GM 44879

REVERSE CIRCULATION OVERBURDEN DRILLING AND HEAVY MINERAL GEOCHEMICAL SAMPLING, CHAPAIS WEST PROJECT

Documents complémentaires

Additional Files

CORPORATION FALCONBRIDGE COPPER

CHAPAIS WEST PROJECT

LA RIBOURDE, SAUSSURE AND DOLOMIEU TOWNSHIPS, QUEBEC

REVERSE CIRCULATION OVERBURDEN DRILLING

AND HEAVY MINERAL GEOCHEMICAL SAMPLING

BY

T.E. BURNS, K.A. MacNEIL and S.A. AVERILL

OVERBURDEN DRILLING MANAGEMENT LTD.

JULY, 1986

Ministère d	le l'Énergle et des Ressources
Servic	e de la Géoinformation
Date:	7 AOUT 1987
No G.M.: _	44879

TABLE OF CONTENTS

		Page
1	SUMMARY	1
2	INTRODUCTION	3
2.1 2.2 2.3 2.4	Project Background Property Location and Access Physiography and Vegetation Previous Work	3 7 7 8
3	DRILLING AND SAMPLING	9
3.1 3.2 3.3 3.4 3.5 3.6 3.7	The Principles of Overburden Exploration in Glaciated Terrain Drill Hole Pattern Drilling Equipment Drill Performance Logging and Sampling Sample Processing Sample Analysis	9 11 14 15 16 21 25
4	BEDROCK GEOLOGY ·	26
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.4	General Geology Bedrock Logging Procedures Bedrock Stratigraphy of the Chapais West Drill Area Intermediate to Mafic Volcanics (Unit 1) Felsic Volcanics (Unit 2) Fragmental Intermediate - Felsic Volcanics (Unit 3) Greywacke, Siltstone, Mudstone (Unit 4) Gabbro, Quartz Gabbro, Pyroxenite (Unit 5) Feldspar Porphyry, Quartz-Feldspar Porphyry, Felsite (Unit 7) Syenite, Granodiorite, Quartz Diorite (Unit 7) Gold and Base Metal Bedrock Geochemistry	26 28 29 31 41 42 43 45 45 49 50
5	OVERBURDEN GEOLOGY	52
5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6	Quaternary History and Stratigraphy Older Till and Sediments Lower Till Missinaibi Sediments Matheson Till Ojibway Sediments Cochrane Till and Cochrane Sediments	52 78 78 79 83 86 88
6	OVERBURDEN GEOCHEMISTRY	89
6.1 6.2 6.3 6.4 6.5	Regional Gold Background Gold and Base Metal Anomaly Threshold Levels Stratigraphic Properties of a Dispersion Train Properties of a Free Gold Dispersion Train Properties of an Invisible Gold Dispersion Train	89 91 93 93

		Page
6.6 6.6.1 6.6.2 6.7	Chapais West Heavy Mineral Gold Anomalies Visible Gold Anomalies Unexpected Gold Anomalies Chapais West Heavy Mineral Arsenic, Silver and Base	95 101 104
6.7.1 6.7.2 6.7.3 6.7.4	Metal Anomalies Hole 08 Anomaly Hole 15 Anomaly Hole 36 Anomaly Hole 199 Anomaly	106 110 112 112 113
7	CONCLUSIONS AND RECOMMENDATIONS	115
7.1 7.2	Property Mineral Potential from the Bedrock Perspective Property Mineral Potential from the Overburden Perspective	115 116
8	REFERENCES	118
	FIGURES	
Figure 1	Chapais West Location Map	4
Figure 2	Chapais West Project Location Map	5
Figure 3	Regional Geology	6
Figure 4	Sample Processing Flow Sheet	2 2
Figure 5	Effects of Glacial Transport on Gold Particle Size and Shape	24
Figure 6	Geology of the Eastern Portion of the Chapais West Project Area	27
Figure 7	Jensen Cation Plot	32
Figure 8	Jensen Cation Plot - Intermediate to Mafic Volcanics	33
Figure 9	Jensen Cation Plot - Intermediate to Felsic Tuffs and Felsic Volcanics	34
Figure 10	Jensen Cation Plot - Sedimentary Rocks	35
Figure 11	Jensen Cation Plot - Gabbroic Rocks	36
Figure 12	Jensen Cation Plot - Sub-volcanic Porphyries	37
Figure 13	Jensen Cation Plot - Intrusive Rocks	38
Figure 14	Glacial History	53
Figure 15	Overburden Heavy Mineral Gold Anomalies	9 7
Figure 16	Overburden Heavy Mineral Arsenic, Silver and Base Metal Anomalies	107
Figure 17	Screened Heavy Mineral Arsenic, Silver and Base Metal Anomalies	109

		Page
	TABLES	
Table 1	Heavy Mineral Gold Dispersion Trains Identified by Overburden Drilling Management Limited Laboratory	13
Table 2	Drilling Statistics	16
Table 3	Table of Bedrock Formations	30
Table 4	Table of Quaternary Formations	54
Table 5	Stratigraphy of Missinaibi Formation, Moose River Basin	80
Table 6	Gold Anomaly Discrimination for Samples with Calculated or/and Measured Assays over 1000 ppb or/and More Than 10 Grains Visible Gold	98
Table 7	Visible Gold with or without Sulphides in Panned 1/4 concentrates of Samples with High Measured Assays	102
Table 8	Heavy Mineral Arsenic, Silver and Base Metal Anomaly Summary	108
	PLANS	
Plan 1	Drill Hole Locations	in pocket
Plan 2	Bedrock Geology	in pocket
Plan 3	Surficial Geology	in pocket
	QUATERNARY SECTIONS	
Section A-A'		55
Section B-B'		56
Section B'-B"	•	57
Section B"-C		58
Section C'-C'	и	59
Section D-D"		60
Section E-E'		61
Section E'-E"		62
Section F-F'		63
Section F'-F"		64
Section G-G'		65
Section G-G"		66

	Page
•	
•	·
QUATERNARY SECTION	O N S (cont'd)
Section H-H'	67
Section I-I'	68
Section I'-I"	69
Section G"-J	70
Section J-J'	71
Section J'-J"	72
Section K-K'	73
Section L-L'	74
Section J"-M	75
Section M'-M"	76

APPENDICES

77

Section N-N'

Appendix A	- Reverse Circulation Drill Hole Logs
Appendix B	- Sample Weights - Heavy Mineral Circuit
Appendix C	- Gold Grain Counts and Calculated Visible Gold Assays
Appendix D	- Bondar-Clegg Heavy Mineral Analyses
Appendix E	- Bondar-Clegg Bedrock Analyses
Appendix F	- Bondar-Clegg D.C. Plasma Whole Rock Analyses - Bedrock Chip Samples
Appendix G	- Binocular Logs - Bedrock Chip Samples

SUMMARY

1.

The report describes the findings of a 227-hole, reconnaissance-scale, reverse circulation overburden drilling/heavy mineral geochemical sampling program that was conducted by Corporation Falconbridge Copper in La Ribourde, Saussure and Dolomieu Townships west of Chapais, Quebec. The drilling was perfomed with the objective of identifying properties suitable for acquisition in an area of open lands having swarms of Input conductors. A syngenetic Cu-Zn-Ag-Au deposit had previously been outlined in the area by Umex but the main target of the Falconbridge program was epigenetic gold mineralization.

The area is underlain by Archean rocks of the Matagami - Chibougamau greenstone belt. Intermediate to mafic volcanics and comagnatic gabbro sills correlating with the Gilman and Blondeau Formations predominate in the east. They are separated by the Lamarck Fault Zone from a calc-alkalic pile of Scorpio Formation (?) intermediate to felsic volcanics, tuffs and sediments in the west. Conductive strata are rare, indicating that the Input Survey is unreliable. Metamorphic grade is greenschist facies increasing to amphibolite facies near granitoid intrusives of Lapparent Massif on the south margin of the area.

The only significant bedrock base metal anomaly is 3,600 ppm Zn, 240 ppm Cu and 2.1 ppm Ag in Hole 14. This anomaly occurs in siltstone on the east flank of the intermediate to felsic volcanic pile, indicating a significant potential there for syngenetic base metal massive sulphide mineralization. Elevated gold values ranging from 10 to 90 ppb and locally accompanied by Cu, Zn, and As were obtained from highly sheared, veined and carbonatized rocks in Holes 35, 36, 37 and 57 in the thickest part of the pile where it is cut by the west branch of the Lamarck Fault. The mineralization here is probably epigenetic.

Overburden depth in the area averages 11.6 metres and drill operating costs averaged \$69.72/metre (\$21.00/foot). Quaternary strata from two successive giaciations of Illinoian and Wisconsinan age and from the Sangamonian interglacial period were intersected. Both glaciers moved in a southwesterly direction, scoured

the local bedrock extensively and deposited tills that are suitable for heavy mineral geochemical sampling. Lower Till from the Illinoian period is preserved only in protected bedrock valleys. Chibougamau Till from the Wisconsinan period tends to be abnormally thin and sandy because the area lay in the shallows of Lake Ojibway I during ice transgression and Lake Ojibway II during ice regression. During the lowering of Lake Ojibway II, all till was removed from a scour channel along an early course of the Chibougamau River and the channel was refilled with fluvial sand and gravel.

Numerous heavy mineral gold anomalies were encountered but all are nugget anomalies produced by free gold grains that form part of the normal till background. A weak Cu-Zn-Ag till anomaly in Holes 08/09/15 extends the Hole 14 bedrock anomaly and enhances the potential for syngenetic base metal massive sulphide mineralization in the sediments on the east flank of the intermediate to felsic volcanic pile east of the Umex property. A stronger Cu-Zn anomaly in Hole 36 corroborates the bedrock gold-base metal anomaly from the same hole and enhances the potential for epigenetic mineralization in the sheared core of the pile.

INTRODUCTION

2.1 Project Background

From November 07, 1985 to January 20th, 1986 Corporation Falconbridge Copper conducted a program of reverse circulation overburden drilling/heavy mineral geochemical sampling in the Chapais-Desmaraisville area of northern Quebec (Figs. 1 and 2). The area is underlain by a variety of Abitibi belt Archean metavolcanic, metasedimentary and intrusive rocks (Fig. 3). The primary emphasis of the program was to establish the gold potential of the region although a subeconomic base metal massive sulphide deposit had been found in the same stratigraphy by Umex in 1969.

Bedrock in the area is obscured by varying thicknesses of Quaternary overburden and as a result geologic interpretations of the region are inferred from widely spaced outcrops. An airborne INPUT and magnetic survey commissioned by the Quebec Department of Energy and Resources in 1979 and regional mapping studies in 1980-81 (Charbonneau, et al) indicates the area is underlain by generally east-west trending metavolcanic and metasedimentary rock units intruded by large plutons (Fig. 3).

Swarms of four to six channel electomagnetic anomalies were delineated throughout the area of interest by the INPUT survey, and Falconbridge Copper decided to use the reverse circulation overburden drilling/heavy mineral geochemical sampling method to isolate mineralized conductors. Overburden Drilling Management Limited (ODM), a Nepean, Ontario company was retained by Falconbridge Copper to manage the program.

ODM collected samples from Quaternary till, sand and gravel sections and from a 1.5 metre bedrock section, where possible, at two hundred and twenty-seven reverse circulation drill hole sites. Heavy mineral concentrates were prepared from the Quaternary samples and a gold particle count was made. The concentrates and bedrock samples were analyzed for copper, zinc, silver, arsenic and gold. The Quaternary and Archean stratigraphy were deciphered, and the

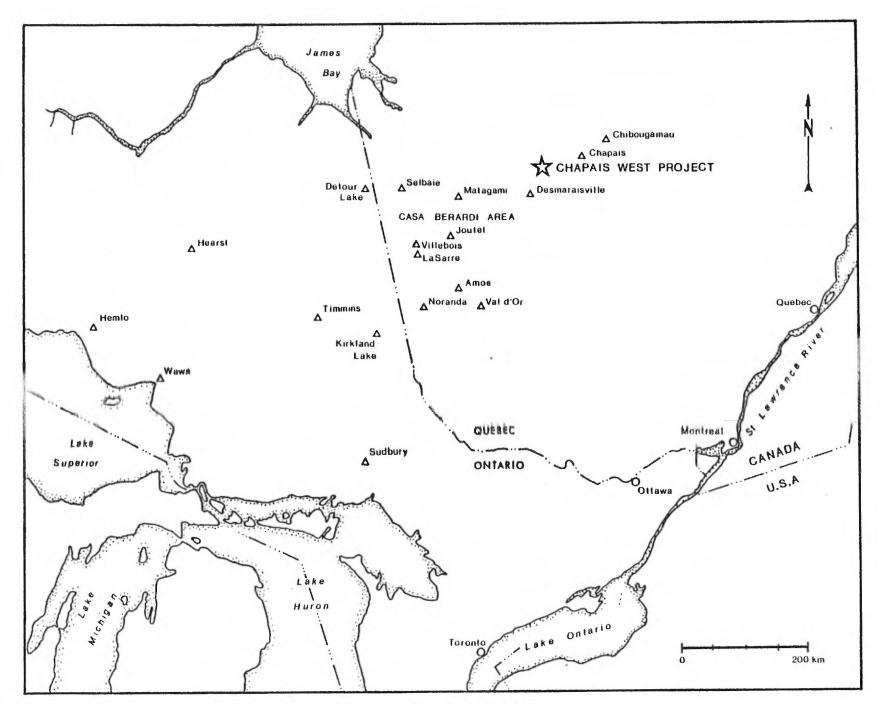


Figure 1 - Chapais West Location Map

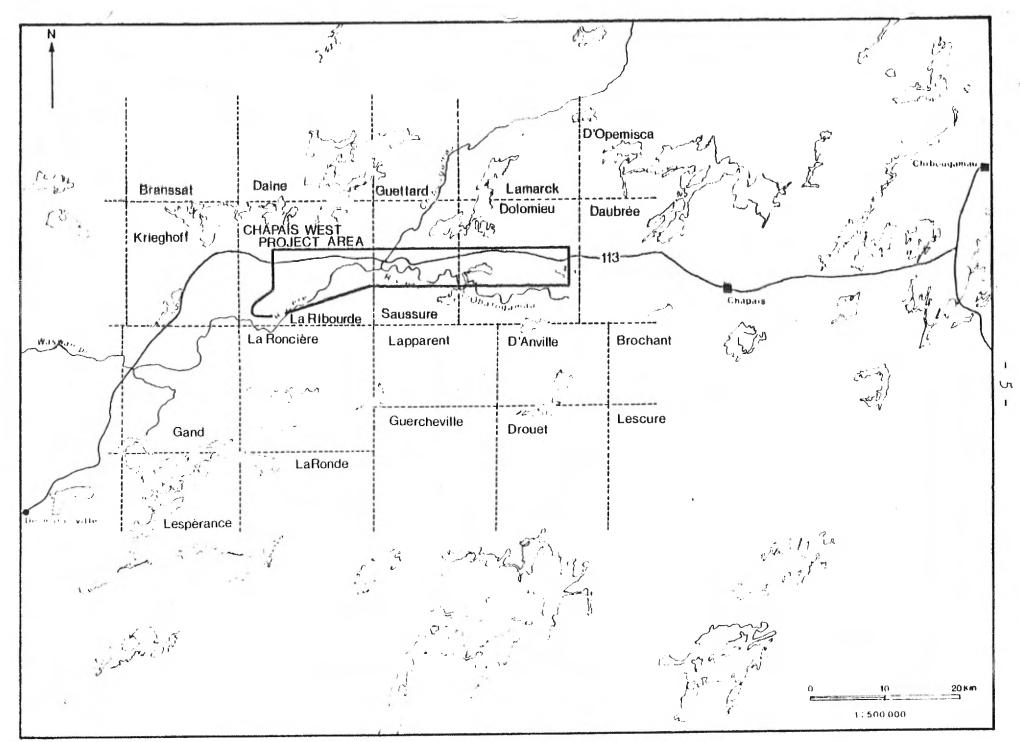


Figure 2 - Chapais West Project Location Map

Figure 3 - Regional Geology

heavy mineral and bedrock geochemistry were interpreted in relation to this stratigraphy.

2.2 Location and Access

The Chapais West project area is located in La Ribourde, Saussure and west-central Dolomieu Townships in the Chibougamau mining area of northern Quebec. The area is forty-three kilometres long, five kilometres wide in the east and central regions and ten kilometres wide in the west covering approximately 65,500 acres or one hundred and two square miles. It surrounds the Umex property and consists mostly of unstaked Crown land. The center of the area is 680 road kilometres north of Ottawa. The nearest settlements are the town of Chapais 50 km to the east and the village of Desmaraisville 65 kilometres to the southwest. Highway 113 connecting Chapais-Chibougamau to southern Quebec passes through the project area. Numerous logging roads allow reasonably good access into the area but it was necessary to clear bush trails to most of the overburden drill hole sites.

2.3 Physiography and Vegetation

The Chapais West project area lies within the eastern portion of the physiographic region known as the Abitibi Uplands, the southern boundary of which approximates the Hudson Bay/St. Lawrence River drainage divide (Bostock, 1967).

Overburden thickness varies across the area but it is relatively thin compared to other regions in the Abitibi greenstone belt. Bedrock topgoraphy and structure are the main factors controlling surface topography. The north-central to southwest portion of the area is traversed by the south-flowing Chibougamau River which is the surficial expression of the Lamarck fault. The westward flowing Obatogamau River is a major tributary to the Chibougamau River and provides drainage along the southern boundary in the central and eastern regions. The area

north of the Obatogamau River and west of the Chibougamau River is gently rolling with relief varying from a high of 350m to a low of 320m ASL near the Chibougamau River.

Moderate to good drainage throughout most of the project area has allowed the extensive development of boreal forest consisting of a dense cover of black spruce that reaches a maximum diameter of 30 cm and is suitable for lumber and pulpwood. Clear-cut harvesting has removed large tracts of forest in the southwest and central regions of the project area. The only large area of swamp is near the Saussure-Dolomieu Township boundary just north of the Obatogamau River. It consists of stunted black spruce and spongy moss separated by small open grassy areas. This is the only area inacessible in summer due to insufficient root mat to support heavy drilling equipment.

2.4

Previous Work

A contributing factor in Corporation Falconbridge Copper's decision to evaluate the Chapais West project area was the paucity of previous mineral exploration. The earliest known work is a 1968 airborne electromagnetic survey flown by Umex. In 1969 a promising target area, 52 kilometres west of Chapais in La Ribourde township, was staked, a grid was cut and vertical field magnetic and vertical loop EM surveys were performed. Subsequent diamond drilling by Umex led to the discovery of a sub-economic copper, zinc, silver massive sulphide deposit with significant associated gold. Additional diamond drilling was conducted by Soquem in 1973-74 under an option agreement but reserves could not be expanded (Riverin 1981).

An airborne INPUT and magnetic susceptibility survey, commissioned by the Quebec Department of Natural Resources in 1979, outlined hundreds of electromagnetic anomalies in La Ribourde, Saussure and Dolomieu townships. Several small claim blocks in the eastern and west-central portions of the project area (Plan I, in pocket) were probably staked based on this information. In order to

efficiently evaluate the swarms of airborne conductors Falconbridge decided to employ the reverse circulation overburden drilling/heavy mineral geochemical sampling method.

DRILLING AND SAMPLING

3.

3.1 The Principles of Overburden Exploration in Glaciated Terrain

During the Pleistocene epoch of the Quaternary period, the crowns of all ore bodies that subcropped beneath the continental ice sheets of North America were eroded and dispersed down-ice in the glacial debris. The dispersion mechanisms were systematic (Averill, 1978) and the resulting ore "trains" in the overburden are generally long, thin and narrow and most importantly are several hundred times larger than the parent ore bodies. These large trains can be used very effectively to locate the remaining roots of the ore bodies.

Because the dispersion trains originated at the base of the ice, they are either partly or entirely buried by younger, nonanomalous glacial debris. Most trains are confined to the bottom layer of debris deposited during glacial recession—the basal till. In fact, the sampling of glacial overburden for exploration purposes is commonly referred to as "basal till sampling". It is important to note, however, that in areas affected by multiple glaciations the bottom layer of debris in the overburden section may be only the lowermost of several stacked basal tills, and that a dispersion train may occur at any level within any one of the basal till horizons. Consequently, the term "basal till sampling" is not synonymous with the collection of samples from the base of the overburden section. Moreover, the term is not strictly correct because significant glacial dispersion trains can occur in formations other than basal till.

From the foregoing statements, it can be seen that glacial dispersion and glacial stratigraphy are interdependent. Consequently, the effectiveness of overburden sampling as an exploration method is related to the ability of the

sampling equipment to deliver stratigraphic information from the unconsolidated glacial deposits. In areas of deep overburden such as Casa-Berardi, drills must be used. Most drills have been designed to sample bedrock and are unsuitable for overburden exploration, but in the last fifteen years rotasonic coring rigs and reverse circulation rotary rigs have been developed to sample the overburden as well as the bedrock. Both drills provide accurate stratigraphic information throughout the hole and also deliver large samples that compensate for the natural inhomogeneity of glacial debris.

The reverse circulation rotary system was selected for the Chapais West program. This system employs dual-tube rods and a tricone bit with the outer rod tube acting as a casing to contain the drill water for recirculation and to prevent contamination of samples by material caving from overlying sections. Air and water are injected at high pressure through the annulus between the outer and inner rods to deliver a continuous sample of the entire overburden section through the small inner rod. The sample is disturbed but returns to surface instantly, and the precise positions of stratigraphic contacts can be identified. Full sample recovery is possible in all formations regardless of porosity or consistency, although sample loss due to blow-out commonly occurs in the first 1 to 3 meters of the hole until a sediment seal is made around the outer rod.

Reverse circulation holes are normally extended 1.5 meters into bedrock. Cuttings of maximum 1 cm size are obtained. The bedrock samples are used to determine overburden provenance (and, hence, the precise directions of glacial transport), and the interrelated bedrock and overburden data provide exceptionally comprehensive exploration coverage.

Most of the glacial overburden in Canada is fresh, and metals in the overburden occur in primary, mechanically dispersed minerals rather than in secondary chemical concentrations. While ore mineral dispersion trains are very large, they are also weak due to dilution by glacial transport and are difficult to identify from a normal "soil" analysis of the fine fraction of the samples. Consequently, heavy mineral concentrates are prepared to amplify the primary

anomalies, and analysis of the fines is normally reserved for areas where significant post-glacial oxidation is evident. The heavy mineral concentrates are very sensitive, and special care must be taken to avoid the introduction of contaminants into the samples. On gold exploration programs, it is advantageous to separate and examine any free gold particles because most gold anomalies in heavy mineral concentrates are caused by background nugget grains that are of no interest.

3.2

Drill Hole Pattern

Overburden holes are ideally drilled along profiles oriented parallel to the strike of the mineralization and perpendicular to the direction of Quaternary ice advance. The hole spacing along the profile is determined primarily by the expected cross-ice subcropping strike length of the target mineralization. Profile separation is determined by the length of the dispersion train that can be expected for the type of mineralization sought, and is generally greater than hole separation.

ODM has participated in Abitibi belt reverse circulation and rotasonic drilling programs totalling more than 5,000 holes, including over one thousand holes from the Casa-Berardi region west of Chapais. From this work, it was known that two tills with similar azimuths of ice transport would be present in the Chapais West project area:

- 1. Lower Till 225 to 240 degrees
- 2. Chibougamau Till 210 to 220 degrees

The Lower and Chibougamau Till both contact bedrock sufficiently to be useful sampling media. Both flow directions intersect most of the Chapais West bedrock stratigraphy at a high angle because the general stratigraphic trend is east-west. Therefore the drill profiles were laid out in an east-west direction parallel to the bedrock stratigraphy (Plan 1).

Till dispersion trains are often called fans but are actually ribbon-shaped. Therefore the hole spacing along a drill profile should be similar to the expected cross-ice subcropping length of the target mineralization. For the Chapais West program, it was assumed that mineralization of interest would have an ore-grade subcrop at least 100 m long and would be stratigraphically and structurally controlled. Such deposits typically have 100-200 m sub-ore extensions along strike in either direction, and this weak mineralization can be detected with the sensitive heavy mineral method, giving the target a total strike length of 300-400 m. Thus a 400 m hole separation was used. An orientation geochemical survey south of the Umex Cu-Zn-Ag deposit used a closer hole spacing of 200 metres to more accurately delineate any glacial dispersion.

ODM has identified and traced to source a total of nine gold dispersion trains (Table 1). The train length for deposits oriented perpendicular to the ice flow direction ranges from 300 to 1000 m. Therefore a drill profile separation of 300 m would be needed to ensure detection of all subcropping gold mineralization. Base metal massive sulphide dispersion trains are generally more than 1,000 m long. Budget and accessibility considerations on the Chapais West program resulted in a 1000-1500 m profile separation, but the profiles were positioned 100-200 m downice from promising airborne conductors and magnetic anomalies. This positioning is well within the 300 m gold dispersion train minimum length and also allows for the fact that many conductors occur in protected bedrock valleys that are lined with Lower Till remnants, making the conductors blind to the Chibougamau glaciation. To detect mineralization in buried valleys of this type, holes must be drilled to intersect Lower Till on the valley floor. Shallower holes drilled down-ice from the valleys where the Chibougamau Till extends to bedrock will give misleading negative results.

		TRAIN LE	ENGTH ¹ (m)
PROVINCE	GOLD DEPOSIT	TRACED	EST. TOTAL
Saskatchewan	Lake "X" ²	300	300
Saskatchewan	Star Lake	300	800
Saskatchewan	Lake "Y"	500	1000
Saskatchewan	Waddy Lake ²	600	2000
Ontario	McCool	300	400
Quebec	Cooke Mine ³	800	1000
Quebec	Golden Pond West	300	4004
Quebec	Golden Pond	400	500 ⁴
Quebec	Golden Pond East	100	1000

- 1 Based on minimum 10 gold grains of similar size and shape per 8 kg sample for free gold trains and on coincident high gold and base metal assays for invisible gold trains
- 2 Deposit oriented parallel to glacial ice advance
- 3 Invisible gold deposit
- 4 Train foreshortened by erosion in last ice advance

Table 1 - Heavy Mineral Gold Dispersion Trains identified by Overburden Drilling Management Limited Laboratory

During the course of the Chapais West program two reverse circulation rotary rigs were contracted from Heath and Sherwood Limited of Kirkland Lake, Ontario. Both the main Model 160 Nodwell mounted rig and the second Timberjack mounted rig employed Acker MP drill heads with 3 m feed cylinders. All ancillary equipment including the air compressor, water pump and logging and sampling facilities was unitized and enclosed on the Nodwell and Timberjack carriers for all-weather operation. The Timberjack-mounted drill was used along some sections of Highway 113 where shallow ditches permitted access off the road, along existing timber access roads and along some bush trails where good drainage provided sufficient ground support. The lack of the Nodwell's all-terrain mobility was offset by the shortened travel time between drill holes.

The Nodwell employed a larger air compressor (300 c.f.m. at 160 p.s.i. versus 185 c.f.m. at 100 p.s.i.). Both rigs employed water pumps having a capacity of 20 g.p.m. at 600 p.s.i. although water flow was normally maintained at 3-5 g.p.m. Both were equipped with 110 volt generators and Cool White fluorescent fixtures that simulate natural sunlight for accurate sample logging. All equipment except the air compressors and the carriers was operated hydrostatically by a transfer case on the carrier engines.

The holes were logged in metres and each drill carried twenty 2.5 metre drill rods.

The Nodwell rig was supported by a smaller Nodwell (Model GT-1000) and the Timberjack rig by a second Timberjack. Both support vehicles were equipped with 300 gallon exhaust-heated water tanks.

Road clearing was done well in advance of drilling and was supervised by Falconbridge Copper. Roads were tramped to one dozer width (3 meters), leaving the fallen trees and root mat for rig support. Where possible, roads were routed through sparsely treed muskeg, leaving the boreal forest undisturbed for future harvesting. Swamp areas with no supporting root mat were avoided.

Drill Performance

3.4

Drilling on the Chapais West project started on November 07, 1985 with the Nodwell drill. The Timberjack started on November 23rd. Drilling was completed by January 20, 1986 for a total of 87 drill days. The drills usually operated on one 10-hour shift per day but the shift was lengthened or shortened at the discretion of the field geologist. Major delays included loss of the steering brakes and differential in both the large and small Nodwells, a broken drive shaft in the large Nodwell, seized fuel injectors on the Timberjack drill and the loss of the water tank off the support Timberjack. Minor delays included ruptured hydraulic hoses, clogged fuel filters, frozen fuel lines and a seized hydraulic pump.

Two hundred and twenty-seven reverse circulation holes were drilled for a total of 2760.4 metres of overburden and 335 metres of bedrock. Two hundred and twenty-five of these holes reached bedrock after intersecting an average of 11.6 metres of overburden. Production averaged 31.7 metres per day. Chargeable (productive) drill hours amounted to 574 and mechanical downtime to 77 hours or 12 percent (Table 2). Penetration during operating hours averaged 5.4 metres per hour. Drilling costs exclusive of road clearing averaged \$69.72/metre (\$21.00/foot).

3.5 Logging and Sampling

ODM logged and sampled the Chapais West drill holes (Appendix A) and provided all necessary logging and sampling equipment. The ODM field crew comprised a logger and sampler for each rig. Field personnel involved were geologists T. Burns, M. Edwards and D. Holmes, and geotechnicians S. Hutchings, D. Routliffe and K. Strank.

Samples were collected in two 20 litre buckets coupled with a plastic tube. This procedure ensures a quiet settling environment thus reducing the loss of fines encountered if only one bucket is used and allowed to overflow. Most of the clay is

		Meters	Drilled	Hole	Samples	Collected
Hole Number	Site Number	Overburden	Bedrock	Depth (metres)	Overburden	Bedrock
CW-85-01	103	7.6	1.4	9.0	2	1
02	104	9.6	2.4	12.0	3	ī
03	105	2.8	0.7	3.5	2 3 2 2	î
04	106	9.6	1.2	10.8	2	Î
05	107	22.5	1.0	23.5	10	ī
06	108	43.3	1.2	44.5	25	ī
07	109	31.7	1.8	33.5	16	ī
08	120	19.7	1.3	21.0	11	Ī
09	119	32.1	1.4	33.5	20	$\bar{\mathbf{I}}$
10	118	13.6	1.1	14.7	6	1
11	117	16.6	1.9	18.5	11	1
12	116	12.5	1.5	14.0	7	1
13	115	2.0	1.5	3.5	1	1
14	114	0.7	1.8	2.5	-	1
15	113	2.3	1.2	3.5	1	1
16	112	3.7	1.5	5.2	1	1
17	- 111	0.2	1.8	2.0	-	1
18	110	2.5	1.0	3.5	1	1
19	102	22.2	1.3	23.5	14	1
20	10	13.4	1.2	14.6	6 1	1
21	02	14.0	1.0	15.0	7	1
22	03	12.2	1.3	13.5	7	1
23	04	4.9	2.1	7.0	1 1	1
24	05	32.0	1.5	33.5	15	1
25	06	12.8	1.7	14.5	1 1	1
26	07	21.3	1.2	22.5	13	1
27	08	40.7	1.3	42.0	24	1
28	09	55.0	1	55.0	35	- :
29	10	41.4	2.1	43.5	24	1
30	11	36.6	1.5	38.1	23	1
31 32	12 13	27.7	2.3	30.0	17	1
32A	13	16.2 13.5	1.8	18.0	4	1
33	14	57.5	1.0	58.5	12	1
34	15	23.6	1.9	25.5	12	1
35	16	2.6	1.4	4.0	3	1
36	17	2.7	1.8	4.5	1 1	1
37	18	4.1	1.4	5.5	1 1	i
38	19	5.2	1.8	7.0	3	Î
39	20	9.4	1.6	11.0	2	i
40	97	7.0	1.5	8.5	2	ī
41	98	1.8	1.7	3.5	1 3 2 2 1	l î
42	99	0.5	2.0	2.5		lī
43	100	5.0	1.5	6.5	2	lī
44	101	10.1	2.4	12.5	2	Ī
45	80	13.3	1.2	14.5	8	$\bar{1}$
46	35	41.0	-	41.0	17	-
46A	35	52.4	1.1	53.5	- 2 2 8 17 9	1
47	78	6.6	1.5	8.1	2	11_

Table 2: Drilling Statistics

		Meters	Drilled	Hole	Samples	Collected
Hole Number	Site Number	Overburden	Bedrock	Depth (metres)	Overburden	Bedrock
CW-85-48	77	4.5	1.5	6.0	1	1
49	7 <i>6</i>	5.9	1.6	7.5	2	1
50	21	3.1	1.4	4.5	1	1
51	22	4.4	1.6	6.0	1 1	1
52	23		0.9		1	1 1
		11.6		12.5	2	1 1
53	24	11.9	0.8	12.7	2	1
54	25	13.8	1.2	15.0	2 2 3 2 3 3 7	1
55	26	5.8	1.7	7.5	2	1 1
56	27	6.5	1.0	7.5	3	1
57	28	6.5	1.5	8.0	3	1
58	2 9	12.1	1.0	13.1		1
59	30	14.2	1.3	15.5	8	1
60	75	4.3	1.5	5.8	1	1
61	74	5.0	1.5	6.5	1	1
62	73	7.8	1.2	9.0	2 4	1
63	72	8.6	1.2	9.8	4	1
64	71	3.1	1.5	4.6	1	1
65	70	0.9	1.6	2.5	_	1
66	69	4.2	1.8	6.0	2	1
67	79	14.8	2.2	17.0	2 4 6	1
68	36	28.6	1.9	30.5	6	1
69	95	0.4	1.6	2.0	-	1
70	31	29.1	1.4	30.5	17	ī
71	32	23.5	1.0	24.5	12	1
72	33	21.1	1.5	22.6	12	î
73	34	2.8	1.7	4.5		i
74	81	8.9	1.6	10.5	1 2 6 2 2	i
75	82	14.5	1.5	16.0	6	i
76	83	6.6	1.4	8.0	2	1
77	84	7.6	0.9	8.5	2	1
					2	1
78 79	8 <i>5</i>	2.8	0.7	3.5	1	1
79 80	86 87	8.6	1.4	10.0	1	1
01	0/	2.6	1.4	4.0	1 8 1 1 1 3 15 11 5 3 12 5 3	1
81	88	15.9	2.1	18.0	١٥	1
82	89 90	2.5	2.0	4.5	1 1	1
83	90	4.8	1.2	6.0	i I	1
84	91	1.6	2.9	4.5	-	1
85	92	7.2	1.3	8.5		1
86	93	5.5	1.5	7.0	1	1 1
87	94	4.2	0.8	5.0		1
88	94a	13.0	1.5	14.5] 3	1
89	37	33.3	1.2	34.5	1 15	1
90	38	32.7	1.3	34.0] 11	l l
91	39	24.2	1.0	25.2	5	1
92	40	17.1	1.4	18.5	3	I
93	41	23.0	1.0	24.0	12	1
94	42	15.2	1.3	16.5	5	1
95	43	16.5	1.5	18.0	3	1
96	44	22.3	1.2	23.5	L6	<u> </u>

Table 2: Drilling Statistics

		Meters Drilled		Hole	Samples	Collected
Hole Number	· Site Number	Overburden	Bedrock	Depth (metres)	Overburden	Bedrock
CW-85-97	45	36.7	1.8	38.5	3	1
98	46	47.3	1.0	48.3	3	i
99	47	3.7	1.3	5.0	1	ī
100	96	0.8	1.7	2.5	-	ī
101	121	15.4	1-4	16.5	9	1
102	124	1.8	2.2	4.0		1
103	186	10.5	1.5	12.0	5	1
104	185	1.6	1.9	3.5	_	1
105	184	4.2	1.3	5.5	1	1
106	183	5.0	1.5	6.5	lil	1
107	182	4.4	1.6	6.0	2	1
108	181	3.1	1.4	4.5	1	1
109	180	0.7	1.5	2.2	- [1
110	134	17.7	1.8	19.5	10	1 .
111	133	7.3	1.2	8.5	1	1
112	132	9.5	1.5	11.0	3	1
113	131	14.8	1-2	16.0	5	1
114	193	9.7	1.3	11.0	1 3 5 4 7	1
115	194	13.2	0.8	14.0		1
116	195	28.4	1.6	30.0	16	1
117	139	13.6	1.4	15.0	7	1
118	138	10.6	1.4	12.0	5	1
119	140	3.2	2.3	5.5	1 1	1
120	48	2.6	1.4	4.0	1	1
121	49	4.7	1.3	6.0	1	1
122	50	4.0	1.8	5.8	1	1
123	51	7.8	1.2	9.0		I
124	52	3.4	1.6	5.0	1	I
125	53	4.1	1-4	5.5		1
126	54	3.3	1.5	4.8		1
127	55	11.3	2.7	14.0	6	1
128	56	4.0	1.0	5.0	1 1	1
129	57 50	5.7	2.8	8.5	3	1
130	58	8.0	1.3	9.3	4	1
131	63	6.7	1.3	8.0	1	1
132 133	62 61	5.1 7.7	1.4	6.5	1 3 4 1 2 2 6 3 2	1
134	60		1.8 2.0	9.5	4	1 1
134	59	12.5 8.4	1.2	14.5	D 2	1
136	64	8.6	1.4	10.0	2 2	1
137	65	2.0	1.5	3.5		1
138	66	12.0	1.0	13.0	- 5 13	1
139	68	39.9	2.1	42.0	13	1
140	141	11.6	1.4	13.0	4	1
141	142	27.0	1.5	28.5	11	1
142	143	34.1	1.4	25.5	16	i
143	144	23.6	1.4	25.0	11	lî
144	145	5.8	1.3	7.0	i	lī
		1		<u> </u>	<u> </u>	

Table 2: Drilling Statistics

		Meters	Drilled	Hole	Samples	Collected
Hole Number	Site Number	Overburden	Bedrock	Depth (metres)	Overburden	Bedrock
151	197 196 198 199 50m W of 201 nidway between 201 and 202 203	8.8 3.7 3.6 7.6 1.1 2.5	1.5 1.5 1.5 1.4 1.5 1.5	10.3 5.2 5.1 9.0 2.6 4.0	3 1 1 3 - 1	1 1 1 1 1
152 153 154 154A	204 20 <i>5</i> 206	5.0 4.5 6.0	1.5 1.0 1.1	6.5 5.5 7.1	1 2 2 2	1 1 1
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190	207 208 50m E of 209 210 211 67 68A 130 129 128 127 126 125 123 122 135 136 138 137 187 188 190 191 192 189 212 163 164 165 166 170 169 171 172 173 174	0.7 9.6 3.2 7.8 2.7 4.9 27.8 12.8 16.5 13.2 6.4 20.3 3.0 26.5 21.4 13.1 16.8 11.6 8.7 5.3 2.4 39.5 12.5 12.5 19.7 4.8 11.5 11.5 12.5 13.2 14.7 0.7 12.5 13.2 13.2 14.7 0.7 12.5 13.2 13.2 14.7 0.7 12.5 13.2 13.2 14.7 0.7 12.5 13.2 13.2 13.2 14.7 0.7 12.5 13.2 13.2 13.2 13.2 14.7 0.7 12.5 13.2	1.5 1.8 1.5 2.2 1.3 1.1 1.5 1.0 1.5 1.0 1.1 1.0 1.7 1.5 2.3 1.5 2.8 1.5 2.8 1.5 1.7 1.5 1.7 1.5 1.7 1.5 1.7 1.5 1.7 1.5 1.7 1.5 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	2.3 11.4 4.7 10.0 6.0 29.3 13.8 18.0 14.2 7.5 21.3 4.5 27.5 14.1 11.0 6.8 5.0 39.5 14.2 15.9 3.5 14.0 6.5 12.7 14.1 4.0 3.5 2.5 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	-5 1 1 1 1 1 1 1 2 1 1 1 2 1 2 1 1 2 1 2	

Table 2 - Drilling Statistics

		Meters	Drilled	Hole	Samples	Collected
Hole Number	Site Number	Overburden	Bedrock	Depth (metres)	Overburden	Bedrock
CW-85- 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227	175 25m N of 176 177 178 147 148 149 150 151 146 152 153 154 155 156 157 158 50m W of 159 160 161 162 168 167 220 219 218 217 213 214 215 216 226 225 224 223 222 221	11.5 21.0 8.6 8.0 15.0 3.8 21.6 27.0 33.6 19.1 33.6 19.1 17.0 14.3 20.3 17.6 9.5 13.5 13.2 12.3 6.2 8.9 6.8 4.7 7.2 7.0 2.3 9.1 8.8 22.0 2760.4	1.3 1.5 1.4 1.3 1.5 1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.7 1.5 1.6 1.7 1.7 1.5 1.7 1.5 1.7 1.5 1.5 1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	12.8 22.5 10.0 9.3 16.5 5.5 23.1 28.3 35.0 20.6 35.0 17.3 6.5 7.0 13.5 18.5 15.8 21.8 19.3 11.0 3.5 15.0 14.7 13.9 8.0 10.5 8.5 4.0 11.5 10.3 23.5 10.3 23.5 10.3 23.5 10	3 7 3 2 7 1 11 14 20 10 17 7 1 1 1 2 5 9 7 9 7 1 1 1 2 3 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1	1

Table 2: Drilling Statistics

still lost but a recent research study made by ODM (Dimock, 1985) showed that sand loss is insignificant and silt loss is reduced to 40 percent compared to 72 percent with the one-bucket system. Interestingly, fine gold is lost in direct proportion to fine quartz and feldspar because the flake shape rather than high density of fine gold is the primary factor controlling the rate of settling.

ODM employed a 10-mesh (1700 micron) screen over the first bucket to separate and discard the majority of rock cuttings and thereby increase the proportion of matrix material needed to identify and trace dispersion trains. The +10 mesh rock cuttings were constantly monitored to discern any variations which could give clues to overburden stratigraphy, or for any clasts indicative of an environment suitable for gold or base metal mineralization. Approximately 20 percent of the cuttings were kept for future reference. The degree of sorting of the -10 mesh matrix was monitored to differentiate till from sand and gravel.

The Lower and Chibougamau Tills were sampled continuously using an average sample interval of 1.5 meters. Fluvial and glaciofluvial sand and gravel were sampled over longer 3 to 5 meter intervals because they are far-travelled and thus generally ineffective for mineral tracing. Glaciolacustrine clay, silt and sand were not sampled because they are of no exploration value.

One thousand one hundred and six overburden samples and two hundred and twenty-five bedrock samples were collected (Table 2). The overburden samples were reduced to 7-9 kilograms with an aluminum scoop, packed in heavy plastic bags and shipped in 20-litre metal pails to the ODM processing laboratory in Nepean.

3.6 Sample Processing

Heavy mineral concentrates were prepared from the 1,106 overburden samples using the procedures shown in the flow sheet of Figure 4. These procedures may be summarized as follows:

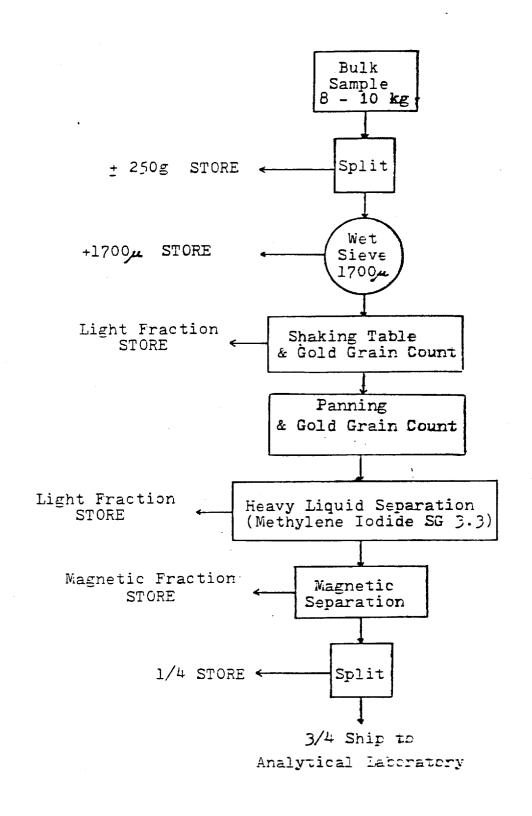


Figure 4. Sample Processing Flow Sheet.

First, a 250 gram character sample is extracted from the bulk sample using a tube-type sampler. The character sample is dried and stored for future reference. On some programs, its minus 250 mesh fraction is separated and analyzed to allow comparison with the heavy mineral analyses.

The remainder of the bulk sample is weighed wet and is sieved at 1700 microns (10 mesh). The +1700 micron clasts are weighed wet and the -1700 micron matrix is processed on a shaking table to obtain a preconcentrate. The table concentrate and all fractions obtained from it are weighed dry. The Chapais West sample weights are listed in Appendix B.

ODM has developed technology for evaluating free gold anomalies as the samples are being tabled. The use of special feeders and table adjustments causes many gold grains to separate from the other heavy minerals and follow individual paths across the table. These grains are picked from the deck, placed under a binocular microscope, measured to obtain an estimate of their contribution to the eventual assay of the concentrate, and classified as delicate, irregular or abraded (Fig. 5) to determine their approximate distance of glacial transport. Photomicrographs (35 mm slides) are taken if more than 10 gold grains are present.

Magnetite, with a specific Gravity of 5.2, is the heaviest of the common minerals and normally forms the top mineral band on the table above garnet and epidote/pyroxene. Common flake gold coarser than 125 microns separates completely from the magnetite and is readily counted. Fine gold, thick gold and delicate gold travel with the magnetite due to size and shape effects, and only 10 to 20 percent of such grains can be sighted on the table. Gold particles can also be obscured by pyrite which tends to cross the table in the gold path if it forms more than 10 percent of the concentrate. However, ODM has developed a special panning technique to recover the hidden particles together with some copper, lead and arsenic pathfinder minerals. ODM normally pans samples in which two or more gold particles are sighted on the table as well as samples with high pyrite concentrations or any delicate gold. The Chapais West table and pan gold counts are listed in Appendix C.

DELICATE

0-100 m ice transport.
Primary crystal faces, pitted leaf surfaces & ragged leaf edges intact.

1000+ m ice + stream transport. Polished equidimensional grains.

Figure 5 - Effects of glacial transport on gold particle size and shape.

(Developed by Overburden Drilling Management Ltd.)

The table and pan concentrates and any gold grains are recombined and the concentrate is dried. A heavy liquid separation in methylene iodide (Specific Gravity 3.3) is then performed. The light fraction (S.G. less than 3.3) is stored and the heavy fraction undergoes a magnetic separation to remove drill steel and magnetite. The Chapais West magnetic separates were checked to ensure that they contained not more than five percent pyrrhotite.

3.7 Sample Analysis

The non-magnetic heavy mineral fraction is used for mineralogical and geochemical studies. If the analysis is by chemical methods that involve pulping, a 3/4 split is analyzed and a 1/4 split is retained for the mineralogical work. On gold programs it is desirable to analyze the whole concentrate to minimize the nugget effect that is caused by the particulate nature of most till gold.

The whole concentrate can be analyzed without damaging its mineralogy by employing the instrumental neutron activation (INA) technique which requires no sample preparation (pulping). However the INA procedure is slow for the following reasons:

- 1. The analysis is not made until ten days after the concentrate has been irradiated.
- 2. Radiation levels remain too high to allow sample handling within four months of analysis.

These problems were considered to outweigh the benefits of a whole concentrate anlaysis for the Chapais West samples and 3/4 concentrates were therefore assayed by the conventional fire assay method using an atomic absorption finish.

In the sample preparation circuit, pulping time was reduced to minimize the potential for smearing of malleable gold grains. As a result, most pulps contained about 5 percent +150 mesh material that was not evenly distributed through the fines. It is well known that free gold tends to congregate as flattened metallics in the coarse fraction of a pulp. Therefore samples that were known to contain gold grains over 150 microns in diameter were screened to 150 mesh after pulping, and separate determinations were made on the +150 mesh metallics and on a 20-gram (if available) subsample of the homogenized -150 mesh pulp. A weighted average assay was then calculated. A small subsample of the pulp was analysed for Cu, Zn and Ag by atomic absorption and for arsenic by the colourimetric method (Appendix D). Bedrock samples were analyzed for the same metals (Appendix E) and whole rock compositions were determined (Appendix F). All assaying was done at the Ottawa laboratory of Bondar-Clegg and Company Limited.

BEDROCK GEOLOGY

4.

4-1 General Geology

The Chapais area lies within the Matagami-Chibougamau section of the Archean, Abitibi orogenic belt (MERQ-OGS-1983). The area is underlain by mafic to felsic rocks of two-volcanic cycles (Roy Group), a younger sedimentary sequence (Opemisca Group), and pre- to post-kinematic plutons and stocks. Roy Group volcanics are intruded by numerous coeval and comagnatic, differentiated mafic sills. The Dore Lake Complex, a major layered intrusive, is found within the first volcanic cycle of the Roy Group. Three distinct differentiated sills of the Cummings Complex (from lower to upper, the Roberge, Ventures, and Bourbeau Sills) are found within the second, younger volcanic cycle. The presence of layered sills and lack of komatilitic volcanic rocks serve to distinguish the "Matagami-Chibougamau greenstone belt" from the Abitibi belt proper (Allard, Gobeil, 1984).

The Chapais West drill area is underlain by rocks of the second volcanic cycle of the Roy Group (Fig 6; Charbonneau, et al, 1980, 1981; Picard, Piboule, 1986).

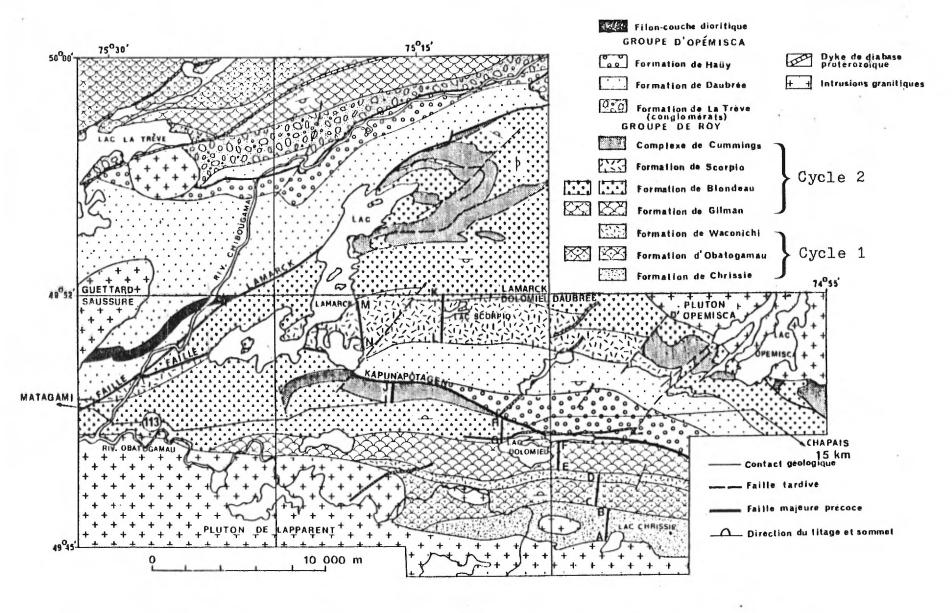


Figure 6. Geology of the eastern portion of the Chapais West Project Area. (after Picard, Piboule, 1986)

This sequence includes mafic volcanics and comagnatic gabbro sills of the Gilman Formation, volcano-sedimentary assemblages of the Blondeau Formation including differentiated sills of the Cummings Complex, and Scorpio Formation intermediate-felsic tuffs and volcanics. In the western portion of the area and to the south intrusive rocks related to the Lapparent Massif (Racicot, Chown, Hanel, 1984) intrude the Roy Group with contact metamorphism resulting in overprinting of the regional lower greenschist metamorphic grade to produce amphibolite grade and gneissic rocks for up to 1.5 km from the contact.

Structurally, the area is complex and poorly understood. The northeast trending Lamarck Fault zone appears to separate the east-west trending Blondeau and Gilman Formations to the east from the southeast to northeast trending (folded?) sedimentary, volcanic and pyroclastic units to the west (Blondeau and Scorpio equivalents?). In the east, the Kapunapotagen Fault trends east-southwest through Lac Kapunapotagen and Lac Landing immediately north of the drill area. Numerous small scale faults are locally present which attest to the complex structural history. These faults complicate stratigraphic, and possibly lithologic, interpretation.

Only a single mineral deposit is known in the area. This is the Umex Cu-Zn-Ag deposit in east-central La Ribourde Township. The deposit consists of a stratabound, exhalative massive sulfide lens located within tuffs, argillites and sediments. Total reserves are 615,000 tons of 1.09% Cu, 2.51% Zn, 0.98 oz./ton Ag and 0.03 oz./ton Au (Riverin, 1981).

4.2 Bedrock Logging Procedures

A binocular microscopic log of all bedrock samples was prepared (Appendix G) to confirm and amplify field descriptions with the objective of producing an accurate stratigraphic map. Particular attention was paid to primary features, and the rocks were assigned genetic names such as mafic volcanics and graywacke rather than metamorphic names such as amphibolite and biotite schist.

Reasonably accurate measurements of primary mineralogy, structure, texture, degree of metamorphism and alteration can be made from chip samples with a binocular microscope, but inherent limitations are present. These limitations include:

- Inability to differentiate gray plagioclase from gray-brown and gray-green pyroxene where the grain size is less than 0.2 mm as in most volcanic rocks. This effectively precludes differentiation of intermediate volcanics from mafic volcanics in extensive areas of the Abitibi belt where primary pyroxene has survived the zeolite facies metamorphism. In greenschist facies areas where pyroxene has been largely converted to amphibole and chlorite, intermediate and mafic units can be differentiated.
- 2. Inability to determine bedding thickness or fragment size where the dimensions of the beds or fragments are greater than the 1 cm diameter of the coarsest drill cuttings.
- 3. Inability to recognize tops in bedded sections.
- 4. Difficulty in differentiating certain primary structures such as pillow selvages from secondary veins.
- 5. Necessity of inferring gross mineralogy of aphanitic samples from rock colour and hardness.

4.3 Bedrock Stratigraphy of the Chapais West Drill Area

Table 3 lists the bedrock lithologies of the Chapais West drill area. Regional mapping (Charbonneau et al, 1980, 1981) indicates complex interfingering of units and rapid lithologic variations across strike. The wide hole spacing chosen for the reverse circulation drilling program often precludes correlation of rock units intersected in drill holes with those mapped on surface and major discrepancies are

ARCHEAN

Syenite (7a), granodiorite (7b), quartz diorite (7c)
Feldspar porphyry (6a), quartz-feldspar porphyry (6b), felsite (6c)
Gabbro (5a), quartz gabbro (5b), pyroxenite (5c)
Graywacke (4a), siltstone (4b), mudstone (4c)
Fragmental intermediate - felsic volcanics
Felsic volcanics
Intermediate (1a) to mafic (1b) volcanics

Table 3 - Table of Bedrock Formations

apparent. Also, the differentiation of some formations (i.e. Blondeau and Gilman) is not possible from logging of bedrock chip samples or whole rock geochemistry. Therefore we have chosen to produce a geology map based essentially on lithologies encountered in drill the holes and not to attempt correlation between various maps and interpretations.

As an adjunct to this, conductor swarms in the drill area show no correlation with specific rock units or formations. Concentrations of sulfides or graphite are insufficient to produce the plethora of 5 and 6 channel anomalies suggesting problems in screening of the Input data.

4.3.1 Intermediate to Mafic Volcanics (Unit 1)

Intermediate to mafic volcanic rocks are present throughout the drill area (Plan 2). They occur in the west as a sequence that appears to wrap around a small granitoid stock between intermediate fragmentals to the north and a sedimentary sequence to the south. Within, and proximal to, the fault zone defined by the Lamarck Fault and its western branch, a porphyrytic volcanic unit is present which is not apparent elsewhere on the property. It appears to be separated from the "main" east-west trending volcanic-gabbroic sequence north of the Obatagamau River and Lapparent Massif by graywackes which continue eastward from the Chibougamau River to a northeast trending fault in the area of the Lamarck River. Minor proportions of intermediate-mafic volcanic rocks are also present as intercalations within sedimentary rocks of the drill area.

Unit 1 rocks are predominantly mafic in character (basalts) with lesser proportions of intermediate volcanics (andesite, dacite). On the Jensen Cation Plot (Figs. 7, 8) the majority of the mafic volcanics plot in the high iron tholeitic field, while those rocks described as intermediate fall into the calc-alkalic andesite and dacite fields. The volcanic trends show a close correspondence with the plotted positions of other rock types in the area (Figs. 9 to 13). Specifically, gabbroic intrusives are chemically equivalent to the mafic volcanics indicating their comagmatic character, and felsic volcanics, intermediate tuffs, porphyries, and

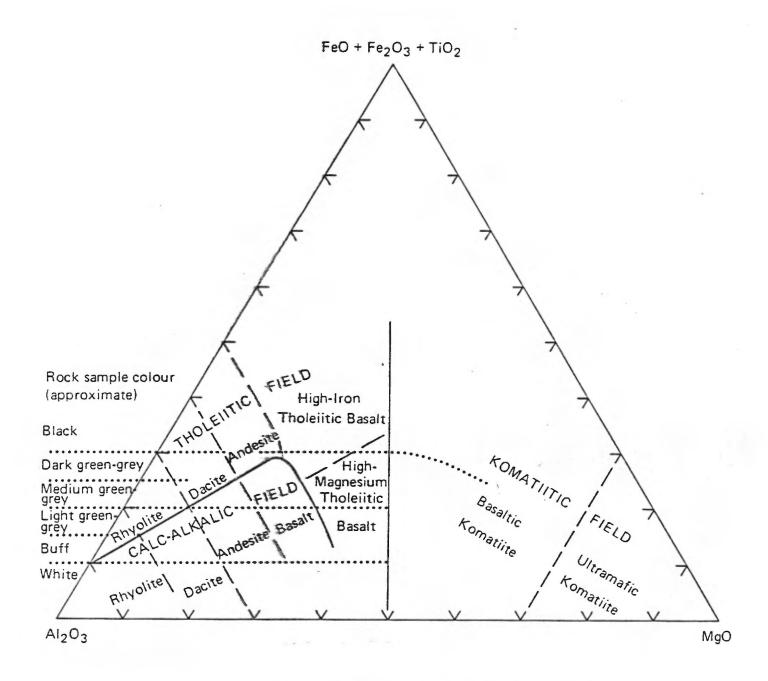


Figure 7 - Jensen Cation Plot Legend



Figure 8 - Jensen Cation Plot - Intermediate to Mafic Volcanics

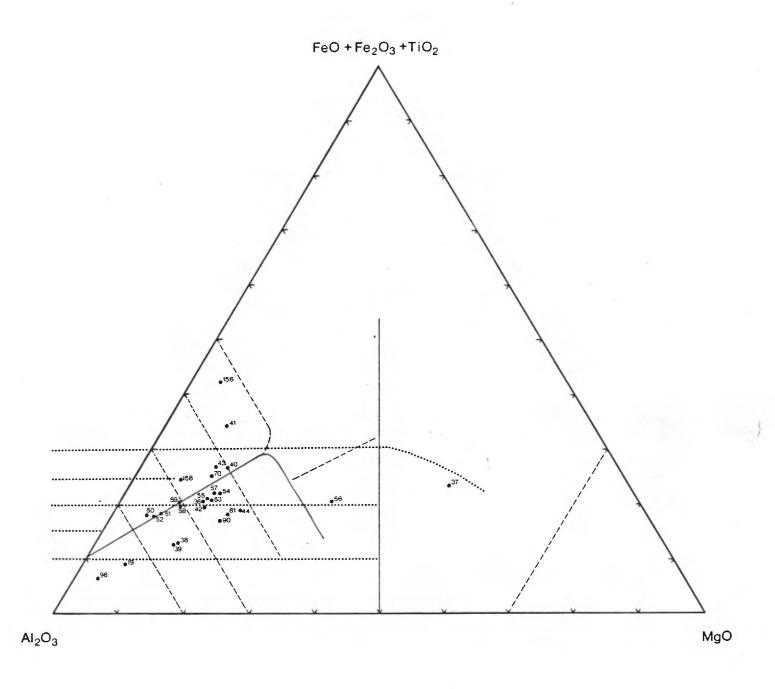


Figure 9 - Jensen Cation Plot - Intermediate to Felsic Tuffs and Felsic Volcanics

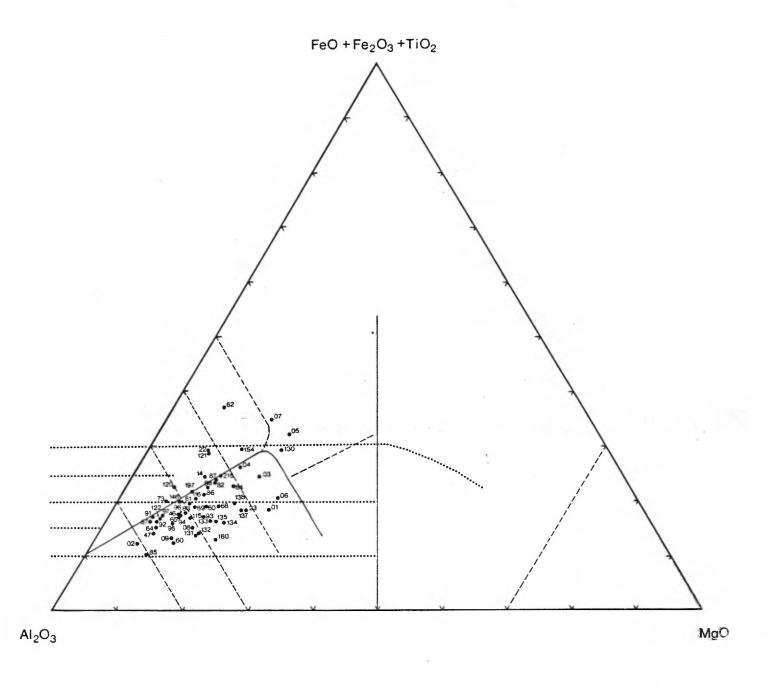


Figure 10 - Jensen Cation Plot - Sedimentary Rocks

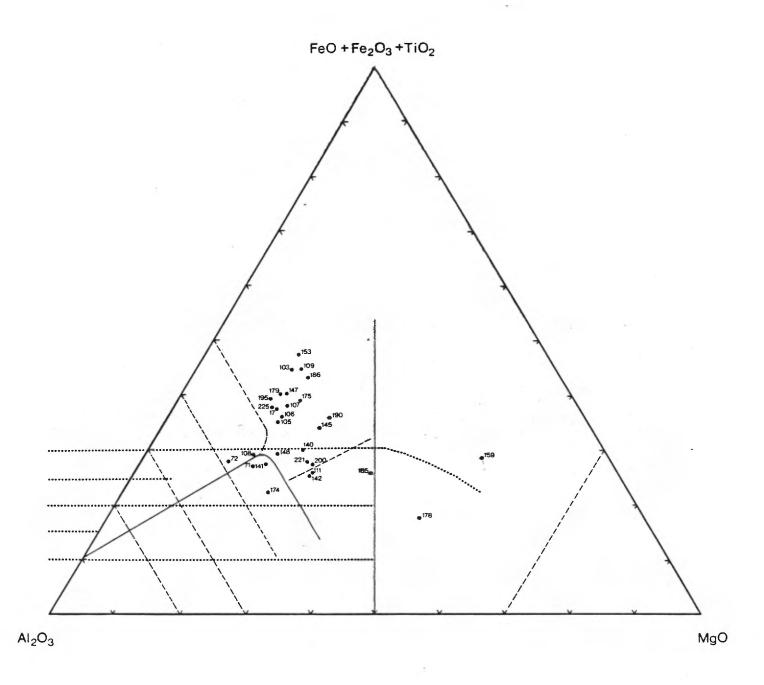


Figure 11 - Jensen Cation Plot - Gabbroic Rocks

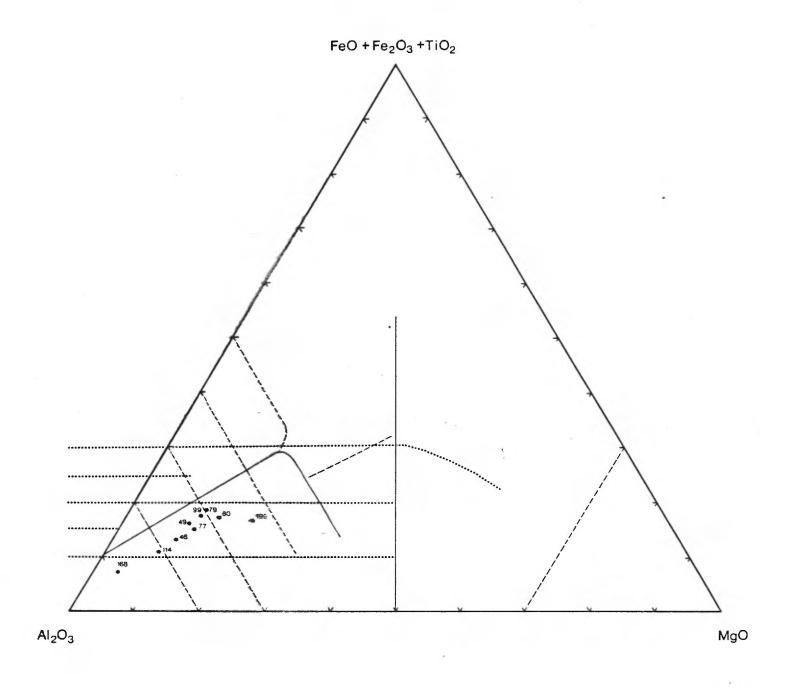


Figure 12 - Jensen Cation Plot - Sub-Volcanic Porphyries

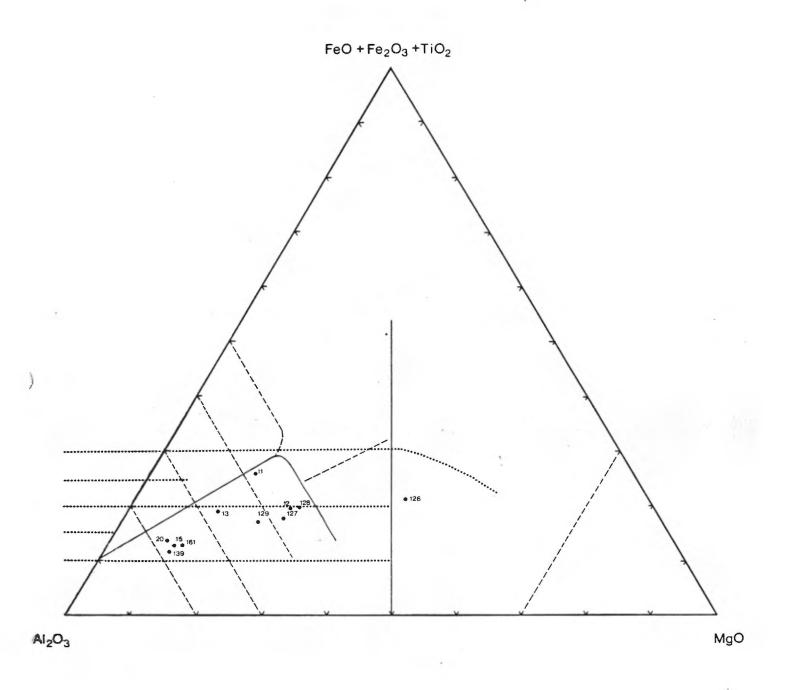


Figure 13 - Jensen Cation Plot - Granitoid Intrusive Rocks

sediments plot in the calc-alkalic field with the intermediate volcanics. Considering relative hole locations and bedrock types versus the graphical representation of the bedrock samples on the Jensen plots, it appears that volcanic rocks east to the Chibougamau River represent a tholeitic suite which corresponds to the Blondeau and Gilman Formations. To the west of the Chibougamau River, predominantly calc-alkalic volcanics, pyroclastics and sediments represent the remnants of an intermediate-felsic volcanic pile and are probably correlative with the Scorpio Formation.

Intermediate and mafic volcanics in the drill area are differentiated on the basis of mafic mineral content with less than 30 percent in the intermediate variety and 30-70 percent (usually greater than 40%) in the mafic variety. Where fine grain size precludes differentiation of minerals, color may be a useful indicator of composition. These features are directly related to rock chemistry as evidenced by the close correspondence between binocular names and rock geochemistry in Figures 7 and 8.

Grain size of the intermediate to mafic volcanic rocks ranges from aphanitic to 0.5 mm but averages approximately 0.1mm. The coarser samples (0.2-0.5 mm) are restricted to an area east of the Obatagamau River to Lac des Misérables. Color ranges from medium to dark green and black with variations due to alteration and metamorphic rank. Structurally, the volcanics are foliated to strongly schistose. Shearing/slickensides are evident in many bedrock samples in the eastern half of the drill area;gabbroic rocks present in this area are also commonly sheared.

Marginal to the intrusives of the Lapparent Massif, the volcanics have been metamorphosed to amphibolite grade with local development of gneissic banding. Mafic minerals have been converted to hornblende and plagioclase has often been recrystallized as cloudy to clear, sugary, equigranular grains. In some samples, retrograde alteration of hornblende to chlorite (+ actinolite) and varying degrees of saussuritization of plagiocalse are apparent.

Less metamorphosed intermediate-mafic volcanics are composed of an equigranular intergrowth of plagioclase (locally saussuritized) and chlorite. Amphibole/actinolite locally accompanies the chlorite. Quartz is observed locally in amounts of less than five percent. Amygdules are present in a few relatively undeformed and unaltered samples.

The intermediate volcanics of Holes 27, 29, 30, 31, 32, 33 and 35 contain 5-50 percent plagioclase phenocrysts to 2.0 mm and 0-5 percent quartz phenocrysts to 1.0 mm, set in a fine plagioclase + chlorite + amphibole/actinolite matrix. Only rarely are porphyrytic volcanics seen elsewhere within the drill area.

Veining and carbonate alteration are common features of the intermediate to mafic volcanic rocks. The most pervasive carbonitization occurs in the eastern portion of the drill area where many samples contain five to twenty percent, or greater, carbonate. Calcite is most prevalent but a moderately to slowly reactive Fe or Mg rich carbonate occurs in Holes 149, 150, 209, 213, 214, 216, 217, 218 and 219. Much of the carbonate occurs disseminated in the rock but most samples in the east also contain one to five precent quartz-carbonate vein material, with a maximum of sixty percent in Hole 223.

In the western half of the drill area less carbonate and less, more localized veining is present. Exceptions to this are samples of Holes 30, 69, 76, and 100 which contain ten to twenty percent disseminated carbonate and five to fifteen percent quartz carbonate veining. Calcite is the predominant carbonate. One to two percent of a moderately reactive variety is present in Hole 26.

Sulfide concentrations in intermediate-mafic volcanic samples are consistently less than two percent and often less than 0.5 percent. Exceptions are Holes 223 with three to four percent pyrite (mostly in the 50-60 percent vein material) and Hole 155 with eight to ten percent pyrrhotite, minor pyrite and 0.1% chalcopyrite. The only other sulfides noted are less than 0.1% arsenopyrite in Hole 226 and trace amounts of bornite in a quartz-veined sample from Hole 32. Minor (less than 1%) tourmaline is also present in the vein material of Hole 32. Fuchsite

occurs in trace amounts in pervasively calcite-altered rock in Hole 192 and also in veined, Fe or Mg carbonated rock in Hole 149. Magnetite, in concentrations of 0.5 to 8%, is present in approximately fifteen percent of the samples. Ilmenite and leucoxene are locally present but do not exceed two percent of any intermediate to mafic volcanic sample.

4.3.2 Felsic Volcanics (Unit 2)

Felsic volcanic rocks are not abundant in the drill area. They occur mainly in the west associated with intermediate-felsic pyroclastic rocks (Unit 3). Good examples of rhyolitic felsic volcanics (69.3 to 70.7% SiO₂) are present in Holes 19, 39 and 52. They are light grey to black in colour, very fine grained to aphanitic, and poorly foliated. Faint color/compositional variations which may reflect flow banding are observable in Holes 39 and 52. Trace to two percent carbonate is present in the samples - generally as fracture plane coatings. Calcite is present in Holes 19 and 39 and a slowly reactive variety of carbonate is found in Hole 52. Pyrite is present in concentrations of less than 0.5 percent. Five percent vein quartz is present in Hole 52.

Holes 38, 51 and 56 are also termed felsic volcanics. The sample from Hole 38 is similar to those described above but has a SiO₂ content of 66.8% and may be more correctly termed a rhyodacite. The samples from Holes 51 and 56 are highly veined (greater than 50% vein quartz), obscuring textures. Hosting the vein material is light green to yellowish-green, very fine grained to aphanitic, schistose to sheared, sericitic material. Considering the abundant vein quartz, relatively low SiO₂ contents of 77% and 71.6% may indicate the host rocks had an initial, more mafic composition with secondary veining and alteration imparting a felsic-like appearance. A primary mafic composition for the Hole 56 sample is further suggested by its position on the Jensen cation plot (Fig. 9).

Hole 51 contains one percent slowly reactive carbonate and 0.5% pyrite + pyrrhotite as disseminations and local concentrations on foliation surfaces. No

carbonate or sulfides were noted in Hole 56. Traces of fuchsite were observed in samples from both holes and traces of tournaline in the vein quartz of Hole 56.

4.3.3 Fragmental Intermediate-Felsic Volcanics (Unit 3)

Fragmental intermediate-felsic volcanics occur predominantly in the northwestern portion of the drill area west of the Lamarck Fault zone. Isolated intersections elsewhere (CW-85-90, 156, 158) probably represent small fragmental lenses within other units.

The fragmentals are light to medium grey-green (locally bleached or oxidized), strongly foliated/schistose and locally crenulated or sheared rocks with a grain size of 0.1 mm or less. They are predominantly ash tuffs and with the exception of approximately fifteen percent grey-blue aphanitic cherty fragments in Hole 50, any coarse fragments are similar to the matrix and could not be recognized. In samples from Holes 53, 54, 55, and 58 visible quartz eyes in concentrations of less than five percent are present. Most samples appear to be composed essentially of thin bands of feldspathic to quartzo-feldspathic material separated by sericite, chlorite, or sericite-chlorite rich foliation planes. A few samples also contain thin segregations of quartzose material parallel to the schistosity.

The samples are variably veined and carbonated. Holes 40 to 43, with the exception of ten percent veinlet and stringer carbonate in Hole 41, are not veined but each contains ten to fifteen percent pervasive interstitial calcite. Remaining fragmental samples contain 0-5% quartz ± carbonate veining, and the one from Hole 57 contains twenty to twenty-five percent quartz-calcite vein material with quartz predominating on a 3 to 5:1 ratio. Irrespective of the intensity of the veining, an additional 0.5 to 5 percent carbonate is present within the samples - usually represented by highly reactive calcite although moderately to slowly reactive varieties are present in Holes 53, 54, 81 and 90. Pyrite, as disseminations and local stringer-like concentrations, is present in the fragmental samples in amounts of less than 0.5 percent.

As displayed by the Jensen Cation Plot (Fig 9), most fragmental samples plot in, or marginal to, the calc-alkalic field corresponding to Jensen's dacite and andesite sub-groups. This agrees in general with whole rock SiO₂ proportions of 47 to 68 percent (uncorrected for loss on ignition).

Holes 36 and 37 on the west branch of the Lamarck Fault have been included with the fragmental unit as they occur in the area where fragmentals and felsic However, deformation, veining and alteration volcanics predominate. (silicification, carbonitization) have destroyed original rock textures and minerals and the parent rock is unknown. Only remnants of schistose, sericitic and/or chloritic material remain to give vague clues to the primary lithology. Approximately twenty to twenty-five percent vein material that is readily identifiable as such is present in each sample. The remainder of each sample is so altered that a determination of host versus vein-alteration material is not possible. Although the two samples have a similar visual appearance they have vastly different Si02 contents and their positions on the Jensen plot (Fig. 9) reveal no similarities. This may not be significant in determining the primary lithologies as Mg and/or Fe concentrations have been altered by the introduction of varying proportions (ten to twenty percent, or greater) of poorly reactive Mg and/or Fe rich carbonate, and silica. Minor pyrite (less than 1%) is present in both samples as disseminations and local concentrations. Very minor amounts of graphite may be present along some schistosity surfaces.

4.3.4 Greywacke, Siltstone, Mudstone (Unit 4)

A sedimentary unit with lesser intercalations of volcanic material, gabbro, and porphyry is present west of the Lamarck Fault and immediately north of the intrusive rocks of the Lapparent Massif. A thinner sedimentary horizon is present in the same stratigraphic position east of the Lamarck Fault and the unit appears to continue eastward to the Lamarck River. Elsewhere, single hole intersections of sediments are present in the tholeiitic volcanic-gabbroic terrain.

Sediments intersected include greywacke, siltstone, and mudstone in approximately a 7:3:1 ratio. The sediments, like the mafic volcanics, are variably metamorphosed — ranging from lower greenschist to amphibolite grade with a corresponding schistose to gneissic structure. As with the volcanics, the contact effects of the marginal granitoid intrusives are responsible for increases in metamorphic grade.

(1959. 441) that the Moorhouse states graywacke at slate/phyllite/greenstone (lower greenschist) facies is little changed from its primary condition except for some loss of H₂0 and CO₂. "Primary" graywacke in the Abitibi belt is an inequigranular rock consisting of quartz and plagioclase grit thinly scattered through an unsorted matrix of fine sand (less than 0.15 mm), silt and clay. Bedding is occasionally evident from variations in the percentage of grit. The matrix minerals cannot be discerned with the binocular but presumably (Moorhouse, 1960; p. 257) comprise plagioclase, quartz, illite and chlorite. No primary graywacke was intersected in the Chapais West drill area; the least metamorphosed samples contain 0.5 mm chlorite metacrysts that have formed from original fine matrix chlorite and illite. These metacrysts impart a weak foliation to the rock. Quartz: plagioclase ratios are not readily apparent in the gray wacke samples due to the fine grain size and dark color. Together, quartz and plagioclase form 60-85 percent of the graywacke samples with the remainder of the rock composed of chlorite and/or biotite.

With increasing metamorphic grade as granitoid intrusives are approached, primary quartz and plagioclase have been recrystallized to an aggregate of clear, sugary grains while matrix chlorite has been largely converted to biotite flakes. Locally, relict grit is preserved. Close to the intrusives, a gneissic texture is produced with thin laminae of mafic-rich and felsic-rich material. No sedimentary textures are preserved. In some samples an incipient growth of feldspar porphyroblasts is observed. The mafic-felsic mineral ratios are generally similar to those noted in less metamorphosed rocks. Some of the gneissic samples contain 5-20% hornblende/amphibole suggesting carbonate enrichment in the sediments prior to metamorphism (Moorhouse, ibid).

Siltstone is similar in appearance and mineralogy to graywacke but is finer grained (less than 0.1 mm) with no apparent grit. It is finely schistose to fissile. Minor sericite is locally present and some samples are slightly graphitic. Mudstone, when present, is dark grey to black in colour, aphanitic, fissile and contains minor amounts of graphite (less than 2%). The sample from Hole 215 also contains dark grey inclusions that appear to be sericitized and alusite metacrysts.

Trace to fifteen percent carbonate is present in the sedimentary samples. Where more than one percent carbonate is present, the samples are commonly of lower greenschist metamorphic grade. Higher grade samples contain less carbonate. Calcite is the most common carbonate and occurs as stringers along foliation planes and fractures, disseminated within the rock, and associated with quartz in vein material that constitutes 0 to 15 percent of the samples. Moderately to slowly reactive Fe or Mg rich carbonate is present in samples from Holes 22, 82, 86, 116, 121, 146, and 215 in amounts of 0.5 to 5 percent.

Trace to two percent sulfides are invariably present as disseminations, as minor stringer-like concentrations along foliation planes and as local concentrations in vein material. Pyrite is most abundant with pyrrhotite present in Holes 02 and 134. Traces of chalcopyrite and 0.5-1% sphalerite are associated with veinlet quartz and stringer and disseminated pyrite in graphitic siltstone of Hole 14. Trace amounts of tourmaline are present in Hole 215.

Fig. 10 illustrates the chemical affinity of the sedimentary samples. The vast majority of the samples plot in the calc-alkalic andesite and dacite fields suggesting derivation from primary calc-alkalic volcanic rocks.

4.3.5 Gabbro, Quartz Gabbro, Pyroxenite (Unit 5)

Gabbroic intrusive rocks are present as sills throughout the Chapais West drill area. They are most abundant in the central and eastern portion of the area.

Here, along the northernmost profile of drill holes, numerous mafic intrusive intersections appear to define the southern margin of a large sill. Further to the south and in the southeast several gabbroic intersections in adjacent holes appear to define single sills of limited thickness but with significant lateral continuity. Elsewhere, gabbroic intersections are generally restricted to a single hole or share composite samples with other rock types, suggesting sills of restricted strike length and thickness.

Mafic intrusives include gabbro, quartz gabbro and pyroxenite. Pyroxenite is present in only one hole (CW-85-159) and consists of eighty percent green, translucent pyroxene and twenty percent plagioclase. Gabbro samples are differentiated on the basis of quartz content with gabbro containing less than five percent quartz, and quartz gabbro from five to fifteen percent quartz. Hole locations are such that the relative positions of each intrusive type within the sills are not known. Thus it is not known whether tops face north or south.

The gabbroic rocks range from massive to schistose and often display shear planes and slickensides. This is particularly noticeable east of the Lamarck Fault zone, and it is in this area that many intermediate-mafic volcanic rocks also display shearing effects. Grain size varies from 0.2 to 3.0 mm with shearing and chloritization often resulting in a masking or destruction of the original coarse minerals. In may cases only relict quartz or plagioclase cyrstals remain to give some indication of original grain size. Less altered and sheared samples invariably have a grain size in excess of one millimetre.

Irrespective of quartz content, plagioclase: mafic mineral ratios in the gabbroic samples are in the range of 50-60:40-50. The least altered and sheared samples commonly contain hornblende or partially chloritized hornblende. Actinolite is locally present, probably as an alteration product of hornblende. In some samples such as CW-85-174-02, significant proportions of green pyroxene appear to be present, but chlorite-actinolite alteration precludes determining whether pyroxene or hornblende was initially the most abundant mafic mineral. Increasing alteration and shearing results in mafic minerals being wholly

represented by chlorite (+ actinolite). Locally, chlorite pseudomorphs of euhedral hornblende indicate the original mafic mineral.

Plagioclase also displays alteration effects. All plagioclase is cloudy and is assumed to be saussuritized. Coarser saussurite visible under the binocular is restricted to samples from Holes 72, 107, 109, 140, 141, 142, 152, 190, and 195. Many samples displaying saussurite alteration are also sheared and chloritized, but samples from Holes 140, 141 and 142 are essentially massive and display only minor chloritic alteration.

Carbonate content of the gabbroic rocks ranges from nil to approximately fifteen percent. The carbonate occurs mostly as interstitial disseminations or locally as stringers or foliation and shear plane coatings. Concentrations of carbonate also occur with quartz in veinlets that constitute less than one to seven percent of the rock. The sample from Hole 145 contains an anomalously high fifty percent quartz-carbonate vein material. As with chlorite, the greatest concentrations of carbonate occur in sheared samples. Calcite is most prevalent, but five to ten percent moderately reactive carbonate is found in Hole 221. The highly veined gabbro of Hole 145 contains two to five percent slowly reactive carbonate in the host rock and eight to ten percent slowly reactive carbonate associated with the vein material itself.

Disseminated magnetite is present in approximately thirty-five percent of the samples in concentrations of less than two percent. Approximately fifteen percent of the samples contain ilmenite (1-4%), and forty percent contain one to three percent leucoxene pseudomorphs of ilmenite. These minerals show no preference for either gabbro or quartz gabbro.

Sulfide proportions range from 0-3 percent in the gabbroic samples but are normally less than one percent. Pyrite is most common but pyrrhotite is noted in fifteen percent of the samples. The sulfides occur as disseminations and local stringer-like concentrations along foliation planes. Traces of chalcopyrite are present in Holes 71 and 190.

Gabbroic samples are represented graphically on the Jensen Cation Plot of Fig 11. The samples plot essentially in the same fields as the mafic volcanics (Unit 1b) indicating their comagnatic character. A fairly wide scatter is attributed to the effects of shearing and alteration, and to magnatic differentiation.

4.3.6 Feldspar Porphyry, Quartz-Feldspar Porphyry, Felsite (Unit 7)

Subvolcanic porphyries were intersected in nine holes. These rocks have a fine grained matrix (less than 0.1 to 0.2 mm) and contain ten to fifty percent subhedral feldspar phenocrysts to 3 mm in size and lesser proportions of quartz phenocrysts. If more than five percent quartz phenocrysts are present the rock has been termed quartz-feldspar porphyry (Holes 114, 168).

The matrix of the porphyries is quartzo-feldspathic in character with less than twenty percent chlorite and/or biotite. Felsite described in Hole 99 contains no phenocrysts and is essentially identical to the matrix of the porphyries. In addition to the major minerals, trace to four percent interstitial calcite and up to one percent epidote is present. The samples contain less than 0.5% disseminated pyrite.

The porphyry intersections occur as dykes or sills and are most prevalent in the western portion of the drill area in close proximity to the main intermediate to felsic volcanic fragmental pile. Here, intersections in Holes 48 and 49, and those of 77, 79 and 80 appear to define discrete bodies of significant extent whereas only single hole intersections were obtained elsewhere in the project area. The position of Holes 77, 79 and 80 near a small granitoid stock mapped by the Quebec Ministry of Energy and Resources west of the drill area suggests a genetic relationship between the stock and the porphyry.

Chemically, the porphyry samples plot in the calc-alkalic rhyolite, dacite, and andesite fields on the Jensen Cation Plot (Fig. 12). The quartz-feldspar porphyry is restricted to the rhyolite field while the feldspar porphyry displays a slightly less felsic character. The position of the porphyries on the Jensen diagram is similar to that of the sediments, intermediate and felsic volcanics, and intermediate-felsic fragmentals.

4.3.7 Syenite, Granodiorite, Quartz Diorite (Unit 7)

Granitoid intrusive rocks in the southern part of the drill area are related to the Lapparent Massif - an elongate dome of remobilized basement rocks penetrated (chiefly along the contacts) by synkinematic and post kinematic intrusions (Racicot, et al 1984). Intrusive rocks intersected in the reverse circulation drill holes belong to the marginal stocks and comprise syenite, granodiorite and quartz diorite. Rock names used are based essentially on binocular microscope identification and the names used many not correspond to strict petrographic or chemical definitions (Fig. 13).

The intrusive rocks have a grain size of 0.5 to 2 mm. Shear deformation imparts a distinct foliation to the syenite of Hole 13, but syenite in Holes 11 and 12 is massive and hypidiomorphic as are other granitoid samples. Syenite is a quartz-poor (less than 10%) rock with fifteen to twenty-five percent homblende (locally chloritic) and sixty-five to seventy-five percent feldspar. With the exception of the sheared, dark coloured syenite of Hole 13, the samples have pink (K-spar?) to white (plagioclase) feldspar ratios of only 1:1 or 3:1. If the pink coloration is due to hydrothermal alteration or iron staining of primary plagioclase, the samples may be monzonites to diorites rather than syenites.

Granodiorite contains twenty to thirty-five percent quartz, ten to twenty-five percent hornblende (locally chloritic) and forty to seventy percent feldspar. In two of the four granodiorite samples the pink: white feldspar ratio is 1:3 while the remaining two samples contain only white feldspar.

Quartz diorite contains five to twenty percent quartz and either white feldspar alone, or pink: white feldspar in ratios of 1:2 to 1:4 - the pink feldspar, however, is believed to be due to iron staining as the colour appears more intense marginal to micro-fractures. The mafic mineral content of the quartz diorite is twenty-five to fifty percent - chiefly hornblende but with common chlorite and local actinolite alteration (Hole 126).

Variable amounts (0-5%) of epidote occur in all intrusive rocks where it is associated with altered hornblende. Minor calcite (0-2%) is found infilling cyrstal interstices or with altered hornblende. Pyrite is rare or absent and sphene is present in concentrations of 1 percent or less.

Gold and Base Metal Bedrock Geochemistry

4.4

Base and precious metal bedrock geochemistry are presented in Appendix E. Background metal levels are maintained in most of the samples with copper, zinc and arsenic ranging up to 200 ppm and silver and gold consistently being less than 0.2 ppm and less than 5 ppb, respectively.

Elevated levels of copper (260, 251, 231, 552 and 456 ppm) are present in Holes 17, 71, 72, 125 and 152. Holes 17, 71, and 72 intersected gabbro while Hole 125 intersected a mafic volcanic. A trace of disseminated chalcopyrite was noted in Hole 71 and similar mineralization is assumed to be present in the other holes. The bedrock chips of Hole 152 are of both mafic volcanics and gabbro. Traces of chalcopyrite occur associated with 8-10 percent pyrite/pyrrhotite in the mafic volcanic portion of the sample.

Elevated zinc values of 225, 380, 600, 650 and 520 ppm were reported for bedrock of Holes 44, 104, 137, 157 and 197, respectively. The lithology in Holes 137 and 197 is greywacke. Intermediate tuff and mafic volcanics were intersected in Holes 44 and 157, respectively. Sphalerite was not noted in these four samples but is probably present in very low concentrations. The bedrock of Hole 104 is a mafic volcanic with approximately 10 percent black graphitic mudstone. This mudstone contains 1-2% pyrite as fine disseminations and thin (1 mm, or less), semi-massive bands. As with other samples having elevated levels of zinc, no sphalerite was observed in binocular logging.

An anomalous zinc assay of 3,600 ppm, along with elevated copper (240 ppm) and silver (2.1 ppm), was obtained from the bedrock of Hole 14. The sample is a very fine grained, slightly graphitic siltstone. Approximately 1-2 percent disseminated and stringer pyrite, traces of chalcopyrite, and 0.5-1 percent sphalerite were identified in the sample. The sphalerite variably occurs with the stringer pyrite, as disseminations, and also with an estimated 1-2 percent veinlet quartz.

Seven samples in two groups gave elevated gold values. In the first group, the samples from Holes 35, 36, 37 and 57 contain 90, 20, 10, and 15 ppb Au, respectively. Weakly elevated arsenic (150, 100, 376, 114 ppm, respectively) accompanies the gold and the Hole 36 sample also contains 359 ppm Cu and 600 ppm Zn. Holes 35, 36 and 37 were drilled proximal to the west branch of the Lamarck Fault. The sample from Hole 35 is a porphyrytic intermediate volcanic, but those from Hole 36 and 37 are so completely altered that the original rock cannot be identified with confidence. These samples contain 20-25 percent vein quartz plus 10-20 percent slowly reactive carbonate and are highly sheared, suggesting that the metal enrichment is related to faulting. Hole 57 intersected intermediate tuff that is also sheared and veined (20-25% quartz-calcite) but this hole is approximately four kilometres removed from the Holes 35-37 area. However, all four intersections occur in the main pile of intermediate-felsic fragmentals and volcanics and/or are proximal to major fault zones and therefore are of interest for epigenetic gold mineralization.

The second group of elevated gold assays include 10, 15 and 45 ppb in Holes 26, 153 and 226, respectively. These occurences have variable lithologies and metal associations. Mafic volcanics were intersected in Hole 26 and sheared quartz gabbro in Hole 153. Base metals and silver in these two holes are at background levels. Hole 226 contains mafic volcanic bedrock, and along with the 45 ppb Au, an elevated arsenic value of 274 ppm was obtained. The sample contains seven percent quartz-calcite vein material and eight percent interstitial calcite. Traces of disseminated arsenopyrite account for the arsenic value.

OVERBURDEN GEOLOGY

5.1 Quaternary History and Stratigraphy

5.

The Quaternary history of the Abitibi region is poorly documented and is a subject of considerable controversy. Published accounts (e.g. Baker, 1984; Boissoneault, 1966; Hughes, 1959) are based on surficial mapping and on drill holes from a handful of localities. They are invariably simple and generally assume that:

- 1. All preserved strata were deposited during the Wisconsinan period.
- 2. The direction of ice advance was similar for all till horizons.
- 3. All sedimentation occurred during periods of ice recession.

ODM accepted these interpretations for almost ten years. After drilling more than 5,000 holes in the Abitibi region, however, we now recognize the following additional events (Fig. 14):

- 1. Two pre-Wisconsinan glaciations involving ice flow directions different from those in the Wisconsinan.
- 2. A Wisconsinan/Illinoian (Sangamonian) interglacial period.
- 3. Two periods of Wisconsinan sedimentation that occurred during ice advance rather than ice recession.

The recognition of these events has modified our interpretation of heavy mineral anomalies. Some of the events were previously recorded by Skinner (1973) in the Moose River basin 200 km north of the Abitibi area, and we have retained his stratigraphic names where possible. However, it has been necessary to coin new names for some previously unrecognized or unnamed units and events.

To date, only one pre-Wisconsinan glaciation has been recognized in the Abitibi-east area. All known Quaternary strata from the entire Abitibi region are listed in Table 4 and are described in detail below starting with the oldest units. The distribution of the Chapais West units is illustrated in Sections A-A' to N-N'.

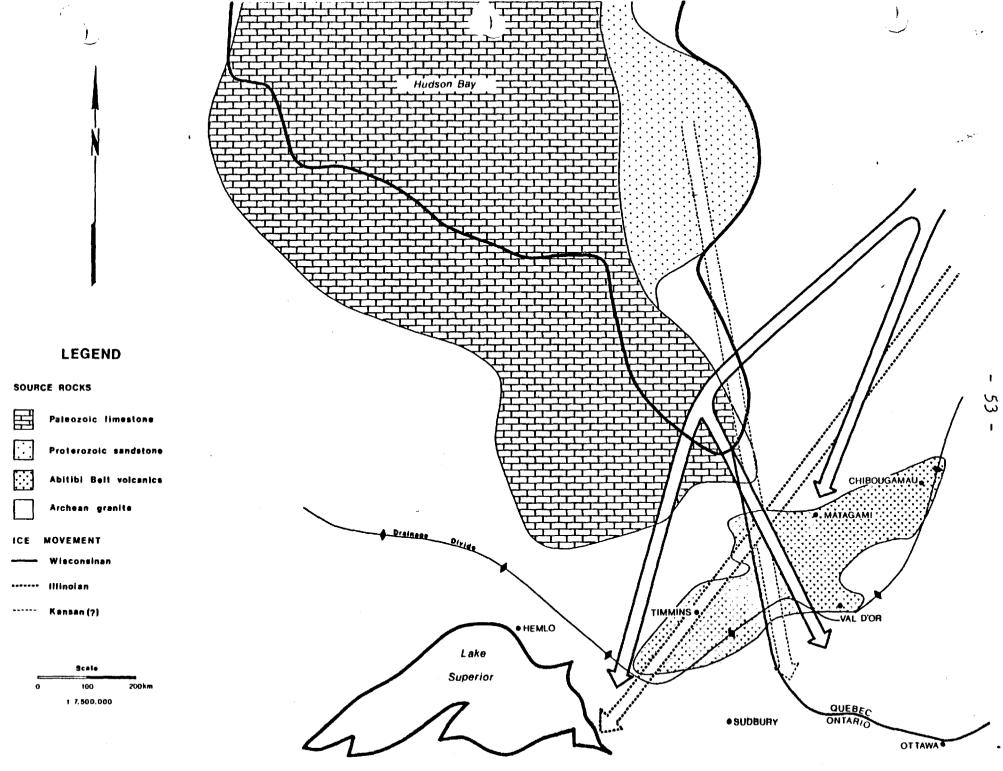


Figure 14 - Glacial History

LEGEND

Quaternary Stratigraphy

LATE WISCONSINAN

- 7 Cochrane Sediments
 7a glaciofluvial/morainal member
 7b glaciolacustrine member
- 6 Cochrane Till

WISCONSINAN AND LATE WISCONSINAN

- 5 Ojibway Sediments
 - 5a glaciofluvial member
 - 5b glaciolacustrine clay member
 - 5c glaciolacustrine sand member
 - 5d fluvial member
- 4 Chibougamau/Matheson Till

SANGAMONIAN

- 3 Missinaibi Sediments
 - 3a Illinoian glaciofluvial member
 - 3b Illinoian glaciolacustrine member
 - 3c Sangamonian interglacial member
 - 3d Wisconsinan proglacial member

ILLINOIAN

2 Lower Till

KANSAN (?)

1 Older Till and Sediments

Table 4 - Table of Quaternary Formations

Microfilm

PAGE DE DIMENSION HORS STANDARD

MICROFILMÉE SUR 35 MM ET

POSITIONNÉE À LA SUITE DES

PRÉSENTES PAGES STANDARDS

Numérique

PAGE DE DIMENSION HORS STANDARD

NUMÉRISÉE ET POSITIONNÉE À LA

SUITE DES PRÉSENTES PAGES STANDARDS

5.1.1 Older Till and Sediments (Unit 1)

These pre-Wisconsinan units were not intersected within the Chapais West test area, but do occur in the Casa-Berardi area. They are related to an early glaciation, possibly Kansan, that dispersed Paleozoic limestone and Proterozoic sandstone southward from Hudson Bay into Quebec.

5.1.2 Lower Till (Unit 2)

The name "Lower Till" has been so widely used to describe the oldest till known in the Abitibi region prior to the discovery of the older and still lower unit in the Casa-Berardi area that we have chosen to retain it. Most authors (e.g. Baker, 1984) consider the Lower Till to be of Wisconsinan age but it is overlain by sediments that are partly interglacial and occur in the same relative stratigraphic position as Skinner's (1973) Missinaibi Formation of probable Sangamonian age. We therefore consider the Lower Till to be of Illinoian age.

It has been difficult to establish the direction of Illinoian ice transport because the Lower Till is preserved only as buried lenses in bedrock valleys where it was protected from erosion in the Wisconsinan period. However, reliable measurements have been obtained from two dispersion trains (Selbaie Mine, Quebec and Bowman Township, Ontario) and from striae at three localities (one outcrop south of the Golden Pond deposit and two open pit mines at Owl Creek and Maude Lake, Ontario). These measurements are consistently between 225 and 240 degrees, indicating regular southwesterly ice flow from a Nouveau Quebec centre (Averill, 1986; Fig. 14).

Lower Till throughout the Abitibi region is characteristically thin and contains a high proportion of clasts eroded from Abitibi belt formations. Its matrix consists mainly of fine sand and silty rock flour. Gray clay is not an important matrix constituent and is rarely present as beds in the till or between the till and the oxidized interglacial member of the overlying Missinaibi succession. Taken

together, these features indicate that the till developed with the ice in direct contact with bedrock and therefore is an excellent sampling medium. They also indicate that most of the sediment-laden meltwater flowing off the glacier during both ice advance and recession immediately drained northward down the Hudson Bay slope. Unimpeded northward drainage would be expected since the Illinoian ice front trended north-northwest. Wisconsinan melt water, in contrast, became ponded in Lake Ojibway between an east-west trending ice front and the Hudson Bay/St. Lawrence River drainage divide and drained southward over the divide.

Lower Till remnants within the Chapais West test area occur in Holes CW-85-06, 07, 19, 27, 28, 93, 139, 141, 168 and 199 where they are closely associated with Missinaibi Sediments. In all cases Lower Till occurs in bedrock depressions. The majority of the intersections are limited to one hole and they occur across the test area. Lower Till intersections in the central region north of Highway 113 are more laterally extensive (Plan 3). The depression containing Lower Till intersected in Holes 19, 27 and 28 probably resulted from erosion of sheared bedrock associated with the Lamarck Fault. The extent of Lower Till intersected in Holes 06 and 07 is unknown at present due to a lack of drill hole data to the east.

Lower Till intersections range from 0.5 to 6.0 metres in thickness. The till is generally cobbly, exhibits no stratification and contains no clay beds indicating that Illinoian ice did not stand in water during melt-out. The till matrix consists of gray to gray-beige fine sand and silt. Gray-green fine sand and clay in Hole 27 was probably derived from the abrasion of soft, weathered bedrock rather than gray lacustrine clay. Till clast percentages are generally greater than 75% local material. Exceptions are found in the upper half of Lower Till intersections in Holes 07, 19 and 141 where local lithologies only account for 60 to 75 percent of the clasts.

5.1.3 Missinaibi Sediments (Unit 3)

The name "Missinaibi Formation" was applied by Skinner (1973) to a distinctive sedimentary succession (Table 5) occurring between "Adam Till" and

SEDIMENTS		INTERPRETATION	ROCK STRATIGRAPHIC UNITS	
00.00	TILL	GLACIATION	ADAM	TILL
	MON TO SLIGHTLY ORGANIC, VERY CALCAPEOUS SILT CLAY RHYTMHITES COMMONLY SHEARED AND FOLDED	GLACIAL OVERRIDING UTILE OR MO REWORKING OF FOREST - PEAT - RED. GLACIEP PROBABLY AM IMPORTANT SEDIMENT SOURCE	LACUSTRINE MEMBER	ZO
	VERY ORGANIC, LAMINATED TO MASSIVE SRT. SLIGHTLY OR NON-CALCAREOUS	REWORKING OF POREST-PEAT- BED TRANSGRESSION OF PROGLACIAL LAKE	2	FORMATION
	LAYER OF MOSS. SIUMPS. STICKS, AND OTHER PLANT FRAGMENTS RARELY FIRROUS PEAT	PEAT AND FOREST GROWTH	FOREST - PEAT - BED MEMBER	MISSINAIBI
	ZOME OF WEATHEPING VERTICAL LINES) AFFECTS LOWER UMITS AS WELL SANO. SILT. GRAVEL COMMONLY CROSS-STRATIFIED IN PLACES WITH LENSES OF FOSSILIFEROUS SEDIMENT	WEATHERING. SOIL FORMATION STREAM INCISION AND DEPOSITION	FLUVIAL MEMBER	₹ .
	SAND SILT AND CLAY CONTAINS MARINE FOSSILS.	OFF-LAP OF BELL SEA MARME INCUESION (BELL SEA) GLACIAL RETREAT	MARINE MEMBER	
	THL	GLACIATION	LOWER TILL	

Table 5 - Stratigraphy of Missinaibi Formation Moose River Basin (after Skinner, 1973)

"Lower Till" in the Moose River Basin. If one counts down in the stratigraphic succession, Skinner's Adam and Lower Tills correlate, respectively, with the Matheson/Chibougamau and Lower Tills of the Abitibi region. If the Missinaibi Formation is present in the Abitibi area, therefore, it should overlie the Lower Till and underlie the Matheson/Chibougamau Till. Twenty percent of Abitibi drill holes have intersected a Missinaibi-like unit in the expected position. We use the informal name "Missinaibi Sediments" for this unit.

The complete Missinaibi section at the Moose River type locality comprises four members:

- 1. A basal marine clay unit related to the incursion of the Bell Sea (i.e. glacial Hudson Bay) in the interval between Illinoian (?) ice withdrawal and isostatic rebound.
- 2. An overlying fluvial (<u>not</u> glaciofluvial) sand and gravel unit that was deposited by streams flowing northward down the Hudson Bay slope in an interglacial period, presumably the Sangamon.
- 3. A weathered soil profile and forest-peat horizon from the same interglacial period.
- 4. An upper glaciolacustrine varved clay/silt/sand unit that was deposited by Wisconsinan ice advancing through Lake Ojibway I which was dammed proglacially on the Hudson Bay slope.

The marine member at Moose River is thin and has generally been eroded. Its former existence is inferred mainly from marine shells that have been reworked into younger members. The fluvial member is up to 8 m thick but is discontinuous. It is generally oxidized and often contains detrital wood. The peat layer in the forest-peat horizon is up to 2 m thick, similar to modern peat bogs, while the forest layer is typically 2 to 5 cm thick and contains stumps up to 12 cm diameter, similar to much of the modern forest layer in the area.

All of the Moose River members except the basal marine clay are present in the Abitibi region. The marine member is absent because the Bell Sea did not extend this far south and east. In its place should be discontinuous glaciofluvial and glaciolacustrine members associated with the Illinoian recession, although these units have not been recognized in any drill holes.

The forest-peat member is rare in Abitibi intersections because the sediments are preserved mostly in buried valleys that were probably occupied by small lakes rather than forests and peat bogs in the Sangamonian interglacial. Most preserved examples are at higher elevations on the protected lee (down-ice) slopes of bedrock highs.

The upper glaciolacustrine member of Lake Ojibway I is much more prominent, with up to 30 m remaining after overriding by the Wisconsinan glacier. In terms of its thickness, it is similar to the Ojibway II sediments that were deposited during the recession of the same glacier. However, the overriden clays are tough, dry, compact and platy while the Ojibway II clays remain soft even at the base of thick sections.

Missinaibi Sediments on Chapais West are coincident with all intersections of Lower Till and locally rest on bedrock where Lower Till is absent (Holes 26, 209, 210). Intersections of Missinaibi Sediments within younger Chibougamau Till, indicating dislocation of coherent sheets, occur in Holes 139 and 141.

Missinaibi Sediments vary from 0.5 to 7.5 m in thickness and typically average 3 m. Within the Chapais West test area the full Casa-Berardi type succession of Missinaibi Sediments — oxidized sand and gravel overlain by unoxidized, upward coarsening clay, silt and sand — is not evident in any one drill hole. The intersections here consist of either interbedded sand and gravel (Holes 07 and 19) or sand alone (Holes 06, 26, 27, 28 141 and 210) or interbedded sand and clay (Holes 139 and 209) or clay alone (Holes 93, 168 and 199).

The interbedded sand and gravel sections are probably fluvial interglacial rather than glaciofluvial. Their irregular interbedded nature is typical of a fluctuating interglacial environment whereas esker sediments normally coarsen systematically downward. Sample concentrates from these sections are slightly oxidized and lack sulphides. For similar sections in the Casa-Berardi area the dissolved pyrite has often been reprecipitated as marcasite. The paucity of marcasite at Chapais West could result from a well drained interglacial fluvial environment and thus is not evidence of a glaciofluvial origin. The clay, sand and interbedded clay and sand units are Skinner's upper glaciolacustrine member marking the onset of the Wisconsinan period. The sand sections are unoxidized and contain no organics but do contain fresh pyrite. Where present, the clay unit is typical of the upper glaciolacustrine member of the Missinaibi throughout the Abitibi region, being dry, compact and platy. The clay is so tough that it is known as "super clay" in the drilling industry. Its dry, compact condition reflects burial under thousands of meters of ice, and is the principal evidence that the overlying Chibougamau Till was deposited in the main glaciation of the Wisconsinan period.

5.1.4 Chibougamau Till (Unit 4)

The thick glaciolacustrine member of the Missinaibi Sediments in the Casa-Berardi area was able to accumulate because the front of the approaching Wisconsinan glacier 100,000 years ago trended east-west, damming the natural northward drainage of meltwater and causing a major proglacial lake - Lake Ojibway I -- to form between the ice and the Hudson Bay/St. Lawrence River drainage divide. The glacier then advanced through the lake, overriding and eroding the bottom sediments. In Late Wisconsinan time, 10,000 years ago, the glacier melted northward. The orientation of the ice front remained east-west as the ice crossed the drainage divide and meltwater was again ponded on the Hudson Bay slope, forming lake Ojibway IL. Once in the lake, the receding glacier separated into two distinct lobes along a north-south line passing through the approximate sites of the present towns of Val d'Or and Matagami. The esker-like Harricana Moraine (Dyke et al, 1982) was deposited between the two lobes. The eastern lobe involved southwestward ice movement and deposited Chibougamau The western lobe involved southeastward ice movement and deposited Matheson Till (Fig. 14).

The Chapais West area was on the southwest edge of Lakes Ojibway I and II where the water was very shallow and thin sandy sediments were deposited. The Casa-Berardi area was in the middle of the lakes where the water was more than 100 metres deep and thick ice-proximal sands and ice-distal clays were deposited. This results in several significant differences between the Chibougamau Till at Chapais West and the Matheson Till at Casa-Berardi:

- 1. Chibougamau Till is relatively thin, averaging 1 to 5 m whereas Matheson Till is typically 10 to 20 m thick reflecting the availability of thick easily eroded Ojibway I bottom sediments.
- 2. Sheets of super clay and sand ripped up from the lake bottom are much more common in the Matheson Till than in the Chibougamau Till.
- 3. Sheets in the Chibougamau Till are sand whereas those in the Matheson Till are mostly clay.
- 4. The character of the Matheson Till matrix oscillates rapidly from clayrich to sandy. The Chibougamau Till is consistently sandy.
- 5. The upper half of the Matheson Till section is often bedded, consisting of alternating layers of water laid, clast-poor till-turbidite, soft glaciolacustrine clay and glaciofluvial/glaciolacustrine sand. No stratification was observed in Chibougamau Till.

The Chibougamau Till in the eastern portion of the project area (Dolomieu Twp) is relatively thin and discontinuous, forming a thin surface veneer between small sporadically scattered outcrops especially in the extreme southeast where bedrock exposure averages approximately 10 percent (Plan 2). Its thickness averages 2 to 3 metres with individual intersections up to 17 metres. Of the 83 reverse circulation drill holes in Dolomieu Township, eight (10 percent) did not intersect till. Portions of the this area therefore were not adequately tested for subcropping mineralization.

To the west, in Saussure Township, south of Highway 113, the average till thickness increases to approximately 10 metres but the till is still discontinuous due to undulations in the bedrock surface. Till was not intersected in 6 of 49 reverse circulation drill holes (12 percent). These holes are evenly distributed across the area and do not significantly diminish the effectiveness of the exploration coverage. Exposures of till are less frequent as a thin surface veneer of sand and clay is present. North of Highway 113 the thickest intersections of Chibougamau Till are found (Plan 3), reaching a maximum of 49 metres (Hole 28) and averaging approximately 35 metres (Sections B"-C and C'-C"). A drumlinoid profile is evident in the till surface in Hole 06 (Section C'-C") where the till is underlain by Missinaibi Sediments. ODM has observed that drumlins will not form over folded, Archean rocks if intervening horizontally bedded Quaternary sediments are not present.

In the La Ribourde Township portion of the project area, Chibougamau Till has been completely removed or considerably thinned by a northeast-southwest trending fluvial scour channel (Plan 3). Of the 95 reverse circulation drill holes in this township, thirteen did not intersect Chibougamau Till and seven of these are within the scour channel. The remaining 6 holes are north of the scour channel and are associated with bedrock highs. The complete removal or severe thinning of till over a wide area (Sections A-A', E-E") limits the effectiveness of the exploration coverage.

The Chibougamau Till north of the scour channel is extensively exposed at surface and averages approximately 10 metres in thickness with individual intersections of up to 28 metres (Hole 70). Surface exposure of the till is also evident just north of the project area where drumlins indicate regional ice flow along a 213 degree azimuth (Plan 3). The presence of the drumlins suggests extensive preservation of older Missinaibi Sediments in this area.

South of the scour channel, Chibougamau Till is covered by a thin veneer of clay. Till thickness averages approximately 10 metres with individual intersections of up to 19 metres. The till horizon is more laterally continuous than in the north.

The till matrix material consists largely of beige to gray-beige fine grained sand and silt rather than clay, reflecting the shallow depth of Lake Ojbway I in this area. Abundant matrix clay occurs only in Hole 81 and alternating sections of clay-rich and sandy till occur only in Hole 209 where the till is underlain by Missinaibi superclay (Plan 3). Intersections of dislocated sediment sheets within the till are found only in Holes 06, 139 and 141. The only example of clay sheeting is a 0.5 metre section of gray compact clay near the top of the till in Hole 06. Sand sheeting occurs in Holes 139 and 141 where respective thicknesses of 4 and 1 metres of fine-grained beige sand occur within a thick section of Chibougamau Till underlain by Missinaibi sand.

The Chibougamau Till contacts bedrock in 192 of the 200 holes (96%) in which it was intersected. The relative thinness and sandy character of the till indicate that it was derived more from the direct erosion of bedrock than from recycling of Missinaibi Sediments, making it an effective medium for heavy mineral geochemical exploration. The ratio of Abitibi belt to granitic clasts averages 60:40 in the upper portion of the till and rises to 85:15 within 1 to 5 metres of the bedrock surface.

5.1.5 Ojibway Sediments (Unit 5)

Sediments related to Lake Ojibway II on Chapais West (Unit 5) include the following subunits:

- 5a Glaciofluvial De Geer moraine sand, gravel and melt-out till deposited concurrently with Chibougamau Till.
- 5c The lower proximal sand member of the Ojibway II lake bed.
- 5b The upper distal clay-silt member of the Ojibway II lake bed.
- A fluvial, upward fining sand and gravel sequence deposited during the draining of Lake Ojibway II.

The glaciofluvial member (Subunit 5a) forms numerous De Geer moraines across the project area. These moraines are best exposed in the eastern region where they form a series of sinuous semi-continuous ridges trending northwest-southeast (Plan 3). The ridges are 0.5 to 1.0 kilometre in length and average 5 to 7 metres in height with a base of 30 to 40 metres and a consistent ridge separation of 150 to 200 metres.

The current theory is that De Geer moraines are recessional ice-front features formed by annual ice calving (Fairbridge, 1968). Crevasses formed during ice calving were infilled with sand and gravel and lesser amounts of melt-out till. In low lying areas De Geer moraines would be covered by glaciolacustrine clays and sands making their identification difficult from reverse circulation drill hole data.

The lower portion of the glaciolacustrine sequence (Subunit 5c) is a sand section found intermittently throughout the project area but not as extensively as the overlying clay-silt member (Subunit 5b). Surface exposures are limited but occur extensively in the extreme eastern portion of the area and to a limited extent in the west-central region (Plan 3). Both of these areas are closely associated with De Geer moraines (Subunit 5a) and the sand probably includes some glaciofluvial component. The sand is exclusively underlain by Chibougamau Till with the exception of Hole 40 where it rests directly on bedrock. Its average thickness is 2 metres with individual intersections of up to seven metres. The sand is beige and fine-grained with localized thin clay beds and grades conformably into the overlying clay and silt subunit.

The most extensive exposures of the upper clay-silt member (Subunit 5b) are in the central and western regions south of the fluvial scour channel where the clay floors small swamps. The surface topography here is lower than in other parts of the project area, and Lake Ojibway II was deeper. Approximately 30 percent of the clay intersections are conformably underlain by sand (Subunit 5c) and 70 percent are conformably underlain by Chigougamau Till. The clay subunit averages 1-2 metres in thickness with a maximum intersection of 7 metres (Hole 91) and consists of a downward coarsening sequence of gray-beige, soft, smooth distal clay grading into more proximal beige silt.

The fluvial member (Subunit 5d) represents an earlier phase of the present Chibougamau River and is the final major depositional event to occur within the project area. It forms a 1 kilometer wide, northeast-southwest trending ribbon that alternately coincides with the diverges from the present course of the Chibougamau River in the north-central region (Plan 3) and coincides with Ruisseau Alouettes in the southwest.

The present Chibougamau River follows the bedrock depression of the Lamarck fault and it is speculated that a pre-Wisconsinan river carved the channel. Flow is southwestward through the drill area, thence northward down the Hudson Bay slope. Late Wisconsinan till melt out resulted in damming of the narrow gap between the bedrock walls of this channel just south of the mouth of the Ruisseau Alouette. Remnants of this dam till are clearly visible on air photo stereo-pairs of the area. When the receding Wisconsinan ice front reached Hudson Bay, the southward outlet of Lake Ojibway II between Noranda and Kirkland Lake was abandoned in favour of northward channels and the lake level fell catastrophically. Drainage across the emerging lake bottom in the Chapais West area was via the Chibougamau River along the early scour channel route. As the water supply diminished, the scour channel was infilled with fluvial sediments. Eventually the till dam on the south edge of the channel was breached and the Chibougamau River began to follow its present course. In the beheaded southwestern part of the of the old channel, the drainage direction was reversed and the modern northeast-flowing Ruisseau Alouettes was formed.

The lower portion of the scour channel section consists of alternating coarse sand and gravel beds gradually fining upwards to fine beige sand. Chibougamau Till has been completely removed in Holes 32, 34, 62, 65, 68, 97 and 98 and thinned to less than 2 metres in Holes 46, 89, 90, 91, 92, 94, 95 and 96. Any dispersion trains emanating from the north-northeast would also have been partly or completely removed.

5.1.6 Cochrane Till (Unit 6) and Cochrane Sediments (Unit 7)

The final glacial event in the Abitibi, before the draining of Lake Ojibway II, was a minor southeastward readvance of the Matheson lobe into the northern part

of the lake. This event is known as the Cochrane Stage (Prest, 1964). Clay eroded from the lake bottom was redeposited as Cochrane Till and a new layer of glaciolacustrine clay and sand that we call Cochrane Sediments was deposited over the till. The Cochrane advance terminated in the Joutel-Matagami area and Cochrane Till and Cochrane Sediments therefore are not present at Chapais West.

OVERBURDEN GEOCHEMISTRY

6.1 Regional Gold Background

6.

Most gold occurrences in the Abitibi belt are of the free gold type. Even in Casa-Berardi or Hemlo-type deposits having a high pyrite/arsenopyrite content, most of the gold is free although very fine grained (50 microns). Thus, all tills over the Abitibi belt contain scattered free gold particles. Due to the nugget effect — the chance occurrence of a coarse gold particle in a given sample — the gold backgrounds of small till samples collected at the same site will vary by several orders of magnitude.

The nugget effect can be overcome if a sample of sufficient size is collected and all of the gold is concentrated into a small heavy mineral fraction that is then analyzed in its entirety (Clifton, 1967). We have found that at least 50 kg of till would be needed to overcome the nugget effect. However, it is impractical to collect, process or analyze samples of this size. We have standardized to 7-9 kg samples because reverse circulation drills deliver this quantity of material during one metre of advance.

Rather than trying to eliminate the nugget effect, we have developed procedures for recognizing and discounting anomalies that are caused by it. Specifically we measure the dimensions of all gold grains sighted on the table or recovered by panning and use these dimensions to calculate the expected contribution of each gold grain to the concentrate assay (Appendix C). In this way, the cause of each high assay is identified and nugget anomalies are screened out.

Most gold particles occur as thin flakes and it is difficult to position these flakes on edge to measure their thickness. However, we have found that each flake can be treated as a disc in which the thickness is a function of the diameter. For flakes of less than 1000 microns diameter, this relationship is expressed by the following equation:

$$t = 0.2d - 0.01(d-100) d$$

Thus, by simply measuring the diameters of the gold flakes that separate from the samples during tabling, it is possible to calculate the relative volume of gold in a given flake and from this relative volume to calculate the geochemical assay that the flake would produce in a sample of specific size. Clifton (1967) showed that a 100 micron flake will produce a value of approximately 100 ppb in a 15-gram sample. Conveniently, the analyzed 3/4 concentrates of reverse circulation samples also weigh about 15 grams. Thus the range of assays produced in a "standard" reverse circulation concentrate by a single gold flake of varying size is as follows:

Size Classification	Flake Diameter (microns)	ppb Au
Very Fine	50 100	10 100
Fine "	150 200	330 760
Medium "	300 400 500	2,400 5,400 10,000
Coarse " " " "	600 700 800 900 1,000	16,200 24,000 33,300 43,700 55,000
Very Coarse	1,000+	55,000+

It is apparent from the above figures that till concentrates that contain no

free gold will assay less than 10 ppb provided auriferous sulphides are also absent. Concentrates containing a single gold particle will assay from 10 ppb to more than 55,000 ppb depending on the size of the gold particle. Thus the normal background for till concentrates ranges from less than 10 ppb to more than 55,000 ppb.

We have found that fewer than 30 percent of till concentrates from the Abitibi region yield gold assays lower than 10 ppb. Most samples give assays of 20 to 500 ppb, suggesting the presence of one to five gold particles in the 50 to 150 micron range or/and of auriferous sulphide minerals. Ten to fifteen percent of samples contain a coarser gold grain that produces an assay over 1000 ppb.

Thick gold particles do not separate well from magnetite on the table, and in more than 80 percent of the cases where a high assay has been reported for a sample in which we did not see gold, the assay was caused by a single thick gold particle coarser than 150 microns. This is relatively easy to prove by panning the retained 1/4 concentrate and assaying it (the 3/4 concentrate either is destroyed or is not available for four months after analysis), preferably by the non-destructive neutron activation method. If the 3/4 concentrate assay was caused by a single gold grain, the 1/4 assay will be low. If the assay was caused by fine gold, a large number of grains would be required. Several such grains will be visible when the 1/4 pan concentrate is panned and this concentrate should assay the same as the 3/4 concentrate will normally contain more than 10 percent pyrite plus elevated levels of another sulphide mineral such as arsenopyrite, galena, chalcopyrite or molybdenite, and will assay the same as the 3/4 concentrate.

6.2 Gold and Base Metal Anomaly Threshold Levels

Gray (1983) observed that heavy mineral gold assays in a number of dispersion trains tested by Asarco were 3000 ppb or higher. We have arrived at the same 3000 ppb threshold figure in a different manner. As early as 1976, we recognized that the grade of our concentrates within 1 km of source on base metal and uranium

dispersion trains was similar to the grade of the source provided the source was of normal width (5 to 10 metres) and was oriented perpendicular to the direction of glacial ice advance. We have since proved that the same relationship applies to gold dispersion trains. Thus, assuming that gold mineralization must grade a minimum of 3 g/tonne (3000 ppb) to be significant, the anomaly threshold level in our concentrates is 3000 ppb.

It is not uncommon for gold deposits in the Abitibi belt to have a subcropping strike length of only 100 metres. Most of these deposits strike sub-parallel to bedrock stratigraphy and sub-perpendicular to glaciation. Using the 3000 ppb anomaly threshold level, a reverse circulation drill hole separation of 100 metres would be needed to detect the deposits. However, most of the deposits have sub-ore strike extensions that increase the total mineralized length to three to four times the deposit length. If a low anomaly threshold is used and careful gold grain counts are made, the mineralized zones can be detected with confidence using a 300-400 metre hole separation. This greatly reduces exploration costs. We therefore consider any gold values over 1000 ppb to be potentially anomalous, and we prefer to pan concentrates in which any gold is seen or in which pyrite levels are sufficient (+20 percent) to interfere with the table gold count.

The base metal background of a heavy mineral concentrate, and particularly of a high-density methylene iodide concentrate, is higher than that of a whole sample, ranging up to several hundred ppm, because base metals tend to substitute to a significant extent for other metal ions in the structures of heavy silicate and sulphide minerals such as pyroxene and pyrite. The established anomaly threshold level for Cu and Zn, indicating the presence of ore-type minerals such as chalcopyrite and sphalerite in the sample, is 700 ppm. Because methylene iodide concentrates from dispersion train samples tend to grade the same as the bedrock source mineralization, massive sulphide deposits which typically grade 50,000 ppm (5 percent) combined Cu-Zn often produce anomalies over 10,000 ppm in each metal. The same deposits average 35 ppm (1 ounce/ton) silver, and the silver anomaly threshold corresponding to 700 ppm Cu or Zn is about 2 ppm. The anomaly threshold level for arsenic is about the same as for Cu and Zn but only those anomalies having a gold association are significant.

6.3 Stratigraphic Properties of a Dispersion Train

Glacial processes are systematic and heavy mineral dispersion trains in tills have specific configurations (Averill, 1978). For example, dispersed material tends to be sheeted progressively upward in the ice with increasing distance from source, causing the trains to rise in the till and thicken down-ice. Lateral spreading, in contrast, is minimal and most trains are tapered ribbons rather than fans.

ODM has traced nine gold dispersion trains (Table 1) and several base metal and uranium trains to source on both new discoveries and known deposits. These trains have had the following properties:

- 1. At a specific distance from source, the mineralization in adjacent drill holes was at a specific level within a specific till unit.
- 2. The train was at least two samples (2-3 m) thick unless:
 - (a) The host till was very thin.
- or (b) The train was intersected within 100 m of source.
- 3. The width of the train was not more than twice the cross-ice length of the source mineralization.
- 4. The maximum length of the train for deposits oriented perpendicular to glaciation was 1 km (gold) to 5 km (base metals/uranium).

6.4 Properties of a Free Gold Dispersion Train

Ten to fifteen percent of background till samples over the Abitibi belt produce heavy mineral gold anomalies higher than our 1000 ppb threshold due to the nugget effect. For the reverse circulation/heavy mineral method to be effective, free gold dispersion trains, which are relatively rare, must be differentiated with confidence from the numerous nugget anomalies. This is done on the basis of the gold grain counts rather than the assays. We have found that the gold particles in significant dispersion trains have the following properties:

- 1. At least 10 gold particles are present per 7 kg of till matrix.
- 2. The gold particles are of a common size, reflecting the size of crystallization at source.
- 3. The gold particles are of a common shape, reflecting a common distance of transport from source.
- 4. Since most gold dispersion trains are traceable for less than one km (Table 1) and gold particles become abraded after one km of ice transport (Fig. 5), the shape of the gold particles is either irregular or delicate.

Background nugget anomalies, unlike dispersion trains, do not normally repeat in the section, although with 15 percent of samples containing anomalies of this type, chance repetition does occur. Another property common to dispersion trains of all types is the presence of pathfinder minerals because most mineralized zones are multi-metallic. Even deposits that are considered to be strictly free gold occurrences generally have halos containing sufficient pyrite, arsenopyrite, galena, chalcopyrite or molybdenite for a pathfinder association to be evident in the dispersion train. Nugget anomalies have no pathfinder association.

6.5 Properties of an Invisible Gold Dispersion Train

We have encountered only one invisible gold dispersion train among nine gold trains tested. In one other train, the gold was very fine and more was recovered as composite gold/sulphide grains than as free grains.

In invisible gold trains it is not possible to use gold particle shape to predict distance to source. The distance must be gauged from the vertical positions of the anomaly in the host till and of the till in the stratigraphic succession. In most other respects, however, invisible gold dispersion trains are easier to trace than free gold dispersion trains. The following specific advantages are cited:

- 1. A pathfinder mineral association is always present.
- 2. The pathfinder minerals occur in sufficient concentrations that they can be seen in pebbles as well as in the heavy mineral fraction, and the host rock can therefore be determined.
- 3. The source mineralization is generally conductive and can be located by geophysical methods.
- 4. Gold/pathfinder metal ratios in the concentrates are relatively constant, and any interference from background nuggets is readily recognized.
- 5. The dispersion trains are longer and more uniform than free gold trains.

Some of these advantages apply only to unoxidized till samples from drill holes. Invisible gold is chemically reconstituted into the clay fraction if the host sulphides are destroyed by oxidation. Thus, in surface pit sampling programs, heavy mineral analysis will detect only the free gold. 'Conventional geochemical analysis should be used if sulphide gold targets are expected.

6.6 Chapais West Heavy Mineral Gold Anomalies

Forty-five of the one thousand one hundred and six overburden samples (4.1 percent) produced gold assays over the 1,000 ppb anomaly threshold compared to the 10-15 percent Abitibi norm. Eleven additional samples containing visible gold would have given assays over 1,000 ppb if the coarsest gold grain had entered the 3/4 analytical split of the concentrate. No samples yielded more than the minimum 10 grains required for a free gold dispersion train. Forty-four drill holes (19 percent) contain anomalous samples, and gold grains were observed in eightynnine of the samples (8 percent). These statistics alone suggest that most of the

anomalies are due to background nugget noise. Most of the anomalies are clustered in the east-central part of the drill area where the Chibougamau Till is thin.

Fig. 15 is a diagrammatic representation of the Chapais West overburden gold anomalies. In this figure the forty-four holes that contain anomalous levels of gold are plotted INPUT-fashion. Where two or more anomalies are present in a hole, the best anomaly is shown. The cross-hair indicates a gold content greater than or equal to the 1,000 ppb (measured or calculated) or 10 grain/sample anomaly threshold levels. Quadrants one through four (clockwise from upper right) represent greater than or equal to one thousand ppb Au, greater than or equal to ten grains of visible gold, greater than 50 percent of the visible gold being delicate and stratigraphic continuity, respectively.

As numerous anomalous samples and holes are present, various screening processes are used to separate background noise from those anomalies which are, or may be, caused by dispersion from significant mineralized sources. The screening processes and anomalies discounted are listed in Table 6. In some cases anomalies are discounted for more than one reason.

One screening method is to eliminate anomalies which have no stratigraphic continuity. In this regard, anomalies at the base of a till horizon are assumed to have stratigraphic continuity as are anomalies in single sample till horizons. A lack of stratigraphic continuity is displayed by a single, isolated anomalous sample within or at the top of a multi-sample till horizon. A lack of stratigraphic continuity may be due to the presence of a single nugget or an erratic, high concentration of gold grains, especially in placer beds in Missinaibi gravels or at the washed surfaces of till horizons.

