Lanaudière Formation
Stratigraphic label: [narc]ln
Map symbol: nAln

First published: 17 July 2018
Last modified:










Translation of original French




Informal subdivision(s)
Numbering does not necessarily reflect the stratigraphic position.
nAln13 Sandstone, turbiditic and graphitic mudrock, black claystone
nAln12 Semi-massive sulphides, pyrrhotite-pyrite-graphite cherty tuff
nAln11 Basalt and magnetic basalt-andesite
nAln10 Graphitic claystone, siltstone and pyrrhotite-pyrite cherty tuff
nAln9 Volcaniclastics and intermediate to felsic flows
nAln8 Ferrugineous sedimentary rock and iron formation
nAln7 Felsic to intermediate volcaniclastics
nAln6 Gabbro sill and magnetic basalt
nAln5 Magnesian basalt, basalt, gabbro and mafic volcaniclastics
nAln4 Andesite
nAln3 Komatiite and ultramafic sill, basalt and mafic volcaniclastics
nAln2 Basalt and mafic volcaniclastics
nAln1 Rhyolite, dacite and felsic volcaniclastics


Author:Boivin, 1974
Reference section: 
Type area:Aiguebelle area (NTS sheet 32D07)
Geological province:Superior Province
Geological subdivision:Abitibi Subprovince
Lithology:Volcanic rocks of komatiitic, mafic and felsic composition (komatiite, basalt, dacite, rhyolite)




Units of this formation were originally located in NTS sheets 32D07 and 32D06, specifically in the Aiguebelle and Destor townships. They are successively described by Larouche (1974), Hocq (1979), Sanschagrin and Leduc (1979) and Dimroth et al. (1982) as the Destor Volcanic Complex. At the same time, Boivin (1974) interpreted the west extension of these units (sheet 32D06, west of Road 101, Destor and Duparquet townships) and assigned them to the Lac Lanaudière Formation. Goutier and Lacroix (1992) use the name Lanaudière Complex to refer to this unit because of the abundance of intrusions into its western part and the high intensity of regional deformation. To remain consistent with mapping work of Goutier and Lacroix (1992), Goutier (1997) and Pilote et al. (2009), the names « Héva-Nord » and « Dubuisson Supérieur » proposed by Imreh (1984) are abandoned and combined in favour of the name « Lanaudière Formation » on maps 32D08- 200-0202 and 32C05-200-0201.

The base of the Lanaudière Formation was arbitrarily set for the appearance of the first rhyolitic volcanics (Goutier and Lacroix, 1992). The Deguisier Formation, located at the base, and the Lanaudière Formation, located at the top, make the Kinojévis Group (Goutier, 1997). This group is located on the north side of the Porcupine-Destor Fault Zone.




The Lanaudière Formation consists of ultramafic lava, mafic and felsic volcanics (Sanschagrin and Leduc, 1979; Goutier 1997), as well as numerous tonalitic to monzonitic intrusions. Volcanic units are E-W oriented and have moderate to shallow dip to the north. Their polarity systematically faces south. Two of the rhyolitic complexes of this formation, which define tholeitic suites, delivered zircon U-Pb ages of 2718.7 ±0.7 Ma and 2716.2 ±0.8 Ma (McNicoll, in Pilote et al., 2009). These ages, as well as the close spatial association observed between ultramafic lava and rhyolitic complexes of this formation, have significant similarities with the Kidd-Munro assemblage (Bleeker et al., 1999; Berger, 2002; Ayer et al., 2002). The Lanaudière Formation is bounded to the north by the Aiguebelle Fault and to the south by the Manneville Nord Fault, which has shallow to moderate dip to the north (Mueller et al., 1996; Daigneault et al., 2002; Pilote et al., 2009). Goutier (1997) proposed that the Deguisier and Lanaudière formations were initially contiguous and subsequently separated by faults.

Basalts are predominant in the Lanaudière Formation. They are interbedded with felsic and ultramafic rocks. This formation also contains felsic pyroclastics and rhyolitic flows. Rhyolites form strips 10 to 150 m thick. Facies of rhyolites are wide ranging. Rocks are aphanitic, quartz, feldspath or both porphyritic, or spherulitic. The most commonly encountered facies are lobes and breccias, which have fluid flow structures. These structures are indicative of submarine flows fed by small felsic centres. Isotopic dating on a rhyolite sample taken in sheet 32D06 yielded an age of 2718 ±2 Ma (Zhang et al., 1993).

Ultramafic lava flows, magnesian basalts and komatiites with breccia, cumulate and spinifex facies, outcrop throughout this formation. These ultramafic and mafic units, in normal contact with other lithologies, are commonly located in the upper half of this formation. In addition, peridotite intrusions and pyroxenite are in several locations adjacent to and likely genetically associated with ultramafic lava.

