLITE                               |
| 218-05                                    | sayle is<br>blocked<br>pale buff                                                | Strong shearing J<br>manifested by<br>bleached chlores shear                                                                                                                         | Mostly 0.2-0:4 rece charty resistant planis to                                  | Median sandy with space coare sand pains. This relationship vague due to close spacing of sheer partings                         | 104 quarty sand<br>60-901. End ifferential<br>place, sand + appenitic<br>int. wolc. lithics<br>201. buff-blocked<br>chl. remab. to show<br>partings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dub. veinless ]                                                                                   | 0.3% dissem. framboidal to mostly recryst. cubic py J Tr. pyrototic Rare trace, red, spraching tous spraching allera | No prope.                                                                             | GREYWAKTE                                                                   |
| 5<br>5<br>5                               | b) 13% of<br>sample is<br>pale gray-                                            | Massive, untoliated. 10-201. non-papping fic. chill bunds 0.5% a mm wite, parallel, 2-5 mm a fact record intrastive flyor tolly few statements of starpens post-dyke shewing. Few mm | Phonos (all-types) 0.15-1.5 Crondnese aphantitu signal-back                     | Alternating puphynytic bands having appropriate groundmass) and appropriate bands.                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Olivina phemos<br>contain 30%.<br>secondary calcita<br>Choudmosts cartains<br>50% primary calcits | Tr. py. Olivani phosos men slips purtly                                                                              | No magnetite<br>from lett of<br>olivine<br>« o. 1 / ilmuite<br>phenos                 | ULTRAMARIC<br>LAMPROPHYRE<br>A<br>KIMBERLITE                                |
| 219-01                                    | Darkgrey with white                                                             | Massive, unfoliated groundmass chilled. 14. grey white, equant,                                                                                                                      | Plag. phenos<br>0.3-1.5<br>Hb. phenos<br>0.2-0.5<br>Goundmais<br>evenly<br>0.05 | Porphyrytic, plag. phenos. (I mustly enhedral) is his implusif hemos. in chilled the grained groundmess (very hord), equignamess | 358 white play phenos. 1 % hold phenos groundwass: 10 to gen chlorite 90 to unditt. It and play (not more then 181. quarts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N:/                                                                                               | N;l                                                                                                                  | 0.1% dissour.<br>magnetite                                                            | QUARTE<br>DIORITE                                                           |
| 220-0Z                                    | Hemafite<br>Stained brick<br>red with<br>partly ochre<br>weathering<br>avapoint | antensul, and pervasively<br>microbinectiated by<br>strong shearing, get<br>feld: phenes: will<br>preserved (ig. not                                                                 | Xenalths<br>charty                                                              | Paphynytic with very half thety, silicities groundmand. Xenolithe anaphantic.                                                    | 15-20% glog phonos<br>60% growthnass<br>hard, silvertied<br>all moties leached<br>out.<br>Xen-litts similar to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10% fracture<br>and brecise<br>infill cole ite                                                    | 1% dissem<br>culic hydrothered<br>pyrite                                                                             | 1-27 megnet to<br>5% specular<br>hematite                                             | QUART Z<br>DIORITE<br>(bessed maily<br>on mt. se<br>semple very<br>atticles |

| SAMPLE           | COLOUR                                                      | STRUCTURE                                                                                                                                                                                                                                | GRAIN                                                        | TEXTURE                                                                                                                               |                                                                                                                                                      | MINERAL                                                                   | _OGY                                         |                                                                                 | NAME                                   |
|------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------|
| NUMBER           | OOLOON                                                      | OTHOOTOTIE                                                                                                                                                                                                                               | SIZE (mm)                                                    | TEXTURE                                                                                                                               | Silicates                                                                                                                                            | Carbonates                                                                | Sulphides                                    | Other                                                                           | IVANIL                                 |
| PLS-89<br>ZZI-09 | Medium<br>green                                             | Foliation and lineation of coarse ash fragments - stretched 3:1 in two directions - dutile shear deformation - shear intensity is weak as there is no blacking or carbonatication                                                        | Fine to course ash outs to home Very coarse ash ho to 1.5 am | fine to nedium ash texture; partially welded; spane very course ash                                                                   | All ash is pale gn aphanitic int. volume often with walked controls No gt & grains on play 90-95 % fine timedim 125 coarse ash 5-1070 dkgn chlorite  | Nil                                                                       | 0.05 % dissem py.                            | N:1                                                                             | LITHIC<br>ASH<br>TUFF<br>(INTERNEDIATE |
| ZZZ- <b>0</b> Z  | Medium<br>frem-brown<br>heavily mottled<br>brick hed        | Chilled Strong shearing both as brittle brices. I because to my larter your to cores, undertained lineation and flattering of plagariths with probability of your strong to grand the inches ansattor amount of the with same phenos, to | uXenaliths                                                   | Prophyrytic with equiponular interlecting growthers (where not mylonitized) and 51 and openation glass xenolithed having some phenos. | 101. play phonos 851. produces = 801. play: 107. guardy 10cally 101. Ch!. (mostly leached out) Xenolths, assumed to                                  | 51. Calcite as fractions 4 broccion infill                                | 0.1% dissem.<br>pyr:ta                       | 1-2% dissen<br>magnetite to<br>homblite (either<br>or both vanidsly<br>prosent) | QUARTZ<br>DIORITE                      |
| 223-04           | Dark yeur<br>spetted<br>white to<br>purk                    | Massive.<br>No flow a metemphic<br>yoliation.                                                                                                                                                                                            | Feld phonas                                                  | Strongly people grant a<br>with divise I aglical and an<br>interlicking grandmass                                                     | 15% white to pink<br>stained full.<br>phenos.<br>85% groundmass =<br>60-70% white feld.)<br>so 40% bb. (ptly-chl.)<br>c5% gtg.                       | <1% dissem cale: to 1% megafradue (joint?) cale: te                       | Tr. py. Tr. epy.                             | 40.1% dissens                                                                   | DIORITE                                |
| 224-01           | Green with white spots, stained pink                        | Massine, untiliated but fractured and local breech the sent the afterstion child groundmass. (moterate shew effects)                                                                                                                     | (locating<br>0.05-0.15)<br>Xeneliths:<br>appromitic          | generally appearance to patchily equipmenter                                                                                          | 10-15 & play-phenos. white to champing 85%, groundmass, where coarsest (misstage, sor, chi turn hb. 5-10% str. (often strongly Xemoliths are assumed | 2% fracture-<br>hosted calcite<br>epidok-alknod)<br>to be glass of some c | o.1% fracture - hostes py .                  | 40.1% dissemmagned te on illustent the (not differentiable)                     | QUARTZ<br>DioritE                      |
| 225-06           | Dake green<br>overpriphed<br>with red<br>homestite<br>stain | Weakly foliated due to sheeting. Chilled. Moduate sheeting reinded by vet stain and local stickensited Chlaitic dispersioner                                                                                                             | Plag.phonog<br>0.5-4<br>Growmass<br>0.1-0.2                  | Porphyruntic with<br>enhanded tald . Henos<br>in egu: grandad inter-                                                                  | 15% plag, phones 5<br>65% grownmass =<br>60% plag<br>10% gfg<br>30% kaplefely<br>chlait: find hb.                                                    | 1% fracture<br>calcite<br>1% violet<br>calcite                            | Tr. py. hosted<br>in chloritic<br>fractioner | <0.1% Jissens<br>ilmenite mainly<br>alt. to learnene                            | GUARTE<br>DIORITE                      |