A second phase of anomaly screening is the calculation of assays (Appendix C) using the formula/parameters discussed in a previous chapter. In this case the calculated and measured (geochemical) assays are compared. Either good correlation or a low measured assay is indicative of sufficient visible gold being seen initially to account for the anomaly. We consider the correlation between

Microfilm

PAGE DE DIMENSION HORS STANDARD

MICROFILMÉE SUR 35 MM ET

POSITIONNÉE À LA SUITE DES

PRÉSENTES PAGES STANDARDS

Numérique

PAGE DE DIMENSION HORS STANDARD

NUMÉRISÉE ET POSITIONNÉE À LA

SUITE DES PRÉSENTES PAGES STANDARDS

	Gold Anomalies		Grains V.G.	Ist Phase Screening	2nd Phase Screening	3rd Phase Screening		
Hole	Sample Au Assay (ppb)		(dag) y	(*Not	(No. Strat.	(Good Corr./	(Inferred	
No.	No.	Meas.	Calc.	Panned)	Cont.)	Low Assay)	Nugget)	Remarks
CW-85 06	08	1,260	1,592	1*	x	x	-	
	24	30	4,291	1*	X	Х	-	Pulp and metallics assay, check panned, no V.G., nugget lost.
07	09	3,530	1,719	*1	Х	Х	•	
09	02	2,380	731	1*	Х	High	X	Check panned, no V.G.
	04	10,880	4,086	1*	X	High	X	Check panned, no V.G.
	08	1,720	129	1*	X	High	X	Check panned, V.G., 1A @ 50 x 75
10	03	4,430	NA	0*	X	High	X	Check panned, no V.G., 5% py.
12	03	1,250	1,299	2	X	X	-	
21	01	1,120	NA	0*	X	High	X	Check panned, no V.G., conc. 10.0 g
22	03	1,170	NA	0*	X	High	X	Check panned, no V.G.
27	12	3,920	NA .	0*	X	High	X	Check panned, no V.G., 10% py.
	19	1,600	6	1	X	High	X	Check panned, no V.G., 15% py., no pathfinder.
28	14	2,155	NA	0*	X	High	-	Check panned, no V.G., 5% py.
30	01	20	2,931	1*	Х	Х	-	Pulp and inetallics assay, check panned, no V.G., 3% py.
	13	1,030	NA	0*	X	High	X	Check panned, no V.G., 3% py.
47	02	160	5,024	1*	Х	X	Found	Pulp and metallics, check panned, original IA @ 400 x 400 grain found
49	02	4,270	3,360	3	X	X	-	•
54	03	13,210	5,329	4	Basal	High	. х	Pulp and metallics assay, check panned, no V.G., 15% p
88	03	2,040	1,060	3	Basal	X	-	
89	07	1,290	311	[+	Х	High	X	Check panned, no V.G., conc. 8 g.
	13	3,660	1,413	1*	X	X	-	
101	05	3, 930	2,584	1*	Chance	High		Check panned, no V.G.
	06	6,730	4,297	2	Chance Chance	Х	-	
103	02	1,080	263	1*	\mathbf{X}_{-}	High	Х	Check panned, no V.G.
105	01	7,040	3,567	1*	Basai	Х	-	
110	09	1,000,000	NA	0*	X	High	X	Check panned, no V.G., 5-10% py.
111	01	6,050	NA	0*	Basal	High	X	Check panned, no V.G., 20% py., no pathfinder.
112	01	15,425	NA	0*	_ X	High	X	Check panned, no V.G., 5-10% py., conc. 5 g.
	03	11,380	13,339	1	Basal	X	-	
113	01	2,680	1,178	[*	Chance	High	-	Check panned, no V.G., conc. 9 g.
115	02 03	1,300 20	144 1,768	1* 1*	Chance Chance	High X	х -	Check panned, original 1A @ 125 x 125, 3% py. Pulp and metallics assay, check panned,
	0.4	2 (20			O 1	17:-1	V	no V.G. or sulph., only nugget lost
120	04	3,620	NA	0*	Chance	High	X	Check panned, no V.G., 1% py., 11 g conc.
138	05	50	37,534	1	Basal	X	-	Check panned, no V.G., 8 gm conc.
140	03	2,070	83	1*	Basal	High	Х	Check panned, no V.G.
141 142	09 10	20,830 290	10,812 1,297	1* 3	X X	X X	- Found	Pulp and metallics assay, check panned,
143	DC.	1 000	197	1	х	High	¥	original 1A @ 250x250 grain found Check panned, no V.G., 15% py., no pathfinder.
143	06 01	1,980	NA	1 0*	A Basal	High High	X X	Check panned, no V.G., 1976 py., no patininder. Check panned, no V.G., conc. 6 g.
		2,185						Check panned, no v.G., conc. 6 g. Check panned, original 1A @ 150x75 grain found
157	01	1,310	18 068]* !	Basal X	High X	X -	Check banned, original 14 (a 130x13 Right round
161 163	09 02	1,340 1,005	NA NA	0*	X	A High	x	Check panned, no V.G., 10% py.
170		1,005	NA 611	o* I	A Basai	riigh High	x	Check panned, no V.G., 25% py., no pathfinder.
176	04 18	1,480	631	1	X	rign X	^	Check painted, no 1,d., 270 py., no paintinger.

Table 6 - Gold Anomaly Discrimination for Samples with Calculated or/and Measured Assays over 1000 ppb or/and More than 10 Grains Visible Gold

	1	
	•)
١	C)
	ı	

	Gold Ano	malies		Grains V.G.	Ist Phase Screening	2nd Phase Screening	3rd Phase Screening	
Hole	Sample		ay (ppb)	(*Not	(No. Strat.	(Good Corr./	(Inferred	
No.	No.	Meas.	Calc.	Panned)	Cont.)	Low Assay)	Nugget)	Remarks
CW-85- 181	03	170	2,264	1	x	х	-	Pulp and metallics assay, check panned, no V.G. or sulph., nugget lost.
191	03	1,750	2.081	2	Basal	X	-	
192	07	1,680	1,701	1	Basal	X	-	
195	07	850	3,328	1	Basal	х	Found	Pulp and metallics assay, check panned, original 1A @ 300x400 grain found
197	02	1,080	2,405	1	X	Х		Pulp and metallics, check panned, no V.G.
	09	4,700	NA	0*	Х	High	Х	Check panned, IA @ 75 x 100 found
199	03	5,290	NA	O*	Chance	High	X	Check panned, no V.G., conc. 10 g.
	04	30	3,370	Ĭ	Chance	x	-	Pulp and metallics assay, check parined, no V.G., conc. 6 kms
205	101	50	1,613	1*	x	x	X	Pulp and metallics assay, check panned, no V.G., 1% py.
205	02	3,690	270	1*	X	High	X	Check panned, no V.G., conc. 7.2 g.
218	02	290	10,941	2	X	X	Found	Pulp and metallics, check panned, original 1A (0 400 x 950 grain found
222	01	1,190	NA	0*	Basal	High	Х	Check panned, no V.G., conc. 3.7 g.

calculated and measured assays to be "good" if the calculated assays are not more than twice as high as or fifty percent less than the measured assays. This allows for a doubling or halving of the normal thickness factor for flake gold particles used in the calculation. A low measured assay indicates that the largest grain of visible gold or a disproportionate number of the grains remained in the retained 1/4 split of the concentrate. Thus either good correlation of measured and calculated assays or a low measured assay generally indicates background noise if the 10 gold grain threshold for dispersion trains is not met.

A third screening method is the indirect elimination of nugget anomalies. Table 6, in addition to Low Assays and Good Correlation, includes another category -High Assays - which refers to those samples in which the number of gold grains sighted was not sufficient to explain the anomalies obtained. High Assays can be caused by any one of the following;

- 1. A missed nugget.
- 2. A sighted nugget for which the actual thickness is greater than the assumed thickness (0.1-0.2 x diameter) used in the assay calculation.
- 3. The difference in weight between the total concentrate on which the calculation is based and the 3/4 concentrate that is assayed.
- 4. A large number of missed fine gold grains.
- 5. Invisible gold in pyrite or other heavy minerals.

Missed nuggets normally account for about 80 percent of high assays, the thickness and weight factors for 10-20 percent, and fine gold and invisible gold for less than 10 percent. Only the fine gold and invisible gold anomalies are significant.

One method of evaluating anomalies in the High Assay category is to pan the retained 1/4 concentrates (Table 7). An absence or minimal amount of fine visible gold or less than ten percent sulfides in the 1/4 concentrate precludes the occurrence of fine gold or sulphide gold in anomalous concentrations in the 3/4 analytical split, and such anomalies can be assumed to have been caused by a missed or unusually thick nugget. Samples which apparently contain multiple gold particles but do not meet the ten grain minimum (assuming visible gold in the 1/4 and 3/4 is directly proportional) are grouped with nugget anomalies provided sulphide levels are low.

Using the screening processes described, the majority of Chapais West anomalies can be confidently discounted. Single sample anomalies are most easily discounted. If three adjacent anomalous samples in a thick overburden section are considered, more difficulty may be encountered in relegating the results because of their apparent stratigraphic continuity. However, one anomaly may be due entirely to a single nugget observed initially. Another may be due to five or six background grains with a good correlation of measured and calculated assays. This leaves a single sample anomaly now having no stratigraphic continuity. The high frequency of background gold grains makes chance repetition of nugget anomalies in adjacent samples common. For multiple sample anomalies to be considered dispersion from a unique source, each anomalous sample must have the same parameters (i.e. type, size and shape of gold, pathfinder elements, etc.).

6.6.1

Visible Gold Anomalies

Sufficient visible gold was seen in twenty-six (46 percent) of the fifty-six anomalous samples to explain the assays obtained (Good Correlation or Low Assays in Table 6).

Fourteen of the anomalies show Good Correlation; nine of these have only one gold grain present and are clearly of the background nugget type. Six of the one-grain occurences also have no stratigraphic continuity and three are from basal samples. None have a pathfinder mineral or element association.

Hole No.	Sample <u>No.</u>	Strat. Cont.	3/4 H pulp (grams)	V.G.+ Sulp. in 1/4 conc.	Remarks
		GROU	P 1: TABLE G	GOLD PRESENT	
CW-85- 09 27 54 89 101 103 113 140 143 157 170 206	02 04 08 19 03 07 05 02 01 02 03 06 01 04 02	No No No No Basal No Chance No Chance Basal No Basal Basal No	12.0 12.8 16.8 11.1 31.2 9.2 18.5 16.3 9.9 7.8 21.0 13.8 19.6 36.4 8.0	No V.G. No V.G. 1A @ 75 x 50 No V.G., 15% py. No V.G., 15% py. No V.G. No V.G. No V.G. No V.G. No V.G. 1A @ 125x125 No V.G. No V.G. 1A @ 150x75 No V.G., 25% py. No V.G.	Missed nugget Missed nugget Probable nugget Sulp. gold/missed nugget Sulp. gold/missed nugget Missed nugget Missed nugget Missed nugget Missed nugget Probable nugget Sulp. gold/missed nugget Probable nugget Sulp. gold/missed nugget Sulp. gold/missed nugget Missed nugget
		GROUP 2	2: NO TABLE	GOLD PRESENT	
10 21 22 27 28 30 110 111 112 115 146 163 197 199 222	03 01 03 12 14 13 09 01 01 04 01 02 09 03 01	No No No No No No No Basal No Chance Basal No Chance Basal	18.3 11.6 16.1 19.3 22.7 16.5 11.9 14.9 7.6 12.7 14.3 21.5 10.5	No V.G. No V.G. No V.G. No V.G., 10% py. No V.G.	Missed nugget Missed nugget Missed nugget Sulp. gold/missed nugget Missed nugget Missed nugget Missed nugget Sulp. gold/missed nugget Missed nugget Missed nugget Missed nugget Missed nugget Missed nugget Missed nugget Sulp. gold/missed nugget Missed nugget Missed nugget Missed nugget Missed nugget Missed nugget Missed nugget

TABLE 7: Visible Gold With or Without Sulphides in Panned 1/4 Concentrates of Samples With High Measured Assays

Of the remaining five anamalous samples with Good Correlation, three contain two gold grains and two contain three gold grains. In all cases the gold is abraded, vari-sized and does not have any pathfinder association. In addition, two of these multi-grain anomalies have no stratigraphic continuity, one shows chance continuity with another anomaly and two are from basal samples.

Twelve of the samples in which sufficient visible gold was seen to account for the anomalies have Low Assays suggesting that not all of the observed gold was in the analyzed 3/4 concentrate. In all twelve samples one or more gold nuggets over 150 microns was observed during initial processing and a pulp and metallics assay was made to allow for the problem of nugget smearing during pulping. In Sample 197-02 the difference between the calculated and measured assays is just over the limit for good correlation indicating that the sighted nugget was thinner than normal. Check panning of the 1/4 concentrates of four other samples produced the original nuggets. In the remaining seven samples, the original nuggets -- one in each sample -- must have been lost at some point during sample processing. This could have occurred at any one of three stages.

- 1. While ODM was studying the grains under the microscope.
- 2. While Bondar-Clegg was screening the coarse metallics from the pulped 3/4 concentrate.
- 3. While ODM was check panning the 1/4 concentrates.

There is no evidence for loss during microscope examination as all the nuggets are coarse and not difficult to handle.

Loss during check panning is considered improbable because the pan rejects were re-panned as many as three times if the nuggest could not be found on the first attempt.

There is considerable evidence that most of the loss occurred during pulp and metallics processing. Bondar-Clegg is supposed to use a very short pulping time that would normally reduce only 10 to 20 percent of any nugget gold to -150 mesh

and leave 80 to 90 percent of it as flattened metallics in the +150 mesh fraction. Very low +150 mesh weights for Samples 30-01 (0.01 grams) and 115-03 (0.18 grams) indicate a much longer pulping time was used. This would probably smear the gold nugget on the sides of the shatter box and possibly carry it over into the next sample. A 40,000 ppb assay was reported for the +150 mesh fraction of Sample 30-01, confirming the presence of coarse gold, but a 65 micron flake would produce this assay since the +150 mesh portion is so small. A much larger 125 x 650 micron nugget was seen in the original sample.

For Samples 06-24, 138-05, 181-03, 199-04 and 205-01 the expected 20 percent of the gold is in the fines but little or no gold is present in the +150 mesh fraction. This suggests that the metallics were somehow lost while being transferred from the pulping and sieving equipment to analytical vessels.

6.6.2 Unexpected Gold Anomalies

Little or no gold was seen while processing thirty samples that gave assays over 1,000 ppb (High Assay category). Fire assay/atomic absorption analysis precludes check panning of the 3/4 concentrates. Check panning results of the retained 1/4 splits are summarized in Table 7.

Visible gold was observed during initial processing of fifteen of the High Assay samples (Group 1). No additional visible gold or sulphide values over ten percent were noted during 1/4 concentrate check pannings of eight of these samples clearly indicating the presence of a nugget missed during processing.

Four of the remaining seven 1/4 concentrates (Samples 27-19, 54-03, 143-06 and 170-04) did not contain visible gold but sulphide values are fifteen percent and over. Samples 27-19 and 143-06 have no stratigraphic continuity and the anomalies therefore are not significant. Samples 54-03 and 170-04 are from the basal portion of the Chibougamau Till and could theoretically represent dispersion of invisible sulphide gold from nearby sources. However, neutron activation check analysis of

the 1/4 concentrates returned low gold values of 210 and 90 ppb respectively, indicating that the anomalies were caused by missed nuggets. Each of the three remaining samples (09-08, 113-02 and 157-01) contained one abraded gold grain in the 1/4 concentrate -- insufficient for a significant dispersion train. In addition, Samples 09-08 and 113-02 can be discounted due to a lack of stratigraphic continuity. Sample 157-01 has basal continuity but only a low sulphide concentration (5 percent) and no pathfinder association.

No visible gold was observed during the initial processing of fifteen of the High Assay samples (Group 2). No visible gold or sulphide values over ten percent were noted during 1/4 concentrate check pannings of eleven of these samples, clearly indicating the presence of a nugget that was missed during processing. In addition, seven of these samples have 3/4 concentrate weights under fifteen grams. One small gold grain in a small concentrate can produce a large measured assay.

Three of the remaining four 1/4 concentrates (Samples 27-12, 111-01 and 163-02) did not contain visible gold but sulphide values are between ten and twenty percent. Samples 27-12 and 163-02 have no stratigraphic continuity and therefore are not considered significant. Sample 111-01 is from the basal portion of the Chibougamau Till and the anomaly could theoretically represent dispersion of invisible sulphide gold from a local source. However, neutron activation check analysis of the 1/4 concentrate returned a low gold value (250 ppb) indicating that the anomaly was caused by an unsighted nugget.

The 1/4 concentrate of Sample 197-09 did contain one abraded gold grain but this anomaly can be discounted due to the abraded nature of the gold and a lack of stratigraphic continuity.

6.7 Chapais West Heavy Mineral Arsenic, Silver and Base Metal Anomalies

Twenty-eight of the 1,106 overburden samples (2.4 percent) from twenty-one overburden drill holes (9.3 percent) produced assays over anomaly threshold levels for arsenic, copper, zinc (all 700 ppm) or silver (2 ppm). Fig. 16 is a diagrammatic representation of these anomalies. In this figure the twenty-one holes that contain anomalies are plotted INPUT - fashion. Where two or more anomalies are present in a hole, the best anomaly is shown. Quadrants one through four (clockwise from upper right) represent greater than or equal to 700 ppm Cu, Zn and As and greater than or equal to 2 ppm Ag respectively.

As numerous anomalous samples and holes are present, a limited screening process, similar to that previously used for gold anomalies, can be employed to separate background noise from those anomalies which are, or may be, related to significant mineralized sources. The screening process and discredited anomalies are listed in Table 8, and the remaining anomalies are shown in Fig. 17. In some cases anomalies are discounted for more than one reason.

As with gold anomalies, one screening method is to eliminate anomalies which have no stratigraphic continuity. Seven of the arsenic, silver and base metal anomalies have no stratigraphic continuity. All of these anomalies are weak with the exception of a 30 ppm silver spike in Sample 110-09. However, this sample also assayed over 1,000 ppm (1,000,000 ppb) gold and it is normal for gold to contain up to 20 percent alloyed silver.

A second screening method is the direct mineralogical elimination of anomalies. The retained 1/4 concentrates were visually examined under a binocular microscope to ascertain the percentages of copper, zinc, silver and arsenic minerals present relative to the percentage of pyrite. In addition, small incorporated rock chips were observed for the presence of economically viable banded massive base metal sulphides versus less attractive vein-hosted disseminated sulphides. Anomalies can be eliminated where the percentage of iron sulphide is greater than ten percent and the percentage of copper or zinc minerals is less than 0.1 percent. Nine of the twenty-eight anomalies are in this category.

Microfilm

PAGE DE DIMENSION HORS STANDARD

MICROFILMÉE SUR 35 MM ET

POSITIONNÉE À LA SUITE DES

PRÉSENTES PAGES STANDARDS

Numérique

PAGE DE DIMENSION HORS STANDARD

NUMÉRISÉE ET POSITIONNÉE À LA

SUITE DES PRÉSENTES PAGES STANDARDS

	i i					j)	
Hole	mple	Strat.	Strat.		Assay Valu				56.7	* *
No.	No.	Cont.	Unit	Cu	<u>Zn</u>	<u>Ag</u>	As	1/4 H. M.C.	Remark	<u>s</u>
CW-85- 05	10	Basal	C. Till	2,980	90	1.1	134	35% cubic py., 0.5% cpy.	Poss. train	
06 08	20 08	No Yes	C. Till C. Till	776 <u>735</u>	70 <u>1,600</u>	0.4 0.6	832 165	10% py., L0.1% cpy., 1-2% qtzpy. vein cuttings	- Weak train	
	09 10 11	Yes Yes Yes	C. Till C. Till C. Till	881 787 1,346	310 380 240	0.6 0.4 0.7	254 206 162	with 10% f.g. red sphal. 10% py., 0.1 cpy. 10% py., 0.1 cpy. 20% py., 10% mar., 0.2% cpy.	Weak train Weak train Weak train	
11	10	No	C. Till	579	1,162	1.3	127	-	-	
15	01	Basal	C. Till	276	1,688	0.8	3	10-15% mass. pygf.,		
								L0.1% cpy., no sphal.	Weak train	
24	11	No	C. Till	121	1,700	0.2	L2	-	-	
27	24	Basal	L. Till	830	510	1.2	472	35% py., 5% po., L0.1% cpy.	No train	
36	01	Basal	C. Till	2,900	9,470	2.5	496	10% py., 0.7% sphal, 0.5 cpy.	Weak train	
103	05	Basal	C. Till	1,450	100	0.7	294	30% py., L0.1% cpy.	No train	1
110	09	No	C. Till	184	82	39.0	. 304	-	-	108
144	01	Basal	C. Till	716	110	0.2	212	10% py., L0.1% cpy.	No train	ı ı
158	01	Basal	C. Till	752	140	0.6	394	10%py., 10% mar., L0.1% cpy.	No train	Ţ
171	05	Basal	C. Till	985	148	0.8	284	35% py., 1% po., L0.1% cpy.	No train	
177	05	Basal	C. Till	2,084	290	0.6	352	25% ру., 0.5 сру.	No train	
199 201	12 13 14 17 16	Yes Yes Yes No No	C. Till C. Till C. Till L. Till C. Till	790 1,120 730 760 1,336	52 l 579 502 476 63	1.0 1.1 0.8 1.2 0.9	440 568 520 472 176	25% py., 0.5% cpy. 35% py., 0.5% cpy. 35% py., 0.2% cpy.	Weak train Weak train Weak train - -	
202	07	Basal	C. Till	<u>784</u>	20	0.3	22	40% py.	No train	
203	01	Basal	C. Till	866	33	0.2	139	10% py.	No train	
204	01	Basal	C. Till	999	28	0.4	92	10% py., L0.1% cpy.	No train	
207	07 09	No Basal	C. Till C. Till	1,350 935	93 103	0.6 0.8	278 191	20% py., L0.1% cpy.	- No train	
209	09	Basal	C. Till	1,850	126	0.6	130	No 1/4 split	Small conc.	

Table 8: Heavy Mineral Arsenic, Silver and Base Metal Anomaly Summary

<u>Microfilm</u>

PAGE DE DIMENSION HORS STANDARD

MICROFILMÉE SUR 35 MM ET

POSITIONNÉE À LA SUITE DES

PRÉSENTES PAGES STANDARDS

<u>Numérique</u>

PAGE DE DIMENSION HORS STANDARD

NUMÉRISÉE ET POSITIONNÉE À LA

SUITE DES PRÉSENTES PAGES STANDARDS

Two stronger anomalies in Samples 05-10 and 177-05 can also be mineralogically eliminated because the mineralization is of a non-economic variety. In Sample 05-10, a 2,980 ppm copper assay correlates with a chalcopyrite concentration of 0.5 percent. The sample also contains 35 percent pyrite. The chalcopyrite occurs as discrete crystalline grains and all of the pyrite is of the cubic variety, precluding a massive sulphide type source. In Sample 177-05, a 2,084 ppm copper assay correlates with a chalcopyrite concentration of 0.5 percent. The sample is of basal Chibougamau Till containing a 0.5 metre boulder similar to the underlying mafic volcanic bedrock which is slightly anomalous in copper (155 ppm) and zinc (112 ppm). The chalcopyrite in the till concentrate occurs in quartz-pyrite rock chips and was probably milled from the bedrock or boulder by the drill bit rather than by glacial ice.

For concentrates weighing less than 5 grams, a 1/4 split was not retained and the mineralogy could not be checked. This was the case for Sample 209-09 which assayed 1,850 ppm copper. However, the copper value is not accompanied by anomalous zinc or silver, suggesting a vein source. Only a small amount of chalcopyrite would be needed to produce the weak anomaly in the small concentrate.

The remaining base metal anomalies encompassing nine samples in four holes (No. 08, 15, 36 and 199) are suggestive of dispersion from low grade but potentially significant subcropping mineralization. These anomalies are discussed below in numerical order.

6.7.1 Hole 08 Anomaly

The overburden section in Hole 08 consists of 3 metres of Ojibway lake clay overlying 17 metres of sandy to clay-rich Chibougamau Till. The basal 5 metres of till (Samples 09, 10 and 11) are anomalous in copper while Sample 08 is anomalous in both zinc and copper. Copper values range from 735 ppm at the top of the anomalous zone to 1,346 ppm at the base. Elevated values of copper also extend

upward from Sample 08 to within 4 metres of the top of the Chibougamau Till section. Zinc values show a generally decreasing trend from an anomalous value of 1,600 ppm (Sample 08) at the top to an elevated value of 240 ppm at the base of the section. Silver and arsenic values range from 0.4 to 0.7 ppm and 162 to 254 ppm, respectively. These values are elevated but not anomalous with no apparent trends.

The 1/4 concentrate splits of Samples 08, 09 and 10 contain 10 percent pyrite. Sample 11 contains 20 percent pyrite and 10 percent marcasite. The marcasite occurs as a growth of finer grains producing a botryoidal texture.

Chalcopyrite was identified as the copper mineral with concentrations ranging from 0.1 to 0.2 percent. There is good correlation between observed chalcopyrite concentrations and copper values.

The chalcopyrite in Samples 08, 09 and 10 occur as discrete grains. Sample 11 contains less than 0.1 percent quartz-pyrite-chalcopyrite rock chips indicating a probable vein-hosted bedrock source. Sample 08 contains 1-2 percent quartz-pyrite-sphalerite vein chips.

Hole 09, approximately 400 metres west of Hole 08, contains a 30 metre section of Chibougamau Till. Samples from the lower 14 metres of the section contain elevated values of copper bordering the anomalous threshold level. This would give the dispersion horizontal as well as vertical continuity. Although the magnitude of all the base metal analyses in Holes 08 and 09 is low compared to base metal dispersion trains from known ore bodies, the degree of horizontal and vertical continuity and the copper-zinc association signify anomalous bedrock stratigraphy that could host a significant deposit. The anomalous strata are probably in the southern part of graywacke-siltstone-mudstone unit that extends 1 km northward from Holes 08 and 09.

6.7.2 Hole 15 Anomaly

The overburden section in Hole 15 consists of 1.5 metres of sandy Chibougamau Till resting on bedrock (Section G-G'). The only till sample (15-01) yielded an anomalous zinc value of 1688 ppm and a slightly elevated copper value of 276 ppm.

The 1/4 concentrate of Sample 01 contains 10-15 percent earthy, massive pyrite-graphite. Sphalerite was not recongized but is probably present in a black earthy form that is masked by the similarly coloured graphite.

Hole 15 was drilled along strike from Holes 08 and 09, and as in those holes the dispersion in the till probably signifies anomalous base metal stratigraphy within the southern part of the graywacke-siltstone-mudstone sequence to the north. Interestingly Hole 14 between Holes 15 and 09/10 did not encounter any till but did intersect slightly graphitic siltstone that contains 0.5-1 percent sphalerite and assayed 3600 ppm zinc.

6.7.3 Hole 36 Anomaly

The overburden section in Hole 36 consists of 2.5 metres of sandy Chibougamau Till resting on bedrock (Section B'-C). The only till sample (36-01) returned anomalous values of copper (2,900 ppm), zinc (9,470 ppm) and silver (2.5 ppm) and an elevated arsenic value of 496 ppm.

The 1/4 heavy mineral concentrate split contains 10 percent pyrite. The copper mineral is chalcopyrite and occurs in an estimated concentration of 0.5 percent which matches the copper assay. Sphalerite was identified as the source of the zinc mineralization but the 0.7 percent concentration is about half the amount necessary to produce the reported assay. The sphalerite occurs partly as coarse grains (greater than 250 microns) comprising 0.2 percent of the concentrate. The remaining 0.5 percent occurs as fine to very fine grains (less than 50 microns). The

additional 0.7 percent sphalerite required to produce the reported assay is assumed to occur in the very fine fraction, making identification difficult.

No silver minerals were identified but identification would not be expected at a concentration of only 2.5 ppm. As previously described, it is normal to have base metal to silver ratios of 2,000:1 in volcanogenic massive base metal sulphide deposits, where the silver occurs in several forms associated with either sphalerite or chalcopyrite. Thus the 9,470 ppm Zn and 2.5 ppm silver values obtained from Sample 36-01 are compatible.

The coarse chalcopyrite and sphalerite grains in the 1/4 concentrate are associated with pyrite-quartz-chlorite rock chips indicating a vein-hosted source that is nearby based on the thinness of the till section and on the presence of anomalous copper (359 ppm), zinc (600 ppm) and gold (20 ppb) in the underlying bedrock. As previously discussed, the bedrock here is highly sheared, veined and carbonitized and the mineralization is probably epigenetically controlled by the Lamarck Fault.

6.7.4 Hole 199 Anomaly

The overburden section in Hole 199 consists of three metres of clay and sand on top of twenty-three metres of sandy-pebbly Chibougamau Till overlying two metres of Missinaibi clay overlying five metres of sandy-pebbly Lower Till. Three anomalous samples (No. 12, 13, 14) occur over a 5.1 metre section, 2.6 metres from the base of the Chibougamau Till (Section J-J').

Only the copper values are above the anomalous threshold level but the corresponding zinc, silver and arsenic results are sharply higher than in the upper part of the Chibougamau Till section. Elevated copper, zinc, silver and arsenic values also extend to the base of the till in Samples 15 and 16.

The retained 1/4 heavy mineral concentrates for Samples 12, 13 and 14 contain 25 to 35 percent pyrite. Chalcopyrite is the copper mineral, occurring in concentrations between 0.1 and 0.5 percent that accurately correspond with the 700-1100 ppm copper assays. A few coarse grains of sphalerite and arsenopyrite explain the elevated values of zinc and arsenic in Sample 14. The majority of the chalcopyrite grains in the three anomalous samples are associated with quartz-pyrite rock chips, indicating a probable vein-hosted source.

CONCLUSIONS AND RECOMMENDATIONS

7.1 Property Mineral Potential From the Bedrock Perspective

7.

Base metal and gold levels in the bedrock samples from the reverse circulation drill holes are consistent with the variety of rock types intersected. Elevated to poorly anomalous values for copper, zinc and gold occur sporadically. In most cases the lack of detailed information on bedrock stratigraphy and structure in the immediately surrounding areas precludes a confident assessment of the geochemistry. However, some areas outlined by the reverse circulation work do show geochemical and/or geological conditions that warrant further investigation.

Of prime importance is the area underlain by calc-alkalic intermediate to felsic tuffs and volcanics northwest of the Lamarck Fault. Elevated gold-arsenic values (10 to 90 ppb Au, 100 to 376 ppm As) and locally elevated copper and zinc are present in Holes 35, 36 and 37 proximal to the western branch of the Lamarck Fault. The high degree of veining and alteration (quartz-Fe/Mg carbonate) in Holes 36 and 37 suggests a structural, epigenetic constraint on the veining and "mineralization". Other holes in the area such as CW-85-51, 56 and 57 are also highly veined (20-95% vein quartz-calcite). Only Hole 57 contains elevated levels of gold (15 ppb Au) but Holes 51 and 56 contain very minor amounts of fuchsite and fuchsite-tourmaline, respectively, and these minerals are common gold associates. The abundance of calc-alkalic intermediate-felsic tuffs and felsic volcanics also indicates potential for sygenetic base metal mineralization. No evidence of such mineralization was obtained from the limited amount of reverse circulation work performed but the Umex deposit is on the eastern flank of the calc-alkalic pile.

Elsewhere in the drill area, elevated base metal or gold geochemical results occur in isolated holes in various rock types. Of these, the Zn-Cu-Ag values in siltstone of calc-alkalic affinity in Hole 14 (3600 ppm Zn, 240 ppm Cu, 2.1 ppm Ag) are the most highly anomalous and are also the only example of the Zn-Cu-Ag association that characterizes base metal massive sulphide deposits. Remaining

"anomalous" samples are generally single element types with low grade base metal (200 to 650 ppm Cu or Zn) or gold (10 to 45 ppb Au) levels and may simply represent normal geochemical variation in the area rocks. The significiance of these geochemical values to further exploration is questionable.

The presence of the same tholeiitic gabbro-basalt rock units (Blondeau Formation and Cummings Complex) in the eastern part of Chapais West area as in the Chapais Au-Cu belt and the high degree of alteration (particularly carbonate) and shearing in these rocks add to the potential for epigenetic Au-deposits. The geology and geochemistry of bedrock chips samples from widely spaced, reconnaissance holes is not adequate, in itself, to rigorously assess this potential.

7.2 Property Mineral Potential From the Overburden Perspective

The mineral potential of the west central and extreme northwestern and eastern portions of the Chapais West drill area cannot be adequately assessed from the overburden geochemistry due to erosional or depositional thinning of the principal sampling medium — the Chibougamau Till horizon. This problem is most severe in the west-central area for the following reasons:

- 1. The till thinning here is due to erosion by the early Chibougamau River scour channel.
- 2. The scour channel crosses two of the prime bedrock targets The Umex Cu-Zn-Ag stratigraphy and the Lamarck gold-arsenic structure.

In the northwestern and eastern areas, the till thinning is a depositional feature related to a rise in bedrock topography and the discontinuous till geochemistry is largely offset by increased bedrock exposure.

In the remainder of the area, good reconnaissance-level coverage was obtained and the till geochemistry basically mirrors the bedrock geochemistry,

with most gold and base metal values at the lower end of Abitibi background. Gold anomalies in particular appear to be all of the background nugget type rather than of the dispersion train type. The greater frequency of these anomalies in the east is probably due to till thinning and consequent enrichment in the Abitibi belt component rather than to any real increase in gold potential.

With respect to base metals, the paucity of even one-sample anomalies in the eastern tholeiltic gabbro-basalt terrane and the southwestern graywacke terrane indicates that these areas have a negligible potential for base metal massive sulphide deposits. Copper dispersion in Hole 199 in the east is of limited interest because the copper is contributed by chalcopyrite from quartz veins. The copper source is probably along the eastern extension of the gabbro sill that was intersected in Hole 195 to the northwest. Unfortunately gold does not accompany the copper as in the gabbro-hosted deposits at Chapais.

Significant base metal dispersion at Chapais West is restricted to Cu-Zn-Ag in Holes 08/09/15 and Cu-Zn in Hole 36 in the calc-alkalic terrane on opposite sides of the Umex property. The Cu-Zn-Ag dispersion in Holes 08/09/15 is indicative of anomalous base metal stratigraphy in the southern part of the sedimentary horizon that extends eastward from the Umex deposit. Confirmation is provided by the nearby bedrock Cu-Zn-Ag anomaly in Hole 14 where no till is present. The Cu-Zn anomaly in Hole 36 is clearly related to the elevated Cu-Zn-Au-As geochemistry of the bedrock that underlies the till. The intersected bedrock mineralization appears to be controlled by shearing along the Lamarck Fault but the Cu-Zn association could record an earlier episode of syngenetic mineralization.

8.0

REFERENCES

Allard, G.O., Gobeil, A. 1984	General Geology of the Chibougamau Region, in: Chibougamau-Stratigraphy and Mineralization, CIM Special Volume 34.
Averill, S.A. 1978:	Overburden Exploration and the new Glacial History of Northern Canada; Canadian Mining Journal, Vol. 99, No. 4, p. 58-64.
Averill, S.A. 1986	"Advice for juniors following dispersion trains"; The Northern Miner, Junior Mining section, June 16th, 1986. pg. B12.
Baker, C.L. 1985:	The Quaternary Geology of the Kirkland Lake Area - Processes and Environments; unpublished paper presented at CIM Till Tomorrow symposium, Kirkland Lake, Ontario, May 1984.
Boissonneau, A.N. 1966:	Algoma-Cochrane - Surficial Geology; Ontario Department Lands and Forests, Map 5365, scale 1:506,880.
Bostock, H.S. 1967:	Geology and Economic Minerals of Canada: Maps and Charts, Physiographic Regions. Edited by R.J.W. Douglas.
Charbonneau, J.M., Contant, L., Dupuis-Hébert, Franconi, A., Picard, C. 1980:	Cantons de Dolomieu (1/2E) et de Daubrée (1/4 SW), Carte préliminaire geologique, Ministère de l'Energie et des Ressources Québec, DP-844.
Charbonneau, J.M. 1981:	Géologie du quart sud-est du feuillet du Lac Inconnu, et Géologie du quart sud-ouest du FEUILLET du Lac Lamarck, Ministère de l'Énergie et des Ressources du Québec, DP-853.
Clifton, H.E., Hubert, A., Phillips, R.L. 1967:	Marine Sediment Sample Preparation for Analysis for Low Concentrations of Fine Detrital Gold, U.S. Dept. Interior, Geol. Surv. Circ. 545, 11p.
Dimock, B.K. 1985:	A Comparative Study of Sample Recovery Systems in Glacial Overburden Exploration; Student Work Report Prepared for Overburden Drilling Management Limited and Faculty of Science, University of Waterloo.

Configuration and Dynamics of the Laurentide Ice Sheet. Dykes, A.S., During the Late Wisconsin Maximum, Géographic physique Dredge, L.A., et Quaternaire, Vol. XXXVI, Nos. 1-2, p.5-14. Vincent, J.S. 1982: Fairbridge, R.W. Washboard Moraines and Other Minor Moraine Types; The 1968: Encyclopedia of Geomorphology, pg. 1213-1218. Overburden Drilling as a Tool for Gold Exploration; 85th Gray, R.S. Annual General Meeting of CIM-1983, Paper No. 19. 1983: Surficial Geology of Iroquois Falls, Cochrane District, Hughes, O.L. 1959: Ontario; Geological Survey of Canada, Map 46-1959. A New Cation Plot for Classifying Subalkalic Volcanic Jensen, L.S. 1976: Rocks, Ont. Div. Mines, MP 66, 22p. Léve aéroporté INPUT dans la région de la rivière M.E.R.Q. 1981: Chibougamau; Ministère de l'Energie et des Ressources du Québec; DP-829. MERQ-OGS Lithostratigraphic Map of the Abitibi Subprovince; Ontario 1983: Geological Survey/Ministère de L'Egergie et des Ressources, Québec, 1:500,000, Catalogued as "Map 2484" in Ontario and "DV 83-16" in Québec. Moorhouse, W.W. The Study of Rocks in Thin Section; Harper and Row, New 1959: York, p. 437-469. Pétrologie des roches volcaniques du sillon de roches vertes Picard, C, Piboule, M. archéennes de Matagami-Chibougamau à l'ouest de Chapais 1986: (Abitibi est, Québec); Can. Journal of Earth Sciences, Volume 23, No. 4, p. 561-578. Plutons of the Chibougamau - Desmaraisville belt; a Racicot, D., Chown, E.H., preliminary survey, in: Chibougamau-Stratigraphy and Mineralization, CIM Special Volume 34. Hanel, T. 1984: Riverin, G. The Umex Cu-Zn-Ag Deposit, La Ribourde Township, 1981: Quebec, Corporation Falconbridge Copper - Exploration, internal report.

Geol. Surv. Can., Bull. 225.

Quaternary Stratigraphy of the Moose River Basin, Ontario;

Skinner, R.G.

1973:

CORPORATION FALCONBRIDGE COPPER
CHAPAIS WEST PROJECT, QUEBEC
APPENDICES

APPENDIX A REVERSE CIRCULATION DRILL HOLE LOGS

TOTAL HOURS	DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE	New bit New sub New states is
GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
3.3 3.	O No Return 3 Clear dark brown to gray to gray beige oft smooth. And brown 100 > 1.5 Tray & gray brigge 1.5-> 3.3. 27.6 It! (Chebougaman) - no return 3.3 -> 4.5 - gray, fine send matry pebbly below = 4.5 claste 65% mater volcanic and sediment >> 7.8 granitic - high percentage of fine send matry 49.0 Bedrock Mate-bediment gray-white to black, pore to moderate foliation, fine to medium grained, recained coarse caystale of birtile - lorelly graphitic, abundant below a 8.6.	

SHIFT HOURS TO TOTAL HOURS CONTRACT HOURS	HOLE NO CW-85.02 LOCATION Formerly 104 GEOLOGIST HOLES DRILLER HOWG BIT NO CB67449 BIT FOOTAGE 9.0-21. MOVE TO HOLE Z:00 - Z:15 DRILL Z:15 - 4:00 MECHANICAL DOWN TIME DRILLING PROBLEMS 3:00 - 3:15 pressure test rods - 6:t plage OTHER MOVE TO NEXT HOLE	_
GRAPHIC GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
0.5 3.8 5. A	O.5 Organics 3.8 SEDITENTS (OIBWAY) - dark brown, moderatory compact, very smooth clay - clay becomes gray and soft after 1.0 9.6 TILL (CHIBONGATHA) about and distinct change to very smooty, very publy till 3.3.3.4 Fine gray sand 3.9.9.6 till matrix Fine gray beige sound; pebble composition approximately 65 % volcomics/sectiments 35 % granites - 12.0 BEDROCK -dark gray to black colour - very schistose, thinky foliated - very schistose, thinky foliated - very soft (easy to dr. 11) - very fine gramed - graphite vich Argillite (slute) E.O.H. Don Molines	

DATE No. 7 4 19 35 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO CW-85-03 LOCATION Form GEOLOGIST TIBLEMS DRILLER CHANGE E MOVE TO HOLE 4.00-34.15 DRILL 4.15-> 5.00 MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE	мелу 105 ВІТ NO. <u>СВА 7410</u> ВІТ * New * New	sut
DEPTH METHES INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
2- ° Δ 0 2 0.9 > 1	No Return 0.9 clay beige to westy beige soft smooth 1.8 Till (Chibougarnace) gray to gray beige, fine and matrix, peoply clast 65% mafic blance and rediments, 32% grantic bulder mafic volcance 1.421.7 1.5 Bedrock meta-sediments dark gray to black to dark green, very fine grained very well developed foliation - dark green to black sections more marine possibly mafic volcanic or more argillaceous sections - small calcite veinlets below 3.3.		

DATE November 719 35	HOLE NO CW-05-04 LOCATION Formerly 106 GEOLOGIST HOLMES DRILLER HONG BIT NO CB67410 BIT FOOTAGE 3.5-14.3
SHIFT HOURS	MOVE TO HOLE 5:00 - 5:30
то	DRILL 5:30 - 6:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER +ravel GT 6:15-6:30 pickup 6.30.7.15
	MOVE TO NEXT HOLE

GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	:	
SA SA			
	0-0.2 ORGANICS 0.2-5.0 SEDITENTS (OSIBWAY) dark brown moderately compact, smooth clay clay becomes gray, very softh and very smooth		
5 A A O 1	.0-9.6 TILL (CHIBOMGAMAU) - distinct abrupt change to very sandy, very peoply till 5.0-5.1 Fine gray sand 5.1-9.5 till matrix Fine gray		
8 A 02 9 A 10 10 10 10 10 10 10 10 10 10 10 10 10 1	sound; peoble composition approximately 60% volcomics seels 40% gramites		
13	.6-10.8 BEDROCK .dark gray (some white mottling) - very fine grained - very schistose, thinly toliutes - minor calcite veins after 10.1		
14-11-11-11-11-11-11-11-11-11-11-11-11-1	. Argillite (slate 0.8 EOH. Don Holmes		

DATE Nov. 8 # 19 85	HOLE NO CW-85-65 LOCATION Franch TW-107 GEOLOGIST T. BUCNS DRILLER & House BIT GO CR 62410 BIT FOOTAGE 14.3 = 21.8 MOVE TO HOLE 8.00 -> 8.15
DATE TVEN 5 19 BS	GEOLOGIST T. BUCAS DRILLER G. Haury BIT NO CE 67410 BIT FOOTAGE 14.3 3 21.8
SHIFT HOURS	MOVE TO HOLE 8.00 -> 8.15
TO	DRILL 8.15 -> 11.00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE
	* Now LiteR67411

DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG O > 0.5 > 5.2 Clay dork brown, suft amostd, gray below = 3.0 S.2 -> 22.5 Till (xhibongaman) gray to once him line
2 Clay dock brown, suft smooth, gray below = 3.0 5.2 -> 225 Till (Libougaman)
and matury publy cleate and on the second and adments 40% quantity - colly below = 9.5 - boulders mets adment 13.8-3 M.1 majic volcanic 17.4-3 15.8 - cleate below 15.8 are 80% majic volcanics and adments 30% quantity adments 30% quantity (Velexicleatic?) medium to donk quany, very fine graind, very finely laminated, well developed pliation (tuff?) 13. A. 008 A. 009 A. 009

TO	TAL F	HOURS HOURS	-	MOVE TO HOLI DRILL MECHANICAL I DRILLING PROI DTHER Trans MOVE TO NEXT	DOWN TIME	11:15 - 2 rods at :15 by GT =	:30	15		
DEPTH IN METRES	GRAPHIC	SAMPLE NO.		DESCR	IPTIVE LOG					
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 17 18 19 20		1	9.	17.5 TILL Very Som before Clay 1-9.8 - Fine public com Soño volcan 50% gon pour atum 6-10.4 - Com clay, four as irrequ 4-355till, ver - Fine and m - public am approximat - some som 7 - publicod From 20 Cornes for	beige summa beige summa postion of post som 1.0 - 2.0 pact sum packbles, lar chumi ery fine gray d cobble co ery cobo volcu 4010 gra mall chay li	actoby tilled for the second of the second o	*			

S -	HIFT OTAL	HOU TO HOU	IRS	GEOLOGIST DRILLER MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS	8I	T NO	- BIT FC	DOTAGE _	
METHES	GRAPHIC	INTERVAL	SAMPLE NO.	DESCRIPTIVE LOG].
21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 35. 36. 37. 36. 37. 36. 37. 36. 37. 37. 37. 37. 37. 37. 37. 37		THE REPORT OF THE PROPERTY WITH THE PARTY WITH WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH	2 3 14 5 16 17 18 9 9 20 21 22 22 23	-33.5-33.7 boulder - Argillite -33.7-36.5 till becomes very colohy, Fine gray sand most clast composition approximate 80% volcanies 20% granites -36.5-37.0 till as above includes malerately compact gritly sphering gray clay lamps -37.0-37.2 boulder - internalia mafic volcanic -37.2-37.5 till as above 37.5-42.1 SEDIMENTS (Missin occasional thin pubble gran layer	19 19 (ABI)				

DATE Nov 8 19 05 SHIFT HOURS TO TOTAL HOURS CONTRACT HOURS	HOLE NO	BIT NO	
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
75 - 42.1 75 - 48 - 42.1 76 - 47 - 48 - 42.1	41.3-42.1 gravel, publics, grands and small cobbles, clust congres approximately 75% argillite 25% grantes - 43.3 TILL (Lower) - very sandy, very public, Four small cobbles - Fine barge sound matrix 42.1-42.8, gray-beige 42.8-43.3. . public and cobble composition approximately 75% argillite 25% grante - 43.0-43.3 till as above but very cobby, % argillite increases with depth - 44.5 BEDROCK - dark gray to black colour - very fine granned - very fine granned - very schistose, thinky tolicatel - appears shiny - trace pyrite - thin bound of light green, very fine granned rock grant tell - Argillite (slute) EOH.	han	

DATE Now 9 19 85 SHIFT HOURS	HOLE NO CW-85-07 LOCATION Formerly CW-109 GEOLOGIST T. BULLIS DRILLER G. Howy BIT NO CE 17412 BIT FOOTAGE 245-445 MOVE TO HOLE C867413 DRILL 3.50 => 1.50
TOTAL HOURS	MECHANICAL DOWN TIME
*************	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 7.00 >9.00 travel
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
3 A · A · A · A · A · A · A · A · A · A	0.5->2.8 Clay (Opibury Sediments) Sach brown showe to 2:5 gray below, soft emosts. 2.8->20.8 Till (Chibougamau) beigg to mety beigg above 4.5, fine sand matrix pebbly; clasts 60% mafie volcanic and sediments 40% granutic - cobbly below 8.8	

DATE N 1985	HOLE NO CW-95-07LOCATION	
SHIFT HOURS	MOVE TO HOLE	
TOTAL HOURS CONTRACT HOURS	MECHANICAL DOWN TIME	
	MOVE TO NEXT HOLE	

page 2 of 2

DEPTH IN METRES	GRAPHIC LOG INTERVAL	SAMPLE NO.	-	DESCRIPTIVE LOG			
21 -	40	10	20.8 -> 28.3	Sand (Musinai	な)		
22		= 11		grained locallyed as	they		
Z3		- ''		beds coarse sand from 28,3			
24-		12	23.3->31.7	Tell (Lower)			
25				gray, fine sand me cobby clast 602 1	atrix		
27		13		40 % grantie above	ert.		
28 – 29 –	20	_14		80% mefic volcan redimento, 20% gra	ic and		
30-	4	15		meta-adimento			
31-	40	16		- Tell and bedenk			
33-		17	31.7 -> 33.5	subbly bedient of 30.8 to 31.7 Bedient (mete-de			
3,4				dock gray to she	el, vey		
3 5-1				dank gray to sla fine grained, fin well developed for	lieton		
37-				- 10 to 15% of che contain rusty			
38-				possible to fell	ates		
39 -							

DRILL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE DESCRIPTIVE LOG DESCRIPTIVE	HET HOURS	GEOLOGIST HOLTES DE	1:00 - 1:45	BIT NO CO	BIT	FOOTAGE 53.5	- 5
DALLING PROBLEMS OTHER MOVE TO NEXT HOLE DESCRIPTIVE LOG DESCRIPTIVE DESCRIPTIVE LOG DESCRIPTIVE DESCRIPTIVE LOG DESCRIPTIVE		DRILL	1.45	- 4:00			
DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE DESCRIPTIVE LOG DESCRIPTIVE DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPT							~
DESCRIPTIVE LOG DESCRIPTIVE DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE DESCRIPTIVE LOG DESCRIPTIVE DESCRIPTI					-		
DESCRIPTIVE LOG DESCRIPTIVE LOG DESCRIPTIVE LOG DO-0.5 ORANNICS O.5-2.8 SEATMENTS (OSIBURY) -dark Grown markenthy conjust very smooth clay A LOI -sery - Free gray sand matrix Both witness standards A LOI -1.75 till as above with occasional authors clayer to refer and endotes comparison public and endotes comparison public and endotes comparison public and endotes comparison approximately 905 socker system A LOI -1.0-144 till as above with altimate source with altimate source with altimate source with 1.10-144 till as above into altimate source with altimate source with altimate source with altimate source with 1.10-144 till as above into altimate source with altimate source with altimate source with altimate source with 1.10-144 till as above into 1.10-14-17-150 till as above into 1.10-14-17-150 till as above into 1.10-19-7-7-10 BEDROCK for a property - source source with - start or drill - source source with - sou	NTRACT HOURS						
DESCRIPTIVE LOG DESCRIPTIVE LOG O-0.5 ORGANICS O5-2.8 SEATHENTS (OSIBWAY) - derk brown muchantely compating surprises the clay Set of the gray Sand matrix politics approximately 602 solemnics (seath matrix) 403 grantes 16.1-25 till as above with occasional early language 18.1-25 till as above with occasional early gray tagging 18.1-16 gray sand seath to with occasional early display politics and seathers county to gray tagging 18.1-16 gray sand seath to with occasional early display politics and seathers county to gray tagging 18.1-16 gray to fill 12.0 to 14.4 18.1-16 gray to block 18.1-16							
0-0.5 DEGAMICS 0.5-2.8 SEAINENTS (0318WAY) -dark Goown, moderately comput very smooth clay 1. 2.8-17.7 TILL (CH180MGAMAM) 2.8-17.7 TILL (CH180MGAMAM) 2.8-17.7 TILL (CH180MGAMAM) 2.8-17.8 gray sand matrix publics approximately 60% volumes / santonit 40% grantes 41. 03 2.1-7.5 till as above with occasional calables clay to composition contains larger to control from control from contains 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.		MOVE ID NEXT HOLE					
0-0.5 DEGAMICS 0.5-2.8 SEAINENTS (0318WAY) -dark Goown, moderately comput very smooth clay 1. 2.8-17.7 TILL (CH180MGAMAM) 2.8-17.7 TILL (CH180MGAMAM) 2.8-17.7 TILL (CH180MGAMAM) 2.8-17.8 gray sand matrix publics approximately 60% volumes / santonit 40% grantes 41. 03 2.1-7.5 till as above with occasional calables clay to composition contains larger to control from control from contains 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.							
0-0.5 DEGAMICS 0.5-2.8 SEAINENTS (0318WAY) -dark Goown, moderately comput very smooth clay 1. 2.8-17.7 TILL (CH180MGAMAM) 2.8-17.7 TILL (CH180MGAMAM) 2.8-17.7 TILL (CH180MGAMAM) 2.8-17.8 gray sand matrix publics approximately 60% volumes / santonit 40% grantes 41. 03 2.1-7.5 till as above with occasional calables clay to composition contains larger to control from control from contains 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.	D 4 4						
D.S 2.0 SEAJORNIS (OSIBURY) - dark Grown, morlandely conjust pay smooth clay 28-19.7 TILL (CHOOUGATIAN) - very south, very publicy till - 28-31.7 Ting gray sout matrix publics approvements 400 white mass southward - 101	GHAPP INTERV	DESCRIPTIVE LOG					
D.S 2.0 SEAJORNIS (OSIBURY) - dark Grown, morlandely conjust pay smooth clay 28-19.7 TILL (CHOOUGATIAN) - very south, very publicy till - 28-31.7 Ting gray sout matrix publics approvements 400 white mass southward - 101	11 0-	0.5 DEGANICS					-
dork brown morlandly compatible very smooth clay 28-177 TILL (CHIBOUGATTHE) 28-19- Five gray sand matrix publics apprintely 60% volcames/saddments 40.02 tobs gravites 60% volcames/saddments 40.75- 5til as above with 00casimel caddolog clast 1.5-16- 4ill becomes very cubby 1.5-16- 4ill becomes very cubby 1.5-16- 4ill becomes very cubby 1.5-16- 4ill as above with 1.5-16- 4ill as above internal of force 1.	-						
28-17.7 TILL (CHIBOUGAPTACE) very souly, very publicy till 28-81-time gray sound matrix publics approximately 6010 volcament/soulments 405 generites 61.7.5 till as above with occasional substitute composition occasional substitute till 4.1-03 6.1-7.5 till as above supplied 4.1-103 6.1-7.5 No - 4:11 becomes recreately	= 0.5-	2.8 SEAINENTS (03	(BWAY)				
28-17.7 TILL (CHIBOUGAPTACE) very souly, very publicy till 28-81-time gray sound matrix publics approximately 6010 volcament/soulments 405 generites 61.7.5 till as above with occasional substitute composition occasional substitute till 4.1-03 6.1-7.5 till as above supplied 4.1-103 6.1-7.5 No - 4:11 becomes recreately	= E	-dork brown, moder	ately conjust				
28-19.7 TILL (CHIBOUGAPTAN) TO Sery sold, very paddly till 28-81-time gray sand matrix paddes approximately 60% volcanisationants 40% granites 181-9.5 till as above with occasional cubbles clast composition curbains larger to volcanis and sections recyclibly -15-110-till becomes recycliby -16-110-till till as above with addition of Small rounded malantly compact gritty dark brown gray clast loops 3-5% of till 10-120 20-400 of till 120 to 14.4 110-150 till as above 144 152-19-7-till as above 150 197-21.0 BEDROCK		very smooth clay	. , ,				
28.91- five gray sand matrix publics appropriately 60% voluments formati 40% quartes 8.1-7.5 till as above with occasional colobles clast corporation curtains larger to volumes and seekants with dight -9.5-10- +,11 becomes recyclibly -15-10- +,11 becomes recyclibly -16-10- 11- 11- 11- 11- 11- 11- 11- 11- 11-							
28.91- five gray sand matrix publics appropriately 60% voluments formati 40% quartes 8.1-7.5 till as above with occasional colobles clast corporation curtains larger to volumes and seekants with dight -9.5-10- +,11 becomes recyclibly -15-10- +,11 becomes recyclibly -16-10- 11- 11- 11- 11- 11- 11- 11- 11- 11-	4.7	197 Tu (44) Ans	(CAMAU)				
28.9] - fine gray sand matrix ables appropriately 60% volumns/surfamilie 40% quarites 8.1.9.5 till as above with occasional coldblos clast composition contains larger to volumns and surfamilie 14,75 - 10 - 4.11 becomes recrycultin appropriately 98% volumns/surfamilie 22 granuts 22 granuts 11.0 - 14.4 till as above with addition of 5-ull rounded undently compact grilly above borron gray clay larges, 3.5% of till 120 to 14.4 20-40% of till 120 to 14.4 150 - 150 - 151 as above 14-undently 152-19.7 - till as above 15.0 19.7-21.0 BEDROCK dark gray to black The granuts - soft to drill - soft to drill - true grytte - true grytte - true grytte - true grytte	:A/F	III IILL CATOO	111				
28.91- fine gray sand matrix publics appropriately 60% voluments factorisments 40% quarities 8.1-9.5 till as above with occasional colobles clast composition contains larger to whenever multiple to the depth -9.5-10- +.11 becomes recreably addition of 5-mill rounded malantly compact grilly obert borning gray clay larges, 3-5% of till 10-129 20-40% of till 120 to 14.4 110-150 till as above 14-4 150-152-boulder-intermedial/motic 152-19.7- till as above 15.0 19.7-21.0 BEDROCK dark gray to black	101	very sandy, very people	y Till				
103 103 104 105 106 107 108 109 109 109 109 109 109 109	· * / -	25-81 - fine gray same	l matrix				1
103 103 104 105 106 107 108 109 109 109 109 109 109 109		pebbles approximately					
103 103 104 105 106 107 108 109 109 109 109 109 109 109	ASE	60% volcanos/sodie	ants				
1.7.5 till as above with occasional substances and solimate cutte depth of the substance of							
-7.5-110 - 4.11 bacomes very collete altery fine gray, gary suggestion public and collete corporition gaperon mathy 983 voluming sections 22 grantes 11.0-14.4 + 1.11 as above with addition of Small, rounded, makently compact gritty dark brown gray chy larges, 3-53 of till 11.012 20-40% of till 12.0 to 14.4 21.508 14.4-14.7-bo-liker internet before volume 15.2-19.7-till as above 144 15.2-19.7-till as above 15.0 19.7-21.0 BEDROCK - dark gray to black - fire grantes - slightly schoolse - starter - soft to daill - trace graphite	A	4.11 22 - 6.	me with				
7.5-10-4,11 bacomes very collety altery fine gray, gary suggestion public and collecte corporation gapon mathy 982 volumes seeding 22 grants 11.0-14.4 + 1:11 as above with altition of Small rounded, materity compact gritty dark brown gray chy larges, 3-52 of till 11.0-12.0 20-40% of till 12.0 to 14.4 21-40 of till 12.0 to 14.4 14.7-15.0 till as above 144 15.2-19.7 - till as above 15.0 19.7-21.0 BEDROCK - dark gray to black - fine gray to black - stightly schoolse - stort to daill - soft to daill - trace graphite	12	·8.1-9.5 Till as all	last				
7.5-10-4,11 bacomes very collety altery fine gray, gary suggestion public and collecte corporation gapon mathy 982 volumes seeding 22 grants 11.0-14.4 + 1:11 as above with altition of Small rounded, materity compact gritty dark brown gray chy larges, 3-52 of till 11.0-12.0 20-40% of till 12.0 to 14.4 21-40 of till 12.0 to 14.4 14.7-15.0 till as above 144 15.2-19.7 - till as above 15.0 19.7-21.0 BEDROCK - dark gray to black - fine gray to black - stightly schoolse - stort to daill - soft to daill - trace graphite	- 1/	occasion consider	langer %				
7.5-10-4,11 bacomes very collety altery fine gray, gary suggestion public and collecte corporation gapon mathy 982 volumes seeding 22 grants 11.0-14.4 + 1:11 as above with altition of Small rounded, materity compact gritty dark brown gray chy larges, 3-52 of till 11.0-12.0 20-40% of till 12.0 to 14.4 21-40 of till 12.0 to 14.4 14.7-15.0 till as above 144 15.2-19.7 - till as above 15.0 19.7-21.0 BEDROCK - dark gray to black - fine gray to black - stightly schoolse - stort to daill - soft to daill - trace graphite	A / E03	composition of	& with				
7.5-10-4,11 bacomes very collety altery fine gray, gary suggestion public and collecte corporation gapon mathy 982 volumes seeding 22 grants 11.0-14.4 + 1:11 as above with altition of Small rounded, materity compact gritty dark brown gray chy larges, 3-52 of till 11.0-12.0 20-40% of till 12.0 to 14.4 21-40 of till 12.0 to 14.4 14.7-15.0 till as above 144 15.2-19.7 - till as above 15.0 19.7-21.0 BEDROCK - dark gray to black - fine gray to black - stightly schoolse - stort to daill - soft to daill - trace graphite	14	I att					
allition of Small rounded, moderally compact gritty dark brown-gray chap larges, 3-5 is of till its 120 20-40% of till 120 to 14.4 14.7-150 till as above 144 152-152-boulder-intermedial/motic 152-19-7-till as above 15.0 19.7-21.0 BEDROCK -dark gray to black -time gray to black -time gray to dark -slightly substore -soft to drill -more graphite -trace pyrite -trace pyrite -trace pyrite -trace pyrite -trace pyrite	AN	The state of the state of	very col 61				
allition of Small rounded, underthy compact gritty dark brown-gray chaptings, 3-5 is of till invited 20-40% of till 120 to 14.4 20-40% of till 120 to 14.4 14.7-150 till as above 144 function 150-15.2-boulder-intermedial function 152-19-7-till as above 15.0 19.7-21.0 BEDROCK -dark gray to black -me grayed to black -time grayed -slightly schistore -super fecture -soft to drill -more graphite -trace pyrite -trace pyrite -trace pyrite -trace pyrite	Q-04	7.5 -11.0 - 7.11	ony-begs sand				
allition of Small rounded, moderally compact gritty dark brown-gray chap larges, 3-5 is of till its 120 20-40% of till 120 to 14.4 14.7-150 till as above 144 152-152-boulder-intermedial/motic 152-19-7-till as above 15.0 19.7-21.0 BEDROCK -dark gray to black -time gray to black -time gray to dark -slightly substore -soft to drill -more graphite -trace pyrite -trace pyrite -trace pyrite -trace pyrite -trace pyrite	-NE	- which live find it	and time				
allition of Small rounded, underthy compact gritty dark brown-gray chaptings, 3-5 is of till invited 20-40% of till 120 to 14.4 20-40% of till 120 to 14.4 14.7-150 till as above 144 function 150-15.2-boulder-intermedial function 152-19-7-till as above 15.0 19.7-21.0 BEDROCK -dark gray to black -me grayed to black -time grayed -slightly schistore -super fecture -soft to drill -more graphite -trace pyrite -trace pyrite -trace pyrite -trace pyrite	2 VE	public and cowhile	- ked - b				
allition of Small rounded, underthy compact gritty dark brown-gray chaptings, 3-5 is of till invited 20-40% of till 120 to 14.4 20-40% of till 120 to 14.4 14.7-150 till as above 144 function 150-15.2-boulder-intermedial function 152-19-7-till as above 15.0 19.7-21.0 BEDROCK -dark gray to black -me grayed to black -time grayed -slightly schistore -super fecture -soft to drill -more graphite -trace pyrite -trace pyrite -trace pyrite -trace pyrite	91/105	altered 4012 March	rifes				
allition of Small rounded, underthy compact gritty dark brown-gray chaptings, 3-5 is of till invited 20-40% of till 120 to 14.4 20-40% of till 120 to 14.4 14.7-150 till as above 144 function 150-15.2-boulder-intermedial function 152-19-7-till as above 15.0 19.7-21.0 BEDROCK -dark gray to black -me grayed to black -time grayed -slightly schistore -super fecture -soft to drill -more graphite -trace pyrite -trace pyrite -trace pyrite -trace pyrite	A	22 9	Ш				
addition of Small rounded, moderally compact gritty durk brown-gray clay lamps, 3-513 of till 110-120 20-40% of till 120 to 14.4 20-40% of till 120 to 14.4 14.7-150 till as above 144 150-152-boulder-internal of Indic 152-19-7-till as above 15.0 19.7-21.0 BEDROCK - dark gray to black - free gray to black - free gray to try ture - stept y schools - stept y schools - stept graphite - trace pyrite - trace pyrite - trace pyrite	-	11.0.14.4 till as above	with				
compact gritty dark brown-gray chy larges, 3-5 is of till ilivita 20-40% of till 120 to 14.4 14.7-150 till as above 144 150-15.2-boulder-internality hatic 152-19-7-till as above 15.0 19.7-21.0 BEDROCK dark gray to black - fine graphy schiptox - short by schiptox - short to drill - trace pyrite - trace pyrite - trace pyrite - trace pyrite	106	allite of small counder	d moderatey!				
14.7-150 till as above 144 150-15.2-boulder-intermedial/matic 150-15.2-boulder-intermedial/matic 15.2-19.7-till as above 15.0 19.7-ZI.D BEDROCK - dark gray to black - free gray schistose - shathy schistose - shathy schistose - soft to drill - many graphite - tome pyrite - tome pyrite - tome pyrite		1 H 1 L L	1				
14.7-150 till as above 144 150-15.2-boulder-intermedial/matic 150-15.2-boulder-intermedial/matic 15.2-19.7-till as above 15.0 19.7-21.0 BEDROCK dark gray to black - fine grander - slightly schistose - slightly schistose - successful to drill - more graphite - tome pyrite - tome pyrite	12 1/2	compact grilly dark	E 4.11 4	1			
14.7-150 till as above 144 150-15.2-boulder-intermedial/matic 150-15.2-boulder-intermedial/matic 15.2-19.7-till as above 15.0 19.7-21.0 BEDROCK dark gray to black - fine grander - slightly schistose - slightly schistose - successful to drill - more graphite - tome pyrite - tome pyrite	A 1/207	clay lumps, 3-5%	01 1.11 110				
14.7-150 till as above 144 150-15.2-boulder-intermedial/matic 150-15.2-boulder-intermedial/matic 15.2-19.7-till as above 15.0 19.7-ZI.D BEDROCK - dark gray to black - free gray schistose - shathy schistose - shathy schistose - soft to drill - many graphite - tome pyrite - tome pyrite - tome pyrite	上	20-40% of till 120 to	14.4				
14.7-15.0 till as above 144 150-15.2-boulder-internal of matic 152-19-7-till as above 15.0 19.7-ZI.D BEDROCK dark gray to black free attack -sleanly schistose -sleanly schistose -sure y texture -soft to drill -more graphite -tome pyrite -tome pyrite -tome pyrite							
14.7-150 till as above 144 150-15.2-boulder-internal of fration without to black 19.7-21.0 BEDROCK Ideath gray to black - free gray substore - sharing substore - sharing substore - soft to drill - more graphite - tome pyrite - tome pyrite - trace seel, ment (graymucke)	800 E	14 4 - 14.7 - boulder interner	late fruitic				
15.2-19.7 - till as above 15.0 19.7-21.0 BEDROCK dark gray to black - fine granded - slowly schiotox - slowly schiotox - soft to drill - time pyrite - time pyrite - time pyrite							
15.2-19.7-till as above 15.0 19.7-21.0 BEDROCK - dark gray to black - free graded - slightly schistose - slightly schistose - surery texture - soft to drill - more graphite - time pyrite - time pyrite - time pyrite	14.VE	4.7-150 till as above	144 , -				
15.7-19.7 - till as above 15.0 19.7-21.0 BEDROCK - dark gray to black - Free granded - slightly schistose - success texture - soft to drill - more graphite - time pyrite - time pyrite - time pyrite	-07-09	En-152 - boulder - inter	red t/matic				
19.7-21.0 BEDROCK - dark gray to black - Free grand - shiptore - slightly schistore - sugary texture - soft to drill - many graphite - trace pyrite - trace pyrite - trace pyrite	万年		volco				
19.7-21.0 BEDROCK - dark gray to black - Free graded - slightly schistose - slightly schistose - sugary texture - soft to drill - more graphite - time pyrite - time pyrite - time pyrite		15.7 - 19-7 - till as abo	ve 15.0				
- dark gray to black - Free graded - Statistics - statistics - surery texture - soft to drill - more graphite - trace pyrite - trace pyrite - graymucke)	N-10						
- dark gray to black - Free graded - Statistics - statistics - surery texture - soft to drill - more graphite - trace pyrite - trace pyrite - graymucke)	19.7-	21.0 BEDROCK					
- time pyrite - trace seel, ment (graymucke)	VEN	- dark gray to black					
- trace pyrite - trace pyrite - Mata- Seel, ment (graymucke)	DIE.	- F					
- time pyrite - trace seel, ment (graymucke)	//NT12	- shorthy schistore					
- time pyrite - trace seel, ment (graymucke)	Dewarek.	- come texture	l.	1	1	1	1
- tone pyrite - preta-sechment (graymucke)	1	to dell					
- Maria - Sectionary		- soit sobite					
- Mate- Sectional 9	2	7					
- Mate- Sectionally 9		- Tome PT 1	(-)				
		- Mate- Sectionent (9	graymuche)				
21.0 EOH N WE							

DATE AL - 4 10 19 85	HOLE NO CW-85-04 LOCATION Formerly, CW-119 GEOLOGIST T. BUCHS DRILLER & Houry BIT NO CB67413 BIT FOOTAGE 54.5-388.0 MOVE TO HOLE 4.00 > 4.15
DATE ALTO 4770 19 53	GEOLOGIST T. BUCNS DRILLER OF Hours BIT NO CB67413 BIT FOOTAGE 54.5-388.0
SHIFT HOURS	MOVE TO HOLE 4.00 -> 4.15
TO	DRILL 4.15 -> 6.00 /10 48.00 > 10.15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 6.00 -> 7.00 travel / 10 7.00 -> 3.00.
	MOVE TO NEXT HOLE

DESCRIPTIVE BY A LEG CRAPHIC LOG NO. COMPLE	
2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

DATE No q d 1935 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO CW-35- 04 LOCATION GEOLOGIST DRILLER BIT NO. MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE	
		page 2 of 2
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
21	- very stoney, low percentage of fine sand matrix from 20.5 > 26.5 - clasts below \$\times 28.0 are 85% mafic volcanics and rediments 15% granits Sal green to black, fine grained; well developed foliation, abundant biotile 20.5% disseminated partie	

	OVERBURDEN DRILLING MAN REVERSE CIRCULATION (
DATE No SEARCE E	GEOLOGIST MOLENS DRILLER MOVE TO HOLE MOVE TO HOLE MECHANICAL DOWN TIME DRILLING PROBLEMS JRS OTHER MOVE TO NEXT HOLE	Houg BIT NO CC 15 -10:30 10:30 - 1:	867414 BIT F	OOTAGE D	- /+. 7
	X NEW BIT NEW SOL				
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG				
Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	0.2.8 ORGANICS 2.8-4.0 SEDIMENTS (OJIBW - gray smooth, moderated compact clay 4.0-13.6 TILL (CHIBOUGAMA - very sundy, pebbly fill - fine gray sund matri, - pebbles composition approximately 60% whemas/s 40% granites - after 6.5 +.11 as about includes occusional cobb	(ca)			

minor graphite trace pyrite

EOH.

Meta-sediment (gray

DOT BEORUM

DATE A 20 10 # 19 85	HOLE NO CW-85-11 LOCATION Framula CW-117 GEOLOGIST T. Rucas DRILLER G. Hourg. BIT NO CBG7H14 BIT FOOTAGE 14.7 > 30.7 MOVE TO HOLE 12.00 = 12.15 CBG7415
SHIFT HOURS	MOVE TO HOLE 12.00 -> 12.15 CB67415 0-> 18.5
TO	DRILL 12.15 -> 2.00 2.30 -> 4.30
TOTAL HOURS	MECHANICAL DOWN TIME 3.80 -> 2.30
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

NEW BIT

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
3-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6	DESCRIPTIVE LOG 0-> 0.5 No Return 0.5 = 2.4 Clay (Ogiburay Sediments) brige; soft, smooth. 2.4 > 16.6 Till (Chibougomau) gray to gray-brige; fine sand matrix pebbly closts 60% metic volcanics and sediments 40% granitic - cobbly below 6.7 - very stoney, low perentage fine sand matrix below 7 8.0 - boulder mater volcanic 12.3 => 12.5 16.6 > 18.5 Bedrock Intrusive (Granite) pink - white, medium to coarse grained, messive ronsists of pink K-spar		
16 A 11 17 18 19 19 20 19 19 19 19 19 19 19 19 19 19 19 19 19	Lock mafies and lesser amounts of quarty.		

DATE LOVEWER 1019	95 HOLE NO CW-85 12 LOCATION	tornerly 116
DATE	GEOLOGIST TEST DAILLER TEST	2 BIT NO CB6745 BIT FOOTAGE 15 5 - 32.
SHIFT HOURS	MOVE TO HOLE	F - 6'm2
		, 5 - 6.00
TOTAL HOURS	MECHANICAL DOWN TIME	
	DRILLING PROBLEMS	6.30 ; truvel by pickup 6:30.7.3
CONTRACT HOUF		sise face by prekay bise
	MOVE TO NEXT HOLE	
ETHES LOG LOG TERVAL AMPLE	DESCRIPTIVE LOG	
2 0 2 0		
431	0-0-8 ORGANICS	
144 E	08-25 SEDIMENTS (OJIIBWAY)	
	an act of the law	
,盖IE	- gray , compact , smooth clay - poor return in this unit	
	- poor relation in this wait	
3-1-1	2.5-12.5 TILL (CHIBOUGAMAN)	
1 1	11/2 12.3	
4.1年	- very publy, very sundy till	
本一件公	tion and leging sund mater	
5-1	- pebble composition approximately	}
* t/E	- peoble composition approximately 50% volcanics (seel wells	
8-5'-0 /E03	50% granites	
A /E	-4.5-11.4 till making Fine gray sund	4
E	polible composition approximately	
F04	-4.5.11.4 t.11 matrix fine gray sund, polible composition approximately 60% volcanics/sect-ents	
4	40% gramites	
- · /E	- occasional coloble	
16 - /E	-11.4-12.5 - t.11 becomes very coloby, composition approximately 75% when sedents 25% granites	
10- A-	-11.4-12.5 - 1.11 composition	
1 No6	very colory,	
"TA TE	approximately 25% gramites	
12-34-07	V	
100	.	
13-1//	12.5-14.0 BEBROCK	,
OF BEAR	trace light-green	4
14-	Trace 1.ght-green	
3 E	lum coarse grained	
15 E	a tassic - Feldspar, amphibale,	
直 注	- potassic - Feldspar, amphibale, quantz, trace epidote	
	- soft to doil	
E I	- Granite - intrusive rock	
	- Granite - Intrasion	
一		
1 = 1	140 EOH.	
	140 EOH.	
3 1 2	Don Wolmes	
20-	Dor Clotenes	

HOLE NO CW-85-13 LOCATION Francis CW-115 GEOLOGIST T. Burne DRILLER G. Howy. BIT NO LRG 7415 BIT FOOTAGE 32.5-> 36.6
MOVE TO HOLE 3.00 5 8.15
DRILL 8.15-> 9.15
MECHANICAL DOWN TIME
DRILLING PROBLEMS
OTHER 7.00 > 8.00 travel
MOVE TO NEXT HOLE

DEPTH IN METRES	GRAPHIC LOG INTERVAL	SAMPLE NO.	DESCRIPTIVE LOG			1	
DEPT 1	4004	01	DESCRIPTIVE LOG 0-70.5 No Return 0.5-52.0 Till (Chibougamau) gray-beige fine sand matrix pebbly class 60% mafice volcanic and ediments 40% spanitic 2.0 >3.5 Dedical meta-bediment (Grayweele) Sal green to black, fine grained, well developed filiation, abundant britis				
18-	ייירייר						

DATE November II 19 85	GEOLOGIST HOLFIES DRILLER HOWG BIT NO. CB67415 BIT FOOTAGE 36.0 -38,5
0	GEOLOGIST HOLITES DRILLER HOWG BIT NO. CB674/5 BIT FOOTAGE 36.0 - 38.5
SHIFT HOURS	MOVE TO HOLE 9:15 - 9:30
TO	DRILL 9:30 -10:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
3	0-0.5 ORGANICS 0.5-0.7 TILL (CHIBOUGAPIAN) - gray sund matrix - pebble composition approximately 75% volumics/sediments 25% granites 0.7-2.5 BEDROCK - durk gray, mostly black - very fine granned - schistose - graphite giatile - transpyrite - occasional reddish-brown oxidation along Folgetion Faces - Graywacke (Meta-Sediment) 2.5 E.O.H. Den Make	

DATE A) M U 19 85	GEOLOGIST T. Burns DRILLER G. Hour BIT HOCKES 7415 BIT FOOTAGE 385-> 40.5
SHIFT HOURS	MOVE TO HOLE 10.00 ≥ /0,45 U CBL7414 0 → 3.5.
to	ORILL 10. 45 -> 12. 00
TOTAL HOURS	MECHANICAL DOWN TIME
***************************************	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

NEW BIT

DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
1.		gray. Deige, fine sand mate	

DATE NOVEMBER 11 19 95	GEOLOGIST HOLMES DRILLER HOWG BIT NO CB67416 BIT FOOTAGE 3.5 - 9.7
SHIFT HOURS	MOVE TO HOLE
TO	DRILL 12:15 - 1:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
1	0-0.2 DRGANICS 0.2-3.7 TILL (CHIBOUGAMAN) -very sandy, very pebbly till D.Z-10-Fire ocher beige sand mali for pubbles, composition syprogrambly soft volumished, ands sots grantes ext 10-30 Fire gray-bage sand matrix, very pubbly till, same composition as above 20-3.7 Fire gray sand matrix.		
10 11 12 13 14 15 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	30-3.7 Fine gray sund matrix, publics and occasional cobbles, composition approximately 60% orleanies/sectionals 40% grantes 3.7-5.7 BEDROCK -black, same white veries -sery Fine grained - schistose - condains biotite		
13-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	- occasional peddich brown oridation along tolistion faces - Graywacke (Meta-sochust) 5.2 Eptl. Don Wolnes		
19			

DATE Novil 19 85	GEOLOGIST TI Bring DRILLER & House BIT NO CBC7416 BIT FOOTAGE 37-10.7
	GEOLOGIST IL Bring DRILLER TO Hour BIY NO CBC7416 BIT FOOTAGE B 7 - 10.7
SHIFT HOURS	MOVE TO HOLE 1100 51.30
то	DRILL 1.30 > 2.30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

OFPTH METHER OF THE SAMPLE SAMPLE NO DESCRIPTION OF THE SAM	
0 > 0.3 No Return (Graywacke) Sal green to gray, white fine to medium grained poor to moderate plieston -20-30.2 rounded quarty grains -10-5% stickied sulphidy (limonite)	

DATE November 11 19 95	HOLE NO CW-85-18 LOCATION Tornerly 110
	GEOLOGIST HOLMES DRILLER HOWG BIT NO CB67416 BIT FOOTAGE 19.7 -14.2
SHIFT HOURS	MOVE TO HOLE 2:30 - 2:45
TO	DRILL 2:75 - 3.45
TOTAL HOURS	MECHANICAL DOWN TIME
*	DRILLING PROBLEMS
CONTRACT HOURS	OTHER Travel by G.T 5:30 - 6:00 , travel by pickings 6:00 - 6:45
	MOVE TO NEXT HOLE 3.75 - 5:30

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
5 10 11 12 13 14 14 14 15 16 17 17 18 17 18 18 18 18	0-0.2 ORGANICS 0.2-1.6 TILL (CHIBOUGAMAN) - sandy, pebbly till - Fine ochre beige sand matrix prock pebbles and occasional coloble composition approximately 60 % volcances/sediments Ho's granites 1.6-2.5 BEDROCK RUBBLE - Bedrock chips with occasional sund and pobbles from overlying till 2.5-3.5 BEDROCK - black colour - Fine grained - Schistose - minor graphite - biotite rich - occasional redlish-brown oxidation along tollation faces - Graywacke (Mota-sediment) 3.5 EDH. Der Kolurs	

DATE Nail 19 35	HOLE NO CW-35-19 LOCATION Francis (W-102) GEOLOGIST T. Burne DRILLER G. Hours BIT NO CB67416 BIT FOOTAGE 9.2 750.7 WOULD TO HOLE 3.75-75.45 m. No. 1997 CB67417 2 7523.5
SHIFT HOURS	MOVE TO HOLE 3.45 > 5.45 on Nov 1 CB67417 3 >23.5
то	ORILL 8.30-> 1.30
TOTAL HOURS	MECHANICAL DOWN TIME 8,00 -> 8,30 fine feel line
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 11 5:45 -> 6:30 travel / 12 4 7:00 -> 8:00 travel
	MOVE TO NEXT HOLE

DEPTH IN METRES	GRAPHIC LOG	SAMPLE NO.	DESCRIPTIVE LOG	
1		01 02 03 04 05 06 07 08 09 10 11	1.0 = 15.8 Till (Chibrugamau) ruety beige above = 15 (orldied) gray beige below 1.5 fine sand Instiny pebbly clasts 60%, mafice volcanies and sediments 10% granities above 2.0 - boulder gabbro 2.0 > 2.5 granodioute 5.8 > 6.1 - ruety beige (orlidged) till at = 8.2 - sandy pebbly till from 12.5 > 13.0 15.8 > 15.8 15.8 - 16.3 Sand (Missinaetic beliments) rusty beige, fine to medium grained, local well rounded pebbly beds 16.3 > 17.6 Stravel ruety beige (highly oridied) and rock cutting matury clast 50% mafic volcanic and rock cutting matury clast 50% mafic volcanic and rock cutting matury clast 50% mafic volcanic and rock seater 17.6 > 18.7 Acad (as above) 18.7->222 Tell (Jouen) rusty beige above 19.5 gray- beige letow, stoney law	
2/=	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	13	clasts 60% mafic volcanics and method addiments 40% granition of additional contact with above unit (granel-like local gray below 20.5 with abundant fine sand matrix, sngular clasts 80% mafic volcanics and sodiments 20% granutes	dak grun to black, very such diveloped foliation (argillarcous)

DATE November 1219 85	HOLE NO CW. 85-20 LOCATION Formerly CW 01
DATE MOVERNER 1/19 03	GEOLOGIST HOLMES DRILLER HOWG BIT NO CBG7+17 BIT FOOTAGE 23.5 -39.1
SHIFT HOURS	MOVE TO HOLE 1:30 - 4:30 (cross bridge over (hibongaman R. by truck
0	DRILL 4:30 - 6:15
TOTAL HOURS	MECHANICAL DOWN TIME 6:15 - 7:15 - Steering clutch of GT
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER travel 8:15 7:45 - working 6:45 - 8:30 by pick up truck
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG			
3 7	0-0.5 ORGANICS 0.5-4.5 SEDIMENTS (OSIBWAY) poor veturn gray soft tomedium compact smooth clay, top 0.2 metres beige colour 4.5-13.4 TILL (CHIBOMGARA)			45.7
5 A A OZ	+582 fine and very time gray sound notices publishes composition approximately who granites occasional small could after 80 89-95. till becomes very colody, clust supported, almost no Fine material, composition still-late	- 1	*	
10 A 9 05 12 A 9 06 13 A 9 06 14 07 8506	13.4-14.6 BELROCK white 50-60% and 40-50% black when five and weding grained rock on a grant and physiology meding grained			
16	- some chips appear to have the unite minerals adjusted in boards - slightly metamorphosed intrusive rook - Diorte or Toualite			

DATE N = 13 19 85	HOLE NO CW-85-21 LOCATION Francy CW-02 GEOLOGIST T. RUCALS DRILLER S. Hours. BIT NO CB67417 BIT FOOTAGE 38.1-53.1
DATE TELEVISION IS	GEOLOGIST T. RUCALS DRILLER G. Havy BIT NO CRETATT BIT FOOTAGE 38.1 > 53.1
SHIFT HOURS	MOVE TO HOLE \$.30 > 9.45
TO	DRILL 8,45 -> 10.00
TOTAL HOURS	MECHANICAL DOWN TIME \$ 00 -> 8,30 upon water causer
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 7:00 > 8.00 travel
	MOVE TO NEXT HOLE

METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG			
2 6 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0	0.3 - 14.0 Till gray to gray brige, fine sand matrix pebbly closes 60% mafie volcanics and exciment 40% granitio - 20bbly below 7.7 14.0 > Bedred Meta Sediment (Siltatone) dark gray to black, fine grained, poor to moderate foliation, locally well developed			

OVERBURDEN DRILLING MANAGEMENT LIMITED

SH	ATET HIFTT DTAL	HO HC	URS	-	HOLE GEOLG MOVE DRILL MECH DRILL OTHE	HOLE NO CW 85-22 LOCATION Formerly CW 03 GEOLOGIST HOLMES DRILLER HOUGE BIT NO CB67 HOBBIT FOOTAGE 0-13-5 MOVE TO HOLE 10:00-10:15 DRILL 10:15-11-30 MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE NEW BIT											
METRES	GRAPHIC LOG	INTERVAL	SAMPLE NO.			DESC	RIPTIVE	LOG									
3-3-6-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-			02	0.2 -	0.8 - sim ove 12.2 -vi 0.8. (pab 60 40	engen	JITEN Woods of Findy Vine be weny or very very very very very very very ver	CHIBO con specific sample samp	be so	intitudio of	alog						

BEDROCK 12.2 -13.5 - dark gray to black with some orange colour spots - very Fine grained - slightly schistose - occasionally oxedized along foliation shotmes -13.0-13.1 pink, very fine grained felsic intrusive lyke - Argillite (Meta-Schimant)

ccasional small cobbles ofter 10.2

pobble and cobble composition approximately 95% declinent 5% granite

13.5 EOH.

10-0

12-

13.

14-

15-

18-

Biorax

Da Holmes

DATE Nov 13 19 85	HOLE NO CW-85-23 LOCATION Formerly CW-04 GEOLOGIST T. Burn DRILLER G. Hour BIT NO CB67418 BIT FOOTAGE 13.5-> 20.5
DATE 19 00	
SHIFT HOURS	MOVE TO HOLE 11.30 -> 11.45
to	ORILL 11.45 > 12.30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOYE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.8 - 4.9 Till (Rhongaman) ruety - beige, fine sand matrix, pebbly above 4.4 robbly below starts 609, mafic volcanics and sediments 40% grantic 4.9=7.0 Bedrock Meta-bediment dark green to black, fine grained, poor to moderate bliation, well developed locally, generally granular texture, out by small felsic veinlet very roft, easy to diell	

SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO CW-85- Z4 LOCATION GEOLOGIST HOLMES DRILLER HOWG MOVE TO HOLE 12:30 - 12:45 DRILL 12:45 MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE	BIT NO <u>CB67</u> #	05 BIT FOOTAGE 20.5 - 54. Page 1 of Z
DEPTH METHES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
2.8- 2-AA 3-AA 3-AA 3-AA 4-AA 5-AA 10.1-	10.1 SEDIPENTS (OJIBWAY) 10.1 SEDIPENTS (OJIBWAY) 12.9-40 fine and very fine gray sand occurrional thin soft smooth gray clay layer 4.0-7.1 makesately compact, very smooth gray clay 7.7-10.1 fine and very fine gray sand, occasional thin granule layer 32.0 TILL (CHIBOUGAMAU) 10.1-13.6 till very sandy very publicy fine gray sand matrix, public composition approximately 60% volumics/sedimals 40% granites 13.6-14.0 till becomes very cobbly matrix and clast composition as above 14.0-21.0 till similar to 10.1-15.6		

	TE Nov 13	10 85 HOLE NO CW85 - 24 LOCATIO	ON	
		GEOLOGIST DRILLER	BIT NO	BIT FOOTAGE
	IIFT HOURS			
	TAL HOURS			
_		DRILLING PROBLEMS		
CC	ONTRACT HO	MOVE TO NEXT HOLE		
		Page 2-12		
DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	:	
21 -	A 08	- 21.0 - 23.6 Fine group sand met. pebble composition appropriate 75% volcanies/sediments	Ly	
22	A 1/209	25% grantes		
23	1	-23.6-25.5 till as above include moderately compact solured	hs	
24	10	griffy gray clay langes		
25	A.O.	-255-32.0 Fre and may Tree	7~7	
- 1	O. A FII	sond waters, clost amounts	1	
26	AKE	Zolo tes		
27-	Δ <u>ξ</u> 12	at 29.5 Few smell day larges as 23.6-25.5		
28	- A 1 13	32.0-33.5 BEDROCK		
29	△ - 🎼	111		
30-	P.4	- very time grand		
-ינ	4. 7. 15	- slightly school	,	
32-	4	- suft, very cony to dril	41	
33-	16850	- slightly schoolse - soft, very easy to doil	4)	
34				
35-	E	33.5 EQ.H.		
36-	E	Da Holme		
4	E			
37-	E			
3 €	بتناييسا بسايسانسطييسا			
39-	E			
40-	E			

DATE N = 13 19 85	GEOLOGIST T. Burne DRILLER A House BIT NO. 4867418 BIT FOOTAGE 34.0->68.5
DATE TO ALL 19 AL	GEOLOGIST T. Bund DRILLER A. House BIT NO CERTHIS BIT FOOTAGE 34.0->68.5
SHIFT HOURS	MOVE TO HOLE 2.45 => 3.50
TO	DRILL 3.00 => 3.30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
5	0.50.5 No Return 0.50.24 Organics 2.50.24 Organics 2.50.76 Alay gray reft, emosth material in suspension from 4.50.70 (clay/silt) 7.60.50 Sand gray, fine grained 10.50 Till (Chibougamau) gray-beige, fine sand matrix pettly classo 60 To mafic volcanics and sediments 40% granitio 12.50 14.5 Bedrock Mate-Admost (Niltetone) Sail green to black, fine grained, poor to moderate foliation; brally well oliveloped, occasional small quartyo-feldepathe veinlet, small skidiged seams.	

DATE NOV 13 1985	HOLE NO CW-85-26 GEOLOGIST HOLES DRI	LLER HONG BIT NO CE	CW - 07 367418 BIT FOOTAGE 68.5 - 91.0
SHIFT HOURS	DRILL	-	
TOTAL HOURS	MECHANICAL DOWN TIME DRILLING PROBLEMS		
CONTRACT HOURS	OTHER	truel by pick -	D 7.00 - 7:30
	MOVE TO NEXT HOLE 5 :		
			page 1 of 2

DESCRIPTIVE LOG DESCRI	
1 - 1 - 101 2-1 2-1 3-01 0.2-17.6 TILL (CHIBOUG ATTAIN) - sandy, pobbly and coloby till 0.2-7.0 fine being oxidized sand native From 0.2 to 1.1 becoming gray beinge colour them gray colour after 2.0 pebbles and occasional colobles composition approprintely 60 to volcamics/sediments to b granites 7-1 - 10-10-10-10-10-10-10-10-10-10-10-10-10-1	
1 - A - OI O.Z - 17.6 TILL (CHIBOUG ATTAIN) - sandy, pobbly and cobbly till 0.2-7.0 fine large oxidized sand native From 0.2 to 1.1 becoming gray brigge colour than gray colour after 2.0 pebbles and occasional cobbles composition appropriately 60% volcamies/sediments to B granites 7.0 - 17.6 grapheige to being true sand native till cobbly, clast composition approprimately 75% relumes/sediments 25% granites	
17.6-20.5 SEDIMENTS (Piss, NAIB) 12-4-08	
20	

SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO CW-85-26 LOCATION GEOLOGIST DRILLER MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE Page 2 of 2	
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
23 21.3 24 25 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	- 21.3 BEDROCK Rubble - bedrock chips with fine, ma coarse sand and pebbles - 22.5 BEDROCK - black colour with slight gream tings - very fine grained - slightly to very schiolose - unor quartz and telsic veins - Argillite (Meta-sedine) EOH. Dar Holmes	

DATE No 17 19 % S SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO CW-35-27 LOCATION For GEOLOGIST T. Brund DRILLER & Hong. MOVE TO HOLE 9.75-> 10.15 DRILL 10.15 > 6.00 MECHANICAL DOWN TIME 7.30->9.75 w. DRILLING PROBLEMS OTHER 2.00 > 7.30 travel & drill 6. MOVE TO NEXT HOLE NEW B.T	BIT NO. CR67419 BIT FOOTAGE 0 >43.0
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1 A - 01	Soor to No Return withs and boulders near surface probably till 34.2 Till (Chibougamau) gray-brige, fine sand instrip sobbly close 60% matrix sobbly close 60% matrix sobbly close 60% matrix polanics and rediments 40% granitie - gray to gray-brige soft smooth slay at 3.4->3.5 - pebbly with four and noting occasional smooth clay lungs and grity clay - smooth soft gray clay 7.5 > 7.4 - cobbly below 7.5 to 14.1 - gravel pebbly medium to coasse sand matrix closes 60% mafic volcanics and sediment 40% granitic 14.1-> 14.3 - very stoney below 14.3 to minimal fine rand matrix - boulders gabbo 15.7->16.0 19.9 > 20.1	

DATE Nyu /774 19 35	GEOLOGIST DRILLER BIT FO BIT FOOTAGE
SHIFT HOURS	MOVE TO HOLE
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE
	page 2 of 2

METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
12 - A - 13 - A - 13	- clay seam 24.4 -> 24.6 - sand, gray - singe, fine grained 24.6 -> 14.8		
12 A - 14 13 A - 14	- minimal return from 24.4 - 25.6		
25 A - 25	- gratly gray clay matery below to 27.5 with some lumps of smooth conjunct gray clay to 29.6.		
26 A 6 16	- my high percentage of local clasts from 20.0 - 34.2		
27 A 0 17	- fine sand matrix from 27.6 \$ 31.2		
30 - 4 - 19	34.2 > 39.6 <u>sand/lilt</u> (Missenaible dedinants)		
31 - 4 - 20	very fine grained gray sand I silt		
33 OA 21	matrix, while sland		
35	40.7 => 42.0 Bedrock Mete - Sediment		
37	(Intermediate Volcanic?) gray-green, fine to		
38	medium grained poor to moderate foliation, generally moscue, locally with		
40 24	granular texture, 7-3% calcite veining throughout		

Di	ATE November	149 <u>8</u> 5	HOLE NO CW-85-28 LOCATION	form	only C.	4-09		420	-619
Si	HIFT HOURS	3	GEOLOGIST HOLMES DRILLER HOWG	BII	CB 67	+20	OOTAGE	0 -	34.2
-	0_		DRILL 8 00/M.	-6.00	PM				
TO	DTAL HOURS	5	MECHANICAL DOWN TIME pull rods	to ver	luce 6.7	10:00	-10:15		
_			DRILLING PROBLEMS		1 6-				
C	DNTRACT HO	URS	OTHER Framel pickup 7.00-7.45 A	177					
_			MOVE TO NEXT HOLE		Travely	ock of	0 6:15	5 177-	7:00 F
			NEW BIT	· ·		Pag	1, 10	F3	
DEPTH IN METHES	GRAPHIC LOG INTERVAL SAMPLE NO.		DESCRIPTIVE LOG						
3 - 4 - 5 - 6 - 7 - 10 - 11 - 12 - 13 - 15 - 16 - 17 - 18 - 18 - 18 - 18 - 18 - 18 - 18		0.5-	0.5 ORGANICS (poor return) -1.9 SEDIMENTS (OSIBWAY) - fine beige sand poor return 51.0 TILL (CHIBOUGAMAU) 1.9-10.7 sandy pably till with occasional colobles -time beige sand matrix, gray-beige after 3.2, gray-beige after 3.2, gray-beige after 4.8 -clust composition approximately 60% volcanies/sediments +0% granites -10.9-17.2 till matrix time gray and pebble and coloble composition approximately 70% volcanies/sediments 17.2-17.4 bombler-granite -17.4-17.8 till as above bombler -17.8-18.2 bombler-granite -18.2-18.6 till as above bombler with fine gray-beige sind matrix -18.6-27.1 till matrix fine gray some pebble and coloble composition approximately 70% volcanies/sediments 30% granites						
207	5 - 11		- et 14.8 pull rods to repline 6.4 CB67419 with CB67420						

DATE NOVERBERE 19 85	HOLE NO CW-85-28 LOCATION				
DATE HOTELDING 5 3	GEOLOGIST DRILLER BIT NO BIT FOOTAGE				
SHIFT HOURS	MOVE TO HOLE				
TO	DRILL				
TOTAL HOURS	MECHANICAL DOWN TIME				
	DRILLING PROBLEMS				
CONTRACT HOURS	OTHER				
	MOVE TO NEXT HOLE				

Page Zof 3

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
23 A 2 1 3 2 3 A 2 1 4 2 4 3 3 5 A 2 2 3 3 A A 2 2 3 3 3 A A 2 3 A A 2 3 A A 2 3 A A 2 3 A A 2 3 A A 2 3 A A 2 3 A A 2 3 A A 2 3 A A 2 3 A A 2 3 A A 2 3 A A 2 3 A A 2 3 A A 2 3 A A 2 3 A A 2 3 A A A 2 3 A A A 2 3 A A A A	27.1-27.3 - boulder-granite 273.33.7 + III matrix Fane and very fine gray sand, pebbles and cobbles composition approximately 75.80% volcomics feedinants 25-20 to granites 33.7-34.0 boulder-intermediate/matric volcomic 34.0-38.6 till as above boulder 38.6-38.9 boulder-Rhyolite 39.9-39.2 pabble gravel, clust composition approximately 70% roleanics/sediments 30% 39.2-40.3 till similes to 34.0-38.6		

DATE Noverball 19 95 SHIFT HOURS TO TOTAL HOURS	HOLE NO <u>CW-05-28</u> LOCATION . GEOLOGIST DRILLER MOVE TO HOLE		
то			
			att FootAge
	DRILL		
	MECHANICAL DOWN TIME		
CONTRACT HOURS	OTHER		
	MOVE TO NEXT HOLE		
	Page 3 of 3		
GRAPHIC LOG LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
4	40.3.40.5 - boulder - gram. te		
S8-	40,5-42.8 till as above boulder becoming very cabby ath 41.0, clost composition 95% volcanies scalinguits 5% grantes 42.3-43.4 pobble gravel lens clost composition approximately 80% volcanies/sediments 20% grantes 43.4-44.6 above gravel grades in a matrix-prov till, very pebby -fine gray saved matrix, pubble composition approximately 80% volcanies/sediments 20% grantes 45.0-46.4 till as above boulder 45.0-46.4 till as above bounder 45.0-46.4 till as above bounder 45.0-46.4 till as above bounder 47.4-47.6 - boulder - gray wacks 30% grantes 47.4-47.6 - boulder - gray wacks 50.8 sold small gray griff moleche occasional small gray griff, clost composition 70% volcanies/sediment 30% granitos 50.8-51.0 boulder- graymacke .54.4 SEDIMENTS (MISSINAIB) -fine beige sand, thin pubble layers in top 1 metre -55.0 TILL (Lower) -pebbly, cobbby till -fine and very fine gray-beige to beige sand matrix clust composi 85% volcanies/sediments		
5 5.0	EOH. could not at	tain bedrock on rods Holmes	(< -

DATE No 19 19 25 HOLE NO CW-85-29 LOCATION Francis CW-10 GEOLOGIST T. Burns DRILLER G. Heavy BIT NO 5867420 BIT FOOTAGE 34.2					
DATE 10 20 14 19 22	GEOLOGIST T. BULLAR DRILLER G. Howa BIT NO CB67420 BIT FOOTAGE 34.2347.0				
SHIFT HOURS	MOVE TO HOLE 7.45 -> 8.00 0 6867421 0 -> 43.0				
TO	DAILL 8.00- 9.00, 9.15-> 1.00				
TOTAL HOURS	MECHANICAL DOWN TIME				
	DRILLING PROBLEMS 9.00 > 9.15 change Lat				
CONTRACT HOURS	OTHER 7.00 -> 7:45 travel				
	MOVE TO NEXT HOLE				

Page 1 it Z

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	A Comment of the Comm	
3-A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 > 1.0 No Return 1.0 > 1.2 Sand westy, beige fine grand 1.2 > 1.6 Clay brige to gray brige varied, soft, smooth. 1.6 > 2.4 Sand westy - brige, fine grained 2.4 > 41.4 Tell (Chebougaman) gray to gray brige, fine sand natury, pebbly above 2.7 cobbly below to 6.2 clasto 60% mafic inleanies and sediments 40% granitic - sand, medium to coarse grained 10.6 > 11.3 - cobbly from 11.3 > 17.5 - pebbly gravel with coarse sand moting from 17.0 > 14.3 - boulder, gabble 15.7 > 16.0 - gravel 17.5 > 17.9, pebbly coarse sand moting - tell with high percentage clasto matrix deficient - silty / sand matury, minimal + 10 return 19.3 > 20.2		

	HOLE NO CW-85-29 LOCATION
HIFT HOURS	MOVE TO HOLE
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
Balance and the second of the	MOVE TO NEXT HOLE

METRES METRES	SAMPLE NO.	DESCRIPTIVE LOG		
1.	- 10	- soft smooth gray clay lumped with abundant will, minimal		
12-3	**	+10 relium 20,2= 21.5		
13-	12	- cobbly from \$1.50 24.4		
24 - 6	-	- very stoney from 20,4 > 27.0		
15-	13	- increase in fine sand matrix		
4	14	below 34.0		
173	3-1	- publy below 36.0 to 41.4	•	
A	15			
3 4	16			
Ⅎ 。	17	41.4->435 Bedisck Intermediate		
Ι.	-4	Noleanic		
33	18	gray- green, fine grained poor to moderate friction well developed weally (tuffereous?), 21% vien		
	19	well developed beally		
3 -		calrite		
36- 4	20			
37- 6	2			
38-	10 22			
39-	404			
*0-	23			
	24			
7	25			

DATE November 11/29 85 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NOCW-35-30 LOCATION GEOLOGIST HOLDS DRILLER HOWG MOVE TO HOLE 1:15-1:30 Nov 19 DRILL 1.30-6.00 N MECHANICAL DOWN TIME DRILLING PROBLEMS pulleds 3:30-4: OTHER travel 6.00-6:30 PT by GT MOVE TO NEXT HOLE Travel 7.00 NEW B,T	BIT NO. <u>CB67+21</u> BIT FOOTAGE <u>43.5-59.0</u> <u>CB67+22</u> No. 19 // 7 45-9:+5 No. 20 De No.19 6:30-7:15 PT by pick-ps Nove9
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.2 ORGANICS 2.5 SEDITENTS (OJIBWAY) . thin layer of fine being sund . very little sample return 1.5 to 2.5 - 36.6 TILL (CHIBONG AMAN) - 2.5 - 3.7 Soundy, peloby till . Fine gray-being sund matrix pelble composition approximately 703: volcanics/sediments 38 grantes 3.7 - 6.7 Fine being and ochre sond matrix - very oxidized, pebble and cobble composition approximate 403: grantes/sediments +03: volcanics/sediments +03: grantes/sediments - till very pobbly with cobbles, tillismatrix poor 6. t - 6.7 6.7 - 6.9 boulder - Rhyolite 6.9 - 7.4 till as abone boulder 7.7 - 11.5 Soundler - Granite 7.7 - 11.5 Soundler - Granite 1.5 - 12.2 boulder - Granite 12.2 - 19.4 till as abone boulder, becomes cobbly after 13.5 19.4 - 19.6 - boulder Granite 19.6 - 24.9 till as above boulder, clust composition approximately 75% volcances/sediments 25% grants after 20.5 metres	

0.6	TE Na	veneek 19/2	19 85 HOLE NO CW-85-30 LOCATION			
		HOURS	GEOLOGIST DHILLEH	BIT NO	BIT FOOTAGE	
		HOURS				
_		-	DRILLING PROBLEMS			
C	ONTR	ACT HO	WOVE TO NEXT HOLE			
			Page Z of Z			
METRES	GRAPHIC	SAMPLE NO.	DESCRIPTIVE LOG			
	Δο	12	24.9-251 · boulder · intermediate/-			
Z1-	- Δ	Æ13	25.1-26.8 - till as above boulder	- tic		
22-	<i>ο</i> Δ	(E)	26.9 - 27.0 - boulder - intermediate/ma			
23-	Δ-	1	27.0 - 366 - till very sandy poloby with occasional colobles			
2 -	Δ · - Δ	15	elast composition appropries	-lf		
2.5 -	Z Δ - - Δ	Æ	15h grantes			
26 -	4.0	100	composition necesses in volcanies /sediments from 36.4 to 366			
27-	Δ.0	陳,,				
28-	Δ .	Æ	36.6 - 39.1 BEDROCK			
29-	Δ -	18	- light green colour - slightly to very schistose	-		
30-	Δ	VE19	- 1. ght green colour - slightly to very schistose - fine grained			
31-	- A	Œ	- minor calcite veins from 37.7 to 30.0 100% white calcite			
32-	Δ.	20	work very sitt to drill			
33-	Δ-	E	- intermediate / matre voles	,-		
34-	Δ:	1	38.1 EOH			
35-	00	22	38.1 EOH Don Holmes			
36-	7:A	23				
3/-		27 en	Mex			
J8-	+++	TE				
₹9°		E				
10-	1		1			1

DATE MOURS 19 35 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO CHI-35-31 LOCATION Thormsely CW-12 GEOLOGIST T. Burn DRILLER G. Hong. BIT NO BETT123 BIT FOOTAGE 32.6-44. MOVE TO HOLE 10.00 -> 10.15 DRILL 10.15 -> 4.30 MECHANICAL DOWN TIME H. 45 -> 5.15 work on cluck DRILLING PROBLEMS OTHER 5.15 -> 6.00 travel
	MOVE TO NEXT HOLE 4.30 > 4.45
IIC IIC	

DEPTH IN METRES	GRAPHIC LOG INTERVAL	SAMPLE NO.	DESCRIPTIVE LOG	
3		01 02 03 04 05 06 07 08	25 > 5.9 sand brige, fine grained secoming gray - brige down section 3.9 > 27.7 Till (Chibougaman) gray - brige to gray, fine sand matrix pebbly clast 45% mafic inleanies and sediment 35% granitic - boulder, pyrotente 4.6>4.8 - very high perentage of fine sand matrix from 45 to 7.8 - medium to coarse sand 7.8 - 8.3 - cobbly below \$\tilde{8}\$.7 will low percentage of fine sano matrix - coarse sand 20,1 > 20,4	
20-	04	-		

DATE N.m. 30 19 31	HOLE NO CW-85-31 LOCATIO GEOLOGIST DRILLER MOVE TO HOLE		
TO	DRILL		
TOTAL HOURS	MECHANICAL DOWN TIME DRILLING PROBLEMS		
CONTRACT HOURS	OTHER		
	MOVE TO NEXT HOLE		
			page 242
METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	and the second s	
12	- boulder, grante 21.9-	22.7	
23 A A	- boulder, granite 21.9 - - increase in percentage selt below = 24.0.		
24 - 4		A. Carlotte	
-4			
25- 6-15			
20 A.O.			
-4			
27- 16 27.7	30.0 Bedsock Intermediate		
28 17	W olconic		
	gray- green, fire gra	ined	
29	gray-green, fire gravery well oliveloped foliation (tuffaceous) produced by alternate bands of closely series and quarty (?) 21% call veining		
30	foliation (tuffaceous)		
3° 1 E	produced by atternat	7	
31-	bands of Alorile / series	cite	
32=	and quanty (?) 21% cal	lute	
	veining		
33-	v		
34			
		Water Company	
35			
36-			
		and the same of th	
36— 37— 38— 39—		Are distributed in the control of th	
38-		(children)	
1		Particular desiration of the Control	
39-		2000	
40-		Laboratoria e al	

TO	OTAL	HOURS HOURS HOURS	S	HOLE NO CW.85-32 LOCATION GEOLOGIST Holes DRILLER G. MOVE TO HOLE DRILL 7:45 - 10:00 MECHANICAL DOWN TIME DRILLING PROBLEMS Pull roce OTHER Travel 7.	Hong BIT	NO. C.B.6.74	24 BIT FC	OOTAGE .	0 - 18	0
		-		MOVE TO NEXT HOLE						_
				NEW BIT	ROD					
DEPTH IN METRES	GRAPHIC	SAMPLE NO.		DESCRIPTIVE LOG						
10 10 11 11 11 11 11 11 11 11 11 11 11 1	^	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6.9 -	6.8 SEDIMENTS (OJIBWA) -17.25 very oxidized fine being 2.5-6.8 fine gray sand with gray clay layers B.3 TILL (CHIBONGATTAN - sandy pebbly till - Fine being sound matrix with zones at very oxidized being beann culour matrix pebble and occasional cobble composition approximately 60% roleanies/ estimants + 60% granites - till becomes matrix-poor from 8.0 to 8.3 D.8 SEDIMENTS (DJIBWAY) 8.3-8.9 grandatural contact w overlying till unit into pobb gravel with small cobbles- no fine muterial; clast composition approximately 60% volcanies/sediments. + 60% granites 8.9-10.8 coarse and medium sa oxidized being colour 10.8-13.5- poor return, assum to be fine and medium being sand interbyeved with fine gravelly 3.5-16.2 No return - pressyri sand plugging vools a court be cleared B.D. BEDROCK - dork gray, orange and white is - fine graved - schiebse to very schistose, is - surphises along fracture so - surphises along fracture - surphises along	the the sale of th	From	: May s	0.3 4	o not	to sisis
			19.0	- EOH. Don Ho	_					

DATE November 21 19 95 SHIFT HOURS	GEOLOGIST HOLMES DRILLER G. Howa: BIT NO. CB67424 BIT FOOTAGE 18.0 - 31.5
то	DRILL 10 100 - 11:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS pull rods 10:15-11.00
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
6 A A OZ	1.5-5.8 SEDIMENTS (OJIBWAY) 1.5-2.0 very ordized fine being sund 20-58 fine gray sand with thin gray clay layers, appears as mobintely compact grilly lamps 5.8-7.5 TILL (CHIBOUGAMAC) - sandy, pobbly fill - fine gray sand matrix - pobble compostion approximately 60% volcanies/sediments 40% granites 7.5-13.5 SEDIMENTS (OJIBWAY) 7.5-11.5 Coarse sound and pobble gravel, very oxidized 11.5-13.5 medium and coarse being - brown sand, some fine sand zones as well 13.5 EOH - bit repeatedly plagged with sand, no veturn after 13.5 = similar to hole CW-85-32 - assumed sand similar to above unit down to bedrock	petaly see cu	1011

SH TO	TE N + U 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	HOLE NO CW-85-33 L GEOLOGIST 1. Burded DRILL MOVE TO HOLE 11.00 > 12.00 DRILL 12.00 > 1.00 , H.00 MECHANICAL DOWN TIME DRILLING PROBLEMS 1.00 > OTHER MOVE TO NEXT HOLE	ER G. 4 rug.	_ BIT NO. <u>CB</u>	:W - 14 67423 BIT	31.5->90.0
DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE NO.		DESCRIPTIVE LOG				
1 2 3 4 5 6 7 7 8 7 10 11 12 13 14 15 16 17 18 19 19 20		0->55	gray-beige, very sand - medium to coace below 8.5 to 120 - fine sand from 1 - clay 19.2 > 20.5 soft smooth on	se grained 2.0 - 19.2			

DATE Na. 21 19 35 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO CW-85-33 LOCATION GEOLOGIST DRILLER MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE	BIT NO	BIT FOOTAGE	
			page 2 of 3.	
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		- Colombia	
22 23 30 31 32 33 33 34 35 36 37 38 39	- gray sand below 20.5 with occasional interbedded clay seams. - medium sand 32.2 > 32.8 - medium to coarse sand 35.5 > 55.4 (note: super poly used after 35.5 rods plugged)			

DATE Nov 21 19 32 SHIFT HOURS TO TOTAL HOURS CONTRACT HOURS		HOLE NO CW-85-33 LOCATION GEOLOGIST DRILLER BIT NO BIT FOOTAGE MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE Page 3 of 3			
DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			1
4-		- occasional pebbly beds below # 49.5	Definition of the second of th		

55.4->57.5 Till (Chibougamou)

30 % granitie

57.5 -> 58.5 Bedirk Intermediate

of the rock

1 lines 56.9557.2

and comprise upt 25%

45-

46

77-

48

49.

50-

52.

53

54.

55

55

	REVERSE CIRCULATION DRIL	L HOLE L	OG		
DATE N 22 19 82 SHIFT HOURS TO TOTAL HOURS CONTRACT HOURS	HOLE NO CW-85-34 LOCATION GEOLOGIST T. BULNS DRILLER G. HOW MOVE TO HOLE 7.45-38,00 complete DRILL 8.00 > 9.15 MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER 7.00 > 7.45 Mayel MOVE TO NEXT HOLE	move	36 <i>74</i> 44 BIT FC		
				page 1,	fz
METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG				
1 1 1 1	1.2 N. Return 3.6 Sand westy - brige above 3.0, gray to gray brige below fine grained - dark gray sand from 4.8 to 23.5 - small wood chips 4.8-75.8 - occasional dark gray clay ream at 7.5 to 23.5				

DATE NH 22 19 85 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO CW - 85-34 LOCATION GEOLOGIST DRILLER MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE	BIT NO.	_
		,	page 2 of 2
METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		-
21 22 23 23 23 23 24 25 29 29 29 29 29 29 29 29 29 29 29 29 29	25.5 Redock Intermediate Wolsonic gray-green, very fine grain very will developed foliate (tuffaceous) L1% calcited		

	REVENSE CINCOLATION DATEL HOLE LOG
DATE November 239 85 SHIFT HOURS TO TOTAL HOURS CONTRACT HOURS	HOLE NO
GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
0-	O No RETURN

DEPTH IN METRE	GRAPHIC LOG INTERVA	SAMPLE NO.	DESCRIPTIVE LOG		
1 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16- 17- 20-			1.0-2.6 TILL (CHIBOMATMU) 1.0-1.2 rusty-beige fine sand watrix clost composition of collection approximately 60% volumics/softmall told granites 1.2-2.6 autinity gray-beige Fine sand, till still cobbly 2.6-4.0 BEDROCK . medium gray-green cobort - Fine grained - very well developed foliation (taffaceous) - Intermediate Volcanic 4.0 E.O.H.		

SH TO	REVERSE CIRCULATION DRILL HOLE LOG DATE No. 22 1985 HOLE NO CW-85-36 LOCATION Formerly 17 GEOLOGIST TOM 24.715 DRILLER 16006 BIT NO CB574.25 BIT FOOTAGE 4.0 -> 8.5 SHIFT HOURS MOVE TO HOLE 10.30 -> 10.45 DRILL 10.45 -> 11.15 TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS CONTRACT HOURS OTHER MOVE TO NEXT HOLE								
DEPTH IN METRES	GRAPHIC LOG	SAMPLE NO.		DESCRIPTIVE LOG					
2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.404	o d	2.7. 2.7. 3.2.	No Return (probably tillat Surface 2.7 Till (chibouga man) rusty - biege, finic sand matri pebbly clasts 75/25 - Bedrock - metascoments & Telsic volcanica > 3.2 Rhyolite - gray, fine. wined, poor to moderate that ion > 4.5 Argillite - dark gray to lack, very fine grained, ery well haveloped foliotion	κ,				

DATE Nov 33 19 85	HOLE NO CUI-85-37 LOCATION Formula 18
DATE INCV. 22 19 CO	GEOLOGIST T BURDS DRILLER G. HOWG BIT NO (BE14)5BIT FOOTAGE 25-714.0
SHIFT HOURS	MOVE TO HOLE 11.15 -> 11.30
TO	ORILL 11.30 -7 13.00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3-ΔοΔο ΔοΔο ΔοΔο 10-11-11-11-11-11-11-11-11-11-11-11-11-1	0-706 Desture 10-713 Clay living agt smooth 12-76-61 23-74.1 Till (Chibrougamau) rusty being above 2.9 rusty being above 2.9 rough living library, fine sond matrix, public data 60% mafte volcarie and redirectly, 40% grantic volcarie, gray, fine grained fragmental texture of quarting fridapathic material with matrix of dark green chloritic material (blacky tuff?)		

DATE N. 22 1985	HOLE NO CW-85-38 LOCATION Frankly 19 GEOLOGIST T. Buss DRILLER G. Have BIT NO CR67425 BIT FOOTAGE 14.0 > 21.0
DATE 1030 23 19 23	GEOLOGIST T. BULLER G. HAWO BIT NO CR67425 BIT FOOTAGE 14.0 > 21.0
SHIFT HOURS	MOVE TO HOLE 12.00 → 12.15
	DRILL 12.15 > 1.15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
-	MOVE TO NEXT HOLE

METHES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
1	0.30.5 Organica 0.5 >> NO Land westy - brige, fine grand protect 1.1=5.2 Till (Chebougamau) westy - brige, fine sand matrix collibly elasts 80% mafic volcanics and sediment, 20% granitic - boulder meta-sediment 2.4 > 2.7 6.2=7.0 Bedrock Meta-bediment (Litetone) dark gray to black, fine grand, poor to moderate foliation, argillaceous between 6.3 to 6.5, felsic volcanic below 6.5 to 7.0		

DATE November 249 95	HOLE NO CW-85-39 LOCATION FOR MENTY 20. GEOLOGIST T. BURNS DRILLER G HOWE BIT NO CRETTED BIT FOOTAGE 21->32.0
SHIFT HOURS	MOVE TO HOLE
TO	DRILL 1:30 - 2:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1	0-0.5 No RETURN 0.5-2.5 ORGANICS 2.5-9.4 SEDIMENTS (OJIBWAY) 2.5-3.6 Soft, smooth beige clay 3.6-4.3 Fine beinge sand 4.9-7.6 fine gray beinge sand with occusional pebbly bed 7.6-7.9 rusty beinge zone of medium to course sand 7.9-9.4 similar to 4.8-7.6 9.4-11.0 BEDROCK dark gray to black - very Fine grained - poor to moderate foliation - slaty appearance poir chart banks 1-2 mm comprise up to 10% of the rock Meta-Sediment (s. Itstore 11.0 E.OH.	

	ATE NOVEMBE	W.73 Q5	HOLE NO CW-85-40 L	OCATIONF	rnerly		
			GEOLOGIST HOLMES DRILL	ER J. Hougs	IT NO CE67479 BI	T FOOTAGE	- 85
SH	HIFT HOURS		MOVE TO HOLE	9.30 -10	(2)		
TC	TAL HOURS		MECHANICAL DOWN TIME	Cot us time	continued Fra	Now 7.2 F	2:01.93
			DRILLING PROBLEMS	39, 7		7 //00 22 2	7.00
CC	ONTRACT HO	URS	OTHER Trave/	lan prekup	7.00-8:00	407	
_			MOVE TO NEXT HOLE				
			N - 1	o _			
			NEW E	511 4B			
DEPTH IN METRES	GRAPHIC LOG NTERVAL SAMPLE		DESCRIPTIVE LOG				
ME	SAI						
	31/	0-	0.5 ORGANICS				
1 —	/L	200	-7.0 SEDINENTS ((T (Bush)			
	· · · /£	0.3	- 1.0 SEDITIONIS (03180017			1
2	10-1		os- 4.8 - grilly, mode	a ver lina			1
2	/E		Fine being sand with	occasional			
3	I LE		compact beige clay of Fine beige sand with pebbles, grades into	medium			1
4-	· F		and coarse oxidized	1 cml			i
3	1						
5-	FOZ		4.8-7.0 peoble grave composition approximatel	el, clast			1
6	000		composition approximatel	7			
3	00	'	60% volcanics/sodinands				1
7-	1/NE		10,000,000,000,000	5. 3 Park			
8	1/1/203	eark	75% volcanis / sedlan	in the			1
3	1///	PICK	gravel very cobbly 75% who when it's sallow 25% granites				
9-	15		•				
10-	IE	7.0-	8.5 BEDROCK				
=	E		- gray - green and b - very time grained - very schistose, foliated	roun			
11	1	1	- very fire accine	0			1
12	IE		- very schictise	think			
E	IF	1	toliated	/			
13-	-		- very micaceous	along			Ì
=	E		- very micaceous	2.11			
14-	F		- very soft to do	7.81			1
15	ΙĘ		- Matased mont	(tuttaceon)			1
1	E		- Notaseaman	1			
16-	E	0.5	E 0 1/				and the same of th
17	I E	8.5	E.O.H	/			A second
=	F		Don Hor	nes			***************************************
18-	IE						and the second
19 -	IE						in participants
. =	անումանանանուն						*
20_	1F						1
					1 1	1 4	4

DATE No. 03 19 25	GEOLOGIST D. Halones DRILLER J. Hand BIT NOCE 1949 BIT FOOTAGE S.S. T.D.O.
SHIFT HOURS	MOVE TO HOLE 10:30 11:45 - art strate trace
то	ORILL 11.45 - 12.45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG
2 3 3 4 4 5 5 5 6 6 7 7 1 10 11 11 12 12 13 14 15 16 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	0-0.4 Engine (poor return) C.4-1.8 Sudamento (Pribruay) Hain brige clay large on surface of write, fine being brown send very exiding (poor return) 1.8-3.5 Bedrock: - light to deak green justists mostling - upper 7.1m very exiding to brown grees - very fine greated - slightly to very schools of thinly felicitist - minor calcut - internativals make volcance 3.5 E.O. H

DATE N. 49 5 19 55	HOLE NO (W-95-43) LOCATION BIT NO CENTURY FOOTAGE 1910 1415
SHIFT HOURS	MOVE TO HOLE 13:45 -1 (x.
то	DRILL 1:00 1.30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

METRES GRAPHIC LOG INTERVAL	BAMPLE NO.	DESCRIPTIVE LOG			
3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Bedest.	25 Bedrock - Light group grave - fine grained - Dightly oxiding - very schutor; - very oxiding of micoceans - minor coicete - soft to drill - medowdement E.O.H.	d Hidy foliated one at 1.9 m		

DATE NOV 13 19 25	HOLE NOCH ST -43 LOCATION BIT NOCK 57499 BIT FOOTAGE 14.5 - 21.0
SHIFT HOURS	MOVE TO HOLE 1.30 - 2.50 DRILL 3.00 - 2.45
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	DRILLING PROBLEMS Stuck in Charle 1245 -6100
	MOVE TO NEXT HOLE

METRES METRES GRAPHIC INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
	0-0-8 0.8-3.3 Sediments (Entrucy) - gray medorably compact smeeth clay 0.8 0.9 - dark treach celeice 3.2-5.0 Till (Chilougamau) - sandy, pethly till with - small celler - fine grained sand matrix - pethly composition appearmately 7590 volcanics I solumits 25% grantes, after 3.3 matres 80% volcanics I solumits 32% grantes, accasional celles 5.0-6.5 Bedreck - light grain gray coult - very solustors, thinly finaled - miner calcut - mener calcut - mere calcut - me	

DATE NOVEMBER 216 85	HOLE NO CW-R5 . ++ LOCATION
SHIFT HOURS	MOVE TO HOLE 4.15 - 4.30
то	DRILL 4 30 - 5 30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

2-11 3.3-55 SEDIMENTS (OJIBNAY) -SOFT, SMOOTH gray clay 5.5-10.1 TILL (CHIBONALMU) - Fine gray-being same waters, public clasts approximately GOD volcames / sediments 40% granites - till becomes cabbly below 3.5	DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
10-10-10-10-10-10-10-10-10-10-10-10-10-1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0-0.5 No RETURN 0.5-3.3 ORGANICS 3.3-55 SEDIMENTS (OJIBWAY) - soft, smooth gray clay 5.5-10.1 TILL (CHIBONALTHU) - fine gray-beige same waters, pebbly clasts approximately 60% volcenes/sediments 40% granites - till becomes cobbly below 9.5 10.1-125 BEDROCK - clay - green 10.1-12.5 - slightly grifty		

						_		
DATE NOV 25 19 85 SHIFT HOURS					HOLE NO (14-85.45 LOCA GEOLOGIST D. Holmes DRILLER MOVE TO HOLE	2 Howy Bit	NOTE 1499 BIT FI	0-1-8
_		_	DURS	(MECHANICAL DOWN TIME set 11 DRILLING PROBLEMS btuck in a OTHER	180 k 7:45 -4:00	Nex 34 Tout with	145 - 545 - 61-61-64-11 c
_	JN I H	- -	T HOU	лнs (OTHER <u>travel</u> 7:00 -7:00 MOVE TO NEXT HOLE <u>1:00 - 1</u> :Mechanical Down Times 1:30 -5 New Bit	134 7		
METRES	GRAPHIC	INTERVAL	SAMPLE NO.		DESCRIPTIVE LOG			
_								

0-0.5 No Pature 0.5-0.8 Organics 0.8-20 Sadimento (Oxtrusu) fire Jeige ohe sand, oxidized 20-133 Till (Chiloriganau) Line graned leige sand matur 20-5-20 excasend colle ofte 52m - chart composition approximately colo columnics and sedence and 40% granites with severing seast volunicant actimists down section to approximately 70% excanicsand sold on approximately 70% excanicsand sold method 30% granitus 13-3-12-3 till very collety 13-5-very thin layer of compat 13-5-12-8 touther amphibility approximately 80% columnics and relief to granid lease sand, pathirs and colletis approximately 80% columnics 13-13-14-5 Bedieck Light to dark green withwhile (polosolo) -very fine granied
- schutose - trace of dissementaled pyrite

- entermedicate (mafic volcanic

DATE <u>Nov 24/14</u> 19 <u>95</u> SHIFT HOURS	HOLE NO CN 95-46 LOCATION FOR GEOLOGIST HOLES DRILLER J HOLE B	merly 35. IIT NO. <u>CB6.7500</u> BIT FOOTAGE 1.8 - 4	12.8					
TOTAL HOURS	MECHANICAL DOWN TIME 7.45 (2 15 start.) DRILLING PROBLEMS Johnson 5.00 - 5.45	DRILL 12:15-5:45 Nov 29/1 redrill 9:47:12.30 Nov 29						
CONTRACT HOURS	OTHERTrevel 7.00.7.4547/8028 5.45 - MOVE TO NEXT HOLE duratine 7:45.9:4 NEW BIT CB67501		_					
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG							
3-1-1-07	0-7.8 Fine and medium beige sound interpreted with them politic and gray clay layers 7.8-9.4 pubble gravel composition approximately 60% volumes feeting 11.5-20.1 pubble gravel composition approximately 60% volumes feeting interpretable of the boarse send - occasional colobbes after 1720							

DATE Nov 23/24 SHIFT HOURS TO TOTAL HOURS CONTRACT HOL	GEOLOGIST DRILLER BIT NO BIT FOOTAGE MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS
DEPTH METRES GRAPHIC LOG INTERVAL 9AMPLE NO.	DESCRIPTIVE LOG
21-207 22-23-23-24-207 23-24-207 28-27-28-28-28-28-28-28-28-28-28-28-28-28-28-	20.1 - 20.8 - 0 x.d. zed coause Sand with publics 20.8 - 35.8 - public grower information with coause sand - occasional collises, compositar appropriately 60% solumies/saluet 40% grantes 358-EOH TILL (CHIROUGHOTAN) - gradultional contact with overlying saluents overlying saluents - sandy public fill with collises - sandy public fill with collises

.

