GM 45064

DRILL HOLE LOG, DISCOVERY WEST CORP PROPERTY

Documents complémentaires

Additional Files

	DIP 1	TESTS	Property Discov	ery West Corp.	Hole Number		D87-1
At 4	4.8m Ft.	-490	At Grasse	t Twp., P.Q.	Dip	-500	
Q+ 9	1.4m _{Ft}	-490	Claim No	427729-3	Length	139.29	m
O+ 13	At 91.4m Ft49° At 137.2m Ft47.5°		Working Place		Bearing 2	muy Az.	
			Baseline Footage	* 4 . = 0.73	_		
			Baseline Offset	2±95 M			
			Date Started	Mar. 26, 1987			
н	1 14 .			Mar. 28, 1987	Date Logged	larch 29	, 1987
			Date Completed		Date Logged		
FROM	TO		DESCRIPT			SAMPLE NUMBER	ASSAY Au PPB
0	10.36	n Overburden		ENER	GIE ET OC		
				√ F	ECO &		
10.36	11.23	Siliceous, Le	eucocratic Reddish	Granite w 11	MAI 1987		
		, , , , , , , , , , , , , , , , , , , ,		193			
11.23	12.28	Foliated, Co	ntaminated Reddis	h Granite	L D'OR		
11120					MINES		
12.28	13.70	Foliated Co	ntaminated Reddis	h Granite with Apli	te Dike		
12.20	10110	-	hick at 50 to core a				
		Zeni ti	mek at v to core a		Ministère de	'Energie	t des Ressources
13.70	16.03	Massiva Rad	dish Aplitic Granit	Δ	1		information B7
13.70	10.03		oliated granite at 1	· · · · · · · · · · · · · · · · · · ·	Date:		
16.03	45.94		ntaminated Reddis		No G.M.:	<u> 1506</u>	4
10.03	45.54		m grained, somewh				
				o-blueish quartz, 15	Y plegicalese	<u> </u>	
						•	
	-			eluding biotite, amp			
			<u>-</u>	cattered traces, up			
		<u> </u>		foliation 20-60% to	·		
77.7	IIIMAI	1967		tz + K-spar in fract			
	VAL D	2		inated in rare shear	s, especially		
	VAL DO	C35	ear mafic "xenolith				
		· · · · · · · · · · · · · · · · · · ·	pyrite in granite		1.78 - 22.90	7701	Nil
				e 1% disseminated			
			100 to core axis		2.90 - 23.82	7702	Ni1
				in chloritic fractur			
			"xenolith"		3.82 - 24.40	7703	Nil
· · · · · · · · · · · · · · · · · · ·			pyrite at 34.0 and		· · · · · · · · · · · · · · · · · · ·	ļ	
				in massive contami			
		granit	9	4	0.02 - 40.85	7704	Ni1
		I	Logged by R.	van Ingen			

FROM	to	DESCRIPTION		SAMPLE NUMBER	Au PPB	SAY			
		- 2% disseminated + stringer pyri	to accominated with		AU PPB	<u> </u>			
		chlorite + calcite in fractured, r							
		granite (mafic-rich)	40.85 - 43.70	7705	Nil				
		- chloritic shears and quartz + K-		7103		\vdash			
		25° to core axis	42.87 - 43.70	7706	Ni1	\vdash			
		- trace pyrite at 44.79, not sampl		7100					
		- trace pyrite at 44.75, not sampl	eu						
5.94	47.34	Xenolithic Red Granite							
			i inclusions in						
			- 50% chlorite [±] biotite bands and inclusions in foliated contaminated granite						
		- local traces of magnetite							
	-	- foliation in granite and xenolith	s varies from						
		30° to 70° to core axis							
47.34	48.87	Siliceous, Pink Leucocratic Granitoid							
	-	- with sericitic cleavage at 40° -	500 to core axis						
						ļ			
48.87	52.77	Xenolithic Red Granite				ļ			
		- 50% dioritie + mafie schist incl	usions and bands in			<u> </u>			
		foliated contaminated reddish g	ranite as before						
	TO SERVE	- trace to 3% disseminated magne	etite			-			
	WE RE	\mathcal{C}^{U} - foliation at 60° to core axis				-			
	1 1 MA	- trace disseminated and fracture	filled pyrite associated		<u>_</u>	╄			
/6	VAL D		ore axis 50.00 - 51.05	7707	Nil	-			
	14	- trace pyrite in foliated granite	as above in contact						
		at 52.77 with massive, fractured	l diorite with good			 			
		trace pyrite	52.30 - 53.30	7708	Nil	<u> </u>			
						-			
52.77	54.70	Massive, Fractured Diorite (Xenolith?				-			
		- minor chloritic cleavage at 60 °C	to core axis			-			
		conforming to contact with conf	aminated granite			1			
		- fractures contain chlorite, calci	te and zoisite and			+			
		traces of pyrite				1			
		- cut by 10 cm grey dike near low	er contact		<u> </u>	\perp			

Logged by RVI Hole Number D87-1 Sheet Number 2

FROM	то	DESCRIPTION	(31)	SAMPLE	ASSA
PROM		· DESCRIPTION	1 MA 1987 P.	NUMBER	Au PPB
54.70	55.65	Xenolithic, Contaminated Reddish Granite	VAL OR 33		
		- foliated as before	SEJANUS SEJANU		
			\$3308		
55.65	63.20	Mylonitic, Contaminated Reddish Granite	and the same of th		
		 intense foliation at 80° to core axis sup 	erimposed		
		on earlier foliation(s)			
		- thin-banded mylonite with faint trace p	yrite,		
		epidote-chlorite veinlets and late stage	calcite		
		veinlets	60.30 - 61.05	7709	Ni1
		- well-foliated granitoid (below the fault	zone) with		
		trace disseminated pyrite	61.05 - 61.65	7710	30
		- 30cm fractured pink aplite dike at 350	to core		
		axis at 62.19			
63.20	87.28	Xenolithic, Contaminated Reddish Granite			
		- 10 - 30% mafic xenoliths up to 30cm wi			
		- trace-to-3% magnetite down to 70.40 a			
		traces thereafter, e.g. 77.2, 78.7, and 8			
		- trace pyrite at 65.04, not sampled			
		- K-spar + calcite veinlets and 1% dissen	inated pyrite		
		in silicified, xenolithic granite	68.25 - 68.95	7711	210
		- subtle change of foliation at 81.40 beco	ming gneissic		
		but still at 10-35° to core axis			
87.28	108.00	Cherty Felsite			
		- intrudes the orthogneiss above; contain	s inclusions		
		of mafic xenoliths and contaminated gr	anite and seems		
		to grade into paragneisses below			
		 faint vestigal gneissic banding at 0-30° 	to core axis		
		indicating emplacement has involved co	nsiderable		
·····		replacement of the gneisses.			
		- interbanded sheared siliceous felsite, so	ehistose		
		granite and chlorite schist with scattered	ed trace of		
		disseminated pyrite	87.28 - 88.50	7712	Ni1

