

MINISTÈRE DE L'ÉNERGIE ET DES RESSOURCES NATURELLES DU QUÉBEC

LEVÉ MAGNÉTIQUE ET SPECTROMÉTRIQUE AÉROPORTÉ DANS LE SECTEUR DU LAC ST-JEAN

Projet : 117840512-20200407-01

Novembre 2020

MINISTÈRE DE L'ÉNERGIE ET DES RESSOURCES NATURELLES DU QUÉBEC

LEVÉ MAGNÉTIQUE ET SPECTROMÉTRIQUE AÉROPORTÉ DANS LE SECTEUR DU LAC ST-JEAN

Projet : 117840512-20200407-01

RAPPORT TECHNIQUE FINAL

Par

GÉO SOLUTIONS DONNÉES GDS INC / GEO DATA SOLUTIONS GDS INC.

4402 Louis-B.-Mayer Laval, Québec, H7P 0G1 Tel.: (450) 934-7194 Fax: (450) 934-7196

Novembre 2020

TABLE DES MATIÈRES

1.	INTRODUCTION	1
2.	RECONNAISSANCE DU PROJET	2
3.	AÉRONEF ET ÉQUIPEMENT	5
3.1.	AÉRONEF	5
3.2.	INSTRUMENTS DE MESURE UTILISES	6
4.	PERSONNEL IMPLIQUÉ	7
5.	CALENDRIER DES TRAVAUX	8
6.	TESTS ET ÉTALONNAGE	9
6.1.	ÉTALONNAGE DU MAGNÉTOMÈTRE	
6.2.	ÉTALONNAGE DES ALTIMÈTRES RADAR ET BAROMÉTRIQUE	
6.3.	TEST DE LA PARALLAXE (LAG TEST)	
6.4.	COEFFICIENTS DE DÉPOUILLEMENT COMPTON	
6.5.	TEST SUR LE SITE DE BRECKENRIDGE	
6.6. 6.7	ETALONNAGE DE LA FENETRE COSMIQUE	
0.7.	VERIFICATIONS QUOTIDIENNES DU SPECTROMETRE	
7.	CONTRÔLE DE QUALITÉ SUR LE TERRAIN	
7.1.	Contrôle quotidien des données	
7.2.	SPÉCIFICATIONS DU LEVÉ	
7.3.	Dérives diurnes	
7.4.	VITESSE DE L'AVION ET TAUX D'ECHANTILLONNAGE	
1.5.	DONNEES MAGNETIQUES	
7.0.	DONNEES SPECTROMETRIQUES	
8.	TRAITEMENT FINAL DES DONNÉES	16
8.1.	TRAITEMENT DES DONNÉES MAGNÉTIQUES	
8.2.	TRAITEMENT DES DONNÉES DE POSITIONNEMENT ET D'ALTIMÉTRIE	
8.3.	TRAITEMENT DES DONNÉES DE SPECTROMÉTRIE	
8	8.3.1 Analyse NASVD pour réduction du bruit statistique	
8	3.3.2 Filtrage	
8	<i>Elimination des niveaux de bruit de fond</i>	
8	3.3.4 Elimination du bruit atmosphérique dû au radon	
0	5.5.5 Calcul de la nauteur effective	
0	2.3.7 Aiustement de l'atténuation	
0 &	3.3.7 Agustement de l'utendution 3.3.8 Conversion en concentration de radioéléments	
8	3.3.9 Maillage des données	
0		22
7. 0.1	Ι ΝΟΡΟΓΓΟ Γ ΠΥΛΟΛ Ραραμέτρες μτη ιςές	
9.2.	PRODUITS FINAUX	
10.	CONCLUSIONS	

LISTE DES ANNEXES

Annexe A:	Étalonnage et Tests – C-FVYW

Annexe B:

Étalonnage et Tests – C-FLRB Caractéristiques de l'équipement Annexe C:

LISTE DES TABLEAUX

Tableau 2: Intervalles d'échantillonnage6Tableau 3: Personnel impliqué7Tableau 4: Période de productivité8Tableau 5: Statistiques de chaque aéronef.8Tableau 6: Dates des tests et calibrations9Tableau 7: Nivellement par ligne de contrôle16Tableau 8: Paramètres du modèle utilisé17Tableau 9: Filtres appliqués aux régions d'intérêts19Tableau 10: Correction du rayonnement cosmique (c/sec)20Tableau 11: Correction du niveau de base de l'avion (c/sec)20Tableau 12: Correction du dépouillement spectral21Tableau 13: Correction du dépouillement spectral21Tableau 14: Correction d'atténuation22Tableau 15: Conversion en concentration de radioéléments22Tableau 16: Contenu de la carte USB et description24Tableau 17: Champs de la base de données des coefficients de corrélation de Keating24Tableau 18: Champs de la base de données magnétiques25Tableau 19: Champs de la base de données spectrométriques26	Tableau 1: Coordonnées Géographiques – Bloc Lac St-Jean	2
Tableau 3: Personnel impliqué7Tableau 4: Période de productivité8Tableau 5: Statistiques de chaque aéronef8Tableau 6: Dates des tests et calibrations9Tableau 7: Nivellement par ligne de contrôle16Tableau 8: Paramètres du modèle utilisé17Tableau 9: Filtres appliqués aux régions d'intérêts19Tableau 10: Correction du rayonnement cosmique (c/sec)20Tableau 11: Correction du niveau de base de l'avion (c/sec)20Tableau 12: Correction du l'apport du radon20Tableau 13: Correction d'atténuation22Tableau 14: Correction d'atténuation22Tableau 15: Conversion en concentration de radioéléments22Tableau 16: Contenu de la carte USB et description24Tableau 17: Champs de la base de données des coefficients de corrélation de Keating24Tableau 18: Champs de la base de données magnétiques25Tableau 19: Champs de la base de données spectrométriques26	Tableau 2: Intervalles d'échantillonnage	6
Tableau 4: Période de productivité8Tableau 5: Statistiques de chaque aéronef.8Tableau 6: Dates des tests et calibrations9Tableau 7: Nivellement par ligne de contrôle16Tableau 8: Paramètres du modèle utilisé17Tableau 9: Filtres appliqués aux régions d'intérêts19Tableau 10: Correction du rayonnement cosmique (c/sec)20Tableau 11: Correction du niveau de base de l'avion (c/sec)20Tableau 12: Correction du l'apport du radon20Tableau 13: Correction du dépouillement spectral21Tableau 14: Correction d'atténuation22Tableau 15: Conversion en concentration de radioéléments22Tableau 16: Contenu de la carte USB et description24Tableau 17: Champs de la base de données des coefficients de corrélation de Keating24Tableau 18: Champs de la base de données magnétiques25Tableau 19: Champs de la base de données spectrométriques26	Tableau 3: Personnel impliqué	7
Tableau 5: Statistiques de chaque aéronef.8Tableau 6: Dates des tests et calibrations9Tableau 7: Nivellement par ligne de contrôle16Tableau 8: Paramètres du modèle utilisé17Tableau 9: Filtres appliqués aux régions d'intérêts19Tableau 10: Correction du rayonnement cosmique (c/sec)20Tableau 11: Correction du niveau de base de l'avion (c/sec)20Tableau 12: Correction du l'apport du radon20Tableau 13: Correction du dépouillement spectral21Tableau 14: Correction du dépouillement spectral22Tableau 15: Conversion en concentration de radioéléments22Tableau 16: Contenu de la carte USB et description24Tableau 17: Champs de la base de données des coefficients de corrélation de Keating24Tableau 18: Champs de la base de données magnétiques25Tableau 19: Champs de la base de données spectrométriques26	Tableau 4: Période de productivité	8
Tableau 6: Dates des tests et calibrations9Tableau 7: Nivellement par ligne de contrôle16Tableau 8: Paramètres du modèle utilisé17Tableau 9: Filtres appliqués aux régions d'intérêts19Tableau 10: Correction du rayonnement cosmique (c/sec)20Tableau 11: Correction du niveau de base de l'avion (c/sec)20Tableau 12: Correction de l'apport du radon20Tableau 13: Correction du dépouillement spectral21Tableau 14: Correction d'atténuation22Tableau 15: Conversion en concentration de radioéléments22Tableau 16: Contenu de la carte USB et description24Tableau 17: Champs de la base de données des coefficients de corrélation de Keating24Tableau 18: Champs de la base de données magnétiques25Tableau 19: Champs de la base de données spectrométriques26	Tableau 5: Statistiques de chaque aéronef	8
Tableau 7: Nivellement par ligne de contrôle16Tableau 8: Paramètres du modèle utilisé17Tableau 9: Filtres appliqués aux régions d'intérêts19Tableau 10: Correction du rayonnement cosmique (c/sec)20Tableau 11: Correction du niveau de base de l'avion (c/sec)20Tableau 12: Correction de l'apport du radon20Tableau 13: Correction du dépouillement spectral21Tableau 14: Correction d'atténuation22Tableau 15: Conversion en concentration de radioéléments22Tableau 16: Contenu de la carte USB et description24Tableau 17: Champs de la base de données des coefficients de corrélation de Keating24Tableau 18: Champs de la base de données magnétiques25Tableau 19: Champs de la base de données spectrométriques26	Tableau 6: Dates des tests et calibrations	9
Tableau 8: Paramètres du modèle utilisé17Tableau 9: Filtres appliqués aux régions d'intérêts19Tableau 10: Correction du rayonnement cosmique (c/sec)20Tableau 11: Correction du niveau de base de l'avion (c/sec)20Tableau 12: Correction de l'apport du radon20Tableau 13: Correction du dépouillement spectral21Tableau 14: Correction d'atténuation22Tableau 15: Conversion en concentration de radioéléments22Tableau 16: Contenu de la carte USB et description24Tableau 17: Champs de la base de données des coefficients de corrélation de Keating24Tableau 18: Champs de la base de données magnétiques25Tableau 19: Champs de la base de données spectrométriques26	Tableau 7: Nivellement par ligne de contrôle	16
Tableau 9: Filtres appliqués aux régions d'intérêts19Tableau 10: Correction du rayonnement cosmique (c/sec)20Tableau 11: Correction du niveau de base de l'avion (c/sec)20Tableau 12: Correction de l'apport du radon20Tableau 13: Correction du dépouillement spectral21Tableau 14: Correction d'atténuation22Tableau 15: Conversion en concentration de radioéléments22Tableau 16: Contenu de la carte USB et description24Tableau 17: Champs de la base de données des coefficients de corrélation de Keating24Tableau 18: Champs de la base de données magnétiques25Tableau 19: Champs de la base de données spectrométriques26	Tableau 8: Paramètres du modèle utilisé	17
Tableau 10: Correction du rayonnement cosmique (c/sec)	Tableau 9: Filtres appliqués aux régions d'intérêts	19
Tableau 11: Correction du niveau de base de l'avion (c/sec)20Tableau 12: Correction de l'apport du radon20Tableau 13: Correction du dépouillement spectral21Tableau 14: Correction d'atténuation22Tableau 15: Conversion en concentration de radioéléments22Tableau 16: Contenu de la carte USB et description24Tableau 17: Champs de la base de données des coefficients de corrélation de Keating24Tableau 18: Champs de la base de données magnétiques25Tableau 19: Champs de la base de données spectrométriques26	Tableau 10: Correction du rayonnement cosmique (c/sec)	20
Tableau 12: Correction de l'apport du radon20Tableau 13: Correction du dépouillement spectral21Tableau 14: Correction d'atténuation22Tableau 15: Conversion en concentration de radioéléments22Tableau 16: Contenu de la carte USB et description24Tableau 17: Champs de la base de données des coefficients de corrélation de Keating24Tableau 18: Champs de la base de données magnétiques25Tableau 19: Champs de la base de données spectrométriques26	Tableau 11: Correction du niveau de base de l'avion (c/sec)	20
Tableau 13: Correction du dépouillement spectral21Tableau 14: Correction d'atténuation22Tableau 15: Conversion en concentration de radioéléments22Tableau 16: Contenu de la carte USB et description24Tableau 17: Champs de la base de données des coefficients de corrélation de Keating24Tableau 18: Champs de la base de données magnétiques25Tableau 19: Champs de la base de données spectrométriques26	Tableau 12: Correction de l'apport du radon	20
Tableau 14: Correction d'atténuation22Tableau 15: Conversion en concentration de radioéléments22Tableau 16: Contenu de la carte USB et description24Tableau 17: Champs de la base de données des coefficients de corrélation de Keating24Tableau 18: Champs de la base de données magnétiques25Tableau 19: Champs de la base de données spectrométriques26	Tableau 13: Correction du dépouillement spectral	21
Tableau 15: Conversion en concentration de radioéléments22Tableau 16: Contenu de la carte USB et description24Tableau 17: Champs de la base de données des coefficients de corrélation de Keating24Tableau 18: Champs de la base de données magnétiques25Tableau 19: Champs de la base de données spectrométriques26	Tableau 14: Correction d'atténuation	22
Tableau 16: Contenu de la carte USB et description	Tableau 15: Conversion en concentration de radioéléments	22
Tableau 17: Champs de la base de données des coefficients de corrélation de Keating	Tableau 16: Contenu de la carte USB et description	24
Tableau 18: Champs de la base de données magnétiques	Tableau 17: Champs de la base de données des coefficients de corrélation de Keating	24
Tableau 19: Champs de la base de données spectrométriques 26	Tableau 18: Champs de la base de données magnétiques	25
	Tableau 19: Champs de la base de données spectrométriques	26

LISTE DES FIGURES

Figure 1: Région à survolée (rouge) et base d'opérations	.1
Figure 2: Base d'opérations et stations de référence magnétique et GPS	.3
Figure 3: Topographie de la région étudiée	.4
Figure 4: Avions bimoteurs utilisés	.5
Figure 5: Statistiques sur la hauteur de vol1	13
Figure 6: Vitesse horizontale des avions par rapport au sol1	14

1. INTRODUCTION

Le 17 juillet 2020, GEO DATA SOLUTIONS GDS INC. (GDS) signait un contrat du Ministère de l'Énergie et des Ressources Naturelles du Québec (MERN) pour un levé géophysique, projet 117840512-20200407-01. Ce projet concernait l'exécution et la compilation de 54 988 km-linéaires de levé géophysique (magnétique et spectrométrie du rayonnement gamma) aéroporté dans le secteur du Lac St-Jean, au nord-est de la ville de Saguenay (figure 1). L'acquisition de données de ce levé a été réalisée entre le 24 juillet et le 15 septembre, 2020.