SH TC	IIFT TAL	HOURS HOURS HOURS ACT HOU	-	HOLE NO GEOLOGIST MOVE TO HOLE DRILL MECHANICAL DOWN TIM DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE	DRILLER	BIT NO	_ BIT FO	OOTAGE _	
DEPTH IN METRES	GRAPHIC	INTERVAL SAMPLE NO.		DESCRIPTIVE LO	og .				
71				- EOH could not attant because of ery torque un rod					

DATE Nov 30 19 85	HOLE NO CW-85-41-A LOCATION Formed W10 35 GEOLOGIST 31 HILLIAM DRILLER 6 Hay BIT NO CREATES BIT FOOTAGE 0-750-4
	GEOLOGIST 31 BUR MOT DRILLER 5 TOUT BIT NO CELTUS BIT FOOTAGE 0-7524
SHIFT HOURS	MOVE TO HOLE
TO	DRILL 10:00 -711:15 12:00 -7 6:45
TOTAL HOURS	MECHANICAL DOWN TIME 11:15 -713:00 - replace heidlighte octano.
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER travel 9:00 -> 9:45
	MOVE TO NEXT HOLE

New Bit

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
3-1-19	For alex by 201 CW-85-46 Novo8 41.0->47.6 Gravel - medium Dand matrix with petholy cleater composing of 60% adments and volcances 40% granities - granitic Loudon = 45.4-455 47.6-752.4 Till (Chilougaman) - gray leige . fine aond natrix with petholy claster composing a 45% adments and volcances 35% granities. 52.4 > 53.5 Bodrack (Febric Volcance) - gray to green - very five grained - very five grained - very developed folicities		

DATE Nov 29 19 55	HOLE NO CW-85-47 LOCATION Formerly CW 78
DATE AT 19	GEOLOGIST HOLDES DRILLER J HOUGE BIT NO CASTE BIT FOOTAGE 9-81
SHIFT HOURS	MOVE TO HOLE
то	ORILL 12:45- 2:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0-5.8 SEDIMENTS (OJIBWAY) 0-1.2 compact, smooth, begge- brown chy 1.2-2.5 very fine beige smol, oxidized 28-5.8 Fine beige sund, oxidized		
5 - Δ - Z - Z - Z - Z - Z - Z - Z - Z - Z	5.8 -6.6 TILL (CHIBOME & MALL) - sundy, pelbly till - Fine gray-beige sund matrix, Oxidized 5.8-6.3 - pelble composition approximately 60% volumics/sediments 40% granites		
10	66-8.1 BEDROCK -gray to dark gray to black with white mottling - Fine to very Fine grained - 51. ghtly to very 5. histore, thinly to hated - unca along toleran Faces - mor calute veins		
12 13 14 15 16 17 18 17 18 19 19 19 19 19 19 19	- trave pyrite - hard to drill - Meta seel ment (Conymarke) 8.1 EO.H. Don Holices		

DATE Nov 29 19 85	HOLE NO CW-85-48 LOCATION CW-7-7
DATE _/VEV = 19 6	GEOLOGIST DRILLER 1. HOW G BIT NO COLOTAGE 3.1-19-1
SHIFT HOURS	MOVE TO HOLE 2:00 - 2:15
то	ORILL 2 15 - 3:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

METRES	GRAPHIC LOG	SAMPLE NO.	DESCRIPTIVE LOG		
3		-	0.0 - 1.0 No Return		
1-1		E	1.0 -4.1 Seds (osisumy)		
2		100	-1.0-25 they - brown, smooth, moderately compact.		
3-		1			
4-		Ē	- 2.5-4.1 gray-beige fine sand		
5	10	差	4-1-4.5 Till (chibongaman)	-	
6		‡ 02 F	- beige group fine hand matrix		
9		Ē	- pebbly 60/40		
7-		E	4.5-6.0 Bodrock - Metaschment.		
8-	-	Ē	- whitebrown togrey, greywaske		
9-		-	- very time grain to medicin grain,		
10-		F	-quartz, Teldspor, minor maficis.		
11-	-	E	- weak foliation 4.0-5.0		
12-		E	- slightly towery shustone 50 = 600		
13		E	- grainic banding		
1		E	- silveens		
14-		E			
15		E			
16-		-			
17-3		تصطييب ومصافيتها ويتراوين الصياليين الصيطيب الساليس المساهيين			
18		Ė			
19		Ē			
20-		E			

DATE Nov 27 19 85	GEOLOGIST HOLDES DRILLER 5 Hours BIT NO. 6367501 BIT FOOTAGE 171-21.6
DATE TIPE 19 =	GEOLOGIST HOLDES DRILLER J HOWG BIT NO (36750) BIT FOOTAGE 17/-21.6
SHIFT HOURS	MOVE TO HOLE 3, 75 - 3:30
	DRILL 3:30 -4.30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
2	0-5.0 SEDITENTS (OT IBWAY) 0-2.5 smooth, compact brown clay 2.5-3.4 smooth compact gray clay 3.4-5.0 Fine gray smal	
5 A A A A A A A A A A A A A A A A A A A	5.0-5.9 TILL (CHIBOUGATIAN) cabingt and distinct contact very sundy, polibly till Fine gray sound matrix polities composition appropriately 75% whomizs/solimals 25% granites	
10-11-11-11-11-11-11-11-11-11-11-11-11-1	59-7.5 BEDROCK . light to dark green and white - medium to fine grained - slightly to very schistise with thin Foliations - appears to be slightly afford	
10-11-11-11-11-11-11-11-11-11-11-11-11-1	- Intermediale/matic volumic 7.5 E.O.H. Don Wohnes	
19		

DATE Nov 22 1985	HOLE NO CW-85-50 LOCATION
DATE THE STATE OF	GEOLOGIST 1011 TOURS DRILLER MOUSE BIT NO COCYTES BIT FOOTAGE 10 10 10 10 10 10 10 10 10 10 10 10 10
SHIFT HOURS	MOVE TO HOLE 2.15 →2.45
то	DRILL 2:45 -> 2:36
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
0 A O A O A O A O A O A O A O A O A O A	0 -> 1.0 No Return (peoply tillat 1.1 -> 3.1 Till (Chibougamau) rusty-beige, fine sand matrix, Pebbly clasts. 80% mafic Volcanics and 20% granitic 3.1 -> 4.5 Bedrock - Jelsic Volcanies - dark grey, very fine grained siliceous, massive, 21% colcite veiring		

DATE NOVED 19 85	HOLE NO CWでいる LOCATION
DATE NITED 19 12	GEOLOGIST T. BURGS DRILLER G. HOUGE BIT NOCELTADE BIT FOOTAGE 36.5 > 42.5
SHIFT HOURS	MOVE TO HOLE
то	DRILL _ 3:43 -> 4:30
TOTAL HOURS	MECHANICAL DOWN TIME
***************************************	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
1 Δ α Δ CI 2 Δ α Δ α Δ α Δ α Δ α Δ α Δ α Δ α Δ α Δ	0-71.0 No Return 1.0-74.4 Till (Chilougamau) rusty-beigs fine sand matrix, pellity clasts 7590 mafric volcanics and adiments, 3590 granitic 4.4-76.0 Bedrock altered filse volcanic (quarty-sericit serist) gray-white quart and sericits, highly altered and sericits, highly altered		

DATE Nov 12 19 35	HOLE NO CW-85-52 LOCATION Formula CW- 23 GEOLOGIST To BUCKS DRILLER & Howa BIT NO CBA7725 BIT FOOTAGE 425-5550
DATE 17 30 32 19 23	GEOLOGIST I. BUTNS DRILLER C. HOW & BIT NO CBA7725 BIT FOOTAGE 42,5->55.0
SHIFT HOURS	MOVE TO HOLE 4.30 > 4.45
TO	DRILL 7.45 -> 5.45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 5.45 > 6.45 Travel by GT. To truck, 6.45 > 7.30 to Chapain
	MOVE TO NEXT HOLE

DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	T
1 - 2 - 3 - 4 5 6 7 - 8 - 9 10 11 - 12 - 13 - 15 - 16 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19		- occasional gretty gray clay 4.5 > 7.5 9.9 > 10.7 Clay gray soft smooth. 10.7 > 11.6 Till (Chibougoman) gray. beige, fine sand matrix, cobbly, class 75% mafic volcanic and	

DATE November 2319 95	GEOLOGIST T. BURNS DRILLER & HOWES BIT NO CB67425 BIT FOOTAGE 55.0 -67.			
SHIFT HOURS	MOVE TO HOLE 9:40 - 9:30 DRILL 9:50 - 10:15			
TOTAL HOURS	MECHANICAL DOWN TIME			
CONTRACT HOURS	OTHER 7.00 - 7:45 Travel 7.45.9:00 walk to dr. 11			

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
	0-0.5 NO RETURN
1	0.5 - 1/3 SEDIFENTS (OTIBWAY)
2	chy/s.tt
3	- loss return down section increwe in sitt below 20 motres
3	5.4-43 wary time beige sund - occasional seam of smooth
6	increasing grain size down section
7	grande ge below approximately 8.5 meters
8 - VEOI	11.3-11.9 TILL (CHIBOUGAMAU) -gray berge Fine-sand matrix
9-1	-gray berge fine - sand matrix, 7.11 public clast composition 6000 matic/volumic and sediments
10-1	11.9-12.7 BEDROCK
12 4 10 2	- medium gray - year fine grained
13	- wedium gray - very fine grained - poor to moderate tolation, med developed locally Littaccoms possibly welled
14 7	Soliceons 20.05% dissemiled
16-	- Felsic Volcanic
17-	12.7 EOH.
18-	14.7 201.
19	
20-	

DATE November 19 95	HOLE NO CW-95-54 LOCATION Formally 25 GEOLOGIST T. BURNS DRILLER G. Howa BIT NO CB67425 BIT FOOTAGE 67.7-983.
SHIFT HOURS	MOVE TO HOLE
TO	DRILL 10:30 - 1/:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METHES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG
MET OF SAM	1.0-10.9 SEDIMENTS (OTIBURY) 1.0-7.8 Soft, smooth gray clay, increasing silt content down hole 7.8.10.9 gray to gray-bege fine ground sand 10.9-13.8 TILL (CHIBOUGAMAN) - gray-beige to beige fine sand matrix, pebble clasts approximate composition 60% matic volumic/sediments 40% granitic
12	13.9-15.0 BEDROCK - gray to gray white very fine grained very well developed foliation (triffaceous) abundant take? - sericite - very easy to drill - altered Felsic Volumic 15.0 EOH.

DATE NOURS	HOLE NO CO-85-55 LOCATION FORMER CW-26 GEOLOGIST TOM PAINT DRILLER HOW BIT NO CO 67426 BIT FOOTAGE C - 7.5 MOVE TO HOLE 1/1/5 > 1/1-30
TO	DRILL _//: 30 -> 12:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE
	* New Bit CB67426
	,

* New Jub.

DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
1	3 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	comatrix, pebbly above 30, Cobbly below. 5.8 Bedrock - Jelsie Volcanics. gray, fine - grained, generally massive, locally	
16— 17— 18— 19—	- թուդուդուդուդուդ-		

DATE 10 23 19 45	HOLE NO CW-85-56 LOCATION Formerly Cw-27 GEOLOGIST TO BURN DRILLER BIT NO BETTARE BIT FOOTAGE 75-750
SHIFT HOURS	MOVE TO HOLE 12:15 -> 12:45 DRILL 12:45 -> 1:20
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1	16 > 6.5 Till (chibougamau) - gray ; beige to beige, fine sand matrix, pebbly clasts 60% mafic volcanics and sediments, 40% granitie - gritty gray clay matrix below 6.0 6.5 - 7.5 Bedrock - Quartz vein - white massive, locally mafic vminerals.	

DATE N = 3 19 85	HOLE NO CW-85-57 LOCATION Franch CW-28 GEOLOGIST T. Burns Driller & Houng Bit No 4867426 Bit FOOTAGE 150 > 27.0
	GEOLOGIST 1. No. 11. DRILLER E. HEWY BIT NO. 286 1436 BIT FOOTAGE 150 -> 230
SHIFT HOURS	MOVE TO HOLE 1.30 = 1.45
TO	DRILL 4.00 > 4.30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS 1.45 -> 4.00 getting unter carrier free
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
Δ ο Δ ο Δ ο Δ ο Δ ο Δ ο Δ ο Δ ο Δ ο Δ ο	0505 No Return 0505 Till (Chibougaman) gray beige, fine and maticip, pebbly clasts 6500 mafic volcanics and rediment 3570 grantic - gritly gray clay matrix from 200 > 3.0 6.508. Bedrock bytumediate Nolcanic medium green to gray-new very fine grained, very well developed fetalish (tuffaceous) abundant chlorite - seriete, highly spediged bocally	

DATE N 23 19 85	HOLE NO CW-85-58 LOCATION Framely, CW-29 GEOLOGIST T. B. MM DRILLER G. Howg. BIT NO CB67426 BIT FOOTAGE 23 > 36.
DATE 10.0 % 19 33	GEOLOGIST T. B. WANDRILLER G. Howe. BIT NO CB67426 BIT FOOTAGE 23 > 36.
SHIFT HOURS	MOVE TO HOLE 4.30 > 4.45
to	DRILL 4.45 > 6.30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 6.45 -> 7.15 walk to truck 7.15 -> 8,00 to chapais
	MOVE TO NEXT HOLE 6,30 > 6,45

DEPTH METRES GRAPHIC LOG INTERVAL BAMPLE	DESCRIPTIVE LOG	
Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	0 > 10 No Return 1.0 > 12.1 Tell (Rhibougamoue) gray- wiese, fine and metry public clost 60% mafic volcanic and rediments 40% grants - boulder, diorite 2.4 > 2.8 abyette 4.4 > 7.6 - abtly below 4.6, low presentage of fine sand metry - ony stoney below 6.0 to 8.0 - increase in presentage of fine sand matry below 8.0 - gretty gray clay matrix from 12.2 > 12.1 12.1 > 13.1 Bedrock Intermediate Nolcanic medium green, very fine grained, very well diveloped foliotion, abundant elloute and serieste, local studyed second	

DATE Nov. 24 19 85	HOLE NO CW-25-59 LOCATION Formerly CW-30
DATE NEW 27 19 ED	GEOLOGIST T. BUCOS DRILLER & HOUR BIT NO CRESHAL BIT FOOTAGE 36 -745.
SHIFT HOURS	MOVE TO HOLE
TO	ORILL 8.30 -7 11.15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS 11:15 -> 4.15 pull acker tack out of surano
CONTRACT HOURS	OTHER 7:00-> 7:45 to drill read 7:45 > 8:30 while to dril
	MOVE TO NEXT HOLE

New bit CB67427

DEPTH IN METHES GRAPHIC LOG INTERVAL	O DESCRIPTIVE LOG
1	0->1.3 <u>Sediments</u> (Ojilrway) Clay-gray soft smooth
2 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0	1 1.3-7143 Till (Chibougamou) - gray to gray beige, fine
4-104	sand matrix, publy clasts 6590 mafic volcanics and
6-000 6-000	sedimenta, 55% gianitie gray gritter clay matrix 3.8173.0
7-14-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	- Louis diorite 5.0-75.2 4 - gravel lense 6.3-76.5
9 40	5 - cobbly below 6.5 closes or the results and 2 25% as it is
11-00	- Loulder mafie volcarre
13- A0	9.P ← 7.F
14- AC	
16-	- intermediate volcanicionie
18-	medium grained very fine grained very well developed
19 -	faliation (tuffaccour) aboundant chierte bright

DATE <u>Mov 29</u> 19 <u>85</u>	HOLE NO CW-95-60 LOCATION Former CW-75 GEOLOGIST HOLMES DRILLER J House BIT NO. (66750) BIT FOOTAGE 216.27 MOVE TO HOLE 4:35 - 4:45	5
SHIFT HOURS	DRILL	
TOTAL HOURS	MECHANICAL DOWN TIME	_
	DRILLING PROBLEMS	_
CONTRACT HOURS	OTHER _ clear tank 5.30-6.00 , travel 600 - 7:00	
	MOVE TO NEXT HOLE	

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
3	0-10 No RETURN 10-40 SEDIMENTS (OJIB WAY) 10-26- Smooth compact, brown chy 26-40 very fine beige sund 4.0-4.3 TILL (CHBOUGHMAN) ock - Sandy, pubbly, cobby fill - Fine beige sand matrix pelible composition approximately 60% volcomics/socliments 40% grantes H.3-5.8 BEDROCK light grow to white same oridized brown along Fractures - Fine grained - slightly to malurately schistore thinky tolisted - sugary texture - trace pyrite, desseminated - oridized zone at 4.9 - META-SEDIMENT (Grayuncke) 58 EUH Don Holinos	
20-		

DATE Nov 30 19 25	HOLE NO CN-9: 61 LOCATION Former CN-77 GEOLOGIST HOLAES DRILLER THOM BIT NO CB6 7501 BIT FOOTAGE 27.4 - 33.9
SHIFT HOURS	MOVE TO HOLE 9:15 - 8 30
то	ORILL 9 30 - 9.15
TOTAL HOURS	MECHANICAL DOWN TIME _ Start conjuescen 8:00 -8:15
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER Trured 7.00 -9:00
	MOVE TO NEXT HOLE
PHIC DG HVAL FALE	DESCRIPTIVE LOG

DEPTH IN METHES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
8-1 10-1 11-1 12-1 13-1	0-0.7 ORGANICS 0.2.4.8 SEDIMENTS (OTIBWAY) 0.2.2.8 Smooth compact barge - brown clay - poor return 2.9-4.9 Fine and very fine beige Sand 4.8-5.0 TILL (CHIBONGAMAN) - Fine beige Sand matrix, oxidized pobbles composition approximately 40% volcanics/sectionally 40% volcanics/sectionally 40% grountes 5.0-6.5 BEDROCK - gray colour brown along tolictor - Fine grained - schistose, thinly tolicated a. the mica along tolication - soft to dvil - Meta - Sectionant (Grayumilia) 6.5 EOM. Don Halines	

DATE Nov. 30 19 85	HOLE NO CW-85-62 LOCATION Formuly Ca) - 73 GEOLOGIST ROUTUFF DRILLER J 4246 BIT NO CB67501 BIT FOOTAGE 33.9-43.9
DATE 2222 10 22	GEOLOGIST O ROUTUFFE DRILLER 1 4346 BIT NO CB67501 BIT FOOTAGE 33.9-429
SHIFT HOURS	MOVE TO HOLE 9:15-9:30
то	DRILL 9:30 - 10:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

0.0-0.8 NO KETURN 0.8-7.8 SEOS (05.BWAY) - grey to brown, smooth, moderately compact clay (0.8-1.0) - brown, smooth, compact clay (1.0-3.4) - fine brown to grey sand 7-00-02 00-01 (3.4-7.0)	GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
- gravel - pebbly 70/30 (7.0-7.8) - fine brown sandmatrix 7.8-79.0 Bedrock - fine grain, grey black - wak to moderate foliotion - minor calaite, pyrite - quartz vien material - Metazediments.	3 3 4 5 7 10 0 0 0 0 0 0 0 0 0 0 10 11	0.0-0.8 NO KETURN 0.8-7.8 SEDS (05.BWAY) - grey to brown, smooth, moderately compact clay (0.8-60) - brown, smooth, compact clay (1.0-3.4) - fine brown to grey sand (3.4-7.0) - gravel - pebbly 70/30 (7.0-7.5) - fine brown sand matrix 7.8-79.0 Bedrock - fine grain, grey black - wak to moderate foliation - menor calaite, pyrite. - quartz veen material.	

DATE Nov 30 19 85	GEOLOGIST HOLDES DRILLER I HOLD BIT NO CB6 7501 BIT FOOTAGE 429-52-7
SHIFT HOURS	MOVE TO HOLE 10:20 - 10:15
TO	DRILL 10:15 - 11:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METHES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
3- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7-	0-0.2 ORGANICS 0.2-6.4 SEDIMENTS (OJIBWAY) 02.1.1 - Sumooth compact berge- brown clay 1.1-5.8 Fine and very Fine bege sand 58-6.4 pubble and cobble grovel composition approximately 60% rollamiss features to 40% grantes
7 A A B A B A B A B A B A B A B A B A B	6.4-8.6 TILL (CUIBOUGATOTAU) - such pebbly till, gradatinal contact with overlying unit - Fine gray-being to budge, occasionly ochive unitrix, pebbliss and occasional coldles composition 60% volcanics / sectionants 40% granites - very oxidized at 7.0 and at 3.3
13 14 15 16 17 17 18 19 19 19 19 19 19 19	9.6-9.8 BEDROCK Ight green colour, some white notting - very fine ground - schistose, thinly totated - Interned ale/matic volume
19 1	9.3 EDH.

SH TC	HIFT TAL	HOURS TO HOURS ACT HO	-	MOVE TO HOLE		5-11:30 11:30	BIT NO	~ 7! C/367†3	Z BIT FOOTA	GE <u>O - +.6</u>	
DEPTH IN METRES	GRAPHIC	SAMPLE NO.		DESCRI	PTIVE LOG						
2 - 3 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	Δ. Δ. Δ. Δ. Δ		1.0 2.z -	- Fine beige 3.1 Tight - sandy p - Fine beige - pelable con 60% volume 40% gram 4.6 BEDR - black ca - very fi - very sc Foliafed, - some or planes - minor g rich at - very - trace - Arg. 1	(CHIBOUGA) selobly t. M ige send unit. postion app. itos	order) Prix, oxidization foliation phote- SEDIMENT					

DATE Nev 30 19 55	HOLE NO CW-95.65 LOCATION
DATE	GEOLOGIST HOLINES DRILLER THE BIT NO. 6867437 BIT FOOTAGE 4.6 -7.1
SHIFT HOURS	MOVE TO HOLE
TO	DRILL /2:30 · /.30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC	INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3		0-02 ORGANICS 0.2-0.9 SEDIMENTS (OTIBUAY) -Fine beige -ochre sand ext 0.9-2.5 BEDROCK - light green, dank green-gray when with white, pink - ved along foliation surfaces - very time grained - very schitce, thouly toliated - alteration () along toliation sontaces (pink volvery, miscorik) - minor grant & veins - Altered Intermaliste fination Volcanic 2.5 EOM. Dan Wolcanic		

DATE Nov. 30 1985	HOLE NO CW-85-66 LOCATION Formerly CW- E9 GEOLOGIST D ROUTLEFFORILLER I HOW BIT NO CB 672/32 BIT FOOTAGE 7.1-13.1
SHIFT HOURS	MOVE TO HOLE
TO	DRILL 1145 - 2115
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1	- med.gr sand 3.0-3.4.	

DATE Nov 30 19 95	GEOLOGIST HOLDES DRILLER Devete BIT NO. CO67437 BIT FOOTAGE 13.1. SV. 1
SHIFT HOURS	MOVE TO HOLE
TO	ORILL 3:00 500
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER Travel 530 - 630
	MOVE TO NEXT HOLE 500 - 5.30

DEPTH IN METRES GRAPHIC LOG INTERVAL	DESCRIPTIVE LOG	
3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	0-13.1 SEDIMENTS (OTIBURY) 0.24 Smooth compact bage - brown day 2.4.9.2 Fine beige said oxid. 2001 into layered with median sound and thin pubble layer 9.2.13.1 - pubble gravel composition 60% volcanics/sadments 40% grountes intellyered with coarse and medium beige said - gravel contains cobbbes after 12.0 metes 13.1-14.8 TILL (CHIBOUGAMA) - soundy pobbby, cobbby 1:11 gradutional contact bith overhying sadments	
18 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	155-17.0 - light anddork growing my very Fine grained massive to Islightly schooling very hand to drill sugar fasture Mata-scalingut (tuffaccours)	

17.0 EUH

Don Vlolines

5 T	OTAL	HOU TO HOU	_	MOVE TO HOLE Sov 9.30	- 10:00	<i>В67†37</i> віт	FOOTAGE	
METRES	GRAPHIC	INTERVAL	SAMPLE NO.	DESCRIPTIVE LOG				
1. 2. 3. 4. 5. 6. 7. 8. 9. 10-11-12-13-14-15-17-17-17-17-17-17-17-17-17-17-17-17-17-		miliand and my	2	- 29.6 - SEDIMENTS (OTIBWAY) 0-02 - Fine beige bown oxidized sand 0.2-2.9 beige-brown gritty compant clay, 5 mooth after 1.0 2.9-7.0 - Fine beige sand 7.0-16.0 oxidized brown coarse and with pebbles interlayonal with Fine beige sand . sand Fine gray-beige after 12.0 metres, interlayonary with pobble gravel 16.0-29.6 - coarse sand oxidia reterlayonary occasionally with their pebble gravel layers, composition 60% volcours saffined tons gravites				

TOT	FT HOURS TO TAL HOURS NTRACT HOL	MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS		
DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
21	See	28.6-30.5 BEDROCK - continuation From overlying softments - light and dark gray gre - Fine growned - slightly to very schistose - minor grantz verins beade - soft to drill - Meta-Sediment (possibly tuttaneous, Felsic volu	ien L	

DATE Dec. 198	HOLE NO COSS SOF LOCAT GEOLOGIST D. ROUTLIFFE DRILLER IS MOVE TO HOLE 10:00 - 1/1 DRILL 11:45 - 1:00 MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE # New Bit -	OII NU.	nth c867437
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
01 0.	9-0.4 No Return 4-2.0 Bedrock - fine grain - light green - weak to incolorate folio - minor calcite, pyric - moderately schiotose - Intermediate/Mafice	te	

1/12 00	HOLE NO CW-85-70 LOCATION Formerly CW-31 GEOLOGIST TOM BURNS DRILLER G. HONG BIT NO CRETY BIT FOOTAGE 30.5-58,5
DATE 1000 A3 19 33	GEOLOGIST TOM BURYS DRILLER G. HOW & BIT NO CRETY BIT FOOTAGE 30-5-58.5
SHIFT HOURS	MOVE TO HOLE 7 45 - 9.30
	DRILL 9:30 - /130
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 7-00-7:00-7:45
	MOVE TO NEXT HOLE

Page 1 1/2

DEPTH METHES GRAPHIC LOG SAMPLE NO.			0 1
	GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
0 > 0.5 1/0 Return 0.5 - 7/10 organics 1/0 > 29.1 Till (Clibougaman) - gray togray - bage, - fruit sand metrix - peloling below 3.2 to 4.8 - cooling below 4.5 - clests 60/40 - boulder - granitic 15.6-15.5 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		- gray togray-bage, - fine sand matrix - pebbly above 3.2 to 4.8 - clasts 60/40	

SHIFT HOURS TOTAL HOURS CONTRACT HOU	MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS	
	Page 2 /2	
DEPTH NETRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
21 22 23 4 5 6 7 7 28 7 7 28 7 7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- boulder - feloxic volcaric 20.5 > 20.9 Cottoly below 21.0 - clasts 75/25 29.1 Bedrack - Intermediate to Magic orleanic. - predominently dark green, punk - green above 30.0 - very fine grained throughout. - very sell developed solicit ion - definating bands of cllority of unofice and quartz. Feldspathic unotenial above 30.0 30.5 EOH	

DATE NOV 25 19 85	HOLE NO CW-85-71 LOCATION FORMERLY CW-32 GEOLOGIST DESTLIFFE DRILLER G. 140WG BIT NO CB67428 BIT FOOTAGE 0 -> 24.5
SHIFT HOURS	MOVE TO HOLE _/130 - /145 DRILL /145 - 5:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE
	* New Bit

METRES GRAPHIC LOG	SAMPLE NO.	DESCRIPTIVE LOG					
1	1	0.0 > 0.8 NO RETURN		-			
1-04	7	0.8-> 23.5 TILL (CHIBOUGAMALL)					
2- 6A	Œ	- grey to grey- beige Fine sand					
3-00	E01	matrix					
4-00	1	- cobbly clasts - 80% mafies &					
OA	#	seds.; 20% grantic			-		
00	*	, ,					
5-00	€ 02						
7- 00	<u></u>					-	
8	-03	- boulder -grantie 8.2 > 8.4					
40 -6	*	0					
10-00	04						
40	*						
40	E05						
12-	¥ 06						
13- 40	注。						
14-00	07						
15 A D	*						
16- A0	E 08						
17- A0	涯 .						
40	09						
40	Æ						
19-A	10						
20- AD	計	23.5-> 24.5 Bedrock					l
- 00	9 "	mofice Volcania					
- 05		- five grain, massive,					
- DA	3 12	- dark green - weak to moderate for - possibly pyritic	· · · ·				
1//	刻.	- weak to moderate tol	EOH.				

DATE Nov 26 19 85	HOLE NO CW-35-72 LOCATION Frankly Lot 32 GEOLOGIST D. Holmes DRILLER E. Hong. BIT NO CEO7428 BIT FOOTAGE 340 > 57.6
	GEOLOGIST D. Horney DRILLER G. H. Hung. BIT NO CEO7428 BIT FOOTAGE 240 - 57.6
SHIFT HOURS	MOVE TO HOLE 3.45 -> 9.15
то	DRILL 9.15 -> 11.30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
3 A A A A A A A A A A A A A A A A A A A	0.2 -0.6 Sediments (Ojebruay) - train compact class 0.6 > 20.2 Tell (Albertgament) Sandy, publicy till 06th Fine gray garge to gray send note Occasional criticis seed 2000 publics compacting appropriately 60% robustics diorite H1-4+ bondles diorite H1-4+ bondles diorite The sand, copyly till composition 75% volcants feed notes 25% grantes - ofter 7.5 till because registed, very publicy on the occasional adults, since matrix and imposition as above 159-160 bondler. Any like 160-20.2 till as above bondler

DATE Nov 26 19 55 SHIFT HOURS TO TOTAL HOURS CONTRACT HOURS	HOLE NO CW-55.72 LOCATION	BIT FOOTAGE
METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
31 - 13 Be Denk 3- 21.1	201 211 BEDEOCK ROCKE - balrock anglite chips and grandes of granite -22.6 BEDRUCK - dark gray green colour - fine granied - schistose - soft to drill - minor quantities - Intermediate/matic Wolcomic 5 EOH Don Molows.	

DATE N 10 26 19 35	HOLE NO CW-85-73 LOCATION Framely Lole CW-34 GEOLOGIST D. Holmes DRILLER 5. Howy BIT NO CB67423 BIT FOOTAGE 245-3290
DATE 1V AL 20 19 21	GEOLOGIST D. Holmes DRILLER 6. Howy BIT NO. CB 67428 BIT FOOTAGE 245 29.0
SHIFT HOURS	MOVE TO HOLE
TO	DRILL 8 00 > 8.45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER thank 7.00 -> 8.00
	MOVE TO NEXT HOLE

DEPTH IN METHES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.5 - 2.5 Addiments (Oziberay) - fine grained, gray, cound	
02	2.5-2.8 Tell (chibougaman) gray, fine sand matrix arthly class 50% anith and mafic volcanio, 20% granitic	
5— H	2.8-4.5 Bedrock Graphitic Angillate	
10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	grained, schistose, thinky foliated, very soft easy to drill	
11	4.5 £.0. H.	
13		
16—1		
19		

DATE Nov 36 19 85	HOLE NO CW-RE-74 LOCATION Formerly CW-81
DATE IN STATE IS	GEOLOGIST D. Holmes DRILLER & Have BIT NO CREEH 29 BIT FOOTAGE C- 10.5
SHIFT HOURS	MOVE TO HOLE
	DRILL 1:30 - 3:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

New BL

DEPTH METRES GRAPHIC LOG INTERVAL	. DESCRIPTIVE LOG	
	2.5-8.9 Sediments (Ojdrusy) 3.5-30 gray seft smooth day 3.0-4.6 very fine grained sand 4.6-5.5 selt 5.5-6.2 fine, trize sand 6.2-8.8 fine leige medium tegs 8.8-8.9 petits gravel with compessition approximately 6070 valcanic sadiments and 4090 granitic 8.9-10.5 Bedrack - light green to dark green, white fine grained - massive to slightly schistose - minor calcite - Internediate /mafic volcanic	

	HOLE NO CW-85-75 LOCATION Formerly CW-82
DATE NOV 26 19 85	GEOLOGIST D. ROUT-IFFE DRILLER G. HOWG BIT NO CB67429 BIT FOOTAGE 10.5-26.5
SHIFT HOURS	MOVE TO HOLE _2:/5 - 2: 45
TO	ORILL 2:45- 4:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

	1			T		 	
DEPTH IN METRES	GRAPHIC	SAMPLE NO.	DESCRIPTIVE LOG				
	٨٨		0.0 -> 1.0 ORBANICS				
1-	-; -	4	1.0 -> 10.0 SEDS. (0 JIBWAY)				
2 -		F 01	1.0 -> 2.5 clay layer - soft grey				
3-		E	2.5 -> 3.0 very Fine grain sand-gr	4			
	- 1	E	5.0-5.5 fine grain beige sand	7			
4-	- ',	生	5.5->8.0 Gravel - petaly,				
5-		£02	grey-beige gravel interlagered with				
6			fine grey sand, oxidized.				
,	0.0	-03	8.0 →10.0 cobby gravel.				
,	0.0	E	10.0 -> 14.5 Till (Chibangaman)				
8-		1	10.0-712.5 pebbly dasts -60% napi				
9_		<u>\</u>	& sediments, 40 % graintie				
10-		<u>清</u>	in Friegrain brown to ochre				
11-	00	E04	sand matrix,			-	
	00	Œ	12.5 → 13.0 pebbly clasts - 70/30				
12-	00	105	in a grey fine grain send				
13	00	*	matrix.				
14	Ao	Z de	13.0 -214.5 cobbly clasts-80/20				
	//	*	in a grey-beige fine grained				
15-	//	E07	wand matrix.		-		
16-	1	<u>F</u>	14.5 -> 16.0 Bedrock - Majic to				
17-		E	ditermediate volcanic rock				
18		E	- Fine grained, massive,				
		E	- moderate Soliation				
19 -		E	- grey-green				
20-	1	F	- minor calcite, quartz				

16.0 E.O.H.

DATE NEVERTERZY9 85	HOLE NO CW 95 76 LOCATION FOLIAGE 83 GEOLOGIST HOLIES DRILLER CHOWG BIT NO. CB67429 BIT FOOTAGE 26.5-34.5 MOVE TO HOLE 7.30-4.45
SHIFT HOURS	DRILL 4:45 - 5.45
TOTAL HOURS	MECHANICAL DOWN TIME
	OTHER Travel 6.00-6:15 tractor 6:15 - 7.00 pick up
CONTRACT HOURS	OTHER _ travel 6.00-6:15 tructur 6:15 · 7.00 pick up
	MOVE TO NEXT HOLE 5.45-6:00

METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
20	0-1.0 ORGANICS		
` ≣ [1.0 - 5.1 SEDIMENTS (OJIBWAY)		
2-	becomes understay conyact low setten		
3	3.6-5.1 very Fine gray sund		
4- For	5.1-6.6 TILL (CHIBOUGAMAU) - souly, pebbly till		
5-	- souly pebbly til		
6-4-02	pebble and occasional collide		
7-2///	pebble and occasional callele composition appropriately 60% volcanits sectionals		
8	40% grantes 62-66 + till mate ix fine gray-		
<u> </u>	beige sand, till very coppy		
	beige Sand, till very cobbly conjustion appropriately 80% volumes/sectionals 20% granites		
10-	2010 9		
	6.6-8.0 BEDROCK		
12-	. light and dark green, some		and the second second second
13 -	- minor chert bands (white) - minor calite reins (white)		
14-	- chatthe to moderately whistone		
15	- slightly to moderately schistore - trace desgenizated pyrite		
16-	- trace desgementes por la		
17-	8.0 EOH.	and the second s	ad to the same
18-3	Don Holmes.		-
19 -			in any second
20		and debate or	

DATE N. 1 25 19 85	HOLE NO CW- 85-77 LOCATION Family CW-84 GEOLOGIST T. BUCKS: DRILLER & House BIT NO (867429 BIT FOOTAGE 345->43.0
DATE 17 71 75 19 23	GEOLOGIST T. BUCNS DRILLER G. Haway BIT NO (867429 BIT FOOTAGE 345->43,0
SHIFT HOURS	MOVE TO HOLE 8.15 -> 8.30
TO	DRILL 8.30 -> 10.30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 7.00 > 7.45 truck 7.45 > 8.15 walk to duil
	MOVE TO NEXT HOLE

DEPTH METHES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0.5 0.5 No Return 0.5 > 3.8 Sediments (Ozibreny) clay gray soft smooth 0.5 > 1.5 silt being to gray beige 1.5 to 3.2 or gray beige 4 and being fine grained 3.2 - 3.8 3.8 > 7.6 Till (Chibougamous) gray gritly clay matrix above 4.2, gray to gray- beige sand below, pebbly closed 75 2 mafie volunics and sediments (augillate), 25% grantle - robbly below \$\tilde{5.5}\$ - gravel lense 6.4 > 6.6 - gritly gray slay matrix 7.4 > 7.6 7.4 > 8.5 Bedrock Felaie Wolconic medium to dark gray, fine to very fine grained, generally massive, local		
18-1	Senses on fragments of dark gray to block thips 2015 % calcite veining		

DATE 404 37 19 85	HOLE NO CW-85-78 LOCATION FORMERLY NEW ST. POOTAGE 43.0-465
SHIFT HOURS	MOVE TO HOLE 10:30 - 11:00 4
TO	DRILL 11:00 -> 13:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO ALCH TXEN OF EVON

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
1	0-21.0 No Ratura 1.0-2.8 Till (Chibougamau) - creatly clasts, 6590 adimos - creatly clasts, 6590 granitic and remained 3500 granitic - first granid - to describe prout - Mafric Walcanics 3.5 East	

DATE Nov 27 19 85	HOLE NO CW-85-79 LOCATION Formerly 86
DATE NOV 21 19 ES	GEOLOGIST T. BUTOS DRILLER G. HOWG BIT NO 01 17438IT FOOTAGE O-10.0
SHIFT HOURS	MOVE TO HOLE 12:00 -> 12:55
то	DRILL 12:55 → 1:40
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 1840.

New Bit

DEPTH NETHES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
2	0-> 1.0 <u>Organical</u> 1.0->60 Clacy -gray, soft, smooth, organics local interleded sand. 6.0-> 8.6 Till -gray leige, fine sand matrix -pelly claster, 65 90 sediment and volcanics 35 90 granibles 86-> 10.0 <u>Bodrock</u> -dark green to gray white -very fine granied -verns of calcula -mafre to Intermediate Volcanic		

	HOLE NO COLOES GO LOCATION Franch CE
DATE NOVE 3TAD	HOLE NO CW-55-80 LOCATION Formerly 87 GEOLOGIST T. BUTCH DRILLER G. HAVE BIT NOT BLAY BUT FOOTAGE 10.0-214.0
SHIFT HOURS	MOVE TO HOLE 1:40 -> 3:00
TO	DRILL 2: 05 -7 2: 40
TOTAL HOURS	MECHANICAL DOWN TIME 3: 10 -7 4:50 skill part Dill all
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 2:40 → 310 4:50 → 6:00.

DEPTH MEINE IN GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
1 - A - COI	- Juige to gray beige - Juige to gray beige - Juing the sand - public classes. 6090 andirects and volcanics, 4000 granities - Dight gray to dark gray thack - very five grained - quarty venning present - 20.190 disseminated prouts Mafee to Internedials Volcanic

DATE NOV JE 19 55	HOLE NO CHEST-81 LOCATION Franch, 11/2 88
DATE INCLUSE 19 PE	GEOLOGIST TRUCK DRILLER GATALO BIT NO CBATTED BIT FOOTAGE 1407720
SHIFT HOURS	MOVE TO HOLE _11:30 -712100
TO	DRILL 13:00 → 3:45
TOTAL HOURS	MECHANICAL DOWN TIME 7:45-7 11.30 some truck 2:45 74:00 menter hadely
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER Time 7:45 travel
	MOVE TO NEXT HOLE 400

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DESCRIPTIVE LOG 0-70.3 Creanical 03-73.4 Clay -gray trige somewith soft 3.4-73.3 Selt I Sand - gray trige 3.3-715.9 Tell (Chilosopman) - brigi fine sand matrix - pellity clastic composing of 6390 sodinents and volcance 3590 granutic 5.3-75.9 - gabbro Loulder. 5.9-15.7-711 ams as abar. 15.7-715.9 - gay, smooth, soft clay matrix - pellity clastic composing of 6590 sectionals and
12	voltanies 3590 granitic. 15.9-18.0 <u>Bodrock</u> Felsie Voltanie white-light green to dank your - echistose with well developed foliation. - 2-390 desseninated pyths

DATE Nov 38 19 85	HOLE NO CW-85-82 LOCATION Formerly hale 89
DATE INVINE 19 11	GEOLOGIST TRIME DRILLER & HOLD BIT NO CRETUSO BIT FOOTAGE 30 - 265
SHIFT HOURS	MOVE TO HOLE _ 4:00 -> 4:15 3
TO	DRILL 415-7445
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 4 45

GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1	0->0.2 Cuganics. O2->25 TW (Chiloupamou) gray leig sand matrix publy clasts companyed 8590 sediments and velicinics 1590 grantics 25-74.5 Bedrack Metaodiment (hyllib) gray to black very line grained very well developed felication lacally graphitic throughout - 40190 disseminated prints 4.5 EOH	

DATE NOV 38 19 85	HOLE NO CN-95-83 LOCATION Francis Vido 90 GEOLOGIST T. RUYD DRILLER G. HOLD, BIT NOT PAT 430 BIT FOOTAGE 36.5-33.5
SHIFT HOURS	MOVE TO HOLE 4:45 > 5:15 ORILL 5:15 > 5:45
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	DRILLING PROBLEMS
	MOVE TO NEXT HOLE 5:45

DEPTH INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
1	0-702 Mo Return - gray, smooth, soft 4.5->4.8 Till (Chibougaman - gray beigh fine sand matrix - pebbly cluster - to 90 sodinate and volcanies, 3590 grani 4.8->60 Bodrock Modasodines caught - gray to black - very fine grained well defined tolkation with locally graphitic throughout	His H	

DATE N 27 19 35	GEOLOGIST S.L. Hutch My DRILLER G. Houry. BIT NO. CW 57430 BIT FOOTAGE 32.5-37.0
SHIFT HOURS	MOVE TO HOLE 5/15 9.00
ro	DRILL 9 00 - 9.45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 1.00 > 7.45 truck to dill wad 7.45 > 8,15 will to dull
	MOVE TO NEXT HOLE

DEPTH IN METHES GHAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3-01	0 > 2.5 Ouganics 25 > 2.6 Iell (Chiloryaman) gray brige, fine sond matrix, pethly, clasts is 2, mafic volcanics and sediment 35 - 2, granitic (unit too thin to sample) 2.6 > 4.5 Bedook Metasediment (Argillite) light gray to block, very fine grained, very well developed foliation 1 2 % disseminated parite, local quarty viring with disseminated printe 4.5 E.O.H.		

DATE N 29 19 &	HOLE NO <u>∠W - 85-85</u> LOCATION GEOLOGIST <u>S. Hutching</u> DRILLER <u>G. I</u> MOVE TO HOLE 9.45 ⇒ 10.00	M trmily	106 CW	-92 AGE 370 >44.2
SHIFT HOURS	MIOVE TO TIOCE	7		0>1.3
to	DRILL 10, 00 - 11.00			
TOTAL HOURS	MECHANICAL DOWN TIME			
	DRILLING PROBLEMS			
CONTRACT HOURS	OTHER			
	MOVE TO NEXT HOLE		V 41 2.5	7
			* New bis	
		(lost down -	* New su	6
		(lost down	hole Jud, 1	bit, I sub)
DEPTH INTERVAL SAMPLE	•			
AM TER	DESCRIPTIVE LOG			
1 0 -	5 0.8 No Return			
1-10.8	> 5.0 Organics			
3 A F	•			
2-1 1 5.0=	>1.2 Till (Chebougamou)			
1 1 - 1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
3 1 1	gray, gretty clay mating soft, perbly class as mafic volcanies and sediments, 35% granite - beige, fine sand ma below 5.8 to 7,2	,		
431	soft achtle clast as	-07		
3/1 E	malia volumina a d	6		
5 1 1	did t 2000	-		
	realments, 35 % granele	c		
6-1 6-01	- beige, fine sand ma	trix		
10 A	below 5.8 to 7.2			
7	1			
02				
7.2	≈ 8.5 Bedrock Meta- Sedim	nt		
9-3 -	list man to Wash.			
3 F	light gray to black, of fine grained, very we developed foliation	70		
10-	fine grained, my we	ell		
. 1 E	developed foliation			
11-3	•			
123 12 8,	5 EOH.			
1 E				
13				
i E				
14-] [-]				
1 F				
15				
16-				
+				
17-				
1 E				
19 -				
20-				
1 11 1		1 1	1 1	

DATE NOVOR 19 85	HOLE NO CW-55-86. LOCATION Framerly hole 93
	GEOLOGIST SI BUT DO CRE 7431 BIT FOOTAGE 13-7 83
SHIFT HOURS	MOVE TO HOLE 11:00 -> 11:05
то	ORILL 11 25 -> 13'00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 12:00 -> 12:30.

METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	T
3 A A A A A A A A A A A A A A A A A A A	0->0.3 To Return 0.3->0.8 Organics 0.8->3.0 No Return 30->5.5 Tell (Chilougamou) - gray Leize fine sand matrix polity charts compassing of 60-90 aschinents and valuance 40-90 granitics 5.5->7.0 Bedrack Medinadhart - light gray to black - very fine gravised very well developed foliation achistose - 21-90 quarity throughout · locally graphite throughout	

DATE NOV 29 19 95	HOLE NO CW-85-87 LOCATION Francely hale 94
DATE TRANSPIRED IS	GEOLOGIST S.L. HULT LIMPRILLER S. HOW BIT NO CRED 1431 BIT FOOTAGE 8.3-7 133
SHIFT HOURS	MOVE TO HOLE 13100 -713130 -
TO	ORILL 13:30 -> 1:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1	0-> 2.5 No Return 3.5-74.2 Till (Chilangaman) - gray leig sand matrix - publy deats company of 80% redinents and contains 4. 20% grantie 4.2 > 50 Badrack Metanedinent - light gray to black - very fine grained - < 140 qty - well developed faliation 5.0 E.O.H.	

DATE NV 29 19 85	GEOLOGISTS. L. HUNDORILLER G. HUND BIT NO CELETY BIT FOOTAGE 13.3-7)7.8
DA16	GEOLOGIST S.L. BIT NO CENTER 13.2-7) + 8
SHIFT HOURS	MOVE TO HOLE 1:00 -> 1.15
TO	DRILL 1/15 -> 3/30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 2'30

GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG			
	0->0.8 Organics			
' 言言 [0.8-745 Selt/Sard (Ojibruray Se	linicuts)		
3	-gray leige with gray day, smooth, soft.			
·	4.5 → 10.0 Till (Chilougaman)			
5 · A	- gray leige fine sandmate	Ĺ		
· 1 · 4	- publy class composing of 65% sediments and volcania			
7 1 . 4	3590 granitied			
* A.	10.0 7 12.7 Stravel (Gibrury Sidement)		
a A E co	publicy matrix composing of			
10	6590 seed ments and solicinic			
1	35% granitics			
12-0.0	12.7-7130 Till (Chibergaman) - gray leige fire sand matrix			
13 704	- publicy clasts composing of			
14	80% ordinate and volcanies			
17-11-11-11-11-11-11-11-11-11-11-11-11-1	130-714.5 Betrack Metasodiment			
	- light group to dook group.			
18-3	- very fine grained			
19-	- will developed foliation	tuat		
20	- 1% desseminated pyrite			
1 4 1	- questy teening througaut	. 1	1	1
	14.5 E.O.			

SHIFT HOURS TOTAL HOURS CONTRACT HO	S MOVE TO HOLE 9:30 -> 10:00 DRILL 10:00 -> 1:30 MECHANICAL DOWN TIME DRILLING PROBLEMS	Hour BIT NOCES	No 37 432 BIT FOOTAGE! Page 1	
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG			
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Coarse grained sound coarse grained sound interlided with pethly with coarse sand mate claster composing of 6 sediments and volca 3590 grainitie. - 6.4-80- oxidinal - 11.6-> 12.0- dioritie bould	grand,		

SH TC	HIFT H	HOURS HOURS	DRILL	BIT NO	BIT FOOTAGE
METRES	GRAPHIC LOG	SAMPLE NO.	DESCRIPTIVE LOG		
1-		09	Green? 30.5 -> 23 O greater to medium to cooker cyrained sound		
3-	0.0	CATA AND SO	-38.5-29.0 granitic boulder.		
5	0.0		29.1-> 33.3 <u>Till</u> (Chlougamau)		
7-		CACATALLE SE	sound matrix, pebbly de composing of 65% sedure and volcanies and 35%		
9 9	Δ.	11111111111111111111111111111111111111	grantics		
11-	۸.		33.3-> 34.5 Bedreck (Mafic Volco) - gray to down green, very fino grained, masses		
13	Δ.	o de la company	34.5 · E.O.H.		
15		աևուսևուսևու			
17-					

DATE Dec 1 19 85	HOLE NO CW-85-90 LOCATION Formerly hade 38
DATE TACT 19 22	GEOLOGIST SL. BUKUMP DRILLER G. HOUT BIT NO CRETH 32 BIT FOOTAGE Ela 9-7107.9
SHIFT HOURS	GEOLOGIST ST. HUNDER ORILLER G. HOUT BIT NO CRETUS BIT FOOTAGE ELS -71019 MOVE TO HOLE 1:30 - 1:45 CB67433 0-7130
TO	DRILL 2:30 -> 1:45 2:30 -> 5:45
TOTAL HOURS	MECHANICAL DOWN TIME 1:45 -2:30 Lixed bydroling
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
3	Sectionents (Ojetruray) 0.8-76.6 Sand - Leige, medium grained, five grained from 65-76.6 6.6-732.2 Stravel-7 gray leige medium to coases sand matrix with public clasts composinged 6090 sectionents and volcauses 4090 granities - oxidinal from 10.0->10.5 with medium to coases sand lensess throughout.	

DATE 19	HOLE NO CW-85-9 LOCATION BIT NO BIT FOOTAGE
SHIFT HOURS	MOVE TO HOLE
to	ORILL
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

		3		
DEPTH IN METRES	SAMPLE NO.	DESCRIPTIVE LOG		
	00	Pulled rado - new link @ 31.0		
'd*		Volconie Louder 22.4-722.5		
2-6	. FOT	T.II (Chiboucaman)		
3- 1				
44	1	33.3-33.7 gray leage fine grained sand matrix with public		
5-	1 08	clasts composing of 6090 sediments and volcaines		-
6-	**	ordinate and volcanics		
7.3	便	. 40 % granties.		
87	Cd	33.7-340 Bedrock (Febric Voleanie)		
	1	- light gray to light green		
	10	- light gray to sight grues		
10-3	1	-very fino ground		
"=	達	- masure - 2 to 390 quarty 2190 serials.		
12_ ,	<u>.</u>			
13-	la l	34,0 E.O.		
14				
15	1 1			
16				
17-	E			
18				
19				
20-	E			
			1 1	1

DATE Date 2 19 85	HOLE NO CW-85-91 LOCATION Formerly hale 39 GEOLOGIST S.L. WILD HUMPPRILLER G. Hour BIT NOCELT 433 BIT FOOTAGE 13.0-382 MOVE TO HOLE 9:30 -> 9:45
SHIFT HOURS	MOVE TO HOLE
TO	ORILL 9:45 -> 11:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE train 7:00-78:15 8:15-7930 wilk inter drill

Page 1 of 2

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
	O-71.0 Organics 10-730.1 Sectiments (Ojdrury) Clay 71.0-8.0-gray, smooth, seft Sand -780-710.1 - luge, fine to medium cand Dravel 7101-711.5 - medium to coars grained sand matrix, interleded fine sand, pethly claste composing of 60% sediments and volcanics 40% grantic beds composing of 60% sectiments and volcanics 40% granitic Linand -717.0-719.3 - (sams as section) 10.1-711.5 Sand -719.3-700.1 - gray leige, fine grained sand	

SH TC	TE	s s	MOVE TO HOLE DRILL MECHANICAL DE DRILLING PROB	OWN TIME LEMS Page 2 of CO	- E	BIT NO.	BIT FO	OTAGE	
DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE	j.	DESCRI	PTIVE LOG					
1	A A A	Эn	- gu percent through clasts sedimen grand - galbre - 35.2 - dan - very - very	TILL? (Chilous ay to gray ten form of fire of fire grained ten form of factors of factor	ege, Low and matrix pablity 1 6090 Low 4090 4-721.5				

DATE 8 20 2 19 85	HOLE NO CW- 85-92 LOCATION Transly CW-40 GEOLOGIST T. Brund DRILLER & Hange BIT NO CB67433 BIT FOOTAGE 55:2-> 73.7 MOVE TO HOLE 11.00 > 11.15
DATE 19 21	GEOLOGIST I. Bruns DRILLER & Hong BIT NO CB67733 BIT FOOTAGE 557.2 - 73.7
SHIFT HOURS	MOVE TO HOLE 11. 150 37 11. 15
то	ORILL 11. 15 -> 12.00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
12 13 02 02 15 A 02 16 A 03 17	1.0 > 14.1 Sedimente (Ojibury) Clay brige, guith above 3:5 (Interbedded clay and sand) - brige, smooth, soft below 2.5, gray below \$\overline{1}3.5 - silt below \$\overline{1}4.5 Sand brige, very fine grained from 5.6 \$\overline{1}7.0 - fine grained below 7.0, botal pebbly beds - boulder, grante 12, 4 > 13.0 - lighly spiridized, fine gray-brige, fine sand matrix, pebbly, slast 65% mafee valeances and sodiments, 35% grantie - low percentage of fine sand matrix below 15.8 gravel - like boally - boulder, mafic volcanic 10, 4 > 17.1 17.1 > 1815 Bedrock Felsic Volcanic back gray, very fine grain very well developed foliation (tuffaccous)	clastic	

	The state of the s
DATE DOCA 19 85 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO CW-85-93 LOCATION Formerly, hole 41 GEOLOGIST S.L. HYLLING DRILLER G. Hourg BIT NO CB67433 BIT FOOTAGE 33.7-71-71 MOVE TO HOLE 13:00 -> 13:30 DRILL 13:30 -> 4:00 MECHANICAL DOWN TIME
(a) (b) (b) (c) (c	page 1stz
METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG

DEPTH METHES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
1:::	0-> 0.2 No Roture	
2	0.2-> 5.6 Sodimente (Oylburay)	
3	Sand -02-25 - gray lege coarse grained, local pebbly leds.	
5	<u> Nracel</u> - 2.5-75.6 - coarse sand matrice, public clasto company	
6-Δ 1-Δ 7-Δ	of 6090 sedinerts and voledies 4090 grantic	
9 . A	5.6-21.6 <u>Till</u> (Chilougamau) -gray leige, fine sand natrui with publy closts composing	
10	of 60% sidericals and volunies 40% granities	
12 A	175-0.7 seebled situary -	
14 - 1 L Ob	- beign fine sand matrix from 8.0 to 10.3.	
15 A E 07	- gray leige telow 10.3 with publicly clasts compound of	
17- A - E 08	5590 sediments and collamics 4590 geanities	
18 A E CA 19 A A A A A A A A A A A A A A A A A A	- low percentage of fine sand matrix, showy till 15-16.5	
1 - VL 10	- Islaw F. F. to 21.6, clasts compared of 9090 po	l

1090 grantic

DATE19	HOLE NO LOCATION
DATE19	GEOLOGIST BIT NO BIT FOOTAGE
SHIFT HOURS	MOVE TO HOLE
TO	DRILL
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

Page 2 of CW-85-83.

A TU (Chitagana)	DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
- disrute houlder 213-20.6 Missimoline Sectionists 21.6-22.5 Clay thingay monthly compact compact of fine sand mature, sobbly death compacing of 75% sediments and whenever 25% granitie. - general hadder 226-23.0 23.0-224.0 Bedick (Erlan Voltanic) - light gazy to granit - way fine grained - foliation well developed 24.0 ECH	Δ io 1 - Δ io 2 -	Marinatric Sectiments 31.6-23.5 Clay- Ishu gray, smooth) compact 30.5-23.0 Till (lawer) - gray leigh, law percentage of fine saind mature, coolobly death comparing of 7590 sectiments and volcanico 25% granitic. - ganitei ladder 226-23.0 33.0-224.0 Bedrock (Felore Volcanie) (tuffaceurs) - light gray to granit - very fine grained - foliation well developed

DATE	GEOLOGIST SLEW DRILLER G. Hour BIT NO. CRETTAIL FOOTAGE 2187 44.3
SHIFT HOURS	MOVE TO HOLE
то	DRILL _ 4:00 -7 5:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 8:00 -> 4:00-Gol GT and to largery mod londed with Just In the
	MOVE TO NEXT HOLE acker Started up.

0-7 0.8 <u>Creanics</u> 1 A: 0-7 0.8 <u>Creanics</u> 0.6-7 3.5 <u>Tell</u> (Chibougamau) - gray beige fine sand matrix with pebbly charts comparing	
ant petroly class competing of 70% sediments and volcanus 30% granitics Sediments (Ogibriay) 35735 Clay - 3.5-730 Leize, smooth, compet 30-735 lexy, smooth, soft 100-735 lexy, smooth, sond with 100-735 lexy, smooth, sond 100-735 lexy, smooth, sond	

granitics
- very hour percentage of fine sands; stoney tell 13.4-715.3
- granitic Loudder 14.5-714.8
15.3-16.5 <u>Bodrock</u> Felsic Volcanicleistic (Sidenost?)
- gray to gran, very fine grained
- very west developed feliation

DATE Da. 4 19 35	HOLE NO CW-85-95 LOCATION It movely CW-43 GEOLOGIST S.L. Hutching Briller G. Hourg BIT NO CB67431 BIT FOOTAGE 44.3 > 623
DATE DW. H 19 25	GEOLOGIST S.L. Hutching DRILLER G. How BIT NO CB67431 BIT FOOTAGE 44.3 > 623
SHIFT HOURS	MOVE TO HOLE \$.30 → 9.00
TO	DRILL 9.00 > 9.45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 7.00 -> 7.45 to dull road 7.45 + 8,30 to dill
	MOVE TO NEXT HOLE

DEPTH IN GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
	0 > 0.4 No Return		
' =====	.4 > 15.5 Sedimente (Ozibway)		
2-	May 0.4 > 3.0		
3	very soft below 2.5		
43:::	Sand 3,0 => 13.0		
5	beige, fine to medium		
6-	grained, local pebbly.	beds	
,3:::	- coarse sand below q.s	s-	
01	Gravel 13.0 = 14.5		
	medium to warse rand	,	
3:::	matrix, pebbly clasto	200	
10-1	sediment 40% granities		
"]:::	- highly olidized at 13	5.2	
12-	Sand 14.5-3 15.5		
13	gray beige, fine to med	ceem	
14-002/	5.5 -> 16.5 Till (Chibougama	u)	
15-	gray- beige, fine sand matrix, pebby, class		
16- 03	matry, pebby, class	8	
7-	sedimento 20% granitu	,	
04	16.5-> 18.0 Redrock Meta. Sedina	at	
1 [(Graphitic Argill		
19	dark gray to black, or fine grained, very ever developed foliation	T	
20-	developed foliation		

18.0 E.O. H.

DATE Pec 4 4 19 85	HOLE NO CW-85-96 LOCATION Formula CW-44 GEOLOGIST S. L. Hutchingsoriller & Hong BIT NO CB67434 BIT FOOTAGE 0 = 23.5
SHIFT HOURS	MOVE TO HOLE 9. 45 -> 10.00
то	DAILL 10:00 - 11:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
1	0-> 0.9 No Return 0.9 > 18.0 Sediments (Ozibway) alog 0.9 > 1.3 - beige, soft, amosts Asand / silt 4.3 > 18.0 - beige, very fine grained and fine grained and below = 7.2. 18.0 > 22.3 <u>Till</u> (Chibougaman) - beige, fine grained and matrix, pelly clasts 60 % mafic volcanics and sediments 40% grained - boulder, gabbio, 19.4 > 20.1 22.3 > 23.5 <u>Bediock</u> Mela-sediment (Chaplitic eigillite) - dark gray to black, very fine grained, very fine grained, very throughout disseminated graphete throughout		

DATE Dec 4 1985	GEOLOGIST S.L. Hutchingsoniller G. Howg. BIT NO CBG7434 BIT FOOTAGE 23.5-> 42.1
	GEOLOGIST S.L. Hutchings DRILLER G. Howy. BIT NO. CISC 3434 BIT FOOTAGE 23.5-342.1
SHIFT HOURS	MOVE TO HOLE 11.30 ⇒ 12.00 V
TO	ORILL 12, 10 > 1,30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

page 1 of z

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1	0.9 > 1.3 Degenics 1.3 > 36.7 Sediment (Ojeburay) Sandfill 1.3 > 9.5 gray, very fine grained and interbedded soft, smooth, gray elay bed at 7.0 Clay 9.5 > 13.6 gray, soft, smooth Sandfilt 13.6 = 21.0 gray, rey fine grained sand - pebbly bed at 20.0	

SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO CW. 85.47 LOCATION GEOLOGIST DRILLER MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER			E
-	MOVE TO NEXT HOLE	,	page 2 of	2
DEPTH METRES GHAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG			
21 02	Jand 21.0 = 36.7 gray, fire grained medium to conce grained below 22.1 exper-poly added \$28.5 = sight gray to grain, very fire grained, poor to moderate foliation 8.5 E.C. H.			

TOTAL HOURS CONTRACT HOURS	DRILL 1.45 > 4.50 MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE	/» «	rge 1st
GHAPHIC LOG LOG INTERTAL SAMPLE	DESCRIPTIVE LÖG		
12 20 20 20 20 20 20 20 20 20 20 20 20 20	And I dilt 2.0 -> 19.5 gray - beige, very fine grain band, interbedded with gray : soft, smooth clay bede above 2.5 Clay 19.5 -> 26.4 gray, soft, smooth.		

SH	ATE DE		MOVE TO HOLE	5-43 LOCATION	BIT NO		OOTAGE	
TOTAL HOURS			MECHANICAL DOWN DRILLING PROBLEMS					
C	ONTRAC	T HOUR	S OTHER					
_	•		MOVE TO NEXT HOLE			page 2	of 3	
DEPTH IN METRES	GRAPHIC LOG INTERVAL	SAMPLE NO.	DESCRIPTIVE	LOG	1			
			Sand / Silt	26.4 -> 37.3				
21 - 12 -			gray, very	fine grained aand by added at 36.0				
23 -								
25-			•					
26 -	-::							
28-								
3 0-	-:-							
31_								
33- 34-			dand 37.3					
35-			to coarse of	grained, medium	*			
36- 37-								
38- 39-		01						
b o-		144						

DATE Dec 4 19 85 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO CW-35-98 LOCATION		
DEPTH METHES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
47.3 44 45 46 47 48 49 49 50 51 52 53 54 55 56 57 58 59 60	S 48.3 Bedrock of elsic OV. light gray to green, fine grained poor to moderate foliation. 48.3 E.O. H. due to a plugging with same		

DATE 0:: 5 19 25	HOLE NO CW 25-99 LOCATION France had 47
DATE 19 (1)	GEOLOGIST 5. L. HUKKIMPORILLER G. HOLO BIT NO CRETURY BIT FOOTAGE 43.1-747.
SHIFT HOURS	MOVE TO HOLE
TO	ORILL 10:00 -> 11.30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER _ time 7:00-7 10'00
	MOVE TO NEXT HOLE 11:30 -7 (2:00)

Mui Sub

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
3	0-> 0.4 <u>No Return</u> 0.4 -> 2.6 <u>Sediments</u> (Ojihruruj) Clay - 0.4 -> 2.6 - Leige, smooth gruty with fire sand matrix 2.6 -> 3.7 <u>Till</u> (Chilargaman) - gray leige sand matrix with pethly claste company of 7590 actiments and volcanics 2590 grantic 3.7 -> 5.0 <u>Bedrock</u> (Felsic Volcandatic) Mode admost? - dark gray to gran - very fire granics massive - 4190 disseminated prints - exidet throughout - quarty verning	

DATE Decembra / 19 35	HOLE NO CW-35-100 LOCATION 75 metres east of formerly 96 GEOLOGIST HOLTES DRILLER H. Darette BIT NO BOTSOT BIT FOOTAGE 20 - 4.5
SHIFT HOURS	MOVE TO HOLE 1:00 - 1:30 DRILL 1:30 - 2:00
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

0-0.8 NO RETURY 08-25 BEDROCK -light and dark green, white wolling -very Fine grained -very to moderately schistose, thinky Folished minor calcite and greate vers - Intermediate/matic volume 2.5 EDH. Don Holins 10- 11- 12- 13- 14- 15- 16- 16- 16- 17- 18- 18- 18- 18- 18- 18- 18	DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
	1 -	0.9-2.5 BEDROCK - light and dark gream, white . - very fine grained - very to moderately schisto: thinky to listed - minor calcite and quate - Intermediate/matic volu	vens	

DATE Dec / 19 85	GEOLOGIST D. Holmes DRILLER H. CULETT BIT NO CB67504 BIT FOOTAGE 45-Z1-3
SHIFT HOURS	MOVE TO HOLE 2:00 - 3:45 ORILL 3:45 - 6:00
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	OTHER 6/30 - 700 TANA-
	MOVE TO NEXT HOLE

_ 6 0 - 11
DEPTH METHES GRAPHIC GRAPHIC SAMPLE SAMPLE NO. C.
0.0 - 2.0 SEOS 0.1 - 0.2 petble gravel 0.2 - 2.0 brown - beige, gritty, compact clay (oxidyed) 2.0 - 15.4 Till (chibongamau) - gradational contact with overlying clay 2.0 - 7.7 - sanly, pebbly, cotobly till, fine grain, clast comp. 760/40, below 7.0 v. coboly. 7.7 - 8.0 boulder - Int/mfix volc. 8.0 > 15.4 + till as above. - clast comp. v 80/20 10.04 10.05 10.06 10.06 10.07 10.08 10.09 10.09 10.00

DATE December 219 85	HOLE NO CW-85-WZ LOCATION Formuly 124 GEOLOGIST HOLMES DRILLER H DIRETEBIT NO BESTER BIT FOOTAGE ZI 5 - Z54
DATE DECEMBER 19 02	GEOLOGIST HOLMES DRILLER H DIRETTE BIT NO CB67514 BIT FOOTAGE 215 - 254
SHIFT HOURS	MOVE TO HOLE 3.00 -> 8.15
TO	DRILL 9.00 > 9.30
TOTAL HOURS	MECHANICAL DOWN TIME 8.15-> 9.00 feel gump
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES	GRAPHIC	SAMPLE NO.	DESCRIPTIVE LOG		
2		Det de la constant de	1.3-4.0 BEDROCK -black with orange iron stains along Fracture surfaces sock very fine to medium grained - very oxidized 18-2.4 and in thin zones 2.4-3.5 - thin loyers of phogopite after 3.3 in - unior great weins - very soft to dvill - META-SEDIMENT (Aegillits) H.O E.OH. Do Helines		
15 16 17 19 19 19 20		hadaadaadaadaadaadaadaadaadaadaad	•		1

DATE Dec 2 19 85	GEOLOGIST D. Holmes DRILLER H. Durch BIT NO CR (50m west of)
DATE TIES TO A	GEOLOGIST D. Holmes DRILLER H. Dured BIT NO CR 67504 BIT FOOTAGE 25.5-37.5
SHIFT HOURS	MOVE TO HOLE $9.30 \Rightarrow 1/.00$
то	DRILL 11. 00 > 12.00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
	2>18 Sediment (Ojibway) clay brown-beige		And the second s
3-0.	compact smooth 8 >> 10.5 Till (Chibougamoue) beige to gray - beige, fine sand matter pebbly,		
6- 0 A - 03 7- A - 04	clasty 70% matic volcanics and sediments 30% grante. - local clay lumps 1.8-2.4		and the second s
9- A -05	and mating 5,3 -> 6.3 clay layer at 5.6		Assachtsing-original company or an area or an area
12 3 3 EC	- 6.3 => 10.5 same as above 5.3 but exhibly - boulder, majic volcaric 8.6 -> 9.3 5.5 - 12.0 Redwork Meta- Sectionent		Modeline bijekamiczne drzap-
15-	dock gray to black to gree fine to medium grained		e de la composição de Las face de combasses de la combassidada de la c
18—	sugary texture poor to moderate foliation, 41% calcite viening, 20,1% disseminated syste		- Bioing Friedlighthad (1964; Phinlis) i mann eo spoaff a so
19	12,0 E. O. H.	100	Miller Coleman School

DATE Dec 2 1985	HOLE NO CW85-104 LOCATION Formerly CW-185 GEOLOGIST D. ROUT LIFFE DRILLER LE DURETTE BIT NO CESTSOY BIT FOOTAGE 37.5-41.0
DATE SEE 19 22	GEOLOGIST D. CONTUEFFE DRILLER L. DURETTE BIT NO. CBETSOY BIT FOOTAGE 37.5-41.0
SHIFT HOURS	MOVE TO HOLE
то	ORILL 12:15 - 12:45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
88 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 19 10 11 12 13 14 15 16 17 18 19 19 10 10 11 12 13 14 15 16 17 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	0.0 - 1.6 No Return -> Boulders 1.6 -> 3.5 Bedrock - very fine grain - very schitose - light grey to black - well foliated. - appears banded / layered dank black, light grey. - Fe-staining brown yellow to reddish. - graphite-rich in zones - minor pyrite -> Metasidiment (Argillite) 3.5 - E.O.H.	

1 7 95	HOLE NO CW-85-105 LOCATION GW-184
DATE Dec 2 19 85	GEOLOGIST D. KOUTLIFFE DRILLER H. DUKETTE BIT NO CB67504 BIT FOOTAGE 41.0 - 46.5
SHIFT HOURS	MOVE TO HOLE 12:25 - 1:00
TG	DRILL 100 - 1:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
3 4 4 7 7 7 8 8 7 9 7 7 7 8 8 7 8 7 9 7 7 8 8 7 8 7	0.0-0:7 No Return 0.7-2.5 Clay-gray, gritty, compact 2.5-4.2 Till-fine grain beige grey sand matrix; petbly; 80% matrix; petbly; - occasional cobbles. 4.2-5.5 Bedrock - fine grain, light grey. - brown staining, thin oxidyed Zae, - weak to moderation foli- ation; - moderately schistore below 5.0. - minor calcite -> preta sedimint (Greywacke) EOH - 5.5 m.	

DATE Decomber 2 19 85	HOLE NO CW-B5-106 LOCATION tomaly CW-183 GEOLOGIST HOLDES DRILLER & Devente BIT NO CB67507 BIT FOOTAGE 46.5.530
SHIFT HOURS	MOVE TO HOLE 1:30 -/:45 DRILL 1:45 - 2:30
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH WETHES SAMPLE TO DESCRIPTION OF THE SAMPLE TO DEPTH OF THE SAMPLE TO DESCRIPTION OF THE SAMPLE TO DESCRI	
0-0.8 No RETNEN 0.9.3.3 SEDIMENTS (OTIBWAY) - SOFT, Smooth brown - barge they becomes unclearly compact down see tion 3.3-5.0 TILL (CHIBOUGAMAN) 5.4 Samely, pebbly till, Fire being sand matrix, pebble and cobble composition approximately 70% volumes painings 4+.47 - boulder - Graymacke 47-50 - till becomes very cubble matrix poor, fine gray sand, cobble composition approximately 95% sectionals 5% gamiles 5.0-6.5 BEDROCK Iight and dark gray green, some white mottling - Fine grained - slight to moderate schistosily sugary texture - sugary texture - slight for moderate schistosily - sugary texture - slight from staining - META SEDIMENT (GRAYMAN) 18- 18- 18- 18- 18- 18- 18- 18	

DATE Dic 2 19 35	HOLE NO CW-85-107 LOCATION Famuly CW-182 GEOLOGIST D. Holmes DRILLER H. Duret BIT 40 567503 BIT FOOTAGE 0 >6.0
	MOVE TO HOLE 2.30 > 2.45
SHIFT HOURS	
то	DRILL 2.45 > 3.30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

NEW BIT

DEPTH METHES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1	0 > 2:5 Sedements (Ojibury) clay brown, beige, smooth moderately compact clay	
3 · A · OI	25 => 44 Till (Chibougaman) beige, fine sand matry, pebbly, clasto 60% mafic	
5 03 ₉	FORDER Volcanics and sediments 40% granitic - gray, fine sond matrix below 4.0, cobby, clast	
8	and sedimento 202 granites	
10— 11— 12— 13— 14— 15— 16— 17— 18— 19— 20—	4.4-56.0 Redwork om eta- Sediment (Grayworks) gray to dark gray, locally	
13 14 14 14 14 14 14 14	light green, iron staining very fine grained, fine well developed foliation	
15	6.0 E.OH	
18-		
20-		

DATE Dec 2 19 55	HOLE NO CW- 85-108 LOCATION Family 181 GEOLOGIST D. Holmes DRILLER H. Ducette BIT NO CB67503 BIT FOOTAGE 600 >105
SHIFT HOURS	MOVE TO HOLE 3.30 > 3.45
TO	DRILL 3.45-> 4.15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG	SAMPLE NO.	DESCRIPTIVE LOG
1	o a	05 -> 2.5 Sediment (Ozibury) band coarse grained 0.5 -> 0.6. Sand Chay brown compact and with chay, brigg below 1.5, port setum boulder, grante 0.2> 2.5 2.5 -> 3.1 Till (Chiborgamon) beize, fine sond matrix pebbly, closts 70% mefic volunies and sediment 30% graniti 3.1 -> 4.5 Bedock Meta-ardinent (Sraywack) light to dark gray, scali green, fine grained, then poon to moderate frictes 1.1% celeit veining 4.5 E. O. H.

DATE Dec 2 1985	HOLE NO CW- 85-109 LOCATION H procly CW- 180 GEOLOGIST D. Holmes DRILLER H. ALLEST BIT NO CB67503 BIT FOOTAGE 10.5">12.77
	MOVE TO HOLE 4.15 > 5.00
SHIFT HOURS	
TO	DRILL 5, 50 - 5, 30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 6.00 > 6.30 temberock 6.30 -> 7.45 truck
	MOVE TO NEXT HOLE 5.30 -> 6.00

METHES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
0 → 0.7 1 — Olgroroux 2 — O.7 → 2. d.	Addiments (O jibury) clay beige - brown, slightly gutty clay Bedrock Meta-Sectional (Graywecke) doork gray to green, fine grained, fine well developed foliation 21% calcite veins parallel to foliation, very easy to drill E.O. H.	

SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO CW-95-110 LOCATION FOR GEOLOGIST HOLNES DRILLER H D-RESTERS MOVE TO HOLE 9.30-1:30 (rounds important to the second time DRILLING PROBLEMS Pull rounds 2:30-0THER Travel 7:00-8:00 pick-pomove TO NEXT HOLE travel 5:00-6:30 NEW BIT NEW SUB LOST Z PODS	IT NO. <u>CB67503</u> BIT FOOTAGE 12.7 - 25.7 CB67502 BIT FOOTAGE 17.7 - 25.7 CB67502 BIT FOOTAGE 17.7 - 25.7 CB67502 BIT FOOTAGE 17.7 CB67502 BIT FOOTAG
METRES GRAPHIO INFERVAL SAMBLE	DESCRIPTIVE LOG	
200 200 200 200 200 200 200 200 200 200	20 SEDIMENTS (OJBULY) 0-0.3 bright orange - ochre moderates compact smooth clay 03.2.0 - colbbes and smell bouldes -10 return -17.7 TILL (CHIROLAMAN) - sourch, very peloby till 20-4.1 fine beige sand matrix (ochic-beige colour 20-20) peloble composition approximately 60% volcanizs/sediments 40% grantes 4.1128 fine beige sand matrix 1.11 becomes colobby composition 75% volcanizs/sediments 25% grantes - at 12.8 few small gray, grilly clay lamps with till - at 13.0 - no return - pull rods; 10st 2-ods, 5mb and bit - redit hole limeter moth -13.0-15.5 till as above - 155-177 - fine gray small matrix clust composition goto volcanizationals 20% grantes -19.5 BEDROCK - durk green - fine grained - massive to slightly selvistion - time pyrite - miner grant & veins - hard to drill - Tuternediate/matrix/altrountic volcanis 5 EOH Don Molines	wit a second sec

DATE December 419 85	GEOLOGIST HOLE OF DILLER 4. DARFITEBIT NO (367302 BIT FOOTAGE 195-288
SHIFT HOURS	MOVE TO HOLE 8:15-8.45 DRILL 8:45-11.00
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	OTHER _ travel 700 800 Pickup 8.00 -8.15 timber jack

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1	2.5.7.0 SEDIMENTS (OJIBWAY) very soft, smooth gray clay 7.0-7.3 TILL (CHIBDUG ANAU) very thin f.ll horizon peobly, matrix-poor Fine gray sand matrix, clast composition approximately 858 Wolcomics/sediments 15 is gruntes 7.3-85 BEDROCK The to medium grained unaissive to slightly schistose very hard to drill Intermed elephratiz/ultramatic volum 8.5 E.O.H. Don Holines	

DATE December 4 19 05	HOLE NO CW-65-112 LOCATION Tormerly CW-132
0.057	GEOLOGIST HOLMES DRILLER H. DARETTEBIT NO CRE7502 BIT FOOTAGE ZRO . 34.0
SHIFT HOURS	MOVE TO HOLE // OH Z OU
TO	DRILL 12:00 1:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
3 3 4 4 5 A A A A A A A A A A A A A A A A A	0-0.2 ORGANICS 0.2-4.8 SEDIMENTS (OJIBNAY) 0.2-0.4 fine beige Sound 0.4-4.8 SST, smooth gray chy 4.8-9.0 TILL (CHIBNIGHMAN) - Sundy, pobbly till - Fine gray Sund making pobble composition approximates 60% volcans /sediments 40% granites - occasional cobbles after 7.2 90-9.5 SEDIMENTS (Missimula)	+	

DATE Dec. 4/5 19 35	HOLE NO CW-85-113 LOCATION Formerly CW-131
	GEOLOGIST Holmes BUTTO DRILLER H. DUTET BIT NO CES 67505 BIT FOOTAGE D > 16.0
SHIFT HOURS	MOVE TO HOLE 2.45 -> 3.00
то	DRILL \$ 00 > 3.30 /5 1.15 -> 3.15
TOTAL HOURS	MECHANICAL DOWN TIME 1.15 \$ 2.45 ful filter, 3 30 > 900 insectors
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 400 > 4,30 to main wad 4.30 > 5,30 to Chapais 15 23,30 > 4.30
	MOVE TO NEXT HOLE 3.15 -> 3.30

NEW BIT

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1 2 3 4 5 6 1 A O A O A O A O A O A O A O A O A O A	0=0.2 Organics 0.2=5.8 Ledimente (Oziburay) slay dark gray, modustily compact, smooth, soft selow 3.3 5.8=14.8 Iell (Shiborgaman) gray, fire sand matrix, pebbly, clast 60% matrix velcanics and sedimente 40% granitic - coffly telow = 11.0 - gray gritty clay matrix from 11.5=> 12.0 - boulder, gabbio 12.8 > 13.1 14.8=16.0 Bedweek Mafie Volcanic dark green, fine grained massive	
20-		

DATE 12c. 6 7 19 25	HOLE NO CW- 85-114 LOCATION Strongly CW-193 GEOLOGIST J. BY FAS DRILLER H. DICEL BIT NO CBG 2505 BIT FOOTAGE 16.0 > 220
DATE 1146. E. 19	
SHIFT HOURS	MOVE TO HOLE SUT > 3,45
TO	DRILL 8,45 -> 10,15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 7.00 > 8,00 travel
	MOVE TO NEXT HOLE

		-	
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
3 . A . O . O . O . O . O . O . O . O . O	0.5 > 2.4 Section 0.5 > 2.4 Statuments (Ogibrury) obey beige, soft, smooth 2.4> 9.7 Till (Chibrugamau) matrix, pebby clost 40% mafic volcanic and Audinants 40% granitic - certify below in 17.0 - boulder mafic volcanic 5.0 > 8.2. 9.7> 11.0 Bedrock Felsic Wolcanic(?) (Meta-aedimit) light gray, generally fine grained locally medium, very silicous, poorly diveloped pliation		
20-			

C	OVERBURDEN DRILLING MANAG REVERSE CIRCULATION DRI		D	
SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO C.W-85-115 LOCATION GEOLOGIST T. Burney DRILLER # Burney DRILLER # Burney DRILL 10.30 >> 12.15. MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE		W - 194 202 BIT FOOTAGE 06	2? → 28.0 0 → 14.0
METHES GRAPHIC LOG INTERVAL	DESCRIPTIVE LOG			
10 D	O No Return 13.2 Till (Chibougamoue) gray - brigs, fine sand matrix; cobbly; clast 60% mafic volcanics and redime 40% granito - stoney (low percentage of fine sand matrix) from 4.2 = 4.8 - high percentage of fine sand matrix 7.6 > 10.6 - medium to crasse san 10.6 > 12.2 - fine grained brige so 12.2 > 12.5 - 14.0 Bedrock Meta-sediment (argillite) dark gray to black, we fine grained, recy well developed foliation	t d		

TO BE DROCK

14.0 EOH

DATE Dec 6 19 35	HOLE NO CIW-85-116 LOCATION Franche CW-195 GEOLOGIST T. BUCKS DRILLER H. DAVET BIT NO CB 67506 BIT FOOTAGE 140 = 440
DATE 19 31	GEOLOGIST T. BUCUS DRILLER H. MARET BIT NO CB 67506 BIT FOOTAGE 140 = 44.0
SHIFT HOURS	MOVE TO HOLE \$ 15 ≥ 13.30
TO	ORILL 12. 30 > 4.00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 4:45 > 5.45 Travel
	MOVE TO NEXT HOLE 4. 80 > 4.45

page 1 of 2

DEPTH METRES GRAPHIC LOG LOG NO.	E LOG	
beige to being	(Ojibway) iz, uft, smooth,	

DATE Dec. 6 19 35 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO CW-SC-III, LOCATI GEOLOGIST DRILLER MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER	BII NO.	BIT FOOTAGE
	MOVE TO NEXT HOLE		page 2 of 2
GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		,
22 - A - 12 13 - A - 13 25 - A - 14 26 - A - 15 27 - A - 15 28 - A - 16 28	- local gitty gray clays matrix below \$\pi 19.5 - cobbly clasts 75.72 me notcomics and sediments grayite below \$2.0 >30.0 Bedood Meta-Sedim dock gray to black fine granned, very se developed foliation, s graphitic	mate	

DATE 2 7 19 25	HOLE NO CHEST-117 LOCATION Frankly 112-139 GEOLOGIST TO BUCKS DRILLER ST HELY BIT NO 536750 BIT FOOTAGE 0-150
SHIFT HOURS	MOVE TO HOLE
ro	DRILL \$.00 -> 10.15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 1.00 -> 8.00
	MOVE TO NEXT HOLE

NEW BIT

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
5 A A O O O O O O O O O O O O O O O O O	0.6 = 0.8 Road thavel 0.6 = 0.8 Road thavel 0.8 = 1.2 Sedionent (Ogibera) clay beige soft smooth 1.2 = 13.6 Tell (Chibougaman) gray-beige, fine send mete cobbly clasto 60 % mate volcanics and sediment 40% granitio - brulder, matic volcanic 27 = 3.4 - very stoney below = 12. 13.6 = 15.0 Bedrock Matic Wolcanic dock green, fine to media grained, massive	
13 - A - O7 - O8	15.0 E.O.H.	

+1	
DATE Dec 7 1985	HOLE NO 2W-85-118 LOCATION Ut ormerly CW-138
DATE 19 112	GEBLOGES THE PROTECT OF THE PROTECT
SHIFT HOURS	MOVE TO HOLE 10.15 -> 10,30
to	DRILL 10.30 -> 11.45, 12.15 -> 1.00, 1.30 > 2.15
TOTAL HOURS	MECHANICAL DOWN TIME 11.45 > 12,15 water surject
	DRILLING PROBLEMS 1.00 > 1.30 wait for water
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL	DESCRIPTIVE LOG		
	20 > 10.6 Tell (Shibougamau) gray tring, fine sand matrix pebbly above 3,5 estily below clasts 60% matrix granitic 02 10.6 > 12.0 Bedwork Mafie Wolcanic back green, fine to medical prints, generally massive 10.11 2 disseminated pyrite 12.0 E.D.H. 3502016	J	

DATE Dec 7 1985	HOLE NO CW-85-119 LOCATION OF marke CW-140 GEOLOGIST T. BULNS DRILLER H. DULLE BIT NO CB67508 BIT FOOTAGE C >5.5
DATE 7/42 / 19 23	GEOLOGIST J. BULNS DRILLER # Durte BIT NO CBG7508 BIT FOOTAGE 0 >5.5
SHIFT HOURS	MOVE TO HOLE 2.15 → 2.45
	DRILL 2.45 > 4.15 , 4.45 > 1.15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS 415 > 4.45 wait for water
CONTRACT HOURS	OTHER 6.15 > 6.30 \$ Truck 6.30 > 7:15 & Chicago
-	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
5 - E	0.5 = 23 Sidimenta (Ojibury) clay beige soft smorth 2.3 = 3.2 Iill (Chibougaman) gray-beige, fine sand matrix cobbly clast 60% make valeabic and sediments 40% granita 3.2 = 5.5 Bedrock Gabbro medium to dark green, fine to medium grained, massive out by white to pink- white quarty-feldspathic vein material, to 0.5% disseminated pyrite associated with veins
15-16-17-18-18-18-18-18-18-18-18-18-18-18-18-18-	5.5 EOH

DATE Dec 5 19 85	HOLE NO CW 25-130 LOCATION Formerly hate 48 GEOLOGIST SLIMITHING DRILLER STHOUGH BIT NO CRETATE BIT FOOTAGE 0-740
SHIFT HOURS	MOVE TO HOLE 11:30-7 13:00
TO	ORILL 13:(な)~7 13:45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 13:45 7 1:30
	New Bit

DEPTH IN METRES GRAPHIC LOG	SAMPLE NO.	DESCRIPTIVE LOG		
2	07321 20 K	0-70.7 No Return 0.7-71.0 Organies 1.0-71.6 Sediments (Ojibway) Clay-10-71.6 dark brown, smooth, compact 1.6-72.6 Tell (Chilougaman) - gray, fine sand matrix with public classes composing of 90% sediments and colcanies 10% graneture 2.6->4.0 Bedrock (Matasadinad - light gray to dark gray - very fine grained - massive. 4.0. E.O.H.		

DATE Dec 5 1985	HOLE NO CW-85-121 LOCATION Formerly CW-49 GEOLOGIST SLHutchings DRILLER G. HOUSE BIT NO CB67435 BIT FOOTAGE 9-8->15.8
SHIFT HOURS	MOVE TO HOLE 2:45-3:15
то	DRILL 3.15 - 2.45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 3:45 - 4:30

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		1 1
1	0.0 > 0.8 No Return 0.8 > 0.8 Sediments (OJIBWAY)		
3 0 0	cley - beige, soft, smooth 2.8 → 4.7 <u>Till</u>		
4-04	- beige fine sand matrix pebbly clasts 80/20		
6	H.7 > 6.0 <u>Bedrock</u> (metasedement) - dark grey to black		
9-	- very fine grain		
7 8 10 11 12 13 14 15 16 17 18 19 19 10 10 10 10 10 10	- disterniated pyrite 21% - massive		
12_	6.0 E.O.H		
13 7			
16—			
18-			
19			

DATE	GEOLOGIST S.L. H. H. H. H. H. H. BIT NO. CP. 1435 BIT FOOTAGE 4.0 7 9.8
SHIFT HOURS	MOVE TO HOLE 13:45-7 130
TO	DRILL 130-> 3:45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 2145 -7 315

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1 Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	0-70.3 Po Return 0.3->11 Gallo Louider 1.1->4.0 Till (Chilangaman) - gray leige, fine sand matrix with public clash comparing of 75% codmints and volumics - gallo louider 1.6-73.5 - oridized 3.6-73.E 4.0->5.8 Balrak (Maturalman) - ligh gray to dark gray - very fine gravial - maximin - calat verining Hunghint 5.8. E.O.H.	

DATE Dec 5 1985	HOLE NO CW-85-123 LOCATION FORMERLY CW-51 GEOLOGIST SL HUTTHING DRILLER G. HOWE. BIT NO. CB67435 BIT FOOTAGE 15.8-24.8
	GEOLOGIST 34 HULLING DRILLER G. POLICE. BIT NO. CBC/73 D BIT FOOTAGE /5.8-24.8
SHIFT HOURS	MOVE TO HOLE 3.45 -> 4.30
TO	DRILL 4:30 - 5:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER _ Travel 5:45- 2.00
	MOVE TO NEXT HOLE _ 5:/5 - 5:45

DEPTH METRES GRAPHIC GRAPHIC INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
οι ολ ολοδοδοδοδοδοδοδοδοδοδοδοδοδοδοδοδοδοδο	0.7-1.1 ORGANICS 1.1-4.1 SEDIMENTS (OJIBWAY) - Sand Still - very Fine grain Sand with gray, soft smooth interlayers of clays. 4.1-7.8 Till (Chibouganau) - gray, fine grain sand matrix. - pabbly clasts 80/20 7.8-9.0 Bedrack (Metarediment) - grey to dark gray - very fine grain - disseminated pyrite < 1%. 9.0 EOH	

DATE (26 19 25	HOLE NO CH-25-124 LOCATION Frankly has E3
DATE	GEOLOGIST S.L. MUKLLER G. War BIT NO CHETTER SBIT FOOTAGE -13-753.3
SHIFT HOURS	MOVE TO HOLE
то	DRILL 9:00-7 9:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER _ travel time 7:00 -> 9:00
	MOVE TO NEXT HOLE 9:30-> 9:45

DEPTH IN METRES GRAPHIC LOG	SAMPLE NO.	DESCRIPTIVE LOG		
3 - 4	5 2	0-7 0.8 No Return 0.8-7 1.0 Organics 1.0-7 2.6 Sedimento (Oxibruca) Clay-1.026- gray, smooth soft 36-7 3.4 T.11 (Chibrougamau) - gray, fine sand matrix with pebbly clasts comparing of 75% sodiments and colcanies 25% granific - oxiding from 43.0-3. 3.4-75.0 Bedrock (Milasodinent) - gray to dark green - very fine grained - massive 21% disseminated pyills - corpentinite?		

DATE Declo 19 25	HOLE NO CW-85-135 LOCATION Francis hate 58 GEOLOGISTS L'HILLIAMS DRILLER G. HOLY BIT NO CRETTS BIT FOOTAGE 53 3-18.8
	GEOLOGIST THE PLACE DRILLER THE BIT NO CONTROL BIT FOOTAGE 523-58
SHIFT HOURS	MOVE TO HOLE 9:30 - 9:45
	ORILL 9145-7 1115
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG	SAMPLE NO.	DESCRIPTIVE LOG
30	ws 8	0-70.3 No Return 0.3-70.7 Organics 0.7-7.3.7 Leage, self, . smooth. 2.7-74.1 Tell (Chilosopanear) - leage, fine sand matrice with public clashe composing of 70% enhists and veletance 30% granities. - oxidized from × 2.7-2.9 - lower percentage of public dasts .70% fine large sand ot ≈ 3.8-4.1 4.1-5.5 Bedrock (Metasodinest) - gray to dask green - very fine granal - massive - 1% quarty vering - seperture?
20-	E	5.5 EOH

DATE Doc 6 19 95	HOLE NO CN-85-136 LOCATION Formerly his 54
DATE	GEOLOGIST TO THE DRILLER STATE BIT NO CENT HE BIT FOOTAGE STE TO STE
SHIFT HOURS	GEOLOGIST SLINIFLING DRILLER S. H. J. BIT NO CENT HES BIT FOOTAGE 58 12 763.
TO	ORILL 11:30 -> 12:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 12:15 7 12:30

DEPTH IN METHES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
1	0.7-7 1.2 Organics 1.2-7 2.4 Sediments (Ojitway) Clay - gray, smooth, soft 2.4-7 3.3 Till (Chilougamau) - gray leige, fire and matrix with public claster composing of 7590 sodine and volcanics 2590 grant 3.3-> 4.8 Bedrack (Felsic Volc - gray to dock green) - medium graviod - x 3090 quanty - massive 4.8-> EOH	مله منه		

DATE 130 6 19 85	HOLE NO CUSTO-17 LOCATION FOUNDALL NO 55 GEOLOGIST AND CUSTOMORILLER & TOWN BIT NO CENTER BIT FOOTAGE C 714 C
DATE	GEOLOGIST 212 CUT MORILLER & TOWN BIT NO CE 21430 BIT FOOTAGE C -714 C
SHIFT HOURS	MOVE TO HOLE 1245-7 13130
to	DRILL 12:30 3 3:00
TOTAL HOURS	MECHANICAL DOWN THE
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 3:00-7 3:30

Mus Est

DEPTH IN METRES	GRAPHIC	INTERVAL	SAMPLE NO.	DESCRIPTIVE LOG		
1.	$\wedge \wedge$	E		0-70.4 <u>No Plature</u>		
1-1	Δ.	1	01	0.4-70.8 <u>Organies</u>		
3 -	Δ		01	0.8-7 11.3. <u>Till</u> (Chilosopman)		
4 -	Δ · Δ	77/1	20	with bros one wearl subspo-80		
5-	Δ	-		with public that's company		
6	- Δ	差		simples brackeniba 0905 fo		
,]	٠.	Æ	3	35% grantie		
81	Δ.	11111	0H	- gray from 0.9-7 11.3.		
9-	4	走		-> publiq daste composing of		
10-	Δ.	E	95	9090 sediments and columns		
10-	- Δ	7	1	may situage 0POI		
"-	Δ.	Ž,		6.6-3113		
12		生		-> Low percentage of fine		
13		E	7	sand matery from 66-77=		
14		1				
1		E		-7 interleddid changled,		
15		E	-	gray soft, modifices		
16-		E	-	8.2-7 9.1		
17-		Thur		113-714.0 Bodrock (Matardine 1)		
18-		ليسطيسيليسيلسيا		- dark gray		
3				-very fine ground		
20-	ı			- massing		
				- contains potensium feldera, At and apodets steining		

DATE Dec 6 1985	HOLE NO CW-85-128 LOCATION Formerly CW-56 GEOLOGIST SCHULCHING DRILLER & HOUSE BIT NOCES67436 BIT FOOTAGE 140-190
	GEOLOGIST STREET BIT FOUTAGE THE
SHIFT HOURS	MOVE TO HOLE 3:00 - 3:30
то	DRILL 3:30 - 4:30
TOTAL HOURS	MECHANICAL DOWN TIME 4:30 Hydraulie Pump broke - tixed by 5:30
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 5:30 - 6:00 Travel

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
1	0.0-705 No Return 0.5-70.9 Sediments (0318WAY) Clay-light brown, gritly, soft. 0.9-4-0 Till (Chibongaman) - gray, beige, f.g. sand matrix. - publicy - 75/25. - gray Send matrix(3.8-4.0) 4.0-> 5.0 Bedrock (Felsie Volc.) - light green to dark green - med. grained. - magnoe. - w30% quartz.	
- 1 1		

DATE Der 7 1985	HOLE NO CW -85-129 LOCATION FORMERLY CW - 57 GEOLOGIST SL HOTHING DRILLER & HELLE BIT NO CB57436 BIT FOOTAGE 190-275			
DATE 2222 10 22	GEOLOGIST TL HUTTHING DRILLER & HELLE BIT NO (867436 BIT FOOTAGE 190 - 275			
SHIFT HOURS	MOVE TO HOLE _ 7:00 - 8:00			
то	DRILL 9:00 - 10:30			
TOTAL HOURS	MECHANICAL DOWN TIME			
	DRILLING PROBLEMS			
CONTRACT HOURS	OTHER TRAVEL 7:00 -9:00			
	MOVE TO NEXT HOLE			

0.0 - 70.2 OREANICS 0.2 -> 2.2 Sediments (OJICHAY) Clay - davk brown, soft, smooth above 1.6 m - beige, soft smooth 16-2.2 2.2 -> 5.7 Till (Chibougamau) - buse, time grain send matrix - pobbly clast \$5/5(2.2-27) - gray, 90/10 (2.7 - 5.7) 5.7 -> 8.5 Balrock (Metasediment) - light green to dark green - fgr. to med gr. - 30% guartz w K sper.	OEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
	2- 04 3- 04 5- 04 8- 10- 11- 12- 12- 12- 12- 12- 12- 12- 12- 12	0.0-70.2 ORGANICS 0.2->2.2 Sediments (OJICWAY) Clay - davk brown, soft, smooth above 1.6 m - beige, soft smooth 1.6-2.2 2.2->5.7 Till (Chibougaman) - beige, Fine grain sand matrix - pobbly clast \$5/15(2.2-27) - gray, 90/10 (2.7-5.7) 5.7->8.5 Badrock (Mtasediment - light green to dark green - f.gr. to med gr.		

DATE 19 25	HOLE NO CW 85-130 LOCATION FEBRUARY hat 58 GEOLOGIST SA BUT NO. PET438 BIT FOOTAGE 0-79.3 MOVE TO HOLE 10:30 -7 11 00
DATE	GEOLOGIST SA BULLOPPRILLER & HOLE BIT NO POTAGE 0-793
SHIFT HOURS	MOVE TO HOLE
TO	DRILL 11:00 7 3:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS 415 74:45 AIN ST AND ALCOH.
CONTRACT HOURS	OTHER DOD =7 DIGHT remied dull 445 -26 30 burk to held
	MOVE TO NEXT HOLE 245 2475

New Bit

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
3- A A A A A A A A A A A A A A A A A A A	0-70.8 No Return 0.8-70.0 Sodimento (Ozibruay) Clay - 0.8-71.7 gray, smooth soft - 1.7-72.0 Leigh, smooth soft 3.0-77.6 Itl (Chibaugamau) - gray leige, fine grained sano matrix with publicy deaster compassing of 75% sodiments and volcanies 25% grainties - squay from 3.0-73.7 - squay from 3.0-73.7 - squay beige from 3.7-75.1 - bewer percentage of fine wand matrix from 3.7-75.1 - cay, fine sand matrix with publicy clash composing of 80% cadmints and volcanies 20% grainties from 5.1-77.6 7.6-80-7 Cientric Louder. 80-793- Bedrock (Matasoding)	
	District Confession of	

dock ge to green

- very fine grained

- massue

- qualty verily

9.3- E.O.H.

DATE Dec 8 19 25	HOLE NO CUIZO -131 LOCATION Francis 120 63 GEOLOGIST OF THE PRINCE OF HOLE BIT NO CREETED BIT FOOTAGE 0-180.
SHIFT HOURS	MOVE TO HOLE
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	OTHER Trand time 7:00-78:00 to truck 8:00 79 cm w
	MOVE TO NEXT HOLE

Jun Bit

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
1 3 4 4 4	0-70.5 <u>No Return</u>		
2 = =	0.5-7 1.3 Organis		
3-	1.3-74.8 <u>Schments</u> (Oylhway)		
4 = [Clay-grey, gutty, smooth 1.3-1.7		
5 0	1.7-4:0 - gray, soft, smooth		
7.4	Sell Sand . 4.0-74.8		
8 00	- grey, very fire grained said		
9-	nature interleded with gray self, smooth clay.		
10-3	4.8-76.7 <u>Till</u> (Chilangaman)		
11 -	-gray, fine grained sord matrix with people clastic composing		
13-	with public claster composing		
14-1	20% granitics		
13 - 14 - 15 - 16 - 17 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19	6.7-78.0 Bodrock (Febric Volcanic)		
16—	- Light graygran to darkgray		-
18-	- very time grained		
19 -	- massive	* Commence of the Commence of	
20-	- 25- 30% quarty		
	- quarty verning 6.7-7.6		

80 E.O.H.

DATE Dec 8 19 25	HOLE NO CO-PS-130 LOCATION Formary hole to
DATE	GEOLOGIST & LEWIS DRILLER S. HOLLE BIT NO CESTULA BIT FOOTAGE SUT 14.5
SHIFT HOURS	MOVE TO HOLE 10:15-7 10:3-
TO	DRILL 11:45 -> 1:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS 10: 30 = 11:45 went back and pulled 67-1400 and of cont
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
3	0-70.5 - No Rethers 0.5-73.3 Sedements (Cylorosy) Cley-05-1.3 -luge, smooth, compat Sitt-1.3-73.3 -gray. 3.3->5.7 Tell (Chilosepanae) -luge, fire sand metric with publicy dests con period of 15% sodiments and volcaries 25% granitics - 3.3-74.8. - gray luigs 40->5.1 51->6.5 Bedrack (Telsie Volcanie) - yeary fine graned - massur - 21% disseminated pyrils - 1% questy 6.5 EOH.	

DATE DEC. 8 19 85	GEOLOGIST 25 MUCHIPPORILLER G. HOLL. BIT NO CEET 469 BIT FOOTAGE 14.57 23.0
DATE LECT 19 CO	GEOLOGIST 25 Cutching DRILLER G. Hour BIT NO CENTY ET BIT FOOTAGE 14.57 23.0
SHIFT HOURS	MOVE TO HOLE 1:30 -7 1:45
	DRILL 1.45 -> 3:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 3130

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
	0-7 1.0 Organics 1.0-7 5.5 Sodimento (Ogbrury) Clay-1.0-7 1.3 - gray, smooth, compod Selt-1.3-7 3.4 - gray Sond Selt-3.4-55 -gray, finegrand sand with interbedded gray brigg soff, smooth clay bridge	
10-11-11-11-11-11-11-11-11-11-11-11-11-1	5.5->7.7 <u>Till</u> (Chibouganau) gray. fine sand matrix with publy clasts composing of 75 o sediments and volcanics 25% granitics. 7.7-79.5 <u>Batrack</u> (Mafic Volcanic - light green to dock gray - massive - very fine grained 21% disseminated pyrits 21% quarty	

DATE 1218 1085	HOLE NO CN 85-134 LOCATION FORMERLY hale GO GEOLOGIST HULLINGS DRILLER HONG BIT NO CBEHICE BIT FOOTAGE 13.0-34.4
DATE 1962	GEOLOGIST HUTCHINGS DRILLER HOWS BIT NO C367-69 BIT FOOTAGE B.C-34.4
SHIFT HOURS	MOVE TO HOLE 2:30 - 3:06
to	DRILL 3.00-415
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 4:15 - 4.30

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
12 A D E	0-0.9 Organics 0.9-3.4m Sediments (Ojibro 0.9-clay-beige soft 2.5-Sand/Silt-gre Sund matrix 3.4m Till (Chibongaman) - grey, fine Sandy matrix, - Pebbles 80% Volkanics Sediments 20% Granitics 9.9 to 10.0 m-grey gritty 125 m Bedrock (Matric Vollage of the grained - wassive - 21% disceminated for Suck - 21% disceminated for 14.1-14.2 m-layer of till 14.5 m E. C. H.	Comic) Sylite.	

DATE Dec 8 1985	HOLE NOCUL-85-135 LOCATION Formerly CW-59 GEOLOGIST SC. HUTHINGS DRILLER G. HOWE BIT NO CRETTED BIT FOOTAGE 3.1-12-7
SHIFT HOURS	MOVE TO HOLE 4:15 - 4:30 ORILL 4:30 - 5:15
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	OTHER Travel 5:15 - 7:30
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0 - 0.8 No Return 0.3 - 3.4. Sediments Gibra Clay - Deige, soft Smooth. @ 2.5 m. Chamges to give Sitt 3.4 to 8.4 m Till (Chibougan - giej, fine; sand, natrix - pebbles 80% Vicamics Ken 20% Granitics 7.5 - 77 m lower % fine 8.4-9.6 m. Bedrock (Matic - grey to dark - massive - fine grained 9.6 m. E.O.H.	Volcenic)	

DATE 049 19 85	GEOLOGIST Set TAKE LOCATION Former L. Hale 64 GEOLOGIST SET TOTAGE 12 7-20	
SHIFT HOURS	MOVE TO HOLE	
	DRILL 12:00 -7 1:00	
TOTAL HOURS	MECHANICAL DOWN TIME 10:30 -7 10:45 Jiv Grouse Lar.	
	DRILLING PROBLEMS	
CONTRACT HOURS	OTHER Travel 8:00-7 10:30 10:45-7 10:00	
	MOVE TO NEXT HOLE	

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
DEBO	DESCRIPTIVE LOG 0-71.3 Organics 1.3-75.9 Sediments (Ojihusay) Clay - gray, soft, smooth 5.9-8.6 Tell (Chibougamau) - gray, fire sand matrix with publy dasts compasing a 8090 sediments and volcanics 3090 granitic 8.6-710.0. Bedrock (Ultramafic Volcanics) - dock green to black - fire grained - massive - 2190 dissentinaled pyrits - sheer genes of corporation? - qty playaclas veri from ~ 9.5-9.6
18-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	10.0 EOH

	·
DATE Dec 9 1985	HOLE NO CW-85-137 LOCATION Formerly Hole #65 GEOLOGIST Hutching DRILLER G-Howg BIT NO. CB61471 BIT FOOTAGE 0-35 MOVE TO HOLE 1:05 - 1:15
DATE TO THE	GEOLOGIST HUTCHIAGE DRILLER CZ-110W9 BIT NO CB67411 BIT FOOTAGE (7-35
SHIFT HOURS	MOVE TO HOLE _ 1:00 → 1:15
TO	ORILL
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 2:00 - 2:15
	MOVE TO NEXT HOLE 2.73

New Bit

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1	0-1.9 m - Sediments (Olibray) - Clay - beige, smooth, soft. 1.9-2.0 m - Till (Chilougamau) - giex, fine sandy matriz 80% Volcomics / Sadinents 20% Granitics 20-3.5 m - Bedrock (Mofic Volcan - dark giex to dark giern - fine grained - Massive - C1% disseminated Pysite 3.5 m - E. O H-	

DATE 12 9 19 85	HOLE NO CW-65-1- CLOCATION Framerly W/ 66 GEOLOGISTS Little Dept. BIT NO CENTER 1 BIT FOOTAGE 3.57 4.5
	GEOLOGISTO LAWRENCE DRILLER STRONG BIT NO COLITE LA BIT FOOTAGE 307 16.5
SHIFT HOURS	MOVE TO HOLE 2100 -> 215
TO	DRILL 2/15-2 3:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 3'00.

DEPTH NETRES GRAPHIC LOG	SAMPLE NO.	DESCRIPTIVE LOG	
2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	05	0-7 1.1 10 Return 1.1-7 5.0 Sectionary (Cychway) Cay-1.1-74.7 gray smooth, selt, Silt sand - 4.7-75.0 gray, fine sand matrix 5.0-7 13.0 Till (Chibourgamon) - gray fine sand matrix with publicy claster composing of 80% sudinents and volcanics 20% grantics - laige from 9.6-710.5 - lewer percentage of fine sand "Streey HII" from 102-103 - oxidized = 11.2-13.0 13.0-713.0 Bodrock (Mafic Volcano) - gray to dark gran	
15-15-16-17-17-18-17-17-18-17-17-18-17-17-17-17-18-17-17-17-18-17-17-18-17-17-18-17-17-18-17-17-18-17-17-18-18-18-18-18-18-18-18-18-18-18-18-18-		- receptions grained - massive - L190 quarty-lenses-	-

SH TO	TE De	URS	MOVE TO HOLE 300 -7 3:30 DRILL 3.30 -7 6:00 MECHANICAL DOWN TIME DRILLING PROBLEMS	BIT NO	CPLTUTI	BIT FOOTAGE _	
METRES	GRAPHIC LOG INTERVAL	SAMPLE NO.	DESCRIPTIVE LOG				
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 9 9 1		03	2.0-2.5 Organics 2.0-2.5 Organics 2.5-712 Sedinarto (Ojituay) Stand Silt - 2.5-75.0 gray fire sand with gray, soft swooth clay interledded. Clay - 5.0-711.2 5.0-25.2 gray, grilly, soft 5.2-711.2 gray, smooth, soft sund mature gray, fire sand mature of early class comparing of early class comparing of early character soft granitic Lense of sand 17.6-21.5 gray, fire sand with published and dock brown, gritly, compared and dock brown, gritly, compared	ah.			

day.

DATE19	HOLE NO LOCATI		
	GEOLOGIST DRILLER	BIT NO.	BIT FOOTAGE
SHIFT HOURS	MOVE TO HOLE		
	DRILL		
TOTAL HOURS	MECHANICAL DOWN TIME		
CONTRACT HOURS	DRILLING PROBLEMS		
	MOVE TO NEXT HOLE		
	Page 2 at CW-8	25 - 139 	p-grzof3
GRAPHIC LOG SAMPLE SAMPLE			
DEPTH METRE: LOG LOG SAMPLE NO.	DESCRIPTIVE LOG		
8 06			
2-00	21.5 -> 31.2 Till (Chikungan	Nam)	
7 00	1 . and mat	-64	
22 - OA - OT	- gray, fine and mat		
23 04	with pebbly closes comp	horned	
13 ACA COR	of 80% sediments and	volcanics	
4- 40 E			
75 20/2	20% grantics		
ON FOS	- divide boulder	280-288	
Z8 00 E	on the state of	500	
4- 00 E10			
77- 00 Flo	31.2-7 37.0 Missinabi Sed	unenth	
28 00			
" TOWN	Self / Sand - 31.2 -> 37.0		
10- AP - 11		1 1	
20/E	-gray, fine sand with	h	
30-100	gray, compact smooth	interpedial	
31-52-	5 5 .	1 1 1	
	clay lide <190 pel	ruy classs.	
32	- no clay 33.0 -> 34.2	,	
<u> </u>	33.0 3 37.0	'	
93-			
34-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	37.0739.9 Till (Lower)		
3,5	- gray, fine and mater	J L	
a. The l	with public class composi	.na	
36-	of 75% sediments and vol	cours	
37年12	of 10 to steelington and tot		
SALE	25% granitic, colleged	ans.	
38- 30 F	1	1 1	
20 40 5	- greater percentage of fine	w	
30 25 13	39.6-> 39 9		
40	_		
1			1 1 1

SH TC	HIFT TAL ONTRA	HOU TO HOU	RS RS	rs.	GEOLOGI MOVE TO DRILL MECHAN DRILLING OTHER .	ST	NN TIME	LOCA DRILLER O -7 8	CO E-3	tunk_	Pin		-73	
DEPTH IN METRES	GRAPHIC LOG	INTERVAL	NO.		C	ESCRIPT					and company			
22 3 3 4 4 5 5 10 10 11 12 13 14 16 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19						nediun potas houd	r grain	nck (Ladapon Lindul	sus grai	ined				

DATE Dec 3 19 85	
SHIFT HOURS	MOVE TO HOLE \$.00 > \$1/5 509 0 > 13.0
TO	DRILL 8.15 > 10.30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 7.00 > 7.45 to dill road 7.45 to 8,00 to deill
	MOVE TO NEXT HOLE
	Acrap two rods
	No R

. 1	Ew	B		_
N	Ew	0	1	1

DEPTH INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 > 0 5 No Return 0 5 > 0.8 Organics 0.8 > 0.6 Sectionests (Ojeburg) clay 0.8 > 4.8 beigs, seft, smooth Acord 4.8 > 6.6 beigs, fine grained 4.8 > 5.2 5.8 > 6.6 course grained 5.2 = 5.3		
7 A o A o A o A o A o A o A o A o A o A	gray to gray beige, fine sand mating pebbly clart 40% granitic volcanics and excliment 40% granitic - cobbly below 9.8		
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11.6 = 13.0 Bedwick Mafic Volcanice dock given, fine to medium grained, massive, L1% calcite and quartyo: feldepathic reins throughout L0.1% disseminated pyrite		
18	13.0 E.O.H.		

DATE 2 2 3 19 32 SHIFT HOURS TOTAL HOURS	HOLE NO CW 85-141 LOCATION Tromply CW-142 GEOLOGIST TO BULNS DRILLER H. D. Matter BIT NO 6867501 BIT FOOTAGE 13-241.5 MOVE TO HOLE 10.30 > 10 45 DRILL 10.45 -> 3.30 MECHANICAL DOWN TIME DRILLING PROBLEMS
CONTRACT HOURS	MOVE TO NEXT HOLE
σ ο Η	

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0 = 1.0 No Return 1.0 > 4.4 Sediments (Ofiburay) clay 1.0 > 3.8 gray, soft, smooth sand 3.8 > 4.4 gray-beige to beige, fine to medium grained 4.4 > 18.7 Till (Lhibougaman) gray to gray-beige, fine sand motions pebbly class 60% mafee volcanics and sediment 40% granites high percentage of fine band matrix above 12.0 - cobbly below 12.0 - sand lense 16.8 > 18.0	
13 - A - C - C - C - C - C - C - C - C - C	8.7 > 20.8 Sedimente (Missinailie) sand beige, fine grain locally pebbly	

DATE Dec 3 th 35 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	GEOLOGIST DRILLER	BIT NO	
DEPTH IN METHES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
22 A - 10 9 27 0 3 27 0 3 27 0 3 28 27 0 3	= 27,0 Iil? (Lower) - gray, fine sand mate pelle clast 60% may volcanics and sediment 40% grantic - gritty gray clay mate below 23.3, minimal return, material in suspension 28.5 Bedrock Habbro green. white, medical rease grained, mass	iny	

DATE Dec 3/4	19 85 HOLE NO CW-85-142 LOCATIO GEOLOGIST TI Bull DRILLER H. E		
SHIFT HOURS	MOVE TO HOLE 3 30 > 4.00 DRILL 4.00 > 6.30 / 4 8.00 >	CB67510	0 -> 35·s
TOTAL HOURS	MECHANICAL DOWN TIME	3 12.00	
	DRILLING PROBLEMS		
CONTRACT HOL	URS OTHER 6.30 = 6.45 to think 6.45	> 7.30 Chanais / 4 7 00 5	15 > 8,00 to dill
	MOVE TO NEXT HOLE	<u> </u>	3, 73,00 N DULL
	· New	В.т	page 1 of 2
DEPTH INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
	0 > 0.5 Ne Return		
' = -	0.5 > 4.6 Sediments (Ojibway)		
2	2.6		The second secon
	stige, soft, smooth		e de la companya de l
i : [E	sand 2.6 - 4.6		\$ JULIUS AND
4 6 01	beige, fine grained		
5 3 4 6	4.6 -> 33.4 Tell (Chibougaman)		
1. △	gray - brige, fine sand or	nating	
6 7 0 0	petbly, clasto 60% makes	ė	
7-34	volcanic and sediments		
104 02	40% granetic		
A RE	- colly below & 7.8 to	8.7	
- L - C			
10 4 503	- bruldu mafic volcana 8.3 ≥ 8.7		
11 . 4	- pebbly below 8.7 = 213	3.5	
12- 04	- large cobbles below 13.5	->125	
13 0 4	- boulders, matic volcanic		
100	_		
14-14-14-14-14-14-14-14-14-14-14-14-14-1	granodiorete 16.1 > 16.6		
15 06	·		
16-106	- high secuntage of fine sand matrix helow 118		
3 (X) [E	to 22.1 with pebbly at	2 t	
17-1 A - 1 - 07	The project of		
18- 40-			
19 До			
19 A C8			
20- 4 0			

SH TC	IIFT 1 TAL	HOURS HOURS HOURS - ACT HO		HOLE NO GEOLOGIST MOVE TO H DRILL MECHANICA DRILLING P OTHER MOVE TO N	OLEL DOWN TROBLEMS	ORILLE	R	BIT N	0.	BIT F	
DEPTH IN METRES	GRAPHIC LOG	INTERVAL SAMPLE NO.		DES	CRIPTIVE	LOG					
26 27 28 30 30 31 32 33 33 33 33 34 35 35 35 35 35 35 35 35 35 35 35 35 35		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33.9 >> 34.1 >>	34.1 Sed gut gut	invents dark	(M issi gray,	naibie) styhtly cact				

DATE De 9 19 55	HOLE NO CW-35-143 LOCATION Stormely CW. 144
DATE	GEOLOGIST J. Burns DRILLER H. Durette BIT NO CB67570 BIT FOOTAGE 35:5-605
SHIFT HOURS	MOVE TO HOLE 12.00 > 12.30
то	DRILL 12. 50 > 5.30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

page 1 of Z

DESCRIPTIVE ROAD PLANTER OF THE BOAD PLANTER O	
D = 0 = 0.8 No Return 1.2-29 Sedensest (Oziburay) 4 and brigg, fine grained 1.2-29 Sedensest (Oziburay) 4 and brigg, fine grained 1.2-29 Sedensest (Oziburay) 4 and brigg, fine sand matrix pebbly clasts 60% mafic inclances and sediment 40% grantle - high percentage of fine 4 and matrix above 790 - colbly below 7.9 - boulders mafic volcanic 7.9 - 8.1 18.2-18.5 - stoney below to 9.0 to 14.2 (low percentage of fine sand matrix - gritly gray clay matrix 14.2 - 14.5	

TOT	FT HOURS	. 19	HOLE NO VV - 95-143 LOCATIO GEOLOGIST DRILLER MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE	BIT NO.		
DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE NO.		DESCRIPTIVE LOG			
21-	Dan CE	23.6 ≥	increase in percentage of fine sand matrix below = 20.0 to 21.5 - very stoney below to 2. 25.0 Redrock Mafie Wolf dark green, fine grangenerally massive, port developed pliation locally. EOH	1.5		

DATE 9 20 9 19 85	HOLE NO CW-85-144 LOCATION Francy, CW-145 GEOLOGIST T. BURNS DRILLER # Country BIT NO CB 67511 BIT FOOTAGE 2 > 7.0
SHIFT HOURS	MOVE TO HOLE 3.30 → 4.00 DRILL 1: 00 → 4.45
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	OTHER 6:10 -> 7:00 travel
	MOVE TO NEXT HOLE 4,45 > 6.30

NEW BIT

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
3	0.5 -> 4.6 <u>Sediments</u> (O jibway) slay beige, soft, smooth sand 3.0 >> 4.6 gray-beige, fine grained	
5 A o A O A	4.6 > 5.8 Till (Chibrugaman) gray. beige, fine sand matrix pebbly clasts	
9 10 11 11 11 11 11 11 11 11 11 11 11 11	5.8 = 7.0 Reduck mafie Volconic dark green, fine to medium grained, massive	
13-	ZO EOH	
15		

DATE 182 18 1985	HOLE NO CW 85-45 LOCATION Decreely CW - 197 GEOLOGIST Edurated DRILLER Durette BIT NO (867511 BIT FOOTAGE 70-17.3.
SHIFT HOURS	MOVE TO HOLE
то	DRILL 8:45 - 9:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS 8:00-8:45 wait for water
CONTRACT HOURS	OTHER 7:00 - 8:00 timbel
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG
D D D D D D D D D D D D D D D D D D D	0-1.0: lettle setura 1.0-2.6: SEDIMENTS (Ojibary) - slightly gutte clay - beige, studied; compact. 26-8.8 Till (Chibrigania) 26-5.3: June Beige Sand matrix - cobbles: 50% belowed 50% Greater 50% Greater 50% Greater 50% Greater 60% box 1/5 60% 60% 1/5 8.1-8.8- fur gay sand matrix - cofflies 60% 1/5 Below 8-5m: 75% 1/5 25% Gr. 8.8m. BEDROCK: - cofour: deel gay - medium-grained; weally liveloped filiations - 60% quarty viening
19 20 20 20	- trace popule along fractive of surfaces Edwa 9.8 m: 20% quarty wining - Mafie Volcanic

10.3 m. EOH.

Λ	2 + 2 = 141
1 Pt. 10 = 85	HOLE NO (W85-196 LOCATION Jerrocky 196
DATE TOUR 19	HOLE NO CW-85-146 LOCATION FRINGE 196 GEOLOGIST Edward DRILLER DWELLE BIT NO EBETSII BIT FOOTAGE 173-225M
SHIFT HOURS	MOVE TO HOLE 9:15 - 9:30
TO	DRILL 9:30 - 9:45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 9:45 - 10:15

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
3-47-01	0-0.8 To return 0-8-2.0: Sediments (Djibury) -beige compact clay in a fine beige sand.
5-02	2.0-3.7 Till (Chibangaman) -fine beigt sand matigs Cofflis: 65% illianies Sidements 35% Shanitis - accasional beigt
8	- accasional beign gritty clay lumps. 3.7m Bereck. Colour: black; slightly lustions
10-	- very seristive - very fine-grained - trace popula - durty appearance
13 14 15 16 17 18 19 19 19 19 19 19 19	- Sraphetic sigilité - soft, easy dielling 5. 2 m. E.O. 4.
18-	Ete -

DATE 111 1985	HOLE NO CW 85-147 LOCATION Dernesty 198 GEOLOGISTE CHURCHS DRILLER Derette BIT NO. 6167511 BIT FOOTAGE 22.5-276 M
SHIFT HOURS	MOVE TO HOLE 9:45: 10:15 DRILL 10:15 - 10:30
TO	
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 10:30- 11.00.

E AL C SE			
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3-21-01	0-0.8m. No return 0-8-2.5 Sed IMENTS (Distury) - dard brown slightly gretty clay in dark) brown selt 25-3.6 TILL (Chibougamon fine dark per brown sand matrix - coffles: 801. Volcance Sidiness 20% Francisco		
10-11-11-11-11-11-11-11-11-11-11-11-11-1	3.6m. BEDROCK. Colour: deak green black Colour: deak green black Colour: deak green black Fine grained Fine grained Fine grained blow 3.9 - evidence of strain - 27. guarty stringers - trace pyrite along fractured purfaces - Chific Volcanic ? 5.1m. EOH. OK.		

Δ.	140
200 1 10 10 10 10 10	HOLE NO CW-85-148 LOCATION Francis 199 GEOLOGIST Edwards DRILLER DWETE BIT NO 1667571 BIT FOOTAGE 27-6-36 CM
DATE APPEARS 1902	GEOLOGIST Edicarde DRILLER DureTE BIT NO 1867571 BIT FOOTAGE 776-16-16
SHIFT HOURS	MOVE TO HOLE 10:30 - 11:00
то	DRILL 11:00 -11:45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
1	0-0.2 No return 0.2-7.6 Till (Chibouga 0.2-3.5 fine bugs sand pebblis 50% Volc and/or bedie 50% Yeard 3.5-5.7 sand bed, beige (medium-grained, 5.7.7.6 - fine grey-bug	matrix cances inexts the
10-11-11-11-11-11-11-11-11-11-11-11-11-1	7.6 m. BEDROCK. Colour: dark grey - fine grained - Imildly schiotese ~ 3% quart / Carbonate Veinlets	
16	- tr. pyrite - M afri Volcanic. 9.0 m EOH. SIE.	

1) 1, 0-	HOLE NO (W.85-149 LOCATION Fractly 200, moved to 50m WB 201 GEOLOGIST Edwards DRILLER DATE BIT NO (\$67571 BIT FOOTAGE 24-342
DATE Nec. 10 1965	HOLE NO CO A) THE LOCATION STATES OF THE STA
	GEOLOGIST CHORAGE DRILLER DE BIT NO CONTRE BIT FOOTAGE DE ST. E
SHIFT HOURS	MOVE TO HOLE
TO	DRILL 12:15- 12:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 12:30 - 1:00

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1	0-11 Ciganics 1.1 m. BEDROCK. - dark grey colour; intailered to 1.4 m. - fine grained; milely Schistose ~101. guart viening Fe-staining @ 2.5 m. ~29. pyret - Mafie Volcanie. 2. Com EUH. ONE.	

Λ	HOLE NO (WBS-150 LOCATION Formuly 201; Interior 201 + 202. GEOLOGIST Eduques DRILLER Durett BIT NO (567511 BIT FOOTAGE 31.2-43.2
DATE Nec. 10 1985	HOLE NO [W.85-150 LOCATION framely 201; between 201 + 202.
DATE	GEOLOGIST Edward DRILLER Nuctt BIT NO CO67511 BIT FOOTAGE 35.2-43. 2
SHIFT HOURS	MOVE TO HOLE _/2:30 - /:00
TO	ORILL 1:00 - 1:15
TOTAL HOURS	DRILLING PROBLEMS hole in mair hydraulic line, and repair
	DRILLING PROBLEMS hole in main hydraulic line, and repair
CONTRACT HOURS	OTHER ful injecter.
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1	0-1.0. No return 1.0-1.4: SEDIMENTS (Ogibway) CLAY; beig, oxidiga, gutty 1.4.2.5: TILL (Chibrigamen) - fine beige Sand metry Cofflex: 50% Volcenies (bedien 2.5 m. BEDROCK Coleur: medium to light guy (~10.15% quanty) - fine-grained - miloly schistise - trace Fe-staining along some fracturel surface - trace popute - Intermediate - Mofie Volcanie 4.0 m. E.O.H. One	

/	CN/85 151 F
DATE Nixc. 16 1985	HOLE NO CIVE 157 LOCATION 12 TOTAL 203
DATE 13	GEOLOGIST SCUTLIFE DRILLER Warette BIT NO. 18675/1 BIT FOOTAGE 43.2-48.2
SHIFT HOURS	HOLE NO CN-85-151 LOCATION Farmerly 203 GEOLOGIST BUTCHELLER MULLER BIT NO 1667511 BIT FOOTAGE 43.2-48.2 MOVE TO HOLE 7.30-7:35
to	DRILL 8:40 - 9:45
TOTAL HOURS	MECHANICAL DOWN TIME 7:35 - 8:40 Luck injecter rione, 9.00-9:35
	DRILLING PROBLEMS Sepain broken full live
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 9:45 - 10:15

DESCRIPTIVE LOG O-1.4m No return 1.4.3.2 Till (Chibeugamen) 1.4.3.2 Till (Chibeugamen) 1.4.3.2 fine being and metric pathis 501 theanist return 3.4.4 To 1 1.4.3.2 fine being said metric pathis 701 theanist return 3.2 fine gay being said metry pathis 701 t/3 3.2m Bedrock (Appliblication) - Inc. grained - light gay b green color - how the planning slore fractions 5 om E.O.H.				
1.4 3.2 Till (Chibungamun) 1.4 3.2 Till (Chibungamun) 1.4 3.2 fine been and mating guttles 50% theamed Salament 50% theamed Salament 50% theamed 3.2 m. Bedrock (Mefablicance) - fine-grained - light grey-to green order - may schietier - beaux Fe steering slarg Gractures 5.0 m E.O.H.	DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
20-	10	1.4.3.2 Till (Chibengaman) 1.4.3.6 fine beige sand matrix public: 30% Vicanis/Seas 50% franctis 2.6.3.2 fine gray-beige Sand matrix -public 70% V/S 30% 6V 3.2m. Bedrock (Mafrie Volcan - fine-grained - light grey-to green colo - very schestise - brown Fe staining slove fractions	lus	

DATE DEC. 11 1985	HOLE NO (W.85-152) LOCATION Bernerly 20:4 GEOLOGIST Edivated DRILLER Juntily BIT NO (BIOTO) BIT FOOTAGE 48.3-54.8 M
J.,. C	GEOLOGIST AUTHORILLER WILLIE BIT NO (3675) BIT FOOTAGE 48.3-34.8M
SHIFT HOURS	MOVE TO HOLE 9:45 - 10:00
то	DRILL 10:15 · 11:15
TOTAL HOURS	MECHANICAL DOWN TIME 10:00-10:15 Recair feel line
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 11:15-11:30

DEPTH IN METRES GRAPHIC INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
2 A A A A A A A A A A A A A A A A A A A	0-0.8 m. Deganics 0.8-1.2 m. SEDIMENTS (Deganics) 1.2-5.0 m. Till (Chibring) 1.2-3.1: fine dark best from the Gold of Sont	rotau) rotau folcanies odinesto ettes percence brown Is retue tely	

1/1,11 06	HOLE NO CW 85-153 LOCATION Summerly 205 GEOLOGIST Reutlift DRILLER Augusti BIT NO BUTSI BIT FOOTAGE 548-60.3 MOVE TO HOLE 115-11:30
DATE NEC 11 19 CO	GEOLOGIST Routlille DRILLER Durith BIT NO TBG 751 BIT FOOTAGE 548-60.3
SHIFT HOURS	MOVE TO HOLE 11:15-11:30
	DRILL 11-30-12:45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 12:45-1:0

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
1	0.9-45 m Till (Chibough - Line grey-beight so Matrix - pebbles: 70% Vola - pebbles: 70% Vola - Sold - Sold - Line-grained - very schiestore - well-developed fol - light to dark given - trace pegint - trace Celcite 5.5 m ECH.	nes vierts uties	

DATE Dec 1/ 1985	HOLE NO CW-85-154, LOCATION Framerly CW-206 GEOLOGIST Edwards DRILLER Allettle BIT NO (867511 BIT FOOTAGE Q-5.7m. MOVE TO HOLE 12:45-1:30 (Lad to pull dille's pick-up ant of dilad
DATE	GEOLOGIST CALUTALIA DRILLER ALLEGAL BIT NO 667511 BIT FOOTAGE 0-5.+m
SHIFT HOURS	MOVE TO HOLE 12:45 - 1:30 (Had to pull dulle's put upant of ditch
TO	DRILL 1:30-3:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 3:00 - Took dullers delper to Assept at - power wrench bester MOVE TO NEXT HOLE and but his face.
	MOVE TO NEXT HOLE and but his knee.
	* New B.t

New Sub

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1		Sept (Jaiet Jamen) Normand State of the sept of the

DATE <u>Wic.11</u> 1985	HOLE NO CW-85-155 LOCATION Secretly 207 GEOLOGIST Educated DRILLER Secret BIT NO COUNTS BIT FOOTAGE 7-1-94
SHIFT HOURS	MOVE TO HOLE 7:30 - 7:45
TO	DRILL 7:45 - 8:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 8:30 - 9:00

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
2 01	0.0-0.4: Bouldet (Make Volcaine) 0.6-07 Till (Chebrugaman) - very thin laste of oxidized till
3	C.7 m. BEDROCK - Colour: light beige-gray - very fine-grained - middly schistore - schicious - trace great veinlets - very taugh dielling - Filice Valcance
10-11-11-11-11-11-11-11-11-11-11-11-11-1	2.3m E.O.H.
13	
18-	

DATE Nuc. 12 1985	HOLE NO (W 85-156 LOCATION Francisco 208 GEOLOGIST Executive DRILLER ASSECTED BIT NO CRESTS BIT FOOTAGE 94 20 EM
SHIFT HOURS	MOVE TO HOLE \$:30-9:00
ro	ORILL 9:00 - 11:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 8:30-8:45 Duel -up
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
3 - 4 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	0-0.5 Po return 05-0.9 The (Chebriganeau) - fine beige pand mating Colfler: 50% Voliances Sciences 502 Granitics 0.9-1.5 Bouldet (Mafie Volianie) 1.5-9.6 The (Chibriganeau) 1.5-4.2 fine guy keys sand mating coffler: 70% 1/5 30.2 Gr. coccasional keys gutty Clay lumps 4.2-5.0: stry coffly, minimal mating (suy being sand) - 40% 1/5 60% Gr. 50-5.3 Bouldet (Mofie Volcanie) 5.3-55 Till fine grey sand material - coffler: 60% 1/5 40% 5.5-6.8: coffler: 80% 1/5 20% Gr. 6 8-7.3 Bouldet (Mofie Volcanie) 7.3-9.6: tell, as described at 5.5 m. 9.6 m. Bedeck Cofeur: bean-grey; matellie settion; highly philosise - very soft, scricitized - very fine - grainee - weathered, oxideed

11.4m E.O.H.

DATE Nec. 12 1985	HOLE NO CW-85-157 LOCATION Sentelly 209, moved 50m East GEOLOGIST Study de DRILLER MULLETTE, BIT NO CENTRES BIT FOOTAGE 208-25-3m
SHIFT HOURS	MOVE TO HOLE _//:/5- //:30
TO	DRILL 11:30 - 12:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE/2:30-/2:45

DEPTH INETHES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0-0.8m: No return 0.8-3.2 TILL (Dhibeugan - fine dark brown sa metrix - Cobbles: 85 & Volcanus 152 Granities 3.2m. BEDROCK - cofacu: dark green - fine-grained; very seld to 3.8m. - endence of strain - trace Fe-staining als fractured surfaces v 22 questy vining (sta - at 3.8m, intersected: Carbonete view (calculate - 12. payrite below 4.1m. 4.7m EOH EMEE	Sedimento istore istore istore istore istore	

. A	CH 9-158 210
DATE Nec. 12 1985	HOLE NO CW 85-158 LOCATION Serverly 210 GEOLOGIST Educator DRILLER Surity BIT NO. 6667573 BIT FOOTAGE 25.5-35.5m
	GEOLOGIST CALLED DRILLER ALLEGIA BIT NO CERTS BIT FOOTAGE 25.5-35.34
SHIFT HOURS	MOVE TO HOLE 12:30 -12:45
то	DRILL 1:00 - 2:30
TOTAL HOURS	MECHANICAL DOWN TIME 12:45-1.00 (Change full injector), again
	DATELLING PROBLEMS - down 1:40 - 2:20 Suel instant
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 2:30 - 2:45

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
3 4 5 6 10 10 11 12 13 14 15 18 19 19	0-3.4 m. Degaries 34.5.9 m. SEDIMENTS (Ojibury) SMUSICIAN: grey grety clay lumps 5.9-7.8 m: Till (Chilosogamen) - Lene grey sand matter - Cottles: 10 % Vikanius / Salmulo 10 % Cay lumps 7.8 m. BEDROCK. Colour: black, with veins (50%) of cream to grey esteured wheat (aphentic) - buy fine - greined - kighly schitiste - transpyith - Shafie Volcanie? 10.0 m E.O.H. OTE.

