DP-82-03

ALTERATION DE DEUX BANDES DE ROCHES VOLCANICLASTIQUES FELSIQUES DANS LES CANTONS DE LAMARCK ET DE DOLOMIEU, DISTRICT DE CHIBOUGAMAU

Cette première page a été ajoutée au document et ne fait pas partie du rapport tel que soumis par les auteurs.

DIRECTION DE L'EXPLORATION MINÉRALE

1982

Ż

DP 82-03

MINISTÈRE DE L'ÉNERGIE ET DES RESSOURCES DIRECTION GÉNÉRALE DE L'EXPLORATION GÉOLOGIQUE ET MINÉRALE DIRECTION DE L'EXPLORATION MINÉRALE

> ALTÉRATION DE DEUX BANDES DE ROCHES VOLCANICLASTIQUES FELSIQUES DANS LES CANTONS DE LAMARCK ET DE DOLOMIEU

> > Roger Aubertin

DP 82-03

TABLE DES MATIÈRES

INTRODUCTION	4	
Localisation et accès	4	
Travaux antérieurs	4	
Déroulement des travaux	7	
Remerciements	7	
Cadre géologique	7	
Géologie régionale	9	
Lithologie	10	
Géologie économique	11	
LEVÉ LITHOGÉOCHIMIQUE	12	
Populations	12	
Corrélations	16	
Étude des anomalies	22	
Discussion des résultats	24	
LEVÉ GÉOCHIMIQUE DE SOLS	33	
Grille Nord	34	
Grille Sud	34	
CONCLUSION	34	
Levé lithogéochimique	34	
Levé aéochimique de sols	34	
R E C O M M A N D A T I O N S	39	
A D D E N D U M	39	
BIBLIOGRAPHIE	42	
ANNEXES:		
1- Résultats des analyses de roches (levé li-		
thoaéochimiaue)	44	
2- Résultats des analyses de sols (levé géochi-		
mique)	53	
3- Distribution des éléments traces (Grille Nord)	60	
4- Distribution des éléments traces (Grille Sud)	73	
CARTES:		
1- Synthèse de la géologie régionale (1:50 000). h	ors t	texte
2- Secteur du lac Lamarck: compilation décloqi-		
que (1:5000) h	ors t	texte
3- Secteur du lac Lamarck: compilation déophysi-	1	
aue (1:5000) h	ors t	texte
,		

INTRODUCTION

Suite au rapport de Assad & Favini (1980) sur le potentiel cupro-zincifère dans le Nord-Ouest québécois, la direction de l'Exploration minérale du ministère de l'Energie et des Ressources a mis sur pied, en 1980, un projet visant à évaluer le potentiel économique de certains districts miniers de ce territoire. Ce rapport est basé sur des données gravimétriques, magnétiques et hydrographiques et appuyé par des données statistiques sur 110 gisements connus de cuivre-zinc du Bouclier canadien.

Le district de Chibougamau faisant partie des districts miniers à fort potentiel (figure 1), nous avons décidé d'effectuer une étude sur sa partie occidentale, peu explorée à ce jour. Dotées d'une géologie récemment levée par Charbonneau (1981a, 1981b) et Dubé (1981a, 1981b) et couvertes par le levé INPUT de la rivière Chibougamau (1981), deux bandes de roches volcaniclastiques felsiques criblées d'anomalies INPUT ont été choisies comme site pour une étude d'altération de la roche afin de délimiter des aires d'enrichissement et/ou de lessivage en certains éléments majeurs (SIO₂, Na₂O, MgO, K₂O, etc.). Notre étude s'inspire en grande partie des travaux réalisés par Gagnon (1981a, 1981b) et Valiquette **et al.**, (1978, 1980).

Un levé géochimique détaillé de sols a aussi été effectué afin de confirmer ou d'infirmer certaines aires anomales délimitées lors du levé géochimique régional de sols fait en 1980 (Beaumier, 1982).

LOCALISATION ET ACCÈS

La région se situe à 60 km à l'ouest de la ville de Chibougamau, dans les cantons de Lamarck et de Dolomieu (figure 2). Elle est limitée par les latitudes 49°51'00" et 49°56'00" et les longitudes 75°09'00" et 75°18'30". Ses limites physiques sont le lac Lamarck à l'ouest, le ruisseau Voyageur au sud, la limite des cantons de Lamarck et d'Opémisca à l'est et la rivière Chibougamau au nord.

Les moyens d'accès sont l'hydravion à partir de la base du lac Caché, à Chibougamau, ou le canot à moteur à partir du lac Kapunapotagen. Un chemin d'exploitation forestières relie ce lac à la route 113. Pour les besoins du projet, l'hydravion a servi de moyen de transport et de ravitaillement.

TRAVAUX ANTÉRIEURS

Beach (1937) a cartographié, à l'écheile de 1:63 360, tout le territoire compris dans la présente étude. Durocher (1979), Dubé (1981a, 1981b), Charbonneau (1981a, 1981b) et Otis (1982) ont repris plus en détail (1:20 000) la cartographie de différents cantons de la région étudiée; ces auteurs ont prélevé des échantillons de sédiments de ruisseaux aux cours de leurs levés.

FIGURE 1 - Carte de favorabilité gravimétrique du Nord-Ouest québécois. Tiré de Assad & Favini (1980).

FIGURE 2 - Localisation de la région étudiée.

En 1980, le M.E.R. a fait effectuer un levé géochimique régional de sols dans tout le territoire couvrant les feuilles 32 G/13 et 32 G/14 (Beaumier, 1981). En 1981, il a publié les cartes du levé INPUT de la rivière Chibougamau (Relevés Géophysiques, 1981).

Les compagnies minières ont effectué plusieurs levés de géophysique dans les cantons de Lamarck et de Dolomieu, dont plusieurs suivis de campagnes de forage. Une forte proportion des travaux ont été concentrés à l'extrémité NE du lac Lamarck.

DÉROULEMENT DES TRAVAUX

Le travail sur le terrain a compris un levé lithogéochimique et un levé géochimique détaillé des sols. Il s'est échelonné sur une période de cinq semaines à partir du 7 juin 1981. Le campement était situé sur les rives du lac Lamarck, à l'extrémité NE de celuici.

Le travail a débuté par le levé lithogéochimique. Tous les affieurements de deux bandes de roches volcaniclastiques felsiques (voir carte géologique pour limites) ont été échantillonnés de façon systématique. Au total, 185 échantillons ont été prélevés dans le canton de Lamarck et 72 dans le canton de Dolomieu.

Le levé géochimique détaillé de sols a été effectué sur deux réseaux de lignes distants de 6 km afin de confirmer ou d'infirmer des aires anomales en Cu, Zn, Pb, Ni, Co, et Cu, Ni, Co, As, Mn délimitées par le levé géochimique régional de sols de 1980 (Beaumier, 1982). Un total de 103 échantillons ont été prélevés.

REMERCIEMENTS

Des remerciements s'adressent à C. Robert pour l'aide fournie en tant qu'assistant-chef d'équipe, C. Dubé pour son aide technique et ses conseils professionnels et à M. Drolet pour son travail en tant qu'assistant junior. Des remerciements s'adressent également à J.-M. Charbonneau et A. Simard pour leurs conseils professionnels lors de la phase rédactionnelle du rapport.

CADRE GÉOLOGIQUE

La cartographie géologique de la région étudiée a été effectuée durant les étés 1980 et 1981 par C. Dubé (1981a, 1981b) et J.-M. Charbonneau (1981a, 1981b). Leurs travaux nous ont servi de base pour l'exécution du levé lithogéochimique. Les résultats des travaux de cartographie de Dubé et de Charbonneau pouvant être facilement consultés, nous ne ferons ici qu'une brève description de la géologie régionale. Les figures 3 et 4 montrent la géologie de chacun des deux blocs (Lamarck et Dolomieu) qui constituent la région étudiée; une synthèse de la géologie régionale est présentée sur la carte en hors texte.

FIGURE 3 - Géologie du bloc Lamarck.

FIGURE 4 - Géologie du bloc Dolomieu.

- 00

On notera une légère différence entre la géologie de la figure 3 et celle de la carte synthèse. Ceci vient de l'interprétation des résultats d'analyse des échantillons de roche que nous avons prélevés.

Géologie régionale

La région étudiée est comprise dans le sillon volcanique Matagami-Chibougamau et se situe entièrement dans la province du Supérieur. A l'exception de la diabase et du gabbro à olivine, toutes les roches sont archéennes (voir tableau 1).

La séquence volcanique est principalement formée d'une composante mafique (basalte et filons-couches associés, tuf mafique) et d'une composante felsique (tuf à blocs, tuf à lapillis, rhyolite et dacite). Les filons-couches, qui injectent les roches volcaniques, se composent presque exclusivement de gabbros. Les roches sédimentaires occupent les deux côtés de la rivière Chibougamau (au nord du bloc Lamarck) ainsi que le secteur au sud du lac des Trois-Iles (dans le bloc Dolomieu).

Les laves porphyriques à phénocristaux de plagioclase et de pyroxène se situent à l'intérieur des roches sédimentaires le long de la rivière Chibougamau et au sud du lac Janus.

Les dykes de diabase et de gabbro à olivine sont de faible puissance; ils représentent les dernières roches mises en place dans la région.

En général, les roches volcaniques ont une orientation E-W ou ENE et leur métamorphisme se tient au faciès des schistes verts.

TABLEAU	1 -	Sommaire	des	formatl	ons

PROTÉROZOÏQUE	Dykes de diabase; gabbro à clivine
	Laves porphyriques à phénocristaux de
	plagioclase et de pyroxène (Fm. de Haüy)
	Conglomérat, grauwacke, schiste argileux (Fm. de Stella)
	Filons-couches - Mésogabbro
	- Leucogabbro
	– Pyroxénite, péridotite
	Tuf rhyolitique, tuf dacitique
ARCHÉEN	Tuf feldspathique
	Tuf cherteux
	Tuf à minéraux
	Tuf lité, tuf graphiteux
	Tuf à blocs et tufs à lapillis
-	Túf à blocs bréchlförme (Fm. de Blondeau)
	Laves intermédiaires
	Laves basaltiques
	Filons-couches de gabbro associés aux laves
	(Fm. de Gilman)

Lithologie

Notre levé lithogéochimique n'ayant porté que sur deux bandes de roches volcaniclastiques felsiques, nous ne décrirons que les roches reliées à ces bandes.