Deux avions immatriculés C-FVYW et C-FLRB ont été utilisés. Le premier était un bimoteur Piper Navajo et le dernier était un turbopropulseur Beechcraft King Air. Chaque avion était équipé d'un magnétomètre à vapeur de césium à faisceau partagé, incorporé à l'intérieur d'une coquille de kevlar fixée à la queue de l'aéronef. Un spectromètre muni de cristaux de NaI était également installé dans chaque avion, totalisant un volume de 33,6 litres orientés vers le bas et 8,4 litres vers le haut.

La trajectoire de vol fut restituée par l'application, après vol, de corrections différentielles aux données brutes du système GPS. Le levé a été effectué suivant une surface de vol prédéterminée avant un taux de montée et descente maximal de 5%.

Ce rapport présente les différentes étapes d'acquisition et de vérification des données réalisées sur le terrain ainsi que leur traitement final qui s'en est suivit au bureau de GDS à Laval.

Figure 1: Région à survolée (rouge) et base d'opérations

2. RECONNAISSANCE DU PROJET

Des conditions généralement favorables ont caractérisé toute la durée de l'acquisition de données mis à part les périodes de brouillard.

Durant la période d'acquisition, la durée du jour est passée de 15 à 13 heures. Ces longues heures de clarté ont permis une bonne production quotidienne.

Le relief topographique de la région peut être qualifié de modéré à accidenté (figure 3). **GDS** a utilisé un système de navigation 3D permettant de suivre une surface de vol optimale calculée à l'aide d'un logiciel développé par Ressources Naturelles Canada. Le taux de descente et de remontée de l'avion fut fixé à 5%. Cette technique permet entre autres de minimiser les différences d'élévation aux points d'intersection entre les traverses et les lignes de contrôle au risque de ne pas obtenir la hauteur de vol optimale dans les secteurs où le relief topographique est plus accentué.

Un permis de recherche et de collecte a dû être demandé par le MERN auprès de Parcs Canada pour avoir l'autorisation de survoler le Parc marin Saguenay-St-Laurent à moins de 600m d'altitude.

La base d'opérations de **GDS** fut établie à l'aéroport de Chicoutimi-St-Honoré. Grâce à l'autonomie des différents avions, il fut possible de faire l'acquisition de grands volumes de données au cours de chaque vol.

Deux stations de base magnétiques et un récepteur GPS furent installés dans des environnements magnétiquement calmes près de la base d'opérations (figure 2) afin que le responsable sur le terrain puisse en faire facilement la surveillance et la collecte de données.

L'espacement nominal des traverses et des lignes de contrôle était respectivement de 200 m et 2000 m. Les traverses étaient orientées N135°E, perpendiculairement aux lignes de contrôle. La zone à survoler est illustrée aux figures 1 et 3 tandis que le tableau 1 présente ses coordonnées.

Tableau 1: Coordonnées Géographiques – Bloc Lac St-Jean						
#	Longitude	Latitude	#	Longitude	Latitude	
1	72° 01' 57" O	49° 23' 05" N	12	70° 30' 47" O	49° 00' 49" N	
2	69° 58' 48" O	48° 05' 52" N	13	70° 55' 42" O	49° 00' 48" N	
3	69° 58' 12" O	48° 06' 17" N	14	70° 58' 01" O	49° 02' 15" N	
4	69° 58' 13" O	48° 43' 23" N	15	70° 58' 13" O	49° 40' 36" N	
5	69° 57' 34" O	48° 43' 49" N	16	70° 56' 43" O	49° 41' 38" N	
6	70° 02' 17" O	48° 46' 51" N	17	71° 01' 18" O	49° 44' 28" N	
7	70° 03' 36" O	48° 45' 57" N	18	71° 29' 59" O	49° 44' 37" N	
8	70° 26' 38" O	48° 45' 44" N	19	71° 31' 53" O	49° 45' 10" N	
9	70° 28' 18" O	48° 46' 49" N	20	71° 59' 45" O	49° 45' 22" N	
10	70° 28' 16" O	48° 57' 03" N	21	72° 02' 03" O	49° 43' 45" N	
11	70° 26' 36" O	48° 58' 11" N				

Figure 2: Base d'opérations et stations de référence magnétique et GPS

3. AÉRONEF ET ÉQUIPEMENT

3.1. AÉRONEF

Les avions utilisés pour effectuer ce levé sont tous approuvés par Transport Canada pour la réalisation de levés géophysiques aéroportées. Ces avions possèdent la puissance, le taux de remontée et la flexibilité de manœuvre adaptés à l'environnement de la région étudiée.

Les principales caractéristiques techniques de ces avions sont résumées dans le tableau suivant.

	C-FLRB	C-FVYW
Туре	Beechcraft King Air 100	Piper Navajo PA-31
Poids à vide	3100 kg	1 710 kg
Charge maximale	5200 kg	2 950 kg
Plafond	10 000 m	8 320 m
Taux de remontée	13,2 m/s	7,1 m/s
Vitesse des levés	75 m/s (146 nœuds)	75 m/s (146 nœuds)
Type de carburant	Carburant Jet	AVGAS
Consommation de carburant (2 moteurs)	270 litres/hre	135 litres/hre
Autonomie de levé / maximale	5,0 / 6,0 heures	5,0 / 6,0 heures

3.2. INSTRUMENTS DE MESURE UTILISÉS

GDS utilise des appareils de mesure de haute précision. Ces instruments, installés dans les aéronefs ou comme base de référence au sol, sont énumérés dans le tableau suivant dont une description plus détaillée est disponible en annexe C.

Équipement	C-FVYW	C-FLRB	
System d'acquisition	RMS Instruments DAARC500		
Compensateur magnétique			
Magnétomètre aérien	Geometrics Cesium G-822A		
Spectromètres	Radiation Solutions RSX-5 (2 par avion) #5518 & #5545 #5540 & #5579		
Récepteur GPS	Novatel DL-V3		
Système de navigation 3D	AGNAV Guia LiNav		
Altimètre barométrique	Honeywell PPT0020AWN2VA-C (avec capteur de température extérieure)		
Altimètre radar	Honeywell HG7508CA01		
Système vidéo	Samsung SNB-7002N		
Enregistreur vidéo	Samsung SRN-470D		
Équipement	Base de référence au sol	Quantité	
Station de base magnétique	GEM Systems GSM-19 Overhauser	2	
Station de base GPS	Novatel DL-V3	1	

Toutes les données provenant des magnétomètres, des spectromètres, des altimètres, du positionnement GPS ainsi que des stations de référence au sol ont été enregistrées de façon synchrone grâce à la référence temporelle GPS.

Le tableau 2, ci-après, présente les intervalles d'échantillonnage des paramètres enregistrés.

Tableau 2: Intervalles d'échantillonnage					
ENREGISTREMENT	ÉCHANTILLONNAGE				
Données aéroporté	ées				
Magnétisme (Champ Total)	0.1 sec				
Données spectrométriques	1.0 sec				
Altimètre radar	0.2 sec				
Altimètre barométrique	1.0 sec				
Température extérieure	1.0 sec				
Temps de fiducie	0.1 sec				
Positionnement GPS	1.0 sec				
Données au sol					
Magnétisme (champ total)	1.0 sec				
Station de base GPS	1.0 sec				

4. PERSONNEL IMPLIQUÉ

M. Mouhamed Moussaoui, président, était responsable de la coordination et de la gestion générale du projet. Le responsable du contrôle de la qualité sur le terrain était M. Saleh Elmoussaoui. M. Carlos Cortada et M. Mouhamed Moussaoui étaient responsables du traitement final des données en consultation avec le représentant du **MERN**.

Tout le personnel de terrain et de bureau impliqué dans la réalisation du projet est présenté au tableau suivant.

Tableau 3: Personnel impliqué				
Fonction Nom				
Gérant de projet	M. Mouhamed Moussaoui, ing.			
Contrôle de qualité M. Saleh Elmoussaoui				
Responsable sur le terrain	M. Alireza Kasraei			
Opérateurs	M. Jean-Yves Bernier M. Alireza Kasraei M. Pierre Filion M. Cédric Ducharme-Moussaoui			
Pilotes/Co-pilotes	M. Joffrey Perez M. Jordan Barat Mme. Lisa Mensan M. Maxime Lebrun M. Thomas Klingler			
Traitement final des données	M. Mouhamed Moussaoui (Données magnétiques) M. Carlos Cortada (Données spectrométriques)			
Rapport final M. Khorram Khan, P. Geo				

5. CALENDRIER DES TRAVAUX

Le nombre total de kilomètres linéaires nécessaires pour couvrir la zone étudiée était de 54 988. La mobilisation des deux équipes de terrain (C-FLRB et C-FVYW) à Chicoutimi s'est effectuée le 20 juillet 2020.

Les premier et dernier vols de production ont été respectivement réalisés les 24 juillet et 15 septembre. Excluant les vols de calibration et de test, au total 63 vols furent nécessaires pour couvrir le secteur demandé. Une équipe de terrain (C-FLRB) a démobilisé le 5 septembre, tandis que celle de C-FVYW a quitté la base d'opérations le 16 septembre 2020 suite à l'approbation du représentant du **MERN**.

Durant la période d'acquisition des données, des résultats préliminaires furent remis régulièrement à l'autorité scientifique du **MERN**. Le traitement final des données magnétiques et spectrométriques, ainsi que les dernières corrections sur les produits finaux, ont été complétés au début de novembre. Suite à l'approbation du **MERN**, les produits finaux furent tous remis quelques jours plus tard.

Le tableau 4 présente graphiquement la période de productivité de chacun des avions tandis que le tableau 5 affiche différentes statistiques de production.

Tableau 4: Période de productivité						
AvionJuilletAoûtSeptembreOctobre				Octobre		
C-FVYW			-	-		
C-FLRB						

Tableau 5: Statistiques de chaque aéronef					
		C-FVYW	C-FLRB	Combiné	
Fourchette des numé	éros de vol	001 - 045	101 - 129		
Vols de production		38	25	63	
Jours de production		23	17	25	
Date de mobilisation	1	2020-07-20	2020-07-20		
Premier vol de prod	uction	2020-07-24	2020-07-24		
Dernier vol de produ	iction	2020-09-15	2020-09-04		
Date de démobilisat	ion	2020-09-16	2020-09-05		
	Production	119:40	104:32	224:12	
Heures de vol ^(*)	Déplacement (ferry, tests)	33:36	20:49	54:25	
	Total	153:16	125:21	278:37	
Km-linéaire volés	31 194	23 794	54 988		
Participation	56.7%	43.3%			

(*) N'inclus pas les heures de vol allouées à la mobilisation et démobilisation des aéronefs.

6. TESTS ET ÉTALONNAGE

Afin d'obtenir des données précises et de qualité, les tests et calibrations de l'instrumentation constituent une composante importante d'un levé géophysique aéroporté. Les tests relatifs aux données magnétiques se résument ainsi :

- Étalonnage du magnétomètre (Test de Morewood);
- Test de l'altimètre radar et du baromètre;
- Test de la parallaxe;
- Test de compensation (FOM).

L'acquisition des données radiométriques a été réalisée en conformité avec les normes et standards internationaux et la méthodologie présentée dans le rapport 323 de IAEA, "Airborne Gamma Ray Spectrometer Surveying". Dans le but d'obtenir des mesures quantitatives fiables et représentatives des concentrations des différents radioéléments, les calibrations suivantes ont été réalisées :

- Dépouillement Compton (Pad test)
- Étalonnage de la fenêtre cosmique (Cosmic test)
- Calibration de l'atténuation du signal avec la hauteur de vol (Breckenridge)
- Sensibilité du spectromètre (Breckenridge)
- Étalonnage et auto-calibrage quotidien du RSX-5
 - Résolution du système
 - Correction du Radon (test volé au-dessus de l'eau)
 - Ligne de test (pré et post-sortie)

Cette section présente un résumé de tous les tests et calibrations réalisés avant, pendant ou après la période d'acquisition des données. Les résultats de ces tests et calibrations sont détaillés aux annexes A et B.