DATE (10 19 55	HOLE NO CUEST-160 LOCATION Formerly have 67
DATE TALLED 19 ED	GEOLOGIST SLINITHUM DRILLER G-HOLY BIT NO CRETHT BIT FOOTAGE 58.3-7643
SHIFT HOURS	MOVE TO HOLE 9:30 -> 10:00 -
TO	DRILL 10:00 -> 10:15
TOTAL HOURS	MECHANICAL DOWN TIME
***************************************	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 10 15

DEPTH IN METRES GRAPHIC LOG	DESCRIPTIVE LOG
HATERWAL 19 19 19 19 19 19 19 19 19 19 19 19 19	0-7 2.2 No Return 2.2-7 4.5 <u>Sedinants</u> (Ojitmay) Clay 2.2-3.7, gray, smooth, soft Sand Self-3.7-74.5, gray, fine and
17-18-11-11-11-11-11-11-11-11-11-11-11-11-	6.0 EOH.

10 10 00	HOLE NO CW-85-159 LOCATION Firmerly 211 GEOLOGIST Edward DRILLER Weith BIT NO 166-7513 BIT FOOTAGE 35.5-38.50
DATE NULL 19	HOLE NO CONTROL LOCATION S CONTROL OF THE CONTROL O
52	GEOLOGIST TOUTH DRILLER WILLIAM BIT NO CEEP 13 BIT FOOTAGE 35.5- 38.50
SHIFT HOURS	MOVE TO HOLE 2:30-2:45
то	DRILL 2:45 - 5:45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS 5:00-5:25 want for water
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 5:45-6:00

		*New Bit
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	The state of the s
1- 2-A	0-1.7 m Rigaries 1.7-2.7 Till (Chibougamen) - fire grey sand matter -cobbles: 901. Volcomid Sedimen 1076 Granites	* But burle @ 3.0m * New But C6675.14.
5 6 6 7 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19	2.7 m. BEDROCK. - Cofour; dark green; chlorities - sugary texture, five - medically of chief of trace pyrite - trace great stringers - bery hard drilling; poor return - Mafic Volcanic 4.0 m EOH.	un

DATE 10 18 5	HOLE NO CUE 83-160 LOCATION Formerly hale 67
DATE STATE TO SE	GEOLOGIST SLING DRILLER G-HOLY, BIT NO CRETHT BIT FOOTAGE 58.3-164.3
SHIFT HOURS	MOVE TO HOLE 9:30 -> 10:00
TO	DRILL 10:00 -2 10:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 10 15

DEPTH METRES GRAPHIC LOG INTERVAL 8AMPLE NO.	DESCRIPTIVE LOG
1-	0-> 22 No Return
3	22-74.5 <u>Sediments</u> (Ojitmay)
4-33	Sand Silt - 3.7->4.5. gray, smooth, bold
5 4. 5,	4.5->4.9 <u>Till</u> (Chibougaman)
7	- gray, fine sand matrix with
8 1	7596 sectionents and voltanics
10	25% cyantic
11 -	4.9-> 6.0 <u>Bedrock</u> (Febric Volcanie) - dark gray to cycan
13	- massure
14	- renj fino grained - re 190 questro
16-	LO ECH.
10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
19 1	

DATE DOLD 190 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	MECHANICAL DOWN TIME	Mucko	ut tank) 2	T FOOTAGE OF T FOOTAGE OF TO NEW location of the page 1	mere cation.
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG				
2- -	0-3.5-Organics 6.5-6.8m-Sediments(Ojibna clay 1914; Smoot compact. 6.8m-Till (Chibongamau) fine gley Sandy me -80% Volcanicol Sediments -20% Granitics -Cobbles. 10.6m-90% V/S 10% Gr 14.0-14.5m-Sand -Grey 14.5m-Till as Described. 210.6m 14.6m-Bit Bloke **New bit #C8674. 15.0m low % fines 15.tin-Till as described. 14.5 m.	whix Z			

SHIFT HOURS	MOVE TO HOLE	BIT NO.		GE
TOTAL HOURS CONTRACT HOURS	DRILL			
			Pag	40 Zofz
GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
A 10	20.7 m Till-Gork VIS 20% Gr.			
3 43	23.4-23.5 m - Gravel: 70% V/S 30% Gr	tel.		
1	-coase sand to i 23.5m-Till as 20.7 m			
3/2/3	low % matrix 23.6 m- Boulder (mat.			
14	23.8 m - Till as descu @ 20.7 m 95% V/S	ibed		
16	97% Gr. 5% Gr. 26.5 m- low % fines	,		
	267 m- Till as described	10		

23.8M.

27.8m Bedrock (Dicita)
-medium gramed.
20% Hornblende
30% akarta
40% Plajioclase
5% Orthoclase
5% Biotit

29.3m E.O.H.

31-

32-33-

34-

75-

96 37-

38-

-79-40կամամումաակամամամամամամամամամա

DATE DEC 11 1985	HOLE NO CW-85-162 LOCATION Formerly CW-85-130 GEOLOGIST Strank DRILLER HOW 9 BIT NO CB67472BIT FOOTAGE 29.3-43.1 MOVE TO HOLE 7:30-8:45
SHIFT HOURS	MOVE TO HOLE
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	OTHER Set up dr. 11 8:45-9:00 MOVE TO NEXT HOLE 10:30 - 11:15

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO:	DESCRIPTIVE LOG	To proper year.
3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0-1.5 m - No Return 1.5-8.5 m - Sediments (Ojubnar) 1.5 m · beige clay, qrity, soft 2.5 m · grey silt 5.0 m · grey, smooth, clay balls. 8.5 m · Till · Chibougaman) -fine, grey, sandy matrix. -febbles 70% Volcanics Sediments 30% Granities 10.5 m · Cebbles 60% V/S 40% Gr. 11.2 m · 80% of Sample. 12.2 m · No Return -Pulled Rods -Bit Plugged. 12.0 m · Bedrock - Very Dark green Black - Trace disseminated Pyrite - foliated - chloritized - Very fine grained 13.3-13.7 m · Hematite Staining along tractures. 13.4-13.6 m · Quarty vein 13.0 m E. O. H.	

SHIFT HOUR TOTAL HOUR CONTRACT HE	S MOVE TO HOLE	PHY BIT NO CBETTED BIT FOOTAGE 43.1-751.8
DEPTH IN METHES GRAPHIC LOG INTERVAL SAMPLE		
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0-730 Organica 30-756 Sedimenta (Ojihuay) Clay: glay, seft, smooth 5.6-> 16.5 Till (Chilougamou) - gray: fine sord matrix with pebbly clasts composing of 7590 sediments and volcanics 2590 granitic - 8.7 pulled rods "rewrit! - gray, gritty, seft interleded day Ird. 13.1-> 13.2 - composition of pebbly clas is 8090 sediments and volcan 3010 granitic at B.7 to 16.5-> 18.0 Edvock (Metasdine - dark green - very fine grained - massive - very fine grained - massive - 2190 dissenirated py	Lesson de la

DATE Dec 11 1885	HOLE NO CW-85-164 LOCATION FORMERLY CW-85-128 GEOLOGIST Strank DRILLER HOWE BIT NO CB61473 BIT FOOTAGE 45-23.7
DATE DCC II 1902	GEOLOGIST Strank DRILLER Howe BIT NO 6667473 BIT FOOTAGE 45-23.7
SHIFT HOURS	MOVE TO HOLE 12:45-1:00
TO	DRILL 1:00- 200
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	DTHER
	MOVE TO NEXT HOLE 2:00 - 2:30

3 1 1	0-2.8 m Organics	
2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3	2.8-5:8n-Sediments (Ojibna) -grey, compact, smoo 5.8m - Till (Chibougamau) -febbles 60% Volcanio 40% Got an -fine grey sandy mat 7.0 m - Sand - fine, grey 7.5 m - Till - cobbly -fine, grey-beise San Ly matrix -60% VIS 40% Got. 8.1m-low percontage of fines 8.3 m - Till as described 6.75 m. 8.8m-Matrix Predomina -medium grey-s sandy matrix. 9.8m-Till as described 8.7.5 m -matrix-fine, grey sandy. 10.5 m - 80% VIS 20% Got 11.7 m - Occasional grey grin clay lumps. 12.5 m - GCL - 20% of Sample 12.7 m Till as described an 10.5 m. 90% VB	th clay s/Sediments itizs rix ant belige
~~7 IF I	13.2m-Bedrock - Hedium Dark gre - fine grained - fyriteldisseminater - Trace Quartz - Caib - foliated - He tasediment (Tn. 14.2m E O H.	1) ~ 2% onate stringers

DATE	HOLE NO COURS-165 LOCATION FRANCISCO NING 137 GEOLOGIST & TURPHING DRILLER G. Havy BIT NO CREATURE BIT FOOTAGE 33.7 -7 31.5 MOVE TO HOLE 2:00 -7 3:30
SHIFT HOURS	MOVE TO HOLE 3:00 -7 3:30
TO	ORILL 2:30 -> 3:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 3'30

In dith Iroids wood.

DEPTH METRES GRAPHIC LOG LOG NO. O DO DESCRIPTION O DESCRI	
Cay - 0 - 7 3.1 Sidined (Oybray) Cay - 0 - 7 3.1 Lawn, gaily, sett 1.3 - 3.1 Lawn, smally, soft 1.3 - 3.1 Lawn, smally, soft 1.3 - 3.1 Lawn, smally, soft 2.1 Lawn, smally will - gray, fix and matry will publy closts composing of 60% sidned and voltanear 40% granitar - 5.3 - 7.5 to same as alox will a nidum sand matrix - 6.3 - 64 - Showy Lill, no fixe medium to coars sand matrix - 6.3 - 64 - Showy Lill, no fixe medium to coars sand matrix - 6.4 - 7 7.5 Beduck (Melaschmeth) - dark green to black - very five graned - dhoulinged along factures - 2.190 quarty	

DATE DECIL 1985 SHIFT HOURS TO TOTAL HOURS CONTRACT HOURS	HOLE NO CW-85-166 LOCATION GEOLOGIST Strank DRILLER HOP MOVE TO HOLE 3:30 4:00 DRILL 4:00-5:45 MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER 5:45-600-Hore Nodwell, 6 MOVE TO NEXT HOLE Hole drilled in Dita	:00-7:00 Water (7473 BIT FOOT	7:30 Travel
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
1	-1.8m-Clay - Light orown, 9 8m Till (Chibougamau) -fine, gily-beige, 50 matrix -febbly-60% Volcanics/ Sediments 40% Granitic. 2.8m-Cobbly-70% V/S 30% Grmediina sand to Goobles. 5.5m-Till as described @ 1 7.3m-80% V/S 20% Grmatrix-fine, gier, 9.8m-Boulder (Granite) 10.3m-Till as described 4.3m -90% V/S -10 //6 Gr. 13.7.13.8m-Matrix Pledomin 14.8-15.5m-Gravel -50% V/S -50% Grcoarse sand to Pebbles 15.5m-Till as described 2.8m above. 15.8-16.0m-Sand bed -fine, beige 16.0m-Till as described 15.5m. 16.2m-Smooth Clay Lux -occasional -grey.	2.3m. sandr e nant		

SHIFT HOURS MOVE TO HOLE				
	MOVE TO NEXT HOLE		Dage -	2.5
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG			
21 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	20.3 m Bedrock -Black in colour -a phanitic - Trace dissemi Pyrite - some foliation - magnetic 20.7-21.3m- augitz-carbon 21.3 m- E.O. H.	nated		

DATE DEC 12 19 85	HOLE NO CW 65 - 107 LOCATION Former L. hole 105 GEOLOGIST 25 TUCKING DRILLER G 10016. BIT NO CE 67474 BIT FOOTAGE 0-74.5
	MOVE TO HOLE 730 -7 8:00 BIT NO CENTURE BIT FOOTAGE 0-74.5
SHIFT HOURS	
то	DRILL <u>\$.00 > \$:30</u>
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER travel 7:00 - 7:30 by truck
	MOVE TO NEXT HOLE 8:30

Rew Bit

DEPTH MEIN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
DEPTH METREE OF THE SAMPLE SAMPLE OF THE SAMPLE	DESCRIPTIVE LOG 0-70.9 (10 Return) 0.9-73.0 Till (Chilougaman) -0.9-1.8- Dickingd, fine sand with petitly chasts compassing of 60.90 sectments and volcanies 40.90 granitic -1.8-73.0 - san as 0.9-1.8 errept gray ling. 30->4.5 Bedrock (Metasadinant) - dock group to black - very fine grained - schieters, thirty folketed - microcerus - contends struiger - 3.0->4.3- oxidinal - magnetic 4.5 E.O.H	
18-1-19-1-19-1-19-1-19-1-19-1-19-1-19-1		

DATE Dec 12 1885	HOLE NO CW-85-168 LOCATION FORMERLY (W-85-123 GEOLOGIST STREET DRILLER - LONG BIT NO CB 47-9 BIT FOOTAGE 45-31.9 m
SHIFT HOURS	MOVE TO HOLE _8 50-7.00
TO	DRILL 9:00 - 4:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER 11:00-11:45 - sepair shifting fork on P.T.O.
	MOVE TO NEXT HOLE 4:00:415

page 1 of Z

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
3 3 4 5 5 6 7 7 8 8 7 9 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0-6.7 m- Organics (ojibway) 05-6.7 m- Sediments (ojibway) 05 m- Clay- grey, Smooth 3.4 m- Silt- grey - interbedd. With clay ns describ- 20-5 m. 6.7 m- Till (Chibougamau) - fine, grey, 5 and y matrix - flobles 70% bloomis Kedim 30% Gramitics 8.1 m- Cobby 80 % blo 20% GT. 8.2-8.4 m- Boulder (Mafic Videa 8.4 m- Till as described 8 3.16 - lon % fines 9.1 m- Gravel-Coarse Saind to Cobble Size 70% blo 30% Gr. 11.4 m - Till as described 8 8.1 m. 90% blo 10% Gr. 16.3 m- Giey, gisty clay lumps - occasionial Clast 100% of Sample 16.7 m- Till as described 6 11.9 m. 16.9-17.6 Boulder (Grandlor) 17.6 m- Till as described 6 17.7 + 1.8 m- Boulder (Vicina) 17.8 m- Till as described 6 17.6 m. 19.7 - 19.8 m- Boulder (Mafic Viciona) 19.3 m- Till as described 17.8 m. 17.8 m- Till as described	ed ed ed eats	

SI	HIFT H	HOURS HOURS	-	HOLE NO GEOLOGIST MOVE TO H DRILL MECHANICA DRILLING F OTHER MOVE TO H	HOLE	TIME	ER	BI			, 2 of	
METRES	GRAPHIC	SAMPLE NO.		DES	CRIPTIVE	LOG						
21- 22- 23- 25- 25- 26- 27- 28- 29- 30- 31- 35- 35- 35- 35- 37- 38- 37- 38- 38- 38- 38- 38- 38- 38- 38	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 0 4 2	22 23: 2	0m-Se 6m-Ti	- dimente clay - solo Gr clay - solo Gr clay - solo Gr clay - solo Gr fine - solo Gr clay - solo Gr fine - solo Gr fi	k? 19,24 18,27 18,20	sandy um grace -40% e-35% de-50 zolo ystals[]	red.	ace			

s	HIFT	HOURS TO	HOLE NO CID-85-169 LOCATION	BIT	NO CBL	7474 BIT 7475	FOOTAGE 3	81.9-750al 0-7-4.3	
0	ONTR	ACT HOU	NAS ORCENT THER TOURS OF THE SAME OF THE S	ek)					
		1	New Bit				Pagi	10FZ	
METRES	_	SAMPLE NO.	DESCRIPTIVE LOG						
2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 18- 19-	Δ· Δ·	S 2 2 8 8 8 8 8 8 8 8	0-71.8 <u>Organics</u> 1.8-75.8 <u>dediments</u> (Oybray) Clay-1.8-73.0 - Irain, gritty is 3.0-74.7-, gray, smooth, of Aill fland - 4.7-75.8 -gray, fine sand with Irds of gray, soft, smooth clay interledded. 5.8-73.4 <u>Tell</u> (Chibrougaman) -gray, fine sand matrix with petrify clasts confessing of 75% sediments and volcanic 25% granitics. -11.2-7182-collely, with a lawer percent age of fine sand matrix, composition 85% sediments and volcanics 15% granitics. -13.2-713.4 · Ieds at gray, gritt compact day interledded. -18.2-719.8 · Sans as 112-7182 except petrify clasts and normal percentagy of fines. 19.8-7214 · Loulder (guntle	ty n					

TOT	TE	GEOLOGIST	TIME	BIT NO.	BIT FOOTAGE	
DEPTH NETRES	GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIV				
1 1 2 3 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 11 15 16 17 18 11 18 18	10	- dauk gray - massure - very fine	to dark green	VCane		

DATE Dec 13 1985	HOLE NO CW-85-170 LOCATION FORMALY CW-85-135 GEOLOGIST STRANK DRILLER HOWS BIT NO CB 61475 BIT FOOTAGE 4.3-18.4 m
57.12	GEOLOGIST TRANK DRILLER HOWS BIT NO 18614 15 BIT FOOTAGE 4.5-18.4 M
SHIFT HOURS	MOVE TO HOLE 12:00-3:15
	DRILL 3:15-5:45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER Travel 615-7:00
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
2-1	0-1.0m Organics 1.0-5.7m Sediments (Ojibway) -Clax-grey, smooth, sol 3.5m-clay-compact, gritty, grey 5.7m-Till (Chibou gamau)		
4 5 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-fine grey sands matrix - Pebbles-60% Volcomics/ Sediments 40% Gr. 7.3 m- Cobbly - 20% VIS 30% Gr. 7.8 m- Matrix Predominant		
7- 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.8 m - Matrix Fredominant 8.2 m - Till as de = cribed @ 7.3 m. 8.9 m - Gravel - Cobbly 60% V/S 40% Gr. 9.1 m - Till as described @ 8.2 m. 12.3 m - 90% V/S		
12-04	12.4-12.7 m-Boulder (Intermedial motic volcanic) 12.7 m-Till as described @ 11.3 m 95% VIS		
15	5% Gr. 129m-Boulder (Mafic Volkomic) 13.0m-Till as described @ 127m -Very little Matrix. 13.1m-Bedrock-Dark Greenvery fine grain		
18—	to aphanitic -Trace dissemina Pyrit - very hard dilli - foliated	rted	
20-	14.1m-E.O.H.		

	ATE D& 14 1	HOLE NO CW-85 17) LOCATION GEOLOGIST 27 TURKING DRILLER 6-1 MOVE TO HOLE 7 3 15	Torm	ce o 1477	FOOTAGE .	0-73.5
_	TO	DRILL 8:15 -10:00				
10	TAL HOURS	MECHANICAL DOWN TIME DRILLING PROBLEMS				
CC	ONTRACT HOU					
		MOVE TO NEXT HOLE 10:00				
		#V6r	Bit [*] 11 Bit [*]	*Nun Sub*		
DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG				
		0-71.3 <u>No Return</u>				
2-		1.3-> 2.4 Oreganis				
3		2.4-78.1 Sodiments (Ojihray)				
4-	**************************************	Clay-24-8.1 gray, one	oeth)			
6-1		8.1+7 9.7 Tell (Chilicungaman	ł			
7-		- gray. fine sand mate with public closes con of 75% sediments and so	uv			
8	A: #	of 15% sediments and so	Legues			
9	A . A . E	2590 granitis				
10-	****	9.7-7 11.4 <u>Dravel</u>	udianies			
12-	Δ. Δ.	65% sediments and o 85% granitai with coows sand matrix	6.			
13	Δ.	11.4 -> 16.8 <u>Till</u>				
14-	Δ . Δ . Δ . Δ . Δ . Δ . Δ . Δ . Δ . Δ .	some as described from 8.1-79.7	υ			
16	A . E 05	13.3-7150 coarse sand	1			
17	06	macay bor & Lest " ober kellig - 0.51	3			
18		15.0 - June 1 Barl 1 Bord 1.51	d sill*			
20		16.8-18.5 <u>Bedricek</u> (Metasedine	nt Greyn	ack:?)		
		- donk green - Herry Johatech	,	, ,	i	1 1
		- very fire grained - chloringed				

18.5 E.O.H.

D. 14 OF	HOLE NO CATES - 172 LOCATION FORMERLY Hele # CH-85-138 GEOLOGIST Strank DRILLER Horig BIT NO CBC7477 BIT FOOTAGE 3.5 - 16-6 m
DATE Dec. 14 1985	GEOLOGIST Strank DRILLER Horig BIT NO 1817477 BIT FOOTAGE 35-16-6 m
SHIFT HOURS	MOVE TO HOLE
TO	ORILL 11:00-12:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE _12:15 - 12:45

ME GRAP LINTE	PTIVE LOG
25m-3 68m-Till 68m-Till 8-00 11.6n-81.0 9-00 100 11.6n-81.0 9-00 100 100 100 100 100 100 100 100 100	dinats (Ojib wax) ht beige soft gritty lary soft gritty clax (Chibou ga men) (Inie grey sand) (matrix obbly 90% Volcanics Sediments 10% Grantiles drock. Black recy fine gazined chation resceninated prints 1% alcite 64ebs - Trace (calcareous) metased iment (Greywacke)

DATE Day 14 19 85	HOLE NO CU! 55-173 LOCATION formuly hole 137 GEOLOGIST 25 / MUKHIGIPHILLER 6 Hour BIT NO CENTY 177 BIT FOOTAGE 16.16-7 35.4
SHIFT HOURS	MOVE TO HOLE 1345 -7 13:45 CV
то	DRILL 13:45 > 1:45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 1:45 -> 3:30.

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG			
2 45 X 6 X 6 X 6 X 6 X 6 X 6 X 6 X 6 X 6 X	2.4-77.7 Sediments (Ojihway) Selt Sand - 24-7.7 -gray, very fine sand matrix with lade of self, smooth day interleded. 7.7->8.7 Till (Chilougaman) -gray, fine sand matrix with public clasts compasing of 75% sediments and volcanus 35% granitics. 8.7->11.0 Bodrock (Metardiment Greywar - dark green to black - very fine grained - foliated - chloritized along fractured surfaces. 11.0 m E01t.			

D. 11 A-	HOLE NO CW-95-174 LOCATION FORMERLY Hole # 14-95-187
DATE Dec 14 195	HOLE NO CW-95-174 LOCATION FORMERLY Hale # CW-85-187 GEOLOGIST Strank DRILLER HAWE BIT NO SECT417 BIT FOOTAGE 35.4-30.4n
SHIFT HOURS	MOVE TO HOLE 1:45-3:30 **
TO	DRILL 330-6:00
TOTAL HOURS	MECHANICAL DOWN TIME 5:15.5.45 Stepast Shifting folk on PTO.
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER _ 5 45 - 6:15 - Clack work Till MOVE TO NEXT HOLE _ 8:15 - 8:45
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG			
3-3-4-6-1	0-0.7m-Organics 0.9-2.4m-Sed iments (Ojibwa) -Clay-5moth grilly beine 2.4m-Till (Chibougamus) fine beige samely Matrix -Pebbles (OXIDIZED) 3.2m-Matrix-fine, grey-beige -Pebbly-Go'l Volcanics Sediments 40" Grandian			
6	40% Granitics -still slightly oxidated 4.2 n - Boulder - (Greywacke) 4.5 m - Bit Bloke *New Bit # CB67478* 4.8 m - Stoney Till 80% VS 20% GI. 5.3 m - Bedrock -fine to medium grains -20% Calcite (Calcareous) -fine grained -chloritic			
13 14 15 16 17 18 19 19 10 10 10 10 10 10	- salt-Peppar appearance quarts-5% - Very 5.ft - Metasediment (Greynache) 6.8 m- E. O.H.			

1	101 - 10 Col-86- PK 1001-101 for mile Col-188
DATE 1026 1985	GEOLOGIST Wilder DRILLER Jung BIT NO C627478 BIT FOOTAGE 23-7.3 M.
	GEOLOGIST BUT DAILLER BIT NO. 1077478 BIT FOOTAGE 2.3 7.3 M.
SHIFT HOURS	MOVE TO HOLE 8:15. 8:45
то	DRILL 8:45-9:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER TARKE 7:00-8:15 . 1/2 BA WC. MOVE TO NEXT HOLE 9:30-10:15
	MOVE TO NEXT HOLE 9:30-10:15

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
2 4 6	0-11 Peretura 1.1-1.6 m Schimente (Sijahury)
3 02	1.6-2.4m. Tell (Chibaugaman)
6	1.6-2.4. fine beige sand matrix - petitis - clast composition:
8-	75% Voliane is Sedement 25% Granties @ 2.2m Seige, soft smoot Olay interbedded.
10-	24m BEDROCK (Metandinent)
13	- dark green colour - very fine grained - thinly foliated
15-	- chlorityed 2.5-26m quart vein intersected
18-	2.4.3.1 m oxidized
19	5.0m. E.O.H.

DATE Dec 15.49 85 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO CW-85-176 LOCATION FOIR GEOLOGIST STRANK DRILLER HOWG MOVE TO HOLE 9:30-1015 DRILL 10:15-5:15 Dec 16 9:45 MECHANICAL DOWN TIME DRILLING PROBLEMS @33.5m-Bit Plugs OTHER 6:00-6#5-Travel MOVE TO NEXT HOLE 10:00-10:15 Dec.	spd. 12.30	BIT FOOTAGE C	
DEPTH METHES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG			
3.0	3.0 Organics -4.1m Sediments (Ojibway) -Grey, smooth, soft clay Im-Till (Chibotagamau) -fine grey beige sand matrix -Cobble -80% Volcomies Sediments 20% Granities			

SH TO	TAL	HOURS HOURS HOURS ACT HO	_	GEOLOG MOVE 1 DRILL _ MECHAI DRILLIN OTHER	NICAL DO	WN TIME	DRILLER		Bi1					
METRES	SRAPHIC LOG	SAMPLE NO.			DESCRIPT	five Lo	G				۶ 	age -	f a	<u>></u>
21 22 23 24 25 26 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29	040 9090 909 90 90 90 90 90 90 90 90 90 90	13	2	9.5 m	- 95 - 5% Pulle 16 - R At	trix. % VIS Gr. d 100 Supe to 1 Diffice More W Bit	ds-nie ds-noter vater d Holl 13-54 13-54 13-64	grey c Circly add ed ill le 15 t 6748 b. 3674 310d Lost	ded # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t agea				

DATE 1985 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO CW-85-177 LOCATION SE GEOLOGIST STICKLE AND DRILLER STEWER MOVE TO HOLE 10:00 - 10:15 DRILL 10:15 - 11:30 MECHANICAL DOWN TIME 9:30-10:00 DRILLING PROBLEMS OTHER TRANS 8:30-9:00 (truck) MOVE TO NEXT HOLE 11:15-	Primere sa; 9:00-9;	482 BIT FOOTA	
METRES GRAPHIC LOG LOG SAMPLE NO.	DESCRIPTIVE LOG			
1	2-12.3 m TILL (Chibacyamacs) - fine to medium sand matics (oxidized) - pettles; clast composition: 75.1. Volcanies fedements 25.2. Examilies Below 6.2 m, grey-beige matrix 76-11. 4 Smid lens, grey 76-82 medium to conser 8.2-9.7 fine 9.7-11.4 medium to conser 11.4-12.1 m Boulder (Mexic Volcan guesty vein @ 11.8 m. 12.1-12.3: Return to Till - green fine sample matrix (minimal amous 85.2. V/S - costly: 15.2. GR costly: 3m. BEDROCK (Oletasediment) - dack grey to dark green - thinly foliated 4.2 m E.O.H.			

DATE DEC 17 1985	HOLE NO CW-95-178 LOCATION FORMERY CW-85-192 GEOLOGIST Strenk DRILLER HOWA BIT NO CB67402 BIT FOOTAGE 4-2-30-1
DATE DE 1900	GEOLOGIST Strank DRILLER HOWA BIT NO CENTAGE H.2-30.1
SHIFT HOURS	MOVE TO HOLE
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS 1215-12:30 Remove let flow prates Dung.
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE _ 1:45 - 1:45

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
2 3 3 4 4 6 4 6 7 6 7 6 6 6 7 6 7 6 6 7 6 7 6	0-0.5 m Organics 0.5 m - Till (Chibonga man) -fine beige sandy media: -feebly 60% Volcanics Schmits 4th Granities -OXIDIZED. 1.1 m - Cobbly -70% VS 30% GI. 0.5-4.5 m Poor Return. 5.0 m - Matrix - fine grey-beige, sandy. 7.5-7.8 m - Boulder (Matric Wolcanic) 7.8 m - Till as described @ 5.0 m 12.0-13.5 m - Poor Return. 14.3 m - 90% V/S 10% GI. 14.7 m - Bedrock -fine to median grained - median to dark green - Carbonate Stringers 1% (Calcoreous) - Trace Printe crystals (Imm) - Metasediment 15.9 m - E.O.H.	

DATE Will 1985	HOLE NO. CW-8-179 LOCATION Energy (W-189. GEOLOGIST HITCHING DRILLER & HOUTH BIT NO (641483 BIT FOOTAGE @ 55m MOVE TO HOLE 1:45- 2:45
то	DRILL 2.45-3 30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	DOWN 3:30-6:30 drill revise
	MOVE TO NEXT HOLE _ 4:30 5:30 merce to pred, ready for Weat
	MOVE TO NEXT HOLE 4:30:5:30 mere to good, ready for float 5:30:6:00 tracks (truck)
	NEW BIT

DEPTH METHES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0-0.7 Paretura 0.7.3.5 BEDROCK (Metgediment) - dark green colour - thinky foliated; slightly scheduse - very fine-grained - guart vieining - calcareares - tarnished gryrite seeing	_
10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	35 m ECH	

Λ	(11.8°, 180) P 1 212
DATE ALL B 1985	HOLE NO COUNTY LOCATION _ Secretly and
DATE 750000 19 02	GEOLOGIST Edward DRILLER Newth BIT NO CB675/4 BIT FOOTAGE 1.0-15.0m
SHIFT HOURS	HOLE NO CW-8-180 LOCATION FOLKERLY 21-2 GEOLOGIST Edwards ORILLER Sucetto BIT NO. 66/75/4 BIT FOOTAGE 1.0- 15.0m MOVE TO HOLE Track 7:15-7:45.
то	DRILL 9.00 - 10:30
TOTAL HOURS	MECHANICAL DOWN TIME Reg Service 7:45-9:00
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0-0.6 The seture 0.6-37 The (Chibergaman) - fine beg sand mattex (Chidged) - pettles:501. Vilcanies Sediments 501. Januties (Lorabed rode have to get enough sample) 37-44m Bour DET (Make Vilcanie) 44-9.2 Till; fine beige sand matix - cattles:502. ys 501. Gr 9.2-9.4 Bour DET (Mayorite) 9.4-12.5 Same heel, as described at 4.4m. 12.5 m. BEDROCK. Cafeur; dark green - very fine-grained - highly selectors ~12 greety stringers - very soft diviling - Mofin Vilcanie. 14.0 m EOH.	

DATE ARC. 13 1985	GEOLOGIST Educado DRILLER ACCUERTO BIT NO CAGTS14 BIT FOOTAGE 15.0-36.0m
SHIFT HOURS	MOVE TO HOLE 10:30 -/:00
то	DRILL 1:00 - 2:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE _ 2:30 - 3:15

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
20 - 5% gripute - Magie Volcanie.	1	0.0.5 No setum 0.5-44 TILL (Chibaugaman) - fire begg sand matige - Got dayld) - petfler - 50% Vicumes / Ediment 4.4-48 Bounder (Juanitie) 4.8-13.1: Till (Chibaugaman) - fine large sand matige - loofbles: 50% VIS 50% Gr. 13.1-13.5 Bounder (Juanitie) 13.5-14.8-same fell, as described 60 4.8 m. 14.8-17.2: fine grey sand matige - bottles: 60% VIS 40% Gr. 17.2-19.7: coeffles: 75% VIS 25% Gr. 18.9-19.7: eccasional soft grey grity clay lumps for the above fell 19.7m. BEDROCK - cofaux: black - fine great, slightly schiber I well developed foliation 15% great / Cerbonete viewing - 5% someth	

DATE Alec 13 1985	HOLE NO CW. 85-182 LOCATION Formerly 64 GEOLOGIST Edwards DRILLER FLUETS BIT NO. CK67515 BIT FOOTAGE 0-6-5M. MOVE TO HOLE 2:30-3:15
SHIFT HOURS	MOVE TO HOLE _2:30 - 3:15 DRILL _3:15 -4:30
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	OTHER 4:30-5:30 for water. MOVE TO NEXT HOLE 5:30 - 6:03 Travel.
	MOVE TO NEXT HOLE 5:36 - 6:03 Trayel
	* New Bit *

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1	0-1.0 Seganics 1.0-4.8 TILL (Chibacyamau) - fine beige sand matrix [(oxidized) - cobbles: 657. Volcanics / Sediments 357: Shanitics - poar reture 4.8 m BEDROCK. 4.8-5.1 dark grey colour - very schedose; oxideg 5.1 5.7: Shear give of duil grey slivels of kelistle 5.7: more roch chips than clay (dark grey, very oxidized, way soft) - showed evidence of straining - appears sedimentory, - grotaty a very alther schistose melice volca 6.5 m E.OH.	ed .

10, 14 00	HOLE NO (W-8-183 LOCATION Farmerly 165 GEOLOGIST Edwards DRILLER Alwith BIT NO (E67515 BIT FOOTAGE 65-19.2m MOVE TO HOLE Trued: F.00 - 8:15, marc 8:15-8:45
DATE 1466/1/19 \$	GEOLOGIST Edwards DRILLER ADWITTE BIT NO CEG 7515 BIT FOOTAGE 65-19.2m
SHIFT HOURS	MOVE TO HOLE Travel : 7:00 - 8:15, mare 8:15- 8:45
то	DRILL 8.45-9.45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 9:45- 10:00

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
3	0.5-5.1 Sedine WS (Siebwan) SAND: medicin-garried - beigh, operated - beigh, operated - selection of faither 5.1-11.2 Tele (Rhibaugamen) 5.1-8.0 fine beigh sand making publikes 50% Williams/ salvants 50% briantics (limital return below 6.0 m washed words to retain energy sample) 80-9.4 Gamen ded - crasse, pettly 9.4-10.8: Tell same as described @ 5.1 m. 10.8-11.0: Camea 11.0-11.2: Tell, fine grey/beigh Sand matrix Pettle: 70% v/S 30% of: 11.2 m. Bedock - coloured dark green - chlochiged - fine granned, very selector 15% fe steering along schietosety sheferes - trace grant thingers 12.4 m EOH.

DATE ALC. 14 19 8	HOLE NO CW-85-184 LOCATION Farmerly 16/19 GEOLOGIST Edurando DRILLER DULETTE BIT NO E8 7515 BIT FOOTAGE 19 2-32 4
SHIFT HOURS	MOVE TO HOLE 4.45 - /0:00
TO	DRILL 10.00-2:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS 11.00-12:00 wait in water
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 2:15.3:45
TOTAL HOURS	MOVE TO HOLE 9:5-10:00 DRILL 10:00-2:15 MECHANICAL DOWN TIME DRILLING PROBLEMS 11:00-12:00 wait for water OTHER

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
3	6-0.4 No peters 0.4-4.2 SEDIMENTS (liptury) CLAN: leage, slightly guity clay, subject 4.2-13.2: The (Relangement) 4.2-6.1: Insuburg sand matrix pettles: 50% branches 6.1-6.8: Some had (fine; gray beigs) 6.8-74. tiel beige metrix (finesand) cotalio. 50% V/S 50% br. 7.6-7.8: Bounder (branches) 7.8-8.0: bame till as discreted @ 6-8 m. 8.0-8.4: Geomet bed -puttly 8.4-11.5: Till fine beige sand matrix cottle: 75° V/S, 55% br 11.5-13.2: fine gray Sand matrix puttle: 50% V/S 50% Gr -eccasionel gray graty clay lumps 13.2 m. Bedrack Cofaux: dark gray - fine-grained - mildly schestere ~ 2% grang /carbonete	

- Mafin Volcanio

	HEVERSE SINGULATION DRIVE HOLE LOG
DATE LOCAL 1985 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NOW 85-185 LOCATION Fremely 170 GEOLOGIST Edward DRILLER Dwelle BIT NO 6867517 BIT FOOTAGE 0-40 MOVE TO HOLE 2:15-3:45 DRILL 3:45-4:15 MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE 4:15-4:30
	* New Bit *
HES G G J. E	

DEPTH METNES GRAPHIC LOG INTERVAL BAMPLE	DESCRIPTIVE LOG	
3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	D-D.5 No return D.5-1.5 SEDIMENTS (Ojeburg) - sand: Line beige (ruy oxidyed) - feet cottle 1.5 m BEDROCK. Cofour: Lack green - chlaritie - medium-grained - beig schistese ~ 10% quarts/Carbonate Verining - Mafie Volcanie 40 m E.O.H. OKE.	

DATE 1/2 14 19 85	HOLE NO (N-85-186 LOCATION frimesly 1189 GEOLOGIST Edurate DRILLER SWEETE BIT NO (867517 BIT FOOTAGE 40-7.5m
SHIFT HOURS	MOVE TO HOLE 4:15-4:30
	DRILL 4.30 - 5.00
TOTAL HOURS	MECHANICAL DOWN TIME DRILLING PROBLEMS
CONTRACT HOURS	OTHER 5:00-5:30 Clean tank;
	MOVE TO NEXT HOLE 5:30-6:80 start move to next hale

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG
1	0-0.6 Organics 0.6-2.0 Till (Dilougaman) (not enough return to sample) 0.6-15- fine beig sand matrix pebblis: 50% Volcaning Samuel 50% plantes 1.5-2.0. sery colly fill 95% VIS 5% G. - minimal dark grey brown Sand matrix 2.0 m. BEDROCK. - derk green-black colour. - medium - grained - moderately schistoric suckly developed foliations - 2% quart stringer - trace byrete - Mafie Volcanic 3.5 m E.O.H. NE.

11. 10 00	HOLE NO CW-8-187 LOCATION FORMER 171
DATE 100.15 19	HOLE NO CW-8-187 LOCATION Formerly 171 GEOLOGIST Edwards DRILLER Swittle BIT NO CB67517 BIT FOOTAGE 75-12.9m MOVE TO HOLE Travel: 7:00-7:45 (truck) 7:45-8:45 Small Emberjack
SHIFT HOURS	MOVE TO HOLE Travel: 7:00-7:45 (truck) 7:45-8:45 Small temberjack
TO	DRILL 8-45-9:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 9:30 - 9:45

DEPTH MEINES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
3 A A A A A A A A A	0-0.9 Organics 0.9-3.9 Til (Okibrugaman) 0.9-3.6 fine beige smed making pulllus 50% Vilanics and feliments 50% Vilanics 3.6-3.9:60% V/S for Gr. 3.9m. BEDROCK cofecu: dark green grey - fine-grained very schistore ~ 5% guesty/cubmete Veining - Mafee Vilanic 5.4m E.O.H. ORe.	

DATE Dec. 15 1985	HOLE NO (W-85-188 LOCATION Farmerly 172 GEOLOGIST Edward DRILLER Wirette BIT NO (6675)7 BIT FOOTAGE 12.9-15.600 MOVE TO HOLE 9:30-9:45
DATE NUC. 12 19 02	GEOLOGIST Edwards DRILLER Durette BIT NO (6675)7 BIT FOOTAGE 12.9-15.6m
SHIFT HOURS	MOVE TO HOLE 9:30-9:45
TO	ORILL 9.45-10:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1	0-1.0 No return 1.0-1.2: Smell return of skidiged till 1.2 m BEDRICK- colour: dark green - chloriti - fine to medium - grained - moderately schistere - trace quarts / fildepathei stringes (2.4 m. intersected narrow cartonit (coloti) isin (~20% of sample) - Mafie Volcania. 2.5 m EOH AE	

1	HOLE NOW 18-189 LOCATION Francis 173
DATE AUG 19 19	GEOLOGIST Education Formuly 173 GEOLOGIST Education DRILLER ALLETTE BIT NO (6/45/7 BIT FOOTAGE (5.6-17.6 m)
SHIFT HOURS	MOVE TO HOLE 10:30 - 10:45
то	ORILL 10.45-11.15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 11:15 - 11:30.

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		·.	
1	0-0.3 No peture 0.3-0.9 Sudiments (Ogi - Sand: fine, beige - opidged 0.9 m BEDACK: Colour: dark green - fine-graniel moderately petistor ~32 guesty stringers - trace project **On fine Volcanie** 2.0 m E.O.H. **EE**	ف ا		

	HOLE NO CW-8-90 LOCATION Francy 174 GEOLOGIST Sward DRILLER Swell BIT NO 186757 BIT FOOTAGE 17.6-28.9m
DATE 106 1985	HOLE NO CONSTITUTION CONTROLLY 17
	GEOLOGIST JUNEU DRILLER HULLELL BIT NO CONTOUR BIT FOOTAGE 1.6-28.7m
SHIFT HOURS	MOVE TO HOLE _//:15- //:30
TO	DRILL 11.30-1.45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS 11:30-12:30 That for water
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE _1:45-,2:00

METHES METHES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	T
3-0-7-	0-0.8 Do return 0.8-3.0 Sedemento (Ogituray) Sand: Line, beige - eclasionel clast 3.0-9.6: Till (Chibrugaman)	
5 4 6 4 7 7 7 4 4 7 7 7 7 7 7 7 7 7 7 7 7	3.0-9.3 fine beige sand metry - Libbles: 501. Volcanies + Sedement 50% Granities (sporatie return)	
10- A CA	9.3-9.6: 70% V/S 3 Cobbles 307. Gr 3 Cobbles -dark grey sand mates 9.4-9.9: Boulder (Decute)	
13-11-11-11-11-11-11-11-11-11-11-11-11-1	9.9m: BEDROCK colour: dark green-black - dune ignaciand	
18-11-11-11-11-11-11-11-11-11-11-11-11-1	-loney mildly schistose - well-developed this foliations ~ 10% quant veinleb well chladitie alterations along their foundaries - trace pipete	
	- trace Fe-carbonete (pente bage) - Mafie Volcanice. #3 on E.O.H.	1

DATE 100.1519 85	HOLE NO CW-85-191 LOCATION FRAMER by 175 GEOLOGIST Edwards DRILLER GUSTETTE BIT NO CHOTS 17 BIT FOOTAGE 289-41. 7m
	GEOLOGIST ZACIONAL DHILLER ACCOUNTY BIT NO CERTATA BIT FOOTAGE ZETATI. TM
SHIFT HOURS	MOVE TO HOLE 1:45 - 2:00
TO	DRILL 2:00 - 2:45
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE _2:45 - 3:00

OEPTH METRES INTERVAL SAMPLE NO.	CRIPTIVE LOG
10-1.0 No 1.0-11.2 1.0-11.2 1.0-11.2 1.0-11.5 1.0-11.5 1.0-11.5 1.0-11.5 1.0-11.5 1.0-11.5 1.0-11.5 1.0-11.5 1.0-11.5 1.0-11.5 1.0-11.5 1.0-11.5 1.0-11.5 1.0-11.5 1.0-11.5	Sidiments (Ojibury) and: fine beige eccasional slast stid: high percentage sulfices visitle in and therefore retained was sumples of sediments) Tiel (Chibrugamen) fine beige sand matrix boothles: 50% Volcanies and/or sediments 50% Kaintees ROCK a: dark green u: sugary ly mildly schistist quarty visitet ie Volcanie

TOTAL HOURS CONTRACT HOURS	MOVE TO HOLE 2:45-3:00 DRILL 3:00 - 4:15 MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE 4:15 - 4:30.	
		page 10tz
GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1	-0.5 De retura 5. 4.2 Sedimento (Djibway) Sand: fine, beige 2. 21.0 m. Tiell (Chilosogamus) (sporatic return; washed rods to relain energy sample) 4. 2. 8. 6: fine beige land matrix fieldes: 30% Volcaniso 50% Grand bed: fine, beige 9. 9. 15. 6: Return to same till as described (2. 4.2 m. 156. 182: Crasse, granular sand ted. 182-18. 6: Tiel, as (2. 4.2 m. 186-205: land lens - medium. grained - beige.	

HOLE NO CW-85-192 LOCATION ____

SHIFT HOURSTO TOTAL HOURS	GEOLOGIST DRILLER MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS	
CONTRACT HOURS	MOVE TO NEXT HOLE	
	MOVE TO NEAT HOLE	page 2 of 2
DEPTH METHES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
21 4 7 07	20.5-21.0 Tell; (Chilougamus) fine beige sand metry	
23	21.0 m BEDROCK.	
25 -	colour: grey-green -very schestase -fine-grained -5-101. quarts vining with achie hydrocarbon alterations	
26	5-10% quart rining with	
27-	alterations	
28-	- Mafie Volcanie	
30-	22.5 m E.O.H.	
	Ote.	
12		
13 -		
3 F		
16—		
15		
18		
20-		

DATE Dec. 15 19 85	HOLE NO (W-85-93 LOCATION Surmerly 177. GEOLOGIST Educate DRILLER ALLEGE BIT NO (2015) BIT FOOTAGE Q-100
DATE AVECTO 19	GEOLOGIST Educate DRILLER Meastle BIT NO CENTS/16 BIT FOOTAGE Q-100
SHIFT HOURS	MOVE TO HOLE 4:15-4:30 DRILL 4:30-10:00
to	DRILL 4:30-10:00
TOTAL HOURS	MECHANICAL DOWN TIME
-	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
-	MOVE TO NEXT HOLE 6:00 - 6:15

*New Bit *

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
1-1	2-1.9 Sporeture		
3-4-7-	9-25: Sidemente (Djibway - france beige sand		
	5-8.6 m. Till (Chiberya 25-4.8: fine begg pand mates	ix	
6 4	chothes: both bolances sea	linest	
7 0 4	48-5.8: Genvet led - publy. 5.8-7.3: fine beig sand n	netrix	-
9 04	50% Ge		
10	73-75: minimal matrix. derk grey-brawn fine collies: 751. U/S) 252 Gr.	Esound	
12-	- noted sion - banden in some volcaric el	2.6	
13 - - - - - - - - - -	7.5-7.8: Bourder (Matic Vo 7.8-8.2: Same till de () : 8.2-8.6: Bourder (Grant		
15-	6 m. BEDROCK		
17-	colour medium grey-gr - Chlertie - medium-grained	ec W	
13-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	- moderately schistere ~ 10% quart / carbonate vein	alet	
20	20 % below I bom - chloritic etterations.		

- tr. Syste Volcanie.

On 40H.

a	11 5- 151
DATE WIC. 15 18 85	HOLE NO CW-85-194 LOCATION FRANKLY 178 GEOLOGIST CHURCH DE DAILLER ALLERTO BIT NOCESTON BIT FOOTAGE 10-0-193m
DATE SECTION	GEOLOGIST Colors de DRILLER A LLEETTE BIT NO 18075/10 BIT FOOTAGE 10.0 - 19.3m
SHIFT HOURS	MOVE TO HOLE 6:60-6:15
то	DRILL 6:15-7:15 pm
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 7:15 -9:00, Travel 9:00 - 9:30pm

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG
3 3 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0-0.5 No petura 0.5.5.5: Sedements (Ozilway) 5 sent Line, keye - ecclesional selast @28 m. beige clay (popl) 5.5-8.0 Till (Shibangaman) 5.5-71 fine beige cand matrix pethlis: 50% bollanies and/opediments 50% frankis 7.1.8.0 - colley till 8.0 m. Bedrock - coface: dark grey - finic to medium - grained I middly schiotale - trace schlaute - 29 quante / carbonate istringers - Enefic Volcanie 9.3 m. EOH. Oke.

DATE19 HOLE NO CW-85-195 LOCATION Formerly 147 GEOLOGIST HOLMES DRILLER G. House BIT NO CE67453 BIT FOOTAGE ZO.		
SHIFT HOURS	MOVE TO HOLE	
TO	DRILL 1:00 - 3:00	
TOTAL HOURS	MECHANICAL DOWN TIME 3:00 - 5.75 Groken axel	
	DRILLING PROBLEMS	
CONTRACT HOURS	OTHER _ Travel 5.45-6:00 GT 6:00-6:30 by p.ck up	
	MOVE TO NEXT HOLE	

DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1	2	0-2.5 poor return (sample return hose trozen)	
2 -		2.5-15.0 TILL (CHIBOUG AMAU)	
3	A 1/E	2.5-6.2 sandy, publicy till - fine beige sand matrix	
4 1	4	people composition approximately 50% volcamics/sediments	
5	A AVE	50% gramites	
7-	402	6.2-8.2 till grades into cobbly and very cobbly till, clust composition approximately	
8	24 E03	Composition approximately 60% volcames/sediments 40% granites -matrix fine gray sand -till matrix approx From 7.0 % 8.2	
9-	A - 04	114 = 411.1 × 10001	
=	A	8.2-13.0 till pebbly with occusional small cobbles	
11-3	4.9	matrix gray-beige to beinge where also this oxidized durk brown zone	
13	A = 06	- clost composition approximately 60 % whences /sedments 40% grametes	
14-1	A. = 7 - A = 07	- Fine gray sand motion	
15-1		· clast composition approximately 75 to volcompes /sediments	
16-	EOESED	25% growites 15.0-16.5 BEDROCK	
17-	E	- light and dark green whom - schistose	
19	- International	- Fine- and medium grained - harablenele, Feldyner phanocysts	
20-	E	- trace dess minuted pyrite - intermediate /matic volume	
	,	16.5 E.C.H. Dor Helin's	

DATE 19 36 SHIFT HOURS	HOLE NO CW-85-196 LOCATION Formerly 149 GEOLOGIST HELDES DRILLER G HOWG BIT NO CB67454 BIT FOOTAGE 0 - 5.5 MOVE TO HOLE \$3:15 - 8 30
	DRILL 8 30 - 9.30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER Travel 7:00-9:00 by pickap 3:00-8-15 GT
	MOVE TO NEXT HOLE

NEW BIT

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3- A -C 4	2.5 - 3.3 TILL (CHIBOUGAPIAM) - gradutional constact with	2	
9-1 11-1 12-1 13-1 13-1	-25-3.7 sandy pebbly till Fine gray sand matrix, pebble composition approximately 60 & volumics/sediments 40% granitos 3.7-3.8 till becomes cobbly, clast composition approximately 80% volumics 20% granites - motily Fine gray sand 3.8-5.5 BEDROCK		
14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	- lightly schistose - slightly schistose - Fine and medium grand vock - trace desseminated pyrite - Intermediate/matic volumic 5.5 ECH. Don Holmes		

	HEVEROE OFFICER BUILD HOLE LOG	
DATE	HOLE NO CW-85.191 LOCATION Formerly 149 GEOLOGIST HOLMES DRILLER G HOME BIT NO CBC7+84 BIT FOOTAGE 5.5 - 28.6 MOVE TO HOLE 9:30-10:00 DRILL 10:00 - 12:45 MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER	
	MOVE TO NEXT HOLE	
ARETHES ARAPHIC LOG NTERVAL SAMPLE NO.	DESCRIPTIVE LOG	

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
ASS	2.3-5.2 SEDIMENTS (OTIBWAY) - campact giny cloy, smooth texture - fine and very fine gray sand stringers throughout olay 5.2-21.6 TILL (CHIBOUGANTAM) - distinct contact with overlying sediment unit -5.2-7.6 Sandy, pubbly till - fine gray to gray-buge sund mothix, pubble composition a 50% of comics feediments 7.6-12.2 till becomes colobly mothix gray to gray-buge sund (6% Volumes/sediments) 12.2-140 till becomes very cobby instrix gray to gray-buge time sun clost composition approximately (6% Volumes/sediments) 12.2-140 till becomes very cobby instrix gray to gray-buge time sun clost composition gots selection 10% granites 140-15.0 till becomes very south pubbly with maxim andicauses - fine gray send matrix, clust composition approximately 75% volumes 25% granites 15.0-17.9 till sounce as 7.6-12.2 17.3-18.1 bookler - volumic 18.1-19.5 till becomes very so pubble composition approximately 76% volumes, 30% granites, 000000000000000000000000000000000000	
20 4 5 60	19.5-21.6 till becomes very cobbby, matrix and clust composition same as above	

DATE 1 19 2 SHIFT HOURS TO TOTAL HOURS CONTRACT HOURS	GEOLOGIST DRILLER MOVE TO HOLE DRILL MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE		BIT FC	OOTAGE
GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG			
21 A P III Z BEON 2 2 2 3 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21.6-23.1 BERDOCK - light and dark green colon who pink block green colon estropenty schools to massin - five greened - introduct Freelight, green growing to make meeting growing to make meeting - some epidek-rich Zon - minus pyrite - Meta-sidment 3.1- E.O.F. Don Holmes.	re		

DATE Jam // 1986 SHIFT HOURS TOTAL HOURS CONTRACT HOURS	HOLE NO CW-95.199 LOCATION FORM GEOLOGIST KOLMES DRILLER & HOWG E MOVE TO HOLE 12.45 - 1.20 DRILL J. 00 - 7.30 MECHANICAL DOWN TIME DRILLING PROBLEMS pall rods to change OTHER Travel 7:30-9:00 GT 8 MOVE TO NEXT HOLE NEW BIT	IT NO. <u>C.867497</u> BIT FOOTAGE <u>Z9.6-55.</u> /
DEPTH METHES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	1 39
2.1 2.1 2.1 2.1 3.1 4.1 4.1 5.1 6.0 6.0 7.1 6.0 7.1 6.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	2.1 Organies (PEAT) 27.0 TILL (CHIBOUGAPALL) - vary thin sift, smooth gray clay layer overlying till unit 11-38 - Sandy seebly till fine bayer semal matrix, Clast composition approximately 50 to granites 50-50 Fine gray-bayer sand matrix; publics and occurringly cybbles composition 605 volumes / Sectionants 405 granites 50-55 till as above; but very cobbly 55-11.t till similar to 3.9-5.0 11.4-11.4 boulder - intermediate/matic Volume 11.9-18.0 till similar to 3.8-5.0 19.0-230 till becomes very cobbly - Fine gray to gray-bayer sand matrix clast composition approximately 90 & volcanics 10 % granites	

	÷ ,,	G ₂	HOLE NO CW-E	35-198 LOCA	ATION	Former L	150		
	TE Jan //	13 ===	GEOLOGIST	DRILLER	в	IT NO	BIT	FOOTAGE _	 _
	HIFT HOURS		MOVE TO HOLE						
	TAL HOURS		MECHANICAL DOW	N TIME					_
_			DRILLING PROBLEM	ws					 _
C	ONTRACT HOL	URS	MOVE TO NEXT HO	N.E					
			MOVE TO NEXT HO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					 _
			Pay	go 20 FZ					
DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE NO.		DESCRIPTI	VE LOG					
	A - / - 11		23,0 - 23.5 - 60	ulder - intern	sel. ate/-atr				
Z1 -	No E		23.5 - 24.5 till - Fine gray to clust comp	cobbby, some	4				
22-	- 4		- Fine gray to	gray - being som	I matrix				
	A ZE /Z		75% rulcun 25% granit	12 5					
23-	80 E		25% grant	boulder - volo	anic				
Z4 -	A - 13		25.0-26.6 - 7	till similar to.	235-245				
70	88 ⁴	at	26.5 pull rod	s change 6.	<i></i>				
25 -	A. E.		26.5-27.0-60	uller - intery	and stel				
26-	100			maric voll	المارك				
27-	Ø E	77.	0-28.3 B	BEDROCK					
_ =	15 _{BEW}		- black a	nd dark green	· colone				
28-	1// BED	WCK.	- Fine gr	ained					
29-	 		- massile	rc.					
30-	I E		- trace 1	vrite					
11 -	E		· Ultra	F.					
11-	E		· Ullra	mari C					
12-	=					American de la companya de la compan			
13	E	29.3	EOH.	. / .	,				
	E		\triangleright	on Hole	nes			1	
14									
15	E				İ				
16-	E							reference of the contraction of	
-	E								
17-	E								
18-	1								
19	E								
3	=								
20-	1F	e de la companya de l							

DATE Jun 12 19 56	HOLE NO CW-95 - 199 LOCATION Formerly 151 GEOLOGIST _HOLDES DRILLER & HOLG BIT NO CB47485 BIT FOOTAGE 1.8 - 36.8 MOVE TO HOLE 9:30 - 9:00
TO	DRILL 9.00 - 2:00
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	OTHER _ travel 7:00 -7:45 by pickup 7.45 - B:30 by GT
	MOVE TO NEXT HOLE
	Page 1 of 2

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
3 3 4 A A A A A A A A A A A A A A A A A	0-0.2 Organics 0.2-3.4 SEDITENTS (0318WAY) 0.2-1.8 molecular compact, smooth dark brown clay sound. 1.3-2.6 clay as above, gray colono 2.6-3.4 Fine beige sound 3.4-6.2 graditional contact to rery sound, pabbly till - Fine beige sound matrix 3.4 to 3.6, gray colono from 3.6 to 6.2 pabbles composition approximately 50% solumics feelinents 50% solumics feelinents 6.2-17.0 till becomes cobby - Fine gray to gray-beige sound matrix pabble and cobble composition 60% solumics 40% growites 17.0-18.8 Fine gray-beige sound matrix politics and cobbles composition 75% solumics 25% granites 19.3-19.1-boulder-intermediate/ 19.3-19.1-boulder-intermediate/ 19.3-19.1-boulder-intermediate/	
20- 0 -		

DATE Jan 12 19 96	HOLE NO CW-35-199 LOCATION
	GEOLOGIST DRILLER BIT NO BIT FOOTAGE
SHIFT HOURS	MOVE TO HOLE
TO	DRILL
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

page z of z

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
21 - A - 12 22 - A - 13 23 - A - 14	20.7-21.0 boulder - granite 21.0-22.7 Fine gray send matrix clust composition approximately 90-90% volumes 10-20% granites 22.7-23.2 boulder intermediate/ mutic volumes 23.2-26.7 till similar to 21.0-22-7	
25 0 A = 15 26 A = 16	26.7 - 29.1 SEDIMENTS (PRE-LHIBOURANTIL) -distinct contact with openlying to Tough, empact, smooth durk- ging clay appears as marble-size spheres - pour simple vetura from 27.0 to 2010 - silti!)	
29 A A B B B B B B B B B B B B B B B B B	18.0-28.1 - very thin fine granted layer 28.1 - 33.6 TILL (Lower) - distinct contact - sendy, cobbly till - fine gray sand matrix. clast composition approximately 80.40% volumes 10.20% granites	oodi amuuta kabila seesta saassa suuree suuree ka ka kiin kiin ku
33-10-10-10-10-10-10-10-10-10-10-10-10-10-	33.6 - 35.0 BEDROCK - light and dark green colour - fine grained - massive - slightly altered + epidde - thin ignions (follyw, grante) intrasions - minor disseminated pyrite	
\$9-1 LLL	- Internaliate/motic volcanic 35.0 E.Q.H. Don Welmos	

DATE Decl 9 19 85	HOLE NO CW-85-200 LOCATION Folmerly Hele # CW-85-146 GEOLOGIST STREET DRILLER HONS BIT NO CB67483 BIT FOOTAGE 3.5-24.1 M
SHIFT HOURS	MOVE TO HOLE 12:36-130
то	DRILL 1.30-4.45
TOTAL HOURS	MECHANICAL DOWN TIME 330-345 - Chang alternatus on Dull Engine.
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE 4:45- 5:00

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	<u> </u>		
	0-1.2 m-No Return			
1	1.2 m Boulder (Grante)			
2 0 7	1.6m-Till (Chibougan an)			
10 1 S	- Fine Delay Sandy matrix - Publy - 70% Volcomics/Sediments			
3 - 1				
4100/4	2.5m Cobbly - 70% 4/5			
5- AO AO A	4.5 m - Matrix - fine, grey-beige, sandy			
5-00				
6-1-4	7.9m-80% V/S 20% Gr.			
7-0- 1-03	9.1m - Boulder (Metasediment)			
10 / E	9.3 m-Till as described @ 7.9 m.			
	13.8m-Matrix-fine, quey, sundy			
9 4	16.9m-90% N5			
10-4	10% Gr.			
3 - V/C	18.0m-Boulder (Greywacte)			
11 - 05	18.8 m- Stoney Tell			
12 00 06	-Cobb/y-90% 1/5			
3 1 2 1 2 0 6	- VIIV little fine AAV Sundy			
3 607	- Mry little fine, gay, sandy matter			
14-1 07	19.1m- Bedsock.			
15 4.0 08	- Madian green colour. - Tract Hosphtende (<1 mm)			
15 E08	fine grained			
16- 4	-foliated			
17 609	- yery schistose			
18	-chloritic			
₹XXXI E	- calcitic (calcalcous) - also calcile stringers			
19	19/4			
20-	- fe staining along fractures.			
3////	- Metased inext (Greynocke) 20.6m-EO.H.	(1 1	1 1	1

DATE Jun 12 19 86	HOLE NO CW-85-201 LOCATION Torner 4 152				
	GEOLOGIST HOLMES DRILLER G HOWG BIT NO CB67486 BIT FOOTAGE 0 - 35.0				
SHIFT HOURS	MOVE TO HOLE				
TO		30 - 6:30			
TOTAL HOURS	MECHANICAL DOWN TIME				
	DRILLING PROBLEMS	730 # 11			
CONTRACT HOURS	OTHER travel by GT 6:30	-1.30 Travelby	1 pickup 1:30-5:00		
	MOVE TO NEXT HOLE				
	NEW BIT		page 1 of Z		
DEPTH NETHES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	<u> </u>			
	- 0.2 Dramies				
=======================================	-3.6 SEDIMENTS (OTIBWAY)				
1=====================================	>EDIMENTS (OSIOWAY)	4			
	-0.2-1.5 beige soft slightly gritty	7			
2-1:1	Clay - poor return	1			
_ 311:4/E	1.5 - 3.6 - Fine beight sand - oxidio occasional organics (routs) and public	zar			
**************************************	occasional organics (rould) and pubble	151			
A . /FOI					
* A /F 5-6 -	- 33.6 TILL (CHIBOUGAMAN) - very samely, pebbly till sc-75- Fine beige to gray beige sunda - pebbles and occasional small cobbles composition approximate 50% volcumics/sediments				
- 17 T/F	- very sandy, pebbby Till				
3 A /E	36-75- fine beinge to gray beinge sunda	-frx			
= = A /F	- rebbles and occasional small		Transaction of the Control of the Co		
24 E	cobbbs composition assion assion anto	14			
- EOZ	50% volcanics /sediments	1			
7 · SF	50% graites				
.∃∆ - /E	9.5-13.5 till becomes cobbby, pebl	64			
703 /E 03	· fine and to some being sind mate				
and the	clust composition approximately	7			
14 A E	60% vulcumina / seel mante				
10-10-04	40% granites				
54 - E		1			
11- 2 Δ	13.5-13.6 - boulder - intermediate/ma	eric			
34 ° /E _					
12-3 1 105	13.8 - 27.0 . till similar to 9.5-13.5	5			
3. 24					
13-1 S.A					
700 06					
14-JA 2-					
EARE					
15					
∃ ↑ ↓ / E					
15-0-4					
E SAE					
17 3 4 E08					
The Foo					
18-17:					
4.0					
1 - VE09					
20 10 1					
20-1-					

			HOLE NO CN-85-201 LOCATION .	Formerly	152	
D	ATE Jon 12	19 86	GEOLOGIST DRILLER	BIT NO.	BIT FOOTAGE	
	HIFT HOURS		MOVE TO HOLE			
	TO DTAL HOURS		MECHANICAL DOWN TIME			
_			DRILLING PROBLEMS			
C	ONTRACT HO	URS	OTHER			
_			MOVE TO NEXT HOLE			
			page z of Z			
- v	O 1 a	1				
METRES	GRAPHIC LOG INTERVAL SAMPLE NO.		DESCRIPTIVE LOG			
) Z						
	100		27.0-28.0 till as above except matrix very fine gray sund			
Z1 -	10	4				
12-		1	20.0-35.6 till similar to			
20	A - 1/F //	-	13.8 /3 2/10			
23-	1 A /E	10 to				
24-	10-1	77/	-35.0 BEDROCK			
25-	- A E12	23.0	lat to dark areen			
-	100		- light to down green - fine grained - massive to slightly schistore - minor desseminated pyrite			
26-	AVE		- massive to slightly schistore			
27-	13		- minor desseminated pyrite			
:	- 4		- To to andiate/matic			
28-	100		- Intermediate/matic			
29-	- A 法					
30-	A /E15	25	O EOH.			
	1 /E	35.				-
31-	0 4		Don Holmes			
32-	116					
22	0 A 7					
,,,,	10/				-	
34-	///\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
35-	ig BE DE	epik				
	1			1		
37- 38-						
37-	IF					
₹8-	E					
,						
79-						
40-						
1		1		1	l i i	1

DATE Jan 13 19 96	HOLE NO CW-85-202 LOCATION Formerly 153 GEOLOGIST HOLITES DRILLER G HOWG BIT NO CB6 7486 BIT FOOTAGE 35.0 - +2.6 MOVE TO HOLE 9:30 - 7:00
13 2	GEOLOGIST HOLITES DRILLER G HOLG BIT NO CEE 7450 BIT FOOTAGE 35.0 - 42.6
SHIFT HOURS	MOVE TO HOLE 9:30 - 9:00 CB67518 0 - 7.5
TO	ORILL 9:00 - 12:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS pullrods to change b. t 10:00-10:30
CONTRACT HOURS	OFFICE Travel by pick up 7:00 - 7.45, travel by GT-7.45-8.30
	MOVE TO NEXT HOLE

NEW BIT

METRES METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
	0-2.5 No RETURN		
1	2.5-15.8 TILL (CHIBOUGAMAU)		
2	· very sandy rabble till		
Δ.:/=	2.5-7.5 Fine beige Sund matrix public composition opproximately 50% Volumes / Sediments 50% granites		
4 VE	50% Volumes sediments		
4-1 /FOI	75-76 till becomes very cubbly		
A VE	76-79 boulder - granite		
14	at 7.8 pull rods 10:00-10:30 to change 6.1		
6-1.	change b. t		
7 A EOZ	7.9-14.1 sundy, pebby, coloby fill - Fine gray to gray-beige sand matrix,		
A	- Fine gray to gray beige sand mater to		
* - A / E 03	clost composition approximately 60% volcanics/sadiments		
9-14-5	40% granites		
10-14-10-1	14.1-14.3 boulder- granite		
1 04	14.3-15.9 matrix fine gray-begge sand pebble and couble composition 75% volumics /sediments		
11 1	75/3 volumics /sediments		
12- A 1-05	25% granites		
EN SIZE			
13 3 A 66	15,8-17.3 BEDROCK	1.	
14- 050	-dark green - Fine grained		
15-106	- fine grained		
A. / = 07	- massive to schistose		
16-1/1	- slightly unagnetic		
17- BEDE	ax - minor dessemmented pyrite		
F	- minor quartz, Fe Algori		
18-	- Intermediate function		
19	volcanic		
20-	17.3 E.O.H. \ 1/0		

DATE Jan 13,17 19 86	HOLE NO CW-85-203 LOCATION Formerly 15+
DATE 334 19 00	GEOLOGIST HOLMES DRILLER G HOME BIT NO. CB675/8 BIT FOOTAGE 17.3 -23.8
SHIFT HOURS	MOVE TO HOLE 12:15 -12:30 Jan 13
то	DRILL 1.15 > 2.00
TOTAL HOURS	MECHANICAL DOWN TIME 12:30 -5:30 Jam 13 / 7 45 - 9:30; 10:30 - 1:15 Jam 14
	DRILLING PROBLEMS 1 eplace compressor
CONTRACT HOURS	OTHER _ travel 7:00-7:45 GT , 9-30-10:30 pickup Jan 14
	MOVE TO NEXT HOLE Travel 5:30-6:45 GT 6:45 7.00 pickup Jam 13

DEPTH METRES GRAPHIC CAND DESCRIPTION OF THE SAMPLE	
1.8 - 3.4 SEDIMENTS (OTIBWAY) - SOFT SEMONTH Gray chay appears as irregular Imps 3.4 - 4.9 TILL (CHIBOUGATATA) - Sundy, pabbly till - Fine gray-beigh sould matrix publies and grands, composition 60% volcining stadiments 4.9 - 6.5 BEDROCK - dark green - Fine grained - very schistose, thinky tolated - soft to do ill - Intermediate/motic volcanic 10- 10- 10- 10- 10- 10- 10- 10	

DATE Jam 14 19 36	HOLE NO CW -85 204 LOCATION Formerly CW. 155 GEOLOGIST HOLENS DRILLER G HOWG BIT NO CB6 7518 BIT FOOTAGE 23.83 - 240
SHIFT HOURS	MOVE TO HOLE 2:00 - 2:30
TO	DRILL 2:30 -3:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPT:WE LOG		
1 - 44	1.0 - 3.4 SEDIMENTS (OITBWAY) 10-3.25 STT gray clay and silt, poor vet		
6-	3.4 - 3.7 TILL (COLIBORIENT PACK) - gradational contact with overlying - sandy publicy till - Fine gray sand matrix - public composition approximately COP volcanies 4010 grandes		-
10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	3.7-5.2 BEDROCK -dark green some white mottling - Fine grained - very schoolse, thinly foliated - very schoolse, thinly foliated - soft to drill - minor call te - Intermediate/natic volcanic		
13	5.2 E.OH. Don Hohmes		
18—			

DATE 19 19 86	HOLE NO CW-95.205 LOCATION tormerly 156 GEOLOGIST HOLMES DRILLER G. Howa BIT NO CB67518 BIT FOOTAGE 29.0 - 36.0
SHIFT HOURS	MOVE TO HOLE 3:00 - 3:30
TO	DRILL 3:30-4:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3-A A - 01	0-1.5 Organics (PEAT) 1.5-2.8 SEDIMENTS (OJIBWAY) - Fine gray Sand 2.8-5.5 TILL (CHIBOUGAMAN) - gradetional contact with overlying sediments - very sundy pebbly till Fine gray-beige sund matrix pebbles composition approximately 60 % volumics/sediments 40% granites		
6 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	Stark - occasional collaboration 5.2-5.5 5.5-7.0 BEDROCK -dark green white mottling - fine grained - very schistose - soft to drill - unor calcite, From 6.6 to 7.0 calcite veins upto 30 % of rack - Intermediate/matic volcanic		
10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19	7.0 E.O.H. Don Holmes		

DATE Jan 1+ 19_	HOLE NO CW-85-206 LOCATION Formerly CW-157 GEOLOGIST HOLMES DRILLER G. HOWG SIT NO CB67518 BIT FOOTAGE 36.0-79.5
SHIFT HOURS	MOVE TO HOLE 4:00 -4:30 DRILL 4:30 - 6:15
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	OTHER Travel 6:15-7:30 GT , 7:30 -8:15 pickup
	MOVE TO NEXT HOLE

METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
1-1/2	0-0.2 Organics 0.2-1.0 SEDIMENTS (OJIBWAY)	
2 4 4	- Fine beige to ochre sand 1.0 - 12.1 TILL (CHIBOUGAMAU)	
4 - A E O I	sandar, pebbly till 10 86 Fine beige to grow-beige sand matrix pebble composition approximately 60 70 volcanics / sectionents	
5 0 0 0 2	- poor return 1.0 - 4.0	
7 A A A A A A A A A A A A A A A A A A A	- ut 5.0 thin zone oxidized other coloured Fine sand 5.0 - 8.6 occassional colobles in till	•
8 4 4	8.6-8.9 boulder- gramite 8.9-10.5 till similar to till above boulder	
10 04	10.5-11.9 - Till contains clay smalls	
12 3 4	composition approximately 50 % volconcests soluments 50 % granites - clay happes moderately compact slightly gritty gray colour	
13	Clast composition approximately 75% volumes leed ments	
15-	25% graniles	
16-1	12.1-13.5 BEDROCK -dark green -massive to slightly schistose	
18-119-119-119-119-119-119-119-119-119-1	- Fine grained - undired whise - colons at bedrock surface, and at 12-4 minor calcite	
20-	- Internedicte/natic volcanice 13.5 E.O.H. Don Holmes	

DATE Jun 15 19 36	HOLE NO CW-85-207 LOCATION Formerly 158 GEOLOGIST HOLMES DRILLER G. Holl BIT NO CB67517 BIT FOOTAGE 0 - 18.5
SHIFT HOURS	MOVE TO HOLE 9.15 - 9:45
то	DRILL 9:45 -1/-30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER Travel 7.00 -8:00 pick up 8:00 - 9:15 46T
	MOVE TO NEXT HOLE

NEW BIT

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG		
	-1.5 SEDIMENTS (OJIBNAY) - very fine gray sand		
2 A FOI 1. 9	5-13.0 TILL (CHIBOUGAMAN) - gradational contact with overlying sadiments		
4 - 4	overlying sediments - soundy, publicy till 15-144-fine beige to gray-beige siand matrix		
5 A - A	- pebbles and occusional cobbb composition approximately 75% volcanies sediments 25% granites	9	
7 A - / - 3	11.4-13.0 till becomes clay rich - Fine gray sand mot 1x, clust composition approximately 70 10 volcom: c5/solvaduts 30% grantes		
9 Å 104	- small soft quitty gray clay lump 13.0-13.3 boulder - graphite rich metased income	s	
10 1 2 7 05	13.3-14.4 till similar to 11.4-13.3		
12 - 1	16.0-16.3 bombler intermational mater volcanic	1 1 1 1	
14 - 14	- Fire gray sund metrix, clust composition 80-90% volcomics, 10-20% gramites		
15 A A 66	- small soft gritty gray- beige clay lumps		
17— A. BEDRICA	17.0 - 18.5 BEDROCK -dark green colour - Fine grained		
19 -	- very senistie		
20-	- Intermediate /matic		

18.5 E.O.H. Don Holmes

DATE Jan 15 19 85 SHIFT HOURS	HOLE NO CW-85-208 LOCATION 50 malres west of former cw-159 GEOLOGIST HOLFIES DRILLER G. HOWG BIT NO CB67514 BIT FOOTAGE L8.5 - 343 MOVE TO HOLE 11:30 - 12:00
	DRILL 12:00 - 1.45
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	OTHER Travel 6:00 - 7:30 Lypickap MOVE TO NEXT HOLE 1:45 - 6:00
PHIC DG MPIC MPLE WALL	DESCRIPTIVE LOG

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	
1 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0-0.2 Organies 0.2-1.3 SEDIMENTS (OJIBNAY) - Fine beige sand with them layers of soft, smooth large a: -3-14,3 TILL (CHIBOUGATHAN -13-3.0 sandy publicy till Fine beige to brown sand and rise, pebbles and occasional cobble compess 60% volcanies/sediments 10% granites 30-3.4-boulder - intermediate/med. 34-80 till similar to 1.3-3.0 but matrix gray togray-beige Finesan	
10 - A - 105 11 - A - 105 12 - A - 106 13 - A - 107	8.0-10.8 till similar to 1.2-3.0 but matrix Fine to very fine gray build similar to 1.2-3.0 but matrix fine to very fine gray sould compact griffy clay lamps, clast composition approximately to 60% externizes to grantes 12.0-13.6 till similar to 8.0-10.8 13.6-14.2 - boulder - volcanic 14.2-14.3 - till same as above bould	
15 - 98 E O D X A	4.3-15.8 BEDROCK -dork green colour - Fine grammad - very schristore - minor calcute - Intermediate / matic volcanic 5.8 E.O.H. Don Holmes	

_	ATE Jam	16 10 96	HOLE NO CW-85 -209 LOCAT	ION Formerly	CW-160			
			GEOLOGIST HOLDES DRILLER	G. Houg BIT NO CA	367519 BIT FOOTAG	E 343-56.		
			MOVE TO HOLE 8:00 -	8:00 -10:30				
TO			DRILL	10:30 - 12:30				
TOTAL HOURS			MECHANICAL DOWN TIME					
_	ONTO	101100	DRILLING PROBLEMS	OTHER Travel 7:00 - 8:00 pickup				
C	ONTRACT H	IOURS		or pickup				
_			MOVE TO NEXT HOLE					
					Perge	1 of Z		
T S	₽ AL	<u> </u>						
DEPTH IN METRES	GRAPHIC LOG INTERVAL SAMPLE	o l	DESCRIPTIVE LOG					
ME	SA							
	10 0	0-	Z.9 D.g. ES (PEAT)					
	1 1 E			1				
1 -	1/1/	2.9	-7.6 SEDIMENTS OJIBWA	17)				
	AA E	1	-2.7-65 Fine gray sand, thin clay layer on surface of sun	·912/				
2.	3.1 E		clay layer on surface of sum	J"				
3.	3 1 1 E	i	-65-26 Fine, madien gray-be	ge sund				
	/ E	7,		(1)				
4 -	3.:.:/年	1.6-1	6.9 TILL CHIBOUGATA					
	1: 1/5		- distinct contact with ora	79.77				
5-	1: VEa	,	7.6-9.4 pelby, couldy till					
	1: : 1/F		500 ments 7.6-9.4 peliby, cobbby till Fine gray sound matrix, Clast composition appropria 606 volumics/sediments	tole				
6 -	1 1/E		clast composition approxim	107				
	11 11 E		40% granites sediments					
7-	1: 1/E		7.4 - H.5 Till becomes clay - r	ich				
			· Fre gray sand matrix wit	4				
В-	14- 10	2	compact deepla dead - dream	clay				
9.	- 4		materix people composition 50% volumizas 50% granites	1				
	ANT /E	,	50% grantes					
10-	-11		11.5-125 till similar to 7.6-7.	7				
	- A		12.5-Hot till simular to 7.4-11	.5				
11 -	AT SE		14.4-16.9 till becomes pebby,	cobby				
	1.14		sound matrix; a last compage - 80 to 90% volumes (5) sal hard	my-here				
12-	1.7		soul matrix; clast compos	tion				
13-	= 1/205		20 to 10% portes					
10-	3 CAKE		•		-			
14-	41.	16.9	18.8 SEDIMENTS (PRE-CHIBOUR	sarrau				
	4 06	'	- 168-121 compact smooth gra	-/-				
15-	1.4		- 16.9-18.1 compact smooth grange as irre	egular				
	1.3 /F							
16-	1		- 18.1 - 18.8 very time gray sund					
	V	IP Q	20.3 TILL (LOWER)					
17-		10.0	- very oxidized clay rich	t.//				
	E		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, +				
18-	FOR		brown and gray gritty of	-				
	N=-0		Tough change - trix			1		

SHIFT HOURS TO TOTAL HOURS CONTRACT HOURS		HOLE NO CW-85 GEOLOGIST MOVE TO HOLE DRILL MECHANICAL DOWN DRILLING PROBLEMS OTHER MOVE TO NEXT HOLE Page 2	DRILLER	BIT NO _	T FOOTAGE		
DEPTH IN METRES		SAMPLE NO.	DESCRIPTIVE	LOG			
21		BEDRUK	3-21.8 - BEDR - gray- green - Fine grained - massive to oxidized zo zo.8 and - minor coluita - METASEDIME . EOH.	schistuse structusmes at 21.5			

DATE Jan 16 1985	HOLE NO CW-85-ZIOLOCATION Formerly CW-161 GEOLOGIST HOLMES DRILLER & HOWG BIT NO CB67520 BIT FOOTAGE U-19.3
	GEOLOGIST HOLMES DRILLER & HOWG BIT NO. CB6 7 520 BIT FOOTAGE 6-17.3
SHIFT HOURS	MOVE TO HOLE
0	DRILL 12:45 - 2:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

NEW BIT

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG	·	
1 :	O-1.0 NO RETURN		
1 1			
' +==	1.0 -6.5 SEDIMENTS (OJIBWAY)		
₹ = F	-10-38 soft smooth gray clay		
2-]= -	-10-38 soft smooth gray clay 3.8-40 Fire gray said		
:=::	4.0-4.2 Fine beize sand +	AL.	
3-1	4.2-5.5 pebble gravel composition by		
	40-42 fine beige sand 42-55 pubble gravel composition 60, 55-58 fine beige sand 50-65 peoble gravel compositions	19/40	
4-1111/			
1::1/	6.5 - 16.0 TILL (CHIBOUGAMAN)		
5-1::1-01	- andstivial contact with		
7 F	- gradational contact with overlying sodiments		
6-	+ fine + + leave	,	
	- fine gray to gray being south		
7-4.	pebble and all		
3.: A EOZ	approximately 60% solumes keeling	£	
8-0.	approximately 60% rolumes feeling	7	
ムー方	- at 16.0 Fau small conspact		
A E03	gitty clay humps		
10-11-			
A :- \E	16.0 - 17.6 SEDIMENTS (PRE-CHIBONG	tnu)	
11 - 1	- Fine gray-beige sound with a Few pebbles		
204	Few sebbles		
12-1	2,,		
1 ATE			manus da c
13 - A	17.6-19.3 BEDROCK		-
14-10-15	- dark gray-green colour		
I ANE	5		
15-1-06	- Fine grained - schistose thinly foliated structure - minor calcite	ne l	
# · x >=	- schistose, Thinky		
16-	- minor calcite		
3: · /E07	- oxidezed zone down section		
17-1: (F	of 19 C	1 1 1 1	
1, ,, K E	- Intermediate/matic volcum		
18-1//-			
19 J BECR	DCK		
1/1/8			
20-	19.3 EOH		
	Don Holmes	1 1 1 1	1 1
	Donlo		

DATE Jan 16 19 86	HOLE NO CW-85-211 LOCATION Formerly CW-162 GEOLOGIST HOLMES DRILLER G. Houg BIT NO CB67520 BIT FOOTAGE 19.3-303
SHIFT HOURS	MOVE TO HOLE 2:00 -2:15
TO	DRILL
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METHES INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- minor culcite		
12-11-11-11-11-11-11-11-11-11-11-11-11-1	- Intermediale/matic volcano 11.0 EQH.		

DATE Jan 16 19 96	HOLE NO CW-85-212 LOCATION Formerly CW-168 GEOLOGIST HOLDES DRILLER G HOME BIT NO CRE7520 BIT FOOTAGE 30.3-33.8
SHIFT HOURS	MOVE TO HOLE 3.00-4:30 DRILL 4:30 5.45
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	OTHER Travel 6:45 - 7.00 6-67 7.00 - 7.30 pickup
	MOVE TO NEXT HOLE 5:45 - 6:15

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE	DESCRIPTIVE LOG
2-//	0.2-1.9 SEDIMENTS (OJIBWA) - Fine beige sund (ochre Fram 0.2 to 0.8) - poor return 1.9-3.5 BEDROCK - light to dark green mutted white - fine grained - massive to slightly schisbse structure - very hard to dark - minor calcite veius - trace pyrite - Intermediate/matic volcanic
	3.5 EQH.

DATE Jan 17 19 86	HOLE NO CW-85-213 LOCATION Formary CW-167 GEOLOGIST WOLMES DRILLER G. Howa BIT NO CB6754BIT FOOTAGE 338-48.8
SHIFT HOURS	MOVE TO HOLE
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	OTHER Travel 7:00-7:45 pickup 7:45-9:45 6467
	MOVE TO NEXT HOLE

DEPTH IN METHES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
2 3 3 3 3 4 4 4 5 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0-1.0 NO RETURN 1.0-7.5 SEDIMENTS (OTIBWAY) 1.0-3.0 - Vary five brown sand zones in publicle growed composition 60% solumnis (solumnis) 3.0-7.5 growed becomes cobbly composition approximately 7.5 wolumnes (solumnis) 7.5-13.5 TILL (CHIBOUGHTAU) - about and distinct contact with overlying solumnists 7.5-8.6 sandy pebbly till, fine gray sand matrix, clast composition opproximately 60% volumes (solumnis) 8.6-8.5 till very charvich - time gray sand andrix with small grifty, dark gray olay lumps pebble composition approximately 7.5% Wolcomiss/solumnis 1.5-13.5 till very cobbly - Fine gray sand matrix. Four small grifty dark gray clay lumps 8.0% volumies (solumnis) 8.0% volumies (solumnis)		
15 16 17 17 18 11 11 11 11 11 11 11 11 11 11 11 11	13.5-15.0 BEDROCK -gray colour -fine grained -schistoge structure, thinky Foliated -minor pyrite -Metasedinent (graywacks) 15.0 E.O.H. Don Holines		

D/	ATE _	Jan 17	1986	HOLE NO	1-85-214 LO	CATION	or merly	cw-2	220	
SHIFT HOURS		MOVE TO HOLE	OLMES ORILLE	10:30 -1	1:15		FOOTAGE _	0-147		
_		то	_	DRILL		1	:15- 2:	GE		
TO	DTAL	HOURS		MECHANICAL DO	OWN TIME					
_		-		DRILLING PROBL	EMS					
C	ONTR	ACT HO	URS	OTHER						
		-		MOVE TO NEXT	HOLE					
					NEW BIT NEW SUB					
_ s	U	- w							-	
DEPTH IN METRES	GRAPHIC	SAMPLE NO.		DESCRIP	TIVE LOG	. -			T	
	1 1	TF	0 -	1.9 Orga	MILS (PEAT					
1-	11	L								
	111	E		12.9 SEDI		DW/Y)				
2 -	1	左		1.9 - 2.2 Fine 22 - 2.7 Fine	being sand					
		1/2		2.7-6.1 pebble	e gravel and	coarses				
3-		E		pebble compo	sition 50 % volc	nites seds				
4 -		E01	. (2.7-6.1 pebble pebble compo 6.1-7.5 medi	um gray-beige	sand				
-		Æ		7.5-9.1 pebble 2.7 to	gravel simil	an to				
5-	•	/E		2.7 to	6.1 with Fer	a cubbles				
-		/E		9.1-9.4 bould	len - diarite					
6-	•	Æ	1							Ī
7-		VE.		9.4-12.9 gm	ivel similar	3 7.5 - 7.1				
3		E02								
8 -	. 0	1	12.9	- 13.2 TI	LL (CHIBO	Li				
1	-	\rightarrow		- gradations	deontact we seed ment works till	· / ·				
9-	\otimes	2-03		overlying	111. +:11	~ / /				
10-		(E03		- sandy, po	111 1160	0 4				
= =		1/2		- Time gra	y-beige some	to the				
11-		生		peloble com	and do not soul	als mately				
= =	00.	104		50% Vole	nites					
12-		7		102						
13	4.0	05	13.2	2-14.7 B	EDROCK					
j	1/1	TE 3	, , , ,	-gray	colour				-	
14		E06BE	Rock	time. a	rainen					
=	111	7-		m damen a a constitution	GIVEL IMPL					
15-		111		- Sugary	1 tayture					
16-		1		- trace	pyric					
=		E		m	gratz vain	5				
17-		F								
E		E		- META	ASEDIMENT					
18-		E								
19		Britani hardana	14	7 EOH						
= =		E		N	- Holmas.					
20-	1	- 1		Do	- 1 wind.					

DATE Jan 17 19 96	HOLE NO CW-85-215 LOCATION Formerly CW-219
DATE	GEOLOGIST HOLMES DRILLER G. Hug BIT NO CB675 21 BIT FOOTAGE 177 - 28.6
SHIFT HOURS	MOVE TO HOLE Z:30 - Z : 45
то	DRILL 2:45 -4:00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

	DESCRIPTIVE LOG DESCRI
DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO. DOT	0.5 - 12.3 SEDIMENTS (OTIBULY) 0.5 - 2.2 Fine brown - other sund 2.2 - 6.0 coarse sound ordized brown From 1.2 - 2.0, grey-beign From 2.0 - 6.0 - poor return 4.0 to 6.0 6.0 - 3.1 pobble graved composition approximately sold relumings badinants 8.1 - 8.9 Fine beign sund 8.4 - 7.3 pobble graved similar to 60 th 8.4 - 7.3 pobble graved similar to 60 th 9.3 - 9.6 boulder - intermediate/mate 9.6 - 12.3 pobble graved similar to 60 th 9.6 - 12.3 pobble graved similar to 60 th 10- 11- 10- 11- 10- 11- 10- 11- 10- 11- 10- 11- 10- 11- 10- 11- 10- 11-
0.5 - 12.3 SEDIMENTS (OTIBULY) 0.5 - 2.2 Fine brown - other sund 2.2 - 6.0 Coarse sand ordized brown From 1.2 - 2.0, grey-basge From 2.0 - 6.0 - poor return 4.0 to 6.0 6.0 - 3.1 pobble graved composition approximately soft released browners 8.1 - 8.9 Fine being sand 8.9 - 7.3 pobble graved similar to 60 th 8.9 - 7.3 pobble graved similar to 60 th 9.3 - 9.6 boulder - intermediate/mate 9.6 - 12.3 pobble graved similar to 60 th 9.6 - 12.3 pobble graved similar to 60 th 10.3 - 13.9 BEDROCK - black colonu - very fine gravined - wassive to slightly schistore structure, thinky to linked - contains graphite - contains graphite - manor pyrite - manor pyrite	15- 16- 17- 18- 19- 19- 19-

T.,, 17 . 84	HOLE NO CW-85-216 LOCATION Formerly CN-ZIB GEOLOGIST HOLMES DRILLER G. HOUR BIT NO CB67524 BIT FOOTAGE 28.6 - 36.6
DATE Jam 17 1986	
SHIFT HOURS	MOVE TO HOLE 4.00 -4:15
то	DRILL 4.15 - 5.00
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0-0.2 Organies 0.2-t.6 SEDIMENTS (OJTBWAY) 0.2-1.0 Soft, smooth beige chy 1.0-4.6 very fine beige sand 4.6-6.2 TILL (CHIBOUGAMAN) - abrupt, of stinct contact with overlying sediments - sundy, poblity till, Few cobbles - fine beige sand matrix clast composition approximately 50% volcanies/sediments 50% granites BOCK 6.2-8.0 BEDROCK - black coloure - Fine grained - wassive to slightly schistore structure - contains graphite - minor quartz veius - much of the bedrock is ground up to clay-size particles - Metasediment (graphite- B.O E.O.H. Don Melnes		

DATE	HOLE NO CW-85-217 LOCATION Formerly CW - 217 GEOLOGIST HOLMES DRILLER & Howa BIT NO CR 1521 BIT FOOTAGE 36.6-7:	
SHIFT HOURS	MOVE TO HOLE 5:00 -5:15	
TO	DRILL 5:15 - 6:15	
TOTAL HOURS	MECHANICAL DOWN TIME	
	DRILLING PROBLEMS	
CONTRACT HOURS	OTHER _ Travel GT 6:15 - 7.00 , pickup 7.00-7:30	
	MOVE TO NEXT HOLE	

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
	0-1,0 NO RETURN	1
'	1.0 - 6.0 SEDINENTS (OSIBWAY)	
1. 1/4	- at 1.0 thin public layer	
2-	10-5.6 Fine beige sound	
3.1: EO!	5.6-6.0 peoble gravel, composite approximately son volcames/salands	
3 : 1/5	approximately so volcomies / sections	
4.3 //E	Sit grantes	
5-02	6.0 -8.9 TILL (CHIBOGGAPTEN)	
3411 =02	- distinct contact with	
6-	overlying sediments	
Δ //=	6.0-8.8 fine being to gray-being	
7-1 - A / E-03	6.0-8.8 five beinge to gray-beinge sund matrix, pelibles and	
7 A 2 03	occasional colles, composition	-
0 11	30/5 0010- 1/2/2	
10 0 0 0 0 0 0 0 0 0	50% granites	
9-1//NE	-8.5-8.9 oxedized zone in the	
10-1////-05	ROCK matrix fine ochre when sand	
JAKE BED	ROCK WIZ.	
11 <u>3</u> E		
1 F	8.9-10.5 BEDROCK	
12	- light gray colour	
1 E		
13.7	- time grained	
1 -	- massive 3/120/	
14-	- fine grained - massive structure - sugary taxture	
3 E	- minor quartz veins - minor pyrite	
15-	- minor pyrite	
] E	· very oxidized zone at 10.2m (Foult breccia?)	
16	(Foult breccia?)	
173 E		
1 [- Metasad ment (graywake)	
13	1	
3 E	e de	
19 -	10.5 EOH.	
1 1	Da Holmes	
20-	Da 100	

DATE 5 13 19 56	HOLE NO CW-85. 218 LOCATION Formerly CW-213 GEOLOGIST HOLMES DRILLER G. HOWG BIT NO CB6 7521 BIT FOOTAGE 47.1-55.6
SHIFT HOURS	MOVE TO HOLE 7:45-8:30
TO	DRILL 8:30 - 9.30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER _ Traval 7:00 . 7:30 p.zkup . 7:30 - 7.45 GT
	MOVE TO NEXT HOLE

DESCRIPTIVE LOG DESCRI
O.2-2.4 SEDIMENTS (OTIBULY) - gray and beige soft, smooth clay, - pour vetura 2.4-6.8 TILL (CHIBOUGAMAN) - sundy, polibly till - Fine gray to gray-beige sund matrix pubble composition 6.1 02 6.1 03 6.1 05 6.1 07 6.1 08
2 - 2.4 SEDIMENTS (OTIBULY) - gray and beige soft, smooth clay, - pour vatura 3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
- gray and beige soft, smooth clay, - pour voture 3- 1 of 2.4-6.8 TILL (CHIBOUGAPIAN) - sunchy, polibly till - Fine gray to gray-beige sund matrix pubble composition 60 is volcomis / sediments 40 to gran. tos
2.4-6.8 TILL (CHIBOUGAPIAN) - Sunchy, polibly till - Fine gray to gray-beige sund matrix, pubble composition 60 to volcomes / sediments 40 to grantes
5- A = 102 - Fine gray to gray being sund watery public composition 60 to volcomes / sediments 40 to gran. Tes
down section 13 approximal
volcanies compos, for mereases doen section to approximately 75% whomas/soloments 25% grantes
6.8-8.5 BEDROCK
- greenish gray colour - Fine grained - massive structure to
schistose, though to bated - trace prite
- Metasediment (graywacks)
15- B.5 E.O.H.
Don Hohmes
- Metasadiment (grayunike) 15- 16- 17- 18- 19- 19- 20- 19- 19- 19- 20- 19- 20- 18- 19- 20- 18- 19- 20- 18- 19- 20- 18- 19- 20- 18- 18- 19- 20- 18- 18- 19- 20- 20- 20- 20- 20- 20- 20- 2
19-1
20-

DATE Jan 18 19 56	HOLE NO CW-85-219 LOCATION Tormory CW-214 GEOLOGIST HOLMES DRILLER G. Howg BIT NO CB675ZBIT FOOTAGE CO-6.0
SHIFT HOURS	MOVE TO HOLE 9:30 -9:45
TO	DRILL 9.45 -10:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

NEW BIT

DEPTH METHES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
11 (0-15 Organizs (PEAT)	
	1.5-38 SEDIMENTS (OJIBWAY)	
2	- smooth, compact gray clay appears as irregular chunks	
	appears as irregular chunks	
3 = E	a the Thirt (CHIPAGE AND A)	
4-A-A-FOI 3.	- 8-4.6 TILL (CHIBOUGAMAN) - abrupt, distinct contact with	
5_7//	mirer Wina : Clay	
- Zecoeuc	* 5.8-4.1 Fine gray-beige sound matrix	
6 1 E	x 5.0-4.1 Fine gray-beige sand matrix peloble composition approximately both volcamics bookments 40% granites	
7-3 -	4.1-4.7 t.11 very cobby,	
8 = E	Fine gray sund matrix, clust composition approximately	
	clust composition approximately	
9-	85% sediments 15% granites	
10-1	7-60 BEDROCK	
113 E	- dark gray to black colour - fine grained - massive to slightly schistose	
	- Fine grained	
12-	- massive to slightly schistose	
13	- sugary texture	
14 =	1 11/19	
1 E	- Metasedment (graywacke	1
15-		
16-	6.0 EQH.	
17-	Don Holmes	of the state of th
19	1000	
10-11-11-11-11-11-11-11-11-11-11-11-11-1		
19 7		
20-		

DATE Jan 18 19 86	HOLE NO CW-95-220 LOCATION Formerly CW-215 GEOLOGIST HOLMES DRILLER G. Hour BIT NO CB67522BIT FOOTAGE 6.0-14.5
DATE	GEOLOGIST HOLMES DRILLER G. HOWG BIT NO (B67522 BIT FOOTAGE 6-0-14.5
SHIFT HOURS	MOVE TO HOLE
TÓ	DRILL 10:30 - 1/.15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG	
2-	0-0.5 Organics 0.5-4.6 SEDIMENTS (OSIBWAY) - moderately compact, smooth gray clay, clay softens down section	
5- A A O L	4.6-7.2 TILL (CHIBOUGAMAU) - about and distinct contact soundy, pebbly till -4.6-5.7 Fine gray sand matrix, pebble composition approximately 60% volcumies/sediments 40% grantes	
9-10-10-10-10-10-10-10-10-10-10-10-10-10-	6.0-7.2 till similar to 4.6 to 5.7	
12-	- greenish - gray colors - very fine grained - massive structure - conchoidal Fracture - trace pyrite	
15	- hard to drill - Matasest. ment (gray wack) 8.5 EOH. Don Holmes	
18-	Da Normes	

DATE Jan 1918	HOLE NO CW 85.221 LOCATION Former Ly CW - 216 GEOLOGIST HOLDES ORILLER G. HOLG BIT NO EBE 7522 BIT FOOTAGE #4.5-23.0
DATE STATE 19 15	
SHIFT HOURS	MOVE TO HOLE
TO	DRILL 11.30 - 12:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
5: 201	0-0.1 Organics 0.1-1.5 SEDITENTS (OJIBWAY) - Fine beige brown sand		
3 4 6	1.5 - 7.0 TILL (CHIADUGAMAN) - about contact with		
5-1-02	1.5-3.5 - Fine beige sand matrix (ochre colour 1.5-1.8), pebble and cobble composition approximately 60 & volumies/sedimon 400 granites	s, te	
6-A = //E03	5.0-7.0 till similar to 1.5 to 3.5		
9-1	7.0 -8.5 BEDROCK - light greenish-gray and white	color	
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· fine grained · massive to slightly schistose · grant= veris		
12	- Felsic volcanic		
12	8.5 E.O.H.		
16-1			
18-1			
20-		The second secon	

DATE Jan 19 86	HOLE NO CN-85-222 LOCATION Formerly CW - ZZ6 GEOLOGIST HOLITES DRILLER & HOWG BIT NO. CB6 7522 BIT FOOTAGE 23.0-27.0
SHIFT HOURS	MOVE TO HOLE 12:30 - 2:45
TO	DRILL 2:45 - 3:15
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METINES GHAPHIC LOG INTERVAL	DESCRIPTIVE LOG
3- Eo2	O- 2.0 SEDIMENTS (OTIBURY) - Fine brown sand - poor notion 2.0 - 2.3 TILL (CHIBOUGAMAN) - sundy pebbly fill - fine beige sand under it sebbles composition appromishly 50% volcomits/sediments 50% volcomits/sediments
5	2.3 -4.0 BEDROCK - light and dark green color - Fine grained - slightly schistore - minor colorle
6 7 8 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19	- Intermediate fratic volume 4.0 EOH. Don Holmes
15-11-11-11-11-11-11-11-11-11-11-11-11-1	

DATE Jan 18 1986	HOLE NO CW-85-223 LOCATION Former & CW - 225 GEOLOGIST HOLTES DRILLER G. House BIT NO CB67523 IT FOOTAGE 27.0 - 37.8 MOVE TO HOLE 3: 15 - 3:30
	GEOLOGIST WOLFTES DRILLER CA. MANG BIT NO CBG 752 BIT FOOTAGE 27.0 - 3/8
SHIFT HOURS	MOVE TO HOLE 3:15 - 3:30 C867523 0 - 0.7
то	DAILL 3:30 - 5:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS pull rods 4.15-4.30 , repair hydrolic hose 5:00-5.19
CONTRACT HOURS	OTHER Travel GT 5.45-6:15 pick up 6:15-7:00
	MOVE TO NEXT HOLE 5:30-5:45

NEW BIT

DESCRIPTIVE LOG DESCRIPTIVE LOG O-2.5 Organics (PEAT) 2.5-8.0 SEDIMENTS (OTIBWAY) - very soft, smooth, gray clay and 5,1/f - poor return B.O-9.9 TILL ((HIBOUGAMAN) - abrypt, distinct contact - very sandy, respective to the south of the securious colors Fire gray sandy active clast composition appropriately 502 relatives/sediments 502 grantes 11-11-11-11-11-11-11-11-11-11-11-11-11				
2.5-8.0 SEDIMENTS (OTIBWAY) - very soft, smooth, gray clay and 5,/t-poor return B.O-9.9 TILL (CHIBOUGAMUM) - abrupt, distinct countact very sandy, reypoloby till with occasional coloble Fine gray sand matrix clust composition approximately 50% relumits/sediments 50% grantes 9.9-11.5 BEDROCK - dark gray green to black color - Fine grained - Fine grained - Schribse - moor grants were 12 - Molesed ment (grayworks)	DEPTH INTERVAL SAMPLE NO.			
19 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	2.5-8.0 SEDIMENTS (OJIBWAY) - very soft, smooth, gray clay and silt-poor return 8.0-9.9 TILL (CHIBOUGAMAN) - abrupt, distinct contact - very sandy recypebbly till with occasional cobble - fine gray sand matrix clost composition appropriate 50% volcanics/sediments 50% volcanics/sediments 50% granites 9.9-11.5 BEDROCK - dark gray green to black what is a schristose - schristose - mor grate verns - mor grate verns - mor pyrite - Melasediment (grayworks)	4	

DATE Jac 19 19 86	HOLE NO CW-95-224 LOCATION Formerly CW-224 GEOLOGIST HOLFRES DRILLER G. Howis BIT NO. CB67523 BIT FOOTAGE 0.7-4.2
SHIFT HOURS	MOVE TO HOLE
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	OTHER Travel 7:00-7:45 ATTKUP 7.45 8:15 GT
	MOVE TO NEXT HOLE .

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG .
3- 101 geo	1.2-2.0 TILL (CHIBOUGAMAN) - thin being sand layer overlying sandy, pebbly till exx - Fine gray sand matrix, pebbles composition agaroximate 60 to volcomics Isadiments 401s grantos 2.0-3.5 BEDROCK - light and dark gray colour - Fine grained - schistose stoueture - minor calcite veins - Metasediment (gray which)
8 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19	3.5 E.O.M. Don Holms

DATE Jan 19 1986 SHIFT HOURS	HOLE NO CW-85-225 LOCATION Formarky CW-223 GEOLOGIST HOLMES DRILLER G. Howa BIT NO CB67523BIT FOOTAGE 4.2-14.7 MOVE TO HOLE 9.00 9:15, 10:30 - 10:45 DRILL 10:45 - 11:30
TO	DRILL 10:45 - 11:30
TOTAL HOURS	MECHANICAL DOWN TIME Fix track 9.15 - 10:30
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METHES SAMPLE SAMPLE NO.	
1-1-1-35 VENTENTS (OJIBWAY) 97	
3.5-7.4 very soft, very smooth gray clay 7.3-9.1 TILL (CHIBOUG ATLAN - distinct contact with every sedment unit	a)
Sounds, poble till Fine beige to gray-beige so matrix, pebble composition 60% volcomos/seelinent 40% granites	
9.1-10.5 BEDROCK OZ BEDROCK - black, white and green predominately epidote at sur! - medium grained to coars	ace
- igneous texture - hourblande, plagwoluse, qua epidote 1-2 mm size - slightly magnetic - trace pyrite	tz,
- Gabbro	
Don Holmes	

DATE Jan19 19 86	HOLE NO CW-85-226 LOCATION Formerly CW - 222 GEOLOGIST HOLMES DRILLER G. HOWA BIT NO CB675 25 BIT FOOTAGE 14.7-250
DATE SEEL 19 26	GEOLOGIST HOLMES DRILLER G. HOWG BIT NO CB675 23 BIT FOOTAGE 14.7-250
SHIFT HOURS	11:70 - 11:45
TO	DRILL //: 45 - /Z:30
TOTAL HOURS	MECHANICAL DOWN TIME
	DRILLING PROBLEMS
CONTRACT HOURS	OTHER
	MOVE TO NEXT HOLE

DEPTH METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0-2.4 Organizs (PEAT) 2.4-3.9 SEDIMENTS (OSIBWAY) - very suft, very smooth graye	ch-	
3 A A	3.9-8.8 TILL (CHIBSUGATAL) - abrupt contact with overlying seed ment unit		
5-01	3.9-5.1 Sandy, pebbly till Five gray to gray-beigh sand mat publies and occasional cobbles composition approximately 50% granites		
λ Δ Ξο Z	50% granites 50% granites 5.1-5.4 boulder - granite 5.4-8.8 till similar to 3.9-5.1		
9 - A	PULL PS-107 REARACK		
12-1	- dark gray colour with white mottling - very fine grained - massive structure		
13	- grantz and colore cons - uninor pyrite - uninor graphite		
16-1	- Metasedinant (graymante)		
13 - 14 - 15 - 16 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19	10.3 E.O.M. Don Hobres		
20-			

DATE Jam 19 1986 SHIFT HOURS TO TOTAL HOURS CONTRACT HOURS	MOVE TO HOLE 12:30 -12:45 DRILL 12:45 - 3:00 MECHANICAL DOWN TIME DRILLING PROBLEMS								
DEPTH IN METRES GRAPHIC LOG INTERVAL SAMPLE NO.	DESCRIPTIVE LOG								
0.8	- 4.7 SEDIMENTS (DIBURY) - 4.7 SEDIMENTS (DIBURY) - very fine gray beige sand 22.0 TILL (CHIBOUGANA) - abrupt, distinct contact with overlying sediments 4.7-10.3 - sandy, peoply till, for Fine gray beige and matrix peoples composition approximate sold gray sediments 5.06 grants - 10.3-10.9 till as above become cooling 10.9-11.2 - boulder - diorite 11.2-13.3 till similar to 10.3-10. 13.3-14.0 boulder - diorite 14.0-22.0 till similar to 10.3-10. - of 17.8 moderately compositions of gray-green chase of gray-gray-green chase of gray-gray-gray-gray-gray-gray-gray-gray-	4 - 427							

SH TC	TAL	HOURS HOURS	<u> </u>	GEOLOGIST MOVE TO HOLE DRILL MECHANICAL D	OWN TIME		BIT NO.	DOTAGE	
DEPTH IN METRES	GRAPHIC	INTERVAL SAMPLE NO.		DESCRII	PTIVE LOG				
21	Δ. Δ		Egrock	- minor	ay, white we present the property of the prope	American School			

APPENDIX B SAMPLE WEIGHTS - HEAVY MINERAL CIRCUIT

SAMPLE	WEIGHT	(KG.W	ET)		WEIGHT	(GRAMS	DRY)		<i></i>				DE	SCR I	PTIC)N						CLES
NŪ.					,	M.	I. COM					CLAST MATRI					RIX					
	TABLE		TABLE	TABLE	M.I.	CONC.	NON		NO.	CALC	SIZE	====	7.		===	===: S/U	SD	ST	CY	COL	OR	
	SPLIT	CHIPS	FEED	CONC	LIGHTS	TOTAL	MAG	MAG	V.G.	PPB		==== V/S	GR	LS	OT					SD	EY	
															_	 -				-		
CW-85	7 0			200 0	107 7	71.5	e 1	44.5		N/A	-		26	NA.				17	.,	a:	m.	व्या क्त १
01-01 02	7.8 8.8	1.5	6. 3 7.2	277.2 174.3	187.3 139.4		23.1 24.7	11.8	0	na Na	C C	75 70	25 30	na Na	1 NA	_	Υ Υ	Y Y	Y	GY GY	6Y 6Y	Titl
02-01	8.8	1.2	7.2 7.6	172.1	120.7	51.4	36.6	14.8	2	ин 620	P	75	30 25	NA	NA		Y	У	Ϋ́	GB	01 618	
02 02	7.1	1.3	5.8	84.8	58.2	26.6	17.2	9.4	0	NA	, P	75	25	NA	NA		Ϋ́	Ý	γ	GY	GY	TIL
03	9.1	4.1	5.0	168.8	113.1	55.7	33.3	22.4	1	855	P	75	25	NA	NA		Ÿ	γ	Ÿ	GY	6Y	TILL
03-01	7.8	1.4	6.4	107.2	80.2		17.4	7.6	Ō	NA	ρ	80	20	NA	NA		Ÿ	Ÿ	Ÿ	6G	66	TIL
02	4.0	0.8	3.2	140.4	121.3		14.3	4.8	0	NA	F	75	25	NA	NA		γ	Y	γ	6B	SY	TILL
04-01	9.0	1.4	7.6	270.3	222.4	47.9	33. 5	14.4	0	NA	Ρ	70	30	NA	NA	U	Y	Y	γ	GĐ	6Y	TILL
02	8.6	1.7	6.9	243.7	197.9	45.8	31.9	13.9	0	NA	P	75	25	NA	NA	U	Y	Y	Y	GB	67	TILL
05-01	8.2	1.7	6.5	218.1	173.0	45.1	31.3	13.8	i.	512	P	6 0	40	NA	NA	U	γ	¥	Y	GB	SY	TILL
02	6.3	1.4	6.9	170.1	126.9	43.2	30.8	12.4	0	NA	P.	60	40	NA	NA	IJ	¥	Y	Ÿ	6Y	6Y	TILL
_ \ 03	8.2	1.5	6.6	159.7	124.7	35.0	24.6	10.4	. 0	NA	P	75	25	NA	ΝA		γ	Ϋ́	Y	68	6Y	TILL
) 04	8.4	2.0	6.4	236.9	204.1	32.8	23.6	9.2	0	NA	C	85	15	NA	NA		γ	Υ	Y	GY	5Y	TILL
05	8.4	2.0	6.4	165.7	129.7	36.0	24.0	12.0	0	NA	C	70	30	ΝA	NA		Y	Y	γ	GY	6Y	TILL
06	8.4	1.9	6.5	217.5	180.0		23.1	14.4	0	NA	C	70	30	NA	NA		Y	Y	γ	GY.	6Y	TILL
07	7.8	1.9	5.9	181.1	147.9	33.2	23.2	10.0	0	NA	C	60	40	NA	NA		Y	Y	Y	6Y	6Y	TILL
08	8.5	1.5	6.9	155.4	118.9		25.8	10.7	0	NA	C	85	15	NA	NΑ		Y	Y	Y	6Y	6Y	TILL
09	8.6	1.2	7.4	161.0	121.0	40.0	28.9	11.1	0	NA	P	80	20	NA	NA		Y	Y	Y	GY CV	6Y	TILL
10	8.8	1.8	7.0	173.6	134.3		30.7	8.6	1	3	C	90 (A	10	NA	NA		Y	Υ Υ	Y Y	GY r	6Y	TILL
06-01	5.8 6.9	0.9 1.8	4.9 5.1	127.5	100.5 85.7		18.9 18.1	8.1 9.2	0	NA NA	P F	60 50	40 50	NA NA	NA NA		Y Y	Υ	r Y	B B	B B	TILL
02 03	5.7	1.8	3.9	113.0 141.5	114.7	26.8	18.7	7.4 8.1	0	na Na	P	30	70	na Na	NA NA	-	Y	Ϋ́	Ą	B	3	TILL
03 04	7.9	i.0	5.7 6.9	137.6	105.5		21.8	10.3	0	NA	P	35	65	NA	NA		Ϋ́	V	У	В	9 8	TILL
05	6.6	0.8	5.8	126.5	100.0		18.4	8.1	Û	NA	P	30	70	NA	1		Ϋ́	Ý	Ý	В	B	TILL
06	5. i	1.1	7.0	161.5	121.5		28.1	11.9	0	NA.	P	60	40	NA	NA		Ϋ́	Ý	Ÿ	GB	SB	TILL
07	8.5	1.0	7.5	208.5	167.1		29.3	12.1	ō	NA	P	65	35	NΑ	NA		Ÿ	Ϋ́	Ý	6B	68	TILL
08	8.9	1.2	7.7	217.1		41.3			1	1592	Ρ		40	NA	NΑ		Ÿ	Ÿ	Y			TILL
07	9.3	1.4	7.9	217.6		43.4				NA		70		NΑ	NA		γ			GB		TILL
10	9.2	1.2	8.0	216.7		46.7				NA		65		NA	NA		Υ		γ			TILL
11	9.5	1.3	8.2	236.4	196.6	39.8	25.7	13.9	0	NA	Ρ	6 0	40	ΝA	NA	U	Y	γ	γ.	8		Till
12	8.6	0.9	7.7	178.4	137.7	40.7	30.6	10.1	0	NA	P	60	40	NA	NA	U	γ		γ		6B	TILL
13	7.2	1.6	7.6	315.6		41.4			0	NA		60		NA	NΑ		γ		Y			TIL
14	7.1	1.3	7.8	88.2		37.3				NA			30	NA	NA		Y			GB		TILL
15	9.1	1.0	8.1	280.0		45.4			0	NA			30	NA	NA		Y			63		TILL
16	8.7 c.a	1.2	7.5	175.8		45.5				933			30 25	NA	NA		Y		Y			TILL
17	6.8	1.4	7.4	251.8		44.0				NA		75 70		NA	NA NA		Ϋ́ V			GB	68	TILL
18	6.3 8.6	1.6 1.1	7.2 7.5	126.2		37.9			0	AA AA		80 sa			NA MA		Ϋ́ν		Ϋ́	62 co		TILL
20	a.g	1.5	7.4	214.7 193.3		43.9 43.5			0	AK AK			10 10		NA NA		Y V	γ		oo GB		TILL
20	8.0	1.0	7.4 7.0	151.3		45.5 35.5		9.1	Ú	NA NA			10	NA NA	NA NA		Y Y	Ϋ́		69	6B	TILL
22	8.7	1.4	7.3	126.8	90.9		21.7	14.2	Q.	, NA		85		NA			Ϋ́			GB	6B	TILL
23	8.7	0.3	8.4	142.2		34.1		6.5	Õ	NA NA			15	NA			Ϋ́		Ÿ		GB	TIL
24	7.4	0.1	7.3	195.6		20.0		4.1	1	4271		65		NA	ΝĀ		F			GΥ		SAND
25	9.4	1.4	8.0	233.3		33.3			ō	NA			30			Ū						TILL

SAMPLE	WEIGHT	(KG.WE	T)		WEIGHT	(GRAMS	DRY)			4 U			DE	BCR I	PTII	×						CLASS
NO.						М.	I. CON	 IC	====			CLAS	T				MATE	UX				
			TABLE	TABLE		CONC.	NON	W45	NO.		SIZ	E	Z			5/1	50	डा	CY	COL		
	SPLIT	ruira	LEEN	CONC	LIGHTS	IUIAL	MAG	MAG	V.G.	PPB		V/S	6R	LS	រា						EY	
07-01	9.1	1.1	8.0	166.5	140.1	26.4		B.4		NA	P	70	30	NA	NA	Ð	¥	¥	γ	6B	GY	TILL
02	8.4	1.0	7.4	148.3	126.7	21.6	16.2	5.4		NA	۶	70	20	NA	NA	ij.	¥	¥	Y	GY	GY	TILL
03	6.1	1.9	6.2	216.8	182.1	34.7	24.9	9.8	_	26	P	80	20	NA	NA		ÿ	¥	¥	GY	GY	TILL
04	8.1	1.3	6.3	188.4	147.7	40.7	27.5	11.2	0	NA	Р	70	30	NA	W	_	¥	Y	Y	GY	GY	TILL
05	8.5	1.5	7.0	230.8	188.8	42.0	28.0	14.0			P,C		30	MA	眉		¥	¥	Y	GB	GB	TILL
06	8.3	1.5	6.7	275.5	247.7	27.8	20.5	7.3		NA	C	70	30	NA	NA		₹	¥	Y	GB	GY	TILL
07	8.3	1.0	7.3	230.5	188.5	42.0	28.1	13.9	_	NA	F	80	20	NA	NA	_	¥	¥	¥	GΥ		TILL
08	8.4	1.1	7.3	222.1	182.2	39.9	27.5	12.4	0	NA	C	75	15	NA	MA		¥	¥	¥	GY	GY	TILL
09	8.0	1.4	6.6	52.9	46.3	6.6	4.5	2.1	1	1719	_ C	B0	20	NA	NA		¥	¥	Y	6B	GB	TILL
10	8.1	0.5	7.5	55.6	28.7	26.9	17.3	7.6	0		P.E	70	30	NA	NA		¥	ř	γ	GB	GB	TILL
11	7.9	0.1	7.8	69.6	29.1	40.5	30.1	10.4	0.	NA	P	70	30	MA	MA		Ŧ	¥	Ä	В	6B	SAND
12	8.1	0.3	7.8	135.1	63.3	71.8	49.1	22.7	0	NA	P	60 c a	40	NA	NA	5	H	ĭ	Y	8	GB GB	SAND
13	8.2	1.0	7.2	194.5	170.2	24.3	18.6	5.7	0	NA	P	50	50	NA	₩	S	#-C	¥	Y	В	68	SAND
-) 14	8.1	1.7	6.4	154.7	102.5	52.2	35.2	17.0	0	NA	P	80	20	NA	1	Ш	¥	¥	Ä	GB	GB	TILL
15	8.3	1.6	6.7	154.1	107.9	46.2	32.0	14.2		NA	C	75 75	25	NA	NA	ij	Ä	¥	¥	GB CD	GB CD	TILL
16	7.8	0.9	6.9	136.6	99.4	37.2	25.6	11.6	1	115	C	95	5	NA	NΑ	Ш	¥	Y	Y	GB	68	TILL
08-01	7.8	0.7	7.1	171.4	123.1	46.3	35.3	13.0	_	NA	C	70	30 	NA NA	1	IJ	¥	Y	Y	GY CV	GY	TILL
02	7.5	1.0	6.5	166.7	122.1	44.6	33.0	11.6	0	NA NA	C	75	25	MA	NA	IJ	¥	¥	Y	GY	6Y	TILL
03	8.2	1.0	7.2	134.8	87.7	47.1	34.3	12.8		NA NA	£	B0	20	NA	NA MA	IJ	¥	¥	Y	6Y	6Y	TILL
0 4	7.6	1.3	6.3	165.2	125.7	39.5 29.8	27.8	11.7	0	NA NA	C	B0	20	AA AA	MA		Y v	_	Ϋ́	GY.	GB CD	TILL
05	8.5	1.5	6.9	222.9	193.1		19.7	10.1	0	NA NA	C	95	5	NA NA	NA		Å	¥	Y	GB CV	GB	TILL
0 <u>6</u>	6.5	1.5 2.0	4.9 5.9	116.3	93.3	23.0	16.4	6.5	0	NA NA	C	100	TR		NA NA	_	¥.	Ϋ́	y Y	GY CV	6Y	TILL+BDRK
07 00	7.9 c =			82.9	66.9	16.0	9.5	6.4		NA NA	C	100	TR	NA	NA NA	_	¥	¥	Ϋ́	GY GV	GY	TILL+BDRK
08 00	8.5 7.5	1.6	6.9	133.6	114.3	19.3	11.5	7.8	0	NA	C	95 DD	5	NA NA	NA MA		Å	¥	•	GY	GY CV	TILL
09	7.5	1.3	5.7	151.7	135.0	16.7	9.7	7.0		NA NA	C	7 6	2	NA	NA		Y	¥	Y	5Y	6Y	TILL
10	7.0	1.6	5.4	123.4		15.6	10.1	5.5		NA NA	C	100	TR	NA	MA	_	¥	¥	-	GY GY	6Y	TILL
11 09-01	4.0 5.6	1.2 0.8	2.8 4.8	110.4		14.8	9.5	5.3		NA ton	C F	70	30 30	NA NA	NA		¥ tr	Y	Y			TILL TILL
	3.0 8.0		7.2	143.7 168.8		21.2 31.9		6.1	1	192 731				NA NA						GB D		
02 03	7.4	0.8 1.5	7.2 5.9	181.8		38.8						75 75		NA		U				GB		TILL TILL
04	8.0	1.6	6.4	173.6		38.5				NA 4085				NA NA		ij				6B		TILL
V7 V5	7.5	1.4	6.2	217.7		39.8			ò	NA		75		NA		IJ				GB		TILL
05 06	8.3	1.4	6.9	200.4		40.4				NA		75 75		NΑ		IJ				GB		TILL
97	8.1	1.1	7.0	240.2		32.9				NA NA		70		MA		IJ				6B		TILL
08	8.1	1.2	6.9	221.5		34.2				129		70		NA	NΑ	U				GB		TILL
09	5.0	1.4	6.6	232.5		34.4				NA		70	30		NA NA	Ü				69		TILL
10	7.a	1.4	6.4	203.9		27.0		8.5		NA		75	5	NA	NA	U						TILL
11	7.1	1.3	5.8	193.4		34.4				126		75 75	5		NA	Ü						TILL
	7.0	1.5	5.5	216.2		34.0		9.7		NA		75	5			ij						TILL
一) i3	6.8	0.9	5.9	218.5		25.2		7.2		NA.		95	5		NA	IJ						TILL
14	6.5	1.3	5.2	204.5		28.2		8.3		NA.		95	5	NA	NA	U						TILL
15	8.1	2.0	6.1	166.8		24.5		8.5		NA	٤	<i>6</i> 5	15	NA	NA	บ						TILL
16	8.0	1.0	7.0	199.8		33.0		11.3		NA		100		NΑ	NΑ	U						TILL
17	8.2	1.9	6.3	153.0		26.2		7.8				100		NΑ								TILL
18	3.1	1.8	6.3	142.6		22.8		8.4		NA		75		NA								TILL

SAMPLE	WEIGHT	(KG.W	ET)		MEISHT	(ERAMS	DRY)			1 U			DE	SCRI	PTI	3N						CLASS
NO.						Ħ.	I. COM	C				CLAS	ST.				MAT	RIX				
			TABLE	TABLE	M.I.	CONC.	NON		NO.	CALC	SIZ		7.		===	5/U	SD	5T	CΥ	COL		
	SPLIT	CHIPS	FEED	CONC	LIGHTS	TOTAL	MAG	MAG	V.8.	PP9		V/S	GR	LS	- OT					SD		
19	8.0	1.0	7.0	116.6	71.0		16.9	B. 7	0	NA	C	100	TR	NA	NA	U	γ	γ	Υ	6Y	6Y	TILL
20	8.7	1.4	7.3	162.3	135.1	27.2	21.1	6.1	Û	NA	C	100	TR	NA	NA	U	Ä	Y	Y	GY	GY	TILL
10-01	7.7	0.9	6.8	104.0	71.5		21.1	11.4	0	NA 707	P	70 70	30	NA NA	1 No	U	Y	Y	Y	GB CD		NTILL
02 ^7		1.0	6.7	177.4	139.8		25.3 24.4	12.3 13.3	1	306 NA	P P	60 50	40 50	NA NA	na Na	U	Y Y	Y Y	Y Y	GB GB	GY GY	TILL TILL
03 04	8.3 8.9	1.2	7.1 7.7	360.8 169.6	323.1 125.7		29.8	14.1	0	NA NA	P	70	30	NA	NH NH	U	γ	Y	Ϋ́	GY	6Y	TILL
05		1.3	7.6	177.0	141.6		27.5 23.7	11.7	1	122	p	60 60	40	NA	NA	U	Ϋ́	Ϋ́	y	6Y	GY	TILL
05 05	8.6	8.0	0.6	349.5	294.0		41.0	14.5	0	NA.	þ	70	30	NA	NA	U	Ÿ	Ϋ́	Y	GY	GY	TILL
11-01	8.5	1.1	7.4	286.2	232.2		37.0	17.0	0	NA	P	60	40	NA	NA	U	Ÿ	Ÿ	Ϋ́	GB	GB	TILL
02	8.1	1.5	6.6	312.8	277.5		24.6	10.7	ō	NA	Ċ	70	30	NA	NA	Ū	Ÿ	Ý	Ÿ	GB	GB	TILL
03		1.5	5.8	214.1	174.2		28.0	11.9	1	176	C	70	30	NA	NA	Ü	γ	Y	γ	GY	GY	TILL
04		1.5	7.1	288.9	2 64 .2	24.7	17.1	7.6	0	NA	Ρ	80	20	NA	ΝA	U	γ	Υ	γ	GΥ	GY	TILL
05	6.0	1.2	4.8	210.5	175.3	35.2	25.4	7.8	0	NA	P	70	30	ΝA	NA	U	Y	Υ	Y	GB	68	TILL
-) 06	7.1	1.6	5.5	249.1	213.9	35.2	25.8	7.4	0.	NA	C	75	25	NA	NΑ	IJ	γ	Y	¥	GB	GB	TILL
07	4.5	0.5	3.9	237.5	117.2	120.3	113.5	6.8	2	5	C	90	10	NA	NA	U	Y	Y	Υ	GY	6Y	TILL
08		2.1	6.4	312.7		46.3		11.6	0	NA	С	80	20	NA	NA	U	γ	Å	γ	G₽	GB	TILL
09		1.8	6.8	230.1	193.7		21.6	14.5	0	NA	C	80	20	NA	NA	U	Y	Y	Y	GY	GY	TILL
10		3.6	5.3	262.4	203.6		36.1	22.7	0	NA	E	80	20	NA	NA	U	γ	Υ	Y	GY	8Y	TILL
11	7.8	1.4	6.2	363.9	320.0		33.5	10.4	0	NA 777	0	60 40	40	NA	NA	U	Y	Y	Y	GY	6 Y	TILL
12-01	8.7	1.8	6. 9	254.5	205.4		34.2	14.9 13.9	1	333	P	60 40	40	NA	NA NA	U	Y	Y	Y Y	B GB	8 63	TILL TILL
02 - 03		1.4	7.0 7.7	302.7 298.7	260.6 265.7	42.1 33.0	28.2 21.0	12.0	1 2	103 1299	P	60 60	40 40	NA NA	NA NA	U	Ÿ Y	Υ	γ	69 aa	GB	TILL
- 03		1.1	7.3	320.3	278.6	41.7	27.6	14.1	0	NA NA	P	75	25	NA	NA NA	U	Ϋ́	Y	Ϋ́	GB	6B	TILL
05		1.4	7.4	165.6	115.2		31.3	19.1	ŏ	NA	P	75	25	NA	NA	Ü	Ϋ́	Ϋ́	Ý	GB	GB	TILL
06 06	8.7	1.2	7.5	158.7	105.6	50.1	35.8	14.3	ō	NA	P	75	25	NA	NA	U	Ÿ	Ý	Y	GB	GB	TILL
07	8.0	1.0	7.0	205.0	151.5		36.1	17.4	1	10	Ċ	60	40	NA	NA	U	Ϋ́	Ý	Ÿ	GB	6B	TILL
13-01	7.2	1.5	5.7	144.6	112.2			10.0	0	NA	C	85	15	NA	NA	Ü	Y	γ	Υ	GG	66	TILL
15-01	5.6	1.2	4.4	123.0	82.3		25.5	15.2	0	NA	C	60	40	ΝĂ	NA	S	M	Y	Υ	GG	66	SAND
16-01	8.6	1.7	6.9	150.0	127.3	22.7		6.2	Û	NA	C	70	30	NA	NA	U	Y	Y	γ	6B	66	TILL
18-01		0.6	0.9	21.8	17.7		3.2	0.9	Q.	NA	P	65	35	NA	1		γ		Y	GG	B	TILL
19-01	6.3	1.3	5.0	148.5		22.3		5.7		NA	Ρ	70	30	NΑ	1	U	γ	Y		GG	65	TILL
02		1.2	4.0	136.2		33.9		7.9		312		70	30	NA	NA	U	Y		Y	68	В	TILL
03		1.0	4.7	168.1		28.3		9.3		NA		60	40	NA	NA	U	Y	Y		GB	GB	TILL
04		2.2	6.2	157.4		35.1		11.7	_	151		80	20	NA	NA	U	Y			GB	GB -	TILL
9 5		1.8	6.0	201.4		32.2		11.6	0	NA		70	20 20	NA	NA		Y			B	В	TILL
06 07	8.3	2.2	6.1 4.4	260.2		24.3		8.2		NA NA		80 86	20	NA NA	NA NA		Y		Ϋ́ Υ		B	TILL
07 08	6.7 8.3	2.3 2.0	4.4 6.3	187.9 253.4		22.0 35.4		7.1 12.0	0	na Na	P P	80 80	20 20	na Na	NA NA	U	Y Y		Ϋ́		GB B	TILL TILL
_ , 09	8.3	1.0	7.3	211.5		30.6		7.1	0	NA	P	70	30	NA	NA	Ü	Ϋ́		Ϋ́		8	TILL
10	8. 2	2.6	5.6	149.7		30.4		7.8	Õ	NA.	P	70	30	NA	NA	U	Ϋ́		Ÿ		В	TILL
11	8.4	1.5	6.9	220.4		15.2		2.1	ō	NA	p	60	40	NA	NA	S	Ċ		N		NA	GRAVEL
12	8.0	0.7	7.1	157.7		24.1		5.5	ō	NA	P	40	60	NA	NΑ	S	Ē	Ÿ	N		NA	GRAVEL
13		3.6	4.9	162.5	126.7	35.B	24.0	11.8	0	NA	P	60	40	NA	NA	U	γ		Y		GB	TILL
14		4.4	5.1	147.8		35.5		10.5		NA	P	80	20	NA	NΑ	U	Y		Y		GY	TILL
26-06	6.2	1.5	4.7	256.2	236.4	19.8	13.5	6.3	0	NA	₽	55	45	NA	NA	U	Y	Y	У	GB	GB	TILL