Tufs à blocs et tufs à lapillis

Ces roches ne sont différenciées que par la présence ou l'absence de fragments anguleux d'une dimension supérieure à 64 mm. Dans le canton de Lamarck, elles occupent surtout le secteur à l'est du lac Lamarck; dans celui de Dolomieu, elles constituent presque intégralement toute la bande de roche volcaniclastique de ce canton.

En général, ce sont des roches gris clair à vert foncé; tout dépend de la composition de la matrice. Les fragments occupent 20 à 25% de la roche; leurs dimensions varient entre 5 mm et 1 m. Leur composition est surtout felsique mais on observe occasionnellement des fragments de gabbro. Les sulfures identifiés sont la pyrite et le pyrrhotine; la roche qui les contient est un tuf à blocs bréchiformes minéralisés qui se composent de chert, d'argilite et de gabbro.

Ces tufs minéralisés se trouvent presque exclusivement au contact de masses de gabbro. Les affleurement minéralisés que nous avons observés s'y situent presque entièrement. La roche est partiellement rouillée à ces endroits.

Tuf à minéraux

Ces tufs sont surtout concentrés à l'est du lac Lamarck, face à l'Île Haven. Leur couleur varie du gris au vert. La composition de la matrice est généralement felsique. La roche est caractérisée par des phénocristaux de plagioclase et d'amphibole. Elle est à grain fin et quelquefois chloritisée. On y observe très peu de sulfures.

Tuf Cherteux

Ces tufs sont gris clair à gris foncé. Le grain va de fin à très fin. A l'affleurement, ils se présentent en petites bandes de faible puissance (0,5 m à 1,0 m) intercalées dans des tufs à lapillis et/ou des tufs feldspathiques. Ils sont massifs et montrent par endroits une faible minéralisation.

Tuf feldspathique

C'est une roche gris clair à vert pâle, massive, montrant une altération crayeuse. Elle se rencontre partout dans la séquence de volcaniclastites du canton de Lamarck et sert d'horizon-repère au contact avec les roches sédimentaires et la séquence volcanique. A cet endroit, la composition de la roche est très felsique.

Rhyolite (tuf rhyolitique), dacite (tuf dacitique)

Ces roches, de composition felsique à très felsique, sont à grain très fin; leur couleur varie du gris clair au vert pâle. Sur le terrain, nous avons, à certains endroits, décrit la rhyolite comme un tuf rhyolitique ou un tuf felsique. L'horizon de direction E-W à la pointe NE du lac Lamarck contient en moyenne 68% SiO₂. En général, les affleurements de rhyolite proprement dite sont plutôt rares. Il est aussi à remarquer que certains affleurements cartographiés comme des rhyolites ont des pourcentages de SiO₂ inférieurs à 60.

La pyrite est le principal sulfure observé dans toutes ces roches; la minéralisation est cependant faible et disséminée.

Tuf lité et tuf graphiteux

Ces tufs, qui sont associés sur le terrain, forment des lits alternants d'une puissance qui ne dépasse guère 10 m. On y observe fréquemment de la pyrite disséminée.

Géologie économique

D'après le feuillet 32G de la carte des gîtes minéraux (Avramtchev & LeBel-Drolet, 1981), les cantons de Lamarck et de Dolomieu totalisent 16 gîtes (tableau 2). De ce nombre, cinq sont situés dans les roches étudiées lors de notre levé; quatre dans le canton de Lamarck et un seul dans le canton de Dolomieu.

La minéralisation, du type volcanogène, se compose principalement de pyrite et de pyrrhotine; les tufs à cristaux, les tufs graphiteux et les tufs à blocs en sont les roches hôtes.

Les travaux de l'industrie minière ont surtout été concentrés dans le canton de Lamarck. Quelques travaux ont été effectués dans le canton de Dolomieu; c'est dans ce canton qu'on a recoupé les meilleures longueurs lors de forages: 0,13% Zn/13 m et 0,6% Cu/6,3 m au lac des Trois Iles. Dans le canton de Lamarck, les zones minéralisées recoupées par des forages sont surtout composées de pyrite massive ou de graphite; les journaux de sondage décrivent la roche encaissante comme étant un conglomérat cherteux. Celui-ci correspond probablement à nos tufs à blocs, dont les quelques affieurements minéralisés observés sur le terrain se situent dans ce type de roche.

TABLEAU 2 - GÎtes minéraux dans Lamarck et Dolomieu

			Ca	ntons		Notre région	
		Prospec	† s *	l r minê	ndic Frai	es Isés	GÎtes
Ĺ	amarck	6		3	3		4 (prospects)
D	olomieu	6		1	l		1 (prospect)
*	prospect:	gîte qu	i a	connu	des	travaux	d'exploration.

L'échantillon 90917 (voir annexe 1) correspond à un affieurement minéralisé du type tuf à blocs bréchiformes; plusieurs tranchées y ont déjà été pratiquées. Non loin de là, un échantillon choisi, prélevé sur un prospect dans un gabbro différencié, a donné à l'analyse 0,8% Cu, 28g/t Ag et 1,2% Pb.

LEVÉ LITHOGÉOCHIMIQUE

Les études de Marcotte & David (1979), de Valiquette **et al**. (1978, 1980) et de Gagnon (1981a, 1981b) démontrent qu'une altération chimique de la roche encaissante accompagne généralement la minéralisation. Cette altération s'exprime par un lessivage du Na_20 et du CaO et un enrichissement du MgO, du K_2O et du Fe total; elle est plus ou moins forte, selon de la proximité de la zone minéralisée.

Lors de notre levé lithogéochimique, les deux bandes de volcaniclastites felsiques identifiées par Charbonneau (1981) et Dubé (1981) ont été échantillonnées de façon systématique (figure 5).

Un total de 257 échantillons de roches ont été prélevés sur le terrain (figure 5 pour localisation). Dans un premier temps, 128 ont été analysés pour SiO₂, MgO, Na₂O, K₂O, Fe total, S, CO₂, Cu et Zn et 3 pour 12 éléments majeurs et 6 éléments traces.

Notre étude de l'altération comporte quatre sections:

• comportement des populations des différents éléments analysés;

• corrélations entre certains éléments;

détermination du domaine de la séquence volcanique sur diagramme AFM;
étude des anomalies.

Il est à noter que, pour les fins de l'étude, nous éliminons tous les échantillons avec moins de 50% de SiO₂ et ceux avec plus de 5% de CO₂.

Les résultats d'analyse de tous les échantillons sont à l'annexe 1; les figures 6 et 7 fournissent la localisation des sites d'échantillonnage.

POPULATIONS

Dans ce chapitre, nous effectuons, à l'aide d'histogrammes (figures 8 et 16), un examen détaillé de la population de chacun des éléments. Chaque élément sera étudié séparément. Les distributions obéissent à deux lois principales: la loi normale, si elles sont symétriques ou la loi log-normale, si elles sont asymétriques. Une même population peut avoir plusieurs modes de distribution.

Les échantillons des bandes de Lamarck et de Dolomieu ont été distingués sur les histogrammes (noir: Lamarck; blanc: Dolomieu). L'âge respectif de formation des deux bandes étant incertain, il se-

FIGURE 5 - Localisation des blocs Lamarck et Dolomieu.

FIGURE 6 - Sites d'échantillonnage de roches dans le bloc Lamarck.

FIGURE 7 - Sites d'échantillonnage de roches dans le bloc Dolomieu.

-14-

rait hasardeux de comparer celles-ci suivant les mêmes critères. Ainsi, dans l'étude du comportement des populations des différents éléments, on parlera du comportement général des deux bandes puis, par la suite, on étudiera les bandes séparément si nécessaire.

\$10; (figure 8)

Distribution normale légèrement asymétrique. Le centre de la courbe se situe à 62,5% et l'asymétrie vient de la partie supérieure à 62,5%. La moyenne des analyses de Lamarck semble légèrement moins felsique que celle de Dolomieu.

Na₂O (figure 9)

Distribution normale symétrique dont le centre se situe à environ 4%. La courbe de Dolomieu est légèrement asymétrique vers les basses valeurs.

K_20 (figure 10)

Distribution asymétrique. Les deux bandes ont sensiblement la même distribution bimodale. La moyenne se situe à 1,3%.

MgO (figure 11)

Distribution asymétrique. La bande de Lamarck a une distribution trimodale et un étalement vers les hautes valeurs; celle de Dolomieu a une distribution bimodale et un étalement plus restreint. L'étalement vers les hautes valeurs pour la bande de Lamarck représente une chloritisation dans la roche ou une zone intermédiaire à mafique de la roche.

Fe total (figure 12)

Distribution multimodale, très étalée vers les hautes valeurs.

CO₂ (figure 13)

Distribution asymétrique avec étalement vers les hautes valeurs, lequel est causé par les échantillons de la bande de Lamarck. Celle-ci est plus asymétrique que celle de Dolomieu et également plus carbonatisée. Les deux bandes ont une distribution bimodale.

Cet histogramme sert à déterminer le seuil de la carbonatisation qui, pour le présent cas, est établi à 5%. Ainsi, tous les échantillons ayant un CO₂ supérieur à 5% sont exclus pour l'étude des résultats.

Cu (figure 14)

Distribution symétrique normale avec étalement vers les hautes valeurs, lequel est surtout causé par les échantillons de la bande de Lamarck. Grâce à cet étalement, on peut déterminer les différents seuils d'anomalie.

Zn (figure 15)

Distribution multimodale avec étalement vers les hautes valeurs, lequel est causé exclusivement par les échantillons de la bande de Lamarck. Tout comme pour le Cu, l'étalement a servi à déterminer les différents seuils d'anomalie.

S (figure 16)

Distribution asymétrique multimodale avec étalement vers les hautes valeurs, lequel est causé exclusivement par les échantillons de la bande de Lamarck.

CORRÉLATIONS

L'examen des corrélations significatives aide à déterminer le seuil de détection de certains éléments.

