
GM 47942

DRILL HOLE RECORD, JOUVAL PROPERTY

Documents complémentaires

Additional Files

Property JOUVAL Commenced FEBRUARY 1 Completed FEBRUARY 1	7, 1988 Core Size	EASTERN VALRENNES TWP., QUEBE	Corr. Dip 45	5 m, 261 m		omp. ¹⁸⁵			388649-2	035°	}	261 m
bjective	gate two EM conductive a	nomalies	True Brg. ⁰³ % Recov. ⁹⁹		Logge Date		DWM . 19, 1	1988		T Brg.	- 1	Length
rom To	eralization. tion urden (CASING PULLED)					sample number	inte	erval	O Analy	<u> </u>		Ler
22.5 65.85 PLA		<i>NETADACITE</i> brecciform plagioclase	e-phyric .	metad	lacite.	11001	22.5	24.5	110)		
Bears	between 3-10% medium to	coarse grained, flatt	ened and elon	gate to equant w	white	11002 11003	24.5	26.0	105	103	PP 6/7.	7m
of bl	ack argillitic material,	in the form of thin a	nastomosing s	eams and irregul		11004	28.2	29.4	<10			
cm-sc	olitic" seams, ranging t ale elongate fragments o	f grey dacite (well de	eveloped at 33	.9-34.1 m and		11006	31.1	32.9	10			
calce	38.3 m). The rous where coarse patche		oped. The roc	k is weakly to m	noderately	11007 11008	32.9	35.0 36.8	10			
	alized with common coars ghout the section, parti					11009 11010	36.8	38.8	16 <10			-
	massive pyrite developed oped in irregular to cru					11011 11012	41.0	43.0	<10 <10			
	z masses and veins, community de) calcite-quartz veins					11013 11014	44.9	47.0	<10 35			
	tion inclined (w.r.t. co		5 m			11015 11016	49.0	51.0	<10 <10			-
	stère de l'Énergie et des Ressour	JJ &C 30	.7 m			11017	53.0	55.0	10			+

Drill Hole Record Property District Hole No. Commenced Tests at Hor, Comp. Location Completed Corr. Dip Vert. Comp. Core Size ä Co-ordinates True Bra. Logged by Hole No. ength Brg. Claim % Recov. Objective Date Analysis sample Feet/Metres Description interval number From To Au 11020 59.0 61.0 <1d Possible relatively fine quartz eyes 1 mm wide at 61.2-.3m 11021 61.0 62.7 <10 100% recovery 11022 62.7 64.5 <10 11023 64.5 65.85 <10 65.85 78.25 DARK PYRITIC CHERT Dark grey to black, very fine grained, massive to vaquely finely laminated chert with 11024 65.85 68.0 <10 about 25% overall pyrite in the form of irregular band-like masses and patches, and 11025 68.0 69.5 <10 11026 69.5 71.0 common ovoid to circular nodules (1 mm - 1 cm wide) showing concentric and radial growth <10 patterns (variety: marcasite?). As in above unit, pyrite concentrations are enveloped 71.0 73.0 11027 <10 or associated with subordinate late quartz (without calcite). Numerous irregular and 11028 73.0 75.0 <10 discontinuous stringers and veinlets of quartz transect the dark chert and pyritic 11029 75.0 76.7 <10 masses. Quartz commonly forms pressure shadows adjacent to pyrite nodules. Minor 11030 76.7 78.25 <10 lens of grey plagioclase-phyric dacite 5 cm wide at 67.4 m. Notable development of quartz masses at 74.0-74.1 m, 74.4-74.5 m, and 77.4-77.6 m. Sections of near massive pyrite (50-85%) occur at 69.1-.9 m, 70.2-70.6 m, 70.95-71.1 m, 71.35-72.05 m, 72.6-73.4 m, 74.4-75.0 m, 75.8-76.25 m, 77.2-77.3 m, and 77.65-78.25 m. Foliation 46° to core axis at 70.0 m. 100% core recovery. GREYWACKE AND ARGILLITE 78.25 78.9 11031 78.25 78.9 78.25-78.5 Pebbly meta graywacke Light grey, <10

fine to medium grained fragmental wacke with flattened elongate light

Drill Hole Record Hole No. Property District Tests at Hor. Comp. Commenced Location Corr. Dip Vert. Comp. Completed Core Size Collar Dip True Bra. Logged by Co-ordinates Hole No. Brg. Objective % Recov. Date Analysis sample Feet/Metres Description interval number From To An creamy grey felsic metavolcanic fragments and black tabular argillitic/shaly rip-up clasts all generally 0.25-1.5 cm long, and local (epiclostic?) fine quartz eyes (1%). Certain local felsic fragments are completely sericitized and druzzy pea green-brown. Grey interlayered fine grained greywacke and subordinate thin 78.5-78.9 dark argillite/shale laminae and anastomosing seams. Upper contact is irregular and truncated by above unit which includes shaly rip-up clasts similar to layers in this sequence suggesting top direction is uphole. Equivocal fining direction. Foliation 55° at 78.6 m. Minor 0.5 cm wide quartz-pyrite seam parallel to foliation. Puritic fragmental dacite and minor chert. Medium to light grey. 11032 78.9 81.0 20 78.9 - 86.25 83.0 well foliated, fragmental to plagioclase-phyric 11033 81.0 15 Contains common, narrow (5.0-20.0 cm wide), darker grey chert layers 11034 83.0 10 85.0 (at 81.8-81.85, 82.0-82.2, 84.4-84.5). General texture characterized by highly flattened lenses of dacite interleaved with very narrow (less than 1 to 3 mm wide), anastomosing seams composed of darker grey siliceous material. Possible fine quartz eyes at 81.0-81.3 m. The rock is sporadically silicified and heavily pyritic in zones (estimated overall 10-15%) throughout section that carry abundant coarsely nodular

Drill Hole Record Property District Hole No. Commenced Location Tests at Hor, Comp. Completed Core Size Corr. Dip Vert. Comp. HOJO-189-12 Co-ordinates Collar Dip True Bra. Logged by ength Brg. Objective Claim % Recov. Date Feet/Metres Description sample Analysis interval From To number or patchy to near-massive pyrite. Sulphides occur within and are associated with a lesser amount of quartz in foliation parallel veins and vein-bands generally 2-20 cm wide. They form between 20-50% coarse blocky patches with quartz pressure shadows and medium grained disseminations with quartz pressure shadows concentrated in layers with quartz. Grades into 11035 85.0 86.25 lower porphyritic zone 85.0-86.25 m: Medium grey, well foliated <1d plagioclase-phyric metadacite containing about 15% highly flattened white plagioclase phenocrysts. Foliation 45° to core axis at 80.7 m. 40° at 85.6, 45° at 86 m. Common dark grey very thin argillitic filaments. 86.25 93.6 DARK, QUARTZ-VEINED AND PYRITIC CHERT (MAIN CONDUCTOR) Dark grey very fine grained massive chert; heavily pyritic with overall about 20% 11036 86.25 87.5 <10 pyrite. Pyrite generally forms coarse blocky patches and circular to ovoid nodules 11037 87.5 89.0 <10 11038 89.0 90.5 (with concentric and radial growth patterns) and near-massive intersections containing **<10** about 75% pyrite over widths between 0.2-1.4 m (at 86.7-88.0 m, 89.3-89.8 m, 90.5-90.7 11039 90.5 92.0 <10 m, 91.25-91.5 m and particularly 92.15-93.5 m with about 75-80% py). Associated with 11040 92.0 93.6 <10 white bull quartz 86.25-865 and 87.0-87.2 m containing menanteritic green alteration post-dating quartz. Minor felsic metavolcanic lenses, most notably at 86.7-86.6 m (as in above unit). Foliation approx. 46° to core axis at 88.5 m. Common quartz pressure

Drill Hole Record Property District Hole No. Commenced Location Tests at Hor, Comp. Completed Core Size Corr. Dip Vert. Comp. Co-ordinates True Bra. Logged by ength Brg. Objective Collar Claim % Recov. Date Feet/Metres Description Analysis sample interval From Ťο number Au WRA shadows and rims to nodular pyrite and tensional veinlets disrupting more massive pyrite. Contains possible fine to medium grained isolated quartz beads at 89.0-89.1 m. Discontinuous quartz masses are inclined at about 60° (at low angle to foliation) and 35° (at high angle to foliation), implying a reticulate vein array formed late in penetrative deformation post-dating main pyrite development. In and around the near massive pyritic section at base of unit (92.15-93.5 m) quartz masses (including veinlets and pressure shadows) bear accessory calcite, and fine vuqqy pits are developed, commonly with limonitic stains. Some quartz at base displays fibrous combstructure. 10 cm of very dark and well foliated chert at base of lowest pyritic section. Foliation 50° to core axis at 93.6 m. 93.6 119,25 PEBBLY GREYWACKE Grey, relatively homogeneous medium to fine grained, foliated non-calcareous inequigranular 11041 93.6 96.0 <10 wacke bearing 2-3% dispersed medium grained quartz drains 11042 96.0 98.0 <10 (eyes) and between 0-10% light grey to white vague feldspthic clasts (particularly 11043 112.8 113.7 <10 99.2-100.6). Minor 3 cm wide dark grey chert layer at 93.9 m. Contains sporadic X (less than 1-2%) very small tabular to blocky shaly/argillitic lithic fragments lying 11044 117.0 119.25 <10 parallel to foliation, distributed throughout, and quite common near upper contact. Foliation 46° to c.a. at 101.6 m. Contains common narrow zones bearing wispy and anastomosing carbonaceous/graphitic arqillitic seams and layers than penetrate the wacke and locally include fragments of the latter. Commonly of foliation of host