SAMPLE NO.	WEIGHT	(K5.4	ET)	202 2	WEIGHT			:2====	-	4U ======	22=2			SCRI			====					CLASS
NO.						M.	I. CON	C				CLAS	T				MATI	RIX				
		+10 CHIPS	TABLE	TABLE CONC	M.I. LIGHTS	CONC.	NON MAG	MAG	NO. V.G.	CALC PPB	SIZE		7.			5/U	SD	_		COL	OR	
							14.5					V/S	GR	LS	OT					SD	СУ	
07	2.6	0.4	2.2	142.5	127.2	15.3	11.8	3.5	0	NA	P	55	45	NA	NA	IJ	Y	γ	Y	GB	6G	TILL
08	4.7	1.2	3.7	192.9	170.3	22.6	17.1	5.5	0	NA	P,C	85	15	NA	NA	U	Υ	Y	Y	GB	SB	TILL
09	€.2	2.0	6. 2	240.0	227.3	12.7	9.2	3.5	0	NA	P,C	70	30	NA	NA	U	Υ	Y	γ	B	B	TILL
10	7.5	1.4	5.9	228.4	215.6	12.8	10.1	2.7	Ü	NA	P	80	20	NA	NΑ	U	γ	Y	γ	В	В	TILL

GVERBURDEN ERILLING HAMAGEMENT LIMITED

÷=: =	: 15 7 5 1 1 7	766 C	- ≠:		ur trent	/ ਹਨ ਨ ਵੜ	DAY)		,	¥U			7.5	ECAT	DT 16	15.1						CLAES
SAMFLE NG.	HEIGHT				₩EISHT ======	-				-	===				====	.===	====	====	===	====	===	*****
							I. COM	_				CLAS					MAT					
	Table	÷10	TABLE	TABLE	M.I.	COMC.	MON		NO.	CALC	51Z	==== E	==== ".	====	===	3/9		==== 37		 201		
		CHIPS		CONC			MAG	MAG	V.G.	PPB			====	====	===			-		===	===	
					¥							V/S	<u>65</u>	LS	07					30	€¥.	
																					-	
€#-#5	•																					
20-01		1.1	6.5	214.8	190.9	23.9	17.1	6.8	0	MA	Ρ	50	4)	MA HE	, 3	U	7	¥	¥	ĒĒ	38	TILL
-03	5.1	1.5	4.5	242.6	214.8	27.8	17.5	10.2	Ů.	NA	P	50	50	MΔ	MД	U	Y	Ÿ	¥	65	GB.	TILL
-03	8.5	1.5	5.9	307.4	276.2	31.2	19.2	12,0	0	NA	P	70	30	NΔ	МĢ	1	Ϋ.	Y	¥	32	GB	TILL
- ○4		2.0	5. 3	168.2	132.1	35.1	22.5	13.4	0	NA	P	70	30	NA	МΑ	1	¥	¥	Y	36	35	THE
- ()5		1.2	4.2	147.3	124.9	24.4	15.3	9.1	0	NΛ	P	80	20	ĦA	MΔ	1	¥	1	Y	38	GB	TILL
-04		1.3	7.4	167.6	118.7	43.9	25.0	18.9		N A	P	70	30	144	MA	<u> </u>	¥	¥	¥	5B	<u>88</u>	TILL '
21-01		0.7	3.9	86.5	43.9	22.7	15.5	7.2	0	NA	P	70	30	MA NA	NA	U	¥	, ¥	¥	3	514 52	TILL
-02 -03		1.3	6.3 (7	157.5 374.7	121.9 341.5	35.5	22.3 20.4	13.3 12.8	0	NA NA	P	60 75	40 25	MA MA	NA NA	U U	¥	· V	Ť Z	GE GB	23. ar	TILL
=04 =04		2.6 1.4	6.3 7.4	477.4	438.8	33.2 40.6	25.2	12.4		NA NA	F	50 80	20	nn NA	NA	Ü	ý	· V	T V	29 24	GV	TILL
-05 -05		1.7	ė.8	417.1	372.5		27.5	17.1	, v.	- NA	, P	80	20	MA	福益	ų U	Ÿ	¥	V	34	GY.	TILL
-04		1.3	7.0	347.7	323.0		14.4	8.3		NA	þ	50	20	MA	ΜΔ	ij	¥	¥	¥	gy	Ē٧	TILL
-07		0.9	4.4	263.2	246.3		11.3	5,6	_	NA	Р	70	10	NΑ	MA	ij	5	¥	Ÿ	5Y	Ξ¥	7711
22-01		0.6	6.0	350.0	325.4	24.6	15.4	9.2		NA	F	70	30	MA	NΔ		¥	¥	ř	В	E	TILL
-01		0.4	7.1	214.3	175.5	35.8	23.2	15.5	Q.	NA	p	40	4:)	40	41 <u>3</u>	ij	¥	7	Ť	3	8	TILL
-03	6.0	0.7	5.3	195.6	159.7	35.7	21.5	14.4	ę.	NA	Ρ	70	W	MA	NΑ		¥	¥	¥	Ē	Ş	TILL
- 04	1 8.3	1.2	7.1	252.2	223.3	28.9	16.1	12.8	0	NA	P	70	30	111	k i A	E	γ	¥	¥	5	68	TILL
-05		0.7	7.3	200.0	161.5	38.5	24.4	14.1	. 0	NA	P	70	30	MA	NΑ	U	γ	1	¥	B	69	TILL
- (){		1.5	6.6	139.5	113.0		16.8	9.7		NA		70	30	HA	NΔ	Ų	Y	Y	Y	5	32	TILL
-07		1.2	4,4	136.7	114.5	22.2	16.0	6.2		NA	6	80	20	NΑ	MA	U	¥	Y	¥		#97	TILL
23-01		1.3	5,8	166.8	145.3		16.5	5.0		NA NA	e e	80	20 20	NA NA	NA NA	ij	Y Y	¥	- ₹ - ¥ '	99 37	5 37	TILL
24+01 01		0.4 0.3	5.7 4.3	208.1 195.0	179.1 161.2	29.0 33.8	19.2 21.4	9.8 12.4		NA NA		80 60	20 40	ΝA	in a MA	U	T V	v	7	31 37	- 67 - 67	TILL
-91		1.8	ē.č	159.4	120.0		26.7	12.7		NΑ	e P	60	40	NA NA	NΑ	U	v	ÿ	v V	=: ⊊¥	SY.	TILL
		2.1	5.6	174.5	123.5		33.6	17.4		MA		50	45	144	MA	. 1	ý	4	¥	GV.	GY	TILL
~∂5		1.6	6.9	186.1	137.5		32.7	15.3		NA	¢	60	40	NA	NA	U	ý	Ý	ý	5y	34	TILL
- <u>0</u> 4		1.6	7.0	175.5	129.9		29.5			NA	P				14/A		γ	٧	Ÿ	٩٧	67	7711
- 00		2.0	6.3	162.2		43.2					P	. ±0	40	41A 1775	ŅΔ		¥	Y	٧	ΩV	Ē.	TILL
-09	3 8.1	0.5	7.5	205.2	175.9	29.3	20.4	9.9	0	NA	۶	40	45	MA	1/4	H	¥	Á	Ý	\mathbf{G}_{i}^{i}	27	TILL
-09		1.0	5.7	211.7		27.2		8.2	0		P	30	10		FA		Y					TILL
11		1.7	5.3	123.0		22.5		7.0			۶	75	25	HΑ	14		9					TILL
-11		1.5	6.8	304.7	267.6		21.2				P	80		MA						Ξ¥	GΥ	TILL
1 <u>1</u>		1.2	7.1	264.0		42.3		14.0			9	75	25	NA	HA		¥.		¥			TILL
-13		1.1	7.2	183.8	142.1			17.8			F	70 20	30	NΔ	MA NA		¥ v					<u> 1111</u>
- (4 -15		1.5 1.3	7.5 7.3	246.8 190.1	200.5	46.3 44.7					P.	80 80	20 20	HA HA	NA NA		A.	Ϋ́		67 67	67 67	TILL
25-/01		1.5	7.3	170.1	135.2		24.5	12.3			ņ	ev áð		被	NF NA		Ý			35	95	TILL
25-01		1.0	2.6	127.3	107.1		13.3	4.9			p	.50	50	NΑ	14A		٧			E	8	TILL
→ -);		1.3	3.8	125.3	79.5		15.7				ρ	50		MΑ	MA.		1			68	- 3¥	TILL
-03		1.4	7.0	193.0		34.0		12.1			P	é0		NΑ	ħΑ		Ť			8	35	TILL
- 04		1.5	4.4	145.6		33.9				MA		60		N/A	MΑ	J	γ		Y	35	35	TILL
-05	3.7	1.0	2.7	132.1		19.1					P	60	40	ŘΑ	ħΑ	ŭ.	Y	Y	γ	69	95	TILL

SAMPLE	WEIGHT	(KB.WE	ET)		WEIGHT	(GRAMS	DRY)		f	Ш		•	DE	SCRI	PTIO	N					-	CLASS
NO.			:::::::				I. CON		19111			CLAS	==== T	====	2223		MAT	==== RIX	===:	######################################	= = =	
i	TABLE	+10	TABLE	TABLE	M.I.	CONC.	NON	7725	NO.	CALC	SIZE	====	 %	3# = T	===	=== S/U	SD	ST	CY	COL	ūr	
	SPLIT	CHIPS	FEED	CONC	LIGHTS	TOTAL	MAG	MAG	V.G.	PFB		==== V/S	GR	LS	=== OT					SD	CY	
																_			_			
CW-65																						
26-11	8.4	1.5	6.9	374.2	349.0			6.4	0	NA	P	80	20	NA	NA		Y	Y	Y	B	B	TILL
-12	7.0	0.0	7.0	140.1	101.9	38.2	31.0	7.2	0	NA	TR	NA	NA	NA	NA		F	Y	Y	8	8	SAND
-13	8.7	2.6	6.3	286.9	230.9	56.0	44.6	11.4	0	NA	P	95	5	NA	NA		Y	¥		6Y	6Y	TILL
27-01	8.5	2.4	6.1	183.1	134.5	48.6	31.7	16.9	0	NA	P	40	60	NA	NA		Y	¥	Y	GB	GB	TILL
-02	4.3	0.6	3. 7	121.7	100.5	21.2	16.4	4.8	0	NA	P	40	6 0	NA	NA	-	Ä	Y	Y	8	B	
-03		0.7	7.3	225.0	192.8	32.2	19.5	12.7	0	NA	P	20	70	NA	NA	_	Y	Ϋ́	Y	В	B	Ti
-04		1.0		.117.4	96.3	21.1	14.9	6.2	0	NA NA	٩	60	40	NA	NA		Y	Ϋ́	Y	8	B	TILL
-05		0.9	3.7	128.0	102.4	25.4	18.4	7.0	0	NA	F	60	40	NA	NA		Y	γ	Y	68	68	TILL
-0 6	8.2	2.1	6.1	257.5	208.4	51.1	35.0	16.1 13.5	0	NA NA	C C	70 70	30 30	na Na	na Na	_	Y Y	Y	I Y	63 63	5B 6B	TILL TILL
-07	9.0	2.3	6.7	103.7	60.2 157.0	43.5 33.1	30.0 22.4	10.7	0	na Na	C	70 75	30 25	NH NA	NA NA		Y	y Y	ł Y	GB	5B	Till
-08 -09	9.0 8.4	2.3	6.4 6.1	190.1 179.8	141.8	38.0	27.4	10.7	0	NA NA	C	80	20	NA	NA		Ý	Ϋ́	Ą	GB	6B	TILL
-10		1.7	6.9	222.5	181.1	41.4	29.3	12.1	ů.	NA NA	Č	70	30	NA	NA		Ϋ́	- y	Å	6B	68	TILL
-10 -11	8.9	1.9	7.0	229.1	190.0	37.1	28.7	10.4	0	NA.	Č	70	30	NA	NA		Ý	Ý	ý	GB	68	TILL
-12	8.9	1.2	7.7	208.5	172.8	35.7	25.7	10.0	õ	NA.	C	70	30	NA	NA		Ÿ	Y	Ÿ	GY	5Y	TILL
-13		1.6	7.0	203.3	137.1	66.2	52.4	13.8	Ŏ	NA	Ē	80	20	NA	NA		Ý	Ÿ	Ÿ	6 B	6Y	TILL
-14	8.8	1.4	7.4	179.3	139.9	39.4	29.6	9.8	-	NA.	Č	70	30	NA	NA		Ÿ	Ý	Ÿ	68	6B	TILL
-15	6.3	0.4	5.9	129.2	96.0	33.2	25.7	7.5		NA	P	70	30	NA	2		Ÿ	Y	γ	GB	6 Y	TILL
-16	8.5	1.7	6.8	167.8	134.3		23.5	10.0		NA	C	90	10	NA	NΑ		Y	Υ	Υ	6B	SY	TILL
-17	9.0	1.8	7.2	157.4	124.5	32.8	22.3	10.5	0	NA	ε	70	30	NA	NA	IJ	γ	Υ	γ	GB	SY	TILL
-18	8.1	1.0	7.1	105.0	81.5	23.5	19.3	4.2	0	NA	C	100	0	NA	NA	U	γ	Y	Y	87	64	TILL
-17	8.5	1.8	6.8	100.2	82.0	18.2	14.8	3.4	1	6	C	100	0	NA	ΝA	U	Ÿ	Y	Υ	GY	G Y	TILL
-20	9.1	2.4	6.7	83.7	60.4	23.3	17.2	6.1	0	NA	C	95	5	NA	NΑ	U	Y	Y	Y	GB	GB	TiL
-21	9. 2	2.3	6.9	80.1	61.9	18.2	11.5	6.7	0	NA	C	95	5	NA	NA	U	γ	Y	Y	GY	ΕY	TILL
-22		0.0	8.3	93.3	68.8	24.5	18.5	6.0	Q	NA	P	100	0	NA	NA		Y	Y	Υ	6Y	64	TILL
-23		0.0	9.0	126.7	89.0	37.7		8.4	0	NA	Ρ	95	5	NA	NA		Y	Υ	Υ	6Y	5Y	TILL
-24		1.5	6.9	100.8		28.0		6.4		4		99	1	NA	NA		Y			GY	_	TIL
28-01		1.5	7.0	175.1		36.0				NA		80	20	NA	NA		Y		Y		<u> </u>	TILL
-02		0.8	5.0	101.8		23.6					P	70 50	30 20	NA	NA		Y		Ϋ́		B	TILL
-03 -04		1.1	5.1	137.7		24.2		8.1			6	80 ea	20 2 0	na Na	na Na		Y		Y	6B	B	TIL.
-04 -05		1.8	5.2 5.4	81.0		26.4 27.0		8.3		NA 290	P	80 70		NA NA	NA NA		Y Y		Ϋ́		8	TILL
-05 -06		1.3	5.6 6.6	140.2 213.5		46.5					P	90	10	NA	NA		Ý				SY	TIL
-0 5 -0 7		1.4	6.9	216.6		37.0				357		85		NA	NA		γ					TILL
-08		2.4	6.7	199.6		48.6				542		85		ΝA	NA		Ϋ́					TILL
-09		1.8	7.1	195.5		50.4					P	85		NA	NA		Ϋ́					TILL
-10		0.8	8.1	224.8		55.4					P	70	30	NA	NΑ		Ÿ			6Y		TILL
-11		1.0	8.0	162.9		40.9					Ρ	30	70	NA	NA		Ÿ					TIL
-12		1.2	7.7	179.8		39.7					P	50		NA	NA		Ÿ					TILL
-13		1.0	7.5	132.5	94.3		26.8				P	70		NA	NA		Υ			GY		TILL
-14	8.5	1.2	7.3	197.1	154.1	43.0	30.3	12.7	0	NA	F	80	20	NA	NA		Y			GB	6 B	TIL
-15	8.5	1.5	7.0	297.2		51.2					P	90	10	NA	NA		Υ.			GB	GB	TILL
-16		1.1	7.6	269.7	231.7		26.2				٩	80	20	NA	ŅΑ		Ą			GB	6B	TILL
-17	8.5	1.0	7.5	278.2	230.8	45.4	32.5	12.9	0	NA	Ρ	6 0	40	NA	NA	U	γ	Y	Y	68	G B	TILL

SAMFI NO	_	WEIGHT	(KG.W	ET)		WEIGHT	(GRAMS	DRY)		, 	/ U			DE	ECRI	FTI	N						CLASS
NO	•						М.	I. COM	E				DLAS	ग				6 AT	(IX				
		TABLE	+10	TABLE	TABLE	M.I. LIGHTS	CONC.	NDN MAG	MAC	NO.	CALC	SIZ	E	Z			S/U	5 D	ST	CY	COL		
		SPEII	CHIPS	reen	CONC	LIUNIS	IUIAL	(#-ij)	MAG	V.G.	PPB		V/S	BR.	LS	IJŢ					SD		
	-18	8.5	1.1	7.4	228.4	183.5	44.9	31.5	13.4	1	92			20	NA	NA	11	γ	γ	γ	GB	GB	TILL
	-19	7.0	1.2	7.3	232.5	184.4	48.1	33.7	14.4	0	NA	-	90	10	MA MA		_	¥	À	y	GB	68	TILL
	-20	6.5	0.7	5.8	164.5	130.3	34.2	24.6	7.6	0	NA.	₽	100	ű	NA	NA)		Ÿ	Ÿ	Ÿ	68	GB	TILL
	-21	8.4	1.1	7.3	220.3	178.3	42.0	28.5	13.5	0	NA	P	80	20	MA	NΑ	_	Ÿ	Ý	Ý	GB	GB	TILL
	-22	9.0	2.4	6.6	185.3	140.0	45.3	29.9	15.4	0	NA	₽	70	30	NA	ΝĀ	IJ	¥	Y	Y	63	GB	TILL
	-23	8.9	1.3	7.6	239.4	209.1	30.3	21.5	8.8	0	NA	P	BÜ	20	MA	NA	U	¥	¥	γ	68	GB	TILL
	-24	8.5	1.3	7.2	211.2	173.3	37.9	26.5	11.4	0	NA	P	70	30	NA	MA	U	Ť	Y	Y	GB	6B	TILL
	-25	8.4	1.3	7.1	181.8	145.6	36.2	26.0	10.2	0	NA	₽	80	20	NA	MA	B	¥	¥	γ	GB	G₿	TILL
	-26	9.0	1.2	7.8	252.3	192.3	60.0	39.4	20.6	0	NA	P	85	15	NA	NA	IJ	¥	¥	Y	GB	GB	TILL
	-27	9.0	1.3	7.7	236.1	187.4	48.7	34.4	14.3	0	NA	P	80	20	NA	ΝA	U	¥ ·	¥	γ	GB	GB	TILL
	-29	9.4	2.2	7.2	193.6	154.9	38.7	27.3	11.4	0	NA	F	85	15	NA	NA	_	Y	Y	Y	GB	GB	TILL
	-29	9.2	1.8	7.4	181.2	147.5	33.7	24.1	9.5	0	NA	P	80	20	NA	NA		Y	Y	Y	68	GB	TILL
	-20	8.4	0.4	8.0	240.2	200.0	40.2	30.3	7.9	0	NA	₽	80	20	NA	NA		Y	Y	γ	6B	GB	TILL
•	-31	9.3	0.4	8.9	228.3	185.4	42.9	31.0	11.7	0	NA	P	80	20	NA	NA	_	Y	Y	Y	GB	6B	TILL
	-32	7.1	0.9	8.2	214.5	173.2	41.3	29.6	11.7	1	459	7	50	10	NA	NA		¥	Y	Υ	GB	6B	TILL
	-33	8.5	0.0	8.5	94.2	64.3	31.9	25.1	6.8	0	NA	TR	NA	NA	NA	NA	_	Ħ	Y	Y	GB	GB	SAND
	-34	8.8	0.0	8.8	100.1	60.0	40.1	31.5	B.6	0	NA	TR	MA	MA	ΝA	NΑ	5	11	Y	Y	68	6B	SAND

SAMPLE NG.	WEIGHT	(KG. 4/	ET) .		MEIGHT	(ERAMS	DRY)			1 U	***		DE	ECRI	PTIO	iki Ma						CLASS
un.						Ħ.	I. COA	C				CLAS	ST.			М	ATRI	Χ				
	TABLE		TABLE	TABLE	M.I.	CONC.	NON	410	NO.	CALC	SIZE	: :	7.			S/U S		ST	CY	COL		
	5FL11	CHIPS	rteu	CONC	LIGHTS	TOTAL	MAG	MAG	V.G.	PPB		V/S	SR	LS	OT					SD	CY	
CW-85											_		_									
28-35	7.9	0.5	7.4	93.5	47.4	_	33.8	10.3	_	NA	P	95	5	NA	NA			•		GÐ	GB	TILL
29-01	9.2	1.7	7.5	155.4	148.7		25.8	11.4		NA NA	P	80	20	NA	NA			Ϋ́		GB	GB GB	TILL
-02 ∧z	8.8 7.7	1.1	7.7	152.B	114.4		24.0	14.4	0	NA NA	P	70 70	30 30	NA	NA			¥ v	γ	GB	SB CV	TILL
-03	7.6 8.6	1.4	6.2 6.8	102.9 153.8	69.2	33.7 34.1	22.5 16.3	11.2 17.8		NA NA	P	70 no		NA	NA NA			Ϋ́	Y Y	GB co	GY	TILL
-04 -05	e.s 8.5	1.8 1.8	6.7		115.7		28.6	13.0		NA	P	80 70	20 30	NA NA	NA NA			Y Y	•	63 63	6Y 6Y	TILL TILL
-05 -06	5.6	1.3	4.3	121.6 81.4	BC.0 35.5		18.4	7.5	0	na Na	C C	70	30 30	NA NA	NA			γ	γ	6B	6Y	TILL
-0a -07	8.3	3.6	5.2	152.4	117.8	32.6	20.1	12.5	•	NA NA	C	70	30 30	NA NA	NA NA			r Y	-	GY	GY	TILL
-07	7.5	2.2	7.3	121.7	76.2		28.7	14.8		NA NA	C	50	50	NA	NA			γ	Y	GB	GY	TILL
-09	7. J	1.2	7.8	218.3	186_1	30.2	25.9	4.3		. NA	P	60	40	NA	NA			Ϋ́		GB	6Y	TILL
-10	6.5	1.0	5.5	97.1	74.0		15.4	7.7	0	, na NA	P	60	40	NA	1			Υ	Ϋ́	68	6Y	TILL
-11	8.0	0.8	7.2	176.6	137.7	36.7	25.9	10.8	_	NA	P	60	40	NΑ	1	-		Ϋ́	•	68	GY	TILL
-) -12	8.9	1.5	7.4	145.2	97. 7	47.5	32.1	15.4	0	NA NA	P	80	20	NA	NA			Ϋ́	Ϋ́	6B	GY	TILL
-13	8.6	1.2	7.4	164.B	124.7	37.7	25.6	14.3	_	NA.	P	70	30	NA	NA			Ϋ́	•	G8	GY	TILL
-14	8.9	1.7	7.2	177.6	127.4	50.2	36.7	13.5	-	NA.	Ċ	75	25	NA	NA			, Y	Ϋ́	58	67	TILL
-15	8.4	1.2	7.2	149.7	1Œ.3		30.4	14.0	=	NA	P	80	20	NA	NA			Ą		GB	GY	TILL
-16	9.0	1.3	7.7	134.8	70.7		29.8	14.1	õ	NA.	P	80	20	NA	NA			У	•	6B	6Y	TILL
-17	9.3	1.6	7.7	192.3	151.8	40.5	27.6	12.9	Ŏ	NA	P	75	25	NA	NA			Y		GY	GY	TILL
-18	9.3	1.0	8.3	146.6	101.7		28.4	16.5	-	NA	₽	60	40	NA	NA			Ϋ́	Ÿ	6Y	6Y	TILL
-19	9.4	1.0	8.4	134.0	76.5	37.2	23.7	13.5		59	Ċ	80	20	NΑ	NA			Ϋ́	Ÿ	GB	GY	TILL
-20	8.9	1.3	7.6	155.4	115.2		25.7	10.5		NA	C	75	75	NA	NA			Ϋ́	Ÿ	GB	ĜΥ	TILL
-21	9.7	1.6	8.1	167.4	141.6	25.8	17.7	B. 1	Ō	NA	۶	70	30	NA	NA			Ϋ́	Ÿ	GB	GY	TILL
-22	9.7	1.4	8.3	186.9	145.7	38.7	26.3	12.4	Û	NA	P	75	25	NA	NA			Ϋ́	Ÿ	6B	68	TILL
- 23	9.3	1.2	8.6	149.7	117.7	36.8	26.0	10.8	0	NA	Ρ	75	25	NΑ	NA			Ÿ	Ÿ	GB	GY.	TILL
-24	8.8	0.8	8.0	129.3	100.4	28.9	21.0	7.9	0	NA	P	85	15	NA	NA			γ	γ	6Y	GY	TILL
30-01	7.8	2.4	5.4	133.2	97.9	35.3	25.5	7. B	1	2931	ε	75	25	NA	NA			Y	Υ	8	В	TILL
-02	9.0	2.4	6.6	158.B	164.4	34.4	22.4	12.0	0	NA	C	70	30	NΑ	NΑ	U Y		¥	γ	В	B	TILL
-03		1.6	6.7	131.1		45.0				NΑ		70	30	MA	NΑ			γ		8	8	TILL
-04	9.2	1.6	7.6	368.6	322.5	46.0	33.2	12.8	0	NA	P	70	30	NA	NA	U Y		Y	γ	GB	GB	TILL
-∂5	9.2	0.8	8.4	164.5		46.6				AA	P	80	20	NA	ΝA			Y	γ	8	G3	TILL
-06	5.9	1.1	4.8	165.6	127.6	44.0	30.0	14.0	0	NA	P	70	30	NΑ	NA	U Y		Υ	Y	GB	6B	TILL
- 07	9.5	1.8	7.7	186.0	13I.3	53.7	34.7	17.0	0	NA	Ρ	65	35	NA	NA	U Y		γ	γ	GB	GĐ	TILL
-∵8	9.5	1.6	7.9	207.3		54.5				NA	P	70	30	NA	NA	U Y		Y	Y	GB	6B	TILL
-09	9.9	1.2	7.7	205.5	15Z.0	53.5	33.7	19.8	0	ΝA	P	50	40	NΑ	NA	U Y		γ	γ	GB	68	TILL
-10		1.4	7.5	240.2		54.3			0	NA	P	6 0	40	NA	NΑ	U Y		Y	Y	GB	63	TILL
-11	5.5	1.4	8.1	260.6		63.0			0	NA		70	30	MA	NA			Y		GB	G₿	TILL
-12	7.5	1.3	8.2	272.2		46.0				NA		70	30	NA	NA			Y		GB	GB	TILL
	9.3	1.0	8.3	260.1	224.4					NA		6 0	40	NΑ	NA			Y		GB	GB	TILL
-14	8.7	0.8	8.1	225.4		17.6	8.3			NA		50	40	NA	NA			Y		GB	6B	TILL
-15	9.0	1.4	7.6	249.3		45.5				NA		70	30	NA	NA				Y			TILL
-16	9.0	1.7	7.3	276.2		49.7				NA		70	30	NA	NA			Y		GΥ		TILL
-17	9.5	1.5	8.0	230.6		58.1				NA		6 0	40	NA	ΝA					ĞĒ	GB	TILL
-18	9.0	1.1	7.9	217.3		43.4				NA		75	25	NA	NA			Y		GB		TILL
-19	9.0	1.0	8.0	226.1	189.5	36.6	26.4	10.2	0	NA	ε	80	20	NA	NA	U Y		Y	Y	GB	GB	TILL

SAMPLE	WEIGHT	W.	ΞΤ)		WEIGHT					U				SCRI	PTI)N	0.2					CLAS	
NO.						M.	I. CON	C				CLAS	iT				MATE					2222	
		+19 CHIPS		TABLE CONC	M.I. LIGHTS	CONC.	NON	MAG	NO. V.G.		SIZE	Ε	7.				SD			COL			
		لد المقام	TED	CURC	Lionia	IUITL	ניתוי	neo	Y.U.	FFB		V/S		LS						SD			
-20	5.4	1.5	7.9	195.9	149.1			13.3		NA		75 75	25	NA	NA		Y	¥	¥	6B	GB	TILL	
-21 -22	9.1 9.7	1.0	B.1 8.6	232.4 215.6	192.0 179.1	40.4 36.5	29.2 26.1	11.2	0	NA NA	C P	75 75	25 25	NA NA	NA NA		Y	Y	A	GB 68	GB GB	TILL TILL	
-23	5.2	1.0	7.2	233.3	213.0	20.3	14.3	6.0		NA	P	75	25	NA NA	MA		Ϋ́	¥	¥	GB	GB	TILL	
31-01	1.5	0.0	1.8	153.8	145.2	8.6	6.1	2.5		NA	TR	NA	NA	NA	NA		F	Ÿ	Ϋ́	В	В	SAND	
-02	E.0	1.0	4.0	195.2	156.2	39.0	31.1	7.9	0	NA	₽	70	30	NA	NΑ		γ	Ý	Ý	ĞΥ	GΥ	TILL	
-03	E. 0	1.1	5.9	223.2	187.6	33.5	22.8	10.8	Ō	NA	P	60	40	NA	NA		Ÿ	Ÿ	Ā	B	В	TILL	
-04	5.3	0.7	8.6	262.0	234.7	27.3	19.1	8.2	0	NA	P	70	30	NA	NA		Y	¥	¥	GB	GB	TILL	
-05	5.7	1.7	4.0	173.2	147.4	25.8	17.9	7.9	0	NA	Ρ	70	30	NA	NA	IJ	Υ	Υ	Y	GB	GB	TILL	
-0 á	E.5	1.5	6.9	260.6	233.3	27.3	17.0	10.3	0	NA	P	65	35	NA	NΑ	U	γ	Y	γ	GB	GB	TILL	
- 07	9.1	1.2	7.5	210.1	163.4		31.3	15.4	0	NA	P	70	30	MA	NA		γ	Y	γ	6Y	6Y	TILL	
-08	8.5	1.2	7.3	329.2	236.9	92.3	50.5	41.8		NA	P	70	30	NA	NA		Υ	¥	Υ	GY,	GY	TILL	
-09	7.3	1.5	7.5	207.9	173.1	34.8	22.6	12.2	_	NA	Р	75	25	NA	NA		γ	Y	¥	SB	68	TILL	
-10	9.7	1.5	7.3	247.7	217.3	30.4	19.6	10.8	0	NA	P	65	35	NA	NA		Y	Y	Y	GB	GB	TILL	
-11 -12	7.8 7.5	1.6	7.7 7.9	258.7	212.0	46.7	33.3	13.4		NA	P	65	35	NA	NA		Y	Y	Y	GB	GB	TILL	
-12 -13		1.5	8.6	199.1 292.5	164.5 256.0	34.6	24.6	10.0	0	NA NA	9	65	35	NA	NA		Y	γ	Y	GB	GB	TILL	
-14	7.0	1.1	5.7	148.8	153.5	36.5 15.3	9.6	13.2 5.7	0	NA NA	P	75 50	25 50	NA NA	NA		Y ·	Y	¥	GB CD	GB CD	TILL	
-15	8.4	1.7	7.2	91.9	45.9	26.0	18.4	7.6	0	NA NA	P	60	40	NA NA	NA NA		Ϋ́	Y Y	Y	GB GB	GB GB	TILL	
-16	5.2	2.1	7.1	156.5	115.2	41.3	25.9	15.4	0	NA	P	50	50	NA	NA		Ϋ́	Y	Ϋ́	68	GB	TILL	
-17	6.5	C. 7	5.8	94.1	75.5	18.6	12.7	5.9	ő	NA	C	90	10	NA	NA		Ϋ́	Ÿ	Ÿ	6B	6Y	TILL	
32-01	6.2	0.0	6.2	59.6	30.0	29.6	28.1	1.5	0	NA	TR	NA	NA	NA	NA		М	Ý	Ý	GB	GB	SAND	
-02	9.4	1.7	7.7	107.4	76.9	30.5	21.5	9.0	0	NA	P	. 60	40	NA	NA		Ÿ	Ÿ	Ÿ	68	6B	TILL	
-07	9.0	0.7	8.3	117.1	95.8	21.3	15.5	5.8	1	137	Ρ	50	50	NA	NA		Y	Ÿ	Y	3	В	TILL	
- 04	5.3	1.1	8.2	165.7	141.6	24.1	18.5	5.6	0	NA	₽	65	35	NA	NA	U	Υ	γ	Υ	68	GB	TILL	
32A-01	5.1	0.0	5.1	45.6	26.0	19.6	18.2	1.4	0	NA	TR	NA	NA	NA	1	U	Y	γ	Y	GB	GB	TILL	٠,
-02	7.0	0.5	6.1	105.5	74.9		20.7	10.0	0	NA	P	60	40	NA	NA	IJ	Y	Υ	Y	GB	GB	TILL	
-03	9.0	0.3	B.1	198.4		16.6		4.0	0	NA	P	60	40	NA	MA	S	С	Y	Y	GB	GB	SAND	
-04	8.0	0.5	7.4	190.1		11.5	9.0	2.5		NA	Ρ	35	65	NΑ	NΑ		€		Y	6B	GB	SAND	
33-01 -02	6.0	0.0	5.0	149.0		28.0	17.8	8.2		NA	TR			NΑ	NA		Y		Y		GB	TILL	
-03	B.0 B.0	0.0	B.0 B.0	86.3 108.7		41.8				NA	TR		NA	NA	NA		М			GB	GY	SAND	
-04	7.0	0.0	9.0	122.9	55.3 74.3		34.0 30.7		0	NA NA	TR		NA	NA NA	NA NA		H		Y		GY CV	SAND	
-05	8.7	0.1	B_7	125.4		51.0		18.6	0	NA NA	TR TR		NA NA	na Na	NA NA		F			68	6Y	SAND	
-06	8.6	0.0	8.6	114.0		411.7				NA	TR		NA	NA	NA		r F			GB GB	GY GY	SAND SAND	
- 07	7.1	0.1	7.0	114.9	102.9		7.3	4.7	0	NA	P	70	30	NA	NA		M			68	GY	SAND	
-08	5.0	0.1	B.0	106.6		47.5	28.5		0	NA	TR		NA	NA	NA		M			GB	GY	SAND	
-09	8.7	Cal	8.7	160.2	118.2		29.2		ō	NA	TR	NA	NA	NA	NA		М			GB	GB	SAND	
-10	B.1	V. F	B.1	178.8	142.4			10.6	Ō	NA	TR	NA	NA	NA	NA		М	Ÿ		GB	NA	SAND	
-11	9.5	operations.	7.B	280.5	235.2		30.5		0	NA	Р	85	15	NA	NA		Υ	Ÿ		GB	NA	TILL	
-12	9.2	1.0	8.2	207.3	168.6			13.4	1	857	P	85	15	NA	NA		Y	Ÿ			NA	TILL	
34-01	4.B	0.0	4.B	150.5	143.8	6.8	5.4	1.4	0	NA	TR	NA	NA	NA	NA	S	F			GB	В	SAND	
-02	5.0	141	3.4	154.3		19.5	13.7	5.8	0	NA	P	70	30	NA	NA	U	Υ	Υ	¥	GΥ	GY	TILL	
-03	7.0	0.8	6.2	239.3	225.0	14.3	8.9	5.4	0	NA	Ρ	75	25	NΑ	NA		ε		Y		GB	SAND	
35~01	6.1	1.0	4.5	184.5	149.2	35.3	23.3	12.0	Û	NA	C	85	15	NA	3	U	Y	Υ	Y	GB	GB	TILL	

SAMPLE NO.	WEIGHT	(KG.W	ET) =====	== == =	WEIGHT	(GRAMS	DRY)	=====	:====	AU			D	ESCR	IPTI	ON						CLASS
						M. =====	I. CO					CLA	==== ST 		====		MAT		===:	:===	====	1=1=1=1
	TABLE SPLIT		TABLE FEED	TABLE CONC	M.I. LIGHTS	CONC. TOTAL	NON MAG	MAG	NO. V.G.	CALC PPB	SIZ		%				 SD			COL	_OR	
												V/S		LS	OT					SD	СУ	
36-01	6.2	2.2	4.0	229.0	200.5		21.6	6.9	0	NA	ρ	70	30	NA	NA		γ	γ	ν	В		TILL
37÷)1	8.0	1.5	6. 5	224.1	178.2	45.7	33.0	12.9	0	NA	C	40	60	NA	NA		v	V V	v	8	8	TILL
38-01	4.7	0.9	3.8	128.6	116.1	12.5	9.9	2.6	0	NA	ρ	100	TR	NA	NA	_	ý	v	Ý	A	D	
-02	8.7	3.9	4.3	145.5	131.4	14.1	11.7	2.4	0	NA	P	95	5	NA	NA		v	v	v.	B	Ð	TILL
-03	6.7	3.2	3.5	157.7	146.4	11.3	8.8	2.5	0	NA	P	95	5	NA	NA		γ	y	V	Б В	8	TILL
39-01	6.6	0.1	6.5	158.0	118.4	39.5	31.8	7.8	0	NA	G	65	35	NA	NA	_	M	V	I V	9	-	TILL
-02	5.1	0.2	4.9	184.5	164.1	20.5	16.6	3.9	0	NA	6	65	35	NA	NA		M	ı V	I V	-	B	SAND
40-01	5.2	0.1	5.1	167.0	139.2	27.8	21.1	6.7	0	NA	ã	70	30	NΑ	NA.	_	M	T V	r v	В	В	SAND
- 02	9.2	2.1	7.1	283.3	255.2	28.1	21.4	6.7	0	NA	Р	70	30	NA	NA I		Y	ľ	Y	8	BN	SAND
41-01	1.9	0.3	1.6	171.2	163.5	7.7	7.3	0.4	ō	NA	P	95	5	NA	•	-	1	Ţ	1	GB	GB	TILL
43-01	7.6	0.9	6.7	157.9	115.9	42.0	30.2	11.8	0	NA	P	75 75	25		NA (1	Y	Ť	66	BN	TILLMBOK
- 02	6.0	0.8	5.2	129.9	101.4	28.5	20.5	8.0	1	73	r P	/J 85	25 15		1,3 (¥ U	Y	¥	GY	GY	TILL -
44-02	9.4	2.4	7.0	208.1	160.7	47.4	30.7	16.7	ō	NA NA	P	eu 85		MA	NA (Y	Y	-		GY	TILL
45-01	5.3	0.0	5.3	130.4	99.9	30.5	21.8	8.7	0	NA NA	TR	NA AM	15 NA	NA NA	NA (_	Y M	Y Y	Y		6Y B	TILL SAND

SAMPI		WEIGHT	(KG.W	ET)		WEIGHT	(GRAMS	DRY)		A	U4			DE	SCR I	PTI)N						CLASS
NO	•	ZZZZZ						1. COM		=====		===	CLAS	5T		===		MATI	RIX	===			
				TABLE	TABLE	M.I.	CONC.	NON		NO.	CALC	SIZE	==== :	%	====	===	=== S/U	SD	ST	CY	COL	JF.	
		SPLIT	CHIPS	FEED	CONC	LIGHTS	TOTAL	MAG	MAG	V.G.	PPB		V/S	GR	LS	0T					SD	En	
CW- 6	5																						
4	5-02	5.7	1.0	4.7	121.5	99.5			7.7	0	NA	P	20	30	NA	NΑ	U	Y	Y	Y	B	3	TILL
	-03	9.0	1.2	7.8	126.1	91.9	34.2		11.4	0	NA	P	80	20	NA	NΑ	U	¥	Y	Y	GB		TILL
	-04	8.3	1.1	7.2	103.6	70.9	32.7		11.5	0	NΑ	Ρ	85	15	NA	NA	U	¥	Y	Y	GY	SY	TILL
	-05	9.0	1.2	7.8	118.0	91.9	26.1	17.9	8.2	0	NA	Ρ	75	25	NA	1	_	Y	Y	Y	GB	5	TEL
	-/)6	8.2	1.2	7.0	89.4	62.1	27.3		8.9	0	NA	P	75	25	NA	NA	_	Y	¥	Y	GB	SE	TIL
	-07	6. 7	1.2	5.5	113.6	87.5	26.1	18.6	7.5	0	NA	C	80	20	NA	1	-	Y	Y	Y	58	<u> </u>	TILL
	-08	7.3	1.0	6.3	123.2	100.9			8.4	0	NA	C	95	5	NA	NA	_	Y	Y	Υ	62	GE	TILL
46	6-01	7.8	0.1	7.7	151.8	126.5		18.4	6.9	0	NA	P	50	50	NA	1	_	Y	Y	Y	66	ΕY	TILL
	-02	6.4	0.2	5.2	233.1	216.9		12.1	4.1	0	NA	P	60	40	NA	1	_	¥	Y	Y	Ð	₽	TILL .
	-03	8.1	0.8	7.3	315.8	287.2		21.1	7.5	0	NA	P	60	40	MA	1	3	M	Y	Ą	B	B	SAND
	-04	7.8	2.6	5.2	239.9	213.6	26.3	20.0	6.3	0	· NA	P	70	30	NA	NA NA	S	Ħ	Y	N	SB	NA	ERAVE.
-	-0 5	8.1	3.3	4.8	116.3	81.1	35.2	28.2	7.0	0	NA	P	70	30	NA	MA	S	M	Y	N	68	NA	BRAVEL.
	-06 07	8.6	2.6	6.0	294.4	267.5	26.9	21.2	5.7	0		P, G	65	35	NA	NA	S	Ħ	Y	N	BB	NA	BRAVEL .
	-07	9.2	2.6	6.5	232.9	210.5		17.0	5.4	0		P,6	70	30 30	NA	NA	S	M	¥	N	GB CD	MA	STAVEL.
	-08 -00	9.2 8.9	2.6	6.6	294.4	270.7			4.9	0	NA		70	30	NA	NA	S	M	¥	N	<u>68</u>	NA NA	BRAVEL.
	−09 -10		2.5	6.4	270.5	234.8	35.7	28.8	6.9	0		P,G	60	40 75	NA	NA NA	\$	Ħ	Y	N	SB n	NA n	
	-10 -11	8.8 9.1	2.5 1.9	6.2 7.2	137.6		22.3	15.8	6.5 7.2	0	NA NA	P	65 65	35 35	NA NA	NA	U	Ä	Y	Y	B GB	<u> </u>	TILL
	-12	9.5	2.6	7.2 5.9	182.2 179.0	155.3 157.2	26.9 21.8	19.7 15.3	6.5	0	NA NA	P P	65	აა 35	na Na	NA NA	U S	Y	Y Y	•	6B	ab Na	TILL
	-13	8.7	2.1	5.5	194.5	163.2	31.3	21.7	9.5	0	NA NA	P	60	აა 40	na NA	NH NA	5	M	Y	N		NH NA	BRAVEL
	-:4	8.8	1.7	7.1	185.1	154.5	30.6	21.7	9.5	0	NA NA	r P	65 65	53	NA NA	NA NA		M Y	Y	N N	633 635	NA NA	TILL
	-15	9.0	1.7	7.1	189.0	156.6	32.4	22.0	10.4	0	NA NA	P	90 20	40	NA	NA	_	Ÿ	¥	Y	GB	633 633	TILL
	-16	9.2	2.6	6.6	208.5	177.0		19.5	12.0	0	NA NA	P	70	30	NA	NA		Ÿ	Ÿ	Ϋ́	6B	656	TILL
	-17	5.2	1.3	3.9	173.0	154.2	18.8	12.2	6.6	0	NA	, P	70	30	NA	NA	S	M	Ϋ́	, N	63	NA NA	BRAVEL
444	4-18	9.3	3.8	5.5	282.8	259.5	23.3	15.5	7.8	ŏ	NA	P	70	30	NA	NA	U	Y	Ý	N	6B	NA.	TILL
	-19	9.5	2.6	6.9	228.5	208.4	20.2	12.5	7.7	ŏ	NA	P	70	30	NA	MA	-	Ÿ	Ϋ́	N	GB	NA	TILL
	-20	9.1	2.5	6.6	257.8	234.7		15.0		0	NA		70		NA	NA				Y			TILL
	-21	9.0	2.1	6.9	205.5			18.5		ŏ	NΑ			30	NA						SB		TILL
	-22	9.1	1.2	7.9	219.9		23.3		8.0		NA			15	NA								TILL
	-23	8.8	1.2	7.6	232.9			20.5			NA		70		NA								TILL
	-24	8.4	0.7	7.7	187.5			19.2			NA		70		NA								TILL
	-25	9.2	0.3	8.9	211.9			40.3			15			35		NA							TILL
47	7-01	6.3	0.0	6.3	124.5			24.1					NA		NA	NΑ							SAND
	-02	8.5	1.6	6.9	217.3			26.0			502			30	NA	NA							TILL
	3-01	6.0	0.0	5.0	126.6			20.9					NA		NA		5		Y			₿	SAND
49	7-01	4.7	0.0	4.9	78.9			19.7				TR			NA	1							SAND
	-02	8.8	1.0	7.8	153.7			22.5			3360			10		NA	U				GY		TILL
50)-01	5.6	1.5	4.0	112.7		19.9		5.1	0	NA		80			NΑ							TILL
51	1-01	8.7	2.5	6.2	145.0		32.5		9.9		NA		60		NA	NA			γ			В	TILL
52	2-01	7.0	0.7	6.3	108.2				5.2	0	NA		60		NA	NA				Y			TILL
	-02	5.0	2.6	2.4	216.0		14.6		3.1	0	NA		60	40		NΑ			¥				TILL
	5-01	7.6	0.0	7.6	123.7	88.3	35.4	23.7	11.7	0	NA	P	60	40	NA	NA			Y			B	SAND
	-02	7.7	1.2	6.5	182.9			31.6			NA		60	40	NA	NA	U	Y	Y	γ	B		TILL
54	1-01	7.6	0.0	7.6	168.7	123.0	45.7	32.2	13.5	0	NA	P	é0	40	NA	NA	S	M	Y	Y	B	B	SANT

LABORATORY SAMPLE LIDS

SAMPLE	WEIGHT	(KG.WE	ET)		WEIGHT	(GRAMS	DRY)		4	AU			DE	SCRI	PTI(DN .						CLASS
NO.	22223					M.	I. CON	 C				DLAS	រា				MATE				=	
			TABLE	TABLE	M.I.	CONC.	NON	WAT	NO.	CALC	SIZE		Z.			S/U	SD			COL	OR	
	SPLII	CHIPS	FEED	CONC	LIGHTS	JUTAL	MAG	MAG	v.6.	PPB		V/S	BR.	LS	OT					SD		
-02	8.3	2.1	6.2	196.9	140.4		39.0	17.5	0	NA	F	6 0	40	NA	NA	U	Υ	γ	Υ	В	В	TILL
-03	9.1	1.6	6.5	170.5	112.3		41.5	16.7	4	5329	P	60	40	NA	MA	U	Y	Y	Y	8	В	TILL
55-01	8.1	1.6	6.5	144.8	109.5	35.2	23.7	11.5	0	MA	P	60	40	NA	NA	ij	Υ	Ą	Y	В	В	TILL
-02	8.1	2.0	5.1	181.9	148.0	33.9	25.4	8.5	0	NA NA	P	70	30	NA	NA	Ü	Y	Y	Y	5	BN	TILL
56-01	7.5	1.4	6.1 E.D	147.9	118.9	29.0	21.2	7.8	0	NA an	P	75 75	25 25	NA MA	NA NA	U	Y	Ϋ́Υ	Y	B B	B B	TILL
-02 -03	7.6 7.5	1.7	5.9 6.1	194.8 173.4	149.3 133.0	45.5 40.4	33.2 32.9	12.3 7.5	3 0	28 NA	P P	75 60	40	NA NA	NA 1	U	Υ	y	Ϋ́	В	В	TILL
57-01	7.1	0.8	6.3	181.6	135.4	46.2	36.0	10.2	0	ne: NA	P	70	30	NA NA	1	U	Ϋ́	Ý	Y	B	В	TILL
<i>-</i> 02	5.9	2.0	3.8	139.3	104.3		28.0	7.0	ō	NA NA	C	85	15	NA	NA	U	Ϋ́	Ÿ	Ϋ́	GY	GY	TILL
-03	6.1	1.8	4.3	108.3	76.5	31.8	25.6	6.2	Ō	NA.	C	85	15	NA	NA	Ü	Ϋ́	Ý	Ý	8	В.	TILL
58-01	2.7	0.4	2.3	36.7	28.1	8.6	7.7	0.7	0	NA	P	80	20	NA	NA	U	Y	Y	Ÿ	GNB	В	TILL
-02	8.0	2.0	6.0	185.7	148.5	37.2	28.2	7.0	0	NA	P	85	15	NA	NA	U	Y	γ	γ	GB	GB	TILL
-03	7.9	2.8	5. i	128.5	85.1	43.4	33.1	10.3	0	NA	D	B 0	20	NA	NΑ	U	Υ	γ	Y	SP	6B	TILL
-04	7.5	2.4	5.1	236.5	182.6	53.9	40.3	13.5	0	NA	£	90	8	2	MA	ij	Y	Υ	γ	GĐ	68	TILL
-05	7.4	1.5	5.8	237.1	165.0		57.7	16.4	0	NA	C	రస్	35	NA	NΑ	U	Y	Y		6B	GB	TILL
- 06	8.6	2.3	6.3	338.8	256.8	82.0	62.1	17.7	1	5	Ε	B0	20	NA	NΑ	U	γ	Y		GB	GB	TILL
- 07	5.8	1.2	4.5	153.2	120.3	32.9	23.8	7.1	0	NA	P	65	35	MA	NA	U	Y	Y		GB	GB	TILL
59-01	7.3	1.1	6.2	269.9	227.1	42.8	33.1	7.7	1	234	נ	60	40	NA	NA	U	Y	Y		69	GB	TILL
-02	3.2	1.7	6.5	262.1	217.2	44.9	33.5	11.4	0	NA NA	P	65	35	NA	NA	Ü	Y	Ä		GB	GB	TILL
-03	8.4	1.5	6.9	254.3	213.5	40.8	28.5	12.3	0	NA	f	70	30	NA	NA	U	Ä	Ä		GE GE	6B	TILL
-04 -05	9.2 5.7	1.5	7.7	356.3	307.4	48.9 38.9	36.4	12 .5 13.7	0	NA NA	C	80	20	NA	NA NA	ij	γ	Y	Y Y	GB GB	68 [°]	TILL TILL
-04 -04	9.1	1.0 2.9	4.7 6.2	234.5 360.8	195.6 297.7	63.1	25.2 47.4	15.7	0	na Na	C C	80 80	20 20	NA NA	NA NA	Ш	Y Y	Y Y	Ϋ́	68	GB GB	TILL
-∪ o -∪7	7.1 7.1	1.6	7.5	539.8	453.2	86.6	68.3	18.3	0	NA NA	C	75	25	NA	NA NA	П	Y	Y	Į V	GB	68	TILL
-08	8.9	1.2	7.7	333.8	249.6	84.2	68.0	16.2	0	NA NA	P	60	40	NA	NA NA	U	Ϋ́	Ϋ́	Ϋ́	GB	GB	TILL
44-01	8.6	1.7	6.9	267.3	215.3	52.0	38.8	13.2	ŏ	NA	C	70	30	NA	NA	Ü	Ÿ	Ý	Ý	GB	GB	TILL
60-01	7.1	0.5	6.6	229.2	198.0			7.9	ō	NA	Ē	75	5	NA	NA	U	Ÿ		Ÿ	В	В	TILL
61-01	7.1	0.4	6.7	263.0		35.4		10.2	0	NA	C	90	10	NA		U			γ		В	TILL
62-01	8.3	0.0	8.3	331.5		62.2		15.9	0	NA	TR	NA	MA	NA	NA	5	F	Υ	Y	8	В	SAND
-02	7.7	1.3	6.4	284.6		42.1				NA	C	70	30	NA	NΑ	U	Y	γ	Y	В	₽	TILL
65-01	7.0	0.0	7.0	179.7		53.9					TR	ΝĤ	NA	NA	NΑ		F		A		₿	SAND
- 02	6.7	0.0	6.7	334.7		58.0						NA		NA	NA		F		γ		B	SAND
-03	8.9	1.9	7.0	404.5		5 3.5					P		40	NA	NA		Y					TILL
-04	6.7	0.9	5.8	209.0		35.1		10.5			P		25	NA		IJ			À		₿	TILL
64-01	5.3	0.6	4.7	162.6		19.2		4.3			C T		15	NA		ī				GB D		TILL
66-01 -02	4.5 5.5	0.0 0.5	4.5 5.0	161.0		21.1		5.2			TR:	NA DE	NA 15	NA NA	NA NA	S U	F			B		SAND
67-01	3.5 8.5	0.0	3.0 8.5	158.7 182.9		14.9 38.7		4.3			E TR	BS NA	NA TO	NA NA		n n			Ϋ́			TILL TILL
~ ₁ -∂2	8.5	0.0	8.5	138.1		36.8		12.2		NA NA	TR		MA	NΑ		IJ			Y			TILL
-03	8.7	1.1	7.6	210.9		36.0					P	70	30	NA NA	W		Ý		Ÿ			TILL
-04	3.0	0.0	3.0	79.3	69.4		7.4	2.5			TR	NA	MA	NA		Ū			y			TILL
70-01	8.5	1.5	7.0	198.8	168.3	30.5		9.2		NA		60	40	NA	NA	Ū			Ÿ		В	TILL
-02	9.0	1.2	7.8	158.8		35.4		10.3		NA		70	30	NA	NA	Ц			Y			TILL
-03	9.2	1.5	7.6	166.2		41.3				NA	P	28	15	NA	NA	U	Y					TILL
-04	9.0	1.8	7.2	230.9	192.0	38.9	27.8	11.1	Q	NA	P	70	30	NA	NA	Ц	γ	Y	Υ	GB	GP	TILL

SAMPLE	WEIGHT				WEIGHT	(BRAMS				AU				SCRI								CLASS
NG.						11.	I. CON	C				CLAS	T				MATE	XIS				*********
		+10 CHIPS		TABLE	K.I.	CONC.	NON	MAG	NO. V.G.	CALC PPB			7.			S/U				COL	OR	
	SFLII	רטזנט	LEEN		Libnia	IU (HL	rang	riad	V.C.	rræ		V/S								5D		
~ 05	9.2	1.8	7.4	156.2	115.0	41.2	26.8	14.4	0	NA	P	90	10	NA	NA	U	y	Υ	γ	GB	6B	TILL
-06	8.0	1.7	6.3	158.8	125.E	32.0	22.9	9.1	0	NA	Ρ	90	10	NA	NA	IJ	Y	Υ	Y	GB	GB	TILL
-07	9.3	1.9	7.4	229.9	179.1	50. 8	37.5	13.2	0	NA	Ρ	90	10	NA	NA	U	γ	γ	¥	GB	6B	TILL
-08	8.9	1.6	7.3	207.2	1W.0	54.2	40.7	13.5	0	NA	٩	80	20	NA	NA	Ü	Υ	Y	Y	68	GB	TILL
-09	8.9	1.8	7.1	268.7	221.3	47.4		13.1	2	255	P	80	20	NΑ	NΑ	U	Ä	Y		GB	68	TILL
-10	9.2	1.6	7.5	233.2	160.2		38.8	14.2	0	NA	P	85	15	NA	NA	U	Υ	γ	•	GĐ	63	TILL
-11	9.1	2.4	6.7	225.J	174.6		36.1	14.6	0	NA	C	80	20	NΑ	NΑ	U	Y	Υ	Υ	GB	68	TILL
-12	9.2	1.2	8.0	296.9	245.0		39.1	14.8	1	74		70	30	NΑ	NA	U	γ	Y		GB	68	TILL
-13	9.5	1.6	7.9	257.9	197.6	60.3		14.8	0	NA		80	20	NA	NΑ	U	γ	Y	Y	GB	GB	TILL
-14	3.8	1.4	7.4	467.7	357.6	BO. 1		17.9	Q.	NA	£	70	30	NΑ	NΑ	U	Y	Y	Y	GB	GÐ	TILL
-i5	9.4	1.4	8.0	263.3	.227.0			15. 1	0	NA		85	15	NA	NA	U	Y	Y	Y	GB	GB	TILL
-16	9.4	1.3	8.1	330.2		47.3		12.0	_	NA	0	75	15	NA	NA	U	Y	Υ	-	GB	GB	TILL
_ 17	10.0	1.8	8.2	218.6	167.9	48.7		16.8	0	NA	₽	80	20	NA	NA	U	Y	Ä		G₿	GB	TILL
71-01	8.1	1.1	7.0	173.6		43.2	30.3	12.9	0	NA	P	50	40	NA	NA	U	Ä	Å		68	GB	TILL
-02	6.7	1.0	5.7	140.3	14.6	35. 7	25.4	10.3	0	NA	P	70	30	NA	NA	U	Y	Y	Y	GB	GB 	TILL
-03	5.8	1.4	4.4	142.7	107.0	33.7	22.6	11.1	0	NA	P	70	30	NA	NA	U	Y	Y	γ	GB	68	TILL
-04	8.6	2.4	6.2	183.9		42.3	28.5	13.8	0	NA	-	80	20	MA	NA	U	y 	Y	Y	6B	69	TILL
-05	9.1	2.3	6.8	182.2	134.2		30.3	17.7	0	NA	_	70	30	NA	NA	U	Y	γ		GB	69	TILL
-06	9.4	2.5	6.9	154.8		45.7	30.1	15.6	0	NA	0	80	20	NA	NA	U	Ÿ	Y		GB on	GB GB	TILL
-07	9.4	1.4	8.0	141.2		52.5	31.6	20.9	0	NA		85 0=	15	MA	NA	Ü	Y	Y	Y	GB CD	GB	TILL
-08	9.3	1.8	7.5	152.3	106.6		32.4	13.3		NA Doo	-	85	15	NA NA	NA	U	Y		Y	GB CD	GB	TILL
-09	9.2	1.5	7.7	198.1	150.6	37.5	24.7	12.8	1	200	_	80	20	NA NA	NA	U	Y	Y		GB	GB CD	TILL
-10	8.8	1.5	7.3	157.5	105.6	46.9	28.9	18.0	1	470	-	90 95	10	NA NA	NA NA	U	Y		Y	GB GB	GB GD	TILL
-11 -12	9.2	1.8	7.4	180.8	130.3			16.1	0	NA NA	_	85 90	15	NA NA	NA	U	Y	Υ Υ	Y Y	GB GB	GB GB	TILL
-12 77-01	9.0		7.7	228.8	173,5			15.8	0	NA 77		; -	10	NA NA	NA	U	•	•	Y			TILL
72-01 -02	5.7	0.1	5.6	145.7		27.6		8.0 s a		33		60 60	40	NA NA	NA NA	Ü	Y	γ	Y	₽	8	TILL
-02	4.9	0.9	4.0	121.6	78.0		17.7	5.9	0	NA NA		60 70	40 70	NA NA	NA MA	Ü	Y	Ϋ́ν	Ϋ́	В	B	TILL
-03 -04	7.5	1.4	6.1	157.9		33.8		11.6	0	NA a		70 70	30 30	NA MA	NA NA	U	Ϋ́ν		Ϋ́	GB	GB co	TILL
-04 -0€	8.2	1.0	7.2	231.0		47.4		13.6	1	86 NA	P	70 40	30 40	NA NA	NA NA	U	Υ Υ	Y	Ϋ́	GB GB	GB GB	TILL
-05 -04	8.5 5 5	1.4	7.1	200.9			29.1	18.5	0	NA NA	P	60 70	40 30		NA MA	_	Y Y					TILL
-06 -0 7	8.5 8.5	1.5	7.0	167.8		41.8			0	NA NA	P	70 70	30 30	NA NA	NA NA	<u>U</u>		Y	Y	GB CS	68	TILL
-07	8.5	1.6	5.9	1E1.4	194.0	46.8	31.2	13.0	V	P ()	P	70	30	NA	NA	Ų	Υ	Ĭ	1	63	G8	TILL

04/22/86

OVERBURDEN DRILLING MANAGEMENT LIMITED

SAMPLE	WEIGHT	(KG.W	ET)	WEIGHT (GRAMS DRY)						AU DESCRIPTION												CLASS	
NO.							I. CONC			======		CLAS	T		3223		MATRIX						
			TABLE	TABLE	M.I.	CONC.	NON		NO.	CALC	SIZ		7,			S/U	SD	ST		/ COLOR			
	SPLII	CHIPS	FEED	CONC	LIGHTS	TUTAL	MAG	MAG	V.G.	PPB		V/S		LS	OT					SD			
CW-85																							
72-08	5.3	1.4	6.9	209.2	161.0	48.2	35.5	12.7	0	NA	P	70	30	NA	NA	U	Υ	γ	Y	68	GB	TILL	
-09	8.5	1.3	7.2	234.6	183.3			13.5	0	NA	P	70	30	NA	NA	IJ	γ	γ	Y	GB	GB	TILL	
-10	€.7	1.1	7.6	201.7	147.5		40.0	14.2	0	NA	P	65	35	NA	NA	U	Y	Y	Y	68	GB	TILL	
-11	7.1	1.3	7.8	333.6	264.7		51.8	17.1	0	NA	P	70	30	NA	NA	U	Y	Y	Υ	GY	GY	TILL	
-12	7.1	13	7.8	304.7	225.5		60.8	18.4	0	NA	Р	70	30	NA	NA	U	Υ	Y	Y	6Y	GY	TILL	
73-01	1.9	0.1	1.8	118.1	103.3		12.2	2.6	0	NA	P	90	10	NA	NA	U	Υ	Υ	γ	GY	GY	TILL	
74-01	6.1	0.0	6.1	261.2	220.0		32.7	8.5		NA	TR	NA	NA	NA	NA	S	M	γ	Y	GY	GY	SAND	
-02	8.1	0.0	8.1	234.6	203.8		21.1	9.7		NA	TR	NA	NA	NA	NA		M	Y	٧	В	GB	SAND	
75-01	B.0	1.6	6.4	285.5	242.9		31.3	11.3		NA	P	70	30	NA	NA		Y	Ÿ	Y	6B	GB	TILL	
-02	7.4	1.1	6.3	202.2	186.4		11.5	4.3		252	P	65	35	NA	NA	_	Ÿ	¥	Ÿ	GB	GB	TILL	
					271.5		35.4	7.1		NA	P	60	40	NA	NA	U	-	Ÿ	Ý	GB	BN	TILL	
-03	8.7	2.4	6.3	314.0								65	35	NA	NA		Υ	Y	Y	GY	GY	TILL	
-04	8.5	2.4	6.1	215.6	185.4		25.6	4.5		NA	P					-		Y	Y	6B	6B	TILL	
-05	8.9	2.1	6.8	268.0	177.3			16.9		NA	P	65	35	NA	NA	U		Y	•				
-06	9.3	1.1	8.2	214.7	140.0		58.1	16.6		85	P	70	30	NA	NA	U	Å	1	Y	GB	GB	TILL	
76-01	1.6	0.0	1.6	138.7	129.1	9.6	7.2	2.4		NA	TR		NA	NA	NA	U	Y	Y	Y	GB	GB	TILL	
-02	7.8	1.1	6.7	292.8	262.6		20.0	10.2		NA	Р	60	40	NA	NA	U	Ą	·Y	Y	GB	GB	TILL	
77-01	B.E	220	6.3	124.3	102.7		15.2	6.4		NA		80	20	NA	NA		Y	Y	Y	GY	GY	TILL	
-02	7.7	1.5	6.2	142.6	113.1			7.9		69	C	90	10	NA	NA	U	Υ	Y	Y	6Y	6Y	TILL	
78-01	5.9	1.1	4.8	194.4	178.1			4.7		NA	Р	60	40	NA	NA	U	Y	Y	Y	GB	GB	TILL	
79-01	9.2	are the steer	8.0	171.1	126.6		31.4	13.1	0	NA	P	70	30	NA	NA	U	Υ	Y	Y	6Y	SY	TILL	
B0-01	4.2	0.8	3.4	99.1	87.9	11.2	8.3	2.9	0	NA	Ρ	60	40	NA	1	U	Y	Y	Y	B	В	TILL	
81-01	9.5	1.8	7.7	152.9	116.4	36.5	24.1	12.4	0	NA	P	60	40	NA	NA	U	Y	Y	Y	8	B	TILL	
-02	6.2	1.2	7.0	190.3	156.3	34.0	23.3	10.7	0	NA	P	65	35	NA	NA	U	Υ	Y	Y	В	B	TILL	
-03	8.7	1.5	7.1	204.2	168.5	35.7	21.7	14.0	0	NA	P	65	35	NA	NA	U	γ	γ	γ	GB	GB	TILL	
-04	8.8	1.5	7.3	241.4	204.2	37.2	24.9	12.3	0	NA	Р	70	30	NA	NA	U	Y	Y	Y	GB	GB	TILL	
-05	9.1	6.7	B. 4	201.1	153.4	47.7	27.9	19.8	0	NA	P	70	30	NA	NA	U	Υ	Y	Y	G8	68	TILL	
-06	9.4	1.4	8.0	244.0		42.5				794	P	90	10	NA	NA	U	Y	Y	Y	GY	GY	TILL	
-07	9.4	0.8	8.6	181.8		39.1					P	90		NA		U				GY		TILL	
-08	8.9	0.B	B.1	189.4		32.5					Р	90		NA	1		Υ	γ		64	GY	TILL	
82-01	5.1	O.B	4.3	106.1		22.0		4.9			C	98		NA	3				Y		BN		
83-01	7.6	1.7	6.4	131.9		15.2		4.6			C	98	2		1,3		Y		Y		В	TILL	
85-01	8.8	O.E	6.0	277.2		36.2				423		30	70						Y		В	TILL	
B6-01	9.3		7.7	150.6		32.7				115		75		NA	NA		Y		Y		В	TILL	
B7-01	8.9	2.8	6.1	107.7		12.6	9.2	3.4			Ċ	95								BN	BN		
88-01	8.5	2 4	5.4	197.9								80		NA			Ϋ́		γ.		B	TILL	
						31.4				150	P									BN			
-02	9.4	2.5	7.5	185.7		39.2		9.6				85		NA	NA NA		Y					TILL	
-03		1.5	7.2	186.3		45.1				1060		85 50		NA	NA		Y			GB	6Y	TILL	
79-01	6.3	U.4	5.9	134.6	113.8		16.4	4.4			P	50		NA	NA		γ		Y		B	TILL	
-02	8.1	110	6.5	408.2		15.7		3.8		524		85		NA	NA		Y		Y		В	TILL	
-03	7.7	2.0	5.7	258.8	252.1			1.6			C	80		NA	NA		C	Y			NA	SAND	
-04	B.1	2.0	6.1	154.0	150.2			0.9			P	75		NA	NA		C	γ			NA		
-05	9.1	2.7	6.4	185.6	162.0	23.6	15.4	8.2	0		P	85	15	NA	NA		Y		Y		B	TILL	
-06	8.9	manife for	6.4	219.2	197.5	21.7	15.4	6.3	0	NA	P	80	20	NA	NA	U	Υ		Υ		В	TILL	
-07	8.5	2.8	5.7	165.1	166.9	18.2	12.3	5.9	1	311	Ρ	80	20	NA	NA	U	Υ	Υ	Y	B	В	TILL	

SAMPLE	WEIGHT	T (KG.WET) WEIGHT (GRAMS DRY)						AU DESCRIPTION													CLASS			
NO. ===========								M.	I. CON					CLAS	ST			MATRIX						320022223
	TABLE			TABLE		CONC.	NON	HAC	NO.	CALC	SIZE	:	%			S/U	SD	ST	CY	COL				
	SPLIT	CHIPS	FEED	CONC	LIGHTS	IUIAL	MAG	MAG	V.G.	PPB		V/5	GR	LS	OT					SD	CY			
-08	8.9	2.6	6.3	160.6	139.0		14.4	7.2	0	NA '	Р	80	20	NA	NA	U	Y	γ	γ	6B	GB	TILL		
-09	8.1	0.7	7.2	256.8	246.1	10.7	7.6	3.1	0	NA	P	80	20	NA	NA	U	Y	Y	Y	GB	GB	TILL		
-10	8.0	1.7	6.3	411.9	393.5	18.4	13.9	4.5	0	NA	P	75	25	NA	NA	S	C	N	N	GB CD	NA	GRAVEL.		
-11	8.5	1.7	6.8	292.6	268.4		16.0	8.2	0	NA	P	70	30	NA	NA	U	Y	Y	Y	GB	BN	TILL		
-12 -17	8.9	2.1	6.8 7.7	252.2	235.0	17.2	25.2	5.1 15.9	0	NA	P P	80	20 20	NA NA	NA NA	IJ	Y	Y	Y	GB GB	BN BN	TILL		
-13 -14	8.6 8.7	0.9	7.7 8.1	201.3 140.9	160.2 106.1	41.1 34.8	25.2	9.6	1	4143 NA	P	80 80	20	NA NA	NA NA	IJ	Y	Ϋ́Υ	Y Y	6B	GB	TILL		
-15	9.0	1.1	7.9	135.9	96.5	39.4	28.2	11.2	0	NA NA	þ	85	15	NA	NA NA	U	Y	Ϋ́	Y	68	GB	TILL		
46A-26	8.3	0.8	7.5	76.9	42.4	34.5	22.5	12.0	Ŏ	NA	Ć	95	5	NA	NA	U	Y	y	Ý	GB	6B	TILL		
68-01	6.5	0.0	6.5	89.4	57.8	31.6	21.7	9.9	ŏ	NΑ	TR	NA	NA	NA	NA	S	Ė	Ÿ	Ÿ	В	В	SAND		
-02	7.6	0.5	7.1	124.0	96.3	27.7		9.3	1 -	268	6	75	25	NA	NA	Ū	Y	Ÿ	Ÿ	В	В	TILL		
-03	8.1	0.0	8.1	-81.5	43.9	37.6	26.8	10.8	0	NA	TR	NA	NA	NA	NA	S	F	Y	Y	В	В	SAND		
-04	7.8	0.2	7.6	143.1	102.4	40.7	28.2	12.5	0	NA	6	-70	30	NA	NA	S	M	γ	Y	GB	6B	SAND		
05	8.0	0.2	7.8	143.6	120.6	23.0	16.9	6.1	0	NA	Ρ	80	20	NA	NA	S	3	Y	N	G8	NA	SAND		
-06	8.7	1.3	7.4	191.4	151.6	39.8	29.1	10.7	1	9 9	Ρ	70	30	NA	NA	U	Y	Y	N	8	NA	TILL		
90-01	8.2	2.0	6.2	171.8	152.5	19.3	14.9	4.4	0	NA	P	75	25	NA	NA	U	Y	Y	N	8	NA	TILL		
-02	8.9	2.1	6.8	138.5	116.0	22.5	17.4	5.1	0	NA	Ρ	75	25	NA	NA	U	Y	Y	N	₿	NA	TILL		
-03	7.5	3.6	3.9	88.7	81.3	7.4	6.4	1.0	0	NA	Ρ	75	25	NA	NA	S	£	Y		В	NA	GRAVEL		
- ∂4	8.7	2.8	5.9	90.5	77.6	12.9	9.5	3.4	0	NA	P	80	20	NA	NA	U	Y	¥		В	NA	TILL		
-05	9.0	1.0	8.0	169.1	135.3	33.8	23.8	10.0	0	NA	P	80	20	NA	NA	U	Y	Y		B	NA	TILL		
-06	8.8	2.2	6.6	187.4	159.8	27.6	18.2	9.4	0	NA	P	80	20	NA	NA	S	C	Y	N	B	NA	GRAVEL		
-07	8.8	2.7	6.1	280.4	260.2		13.3	6.9	0	NA	Ь	75	<i>2</i> 5	NA NA	NA	U	Y	Y	Y	GB	GB	TILL		
-08 -08	9.1	1.9	7.2	212.1	193.7		11.7	6.7	0	NA	P	<i>7</i> 5	25	NA	NA	Ü	Y	Y	Y	GB	6B	TILL		
-09 -10	8.6	1.8	6.8 4.7	140.6	117.7	22.9 21.8	14.7	8.2	0	NA	P	80	20	NA	NA	S	C	Y	N	GB CD	NA	GRAVEL		
-10 -11	8.6 9.1	2.3 1.8	6.3 7.3	104.1 147.3	82.3 115.4	31.9	16.7 21.2	5.1 10.7	0	na Na	P P	80 75	20 25	na Na	na Na	S	C Y	Y	N Y	6B	NA 68	GRAVEL TILL		
91-01	8.8	1.6	7.2	159.5	135.7		15.8	8.0	0	NA	C	80	20	NA	NA	U	Ϋ́	Ÿ	Ÿ	GB	SB	TILL		
-02	8.4	0.0	8.4	228.6		44.5		15.5	-	NA	TR	NA	NA	NA	NA		-	Ý		B	8	SAND		
-03	8.8	1.5	7.3	152.0		29.5		9.6	Ŏ	NA			25		NA	Ū		Ý	Ÿ	GB	6B	TILL		
-04	9.1	2.0	7.1	239.8		42.3			0	NA		75	25	NA	NA	Ū				GB	GB	TILL		
-05	7.1	1.3	5.8	228.9		38.6		9.0		NA		85	15	NA	NA	U				GY		TILL		
92-01	8.1	0.4	7.7	188.4	149.4	39.0	25.6	13.4	0	NA	C	50	50	NA	NA	U	Y	Y	Y	B	8	TILL		
-02	8.7	2.0	6.7	180.0	141.4	38.6	26.0	12.6	0	NA	P	70	30	NA	NA	U	Y	γ	Υ	В	₿	TILL		
-03	8.7	3.0	5.7	216.3		26.6		6.0	0	NA	P	70	30	NA	NA	U	Y	Y	Y	GB	6B	TILL		
93-01	9.0	2.6	6.4	254.2		27.8		8.0	0	NA	P	75	25	NA	NA	U	γ				B	TILL		
-02	8.7	1.8	6.9	210.1		27.4			0	NA		70		NA	NA	U				GB		TILL		
-03	9.9	2.6	7.3	190.1		32.9		14.3		NA		70	30	NA	NA	U				6B		TILL		
-04 ∧∈	9.6	2.2	7.4	160.3	129.7				0	NA		60	40	NA	NA	U			Y			TILL		
-05	9.3	0.6	8.7 8.7	239.0		39.2		9.2		NA		60	40	NA	NA	U			Y			TILL		
-06 -07	9.5 9.6	0.9	8.6 8.5	231.9		51.1		36.9	0	NA NA		65 75	35	NA NA	NA	U			Y			TILL		
-08	9.7	1.3	8.4	152.2 154.6		30.2 31.8		10.0	0	na Na		75 70	25 30	na Na	NA NA	fi fi		Y	Y V	GB B	B GB	TILL TILL		
-09	7.7 9.7	1.8	7.9	188.9		48.6		18.4	0	NA NA		70	30	NA NA	NA NA	U				GY		TILL		
-10	10.1	0.9	9.2	223.6	151.8					32		90		NA	NA	U				GY		TILL		
-11	8.9	0.7	8.2	285.4	217.4					60			20			Ü						TILL		

SAMPLE	WEIGHT	(KG.W	ET)	WEIGHT (GRAMS DRY)						AU DESCRIPTI								CLASS				
NO.						M.	I. CON	ic 	2325			CLAS	iT		7 -2-	MATRIX				===		
			TABLE	TABLE	M.I.	CONC.	NON		NO.	CALC	SIZE		7.		===	S/U	SD	ST	СУ	CO1	DR.	
	SPLIT	CHIPS	FEED	CONC	LIGHTS	TOTAL	MAG	MAG	V.G.	PPB		V/S 6R		GR LS OT						SD CY		
-12	9.2	0.7	8.5	262.2	195.4	66.8	48.8	18.0	1	 78		90	10	N/A	1	U	Y	у	Υ	<u></u>		TILL
94-01	4.5	0.0	4.5	116.9	87.8	29.1	22.1	7.0	ō	NA	TR	NA	NA	NA	1	S	F	Y	Y	В	B	SAN
-02	8.4	0.0	8.4	232.4	177.5	54.9	39.1	15.8	0	NA	TR	NA	NA	NA	NA	IJ	Y	Υ	Y	B	3	TILL
-03	8.9	2.9	6.0	185.8	160.4	25.4	17.0	8.4	0	NA	P	70	30	NA	NA	U	Y	Y	Y	GB)	B	TIL
-04	5.5	2.2	3.3	100.1	87. 6	12.5	7.9	4.6	0	NA	P	75	25	NA	NA	U	Y	Y	Y	GB	68	TIL
-05	3.2	1.2	2.0	95.1	89.2	5.9	4.1	1.8	0	NA	C	85	15	NA	NA	U	Y	Y	Y	58	B	TIL
95- 01	8.9	0.4	8.5	60.8	35.5	25.3	17.9	7.4	0	NA	P	85	15	NA	NA	U	Y	Y	Y	58	638	TIL
-02	8.1	0.0	8.1	261.3	210.6	50.7	35.9	14.8	0	NA	TR	NA	NA	NA	NA	8	Y	Y	Y	8	B	TILL
-03	8.9	2.4	6.5	193.5	161.5		22.8	9.2	0	NA	C	95	5	NA	NA	U	Y	Y	Y	<u>69</u>	BN	TILL
96-01 -02	8.3 8.5	0.0	8.3	293.6	230.7 200.6		41.4	21.5 15.4	0	NA NA	TR Tr	na Na	na Na	NA NA	NA NA	U	Y Y	Y	T Y	B B	B B	TILL
-02 -03	8.5	0.0	8.5 8.5	246.8 359.2	307.9	51.3	35.3	16.0	0	NA NA	P	70	30	NA	NA NA	U	Y	¥	Y	8	В	TILL
04	7.2	1.3	7.9	455.2	372.4	82.8	55.0	27.8	1	53	P	70	30	NA	NA	U	Ϋ́	Ϋ́	Ÿ	5B	53	TILL
-) -05	7.3	1.5	7.8	347.2	291.2	56.0	35.0	21.0	ō	NA	P	65	35	NA	NA	U	Ý	Ý	Ý	6B	638	TILL
-06	7.0	1.3	7.7	293.9	240.6	53.3	35.8	17.5	ō	NA	P	70	35	NA	NA	Ū	Ÿ	Ÿ	Ÿ	538	63 9	TILL
97-01	9.3	0.0	9.3	232.3	200.4	31.9	21.3	10.6	Ō	NA	TR	NA	NA	NA	NA	U	Y	Y	Y	GB	E#3	TI11
-02	8.4	0.0	8.4	265.4	221.1	44.3	31.0	13.3	0	NA	TR	NA	NA	NA	NA	U	Y	Y	Y	638	53	TILL
-03	8.4	0.0	8.4	221.3	178.2	43.1	29.7	13.4	0	NA	TR	NA	NA	NA	NA	U	Y	Y	Y	68	8	TILL
98- -)1	7.7	0.0	7.7	337.6	293.6	44.0	31.8	12.2	0	NA	TR	NA	NA	NA	NA	U	Y	Y	Y	Œ	53	TILL
-02	7.8	0.3	7.5	330.5	285.5	44.9	31.0	13.9	1	9 3	P	70	30	NA	NA	U	Y	Y	Y	GB	GB	TILL
-03	8.2	0.6	7.6	350.5	295.7	54.8	39.4	15.4	0	NA	C	70	30	NA	NA	U	Υ	Y	Y	63 8	58	TIL
99∹)1	8.4	1.0	7.4	261.4	218.5	42.9	27.5	15.4	0	NA	P	50	50	NA	NA	IJ	Y	Y	Y	68	GP	TILL
101-01	8.4	0.9	7.5	292.3	247.9	44.4	30.0	14.4	0	NA	P	50	50	NA	NA	U	Y	Y	Y	GB	B	TILL
-)2	8.9	1.2	7.7	266.9	225.7	41.2	25.3	15.9	1	25	P	50	50	NA	NA	U	Y	¥	Y	6B	8	TILL
-03	8.9	1.2	7.7	168.7	130.5	38.2	24.1	14.1	1	120	P	50	50	NA	NA	Ŋ	Y	Y	¥	58	6Y	TILL
-04 -05	8.8 8.7	1.6	7.2 7.5	223.8	179.4	44.4	30.3	14.1	0	NA OSO4	C	60	40	NA	NA	U	Y	Y	Y	6Y	5Y	TILL
-05 -06	9.2	1.2	8.0	168.1 196.1	129.9	38.2 43.5	26.4	11.8	2	2584 4297	C	70 80	30 20	NA NA	NA NA	U	Y	Y	Y	6Y		TILL
-0a -07	8.7	0.9	7.8	174.5		36.3				1277 NA		80		NA NA		U						TILL
~0B	8.8	0.7	8.1	211.2		50.9			ŏ	NA		80		NA	NA							TILL
-09	8.8	0.8	8.0	225.7		47.7				NA		85	15		NA							TILL
103-01	8.3	0.9	7.4	227.3		42.5			1	53		70		NA	NA	Ū			Ÿ			TILL
-02	8.8	1.3	7.5	139.7		37.4			1	263		80		NA	NA	U			Y			TILL
-03	9.0	0.3	8.7	90.9	61.3	29.6	20.2	9.4	0	NA	P	80	20	NA	NA	U	Y	Y	Y	633	68	TILL
-04	7.6	0.5	7.1	102.9	67.3	35.6	23.8	11.8	0	NA	P	80	20	NA	NA	U	Y					TILL
-05	9.2	0.8	8.4	147.5		85.1			0	NA		85	15		NA	U						TIL
105-01	6.8	0.5	6.3	113.1		29.0			1	3567		80		NA	NA	U				В		TILL
106-01	8.9	1.0	7.9	85.2		26.7				990		80		NA	NA	U			Y			TILL
97-01	7.8	0.8	7.0	69.6		29.5				NA			40		NA	U			Y			TIL
-02	3.1	0.7	2.4	94.2		9.5		3.5		NA		70	30	NA	NA	U				665		TIL
108-01	8.6	0.8	7 . 8	65.7		27.2		11.6	0	NA		65	35	NA	NA	l)			Y			TILL
110-01 -02	4.1 4.0	0.8	3.3 3.6	74.2 29.3		14.1	7.6	6.5 2.9	0	NA NA		80		NA NA	NA NA	U			Y	6B		TILL
-03	7.6	0.4	5.6 6.4	27.3 84.1		10.3 29.3			0	NA NA		80 75	20 25	NA NA	na Na	U				6B		TILL TILL
-04	7.7	1.0	6.7	76.1		25.3		9.7		NA				NA								TILL
٠,					4014	2010		(1/	V	1417	•		-	141	1471	-	•	•	•		لنب	

SAMPLE NO.	WEIGHT	(KG.W	ET)		WEIGHT	(GRAMS	DRY)			UF			DE	SCRI	PTI	DN						CLAS
MU.						M.	I. CON	iC				CLAS	π				MATI	RIX	 -			
		+10 CHIPS	TABLE	TABLE CONC	M.I. LIGHTS	CONC.	NON MAG	MAG	NO. V.S.	CALC PPB	SIZE		Z		===	S/U	5D	ST	ΕY	COL	.OR	
		<u> </u>			2100	101112						V/S	5R	LS	στ					SD	CY	
-05	8.2	1.1	7.1	65.3	43.8	21.5	11.7	7. 8	0	NA.	P	80	20	NA.	NA	U	¥	у	-γ	GB	6 B	TILL
-06	8.5	2.2	6.3	120.3	95.8	24.5	11.8	12.7	0	NA	₽	45	35	NA	NA	Ü	Y	γ	Y	68	G₿	TILL
− 07	8.7	1.0	7.7	59.9	38.6	21.3	12.1	9.2	0	. NA	P	70	30	NA	NA	IJ	Y	Y	Y	GB	6B	TILL
-08	9.3	2.0	7.3	93.0	64.7	28.3	14.6	13.7	0	NA	P	70	30	NA	NA	U	γ	γ	Y	GB	6B	TILL
-09	8.7	1.2	7.5	103.5	70. 7	32.8	15.8	17.0	0	NA	P	7 5	25	NA	NA	IJ	Y	γ	Y	GB	6B	TILL
110-10	7.4	0.6	6.8	131.7	82.7	49.0	27.3	21.7	1	78	P	85	15	NA	NA	IJ	¥	Y	Υ	GB	В	TILL

SAMPLE	WEIGHT		-		PE : Carrie	ieane	DRY)			\U				3CAI			_				CLASS
NG.	131114						I. CON	C				CLAS	ī			r.A	TRIX				and with reason to the color of the size of the
			TABLE	TABLE	M. I.	IIND.	NON		NO.	CALC	SIZE		2; /s			5/U 50			CEL	.GR	
	SFLIT	CHIPS	FEED	CCNC		TOTAL	MAB	MAG	V.G.	PPB		 7/5	GR	LS	07				3D	CY	
31: 37						*															
- CW-85 - 111-01	5.9	0.8	5.1	271.4	742.7	29.2	19.9	9.3	0	· MA	P.BR	- 54	20	14.4 1571	MA	и у	v	Y	3B	.35	TILL&BDK
112-01	6.8	0.3	5.5	75.0	27.1	17.7	10.1	7.8	Û	NA NA	r,an P	70	20 30	ANTA NA	NA	υ γ	: Y	Y	66 66	 38	TILL
-02	9.3	1.2	8.1	38.5	7.5	14.9	7.5	7.3	٥	NA NA	P	70	30	ħΑ	NA	υÝ.	ý	Ý	63	58	TILL
-03	4.3	1.3	3.0	37 .0	To 5	72.7	14.5	17.7	1	13339	구 :	. 70	30	MA	NΑ	U Y	Ý	Ϋ́	65	33	TILL
113-01	7.1	1.2	7.9	45.7	15.7	24.7	13.5	11.1	1	1173	P	70	30	MA	NΑ	ÜY	y	¥	68	GB	TILL
-02	Ē. 1	1.6	5.3	71.5	APW SA	18.0	10.4	7.6	4 2	144	?	30	20	A	iin iin	U Y	¥	Y	6Y	37	TILL
-03	8.1	1.9	6.2	171.5	147.3	22.3	15.3	7.0	0	NA	P	70	50	ΝA	HΑ	J Y	Y	\mathcal{F}	57	6 7	TILL
-04	7.5	1.5	5.0	35.0	65	21.2	14.6	6.5	0	NA	7	30	20	MA	1	U Y	¥	Ţ	67	67	TILL
-05	7.2	1.5	5.6	129.3	147.6	21.7	11.8	9.9	Û	NA	P	80	20	NA	NA	UY	¥	Ä	5 Y	67	TILL
-114 - 61	7.1	2.6	4.5	214.0	151.5	30.2	20.3	7.7	0*	MA	P	80	20	HA	NΑ	O A	¥	¥	58	GB	TILL
- 02	7.1	2.5	4.6	100.5	76.2	ZZ.3	13.5	8.8	û	NA	٦	50	20	MΑ	NA	U Y	Y	7	63	Œ	TILL
-03	8.4	2.2	5.2	173.3	135.6	37.7	20.1	17.6	0	NA	P	80	20	HA	NA	U Y	¥	a de	GY	97	Till
-04	6.3	1.7	4.6	127.9	75.0	34.7	20.3	14.5	0	NA	Ď.	80	20	ЖÀ	NA	U Y	Y	1	68	6Y	TILL
115-01	5.0	1.8	4.2	116.7	F .5		17.0	10.2	0	NA	P	75	25	MA	NA	-U Y	¥	¥	3	8	TILL
-02 -03	7.1 6.7	1.2	5.9 5.6	142.9 110.7	116.3 60.0	24.1 30.9	14.0 15.1	10.1 14.5	0	NA 1768	0	50 50	20 50	NA NA	MA MA	U Y	Y	Y	8	B B	TILL
-∪s -04	9.0	1.9	7.1	178.7	100.0	28.2	16.7	11.3	0	NA NA	P	75	25	NA	MA	U Y	. ¥	¥.	В В	8	TILL
-05	7.7	1.2	5.5	197.1	THE.I	11.0	7.2	3.8	0	NA NA	0	60	40	NA	NA	U Y	¥	Ý	8	B	TILL
-06	7.5	1.0	5.5	150.2	115.B	33.4	23.7	9.7	Õ	MA	Ē	90	10	MA	NA	j. y	Ý	Ý	58	ΞΥ	TILL
-:) 7	4.4	1.1	3.3	107.5	57.2	18.3	12.5	5.8	0		_		10	NA	NA	ŜΥ	Ý	ÿ	GY	GY	TILL
116-01	7.2	1.0	6.2	121.3	E5.4	35.9	20.9	15.0	0	ΝA	Ē	70	30	i a	NA	U Y	Ý	γ	3	3	TILL
- ∂2	7.2	1.2	6.0	136.3	194.1	32.2	19.4	12.3	0	NΑ	Ρ	70	30	MA	NA	U Y	¥	¥	5	3	TILL
-03	8.5	1.5	7.0	230.7	157	43,4	78.7	14.5	ŷ	NA	۶	80	20	NA NA	NA	U Y	У	¥	5	В	TILL
-04	7.6	1.8	5.8	215.7	177.5	JB.2	25.Ū	13.2	9	NA	C	80	20	M	MA	U Y	¥	¥	GB	GB	TILL
-05	6.0	1.3	6.7	270.0	ZA.1	49.5	33.3	16.6	Ů	NA	P	75	25	NA	NΑ	U Y	Y	¥	35	GP	TILL
∂6	5.2	0.7	7.3	248.3	200.7	47.5	32.4	15.2	0.	NA	ř	75	25	설수 기미	MA	0 7	¥	¥	33	33	TILL
-07	7.8	1.8	á.0	259.8	241.1	49.7	32.3	16.4	Û	NA	۴	75	25	ХA	NA	U Y	¥	Υ	63	GB	TILL
-05	7.4	1.2	6.2	202.5	156.3			11.7	Q	NA	P	90	10	inci	HΩ	U Y	***		Œ	93	TILL
-09	7.3	1.0	6.3	178.9		36.7		13.7	9	NA	P	35	15	NΑ	31/A 1967	U Y	Y		<u>8</u> 7	GY	TILL
-10	E.3	1.3	8.Q	176.1	147.8			10.5	Õ	PA PA	0	70	10	HA	NA	U Y		Y	Ε̈́́	51	TILL
-11 -12	7.5 7.8	1.8	5.8 5.8	208.4 173.2	174.5			10.5	0			75 50	25 20	NA NA	NA MA	U Y		Y	37 ***		TILL
-13		2.7	5.4	163.1	141.7	27.9	11.5 18.7	10.5 9.2	0 0	NA NA		50 75	20 25	NA NA	NA NA	U Y	Y v	Υ Υ	57 67		775
-14		2.4	5.9	77.5		27.7 23.3		5.3	0	nn NA		75 75	5	MA MA	MA MA	U Y		Y	BY BY		TILL TILL
-15		2,4	5.6	78.4	2.00	25.1	14.7	10.2	0	NA		75	5	NA NA	MA MA	9 1		¥	GY.		TILL
-15	7.7	1.5	5.3	100.5	75.7	74.4	17.0	7.4	1	11		73 73	5	MA MD	NA NA	ű Y		Ý		5y	TILL
117-01	8.0	1.4	6.6	151.5		37.1		19.8	1	401		70	10	MA	NA	Ū Y		Ý	68	SB	TILL
	3.1	2.1	5.0	151.7		28.5		12.1	0	MA		80	20	NΑ	NA	Ū Ý		Ý	5	3	TILL
-93	7.9	1.3	6.6	135.6	77.8	38.8	73.5	15.2	0		P	60	40	VΑ	NΑ	U Y		У	ĞB	<u>3</u> B	TILL
-04	7.4	0.4	7.0	117.3	E2.7	29.6	17.8	7.8	1		С	95	5	VΑ	NΑ	U Y		¥	GB	68	TILL
-05	5.3		.7.7	139.0			24.5		1	155		70		NΑ	ΝA	B A		¥	57	6B	TILL
~).5	8.0		7.3	153.4		50.5		17.5	0	NA		70	20	MA	NA	U Y		¥	38		TILL
-07	7.8	0.2	7.6	250.1			62.5		1	Ç.			20	NA	NΑ	U Y			GB		TILL
113-01	7.4	1.5	5.7	110.5	11.2	22.7	15.8	15.7	1	113	Ü	70	30	NA	NΑ	U Y	γ	¥	3	₿	TILL

LABGRATURY SAMPLE LOS

SAMPLE	¥ELEHT		E()		WEIGHT	(GRAYS	DRY)		į	40			DΞ	SCR I	F710	3.4					CLABB.
₩ .	====						I. CGN		2223			CLAS	T			ħ	ATRI.	(Qu. Valle, desti, desti vero i per peri peri peri vero mini emi engli prigi engri alga engo salar mili vero emi
				TABLE	M.I.	COMO.	NON		NO.	SALC	BIZE		1/2			3/U S			Y CO	.OR	
	SFLIT	LALID	FEED	CONC	LIGHTS	IUIAL	MAG	MAG	V.G.	PPB		==== V/S		LS						CY	
-02	£. 1	1.1	5.0	103.4	77.6	25.8	13.3	12.5	ġ.	NA.	P.BD	 75	Z 5	NA	NA	U Y	r 3	γý	В	В	TILL&BLR
-03	6.3	15	4.8	130.8	102.6	28.2	18.4	9.8	0	NA	P	70	30	NA	MA	U 1		y V	8	B	TILL
-04 -05	7.a 7.B	1.5	5.1 5.5	201.3 145.1	153.6 81.6	42.7 63.5	29.0 42.1	13.7 21.4	1 2	468 199	C BR.C	70° • •	30 10	na Na	NA NA	U Y		/ Y	9 97	B 37	TILL&BLR TILL&BDK
119-01	7.0	0.7	5.1	120.4	87.0	31.4	20.6	19.3	0		BR,P		15	NA NA	NA NA	13 - V			В	9 / B	TILL
120-01	5.7	1.0	4.7	151.5	118.9	32.7	24.4	8.3	-		P.BR		20	NA	NA	U Y			6B	33 33	TILL
121-01	5.7	1.5	4.1	132,2	96.3	35.9	27.9	8.0	Ŏ		P.BR		20	ħΑ	NA	U Y		-	9	5	TILL
:22-01	3.1	====	£.7	176.2	139.7	36.5	25.9	10.6	1	440	C	30	20	NΑ	MA	U	r 3	Ý	5	В	TILL
125-01	8.9	1-1	7.6	156.7	129.0	27.7	19.9	7.8	0	NA	C	75	25	MA	NA	U Y	٢ ١	/ Y	63	BN	TILL
124-01	B.7	1.5	£.7	112.5	75.3	36.3	26.1	10.7	0	NA	С	75	25	NA	NΑ	U Y	, ,	Y	Ē	F	TILL
125-01	7.1	1.5	7.6	113.9	99.1	19.8	12.3	7.5	٥.	NA	P	70	30	MA	NA	U Y	/ A	/ Y	В	В	TILL
126-01	5.7	1.4	4.5	70.2	42.1	28.1	21.1	7.0	Ũ	NA	٦	70	30	MA	NΑ	U Y		/ ¥	56	GB	TILL
127-01	6.3	Q. 7	5.4	153.8	120.1	33.7	23.0	10.7	0	NA	P	75	25	MA MA	NA	U Y		-	В	8	TILL
() -02	7.5	1.5	5.9	99.0	- 75.1	23.9	15.6	9.3	0	NA	0	75	25	NA	MA	U)		/ Y	SB	68	TILL
-03 -04	5.4 5.4	1.1	7.3	77.9 185.3	43.7 154.3	34.2	25.4 25.3	8.8	0	NA NA	P	75 80	25	NA NA	NA	U Y			GB CD	68	TILL
-∂5	7.0 5.4	9.7	5.7	110.1	86.7	34.0 23.2	16.7	8.7 6.3	0	NA NA	C P	80 80	20 20	WA WA	NA NA	U Y		•	68 68	65 58	TILL
-06	7.0	1.3	7.7	193.3	150.7	42.6	31.4	11.2	0	NA	7	80	20	MA	MA MA	U Y		γ	SP SY	6Y	TILL .
:25-01	7.2	1.4	7.3	163.0	117.0	46.0	31.1	14.9	ű	MA	ŕ	70	30	MA	NA	U.Y			B	B	TILL
- 129-01	7.5	1,4	5.1	129.3	99.3	30.5	21.7	8.8	1	98	P	70	30	NA	1	Ū Y		-	В	B	TILL
-02	7.4	1.5	5.3	155.5	109.4	46.1	34.5	11.6	0	NA	C	95	5	NA	ΝA	UY	1	Y	33	GY	772
-্য	9.2	1.5	7.4	201.1	148.6	52.5	39.9	12.5	0	NA	C	7 5	5	MA	MΑ	U Y	, ,	7	6Y	8Y	TILL
130-01	7.5	1.5	7.7	158.8	130.0	38.8	26.6	12.2	Ç	NA	<u>ت</u>	70	30	NA	NΑ	U V	. 1	Y	10	9	TILL
-02	7.4	reach Street	7.3	154.5	122.5	31.9	21.5	10.4	0	NA	P	70	30	MA	NΑ	U Y	· \	Y	8	3	TILL
-02	8.8	1.6	6.8	121.3	81.5	39.8	25.8	13.0	0	NA	P	75	25	MA	NA	U Y			68	GB	TILL
-74	8,5	1.2	7.7	137.5	100.4	37.1	24.0	13.1	0	MA	P	30	20	NA	NA	U Y			GY	GY	TILL
131-01 132-01	8.5 8.1	1.3	7.4 5.5	161.7	115.9	40.4		12.8	0	NA	2	<u>80</u>	20	MA	NA	ШУ				5B	TILL
-)Z	- 6: 1 - 7: E	0.7	2.3	180.4 53.0		15.5			1	280 NA		80	30 20			U Y U Y		Y Y			TILL
133-01	5.4	4 3	7.0	139.5	104.3				0	NA		70				U 7			55 53		TILL
-ŭ2	7.1	1.4	7.7	125.4		40.4				74		80				υ γ		Ý			TILL
134⊸)1	8.9	1.5	7.4	135.3	101.0			9.5	Ō	NA		70				U Y		Ý			TILL
-02	7.0	1.1	7.9	289.5		33.2			Q.	NA		80	20			Ū Y		Y			TILL
-03	5.7		4.7	148.1	115.2	32.9	24.8	8.1	0	NA		50	10	NA	MA	U Y	1	Y	GB		TILL
-(:4			1.00	147.1	103.9			9.8	Q	NA	P	70	-10	MA	ΝA	U Y	17	Y	SB	67	TILL
-05	2.2	1.3		178.2	139.6			7.2	0	NA			10			U Y		¥			TILL
-06	5.5		5.2	233.1		54.6			0	MA		95	5		MA				ŒĐ		1111
135-31 -33	7.1		3.3	149.2		32.7		3.9	1		Ş					J Y			GB -		TILL
-32	7.1 2.5		7.4 5.7	153.9 121.0	116.3				0	NA NA		80				U 7		Y			TILL
122-1	7.5		7.4	171.1	127.3	21.3			.0 1	NA 12		90 5≅	10 15			U Y		Y			TILL
-02	7.0	1.7	343	115.6		41.2			0	NA		6E 00		MA	NA NA				а 68		TILL
138-01	7.2	100	7.1	149.2	112.7						۴	90	10	1107 1107		U Y			GB		TILL
-)2.	7.6	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	700	147.8	110.2					114			10		NA			¥			TILL
+03	9.0	7.2	±.8-	.270.9	230.9	40.û	30.4	9.5	1	47		90	10	MA	MA	U Y		Y			TILL

SAMPL		WEIGHT				WEIGHT		DRY)			NU .				ECR II								CLASS
NO.							Ħ.	I. 00A	C	2222			CLAS	T				MATA	RIX				
		TABLE SPLIT		TABLE	TABLE COND	M.I. LIGHTS	CONC.	NON	MAG	NG.	CALC FPB	31Z		%	====		5/U				CCL	ΩĀ	
		SFL1:	natra	LEED	مالاليان	Lionia	IUIML	MAG	MU	V.G.	rra		V/S			OT					30		
	- ≬4	9.0	1.1	7.9	221.0	185.5	35.5	26.0	9.5	1	58	С	90	10	ytA Hun	NA	IJ	γ	Y	¥	G5	GΒ	TILL
	-05	7.0	0.3	5.2	70.0	73.9	16.1	13.3	2.8	1	37534	-	R 98	2	NA	MA		Y	Ϋ́	Ä	ð	GB	TILLABOX
139		8.3	1.7	7.1	264.6	210.1	54.7	40.9	13.8	Q	NA	٦	90	10	NA	NΑ	U	¥	Y	4	68	38	TILL
	-02	9.4	1.5	7.8	266.1	201.2	64.9	48.2	15.7	0	NA	P	85	15	NΑ	NA	U	Y	Y	Y	63	GB 	TILL
	-03	9.4	1.8	7.5	253.6	192.5	61.1	46.6	14.5	0	NA	P	55	15	NA	NA	Ú	Y	Y	¥	55	GR	TILL
	-04 ∘=	6.5	ે. ક	7.9	293.3	233.4	59.9	46.0	13.9	1	248	þ	90	10	NΑ	NΑ	<u> </u>	¥	y	¥	68	63	TILL
	+05 ∴⁄	8.8	0.3	8.5	266.7	205.3	61.4	49,4	12.0	0	NA	P	85	15	NA HA	NA	Ú	Y	7	Y	SE.	6 B	7111
	-06 -07	8.7 3.2	0.4	8.3 7.5	269.1 165.1	219.9 123.4	49.2	40.3	8.9	Û	NA CE	F	85 70	15	NA NA	WA Z	U	¥ V	Y	Y	68	<u>59</u>	TILL
	-08 -08	8.5	0.4	7.8 8.5	189.6	147.5	41.7	35.4	8.5 6.7	2	25 NA	P	70 NA	30 Na	NA :	3	U	V V	Y	A	35	35 68	TILL
	-08 -09	8.1	0.3	a.s 7.8	230.5	187.0				-	NA NA	TR	NA	MA 5	NA NA	MA	i ii		Y	•	67 27		TILL
	-10	8.O	0.0	7.5 8.0	211.6	168.9	41.5 42.7	35.0 34.7	6.5	0. 0.	NA NA	P TR	95 NA	D NA	NA NA	NA MA	U	Y	Υ Υ	Ϋ́	GY	GB	TILL
	-11	9.0	3.1	5.9	132.1	94.3	37.8	25.9	5.0 11.9	0	NA NA	P P	NA 90	10	₩A.	MA NA	U	Y Y	Y	Y	GY GY	GB GY	
	-12	7.2	2.0	7.2	260.7	225.3	35.4	26.1	9.3	0	NA NA	C	70 70	30	NA NA	納	U	A.	ı Y	y Y	9: 3}		TILL
	-13	8.7	1.4	7.5	168.7	122.0	46.7	33.6	13.1	0		C.B		10	MA NA	NA NA	U	Υ	į Y	Ý	GY GY	GY GY	TILL TILL&EDK
146		7.4	1.4	á.O	121.8	99.2	22.5	16.3	6.3	o o	nn MA	p.p	70	30	NA	NA	U	Y	Υ	Y	5; 3	8	TILL
	-02	7.3	1.2	5.6	164.5	117.3	47.2	30.4	16.8	0	NA:	Ē	70	30	NA	NA NA	U	Y	Y	Ý	2B	5B	TILL
	-03	7.9	1.3	5.1	195.3	149.9	45.4	28.0	17.4	0	NA	C	75	25	NA	MA	U	Ÿ	y.	y	GB	GB	7711
	-04	7.1	0.3	6.8	190.1	131.4	53.7	34,8	23.9	1	83	C	70 70	30	MA	MA MA	U	Y	Ϋ́	Ÿ	GB	GB	TILL
141		7.9	0.7	7.2	144.5	114.6	29.9	20.0	5.9	Ô	NA	P	70	20	MA	NA	U	ý	Ý	¥.	3	SB	TILL
-	-02	5.4	1.1	5.3	133.1	100.3	32.8	21.9	10.9	1	29	C	80	20	MA	NA	13	Ÿ	Ÿ	¥	5B	95 95	TILL
	-03	7.3	2.0	5.3	132.7	103.7	29.0	20.3	8.7	0	NA	Ĉ	90	10	NA	MA	U	V	Ý	Ý	95	35	TILL
	-04	7.7	1.7	5.3	184.3	149.7	35.1	23.9	11.2	Û	NA	Č	85	15	ΝA	NA	Ü	Ý	¥	Ÿ	36	3B	TILL
	-05	7.9	1.2	6.7	267.5	225.9	43.6	29.5	14.1	û	NA	P	75	Z5	NA	MA	U	Ý	Ÿ	¥	3	55	TILL
	-06	6.5	1.4	5.1	186.2	149.9	36.3	24.1	12.2	Õ	NA	ş	30	20	NΑ	MA	U	ý	Ý	Ý	SA	GB	TILL
	-07	6.9	1.4	5.5	146.4	116.5	29.9	20.2	9.7	ō	NΑ	C	80	20	MA	NA	U	Ÿ	Ý.	7	6	8	TILL
	-08	6.1	1.2	4.7	144.7	121.4	23.3	18.9	4.4	ō	NA	ē	80	20	NA	NA	11	Ŷ	Ý	Ÿ	5	8	TILL
	-09	7.4	1.6	5.3	177.5	133.4	44.1	30.4	13.7	1	10812	Ę.	E0:		NA	NA	U	Ϋ́	Ÿ	Y	55	GB	TILL
	-10	6.5	0.1	5.4	112.1	84.7	27.4	19.7	7.5	0	NA	P	80	20		NA	Ú	Ý	Ÿ	Ÿ	8	8	TILL
	-11	6.6	0.5	6.1	110.1		47.9	25.8	22.1	ā	NA	5	50	20	NA	MA	Ü	Ŷ	Ý	Ÿ	- 68	65	TILL
142-	-01	à.0	0.4	5.6	134.7	100.0	34.7	22.5	17.1	i	66	۶	70	30	NA	NA	11	Ÿ	Ý	ý	В	8	TILL
1 4 2-	-02	7.á	1.8	5,8	172.8	129.0		27.5	16.2	Q		P	70	30		MA		Y	Ý	Ÿ	8	₿	TILL

03/10/86

SAMPLE	WEIGHT	(KG.W	ET)		WEIGHT	(GRAMS	DRY)		f	H.			DE	SCRI	PTI(NC						CLASS
NŪ.	22222					M.	I. CON	===== C				CLAS	T		222		MATI	ux				
			TABLE	TABLE	M.I.	CONC.	NON	2233	NO.		SIZE		Z.	===		S/U	SD	ST	CY	COL	OR.	
	SPLIT	CHIPS	FEED	CONC	LI6HTS	TOTAL	MAG	MAG	V.6.	PPB		V/S	6R	LS	OT					SD	CY	
CW-85							-												_			
142-03	7.3	1.4	5.9	171.5	122.6	48.9	32.5	16.4	0	NA	P	B0	20	NA	NA	U	Y	γ	Y	B	B	TEL
-04	8.2	1.8	6.4	199.7	162.7		23.5	13.5	0	NA	E	85	15	NA	NA	U	Y	Y	Y	₿	B	TILL
-05	7.5	2.0	5.5	163.9	131.0	32.9	22.6	10.3	i	218	£	75	25	NΑ	NA	U	Y	Y	Y	68	6B	TIL
-06	8.0	2.0	6.0	185.4	147.9	37.5	26.3	11.2	0	NA	E	80	20	NA	NA	U	Y	Y	Y	GB	GB	TILL
-07	8.0	i.5	6.5	167.1	124.2	42.9	27.9	15.0	0	NA	E	BO	20	NA	NA	U	Y	¥	Y	6B	GB	TIL
-08	8.5	1.6	6.9	199.9	154.3	45.6	31.8	13.8	1	47	₽	75	25	NA	NA	U	Y	Y	Y	GB	68	TILL
-09	8.1	2.2	5.9	117.9	88.1	29.8	19.6	10.2	1	148		90	10	NA	NA	U	Y	¥		68	63	TILL
-10		2.5	5.7	170.7	139.0		21.3	10.4	3	1297		70	30	NA	1	U	Ą	Y		68	Œ	TILL
-11		1.6	6.4	207.4	178.4		20.5	8.5	0		P,C	B 0	20	NA	MA	U	Y	Y		68	53 8	TRL
-12		1.7	6.7	171.1	145.6		17.0	8.5	0.		P,E	6 0	40	NA	NA	IJ	Y	Y		G₿	(2 B	TILL
-13		2.2	5.9	174.0	131.6			14.6	0	NA	P	70	30	NA	NA	U	Y	Y	Y	B	B	TILL
-14	8.0	2.2	5.8	101.4	82.0		13.8	5.6	0	NA	C	70	30	NA	1	U	Y	Y		68	628	TILL
-15	8.3	2.2	6.1	152.6	114.2		25.3	13.1	0	NA	C	70	30	NA	1	U	Y	¥		GB	628	TILL
-16	7.9	1.2	6.7	130.8	106.2		17.6	7.0	0		C,BR		60	NA	1	U	¥	¥		68	GB	TILLABOK
143-01	6.4	0.8	5.6	176.4	138.6		24.4	13.4	4	214		70	30	NA	NA	U	¥	Y	-	B	₽	TILL
-02	7.5	0.8	6.7	144.5	113.0		21.3	10.2	0	NA	P	70	30	NA	NA	IJ	¥	¥	Ţ.	9	B	TILL
-03		1.7	5.9	162.2	127.1		22.8	12.3	1	8	P	75	25	NA	NA	U	Å	Y	•	B	B	TILL
-04 -05	8.8	1.9	6.9	220.0	180.0		28.7	11.3	1	74	P	80	20	NA	NA	U	Y	¥	Y	8	8	TILL
-05 -06	8.0 8.0	2.0 2.0	6.0	136.8 171.2	107.6 136.4		21.7 25.1	7.5 9.7	0	NA 197	P	BO BO	20 20	NA NA	NA NA	U	Ϋ́	¥		D B	B B	TILL
-0a -07	8.5	2.6	6.0 5.9	269.7	236.2		20.0	13.5	0	NA	г Р	75	25 25	NA NA	NA NA	U	Ϋ́	¥	•	6B	88 68	TILL
-08	8.6	2.1	6.5	235.6	211.3		15.2	9.1	0	NA NA	P	80	20	NA	NA NA	Ü	Ÿ	Ÿ		6B	65 65	TILL
-0 9	8.5	3.0	5.5	173.5	138.5		22.8	12.1	0	NA	P	80	20	NA NA	NA	U	Y	Y	-	6Y	6Y	TILL
-10	8.0	1.8	6.2	244.5	202.6		28.8	13.1	Ö	NA	P.	80	20	NΑ	NA NA	U	Ÿ	Ÿ		6Y	6Y	TILL
-11	7.9	1.1	6.8	221.0	162.7		38.3	20.0	0		P.C	90	10	NA	WA	ü	י ע	Y		6Y	6Y	TILL
144-01	7.3	0.8	6.5	233.0	207.1			9.3	Ö	NA	P	80	20	NA	NA	U	Ÿ			66	6Y	TILL
145-01	8.9	1.9	7.0	115.4	85.1		16.1		ō	NA.	P	40	60	NA	NA					68	68	TILL
-02		1.4		136.3	106.0				ŏ	NA			30			_						TILL
-03		1.6	7.3	138.2		32.9				NA			30			Ü						TILL
146-01	8.8	1.5	7.3	119.4		30.6			ō	NA						Ū				68		TILL
147-01	6.9	1.6	5.3	124.1		15.7		5.8		NA			10						Ÿ			TILL
148-01	8.6	0.0	8.6	254.3		36.5		9.7			TR		NA	NA		Ü			Ÿ			TILL
-02		0.0	8.1	125.9		37.4					TR		NA						Y			TILL
-03	8.4	1.0	7.4	260.2		33.8		9.7		NA			15			IJ						TILL
150-01	3.1	0.6	2.5	208.7		11.2	8.1	3.1		NA			25			U				B	B	TILL
151-01	5.3	1.0	4.3	130.1		8.5	5.1	3.4		NA			25			U				6B		TILL
152-01	8.1	1.3	6.8	172.4		25.7				NA			40			IJ						TILL
02	7.3	1.0	6.3	147.1		23.2		7.4		NA			40		NA					B	B	TILL
15 3-01	7.4	0.8	6.6	128.3	100.0	28.3	20.0	8.3	0	NA	P,6	80	20	NA	NA	U	Y			B	₿	TILL
153-02	8.6	1.5	7.1	129.8	98.8	31.0	22.3	8.7	0	NA	P,6	80	20	NA	NA	U	Y	¥	¥	68	6 B	TILL

LABORATORY SAFEE LOS

SAMPLE NO.	WEIGHT	(KG.W	ET) ======	*****	WEIGHT	(GRAM5	ery)	·	,	AL)			D	EECR	IPTI	ON						GLASS
							I. CO					CLA			====		MAT	RIX	2	:===:	222 <u>2</u>	2222222
	TABLE SFLIT	+10 CHIPS	TABLE FEED	TABLE CONC	M.I. LIGHTS	CONC.	NCN MAG	MAG	NG. V.S.	DALC PFB	5171	Ē	%				===== J SD	==== 51	==== CY	col		
										::•		V/S		LS	_	•					Ξ=== ΞΎ	
C₩-85																-						
154-01	7.Ú	1.3	7.7	123.4	91.5	31.9	21.2	10.7	Ω	NV.	P.8	.	30	MA	11 0							
154A-02	€.9	J.9	8.0	138.3	104.4	33.7	24. ė	7.3	y J	WA		50 80	20 20	NA	NA	U	Y	Y	Ý	<u>6</u> 8	GB -	TILL
156-01	1.7	ŷ.2	2.7	86.4	73.9	12.5	5. 2	3.3	ั มี				20	MA	NA	U	Ϋ́	Y	Y	5 Y	ēΥ	TILL
- 02	7.2	1.5	7.7	107.6	77.2	30.4	27.2	E.2	n A	NA NA		80	20 20	NA	NA	U	Y	Y	Y	₿	₿	TILL
-03	8.8	0.6	8.2	127.1	97.8	29.3	16.4	12.7	ā	NA		80	20	NA	桶	U	Ÿ	Y	¥	ē	8	TILL
- ⊕4	7.3	1.2	8.1	228.8	171.8	37.0	24.1	12.7	ð	NA:		5 0	20	MA	NA	U	γ	¥	Ÿ	3	B	TILL
-05	7.5	2.5	6.7	190.7	155.7	35.0	24.0	11.0	•	₩A .		75	5	NA	NA MA	U	γ	¥	Y	GB	GĐ	TILL
157-01	4.4	0.7	3.5	224.6	190.7	33.7	26.1		0	NA	_	70	10	NA	NΑ	Ú	Y	Ť	Y	GB	GB	TILL
158-01	8.3	1.5	7.3	276.3	231.3	45.0	33.2	7.5	1 -	81		£	15	NA	NΑ	U	¥	Y	Y	8	₿	TILL
157-01	2.0	0.3	1.7	117.1	108.1			11.5	2.	64 :		75	5	NA	NA	IJ	Y	Y	y	GB	6B	TILL
160-01	5.a	1.2	4.6	185.1	157.3	11.0	3.7	2.1	0	NA I		范	5	NA	NA	Ü	Ϋ	¥	Y	GB	ΒN	TILL
- 51→)1	9.0	1.5				27.8	20.5	7.0	0	NA I		70	10	NA	NΑ	Ü	γ	Y	Y	5E	GB	TILL
## 25	7 * V	1.0	/ ± **	341.2	285.2	56.0	38.5	17.4	1	77 1	Þ	80	20	NA	NA	IJ	Y	Y	Y	GB	GB	TILL

SAMPLE	WEIGHT	(KG.W	ET)		KEIGHT	(BRAMS				Դ Ս			DE	SCRI	PTIO	3N						CLASS
NO.	******						I. CON	C				CLAS	GT				MATI	RIX				
	TABLE			TABLE	*.L	CONC.	NON		NO.	CALC	SIZ	 == E	%	====	===	=== S/U	SD	ST	CY	COL		
	SPLIT	CHIPS	FEED	CONE	LIGHTS	TOTAL	MAG	MAG	V.G.	PPB		V/S	GR	LS	OT					SD	СУ	
CW-85				· · · · · · · · · · · · · · · · · · ·																		
161-02	8.6	1.9	6.7	260.1	233.4	26. 7	16.9	9.8	0	NA	C	75	25	NA	NA	U	Y	γ	Y	GB	68	TILL
-03	8.7	1.6	7.3	277.1	Z3B.1	39.0	27.7	11.3	0	NA	P	80	20	NA	NA	IJ	Y	Y	Y	GB	GB	TILL
-04	9.3	1.2	8.1	Z56.6	211.5		32.4	12.7	0	NA	۴	80	20	NA	NA	U	¥	Y	γ	GP	GB	TILL
-05		1.6	7.4	317.5	Æ.1	34.4	27.3	7.1	0	AM		70	30	NA	NA	U	Ą	Y	Υ	GB	G₽	TILL
-06		1.6	7.1	228.7	177.7		33.5	17.7	Ō	NA		70	30	NA	NA		Y	Υ	Y	GB	6B	TILL
- 07	5.8	0.8	5.0	197.4	166.7	30.7	21.9	8.8	0	NA		90	20	NA	NA	U	Y	Y	Y	GB	GB	TILL
-08		1.2	7.1	287.6	243.5	43.7	30.3	13.4		NA O (O		80	20	NA	NA	_	γ.	Y	Y	GB	GB	TILL
-09		1.7	7.4	280.4	Z30.F	49.6	33.1	16.5			P, C		25 20	NA	NA		γ	Ϋ́Υ	Y	GB	GB GB	TILL
-10 -11	9.0 8.9	1.5 0.9	7.5 8.0	251.5 203.7	193.7 171.4	57.8 32.3	38.8 22.4	19.0 9.9		na Na		80 70	30 30	na Na	NA NA	U	Y Y	Y	Ä	6B 68	GB	TILL
-11 -12		1.5	7.5	255.3	224.2		21.0	10.1	0	NA NA		85	15	NA	NA	_	Y	Ϋ́	ı V	65	GB	TILL
-13		2.1	7.2	228.5	190.1	36.4	27.9	10.5	-	NA		90	10	NA	NA	_	Ϋ́	Ϋ́	Y	GY	GY	TILL
-14		1.7	7.1	231.4	164.1		31.2	16.1	Ö	NΑ		95	5	NA	NΑ	-	Ÿ	Ϋ́	Ϋ́	GY	GΥ	TILL
-15	1.5	0.0	1.5	137.1	127.0	10.1	8.5	1.6	0		TR	NA	NA	NA	NA	U	Ÿ	Ý	Ÿ	GB	SB	TILL
162-01	8.8	1.1	7.7	189.4	154.2		24.6	10.6	-	NA		60	40	NA	NA	U	Υ	γ	Ÿ	6B	6B	TILL
-02	4.6	0.4	4.2	168.6	146.0	22.6	17.1	5. 5	0	NA	P	60	40	NA	NΑ	U	Y	γ	Y	GB	GB	TILL
163-01	8.9	0.5	8.4	163.1	122.3	40.9	27.7	13.2	0	NA	۶	70	30	NA	NΑ	U	Y	γ	γ	68	GB	TILL
-02	8.7	0.7	8.0	264.4	222.9	41.5	28.7	12.8	0	NA	P	75	25	NA	NA	U	Y	Υ	Y	GB	6B	TILL
-03	7.6	1.6	6.0	242.3	201.4		29.5	11.4	0	NA	P	80	20	NA	NA	U	Y	γ	γ	GB	6B	TILL
- 04		2.2	7.1	267.7	204.6	63.1	45.0	18.1	0	NA		90	10	NA	NA	U	Y	Y	Y	GB	GY	TILL
- √5		0.8	8.3	203.2	145.6		40.5	17.1	0	NA		95	5	NA	NA	U	γ	Y	Y	GB	GB	TILL
-06	7.0	1.0	6.0	246.3	201.4		33.1	11.3		NA		95 	5	NA	NA	U	Y	Y	Y	GY	GY	TILL
-07	7.7	0.5	7.2	172.8	133.5		28.1	11.2		∕ NA		85 70	5	NA	NA NA	U	Y	γ	Y	GB	GY	TILL
164.01	8.6	0.3	8.3	247.4	196.3		36.4	14.7	0	NA NA		70	30	NA NA	NA NA	U	Y Y	Y	Y	B B	GB	TILL
-02 -03	B.9	0.5 0.7	8.4 8.3	263.7 191.5	234.7	29.2 41.5	21.9	7.3 12.5		n <u>a</u> Na		80 80	20 20	na Na	na Na	U	Y	Ϋ́	•	В	GB	TILL
-04	9.0 8.8	1.0	7.8	223.8	163.2		30.5		0	NA NA		80	20	NA	NA	_	Ϋ́	Ϋ́	A	GB	GB	TILL
-04 165-01	8.7	1.0	7.9	230.6	181.8		34.0			113		75	25	NA	NA				Ÿ	В	В	TILL
-02		1.4	7.6	279.2		55.7		16.8		NA		70	30	NA	NA			Ÿ		Б	G₽	TILL
166-01	9.2	1.2	8.0	229.8		42.3				NA		60	40	NA	NA				Ÿ		В	TILL
-02		1.6	7.4	225.8		41.7				NA		60	40	NA	NA			Y	γ	В	B	TILL
-03		0.5	6.1	144.8	113.7		20.8			NA	C	6 0	40	NA	NA	Ü	Y	Y	Y	В	В	TILL
-:)4	8.5	1.1	7.4	139.7	100.5	36.8	26.8	12.0	0	NA	C	70	30	NA	NA	U	γ	Y	Y	B	В	TILL
-∂5		1.1	6.7	141.6		42. 4				NA	С	70	30	NA	NA	U			γ		3	TILL
- 06		1.4	7.6	148.0		40.1				NA		75	25	NA	NΑ					GB	6B	TILL
-07		1.4	7.4	182.9		38.4				NA		70	30	NA	NA					В	В	TILL
-08		2.4	5.8	187.0		14.3		3.2		NA		70 70	30	NA	NΑ	S				GB	В	SAND
-09	B.4	1.2	7.2	212.8		34.3		10.0		26		70	30 75	NA	NA NA	U		γ		GB CD	68 65	TILL
-10		0.9	7.8	152.1		28.9		10.0		64 NA		65 70	35 30	NA NA	NA NA	U		γ		GB CD	GB GB	TILL
-11 167-01	6.4 2.5	1.8 0.5	6.6 2.0	137.8 124.7		28.3 24.3	18.5	9.8		NA 15		70 70	30 30	NA NA	na Na	IJ		Ϋ́		GB GB	GB GB	TILL TILL
168-01	7.6	1.4	6.2	253.4		52.1				NA L1		70 90	10	NA	NA	U		Ϋ́		GN	GN	TILL
-02	7.0	2.6	6.4	170.7		40.0				NA NA		80	20	NA	NA			Ϋ́		GB	6B	TILL
-03	8.5	1.4	7.1	217.7		63.3				73		85			NA			Ý		GY		TILL

SAMPLE NO.	WEIGHT .	(KG.W	ET) -		WEIGHT		DRY)			4U	*			SCRI)N	·•					CLASS
1904							I. CON	IC				CLAS					MATE	(IX				
		+10 CHIPS	TABLE	TABLE CONC	M.I. LIGHTS	CONC.	NON		NO.	CALC FPB	SIZ		7.			\$/U	SD	ST	CY	COL		
	SLT1	רטונס	FEED	LUNL	L10N;3	IUIHL	MAG	MAG	V.G.	FFD		V/S			OT					SD		
-04	£.9	1.0	7.9	203.0	166.1	36.9	25.9	11.0	0	NA	CBD	85	15	NA	NA	U	Y	γ	Υ	6B	GB	TILL
- ∂5	5.5	1.0	7.6	169.1	141.2	27.9	19.6	8.3	0	NA	P	80	20	NA	NΑ	U	Υ	Y	Υ	GB	GB	TILL
- √)6	€.3	1.3	7.0	168.6	140.8	27.8	19.1	8.7	0	NA	Ρ	70	30	NA	1	U	Y	Y	Y	6B	GB	TILL
− 07	6.9	0.7	8.1	248.2	224.6	23.6	16.3	7.3	0	NA	Ρ	80	20	NA	NA	U	Y	Y	Υ	GB	GB	TILL
-08	7.0	1.0	8.0	231.8	205.3	26.5	18.1	8.4	0	NA	Ρ	80	20	NA	NΑ	U	Υ	γ	Y	GB	68	TILL
-07	7.0	1.5	7.5	287.7	191.6	96.1	56.7	39.4	0	NA	P	9 0	10	NΑ	1	U	Y	Y	γ	GB	GB	TILL
-10	B.6	1.3	7.3	291.1	178.5	112.6	73.5	39.1	0	AA	Ρ	90	10	NA	NA	U	Ÿ	Y	Y	GE	GB	TILL
-11	£.7	0.8	8.1	276.0	204.3		46.5	23.2	0	NA	Ρ	85	15	NA	NΑ	Ü	Y	Y	Y	GB	68	TILL
167- 91	5.2	0.8	8.4	263.9	213.9	50.0	31.8	18.2	0	NA	Ρ	45	35	NΑ	NA	IJ	Y	Y	Ą	63	6B	TILL
-02	E.3	1.0	7.3	304.2	249.4	54.8	34.0	20.8	0	NA	P	70	30	NA	NA	U	Y	¥	Ą	GB	GB	TILL
-03	6.8	0.9	7.9	235.1	185.6	49.5	32.0	17.5	0	NA	Ρ	75	25	NA	NA	U	Y	Υ	Y	GB	6B	TILL
-()4	£.5	0.7	7.8	229.9	189.7	40.2	26.9	13.3	0	NA	Ρ	70	30	NA	NA	U	Y	Y	Υ	GB	GB	TILL
-05	8.2	0.9	7.3	197.9	162.3	35.6	22.4	13.2	0	NA	P	75	25	NA	NA	U	γ	Υ	¥	GB	GB	TILL
-06	7.0	1.8	7.2	274.0	224.5	49.5	30.5	19.0	0	NA	Ρ	80	20	NΑ	NΑ	U	γ	Y	Y	GB	GB	TILL
-07	9.5	1.1	8.4	214.5	- 169.4	45.1	29.3	15.8	0	NA	٤	80	20	NΑ	NΑ	U	Ä	Y	Y	GB	69	TILL
	9.1	0.6	8.5	179.6	139.4	40.2	27.4	12.8	Q	NA	Ρ.	80	20	NA	NA	IJ	Υ	A	Ĭ	GB	GB	TILL
- 09	9.2	1.3	7.9	209.8	167.8	42.0	27.4	14.6	Û	NA	C	80	20	NA	NA	U	Y	Y	Υ	6B	GB	TILL
170-01	7.0	0.7	8. i	325.2	230.7	94.5	61.0	33.5	1	102	Ρ	80	20	NA	NΑ	IJ	Y	Y	Y	GB	GB	TILL
-02	B.8	1.4	7.4	243.1	166.9	76.2	47.5	28.7	1	4	C	70	20	NA	NA	U	Y	Y	Υ	GB	6B	TILL
-03	5.1	0.4	8.7	328.2	253.7	74.5	45.3	29.2	0	NA	P	80	20	NA	ΝA	U	Y	Y	Y	6B	GÐ	TILL
- ⊕4	9.7	1.5	8.2	231.4	141.6	8 9.8	52.9	36.9	1	611	_	85	15	NA	NΑ	U	Υ	Y	¥	GB	GB	TILL
171-01	9.5	3.2	6.4	303.9	180.6		72.8	50.5	1	5		80	20	NA	NΑ	U	Y	Y	Y	GB	6B	TILL
- 02	9.5	2.7	6.6	200.5	101.7		55.5	43.3	3	34	Ρ	90	10	NA	NA	_	Y	Y	Y	GB	GB	TILL
-03	7.7	0.8	6.7	183.9	120.6	63.3	33.8	29.5	0	NA	Ρ	80	20	NA	NΑ	IJ	Y	Υ	Υ	GB	GB	TILL