Tableau 6: Dates des tests et calibrations				
Test C-FVYW C-FLRB				
Morewood	2020-08-01	2020-08-01		
FOM	2020-07-24	2020-07-24		
Lag (Parallaxe)	2020-08-31 *	2020-08-13 *		
Altimètre Radar	2020-07-22	2020-01-14		
Pad	2020-07-16	2020-07-16		
Breckenridge	2020-08-01	2020-08-01		
Cosmique	2020-08-07	2020-08-10		

* Calculé sur deux pics magnétiques présents sur une même ligne, volée en sens contraire

6.1. ÉTALONNAGE DU MAGNÉTOMÈTRE

L'étalonnage du magnétomètre de vol a été effectué sur la base d'étalonnage de la Commission Géologique du Canada, à Morewood (Ontario). Cet étalonnage comprend également une mesure de l'erreur de cap. L'avion a effectué deux passages dans chacune des directions – nord, sud, est et ouest.

Les données au sol du champ magnétique total durant ce vol d'étalonnage ont été obtenues auprès de l'Observatoire magnétique d'Ottawa, Division de la géologie du continent (DGC), Commission géologique du Canada.

Une figure de compensation (FOM, Figure of Merit) fut aussi obtenue. Cette procédure a pour but d'éliminer l'influence des manœuvres de l'avion (tangage, roulis et lacet) et sa propre signature, y compris ses composants, qui induisent des champs magnétiques compromettant ainsi la qualité des données. Les résultats furent présentés, pour approbation, avant la mobilisation sur le terrain, par l'Autorité scientifique du **MERN**. Le test fut réalisé à haute altitude dans un secteur magnétiquement calme. Les manœuvres de l'avion impliquaient des mouvements de roulis de $\pm 10^{\circ}$, de tangage de $\pm 5^{\circ}$ et de lacet de $\pm 5^{\circ}$ suivant les orientations nord, sud, est et ouest durant un temps d'enregistrement du champ magnétique total de 4-5 secondes. La figure de compensation est évaluée en calculant la somme des amplitudes pic-à-pic des 12 signatures ainsi obtenues. Le FOM fut inférieur à 1,5 nT, tel que requis par les spécifications contractuelles.

6.2. ÉTALONNAGE DES ALTIMÈTRES RADAR ET BAROMÉTRIQUE

L'étalonnage de l'altimètre radar a été effectué au-dessus de la piste d'atterrissage de l'aéroport de St-Honoré, Qc pour C-FLRB et celle de Bagotville pour C-FVYW. Des vols furent réalisés à différentes hauteurs, représentatives des conditions de terrain du bloc, couvrant une gamme d'élévation se situant entre les altitudes minimales et maximales qui devaient être rencontrées. Au moins six altitudes différentes furent sélectionnées par sauts successifs et égaux. Les hauteurs de vol ont été déterminées à partir des données GPS en temps réel et par les données provenant de l'altimètre radar.

Les données des altimètres ont été vérifiées et corrigées à l'aide des coordonnées Z obtenues du GPS et auxquelles furent appliquées les corrections différentielles et de hauteur orthométrique. Les résultats sont présentés en annexe A et B sous la forme d'un tableau et d'un graphique indiquant l'altitude radar par rapport à l'altitude GPS.

6.3. TEST DE LA PARALLAXE (LAG TEST)

Dans le but d'évaluer le décalage spatial entre les données du système de navigation (i.e. les coordonnées X-Y) et les données du champ magnétique total, un test de décalage fut réalisé. Ce test impliquait l'enregistrement des données X, Y et du champ magnétique total lors d'au moins deux passages dans des directions opposées au-dessus d'une anomalie magnétique étroite et bien définie.

6.4. COEFFICIENTS DE DÉPOUILLEMENT COMPTON

Ce test a pour but de vérifier la position des fenêtres d'énergie du spectromètre. Il permet de déterminer les rapports de corrélation (stripping ratios) de chaque canal. Ces rapports ont été comparés à des standards qui indiquent la validité du positionnement de chaque fenêtre. Ce test a été fait avant la mobilisation sur le site des travaux.

6.5. TEST SUR LE SITE DE BRECKENRIDGE

Les coefficients d'atténuation et la sensibilité du système spectrométrique ont été déterminés en volant au-dessus du site de calibration de Breckenridge. Les mesures spectrométriques réalisées simultanément au sol ont été acquises à l'aide d'un spectromètre calibré. Les mesures spectrométriques ont été obtenues en volant de huit à dix altitudes différentes comprises entre 40 et 400 m.

6.6. ÉTALONNAGE DE LA FENÊTRE COSMIQUE

Des lignes ont été volées à partir de 900 mètres d'élévation et en augmentant progressivement par saut d'environ 300 mètres jusqu'à une altitude finale de 3 000 mètres ou plus. Pour chacune des élévations, la collecte de données a eu lieu pendant au moins 200 secondes. Ce test a pour objectif de relier la fenêtre de rayons cosmiques aux niveaux de référence combinée cosmique/niveau de référence de l'avion de chacun des canaux.

6.7. VÉRIFICATIONS QUOTIDIENNES DU SPECTROMÈTRE

Radon: un vol test a été réalisé en début et fin de journée d'acquisition, à hauteur de vol nominale, au-dessus d'un plan d'eau et à au moins 500 mètres du rivage, pendant une durée d'au moins 200 secondes. Ces données permettent d'améliorer statistiquement le calcul de la correction du Radon.

Ligne de test: des essais journaliers pré et post-sortie ont été effectués à vitesse nominale de vol sur une ligne de base de 15 km située près de la zone étudiée, au nord de la base d'opérations. La hauteur moyenne de vol était égale à la hauteur nominale. La longueur de la ligne a permis l'acquisition de suffisamment de données pour vérifier le bon fonctionnement du système. Les données ont été corrigées et comparées dans chaque cas à une moyenne du canal Th ou Compte Total. Les écarts sont restés minimaux.

Résolution du système : Le spectromètre RSX-5 utilise un procédé très avancé de stabilisation. En moins de 15 minutes, le spectromètre se calibre automatiquement, réglant ainsi son gain, en utilisant le spectre complet plutôt que des sources radioactives. La résolution du système a été vérifiée quotidiennement en accumulant des données au début et à la fin de chaque jour de vol.

7. CONTRÔLE DE QUALITÉ SUR LE TERRAIN

Tout le levé fut réalisé suivant les spécifications techniques contractuelles et à la satisfaction de l'Autorité scientifique du **MERN**. Une copie de ces spécifications techniques était en possession de chacun des membres du personnel de **GDS** présent sur le terrain.

Le système de traitement des données sur le terrain était composé d'un ordinateur équipé des logiciels appropriés, commerciaux ou créés par les géoscientifiques de **GDS**, incluant :

WayPoint GrafNav: pour le traitement des données GPS
 Geosoft Montaj et des logiciels utilitaires: pour le tracé des profils et du plan de vol, le calcul des intersections, le nivellement et le maillage préliminaire des données magnétiques et le traitement spectrométrique.

Les données digitales étaient vérifiées quotidiennement afin de se conformer aux spécifications techniques contractuelles. La précision des données de positionnement GPS, corrigées de façon différentielle à l'aide de la station de base, et le respect du plan de vol furent rigoureusement vérifiés sur le terrain.

7.1. CONTRÔLE QUOTIDIEN DES DONNÉES

Le système de navigation et de positionnement électronique comportait un récepteur GPS bifréquentiel (L1/L2) à 12 canaux de marque Novatel DL-V3. Ce système présente une résolution de 0,1 mètre et une erreur de localisation inférieure à 3 mètre.

Un autre récepteur GPS (Novatel DL-V3) servant de station de base fut installé près de la base d'opérations. Le logiciel WayPoint, spécialement conçu par le manufacturier du récepteur, permit de traiter quotidiennement les données de positionnement, de contrôler la qualité du plan de vol et de s'assurer du respect des normes contractuelles.

Après chaque vol, les données du champ magnétique total, des spectromètres, du radar, du baromètre, incluant les données GPS différentielles et les données de la station de base magnétométrique, étaient cumulées dans une base de données Geosoft. Les données brutes étaient vérifiées et mises en ordre par numéro de ligne de vol. Les profils du champ magnétique total étaient examinés en détail en utilisant la puissance de visualisation, de traçage et de changement d'échelle du logiciel Geosoft Montaj. Les principaux points de vérification et de contrôle concernaient surtout les sauts de vitesse dans les données GPS, les variations diurnes, les données altimétriques (hauteur de vol, intersections avec les lignes de contrôle), les profils magnétiques et l'évaluation des spectres obtenus à partir des 512 canaux de lecture. Le plan de vol était vérifié et comparé au plan de vol théorique et un modèle digital d'élévation était calculé. Toute erreur était notée et des reprises de vol étaient réalisées si nécessaire.

7.2. SPÉCIFICATIONS DU LEVÉ

GDS s'est assuré que les spécifications suivantes soient rencontrées. Dans le cas contraire, **GDS** a, à ses frais, survolé à nouveau les lignes ou segments de ligne non-conformes aux spécifications contractuelles.

	Ligne de traverse	Ligne de contrôle
Direction	N135° E	N45° E
Espacement	200 m	2 000 m
Extension minimale au-delà des limites	250 m	250 m
Séparation minimale permise	150 m	1 950 m
Séparation maximale permise	250 m	2 050 m

L'altitude de vol du levé a été moulée selon une surface de vol prédéfinie. La hauteur de vol nominale était de 80 mètres MTC (altitude moyenne au-dessus du sol) sauf aux endroits où les règlements de Transport Canada l'interdisent et dans les régions de topographie accentuée. Par contre, il faut noter que la surface de vol prédéfinie a contribué à élever la distance moyenne par rapport au sol à 175 m. Les traverses et les lignes de contrôle ont été volées en respectant le plus possible une tolérance maximale de 15 mètres de différence à leur intersection.

La figure 5 présente un histogramme des différences d'altitude obtenues sur les traverses aux intersections sur l'ensemble du levé (haut), un histogramme de la distance par rapport au sol (centre) ainsi qu'un histogramme de l'altitude de vol par rapport à la surface moulée prédéfinie (bas).

Les segments de ligne qui ont été revolés dans le but de compléter ou reprendre une traverse ont recoupé des lignes de contrôle à chacune de leur extrémité et ont rejoint la traverse originale suivant un angle faible, à un point où les données sont conformes aux spécifications techniques. Réciproquement, les segments de lignes de contrôle ont débuté et se sont terminés en recoupant une quelconque traverse.

Afin que l'information soit valide au-delà des limites du levé, deux traverses ont été réalisées en dehors des limites du bloc, là où ces limites sont parallèles aux traverses. Toutes ces traverses ont aussi débuté et se sont terminées en recoupant une ligne de contrôle.

Lors de chaque vol, les lignes adjacentes ont été survolées successivement et dans des directions opposées. Le circuit de vol en « hippodrome » n'a pas été utilisé.

7.3. DÉRIVES DIURNES

Les stations de base magnétiques enregistraient les variations du champ magnétique total à toutes les secondes et leurs données furent utilisées sur une base quotidienne afin d'appliquer les corrections diurnes et ainsi contrôler la qualité du levé magnétique. Les lectures du champ magnétique total à bord de l'avion et à la station de base étaient enregistrées de façon synchrone via le temps GPS.

La déviation maximale tolérée d'une longueur de corde équivalente à une minute pour chaque station de base était de 3,0 nT (crête à crête). Afin de limiter les ondes ULF (micropulsations), une déviation maximale tolérée d'une longueur de corde équivalente à 15 secondes pour chaque station de base de 0,5 nT (crête à crête) a été ajoutée. Cette spécification a été vérifiée sur le terrain avant la démobilisation. Les stations de base magnétique et GPS étaient situées aux coordonnées WGS84 présentées dans le tableau suivant et à la figure 2.

	Latitude	Longitude	Altitude
Station de base magnétique A	48.5042836° N	71.0243623° O	-
Station de base magnétique B	48.5167556° N	71.0574276° O	-
Station de base GPS	48.5165666° N	71.0573786° O	136.6 m (ellip.)

7.4. VITESSE DE L'AVION ET TAUX D'ÉCHANTILLONNAGE

Lors du levé, les pilotes maintenaient une vitesse de croisière faible réduisant le temps nécessaire pour se repositionner entre deux traverses tout en augmentant le taux d'échantillonnage des données. La vitesse des avions fut maintenue entre 255 et 343 km/h durant plus de 95% du temps, correspondant à une distance moyenne de 8.3 mètres entre les données du champ magnétique total.