		DESCRIPTION E VALUE OF THE PROPERTY OF THE PRO	SAMPLE	ASSAY
FROM	TO	000	NUMBER	Au PPB
		- trace pyrite + epidote + garnet at 90.83 and 98.45,	<u> </u>	
		not sampled		
		- disseminated muscovite 100.15 - 108.00		
		- chlorite - amphibole inclusion, occasional calcite		
		veinlet and trace disseminated pyrite 103.36 - 104.00	7713	Nil
		- occasional chloritic shear (≤8mm) at 5° to core		
		axis adjacent to which trace pyrite 106.35 - 106.95	7714	Ni1
108.00	117.45	Siliceous Biotitic Paragneiss		
		- thin, well-banded; indicates rock was originally a		
		cherty sediment		
		- banding at 20° to 30° to core axis		
		- occasional leucocratic pink granite dikes at 30 to 45°		
		to core axis		
		- occasional folded granitoid dikes		
		- 30cm amphibolite band at 109.00		
		- conformable stringers of pyrite, 1% 110.00 - 111.24	7715	Nil
		- biotite + chlorite, siliceous paragneiss with about		
		3% conformable stringers of pyrite including 10cm		
		60% disseminated pyrite at 114.20 113.70 - 114.60	7716	Ni1
		- massive -to- banded, biotite paragneiss with		
		good trace pyrite stringers 114.60 - 115.82	7717	Nil
117.45	138.05	Mafic Paragneiss		
		- amphibole, chlorite, biotite - rich,		
		- thin, well-banded 0-40° to core axis		
		- occasional folded "quartz diorite" dike		
		- massive, feldspar porphyritic, andesite dike cuts		
		banding at 90° to core axis 121.60 - 123.60		
		- traces of pyrite $^{\pm}$ epidote parallel to core axis		
		not sampled at 129.65 and 136.05		
			<u> </u>	

Hole Number D87-1

87-1

Sheet Number 4

FROM	το	DESCRIPTION	SAMPLE	<u> </u>	SAY
			NUMBER	AuPPB	
138.05	139.29	Fractured Feldspar Porphyry			
		- crowded with beige phenocrysts (K-spar?)	-		
		- calcite ± chlorite ± zoisite in matrix			
		- good trace finely disseminated pyrite, one speck of			ļ
		chalcopyrite 138.05 - 139.29	7718	Nil	ļ
		- interfingering intrusive contact at about 250 to			
		core axis		<u> </u>	
			-		
	and of H	ole			
		CHMMADY			
		SUMMARY			ļ
		The hole was directed across a weak IP anomaly interpreted			
		to be underlain by volcanics adjacent to the Kitchigama granite			1
		mass.			
		The rock intersected in the upper part of the hole consists	ļ		
		dominantly of foliated, contaminated red granite with numerous			
		mafic xenoliths. It is cut by massive red aplite granite dikes			
		and a fault zone (at 60.0 m). Below the fault zone the foliation			
		of the granite changes to a southerly dip which persists to the			ļ
		bottom of the hole. There, however, the gneisses are paragneisses			-
		locally containing trace -to- 3% stringer pyrite (110.00 - 115.82)			ļ
		which could explain the IP anomaly. The lower structural block is			-
		intruded by feldspar porphyritic andesite dikes, cherty felsite			ļ
		(which may be equivalent to the aplitic granite of the upper block)			
		and a crowded K-spar porphyry "sill."			-
					ļ
					-
					-
					
					
				-	
	l				1

Hole Number.....

D87-1

Sheet Number 5

	DIP TES	TS	Property Discovery West Corp.	Hole Number		D87-2
At 45	.7m Ft.	-480	At Grasset Twp., P.Q.	Dip		
	.6m Ft.		Claim No	Length		178.61m
At 13'	7.2m Ft.	-470	Working Place	Bearing	~~~~	200 AZ
		-450	Baseline Footage L1+00E	Elev. Collar		
At	Ft		1 . 0037	Horiz. Trace		
At	Ft			Vert. Trace		
			Date Completed Mar. 31, 1987	Date Logged	April 1,	,1987
FROM	то		DESCRIPTION		SAMPLE NUMBER	ASSAY
0	10.36	Overburde	en (includes red granite boulders)			
					V.F	NERGY
10.36	35.24	Foliated,	Contaminated Red Granite		100	REC
		- wea	k schistose foliation at 400-600 to core	e axis	THE LEGISTER	
		- abo	ut 12% hornblende, biotite and chlorite			1987
		- sim	ilar to granite of D87-1		1	UR
		- 5%	scattered red aplitic dike ^{<} 50cm thick			SZJENE
		- 55e	m mafic inclusion at 19.10			
35.24	37.02	Red Aplit	ic Granite	· · · · · · · · · · · · · · · · · · ·		
00.21	0,,,,,		s foliated granite at 50-60° to core axis	s		
			roximately perpendicular to foliation			
37.02	40.43	Xenolithia	e, Contaminated Red Granite			
37.02	40.40		wded with mafic xenoliths in various st	ages		
			lisintergration up to 40cm wide	-6		
			or pegmatitic red granite at contacts o	of xenoliths		
			ce pyrite as blobs in granite or (in one i			
			cture, not sampled			

40.43	43.91	Magnetic	Meta-Diorite			
		- con	tacts parallel to foliation at 50-60° to	core axis		
		- abo	ut 2% magnetite			
			phibole spotted (hornfelsic)			
		- eon	tains an inclusion of xenolithic red gran	nite		
43.91	45.41	Xenolithi	c, Contaminated Red Granite			
			Logged by R. van Ingen			

	70	TO DESCRIPTION	SAMPLE	ASSAY			
FROM	10	DESCRIPTION	NUMBER	Au	PPB	Ag P	Př
45.41	51.25	Foliated Contaminated Red Granite		ļ			
		- schistose foliation at 45° to core axis		ļ		ļ	
		- occasional red aplite dike		ļ			
		- occasional biotite ± chlorite ± magnetite xenolith	<u> </u>	-			_
51.25	52.42	Xenolithic, Grey, Leucogranite					_
		- 15cm chloritic "xenolith" with 20% disseminated pyrite below		ļ			
		which is siliceous, mottled felsite 51.01 - 51.61	7719	Nil	L		
		- contacts at 45° to core axis	L	A CONTRACTOR	~~~		
52.42	57.64	Foliated Reddish Leucogranite	/5	* -	ENERO		
		- indistinct gneissic foliation	MINISTER	12	. (g)		
			SIS	12	14/188		
57.64	73.74	Interbanded Siliceous, Sulphide-Bearing Paragneiss, Amphibolite,	1	100	. 189 ,	1	
		Feldspar Porphyritic, Biotite "Granite" Gneiss And Contaminated			833AL	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		Grey "Gran odiorite"			3335		
		- 50cm massive, medium grained amphibole - spotted meta-dior	ite				
		with disseminated -to- fracture controlled pyrite ($\frac{1}{2}$ %)					
		bordered by conformable siliceous, paragneiss foliated at 60°					_
		to core axis 57.60 - 58.22	7720	Ni1			
		- siliceous paragneiss at 45° to core axis, locally folded, with					
		conformable bands and disseminations of pyrrhotite (3%)					
		pyrite (2%) and magnetite (1%) and a rare speck of	7721	486	PPM	Cu	
		chalcopyrite 58.22 - 59.28	7721	Nil		0.5	
***************************************		- siliceous "felsite", minor paragneiss and amphibolite bands;	7721	49	PPM	Zn	
		good trace of disseminated pyrite 59.28 - 60.40	7722	Nil			_
		- folded paragneiss (50%) with 5% pyrite and pyrrhotite, trace					
		magnetite and faint trace chalcopyrite interbanded with					_
en john kan		biotitic, feldspar (sericitized) porphyritic, grey granite					
		60.40 - 61.32	7723	Nil			_
		- amphibolite interbanded (at 30° to 70° to core axis) with					_
		feldspar porphyritic, grey granite and siliceous paragneiss, the					_
		last with 5-10% pyrrhotite and pyrite which are associated wit	n 7724	578	PPM	Cu	_
		epidote and chlorite 61.32 - 62.25	7724	Nil	-	0.4	_
	 	- 30cm of thin, indistinctly banded, tightly folded (at 50° to	7724	+		Zn	_
		core axis), magnetite (60%) changing sharply below to					