| SAMPLE           | COLOUB                                                                                                         | STRUCTURE                                                                                                                                                                                                                  | GRAIN                                                                       | TEVTUDE                                                                                                         |                                                                                                                                 | MINERAL                                          | _OGY                                                                   |                                                           | NAME                                    |
|------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|
| NUMBER           | COLOUR                                                                                                         | STRUCTURE                                                                                                                                                                                                                  | SIZE (mm)                                                                   | TEXTURE                                                                                                         | Silicates                                                                                                                       | Carbonates                                       | Sulphides                                                              | Other                                                     | NAME                                    |
| PLS-89<br>226-02 | Dark. green with which stain tentined tr volc. glass ones                                                      | Chilled 30% vesicular volc. glass chips of gones probably repredent pillow salvant. Stong shear salvant. A has brecciated of beddened glass and produced a le lickenside to plus little att. Echist from balance of sample | Fell. phong<br>0.5 - L<br>Golumburass<br><0.05<br>Class genea<br>aphonistic | Fuldsparpophynytic<br>with a phantik I<br>grandalass and 30%.<br>Ves scular, glancy<br>pillow sulldyn           | 10% play phenos 401. Grandmars= 20% gran chl. 80% plas with 14416 444 (only moderalishy hard)                                   | 5% fractine<br>Calcite                           | N:/                                                                    | No magnetite or hold.                                     | ANDESIT                                 |
| 227-02           | Dark and<br>Pole green<br>(blenched baff)                                                                      | foliation and lineafilm<br>it ash fragments<br>and lapill;                                                                                                                                                                 | Fine to crasse ash polito lom                                               | fine to medium ash texture, partially welded contacts                                                           | All ash is pole gon aphanitic introduces 80% time to medium ash coarse ash 1% lapilli.                                          | 1% dissem and fracture Fe/Ng. carb.              | 20.05% disson                                                          | 1% lencorene.                                             | LITHIC<br>LAPILLI<br>TUFF<br>(INTERMENA |
| 220-03           | Med: um<br>green. brown<br>spatted white<br>Weat: shraning<br>recorded in<br>localized micro-<br>braceta gras- | Chilled. 10% leucocoolic glass xendith                                                                                                                                                                                     | Countries 0.05-0.3 Play phones 0.4-1.5 Xenulths aphanitic                   | Pophysytic feld phanos<br>offer duhed al, gibudmas,<br>inequispancelar interbetory<br>xenolithing lassy         | 10% white tell phones  80% groundmids =  70% play  10% ft bb (pthy chl.)  24 pale aprette  10% xendiths of  assume I same comp. | 1% fracture<br>calcite<br>No disseur.<br>calcite | 20.05% cubic<br>hydrothermal py.<br>localized in p.<br>frontline g mre | < 0.1% ilmonita                                           | QUARTE<br>DIORITA                       |
| ZZ9A-07          | radium<br>green and<br>reflect to pupel<br>in attendating<br>shear bands                                       | Chilled. Strong schistosity with local slickenslides sericitic slips. surviving plag phonos lineated alteration by human trients strong change effects                                                                     | play phony<br>npto 3 mm<br>in largth<br>grownlass<br>x 20.05                | Porphyrytic, stretchal play phenos in shreddad charitic groundwass.                                             | 10% play phones (pink) grandoress: 15% gn chlorite 5-10% gt= 75% plag                                                           | 5% dissum<br>and fracture<br>calcitis            | Nil                                                                    | 1 % leucoxene<br>No hold or<br>magnetite                  | ANDESIT                                 |
| 230-06           | Medium<br>green                                                                                                | moderate foliation,<br>locally sheared<br>- moderate shear effects<br>- rare large 9tz<br>amygdules of librate shape                                                                                                       | Plagphonos.                                                                 | Perphyrytic, plag<br>phenos in equigramlar<br>interboking groundwass.<br>Rare large q +2 amygoluks<br>upto 2 mm | 20% plag. phonus. groundmass: 15% gn chb-ite 5-10% gt 2 75% plag. c1% blue cherty rafted tragmants                              | 5% dissonn<br>calcite.<br>1% calcite by          | 0.5% dissom                                                            | 13 bucorase<br>trace fachsite<br>No hild or<br>magnetite. | ANDESITE                                |

| SAMPLE           | COLOUB                                                                                 | STRUCTURE                                                                                                                                       | GRAIN                                                                          | TEXTUDE                                                                                                                             |                                                                                                                          | MINERAL                                   | _OGY                  |                                      | NAME                                |
|------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------|--------------------------------------|-------------------------------------|
| NUMBER           | COLOUR                                                                                 | STRUCTURE                                                                                                                                       | SIZE (mm)                                                                      | TEXTURE                                                                                                                             | Silicates                                                                                                                | Carbonates                                | Sulphides             | Other                                | 147417.2                            |
| PLS-89<br>Z31-0Z | Medium<br>green                                                                        | foliation and lineation of ash fragments - ductile shear deformation - Shear integrity is known to weak                                         | fine to<br>coanseath<br>0.1 to 1.0<br>Very<br>coasse ash<br>up to 1.5          | fine to medium ash texture, partially welded.                                                                                       | All ash is ashanitic into volcanic often with welded contacts No 2+ granto medium 90-95% from to medium 5-10% charse ash | veintels                                  | to.05% dissem py      | N:l                                  | LITHIC<br>ASH TUFF<br>(INTERMEDIATE |
| 23Z-06           | Dark<br>green with<br>plack stain<br>linglass zones                                    | wile flas - probably of their setucial software without them followings or send of the box relationships                                        | plag phenos,<br>0.5 to 1.5<br>groundness<br>40.05                              | posphyrytic, plag phenos in aguigrander interbuking to a phenitic groundmass                                                        | 15% play phonos.                                                                                                         | 5% fracture calcite                       | 20.05 %<br>dirsom py. | 1 to lancocare No hold of magnetite. | ANDESITE                            |
| 233-0Z           | Dark<br>green                                                                          | producate foliation<br>locally schoolses but<br>little afteration (some<br>rad humantication<br>- Moderate sheer<br>effects                     | plag<br>planos<br>1 to 2 mm<br>groundmap<br>0.05 to                            | Posphysytic, plag.  phanos. in eyngranulus  interlocking groundmass                                                                 | 5-10% play phenos.  groundmass: 15% gn chloribe 5-10% gt2 75% pkg 41% blue charty fags.                                  | 2 % fracteur<br>colcife                   | N:1                   | No hold or magnetite                 | ANDESITE                            |
| 234-oz           | Med: un<br>green with<br>white spots<br>(groundpress a<br>green brown<br>John binaula) | Massive un bliated chilled groundways no shear effects 1-2-/ leucocratz aghanta autogenous x enollists (ie. Leucot, contain visible lib + hot.) | plag phenos<br>0.5 to 3mm<br>hb. phonos<br>0.4 0.1 mm<br>(mastly<br>aphonitic) | Porphyrytic, plag<br>phenys (mostly embala)<br>but his prigrapher as<br>in child generally<br>aphantic to postchily<br>equignaments | 25% white plagghenes, 5% hold (chinism) phanes groundmass: 10% ga chlorite/hb 10% guanty (xene for plage)                | Nil  1: the assumed to glass of some comp | tr. py.               | 0.1% dissan<br>magnetite             | QUARTE<br>DIORITE                   |
|                  |                                                                                        |                                                                                                                                                 |                                                                                | , ,                                                                                                                                 |                                                                                                                          |                                           |                       |                                      |                                     |