Regional metamorphism is mainly to the greenschist facies. However, in the Barraute-La Corne area (sheet 32C05-NW), the degree of metamorphism reach the amphibolite facies in the south half of this sheet (outcrops 17-PP-80 and 17-PP-81). The typical mineralogical assemblage of massive and pillow mafic volcanics is thus albite-actinolite or pale green hornblende-chlorite-epidote-quartz-carbonate. Ultramafic units are tremolitized and serpentinized, i.e. converted to talc and chlorite schists. The mineralogical assemblage of serpentinized ultramaphics consists, more precisely, of serpentine-magnetite-chlorite ± talc ± carbonate ± quartz (Jones, 1964; Brett et al., 1976; Imreh, 1984, 1991; Daigneault et al., 2002, 2004).

The following units were mapped in the area west of Barraute by Pilot in 2017: nAln1, nAln2, nAln3, nAln5 and nAln13. The remaining units have been compiled from SIGEOM mapping (MNRF, 2010) or other older documents and will be subject to revision in future mapping work.



Lanaudière Formation 1 (nAln1): Rhyolite, Dacite and Felsic Volcaniclastics

Formation de Lanaudière (nAln1)Formation de Lanaudière (nAln1)

This unit was observed only at the west end of sheet 32C05-NW. The presence of this unit was determined primarily from drilling observations in sheets 32D08 (Love, 1963a) and 32C05 (Love, 1963b), and some compilation outcrops (Sharpe, 1961). It consists of massive rhyolitic and dacitic flows, accompanied by poorly sorted coarse-grained volcaniclastic sequences. The deformation level is generally high, with well-developed regional schistosity. 



Lanaudière Formation 2 (nAln2): Basalt and Mafic Volcaniclastics

Formation de Lanaudière (nAln2)Formation de Lanaudière (nAln2)Formation de Lanaudière (nAln2)Formation de Lanaudière (nAln2)

This unit consists of basaltic flows with massive, pillowed and brecciated morphofacies. Flow thickness varies on average from less than 10  to rarely more than 20 . Schistosity is generally well developed. These lithologies are metamorphosed to the amphibolite facies in sheet 32C05, immediately north of the La Corne Batholith. These lithologies are E-W oriented with inclined dips of 30 to 45° northward. These sequences are overturned, with polarities to the south.


Lanaudière Formation 3 (nAln3): Komatiite and Ultramafic Sill, Basalt and Mafic Volcaniclastics

Formation de Lanaudière (nAln3)Formation de Lanaudière (nAln3)Formation de Lanaudière (nAln3)

This unit contains komatic flows, ultramafic sills and some horizons of basalt and mafic volcaniclastics. The deformation level varies from moderate to severe. Ultramafic lithologies are usually replaced by the talc-chlorite-serpentine assemblage. True komatiitic flows with spinifex are uncommon. Dunitic or peridotitic sills dominate in the central and eastern portions of sheet 32C05-NW. These lithologies are E-W oriented with inclined dips of 30 to 45° northward. These sequences are overturned, with polarities facing south.


Lanaudière Formation 4 (nAln4): Andesite

The andesite unit is located on the edge of sheets 32D06 and 32D11, in the eastern portion of these sheets. It has a vesicular, pillowed and massive appearance. Unlike Lanaudière basalt, andesite is distinguished by a significant amount of plagioclase and absence of actinolite. On the other hand, this unit has carbonation of the same intensity as basalts bordering it to the north (Goutier and Lacroix, 1992).


Lanaudière Formation 5 (nAln5): Magnesian Basalt, Basalt, Gabbro and Mafic Volcaniclastics

This unit is similar to unit nAla2, except that magnesian basalts replace komatiitic flows. The deformation level varies from moderate to severe. These lithologies are E-W oriented with inclined dips of 30 to 45° northward. These sequences are overturned, with polarities to the south.


Lanaudière Formation 6 (nAln6): Gabbro Sill and Magnetic Basalt

This unit consists of a basaltic flow with thin magnetite beds and medium-grained ferromagnesian gabbroic sills (Beauregard and Gaudreault, 2014). It is located in the southern portion of the Lanaudière Formation, between Pascalis and Laverdière lakes.


Lanaudière Formation 7 (nAln7): Felsic to Intermediate Volcaniclastics

This unit consists mainly of block and lapilli tuffs of intermediate to felsic composition located south of Tiblemont Lake (sheet 32C03; Pilote et al., 2016). These lithologies are likely the result of erosion or destruction of volcanic edifices that compose unit nAln9, which is spatially closely associated with it.