Drill Hole F	Record		Com	uco							
Property	District	Hole No.									Sheet
Commenced	Location	Tests at	Hor.	Comp.							ठ
Completed	Core Size	Corr. Dip	Vert.	Comp.		-				1	
Co-ordinates		True Brg.		ed by			7		Oip		
Objective		% Recov.	Date		· · · · · · · · · · · · · · · · · · ·		Ε	Brg.			Length Hole No.
							Claim	H B	Collar	Elev.	Length Hole No
Feet/Metres From To	Description			sample number	inte	rval	Ana Au			1	
-	stylolitic form transgressing foliation	with septate margins 102.2-102.5, 1	05.2-105.5								
	and 111.5-112.0. Foliation 57-65° to c.	a. at 112. Very minor, narrow (les	ss than 1 cm					1			
	wide) quartz veins 55° to c.a. and at mo	derate angle to foliation. Isoclin	nal folding of						1		
	lithic fragments and shaly layers eviden	t between 110-112 m. Brecciform 11	11.5-112.0,								
	117.0-119.25. Abundant anastomosing and	stylolitic seams and filaments. 2	2-5%								
	disseminated pyrite at 119.6 and 120.0 m	l•									
119.25 123.2	Dark grey plagioclase-phyric and/or frag	mental carbonaceous (?) and silicing	fied fmv (as					-			
	above, silicified) with lighter grey pat	chy masses and lenses of greywacke,	/dacite (as			,	1		 		
	above). 3-4% fine grained disseminated	pyrite in light grey fmv at 120.9-	121.0 m.		1		1				
	Common coarse pyrite patches and masses	between and fine disseminations up	to 7%,	11045	119.25	121.2	<10		 		
	particularly towards contact with follow	ring unit.		11046	121.2	123.2	<10				
123.2 124.5	SILICEOUS ARGILLITE/CARBONACEOUS CHERT						-				
	123.2-123.5 Black highly silicified a	rgillite or carbonaceous chert. Su	ubordinate,	11047	123.2	124.5	<10)			
	discontinuous highly defo	ermed albite-quartz (+ carbonate) st	tringers.		1		†	 	ļ		
	123.5-123.7 As above with abundant we	akly sericitized felsic mv fragmen	ts.				1		<u> </u>		
	Fragmental, pyritic, 5%	py nodular and disseminated.									
	123.7-124.5 As at 123.2-123.5 m. Vag	ue felsic fragments highly flatten	ed.					-			
	Jasper/hematite seam par	allel foliation over a width of 1-	2 cm.		 		†				
	Foliation 60° to core axi	s at 123.8.			 	<u> </u>	 		-		

Drill Hole Record Property District Hole No. Commenced Tests at Location Hor, Comp. Completed Corr. Dip Core Size Vert. Comp. Hole_88-12 Collar Dip Co-ordinates True Brg. Logged by Claim Objective % Recov. Date Feet/Metres Description Analysis sample interval To From number ARGILLITE AND GREYWACKE; minor BASALT 124.5 185.2 124.5 - ca. 129.8 Principally argillite with subordinate vague grey wacke-like lenses, 124.5 126.5 <10 11048 locally brecciform. At 129.8 m argillite gradationally interlayered with grey 126.5 128.0 11049 equigranular fine grained metawacke. Layering and foliation inclined 53° to core axis 11050 128.0 130.0 <10 0.1m core loss at 128.0 m. These are asymmetrically and disharmonically folded at a high angle by 130.0 131.0 11051 pyritic 0.1m "F2 group" folds. core loss tower Surface 37° cA fineridges stmm scale 2-3% py in py-qtz seams that are foliation parallel and also folded by F2 (130.0-130.7 m). Equally mixed and finely interlayered (< 1 cm to 10 cm scale) dark to 129.8-140.45 light grey fine grained greywacke and dark argillite. Foliation 52° 131.0 | 133.0 | <10

Drill Hole Record Property District Hole No. Commenced Location Tests at Hor. Comp Completed Core Size Corr. Dip Vert. Comp. Hgle_88-12 Collar Dip Co-ordinates True Bra. Logged by Brg. ength Claim Objective % Recov. Date Feet/Metres Description Analysis sample interval From To number 11053 133.0 135.1 to core axis at 133.0 m. Local 0.5 cm wide foliation parallel py-qtz seam or bead (up to 1.0 cm). Thin ptygmatically folded quartz veins 137.0 <1d 11054 135.1 137.0 (137.8-138.1) and local thin planar veins approx. 65-70° to core axis 11055 138.5 oblique to foliation. Blocky core 98-100% recovery. 152.2 11056 150.5 140.45-154.3 Mainly greywacke with subordinate thin argillite layers. Foliation 154.3 152.2 48-50° at 142.4 m. Possibly graded down hole at 144.5 m. Contains 11057 local thin discontinuous light grey/white cherty lenses at 146.7-147.0 and 149.3-149.5 m. Contains small argillite lithic fragments over 5 cm at upper contact. Common narrow quartz veins (30-40° to core axis) in lower part below 150.5 as well as crackle veins sporadically near lower contact. Trace fine pyrite. 154.3 156.2 Dark grey-black weakly silicified and moderately pyritized argillite with 11058 154.3-158.7 subordinate silicified and pyritized wacke layers. Mainly 7-10% fine 11059 156.2 | 158.7 grained disseminated pyrite in greywacke layers (155.7-156.0) and local 5% pyrite in tightly folded and disaggregated pyrite-quartz veins as well as pyrite nodules enveloped or associated with marginal quartz. Axial planes of tight folds lie subparallel to aver. layering. Local hematitic staining in narrow zones parallel foliation. Foliation 53° to core axis 158.4 m.

Drill Hole Record Property District Hole No. Commenced Tests at Location Hor. Comp. Completed Corr. Dip Vert. Comp. Core Size 196-88-12 Collar Dip Co-ordinates True Bra. Logged by ength Brg. Claim Objective % Recov. Date Feet/Metres Description sample Analysis interval From To number Au 11060 158.7 161.0 <1d Equally mixed argillite/greywacke. Locally 3-5% fine grained 158.7-168.6 disseminated quartz-pyrite elongate beads at 163.1 m, 164.9 m, 166.0-11061 161.0 163.0 <10 166.2 (disseminated, fg), 167.3-167.5 m. Foliation and layering 45° at 11062 163.0 165.3 <10 163.6 m. Possible plagioclase-phyric fmv (grey) at 165.3-165.8 m. 11063 163.0 165.3 **<10** 167.0 168.6 Layering parallel to c.a. at 161.2-161.6 m. Tightly folded: ax. planes 11064 <10 about 20° to core axis. Offsets of layering at low angle to these. Very thin shaly layers commonly display septate margins, and wacke layers show pinch and swell or brittle-ductile offsets. Locally brecciform. 3 possible large fmv or equigranular wacke fragments/lenses between 167.75-167.95 m, two or more at 168.6-168.8. Foliation partings display lineations (ridges, partings) that lie subparallel to an intermediate axis of the bedding plane ellipse. 168.6-172.1 Mainly argillite. Pyritized (2-5%) with lenticular grey siliceous beads 11065 168.6 169.4 and lenses between 168.6-169.4. Foliation 60° to core axis at 171.8. 11066 169.4 172.1 **710** Local clusters of quartz-pyrite beads (less than 1-3 mm dim.), flattened 171.0-171.4 m. Local isoclinally folded narrow veinlets and layers approx. 171.5 m. 172.1 173.3 172.1-173. 5 Silicified, fleshy pink fd-qtz velned argillite + wacke, highly disrupted 11067 Minor 1-2% fg py.

Drill Hole Record Property District Hole No. Commenced Tests at Location Hor, Comp. Completed Core Size Corr. Dip Vert. Comp. Hole_188-12 Co-ordinates True Brg. Logged by Brg. Objective Claim % Recov. Date Feet/Metres Description Analysis sample interval From To number Au 173.3 174.5 5d 11068 173.3-174.5 Silicified, brecciform wacke + argillite. Wacke + argillite. Locally dark grey, cherty and fragmental and also 11069 174.5 176.9 174.5-179.1 179.1 12d containing very small shaly lithic fragments 176.9-177.1 m. Common very 11070 176.9 narrow (light brown, carb) quartz veins (less than 3 mm wide) 20° to c.a. 11071 179.1 180.2 6d 179.1-180.2 Mineralized graphitic argillite with up to 5-7% fine grained disseminated pyrite + foliation parallel py-qtz seams, py-qtz flattened beads + isoclinally folded veins. Foliation 45° at 179.2 m. Lineated subparallel intermediate axis of bedding plane ellipse. CONDUCTOR 180.2 181.8 11072 180.2-181.8 Light green silicified, irregularly quartz veined, massive, BASALT Brecciform and irregularly quartz veined (parallel to foliation) 181.8 183.5 181.8-185.2 11073 183.5 185.2 graphitic argillite. Mineralized with py-qtz as at 179.1-180.2 m. CONDUCTOR 11074 185.2 187.2 11075 <10 185.2 207.05 OUARTZ-VEINED INTERMEDIATE-MAFIC AND ULTRAMAFIC METAVOLCANIC 187.2 189.0 Medium to light green, brecciform to relatively massive but (+ calcite) quartz veined 11076 <10 and highly deformed intermediate to mafic metavolcanic rock. Bears ubiquitous 11077 189.0 191.0 <10 relatively thin quartz veins (generally less than 1 cm wide) in a deformed mainly 191.0 193.0 11078 foliation-parallel vein network showing irregular and discontinuous, disruptive forms. 11079 193.0 195.0 **<10**