# APPENDIX H BONDAR-CLEGG BEDROCK ANALYSES



| REPORT: 089-50                                                               | 389.0            |                                           |                                      |                                           |                                      |                                      | ē.                                   | ROJECT: L                            | AC SHORT                             |                                      | PAGE 1A                                 |                                      |
|------------------------------------------------------------------------------|------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|
| SAMPLE<br>NUMBER                                                             | ELEMENT<br>UNITS | SiO2<br>PCT                               | TiO2<br>PCT                          | A1203<br>PCT                              | Fe203*<br>PCT                        | MnO<br>PCT                           | MgO<br>PCT                           | Ca0<br>PCT                           | Na20<br>PCT                          | K20<br>PCT                           | P205<br>PCT                             | LOI<br>PCT                           |
| PLS-150-01-6<br>PLS-151-07-6<br>PLS-152-03-6<br>PLS-153-02-6<br>PLS-154-02-6 | 3<br>3<br>3      | 61.70<br>60.90<br>62.80<br>59.90<br>61.40 | 0.10<br>0.36<br>0.29<br>0.23<br>0.37 | 16.10<br>16.50<br>17.20<br>16.90<br>17.00 | 3.27<br>3.98<br>2.80<br>3.18<br>3.21 | 0.05<br>0.07<br>0.04<br>0.05<br>0.05 | 1.65<br>1.86<br>1.25<br>1.27<br>1.85 | 3.17<br>3.91<br>2.21<br>4.11<br>3.33 | 6.13<br>6.26<br>7.53<br>9.47<br>7.61 | 2.61<br>2.80<br>3.08<br>0.36<br>1.98 | 0.16<br>0.19<br><0.01<br><0.01<br><0.01 | 3.19<br>2.15<br>1.65<br>2.51<br>1.00 |
| PLS-155-04-6<br>PLS-156-04-6<br>PLS-157-02-6<br>PLS-158-02-6<br>PLS-159-02-6 | 3<br>3<br>3      | 60.00<br>61.80<br>59.90<br>62.00<br>62.30 | 0.10<br>0.18<br>0.51<br>0.39<br>0.35 | 15.60<br>15.70<br>14.50<br>16.10<br>18.00 | 3.68<br>3.10<br>5.82<br>3.47<br>3.44 | 0.06<br>0.05<br>0.09<br>0.06<br>0.07 | 1.63<br>1.21<br>2.98<br>1.81<br>1.48 | 4.16<br>4.05<br>4.88<br>4.11<br>3.18 | 5.77<br>8.42<br>5.27<br>8.03<br>8.58 | 2.69<br>0.53<br>1.49<br>0.83<br>1.74 | 0.15<br>0.04<br>0.17<br>0.09<br>0.07    | 3.61<br>2.76<br>1.45<br>1.44<br>1.19 |
| PLS-160-01-8<br>PLS-161-02-8<br>PLS-162-02-8<br>PLS-164-06-8<br>PLS-165-10-8 | }<br>}<br>}      | 61.20<br>61.30<br>60.90<br>62.40<br>63.40 | 0.41<br>0.38<br>0.39<br>0.36<br>0.33 | 17.40<br>18.50<br>16.00<br>18.20<br>15.40 | 3.54<br>3.39<br>3.31<br>3.31<br>3.22 | 0.06<br>0.06<br>0.06<br>0.06<br>0.06 | 1.56<br>1.71<br>1.51<br>1.54<br>1.48 | 3.47<br>3.25<br>4.21<br>3.15<br>3.62 | 9.15<br>9.18<br>8.22<br>7.42<br>8.50 | 0.79<br>1.07<br>3.41<br>3.17<br>2.51 | <0.01<br>0.12<br>0.11<br><0.01<br>0.08  | 1.45<br>1.00<br>1.90<br>1.30<br>1.90 |
| PLS-166-15-E<br>PLS-167-05-E<br>PLS-168-08-E<br>PLS-169-10-E<br>PLS-170-02-E | )<br>}<br>}      | 62.20<br>60.80<br>58.10<br>59.80<br>59.60 | 0.17<br>0.42<br>0.06<br>0.27<br>0.25 | 16.90<br>17.10<br>15.90<br>15.50<br>16.10 | 3.20<br>3.79<br>3.88<br>3.73<br>3.60 | 0.05<br>0.07<br>0.08<br>0.06<br>0.08 | 1.53<br>1.74<br>1.86<br>1.57<br>1.71 | 2.58<br>3.41<br>4.30<br>4.56<br>4.41 | 7.09<br>6.98<br>7.49<br>7.24<br>5.63 | 3.24<br>3.28<br>1.36<br>1.63<br>2.38 | 0.24<br>0.09<br>0.30<br>0.23<br>0.12    | 2.20<br>1.00<br>4.84<br>3.58<br>3.29 |
| PLS-171-06-8<br>PLS-172-07-8<br>PLS-173-02-8<br>PLS-174-02-8                 | <b>,</b>         | 61.60<br>42.70<br>59.30<br>58.10          | 0.12<br>0.61<br>0.19<br>0.28         | 14.90<br>1.81<br>17.10<br>17.30           | 3.25<br>31.70<br>3.41<br>3.58        | 0.07<br>1.28<br>0.07<br>0.07         | 1.51<br>8.76<br>1.63<br>1.71         | 4.15<br>9.99<br>3.76<br>4.26         | 5.83<br>1.44<br>6.82<br>6.36         | 2.42<br>0.26<br>2.46<br>2.77         | 0.11<br>0.09<br>0.10<br>0.09            | 4.05<br>0.05<br>3.60<br>3.30         |



| Ĺ        | REPORT: 089-503  | 89.0             |              |           |            |           |           | ŀ         | PROJECT: LAC SHOPT | PAGE 15 |  |
|----------|------------------|------------------|--------------|-----------|------------|-----------|-----------|-----------|--------------------|---------|--|
|          | SAMPLE<br>MUMBER | ELEMENT<br>UNITS | Total<br>PCT | Cu<br>PPH | Zn<br>PPH  | Ag<br>PPH | As<br>PPH | Zr<br>PPH | Au<br>P26          |         |  |
| ·        | PLS-150-01-B     |                  | 98.13        | 15        | 53         | 0.2       | 2         | 124       | 497                |         |  |
| !        | PLS-151-07-8     |                  | 98.97        | 16        | 51         | <0.1      | 2         | 93        | 7                  |         |  |
|          | PLS-152-03-B     |                  | 98.86        | 5         | 41         | 0.1       | 5         | 91        | 83                 |         |  |
|          | PLS-153-02-8     |                  | 97.98        | 10        | 31         | <0.1      | 2         | 105       | 29                 |         |  |
| :        | PLS-154-02-8     |                  | 97.80        | 8         | 21         | <0.1      | 3         | 88        | <5                 |         |  |
|          | PLS-155-04-6     |                  | 97.46        | 9         | 56         | 0.2       | 4         | 120       | 7                  |         |  |
|          | PLS-156-04-B     |                  | 97.84        | 6         | 7.0        | <0.1      | <2        | 120       | 74                 |         |  |
| !<br>!   | PLS-157-02-8     |                  | 97.06        | 29        | 34         | <0.1      | 2         | 110       | <5                 |         |  |
|          | PLS-158-02-B     |                  | 98.33        | 14        | 8          | <0.1      | 4         | 89        | <5                 |         |  |
|          | PLS-159-02-8     |                  | 100.40       | 14        | 24         | 0.2       | 2         | 112       | <5                 |         |  |
|          | PLS-160-01-B     | <del></del>      | 99.02        | 9         | 11         | <0.1      | <2        | 113       | <5                 |         |  |
|          | PLS-161-02-8     |                  | 99.95        | 11        | 15         | <0.1      | 4         | 112       | <5                 |         |  |
|          | PLS-162-02-B     |                  | 100.02       | 4         | 22         | <0.1      | 2         | 114       | <5                 |         |  |
|          | PLS-164-06-8     |                  | 100.70       | 4         | 32         | <0.1      | <2        | 88        | <5                 |         |  |
|          | PLS-165-10-B     |                  | 100.50       | 4         | 19         | <0.1      | 2         | 87        | <5                 | ,       |  |
| <u> </u> | PLS-166-15-8     |                  | 99.41        | 5         | 53         | <0.1      | 2         | 102       | 6                  |         |  |
|          | PLS-167-05-B     |                  | 98.68        | 12        | 35         | <0.1      | 3         | 99        | <b>&lt;5</b>       |         |  |
|          | PLS-168-08-8     |                  | 98.17        | 15        | 38         | 0.3       | 10        | 110       | 43                 |         |  |
|          | PLS-169-10-B     |                  | 98.17        | 12        | 54         | <0.1      | 7:        | 117       | <5                 |         |  |
|          | PLS-170-02-8     |                  | 97.16        | 10        | 45         | <0.1      | 2         | 103       | 27                 |         |  |
|          | PLS-171-06-B     |                  | 98.01        | 13        | 50         | <0.1      | <2        | 148       | 129                |         |  |
|          | PLS-172-07-8     |                  | 98.69        | 115       | 27         | <0.1      | 3         | 13        | <5                 |         |  |
|          | PLS-173-02-8     |                  | 98.24        | 11        | 51         | <0.1      | <2        | 103       | <5                 |         |  |
|          | PLS-174-02-8     |                  | 97.82        | 10        | <b>5</b> 1 | <0.1      | 5         | 92        | 19                 |         |  |



# Certificate of Analysis

| <br>NUMBER OF THE SECOND                        |                                             | PRODECTS LAG SHORT | HACT. |  |  |
|-------------------------------------------------|---------------------------------------------|--------------------|-------|--|--|
| NAMES BLOS<br>REGAR DA                          | IN CO2<br>375 INS                           | 1                  |       |  |  |
| SC 55 01 7                                      | V 423                                       |                    |       |  |  |
| #15 An. UV-11                                   | 1 (75)<br>2 = 412                           |                    |       |  |  |
| 3 65 452 60 B                                   | 1                                           |                    |       |  |  |
| 122 152 2                                       | As <del>ti</del> s                          |                    |       |  |  |
| <br>PLONIE OVER                                 | 7.47                                        |                    |       |  |  |
| 19.5 Lob #4 H                                   | 1. C.                                       |                    |       |  |  |
| 466 87 8                                        | 2.50                                        |                    |       |  |  |
| 1110 157-02-1                                   | 0.79                                        |                    |       |  |  |
| 213 153 V2 5                                    |                                             |                    |       |  |  |
| THAT IND NOT T                                  | (.U)                                        |                    |       |  |  |
| <br>168 50 01-0                                 | 1.09                                        |                    |       |  |  |
| 12-2 11 2 22 2                                  | V.60                                        |                    |       |  |  |
| 140 40 54 2                                     | ( <u>)</u>                                  |                    |       |  |  |
| Till såt vo H                                   | 0.65                                        |                    |       |  |  |
| PW-140-19-3                                     | 1.07                                        |                    |       |  |  |
| 200 166-58-17                                   | 1.36                                        |                    |       |  |  |
| His April 24 H                                  | 0.04<br>0.04                                |                    |       |  |  |
| 100-00-0                                        | e de la la la la la la la la la la la la la |                    |       |  |  |
| 1.5 169 10 5                                    |                                             |                    |       |  |  |
| <br>12.44 - 2.45 - <del>6</del> 21 - <b>1</b> 1 | 2.52                                        |                    |       |  |  |
| 255 477 -65 -5                                  | 3.77                                        |                    |       |  |  |
| P1.51-172-07: 1                                 | 0.03                                        |                    |       |  |  |
| Fig. 173 02-5                                   | 0 - 00<br>2 - 00<br>2 - 00                  |                    |       |  |  |
| 74 02-3                                         | And All States                              |                    |       |  |  |
| The second of the second                        | 7 <b>3 V</b> V                              |                    |       |  |  |