7.5. DONNÉES MAGNÉTIQUES

Le niveau de bruit des données du champ magnétique total fut vérifié au moyen d'une inspection de la trace de la quatrième différence. La quatrième différence est calculée à partir de l'équation suivante :

$$4X_{I} = X_{I+2} - 4X_{I+1} + 6X_{I} - 4X_{I-1} + X_{I-2}$$

Où X_I est la 1^{ère} lecture du champ magnétique total. Sous cette forme, les unités de la quatrième différence sont des nanoTesla. Le bruit à haute fréquence devait être de telle sorte que la quatrième différence divisée par 16 soit inférieure à ±0,10 nT. L'examen minutieux de la quatrième différence a permis de corriger les éventuels pics (spikes) présents sur les données magnétiques.

Lorsque suffisamment de données furent recueillies, les valeurs du champ magnétique obtenues aux intersections des traverses et des lignes de contrôle furent comparées et un nivellement préliminaire fut réalisé. Des mailles préliminaires des données furent produites pour fin de vérification de la qualité du levé.

7.6. DONNÉES SPECTROMÉTRIQUES

Aucun levé spectrométrique n'a été volé pendant ou 3 heures suivant une précipitation mesurable. Dans le cas d'une précipitation intense laissant plus de 2cm de pluie au sol, les levés spectrométriques ont été suspendus pendant un minimum de 12 heures après l'arrêt de la pluie ou encore jusqu'au retour au niveau normal d'humidité du sol.

Les tests de calibration du spectromètre ont été réalisés régulièrement tels que décrits à la section 6.7 de ce rapport. Ces tests, corrigés automatiquement du bruit de fond et du temps de vie, permettent de déceler rapidement tout problème qui pourrait survenir au niveau du spectromètre et de vérifier la résolution énergétique. De plus, des contrôles de qualité des données spectrométriques ont été réalisés chaque jour par l'évaluation des spectres obtenus à partir des 512 canaux de lecture.

8. TRAITEMENT FINAL DES DONNÉES

La compilation et le traitement final des données magnétiques et spectrométriques ont été réalisés au bureau de **GDS** situé à Laval, sous la supervision de M. Mouhamed Moussaoui et M. Carlos Cortada, respectivement. Toutes les étapes du traitement réalisées lors des travaux de terrain ont été vérifiées avant de poursuivre plus à fond. Ceci impliquait :

8.1. TRAITEMENT DES DONNÉES MAGNÉTIQUES

- > Vérification complète des profils du champ magnétique et élimination des pics
- Correction du décalage (Lag) 0.7sec pour C-FVYW et 0.6sec C-FLRB
- Élimination du bruit à hautes fréquences présent sur les données de la station de base magnétique
 'A' par filtre passe-bas ayant une fréquence de coupure de 90 sec. Calcul de la dérive par rapport à la valeur moyenne de 54 568.0 nT et application de la correction diurne.
- Correction de la différence d'altitude entre l'altitude rapportée par le GPS et la surface de vol. La correction a été calculée en utilisant la maille de la dérivée 1^{ère} des données magnétiques pré-nivelées qui ont été échantillonnées dans la base de données, et multipliées par la différence ajustée entre le Zgps et le drapé. Ceci a permis de ramener les données magnétiques au niveau de la surface de vol pré-planifiée lors de circonstances qui ont obligé une déviation d'altitude significative par rapport à celle-ci.
- Nivellement du champ magnétique total à partir des intersections et en suivant les étapes présentées au tableau 7. Les valeurs du champ magnétique total, de l'altitude et du gradient aux points d'intersection, ont été déterminées sur les lignes transversales et sur les lignes de contrôle. Les différences relevées aux intersections ont été soigneusement analysées et réparties le long des lignes de contrôle et des lignes transversales pour obtenir ainsi une valeur identique du champ magnétique total à une intersection donnée.

Des valeurs finales ont été attribuées aux traverses à chacune des intersections retenues. Ces valeurs ont été utilisées comme correction. Dans les zones caractérisées par un gradient magnétique prononcé ou par une topographie escarpée, les ajustements d'intersection ont été supprimés ou une correction judicieuse a été attribuée à la ligne transversale.

Tableau 7: Nivellement par ligne de contrôle			
Dagga	Truno do Eléno	Appliqué sur	
Passe	I ype de filtre	Contrôle	Traverse
1	Trend(0)	Х	X
2	Trend(0)	Х	Х
3	Trend(1)	Х	X
4	Butterworth(10000,6)	Х	X
5	Butterworth(10000,6)	х	X
6	Butterworth(5000,6)	Х	
7	Butterworth(2500,4)		x
8	Butterworth(1000,4)	Х	
9	Butterworth(500,4)		х

- > Le micro-nivellement a été intégré dans le nivellement aux données.
- Soustraction du champ géomagnétique international de référence (IGRF) modèle de 2020 défini à une altitude de 255,0 mètres pour l'année 2020/08/15. La soustraction de l'IGRF, qui représente le champ magnétique terrestre modélisé, a permis d'obtenir le champ résiduel essentiellement relié à l'aimantation de la croûte terrestre.
- Maillage des données suivant une maille régulière de 50 m en utilisant la routine « Minimum Curvature » de Geosoft, laquelle respecte autant les données des traverses et des lignes de contrôle tout en produisant une surface pour laquelle la courbure totale est minimale.
- > Calcul de la dérivée première verticale.
- Calcul des coefficients de corrélation de Keating: Les cibles potentielles de cheminées verticales (kimberlite) ont été identifiées à partir des anomalies magnétiques présentant un patron anomal plus ou moins circulaire observées sur la carte du champ magnétique total résiduel. Le processus automatique d'identification a fait intervenir un algorithme mathématique mis au point par Pierre Keating en 1995. (KEATING, P., 1995. A simple technique to identify magnetic anomalies due to kimberlite pipes. Exploration and Mining Geology; vol 4, no. 2, p.121-125). Le modèle utilisé est celui d'un cylindre vertical et toutes les anomalies magnétiques présentant un coefficient de corrélation supérieur à une certaine limite, fixée au départ, sont ainsi retenues. Ces cibles retenues sont présentées dans une base de données inclue dans les produits finaux.

Tableau 8: Paramètres du modèle utilisé			
Rayon du cylindre	100 m		
Longueur du cylindre	Infini (-1)		
Distance au sommet du cylindre	150 m		
Dimension de la fenêtre	600 m		
Intensité relative du champ magnétique	100 nT		
Inclinaison du champ magnétique	71,8°		
Déclinaison du champ magnétique	16,4°W		
Coefficient de corrélation minimal	0,90 (90%)		

8.2. TRAITEMENT DES DONNÉES DE POSITIONNEMENT ET D'ALTIMÉTRIE

- Vérification complète des différents champs de données tel que X, Y, Z, temps GPS, altitudes radar et lectures barométriques.
- Correction de façon différentielle des données GPS brutes de positionnement à l'aide de la station de base par le logiciel Waypoint GrafNav de Novatel. Les latitudes et longitudes résultantes ont par la suite été transformées à la projection UTM NAD83. Un contrôle de qualité du plan de vol a été effectué entre autres à l'aide du calcul de la vitesse permettant de repérer des zones à problème qui seraient par la suite retraitées. Le plan de vol fut coupé afin de s'ajuster aux limites du bloc. Le plan de vol final ainsi obtenu fut comparé au plan de vol théorique afin de vérifier la conformité avec les spécifications techniques du contrat. Les données de positionnement furent finalement importées dans la base de données principale.
- Génération d'un modèle topographique de terrain en utilisant le Z GPS post-traité et l'altitude radar. Ce modèle ainsi calculé est ensuite comparé avec la topographie connue.

8.3. TRAITEMENT DES DONNÉES DE SPECTROMÉTRIE

Lors de la réalisation du levé, les données spectrométriques ont fait l'objet d'un contrôle de qualité préliminaire incluant le calcul des corrections, le maillage et l'analyse des images obtenues. Par la suite, les étapes suivantes consistaient à:

- Raffiner les différents paramètres de réduction de données;
- Traiter la base de données complète en portant attention aux faibles variations;
- Évaluer les données traitées à l'aide d'une analyse statistique;
- Faire les ajustements requis des différents paramètres de traitement si nécessaire;
- Préparer les différents produits finaux requis.

GDS utilise une procédure de traitement de données spectrométriques reconnue internationalement. Cette procédure est décrite entre autres dans le IAEA Technical Report 323, "Airborne Gamma Ray Spectrometry Surveying".

Les paramètres utilisés lors du traitement des données sont ceux déterminés lors de la phase initiale de calibration et de tests incluant la détermination des niveaux de base lors des vols réalisés au-dessus d'un plan d'eau. Les données primaires du levé spectrométrique consistent en un spectre de 512 canaux obtenu à toutes les secondes le long des lignes de vol par les cristaux de NaI orientés vers le haut et vers le bas. Les étapes principales du traitement sont les suivantes:

- Analyse complète de chacun des spectres de 512 canaux
- Analyse NASVD de chacun des 512 canaux
- Correction du temps mort;
- Filtrage approprié des données auxiliaires (hauteur de vol, température, pression et bruit cosmique)
- Calcul de la hauteur effective par rapport au niveau de la mer
- Élimination des niveaux de bruit de fond (avion, cosmique, radon atmosphérique)
- Calcul de l'effet Compton
- Ajustement de l'atténuation avec la hauteur de vol
- Conversion en concentration de radioéléments (TC, K, U, Th)
- Maillage, évaluation et obtention des produits dérivés

8.3.1 Analyse NASVD pour réduction du bruit statistique

La méthode de la décomposition en valeur singulière ajustée au bruit (Noise Adjusted Singular Value Decomposition), originalement développée par Hovgaard et Grasty (1997), fut appliquée aux spectres vers le haut et vers le bas afin de réduire le bruit statistique.

Le spectre ainsi produit a été utilisé pour extraire les nouvelles concentrations de radioéléments de K, U, TH et UPU (Uranium vers le haut), lesquels sont moins bruyants que les originaux. Pour la mesure de l'uranium, il est possible d'atteindre une diminution significative dans le niveau de bruit statistique.

Par conséquent, cette analyse produit des valeurs de concentrations de radioéléments au sol plus précises, qui permettent de distinguer plus facilement les strates géologiques avec les mêmes valeurs de concentration. Cependant, il n'y a pas d'amélioration significative dans la mesure du compte total du fait que celui-ci inclut une grande partie du spectre de rayonnement gamma. Donc, les cartes et les images améliorées aident en révélant les formes et motifs, autrement difficile de remarquer à cause du bruit.

8.3.2 Filtrage

Les données de l'altimètre radar ont été filtrées pour éviter des problèmes lors de la correction d'altitude des données spectrométrique causés par des changements d'altitude brusques. Toutes les données primaires brutes furent éditées dans le but d'éliminer la présence de bruit à hautes fréquences (pic). Un "Median window filter" et un filtre passe-bas ont été appliqués à chaque région d'intérêt, autant pour les cristaux orientés vers le bas que vers le haut.

Tableau 9: Filtres appliqués aux régions d'intérêts Région d'intérêt Filtre appliqué **Total Count (TC)** Median window filter (3 sec) Passe-bas (4 sec) Potassium (K) Median window filter (3 sec) Passe-bas (5 sec) Uranium (U) Median window filter (3 sec) Passe-bas (7 sec) Thorium (TH) Median window filter (3 sec) Passe-bas (7 sec) **Upper Uranium (UPU)** Median window filter (3 sec) Passe-bas (7 sec) Cosmic (COS) Median window filter (15 sec) Passe-bas (110 sec)

Voici les types de filtres utilisés et leur longueur:

8.3.3 Élimination des niveaux de bruit de fond

Lors du test du cosmique, des valeurs de bruit de fond cosmique et de l'avion ont été calculées pour chacun des aéronefs. Les valeurs calculées et utilisées pour l'élimination du niveau de bruit de fond (cosmique et avion) sont les suivantes (tableaux 10 et 11):

Tableau 10: Correction du rayonnement cosmique (c/sec)			
C-FVYW C-FLRB			
Compte Total (TC _{cos})	1,1521	1,1999	
Potassium (K _{cos})	0,0656	0,0674	
Uranium (U _{cos})	0,0530	0,0563	
Thorium (TH _{cos})	0,0704	0,0709	
Uranium vers le haut (UPU _{cos})	0,0141	0,0139	

Tableau 11: Correction du niveau de base de l'avion (c/sec)			
C-FVYW C-FLRB			
Total Count (TC _{back})	42,525	58,870	
Potassium (K _{back})	16,113	17,224	
Uranium (U _{back})	-1,160	-0,780	
Thorium (TH _{back})	-3,905	-3,087	
Uranium vers le haut (UPU _{back})	-0,160	-0,141	

8.3.4 Élimination du bruit atmosphérique dû au radon

La détermination des constantes de calibration, qui permettent d'éliminer les effets du radon atmosphérique sur le détecteur orienté vers le bas à partir des données obtenues du détecteur orienté vers le haut, est réalisée en deux parties:

- établissement de la relation entre les impulsions venant du sol enregistré à chacun des détecteurs.
- établissement de la relation entre les impulsions dues au radon atmosphérique et enregistrées à chacun des détecteurs.

