

RAPPORT LOGISTIQUE ET TECHNIQUE

LEVÉ AÉROPORTÉ DE MESURES MAGNÉTIQUES ET RADIOMÉTRIQUES DANS LE SECTEUR DE LA RIVIÈRE OLOMANE AU QUÉBEC, CANADA

réalisé pour le MINISTÈRE DE L'ÉNERGIE ET DES RESSOURCES NATURELLES

Références MERN:

Projet : 117840512-20200407-01

Ministère de l'Énergie et des Ressources Naturelles 5700, 4e Avenue Ouest, bureau D 413 Québec (Québec) G1H 6R1 Chef de projet : Rachid Intissar Courriel : rachid.intissar@mern.gouv.qc.ca Tel : +1 819-354-4514 poste 270

Références Novatem : Contrat C20132 (S200511)

Novatem Inc. 1087 Chemin de la Montagne Mont-Saint-Hilaire, Québec, Canada, J3G 4S6 Chef de projet : Pascal Mouge Courriel : mouge@Novatem.com Tel : +1 514 966 8000

Période de réalisation du levé : septembre- octobre 2020 Date de livraison des données et du rapport : novembre 2020

TABLE DES MATIÈRES

<u>1</u>	INTRODUCTION	5
<u>2</u>	LOCALISATION ET SPÉCIFICATIONS DU LEVÉ	6
2.1	LOCALISATION DU LEVÉ	6
22		10
22	PARAMÈTRES DE VOL ET D'ACOLUSITION DES DONNÉES	10
2.5		10
2.	3.1. ESPACEMENTET ORIENTATION DES LIGNES DE VOL	10
2.	3.3 VITESSE	10
2.	3.4 TOLÉRANCES SUB LA NAVIGATION	10
2.	3.5 TOLÉRANCE SUR LE NIVEAU DE BRUIT DES MESURES	11
2.	3.6 TOLÉRANCE SUR LES VARIATIONS TEMPORELLES DU CHAMP MAGNÉTIQUE (DIURNE ET SPHÉRIQUES)	11
2.4	KILOMÉTRAGE	11
2.5	PLAN DE VOL THÉORIQUE ET LIGNES DE VOL RESTITUÉES À L'ISSUE DES VOLS	12
<u>3</u>	TESTS ET CALIBRATIONS	13
	T	40
3.1	I ESTS ET CALIBRATIONS DES INSTRUMENTS DE MESURES MAGNETIQUES	13
3.	1.1. TEST STATIQUE DES STATIONS MAGNÉTIQUES ET DU POSITIONNEMENT GPS	13
3.	1.2. I EST DYNAMIQUE DES SYSTEMES EMBARQUES	13
3.	1.3 ETALONNAGE DES MAGNETOMETRES EMBARQUES (TEST DE MOREWOOD) 1.4. Test de la Navyoration électronique (fait avec le test de Morewood)	13
ა. ვ	1.4. TEST DE LA NAVIGATION ELECTRONIQUE (FAIT AVEC LE TEST DE MOREWOOD)	13
ວ. ເ	1.5. TEST DE PARALLAZE 1.6. Étal Onnage de l'al timètre radar	13 1 <i>4</i>
3.	1.7. Vols de calibration des perturbations magnétiques de l'avion à haute altitude (FOM)	14
3.2	TESTS ET CALIBRATIONS DES INSTRUMENTS DE MESURES SPECTROMÉTRIQUES	14
<u>4</u>	LOGISTIQUE	15
11		15
1.1		15
4.2		15
4.3		10
4.4	RESSOURCES HUMAINES AFFECTEES AU PILOTAGE DES AVIONS	16
4.5	CALENDRIER DES TRAVAUX	16
<u>5</u>	INSTRUMENTATION	17
5.1	AÉRONEFS	17
5.2	Magnétomètres	18
5.	2.1 MAGNÉTOMÈTRE SCALAIRE EN VOL	18
5.	2.2 MAGNÉTOMÈTRE VECTORIEL	18
5.	2.3 SPECTROMÈTRES DE MESURE DU RAYONNEMENT GAMMA	19
5.	2.3 STATION DE BASE MAGNÉTOMÉTRIQUE	19
5.3	SYSTÈME DE POSITIONNEMENT	19
5.	3.1 NAVIGATION	19
5.	3.2 SYSTÈME DGPS EN VOL	20
5 .	3.3 STATION DE BASE DGPS	20
5.4	WESURES INERTIELLES ('INERTIAL MEASUREMENT UNIT')	21
5.5	SONDE BAROMETRIQUE	21

5.6 ALTIMETRE RADAR	21
5.7 SYSTÈME D'ACQUISITION ET D'ENREGISTREMENT DES DONNÉES	21
5.8 SYSTÈME D'ACQUISITION VIDÉO	22
5.9 CALCULATEURS DE TERRAIN	22
5.10 PIÈCES DE RECHANGE	22
6 CONTRÔLES DE LA QUALITÉ DES DONNÉES	23
6.1 CONTRÔLE DES SPÉCIFICATIONS DE VOL	23
7 TRAITEMENTS DES DONNÉES	24
7.1 CORRECTIONS DIFFERENTIELLES DU POSITIONNEMENT	24
7.2 CORRECTION DES MESURES DE HAUTEUR RADAR ET BAROMETRIQUE	24
7.3 TRAITEMENT DES DONNÉES MAGNÉTIQUES	24
7.3.1 RÉSUMÉ DES TRAITEMENTS APPLIQUÉS AUX MESURES MAGNÉTIQUES	24
7.3.2 COMPENSATION	24
7.3.3 CORRECTION DES VARIATIONS TEMPORELLES (VARIATIONS DIURNES)	25
7.3.4 CORRECTION DU RETARD INSTRUMENTAL (LAG)	25
7.3.6 NIVELEMENT	25
7.3.7 MICRO-NIVELLEMENT	26
7.3.8 CHAMPS RÉSIDUEL	26
7.4 TRAITEMENT DES DONNÉES SPECTROMÉTRIQUES	27
7.4.1 RÉSUMÉ DES CORRECTIONS APPLIQUÉES AUX MESURES DE SPECTROMÉTRIE GAMMA	A 27
7.4.2 FILTRAGE DES DIFFÉRENTES RÉGIONS D'INTÉRÊTS	27
7.4.3 CORRECTION DU TEMPS D'ACQUISITION PAR SECONDE	27
7.4.4 CORRECTION DU RAYONNEMENT COSMIQUE ET DU BRUIT DE FOND DE L'AVION	27
7.4.5 SUPPRESSION DU RADON	28
7.4.6 RÉDUCTION À PRESSION ET TEMPÉRATURE STANDARDS (STP)	29
7.4.7 CORRECTION DE LA DIFFUSION COMPTON	29
7.4.8 CORRECTION DE L'ATTÉNUATION DE L'AIR	30
7.4.9 CONVERSION EN CONCENTRATION DE RADIOELEMENTS	30
7.4.10 NIVELLEMENT	30
7.4.11 MICRO-NIVELLEMENT 7.4.12 CALCUL DES RATIOS	31
8 DONNÉES FINALES	32
	30
8.2 BASE DE DONNÉES MAGNÉTIQUES	32
8.2 BASE DE DONNÉES MAGNE HQUES	34
8.4 BASE DE DONNÉES DES COEFFICIENTS DE REATING 8.4 BASE DE DONNÉES SPECTROMÉTRIQUES	34
9 RÉFÉRENCES DU PROJET	37
10 ATTESTATION DE QUALIFICATION	38
ANNEXES	39
ANNEXE A : PARAMÈTRES GÉODÉSIQUES UTILISÉS DANS LES PROJECTIONS	39
ANNEXE B : PARAMÈTRES DES GRILLES	39

ANNEXE C : TESTS DE CALIBRATIONS	40
TEST STATIQUE DES STATIONS MAGNÉTIQUES ET DU POSITIONNEMENT GPS	40
TEST DYNAMIQUE DES SYSTÈMES EMBARQUÉS	42
ÉTALONNAGE DES MAGNÉTOMÈTRES EMBARQUÉS (TEST DE MOREWOOD)	43
TEST DE PARALLAXE	45
ÉTALONNAGE DE L'ALTIMÈTRE RADAR ET BAROMÉTRIQUE	46
TEST DE COMPENSATION	47
LIGNE TEST	48
COEFFICIENTS D'ATTÉNUATION ET SENSIBILITÉ DU SYSTÈME (BRECKENRIDGE)	49
COEFFICIENTS DE DÉPOUILLEMENT COMPTON	50
ÉTALONNAGE DE LA FENÊTRE COSMIQUE ET BRUIT DE L'AVION	54
COEFFICIENTS DE CORRECTION DU RADON	55

LISTE DES FIGURES

FIGURE 1 : AVIONS SUR LE TARMAC DE L'AÉROPORT	5
FIGURE 2 : LOCALISATION DU BLOC DU SECTEUR DE LA RIVIÈRE OLOMANE	8
FIGURE 3 : LOCALISATION DU BLOC DU SECTEUR DE LA RIVIÈRE OLOMANE SUR FOND TOPOGRAPHIQUE SRTM1	9
FIGURE 4 : PLAN DE VOL PRÉVISIONNEL DU BLOC DU SECTEUR DE LA RIVIÈRE OLOMANE SANS EXTENSIONS (CONTOUR	
ROUGE) ET AVEC EXTENSIONS (CONTOUR BLEU).	12
FIGURE 5 : SYSTÈME DE NAVIGATION EMBARQUÉ	20
FIGURE 6 : STATISTIQUES SUR LES DIFFÉRENCES DE HAUTEURS DE VOL AUX INTERSECTIONS	26
FIGURE 7 : TEST STATIQUE DES STATIONS MAGNÉTIQUE ET MAGNÉTOMÈTRES EMBARQUÉS (FWNG)	40
FIGURE 8 : TEST STATIQUE DES STATIONS MAGNÉTIQUE ET MAGNÉTOMÈTRES EMBARQUÉS (GJDD)	41
FIGURE 9 : RÉSULTATS DES MESURES DES SYSTÈMES EMBARQUÉS SUR LIGNE T10000510 (FWNG)	42
FIGURE 10 : RÉSULTATS DES MESURES DES SYSTÈMES EMBARQUÉS SUR LIGNE T1000510 (GJDD)	42

LISTE DES TABLEAUX

TABLEAU 1 : COORDONNÉES GÉOGRAPHIQUES WGS84 DU PÉRIMÈTRE DU BLOC DE LA RIVIÈRE OLOMANE	7
TABLEAU 2 : PÉRIMÈTRE ET SURFACE DU BLOC	10
TABLEAU 3 : PARAMÈTRES DE VOL UTILISÉS	10
TABLEAU 4 : KILOMÉTRAGE CALCULÉ SUR LES PLANS DE VOL EN COORDONNÉES PROJETÉES	11
TABLEAU 5 : SPÉCIFICATIONS DU MAGNÉTOMÈTRE EN VOL G-822A	18
TABLEAU 6 : SPÉCIFICATIONS DU MAGNÉTOMÈTRE VECTORIEL FLUXGATE	18
TABLEAU 7 : SPÉCIFICATIONS DES SPECTROMÈTRES RSI RSX-5	19
TABLEAU 8 : SPÉCIFICATIONS DES MAGNÉTOMÈTRES DES STATIONS SOL	19
TABLEAU 9 : SPÉCIFICATIONS DU SYSTÈME DGPS	20
TABLEAU 10 : SPÉCIFICATIONS DE LA STATION DE BASE GPS	20
TABLEAU 11 : SPÉCIFICATIONS DU SYSTÈME DE MESURES INERTIELLES	21
TABLEAU 12 : SPÉCIFICATIONS DES ALTIMÈTRES RADAR	21
TABLEAU 13 : SPÉCIFICATIONS DU SYSTÈME VIDÉO	22
TABLEAU 14 : PROCÉDURE DE NIVELLEMENT	25
TABLEAU 15 : TOLÉRANCES SUR LES INTERSECTIONS	26
TABLEAU 16 : PARAMÈTRES DE MICRO-NIVELLEMENT	26
TABLEAU 17 : RÉSUMÉ DES CORRECTIONS APPLIQUÉES AUX DONNÉES SPECTROMÉTRIQUES	27
TABLEAU 18 : CORRECTION DE LA DIFFUSION COMPTON	29
TABLEAU 19 : PROCÉDURE DE NIVELLEMENT	31
TABLEAU 20 : PARAMÈTRES DE MICRO-NIVELLEMENT	31
TABLEAU 21 : PRODUITS DÉLIVRÉS	32
TABLEAU 22 : CONTENU DE LA BASE DE DONNÉES MAGNÉTIQUES	34
TABLEAU 23 : CONTENU DE LA BASE DE DONNÉES DES COEFFICIENTS DE KEATING	34
TABLEAU 24 : PARAMÈTRES UTILISÉS POUR LE CALCUL DES COEFFICIENTS DE KEATING	34
TABLEAU 25 : CONTENU DE LA BASE DE DONNÉES SPECTROMÉTRIQUE	36
TABLEAU 26 : PARAMÈTRES GÉODÉSIQUES UTILISÉS DANS LES PROJECTIONS PLANES	39
TABLEAU 27 : PARAMÈTRES DES GRILLES	39
TABLEAU 28 : TEST STATIQUE DE POSITIONNEMENT GPS	40
TABLEAU 29 : EMPLACEMENTS DES STATIONS DE BASE MAGNÉTIQUE	40
TABLEAU 30 : TEST DE PARALLAXE (FWNG)	45
TABLEAU 31 : TEST DE PARALLAXE (GJDD)	45
TABLEAU 32 : ETALONNAGE DE L'ALTIMÈTRE RADAR (FWNG)	46
TABLEAU 33 : ETALONNAGE DE L'ALTIMÉTRE RADAR (GJDD)	46
TABLEAU 34 : RÉSULTATS DE LA FOM (FWNG)	47
TABLEAU 35 : RÉSULTATS DE LA FOM. (GJDD)	47
TABLEAU 36 : COEFFICIENTS D'ATTÉNUATION ET SENSIBILITÉ À 80M (FWNG)	49
TABLEAU 37 : COEFFICIENTS D'ATTENUATION ET SENSIBILITE A 80M (GJDD)	49
I ABLEAU 38 : COMPTES CORRIGES DU BRUIT DE FOND ET DE L'EFFET COMPTON (FWNG)	49
TABLEAU 39 : COMPTES CORRIGES DU BRUIT DE FOND ET DE L'EFFET COMPTON (GJDD)	49
TABLEAU 40 : DONNEES MOYENNEES DES DEUX PALIERS (FWNG)	54
I ABLEAU 41 : DONNEES MOYENNEES DES DEUX PALIERS (GJDD)	54
I ABLEAU 42 : COEFFICIENTS DE BRUITS DE FOND (FWNG)	54
TABLEAU 43 : COEFFICIENTS DE BRUITS DE FOND (GJDD)	54
I ABLEAU 44 : COEFFICIENTS DE CORRECTION DU RADON POUR HWNG	55
I ABLEAU 45 : COEFFICIENTS DE CORRECTION DU RADON POUR GJDD	55

1 INTRODUCTION

Novatem Inc. a été mandatée par le Ministère de l'Énergie et des Ressources Naturelles (MERN) pour réaliser un levé aéroporté de mesures magnétiques et radiométriques dans la région de la rivière Olomane, sur la Basse-Côte-Nord, dans l'est du Québec. Le projet comprenait un seul bloc. Novatem a réalisé les vols entre le 9 septembre et le 30 octobre 2020. Ce rapport décrit la réalisation du projet, totalisant 53 593 km linéaires.