Na₂0/K₂0 (figure 17)

A première vue, ce diagramme montre un regroupement de points à proximité de l'ordonnée. A l'extérieur du regroupement, se dégagent plusieurs points, apparemment indépendants; le rapport Na_2O/K_2O de ces points est généralement plus faible que celui des points à l'intérieur du regroupement. Il s'explique par un lessivage du Na_2O , un enrichissement en K_2O ou une combinaison des deux actions. Rappelons que les roches ont habituellement un enrichissement en K_2O et un lessivage en Na_2O à proximité d'un gisement volcanogène. Ces points sont donc doublement intéressants car ils pourraient représenter des roches ayant subi une telle altération.

Ces points anomaux correspondent aux échantillons 90911, 90916, 90919, 90929, 90931, 90938, 90939, 90951, 90952, 90953, 90956, 90957, 90973, 90993, 90996, 91001, 91020 et 91023 (annexe 1).

Na_2O/K_2O vs SiO₂ (figure 18)

On constate, pour des valeurs inférieures à 60% SiO₂, que les points sont très étalés et qu'il est difficile de déterminer une tendance; par contre, pour les valeurs supérieures à 60% SiO₂, les points semblent se regrouper autour d'un axe qui donne la valeur moyenne du rapport Na_2O/K_2O (moyenne de Le Maître). La pente de la courbe étant faible, le rapport moyen ne varie que très légèrement avec le pourcentage de SiO2. Dans le présent cas, la valeur moyenne

FIGURE 8 - Histogramme de SiO₂.

FIGURE 11 - Histogramme de MgO.

-17-

-19-

FIGURE 18 - Relation Na_2O/K_2O vs SiO_2 .

FIGURE 19 - Relation Fe total en Fe_2O_3 vs SiO_2 .

FIGURE 20 - Relation Mg0 - SiO_2 .

- 20-

du rapport Na_2O/K_2O est établi à 3,0; sous ce chiffre, les échantillons de roches correspondants commencent à s'altérer en séricite, ce qui signifie lessivage du Na_2O , enrichissement du K_2O ou une combinaison des deux actions.

MgO et Fe total/SiO₂ (figures 19 et 20)

Ces diagrammes servent à établir la distribution de MgO et de Fe total en fonction de SiO₂ et à définir subséquemment le degré de chloritisation de la roche.

Diagramme AFM (figure 21)

Dans le diagramme AFM, la courbe utilisée pour délimiter les deux domaines est tirée de Irvine & Baragar (1971).

Ce diagramme montre que près de 77% des échantillons analysés se situent dans le domaine calco-alcalin. Quant aux échantillons englobés dans le domaine tholéiltique, ils correspondent à: l'horizon de tufs à blocs minéralisés face à l'île Haven; des échantillons carbonatisés; et des échantillons faisant partie du domaine calco-alcalin

FIGURE 21 - Diagramme AFM pour la région. La courbe est tirée de Irvine et Baragar (1971).

-21-

mais localisés dans le domaine tholéiltique. Tous ces échantillons appartiennent à la bande de Lamarck.

Les échantillons de tufs à blocs bréchiformes pourraient être altérés, ce qui expliquerait qu'ils appartiennent, de même que les échantillons carbonatisés, au domaine tholéiitique plutôt qu'au domaine calco-alcalin, comme c'est le cas pour la plupart des échantillons de Lamarck.

Il reste environ une dizaine d'échantillons inexpliqués. Il est normal cependant d'avoir, dans une population donnée, environ 10% des échantillons en dehors des limites établies et qui ne peuvent être expliqués.

ÉTUDE DES ANOMALIES

Après avoir examiné les différents éléments et les rapports utiles à l'étude d'altération, de même qu'après avoir déterminé le seuil anomal propre à chaque élément et à chaque rapport, il reste à nous servir des anomalies détectées afin de déterminer des aires d'intérêt. Nous analyserons séparément tous les éléments.

\$102 (figures 22 et 23)

Cet élément sera étudié en regard du type de roche correspondant. La géologie de chacun des blocs se trouve sur les figures 3 et 4. Dans le bloc Lamarck, les tufs à blocs au nord du ruisseau Déception sont moins felsiques que ceux à l'est de l'Île Haven et deux niveaux ont une valeur moyenne supérieure à 68% SiO₂; ces niveaux correspondent à des tufs rhyolitiques et à des tufs cherteux. Dans le bloc Dolomieu, la roche est un tuf à lapillis; la partie nord est par contre plus felsique que la partie sud. On note aussi, au sud du lac Scorpion, une colline de tuf chloritisé contenant moins de 60% SiO₂.

CO₂ (figures 24 et 25)

Le seuil de détection de la carbonatisation a été fixé à 5%. Sur la figure 24 on compte 20 échantillons carbonatisés. De ce nombre, 18 se situent au NE du lac Lamarck. Ils correspondent en majeure partie à des tufs à blocs, de composition intermédiaire, montrant une surface poreuse et ankéritisée. Certains échantillons contiennent 14% CO_2 . Cette zone de carbonatisation se poursuit jusqu'à l'île Haven où deux échantillons ont donné 3,7% et 4,7% CO_2 .

Dans le canton de Dolomieu (figure 25), la roche n'est presque pas carbonatisée.

Na₂0/K₂0 (figures 26 et 27)

Le rapport Na_2O/K_2O aide beaucoup à la détermination du degré de séricitisation dans la roche. Dans le canton de Dolomieu

(figure 27), on note quelques échantillons altérés; ceux-ci sont cependant isolés et n'ont aucun prolongement ou d'aire d'influence. Dans le canton de Lamarck (figure 26), les échantillons 90911, 90919, 90950, 90951, 90953 et 90973, qui ont un rapport faible, circonscrivent une unité de tuf rhyolitique. L'altération est uniforme partout dans la roche.

On note également dans le canton de Lamarck trois autres échantillons dont le rapport est très faible: 90916, 90938 et 90939. Ces échantillons, localisés à proximité d'une intrusion gabbroïque, correspondent à des tufs à blocs bréchiformes.

MgO (figures 28 et 29)

Aux abords de gisements volcanogènes, il y a généralement enrichissement du MgO. Le niveau de tuf rhyolitique déjà identifié par le rapport Na₂O/K₂O compte plusieurs échantillons anomaux en MgO. Par contre, les tufs à blocs minéralisés ont des valeurs moyennes.

Un regroupement de points anomaux ressort à 700 m au NE de la pointe NE du lac Lamarck. Il n'a aucune corrélation avec le rapport Na_2O/K_2O mais se situe dans un secteur où l'ensemble des roches est carbonatisé.

Dans le canton de Dolomieu, les échantillons anomaux sont isolés.

Fe total (figures 30 et 31)

Tout comme pour le MgO, le Fe total connaît en général un enrichissement à proximité de gisements volcanogènes. Les figures 30 et 31 montrent que l'horizon de tuf rhyolitique mentionné dans les deux sections précédentes (rapport Na_2O/K_2O et MgO) compte des échantillons anomaux en Fe total. On observe aussi une bande de roche enrichie en Fe dans le secteur à l'est de l'île Haven; cette bande, cartographiée comme tuf à blocs bréchiformes, est aussi enrichie en S. Il se peut donc que ces tufs solent moins altérés en Fe, surtout à cause du S présent.

Dans le canton de Dolomieu, les anomalies de Fe total définissent à peu près les mêmes aires que celles définies par le rapport Na₂0/K₂0 et les teneurs en MgO.

Cu (figures 32 et 33)

Le cuivre n'est concentré que dans les roches du canton de Lamarck; le canton de Dolomieu n'est le site d'aucune anomalie.

On remarque qu'une partie des anomalies de Lamarck se trouvent dans les tufs à blocs bréchiformes sur la rive est du lac Lamarck. Ces tufs comptent plusieurs affleurements minéralisés. L'horizon de tuf rhyolitique ne compte qu'un échantillon faiblement anomal. Les autres anomalies se répartissent dans les tufs à blocs de la partie NE.

Zn (figure 34 et 35)

Dans Lamarck (rive est du lac Lamarck), les anomalies de zinc définissent approximativement les mêmes aires que celles du cuivre. La partie la plus fortement anomale se situe dans les tufs à blocs bréchiformes à l'est de l'Île Haven; l'échantillon 90938 contient 855 ppm de métal. Aucune valeur anomale ne ressort dans le canton de Dolomieu.

L'unique anomalie du tuf rhyolitique correspond à celle du cuivre. Tout comme pour le cuivre, les autres anomalies se répartissent dans les tufs à blocs de la partie NE du lac Lamarck.

DISCUSSION DES RÉSULTATS

Nous discutons, dans la présente section, des anomalies de Na $_2^{0}/K_2^{0}$, CO $_2$, MgO, Fe total, Cu et Zn. Les aires anomales sont présentées dans la figure 36.

L'étude de la carbonatisation permet de définir une zone de direction sensiblement NE où le pourcentage de CO₂ est plus ou moins supérieur à 5%. Cette zone, qui occupe la partie NE du lac Lamarck, correspond majoritairement à des tufs à blocs ou à tufs à lapillis de composition intermédiaire à mafique. Sur l'affleurement, la roche est poreuse et souvent ankéritisée; en quelques endroits, elle est schisteuse et contient de la pyrite. Cette zone carbonatisée correspond à une zone de plissement; elle se situe à proximité de la faille du lac Lamarck. Les 20 échantillons de roche analysés pour l'or ont donné des résultats très décevants.

Le rapport Na_2O/K_2O fait ressortir deux regroupements de valeurs anomales qui correspondent à des niveaux de roches bien distinctes: le tuf rhyolitique à l'est de la pointe NE du lac Lamarck et les tufs à blocs bréchiformes à l'est de l'île Haven (à proximité d'une intrusion gabbroïque).

Le niveau de tuf rhyolitique montre aussi des valeurs anomales de MgO et de Fe total. A priori, cette unité semble altérée; toutefois, aucun affleurement minéralisé ne lui est associé et les valeurs de cuivre et de zinc dans les échantillons qu'on y a prélevés sont faibles. Ce tuf a sûrement subi une silicification car certains échantillons titrent jusqu'à 85% SiO₂.

Les tufs à blocs minéralisés, dont trois échantillons ont un rapport Na_2O/K_2O anomal, a un comportement variable dans les cas du MgO et du Fe total. Ils n'ont généralement aucun enrichissement en MgO et l'enrichissement en Fe total correspond à un enrichissement en S. Il est donc difficile de déterminer si la roche est

FIGURE 22 - Teneurs en SiO₂ dans le bloc Lamarck.