Drill Hole Record Property District Hole No. Commenced Location Tests at Hor, Comp. Completed Core Size Corr. Dip Vert. Comp. Holf - 188-12 Co-ordinates Collar Dip True Brg. Logged by ength Objective Claim % Recov. Date Feet/Metres Description Analysis sample From interval Ťο number Au 195.0 196.5 <10 11080 Common dark green more chloritic patches and seams. The rock is weakly calcareous 196.5 198.0 <10 and weakly to moderately sericitized, especially where most intensely foliated as at 11081 <10 11082 198.0 200.0 193.6-195.6 m. Trace disseminated pyrite local. Highly altered, sericitic and illitic 200.0 202.0 11083 <10 196.3-196.7 (sludge?). 202.0 204.5 11084 **<10** Foliation 58-60° at 190.3 204.5 207.05 11085 <10 300 at 195.5 35-40° at 200.0 450 at 206.6 m. Common patchy dark talcy zones 5-20 cm. 207.05 261.0 ULTRAMAFIC TO MAFIC METAVOLCANIC 207.05 209.5 Dark to light greenish grey, soapy feeling relatively massive and variably foliated 11086 magnesite-chlorite-talc ultramafic metavolcanic (flow ?) containing approx. 5% 11087 209.5 211.5 ubiquitous white talc-magnesite veins and seams that form an irregular reticulate 11088 211.5 214.2 710 vein array, lending a brecciform appearance to the rock. Homogeneous parts appear to 214.2 215.2 11089 710 have a massive medium to coarse grained plutonic-appearing texture defined mainly by 11090 215.2 217.0 <10 white magnesite crystals in a dark grey talc-rich matrix. Commonly weakly foliated 11091 217.0 218.7 **710** to very well foliated. Generally bears up to about 2% disseminated magnetite (detected mainly by magnet) below 209.5 m. Minor 1-2 cm wide quartz vein 209.45 m. Foliation 55° to core axis at 208.2 m, 35° at 218.5, 33° at 221.4, 25° at 225.3. See T.S. 216.2 m

		Tests at	Hor. Comp.							Sheet
	Core Size	Corr. Dip	Vert. Comp.			1				
		True Brg.	Logged by			-		giO		,
		% Recov.	Date			laim	Brg.		lev.	Length Hole No.
Description				, , , , , , , , , , , , , , , , , , , ,	terval		ysis	10	<u>u</u>	
207.05-218.7	Dark talc rock described	above magnetic generally.								
218.7-225.6	Light grey serp-magnesite	-talc-chlorite rock (Mg- Thol/UMV). Relative	ely 1109.	2 218.7	221.0	<10				
	non-magnetic. Well folia	ted with interleaved narrow zones and septa of	of 1109	221.0	223.0	<10				
	dark grey chl-talc, commo	n talc-magnesite seams decreasing downhole;	1109	223.0	225.6	<10				
	irregular veinlets. Low	angle foliation common.								
	Slightly calcareo	ous cal-magnesite seams increasing somewhat be	low 223m							
	downhole to veined zone.									
205 6 200 0			1100	225 6	226.0	410				
225.6-228.0						 			-	
				226.8	228.0	(10				
						 				
						 				
						ļ				
			'•			<u> </u>				
	Trace fine grained cubic	pyrite. Foliation 42-430:227 m.			-	ļ				
FELSITE DYKE										
228.0-229.4	Upper Half		1109	228.0	229.4	300				
	Weakly to moderately foli	ated (moderate approx. 45° to core axis) ligh	it							
	207.05-218.7 218.7-225.6 225.6-228.0 FELSITE DYKE	207.05-218.7 Dark talc rock described 218.7-225.6 Light grey serp-magnesite non-magnetic. Well folia dark grey chl-talc, commo irregular veinlets. Low Slightly calcared downhole to veined zone. 225.6-228.0 Quartz veined light/mediu Well foliated, cut by sev locally bearing thin pyri 225.6-225.9, 226.0-226.1, margins at high angle to core axis. Creamy white Trace fine grained cubic FELSITE DYKE	Description 207.05-218.7 Dark talc rock described above magnetic generally. 218.7-225.6 Light grey serp-magnesite-talc-chlorite rock (Mg- Thol/UMV). Relative non-magnetic. Well foliated with interleaved narrow zones and septa of dark grey chl-talc, common talc-magnesite seams decreasing downhole; irregular veinlets. Low angle foliation common. Slightly calcareous cal-magnesite seams increasing somewhat be downhole to veined zone. 225.6-228.0 Quartz veined light/medium green cate-magnesite-talc-chlorite schist. Well foliated, cut by several large white ± alb. bull quartz veins locally bearing thin pyritic films on irregular partings. Quartz vein 225.6-225.9, 226.0-226.1, 226.3-226.7, 227.55-227.85 m. Irregular plamargins at high angle to foliation and layering and low to mod. angle core axis. Creamy white to yellowish white albite on vein rims mainly trace fine grained cubic pyrite. Foliation 42-430:227 m. FELSITE DYKE	Description 207.05-218.7 Dark talc rock described above magnetic generally. 218.7-225.6 Light grey serp-magnesite-talc-chlorite rock (Mg- Thol/UMV). Relatively 11092 non-magnetic. Well foliated with interleaved narrow zones and septa of 11093 dark grey chl-talc, common talc-magnesite seams decreasing downhole; 11094 irregular veinlets. Low angle foliation common. Slightly calcareous cal-magnesite seams increasing somewhat below 223m downhole to veined zone. 225.6-228.0 Quartz veined light/medium green cate-magnesite-talc-chlorite schist. 11095 locally bearing thin pyritic films on irregular partings. Quartz veins 11096 locally bearing thin pyritic films on irregular partings. Quartz veins 225.6-225.9, 226.0-226.1, 226.3-226.7, 227.55-227.85 m. Irregular planar margins at high angle to foliation and layering and low to mod. angle to core axis. Creamy white to yellowish white albite on vein rims mainly. Trace fine grained cubic pyrite. Foliation 42-430:227 m.	Description Sample number In	Description Sample number number	Description Sample Interval And A	Description Sample number 207.05-218.7 Dark talc rock described above magnetic generally. 218.7-225.6 Light grey serp-magnesite-talc-chlorite rock (Mg- Thol/UMV). Relatively 11092 218.7 221.0 <10	Description Sample number 207.05-218.7 Dark talc rock described above magnetic generally. 218.7-225.6 Light grey serp-magnesite-talc-chlorite rock (Mg- Thol/UMV). Relatively 11092 218.7 221.0 (10 non-magnetic. Well foliated with interleaved narrow zones and septa of 11093 221.0 223.0 (10 dark grey chl-talc, common talc-magnesite seams decreasing downhole; 11094 223.0 225.6 (10 irregular veinlets. Low angle foliation common. Slightly calcareous cal-magnesite seams increasing somewhat below 223m downhole to veined zone. 225.6-228.0 Quartz veined light/medium green cate-magnesite-talc-chlorite schist. 11095 225.6 226.8 (10 locally bearing thin pyritic films on irregular partings. Quartz veins 11096 226.8 228.0 (10 locally bearing thin pyritic films on irregular partings. Quartz veins 225.6-225.9, 226.0-226.1, 226.3-226.7, 227.55-227.85 m. Irregular planar margins at high angle to foliation and layering and low to mod. angle to core axis. Creany white to yellowish white albite on vein rims mainly. FELSITE DYKE 228.0-229.4 Upper Half	Description

Drill Hole Record Property District Hole No. Commenced Location Tests at Hor. Comp Completed Core Size Corr. Dip Vert. Comp. Hole No. JV-88-12 Co-ordinates True Bra. Logged by Brg. ength Objective Claim % Recov. Date Feet/Metres Analysis Description sample interval To From number Au drussy beige-brown pyritic quartz-feldspar fine grained felsite dyke. Ubiquitous up to 10% very fine grained and fine grained pyrite trains and crystal clusters (partly define irregular foliation) and disseminated fine to medium grained cubes. Cut by clean albite-quartz veins less than 1-5 cm wide ranging between 45-80° to core axis but always at mod. to high angle to foliation. 229.4 231.2 11098 229.4-231.2 Lower Half Grades into mottled, coarser grained and inclusion-bearing, schlieric quartz-albite dyke where up to 10% overall pyrite occurs as fine grained disseminated clusters replacing included dark green my schlieren. Highly irregular internal structure. Possible fuchsite alteration. 231.2 261.0 MAFIC (MAGNESIAN) METAVOLCANIC 231.2 233.0 Green, well foliated and compositionally laminated (+ serp. magnesite ?) talc-plag-11099 233.0 234.85 295 chlorite schist/metavolcanic. Relatively soft. Fine grained cubic disseminated 11100 234.85 237.0 py in host rock to approx. 236 m. Quartz veined in upper part to approx 245 m. 11101 237.0 238.8 11102 Relatively wider fuchsite-bearing albite-quartz veins at: 238.8 240.1 11103 233.0-234.85 (minor mv inclusions + septa) 11104 240.1 242.0 238.3-238.8 Foliation 45° at 244.4 Trm-alb-qtz