En réponse à la demande du MERN, Novatem a mis en œuvre deux systèmes aéroportés complets, comprenant notamment chacun un capteur magnétique scalaire de très haute résolution à pompage optique de vapeur de césium fabriqué par Geometrics, monté à l'extrémité d'une perche magnétométrique ('tail boom'); deux spectromètres de mesure du rayonnement gamma RSX5 fabriqués par Radiation Solutions; un capteur magnétique vectoriel, fabriqué par Billingsley; une centrale d'attitude, fabriquée par Microstrain; un système SAMM de navigation et de compensation magnétique développé par Novatem; un altimètre radar TRA 4000, fabriqué par Free Flight Systems; un système de positionnement GPS différentiel Novatel Propack; une caméra digitale Commander Video Recorder fabriquée par Rugged Video.

Novatem était associée pour ce projet avec les compagnies Bromont Aviation Services Inc et A To Z Aviation Inc, respectivement spécialisée dans les opérations de géophysiques aéroportées et dans l'entretien des avions. Les avions utilisés pour ce projet étaient modifiés pour les opérations de géophysique aéroportée et opérés, conformément aux conditions et aux spécifications d'exploitation du "Certificat d'Exploitation Aérienne de Bromont Aviation Services Inc".

Ce rapport décrit le déroulement des opérations lors du levé, les équipements utilisés, les modes opératoires de l'acquisition et résume le traitement des données.

Figure 1 : Avions sur le tarmac de l'aéroport

2 LOCALISATION ET SPÉCIFICATIONS DU LEVÉ

2.1 LOCALISATION DU LEVÉ

Le levé comprend un seul bloc, situé à environ 25 km au nord-est de l'aéroport de Natashquan. Le bloc a été défini par le MERN à l'aide des coordonnées géographiques des limites du polygone reproduites dans le tableau qui suit.

Les coordonnées géographiques des points définissant le périmètre du bloc sont les suivantes :

Rivière Olomane		
Coin	Longitude	Latitude
1	-60.88066	51.21166
2	-60.58869	51.01687
3	-60.48854	50.94943
4	-60.43409	50.91212
5	-60.20662	50.75630
6	-59.92331	50.56137
7	-59.98527	50.52524
8	-59.96826	50.51352
9	-59.98987	50.50076
10	-59.95890	50.48023
11	-60.06361	50.41809
12	-60.03151	50.39581
13	-60.07251	50.37166
14	-60.04022	50.34898
15	-60.05968	50.33713
16	-59.99800	50.29505
17	-60.10646	50.23119
18	-60.18613	50.28681
19	-60.24688	50.25025
20	-60.27005	50.26600
21	-60.31172	50.24111
22	-60.32889	50.25332
23	-60.37008	50.22844
24	-60.38725	50.24043
25	-60.40812	50.22754
26	-60.42714	50.24147
27	-60.44740	50.22957
28	-60.48481	50.25584
29	-60.52767	50.22982
30	-60.54096	50.23920
31	-60.60178	50.20298
32	-60.65391	50.23783
33	-60.67313	50.22622
34	-60.68436	50.23444
35	-60.70489	50.22186
36	-60.73895	50.24595
37	-60.80090	50.20845
38	-60.85896	50.24764
39	-60.93928	50.19866
40	-60.97422	50.22241
41	-60.99514	50.20969
42	-61.03202	50.23442
43	-61.05315	50.22173
44	-61.06237	50.22815
45	-61.12205	50.19172
46	-61.15127	50.21140
47	-61.19160	50.18628
48	-61.22653	50.20968
49	-61.24654	50.19743

50	-61.26019	50.20692
51	-61.28111	50.19359
52	-61.29477	50.20311
53	-61.31461	50,19032
54	-61 32431	50 19739
55	-61 34640	50 18333
55	61 46210	50.10000
50	-01.40319	50.20300
5/	-61.42627	50.28656
58	-61.48386	50.32616
59	-61.42247	50.36367
60	-61.44680	50.38092
61	-61.40518	50.40666
62	-61.44734	50.43536
63	-61.42768	50.44748
64	-61.47263	50.47696
65	-61.43203	50.50187
66	-61 44447	50 50985
67	-61 40333	50 53485
68	-61 5/318	50.62007
60	61 44064	50.02307
70		50.09131 E0 70005
/U		50.70000
71	-61.44412	50.71867
72	-61.60208	50.82265
73	-61.58145	50.83506
74	-61.60335	50.84930
75	-61.56260	50.87381
76	-61.60379	50.90117
77	-61.58375	50.91314
78	-61.59419	50.92082
79	-61.57506	50.93264
80	-61.58601	50.94019
81	-61.54311	50.96575
82	-61 57037	50 98364
83	-61 50843	51 02113
94	61 52750	51.022110
95	61 46502	51.05201
63	-01.40393	51.00950
80	-61.49955	51.09194
87	-61.45847	51.11662
88	-61.48872	51.13602
89	-61.36248	51.21141
90	-61.37584	51.22066
91	-61.26938	51.28352
92	-61.23806	51.26332
93	-61.21747	51.27579
94	-61.19392	51.26024
95	-61.17182	51.27390
96	-61.15221	51.28616
97	-61.12395	51.26839
98	-61 10321	51 28009
00	-61 08082	51 27160
33 100	61 06007	51 20202
100	-01.00997	51.20303
101	-01.00300	51.2/185
102	-61.03089	51.28503
103	-61.00966	51.27110
104	-60.98735	51.28426
105	-60.88066	51.21166

Tableau 1 : Coordonnées géographiques WGS84 du périmètre du bloc de la Rivière Olomane

La région couvre en totalité ou en partie les feuillets SNRC au 1 : 50 000 suivants :

Bloc de la rivière Olomane (21 feuillets) : 12K01 à 12 K03, 12K06 à 12K08, 12J05, 12J12, 12K09 à 12K16, 12N06, 12N07, 12N02 à 12N04.

Les figures qui suivent présentent les limites du plan de vol prévisionnel en utilisant les coordonnées précédentes fournies par le MERN.

Figure 2 : Localisation du bloc du secteur de la Rivière Olomane

Figure 3 : Localisation du bloc du secteur de la Rivière Olomane sur fond topographique SRTM1

2.2 ÉTENDUE DU LEVÉ

L'étendue du levé est résumée ici à l'aide des périmètres et surfaces mesurés en coordonnées géographiques en utilisant les coordonnées fournies par le **MERN** :

Bloc	Périmètre	Surface
Rivière Olomane	489 km	9 595 km2

2.3 PARAMÈTRES DE VOL ET D'ACQUISITION DES DONNÉES

2.3.1. ESPACEMENT ET ORIENTATION DES LIGNES DE VOL

Les paramètres de vol utilisés pour le projet sont résumés dans le tableau qui suit.

Paramètre	
Espacement entre les traverses à la latitude moyenne du levé	200 m
Direction des traverses	N45°
Espacement entre les lignes de contrôle	2 000 m
Direction des lignes de contrôle	N135°

 Tableau 3 : Paramètres de vol utilisés

2.3.2. HAUTEUR DE VOL AU-DESSUS DE L'EAU ET DU SOL

La hauteur de vol demandée par le MERN est fixée à 80m (263 pieds) au-dessus du sol et la tolérance sur les écarts d'altitude aux points de croisement est de \pm 15m. La différence d'altitude entre la surface drapée et la surface volée ne devait pas dépasser \pm 15m sur une distance continue de 1 km le long des traverses et des lignes de contrôle.

2.3.3. VITESSE

La vitesse moyenne de l'avion était voisine de 250 km/h (70 m/s), sans excéder 285 km/h (80 m/s).

Les pilotes se sont efforcés de suivre ces spécifications au mieux de leurs possibilités. Ces paramètres ont pu être modifiés temporairement par les pilotes, seuls juges de la sécurité des vols, en fonction des conditions locales de vol (proximité des zones habitées, lignes électriques, constructions industrielles, etc). En outre, la facilité pour les pilotes de suivre ces paramètres a pu varier, principalement en fonction de la topographie des lieux et des courants d'air.

2.3.4 TOLÉRANCES SUR LA NAVIGATION

La déviation acceptable, par rapport aux lignes de vol théoriques, a été fixée à **+/- 50 m** dans le plan horizontal, et à **+/-15 m** sur l'altitude, mesurés sur une ligne d'au moins 1 km. Deux traverses adjacentes sont ainsi séparées au plus de **250m** et au moins de **150m** et deux lignes de contrôle adjacentes sont séparées au plus de **2 050m** et au moins de **1 950m**. Toutefois ces valeurs ont pu être localement dépassées en fonction de la végétation, des habitations, des lignes électriques, etc.

Les segments de traverse revolés recoupent les lignes de contrôle à chaque extrémité en rejoignant les traverses préexistantes, avec un angle faible. De même, les lignes de contrôle revolées recoupent les traverses à chaque extrémité et rejoignent les traverses préexistantes, avec un angle faible. Toutes les traverses commencent et se terminent en recoupant une ligne de contrôle.

2.3.5 TOLÉRANCE SUR LE NIVEAU DE BRUIT DES MESURES

Les mesures brutes ont été filtrées des perturbations parasites anthropiques lorsque nécessaire. Le niveau de bruit des mesures résiduelles magnétiques, mesuré sur la quatrième différence est normalement en dessous de ± 0.1 nT pour un échantillonnage de 10 mesures par secondes.

2.3.6 TOLÉRANCE SUR LES VARIATIONS TEMPORELLES DU CHAMP MAGNÉTIQUE (DIURNE ET SPHÉRIQUES)

La déviation maximum à chaque station de base sur les variations temporelles du champ magnétique a été fixée par le MERN, soit : une variation de **3 nT** crête à crête sur une période d'une minute ; **0.5 nT** crête à crête sur une période de 15 secondes. Le bruit des sphériques a été filtré des données et les lignes de vols affectées par un niveau trop important ont été refaites. Les mesures ont été faites en continue, à la cadence d'une mesure par seconde, avec une extension d'au moins une heure de mesure avant et après chaque vol.

2.4 KILOMÉTRAGE

Le tableau qui suit donne le kilométrage du plan de vol théorique, calculé en coordonnées projetées UTM 20N.

Kilométrage	Traverses	Lignes de contrôle	Total
Rivière Olomane-Ouest	48 607km	4 986 km	53 593 km

Tableau 4 : Kilométrage calculé sur les plans de vol en coordonnées projetées

2.5 PLAN DE VOL THÉORIQUE ET LIGNES DE VOL RESTITUÉES À L'ISSUE DES VOLS

La figure qui suit présente le plan de vol du bloc du secteur de la Rivière Olomane dans le système de projection UTM 20N, respectivement sans les extensions (contour rouge) et avec les extensions de 250m (contour bleu) aux deux extrémités de chaque profil.

Figure 4 : Plan de vol prévisionnel du bloc du secteur de la Rivière Olomane sans extensions (contour rouge) et avec extensions (contour bleu).

3 TESTS ET CALIBRATIONS

Tous les instruments, y compris ceux de rechange, ont été testés et calibrés avant la mobilisation. La configuration a ensuite été testée à nouveau sur le lieu du levé. Les tests suivants ont été complétés avant le début des travaux et ont fait l'objet d'un rapport complémentaire compilant l'ensemble des résultats (*Rapport de Calibration*).

3.1 TESTS ET CALIBRATIONS DES INSTRUMENTS DE MESURES MAGNÉTIQUES

3.1.1. TEST STATIQUE DES STATIONS MAGNÉTIQUES ET DU POSITIONNEMENT GPS

Des enregistrements des magnétomètres embarqués et au sol ont été effectués pendant au moins 10 minutes le 11 et le 21 septembre 2020. Les données magnétiques ont été enregistrées simultanément par les magnétomètres des stations de base et les magnétomètres embarqués dans les avions, alors que les avions étaient immobiles au sol, et les stations étaient à proximité des avions.

3.1.2. TEST DYNAMIQUE DES SYSTÈMES EMBARQUÉS

Chaque avion a volé une même ligne d'au moins 15 km et les données ont été comparées pour s'assurer que tous les systèmes produisaient des résultats similaires. Cette ligne de comparaison a été volée le 9 et le 11 septembre 2020.

3.1.3 ÉTALONNAGE DES MAGNÉTOMÈTRES EMBARQUÉS (TEST DE MOREWOOD)

L'étalonnage des magnétomètres embarqués a été réalisé sur la nouvelle base d'étalonnage de la CGC, à Morewood (Ontario), au début des opérations.

Cet étalonnage comprenait notamment une mesure de l'erreur de cap. Chaque avion a effectué deux passages dans chaque direction nord, sud, est et ouest.

Les résultats de ces essais sont présentés sous le même format graphique que celui utilisé au cours de la production du levé, et sous le format numérique prévu pour archiver les données. La même précision (deux décimales) est utilisée pour les deux présentations. Les résultats des essais, ainsi que la couverture vidéo de la trajectoire de vol, ont été soumis au chargé de projet pour approbation.

Les valeurs du champ magnétique total enregistrées à l'observatoire d'Ottawa (Ontario) ont été utilisées comme référence pendant la durée de ces vols d'étalonnage.

3.1.4. TEST DE LA NAVIGATION ÉLECTRONIQUE (FAIT AVEC LE TEST DE MOREWOOD)

Simultanément, un test de navigation électronique a été effectué. La qualité des mesures de positionnement DGPS du système embarqué a été validée par comparaison des mesures survolées au-dessus d'un point de mesure établi au sol.

3.1.5. TEST DE PARALLAXE

Les systèmes de synchronisation du temps et des enregistrements ont été vérifiés avant le début des opérations en survolant une source magnétique intense et isolée (un pont ferroviaire métallique) dans des directions opposées et à la hauteur nominale du levé. Ce retard, s'il est observé, est ensuite corrigé lors du traitement des données.

3.1.6. ÉTALONNAGE DE L'ALTIMÈTRE RADAR

Une ligne test d'environ 3 km de long a été utilisée sur la piste d'atterrissage de l'aéroport de Gatineau. L'emplacement a été choisi en accord avec le représentant du MERN.

Les altimètres ont été calibrés en survolant une bande d'altitude connue (la piste de l'aéroport). Sept hauteurs réparties au-dessus de la hauteur nominale du levé ont été utilisées. Des droites d'étalonnage ont été déterminées en utilisant les hauteurs radar et les altitudes GPS synchrones.

3.1.7. VOLS DE CALIBRATION DES PERTURBATIONS MAGNÉTIQUES DE L'AVION À HAUTE ALTITUDE (FOM)

La FOM de chaque avion a été volée dès que les conditions météorologiques ont été favorables. Elles ont été volées à haute altitude, au-dessus d'une zone de faible gradient magnétique. La FOM comprenait au moins : 3 roulis de \pm 10°; 3 tangages de \pm 5°; 3 lacets de \pm 5° et ce dans chaque direction des lignes de vol du levé, soit N45, N225, N135, et N315. Chaque manœuvre a été effectuée sur une période d'au moins 45 secondes. La FOM a été calculée en additionnant les amplitudes crête à crête des 12 réponses magnétiques créées par les manœuvres de l'avion.