|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REPORT: 089      | -50467.0         |             |             | ] <b>•</b> •• |               |            |            | PROJECT: LAC SHORT |             |            | PAGE 1A     |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-------------|-------------|---------------|---------------|------------|------------|--------------------|-------------|------------|-------------|------------|
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | SAMPLE<br>Number | ELEMENT<br>UNITS | SiO2<br>PCT | TiO2<br>PCT | A1203<br>PCT  | Fe203*<br>PCT | Mn0<br>PCT | Mg0<br>PCT | CaO<br>PCT         | Na20<br>PCT | K20<br>PCT | P205<br>PCT | LOI<br>PCT |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PL\$-88-1        |                  | 60.70       | 0.40        | 17.50         | 3.68          | 0.06       | 1.77       | 3.59               | 7.18        | 2.98       | 0.44        | 1.73       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLS-88-1         | .76-02-8         | 62.30       | 0.34        | 16.40         | 3.43          | 0.06       | 1.74       | 3.58               | 7.40        | 1.14       | 0.21        | 2.60       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLS-88-1         | .77-02-B         | 63.70       | 0.43        | 14.80         | 3.53          | 0.05       | 2.22       | 2.86               | 8.15        | 1.42       | <0.01       | 0.86       |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PLS-88-1         | 78-01-8          | 63.40       | 0.34        | 15.40         | 3.85          | 0.07       | 1.99       | 4.15               | 5.29        | 1.68       | <0.01       | 1.35       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLS-88-1         | 79-02-В          | 61.10       | 0.44        | 16.40         | 4.86          | 0.12       | 2.49       | 4.84               | 4.86        | 1.42       | 0.19        | 1.19       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLS-88-1         | .80-08-B         | 60.30       | 0.66        | 13.90         | 5.06          | 0.08       | 3.58       | 7.78               | 4.53        | 1.44       | <0.01       | 1.38       |



|        | REPORT: 089      | 1-50467.0         |              |           |           |           | PROJECT: LAC SHORT |           | PAGE 18   |  |
|--------|------------------|-------------------|--------------|-----------|-----------|-----------|--------------------|-----------|-----------|--|
|        | SAMPLE<br>NUMBER | ELEMENT<br>UNITS  | Total<br>PCT | Cu<br>PPM | Zn<br>PPM | Ag<br>PPM | As<br>PPM          | Zr<br>PPM | Au<br>PPB |  |
|        | PLS-88-1         | .75-15-8          | 100.03       | 18        | 49        | <0.1      | <2                 | 79        | <5        |  |
| 1      | PLS-88-1         | 76-02-8           | 99.19        | 6         | 52        | 0.2       | <2                 | 107       | 25        |  |
| i<br>i | PLS-88-1         | .77-02 <b>-</b> 8 | 98.02        | 9         | 30        | <0.1      | <2                 | 82        | <5        |  |
| :      | PLS-88-1         | .78-01-В          | 97.52        | 25        | 26        | <0.1      | 2                  | 78        | <5        |  |
|        | PLS-88-1         | 79-02-в           | 97.91        | 28        | 34        | <0.1      | <2                 | 68        | <5        |  |
|        | PLS-88-1         | 80-08-B           | 98.71        | 22        | 19        | <0.1      | <2                 | 63        | <5        |  |



# Certificate of Analysis

|                  | 50467.4          |            |   | PROJECT: LA | C SHORT                               | PAGE 1 |
|------------------|------------------|------------|---|-------------|---------------------------------------|--------|
| Sample<br>Number | ELEMENT<br>UNITS | CO2<br>PCT |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
| 7L5-88-1         |                  | 1.02       |   |             |                                       |        |
| PLS- 88-1        |                  | 1.78       |   |             |                                       |        |
| PLS-88-1         |                  | 0.34       |   |             |                                       |        |
| PLS-48-1         |                  | 0.54       |   |             |                                       |        |
| PLS -80 -1       | 79-02-B          | 0.13       |   |             |                                       |        |
| PLS-88-1         | 80-08-R          | 0.35       |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   | <br>        |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  | -                |            |   |             |                                       |        |
|                  |                  |            | ~ |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             | <del></del>                           |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             | · · · · · · · · · · · · · · · · · · · |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |
|                  |                  |            |   |             |                                       |        |





| REPORT: 089                                              | -50639.0                      |                                           |                                      |                                           |                                      |                                       |                                      | PROJECT: L                           | AC SHORT                             |                                      | PAGE 1A                                 |                                      |
|----------------------------------------------------------|-------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|
| SAMPLE<br>NUMBER                                         | ELEMENT<br>UMITS              | SiO2<br>PCT                               | TiO2<br>PCT                          | A1203<br>PCT                              | Fe203*<br>PCT                        | Mn0<br>PCT                            | NgO<br>PCT                           | Ca0<br>PCT                           | Na20<br>PCT                          | K20<br>PCT                           | P205<br>PCT                             | LOI<br>PCT                           |
| PLS-89-1<br>PLS-89-1<br>PLS-89-1<br>PLS-89-1<br>PLS-89-1 | 82-12-8<br>83-06-8<br>84-19-8 | 64.70<br>65.90<br>66.70<br>64.40<br>65.50 | 0.11<br>0.12<br>0.02<br>0.03<br>0.02 | 18.20<br>16.60<br>15.80<br>17.90<br>17.70 | 1.75<br>0.82<br>1.18<br>1.58<br>0.64 | 0.01<br>0.01<br>0.04<br>0.02<br><0.01 | 1.39<br>0.69<br>0.50<br>0.39<br>0.56 | 2.66<br>2.95<br>3.18<br>2.90<br>3.71 | 6.20<br>5.76<br>6.15<br>6.68<br>6.35 | 1.16<br>0.73<br>0.74<br>1.34<br>0.87 | 0.10<br><0.01<br><0.01<br>0.11<br><0.01 | 1.94<br>4.04<br>3.17<br>3.23<br>3.48 |
| PLS-89-18<br>PLS-89-18<br>PLS-89-18                      | 87A-20-B                      | 62.40<br>57.50<br>66.10                   | 0.03<br>0.24<br>0.02                 | 17.90<br>18.70<br>18.80                   | 1.53<br>3.27<br>1.77                 | 0.02<br>0.05<br>0.02                  | 1.14<br>3.50<br>1.51                 | 4.34<br>5.34<br>0.95                 | 5.62<br>4.77<br>5.29                 | 1.08<br>1.28<br>1.11                 | 0.16<br>0.08<br><0.01                   | 4.77<br>3.52<br>2.23                 |



| <br>REPORT: 089      | -50639.0         |              |           |           |           | R         | OJECT: LAC SHURT | PAGE 18   |  |
|----------------------|------------------|--------------|-----------|-----------|-----------|-----------|------------------|-----------|--|
| <br>SAMPLE<br>NUMBER | ELEMENT<br>UNITS | Total<br>PCT | Cu<br>PPM | Zn<br>PPM | Ag<br>PPM | As<br>PPM | Zr<br>PPM        | Au<br>PPB |  |
| <br>PLS-89-1         | 31-11-8          | 98.23        | 44        | 12        | 0.1       | <2        | 41               | <5        |  |
| PLS-89-1             |                  | 97.62        | 10        | 8         | <0.1      | <2        | 38               | <5        |  |
| PLS-89-1             | 33-06-В          | 97.48        | 8         | 14        | <0.1      | <2        | 30               | 39        |  |
| PLS-89-11            | 34-19-8          | 98.58        | 158       | 12        | <0.1      | ā         | 4Û               | 8         |  |
| PLS-89-1             | 35-25-8          | 98.83        | 8         | 7         | <0.1      | <2        | 36               | <5        |  |
| <br>PLS-89-1         | 36-û8-B          | 98.99        | 8         | 13        | 0.1       | <2        | 37               | <5        |  |
| PLS-89-1             | 37A-20-8         | 98.25        | 6         | 24        | <0.1      | <2        | 38               | <5        |  |
| PLS-89-1             | 38-20-B          | 97.80        | 95        | 15        | <0.1      | <2        | 37               | 5         |  |