Drill Hole Record Hole No. Property District Tests at Hor. Comp. Commenced Location Corr. Dip Vert. Comp. Completed Core Size Collar Dip True Bra. Logged by Co-ordinates T Brg. Claim % Recov. Date Objective sample Analysis Feet/Metres Description interval number From To 11105 242.0 244.0 241.0-241.6 Fuchs-alb-qtz, fine grained py? 11106 244.0 246.0 242.55-242.9 246.0 248.0 11107 243.5-243.8 248.0 250.0 11108 Foliation inclined 45° to c.a. at 244.5m, with open to tight asymmetric 11109 250.0 252.0 folds oriented 23° to c.a. at a moderate angle to foliation. 11110 252.0 254.0 <10 Foliation 47° at 250.6. 57° at 257m, and 60° at 259.5 m. 254.0 256.0 11111 <10 256.0 258.0 11112 <10 11113 258.0 259.5 <10 259.5 261.0 11114 261.0 EOH

Drill Hole -			· .			Comi	nco			-				•
roperty	OUVAL	District	EASTERN	Hole No.	JV-88-13					49-		50°		Sheet
oommenced .	ÉBRUARY 18, 1988	Location	VALRENNES TWP., QUEBE	C Tests at	100 m, 182 m	Hor. (∍omp.).5 m		0	35°	-5		=
ompieted	'EBRUARY 21, 1988	Core Size	BQ	Corr. Dip		Vert.	Comp. 120	0.0 m		388	1			182
0-ordinates	50W, 0+45S			True Brg.		Logge	~=7/	MM		\ \mathref{\text{\tin}\text{\tint{\text{\tett{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\texi}\text{\texi}\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\texi}\text{\text{\text{\texi}\tex{\text{\text{\texi{\text{\texi}\text{\texi}\texit{\text{\t		Dip	l	gth
bjective	o investigate an EM			% Recov.	98%	Date	Feb	24,	1988 	Claim	Brg.	Collar	: ا	Length
		asediment cor	tact for Au mineraliza	tion.						Ö	 -	<u>ဒီ</u>	E E	Leng
é≙t /Metres rom To	Description						sample number	inte	erval	Analy		WRA		 r
0.0 18.5	Overburden (CASI	NC DITTED)	_, +1,1-1						T	, Au	LABAY	WAA	-	-
0.0 10.3	Overburden (CASI	NG PULLED)							-	1			-	
10 5 116 1	DI ACTORI ACE ADUVO	TO MO DEPOSIT	CODY NEWS DAGTER							 				
18.5 116.1	PLAGIOCLASE-PHYR	IC TO BRECCIE	ORM METADACITE						 	 -			+	
	18.5-80.0 R	alativoly hom	nogeneous, light grey,	nlagioglas	re-phyric to locally		11115	18.5	21.0	<10	ļ	 	-	
			ocally brecciform METAD				11116	21.0	23.0	<10			+	
							11117		 	<10		\vdash	-	
			ally coarse grained, eq				 	23.0	25.0	+			-	
			n a fine grained, weakl				11118	25.0	27.0	<10				
			artzofeldspathic matrix				11119	27.7	28.4	<10		X	-	
			dispersed pyrite cubes.	weathere	ed and pitted between	l				-	<u> </u>	 		
		8-41.7 m.				. 1 .	11100	20.0	44 0			 	-	
-			n at 31.7 inclined 43°	····		5TÀ	11120	38.0	41.0	<10	 	 	-	
			v below about 45 m: 52		axis at 52.2 m,		11121	41.0	44.0	<10		 -	+	
			60° at 64.8 m, 61° at				11122	44.0	46.0	<10				
·			cal structure with irre				11123	46.0	48.5	<10	 	 		
			9-58.0 m (especially 56				11124	50.0	53.0	<10	<u> </u>	i		
······································			well developed in lowe	er part of	section between 63.7	/-			ļ		ļl	 		
			ble debris flow?				11125	63.7	66.0	<10				
			disseminated pyrite clu				11126	66.0	68.0	<10				
	t	o about 3% to	owards following gradat	ional unit	, between 73.8-80.0.		11127 11128	71.0 73.0	73.0 75.0	<10 <10			\rightarrow	
	S	poradic, nari	row, planar + quartz-ca	STOTICE AGT										
					DNMoor									1

Drill Hole Record			Com	nco							
Property	District	Hole No.									
Commenced	Location	Tests at	Hor.	Comp.					ļ		
Completed	Core Size	Corr. Dip	Vert.	Comp.			7				
Co-ordinates		True Brg.	Logg	ed by]		Oip		
Objective		% Recov.	Date				Claim	Brg.	_	>	ength
							\o		ပိ	Elev.	Ler
Feet/Metres Description From To				sample number	inte	rval	Analy	/sis	WRA	<u></u>	T -
	section: generally 0.5-1	.0 cm wide, averaging 2/m (45 - 5	0 m) and	11129	75.0	77.0	<10				
	consistently about 43° to	core axis at moderate to high an	gle to	11130	77.0	78.5	<10				
1	foliation. Fibrous comb	structure very common in calcite	veins,	11131	78.5	80.0	10				
	generally with asymmetric	sigmoidal growth pattern (as dep	icted)								
	suggesting southerly-dire	cted thrusting along shallow (N-?) dipping								
	calcite filled fractures.										
	up) foliation	down	Sigmaidal comb Structure in calcite vein								
		evein ///						ļ	ļ!		ļ
		ins at 46.5-47 m. Increase in th				ļ <u>.</u>					ļ
		pyrite cubes and clusters to abo					<u> </u>	L	ļ	<u> </u>	<u> </u>
	73.8-80.0 towards gradati	onal contact with underlying frag	mental dacite.						!		
	100% core recovery.			ļ			ļ				ļ .
80.0-96.7	PYRITIC BRECCIFORM METADA	CITE (DEBDIC EIOMS)		11132	80.0	82.0	<10		ļ		ļ
50.0-50.7		akly to moderately foliated, place	ioclase-phyric	11133	82.0	84.0			<u> </u>	<u> </u> -	
		above) that is brecciform and in		11134	84.0	86.0	<10		5m r	C'V	d -
		s within a ubiquitous, irregular		11135	86.0	87.5	<10		<u> </u>		ļ
		ix composing about 5-7% of the ro		11136	87.5	89.5	<10		×	ļl	-
		ine grained disseminated pyrite of		11137	89.5	92.0	<10	: :	 	 	ļ

Drill Hole	1100014		ominco								+
Property	District	Hole No.	•								Sheet
Commenced	Location	Tests at H	or. Comp.			1					0)
Completed	Core Size	Corr. Dip V	ert. Comp.								
Co-ordinates		True Brg. L	ogged by					gi			ó
Objective		% Recov.	ate			Claim	Brg.	Collar	<u>~</u>	Length	Hole No.
Feet/Metres From To	Description		sample number	inte	erval	Anal	⊢ ysis	18	Elev		말
	and elongate clusters	comprise an estimated overall 3-5%, although	11138	92.0	94.0	<10					
	locally comprise up to	10% over dm-scale intervals. Pyrite is slightly	11139	94.0	95.3	≤10					
		his section than in above unit (between	11140	95.3	96.7	<10)				
	73.8-80.0 m).										
	Foliation inclined 60°	to core axis at 81.4 m. 94% core recovery.									
	96.7-104.05 PYRITIC AND CARBONACEO	US BRECCIFORM METADACITE (DEBRIS FLOW?)	11141	96.7	99.0	<10	,				
	As above brecciform me	tadacite with rapidly gradational increase in dar	c 11142	99.0	101.0	<10	,	<u> </u>	ļ		
	grey to black carbonace	eous (and siliceous ?) seams and patches, in part	11143	101.0	103.0	10	4	 	ļ	<u></u>	
	associated with quartz	-calcite brecciform matrix. Overall ca. 5% mediu	n 11144	103.0	104.05	10	<u> </u>	<u> </u>	-	ļ	_
	grained patchy to diss	eminated pyrite, somewhat coarser and in greater		ļ	ļ		ļ	 		 	
	quantity than above bre	ecciform metadacite. Foliation inclined 55° to		-	-	ļ	 	ļ	<u> </u>		<u></u>
	core axis at 97.9 m, 6	5° at 98.9 m. 4 x 1 cm wide light pinkish white				ļ	ļ	 		ļ	
	calcite veins 40-45° to	o core axis and moderate angle to foliation.			 			 		·	-
							-				
	lennida	G fracture cleavage / Splinton			 		-	-			
	tolistion colcite vein	G fracture cleavage / foliation 1. T kinking comb / GS to CA.									
	up ''''' down	4ρ // // / / down Sigmoidal 2008 2009									
	97.5 97.6m	and streeture 1000 701M									
		N.B. OPPOSING VIEWS ON SPLIT CORE		-			<u> </u>				<u> </u>
				1		<u>L</u>				J	L

Drill Hole Record Hole No. Property District Tests at Hor, Comp. Commenced Location Corr. Dip Vert. Comp. Completed Core Size QiO True Bra. Logged by Co-ordinates Brg. Claim % Recov. Objective Date Analysis sample Description Feet/Metres interval number From To 104.05-105.1 CARBONACEOUS. FRAGMENTAL MAFIC METAVOLCANIC 104.05 105.1 <10 Green, flattened and elongate, chloritic mafic metavolcanic fragments 11145 measuring between less than 1 - 5 cm long included within subordinate dark grey, fine grained carbonaceous and calcareous (and somewhat siliceous ?) matrix. Matrix contains 5% medium to fine grained disseminated pyrite cubes. 105.1-116.1 UPPER MAIN PYRITIC ZONE: HEAVILY PYRITIC, CARBONACEOUS BRECCIFORM TO FRAGMENTAL METADACITE Marked by a further, relatively abrupt increase in pyrite content and coarseness, and divided into two intervals: (a) 105.1-112.3 m - BRECCIFORM METADACITE (as at 96.7-104.05 m) 107.0 <10 11146 105.1 with prominent ubiquitous, blocky ('nodular') pyrite constituting ca. 109.0 7-10% overall, and associated with marginal and interstitial (+ calcite) 11147 107.0 <10 quartz patches. The brecciform host metadacite is plagioclase-phyric 11148 109.0 111.0 <10 11149 111.0 112.3 <10 near upper contact but becomes massive and equigranular between 105.6-112.3 m.