3.2 TESTS ET CALIBRATIONS DES INSTRUMENTS DE MESURES SPECTROMÉTRIQUES

La méthodologie d'analyse spectrométrique du rayonnement gamma mise en œuvre par Novatem est rigoureusement conforme aux recommandations de l'AIEA. Les spectromètres ont été entièrement recalibrés avant le démarrage des travaux, puis les tests suivants sont effectués avant la mobilisation sur le site des travaux:

- Calibration sur un ensemble de blocs appartenant au manufacturier Radiation Solution Inc. afin de déterminer les rapports de corrélation (stripping ratios)
- Des vols au-dessus de la zone d'étalonnage de la Commission Géologique du Canada (Breckenridge) ont été
 effectués sur des paliers constants aux 20 mètres, entre 50 et 170 m AGL. Ces paliers sont utilisés pour
 évaluer l'effet des variations de hauteur (coefficients d'atténuation de l'air et constantes de sensibilité) à partir
 de concentrations connues de sources radioactives au sol. Des mesures au sol sont ainsi effectuées
 simultanément aux vols, à l'aide d'un spectromètre calibré fournit par la CGC. Ce test est répété si des
 changements sont apportés au système de mesures spectrométriques.

Les tests et les vols de calibrations suivants ont été effectués à proximité de la zone du levé avant le début des opérations:

- Afin de déterminer les coefficients du bruit cosmique ainsi que le bruit de fond de l'avion, cinq paliers de calibration équidistants, entre 1500 et 3000 m AGL, sont réalisés au-dessus d'un plan d'eau et à plus de 5 kilomètres de la côte. Sur chaque palier, le système enregistre au moins 10 minutes de données lors de son ascension, puis 10 autres minutes lors de sa descente, pour un total de 20 minutes sur chacun des 4 paliers.
- Afin de vérifier la sensibilité du système, détecter tout changement du niveau de radioactivité de l'avion, et enfin suivre l'effet des variations d'humidité du sol sur le levé (variation de la concentration du Thorium inférieure à 10% après correction), des survols quotidiens d'une même ligne test à proximité de la base d'opération, à la hauteur nominale du levé et d'une durée d'au moins 200 secondes, sont réalisés au début et à la fin de chaque journée de vol.
- Afin de procéder à la calibration du détecteur regardant vers le haut des effets du radon atmosphérique, la ligne test est localisée à proximité d'un plan d'eau permettant de réaliser des vols quotidiens, d'au moins 200 secondes au-dessus de l'eau, avant et après chaque journée de vol. Le pilote effectue tous ses vols à la même altitude pour minimiser l'erreur sur les variations du taux de compte. Étant donné que l'humidité du sol est contrôlée dans la fenêtre du thorium, les variations résiduelles ne sont dues qu'à des changements quotidiens dans le radon atmosphérique, une fois corrigées du rayonnement cosmique et du bruit de fond des avions (AGSO Record 1995/60). Les coefficients destinés à corriger la contribution du sol dans le spectre du détecteur regardant vers le haut sont obtenus en soustrayant les sections des lignes adjacentes (AIEA 1991).

4 LOGISTIQUE

4.1 SERVICES GÉOPHYSIQUES ET LOGISTIQUES

Novatem Inc. a pris en charge les éléments suivants du projet :

- Obtention des autorisations de vol
 - Mise à disposition du personnel qualifié nécessaire au bon déroulement du levé jusqu'à son terme

- Fourniture des équipements techniques nécessaires ainsi que des pièces de rechange pour réaliser le levé dans les meilleurs délais

- Fourniture des avions et du carburant
- Fourniture du gîte et du couvert des employés
- Maintenance et supervision du bon fonctionnement des avions
- Traitements préliminaires et contrôles de la qualité des données géophysiques sur le site
- Préparation et fourniture des produits préliminaires et finaux

4.2 BASE D'OPÉRATION ET STATIONS DE BASE

L'aéroport de Natashquan, situé à quelques dizaines de kilomètres du levé, a été utilisé pour ce projet.

Aéroport de Natashquan	Code IATA: YNA;
	Code ICAO : CYNA
	(Lat, Long) = (50° 11' 24" N, 61° 47' 20" O)
	Altitude = 39 ft. (12 m)
	Longueur de la piste : 4 495 ft (1 370 m)
	Surface : Asphalte
	Carburant : Avgas

Une base d'opération a été installée dans les locaux de l'Auberge Le Port d'Attache où le personnel était hébergé. Cette base était équipée d'une connexion internet. Une liaison par téléphone était disponible durant toute la durée du levé avec le chef de mission d'une part et par radio télécommunication avec les pilotes d'autre part. Les avions étaient par ailleurs équipés d'un système de communication et de suivi en temps réel **Spydertracks**. Tous les outils nécessaires aux prétraitements des données étaient disponibles sur place.

Deux stations de base magnétique et une station GPS ont été installées à proximité de la base d'opération. Le responsable technique de Novatem récupérait les données chaque semaine. Les lieux d'implantation ont été choisis selon les spécifications du MERN : localisation loin des perturbations anthropiques ; faible gradient local. Ces mesures de validation ont été effectuées à l'aide de la station-sol (GSM 19).

Les coordonnées géographiques des stations-de-base magnétique et GPS, ainsi que la moyenne de chaque base, sont les suivantes :

Base 1 :

Longitude : 61.7893127 O Latitude : 50.1876668 N Moyenne mesurée pendant la durée du levé : **53 210 nT**

Base 2 :

Longitude : 61.7893127 O Latitude : 50.1876668 N Moyenne mesurée pendant la durée du levé : **53 213 nT**

4.3 RESSOURCES HUMAINES AFFECTÉES AUX TRAVAUX GÉOPHYSIQUES

Le personnel suivant était affecté aux prétraitements, aux contrôles de la qualité et aux traitements finaux des données de géophysique :

- Gestionnaire du projet et responsable de la qualité des données : **Pascal Mouge, Geo., Ph. D.** Membre de l'Ordre des Géologues du Québec.
- Gestionnaire scientifique et responsable du traitement des données : Olivier Savignet, Ing. Membre de l'Ordre des Ingénieurs du Québec.
- Responsable de l'acquisition et des équipements sur le terrain : Morten Skovgaard, M.Sc. assisté de Erwan Pau-Corfa, M.Sc.

4.4 RESSOURCES HUMAINES AFFECTÉES AU PILOTAGE DES AVIONS

Tous les pilotes ayant travaillé sur ce projet sont titulaires d'un permis commercial valide pour les avions Piper Navajo PA31-310, délivré par Transport Canada.

Pour des raisons de sécurité, les avions ont été pilotés par un pilote commandant de bord assisté d'un copilote. Chaque instrument était scruté en temps réel à l'aide d'indices de qualité ; si la valeur d'un de ces indices passait en dessous des spécifications, le voyant correspondant passait du vert au rouge sur l'écran du pilote qui cessait immédiatement son vol et rentrait à sa base.

Novatem a réalisé ce projet avec l'aide de quatre pilotes au total, tous ayant les qualifications de commandant de bord expérimenté pour les vols de géophysique à basse hauteur, et deux mécaniciens (AME) certifiés et expérimentés pour le type d'avion mis en œuvre.

- Renaud Charron, Commandant
- Sébastien Maltais, Commandant
- Nicolas Déry, Commandant
- Kevin Lafortune, Commandant
- Alain Guillemette, AME
- Hugo Meloche, AME

4.5 CALENDRIER DES TRAVAUX

La production a débuté le **9 septembre 2020** et s'est terminée le **30 octobre 2020**. Les données préliminaires ont été produites sur le terrain au fur et à mesure de la progression du travail. Toutes les phases du levé, en particulier de planification et le suivi de la production ont été coordonnées avec le représentant du Ministère.

Le livre de bord des avions, résumant les principales dates du levé ainsi que l'avancement des travaux, sont joints en annexe du présent rapport.

5 INSTRUMENTATION

5.1 AÉRONEFS

Novatem a mis en œuvre sur ce bloc, deux avions Piper Navajo PA31-310.

Chaque avion était muni d'une perche magnétométrique (« tail boom ») validée par un STC, délivré par Transport Canada. Ces « tail boom » ont une longueur hors tout de 4 m. Les équipements de mesure géophysique montés à bord de chacun des avions pour cette campagne incluaient principalement :

- Un capteur magnétique scalaire de très haute résolution à pompage optique de vapeur de césium, fabriqué par Geometrics, monté à l'extrémité de la perche magnétométrique.
- Un capteur magnétique vectoriel fluxgate de très haute résolution, fabriqué par Billingsley, monté à l'extrémité de la perche magnétométrique.
- Deux spectromètres digitaux de mesure du rayonnement gamma RSX-5 fabriqués par Radiation Solutions Inc. (RSI). Chaque spectromètre comprenait 5 cristaux de NaI, soit 41.8 litres par avion au total.
- Un système de navigation SAMM « drapée » développé par Novatem, permettant de suivre une surface de vol continue, calculée à l'avance, et donc de minimiser les écarts aux intersections des traverses et des lignes de contrôle;
- Un altimètre radar TRA 4000, fabriqué par Free Flight Systems, dont la calibration est faite par des mesures conjointes barométriques et DGPS;
- Un système de mesure des angles d'attitude (Inertial Measurement Unit), fabriqué par Microstrain, pour la compensation magnétique;
- Un système de compensation SAMM développé par Novatem pour la très haute résolution utilisant conjointement les composantes fournies par le magnétomètre vectoriel fluxgate, les angles mesurés par la centrale d'attitude, et des algorithmes d'inversion très performants pour le calcul des coefficients;
- Un système de positionnement GPS différentiel double fréquence Novatel Propack. Ce système est précis en temps réel à un mètre dans le plan horizontal et un centimètre après corrections à l'aide des mesures de la station sol;
- Deux stations de base magnétométriques GEM GSM-19, chacune équipée d'un senseur de haute résolution pour la correction des variations temporelles du champ magnétique externe;
- Une station de base DGPS utilisant un capteur Novatel similaire à celui embarqué à bord des avions pour le calcul des corrections différentielles de positionnement à l'aide du logiciel Waypoint GrafNav de Novatel.
- Une caméra digitale Commander Recorder Video fabriquée par Rugged Video utilisant une optique à vision grand angle HDX, synchronisée avec le système de positionnement.

Avant le démarrage des opérations, les équipements ont tous été testés au sol afin de s'assurer que les paramètres d'acquisition étaient dans les spécifications du contrat. Tout au long du projet, des contrôles de la qualité ont été réalisés quotidiennement sur les données.

5.2 MAGNÉTOMÈTRES

5.2.1 MAGNÉTOMÈTRE SCALAIRE EN VOL

Les avions étaient équipés d'un capteur scalaire G822A à pompage optique de vapeur de Césium, fabriqué par **Geometrics**, mesurant le champ total avec une sensibilité de 0.0005 nT/ \sqrt{Hz} et un "heading error" inférieur à 0.1 nT. Ces magnétomètres sont opérationnels y compris sur les zones de fort gradient sur une gamme de 20 000 – 120 000 nT.

Spécifications	
Taux d'échantillonnage	10 Hz
Précision en vol	< 0.1 Nt
Sensibilité	< 0.002 nT à 10 Hz
Résolution	0.0001 Nt
Plage de fonctionnement	20 000 à 100 000 Nt
"Heading error"	± 0.15 Nt

Tableau 5 : Spécifications du magnétomètre en vol G-822A

5.2.2 MAGNÉTOMÈTRE VECTORIEL

Un capteur magnétique vectoriel fabriqué par **Billingsley**, mesurant les trois composantes du champ magnétique total a été utilisé sur chaque avion. Ce magnétomètre de dernière génération à vanne de flux est le plus performant des magnétomètres vectoriels existants.

Spécifications			
Échantillonnage	125 Hz		
Orthogonalité des axes	Meilleure que 0.2 degrés		
Précision	0.1 Nt		
Sensibilité	< 0.3 Nt		
Résolution	0.1Nt		
Fonctionnement	> 65 000 Nt		
'Heading error'	±1 Nt		

Tableau 6 : Spécifications du magnétomètre vectoriel fluxgate

5.2.3 SPECTROMÈTRES DE MESURE DU RAYONNEMENT GAMMA

Deux spectromètres digitaux de mesure du rayonnement gamma RSX-5 fabriqués par Radiation Solutions Inc. (RSI) ont été utilisés pour ce projet. Chaque spectromètre comprenait 5 cristaux de NaI, dont 4 dirigés vers le bas (16.72 litres = 1024 in^3), et un cristal regardant vers le haut (4.18 litres = 256 in^3). Chaque avion disposait donc de 33.44 litres dirigés vers le bas et 8.36 litres dirigés vers le haut, soit 41.8 litres par avion au total.

Spécifications		
Taux d'échantillonnage	1 Hz	
Canaux	1024	
Non linéarité différentielle	Moins de 0.2% sur 99.5%	
Non linéarité intégrale	Moins de 0.1% sur 99.5%	
Résolution	Mieux que 8.5%	

Tableau 7 : Spécifications des spectromètres RSI RSX-5

5.2.3 STATION DE BASE MAGNÉTOMÉTRIQUE

Deux stations de base magnétiques **GEM** GSM19, équipée chacune d'une carte d'acquisition et d'une antenne GPS ont enregistré les variations du champ magnétique externe durant toute la période du levé. Une des deux stations a été laissée fixe durant toute la durée des travaux (station de référence). Chaque station était équipée d'une batterie résistante aux très basses températures, elle-même alimentée par un panneau solaire.

Spécifications	
Taux d'échantillonnage	1 Hz
Précision	0.2 Nt
Résolution	0.01 Nt

Tableau 8 : Spécifications des magnétomètres des stations sol

5.3 SYSTÈME DE POSITIONNEMENT

5.3.1 NAVIGATION

Un système de navigation SAMM développé par Novatem, spécifiquement pour les levés géophysiques aéroportés, a été utilisé. Le pilote dispose face à lui de toutes les informations nécessaires pour suivre ses lignes de vol et sa surface drapée; d'une part sur un écran de haute luminosité, et d'autre part sur un 'barre graphe' constitué de diodes lumineuses et de quatre fenêtres digitales l'informant des principaux paramètres de navigation. Le système fournit en outre au pilote des indices sur la qualité des mesures : si un au moins de ces indices passe au rouge, le pilote cesse immédiatement son vol et rentre à sa base.

Figure 5 : Système de navigation embarqué

5.3.2 SYSTÈME DGPS EN VOL

Un GPS différentiel Novatel Propack, temps réel bi-fréquences, a été utilisé pour le positionnement en vol.

Spécifications		
Échantillonnage	10 Hz	
OmniSTAR L1 et L2 GPS + GLONASS	0.15 - 0.6 m	
Nombre de canaux	72	
Réacquisition L1 0.5 s	0.5 s	
Réacquisition L2 1 s	1 s	
Précision du temps	20 ns	
Plage de températures	-40°C à +75 °C	

Tableau 9 : Spécifications du système DGPS

5.3.3 STATION DE BASE DGPS

Une station de base DGPS utilisant un capteur **Novatel** similaire à celui embarqué à bord des avions a été installée à proximité immédiate du levé. Les positions différentielles sont recalculées après les vols à l'aide du logiciel **Waypoint GrafNav** de **Novatel**. À l'issue des traitements différentiels, une précision d'environ un centimètre est généralement observée.