FIGURE 23 - Teneurs en SiO₂ dans le bloc Dolomieu.

-25-

FIGURE 24 - Teneurs en CO2 dans le bloc Lamarck.

FIGURE 25 - Teneurs en CO₂ dans le bloc Dolomieu.

-26-

FIGURE 26 - Rapports Na₂0/K₂0 dans le bloc Lamarck.

FIGURE 27 - Rapports Na_2O/K_2O dans le bloc Dolomieu.

- 27-

FIGURE 29 - Teneurs en MgO dans le bloc Dolomieu.

-28-

FIGURE 30 - Teneurs en Fe total dans le bloc Lamarck.

FIGURE 31 - Teneurs en Fe total dans le bloc Dolomieu.

-29-

FIGURE 32 - Teneurs en Cu dans le bloc Lamarck.

FIGURE 33 - Teneurs en Cu dans le bloc Dolomieu.

- 30 -

FIGURE 35 - Teneurs en Zn dans le bloc Dolomieu.

-31-

.

- 32 -

chloritisée ou non. Par contre, la plupart des affleurements minéralisés dans la région étudiée sont constitués de cette roche; les valeurs en cuivre et en zinc y sont généralement fortement anomales.

Sur la carte du levé INPUT de la rivière Chibougamau, une large bande de points anomaux couvre ces tufs à blocs minéralisés. Par contre, il se peut fort bien que ces anomalies correspondent à des tufs graphiteux et/ou pyriteux.

Dans le canton de Dolomieu, les anomalies sont moins importantes et moins continues que dans le canton de Lamarck. A première vue, l'activité hydrothermale semble y avoir fait défaut.

LEVÉ GÉOCHIMIQUE DES SOLS

Ce levé fait suite au levé géochimique de reconnaissance de sols effectué en 1980 (Beaumier, 1982). Notre travail a consisté en une vérification de deux aires anomales en Cu, Ni, Co, As, U, Mn et en Cu, Co, Ni, Zn, Pb, identifiées respectivement "Grille Nord" et "Grille Sud" sur la figure 5. Un total de 103 échantillons ont été prélevés dans l'horizon A_0 , dont 41 sur la grille Nord et 62 sur la grille Sud.

Sur la grille Nord, les échantillons ont été prélevés à tous les 200 m sur des lignes espacées de 300 m. Sur la grille Sud, l'échantillonnage s'est fait au 300 m sur des lignes distantes de 300 m.

Le tableau 3 donne la moyenne ainsi que les seuils de détection des différents éléments traces analysés. Les résultats d'analyse de tous les échantillons sont à l'annexe 2.

TABLEAU 3 - Moyenne et seuils de détection pour les éléments du levé géochimique de sols.

	X	σ	x + σ	X + 2σ	x + 3σ
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Cu	12,97	10,98	23,95	34,93	45,91
Ζn	33,96	21,60	55,56	77,16	98,76
Рb	16,01	14,58	30,59	45,17	59,75
NI	9,65	10,01	19,66	29,67	39,68
Сo	5,07	6,11	11,18	17,29	23,40
Мп	242,47	569,38	812,85	1380,23	1949,61
Ag	0,20		>0,20	>0,20	>0,20
As	1,04	0,82	1,86	2,68	3,50
Нg	299,98*	166,03*	465,91*	631,94*	797,97*
U	0,42	0,44	0,86	1,30	1,70
ΒI	2,00	-	>2,00	>2,00	>2,00
Мo	1,40	0,65	2,05	2,70	3,35
Li	2,97	2,67	5,64	8,31	10,98
Sn	2,00		>2,00	>2,00	>2,00
X:	Moyenne	σ: Ecart-t	уре	* partles par m	Illlard (ppb)

GRILLE NORD

Les figures 37 et 38 montrent respectivement les aires d'anomalies, la localisation et le numéro d'analyse de chaque échantillon. L'annexe 3 donne la distribution de chaque élément trace. Les aires d'anomalies ont été déterminées à partir du seuil de détection \overline{X} + 2 σ (\overline{X} étant la moyenne et σ l'écart-type).

Les résultats d'analyse de cette grille sont très décevants et l'aire anomale en Cu,Ni, Co, As, U du levé de 1980 n'a pas été confirmée. Seules quelques anomalies très locales sont dispersées dans la grille.

GRILLE SUD

Les figures 39 et 40 montrent respectivement les aires d'anomalies, la localisation et le numéro d'analyse de chaque échantillon. L'annexe 4 fournit la distribution de chaque élément trace. Les critères de regroupement des éléments dans les aires d'anomalie sont les mêmes que pour la "Grille Nord".

En général, les éléments sont très dispersés et on observe beaucoup d'anomalies. Parmi celles-ci, une seule retient l'attention. C'est l'aire anomale en Pb-Zn dans la partie SW de la grille. Cette aire est très grande, très forte, ouverte au sud et principalement anomale en Pb. Le zinc est faiblement anomal ($X + 1\sigma$).

CONCLUSION

LEVÉ LITHOGÉOCHIMIQUE

Trois aires regroupant quelque 25 échantilions ressortent comme altérées.

Niveau de tuf rhyolitique (NE du lac Lamarck), à faible rapport Na₂O/K₂O et dans lequel MgO et Fe total sont élevés; Cu et Zn sont faibles.
Tuf à blocs bréchiformes (à l'est de l'Île Haven), à faible rapport Na₂O/K₂O et dans lequel Cu et Zn sont très élevés et MgO et Fe total sont variables.
Roche carbonatisée (NE du lac Lamarck), dans laquelle le CO₂ est supérieur à 5% et Cu et Zn sont variables.

LEVÉ GÉOCHIMIQUE DE SOLS

Un aire retient particulièrement l'attention dans la "Grille Sud". Elle est anomale en Pb, immense et ouverte dans la partie SW de la grille.

FIGURE 37 - Aires d'anomalies sur la grille Nord.

FIGURE 38 - Sites d'échantillonnage de la grille Nord.

FIGURE 39 - Aires d'anomalies dans la grille Sud.

FIGURE 40 - Sites d'échantillonnage de la grille Sud.

RECOMMANDATIONS

Afin de s'assurer s'il y a bien altération dans le niveau de tuf rhyolitique et le niveau de tufs à blocs bréchiformes, il serait bon d'analyser pour CaO et TiO₂ tous les échantillons de roches dont le pourcentage de SiO₂ est supérieur à 60. Ces éléments sont indispensables pour utilisation dans l'équation de l'"Incide de Marcotte". Cet indice est donné par l'équation suivante: V = 1,906 -(0,574 x Na₂O) + (0,301 x MgO) - (0,263 x CaO) + (1,443 x TiO₂) -(0,177 x Fe total) où Na₂O, MgO, etc. sont les teneurs (en % poids) des oxydes dans l'échantillon.

Les échantillons à analyser sont 90910, 90111, 90916, 90918, 90919, 90938, 90939, 90947, 90950, 90951, 90952, 90953, 90959, 90973, 90986.

De même, il serait bon d'analyser pour SiO₂, MgO, Na₂O, K₂O, CaO, TiO₂, Fe total, CO₂, Cu et Zn, tous les échantillons de roche que nous avons prélevés, lesquels correspondent à l'aire de carbonatisation, au niveau de tuf rhyolitique et à la bande de tuf à blocs bréchiformes.

Finalement, il faudrait vérifier l'extension de la "Grille Sud" afin de fermer l'aire anomale en Pb-Zn.

ADDENDUM

Suite aux recommandations de l'étude d'altération précédente, une compilation des travaux des compagnies minières a été effectuée sur les deux niveaux de roche ayant subi lessivage et/ou enrichissement en SiO₂, Na₂O, K₂O, MgO, Fe total, Cu et Zn, Dans cette compilation, tous les documents concernant les levés géophysiques terrestres, les sondages et les fiches de gîtes ont été examinés. Le but était de vérifier la géologie in situ et de déterminer des cibles pour une exploration future.

Les cartes de compilation sont à la fin du rapport; leur base topographique est celle utilisée par Massberyl Co. Ltd dans le GM-4003. La carte géologique est basée sur celle de Dubé (1981a), avec notre réinterprétation.

L'exploration minérale dans le secteur du lac Lamarck est présentement au ralenti mais elle a été activée par le passé, particulièrement en 1956 et 1966.

Les travaux se résument surtout en des levés géophysique: EMV, résistivité et magnétomètre. Ils comprennent aussi 19 sondages implantés sur le territoire de notre compilation. Les analyses de ces sondages n'ont pas révélé de teneurs encourageantes. La plupart des trous ont recoupé des bandes de pyrite massive ainsi que du graphite. Le tableau 4 donne la liste des dossiers d'exploration minière consultés. On peut facilement retracer la localisation des travaux en consultant les cartes de localisation du DP-699 (MER, 1980).

DISCUSSION

NIVEAU DE TUF RHYOLITIQUE

Ce niveau est le plus altéré des deux. L'altération se manifeste par un enrichissement en SiO $_2$ et en MgO et un faible rapport Na $_2$ O/K $_2$ O.

La compilation ne donne que peu d'informations pour la définition de nouvelles cibles d'exploration car les travaux des compagnies minières n'ont qu'effleuré le niveau. Ainsi, on n'observe aucun axe conducteur et le relief du levé magnétique est très faible. A ce manque d'information, s'ajoute le fait que le levé INPUT de la rivière Chibougamau (Relevés Géophysiques, 1981) ne révèle aucune anomalie sur le présent niveau.

Il reste que ce niveau est très altéré et que, même si on ne peut définir de cibles par le biais de la compilation, il serait bon de planifier une prospection géologique détaillée, ainsi qu'un relevé géochimique de sols.

NIVEAU DE TUF À BLOCS BRÉCHIFORMES

Ce niveau possède une altération beaucoup moins constante que l'autre mais présente un enrichissement notable en Cu et en Zn.