Drill Hole Record Hole No. Property District Tests at Commenced Location Hor. Comp. Corr. Dip Completed Core Size Vert. Comp. ö Hole No. JV-88-13 Co-ordinates True Bra. Logged by T Brg. Collar % Recov. Date Objective Analysis Feet/Metres Description sample interval number From To (b) 112.3-116.1 m - FRAGMENTAL METADACITE Coarse dm-scale fragments of foliated plagioclase-phyric metadacite 112.3 11150 114.0 <10 occurring sporadically within a now pyrite-dominated, dark grey 11151 114.0 116.1 siliceous? and carbonaceous matrix. Overall ca. 10-13% coarse blocky pyrite patches, although this interval contains several zones of near-massive pyrite between 5-20 cm wide. Minor narrow, well foliated metadacite lenses in lower 0.3 m (115.8-116.1) where a rapid gradation to semi-massive pyritic zone occurs. 116.1 118.2 SEMI-MASSSIVE PYRITIC ZONE 1320 (1.4m recovered) Semi-massive coarse grained and patchy or 'nodular' pyrite with interstitial quartz and 11152 116.1 118.2 lesser dark grey carbonaceous and siliceous matrix. Marked increase to average 60-70% pyrite appears to overlap a principal lithological contact between uphole metadacite and downhole clastic metasedimentary rocks, although no recognizable protolith(s) occur in the zone (Possibly chert). 118.2 140.2 INTERLAYERED GREYWACKE AND ARGILLITIC SILTSTONE 118.2 119.4 Finely interlayered fine to medium grained greywacke and dark grey argillitic siltstone-11153 300 argillite. Layers generally range between 0.2-1.0 cm wide and parallel the penetrative 119.4 121.15 132 11154 fabric. No unequivocal facing criteria observed. Upper part between 118.2-121.0 m contains 10-60 cm wide bands rich in coarse 'nodular'

Drill Hole Record Hole No. Property District Tests at Hor. Comp. Commenced Location Completed Corr. Dip Vert. Comp. Core Size Hole No. JV-88-13 Collar Dip Co-ordinates True Brg. Logged by Brg. Objective % Recov. Date Analysis Feet/Metres Description sample interval number From To Αu 11155 121.15 122.25 <10 X FP pyrite with interstitial quartz and carbonaceous material. Pyrite content in these bands ranges between 20-50%, although overall about 10-15%. Elsewhere in section 122.25 124.0 <10 11156 pyrite occurs locally as fine to medium grained cubes sporadically developed 11157 124.0 126.0 <10 128.0 in concentrations of less than 1% - 2%. 11158 126.0 <10 <10 11159 135.0 137.0 (121.5 122.25) FOLIATED FELDSPAR PORPHYRY Light creamy grey to tawny grey, well foliated and homogeneous feldspar porphyry. bearing about 10-15% flattened coarse white feldspar phenocrysts up to 0.5 cm long. Contains about 2% fine grained disseminated pyrite. Local quartz patches. Intrusive into metawacke-argillitic siltstone near contact with semi-massive pyritic zone. Foliation/layering in clastic metasediments oriented w.r.t. core axis 56° at 122.9 m, 53° at 128.8 m, 58° at 138.4 m. Disrupted isoclinal folding occurs in lower part of section (138.2-139.6 m) with a moderately developed axial planar fabric defined by thin micaceous/argillitic septa. Clastic sediments are non-calcareous, although locally calcified over a width of 4 cm (125.55 m). 140.2 182.0 COARSE GRAINED PEBBLY GREYWACKE Light grey, coarse to medium grained, weakly calcareous meta-greywacke containing 150.0 <10 11160 148.0 152.0 154.0 ubiquitous 5% elongate and flattened lithic fragments. Fragments are composed of dark 11161 <10 156.2 11162 154.0 <10 grey shaly or argillitic rock, locally internally layered, and are tabular, angular

to subangular and up to 2-3 cm long (e.g. 153 m). White felsic fragments become common

11163

156.2

158.0

<10

Drill Hole Record Property Hole No. District Commenced Tests at Hor, Comp. Location Completed Corr. Dio Vert. Comp. Core Size Co-ordinates True Bra. Logged by r Brg. ength Collar % Recov. Objective Date Analysis Feet/Metres Description sample interval number From 176.0 downhole below 166.3 m (notably in horizons at 174.3-176.1 m. 176.65-181.4). Felsic 11164 173.9 <10 176.0 178.0 <10 fragments are soft and scratchable with a knife, possibly carbonatized or sericitized, 11165 11166 178.0 180.0 <10 and commonly display a narrow siliceous rind. 11167 180.0 182.0 <10 Locally finely interlayered wacke-argillitic siltstone, with common intervals of light grey arkosic wacke (152.65-152.85; 158.6-159.0; 173.9-174.3; 175.3-175.6; and 176.1-176.65 m) and dark grey argillitic/shaly wacke (160.3-160.9; 161.4-161.8 and 161.9-162.3 m). Medium grained relatively pebble-poor wacke, otherwise similar to the main unit, occurs at 163.8-166.2 and 170.3-172.1 m. An isoclinal fold of a layered fragment occurs at 165 m. Foliation and apparent layering inclined, w.r.t. core axis, 49° at 152.7 m, 55° at 158.8 m, and 52° at 175.5 m. Quartz calcite veins commonly as wide as 1-1/2 to 2 cm are sporadic throughout section, inclined 20-40° to core axis and a moderately high angle to foliation. Such veins most common 20-50° to core axis at 177.0-180.7, where calcite is locally concentrated along vein margins. Possible minor bluish-green fuchsite in calcite-quartz vein at 180.2 m. 182.0 EOH

Drill Hole Record	minco							
Property JOUVAL District EASTERN Hole No. JV-88-14				1-3				Sheet
Commenced FEBRUARY 22, 1988 Location VALRENNES TWP., QUEBEC Tests at 100 m, 147 m Ho	r. Comp. 10	9.0 m		8649	•	-50		ري اي
Completed FEBRUARY 25, 1988 Core Size BQ Corr. Dip 38-1/2°, 36° Ve	rt. Comp. 98	3 • O m		$ \infty $	35			147
Co-ordinates L 52w, 1+00N True Brg. 035° Lo	gged by	MW		3		a d		, ;
Objective To investigate an EM conductive anomaly and a % Recov. 97% Da		b. 27, 1	988	Ē	1 -	_	Lenath	N O
metasedimentary-mafic/ultramafic metavolcanic contact for Au mineralization.				Clai	8 T	Collar Elev.	Len	Hole
From To Description	sample number	inter	val	Analy				
	Humber			Au	pp)		+	
0.0 16.0 Overburden 16.0 78.25 CLASTIC METACEDIMENTS				-				_
							_	
16.0-63.8 METAGREYWACKE WITH LITHIC FRAGMENTS	11160	16.0	10.0	(10				
Light grey, medium grained, unlayered and moderately foliated	11168	16.0	18.0	<10				
metagreywacke bearing about 3-5% dispersed dark grey lithic fragments	11169	18.0	20.0	<10				
and less than 7% vague pale white feldspar grains (possibly of	11170	20.0	20.0	1				
volcaniclastic origin). Lithic fragments are evenly distributed	11170	28.0	30.0	10				
throughout the entire section and are entirely of shaly or argillitic	11171	30.0	32.0	<10				
siltstone composition, generally elongate and tabular and between	11172	32.0	34.0	<10				
0.3-3.0 cm long and 0.1-0.4 cm wide, and are aligned parallel to								
foliation. Locally fragments are subrounded and ovoid. Non-	11173	40.0	42.0	<10				-
calcareous and weakly sericitized throughout. Common foliation	11174	42.0	44.0	<10			_	
partings displaying an elongation of lithic fragments and a weak				├			_	
lineation on foliation plane ellipse that lies between an intermediate		-	<u> </u>					
axis and the long axis, suggesting a steep westerly true plunge (if								
foliation if vertical). Local zones carrying relatively coarse (3-4	11175	52.0	54.0	<10				
cm long) lithic fragments as at 30.1-30.9 and 31.3-31.5 m. Ubiquitous	11176	54.0	56.0	<10				
1% fine to medium grained pyrite cubes dispersed throughout the	11177	56.0	58.0	82				
section. Deep fracture-controlled limonite staining, possibly after	11178	60.9	62.0	10				
Fe-carbonate, intense at 16.5 m, and sporadically near surface to 20.5 m	. 11179	62.0	63.8	85				
Foliation inclined 48-49° to core axis at 25.9 m, 50° at 35.1 m, 51°								
DW Moore								