Spécifications			
Échantillonnage	10 Hz		
OmniSTAR L1 et L2 GPS + GLONASS	0.15 - 0.6 m		
Nombre de canaux	72		
Réacquisition L1 0.5 s	0.5 s		
Réacquisition L2 1 s	1 s		
Précision du temps	20 ns		
Plage de températures	-40°C à +75 °C		

Tableau 10 : Spécifications de la station de base GPS

5.4 MESURES INERTIELLES ('INERTIAL MEASUREMENT UNIT')

Une centrale inertielle **Microstrain**, a été utilisée pour la mesure des angles d'attitude (roulis, tangage et lacet) nécessaires à la correction des gradients magnétiques. Les trois angles d'attitude sont mesurés avec une très grande vitesse d'échantillonnage (entre 100 et 600Hz) puis ramenés à la même cadence que les autres mesures (10Hz).

Spécifications		
Échantillonnage	10 Hz (600Hz max)	
Précision (roulis, tangage, lacet)	0.001 degré	

Tableau 11 : Spécifications du système de mesures inertielles

5.5 SONDE BAROMÉTRIQUE

Chaque avion était muni d'une sonde de température et de pression fabriquée par **Honeywell** ayant une résolution respectivement de 0.1 °C et de 0.1 mbars.

5.6 ALTIMÈTRE RADAR

Chaque avion était équipé d'un altimètre radar **TRA-4000** fabriqué par **Free Flight Systems**. Cet altimètre est étalonné par des vols au-dessus d'une bande de terrain d'altitude connue (piste d'aéroport de préférence).

Spécifications		
Modèle	TRA-4000	
Échantillonnage	10 Hz	
Gamme d'altitude	0 – 2 600 pieds	
Gamme de précision	Entre 0 et 100 pieds : \leq 3ft Entre 100 et 500 pieds : \leq 3% Entre 500 et 2 500 pieds : \leq 5%	
Gamme de températures	-55 à +70 °C	

Tableau 12 : Spécifications des altimètres radar

5.7 SYSTÈME D'ACQUISITION ET D'ENREGISTREMENT DES DONNÉES

Un système d'acquisition SAMM développé par Novatem a été utilisé. Toutes les données sont synchronisées en temps réel avec le récepteur DGPS. Les données sont enregistrées et sauvegardées à l'issue de chaque vol.

Les données suivantes sont enregistrées :

- Numéro de ligne
- Temps GPS
- Fiduce
- Facteurs de qualité (GDOP, etc)
- Latitude, longitude, altitude DGPS (WGS84)
- Hauteur radar
- Angles d'attitude (roulis, tangage, lacet)
- Composantes du champ magnétique (X, Y, Z) mesurées par le fluxgate
- Surface drapée théorique (SRTM, 90m)
- Surface de vol réelle

- Mesures du champ magnétique total pour le capteur Césium
- Mesures du champ compensées en temps réel

Les mesures des deux stations sol et des coordonnées rectangulaires (UTM) sont intégrées lors des traitements préliminaires. Le retard instrumental du système d'acquisition est normalement inférieur à une fiduce (0.05s).

5.8 SYSTÈME D'ACQUISITION VIDÉO

Une caméra digitale Commander Recorder Video fabriquée par Rugged Video, utilisant une optique à vision grand angle HDX, était installée dans la base inférieure de l'emplanture du stinger. Les images sont synchronisées avec le système de positionnement DGPS. Le défilement sous l'avion est enregistré en continu au format mp4. Le positionnement et l'heure (temps universel, en heures, minutes et secondes après minuit) sont incrustés sur chaque image.

Spécifications		
CAMERA	HDX	
Image Sensor	1/3" Panasonic CMOS	
Pixels	1,956 x 1,266 2.48 Megapixel	
Output Resolution	1080p30	
Shutter Speed	AUTO 1/60 - 1/50,000	

 Tableau 13 : Spécifications du système vidéo

5.9 CALCULATEURS DE TERRAIN

Au moins trois calculateurs PC dédiés aux mesures de terrain ont servi à l'analyse de la qualité des données, au tracé de la navigation et des mesures brutes ainsi qu'à l'archivage immédiatement après les vols. Le contrôle de la qualité est fait quotidiennement et le rapport d'avancement et de production est mis à jour des dernières données. À l'issue des contrôles, les grilles préliminaires sont recalculées puis un tracé est produit à l'échelle de la compilation afin de s'assurer de la qualité des données magnétiques et de positionnement.

5.10 PIÈCES DE RECHANGE

Un jeu normal de pièces de rechange et d'instrumentation nécessaires au bon fonctionnement et à la vérification des appareils était disponible sur le terrain. Un jeu complet de pièces de rechange était disponible dans les locaux de Novatem, à Mont-Saint-Hilaire.

6 CONTRÔLES DE LA QUALITÉ DES DONNÉES

Pendant le levé, le contrôle de la qualité des données est effectué par le Chef des opérations sur le terrain. Les contrôles sur la qualité des données sont intégrés dans le processus normal d'acquisition et commencent dès l'établissement des plans de vol pour se terminer avec la livraison des produits finis au client.

Avant le levé, les contrôles servent à s'assurer notamment que :

- Les spécifications sont appropriées pour les cibles considérées
- Les spécifications sont sécuritaires pour le personnel et les équipements
- La navigation est sécuritaire compte tenu de la topographie et des conditions météorologiques locales
- Les équipements et les instruments sont conformes au cahier des charges (y compris pour les logiciels)
- Les pièces détachées et l'instrumentation sont en quantité suffisante pour réaliser le levé dans les délais attendus
- Les outils de maintenance et les pièces détachées de l'avion sont disponibles
- La maintenance des aéronefs sera faite dans des conditions sécuritaires et dans les meilleurs délais

En vol, les données sont analysées en temps réel. Le pilote est informé par des diodes lumineuses du bon fonctionnement des appareils afin qu'il puisse suspendre son vol et retourner à la base si nécessaire, où les modifications appropriées sont faites.

6.1 CONTRÔLE DES SPÉCIFICATIONS DE VOL

Après chaque vol, les données brutes sont inspectées afin de s'assurer d'une part de la qualité des données et d'autre part que toutes les données attendues sont présentes, puis sauvegardées sur un support indépendant et sécuritaire. Pour chaque vol, les traitements suivants sont réalisés sur le terrain :

- Reconstitution de la trajectoire de l'aéronef
- Contrôle de la trajectoire volée par rapport au plan théorique
- Détermination des lignes à revoler
- Vérification des données brutes de la station DGPS de référence

Les contrôles sont ensuite effectués en priorité, pour s'assurer de :

- L'espacement entre les points de mesure (vitesse de l'avion)
- La déviation de part et d'autre des lignes de vol
- La déviation des lignes de vol en altitude
- La continuité des profils
- Le niveau de bruit des données

On s'assure en particulier que chaque ligne de vol recoupe proprement au moins deux lignes de contrôle et que les tronçons éventuels se rejoignent suivant un angle faible, sans discontinuité.

Toutes les données digitales sont fusionnées dans un fichier au format Geosoft. Les profils sont ensuite édités pour s'assurer que toutes les données attendues sont présentes et que leur qualité est conforme à la demande. Les données sont finalement archivées, traitées puis délivrées dans une base de données compatible avec les logiciels du client.

7 TRAITEMENTS DES DONNÉES

7.1 CORRECTIONS DIFFÉRENTIELLES DU POSITIONNEMENT

Les positions successives fournies par le système DGPS en coordonnées géographiques sont d'abord converties en coordonnées rectangulaires UTM lors des prétraitements afin de procéder au contrôle de la navigation.

À l'issue du levé, la première phase des traitements consiste à calculer les corrections différentielles à l'aide des données de la station de référence ou des stations locales lorsqu'elles sont disponibles.

Les corrections GPS différentielles sont calculées à l'aide du logiciel Waypoint de Novatel. Les positions de l'avion ont été recalculées en utilisant les données de la station de base GPS. En outre, des éphémérides précises et des données d'horloge ont été téléchargées pour toute la période du levé afin d'améliorer la précision des données de position recalculées.

7.2 CORRECTION DES MESURES DE HAUTEUR RADAR ET BAROMÉTRIQUE

Les altimètres radar et barométriques ont été étalonnés en survolant une bande de terrain (piste de l'aéroport) à des hauteurs successives au-dessus du sol. Une droite de calibration a ainsi été construite en traçant les hauteurs de l'altimètre radar en fonction de l'altitude DGPS corrigée du SRTM. Les résultats sont présentés dans le *Rapport de calibration*.

7.3 TRAITEMENT DES DONNÉES MAGNÉTIQUES

7.3.1 RÉSUMÉ DES TRAITEMENTS APPLIQUÉS AUX MESURES MAGNÉTIQUES

Les données mesurées en vol sont éditées quotidiennement puis archivées dans une base de données *Geosoft Oasis Montaj.* Les profils sont ensuite dessinés et contrôlés. Un décalage spatial entre le senseur magnétique scalaire et la position de l'antenne est d'abord appliqué aux coordonnées DGPS. Les mesures magnétiques sont ensuite corrigées des perturbations dues à l'avion (compensation) à l'aide des informations vectorielles fournies par le Fluxgate et inertielles fournies par l'IMU. Les mesures compensées sont ensuite corrigées des variations du champ magnétique externe (variations diurnes principalement et pulsations si ces variations sont acceptables) à l'aide des mesures de la station de base magnétométrique. L'erreur directionnelle intrinsèque de chaque magnétomètre (« heading error ») est ensuite estimée et retranchée des mesures de chaque magnétomètre et ce pour chaque direction de vol. Enfin, une procédure de nivellement est appliquée, d'abord sur les lignes de contrôle, puis sur les lignes régulières, afin d'éliminer les erreurs résiduelles engendrées principalement par les variations de hauteur de l'avion.

7.3.2 COMPENSATION

Un vol de calibration, obéissant à une géométrie précise et reproductible (FOM), a été réalisé par temps clair sans vent à très haute altitude, loin des perturbations magnétiques générées par la croûte terrestre. Un ensemble de coefficients a été calculé par inversion, sur la base du modèle physique des perturbations magnétiques de l'avion (le modèle est une combinaison linéaire de 18 termes, construits à partir des cosinus des angles d'orientation et du champ terrestre et des variations de gradients inhérents au déplacement du capteur dans le champ terrestre). L'inversion est faite sur chaque direction. Un jeu de coefficients est donc obtenu pour chaque direction. Ces coefficients sont ensuite utilisés pour reconstruire le champ des perturbations magnétiques de l'avion à partir des angles d'attitude fournis par la centrale inertielle et du magnétomètre Fluxgate.

Les bruits magnétiques de l'avion (aimantation induite, permanente et courants de Foucault) sont mesurés et corrigés en temps réel.

La FOM de chaque avion est d'environ 1nT. Tous les résultats sont présentés dans le Rapport de calibration.

7.3.3 CORRECTION DES VARIATIONS TEMPORELLES (VARIATIONS DIURNES)

Les données mesurées aux stations de base (1Hz) ont été éditées puis archivées dans un fichier ASCII, puis interpolées linéairement aux instants de l'acquisition en vol (10Hz). Les stations de base étant fixe et loin de toutes variations parasites artificielles, les variations enregistrées sont supposées être les variations temporelles dues à l'activité solaire (variation diurne, pulsations, etc.).

La constante magnétique du lieu, estimée avec la moyenne de l'ensemble des enregistrements sur toute la durée du projet, sert de niveau de référence. Les données de la station 1 ont été utilisées pour corriger les données. Cette constante est ensuite retirée à l'ensemble des mesures. Lors de ce levé, la moyenne enregistrée jour et nuit à la station de base était de **53 210** nT lors des mesures faites de septembre à octobre 2020.

Une moyenne glissante de période équivalente à 120 secondes a été appliquée aux données brutes afin d'éliminer les pulsations de hautes fréquences et généralement de faible amplitude. La station de base utilisée étant à plusieurs dizaines de kilomètres du levé, ces pulsations sont en effet généralement déphasées et d'amplitude différente de celles mesurées par les avions. Un tel filtre permet ainsi de limiter ce bruit qui pourrait dégrader la qualité des données mesurées en vol.

7.3.4 CORRECTION DU RETARD INSTRUMENTAL (LAG)

Des erreurs résiduelles de positionnement, principalement engendrées par le 'retard de temps' (lag) entre l'instant où la position est mesurée et celle où elle est assignée au magnétomètre, peuvent engendrer un décalage systématique dans chacune des directions de vol. Les résultats des tests de 'lag' conduits préalablement au levé montrent que cet écart reste généralement minime (voir *Rapport de calibration*).

7.3.5 CORRECTION DE L'EFFET DE L'ALTITUDE

Une procédure de correction d'altitude basée sur une expansion de Taylor au second degré a été appliquée sur les données magnétiques corrigées.

7.3.6 NIVELLEMENT

Une procédure de nivellement, basée sur les différences observées à l'intersection des traverses et des lignes de contrôle a été appliquée, d'abord sur les lignes de contrôle puis sur les lignes régulières.

À chaque étape du nivellement, la table des intersections aux points de croisement est recalculée. Une vérification rigoureuse de la table est alors réalisée afin d'éliminer tout point d'intersection dont le gradient serait trop important, ce qui aurait pour conséquence d'altérer l'ensemble du profil.

Le nivellement des lignes de contrôles utilise les traverses comme base du nivellement puis une correction de tendance du premier ordre est appliquée.

La procédure précédente est ensuite répétée en rabattant les traverses sur les lignes de contrôle. Un nivellement plus local du second ordre est ensuite appliqué. Le tableau suivant décrit la méthode utilisée.

Nivellement		
Correction des lignes	Ordre des corrections	
Lignes de contrôle	1 ^{er} degré	
Traverses	1 ^{er} degré	
Lignes de contrôle	2 ^{ième} degré	
Traverses	2 ^{ième} degré	

Tableau 14	Procédure	de nivellement
------------	-----------	----------------

Le tableau suivant résume les seuils de tolérances sur les intersections utilisés pour chaque itération de nivellement.

Spécifications			
Nombre total d'intersections	Nombre d'intersections ayant une différence inférieure à 15m	Nombre d'intersections ayant un gradient inférieur à 5nT	Nombre d'intersections utilisé pour le nivellement
24 870 (100%)	24 822 (99.8%)	23 325 (93.8%)	23 279 (93.6%)

Tableau 15 : Tolérances sur les intersections

La figure suivante montre les statistiques sur les différences de hauteurs de vol aux intersections.

Figure 6 : Statistiques sur les différences de hauteurs de vol aux intersections

7.3.7 MICRO-NIVELLEMENT

En raison des fortes variations topographiques de la région survolée, un bruit résiduel directionnel causé par les variations de hauteur locales entre les lignes de contrôle a été observé. Dans le but de corriger ces erreurs, une procédure propriétaire de micro-nivellement a été appliquée aux résultats précédents. Les paramètres utilisés sont décrits dans le tableau suivant.

Filtre Buttworth		Filtre directionnel	
Seuil max.	Ordre du filtre	Direction	Ordre du filtre
400 m	4	45°N	0.5

Tableau 16 : Paramètres de micro-nivellement

7.3.8 CHAMPS RÉSIDUEL

Les anomalies du champ magnétique total ont été calculées en retranchant un modèle d'IGRF calculé à une hauteur constante de 300 m. L'IGRF 2020, extrapolé à la date du 01/10/2020 a été utilisé pour ce levé.