Tableau 12: Correction de l'apport du radon			
	C-FVYW C-FLRB		
Coefficient Skyshine (A ₁)	0,026788		
Coefficient Skyshine (A ₂)	0,030596		
Total Count (a _{tc})	11,771 11,771		
Potassium (a _k)	0,543 0,543		
Thorium (a _{th})	0,132 0,132		
Uranium vers le haut (a _{upu})	0,249 0,249		

La procédure qui permet d'obtenir ces facteurs de calibration est très bien documentée dans le rapport no. 323 de l'IAEA. Elle a nécessité un survol régulier au-dessus d'un plan d'eau où aucune radioactivité ne provenait du sol. À partir de ces répétitions, tout changement dans le compte d'impulsions de l'uranium mesuré par le détecteur orienté vers le bas, et du taux de variations en radon, seront directement reliés à une variation dans le compte d'impulsions de l'uranium mesuré par le détecteur orienté vers le haut. Le niveau de radon observé lors des travaux de terrain était situé à l'intérieur des limites de concentration acceptable.

8.3.5 Calcul de la hauteur effective

La hauteur de vol effective par rapport au niveau de la mer est calculée en tenant compte des valeurs filtrées de l'altimètre radar et de la pression ainsi que la température de l'air ambiante. Cette hauteur effective est utilisée lors du dépouillement spectral et de la correction d'atténuation. Certaines données spectrométriques peuvent être rejetées en raison d'une hauteur de vol au-delà de la limite acceptable de 250m (Hstp) pour qu'elles soient significatives sur un système de 33,6 litres.

Dans le présent projet, la hauteur effective (Hstp) a varié de 42 à 502m, ce qui a causé le rejet d'environ 6% des données spectrométriques, dont 5% ont été acquises au-dessus de masses d'eau.

8.3.6 Dépouillement spectral

Puisque les spectres de K, U et Th se superposent, chaque fenêtre spectrale peut contenir des impulsions appartenant à une autre fenêtre spectrale. Ceci peut être corrigé par le dépouillement des données spectrales en utilisant les coefficients obtenus lors d'un "pad test" au-dessus de sources de concentration en radioéléments connus. Chacun des spectromètres a été testé à Toronto chez Radiation Solutions Inc.

Tableau 13: Correction du dépouillement spectral			
	C-FVYW	C-FLRB	
Alpha	0,270	0,269	
Beta	0,398	0,403	
Gamma	0,761	0,779	
a	0,047	0,051	
b	0,000	0,002	
an a	0,000	-0,001	
Alpha - height adj. (m ⁻¹)	0,00049	0,00049	
Beta - height adj. (m ⁻¹)	0,00065	0,00065	
Gamma - height adj. (m ⁻¹)	0,00069	0,00069	

8.3.7 Ajustement de l'atténuation

Les impulsions du compte total corrigé du bruit de fond et les impulsions après dépouillement spectral varient exponentiellement selon l'altitude de l'avion. Par conséquent, les impulsions mesurées peuvent être ajustées à l'altitude nominale du levé puisqu'elles y sont directement reliées. Les coefficients d'atténuation du système ont été évalués suite au test exécuté au site de Breckenridge. Le détail du calcul se retrouve aux annexes A et B tandis que les résultats sont représentés ici.

Tableau 14: Correction d'atténuation			
Atténuation selon l'altitude C-FVYW C-FLRB			
TC atten (m ⁻¹)	-0,0073	-0,0078	
K atten (m ⁻¹)	-0,0097	-0,0094	
U atten (m ⁻¹)	-0,0074	-0,0074	
TH atten (m ⁻¹)	-0,0074	-0,0072	

8.3.8 Conversion en concentration de radioéléments

Les impulsions pleinement corrigées sont utilisées pour estimer la concentration dans le sol de chacun des trois radioéléments, potassium, uranium et thorium. Cette procédure détermine la concentration selon les impulsions observées si celles-ci étaient uniformément distribuées dans une dalle horizontale infinie. Puisque l'uranium et le thorium mesurent plutôt respectivement le ²¹⁴Bi et ²⁰⁸Tl, le calcul suppose un équilibre radioactif dans la désintégration de U et Th. Les concentrations de U et Th sont donc exprimées en concentrations équivalentes, eqU et eqTh. Le taux d'absorption naturelle dans l'air de sources géologiques sera déterminé par les concentrations apparentes de K%, eqU ppm et eqTh ppm.

La sensibilité du système a été évaluée suite au test exécuté au site de Breckenridge. Le détail du calcul se retrouve aux annexes A et B tandis que les résultats sont représentés ci-dessous.

Tableau 15: Conversion en concentration de radioéléments			
	C-FVYW	C-FLRB	
TC sens cps par nGy/h	16,292	16,292	
K sens cps par %	42,372	42,372	
U sens cps par ppm	5,102	5,102	
TH sens cps par ppm	2,790	2,790	

8.3.9 Maillage des données

Préalablement au maillage final, les données de Total Count, K, U et Th ont été micro-nivelés pour éliminer des artéfacts résiduels au traitement des données. Par la suite, les paramètres du Compte Total, de l'Uranium, du Potassium, du Thorium furent maillés à l'aide de l'algorithme de courbure minimale de Geosoft Montaj où les lignes de contrôle ne furent pas incluses. Pour leur part, les différents ratios furent générés en utilisant le calcul du rapport des mailles eqU/eqTh, eqU/K et eqTh/K. Dans tous les cas, une cellule de maillage de 50 m fut utilisée.

9. PRODUITS FINAUX

9.1. PARAMÈTRES UTILISÉS

Les données ont été compilées en utilisant les paramètres suivants :

Projection :NAD83 UTM z19, compatible avec le système mondial WGS84Cellule de maille:50 mètres

9.2. PRODUITS FINAUX

Deux cartes USB (tableau 16) incluant les éléments suivants ont été livrées:

Bases de données (GDB Geosoft)

- Base de données magnétiques (tableau 18)
- Base de données des anomalies coefficients de corrélation de Keating (tableau 17)
- Base de données spectrométriques (tableau 19)

Mailles (format Geosoft)

- Composante résiduelle du champ magnétique total
- Dérivée première verticale du champ magnétique
- Taux d'absorption naturelle dans l'air
- Équivalent Uranium
- Équivalent Thorium
- Potassium
- Rapport eqU/eqTh
- Rapport eqU/K
- Rapport eqTh/K
- Image ternaire (GeoTiff)

Rapport final (PDF, MS Word)

Le présent rapport technique représentant un compte-rendu complet des opérations sur le terrain, la description de la compilation des données et l'inventaire des produits finaux, fut remis en format numérique MS-Word et PDF. Deux copies papier ont également été fournies.

Bandes vidéo

Une copie des vidéos des vols de chacun des avions a été remise sur disque dur externe.

	Tableau 16: Contenu de la carte USB et description				
	Nom de fichier	Description			
1	Contenu Archive.pdf	Description des fichiers de l'archive (ce fichier)			
/Databases	LSJ_Mag.gdb	Base de données magnétiques			
	LSJ_Mag.pdf	Description des champs de la base de données magnétiques			
	LSJ_Spectro.gdb	Base de données spectrométriques			
	LSJ_Spectro.pdf	Description des champs de la base de données spectrométriques			
	LSJ_Coeff_Keating.gdb	Base de données des coefficients de corrélation de keating			
	LSJ_Coeff_Keating.pdf	Description des champs de la base de données des coefficients de corrélation			
/Mailles	LSJ_MagRes.grd	Composante résiduelle du champ magnétique total			
	LSJ_FVD.grd	Dérivée première verticale du champ magnétique total résiduel			
	LSJ_SVD.grd	Dérivée seconde verticale du champ magnétique total résiduel			
	LSJ_DTM.grd	Modele de terrain digital			
	LSJ_conTCngyhr.grd	Compte total du taux d'absorption			
	LSJ_conKper.grd	Concentration de Potassium (K)			
	LSJ_conTHppm.grd	Concentration équivalente Thorium (eqTH)			
	LSJ_conUppm.grd	Concentration équivalente Uranium (eqU)			
	LSJ_ratioTHK.grd	Rapport eqTH/K			
	LSJ_ratioUK.grd	Rapport eqU/K			
	LSJ_ratioUTH.grd	Rapport eqU/eqTH			
	LSJ_Ternaire.tif	Image ternaire des radioéléments (GeoTiff)			
/Rapport	Rapport_MERN_Mag_Spec_Lac_St- Jean.pdf	Rapport technique du levé - PDF			
	Rapport_MERN_Mag_Spec_Lac_St- Jean.docx	Rapport technique du levé - MS Word			

Tableau 17: Champs de la base de données des coefficients de corrélation de Keating		
Champ	Description	Unité
X_nad83	Coordonnées X NAD83 UTM Z19	mètre
Y_nad83	Coordonnées Y NAD83 UTM Z19	mètre
Corr_coeff	Coefficient de corrélation	%
Suscept	Susceptibilité	
Rel_error	Erreur relative de la régression	%
Amplitude	Amplitude de l'anomalie pic-à-pic dans la fenêtre	nT

	Tableau 18: Champs de la base de données magnétiques	
Champ	Description	Unité
UTC	Temps UTC en seconde après minuit (fiducial)	seconde
Line	Numéro de ligne	
Flt	Numéro de vol	
Date	Date locale du vol	aaaa/mm/jj
AC	Immatriculation de l'avion	
Xrt	Coordonnées X temps réel (NAD83 UTM z19)	mètre
Yrt	Coordonnées Y temps réel (NAD83 UTM z19)	mètre
Zrt	Altitude Zgps temps réel (NAD83)	mètre
Lon	Longitude (NAD83)	degré
Lat	Latitude (NAD83)	degré
X_nad83	Coordonnées X (NAD83 UTM z19), GPS traité	mètre
Y_nad83	Coordonnées Y (NAD83 UTM z19), GPS traité	mètre
Ζ	Altitude GPS (NMM), GPS traité	mètre
Drape	Surface de vol prédéfinie	mètre
Baltls	Données barométriques brutes	mètre
Baltlc	Données barométriques corrigées	mètre
Ralto	Altimètre Radar brut	mètre
Raltlc	Altimètre Radar	mètre
Raltlc_F	Altimètre Radar corrigé (ajusté pour niveau marin=0)	mètre
DTMradc	Modèle digital d'élévation	mètre
DTM_F	Modèle digital d'élévation (ajusté pour niveau marin=0)	mètre
BaseAo	Données brutes de la station de base A	nT
BaseA	Données corrigées de la station de base A	nT
BaseBo	Données brutes de la station de base B	nT
BaseB	Données corrigées de la station de base B	nT
BaseCo	Données brutes de la station de base C	nT
BaseC	Données corrigées de la station de base C	nT
mfluxX	Fluxgate composante X	nT
mfluxY	Fluxgate composante Y	nT
mfluxZ	Fluxgate composante Z	nT
Magu	Données magnétiques non-compensées brutes	nT
Magul	Données magnétiques non-compensées laguées	nT
Magc	Données magnétiques compensées originales	nT
Magcl	Données magnétiques compensées laguées	nT
Magclc	Données magnétiques compensées laguées et corrigées	nT
Drift_LF	Correction diurne du champ magnétique	nT
Magbc	Données magnétiques corrigées de la diurne	nT
Coralt	Correction d'altitude	nT
Magalt	Données magnétiques corrigées de l'effet d'altitude	nT
Corlvl	Correction de nivellement	nT
Maglvl	Données magnétiques nivelées par lignes de contrôle	nT
IGRF	Champ IGRF local	nT
Inc	Inclinaison du champ magnétique IGRF	nT
Dec	Déclinaison du champ magnétique IGRF	nT
Magres	Données magnétiques résiduelles (corrigées de l'IGRF)	nT
FVD_F	Dérivée première verticale du champ magnétique	nT/m
SVD_F	Dérivée deuxième verticale du champ magnétique	nT/m ²