Drill Hole Record			Com	inco								**
Property	District	Hole No.										Sheet
Commenced	Location	Tests at	Hor.	Comp.								
Completed	Core Size	Corr. Dip	Vert.	Comp.								,
Co-ordinates		True Brg.	Logg	ed by					Oip			No.
Objective		% Recov.	Date				Claim	Brg.	Collar	<u>ج</u>	ength	e S
							Ö	1-	ပိ_	Elev.	Le	Hole
Feet/Metres Description	•			sample number	int	terval	Anal Au	ysis		T		7
	at 50.4 m. Thin section	sample at 37.85 m.					1				<u></u>	
		content and size of lithic fragme	nts to									-
		netawacke (fragments less than .2										
	between 55.5-60.9. Between	een 60.9-61.3 and 61.85-62.0 occu	r abrupt wacke									
	zones with very numerous	fragments (subconglomeratic) and	very thin									1
	discontinuous shaly seams	s, which enclose a massive, fine	grained wacke									
	horizon lacking lithic f	ragments (61.3-61.85 m). Minor i	rregular narrow									
	quartz veins 55.0-55.1 m	and 56.9-57.2 m, ca. 25° to core	axis.	ļ				ļ				<u> </u>
									<u> </u>		ļ	
63.8-66.3	WELL LAYERED SHALY WACKE	AND SILTSTONE	* 10 · M				ļ	.	V di .		<u> </u>	
	Interlayered dark shaly s	siltstone, siltstone and fine to	medium grained	11180	63.8	66.3	<10	<u> </u>	4			3
	metawacke. Contains 1-2	& disseminated pyrite cubes. Fol	iation and mm-									<u> </u>
	to cm-sccale layering in	clined 53-54° to core axis at 65.	5 m. Weakly					<u> </u>	ļ			
	lineated sub-parallel to	intermediate axis of foliation p	lane ellipse.						ļ			
								-				
66.3-74.7	MASSIVE WACKE							ļ	ļ 			<u> </u>
	Relatively massive medium	n to fine grained metawacke (simi	lar to 61.3-	11181	66.3	68.0	18	3				
		e (less than 0.2 cm long) lithic		11182	68.0	70.5	<10					
	local shaly/shaly siltsto	one interlayers (at 67.5-68.0 and	72.9-73.3 m).	11183	70.5	72.9	<10					
		lithic fragment-bearing wacke		11184	72.9	74.7	16	1				
	Foliation ca. 40° to core	e axis at 74.4 m. Up to 2-3% find	e grained pyrite									·

Drill Hole Record Property District Hole No. Commenced Location Tests at Hor, Comp. Completed Core Size Corr. Dip Vert. Comp. Hole No. JV-88-14 Co-ordinates Collar Dip True Bra. Logged by ength Objective Claim % Recov. Date Feet/Metres Description Analysis sample interval From To number Au and pyrite clusters between 72.9-74.7 m. Grades into following quartzveined section. 74.7-75.85 White to light pinkish grey feldspar-quartz (FELSITE) veins and VEINED 11185 74.7 75.85 202 METAWACKE. About 1% fine grained disseminated pyrite locally. Common discontinuous dark green chloritic seams. Feldspar is locally pinkish and may be K-feldspar. Main continuous quartz/felsite vein occurs at 75.1-75.9 m. Irregular upper and lower contacts, discordant to foliation in greywacke. Pyrite-bearing ARGILLITIC WACKE bearing abundant graphitic argillite 75.85-76.3 11186 75.85 78.5 2650 (1.05m recovered) filaments and lenses. About 3% medium grained pyrite clusters occur between 75.9-76.1. Quartz vein of uncertain width (5.0 cm) commences 11186 2400 (Revun) 75.85 78.5 2331 (XRAL 0.068 OL/E (11186 75.85 78.5 at 76.3-76.35 m. Average of Au analyses (11186) yields 2450 ppb or .07 oz/t. 76.35-77.9 Core loss (mainly argillite of following unit?) Jet black GRAPHITIC ARGILLITE: 0.35 m of sludge retrieved. 77.9 -78.25 Silicified lime-green MAFIC METAVOLCANIC ROCK, 1-2% fine grained 78.25- 78.5 disseminated pyrite cubes. Possibly represents upper contact of mafic-ultramafic mv at 80.55 - 101.55 m with intervening felsite dyke (see below).

Drill Hole Record Property District Hole No. Commenced Tests at Location Hor, Comp. Completed Core Size Corr. Dip Vert. Comp. Hole No. JV-88-14 gi Co-ordinates True Bra. Logged by Brg. ength Objective Claim % Recov. Date Feet/Metres Description Analysis sample interval From To number Au 78.5 80.55 FELSITE DYKE 11187 78.5 80.55 13d Х Light pinkish grey, massive, medium grained pyrite-bearing quartz-feldspar (felsite) vein. Carries 2-3% fine grained disseminated pyrite cubes. Relatively homogeneous texture and composition. Local fracture partings 0-15° to core axis with graphitic or carbonaceous coatings. Upper contact 45° to core axis, lower contact uncertain due to grinding. 100% recovered. 11188 80.55 85.0 (1.7m recovered) 80.55 101.55 MAFIC-ULTRAMAFIC METAVOLCANIC ROCK (2.25m recovered) 85.0 Green, moderately to well foliated, medium to fine grained, ultramafic to mafic 11189 0.88 91.0 (2.2m recovered) 88.0 metavolcanic rock - probably Mq-tholeiitic to komatiitic in composition. Dominant 11190 mineralogy + serpentine + magnetite - talc - magnesite - chlorite. Dark green-grey 91.0 93.0 10 11191 <10 11192 93.0 95.0 talcose seams common throughout, with white quartz? - magnesite segregations and 11193 95.0 97.0 <10 veinlets. Foliation is highly irregular, generally at moderate to low angles to core axis: 20° to core axis at 91.4 m. Trace to negligible pyrite. 11194 97.0 99.0 <10 11195 101.55 <10 Moderate limonitic staining (after Fe-carbonate ?) 100.5-101 m. 99.0 101.55 113.2 SERICITIC-FUCHSITIC AND ALBITE-OUARTZ VEINED FELSIC? METAVOLCANIC Light buff- or tawny-grey, medium grained, well foliated metavolcanic rock resembling 101.55 102.35 11196 <10 11197 102.35 103.8 <10 a felsic metavolcanic, but possibly representing highly altered (sericitized and 11198 103.8 104.95 <10 carbonated) mafic metavolcanic. Pseudofragmental textures between 104.3-105.5.