GM	Aüteur	Nature du dossier	Année
3996	Newkirk Mining (S. Szetu)	Levés géophysiques (résistivité; mag)	1956
4003	Massberyl (S. Szetu)	Levés géophysiques (résistivité; mag). Forages	1956
4257	Midworth (P. Hallof)	Levé géophysique (EM)	1956
4258	Bulldog Yellowknife (R.A. Gordon)	Levé géophysique (EM)	1956
4259	Deita Minerals (P. Hailof)	Levé géophysique (EM)	1956
4789	United Chibougamau Copper (C. Bischoff)	Levé géophysique (mag)	1956
4852	Ontro Lake (L. Bata)	Laufe sharehous (FMI)	1057
4853	Gripp Lake (j. Betz)	Leve geophysique (EMH)	1957
4862	Newlytek Mining (C. Castu)	Laufe destructiones (destablished and) (falset	1054
4863	Newkirk Mining (S. Szetu)	Leves geophysiques (resistivite; mag). Geologie	1900
4881	Tamiska Copper (O. D. Maurice)	Levés géophysiques (résistivité; mag)	1956
4939	Newkirk Mining (S. Szetu)	Levés géophysiques (résistivité; mag)	1957
5254	Continental Mining (S. Szetu)	Levés géophysiques (résistivité; mag)	1957
18177	Merrill Island (A. Rattew)	Levés géophysiques aéroportés	1966
18267	Merrill Island (A. Pudifer)	Levés géophysiques (EMV; mag)	1966
18609	Merrill Island (R. Alexander)	Levé géophysique (EM)	1966
18632	Merrili Island (R. Kidd)	Levé géophysique (EM)	1966
19253	Merrill Island (R. Alexander)	Lévé géophysique (EM)	1966

TABLEAU 4 - Liste des dossiers d'exploration consultés.

Ce tuf à blocs à caractère explosif a une matrice de composition intermédiaire. On y observe plusieurs affleurements minéralisés, entre autres le gîte 32 G/6.

Les levés de géophysique de Massberyl et de Merril Island (voir tableau 4) ont localisé plusieurs axes conducteurs sur le niveau ou à proximité de celui-ci. Neuf forages ont été implantés pour vérifier certains de ces axes; ils n'ont recoupé que des bandes de pyrite massive et du graphite. Le relief magnétique, très accidenté, est probablement causé par la présence de pyrrhotine. Dans les forages, la meilleure longueur minéralisée est de 0,85% Cu sur 1,8 m.

Le levé INPUT de la rivière Chibougamau montre la présence d'une série d'anomalies qui correspondent approximativement au niveau de tuf à blocs; mais à cause de la pyrite et du graphite caractéristique de la formation de Blondeau et de la présence de pyrrhotine, il est dificile d'interpréter les différentes anomalies, de même que les axes conducteurs déterminés par les anciens levés de géophysique.

Définir des cibles d'exploration dans la formation de Blondeau semble presque utopique à cause du caractère même de la formation mais tout comme pour le niveau de tuf rhyolitique, une prospection géologique détaillée ainsi qu'un levé géochimique de sol serait de mise.

CONCLUSION ET RECOMMANDATIONS

Le niveau de tuf rhyolitique ne présente aucun axe conducteur ni aucun affleurement minéralisé; il est pourtant très altéré et contient plus de 68% de SiO₂. Par contre, dans le niveau de tuf à blocs bréchiformes, il y a plusieurs axes conducteurs et affleurements minéralisés; il y a, entre autres, le gîte 32 G/6 où la minéralisation se présente sous forme de pyrite et pyrrhotine. La composition de la matrice est intermédiaire et son degré d'altération est variable.

Les deux niveaux font partie de la formation de Blondeau, dans laquelle les axes conducteurs et anomalies INPUT correspondent souvent à des niveaux de tufs graphiteux et de tufs pyriteux. Il est donc difficile d'établir ou de planifier une stratégie d'exploration dans une région où affleurent des roches de cette formation.

Suite aux travaux déjà effectués sur le terrain par l'industrie minière et à la cartographie récente de la région par Dubé (1981a, 1981b), il demeure qu'il serait bon d'effectuer une prospection géologique détaillée, ainsi qu'un levé géochimique de sols sur ces deux niveaux.

BIBLIOGRAPHIE

ASSAD, R. - FAVINI, G., 1980 **- Prévisions de minerai cupro-zincifère** dans le Nord-Ouest québécois. Ministère de l'Energie et des Ressources, Québec; DPV-670; 59 pages.

AVRAMTCHEV, L. - LEBEL-DROLET, S., 1980 - **Cartes des gîtes minéraux** du Québec - Région de l'Abitibi. Ministère de l'Energie et des Ressources, Québec; DPV-744.

BEACH, H.H., 1937 - Michwacho Lake area, Abitibi Territory, Quebec. Commission géologique du Canada; étude 40-4.

BEAUMIER, M., 1982 - **Pédogéochimie – Région de la rivière Chibouga**mau. Ministère de l'Energie et des Ressources, Québec; DP-869; 10 pages.

CHARBONNEAU, J.-M., 1981a - Demie est du canton de Dolomieu et quart sud-ouest du canton de Daubrée. Ministère de l'Energie et des Ressources, Québec; DP-844.

' 1981b - Quart sud-ouest du feuillet du Lac Lamarck et quart sud-est du feuillet du Lac Inconnu. Ministère de l'Energie et des Ressources, Québec; DP-853.

DUBÉ, C.-Y., 1981a - **Demie est du canton de Lamarck**. Ministère de l'Energie et des Ressources, Québec; DP-811.

1981b - Région de Lac Lamarck - Baie Dussault. Ministère de l'Energie et des Ressources, Québec; DP-848.

DUGAS, J. - LATULIPPE, M. - DUQUETTE, G., 1967 - **Bibliographie anno**tée sur la minéralisation métallique dans les régions de Noranda, Mattagami, Val-d'Or et Chibougamau. Ministère des Richesses naturelles du Québec; ES-2.

DUROCHER, M., 1979 - Canton d'Opémisca et quart nord-ouest du canton de Cuvier. Ministère de l'Energie et des Ressources, Québec; DP-611, 31 pages.

GAGNON, Y., 1981a - Lithogéochimie du complexe rhyolitique de la mine Hunter, Abitibi-Ouest. Ministère de l'Energie et des Ressources, Québec; DPV-789; 33 pages.

1981b - Lithogéochimie de la partie orientale du complexe rhyolitique de la mine Hunter, Abitibi-Ouest. Ministère de l'Energie et des Ressources, Québec; DPV-826; 30 pages.

IRVINE, T.N. - BARAGAR, W.R.A.A., 1971 - A guide to the classification of the common volcanic rocks. Journal canadien des Sciences de la Terre; volume 8, pages 523-549. MARCOTTE, D. - DAVID, M., 1979 - Target definition of Kiroko type deposits in Abitibi by discriminant analysis of geochemical data. Institut canadien des Mines et de la Métallurgie; volume 74, no 828, pages 102-108.

M.E.R., 1980 - Carte de compilation géoscientifique - 32 G/14. Ministère de l'Energie et des Ressources, Québec; DP-699.

1981 - Cartes de compilation géoscientifique - 32 G/14. Ministère de l'Energie et des Ressources, Québec; DP-842.

OTIS, M., 1982 **- Demie nord du canton de Daubrée**. Ministère de l'Energie et des Ressources, Québec; DPV-924.

RELEVÉS GÉOPHYSIQUES (LES), 1981 **- Levé INPUT dans la région de la rivière Chibougamau.** Ministère de l'Energie et des Ressources, Québec; DP-829.

SANGSTER, D.F., 1982 - Precambrian volcanogenic massive sulphide deposits in Canada: a review. Commission géologique du Canada; étude 72-22; 44 pages.

VALIQUETTE, G. – MARCOTTE, D. – MELLINGER, M. – SMITH, E. – WE-BER, G.R. – DESCHAMPS, F., 1978 – **Recherche des métallotectes dans ia région de Normétal**. Ministère de l'Energie et des Ressources, Québec; DPV-582; 236 pages.

VALIQUETTE, G. - MELLINGER, M. - GAGNON, Y., 1980 - Lithogéochimie des roches volcaniques de la région de Normétal. Ministère de l'Energie et des Ressources, Québec; DPV-710; 40 pages. ANNEXE 1

Résultats des analyses de roches (levé lithogéochimique)

No	90917	90993	91004	90901	90902	90903	90 904	90905	90906
					<u> </u>				
	577	527	682	59.5	45.7	64.7	52,1	56,6	61,8
	\4.4	ыл 147	/7.7	~0,~		- 71		<i>,</i> –	
$A_{12} \cup_3$ $M_2 \cup$	2 60	390	0.67	4.49	5,50	1.96	6,00	5,11	4,58
	6.05	z 94	495	1.7	-, -	·/	,		
	312	150	402	3.62	256	2.77	5,00	3 <i>8</i> 8	3,75
Nd ₂ O	5, 2 \ 4L	1,50	106	0.70	0.36	1.78	0.23	1.48	1.27
	1,10	1,50	0.48	-,70	-,00	/	-,-0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
102		2,31							
1205	0,12	0,20	0.05						
i imo	0,17	n 84	363	/ 36	5.19	8.51	/ 39	In	0,50
	1,20	0.74	008	1,50	0.08	0.57	0.02	0.02	0.02
5	2,57	13.5	231	955	123	4,60	10.2	6,91	5,46
+ RETOTAL	10,1	13,5	4,01						
en ppm		40		6.11	29	40	51	76	40
	210	170	55	140	190	105	/30	93	//0
2n Di	210	110	8	,,,,	110	100	,		
Pb N	62	0							
	55	18	38						
6	24	41	8						
Gr	93	+	48	+	<u> </u>				
en 9/t		+	+	<u>+</u>	< 0.5	<0,5	1		
Au	_ _								
No	90907	90908	90909	90910	90911	90912	90913	90914	90915
en %								L	
SiOn	447	49.5	50,5	8/.4	74,1	56,8	46,0	60,2	51,0
MaQ	8 29	4,08	3,/3	0,24	0,58	4,91	7,74	6,48	4,74
No.O	2 0.01	3,80	2,74	5,30	2,42	6,05	3,71	2,53	4,06
K _a O	0.97	1,76	0,18	0,06	2,58	0,66	0,32	1,62	2,67
	9.06	9.20	4,46	1,30	3,52	0,59	5,21	0,28	4,07
S	0.02	0.03	0.19	0,48	0,04	0.02	0,03	0,05	0,10
+ Ferrara	8.72	8,26	13,8	1,37	<i>i</i> ,89	8,88	8,52	6,12	6,72
en bbm							ļ	+	
Cu	40	61	52	/8	72	100	80	60	45
75	115	98	160	25	350	120	140	80	110
en 9/+								_ _	
Au	20,5	< 0,5	20,5		<u> </u>		20,5	<u> </u>	

« Le Fe Total est exprimé en Fe2 Oz.