Hole Number D87-2

Sheet Number 2

			SAMPLE	AS	SAY
FROM	TO	DESCRIPTION	NUMBER	Au PPB	Ag PPM
		schistose feldspar porphyritic grey granite with a good trace			
		of pyrrhotite and pyrite 62.25 - 62.75	7725	Nil	
		- schistose, grey feldspar porphyritic granite with occasional			
		patches of irregular bands of pyrite and pyrrhotite (1%)			
		70.05 - 71.01	7726	Ni1	
		- cherty paragneiss, amphibolite and grey -to- pink, feldspar			
		porphyritic granite with 5% pyrite - pyrrhotite - chalcopyrite			
		(trace) associated with biotite and epidote in the paragneiss	7727	350 PPM	Cu
		mainly 71.01 - 72.00	7727	Nil	0.5
		- weakly foliated pink -to- grey biotite (15%) granite with	7727	57 PPM	Zn
		trace disseminated pyrite; includes 10cm band of paragneiss at	ŧ		
		73.10 with pyrite, magnetite and chlorite at 50° to			
		core axis 72.00 - 73.21	7728	Nil	
73.74	84.40	Interbanded, Grey, Feldspar Porphyritic Granite, Amphibolite And			
		Red Contaminated Granite			
		- K-spar + epidote altered FP Gr, trace pyrite			
		and fractured with calcite 75.38 - 75.98	7729	Nil	
		- contaminated F P Gr with chlorite -calcite- pyrite (trace)			
		veinlets parallel to core axis 83.40 - 84.40	7730	Ni1	-
84.40	85.85	Weakly Altered And Sheared "Pelsite"			
		- massive -to- fractured, bleached by pervasive chlorite -			
		calcite - sericite - pyrite (1%) and chalcopyrite (faint			
		trace) alteration; sheared at upper contact at 50° to			
		core axis with a rare quartz stringer 84.40 - 85.00	7731	Ni1	
		- less altered and somewhat feldspar porphyritic with			
		20cm sheared at lower contact at 50° to core axis (but			
		lacking sulphides) 85.00 - 85.85	7732	Nil	
85.85	87.20	Pinkish -to- Dark Grey, Contaminated, Feldspar Porphyritic Granite			
		- trace to ½% disseminated pyrite and rare speck chalcopyrite			
		especially in or near rare mafic xenolith 85.85 - 87.20	7733	Nil	
	1				

Logged by BVI Hole Number Sheet Number 3

FROM	to	DESCRIPTION	SAMPLE NUMBER	Au PPB	SAY
37.20	156.36	Foliated, Contaminated, Grey, Feldspar Porphyritic "Granodiorite"		AU III	
1.20	130.30	- 20 - 40% feldspar phenocrysts of very variable size and			\vdash
		shape, often anhedral and altered			\vdash
		- numerous amphibolitic xenoliths ≤ 1.0m wide, with which red			
		contaminated granite and pegmatite often associated down			
		to 116.40 and also 130.0 - 136.25			-
		- occasional paragneiss bands, e.g. 30cm at 113.25			\dagger
		- occasional grey -to- red leucogranite dike at 20° to core			
		axis perpendicular to foliation, e.g. 114.90 - 118.16			-
		- schistose and gneissic foliation at 45° to 70° to core			
		axis except folding at 154.40 - 155.40 axial plane of which			+
		is about perpendicular to core axis			-
		- massive, feldspar porphyritic diorite with sharp contacts			
		cutting across foliation at 40° to core axis, 143.34 - 145.90			T
		- occasional patches, 4 10cm, of K-spar ± epidote		 	
		± garnet ± quartz alteration, e.g. at 110.20, 120.0, 124.95,			
		126.2, 130.3, 140.70 becoming banded veins at 152.76 and at 15	5.60		\vdash
		- minor mylonitic zones with K-spar ± chlorite ± calcite	0.00		1
		veinlets in grey FP Gr and 10% amphibolite xenoliths,			
		includes 8cm K-spar + epidote mylonite with an inclusion or			\vdash
		dike of massive red leucogranite at 148.00 and a tensional faul	t		
		(1cm displacement) at 45° to core axis at 147.0 cutting			\dagger
		perpendicular across the mylonite which is at 50° to core			
		axis; trace pyrite 146.70 - 148.20	7734	N; 1	\dagger
		- folded, schistose, biotitic, grey FP Gr with 2 stringers of			
•		pyrrhotite + pyrite + chalcopyrite in quartz 154.61 - 155.21	7735	Nil	<u> </u>
		<u> </u>			
56.36	171.22	Sheared And Altered, Contaminated, Feldspar Porphyritic Granite			
		- numerous xenoliths as before but more chloritic			
		- foliation is more intense but still at 45 to 50° to			
		core axis			
		- pervasive bleaching of the biotite to chlorite - calcite -			
,		sericite - dolomite (minor); also beige -to- pink K-spar			
		replacements			

Logged by RVI Hole Number D87-2 Sheet Number 4

		DECOMPTION	SAMPLE	AS	SAY
OM	το	DESCRIPTION	NUMBER	Au PPB	
		- 32cm massive -to- fractured red leucogranite (aplite)	-,-		-
		dike with chlorite + calcite + trace pyrite in fractures	7736 Nil 7737 Nil 7738 Nil 7739 Nil 8		
		156.98 - 157.58			_
		- 2cm green epidote + calcite fault breccia at 157.96 at 47°			\perp
		to core axis bounded by fractured, pervasive K-spar			L
		alteration 157.58 - 158.18	7737	Ni1	Ļ
		- bleached schist at 50° to core axis with calcite +			\perp
		chlorite + quartz + sericite (trace) and patches of	<u> </u>	ļ	$oxed{\perp}$
		K-spar alteration cut by late stage epidote + calcite			1
		veinlets; faint trace disseminated pyrite 164.20 - 164.90	7738	Nil	\downarrow
		- as before 166.83 - 167.53	7739	Nil	1
		- massive K-spar alteration cut by calcite + epidote veinlets			1
		with a faint trace of pyrite and by 10cm of fault gouge		-	1
		breccia, the matrix is green epidote and calcite, the		-	1
-		fragments (10%) being K-spar, angular in shape; the		<u> </u>	1
		contacts of the fault are at 30° and 50° to core			
		axis 167.53 - 168.23	7740	Nil	1
		- interbanded sheared granite, amphibolite and siliceous			_
		paragneiss with a conformable band, 2mm thick, of pyrrhotite			
		and pyrite 169.87 - 170.47	7741	Nil	+
171.22	178.61	Contaminated, Grey, Feldspar Porphyritic Granodiorite Gneiss			1
		- 15 to 30% biotite			
		- feldspar phenocrysts are relatively small, - 3mm, and			
		probably plagioclase mainly			
		- occasional interbands of siliceous paragneiss			
		- foliation at 45 to 70° to core axis averaging about 55°			
		- numerous "amphibolite" bands			
		- scattered faint traces of pyrite and pyrrhotite, often in			
		the amphibolites, not sampled			
	End of	Hole			
			1		
			+		+