Prominent albite-quartz veins: (i) 102.35-103.8 m trace fine grained pyrite and

11199

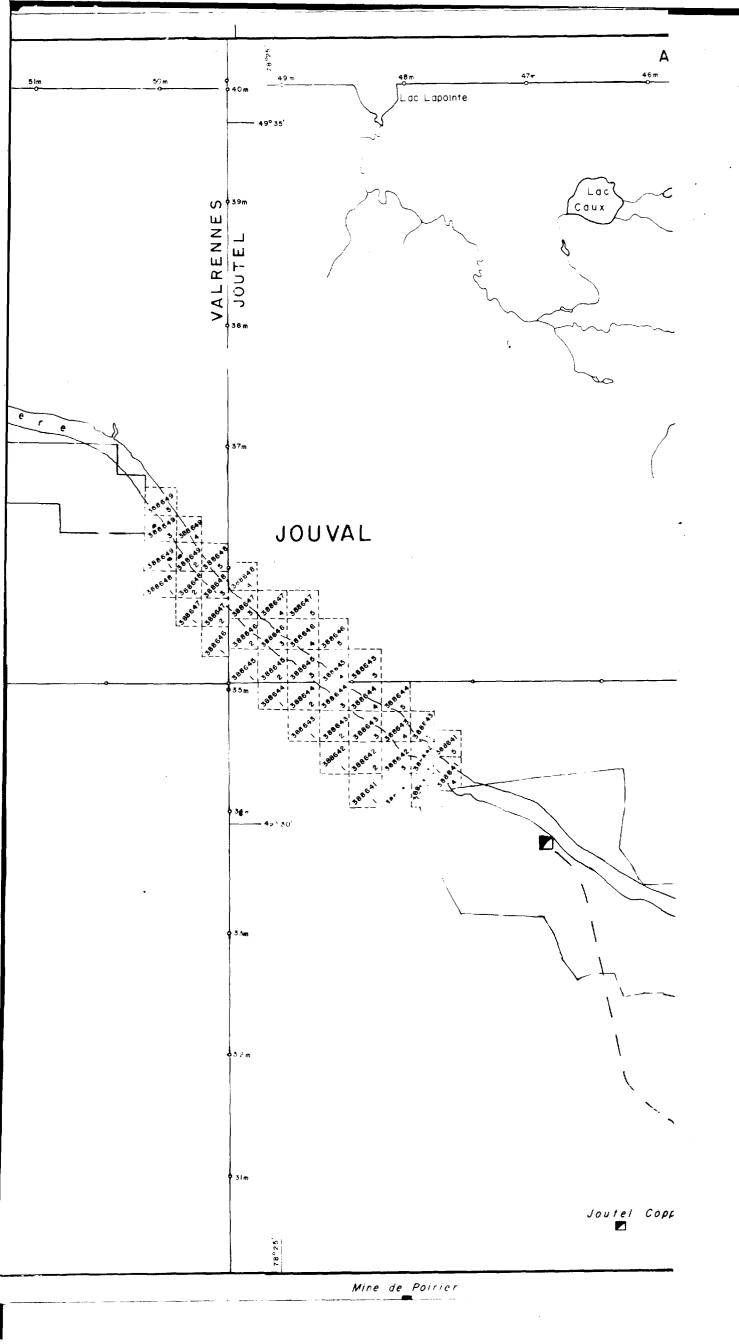
104.95 106.8

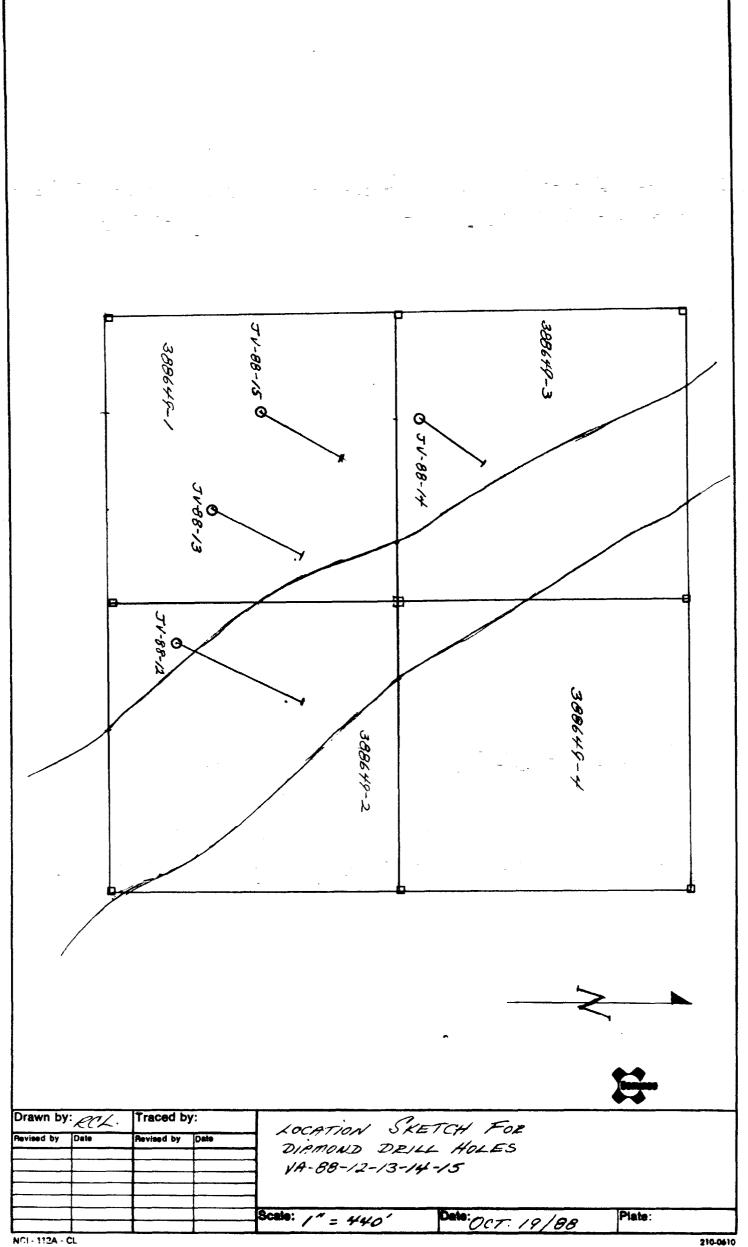
<10

Drill Hole Record Property District Hole No. Commenced Location Tests at Hor. Comp. Completed Core Size Corr. Dip Vert. Comp. Hole No. 14 Co-ordinates True Bra. Logged by ength Brg. Objective Claim % Recov. Date Feet/Metres Description Analysis sample interval From To number Au 11200 106.8 107.5 <10 local limonitic staining (after Fe-carbonate ?) 107.5 108.5 (ii) 106.8-107.4 m Fuchsite-bearing heavily limonitically stained (Fe-carbonate) -11201 <10 albite - guartz vein 11202 108.5 110.2 <10 11203 110.2 111.7 <10 (iii) 108.8-109.3 m About 40-50% albite-quartz veins 3-20 cm wide occur between 108.5-111.7 113.2 112.0 m. 11204 <10 FUCHSITE ALTERATION ZONE I of host rock most evident between (a) approx. 104.9-107.7 m 104.9 113.2 (very intense at 106.0-106.2 and 106.6-106.8 and 107.4-107.6 m) - the latter two occurring at margins of fuchsite - Fe-carbonate ? - albite - quartz vein at 106.8-107.4 m), and (b) 108.5-113.2 weak to moderate. Foliation inclination is variable through the zone: 45° to core axis at 101.6 m, 65° at 104.4 m, 52° at 108.3 m. 113.2 116.7 SPINIFEX-TEXTURED METAKOMATIITE Grades rapidly from above altered zone at 113.2. Dark green to medium green, relatively 11205 113.2 115.0 massive and spinifex-textured to moderately foliated and lineated metakomatiite 11206 115.0 116.7 (ultramafic metavolcanic). Locally 1% medium grained pyrite cubes. Sample for thin section (113.5 m). 116.7 119.2 11207 116.7 120.6 MAFIC TO ULTRAMAFIC METAVOLCANIC (as at 80.55-101.55 m) 119.2 120.6 Gradational upper and lower contacts. Foliation 58° to core axis at 119.2 m. 119.2-120.6 Weakly sericitized and possibly weakly fuchsitic.

Drill Hole Record Property District Hole No. Commenced Location Tests at Hor, Comp. Completed Core Size Corr. Dip Vert. Comp. Hole No. 14 Co-ordinates True Bra. Logged by F Brg. ength Objective Claim % Recov. Date Feet/Metres Description sample Analysis interval From To number Au 120.6 121.9 10 120.6 129.2 FUCHSITE-SERICITE ALTERATION AND QUARTZ VEINED ZONE II 11209 121.9 124.5 <10 Moderately to intensely fuchsitic to sericitic, albite-quartz-veined mafic mv (?). 11210 Silicified, deep fuchs 120.3-120.95. Deep apple green to blue-green alteration 124.5 126.95 11211 27 126.95 129.2 25 11212 colouring to light tawny coloured sericitized alteration. Tawny, sericitic and silicified dominant 126.95-129.2 with crackle-vein quartz (fm /?). Major quartz vein 120.6-121.9 with tawny silicified-sericitic blocks. Trace fine grained pyrite. 11213 129.2 131.1 <10 129.2 147.3 MAFIC-ULTRAMAFIC METAVOLCANIC ROCK <1d Well foliated and lineated, pseudofragmental to relatively massive mafic to ultramafic 11214 131.1 133.0 33 11215 133.0 135.0 metavolcanic as at 80.55-101.55 m. Druzzy light brownish-green sericitized fragments 135.0 137.0 <10 enclosed by talc-chlorite matrix. Common deformed quartz seams parallel foliation with 11216 139.0 <10 11217 137.0 local coarse quartz patches. Trace pyrite locally up to 1% 143.2-143.4 m. Foliation 139.0 141.0 <10 11218 42° at 132.3, 40° at 137.5 m, 44° at 147.2 m. <10 11219 141.0 143.0 143.0 145.0 <10 11220 <10 145.0 147.3 11221 147.3 EOH

Drill Hole Record Property JOUVAL District EASTERN Hole No. JV-88-15 Commenced MARCH 21, 1988 Location VALRENNES TWP., QUEBEC Tests at 100m (Acid); 167m (S.S.	Comneo	118.5 m		1-6+	035°	-50•		4 m Sheet
Completed MARCH 23, 1988 Core Size BQ Corr. Dip -47°; -43.5°	14	127.0M		88649	0		l	17
Co-ordinates L 52W, 0+85S True Brg. 035°(collar): 032°(167m	mylogged by	DWM		33		oiO d		
Objective To investigate for Au mineralization across southern % Recov. 100%	Date Ma	rch 29,	1988	aim	1	1 1	· ·	ength
conductor defining upper contact of brecciform dacites with clastic metasediments.				Cla	H-	Collar	Ele	Lengt Hole
Metres Description From To	sample number	inte	rval	Analy		WRA		
0.0 15.5 Overburden (Casing Pulled)	- Humber			1	PPU	HIGH	-	
overbuilden (casing ruffed)				1				
15.5 121.0 PRISTINE TO BRECCIFORM AND FRAGMENTAL PLAGIOCLASE-PHYRIC DACITE; MINOR FRAGMENTAL BAS	TATE			-				
(a) 15.5-ca. 83.5 Green to light grey-green, weakly to moderately foliated, fine grained		15.5	17.5	<10				
plagioclase-phyric dacite. Bears 3-7% medium to locally coarse grained, subhedral	11465	17.5	19.5	<10				
plagioclase phenocrysts throughout. Relatively homogeneous. Generally with <1-2%	11403	17.5	13.3	1				_
	11466	34.0	35.0	<10				
pyrite (fine grained cubes), and locally with elongate, irregular patchy aggregates	11467	43.0	45.0	<10				
of fine grained pyrite (measuring 3-5 cm in length and 0.5-1.0 cm in width)	11468	45.0	47.0	10				
sporadically distributed between 10-30 cm apart: notably 4t 45.0-45.7 m, 53.2-56. m	11400	43.0	47.0					
and 76.9-78.0 m (overall ca. 2-5% pyrite in these intervals). Slightly coarser	11469	53.0	55.0	<10				
disseminated pyrite cubes (ca. 2%) occur between 62-82 m. Foliation inclined 55° to core axis at 25.0 m and 50.0 m, 57° at 52.0 m.	11470	55.0	57.2	<10			+	
Displays a vague or ghostly brecciform structure in which elongate masses of pristing		37.0	37.62	1.0				
		62.0	64.0	<10				
phyric dacite are enclosed and penetrated by faint, light coloured calcareous matrix	11472	64.0	66.0	<10				
(< 5% of the rock) in the form of a variably developed., thinly branching network	11472	66.0	68.0	<10		+		
displaying a weak anisotropy. Locally well developed above 70 m.	11474		70.0	<10				
Sporadic planar discontinuous quartz-calcite veins inclined 20-40° to core axis and	11474	68.0	70.0	119				
oblique to fabric, commonly with white calcite-rich margins. Two 0.5-1.0 cm wide	11475	76.0	70 0	<10				
calcite-quartz veins inclined 24-28° to core axis (62.0-62.2 m) with one larger	11475	76.0	78.0	10				
(2.5 cm wide) calcite-quartz vein inclined 30° to core axis in almost exactly the								
opposite sense (62.3-62.5 m). Such mutually inclined veins form a reticulate array a	at 11476	82.0	84.0	<10				
79.5 m and are apparently genetically related.	- 11470	02.0	0-3-10	1,14		1		