7.4 TRAITEMENT DES DONNÉES SPECTROMÉTRIQUES

7.4.1 RÉSUMÉ DES CORRECTIONS APPLIQUÉES AUX MESURES DE SPECTROMÉTRIE GAMMA

Le tableau suivant résume les corrections appliquées au cours du traitement des données de spectrométrie.

Correction	Paramètre traité	Type de filtre	Effet
Pré-filtrage	Altimètre radar	Passe-bas sur 2 sec	Lissage
Pré-filtrage	Rayonnement cosmique	Moyenne sur 15 sec	Réduction du bruit statistique
Pré-filtrage	Température Pression	Moyenne sur 60 sec	Lissage
Suppression du radon	Uranium Haut/Bas corrigé	Moyenne sur 300 points	Réduction du bruit statistique

Fableau 17 : Résumé de	s corrections appliquées aux	données spectrométriques
------------------------	------------------------------	--------------------------

7.4.2 FILTRAGE DES DIFFÉRENTES RÉGIONS D'INTÉRÊTS

La stabilité des spectres est vérifiée, et si nécessaire, un décalage du spectre peut être appliqué durant le posttraitement afin que les énergies des radionucléides soient cohérentes. Aucune sommation des spectres n'est appliquée aux données brutes, excepté pour la détermination des coefficients. D'autre part, aucun pré-filtrage n'a été effectué pour réduire le niveau de bruit des régions d'intérêts compte tenu des très bons indices obtenus sur la qualité des données.

La méthode d'analyse en composante principale (NASVD), n'a pas été utilisée pour reconstituer les spectres (lissage). L'utilisation du logiciel **Praga** de **Geosoft** n'a pas permis de déterminer suffisamment de vecteurs propres pour reconstituer l'ensemble des données de façon rigoureuse.

7.4.3 CORRECTION DU TEMPS D'ACQUISITION PAR SECONDE

Comme les spectromètres ont besoin d'un temps fini pour traiter les comptes des détecteurs, le temps d'accumulation n'est pas une seconde complète. Les spectromètres RS500 possèdent un système de traitement performant qui réduit le temps d'inactivité à 1 ms en moyenne. Néanmoins, le spectromètre enregistre de manière automatique ce temps d'activité, qui est utilisé pour augmenter et normaliser les comptes pour une seconde entière à l'aide de la formule suivante :

$$N_L = \frac{N_{FILT}}{L}$$

où :

 N_L est la fenêtre corrigée du temps d'activité (cps) $N_{F/LT}$ est la fenêtre reconstituée par filtrage (cps) L est le temps d'activité du détecteur (sec)

7.4.4 CORRECTION DU RAYONNEMENT COSMIQUE ET DU BRUIT DE FOND DE L'AVION

Les variations du rayonnement cosmique qui atteint la Terre, accroissent artificiellement les taux de comptes dans toutes les fenêtres spectrales. Les spectromètres utilisés enregistrent une fenêtre cosmique pour toute les particules incidentes de niveau d'énergie supérieur à 3 MeV; niveau à partir duquel il n'existe pas de rayonnement gamma d'origine terrestre. Comme les comptes dus au rayonnement cosmique dans les différentes

fenêtres dépendent linéairement du rayonnement cosmique, on peut donc utiliser l'approximation linéaire suivante pour la correction :

$$N_{ac} = N_L - (a_N + b_N C)$$

où :

 N_{ac} est la fenêtre corrigée du cosmique et du bruit de fond de l'avion (cps) N_L est la fenêtre corrigée du temps d'activité (cps) C est la fenêtre de cosmique après sommation (cps) a_N est le coefficient du bruit de fond de l'avion pour cette fenêtre b_N est le coefficient du cosmique pour cette fenêtre

Notons que pour le détecteur orienté vers le haut, il est plus rigoureux d'utiliser les valeurs supérieures à 3 MeV pour ce même détecteur plutôt que les résultats de ceux vers bas, puisque chaque détecteur possède ses propres caractéristiques physiques.

7.4.5 SUPPRESSION DU RADON

Puisque la contamination par le radon est plus significative dans la fenêtre de l'uranium, en raison de la corrélation de leur niveau d'énergie, un détecteur orienté vers le haut est utilisé pour mesurer les variations dues au radon dans la fenêtre de l'uranium. On peut ainsi évaluer les variations de niveau de radon dans la fenêtre de l'uranium avec la formule suivante :

$$U_r = \frac{u_{ac} - a_1 U_{ac} - a_2 T h_{ac}}{a_u - a_1 - a_2 a_{Th}}$$

où :

 U_r est la composante due au radon dans la fenêtre U orientée vers le bas (cps) U_{ac} est la fenêtre U vers le bas, corrigée du cosmique et de l'avion (cps) u_{ac} est la fenêtre U vers le haut, corrigée du cosmique et de l'avion (cps) Th_{ac} est la fenêtre Th, corrigée du cosmique et de l'avion (cps) a_u , a_{Th} sont les coefficients de normalisation haut/bas de l'uranium et du thorium

 a_1 , a_2 sont les coefficients de calibration des composantes observées au sol

La composante due au radon dans la fenêtre de l'uranium est ensuite filtrée par une moyenne glissante sur 300 fiduces afin de réduire le bruit statistique. La méthode employée est conforme aux recommandations du rapport #323 de l'IAEA.

La prochaine étape du traitement consiste à déterminer les composantes dues au radon dans les quatre autres fenêtres à l'aide des équations linéaires suivantes :

$$u_r = a_u U_r + b_u$$
$$K_r = a_k U_r + b_k$$
$$Th_r = a_{Th} U_r + b_{Th}$$
$$TC_r = a_{TC} U_r + b_{TC}$$

où :

 u_r est la composante due au radon dans la fenêtre de l'uranium du détecteur vers le haut

 $TC_{r,}$ $K_{r,}$ U_r and Th_r sont les composantes dues au radon dans les différentes fenêtres des détecteurs regardant vers le bas.

a, b sont les coefficients de linéarité

Finalement, les taux de comptes obtenus sont ensuite soustraits aux comptes des fenêtres des radionucléides respectives.

7.4.6 RÉDUCTION À PRESSION ET TEMPÉRATURE STANDARDS (STP)

L'altimètre radar est utilisé pour la correction de la hauteur. Comme les propriétés d'atténuation du rayonnement gamma dans l'air sont affectées par sa densité, la hauteur doit être corrigée de la température et de la pression ambiante :

$$h_{STP} = h_{obs} \times \frac{273.15}{T + 273.15} \times \frac{P}{1013.25}$$

où :

 h_{STP} est la hauteur équivalente à STP (mètres) h_{obs} est la hauteur mesurée par l'altimètre laser (mètres) T est la température de l'air (°C) P est la pression barométrique (mbar)

7.4.7 CORRECTION DE LA DIFFUSION COMPTON

La correction de la diffusion Compton consiste à supprimer les chevauchements des spectres après les corrections de bruit de fond. Les rapports d'enlèvement ou « stripping ratio » sont mesurés sur des blocs de calibration. Les résultats sont présentés dans le rapport de calibration. Ces valeurs correspondent au ratio des comptes d'un radionucléide détecté dans une autre fenêtre que celui-ci, pour des sources pures de K, U et Th.

Dépouillement Compton				
Coefficients	C-FWNG	C-GJDD		
Alpha	0.271	0.269		
Beta	0.415	0.406		
Gamma	0.759	0.768		
А	0.050	0.045		
В	0.001	0.001		
G	0.000	-0.001		

Tableau 18 : Correction de la diffusion Compton

En raison de la diffusion dans l'air, les rapports d'enlèvement augmentent avec l'altitude. Ils sont donc préalablement ramenés à une hauteur STP grâce à la relation linéaire suivante :

 $\alpha_{STP} = \alpha + h_{STP} \times 0.00049 [\text{m}^{-1}]$ $\beta_{STP} = \beta + h_{STP} \times 0.00065 [\text{m}^{-1}]$ $\gamma_{STP} = \gamma + h_{STP} \times 0.00069 [\text{m}^{-1}]$

où :

α, β, γ sont de coefficients de diffusion Compton α_{STP} , β_{STP} , γ_{STP} sont les rapports d'enlèvement corrigés à une hauteur STP h_{STP} est la hauteur équivalente STP (mètres)

A l'aide des six rapports d'enlèvement, les taux de comptes corrigés du bruit de fond peuvent être corrigés de l'effet Compton à l'aide des formules suivantes :

$$K_{strip} = \frac{Th_{rc}(\alpha\gamma - \beta) + U_{rc}(\alpha\beta - \gamma) + K_{rc}(1 - a\alpha)}{1 - g\gamma - a(\gamma - gb) - b(\beta - \alpha\gamma)}$$
$$U_{strip} = \frac{Th_{rc}(g\beta - \alpha) + U_{rc}(1 - b\beta) + K_{rc}(b\alpha - g)}{1 - g\gamma - a(\gamma - gb) - b(\beta - \alpha\gamma)}$$

$$Th_{strip} = \frac{Th_{rc}(1 - g\gamma) + U_{rc}(b\gamma - a) + K_{rc}(ag - b)}{1 - g\gamma - a(\gamma - gb) - b(\beta - \alpha\gamma)}$$

7.4.8 CORRECTION DE L'ATTÉNUATION DE L'AIR

Les taux de comptes corrigés de l'effet Compton sont ensuite ramenés à la hauteur nominale du levé à l'aide de l'équation suivante:

$$N_{cor} = N_{strip} e^{\mu (H - h_{STP})}$$

où :

 N_{cor} est les taux de comptes pour une fenêtre, corrigé de l'altitude (cps) N_{strip} est les taux de comptes pour une fenêtre, corrigé de l'effet Compton (cps) μ est le coefficient d'atténuation (mètres⁻¹) h_{STP} est la hauteur équivalente STP (mètres) H est la hauteur nominale du levé, utilisée comme niveau de référence (mètres)

7.4.9 CONVERSION EN CONCENTRATION DE RADIOÉLÉMENTS

L'étape finale consiste à convertir les taux de comptes corrigés de chaque fenêtre, en valeur de concentration de ce radioélément dans le sol, avec la formule :

$$eN = \frac{N_{cor}}{S}$$

où :

eN est la concentration en % pour K ou la concentration équivalente en ppm pour U, Th N_{cor} est les taux de comptes pour une fenêtre corrigée de l'altitude (cps) S est la sensibilité de la source pour la fenêtre spécifiée

Le taux naturel d'absorption de l'air est déterminé par le compte total.

7.4.10NIVELLEMENT

Une procédure de nivellement, basée sur les différences observées à l'intersection des traverses et des lignes de contrôle a été appliquée, d'abord sur les lignes de contrôle puis sur les lignes régulières.

Afin de réduire les différences aux intersections dues au bruit radiométrique, le nivellement est appliqué sur les données filtrées avec une médiane glissante de 10 sec. La correction obtenue est ensuite appliquée sur les données non filtrées.

Cette procédure, au premier ordre uniquement, permet de corriger efficacement les erreurs résiduelles dues principalement au radon atmosphérique et au différence d'humidité du sol. Ainsi, à chaque étape du nivellement, la table des intersections aux points de croisement est recalculée.

Le nivellement des lignes de contrôles utilise les traverses comme base du nivellement puis une correction de tendance du premier ordre est appliquée.

La procédure précédente est ensuite répétée en rabattant les traverses sur les lignes de contrôle. Un nivellement plus local du second ordre est ensuite appliqué. Le tableau suivant décrit la méthode utilisée.

Nivellement			
Correction des lignes	Ordre des corrections		
Lignes de contrôle	1 ^{er} degré		
Traverses	1 ^{er} degré		

7.4.11 MICRO-NIVELLEMENT

Un bruit directionnel résiduel causé par les erreurs dans l'estimation des différents coefficients de corrections, particulièrement dans le cas de l'uranium, a été observé. Dans le but de corriger ces erreurs, une procédure propriétaire de micro-nivellement adapté à la spectrométrie, a été appliquée sur les résultats finaux des quatre fenêtres traitées.

Filtre Buttworth		Filtre directionnel	
Seuil max.	Ordre du filtre	Direction	Ordre du filtre
800 m	4	45°N	1

 Tableau 20 : Paramètres de micro-nivellement

7.4.12CALCUL DES RATIOS

Pour le calcul des ratios, des grilles ont été produites pour les concentrations d'uranium, de thorium et de potassium. Afin de réduire le bruit statistique seuls les points où la valeur de potassium est inférieure à 0.25% ont été retenus. Ces points sont généralement localisés sur les lacs et les rivières du bloc.

Finalement, tel que recommandé par l'IAEA, les cellules adjacentes à un point sont sommées de manière itérative jusqu'à ce que le niveau d'uranium atteigne 23 ppm. Puis les ratios sont calculés en faisant le rapport de chacune de ces grilles, soit uranium/ thorium, uranium / potassium et thorium / potassium.

8 DONNÉES FINALES

8.1 PRODUITS FINAUX DÉLIVRÉS

Les produits finaux délivrés sont résumés dans le tableau suivant :

Produit	Données	Format - projection
Base de données du champ magnétique total	Données magnétiques	GDB – Nad83
Base de données des anomalies	Coefficients de Keating	GDB – Nad83
Base de données spectrométriques	Données spectrométriques	GDB – Nad83
Grilles	 Champ magnétique total résiduel 1^{ère} dérivée verticale (GV) du champ total 2^{ème} dérivée verticale du champ total Modèle Numérique de Terrain (DEM) Taux d'absorption naturel Équivalent Uranium (en ppm) Équivalent Thorium (en ppm) Potassium (en %) Rapport U / Th Rapport U / K Rapport Th / K 	Oasis Montaj GRD – Nad83
Rapport	Logistique, traitements et documentation des produits	pdf

Tableau 21 : Produits délivrés

Page | 33

8.2 BASE DE DONNÉES MAGNÉTIQUES

Les données ont été archivées dans le format Geosoft Oasis Montaj (fichier *.gdb). Les canaux dans ces fichiers sont les suivants :