| KUTURT: 009                                              | 50500.4                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | PRE | DECT: LAC SHORT | rast 1 |
|----------------------------------------------------------|---------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|-----------------|--------|
| Sample<br>Moniole                                        | SLEMENY<br>UNITS                | CO2<br>PCY                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |                 |        |
| PLU-W)-1<br>PLS-89-1<br>PLG-09-1<br>PLG-89-1<br>PLG-09-1 | 62: 12-5<br>03-06-3<br>04: 19-5 | 0.75<br>2.99<br>2.64<br>1.75<br>2.40 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |                 |        |
| PLS-89-1<br>PCS-89-1<br>PLS-69-1                         | 874-20-B                        | 3.06<br>1.30<br>0.44                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |     |                 |        |
|                                                          |                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |                 |        |
|                                                          |                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |                 |        |
|                                                          |                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - |     |                 |        |
|                                                          |                                 |                                      | iv.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |     |                 |        |
|                                                          |                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - |     |                 |        |
|                                                          |                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |                 |        |
|                                                          |                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |                 |        |
|                                                          |                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |                 |        |
|                                                          |                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |                 |        |
|                                                          |                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |                 |        |
|                                                          |                                 |                                      | And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |   |     |                 |        |





| REPORT: 089                                              | -50751.0                   |                                           |                                      |                                           |                                           |                                      | •                                    | ROJECT: L                              | AC SHURT                             |                                      | PAGE 1A                                 | 1                                      |
|----------------------------------------------------------|----------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|----------------------------------------|
| SAMPLE<br>MUMBER                                         | ELEMENT<br>UNITS           | SiO2<br>PCT                               | TiO2<br>PCT                          | A1203<br>PCT                              | Fe203*<br>PCT                             | HnQ<br>PCT                           | rig O<br>PCT                         | Ca0<br>PCT                             | Ma20<br>PCT                          | K 20<br>PCT                          | P205<br>PCT                             | LOI<br>PCT                             |
| PLS89-18<br>PLS89-19<br>PLS89-19<br>PLS89-19<br>PLS89-19 | 0-02-8<br>1-02-8<br>2-02-8 | 40.70<br>47.60<br>65.10<br>63.00<br>49.20 | 0.06<br>0.04<br>0.02<br>0.08<br>0.93 | 8.70<br>10.60<br>14.50<br>16.00<br>13.90  | 18.20<br>14.20<br>1.81<br>2.60<br>13.80   | 0.80<br>0.43<br>0.05<br>0.07<br>0.21 | 4.14<br>2.75<br>0.91<br>0.81<br>6.69 | 11.00<br>10.00<br>6.01<br>4.55<br>9.35 | 0.22<br>1.25<br>4.04<br>2.73<br>1.81 | 0.07<br>0.29<br>1.31<br>1.64<br>0.04 | 0.10<br><0.01<br><0.01<br>0.09<br><0.01 | 13.65<br>11.64<br>5.82<br>5.62<br>2.35 |
| PLS89-19<br>PLS89-19<br>PLS89-19<br>PLS89-19<br>PLS89-19 | 5-14-8<br>6-03-8<br>7-07-8 | 50.20<br>50.80<br>44.70<br>45.30<br>49.90 | 1.38<br>0.74<br>0.65<br>0.09<br>0.98 | 14.60<br>16.60<br>15.10<br>13.60<br>14.10 | 10.10<br>13.10<br>11.80<br>11.30<br>8.85  | 0.15<br>0.61<br>0.21<br>0.32<br>0.21 | 7.43<br>5.62<br>8.11<br>2.67<br>6.26 | 6.55<br>8.34<br>9.93<br>11.10<br>10.40 | 3.54<br>0.73<br>0.50<br>2.53<br>0.71 | 1.40<br>0.01<br>0.05<br>0.32<br>0.01 | 0.78<br>0.04<br>0.04<br>0.16<br><0.01   | 3.90<br>3.67<br>8.01<br>10.53<br>6.97  |
| PLS89-19<br>PLS89-20<br>PLS89-20<br>PLS89-20<br>PLS89-20 | 0-05-B<br>1-02-B<br>2-04-B | 45.30<br>41.00<br>49.50<br>48.30<br>46.40 | 0.21<br>0.09<br>1.09<br>0.89<br>0.68 | 13.30<br>13.50<br>13.50<br>14.50<br>14.00 | 12.10<br>10.30<br>14.50<br>10.60<br>10.90 | 0.22<br>0.25<br>0.22<br>0.16<br>0.19 | 6.04<br>3.68<br>5.54<br>6.44<br>6.88 | 9.57<br>13.20<br>6.55<br>8.71<br>7.83  | 0.75<br>1.02<br>2.89<br>3.20<br>3.14 | 0.62<br>0.17<br>0.26<br>1.11<br>0.06 | <0.01<br>0.15<br>0.01<br>0.30<br>0.08   | 10.88<br>14.22<br>3.96<br>6.05<br>9.07 |
| PLS89-204                                                | 4-02-B                     | 46.00                                     | 0.81                                 | 12.10                                     | 11.40                                     | 0.17                                 | 7.11                                 | 9.70                                   | 3.29                                 | 0.20                                 | 0.22                                    | 9.37                                   |



|   | REPORT: 089      | -50751.0         |              |           |           |           |           |           | PROJECT: LAC SHORT | PAGE 18 |
|---|------------------|------------------|--------------|-----------|-----------|-----------|-----------|-----------|--------------------|---------|
|   | SAMPLE<br>NUMBER | ELEMENT<br>UNITS | Total<br>PCT | Cu<br>PPM | Zn<br>PPK | Ãọ<br>PPM | As<br>PP# | Zr<br>PPH | Au<br>PP8          |         |
|   | PLS89-18         | 9-01-B           | 97.65        | 67        | 97        | <0.1      | 15        | 27        | 12                 |         |
| : | PLS89-19         | 0-02 <b>-</b> 8  | 98.81        | 115       | 100       | 0.2       | 22        | 31        | 6                  |         |
|   | PLS89-19.        | 1-02-B           | 99.58        | 153       | 20        | 0.3       | 2         | 40        | <b>&lt;</b> 5      |         |
|   | PL\$89-19.       | 2-02 <b>-</b> 8  | 97.19        | 53        | 35        | 0.1       | 3         | 71        | <5                 |         |
|   | PLS89-19         | 3-13-8           | 98.29        | 116       | 62        | <0.1      | 3         | 47        | <5                 |         |
|   | PLS89-19         | 4-08-8           | 100.02       | 73        | 82        | <0.1      | 5         | 242       | <5                 |         |
|   | PLS89-19         | 5-14-B           | 100.26       | 103       | 82        | 0.3       | 13        | 34        | <5                 |         |
| • | PL\$89-19        | 6-03-B           | 99.11        | 78        | 73        | <0.1      | <2        | 34        | <5                 |         |
|   | PLS89-19         | 7-07-в           | 97.92        | 105       | 87        | <0.1      | <2        | 54        | <5                 |         |
|   | PLS89-19         | 8-05-8           | 98.38        | 120       | 69        | <0.1      | 2         | 59        | <5                 |         |
|   | PL\$89-199       | 9-C4-B           | 98.98        | 29        | 86        | 0.3       | <2        | 58        | <5                 |         |
| : | PLS89-20         | 0-05-8           | 97.57        | 84        | 69        | <0.1      | 2         | 36        | <b>&lt;</b> 5      |         |
|   | PLS89-201        | 1-02-8           | 98.01        | 88        | 102       | <0.1      | 3         | 6û        | <5                 |         |
|   | PLS89-201        | 2-04-8           | 100.27       | 76        | 81        | <0.1      | 4         | 93        | <5                 |         |
|   | PLS89-200        | 3-03-8           | 59.24        | 63        | 102       | <0.1      | 2         | 47        | <5                 | A       |
| _ | PL \$89-204      | 4-02-8           | 100.38       | 104       | 89        | <0.1      | 4         | 68        | <b>&lt;</b> 5      |         |