3AMP_ 2	#EIGhT				WEIGHT		DRY)			10				SCRI								CLASS
NJ.			=====		and the control with the time of the control with the con	M.	1. 30	C	7222			TLA.	7				1AT	RIX				2:22:22
			TABLE	TABLE	ħ.I.	CONC.	NON		NO.	CALI	517	Ξ	7,			5/0				COL	ĮΛ	
	SFLIT	CHIFS	FEED	SONC	LIGHTS	TOTAL	MAƏ	MAG	V.G.	PPB		 V/S	58 58	 L5	-== 0:					9D	CY	
24-85 171 31		4 6	5 4	15: E	155 (/	4= 7	57 /	.3	¥1.	-	03	- TA	MΑ	A.: A	11	,	· ·	.,	.=\.	37	TT::
171-04 -63	7.5 9,2	1.1	8.4 8.0	191.5 115.1	122.6 53.6	68.7 61.5	45.3 43.3	23.6 18.2	0 9	na Na	P	80 90	-20 -10	NA NA	NA NA		1 Y	Ϋ́	Y	6Y 6Y	37 67	TILL
172-01	7.1	1.0	3.1	142.6	108.1	34.5	23.1	11.4	2	44	P	90	10	NA :	tΑ	U '	1	¥	Ÿ	ēΥ	ΘY	TILL
-02	- 5.6	0.5	3.1	139.2	83.8	55.4	36.9	13.5	0	NA	P	30	20	NΑ	ŅΑ	G :	Ÿ	¥	¥	GY	G Y	1111
<u>−</u> :3	9.1	1.5	7.8	137.3	76.5	£0.7	45.0	15.7	1	286	2	80	20	MA	ΝA	Ŭ.	Ť.	Y	Y	SY.	<u> </u>	TILL
173-01	5.2	0,5	4.5	155.5	102.7	65.8	43.0	22.8	0	54	P	90	10	NA NA	NA	الله الله	Ĭ	4	¥ vr	37 5	<u>S</u> Y	TILL
174-01 175-01	3.5 _.	0.5 6.2	3.Q 4 a	172.1 129.9	133.4 93.8	38.7 36.1	24.9 26.3	13.8 9.8	i Ü	311 NA	0	53 100	15	NA NA	NA NA		Y V	i V	Y Y	3 GB	B .	TILL
173-01 176-01	6.5 8.4	0.7	6.4 7.7	151.7	106.5	45.1	30.7	14.4	1	NA 47	U P	90	0 10	NA NA	NA NA	9	i V	± V	-	GY.	68 87	TILL
-02	9.2	1.0	8.2	110.5	73.5	37.0	23.9	13.1	0.	77 NA	F.	7V 85	15	NA	HA		i V	¥	¥ Y	91. 87	51 5Y	TILL
-03	9.1	1.2	7.9	126.6	76.0	50.6	27.0	23.å	ů	NA NA	Ċ	80	20	WA.	NA		r V	ý	- CBT	G7	3Y	TILL
-04	9.0	0.7	8.1	144.2	79.9	44.3	29.6	14.7	Ğ	MA	õ	75	25	NA	NΑ		Y	ý	y ·	3Y	5 Y	TILL
-05	8.7	0.9	8.0	131.0	87.5	43.5	30.0	13.5	Ō	NA	Č	75	25	NA	MA	. ปี '	ý T	Ý	Ý	ΒY	5Y	TILL
- ′ −36	ā.6	0.7	7.9	182.6	139.8	42.8	28.2	14.E	0	NA	С	75	25	ΝA	ΝA	ű ·	Y	¥	¥	3	3	TILL
- 07	9.9	0.7	8.0	178.8	140.9	37.9	26.6	11.3	0	NA	P	70	30	NΑ	NΔ	U .	Ý	¥	¥	68	33	TILL
−ੇਂਤੌ	3.5	1.2	7.3	156.4	118.1	38.3	25.9	12.4	0	NA	Ρ	70	30	MA	MA	U	¥	¥	¥	53	58	TILL
- ∂ 7	5.3	1.6	7.2	153.7	127.3	36.4	25.5	10.8	0	NA	Ē	70	30	NA	NΑ	Ų.	7	Y	7	3E	GB	TILL
-10	7.á	1.2	4.4	139.4	104.0	35.4	23.7	11.7	0	NA	F	70	30	NA	ΝĀ	Ü	7	Y	Y	G3	5 3	TILL
-11	3.4	1.0	7.4	161.5	122.0	39.5	27.5	12.0	Q.	NΑ	P	70	20	NΑ	MA	_	¥	Y	¥.,	35	6E	TILL
-12	3,5	1.5	7.0	139.9	101.0	33.9	28.2	12.7	Ů.	NA	P	70	30	NA	ΝA	Ü.	1	7	¥	39	GB	TILL
3 4	ā.9 ā.6	1.3	7.5 7.4	139.9	104.5	35.4	23.7	11.5	J	1471 1471	P	70 no	30	NA	MA	<u>.</u>	í	V V	¥	35	53 55	TILL
-15	5.i	1.2	7.4 6.9	117.5	77.3 82.8	33.0 34.7	17.6 22.5	15.4 12.1	0	NA 94	2	80 63	20 15	WA WA	NA NA	10 1	Y 2	Ϋ́	¥ V	65 66	88 88	TILL
-16	8.3	0.7	7.4	148.5	110.6	37.9	25.4	12.5	Û	74 NA	p	80	20	NA	PA PA	u .	ł V	ı V		59 59	GS GS	TILL
-17	3.8	1.4	7.4	161.3	122.1	38.7	25.3	13.5	0	NA NA	٥	30	20	MA	福		î V	¥		3B	GD -	Till
+1G	8.5	1.5	7.0	166.1	124.6	41.5	25.4	15.1	1	631	'n	85	15	NA	NA	10	V	Ÿ		57 57	35	TILL
-17		1.4	7.5	143.9		38.5		14.4	Ö	NΑ	Ē.	85		NA		IJ.		Ÿ		GY	35	TILL
-20	4.4	0.5	3.8	119.2		22.3		7.2	0	MA		83	15	MA	MA	U.		7			3	TILL
177-01	5.Z	1.8	7,4	223.6		35.6			Ĵ	NΑ	C	30	20	NΑ	NA	:: ·	į	Ţ.	¥	3	8	TILL
-02	7.4	2.3	7.1	165.9		27.6			9	24	9.	70	30	NA	MA	Ü.	1	ÿ	V	3	3	7211
~∂\$	8,8	0.8	8.2	195.4		33.6			0	NA				MA		U Y			Y		GB	TILL
-04	9.1	0.5	3,5	236.5		34.2			0	NA		7 0				Ů,			¥			TILL
-05 •70 0 €	7.1	0.5	6.5	214.5		25.0		7.5	1		C/EF					j '			Y		BG	TILL
178-01 -45	7.9 = 1	1.0	6.9 7 o	230.0		38.6 15.4			0	NA 		85				IJ			Y			TILL
-02 -03	9.1 9.1	1.2	7.9 8.0	237.4		45.4				NΑ		80 aa	2 0	NA NA		U N		Ÿ				TILL
-04	7.1 9.0	1.0	8.0	209.7 233.7		45.7 37.6			0	NA NA		80 70		NA NA	NA NA				Y Y		6B B	TILL
-75	3.4	1.6	6.8	222.0		37.5			0		C	70 65		MA NA	aa MA	U '			Ϋ́		20	TILL
) -06	6.3	0.2	6.1	154.3		29.9			Õ		C			NA	NA NA	U I			¥		n Ca	TILL
-07		6.8	5.4	236.7		48.9		14.4	0		5	70		MA	NA	3				BB :		TILL
180-03	7.8	1.4	5.4	270.2		34.3			Ö		Ç	55			NA	9 1		Ÿ		3	3	TILL
-34	7.8	1.0	6.3	187.3		34.9		12.0	Ģ	ŅΔ	Ü	70			MA	j v			Ţ			TILL
-95	3.0	1.5	5.2	198.7	160.7	51.3	18.1	13.7	1	835	2	άΞ	35	110 140	NA	Ų n		1			35	7711
+0,5	7.7	1.0	6.7	155.1	126.8	31.3	20.1	11.2	Q	NA	5	65	35	NA.		3	1	7	7	GB	<u> </u>	TILL

CVIREGROEN DRILLING MANAGEMENT LIMITED

9		WEI BHT				WEIGHT		DRY)			U				ECRI								DLA:	
	NO.						M.	I. CON	0				CLAS					MATE						and the same of th
				TABLE	TABLE	M.I.	CONC.	MON		NO.	CALC	BIZE		. %			9/9	ED.			COL			
		5FLIT	CHIPS	FEED	CGNC	LIGHTS	IUIAL	MAG /	FAG	V.8.	PPB		=== =	57 57	LS	### 61					30	. 37		
																	-							
	181-01	7.3	0.8	6.5	173.0	143.7		19.3	10.0	0	NA	P	70	30 75	iii NA	MA	.11	¥ v	Y	Ĭ J	35	53 CT	TILL	
	-02	7.8 7.5	0.6	7.2	198.2	163.6 109.1	34.5 25.1	19.2	15.4 9.0	0	NA 2264	P	65 70	35 30	層	MA	<u> </u>	¥	Y.	3	6B 35	EE EE	TILL	
	-03 -04	7.7	1.2 1.8	6.3 6.1	134.2 236.3	215.7	20.5	16.1 13.3	7.3	ů ů	. 22 04	 ₽	6 <u>5</u>	35	i tan	NA NA	U	\$ 	÷ ¥	¥	35 86	35 55	TILL	
	-05	7.1	0.9	6.2	200.5	155.0	42.5	22.0	20.5	0	MA MA	F	<u>5</u> 5	35	1977 1223 1977	M	u U	ý.	¥	¥	35	5E	TILL	
	-0á	9.2	1.0	8.2	166.7	127,4	39.5	24.8	12.7	ů	14	P	75	25	1451 1471	NΔ	ij.	달	Ÿ	¥	5B	35	7111	
	-07	ξ.0	1.4	6,6	170.5	135,2	35.3	16.7	13.6	0		P/BA		10	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	NA.	<u> </u>	22	Ŷ	7	53	56		
	152-01	5,8	0,5	5.3	125,2	78.7	25.3	18.3	8.2	ů	NA	2	75	25	12A	NΑ	ŭ	Ý	7	\ '	Б	3	7311	
	153-01	6.1	0.1	a.0	150.4	141.7	18.5	14,1	4.4	0	MA	B/P	60	40	51.5 1927	MA	3	¥	¥	¥	3	Ξ	Til	
	-02	6.3	1.0	5.5	160.1	145.3	14.8	11.0	-3.8	0	W	Ŧ	65	35	褞	144	Ü	1	¥	¥	3	Ŧ	1111	
	-03	6.9	1.7	5,0	119.9	107.5	12.4	6.5	5.5	0.	11A	P	bÛ	40	ΝA	NΑ	U	¥	7	V	8	3	Till	
	184-01	6.5	0.5	6.0	180.0	158.7	21.3	15.4	5.9	0	M	5	55	35	M	WA	3	4	¥	Ā	3	3	TILL	
		5.7	0.8	4.9	178.9	159.0	19.9	12.8	7.1	0	NA	₽	65	JŪ	MA	NΑ	Ü	27 27	¥	¥	9	B	TILL	
) -03	7.2	1.8	5.4	229.5	207.6	21.9	10.0	11.9	0	NA		50	40	MA	ΝA	ū	¥	¥	¥	2	8	TILL	
	-04	7.0	1.5	5.4	217.3	190.0	29.3	18.9	10.4	0	NA	£	60	40	NA	MA	Ш	1	¥	¥	3	Ē	TILL	
	-05	6.4	0.3	5.5	153.3	121.5	31.8	20.7	11.1	0	WA	Ē	70	20	MA	MA	نذ	¥	7	¥	GB	55	TILL	
	1 87~01	7.8	1.2	6.6	180.2	139.3	40.9	26.1	14.8	0	NA	F	70	30	MA	MA	ij	1.5	Y	Y	5	5	TILL	
	190-01	5.5	0.8	5.8	187.0	153.9	33.1	21.6	11.5	0	₩A	0	50	40	W	a a	Ű	3	¥	Ā	3	3	TILL	
	-02	7.1	1.0	6.1	66.7	36.5	30.2	19.8	10.4	9	NA	D	50	50	MA	MA	U	7	¥	Y	3	3	TILL	
	+)√3 2 (- 2 +	5.9	1.2	5.7	151.0	121.3	29.7	18.7	10.8	0	NA NA	E To	60 Ma	40	NA un	NA MA	3	Ą	¥	¥	B 5	-	TILL	
	191-01	5.5	1.0	3.8	169.9	139.4	30.5 32.3	21.0	9.5	Ų o	NA MA	TR	NA FA	NA no	***	MA NA	S	19 10	¥	Till Till	13. 15	9	SAND	
	-02 -03	5.4 5.6	0.2 0.5	ა. 2 5.0	179.0	145.7 101.2	24.9	21.7 17.4	10.4 7.5	0 2	NA 2081	0	50 80	20 20	ia NA	MA MA	U ·;	Y V	r V	1	23	2	TILL	
	-03 172-01	j.6	0.5 0.9	5.9	197.4	166.6	24.7 30.8	23.6	7.2	ű	ZVOI NA	P	70	20 30	AA AA	145 143	i L	¥	¥	¥	5 3	2		
	-0Z	6.2	0.4	5.8	142.3	115.5	26.7	21.1	5.6	0	NA	P	65	35	NATION AND ADDRESS OF THE PARTY.	24A	U	4 14	y.	y Y	B	3	TILL	
	-03	6.7	0.5	5.2	201.8	178.3	23.5	16.1	7.4	Õ	NA.	G	70	30	MA	NA	Ш	W.	¥	Ÿ	150	BA	TILL	
	-04	6.3	0.8	5.5	143.7	126.1	17.5	12.5	5.1	Õ	NA	5	65	35	NA	MA	0	¥	Ý	¥	3	-	TILL	
	-05	5.3	0.7	5.6	133.3	121.8	12.0	8.2	3.8	0	NA	9	65	35	MA	NΑ	Ū	T.	¥	¥	GB	55	714	
	-0 <u>6</u>	ò.7	0.5	6.4	108.0		15.6		4.3	0	NA	3	70	30	NA	NA	Ū	17	Ý	Ý	5	3	7111	
	~07	5.1	2.4	3.7	291.a	280.9	10.7	6.7	4.2	1	1701	5	50	40	MΑ	40	ij	1	¥	¥	3M	87	711:	
	193-0i	5.7	1.0	4.7	118.5	105.1	13.5	7.3	3.7	Q.	MA		70	30	17/1	NA.	U	1	¥	7	ā	7	TLL	
	-02	7.1	1.4	5,7	91,4	54.1	27.3	16.5	10.8	0	3:A	Ī.	75	15	113	4	:	Ţ	¥	7	3	\mathbb{R}^{n}	7711	
	−ુ3	3.4	1.5	1.9	77.4	86.7	10.7	5.5	5.1	ţ	NA	C	73	25	44	H	ú	3	7		ΞN	5 %	7111	
	194-01	5,8	1.2	5.8	90.5	63.1	27.5	17.3	10.2	9	NA	Ē	35	35	MA	147	ī,	5	*/		Ξ		TILL	
	-02	5.8	1.4	5.4	136.7	112.7	23,5	13.5	9.9	Q	ΝA	្	£5	35	110	1.17 1.17	<u></u>	Spring.			Ξ.	5	TIL	
	175-01	8.8	1.5	7.3	171.4	138.5	32.9		13.8	ŷ.	NA		ř.	35	112	1973		4		7		5		
	-02	9.6	1.6	8.0	243.2	211.0	32.2		14.4	Û	ΝĤ		60	20	MA	MA		7		¥		3,	TILL	
	-03	7.2	2.4	€.მ	141,4		35.0		16.8	0	NA		50	2 0	MA	110 A		4.1			B	5	3 11 1	
	→) -(4 -(5	9.3 r =	1.5	6.7 4.4	126.7	104.9		12.3	9.0	0	NA		70 70		NA Na	語	Ų.	7			3	5	TIL	
•	-06 -06	8.5 7.8	2.1 1.4	6.4 6.4	163.4 153.4	140.4 121.8	23.0 31.5	14.3	8.7 12.3	0	MA		70 /=	30 35	NA NA	NA NA		7	7			3	THE	
	-∵e -:)7	7.0 8.5	0.9	7.4	126.9	74.1	30.9		14.3	0	NA eres		45 70	30 30	NA NA	NA NA	П	To the	¥	¥	3	3	THE	
	19a-01	3.9 3.9	0.7	5.2	91.Z	70.ŭ	21.2		7.2	1	3328 MA	٦	70 70	30 30	NA NA	NA	Em Eng	† *	- ¥ - ₹		2 2E	E ∃∃	TILL	
	177-01	3.0	0.9	7.2	135.1	160.1	25.0		8.7	0		F	7V 50		NA		ii ii	Y		¥	88 88		Till	
	- 0Z	3.5	1.5	7.0	152.5		31.1		12.1	1	2405	-			NΑ		Ц		÷ -		53		The section	

OVERBLAGER IRILLING MANAGEMENT LIMITED

LEGGETON BANGLE LOG

SAMPLE .	WEIGHT			*****	WEIGHT					VI ? SL.				EGRI								ÇLAS	
ng.							1. 14.7	-	*****			CLAS	ī				MATI	λίχ					
	TABLE SFLIT			TARLE	M.I. LIBHTS	CONC.	NIA YAE		ML. V.B.	CALC PPB	517		7,			5. U				COL	OF.		
	SFL1!	Pulta	LEED	L-014L	Cionia	IUIAL	i m2		₹.0.	EEB		V/S		LS	ΰŢ					50	ζY		
-03	8.1	2.0	ó.1	184.6	158.2	26.4	14.5	11.7	٥	MA	P	5 0	40	ΨA	NA	U	Υ	γ	γ	98	68	TILL	
- 04	8.3	2.0	6.3	185.5	157.0	28.5	19.2	5.3	Đ	NA	P	<u>6</u> 5	35	NΑ	MA	11	¥	¥	7	85	GB	TILL	
-05	3.6	2.5	5.1	221.7	186.0	35.9	5. 5	10000	. Ø	NA	P	65	35	NΑ	NA	IJ	Y	Ą	Υ	GB	68	TILL	
− 06	8.0	ી.ક	7.2	291.4	255,3	35.1	走車	3	Û	NA NA	P	70	30	HA	MA	U	ĭ	¥	Y	GE	53	TILL	
-97	5.4	2.2	6.2	177.5	156.8	20.8	15.0	. 5.2	9	WA	P	70	30	ΝÀ	NA	3	Y	1	7	33	66	TILL	
-09	9.0	1.5	7.4	174.7	141.5	33.2	70.1		0	NA.	F	85	10	MA	PA	3	Y	¥	Y	98	33	TILL	
- ∂9	7.8	1.0	5.3	225.4	188.0	38.4	77.5	11.1	9	N a n	P	80	20	MA	MA	Ü	Υ	γ	¥	33	99	TILL	
-10	8.8	1.8	7.0	196.8	161.7	35.1	A_{V}	14.5	73 194	M	-	5 0	20	MA	ΝÁ	J	Y	Ť	7	65	ēΒ	TILL	
-11	6.7	1.5	5.4	234.3	120.0		82.0	T.B	0		P/50		10	NΑ	NΑ	Ü	γ	Y	Y	87	ΞY	TILL	
198-01	7.5	1.4	6.1	144.7	117.1	25.á	12.3	5.7	9	Party.	7	70	30		ORG	Ü	Y	1	¥	69	GB	TILL	
-02 	6.3	1.0	5.8	144.5	113.4	31.2	18.5	12.4	0.	MA	F	75	25	NΑ	NA	U	Y	Y	¥	<u> </u>	98	TILL	
~) 3	7.3	1.2	6.1	154.1	124.1	30.0	17.7	-	0	MA	P	75	Z 5	NA.	NA	U	Y	Y.	Y	68	68	TILL	4
-04	8.3	1.5	5.7	203.9	169.9	34.0	22.2	11.3	0	MA	F	70	30	Ñā.	NA	U	Y	Y	¥	68	55	TILL	
-05	7.4	1.8	7.6	227.3	187.5	40.2	25.0	1000	0	NA	P	80	20	M	NA	Ü	Y	Y	Y	65	65	TILL	
-05	9,4	1.8	7.5	214.3	190.3	24.0	14.1	7.7	Q	117	P	30	20	NA	NA	IJ	¥.	Y	Y	62	35	TILL	
-07	7.6	2.0	7.5	280.7	278.5	42.4	27.1	-	9	MA	5.	. 80	20	2775 2 977	MA	2	Y	- ¥	Y	Gā	GB	TILL	
-05	8.3	1.5	7.2	222.8	.187.0	33.8	20.7	13.1	2	NA MA	P	70	30	ΝĀ	NA	U	¥	¥	7	33	63	TILL	
· -07	7.8	1.9	7.9	179.5	143.7	35.8	77.5	13.2	2	MA	۶	75	25	MA	NA	Ü	Y Y	Y	Y	55	6B	TILL	
-10	무. 후	2.5	6.9	226.3	150.0	46.3	34.1	12.1	3	NA.	P	7 5	25	MA	ħΑ	Ü	Y	¥	Y	6E	<u>SB</u>	TLL	
-11 -12	10.2	1.8	8.4	205.8	151.7	44.7	33.2	11.7	Ů,	NA	P	76 	<u> </u>	NA	NA	U	Y	Y	¥.	55	33	TILL	
	- 5.9 - 7.4	1.5	7.4	205.1	158.9	36.2	26.3	7.7	9	14A 14A	P	75	25	MA	NA	U	¥.	¥	Y	<u>53</u>	GB	TILL	
-13 -:8	7,4 7,1	2.0 2.2	7.4	313.9 273.0	283.8	30.1	22.3	7.3	₽	MA	P	80	20	MA	NΑ	ii.	¥	Ĭ	Y	33 	GB	TILL	
-14 ton at			6.7		220.0	53.0	32.3	20.7	ij.	NA	f	75	25	NA	NA	IJ	Y	Y	Y	58	93 	TILL	
179-01	8.3 5.4	1.0	5.8 7.7	144.7	114.5	29.9	15.4	10.5	0	¥A	P	75	25	NA Ma	NΑ	Ü	¥ 5	¥	¥	GB	33	TILL	
-ÚŽ	9,4 7 4	1.8	7 .6 5.2	146.1	107.5	38.5	12.5	16.6	0	NA MA	5	75 75	25	NA	NA	Ü	Å ·	Y	Y	6B	63	TILL	
-03 -04	7.4 9.1	2.4	5.Z 6.7	118.4 148.4	92.1 119.5	25.3	16.3	17.7	. Q	NA ZZZO	P	75 70	25 70	NA	NA NA	U	Ä	¥	Y	59	65	TILL	
-∪4 -:3	3.7 3.7	1.8				28. <i>9</i>	16.7		1	3370	b	70 70	30 70	MA	NA NA	U	Y	Ϋ́	Y	35 CD	55	TILL	
-05 -05	0./ 9.5	2.0	6.9 7.3	210.6 223.3	159.7	50.7	31.0	49.7	Q A	MA	P.	70 70	30 70	MA	NA	Ü	¥	Y	¥	6B	63	TILL	
-0 0 -07	7.J 9.4	1.4	7.3 8.0		173.8	50.0	30.3	17.7	Q .a.	NA MA	5	70	30	NA	NA	U	¥	¥	y v	S 5	33 22	TILL	
-08	7.7 8.5	1.5	7.1	168.4 144.8	134.6 103.7	33.8 40. <i>9</i>	ZI.Z	12.5	W S	NA NA	P	80 30	20 20	MA Ha	NA NA	U	Y v	Y V	Y	6B	68 	TILL	
	0.0	تدمد	7 x 4	144.0	10017	9U.7	24.4	lo. 4	Û	MA	D	50	20	MA	NΑ	U	Ť	7	Ĭ	UD	59	TILL	

SAMPLE	WEIGHT				EIBHT	(GRAMS				\U				3CRI								CLASS
NO.							I. COM	С				CLAS	T				MAT	RIX				
			TABLE	TABLE	Ħ.I.	CONC.	NON		NO.	CALC	SIZE		%			=== 5/U		==== ST		COL	0R	
	SFLIT	CHIPS	FEED	CONC	LIGHTS	TOTAL	MAG	MAG	V.G.	PPB		V/S	9R		OT					SD		
: :				4		****																
CW-85 199-09	8.5	1.4	7.1	199.0	163.6	35.4	27 A	17 A	0	NA	С	80	20	NA	NA	IJ	γ	ý	¥	GB	GE	TILL
177-V7 -10		1.4	8.0	157.7	117.8	32.4	21.1	11.3	0	NA	C	85	15	MA	NA	Ü	Ÿ	Ý	Ϋ́	6B	33	TILL
-11	9.7	2.9	7.7	167.5	144.0		29.2	14.3	-	169	_	70	30	NA	MA	Ü	Ÿ	Ý	ý	6B	GB	TILL
-12		1.5	7.6	116.9	74.3	42.6	29.8	12.8	1	50	C	80	20	NA	NA	Ū	Y	Ÿ	Ÿ	GB	GB	TILL
-13		1.8	7.4	173.5	70.0	53.5	40.1	13.4	0	16	C	85	15	NΑ	NA		γ	Y	γ	GB	GB	TILL
-14	5.4	1.5	6.9	247.2	题7.2	55.5	31.8	23.8	0	NA	·C	85	15	NΑ	NΑ	ij	Y	Υ	¥	68	GB	TILL
-15	9.0	1.5	7.5	155.2	100.0	55.2	39.1	16.1	3	150	0	85	15	NA	MA	П	¥	γ.	γ	3	3	TILL
-16	5.7	0.3	6.4	267.7	234.9	34.3	25.6	8.7	0	NA	P	85	15	NA	MA	. U	γ	Y	¥	GB	GB	TILL
-17	8.2	0.6	7.6	250.7	209.1	41.6	29.9	11.7	0.	NA	P	80	20	MA	NΑ	U	γ	Y	γ	GB	GB	TILL
-18		1.4	7.9	202.2	164.7	37.5	25.5	12.0	0	NA	P	70	30	NA	NΑ	U	Y	Υ	Y	68	GB	TILL .
-19		1.2	7.1	162.5	158.8	24.0	16.2	7.8	0	NA	P	75	25	NA	NA	IJ	Y	Y	Y	GB	GB	TILL
-20	7.7	0.6	7.1	187.9	157.8	30.1	21.4	8.7	0	NA	P	70	30	NA	NA	U	Y	Y	Y	GB	GB	TILL
10-00.	7.5	0.7	6.7	215.2	189.5	25.7	14.9	10.8		101	P	70	30	NA	NA	U	Y	Y	Y	B	8	TILL
-02		1.0	8.0	157.5	131.8	27.7	15.8	11.9	1	41	P	70	30	NA	NA	U	Y	Y	¥.	B	3 50	TILL
-03 ^*		0.5	7.7	144.5	132.4	32.1	19.5	12.6	0	NA OZ	P	75	25	NA	NA	ij	Ÿ	Y	Ä	В	B	TILL
-04 -05	7.2	0.7	7.5 7.0	189.3 156.4	146.5 116.9	39.5	28.4	14.3 19.1	1	23 18	P P	80 80	20 20	NA NA	NA NA	U	Ϋ́	Y	y Y	3 B	B 8	TILL
-06	8.2	1.8	6.4	190.2	153.0	37.2	19.6	17.6	0	NA	P	75	25	NA	NA NA	U	Ϋ́	I V	¥	8	8	TILL
-07		2.0	6.1	117.0	B4.3			9,9	_	68	F	75	25	NA	NA	U	Y	Ÿ	¥	3	8	TILL
-08		1.6	7.3	115.5	B1.2	34.3	22.9	11.4	0	NA	P	80	20	NA	NA	U	Ϋ́	Ý	¥	Э	9	TILL
-:) 9		1.7	7.3	165.5	128.5		24.9	12.1	ò	NA	P	80	20	NA	NA	U	Ý	Ÿ	ý	BB	8	TILL
-10		0.5	2.5	70.5	56.2	14.3	10.0	4.3	0	NA	P	85	15	NΑ	NA	Ū	¥	Y	¥	GB	В	TILL
201-01	7.8	0.5	7.2	125.1	92.3	32.8	20.8	12.0	1	49	P	60	40	NA	MA	11	Ä	Y	Y	B	₿	TILL
-02	2.7	0.8	8.1	160.3	117.4	40.9	25.6	15.3	i	59	P	70	30	NA	NA	U	γ	Y	¥	3	B	TILL
-03	9.2	2.0	7.2	122.8	92.2	30.6	19.1	11.5	0	NA	P	70	30	NA	NA	IJ	Y	Y	¥	5	8	TILL
- <u>0</u> 4	9.4	1.4	8.0	112.9	82.1	30.8	19.9	10.9	2	182	C	70	30	NΑ	NA	Ш	Y	γ	¥	£γ	8	TILL
-05		1.6	7.0	155.3	118.4			12.7	1	8	C	65	35	NA	NA	Ü	Y	•	Y	ĢΥ	3	TILL
-04	-9.3	1.3	9.0	179.0	111.1					NA	-	65	35	NA	ΝA	U			¥			TILL
-07		1.3	7.8	135.5	56.1			13.8			P/C	70	30	NA	NA		¥	Y		5¥		TILL.
-08		1.4	7.6	121.7	E5.8	35.9					P	75	25	NA	NA		Ä		Y	GY SE	20	TILL
-:) 9		0.7	7.7	203.4	155.5			11.3		40		75		NA	MA		Y	Y		55	5B	TILL
-10 -11		1.3	8.3	153.7	112.1 36.7			13.3		NA NA		80 75	20	NA NA	NA		Y	Ϋ́		6Y	6B	TILL
-12	9.3 9.1	1.5 0.8	7.7 8.3	114.1	165.9		19.0 17.8	8.2 8.5		NA 36		75 80	25 20	NA NA			¥	Y Y	¥	6Y	68	TILL
-13		1.6	7.5	215.5	195.9		12.8	6.8		NA		80 90		NA NA	NA NA		Y	Ÿ		GY GY	GB GB	TILL
-14	9.4	2.3	7.1	135.8	105.4		21.2	9.2	0	NA		85		NA	NA NA		Ϋ́	v		GY	65	TILL
-15	7.7	2.6	7.3	140.5	190.5			12.1	0	NA		80		NA	NΑ		Y	Ý		6Y	6B	TILL
() -i6	E.B	v.B	9.0	186.6	148.5	38.0		7.3		NA		80	20	NA	NA		Y	Ÿ.		GY	GB	TILL
-17		0.3	8.4	205.5	152.3		43.3	9.9	2	23		90	10	NA	NA		Ý			GY	GN	TILL
202-01		0.9	7.3	172.0	131.7		26.8	13.5		425	P		10	NA	NΑ		Ÿ	Ÿ		5	5	TILL
-02		1.6	5.7	172.5	144.3		17.8	10.4		NA		80	20	NA	NA	U	Ÿ		Ÿ	В	Б	TILL
-)3	9.7	2.2	7.5	247.9	177.5			19.4	Q	NA		90	10	MA	NΑ	IJ	Y,	γ		GB	GB	TILL
-()4		1.7	7.1	208.7	143.1		29.3			NA	۴	80	20	NΑ	ΝA	U	Υ		Y	GB	68	TILL
-05	9.5	1.4	8.1	205.6	163.1	42.5	28.5	13.9	0	NA	F	70	10	NΑ	NA	Ü	Y	¥	Y	GB	68	TILL

SAMPLE NG.	WEIGHT				WEIGHT			.====	-	\U 				9C9 I						~		CLASS
101						M.	I. COM	IC				CLAS	T				MATE	XIX				
		+10 CHIPS	TABLE	TABLE CONC	M.I. LIGHTS	CONC.		MAG	NO. V.G.	CALC PPB	SIZE	Ξ	%			5/U	sd SD			COL	CR	
	U; E11			CU14C	Elding	IOIRE	neo	neo	v.c.	FF.D		V/S		LS						5D		
-04	8.5	1.2	7.3	178.4	120.6	57.8	36.5	21.3	0	NA	P	90	10	NA NA	NA	U	Ý	Υ	À	GE	S₽	TILL
-07	6.0	0.7	5.3	584.0	220.0	364.0	141.3	222.7	0	NA	F/BF	7 95	5	ΝA	NΑ	U	Y	Y	γ	67	ΘY	TILL/BLR
20 3- 01	9.0	9.6	2.4	199.6	137.2	62.4	27.8	34.5	0	NA	С	90	10	TR	3	Ų	Υ	γ	Y	GG	34	TILL/BLR
204-01	7.1	0.3	6.3	132.3	113.8	18.5	9.7	8.9	0	NA	C	90	10	NΑ	3	U	Υ	Y	¥	66	ΞY	TILL/BLR
205-01	9.1	1.2	6.9	176.1	138.9	37.2	22.5	14.6	1	1613	P	ΕŬ	20	NA	3	U	γ	Y	Y	5	В	TILL
~()2	8.1	2.2	5.9	156.6	121.1	35.5	20.4	15.1	0	NA	P	75	25	MΑ	NA	Ū	Y	Y	Ä	65	GÐ	TILL
205-01	3.6	1.4	7.2	179.5	146.3	33.3	20.1	13.2	0	NA	P/C	55	45	MA	NA	IJ	Y	Υ	¥	Ē	Ē	TILL
-02	4.2	1.0	3.2	90.4	72.5	17.9	10.7	7.2	1	270	2	80	20	NΑ	NΑ	П	A	¥	À	8	3	TILL
-03	9.1	1.4	7.7	197.2	153.4	33.8	19.9	13.9	Ō	NA	۴	75	25	MA	MA	ij	¥	ŕ	¥	GB	93	TILL
-04	9. 0	1.1	7.9	306.2	263.2	43.0	27.5	15.5	0.	NΑ	۴	80	20	MA	ΝA	U	¥	Y	¥	63	5B	TILL
-∂5	8.5	1.8	6.7	173.3	139.2	34.1	19.0	15.1	1	79	Þ	60	40	NA	NA	U	Υ	Ä	Y	65	63	TILL
207-01	3.5	1.3	2.3	124.7	113.5	11.2	7.4	3.8	0	NA	P	70	30	ΝA	MA	Ĭ;	Ÿ	¥	Y	65	33	TILL
02	8.3	2.0	6.3	152.5	135.8	25.7	15.5	11.1	Q	NA	P	75	25	MA	NΑ	U	À	Y	¥	EB	38	TILL
/ - 03	8.5	1.7	6.8	182.4	150.4	32.0	20.7	11.3	Q	NA	P	<i>5</i> 0	40	MA	MA	IJ	Y	¥	¥	GB	68	TILL
- ⊕4	9,0	2.5	6. 4	156.6	133.7		14.8	8.1	0	NA	۶	70	30	M7.	NA	IJ	Y	¥	À	33	GP	TILL
-05	5.0	1.0	4.0	144.2	127.0	17.2	11.6	5.6	0	NA	þ	85	15	NΑ	ΝA	U	Y	Y	Ä	68	<u>G</u> B	TILL
-06	4.6	9.9	3.7	50.1	77.5	12.5	9.1	3.4	_	NA		85	15	ΝA	ΝĤ	Ų	Y	¥	7	3 B	35	TILL
-:)7	7.8	1.6	6. 2	75.5	51.3		16.5	7.7		NA	P/C	85	15	₩	NA	IJ	γ	À	Ä	GΥ	31	TILL
–05	1.0	1.0	0.0	141.9	112.8	29.1	19.8	9.3			P/C	80	20	NΔ	NΑ	IJ	Y	Y	Y	ξŸ	ΞY	TILL
- √)9	8.0	1.1	5.9	150.5	129.9	20.5	14.1	5.5	1	151		7 5	5	NA	NA	IJ	¥	Ÿ	Y	66	96	TILL
208-01	8.2	1.5	6.6	167.5	144.0		13.4	10.1	Û		P/C	80	29	HA	3	-	¥	¥	Y	GB	GB	TILL
- 02	7.1	0.7	6. 2	283.3	254.4	28.9	18.5	10.4	Û		P/C	80	20	NA	NΑ	U	γ	À		68	SB	TILL
-03	8.0	1.3	6.2	135.4	104.6	30.8	18.4	12.4	Ū		P/C	8 0	Ξ0	NA	NA	U	Y	Y		EB	GB	TILL
-04	8.1	3.2	4.9	408.8	360.7	46.1	31.1	17.0	Q		P/C	70	30	NΑ	NA	Ü	Ÿ	Υ	•	68	63	TILL
- ∂5	7.9	2.9	5.1	189.0	149.5	39.5	24.2	15.3	0		P/C	70	30	11/A	NA	IJ	Υ	Y	γ	GB	€B	TILL
-06	7.8	1.3	6.5	219.1	182.3	36.8	23.8	13.0	0		P/C	80	20	NA	MA	U	Ä	Y		6B	GB	TILL
-07	7.9	2.2	5. 7	115.0	87.7		15.3	10.0	0		P/C	90	1:)	117	NA	Ū	À	¥		69	6G	TILL
209-01	8.5	0.0	8.5	347.1	283.4	63.7		21.1	0	NA		NΑ	NA	NA	NA	Ü	Y	Y	Y	63	<u>8</u> 3	TILL
- 02	8.5	2.3	6.2	242.2	200.1	42.1	29.6	12.5	0		P	70	30	NΑ	NA	U	Y	Ą	Y	53	6 B	TILL
~)3	6.3	0.8	5.5	202.6	182.3	20.3	14.8	5.5	0	NA	P	70	30	MA	1	Ü	Y	Y	Ÿ	GE.	ĞΫ́	TILL
-04 	3.8	1.2	7.6	192.0	145.4		25.8	10.8	0		P	70	30	NΑ	ΝA	U	Y	γ	Y	67	GΥ	IILL
-05	8.2	0.2	a.0	263.7	236.2	27.5	21.1	6.4	Ú	NA	P	80	20	ΝA	NA	U	Y	Å	Y	GB	ΘY	TILL

SAMPLE NO.	WE19HT		(ET)	====	WEISHT					AU				ESCR	IPTI	DH						JLABE	
						M.	I. CC	NC				CLA	ST		====	3422	MAT	RIX			====		=
			TABLE	TABLE	M.I.	CONC.	NON		Nē.	CALC	5IZ		:=== %		====		==== 30		ess:				
	5FLI!	CHIPS	rtiu	CONC	LIGHTS	TOTAL	MAG	MAG	V.G.	PPB		=== V/3	==== GR	==== L3	==== T0					==: 3D	==== CY		
																							
SM-35 209-06	7.9	0.3	7.5	57A ±	546 *	20.0																	
-07	£.4	0.1	7.s 6.3	270.1 260.0	240.3 240.0	29.8 20.0	22.7 15.1	7.1 4.9	0	NA NA	-	70			NA NA	5	Y	Y	Y	57	57	TILL	
-03	5. 3	0.3	6.0	157.4	175.6	11.8	7.1	2.7	0	NA NA	P P	90 95			NA	ij.	¥	¥	Ý	GΥ	8 Y	TILL	
:9	7.7	0.5	7.2	75.9	73.4	2.5	1.3	0.7	0		-г ВR/8		5 5	NA NA	1 NA	IJ U	Ϋ́	Y	Ϋ́Υ	38 Ost	SY Save	TILL	
Z10-01	3.3	0.9	7.4	236.4	195.5	40.9	28.1	12.8	0	NA	P.	70	3 0	NΑ	NΑ	U	T V	T V	ī V	GME GB	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	TILL TILL	
-02	8.9	1.0	7.9	326.4	272.4	54.0	35.9	18.2	Õ	NA	۶	70	30	80	™ MA	u U	Υ	7	•	95	ED 33	Tid	
- 03	9.2	1.5	7.7	357. 1	215.0	42.1	25.3	15.3	0	NA	P	80	20	NA	NA.	U	ý	ý	A.	33	EB	Tiil	
- 04	9. 6	1.5	8.1	262.4	217.7	44.7	29.2	15.5	Ō	NA	P	50	20	NΑ	i de	Ü	Ÿ	ý	Ŷ	63	===	TILL	
- 05	9.5	1.3	8.2	227.5	183.5	44.0	27.6	14.4	1.	22	۴	80	20	NA	NA	Ü	Y	Ý		6B	22	7711	
-0£	7.5	1.2	6.3	228.8	192.4	36.4	25.6	10.8	9	NA	P	60	20	NΑ	MA	ij	Y	¥	Y	E3	53	TILL	
-07 - 711-01	7.5	0.4	7.1	172.4	137.8	32.5	23.8	8.3	0	NA	P	80	20	MA	ŅΔ	5	F	γ	N	33	MA	SHID	
212-01	9.2 2.5	0.4	7.8	136.1	113.8	22.3	14.8	7.5	0	NA	F	90	10	NA	NA	Ü	Ä	¥	Y	63	6 3	TILL	
213-01	5.0	1.4	2.5 3.5	105.0 118.3	94.0 99.8	11.0	8.3	2.2	0	NA	TR	NA	NΑ	MA	NA	5	M	Y		3	SN	SANO.	
-02	7.2	3.3	3.9	164.1	150.8	18.5 13.3	12.2 8.0	6.3 E.7	0	NA Na	C	80	20	MA	NA	U	Y	Ä		SB 	3 N	TILL	
-03	7.5	2.3	5.2	171.5	151.8	19.7	13.5	5.3 6.1	0	NA NA	P C	8 0 79	20 70	NA	絡	5	<u>C</u>	N		65 	₩A	BRAVEL	
-04	5.4	1.0	4.4	172.8	161.5	11.3	E.3	3.0	0	an NA	P P	70 75	30 25	NA NA	NA NA	U	V V	Y		63 21:	EE	Till	
-05	7.2	1.2	6.0	146.8	122.5	24.2	18.3	5.9	o O	NA	p	75 85	15	nn NA	NA NA	IJ	₹ ¥	Ϋ́		gy gy	67 87	TILL TILL	
- ∙}6	8.3	1.2	7.1	190.7	140.7	50.0	41.2	8.3	ò	NA	P	25	15	NA	MA		Ϋ́	Ý		9Y	87 87	TILL	
214-11	€.9	3.4	5.5	218.9	197.5	21.4	15.3	6.1	0	NΑ	٥	50	50	NA	NA		Ϋ́	Ý		- : 32	EN	TILL	
-07	3.3	2.2	5.1	174.5	143.2	31.6	19.8	11.8	0	MA	C	70	30	NA	NΑ	S	Ċ	y		33 33	MA	FAVEL	
-03	3.4	2.6	5.8	243.1	133.9		73.2	36.O	0	NΑ	0	70	30	NΑ	NA	IJ	Y	¥		35	<u>85</u>	TILL	
-∂4 -=	5.6	2.7	5.9	249.2	201.5	47.7	25.5	22.2	Ú	NA	P	79	30	NΑ	NA	U	¥	7	Y (3E		TILL	
-05 215-01	4.0 9.0	0.3	3.7	123.8	102.3	21.5	16.5	5.0	0	NA	۶	70	20	MA	ΝA	IJ	Y	¥	Y (37	6B	TILL	
-02	7.0 4.5	0.4 2.3	8.6 2.3	263.3 118.2	233.5	29.8	20.4	9.4	0		P/G	50	40	ΝA	ΝA	9	M	Y	N i	3		EAFD	
-\s\frac{1}{5}	8.7	0.6		276.8	111.S 240.0	£.4 36.8	4.5	1.8	0	NA	P	70 50	30	NA	MA		C		N I			STAVEL	
-:)4		0.5		250.9		30.5		12.3 10.9	0	NA NA	P ·	90 70					ĺ					TILL	
215-01		0.0	5.1	95.3		18.8			Ú			70 NA	30 NA	MA MA	MA MA		γ 		Y 6			TIL.	
-02	10.1	1.7		160.4		34.9			0		P				MA			y Y				TILL TILL	
	9.Q	0.2	7.8	179.0	143.4				Ů		F	70			NA NA				y E			end End	
-02		0.4		129.1	95.0	34.1	22.3	11.8	0		P		20			j i		Ÿ				TILL	
-93		1.0		121.8		17.0			0	NA	P		20			Ü						T <u>ILL</u>	
		1.7		159.1	127.5				ð	NA	P	50	20		NA								
218-01 -02		1.5		169.7	137.5				0					NA	NΑ	U Y	∤	y ·	Y 5			TILL	
		2.3 2.2		127.6	83.5					10941	7				ΝA			γ					
				141.0 191.3		42.9 36.9			1				20		NA -						66 '		
				107.1					0					MA		U Y					848		
				122.5	92.5				0			80 80		NA MA		U)		y v			8Y .		
				219.7	172.2		17.0		ý.			87 75				U Y		Υ \ Υ :			6Y 7		
-i) <u>2</u>	5.2			51.4	142.3		14.5		o O				70 30			U Y U Y		Υ : Υ \					
				172.5	243.1		10. 5		Ĉ				40			u r U Y		Y					
222-1)1	1.5).2	1.4	107.0	102.2	4.€	3.7	1.1	Q	NA			15		3			Ϋ́Υ			· ·		

SAMPLE NO.	WEIGHT	*KG.\!!	ET) ======	-===	#EIGHT	(GRAMS	DRY)			ل4 ======){ 	ECR	FTI)N			===		:===	CLASS
						•	I. COM					CLA	5 Ţ				MATE					
		+10 CHIPS	TABLE FEED	TABLE CONC	M.I. LIGHTS	CONC.	NON Mag	MAG	NO. V.G.	CALC PPB	SIZE		%				30			COL		
												V/S	5R	Æ	ग					SD	СУ	
223-01	9.2	1.0	8.2	111.0	73.2	37.8	24.0	13.5	·	MA	Ę.	£0	40	**	MA.	ľ	Ý	γ	γ	3V	SY	TILL
<i>-</i> ∂2	a. 1	1.8	5. 3	269.1	243.7	25.14	18.5	6.8	0	NA	?	±0	40	MA	MA	ij	¥	7	Y	GΥ	GY	TILL
224-01	5.2	0.5	4.6	93.5	72.0	21.6	15.5	5.0	0	NA	F	70	30	桶	3	ij	7	٧	¥	5 5	GE	TILL
225-01	10.1	1.8	8.3	191.3	156.1	35.7	20.3	15.4	0	ŊΔ	F	70	30) iA	14.0 1	IJ	¥	¥	Y	63	88	TILL
226-01	9.5	1.5	3.1	122.5	83.5	39.0	24.3	14.2	0	MA	Þ	έĐ	40	MA	3	IJ	¥	¥	Y	GB	GB	TILL
- 02	10.1	1.7	8.2	269.0	229.5	40.5	24.5	16.0	1	118	₽	75	25		MA	Ŀ	¥	¥	¥	69	GE	TILL
-j3	9.9	1.3	8.5	205.8	163.3	43.5	31.0	12.5	0	144	=	55	亞	MA Media	1	J	¥	Ŧ	¥	3B	G₽	TILL
227-01	7.2	0.0	7.2	247.9	223.7	24.2	17.5	6.7	Q.	MA	T	ATA PER	M	NΑ	3	5	F	Y	٧	B	B	SAND
- 92	9.4	1.2	8.2	137.8	108.5	29.3	18.5	10.8	0	褞	₽	60	40	MA	MA	j	¥	7	¥	SE	GB	TILL
-03	7.8	1.7	a. i	229.6	195.1	34.5	21.1	13.4	0.	MA	₽	70	30	WA.	<u>₩</u>	:1	y	¥	¥	69	G₽	TILL
- ∂4	10.3	1.9	8.4	199.5	156.5	43.0	25.5	17.5	1	447	F	±0	40	W.	NIZ.	IJ	¥	1	¥	35	5 ₽	TILL
-05	5.7	1.2	5.5	191.7	140.9	30.3	17.1	13.7	0	144	₽	70	30	NA	NΔ	IJ	¥	У	Y	34	GΥ	TILL
06	10.0	1.7	8.1	240. 9	200.8	40.1	29.5	10.5	0	M	P	70	30	83.5 1821	NΑ	IJ	y	Y	¥	ĒĒ	668	TILL .
′ − 07	10.0	1.4	8.6	223.5	184.7	38.8	26.5	12.3	0	NA.	Ε	5 0	20	112	4	1	Y	¥	Y	GB	GB	TILL
- 08	9.5	1.4	8.1	332.3	286.4	45.9	31.8	14.1	0	NA	Ε	E 0	2 0	MA	$N\Delta$	IJ	Å	Y	Y	62	69	TILL
-09	3.8	2.0	6.3	145.4	118.0	27.4	19.3	7.5	0	MA	F	70	30	NΑ	MA	IJ	¥ -	Y	γ	68	GĐ	TILL
-:()	7.9	0.8	6.2	232.7	205.4	27.3	17.5	9.7	0	MA	₽	70	30	NΑ	MA	IJ	¥	¥	¥	83	GB	TILL
-11	9.∂	1.6	8.2	320.0	265.6	54.4	28.9	25.5	Ò	WA	P/BE	B 0	20	NΑ	MA	U	¥	γ	y	ΞF	GB	TILL
180-01	3.1	1.4	6. 7	148.4	118.1	30.3	18.5	11.7	9	MA	P	5 0	20	MA	MA	IJ	7	¥	Y	3	3	TILL
-07	8.2	2.3	5.0	134.9	110.7	24.2	13.7	10.5	0	Ąβ	P/C	Ξ0	20	MA	ĦΑ	U	¥	٧	Y	9	3	TILL

APPENDIX C GOLD GRAIN COUNTS AND CALCULATED VISIBLE GOLD ASSAYS

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

SAMPLE #	DANIAIE?	^			ABBRAI	ED	IRREG	ULAR	DEL.			NON	CALC V.G.	
SHOFLE #	Y/N	DIAMETER	R THICK	ÆÆ	7	P	T	P	T	P	TOTAL	MAG GMS	ASSAY PPB	REMARKS
CW-85 01-01	N	NO VISIBLE	60L)											
_ 02	N	NO VISIBLE	E GOLLI)											
02-01	Y	50 X 1 200 X 3		E I 4 I					,		1			EST. <1% PYRITE.
										TOTAL	. 2	36.6	620	
- ₁ -02	N	NO VISIBLE	60LD											
-03	N	250 X 3	500 :	50 C	1						1			
-										TOTAL	1	33.3	855	
03-01	N	NO VISIBLE	60LD											
-02	N	NO VISIBLE	GCLD											
04-01	N	NO VISIBLE	60LD						:					
-02	N	NO VISIBLE	EDLD											
05-01	N	200 X 2	50	42 E	1						1			
										TOTAL		31.3	512	
-02	N	NO VISIBLE	E GOLD										ı	
-03	N	NO VISIBLE	6010											
-04	N	NO VISIBLE	E01.3											
-05	N	NO VISIBLE	FIL D											
-06	N	NO VISIBLE	GOLD .											
-07	N	NO VISIBLE	60LI)											
-08	N	NO VISIBLE	E GOLD											
-09	N	NO VISIBLE	GOLD											

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

5/	WFLE #	DANNET	1		ABBRADED	IRRES	ULAR	DELICATE	:	non Mag	CALC V.G.	
	en CE T	Y/N		THICKNESS	Ţ	P T	P	T	TOTAL			REMARKS
	-10	γ	25 X 50	8 C		1	٠		- 1			EST. 25% PYRITE.
								TOTA	<u>L</u> 1	30.7	3	
	06-01	N	NO VISIBLE 60	LD								
	-02	N	NO VISIBLE 60	LD				-				
***	-03	N	NO VISIBLE GO	LD								
	-04	N	NO VISIBLE GO	LD								
	-05	N	NO VISIBLE 60	רם								
	-06	`N	NO VISIBLE 60	LD								
	-07	N	NO VISIBLE 60	LD	•							
	-08	N	275 X 375	58 C		i			1			
								TOTA	<u>1</u>	28.7	1592	
	-09	N	NO VISIBLE GO	LD								
	-10	N	NO VISIBLE GO	LD								
	-11	N	NO VISIBLE GO	LD								
	-12	N	NO VISIBLE GO	LD								
	-13	N ·	NO VISIBLE 60	LD								
	-14	N	NO VISIBLE GO	LD .								
_	-15	N	NO VISIBLE GO	LD .								
	-16	N	250 X 300	50 C		1			1			
								TOTA	AL 1	30.5	933	
	-17	N	NO VISIBLE GO	LD								

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

CAMBLE 1	S.A.I.II			ABBRA	DED	IRRE	GULAR	DEL.	CATE		NON	CALC V.G	•
SAMPLE #	Y/N	DIAMETER	THICKNESS	T	 P	Ţ	Р	T	P	TOTAL	MAG GMS	ASSAY PPB	REMARKS
-18	N	NO VISIBLE G	OLD										
-19	N	NO VISIBLE G	OLD										
-20	N	NO VISIBLE G	OLD										
-21	N	NO VISIBLE G	OLD										
-22	N	NO VISIBLE G	OLD						-				
23	N	NO VISIBLE G	OLD										
-24	N	250 X 500	65 C	1						1			
									TOTAL	. 1	15.9		
-25	N	NO VISIBLE 6	OLD									• .	
07-01	N	NO VISIBLE 6	OLD										
-02	N	NO VISIBLE 6	OLD										
-03	γ	50 X 100	15 C		1					1			EST. 10% PYRITE
									TOTAL	. 1	24.9	26	
-04	N	NO VISIBLE 6	OLD										
-05	N	NO VISIBLE G	OLD										
-06	N	NO VISIBLE G	OLD										
-07	N	NO VISIBLE G	OLD										
-08	N	NO VISIBLE G	OLD										
1-09	N	200 X 150	34 C	1				•		1			
									TOTAL	. 1	4.5	1717	
-10	N	NO VISIBLE G	OLD										
-11	N	NO VISIBLE G	OLD										

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

CAMBLE	DANNET	3		ABBRA	DED	IRRE	GULAR	DELI	CATE		NON MAG	CALC V.G.	•
SAMPLE #	Y/N		THICKNESS	T	P	T	. Ъ	ī		TOTAL		PPB	REMARKS
-12	Ņ	NO VISIBLE	GOLD				,						
-13	N	NO VISIBLE	GOLD										
-14	N	NO VISIBLE	60LD										
-15	N	NO VISIBLE	GOLD						٠				
16	N	100 X 15	0 25 C	. 1						1			
									TOTAL	_ 1	25.2	115	
08-01	N	NO VISIBLE	60LD					•					
-02	N	NO VISIBLE	60LD										
-03	N	NO VISIBLE	GDLD										
-()4	N	NO VISIBLE	GOLD										
~ 05	N	NO VISIBLE	60LD										
-06	Y	NO VISIBLE	GOLD										EST. 25% PYRITE
-07	N	NO VISIBLE	60LD										
-08	N	NO VISIBLE	GOLD								•		
-09	Υ	NO VISIBLE	GOLD										EST. 15% PYRITE
-10	N	NO VISIBLE	GOLD										
-11	N	NO VISIBLE	GOLD										
19-01	N	100 X 15	0 25 C	1						1			
									TOTAL	. 1	15.1	192	
-02	N	200 X 25	0 42 C	i						1			
									TOTAL	_ 1	21.9	731	

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

NUMBER OF SKAINS

CAM	61 C II	DANNET	1			•		ABBRA	ADED	IF	REGU	LAR	DEI	ICATE		NON NAE		CALC	V.G. SAY	1		
SHM	PLE #	PANNEI Y/N		DIAME	TER	THIC	KNESS	T		P ==	T		7	P	TOTAL			PP.		REMAR	KS	
	-03	N	NO	VISI	BLE	60LD																
	-04	N		200 X	6	50	71 C	i							1							
														TOTA	. 1		3.6		4086			
	-05	N	NO	VISI	BLE	GOLD																
	-06	N	NO	VISI	BLE	GOLD								•								
-)	-07	N	NO	VISI	BLE	GOLD																
	-08	N		100 X	13	50	25 C	1							1							
														TUTA	_ 1	7	2.4		129			
	- 09	N	NO	VISI	BLE	GOLD									•							
	-10	N	NO	VISI	BLE	GOLD																
	-11	N		100 X	1	50	25 C	1							1							
														TOTA	_ 1	7	22.9		126			
	-12	Y	NO	VISI	BLE	GOLD														EST.	20%	PYRITE
	-13	N	NO	VISI	BLE	GOLD																
	-14	Υ	NO	VISI	BLE	GOLD	`													EST.	10%	PYRITE
	-15	N	NO	VISI	BLE	60LD																
	-16	Y	NO	VISI	BLE	GOLD														EST.	30%	PYRITE
	-17	N	Ю	VISI	BLE	60LD																
	-18	N	NO	VISI	BLE	GDLD																
	-19	N	NO	VISI	BLE	GOLD																
	-20	Y				GOLD														EST.	40%	FYRITE
1	0-01	N	NO	VISI	BLE	GOLD																

20 GRAINS GALENA

GOLD CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

SAMPLE #	DANNE?	1		ABBRADE	D	IRREGUL	.AR	DEL	ICATE		NON MAG	CALC V.G.	•
SHIFTE &	Y/N		OEE	ī	P	T	P	T	P	TOTAL		PPB	REMARKS
-02	N	150 X 200	34 I	1						1			
									TOTAL		25.3	306	
-03	N	NO VISIBLE GOLD											
-04	N	NO VISIBLE GOLD											
-05	N	100 X 150	B C	1						1			
./									TOTAL	. 1	23.7	122	
-0 6	N	NO VISIBLE BOLD											•
11-01	N	NO VISIBLE SOLD											
-02	N	NO VISIBLE GOLD											
-03	N	150 X 150	29 E	1						1			
									TOTAL	. 1	28.0	176	
-04	N	NO VISIBLE BOLD											
-05	N	NO VISIBLE GOLD											
-06	N	NO VISIBLE GOLD											
-07	Y	50 X 50 50 X 75	10 E		1					1			EST. 40% PYRITE 15% SPHENE
					_				TOTAL		113.5		,557,57,55
-08	N	NG VISIBLE BOLD											
-09	N	NO VISIBLE BOLD											
-10	N	NO VISIBLE GOLD											
-11	γ	NO VISIBLE GOLD											EST. 40% PYRITE 5% SPHENE

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

				HOUDER	Ur	CHIMO							
SAMPLE #	PANNET)		ABBRADE	D =	IRREGUI	LAR	DEL:	ICATE		NON MAG	CALC V.G. ASSAY	
	Y/N	DIAMETER THIC	KNESS	T	P	T	P	T	P	TOTAL			REMARKS
12-01	N	150 X 250	38 C	1						1			
									TOTAL		34.2	333	
					•						•	***	
-02	N	100 X 150	25 C			1				1			
									TOTAL	. 1	28.2	103	·
-03	Y	100 X 125	22 C		1	-				2			EST. 10% PYRITE
		150 X 225 150 X 275	36 C 40 C		1					1			
		100 x 2/0	70 0	•								·	
									TOTAL	. 4	21.0	1299	
-04	N	NO VISIBLE GOLD											
-05	N	NO VISIBLE GOLD											
-06	N	NO VISIBLE GOLD											
-07	Y	50 X 75	13 C		1					1			EST. 30% PYRITE
									TOTAL		36.1	10	
										•	****	••	
13-01	N .	NO VISIBLE GOLD											•
15-01	N	NO VISIBLE GOLD											
1 6- 01	N	NO VISIBLE GOLD											
18-01	N	NO VISIBLE GOLD											
1 9- 01	N	ND VISIBLE GOLD											
-02	Ý	50 X 75 100 X 250	13 C 34 C		1					1 1			EST. 15% PYRITE
									TOTAL		26.0	312	
-03	N	NO VISIBLE GOLD											
-04	Y	50 X 100 100 X 150	15 C 25 C							1			EST. 1% PYRITE

PPB REMARKS

GOLD CLASSIFICATION

-07

-10

N NO VISIBLE GOLD

N NO VISIBLE GOLD

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

SAMPLE #	PANNEI Y/N) DIAMETER	THICKNESS	ABBRAD T	ED == P	IRREGL T	ILAR 	DEL I		TOTAL	NON MAG GMS	CALC V.G. ASSAY PPB	Ri
									TOTAL		23.4	151	
-05	N	NO VISIBLE	GOLD										
-06	N	NO VISIBLE	60LD										
07	N	NO VISIBLE	60LD						č.				
-08	N	NO VISIBLE	GOLD										
-09	N	NO VISIBLE	GOLD										
-10	N	NO VISIBLE	60LD										
-11	N	NO VISIBLE	60LD										
-12	N	NO VISIBLE	60LD										
-13	N	NO VISIBLE	GOLD										
-14	N	NO VISIBLE											
26-06	N	NO VISIBLE	GOLD										
-07	N	NO VISIBLE	GOLD										
-08	N	NO VISIBLE	60LD										

EGNS STVESTEICHLICH

VISIBLE BOLD FROM SHAKING TABLE AND PANNING

es expected	ير سم.	CANNET							OELIA			NEN MAS	CALC '		
#####	<u> </u>	PANKE! Y/N		MAMETER	THICKNESS									REMAR	K S
	- ⊕4	N	NO	VISIBLE	GOLD										
	- 03	10, 4 1 13	NO	VISIBLE	SGLD								į		
	-04	Ñ	NO	VISIBLE	SOLD										
	- 1)7	Ħ	MO	VISIBLE	SOLD										
	-08	N	NC.	VISIBLE	50LD						1				
	-19		:10	VISIBLE	GOLD										
	-10	٧	ΝŪ	VISIBLE	COLD				040	•					
	-11	À	NG	AISIBLE	50LD										
	-12	M very	70	VISIBLE	EOLD										
	-13	100	WO	VISIBLE	SOLD										
	-14	1 4 1 4	NO	AIBIEFE	50LD										
	-15	. N	NO	VISIBLE	8GLD										
25	-01	24	NO	VISIBLE	60L0								-		
24	-01	P. d	NO	VISIBLE	SOLD										
	-02	N	ΝO	VISIBLE	60LD										
	-03	Н	ΝO	VISTELE	GOLD										
	-04	14	NO	VISIBLE	GOLD										
	-:) <u>-:</u>	N	MO	VISIBLE	GCLD										

- YLD CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

CAMBLE #	Бакист	٠,			ABBRA	DED	IRRE	GULA	R 1	ELIC	ATE		MON MAG	CALC V.G ASSAY	•
SAMPLE #	Y/N		DIAMETER	THICKNESS	T	P	1	1	5	T	P	TOTAL			REMARKS
CW-85		.,,=		7.00 P											
26-11			VISIBLE												
-12	N	NO	VISIBLE	GOLD											
- i 3	N	NO	VISIBLE	GOLD											
27-01	N	NO	VISIBLE	60LD											
-02	N	NO	VISIBLE	GOLD											
-03	N	NO	VISIBLE	GOLD											
-04	N	NO	VISIBLE	GOLD						-					
	N	NO	VISIBLE	GOLD											
-06	N	NO	VISIBLE	GOLD											
-07	N	NO	VISIBLE	60LD											
-08	N	NO	VISIBLE	GOLD											
-09	N	NO	VISIBLE	GOLD											
-10	N	NO	VISIBLE	GOLD											
-11	N	NO	VISIBLE	GOLD											
-12	γ	NO	VISIBLE	GOLD											EST. 10% PYRITE.
-13	Y	NO.	VISIBLE	GOLD											EST. 40% PYRITE.
-14	N		VISIBLE												
-15	N		VISIBLE												
-16	N		VISIBLE												
-17	N		VISIBLE												
-18	Y		VISIBLE												EST. 35% PYRITE.
		HU										1			EST. 15% PYRITE.
-19	Υ		25 X	50 8 C		1				-	ra t ni			. ,	
		, . -		-3						1	IDTAI	_ 1	14.8	i é	
-20	Y	ΝŪ	VISIBLE	GOLD											EST. 20% PYRITE.

TILD CLASSIFICATION .

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

MANGER OF GRAINS

CAMBIE I	DANNET			ABBRA	DED	IRREG	ULAR	DELI	CATE		NON MAG	CALC V.G.	
SAMPLE #	Y/N	DIAMETER THI	DK#ESS	T	P	T	P	T		TOTAL			REMARKS
-21	Y	ND VISIBLE BOLD											EST. 15% PYRITE.
-22	Y	NO VISIBLE GOLD											EST. 40% PYRITE.
-23	Y	NO VISIBLE GOLD										,	EST. 45% PYRITE.
-24	γ	25 X 50	EI		1					1			EST. 35%PYRITE.
									TOTAL		21.6	4	
28-01	N.	ND VISIBLE GOLD			•								
-02		NO VISIBLE GOLD							٠				
03		NO VISIBLE BOLD											
-04		NO VISIBLE BOLD											
-05		150 X 150	<i>2</i> 9 D	1						1		•	
-03	N	150 X 150		1					TOTAL		17.0	290	
2/	LI .	*** 1151515 5015							IOIH		17.0	270	•
-06		NO VISIBLE GOLD	~ . B										
- -()/	· N	100 X 275	36 D	1						1			
									TUTAL		26.5	357	
- 03	N	200 X 275	44 E	1						1			
				-					TOTAL	. 1	34.5	542	
-09	N	NO VISIBLE BOLD											
-10	N	NO VISIBLE GOLD											
-11	N	NO VISIBLE BOLD											
-12	N	NO VISIBLE BOLD											
-13	N	75 X 125	20 L	1						1			
									TOTAL	1	26.8	56	
-14	N	NO VISIBLE GOLD											
-15	N	NO VISIBLE GOLD						No. of the Control of	to activities				ii Sooney mag

— TLD CLASSIFICATION

_4000222400222222

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

-34 N NO VISIBLE GOLD

£3	writ #	DANKE	r					DELICA			NON	CALC V.G.	
3H	IFLE #	Y/N	DIAMETER	THICKN		T		T			MAG GMS	assay PPB	REMARKS
	-16	N	NO VISIBLE	en n									
	-17	N '	NO VISIBLE	GOLD									
	-18	N	125 X 12	5 2	5 C	1				1			
								TO	TAL	1	31.5	92	
	-17	N	NO VISIBLE	GOLD									
	-20	X	NO VISIBLE	GOLD									
	-21	N	'NO VISIBLE	GOLD				à					
,	-22	N	NO VISIBLE	GOLD									
	-23	N	ND VISIBLE	60LD									
	-24	N	NO VISIBLE	GOLD									
	-25	N	NO VISIBLE	GOLD								·	
	-26	N	NO VISIBLE	GOLD									
	-27	N	ND VISIBLE	GOLD									
	-28	N	NO VISIBLE	60LD									
	-29	N	NO VISIBLE	GOLD									
	-30	N	NO VISIBLE	GOLD									
	-31	N	NO VISIBLE	GOLD									
	-32	N	150 X 27	5 .44	э с	1				1			
								TO	ITAL	1	29.6	459	
	-য়	Ħ	NO VISIBLE	GOLD									
_													

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

			_		ABBRADI	ED	IRRI	EGULA	¥R	DELIC			NON	CALC V.G.	i		
SAMPL	£₩	PANNE! Y/N	DIAMETER	THICKNESS	T	== P	223	==== T	P	***** T		TOTAL	MAG GMS	ASSAY PPB	REMAR	KS	
CW-85 28-		Y	NO VISIBLE	GOLD											EST.	45% i	PYRITE.
29-	-01	N	NO VISIBLE	GOLD													
•	-02	N	NO VISIBLE	GOLD													
	-03	N	NO VISIBLE	GOLD -													
-	-04	N	NO VISIBLE	GOLD													
	-05	N	NO VISIBLE	GOLD													
-	-06	N	NO VISIBLE	GOLD						•	•						
-	-07	N	NO VISIBLE	GOLD			-										
	-08	N	NO VISIBLE	GOLD													
-	-09	N	NO VISIBLE	GOLD													
-	-10	N	NO VISIBLE	GOLD													
	-11	N	NO VISIBLE	60LD													
-	-12	N	NO VISIBLE	GOLD													
-	-13	γ	NO VISIBLE	GOLD											EST.	5% P	YRITE.
	-14	N	NO VISIBLE	60LD													
	-15	N	NO VISIBLE	GOLD													
	-16	N	NO VISIBLE	GOLD													
-	-17	N	NO VISIBLE	GOLD													
	-18	N	NO VISIBLE	GOLD													
- ,	-19	Υ	50 X :			1 1			1			2			EST.	5% P	YRITE.
										7	TOTAL	_ 3	23.7	59			
	-20	N	NO VISIBLE	GOLD													
-	-21	N	NO VISIBLE	GOLD	-												

- TLD CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

-20 N NO VISIBLE GOLD

SAMPLE :	# ₽∆i	NNFD .			IRREGUL	.AR	DELICATE		NON	CALC V.S.
OINE LL		N DIAMETER THICKNESS		=== P	T	== P	T P	TOTAL	MAG GMS	assay PPB remarks
-22	!	NO VISIBLE GOLD								
-23	ì	NO VISIBLE GOLD			r					
-24	ŀ	NO VISIBLE GOLD								
30-01	٨	150 X 625 66 C	1					1		
							TOTAL	1	I .5	<u> </u>
-02	N	NO VISIBLE GOLD			`					
-03	N	NO VISIBLE GOLD					•			
-04	N	NO VISIBLE GOLD								
-05	N	NO VISIBLE GOLD								
-04	N	ND VISIBLE GOLD								
-07	N	NO VISIBLE GOLD								
-08	N	NO VISIBLE GOLD								
-09	N	NO VISIBLE GOLD								
-10	N	NO VISIBLE GOLD								
-11	N	NO VISIBLE GOLD								
-12	N	NO VISIBLE GOLD								
-13	N	NO VISIBLE GOLD								
-14	N	NO VISIBLE GOLD								
-15	N	NO VISIBLE GOLD								
-16	N	NO VISIBLE GOLD								
-17	N	NO VISIBLE GOLD								
-18	N	NO VISIBLE GOLD								
-19	N	NO VISIBLE GOLD								

PAGE 3

JLD CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

NUMBER OF STATE

SAMPLE #	DANNE	N		ABB	RADED	IR	REGUL	AF.	BELICA	TE		NON MAG	CALC V.G ASSAY	•
SHULLE #	Y/N		THICKNESS		T	P	7	₽	T		TOTAL		PFB	REMARKS
-21	N	NO VISIBLE	60LD											
-22	N	NO VISIBLE	EULD											
-23	N	NO VISIBLE	60LD											
31-01	N	NO VISIBLE	60LD											
-02	N	NO VISIBLE	GOLD											
-03	N	NO VISIBLE	60LD											,
-04	N	NO VISIBLE	60LD											
-05	N	NO VISIBLE	GCLD											
-06	N	NO VISIBLE	60LD											
-07	N	NO VISIBLE	GOLD											
-08	N	NO VISIBLE	30LD											
-09	N	NO VISIBLE	GOLD											
-10	N	NO VISIBLE	GCCLD .											
-11	N	NO VISIBLE	GOLD											
-12	N	NO VISIBLE	60LD					,						
-13	N	NO VISIBLE	GOLD											
-14	N	NO VISIBLE	GCLD								•			
-15	N	NO VISIBLE	GOLD											
-16	N	NO VISIBLE	GOLD											
-17	N	NO VISIBLE	GOLD											
32-01	N	NO VISIBLE	GOLD										•	
-02	N	NO VISIBLE	GULD											
-03	N	100 X 12	25 22 C		1						1			
									TO	TAL	1	15.5	137	

VISIBLE GOLD FROM SHAKING TABLE AND FANNING

SAMPLE #	PANNE	ī		ABBRAI	ED		DELICA			NON MAG	CALC V.G ASSAY	•
	Y/N		THICKNESS	T	۶				TOTAL			REMARKS
-04	N	NO VISIBLE	BOLD									
32A-01	Ħ	NO VISIBLE	GOLD									
-02	N	NO VISIBLE	60LD									
-03	N	NO VISIBLE	SCLD									
-04	N	NO VISIBLE	60L)									
33- 01	Ħ	NO VISIBLE	GOLD .									
-02	N	NO VISIBLE	60LD				٠					
-03	N	NO VISIBLE	60LD									
-04	N	NO VISIBLE	60LD									
-05	N	NO VISIBLE	60LD									
-05	N	NO VISIBLE	eoro (
-07	X	NO VISIBLE	GOLD	-								
-08	N	NO VISIBLE	60LD									
-09	ĸ	NO VISIBLE	60L D									
-10	N	NJ VISIBLE	GOLD									
-11	N	NO VISIBLE	GOLD									
-12	N	200 X 30	00 46 C			1			1			
							ŤO	TAL	1	25.3	857	
34-01	ĸ	NO VISIBLE	6DLD									
-02	Ħ	NO VISIBLE	60LD									
-03	N	NO VISIBLE	60LD									
35-01	N	NO VISIBLE	GOLD									
36-01	N	NO VISIBLE	60LD									
37-01	N	NO VISIBLE	60LD									

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

SAMPLE #	PANNE	D		ABBRAD	ED	IRREGL	ILAR	DELIC	ATE		NON MAG	CALC V.G ASSAY	
	Y/N	DIAMETER	THICKNESS	T	P	T	P	T	P	TOTAL		PPB	REMARKS
38-01	N	NO VISIBLE	GOLD										
-02	N	NO VISIBLE	GQLD										
-03	N	NO VISIBLE	60LD										
39-01	N	NO VISIBLE	GOLD										
- 02	N	NO VISIBLE	GOLD:										
40-01	N	NO VISIBLE	GOLD		·.								
-02	N	NO VISIBLE	GOLD										
41-01	Ą	NO VISIBLE	GOLD										EST. 70% PYRITE.
43-01	N	NO VISIBLE	60LD				_						
-02	N	100 X 10	00 20 C	1						1			
								Ti	OTAL	. 1	20.5	73	
44-02	Y	NO VISIBLE	60LD						•				EST. 5% PYRITE.
45-01	N	NO VISIBLE	60LD										

- YO CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

-17 N NO VISIBLE GOLD

SAMPLE #	CANNET	1		ABBR	:ADED	IF	REGUL	LAR	DELI(NON MAG	CALC V.G ASSAY	
SHIFTE #	Y/N		R THICKNESS		· I	P	T	P	T		TOTAL		PFB	REMARKS
CW-85 45-02	N	NO VISIBL	E GOLD											
-03	N	NO VISIBL	E GOLD											
- 04	Y	NO VISIBL	E GOLD											EST. 10% PYRITE.
-05	N	NO VISIBL	E GOLD											
-06	N	NO VISIBL	E GOLD											
-07	N	NO VISIBL	E GOLD									•		
-08	N	NO VISIBL	E GOLD							•				
_ 46-01	N	NO VISIBL	E GOLD											
-02	N	NO VISIBL	E GOLD											
-03	N	NO VISIBL	E GOLD											
-04	N	NO VISIBL	E GOLD										-	
-05	N	NO VISIBL	E GOLD											
-05	N	NO VISIBL	E GOLD											
-07	N	NO VISIBL	E 60LD											
-08	N	NO VISIBL	E GOLD											
-09	N	NO VISIBL	E GOLD											
-10	N	NO VISIBL	E GOLD											
-11	N	NO VISIBL	E GOLD											
-12	N	NO VISIBL	E GOLD											
-13	N	NO VISIBL	E GOLD											
	Υ	NO VISIBL	E GOLD											EST. 5% PYRITE.
-15	N	NO VISIBL	E GOLD											
-1á	N	NO VISIBL	E GOLD											
17	61	NO 075750	F 601 B								•			•

- LD CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

SAMPLE	# P	ANNED				ABB	RADED	IF	REGUI	LAR	DEL	ICATE		NON	CALC V	
		Y/N	DIAM	ETER	THICKNES	 S	T	P	T	P	=== T	===== P	TOTAL	MAS BMS	ASSA PPB	y Remarks
46A-18	3	Y N	O VIS	IBLE	GOLD											EST. 10% PYRITE.
-19	7	N N	O VIS	IBLE	GOLD											
-20)	Y N	O VIS	IBLE	GOLD											EST. 5% PYRITE.
-21		N N	O VIS	IBLE	GOLD											
-22		N N	O VISI	BLE	GOLD											
-23		Y N) VISI	BLE (GOLD											EST. 5% PYRITE.
-24		N N) VISI	BLE (SOLD							Ł				
25		N	75 X	75	15 0	1							1			
												TOTAL	1	40.3	1:	<u>-</u>
47-01	į	N	100 X	100	20 C				1				1			
											1	TOTAL	1	24.1	6.	2
-02	ì	Į	450 X	500	77 C	1							1			
											T	OTAL	1	26.0	5024	
48-01	٨	l NO	VISI	ALE G	OLD				,						•	
49-01	N	NO.	VISIE	ILE G	OLD .											
-02	Y		125 X 150 X		44 C 48 C	1 1							1			EST. 10% PYRITE.
		2	X 60?	375	52 C	1							1			
											Tí	JTAL .	3	27.£	3360	
50-01	N	NO	VISIB	LE GO	LD											
51-01	N	NO	VISIE	LE GO	LD											
52-01	N	NO	VISIB	E GO	LD											
-02	Y	NO '	VISIBL	E GO	LD											EST. 15% FYRITE.
53-01	N	NO 1	VISIBL	E 601	_D											
-02	N	NO Y	/ISIBL	E GOL	_D											

- NLD CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

COMOLE #	DANKET	5		ABBRAD	ED	IRREGU	LAR				NON MAG	CALC V.G.	
SAMPLE #	Y/N		THICKNESS	Ţ	P	T	P	T	==== P	TOTAL		PPB	REMARKS
54-01	N	NO VISIBLE S	ת ח										
-02	N	NO VISIBLE G											
-03	Y	50 X 75 100 X 125 100 X 250	22 E		1					1 1 1			EST. 15% PYRITE.
		300 X 450								i			
			•						TOTAL	. 4	41.5	5329	
55-01	N	ND VISIBLE 6	T)										
- 02	×	NO VISIBLE 6											
- 56-01	N	NO VISIBLE G	LD										
-02	γ	25 X 50 50 X 50 50 X 100	10 E	1	1			•		1 1 1			NO SULPHIDES.
									TOTAL	. 3	33.2	28	
-03.	У	NO VISIBLE 60	JLD										EST. 10% PYRITE.
57-01	N	NO VISIBLE G	מב										
-02	N	NO VISIBLE G											
-03	N	NO VISIBLE GO											
59-01	N	NO VISIBLE GO	סבס										
-02	N	NO VISIBLE 60	משנ										
-03	N	NO VISIBLE &	CLD										
-04	N	NO VISIBLE 6											
05	N	NO VISIBLE S											
-06	γ	50 % 70	12 C		1					1			EST. 15% PYRITE.
									TOTAL	. 1	62.1	5	
-07	Y	NO VISIBLE 60	מבס										EST. 10% PYRITE.

- TLD CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

Dambie #	EVAINED					IRREGU					CALC V.G.	
SAMPLE #	Y/N		THICKNESS	====		Ţ				MAG GMS	ASSAY PPB	REMARKS
57-01	N	150 X 20	0 34 C	1					1			
							1	TOTAL -	1	33.1	234	
-02	N	NO VISIBLE	60LD									
-03	N	NO VISIBLE	GOLD									
-04	Y	NO VISIBLE	GOLD									EST. 10% PYRITE.
-05	N	NO VISIBLE	GOLD									
⊣)6	N	NO VISIBLE	GOLD .									
-07	N	NO VISIBLE	60LD		-							
-08	N	NO VISIBLE	GOLD									
44-01	N :	NO VISIBLE	GOLD .									
60-01	N .	NO VISIBLE (GOLD									
61-01	N ·	NO VISIBLE	60LD									
62- 01	N	NO VISIBLE (50LD									
-02	N 1	NO VISIBLE	GOLD									
63-01	N I	NO VISIBLE	GOLD									
-02	N :	NO VISIBLE (GOLD									
-03	N !	O VISIBLE (SOLD									
-04	N :	NO VISIBLE (30LD									
64- 01	N I	O VISIBLE (GOLD									
66−01	N i	© VISIBLE (50LD									
-02	N !	© VISIBLE (GOLD									
67 −0 1	N i	Ø VISIPLE (50LD									
- 02	N I	W VISIBLE O	GOLD				•					
-03	N I	O VISIBLE O	GOLD .									

VISIBLE GOLD FROM SHAKING TABLE AND FANNING

EAMOLE A	4 CANNE	n.		ABBRAI	DED	IRREGU	LAR	DEL I			NON . MAG	CALC V.G. ASSAY	•
SAMPLE I	Y/N		THICKNESS	Ţ	 F		P			TOTAL			REMARKS
-04	N	NO VISIBLE	GCLD										
70-01	N	NO VISIBLE	GOLD .										
-02	N	NO VISIBLE	GOLD								•		
-03	N	NO VISIBLE	GOLD								•		
-04	N	NO VISIBLE	GOLD										
-05	N	NO VISIBLE	GOLD										
-04	N	NO VISIBLE	GOLD										
-07	N	NO VISIBLE	GOLD						•		•		
-08	N	NO VISIBLE	GOLD										
-09	γ	75 X 10				i				1 1			EST. 5% PYRITE.
									TOTAL		34.3	255	
-10	N	NO VISIBLE	GOLD										
-11	N	NO VISIBLE	GOLD										
-12	N	100 X 1	50 25 C	1						1			
								•	TOTAL	1	39.1	74	
-13	N	NO VISIBLE	GOLD										
-14	N	NO VISIBLE	GOLD										
-15	N	NO VISIBLE	GOLD										
-16	N	NO VISIBLE	GOLD										
-17	Y	NO VISIBLE	GOLD										EST. 15% PYRITE.
71-01	N	NO VISIBLE	GOLD										
-02	N	NO VISIBLE	GOLD										
-03	N	NO VISIBLE	GOLD										
-04	N	NO VISIBLE	GOLD										

- NLD CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

SAMPLE #	DAMME	T.		ABBRAL	ED	IRREGU	ILAR	DELIC	ATE		non Mag	CALC V.G.	•
annes #	Y/N		THICKNESS	T	P	T	P	T	P	TOTAL		PPB	REMARKS
-05	N	NO VISIBLE 6	HOLD								•		
-06	N	NO VISIBLE G	OLD										
-07	N	NO VISIBLE 6	OLD									,	
-08	N	NO VISIBLE 6	OLD										
-07	N	125 X 175	29 C	1						1			
	•							T	OTAL	. 1	24.7	200	
-10	N	175 X 250	40 C	1				۰		1			
- 1								T	OTAL	. 1	28.9	470	
-11	N	NO VISIBLE 6	OLD										
-12	N	NO VISIBLE G	GLD										
72-01	N	50 X 100	15 C	1						1			
								T	OTAL	1	19.6	22	
-02	N	NO VISIBLE G	OLD										
-03	N	NO VISIBLE G	OLD										
-04	N	100 X 150	25 C	1						1			
								Ţ	OTAL	1	33.8	86	
-05	N	NO VISIBLE G	סרס										
-06	N	NO VISIBLE G	OLD									•	
-07	N	NO VISIBLE G	CLD										

CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

CAMDIE #	DAME!	n.		ABERAI	DED	IRREGL	ILAR	DELIC	ATE		NON MAG	CALE V.G.	
SAMPLE #	Y/N		THICKNESS	T	P	T	P	Ţ	P	TOTAL		PPB	REMARKS
CW-85 72-08	N	NO VISIBLE GO	תור										
-09	N	NO VISIBLE GO											
-10	N N	NO VISIBLE 6											
		NO VISIBLE GO											
-11 -12	N N	NO VISIBLE 60											
73-01	N N	NO VISIBLE 60											
73-01	N N	NO VISIBLE GO			•								
-02	N	NO VISIBLE 60											
-75-01	N	NO VISIBLE 6											
-02	N	100 X 150		i						1			
V2	"	100 % 120	25 0	•				1	πτω		11.5	2 52	
-03	Y	NO VISIBLE 60	11 D					•		•	••••		EST. 35% PYRITE
-04	У	NO VISIBLE GO											EST. 30% PYRITE
-05	Y	NO VISIBLE GO											EST. 30% PYRITE
-06	N	150 X 150		1						1			
								1	TOTAL		58.1	85	
76-01	N	NO VISIBLE 60	סבט										
-02	N	NO VISIBLE 60	JLD										
77-01	N	NO VISIBLE 60	OLD										
-02	N	75 X 125	20 C	1						1			
								1	DTAL	1	21.6	£9	
78-01	N	NO VISIBLE GO	DLD										
79-01	N	NO VISIBLE GO	OLD										
80-01	N	NO VISIBLE GO	OLD										

VISIBLE GOLD FROM SHAKING TABLE AND PARKING

-02 N NO VISIBLE GOLD

CANCE E	CALINE	n.		ABBRADE	D	IRREGUL	.AR	DELIC	ATE		NON MAG	CALC V.6.	•
SAMPLE #	Y/N	DIAMET	er Thickne	55 T	P	T	P	T	P	TOTAL		PPB	REMARKS
81-01	N	NO VISIB	LE GOLD										
-02	N	NO VISIB	LE GOLD										
-03	N	NO VISIB	LE GOLD										
-04	N	NO VISIB	LE GOLD										
-05	N	ND VISIB	LE GOLLO										
-06	N	200 X	300 46	1 2						1			
								1	OTAL	1	27.3	794	
-07	N	NO VISIB	LE GOLD										
-08	Y	NO VISIB	LE GOLD										EST. 40% PYRITE
82-01	N	50 X	<i>7</i> 5 13	C 1						1			
								1	OTAL	1	17.1	22	
83-01	N	50 X	50 10	E 1						1			
								1	OTAL	1	10.6	18	
85-01	Y	25 X 50 X	50 B 50 10	E E 1	2					2			EST. 1% PYRITE
			100 20	ľ 1						1			
		120 X	200 34	LI				1	TOTAL		22.7	423	
86-01	v	5A V	75 13	r	2			'	GIRE		221		EST. 1% PYRITE
96-A1	r	50 X	100 15	E 1	2					2 1			ESI. 14 FIRTIE
		75 X	100 18	Ε 1						1			
								1	OTAL	4	20.9	115	
87-01	N	ND VISIB	LE GOLD										
10-88	Y	75 X 100 X	100 18 125 22	1 J						1			EST. 0.5% PYRITE
		"		- •				7	'DTAL		20.9	150	
03	21	NO UTCIO	I C CO: B							_			

CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

125 X 175

29 C 1

CAMPY F. A.	DAME	•		ABBRA!	ŒĐ	IRREGL	JLAR	DEL	.ICATE		non Mag	CALC V.G	
SAMPLE #	Y/N	DIAMETER	THICKNESS	Ţ	P	T	P	1	Р	TOTAL		PPB	REMARKS
-03	Y	50 X 10 75 X 17 175 X 37	75 25 C	1 1 1						1 1 1			EST. 5% PYRITE
									TOTAL	. 3	30.2	1060	
89- 01	N	ND VISIBLE	60FD										
-02	N	100 X 22	25 31 C			1				1			
					,				TOTAL	. 1	11.9	524	
-03	N	NO VISIBLE	GOLD						•				
	N	NO VISIBLE	60LD										
− 05	N	ND VISIBLE	60LD										
-06	N	NO VISIBLE	GOLD								••		
-07	N	100 X 17	75 27 C	1						1		1	
					•				TOTAL	. 1	12.3	311	
-08	N	NO VISIBLE	60LD										
-09	N	NO VISIBLE	GOLD .										
-10	N	NO VISIBLE	60LD										
-1 1	N	NO VISIBLE	60LD										
-12	N	ND VISIBLE	60LD										
-13	N	325 I 55	50 73 C	1						1			
									TOTAL	. 1	25.2	4143	
-14	N	NO VISIBLE	60LD										
-)-15	N	NO VISIBLE	60LD										
46A -26	N	NO VISIBLE	GOLD			•							
68- 01	N	NO VISIBLE	60LD										
			_				•						

AUTOSCHEREUSSAUS

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

92-01 N NO VISIBLE GOLD

N NO VISIBLE GOLD

-02

							NUM	EER	R OF	6RA	INS									
CAMPI E A	CANINE						ABB	RAI	ŒD	IRF	EGUI	.AR	DEL	ICATE		non Mag	CALC V. ASSAY			
SAMPLE #	Y/N		DIAMETE	ER.	THI	CKNESS		T	P		T	P	T	P	TOTAL		PPB	REMA	irks	
														τητω		18.	4 26	Ē.		
-03	N	NΠ	VISIB	F	en n									IUIA		101	· ·			
-04	 N		VISIB																	
-05	N		VISIB								,									
-06	N	,	100 X	15	0	25 C					Í				1					
														TOTAL	_ 1	29.	1 9	9		
90-01	N	NO	VISIB	E	60LD															
_) -02	N	OM	VISIB	E.	60LD															
-03	N	NO	VISIB	E	GOLD			,												
-04	N	NO	VISIB	E	GOLD												•			
-05	N	NO	VISIB	£	60LD															
-06	N	NO	VISIB	£	60LD															
-07	N	NO	VISIB	Ε	60LD												•			
-08	N	NO	VISIB	£	60LD															
-09	N	NO	VISIB	Ε	6 0LD										•					
-10	N	NO	VISIB	E	GOLD															
-11	N	NO	VISIB	E	GOLD															
91-01	N	NO	VISIB	E	60LD															
-02	N	NO	VISIB	E	GOLD															
-03	N	NO	VISIB	E.	60LD															
-			VISIB																	
-05			VISIBL															EST.	25% F	PYRITE
		_																		

____CQLD CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

-02 N NO VISIBLE GOLD

SAMPLE #	PANNE	D		ABBRAI	DED	IRREGU	JLAR	DELI	CATE		NON Mag	CALC V.G	
	Y/N		ICKNESS	T	P	T	P	T	P	TOTAL		PPB	REMARKS
-03	N	NO VISIBLE GOLD											
93-01	N	NO VISIBLE GOLD											
-02	N	NO VISIBLE GOLD						•					
-03	N	NO VISIBLE GOLD		,									
-04	N	NO VISIBLE GOLD											
-05	N	NO VISIBLE GOLD			•							-	
-06	N	NO VISIBLE GOLD							•				
-07	N	NO VISIBLE GOLD											
-08	N	NO VISIBLE GOLD											
-09	N	NO VISIBLE GOLD			;								
-10	Y	25 X 5 0 75 X 75	8 C 15 C		1 1					i 1		*	EST. 30% PYRITE
		75 X 100	18 C		1					i			
						-		•	TOTAL	. 3	54.4	32	
-1 i	N	100 X 150	25 C	1						1			
								•	TOTAL	. 1	47.9	60	
-12	N	75 X 200	27 C	1						1			
								,	TOTAL	. 1	48.8	78	
94-01													
-02		NO VISIBLE GOLD											
-03		NO VISIBLE GOLD											
) -04		NO VISIBLE GOLD											
-05		NO VISIBLE GOLD											
95-01	N	NO VISIBLE GOLD											

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

SAMPLE #	DAME	n.		ABBR	ADED	IRREG	JLAR	DELTO	ATE	-	SEAN MAG	CALC V.G.	
SHIPLE #	Y/N	DIAMETER	THICKNES!	5 T	 Р	Ţ	P	Ţ	P	TOTAL		PPB	REMARKS
-03	N	NO VISIBLE	GOLD										
96-01	N	NO VISIBLE	GOLD										
-02	N	NO VISIBLE	60LD										
-03	N	NO VISIBLE	GOLD										
-04	N-	100 X 1	50 25 (. 1						1			
								T	OTAL		55.0	53	
-05	N	NO VISIBLE	GOLD										
-06	N	NO VISIBLE	GOLD										
97-01	N	NO VISIBLE	60LD										
-02	N	NO VISIBLE	GOLD								-		
-03	N	NO VISIBLE	60LD									,	
98- 01	N	NO VISIBLE	GOLD										
-02	N	100 X 1	50 25 (1						1			
								TI	OTAL	1	31.0	93	
-03	N	NO VISIBLE	60LD										
99-01	N	NO VISIBLE	GOLD										
101-01	N	NO VISIBLE	GOLD .										
-02	N	50 X 10	00 15 0	1						1			
								π	DTAL	1	25.3	25	
-03	N	100 X 15	50 25 0	1						1			
-)								π	OTAL	1	24.1	120	
-04	N	NO VISIBLE	60LD										
-05	N	250 X 50	00 65 C	1						1			
								TC	ITAL	1	26.4	2584	

₽₽D CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

044045 #	~~			ABBRAD	ΕD	IRREGU	LAR	DEL.	ICATE		NON	CALC V.G	
SAMPLE #	PANNE. Y/N	DIAMETER	THICKNESS	T	P	T	P	 T	Р	TOTAL	MAG GMS	assay PPB	REMARKS
-06	Y	200 X 32 425 X 45								1 1			EST. 5% PYRITE
									TOTAL	. 2	30.1	4297	
-07	N	NO VISIBLE	GOLD .										
-08	N	NO VISIBLE	60LD										
-09	N	NG VISIBLE	BOLD										
103-01	N	190 X 10	0 20 C	1						1			
									TOTAL	. 1	28.4	53	
-02	N	125 X 20	0 21 C	1						1			
				,					TOTAL	. 1	23.7	263	
-03	N	NO VISIBLE	GOLD										
-04	N	ND VISIBLE	GOLD										
-05	γ	ND VISIBLE	GOLD										EST. 35% PYRITE
105-01	N	350 X 37	5 ស្ច			1				1			
•									TOTAL	. 1	17.4	3567	
106-01	N	150 X 150 200 X 200		_						i 1			NO SULPHIDES
									TOTAL		16.5	790	
107-01	N	NO VISIBLE	SOLD										
-02	N	NO VISIBLE	50LD								•		•
108-01	N	ND VISIBLE	SOLD							•			
-)-01	N	NO VISIBLE (SOLD										
-02	N	NO VISIBLE (GOLD										
-03	N	NO VISIBLE (SOLD										
-04	N	NO VISIBLE	GOLLI)										

CLASSIFICATION

VISIBLE BOLD FROM SHAKING TABLE AND PANNING

NUMBER OF GRAINS

ABBRADED IRREGULAR DELICATE CALC V.G. SAMPLE # PANNED MAG ASSAY Y/N DIAMETER THICKNESS T T P TOTAL GMS PPB REMARKS

-05 N NO VISIBLE SOLD

N NO VISIBLE GOLD -06

N NO VISIBLE GOLD -07

N NO VISIBLE GOLD -08

-09

N NO VISIBLE GOLD

Y 100 X 125 22 C 1 EST. 40% PYRITE -10

> 78 TOTAL 1 27.3

VIBIBLE GOLD FROM SHAKING TABLE AND PANNING

-07 N NO VISIELE GOLD

SAMPLE #	PANKEI Y/N	D DIAMETER THIC	KNESS	AGBRAD ====== T	ED === P	IRREGULAR	DELICATE ************************************		MAG	CALC V.S. ASSAY PPB	REMARKS
CW-85 111-01	N	NG VISIBLE GOLD									
112-01	N	NO VISIBLE GOLD	•								
-02	Ν	NO VISIBLE GOLD									
-03	Y	550 X 550	95 C	1				; à			EST. 60% PYRITE
							TOTAL	<u>t</u>	14.5	13337	
113-01	24	200 X 250	42 C	1				1			
							TOTAL	1	13.6	1175	
-02	11	100 X 100	20 €	1				i			
1/							TOTAL	1	10.4	144	
-03	5.7 1.4	NG VISIBLE GOLD									
-ù4	N	NO VISIBLE GOLD									
-05	N	NO VISIBLE GOLD									
114-01	N	NO VISIBLE SOLD									
-02	N	NO VISIBLE GOLD									
~07	N	NO VISIBLE GOLD									
-04	1.5 1.5 1.5	NO VISIBLE SOLD									
115-01	N	NO VISIBLE GOLD									
-02	N	NO VISIBLE SOLD									
-03	N	550 X 200	50 C	1				1			
							TOTAL	. 1	15.1	1763	
, -04	N	MO VISIBLE BOLD									
-05	N	NO VISIBLE GOLD									
-05	N	MO VISIBLE GOLD									

ISIBLE GOLD FROM SHAKING TABLE AND PANNING

				ASBRA	DED	IRREGL	LAR	DELI	CATE		NON		LO V.G			
SAMPLE #	PANNEI Y/N) DIAMETER	THICKNESS	T	p	T	P	7	P P	TOTAL	MAG GMS		ASSAY PPB	REMARK	5	
116-01	N	NO VISIBLE	GOLD													
-02	N	NO VISIBLE	SOLD													
-03	\$5.3 258 2.5	NO VISIBLE	GCLD													
-04	M 3	NO VISIBLE	GOLD													
-05	N	NO VISIBLE	GOLD								4					
-0á	N	NO VISIBLE	GOLD													
-07	N	NG VISIBLE	60LD		•											
-08	N.	NO VISIBLE	GGLD													
-09	N	NG VISIBLE	GOLD													
-10	N	NO VISIBLE	50LD													
-11	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NO VISIBLE	GOLD													
-12	N	NG VISIBLE	GOLD													
-13	N	NO VISIBLE	GOLD													
-14	N	NO VISIBLE	GOLD													
-15	N	NO VISIBLE	GOLD													
-16	Y	25 X	75 10 C		1					1				EST. 1	O% FYRI	TE
									TOTAL		17.	0	11			
117-01	N.7 178	150 X Z	00 34 C	1						1						
									TOTAL		19.	.3	401			
-02	N	NO VISIBLE	GOLD													
	N	NO VISIBLE	GOLD													
-04	N	125 X 11	25 25 C	1						1						
									TOTAL			3	:45			
-:05	A.J	125 X 13	50 27 C			1				1						

................

VISIBLE GOLD FROM SHAKING TABLE AND FARMING

NUMBER OF SRAIMS

SAMFLE #	DAMA	En.		ABERA		IRREGU	DELI	CATE		ALM 196	CALC V.S.	,
		DIAMETER TI	HICKNESS	7			ī	Ρ.	IJTAL	345		REMARKS
							7	TOTAL		24.5	156	
-06	N	NC VISIBLE GOL	Đ									
-07	7	25 Å 2 5	5 0		1				4			EST.15% PYRITE
								TOTAL	- Pro-	62.5	0.4	
112-01	N	75 X 150	222 C	1					1			
								TOTAL	1	15.5	113	
-02	N	NO VISIBLE GOL	D									
-03	N	NO VISIBLE GOLI)									
-04	N	175 X 250	40 C	1					1			
							3	TOTAL	1	25.0	448	
-05	¥.	75 X 75 150 X 2 00			1				1			EST. 10% FYRITE
							1	GTAL	 2	42.1	199	
119-01	γ	NO VISIBLE GOLI)									EST. 10% PYRITE
120-01	N	NO VISIBLE GOLI)									
121-01	A	NO VISIBLE GOLI)									
122-01	N	100 X 300	38 C			1			1			
							T	OTAL	4.0	25.9	440	
123-01	1	NO AISIBTE GOTI)									
124-01	N	NO VISIBLE GOLD										
125-01	N	NO VIBIELE GOLD)									
_2 6- 01	N	NO VISIBLE GOLD										
127-01	N	WO VISIBLE GOLD)									
-02	14	NO VISIBLE GOLD										

SIBLE BOLD FROM SHAKING TABLE AND PANNING

				ABBRAI	JED	IRREGUL		DELI	CATE		NON	CALC V.G	
SAMPLE #	PANNE: Y/N		THICKNESS	====	=== P	T	P	====	P	TOTAL	71AG 614S	ABSAY PAS	AEMARKS
-03	<u>a.</u> 1	NO VISIBLE	SOLD										
-04	Υ	NO VISIBLE (SELD										EST. 30% PYRITE
-05	N	NO VISIBLE	BOLD										
-06	N	NO VISIBLE											
123-01	24	W VISIBLE	GELD										
129-01	N	75 X 15	22 0	1						1			
									TOTAL		21.7	75	
-02	14	NO VISIBLE	GCLD										
-03	N	NO VISIBLE (EGLI)										
130-01	N	ND VISIBLE	SOLD										
-02	ħ	NO VISIBLE	GOLD										
-03	24	AD VISIBLE	30LD										
- ◊4	N	NO VISIBLE (GOLD										
131-01	N	NO VISIBLE	GCLD										
132-01	謹	150 X 200	34 5	1				•		1			
									TOTAL	<u> </u>	27.6	280	
-02	N	NO VIBIBLE				1							
133-01	N	NC VISIBLE	5CLD										
-02	N	100 X 125	Z2 £	1						i			
								•	TOTAL	1	23.5	74	
134-01	N	NO VISIBLE	50LD										
-02) , i	NG VISIBLE 6	RLD										
-03	N	NO VISIBLE 1	HOLE D										
-01). 	NO VIBIBLE S	BOLD										

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

-05 N NO VISIBLE GOLD	ASSAY PP8 REMARKS
LAZ M NA UTOTOLO OFITA	
-06 N NO VISIBLE GOLD	
135-01 N 50 X 50 10 C 1	
TOTAL 1 23.8	8
-02 N NO VISIBLE GOLD	
-03 N NO VISIBLE COLD	
135-01 N 50 X 75 13 C 1	
TOTAL 1 31.7	12
7-02 N NO VISIBLE GOLD	
138-01 N NO VISIBLE GOLD	
-02 Y 75 X 100 18 C 1 1.	EST. 5% PYRITE
TOTAL 2 27.5	114
-03 N 100 X 100 20 C 1 1	
TOTAL 1 30.4	
-04 N 100 X 100 20 C 1	
TOTAL 1 25.0	 58
	EST. 20% PYRITE
TOTAL 1 13.3	
137-01 N ND VISIBLE SOLD	
-02 N NO VISIBLE GOLD	
-03 N ND VISIBLE GOLD	
-04 N 150 X 250 38 C 1 1	
TUTAL 1 45.0	248
-03 N ND VISIBLE BOLD _	

PRESENCE FROM SHAKING TABLE AND PANNING

				NUMBER	ur.	BUHTHO							
SAMPLE #		O DIAMETER THIC		ABBRADE ======= T	=	IRREGULA T	=	DELICATE ************************************	=		MAG	CALC V.G. ASSAY PPB	1.1
-06	Ň	ND VISIBLE GOLD											3.
-07	Y	30 X 50 50 X 100	10 C 15 C	4 5						1			EST.1% PYRITE
								TOTA	AL	2	33.2	25	
-08	10.00 10.00 10.00	NO VISIBLE GGLD											
-07	A.j.	NO VISIBLE GOLD											
-10	10 P	NO VISIBLE GOLD											
-11	N	NO VISIBLE GOLD						4					
-12	Ň	NO VISIBLE GOLD											
-13	Miles 19	WO VISIBLE GOLD											
140-01	N	NO VISIBLE GOLD											
-02	1	NO MISIBLE GOLD											
-03	hi i i	NO VISIBLE GOLD											
-(4	H	100 X 150	25 C	1						1			
								TOTA	11	1	34.3	83	
141-01	12	NO VISIBLE GOLD											
-02	11	50 X 100	15 C	1						1			
								TOTA	4 <u>L</u>	i	21.9	29	
-03	N	NG VISIBLE GOLD											
-04	N	NO VISIBLE GOLD											
- ≎5	M	NO VISIBLE GOLD											
~\/d	7	NO VISIBLE BOLD											
-07	N	NO VISIBLE GOLD											
-08	N	NO VISIBLE GOLD											

JEERSON SHAKING TABLE AND PANNING .

SAMPLE #	FAMMED			ARBRAD	ED ==	IRREGU	LAR	DELICAT	Ē		NON MAG	CALC V.G. ABSAY	
	YZN	DIAMETER	THICKNESS	Ī	F	Ţ	ř	T	P 1	TOTAL		pre	REMARKE
-09	M	300 X 1050	96 C	1						1			
								TOT	AL	1	30.4	10317	
-10	N N	O AIBIBTE BO	ILD										
-11	Y N	O VISIELE 60	13										EST. 400 PRIZE
142-01	A.T.	100 X 100	20 C	1						4			
								TOT	AL	1	27.6	èà	
142-02	N N	O VISIBLE GO	LD										

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

N NO VISIBLE GOLD

SAMPLE #	DANNE	n		ABBRA	DED	IRREG	LAR	DELI	CATE		NDN NAG	CALC V. 6	•
SHIFTE #	Y/N		THICKNESS	T	P	Ţ	P	T	P	TUTAL		PP8	REMARKS
€W-85 142-03	N	NO VISIBLE GO	LD									. ,	
-04	N	NO VISIBLE 60	LD							-			
-05	N	150 X 150	29 C	1						1			
									TOTAL	1	72.±	218	
-06	N	NO VISIBLE 60	LD										
- 07	N	NO VISIBLE GO	LD										
-08	N	100 X 100	20 C	1					•	1			
				•				•	TOTAL	1	31.8	47	
-09	N	100 X 150	25 C	1						1			•
								•	TOTAL	1	19.6	148	
-10	Υ .	75 X 150 100 X 175 250 X 250	22 C 27 C 46 C							1 1 1	٠		EST. 5% PYRITE
								•	TOTAL		21.3	1297	
-11	N	NO VISIBLE GO	ם										
-12	N	NO VISIBLE 60	_D										
-13	Y	NO VISIBLE GO	_D										EST. 10% PYRITE
-14	N	NO VISIBLE GO	_D										
-15	N	NO VISIBLE GOL	_D										
-16	N	NO VISIBLE GOL	_D_										
143-01	Y	25 X 25 50 X 50	5 C 10 C	i	1					1			EST. 1% PYRITE
		100 X 125 125 X 125	22 C 25 C	1 1						1			
		*20 * *20	20 0	•				1	rotal		24.4	214	

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

	P. A. IA II T	,		ABBRA	DED	IRREG	ULAR	DEL	ICATE		NON	CALC V.6.	
SAMPLE #	Y/N	DIAMETER	THICKNESS	Ţ	P	ī	P	1	Р	TOTAL	MAG 6MS	assay PPB	REMARKS
-03	N	50 X 50) 10 C	. 1						1			
		·.							TOTAL	. <u> </u>	22.8	8	
-04	N	75 X 150	22 0	1						i			
									TOTAL	i	28.7	74	
-05	N	NO VISIBLE 6	SOLD										
-06	¥	150 X 150	29 €			1		•		1			EST 10% PYRITE
									TOTAL	1	25.1	197	
-07	N	NO VISIBLE (OLD .										
-08	N	NO VISIBLE 6	OLD .										
-09	Y	ND VISIBLE 6	(OLD)										EST. 15% PYRITE
-10	Y	NO VISIBLE 6	OLD .										EST. 20% PYRITE
-11	Y	NO VISIBLE 6	SOLD										EST. 25% PYRITE
144-01	N	NO VISIBLE 6											
145-01	N	NO VISIBLE 6											
-02	N	NO VISIBLE (
-03		NO VISIBLE 6											EST. 10% PYRITE
146-01	N 	NO VISIBLE 6											
147-01 148-01	N N	NO VISIBLE 6											
-02		NO VISIBLE 6											
-03		NO VISIBLE E											EST. 10% PYRITE
150-01	N	NO VISIBLE											
151-01		NO VISIBLE 6											
152-01	N	NO VISIBLE 6											

_ FOLD CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

NUMBER OF GRAINS

-02 N NO VISIBLE GOLD

153-01 N NO VISIBLE GOLD

153-02 N NO VISIBLE GOLD

VISIBLE GGLD FROM SHAKING TABLE AND FANNING

SAMPLE #	PANN	rn		ABBRA		IRREGU	DELICATE			CALC V.G.	•
		DIAMETER	THICKNESS		P		 T P	TOTAL	MAG GMS	ASSAY PPB	REMARKS
CW-85 154-01	N	NO VISIBLE 60)LD								
154a-02	N	NO VISIBLE 60	OLD								
156-01	N	NO VISIBLE GO	LŪ								
02	N	NO VISIBLE 60	LD								
03	N	NG VISIBLE GO	LD								
04	N	NO VISIBLE 60	LD								
05	N	NO VISIBLE GO	LD				٠				
- 7- 01	N	75 X 150	22 C	1				1			
							TOTAL		26.1	81	
158-01	γ	50 X 100 160 X 100	15 C 20 C	1		ē		1		£	EST 15% PYRITE
						ř	TOTAL	2	33.2	64	
157-01	N	NO VISIBLE GOL	.D								
160-01	, N	NO VISIBLE GOL	D								
161-01	N	100 X 175	27 C	1				1			
							TOTAL	1	38.6	• 77	

"ISIBLE GOLD FROM SHAKING TABLE AND PANNING

34451 F	. D. A. B. (5)	.				ABBR	ADEL)	IRRE	GUL	AR	DEI	LICA	ΤE		NON	CALC V			
SAMPLE	F PANNEI Y/N		AMETER	THICKN	ESS	==== T		P	==== T		P	==:	== [P	TOTAL	MAG GMS	ASSA FPB		REMARKS	
161-02	N	NO V	/ISIBLE	GOLD																
-03	N	NO V	/ISIBLE	GOLD																
-04	N	NO V	/ISIBLE	60LD																
-05	N	NO V	/ISIBLE	60LD																
-06	N	NO V	/ISIBLE	GOLD																
-07	N	NO V	ISIBLE	GOLD																
-08	N	NO V	ISIBLE	GOLD																
-09	N	20	00 X 35	50 50	3 0		,		1						1					
													TO	TAL	1	33.1	E	60		
1 0	N	NO V	/ISIBLE	60LD										-						
-11	N	NO V	VISIBLE	GOLD																
-12	N	NO V	/ISIBLE	GOLD																
-13	N	NO V	ISIBLE	GOLD																
-14	N	NO V	/ISIBLE	60LD																
-15	N	NO V	/ISIBLE	GOLD																
162-01	N	NO V	/ISIBLE	60LD															•	
-02	N	NO V	/ISIBLE	GOLD																
163-01	N	NO V	VISIBLE	GOLD																
-02	N		/ISIBLE																	
-03	N		/ISIBLE																	
-04	N		'ISIBLE																	
-05	N		ISIBLE																	
-06	N		ISIBLE																	
-07	N	NO V	ISIBLE	60LD																

_urgible GOLD FROM SHAKING TABLE AND PANNING

CANEL E	D. A. A. I.			ABBRAI	DED	IRREGU	LAR	DELI	CATE		NON	CALC V.G		
SAMPLE #	Y/N		ICKNESS	T	== = P	T	P	T	P	TOTAL	HAG BYS	assay PPB	REMARKS	
164-01	N	NO VISIBLE GOLD												
-02	N	NO VISIBLE GOLD												
-03	N	NO VISIBLE GOLD												
-04	N	NO VISIBLE GOLD												
165-01	N	100 X 175	27 E	1						1				
								1	rotal	. 1	34.0	113		
-02	N	NO VISIBLE GOLD			í									
166-01	N	NO VISIBLE GOLD												
-02	N	NO VISIBLE GOLD												
7 -03	N	NO VISIBLE GOLD												,
-04	N	NO VISIBLE GOLD												
-05	N	NO VISIBLE GOLD												
-06	N	NO VISIBLE GOLD												
-07	N	NO VISIELE GOLD												
-08	N	NO VISIBLE GOLD												
-09	N	75 X 7 5	15 C	1						1				
								1	TOTAL	. 1	24.3			
-10	Υ	50 X 50 75 X 100								1			EST: 03	% PYRITE
								7	TOTAL	2	18.9	, 64		
-11	N	NO VISIBLE GOLD												
167-01	Ŋ	50 X 50	10 C	1						1				
_							•	7	TOTAL	. 1	13.0	15		
168-01	N	NO VISIBLE GOLD												
-02	N	NO VISIBLE GOLD												

__UISIBLE BOLD FROM SHAKING TABLE AND PANNING

24M8) # X	5.01B#T	.		ABBRA!	DED	IRREGU	JLAR	DEL	ICATE		NON	CALC V.G.	,
SAMPLE #	Y/N		CKNESS	T	-== P	T	P	T	P	TOTAL	MAG GMS	ASSAY PPB	REMARKS
-03	N	100 X 150	25 C	1						1			
									TOTAL		39.7	73	
-04	N	NO VISIBLE GOLD	-								•		
-0 5	N	NO VISIBLE GOLD											
-06	N	NO VISIBLE BOLD											
-07	N	NO VISIBLE GOLD											
-08	N	NO VISIBLE GOLD			•								
-09	Y	NO VISIBLE GOLD											EST: 60% FYRITE
-10	Ą	NO VISIBLE GOLD											EST: 25% PYRITE
-11	Y	NO VISIBLE GOLD											EST: 35% PYRITE
169-01	N	NO VISIBLE BOLD											
-02	N	NO VISIBLE GOLD											
-03	N	NO VISIBLE GOLD											
-()4	N	NO VISIBLE GOLD											
-05	N	NO VISIBLE GOLD											
-04	N	NO VISIBLE GOLD											
-07	N	NC VISIBLE GOLD											
-08	N	NO VISIBLE GOLD											
~09	N	NO VISIBLE GOLD											
170-01	Y	150 X 175	31 C	1						1			EST: 20% PYRITE
									TOTAL	. 1	61.0		
-02	N	50 X 50	10 C		1					1			EST: 40% PYRITE
									TOTAL	. 1	47.5	. 4	
-03	N	NO VISIBLE GOLD											

__UISIBLE GOLD FROM SHAKING TABLE AND PANNING

SAMPLE #	PANNEN			ABBRAD	ED	IRREGU	LAR	DELIC	ATE		NON	CALC V.G	•
W- 4 4 4 4 4 5	Y/N	DIAMETER	THICKNESS	Ţ	P	T	P	T	=== P	TOTAL	MAG GMS	PPB PPB	REMARKS
-04	Y	225 X 350	52 C				1			1			EST: 30% PYRITE
								TO	TAL	. 1	52.9	611	
171-01	Y	50 X 75	13 C		1					1			EST: 50% PYRITE
								TC	TAL	1	72.8	5	
-02	Y	50 X 75 50 X 150 100 X 175	13 C 20 C 27 C	1	1					1 1 1			EST: 50% PYRITE
								TO	TAL	3	55.5	34	
-03	Y NO) VISIBLE GO	LD					e					EST: 40% PYRITE

PAGE 1

JISISLE GOLD FROM SHAKING TABLE AND PANNIAG

SAMPLE #		O DIAMETER TH	I CKNESS	ABERADED	IRREGULAR	=======	M	AG	JALC V.J. ASSAY FP3		k3
CW-83		NO VISIBLE GOLD									
- ≎5	N	NO VISIBLE SOLD									
172-01	Y		13 C 15 C		1		†			EST:	20% PYRITE
						TOTAL	2	23.1	44		
-02	1	NO VISIBLE GOLD									
-03	¥	50 X 50 75 X 125 100 X 200 125 X 200	10 C 20 C 29 C 31 C	<u> </u>			1			E9T:	25% PYRITE
0						TOTAL	4	45.0	284		
173-01	Y	25 X 75 75 X 150	10 C 22 C		1 1		1				30% PYRITE 0.1% CHALSGFYRITE
						TOTAL	7	43.0	54.		
174-01	Y	150 X 200	34 C	1			1				
						TOTAL	1	24.9	311		
175-01	N	NO VISIBLE GOLD									
176-01	N	100 X 100	20 0	di e			1				
						TOTAL	1	30.7	47		
-02	Ŋ	NO VISIBLE GGLD									
- 00	Y	NO VISIBLE GOLD								EET1	10% PYRITE
-04	計	NO VISIBLE GOLD									
-05	Ν	NO VISIBLE GOLD									
-06	N	NO VISIBLE GOLD									
-07	N	NO VISIBLE GOLD									
-08	1	NO VISIBLE GOLD									

LISIBLE GOLD FROM SHAKING TABLE AND PAYMING

-04 N NO VISIBLE GOLD

				AEBRADE	Ð	IRREGULA	F.	DELICATE		NON	CALO V.B	·
SAMPLE #	PANNEI Y/N	D DIAMETER TH	HICKNESS	7	== P	T :	P	7 P	TOTAL	MAG GMS	ASS 47 PPS	REMARKS
-09	N	NO VISIBLE GOLI)									
-10	N	NO VISIBLE SOLE)									
-11	N	NO VISIBLE SOLI)									
-12	ħį	NG VISIBLE GOLD)									
-13	10 mg	NG VISIBLE GOLI)									
-[4	25 S S S S S S S S S S S S S S S S S S S	NO VISIBLE GOLD)									
-15	. A	75 % 150	22 C	į					1			
•								TOTA	_ 1	22.6	74	
)-16	N	NO VISIBLE GOLD	Ì									
-17	N	NO VISIBLE GGLD	ŀ									
-19	Y	150 X 300	42 C	1					1			
								TOTA	_ 1	25.4	ė3l	
-19	1	NO VISIBLE GOLD										
-20	N	NO VISIBLE GOLD										
177-01	N	NO VISIBLE GOLD)			•						
-02	N	NO VISIBLE GOLD										
-33	and the state of t	NO VISIBLE GOLD										
$-i\hat{j}\frac{d}{d}$	N	NO VISIBLE GOLD										
-05	Y	25 X 50	6 C		1				İ			Ent IN THE
								TOTAL		17.5	5	
	N	NO VISIBLE GOLD										
-02		NO VISIBLE GOLD										
=√3	N	MC VIBIBLE GOLD										

GGLU CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

				ABBRADE	D	IRREGULA	¥F.	PELICATE			ALC 7.G.	•
SAMPLE #	Y/N) DIAMETER THIC	KNESS	T	P	7	7	T P	TOTAL	HAS BHS	ASSAY PPS	REMARKS
-05	N	NO VISIBLE GOLD										
-06	N	NO VISIBLE GOLD										
-07	Y	NO VISIBLE GOLD										EST: 40% PYRITE
180-03	N	NO VISIBLE GOLD										
-04	Ν	NO VISIBLE GOLD										
-15	Y	225 X 225	42 E	1					1			
								TOTA	L 1	18.1	285	
-06	N	NO VISIBLE GOLD										
1-01		NO VISIBLE GOLD		-								
-02		NO VISIBLE GOLD										
-93	· Y	300 X 300	54 C	1								
								TOTA	L 1	16-1	2254	9
- :j4	N	NO VISIBLE GOLD										
- ं5	35	NO VISIBLE GOLD										
-06	Y	NO VISIBLE GOLD										EST: 20% FYRITE
-07	N	NO VISIBLE GOLD										
182-01		NO VISIBLE GOLD										
183 <i>−</i> 01		NO VISIBLE GOLD										
-02		NO VISIBLE GOLD										
-03 :54 :4		NO VISIBLE GOLD										
194-01		NO VISIBLE GOLD										
-03		NO VISIBLE GOLD										
-04 -04		NO AISIBLE GOLD										
. V7	17	MA KANADAE BEME										

SQLD CLASSIFICATION

/ISIBLE GOLD FROM SHAKING TABLE AND PANNING

-02 N NO VIBIBLE GOLD

SAMPLE #	DANKET	5			ABBRA		IRREGU				MON MAG	CALC V.G. ASSAY		
SHATE #	Y/N		THIC	NE38				7					REMARKS	
-05	4F	A VISTRE	BOLD											
187-01	N	NO VISIBLE	GOLD											
170-01	N	#D VISIBLE	GOLD	٠										
- 02	H	NO VISIBLE	GOLD											
-03	N	A MEIRE	60LD											
191-01	N	STRIETA ON	SGLD											
-02	Ħ	NO VISIBLE	GOLD			-1								
-03	¥	100 X ZE		34 C 50 C						1			EST: 0.25% PYRIT	Ξ
		1	~		•			7	OTAL		17.4	2051		
172-01	¥	NO VISIBLE	GOLD											
-02	All to	NO VESIELE	GOLD											
-03	N	AL VEHILE	50LD											
-54	N	WO VISIBLE	GCLD											
-05	N	NO VISIBLE	SCLD											
-06	Ħ	NO VIEIRE	GOLD											
-07	à	150 X 25	Ð	38 C	1					1			EST: 10% PYRITE	
								2	JTAL	i	6.7	1731		
173-01	4.4 7.2 7.3	E VEIRE	GOLD											
-02	M.	IS VIETELE	GOLD											
-03	N	NO STETELE	GCLD											
1-01	# f : 14 : 14	MUSIKE	SOLD											
-02	N	NO VINIBLE	GOLD											
175-01	# # # # # # # # # # # # # # # # # # #	NO VISIBLE	ECLD											

SQLD_CLASSIFICATION

VISIBLE SOLD FROM SHAKING TABLE AND PANNING

NUMBER OF SAAINS

SAMPLE #	CANNIC	r.		ASERADE	D	IRREGULAR	DEL	ETAJI		NGN MAG		LJ V.G. ABBAY	
enate v		DIAMETER THICKNE	55	ī	F	T F	T		TOTAL				REMARKS
-03	A.	NO VISIBLE GOLD											
-04	N	NO VISIBLE GOLD											
-05	Ž.	NO VISIBLE GOLD											
-04	À	NO VISIBLE GOLD											
-07	Y	350 X 400 55	C	:					1		-		
								TOTAL		20.3		3328	
176-01	N	NO VISIBLE BOLD						*					
197-01	Ņ	NO VISIBLE SOLD											
-02	Y	300 X 350 58	C			4.5			1				
								TOTAL	1	19.0		2405	
-03	2.1 2.1	NO VISIBLE GOLD											
)4	d and	NO VISIBLE GOLD											
-05	M	NO VISIBLE GOLD											
-06	N	NO VISIBLE GOLD											
-ú7	H	NO VISIBLE GOLD											
- √)3	N	NO VISIBLE GOLD											
-09	N	NO VISIBLE GOLD											
-10	N	MO VISIBLE GOLD											
- <u>† †</u>	7	NO VISIBLE GOLD											EST: 50% FYRITE
178-01	N	NO VISIBLE GOLD											
	N	NO VISIBLE GOLD											
-03	M.	NO VISIBLE SOLD											
- 04	·N	NO VISIBLE GOLD											
-ŷā	N	NO VISIBLE SOLD											

VISIBLE SOLD FROM SHAKING TABLE AND PANNING

NUMBER OF STAINS

4.5	WFLE #	DANNET	9 8		ABBR	ADED	IRREB	ULAR		CATE		NON MAG	CALC 4 ASS			
ar	HELL T	ANM Ammer	DIAMETER	THICKNESS	Ī	· P		۶	1	ρ					KEMARKS	
	-06	N	NO VISIBLE	SOLD												
	- 07	N	NO VISIBLE	GOLD												
	-08	N	NO VISIBLE	GOLD												
	-09	N	NO VISIBLE	58LD												
	-10	N	NO VISIBLE	GCLD												
	-1 ;	N	NO VISIBLE	GCLD												
	-12	N	NO VISIBLE	60LD						٠						
	-13	N	NO VISIBLE	GOLD												
	-14	N	NO VISIBLE	GOLD												
	199-01	N	NO VISIBLE	GOLD												
	-02	51	NO VISIBLE	GCLD												
	- 03	N	NO VISIBLE	GOLD												
	- ♦4	7	300 X 4	00 51 8		****					1					
										TOTA	<u> </u>	16.	.7 3	370		
	-)5	N	NO VISIBLE	GGLD												
	- 0á	4 m	NO VISIBLE	GOLD												
	-07	N	NO VISIBLE	30LD -												
	- ∴)2	N	NO VISIBLE	50LD												

CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

SAMPLE #	PANA	IED		ABERA	DED ===	IRREGU	LAR	DELICATE		NON MAG	CALC V.8	ì .
		! DIAMETER	THICKNESS	T	P	T	P		TOTAL		aseay PPB	REMARKS
CW-85 199-09	N	NO VISIBLE GO	OLD									
-10	N	NO VISIBLE 60	L D									
-11	N	100 X 200	29 C	i					1			
				-				TOTAL		29.2	169	
-12	γ	75 X 125	20 C		1				1			EST: 30% FYELTE
								TOTAL		29.3	 50	
-13	Y	25 X 50	8 C		1			. •	1			EST: 45% PYREE
- \		50 X 50 50 X 75	10 C 13 C		1 1				1			
,								TOTAL		40.1	16	
: - <u>1</u> 4	N	NO VISIBLE GO	LD	***								
-15	γ	25 X 50	8 C		1				1			EST: 40% FYRITE
		100 X 150 125 X 125	25 C 25 C		1				1 1			manus 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
								TATAI	- 3	39.1	150	
-16	¥	NO VISIBLE GOL	.D	•					v	07.4.2		EST: 30% PYRITE
-17	Y	NO VISIBLE GOL	.D									EST: 30% FYRITE
-18	N	NO VISIBLE GOL	D									EDIE DOEFITALE
-17	N	NO VISIBLE GOL	D									
-20	N	NO VISIBLE GOL	D									
200-01	N	75 X 125	20 C	1					1			
				_				TOTAL		1/1 0	101	
-)-02	N	50 X 100	15 C	1				TOTAL	1		101	
								TOTAL	1		41	
- 03	N	NO VISIBLE GOLI)					IN THE	ī	1-:D	#1	
		50 X 100	15 C					1	1			ST. 48 SUSSEE
								•	1		Ė	ST: IN PYRITE

CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

SAMPLE #	PAN	YED		ABBRAI	ŒD ===	IRREGU	LAR	DELICATE		NON Mag	CALC V.G ASSAY	
	Y /1	N DIAMETER TH	ICKNESS	T	P	Ţ	P	T F	TOTAL		PPB	REMARKS
								TOTAL		28.4	23	·
-05	N	50 X 75	13 C	1					1			
								TOTAL	. 1	20.4	18	
-06	N	NO VISIBLE GOLD										
- 07	Ą	50 X 50 50 X 75 75 X 75	10 C 13 C 15 C	1	- 1				1 1 1			EST: 1% PYRITE
								TÖTAL		17.8	68	
-08	N	NO VISIBLE GOLD										
-09	N	MÓ AIBIBTE BOTD						•				-
-10	N	NO VISIBLE GOLD		•				•				
201-01	N	50 % 125	18 C	1				·	1		·	
								TOTAL	1	20.8	49	
-02	N	100 X 100	20 C	1					1	·		
-03	N	NO VISIBLE GOLD						TUTAL	1	25.6	59	
-04	Y	100 X 100 125 X 100	20 C 22 C	i • i					1 1		E	ST: 5% PYRITE
								TOTAL	2	19.9	182	
-05	N	50 X 50	10 C	1					1			
								TOTAL	1	24.2	8	
-) -06	N	NO VISIBLE GOLD										
-97	Y	50 X 100	15 C					1	i		E	ET: 5% PYRITE
								TOTAL	1	25. 7	25	
-08	N	NO VISIBLE GOLD								•		

VISIBLE GOLD FROM SHAKING TABLE AND FANNING

TAMELE !				aberal	ŒD	IFFE	GULAR	DE	_ICATE		NON	CALC V.G.	
SAMPLE #	Y/N		CKNESS	Ţ	P	1	r P	===	F P	TOTAL	MAG GMS	ASSAY PPB	REMARKS
-09	N	50 X 125	18 C	1						1			
									TOTAL		25.5	. 40	
-10	N	NO AISIBIE BOFD											
-i1	N	ND VISIBLE BOLD											
-12	N	50 X 100	15 C	1						1			
									TOTAL		17.8		
-13	N	MO VIETBLE BOLD											
-14	N	NO VISIBLE BOLD							·				
-) -15	N	NO VISIBLE GOLD											
-16	N	NO VISIBLE BOLD											
-17	Ÿ	50 f 75 50 f 100	13 C 15 C		1		Ì			i 1			EST: 10% PYRITE
		20 f 100	13 5			1			TOTAL		43.3	23	
202-01	ħ.i	200 X 200	70 C				ı		IUIM			20	
202-01	M	200 k 200	20 1				•		TOTAL		26.8	425	
-02	ħ)	NO VISIBLE GOLD							IUIH	_ 1	40.0	420	
-02 -03	N	_											
-04	N N												
-0 5	-	NO VISIBLE BOLD											
-0 3		NO VISIBLE BOLD											
-07		NO VIEWE BOLD											EST: 50% PYRITE
-7-01		NO VISIBLE BOLD											TO IT DOWN THE
204-01	N												
205-01		200) 400	54 D	i						i			
	"	211	. . •	•					TOTAL			1513	
										_			

CLASSIFICATION

VIEIBLE GOLD FROM SHAKING TABLE AND PANNING

SAYFLE #	PANN	FT)			DED	OULAR	DELIC			NCN MAG	CALC V.S.	•
		DIAMETER	THICKNESS						TOTAL	SMS	ASSAY PFB	REMARKS
-02	N	NO VISIBLE 60	LD									
206-01	N	NO VISIBLE GO	LD									
-02	N	100 X 150		1					1			
				_			T	OTAL		10.7	270	
-03	N	NO VISIBLE GO	_0					e ine	•	1017	219	
-04		NO VISIBLE GO										
- ∂5		100 X 100		1					1			
_			200				Tí	OTAL		19.0	79	
) 207-01	N	NO VISIBLE GOL	מ						1	17.0	17	
-02	N	NO VISIBLE GOL		-								
-03	N	NO VISIBLE GOL										
-04	N	NO VISIBLE GOL										
-0 5	N	NO VISIBLE GOL										
-06	N	NO VISIBLE GOL										
-07	N	NO VISIBLE GOL										
-0 8	N	NO VISIBLE GOL										
		75 X 150		1							_	
	·			•			TO	TAI				ST: 10% FYRITE
265-∂1	N	NO VISIBLE GOLI	n				((IIHL,	1	14.1	151	
-02		NO VISIBLE GOLI										
		NO VISIBLE GOLI										
- id		NO VISIBLE GOLI										
- <i>0</i> 5		NO VISIBLE GOLI										
- 34		NO VISIBLE GOLD										

COLD CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

NUMBER OF GRAINS

SAMPLE #	PANNS	Ī	ABBRADED	IRF	FEGULA	R .	DELICATE		NON	CALC V.G	
	Y/N	DIAMETER: THICK	NESS T	Ρ	T	- P	T P	TOTAL	MAG SMS	ASSAY PPB	REMARKS
-07	N	NO VISIBLE GOLD									
209-01	N	NO VISIBLE GOLD									
-02	N	NO VISIBLE GOLD									
-03	N	NO VISIBLE GOLD		_							
-04	N	NO VISIBLE GOLD	-								
-ú5	N	NO VISIBLE GOLD									

```
TLD CLASSIFICATION
```

-04 N NO VISIBLE GOLD

VISIBLE SOLD FROM SHAKING TABLE AND PANNING

NUMBER OF GRAINS

SAMFLE #	⊃AN	4ED			ABERAL			DELICA	•	NON Mag		•
		DIAME	TER TH	HICKNESS				Ţ	 P TOTAL	MAG GMS	aesay PPB	REMARKS
CH-85 209-06	N	NO VISI	BLE GCLI)								
-07	N	NO VISI	BLE GOLI)		,						
-08	N	NO VISI	BLE GOLO									
-09	N	NO VISI	BLE GOLD		•							
210-01	N	NO VISI	BLE GOLD									
-02	N	NO VISI	BLE GOLD									
-03	N	NC VISIE	BLE GOLD					٠				
- , -04	N	NO VISIE	GLE GOLD									
-05	N	50 X	100	15 C	ļ		•		. 1			
								TOTA	AL 1	29.5	72	
-:)4	N	NO VISIB	LE GOLD								,	
-07	N	MO AIBIB	LE GOLD									
211-01	N	NO VISIB	LE GOLD									
212-)1	N	MO VISIB	LE GOLD									
213-01	N	NO VISIB	LE 80LD									
-02	N	NG VISIBU	LE GOLD									
)3	N	NO VISIB	LE GOLD									
-04	N	NO VISIBL	E GOLD									
-05	N	NO VISIBL	E GOLD									
-04	N	NO VISIBL	.E GOLD									
	N	NO VISIBL	E GOLD									
-02	N	NC VISIEL	E GOLD									
-03	N	NO VISIBL	E GOLD									