	Nom du champ	Description	Unité
1	X_NAD83	Coordonnées X UTM NAD83 (corrections différentielles appliquées)	mètre
2	Y_NAD83	Coordonnées Y UTM NAD83 (corrections différentielles appliquées)	mètre
3	Z_NAD83	Coordonnées Z UTM NAD83 (corrections différentielles appliquées)	mètre ASL
4	LONG_NAD83	Longitude GPS WGS84	degré décimal
5	LAT_NAD83	Latitude GPS WGS84	degré décimal
6	AVION	Immatriculation de l'avion	
7	VOL	Numéro de vol	
8	LIGNE	Numéro de la ligne de vol	
9	DEM	Modèle numérique de terrain (déduit du radar)	mètre ASL
10	SRTM	Modèle numérique de terrain SRTM	mètre ASL
11	DRAPE	Hauteur de vol théorique	mètre ASL
12	FIDUCIAL	Fiduce	
13	TEMPS_UTC	Temps universel UTC	seconde
14	DATE	Date locale	AAAA/MM/JJ
15	RADAR_RAW	Hauteur radar brute	mètre AGL
16	RADAR_COR	Hauteur radar filtrée	mètre AGL
17	RADAR_ALT	Hauteur radar corrigé de l'erreur de dérive	mètre AGL
18	GPS_ALT	Hauteur radar (déduit du Z_NAD83 et du SRTM)	mètre AGL
19	TEMP	Température brutes	degré Celsius
20	TEMPFIL	Température filtrée (60 fid)	degré Celsius
21	PRESSION	Pression brutes	mBar
22	PRESSIONFIL	Pression filtrée (60 fid)	mBar
23	MAG_BASE_RAW1	Données brutes de la station de base 1	nanoTesla
24	MAG_BASE_RAW2	Données brutes de la station de base 1	nanoTesla
25	MAG_BASE_FINAL1	Données filtrées de la station de base 1 (1200 fid)	nanoTesla
26	DRIFT_LF	Modèle de variations du champ externe	nanoTesla
27	MAG_U	Champ magnétique total brut	nanoTesla
28	MAG_COMP	Champ magnétique total compensé	nanoTesla
29	MAG_COMP_LAG	Champ magnétique total compensé, corrigé du lag	nanoTesla
30	MAG_CORR_DIURNE	Champ magnétique total compensé, corrigé du lag et des variations externes	nanoTesla
31	CORR_ALT	Correction d'altitude (expansion de Taylor au second degré)	nanoTesla
32	MAG_CORR_ALT	Données magnétiques corrigées de l'effet de l'altitude	nanoTesla
33	CORR_LVL	Correction de nivellement (sans correction diurne)	nanoTesla
34	MAG_LVL	Champ magnétique total corrigé, nivelé (sans correction diurne)	nanoTesla
35	CORR_MICRO_NIVEL	Correction de micro-nivellement	nanoTesla
36	MAG_MICRO_NIVEL	Champ magnétique total corrigé, nivelé, et micro-nivelé	nanoTesla

37	IGRF	Valeur du champ IGRF local	nanoTesla
38	MAG_RES	Anomalies du champ magnétique total (utilisant l'IGRF)	nanoTesla

Tableau 22 : Contenu de la base de données magnétiques

8.3 BASE DE DONNÉES DES COEFFICIENTS DE KEATING

	Nom du champ	Description	Unité
1	X_NAD83	Coordonnées X UTM NAD83 (corrections différentielles appliquées)	mètre
2	Y_NAD83	Coordonnées Y UTM NAD83 (corrections différentielles appliquées)	mètre
3	LONG_NAD83	Longitude GPS WGS84	degré décimal
4	LAT_NAD83	Latitude GPS WGS84	degré décimal
5	CORR_COEFF	Coefficient de corrélation	Pourcent
6	SUSC_X1000	Susceptibilité magnétique x 1000	(sans dimension)
7	NORM_ERROR	Erreur standard normalisée par rapport à l'amplitude	Pourcent
8	AMPLITUDE	Amplitude de l'anomalie pic-à-pic	nanoTesla

Tableau 23 : Contenu de la base de données des coefficients de Keating

Les coefficients de Keating ont été obtenus en considérant une taille de fenêtre de 1000 m sur la grille de la première dérivée verticale.

Paramètre	Valeur utilisée	
Paramètres o	du champ normal (IGRF)	
Inclinaison	70.9 degrés	
Déclinaison	-19.1 degrés	
Intensité	53 440 nT	
Paramètres du mod	dèle (cylindre infini vers le bas)	
Rayon	100 m	
Distance au capteur	130 m (hauteur moyenne de vol)	
Contraintes		
Taille de la fenêtre de convolution	1000 m	
Corrélations retenues	>0.75	

Tableau 24 : Paramètres utilisés pour le calcul des coefficients de Keating

Page | 35

8.4 BASE DE DONNÉES SPECTROMÉTRIQUES

Comme les données magnétiques, les données ont été archivées dans le format Geosoft Oasis Montaj (fichier *.gdb). Les canaux dans ces fichiers sont les suivants :

	Nom du champ	Description	Unité
1	X_NAD83	Coordonnées X UTM NAD83 (corrections différentielles appliquées)	mètre
2	Y_NAD83	Coordonnées Y UTM NAD83 (corrections différentielles appliquées)	mètre
3	Z_NAD83	Coordonnées Z UTM NAD83 (corrections différentielles appliquées)	mètre ASL
4	LONG_NAD83	Longitude GPS WGS84	degré décimal
5	LAT NAD83	Latitude GPS WGS84	degré décimal
6	AVION	Immatriculation de l'avion	
7	VOL	Numéro de vol	
8		Numéro de la ligne de vol	
0 0	DEM	Modèle numérique de terrain (déduit du radar)	mètre ASI
10		Modèle numérique de terrain (deduit du radar)	
10	SRIM		metre ASL
11	DRAPE	Hauteur de vol théorique	mètre ASL
12	FIDUCIAL	Fiduce	
13	TEMPS_UTC	Temps universel UTC	seconde
14	DATE	Date locale	AAAA/MM/JJ
15	RADAR_RAW	Hauteur radar brute	mètre AGL
16	RADAR_COR	Hauteur radar filtrée	mètre AGL
17	RADAR_ALT	Hauteur radar corrigé de l'erreur de dérive	mètre AGL
18	GPS_ALT	Hauteur radar (déduit du Z_NAD83 et du SRTM)	mètre AGL
19	TEMP	Température brutes	degré Celsius
20	TEMPFIL	Température filtrée (60 fid)	degré Celsius
21	PRESSION	Pression brutes	mBar
22	PRESSIONFIL	Pression filtrée (60 fid)	mBar
23	HSTP	Hauteur aux conditions standard de température et de pression	mètre AGL
24	LIVETIME	Temps de vie	millisecondes
25	COSDRAW	Compte cosmique brut vers le bas	cps
26	COSURAW	Compte cosmique brut vers le haut	cps
27	TCRAW	Compte total brut	cps
28	KRAW	Compte Potassium brut	cps
29	URAW	Compte Uranium brut	cps
30	THRAW	Compte Thorium brut	cps
31	UPURAW	Compte Uranium vers le haut	cps
32	FILCOSD	Compte cosmique avec un filtre de 15s	cps
33	FILCOSU	Compte cosmique avec un filtre de 15s	cps
34	FILTC	Compte total filtré (corrigé pour le lag, livetime et recalibration de l'énergie)	cps
35	FILK	Compte Potassium filtré (corrigé pour le lag, livetime et recalibration de l'énergie)	cps
36	FILU	Compte Uranium filtré (corrigé pour le lag, livetime et recalibration de l'énergie)	cps
37	FILTH	Compte Thorium filtré (corrigé pour le lag, livetime et recalibration de l'énergie)	cps

38	FILUPU	Compte Uranium filtré (corrigé pour le lag, livetime et recalibration de l'énergie)	cps
39	BAKTC	Compte total filtré et corrigé du cosmic et du bruit de l'avion	cps
40	BAKK	Compte Potassium filtré et corrigé du cosmic et du bruit de l'avion	cps
41	BAKU	Compte Uranium filtré et corrigé du cosmic et du bruit de l'avion	cps
42	BAKTH	Compte Thorium filtré et corrigé du cosmic et du bruit de l'avion	cps
43	BAKUPU	Compte Uranium vers le haut filtré et corrigé du cosmic et du bruit de l'avion	cps
44	RADU	Niveau de base du Radon brut	cps
45	RADUFIL	Niveau de base du Radon filtré avec un filtre de 300s	cps
46	RADTC	Niveau de base du Radon dans le compte total	cps
47	RADK	Niveau de base du Radon dans le Potassium	cps
48	RADTH	Niveau de base du Radon dans le Thorium	cps
49	RNRTC	Compte total corrigé du Radon	cps
50	RNRK	Compte Potassium corrigé du Radon	cps
51	RNRU	Compte Uranium corrigé du Radon	cps
52	RNRTH	Compte Thorium corrigé du Radon	cps
53	STRIPK	Compte Potassium après application du "Compton stripping"	cps
54	STRIPU	Compte Uranium après application du "Compton stripping"	cps
55	STRIPTH	Compte Thorium après application du "Compton stripping"	cps
56	ATTTC	Compte total corrigé de l'atténuation	cps
57	ATTK	Compte Potassium corrigé de l'atténuation	cps
58	ATTU	Compte Uranium corrigé de l'atténuation	cps
59	ATTTH	Compte Thorium corrigé de l'atténuation	cps
60	CONTC	Compte total du taux d'absorption	nGy/h
61	CONK	Concentration de Potassium	%
62	CONU	Concentration équivalente d'Uranium	ppm
63	CONTH	Concentration équivalente de Thorium	ppm
64	DOSE	Taux d'absorption naturelle déduit des radioéléments	nGy/h
65	CONTC_LEV	Compte total du taux d'absorption nivelée (shift)	nGy/h
66	CONK_LEV	Concentration de Potassium nivelée (shift)	%
67	CONU_LEV	Concentration équivalente d'Uranium nivelée (shift)	ppm
68	CONTH_LEV	Concentration équivalente de Thorium nivelée (shift)	ppm
69	DOSE_LEV	Taux d'absorption naturelle nivelée (shift) déduit des radioéléments	nGy/h
70	CONTC_F	Compte total du taux d'absorption micronivelé	nGy/h
71	CONK_F	Concentration de Potassium micronivelée	%
72	CONU_F	Concentration équivalente d'Uranium micronivelée	ppm
73	CONTH_F	Concentration équivalente de Thorium micronivelée	ppm
74	DOSE_F	Taux d'absorption naturelle micronivelée déduit des radioéléments	nGy/h
75	UTHratio	Rapport de concentration équivalente Uranium et concentration équivalente Thorium	ppm/ppm
76	UKratio	Rapport de concentration équivalente Uranium et concentration Potassium	ppm/%
77	THKratio	Rapport de concentration équivalente Thorium et concentration Potassium	ppm/%
78	SPEC_DN	Spectre vers le bas (512 canaux)	cps
79	SPEC_UP	Spectre vers le haut (512 canaux)	cps

Tableau 25 : Contenu de la base de données spectrométrique

9 RÉFÉRENCES DU PROJET

Références Client	
Projet	117840512-20200407-01
Adresse	<i>Ministère de l'Énergie et des Ressources Naturelles</i> 5700, 4e Avenue Ouest, bureau D 413 Québec (Québec) G1H 6R1
Chef de projet	
Courriel	rachid.intissar@mern.gouv.qc.ca
Téléphone	+1 819-354-4514 poste 270
Références Novatem	
Contrat	C17118 (S170323)
Adresse Chef de projet	1087 Chemin de la Montagne Mont-Saint-Hilaire, Québec, Canada, J3G 4S6 Pascal Mouge
Courriel	mouge@novatem.com
Téléphone	+1 514 966 8000
Références Projet	
Localisation	Secteur de la rivière Olomane – Québec
Méthode	Levé aéroporté magnétique et spectrométrique
Période du levé	Du 9 septembre au 30 octobre 2020
Date de livraison des données et du rapport Gestionnaire du projet et responsable de la qualité des	Novembre 2020
données Gestionnaire scientifique et responsable du traitement des	Pascal Mouge, Ph.D., Géo.numéro 1727
données Beconceble de l'accuvicition et des	Olivier Savignet, Ing.
équipements sur le terrain	Morten Skovgaard, M.Sc
Commandants et AME	 Renaud Charron, Commandant Sébastien Maltais, Commandant Nicolas Déry, Commandant Kevin Lafortune, Commandant Alain Guillemette, AME Hugo Meloche, AME

10 ATTESTATION DE QUALIFICATION

Je soussigné Pascal Mouge, certifie que :

- Je suis membre en règle de l'Ordre des Géologues du Québec

- Je suis titulaire d'un doctorat en géophysique, délivré par l'Institut de Physique du Globe de Paris

- Je travaille dans le domaine de la géophysique depuis 1985

- Je suis présentement Président de la compagnie Novatem

- J'ai supervisé et contribué activement au travail décrit dans ce rapport et déclare qu'il a été réalisé selon les règles et pratiques de l'industrie

- Les données livrées sont exactes et n'ont subi aucun traitement autre que les traitements décrits au présent rapport

Pascal Mouge, Ph.D., Géo. Numéro 1727

ANNEXES

ANNEXE A : PARAMÈTRES GÉODÉSIQUES UTILISÉS DANS LES PROJECTIONS

Le tableau ci-dessous résume les paramètres géodésiques utilisés pour la projection plane. Ces paramètres ont été appliqués pour toutes les transformations de coordonnées.

Système de référence local:	NAD83
Ellipsoïde:	NAD83
Projection:	UTM
Zone:	20N
Lat0, Lon0,	0, -63
Coordonnées de l'origine des abscisses	500 000
Coordonnées de l'origine des ordonnées	0
Facteur d'échelle:	0.9996
Rayon du grand axe	6 378 137
Inverse de l'aplatissement	298.25722
Méridien de référence	0

Tableau 26 : Paramètres géodésiques utilisés dans les projections planes

ANNEXE B : PARAMÈTRES DES GRILLES

Le tableau suivant résume les paramètres des grilles :

Type des valeurs	FLOAT
Séparation entre deux points le long de l'axe X, en m:	37.5
Séparation entre deux points le long de l'axe Y, en m:	37.5
Nombre de points le long de l'axe X :	3.204
Nombre de points le long de l'axe Y:	3 343
Origine de la grille (min X, min Y):	X = 596 962.5 Y= 5 558 550
Système de coordonnées planes	NAD83/UTM zone 20 N
Azimut des colonnes:	0

Tableau 27 : Paramètres des grilles

ANNEXE C : TESTS DE CALIBRATIONS

TEST STATIQUE DES STATIONS MAGNÉTIQUES ET DU POSITIONNEMENT GPS

Le tableau suivant montre les résultats avant et après post-traitement en comparaison avec l'élévation connue de la piste. Notons qu'il n'existe aucune donnée officielle de cette valeur.

Piper Navajo Immatriculation	Altitude GPS brute (m)	Écart-type brut	Altitude GPS corrigée (m)	Écart-type corrigé	Altitude CYNA / (m)
C-FWNG	8.233	1.613	10.693	0.017	11.89
C-GJDD	33.432	0.827	33.962	0.040	38.10

Tableau 28 : Test statique de positionnement GPS

Des mesures simultanées des magnétomètres embarqués et des stations de bases, installées à proximité de la piste d'atterrissage de Natashquan ont été effectuées avant le début des travaux. Les données ont été enregistrées alors que les avions étaient statiques sur le tarmac simultanément au test statique de positionnement GPS. Le tableau suivant résume les postions géographiques ainsi que la période sur laquelle les tests ont été réalisés.

Instruments	Emplacements	Périodes
C-FWNG	61.7890729 O ; 50.1891859 N	20:31:33.50 - 20:43:50.70
C-GJDD	63.6039358 O ; 50.2825465 N	20:21:30.30 - 20:30:32.70
MB1 (S/N : 8082874)	61.7893127 O ; 50.1876668 N	Septembre – Octobre
MB2 (S/N : 6082063)	61.7893122 O ; 50.1876288 N	Septembre – Octobre

Tableau 29 : Emplacements des stations de base magnétique

Les figures suivantes montrent les corrélations entre les magnétomètres embarqués et les stations au sol. Notons que les variations magnétiques de haute fréquence des magnétomètres embarqués ont des sources culturelles, générées par l'activité à l'aéroport. Le faible taux d'échantillonnage de la station de base (1Hz) ne permet pas de visualiser ces variations.