	Tableau 19: Champs de la base de données spectrométriques								
Champ	Description	Unité							
UTCh	Temps UTC	hh:mm:ss.s							
Line	Numéro de ligne								
Flt	Numéro de vol								
Date	Date du vol	aaaa/mm/jj							
AC	Immatriculation de l'avion								
Lon	Longitude (NAD83)	DD.ddd							
Lat	Latitude (NAD83)	DD.ddd							
Х	Coordonnées X (NAD83 UTM z19), GPS traité	mètre							
Y	Coordonnées Y (NAD83 UTM z19), GPS traité	mètre							
Ζ	Altitude GPS (NMM), GPS traité	mètre							
Raltlc	Altimètre Radar	mètre							
Hstp	Hauteur aux conditions standards de température et pression	mètre							
Oatlc	Température de l'air extérieure (corrigée et filtrée)	Celsius							
Presslc	Pression extérieure (corrigée et filtrée)	mBar							
Ltime	Temps de vie	ms							
rawCos	Compte cosmique brut	cps							
filCos	Compte cosmique filtré	cps							
rawSpecD	Spectre brute vers le bas	cps							
rawSpecU	Spectre brute vers le haut	cps							
rawTC	Compte total brut	cps							
rawK	Compte Potassium brut	cps							
rawU	Compte Uranium brut	cps							
rawTH	Compte Thorium brut	cps							
rawUPU	Compte Uranium vers le haut brut	cps							
svdSpecD	Spectre vers le bas traité par NASVD	cps							
svdSpecU	Spectre vers le haut traité par NASVD	cps							
svdTC	Compte total traité par NASVD	cps							
svdK	Compte Potassium traité par NASVD	cps							
svdU	Compte Uranium traité par NASVD	cps							
svdTH	Compte Thorium traité par NASVD	cps							
svdUPU	Compte Uranium vers le haut traité par NASVD	cps							
ltcTC	Compte total corrigé du temps de vie	cps							
ltcK	Compte Potassium corrigé du temps de vie	cps							
ltcU	Compte Uranium corrigé du temps de vie	cps							
ltcTH	Compte Thorium corrigé du temps de vie	cps							
ltcUPU	Compte Uranium vers le haut corrigé du temps de vie	cps							
filTC	Compte total corrigé du temps de vie et filtré	cps							
filK	Compte Potassium corrigé du temps de vie et filtré	cps							
filU	Compte Uranium corrigé du temps de vie et filtré	cps							
filTH	Compte Thorium corrigé du temps de vie et filtré	cps							
filUPU	Compte Uranium vers le haut corrigé du temps de vie et filtré	cps							
bacTC	Compte total filtré et corrigé du cosmic et du bruit d'avion	cps							
bacK	Compte Potassium filtré et corrigé du cosmic et du bruit d'avion	cps							
bacU	Compte Uranium filtré et corrigé du cosmic et du bruit d'avion	cps							
bacTH	Compte Thorium filtré et corrigé du cosmic et du bruit d'avion	cps							
bacUPU	Compte Uranium upward filtré et corrigé du cosmic et du bruit d'avion	cps							
rnrTC	Compte total corrigé du Radon	cps							
rnrK	Compte Potassium corrigé du Radon	cps							
rnrU	Compte Uranium corrigé du Radon	cps							
rnrTH	Compte Thorium corrigé du Radon	cps							
strK	Compte Potassium après application du "Compton stripping"	cps							
strU	Compte Uranium après application du "Compton stripping"	cps							
strTH	Compte Thorium après application du "Compton stripping"	cps							
attTC	Compte total corrigé de l'atténuation	cps							

	Tableau 19: Champs de la base de données spectrométriques	
Champ	Description	Unité
attK	Compte Potassium corrigé de l'atténuation	cps
attU	Compte Uranium corrigé de l'atténuation	cps
attTH	Compte Thorium corrigé de l'atténuation	cps
conTC	Compte total du taux d'absorption	nGy/h
conK	Concentration du Potassium	%
conU	Concentration équivalente d'Uranium	ppm
conTH	Concentration équivalente du Thorium	ppm
conTCngyh	Compte total du taux d'absorption micro-nivelé	nGy/h
conKper	Concentration de Potassium micro-nivelée	%
conUppm	Concentration équivalente d'Uranium micro-nivelée	ppm
conTHppm	Concentration équivalente du Thorium micro-nivelée	ppm
RatioUK	Rapport de concentration équivalente Uranium et concentration Potassium	ppm/%
RatioUTH	Rapport de concentration équivalente Uranium et concentration équivalente Thorium	ppm/ppm
RatioTHK	Rapport de concentration équivalente Thorium et concentration Potassium	ppm/%

10. CONCLUSIONS

Un levé magnétique et spectrométrique aéroporté à haute résolution fut réalisé entre le 24 juillet et le 15 septembre 2020 dans la région du lac St-Jean par **Geo Data Solutions GDS inc.** pour le compte du Ministère de l'énergie et des ressources naturelles du Québec. Au total, 54 988 kilomètres linéaires de données magnétiques et spectrométriques furent acquises sur un réseau de traverses espacées de 200 mètres, orientées nord-ouest à sud-est, et des lignes de contrôles espacées de 2 000 mètres et orientées nord-ouest.

Les travaux de terrain furent réalisés dans le temps alloué prévu à cet effet et tous les produits exigés par l'entente contractuelle furent remis au **MERN** dans les délais requis.

Toutes les données enregistrées à bord des avions et par les stations de base magnétiques et GPS sont d'excellente qualité. Les données du champ magnétique total ont été acquises lors de périodes d'activité diurne favorables et aucune ligne ne respectant pas les critères exigés ne fut retenue.

La surface de vol prédéfinie fut bien suivie permettant ainsi un nivellement plus facile et optimal des données magnétiques. Quant au niveau de bruit du champ magnétique total observé à partir de la quatrième différence, il fut bien en dessous de l'enveloppe acceptable de 0,1 nT.

Les données de positionnement GPS sont de grande qualité, le plan de vol fut bien respecté et les données ne démontrent aucun saut anormal.

Il est à espérer que l'information présentée dans ce rapport, ainsi que sur les cartes qui l'accompagnent, s'aura orienté les prochaines campagnes d'exploration et sera utile dans l'interprétation des données géologiques qui peuvent y être reliées.

Respectueusement présenté,

Khorram Khan (OGQ #2152)

Géo Data Solutions GDS inc.

16 novembre 2020 Date

ANNEXE A TESTS ET ÉTALONNAGE

C-FVYW

	1-Aug-20	Error Value	14=11-13 (n1)	-4.9	-5.5	-5.1	-5.3	-5.1	-5.6	-5.1	-5.3	-41.996 nT	-5.2495 nT
EST RANGES (ER LAKE, NUNAVUT	Morewood 1500 feet 10.0 /sec RMS DAARC500	Calculated Observatory Value	13=12-C* (h1)	53344.3	53343.9	53345.3	53345.2	53342.0	53345.3	53345.0	53345.0	rsection point above Total:	8 Ave:
	SITE AND DATE: N HEIGHT FLOWN: SAMPLING RATE: OUISITION SYSTEM: D	Difference in the total field between the Observatory and the value at the altitude flown over the intersection point	C* (n1)	640.6	640.5	640.2	640.5	640.8	640.4	640.2	640.6	e (B) at the test site inte (0-B) = 640.1 nT (0-B) = 0.0 nT (0-B) = 75.0 nT	asses for Average:
M CALIBRATION	DATA AC	Height flown over the intersection point	(m)	445.9	447.9	453.9	447.9	442.4	449.4	453.4	445.5	ries (O) and the valuation of the valuation of the construction of	Number of F
AEROMAGNETIC SURVEY SYSTEM F MOREWOOD, ONTARIO; MEANOOK, AL	C-FYVW Geo Data Solutions GDS Inc. Geometrics, Cs G-822A Saleh	Observatory Diumal Reading over intersection point	T2 (nT)	53984.9	53984.4	53985.5	53985.8	53982.8	53985.7	53985.3	53985.7	n the Blackburn, Meanook or Baker L. observato Ottawa(O)/Morewood(B), Ontario: Meanook(O)/Meanook(B), Alberta: Baker Lake(O)/ Baker Lake(B), Nunavut:	0.5534 nT 0.1791 nT
		Total Field Value Recorded in Survey Aircraft over intersection point	T1 (nT)	5339.4	53338.4	53340.1	53339.9	53336.9	53339.6	53339.9	53339.8		4 North - T4 South): (T4 East - T4 West):
×	AND REGISTRATION: IZATION (COMPANY): GNETOMETER TYPE: COMPILED BY:	NETOMETER TYPE: G COMPILED BY: S COMPILED BY: S COMPILED BY: S dircraft was over the intersection point (UTC) 14:52:38.0 14:52:38.0 14:48:54.0 15:09:26.0 15:00:22.0 15:00:22.0 15:11.0 15:11.0		in the total field betweer	outh Heading Error (] West Heading Error								
	AIRCRAFT TYPE ORGAN MA	Direction of flight across the intersection point	N H	North	South	East	West	North	South	East	West	*C is the difference the designated heig	Average North-S Average East-I

	5			Geo	FO Data So	M Tes	t GDS Inc					
Location:	Lac St-Je	ean, QC				Date: 24-J	ul-20	1		FOM Res	ults:	
Pilot: Martin Boyer				Aircraft: C-FVYW				Uncor	mp. Mag:	3.95	nT	
Operator:	Pierre Fil	lion			Config: Stinger				Con	np. Mag:	0.61	nT
Compiled by:	Saleh				Alt	itude: 11,2	36.2 ft	.	Impro	ov. Ratio:	6.51	
Manoeuvres	0°	90°	180°	270°	Total	Man	oeuvres	0°	90°	180°	270°	Tota
Pitch	0.50	0.30	0.58	0.24	1.60	Pitc	h	0.06	0.04	0.07	0.06	0.2
Roll	0.44	0.57	0.24	0.14	1.38	Ro	1	0.05	0.05	0.05	0.03	0.1
Yaw	0.10	0.57	0.18	0.12	0.96	Ya	v	0.05	0.04	0.07	0.05	0.2
Total	1.03	1.44	0.99	0.49	3.95	Tota	1	0.15	0.13	0.19	0.14	0.6

ALTIMETER CALIBRATION

Geo Data Solutions GDS Inc.

Pilot:	Jordan Barat/Lisa Mensan
Operator:	Pierre Filion
Compiled by:	Saleh

Date: <u>22-Jul-20</u> Location: <u>Bagotville, Q</u>C Aircraft: <u>C-FVYW</u>

Terrain clearance (ft)	Zgps (m)	Topo (m)	Altitude (m)	Radar (mV)
200	220.77	155.03	63.24	0.13
320	255.40	153.87	99.03	0.21
540	322.07	154.59	164.98	0.33
730	382.13	154.59	225.04	0.46
1050	479.09	154.75	321.84	0.66
1460	602.10	153.71	445.89	0.91
2090	796.04	154.65	638.89	1.32
2610	953.97	153.70	797.77	1.65
		2	Ave. Error: Error %:	±1.79

PAD CALIBRATION

Location:	RSI
Operator:	RSI
Compiled by:	Carlos Cortada

Date:	16-Jul-20	
Aircraft:	C-FVYW	
Detector Pack:	5518	

	RSI	Pad Co	s	
	BG-pad	K-pad	U-pad	Th-pad
K (%)	1.41	8.71	1.34	1.34
U (ppm)	0.97	0.32	52.90	2.96
Th (ppm)	2.26	0.74	3.40	136.00

				1024	Chanels
	IAEA Pe	eak Position	Win.	limits	
	Low	Peack	High	Low	High
κ	1370	1461	1570	457	523
U	1660	1764	1860	553	620
ΤН	2410	2615	2810	803	937

PAD CALIBRATION

Co K (%) U (ppm)	Location: Operator: mpiled by: RSI BG-pad 1.41 0.97	RSI base RSI Carlos Co Pad Co K-pad 8.71 0.32	ncentrations U-pad 1.34 52.90	s Th-pad 1.34 2.96	Detec K U	Date: Aircraft: tor Pack: IAEA Pe Low 1370 1660	16-Jul-20 C-FVYW 5545 eak Positio Peack 1461 1764	ns (keV) High 1570 1860	1024 Win. Low 457 553	Chanels limits High 523 620
6 5 4 3 2 1 0 9 5 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1	2.26	0.74 K coun	3.40 ts	K-pad U-pad Th-pad	н	Alpha Beta Gamma a b g	2615 Stripping Actual 0.269 0.397 0.759 0.044 0.000 -0.001	2810 (Constant Normal 0.250 0.400 0.810 0.060 0.000 0.003	803	937
2 - 1 - 2	1680 1698 - 1716 - 1734 -	U cour	1ts	—— K-pad —— U-pad —— Th-pad	2 - 2 - 1 - 2304 7 - 2304 7 - 2700 7 -	2466-2502-2502-2502-2502-2502-2502-2502-25	2646	counts	2790	— K-pad — U-pad — Th-pad

BRECKENRIDGE CALIBRATION

Location: Breckenridge, ON Operator: Ali Kasraei Compiled by: Carlos Cortada

Temp=	°C	Ground	Concent	ration
Pressure=	kPa	TC=	56.323	nGy/h
Flt Hight=	150.0 m	K=	1.990	%
538		eU=	1.480	ppm
		eTH=	8.780	ppm

Date:	1-Aug-20
Aircraft:	C-FVYW
No. Crystal Packs:	2

	Strippin	g Coeff.	
α=	0.270	a=	0.047
β=	0.398	b=	0.000
V=	0.761	g=	0.000

Altimeters (m)		Counts over water (cps)			
Radar	HSTP	TC	K	U	TH
66.12	59.27	262.13	28.07	11.09	7.46
77.99	69.42	260.53	28.40	10.28	7.67
82.68	73.28	258.86	29.17	10.66	7.31
111.57	98.40	263.02	28.84	11.24	7.49
133.73	117.56	269.64	29.66	11.08	8.16
157.67	138.16	274.17	29.04	11.61	7.50
177.70	155.14	276.42	30.35	11.97	8.03
235.30	204.49	281.08	30.47	11.84	8.66

Altimete	ers (m)	Co	ounts over	land (cps)	
Radar	HSTP	TC	K	U	TH
67.23	60.45	2187.39	278.82	41.23	57.97
79.14	70.56	2032.56	252.15	38.33	54.58
92.80	82.20	1877.06	227.13	36.31	50.45
122.35	107.73	1593.74	186.18	31.49	42.50
152.82	133.86	1373.35	155.74	29.05	36.06
181.98	158.98	1198.35	128.92	27.74	33.09
212.91	184.68	1044.39	108.55	25.67	28.31
245.73	212.85	909.04	93.31	22.49	24.78