Logged by RVI Hole Number D87-2 Sheet Number 5

FROM	to	DESCRIPTION	SAMPLE NUMBER	ASSAY
		SUMMARY		
		Hole was collared in the Kitchigama granite and directed		
		northerly to test strong magnetic and flanking IP anomalies inferred		
		to be underlain by metavolcanics.		
		These anomalies can be explained by conformable bands of		
		pyrrhotite and pyrite and traces of chalcopyrite as well as a band		
		of oxide iron formation in siliceous paragneiss from 57.6 to 73.2m		
		depth in the hole.		
		Several zones of shearing and hydrothermal alteration were		
		intersected at depth in contaminated, feldspar porphyritic biotite,		
		granite gneiss. The chloritic shears and feldspathic mylonites are		
		conformable with the country rock foliation dipping steeply		
		southwards. Biotite has been bleached to chlorite and calcite.		
		There were also extensive additions of K-spar before, during and sub	-	
		sequent to this shearing. Tensional faults followed and open spaces		
		filled with epidote and calcite mainly. The latter may be associated		
		with mafic intrusive dikes.		
· · · ·				
-				
7				

Hole Number....

D87-2

Sheet Number......6

At	7.7m Ft. 1.4m Ft. Ft. Ft.	Property Discovery No. 1540 At Grasset Tw. 1530 Claim No. 127736-3/ Working Place Baseline Footage L. 1530 Baseline Offset 3 Date Started A. 1530 Date Completed A. 1530	P., P.Q. Dip		
0	13.41	Overburden (clay)		NOMBER	AU PPB
28.45	32.90	Foliated, Contaminated, Red Granit - medium grained, schistose at - 12-20% hornblende, biotite ar - similar to red granite of holes Grey-to-Red, Xenolithic (5%) Grani	30-40° to core axis and chlorite s 1 and 2	REÇU 1 MAI 19 VAL D'OR	87 E
32.90	35.94	Mafic Xenoliths And Granitic Inject - foliation at 30° to core axis	tions	MIN	
35.94	63.59	Interbanded Granodiorite, Orthogne Amphibolite - very variable, flow-folded gne averaging about 25° to core a - cherty paragneiss 48.86 - 50.9 which grades into the most ab siliceous, biotite granodiorite go of amphibolite and intruded by massive granodiorite. - grey, siliceous, biotite, granod paragneiss at 0-20° to core as calcite shears at 45° to core a the gneissosity) with which tra specks of chalcopyrite are ass	eissic banding axis 00 and 55.80 - 57.70 bundant rock type - gneiss with inclusions y very contaminated, diorite gneiss and cherty kis cut by chlorite + exis (and about 80° to aces of pyrite and rare	7742	Nil
		Logged by R. van	Ingen	1	

FROM	TO	DESCRIPTION	SAMPLE	ASSAY Au PPB
			NUMBER	AU FFD
		- as before but trace pyrite + chlorite + calcite in		w.: 1
		fractures at 5° to core axis 57.46 - 58.06	7743	MIT
		- grey -to- pink, medium -to- coarse grained granodiorite,		
		very contaminated with hornblende and small xenoliths;	-	
		trace disseminated + stringer pyrite 58.06 - 58.91	7744	Nil
		 amphibolite intensely invaded by contaminated 		
		granitoid, trace pyrite 58.91 - 60.60	7745	Nil
63.59	87.87	Reddish Aplitic Granite		
		- contaminated with trace magnetite adjacent		
		to large chloritic xenoliths 68.00 - 69.10		
87.87	102.80	Reddish Leucogranite "Gneiss"		
		- thin, distinct bands of white and red felsite		
		- occasional amphibolite bands		
		- K-spar altered at depth		
102 80	103.10	Fault Breccia		
102.80	100.10	- 20 to 60% elongate, red feldspathic clasts,2cm long at		
		top -to- 2mm long at depth		
		- matrix is greenish-black chlorite + "feldspar ± zoisite"		
		- massive -to- foliated at 370 to core axis		
		- irregular, black chlorite veinlets		
103.10	128.32	Foliated, Contaminated, Feldspar Porphyritic Granodiorite		
		- scattered patches of siliceous paragneiss, amphibolite		
		and pervasive K-spar ± epidote alteration		
		- foliation 0-50° to core axis		
_		- bleached, chloritic "alteration" 105.2 - 106.6		
		- pervasive K-spar (50%) with bands of chlorite + epidote		
		+ magnetite 1%; well fractured with calcite; trace		
		pyrite 108.40 - 109.50	7746	Nil
· · · · · · · · · · · · · · · · · · ·		- mafic dike 111.38 - 111.98	1,10	

Hole Number D87-3

Sheet Number 2

FROM	10	DESCRIPTION			SAY
		- medium grained, red leucogranite bordered by	NUMBER	Au PPB	
		contaminated red granite (cutting FP Gd); much			-
		fractured, with calcite, clay and chlorite 111.98 - 112.78	7747	Nil	
		- mafic intrusion 116.30 - 117.04	1121		
		- 25% bands of epidote and chlorite and magnetite +			
		pyrite, 4%, (in FP Gd) at 45° to core axis			
		117.04 - 117.64	7748	10	
		- 10% beige, cherty alteration bands and 5cm chloritic	1170	10	
		sheared band at 45° to core axis 122.54 - 123.14	7749	10	1
		- 39cm chlorite + calcite schist (folded schistosity at	1 10	10	
		30° to 60° to core axis) and silicified fractured			+
		FP Gd with 2cm pegmatite at contact 125.58 - 126.18	7750	Ni 1	
-			1		
End o	f Hole				1
					1
		SUMMARY			
		The hole was directed southerly (200° AZ) across an IP			
			<u> </u>		ļ
		anomaly inferred to be underlain by volcanics.			
		It intersected a complex assemblage of granites, orthogneiss, paragneiss, xenoliths and mafic dikes. There are chloritic		<u> </u>	-
		shears and patches of pervasive K-spar alteration but only			
		•			
		trace of sulfides. The attitude of the gneissic foliation in			-
		the rock contacts are largely dipping to the south. It is possible	-		
		that the hole passed below the source of the IP anomaly, i.e. the hole went "down the dip."			
					-
		The intrusive sequence may be from oldest-to-youngest:			<u> </u>
		paragneiss, chlorite schistose metavolcanics, amphibolite, orthogneiss, feldspar porphyritic granodiorite, red granites,		-	-
		K-spar alteration, faulting, mafic dikes.			-
			-		-
					