Figure 7 : Test statique des stations magnétique et magnétomètres embarqués (FWNG)

Figure 8 : Test statique des stations magnétique et magnétomètres embarqués (GJDD)

Les vols ont été effectués à quelques jours d'intervalles, dans la direction N135, et dans des conditions de vols similaires (vols le long d'une ligne drapée). Les figures suivantes montrent la cohérence des différents instruments de mesures embarqués après corrections respectives.

Figure 9 : Résultats des mesures des systèmes embarqués sur ligne T10000510 (FWNG)

Figure 10 : Résultats des mesures des systèmes embarqués sur ligne T1000510 (GJDD)

ÉTALONNAGE DES MAGNÉTOMÈTRES EMBARQUÉS (TEST DE MOREWOOD)

AEROMAGNETIC SURVEY SYSTEM CALIBRATION TEST RANGES AT MOREWOOD, ONTARIO, MEANOOK, ALBERTA, and BAKER LAKE, NUNAVUT							
AIRCRAFT TYPE AND REGISTRATION: C-FWNG DATE: 2020-09-04 ORGANIZATION (COMPANY): Novatem Inc. HEIGHT FLOWN (AGL):						FEET	
Direction of flight across the intersection point	Time that Survey Aircraft was over the intersection point (HH/MM/SS) Greenwich Mean Time	Total Field Value (nT) Recorded in Survey Aircraft over the intersection point (T1)	Observatory Diurnal Reading at Previous Minute i.e. Hours + Minutes (T2) from Printout	Observatory Diurnal Reading at Subsequent Minute i.e. H hours + (M + 1) mins. (T3) from Printout	Interpolated Observatory Diurnal Reading at Time H hours + M mins + S sec T4 = T2 + S (T3 - T2) 60	Calculated Observatory Value T5 = T4 - C*	Error Value T6 = T1 - T5
45N	16:29:25.8	53337.00			53977.43	53337.33	-0.33
135N	16:15:55.9	53333.58			53974.10	53334.00	-0.42
225N	16:20:03.1	53335.07			53975.30	53335.20	-0.13
315N	16:24:57.6	53336.10			53976.53	53336.43	-0.33
45N	16:48:22.3	53339.57			53980.14	53340.04	-0.47
135N	16:34:19.6	53339.34			53979.19	53339.09	0.25
225N	16:39:07.8	53340.23			53979.42	53339.32	0.91
315N	16:44:02.4	53338.69			53979.86	53339.76	-1.07

*C is the difference in the total field between the Blackburn, Meanook and Baker Observatories (O) and the value (B) at the test site intersection point above the designated height.

1500 Feet, C = (O-B) = 640.1 nT;1000 Feet, C = (O-B) = 0.0 nT;

1000 Feet, C = (O-B) = 75.0 nT;

Ottawa(O)/Morewood(B), Ontario : Meanook(O)/Meanook(B), Alberta : Baker Lake(O)/Baker(B), Nunavut :

Number of Passes for Average = 2. Average North-South Heading Error (T6 North - T6 South) = -0.790 nT Average East-West Heading Error (T6 East - T6 West) = 0.615 nT

The Diurnal interpolation was done directly in the database included with this report.

	AEROMAGNETIC SURVEY SYSTEM CALIBRATION TEST RANGES AT MOREWOOD, ONTARIO, MEANOOK, ALBERTA, and BAKER LAKE, NUNAVUT						
AIRCRAFT TYPE AND REGISTRATION: C-GJDD ORGANIZATION (COMPANY): Novatem Inc. MAGNETOMETER TYPE: Geometrics, G-823 10Hz MAGNETOMETER SERIAL NUMBER: COMPILED BY: Novatem Inc.				DATE: 2020-09- HEIGHT FLOWI SAMPLING RAT DATA ACQUISI GSC 11/2015	11 N (AGL): FE:10 TION SYSTEM: Novatem In	1500 / SI / SI nc.	FEET
Direction of flight across the intersection point	Time that Survey Aircraft was over the intersection point (HH/MM/SS) Greenwich Mean Time	Total Field Value (nT) Recorded in Survey Aircraft over the intersection point (T1)	Observatory Diurnal Reading at Previous Minute i.e. Hours + Minutes (T2) from Printout	Observatory Diurnal Reading at Subsequent Minute i.e. H hours + (M + 1) mins. (T3) from Printout	Interpolated Observatory Diurnal Reading at Time H hours + M mins + S sec T4 = T2 + S (T3 - T2) 60	Calculated Observatory Value T5 = T4 - C*	Error Value T6 = T1 - T5
45N	21:55:40.9	53343.49			53983.69	53343.59	
135N	21:40:07.3	53345.20			53985.37	53345.27	
225N	21:46:04.2	53344.42			53984.57	53344.47	
315N	21:50:50.8	53343.41			53983.56	53343.46	
45N	22:14:53.1	53344.46			53984.53	53344.43	
135N	22:00:45.3	53343.26			53983.71	53343.61	
225N	22:05:34.7	53341.75			53982.81	53342.71	
315N	22:09:46.1	53343.72			53983.88	53343.78	

*C is the difference in the total field between the Blackburn, Meanook and Baker Observatories (O) and the value (B) at the test site intersection point above the designated height.

Ottawa(O)/Morewood(B), Ontario : Meanook(O)/Meanook(B), Alberta : Baker Lake(O)/Baker(B), Nunavut : 1500 Feet, C = (O-B) = 640.1 nT; 1000 Feet, C = (O-B) = 0.0 nT; 1000 Feet, C = (O-B) = 75.0 nT;

Number of Passes for Average = 2. Average North-South Heading Error (T6 North - T6 South) = 0.470 nT Average East-West Heading Error (T6 East - T6 West) = -0.155 nT

The Diurnal interpolation was done directly in the database included with this report.

TEST DE PARALLAXE

Ligne	Cap (°)	Altitude (m)	Temps UTC (SS.s)	X (m)	Y (m)	Vitesse (km/h)	Mag (nT)
L1:0	33.58	159.85	70019.0	492645.4	5017989.4	302.74	54757.14
L2:0	213.32	158.78	70264.9	492629.6	5017968.1	243.60	54758.24
				Vit	tesse moyenne =	75.881	m/s
					Distance =	26.606	m
					Décalage =	0.351	Sec
Ligne	Cap (°)	Altitude (m)	Temps UTC (SS.s)	X (m)	Y (m)	Vitesse (km/h)	Mag (nT)
L3:0	31.72	157.24	70465.7	492639.2	5017991.9	288.59	54756.17
L4:0	214.98	160.74	70706.7	492636.4	5017966.6	249.95	54757.36
				Vit	tesse moyenne =	74.797	m/s
					Distance =	25.460	m
					Décalage =	0.340	sec
Ligne	Cap (°)	Altitude (m)	Temps UTC (SS.s)	X (m)	Y (m)	Vitesse (km/h)	Mag (nT)
L5:0	33.63	167.21	70888.9	492652.8	5017986.8	292.53	54747.97
L6:0	213.11	155.35	71127.8	492633.4	5017963.3	249.88	54775.19
Vitesse moyenne =						75.335	m/s
Distance =					30.439	m	
Décalage =						0.404	sec
			Tableau 30 : Tes	st de Parallaxe (FWN	NG)		
Ligne	Cap (°)	Altitude (m)	Temps UTC (SS.s)	X (m)	Y (m)	Vitesse (km/h)	Mag (nT)
L1:0	30.01	166.24	76385.6	492628.0	5017999.4	277.77	54719.26
L2:0	214.63	163.25	76616.7	492624.4	5017969.6	263.67	54735.32
				V	itesse moyenne =	75.200	m/s
					Distance =	29.993	m
					Décalage =	0.399	sec
Ligne	Cap (°)	Altitude (m)	Temps UTC (SS.s)	X (m)	Y (m)	Vitesse (km/h)	Mag (nT)
L3:0	34.78	163.25	76861.2	492642.5	5017991.3	275.96	54739.52
L4:0	214.52	168.58	77060.9	492627.6	5017973.5	276.96	54722.53
				V	itesse moyenne =	76.794	m/s
				V	itesse moyenne = Distance =	76.794 23.177	m/s m
				V	itesse moyenne = Distance = Décalage =	76.794 23.177 0.302	m/s m sec
Ligne	Cap (°)	Altitude (m)	Temps UTC (SS.s)	∨ X (m)	itesse moyenne = Distance = Décalage = Y (m)	76.794 23.177 0.302 Vitesse (km/h)	m/s m sec Mag (nT)
Ligne L5:0	Cap (°) 28.33	Altitude (m)	Temps UTC (SS.s) 77357.7	V X (m) 492639.5	itesse moyenne = Distance = Décalage = Y (m) 5017990.6	76.794 23.177 0.302 Vitesse (km/h) 280.70	m/s m sec Mag (nT) 54722.53
Ligne L5:0 L6:0	Cap (°) 28.33 217.38	Altitude (m) 156.47 162.67	Temps UTC (SS.s) 77357.7 77568.7	V X (m) 492639.5 492634.8	itesse moyenne = Distance = Décalage = Y (m) 5017990.6 5017965.1	76.794 23.177 0.302 Vitesse (km/h) 280.70 276.37	m/s m sec Mag (nT) 54722.53 56422.76
Ligne L5:0 L6:0	Cap (°) 28.33 217.38	Altitude (m) 156.47 162.67	Temps UTC (SS.s) 77357.7 77568.7	V X (m) 492639.5 492634.8 V	itesse moyenne = Distance = Décalage = Y (m) 5017990.6 5017965.1 itesse moyenne =	76.794 23.177 0.302 Vitesse (km/h) 280.70 276.37 77.371	m/s m sec Mag (nT) 54722.53 56422.76 m/s
Ligne L5:0 L6:0	Cap (°) 28.33 217.38	Altitude (m) 156.47 162.67	Temps UTC (SS.s) 77357.7 77568.7	V X (m) 492639.5 492634.8 V	itesse moyenne = Distance = Décalage = Y (m) 5017990.6 5017965.1 itesse moyenne = Distance =	76.794 23.177 0.302 Vitesse (km/h) 280.70 276.37 77.371 25.928	m/s m sec Mag (nT) 54722.53 56422.76 m/s m

Tableau 31 : Test de Parallaxe (GJDD)

ÉTALONNAGE DE L'ALTIMÈTRE RADAR ET BAROMÉTRIQUE

Pour déterminer les coefficients d'étalonnage des altimètres radar et barométrique, des mesures sont effectuées à 7 hauteurs différentes, représentatives des hauteurs sur le levé et réparties entre 100 m et 500 m au-dessus du sol. La surface utilisée est la piste de l'aéroport de Gatineau d'une longueur de 3 km.

Les différentes altitudes enregistrées montrent une linéarité parfaite avec l'altitude GPS post-traitée. L'élévation officielle¹ de l'aéroport (64.3m) a été retirée de l'altitude moyenne enregistrée pour obtenir la hauteur.

Altitude GPS (m)	Altitude GPS corrigée (m)	Altitude radar (m)
155.75	91.45	95.87
209.57	145.27	151.52
260.40	196.10	204.59
307.83	243.53	253.76
359.47	295.17	307.13
458.24	393.94	410.64
560.31	496.01	521.70

Tableau 32 : Étalonnage de l'altimètre radar (FWNG)

Altitude GPS (m)	Altitude GPS corrigée (m)	Altitude radar (m)
164.41	100.11	102.72
217.44	153.14	157.43
264.90	200.60	206.47
314.27	249.97	255.91
365.13	300.83	311.14
465.31	401.01	413.46
565.36	501.06	512.96

 Tableau 33 : Étalonnage de l'altimètre radar (GJDD)

Les courbes d'ajustement pour chacun des avions figurent à la page 13 du rapport de calibration.

TEST DE COMPENSATION

Un vol de calibration, obéissant à une géométrie précise et reproductible (FOM), a été réalisé par temps clair sans vent, à très haute altitude et le plus loin possible des perturbations magnétiques générées par la croûte terrestre. Les 4 directions du levé ont été mesurées.

Les bruits magnétiques de l'avion (aimantation induite, permanente et courants de Foucault) sont mesurés en temps réel. Une compensation après vols utilisant les meilleurs paramètres des variations d'attitudes, mesurés par la centrale inertielle et le magnétomètre Fluxgate, est refaite lors des traitements finaux.

Les résultats des FOM sont illustrés dans les tableaux suivants.

	45°N	135°N	225°N	315°N	Sum
Roll	0.1	0.07	0.1	0.04	0.31
Pitch	0.1	0.07	0.09	0.1	0.36
Yaw	0.08	0.09	0.1	0.07	0.34
Sum	0.28	0.23	0.29	0.21	1.01

	45°N	135°N	225°N	315°N	Sum
Roll	0.05	0.05	0.1	0.07	0.27
Pitch	0.11	0.04	0.04	0.11	0.3
Yaw	0.07	0.05	0.05	0.09	0.26
Sum	0.23	0.14	0.19	0.27	0.83

Tableau 34 : Résultats de la FOM (FWNG)

Tableau 35 : Résultats de la FOM. (GJDD)

LIGNE TEST

RIVIÈRE OLOMANE – Ligne test #1

VOL	RALT	RTHO	%
D2009091904:0	63.15	16.67	2.73
D2009091904.1:0	65.01	16.11	0.72
D2009111304:0	63.3	15.88	2.14
D2009121943:0	64.9	16.16	0.41
D2009131208:0	62.63	16.62	-2.42
D2009131208.1:0	64.28	16.76	-3.29
D2009161240:0	64.58	16.28	-0.33
D2009161514:0	60.58	17.25	-6.31
D2009181226:0	62.88	15.87	2.20
D2009181749:0	63.65	16.46	-1.44
D2009191151:0	61.93	15.69	3.31
D2009191802:0	65.53	16.53	-1.87
D2009201738:0	63.02	16.13	0.60
D2009211149:0	64.35	16.08	0.90
D2009211745:0	64.91	17.16	-5.75
D2009221233:0	64.75	15.48	4.60
D2009221816:0	62.35	16.78	-3.41
D2009241445:0	61.8	17.31	-6.68
D2009241445.1:0	64.82	16.35	-0.76
D2010011138:0	61.73	17.01	-4.83
D2010011335:0	65.72	17.12	-5.50
L2009131242:0	64.32	15.74	3.00
L2009131242.1:0	64.82	16.62	-2.42
L2009161232:0	67.36	15.17	6.51
L2009161232.1:0	64.45	16.47	-1.50
L2009181224:0	62.81	15.83	2.45
L2009181751:0	69.93	15.94	1.77
L2009191140:0	63.04	15.1	6.94
L2009191650:0	65.03	15.53	4.29
L2009201144:0	63.77	16.27	-0.27
L2009201720:0	64.25	15.77	2.82
L2009211148:0	63.15	15.84	2.38
L2009211148.1:0	65.7	15.73	3.06
L2009221144:0	63.47	15.51	4.42
L2009221650:0	63.38	16.12	0.66
L2009241437:0	63.6	16.09	0.84
L2009241437.1:0	65.91	16.18	0.29
L2009261052:0	63.64	15.74	3.00
L2009261708:0	65.86	15.69	3.31
L2010011135:0	63.69	17.47	-7.66
L2010011135.1:0	61.83	16.79	-3.47
MOYENNE	64.05	16.23	0.13