- JLD CLASSIFICATION

VIEIBLE BOLD FROM SHAKING TABLE AND PANNING

NUMBER OF GRAINS

SAMPLE #	PANI	ien				ABBRA!	DED	IRRES	JULAR	DELICA	ΉΈ		NCN	CALS V.(3.
U: 11 = #	Y/N		DIAME	TER '	THICKNESS	T	-== P	Ţ	P	T	P	TOTAL	MAG GMS	ASEAY FFB	REMARKS
- 05	y	NO	VISIE	RLE GCL	ם.										EST. 10% PYRITE
215-01	N	סא	VISIE	LE GOL	.D										Edia IVA FIRIIE
-02	M	NO	VISIE	LE GOL	.D										
-03	N	NO	VISIB	LE GOL	D										
-04	Y	NO	VISIR	LE GGL	Ð										EST. 5% PYRITE
216-01	N	NO	VISIB	LE GOL	D										
-02	N	NC	VISIB	LE GOL	D					•					
_ 717-01	N	NO	VISIB	LE GOL	D										
-02	N	NO	VISIB	LE GOL	0										
-03	N	NO	VISIB!	E GOLI	0										
-04	N	NO.	VISIBL	E GOLI)										
218-01	N	×0	VISIBL	.E SOLI) .										
-02	Y			25 750	5 C 94 C		1	1				1			EST. 3% PYRITE
										тот	ΑL	2	27.3	10741	
-03	Y		50 X	100	15 C		1					i			EST. 15% PYRITE
										TOT	AL.	1	29.8	22	
219-01	γ	NO V	/ISIBL	E GOLD								,		;	EST. 20% PYRITE
220-01	N	NO V	/ISIBL	E GOLD											
-02	N	NO V	'ISIBL	E GOLD											
721-01	N	NO V	ISIBLA	E GOLD											
	N	NO V	ISIBLE	GOLD											
	N	ע סא	ISIBLE	GOLD											
222-01	N	NO V	ISIBLE	GOLD											

→ TLD CLASSIFICATION

_============

VISIBLE SOLD FROM BHAKING TABLE AND PANNING

NUMBER OF STAINS

SAMPLE #	E A NATION	3		ABBRAD	ED	IRREGUL	.AR	CATE		NON MAG	CALC V.S. ASSAY	
SHUFLE #			THICKNESS	T	P	7			TOTAL			REMARKS
223-01	N	ALBIBIV CM	60LD									
-02	Y	MO VISIBLE	60LD									EST. 30% PYRITE
224-01	N	NO VISIBLE	GOLD									
225-01	N	NE VIEIBLE	60LD									
224-01	N	NO VISIBLE	SOLD									
- ∂2	Ħ	100 X 15	50 25 C	1					i			
								TOTAL	. 1	24.5	118	
-03	N	NO VISIBLE	60LD						د			
.27-01	N	MD VISIBLE	60LD									
-02	· N	ND VISIBLE	GCLD	•						• .		
- 03	N	NO VISIBLE	GOLD									
-)4	M	200 X 20)O 38 C	1					1			
								TOTAL	. 1	25.5	447	
-05	N	NI VISIBLE	60LD									
-06		NO VISIBLE										EST. 15% PYRITE
- 07		NO VISIBLE										
		MO VISIBLE										
<i>-</i> ∵9		NO VISIBLE										
-10		NO VISIBLE										
-11		NO VISIBLE										
_180-01		NU VISIBLE										
-02	N	NO VISIBLE	SCLD									

APPENDIX D BONDAR-CLEGG HEAVY MINERAL ANALYSES

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 felex: 053-3233

MEPORT: 016	J-9178			do Alego				PROJECT: NOHE	FASE 1
SAMPLE REMUN	ELEACHT UXLTS	Cu PPA	Zn pp n	Ag PPM	As P?#	Au Pog	Test#t		
04-98-01 04-98-01 04-98-03 04-88-03 04-88-03	1-02-3/4 1-02-3/4 3-01-3/4	114 97 101 28	37 28 27 20 20 22	0.3 0.2 (0.1 (0.1 (0.1	113 608 114 11 13	330 55 90 93 413	9.00		
69-95-94 69-85-94 69-85-95 69-85-95	4-02-3/4 5-02-3/4 5-03-3/4	81 55 130 105 107	30 32 37 40 56	0.1 (0.1 0.2 0.1 0.2	115 204 223 124 90	15 28 80 550 13			
08-55-63 08-65-65 08-65-63 4 08-65-63 08-63-63	5-04-3/4 5-07-8/4 5-08-3/4	144 310 271 325 324	40 84 84 146 128	0.1 0.1 0.1 0.3 0.2	107 183 168 286 424	15 20 35 30 45			
CV-85-05 CV-CS-06 CV-85-06 CV-85-06 CV-85-06	8-01-3/4 8-02-3/4 6-03-3/4	2980 28 19 43	70 17 20 18 21	1.1 (0.1 (2.1 (0.1 (0.1	124 2 2 2 4 2	10 190 25 30 130	7.50		
C4-25-04 C4-25-04 C4-65-04 C4-85-04 C4-45-04	6-06-3/4 6-03-3/4 8-09-3/4	92 115 91 102 112	20 28 40 56 35	0.1 0.2 0.1 (0.1 (0.1	35 35 75 91 57	20 20 20 184			
CW-85-04 CW-85-04 CW-85-04 CW-85-04	8-12-3/4 8-13-3/4 8-14-3/4	71 65 52 74 72	26 21 25 25 26	9.1 <0.1 <0.1 <0.1 <0.1	77 42 19 152 91	230 230 25 210 35			•
04-85-06 04-85-06 04-85-06	6-19-3/4	92 218 212 776 475	40 28 72 + 74 76	1.0 0.7 0.1 0.4	129 268 224 832 724	25 70 70 70 70 310			
04-85-96 04-85-96 04-85-96 04-85-96	5-03-3/4 4-05-3/4 7-01-3/4	£81 147 138 70 87	40 44 45 45 45 45 45 45 45 45 45 45 45 45	0.2 <0.1 <0.1 <0.1 0.1	270 23 40 122 153	59 20 20 240	₹.50		

5420 Canotek Rd.. Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

REPORTA 015-01	75	12.7						PROJECT	F HONE	V. Com	PARE	2
Sarle (a). Kurees	ELEMENT :: Units .	Cv. Cu PPB	Z• PF3	Ag PPA	As PP#	Au PPB	Test#t ge			To The		
CW-85-07-03 CW-85-07-04 CW-85-07-05 CW-85-07-05 CW-85-07-07	-3/4 -3/4 -3/4" = 1 - 2	117 98 92 92 92 82	29 37 37 37 22 58	0.1 (0.1 (0.1 (0.1 (0.1	79 74 112 101	170 94 50 15 50						
CW-85-07-08 CW-85-07-10 CW-85-07-11 CW-85-07-12 CW-85-07-13	-1/4 -3/4: -1/4	73 81 18 15 17	26 22 18 18 13 21	0.1 0.1 0.1 0.1 0.1	100 16 2 -<2 - 2	169 5 110 65 (5						
54-85-97-14 54-85-97-15 64-85-92-91 64-85-98-92 64-85-98-93	-1/4 -1/4 -1/4	102 118 27 58 235	74 73 73 73 12 73	00.1 00.1 00.1 00.1 00.1	42 36 115 75 81	10 10 15 50 99						
C9-85-00-04 - C9-85-08-05 - C9-85-08-06 - C9-85-08-07 - C9-85-08-08	-W4 -W4 -3/4	104 789 513 589 735	40 12 142 154 1630	X0.1 0.1 0.7 0.6	93 98 122 544 165	135 250 30 50 53	9.60 4.90 6.40					
CW-85-08-09 CW-85-08-10 CW-85-08-11 CW-85-09-01	-3/4 -3/4	381 787 1345 138	7310 780 240 58	0.5 9.4 9.7 0.1	254 208 162 121	30 55 95 760	4.80 4.90 4.70 8.80					

Bondar-Clegg & Company Ltd. 5420 Canotek Rd., Ottawa, Ontario, Canada K11 8X5 Phone: (613) 749-2220 Telex: 053-3233

REPORT: 016-	-0221			10 m 1 m 1				PROJECT: NONE PAGE 1	AL I
SAMPLE NUMBER	ELEMENT UNITS	Cu PPA	Zn PPM	Ag PPA	As PP#	Au PPB	Test¥t ga		
£¥-85-09-	100	136	31	0.2	160	105			
CW-85-67-	The second secon	128	58	⟨0.1	101	15	A		53.5
CW-85-09-	- TOTAL CO.	141	37	⟨0.1	103	25			
CW-65-09-	4.60 at 100 at 1	100	78	0.1	126	15			2.14
CW-85-09-	-08-3/4	141	41	⟨0.1	103	1720			
CH-85-09-	the second second	227	81	0.2	109	. 75	遇是是,是		
C¥-85-09-		495	89	0.3	161	95	12 (7)		
CW-85-09-		640	148	0.4	163	45			
CH-85-09-		617	123	0.2	144	25 15		2000年1月1日 1月1日 1月1日 1月1日 1月1日 1月1日 1月1日 1月1日	
CN-85-09-	-13-3/4	418	100	0.3	140	45			1
CW-85-07-		545	101	0.2	97	75			24
CN-85-09-	The Street Labor.	502	106	0.3	146	30	347-140		
CH-85-09-		535	104	0.2	138	50 75			
CV-85-09-		600	108	0.3	141	35	0.76		
EW-85-09-	-18-3/4	515	92	0.2	121	150	8.70		
CV-85-09-	-19-3/4	409	91	0.3	97	490	9.90		1.83
CW-85-09-	100000000000000000000000000000000000000	540	66	0.1	70	60	to be a		
CN-85-10-	1 25 Table 1489 429	92	47	0.1	123	210			
CV-85-10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	105	42	⟨0.1	137	4430			
EN-85-10-	-04-3/4	105	99	0.1	112	350			
CN-85-10-	-05-3/4	102	47	€ (0.1	115	50			38.44
CW-85-10-		92	35	0.2	66	30			
C4-85-11	7.04 (0.01) (0.04) (2.04)	21	-14	⟨0.1	(2	₹5			
CW-85-11	- E-10-1000	71	234	1.0	42	15			
C¥-85-11	-01-1/4	135	258	(0.1	- 82	15			
CW-85-11	-W-3/4	107	386	0.2	145	290	ar in the		13/2
CN-85-11	N. C. S. C. C. C. S. M.	93	40	1.0	66	10			
CN-85-11	100 100 100 100	128	49	1.0>	76	245	Taking Com		N.
C1-85-11-		194	20	0.3	. 5	. <5			
CW-95-11	- 18-3/4	195	36	⟨0.1	33	10			
CW-85-11		281	109	0.3	177	10			
C¥-85-11		579	1162	1.3	127	30			
CW-85-11		519	490	0.8	75	- 20			
CW-85-12		115	39	(0.1	63	170			
CW-85-12	-04-3/4	112	37	0.5	92	210		· · · · · · · · · · · · · · · · · · ·	
£4-85-12-		115	97	0.1	39	5	. Section 1		1380
W-85-12		98	34	0.1	47	30			性。例
¥-85-12		269	70	0.3	76	30			
CH-85-13		52	15	(0.1	5	₹5			
CU-85-15	11-14-	276	1688	0.8	3	₹5			

Bondar-Cree & Company Ltd. 5420 Canotek Rd., Ottawa, Ontario, Canada KIJ 8X5 Phone: (613) 749-2220 Telex: 053-3233

REPORT: 016-01	121							PROJECT: NONE PAGE 2
SAMPLE NUMBER	ELEMENT	Cu PP#	Zn PPA	Ag PPA	As PPA	Au PPB	TestWi gs	in the state of th
EW-85-16-0	-3/4	56	60	KQ.1	(2	(10	9.90	
CW-85-18-0		232	555	0.1	11	80	1.50	
CN-85-19-0:	17/10/12/06/06/06	154	21	(0.1	₹2	90		
CH-85-19-0	75 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -	38	30	(0.1	⟨2	660		
CW-85-19-0	4-3/4	31	206	0.1	5	(5	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
C¥-85-19-0	5-3/4	29	42	(0.1	42	⟨5		
CH-85-19-0	5-3/4	31	63	⟨0.1.	4	<10	9.90	
CH-35-19-0	7-3/4	45	97	⟨0.1	12	<10	9.00	
CW-85-17-0		26	89	₹ (0.1	(2	<5	ALAN YES	
C#-85-19-0	7-3/4	25	25	₹0.1	8	20		
C¥-85-19-1)-3/4	177	76	§ ⟨0.1 →	4	10		on home. This a control of province Section 2
CW-85-19-1		11	94	⟨0.1	<2	<10	7.00	
CW-85-19-1	2-3/4	24	375	1.0>	₹2	₹5		
CH-05-19-1	3-3/4	162	206	0.1	. 17	- 5		
C¥-85-19-1	4-3/4	97	258	0.1	102	95		
CW-85-24-0	8-3/4	56	44	(0.1	.11	<10	8.20	
CW-85-26-0	1 19 TO 10 T	84	45	0.1	12	(10	6.50	
CW-85-26-0	300 ASSESSED	79	76	(0.1	14	- 5		
CH-85-26-0		22	26	(0.1	9	(10	5.00	
CN-85-26-1	9-3/4	16	18	(0.1	(2	₹10	5.00	
E¥-85-26-1	1-3/4	22	33	<0.1 a	30	₹5		
C4-85-26-1	2-3/4	14	15	<0.1 ⋅	<2	₹5	11:10	
CY-85-26-1	3-3/4	70	61	⟨0.1	<2	<5	Farth A	
€¥-85-27-0	1-3/4	122	26	⟨0.1	. 7	₹5		
CW-85-27-0	2-3/4	29	21	₹0.1	2	15	9.80	
C9-85-27-0	3-3/4	- 30	15	(0.1	2 :	<5		

5420 Canotek Rd.. Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Felex: 053-3233

REPORT: 015-40	1 () () 3							PROJECT: NONE PAGE 1
SAMPLE NUMBER	ELEMENT UNITS	Cu PPA	Zn PPN	Ag PPM	As PPA	Au PPB	Test#t gm	
CW-85-20-01 CW-85-20-02 CW-85-20-03 CW-85-20-04 CW-85-20-05		152 100 133 119 93	50 130 105 124 110	0.4 0.4 0.6 0.7	46 29 (2 16 17	470 70 140 90 580	7.00	
CW-63-20-06 CW-85-21-01 CW-85-21-02 CW-85-21-03 CW-85-21-04		91 28 24 83 135	120 19 37 40 70	0.7 0.1 0.2 0.3 0.2	7 33 2 2 2 2	75 1120 310 50	3.00	
CH-85-21-05 CH-85-21-06 CH-85-21-07 CH-85-22-01 CN-85-22-02		197 130 170 19 20	105 42 80 15 14	0.4 0.3 0.7 0.2 0.4	3 5 (2 2 (2	15 150 15 (5	6.00 9.00	
CW-85-22-03 CW-85-22-04 CW-95-22-05 CW-85-22-06 CW-85-22-07		28 22 19 26 84	15 70 20 80 80	0.1 0.4 0.1 0.2 0.3	(2 (2 (2 (2 (2	1170 535 35 310 180	9.50 9.50 9.00	
C9-85-23-01 C4-85-24-01 C4-85-24-02 C4-85-24-03 C4-85-24-04		94 189 136 119	26 60 48 50 145	0.4 0.2 0.6 0.6 0.3	(2 (2 2 2 (2 (2	10 60 335 60 15	9.50	
CW-85-24-05 CW-85-24-06 CW-85-24-06 CW-85-24-06 CW-85-24-09		110 107 137 100 75	84 75 80 58 54	0.2 0.2 0.3 0.2 0.3	2 (2 1 (2 (2 (2	5 85 10 205 15		
CW-85-24-10 CW-85-24-11 CW-85-24-12 CW-85-24-13 CW-85-24-14		73 121 99 113 116	54 1700 90 100	0.3 0.2 0.2 0.3 0.3	5 (2 2 3 112	15 20 15 35 565	9.00	
CW-85-24-15 CW-85-25-01 1W-85-24-01 CW-85-26-02 CW-85-26-03		267 249 43 45 26	450 76 45 35 44	1.3 0.8 0.2 0.1	298 129 6 3 (2	70 345 100 100 100	7.50 9.50	

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 felex: 053-3233

REPORT: 015-401	1 1 1	15 to 16 to						PROJECT: NONE	PAGE 2
SAMPLE NUMBER	ELEMENT Units	Cu PPM	Zn PPM	Ag PPB	As PPN	Au PPB	Test¥t ge		
CN-85-26-04 CN-85-26-05		38 56	95 <u>.</u> .120	0.3 0.4	5 11	45 5	8.00		
	7,18								
		1 (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)							

5420 Canotek Rd.. Ottawa, Ontario. Canada K1J 8X5 hone: (613) 749-2220 elex: 053-3233

REPORT: 0:6-02	243		. Y					SEDIECT: NONE	PAGE 1
SAMPLE	ELEMENT	Cu	Zu	Ag	As.	Au	TestWt		
- NUMBER	UNITS	2PK	ppe	ррм	PPM	bbB	58	TVE TO SELECTED ASSESSMENT OF THE OWN	
PU-05-27-04	1.01	90	42	0.2	25	€10	9.00		
CW-25-27-04		CARRY TO LAKE SE		Salvery College Co. Co., Swinger		Se Charles	7.00		
CW-85-27-05	1 1000	120	27	0.3	47	40			
CW-85-27-04	- 74.45.	74	56	0.1	801	5			
CW-85-27-07	7 - A - A - A - A - A - A - A - A - A -	46/ 112	45	0.3	238	15			
EN-85-27-08		120	170	0.3	173	10			
EW-85-27-09		185	30	0.2	145	15			
EN-85-27-10	1 2 1 1 1 1 1 1 1 1 1 1 1	250	110	0.4	236	15			
CH-85-27-11		90	44	0.2	130	5			
CW-05-27-12		150	55	0.4	133	3920			
EW-95-27-13	100 PT 10	120	40	0.4	112	. 15			
		7.5	Marie Wal	1. Tr. 1. 1.	10.25				Nachter of the Second
CW-85-27-14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100	45	0.2	62	10			
CW-85-27-15		98	50	0.2	58	10 .			
CW-85-27-16		130	55	0.3	122	15	4-4000	14 April 2 42 April 2	
CW-85-27-17	1967/01/02 0964	144	45	0.3	189	15			
<u></u>	- 123,3,365	400	270	0.4	334	75	\$1.00 mg	i oso i izrista tegi ki operki i i spik o	To the proper libralian library and the
eu-85-27-19		520	235	0.9	456	1600	RATE OF		· · · · · · · · · · · · · · · · · · ·
CW-85-27-20	1,90,200	400	250	0.7	480	60			
	With the attention TANG	450	275	0.6	356	85	7.00		
CN-85-27-21	And the Country of th	400	470	0.5	310	50			SERVICE SERVICE
CM-85-27-22	A STATE OF THE PARTY NAMED IN	430	500	0.3	378	340			
(A-85-21-2)		4. W	110	u. A	5. 22 mm 12	.140	Name of the last		Control of the Assessment Control
CW-85-27-24		830	510	1.2	472	175			
CW-85-28-01		42	32	0.1	5	40	Arm of		
CW-85-29-02	33.8	46	33	1.0	8	10	8.50		
CW-85-28-03	3	70	55	0.2	37	25	2.60	4. 16 W. C. A. 20 美国社会	
CW-85-28-04	346	125	60	0.1	97	55	TO ATTEM		
511 OF 22 A	1	28		1.0	4	40			
CW-85-28-05	100	125	32 57	0.3	81	55			
	1000	4.0		the second second second		10			
CW-85-28-09		120 110	.68 28	0.7	83 83	45	4		
CW-85-28-10 CW-95-28-11		150	56 54	0.3	วง 51	35	10.00		
TA-30-78-17		עבו	24	0.2	31	73			
CW-85-28-12		124	. 50	0.1	57	190			
CW-85-28-13		83	28	0.1	38	45	ATT SERVE		
CW-85-28-14		190	36	0.2	71	2155			
CW-85-28-15		110	40	0.1	39	30			
CW-R5-28-16	1,265	128	78	0.7	121	50			
SW-85-28-13	-65.94)	on	24	0.2	75	25			
W-85-28-18		99 108	万万	0.1	83	40			
		78	73	0.2	169	40			
CM-85-28-15		and the second second second	2	9.1	76	85			
CW-85-28-20		76	22						
CW-85-28-21		BB	79	9.2	103	245			

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Felex: 053-3233

REFORT: 016-00	48							PROJECT: NONE	PAGE 2
SAMPLE	ELEMENT	Cu	2n	Ag	As	Au	Test¥t		
MUMBER	UNITS	poy	ррм	PPM	PPM	558	na i ma		
CW-85-28-22	,	156	25	0.2	102	15	Carl T		
		A STATE OF THE PARTY OF THE PAR	The second secon	0.2	100	35			
CH-85-26-23	- Money	89	26						
CW-85-28-24	4 4 4 4 4 4 4	80	20	0.4	62	95			
CW-85-28-25		97	30	0.3	118	230			
CN-85-28-24	\	94	27	0.3	54	35			
CW-85-28-27		170	40	0.1	128	75			
CW-85-28-29	1208	75	32	0.2	142	50			
CW-85-28-29		128	28	0.2	103	185			
CW-85-28-30		55	28	0.2	82	15	10 700		
EW-85-28-31		70	36	0.2	91	75			
		ALC: NO.	Graphest.		514 Z	VI-73	natural disease	Salar Sond Jan.	
CW-35-28-33		200	75	0.1	. 77	25			
CW-95-28-34		270	110	0.2	100	25.			
CH-85-29-3		300	177	0.4	232	35			
CW-85-29-01		34	18	0.1	13	140			
CH-85-29-03	7	55	24	0.2	80	15			
CM-85-29-03	1.75	87	30	0.1	146	35			
CW-85-29-0		411	36	0.1	89	10	s		
CW-85-29-05	THE RESERVE OF THE PARTY OF THE	92	44	0.2	65	(5			
CW-85-29-0	THE PARTY OF THE P	72 73	75 36	0.1	66	250	THAT		
CM-35-79-01	THE PART OF THE PA	155	36 36	0.2	74 40	A0			
		THE STEWN	SEPARAL NEW	1554-148,50	. 5214	20 15 21		Her Charles and the second	
CW-85-29-0		136	34	0.2	71	60			
E#-35-29-09	7	80	40	0.1	48	10	9.00		
CW-85-29-1	0	63	28	0.7	70	540	9.00		
CW-85-29-1		155	30	0.3	26	505	1.35		
CH-85-29-1	?	95	40	0.6	37	15			ALL STATES CARRENTED TO SECURE
CW-85-29-1		152	34	0.3	46	10			
CW-65-29-1	The state of the state of the state of	70	35	0.3	52	65			하는 사람들이 가장하는 것이 없었다.
CW-85-29-1	100,000	011	43	0.2	54	20			
CW-85-29-1	Harris Contract of the	134	58	0.5	57	20			
EM-85-29-1		110	38	0.2	57	70			
1.8 1.1 / 1 .		1.17							
CW-85-29-1	3	120	40	2.6	70	20			
CH-85-29-19	9	198	47	0.5	95	45			
CW-85-29-2	0	140	38	0.3	51	410			
CH-85-29-2		130	47	0.3	85	90			
EW-85-29-2	2	140	50	0.4	08	20			
CW-85-29-2		125	40	0.2	72	20	1944		
0#=63=27=24 0#=65=29=24		145	44	0.2	119	585	1 3. 1. 1.		
CH-85-30-0		30	20	(0.1	2	5	4		
CW-85-30-0		42	36	(0.1	q	10			
	L L	5 9 9 4	74	1.01	4	15			

5420 Canotek Rd.. Ottawa, Ontario. Canada K1J 8X5 Phone: (613) 749-2220 Felex: 053-3233

NUMBER	ELEMENT	114 - 124 -			I E	ASTR NAME OF THE			PAGE 3
34,350		Си	In .	Ag	As PPM		Test¥t		
	UNITS	ррм	PPM	ррм	PPR	PPS	ia -		
CW-85-30-05		42	22	(0.1	13	40			
CH-85-30-06	1	138	54	1.0)	67	45			
CH-85-30-07		129	46	0.3	66	60	+ 11000		
C#-85-30-08		130	68	0.2	177	475			
CH-35-30-09	1.00%	173	5,4	0.7	75	115	Transfer of	The second second	
CW-85-30-10		78	70	(0.1	79	50			
CW-85-30-11		76	39	₹0.1	57	10			
CW-85-30-12		97	40	0.1	80	20			
CN-85-30-13		105	38	0.2	102	1030			
CW-85-30-14	17.000	160	90	0.5	270	30	5.00		
CW-85-30-15	40.00	127	33	0.3	80	10	X4. 2.56		
CW-33-30-16		94	32	0.2	60	90.			
CW-85-30-17	7.00	85	35	(0.1	67	15			
CW-85-30-18	1000	110	32	(0.1	145	25	* 1817.1		
C2-85-30-19	1.55	117	28	0.2	152	25			
LAPRIT SUTIS	0.51.24781388		128 (12-50)	SUPER TO	3.546	F. 160 U.			
CW-85-30-20		140	30	0.2	J 240	60			
EN-85-30-21		118	24	0.2	252	20		N. AFCUTIER	
CW-85-30-22		110	36	(0.1	246	25			
CM-85-30-23		120	30	(0.1	179	95		the same of the	
EW-85-31-01	1.15697461	22	20	(0,1	04 (Pri-2	205	3.50	M. 1768.	
CH-85-31-02		28	44	(0.1	2	(5			
E#-85-31-03		22	14	(0.1	- (2	5			
CW-85-31-04		42	15	(0.1	13	50		A. C.	
CM-85-31-05		103	42	(0.1	59	. 10			
CW-85-31-06		114	40	(0.1	113	110			
CM-85-31-07		122	40	(0.1	123	20			
CW-85-31-08		95		(0.1	13	20			
CW-85-31-09		130	46	0.3	71	20			
E#-85-31-10	18	130	37	0.3	74	-15	\$7.5 mm		
CH-95-31-11		98	40	1.0)	54	10			
CW-65-31-12		145	40	0.7	72	25	# N. 12 P.		
CW-85-31-13		85	38	0.2	69	30			
CW-85-31-14		54	26	0.2	19	(10	5.70		THE PROPERTY OF THE PARTY OF TH
EW-85-3:-15	100	128	26	0.2	36	5			
CH-52-21-19		118	58	0.4	104	15			
.CW-95-31-17		185	50	0.4	73	210	8.10		

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 hone: (613) 749-2220 Telex: 053-3233

REPORT:)16-0315			14 T				PROJECT: NONE	PAGE 1		
SAMPLE NUMBER	ELEMENT UNITS	Cu PPM	Zn PPM	Ag PPM	ės PPN	Au PF2	TestWt ga				
C#-85	32-01 3/4	105	36	0.3	5	36	16.00				
	32-02 3/4	65	76	0.1	32	329				2.144	
	32-03 3/4	26	20	(0.1		515	9.50			19 C 1 4 A	
	32-04 3/4	29	20	(0.1	3	39					
CW-85	32A-01 3/4	80	26	(0.1	#8	10			en en en en en en en en en en en en en e		
CW-85	32A-02 3/4	32	14	(0.1	25	10				- 1134	
CW-85	32A-03 3/4	24	20	(0.1	13	40	7.50				
CW-85	32A-04 3/4	25	23	(0.1	(2	(15	4.50			4.5	
CW-85	33-01 3/4	38	13	(0.1	(2	15					
CW-85	33-02 3/4	12	10	1.0)	Q	10					
CN-85	33-03 3/4	28	17	(0.1	£	5					
CW-85	33-04 3/4	200	57	0.9	164	720				5457	
CW-85	33-05 3/4	190	56	0.2	73	150					
	33-06 3/4	145	51	0.1	41	15					
CH-85	33-07 3/4	165	75	9.2	173	915	3.50				
CW-85	33-08 3/4	105	46	(0.1	125	10					
and the second	33-09 3/4	120	42	0.2	73	15			Acceptant		
CW-85	33-10 3/4	130	57	0.6	#	20					
45.00	33-11 3/4	140	54	0.3	113	30					
CW-85	34-01 3/4	75	28	(0.1	7. 9	25	2.00				
CW-85	34-02 3/4	105	- 44	(0.1	₩.	10	B.50				
	34-03 3/4	185	77	0.4	278	65	4.50				
	35-01 3/4	70	18	0.2	37	(10	7.00			A TOP &	
	36-01 3/4	2900	9470	2.5	456	230					
C#-85	37-01 3/4	88	108	0.3	289	110					
CH-85	38-01 3/4	105	200	0.2	35	155	4.50				
	38-02 3/4	70	52	(0.1	150	45	6.50				
	38-03 3/4	108	108	0.2	29	(15	4.00				
	39-01 3/4	14	17	(0.1	(2	65					
CW-85	39-02 3/4	24	26	(0.1	(2)	5			20.50		
	40-01 3/4	12	14	(0.1	0	35	3.00			1	
	40-02 3/4	220	58	0.3	25	10					
	41-01 3/4	155	52	2.8	117	90	3.10				
	43-01 3/4	170	87	0.4	121	15					
CH-85	43-02 3/4	200	120	0.5	149	470					
	44-02 3/4	180	37	0.2	55	.30					
	45-01 3/4	16	14	(0.1	4	75					
	45-02 3/4	20	16	(0.1	(2	<10	8.30				
	45-03 3/4	84	22	0.2	38	10					
CM-82	45-04 3/4	165	55	0.4	£	15					

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Felex: 053-3233

REPORT: 018	-0315							PROJECT: NONE	PAGE 2
SAMPLE NUMBER	ELEMENT UNITS	Cu PPR	Zn PPS	Ag PPM	As PPM	Au PPB	Test#t ga		
CH-85 45	-05 3/4	124	38	0.3	47	10	4		43,1 25,130,413.1
CH-85 4	i-06 3/4	135	21	0.1	33	15			
CW-85 45	i-07 3/4	110	18	0.2		5	Carl Car		
CW-85 4	5-08 3/4	108	26	0.9	39	30	7.40		
CW-85 4	-01 3/4	14	8 A M	(0.1	<2	5			
CN-85 4	5-02 3/4	26	21	(0.1	₹2	15	6.60		
CH-85 4	-03 3/4	41	23	(0.1	<2	15			
CW-85 4	5-04 3/4	68	75	(0.1	88	5			
CW-85 4	-05 3/4	70	73	<0.1	6	₹5	1		
CW-85 4	5-06 3/4	76	28	₹0.1	61	(5			
CW-65 4	-07 3/4	65	24	(0.1	4	(10	9.50		
CW-85 4	5-08 3/4	70	27	₹0.1	141	30			
CH-85 4	5-09 3/4	42	34	(0.1	5	40			
£₩-85 4	6-10 3/4	50	32	(0.1	11	85	9.20		
CN-85 4	5-11 3/4	- 65	28	(0.1	5	5			
CW-85 4	6-12 3/4	B 0	ZB	(0.1	5	230	8.70		
CW-85 4	5-13 3/4	88	35	₹0.1	4	110			
CM-85 4	6-14 3/4	125	44	(0.1	42	10			
CH-85 4	5-15 3/4	145	54	(0.1	85	20			
CH-85 4	5-16 3/4	175	48	0.5	144	180			
CN-85 4	5-17 3/4	300	52	0.4	144	35	6.30		
CM-85 4	6A-13	270	80	0.8	334	420	8.80		
CW-85 4	6A-19	290	73	2.9	330	40	6.70		
CW-85 4	6A-20	300	60	0.6	172	30	8.70		
CW-85 4	6A-21	190	6	0.5	188	20			
CW-85 4	6A-22	210	24	0.4	159	30	9.00		
CH-85 4	6A-23	340	119	0.3	133	15	1.4		
CW-85 4	6A-24	125	35	0.2	71	260			
CH-85 4	6A-25	65	24	0.3	57	15			
CN-85 4	7-01 3/4	15	14	₹0.1	⟨2	5			

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Felex: 053-3233

-RESCRIF 015-0134					PROJECT: NONE PAGE 1
SABELS SLEMENS STIND SESSON	Cu Syn	Zr Aş PPB PPB	As # PPA	Au Testüb 1995 - ja	
CM-85-44-01 3/4 CM-85-48-01 7/4 CM-85-49-01 7/4 CM-85-58-01 7/4 CM-85-51-01 7/4	79 18 121 121 32 70	26 0.2 16 0.1 38 0.2 34 0.1 45 (0.1	30 (2 53 14 + 52	35 (5 115 (10 7.09 /	
03-85-52-01(3/4) CM-85-52-02-3/4 CM-85-52-01-3/4 CM-85-33-02-3/4 EM-85-34-01-3/4	117 117 26 47 17	22 (0.1) 84 0.5 21 (0.1) 40 0.1 17 (0.1)	5 109 14 160 2	110 100 6.00 45 70 45	
C = 85-54-02.374 CF-05-55-01.374 CF-05-05-02/374 CF-05-54-01.374 CF-05-54-02.374	14 37 54 27 27	16 (0.1 18 (0.1 43 0.4 21 0.2 18 (0.1	\$2 3 80 17 (2	555 90 15 170	
04-35-03-03-3/4 04-95-57-01-3/4 04-85-57-02-3/4 04-95-53-03-3/4 04-95-53-01-3/4	240 23 79 147 101	95 0.5 21 0.2 64 0.3 75 6.3 17 0.2	185 10 63 382 294	35 5 140 80 35 (3.50	
03-35-08-02 3/4 - 03-35-08-03 3/4 - 03-25-58-04 3/4 - 03-25-38-05 3/4 - 03-35-58-01 3/4	-95 -67 -101 -55 -69	34 0.3 29 0.2 39 0.2 29 0.1 32 0.2	49 334 45 49 19	60 15 45 5	
CM-85-58-67 374 DM-85-59-62 374 CM-85-59-63 374 CM-85-59-65 374	113 84 108 175	28 0.2 45 0.2 40 0.3 30 0.3 56 0.3	30 19 63 34 43	10 a - 190 190 10 20 20	
07-95-57-18 3/4 CX-25-39-67 3/4 CX-85-59-68 3/4 CX-85-80-61 3/4 5 CX-65-61-61 3/4 7	238 122 90 25	24 0.4 40 0.3 29 0.2 14 (0.1 15 0.1	37 27 32 32 (2 (2	5 10 5 5 245	
09-85-62-01 8/4 74-85-62-02 8/4 74-85-63-01 8/4 09-85-63-02 8/4 09-35-63-03 8/4	10 27 14 15 30	14 (0.1 20 0.1 14 0.2 15 0.3 50 0.1	<2 4 3 7 5	5 , 40 35 10 160	

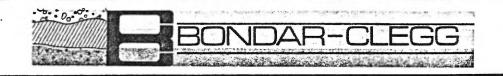
5420 Canotek Rd., Ottawa, Ontario. Canada K1J 8X5 Yhone: (613) 749-2220 Jelex: 053-3233

SHRPLT	BERONTA OLE 0334	Y. AX	Fire Mr V			PRODUCTI: NONE	EACH PARE 2 HE SES
CY-95-63-01 7/4 19 18 C.1 62 20 8.76 CY-95-63-01 7/4 11 18 C.1 6 25 9.76 CY-95-63-02 7/4 13 15 5.1 6 19 CY-95-63-02 7/4 13 15 5.1 6 19 CY-95-63-03 4 17 2 1					Chief and the Chief		
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	-C9-95-64-01 374 EN-95-64-01 374 CN-95-66-02 374	17 14 303	18 (0.1 18 (0.1 34 1.7	₹2 29 & 25 30 4) 80	9.90 9.70		
CV-85-70-04 3/4	59-85-57-03 2/4 CM-85-67-04 3/4 CM-85-79-01 3/4	47 31 112	26 0.1 24 (0.1 22 0.2	5 5 42 135 31 10			
CN-85-70-10 3/4 102 56 0.3 624 15 CN-95-70-11 3/4 90 42 0.2 54 C5 CN-85-70-12 3/4 92 30 0.3 43 10 CN-85-70-13 3/4 92 35 9.2 25 10 CN-85-70-14 7/4 95 47 0.3 22 5 CN-85-70-14 3/4 135 34 0.2 28 10 CN-85-70-15 3/4 135 34 0.2 28 10 CN-85-70-15 3/4 135 34 0.2 28 10 CN-85-70-17 3/4 135 34 0.2 28 10 CN-85-70-17 3/4 131 34 0.3 27 20 CN-85-70-17 3/4 131 34 0.3 -74 5 CN-85-70-17 3/4 131 34 0.3 -74 5 CN-85-71-01 3/4 96 34 (0.1 51 585) CN-85-71-01 3/4 103 3 30 0.3 39 10 CN-85-71-03 3/4 145 50 0.1 104 140	09-25-70-04 3/4- C#-93-76-05 3/4 CW-65-78-65 3/4	95 125 146	11 0.2 40 0.1 40 0.3	55 15 31 53 43 20			
CN-85-70-15 3/4 135 34 0.2 28 10 CN-85-70-16 3/4 153 29 0.1 27 20 CN-85-70-17 3/4 103 34 0.3 -74 5 CN-85-71-01 3/4 96 34 (0.1 41 565) CN-85-71-02 3/4 103 30 0.3 39 10 CN-85-71-03 3/4 145 50 0.1 104 140	CY-85-70-30 3/4 CY-95-70-31 3/4 CX-85-70-12-3/4	102 90 72	16 0.3 42 0.2 10 0.3	624 15 54 (5 47 10			
CV-25-71-03 1/4 2 145 50 51 0.1 104 140	CM-85-70-15 3/4 SM-85-79-16 3/4 CM-85-79-17, 3/4	135 45 3 133	34 0,2 29 0,1 34 0,3	28 10 27 20 -74 5			
[U-S5-J1-74-3/4] 146		Company of the compan	ATTEMPT OF THE PARTY OF THE PAR	a lateral and the same and the control of the same and	6,70		

5420 Canotek Rd., Ottawa, Ontario, Canada KIJ 8X5 'hone: (613) 749-2220 ¿elex: 053-3233

REPORT: 016-0836	PROJECT: NONE	PAGE 1
SAMPLE ELEMENT Au TestWt NUMBER UNITS PPB gas		
CW-85-54-03 210 6.18		

5420 Canotek Rd., Ottawa, Ontario, Canada K13 8X5 Phone: (613) 749-2220 Jelex: 053-3233


REPORT: 016	REPORT: 016-0558							PROJECT: NONE PAGE 1
SAMPLE NUMBER	ELEMENT UNITS	Eu PPM	Zn PPM	As PPM	As PPE	Au PPB	Test¥t gs	
CW-85-46	A-26-3/4	. 84	23	0.2	129	465		
CW-85-68	-01-3/4	9	14	(0.1	CZ	60		
CW-85-68		10	12	(0.1	2	365	A CONTRACTOR	
CH-85-68	-03-3/4	16	16	(0.1	2	230	1.10	
CN-85-48	-04-3/4	22	20	(0.1	2	10		
CW-85-68	-05-3/4	27	51	(0.1	7	45	9.00	
CH-85-69	1-06-3/4	25	20	(0.1	. 3	400		
CW-85-71	-05-3/4	144	65	0.6	115	20		
CW-85-71	-05-3/4	220	145	0.6	162	165		
CW-85-71	-07-3/4	275	90	0.7	128	130		
CN-85-71	-08-3/4	168	72	4.0	128	50		
CW-85-71	-09-3/4	160	73	0.4	121	75		
CN-85-71	-11-3/4	160	35	0.3	41	35		
CW-85-71	-12-3/4	142	35	0.5	22	80	Net .	
CW-85-72	2-01-3/4	38	20	(0.1	75	220		
CW-85-72	-02-3/4	87	27	0.1	E	45		
CW-85-72	2-03-3/4	158	35	0.3	55	- 60	4. 金宝石	
CW-85-72	2-04-3/4	127	30	0.2	EJ.	15		
CN-85-72	2-05-3/4	98	30	0.2	39	60		
CW-85-72	2-06-3/4	108	27	0.1	42	20	7.7%	
CW-85-72	2-07-3/4	110	25	0.2	6	30	F. Francisco	
CW-85-72	2-08-3/4	87	24	0.2	53	(5		
CW-85-72	2-09-3/4	92	24	0.1	40	10		
CW-85-72	2-10-3/4	100	30	<0.1	39	5		
CW-85-72	2-11-3/4	78	30	0.3	28	10		
CW-65-72	2-12-3/4	100	30	0.3	41	45		
CW-85-73	1 100 100	180	45	0.1	139	20	6.00	
CH-85-74	1-01-3/4	70	20		22	40		
CW-85-74		15	15	(0.1	2	5		하는 사람들은 사람들은 사람이 사고 가장 보다.
CW-85-75	5-01-3/4	26	13	₹0.1	7	⟨5		
CW-85-75	5-02-3/4	70	17	(0.1	31	(10	6.00	
CW-85-75		88	94	0.3	150	10		
CW-85-75		122	105	1.1	758	5	A A	
CW-85-75		198	120	0.4	302	15		
CW-85-75	5-06-3/4	160	113	0.7	222	370		
CW-85-76		200	110	0.3	150	35	2.00	
CH-85-78		78	35	0.6	58	15	1.	The state of the s
CW-85-77		225	186	0.5	260	35	8.00	
CW-85-77		192	195	0.3	.236	980		
CW-85-78	3-01-3/4	58	35	0.4	17	20	6.00	

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 'hone: (613) 749-2220 'elex: 053-3233

REPORT: 016	-0558							PROJECT: NONE	PAGE 2
SAMPLE MUMBER	ELEMENT UNITS	Cu PPM	Zn PPM	Ag PPM	As PPM	Au PPB	TestWt .	- 4	
CW-85-79	-01-3/4	195	70	0.3	93	125			
CW-85-80	-01-3/4	128	42	1.0	- 27	20	4.00		
CW-85-81	-01-3/4	60	20	0.1	5	55			
CW-85-81	-02-3/4	19	12	0.2	<2	50	Part Land		
CW-85-81	-03-3/4	124	18	0.2	40	20			
CN-85-81	-04-3/4	126	55	0.3	80	10			
CH-85-81	-05-3/4	98	35	0.2	25	10			
CW-85-81	-07-3/4	147	37	0.4	88	10			
CW-85-61	-08-3/4	290	53	0.5	300	60			
CH-85-82	-01-3/4	44	38	0.2	36	40			
CN-85-83	-01-3/4	184	70	0.7	58	40	5.00		
CM-85-86	-01-3/4	26	20	0.1	11	160			
CH-85-87	-01-3/4	41	35	0.1	38	20	4.00		
CW-85-88	1-01-3/4	60	18	0.2	(2	190			
C¥-85-38	-02-3/4	64	14	0.1	5	₹5			
CM-85-83	1-01-3/4	13	15	0.1	2	20	9.00		
CN-85-89	-03-H	28	25	1.0	2	₹20	3.00		
CW-85-89	7-04-H	40	40	(0.1	2	₹50	1.00		
CW-85-89	1-05-3/4	152	25	0.1	26	<10	8.00		
CW-85-89	7-06-3/4	58	28	0.1	8	10	8.00		
CW-85-89	-07-3/4	73	35	0.2	202	1290	6.00		
CW-85-89	7-08-3/4	64	35	0.2	12	195	8.00		
CW-85-89	1-09-3/4	43	27	(0.1	6	35	3.00		
CH-85-89	7-10-3/4	56	30	0.1	5	₹10	8.00		
CW-85-89	-11-3/4	64	30	(0.1	9	₹10	8.00		
CH-85-89	7-12-3/4	64	- 33	(0.1	7	605	6.00		
CW-85-89	-14-3/4	33	20	(0.1	3	15			
CH-95-89	1-15-3/4	47	20	(0.1	₹2	10		And the second	
CW-85-90	1-01-3/4	31	23	0.1	7	70	8.00		
CH-85-96)-02-3/4	24	20	0.1	4	15	9.00		
CW-85-90)-63-3/4	44	32	0.1	5	₹25	2.00		
CW-85-90	0-04-3/4	49	30	0.1	6	₹15	4.00	to the same of the last	the same and the
EW-85-90	-05-3/4	28	25	0.1	15	20			
CW-85-96	1-06-3/4	86	40	0.2	3	15			
CW-85-90	1-07-374	162	50	0.2	212	(10	7.00		
CW-85-90)-08-3/4	58	50	0.2	16	10	6.00		
EW-85-90	H1-99-174	166	40	0.2	20	50	9.00		
EW-85-90)-10-3A	78	43	0.2	18	15			
EW-85-90		138	30	0.3	72	15			
CW-85-91	-01-344	36	25	0.3	8	5			

5420 Canotek Rd., Ottawa, Ontario, Canada KIJ 8X5 Phone: (613) 749-2220 Felex: 053-3233

REPORT: 016	-0558							PROJECT: NONE	PAGE 3
SAMPLE NUMBER	ELEMENT UNITS	Cu PPM	Zn PPM	Ag PPM	As PPM	Au PPB	Test¥t g#		
CW-85-91	-02-3/4	16	23	(0.1	2	30	1 2		
CH-85-91	47.4.70	35	20	(0.1	14	200			
CW-85-91		100	72	0.1	102	20			
CW-85-91	4 4 7 7 7 7	184	62	0.5	150	80			
CW-85-92	17830	11	15	0.2	5	20			
CW-85-92	-02-3/4	76	27	0.1	30	.10	There's		
CW-85-92	-03-3/4	140	45	0.4	47	165			
CW-85-93	-01-3/4	40	27	0.2	7	5			
CW-85-93	5-02-3/4	32	30	0.2	12	20	8.00		
CW-85-93	-03-3/4	32	20	0.1	59	₹5			
CW-85-93	5-04-3/4	23	17	0.1	2	80			经通过包括的数据。
CW-85-93	1,000	45	20	0.1	19	50			
CN-85-93		34	15	0.1	3	10	2.04		
CW-85-93	A. T. (C.) \$15	50	18	0.1	9	310			
CW-85-93	1-08-3/4	43	15	0.2	5	560			
CH-85-93	-09-3/4	104	45	0.3	200	50	3.24 - 3.7		
CW-85-93	1 4 4 4	220	58	0.6	456	225	4-4-6		
CW-85-93		104	40	0.4	236	190			
CW-85-94	V 2/12	56	10	0.1	2	190			
CW-85-94	1-02-3/4	19	16	0.2	5	40			
CW-85-94	4	90	28	0.3	13	230			
CW-85-94		160	40	0.4	22	₹20	3.00	the state of the s	
CW-85-94		290	53	0.8	29	260	2.00		
CW-85-95		14	15	<0.1	9	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
CW-85-95	3-02-3/4	18	18	(0.1	142	110			
CN-85-95	175 5143	33	52	0.1	14	145			
CW-85-96	1-01-3/4	12	10	(0.1	T	30	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
CW-85-96		10	15	(0.1	7	(5	To take the		
CW-85-96		16	16	(0.1	5	10			
CW-85-96	5-04-3/4	26	20	0.1	3	295			47 10 20 43454.64
CW-85-98		69	22	0.2	234	10	1300		
CW-85-96	77%	60	90	0.8	39	10			
CW-85-97		18	15	0.1	7	(5	the Fig.		
CN-85-97		15	15	(0.1	6	60			
CW-85-97	7-03-3/4	44	23	0.2	30	. <5			
CW-85-98		136	70	0.3	100	15			
CW-85-98		144	58	0.3	104	10			
CW-85-98		140	95	0.4	120	25			
EW-85-99		14	14	0.1	5	75			
CW-85-10	01-01-3/4	33	13	0.1	13	10			

5420 Canotek Rd., Ottawa, Ontario, -Canada K1J 8X5 hone: (613) 749-2220 , elex: 053-3233

REPORT: 016	-0558			-1				PROJECT: NOME	PAGE 4
SAMPLE NUMBER	ELEXENT UNITS	Cu PPM	Zn PPM	Ag PPM	As PPM	Au PPB	TestWt ga		
CW-85-101	1-02-3/4	31	25	0.1	8	190			
CW-85-10	26.7	44	25	0.1	8	340	1		
CW-85-101		77	27	0.2	51	70			
CW-85-10		146	45	0.3	93	705			
CW-85-10		100	40	0.4	102	95			
CN-85-10	1-09-3/4	230	62	0.3	106	135			
CW-85-10:	The state of	92	95	0.3	136	30			
CW-65-10	1-4-1-	167	80	0.4	260	40			
CW-85-103	1. 1. 4.0	1450	100	0.7	294	75			
CW-85-10	19.00	24	20	0.2	8	100			
CW-85-10	7-02-3/4	100	30	0.2	10	₹25	2.00		
CW-85-10	7.46. 917	192	45	0.2	21	(10	9.00		
CW-85-110	A	85	25	0.1	80	(20	3.00		
CH-85-11	100000	40	20	0.1	38	₹20	3.00		
CW-85-110	2.5-3.59	36	20	0.1	.	50			
CW-85-11	0-04-3/4	56	22	0.2	6	105	9.00		
CW-85-116	100000	35	19	0.1	34	(10	6.00		The second of th
CH-85-11	302903	90	23	0.1	43	730	6.00		
CW-85-110		69	45	0.1	128	35	6.00		
CW-85-11	211111111111111111111111111111111111111	60	20	0.2	37	30	7.00		
CW-85-110	0-09-3/4	184	82	39.0	304	>20000	8.00	7 8 4 4 7 3 4 4 5	
CW-85-110	0-10-3/4	310	85	0.6	220	80	W. W.		
CW-85-11		265	113	1.0	592	6050			
CW-85-11		27	27	1.0	21	15425	4.00		
CW-85-111	Mar.	164	88	0.6	354	155	3.00		
CW-85-11	3-02-3/4	159	75	0.7	364	1300	5.00		
CW-65-113		158	75	0.3	184	100	9.00		
CW-85-11		345	50	0.7	110	370	7.00		
CW-85-113		250	105	0.5	158	10	6.00		
CW-85-11	4-01-3/4	142	28	0.2	14	123			
CW-85-114	4-02-3/4	174	20	0.2	13	<10	8.00		
CW-85-114		110	25	0.3	19	45			
CW-85-114	4-04-3/4	80	25	0.1	13	170			
CW-85-11	5-01-3/4	45	16	0.2	7	175		The Control of the Control	
CW-85-115		48	20	1.0	11	(10	8.50		
CW-85-11	5-04-3/4	28	18	0.1	7	3620			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
JW-85-115	5-05-3/4	28	19	0.2	5	(20	3.00		
CW-85-115	5-06-3/4	160	48	0.4	190	50			
CW-85-115	5-07-3/4	300	60	0.8	248	35	7.00		
CW-85-116		31	17	0.1	4	75			

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 'hone: (613) 749-2220 elex: 053-3233

EPORT: 016-	0558							PROJECT: NONE	PAGE 5
SAMPLE	ELEMENT	Cu	Zn	Ag	As	Au	Testilit		
IUMBER	UNITS	PPM	PPH	PPH	PPH	PPB	.pr		
CW-85-116	-02-3/4	30	16	0.1	5	75	1		
CW-85-116	-03-3/4	38	17	0.1	7	15			
CW-85-116	-04-3/4	52	20	0.3	19	(5			
CW-85-116		54	101	0.1	34	30	- 77		
CW-85-116		164	64	0.4	145	30			
CW-85-116	-07-3/4	192	76	1.3	254	50			
CW-85-116		172	199	0.5	136	220			
CH-85-116		176	100	0.4	118	350			Control of the Australia
CW-85-116	12.75	260	90	0.5	266	190			
CH-85-116		245	78	0.5	254	45			
72 42 1		75,200,00	Sage - Tare	5000					
CW-85-116	11. (Add 500 等) 1	240	105	0.5	534	35			
CW-85-116	1.0 GH 101.0	200	118	0.7	324	130			
CW-85-118	2796.745	200	170	8.9	276	50	7.00		
CW-85-116		164	62	0.7	314	35	7.00		
- CH-85-116	-16-3/4	185	65	0.6	528	40	3		
CW-85-117	-02-3/4	87	58	0.3	12	5	Shireday		
CH-85-117	- 1 Million (1)	152	52	0.4	158	65			
CN-85-117	10,444,200	172	90	0.5	183	240			
CW-85-117	75.39	180	190	0.5	184	55			
CN-85-117	1277	196	90	0.5	316	20			
CW-85-117	7-07-3/4	73	57	0.5	107	35			
CW-85-118		72	17	0.1	7	(5			
CW-85-118		129	23	0.1	6	95	7.50		
CN-85-118		42	15	0.1	3	140			
CH-82-115		515	20	0.4	84	105		Programme Server	
CW-85-120	1-01-7/4	133	186	0.3	27	10			
CW-85-121		48	34	0.2	7	(5			
CW-85-123		100	112	0.3	74	20			
CW-85-124		27	17	0.2	4	(5			
CW-85-125		42	15	0.1	2	⟨5			
CW-85-12	4-01-7/4	27	17	0.1	5	265	7.00	2-1	
CW-85-127		45	17	0.1	13	80	1.40		
CW-85-127	450,770	144	30	0.1	39	10	- 1		
CW-85-127		113	36 30	0.5	169	30	7.00	. The second second	
CW-85-127		260	47	0.7	91	75	7,00		
CU-85-127	7-05-3/4	117	37	0.3	97	35			

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 'hone: (613) 749-2220 elex: 053-3233

REPORT: 015	-0600		""					PROJECT: NONE	PASE 12
SAMPLE Number	ELEMENT. Enits	Cu PFM	Za PPM	Ag PFM	Å5 PPM	Au % PPB	Test#t		
C¥-85-12	7-06-3/4	151	SI.	. 0.2	Ш	70			
EN-85-121	0.30904	22	- 15	(0.1	2	20			(A.18 YAR) "是被扩展"。
C¥-85-12	The second second	87	27	0.1	<u>,</u> 25				
CW-95-124 CW-85-124	1000	312 307	54 84	0.2 0.2		20 85			
07 3J .4	7-93-3/4			Server of Ministry	G 90 A	Aller Gu		C 146 2 136 378 (04) 1	
CV-85-12	45.56	, 37 ₹	19	0.1	25	25	Carago Exe		
CH-95-13	1975 1-1976	24	15	(0.1	2	(5	1.00		
CN-E5-17(2.34	91		0.2	90	25 55			
C#-85-134 C#-65-13		334 224	132 82	6.2 6.3	139 116	33 15			
U# 30 15.	27027374 100038	22.44	54		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				Control of the Contro
29-85-13	The state of the s	145	34	0.3	.	290	5.00		
CW-85-131	A WARREST	115	. 40	0.1	್ಷವ	35			
CW-85-13.		149	42.	0.4	123	15			
C¥-95-174		0.0	25	(0.1	25	60			
CV-85-134		94	25.35	0.1	47	215			
CH-85-134	1-03-3/4	106	44	- 0.2	76	35			
54-85-134	4-04-3/4	128	53	0.2	141	35			
CW-85-134	1. 1. 1. 1. 1. 1.	11.124	87	9.2	110	40			
CM-82-13	To Michigan Str.	321	. 62 ·	0.1	118	70	34		
<u> </u>	-01-3/4	86	33 .	0.1%	82	160			
CX-65-133	5-02-3/4	87	33	6.2	95	15			
CW-85-135	5-03-374	279	35	0.5	40	245	9.00		
C¥-95-13	2000 1 1000	209	5 3	0.8	130	170	1166		
CW-65-138	1 2 T Man 2	405	25 0	1.4	42	20			
CN-85-134	3-01-3/4	241	: 134 ·	2.3	59	125	TITLE TO		
CH-85-138	3-02-3/4	192	25	0.3	79	325			
CX-65-138	3-03-3/4	141	49	0.1	27.	270			
CW-85-138	3-04-3/4	115	28	(0.1	9	-15	History.		
CW-95-139	Mark with	199	142	0.5	26	20			
CN-85-139	-02-3/4	203	92	0.4	55	25			
CH-85-139	-03-374 - 4	137	74	0.4	110	25			to particle through a second
CW-85-139	1112 100-0	, 85	37	Carrie and and	42	325			
CW-85-129	Total Control of the	67	32	(0.1	42	170			
CW-35-139	100 March 200	- 70	29	30.1	75	190			
CM-82-139	7-08-3/4	70	.23	0.1	22	30	\$43.5 day		
CW-85-139	-39-2/4	55	23	0.1	28	10			
14-85-139	The state of the s	57	23	(0.1	43	10			
4-35-137		183	59	0.5	276	45	Service Services		
CW-35-159	1.00 000 000	. 146	46	0.6	25P	55			
CW-85-139	-13-3/4	129	35	C.5		95			

5420 Canotek Rd., Ottawa, Ontario, Canada KIJ 8X5 Phone: (613) 749-2220 čelex: 053-3233

REFORT: 015-0600	12.25		H., 4					PROJECT: NONE		PAGE 2	
EAMPLE NUMBER	ELEXENT UNITS	Cu PPX	Zn PPN	Ag PPK	As PFX	Au 209	·TestWt	3			A, GC
CW-85-140-01-; CW-85-140-02-; CW-85-140-04A; CW-95-140-04B; CW-85-141-01	3/ 4 -3/ 4	37 61 126 86 139	25 19 33 -26 -61	0.1 3.2 0.1 0.2 0.3	18 44 48 47 130	10 10 3815 15 65	3.50				
16	1000									X 19	
										79 144	
			1 (1) 1 (1)								Average (S
\cap									No.		

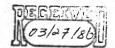
S420 Canotek Rd., Ottawa, Ontario. Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

REPERT: 0:5-0724	19 19 19 19 19 19 19 19 19 19 19 19 19 1	ng aktor Latenda	1.02				PROJECT: NONE	PAGE 1
SAMPLE ELEMENT NUMBER UNITS	Cu ^{rs} 2718	In PPM	Ag PPN	As PPM	al Prb	Testät Gæ		W-2
CW-95-141-02-3/4 CW-85-141-03-3/4 CW-85-141-04-3/4 CW-85-141-05-3/4 CW-85-141-06-3/4	110 571 164 182 195	45 128 53 95 35	0.1 (0.1 (0.1 (0.8 (0.1	105 386 178 233 308	25 70 55 85 45			
CW-85-141-07-5/4 CW-85-141-08-3/4 CW-85-141-16-3/4 CW-85-141-11-3/4 CW-85-142-01-3/4	137 42 141 474 16	20 18 54 175 16	(0.1 (0.1 (0.1 (0.1 (0.1	79 6 85 73 2	100 25 115 40 220			
CN-85-142-02-3/4 CN-85-142-03-3/4 CN-85-142-03-3/4 CN-95-142-05-3/4 CN-85-142-06-3/4	82 97 200 - 232 272	26 33 170 94 175	(0,1 (0,1 (0,1 (0,1 (0,1	47 651 872 416 244	25 15 55 40 95			
CN-85-142-07-3/4 CN-85-142-03-3/4 CN-85-142-09-3/4 CN-85-142-11-3/4 CN-85-142-12-3/4	452 156 306 134 236	50 -57 135 50 30	(0.1 (0.1 0.1 (0.1 (0.1	238 124 130 45 28	25 325 190 40 35			
CH-85-142-13-C/4 CH-85-142-14-3/4 CH-85-142-15-3/4 CH-33-142-15-3/4 CH-35-143-01-3/4	365 179 171 160 31	135 120 53 69	.0.2 (6.1 (0.1 0.1 (0.1	91 42 27 218 3	. 15 5 10 15 150	2.50		
EN-ES-143-02-3/40 CN-65-143-03-3/4 CN-63-143-04-3/4 CN-65-143-05-3/4 CN-65-143-06-3/4	35 154 193 224 231	30 125 80 140 73	0.1 0.3 0.1 0.5 0.2	13 234 314 234 157	5 170 100 105 1990			
CW-ES-143-07-2/4 CW-ES-143-07-2/4 CW-ES-143-07-2/4 CW-ES-143-10-3/4 CW-ES-143-11-3/4	133 257 434 484 548	25 35 270 230 110	(0.1 (0.1 0.4 0.7 0.4	54 143 552 173 249	45 20 50 50 50	E.50		
CW-85-144-01-3/4) CW-85-145-01-3/4 CW-85-145-02-3/4 CW-85-145-03-3/4 CW-85-146-01-3/4	715 317 23 121 27	110 15 16 105 22	0.2 (0.1 (0.5).1 (0.1	212 <2- 2 268 21	55 140 120 25 2185	9,00 6,00		

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 (elex: 053-3233

					Γ	PROJECT, MOSE	94GE 2	
REFORT: 016-0726 SAMPLE ELEMENT NUMBER LNITS	Cu .	In Ag		u Testaf 3 ga		Audin 1		
CW-95-147-01-3/4 CW-65-148-01-3/4 CW-95-148-02-3/4 CW-85-148-03-3/4 CW-85-150-01-3/4	18 23 67	26 0.1 17 (2.1 13 (0.1 50 (0.1 18 (0.1	125 E0 2 135 2 135 291 75	5				
56-85-151-01-3/4	345	135 (0.1	Secretary Street Street Control	5 - 2.00				
				1				
			, ale					
				- Agricultur				
	Scarce Service			4.5				
				V 1 - (2 - + 1)				

5420 Canotek Rd., Ottawa. Ontario. Canada KIJ 8X5 'hone: (613) 749-2220 .elex: 053-3233



REPORT: 016-0871		en/e					PROJECT: NONE	9A6E 1
SAMPLE ELEMENT	Cu	Zn	Ag	As	Au	TestHt	- N - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
NUMBER UNITS	PPN	PPM	PPM	PPH	PPB	ga		
CW-85-152-01-3/4	60	28	(0.1	12	110	8.43	Water State of the Control	
EW-85-152-02-3/4	87	23	(0.1	17	165	8.37		
CW-65-153-01-3/4	79	33	0.1	52	95	11.00		
CW-85-153-02-3/4	245	81	0.2	210	85			
CW-85-154-01-3/4	155	51	(0.1	71	55			
CM-85-154A-02-3/4	166	54	0.2	104	115			
CW-85-156-01-3/4	60	23	0.1	21	285	4.00		
CW-65-156-02-3/4	77	25	0.8	15	55	135		
CW-85-156-03-3/4	132	39	0.1	36	15	B.54		
CH-85-155-04-3/4	270	110	0.1	.61	60	1001		
CN-85-156-05-3/4	146	40	1.0	24	90			
- CW-85-157-01-3/4	200	43	0.7	44	1310	9.45		
CW-85-158-01-3/4	752	140	0.6	394	275			
CW-85-159+01-3/4	250	45	(0.1	53	90	3.05		
CH-85-160-01-3/4	295	132	0.3	62	50	750		
CW-85-161-01-3/4	138	48	0.2	100	375			
CH-85-161-02-3/4	151	62	0.3	. 86	45	9.17		
CW-65-161-03-3/4	82	31	0.1	72	350			
CN-85-161-04-3/4	70	26	0.1	57	20			
CW-85-161-05-3/4	_117	30	0.1	31	. 5			
CW-85-161-06-3/4	110	35	0.3	109	55			
CW-85-161-07-3/4	97	28	(0.1	34	15			
CW-05-161-06-3/4	150	33	0.1	53	325			
			**		9			

Bondar-Clegg & Company Ltd.
5420 Canotek Rd..
Ottawa, Ontano.
Canada K1J 8X5
hone: (613) 749-7720
elex: 053-3233

REPORT: 015-	-092B							PROJECT: NONE	PAGE 1
SAMPLE	ELEMENT	Cu.	Zn -	Aq	As	Au	TestHt		
NUMBER	UNITS	pow	PPM	PPM	PPM	PPB.	ÇB		
CW-85-14:	15-74	104	37	0.2	164	145			
CW-85-161		104	32	<0.1	22	15			
CW-85-16:	100	-237	254	0.3	133	35			
CN-S5-14	- (4) 6 9	273	259	0.5	258	35			
CW-85-16	170,700	294	266	0.5	138	15			
. CN-85-161	-15-3/4	72	48	(0.1	17	(15	3.50		
CW-85-16	2-01-3/4	181	62	0.3	200	125			
CW-85-163		201	71	0.2	214	645			
CW-85-160	-01-3/4	192	78	0.2	250	880			
CW-85-140	-12-1/4	167	68	0.2	361	1005			
CH-85-16	3-42-3/4	210	93	0.2	170	20	3 60 100 110	N. 450 - 1 4 J. 1961	
CW-85-160	-54-3/4	154	149	0.2	358	45			
CW-85-163	3-25-7.14	223	82	0.3	168	65			
CW-85-16	-14-1/4	381	109	0.4	196	45			
CH-85-15	-07-3/4 (3/8	310	101	0.5	195	55			
CH-85-164	HAT-JA	126	41	0.1	87	125			
CW-85-14	-2-34	107	38	(0.1	72	225	275		
CW-85-154	-51-3/4	150	50	0.2	171 -	25			
CH-85-154	-04-24 ESS	474	- 60	0.2	140	60			
CW-S5-145	-15-34 -66	101	32	- (0.1	82	35	15.7		
CW-85-143	-034	171	65	0.3	392	30	14-14		
CW-85-16	-01-3/4	71	12	(0.1	. 5	85			
CH-85-14	6-02-3/4	7?	-17	(0.1	7	30	West Track		
C#-85-16:	-13-14	52	25	0.1	116	25			

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 elex: 053-3233

REPORT: 015-1008							PROJECT: NONE PAGE 1
SAMPLE ELEMENT	Cu	Zn	Ag	As	Au	TestWt	
NUMBER UNITS	PPM	PPM	PPH	PP#	PPB	₫ œ	
CW-85-166-04-3/4	104	53	0.3	287	40		
CW-85-166-05-3/4	234	120	0.1	276	80		
CW-85-166-06-3/4	133	69	0.1	186	145		
CW-65-166-07-3/4	152	62	0.3	214	45		
CH-ES-155-08-3/4	153	65	(0,1	96	245	6.00	
CH-85-166-09-3/4	107	44	0.1	119	30		
CW-95-166-10-3/4	101	53	1.0)	147	55	B. A.	
CW-85-166-11-3/4	146	54 .	0.4	174	155	1,500	
CW-95-167-01-3/4	73	44	<0.1	4	100	7.00	
CN-85-168-01-3/4	183	87	0.6	278	50		
CH-85-168-02-3/4	252	132	0.9	314	35	ALCOHOL:	
CW-85-168-03-3/4	184	52	0.4	290	50		
C#-85-168-04-3/4	129	49	0.4	158	30 °		
CN-35-168-05-3/4	246	112	0.5	284	40		
CN-85-168-06-3/4	295	198	0.4	250	40		
C#-85-168-07-3/4	118	32	0.1	51	85		
CW-85-168-08-3/4	179	40	0.3	73	25	The Maria	
CN-85-168-09-3/4	348	265	0.8	217	75		
CW-85-168-10-3/4	356	290	1.3	280	40		
CW-35-168-11-3/4	397	365	0.9	375	220		
CW-85-189-01-3/4	104	52	(0.1	246	235	SESTE	34.00
CW-85-169-02-3/4	134	53	(0.1	280	270		
CW-95-159-03-3/4	130	48	0.6	192	35		
CW-95-159-04-3/4	1:0	56	0.5	252	150	ATTENDED TO	

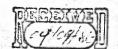
5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 /elex: 053-3233

REPORT: 016-106	2		**************************************					PROJECT: HONE PAGE 1
SAMPLE NUMBER	ELEMENT UNITS	Cu PPA	Zn PPM	Ag PPM	As PPM	Au PPB	Test¥t gm	
CW-85-169-05	3/4	204	118	0.5	220	300		
CW-85-169-08	Technology 200 - 1	296	106	0.7	324	120		
CW-85-169-07		309	118	0.5	318	365	1	
CW-85-169-08		332	132	0.7	274	150		
CW-85-169-09	3/4	370	125	0.7	182	50		
CW-85-170-01	3/4	340	170	0.4	178	40		
CH-85-170-02	3/4	326	125	0.6	278	30		
CW-85-170-03	3/4	384	122	0.6	104	20		
CM-85-171-01	3/4	448	172	0.4	77	- 10		
CN-85-171-02	3/4	515	200	0.4	148	100		
CM-85-171-03	3/4	371	158	0.2	110	245	1 1146 114	
CH-85-171-04	3/4	319	148	0.4	158	55		
CW-85-171-05	3/4	985	148	8.0	284	55		
CN-85-172-01		368	134	0.3	147	100		
CN-85-172-02	2 3/4	193	8.5	0.4	128	130		
N-85-173-01	3/4	392	104	0.7	142	30		
CW-85-175-0	3/4	59	16	<0.1	11	45		
CW-85-176-01	3/4	163	43	0.4	284	110	1	
CH-85-176-02	3/4	206	84	0.5	326	85		
CW-85-176-03	3/4	204	92	0.9	280	85		
CW-85-176-04	3/4	200	80	0.4	268	80		
CW-85-176-05	3/4	173	70	0.4	260	45		
CW-85-175-00	3/4	183	92	0.5	246	90		
CN-85-176-07		171	104	0.7	262	600		
CH-85-176-08	3/4	179	90	0.4	242	600		
C#-85-176-09		163	86	0.4	195	60	71 364	
CW-85-174-10	1,722,1,6,301	164	75	0.4	180	40	100	
CH-85-176-11		186	84	0.4	214	140	es a pleasant	
CW-85-176-17		169	78	0.5	204	60		
CW-85-176-13	3/4	167	76	0.5	262	50	A ALTER	
CW-85-176-14		330	100	P.0	132	40		
CW-85-176-13		291	130	0.3	88	35	1372 - 535	
CW-85-176-16		308	87	0.4	92	25		
CW-85-176-17		444	102	0.4	116	95		
CW-85-176-18	3 3/4	IS	IS	IS	IS	IS		
CW-85-176-19		345	118	0.6	132	180		
1-85-176-20		264	75	0.4	154	175	8.00	Magagagaga
'-85-177-01		74	20	0.1	8	60		MEIGIED (WIET)
₩-85-177-02		273	72	0.2	17	ទ		(09/04/96)
CW-85-177-03	3/4	189	86	0.2	134	20		

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Felex: 053-3233

REPORT: 016-	-1062							PROJECT: NONE	PAGE 2
SAMPLE WUMBER	ELEMENT UNITS	Cu PPM	Zn PP#	Ag	As PPM	Au PPB	Testilt gm		
CW-85-177	7-04 3/4	173	43	2.1	87	40			
CW-85-177	0.000	2084	290	0.6	352	40	A. C.		
CW-85-178		165	26	0.1	37	145			The Committee of the Co
CW-85-178		126	30	0.1	33	105			
CN-85-178		126	26	0.1	18	65			
CW-85-178	1-04 3/4	50	20	(0.1	8	10	第 次第二	2.04/07 5.2.389	
CV-85-178	3-05 3/4	36	20	0.1	3	20			
CW-85-178	3-06 3/4	46	20	⟨0.1	13	130			
CW-85-178		129	28	0.4	76	30			
CW-85-180)-03 3/4	79	22	(0.1	3	5			
EW-85-180		55	19	× 1.1	3,9	95			
CW-85-184		95	25	0.4	65	5			
CW-85-181		35	18	(0.1		5			
CW-85-181		74	57	0.3	6	45			
CW-85-191	-04 3/4	93	40	0.1	J.	55	7.00		
€W-85-181	1-05 3/4	159	92	0.2	164	110	12/21/2		
CW-85-181	1-06 3/4	194	88	0.4	151	20			
CW-85-131	-07 3/4	232	74	0.3	146	80		STATE OF STATE	A STATE OF SHIPLE STATE OF THE
CW-85-182	2-01 3/4	83	71	0.1	10	170			
CW-85-183	3-01 3/4	38	53	0.1		15	7.00		
CW-85-183		111	32	0.3	23	<10	6.00		
CW-85-183		119	35	0.3	17	5			
CW-85-184		25	20	6.1	5	35	9.00		
CW-85-184		62	25	0.2	12	10	7.00		
CW-85-134	1-03 3/4	203	112	0.2	- 44	355	5.00		
CW-85-184	V. 1164 F	148	32	(0.1	43	10			
CW-85-184	OLZ MORTES	315	163	0.4	258	150			
CW-85-187		63	18	0.2	10	5	History A.		
CW-85-190		62 39	18 18	0.2	7 10	15 55			
CW-85-190	1/5 50-6	504	20	0.5	140	115	Tarked as it		
CW-85-191		20	17	0.2	2	20	Text :	The state of the s	
CW-85-171		44	32	0.2		180	The state of the s		
CW-85-192		76	20	0.4	21	110			
CW-85-192		34	18	0.1	3	(5			
CW-85-192	2-03 3/4	42	23	0.2	5.0	⟨5	a eriji Bra		
Y-85-192		37	22	0.1	5	<10	7.00		
4-85-192		60	27	0.2	5	<20	3.05		<u>जिंद्रद्विञ्चल</u>
CW-85-192		- 32	33	0.2	2	<10	6.10		(09/04/8)
CW-85-193	I-01 3/4	102	22	0.3	20	50	5.00	1 12 2	200

5. — Canotek Rd.. O. .wa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

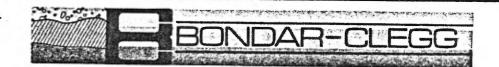

SAMPLE ELEMENT Da Zn Ag As Au Testift NUNDER UNITS PPN PPN PPN PPN PPN PPH PP3 ga CH-85-180-01-3/4 40 20 0.1 6 5 CH-85-180-02-3/4 210 19 (0.1 4 165 8.00	
EW-85-180-02-3/4 210 19 (0.1 4 165 8.00	

5420 Canotek Rd., Ottawa, Ontario, Canada K1, PM5 Phone: (613) 749-722 Felex: 053-3233

REPORT: 016-	1042			Harris S.				PROJECT: NONE PAGE 3
SAMPLE NUMBER	ELEMENT UKITS	Cu PPN	Zn PPM	Ag PPM	As PPM	Au PPB	Test#t	
CN-85-193 CN-85-193 CN-85-194 CN-85-194 CN-85-195	-03 3/4 -01 3/4 -02 3/4	87 87 21 209 31	33 40 20 74 25	0.2 0.3 0.2 0.3 0.2	9 11 7 12 6	230 125 85 <10 <5	9.55 2.00 7.00	
CW-85-195 CW-85-195 CW-85-195 CW-85-195	40 3/4 40 3/4	49 47 40 44	23 20 19 34	0.3 0.1 0.2 0.1	9 16 6 27	50 (5 155 65	9.50 7.00 8.00	
							1 1	

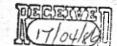
5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Felex: 053-3233

REPORT: 016	-1100							PROJECT: NONE PAGE 1
SAMPLE NUMBER	ELEMENT UNITS	Cu PPM	Zn PPM	Ag PPM	As PPM	Au PPB	TestWt gm	
CW-85-19	5-06-3/4	60	13	⟨0.1	63	30		
	6-01-3/4	390	80	0.2	272	100	8.00	CATALONIA PLANT DIENTE DE C
A SECTION AND ADDRESS OF THE PARTY OF THE PA	7-01-3/4	116	37	(0.1	106	130	9.00	
10 TH 1 TH 1	7-03-3/4	240	52	0.1	194	70	8.00	
CW-85-19	7-04-3/4	317	171	0.4	314	105		
CW-85-19	7-05-3/4	440	185	0.3	464	90	444	
CW-85-19	7-06-3/4	345	124	0.4	236	110		
CW-85-19	17 8 Ft	420	117	0.2	696	345	7.00	
CV-85-19	7-08-3/4	400	92	0.6	266	105		
CW-85-19	7-09-3/4	265	71	0.2	108	4700		
CW-85-19	7-10-3/4	470	185	. 0.1	162	305	A	
CN-85-19	7-11-3/4	450	616	0.6	57	25		
CW-85-19	8-01-3/4	200	298	0.2	47	15		
CW-85-19	8-02-3/4	220	59	0.1	121	180		The state of the s
CW-85-19	8-03-3/4	20	55	₹0.1	316	170		
4-85-19	8-04-3/4	235	60	0.1	156	35		
	3-05-3/4	174	55	- (0.1	81	90		
CW-85-19	8-06-3/4	106	34	(0.1	105	155	7.00	
CW-85-19	8-07-3/4	178	66	(0.1	155	30		
CW-85-19	8-08-3/4	136	- 50	0.1	159	125		
CW-85-19	9-09-3/4	335	109	0.1	272	55		
CW-85-19	8-10-3/4	340	303	0.4	552	85		
CW-85-19	8-11-3/4	345	262	0.4	520	785		
C#-85-19	8-12-3/4	390	164	0.4	332	175		
CW-85-19	9-13-3/4	670	208	0.7	356	85		
CW-85-19	8-14-3/4	520	328	0.5	256	70		
CW-85-19		188	53	(0.1	170	50		
CW-85-19		140	60	0.2	164	40		
CW-85-19		138	40	0.1	108	5290		
CW-85-19	9-05-3/4	265	58	⟨0.1	108	- 40		
CW-85-19		176	43	<0.1	84	955		
CV-85-19		215	36	₹0.1	142	50		
CW-85-19	7142147	186	39	0.1	92	40	F12	
CW-85-19		160	37	(0.1	162	35	679.33	
CW-85-19	9-10-3/4	220	62	0.3	117	65		
CW-85-19		790	521	1.0	440	135		
	9-13-3/4	1120	579	1.1	548	95	10-6	
	9-14-3/4	730	502	0.8	520	170		
CH-85-19		600	454	0.9	504	85	91.19/11	<u>जिंद्रलिक(श</u> ्रेद्र)।
CW-85-19	9-16-3/4	550	440	0.7	343	80	4	N 09/04/86


5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

REPORT: 016-1	100	466							PROJECT: NONE	36-12	70年 2	
SAAPLE Number	ELEMENT UNITS	Cu PPM	Zn PPA	Ag PPM	As PPM	Au PPB	Test¥t ga					
CW-85-199- CW-85-199- CW-85-199- CW-85-199-	18-3/4 19-3/4	760 355 275 335	476 176 100 40	1.2 0.4 0.3 0.1	472 330 190 137	110 160 50 20	5-17			E. J.		
					en en en en en en en en en en en en en e							

5420 Canotek Rd.. Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Felex: 053-3233



REPORT: 016	-1218		i di k	A STATE OF				PROJECT: NONE PAGE 1
SAMPLE NUMBER	ELERENT UNITS	Cu PPN	Zn PPN	Ag PPR	As PPM	Au PPB	Test it	
CW-85-20		26	18	⟨0.1	6	- 220	9.60	
CW-85-20	No. 1986	29	16	₹0.1	6	130	9.00	
CV-85-20		36	17	0.1	7	15		
CN-85-20		56	24	<0.1	- d - 33	190	A TAKE	
CW-85-20	0-05-5/4	29	16	(0.1	32	50	17 S. J.F.	
CH-85-20		49	23	(0.1	188	45		
CN-85-20	2 25,745	81	33	0.1	108	70		
CW-85-20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	172	59	0.5	552	80		
CW-85-200		260	63	0.5	172	30		
CW-85-20	0-10-3/4	157	60	0.3	124	10	5.00	
CM-85-20		28	23	(0.1	1,	(5	700	
CW-85-20		116	24	0.1	22	(5		
CW-85-20	100 100 100 100 100 100 100 100 100 100	123	38	0.2	70	10		
CW-85-20:		203	51	0.3	52	250	Personal St	
CW-85-20	1-05-5/4	164	* 42	0.3	103	200	*	
CH-85-201	1-06-3/4	244	52	0.2	59	65	They're	
CW-85-20	Control of the Contro	185	59	0.3	111	230	700	
CW-85-201		239	63	0.4	143	70		
CV-85-20		206	52	0.2	168	900		
CW-85-201	1-10-3/4	175	62	0.4	194	50	100	
CW-85-201	1-11-3/4	307	245	0.7	236	65	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
CW-85-201	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	284	150	0.6	276	335	* T F C	
CW-85-201	and the second s	203	94	0.7	280	115	7.00	
CW-85-201	The second secon	265	107	0.7	338	160		
CW-85-201	1-15-3/4	290	151	1.2	318	385		
CW-85-201	1-16-3/4	1336	63	0.9	176	160	Deligina in	
CW-85-201	1-17-3/4	265	39	0.4	133	50		
CW-85-202		51	15	0.1	13	195		
CW-85-202		109	35	(0.1	112	55	165	
CW-85-202	2-04-3/4	133	40	0.3	93	140	THE SERVICE	
CW-85-202		175	53	0.4	132	40		
CW-85-202		184	48	0.4	100	30		
CW-85-202		784	20	0.3	22	₹5		
CW-85-203	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	866	33	0.2	139	140		
CW-85-204	4-01-3/4	999	28	0.4	92	105	7.00	
CW-85-205		536	37	0.3	110	385	1240.00	
CW-85-206		50	16	0.1	23	90	4	
CW-85-206		90	19	0.1	18	3690	5.80	
CW-85-206		136	17	0.1	. 8	10	1	MEICHENOVIETI
CN-85-206	1-04-5/4	58	28	0.2	40	465		10(17/04/861)

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Felex: 053-3233

REPORT: 016-	-1218							PROJECT: NONE	PAGE 2
SAAPLE NUABER	ELEMENT UNITS	Cu PPA	Zn PPE	Ag PPA	As PP#	Au PPB	Test¥t gm		
CN-85-208 CN-85-207 CN-85-207 CN-85-207 CN-85-207	7-01-3/4 7-02-3/4 7-03-3/4	158 -49 -46 -58 -63	129 43 23 14 16 22	0.3 0.4 0.5 0.2 (0.1	282 18 8 4 21	430 145 10 <5 600	3.00 9.00 8.00		
CN-85-207	7-05-3/4	ar 176	34	8.3	53	385	5.00		
					u de la companya de l	•			
	. 11 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2								
	1 4 2			er i de la companya d					
					100				

5420 Canotek Rd., Ottawa, Ontario, Canada K11 8X5 Phone: (613) 749-2220 Telex: 053-3233

REPORT: 016-	1242		4					PROJECT: NONE	PAGE 1
SAMPLE NUMBER	ELEMENT :	Cu PPN	Zn PPM	Ag PPM	As PPM	Au PP8			
CW-85-207	7-06-3/4	225	51	0.2	151	40			THE STATE OF THE S
CW-85-207	100000000000000000000000000000000000000	1350	93	0.6	278	30			AND SHEET
CN-85-207		415	121	0.2	424	125			
CW-85-207		935	103	0.8	191	440			
CN-85-208	3-01-3/4	42	33	<0.1	6	195			
EN-85-208	3-52-3/4	38	. 17	0.1	10	60			
CW-85-268	8-13-3/4	72	18	0.1	3å	70			
CW-85-200	1-14-3/4	78	24	0.1	9	10			
CW-85-208	5 04356334	94	26	₹0.1	14	₹5			
CW-65-208	1-04-3/4	94	40	0.1	122	60			
CV-85-200	1-87-3/4	240	91	0.2	198	25	Course vo		
CW-85-209	9-11-3/4	250	79	0.4	114	55			
C9-85-269	1-12-3/4	310	96	0.3	147	50			一个经验。但"在这种
CW-85-201	9-03-3/4	177	59	0.3	85	25			
CN-95-201	9-24-74	197	75	0.1	104	30	far.		
CN-85-201	9-05-3/4	199	85	0.1	117	30	5.75		
CW-85-20	9-05-3/4	185	75	0.1	100	25			
CN-85-20	9-07-3/4	185	100	0.3	79	15			
CW-85-20	9-88-3/4	185	116	9.2	180	85			
CV-85-20	9-19-11	1850	126	0.6	130	<70			
CN-85-21	0-01-3/4	38	21	₹0.1	9	20			
CW-85-211	0-62-3/4	81	32	(0.1	38	15		ALC: NO. OF THE PARTY OF	
CW-85-21	0-03-3/4	90	27	0.2	70	35			
CW-85-21	0-04-3/4	460	34	0.5	179	50			
CV-85-21	0-05-3/4	175	44	0.4	91	330			
CW-85-21	0-06-3/4	172	61	0.4	131	95			
CH-85-21	0-07-7/4	72	29	<0.1	30	185			
CW-85-21	1-01-3/4	230	28	₹0.1	19	50			
CW-85-21	2-03-3/4	31	19	(0.1	<2	115			
CW-85-213	1-11-1/4	176	29	0.1	10	15			
CW-85-211	3-02-3/4	140	73	(0.1	12	25	Jacobia.		
CW-85-21	- 1700	175	77	0.4	105	20	Taller of		
CW-85-21		183	100	5.4	62	15	The same		
CV-85-21		240	93	0.8	70	185	W. L. C.		
CW-85-21		510	59	0.2	55	20			
CW-85-21	4-01-7/4	37	26	⟨0.1	8	15	Thirtie		
CN-85-21	4-01-7/4	115	28	0.1	10	5		5	ലെയ്യുള്ള
CN-85-21		126	70	(0.1	- 11	5			2007
CU-85-21-	4-44-3/4	93	30	0.2	21	150		1	21/04/86
CM-95-21	4-15-3/4	295	65	0.9	65	220		44	

5420 Canotek Rd., Ottawa, Ontario, Canada KIJ 8X5 Phone: (613) 749-2220 Telex: 053-3233

REPORT: 015	5-1242			KARE -			PROJECT: NONE PAGE 2
SAMPLE MUMBER	ELEMENT UNITS	Cu PPA	In PPA	Ag PPM	As PP#	Au PPB	
the contract of	5-01-3/4	44	22	0.3	4	110	
C¥-95-21		103	34	0.1	10	<30	
18	5-03-3/4	28	18	(0.1	7	15	
	15-04-3/4	240	275	0.8	504	15 375	
F#-83-71	6-01-3/4	27 -	30	0.2	11	3/3	
	6-02-3/4	86	43	0.3	35	55	
	7-01-3/4	18	18	⟨0.1	2		
	7-02-3/4	20	19	0.1	5	140	
	7-03-3/4 17-04-3/4	32 69	26 27	<0.1 <0.1	3 27	<10 850	
PM_07_TT	(/-04-3/4	0.7	41	10.1	- 21	OJV gara	
A CONTRACTOR OF THE PARTY OF TH	18-01-3/4	295	144	0.4	180	55	
CONTRACT TO THE PARTY OF THE PA	18-03-3/4	290	310	0.9	636	120	
	19-01-3/4	280	79	0.7	330	190	
	20-01-3/4	270	63	2.9	133	455	
	29-02-3/4	320	144	1.0	153	65	
	21-01-3/4	146	29	0.2	158	80	
and the second s	21-02-3/4	54	32	0.1	14	50	
and the same of th	21-03-3/4	170	34	0.1	81	5	
CN-85-22		230	32	1.0)	46	1190	
F#-93-74	23-01-3/4	144	65	0.2	110	* 30	
CW-85-22	23-02-3/4	340	295	0.5	165	. 80	
	24-01-3/4	31	23	0.2	7	80	
	25-01-3/4	62	27	0.1	18	60	
	26-01-3/4	103	41	0.3	98	5	
CA-82-55	26-02-3/4	154	56	0.4	83	15	
The state of the s	26-03-3/4	385	132	0.4	>2000	365	
A CONTRACTOR OF THE PARTY OF TH	27-01-3/4	61	27	(0.1	112	105	
	27-02-3/4	112	38	0.3	87	120	
	27-03-3/4	90	27	0.1	65	50	
C9-85-22	27-05-3/4	200	36	⟨0,1	- 88	15	
	27-06-3/4	200	72	0.3	244	30	
	27-07-3/4	270	90	0.3	258	40	
	27-08-3/4	230	325	0.1	184	795	
	27-09-3/4	199	51	0.1	127	30	
LW-80-22	27-10-3/4	151	56	0.2	141	10	
CW-85-22	27-11-3/4	270	66	0.4	93	45	물건가 다른 그는 것 같은 15 55명이 되었다.
			1.16		Mile	· Sangata	किइटाइर्स्स्ट्रा

5420 Canotek Rd., Ottawa, Ontario, Canada KIF 8X5 Phone: (613) 749-2220 Telex: 053-3233

674	REPORT: 0	16-1777	2.6	1,5				PR	DJECT: NO	NE .	103-1	PASE 14	
	SAMPLE NUMBER	ELEMENT UNITS	Sc PPA	Cr PPM	Fe PCT	Ca PPR	Ni PPR	Zn PPM	As PPM	Se PPR	Rb PPR	Ro PPE	Ag PPM
	CW-85-		41.0	530 250	23.0 26.0	250 470	79 170	<200 <200	513 170	<13 <10	(15 17	7	₹6 ₹5
									17	(e) (* N.			
			70.2										M. W.
				arak er		200							
											7-31/24 4 - 4 - 4		
											G SAME		
				*		,							ar.
						4							
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 mm									
-		A. 15- Cal. 1	183	12 PM 31 PM	and the same					12		1 1 1 1 1 1 1	A

5420 Canotek Rd., Ottawa, Ontario, Canada KIJ 8X5 Thone: (613) 749-2220 elex: 053-3233

REPORT: (016-1777]			PR	OJECT: NO	HE 34		PAGE 18	1.430.4
SAMPLE NUMBER	ELEMENT CA UMITS PPM	Sb PPA	Es PPA	Ba PPA	La PPM	Eu PPA	Tb PPM	Yb PPA	HF PPM	Ta PPM	PP#
CW-85- CW-85-	-111-01 (10 -170-04 (10	3.0 1.3	4 1	G100	120 66	3	3 2	14 10	110 58	5	(3 7
											78 H
									4.		
			English or							A 40 MI	

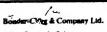
5420 Canotek Rd., Ottawa. Ontario, Canàda K15 8X5 Phone: (613) 749-2220 Felex: 053-3233

REPORT: 0	116-1777			PROJECT: NONE	PAGE IC
SAMPLE NUMBER	ELENENT II- UUTTS 1998	Au I PPB PP	VT g		
	-111-01 C100 -176-04 C100		4.66 14.20		
N. C.					

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

REPORT: 016-	0195							P	ROJECT: N)HE		PAGE 1	
SAMPLE RUMBER	ELEMENT UNITS	Cu PPM	Zn PPM	Ag PPM	As PPM	Au-150 PPM	Au+150 PP#	Au AV PPM	Test#t gms	-150¥t gas	+150¥t		
CW-85-02- CW-85-02- CW-85-05- CW-85-06- CW-85-06-	03-3/4 01-3/4 08-3/4	60 110 124 120 88	18 30 34 31 37	0.2 0.2 0.2 0.1 0.1	40 234 180 68 147	0.50 0.27 0.62 1.36 0.61	0.36 0.08 0.05 0.04 0.05	0.50 0.26 0.59 1.26 0.57	18.00 16.00 16.00	25.16 21.62 19.87 17.92 18.25	0.16 1.19 1.29 1.45 1.57		
CN-85-06- CW-85-07- CW-85-07-	09-3/4	110 300 180	18 32 30	<0.1 0.1 <0.1	7 35 61	0.03 0.07 0.13	0.01 71.65 0.07	0.03 3.53 0.13	6.80 2.20 13.50	8.47 3.82 15.24	1.34 0.19 1.16		A 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
			- a										
						n-							

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Yhone: (613) 749-2220 /elex: 053-3233



REPORT: 016-	-0246	(8 Th						P	OJECT: M	INF		PAGE 1	
SAMPLE RUMBER	SLEMENT UNITS	Cu pp*	In PPM	Ag PP#	As PPM	Au-150	Au+150	Au AV PPM	Test#t	-iSoyt gas	+150¥t		
CW-85-28- CW-85-28- CW-85-28- CW-85-30-	-08-3/4 -32-3/4	138 114 66 64	45 71 28 20	Destruction of the	58 91 71 2	0.02 0.01 0.08 0.02	2.00 24.54 30.43 40.00	0.02 0.48 0.98 0.02	16.00 20.00 17.00 16.00	19.44 25.07 19.72 18.24	0.01 0.50 0.60 0.01		
								gare at					

5420 Canotek Rd., Ottawa. Ontario, Canada K11 8X5 Phone: (613) 749-2220 Telex: 053-3233

REPORT: 016-	0220	100						2	AGUECT : -NI	ME -	Mary Art	PACE - 1	
SAMPLE - SAMULE	ELEMENT	Co PP#	Zn	Ag	As pp#	Au-150 PP#	90+150 PPA	Au AV	Test#t	-150¥t gas	+15044		
CW-05-09- CW-05-09- CW-05-10- CW-05-12- CW-95-12-	04-3/4 02-3/4 01-3/4	90 133 95 36 27	35 34 32 15 41	0.3 0.1 <0.1 0.5 -	129 96 105 42 107	0.37 0.18 0.07 <0.01 1.04	9.02 44.35 7.33 5.06 2.04	10.00	10.73 12.13 13.05 20.00 11.87	11.98 12.81 13.78 21.92 12.51	3.52 4.12 4.01 3.51 3.16		
CV-85-1?-	02-3/4	128	30	0.1	117	0.36	4.52	7.JV	14.10	14.78	3.47		
				3									
<u> </u>								2 4					
											D.		
													97

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Felex: 053-3233

REPORT: 016-03	16	enk?	HT 11.41.					P	ROJECT: N	ONE		PAGE 1	
SAMPLE MAN	ELEMENT >	Cu PPA	Zn PP#	Ag PPS	Ł H	Au-150 PPM	Au+150 PPM	Au AV PP#	Test¥t gms	-150Wt	+150Ut gas		
CW 85 33-12 CW 85 47-02	2 3/4 2 3/4	36 145	38 12	6.2 (0.1	13 14	0.15 0.16	(0.01 (0.01	0.15 0.16	14.00 14.00	16.75 16.15			
			i de la companya de l										
				6,000		77.7							
			(2 ⁻¹ -)										
	京												
	#1.15 #1.15 #1.15	gert.				e sie							

Bondar Clem & Company Ltd. 5420 Canotek Rd. Ottawa, Ontario, Canada KtJ 8X5 Phone: (613) 749-2220 elex: 053-3233

SEFORT: 015-03	75 - A 1980							p	ROJECT: NI	NE		PAGE 1	Harry W	
SAMPLE HUNGER	ELEMENT	Cu PFE	Zn	Ag PP3	AS PPR	Au-150 PPA	Au+150 PPM	Au AV PPM	Testut	-1509t gas	+150¥t gas			
CW-85-48-02 CW-85-54-03 - CW-85-59-01 CW-85-76-09	374 174	230 66 45 90	33 78 13 30	0.5 0.4 0.3 0.4	101 97 103 103 103	2.78 13.70 0.37 0.11	21.31 2.54 0.08 0.02	4.27 13.21 0.36 0.10	12.00 20.00 20.00 20.00	15.00 31.19 22.07 23.32	1.31 2.44 0.78 2.15			
					1							79.		
													W-70	310.2 30.2 310.2 310.2 310.2 310.2 310.2 310.2 310.2 310.2 310.2 310.2 3
	70 Sec.													
			w	14										

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 elex: 053-3233

REFORT: 016-0555							P5	ROJECT: N	INE SE	1,600 1976	PAGE 1	
SAMPLE ELEMS NUMBER UNI	2 Switter 1879	In	Ag PPM	As PPH	Au-150 PPM	Au+150 PPM	Au AV	TestWt	-150Wt gas	+150Wt gms		
CW-85-71-10-3/4	143	54	0.7	124	0.10	98.67	0.99	15.00	19.66	0.18		
CW-85-81-06-3/4	102	32	0.4	110	0.06	0.03	0.06	15.00	18.69	0.62	1	
- CW-85-85-01-3/4	16	13	(0.1	20.	0.01	7.61	0.58	12.80	15.20	1.18	+1	
EN-85-88-03-3/4	118	45	0.4	197	2.12	0.05	2.04	14.00	20.55	0.85		
CN-85-89-02-3/4	28	20	0.2	3	0.01	(0.01	(0.0t	5.50	7.38	\$ 1.11		
CW-85-89-13-3/4	50	33	0.2		1.92	41.90	3.66	12.50	17.55	0.80		
CW-85-93-12-3/4	726	66	0.9	256	0.45	0.10	0.44	20.00	34.69	1.21		
C%-85-101-05-3/4	159	50	0.4	206	4.00	53.55	5.93	15.50	18.52	0.75		
CW-85-101-06-3/4	185	46	0.2	210	0.93	234.55	6.73	16.40	21.62	0.55		
CW-85-103-01-3/4	34	16	0.1	17	0.17	0.18	0.17	17.00	20.29	0.89		
CH-95-103-02-3/4	49	22	0.3	27	1.15	6.02	1.08	14.00	16.31	1.10		
CW-85-105-01-3/4	690	61	0.2	145	0.03	133.13	7.04	9.50	12.06	0.67		
CW-85-106-01-3/4	55	21	0.1	4	0.54	10.60	0.79	9.00	11.87	0.30		
CW-85-112-03-3/4	177	20	1.2	42	9.52	202.60	11.38	6.50	10.28	0.10		
CW-85-113-01-3/4	142	99	0.4	504	0.87	166.18	2.68	7.00	9,93	0.11		
CW-85-115-03-3/4	31	19	⟨0.1	- 3	(0.01	1.00	0.02	8.70	11.73	0.18		THE BUT
CW-65-117-01-3/4	48	19	0.2	40	0.02	40.11	0.52	10.00	14.12	0.18	43.00	
CW-85-118-04-3/4	52	19	0.1	City (6.4	0.03	28.63	0.97	16.00	20.53	0.70	100	
CW-85-118-05-3/4	603	92	0.7	236	0.29	0.07	0.29	20.00	30.69	0.60	1000	
CW-85-122-01-3/4	18	27	0.2	3	0.24	(0.01	0.24	3 17.00	20.03	0.20		

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Yelex: 053-3233

REFORT: 016-0555		artij					23	POJECT: N	ME H		PASE 1	. Plane da
SAMPLE ELEMENT NUMBER UNITS	Cu PFM	Zn PFM	20M	As PFM	Au-153 22%	Au÷150 ppm	Au AV	TestWt gas	-:59¥t gas	+150¥t gas		
CW-85-71-10-3/4	143	54	0.7	124	0.10	93.67	0.99	15.00	19.66	0.18	1472	
CW-85-81-06-3/4	102	32	0.4	110	0.06	0.03	0.05	15.00	18.59	0.62		
CW-85-85-01-3/4	16	13	10.1	20	0.01	7,51	0.56	12.90	15.20	1.18		
CW-85-98-03-3/4	118	45	0.4	197	2.12	3.05	7.04	14.00	20.65	0.95	3.170	7.10
CN-85-87-02-3/4	28	20	0.2	3	0.01	<0.01	(0.01	5.50	7.38	1.11		
CW-35-89-13-3/4	50	- 33	9,2	4	1.92	41.90	3.66	12,50	17.55	0.30		
CW-35-93-12-3/4	226	55	0.9	256	0.45	0.10	9.14	20.00	34.69	1.21		
CW-95-101-05-3/4	159	* 5 0 -	0.4	205	4.00	53.55	5.93	15.50	18.52	0.75	a production	
C#-85-101-06-3/4	1195	46	0.2	210	0.73	234.55	4,73	15.40	21.62	0.55		
C4-85-103-01-3/4	34	18	1.0	17	0,17	0.18	0.17	17.00	20.29	0.89	1000	7 15 15 1
28-35-103-02-3/4	49	22	0.3	27	1.15	0.02	1,58	14.00	16.31	1.10		vel 200 200
CW-85-105-01-3/4	890	61	0.2	145	0.03	133.13	7.04	9.50	12.08	0.67	2 On 25	44.7
CW-85-106-01-374	55	21 -	0.1	4	0.54	10.60	0.79	5.00	:1.87	9.30	40.3	ACCUSA S
CW-85-112-03-3/4	177	20	1.2	42	9.52	202.40	11.38	6.50	10.28	0.10	1.05	16.5
CN-95-113-01-3/4	142	99	0.4	504	0.37	166.18	2,63	7.00	9.93	0.11		
6%-85-115-03-3/4	#11 31	19	(0.1	×1- 3	(0.01	1.00	0.02	8.70	11.73	0.13	1	n ingrangra
CN-85-117-01-3/4	48	19	0.2	40	0.02	40.11	0.52	10,00	14.12	0.18	12.10	in the second
CH-85-11E-04-3/4	52	- 19	0.1	4	0.03	28.53	9.97	16.00	20.53	0.70	15,010 a 1	72920
CN-65-118-05-3/4	603	92	0.7	235	0.29	0.07	C.29	20.00	30.49	2.50		
C¥-85-122-01-3/4	18	27	0.2	3	0.24	(0.01	0.24	17.00	20.03	0.20		第四周数据

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

REPORT: 016-0579	13.12	6,000	- VI	4.54				P	ROJECT: X	THE THE	Winds.	PAGE 1	
SAMPLE NUMBER	ELEMENT	Cu PPM	Zn PPM	Ag PPM	As PPM	Au-150 PPM	Au+150 PPM	AU AV	TestWt gas	-150Wt	+150Wt gas		
. CW-85-132-01 CW-85-138-05 CW-85-139-04		63 253 107	22 24 40	0.4 0.5 0.5	71 11 27		0.93 0.80 0.67	0.04 0.05 0.01	15.00 5.50 20.00	17.07 8.94 33.23	1.10 0.50 0.48		
and the state of t													
					1								
							v.						

5420 Canotek Rd., Ottawa, Ontario, Canada KlJ 8X5 Phone: (613) 749-2220 Telex: 053-3233

REPORT: 016-057	P Wash Line							7	ROJECT: M	DAE T		PAGE 1	14.92 30
SAMPLE NUMBER	ELEMENT BTIKU	Cu PPM	∠ Zn PP#	Ag PPM	fil pov	Au-150 PFS	Au+150 PPM	Au AV PPM	TestWt gas	-1504t gas	+150%t		
CW-85-132-01 CW-85-138-05 CW-85-139-04	123.45	63 253 107	22 24 40	0.4 0.5 0.5	71 11 27	(0.01 (0.01 (0.01	0.80	0.04 0.05 0.01					
								1.000					
									/ \$100 1400				
		R											
						14 Y 74				14			

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

REPORT: 012-	1725 - 1870	18. A. T.	#570 (C)					2	ROJECT: %	ene		745E 1	. 15 16
SAMPLE NUMBER	ELEVENT	: 2u op⊭	€ Zo PP#	AG PPM	As PPM	Au-150	Au+150	Au+150	Au Av PPM	Testut gis	-120WF	+:Sowt	
CN-85-141 CN-85-142		251 320	85 100	0.5 8.2	455 165	0.9£ 0.28	2.18	1303	20.83 0.29	18.00 15.00	21.29 15.79	0.33 0.11	
										•			
										6 + 17 12 - 12 14 - 12 Tr 15 - 12 Tr 16 - 12 Tr		300	
													di .
					195,		n de la companya de l						
	10.1												
												6/1/2	

Bondar-Clegg & Company Ltd. 5420 Cannotek Rd., Ottawa, Ontario, Canada KIJ 8X5 Phone: (613) 749-2220 lelx: 053-3233

REPORT: 016-087	0							P	ROJECT: NO	INE		PAGE 1	· }4 = :	
SAMPLE NUMBER	ELEMENT UNITS	Cu PPH	Zn PPM	Ag PPM	As PPM	Au-150 PPM	Au+150 PPM	Au AV	TestWt gas	-150Wt gas	+150%t gas	. 4		d'a
CW-85-161-09		147	32	0.3	116	0.03	11.02	1.34	17.00	13.72	2.54			
														7
						÷								
										di di				

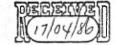
5420 Canotek Rd., Ottawa, Ontario, Canada KIJ 8X5 Phone: (613) 749-2220 'elex: 053-3233

REPORT: 016-1	081		134	Barry.				P	OJECT: NO	NE -		746E J
SAMPLE WUMBER	ELEMENT UMITS	Cu PP#	Zn PPM	Ag PP#	As PP#	Au-150 PP#	Au+150 PP#	Au AV	TestUt gms	-150Wt gas	+1504t gas	
CW-85-170- CW-85-172- CW-85-174- CW-85-176- CW-85-180-	93 3/4 01 3/4 18 3/4	413 612 70 311 53	158 93 24 118 18	0.8 0.5 (0.1 0.7 0.1	325 152 22 164 4	0.19 0.04 0.02 0.04 <0.01	224.76 0.13 <0.01 43.40 <0.01	1.48 0.04 0.02 1.26 (0.01	20.00 20.00 12.00 13.00 9.00	36.36 30.96 16.59 17.29 11.50	0.21 0.61 0.78 0.50 0.63	
CU-85-181- CW-85-191- CW-85-192-	03 3/4	48 207 420	22 137 25	0.1 0.1 0.3	5 15 274	0.19 0.31 0.07	(0.01 15.19 33.91	0.17 1.75 1.68	8.00 8.00 3.00	10.35 10.85 4.41	1.27 1.16 0.22	
										- 1		
	4											

5420 Canotek Rd., Ottawa, Ontario, Canada K13 8X5 Phone: (613) 749-2220 'elex: 053-3233

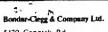
REPORT: 016-11	01	iv liter	10					P	ROJECT: N	ONE	P	AGE 1
SAMPLE NUMBER	ELEMENT UNITS	Cu PPM	Zn PPĦ	Ag PPM	As PPR	Au-150 PPM	Au+150 PPt	Au AV PPR	TestWt gms	-150Wt gms	+150Wt gms	
CW-85-195-0 CW-85-197-0 CW-85-199-0 CW-85-199-1)2-3/4)4-3/4	265 380 320 270	82 116 106 75	1.2 0.6 0.3 0.3	174 222 110 115	1.56 0.30 0.03 0.35	0.02 2.29 0.03 0.02	0.85 1.08 9.03 0.25	4.00 6.00 6.00 11.00	7.27 8.07 7.91 13.76	6-15 5-16 3-87 6-42	
				÷ .								

5420 Canotek Rd., Ottawa, Ontario, Canada KiJ 8X5 Phone: (613) 749-2220 Telex: 053-3233


REPORT: 016-1	1210	0.43.41						, p	ROJECT: N	146		PAGE	1
		Cu	Zn	An S	As	Au-150	Au+150	Au AV	TestVt	-150Wt	+150Wt	FAUL	14/15/
NUMBER	ELEMENT	PPR	PPE	Ag PPR	PPA	PPR	PPR	PPA	gns	925	gas		
CW-85-202- CW-85-205-	-01-3/4 -01-3/4	36 121	45 20	<0.1 0.5	120	0.44 (0.01	0.11 0.67	0.43 0.05	16.50 14.00	18.90 15.22	0.38 1.05		
						£			- 7,55%	ger .		Ā	

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

REPORT: 016-	1241	AS E						P	ROJECT: N	ONE		PAGE 1	
SAAPLE NUMBER	ELEMENT UNITS	Cu PPA	Zn PPA	Ag PP#	As PPM	Au-150 PPM	Au+150 PPM	Au AV	Testüt	-150Wt	+150Wt gas		
CW-85-218 CW-85-227		339 142	166 29	1.4	708 77	0.30 1.02	0.13 0.10	0.29 0.99	16.00 15.00	18.60 17.72	0.78 0.61		
1	<i>**</i>												
								и. -					
Y													
	3/1/3												



APPENDIX E BONDAR-CLEGG BEDROCK ANALYSES

5420 Canotek Rd., Ottawa, Ontario. Canada KIJ 8X5 Phone: (613) 749-2220 Jelex: 053-3233

REPORT: 015-4000	Waliota.	Server .				PROJECT: NOWE PAGE 18
SAMPLE ELEME MUMBER BNI		Zn PPN	Ag PPA	As PPA	Au PP8	
CW-85-81-03-B CW-85-02-04-8 CW-85-03-03-B CW-85-04-03-B 7 CW-85-05-11-B	43 22 60 72	125 98 50 84 96	0.1 0.1 (0.1 0.5 (0.1	75 65 77 91 60	(5 (5 (5 (5 (5	
CW-85-06-26-8 CW-85-07-17-B CW-85-08-12-B CW-85-09-21-B CW-85-10-07-B	25 56 91 77. 101	75 65 50 53 36	(0.1 (0.1 (0.1 (0.1 0.1	98 (2 (2 47 134	5 5 5 6	
CW-85-11-12-8 CW-85-12-08-B CW-85-13-02-B CW-85-14-01-B CW-85-15-02-B	31 33 54 240 17	36 26 26 3600 30	0.1 <0.1 0.1 2.1 <0.1	75 103 83 (2 2	୧୯୯୯୯	
C9-85-16-02-8 C9-85-17-01-8 C9-85-18-02-8 C9-85-19-15-8 C9-85-20-07-8	53 260 36 19 12	36 75 20 58 60	(0.1 0.4 (0.1 (0.1 (0.1	2 6 4 19 8	(S (G (G (G	
CW-85-21-08-8 CW-85-22-03-8 CW-85-23-02-8 CW-85-24-16-8 CW-35-25-02-8	86 55 65 62 96	28 46 40 24 34	0.2 (0.1 (0.1 0.1 0.1	3 100 175 105 134	(5 (5 (5 (5	
CW-85-26-14-8 CW-85-27-25-8 CW-85-29-25-8 CW-85-30-24-8 CW-85-31-18-8	51. 21 21 20 23	26 52 60 48 64	<0.1 <0.1 <0.1 <0.1 <0.1	89 94 79 98 95	10 (5 (5 (5 (5	
CW-65-32-05-8 CW-85-33-13-8 CW-85-34-04-8 CW-85-35-02-8	181 28 48 54 359	82 53 78 74 800	0.2 <0.1 <0.1 <0.1 0.4	65 127 117 150 100	<5 <5 <5 90 20	
C9-85-37-02-8 C4-85-38-04-8 C4-85-39-03-8 C4-85-50-02-8 C4-85-51-02-B	9 34 24 28 29	76 64 60 58 54	<0.1 0.2 <0.1 2.5 0.1	376 4 3 2	10 <5 <5 <5 <5	

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

REPORT: 015-4000		PROJECT: NONE	PAGE 28
SAAPLE ELEMENT Cu Zn Ag Number units pro ppo ppo	As Au PPR PPB		
CW-85-52-03-8 24 29 <0.1 CW-85-53-03-8 46 100 0.2	27 (5 14 (5		

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

REPORT: 015-4253						PROJECT: NONE	PAGE 18
SAMPLE ELEMENT	. Ca	Zn	Ag .	Aš	AU		
NUMBER UNITS	PPM	PPH	PPM	PPM	PPB		
CW-85-40-03B	64	7 <i>E</i> -	1.0)	6	(5		
CW-65-41-42B	60	108	(0.1	2	₹5		
CH-85-42-01B	55	102	₹0.1	8	₹5		
CW-85-43-03B	54	96	(0.1	15	₹5		
CH-85-44-03B	24	225	₹0.1	(2	〈5		
CW-85-45-09E	25	516	<0.1	√2	(5)		
CN-95-46A-27B	25	52	1.0)	2	₹5		
CH-85-47-9IB	24	63	<0.1	4	₹5		
C#-55-48-678	25	55	(0.1	3	(5		
CW-85-49-03B	22	50	(0.1	₹2	K 5		
CW-85-54-04E	42	87	(0.1	25	(5		
CH-85-55-03P	32	164	(0.1	27 P	(5		
CN-55-56-04P	12	25	(0.1	2	45		
CK-85-57-04B	105	58	(0.1	114	15		
CW-EE-58-CEB	42	97	₹0.1	3	(5		
CH-85-59-1/93	30	43	(0.1	3	45 (5		124 AFRICA AND A
CN-85-60-028	23	84	(0.1	2	₹5		
C%-25-61-02B	14	52	(0.1	2	< 5		
CH-85-52-CZR	27	57	(0,1	2	(5		
CW-85-47-05B	23	52	₹0.1	4	(5 - 1-7)		
CN-85-54-02B	ಹ	155	(0.1	T	(5) (5)		
CN-85-55-01B	24	47	(0.1	2	(5		
CW-85-66-035	50	56	(0.1.	<2	(5		
CN-85-67-6EB	25	140	⟨0.1	2.72	(5		
CN-85-63-5TF	28	57	₹0.1	4.	₹5		
CK-85-67-01B	70	55	(0.1	⟨2	₹		
CW-85-70-121	38	54	<0.1	2	15 (5		
	- FEG 1						
	1462	1. 4970					
		1 11 1		Jan.			
- W		4 5.15		7 5 4	Comment State For		
		, V.					
			1000				
			and the second				
		4 1 to 6 (4)		- 4-4			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Felex: 053-3233

REPORT: 016-0060			1 1 1				PROJECT: HOME PAGE 18
SAMPLE ELEMENT NUMBER UNITS	Cu PPR	Zn PPA	Ag PPM	As PPM	Au PPB		
CW-85-71-13-B	251	75	1.0	(2	5	AYM DO	
CW-85-72-13-8	231	105	0.1	1	5		
CW-85-73-02-B	40	34	(0.1	66	₹5		
CN-85-74-03-8	92	60	⟨0.1	<2	(5		
CN-85-75-07-B	37	58	0.1	<2	₹5		e de la companya de l
CM-85-74-03-8	73	69	0.1	〈2	₹5		
CN-85-77-03-8	30	58	0.1	<2	(5		
C¥-85-78-42-B	35	65	₹0.1	₹2	⟨5		
CH-85-79-02-B	31	65	⟨0.1	₹2	(5		
CY-85-80-02-8	39	74	0.1	⟨2	₹5		
CW-85-B1-09-B	50	55	0.1	15	(5	W. Tarris	
CW-85-82-02-B	. 52	93	0.1	30	(5		
CW-85-83-02-8	36	62	0.1	104	(5		
CH-85-84-01-B	57	110	(0.1	44	₹5		
CN-85-85-02-8	12	44	(0.1	5	⟨5		
CV-85-86-02-B	45	95	0.1	16	⟨5		
CW-85-87-02-8	44	110	0.1	14	₹5		
CW-85-88-04-8	54	106	0.1	61	⟨5		
CN-85-89-16-8	19	62	(0.1	5	<5		
CN-85-90-12-B	20	46	₹0.1	5	(5		
CN-85-91-04-8	20	63	(0.1	⟨2	₹5		
CW-85-92-05-8	29	64	(0.1	₹2	₹5		
CW-85-93-13-8	16	59	0.1	6	⟨5		
CW-95-94-06-8	8	64	1.0>	(2	⟨5		
C¥-85-75-04-B	30	<u>,</u> 85	⟨0.1	2	⟨5		
CN-85-96-07-8	4	16	₹ ⟨0.1	2	⟨5		
CW-85-97-04-8	22	59	(0.1	6	<5		
CW-85-98-04-B	23	14	⟨0.1	⟨2	₹5		
CN-85-99-02-8	27	62	(0.1	⟨2	₹5		
C4-85-100-01-8	93	63	0.1	⟨2	⟨5		
CW-95-101-10-B	70	36	₹ <0.1	⟨2	<5		
CW-85-102-01-B	105	84	0.5	17	₹5		
CM-85-103-06-8	83	95	(0.1	32	₹5	7 4 5	
CW-85-104-01-8	150	380	⟨0.1	29	(5		
CW-05-105-02-8	36	125	0.1	12	⟨5	4	
C¥-85-106-02-B	43	99	0.1	11	⟨5		
~V-85-107-03-B	166	105	<0.1	13	₹5		
4-85-108-02-B	90	114	<0.1	4	₹5		
CW-85-109-01-8	144	160	(0.1	<2	(5		
CW-85-110-11-8	41	45	0.1	<2	₹5		

5420 Canotek Rd., Ottawa, Ontario, Canada KIJ 8X5 Phone: (613) 749-2220 Telex: 053-3233

REPORT: 015-	-0060			-4			PROJECT	TE NONE	PHEE 21	No.
SAMPLE NUMBER	ELEAENT UNITS	Cu PPM	Zn PP#	Ag PP#	As PPN	Au PP8		- PA		
CW-85-111	-02-8	1	38	0.1	⟨2	(5				- Salva 187
CW-85-112	-04-B	63	122	0.1	<2	(5			Land of the first	
CW-85-113		12	30	1.0	<2	₹5				
C¥-85-114		33	50	0.1	2	₹5.				
C9-85-115		30	74	<0.1	23	⟨5				Ma.
CW-85-116	-17-8	49	74	<0.1	34	⟨5		figur 1 years of		
CU-85-117	-08-8	63	60	0.1	₹2	<5				
C4-85-119	1-06-8	53	44	0.1	(2	(5				
C2-85-119	1-02-8	67	52	⟨∅.1	(2	<5				English Fr
CW-85-120)-02-8	19	70	KO.1	<2	⟨5				
CW-85-121		8	98	<0.1	₹2	⟨5	eraetika dibi			
CN-85-122	4 547 466 47 11	8	54	₹0.1	<2	₹5				
CW-85-123		81	115	0.1	<2	< 5		West Commission		- to The state it
CW-85-124		60	45	0.1	<2	⟨\$				
CW-85-125	i-02	552	34	0.1	<2	5				
ć¥-85-126		26	23	0.1	⟨2	⟨5				ide and
CW-85-127		60	36	1.0	₹2	₹ (5				
C¥-85-128	The second secon	5	30	0.1	₹2	⟨5				Astronomic
CW-85-129		18	30	⟨0.1	(2	5				
CW-85-130	1-05-8	6 103	56	0.2	⟨2	⟨5				
C#-85-131		30	48	<0.1	<2	⟨5				A 30 %
CW-85-132		54	45	0.1	(2	⟨5				
CW-85-133		51	40	0.1	₹2	₹5				
CW-85-134		33	45	0.1	₹2	<5				
CW-85-135	-04-B	31	70	0.3	₹2	₹5	7.000000000			
CW-85-136		92	28	0.1	⟨2	₹5		Maria Maria		
C4-85-137		45	600	0.1	<2	₹5				
CW-85-138		34	45	₹0.1	(2	(5			Ser de	
CW-85-139		3	45	⟨0.1	₹2	⟨5				
CW-85-140	-05-B	107	64	<0.1	(2	₹5				
C4-85-141		97	40	<0.1	· <2	₹5				
C#-85-142		109	23	(0.1	₹2	(5				ALC: N. of
CW-85-143		91	75	⟨0.1	<2	<5		Av. Sec.		
CW-85-144		67	95	(0.1	<2	₹5				
CW-85-145	1-04-B	29	58	(0.1	37	₹5			No.	
CW-85-146		44	88	1.0>	50	- ⟨5			×1	
~¥-85-147		22	85	<0.1	2	<5				Cal
W-85-148		38	55	⟨0.1	77	<5				Var. 6
UN-85-149	8-10-	24	125	₹0.1	175	⟨5				
15 13%										
		E. Cal		***************************************					1 - 1	4 10

Bondar-Clegg & Company Ltd. 5420 Canotek Rd., Ottawa, Ontario, Canada KIJ 8X5 Phone: (613) 749-2220 Felex: 053-3233

REPORT: 01	5-0064						PROJECT: MOKE	PROJECT: NOME PAGE 18				
SAMPLE MUMBER	ELEMENT UNITS	Cu PPB	Zn PPM	Au PPB		- H	77					
CW-85 1		47 97	52 146	5 (5								
CV-85 1		456	131	- (5		4 2						
CH-95 1		28	90	15								
CW-85 1	54A-03 B	37	60	(5						S.P.		
CW-85 1		101		(5								
CN-85 1 CN-85 1		86 88	100 650	(5 (5						2.5		
CW-85 1		21	110	(5	10			An Fr	Committee Committee			
CW-85 1		85	28	(5								
CW-85 1		61	36	(5	versität.	146" e 25 to e				olimiză		
CW-85 1		12	46	(5					200			
CW-85 1		5	28	(5		- N						
CW-85 1 CW-85 1		32 124	45	. 5 . (5					A A STATE OF	Same.		
		\$100 miles		See See All						A 24		
CW-85 1		63	76	(5	400				100	1		
CW-85 1 CW-85 1		52 98	30 50	(5 (5								
CV-85 1		11	35	(5	V-V		- Valence					
CW-85 1		125	27	⟨\$								
CV-85 1	70-05 B	110	132	5	os austrona					14056		
CV-95 1		128	28	5	1.							
CW-85 1		95	50	(5								
CV-85 1 CV-85 1		122 100	28 39	₹5 ₹5								
	174		S. C. Jeff			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						
CW-85 1		41	68	(5		North Control						
CW-85 1	77-va b 78-08 B	- 155 70	112 40	⟨5 ⟨5						4 572		
CW-85 1		44	60	(5								
	80-07 B	8	72	₹5								
CW-85 1	81-08 8	135	82	⟨5	1				4 11	digiti .		
	92-02 B	124	79	₹5								
	83-04 B	103	60	(5		1317 16	17 3 3 Au	- Fyr.		3116		
CW-85 1	84-06 B 85-01 R	115 86	120 56	(5 (5		2.4				4		
										18/14/		
	86-01 B 87-02 B	152	115	< ₹ 5					a final fig.	Sell les		
	87-02 B 88-01 B	51 107 -	62	<5 <5								
	89-01 8	103	63	₹5								
	90-04 B	155	55	₹5								

Bondar-Clegg & Compuny Ltd, 5420 Canotek Rd., Oltawa, Ontario, Canada K11 8X5 Phone: (613) 749-2220 relex: 053-3233

REPORT: 016-0	064			7	PROJECT: NONE	PAGE 2B
SARPLE Number	ELEMENT UNITS	Cu PPA	Zn PPB	Au PPB		
CW-85 191-1 CW-85 192-1 CW-85 193-1 CW-85 194-1	08 B 04 B	113 79 111 65	90 55 72 88	G G G		

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2229 felex: 053-3233

	REPORT:	116-0064					PROJE	CT: NONE		PAGE	1 70000000
	SAMPLE NUMBER	ELEMENT UNITS	Ag PPM	As PPM		SAMPLE NUMBER	ELEMENT UNITS	Ag PPM	As PPM		
	CW-85	150-02 B	0.1	32		CW-85 191-04	В	0.1	9		
1	CH-85	151-02 B	0.2	28		CW-85 192-08	8	0.1	8		
14.8		152-03 B	0.1	9		CW-85 193-04	В	(0.1	9		
	C#-65	153-03 B	1.0)	2		CW-85 194-03	B	0.1	10		100 200
	CW-85	154A-03 B	0.1	13							
546	CW-85	155-01 B	0.1	15							
N.	CH-85	156-06 B	(0.1	7							
	CV-85	157-12 B	0.3	2							
F 72	CN-85	158-02 B	0.1	. 7			100				
	CH-85	157-10 B	1.0	2							
	CW-55	168-07 B	0.2	(2					780-TX 12		
1	CW-85	161-16 B	0.7	(2					West Marie		
E S	CH-62	162-03 B	(0.1	₹2			W				
	CH-85	163-08 B	(0.1	3				Zischer			
	CH-85	164-05 B	1.0	(2	Am The						
	CW-85	155-03 8	1.0>	2		w/2000					
132	4 7 7 7 7	166-12 B	(0.1	(2						100	e ary Succeeding
	C#-85	167-02 B	(0.1	2							1 1 1 1 1 1 1 1
12.35	CW-85	168-12 B	1.0)	(2	他一切 作品						
	CH-BE	149-10 B	0.1	(2			Ja 18 14 1			11.440	
	CH-85	170-05 B	0.1	⟨2				AH LA			
	EM-85	171-06 B	<0.1	6							
1	CH-85	172-04 B	<0.1	(2							
19.30	CH-RS	177-02 B	(0.1	2							
	CH-85	174-02 8	(0.1	7		residence of the			12:43:4		STATE OF STREET
	CN-85	175-02 B	0.1	32					half-af-		
	CH-85	177-36 B	0.2	19							
	CH-85	178-08 B	0.2	3							
13.4	CH-85	175-01 B	0.1	19			Alberta .				
	CM-82	180-07 B	0.1	3						5-197	
1.2	C#-85	181-52 B	<0.1	3			4.33			e e tidale	
1-3	CW-SS	152-01 \$	0.1	(2	1.7						
1	CH-85	IES-M B	(0.1	3	Att Water		3714	178.0	400		
1307	CW-B	194-24 B	0.1	7			100		14		
	CM-82	185-01 3	(0.1	3	1.5		141				
	CM-8:	186-01 B	0.1	2			44 T	10 3/2			
		187-02 \$	0.2	₹2					ଗ୍ରହନ	Sevens	
	CW-8	5 188-01 3	₹0.1	4					Mesica	EXM	
		189-01 3	(0.1	10	- 1				N. F	04/86)	10 at 12 at 1
	CM-B	5 190-04 B	0.1	19						· (0),	

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

	REPORT: 016-08	70	10 0 0 C						PROJECT: NONE	PAGE 1B
	SAMPLE NUMBER	ELEMENT UNITS	Cu PPN	Zn PPM	Ag PPM	As PPM	Au PPB			
	CH-85-195-0	B	35	86	(0.1	<2	⟨5	the same and		
4	CW-85-196-02	2 B	31	76	(0.1	4	(5			
	CW-85-197-1	2 B	61	520	(0.1	2	(5			
	C#-85-198-15	8	148	118	(0.1	(2	<5			
	CW-85 199-2	B >	82	32	(0.1	(2	(5			
	CW-85 200-11	В	120	50	(0.1	5	√ (5			MARK MER STOR
	CW-85 201-18	B	146	39	(0.1	6	<5			
	CW-85 202-08	В	152	66	(0.1	3	(5			
	CW-85 203-0	? B	106	88	(0.1	3	₹5			
	CW-85 204-02	9	104	80	(0.1	2	(5			
	€ CW-35 205-0	The state of the same of	113	88	(0.1	2	(5		4,000	
	CW-85 206-06	THE THE PERSON IN	124	129	₹0.1	(2	(5			
	CW-85 207-1	T. J. P. O. T. C. C. C.	106	102	(0.1	2	* (5			
1	CW-85 208-08	8	100	114	(0.1	<2	<5			
	E¥-85 209-10) B	84	135	(0.1	3	(5			
	CW-85 210-09	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	81	121	(0.1	8	(5		the second second	
	CM-85 211-03	The State of the S	> 125	108	(0.1	3	(5			
1	CW-85 212-02	THE RESERVE OF THE PARTY OF THE	6	25	(0.1	(2	(5			
4	CH-85 213-07	the second second second second	124	96	(0.1	3	₹5			
	CM-85 214-08	В	13	127	0.1	2	₹5			
1 1	CW-85 215-05	the second secon	54	112	(0.1	81	√ √ 5			
	EW-85 216-03	100000000000000000000000000000000000000	134	130	(0.1	45	5			
2	CW-85 217-05		136	121	(0.1	27	5	1.4.1		
	CH-85 218-04	The State of the last of the l	52	101	(0.1	27	(5			
1.75	CW-85 217-02	8	53	63	(0.1	1	(5	and the state of		
	CW-85 220-03	The second secon	24	117		2	₹5	T. F.		224
35	CW-85 221-04		84	77	(0.1	. 7	₹5	546		
	CN-85 222-02		108	103	(0.1	7	(5			
	EW-85 223-03		77	113	₹0.1	13	5	2 X 124		
	CW-85 224-02	B	119	102	(0.1	15	(5	Part Control		
200	CW-85 225-02		66	113	(0.1	2	(5			
1	CW-85 226-04		63	90	(0.1	274	45	The state of		
100	CW-85 227-17	B	98	98	<0.1	3	5	* 1		

APPENDIX F BONDAR-CLEGG DC PLASMA WHOLE ROCK ANALYSIS BEDROCK CHIP SAMPLES

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 (elex: 053-3233

REPORT: 015-4000							PR	OJECT: NO	HE -		PAGE 1A	
SAMPLE ELEMENT	SiD2	TiO2	A1203	Fe203*	#m0	AgD	Ca0	Na20	K20 T	P205	LOI	īgtal
Homber Daits	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT
CW-65-01-03-B	56.20	0.58	14.30	6.00	0.09	4.72	5.05	2.01	1.80	0.22	8.40	99.37
CW-65-02-04-B	68.80	0.38	15.00	3.07	0.05	1.00	3.54	4.13	2.45	0.23	2.65	101.32
CW-95-03-03-B	59.80	0.73	15.30	8.85	0.15	4.24	5.02	3.02	1.37	0.23	2.30	101.00
CW-85-04-03-B	57.50	0.67	15.70	9.27	0.13	3.39	3.08	2.92	1.09	0.19	4.05	97.99
CW-95-05-11-B	48.80	1.90	15.00	12.90	0.17	5.00	6.15	3.93	1.86	0.35	4.75	100.81
CW-85-06-26-B	60.90	0.62	14.30	6.79	0.10	5.03	5.23	2.16	1.95	0.31	2.95	100.44
CW-85-07-17-B	53.40	0.67	14.80	14.40	0.14	3.87	4.64	2.72	0.22	0.17	6.25	101.28
CW-85-08-12-B	61.70	0.49	17.40	4.89	0.07	2.74	4.78	6.83	2.02	0.45	0.45	101.82
CW-85-09-21-B	63.40	0.35	15.90	3.65	0.06	2.07	3.30	6.41	2.69	0.28	1.15	99.24
CW-85-19-07-B	47.70	1.83	14.50	17.30	0.23	5.86	6.50	4.39	1.84	0.32	0.75	101.22
CW-05-11-12-B	59.20	0.69	16.70	10.08	0.13	3.54	3.20	3.09	1.48	0.06	0.40	98.56
CW-85-12-09-8	62.40	0.60	14.40	6.71	0.10	4.92	5.00	2.04	2.01	0.12	0.30	93.59
CW-05-13-02-B	65.20	0.54	14.90	5.57	0.07	2.46	3.13	3.53	2.00	0.09	0.75	98.26
CW-95-14-61-B	58.50	0.36	11.90	6.20	0.03	1.63	0.97	3.23	1.97	0.09	13.20	98.08
CW-05-15-02-B	63.60	0.35	16.60	3.56	0.06	1.78	3.62	6.04	2.88	0.40	0.15	99.15
CM-85-16-02-B	44.60	1.84	13.80	18.60	0.27	6.47	9.78	3.07	0.44	0.23	0.20	101.30
CM-85-17-01-B	53.70	0.86	13.60	14.70	0.25	3.76	6.77	3.21	1.15	0,21	1.95	100.16
CM-85-16-02-B	50.40	1.61	13.10	15.00	0.22	6.17	3.11	3.79	0.46	0.28	0.60	5100.74
CM-85-19-15-B	70.70	0.24	13.20	2.07	0.04	0.78	1.98	5.45	1.37	0.18	1.55	97.55
CM-85-20-07-B	64.80	0.44	15.30	3.55	0.05	1.37	3.49	5.75	2.45	0.23	1.40	98.81
CW-85-21-08-8	49,30	0.74	14.70	13.70	0.24	7.06	8.58	3.19	1.33	0.26	2.05	101.15
CW-85-22-08-8	56.10	0.94	17.70	10.90	0.24	2.20	5.44	5.29	1.26	0.13	1.50	101.69
CW-85-23-02-8	61.10	0.64	15.40	6.01	0.10	4.18	5.26	5.03	1.34	0.31	1.35	100.70
CW-85-24-16-8	53.30	1.86	13.80	14.70	0.24	4.42	7.31	3.77	0.74	0.35	1.15	101.64
CW-85-25-02-8	53.40	1.49	13.80	14.20	0.27	5.58	6.43	3.05	0.61	0.34	1.50	100.68
CW-35-25-14-8 CW-85-27-25-8 CW-85-29-25-2 CW-85-30-24-8 CW-85-31-13-8	52.40 65.50 62.50 50.10 64.00	1.27 0.57 0.54 0.43 0.55	14.50 14.30 13.80 11.20 14.20	12.50 4.91 5.09 3.93 5.40	9.21 0.68 9.08 0.14 0.09	4.36 1.45 1.24 1.70 1.95	9.30 4.18 5.75 15.60 5.12	2.63 4.65 4.15 3.18 3.66	1.05 1.43 1.60 1.06 1.22	0.28 0.31 0.30 0.25 0.36	3.70 5.15	100.25 101.08 100.22 100.48 101.70
CW-85-32-05-8 CW-85-33-13-8 CW-85-34-04-8 CW-85-35-02-8 CW-85-36-02-8	65.50 63.10 56.10 51.60 64.70	0.46 0.54 0.98 0.71 0.55	13.90 15.10 14.40 16.60 12.40	8.45 5.64 8.41 7.15 5.01	0.12 0.07 0.14 0.13 0.09	3.42 2.06 5.54 3.70 1.89	1.90 5.13 6.31 6.30 3.16	2.37 4.63 3.05 5.08 2.23	1.13 0.98 0.53 1.33 2.11	0.17 0.38 0.43 0.51 0.13	2.75 5.90 6.60	100.19 101.38 100.79 100.20 97.76
CW-85-37-02-B	41.00	0.42	6.75	7.77	0.16	9.59	12.30	0.50	2.74	0.38	19.20	100.74
CW-95-38-04-B	66.80	0.36	15.40	3.59	0.04	2.03	1.59	3.03	3.26	0.07	1.95	96.13
CW-33-39-03-B	69.30	0.37	16.60	3.71	0.04	2.09	1.71	3.15	0.30	0.11	1.90	99.29
CW-35-50-02-B	60.40	0.53	14.80	4.60	0.11	0.78	4.72	2.83	3.98	0.19	4.95	97.89
CW-33-51-02-8	77.00	0.30	9.05	2.66	0.09	0.66	2.21	1.60	1.62	0.23	2.90	97.31

5420 Canotek Rd., Ottawa, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 /elex: 053-3233

REPORT: 015-4	000							? R	OJECT: NO	iE		PAGE 24	
SAMPLE NUMBER	ELEMENT UNITS	SiD2 PCT	TiO2 PCT	A1203 PCT	Fe203∓ PCT	And PCT	∄g0 PCT	CaO PCT	Na20 PCT	K20 PCT	P205 PCT	LOI PCI	PCT
CW-85-52-0 CW-65-53-0	3-8 3-2	76.70 61.60	0.41 0.58	11.20 14.70	3.49 6.16	0.11 0.13	0.74 2.43	2.96 3.95	2.95 4.04	2.15 1.24	0.20 0.19		97.27 101.02
				West of				g en					
								10 mg					
							27						
						Tana Samu							
^													

Bondar-Clegg & Company Ltd.