				- 46 -					
No	90916	90918	90919	90920	90921	90922	90923	90924	90915
en %									
Si O2	59.7	64,7	84,6	51,8	55,5	54,2	45,9	46,0	57,6
MgO	1,12	1,14	0,24	3,61	5,97	6,98	2,47	8,95	2,45
Na ₂ O	2,23	3,76	0,06	4,15	4,01	2,33	1,22	2,31	2,43
K2O	1,63	1,29	3,12	0,70	0,30	0,16	0,07	0,62	3,48
CO1	3,47	1,80	0,09	8,60	0,26	1,49	8,31	2,71	8,25
S	2,18	2,30	0,22	0,33	0,03	0,14	0,27	0,03	0,06
* FE TOTAL	7,03	6,35	1,05	7,82	7,96	9,72	15,3	11,6	3,85
en pom									
Cu	105	72	10	99	76	60	25	120	52
Zn	525	175	24	96	110	105	120	140	63
en g/t									
Au				< 0,5			20,5		40,5

No	90926	90927	90928	90929	90930	90931	90932	90933	90934
en %									
SiO ₂	75,0	63,6	72,6	73,2	52,7	59,9	53,7	60,2	53,1
MgO	0,46	3.28	0,56	0,78	4,86	3,65	3,45	2,29	3,40
Na ₂ O	2,93	5,94	4,92	1,92	5,90	2,77	2,96	4,16	4,22
K20	2,09	0,48	1,04	2,03	0,09	2,49	0,92	1,01	0,12
CO2	0,99	1,34	2,29	4,38	1,69	3,04	2,73	2,81	4,44
S	0,28	0,26	0,03	0,07	0,01	0,02	0,03	0,04	0,69
* FE TOTAL	1,60	4,19	1,70	3,29	8,45	4,29	13,2	5,29	10,3
en ppm									
Cu	34	34	30	14	10	42	100	43	76
Zn	200	105	72	71	78	170	84	105	180
en g/t									
Au									

* Le Fetotal est exprimé en Feg O3.

-				- 47 -					
No	90935	90936	90937	90938	90939	90940	90941	90942	90943
en %									
Si 02	55,4	66,8	63,5	64,7	62,5	64,0	65,0	53,0	60,5
MgO	3,75	1,89	1,39	1,14	1,92	3,23	0,98	5,41	1,82
Na ₂ O	3,40	3,50	5,53	1,39	1,56	3,23	4,95	2,61	3,45
K2O	0,75	2,79	1,79	2.83	4,72	0,64	0,54	0,48	1,58
CO1	6,09	0,72	4,79	0,22	0,94	0,17	1,12	0,26	5,76
S	0,22	0,03	0,48	3,68	0,75	0,09	0,02	0,82	0,34
* FE TOTAL	5,43	4,25	2,70	9,22	4,78	4,86	2,67	10,9	3.39
en pom									
Cu	38	32	18	175	60	30	12	74	21
Zn	110	94	74	855	145	89	48	120	135
en g/t									
Au	< 0,5								< 0,5

No	90944	90945	90946	90947	90948	90949	90950	90951	90952
en %									
SiO2	71,9	62,1	50,8	60,4	62,8	68,1	71,8	70,3	62,5
MgO	1,43	0,97	4,44	2.70	1,54	0,30	0,74	0,98	0,38
Na ₂ O	3,40	3,94	1,69	3,35	4,10	4,92	3.31	1,68	2,54
K20	1,40	1,24	0,40	1,42	1,02	1,88	1,48	2.64	4,80
CO2	[0]	2,55	0,29	1,36	1,80	1,23	4,33	5.01	1,94
S	ó, 10	0,02	0,04	0,87	0,07	0,02	1,14	0.11	0,04
* FE TOTAL	3,45	5,59	9,74	7,83	4,27	2,63	5.00	3,25	2,44
en ppm									
Cu	34	50	74	51	24	46	36	22	27
Zn	105	145	120	125	155	100	66	5	46
en g/t									
Au							20,5	20,5	

* Le Fetotal est exprimé en Fez Oz.

No	90953	90954	90955	90956	90957	90958	90959	90960	90961
en %									
SiO_2	78,6	57,8	63,4	47,6	47,5	55,0	61,)	69,0	63,8
MgO	0,74	1,49	2,04	4,81	8,21	4,68	4,36	0,98	0,69
Na ₂ O	1,91	4,95	4,20	1,81	0,83	4,00	1,91	4,56	4,44
K20	2,44	1,80	2,04	1,21	1,02	0,31	0,44	1,80	1,22
CO1	2,92	6,64	3,98	4,68	3,74	0,40	0,22	1,54	3,80
S	0,41	0,76	0,13	0,02	0,03	0,65	1,95	0,06	0,02
* Fe TOTAL	2,02	4,16	3,70	11,6	13,3	10,0	9,61	2,47	4,60
en ppm									
Cu	13	52	18	48	87	64	52	34	35
Zn	57	74	82	150	135	150	115	47	90
en g/t									
Ац		< 0,5		10,5					

- 48 -

No	90962	90963	90964	90965	90966	90967	90968	90969	90970
en %									
SiO ₂	61,3	61,3	61,0	58,5	52,6	65,1	59,4	61,9	48,6
MgO	2,64	2,55	3,51	5,07	9,88	2,48	0,96	2,82	3,65
Na ₂ O	4,02	2,05	5,24	3,87	2,68	4,57	4,56	4,57	3,16
K20	0,57	0,85	1,25	1,42	1,26	1,67	1,46	1,16	0,40
CO2	1,19	2,04	1,12	3,25	0,18	0,33	4,25	2,90	0,86
S	0,02	0,02	0,04	0,05	0,20	0,02	0.09	0,08	0,02
* FE TOTAL	6,12	5,98	6,20	5,74	10,9	5,03	2,63	4,39	11,9
en ppm									
Cu	22	23	40	9	32	31	17	26	23
Zn	140	110	91	220	120	68	75	79	87
en g/t									
Au								[

No	90971	90972	90973	90974	90975	90976	90977	90 9 78	90979
en %						L			
Si O2	615	50,6	69,7	48,8	78,6	61,1	64,2	64,1	60,0
MoO	2.52	3.15	0,22	4,94	0,91	4,56	3,85	2,73	2,55
NooO	3.95	8.04	2.69	3,95	3,52	5,60	5,76	5,96	4,67
K	240	0.27	3.88	0,74	1,63	0,26	0,15	0,94	0,53
	2,09	5,35	2.13	9,09	2,84	1,56	0,57	2,24	4,66
S	0.63	0,06	0,02	0,65	0,13	0,02	0,02	0,02	0,03
* Fe TOTAL	4,35	5,89	1,83	9,15	1,40	6,99	7,15	4,30	6,99
en pom		T							
Cu	44	5	38	91	21	44	37	23	40
Zn	73	69	58	130	65	86	83	77	170
en g/t									
Au		<0,5		<0,5					10,5

- 49 -

No	08 606	90981	90982	90983	90984	90985	90986	90987	90988
en %									
SiDe	117 5	10 /	64.2	66.5	62,8	63,8	57,8	47,5	68,5
MaQ	45,5	1 24	2 04	2 37	0.59	2 20	2,12	7,39	1,68
No.O	141	4 89	470	3 82	3.39	4.67	4,19	2,85	6,76
K O	0,50	1.30	1 34	149	2.36	0.73	120	1,48	0,23
h20	170	Dha	0,00	0.09	211	0.35	4 22	0.18	0,55
	13,2		0,07	0,07	0.04	0,09	0.55	2.25	0,37
5	80,0	0,48	0,17	0,02	5.08	576	5.60	13.1	3.63
# TE TOTAL	1112	3,94	4,20	4,02	5,00	5,70			
en ppm			<u> </u>			<u> </u>		+	110
Cu	16	66	15	12	15	44	5/	120	
Zn	74	99	63	75	76	48	140	130	160
en g/t							ļ		
Au	<0,5								

1

No	90989	90990	90991	90992	90994	90995	90996	90997	86606
en %									
Si O2	52,4	40,8	54,1	61,6	56,0	65,0	59,6	59,3	60,1
MgO	6,60	6,50	2,65	3,30	6,09	1,79	2,29	2,87	7,33
Na ₂ O	2,53	1,97	4,87	5,42	2,98	3,27	2,55	3,84	1,97
K ₂ O	0,98	2,32	1,54	0,12	1,60	0,83	2,48	1,18	80,0
CO ₂	5,02	14,1	9,00	1,83	0,18	2,29	2,15	1,60	1, 58
S	0,04	0,04	0,07	0,07	0,03	0,02	0,02	0,02	0.02
* Fe TOTAL	9,66	7,55	3,72	4,65	6,71	3,40	6,00	5,45	6,28
en pom									
Cu	77	47	33	35	74	23	37	27	43
Zn	110	62	66	110	100	66	68	68	78
en 9/t									
Ац	< 0,5	< 0,5	<0,5						

- 50 -

No	90999	91000	91001	91002	91003	91005	91006	91007	91008
en %									
SiO ₂	53.5	55,9	54.5	52,5	65,9	62,1	67,4	65,6	72,9
MgÖ	7 33	3.78	5,49	5, 89	1,67	5,72	1,33	0,93	1,36
Na ₂ O	1.97	3 36	1,78	3,58	4,14	4,70	3,45	5,50	4,57
K2O	0,08	0,71	1.01	0.05	1,09	0,13	1,86	1,42	1,23
CO2	2,81	5,32	2,5	3,41	1,50	0,20	2,66	0,61	0,99
S	0,01	0,28	0,02	0,02	0,02	0,02	0,04	0,02	0,02
* FE TOTAL	8,35	7,19	8,42	8,35	4,47	6,65	4,63	4,16	2,36
en ppm									
Cu	41	18	32	48	42	50	32	38	46
Zn	110	100	120	130	91	100	64	83	55
en 9/t									
Au									