					-
					-

Logged by.....RVI

	DIP TES			Hole Number		D87-4	_
At 47	.7m Ft.	-500		Dip		-480	
At	Ft			Length			
At	Ft			Bearing	************	200 A	<u>Z</u>
At	Ft			Elev. Collar	***************************************		
At	Ft		Baseline Offset 1+85N	Horiz. Trace			
At	Ft			Vert. Trace			
			Date Completed Apr. 4, 1987	Date Logged	April 5,	1987	
FROM	то		DESCRIPTION		SAMPLE NUMBER	ASS.	ΑY
0	9.46	Overburder	ı (clay)				
9.46	13.50	Granodiori	te Orthogneiss				
			biotitic (about 20%), fine grained, silice	ous:			
			ng 0-60° to core axis (average about 30°		ENERG	E ET ON	
			es into occasional bands of paragneiss	· /	RE	ÇU ~ %) ≉	1
			sional inclusions of amphibolite		1 1 M	A 1 1987	
			sional massive, grey granite dike			D'OR	7
					11/10	IN	
13.50	19.60	Siliceous, S	ulfide-Bearing Paragneiss And Feldspar				
		Porphyritic	Granodiorite Orthogneiss				-
		– gneis	sic banding 35° to 60° to core axis				
		– thinl	y bedded, grey chert with biotitic beds a	ınd			
		mino	r chloritic bands and occasional feldspar				
		pheno	ocrysts				
		- abou	t 5% pyrrhotite and pyrite in conformab	le			
		bands	s at 35° to core axis	0 - 14.32	7751	Nil	
		- silice	eous, feldspar porphyritic gneiss and				
		remn	ant paragneiss bands at 35° to core axis	;			
		good	trace up to ½% pyrite ≤ pyrrhotite 14.3	2 - 15.35	7752	Nil	
		- very	tight, shear folded, crumpled, siliceous	para-			
			s with occasional feldspar phenocrysts;				
			rhotite (including 2cm band of massive p	-			
			agnetite, mainly in chlorite + epidote be				
		400 8	nd 60° to core axis, the latter mainly sh				
			15.3	5 - 15.95	7753	10	
		age state to the state of the s					
	1		Logged by R. van Ingen		<u> </u>		

FROM	TO	DESCRIPTION	SAMPLE		SSAY
-			NUMBER	Au PPB	Ag PPM
		- feldspar porphyritic, siliceous gneiss (looks like			
		crystal tuff!) with a trace pyrite 15.95 - 16.70	7754	Ni1	
		- feldspar porphyritic (whitish -to- reddish), biotitic	 	<u> </u>	
		gneiss; feldspar crystals appear to have grown after the			
		first foliation at 40° to core axis but before the shear			
		foliation at 60° to core axis; about 2% pyrite and	<u> </u>		
		pyrrhotite mainly with chlorite in the shear foliation		<u></u>	
		bands 16.70 - 17.37	7755	10	
		- similar to previous sample but contains about 8%			
		pyrrhotite ≥ pyrite, trace magnetite and trace chalco-			
		pyrite including a 4cm band of massive pyrrhotite with			
		porphyroblasts of pyrite at 80° to core axis; the calcopyrite	7756	236 P	PM Cu
		is mainly associated with pyrrhotite 17.37 - 17.97	7756	Nil	0.3
		- similar to previous sample; about 2-3% pyrrhotite, pyrite	7756	57 PPM	Zn
		and chalcopyrite (trace); foliation 30-70° to core axis			
		17.97 - 18.70	7757	Nil	
		- grey, cherty altered, with bands of epidote and garnet,			
		in mafic-rich, feldspar porphyritic granodiorite; 5cm			
		mafic inclusion in axis of a fold; banding at 45° to			
		80° to core axis; trace pyrite; 18.70 - 19.60	7758	Nil	
19.60	21.80	Massive, Feldspar Porphyritic Diorite		-	
		- upper contact chlorite schist, 1cm thick, at 35° to core axis			
		- lower contact at 63° to core axis, cuts gneissic banding			
	i	- 5cm inclusion of sulfide-bearing paragneiss at 20.12	 		
		- 8cm mafic dike at 20.72			
21.80	25.00	Feldspar Porphyritic, Granodiorite Orthogneiss			
		- occasional granodiorite intrusive dikes and mafic xenoliths			
		- gneissic banding at 0-80° to core axis			
		- 2cm massive garnet band at 22.90			
25.00	26.60	Massive, Feldspar Porphyritic Diorite			
		- contacts at 80° to core axis			

Hole Number.....

D87-4

Sheet Number 2

FROM	10	DESCRIPTION	SAMPLE NUMBER		SAY
		- contains a vanalith of PD Co in which	HOWDEK	Au PPB	╀
		- contains a xenolith of FP Gn in which	_		╀
		the feldspars have been reddened			<u> </u>
26.60	31.24	Feldspar Porphyritic, Granodiorite Orthogneiss and Paragneiss			
		- irregular banding			Ī
		- occasional dikes of medium grained, massive quartz			
		monzonite			
		- occasional band of amphibolite (biotitic) cut by			
		granitic dikes			
		- 10cm sheared, magnetite, 3%, biotite "hornfels" with			
		1% pyrite streaks at 30.40 at 42° to core axis			
31.24	40.84	Partially Granitized Meta-Diorite			-
		- irregular fingers of granite			
		- hornfelsic porphyroblasts of biotite, hornblende and			
		feldspar			
		- occasional feldspar prophyritic, granodiorite dike			
		with small mafic xenoliths			
40.84	42.06	Feldspar Porphyritic Quartz Diorite			
		- sharp contact below with;			
42.06	75.29	Feldspar Porphyritic, Gneissic Granodiorite			-
		- scattered sections of reddish K-spar alteration			
		± hematitic staining			
		- hornfelsed mafic xenoliths and associated reddish			
		pegmatite abundant 56.83 - 65.90 and 70.20 - 72.60			
		- weakly sheared at 53° to core axis with chlorite and			
		associated bands of epidote and quartz, calcite and			
		trace pyrite (which post-date the K-spar alteration);			
		73.05 - 74.09	7759	Nil	
End o	f Hole				-

Hole Number D87-4

FROM	το	DESCRIPTION	SAMPLE NUMBER	ASSAY
		SUMMARY		
		The target of this hole was the bedrock source of the IP		
		anomaly missed in hole 3.		
		Hole 4 intersected trace -to- 8% banded pyrite and		
		pyrrhotite and a trace of chalcopyrite from 13.50 - 19.60.		
		This could explain the IP anomaly, but if so, the center of		
		the anomaly is displaced 30 meters too far to the north.		
		The sulfides occur conformably in cherty paragneiss and		
		feldspar porphyritic granodiorite gneiss. They also occur		
		(somewhat more so) in a cleavage foliation that cuts the gneissic		
		bands at a small angle. The cleavage foliation is inferred to		
		be dipping steeply south.		
		The adjacent rocks are mainly feldspar porphyritic,		
		granodiorite gneiss and amphibolite. They become		
		K-spar altered with depth. The sequence is intruded by minor		
		amounts of massive, granitoid dikes and pegmatite which seem		
		to be related to the K-spar alteration event. There are also		
w.i.		composite mafic dikes which appear to post-date this event.		
<u> </u>				
· · · · · · · · · · · · · · · · · · ·				