Lanaudière Formation 8 (nAln8): Ferrugineous Sedimentary Rock and Iron Formation

This unit, consisting of ferrugineous sedimentary rocks and thin iron formation horizons, is interbedded into mafic volcanics (Pilote et al., 2016). It is located in the southeast corner of sheet 32C05 and has deformation similar to that of units nAln1 and nAln3.


Lanaudière Formation 9 (nAln9): Volcaniclastics and Intermediate to Felsic Flows

These lithologies are located south of Tiblemont Lake. They are composed mainly of pyroclastic rocks and felsic to intermediate flows (Bubar et al., 1988; Pilote et al., 2016). Hosted in rhyolitic flows about 60 metres thick, pyroclastic rock is massive and composed of ash and lapilli green tuffs. The felsic part contains quartz phenocrystals, while the intermediate part contains up to 5% lepidoblastic biotite porphyroblasts (Ali and Plante, 2012).


Lanaudière Formation 10 (nAln10): Graphitic Claystone, Siltstone and Pyrrhotite-Pyrite Cherty Tuff

This unit consists of four sedimentary strips of up to 45 thick. These well-bedded strips may contain aprroximately 1% pyrite (Ali and Plante, 2012). Descriptions from diamond drilling report the presence of thin graphitic claystone, graphitic tuff and black claystone bands interbedded with pyroclastic volcanic sequences and mafic flows (Bubar et al., 1988).


Lanaudière Formation 11 (nAln11): Basalt and Magnetic Basalt-Andesite

This thin unit is easily recognizable on aeromagnetic surveys (Geological Survey of Canada, Mines d’Or Virginia Inc., Noranda Exploration, 2008) because of its high magnetic susceptibility. It is interbedded in unit nAln2 in the centre of sheet 32C03.


Lanaudière Formation 12 (nAln12): Semi-Massive Sulphides, Pyrrhotite-Pyrite-Graphite Cherty Tuff

Drilling has identified this unit which appears to be intebedded with unit nAln1 dacite and chert beds. Tuff is light grey to light green and contains disseminated pyrite and pyrrhotite (Goyette and Ingham, 1953).


Lanaudière Formation 13 (nAln13): Sandstone, Turbiditic and Graphitic Mudrock, Black Claystone

Lithologies of this unit are generally spatially associated with ultramafic flows or sills. They are observed mainly in drilling, rarely in outcrop. Beds, homogeneous and well-stratified, are 20 to 40 cm thick.


Thickness and Distribution

The Lanaudière Formation is a package of overall E-W-oriented volcanic and intrusive lithologies with stratigraphic thicknesses ranging from 1 to nearly 5 km and affected by the Abijévis Synclinal (Dimroth et al., 1973; Hocq, 1979; Sanschagrin and Leduc, 1979; Leduc, 1981; Sanschagrin, 1981; Goutier, 1997). Various volcanic units belonging to this formation are found from west to east in sheets 32D06, 32D07, 32D08, 32C05 and 32C04, north of the Porcupine-Destor–Manneville Nord Fault Zone and Caste Formation sedimentary units.

The Lanaudière Formation is bounded by the Aiguebelle and Manneville Nord faults, which shallow dip to the north (Mueller et al., 1996; Daigneault et al., 2002). These faults are possible subsidiary to the Destor-Porcupine system identified further west (Goutier, 1997; Legault et al., 2005).



Two of the rhyolitic complexes of this formation, which define tholeiitic suites, have recently been dated and gave zircon U-Pb ages of 2718.7 ±0.7 Ma and 2716.2 ±0.8 Ma (McNicoll, in Pilote et al., 2009). These ages indicate that the Lanaudière Formation was emplaced in a relatively short period of time of approximately 2 Ma.

Isotopic SystemMineralCrystallization Age (Ma)(+)(-)Reference(s)
U-PbZircon2718.70.70.7McNicoll, In: Pilote et al., 2009
U-PbZircon2716.20.80.8McNicoll, In: Pilote et al., 2009
U-PbZircon2718.022Zhang et al. 1993



Stratigraphic Relationship(s)

This formation is the summit of the Kinojévis Group. The Lanaudière and Deguisier formations are in fault contact (Aiguebelle Fault) throughout sheets 32C05 to 32D11, a distance of more than 70 km. To the east of the intersection of the Abijévis Synclinal axial plane with the Aiguebelle Fault, volcanics of these two formations show opposite polarities.