Duckground 13 Annuac	Background	vs Altitude
----------------------	------------	-------------

0.1606	х	HSTP	+	249.85	cps	
0.0152	х	HSTP	+	27.51	cps	
0.0096	x	HSTP	+	10.12	cps	
0.0075	x	HSTP	+	6.92	cps	
	0.1606 0.0152 0.0096 0.0075	0.1606 × 0.0152 × 0.0096 × 0.0075 ×	0.1606 x H _{STP} 0.0152 x H _{STP} 0.0096 x H _{STP} 0.0075 x H _{STP}	0.1606 x H _{STP} + 0.0152 x H _{STP} + 0.0096 x H _{STP} + 0.0075 x H _{STP} +	0.1606 x H _{STP} + 249.85 0.0152 x H _{STP} + 27.51 0.0096 x H _{STP} + 10.12 0.0075 x H _{STP} + 6.92	0.1606 x H _{STP} + 249.85 cps 0.0152 x H _{STP} + 27.51 cps 0.0096 x H _{STP} + 10.12 cps 0.0075 x H _{STP} + 6.92 cps

Altimete	ers (m)	Background	d corrected	& Strippe	d counts
Radar	HSTP	TC	K	U	TH
67.23	60.45	1927.83	216.08	15.57	49.86
79.14	70.56	1771.38	192.11	13.36	46.50
92.80	82.20	1614.01	169.24	12.25	42.33
122.35	107.73	1326.59	133.24	9.24	34.33
152.82	133.86	1102.00	105.63	8.32	27.74
181.98	158.98	922.97	80.10	7.52	24.62
212.91	184.68	764.88	62.11	6.67	19.68
245.73	212.85	625.01	50.04	4.31	16.05

Temp=	°C	Ground	Concent	ration
Pressure=	kPa	TC=	56.323	nGy/h
Flt Hight=	150.0 m	K=	1.990	%
22176-042-0-042-042-042-042-042-042-042-042-0		eU=	1.480	ppm
		eTH=	8.780	ppm

y = -0.0073x + 7.9948

200.0

HSTP (m)

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

0.0

٠.

y = -0.0097x + 5.9398

100.0

	Stripping	g Coeff.	
α=	0.270	a=	0.047
β=	0.398	b=	0.000
Y=	0.761	g=	0.000

Ground Concentration

Altitude Attenuation

300.0

+ TC

K

- Linear (TC)

– Linear (K)

Coefficients (m ⁻¹)		Sensi	tivity @ 150m
TC	-0.0073	TC	17.496 cps/nGy/h
K	-0.0097	K	44.773 cps/%
U	-0.0074	U	5.102 cps/ppm
TH	-0.0074	TH	2.906 cps/ppm

GDS ;	COSMIC CALIBRATION
17/	

Location: Lac St_Jean, QC Date: 7-Operator: Ali K. Aircraft: C Compiled by: Carlos Cortada No. Crystal Packs: 2

Date: 7-Aug-20 Aircraft: C-FVYW

DOWNWARD SPECTROMETER WINDOWS Nominal Z GPS COS тс UPU Elevation TH K U c/sec c/sec c/sec c/sec (feets) (meters) d/sec d/sec 3000 1072.29 210.94 292.42 30.21 2.78 10.72 11.43 4000 1373.37 235.14 321.36 32.23 12.59 12.25 3.10 5000 1701.70 272.79 359.96 34.08 14.57 14.94 3.40 6000 1997.08 311.28 398.57 36.40 16.28 17.65 4.13 2334.84 40.14 21.26 7000 367.89 464.39 19.34 4.90 2659.48 22.35 25.86 5.89 8000 428.21 539.24 44.12 6.73 9000 2953.39 495.17 26.70 30.31 619.09 48.34 10000 3257.44 579.40 715.51 54.90 30.76 36.78 7.88

(Data have been livetime corrected, except for Cosmic-counts)

Cosi	nic Coeff. (c/sec)	Aircraft Background
TC	1.1521	42.525
K	0.0656	16.113
U	0.0530	-1.160
TH	0.0704	-3.905
UPU	0.0141	-0.160

Cosmic Calibration Charts

Radon R	atio
a _{TC} =	12.156
a _K =	0.532
a _{TH} =	0.072
a _{upu} =	0.268
All 'b' ratio	s = 0

ANNEXE B

TESTS ET ÉTALONNAGE

C-FLRB

	AT	AEROMAGNET T MOREWOOD, ONT	IC SURVEY SYSTEM ARIO; MEANOOK, AI	I CALIBRATION TES	T RANGES Lake, Nunavut		
AIRCRAFT TYPE	E AND REGISTRATION:	KingAir 100 C-FLRB			SITE AND DATE: 1	Morewood	1-Aug-20
ORGA	NIZATION (COMPANY):	Geo Data Solutions GDS	S Inc.		HEIGHT FLOWN: 1	1520 feet	
W	AGNETOMETER TYPE:	Geometrics, Cs G-822A			SAMPLING RATE: 1	10.0 /sec	
MAGNETOME	TER SERIAL NUMBER:			DATAA	COUISITION SYSTEM: F	RMS DAARC500	
	COMPILED BY:	Saleh			GSC 12/2015		
Direction of flight across	Time that Survey Aircraft was over the	Total Field Value Recorded in Survey	Observatory Diumal Reading at Previous	Observatory Diumal Reading at	Interpolated Observatory Diurnal	Calculated Observatory Value	Error Value
the intersection	intersection	Aircraft over	Minute i.e.	Subsequent Minute i.e.	Reading at Time		
	Greenwich Mean Time	point		mins.	Sec	C = 639.7	
		T1 (nT)	T2 (nT)	T3 (nT)	T4 (nT)	T5=T4-C* (nT)	T6=T1-T5 (nT)
North (360)	13:08:05.7	872357.8	53990.0	6'68685	53990.0	53350.3	7.6
South(180)	13:04:14.3	53357.7	53990.9	53991.1	53990.9	53351.2	6.5
East(90)	13:26:09.7	53354.6	53987.9	53987.6	53987.8	53348.1	6.5
West(270)	13:22:24.5	53356.9	53989.3	53988.4	53988.9	53349.2	7.6
North(361)	13:16:16.2	53357.4	53989.3	53989.2	53989.3	53349.6	7.8
South(181)	13:12:14.8	53355.4	53988.9	53989.3	53989.0	53349.3	6.2
East(91)	13:34:24.9	53353.9	53987.2	53986.5	53986.9	53347.2	6.7
West(271)	13:30:19.7	53355.8	53988.5	53988.8	53988.6	53348.9	6.9
*C is the difference i the designated heigh	n the total field between t nt	he Blackburn, Meanook (Ottawa(O) Meanook(C Baker Lake(O)/ B	or Baker L. observatorie: Morewood(B), Ontario:))Meanook(B), Alberta: aker Lake(B), Nunavut:	s (O) and the value (B) at 1500 Feet, C = (O-B) 1000 Feet, C = (O-B) 1000 Feet, C = (O-B)	t the test site intersection = 640.1 nT = 0 nT = 75 nT	point above Total:	55.8463 nT
Average North- Average Eas	South Heading Error (t-West Heading Error	T6 North - T6 South): (T6 East - T6 West):	1.3544 nT -0.6824 nT	Number of	Passes for Average:	8 Ave:	6.9808 nT
The completed docu	ment must be forwarded t	to the GSC Project Lead	er prior to the start of fiel	ld operations and a copy	must be attached to the n	ext weekly report.	

	6			Geo	FO Data So	M Test plutions GDS In	с.				
Location:	Lac St-Je	ean, QC			_	Date: 24-Jul-20			FOM Re	sults:	
Pilot:	Joffery				Aircraft: C-FLRB			Uncomp. Mag: 7.18 nT			nT
Operator: Pierre Filion					Config: Stinger			Comp. Mag: 1.48 nT		nT	
Compiled by:	Saleh				Altitude: 11,835.3 ft			Impro	ov. Ratio:	4.84	
Manoeuvres	0°	90°	180°	270°	Total	Manoeuvres	0°	90°	180°	270°	Total
Pitch	0.91	0.19	0.33	0.52	1.95	Pitch	0.14	0.14	0.18	0.08	0.55
Roll	1.14	1.59	0.96	0.46	4.15	Roll	0.03	0.07	0.09	0.07	0.26
Yaw	0.30	0.27	0.28	0.23	1.08	Yaw	0.21	0.20	0.16	0.10	0.67
Total	2 35	2.05	1.57	1 22	7.48	Total	0.38	0.42	0.44	0.25	1.48

Geo Data Solutions GDS Inc.

Location: St-Honoré,QC Date: 01/08/2020 /13/08/2020 Compile: Saleh

Aircraft: C-FLRB Configuration: Stinger Final Lag: +0.6

Aver ulaci ben intear	10.00
Ave. speed both dir:	85.53
Dist. btw. points:	106.98
Calculated Lag:	0.63
Dist. after lag:	2,60

Line	Fiducial (sec)	Mag Field (nT)	X (m)	Y (m)	Z (m)	Speed (m/s)
119	83191.04	54582.751	345695.22	5396434.49	482.04	89.97
1062	63209.84	54625.192	345620.87	5396513.94	471.87	81.10
				A	ve Speed =	85.53 m/s
				Distance b	tw peaks =	106.98 m

Tail Lag = +0.63 sec

PAD CALIBRATION

Co	Location: Operator: mpiled by:	RSI RSI Carlos Co	rtada		Detec	Date: Aircraft: tor Pack:	16-Jul-20 C-FLRB 5540		1024	Chanala
	RSI	Pad Co	ncentration	s			eak Positio	ns (keV)	Win.	limits
-	BG-pad	K-pad	U-pad	Th-pad	-	Low	Peack	High	Low	High
K (%)	1.41	8.71	1.34	1.34	ĸ	1370	1461	1570	457	523
U (ppm)	0.97	0.32	52.90	2.96	U	1660	1764	1860	553	620
Th (ppm)	2.26	0.74	3.40	136.00	TH	2410	2615	2810	803	937
6 5 4 3 2 1 0 9 2 1 1 0 9 2 1 1 0 9 2 1 1 2 5 5 1 2 5 1 1 2 1 1 1 2 1 1 1 1	1401 1416 1431 1431	K coun	ts	K-pad U-pad Th-pad		Alpha Beta Gamma a b g	Stripping Actual 0.269 0.396 0.775 0.055 0.004 -0.002	Constant Normal 0.250 0.400 0.810 0.060 0.000 0.003		
		U cour	its				TH c	ounts		
	1680- 1716- 1714- 1734-	1752- 1770- 1788-	1824- 1822- 1842- 1860-	—— K-pad —— U-pad —— Th-pad	2 - 1 - 0	2466- 2502- 2502-	2646-	2682- 2718- 2754-	- 06/2	– K-pad – U-pad – Th-pad

BRECKENRIDGE CALIBRATION

Location: Breckenridge, ON Operator: Ali Kasraei Compiled by: Carlos Cortada

D	ate: 1-Aug-20
Airci	aft: C-FLRB
o Crystal Par	ks. 2

Temp=	°C	Ground	Concent	ration
Pressure=	kPa	TC=	56.323	nGy/h
Flt Hight=	150.0 m	K=	1.990	%
200000070002-0		ell-	1 480	nnm

eTH=

8.780

ppm

	Stripping	g Coeff.	80.
α=	0.269	a=	0.051
β=	0.403	b=	0.002
Y=	0.779	g=	-0.001

Altimeters (m)		Cou	nts over w	ater (cps)	14
Radar	HSTP	TC	K	U	TH
57.46	50.74	340.14	33.48	15.34	8.23
72.01	63.22	350.16	33.44	15.36	8.90
86.08	75.24	338.77	32.79	14.46	8.86
120.54	104.69	329.47	32.23	13.99	9.06
151.58	130.89	329.96	33.26	14.54	8.56
180.35	154.93	334.95	32.06	14.93	9.14
209.27	178.90	353.09	33.67	16.34	9.51
241.06	204.99	346.51	33.60	15.66	8.86

	Altimete	ers (m)	Co	ounts over	land (cps)	
ļ	Radar	HSTP	TC	K	U	TH
Ī	62.99	55.63	2105.73	259.25	40.99	55.24
	80.35	70.55	1912.49	227.16	38.82	51.23
	92.99	81.25	1776.36	209.45	36.23	47.53
ļ	124.39	107.98	1522.71	170.51	33.01	40.97
ļ	155.13	133.90	1315.12	144.33	28.82	36.01
ļ	187.87	161.22	1121.48	118.21	26.56	30.71
	215.37	183.95	994.30	102.35	24.56	27.92
	246.50	209.51	875.26	88.44	22.09	24.33

Background vs Altitude							
TC=	0.0299	х	HSTP	+	336.78	cps	
K=	0.0010	x	HSTP	+	32.94	cps	
U=	0.0055	x	HSTP	+	14.41	cps	
TH=	0.0037	x	HSTP	+	8.44	cps	

Altimete	rs (m)	Background	d corrected	& Strippe	d counts
Radar	HSTP	TC	K	U	TH
62.99	55.63	1767.29	195.71	12.64	45.95
80.35	70.55	1573.60	165.97	11.27	41.96
92.99	81.25	1437.15	150.99	9.53	38.30
124.39	107.98	1182.70	115.79	7.78	31.73
155.13	133.90	974.34	94.01	4.68	26.83
187.87	161.22	779.88	70.82	3.78	21.48
215.37	183.95	652.02	57.26	2.42	18.67
246.50	209.51	532.21	46.30	0.92	15.06

Temp=	°C	Ground	Concent	ration			Strippin	g Coeff.	10
Pressure=	kPa	TC=	56.323	nGy/h		α=	0.269	a=	0.051
Flt Hight=	150.0 m	K=	1.990	%		β=	0.403	b=	0.002
22		eU=	1.480	ppm		V=	0.779	g=	-0.001
		eTH=	8.780	ppm			13. 13		3
		· · · ·							
8.0					4.5				- 1

Ground Concentration

y = -0.0078x + 7.91

7.0

Altitude Attenuation

Coeffi	cients (m ⁻¹)	Sensi	tivity @ 150m
TC	-0.0078	TC	15.088 cps/nGy/h
K	-0.0094	K	39.971 cps/%
U	-0.0128	U	2.328 cps/ppm
TH	-0.0072	TH	2.674 cps/ppm

COSMIC CALIBRATION

Location: Lac St-Jean, QC

Operator: Ali K.