	DIP TE	ESTS	Property Discovery	West Corp.	Hole Number	L	D87-5
At 45	.7m Ft.	-49o	At Grasset Twp., P.Q. Dip.				-480
		-490		427741.2	Length		128,32m
		-480					
At	Ft		Baseline Footage	L31+50E	Elev. Collar		
At	Ft		Baseline Offset	1+50N	Horiz. Trace		
At	Ft		Date Started	Apr. 5, 1987	Vert. Trace		****
			Date Completed	Apr. 6, 1987	Date Logged	April 7,	, 1987
FROM	то		DESCRIPTION		<u></u>	SAMPLE NUMBER	ASSAY
0	16.45	Overburden					
						TOIR PO	
16.45	18.00	Magnetic Gr			ENE	REÇU	
			2% magnetite		<u></u>		RESS
			chloritic schistosity at	, 450 to core as	ris w 11	MAI 1987	088
		- faint t	trace pyrite		xis U 11	VAL D'OR	\$/
						MINES	
18.00	28.24		anitized Meta-Diorite	•			
			ed by many fingers and	disseminations	s of	-	
			r [±] quartz	-tvia			
			chloritic schistosity at	t 40° to core a	xis at		
		lower	contact			. !	
28.24	29.06	Red Leucogr					
		- mottle	ed with unreplaced pat	ches of grey gr	ranite		
		- irregu	ılar contacts				
29.06	40.90	Feldspar Po	rphyritic Granodiorite				
		- very c	contaminated with sma	ill -to- large xe	enoliths of		
		fine-g	rained meta-diorite; pi	inkish feldspar			
		- 60cm	magnetic greenstone a	it 33.12 and at	38.50		
40.90	43.91	Meta-Diorite	e Hornfels				
		- many	dikes of feldspar porph	nyritic granodi	orite,		
		pinkis!	h feldspar				
		- 20cm	magnetite and trace p	yrite at 41.56			
			Logged by R. van I	Ingen	.		

FROM	το	DESCRIPTION	SAMPLE NUMBER	<u> </u>	SAY
43.91	60.00	Magnetic Greenstone		A11PPR	
10.01	00.00	- about 1 to 2% magnetite			
		- rock was probably a basalt flow(s), but if so, the volcanic			†
		textures have been destroyed by extensive mottling and			†
		indistinct banding of zoisite ± epidote bleaching			
		- superimposed on this texture are occasional amphibolitic			
		bands at 40° to core axis related to the proximity of			
		granitoid dikes (e.g. 25cm at 28.25) and also locally by a			
		cleavage at 80° to core axis 49.8 - 50.1			
		- there was then another episode of propyllitic alteration			
		and veining related to tensional deformation.			
		- very fractured hornfels and red K-spar dikes 52.10 - 53.50	7760	Nil	-
60.00	61.70	Feldspar Porphyritic Granodiorite			
		- very contaminated; pinkish feldspar			<u> </u>
		- weakly schistose at 60° to core axis			
61.70	66.23	Magnetic Greenstone			
		- hornfelsic			-
66.23	67.55	Feldspar Porphyritic Granodiorite			
		- as before; irregular contacts			
67.55	73.00	Hornfelsic, Magnetic Greenstone			
		- grades into			ļ
73.00	74.50	Magnetic Meta-Diorite Hornfels			-
74.50	76.90	Pink Pegmatitic Granite			
		- contacts at 20° to core axis			-
76.90	112.10	Magnetic, Meta-Diorite Hornfels			
		- note: 79-84 core is jumbled up out of order (it was dropped			_
		by accident in the core shack)		-	1
		- occasional pink granitic dikes			

D87-5

5004	DESCRIPTION	SAMPLE	ASSAY	
ROM TO		NUMBER	Au PPB	
	- 22cm light grey quartz vein, fractured in the endomargins			
	and mineralized lightly with green chlorite, calcite and			
	trace disseminated pyrite; contacts at 70° to core axis			
	(compared with local chloritic schistosity at 45° to			
	core axis of the hornfels) 79.80 - 80.40	7761	Nil	
	 well-fractured and weak pervasive chloritic alteration 			
	97-106			
	- weakly schistose at 70° to core axis, cut by occasional			
	granitic veinlet and amphibolite band at 45° to core axis;			
	which in turn is fractured and mineralized with chlorite,			
	quartz, calcite, epidote, earthy hematite; trace			
	disseminated pyrite 97.33 - 98.03	7762	Nil	
	- trace pyrite 110.55 - 110.85, not sampled			
	- sharp contact below with			
112.10 116.23	Xenolithic, Feldspar Porphyritic, Quartz Diorite			
	- occasional red, leucogranite dike			
				<u></u>
116.23 128.32	Foliated Contaminated Red Granite			
	- similar to that of holes 1, 2 and 3			
	- weakly schistose at 50° to core axis			
	- occasional red, leucogranite dike at 20° to core axis			
	(i.e., very gently dipping)			
End of Hole				
	SUMMARY			
	The hole was put down into a local magnetic depression or			
	"saddle" in a magnetic high formational trend. The interpretation			
	for this picture was magnetic greenstones cut by a north/south			
	fault zone.			
	The hole did intersect magnetic greenstones which seemed to			I
	grade into magnetic, hornfelsic, meta-diorite with depth. The			
	latter terminates in contaminated, red granite like that of			
	holes 1, 2 and 3.			

Logged by RVI Hole Number D87-5

Sheet Number 3

FROM	то	DESCRIPTION	SAMPLE NUMBER	ASSAY
		The explanation for the magnetic "saddle" may be that more		
		non-magnetic granite occurs on the drill section than on adjacent		
		lines.		
		The only mineralization seen of possible economic interest, is		
		a 22cm wide grey quartz vein with a trace of pyrite (at 80.1m).		
		a seem wide grey quarte veni with a successify		
	<u> </u>			
			-	:
-				
			<u> </u>	

í

RVI D87-5 4 Logged by Sheet Number Sheet Number							
Jieer Hollider	d by RVI	ed by	RVI	Hole Numb	D87-5	Shoot Number 4	
						Once Nomber	