The ages obtained for the Lanaudière Formation, as well as the close spatial association observed between ultramafic lava and rhyolitic complexes, show significant similarities with the Kidd-Munro assemblage described on the Ontario side of the Abitibi Subprovince (Berger, 2002; Ayer et al., 2002; Thurston et al., 2008), host of the Kidd Creek volcanogenic massive sulphide mine (Bleeker et al., 1999).


Does not apply.


Author(s)TitleYear of PublicationHyperlink (EXAMINE or Other)
ALI, A. – PLANTE, L.Technical evaluation, Geoffroy and Pascalis Cu-Zn ouest prospects. Golden Valley Mines ltd; évaluation technique, 47 pages, 7 plans.2012GM 66542
AYER, J. – AMELIN, Y. – CORFU, F. – KAMO, S. – KETCHUM, J. – KWOK, K. – TROWELL, N.Evolution of the southern Abitibi greenstone belt based on U-Pb geochronology: autochthonous volcanic construction followed by plutonism, regional deformation and sedimentation. Precambrian Research; volume 115, pages 63-95.2002Source
BERGER, B.R.Geological synthesis of the Highway 101 area, east of Matheson, Ontario. Ontario Geological Survey; Open File Report 6091, 124 pages.2002Source
BEAUREGARD, A.-J. – GAUDREAULT, D.2012 fieldwork report on the Senneville property. Geologica groupe-conseil inc, laboratoire d’analyse Bourlamaque Ltee; pages 192, plan 6.2014GM 68366
BLEEKER, W.Structure, stratigraphy, and primary setting of the Kidd Creek volcanogenic massive sulfide deposit; a semiquantitative reconstruction. Economic Geology Monographs 10; pages 71-121. 1999
BOIVIN, P.Pétrographie, stratigraphie et structure de la ceinture de «schistes verts» de Noranda, dans les cantons de Hébécourt, de Duparquet et de Destor, Québec, Canada. Université de Clermont, France; thèse de doctorat, 133 pages.1974
BRETT, P.R. – JONES, R.E. – LEUNER, W.R. – LATULIPPE, M.Canton de La Motte. Ministère de l’Énergie et des Ressources naturelles, Québec; Ministère de l’Énergie et des Ressources naturelles, Québec; RG 160, 153 pages.1976RG 160
BUBAR, D.S. – MANNARD, G.N. – MARTIN, L. – PEARCE, G.Report on the 1987-88 diamond drilling and geological mapping program, Obaska Property. Exploration Rogi inc; levé géologique, 140 pages, 19 plans.1988GM 47568
GEOLOGICAL SURVEY OF CANADA – MINES D’OR VIRGINIA INC. – NORANDA EXPLORATIONCartes géophysiques couleur Mégatem – 32C05. Ministère de l’Énergie et des Ressources naturelles, Québec; 5 pages, 4 maps.2009DP 2008-06
DAIGNEAULT, R. – MUELLER, W.U. – CHOWN, E.H.Oblique Archean subduction: accretion and exhumation of an oceanic arc during dextral transpression, Southern Volcanic Zone, Abitibi Subprovince, Canada. Precambrian Research; volume 115, pages 261-290.2002Source
DAIGNEAULT, R. – MUELLER, W.U. – CHOWN, E.H.Abitibi greenstone belt plate tectonics: the diachronous history of arc development, accretion and collision. Developments in Precambrian Geology, Elsevier; volume 12, pages 88-103.2004
DAVID, J. – VAILLANCOURT, D. – BANDYAYERA, D. – SIMARD, M. – GOUTIER, J. – PILOTE, P. – DION, C.  – BARBE, P.Datations U-Pb effectuées dans les sous-provinces d’Ashuanipi, de La Grande, d’Opinaca et d’Abitibi en 2008-2009. Ministère des Ressources naturelles et de la Faune, Québec; RP 2010-11, 37 pages.2011RP 2010-11
DAVIS, D.W. – SIMARD, M. – HAMMOUCHE, H. – BANDYAYERA, D. – GOUTIER, J. – PILOTE, P. – LECLERC, F. – DION, C.Datations U-Pb effectuées dans les provinces du Supérieur et de Churchill en 2011-2012. Ministère des Ressources naturelles, Québec; RP 2014-05, 62 pages.2014RP 2014-05
DIMROTH, E. – IMREH, L. – ROCHELEAU, M. – GOULET, N.Evolution of the south-central part of the Archean Abitibi Belt, Quebec. Part 1: Stratigraphy and paleogeographical model. Canadian Journal of Earth Sciences; volume 19, pages 1729-1758.1982Source