5420 Canotek Rd., Ottawa, Ontario, Canada K13 8X5 Phone: (613) 749-2220 relex: 053-323;

CINDIE	ELENENT :	Si02	Ti02	A1203	Fe203*	MnO	NaO	CaO	Na20	K20	P205	LOI	Total
Sample Number	UNITS	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PET	PCT	PET	PCT	PCT
CH-65-40-03B		51.20	0.81	13.20	7.72	0.12	2.25	9.76	1.48	1.11	0.60	9.50	97.76
CW-85-41-0ZB	with the second party of	47.20	1.54	13.70	10.30	0.17	1.86	9.79	2.31	2.00	0.55	8.75	98.16
CW-85-42-01B		57.10	0.58	15.50	6.04	0.07	2.39	5.95	2.22	1.75	0.23	6.05	97.88
CW-85-43-038	10 (ACC) 1 (Age 42)	54.50	0.68	14.00	8.24	0.10	2.02	7.84	4.02	1.03	0.29	8.80	101.53
CW-85-44-038	The state of the s	63.10	0.52	14.50	6.01	0.14	3.53	1.34	1.81	0.88	. 0.32	5.70	97.86
CN-85-45-698		765.80	0.47	15.00	3.86	0.04	1.70	3.65	4.34	1.24	0.25	1.40	97.75
CW-85-46A-27	В	62.10	0.55	14.40	4.64	0.07	1.67	5.07	3.30	1.82	0.32	3.60	97.55
CW-85-47-038		68.20	0.48	14.30	3.39	0.05	1.24	3.15	3.81	1.79	0.15	1.10	97.65
44 CW-85-49-02%	A0012 1 105	50.30	0.43	13.30	3.01	0.06	1.31	3.81	4.45	1.36	0.25	9,70	97.93
_CW-85-49-03E	10 Page 10 Pag	63.00	0.53	15.10	4.34	0.07	1.75	4.56	4.34	1.06	0.29	2.70	97-,75
CW-85-54-049	(4) M	59.40	0.48	12.70	6.03	0.11	2.27	4.37	2.96	1.15	0.20	7.75	97.63
CW-85-55-738		63.10	0.62	15.10	5.33	0.09	2.36	2.34	3.68	1.18	0.19	3.65	98.66
CW-85-56-041	- 36.43	71.60	0.15	5.10	3.12	0.08	2.78	5.59	1.21	0.31	0.25	7.60	97.78
CH-85-57-048		60.10	0.52	15.00	6.78	0.19	2.54	4.96	3.08	1.18	0.21	6.90	101.57
CW-85-59-065		62,90	0.40	14.50	5.33	0.15	1.52	2.70	4.94	1.20	0.23	3.50	97.47
CH-85-59-093		65.00	0.39	13.30	5.17	0.17	1.34	3.38	3.52	1.35	0.18	4.40	98.70
GW-35-50-021		60.70	0.45	13.10	4.84	0.09	2.13	6.51	2.86	1.48	0.21	4.65	97.02
CH-85-41-021		61.20	0.47	13.50	5.14	0.09	1.76	5.87	3.77	1.03	0.07	5.45	98.35
CW-85-62-038		55.30	0.48	1 1000	14.30	0.09	1.75	3.83	4.40	1.35	0.28	3.90	101.28
CH-95-62-051		63.10	0.49	13.70	5.07	0.12	1.86	5.97	2.64	1.23	0.19	2.90	97.27
CH-85-64-02		67.00	0.54	14.90	3.02	35, 93 A . A	1.27	0.42	4.83	1.64	0.22	2.90	97.56
CW-85-65-013		66.20	0.50	12.30	3.57	0.08	1.27	4.41	2.60	1.79	0.29	4.85	97.85
C4-85-66-03	1	53.40	0.55	10.70	6.51	0.13	7.36	8.13	3.15	0.22	12.0	7.35	97.81
CH-85-67-05		58.20	0.50	13.50	3.69	0.13	0.98	8.48	3.64	1.37	0.37	6.25	97.61
CH-85-18-07		62.80	0.47	12.80	5.02	0.09	2.50	4.78	3.07	1.72	0.20	4,10	97.74
CN-85-49-01	1533.5	51.00	0.85	15.50	7.15	0.10	2.93	9.04	1.66	2.78	0.57	3.90	100.48
CW-85-70-12	- Santa	59.60	0.48	14.10	7.68	0.35	2.08	5.13	4.70	1.40	0.09	4.40	100.01

Boreiar-Clegg & Company Ltd.

5420 Canotek Rd., Ottawa, Ontario, Canada K13 8X5 Phone: (613) 749-2220 /elex: 053-3233

REPORT: 016-0)40							PRO	JJECT: NON	Ε	The state of	PAGE 1A	
GAAPLE HUABER	ELEMENT UNITS	SiO2 PCT	Ti02 PCT	A1203 PCT	Fe203# PCT	Ano PCT	MgO PCT	Ca0 PCT	Na20 PCT	K20 PCT	P205 PCT	LOI PCT	Total PCT
CW-85-71-1	3-8	52.10	1.04	16.80	10.90	0.16	4,24	7.83	3.76	2.83	0.33	1.00	100.99
CH-85-72-1		56.20	1.12	15.90	10.60	0.07	3.01	0.60	4.25	3.20	0.44	2.60	99.00
EW-85-73-0		63.20	0.30	11.30	4.32	0.02	0.90	0.63	2.83	1.39	(0.01	12.15	97.04
CN-85-74-0		64.60	0.49	15.50	5.54	0.13	1.02	5.09	2.70	2.11	0.06	4.25	101.49
C#-85-75-0		45.50	0.61	16.20	5.09	0.08	2.50	4.31	4.55	1.42	0.22	1.10	101.58
CN-85-76-0	3-8	48.10	0.80	12.40	9.50	0.21	7.69	12.50	0.47	9.49	0.32	9.10	101.18
CW-85-77-0		68.90	0.56	15.10	4.01	0.07	1.95	4.17	4.65	1.21	0.22	1.00	101.86
CW-85-78-0		64.20	0.51	14.50	6.99	0.22	1.70	3.66	3.30	1.31	0.19	1.00	97.58
CN-85-79-0		64.20	0.59	14.50	5.06	0.10	1.95	4.87	4.00	1.29	0.30	1.60	98.47
CW-85-80-0		64.20	0.65	15.70	5.13	0.08	2.67	3.74	5.05	1.49	0.23	1.10	100.04
CW-85-81-0	Q_Q	60.90	0.46	13.40	5.05	0.08	2.95	3.77	3.94	1.51	0.24	5.40	97.70
CM-85-82-0		58.50	0.65	14.90	7.32	0.13	2.42	3.73	2.52	1.42	0.28	6.40	98.23
C¥-85-83-0		62.90	0.51	14.90	4.99	0.08	2.00	3.84	3.31	1.47	0.28	4.30	98.58
CW-85-84-0		57.10	0.67	15.80	7.81	0.13	3.31	4.36	2.72	1.44	0.20	6.90	79.55
CW-85-85-0		44.40	0.26	15.70	2.65	0.13	1.47	5.50	3.93	1.51	0.28	5.50	101.29
. ⊈- 85-86-0	7_8	64.30	0.67	16.20	6.98	0.09	2.45	2.19	2.71	2.32	0.34	3.40	101.57
C¥-85-87-0		60.90	0.62	14.20	7.16	0.15	2.32	3.86	2.28	1.71	0.20	4.60	98.01
C#-85-88-0		60.60	0.70	17.30	7.91	0.10	2.62	2.73	2.98	1.96	0.24	4.00	101.13
	The same of the sa										0.27	6.50	101.28
CH-85-89-1		57.00	0.59	15.40	5.47	0.11	2.29	8.08	3.93	1.74			
CW-85-90-1	2-8	62.40	0.41	12.80	4.40	0.12	2.61	9.07	2.97	1.38	0.16	4.85	101.68
CW-85-91-0		66.10	0.49	14.00	4.09	0.04	1.02	4.71	3.74	1.55	0.14	4.35	100.23
C#-85-92-0		64.40	0.50	14.80	4.29	0.07	1.29	5.34	3.82	1.48	0.20	5.20	101.39
C4-85-93-1		61.40	0.53	14.70	4.62	0.06	2.45	4.43	4.03	1.37	0.32	4.20	98.16
C#-85-94-0	6-8	65.30	9.56	15.50	4.80	0.05	1.37	3.37	4.10	1.46	0.20	4.00	101.42
CH-85-95-0	4-8	69.90	0.42	12.90	3.64	0.04	1.51	1.91	2.99	1.19	0.27	2.60	97.37
CW-85-96-0		64.50	9.44	12.90	3.94	0.07	1.63	4.58	2.47	2.23	0.22	4.25	97.23
CW-85-97-0		61.90	0.50	14.30	4.40	0.06	1.32	5.82	3.73	1.82	0.17	5.10	99.12
C#-85-98-0	4-B	67.70	0.49	14.60	1.21	0.03	0.45	3.98	3.72	1.75	0.21	3.95	98.08
CW-85-99-0	2-8	63.00	0.51	14.50	4.94	0.09	1.87	4.63	4.54	1.55	0.24	2.35	78.23
CW-85-100-	01-B	44.70	0.70	10.10	9.67	0.18	12.40	9.99	1.49	0.99	0.43	9.65	79.30
CW-85-101-	10-8	49.90	1.31	13.10	15.90	0.23	4.84	7.34	3.55	0.55	0.25	0.45	97.53
C¥-85-102-	01-B	65.60	0.83	10.40	9.95	0.19	1.98	2.81	3.26	0.76	0.17	1.20	97.14
CW-85-103-	05-8	49.70	2.09	11.70	16.50	0.35	3.40	8.85	2.41	0.68	0.24	5.90	101.82
CW-85-104-		53.20	1.55	15.20	13.40	0.31	5.11	4.02	3.03	0.77	0.34	4.75	-101.68
CW-85-105-		52.50	2.07	13.50	12.20	0.25	3.92	6.49	2.72	0.49	0.55	5.60	100.48
CW-85-106-	02-B	52.20	2.13	12.40	11.80	0.29	3.69	6.71	2.54	0.51	0.50	6.20	98.97
~~~W-85-107-	03-8	54.20	2.39	13.10	13.80	0.29	4.05	7.35	1.53	0.30	0.51	3.20	100.72
-85-108-		55.50	1.96	13.50	8.72	0.22	3.30	6.29	4.37	0.32	0.59	4.45	99.22
€¥-85-109-		47.40	2.29	12.70	19.30	0.40	4.19	9.58	0.55	0.85	0.46	4.95	101.78
	11-B	53.80	1.50	14.80	11.00	0.31	5.12	8.57	3.99	0.52	0.45	1.15	101.31

## Bondar-Clegg & Company Ltd.

5420 Canotek Rd., Ottawa, Ontario, Canada K11 8X5 Phone: (613) 749-2220 Felex: 053-3233



REPORT: 016-0060							PRO	JECT: NON	E	P	46E 24	
SAMPLE ELEMENT UNITS	SiO2 PCT	TiO2 PCT	Al203 PCT	Fe203# PCT	#n0 PCT	fig0 PCT	Ca0 PCT	Na20 PCT	K20 PCT	P205 PCT	LOI	Total PCT
CV-85-111-02-8	51.40	1.03	14.70	10.70	0.20	6.74	11.60	1.77	0.28	0.35	2.05	101.02
CN-85-112-04-8	44.40	1.83	15.00	15.80	9.18	5.20	8.08	5.05	1.45	0.51	4.30	101.80
CW-85-113-06-B	52.00	1.61	13.20	14.00	0.26	4.38	9.73	5.21	0.31	0.40	0.55	101.65
CW-85-114-05-B	66.00	0.33	14.70	2.90	0.07	1.15	3.37	5.26	1.02	0.03	3.20	98.43
CW-85-115-08-8	63.80	0.51	15.30	4.95	0.09	2.16	3.01	2.61	2.00	- 0.30	4.35	98.07
61.06.117.42.8	12.18	A 57	· 15.00	5.93	0.11	2.11	3.03	2.40	1.92	0.23	5.10	97.80
CV-85-116-17-8	69.40	0.57		15.20	0.30	5.58	8.32	2.52	0.27	0.27	2.75	97.97
CW-85-117-08-B	47.80	1.35	13.50			3.85	7.27	5.10	0.70	0.33	0.26	98.22
C¥-85-113-06-8	49.70	1.37	12.30	16.70	0.21		8.22	5.08	0.50	0.31	0.70	97.94
CY-95-119-02-B	56.30	1.30	14.10	7.39	0.18	3.46			2.57		1.40	97.37
CV-85-120-02-8	45.50	0.57	13.30	5.86	0.11	1.09	3.28	3.45	- 6401	0.23	1.47	31.01
C¥-95-121-02	59.19	1.07	14.80	8.72	0.18	1.84	4.44	3.56	1.69	0.59	1.30	97.31
CW-85-122-02	63.90	4.47	14.80	4.17	0.07	1.23	4.01	4.33	2.45	0.22	1.75	97.40
CW-85-123-02	54.30	1.65	13.40	12.30	0.22	5.86	6.33	2.64	1.09	0.14	1.20	99.13
CU-85-124-02	51.40	0.80	12.50	8.87	0.15	9.23	9.30	3.54	1.92	0.55	2.00	100.26
CW-85-125-02	45.80	1.62	15.40	16.70	0.20	6.52	11.80	1.65	0.46	0.12	0.90	101.17
€¥-85-126-02	53.60	0.59	11.50	8.88	0.16	10.10	10.50	3.51	1.01	0.30	1.65	101.96
CW-85-127-07-8	58.20	0.57	15.80	6.33	0.12	5.33	7.18	4.98	1.98	0.29	0.70	101.48
CW-85-128-02-8	50.70	0.59	17.40	8.57	0.15	6.51	10.70	2.21	1.63	0.10	1.55	100.11
CW-85-129-04-8	59.60	0.53	16.40	6.08	0.10	4.38	7.15	5.13	1.11	0.29	1.10	101.87
CH-85-130-05-8	58.70	1.13	13.40	10.00	0.22	4.40	8.18		1.22	0.12	0.65	101.75
OH GE 171 A2 D	64.80	0.40	14.40	3.90	0.07	2.42	6.59	2.13	1.78	0.13	1.00	97.50
CW-G5-131-02-B					0.05	2.50	4.40	3.94	1.41	0.17	0.65	97.25
CW-85-132-03-8	65.30	0.41	14.60	3.91			5.10	4.56	1.72	0.06	0.65	98.53
C4-85-133-03-8	61.70	0.50	15.70	5.43	0.08	3.04		3.76	1.04	0.15	1.00	97.47
CY-85-134-07-8	63.10	0.51	14.70	5.18	0.08	3.32	4.43		1.50	0.25	0.30	97.68
CW-85-135-04-8	64.00	0.58	15.00	4.72	0.06	3.01	3.16	5.00	1.37	4.77	A*9A	11.00
CW-85-136-03-8	51.80	1.46	14.00	14.80	0.20	5.10	9.34	2.77	0.51	0.17	0.30	100.95
CW-85-137-01-8	63.90	0.52	15.60	5.93	0.15	4.04	4.26	3.57	1.58	0.16	1.60	101.31
CW-85-138-06-8	63.40	1.56	15.40	6.67	0.09	3.47	4.17	4.20	1.48	0.21		101.45
CU-85-139-14-B	65.00	0.31	16.30	3.20	0.05	1.68	3.55	5.94	2.09	0.08	0.80	99.03
CW-85-140-05-B	46.90	1.12	15.00	12.99	0.23	6.03	9.70	3.88	0.63	0.10	1.20	97.74
CW-85-141-12-8	51.90	1.85	14.90	9.48	0.22	4.35	7.68	4.31	0.73	0.20	1.10	98.72
CN-85-142-17-8	49.60	0.91	14.70	10.36	0.19	6.63	10.50	3.55	9.18	0.06	1.30	77.98
CW-85-143-12-8	49.70	1.88	14.70	13.90	0.20	2.88	6.44	5.68	1.02	0.10	0.85	97.34
CW-85-144-02-8	54.80	1.78	12.60	11.30	0.29	3.93	7.23	3.21	9.74	0.31	1.10	97.29
CW-85-145-04-8	58.20	0.98	8.95	9.55	0.15	4.20	6.29	1.01	0.50	0.03	10.00	99.37
CW-85-146-02-B	59.90	0.59	15.40	6.10	0.09	1.83	2.02	2.74	2.30	0.04	5.45	97.46
**-85-147-02-8	48.40	2.03	12.60	14.80	0.23	3.72	8.31	3.04	0.22	0.24	8.05	101.63
	46.40	1.74	14.00	10.10	0.20	4.48	7.47	2.22	0.95	0.31	11.70	79.56
9-95-149-03-9			17.444	VIIV	A = 7 A	עדיד	1 4 7 2	2144	4 2 1 4	4 4 75 7		
4-85-148-04-8 64-85-149-01-8	42.50	1.22	14.00	12.50	0.20	8.03	5.80	1.02	0.30	0.30	12.20	98.08

Geochemical Lab Report

Bondar-Clegg & Company Ltd. 5420 Canotek Rd., Ottawa, Ontario, Canada K13 8X5 Phone: (613) 749-2220 Telex: 053-3233



REPORT:	016-0064		1 190		]			PRO	IJECT: NO	E		PAGE 1A	
SAMPLE NUMBER	ELEMENT UNITS	SiO2 PCT	TiO2 PCT	A1203 PCT	Fe203± PCT	#n0 PCT	MgO PCT	Ca0 PCT	Wa20 PCT	K20 PCT	P205 PCT	LOI PCT	Total
CN-85	5 150-02 B	44.50	0.94	15.60	7.88	0.17	4.91	7.22	3.99	1.20	0.26	11.80	98.46
	151-02 B	51.90	1.97	12.40	14.40	0.26	4.11	5.40	2.14	0.43	0.24	5.11	98.36
	5 152-03 B	44.60	1.23	8.77	25.10	0.59	4.52	9.11	1.07	0.75	0.19	2.60	98.53
	5 153-03 B	51.90	2.11	11.30	18.10	0.24	3.45	4.80	2.57	0.44	0.41	3.10	98.42
	5 154A-03 B	61.70	0.61	13.50	9.53	0.10	2.70	2.70	2.29	1.73	0.25	2.95	98.09
CW-85	5 155-01 B	48.60	0.60	15.00	9.41	0.16	4.26	10.00	2.81	0.03	0.22	6.80	97.89
	5 156-06 B	55.40	1.86	13.10	13.20	0.16	0.95	3.74	1.96	0.40	0.54	5.90	97.21
	5 157-02 8	36.40	0.72	8.69	20.60	0.49	3.29	12.10	0.29	0.31	0.33	15.45	98.67
	5 158-02 B	61.10	1.02	14.50	6.73	0.12	1.21	3.54	5.69	0.68	0.38	2.95	97.92
	5 159-02 B	49.40	0.81	6.30	12.30	0.23	13.50	16.20	1.42	0.09	0.24	0.75	101.23
CR-8;	5 160-02 8	69.30	0.47	13.50	3.23	0.05	2.93	3.07	0.65	1.81	0.35	2.05	97.41
CH-8:	5 161-16 8	65.20	0.35	15.70	3.48	0.06	1.92	3.85	5.42	2.43	0.32	0.50	99.23
7" 1	5 162-03 8	49.90	1.90	13.30	16.80	0.34	4.00	9.71	3.79	0.72	0.40	(0.01	100.86
	5 163-08 8	48.50	1.46	13.60	12.80	0.42	6.21	10.70	4.61	0.90	0.40	1.65	101.15
	5 164-05 B	51.80	1.53	11.90	12.40	0.20	3.26	7.03	5.65	0.94	0.35	2.50	97.56
CH-8	5 165-03 B	55.10	2.03	14.00	14.50	0.25	2.40	6.73	2.64	0.85	0.33	2.00	100.83
CW-8:	5 166-12 8	51.40	1.84	13.80	14.60	0.27	2.74	9.07	3.62	0.45	0.46	1.30	99.55
CW-8:	5 167-02 B	45.60	1.68	12.60	21.70	0.44	4.55	7.22	3.43	83.9	0.31	1.05	99.26
C#-8	5 168-12 B	72.90	0.14	13.00	1.57	0.03	0.44	1.10	5.81	1.91	0.11	0.40	97.42
CN-8	5 169-10 B	49.50	1.57	14.20	16.40	0.24	4.23	8.59	3.95	0.37	0.27	0.65	99.96
	5 170-05 B	49.30	0.61	15.60	11.90	0.21	5.46	13.50	2.39	0.34	0.10	1.55	100.95
	5 171-06 8	47.30	0.56	14.90	10.70	0.18	7.48	9.92	2.13	2.07	0.12	3.35	98.71
CA-8	5 172-04 8	50.30	1.77	14.90	14.80	0.20	2.90	7.66	3.75	0.61	0.26	0.85	98.00
CA-8	5 173-02 8	48.60	1.15	13.40	15.60	0.21	6.37	9.83	2.80	0.22	0.31	0.65	99.14
C#-8	5 174-02 8	50.30	0.81	17.20	9.28	0.18	5.40	9.14	3.64	0.34	0.25	3.67	100.22
	5 175-02 B	49.20	1.70	12.40	14.70	0.35	4.38	7.57	1.70	0.71	0.32	8.95	101.98
	5 177-06 8	46.70	1.26	10.10	14.60	0.20	5.18	9.02	2.19	0.71	0.14	8.70	98.79
	5 178-08 B	44.50		10.60	7.32	0.16	11.50	9.72	3.06	0.10	0.36	13.85	101.80
	5 179-01 8		1.89	11.80	13.60	0.23	3.26	5.81	3.65		0.29		100.23
CA-8	5 180-07 B	61.40	1.11	15.70	7.32	0.12	2.72	2.65	6.77	0.07	0.41	1.80	100.08
	5 181-08 8	42.10	1.12	13.10	10.90	0.21	2.53	12.20	2.92	1.31	0.20	11.70	98.29
	5 182-02 B	42.40	0.80	12.70	12.50	0.22	4.54	12.60	0.55	0.37	0.09	12.95	99.22
	5 193-04 8	49.20	1.00	13.60	13.90	0.24	8.13	7.08	2.95	0.10	0.13	3.55	99.88
	5 184-06 B	42.50	1.06	10.30	17.80	0.61	3.11	10.10	1.12	0.29	0.17	13.85	100.91
CM-8	5 185-01 B	49.40	0.47	11.40	10.80	0.15	8.79	7.09	1.07	0.03	0.04	9.15	98.39
	5 186-01 B	45.70	1.65	11.80	17.30	0.25	4.34	8.37	2.06	0.14	0.03	6.85	98.48
	5 187-02 8	47.40	0.51	12.20	8.18	0.23	4.68	9.40	1.92	0.59	0.18	13.80	99.09
	5 188-01 8	49.10	0.63	15.30	12.90	0.20	4.91	9.18	0.92	0.01	0.04	5.85	99.05
	5 189-01 B	47.40	0.57	16.40	11.70	0.20	6.03	10.70	2.24	0.19	0.15	4.50	100.08
CM-8	5 190-04 B	46.80	1.01	11.70	14.50	0.25	5.96	10.90	2.18	0.24	0.01	4.80	98.35

Bondar-Clegg & Company Ltd. 5420 Canontek Rd. Ottawa, Ontario. Canada KIJ 8X5 Phone: (613) 749-2220 Telex: 053-3233



REPORT: 016-00	64							PRI	DJECT: KO	IE		PAGE 2A	
SARPLE NUMBER	ELEMENT	SiO2 PCT	Ti02 PCT	A1203 PCT	Fe203# PCT	fin0 PCT	MgO PCT	Ca0 PCT	Na20 PCT	K20 PCT	P205 PCT	LOI	Total PCT
CW-85 191-0 CW-85 192-0 CW-85 193-0 CW-85 194-0	8 B 14 B	48.10 38.80 46.80 47.10	6.51 6.47 1.27 1.20	19.90 11.10 14.00 15.00	10.50 9.25 13.70 12.50	0.18 0.19 0.20 0.19	3.38 8.07 6.45 5.16	9.10 11.40 8.49 7.67	3.65 0.26 2.27 3.39	0.19 1.44 0.10 0.42	0.14 0.18 0.16 0.17	3.20 15.95 4.45 7.60	99.24 97.10 97.89 100.40
								6:		an and an an an an an an an an an an an an an			
											hi d		
										F-111,			

agg & Company Ltd.

anotek Rd...
va. Ontario,
rada K1J 8X5
none: (613) 749-2220
felex: 053-3233



REPORT: 016-0890				( C)				PRO	JECT: NO	ίE		PAGE 1A	3.75
SAMPLE	ELEMENT	Si02	TiO2	A1203	Fe203*	ฮักป์	MgD	CaD	Na20	K20	P205	- LOI	Total
NUMBER	UNITS		PCT	PCT	PCT	PCT	PCT	PCT	FCT	PCT	PCT	PCT	PCT
CW-85-195-08	8	54.20	3.48	13.40	13.10	0.24	3.24	6.73	3.45	0.27	0.60	2.30	101.51
CW-65-196-02	8	62.60	0.58	14.00	5.61	0.09	3.97	2.66	4.85	1.34	0.54	2.55	100.79
CH-85-197-12	B	61.60	1.31	15.30	5.36	0.13	2.02	4.17	5.57	2.36	0.67	1.05	101.04
CW-S5-198-15	3	45.50	1.82	13.50	20.50	0.42	2.57	6.72	4.83	1.12	0.23	2.20	99.41
CW-85 199-21	8	47.30	0.63	15.60	11.60	0.20	7.19	13.90	2.45	0.54	0.33	1.60	101.34
CW-85 200-11	В	46.80	0.34	13.70	10.70	0.20	6.33	11.00	1.52	0.15	0.27	6.60	98.11
CW-85 201-18	В	49.80	0.64	14.90	11.00	0.16	5.54	10.80	3.56	0.53	0.15	2.30	97.38
CW-85 202-08	8	51.50	1.23	14.10	16.20	0.20	3.81	6.24	5.56	1.34	0.09	1.15	101.42
CW-85 203-02	B	49.00	0.87	14.00	9.80	0.13	4.21	9.09	2.48	1.20	0.15	9.25	100.25
C¥-85 204-02	B	46.50	0.81	12.40	11.30	0.20	3.70	11.30	1.98	0.33	0.19	12.30	101.01
CW-85 205-03	В	41.40	0.70	11.10	11.60	0.25	4.58	13.20	1.73	0.40	0.09	16.25	101.41
CH-85 266-56	THE PERSON NAMED IN	45.80	1.63	11.90	15.80	0.21	3.59	7.50	2.60	0.29	0.19	11.40	101.01
CW-85 207-10	1	48.50	1.53	10.80	13.00	0.29	2.95	8.50	2.37	0.27	0.24	10.95	79.50
CW-85 208-08	B	50.60	1.28	10.20	12.70	0.31	3.05	9.17	2.18	0.51	0.10	10.95	101.05
CW-85 209-10	3	43.20	1.23	8.85	17.80	0.42	3.03	8.26	1.82	0.24	0.18	13.75	98.78
CW-85 210-08	B Target	47.20	1.33	12.70	15.40	0.27	3. <del>9</del> 7	5.79	2.65	0.79	0.12	9.50	99.72
CW-85 211-02	B	40.80	1.10	10.80	14.70	0.31	4.00	10.80	2.40	0.38	0.18	16.35	101.82
CW-85 212-02	B	49.10	1.00	13.70	10.90	0.15	5.28	11.10	4.08	0.08	0.18	5.05	101.53
CW-85 213-07	8	46.20	1.54	12.40	15.30	0.28	2.38	7.50	2.48	0.38	0.21	11.35	100.52
CW-85 214-06		25.90	0.34	6.57	32.80	0.88	5.18	5.61	0.35	0.38	0.21	22.20	100.92
CW-85 215-05	В	56.60	0.54	15.80	8.40	0.09	2.79	2.61	2.99	1.91	0.25	8.35	100.33
CW-85 216-03	8	44.00	1.24	11.20	13.30	0.28	2.88	7.56	2.02	0.38	0.23	16.10	99.19
C#-85 217-05	8	44.10	1.43	12.60	14.00	0.31	2.98	8.42	2.23	0.38	0.29	13.50	100.24
EW-85 218-04	3	47.40	1.14	15.20	-10.30	0.21	4.41	6.92	2.59	1.59	0.42	11.10	101.28
CW-85 219-02	B	62.80	0.83	13.10	7.66	0.15	1.55	3.88	3.04	0.70	0.36	5.65	99.83
CW-85 270-03	B	64.30	0.42	13.80	5.01	0.10	1.12	4.08	2.12	2.16	0.26	5.25	98.62
CW-85 221-04	12 W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	43.30	0.99	13.50	10.80	0.17	5.94	9.07	1.36	0.81	0.21	15.10	101.25
CW-85 222-02	B	45.70	0.67	10.70	11.60	0.24	3.40	13.20	0.61	1.17	0.10	12.30	99.69
CW-85 223-03	B	40.40	1.39	11.80		0.47	3.83	10.00	1.57	0.69	0.11	13.05	
CW-85 224-02	3	51.90	1.64	14.70	12.00	0.18	3.05	5.32	4.37	0.23	0.30	6.55	100.24
CH-85 225-02	€	45.50	3.30	15.90	15.30	0.20	4.08	8.94	3.02	1.53	0.40		100.47
CW-85 225-04	\$	50.40	1.70	12.40	12.00	0.17	2.06	5.97	3.83	0.46	0.19	12.05	101.23
CW-85 227-12	B	44.80	0.69	13.40	10.50	0.23	2.83	12.30	1.77	0.38	0.13	13.05	100.08
	We street	- 4	36							V. 3.		The same	

## APPENDIX G BINOCULAR LOGS - BEDROCK CHIP SAMPLES

SAMPLE			GRAIN			MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
CW-85 01-03	light green to medium grey-black	schistose	0.1 (mati) tu 6.4 (grains)	quanty and telds par quit to 0.4 mm scattered in a fine matir of similar composition with light green to dark green climb; possibly minor graphite	qually - 20% plugioclase - 50% biotite - 5% chlorite -10-12%	5-7% interebb calcute	/		greywacke
02-04	black to dark grey	fissile	< 0.05	very fine, graph tic (?) sediment	undifferentiated due to fine grain size	190 calaste - thin stringers along fissility	19. py, ite + py, white - disseminated cubes and stringer like smin training along fissility		muds tone (graph.he?
03-03	midium grey	indistinctly foliated	(indistinct)	me district grain bumdarie visible; but has avery poor preferred orientation; rock appliars blocked - possibly hornfelsic	'quantso-Feldspathu 5-79. biotite	3-470 culcite stampers and 4190 interstitial culcite	60.5 % pyrite- disseminated		greywaede
<i>0</i> 4- 03	black	finely schistors to fiscite 5-8% quanty-calcite veintets/stringers parallel to foliation	۷ ۵.۱	too fine grained to determine	quantyo-Feldspathic with aminimum of 2000 chlorite and mimor sericit	2-4 % calite	60.5% pyrite- disservine ted and as stringers and contings along schististy		siltstone
05-11	m diun grey	findy schister to fissib; cremulated 2-3 % quanti-calcite veimbs/stringers	<0.1	too Fine grained to de termine	gumbo-Feldspathic with 25%, or more light gray chlorit ± series to	3% calcit - associated with windst guan 3, and intershibal within host rock	Faint trace disseminated pyrite		siltitione

)

SAMPLE	1		GRAIN		1.	MINERA			
NUMBER	COLOR	STRUCTURE	SIZE(mn	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
06-26	The dium gray (36%) trollark gray (70%)	Pschistuse to Fissile 10-15% verilet guarts	7) a1-0.5 b) < 0.05	duch gry, very fine, fistile sills tone and sometimen gray grander graywache consider of grains to 0.5 mm (92, play) ma mutus of similar composition			0.5% pyrite associated with selfs tome-dissensional as strangers; ord opported in the material	. ted	greywache and siltstn
07-17	medium te dark gray -local crange brown . oxidation	schittou to fissib; approximately 5% over the and stringer quants (rare calcit) paralleling fullstim	₹0-1	very firm grained; a few chips display a splitted foliation surface - incipient growth of me to morphic menerally	<b>*</b>	la land later time	0.5-1.0% prit- disseminated and as local, strately concentrations along foliation		siltstone
08-12	black	poorly soluted; sine house blande implients a lineation	0.1-0.2	sub-sugary-partully recogstallized; empoud of plaguelase and findly drych line black hornebland and broth - upper graenschift to lower amphibult grade	chlorit -mimor	trace calcib as Fracture coating	0.5% pyrit - disseminated and from town		greywach
09-21	dark grey- black	folia te 1; banded	0.2-0.4	appears to possess a poer bounding with hormstonds rich Sammes and plagicular t bight t thomestand layers- pseudo-geneissis; sugary texture (recrystallization) met readily apparent	plagiculaus 50% biotit - 15% biotit - 15% borneblands - 10% chlorite - 5-8% gumb - 710?	conting &	0.5%, or less, pyrit - local concentrations along Foliation		greywach
10-07		mustime - 2 poor Investion due to preferred arientation of horneblands is apparent	0.1-0.2	playinclass in not apparent	(+ miner byroxen)	' '	0.5% pyrite- dissemmated and along Fractures	trace magnetis - dissemme led	matic coleanie

)

1

.

SAMPLE			GRAIN			MINERA			
NUMBER	COLOR	STRUCTURE	SIZE(mn	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
11-12	pink white- speckled black		1-2	hypidiamorphic  - pink coloration may be due to Fe-staming or colleration or may be primary K-sper	felliper Spink - 35 %.  quants - 10 % hornblands - 15% chouste - 2:3 chouste - 3:5% - gsscart out themblands - 15% hornblands - 3:5% - 4.	 )	faint track disseminated pyrit	60.5% sphene- disseminated	syemite
12 - 68	pinh - spachled black	√m 2 S\$1 W	1-1-5-mm	hypidiomorphic; pinh culor may be stammy or a Heration	Teldspar Spinh - 55%. Teldspar Swhit - 20%. 15% howmblande with associated charte and epictore attention - 1% chloris, 2% chick te guang - 5%.	trace interst to culcit	Jaint trace disseminated pyrit	0.590 sphene- dissemmated trace magnette- dissemmated	syenit
13-02	durk green to black	schiften - shaved		much of original texture distrayed by shaving; relatively course gramed with some relief grams which are stretched in plane of foliother; shared example of bedrock from holes 11,12	Feldspar - 65% hormsblund - 25% chlorit - 10%		faint trace pyrit - disseminated		sigenito
14-01	black	schistore 1-290 veimbet guants	<0.1 to 0.1	slightly graphite;			1-290 pyrit- disseminated and stringer like along Frlation - true chalcepyri -0.5-170 sphaleri associated with associated with similet gamb and stringer pyrit and	ducommated	siltitore
15-02	pinhish whit— spechlel black	·	0.5-2.0	hypidiomorphic	Feldspor { whit. } 55% guan & - 20-25% horn blands - 15% epidote - 3-5% - associated with chloribia alteration of horn blands			0.5% sphene- disseminated	gramedicrite

SAMPLE			GRAIN			MINERA	LOGY		ĺ
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
16-02	black	foliated-pour orientation of majis minerals	0.2	generally equipmentar with horn bland and plagiculase metacogsts to 2-0 mm (relief plenacrys horn blands is echedal - amphibolit-	plagio clase - 35%, horn blunde - 60%, 5?); quanto - 5%(?)		0.5%, or less, pyrit - local comcentration	trace sphere-dissammated	maFie volcanie
17-01	grey-green	very poor foliation- alignment of hospitals and possibly plagroclass	0.2-0.5	eguigramular; 5% (or liss) plagioclaso plenocrypts to 3.0 mm	plagioclase - 70% hornblunde - 20% chlorit - 3% guanty - 5%		2-3% pyrit/ pyrrheht throughout rock; mo chalcopyrit observed in logging a though moted previously		g a hbro
18-01	black	foliated - alignment of prismatic hornblands and plages class; Fractured; 100 wern material - appears to be epichte and plages class - perolle to Foliation		equigramular; into heking; amphibulit	plagiockso-45% Hormblando-55%		trace pyriti- disseminated	somer red hematit staming	mafie voltame
19-15	dark grey	Soliated	aphonitic	siliceous - hard where mussive; softer (chlorit ± sericite) along foliation; moner knots of chlorit to 0.5 mm are present	guantso-Feldsputtu with chlority	1-290 culcite- counting Fractures	trau pyrit- disseminated		rhy olit
20-67	gryssk-whit	M & EFILE	1.0	hypidiemerphie	mafres - 10-12 % -	2 % calcit- associated with chloritzed matrics and as a fracture counting		, , , , , , , , , , , , , , , , , , ,	granedieri G

•

.

1

SAMPLE	1		GRAIN			MINERA	LOGY		<u> </u>
NUMBER	COLOR	STRUCTURE	SIZE(mn	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
21-08	black	Foliated-orientation of prismatic horneblande  2% weinbt quantz- calcite	0.1-0.2	egurgramular: retrigrade alteration of horne blands to chlorite - memple te	physicalase - 60% hornblende - 40% (retrograded to chluste to a small estant)	190 calcite- interstitial and within win material			umafic volcamic
22-08	gmy to promisely	poorly gnessic	O.1 (or less)	sub-sugary; matic such and matic poor bands - matic poor bands are a pinhish culor a manuble aplite	plaguelase - 70%  majes Shorn blands -5-10%  (but to -15  may fine and difficult  to dishinguish	19 modera thy machine to control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of			greywecke (gneissic)
23-02	grey to public	poorly quissic  SIMILAR TO 22-08	0.1-0.2	teldspathie, gramulous layers with momen bioht and mater rich layers consisting of plague bie, brott and amphiboli	playroclase - 80 % bioticaltered to chlorit) - 20% in 80% of bedruck chips amphibiol -10% in 20% of bedruck chips	trace impershibil Carbona b	trace pyrit- disseminated		garywache (gneissic)
24-16	black	Foliated	0.2	black analy. Nich and lighter colored feldspuffis material material material may represent generates bunding; possibly some relief plague has planocrysts or porphyroblasts; more after a hon of majes to chevit and soussent is a short of physical.	lamphibol - 40% (horrobland) Charle - 10%	0.5% callet - interestitud and Fracture filling	0.5%, or bis, pyrit - disseminated		majic voltanic
25-02	bleach	foliate d		appears miero - porphyryte or purphy - oblectie with miner phyroches crystals of 0.4mm ma matry of 0.1-0.2 mm; somewhat similar in appearance to 24-16	Plagiculus - 60% comphibule - 25% chloriti - 8-10%		tras prit- dissemmated		vollance

)

.

1

•

SAMPLE			GRAIN			MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
26-14	black	Johnted - alignment of priemake amphibale - poorly gressie	0.2	sub-sugary texture - recrystullized to a digree;	plagio clace - 60% amphibole - 30-40% (+ miner tetrograde chlorit)	1-2 To medinately refue tive curbonate - in ters tital and fractions / Folia tion Country	trans pyriti- disseminated		matic colcanie
27-25	medium greenish-grey	poer Fuliation	to 2 mm	porphysytic - 25% plogioclese planocrysts to 2.0 mm and 1-2% guarts planougets in a firm grained, poorly foliated Filds parthic matery	play = clase - plane crysts - 25 - and test - matics - 15-20% chlorit + light cultived pyroxam/ cumphibel	5-79. culcit - insters titul and stringer	60.5% pyrit- local concentration along to liston		intermedia to wolcome (purphyngha)
2 e		·		NO BEDROCK SAMPLE					
29-25	light to midium greensh guy	folialed to schusters	to 1.mm (phenocrysts)	Jone, Feldspathie metry with 40% subliched playsochase phenocoysts and 1% blue guants phenocoysts - masked to a degree by parvasive fulintien;	plugiacleas -plunceryets - 40% - matrix - 30% chlorit (+amplibut ?)-20% 5%, or bee, quark	3-5% calet - instead had and foliation plans conting	trace pyrit- dissammented		intermediate whence (purphyghe)
30-24	light to medium greenish gray - blanched to a slight degree by vin material	schistore 15% win calcit (+ minor quant)	to1.0~~	porphynytic - 15% plagiculare plunacrysts to 1.0 mm - umay be >15% plunocrysts but schi, but y obsences this; 190 per a si, quants plunocrysts	plugio cluss -phinocrysts 1590 -matig  chlorit - 25-3690 (± amphibologyopene)	15% calit - wins and meters the within but	trace pyriti- dissemmented		intermediate vulcanie (purphynydie)

}

)

SAMPLE			GRAIN			MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
31-18	medium gnienish gniy	highly schisters 1-2 To quent - carbonto usin my terial paralleling Foliation	40.1 freative) to 0.5 (planecrysh)	5% plagioclare plenocryits to 0.5 mm and rare blue quants plenocryot in a line, highly schoolow, Feldipar -c Llorit mathis	plagiculum - 65% (total) chlurt - 25-30% gumb - 1%	5-7% calcit - interest that a with ga would h a long to lia thin		LOSTO leucogene along Foliation surfaces	intermediate volceme c (porphyrghe)
32-05	midium graemishigasy -browns oxidation locally	schestore 10% were quark with board, minor truemakers meed bs	60.1 fmatiry) to 1.0mm (phenocrysk)	porphysytic -15% plagiculant and 190 or less quant phenerysts in a fine feldopar- chlored & amphibolopyropen matrix	plagicelast -planes - 15% -maily - 60% -maily - 60%  (chlorit = aphible) pyream quant - 1-3%		40.5% punit - associated with win material and possibly a traw of bornit		intermedial volceme (porphyrytic)
33-13	medium greenish- grey	massive to sury poorly Foliated	40.1 (maters) to 2.0 mm (planocryth)	porphyryhe; 50% plune cryste - 40-45% sublished plagroclass pluneryst and 5-10% and blue gunt pluneryst in a feldspar-chlorit mater	plagicalant - planery st - 40 % - matin - 25% chlorit - 15% guard - 5-16%	1-290 cale to independent and areaciated with chloride alternature	faint trace disserning to d pyrit		intermitate volcanie (posphyrytic)
34-04	gueen	Julia tod - finely to lang findly banded (Plan banding??) 1-2% carbonat - gumb orms by - cross cutting, and parallel to telation	40.1	very findly banded, almost te flaceons appearance but banding appears continuous	and of front stored (due to from grain sing) fullapar and chlost	1-270 calcit - mostly movins- money tructure contings			intermediate volcense
35-62	durh gruenish gruy	schistuse 5% wombt cality + conner quants	0.1 (matra) to 0.6 (plunecryst)	50 % and hal plagic clase planocrysts to oil many in a fine chlorite mater; the planocrysts appear stretched in plane of foliation	Plagicchael Planicrysts - 50 % making - 15 % chlorib - 25-30%	win 6th jammes	to 0.5 % pyrib- local comentration in win material and distances to rock		intermediat whence (perphysytic)

.

•

SAMPLE	ļ		GRAIN			MINERA	LOGY	<del></del>	<u> </u>
NUMBER	COLOR	STRUCTURE	SIZE(mn	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
36-02	9му	schistous; fractured  beined - si licitiéd, curbonated; brecciated or shared?? -20% "bure not majund- remainder of sich hyply aftend du bringing	₹	complete destruction of original roch by introduction of siles and carbonall - remaind (?) chloritic-series tec patches/stringues	cllust/sencet - 15-20%	10% mediately to stowy nearly nearly marchine to can bone to with string	0.590, as bis, pyrit - disseminated	tract graphite	vein material silies & curbonate (host rock centinoum)
37-02	grey	politid, fractured and shared vermed - silicitied, constanted 25% pare" some timb- rectain de Joseph highly alkand and brings SIMILAR TO 36-02	Ś	completely a Hered; similar in appearance to 36-02 but carbonato more peruasist; minor, thin chlant-rich stear planes	chlorit/concit -1592 wzoni	15-20% (or gunta) moderately to slowly nearlier parameter con bena to	0.5-1% pynto- distaminated and local contemptation cussociated with quants	trace graphite	brin materies silice and cerbonate (host roch unknown)
3ê - oy	durk grey - slightly oxidized to brige	massive - Freetined; composition al (Flow?) bunding in some chips; may be poorly juliated, may contain a few fire tall lannae	aphanite to Oilana	hand - silica sich; compositional bounding cappions to indicate externic neither than pyroclastic crigin	quantro-Feldsperthic	190 moderately practive combonat as a Fracture counting	Faint trave		Febru volcemic (physoliti terryeducit)
39-03	blach	sub-conchoidal Free-ture; may possess a poor Foliation	aphanitic	indistunct compositional (defined by slight color varieties) banding; platially hard - silica rich; -possibly very miner graphit	gungo-teldepathic	trace Fracture culet	trace pyrit - dissermented		Felsic volcamic (physlit to physdacit)
40-03	1	strongly schribse; cremillated; schribsity may Follow a primary bedding	p. [	famth, tuffaceous, ashy appearance; light quantit white series to (chlorit ?) defining toliation	guardo-Feldopathic chluit/curcit - 15-20%	interstituel/	trace pyritidissemmated		intermedial tuff

ı

1

.

SAMPLE			GRAIN			MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
41-02	dark greensk grey	schietore; 10 90 vern let / stringer combinate along foliation	< 6.)	similar to 40,42, etc, but mon chlorit; no distinct tulfaccow appendence - mon majie than survey to be tulf due to similarity to other amples on the arm a findly schicker mature	chloriti(green)-20-259	10-12% pervenion culcit in nock and along fuliation	0.1-0.5 % bynts- finally discommented		in termedia - mafic triff
42-01	light quen	highly schiebee to fiscit	aphanitic	very fine; appears bedded but too fine to determine if it is truly percelastic; in destel hand; a ppears bedded - light grey and medium green to loved band; rans quant; this bands (<0.2 mm 1- Hickness)	(quantso) fildopathic sericit - 20-25%	10-1296 calcit- infers tital and along foliation	40.5 % pyrit - strung out along foliation surfact		intermedial tuff
43-03	light gruy	foliated - banded; compositional banding on the scale of 0.4mm or his in thickness - majer nich and majer pod bands	40.1 to aphemitic	bounding very regular; wery fine at a full with sever the fellowithe foliation and light colored, hand selection me tissuel	gumtzo) Feldspathic 10-20% seriest 0-10% c Umit	15 % in Leveth had calcut			potermedia to tuff
44-03				a Few weathered chips of senicit schirt but mot senough to log with confidence	٠				
45-09	light to medium green	pourly Fulcated to massive	0.1	hand, light green whenice with local lighter or durken e long a to "spots"— strekeled amygdales or pussibly fragments; 17 och lout filled amygdales to 0.6 mm	Feldspathin to guan Bo-feldspathin - proportion and type of grafin	< 170 fracture and interest till curbonate	trace pepiti- disseminated		mtermedia to volcame

.

SAMPLE	1		GRAIN		•	MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
46 A - 27	medium to light green	foliated - schistore	0.1-0.2	10% distinct grains (played and reas quants) to 0.8 mm ma fine 0.1-0.2 mm matry also appears to be said	hue plagioclass - 70% quanty - 5% cklorit (quy) - 20-30%	5-790 culciti- interstitial and foliation	trau pyrit - dissommated		gnywathe
47-03	danks grey to black	schistore	401-0.2	sub-sugary, recognitudized taxture; development of biotite defines fortune locally bisible in coaver portions of sample - 70% sand grand	quants - ? brotit - 10-12% chlord - 1090(?)	1% calcut - Fracture and Juliahm conting	40.5% pyrt- coment to tod along Foliation		greyworke
48-02	medium to pale grey	foliated; alignment of micas may define d primary Flow banding	phenocrysh to 3000	porphysytic; subhidal Feldopar planocrypts to 30 mm (20-40%) and 25% quant planocrysts to 1.0 mm; sub-sugary texture z aligned birth curves around planocrysts	plagicular - 65% (+otal) quanty - 5-10% biotic - 15% chlorit - 10%	190 calciti- interstition			Feldapar porphyny
49- 0 3	medium quenish quey	Jolinted - alignment of broker and chlorite	to 2-0mm (plumerysts)	sub-sugary mative; perplying 20% teldopur phenocryate of 0.3-2.0 mm in 13e ; 2.5%, blue quart phenocryate to 1.0 mm; local pinh discoluration- iron staming	plagioches	3-400 calcite- interstitial and conting foliation polaries			Feldopar porphyny
50-02	durh grey	poorly foliated to massive; indistinct banding in some chips 3% winds t curbonate quants	60.1 to aphanitic	Jim grained to aphanitic, greenish brown, Jaintly triffers we chips, and 15% april 15% appeared to the try tragments of Imm in size	quanto Telapathic 1590 maje minerals (?)	3-500 interstitude fractus continut	<0.5% pyrit- dissemmented		intermedial lapilli teff

SAMPLE			GRAIN			MINERA	LOGY		1
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
51-02	light green host with 5% black rock chips, and 50% win miterial(whit)	Ideated; 50% vern quantz - dank colored truck chips are win material as well (chlorit rich) and possibly represent win manying & prigited country rock	aphanitic	beining, silicitication obscures much of texture; host is light galan (-yellow), quantro-fillapathic, and sericitic to a small estat	(guntyo?)-feldepathic with more careet	0.5-1% slowly reactive interstite and fracture carbonate	1.5 % pyrit +  Spyr hat t -  disseminated and as  concentrations along Foliation planes	green fuchsite moted on a few chips	intermediat - Felsic volcanic -veined
52-03		may posses a pour Feliation; 5% quants wining	<0.1	siliceous - hand; too fine to cheeve texture; possibly silicified	guantzo-Feldspathu	1-290 slowly maches interiting/ curbonals	0.5% pyrit - musty as Fracture plane Coating, but minor amounts are disseminated mroch	Faint dusting (20.12) of way from black host black on possibly vary from pyrit	Felsia volcania (rhydit)
53- 03	light to medium gry quen	highly schistory, cremilated; 5% quants sognations paralleling Fuliation - paramavy?		sample is till or volume - 2 foliations Import a rulably, tofferen appearance; 5% guards eyes to 1.0 mm; 5% guards egantims; light being yellow cereit defines toliation	quarbo-Feldopathic sencit - 15-20% fricklers	1-290 moderately machine curbonate interit had und associated with quants seguigations			intermediab tuff
54-04	medium gusy-green	schistore - Juliation appears to fellow permany bounding Jobdoding (?) -similar to 53-03 but chemilation cleavage less well developed - to 590 very quants	1	Jamtly rubby tuffacesso apparent with fine yellow greenish-guy exist defining foliation; then some of funds along platent some of guard Engagement of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of the some of	guanto-Feldipathic  canicit - 10 - 15 %(?)  chlorit - 75 %(?)	3-5% clowly mactive carbonation the stitle, along foliation and associated with quarks segregations with	60.5% pyrite - disseminated along foliation		internadiat tuff
<i>55-</i> 03	grey- quen	schisters - cremilated 270 wind tarbonate (+ yuanb)  SIMKAR TO 53,54	01-0-5	cishy - appears to be at least 50% fragments in a grunish sericite, chlorit, ash materix; 3% quants xyes to 0.8 mm (most 60.5)	quanto-Feldufathic senicit } 15-20% chlunt	1-196 calcit in were material; 2190 interstitud calcite	60.1 pyrite- disseminated		intermediat heFf

)

5.0

SAMPLE			GRAIN			MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
56-04	greenity yellow (host) and white writings ; local beings brown oxedation	host is schisture; 95% of sample is white them quanty-locally black (chlorit argumphite), at mangers of verns - slickenside in host	( host)	host is yellowish green, may fine senicite schiet- fulsic volcomic (1)	vem quents - 90%	_		trace Fuchet in hest; way fine, dark, meed b like minual (trace amount 2; in very mistail tournative may also be black may	
57-04	gray grasen- local brown socidation	highly schistors - should school by schistory appears to Eillew a fire bounding/bedding so periody technically 20-25% guesty - carbonate very manthing a priody to bounding from the first or religion		chlurib - Essicité schist; light yellowish-grann judy simu (co.2m-) silité nich (gounde fellopathiu and sericilé se chloris nich bands; highly sluved-banding many se tactonie	Faldish Hu to quanto-Faldopathia sericito -10-1596 chlurto-10-1596	3-5% calito - predominantly with usin gulaty	trace pyrit - discommanded		soitermediate traff (chared)
58-08	medium green	schriftse; banded thin bands to 0.2 mm in the structures - appearing to be structured by Trayment sepanated by Thin chlorite - easier to Faliation planes  SOMEWHAT SIMILAR T		5% plagrocker Fragment to 0.5 mm and 1-2% guesty eyes of a similar size it make to decearathly determine 70 of Fragment but may be 750% color thin guestys - Feldepathie bands and chlaste fassicité Feliztem planes	Fieldopathic to quantzo - Feldapathic 25% combined sericit and chlorit	0-5% calciti- satevet had and etringer-libi along to liation		disseminated magnette or lamate preudo magnet At	intermedate tuff
59-09	- both light and don't colored chips	schistous to phyllitis; very segular fluction and light and dark colored lamine - compositional banding - tectoric (?)	۷٥.۱	80% undure to don't quen chind and 20% light greenish white series guardy teldprobands bondery may be partially promoted as a result of or true ten	Feldoputhic to gun to - Feldoputhic with chlorit and sericite	5% calcit - generally along Foliation planes	60.1 % pyrit- dissemine 8 d		intermediate tuff (or shared Flow)
G0 - 02	medium grey	poor foliation - alignment of alongated populs in plans of treson	631	gramular - Edimentus; UISIBLE sand grams of 0.2 mm - plague class and some quant - in a matir of Some leas of guarte - Felloft the Compositorin; exact proportion of grams varies mater me to le termined	quentso-Feldspathie chlorit - < 15% (+ soucit?)	10% calciting interstitual and along fuliation	1-2% pyrit- disseminated		grigwaeke

•

SAMPLE			GRAIN			MINERA	LOGY	***************************************	1
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
61-02	dank quey	schistoce	0.1 to 0.5(grains)	N 60% feldspar and quanty grains to 0.5 nm in a dark maters composed of q = - Feldspar - ch buit - continued	Fellipar J	1090 caleit - pervasive	trace pyrit- disseminated		goeywache
42-03	dark guy to grey-green	Schistere; 3-5% beimb & quanta; chlorit defines schistority	0.2	>50% rounded grains (quents and plage class) In a gunts-feldspar- chlorit materx	· ·	10% calcit- perussive			gnywacka
63 <i>-05</i>	midium quy quen	schistoce; faint bending - Imay be due to schistocity	40.1	porphyrytic; 390 subledul plagiockies planocrysts to 1.5 mms ina fine Inter licking fle Wapar + chkeite matin	Feldipathic (+guarti) chlant -15%(?) -difficult to difficult to	5-8 % cality- mostly concentral along school to ty	;,		intermedia ? volceme
ú4-0λ	black;	schistera	aphemtic to 0.1	blach, very fine grained, schrobse to fissib, hand settlimedown (sitesitied?); slightly graphitic with 4090 done gry slightly courted ground, fragments of quantity grained Fragments of quantity and fellopen to 0.0 mg/m seathered in a fine of the stillicitied to a small			0.5-190 pyrit- local concentratus, and stringers along to lis then		Siltatore and greywacke
5-01	pinkish tint	treng finally schisters; tech appears laminated- donker green chlust tich bands and lighter colored chlorite poor bands with a prinkish tint; almost a greesses bandering but does not appear recrystallised; 3-5 97e trengt great; carbonal	mating 2011; Fraguents to 1.5 mm	light colored bounds appear to contain granules of clear and blue quest, and teldipar to to the land of the following at a parallel to to liston (contains) sent teved thruly aim a gat to liston (contains) matrix: a 1 though less absented in although contains, granules are also observed in derhan material	quanto-fileputus chlorit - 15-20%(?) (minor seriest)	stringer libe along Fuliation and associated with win quartz	trace pyrit - disseminated		greywacke

)

•

SAMPLE	Ţ.		GRAIN			MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mn	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
66-03	a) green (60%) b) dark crange red (40%)	schistora - shave d; cremulated	0.2-1.5 (indistinct due to skearing)	3) highly schuber, showed and committed of grain size appears in except of 10 mm - a few "materials" of melaned chips comist of a coarse intergrowth of physicalose, chibit and what appears to be actimated.	7) plagic clase -45% church - 57% actionals	a) 8% calcit- pervasive	2)		a) gabbro b) syemt dy be
				b) red, hydrothermally afterd in truewer, although not so although as "3" possesses a following them size of most to low from size of most to low from the low from the 20 blue quant eyes to Immigrately with 270 blue quant eyes to Immigrately as the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of t	b) pink Feldspar 80%  quanty -296 (eyes),  unknown 70 in  "inating";  chloritized -10-12%		b) trav pyrit- disseminated		
67 -05	light green	well Foliated; algoriment of butto-chlorite defined Foliation	0.1-0.2	inditinct granular material In a similar light colored maters with broth acklasit - tertures obscured by possession carbonity attempt also ~20% light quen woch chips with one broth	Feldspar } 75 % + quanty } 75 % Chlorit } 10-12% - bietité }	10-15% calc.to throughout rock	trace pyrit- disseminated		graywacke
68-07	light to	schistors; 576 bendet gunty- carbonate	0-1-0-3	30-50% (?) feldpar and minor quanty grains in a matrix of similar composition with chlorite defining totation	fullapur } 75%, gumb } 75%, chlorit - 15%	5-7% calcite - interit tail and along foliation	trace pyrit- dissommated		greyw <b>s</b> e ke
69-01	mudium grey-green	schistore	o.l == less	equigramular, inter locking; ran plageoclase planecysts to 0.5 mm; pervasive carbonitiz otion	Feldspathie, chlaritie	10-12 % caleito- peruzzum	0.190 pyrite - distrimina Gd cubes	And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	intermediate majie intermed

SAMPLE			GRAIN			MINERA	LOGY		]
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
70-18	3) duk guen (60%) b) pink-beige (40%)	strongly schiltone - Field log indicates fine banding of 2 and	b) 40.1	2) your plagic class phonorysts (or Fragments) to 1. mm, and your lighter colored unatable within and I'm terting or with "b"; appears to be a faint bonding parallel to schip history b) post being Falsic triff with discontinuous convex shards to 20 mm - 10% shords	b) quanto - Feldopathu	3-5% culeit -interethid	trace pyrit- disseminated		intermediate tull (magic tuble) Falme lapide tull ??)
71-13	dook guen	massive to poorly Foliated minor than planes with rare hematile starring	N1.0m-	nelatively coarse but alteration obscures gram outlines; plaguether has a greenest time - a pinhish that which appears to be homento styring; matic miserals wholly aftered to charit	50:50 to 60:48 plagisclass verdess smafe moments	0.5% calcit-	0.170 pyrit - disseminated trace chalcopyrit - disseminated	trace anagments- disseminated	gzbbro
72 -13	dark guy- gruen	schistore i mimor skraving	0.5	highly altered; similar to 71-13 but finer grained	playecture - 60% (locally sourcesthied) chloset - 40%		0.5-170 pyrit- disseminated and local concentration along Foliation	trace majory ht- disseminated	gabbre
73-02	black	Fissile: 2-3% windst quants - generally parallel to toliation	aphemitic	black; very fine grained - aphinitic; Fissili; graphitic			190 pyrite- meit as elmgat comum tra tiens along to liz tiens and associated with som quants		mudstone (graphitis)
74-03	light to	musical to poorly Filately 1-290 windst guardy-carbonal	L 0.1	light culosed, hand; and offeren that of full par - guard - and mafies - silves rich	constraint as local concentrations a local actions from there a dispersed in such	3-5% calesto- along tractures, interititial, and associated with chlorit		trace magnether dissemme to d'in character pertaba	intermediat volcumic

1 .

SAMPLE			GRAIN			MINERA;	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
75-07	medium greenie h grey	marsive to poorly Foliated	40.1	uny fine - appears devitified with inei pient growth of miner pient growth of mineral present of the first of also present as 10-15% also present on the first of a thought colored "houts" - may be amygdules; possibly a true quents and tellspar eyes as well	CKIONIG - 10-13-7	0.5% calcit- appars associated with chlasit	_		intermediate volcanie
76-03	me dium green	schistora	<b>(0.1</b>	10-15 70 chlorit and/or glass (soft) filled amygdul. to 1.5 mm in a way fine Feldsputhis-chloritis mater; pervasive carbonity atim	undefforent a tod	2090 cality - pervasiw	trace pyrita- dieseminated		ma fee colchrue
77-63	light quenik quey	manager to poorly Schistore 1-270 windst 92	0.1	porphyrytic; 10% subhelid plagicalines phanoserysth in a fine fallefor, chlorit (butt), quanty matrix	guantso-Faldopathic 18-15% amajus (chlort, bibh#)	trace calcub	0.19. pyrit- dissaminated		Feldspar purphyry
78-02	medium to durk grey- green	poorly schulous - schulous appears locallyed in some chips		both days and lighter guy metered - light gly metered of light gly metered of light gly metered black the 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 10% to 1	quanto - Feldipa. His c	40.5% calett- inferstitist and along fractures	40.5% pyrit - disseminate, mostly in schips		intermediati volsame
79-02	medium to dark grey- greenish	massive - may be poorly schirtee	matik te	porphysyte - 40-45. To sub-to cutodal fellopar phenocryst in a durk gray Feldspow - chlosit (* boots ) * gunty matix - also 10 To lighter colored blocked matery	peldspathur to quanko · Feldspathuc	1% calcit- mostly in light culosed chips	< 0.1 pyrit- disseminated		Fellipar Porphyny

Ť

**)** 

SAMPLE			GRAIN			MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	S1ZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
80-02	medium to	massive to poorly schistore 2% vendet quants	40.1 to	both light (gry-whit) Felsic and obtained & Alante chips - both and Felsipa perphysytic with up to 10% sublidied playsocher planes pross in a planes, stightly carried and hange slightly carried chlostopula materization of a dankan stightly carried to be puch materization for a dankan stightly carried to be a puch materization of 10% present you upwands of 10% dank shlerte "fruit" butch	quents - Feldeputhic clients - 15-209, (2 brott)	60.5% calett- interstitial	trace pyriti- disseminated		Feldipar porphyny
				may represent maying phonocrysts as possibly some of the light colored to the trial may represent large (>lcm) phonocrysts					
81-09	light quy brige local brown oxidation	highly schulter	caphamitic to 0.1 mm	light beige white quarto- Feldspathic material (Fo Imm - thickness) and danker, more chlositis, courses, as by material Espavated by cercist-chlorit school to the planes	., +	0.5% calciti- along Fractures 1-2% slowly Nacture interstitut Curbona t	0.59, pyrit- dissominated		in termidia tu FF
82-02	durk grey	schistor to Fissib 1-29, windf gunts	<0.1	very five rett gige material and gong chlorit	Jeldspar + quants and >15% gray chlorit		40.5 pyrite - disserminated and consent from the finis a long to be then		siltstone
83-02	median to dark gray	schistore	0.1-0.2	// . /7		5-7% calciti interstitis!	0.590 pyrit. dissemine to d		greywach

· ·

SAMPLE			GRAIN			MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mn		Silicates	Carbonates	Sulphides	Other	NAME
84-01	dark grey - black	schistore - dark chlaitie slicken sides present 190 vern quants	grams to	similer to B 3-02 but deviser - more chloride there obscuring terrores; Feldopor (1 quant 3) got locally to a your such makes four chloride rich makes	feldpar } 60% chloriti -25-30%	B90 calciti- interithal and along Foliation	190 pyriti- local concentrations along schistoritis and dissemina		guywache
85-07	dark gray to black	schistore to shared; 1-290 windy quanty	0-1-0-2	dark, very fine chlanke muterial (5-10% of sample) and courses muchial with granules to 0.5 mm (minimum of 30% granules) I'm a gray Feldepar-chlante material	Feldpar } -60% t quanty } -60% chloret -25%	8% interlished calent	trace pyrit - disseminated		guywach
86- 02	durk grey	schistore - almost Fissib; 5-790 vembt quarkt carbonate	< 0.1	very fine; poorly fish to with gray chland; grain relationships not obvious		270 calcito- mostly associate with seril ty guar possibly 0.5% slawly mustur interst to 1 carbonat	0.5-1.0 percent page - stronger 3; like along folia tron and dissommeld		siltstone
<i>8</i> 7- 02	durk grey	schistous; 190 vembet/ stringer quants- curbonati paralleling foliation		fellopou and gunty grams to 0.2 mm (~30% grams ??) scattered in a self sized matine; also a tem, thin chlastic sitt tow fundstone partings		2-390 culett - interifital, aling Folia them and associated with wen guests	190 or less short stringer like comments times of pyrite parallel to Foliation		greywaike
98-04	dark guy	schistoce - fissib; minor cromula tions; 2% quanti-can bomat aum a tringges paralleling to lan hon	< 0.1 to 0.1	conformly for against with race scattered gist go to 2 man; finally to late with gray choise	quarto-Feldopathic; chlorit -20-25%		0.5% pyrito - disseminated and local comment to him to some associated with quark - culcite vering		sittetine

Ì

.

SAMPLE	ĺ		GRAIN			MINERA	LOGY		Τ
NUMBER	COLOR	STRUCTURE	SIZE(mn	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
89-16	medium to dark grey-green	schistose	o.t- o.2 matrix; granulate 3.0m	Sandy-gramular; contidual feldolorgrams to 3.0 mm for 30-35 % of sample and grants grant to 0.5 mm and present to 2.5 % - all in a fin (0.1-1) metary of feldopous ± quants + guy public klasite	Feldopar Grains - 35, ma tirs - 35% grains - 5% grains - 5% chbrit - 20%	5% calute- interstitial	trace pyrit - disseminated	0.5% leucoxene	gneywache
90-12	-light gry- green	schistore - very pegular Foliation	o.lmm, orbss	well fluited, serushe; light colored, felds further to gumbo - Feldspublic - ashy ??; relatively hand	guants o Feldspathic series t - 15 % chlorit - 5 %	5% moderatly Nachir Intestibus curbonat			intermediate tulf or volcance (conscite school)
91-06	me duan gray	schutose; 1-290 quantz - curbonat verning	0.1000	very fine grand with indition of fellopar and/or quants grains (0.1-0.2 - ) scattered in a Right colored feldspear - guants - senset/ chlorit maters	Feldpor 75 % quanty 75 % Calont/ 3 - 20%(?)	2-390 calut- interstition and with quants in	0.5-10. pyrite - local, stringer like concentration along to leathons	ı	siltstone/ gnywachi
92-05		schistose to phyllitic; poorly cremulated; 1-290 windst gumtz canbonat		buth way for light guy to medium guy gran chips (20% of sample) and slightly court chips of guy color with minor bubb guards and tellips guards and tellips guards throughout; possibly more local graphite	Feldipar 65% chloriti - 20% sericito - 5%	3-5% calut; interstité and associated with quants in windt	0.5 %, or his, position of the contract of and to contract ones		siltitme/ gregivaike
93-13	medium grien	foliated to schistore	to o.Emm -	5% way find, convoluted bands to 2.0 mm - sith the frauditors; terminates of orch if fine grained (co. 16 mm) with 25-40% and that foldopar grains to 0.0 mm ; also a more roumber of quarts grains	Feldopathic with chanit	3% calcitinatersh hal	trace pyrite - dissommeted		gneywaeko

.

SAMPLE		İ	GRAIN			MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
94 - 06	medium to dunk eyey local yellow-beize oxidation	schistuse	0.1 - 0.2	Imdistract feldspor and quasts queting to 0.3 mm in a firm inching of similar complete similar to their and secrets; person togs of query versus matery into the terms	Feldspan } 75% guants 75% chlorit - 15% concit - 65%	3-490 colution in Zustition	trace pyrit - disseminated		guywashe
95 - 04	dark grey to black	fissil	40.05	chips sange from light to dank gray and black ivery from tod - first they defined permany bedding; -black chips (52) may be graphitic		170 calcite - intestitual Fracture country	<0.5% pyrite- disseminated and stringer- like along foliation		silts tone
96-07	1 1	fissib to schister; banded - bodded; 3-5% canbonut ± quants wining		primary colomantary bodding promited to president for bodies, brick for bodies, graphite (?) multipus bands to sample affect to medium of sample (goff to medium great waste (302) and (18 to bou (602)); guy charte to serieste foliation plans	qualy)	3% calcut along Feliation planes	1-290 pyrito- control fraction and foliation planes and as thin massine bands (6052)- mostly in black muditore	graph.t -1-22	siltitus, graywacks, and mubiton
97-04	guy quen	strongly Foliated	grains to	sandy; indistinct felcha- (15-20%) and clar to blue quanty (2%) to 0.8 mm in a quanty - Fellipar - chlorit - sencit matrix	feldspar } - 65 % canty } - 65 % canty } - 65 % canty for the series of 5-8 % (gay callent 3?)	8-10% calcit- pervasiv	trace pyrity - dessomensité d		gnywach
98 - 04	light guy whit	schietow; sweetic	O.l or less	very fine with a few visible Fragments or eyes to 0.4 mm in fairtly asky but may be strongly foliated flow	quantza - Feldepathic; seneit - 20-25%	5-7% calito- interetitial	0.5% pyrit - dissommatil cubes		intermediations to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the february to the februar

j

•

)

SAMPLE			GRAIN			MINERA	LOGY		1
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
99-02	dark gray green - locally pendish	posses a poor Foliation	O.I formatily)	40% of sample is pinkith gay porphlyny with 50% pink to whit subted and falled par plants - Federpar - bicht f  Chart mater Feld pathic wink to 60% of Feld pathic wink to 60% of Feld pathic wink to 60% of Feld pathic wink to 60% of Fermal f first pathic primary of try and to first pathic primary of try and greater to be for the form	pink; total of ~25% bight or biotht	1-29, calest- interstitial	0.5% pyrit - dissemmeted	4 0.5% magnetité - dissement d' - 176 e p.d.te - local a l'terntion	Feldspary porphyry and Felsit
100-01	dark green	schistore - shared; crema lated; highly chloring to be ton planes a panational of light colored material of largely calcit + Fellipar & guesty	40-1	very highly altered - chairle schickers by planes expansed by pervasively carbonated feldope this (?) material	Feldipm - 45% chlorit - 30%	15-20 % calit	0.5% pyrit- disseminated		omy Fix volcanic
101- 10	blach	appears massive but may bussers a pool to listin; gmeissic	0.2	completely recrystallyed; sugar, horneletend rich roch (9070, of sample) and white horneletend poor material govern handing; light eclosed bands thou incipient dove themant of teldspar pooplyrablasts	horm blands - 60-70%	intrittal	60.19. pyrib-		matic volcomie (amphibole gruss)
102 - 01	donk grey to black with oxidized tracture sinfaces	well plated - platy; gnerice; 3% unlet quants		sugary - secrystally od; light olored animarals of plate of secretal animarals of plane of fell when - linearth of shorter tending with light colored "fells" I to do something with light colored to the fells of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secretal of the secreta					make collense (amphiboligness)
103-06		foliated - schritess; shared - chlanitic share planes; 1-290 quanty - carbona to terring	0.5-0.7	much oblitorated by Full tion and contenting them; relatively course with greens & that and buy relation and and that chloriday and and that chloriday and 2-4% guarty	Feldpar - 45% chbrit - 30-35% quants - 2-4%	12-15% calcit- pervanu	1-1.5% sulfides- mostly disstances to pyrit htt., miner pyrit	transmagniht- (disseminated	gzbbro

SAMPLE		İ	GRAIN			MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
164-01	duck green - 200, of Chips Viplay beign - brown Chidation	Folia to d	0.1 a. ks;	10% fine, blick grouphitie mudators; remaind of nock is a medium of gray - quen, saft, Feldspar + chlorit; appears to be fine sedimentary bands within volcourse	_	60.5% calcitionsteritible	1-2% pyrit- Firmly disseminate and Joseph Concentrations; and an thin "semi" married bands associated with mudature		enternice
105 - 02	medium gray gram; ottidized Frantuse surfaces	Fulnts / skined - she kenedes present		Juliution, al timber of smalles mades grain whatever hips indistant, equipment, cover grained in the 10-15% and be deal bluish guants	Feldopar - 45 % majes (Abrite) - 25-30 + Wight green process - actually quants - 10-15 %	3-54 calut- interest time	0.5-1.0 % parit- along police from dissaminated, and storages like consumtrating	1-2% levencera	quants gabbro
106-02	medium to dark green	Foliated	~0.5	gram sizes and melation ships obscured by tolindon and alternation; coarse, equipmentar	Feldepan -50-55 % molics - 40% (chilhised) gung - 2%	5% culit- interititiz			gabbro
107 -03	dark grun- locally ox.d.zed, especially along to hathen	tolicited; minor shearing - shekansids visible on some chips	0.5 - 1.0	appenrs slightly courses than 104-02 - molies completely chloritifed and nonce solusionitisation of Feldepor so gran outerus and alaborishes are radistanct except for the present of 01090 feldepor crystals of 0.8-1.8 mm	plagiocham - 55 % imm/i+5 - 40% (chibaitized)	1-2% calcitinaterstital	0.1% pyrit - dissorrated		gabbro
106 - 02		well foliated - shand; stickly sides observed locally	(indistinct)	Filiation-ships and butlines; primary grain selectionships and butlines; primary grain size in excess of 10 mins; and charles grains of plagocians and contestal completely chloritized mate minerals	playiocluse -55% Anafics - 40% (chlorit)		0.1% dissemmented pypit and/or pyrrhotit		gabbra

j

.

,

7

SAMPLE			GRAIN			MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
109-01	danh quen; locally oxidized	Foliated, shaved;	0.5-1.6	medium to coare grand; afteration offiteration offiteration of provides much for which is except for who so blue guarties composed of partially soussentially play and completely chlaitized majicily chlaitized	plagioclase - 50% (partially saussurityed) majes - 35% (chlorit) guants - 10% (blue)	390 calcitions territiza	0.1-0.5 % pynlitt - dissaminated	1-2 % greyish leucocene and indistinct any black ilmanit	quantz gabbre
110 - 11	dark grum to black	schistore; shand- slickmister on Feliation planes - Feliation Islamite, planes strangly chlorite, 1-2% windst quantz- carbonate	0.3-0.5	equigramular, in ter legaring; composed of partially same sure the desired player class, rocked horne blands (variably chlarity and per holly hecuphelized)	plugiscline -50.60% horneblands -20% chlorit -15-20%	LOSTO CLICT- With wime of guantz	to 0.5% pyrit-		omalee volchine (course)
III - 0Z	dank quan	possesses a poor, widely space of Foliation - possibly due to sharing (?)	1-2	conhednal, greeningh white Felds par (my be fine than 1.0 mm) and courte slightly a flast tized, subhednal hormstands; a ppears to be partially recrystallized	horneblande - 35%	funt trau interest trail culcit	trau pyritidissemmetel		gabbro
12-04		well foliated-shared; sub-graisses; 2% guartz-carbonat woulds		highly showed and altered (chilarte period) operaring textures; but ahuly coarse but princed to the texture of the texture of the texture of fillips of property of the texture of fillips of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of texture of the texture of the texture of the texture of the texture of the texture of the texture of texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of the texture of texture of the texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of texture of textu	1	1-2% culcition to the state of the second to guarty	190 pyrit - dissources to and local coyetalline concentrations	2% magnetit- disseminated	mafic volcanie (coarse)
113 - 06	durk green	Foliated; 290 winkt quanty		ankedral, equigramilar minerals; midium grained;	Plagueclus - 40% epidot - 15-20 chlorit - 20%} hornebland 20% qualy - 62%(?)	trau caleiti- interstitiol	trace pyrite - disservinated	270 magne tite-disseminated	mafic volcance (course)

ì

SAMPLE			GRAIN			MINERA	LOGY		T
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
114-05	light grey	Foliats I	CO.1 matery; pluserysts to 1.000	perphysique; light calor of matry-planetry sti clescours of of planetry sti; as 5-10% and be deal charge quarty to 1.0 mm and ~20% off-white, transfer be performed to the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance of the performance o	quarto- Lelapathic matrix plaguchuse planecysts - 202(?) quarts planecysts - 5-1021? chlorit - 570	290 culiti- interstital	0.19. pyrit- disseminated		gumtz- Feldspar porphyry
115-08	dank grey bkich	Fissib; 3% windst quants - carbonat	< 0.05	very fine grained; soft; vianges in color from una diam gray to black - unay be slightly graphitic	quantzo-Feldopathis; chlonibis	1-1590 cale to with guards in wind to	20.190 pyrts - disseminated		siltiture
116 - 17	durk grey to block	/issib to phyllitic; 2-3% quants -combact beinters	< 0.05	way for grand; soft; minor particularly banding / Bedding buth highly chilarite way for grand material and to 10% medium gray, slightly coarse (100 - 1 mm) carbonated material	quantyd?) - Feldopatha chlorite	0.5 % calcit - associated with the material; 3-5% moderately Nacture continued in midium gray bands	60.5 Me pyrite - dischaimstad and stranger Diper Content tractions calling Fisher tracks and Fractures		siltstone/ grywache
117-08	dark grun	foliated - schistore and sheared; poorly Limeted		similar to 110-13 and 113-06; the aring sultration obliteration obliteration obliteration obliteration obliteration obliteration of plans for suggestion of player talked sausaunitization of player land and chlaritization of matic	1 C DIROR 12 (1	0.5% calcite aling Fractures/ Foliation surfaces and disseminated	0.5-1.0 pyrit - duseminatis	2-5% magne ht - dissaminated	mafic internic (course)
118 - 06	dark green	forliated; shared to a slight degree	0.2-0.4	equipmental of the medium ghathet; NOW of chips are that go 40 fellow of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the f	K 7000 (100 (1)	190 calcit - stanger and interstitial	0.1% pyrit - dissominated		unglu vollance (coars)

i

SAMPLE			GRAIN			MINERA	LOGY	<u> </u>	
NUMBER	COLOR	STRUCTURE	SIZE(mn	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
119-02.	dark guen	A olivated; e long atom of moments in plans of forther south state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of	0.2-0.4	tquigramular jinto locking. saussuntije d plagre class! ) and chlay tized mafits; meg slightly magnetic	plagiochiae - 50% malies - 25-35% (chlorityd) epidet - 10-12%	190 caleit with vermet quanty and 194 interstitud calcit associated with epilit alterium	40.5 4. pyrit- disseminated		umafic volcumic (coarse)
120-02	danke gray to pinkick	poorly grassic; prohist crange Faldspathic Laminas and gray, birtile sich laminas	0.1	sugary-recrystallized. appears to be incipient development of foldspar perphysiolasts of the	quants 75% Feldpar 75% bioht - 15-20%	100 calcit - Interstitul and Interstitul and Fracture filling- only a small number of chips			gregwach (gnesss)
121-02	dunk gray to black	Forlinted; poorly generalized 10% epidote beinlets	< 0.1 to	sugary incorpetallized; bely finely biothic; poor, local segregation into light colored Felser bands and darker bruth rich bounds	quants Bono Feldopar Bono biotit -15-20%	0.5%, or bes, moderately mactive interstital and stringer combonate		<1% magneto	greywach (gneiss)
122-02	dark grey	well foliated; to poorly ognessie to schools bee	40.2	sugary-necystallized; appears to be a people such an appearant of the such and make out schiffer by it more apparant - different by aligned by aligned but to be a people of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of the best of t	quants   80 % Feldspar } 80 % bioth 6-15-20%	19a calcit - Interstitiel			grywache (schist/ gruis)
/23-02	black	Foliated	O.I or Uss	equipmenter , intergrowth of playing law and playing law and pour teeling chlosistied of maje minerals (mostly horn blanck)	plagiuclass - 50% major - 50% (pontrully chlonitized hornblands)	0.5% calut - stringers	0.5% pyrit - dissommeted and stringers		mafic Williams

)

SAMPLE		İ	GRAIN			MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mm	1	Silicates	Carbonates	Sulphides	Other	NAME
124-02	durk grey	foliated - discontinuous alignment of biotite, chiunt	0.2 - grains to 0.8 m	singary pecrystullyd bight schist with hitrograde attention of bight to their by chesis; lange (0.8 mm.) "grains" may be course which grammes or perphyroblasts; 15-20 % of noth chips are course (1.0 mm.) introduce course (5.0 mm.) introduce course (gabbo)	Thywashe Feldpar } 70 % of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the	2-3% cality In pregnants- Important In call tim gabbro- Interstital	0.5%, pyrits- disseminated		greywache
125-02	black; brown oxidution along tractions along tractions stronger/termbt quants— carbonati	Johnted - lineated; bligament of horn blands 190 semblet quark-carbonate	0.1 locally to 0.2	recogn fullyed - development of metamosphic humblends; ognegramular, interlocking	plagioches -50% hornblunds -50%	0.5% calest- interstitud a casociated with gund in wind h- oxidized wind h have no calest	60.5% prysite- disseminated and associated with struct granty- carbonale		majer vollemes (comphibolit
126-02	mottled- black and while	marsive - poor Fracture foliation (?) < 176 gunts - cerbonate ven 6 ts	1-2	hypidiomerphic	Feldspar (whit) - 30% quanty - 20% horn bland - 30-35% actimal to (1) - 10% chlorit - 5-10%	1-29. callet - interstitut and with guards- carbonate wins		0.5% splane 1-2% a pidet trace zircon	quants diorit
127-07	mettled- down guen a prohist whit	Chiq Eşiwl	1-2	hypothermorphic; prohish orange culou of Fe Hapar may be due to Fee taining - discolaration appears make intents marginal to Fractures	Feldipa, pink - 20%, but - 35%, quanty - 20%, horniblands - 25-36% chlorit - 2-5%	trace calcition interestities	trace pyrits - disseminated	5% epidoti	quantz diverti
128-02	mottled - greensh black and whit	massive (1) - may possess a very poor lecallized alignment of matic minerals	0.5 - 1.5	hypidiomerphic	Feldspar - 50% (whit) gung - 5% horneblande - 35% Chlorit - ~10%		_		quarty dionite (to diorite)

ì

,

SAMPLE			GRAIN			MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	S1ZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
129 -04	mottled- green black and pinhish to whit	massive ; pactured	1-2	orange to yellowish Feldober	Jeldopar / Pink - 10 % guang - 15% hornothinds - 15-30% climit - 65%	trace cality- disseminated		trau sphene; epidite - 2%	quants diants
130 - 05	black to greenith - black and white	gnessic - majic sich and mufic poer bands	0.2	sugary; Hervertallized; mulic with Banda Cartaning 7509 and often 7700 and jet black hombands and lesser ister chloris / Bight I lesser ister chloris / Bight I lesser fildspar, guant, and 1000 fildspar, guant, and 1000 minister of the bight almost first forther tooks almost metasses after 61 by magging metasses after 61 by magging metasses after 61 by magging	butto - 10-15% actmode - 5%	0.5 % cale. to - 1 - trish hiland along fractures	40.59 pyrit- disseminated	1-2% ep.1.6	gnywrchi (Fe-nih)
131-62	grey	schistore to greene; 2% win quants		sugary; recrystallized; parts of broths in parts of broths in parts of the three appears to be an incipient growth of Feldsper perphase blasts in parting an almost granite toother	Feldopen - 65% quanty - 15%(1) biotit - 20%	0.5% or bis calcit - dissominated	<0.5% pyril- disseminated		greywach (biotiti schut)
132 - 63	medium grig-boatly greenish	schisters to gravisse; 1700 world grantz	0.1-0.2	sugary; recrystallized; bith to bands and 10% in light coloned, Felsie bands with an almost grants torture	quants } - 60-65% Feldoper } - 60-65% Feldoper } - 60-65% Feldoper } - 60-65% Feldoper de Chlande		60.5% punt -		graywashe (bioh to schoot-gran
133-63	dark gry	Joliated - schistoris; distinct but poor Inflution - due to poor Elignment of broth 10%, or less, would guest?	0.1- 0.2	sugary; vicryatullized	fildopm } 75% bushle - 20-22%		co.5% pyrit- disseminated		greywaike (biohti schiit)

•

SAMPLE	İ	1	GRAIN			MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mn	1	Silicates	Carbonates	Sulphides	Other	NAME
134-07	medium to dank grey	schutora - biotitic	matur go.z~~;	15-20% physicians and 2-5% quests peophysicians or relief grains to 3.0mm in a song day, recrystulized, biotitic matery	gronuls/porphymblasts of fellopor aguility 20% matire fellopor funts 60% bioth6(locally -20% Chloritized)		0.5% pyrit + pyrahotil - disseminated		greywech (binht schirt)
135-04	rundium gry to dank gray	foliate 1 to schuber - de fined by alignment of biotit	0.1-0.2	sugary, recogs tultized; trans Tucant to a lear gunt and feldspan - und fferentiated	Feldopar 3 80 % biotit - 20%	_	0.196 pyrit- disseminated		gmywacho (biotiti schistou)
136-03	black with white "Felse" segugations	be poorly foliand	0.2	recognitudized make volcame (amphibolis) with 100% to 100% while win material grantes to couly souscentized played has and enhanced form blands join material propositions and enhanced propositions played in a tancel proposition of phic	policinic fildspan - 50% horn blande - 50% grampic win feldspan (whit) - 60% quanty - 35% bucht - 5%		1% pyrite - disseminated and rate stringers to 0.8 mm in width		maje Urleanie Camphibolit ant gramite Urin
137-01	medium to durk gray	poliated-schietore	0.1-0.2 bishty locally to	Sugary, recrystallized biotite school; 3-5% melict granulus to 0.8 mm; local retrograd alteration of biotit -chlorite	Feldopun } 86% guanty } 86% biotht - 20%	0.5% or liss. colect - interstitial	0.190 pyrite - disserving ted cubes		graywzeke (biotiti schist)
38-06	medium gray - locally greenish	poorly Frinted, Frankund	0.2 ~~ (mating)	10% subhedral feldepar perphyreblasts to 20 mm. In a maker of ekspar, recryotulized fekspar, quantz and brothe; biothe is patch, by distributed	fillspar porphyroblasts -10% porphyroblasts -10% porphyroblasts -10%(??) port to -15% (locally chloritic) hornblands/pyrogen-3%	0.5% calciti- interstitis!	0.1% pyrit - disserimental	-	ymywache (biotit Schist)

)

--- **)** 

SAMPLE			GRAIN			MINERA	LOGY		T
NUMBER	COLOR	STRUCTURE	SIZE(mn	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
139-14	mottled block and white pinhish whit	vm4 ssive	2~~	hypidiamorphic - subhidual whit to pinkish white feldopar, gunaty, and chloritized horms blunde; a few seldopar crystals show at almost perthite like twiming (pinkish)	Feldopar   prob - 5-0%   whit - 20-25%   whit - 20-25%   quanty - 30%   normblend - 25%   (locally chlorite)	0.5% calcitimateritità		5% of bis, sphere 5% epidet - associate furth major minurals	gramedinite
140 - 05	dark green; local ned Fe oxide straining marginal te tractures	massive to pourly, indistinctly foliated	0.4-1.0	an hedral sa usous typed plagioc has and sublated had born blende - intruoius	plagioclas - 60% (Fausium tiged) hornebland - 30% (more chloritzata) pyrexem/? - <10% ?	culciti- miterstitis!	190 pyrit - dissommated	190 magnetot	gabbro
141-12	medium to dants green -local red Fe-orade sturning	una seive	1-2	hyprolumor phic - altered; sub he had, partially chloride, and activally and and dal activally and fildspary fildspar (playeches) had been through y sand and spare to superior of sugary to the delight of sugary to the cident	plagioches - 502 ) 00 ; epidat - 10-1500 guntu quants - 5-800 hormbland - 3500 + chlantized hormoblad + Fibrono achmilite	40.5% calc. to -	190 pyrite - dissourcement of a local consumtrate	0.590 magnethed	gumtz gabbro
142 - 17	m dium green	masolut	1-2 (may be quater)	course gramed, sub- to enchedal horneblends (minor alternlion to chbrit I activality) in a 52ussuntized, almost sugary epide - physic lass matry - gram outful apparent only in hormblends	horn blands - 35%		60.1 To pyrit - dissominated	0.170 magnett- disseminated; ran lencopens	gabbro
143 - 12	dask green	folia ted	0.1-0.2	sugary to sub-sugary; szussuritized plagroclase and horn blando t associated chlarite 2 minur actin olite	plagioclase epidot (20%)  topidot (20%)  humblende - 35-40% (+chlorit, actualit)	196 caleito - interstita	dissemina U d	2% magnette - desorminated but some chips with abundant fine magnetit	majec collame

•

) ...

SAMPLE			GRAIN			MINERA	LOGY		1
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
144-02	dark green	schistore; strongly skeared - slickansits; poorly grassic!??) 2016 usin 64 conformate + minor quanty	0.1	styring Fabric and highly all tried; schiritrish the find by grunn-black chlants (after horne black), and activals is some dighter colored Falin bounds with a sugary tasture (in b-gariene); 2 4 4 70 blue 4 unt to syro to different julio ran which physic chare plumpays (5)	plagioclase - 40-50% 5 sussimitized leadly) mn/res - 30-35% (hornobindo, actuality) but mostly chlint) quanty - 2-4%	- di= wi-	0.190 pyriti- I disseminated		melia voltemic (possibly strongly shored gmbbro)
145-04	my diam grey green with white	host is shared; 5090 quants - canbonat verning	0.5-1.0 (hest)	pervisive afteration - straving; host is a dark green convert, intrusive composed of plagicalars and greenish processes, but pervasive verining originals much of grain helatonships; von blue quanty eyes	host plagiculare } 50:50 pyrozene: quantz-45%	2-5% slowly reactive continues in host; B-18% slowly Hackive carbonale assicial of with assicial of with many many and thost, and along for the standard of with symmetry and along for the standard of with symmetry and along for the standard of with symmetry and along for the standard of with symmetry and along for the standard of with symmetry and along for the standard of with symmetry and along for the standard of with symmetry and along for the standard of with symmetry and standard of with symmetry and standard of with symmetry and standard of with symmetry and standard of with symmetry and standard of with symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry and symmetry a	0.5 To, or 655, pyrit - local comment trations in wins and dissommated	leucocene - 2-3% in host rock	g = bbro and wein material
146 - 02	black	fissib; 3-5% beints + quanty- carbonate-as distinct win material and impregnating heit rock	aphaniti	very first bediment; locally graphitic		190 carbonate - mediately Muching associa with win guints and along Fractures	LO.50% pyrite; local trations, concentrations, or anything or within		muds tone
147-02	dark green		coard; bisible quanty and Feldiper to 2.0000	highly shared / loladd and altitud a been ing tortures; coarse, subhidus blue quenty and a tem course feldspar grains may grain size	plagroclass - 50% guests - 8% major - 40% (chlorit alterition of hornbland or pyrocens)	10 % calciti- interst tail- pervasive		2 % magnitity  ng - dissertinated;  2% forcoxone  replacing ilment;  rahl	qumtz gabbro
148 - '04 -	mudeum gry-guen	foliatel; 2% sembet quasty-carbonate		well fortiated; highly altered - chlorid kan born to; appears course grained with blue quants eyes to 20000 - defining framany grain size	Physicches - 40% quarty - 10% chlust - 35%		0.5-1.0 % bysit- dissemmated	2-3% leucoxene (to2	guants gabbro

j

)

SAMPLE	20102		GRAIN			MINERA	LOGY		ĭ
NUMBER	COLOR	STRUCTURE	SIZE(m	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
149 - 01	green; brum  be it althour  to wins-  oxidation of  pyrit	fortited - showed; 10-15% distinct carbonat + gunts winning - also persuasive culturation of host by win and triad	0.1-0.2	much of fexture completely distributed by stanning and alteration; a phone of fine to madium grained but may be cohoun; chlaine and highly calcures mo	plaginaliss - 40% quantz - 5% chlorit - 35%	715% mederately exactive can bonate - werning 1 parameters within host	dissommated	trace Fuchsit	mafic collemne
150 - 02	light to medium green	Fractured - may be poorly Foliated in minus sharing; 18 % of games - can be made between	4 0.2	highly altered - blanched; 4.15% maje minerals, and no funts; grain bunches met distinct;	playioclase - 60-70 % to major - 615% (Chlorit)	>1500 - associated by the gunty (while) In verse and pervise and throughout rock; carborate is rectactify Neactour	disseminated	1-29, lenconcens	matic volumic
<i>151-</i> 62	dark green	forinted; sheared- local stickencides; 1-2% weinled carbonate (1 quinty)	0.2-0.3	much of texture obscured by shorting /foliation and persuasive alteration - Chlosingution, combonitization locally appears gabbrois	plagioclus - 50% majico (chlority , actmolit) - 35% quantz - 1-270	2% wombt calcit; 3% interstitial calcit	0.102 pgn:t- duseminals	276 leucoxons	matic volcanic
152-03 153-63	a) dark grun (50%) b) dark grun to black (50%)	b) schiotoxa		Sau sent to ad played laws obscures feeting a phears Courte, in trudied b) eguipamentar, infer behing; and ifferential played land and trafice (chlorit and/or Chloritzed horn blands) mimor green, y anay material - flow or pillow madgins	1) physiches -60% (pentally somewrized) churt - 35% gunaurtized) churt - 35% b) plagicher - 360:40?)	interest that, stringer b) 3% interstitude and stringer culcit	#) trace pyrite b) 2% course cubic pyrite; B-10% pyrite; pyrrhoff - strung out along Felaton (mostly pyrhoft) 0.1% chalcopyrite	2) 29. leuconere	a) gabbro b) majic volcanic
	dark guen	fulinted; frankuned; shared -pussibly brecciated?)		appears coarse - intrusive but texture is indistinct due to peruasive chlorist 3 a tien and deformation	Plagiciles - 50% Chlorit - 30-35% quantz - 5-10%	L290 culcitions to the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contrac	40.5% pyrit - disseminated	2-3% lencox ens	quantz gabbro

}

•

SAMPLE			GRAIN			MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	S1ZE(mn	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
1549-03	black	Fishle; 1-290 Stringer carbonal	aphamide	very fine		42% calati- stringers a culong to lin tem	40.5% pyrit - disseminated		siltitore
155 - 01	beings to very light greenish beinge	poorly Foliated; slight comment to him of majors & chlority along Foliation planes	0.1-0.3(?)	quite hand; appears like fire an hidral white feldpar in a light quen glarsy maters - devitrified (?); bleached	Feldopathic; appears to be 25%, major minerals	5-7% calcitingtons that and stronger	<0.1% pyrit - dissemmented		matic volcanic (bleached)
156-06	-light brige- brown - oxidized	very highly schistore - culmost firstly shared; 2-4% windst guants carbonat	60.1 to aphaintic	oxidation, fine schusterity, sericit obscures textus; a few his oxidized chips display disentinuous fragum (to ham) in the plane of schum) and mit fragments; soft	fildspathic to quantzo-Feldspathilly sericiti-2590	2% calcite - with quanty in wins and minor interstitual calcit	mily may have been rested away		in termedia triff
157-02	dark grum	Cliated to schistow; 3-5% winkt/stringer quartz-carbonati	0.1	equigramular, interlocking, previous conbonate alteration imports an almost sugary together to sample	plagicchae + chlmit + cerbonate	>20% cale. to-	0.5-190 pyrit - disseminated cubes		omatic coleonic
56-02	3), m. dim gren (60%) b) whit (40%)	3) schutous to Fissib - blay fine (0.3 mm thick con Use) boundary b) massive to poorly bounded	b) aphembe	a) why fine with a distinct tound the parallel to schiptouty - possibly very fine ach bods b) white to grand into "2" - appears to grand into "2" - blacked equivalent of 2-(?);	1 1	2-3% calit- mostly in light colored material as stringers a interst that minus interstitual calit	0.190 pyrio - dissemina lid cubes		insterna dia tu FF

•

SAMPLE			GRAIN			MINERA	LOGY		1
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
159-02	medeum b dark green	massive	0.5-1.0 (locally (coarsu)	hy pidio merphic; sub- to en hedral green translucen pyroscene	Plagroclass - 20% Pyroxens - 80%	40.5% calcit- disseminated	trace pyriti- disseminated		pyrox en to
160-02	light to medium grey (slightly greenish)	appears to be a long compositional banding light and medium grey-quen lammae; 1-10% winlet quents		grammler; 70% or greater subsequents of selections of similar composition	plagioclass. 202 ] grants - 50% } grants - 50% } grants - Fellipar matrix	<b></b>	0.1-0.5 % pyrit		grywaihe (arhose)
161-16	mottled; pinkish white and black	massive	>2~~	hy pidiomorphic; antidral quarty, sublided to end to be chall plaguoches and chloritized reliet hornblands	feldper   pink -10% feldper   whit - 30% quenty - 35% hornblunde / - 20% chlorit epidet - 4% (appearate with aftered hornblund)	trace calcitinations to the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the calcitination of the ca		1% sphene	gramo diori t
/62-03	dark grun; local heman to straining along fractus	Juliated - elongation of mudle-like maje showings (66) in plane of feliation		intergreenth of sausounitized physicilized and chloritized matics; recrystallized. 2-490 pinhich-hematile stammed - feldpon sich zones		trace calcit - disseminated	100 pysita disseminated coars cubes to 1.0mm	2-3% finely disseminated magnetic	matic volume (coarm)
163-08		Johnted - preferred brien tution by altered matic move also may be due to stearing as slickers; ids; muariably present and preferred orientation of preferred orientation of miles also planes; to the shear planes; 2 70 were let calcite	0.2 - 0 - 5	equipmentar; fair by course, with an be death someoner track phagic class and an he death chloritized mafic moments;	plagioc lase - 50% chlostoged mafes - 40% epidete - 3-5% (?)		0.5%, or 455, pyrite - disseminated 2 local commution ton cilong Foliation/ shear planes	2% magnitht- Finely dissommabl	mafic colcanic (coarse)

SAMPLE			GRAIN		]	MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mn	TEXTURE	Silicates	Carbonates		Other	NAME
164-05	dark green to black	forinted; shared- 10-150, of chips and durk green, findly foliated there planes to he to the boom amphibus the total; 2-400 veinted carbonat	< 0. <b>1</b> – 0. 4	sub-sugary - par hally necrys to lized; exclusive of sharp plane on the individual of interest of locally sense with a payor has a company to the sense with the payor has a chloritized matic	plagischer - 55% mafics - 30% chlorit, lucid chlorityed amphibob, actuality biotic - 2-4% (?)	2-4 we must callet to 2-3% in torsticial callet	0.5-1.0 % pyrit - dissomma Od	3-496 magnetic dissommated	ma Fie volcanie
105-03		proofy Foliated; professed orientation of elongat beyondered is plant of foliation (possiblyla school for ty or minis shaving) 27 winlet quanty- calcit	0.2-0.6 plagine has no 0.2, seed, maje maje models	sub-sugary - partially becrys to list empound of an technique partially sansawith fed playsochise and chlositized matic mineral (horneblands ebserved locally)	plagiocher -40% metics -30% (chlorit) epidote -2%	12 calet - with quanty in wind to and interest that	C. 1 % pyriti-	190 magne ht dissemine led; some chips combin upwards of 5% magne ht	matic solcanic (course)
164 - 12	medium to dark green	Foliated; shar plans present; miner quents calcut very us	0.1- 0.2	both dark green to black foliated mater volcamie com posed of equipmentary, and of the security of the parties of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security of the security	mafics - 35	1% calcit - with wordst guanty, Frecher Fillings, and miterithan	0.5-170 pyrits - disseminated and local concentrations along transdures and telletim	0.5%, or 655, disseminated magnitud	volemie
167-02	dark green to black; ministration oxidation along Fractures		0.1-0.2 (horn blank to 0.4- pown liel to long axis)	essentially a black hornbland rick soch with 1000 laminac of leftspathic material (lockly sugary) - greater banding?; also observe mylic /hamble of rich layers grading to faldspathic layers	homble de - 50-60	1% calciting ters to that and Folia thon / Fracture Fillings	190 pyrit- disseminated and local, concentrations	100 magne ht - disserment	mafic wollowie (gness)
168 - 12	gny-wh.t	Foliated - poor, pur ferred orientation of biotit	to 2.0 for phenocrypt	a sugary ?) guarty - Feldstar	planscoysts plagioclass - 20% guants - 10-20% matix playector } 40% guants biotic - 15% epidote - 10%	trace calciti- dissammate/	trace pyrit - dissemmated		guantz- Feldspar posphyry

SAMPLE NUMBER	COLOR	CWDHCWHDD	GRAIN			MINERA	LOGY		
	<del> </del>	STRUCTURE	S1ZE(mn		Silicates	Carbonates	Sulphides	Other	NAME
169- 10	dark green to	romassure to poorly tolisted	0.2 (plugischer tu 0.4 (mafic mirrods)	fainly convenintergrowth of saucesurthyed plagoched and slightly chloritized hornebland - recrystallized	plagiochas = . 50% (sausuntged) hormeblud = 50%	0.5% cale to- interit hail	0.5% pyrit - disserving to	1-2% magnett - dissommated	matic colcums (coaru)
170-05	dank te medium green	poor Faliation	< 0.2	equipmentary inter behing; undifferential to sansiunitized playine has and chloritized maties - local, free grand, horne blands nich wetrens; maties impresented by chlorit, actimalit, hornbland	plagio clase:	19% calciti- stringer and insterstitial	0.5% pyrit- dissemmented and local stringer like concentrations		matic volcanie
171-06	dark green with pork- whit were material	poorly filted -more shar planes 5% of the mitual - guarty-cubonat of a pink culor 5 either finh caleit or huncht staining wenn-host soch contacts met distinct	0.2 av Uss	equigramater, intertacting; fund of ferentiated plague has and allants / act mobile	plugiaclusi: majics - probably in 44. Namys of 60-70:	5% caleit - interstitional in min meterial	< 0.1 % pyrit - disseminated		volemie
172-04	te Blüch	Foliable miner slichmerbis-shear plemes; 1-2% Windt quantz- culcit	0.2	partially necry tollized with pooling phismathic, eliminate through mind and antidad gray with the playing course - gatheries but this may be moreased in gray to may be moreased in gray to may be moreased in gray to may be moreased in gray to may be moreased in gray to may be more as to provide the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more to the more t	plagnoclusy - 47% hornsblund - 47% (slightly chlorite) brokk - 3%	<100 calcit - winder & strongers	o.1-0.5% pyrit-	190 , Imen i to	maje tollowie (amphibulit
173-02	blach	Johnted - alignment of preservante them oblinds		inequipmentar, elong at the mobile to 0.3m. Jelling at the content of plane of felling them, as he was for the plag inclusions and he was the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the		Lo.5 cul. to- local stringers	a.10. pyris-		rong fix volcamic (amphibulit

•

J

SAMPLE			GRAIN			MINERA	LOGY		Υ
NUMBER	COLOR	STRUCTURE	SIZE(mn	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
174- 02	light to me dum green	generally massive- minor shear planes- slichimsids; 170, or liss wind t quartz-carbonat	1-3 mm	an hedral greenish white players had have fore, he think grain authors) and go shedral makes much at the dot to chlorite and for actinolite hypidio morphic	physicals - 60% maple miles - 40% (pyroxene - variably a litered to chart and actinolite)	1% calcite- interst haland with gz. in vembls	0-1% pyrit - dissemmentel	<0.5% leucozens	gabbro
175 - 02	Jark green	schistus - sheared (slickeneids pasent); 5% white quanty- curbonate veinlets	0.5 - 1.5	highly schistow to shared; appears course grained with melict quark to 1.5 (organite) of a clar to blue color) and lesser milit physicals in charitized makes	plagiochu - 50% chlorite - 35-40% gunty - 5-7%	15 jargrenters interships and veinted calcit	trace pyrit - disseminated	1% I somewite and for	quantz gabbro
176				BEDROCK NOT REACHEL					
177-06	dank green	possibly fragmental	G.I	20% brownish-green elliptical altred	und ferm to ted play to class,	15-20% (possibly move) culcit-	0.50 pyrit -		matic volcanic
		or buseciated- schictisty appears to wrap around Fragments (7)		Fragment (matic m character) & Bomm in a dark green sousuritized plugioclase - chloriti- curbonat maticx	Ichlant - appears to be at last 35% chlont	peruzsint			(possibly fragmental or breccials
78-08	medium green	toliate; local slickensides; 190 windst /stringer quasts and carbonals	ľ	hypidiomorphic - anhodral plagiochise and subhidral to anhodral chloritized matic minusals		5% calc.to- interstitial	0.190 pyrite - disseminated		gabbro

1

SAMPLE			GRAIN			MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mn	TEXTURE	Silicates	Carbonates		Other	NAME
179-01	dark green	possesus a poor Foliation; 3-40, Winkt quantz- Carbonale	1.0-2.0	indistinct subhidral to anhedral plagicase and sub- to an hedral chloritized matics colong with N5-790 char to blue quanty	plagicches - 50%  matic  matic  minerals - 40%  (churtised pyroxen)  quanty -5-7%	1-2 % calcit, with quantz in sem ats	trace pyrite- dissemmented	40.5% magne to te - local comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to the comment to	1,
180-07	medium green	schistore; 1900 gausts-curbonate stringers	60.05 to aphantic	minor variations in color and grain size may define flow or pillow morgins; generally equipmenter and interlocking texture with 190 green Chlaitic Cht"/ stringers purelled to and cross cutting Foliation	sund from to a tod - too	0.5% calcib with quark in stringers and along fractures	trans pyrit - dissemmated		intermedia to volcanie
161-08	dark green	schistore; miner show planes - slickensides; 5-10% quantz-carbonate beining	0.1		undeform thated plague has and Chlority		0-5-190 pyrit- dissemmated cubes in veins and host		me Fic volcani
182-02	medium	strongly shoured; 590 weinlet quantz- carbornate (mostly cascite)	o.l cr bss	strong schistering /allanders and sharing appears to produce a bounding (tectonic); texture obliterated; from grained, Chlander, carbonated	undi FFerentialed	cales to constitutes govater than 15% of the sample - both verns and pervusive within host			mufic colcumic (strongly Sheared)
IE3-04	medum te dark green	highly schistore		und fleventrated interplements of playiechae and chlanit (tactmotit); some sections appear pochy granular or skylty gabbroic but this may be due to strong schisterity	N 60:40 plagrocher: majics, but this is uncartain	1-2% calcitinterstitial	trau pyrit- disseminated		matic volcomic (bossibly a highly schisher and allored yabbro)

•

•

SAMPLE			GRAIN			MINERA	LOGY		Y
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
164-06	medium tu dark green (greyish)	strongly schistose; 5-10% whit to gray guarty - Canbona to wern lets cross-cutting schistosity; bossibly 2 generations of bearing -2) whit 2 b) gay but relative ages unknown	۷ ۵۰۱	and flaguetus, chlerite	und FFerenhates	10-15% calet- in wins with quark and throughout host	0.5%, or 6 ss, pyrit - disseminated		maFic volcanic
185-01	dark grun	strongly schulour- sheured; 790 quantz- carbonate vein 4th	0.1 (?) to 0.5 (loca Ily); too shared to determine accurately		1-16 t - 1 have	N 15% calcit - I'M WIM makend and perocesing throughout host			gabbro (shared)
186-01	dark green	schistore - shared; 2% carbonate+quentz veinlefs 2 stringers	0.5 and grater - schistosity and sharing impurb a Finer appearance	nelict antichal quants and plagica base crystals	plagioclass - 50% mafic marries - 40% (chloriti) quanty (blue) -5-7%	5-10% calciti- in winds and interstitial	LO.196 pyrite - disseminated	190 magnetit- disseminated	quantz gabbro
187 - 02	tractures	schnighy schistose- sheard, almost a fissib parting; appears to be a poor banding- primary or tectonic(1); to 500 veinlet quarts contornate, roughly, baralleling tolication	< 0.1	strong Foliation obscures texture; amy golules observed locally	undifferentiated plagicalise and chlantiand possibly to 50c series or light coloned chlorit	5% culento- interstitula m winds	0.1 % pyrit - dissernmented	-	matic colcomic
188- OI	green	schistere with dark green very chlinitis schisterity planes; 3% winder guestz-carbonat	fractive) planecrysh to 1-0mm	porphysytic; 25% who te sub- to en hadral physicals phenocrysts to 1.0 mm magreen phagrochus - Chlants (+ actmodit) mating	undifferentiated	2-3% calcite - with vern material and interstitial	< 0.1 % pyrit - disseminated		matic volcemic (porphynytic)

1

SAMPLE			GRAIN		L	MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mn	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
189-01	muduum k dark green	schistore - mimor straving; 3% venult quarts - carbonati, host is blacked maynial to veins	0.1	undifferentiated plagicalise- chlorise (+ autinolite) makey with 290,000 less, scattered quanty and lesser chlorite Filled annygolules to 2 mm; as 290,000 chips display indistrict felde par phinocrysts to 0.7 mm		2% calcut - mostly in windth and N 0.5% interstitute within host	trace pyrit- dissominated		matic volcanic
190-0 <del>-</del> 1	dark quen; local reddish hematite steining along Fractures 2 wemlets	foliated; stear planes present; 3-40, vein let quartz carbonal	1-3	hypidiomorphic; composed casentially of sub-to can be chall shubaunitized plagice has and sub-to enhedral chlanitized born blands - which hornblands coaven than playic class	plagive lase - 50% (saussavitized) matics - 40% (chloritized hornblands and possibly minor pyroxens)	3% calite- mostly in weinlist and 0.5%, or less, interstitue	0.5% sullides - dissemment d; pynite, pynheht and a trace amount of chalcopynite	19. leucoscens 0.1-0.5 % magne to 6	g a bbro
191- 04	medium green	maroine with race show planes; 196 winder quantz - curbonate	0.1-0.2	relatively course grained with 10-20% sub-th antichal plague had phenocrysts from a maker of plague had, chlants and the dime grain pyrone are actional of course grain 13c in part local gabbres, ap	plegioclase -55-60% (total with plenserysts) majic misself- 25% (pytheen and/or actnosit) Chlasit - 15%	m wember 2	trace pyriti- disseminated		mtermedia - majic volcanic (porphyny)
192 - 08		schistore - almost Fissile (tectoric?) er tuffaceous?		hery firm grained with an almost filsib structure (possibly tectoric); highly caltened temborat) and chloritic foliation planes obscures toy tures	undifferential with a minimum of 20% chlorite	15%, or quenter, calcite - pervasive	0.1% pyrits - disseminated	trau Fuchsite	matic volcanic (tuff?)
93 <i>-04</i>		foliated; stichensides- shear planes present; 3-5% quantz-canborate would's and epidetized strongers		generally equipmentar and interlucking - Fairly coarse with antidnal plague has (sourseuns tized?) and pounty prismatic subhedul actional to - chlority partally replacing primary pyrexene	50:50 plaguelas (saussanitzes): chlant-actmolit- pyroxene	1-2% calcite- mostly in Minlet - momer Interstitat calcite	0.1% pyriti- disseminated		matic volcanic (coarse Flow)

,

SAMPLE			GRAIN			MINERA	LOGY		1
NUMBER	COLOR	STRUCTURE	SIZE(mn	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
194-03	dank green	schrifter to shand- minu slieben sides	0.1-0.2	equipmentar and intilocking with sauraunity zed plague has and chlority zed mafic and chlority and processes well?); local, more quest, eye; way altered - Lyont, surgayste. Sarborate	plagiocher: mafics - 60:40 <290 quantz	10-12 90 culcito -interstitizi	< 0.5 % pyriti- disseminated		matic volcanic
195-08	dark green	Foliated	0.5-2.0 Inditinct except for quantz	coarse gramed-altered; alteration of plague luse (saussunite) and majies (hombland to charte-possibly some pyrox ene); foliation, alteration obscures gram size	playsoclase -40% (saussuntized) Chlante - 45% (aFter humbland) quantz (blu) - 5-10%	2% cale. to- interstitio	0.5-19 pyrit- disseminated	2-496 ilmani6	gumtz gabbro
196-02	medium quen	foliated - chand; 170 or ers, wimlet quantz	matry 0.1-0.2 planocoypts to LO	medium green, fine playere has and chlant muting with 400 or greater sub-to take drail playere have plenocrysts to 1.0 mm and NI no gunty plenocrys to 0.6 mm	phenocrysts - 40%, matrix - 35%, quantz - <3%	0.1% calc. ti- Interstitiel	0.5% pyrit - disseminated		Feldspar porphyny
197-12	alma Fractus	gnussic - maja niet and maja poer hule; 22 % sugary, quenty + minor contona to win material	0.1	sugary-recrystally od; orbindon to epidete alteration and retrograd biotito to chlorite; original mappens to be biotito, but possibly may how been hownblands - 22 roch collemic not graywache	(chlant) - 20.25%	40.5% calcitionists in bounds in	190 pgnt - disservinated cubes	2-3 hema to to - alteration/ staining	grywache (gruiss)
198-15	to black	Foliated - poorly grasses: 1-2 % carbonate (+ quartz) bembts		mafil momerals (hornblind ?) to chlarite and possibly	(sausourityation) matic _ 35%	3-5% calcite- interstitis and in wink to with quants	2% pyrit- dissommated	5-8 % magnetit- very fruly disservence ted	mafic collunic (giness)

}

.

SAMPLE NUMBER	COLOR	STRUCTURE	GRAIN SIZE(mm	TEXTURE	Silicates	MINERA Carbonates			
199-2/	dark green	massive; 270  Member quants with  local rad staining—  Wens are unggy,  possibly leaded of  Carbonale; Macpiell 6  stringers	0.1	Equigranular and inter kicking with grunn, sausaunitized plagroc has and chloritized matic minimals (pyroxona)	plagivelase - 60% (saussunitized) Chlonitized Matics (pyrosaus)-35	trave calcity	Sulphides 0-1-0-5% pyrit. disseminati)	Other  - 0.170 fine,  disseminated  ilmeniti	MAME Matic Wleamic
200-11	medium to dark green	well foliated due to shearing	0.5-1.0	plagioc lase and subhedral	plagive has - 60% pyroxene - 30-35% Exchanglet -chloub alternation) quanty (blue) -1-2%	290 culciti- interstitial a along show plants	0.1-0.5 pyrit- dissemmated	0.5% leucoxene	gabbro
201-18	dark gruen	poorly policited; 100 winder guartz- combonati	generally 0.2-6.3- locally to 0.5	Equigranular and inter locking; gruens il sauss aritized plagoclass and dark grain chluste and a chnotic alteration of primary pyroxene	Plagiocher - 60% (Saussuntzel) chlante- actmolite - 40%	LO.590 calcit- in winds with gumb and associated with epidute stringers	0.5%, pyrit- dissommated		mafic vulcamic (coard Flow)
202-08	dark grun	well oficial - defined by patterved orientation of priema he maje minorals - sell-guess, may be more steaming befored by light green which tibroup activable? on a few following planes	ز۶	recrustualized and then retrograded; playiochase and epidet (saussunit) and chlorit (+actmobit) after hornblande(?)	plagioclase -50-55% (sausountyed) majies - 30-35% (chlorit, actimolit) epidoti -109a	1% calcite- interstitial and with quants in the sommated 1% our material	0.5-190 pyrit- disseminated cubes	2% maynetto -finely dissemmented	matic volcanic (sub- gneissic)
103-02	medium to dark green	strongly schistors to shewed; 170 wents/ stringer gunty- curbonat parallel to Foliation	0.1 (?)	schistosity, alteration (chlorite, carbonat) obscurs testures; appears to be have relict comygdules but this is questionable	plagiachie - 50% Chlorite - 35%	10-12 To callet - pervasive	trace pyrite - disseminated	0.1, or 655, magnet to - disseminated	matic volcanie

SAMPLE			GRAIN		MINERALOGY				
NUMBER	COLOR	STRUCTURE	SIZE(mm		Silicates	Carbonates	Sulphides	Other	NAME
204-02	dark green	strongly schistose— shared (minor slickensides along foliation planes)	< 0.1	fine schistosity, chloritic and carbonate afteration obscures textures	plugiochie - 45% chlorite - 35%	15%, or greater, pervalue calcite alteration	0.1 % pyrite- disseminated		matic volcanic
		2% quantz-carbonate stringers parallel to Foliation						į	
205-03	medium to durk green	strongly schustose; 15% carbona 6- quanty-chlorite verning	< 0.1	hust is partially blacked and composed of undifferentiated plaguebus and chlorist ; abundant verning (may be >15%); Here appears to be ~190 calcite filled amygdalo to 1.5 mm in 513c	und Ferentiated plages has and chlasite	15-20% cale.ti- in wins and interstitial	0.1 % pyrite - disseminated		matic volcanie
206-06	dark green	schistere - chlorite schistrity plans; 190 wembt quarts car bonnt	0.1-0.2	equipmentar and interlocking; appear to be 1-290 quants and calcite Filled carrygolulis to 100mm in size	plagioc lane - 50% chlanit - 35%	10% culc.to- pervisive, interstital	0.1% pyriti - dissemmated	0.1 % magnette disseminated	matic volcanic
207-10	dark green	schistors - should; mmer skehensidis along shor planes; 1% vern 6t stringer quartz kanbona t	0.1-0.2	similar to 206-06, but no obvious amygduls	condifferentiated (may be ~ 50:40, plag: obbits)	6-8% caleto-	0-1-0-5 % pyrit- disseminated		matic volcemic
200-08	medium to durk green	schistow, sleaned; 29 vembet quarty- carbonale	<0.1-0.1	similar to 206-207; some chips appear bleached - due to vermbts and possible sinface exposure (oxidation?)	and of from the tod player lass and chlasto - possibly miner amounts of sence to	pervasive	0.5%, or less, pupite - mostly as dissomerated cubs incernet quantz-carbonate	·	matic volcanic

,

ì

•

SAMPLE NUMBER	COLOD	OW DUOWILD D	GRAIN	_		MINERA	LOGY		<u> </u>
	COLOR	STRUCTURE	S1ZE(mn	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
269-10	medium to durk green with N 109s condized chips	schistuse; 2-4 % winder stringer carbonal - guartz	0.1	rock is locally blanded I due to being 2) and axidised; generally equipmentar and interlocking	un differen hated but there appears to be ~ 15-20% chlorit	10% moderalely Nactive canbonate - pervisive (canbonate may be Ferrich as which rich data gives 17.0% Fe203)	0.1 To pyrite - disserving tid		matic colcunic
210 - 08	duck green - 30-40% of sample ist oxidized	schistore - sheared j 5% beiger white, opaque carbonate vernity - massive; prohabily culcity but not as machin as other examples of callit	0.1	duck green Nuch is composed of chlorite & hornblands escape to in planes of fortier from, and plageoches; ore disect may be present professed attention and ore disect than along Filetin planes, or se suit from expesses.	and Fferential of plugueclase and chlority/hornblands	LIPO stringer Foliation callet in amore diged toch chips; 1-29, carbonate (callet?) within oxidized material			matic Lollance (unidised)
211 - o2	medium to	schipture - sheared; 5% veinlet/stringer calcit (+ quants)	0.1-0.2	fine grained, highly schistors and altered - chianto, carbonate; 2-3% calcit and chlante Filled amygdubs to 0.6 mm	und Fferentiated plagraches and chlante	15%, or greater, calcito - pervasive			matic volcanic
212 - 62	durk green	poorly foliated; 3% can bount (+ quants? win 6 +;	0-1-0.2	egargramular, inter licking; (on pased of sausounitsed?) plagioches, and chlant and activality	undifferentaled playlocker and mafine - ratio may be N 50:50	3% calet - mostly in winds or manging to winds - minus amounts dissominated	0.5% pyriti- disseminated		matic volcanie
213-07	(to beigs)"	carbona (tquarts)	(to 0.0 amy golules or Fragues b?	very findy schietors; fine and they will a 100% for the do coming of the form of 1.0 mm in plane of joint on a ppear to be to compare to be to compare to be to compare to be to compare to be to compare to be to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare t	undi Frærenhald	moderately maiting carbonate as	0.5% pyrite- disseminated and ruse; massive stringers		matic volcanic (bleuched)

tuffaceows upp

SAMPLE			GRAIN SIZE(mm	1			<u> </u>		
NUMBER	COLOR	STRUCTURE			Silicates	MINERA Carbonates	Sulphides	Other	NAME
214 - 06	medium to dank quy- local oscidized chips	poorly Foliated; 20% guarty wemlets	0.1	equigramular and in for locking; very highly altered *  * considering high Fer Os a should be iron sich	und. FFerentialed	>20% me derately to slewly reactive interstition carbonate	trace pyriti- disseminated cubes		mafic volcanic (curbonated
215 - 65	black	schistore; 5-790 Windet quants and can bona te	40.1 to 0.8 (grains)	beny fime black, locally graphitic mud/sittstone, graphitic mud/sittstone, and shiphtly coarses material 20-30% elliphical, durk gray-black inclusions to 0.0 mm - possibly and black to essent te uplacing and always and always to		3-5% slowly near hist carbonate - smortly in win muterial	1% pyrile - dissemment of In rock and in quarty - cerbonat would be	trace magnetit; trace tournaline	siltstone/ washe
216 - 03	medium gury gruen	foliated; buth mudium grey-green and duck grum chips - locally blacked; 200 quants - carbonat stringers	O-1 or less	equipmentar and interlocking; highly altered (combonat) and locally blanched	um di Fferentia led	15% moderately weether (to slowly maches) interstitial carbonate			ma Fic volcanic
217-05	medium green - minus oscidation	foliated to schistoso; 2-30, beinded-stringer quanty-can bonate	۵۰۱	equipmentar and inter liching; persuantly carbona tized and blacked to a digue; rare quantz amygdules to 0.6 mm	undifferentiated playinches and chlasitized mutics	12-15 % pervasion combornate - calcut to a maderately to a maderately possibly 715% combornate	trace pyrited disseminated		matic volcanic
218 - 04	midium grey	muderately well Filia ted	0.1-0.2	equipmentur and interlocking; bloached	und: Fferontiated plagues lase and matic minerals	B To mederately to stowly the stowly carbonate, appears as amall (to 0.4 mm) white grams which look like plague lase playerysty	CO.100 pyrits -	_	intermedal -maFie volcume

ì

SAMPLE			GRAIN			MINERA	LOGY		
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
219-02	dank guy; local oxidation	Foliated to schisters- miner stear planes; 300 winder quarty- oxidized	0.1-0.2	chlastic and questyo- Fellopathic - a missour number of chips display blue- gay aphanitic charty Fraquents (1) to LO num; a lesewhere some chips display the same blue-gay malaint as erratically plumar mutania which appear to be flow banded - breccutt	chlanite	3-5% slowly to moderately reactive to - interstital, stronger and with rembt + quarts	to 0.5 % pyrit- mostly in win material to miner amounts disseminated in host		intermediate volcemic (possibly a flow breccis)
220-03	medium guy to dark grey - Dounded	weakly Foliated - banding panelled to fullation; 200,00 loss, beinle & quantz	60.1 te aphaintic	aphanite to very fine grained; aphanite Flow multival and black more schistose, slightly covers built /leds - tuff! aphanite material contains ruse small quanty amy golu les		to 300 calcite- interstitud- mostly in danker more schistor bands	60.1 % pyriti- disseminated		in formediate volcomic
221-04	pab green (bloashed)	rme derately to well Falsated; sheared	0.5 and greater	equigranular; instruction of phenomens; indistrict outlines due to shearing, alteration and bleaching	plagioches - 50% mafics - 40% (provient - actinoliti-chlant)	5-10% pervasion, moderately rac tive calcite	ran frace pyrit - dissemmeted	trace ilmenito; 196 leucoxene	gabbro
222 - 02	enedium green (blocched)	strongly schoolse; 5-7% calecto wem lets	< 0.∫	egnigramular , inter locking; saussini tized plagice has and chlorit	blegiveloss - 45% (samounitiged) chlant -40%	5% pervesing discommended calcit, and 5-7% culcit wink to	1 /2 finely distance to d pyrite and local stringer - like concentrations associated with win material		maji volcanic
223-03	3) medium gey (60%) b) medium gren (40%)	3) Fractured - may be powerly schistore b) schistore, highly altered; bossibly a small percentage of amygoliko	b) o·1	3) mostly grey to white and clear wim matrial  - can beneat, quest 3 (1) a digested chlastic host; possibly a funt mass of graphit  b) highly altered and blanks composed of plague lace, chlastic and carbonate		2) 25% calet in ven material b) 5-8% calet-along schistory plants and minor strongers	2) 3-4 90 pyrib- disseminated and local concentrations b) < 0.190 pyrito- disseminated		a) wern combonate (+ quarts) + highly altered chlimthe host b) matic volcanic

SAMPLE			GRAIN		MINERALOGY				
NUMBER	COLOR	STRUCTURE	SIZE(mm	TEXTURE	Silicates	Carbonates	Sulphides	Other	NAME
224-02	medium grey-green	well foliated	mater 601; phinerysts 0.2-0.5	perphysic; ~ 30% in distinct player last player gab in a fine player and player are chemical materials rune quanty eyes	undifferentiated playicclase and pyrocene justs wis to chlast along Foliation planes; minor sericite afteration of playicclast planecry; to	8 % percusive culeite	trav þyrit - disseminatid	1-2% lencoxen	matic volcomic (porp
725-02	durk quen to block - Flicked white and punk	masowe; fresh	1.0-3.0	sub-ophitic texture	playeclase -45%, pink feldspar - 3% pyroxeme - 10% (brown) horn blande - 25% bio hts -5% epidote -2%.	170 culciti- dieseminated	trace pyrit- dissemmented	3% ilmenite with minut leucoceni alteration; 0.5% magnitut	gabbro
226-04	medium to dark grey; local oxidation	weakly Foliated; 7% guarty-carbonate wom material	0.1	Sime gramed, blacked- carbonated; equipmular and interlocking	un differentia to d	8% calcitinaters that; 3% calcitinaters that;	0.5% pyrite- mostly along contena 4-92 wins but also dissemmeted; 40.10s arseno pyr dissemmated	<u>ite</u> -	ma Fic volcomi
727 <del>-</del> 12	medium green (bloached)	Smely schifted - shared; 590 white to gray white combonate winds/ staingers	CO.1 to aphamatic	equipmenular and Interlocking	plagiocluse with 25% chlante	15% calcit- pervasive	0.1-0-5 pyrit- local concentration on were material	ms	matic volcanic
					,			**************************************	

i