	DIP	TESTS	Property Discover	y West Corp.	Hole Number		D87-6
At4	5.7m Ft.	-480		Гwp., P.Q.	Dip		-480
		-480	Claim No.	427738-5	Length		
			Working Place		Bearing		200 AZ
At	Ft.		Baseline Footage	L25+50E	Elev. Collar		
			Baseline Offset	7 1 0 0 C	Horiz. Trace		
			Date Started		Vert. Trace		
			Date Completed	Apr Q 1007	Date Logged	April 9,	1987
FROM	TO		DESCRIPTION	vi		SAMPLE NUMBER	ASSAY
						NUMBER	Au PPB
0	16.57	m Overburden					
40.57	100.00		114 11 11 11			HERGIE	
16.57	106.38		ed, Magnetic, Red Gr		es 1, 2, 3	RECL	OF
			y schistose and simila		ا نت ا	* 14.41	1987
			except that in this ho		TE TE	VAL D'O	<u> </u>
			nt is slightly less (5-1	5%) and is distin	ietty	MINES	<u>``₹}</u>
	, ,		etic throughout	aggainted with	opidate in	WINE	
			-to- 1% magnetite is				
			lloritic and biotitic ar thic clots	inpinioole grains	DIB		
			vely little or no magr	natita was observ	ved in the		
			es of reddened, some				
			ered below a depth of				
			ional dikes of red peg				
			49.8 cutting perpend				
			e thus inferred to be				
			oliation is rather varia		55° to		
			ore axis as follows: 3				
			17-67, 55° 67-73, 50°				
		500 9	L-97 and 55° at 105				
		- the m	ain sheared and/or fr	actured zones a	re 47-48,		
		54-63	, 71-72 and 102-104 a	nd were sample	d as follows:		
		- crush	ed (faulted?) with chl	orite in shears,	at about 350		
		to cor	e axis in non-magnet	ic granite; bleac	hed with		
		chlori	te, calcite, epidote a	nd earthy hemat	ite; later		
		fracti	ıres have limonite and	d calcite in then	1 47.34 - 47.84	7763	Nil
			DA I SHIRLY WASHINGTON				
			D wan	Ingen			

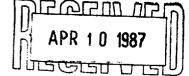
FROM	to	DESCRIPTION	SAMPLE		SAY
rkom		DESCRIPTION.	NUMBER	Au PPB	
		- slightly sheared, bleached and relatively well-fractured		<u> </u>	-
		granite (weakly magnetic) with minor chlorite, epidote,			ļ
		quartz, calcite, hematite and limonite in the fractures			ļ
		70.80 - 71.40	7764	Nil	<u> </u>
		- well fractured with chlorite and epidote at about 45° to			
		core axis and perpendicular to the foliation, in reddened			<u> </u>
		granite; still later fractures (irregular) with calcite,			
		earthy hematite and limonite 103.58 - 104.18	7765	Nil	-
End (of Hole				
		SUMMARY			
		The hole was directed towards magnetic and IP anomalies			
		inferred to be in volcanics at the contact of the Kitchigama			
		granite pluton.			
		It only encountered magnetic, red granite which was lacking			
		in mineralization indicative of gold deposition.			
		The hole was stopped short of the targets with the intention			
		of moving the drill to a northerly site to better test them.			
		Unfortunately the spring thaw set in suddenly and it was deemed			
		too dangerous to make this move (by DC-6 tractor on the peat bog).			
		Thus the anomalies remain untested.			
					1
191					1
					1
					†
					+
			1		+

At	5.7m Ft. 1.4m Ft. Ft. Ft.	-47° -45°	Property Discovery West Corp. At Grasset Twp., P.Q. Claim No. 427739-1 Working Place Baseline Footage L28+50E Baseline Offset 10+45S Date Started Apr. 8, 1987 Date Completed Apr. 10, 1987	Hole Number Dip		20° A	6 m .Z
0	22.55	m Overburden	(includes gravel and boulders)				
22.55	28.75		e" m grained, massive -to- weakly schis core axis except in contact zone des				Signal Si
		propyl	uhedral, grey -to- pinkish feldspars; 4	15%	4	DON WAR	*
		- occasi - numer	e + amphibole in contact zone onal patch of m.g., K-spar-rich "syer ous calcite + hematite (earthy) + chl				
		- hornfe	fractures elsed contact zone is weakly magnetic tic banded at 15° to core axis; at 28.	35 this			
		+ epidis cut	g is cut obliquely at 20° to core axis ote band, 10cm wide, which further of off acutely by the chilled monzonite tic, magnetic and with a trace of pyrone.	lown the hole			
		-	28	3.25 - 28.95	7766	Ni1	
28.75	65.20	- fine -1	to- medium grained with extensive ch	nilled			
		- massiv	28.75 - 31.39 and 56.90 - 65.20 ve, reddish green, consisting 65% of e ar and 30% interstitial chlorite, seve				
		- the fe	tite and a good trace disseminated p ldspar appears to be entirely K-spar include plagioclase dusted with hema	but			
			Logged by R. van Ingen				

				ASSAY	
FROM	10	DESCRIPTION	NUMBER	Au PPB	
		- calcite and hematite lined fractures throughout			
		- numerous chlorite-calcite-hematite veinlets often			
		parallel to core axis 35.10 - 35.96	7767	Ni1	
		- chlorite-fractured (not hematitic) with a faint trace			
		chalcopyrite 42.65 - 43.25	7768	Nil	
		- with 8cm zone of numerous cacite + hematite veinlets			
		49.70 - 50.30	7769	Nil	
		- well-fractured with calcite, chlorite and hematite			
		51.55 - 55.35	7770	Nil	
		- 60cm chilled monzonite in contact (not actually visible)			
		with meta-diorite hornfels; magnetic; cut by numerous			
		K-spar + amphibole bands at 150-500 to core axis; both			
		rock types well-fractured with chlorite, calcite and			
		hematite; trace pyrite in monzonite only, however;			
		64.42 - 65.84	7771	Nil	
35.20	111.86	Magnetic, Blotchy Meta-Diorite			_
		- fine-grained to medium-grained			ļ
		- about 1-2% magnetite decreasing somewhat at depth	-		ļ
		- massive to blotchy, becoming foliated with depth			ļ
		- appears to be hornfelsed mafic intrusive(s) rather than			
		volcanics because primary textures not visible			_
		- the blotchy texture is a pervasive chloritization (not			-
		schistose) as mottling and banding; it locally supersedes			_
		an early, indistinct schistose foliation			_
		- a distinct, schistose foliation starts near a red			_
		dike 102.57 - 103.48 and continues with depth at 40°-50°			
		to core axis			_
		- note: the 217 ft.marker chip (66.14m) was incorrectly			ļ
		marked "227" and all subsequent markers are also incorrect			
		(10 feet too high); the corrected distances are given here			1_
		but the markers themselves are unchanged			
		- 7cm white quartz vein (fractured with chlorite and calcite)			
		at 65° to core axis which is perpendicular to a 2cm granitic			
		vein; trace pyrite adjacent to the veins 68.58 - 69.19	7772	Nil	