GOUTIER, J.Géologie de la région de Destor (SNRC 32D/07-200-0201). Ministère de l’Énergie et des Ressources naturelles, Québec; RG 96-13, 37 pages.1997RG 96-13
GOUTIER, J. – LACROIX, S.Géologie du secteur de la faille de Porcupine-Destor dans les cantons de Destor et Duparquet. Ministère de l’Énergie et des Ressources, Québec; MB 92-06, 62 pages.1992MB 92-06
GOYETTE, D. D. – INGHAM, W.N.Diamond drill hole core log, Geoffroy option. Claims Geoffroy, Cyprus Expl Corp Ltd.; sondage au diamant, 19 pages, 9 plans.1953GM 02456
HOCQ, M.Demie nord et quart sud-ouest du canton d’Aiguebelle (comté de Rouyn-Noranda) – rapport d’étape. Ministère de l’Énergie et des Ressources, Québec; DPV 644, 41 pages.1979DPV 644
IMREH, L.Sillon de La Motte-Vassan et son avant-pays méridional: synthèse volcanologique, lithostratigraphique et gîtologique. Ministère de l’Énergie et des Ressources, Québec; MM 82-04, 72 pages.1984MM 82-04
IMREH, L.Cartes géologiques préliminaires au 1/15 840 de l’Abitibi-Est méridional – Quart nord-ouest du feuillet SNRC 32C05, cartographie géologique; MB 90-39.1991MB 90-39
JONES, R.E.Quart nord-ouest du canton de Fiedmont, comté d’Abitibi Est. Ministère des Richesses Naturelles, Québec;  RG 108, 34 pages.1964RG 108
LAROUCHE, M.Étude stratigraphique, volcanologique et structurale de la région de Destor, Cléricy, Montbrun, Abitibi-ouest. Mémoire de maîtrise, Université Laval, Québec, Canada, 69 pages.1974
LOVE, H.D.Diamond drill record – Claims Moore, Hollinger North Shore Expl. Co. Ltd., North American Rare Metals Ltd. Ministère de l’Énergie et des Ressources naturelles, travaux statutaires; GM 14509, 11 pages.1963aGM 14509
LOVE, H.D.1 DDH log – Amos Synd., Claims Gauthier, Hollinger North Shore Expl. Co. Ltd. Ministère de l’Énergie et des Ressources naturelles, travaux statutaires; GM 13625, 13 pages.1963bGM 13625
MRNFCartes géologiques du SIGEOM – feuillet 32C. Ministère des Ressources naturelles et de la Faune, Québec; 49 plans.2010CG SIGEOM32C
MUELLER, W.U. – DAIGNEAULT, R. – MORTENSEN, J.K. – CHOWN, E.H.Archean terrane docking: upper crust collision tectonics, Abitibi greenstone belt, Quebec, Canada. Tectonophysics; volume 265, pages 127-150. 1996Source
PILOTE, P. – LACOSTE, P. – GUEMACHE, M.Géologie – Lac Tiblemont. Ministère de l’Énergie et des Ressources naturelles, Québec; 2 plans.2016CG-2016-10
PILOTE, P. – LACOSTE, P. – BEDEAUX, P.Géologie – Lac Fiedmont. Ministère de l’Énergie et des Ressources naturelles, Québec; 2 plans.2016CG-2016-15
PILOTE, P. – McNICOLL, V. – DAIGNEAULT, R. – MOORHEAD, J.Géologie et nouvelles corrélations dans la partie ouest du Groupe de Malartic et dans le Groupe de Kinojévis, Québec. Ministère de l’Énergie et des Ressources, Québec; MB 2009-09, pages 55-59.2009MB 2009-09
SANSCHAGRIN, Y. – LEDUC, M.Quart sud-est du canton d’Aiguebelle. Ministère des Richesses naturelles, Québec; DPV 676, 45 pages.1979DPV 676
THURSTON, P.C. – AYER, J.A. – GOUTIER, J. – HAMILTON, M.A.Depositional gaps in Abitibi greenstone belt stratigraphy: a key to exploration for syngenetic mineralization. Economic Geology; volume 103, pages 1097-1134.2008Source
SHARPE, J.I.Rapport préliminaire sur la demie Sud du canton de Figuery et le quart sud-Ouest du canton de Landrienne, comté d’Abitibi-Est. Ministère des Richesses Naturelles, Québec; RP 446, 18 pages, 1 1:24,000 map.1961RP 446
ZHANG, P.L. – MACHADO, N. – LUDDEN, J. – MOORE, D.Geotectonics constraints from U-Pb ages for the Blake River Group, the Kinojévis Group and the Normétal mine area, Abitibi, Québec. Association géologique du Canada – Association minéralogique du Canada; Edmonton, programme et résumés, volume 18, page A114.1993



13 novembre 2018