10.0

No	91009	91010	91011	91012	91013	91014	91015	91016	91017
en %									
Si O2	65,5	64,0	59,1	62,9	60,0	65,3	47,6	60,5	56,5
MgO	1,27	2,90	3,28	2,37	3,42	1,39	5,64	1,43	1,74
Na ₂ O	4,42	4,62	4,47	3,69	3,85	3,62	3,61	3,92	5,76
K ₂ O	1,26	0,43	0,48	1,63	0,94	2,12	0,54	1,18	0,91
CO	3,58	2,90	3,83	2,24	4,77	2,20	1,39	4,79	2,22
S	0,02	0,02	0,03	0,02	0,02	0,03	0,02	0,02	0,02
* Fe TOTAL	3,20	5,28	5,30	4,76	4,92	3,99	11,3	4,98	6,65
en ppm									
Cu	70	40	41	36	3	41	91	41	9
Zn	81	86	98	69	84	58	110	78	110
en g/t									
Au									

								a h	0
No	91018	91019	91020	91021	91022	91023	91023	91024	31032
en %									
SiO2	58,8	62,8	60,5	58,9	66,5	69,3	69,3	64,3	53,9
MgO	5,46	3,05	1,65	3,90	1,48	1,55	(,55	1,87	1,50
Na ₂ O	5,19	3,34	2,15	3,20	3,75	2,93	2,93	3,96	3,77
K20	0,22	1,15	1,92	0,62	1,15	1,67	1,67	1,63	0,21
CO2	0,51	3,26	3,78	5,87	4,13	2,29	2,29	2,27	3,12
S	0,05	0,02	0,03	0,02	0,02	0,03	0,03	0,03	0,04
* FE TOTAL	6,62	4,58	6,59	5,62	3,03	3,19	3,19	5,85	8,61
en ppm									
Сц	81	7	25	25	30	44	44	27	74
Zn	88	73	46	100	48	53	53	95	71
en 9/t									
Au							1		

No	91026	91027	91028	91029	91030			
e n %								
Si O2	56,8	61,3	67,8	57,1	55,3			
MgO	3,90	3,38	0,34	4,36	4,00			
Na ₂ O	5,65	2,90	4,63	4,07	2,79			
K20	0,20	0,72	1,34	1,32	0,40			
CO1	1,21	0,76	3,06	4,22	0, 33		1	
S	0,02	0,02	0,02	0,02	0,65			
* Fe TOTAL	7,13	9,79	1,86	4,95	10,1			
en pom								
Cu	57	42	36	46	62			
Zn	93	110	45	75	96		i	
en g/t								
Au							[

ANNEXE 2

Résultats des analyses de sols (levé géochimique)

No	56701	56702	56703	56704	56705	56706	56707	5670 9	56710
en ppm									
Cu	5	7	7	13	16	20	13	17	13
Zn	10	12	26	36	42	40	24	14	60
Pb	2	4	4	98	8	68	6	18	14
Ni		6	9	4	20	9	3	8	8
Co	3	2	4	7	7	5	2	3	3
Mn	12	14	84	32	130	78	514	28	24
Aa	0.2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
As	0.5	0,6	1,2	1,0	1,5	0,5	0,5	0,6	0,6
υ	0.1	0,1	0,2	0,1	0,9	0,2	0,1	0,6	0,1
Bi	2	2	2	2	2	2	2	2	2
Mo	1	1	1	2	2	2	2	2	1
Li	1	1	6	2	10	2	2	З	۱ ۱
Sn	2	2	2	2	2	2	2	2	2
en ppb									ļ
Ha	90	195	40	194	185	486	542	364	485
en %					L	ļ	<u> </u>	ļ	
PF	13	30	07	35	44	75	89	57	96

No	56711	56713	56715	56716	56717	56718	56719	56720	56721
en ppm									
Сц	16	6	7	9	17	15	10	8	17
Zn	38	28	32	36	34	42	56	24	34
Pb	19	25	13	10	20	29	50	13	15
Ni	12	7	5	14	9	8	9	10	13
Co	5	2	2	5	8	22	6	7	6
Mn	156	132	88	86	488	3626	80	62	270
Aa	0,2	0,2	0,2	0,2	0,2.	0,2	0,2	0,2	0,2
As	1,2	0,3	0,9	0,7	1,0	1,9	1,3	7,0	0,9
U	0.2	0,1	0,1	0,6	1,6	0.1	0,1	0,5	1,4
Bi	2	2	2	2	2	2	2	2	2
Mo	2	1	1	1	1	2	1	2	1
1	5	2	1	9	5	3	3	4	7
Sn	2	2	2	2	2	2	2	2	2
en ppb									
Hg	320	208	473	81	426	558	278	392	596
en %									
PF	53	42	97	20	84	77	58	88	76

- **- -**

- 54 -

No	56722	56723	56724	56725	56726	56727	56728	56729	56730
en ppm									
Сц	8	53	6	13	d	13	/2	4	17
Zn	42	30	10	16	14	38	54	12	46
Pb	/3	13	3	/3	3	28	22	7	12
Ni	4	29	4	23	/2	4	/2	5	/8
Co	2	13	2	3 5	5	3	12	2	7
Mn	12	1302	12	20	56	626	2440	30	/34
Aq	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
As	0,6	2,0	0,2	0,6	0,5	0,8	4,2	1,9	0,9
υ	0,1	1,5	0,1	0,1	0,2	0,1	0,2	0,2	2,0
Bi	2	2	2	2	2	2	2	2	2
Mo	1	2	1	2		1	2		2
Li	2	6	2	2	4	2	6	3	15
Sn	2	2	2	2	2	2	2	2	2
en ppb									
Hg	26/	473	270	/95	<i>5</i> 0	480	480	95	35/
en %									
PF	54	63	52	34	06	89	64	/6	64

No	56731	56732	56733	56734	56735	56736	56737	56738	56739
en ppm									
Сч	14	5	6	//	14	28	6	10	11
Zn	/8	12	20	20	52	-34	/8	90	42
РЬ	7	/3	11	12	6	- 11	26	33	21
Ni	9	8	3	10	20	20	2	5	10
Co	3	3	2	3	14	6	2	2	4
Mn	362	24	16	40	972	86	12	22	12
Aq	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
As	0,3	0,7	0,3	0,8	1,1	1,0	1,3	1,3	0,9
U	0,6	0,1	0,1	0,7	0,9	1,1	0,1	0,1	0,1
Bi	2	2	2	2	2	2	2	2	2
Mo	2	1	1	1	2	2	1		1
Li	2	5	2	3	9	12	1	1	5
Sn	2	2	2	2	2	2	2	2	2
en ppb									
Hg	499	/25	/8/	324	220	257	498	457	208
en %									
PF	9 0	21	44	86	/8	35	95	96	32

-

- 55 -

No	56740	56741	56742	56743	56744	56745	56746	56748	56750
en ppm									
Сч	10	11	8	26	12	7	5	11	10
Zn	44	58	36	24	46	28	18	64	36
Pb	37	48	38	31	140	56	9	76	67
Ni	8	7	9	11	6	5	3	4	9
Co	3	2	2	7	2	2	2	2	6
Mn	46	58	82	30	80	84	16	32	44
Ag	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
As	0,6	1,2	1,4	1,6	1,6	0,6	0,2	0,6	2,4
υ	ار0	0,1	0,1	0,5	0,2	0,1	0,1	0,1	0,1
Bi	2	2	2	2	2	2	2	2	2
Mo	1	1	1	l	2	1	1	2	1
Li	2	1	2	2	2	2	1	1	2.
Sn	2	2	2	2	2	2	2	2	2
en ppb									
Hg	324	537	250	450	473	180	250	395	330
<u>en %</u>									
PF	62	94	41	81	66	48	94	65	56

No	56751	56752	56753	56754	56755	56756	56757	56758	56759
en ppm									
Cu	7	9	9	12	23	15	11	11	12
Zn	30	24	18	20	46	64	52	26	20
РЬ	33	50	11	14	14	08	78	23	16
Ni	7	13	6	10	15	6	6	7	6
Co	2	2	3	3	6	3	2	12	3
Mn	40	40	26	46	170	46	62	904	40
Ag	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
As	0,6	0,5	0,5	0,2	0,9	0,7	0,6	2,3	0,4
U	0,1	0,1	0,1	0,5	١٦	0,1	0,1	0,5	0,5
Bi	2	2	2	2	2	2	2	2	2
Mo	1	1	3	I	2	1	1	2	1
Li	2	1	1	5	13	{	1	3	2
Sn	2	2	2	2	2	2	2	2	2
en ppb									
Hg	3 05	430	273	396	463	400	389	470	205
en %									
PF	45	56	93	79	74	85	81	84	43

1. T.

- 56 -

No	56760	56761	56763	56764	56765	56766	56767	56768	<i>5</i> 6780
en ppm									
Сч	4	9	8	8	6	8	8	9	8
Zn	14	44	10	16	22	38	24	38	26
Pb	5	16	8	23	10	26	12	44	11
Ni	3	3	5	6	8	4	3	6	6
Co	3	2	2	2	3	4	3	4	2
Mn	22	202	16	20	46	232	26	72	10
Aa	0.2	0.2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
As	0.2	0,9	0,3	1,0	0,5	0,6	1,0	1,4	1,2
U	0.1	0,2	0,2	0,1	0,4	0,5	0,1	0,1	1,4
Bi	2	2	2	2	2	2	2	2	2
Mo	1	2	1	1	2	2	ł	1	1
Li	3	2	2	1	4	2	2	3	4
Sn	2	2	2	2	2	2	2	2	2
en ppb									
Ha	25		79	112	65	430	106	194	158
en %		[
PF	4	91	11	19	5	90	17	38	33