GDS:

Compiled by: Carlos Cortada

Date: 10-Aug-20 Aircraft: C-FLRB

No. Crystal Packs: 2

Nominal			DOWNWA	RD SPECTR	OMETER W	/INDOWS	
Elevation (feets)	Z GPS (meters)	COS c/sec	TC c/sec	K c/sec	U c/sec	TH c/sec	UPU c/sec
3000	1101.96	212.33	324.07	32.00	13.09	12.23	3.18
4000	1417.16	240.48	348.33	32.88	14.00	13.93	3.57
5000	1733.50	273.00	387.83	34.94	16.24	16.47	4.01
6000	2047.99	319.98	438.43	39.27	18.06	19.29	4.79
7000	2358.41	367.36	511.88	41.86	22.09	23.17	5.50
8000	2675.69	428.07	588.22	46.72	25.23	27.17	6.40
9000	2998.73	502.74	664.04	51.42	29.05	32.59	7.52
10000	3305.79	585.26	762.90	56.11	33.60	38.62	8.15

(Data have been livetime corrected, except for Cosmic-counts)

Cosm	ic Coeff. (c/sec)	Aircraft Background
TC	1.1999	58.870
K	0.0674	17.224
U	0.0563	-0.780
TH	0.0709	-3.087
UPU	0.0139	0.141

Cosmic Calibration Charts

SZSI RADON CALIBRATION

Radon Ratio	Radon Ratio				
a _{TC} = 1	1.359				
a _K =	0.547				
a _{TH} =	0.130				
a _{UPU} =	0.318				
All 'b' ratios =	0				

ANNEXE C

CARACTÉRISTIQUES DE L'ÉQUIPEMENT

Compensateur magnétique et système d'acquisition de données

Système d'acquisitionC-FLRBC-FVYWManufacturierRMS InstrumentsRMS InstrumentsModèleDAARC500DAARC500Synchronisation au GPSSignal PPSSignal PPSCompensateur magnétiqueIntégréIntégré

Le DAARC500 possède un système d'acquisition de données très flexible. Les instruments et senseurs externes, avec système de sortie digitale ou analogique, peuvent être connectés directement au DAARC500. L'instrument possède 8 sorties et entrées RS232 à haute vitesse et complètement isolées, 16 entrées analogiques différentielles et une entrée Ethernet haut débit.

Le système d'acquisition DAARC500 utilise une technique de traitement du signal très sophistiquée qui permet au système de compensation de recueillir les données de façon continue à partir du signal d'entrée, ce qui permet ainsi d'améliorer la solution pour obtenir une compensation optimale.

Les données reçues sont traitées en temps réel. Les données de sortie sont disponibles rapidement avec des fréquences aussi élevées que 40 Hz, 115,2 kbps via des ports séries, pour enregistrement sur mémoire USB, ou visible sur écran couleur de 6,5 po. En plus des données brutes et compensées, des sorties séries comprennent les composantes vectorielles triaxiales du champ magnétique, le nombre de fiducie et la quatrième différence du magnétomètre.

Le compensateur magnétique, inclus dans le système d'acquisition de données DAARC500 de RMS, utilise un magnétomètre tri-axial de type fluxgate. Ceux-ci permettent de suivre les manœuvres de l'avion par rapport au champ magnétique ambiant. En mode de calibration, les données de positionnement et les lectures du champ magnétique sont utilisées afin d'établir une solution comprenant environ 30 termes et permettant de compenser les mouvements de l'avion. Cette solution constitue un modèle mathématique qui décrit précisément les interférences magnétiques de l'avion en mouvement.

Magnétomètre en vol

Magnétomètre en vol	C-FLRB	C-FVYW
Manufacturier	Geometrics	Geometrics
Type et Modèle	Cesium G-822A	Cesium G-822A
Plage ambiante	20 000 - 100 000 nT	20 000-100 000 nT
Sensibilité	± 0.003 nT	± 0.003 nT
Précision absolue	± 10 nT	± 10 nT
Enveloppe de bruit	0.10 nT	0.10 nT
Taux d'échantillonnage	10 Hz	10 Hz
Erreur de cap	<2.0 nT	<2.0 nT

GDS utilise des magnétomètres constitués d'un capteur fabriqué par la firme **Geometrics**. Le senseur possède une gamme dynamique de 20 000 à 100 000 nanoTeslas (nT) et une enveloppe de bruit inférieure à 0,10 nT. Le taux d'échantillonnage du magnétomètre est de 10 lectures par seconde. Chaque senseur est incorporé à l'intérieur d'un rostre en kevlar fixé à la queue de l'aéronef.

Station de référence magnétique

	Station de base A	Station de base B
Manufacturier	GEM System inc	GEM System inc
Туре	Overhauser	Overhauser
Modèle	GSM-19 avec GPS	GSM-19 avec GPS
Plage ambiante	20 000 - 120 000 nT	20 000 - 120 000 nT
Sensibilité	± 0.01 nT	± 0.01 nT
Intervalle d'échantillonnage	1 Hz	1 Hz
Enveloppe de bruit	0.10 nT	0.10 nT

Deux magnétomètres GSM-19 fabriqués par la firme GEM System sont utilisés. Ces instruments ont une gamme dynamique de 20 000 à 120 000 nT, une sensibilité de 0,01 nT et un niveau de bruit inférieur à 0,10 nT. Les lectures du champ magnétique total sont enregistrées de façon synchrone avec le magnétomètre de bord grâce à une référence temporelle provenant d'un GPS interne.

Système de positionnement GPS différentiel

GPS Novatel DL-V3 et système de navigation 3D Linav

Récepteur GPS	C-FLRB	C-FVYW
Manufacturier GPS	Novatel	Novatel
Modèle	Bi-fréquence L1/L2 DL-V3	Bi-fréquence L1/L2 DL-V3
Fréquence	1 hertz	1 hertz
Nombre de canaux	12	12
Système différentiel	SBAS temps réel	SBAS temps réel
Système de navigation	C-FLRB	C-FVYW
Manufacturier	AGNAV	AGNAV
Modèle	Guia Linav	Guia Linav

Le système de navigation et de positionnement électronique comporte un récepteur GPS bi-fréquentiel (L1/L2) à 12 canaux de marque Novatel avec corrections SBAS (Satellite-Based Augmentation Systems) ainsi qu'un système de navigation 3D LiNav de Agnav. Ce système présente une résolution de 0,1 mètre et une erreur de localisation inférieure à 3 mètres. L'antenne GPS est fixée au cockpit ou sur la queue de l'avion.

Les coordonnées de chacun des coins de la zone à étudier (dans le système Longitude/Latitude sont programmées dans le système de navigation 3D LiNav (AGNAV) de l'avion. Ce système permet de guider le pilote le long des lignes de vol ainsi que sur la surface de vol prédéfinie.

Toutes les données provenant du récepteur GPS sont corrigées de façon différentielle après vol grâce aux données enregistrées à la station de base GPS Novatel DL-V3 installée près de la base d'opération. Le logiciel Waypoint GrafNav, spécialement conçu par le manufacturier, permet de traiter quotidiennement les données de positionnement. Le contrôle de la qualité du plan de vol est accompli avec le logiciel Geosoft Montaj pour s'assurer du respect des normes spécifiées dans l'appel d'offres.

Altimètre radar

Altimètre radar	C-FLRB	C-FVYW
Manufacturier	Honeywell	Honeywell
Modèle	HG7508CA01	HG7508CA01
Gamme dynamique	0 à 2400 m	0 à 2400 m
Précision	±3 ft + 1%	±3 ft + 1%
Résolution	0.03 mètre	0.03 mètre
Taux d'échantillonnage	2 Hz	10 Hz
Température	-54° +71°C	-54° +71°C

Un altimètre radar à haute résolution avec gamme dynamique de 0 à plus de 800 mètres, précision de 2% ou 5% et sensibilité de 4 millivolts par pied est utilisé. Les données altimétriques sont enregistrées sous forme digitale avec un taux d'échantillonnage de 1 lecture par seconde. Le tableau ci-haut présente ses caractéristiques techniques.

Altimètre barométrique (avec capteur de température extérieure)

Altimètre barométrique	C-FLRB	C-FVYW
Manufacturier	Honeywell	Honeywell
Modèle	PPT0020AWN2VA-C	PPT0020AWN2VA-C
Gamme de pression	0 à 20 psi	0 à 20 psi
Sensibilité	3 mV/m	3 mV/m
Capteur de température	-40° +85°C	-40° +85°C
Taux d'échantillonnage	1 Hz	1 Hz
Résolution	0.1%	0.1%

Un altimètre barométrique de marque Honeywell, model PPT avec gamme dynamique située entre le niveau de la mer et 6 000 mètres complète le système altimétrique de l'aéronef. L'intervalle d'échantillonnage du baromètre est de 1 lecture par seconde. Le tableau ci-haut décrit l'altimètre barométrique à sortie digitale installé dans l'aéronef.

Système vidéo

Une caméra vidéo couleur et un système d'enregistrement numérique filment la trajectoire de vol sous l'avion. Cette caméra avec objectif à grand-angle et posemètre automatique assure une bonne mise au point sans nécessiter d'ajustements de la part de l'opérateur.

La caméra vidéo enregistre sur chacune des images les données suivantes en format alphanumérique : la date, l'heure et la position de l'avion en Latitude, Longitude et altitude. Les tableaux suivants présentent les spécifications techniques du système vidéo installé dans l'aéronef.

Caméra vidéo	C-FLRB	C-FVYW
Manufacturier	Samsung	Samsung
Modèle	SNB-7002N	SNB-7002N
Installation	Verticale	Verticale

Enregistreur vidéo numérique	C-FLRB	C-FVYW
Manufacturier	Samsung	Samsung
Modèle	SRN-470D	SRN-470D

Système spectrométrique aéroporté

Chaque système spectrométrique aéroporté était constitué de deux spectromètres Radiation Solutions RSX-5 contrôlés par une console RS-501 reliée au système d'acquisition de donnée par une connexion Ethernet haute vitesse. Ces systèmes contiennent 8 cristaux de NaI orientés vers le bas pour un volume total de 33,6 litres et deux cristaux de NaI orientés vers le haut (8,4 litres).

Les spectromètres ont enregistré le spectre de rayons gammas avec une résolution de 1024 canaux. Les cristaux de NaI sont thermiquement isolés afin de limiter les dérives et sont placés dans l'avion de telle sorte que le réservoir de carburant n'agisse pas comme écran à la détection des rayons gamma. L'enregistrement des données spectrales a été fait à chaque seconde.

Le système spectrométrique était utilisé avec RadAssist, un programme de gestion et de contrôle fourni par Radiation Solutions. Ce programme fonctionne sur la plateforme Windows et contient un menu qui permet de choisir les paramètres de fonctionnement et les différentes options visuelles. RadAssist permet à l'utilisateur de choisir, entre autres, les résolutions des canaux entre 1024, 512 et 256. Ce programme était installé sur un ordinateur portable extérieur pour contrôler le système.

Spectromètre	C-FLRB	C-FVYW
Manufacturier	Radiation Solutions inc	Radiation Solutions inc
Modèle	RSX-5	RSX-5
Numéro de série	5579 et 5540	5518 et 5545
Volume des cristaux (haut)	4.2 litres x 2	4.2 litres x 2
Volume des cristaux (bas)	16.8 litres x 2	16.8 litres x 2
Nombre de canaux	256, 512 ou 1024	256, 512 ou 1024
Intervalle d'échantillonnage	1 Hz	1 Hz