| 751.4         |              | Pk | OJECT: LAC SHORT | PAGE ) |
|---------------|--------------|----|------------------|--------|
| ELEME<br>UN 1 |              |    |                  |        |
| 13            | 12.96        |    |                  |        |
| 2-1           | 12.11        |    |                  |        |
| $2\cdot 3$    | 4.55         |    |                  |        |
| 2-B           | 3.74         |    |                  |        |
| 3-1           | 0.32         |    |                  |        |
| )(J]J         | 0.97         |    |                  |        |
| 4B            | 0.04         |    |                  |        |
| 3-4:          | 4.10         |    |                  |        |
| 7-8           | 8.57         |    |                  |        |
| 1513<br>      | 3.34         |    |                  |        |
| 4 ·B          | 6.73         |    |                  |        |
| 5-B           | 10.82        |    |                  |        |
| 2-3           | 1.36         |    |                  |        |
| 4-8           | 3.46         |    |                  |        |
| 3-3           | <b>5.4</b> 5 |    |                  |        |
| 2·B           | 6.39         |    |                  |        |
|               |              |    |                  |        |
|               |              |    |                  |        |
|               |              |    |                  |        |
|               |              |    |                  |        |
|               |              |    |                  |        |





| REPORT: 089-     | 50891.0                 |             |             |              |               |            | į          | PROJECT: L | AC SHORT    |            | PAGE 1      | 4          |
|------------------|-------------------------|-------------|-------------|--------------|---------------|------------|------------|------------|-------------|------------|-------------|------------|
| SAMPLE<br>NUMBER | ELEMENT<br>UNITS        | SiO2<br>PCT | TiO2<br>PCT | A1203<br>PCT | Fe203*<br>PCT | Mn0<br>PCT | MgO<br>PCT | Ca0<br>PCT | Na20<br>PCT | K20<br>PCT | P205<br>PCT | LOI<br>PCT |
| PLS-89-20        |                         | 46.00       | 0.89        | 14.10        | 13.20         | 0.35       | 7.62       | 7.49       | 3.26        | 0.18       | 0.06        | 7.43       |
| PLS-89-20        |                         | 46.90       | 0.93        | 14.70        | 12.80         | 0.20       | 7.60       | 9.87       | 2.76        | 0.18       | 0.12        | 3.00       |
| PLS-89-20        |                         | 57.40       | 0.09        | 15.00        | 5.09          | 0.09       | 3.01       | 5.76       | 3.12        | 1.58       | 0.18        | 7.23       |
| PLS-89-20        |                         | 53.30       | 0.66        | 13.90        | 8.50          | 0.10       | 9.85       | 2.00       | 5.09        | 0.54       | 0.31        | 4.15       |
| PLS-89-20        | 9-13-B                  | 36.00       | 0.04        | 7.25         | 8.62          | 0.16       | 14.10      | 8.43       | 0.60        | 0.60       | 0.13        | 22.08      |
| PLS-89-21        |                         | 57.80       | 0.04        | 9.87         | 15.60         | 0.10       | 1.27       | 4.60       | 1.98        | 0.94       | 0.14        | 5.44       |
| PLS-89-21        |                         | 56.70       | 0.04        | 12.90        | 9.47          | 0.12       | 2.09       | 6.20       | 3.21        | 1.24       | 0.08        | 5.16       |
| PLS-89-21        |                         | 61.80       | 0.08        | 9.68         | 6.97          | 0.18       | 1.83       | 9.86       | 2.25        | 0.67       | 0.32        | 6.71       |
| PLS-89-21        |                         | 54.60       | 0.12        | 14.10        | 7.60          | 0.15       | 1.56       | 7.21       | 3.93        | 1.33       | 0.16        | 7.52       |
| PLS-89-21        | 3-04-B                  | 45.40       | 0.25        | 13.40        | 11.60         | 0.24       | 4.92       | 9.23       | 2.34        | 0.65       | 0.20        | 12.69      |
| PLS-89-21        | 4 <b>-</b> 09-8         | 51.00       | 1.85        | 13.40        | 12.60         | 0.26       | 4.38       | 7.72       | 3.10        | 0.24       | 0.22        | 6.13       |
| PLS-89-21        |                         | 60.00       | 0.08        | 15.10        | 3.81          | 0.07       | 2.77       | 4.92       | 5.31        | 1.86       | 0.16        | 6.27       |
| PLS-89-21        | -                       | 65.00       | 0.09        | 12.80        | 6.68          | 0.05       | 0.75       | 3.89       | 2.66        | 2.41       | 0.14        | 4.47       |
| PLS-89-21        |                         | 48.30       | 0.98        | 11.30        | 8.75          | 0.15       | 9.15       | 8.16       | 2.39        | 2.60       | 0.59        | 8.32       |
| PLS-89-21        | 8-05-B                  | 53.60       | 0.13        | 13.40        | 6.77          | 0.10       | 4.75       | 6.55       | 3.94        | 1.13       | 0.18        | 9.35       |
| PLS-89-21        | 9-01-B                  | 60.10       | 0.65        | 16.00        | 6.20          | 0.07       | 2.85       | 4.57       | 5.50        | 1.51       | 0.19        | 1.00       |
| PLS-89-22        | 0-02-B                  | 52.00       | 0.15        | 13.00        | 7.11          | 0.16       | 1.80       | 7.55       | 6.03        | 2.56       | 0.19        | 6.79       |
| PL\$-89-22       |                         | 61.90       | 0.31        | 15.20        | 5.76          | 0.09       | 2.33       | 3.90       | 2.97        | 2.33       | 0.23        | 4.33       |
| PLS-89-22        |                         | 64.80       | 0.09        | 14.40        | 5.01          | 0.10       | 1.90       | 4.19       | 4.36        | 2.23       | 0.17        | 4.10       |
| PLS-89-22        | 3-04-8                  | 57.40       | 0.65        | 15.30        | 7.58          | 0.11       | 4.41       | 4.55       | 3.58        | 2.81       | 0.19        | 2.85       |
| PLS-89-22        | 4-01-B                  | 60.40       | 0.59        | 14.00        | 6.02          | 0.15       | 2.75       | 5.59       | 4.84        | 1.43       | 0.27        | 2.64       |
| PLS-89-22        | 5-06-B                  | 58.40       | 0.57        | 15.60        | 6.96          | 0.09       | 4.16       | 4.99       | 3.67        | 2.57       | 0.16        | 3.83       |
| PLS-89-22        | 6-02 <b>-</b> B         | 57.50       | 0.55        | 14.50        | 6.95          | 0.16       | 2.73       | 5.46       | 4.25        | 1.48       | 0.31        | 3.79       |
| PLS-89-22        |                         | 62.90       | 0.59        | 14.30        | 5.85          | 0.09       | 2.70       | 4.60       | 3.69        | 1.29       | 0.20        | 2.63       |
| PLS-89-22        | 8-03-8<br>              | 63.70       | 0.56        | 14.30        | 5.49          | 0.09       | 2.15       | 5.73       | 3.89        | 1.33       | 0.19        | 1.90       |
| PLS-89-22        | 9A-07-8                 | 60.20       | 0.08        | 13.90        | 5.60          | 0.09       | 2.52       | 6.21       | 3.11        | 1.93       | 0.18        | 6.23       |
| PLS-89-23        | D-06-B                  | 54.40       | 0.11        | 14.90        | 7.26          | 0.19       | 2.57       | 9.11       | 1.55        | 2.19       | 0.13        | 8.97       |
| PLS-89-23        | 1-02-B                  | 60.50       | 0.10        | 15.20        | 5.64          | 0.09       | 2.65       | 5.76       | 3.55        | 1.52       | 0.09        | 6.21       |
| PLS-89-23        | 2 <b>-</b> 06- <b>B</b> | 61.70       | 0.10        | 14.10        | 5.62          | 0.08       | 2.87       | 4.34       | 4.66        | 1.48       | 0.12        | 4.57       |
| PLS-89-23        | 3-03-8                  | 64.10       | 0.54        | 13.80        | 5.40          | 0.10       | 2.64       | 5.09       | 3.90        | 1.18       | 0.04        | 3.72       |
| PLS-89-23        | 4-02-B                  | 62.60       | 0.63        | 16.20        | 5.02          | 0.08       | 2.86       | 4,49       | 4.12        | 1.47       | 0.28        | 1.50       |
| LS-89-01-        |                         | 49.00       | 0.26        | 11.60        | 16.50         | 0.30       | 2.48       | 5.32       | 5.61        | 2.32       | 0.23        | 4.70       |
| LS-89-02-        | )3-B                    | 51.80       | 0.37        | 13.20        | 6.34          | 0.11       | 5.60       | 8.14       | 5.39        | 1.08       | 0.17        | 7.39       |
| LS-89-03-        | 12-R                    | 41.30       | 0.08        | 13.30        | 9.96          | 0.14       | 8.94       | 11.60      | 0.28        | 1.66       | <0.01       | 13.24      |