No	56781	56782	56783	56784	56785	56787	56788	56789	56790
en ppm									
Сч	13	15	14	10	22	17	14	19	6
Zn	60	24	52	16	12	56	44	64	16
Pb	32	7	11	2	5	18	10	58	2
Ni	7	12	8	12	7	9	8	9	2
Co	5	5	3	3	2	3	11	3	2
Mn	96	44	42	18	12	34	296	58	12
Aq	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
As	1,0	0,9	1,0	0,4	0,6	2,0	0,8	2,4	0,2
U	0,1	1,2	0,7	0,1	0,6	0,2	0,1	0,4	0,1
Bi	2	2	2	2	2	2	2	2	2
Mo	1	1	1	1	1	1	1	2	2
Li	2	9	ſ	I	ł	2	3		
Sn	2	2	2	2	2	2	2	2	2
en ppb									
Hg	344	185	258	240	387	292	325	415	268
en %									
Pf	88	61	58	92	72	52	84	71	93

- 57 -

No	56791	56792	56793	56794	56795	56797	56798	56799	56800
en ppm									
Сц	12	20	12	14	12	10	15	19	21
Zn	66	34	20	32	50	20	72	20	138
Pb	23	12	5	7	39	2	2	2	17
Ni	10	9	2	2	6	5	8	4	8
Co	10	3	2	6	3	4	3	9	3
Mn	530	20	20	696	76	66	16	454	76
Ag	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
As	2,3	1,3	0,7	1,8	0,7	1,3	0,4	0,4	1,1
υ	1,2	0,6	0,4	0,5	0,2	0,4	0,1	0,3	0,9
Bi	2	2	2	2	2	2	2	2	2
Mo	2	1		2	1	1	1	1	2
Li	6	1	1	1		2		1	4
Sn	2	2	2	2	2	2	2	2	2
en ppb									
Ha	752	387	249	940	236	473	228	450	308
en %									L
PF	66	71	64	89	49	90	57	85	65

No	56801	56802	56803	56804	56805	56806	56807	56808	56809
en ppm									
Сч	81	10	10	16	9	2	6	5	15
Zn	28	36	44	66	46	6	26	18	60
Pb	25	19	14	2	2	2	2	2	13
Ni	5	9	4	12	8	2	10	7	15
Co	4	5	2	4	2	2	4	2	5
Mn	28	66	506	2380	16	12	210	30	146
Aa	0.2	0,2	9,2	0,2	0,2	0,2	0,2	0,2	0,2
As	1,2	2,1	0,6	1,9	1,0	0,2	0,7	0,5	2,2
U	0,9	0,6	0,4	0,6	0,4	0,1	0,6	0,4	1,4
Bi	2	2	2	2	2	2	2	2	2
Mo	2		2	2	1	1		1	1
1	1	3	1	6	1	1	3	3	7
Sn	2	2	2	2	2	2	2	2	2
en ppb	T								
Hg	387	163	344	335	258	42	129	86	215
en %									
PF	75	33	88	58	45	3	13	9	46

- 58 -

No	56810	56811	568/2	56813	56814	56815	56816	56817	56818
en bom									
Cu	13	12	5	31	8	e V	15	4	20
Zn	62	50	12	24	10	81	30	20	20
Pb	18	36	2	2	2	2	2	2	2.
Ni	16	10	2	43	5	2	9	3	10
	9	45	2	19	2	2	2	2	2
Mn	308	2698	36	390	32	13	32	46	42
Δ0	0.2	0,2	0,2	0,2	0,2	0,2	1,0	0,2	0,2
Δε	1,6	4,2	0,4	0,8	0,3	0,6	1,2	0,3	1,2
	0.6	0,1	0,1	0,4	0,2	0,4	0,1	0,4	0,8
R:	2	2	2	2	2	2	2	2	2
Mo	1 (5	L	3	1	1	2	l	2
	4	6	1	2	2	1	1	2	3
Sn	2	2	2	2	2	2	2	2	2
en pob	1	1		1	1				
Ha	236	150	249	430	129	142	258	120	322
en %	+	<u> </u>							
PF	51	29	93	80	8	20	56	24	78

No	56819	56820	56821	56822				
en ppm								
Сц	6	6	18	12				
Zn	28	8	46	24				
РЬ	7	2	24	2				
Ni	5	3	27	14				
Co	2	2	7	8				
Mn	66	20	74	648				
Aq	92	0,2	0,2	0,2				
As	0,6	0,2	1,3	1,3				
υ	0,3	0,4	2,0	,				
Bi	2	2	2	2				
Mo	1	1						
		2	2	4				
Sn	2	2	2	2	 	<u></u>	ļ	
en ppb							L	Ļ
Hg	452	322	228	236			<u></u>	L
en %				L		Ļ		
PF	89	14	68	36				

.....

ANNEXE 3

Distribution des éléments traces (Grille Nord)

 $\overline{\mathsf{x}}$ 0 $\overline{X} + 1\sigma$ • x + 20 0 (voir tableau 3) X +30

As

 $\overline{\mathbf{x}}$ 0 $\overline{X} + 1\sigma$ X + 20 (voir tableau 3) x + 30

Zn

 $\overline{\mathsf{x}}$ 0 X+10 x +20 D (voir tableau 3) x +30

• \vec{x} • $\vec{x} + 10^{\circ}$ • $\vec{x} + 20^{\circ}$ • $\vec{x} + 30^{\circ}$ (voir tableau 3)

Pb

o \overline{x} • $\overline{x} + 1\sigma$ • $\overline{x} + 2\sigma$ • $\overline{x} + 3\sigma$ (voir tableau 3)

Мо

🛪 🕇 30 (voir tableau 3)

•

 $\overline{\mathbf{x}}$

x+10

x + 25 x + 35 (voir

(voir tableau 3)

Grille Nord

Projet Lamarck

Ni

- \overline{x} • $\overline{x} + 1\sigma$ • $\overline{x} + 2\sigma$ • $\overline{x} + 3\sigma$ (voir tableau 3)
 - O 56785 0 56815 ° 56798 0 268/6 O56779 0 56787 0₅₆₇₈₄ O 56814 ° 567 >7 0 56788 0 56800 56817 056813 0₅₆₇₈₃ 0 56818 0 56789 O 56801 P 56796 0 56812 0₅₆₇₉₅ O 56819 0.54782 O 56790 56802 0 56794 56811 0 56793 O 56820 0 56791 O 5578i O 56810 OS T 0 56822 0 56821 0 56806 56792 0/26809 0 56 808 056807 O 56805 0₅₆₈₀₅ 0 56804 Levé geochimique de sols Projet Lamarck Grille Nord

Со

x̄ + 10⁻
x̄ + 20⁻
x̄ + 30⁻ (voir tableau 3)

Mn

- x • x + \0
- - 🗙 + 30 (voir tableau 3)

- 70 -

Grille Nord Projet Lamarck

• \overline{x} • $\overline{x} + 10^{\circ}$ • $\overline{x} + 20^{\circ}$ • $\overline{x} + 30^{\circ}$ (voir tableau 3)

Hg
- ° x • x +।σ
- 0 x + 20
 - x+30 (voir tableau 3)

ANNEXE 4

Distribution des éléments traces (Grille Sud)

- x + 10
 x + 10
 x + 20
 x + 30^o (voir tableau 3)
- As O 56706 O 56707 0 55709 0 56713 56705 56736 056726 O 56724 O 56723 036725 Q 56718 056719 0₅₆₇₃₅ ୦ 56715 O 56720 0 56717 0₅₆₇₃₂ O₅₆₇₂₇ O 56734 O 56722 0 O₅₆₇₃₃ -0. 56731 0.56739 0 56763 056729 56721 056702 O₅₆₇₅₄ 0₅₆₇₅₅ 956701 956704 056756 O 56757 O₅₆737 0₅₆₇₅₃ 0 56759 0₅₆₇₃₈ 056752 0 56766 56750 O 56751 0 56768 0₅₆₇₄₆ 0₅₆₇₃₉ ಂ₅₆₇₄₅ ಂ₅₆₇₆₀ 0₅₆₇₆₇ 36765 O 56749 O 56748 0₅₄₇₄₀ 052761 0₅₆₇₄₃ 0 56741 056742 056744 ୍ର 56763 0 5674 Levé géochimique detaillé des sols

GRILLE SUD

Projet Lamarck

- x 0 x +10 •
- x +20 0
 - x + 30 (voir tableau 3)

- x • x+ιœ
- •
- x + 2 5
 - 🗙 🕇 30° (voir tableau 3)

- x
- X+10
- 0 x + 20
 - $\overline{\mathbf{x}} + 3\mathbf{G}$ (voir tableau 3)

• \vec{x} • $\vec{x} + 1$ • $\vec{x} + 2$ • $\vec{x} + 3$ • $\vec{x} + 3$ • $\vec{x} + 3$ • $\vec{x} + 3$

- x x + 10 x + 20 D
 - x + 30 (voir tableau 3)

- x 0 X+10 •
- 0
- x + 20 $\overline{x} + 3\sigma$
- (voir tableau 3)

Mn 0 56706 0 56709 • 56707 O 56713 56705 56736 O₅₆₇₂₆ O 56725 0₅₆₇₁₉ **Q**₅₆₇₃₅ O 56724 056723 36718 ୦ 56715 0 56716 0₅₆₇₃₃ 0₅₆₇₃₂ O 56720 •56727 0 56722 0 56734 • 56717 0 56731 056729 0.56730 0 56703 54728 56702 0₅₆₇₅₆ 0**56**755 0₅₆₇₅₄ 056758 956701 956704 O₅₆737 056757 0₅₆₇₃₈ 0₅₆₇₅₂ 0₅₆₇₅₃ °56759 0 56750 O 56751 0 56768 0 56766 0₅₆₇₄₉ 0₅₆₇₃₉ °₅₆₇₄₅ °<mark>56760</mark> °56767 O 56748 O 56746 36765 054740 0562 O 56741 0₅₆₇₄₄ 0 56763 0₅₆₇₄₂ 0₅₆₇₄₃ 0 56764 Levé géochimique detaillé des sols GRILLE SUD Projet Lamarck \

• \overline{x} • $\overline{x} + 10^{\circ}$ • $\overline{x} + 20^{\circ}$ • $\overline{x} + 30^{\circ}$ (voir tableau 3)

- x̄
 x̄ + ισ
 x̄ + 2σ
- $\begin{array}{c} \overline{x} + 2 \\ \overline{x} + 3 \\ \overline{x} + 3 \\ \end{array}$

(voir tableau 3)

- o x̄ • x̄ + \σ • x̄ + 2σ
 - $\vec{x} + 3 \vec{v}$ (voir tableau 3)