D : C-FWNG L : C-GJDD

RIVIÈRE OLOMANE – Ligne test #2

VOL	RALT	RTHO	%
D2010021129:0	65.13	16.98	8.45
D2010031736:0	65.32	17.34	10.75
D2010031736.1:0	62.99	17.49	11.71
D2010041708:0	66.19	16.11	2.89
D2010101105:0	64.51	16.45	5.07
D2010101305:0	64.63	16.33	4.30
D2010121101:0	66.04	15.67	0.08
D2010121545:0	64.7	15.48	-1.13
D2010131145:0	68.65	14.71	-6.05
D2010131419:0	69.35	14.79	-5.54
D2010151543:0	63.29	15.04	-3.94
D2010151543.1.0	64.05	15.25	-2.60
D2010161345:0	66.25	15.27	-2.47
D2010161345.1:0	68.69	16.04	2.45
D2010181437:0	65.86	15.05	-3.88
D2010181437.1:0	67.21	15.6	-0.36
D2010191101:0	68.63	14.82	-5.34
D2010211108:0	68.36	15.59	-0.43
D2010211637:0	64.75	15.77	0.72
D2010231100:0	67.68	15.09	-3.62
D2010231609:0	64.17	16.5	5.39
D2010251447:0	64.7	15.29	-2.34
D2010251447.1:0	64.43	16.11	2.89
D2010261130:0	68.39	15.94	1.81
D2010261845:0	63.12	16.1	2.83
D2010281336:0	67.25	12.84	-17.99
D2010281336.1:0	67.07	13.68	-12.63
L2010021130:0	65.77	16.75	6.98
L2010031730:0	68.42	16.63	6.22
L2010031730.1:0	64.16	16.75	6.98
L2010041736:0	67.42	16.57	5.83
L2010101056:0	63.9	16.33	4.30
L2010101056.1:0	65.78	16.64	6.28
L2010121059:0	64.83	15.06	-3.81
L2010121558:0	66.14	15.47	-1.19
L2010131401:0	65.64	15.56	-0.62
L2010131533:0	67.21	15.42	-1.51
L2010151543:0	63.61	16	2.19
L2010151543.1:0	65.19	15.37	-1.83
L2010161349:0	66.32	15.66	0.02
L2010161349.1:0	67.91	14.96	-4.45
L2010181435:0	67.15	15.13	-3.36
L2010181514:0	67.63	15.62	-0.23
L2010191149:0	67.09	14.57	-6.94
L2010211111:0	66.96	15.2	-2.92
L2010211910:0	64.15	15.83	1.11
L2010231111:0	67.59	15.63	-0.17
L2010231546:0	67.76	15.62	-0.23
L2010251446:0	64.29	15.75	0.60
L2010251446.1:0	66.18	15.39	-1.70
L2010261210:0	65.15	15.32	-2.15
L2010261747:0	63.31	16.16	3.21
L2010281202:0	66.91	15.12	-3.43
L2010281456:0	64.55	16	2.19
L2010301436:0	04.05	15.04	2 66
1 001 0001 100 1.0	64.85	15.24	-2.00
L2010301436.1.0	64.85 67.65	<u>15.24</u> <u>15.</u> 7	0.28

D : C-FWNG L : C-GJDD

COEFFICIENTS D'ATTÉNUATION ET SENSIBILITÉ DU SYSTÈME (BRECKENRIDGE)

Les coefficients d'atténuation et la sensibilité du système spectrométrique sont déterminés en volant au-dessus du site de calibration de Breckenridge. Les mesures spectrométriques sont obtenues à des altitudes de 50, 70, 90, 110, 130, 150, 170, 190, 210 et 230 mètres.

	Total Count	Potassium	Uranium	Thorium
ATTENUATION	-0.00735 m ⁻¹	-0.00927 m ⁻¹	-0.00798 m ⁻¹	-0.00692 m ⁻¹
CONCENTRATION AU SOL	62.71 nGy/h	2.03 %	2.96 ppm	7.58 ppm
SENSITIVITY	23.18 cps/ nGy/h	75.07 cps/%	4.30 cps/ppm	5.00 cps/ppm

Tableau 36 : Coefficients d'atténuation et sensibilité à 80m (FWNG)

	Total Count	Potassium	Uranium	Thorium
ATTENUATION	-0.00720 m ⁻¹	-0.00896 m ⁻¹	-0.00853 m ⁻¹	-0.00697 m ⁻¹
CONCENTRATION AU SOL	62.71 nGy/h	2.03 %	2.96 ppm	7.58 ppm
SENSITIVITY	23.03 cps/ nGy/h	74.32 cps/%	4.46 cps/ppm	5.02 cps/ppm

Tableau 37 : Coefficients d'atténuation et sensibilité à 80m (GJDD)

Hauteur sol (m)	Hauteur stp (m)	Total Count	Potassium	Uranium	Thorium
51.71	46.14	1899.67	212.11	18.32	49.33
70.31	62.51	1661.42	181.39	15.69	42.81
89.99	79.74	1445.03	150.61	11.82	38.48
110.97	98.07	1266.19	128.63	10.33	33.81
136.24	119.80	1079.93	104.87	9.59	27.18
152.86	134.19	964.99	90.71	7.76	25.98
174.07	152.59	839.32	78.89	6.87	22.07
194.69	170.25	744.00	67.87	5.04	19.89
213.48	186.78	670.04	55.36	5.84	18.24
235.86	205.49	589.86	48.45	5.51	16.83

Tableau 38 : Comptes corrigés du bruit de fond et de l'effet Compton (FWNG)

Hauteur sol (m)	Hauteur stp (m)	Total Count	Potassium	Uranium	Thorium
46.88	44.57	1892.28	214.35	17.03	50.44
66.61	63.04	1636.27	176.15	15.73	42.02
88.56	83.54	1398.27	145.74	13.36	36.08
107.92	101.52	1226.17	122.58	10.11	33.34
129.61	121.66	1064.29	102.59	10.17	27.69
150.48	140.92	921.79	87.36	8.27	24.59
171.73	160.33	811.12	71.27	6.60	22.45
190.99	178.10	717.00	64.20	4.94	18.81
212.33	197.50	622.59	52.02	4.73	16.83
231.09	214.38	551.84	46.92	4.54	15.02

Tableau 39 : Comptes corrigés du bruit de fond et de l'effet Compton (GJDD)

Avion C-FWNG

RADIATION SOLUTIONS INC

CALIBRATION SHEET

							Instrument:	RSX-5
Customer:	Novate	m					Date:	Aug 21, 2020
Contact:	Morten	Skovgaa	rd				Tech.:	Jim C
Console :							Job Order:	RMA#11641
Detector 1:	5510						Customer PO	PO#
Detector 2:								
Channels:	1024	ADC	Offset: N/A	-				
	Ĩ	Δ1	Δ2	43	e î	Δ4	45	
		620	691	650		642	647	
nign voltag	Jes	030	001	0.02	<u> </u>	043	647	
Stripping C	onstant	"thi	s system"	"no	rmal"			
Alpha		ð	0.272	0.	250			
Beta			0.407	0.	400			
Gamma		1 N	0.763	0.	810			
a			0.050	0.	060			
b			0.000	0.	000			
g			-0.002	0.	003			
ROI#	Channe	4 1	AEA Specificat	tion		Label		
1	137-937	7	410-2810			Total Co	unt	
2	457-523	3	1370-1570			Potassiur	nK	
3	553-620)	1660-1860		5	Uranium	U	
4	803-937	7	2410-2810			Thorium	Th	
5								
6							Ĵ	
7				- 1				
8	553-620)	1660- <mark>1</mark> 860	- Z	Ura	anium Up	iper U	
				a		1 0 - 50		
Det#	Peak C	Cs	Cs FWHM	F	eak Th		Th FWHM	
A1	221.10	D	7.50	1	872.49		4.31	
A2	220.80	D	7.50		872.47		4.36	
A3	220.34	4	7.65	0	871.81	Ĵ.	4.27	
A4	220.84	4	7.24	8	872.06		4.09	
Sum Dn	220.78	В	7.50		872.22	0	4.25	

D-1067.00.00

Sum Up

Page 1 of 1

872.46

4.84

22 April 2015

220.10

7.98

RADIATION SOLUTIONS INC

CALIBRATION SHEET

Instrument:

RSX-5 Aug 21, 2020 Date: Customer: Novatem Tech.: Jim C Contact: Morten Skovgaard RMA#11641 Console : Job Order: Customer PO Detector 1: 5577 PO# Detector 2: Channels: 1024 ADC Offset: N/A

	A1	A2	A3	A4	A5
High Voltages	671	637	724	692	662

Stripping Constant	"this system"	"normal"
Alpha	0.269	0.250
Beta	0.423	0.400
Gamma	0.754	0.810
a	0.050	0.060
b	0.002	0.000
g	0.001	0.003

ROI#	Channel	IAEA Specification [keV]	Label
1	137-937	410-2810	Total Count
2	457-523	1370-1570	Potassium K
3	553-620	1660-1860	Uranium U
4	803-937	2410-2810	Thorium Th
5			
6	-		
7			
8	553-620	1660-1860	Uranium Upper U

Det#	Peak Cs	Cs FWHM	Peak Th	Th FWHM
A1	220.22	7.32	872.47	4.22
A2	219.99	7.91	872.23	4.71
A3	220.24	8.17	872.10	4.60
A4	218.80	7.42	872.34	4.10
Sum Dn	219.76	7.74	872.30	4.35
Sum Lin	219.80	8 24	872.01	4.73

D-1067.00.00

Page 1 of 1

22 April 2015

Avion C-GJDD

RADIATION SOLUTIONS INC

CALIBRATION SHEET

Instrument: RSX-5 Customer: Novatem Date: Aug 25, 2020 Contact: Morten Skovgaard Tech .: Jim C Console : Job Order: RMA#11641 Detector 1: 5578 Customer PO PO# Detector 2: Channels: 1024 ADC Offset: N/A A1 A2 A3 A4 A5 **High Voltages** 668 692 654 712 652 Stripping Constant "this system" "normal" 0.250 0.269 0.400 0.409 0.810 0.757 0.060 0.045 0.000 0.000 0.003 0.000 Channel **IAEA** Specification Label [keV] 137-937 410-2810 Total Count 457-523 1370-1570 Potassium K 553-620 1660-1860 Uranium U 803-937 2410-2810 Thorium Th

8	553-620	1660-1860	Urani	um Upper U
Det#	Peak Cs	Cs FWHM	Peak Th	Th FWHM
A1	219.78	7.25	872.42	4.25
A2	218.85	7.53	871.65	4.15
A3	219.36	7.37	872.01	4.31
A4	219.92	7.29	872.48	4.39
Sum Dn	219.49	7.37	872.18	4.28

8.04

D-1067.00.00

Sum Up

Alpha

Gamma

Beta

a

b

g

1

2

3

4

ROI#

Page 1 of 1

871.80

4.73

22 April 2015

220.13

RADIATION SOLUTIONS INC

CALIBRATION SHEET

Instrument: RSX-5 Customer: Novatem Date: Contact: Morten Skovgaard Tech .: Job Order: Console : Customer PO Detector 1: 5630 Detector 2:

Sept 3, 2020 Jim C RMA#11641 PO#

Channels: 1024 ADC Offset: N/A

	A1	A2	A3	A4	A5
High Voltages	649	727	649	612	706

Stripping Constant	"this system"	"normal"
Alpha	0.268	0.250
Beta	0.402	0.400
Gamma	0.778	0.810
a	0.045	0.060
b	0.002	0.000
g	-0.002	0.003

ROI#	Channel	IAEA Specification [keV]	Label
1	137-937	410-2810	Total Count
2	457-523	1370-1570	Potassium K
3	553-620	1660-1860	Uranium U
4	803-937	2410-2810	Thorium Th
5			
6		e de la companya de la	
7		6	
8	553-620	1660-1860	Uranium Upper U

Det#	Peak Cs	Cs FWHM	Peak Th	Th FWHM
A1	221.14	7.58	872.73	4.45
A2	220.21	7.76	872.12	4.45
A3	220.29	7.43	872.01	4.17
A4	219.38	7.19	873.00	3.95
Sum Dn	220.24	7.51	872.48	4.21
Sum Lin	219.02	8 17	871.20	4 38

D-1067.00.00

Page 1 of 1

22 April 2015

Altitude (m)	Cosmic Dn	Cosmic Up	Total Count	Potassium	Uranium	Thorium	Up Uranium
1503.11	248.26	69.38	347.42	30.29	14.08	14.51	3.80
2000.71	313.83	87.97	419.97	34.79	17.59	18.74	4.78
2502.69	403.79	113.95	516.64	39.63	22.21	24.54	5.82
3002.88	519.44	148.15	649.85	47.57	28.73	33.00	7.62
3501.57	669.24	190.95	830.97	57.50	37.15	43.86	9.97

ÉTALONNAGE DE LA FENÊTRE COSMIQUE ET BRUIT DE L'AVION

Tableau 40 : Données moyennées des deux paliers (FWNG)

Altitude (m)	Cosmic Dn	Cosmic Up	Total Count	Potassium	Uranium	Thorium	Up Uranium
1504.78	241.49	66.18	304.25	26.71	12.47	13.71	3.16
2004.97	306.00	84.16	371.77	30.64	16.02	17.83	3.99
2503.09	387.06	106.91	466.94	36.17	19.96	23.29	5.29
3003.07	496.74	137.02	596.56	44.64	26.67	31.01	6.90
3504.98	639.72	177.65	762.34	53.08	34.40	40.81	8.71

 Tableau 41 : Données moyennées des deux paliers (GJDD)

Background	Total Count	Potassium	Uranium	Thorium	Up Uranium
Aircraft	58.865	14.227	0.324	-3.210	0.254
Cosmic	1.1467	0.0643	0.0548	0.0699	0.0503

 Tableau 42 : Coefficients de bruits de fond (FWNG)

Background	Total Count	Potassium	Uranium	Thorium	Up Uranium
Aircraft	20.823	10.296	-1.022	-2.991	-0.181
Cosmic	1.1578	0.0675	0.0553	0.0684	0.0506

Tableau 43 : Coefficients de bruits de fond (GJDD)

COEFFICIENTS DE CORRECTION DU RADON

La composante du taux de compte du détecteur regardant vers le haut et provenant du sol, Ug, dépendra de la concentration de U et Th dans le sol, de même que les composantes des taux de compte des fenêtres regardant vers le bas U et Th, Ug et Thg, qui proviennent du sol. Afin de minimiser les erreurs statistiques, les trois composantes ont été calculées en soustrayant les vols au-dessus de l'eau de la ligne test aux valeurs adjacentes sur le sol ferme. Enfin, à partir de la série des valeurs calculées de Ug, Ug et Thg, les coefficient de calibration, a1 et a2, sont déterminés selon la méthode des moindres carrés décrite dans la série de rapports techniques n ° 323 de l'AIEA.

	FWNG	GJDD
a 1	0.035	0.042
a ₂	0.044	0.039

Coefficient	Total Count	Potassium	Thorium	Up Uranium
an	14.459	0.885	0.028	0.274
b _n	8.586	3.686	1.082	-0.022

Tableau 44 : Coefficients de correction du radon pour FWNG

Coefficient	Total Count	Potassium	Thorium	Up Uranium
an	14.881	0.897	0.089	0.288
b _n	14.372	2.860	0.526	0.039

Tableau 45 : Coefficients de correction du radon pour GJDD