Logged by RVI Hole Number D87-7 Sheet Number 2

FROM	TO	DESCRIPTION		SAMPLE NUMBER		SAY
			ta un to 15 cm	NUMBER	Au PPB	+
		- bands of epidote - calcite and K-spar-quar				╀
			75.59 - 76.35	7773	10	╀
		- fault(?) contact zone of reddish leucogran		-		╀
		magnetic) with sheared (at 50% to core ax				\vdash
	-		97.38 - 98.60	7774	Nil	\vdash
		- biotitic, weakly magnetic hornfels with a	i i			+
		of chalcopyrite cut by fractures with calc	te, often			igdash
		parallel to core axis	98.60 - 99.21	7775	Nil	\downarrow
		- 15cm fault breccia (at 99.36) made up 959	of angular			$oldsymbol{\downarrow}$
		clasts, - 1cm in width, of greenstones and	red alteration,			\downarrow
		in a calcite + hematite matrix; contacts a	t 50 ° to core			\perp
		axis; wallrock not magnetic and not shear	ed; at upper			L
		contact wallrock is silicified for 1cm	99.21 - 99.82	7776	Ni1	\perp
		- biotitic, non-magnetic, meta-diorite horni	els foliated			\perp
		at 450 to core axis. It is in oblique contac	t, at 250 to core	:		
		axis, with medium-grained, pink leucogran	ite band, 15cm	······································		
		thick. The latter is in sharp contact, at 25	50 to core axis,			
		with fine grained, flow banded(?) reddish,	leucogranite dike			
		containing a small xenolith of the former	granite; the rocks			
		are rather well-fractured with calcite and	hematite			
		mineralization	102.41 - 103.17	7777	Nil	
111.86	117.96	Contaminated, Sheared, Reddish Granite				
		- fault contact at 111.86; core very broken	up			
		- siliceous reddish, felsitic "mylonite" well	fractured			
		with hematite for 30cm below contact				
		- intense mylonitic crushing and shearing at	: 65° to 80°			
		to core axis down to 113.1				T
		- below this the granite is cut by bands of in	regular chloritic			
		schist bands often parallel to core axis; th	is structure is a			T
		stockwork alteration presumed to be pre-	aulting in time			
		- the granite consists of anhedral K-spar (6				T
		quartz (20%), often blueish, and 5-to-25%				
		mafic minerals lacking pyrite or magnetit	e			T


FROM	TO	DESCRIPTION	SAMPLE	ASS	AY
	'		NUMBER	Au PPB	
		- mylonitic granitoid in fault contact with non-magnetic,			
		meta-diorite hornfels; much hematite filling late stage			
		fractures 111.56 - 112.47	7778	Ni1	
		- chlorite schist stockwork alteration with a trace of			
		pyrite adjacent to a quartz veinlet 3mm thick			
		114.91 - 115.52	7779	Nil	
Bnd (of Hole				
		SUMMARY			
		IP and magnetometer anomalies were tested in this hole.			
		The IP anomaly appears to be explained by magnetite (3%)			
		and pyrite (trace-to-1%) uniformly disseminated throughout			
		a "monzonite" intrusive 36 meters wide. Somewhat less			
		magnetite occurs in the hornfelsed, mafic intrusive			•
		adjacent to, and north of it, down to a depth of 112 meters			
		in the hole. At this depth the meta-diorite is in fault			
		contact with sheared red granite. There is much fracturing of			
		the rocks and chlorite, calcite and earthy hematite mineralization.			
		The chronological order of events from oldest to youngest is			
		tentatively thought to be: mafic intrusive - volcanics, granite,			
		shearing, syenodiorite, monzonite, normal faulting.			
					
· · · · · · · · · · · · · · · · · · ·					

Logged by RVI Hole Number D87-7 Sheet Number 4

P.O. BOX 10, SWASTIKA, ONTARIO POK 1T0
TELEPHONE: (705) 642-3244
ANALYTICAL CHEMISTS ● ASSAYERS ● CONSULTANTS

Certificate of Analysis

Certificate No. 66242			Date: April	8, 1987
Received April 1, 1987	18	Samples of	Drill Core	
Submitted by <u>Discovery West</u>	Corp., Toront	to, Ontario.		Proj #Grasset
Samples per R.	Van Ingen			
	SAMPLE 1	NO. GOLD PPB		
	7701	Nil		
	7702	Ni l		
	7703	Nil/Nil	l	
	7704	Ni 1		
	7705	Nil		
	7706	Nil		
	7707	Nil		
	7708	Nil		
	7709	Nil		
	7710	30		
	7711	210/200)	
	7712	Nil		
	7713	Nil		
	7714	Nil		
	7715	Ni l		
	7716	Nil		
	7717	Nil		
	7718	Nil		

1 1 MAI 1987

VAL DIUR

Per _______

G. Lebel - Manager

Member Canadian Testing Association

ESTABLISHED 1928

Certificate of Analysis

1 1 MAI 1987

Certificate No	66253		Dat	e: April 9	, 1987	-
Received Apri	1 3, 1987	23 Sar	mples of <u>Dri</u>	ll Core		
Submitted by	Discovery West Corp	o., Toronto,	Ontario.			
	Samples per Robert	Van Ingen	· · · · · · · · · · · · · · · · · · ·			
	SAMPLE NO.	GOLD PPB	SILVER PPM	COPPER PPM	ZINC PPM	
	7719	Nil				
	7720	Nil/Nil				
	7721	Nil	0.5	486	49	
	7722	Nil				
	7723	Nil				
	7724	Nil	0.4	578	63	
	7725	Nil				
	7726	Nil				
	7727	Nil	0.5	350	57	
	7728	Nil				
	7729	Nil				
	7730	Nil/Nil				
	7731	Nil				
	7732	Ni l				
	7733	Nil				
	7734	Ni l				
	7735	Nil				
	7736	Nil				
	7737	Nil				
	7738	Nil				
തമ്പ്ര വരം	7739	Nil				
	7740	Nil/Nil				1. 01
PR 1 4 1987	7741	Nil				441
المال الحالف	NOTE: Arsen	ic results	Per			1. HW

ESTABLISHED 1928

G. Lebel - Manager

to follow.

P.O. BOX 10, SWASTIKA, ONTARIO POK 1T0

TELEPHONE: (705) 642-3244

ANALYTICAL CHEMISTS ● ASSAYERS ● CONSULTANTS

Certificate of Analysis

1 1 MAI 1987

VAL D'OR

Certificate No. 66275	Date: April 9, 1987
Received April 6, 1987 9	Samples of Split Core
Submitted byDiscovery West Corp., Toro	nto, Ontario.
Samples per Robert Van In	igen

SAMPLE NO.	GOLD PPB
77 4 2	Nil
7743	Ni l
7744	Nil
7745	Nil
7746	Ni1
7747	Nil
7748	10/10
7749	10
7750	Nil

Per J. July

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO
TELEPHONE: (705) 642-3244
ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No. 66260

Date: April 9, 1987

Received April 6, 1987 9 Samples of Drill Core

Submitted by Discovery West Corp., Toronto, Ontario.

REÇU

1 1 MAI 1987

samples per: Robert Van Ingen

SAMPLE NO.	GOLD PPB	SILVER PP M	COPPER PPM	ZINC PPM
7751	Nil			
7752	Nil			
7753	10			
7754	Nil			
7755	10/Nil			
7756	Nil	0.3	236	57
7757	Nil			
7758	Nil			
7759	Ni l			

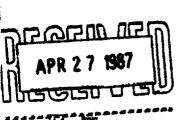
Per __

G. Lebel - Manager

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS ● ASSAYERS ● CONSULTANTS

Certificate of Analysis

Certificate No. 66351


Date: April 22, 1987

Received April 13, 1987

20 Samples of Split Core

Submitted by Discovery West Corp., Toronto, Ontario. Proj. #Grasset

_		
	SAMPLE NO.	GOLD PPB
	7760	Nil
	7761	Nil
	7762	Nil
	7763	Ni l
	7764	Nil
	7765	Nil/Nil
	7766	Nil
	7767	Nil
	7768	Nil
	7769	Nil
	7770	Ni l
	7771	Ni 1
	7772	Nil
	7773	10/Ni 1
	7774	Nil
	7775	Ni l
	7776	Nil
	7777	Ni l
	7778	Nil

Per G. Lebel - Manager

Nil

7779