|         | REPORT: 089-508              | 391.0            |              |           | ]         |           |           |           | ROJECT: LAC SHORT | PAGE                                  | 18 |
|---------|------------------------------|------------------|--------------|-----------|-----------|-----------|-----------|-----------|-------------------|---------------------------------------|----|
|         | SAMPLE<br>NUMBER             | ELEMENT<br>UNITS | Total<br>PCT | Cu<br>PPM | Zn<br>PPM | Ag<br>PPM | As<br>PPM | Zr<br>PPM | Au<br>PPB         |                                       |    |
|         | PLS-89-205-0                 |                  | 100.58       | 129       | 365       | <0.1      | <2        | 68        | <5                |                                       |    |
|         | PLS-89-206-0                 |                  | 99.06        | 113       | 58        | <0.1      | 2         | 66        | <5                |                                       |    |
|         | PLS-89-207-1                 |                  | 98.55        | 45        | 71        | <0.1      | 79        | 124       | <5                |                                       |    |
| 1       | PLS-89-208-1                 |                  | 98.40        | 70<br>26  | 51        | <0.1      | 24        | 118       | < <u>5</u>        |                                       |    |
|         | PLS-89-209-1                 | 13-8             | 98.01        | 26        | 48        | <0.1      | 366       | 54        | <5                |                                       |    |
|         | PLS-89-210-1                 |                  | 97.78        | 50        | 113       | 0.1       | 77        | 90        | <5                |                                       |    |
|         | PLS-89-210-1                 |                  | 97.21        | 50        | 81        | <0.1      | 40        | 115       | <5                |                                       |    |
| :       | PLS-89-211-0                 |                  | 100.35       | 30        | 94        | <0.1      | 15        | 110       | <5<br>            |                                       |    |
|         | PLS-89-212-1<br>PLS-89-213-0 |                  | 98.28        | <b>46</b> | 65        | <0.1      | <2        | 147       | <5<br>70          |                                       |    |
|         | PF2-03-513-0                 | 14-D             | 100.92       | 52        | 89        | <0.1      | 3         | 98        | 78                |                                       |    |
|         | PLS-89-214-0                 | 19-B             | 100.90       | 118       | 106       | 0.2       | <2        | 142       | <5                |                                       |    |
| :       | PLS-89-215-0                 |                  | 100.35       | 26        | 65        | 0.1       | 4         | 132       | <5                |                                       |    |
|         | PLS-89-216-1                 |                  | 98.94        | 72        | 67        | 0.2       | 70        | 124       | <5                |                                       |    |
|         | PLS-89-217-0                 |                  | 100.69       | 70        | 91        | <0.1      | 20        | 208       | 5                 |                                       |    |
|         | PLS-89-218-0                 | 15-B             | 99.90        | 49        | 325       | 0.3       | 59        | 148       | <5                |                                       |    |
| :       | PLS-89-219-0                 |                  | 98.64        | 33        | 57        | <0.1      | <2        | 170       | <5                |                                       |    |
|         | PLS-89-220-0                 |                  | 97.34        | 32        | 56        | 0.1       | 2         | 147       | <5                |                                       |    |
| ļ       | PLS-89-221-0                 |                  | 99.35        | 32        | 60        | <0.1      | <2        | 157       | <b>&lt;</b> 5     |                                       |    |
|         | PLS-89-222-0                 |                  | 101.35       | 25        | 49        | 0.1       | <2        | 156       | 5                 |                                       |    |
|         | PLS-89-223-0                 | 14-B             | 99.43        | 74        | 55        | <0.1      | <2        | 131       | <u> </u>          |                                       |    |
|         | PLS-89-224-0                 |                  | 98.68        | 17        | 74        | <0.1      | <2        | 157       | <5                |                                       |    |
|         | PLS-89-225-0                 |                  | 101.00       | 10        | 39        | 0.2       | <2        | 124       | <b>&lt;</b> 5     |                                       |    |
|         | PLS-89-226-0                 |                  | 97.68        | 35        | 72        | 0.1       | <2        | 154       | <5                |                                       |    |
|         | PLS-89-227-0                 |                  | 98.84        | 33        | 68        | 0.1       | <2        | 148       | < <u>5</u>        |                                       |    |
|         | PLS-89-228-0                 | 13-В             | 99.33        | 31        | 54        | 0.3       | <2        | 156       | <5                |                                       |    |
|         | PLS-89-229A-                 |                  | 100.05       | 38        | 66        | . <0.1    | <2        | 136       | <5                |                                       |    |
|         | PLS-89-230-0                 |                  | 101.38       | 29        | 74        | 0.2       | 4         | 137       | <5                |                                       |    |
|         | PLS-89-231-0                 |                  | 101.31       | 29        | 65        | <0.1      | <2        | 152       | <5                |                                       |    |
|         | PLS-89-232-0                 |                  | 99.64        | 2         | 76        | 0.2       | <2        | 155       | <5                |                                       |    |
| <u></u> | PLS-89-233-0                 | 3-B              | 100.51       | 32        | 68        | <0.1      | <2        | 169       | <5                |                                       |    |
|         | PLS-89-234-0                 |                  | 99.25        | 33        | 64        | 0.2       | <2        | 159       | <5                |                                       |    |
|         | LS-89-01-01-                 |                  | 98.32        | 30        | 179       | <0.1      | 5         | 135       | 26                |                                       |    |
|         | LS-89-02-03-                 |                  | 99.59        | 49        | 79        | <0.1      | 4         | 125       | 33                |                                       |    |
|         | LS-89-03-03-                 | В                | 100.50       | 105       | 56        | <0.1      | 3         | 49        | <5                |                                       |    |
|         |                              |                  |              |           |           |           |           |           |                   | · · · · · · · · · · · · · · · · · · · |    |



| REPORT: 009      | 50891.4          |            |                                       | FI | ROJECT: LAC SHO | IRT | PAGE . | 1 |
|------------------|------------------|------------|---------------------------------------|----|-----------------|-----|--------|---|
| Sample<br>Number | ELEMENT<br>UNITS | CO2<br>PCT |                                       |    |                 |     |        |   |
| PLS-89-20        | 5-02-8           | 4.12       |                                       |    |                 |     |        |   |
| PLS-89-20        | 603- B           | 1.08       |                                       |    |                 |     |        |   |
| PLS-89-20:       | 7-11-₿           | 6.46       |                                       |    |                 |     |        |   |
| PLS-89-20        | 8-11-B           | 1.05       |                                       |    |                 |     |        |   |
| PC3-89-209       | 9-13-B           | 16.04      |                                       |    |                 |     |        |   |
| PLS: 89-210      | 0· 14··li        | 4.15       |                                       |    |                 |     |        |   |
| PCS-89-210       | <b>)</b> -15-8   | 7.07       |                                       |    |                 |     |        |   |
| PLS-69-211       | 1-05-k           | 7.40       |                                       |    |                 |     |        |   |
| PLS-09-213       | 2-12-B           | 6.69       |                                       |    |                 |     |        |   |
| PLS-89-213       | 5-04-¥           | 11.48      |                                       |    |                 |     |        |   |
| PLS89214         | 1-05-8           | 3.75       |                                       |    |                 |     |        | - |
| PLG-89-215       | r 08-B           | 5.30       |                                       |    |                 |     |        |   |
| PLS -89-216      | -14-8            | 2.90       |                                       |    |                 |     |        |   |
| PLS-89-217       | 7- 08-B          | 5.44       |                                       |    |                 |     |        |   |
| PLS-89-218       | 1-05-8           | 3.12       |                                       |    |                 |     |        |   |
| PLS-89-219       | ···(i) ···];     | 0.11       | · · · · · · · · · · · · · · · · · · · |    |                 |     |        |   |
| PCS-89-220       | ··02 ··8         | 6.45       |                                       |    |                 |     |        |   |
| PLS- 89-221      | - 09-B           | 2.15       |                                       |    |                 |     |        |   |
| PLS 489-222      | -02-B            | 3.11       |                                       |    |                 |     |        |   |
| PLS: 89-223      | ··04··B          | 1.16       |                                       |    |                 |     |        |   |
| PLS-89-224       | -01-3 .          | 1.52       |                                       |    |                 |     |        |   |
| PLS-89-225       |                  | 1.56       |                                       |    |                 |     |        |   |
| PLS-89-226       |                  | 2.08       |                                       |    |                 |     |        |   |
| FLS-89-227       |                  | 1.30       |                                       |    |                 |     |        |   |
| PLS -89 -228     | -03-8            | 0.92       |                                       |    |                 |     |        |   |
| PLS-89-229       | A-07-1;          | 4.18       |                                       |    |                 |     |        |   |
| PLS-09-230       | -06-13           | 6.55       |                                       |    |                 |     |        |   |
| PLS-89-231       | 02B              | 4.34       |                                       |    |                 |     |        |   |
| PLS-89-232       | · 06 B           | 2.90       |                                       |    |                 |     |        |   |
| FLS:-89-233      | -03-B            | 1.98       |                                       |    |                 |     |        |   |
| PUS-89-234       | - 02 · B         | 0.16       |                                       |    |                 |     |        |   |
| PLS: 49-01-      |                  | 5.32       |                                       |    |                 |     |        |   |
| PLS -39-02-0     |                  | 6.30       |                                       |    |                 |     |        |   |
| PLS-89-03-       |                  | 9.31       |                                       |    |                 |     |        |   |
|                  |                  | ·          |                                       |    |                 |     |        |   |
|                  |                  |            |                                       |    |                 |     |        |   |