Drill Hole Record Property District Hole No. Commenced Location Tests at Hor, Comp. Hole No. JV-88-15 Completed Core Size Corr. Dio Vert. Comp. qiQ Co-ordinates True Bra. Logged by Brg. ength Claim Objective % Recov. Date Feet/Metres Description Analysis sample interval From To number Au WRA 11477 88.5 91.0 <10 (b) 83-5-107-05 Mainly relatively pristine, non-brecciform plagioclase-phyric dacite 11478 91.0 92.5 <10 between 70.0-83.5 m. becomes gradually grey, more brecciform and 11479 92.5 94.2 <10 moderately to well foliated in a transitional interval between 83.5-94.2 97.0 <10 .85.0 m (foliation shallowly inclined 28° to core axis at 84.9 m 11480 <10 97.0 99.0 11481 transected by local 1 cm wide zones inclined 60° to core axis in the 11482 99.0 101.0 <10 same sense) and grades into a prominently brecciform plagioclase-phyric 11483 101.0 103.0 <10 dacite below 85.0 m. The brecciform structure becomes very well 103.0 105.0 11484 <10 developed and well foliated around 91.0 m. Foliation very well developed below 103 m. Foliation in brecciform structure inclined 52° 105.0 107.05 11485 to core axis at 95.7 m, 48° at 98.5 m and 44-45° at 106.2 m. Patchy pyrite aggregates (as above) developed at 82.5-83.0 m (3-4% overall), 88.6-94.2 m (overall 2-3%, particularly concentrated at 88.6-90.7 m with overall 7% pyrite). Between 94.2-105.9 m the brecciform plag-phyric dacite contains an overall 1% pyrite in the form of very fine grained disseminations and medium to coarse grained cubes, with very local patchy aggregates. Highly elongate and flattened pyrite aggregates (overall about 5% pyrite) with ragged, septate terminations occur between 105.9-106.6 m. (c) 107.05-109.1 Very homogeneous, grey, well foliated plagioclase-phyric dacite, 11486 107.05 109.1 <10 Х characterized by 10-12% coarse grained, flattened white plagioclase phenocrysts (which mainly define the foliation). Relatively sharp,


Drill Hole Record Property District Hole No. Commenced Location Tests at Hor. Comp. Completed Core Size Corr. Dip Vert. Comp. Ö Co-ordinates True Brg. Logged by ength Brg. Claim Objective % Recov. Date Feet/Metres Description Analysis sample interval From To number WRA concordant contacts with adjacent sub-units, although the upper contact is rapidly gradational and phenocrysts in the upper 30 cm are subhedral and relatively unflattened. Contains <1% fine grained disseminated pyrite. Foliation 49° to core axis at 108.7 m. (c) 109.1-121.2 Argillitic Brecciform/Fragmental Plagioclase-Phyric Dacite More intensely brecciform grev plagioclase-phyric metadacite (as above) 11487 109.1 111.0 <10 111.0 113.5 with between 5-10% septate black argillitic matrix. Foliated brecciform 11488 <10 structure as above but argillitic material forms breciform (fragmental) 11489 113.5 115.0 <10 115.0 116.7 <10 matrix in place of calcareous material. Contains common coarse 11490 117.2 aggregates of fine grained pyrite, generally with interstitial quartz 116.7 <10 (FRAG. MMV) 11491 and rims or pressure shadows of quartz (overall estimated 5-7% pyrite). 11492 117.2 119.5 <10 Negligible quartz-calcite veins. Foliation inclined 50° to core axis 11493 119.5 121.2 <10 at 120 m. Upper metre (109.1-110.0) is mainly unmineralized, fine grained massive and non-porphyritic dacite which grades rapidly at about 110 m into the carbonaceous/argillitic brecciform dacite. Narrow internal unit in the brecciform/fragmental dacite-116.7-117.2 argillitic fragmental basalt, with ca. 7% pyrite-bearing argillitic matrix. Elongate, subrounded to subangular fragments of fine grained, massive basalt, commonly >5 cm long and display 1-2 mm wide calcareous rinds. Argillitic matrix itself contains about 3-5% fine grained,

Drill Hole Record Property District Hole No. Commenced Location Tests at Hor. Comp. Completed Core Size Corr. Dip Vert. Comp. o d d Co-ordinates True Brg. Logged by ength Brg. Collar Claim Objective % Recov. Date Feet/Metres Description sample Analysis interval From To number WRA disseminated (granular to cubic) pyrite. See analysis 11491. 121. 2 126.0 CARBONACEOUS PYRITIC CHERT, SEMI-MASSIVE PYRITE Dark grey/black carbonaceous (?) chert hosting coarse blocky to nodular pyrite and 11494 121. 2 122.8 73 122.8 124.2 202 pyrite aggregates (with ubiquitous interstitial and rimming quartz that merges locally 11495 124.2 126.0 into a well-developed network of narrow + buff to white carbonate-quartz veins inclined 11496 35° to core axis and at a moderately high angle to foliation and layering), mixed with massive to semi-massive and coarse blocky pyrite intervals (mainly 121.2-122.8 m and 124.2-126.0 m). Estimated overall ca. 30% pyrite. Dark chert in lower half of interval displays local fine carbonaceous laminations with common parallel stringers of fine grained pyrite as well as coarse nodular pyrite (variety marcasite, with radial growth patterns). Nodules and stringers generally between 0.5-1.0 cm in diameter and width, respectively. Chert is locally greyer and apparently Fe-carbonatized at about 126.6-126.8 m. Most of this pyritic zone is moderately to strongly conductive owing to pyrite, although carbonaceous cherty material is locally graphitic, scratchable and weakly conductive, especially around 12 m. Interstitial quartz between 125-126 contains numerous vugs. 100% recovery. 126.0 135.2 INTERLAYERED ARGILLITE AND GREYWACKE Black argillite and subordinate fine grained greywacke, finely interlayered at mm -126.0 127.2 11497 <10 to cm-scale. Foliation and layering inclined 51° to core axis at 129.5 m with isoclinal

Drill Hole Record Property District Hole No. Commenced Location Tests at Hor. Comp. Vert. Comp. Completed Core Size Corr. Dip Sollar Dip Co-ordinates True Bra. Logged by Brg. Objective % Recov. Date Analysis Feet/Metres sample Description interval number From To WRA folds that plunge at a very low angle to or sub-parallel to the long axes of foliation plane ellipsoids. Foliation 49-50° to core axis at 133.5 m. Intruded by feldspar porphyry near upper contact. OUARTZ-FELDSPAR PORPHYRY/FELSITE DYKE (127.2 129.2) Discordant, brownish-grey, coarse to medium grained, relatively massive and unfoliated, 127.2 129.2 11498 OFP with ca. 10% (?) vague, coarse equant feldspar crystals and 1% fine to medium grained ovoid quartz phenocrysts. Weakly to moderately sericitized and carbonatized, with <1% fine disseminated pyrite. Very common buff Fe-carbonate - quartz veining inclined 45° to core axis, apparently restricted to the dyke. 129.2 131.5 11499 <10 167.7 135.2 LAYERED GREYWACKE 155.5 158.0 22 11500 Mainly grey to light grey medium to fine grained greywacke with common pebbly layers, bearing dark shaly lithic fragments and local light felsic fragments (e.g. in coarse grained wacke 136.45-137.3 m, 137.3-141.3 m, 142.4-143.3 m, 148.25-148.35 m and 148.6-148.7 m (with coarse lithic fragments), 156.0-156.4 m (1-2% mg py cubes) and 166.3-167.7 m. Narrow, planar quartz-carbonate veins between 155-160 m inclined 60-80° to core axis. Foliation inclined 54° to core axis at 146.2 and 158.6 m.

Property	District	Hole No.	**								Sheet
Commenced	Location	Tests at	Hor. C				\dashv				
Completed	Core Size	Corr. Dip	Vert. (\dashv		a		7
Co-ordinates		True Brg.	Logge	d by			\dashv_{ϵ}	Ġ	ır Dip	ŧ	. No. 1
Objective		% Recov.	Date				Claim	T Brg.	Collar	Elev.	Hole No.
Feet/Metres From To	Description			sample number	int	erval	Anal Au	lysis			
167.7 170.	INTERLAYERED ARGILLITE AND GREYWACKE										
	01-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1										
170.5 174.							-		-		
	Similar to pebbly (shaly fragments) layers	in greywacke unit at 135.2-167.7 m.				 	_	-	+	+	
	Foliation inclined 55° to core axis at 172.	3 m.							-		
174.	D END OF HOLE										
								-			
					<u> </u>			-	-	+	
 					 		_	+	+	+-+	
								+	 		
						 		+	1	+	
										ļ	
					<u> </u>				 	-	
										-	
					<u> </u>						