| REPORT: 089          | -50865.0         |                |              |              |               |                      | E                     | ROJECT: L             | AC SHORT             |                      | PAGE 1A              |                 |
|----------------------|------------------|----------------|--------------|--------------|---------------|----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|-----------------|
| SAMPLE<br>NUMBER     | ELEMENT<br>UNITS | SiO2<br>PCT    | TiO2<br>PCT  | A1203<br>PCT | Fe203*<br>PCT | Mn0<br>PCT           | MgO<br>PCT            | Ca0<br>PCT            | Na20<br>PCT          | K20<br>PCT           | P205<br>PCT          | L<br>P          |
| PLS-89-2<br>PLS-89-2 |                  | 65.80<br>22.70 | 0.03<br>1.17 | 9.24<br>2.98 | 6.72<br>8.35  | 0.17<br>0.38         | 1.10                  | 8.50<br>22.30         | 2.35<br>0.27         | 0.45                 | 0.14                 | 5.<br>2ő.       |
| PLS-89-2<br>PLS-89-2 | 17-085           | 54.50<br>30.40 | 0.15<br>2.73 | 15.20        | 8.50<br>10.40 | 0.09<br>0.26<br>0.09 | 5.95<br>17.20<br>4.02 | 4.14<br>16.40<br>5.81 | 3.56<br>0.14<br>4.68 | 2.21<br>3.62<br>1.22 | 0.19<br>1.62<br>0.27 | 6.<br>13.<br>9. |
| PLS-89-2<br>PLS-89-2 |                  | 54.90<br>26.00 | 1.20         | 14.20        | 6.26<br>12.60 | 0.09                 | 13.40                 | 17.70                 | Û.17                 | 0.51                 | 0.80                 | 23.             |
| , , , ,              | 24 043           | 20.00          |              | •••          | 12.00         |                      | 24                    |                       |                      |                      |                      |                 |
|                      |                  |                |              |              |               |                      | -                     |                       |                      |                      |                      |                 |
|                      |                  |                |              |              |               | ٠.                   |                       |                       |                      |                      |                      |                 |
|                      |                  |                |              |              |               |                      |                       | FI St                 |                      |                      |                      |                 |
|                      |                  |                |              |              |               |                      |                       |                       |                      |                      |                      |                 |
|                      |                  |                |              |              |               |                      |                       |                       |                      |                      |                      |                 |
|                      |                  |                |              | a            |               |                      |                       |                       |                      |                      |                      |                 |
|                      |                  |                |              |              |               |                      |                       |                       |                      |                      |                      |                 |
|                      |                  |                |              |              |               |                      |                       |                       |                      |                      |                      |                 |
|                      |                  |                |              |              |               |                      |                       |                       |                      |                      |                      |                 |
|                      |                  |                |              |              |               |                      |                       |                       |                      |                      |                      |                 |
|                      |                  |                |              |              |               |                      |                       |                       |                      |                      |                      |                 |
|                      |                  |                |              |              |               |                      |                       |                       |                      |                      |                      |                 |
|                      |                  |                |              |              |               |                      |                       |                       |                      |                      |                      |                 |
|                      |                  | - ***          |              |              |               |                      |                       |                       |                      |                      |                      |                 |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REPORT: 089-     | 50865.0          |              |           |           |           | PROCECT: LAC SHORT |           | .AC SHUPT         | PAGE (18      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|--------------|-----------|-----------|-----------|--------------------|-----------|-------------------|---------------|--|
| and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th | SAMPLE<br>RUMBER | ELEMENT<br>UNITS | Tota1<br>PCT | Ou<br>PPM | Zn<br>PP# | Ag<br>PPh | As<br>Pam          | Zr<br>PPM | <b>A</b> 년<br>구구원 | Testut<br>ons |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLS-89-21        | 1-05A            | 99.89        | 22        | 77        | <0.1      | 13                 | 101       | <5                | 30.00         |  |
| İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PLS-89-21        | 1-658            | 101.47       | 70        | 63        | <0.1      | 4                  | 18        | <5                | 15.00         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLS-89-21        | 7-08A            | 100.62       | 53        | 102       | <0.1      | 28                 | 133       | 5                 | 30.00         |  |
| !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PLS-89-21        | 7-088            | 100.74       | 100       | 40        | 0.2       | 3                  | 351       | <5                | 30.00         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLS-89-21        | 8-05 <u>4</u>    | 99.93        | 45        | 181       | 0.1       | 52                 | 142       | <5                | 30.00         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLS-89-21        | 8-05B            | 100.94       | 92        | 4375      | 1.1       | 28                 | 248       | <5                | 30.00         |  |



| REPORT: 089-50865.4                                | 4                     |      | PROJECT: LAC SHORT | PAGE 1 |
|----------------------------------------------------|-----------------------|------|--------------------|--------|
| SAMPCE ELE<br>NUMBER E                             | MENT CO2<br>UNITS PCY |      |                    |        |
| PLS-89-211-05A<br>PLS-89-211-05B                   | 6.03<br>25.38         |      |                    |        |
| PLS-89-217-08A<br>PLS-89-217-08B<br>PLS-89-218-05A | 2.79<br>10.44<br>7.64 |      |                    |        |
| PLS: 89:-218:-058                                  | 20.17                 |      |                    |        |
|                                                    |                       |      |                    |        |
|                                                    |                       |      |                    |        |
| ·                                                  |                       |      |                    |        |
|                                                    |                       |      |                    |        |
|                                                    |                       |      |                    |        |
|                                                    | ,                     |      |                    |        |
|                                                    |                       |      |                    |        |
|                                                    |                       |      |                    |        |
|                                                    |                       |      |                    |        |
|                                                    |                       |      |                    |        |
|                                                    |                       |      |                    |        |
|                                                    |                       |      |                    |        |
|                                                    | ··                    | <br> |                    |        |
|                                                    |                       |      |                    |        |





















#### APPENDIX I

BINOCULAR DESCRIPTIONS OF HEAVY MINERAL CONCENTRATES FROM KIMBERLITE-BEARING BEDROCK SAMPLES

| Sample No.       | Concentrate Mineralogy                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| PLS-89<br>211-08 | Large 30 g concentrate. Essentially 100% pyrite grains and composite pyrite-wacke rock chips. Rare stray almandine grains (and other heavy minerals such as epidote) represent lab carryover. No pyrope.                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| 217-08           | Small 2 g concentrate. 60% pyrite grains and composite pyrite-sediment rock chips. 30% medium green mineral with or without pyrite probably chloritoid. 5-10% phlogopite grains and composite phlogopite-kimberlite rock chips. 2-3% black oxides associated with kimberlite includes ilmenite but grains locally have octahedral shape suggesting spinel. Stray almandine more obvious than in No. 211 due to small size of concentrate. No pyrope. |  |  |  |  |  |  |  |  |
| 218-05           | Small 1 g concentrate. 60% pyrite grains and pyritic rock chips. 20% sphalerite grains and sphalerite-bearing rock chips. 15% black oxide, appears to include both ilmenite and octahedral spinel. 5% stray almandine-epidote-pyroxene -hornblende contamination. No pyrope.                                                                                                                                                                         |  |  |  |  |  |  |  |  |

-